105,474 research outputs found

    Scaling DBSCAN-like algorithms for event detection systems in Twitter

    Get PDF
    The increasing use of mobile social networks has lately transformed news media. Real-world events are nowadays reported in social networks much faster than in traditional channels. As a result, the autonomous detection of events from networks like Twitter has gained lot of interest in both research and media groups. DBSCAN-like algorithms constitute a well-known clustering approach to retrospective event detection. However, scaling such algorithms to geographically large regions and temporarily long periods present two major shortcomings. First, detecting real-world events from the vast amount of tweets cannot be performed anymore in a single machine. Second, the tweeting activity varies a lot within these broad space-time regions limiting the use of global parameters. Against this background, we propose to scale DBSCAN-like event detection techniques by parallelizing and distributing them through a novel density-aware MapReduce scheme. The proposed scheme partitions tweet data as per its spatial and temporal features and tailors local DBSCAN parameters to local tweet densities. We implement the scheme in Apache Spark and evaluate its performance in a dataset composed of geo-located tweets in the Iberian peninsula during the course of several football matches. The results pointed out to the benefits of our proposal against other state-of-the-art techniques in terms of speed-up and detection accuracy.Peer ReviewedPostprint (author's final draft

    A roadmap to integrated digital public health surveillance: The vision and the challenges

    Get PDF
    The exponentially increasing stream of real time big data produced by Web 2.0 Internet and mobile networks created radically new interdisciplinary challenges for public health and computer science. Traditional public health disease surveillance systems have to utilize the potential created by new situationaware realtime signals from social media, mobile/sensor networks and citizens' participatory surveillance systems providing invaluable free realtime event-based signals for epidemic intelligence. However, rather than improving existing isolated systems, an integrated solution bringing together existing epidemic intelligence systems scanning news media (e.g., GPHIN, MedISys) with real-time social media intelligence (e.g., Twitter, participatory systems) is required to substantially improve and automate early warning, outbreak detection and preparedness operations. However, automatic monitoring and novel verification methods for these multichannel event-based real time signals has to be integrated with traditional case-based surveillance systems from microbiological laboratories and clinical reporting. Finally, the system needs effectively support coordination of epidemiological teams, risk communication with citizens and implementation of prevention measures. However, from computational perspective, signal detection, analysis and verification of very high noise realtime big data provide a number of interdisciplinary challenges for computer science. Novel approaches integrating current systems into a digital public health dashboard can enhance signal verification methods and automate the processes assisting public health experts in providing better informed and more timely response. In this paper, we describe the roadmap to such a system, components of an integrated public health surveillance services and computing challenges to be resolved to create an integrated real world solution

    Streaming Social Event Detection and Evolution Discovery in Heterogeneous Information Networks

    Get PDF
    Events are happening in real world and real time, which can be planned and organized for occasions, such as social gatherings, festival celebrations, influential meetings, or sports activities. Social media platforms generate a lot of real-time text information regarding public events with different topics. However, mining social events is challenging because events typically exhibit heterogeneous texture and metadata are often ambiguous. In this article, we first design a novel event-based meta-schema to characterize the semantic relatedness of social events and then build an event-based heterogeneous information network (HIN) integrating information from external knowledge base. Second, we propose a novel Pairwise Popularity Graph Convolutional Network, named as PP-GCN, based on weighted meta-path instance similarity and textual semantic representation as inputs, to perform fine-grained social event categorization and learn the optimal weights of meta-paths in different tasks. Third, we propose a streaming social event detection and evolution discovery framework for HINs based on meta-path similarity search, historical information about meta-paths, and heterogeneous DBSCAN clustering method. Comprehensive experiments on real-world streaming social text data are conducted to compare various social event detection and evolution discovery algorithms. Experimental results demonstrate that our proposed framework outperforms other alternative social event detection and evolution discovery techniques

    Real-time Content Identification for Events and Sub-Events from Microblogs.

    Get PDF
    PhDIn an age when people are predisposed to report real-world events through their social media accounts, many researchers value the advantages of mining such unstructured and informal data from social media. Compared with the traditional news media, online social media services, such as Twitter, can provide more comprehensive and timely information about real-world events. Existing Twitter event monitoring systems analyse partial event data and are unable to report the underlying stories or sub-events in realtime. To ll this gap, this research focuses on the automatic identi cation of content for events and sub-events through the analysis of Twitter streams in real-time. To full the need of real-time content identification for events and sub-events, this research First proposes a novel adaptive crawling model that retrieves extra event content from the Twitter Streaming API. The proposed model analyses the characteristics of hashtags and tweets collected from live Twitter streams to automate the expansion of subsequent queries. By investigating the characteristics of Twitter hashtags, this research then proposes three Keyword Adaptation Algorithms (KwAAs) which are based on the term frequency (TF-KwAA), the tra c pattern (TP-KwAA), and the text content of associated tweets (CS-KwAA) of the emerging hashtags. Based on the comparison between traditional keyword crawling and adaptive crawling with di erent KwAAs, this thesis demonstrates that the KwAAs retrieve extra event content about sub-events in real-time for both planned and unplanned events. To examine the usefulness of extra event content for the event monitoring system, a Twitter event monitoring solution is proposed. This \Detection of Sub-events by Twit- ter Real-time Monitoring (DSTReaM)" framework concurrently runs multiple instances of a statistical-based event detection algorithm over different stream components. By evaluating the detection performance using detection accuracy and event entropy, this research demonstrates that better event detection can be achieved with a broader coverage of event content.School of Electronic Engineering Computer Science (EECS), Queen Mary University of London (QMUL) China Scholarship Council (CSC)

    Enhanced Heartbeat Graph for emerging event detection on Twitter using time series networks

    Full text link
    © 2019 Elsevier Ltd With increasing popularity of social media, Twitter has become one of the leading platforms to report events in real-time. Detecting events from Twitter stream requires complex techniques. Event-related trending topics consist of a group of words which successfully detect and identify events. Event detection techniques must be scalable and robust, so that they can deal with the huge volume and noise associated with social media. Existing event detection methods mostly rely on burstiness, mainly the frequency of words and their co-occurrences. However, burstiness sometimes dominates other relevant details in the data which could be equally significant. Besides, the topological and temporal relationships in the data are often ignored. In this work, we propose a novel graph-based approach, called the Enhanced Heartbeat Graph (EHG), which detects events efficiently. EHG suppresses dominating topics in the subsequent data stream, after their first detection. Experimental results on three real-world datasets (i.e., Football Association Challenge Cup Final, Super Tuesday, and the US Election 2012) show superior performance of the proposed approach in comparison to the state-of-the-art techniques

    Measuring, Predicting and Visualizing Short-Term Change in Word Representation and Usage in VKontakte Social Network

    Full text link
    Language in social media is extremely dynamic: new words emerge, trend and disappear, while the meaning of existing words can fluctuate over time. Such dynamics are especially notable during a period of crisis. This work addresses several important tasks of measuring, visualizing and predicting short term text representation shift, i.e. the change in a word's contextual semantics, and contrasting such shift with surface level word dynamics, or concept drift, observed in social media streams. Unlike previous approaches on learning word representations from text, we study the relationship between short-term concept drift and representation shift on a large social media corpus - VKontakte posts in Russian collected during the Russia-Ukraine crisis in 2014-2015. Our novel contributions include quantitative and qualitative approaches to (1) measure short-term representation shift and contrast it with surface level concept drift; (2) build predictive models to forecast short-term shifts in meaning from previous meaning as well as from concept drift; and (3) visualize short-term representation shift for example keywords to demonstrate the practical use of our approach to discover and track meaning of newly emerging terms in social media. We show that short-term representation shift can be accurately predicted up to several weeks in advance. Our unique approach to modeling and visualizing word representation shifts in social media can be used to explore and characterize specific aspects of the streaming corpus during crisis events and potentially improve other downstream classification tasks including real-time event detection

    Real-time event detection using Twitter

    Get PDF
    Twitter has become the social network of news and journalism. Monitoring what is said on Twitter is a frequent task for anyone who requires timely access to information: journalists, traders, and the emergency services have all invested heavily in monitoring Twitter in recent years. Given this, there is a need to develop systems that can automatically monitor Twitter to detect real-world events as they happen, and alert users to novel events. However, this is not an easy task due to the noise and volume of data that is produced from social media streams such as Twitter. Although a range of approaches have been developed, many are unevaluated, cannot scale past low volume streams, or can only detect specific types of event. In this thesis, we develop novel approaches to event detection, and enable the evaluation and comparison of event detection approaches by creating a large-scale test collection called Events 2012, containing 120 million tweets and with relevance judgements for over 500 events. We use existing event detection approaches and Wikipedia to generate candidate events, then use crowdsourcing to gather annotations. We propose a novel entity-based, real-time, event detection approach that we evaluate using the Events 2012 collection, and show that it outperforms existing state-of-the-art approaches to event detection whilst also being scalable. We examine and compare automated and crowdsourced evaluation methodologies for the evaluation of event detection. Finally, we propose a Newsworthiness score that is learned in real-time from heuristically labelled data. The score is able to accurately classify individual tweets as newsworthy or noise in real-time. We adapt the score for use as a feature for event detection, and find that it can easily be used to filter out noisy clusters and improve existing event detection techniques. We conclude with a summary of our research findings and answers to our research questions. We discuss some of the difficulties that remain to be solved in event detection on Twitter and propose some possible future directions for research into real-time event detection on Twitter

    Text Embedding-based Event Detection for Social and News Media

    Get PDF
    Today, social and news media are the leading platforms that distribute newsworthy content, and most internet users access them regularly to get information. However, due to the data’s unstructured nature and vast volume, manual analyses to extract information require enormous effort. Thus, automated intelligent mechanisms have become crucial. The literature presents several emerging approaches for social and news media event detection, along with distinct evolutions, mainly due to the variations in the media. However, most available social media event detection approaches primarily rely on data statistics, ignoring linguistics, making them vulnerable to information loss. Also, the available news media event detection approaches mostly fail to capture long-range text dependencies and support predictions of low-resource languages (i.e. languages with relatively fewer data). The possibility of utilising interconnections between different data levels to improve final predictions also has not been adequately explored. This research investigates how the characteristics of text embeddings built using prediction-based models that have proven capabilities to capture linguistics can be used in event detection while defeating available limitations. Initially, it redefines the problem of event detection based on two data granularities, coarse- and fine-grained levels, to allow systems to tackle different information requirements. Mainly, the coarse-grained level targets the notification of event occurrences and the fine-grained level targets the provision of event details. Following the new definition, this research proposes two novel approaches for coarse- and fine-grained level event detections on social media, Embed2Detect and WhatsUp, mainly utilising linguistics captured by self-learned word embeddings and their hierarchical relationships in dendrograms. For news media event detection, this proposes a TRansformer-based Event Document classification architecture (TRED) involving long-sequence and cross-lingual transformer encoders and a novel learning strategy, Two-phase Transfer Learning (TTL), supporting the capturing of long-range dependencies and data level interconnections. All the proposed approaches have been evaluated on recent real datasets, covering four aspects crucial for event detection: accuracy, efficiency, expandability and scalability. Social media data from two diverse domains and news media data from four high- and low-resource languages are mainly involved. The obtained results reveal that the proposed approaches outperform the state-of-the-art methods despite the data diversities, proving their accuracy and expandability. Additionally, the evaluations on efficiency and scalability adequately confirm the methods’ appropriateness for (near) real-time processing and ability to handle large data volumes. In summary, the achievement of all crucial requirements evidences the potential and utility of proposed approaches for event detection in social and news media

    Tracking physical events on social media

    Get PDF
    Social media platforms have emerged as the widely accessed form of communication channel on the world wide web in the modern day. The first ever social networking website came into existence in the year 2002 and currently there are about 2.08 billion social media users around the globe. The participation of users within a social network can be considered as an act of sensing where they are interacting with the physical world and recording the corresponding observations in the form of texts, pictures, videos, etc. This phenomenon is termed as Social Sensing and motivates us to develop robust techniques which can estimate the physical state from the human observations. This dissertation addresses a set of problems related to detection and tracking of real-world events. The term ‘event’ refers to an entity that can be characterized by spatial and temporal properties. With the help of these properties we design novel mathematical models that help us with our goals. We first focus on a simple event detection technique using ‘Twitter’ as the source of information. The method described in this work allow us to perform detection in a completely language independent and unsupervised fashion. We next extend the event detection problem to a different type of social media, ‘Instagram’, which allows users to share pictorial information of nearby observations. With the availability of geotagged data we solve two different subproblems - the first one is to detect and geolocalize the instance of an event and the second one is to estimate the path taken by an event during its course. The next problem we look at is related to improving the quality of event localization with the help of text and metadata information. Twitter, in general, has less volume of geotagged data available in comparison to Instagram, which demands us to design methods that explore the supplementary information available from the detected events. Finally, we take a look at both the social networks at the same time in order to utilize the complementary advantages and perform better than the methods designed for the individual networks
    • …
    corecore