1,187 research outputs found

    Efficient Jacobian-Based Inverse Kinematics With Sim-to-Real Transfer of Soft Robots by Learning

    Get PDF
    This paper presents an efficient learning-based method to solve the inverse kinematic (IK) problem on soft robots with highly non-linear deformation. The major challenge of efficiently computing IK for such robots is due to the lack of analytical formulation for either forward or inverse kinematics. To address this challenge, we employ neural networks to learn both the mapping function of forward kinematics and also the Jacobian of this function. As a result, Jacobian-based iteration can be applied to solve the IK problem. A sim-to-real training transfer strategy is conducted to make this approach more practical. We first generate a large number of samples in a simulation environment for learning both the kinematic and the Jacobian networks of a soft robot design. Thereafter, a sim-to-real layer of differentiable neurons is employed to map the results of simulation to the physical hardware, where this sim-to-real layer can be learned from a very limited number of training samples generated on the hardware. The effectiveness of our approach has been verified on pneumatic-driven soft robots for path following and interactive positioning

    Machine Learning-based Framework for Optimally Solving the Analytical Inverse Kinematics for Redundant Manipulators

    Get PDF
    Solving the analytical inverse kinematics (IK) of redundant manipulators in real time is a difficult problem in robotics since its solution for a given target pose is not unique. Moreover, choosing the optimal IK solution with respect to application-specific demands helps to improve the robustness and to increase the success rate when driving the manipulator from its current configuration towards a desired pose. This is necessary, especially in high-dynamic tasks like catching objects in mid-flights. To compute a suitable target configuration in the joint space for a given target pose in the trajectory planning context, various factors such as travel time or manipulability must be considered. However, these factors increase the complexity of the overall problem which impedes real-time implementation. In this paper, a real-time framework to compute the analytical inverse kinematics of a redundant robot is presented. To this end, the analytical IK of the redundant manipulator is parameterized by so-called redundancy parameters, which are combined with a target pose to yield a unique IK solution. Most existing works in the literature either try to approximate the direct mapping from the desired pose of the manipulator to the solution of the IK or cluster the entire workspace to find IK solutions. In contrast, the proposed framework directly learns these redundancy parameters by using a neural network (NN) that provides the optimal IK solution with respect to the manipulability and the closeness to the current robot configuration. Monte Carlo simulations show the effectiveness of the proposed approach which is accurate and real-time capable (≈\approx \SI{32}{\micro\second}) on the KUKA LBR iiwa 14 R820

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Mathematical modeling and kinematic analysis of 5 degrees of freedom serial link manipulator for online real-time pick and place applications

    Get PDF
    Modeling and kinematic analysis are crucial jobs in robotics that entail identifying the position of the robot’s joints in order to accomplish particular tasks. This article uses an algebraic approach to model the kinematics of a serial link, 5 degrees of freedom (DOF) manipulator. The analytical method is compared to an optimization strategy known as sequential least squares programming (SLSQP). Using an Intel RealSense 3D camera, the colored object is picked up and placed using vision-based technology, and the pixel location of the object is translated into robot coordinates. The LOBOT LX15D serial bus servo controller was used to transmit these coordinates to the robotic arm. Python3 programming language was used throughout the entire analysis. The findings demonstrated that both analytical and optimized inverse kinematic solutions correctly identified colored objects and positioned them in their appropriate goal points

    Optimization Approach for Inverse Kinematic Solution

    Get PDF
    Inverse kinematics of serial or parallel manipulators can be computed from given Cartesian position and orientation of end effector and reverse of this would yield forward kinematics. Which is nothing but finding out end effector coordinates and angles from given joint angles. Forward kinematics of serial manipulators gives exact solution while inverse kinematics yields number of solutions. The complexity of inverse kinematic solution arises with the increment of degrees of freedom. Therefore it would be desired to adopt optimization techniques. Although the optimization techniques gives number of solution for inverse kinematics problem but it converses the best solution for the minimum function value. The selection of suitable optimization method will provides the global optimization solution, therefore, in this paper proposes quaternion derivation for 5R manipulator inverse kinematic solution which is later compared with teachers learner based optimization (TLBO) and genetic algorithm (GA) for the optimum convergence rate of inverse kinematic solution. An investigation has been made on the accuracies of adopted techniques and total computational time for inverse kinematic evaluations. It is found that TLBO is performing better as compared GA on the basis of fitness function and quaternion algebra gives better computational cost

    Closed-loop inverse kinematics for redundant robots: Comparative assessment and two enhancements

    Get PDF
    Motivated by the need of a robust and practical Inverse Kinematics (IK) algorithm for the WAM robot arm, we reviewed the most used Closed-Loop IK (CLIK) methods for redundant robots, analysing their main points of concern: convergence, numerical error, singularity handling, joint limit avoidance, and the capability of reaching secondary goals. As a result of the experimental comparison, we propose two enhancements. The first is a new filter for the singular values of the Jacobian matrix that guarantees that its conditioning remains stable, while none of the filters found in literature is successful at doing so. The second is to combine a continuous task priority strategy with selective damping to generate smoother trajectories. Experimentation on the WAM robot arm shows that these two enhancements yield an IK algorithm that improves on the reviewed state-of-the-art ones, in terms of the good compromise it achieves between time step length, Jacobian conditioning, multiple task performance, and computational time, thus constituting a very solid option in practice. This proposal is general and applicable to other redundant robots.This research is partially funded by the CSIC project CINNOVA (201150E088) and the Catalan grant 2009SGR155. A. Colomé is also supported by the Spanish Ministry of Education, Culture and Sport via a FPU doctoral grant (AP2010-1989).Peer Reviewe

    An Overview of Kinematic and Calibration Models Using Internal/External Sensors or Constraints to Improve the Behavior of Spatial Parallel Mechanisms

    Get PDF
    This paper presents an overview of the literature on kinematic and calibration models of parallel mechanisms, the influence of sensors in the mechanism accuracy and parallel mechanisms used as sensors. The most relevant classifications to obtain and solve kinematic models and to identify geometric and non-geometric parameters in the calibration of parallel robots are discussed, examining the advantages and disadvantages of each method, presenting new trends and identifying unsolved problems. This overview tries to answer and show the solutions developed by the most up-to-date research to some of the most frequent questions that appear in the modelling of a parallel mechanism, such as how to measure, the number of sensors and necessary configurations, the type and influence of errors or the number of necessary parameters
    • …
    corecore