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Abstract
Today, social and news media are the leading platforms that distribute newswor-

thy content, and most internet users access them regularly to get information. How-

ever, due to the data’s unstructured nature and vast volume, manual analyses to ex-

tract information require enormous effort. Thus, automated intelligent mechanisms

have become crucial. The literature presents several emerging approaches for social

and news media event detection, along with distinct evolutions, mainly due to the

variations in the media. However, most available social media event detection ap-

proaches primarily rely on data statistics, ignoring linguistics, making them vulner-

able to information loss. Also, the available news media event detection approaches

mostly fail to capture long-range text dependencies and support predictions of low-

resource languages (i.e. languages with relatively fewer data). The possibility of util-

ising interconnections between different data levels to improve final predictions also

has not been adequately explored.

This research investigates how the characteristics of text embeddings built using

prediction-based models that have proven capabilities to capture linguistics can be

used in event detection while defeating available limitations. Initially, it redefines the

problem of event detection based on two data granularities, coarse- and fine-grained

levels, to allow systems to tackle different information requirements. Mainly, the

coarse-grained level targets the notification of event occurrences and the fine-grained

level targets the provision of event details. Following the new definition, this research

proposes two novel approaches for coarse- and fine-grained level event detections on

social media, Embed2Detect and WhatsUp, mainly utilising linguistics captured by self-

learned word embeddings and their hierarchical relationships in dendrograms. For

news media event detection, this proposes a TRansformer-based Event Document clas-
sification architecture (TRED) involving long-sequence and cross-lingual transformer

encoders and a novel learning strategy, Two-phase Transfer Learning (TTL), supporting

the capturing of long-range dependencies and data level interconnections.

All the proposed approaches have been evaluated on recent real datasets, cover-

ing four aspects crucial for event detection: accuracy, efficiency, expandability and

scalability. Social media data from two diverse domains and news media data from

four high- and low-resource languages are mainly involved. The obtained results re-

veal that the proposed approaches outperform the state-of-the-art methods despite

the data diversities, proving their accuracy and expandability. Additionally, the eval-

uations on efficiency and scalability adequately confirm the methods’ appropriateness

for (near) real-time processing and ability to handle large data volumes. In summary,

the achievement of all crucial requirements evidences the potential and utility of pro-

posed approaches for event detection in social and news media.
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Chapter 1

Introduction

With the technological advancements that happened over the past years, there

has been remarkable worldwide digital growth. According to a survey con-

ducted in January 2022, there were 4.95 billion internet users, approximately

62.5% of the total population (Kemp, 2022). Also, there exist many platforms

which encourage people to be active via the internet and generate or access

a vast amount of data. To mention a few figures, an analysis done in 2021

revealed that roughly 5.7 million Google searches happen and 575,000 tweets

post in every minute (James, 2021). Overall, social media platforms and on-

line news agencies were found to generate a large proportion of data available

on the internet (Balali et al., 2020). Even though online news media gradually

attracted the community’s attention over the past few decades, social media

indicated a drastic increase in usage, estimated as 10.1% annual change at the

beginning of 2022; more than two times of internet user growth (Kemp, 2022).

Finding information and keeping up-to-date with news and events are the

top reasons why people access the internet, with 61% and 53% votes accord-

ing to a survey in early 2022 (Kemp, 2022). It is not only news media which

produce newsworthy content today. Social media also play a crucial role, gen-

erating diverse information such as personal updates and opinions, including

breaking news. Further confirming this fact, Shearer and Gottfried (2017) re-

vealed that 67% of American adults get news from social media in 2017. In
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addition to the diversity of information, the fast dispersal supported by large

user bases spread worldwide and availability via different web-based services

made social media more popular (Castillo et al., 2011). Also, in some cases,

social media was found to broadcast news faster than traditional news media,

emphasising its capabilities (Kwak et al., 2010). Following these trends, we can

also witness a tendency in news services such as BBC and CNN to use social

media actively to publish news to a huge user base instantly in the present.

It is not only the general public who seeks newsworthy or important infor-

mation through the internet. For example, detecting breaking disaster events

will be helpful for multiple parties, including rescue teams, security forces

and policymakers, to take immediate actions (Nugent et al., 2017). Also, pub-

lic opinion can be gathered from data on the internet, especially from social

media, to understand the future adjustments that are necessary to make by

organisations or governments to prevent crises or escalations (van der Meer

and Verhoeven, 2013). Furthermore, the available data can be organised into

knowledge bases to support decision-making processes and studies in various

areas such as sociology and political science (Hürriyetoğlu et al., 2021b). How-

ever, it is impractical to manually analyse data to extract newsworthy content

due to the huge volume and the unstructured nature of the vast majority (Nu-

gent et al., 2017; Balali et al., 2020). Thus, to effectively utilise available data,

the requirement of automated intelligent processes to extract information is

crucial (Small and Medsker, 2014).

This research targets addressing this crucial requirement, developing au-

tomated intelligent processes to extract information from data. The rest of

this chapter introduces this work in detail, initiating with the research focus,

mainly considering internet users’ requirements and recent trends in data gen-

eration and processing techniques in Section 1.1. Subsequently, Section 1.2

introduces the aim and objectives of this research and Section 1.3 summarises
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the contributions made achieving the objectives. Finally, Section 1.4 provides

a detailed overview of the rest of this thesis.

1.1 Research Focus

As we are aware, a vast majority of data available via the internet, which we

access to obtain newsworthy details, is unstructured. Thus, we require accu-

rate and efficient information extraction mechanisms to effectively utilise the

huge data volume available. We discuss the idea behind information extrac-

tion, and its subarea focused on by this research in Section 1.1.1. The targeted

data sources are described in Section 1.1.2. Section 1.1.3 provides an overview

of the evolution of Natural Language Processing (NLP) techniques and details

of the techniques focused on by this research. Finally, Section 1.1.4 summarises

the requirements which need to be fulfilled by developed systems.

1.1.1 Information Extraction

Information Extraction (IE) is an area of NLP that deals with finding factual

information in free text/unstructured data (Piskorski and Yangarber, 2013).

Unstructured data does not have a clear, semantically overt and easy-for-a-

computer structure, being the opposite of structured data (Manning et al.,

2008). However, even though we generally consider the text as unstructured

data, it actually has some implicit structure. Thus, IE can be more precisely

mentioned as a process that targets making the text’s semantic structure ex-

plicit to facilitate its effective usage (Grishman, 2015). There are a lot of tech-

niques or subareas under IE, such as named entity tagging, relation extraction,

coreference resolution and event detection, which support obtaining different

levels and types of information from text.
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Among different subareas under IE, we targeted event detection in this re-

search. Event detection is the process of analysing data streams to automat-

ically discover events described in data (Mellin and Berndtsson, 2009; Pana-

giotou et al., 2016). Events can be incidents such as a goal scored during a

football match, a result announcement of a parliament vote or a fire at a public

location. For further clarity, we defined the concept of event in Chapter 2. We

especially selected this area considering the internet users’ top requirements

of accessing data (i.e. finding information and keeping up-to-date with news

and events). Also, this area attracted researchers’ attention over past years due

to the widespread availability of huge data volumes which hold information

on various events (Panagiotou et al., 2016; Hürriyetoğlu et al., 2021a). Further-

more, this area can be generalised across different domains and data sources

being useful for multiple parties, including the general public, organisations,

governments and rescue teams.

We further divided event detection into two categories: (1) coarse-grained

level and (2) fine-grained level based on data granularity. This decision is

mainly encouraged by the diversity in data available via the internet and user

requirements. At the coarse-grained level, we targeted notifying users about

event occurrences so that they can take necessary further actions to obtain the

required event details. Such a mechanism is helpful in situations where sen-

sitive events are targeted and cannot completely rely on automated processes.

At the fine-grained level, we targeted extracting event-described text segments

at event occurrences to provide detailed insight. Such a mechanism is helpful

when full automation is preferred to get event details concisely and quickly

without involving any manual process.
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1.1.2 Data Sources

Several platforms or sources generate and disperse data via the internet.

Among them, social and news media play key roles in distributing newswor-

thy content today (Balali et al., 2020). Thus, these platforms are very popular

among internet users and widely accessed to obtain information. Also, these

platforms indicate notable growth in users and data generation, emphasising

the importance of automated mechanisms to extract information from data ef-

fectively. Considering these facts, we focused on developing event detection

approaches for data from social and news media in this research. We especially

targeted textual data, considering its wide availability across these media and

informativeness.

TABLE 1.1: Main distinctions in social and news media data

Social Media News Media

Short text posts Long text documents
Less organised data, reporting only the
aware details

More organised data, reporting compre-
hensive summaries

Written by the general public with di-
verse knowledge levels

Written by professionals in news agen-
cies

Dynamic/rapidly changing data gener-
ation

(Near) Static/non-rapidly changing
data generation

Contain various types of information:
newsworthy details, personal updates,
opinions, recommendations, etc.

Only contain newsworthy details

Additionally, social and news media have diverse characteristics, as sum-

marised in Table 1.1. This diversity encourages the generation of various

types of information useful for different scenarios. The dynamicity, along with

the real-timeliness, allow social media to propagate important information in-

stantly all over the world. Also, the involvement of various parties to generate

data help expose different aspects of an event. Contrarily, news media data are

more comprehensive and reliable as only professionals generate them. Thus,
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they are more helpful in generating complete event summaries or knowledge

bases to support future studies.

1.1.3 NLP Techniques

Natural Language Processing (NLP) is a subfield of Artificial Intelligence (AI)

that enables computers to understand and analyse human language/naturally

occurring texts (Liddy, 2001). To be processed by computers, the text needs

to be converted into some machine-readable format or numerals. Since all

the performances of later computational techniques depend on the successful

conversion of text into numerals, a high focus was given to the conversion

techniques. Figure 1.1 illustrates some key algorithms designed to make the

text understandable to computers along the NLP journey.

FIGURE 1.1: Evolution of NLP models 1

NLP was initiated with simple models such as Bag of Words (BoW). BoW

counts each word’s occurrence in a document and generates a vector with

dimensions equivalent to the vocabulary size occupied by counts per doc-

ument. However, the count gets dominated by common words (e.g. stop-

words), which would not be much informative. To overcome this issue, Term

Frequency-Inverse Document Frequency (TF-IDF) scoring mechanism was in-

troduced. It reduces the weight of common words while highlighting the dis-

tinct words which may contain helpful information. However, it is not suffi-

cient to rely only on statistical measures when processing a language built us-

ing syntax and semantics, mainly (Pollard and Sag, 1988). Syntax defines the

1This figure is adapted from (Rahane and Pawar, 2020)
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arrangement of words in sequences, and semantics describes the connections

between words and their meanings. Considering this fact, co-occurrence ma-

trices were introduced. They are square matrices which store the co-occurrence

of words in a context. However, a matrix requires a large amount of memory.

Also, the larger the vocabulary, the matrix will be large and sparse similar to

the BoW vectors.

These limitations led to more advanced techniques involving neural net-

works. Word2Vec (Mikolov et al., 2013a) is one of the first prediction-based

modelling techniques, which attracted wide attention from the NLP commu-

nity. This technique uses a shallow neural network to generate word embed-

dings, considering the syntax and semantics of the text. However, models such

as Word2Vec are not capable of capturing homonyms or contextual impact on a

word’s meaning. Transformer models were introduced lately to overcome this

limitation (Vaswani et al., 2017). They use deep neural networks and attention

mechanisms to capture text’s contextual details and long-range dependencies.

Following transformers, BERT architecture was proposed based on the bidi-

rectional transformer encoder to generate contextual text representations, pro-

viding state-of-the-art results in many NLP benchmarks (Devlin et al., 2019).

It encouraged the development of various transformer-based models, includ-

ing cross-lingual models such as XLM-R (Conneau and Lample, 2019), which

recently gained wide attention.

When detecting events described in social and news media text, great at-

tention should be given to underlying linguistics (syntax and semantics). They

allow a language to express the same idea using different word sequences and

vice versa. This effect can be noticed to a certain level in news media as sev-

eral reporters write news articles. However, it is enormous in social media as

different types of people post. Thus, a serious amount of important informa-

tion can be lost without properly capturing linguistics. To fulfil this crucial
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requirement, we decided to focus on prediction-based modelling/text embed-

ding learning approaches in this research. We especially targeted Word2Vec

and transformer-based models considering their proven abilities to capture

linguistics, recency, popularity and outstanding performance. Our decision

is also encouraged by the limitation we recognised in available event detec-

tion approaches, which are further described in Chapter 2. For simplicity, we

will refer to the transformer-based language models or encoders (e.g. BERT)

as ‘transformers’ in the below content.

1.1.4 System Requirements

Depending on users and targeted tasks, systems have different requirements to

fulfil to be productive. We recognised the following qualities are crucial when

designing a system to detect events from social and news media and targeted

their achievement in this research.

• Accuracy: Achieving a high degree of accuracy in results/predictions is

the main target of an automated system. This fact is also highly appli-

cable to event detection because the extracted information will not be

useful for any party if the results are not sufficiently accurate. Different

metrics such as recall, precision, and F1 are commonly used to evaluate

a method’s accuracy.

• Efficiency: Since data generation and dispersal happen so fast through

the internet, event detection mechanisms need to be efficient to collect

information in (near) real-time before they get outdated. Thus, the time

takes to process data or make predictions should be sufficiently minimal

compared to the data generation time.
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• Expandability: Social and news media provide access to a wide range

of data which vary from different factors such as domain, language and

platform. Thus, to support effective event detection from any data, the

method should be designed with expandability: the ability to extend to

new domains, languages or platforms easily. It is important to design the

method without relying on any domain-, language- or platform-specific

features and external knowledge bases that introduce restrictions to pro-

vide expandability.

• Scalability: Recent surveys indicated a high volume of data generation

via the internet with a high growth rate (Kemp, 2022; James, 2021). Thus,

the event detection mechanisms should be scalable to handle increasing

data volumes efficiently with affordable resources to the majority to be

beneficial for many parties ranging from the general public to high-profit

organisations.

1.2 Aim and Objectives

This research aims to investigate how different capabilities of prediction-based

text embedding learning approaches can be utilised for effective event detec-

tion from textual data in social media data streams and news media articles

while overcoming the limitations of traditional approaches. To achieve this

aim, the following objectives have been considered.

1. Conduct a thorough literature review covering the areas of social me-

dia event detection and news media event detection to understand the

strengths and weaknesses of available approaches.
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2. Analyse the characteristics of social media data streams and limitations

in the available approaches and, focusing on the findings, develop effec-

tive methods for event detection by utilising the competencies of embed-

ding learning approaches.

3. Evaluate the approaches proposed for social media event detection using

recent real datasets and compare the performance with state-of-the-art

methods.

4. Analyse the characteristics of news media articles and limitations in the

available approaches and, focusing on the findings, develop effective

methods for event detection by utilising the competencies of embedding

learning approaches.

5. Evaluate the approaches proposed for news media event detection using

recent real datasets and compare the performance with state-of-the-art

methods.

1.3 Contributions

By fulfilling the objectives of this research, we made the following contribu-

tions. Each part (social media and news media event detection) has its original

contributions, as summarised below.

Social Media Event Detection

1. We proposed a novel method named Embed2Detect (Hettiarachchi et al.,

2021b; Hettiarachchi et al., 2022a) for coarse-grained level event detection

in social media or to identify event occurred time windows in (near) real-

time to notify users about events, involving linguistical features in the

underlying text, overcoming a major limitation in available approaches,

the less semantic involvement. To capture linguistic variations over time,
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we utilised self-learned word embeddings along with a text/cluster simi-

larity measure, which we introduced as Dendrogram Level (DL) Similarity.

2. We proposed a novel method named WhatsUp (Hettiarachchi et al.,

2023b) for fine-grained level event detection in social media or to iden-

tify text of co-occurred events at temporal event occurrences in (near)

real-time to automate the complete flow of event detection, involving

statistics and linguistics of underlying data in an unsupervised manner.

We introduced a localised version of DL Similarity named Local Dendro-

gram Level (LDL) Similarity, a technique for text similarity change calcu-

lation named Positive Similarity Change and a novel textual change-based

clustering approach along with WhatsUp.

3. We prepared and published social media datasets (TED and TED-S) rep-

resenting two diverse domains (i.e. sports and politics) with ground

truth event labels, addressing the lack of recent data availability in the

area of social media event detection (Hettiarachchi et al., 2022a; Het-

tiarachchi et al., 2022b). We also designed a comprehensive set of met-

rics/framework that evaluates both temporal and textual details of de-

tected events and released its implementation, aiming to support related

evaluations in a unified way.

News Media Event Detection

4. We proposed a TRansformer-based Event Document classification architecture

(TRED) using long-sequence transformer models for coarse-grained level

event detection in news media or event-described news article identifi-

cation (Hettiarachchi et al., 2021a). The involvement of long-sequence

models helped capture long-range dependencies in text effectively, out-

performing the state-of-the-art methods.
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5. We proposed a novel learning strategy named Two-phase Transfer Learn-

ing (TTL) (Hettiarachchi et al., 2023a), involving different levels of data

granularity (i.e. sentence and token levels) and the capabilities of state-

of-the-art transformer models. We applied TTL for fine-grained level

event detection in news media or to extract event-described sentences

and words/tokens from news articles and discussed its effectiveness and

applicability, introducing a new research direction.

6. We empirically evaluated how the performance of news media event

detection at the document, sentence and token levels can be improved

for high- and low-resource languages involving different language-based

learning strategies (i.e. multilingual, zero-shot and transfer learning) and

the characteristics of state-of-the-art transformer models and proposed

architectures.

Additionally, Figure 1.2 illustrates an overview of this research’s contribu-

tions. This diagram represents the outline of this research, the involvement of

text embeddings for this work and concepts proposed during this study, along

with the main contributions made.

1.4 Thesis Organisation

The rest of this thesis is organised as follows.

Chapter 2: Event Detection from Text. This chapter provides an overview of

the work done by previous research in event detection from text. It de-

fines the concept of event based on several published definitions. It also

reviews the methods used for event detection in social and news media,
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FIGURE 1.2: Overview of contributions

recognising different categories and their evolutions. Following the re-

view, it discusses some of the gaps/open challenges recognised in the ar-

eas of social and news media event detection, which aim to be addressed

by this research.

Part I: Social Media Event Detection

Chapter 3: Introduction to Social Media Event Detection. This chapter in-

troduces the idea behind social media event detection, providing an

overview of Part I of the thesis and defining the problem comprehen-

sively. It also describes the details of social media datasets prepared

for evaluations, covering two diverse domains (i.e. sports and politics),
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including data collection, cleaning and ground truth preparation. Fur-

thermore, it details the metrics designed to perform overall evaluations

covering temporal and textual event details. Additionally, the back-

ground concepts (i.e. Word2Vec and dendrograms) used to design the

approaches proposed in Chapters 4 and 5 are also described in this chap-

ter.

Chapter 4: Embed2Detect: Coarse-grained Level – Event Window Identi-

fication. This chapter presents the first main contribution of this re-

search. It introduces Embed2Detect, a novel approach proposed for

coarse-grained event detection in social media – event window identi-

fication, to notify users about events in data streams, relying on the tem-

poral variations of tokens and their hierarchical relationships captured

using self-learned word embeddings and dendrograms. This chapter fur-

ther details the conducted experiments along with the comparisons with

several recently published methods. Additionally, it discusses the possi-

bilities of involving other state-of-the-art text embeddings. It ends with

conclusions and ideas for the future directions of this subarea.

Chapter 5: WhatsUp: Fine-grained Level – Co-occurring Event Identifica-

tion. This chapter introduces the second main contribution of this re-

search. It presents WhatsUp, a novel approach proposed for fine-grained

event detection in social media – co-occurring event identification, to

extract event-described texts at temporal event occurrences, involving

self-learned word embeddings and unsupervised learning techniques. It

also proposes improvements for event window identification, introduc-

ing techniques that improve temporal textual change calculation. Fur-

thermore, it reports the conducted experiments and their results, along
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with the comparisons with recently published methods. Finally, it sum-

marises the conclusions and ideas for future directions, targeting a more

comprehensive event output.

Part II: News Media Event Detection

Chapter 6: Introduction to News Media Event Detection. This chapter intro-

duces the idea behind news media event detection, providing an

overview of Part II of the thesis and defining the targeted problem in de-

tail. It also describes the datasets and evaluation metrics involved in ex-

periments on news media event detection. Furthermore, it describes the

concepts behind transformer-based language model architecture, which

are used to design the approaches proposed in Chapters 7 and 8.

Chapter 7: TRED: Coarse-grained Level – Event Article Identification. This

chapter presents the third main contribution of this research. It proposes

a TRansformer-based Event Document classification architecture (TRED)

using long-sequence transformer models for coarse-grained event detec-

tion in news media – event article identification, to notify users about

event mentions in news articles. It also reports an empirical evaluation

of how the performance of event article identification can be improved

for high- and low-resource languages using transformer models and

different learning techniques. Finally, it summarises the conclusions

made following the experiments and ideas for future research in this

subarea.

Chapter 8: TTL: Fine-grained Level – Event Sentence and Word Extraction.

This chapter describes the fourth main contribution of this research. It

introduces Two-phase Transfer Learning (TTL), a novel learning strategy

proposed utilising the capabilities of transformer models to learn from

different levels of data granularity. TTL is applied for fine-grained
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event detection in news media – event sentence and word extraction, to

facilitate an effective event detail capturing using available labelled data.

An empirical evaluation of how the performance of event sentence and

word extraction can be improved for high- and low-resource languages

utilising the transformer models and different learning techniques along

with TTL is also reported in this chapter. It ends with conclusions and

ideas for future directions on considered subareas.

Chapter 9: Final Remarks and Perspectives. This chapter summarises the

thesis, providing an overview of the whole work and specifying the main

achievements. It also discusses the potential future directions of event

detection in social and news media.
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Chapter 2

Event Detection from Text

The text has been a key source of data or information dispersal since the past.

However, recent technological advancements boosted text generation, popu-

larising various platforms, including social and news media, which currently

hold the top positions. The extensive data growth that occurred afterwards,

which we experience today, led to generating a high volume of important in-

formation useful for various parties all over the world. Thus, automatic event

detection from the text in social and news media has gained wide research

attention over the past few years.

In this chapter, we discuss the evolution of previous research in event de-

tection from text, summarising their achievements and limitations. We initi-

ate our discussion, defining what is an event in Section 2.1, as its idea can be

vague due to language ambiguities. Then, we comprehensively describe the

recent approaches proposed for social media event detection, covering diverse

research areas in Section 2.2. Similarly, recent approaches proposed for news

media event detection, covering popular research areas and data granularities,

are described in Section 2.3. Finally, we summarise this chapter in Section 2.4,

highlighting the gaps we recognised in the light of previous research, which

we aim to address in this research.
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2.1 Defining an Event

Previous research used different definitions for events. To mention a few, tar-

geting social media data streams, Sayyadi et al. (2009) defined an event as

some news-related thing happening at a specific place and time. Also, events

were considered as occurrences which have the ability to create an observ-

able change in a particular context (Aldhaheri and Lee, 2017). Giving more

focus to event contents, Li et al. (2017a) described an event as a composition

of answers to WH questions (i.e. who, what, when and where). Similarly, fo-

cusing on news media also, different definitions were introduced by previous

research. For example, Allan et al. (1998) defined an event as something that

happens at a particular time and place. Automatic Content Extraction (ACE)

Program1 considered an event as a specific occurrence involving participants

or something that happens or a change of state.

Most of these definitions only cover the events that physically happened in

some place. However, when processing social and news media data, there is

a possibility to come across events which happened virtually, such as a virtual

product launch and webinar. Also, by processing social and news media data,

we can only recognise the events discussed or reported in that particular me-

dia. Considering these requirements and following the main ideas provided

by available definitions, we generally define an event using the Definition 1 in

this research.

Definition 1 Event: An incident or activity which happened at a certain time and

was discussed or reported in a data source/media.
1Details of ACE are available on https://www.ldc.upenn.edu/collaborations/

past-projects/ace

https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace
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2.2 Event Detection in Social Media

Previous research has proposed various approaches for social media event

detection, ranging from supervised to unsupervised techniques (Atefeh and

Khreich, 2015; Weiler et al., 2016; Saeed et al., 2019). However, there was a

more focus on real-time unsupervised techniques as they were found to be

more effective for social media event detection, considering the dynamic na-

ture of data streams and the high possibility of arising new events over time

(Atefeh and Khreich, 2015). Online clustering is a commonly used unsuper-

vised technique to capture events, including text and time. We further discuss

the evolution of this area in recent research in Section 2.2.1. Also, the unsuper-

vised approaches based on data bursts, temporal rule dynamics and commu-

nity dynamics were commonly used for event detection targeting event text,

time or both as described in Sections 2.2.2 - 2.2.4. A summary of reviewed ap-

proaches under these categories is available in Table 2.1. Finally, Section 2.2.5

discusses the gaps we recognised in the light of previous research, which we

target to address in this research.

2.2.1 Online Clustering

Online/incremental clustering is an unsupervised process of assigning docu-

ments to clusters as they arrive (Yang et al., 1998). This process adds a newly

arrived document to an existing cluster if the document is related/similar to

that cluster. If there is no such relative cluster, that document will form a new

cluster representing a novel event. Each cluster provides details of an event,

and the document which initiated the cluster becomes the first story discussing

that event, estimating its occurred time. Different vectors generated using

frequency and prediction-based methods were used to represent documents

during this process. Term Frequency-Inverse Document Frequency (TF-IDF)
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vectors were the popularly used frequency-based representation, capturing

the term occurrences in a document and their importance in the corpus (Yin

et al., 2012; Sutanto and Nayak, 2018; Hasan et al., 2019; Nguyen et al., 2019).

As prediction-based representations, vectors generated using word embed-

ding models such as Word2Vec (Mikolov et al., 2013a) were commonly used

(Comito et al., 2019b; Chen et al., 2019). Among these, prediction-based vec-

tors were found to be more effective than frequency-based vectors, with their

ability to capture semantics in text (Ertugrul et al., 2017). The similarity be-

tween vectors was mostly calculated using cosine similarity, considering its

simplicity and appropriateness for text-based measures (Sutanto and Nayak,

2018; Hasan et al., 2019; Li et al., 2017a). Additionally, different aspects of the

events and social media documents were also involved in representing doc-

uments and computing similarities to focus more on important event details.

For instance, Li et al. (2017a) suggested using semantic classes (proper noun,

hashtag, location, mention, common noun and verb) of incoming tweets to find

the best cluster match considering their informativeness towards events. They

aggregated the similarity between terms in different semantic classes to calcu-

late similarity. Focusing more on the social aspect, Comito et al. (2019a) pro-

posed to represent a tweet as a social object, including user, time and location

details in addition to the textual content, and involve the object for similarity

calculation covering different aspects.

A major issue encountered with online clustering is its increasing time and

space complexity to compare documents with all historic event clusters with

growing data volume in social media. As a simple solution, a lifespan was

introduced to clusters so that the expired clusters could be removed or made

inactive without involving in comparisons (Comito et al., 2019a; Comito et al.,

2019b; Hasan et al., 2019). Also, candidate cluster generation methods were

suggested to reduce the number of comparisons at a new document arrival
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involving different inverted indices. Such an index helps conduct an initial

comparison efficiently to filter out possible candidates to compare thoroughly.

Following this idea, Li et al. (2017a) used semantic term indexing and Hasan

et al. (2019) used term-tweets and term-eventIDs inverted indices. Nguyen

et al. (2019) also used entity-cluster inverted indices to filter candidate clus-

ters and additionally suggested representing clusters using a central centroid

calculated only using the most similar L members of a cluster to faster the

cluster update process. Overall, the involvement of semantics or entities fil-

ters the candidates effectively, focusing on event-related terms. However, the

widely used rule-based approaches to extract such entities negatively impact

the method’s expandability.

Also, the returned clusters can hold non-events after assigning all incom-

ing documents, which could contain personal updates, general discussions,

advertisements, etc., except the newsworthy data to clusters. Targeting this

issue, different statistical measures such as new tweet rate (Li et al., 2017a) and

Z-score of distinct users, their location and tweet count (Comito et al., 2019a)

were used to extract event clusters. More complex post-processing steps in-

volving different aspects such as information amount, user diversity and sen-

tence structure were also proposed to filter events more accurately (Hasan et

al., 2019). Still, the requirement to process all incoming documents leaves on-

line clustering a major limitation considering the growth rate of social media

data generation. Thus, we found the following commonly used techniques:

bursts in data streams, temporal rule dynamics and community dynamics,

more useful for event detection as they process only the important documents

or chunks of the whole data stream, being able to handle a vast data amount

with low resources.
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2.2.2 Data Bursts

In communication streams, bursts involve transmitting a larger amount of data

than usual over a short time. We can expect bursts in data streams at events

due to the high user involvement in communicating such information. Fol-

lowing this idea, there was a tendency to detect data bursts and only process

the corresponding data to detect events. In this way, more focus could be pro-

vided on possible event data, reducing the processing and improving the per-

formance. Van Oorschot et al. (2012) suggested using peaks in tweet volume

to recognise event occurred times. Similarly, Li et al. (2014) proposed an incre-

mental temporal topic model to capture events involving unusual tweet count

changes. However, there is a possibility to occur events without notably in-

creasing the whole data volume, and they would be missed by only consider-

ing the data at peak volumes. Overcoming this limitation, Corney et al. (2014)

proposed focusing on bursts in word n-grams. They used temporal Docu-

ment Frequency-Inverse Document Frequency (DF-IDF) to find bursty word

n-grams at a time slot and applied hierarchical clustering on those n-grams

to extract event text. However, frequency-based measures fail to differentiate

events from general topics (e.g. car, food, music, etc.) because such topics

are also discussed massively on social media. Also, frequency bursts appear

when events become more popular or are trending. Targeting these issues, Xie

et al. (2016) proposed a sketch-based topic model involving word acceleration

and a tensor decomposition approach based on Singular Value Decomposition

(SVD) (Anandkumar et al., 2014) to detect bursty events. According to their

setting, word acceleration captures the change of arriving rate of documents,

and they showed that it could identify events more accurately at their early

stages.
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Also, the social aspect was involved recently to recognise data bursts, con-

sidering its importance on social networks and impact on events. Guille and

Favre (2015) proposed using mention anomalies in Twitter data to detect data

bursts offline. They involved a word co-occurrence and temporal correlation-

based approach to extract event text during bursts. Since mentions are added

intentionally to connect users to discussions or dynamically during retweet-

ing, they can capture the social aspect of data. Other research suggested an

improved version of Twevent (Li et al., 2012), utilising different user diversity-

based measures (i.e. user frequency, retweet count and follower count) to

detect bursty text segments in a corpus (Morabia et al., 2019). They used

Wikipedia as an external knowledge base to ensure the meaningfulness of seg-

ments and clustered the segments using the Jarvis-Patrick algorithm (Jarvis

and Patrick, 1973) to recognise event text. Overall, incorporating the social

aspect improved the performance rather than only involving text frequency-

based measures (Guille and Favre, 2015; Morabia et al., 2019). However, this

incorporation could limit the method’s expandability because the measures

which gauge social aspects are mostly specific to the social media platform.

Similarly, external knowledge bases also introduce restrictions depending on

their availability and language coverage.

2.2.3 Pattern Dynamics

Pattern and rule mining discover item sets in data and their relationships.

Following this insight, Adedoyin-Olowe et al. (2016) proposed utilising tem-

poral dynamics of Association Rules (ARs) in tweet hashtags to detect

event occurrences/time. They suggested separating the data stream into
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chunks/windows based on time and generating ARs per window using fre-

quent patterns in hashtags to recognise different rule types based on AR vari-

ations over windows. Their study revealed that specific rule types (unex-

pected and emerging) greatly impact identifying event occurrences. However,

Alkhamees and Fasli (2016) found it inappropriate to use a fixed support (met-

ric for item retrieval) value for Frequent Pattern Mining (FPM) in dynamic

data streams. They proposed a dynamic support calculation method based on

window size and keyword occurrences which can automatically adapt to the

dynamicity of social media data streams.

The recent research in this area focused more on High Utility Pattern Min-

ing (HUPM) because it finds not only the frequent but also the high in utility

item sets (Peng et al., 2018; Choi and Park, 2019). When only the frequency is

considered, popularly discussed items can also be captured in addition to the

event-related items, but the involvement of utility help overcome this issue.

Different approaches have been proposed to calculate utility. For instance,

Peng et al. (2018) used Local Weighted Linear Regression (LWLR) to calcu-

late term novelty and combined it with term frequency to measure term util-

ity. They used a graph-based approach to cluster detected patterns to extract

event text. Choi and Park (2019) also followed a similar approach, involving

the growth rate in word frequency to calculate utility. However, these HUPM-

based approaches were designed only targeting the textual event details in a

given corpus without focusing on temporal details, adhering to the original

scope of pattern mining approaches.

2.2.4 Community Dynamics

A community in social media can be defined as a set of entities that are associ-

ated with a common element of interest (Papadopoulos et al., 2012). Thus, the



Chapter 2. Event Detection from Text 25

temporal dynamics of communities can be utilised to detect events. Following

this idea, most previous research separated a data stream into time windows

and recognised communities in each window. Then, the communities in win-

dows were compared to capture their dynamics to detect events. Such com-

munities provide event content, and the windows where they appear provide

event times. Graph theory, clustering and topic modelling-based approaches

were commonly used in previous research to identify communities.

Sayyadi et al. (2009) proposed generating keyword graphs, which represent

keywords by nodes and their co-occurrence in documents by edges per time

window. As keywords, noun phrases and named entities with high document

frequency were considered. This approach used the betweenness centrality

score to detect communities in each graph and compared their content similar-

ities at consecutive windows to detect events. Similarly, Takaffoli et al. (2011)

suggested detecting communities from document graphs in social networks

and comparing communities’ similarity over time windows to detect event

evolution. Schinas et al. (2015) also involved documents in generating graphs

per window but focused more on the community detection algorithm. They

used Structural Clustering Algorithm for Networks (SCAN) (Xu et al., 2007) to

extract graph communities, considering its ability to recognise bridges of clus-

ters (hubs) to share across clusters and outliers to mark as noise. Even though

graphs comprehensively capture all the intermediate relationships, they can

be dense for high data volumes, increasing the computational complexity. Fo-

cusing on this issue, Edouard et al. (2017) suggested a named entity-based

method to generate graphs with less density. They only used named entities

in tweets extracted using NERD-ML (Erp et al., 2013) and their context terms

for the graph generation. Even though focusing on specific terms speeds up

the graph processing while maintaining informativeness, using tools specific

to languages or domains negatively affects the approach’s expandability.
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Among different clustering algorithms, early research commonly used the

K-means algorithm to detect events (McCreadie et al., 2013; Nur’aini et al.,

2015). However, since it is not feasible to pre-define the cluster count for a dy-

namic data stream, algorithms that do not require specifying the count, such

as hierarchical and affinity propagation, were focused more on later. Mu et

al. (2018) hierarchically clustered the posts arrived during a period based on

term and named entity similarity to identify communities. For community

comparison across consecutive periods to recognise novel and evolved events,

they used a spatio-temporal similarity of entities (WH elements–who, where

and when). Other research suggested clustering critical domain-related pat-

terns extracted from tweets using the affinity propagation algorithm to iden-

tify cybersecurity events from a data batch in a time window (Liu et al., 2020).

This approach applied non-negative matrix factorisation to aggregate events

over time windows. However, similar to the graph generation scenario, us-

ing language or domain-specific extractions to support clustering limits the

approach’s expandability.

Following the topic models’ popularity, Lau et al. (2012) used Latent Dirich-

let Allocation (LDA) (Blei et al., 2003) to generate communities per time win-

dow and analysed their temporal dynamics using Jensen-Shannon divergence

(JSD). They also transferred parameters from the previous topic model to the

next to maintain the online fashion. Chen et al. (2018) suggested a similar ap-

proach, but they used RL-LDA, a modified LDA, to capture event evolution in-

corporating retweeting behaviour. Deviating from temporal or platform-based

modifications to topic models, some research involved advanced community

comparison techniques to improve event detection. For instance, Huang et

al. (2017) proposed comparing topics generated using LDA and Biterm Topic

Model (BTM) in consecutive windows using novelty and fading calculated
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by LWLR and Kullback-Leibler divergence (KLD). Other recent research sug-

gested using shared topic words and temporal variations in topic word count

to compare LDA topics, maintaining the simplicity (Unankard and Nadee,

2020). Overall, these modifications to the traditional topic models improved

event detection performance and allowed capturing of events’ temporal de-

tails. However, the requirement to pre-define topic count by topic models is a

critical limitation when processing highly dynamic social media data streams.

We summarise reviewed approaches for event detection in social media un-

der the above-mentioned categories: online clustering, data bursts, pattern dy-

namics and community dynamics in Table 2.1. The detection technique column

represents the techniques used to identify events, which are further divisible

from the main category, and the general features column represents the involved

features which are not specific to any social media platform.

2.2.5 Discussion

Previous research in social media event detection targeted detecting event text,

time or both, but a comparatively high focus is given to text extraction. Also,

a clear majority focused on online processing-based approaches, while a few

were based on offline approaches. Considering all the available combinations,

online detection of event text and time provides a more comprehensive output

helpful for real-time information extraction from social media, which benefits

multiple parties.

To detect event time, available approaches mainly used various statisti-

cal measures (e.g. document/word frequency, retweet count, JSD, KLD, etc.)

without involving the underlying text’s linguistics (syntax and semantics).

Syntax defines the word arrangement, and semantics describes the meanings,

allowing a language to express the same idea using different word sequences



Chapter 2. Event Detection from Text 28

TABLE 2.1: Summary of reviewed methods for social media event detection

Category Detection
Technique

General Features Social
Media-specific
Features

Reference

Online
clustering

TF-IDF vectors – Yin et al. (2012),
Hasan et al.
(2019), Sutanto
and Nayak (2018)

TF-IDF vectors,
named entities

– Nguyen et al.
(2019)

N-grams,
Word2Vec

Hashtags,
mentions

Comito et al.,
2019b

Tokens, GloVe – Chen et al. (2019)
Tokens,
Word2Vec

– Ertugrul et al.
(2017)

Named entities,
nouns, verbs

Retweets,
hashtags,
mentions

Li et al. (2017a)

N-grams Hashtags,
mentions, users,
locations

Comito et al.
(2019a)

Data
bursts

Peak
detection

Tweet count – Van Oorschot
et al. (2012), Li
et al. (2014)

N-grams’ DF-IDF – Corney et al.
(2014)

Tensor
decomposi-
tion

Word
acceleration

– Xie et al. (2016)

Anomaly
detection

Word
co-occurrence

Mentions Guille and Favre
(2015)

Segments (using
Wikipedia)

User frequency,
retweet count,
follower count

Morabia et al.
(2019)

Pattern
dynamics

ARM – Hashtags Adedoyin-Olowe
et al. (2016)

FPM Tokens – Alkhamees and
Fasli (2016)

HUPM Term frequency,
term novelty

– Peng et al. (2018)
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TABLE 2.1: Continued

Category Detection
Technique

General Features Social
Media-specific
Features

Reference

Pattern
dynamics

HUPM Growth rate in
word frequency

– Choi and Park
(2019)

Community
dynamics

Graph
community
detection

Noun phrases,
named entities

– Sayyadi et al.
(2009)

– Social network Takaffoli et al.
(2011)

TF-IDF vectors,
named entities

– Schinas et al.
(2015)

Named entities,
entity contexts

– Edouard et al.
(2017)

Clustering Document
vectors

– McCreadie et al.
(2013)

TF-IDF vectors – Nur’aini et al.
(2015)

BoW, named
entities

– Mu et al. (2018)

Frequent text
phrases, named
entities

– Liu et al. (2020)

Topic
modelling

BoW – Lau et al. (2012),
Unankard and
Nadee (2020)

BoW Retweets,
hashtags,
locations

Chen et al. (2018)

BoW, term’s
novelty/fading

– Huang et al. (2017)

and vice versa. Thus, a notable amount of important information can be lost,

ignoring the linguistics, especially in the social media text, considering the di-

versity of users with different writing patterns. However, to extract event text,

some approaches involved linguistics in addition to statistics, considering its
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importance. These approaches mainly used external knowledge bases, rule-

based methods and prediction-based methods to capture linguistics. Over-

all, using external knowledge bases introduces restrictions depending on their

coverage and availability. Similarly, rules also negatively affect the approach’s

expandability due to their dependencies on languages and domains. As the

prediction-based methods, pre-trained word embeddings are commonly used,

but they also add constraints depending on the model availability and incapa-

bilities to capture corpus-specific linguistics in social media.

Considering these limitations, this research targets proposing novel meth-

ods capable of online detection of event time and text from social media data

streams, involving both statistics and linguistics, which are essential for effec-

tive information extraction from textual data (Chapters 4 and 5). We mainly

focus on involving linguistics while covering corpus specificities and preserv-

ing the expandability of the approach.

2.3 Event Detection in News Media

Early research focused more on unsupervised approaches to detect events

from news media, following the Topic Detection and Tracking (TDT) initia-

tive (Allan et al., 1998; Dai et al., 2010). However, unlike the scenario with so-

cial media event detection, most recent research used supervised approaches

for news media event detection (Basile and Caselli, 2020; Hürriyetoğlu et al.,

2021a). The less dynamicity in news media compared to social media, which

allows pre-defining event categories, can be mentioned as the main reason for

this tendency. Also, supervised techniques can produce more accurate and de-

tailed results than unsupervised techniques. The published labelled data cor-

pora also further encouraged this trend (Doddington et al., 2004; Hürriyetoğlu

et al., 2021b). Considering the length of news articles and their information
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coverage, different data levels: document, sentence and token were targeted

to extract events from news media. We further discuss the evolution of super-

vised techniques in recent research over these levels in Sections 2.3.1 - 2.3.3.

Since we recognised some influences from sentence to other level approaches,

we initiated our review with the sentence level below. A summary of reviewed

approaches corresponding to each of these data levels is available in Table 2.2.

Finally, we discuss the gaps we recognised following our review in Section

2.3.4, which we aim to address in this research.

2.3.1 Sentence Level

Previous research has proposed various classification approaches to identify

event-described sentences, ranging from traditional machine learning (ML) to

deep learning (DL). Recently, more focus has been given to DL-based meth-

ods, especially transformer-based models considering their effectiveness. We

discuss more details about the previous approaches in Sections 2.3.1.1 - 2.3.1.3.

2.3.1.1 Traditional Machine Learning

Early research widely used feature-based approaches with traditional classifi-

cation algorithms to identify event sentences. For example, Naughton et al.

(2010) used a Support Vector Machine (SVM) model trained using a set of

features, including stemmed terms, part of speech (POS) tags, noun chunks,

sentence length, sentence position and presence/absence of negative terms.

Another research also utilised the SVM model with Bag of Word (BoW) fea-

ture representations with token n-grams, character n-grams, lemma and POS

tags (Lefever and Hoste, 2016). Additionally, this approach included named

entities and special indicators such as numerals, symbols and time as model
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features. Similarly, Basile and Caselli (2020) proposed using the Logistic Re-

gression algorithm to classify event sentences using informative character n-

gram and token unigram features. Among these commonly used features,

BoW is vulnerable to a critical information loss, as it ignores the word se-

mantics and order, which are crucial for text understanding (Hassan and Mah-

mood, 2017). This issue can be mitigated to a certain extent using n-grams as

they capture local word orders, but n-grams suffer from data sparsity issues

(Hassan and Mahmood, 2018). Overall, the involvement of language-based

features (e.g. POS tags) helped capture important text units but negatively af-

fected the method’s expandability to different languages. Considering these

limitations and the effectiveness of text embedding models (e.g. Word2Vec

(Mikolov et al., 2013a)) along with the recent advances, DL-based approaches

became more famous for sentence classification tasks in later research.

2.3.1.2 Deep Learning

Among different neural networks, previous research popularly used Long

Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Con-

volutional Neural Network (CNN) (Lawrence et al., 1997) models for text clas-

sification tasks. LSTMs are more capable of learning long-term dependencies

using their memory cells than vanilla Recurrent Neural Networks (RNN) (Has-

san and Mahmood, 2018). CNNs are capable of capturing local text features

such as syntax and semantics of words within a sentence using their multiple

convolutional and pooling layers (Chen et al., 2015). Word embeddings were

mostly used to input text into these networks.

Hassan and Mahmood (2017) used pre-trained Word2Vec (Mikolov et al.,

2013a) embeddings with an LSTM model to classify sentences. In a later study,
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they built a joint CNN and LSTM model, combining the characteristics (Has-

san and Mahmood, 2018). More modified networks, such as Convolutional

RNN (CRNN), which stacks a convolutional layer on top of an RNN and CNN

with Attention (CNNA) which has an attention layer on top of a CNN, were

also proposed by previous work (Huynh et al., 2016). Similar to CNNA, the

LSTM model was also modified by adding an attention layer on top to allow

the model to focus more on event-related words (Liu et al., 2019a). Over-

all, these architectural changes improved the event sentence classification by

utilising the capabilities of different mechanisms. However, all these mod-

els require a sufficiently large amount of labelled data to effectively fine-tune

model weights from scratch, making them impotent for low-resource scenar-

ios. Also, the classic word embeddings fail to capture contextual details in

the text, which are important to understanding sentences. Targeting these lim-

itations, transformer-based architectures gained great attention in recent re-

search.

2.3.1.3 Transformers

Transformers were originally designed with the ability to fine-tune for a down-

stream task by transferring the pre-trained knowledge (Devlin et al., 2019).

This knowledge transfer allows the model to learn a downstream task effec-

tively even with comparatively fewer training instances, overcoming a major

limitation in deep neural networks. Also, the attention-based transformer en-

coder preserves contextual details in the text while generating representations,

unlike the classic embedding models. These characteristics allowed transform-

ers to improve the performance of many NLP applications with state-of-the-art

results (Devlin et al., 2019).

Following this trend, transformers were also involved in event sentence
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identification. The common approach to adapting a transformer for text classi-

fication is adding a simple linear layer on top and fine-tuning for the targeted

task. Different pre-trained transformers were used with this architecture. For

instance, Gürel and Emin (2021) used pre-trained monolingual and multilin-

gual BERT (Devlin et al., 2019) models. Similarly, Hu and Stoehr (2021) used

RoBERTa (Liu et al., 2019b) English model. Additionally, they suggested trans-

lating text from other languages to English to make predictions rather than

using a multilingual model. XLM-RoBERTa (XLM-R) (Conneau et al., 2020)

is also a commonly used transformer, especially for multilingual predictions

(Awasthy et al., 2021; Re et al., 2021). Unlike other multilingual transformers,

XLM-R generates cross-lingual embeddings, which attempt to ensure words

with the same meaning in different languages map to almost the same vector.

Thus, it showed improved results than translation-based approaches, which

could suffer from language errors, and other transformers. Deviating from the

common architecture, Kalyan et al. (2021) suggested adding an LSTM layer on

top of the transformer and getting soft voting of models built using the pre-

trained transformers: BERT, RoBERTa and DistilBERT (Sanh et al., 2019) as the

final prediction. Also, another recent research experimented with the weighted

ensemble of RoBERTa model and LexStem: a two-channel CNN with normal

and stemmed text (Çelik et al., 2021). However, overall, these modifications

did not outperform the simple architecture with a linear output layer on top

of a large pre-trained transformer, which can be considered state-of-the-art for

event sentence identification (Hürriyetoğlu et al., 2021a).

2.3.2 Document Level

Similar to sentence level extractions, diverse classification approaches, rang-

ing from traditional ML to DL have proposed by previous research to identify
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event-contained documents (Sections 2.3.2.1 and 2.3.2.2). Also, recent research

mostly focused on DL, considering its effectiveness over traditional ML in text

classification. However, transformer-based models were not popularly used

for document level predictions, and we discuss the possible reasons recognised

in Section 2.3.4.

2.3.2.1 Traditional Machine Learning

Traditional methods commonly represented documents using sparse vectors

such as BoW and TF-IDF, and used SVM for classification (Kumar et al., 2012;

Dadgar et al., 2016). The larger the document set, the BoW vector can reach

thousands of features, negatively affecting the classifier’s accuracy and in-

creasing computational cost. Focusing on this issue, Le Nguyen and Ho Bao

(2015) proposed a frequency and cluster-based approach to select important

features from BoW. This approach marked a term important if it largely ap-

pears in a category and creates the separation of that category from others. In-

ability to capture synonymy and polysemy is another issue encountered with

BoW. García et al. (2016) suggested incorporating Bag of Concepts (BoC) with

BoW to capture these details. Concepts are units of meaning which can capture

synonymy and polysemy. This research used Wikipedia knowledge to extract

the concepts in documents effectively.

Also, BoW fails to capture semantics in the text. Targeting this limitation,

Jing et al. (2013) proposed an updated version of Naïve Bayes classifier (NBC)

with document level semantic information. They used Log-Bilinear Document

Modelling (LBDM) (Maas et al., 2011) to extract semantics. Modifications to

features were also made using word embeddings to capture semantics. For

instance, Nugent et al. (2017) proposed averaging vectors of words in an arti-

cle to obtain a document vector to use with classification algorithms such as
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SVM and random forest. They experimented with different word embedding

models such as Word2Vec (Mikolov et al., 2013a) and fastText (Bojanowski et

al., 2017) to generate word vectors. Furthermore, algorithms particularly de-

signed to generate document vectors, such as Doc2Vec (Le and Mikolov, 2014),

were used to capture semantics more effectively (Lindén et al., 2018). Overall,

traditional approaches evolved to capture lexical and semantical features in

the text but fail to capture long-distant relationships in documents well. Thus,

there was a high tendency to use DL approaches in recent research, consider-

ing their ability to mitigate this issue and overall effectiveness.

2.3.2.2 Deep Learning

Similar to sentence level approaches, previous research widely used LSTM

(Hochreiter and Schmidhuber, 1997) and CNN (Lawrence et al., 1997) models

for event document classification with various modifications appropriate for

document processing. For instance, Lindén et al. (2018) suggested separating

documents into sentences using LSTM’s time parameter and vectorising them

using Doc2Vec model (Le and Mikolov, 2014) to support the model to capture

document structure. Irsan and Khodra (2019) proposed generating document

representations by multiplying BoW vectors and averaged Word2Vec (Mikolov

et al., 2013a) embeddings, combining lexical and semantical features, to use

with a CNN model. In addition to changing input representations, some ap-

proaches targeted architectural modifications. Parida et al. (2021) designed a

multichannel network, combining several CNN models which process various

n-grams.

Hierarchical models were also commonly proposed targeting the structure

in documents (words form sentences and sentences form the document). For
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example, Hierarchical Attention Network (HAN), which captures the docu-

ment’s hierarchy by building representations from word level to document

level, can be mentioned (Yang et al., 2016). It also captures the importance

of words and sentences depending on the context using word and sentence

level attention mechanisms. Furthermore, Mehta et al. (2019) incorporated a

multi-aspect attention mechanism with HAN, allowing the model to capture

multiple aspects in sentences related to an event. All these approaches used

Word2Vec embeddings to vectorise text to use with their input layers. Addi-

tionally, graph-based approaches were also proposed to capture long-distance

relationships in documents. For instance, Wang et al. (2020) proposed a hier-

archical topic graph, integrating a probabilistic deep topic model to a Graph

Convolutional Network (GCN), allowing to capture semantic relationships at

different levels. Despite the various improvements that happened along with

DL-based approaches, being deep networks, they require a vast amount of

data to effectively build a model from scratch. Thus, these approaches fail to

process languages or domains where labelled data is scarce, leaving a major

limitation.

Transformers were not commonly involved in document level predictions,

mainly considering their inability to process long sequences due to the com-

plexities in full-attention operation used by these models. We further discuss

the evolution of transformer-based architectures for long-sequence processing

in Section 2.3.4.

2.3.3 Token Level

The main target of token level event detail extraction is identifying text spans

representing event triggers and arguments. Event triggers are the words which

express the event occurrences, and arguments are the entities which describe
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the event attributes. Event trigger and argument extraction is commonly con-

sidered as a token classification or sequence labelling problem by previous

research. Similar to sentence and document level tasks, various approaches

based on traditional ML and DL have been used for this extraction (Sections

2.3.3.1 and 2.3.3.2). According to recent research, there is also a trend to involve

transformers (Section 2.3.3.3).

2.3.3.1 Traditional Machine Learning

Most early works built classification models using linguistic features to extract

event details at the token level. For example, Chen and Ng (2012) built sepa-

rate classification models for trigger and argument extraction using the SVM

algorithm. They used a wide range of linguistic features, including tokens,

POS tags, dependency paths and synonyms from semantic dictionaries, and

treated each word as a separate instance, to build the models. Hong et al.

(2011) also used SVM classifiers to make final predictions but proposed us-

ing cross-entity inference to mitigate the possibility of missing events by only

using the local features. They also used information from the Web to under-

stand the background of entities, in addition to the knowledge in the training

corpus, to improve the effectiveness of their approach. Rather than treating

trigger and argument extraction as separate tasks, another research proposed

a joint system based on structured perceptron with beam search, allowing to

improve the predictions of each task mutually (Li et al., 2013). This approach is

also highly based on linguistic features such as POS tags, lemmas, synonyms

and dependencies. Overall, due to the complexities in token level event extrac-

tion, traditional approaches extensively relied on language-based features or

knowledge bases, resulting in less generalisability across different languages.

Thus, similar to the trends with sentence and document level detection, more
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focus was given to DL-based approaches afterwards, mainly considering their

ability to extract underlying features in text automatically.

2.3.3.2 Deep Learning

For event token extraction also, LSTM (Hochreiter and Schmidhuber, 1997) and

CNN (Lawrence et al., 1997) are the commonly used neural network architec-

tures by previous research. However, Bidirectional LSTM (Bi-LSTM) models

were used over LSTM because both past and future states of the sequence are

important for sequence labelling. Also, Conditional Random Fields (CRFs)

were used for output generation since they take context into account, replac-

ing simple linear layers. For example, Pandey et al. (2017) used a Bi-LSTM net-

work with a CRF layer to extract event entities. They used Word2Vec (Mikolov

et al., 2013a) and GloVe (Pennington et al., 2014) embeddings to feed text into

the network. Another research used the same architecture with fastText (Bo-

janowski et al., 2017) and Multilingual Unsupervised and Supervised Embed-

dings (MUSE) (Lample et al., 2018) to extract event triggers (M’hamdi et al.,

2019). Also, more advanced embeddings such as ELMo (Peters et al., 2018),

character and POS were used with this architecture, targeting capturing con-

textual and syntactical details in the text to improve the accuracy (Basile and

Caselli, 2020). To mention a few CNN-based approaches, Chen et al. (2015)

involved separate Dynamic Multi-pooling CNNs (DMCNNs) with Word2Vec

embeddings to extract triggers and arguments. Lu et al. (2022) proposed a

path-aware GCN (PGCN) with BERT (Devlin et al., 2019) embeddings.

Joint neural network models were also proposed for trigger and argument

extraction, considering the benefits of mutual learning and error propaga-

tion in pipelined methods. Nguyen et al. (2016) built a Bi-LSTM model with

Word2Vec embeddings for joint trigger and argument extraction. Sha et al.
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(2018) proposed adding dependency bridges over Bi-LSTM to utilise depen-

dency relations with joint learning. A combination of Bi-LSTM and DMCNN

was also suggested, combining their characteristics (Balali et al., 2020). This

network used an advanced embedding layer formed by concatenating BERT,

GloVe, entity type, POS and dependency relation embeddings, providing a

wide range of features. Overall, these improved network architectures help

capture hidden structures in text effectively, easing the requirement to hand

pick an extensive amount of features from the text. Still, the involvement of

language-based features such as POS by some approaches negatively affects

their expandability. Also, these networks require a large amount of data for the

from-scratch learning process limiting their usability only for high-resource

scenarios. Thus, similar to the evolution of sentence level approaches, there is

a recent trend to use transformers, considering their effectiveness along with

language transferability for token level event extraction.

2.3.3.3 Transformers

Like with sentence level detection, transformers have been used for token

level event extraction recently. Following the trends in DL-based approaches,

M’hamdi et al. (2019) designed a network with a CRF layer on a transformer

model to extract event triggers. They picked monolingual and multilingual

BERT (Devlin et al., 2019) models as the transformer and analysed their per-

formance in different languages. Following the simple approach, Yang et al.

(2019a) added linear layers on the BERT model per token/word to extract trig-

gers. They used a separate BERT-based model for argument extraction and

occupied its input with the identified triggers following a pipelined approach.

However, a comparatively high focus was given to building joint models for

trigger and argument extraction using transformers, considering the resource
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requirements, tasks’ interconnections helpful for mutual learning and error-

propagation in pipelined approaches. For instance, Çelik et al. (2021) proposed

a joint model by adding a Bi-LSTM and CRF layer on a RoBERTa (Liu et al.,

2019b) model. The XLM-R (Conneau et al., 2020) model was also used with

linear output layers per token, targeting multilingual predictions, following

the same trend noticed with sentence level predictions (Awasthy et al., 2021;

Vivek Kalyan et al., 2021). Overall, this simple architecture with linear output

layers outperformed other modifications, being the state-of-the-art for event

trigger and argument extraction (Hürriyetoğlu et al., 2021a).

We summarise reviewed approaches for event detection in news media un-

der the above-mentioned data levels: sentence, document and token in Table

2.2. The approaches are categorised into traditional machine learning, deep

learning and transformers, as mentioned in the category column. The model

and features columns represent the involved algorithms or architectures and

features used with them, respectively.

2.3.4 Discussion

According to previous research, transformer-based models have state-of-the-

art results for sentence and token level event detection from news media, out-

performing traditional ML- and DL-based approaches. However, transformers

were not commonly used for document level predictions, mainly due to the

inability to process long sequences with above 512 sub-tokens (Devlin et al.,

2019). Two major approaches: (1) hierarchical design and (2) sparse attention

mechanisms, were considered to overcome this limitation recently. The hierar-

chical design splits the documents into chunks that fit the transformer’s input

sequence length (512), passes the chunks through a transformer, and generates

document representations by processing the chunk representations through



Chapter 2. Event Detection from Text 42

TABLE 2.2: Summary of reviewed methods for news media event detection

Data
Level

Category Model Features Reference

Sentence Traditional
machine
learning
(ML)

SVM Stemmed terms,
lexical
information,
noun chunks,
sentence features
(length, position,
etc.)

Naughton et al.
(2010)

SVM Token/character
n-grams, lemma,
POS, numerals,
symbols, named
entities

Lefever and Hoste
(2016)

Logistic
Regression

Character
n-gram, tokens

Basile and Caselli
(2020)

Deep
learning
(DL)

LSTM Tokens,
Word2Vec

Hassan and
Mahmood (2017)

CNN-LSTM Tokens,
Word2Vec

Hassan and
Mahmood (2018)

CRNN, CNNA Tokens Huynh et al.
(2016)

LSTM-Attention Tokens,
Word2Vec

Liu et al. (2019a)

Transformers BERT Tokens Gürel and Emin
(2021)

RoBERTa Tokens Hu and Stoehr
(2021)

XLM-R Tokens Awasthy et al.
(2021), Re et al.
(2021)

Ensembled
BERT-, RoBERTa-
and
DistilBERT-LSTM

Tokens Kalyan et al.
(2021)

Ensembled
RoBERTa and
LexStem

Tokens, stems Çelik et al. (2021)

Document Traditional
ML

SVM TF-IDF vectors Kumar et al.
(2012), Dadgar
et al. (2016)
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TABLE 2.2: Continued

Data
Level

Category Model Features Reference

Document Traditional
ML

SVM Filtered BoW Le Nguyen and
Ho Bao (2015)

Semantic NBC Tokens, LBDM Jing et al. (2013)
SVM, Random
Forest

BoC (using
Wikipedia)

García et al. (2016)

SVM, Random
Forest

Tokens,
Word2Vec,
fastText

Nugent et al.
(2017)

Decision Tree,
Random Forest

Documents,
Doc2Vec

Lindén et al.
(2018)

DL LSTM Sentences,
Doc2Vec

Lindén et al.
(2018)

CNN BoW, tokens,
Word2Vec

Irsan and Khodra
(2019)

Multichannel
CNN

N-grams Parida et al. (2021)

HAN Tokens,
Word2Vec

Yang et al. (2016)

Multi-aspect
HAN

Tokens,
Word2Vec

Mehta et al. (2019)

GCN Tokens Wang et al. (2020)

Token Traditional
ML

SVM Lexical features,
syntactic features,
semantic
dictionaries,
nearest entity
information

Chen and Ng
(2012)

SVM Cross-entity
details

Hong et al. (2011)

Structured
perceptron with
beam search

Lexical features,
syntactic features,
entity
information

Li et al. (2013)

DL Bi-LSTM-CRF Tokens,
Word2Vec, GloVe

Pandey et al.
(2017)

Bi-LSTM-CRF Tokens, fastText,
MUSE

M’hamdi et al.
(2019)
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TABLE 2.2: Continued

Data
Level

Category Model Features Reference

Token DL Bi-LSTM-CRF ELMo, POS,
character
embeddings

Basile and Caselli
(2020)

DMCNN Tokens,
Word2Vec

Chen et al. (2015)

PGCN Tokens, BERT Lu et al. (2022)
Bi-LSTM Tokens,

Word2Vec
Nguyen et al.
(2016)

Dependency-
bridge Bi-LSTM

Tokens,
Word2Vec

Sha et al. (2018)

Bi-LSTM-
DMCNN

Tokens, BERT,
GloVe, entity
types, POS,
dependency
relations

Balali et al. (2020)

Transformers BERT-CRF Tokens M’hamdi et al.
(2019)

BERT Tokens, triggers Yang et al. (2019a)
RoBERTa-Bi-
LSTM-CRF

Tokens Çelik et al. (2021)

XLM-R Tokens Awasthy et al.
(2021),
Vivek Kalyan et al.
(2021)

an RNN layer to use with a classifier (Pappagari et al., 2019). However, this

approach restricts the transformer’s ability to capture long-range dependen-

cies in documents by processing the entire sequence. With the sparse attention

mechanisms, modified transformers which can process up to 4,096 sub-tokens,

were proposed, opening a new avenue while mitigating the critical issues en-

countered with hierarchical design (Beltagy et al., 2020; Zaheer et al., 2020).

However, as far as we know, these long-sequence transformers were not con-

sidered for event document identification by previous research. Thus, we tar-

get experimenting with their applicability and performance in this research
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(Chapter 7).

Targeting sentence and token level event detection, most available

transformer-based approaches treated these tasks separately without consid-

ering their interconnections. However, Basile and Caselli (2020) proposed a

bottom-up approach from token to sentence level, being an exception. They

initially extracted event triggers and arguments using a BERT sequence la-

belling model with linear output layers and then recognised a sentence as an

event sentence if it contains a trigger. This approach mainly suffers from error

propagation. Also, it only relies on token level labels which are scarce due to la-

belling complexities and does not account for the possibility of using sentence

level knowledge for token level predictions. Targeting these gaps, this research

aims to propose a novel learning strategy with transformers, which can learn

from sentence to token level and vice versa, utilising knowledge from one level

to support the predictions at the other level (Chapter 8).

Considering the language coverage of available methods, early research

commonly proposed monolingual approaches, focusing on English mostly

and a few other languages (e.g. Chinese (Chen and Ng, 2012), Dutch (Lefever

and Hoste, 2016), German (Parida et al., 2021), etc.). With the involvement

of transformers for sentence and token level detections, multilingual models

have recently been used to support different languages. However, to the best

of our knowledge, no comprehensive study that analyses the cross-lingual per-

formance of different transformer models involving different learning strate-

gies targeting sentence and token level event extraction is available in the lit-

erature. Also, no such study is available for document level, as transformers

have not been popularly involved in previous research. Filling these gaps,

we target conducting a thorough analysis in this research using the commonly

used learning strategies and the ones we aim to propose (Chapters 7 and 8).
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2.4 Summary

In previous research, diverse approaches have been proposed for automatic

event detection from social and news media, considering its importance with

increasing data volumes in both media with valuable information. Figure 2.1

illustrates an overview of the literature review conducted by this research. Due

to data streams’ dynamic and unpredictable nature, previous research recog-

nised unsupervised approaches as more appropriate for social media event

detection. However, supervised approaches were widely used for news media

event detection following the less dynamicity and predictable nature of news

documents than social media posts. Also, news documents require different

levels of information extraction, as they are lengthier and more detailed than

social media posts.

Analysing the previous work in social media event detection, we recog-

nised that a clear majority of approaches only focused on statistical variations

over data streams to identify events, ignoring the underlying linguistics (syn-

tax and semantics). Since linguistics plays a crucial role in natural language,

without its involvement, critical information loss can happen. We aim to pro-

pose novel approaches to overcome this limitation in this research while pre-

serving the qualities: real-time efficiency, expandability and scalability which

are important for social media event detection. The proposed approaches are

described in detail in Part I of this thesis.

According to the previous news media event detection research, three data

granularities: document, sentence and token, were commonly considered to

extract event details comprehensively. Deep learning-based approaches were

used in recent research for document level extractions. However, they fail to

effectively fine-tune the deep networks from scratch when training data are

scarce. We target involving transformer models for this task for the first time
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FIGURE 2.1: Overview of the literature review

to the best of our knowledge, considering their knowledge transferability help-

ful to handle fewer data situations and ability to capture contextual details and

long-range dependencies in the text. Transformers have already been used for

the sentence and token level tasks, setting the state-of-the-art results. How-

ever, the possibility of using interconnections between sentences and tokens

for mutual improvements is not considered previously, and we aim to analyse

it in this research. Additionally, we also target investigating the cross-lingual

abilities of the proposed architectures. Our approaches are described in detail

in Part II of this thesis.
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Part I

Social Media Event Detection
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Chapter 3

Introduction to Social Media Event

Detection

Initiating Part I of the thesis, this chapter introduces social media event detec-

tion and provides an overview of this part. It mainly describes the important

aspects to consider to effectively detect events from social media data streams,

following the previous work discussed in Chapter 2 and the characteristics of

social media data. Furthermore, this chapter defines the targeted problem, de-

tails the resources and concepts utilised for event detection by this part of the

research and provides an overview of the remaining chapters (Chapters 4 and

5) of this part.

Social media services generate a vast amount of data which consists of di-

verse information as described in Chapter 1. However, due to the high volume

and dynamicity of data, it is impractical to analyse them manually to extract

important or newsworthy contents. Thus, the requirement of intelligent auto-

mated mechanisms for event detection from social media data becomes crucial

(Small and Medsker, 2014). Addressing this requirement, various approaches

have been proposed by previous research for event detection involving dif-

ferent techniques, which are discussed in Chapter 2 (Section 2.2). These ap-

proaches can be mainly divided into three types based on the targeted event

output: text, text and time, and time. The text-targeted systems are designed
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to identify all topics/events in a given corpus, similar to topic modelling (Li

et al., 2012; Morabia et al., 2019). The text and time-targeted systems cap-

ture both event text and time by processing a data stream either offline (as

a whole) (Guille and Favre, 2015) or online (as documents arrive) (Comito et

al., 2019a). The time-targeted systems are designed as notification systems to

notify event occurred times (Adedoyin-Olowe et al., 2016). Among these vari-

ants, we recognised that online text and time-targeted systems are more useful

in event detection, considering their informative outputs.

Analysing the techniques used by available systems, we noticed that apart

from a few notable exceptions, most rely only on data statistics without consid-

ering linguistics, specifically semantics. Since semantics describe the connec-

tions between words and their meanings, severe information loss can happen

without considering them. For example, the following tweets:

‘There are 13 million people living in poverty in the UK. 13M!!! Yet

some MPs will vote for the deal with NO impact assessments. That

13M could become 20M?!#VoteTheDealDown #PeoplesVoteMarch #Peo-

plesVote #StopBrexit’

‘Luciana Berger - Steve Barclay confirmed that no economic analysis of

the #BrexitDeal has been done... let that sink in. So how can we be ex-

pected to vote on a deal, that will affect this country for decades, today?

#VoteDownTheDeal #PeoplesVote’

which were posted during Brexit Super Saturday 2019, express the same

idea but without common keywords except for a few hashtags. The main

subject is also written using two different phases (‘impact assessments’ and

‘economic analysis’). In such cases common to social media, due to user di-

versities, we cannot understand the relationships between terms to extract
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available information without semantics. Further analysing the few meth-

ods which involved semantics, we recognised that they also use semantics to

extract only the event text. Commonly, these methods used rule-based and

prediction-based approaches to capture semantics. Among them, rule-based

approaches (e.g. semantic class extraction (Li et al., 2017a), named entity ex-

traction (Nguyen et al., 2019)) mainly targeted filtering important terms with-

out focusing on their relationships. Also, they are less expandable due to lan-

guage dependencies. The prediction-based approaches mostly used word em-

beddings considering their ability to capture linguistical relationships between

words (Ertugrul et al., 2017; Comito et al., 2019b). However, to the best of our

knowledge, all available word embedding-based approaches use pre-trained

models incapable of capturing linguistics specific to the underlying corpus,

such as modified or misspelt words. Furthermore, using pre-trained models

limits the expandability depending on the model availability.

Considering the crucial requirement to incorporate semantics and the lim-

itations in available methods, we focus on developing effective methods for

social media event detection in this research. Rather than focusing on com-

plete online processing, we decided to choose an intermediate level using

the concept of time windows, which processes a set of documents that ar-

rived during a period at once. This concept supports handling large data

volumes effectively while allowing users to customise the system depend-

ing on the targeted domain’s characteristics, such as evolution rate and per-

sonal preferences, which include the intended update rate. We aim to extract

event time and text, defining two data granularities useful for different user

groups. At the coarse-grained level, we target identifying the event occurred

time windows as described in Chapter 4. Such a system notifies users about

event occurrences so that they can further analyse data manually to extract the

necessary information, being helpful in situations where sensitive events are
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targeted and cannot rely on fully automated processes. At the fine-grained

level, we target identifying event occurred time windows together with the

co-occurred events in those windows as described in Chapter 5. This system

automates the whole process and will be helpful for users who intend to get

event updates concisely and quickly without involving any manual process.

Specifically, in our approaches, we involve linguistics in underlying text, cap-

tured using self-learned word embeddings and their hierarchical relationships

in dendrograms to overcome the less semantic involvement in previous re-

search (Section 2.2). Additionally, we annotate a social media dataset covering

two diverse domains and design a comprehensive set of evaluation metrics to

assess automated event detection mechanisms as a part of our research.

The main contributions of this part of the thesis are as follows.

1. We propose a novel method named Embed2Detect which identifies tem-

poral event occurrences of social media data streams in (near) real-time

to notify users about events, involving linguistical features in the under-

lying text to overcome a major limitation in available approaches, that

lacked semantic involvement.

2. We propose a novel method named WhatsUp which detects both tempo-

ral and fine-grained textual event details from social media data streams

in (near) real-time to automate the complete flow of event detection, con-

sidering statistics and linguistics of underlying data in an unsupervised

manner.

3. We create and publish social media datasets representing two diverse do-

mains (i.e. sports and politics) with ground truth event labels, addressing
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the lack of recent data availability in the area of social media event detec-

tion1.

4. We design a comprehensive set of metrics/framework that evaluates

both temporal and textual details of detected events and release its im-

plementation to support related evaluations in a unified way2.

5. We release our method implementations as open-source projects to sup-

port applications and research in the area of social media event detec-

tion3.

The rest of this chapter is organised as follows. Section 3.1 defines the prob-

lem targeted by this research. Section 3.2 describes the limitations in available

datasets and details of datasets we prepared for evaluations, including data

collection, data cleaning and ground truth labelling. Section 3.3 introduces the

metrics we designed to evaluate temporal and textual event details. Section 3.4

summarises the background concepts we used, such as word embeddings and

dendrograms. Section 3.5 introduces all the notations we used under social

media event detection. Finally, Section 3.6 provides a summary of this chapter

introducing the following chapters in Part I of the thesis.

3.1 Problem Definition

The problem targeted by this part of the research is automatically detecting

events in (near) real-time from social media data streams. The concept behind

a data stream is introduced with Definition 2.
1Social media event datasets are available on https://github.com/hhansi/

twitter-event-data-2019
2Event evaluator implementation is available on https://github.com/HHansi/WhatsUp/

tree/master/experiments/twitter_event_data_2019/evaluation
3Links to the GitHub repositories are provided in bellow Chapters 4 and 5

https://github.com/hhansi/twitter-event-data-2019
https://github.com/hhansi/twitter-event-data-2019
https://github.com/HHansi/WhatsUp/tree/master/experiments/twitter_event_data_2019/evaluation
https://github.com/HHansi/WhatsUp/tree/master/experiments/twitter_event_data_2019/evaluation
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Definition 2 Social Media Data Stream: A continuous and chronological series

of posts or documents D: d1, d2, ...di, di+1, ... generated by social media users.

Available event detection approaches mainly consider two input data

stream variants as general and filtered (or focused). In the general scenario,

the whole data stream D is processed (McCreadie et al., 2013; Nguyen et al.,

2019), and in the filtered scenario, a user-centred data stream D′ extracted from

the whole data stream D is processed. The filtering was commonly done based

on keywords or locations. Keyword-based filtering extracts a domain-specific

data stream using a set of keywords (Aiello et al., 2013; Comito et al., 2019b),

and location-based filtering extracts a data stream composed of a set of docu-

ments posted by users in particular locations (Li et al., 2012; Guille and Favre,

2015). Among these two filtering techniques, the location-based method adds

unnatural restrictions due to the unavailability of locations in all posts or user

accounts and the possibility of reporting an event at a particular location by a

user located elsewhere (e.g. report while travelling or watching television).

Following the above-mentioned facts, the attributes of a whole data stream

and user requirements, we decided to focus on identifying events in keyword-

based filtered data streams (Definition 3) in our research. Due to the popu-

larity of social media, the whole data stream is massive and consists of lots

of non-newsworthy contents in addition to the newsworthy contents. If we

consider the real scenario, people or domain experts need the quick extraction

of information in an interesting domain rather than extracting all the infor-

mation available (Aiello et al., 2013). For example, football fans would like to

know football updates, fire brigades would like to know fire updates, and BBC

politics news crew would like to know political updates. Thus, processing a

filtered data stream fulfils the real requirement while being resource-efficient.

In this setup, we need to narrow down the whole data stream initially using
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some keywords (seed terms) specific to the targeted domain. In the case of

social media, we can consider the commonly used tags in the area of interest

as keywords. Mostly, such tags are known to the domain experts or can be

extracted using applications that identify the trending tags in social media4.

Definition 3 Filtered Data Stream: A filtered or narrowed-down data stream

consists of posts that contain at least one of the selected keywords.

We mainly divide social media event detection into two parts based on data

granularity to address different user requirements. At the coarse-grained level,

we aim to notify event occurrences in time, targeting the users who look for

sensitive events and prefer to manually analyse the data stream to obtain more

details. To facilitate event time extraction, we use the concept of time windows,

which is widely used in previous research (Aiello et al., 2013; Adedoyin-Olowe

et al., 2016; Morabia et al., 2019). Also, using time windows allows users to

customise the system depending on the targeted domain and intended update

rate. Briefly, upon the data arrival via a filtered stream D′, the targeted system

needs to separate data into time windows W: W1, W2, ...Wt−1, Wt, ... (durations

of time) of user-defined length l and assess each window Wt to identify event

occurred time windows Wd (Definition 4).

Definition 4 Event Occurred Time Window/Event Window: Duration of time Wt,

where at least one event has occurred.

At the fine-grained level, we aim to identify textual event details within event

windows targeting the users who prefer to follow a fully automated process

to get event details quickly. Since multiple events can happen during an event

window Wd
t , we introduce the concept of co-occurred events with Definition

5. Per event e that happened during Wd
t , we focus on extracting a word/token

cluster c, which expresses the event’s textual details.
4Popular hashtags under different domains can be found at http://best-hashtags.com/

http://best-hashtags.com/
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Definition 5 Co-occurred Events: Multiple events EWd
t

happened/reported

within the same time window (event window Wd
t ).

In summary, we aim to develop systems to identify coarse-grained (event

windows Wd) and fine-grained (token clusters that represent the co-occurred

events within event windows EWd
t

: Wd
t ∈ Wd) event details by processing an

incoming filtered social media data stream D′ in (near) real-time in this part of

the research.

3.2 Datasets

To conduct the experiments and evaluations, we used data collected from Twit-

ter. Twitter is considered because it is widely used as an information network

than social media (Adedoyin-Olowe et al., 2016; Kwak et al., 2010), and has

limited restrictions to access data with enough coverage for this research.

To the best of our knowledge, the most recent Twitter event datasets were

released based on data in 2012 (Aiello et al., 2013; McMinn et al., 2013). The

dataset released by McMinn et al. (2013) (Events2012) used the Twitter stream

from October 10, 2012 to November 7, 2012. Aiello et al. (2013) extracted tweets

corresponding to three major events in 2012 from sports and politics to prepare

the dataset. Also, these datasets have only released the tweet IDs, following

Twitter restrictions. Therefore, we needed to download the actual tweets from

Twitter Application Programming Interfaces (APIs) using the IDs. Download-

ing the tweets in the Events2012 corpus, we could only retrieve 65.8% of the

tweets, as the rest have been deleted by the users or those user accounts have

been deactivated. Similarly, a large proportion of data from other corpora was

also unavailable to download. For example, only 63.4% of the sports dataset

(Aiello et al., 2013) could be downloaded. In addition to the issue of missing
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a large proportion, a few more issues were encountered with the Events2012

dataset. Since it was originally designed to identify event clusters in a cor-

pus, only the event descriptions were provided as ground truth (GT) without

temporal details. Thus, we needed to separate data into 1-day time windows

to assign time details, following a commonly used strategy (Alkhamees and

Fasli, 2016; Morabia et al., 2019), but a 1-day window is too lengthy for quick

updates targeted by this research. Also, after the window separation, we found

that all the time windows have events due to the usage of multi-domain data

with diverse events. This nature could negatively affect the event time evalua-

tions because there exist no non-event windows to check the method’s ability

to ignore such windows while detecting event windows. Furthermore, a major

change to the tweet content was made in 2017 by increasing the character limit

to 280 from 140. Thus, tweets in 2012 were comparatively short compared to

recent tweets, and models trained on short tweets might not work effectively

on recent long tweets.

Considering the issues mentioned above in available datasets, we decided

to create a new dataset named Twitter Event Data (TED) to evaluate our ap-

proach. Also, we believe that releasing recent datasets would be helpful for the

research community. In our dataset, we focus on two diverse domains, sports

and politics, to support proving the universality/expandability of a method.

This domain selection is also motivated by the coverage of datasets released

by Aiello et al. (2013). Mainly, sports is known as a domain with rapid evo-

lution and politics with slow evolution (Adedoyin-Olowe et al., 2016). Also,

the word/emoji usage and audiences of these domains have clear distinctions.

More details on data collection and cleaning are available in Section 3.2.1 and

3.2.2. The strategies we followed to prepare GT events are discussed in Section

3.2.3. Additionally, we annotated our data with sentiment labels to support

event sentiment-based research and the strategy used for data annotation is
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described in Section 3.2.4.

3.2.1 Data Collection

We collected tweets using Twitter APIs5 corresponding to two major events in

sports and political domains that happened in 2019. As described in Section

3.1, we filtered the Twitter stream using keywords from each event. Initially, a

trending hashtag of each event is used to extract tweets. Then we ranked the

hashtags found in the extracted data based on their popularity and used the

most popular tags for further extractions6.

As the sports event, we selected English Premier League 19/20 match be-

tween Manchester United and Liverpool Football Clubs (MUFC and LFC) on

October 20, 2019. This match was held at Old Trafford, Manchester, and each

team scored a single goal. Starting at 15:30, it was held for 115 minutes, includ-

ing the halftime break. For simplicity, we will refer to this event as ‘MUNLIV’.

As the political event, we chose Brexit Super Saturday in 2019, a UK parlia-

ment session that happened on Saturday, October 19, 2019, after 37 years. It

was organised to vote on a new Brexit deal, but the vote was cancelled due to

an amendment passed against the deal. This session started at 08:30 and was

held until around 15:30. We will refer to this event as ‘BrexitVote’ in the fol-

lowing content. Also, all times are expressed in UTC (Coordinated Universal

Time).

For MUNLIV, we collected 118,700 tweets during the period 15:15-17:30.

From this collection, we used 99,995 (84.2%) tweets posted during the match

(15:28-17:24) for experiments because we could extract GT events only for this

5More details about Twitter developer service including its APIs are available at https:
//developer.twitter.com/

6For sports (MUNLIV) data collection, hashtags; #MUNLIV, #MUFC, #LFC, #Liver-
pool, #GGMU, #PL, #VAR and #YNWA and for political (BrexitVote) data collection, hash-
tags; #BrexitVote, #SuperSaturday, #Brexit, #BrexitDeal, #FinalSay, #PeoplesVote, #Peo-
plesVoteMarch were used.

https://developer.twitter.com/
https://developer.twitter.com/
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period using published media. More details on GT extraction are described

in Section 3.2.3. For BrexitVote, we collected 276,448 tweets during 07:30-17:30

but only used 174,498 (63.1%) tweets posted from the beginning of the parlia-

ment session until the vote on the amendment (08:00-14:00) for experiments.

Similar to the scenario with MUNLIV, the focus by news media was found to

be high until the vote to extract more accurate GT events. Considering the

evolution rate of each domain, for MUNLIV, we selected a 2-minute window

length and for BrexitVote, a 30-minute length. Since high evolution rates gen-

erate more information during short periods, short time windows are appro-

priate for domains like sports for real-time event extraction. Contrarily, the

domains with low evolution rates, like politics, take longer to generate infor-

mation and long time windows are appropriate for them. After separating the

data into chunks, there were 58 time windows for MUNLIV and 12 for Brex-

itVote. On average, a MUNLIV time window contained 1,724 tweets, and a

BrexitVote window contained 14,542 tweets. Data statistics are summarised in

Table 3.1.

TABLE 3.1: Statistics of the tweets corresponding to MUNLIV and BrexitVote

Dataset Domain Period (UTC) Total Tweets

MUNLIV Sports 15:28-17:24 99995
BrexitVote Politics 08:00-14:00 174498

3.2.2 Data Cleaning

We followed a few language/domain-independent procedures to clean the

data. Since word embedding models learn on token data, we tokenised tweet

text using the TweetTokenizer model available with Natural Language Toolkit
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(NLTK)7. TweetTokenizer was designed to be flexible on new domains consid-

ering the specialities in the social media text. It tokenises emotions and words

specific to social media context (e.g. 1-0, c’mon, #LFC, :-)) correctly. Also, it can

remove highly repeated characters to generalise various word forms written

by users (e.g. goalll, goallll→ goalll). We did not preserve the case sensitivity

of tokens because, in social media, people are free to use wordings with dif-

ferent cases without following the standard language rules. Additionally, we

removed retweet notations, links and hash symbols in the text. Retweet no-

tations and links are removed because they are uninformative and could also

introduce spurious patterns in the data. By removing hash symbols, we can

treat hashtags similar to other words during word embedding learning. All

these removals were automated using text pattern matching based on regular

expressions.

3.2.3 Event Ground Truth (GT) Preparation

We used a similar strategy to Aiello et al. (2013) to prepare GT events. Initially,

we reviewed the published media reports related to the chosen topics during

the targeted periods and recognised a set of sub-events happened8. Each sub-

event was labelled with a set of keywords extracted from the media reports

which described it. Then, an event is marked as a GT event if at least one

of its keywords was found in social media data during the period when that

event happened, according to other published media reports. Following this

process, 23 time windows were labelled as event windows, with 27 events for

the MUNLIV dataset and 8 event windows with 19 events for the BrexitVote
7NLTK documentation is available on https://www.nltk.org/
8For MUNLIV GT event extraction, we reviewed the reports on Premier League offi-

cial website, BBC Sports and WhoScored. For BrexitVote, we reviewed the reports on The
Guardian and TheyWorkForYou parliamentary monitoring website.

https://www.nltk.org/
https://www.premierleague.com/match/46691
https://www.premierleague.com/match/46691
https://www.bbc.co.uk/sport/live/football/49858490/page/9
https://www.whoscored.com/Matches/1376062/Live/England-Premier-League-2019-2020-Manchester-United-Liverpool
https://bit.ly/3pLNDdC
https://bit.ly/3pLNDdC
https://www.theyworkforyou.com/debates/?id=2019-10-19a.569.2
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dataset. We made these data, including the GT labels (TED), publicly available

to support other research in event detection9.

This approach does not consider the possibility of variations between

the event reporting times in two different media. However, after carefully

analysing the data and events, we noticed that it is possible to have slight tem-

poral variations in social media events than the events in published media re-

ports. For example, during a football match, people report on social media that

a substitution is going to happen, seeing a player get ready to come before it ac-

tually happens or other media reports it. Without considering such variations,

some GT events can be missed, and some can be labelled with incorrect time

details. Thus, to improve the correctness of GT labels, for each GT event recog-

nised at time window t (according to published media reports), we manually

analysed the temporal variations of keyword frequencies in social media data

in previous and next time windows t− 1 and t + 1 to identify the actual event

reported time in social media. Following this analysis, the MUNLIV dataset is

recognised with 31 events in 25 windows and the BrexitVote dataset with 27

events in 11 windows. The updated version (V2) of GT is also published in our

data repository.

3.2.4 Event Sentiment Annotation

Additionally, we decided to annotate our datasets with sentiment labels to

make them suitable for event sentiment-based research, especially consider-

ing the following limitations. To the best of our knowledge, none of the avail-

able social media datasets contained ground truth of events and sentiments

together. Also, most sentiment datasets were composed of random sets of so-

cial media posts without the postings during a continuous period (Rosenthal

9TED including the GT events are available on https://github.com/hhansi/

twitter-event-data-2019

https://github.com/hhansi/twitter-event-data-2019
https://github.com/hhansi/twitter-event-data-2019
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et al., 2017; Aloufi and Saddik, 2018). We named this dataset version as Twitter

Event Data with Sentiments (TED-S).

Considering the cost of a manual process in annotating large datasets, we

propose an ensembled approach for sentiment annotation. For this approach,

we utilised the data annotation strategy proposed with democratic co-learning

(Zhou and Goldman, 2004) considering its successful applications in different

areas such as time-series prediction (Mohamed et al., 2007) and offensive lan-

guage identification (Rosenthal et al., 2021). We trained a set of classifiers on

available labelled data and a manually annotated subset of MUNLIV and Brex-

itVote data (8,344 tweets from MUNLIV and 2,016 tweets from BrexitVote), us-

ing different learning algorithms for this strategy. When different algorithms

with different inductive biases are involved, it helps resolve individual model

biases and produces predictions with lower noise. Then, the trained models

are used to make predictions on unlabeled data and aggregate the outputs to

generate final labels. We constructed classifiers using Long Short-term Mem-

ory (LSTM) (Hochreiter and Schmidhuber, 1997), Convolutional Neural Net-

work (CNN) (Lawrence et al., 1997) and Transformers (Devlin et al., 2019) to

use with this approach, following their recent wide applications.

We labelled all the tweets of MUNLIV during the period of 15:28-17:24 and

BrexitVote during 08:00-14:00 (Table 3.1) using our approach. The correspond-

ing sentiment distributions are illustrated in Figures 3.1 and 3.2, respectively.

Since more than one tweet can be posted during a particular time, we ag-

gregated the repeated values and showed the mean with a 95% confidence

interval in these line graphs. More details about data statistics and the con-

ducted experiments, along with sentiment labelling, are available in our pa-

per (Hettiarachchi et al., 2022b). Also, this dataset is publicly available to use

by anybody interested in event-sentiment analysis10. However, adhering to

10TED-S is available on https://github.com/HHansi/TED-S.

https://github.com/HHansi/TED-S
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this PhD’s scope, plan, and timeline, we did not conduct any event sentiment-

based research as a part of the PhD research. But, we plan to explore this area

further in our future research utilising this dataset.

FIGURE 3.1: Sentiment distribution of MUNLIV tweets during 15:28-17:24

FIGURE 3.2: Sentiment distribution of BrexitVote tweets during 08:00-14:00

3.3 Evaluation Metrics

Identified events need to be compared with ground truth (GT) events consid-

ering both temporal and textual aspects to evaluate the performance of event
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detection methods designed for social media data streams. Analysing previ-

ous research, we found methods that use either time-based metrics (Adedoyin-

Olowe et al., 2016) or event text-based metrics (Aiello et al., 2013; Choi and

Park, 2019; Morabia et al., 2019) for automated evaluations without a com-

bination of both. Thus, utilising the available knowledge, we designed the

following metrics (Section 3.3.1-3.3.2) to perform an overall evaluation.

3.3.1 Time-based Evaluation Metrics

We involved time windows in evaluating temporal event details using the fol-

lowing metrics, which are positively oriented. In the equations stated below,

the set of all GT event windows in the dataset, detected event windows and

relevant event windows found in detected windows are represented by WGT,

Wd and Wr, respectively. A detected window is marked as a relevant event

window if all the GT events of that period are found in the events detected for

that window.

• Time Window Recall: Fraction of the number of relevant event windows

detected among the total number of GT event windows in the dataset.

Time Window Recall =
|Wr|
|WGT|

• Time Window Precision: Fraction of the number of relevant event win-

dows detected among the total number of event windows detected.

Time Window Precision =
|Wr|
|Wd|

• Time Window F1: Weighted harmonic mean of Time Window (TW) Re-

call and Precision.

Time Window F1 = 2× TW Precision× TW Recall
TW Precision + TW Recall
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3.3.2 Text-based Evaluation Metrics

Detected events and their keywords are compared with GT events using the

following metrics, which are also positively oriented. In the equations stated

below, EWGT
t

represents the GT events reported at time t (or Wt) and EWd
t

rep-

resents the events identified during the detected event window Wd
t . A match

between a detected event and a GT event is established if at least one GT key-

word is found from the identified event words.

• Event Recall: Fraction of the events successfully detected among the GT

events happened during the time windows detected as event windows.

Event Recall =
∑t∈Wd |e : e ∈ EWGT

t
and e ∈ EWd

t
|

∑t∈Wd |e : e ∈ EWGT
t
|

• Event Relevance: Fraction of the detected events related to the GT events

that happened during the time windows detected as event windows

among all detected events.

Event Relevance =
∑t∈Wd |e : e ∈ EWd

t
and e ∈ EWGT

t
|

∑t∈Wd |e : e ∈ EWd
t
|

While matching detected events with GT events to calculate Event Recall, we

did not allow the same detected event to match with multiple GT events. Oth-

erwise, if a single event is detected, including all the keywords in GT events, it

will be marked as a prediction of all events, even though having a single large

event is not helpful in the real scenario. If the same detected event is matched

with more than one GT event, only the best match (match with the minimum

number of missed keywords) is kept. For the optimal event assignment, we

used the Hungarian algorithm (Munkres, 1957) developed for the assignment

problem.

Further, we used a keyword-based metric to measure the textual coverage

of detected events. In the equation below, eWt is an event detected during the

time window Wt, which matches with the GT event eGT reported at the same
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time window. Each detected and GT event contains a set of words/tokens

which describes it. While comparing predicted event words with GT words,

their exact matches are considered.

• Keyword Recall: Fraction of the correctly detected keywords among the

total number of keywords of the GT events that have been matched to

some candidate event in the time window under consideration. Only the

optimally assigned events are considered.

Keyword Recall =
∑t∈Wd |w : w ∈ eGT ∩ eWt , eGT ∈ EWGT

t
, eWt ∈ EWd

t
|

∑t∈Wd |w : w ∈ eGT, eGT ∈ EWGT
t
|

3.4 Theoretical Background

We adapt approaches based on word embeddings and hierarchical clustering

for social media event detection in this research considering their potentials.

Section 3.4.1 summarises the background details of word embeddings and

their capabilities. The basic concepts of hierarchical clustering and dendro-

grams are explained in Section 3.4.2.

3.4.1 Word Embeddings

Word embeddings are numerical representations of text in vector space. De-

pending on the learning method, there are two main groups: frequency-based

and prediction-based embeddings. Frequency-based embeddings consider

different frequency measures of text to generate vectors preserving statisti-

cal features. Prediction-based embeddings learn representations using con-

textual predictions preserving both syntax and semantics in text. Considering

these characteristics, we focus on prediction-based word embeddings in this

research and will refer to them as ‘word embeddings’.



Chapter 3. Introduction to Social Media Event Detection 67

Different model architectures such as Neural Network Language Model

(NNLM) (Bengio et al., 2003) and Recurrent Neural Network Language Model

(RNNLM) (Mikolov et al., 2010) were proposed by previous research to gener-

ate prediction-based word embeddings. Considering the complexities of these

architectures, log-linear models, which are also known as Word2Vec models

(Mikolov et al., 2013a) were introduced later. The evaluations conducted by

Mikolov et al. (2013a) showed that Word2Vec vectors have a high capability of

preserving syntactic and semantic relationships between words. Thus, they

are popularly used in the domain of NLP (Zhang et al., 2019; Yilmaz and

Toklu, 2020; Škrlj et al., 2020). Two architectures named Continuous Bag-of-

Words (CBOW) and Continuous Skip-gram were proposed as Word2Vec mod-

els. CBOW learns by predicting a word based on its context. Contrarily, Skip-

gram learns by predicting the context of a given word. Among these two ar-

chitectures, we focus on Skip-gram in this research because it resulted in high

semantic accuracy compared to CBOW in previous analyses (Mikolov et al.,

2013a; Mikolov et al., 2013b). Also, according to our initial experiments and

analyses, Skip-gram outperformed the CBOW model. More details about Skip-

gram architecture are available in Section 3.4.1.1. Furthermore, Section 3.4.1.2

discusses the qualities of Skip-gram embeddings learned on real datasets.

3.4.1.1 Skip-gram Model

Skip-gram model is a log-linear classifier composed by a 3-layer neural net-

work with the objective of predicting the context or surrounding words of a

centre word given a sequence of training words w1, w2, ...wn (Mikolov et al.,

2013b). More formally, it focuses on maximizing the average log probability of

context words wk+j| − m ≤ j ≤ m, j ̸= 0 of the centre word wk by following

the objective function in Equation 3.1. m represents the length of the training
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context.

j =
1
n

n

∑
k=1

∑
−m≤j≤m,j ̸=0

log p(wk+j|wk) (3.1)

The probability of a context word given the centre word p(wk+j|wk) is com-

puted using the softmax function.

p(wo|wi) =
exp(v

′
wo

T
vwi)

∑N
w=1 exp(v′w

Tvwi)
(3.2)

In Equation 3.2, wo and wi represent the output and input (i.e. context and

centre words) and N represents the length of vocabulary. The input and output

vectors of a word w is represented by vw and v
′
w. The input vectors are taken

from the input-hidden layer weight matrix M which is sized N × D where D

is the number of neurons in the hidden layer. Likewise, output vectors are

taken from hidden-output layer weight matrix M
′

which is sized D× N. The

Skip-gram architecture including weight matrices is shown in Figure 3.3.

FIGURE 3.3: Skip-gram Architecture

Once the model converges, it gets the ability to predict the probability dis-

tributions of context words with good accuracy. At this point, instead of us-

ing the model for the trained task, adjusted weights between the input and

hidden layers will be extracted as word vectors or embeddings. The vector
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dimensionality equals the number of neurons in the hidden layer. During the

training procedure, model weights get adjusted by learning the connections

between nearby words. Thus, given a sufficient corpus, the model can learn

connections between words capturing their underlying syntax and semantics,

allowing to recognise similar/related words more effectively.

3.4.1.2 Skip-gram Vector Spaces

To analyse the characteristics and distribution of Skip-gram embeddings, we

trained a few models using MUNLIV data. We used 2-minute windows as

mentioned in Section 3.2.1. Using the learned embeddings, we analysed the

words closer to the player names ‘rashford’ and ‘firmino’ during 15:52-15:54

and 16:06-16:08. The events reported within or closer to these time windows

are summarised in Table 3.2. For word visualisations, we used T-distributed

Stochastic Neighbor Embedding (t-SNE) algorithm (Maaten and Hinton, 2008),

and the resulted graphs are shown in Figure 3.4.

TABLE 3.2: Sample events from MUNLIV

Time Event Description

15:40 Missed Attempt Missed attempt by Roberto Firmino(LFC)
15:52 Foul Foul by Marcus Rashford(MUFC) on Virgil van Dijk(LFC)
16:04 Saved Attempt Saved attempt by Roberto Firmino(LFC)
16:06 Goal First goal by Marcus Rashford(MUFC)

The 15:52-15:54 visualisation (Figure 3.4a) shows that the foul-related

words are located closer to ‘rashford’ in the vector space representing the foul

that happened during this period. Even after 12 minutes, a few words relat-

ing to the missed attempt at 15:40, such as ‘loses’ and ‘destruction’, can be seen

closer to ‘firmino’. Similarly, at 16:06-16:08, the goal can be clearly identified by

the words nearby to ‘rashford’ (Figure 3.4b). Also, more words relating to the

saved attempt are located closer to ‘firmino’, as it happened 2 minutes before.
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(A) time window 2019-10-20 15:52-15:54

(B) time window 2019-10-20 16:06-16:08

FIGURE 3.4: t-SNE visualisations of tokens closer to ‘Rashford’ and ‘Firmino’

Furthermore, this diagram shows a clear separation in nearby word groups in

the vector space when they represent actively discussing events.

These analyses prove that nearby word-groups recognised by Skip-gram

word embeddings represent the events in the underlying corpus. Also, these

groups capture directly as well as indirectly related words to events. For exam-

ple, the top 20 words closer to ‘rashford’ during 16:06-16:08 contains the words
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such as ‘goal’, ‘1-0’, ‘mufc’ and ‘36’ which are directly related to and words such

as ‘huge’ and ‘noise’ which are indirectly related to the goal event. These charac-

teristics associated with Skip-gram embeddings can be effectively utilised for

event detection in social media, capturing the linguistics in underlying data.

3.4.2 Hierarchical Clustering

Hierarchical clustering was popularly used by previous research for event de-

tection considering the requirement to predefine the cluster count by flat clus-

tering algorithms (e.g. K-means) (Corney et al., 2014; Ertugrul et al., 2017; Mu

et al., 2018; Nguyen et al., 2019). Even though flat clustering is more efficient

than hierarchical clustering, it is impractical to identify the number of clusters

(events) in advance due to the unpredictability of social media data. Addi-

tionally, hierarchical clustering returns a hierarchy or structure of data points,

known as a dendrogram, that can be used to identify the connections between

data points.

There are two types of hierarchical clustering algorithms: (1) bottom-up

or agglomerative and (2) top-down or divisive (Manning et al., 2008). In hi-

erarchical agglomerative clustering (HAC), all data points are considered as

separate clusters at the beginning and then merged based on cluster distance

using a linkage method. The commonly used linkage criteria are single, com-

plete and average. Single linkage considers the maximum similarity, and com-

plete linkage considers the minimum similarity. Average of all similarities are

considered in the average linkage. In contrast to HAC, hierarchical divisive

clustering (HDC) considers all data points as one cluster at the beginning and

then divide them until each point is in its own cluster. For data division, HDC

requires a flat clustering algorithm. Due to this requirement, HDC is more

complex than HAC, and it is recommended to use some stopping rules when
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processing large datasets to avoid the generation of the complete dendrogram

to mitigate the complexity (Roux, 2018). Thus, the HAC algorithm is more ap-

propriate for this research because we need to process large datasets efficiently

and obtain complete dendrograms to reveal textual relationships.

FIGURE 3.5: Sample dendrogram (y-coordinate denotes the distance and x-coordinate
denotes the selected words)

Dendrogram: A dendrogram is a tree diagram that visualises hierarchical

clusterings illustrating the relationships between objects. A sample dendro-

gram generated on a selected word set from tweets posted during the first goal

of the MUNLIV dataset is shown in Figure 3.5. The horizontal lines represent

the cluster merges that happened, considering the distance between clusters

of words. Merges between the closer groups, such as the name of the player

who scored the goal ‘rashford’ and the cluster that holds ‘goal’ happen at low

distances (≈ 0.025). Contrarily, merges between distant groups such as an-

other player name ‘firmino’ and the cluster of ‘goal’ happen at high distance

values (≈ 0.25). Similarly, a dendrogram built on a corpus from any domain

preserves informative relationships expressed in that corpus.
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3.5 Notations

All the notations which are commonly used throughout this part of the thesis

are summarised in Table 3.3.

TABLE 3.3: Summary of notations used in this part of the thesis

Notation Description

d document/post in a data stream D
D′ filtered data stream
W time windows during a period
Wd detected event windows during a period
Wt window in W at time t
Wt−1 window in W at time t− 1 (previous time window to Wt)
w word/token
c word/token cluster
e event
EWt set of events happened during Wt/co-occurred events during Wt

Vt word embeddings/vector space learned from Wt

vocab vocabulary
ft token frequencies of vocab at time t (vocabt)
dl dendrogram level
dlr→x number of dls from root: r to node: x
dl(wi ,wj) number of shared dls between tokens: wi and wj, from root

L set of leaf nodes in a dendrogram

3.6 Summary

Automated intelligent mechanisms are crucial to effectively extract newswor-

thy content from the vast volume of data generated in social media. It is im-

practical to manually analyse the social media data streams without any au-

tomation, considering their volume with high growth rates and dynamicity.

Further emphasising the importance of event detection, previous research has

also proposed different approaches for this task. However, most of them do
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not involve underlying semantics, which describes the connections between

words and their meanings for event detection from textual data, making those

systems vulnerable to a critical information loss. Overcoming this major lim-

itation, in this research, we focus on developing methods involving underly-

ing semantics to effectively capture social media events with less information

loss. We propose using the characteristics of self-learned word embeddings

and their hierarchical relationships in dendrograms, paving a new direction

for social media event detection.

In the next few chapters, we further describe our approaches to social me-

dia event detection. We mainly aimed at two levels of data granularities (i.e.

coarse and fine) while designing our approaches considering different user re-

quirements. Chapter 4 describes the coarse-grained approach and Chapter 5

describes the fine-grained approach. At the coarse-grained level, we target

notifying users about event occurrences in time, allowing them to take further

actions of their choice, such as manual data analysis to get event details. At the

fine-grained level, we target enriching the output with textual event details in

addition to temporal details automating the complete event detection process.



75

Chapter 4

Embed2Detect: Coarse-grained

Level– Event Window Identification

As described in Chapter 3, this research focuses on detecting social media

events based on two levels of data granularity, coarse and fine, considering

different information requirements. Mainly, at the coarse-grained level, noti-

fying users about event occurrences is targeted, and at the fine-grained level,

extraction of event-described text segments at event occurrences is targeted.

As the coarse-grained level of social media event detection, we target identify-

ing event occurred time windows. Since social media generates a vast volume

of data, it is impractical to manually filter all the available data to get interest-

ing information, especially in real-time. However, if there is a mechanism to

notify users about event occurrences in time, they can further analyse or filter

upon such notification to get the necessary information. In this way, people

can focus on important information in real-time without missing any and ef-

fectively utilise the vast amount of data generated in social media. Following

this idea, fulfilling the coarse-grained level requirement of social media event

detection, in this chapter, we propose a novel method named Embed2Detect

to identify event occurred time windows (event windows) in (near) real-time.

The findings reported in this chapter have been published in (Hettiarachchi

et al., 2021b; Hettiarachchi et al., 2022a).
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Considering the lack of semantic involvement in previous methods, which

could lead to severe information loss, we targeted designing Embed2Detect

involving all the important features in textual data: statistics and linguistics

(syntax and semantics). Embed2Detect mainly utilises the characteristics of

word embeddings and dendrograms (or hierarchical clusters). We propose

using self-learned word embeddings over pre-trained embeddings to capture

features specific to the targeted corpus. Our approach mainly structures tokens

in a corpus to hierarchical clusters based on their linguistical relationships cap-

tured by word embeddings and analyses the temporal variations of clusters to

identify event occurrences. Also, we use vocabulary changes over time to in-

volve statistical details with our identifications. As tokens, we consider all the

meaningful text units, including words, numerals and emojis, extending event

coverage beyond the words. To measure cluster similarity between tokens to

capture their temporal variations, we also introduce a new measure named

Dendrogram Level (DL) Similarity along with Embed2Detect. We evaluated the

performance of Embed2Detect in two diverse domains with several recently

proposed methods and obtained promising results confirming its effectiveness

for (near) real-time event window identification.

To the best of our knowledge, Embed2Detect is the first method that uses

self-learned word embedding-based temporal cluster similarity for event win-

dow identification in social media. In summary, the main contributions of this

chapter are as follows.

1. We propose a novel method named Embed2Detect for (near) real-time

event window identification in social media by involving semantics cap-

tured by self-learned word embeddings in addition to the traditionally

used statistical and syntactical features in the text.

2. We introduce a text similarity measure named Dendrogram Level (DL)
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Similarity focusing on the characteristics associated with dendrograms

to measure cluster similarity between tokens capturing their hierarchical

relationships.

3. We leverage self-learned word embeddings in Embed2Detect to offer

more effective and flexible event window identification, overcoming pre-

vious methods’ limitations, specifically, the less semantic involvement,

inability to capture linguistics specific to the underlying data and less

expandability to different domains, languages and platforms.

4. We evaluate Embed2Detect on recent real datasets from two diverse do-

mains, sports and politics, and show its effectiveness compared to several

recently proposed methods from different competitive areas.

5. We release the implementation of Embed2Detect as an open-source

project to support applications and research in the area of event detec-

tion1.

The rest of this chapter is organised as follows. Section 4.1 introduces the

proposed approach: Embed2Detect for event window identification in social

media data streams. Section 4.2 comprehensively describes the conducted ex-

periments and obtained results. Finally, Section 4.3 concludes the chapter with

a discussion and future research directions.

4.1 Methodology - Embed2Detect

As Embed2Detect, we propose a novel event detection approach to recognise

event occurred time windows based on the temporal variations of tokens and

1Embed2Detect implementation is publicly available on https://github.com/hhansi/

embed2detect

https://github.com/hhansi/embed2detect
https://github.com/hhansi/embed2detect
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FIGURE 4.1: Overview of the proposed method – Embed2Detect

their hierarchical relationships. The main novelty of this approach is the in-

volvement of corpus-oriented semantical features and their temporality for

event detection using self-learned word embeddings. The Embed2Detect sys-

tem has four main components: (1) stream chunker, (2) word embedding

learner, (3) event window identifier and (4) event word extractor as shown

in Figure 4.1. Self-learned word embeddings are used during event window

identification and event word extraction phases. Additionally, we use the

event mapper to map detected events with ground truth (GT) events during

evaluations. Each of the main components is further described in Sections 4.1.1
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- 4.1.4. Finally, the computational complexity of Embed2Detect is discussed in

Section 4.1.5.

4.1.1 Stream Chunker

Data stream mining is mainly supported by three different time models,

namely, landmark model, tilted-window model and sliding window model

(Tsai, 2009). All the data from a specific time to the present is considered

equally in the landmark model. The tilted-window model treats recent data

with high importance compared to old data. The sliding window model splits

the data stream into windows based on a fixed period or number of transac-

tions and performs data mining tasks on the data that belong to each window.

Among these models, the time-based sliding window model was widely

used by previous research in event detection (Sayyadi et al., 2009; Alkhamees

and Fasli, 2016; Adedoyin-Olowe et al., 2016; Choi and Park, 2019). Following

this tendency and considering the high data volume to process and require-

ments to capture temporal details, Embed2Detect also uses the sliding window

model with a fixed time frame to facilitate the event detection in social media

data streams. Also, the time window length can be adjusted depending on the

evolution of events in the targeted domain. Stream chunker is the component

that conducts data stream separation into windows.

4.1.2 Word Embedding Learner

We use word embeddings to incorporate linguistical features in text for event

detection. Without using pre-trained word embeddings, we propose using

self-learned embeddings or embeddings trained on the targeted corpus to cap-

ture its unique characteristics, such as modified or misspelt words and emoti-

cons. The word embedding learner transfers the text of social media posts
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in a time window to a vector space. For each time window, different vector

spaces are learned so that they can be used to capture temporal variations over

windows. The learned word embedding models are stored to facilitate event

window identification and event word extraction.

Considering the high-quality vector representations by the Skip-gram al-

gorithm (Section 3.4.1), we use it as the initial algorithm to learn embeddings

in Embed2Detect. Also, due to the simplicity of Skip-gram architecture and

usage of small training corpora (chunks of a data stream), learning time will

not be considerably high to impact real-time event detection negatively. We

further discuss the possible extensions to the embedding learning algorithm

in Section 4.2.6. By designing the word embedding learner as a separate com-

ponent, we also facilitate the easy integration of any appropriate embedding

model.

4.1.3 Event Window Identifier

Given a chronological stream of time windows W: W0, W1, ...Wt−1, Wt, ... (at

least two consecutive windows Wt−1, Wt), event window identifier recognises

the windows Wd where events have occurred. Since an event is an incident or

activity that happened and was discussed, such an occurrence should signifi-

cantly change data in the corresponding time window compared to its previ-

ous window. Based on this assumption, our method identifies windows with

higher change than a predefined threshold (α) as event windows. From the

perspective of use cases, this threshold mainly defines the significance of tar-

geted incidents. A low α value would also identify less important events. Since

we use normalised values to measure the change as described below, any value

between 0 and 1 can be picked for α.
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Before moving into the change calculations, the text in social media doc-

uments needs to be pre-processed for more accurate results and efficient pro-

cessing. We do not conduct any pre-processing steps before learning the em-

beddings except tokenizing to preserve all valuable information, which would

help the neural network to figure things out during word embedding learning.

Under pre-processing, we mainly targeted removing the uninformative tokens

using general procedures which are not strictly dependent on domains or lan-

guages to preserve the expandability of our approach. We remove redundant

punctuation marks, stopwords and tokens with low frequency than a prede-

fined threshold ( β ) as outlier tokens. The low-frequent words would be the

misspelt words or words describing background topics that are not intensively

discussed as events.

An event occurrence will change nearby tokens of a selected token or intro-

duce new tokens to the vocabulary over time. For example, in a football match,

if a goal is scored at Wt−1, ‘goal’ will be highly mentioned in the textual context

of the corresponding player’s name. If that player receives a yellow card un-

expectedly in Wt, new words ‘yellow card’ will be added to the vocabulary, and

they will appear in the context of the player’s name instead of the word ‘goal’.

Following this idea, in Embed2Detect, we consider two measures that capture

the changes in nearby tokens and vocabularies to calculate textual data change

between two consecutive time windows Wt−1 and Wt. To compute the nearby

token changes, we propose an approach based on clustered word embeddings

under cluster change calculation (Section 4.1.3.1) using a novel similarity mea-

sure named Dendrogram Level (DL) Similarity (Section 4.1.3.2). Involvement of

word embeddings allows the effective capturing of nearby word changes con-

sidering both syntactical and semantical aspects (Section 3.4.1). Vocabulary

change is calculated using the approach described in Section 4.1.3.3, mainly

targeting the statistical aspect. The final value for the overall textual change
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between time windows is calculated by aggregating the two measures, cluster

change and vocabulary change. To maintain the simplicity of the proposed

approach, as the aggregation method, we experimented with maximum and

average value calculations. Among these two methods, the best results could

be obtained by maximum calculation for all the experimented diverse domains

(Section 4.2.1). Algorithm 1 summarises the complete flow of event window

identification.

Algorithm 1: Event Window Identification
input: W : time windows during a period ([W0, W1, ...Wt−1, Wt, ...]), α : change

threshold
output: Wd : detected event windows

1 Wd ← []; // empty array to keep event windows

2 for t=1 to length(W) do
3 vocabt−1 ← vocabulary at Wt−1;
4 vocabt ← vocabulary at Wt;
5 Vt−1 ← vector space at Wt−1;
6 Vt ← vector space at Wt;

// Compute cluster change
7 commonVocab← common vocabulary for vocabt−1 and vocabt;
8 N ← length(commonVocab) ;

// Compute cluster similarities

9 matrixt−1 ← similarity matrix of commonVocab using Vt−1;
10 matrixt ← similarity matrix of commonVocab using Vt;

// Compute similarity change

11 diffMatrix← matrixt −matrixt−1;
12 clusterChange← overall change calculated using diffMatrix;

// Compute vocabulary change
13 vocabChange← change calculated using vocatt and vocabt−1;

// Compute overall change
14 overallChange← aggregate(clusterChange, vocabChange);
15 if overallChange ≥ α then
16 Wd.add(Wt);
17 end

18 end
19 return Wd
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4.1.3.1 Cluster Change Calculation

Cluster change calculation is proposed to measure nearby token or token

group changes over time based on their hierarchical relationships. Mainly, to-

ken groups/clusters are targeted because ideas discussed in data streams form

such groups, and their variations can be used to recognise newsworthy events.

We generate separate hierarchical clusterings per time window for this calcu-

lation. Focusing on our requirement, we cluster tokens, and as tokens, we use

words as well as other useful symbols, such as emojis, because they are widely

used to express ideas in social media. As token representations, self-learned

word embeddings are used, considering their ability to preserve linguistical

features of the underlying corpus. For the clustering algorithm, we chose hier-

archical agglomerative clustering (HAC), considering its advantages and the

tendency of previous research (Section 3.4.2). As the linkage method, we use

the average scheme to involve all the elements that belong to clusters during

distance calculation. In average linkage, the distance between two clusters Ci

and Cj is measured by following the Equation 4.1 (Müllner, 2011),

D(Ci, Cj) =
1

|Ci||Cj| ∑
wp∈Ci

∑
wq∈Cj

d(wp, wq), (4.1)

where d(wp, wq) represents the distance between cluster elements (i.e. tokens)

wp and wq which belong to the clusters Ci and Cj respectively. This distance is

measured using cosine distance because it proved effective for measurements

in textual data (Mikolov et al., 2013a; Mikolov et al., 2013b; Antoniak and

Mimno, 2018). Since cosine distance calculation is independent of the mag-

nitude/length of vectors (i.e. scalar that represents the size/length of a vector

in a given vector space), it also does not get biased by the word frequency,
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which is merely represented by the length of word vectors (Schakel and Wil-

son, 2015).

Since we generate hierarchical clusterings (or dendrograms) only to sup-

port the cluster change calculation, our method does not directly rely on the

final clusters produced by the clustering algorithm as the majority of avail-

able methods (Li et al., 2017a; Ertugrul et al., 2017; Comito et al., 2019b). We

only use the variations in hierarchical relationships to recognise nearby token

changes over time. In this setting, the requirement for a cluster threshold can

be eliminated, and it is advantageous in the context of social media due to the

infeasibility to define a static threshold suitable for all event clusters consider-

ing their diversity.

FIGURE 4.2: Matrix-based cluster change calculation (The colour scheme indicates
high to low values using variants from dark blue to white.)

We propose a matrix-based approach to calculate cluster change efficiently.

Since our target is to measure the change at a time window Wt compared to its

previous window Wt−1, we generate matrices that hold the similarity values

between all possible token pairs per window. Such a token similarity matrix is

a square matrix of size N × N where N is the number of tokens in the vocab-

ulary (matrixt and matrixt−1 in Figure 4.2). Each cell in the matrix matrix[i, j]

represents the cluster similarity between tokens wi and wj calculated using

Dendrogram Level similarity (Section 4.1.3.2). Due to the requirement to compare
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similarity matrices in two consecutive time windows, we use one vocabulary

to generate the matrices. As this common vocabulary, the pre-processed vo-

cabulary at t vocabt is used for both windows Wt−1 and Wt following our aim

to capture the changes at Wt compared to Wt−1. After generating the similarity

matrices at t− 1 and t, we calculate their difference matrix diffMatrix (Figure

4.2) to use with the change calculation. Finally, as the overall cluster change,

the average of absolute values (Absolute Similarity Change) is calculated.

Absolute (Abs.) Similarity Change: Abs. similarity change is calculated as

the average of absolute values in diffMatrix following the Equation 4.2. Only

the values at the upper triangular matrix except the diagonal are considered

because the matrix is symmetric around the diagonal. This is a positively-

oriented measure that gets a higher value for high changes.

Abs. Similarity Change =
∑N

i=1 ∑N
j=i+1 |diffMatrix[i, j]|

(N × (N − 1))/2
(4.2)

4.1.3.2 Dendrogram Level (DL) Similarity

Focusing on the characteristics associated with dendrograms (Section 3.4.2),

we propose Dendrogram Level (DL) Similairity to calculate cluster similarity of

tokens. As dendrogram levels, we consider horizontal lines or merges in the

dendrogram. Given a dendrogram, the similarity between a token pair wi and

wj is calculated as the normalised value (within the range of 0–1) of shared

levels from root between those two words, as follows.

DL Similarity(wi,wj)
=

dl(wi,wj)

max(dlr→x : x ∈ L) + 1
(4.3)

The numerator of Equation 4.3 represents the number of shared dendrogram
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levels between wi and wj from the root. The denominator represents the maxi-

mum number of levels between root and leaf nodes. We added leaf node level

also as an individual level during maximum level count calculation to make

sure only the similarity between the same token is 1 (DL Similarity(wi,wi)
= 1).

For example, the maximum number of dendrogram levels in the dendro-

gram in Figure 3.5 without the leaf node level is 5 considering its longest path

r → goal (or r → 1− 0). By adding the leaf level, the maximum level count

becomes 6. For the word pair ‘rashford’ and ‘goal’, the number of shared levels

between the words is 4. Similarly, words; ‘firmino’ and ‘goal’ shares 1 level,

because they appear in distant clusters. In measures, DL similarities between

these words can be calculated as follows.

DL Similarity(rash f ord,goal) = 4/6 = 0.667

DL Similarity( f irmino,goal) = 1/6 = 0.167

As can be seen in the above values, for hierarchically closer words, DL similar-

ity returns a higher value than the distant words. The higher the DL similarity,

the corresponding word pair has a close hierarchical relationship or high clus-

ter similarity.

4.1.3.3 Vocabulary Change Calculation

A vocabulary is a set of distinct tokens that belong to a particular language,

person, corpus, etc. In this research, we consider the tokens belonging to each

time window’s data corpus as separate vocabularies. Vocabulary change cal-

culation is proposed to measure new word addition into time windows over

time. Also, it incorporates the statistical details in the dataset. In order to have
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a comparable value over all time windows, we calculated normalised vocabu-

lary change value for Wt compared to Wt−1 following the Equation 4.4.

Vocabulary Change(VC)(t−1,t) =
|w : w ∈ vocabt and w /∈ vocabt−1|

|vocabt|
(4.4)

The numerator represents the cardinality of new tokens that appeared in the

vocabulary of Wt compared to Wt−1, and the denominator represents the size

of the vocabulary that belongs to Wt.

4.1.4 Event Word Extractor

After identifying a time window as an event window, the event word extrac-

tor facilitates the extraction of words (tokens) in that window that are related

to the occurred events. Considering the ability of events to make changes to

the textual corpus, this component marks all the tokens in an event window

Wt, which showed cluster changes compared to its previous windows Wt−1 as

event words. We use the matrices generated during event window identifica-

tion (Algorithm 1) for this task to maintain the efficiency of our approach. All

token pairs in diffMatrix (matrixt − matrixt−1) with value (i.e. DL similarity

change) above 0 indicate the pairs which had cluster changes over time. We

consider the unique set of tokens belonging to the changed word pairs as the

event words. Since we use the pre-processed vocabulary at t vocabt as the com-

mon vocabulary between the consecutive windows Wt−1 and Wt to generate

the similarity matrices matrixt−1 and matrixt during the cluster change calcu-

lation, this approach also identifies the newly added tokens to Wt as tokens

with cluster changes over Wt−1 to Wt, returning them as event words.
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4.1.5 Computational Complexity

Word embedding learner and event window identifier are the most compu-

tationally complex components available in Embed2Detect architecture. The

complexity of stream chunker and event word extractor is negligible compared

to them. Therefore, we only consider word embedding learner and event win-

dow identifier for time and space complexity calculations.

The training complexity of Skip-gram architecture is proportional to

C× (D + D× log N), where C is the maximum distance of the words, D

is the dimensionality of vectors and N is the size of vocabulary (Mikolov

et al., 2013a). Under event window identifier, there are two complex sub-

components, clustering and similarity matrix generation. For N sized vo-

cabulary, the time complexity for HAC algorithm is O(N2 log N) (Manning

et al., 2008) and for matrix generation is O(N2). By combining all these

chained components, the time complexity of Embed2Detect can be calculated

as O(CD log N + N2 log N). For the used application, both C and D values are

comparatively smaller than N. Therefore, the time complexity can be further

simplified to O(N2 log N).

Following the 3-layer architecture, the space requirement of a Skip-gram

model is equivalent to N × D + D × N. The HAC algorithm and similarity

matrix generation have a space complexity of O(N2). Considering all cost

values, the total space complexity of Embed2Detect can be summarised as

O(DN + N2). Using the same assumption mentioned above, this can be sim-

plified to O(N2).

Based on the complexities computed above, the vocabulary size N has a

high impact on the computational complexity of this approach. According to

the recent reports, approximately 511,200 tweets per minute were recorded in

2019 (James, 2019). Thus, for a 30-minute time window, which is sufficiently
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long to highlight the worst-case scenario, the total tweet count would be ap-

proximately 15M. Looking at available twitter-based word embedding models,

the Word2Vec_Twitter model trained on 400M tweets has a vocabulary of 3M

tokens (Godin et al., 2015) and another popularly used model, GloVe Twit-

ter trained on 2B tweets, has a vocabulary of 1.2M tokens2. Focusing on the

worst-case scenario, if there were 3M vocabulary for 400M tweets, N could be

approximated to 0.1M (100,000) for 15M tweets. Since our approach is targeted

in processing a filtered data stream specific to a particular domain, N should

be notably smaller than this value approximation (0.1M) in a real scenario.

Further, the size of vocabulary can be controlled using the frequency threshold

(β) mentioned in Section 4.1.3. Based on these findings, we can confirm the

appropriateness of Embed2Detect for real-time event detection.

4.2 Experimental Study

This section summarises the experiments we conducted for event window

identification using Embed2Detect on two recent social media datasets from

two diverse domains, sports and politics, which are introduced in Section 3.2.

To evaluate the results, we used time-based metrics described in Section 3.3.

Since we do not identify event clusters at the coarse-grained level, all event

words are considered as a single cluster and allowed to match with multiple

GT events. We implemented Embed2Detect in Python and released the im-

plementation on GitHub3. Initially, we analysed the impact of aggregation

methods (Section 4.2.1) and text pre-processing techniques (Section 4.2.2) on

Embed2Detect’s performance. Then, an analysis of parameter sensitivity was

2GloVe pre-trained model details are available on https://nlp.stanford.edu/projects/

glove/
3Embed2Detect implementation is publicly available on https://github.com/hhansi/

embed2detect

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
https://github.com/hhansi/embed2detect
https://github.com/hhansi/embed2detect
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conducted, and its findings were reported along with a discussion on heuris-

tics behind parameter selection (Section 4.2.3). To compare the overall per-

formance of Embed2Detect, we used three recently proposed event detection

methods from different competitive areas, and the obtained results are sum-

marised in Section 4.2.4. Furthermore, a comprehensive evaluation on the

scalability of Embed2Detect is available in Section 4.2.5. Finally, we conducted

some experiments to suggest possible extensions to other word embedding

models and the obtained results and suggestions are summarised in Section

4.2.6. We used a Common KVM CPU @ 2.40GHz with 16GB RAM for all ex-

periments.

4.2.1 Aggregation Methods

As described in Section 4.1.3, to measure the temporal data change between

two consecutive time windows, Embed2Detect needs to aggregate the values

computed using cluster change calculation (Section 4.1.3.1) and vocabulary

change calculation (Section 4.1.3.3). For this aggregation, we experimented the

techniques: average and maximum considering their simplicity and common

usage. The obtained results are summarised in Table 4.1.

TABLE 4.1: Evaluation results: Time Window Recall (R), Precision (P) and F1 for dif-
ferent aggregation methods.

Aggregation
Method

MUNLIV BrexitVote

R P F1 R P F1

Average 0.6957 0.6154 0.6531 1.0000 0.7273 0.8421
Maximum 0.6522 0.6522 0.6522 1.0000 0.8000 0.8889

According to the results, for the MUNLIV dataset, there is a slight change

in F1 between average and maximum calculations. However, we can see bal-

anced values for both recall and precision with maximum aggregation. In
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BrexitVote, there is a clear change in F1 with a higher value, using the max-

imum calculation. Based on these observations, we use maximum calculation

as the default aggregation method of Embed2Detect.

4.2.2 Text Pre-processing

Even though pre-processing steps help to improve effectiveness, they can

strongly restrict the method’s generalisability across different domains and

languages. For example, if any language-specific technique is used to pre-

process the data, it will limit the method’s scope only to that particular lan-

guage. Therefore, we believe it is worth experimenting with the impact of text

pre-processing on Embed2Detect. To maintain the simplicity of our method,

we only suggest two pre-processing techniques, the removal of punctuation

marks and stopwords. The evaluation results obtained with different config-

urations of these techniques are reported in Table 4.2. We only used cluster

change calculation for these experiments because it has a high influence from

token changes.

TABLE 4.2: Evaluation results: Time Window Recall (R), Precision (P) and F1 with
different pre-processing techniques.

Pre-processing
Steps

MUNLIV BrexitVote

R P F1 R P F1

None 0.8261 0.4634 0.5938 1.0000 0.8000 0.8889
Punctuation removal 0.9130 0.4565 0.6087 1.0000 0.7273 0.8421
Punctuation and
stopword removal

0.6957 0.5517 0.6154 1.0000 0.8000 0.8889

According to the obtained results, the tokens without punctuation and

stopwords receive the highest F1 values for both sport and political datasets.

Even though there is an improvement in the performance with pre-processing,
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these results show that we can also obtain good measures without pre-

processing. This ability will be helpful in situations where we cannot in-

tegrate direct pre-processing mechanisms such as identifying events in low-

resource language or multilingual datasets. However, we used the tokens

without punctuation and stopwords to conduct the following experiments be-

cause both datasets used in this research are mainly written in English.

4.2.3 Parameter Sensitivity Analysis

Embed2Detect requires hyper-parameters during word embedding learning

and event window identification. These parameters should mainly be picked

considering the characteristics of the targeted domain and user preferences

on resulting events. This section describes the impact of different hyper-

parameter settings and heuristics behind their selections.

4.2.3.1 Word Embedding Learning

Word embedding learning requires three hyper-parameters: minimum word

count, context size and vector dimension. Given a minimum word count, the

learning phase ignores all tokens with less total frequency than the count. The

context size defines the number of words around the word of interest to con-

sider during the learning process. Vector dimension represents the number of

neurons in the hidden layer, which also will be used as the dimensionality of

word embeddings. Considering the limited amount of data available in a time

window, we fixed the minimum word count to 1. Nevertheless, we analysed

how the accuracy and efficiency of event detection vary with different vector

dimensions and context sizes. To evaluate the accuracy, Time Window F1 was

used, and results obtained for both datasets are visualised in Figure 4.3. Ac-

cording to the results, there is no significant change in F1 with varying vector
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dimensions and context sizes. But, there is a gradual increase in execution time

when both hyper-parameter values are increased.

(A) F1 with different vector dimensions
(with context size=5)

(B) F1 with different context sizes (with vec-
tor dimension=100)

(C) Time taken with different vector dimen-
sions (with context size=5)

(D) Time taken with different context sizes
(with vector dimension=100)

FIGURE 4.3: Analysis of Time Window F1 and execution time with different values for
word embedding learning parameters; vector dimension and context size (Average

time to learn word embeddings per window of both datasets is reported.)

Mikolov et al. (2013a) found that the accuracy of text-similarity predic-

tions can be improved by training high-dimensional word vectors on a large

amount of data. Similarly, a larger context size can result in higher accuracy in

text-similarity predictions due to the provision of more training data (Li et al.,

2017b). However, these effects are not notably captured with event detection

(Figure 4.3). As a major reason for this, we can mention that event detection is
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less sensitive to the syntactical and semantical structure of the text than text-

similarity tasks. Particularly, it is less likely to have multiple meanings for a

word (e.g. ‘goal’) within a time window even though it could appear in differ-

ent contexts (e.g. context representing the winning team and the losing team).

Thus, for event detection, it is sufficient to capture the general meaning of a

word within a corpus rather than capturing its different contextual representa-

tions following fine granular text structures. However, it is crucial to capture

such fine granular details in text for text-similarity tasks as they highly rely on

underlying linguistics. Also, since we train separate models per time window,

each model has comparatively small datasets to learn the embedding space.

Therefore, even though the vector dimensions are increased, no sufficient data

will be provided to optimise the model properly.

Following our analysis and previous research findings, we fix the vector

dimension to 100 and the context size to 5. The decision on dimensionality

is mainly influenced by the training data sizes and learning time to support

real-time processing. The context size is chosen considering the requirement

of providing sufficient knowledge for learning and the execution time.

4.2.3.2 Event Window Identification

Event window identification requires two hyper-parameters: change thresh-

old (α) and frequency threshold (β) as described in Section 4.1.3. α is used to

indicate the significance level of targeted events, and β is used as a frequency

threshold to remove the outlier tokens. Both of these hyper-parameters need to

be set by the user or domain expert, considering the characteristics associated

with the selected domain or filtered data stream.

Embed2Detect identifies event windows using overall textual change be-

tween time windows. High overall changes indicate the occurrences of major
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events, and low changes indicate minor events. α defines the threshold used

for this event filtering. To provide a clearer insight, we plotted the variations of

temporal overall change values of MUNLIV and BrexitVote datasets in Figure

4.4 and 4.5. Additionally, we plotted the total tweet count of each window in

these graphs to highlight that the overall change-based measure is capable of

identifying events that do not make a notable change to the total tweet count.

As can be seen, the total tweet count changes can only capture major events

which make bursts. For comparison purposes, tweet counts are scaled down

using the min-max normalisation.

FIGURE 4.4: Overall change and tweet count variations over time windows - MUNLIV

FIGURE 4.5: Overall change and tweet count variations over time windows -
BrexitVote



Chapter 4. Embed2Detect: Event Window Identification 96

As can be seen in Figure 4.4, MUNLIV data have more fluctuations on over-

all change due to the rapid evolution in the sports domain. To do a deep anal-

ysis, at time window 15:40, a change of 0.269 and at 16:06, a change of 0.436 is

measured. Looking at other published media, at 15:40, a missed attempt, and

at 16:06, a goal is reported. Compared to the goal, a missed attempt is a minor

event in the sports domain, and overall change measure is capable of capturing

that distinction successfully. Following this ability, α allows end-users to filter

preferred events. For example, if α equals 0.2, both events missed attempt and

goal will be captured by Embed2Detect. However, if the α value is increased

to 0.3, only the goal will be captured among those two events. There was no

high number of fluctuations for the BrexitVote dataset (Figure 4.5) because the

political domain has a comparatively slow evolution than the sports domain.

Unlike with the MUNLIV dataset, this effect limits the overall change values

to a small range while increasing the sensitivity of α. Thus, a slight variation

of α (e.g. from 0.15 to 0.2) changes the capturing events.

These analyses indicate that it is infeasible to define a standard α value for

different domains as well as for a particular domain. This value needs to be

picked for different domains, mainly considering the data evolution. Within

a specific domain also, α may need to be varied according to personal pref-

erences on event importance. However, it can be chosen simply by using the

domain knowledge and analysing a few past time windows.

In addition to α, Embed2Detect requires β threshold to remove outlier to-

kens. All the tokens with less frequency than β, such as misspelt and uncom-

mon words, will be removed by the β threshold. The impact of different β val-

ues on the overall change measure is illustrated in Figure 4.6. As can be seen in

this plot, some event windows can be missed (e.g. time window 15:40 will not

be identified with β = 80) with high β values. Also, high β could unnecessar-

ily increase the overall change of some windows (e.g. overall change increase



Chapter 4. Embed2Detect: Event Window Identification 97

at time windows 16:40 and 17:06). The main reason for these behaviours is the

removal of tokens that are related to events or background discussions with a

high β value. Thus, the effectiveness of event detection decreases with increas-

ing β values, as shown in Figure 4.7.

FIGURE 4.6: Analysis on impact by different β values on overall temporal change

FIGURE 4.7: Analysis on F1 with different β values (with α=0.14)

Following the analyses of β, it is important to ensure that the selected β

value is sufficiently large only to remove outliers. Analysing the sport and po-

litical datasets, values less than or equal to 20 are appropriate for β. However,

similar to α, β also highly depends on domain-specific characteristics such as
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word usage and audience. Thus, we believe that β is also a hyper-parameter

that needs to be controlled by domain experts for effective event identification.

4.2.4 Overall Performance

In this section, we report the overall performance of Embed2Detect, compar-

ing it with several recently proposed methods. Since there is no specific dataset

to evaluate event detection performance, available methods cannot be directly

compared with each other to pick the best baseline method. Therefore, con-

sidering the requirements of event detection (Section 1.1.4) and available com-

petitive areas (Section 2.2), we selected three methods as baselines for compar-

isons. We mainly focused on methods’ accuracy, efficiency, and expandabil-

ity during this selection. We also covered different competitive areas, which

can be summarised as social aspect, word acceleration over frequency, unsu-

pervised learning (tensor decomposition and clustering), and segments over

uni-grams to strengthen the baselines. All of these methods process the whole

textual data in streams without considering only some keywords (e.g. hash-

tags) to identify temporal events, similar to our approach. More details on

selected baseline methods are as follows.

• MABED (Guille and Favre, 2015): MABED uses anomalous variations

in mention creation frequency and their magnitudes to detect events in

an offline manner. Since user mentions are links added intentionally to

connect a user with a discussion or dynamically during re-tweeting, their

anomalies are used to incorporate the social aspect of Twitter into event

detection. Given a data stream, MABED returns event spans with words.

Since we targeted identifying event windows (i.e. occurrences of events)

in this research, for comparisons, we assigned events detected by this

method into time windows based on the spans’ start times. If a window
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got at least one event, it is marked as an event window, and the non-

duplicate set of recognised event words is considered as the event words

of that window.

• TopicSketch (Xie et al., 2016): TopicSketch focuses on a sketch-based

topic model with tensor decomposition to detect events. It uses word

acceleration-based measures for building data sketches to provide the

ability to differentiate bursty topics (events) from general topics like car,

food, or music. Since events have the ability to encourage people to

discuss them intensively, acceleration is proposed with this method as

a good measure over frequency for event detection. Given a data stream,

TopicSketch returns event detected times and corresponding keywords.

We assigned them to time windows based on detection times (similar to

the scenario with MABED) to recognise event windows for the compari-

son.

• SEDTWik (Morabia et al., 2019): SEDTWik is an extension to Twevent

(Li et al., 2012) and targets identifying the text of events in a given cor-

pus with their newsworthiness. This method uses text statistics and user

diversity-based measures to calculate the burstiness of segments and

clusters bursty segments to identify events. Mainly, text segments are fo-

cused on in this research because they are more meaningful and specific

than uni-grams. Wikipedia page titles are used as a semantic resource

during segment extraction to preserve the informativeness of identified

segments. For our experiments, we applied this method to each time

window and marked a window as an event window if it has at least one

event with high newsworthiness than the defined threshold. All key-

words of the recognised events within a window are considered as the

event words of that window.
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The results obtained for MUNLIV and BrexitVote datasets using Em-

bed2Detect and baseline methods are summarised in Table 4.3 and 4.4. We

used time- and keyword-based metrics (Section 3.3) to measure the accuracy of

methods. We involved efficient computation techniques with parallel process-

ing to facilitate fast execution of Embed2Detect and used parallel processing

with eight workers to measure the reported execution times. For the baseline

methods, we used available implementations, which targeted sequential pro-

cessing. Both the total time taken to process the whole data stream and the

average time taken per time window are reported.

TABLE 4.3: Performance comparison of Embed2Detect with baseline methods for
MUNLIV. TW stands for Time Window and Average Time indicates the processing
time for a 2-minute time window. The best result is in bold and the best baseline re-

sult is in italics.

Method
TW

Recall
TW

Precision
TW
F1

Keyword
Recall

Execution Time (s)

Total Average

Embed2Detect 0.6522 0.6522 0.6522 0.8431 202 3.5439
MABED 0.4783 0.1930 0.2750 0.3478 168 2.9474
TopicSketch 0.6087 0.2456 0.3500 0.4000 25492 447.2281
SEDTWik 0.6522 0.2679 0.3797 0.3857 1290 22.6316

TABLE 4.4: Performance comparison of Embed2Detect with baseline methods for
BrexitVote. TW stands for Time Window and Average Time indicates the process-
ing time for a 30-minute time window. The best result is in bold and the best baseline

result is in italics.

Method
TW

Recall
TW

Precision
TW
F1

Keyword
Recall

Execution Time (s)

Total Average

Embed2Detect 1.0000 0.8000 0.8889 0.9846 310 28.1818
MABED 0.6250 0.4545 0.5263 0.4032 532 48.3636
TopicSketch 0.5000 0.3636 0.4211 0.2540 15887 1444.2727
SEDTWik 0.7500 0.5000 0.6000 0.4262 702 63.8182

According to the results, Embed2Detect outperformed all the baseline

methods returning 27.25% and 28.89% higher Time Window F1 values than
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the best baseline method for MUNLIV and BrexitVote datasets, respectively.

These results prove that our method has the ability to detect event windows

more accurately in diverse domains, specifically, sports and politics, compared

to the available methods. Also, the comparatively high Keyword Recall val-

ues resulted by Embed2Detect further emphasise the importance of involving

syntax and semantics for event detection. According to the Time Window Re-

call and Precision measures, all methods returned higher recall than precision.

When preparing the GT events based on published/news reports, there is a

possibility to miss some important events which are only discussed within the

social media platform (Aiello et al., 2013; Morabia et al., 2019). Due to that,

some actual events can be labelled as false positives, reducing the precision

value. Considering Time Window Recall, most methods (except TopicSketch)

resulted in higher values with BrexitVote than the MUNLIV dataset. Compar-

ing the GT of the two datasets, BrexitVote has 72.73% of event occurred time

windows while MUNLIV has only 40.35%. Due to this bias, high recall can

result with the BrexitVote dataset. Theoretically, such bias is captured because

of the political domain’s slow evolution and less dynamicity.

Following the execution times, for MUNLIV, MABED took 168 seconds,

and Embed2Detect took 34 seconds more than MABED. However, for Brex-

itVote, Embed2Detect completed the execution in 310 seconds – 222 seconds

faster than MABED. In terms of average execution time per window, Em-

bed2Detect took nearly 3.54 seconds to process a 2-minute window in the

MUNLIV dataset (≈ 1, 724 tweets) and 28.18 seconds to process a 30-minute

window in the BrexitVote dataset (≈ 14, 542 tweets). This time measures fur-

ther prove that Embed2Detect is sufficiently fast for (near) real-time event de-

tection. A detailed analysis of intermediate processing time of Embed2Detect

with sequential and parallel processing is reported in Appendix A.1.
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TABLE 4.5: Best hyper-parameter settings

Method
Hyper-parameters

MUNLIV BrexitVote

Embed2Detect α = 0.23
β = 20

α = 0.16
β = 10

MABED k = 150
p = 20
θ = 0.7
σ = 0.5

k = 150
p = 20
θ = 0.6
σ = 0.5

TopicSketch detection threshold= 60
B = 5000

detection threshold= 35
B = 5000

SEDTWik M = 2
k = 6
τ = 0.7

M = 2
k = 6
τ = 0.2

Hyper-parameters: Since all methods’ performance depends on their hyper-

parameter configurations, we used a common strategy to identify optimal

settings to generate comparable results. We evaluated all possible hyper-

parameter settings for each method and selected the best setting with the

highest Time Window F1 for comparisons. Table 4.5 summarises the optimal

hyper-parameter values obtained. For Embed2Detect, we identified all pos-

sible values for α and β, and experimented with all of their combinations to

get the best results. For MABED, we optimised the number of events (k), the

maximum number of words describing each event (p), weight threshold for

selecting relevant words (θ) and overlap threshold (σ). For k and p, starting

from a low value, we kept increasing them gradually until the maximum F1,

which reduces with further increasing parameter values, is reached. Similarly,

for θ and σ, we experimented with the values around the original values re-

ported in initial experiments (Guille and Favre, 2015). For TopicSketch, we de-

cided to optimise only the most critical hyper-parameter due to the high time

consumption of this method. Thus, while keeping default values for other
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parameters, including the bucket size (B), we gradually increased values for

detection threshold to obtain the best F1 value. For SEDTWik, we optimised the

number of subwindows (M), number of cluster neighbours (k) and newswor-

thiness threshold (τ). Different values for M are picked considering the time

window lengths assigned to each dataset. For k and τ, gradually increasing

values were tested to obtain the highest F1 starting from a low value.

4.2.5 Scalability Evaluation

Processing data belonging to a time window within a sufficiently short period

is a crucial requirement of Embed2Detect. Thus, we measured the execution

time per window with increasing data size to evaluate the scalability of Em-

bed2Detect. The obtained results are plotted in Figure 4.8. As the data size

per window (e.g. 1-minute window), 5,000 to 25,000 tweets were considered.

Focusing on a filtered data stream, the upper limit of 25,000 tweets per minute

is reasonable to depict the real scenario.

FIGURE 4.8: Execution time on different data sizes with sequential and parallel pro-
cessing of Embed2Detect

According to the results, the sequential version of Embed2Detect took

nearly 10 seconds to process 5,000 tweets, and the time was increased to 41
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seconds to process 25,000 tweets. However, the parallel version with eight

workers reduced the processing time to 6 seconds for 5,000 tweets and 19 sec-

onds for 25,000 tweets. Also, we noticed that for both implementations, se-

quential and parallel execution times grow linearly with data size. Due to the

linear growth of execution time, we can further guarantee that Embed2Detect

can also handle data bursts effectively.

4.2.6 Extension to Other Word Embeddings

Different word embedding models can be used with Embed2Detect instead

of our default selection, Skip-gram. Also, we designed the word embedding

learner as a separate component to support the easy integration of different

embedding models. However, it is important to consider the linguistic cover-

age, learning time and associated complexities while selecting an embedding

model to satisfy the accuracy and efficiency required for real-time event de-

tection. In this section, we discuss the appropriateness of different recently-

proposed architectures for word embedding generation in Embed2Detect.

For this analysis, we used fastText, BERT and DistilBERT models. FastText

is an improved version of the Skip-gram model, which considers subword in-

formation while learning word representations (Bojanowski et al., 2017). Both

BERT and DistilBERT are transformer-based models, which are further dis-

cussed in Section 6.4.1. According to the recent advances in NLP, transformer-

based models gained success in many areas such as language generation (De-

vlin et al., 2019), question answering (Yang et al., 2019b), named entity recog-

nition (Liang et al., 2020) and machine translation (Ranasinghe et al., 2020).

Among different models, BERT (Devlin et al., 2019) attracted a wide attention

from the community recently. This model is designed to train from unlabelled

text using masked language modelling (MLM) and next sentence prediction
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(NSP) objectives and fine-tune for a downstream task as a solution for the high

data requirement by deep neural networks. DistilBERT is a distilled version of

BERT which is light and fast (Sanh et al., 2019).

TABLE 4.6: Time taken to learn embeddings by different architectures

Time Window
Length

Tweet Count
Embedding Learning Time (s)

Skip-gram fastText BERT DistilBERT

2 min.(120 s) 1705 1 12 646 433
30 min.(1800 s) 20133 18 41 21442 11699

Initially, time taken by different architectures to learn word embeddings is

measured, and the obtained results are summarised in Table 4.6. Both Skip-

gram and fastText models were trained from scratch using Twitter data as sug-

gested by this research. Following the idea presented with transformers, for

BERT and DistilBERT, we retrained available models for the MLM objective

using our data. As the pre-trained BERT model, bert-base-uncased and Distil-

BERT model, distilbert-base-uncased released with HuggingFace’s Transformers

library4 (Wolf et al., 2020) were selected. According to the obtained results,

classic word embedding models (e.g. Skip-gram and fastText) learn the repre-

sentations faster than transformer-based models (e.g. BERT and DistilBERT).

Comparing fastText and Skip-gram, fastText took more time because it pro-

cesses subword information. But, the incorporation of subwords allows this

model to capture connections between modified words. For example, con-

sider the following goal-related words found within the top 20 words with

high cluster change during a goal score:

Skip-gram- goal, goalll, rashyyy, scores

fastText- goalll, goooaaalll, rashford, rashyyy, @marcusrashford, scored, scores

4HuggingFace models are available on https://huggingface.co/models

https://huggingface.co/models
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As can be seen, fastText captures more modified words than Skip-gram. How-

ever, we could not run a complete evaluation using fastText embeddings dur-

ing this research because it requires a manual process since GT keywords only

contain the words with conventional (correct) spelling.

Transformer-based models took more time to learn embeddings due to

their complex architecture and contextual learning. DistilBERT is faster than

BERT; however, its learning time is also not fast enough for real-time process-

ing as it exceeds the tweet generation time. For example, to learn from tweets

posted during a 2-minute time window, it took approximately 7.2 minutes. If

this model can be further distilled, there is a possibility to achieve the required

efficiency to become suitable for real-time processing. However, further distil-

lation can reduce the language understanding capability of the model as there

is a 3% reduction in DistilBERT compared to BERT (Sanh et al., 2019).

According to recent literature, transformer-based models performed well

on many NLP-related tasks, mainly due to their ability in capturing contex-

tual word senses. BERT is capable of generating different embeddings for the

same word depending on its surrounding context. In other words, the main

idea behind BERT is capturing spatial changes of words. From the perspective

of processing formally written natural language, this is a very useful feature.

However, language is mostly informal in social media, and for event detection

using social media text, temporal changes of words need to be more focused.

Also, considering a particular time window of a filtered data stream, it is rarely

possible to have a word with two totally different contextual meanings. There-

fore, the context awareness associated with BERT is not much useful for event

detection.

Further, contextualised word embeddings could incorporate an additional

complexity to the event detection method. For example, during a goal-scoring

of a football match, the word ‘goal’ will be expressed by the audience of the
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winning team and losing team differently. Even though the surrounding con-

texts are varied, the meaning of the word ‘goal’ targeted by event detection

is a constant. For such a scenario, BERT will return different embeddings for

‘goal’ as illustrated in Figure 4.9. Having multiple embeddings for monosemy

words can confuse the clusters and exponentially increase the computational

complexity of the method. To overcome these issues, multiple embeddings of

a word can be combined using an aggregation method, but it breaks the main

objective of contextualised word embeddings. Therefore, we believe it is less

appropriate to aggregate context-aware embeddings. Following these find-

ings, we can further emphasise that contextualised word embedding models

such as BERT are less suitable to be used with Embed2Detect, due to their

complexities which are not useful for event detection.

FIGURE 4.9: t-SNE visualisation of sample word embeddings obtained by a bert-base-
uncased model retrained on first goal scored time window of MUNLIV (16:06-16:08)
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4.3 Conclusions

In this chapter, we proposed Embed2Detect, a novel method to identify event

occurred time windows in social media data streams. Embed2Detect mainly

combines the characteristics in word embeddings and dendrograms and also

introduces a new text similarity measure named Dendrogram Level (DL) Similar-

ity to capture cluster similarity of tokens. Usage of self-learned word embed-

dings allows our method to capture linguistical features (syntax and seman-

tics) in the targeted data and makes it expandable to any domain, language or

platform, unlike the majority of available methods, which are limited to spe-

cific languages (e.g. English) and platforms (e.g. Twitter). Also, the inclusion

of semantics allows understanding of the relationships between tokens. Since

social media text contains different words and word sequences which describe

the same idea due to vast and diverse user bases, knowing the relationships

between words, differently described similar ideas and their connections can

be extracted effectively. Thus, our approach is also capable of reducing the in-

formation loss experienced in previous approaches due to the lack of semantic

involvement.

According to the experiment results, Embed2Detect notably outperformed

several recently proposed methods from different competitive areas. We in-

volved various metrics, Time Window Recall, Precision, F1 and Keyword Re-

call, to evaluate the methods’ accuracy comprehensively. Also, we considered

data from two diverse domains (i.e. sports and politics), which have different

word usages, audiences and evolution rates, targeting to assess the expand-

ability of methods. For both domains, Embed2Detect returned promising re-

sults with comparatively high F1 measures (>65%), emphasising its accuracy
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and expandability. Also, we focused on methods’ efficiency during the eval-

uations since event detection in social media is a time-critical operation. Em-

bed2Detect completed processing both datasets within short periods, proving

its appropriateness for (near) real-time processing. Furthermore, our analyses

confirmed Embed2Detect’s ability to handle increasing data volumes success-

fully, demonstrating its scalability.

More advanced embedding models can be used with the word embedding

learner as extensions to Embed2Detect. However, considering the learning

time and associated complexities, it is more suitable to use classic embedding

models such as Skip-gram than advanced models such as BERT to preserve

the method efficiency. In future work, we hope to analyse further the impact

of subword and character-based classic word embedding models that can cap-

ture the connections between informal or modified text and their formal ver-

sions. Such an approach would be helpful in understanding the informal text,

which is common in the context of social media. Also, it would be interest-

ing to analyse the method’s performance on multilingual data to see its ability

to detect events in such a setting. Since social media allow posting in differ-

ent languages, information from different people groups can be combined to

detect events with multilingual processing.

Following the details on coarse-grained level event detection in social me-

dia in this chapter, we report our approach for fine-grained level event detec-

tion in the next chapter. At the coarse-grained level, we mainly targeted noti-

fying users about events by detecting event windows using Embed2Detect. At

the fine-grained level, we target extracting textual details of co-occurred events

within event windows to provide more detailed quick updates to users, as de-

scribed in Chapter 5.



110

Chapter 5

WhatsUp: Fine-grained Level –

Co-occurring Event Identification

In Chapter 4, we proposed Embed2Detect, a novel method to notify users about

event occurrences in time by identifying event occurred time windows or

event windows, covering the coarse-grained level of social media event detec-

tion. Upon the notification, users can take necessary actions, such as manual

data analysis, to acquire the required event information. However, to automate

the complete event detection process, it is important to develop approaches for

fine-grained level detection, which extracts event-described text segments fol-

lowing the coarse-grained level detection. As the fine-grained level of social

media event detection, we target identifying the text of co-occurred events in

event windows. Since multiple events can happen during an event window,

co-occurred events are focused. Following this idea, fulfilling the fine-grained

level requirement of social media event detection, in this chapter, we propose

a novel method named WhatsUp to identify the text of co-occurred events in

event windows, allowing the concise and quick acquisition of information at

events. The outputs targeted by Embed2Detect and WhatsUp are illustrated in

Figure 5.1 to clearly contrast the coarse- and fine-grained level event detection

in social media focused by this research. The findings reported in this chapter
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have been published in (Hettiarachchi et al., 2023b).

(A) Embed2Detect’s output (B) WhatsUp’s output

FIGURE 5.1: Embed2Detect vs WhatsUp

Considering the limitations in available approaches (Section 2.2.5), we

mainly targeted statistics and linguistics in the text to extract event details

while designing our approach. To identify event time, we utilised the idea

proposed with Embed2Detect, considering its promising results (Chapter 4).

In summary, Embed2Detect uses temporal variations of self-learned word em-

beddings and hierarchical clusters to detect event windows. Following this

idea, we propose different strategies which improve its performance along

with WhatsUp, including an advanced text similarity measure named Local

Dendrogram Level (LDL) Similarity and a similarity change calculation tech-

nique named Positive Similarity Change. To extract fine-grained event text, we

propose a novel clustering algorithm that identifies the co-occurred events

in each event window. For clustering, we involve linguistical features cap-

tured using self-learned word embeddings and their hierarchical relationships

in dendrograms and statistical features captured using token frequency-based

measures. In summary, WhatsUp considers all the important features in tex-

tual data: statistics and linguistics (syntax and semantics) to detect event time

and text of co-occurred events effectively. Also, using self-learned word em-

beddings allows capturing the linguistics specific to the underlying corpus.

Further, we preserve the expandability of our approach by only using unsu-

pervised learning techniques independent of domain, language and platform.
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We evaluated WhatsUp in two diverse domains using a newly designed com-

prehensive set of metrics. According to the results, our method outperformed

several recently proposed methods proving its effectiveness.

To the best of our knowledge, WhatsUp is the first method that uses under-

lying linguistics to detect both temporal and textual event details together. In

summary, the main contributions of this chapter are as follows.

1. We propose a novel method named WhatsUp which detects both tempo-

ral (event occurred time windows) and fine-grained textual (co-occurred

event word groups within event windows) event details from social me-

dia data streams in (near) real-time, considering statistics and linguistics

of underlying data.

2. We introduce a localised version of Dendrogram Level (DL) Similarity

named Local Dendrogram Level (LDL) Similarity, a similarity change calcu-

lation technique named Positive Similarity Change and a novel clustering

approach along with our approach.

3. We utilise self-learned word embeddings and unsupervised learning

techniques in WhatsUp to develop a more robust event resolution ap-

proach, overcoming the limitations in previous methods, specifically, the

less semantic involvement, inability to capture linguistics specific to the

underlying data and less expandability to different domains, languages

and platforms.

4. We evaluate WhatsUp on recent real datasets from two diverse domains,

sports and politics, using a comprehensive set of metrics that we de-

signed to assess both temporal and textual details of detected events

and compare the performance with several recently proposed compet-

itive methods emphasising its effectiveness.
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5. We release the implementation of WhatsUp as an open-source project

to support applications and research in the area of social media event

detection1.

The rest of this chapter is organised as follows. Section 5.1 introduces the

proposed approach: WhatsUp for fine-grained event resolution in social me-

dia. Section 5.2 comprehensively describes the conducted experiments and

obtained results. Finally, Section 5.3 concludes the chapter with a discussion

and future research directions.

5.1 Methodology - WhatsUp

As WhatsUp, we propose a novel event detection approach to recognise both

temporal (event occurred time windows) and fine-grained textual (co-occurred

event word groups within event windows) event details. Our approach has

three main steps: (1) data processing, (2) event occurred time window identifi-

cation and (3) event cluster detection as illustrated in Figure 5.2. The first step

separates the data stream into time windows and per window, learns word

embeddings and extracts statistical information. The next step identifies the

event occurred time windows. If any window is identified as an event win-

dow, the final step detects co-occurred event clusters in that window. For both

event window and cluster detection, we use temporal changes in linguistics

(syntax and semantics) captured by self-learned word embeddings and their

hierarchical relationships and statistics. To the best of our knowledge, both lin-

guistical and statistical features have not been involved in previous research to

identify event time and text of co-occurred events together. Each step is fur-

ther described in Sections 5.1.1-5.1.3. To explain the concepts used to develop

1WhatsUp implementation is publicly available on https://github.com/HHansi/WhatsUp

https://github.com/HHansi/WhatsUp
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the methodology, we use sample data from the MUNLIV dataset (Section 3.2)

only considering the simplicity and cohesion of events in this domain.

FIGURE 5.2: Overview of the proposed method – WhatsUp

5.1.1 Data Processing

Under data processing, we initially separate the incoming data stream into

windows of non-overlapping fixed periods using stream chunker. Following

the findings during Embed2Detect developments (Section 4.1.1), we use a slid-

ing window model with a fixed time frame for this data separation. Especially,

the ability to adjust the time window length in this model is advantageous for

social media processing as it can be adjusted depending on the events’ evolu-

tion in the targeted domain.

Then, we extract each window’s linguistical and statistical details to use

with event window identification and cluster detection. To capture linguis-

tics, embedding models are trained per window using the data in that win-

dow. This training allows capturing expressions and characteristics unique to

the data in each window. We mainly focused on semantic accuracy and ef-

ficiency appropriate for real-time processing, while selecting an algorithm to
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learn embeddings. Considering the semantic accuracy, transformer-based em-

beddings (e.g. BERT, XLM-R) showed improved performance in many NLP

applications recently (Liang et al., 2020; Ranasinghe et al., 2020). However,

they are not suitable for real-time processing due to the long training time and

additional computational complexities introduced for event detection by con-

textual word senses, as we discussed in Section 4.2.6. Therefore, we decided

to use Word2Vec models (Mikolov et al., 2013a) for WhatsUp also, considering

their ability to learn effective embeddings faster. Among CBOW and Skip-

gram architectures, we selected the Skip-gram model considering its high se-

mantic accuracy (Section 3.4.1). However, we facilitate easy integration of any

embedding model that fulfils the targeted requirements (i.e. good semantic

accuracy and efficient learning) by developing the word embedding learner

as a separate component. As statistical details, token frequencies at each time

window are calculated.

5.1.2 Event Window Identification

We utilise the idea proposed with Embed2Detect system in Chapter 4 to iden-

tify event windows. Primarily, a time window Wt is marked as an event win-

dow if its temporal textual change compared to the previous time window

Wt−1 is above a predefined threshold (α). The final change is calculated by

aggregating two measures based on the temporal variations in token clusters

and vocabularies, capturing underlying linguistics and statistics. Any value

between 0 and 1 can be picked for α, as normalised values are involved in

change calculation, and it mainly defines the significance of the events targeted

by the user. The higher the value, the more significance it has. The overall idea

of event window identification is summarised in Algorithm 1 in Chapter 4. It
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takes a chronological stream of time windows (at least two consecutive win-

dows Wt−1, Wt) as the input and returns the windows which are recognised

as event windows. Highlighting some limitations recognised in this approach,

along with WhatsUp, we propose different strategies to calculate token cluster

similarity, temporal similarity change and vocabulary change which improve

the performance of event window identification. The proposed improvements

to this algorithm are further described in Section 5.1.2.1-5.1.2.3.

Before moving into the calculations, the text needs to be pre-processed for

effective results and efficient processing. Similar to Embed2Detect, under pre-

processing, we mainly targeted removing the uninformative tokens using gen-

eral procedures which are not strictly dependent on domains or languages.

Punctuation marks and stopwords in the text are removed as uninformative

tokens. Also, the tokens with low frequency than a predefined threshold ( β )

are removed as outlier tokens.

5.1.2.1 Cluster Similarity Calculation

To compute cluster change between consecutive time windows Wt−1 and Wt,

initially, we need to calculate the cluster similarity between tokens in each win-

dow. With Embed2Detect, we introduced a new measure named Dendrogram

Level (DL) similarity to calculate cluster similarity. As the name depicts, this

measure is mainly based on the structural relationships of a dendrogram, and

we described more details in Section 4.1.3.2. To calculate DL similarities, we re-

quire to generate dendrograms per window. We applied hierarchical agglom-

erative clustering (HAC) to self-learned word embeddings of each window to

generate the dendrograms as mentioned in Section 4.1.3.1.

The main limitation we noticed in DL similarity is it can be distorted when

noise is added to the dendrogram. To illustrate this effect, we generated two
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(A) Dendrogram 1 (B) Dendrogram 2

FIGURE 5.3: Sample dendrograms (y-coordinate denotes the cosine distance and x-
coordinate denotes the selected words)

sample dendrograms on data during the first goal of MUNLIV using different

word sets. For dendrogram 1 (Figure 5.3a), we only considered the keywords

of events: Firmino’s attempt saved by Gea and the first goal for MUFC by

Rashford. To generate dendrogram 2 (Figure 5.3b), we used more additional

words such as ‘good’, ‘go’, ‘ynwa’, ‘game’ and ‘back’ which are not event-related

directly to depict a near-real scenario. As can be seen, the addition of non-

relevant words changed the whole structure of the dendrogram, increasing

the maximum number of levels which we use as the denominator while cal-

culating DL similarity (Equation 4.3). In measures, dendrogram 1 has 6 (using

path r → goal) and dendrogram 2 has 10 (using path r → game) maximum

levels between root and leaf nodes. To see the impact on DL similarity by such

structural changes to the dendrogram, we selected the word ‘goal’ and paired

it with the player name who scored the goal ‘rashford’ and some other player

name ‘firmino’. The DL similarity values calculated for both word pairs using

dendrogram 1 and 2 are available in Table 5.1. Using dendrogram 1, we re-

ceived a high similarity for the closer word pair (‘rashford’-‘goal’) as expected.

However, the values calculated using dendrogram 2 have a low similarity for
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that pair, even if the tokens are located very closely. This happened due to the

increment of levels with the noise added to the dendrogram 2 by non-event

words. In reality, it is infeasible to filter event-related words beforehand to

generate less noisy dendrograms, considering that automated event detection

is the aim of the methodology. To overcome this limitation, we propose a lo-

calised version of DL similarity named Local DL (LDL) similarity.

TABLE 5.1: DL similarity values calculated using Dendrogram 1 and 2 (Figure 5.3)

Word Pair
DL Similarity

Dendrogram 1 Dendrogram 2

rashford-goal 3/6 = 0.5 4/10 = 0.4
firmino-goal 1/6 = 0.167 1/10 = 0.1

Local Dendrogram Level (LDL) similarity: The main difference in LDL sim-

ilarity compared to DL similarity is that it only considers the levels between

the root and targeted word pair to calculate the denominator as in Equation

5.1. It prevents unnecessary normalisation of the value due to a rare long path

in the dendrogram.

LDL Similarity(wi,wj)
=

dl(wi,wj)

max(dlr→x : x ∈ {wi, wj}) + 1
(5.1)

Using LDL similarity, we will receive the similarities in Table 5.2 for the above-

considered word pairs. With dendrogram 1, we consider the path r → goal to

calculate the denominator values of both pairs as it has the maximum number

of levels among the targeted words. Similarly, with dendrogram 2, we con-

sider the path r → goal for ‘rashford’-‘goal’ and r → f irmino for ‘firmino’-‘goal’.

According to the obtained values, unlike DL similarity, LDL similarity is ca-

pable of returning high values for closely located word pairs using both clean
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and noisy dendrograms, emphasising its effectiveness. Therefore we use LDL

similarity to calculate the cluster similarity between words in this research.

TABLE 5.2: LDL similarity values calculated using Dendrogram 1 and 2 (Figure 5.3)

Word Pair
LDL Similarity

Dendrogram 1 Dendrogram 2

rashford-goal 3/6 = 0.5 4/6 = 0.667
firmino-goal 1/6 = 0.167 1/7 = 0.143

In summary, DL and LDL similarities compute normalised text similarity

values within the range of 0–1, based on structural relationships of a dendro-

gram. Thus, these measures are relative to the dendrogram or underlying cor-

pus rather than absolute, preserving symmetricity. They intend to result in a

value closer to 1 if a word pair is similar (or closer) and a value closer to 0 if

the pair is distant. However, DL similarity could fail to produce high values

for closer words if the dendrogram is distorted with noise, and LDL similarity

is proposed to overcome this limitation. Also, even though we only focus on

similarities in this research following its requirements, both metrics can con-

vert to distance measures, similar to cosine similarity, by taking 1− (L)DL Sim.

This way, the number of non-shared levels between the word pair becomes

prominent, resulting in the difference/distance between words. Contrary to

similarity measures, values closer to 1 will represent high distances in distance

calculations.

After calculating token similarities, we format them into a matrix to sup-

port efficient future computations. The similarity matrix is a square matrix of

size N × N where N is the number of tokens in the vocabulary. Each cell in

the matrix matrix[i, j] holds the cluster similarity between tokens wi and wj (or

LDL sim.(wi,wj)
). To support matrix comparisons over consecutive time win-

dows, we use one vocabulary to generate consecutive matrices matrixt−1 and



Chapter 5. WhatsUp: Co-occurring Event Identification 120

matrixt. Since the change at Wt needs to be calculated compared to the previ-

ous window Wt−1 to detect the event occurrences, pre-processed vocabulary

at t vocabt is considered as this common vocabulary during matrix generation.

Following this idea, Embed2Detect uses common vocabularies (or vocabt) to

generate dendrograms in consecutive time windows. We use the term relative

dendrograms to refer to such dendrograms.

Relative Dendrograms: To generate relative dendrograms for Wt and Wt−1,

pre-processed vocabulary at t vocabt is considered as a common vocabulary.

Dendrogram for Wt is generated using vocabt and word embeddings learned

for Wt. Dendrogram for Wt−1 is generated using vocabt and word embeddings

learned for Wt−1 ignoring the words in the vocabulary which are not found in

the vector space Vt−1.

Usage of a common vocabulary can negatively affect the similarity values

if vocabt contains tokens that have a very low frequency at Wt−1. If the embed-

ding model has not seen sufficient occurrences, it may result in vectors that

are not properly learned for those tokens. This could affect the dendrogram

structure and result in incorrect similarity values. A few sample similarity

values calculated using relative dendrograms on MUNLIV data are shown in

Table 5.3. As illustrated in these examples, relative dendrograms return high

similarities for word pairs which are rarely used during time windows. Even

though the selected word pairs are emerging at t according to the ground truth,

cluster similarity change between Wt and Wt−1 cannot capture that state using

the resulting negative (‘gini’-‘movement’: −0.2807) and small positive (‘goal’-

‘1-0’: 0.1308) values. To overcome this issue, we propose to use non-relative

dendrograms.
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TABLE 5.3: Sample LDL similarity values using relative dendrograms

wi wj ft−1: wi-wj ft: wi-wj LDL sim.t−1 LDL sim.t

gini movement 10-9 40-37 0.9474 0.6667
goal 1-0 16-2 339-244 0.7692 0.9000

Non-Relative Dendrograms: Non-relative dendrogram generation does not

use a common vocabulary as relative dendrograms. Dendrograms for Wt−1

and Wt will be generated using pre-processed vocabularies vocabt−1 and

vocabt, respectively. By using the preprocessed vocabularies of each window,

the involvement of low-frequent/rare words for dendrogram generation can

be eliminated, overcoming the issue mentioned above with relative dendro-

grams. If non-relative dendrograms are used to calculate the similarities be-

tween the word pairs in Table 5.3, due to low frequency, ‘movement’ and ‘1-0’

will not be included in vocabt−1 and similarity between both word pairs at

Wt−1 will be zero. For Wt, the same similarities will be calculated, and cluster

similarity change of both pairs will be large positive values (‘gini’-‘movement’:

0.6667. ‘goal’-‘1-0’: 0.9) capable of capturing the emerging state of words.

In summary, for WhatsUp, we use LDL similarity calculated on non-

relative dendrograms to measure the cluster similarity of tokens overcoming

some major limitations recognised with DL similarity and relative dendro-

grams.

5.1.2.2 Similarity Change Calculation

After calculating cluster similarities of tokens at each time window, the tem-

poral change of similarities needs to be measured. The change calculation is

mainly based on the diffMatrix which holds the token similarity differences be-

tween Wt and Wt−1 (matrixt − matrixt−1). With Embed2Detect, we used the
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Absolute (Abs.) Similarity Change to calculate the overall similarity change (Sec-

tion 4.1.3.1).

The idea of overall similarity change calculation is to differentiate event

and non-event windows by recognising the high changes in event windows.

An event can happen suddenly introducing all the event keywords or make a

sudden change to an ongoing discussion introducing a few new keywords to

the data stream (Adedoyin-Olowe et al., 2016). If all the keywords are newly

introduced when an event occurs, they will show a positive cluster change

compared to the previous time window. If some high impact happened to an

ongoing discussion by an event, newly introduced words would become closer

to already existing words weakening some connections they had previously.

Both positive and negative similarity changes should be expected in such a

situation. Also, during a time window when no event happened, interest in

an ongoing discussion can fade, resulting in some negative cluster changes. If

the absolute changes are considered, negative and positive values will be simi-

larly treated even though they hold valuable details regarding temporal event

evolution. This issue can be simply solved by considering the non-absolute

(Non-abs.) changes. But, the high availability of general discussions in social

media data can unnecessarily lower the overall non-absolute change. Consid-

ering all these facts and the requirement of identifying emerging events, we

propose a new calculation named Positive Similarity Change in this research as

described below.

Positive (Pos.) Similarity Change: Under this calculation, a weighted aver-

age of positive values in diffMatrix is used to measure the overall similarity

change as illustrated in Algorithm 2. As the weight, the proportion of positive

values in the upper triangle of the diffMatrix is used. Only the positive values
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are focused because positive changes occur when tokens become closer at Wt

than Wt−1 or word groups appear representing events.

Algorithm 2: Positive Similarity Change Calculation
input: diffMatrix: matrix of temporal word similarity differences
output: posChange: positive similarity change

1 positiveValues← []; // empty array to keep positive values

2 N ← length(diffMatrixrows);
// Get positive values in the upper triangle of diffMatrix

3 for i=1 to N do
4 for j=i+1 to N do
5 if diffMatrix[i][j] > 0 then
6 positiveValues.add(diffMatrix[i][j]);
7 end

8 end

9 end
// Calculate overall positive change

10 average← ∑ positiveValues/length(positiveValues);
11 proportion← length(positiveValues)/((N × (N − 1))/2);
12 posChange← average× proportion;
13 return posChange

TABLE 5.4: Sample events from MUNLIV

Time window Event Description

15:34-15:36 (Wta ) - No important event reported
15:52-15:54 (Wtb ) Foul Foul by Marcus Rashford(MUFC) on Virgil van Dijk(LFC)
16:06-16:08 (Wtc ) Goal First goal by Marcus Rashford(MUFC)

To explain the effectiveness of positive similarity change compared to ab-

solute and non-absolute changes, we selected a few sample time windows

with event details from the MUNLIV dataset, which are summarised in Ta-

ble 5.4. Figure 5.4 shows the diffMatrices generated for each of these windows.

To maintain simplicity, we only used the important keywords of the selected

events to generate matrices. However, we used dendrograms generated con-

sidering all data belong to the targeted window to calculate cluster similarities
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illustrating the real scenario. At Wta , no important events happened and diff-

Matrix in Figure 5.4a also has low values. At Wtb , an emerging event happened

and it is captured by the diffMatrix in Figure 5.4b with a majority of high pos-

itive values. At Wtc , an ongoing discussion is altered by an event, and thus

the diffMatrix in Figure 5.4c has a combination of negative and positive values.

Overall similarity changes calculated for each of these matrices using Abso-

lute, Non-Absolute and Positive calculations are summarised in Table 5.5.

(A) diffMatrix at Wta (B) diffMatrix at Wtb (C) diffMatrix at Wtc

FIGURE 5.4: diffMatrices generated for time windows Wta , Wtb and Wtc in Table 5.4

TABLE 5.5: Comparison of similarity change calculation methods

Similarity Change
diffMatrix

(A) (B) (C)

Abs. 0.2005 0.3388 0.2981
Non-abs. -0.1467 0.2786 0.2092
Pos. 0.0269 0.3087 0.2537

According to the resulting values in Table 5.5, Abs. change returns a high

value for Wta even though there are no events in that time window. Non-

abs. change can effectively capture the non-existence of events (at Wta) and

suddenly happened events introducing all the keywords (at Wtb), but it returns

a low value when an event occurred altering an ongoing discussion (at Wtc).

Pos. change showcases the ability to effectively capture all these scenarios with
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low value at Wta and high values at Wtb and Wtc . Therefore we propose to use

Pos. similarity change to calculate overall text similarity change over time.

In summary, Abs., Non-abs. and Pos. change compute an overall value

for a matrix within the ranges of 0–1, -1–1 and 0–1, incorporating different

impacts based on their attributes. Specifically, Abs. change treats both positive

and negative values similarly, and Non-abs. change treats them separately, but

the majority sign could dominate it. Distinctly, Pos. change particularly targets

positive values of a matrix. If a large proportion of a matrix has positive values,

it will return a high value; otherwise, it will return a low value. Even though

we target positive values in this research as they represent words that became

closer over time, this metric can also be easily customised for the opposite sign

(negative).

5.1.2.3 Vocabulary Change Calculation and Aggregation

In addition to the token similarity changes, vocabulary change is consid-

ered covering the statistical details in text to calculate overall change. In

Embed2Detect, vocabulary change is calculated based on the temporal to-

ken variations (Section 4.1.3.3). We referred to this calculation as Vocabulary

Change (VC) following Equation 4.4. Here, we propose to involve frequency

changes of tokens in addition to their temporal variations to calculate vocab-

ulary change. With this modification, we can only focus on the significant

changes excluding the slight modifications that happened to the discussions.

Frequency Difference-based Vocabulary Change (FDVC): For this calcula-

tion, we consider new tokens that appeared in the vocabulary of Wt with a
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frequency difference above the threshold β, which is used to filter outlier to-

kens following the Equation 5.2.

FDVC(t−1,t) =
|w : w ∈ vocabt, w /∈ vocabt−1 and f (w)t − f (w)t−1 > β|

|vocabt|
(5.2)

In summary, VC and FDVC return normalised change values within 0–1. A

value closer to 0 indicates that vocabt−1 and vocabt are almost the same. If many

new tokens are added to the vocabt, VC will return a high value without con-

sidering their significance or frequency difference. Thus, this calculation will

treat tokens that newly appeared once (mostly due to typing mistakes or back-

ground discussions) and multiple times (mostly due to events) similarly. Over-

coming this limitation, FDVC only returns high values if a large proportion of

vocabt holds new tokens with higher frequency differences above a threshold

compared to vocabt−1, capturing event occurrences. Thus, we propose to use

FDVC along with WhatsUp.

After calculating the temporal textual change using two measures: simi-

larity change and vocabulary change, these values need to be aggregated to

calculate the overall change. Similar to the Embed2Detect approach, we con-

sider maximum and average calculations as aggregation methods to preserve

the simplicity of WhatsUp. However, the average calculation outperformed

the maximum calculation with the proposed improvements to textual change

measures (Section 5.2.1).

5.1.3 Event Cluster Detection

After identifying the event windows, the next phase detects co-occurring

events/event clusters within those windows to extract fine-grained event de-

tails. Since one or more events would have been reported within an event

window, it is important to detect the details of each event separately to let
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users get quick and concise event updates. For clustering, we propose a novel

method which focuses on identifying important keywords to extract clusters

using the tokens closer to the keywords. Basically, our method has two steps:

(1) token ranking (identifying important keywords) and (2) cluster generation,

being flexible for easy adjustments for different events. To rank the tokens,

we assign a weight to each token considering its textual similarity change over

time, as sudden incidents within data streams result in textual changes. If a to-

ken has a high positive change value, it means that many words became closer

to that token over time, indicating that it is an important keyword of an event

or discussion. Thus, we sort the tokens with positive textual change in de-

scending order to identify the important event keywords. We only consider the

words in the vocabulary for this step, excluding emojis and non-alphanumeric

characters, because the target is to rank keywords. We use LDL similarities

calculated using self-learned word embeddings and their hierarchical relation-

ships and token frequency-based measures for the weight calculation, captur-

ing underlying linguistics and statistics as described in Section 5.1.3.1. Then,

token groups are identified using linguistically nearby tokens to the ranked

keywords as such groups represent the ideas discussed together. Similar to

token weighting, we use LDL similarity between tokens to extract nearby to-

kens, capturing the linguistical relationships, as described in Section 5.1.3.2.

Also, as additional information helpful to users, we occupy each cluster with a

novelty measure that indicates the cluster’s newness or newsworthiness. After

detecting the clusters, we prune them to filter events following the approaches

in Section 5.1.3.3. The overview of our event cluster detection approach is il-

lustrated in Algorithm 3.

Unlike the majority of previous research (Nur’aini et al., 2015; Nguyen et

al., 2019; Comito et al., 2019a; Comito et al., 2019b), our algorithm targets clus-

tering tokens (not documents). As tokens, we use words and other useful
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Algorithm 3: Event Cluster Detection
input: Wd

t : detected event window, s or m : cluster detection threshold,
η or κ : cluster pruning threshold

output: EWd
t

: co-occurred events (event-described token clusters) at Wd
t

1 vocabt ← vocabulary at Wd
t ;

2 weightedWords← {}; // empty dictionary to keep word-weights

3 C ← []; // empty array to keep clusters

// Rank tokens which showed a temporal textual change
4 for w in vocabt do
5 weight← weight calculated for w using temporal textual change;
6 if weight > 0 then
7 weightedWords.add(w, weight);
8 end

9 end
10 weightedWords.sort(descending = True);

// Generate clusters
11 for w in weightedWords do
12 if w not appeared in any token cluster in C then
13 c← nearby tokens to w based on s or m;
14 c← [w, c];
15 Noveltyc ← novelty calculated on c;
16 C.add(c, Noveltyc);

17 end

18 end
// Prune clusters

19 EWd
t
← pruned clusters from C as events based on η or κ;

20 return EWd
t

symbols such as emojis because they play a crucial role in expressing public

opinions in social media nowadays. When the token level is considered, mul-

tiple events described in a single document can be separated, and connections

between tokens that do not appear together in documents can be captured.

Due to the recent increments made to character limits by social media ser-

vices (e.g. Twitter increased 140 character limit to 280 in 2017), it is possible
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to have multiple event details in a single document. Also, due to the diver-

sity of users, the same event can be expressed differently in multiple docu-

ments requiring capturing token relationships to get complete event informa-

tion. Furthermore, our algorithm has advantages compared to the traditional

clustering algorithms. Unlike flat clustering algorithms (e.g. K-means), our

algorithm does not require the number of clusters to be predefined, which is

unpredictable due to the dynamicity of data streams. Unlike hierarchical algo-

rithms (e.g. hierarchical agglomerative, hierarchical divisive), our algorithm is

capable of assigning the same token to multiple clusters. In reality, there can be

situations when the same token is shared among multiple events (e.g. ‘goal’

is shared between events: team MUFC scored a goal and VAR for the goal is in

progress).

5.1.3.1 Token Weight Calculation

To rank tokens, we assign them weights based on their temporal textual change

(a high weight for a high change). We experimented with the following mea-

sures to calculate the token weight involving linguistics and statistics. To

make the similarity-based computations faster, we use the diffMatrix generated

during event window identification (Section 5.1.2.2), as a row of the matrix

diffMatrix[w] contains the values {LDL sim.(w,wi)
: wi ∈ vocabt}.

1. Pairwise Similarity Difference (PSD): The highest similarity difference

of the token pairs which contain the targeted token.

PSDw = max(LDL sim.(w,wi)
: wi ∈ vocabt)

2. Average Similarity Difference (ASD): Average similarity difference of all

token pairs which contain the targeted token. We use the proposed posi-

tive similarity change calculation to calculate the average considering its

effectiveness. In Algorithm 2, we showed how to apply this calculation
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for a matrix, but similarly, it can also use for a row of the matrix (similar-

ities between all token pairs which contain the targeted token).

positiveValues = {LDL sim.(w,wi)
: wi ∈ vocabt and LDL sim.(w,wi)

> 0}

ASDw =
∑ positiveValues
|positiveValues| ×

|positiveValues|
|vocabt|

3. Frequency Difference (FD): Normalised frequency difference of the tar-

geted token.

FDw =
f (w)t − f (w)t−1

max( f (w)t, f (w)t−1)

4. Average Aggregations (AVG-*-FD): Average of similarity-based value

and FD. Since there are two similarity-based measures, average aggre-

gation also returns two measures AVG-PSD-FD and AVG-ASD-FD.

5. Maximum Aggregations (MAX-*-FD): Maximum of similarity-based

value and FD. Similar to the average aggregation, this also has two mea-

sures MAX-PSD-FD and MAX-ASD-FD.

According to the experiment results described in Section 5.2.2, we found that

AVG-ASD-FD outperforms the other weight measures.

5.1.3.2 Cluster Generation

In a text corpus, a token becomes closer to another token linguistically if used

in the same context or to describe the same idea. Following this idea, we pro-

pose generating clusters based on tokens nearby to the top-ranked keywords,

which had high temporal textual changes. To measure the similarity between

tokens during cluster generation, we use LDL similarity, measured using den-

drograms generated on word embeddings, allowing to capture both token re-

lationships in the hierarchical structure and the vector space. Additionally, we

require a threshold to extract nearby words, and we consider two threshold

types as follows.
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1. Similarity-based Threshold (s): Consider all tokens with similarity ≥ s

as nearby tokens. This is similar to the similarity thresholds used by

hierarchical and online clustering algorithms.

2. Count-based Threshold (m): Consider m most similar tokens as nearby

tokens.

We conducted experiments using both thresholds and revealed that they have

different qualities, which are helpful for users depending on their interests and

domains specificities as described in Section 5.2.2.

After identifying the clusters, we assign a novelty measure for each cluster

to improve its informativeness. The novelty of cluster C is calculated as the av-

erage of token weights belonging to it (Equation 5.3). Overall, it measures the

temporal textual change of that cluster compared to the previous time window

and indicates the event significance.

Noveltyc =
∑ Weightw : w ∈ c

|c| (5.3)

5.1.3.3 Cluster Pruning

The detected clusters can be emerging events or background discussions.

Therefore, they need to prune to extract event clusters. The commonly used

approach in previous research is to assign clusters a value that indicates their

importance and filter out the less important clusters using a threshold (Li et al.,

2017a; Comito et al., 2019a; Morabia et al., 2019). Following this idea, we sug-

gest pruning clusters using a threshold for cluster novelty (η). Nonetheless,

such a threshold is highly dependent on the underlying data. Even within the

same domain, using a static value for multiple time windows will be incorrect

if the nature of data and their evolution are different in those time windows.
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Also, due to the dynamicity and diversity of events, it will be difficult to pick

such a threshold value by analysing previous data and heuristics.

We propose a keyword count-based technique to prune clusters consider-

ing all these drawbacks. Rather than pruning the generated clusters, our ap-

proach targets limiting non-event cluster generation. Given a count κ, this

will only take the top κ keywords in the ranked tokens to use with the cluster

generation step in Algorithm 3. Knowing the data and possible event gener-

ation rates, κ can be defined, and it is not very dependent on other factors as

a novelty-based threshold. The experiments we conducted further emphasise

the effectiveness of κ than η in Section 5.2.3.

Algorithm 4: WhatsUp
input: D′ : filtered data stream ([d1, d2, ...di−1, di, ...]), l : time window length,

α : change threshold, s or m : cluster detection threshold,
η or κ : cluster pruning threshold

output: E : detected co-occurred events in event windows
1 E← []; // empty array to keep co-occurred events in event windows

// Data preprocessing
2 W ← D′ separated into l long time windows;
3 for Wt in W do
4 Vt ← vector space learned from Wt;
5 vocabt ← vocabulary at Wt;
6 ft ← token frequencies of vocabt;
7 Wt ← {Vt, vocabt, ft};
8 end
// Event window identification

9 Wd ← Algorithm 1(W, α);
// Event cluster detection

10 for Wd
t in Wd do

11 EWd
t
← Algorithm 3(Wd

t , s or m, η or κ);

12 E.add(EWd
t
);

13 end
14 return E
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Concluding Section 5.1, Algorithm 4 summarises the top-level idea of

WhatsUp, combining all the steps described above.

5.2 Experimental Study

This section summarises the experiments we conducted using WhatsUp on

sports and political domains using MUNLIV and BrexitVote datasets intro-

duced in Section 3.2. We used the updated version (V2) of ground truth (GT)

for these experiments. For evaluations, both time and text-based metrics intro-

duced in Section 3.3 were used. While comparing the results, we prioritised

Time Window F1, followed by Event Recall, Event Relevance and Keyword

Recall because event measures were calculated considering the GT events of

the detected event windows and keyword measures were calculated consider-

ing the matched GT events. We implemented WhatsUp in Python to conduct

experiments, and it is publicly available on GitHub2.

Initially, we analysed the effectiveness of strategies we proposed for event

window identification (Section 5.2.1). Then, the performance of event cluster

detection is evaluated (Section 5.2.2). Following Section 5.2.2, the overall per-

formance of WhatsUp is evaluated and compared with several recently pro-

posed methods from different competitive areas (Section 5.2.3). Since, simi-

lar to Embed2Detect, word embedding learning and the event window iden-

tification are the most computationally complex operations in WhatsUp, the

discussion in Section 4.1.5 confirms its appropriateness for real-time process-

ing. However, for further validity, we thoroughly analysed the efficiency of

our method and reported the results along with overall performance. During

2WhatsUp implementation is publicly available on https://github.com/HHansi/WhatsUp

https://github.com/HHansi/WhatsUp
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all experiments, we followed a common strategy to identify optimal hyper-

parameters to generate unbiased comparable results, as results are highly bi-

ased to the hyper-parameter configurations. We evaluated the results of all

possible hyper-parameter settings and picked the best results to report and

compare. Finally, Section 5.2.4 summarises the findings for hyper-parameter

sensitivity analysis. We used a Common KVM CPU @ 2.40GHz with 16GB

RAM for all experiments.

5.2.1 Event Window Identification

For event window identification, we utilised the idea of Embed2Detect and

proposed different strategies to improve the performance. Thus, we mainly

focused on comparing the effectiveness of the proposed strategies with the

original idea in this section. For evaluations, we only used time-based metrics

defined in Section 3.3 because these experiments only identify event windows.

To measure time-based metrics without event clusters, we considered all to-

kens which showed any temporal textual change within an event window as

event words, similar to Embed2Detect. The whole group of event tokens is

considered as a single cluster and matched it with multiple GT events follow-

ing the same criteria defined for event matching. Initially, we analysed the

impact on event window identification by the improvements to cluster change

calculation. The obtained results are summarised in Table 5.6 and 5.7.

We consider the Time Window F1 to compare the results since it computes

the harmonic mean between recall and precision. According to the results in

Table 5.6, for MUNLIV, LDL similarity performed better than DL similarity

for all strategies. Also, non-relative dendrograms performed better than rel-

ative dendrograms. Considering the similarity change calculations, Non-abs.

change returned the lowest F1 values while Pos. change performed best. A
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TABLE 5.6: Evaluation results: Time Window Recall (R), Precision (P) and F1 of event
window identification with different strategies for MUNLIV. T and F indicate relative
and non-relative dendrograms. The best results are in bold and Embed2Detect’s re-

sults are with ‡.

Similarity
Change

Relative
Dendro.

DL Similarity LDL Similarity

R P F1 R P F1

Abs. T 0.8800‡ 0.5000‡ 0.6377‡ 0.8400 0.5385 0.6563
Abs. F 0.8800 0.5238 0.6567 0.8800 0.5238 0.6567
Non-Abs. T 0.0400 1.0000 0.0769 0.0800 1.0000 0.1481
Non-Abs. F 0.5600 0.6087 0.5833 0.6800 0.6071 0.6415
Pos. T 0.2400 0.8571 0.3750 0.5200 0.5000 0.5098
Pos. F 0.7200 0.5806 0.6429 0.7200 0.6429 0.6792

TABLE 5.7: Evaluation results: Time Window Recall (R), Precision (P) and F1 of event
window identification with different strategies for BrexitVote. T and F indicate rela-
tive and non-relative dendrograms. The best results are in bold and Embed2Detect’s

results are with ‡.

Similarity
Change

Relative
Dendro.

DL Similarity LDL Similarity

R P F1 R P F1

Abs. T 1.0000‡ 1.0000‡ 1.0000‡ 1.0000 1.0000 1.0000
Abs. F 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Non-Abs. T 0.3636 1.0000 0.5333 0.0909 1.0000 0.1667
Non-Abs. F 0.6364 1.0000 0.7778 1.0000 1.0000 1.0000
Pos. T 0.7273 1.0000 0.8421 0.8182 1.0000 0.9000
Pos. F 0.9091 1.0000 0.9524 1.0000 1.0000 1.0000

similar pattern is also found from BrexitVote results (Table 5.7), but they are

not very differentiative due to high values. High results are returned mainly

because almost all the time windows in this dataset have events. However,

newly introduced strategies (LDL similarity on non-relative dendrograms and

Pos. similarity change) improved the F1 by 4.15% for MUNLIV while main-

taining the 100% F1 for BrexitVote.

Moreover, we analysed the impact by combining vocabulary change cal-

culation using maximum and average aggregations, and its improvements
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TABLE 5.8: Evaluation results: Time Window Recall (R), Precision (P) and F1 of event
window identification for different aggregations. Best results are in bold.

Aggregation MUNLIV BrexitVote

Method Values R P F1 R P F1

Average LDL sim., VC 0.6800 0.7391 0.7083 1.0000 1.0000 1.0000
Maximum LDL sim., VC 0.6800 0.7083 0.6939 1.0000 1.0000 1.0000
Average LDL sim., FDVC 0.7200 0.7500 0.7347 1.0000 1.0000 1.0000
Maximum LDL sim., FDVC 0.8000 0.6667 0.7273 1.0000 1.0000 1.0000

with cluster change calculation. The obtained results are available in Table

5.8. According to the results, average aggregation performed best. Among

vocabulary change calculations, FDVC got higher results than VC. Following

the theoretical exposure described in Section 5.1.2 and the obtained results,

we can conclude that the performance of event window identification can be

improved using LDL similarity on non-relative dendrograms, Pos. similarity

change and average aggregation using FDVC. We use this combination for the

following experiments (Sections 5.2.2, 5.2.3).

5.2.2 Event Cluster Detection

The method proposed for clustering consists of two main steps: (1) token rank-

ing and (2) cluster generation, excluding the final cluster pruning step, which

filters the event clusters. In this section, we report the evaluations of these

two main steps. For token ranking, we experimented with the effectiveness of

different weighting mechanisms described in Section 5.1.3.1 and the obtained

results are summarised in Table 5.9. The target of token ranking is finding im-

portant event keywords to use with cluster generation. Therefore to measure

the effectiveness of each weighting mechanism, we selected the top n tokens

from the ranked list and measured the time-based metrics. For MUNLIV, we

set n to 20 and for BrexitVote, to 100 for these experiments. These values are
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chosen based on each dataset’s average vocabulary size per time window. Ac-

cording to the results, among similarity-based weights, ASD obtained better

results than PSD. This emphasises the importance of involving all similarity

changes of a token for weight calculation. FD also returned relatively high

F1 values for both datasets. However, with the average (AVG) aggregation of

ASD and FD, we could further improve the results involving underlying lin-

guistics and statistics. Based on the results, we can conclude that AVG-ASD-

FD is the best weighting mechanism among others. For later experiments, we

only use this mechanism (AVG-ASD-FD).

TABLE 5.9: Evaluation results: Time Window Recall (R), Precision (P) and F1 of token
ranking. Best results are in bold.

Token Weight
MUNLIV BrexitVote

R P F1 R P F1

PSD 0.2000 0.2083 0.2041 0.0909 0.0909 0.0909
ASD 0.4000 0.4167 0.4082 0.2727 0.2727 0.2727
FD 0.6400 0.6667 0.6531 0.3636 0.3636 0.3636
AVG-PSD-FD 0.3200 0.3333 0.3265 0.1818 0.1818 0.1818
AVG-ASD-FD 0.6800 0.7083 0.6939 0.4545 0.4545 0.4545
MAX-PSD-FD 0.1600 0.1667 0.1633 0.0909 0.0909 0.0909
MAX-ASD-FD 0.6400 0.6667 0.6531 0.3636 0.3636 0.3636

TABLE 5.10: Evaluation results of token clustering. TW stands for Time Window. Best
results are in bold.

Dataset Method
TW

Recall
TW

Precision
TW
F1

Event
Recall

Event
Relevance

Keyword
Recall

MUNLIV Proposed(s) 0.7200 0.7500 0.7347 0.7742 0.2500 0.7813
Proposed(m) 0.7200 0.7500 0.7347 0.7742 0.3304 0.8125
HAC 0.5600 0.5833 0.5714 0.6129 0.2447 0.9423

BrexitVote Proposed(s) 1.0000 1.0000 1.0000 1.0000 0.4444 0.7917
Proposed(m) 1.0000 1.0000 1.0000 1.0000 0.1810 0.7053
HAC 1.0000 1.0000 1.0000 1.0000 0.0762 0.6316
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Then we evaluated the effectiveness of the cluster generation step. Since

we use dendrograms generated using hierarchical agglomerative clustering

(HAC) to measure text similarities during the clustering, we compared our

approach with HAC. The obtained results for both datasets are summarised

in Table 5.10. There are two variants of the proposed approach, which use

a similarity-based threshold (s) and a count-based threshold (m). According

to the results, both variants of the proposed approach outperformed HAC for

both datasets. For BrexitVote, similar Time Window F1 and Event Recall val-

ues were returned by HAC, but Event Relevance and Keyword Recall values

are lower than the values returned by our approach. However, all the experi-

ments return low Event Relevance values because we only performed cluster

generation in this stage without further pruning to extract event clusters. Con-

sidering Event Relevance and Keyword Recall, the proposed approach with m

performed best for MUNLIV and s performed best for BrexitVote. In the sports

domain, considering a particular match, all events have the same structure

with nearly the same number of keywords per event. Therefore m-based ap-

proach is capable of performing well in the sports domain. Unlike this, differ-

ent events in different structures are discussed in the political domain. These

events can have different keyword counts, and thus, the s-based approach is

more appropriate for such a domain than the m-based approach.

5.2.3 Overall Performance

In this section, we report the overall performance of WhatsUp, comparing it

with several recently proposed methods. We mainly focused on their accuracy,

efficiency and expandability during the selection. Also, we considered differ-

ent competitive areas such as social aspect, segments over unigrams, clustering

and topic modelling to strengthen the baselines. More details of the selected
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methods are as follows.

• MABED (Guille and Favre, 2015): MABED uses anomalous variations in

mentions to detect events in an offline manner, as described in Section

4.2.4. This method uses word co-occurrences and their temporal dynam-

ics to extract event text. Previously, we modified the output to event

windows, but with WhatsUp, we evaluated the resulting events.

• SEDTWik (Morabia et al., 2019): SEDTWik clusters bursty segments in a

data corpus involving Wikipedia titles, text statistics and user diversity-

based measures, as described in Section 4.2.4. This uses the Jarvis-Patrick

algorithm to identify event clusters. We applied this method to each time

window and only considered the events with high newsworthiness than

a defined threshold for our experiments.

• LDA-based Sub-Event Tracking (LDA-SET) (Unankard and Nadee,

2020): LDA-SET identifies topics per window using Latent Dirichlet Allo-

cation (LDA) and then analyses their temporal evolution to capture event

transitions. The temporal evolution is mainly assessed using topic sim-

ilarity (common keyword count-based measure) and topic word count.

Among the captured transitions, we only considered form events (or new

topics) for the experiments because we only evaluate such events in this

research.

The results obtained for MUNLIV and BrexitVote datasets using WhatsUp

and baseline methods are summarised in Table 5.11 and 5.12. For WhatsUp,

we experimented with both similarity-based (s), and count-based (m) cluster-

ing approaches as they showed different qualities useful for different domains
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and users. To extract event clusters, we pruned the clusters using both thresh-

olds: novelty (η) and keyword count (κ) to see the effectiveness of each tech-

nique. Combining both clustering and cluster pruning thresholds, in total, for

WhatsUp, there are four combinations as shown in the results tables. The bel-

low section of each table lists the experimented baseline methods and obtained

results.

TABLE 5.11: Performance comparison of WhatsUp with baseline methods for
MUNLIV. TW stands for Time Window and Average Time indicates the processing
time for a 2-minute window. The best result is in bold and the best baseline result is

in italics.

Method
TW

Recall
TW

Precision
TW
F1

Event
Recall

Event
Relevance

Keyword
Recall

Average
Time(s)

WhatsUp(s, κ) 0.7200 0.7500 0.7347 0.7742 0.4400 0.7813 3.6140
WhatsUp(m, κ) 0.7200 0.7500 0.7347 0.7742 0.4231 0.8125 3.7193
WhatsUp(s, η) 0.7200 0.7500 0.7347 0.7742 0.2836 0.7619 3.8596
WhatsUp(m, η) 0.7200 0.7500 0.7347 0.7742 0.3743 0.8125 3.7368

MABED 0.5200 0.3095 0.3881 0.5161 0.2867 0.6444 3.9825
SEDTWiK 0.4800 0.2308 0.3117 0.5161 0.3148 0.4889 23.8297
LDA-SET 0.9600 0.4211 0.5854 0.9677 0.2391 0.8442 3.7807

TABLE 5.12: Performance comparison of WhatsUp with baseline methods for Brex-
itVote. TW stands for Time Window and Average Time indicates the processing time
for a 30-minute window. The best result is in bold and the best baseline result is in

italics.

Method
TW

Recall
TW

Precision
TW
F1

Event
Recall

Event
Relevance

Keyword
Recall

Average
Time(s)

WhatsUp(s, κ) 1.0000 1.0000 1.0000 1.0000 0.6585 0.7396 32.1818
WhatsUp(m, κ) 1.0000 1.0000 1.0000 1.0000 0.2463 0.5464 35.4545
WhatsUp(s, η) 1.0000 1.0000 1.0000 1.0000 0.5152 0.7917 32.4545
WhatsUp(m, η) 1.0000 1.0000 1.0000 1.0000 0.2671 0.6489 33.6364

MABED 0.9091 0.9091 0.9091 0.8889 0.6067 0.5682 51.2727
SEDTWiK 0.7273 0.7273 0.7273 0.7407 0.7500 0.3784 68.2666
LDA-SET 0.8182 0.8182 0.8182 0.8889 0.5962 0.4471 17.5000

According to the results, for MUNLIV, all four combinations of WhatsUp

outperformed the baselines returning 14.93% higher Time Window F1 than
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the best baseline method. Similarly, for BrexitVote, all combinations of What-

sUp obtained 9.09% higher Time Window F1 than the best baseline method,

proving that our approach can more accurately extract temporal event infor-

mation in diverse domains than the available methods. We cannot involve

event- and keyword-based metrics for comparisons between methods because

they are calculated based on the event windows identified by each method.

When methods detect different event windows, different GT events will be

considered for the event and keyword-based evaluations (Section 3.3.2). Us-

ing WhatsUp, for both datasets, we received the same Event Recall for all

combinations. However, there are variations in Event Relevance and Keyword

Recall depending on the used combination. Overall, in both datasets, κ-based

pruning performed better than η-based pruning. Following the insights in Sec-

tion 5.2.2, for MUNLIV, both s- and m-based clustering performed well with

κ, but for BrexitVote, only s-based clustering performed well in terms of Event

Relevance and Keyword Recall. In summary, these experiments reveal that

WhatsUp with (s, κ) combination performs more effective event detection in

diverse domains, specifically, sports and politics, than other combinations and

recent baseline methods. Further, we report qualitative analysis of a sample

of detected events in Appendix A.2 focusing on word coverage and novelty

measure, which further emphasise the effectiveness of event details detected

by WhatsUp.

Additionally, the processing time is also a critical factor in performing event

detection in (near) real-time. Targeting this requirement, we involved efficient

computation techniques for our approach and also incorporated parallel pro-

cessing for all time-consuming operations. To measure the reported processing

times in Table 5.11 and 5.12, we used parallel processing with eight workers.

According to the measured times, on average, WhatsUp took 3.72 seconds to

process a 2-minute time window (≈ 1, 724 tweets) and 33.43 seconds to process
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a 30-minute time window (≈ 14, 542 tweets). Compared to the majority of the

baseline methods, our approach performed faster in both datasets. Consider-

ing the specifications of the used machine and measured processing times, we

can state that WhatsUp is sufficiently fast for (near) real-time detection. Also,

parallel processing provides the capability to handle increasing data amounts

successfully. A detailed analysis of intermediate processing times comparing

the sequential and parallel processing is available in Appendix A.3.

TABLE 5.13: Best hyper-parameter settings

Method
Hyper-parameters

MUNLIV BrexitVote

WhatsUp α = 0.12
β = 20
(s, κ) = (0.4, 15)
(m, κ) = (25, 15)
(s, η) = (0.4, 0.1)
(m, η) = (25, 0.12)

α = 0.12
β = 10
(s, κ) = (0.6, 130)
(m, κ) = (35, 50)
(s, η) = (0.6, 0.08)
(m, η) = (35, 0.2)

MABED k = 150
p = 25
θ = 0.7
σ = 0.5

k = 150
p = 35
θ = 0.6
σ = 0.5

SEDTWik M = 2
k = 5
τ = 0.6

M = 3
k = 3
τ = 0.3

LDA-SET k = 15
min. probability= 0.01
threshold match= 0.7

k = 30
min. probability= 0.01
threshold match= 0.6

Hyper-parameters: For all methods, we used the optimal hyper-parameter

settings to generate comparable results since the performance is dependent
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on the parameters configurations. Table 5.13 summarises the optimal hyper-

parameter values obtained. For WhatsUp, we optimised the change thresh-

old (α) and frequency threshold (β), considering all possible values to iden-

tify event windows. To detect event clusters, four-parameter combinations of

cluster word similarity (s) or cluster word count (m) and novelty (η) or key-

word count (κ) were optimised following all possibilities. For m, we defined a

maximum value of 25 for MUNLIV and 35 for BrexitVote, considering the GT

event word counts. For MABED, we optimised the number of events (k), the

maximum number of words describing each event (p), weight threshold for se-

lecting relevant words (θ) and overlap threshold (σ). For k and p, incremental

values have been experimented with until we receive the optimal result. For

θ and σ, we experimented with the values around the original values used in

the initial experiments (Guille and Favre, 2015). For SEDTWik, we optimised

the number of subwindows (M), number of cluster neighbours (k) and news-

worthiness threshold (τ). Values for M were picked based on the time window

lengths of datasets. For k and τ, incremental values were experimented with

until receiving the optimal result. For LDA-SET, we optimised the number of

topics (k), the minimum probability to filter topic words and threshold match,

which compares the events temporally. We experimented with incremental

values for all of them until we received the optimal result.

5.2.4 Parameter Sensitivity Analysis

WhatsUp requires hyper-parameters during word embedding learning, event

window identification and event cluster detection. They should be mainly

picked depending on the characteristics of the targeted domain and user pref-

erences on resulting events. Different parameters make different levels of im-

pact on the output, as described below.
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Word Embedding Learning: To train Word2Vec models during embedding

learning, three hyper-parameters: minimum word count, context size, and vec-

tor dimension are required. The minimum word count removes tokens with

less total frequency than the count. The context size defines the number of

words around the target word to consider during learning. The vector dimen-

sion represents the number of dimensions in the final word embeddings. Fol-

lowing a comprehensive analysis conducted in Section 4.2.3.1, we fixed 1 for

minimum word count, 5 for context size and 100 for vector dimensions as the

optimal setting appropriate for time window data.

Event Window Identification: To identify event windows, two hyper-

parameters: change threshold (α) and frequency threshold (β) are required.

α mainly indicates the significance level of targeted events, and β is used as

a frequency threshold to remove outlier tokens. A value for α can be picked

using the domain knowledge and analysing a few past time windows. In ad-

dition to the domain-specific characteristics, personal preferences also need to

be considered. β is also a domain-dependent parameter since the inclusion

and frequency of outlier tokens vary with the domain. A detailed analysis of

these parameters have been conducted with Embed2Detect in Section 4.2.3.2

and the heuristics suggested by it are applicable for WhatsUp also since it uses

Embed2Detect’s core idea for event window identification.

5.2.4.1 Event Cluster Detection

To generate clusters, we proposed to use either a similarity-based threshold (s)

or a word count-based threshold (m). According to the overall performance,

s-based clustering performed best for MUNLIV and BrexitVote. Any value be-

tween 0-1 can be picked for s since it considers the LDL similarity between to-

kens. To provide a clearer idea, we plotted the variations of evaluation metrics
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with varying s on both datasets in Figure 5.5. According to the obtained results,

Time Window F1 and Event Recall increase with increasing s until they obtain

their maxima for both datasets. s ≈ 0 generates huge clusters by grouping less

similar tokens as well and fails to identify event clusters separately. Thus, op-

timal results are obtained when s is sufficiently large for the cluster separation.

Contrarily, Event Relevance and Keyword Recall decrease with increasing s.

When s ≈ 1, very small clusters will be generated due to the consideration

of very similar tokens. Thus, unnecessary separation of event clusters occurs,

reducing the keyword coverage per cluster. Therefore it is important to pick

a middle value for s. For MUNLIV, a value between 0.4-0.6 and BrexitVote, a

value between 0.6-0.8, is appropriate. Following these insights, we can sum-

marise that if the targeted domain is highly evolving and short time windows

with fewer data are considered, a comparatively low value will be the optimal

s. A relatively high value will be optimum for a domain with opposite char-

acteristics. Additionally, as described in Section 5.1.3, if the targeted domain

has events with a similar structure, m-based clustering can be used, and the

average number of keywords per event can be set as m straightforwardly.

(A) Evaluation results- MUNLIV (B) Evaluation results- BrexitVote

FIGURE 5.5: Evaluation results for varying similarity threshold (s) values

After generating the clusters, they need to be pruned to extract important

events. We proposed two approaches using novelty (η) and keyword count (κ)
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(A) Evaluation results-MUNLIV(s = 0.4) (B) Evaluation results-BrexitVote(s = 0.6)

(C) Average event counts- MUNLIV (D) Average event counts- BrexitVote

FIGURE 5.6: Evaluation results and average event counts per event windows for vary-
ing keyword count (κ) values

for pruning and, among them, the κ-based approach performed best in sports

and political domains. As κ, the possible keyword count per time window

should be set. For MUNLIV, a low value than BrexitVote is preferred because

MUNLIV has shorter time windows with fewer possible events per window.

To provide a clearer insight, we plotted evaluation results and resulted in clus-

ter counts with varying κ values in Figure 5.6. According to the results, for both

datasets, Time Window F1 and Event Recall achieve their optimal state with

sufficiently large κ to capture all important events. When κ is lower, important

events can be missed. However, Keyword Recall shows a near-constant be-

haviour, and Event Relevance shows a slight drop with increasing κ. Since the

number of capturing events grows with increasing κ (Figure 5.6c, 5.6d), it is

possible to capture non-relevant events too. Thus, when picking a value for κ,

the focus should be on the lowest possible keyword count, which is sufficiently

large to capture relevant events.
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5.3 Conclusions

In this chapter, we proposed a novel event resolution method named What-

sUp for co-occurring event detection in social media. Our approach focuses on

the automatic detection of both temporal and fine-grained textual (text of co-

occurred events) event details involving statistical and linguistical features of

underlying data. To capture statistics, token frequency-based measures were

used and to capture linguistics, self-learned word embeddings and their hi-

erarchical relationships in dendrograms were used. In summary, WhatsUp

considers all the important features in textual data needed for effective event

detection. Also, to the best of our knowledge, no prior work involved both

statistics and linguistics in detecting both temporal and textual event details

together. Further, the usage of unsupervised techniques makes our approach

expandable to any domain, language or platform. The involvement of self-

learned word embeddings also supports expandability as well as understand-

ing data-specific linguistics.

WhatsUp returned promising results on conducted experiments. We used

several recently proposed methods from different competitive areas to involve

stronger baselines for comparisons. Also, we designed metrics that cover both

temporal and textual aspects of events to comprehensively evaluate the ac-

curacy of methods and used data from two diverse domains (i.e. sports and

politics) to assess the expandability. Overall, WhatsUp outperformed all the

baselines in terms of event time and text detection, emphasising its accuracy

and expandability. Following these results, it is also safe to assume that our ap-

proach has low information loss than available approaches, which is possible

due to the insufficient involvement of linguistics. Considering the process-

ing time, WhatsUp took a comparatively short time for both datasets, proving
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its efficiency appropriate for (near) real-time processing. Targeting the scala-

bility, embedding learning and time window identification are the most com-

putationally complex steps of WhatsUp, which utilise the core idea of Em-

bed2Detect that has proven to be scalable for large data volumes.

In future work, we plan to mine sentiments of events to enhance their in-

formativeness because knowing public opinion would be helpful in situations

such as crises, political debates and product launches to take necessary im-

mediate actions. Considering the lack of data availability for event sentiment

analysis, we have already prepared and released a sentiment dataset named

TED-S (Hettiarachchi et al., 2022b) covering MUNLIV and BrexitVote tweets

and plan to use it with our future developments. Further, we believe it is use-

ful to integrate a text summarisation technique to return a summary of each

event cluster. When a similarity-based threshold is used for clustering, it is

possible to grow clusters massively in some instances. A summary will be

helpful in such situations to provide the user with a quick insight into the

event. Also, we plan to extend our approach to detect the evolution of events

over time to understand the event’s progress and analyse the impact of time

window length for event resolution. Additionally, it would be interesting to

evaluate the method’s performance on multilingual data. Since social media

allow posting in different languages, information from different people groups

can be combined with multilingual event detection.

With this chapter, we conclude Part I of the thesis. In this part, we pro-

posed novel event detection methods (i.e. Embed2Detect and WhatsUp) for

coarse- and fine-grained level detection from social media data, which re-

turned promising results, outperforming several recently proposed compet-

itive methods. We particularly involved self-learned word embeddings and

their hierarchical relationships in dendrograms in our approaches to facilitate

the capturing of underlying linguistics, overcoming a critical limitation found
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in previous research. As far as we know, this is the first effort to use underly-

ing linguistics to detect temporal and textual event details from social media

data streams. Thus, we believe our findings will lead future research in so-

cial media event detection in a new direction. Then, we move to news media

event detection, the other targeted area of this research, in the next part. Simi-

lar to Part I, Part II describes our approaches for coarse- and fine-grained level

detection from news media data involving underlying linguistics.
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Part II

News Media Event Detection
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Chapter 6

Introduction to News Media Event

Detection

Initiating Part II of the thesis, this chapter introduces news media event de-

tection and provides an overview of this part. It mainly describes the impor-

tant aspects to consider to effectively detect events from different data levels of

news media, following the previous work discussed in Chapter 2 and the char-

acteristics of textual data. Furthermore, this chapter defines the targeted prob-

lem, details the resources and concepts utilised for event detection by this part

of the research and provides an overview of the remaining chapters (Chapters

7 and 8) of this part.

Similar to social media services, online news agencies also generate a vast

amount of data, as described in Chapter 1. However, most of this data is

unstructured and cannot be easily understood. Also, the high data genera-

tion makes manual information extraction harder. Thus, automated intelli-

gent mechanisms are crucial for effectively extracting the information avail-

able in news media (Balali et al., 2020). Addressing this requirement, various

approaches have been proposed by previous research, targeting different lev-

els of data granularity: document, sentence and word levels as discussed in

Chapter 2 (Section 2.3).

The techniques used by available approaches mainly range from traditional
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machine learning (ML) to deep learning (DL). The earlier work extensively re-

lied on language-specific linguistic tools, resources and features, only focusing

on high-resource languages such as English (Naughton et al., 2010; Hong et

al., 2011). These approaches mainly suffered from expandability issues and

inabilities to support low-resource languages. With the evolution of deep neu-

ral networks and their effectiveness, later research focused more on DL-based

approaches to detect events (Chen et al., 2015; Lindén et al., 2018; Liu et al.,

2019a). This mostly eliminated the requirement to rely on linguistic tools,

resources and features. However, deep networks require more instances for

the training process, limiting their applicability when training data is scarce.

The other major challenge experienced by both traditional ML- and DL-based

approaches is handling text ambiguity. For example, the phrase ‘classrooms

empty’ could refer to a teachers’ strike, and without knowing the context, it

cannot be recognised (Hürriyetoğlu et al., 2021b). Also, the word ‘workers’

in the sentences in Figure 6.1 plays three different roles. The first sentence

does not describe any event, but the other two describe events expressed by

the words (triggers) ‘strike’ and ‘vandalised’. Thus, ‘workers’ in sentence (1) is

not event-related. However, ‘workers’ in sentences (2) and (3) hold event ar-

guments, participant and target, respectively. Thus, it is crucial to focus on

textual context to resolve such ambiguities while extracting event details.

FIGURE 6.1: Sample sentences from news articles with word ‘workers’. Bold text repre-
sents the triggers in event-described sentences. Word ‘workers’ is highlighted in yellow

if it represents an event argument and in green otherwise.
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Considering the crucial requirement to understand the textual context and

the limitations in available methods, we design approaches based on trans-

formers to detect events in news media. Transformers are designed with the

ability to fine-tune for a downstream task by utilising their original knowledge

in the language model (Devlin et al., 2019). Thus, unlike deep neural networks,

transformer-based models can learn effectively using comparatively few train-

ing instances. Also, transformer architecture is capable of capturing contex-

tual details in the text to disambiguate word senses. We aim to extract events,

defining two data granularities useful for different user groups. At the coarse-

grained level, we target identifying event-described news articles as described

in Chapter 7. Such a system filters articles with targeted/interesting events so

that they can be further analysed manually to obtain event details without pos-

sible machine errors, being helpful in situations where sensitive information is

involved. At the fine-grained level, we target extracting event-described sen-

tences and words as described in Chapter 8. This automates the manual anal-

ysis of event-described articles, returning complete event information helpful

in situations where full automation is preferred. Rather than limiting to high-

resource languages like English, we also apply our approaches to low-resource

languages and investigate how their performance can be improved using dif-

ferent learning strategies and state-of-the-art transformer models.

The main contributions of this part of the thesis are as follows.

1. We propose a TRansformer-based Event Document classification architecture

(TRED) using long-sequence transformers for event-described news ar-

ticle identification, becoming the winning solution for the English lan-

guage in subtask 1 of Challenges and Applications of Automated Extraction

of Socio-political Events from Text (CASE) 2021-Task 1.
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2. We propose a novel learning strategy named Two-phase Transfer Learn-

ing, involving different levels of data granularity and the capabilities of

state-of-the-art transformer models and apply it to sentence and token

level tasks of news media event detection to evaluate and discuss its ef-

fectiveness and applicability.

3. We empirically evaluate how the performance of news media event de-

tection at the document, sentence and token levels can be improved for

high- and low-resource languages involving different learning strategies

and the characteristics of state-of-the-art transformer models.

4. We release our method implementations as open-source projects to sup-

port applications and research in the area of news media event detec-

tion1.

The rest of this chapter is organised as follows. Section 6.1 defines the prob-

lem targeted by this research. Section 6.2 describes the datasets we used for

evaluations. Section 6.3 details the evaluation metrics we involved. Section

6.4 summarises the background concepts we used, especially about the trans-

former models. Finally, Section 6.5 provides a summary of this chapter intro-

ducing the following chapters in Part II of the thesis.

6.1 Problem Definition

The problem targeted by this part of the research is automatically detecting

events in news articles. Generally, news articles could contain various events

from diverse domains. Rather than focusing on all of them, previous research

mostly focused on specific events such as natural disasters (Nugent et al.,

1Links to the GitHub repositories are provided in bellow Chapters 7 and 8



Chapter 6. Introduction to News Media Event Detection 155

2017), economic events (Lefever and Hoste, 2016) and political events (Hür-

riyetoğlu et al., 2021a). Specific focus allows the algorithm to learn the charac-

teristics of the targeted domain and make more accurate predictions. Also, in

reality, users are more interested to know events from particular domains more

accurately rather than knowing all the events from different domains. Follow-

ing this tendency and requirement, we also focus on extracting specific event

details in this research. Also, we aim to design algorithms which do not rely

on features from a particular domain or can be customised easily for different

domains.

Similar to Part I of this thesis, we mainly divide news media event detec-

tion into two parts based on data granularity to address different user require-

ments. At the coarse-grained level, we aim to filter news articles that contain

interesting events, targeting the users who look for sensitive events and prefer

to manually analyse the filtered articles to obtain event details without possi-

ble machine errors. Briefly, given a set of news articles, the targeted system

needs to recognise the event and not-event articles. Based on the Global Con-

tentious Politics Dataset (GLOCON)2 annotation manual, we define an event

article more comprehensively using the Definition 6.

Definition 6 Event Article: An article that solely mentions or contains the de-

tails of an event(s), covering actors, time and location.

At the fine-grained level, we aim to extract event sentences and words from

event articles targeting the users who prefer to follow a fully automated pro-

cess to obtain comprehensive event information. Initially, we target recognis-

ing whether a sentence is an event sentence or not, analysing all the sentences

2Details of GLOCON are available on https://glocon.ku.edu.tr/

https://glocon.ku.edu.tr/
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in an event document. Following Automatic Content Extraction (ACE) Pro-

gram3 and GLOCON annotation manuals, we use Definition 7 to introduce

the idea behind event sentences concisely.

Definition 7 Event Sentence: A sentence that describes an event or contains an

expression (word or phrase) which directly refers to an event.

Then we target extracting event words (triggers and arguments), analysing

the token level of event sentences as the finest-grained information. Previous

research treated event trigger and argument extraction as separate (Chen et al.,

2015; Yang et al., 2019a) as well as joint (Lin et al., 2020; Awasthy et al., 2021)

tasks. Considering the recent applications, benefits of mutual learning and

resource limitations, we aim to build a joint system in this research. We define

an event trigger and argument using Definitions 8 and 9, following ACE and

GLOCON manuals.

Definition 8 Event Trigger: The main word that most clearly expresses an

event occurrence.

Definition 9 Event Argument: An entity, temporal expression, or value that

serves as a participant or attribute of an event.

In summary, we aim to develop approaches to automatically extract coarse-

grained (event articles) and fine-grained (event sentences and words) event

details from news articles in this part of the research. We target maintaining

the generalisability of our approaches to easily support different languages,

including low-resource languages and diverse domains.

3Details of ACE are available on https://www.ldc.upenn.edu/collaborations/

past-projects/ace

https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://www.ldc.upenn.edu/collaborations/past-projects/ace
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6.2 Datasets

To conduct the experiments and evaluations, we used the multilingual version

of the GLOCON gold standard dataset (Hürriyetoğlu et al., 2021b), which was

released by the CASE 2021 workshop (Hürriyetoğlu et al., 2021a), considering

its recency, open-availability and coverage. Section 6.2.1 reports more details

about the data coverage, sizes and distributions of the GLOCON dataset. The

data cleaning steps we followed are described in Section 6.2.2.

6.2.1 Data Collection

The GLOCON dataset targeted socio-political events covering demonstrations,

industrial actions, group clashes, political violence, armed militancy and elec-

toral mobilisations. Multiple news sources were used to collect data from four

languages: English, Portuguese, Spanish and Hindi, at different levels of gran-

ularity: document, sentence and token. For simplicity, we refer to these lan-

guages using their ISO 369-1 codes4 in the following content.

TABLE 6.1: Number of instances/samples in different data granularities. An instance
contains a document at the document level and a sentence at the sentence and token

levels.

Language
Document Level Sentence Level Token Level

Train Test Train Test Train Test

English (En) 9313 2971 22481 1290 3248 311
Portuguese (Pt) 1485 372 1001 1445 87 192
Spanish (Es) 994 250 2613 686 87 190
Hindi (Hi) - 268 - - - -

For the coarse-grained level experiments (event article identification), we

used the document level data of the GLOCON dataset. These data consist of

an identifier, document text and binary label, which indicates whether that

4Language codes are available in ISO 369-1 Registration Authority Website on https://

www.loc.gov/standards/iso639-2/php/code_list.php

https://www.loc.gov/standards/iso639-2/php/code_list.php
https://www.loc.gov/standards/iso639-2/php/code_list.php
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particular article describes/contains an event or not, per instance. Only one-

third of document text from the beginning of each document was available

with this dataset to respect the news sources’ copyright and prevent possible

copyright issues. We followed a few language-independent steps to clean the

data, as mentioned in Section 6.2.2. The sizes of cleaned data are summarised

in Table 6.1. Overall, the document level data contained train and test sets

for three languages (English, Portuguese and Spanish) and only a test set for

Hindi. Additionally, the distribution of document sequence lengths (i.e. the

number of tokens per document) in each split is illustrated in Figure 6.2.

(A) En-Train (B) Pt-Train (C) Es-Train

(D) En-Test (E) Pt-Test (F) Es-Test

(G) Hi-Test

FIGURE 6.2: Sequence length histograms of train and test splits of document level data
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FIGURE 6.3: Sample of token level labels in BIO format

For the fine-grained level experiments (event sentence and word extrac-

tion), we used sentence and token level data of the GLOCON dataset. The sen-

tence level data contained an identifier, sentence text and binary label, which

indicates whether that particular sentence describes/contains an event or not,

per instance. The token level data were formatted into BIO (Beginning, Inside,

Outside) format, which is considered the standard for information extraction

tasks (Ramshaw and Marcus, 1995), based on event triggers and arguments,

as shown in the sample in Figure 6.3. The data cleaning steps we followed

with sentence and token level data are described in Section 6.2.2. Both of these

levels contained data from three languages, excluding Hindi. The data distri-

bution of cleaned datasets over these languages is summarised in Table 6.1.

Furthermore, we illustrate the sequence length distribution of sentences (i.e.

the number of tokens per sentence) in Figure 6.4. This provides an overview

for both sentence and token level data because the token level was composed

using a subset of sentence level data.

Overall, document and sentence levels have a higher number of in-

stances/labelled samples than the token level, mainly due to the data anno-

tation complexities at the token level. Considering the languages, compara-

tively, English has more instances than others at all the granularities explaining

its wide usage and data availability. Thus, for the targeted tasks, we consider

English as a high-resource language and others as low-resource languages.

The class distributions over document and sentence level data are shown

in Figure 6.5. As can be seen, there are more non-event documents/sentences
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(A) En-Train (B) Pt-Train (C) Es-Train

(D) En-Test (E) Pt-Test (F) Es-Test

FIGURE 6.4: Sequence length histograms of train and test splits of sentence level data

(A) Document level (B) Sentence level

FIGURE 6.5: Label distribution of document and sentence level data

than event documents/sentences. Since this imbalance depicts the real sce-

nario and provides more training samples from the targeted domain to the

models, we directly experimented with these data without any pruning. Token

level data were provided with labels indicating event triggers and arguments.

Overall, there are six argument types, and the details of their distributions are

given in Table 6.2. More details about the classes and the annotation processes
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TABLE 6.2: Label distribution of token level data. Spans are the text spans/ordered
sequences of tokens corresponding to each label.

Label
Number of Spans

En Pt Es

trigger 4595 122 127
participant 2663 73 79
place 1570 61 14
target 1470 32 52
organizer 1261 19 23
etime (event time) 1209 41 32
fname (facility name) 1201 48 39

are available with GLOCON annotation manuals5. We only represent the class

distributions in training datasets in the diagrams mentioned above because

test data labels were not released when we conducted our experiments. We

used the CodaLab pages6 set up by CASE 2021 task organisers to evaluate our

results.

6.2.2 Data Cleaning

We applied a few language-independent techniques to clean the data from the

GLOCON dataset. For document level data, since documents cannot be very

short, we removed the documents with very low sequence lengths (<5 to-

kens). Also, we removed the URLs and replaced the repeating symbols more

than three times (e.g. =====) with their three occurrences (e.g. ===) because

they are uninformative. All these removals were automated using text pat-

tern matching based on regular expressions. Analysing the sentence and to-

ken data, we noticed some instances shared among training and testing splits

5Details of GLOCON are available on https://glocon.ku.edu.tr/, and annotation man-
uals can be directly accessed from https://github.com/emerging-welfare/general_info/

tree/master/annotation-manuals
6CodaLab page for Shared Task on Multilingual protest news detection CASE 2021 is avail-

able on https://competitions.codalab.org/competitions/31247. Its additional scoring
page is available on https://competitions.codalab.org/competitions/31639

https://glocon.ku.edu.tr/
https://github.com/emerging-welfare/general_info/tree/master/annotation-manuals
https://github.com/emerging-welfare/general_info/tree/master/annotation-manuals
https://competitions.codalab.org/competitions/31247
https://competitions.codalab.org/competitions/31639
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of these levels. Since such occurrences could affect the performance of our ap-

proach, we removed those instances from the training splits. For example, if

a sample in token level test data split is available in sentence level train data

split, we removed it from the sentence level train split. Also, we removed

URLs and repeating symbols from the sentence level data, following the same

approach as with the document level, considering their uninformativeness. We

did not apply any further processing for token level data, which were already

cleaned.

6.3 Evaluation Metrics

To evaluate the performance of event detection approaches designed for news

media, we used different variants of the F1 score, which are appropriate for

document, sentence and token levels, following CASE 2021 event detection

shared task (Hürriyetoğlu et al., 2021a). Generally, F1 is calculated as the

weighted harmonic mean of precision and recall as a positively oriented score.

In the below equations, TP, FP and FN refer to the true positive, false positive

and false negative counts, respectively.

Precision =
TP

TP + FP
(6.1)

Recall =
TP

TP + FN
(6.2)

F1 = 2× Precision× Recall
Precision + Recall

(6.3)

We used macro averaged F1 (Macro F1) for document and sentence level eval-

uations. It is the unweighted mean of F1 scores calculated for each label as in

Equation 6.4. n represents the total number of classes, and F1i represents the
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per-class F1.

Macro F1 =
∑n

i=1 F1i

n
(6.4)

We used the F1 measure introduced in Conference on Computational Natural

Language Learning (CoNLL) 2003 shared task (Tjong Kim Sang and De Meul-

der, 2003) for the token level evaluations. This score also follows the Equation

6.3 but considers text spans/ordered sequences of tokens and their labels to

compute TP, FP and FN values. It marks a span as correct only if it exactly

matches the actual label/labelled span.

6.4 Theoretical Background

We adapt approaches utilising transformer-based language models for news

media event detection in this research, considering their recent successful

applications in many NLP tasks including question answering (Devlin et al.,

2019; Yang et al., 2019b), offensive language identification (Ranasinghe et al.,

2019; Ranasinghe and Hettiarachchi, 2020), machine translation (Ranasinghe

et al., 2020) and named entity recognition (Liang et al., 2020).

6.4.1 Transformer-based Language Model

Transformer architecture was originally proposed to overcome the limita-

tions in Recurrent Neural Network (RNN)-based sequence-to-sequence mod-

els. Due to the recurrence and sequential nature of RNNs, they fail to process

long sequences well while focusing on important words. Attention mecha-

nisms have become popular, targeting this limitation, considering their ability

to model dependencies without relying on their distances in the input and out-

put sequences. Following this trend, transformer architecture was proposed

solely based on the attention mechanisms (Vaswani et al., 2017). Later research
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suggested separating the encoder of the transformer architecture to use it as

a language model which generates contextual text representations (Radford et

al., 2018; Devlin et al., 2019).

Among the transformer-based language models, Bidirectional Encoder

Representations from Transformers (BERT) model (Devlin et al., 2019) became

popular recently, mainly due to its bidirectional nature, which improved the

performance of many NLP tasks. This bidirectional architecture captures left-

to-right and right-to-left relationships in text, incorporating context from both

sides. Thus, it can generate linguistically powerful contextual language repre-

sentations and perform well on both sentence and token level tasks. Follow-

ing BERT, more architectures such as DistilBERT (Sanh et al., 2019), RoBERTa

(Liu et al., 2019b), multilingual-BERT (mBERT) (Devlin et al., 2019) and XLM-

RoBERTa (XLM-R) (Conneau et al., 2020) were proposed recently, involving

knowledge distillation, robust learning techniques and multilinguality/cross-

linguality.

The general architecture of a transformer-based language model is shown

in Figure 6.6, and we will refer to such model as a ‘transformer’ for the simplic-

ity. It mainly consists of an input layer, multi-layer bidirectional transformer

encoder and output layer. Being an encoder, it takes a text sequence as the in-

put and returns its representations/embeddings, which can use to learn down-

stream tasks while preserving the linguistical features of the original text.

Transformer Input Format: Allowing to handle various downstream tasks,

transformers are designed to take a single text sequence or a pair of sequences

as the input. Different special tokens such as [CLS] and [SEP] are used to in-

dicate the input text’s organisation. [CLS] is added as the first token. If two

sequences exist in the input, [SEP] is placed in between to indicate the separa-

tion. Following the raw text formattings, the text needs to convert to a token
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FIGURE 6.6: Transformer architecture

embedding using a tokeniser. Additionally, a segment embedding that holds

boolean values (0 and 1), separating the segments and a position embedding

with increasing numbers from 0, indicating the token positions are required to

populate the final input. The sum of these three embeddings forms the input

to a transformer model (Figure 6.7).

FIGURE 6.7: Transformer input representation

Transformer Output Format: The final hidden state of a transformer encoder

provides representations for each token in the input. The first token ([CLS])’s

output holds a representation corresponding to the entire sequence, which can
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be used as a contextual sequence embedding or with sequence-based predic-

tions. The other outputs contain token representations per input token, which

can be used as contextual word embeddings or with token-based predictions.

Transformers are designed with two training steps: pre-training and fine-

tuning. During pre-training, model trains on unlabelled data over different

tasks to build the language model. The commonly used tasks for pre-training

are masked language modelling (MLM) and next sentence prediction (NSP).

• MLM: MLM randomly masks some percentage (e.g. 15%) of the input

tokens and trains the model to predict those masked tokens. For predic-

tions, the output vectors of the masked tokens are fed into a softmax layer

over the vocabulary. Since this task trains the model to predict targeted

words in a multi-layered context focusing on both directions, it helps to

learn bidirectional representations.

• NSP: NSP is a binary task which predicts whether two sentences are

consecutive in a monolingual corpus. When selecting sentence sam-

ples, equal weight is given to both classes by having 50% of consecutive

and random/non-consecutive sentences. This task is mainly involved in

helping the model understand relationships between sentences, which

are not directly captured by language modelling, targeting downstream

tasks such as question answering and natural language inference.

Fine-tuning typically happens based on a downstream task. Depending on

the task, an appropriate additional layer(s) like a classification head must add

to the top of the output layer. During the fine-tuning, model initialises first

with its pre-trained parameters and fine-tunes all its parameters, including the

parameters in the newly added layers, using the labelled data from the down-

stream task. Initialisation with pre-trained parameters transfers the model’s
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original knowledge, allowing to learn the downstream task effectively. De-

viating from this idea, some research used transformer embeddings to input

text into different ML and DL models (Balali et al., 2020; Lu et al., 2022) or

freeze the weights in the transformer during the fine-tuning and only train the

parameters of newly added layers (Büyüköz et al., 2020). However, overall,

fine-tuning the transformer along with the additional layers performed best

for downstream tasks, as it customises a generic language model for a specific

task or domain data in addition to fine-tuning the direct task-related layers

(Büyüköz et al., 2020; Merchant et al., 2020). Thus, we also follow the complete

fine-tuning process in this research to adapt pre-trained transformers for news

event detection.

6.5 Summary

Automated intelligent mechanisms are crucial to effectively extract informa-

tion from news media, mainly considering the high generation and unstruc-

tured nature of data. Further emphasising this fact, previous research has pro-

posed various approaches for this information extraction task, ranging from

traditional machine learning to deep learning, capturing different levels of in-

formation. However, we noticed that most available approaches focus only on

high-resource languages such as English. Also, there was less focus on han-

dling text ambiguity which plays a key role in extracting information/events

from the text. Targeting these gaps, in this research, we aim to develop meth-

ods based on transformers to detect events at different levels of data granu-

larity in news media, introducing new research directions. We mainly involve

transformers in our approaches due to their knowledge transferability, cross-

linguality and context awareness helpful for making accurate predictions for

high- and low-resource languages while resolving text ambiguities effectively.
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Our focus is also motivated by the transformer-based models’ state-of-the-art

performance in many NLP applications.

In the next few chapters, we describe our approaches to news media event

detection. Similar to Part I of this thesis, we mainly aimed at two levels of

granularity (coarse and fine) while designing our approaches considering dif-

ferent user requirements. Chapter 7 describes the coarse-grained approach and

Chapter 8 describes the fine-grained approach. At the coarse-grained level, we

target recognising event-described news articles, allowing users to take fur-

ther actions of their choice, such as manual analysis to extract event details.

At the fine-grained level, we target extracting event-described sentences and

words from event-described articles to automate the complete event detection

process.
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Chapter 7

TRED: Coarse-grained Level –

Event Article Identification

As described in Chapter 6, this research focuses on detecting news media

events based on two levels of data granularity, coarse and fine, considering

different information requirements. Mainly, coarse-grained level detection tar-

gets to notify users about event occurrences and fine-grained level targets to

extract event-described text segments at event occurrences. As the coarse-

grained level of news media event detection, we focus on identifying event-

described news articles or event articles. Due to the high volume of news

media data generation in terms of article count and length, it is impractical

to manually go through all available articles to filter the ones with interesting

events. Also, the requirement to carefully go through all the content to under-

stand the context described in an article to resolve language ambiguities makes

this task further complex. Considering all these associated complexities, to ful-

fil the coarse-grained level requirement of news media event detection, in this

chapter, we propose a TRansformer-based Event Document classification architec-

ture (TRED) using long-sequence transformer models to automate event article

identification. We also analyse how the proposed architecture can be utilised

for cross-lingual predictions. The findings reported in this chapter have been

published in (Hettiarachchi et al., 2021a).
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TRED is mainly motivated by the recent successful application of trans-

formers in many NLP tasks (Section 6.4). Transformer-based approaches ob-

tained state-of-the-art performance in many tasks, mainly due to their knowl-

edge transferability and context awareness. However, transformers were not

popularly involved in document classification tasks due to their inability to

process long sequences. Overcoming this limitation, sparse attention mecha-

nisms were introduced recently along with long-sequence transformers (Belt-

agy et al., 2020; Zaheer et al., 2020). We propose using these transformers

for event article identification along with TRED. We also investigate how pre-

trained transformer models can be effectively utilised in cross-lingual event

article identification, reporting a comprehensive experimental study covering

four languages: English, Portuguese, Spanish and Hindi. We involve different

pre-trained transformers, including long-sequence, monolingual and multilin-

gual models for our experiments, along with several popularly used learn-

ing strategies: monolingual, multilingual, zero-shot and transfer learning. We

mainly target analysing the impact by input sequence length, cross-linguality

of the transformer model and involved data on high- and low-resource lan-

guage predictions in event article identification.

To the best of our knowledge, this is the first study to analyse the perfor-

mance of long-sequence transformers in event article identification. This claim

is further supported by the results of Challenges and Applications of Automated

Extraction of Socio-political Events from Text (CASE) 2021-Task 1. In summary, the

main contributions of this chapter are as follows.

1. We propose a TRansformer-based Event Document classification architecture

(TRED) using long-sequence transformers for event-described news arti-

cle identification.
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2. We empirically evaluate how the performance of event article identifica-

tion can be improved for different languages involving transformer mod-

els and different learning strategies, answering the following research

questions:

RQ1: Do higher input sequence lengths always improve the performance

of transformer-based event article identification?

RQ2: Can a multilingual transformer, which is only fine-tuned for a par-

ticular language, outperform a monolingual transformer of that language

in event article identification?

RQ3: Can a high-resource language improve the event article identifica-

tion performance of a low-resource language using the cross-linguality

in transformer models?

3. Our approach won subtask 1 of CASE 2021-Task 1 for the English lan-

guage while being within the top four solutions for other languages: Por-

tuguese, Spanish and Hindi out of 13 teams1.

4. We release the implementation of our approach as an open-source project

to support related research and applications2.

The rest of this chapter is organised as follows. Section 7.1 introduces TRED

for event article identification along with transformer models. Section 7.2 de-

scribes the experimental setup we used for our experiments. Section 7.3 com-

prehensively describes the conducted experiments and obtained results, along

with discussions which address the targeted research questions. Finally, Sec-

tion 7.4 summarises the conclusions with aimed future work.
1More detains about the shared task and leader board are available on https://

competitions.codalab.org/competitions/31247
2Our implementation is publicly available on https://github.com/HHansi/EventMiner

https://competitions.codalab.org/competitions/31247
https://competitions.codalab.org/competitions/31247
https://github.com/HHansi/EventMiner
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7.1 Methodology - TRED

We propose a TRansformer-based Event Document classification architecture

(TRED) to identify event-contained news articles based on the sequence clas-

sification architecture described in Section 7.1.1. Even though transformers

have been used in a wide range of NLP applications as mentioned in Section

6.4, they are not popularly involved in document classification tasks due to

their inability to process long sequences. Overcoming this limitation, long-

sequence transformer models were proposed recently. However, to the best

of our knowledge, these models have not been used with news media event

detection due to their recency, and our study is the first to analyse their per-

formance in this domain. We also use multilingual transformers with TRED to

analyse its performance at cross-lingual identifications. More details about the

transformer models and learning techniques we used are described in Section

7.1.2 and 7.1.3.

7.1.1 Transformer-based Sequence Classifier

FIGURE 7.1: Transformer-based sequence classification architecture
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We treat event article identification as a sequence classification problem,

considering the text in an article as a sequence. We propose using the

transformer-based architecture shown in Figure 7.1 for sequence classification.

Requiring to process a single sequence per instance, we only need the special

token [CLS] without [SEP] to format the inputs for this architecture (Section

6.4.1). To perform the classification task (or fine-tuning), we feed the final hid-

den state of [CLS] token, which represents the entire sequence to a softmax

layer. A softmax layer contains k neurons equivalent to the number of classes

targeted by the classifier. Each neuron follows the softmax activation function

in Equation 7.1 returning probabilities per class (Pi). zi and zj represent input

and output vectors. After calculating the class probabilities, we pick the class

with maximum probability as the final prediction.

Pi =
ezi

∑k
j=1 ezj

(7.1)

7.1.2 Transformer Models

Typically, most of the transformer models, such as BERT (Devlin et al., 2019)

and RoBERTa (Liu et al., 2019b), can only process sequences up to the length of

512. This limitation is mainly introduced due to the full self-attention opera-

tion used by these architectures, which scales quadratically with the sequence

length (Beltagy et al., 2020). However, this could negatively affect event article

processing considering the high possibility of having lengthier articles. Thus,

we mainly focus on the recently released improved models: Longformer (Belt-

agy et al., 2020) and BigBird (Zaheer et al., 2020), which can process longer

sequences with TRED.

Longformer (Beltagy et al., 2020): Longformer architecture uses a sparse at-

tention mechanism, which scales linearly with the sequence length, reducing
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the time and memory complexities in the full self-attention. The proposed

mechanism is a combination of local windowed and global attention. Two

variants of local attention named sliding window and dilated sliding win-

dow were used, focusing on local and longer contexts. The global atten-

tion was added to a few locations for learning task-specific representations,

which cannot capture using windowed attention. Using this sparse mecha-

nism, the Longformer model can process sequences up to 4,096 or 8x of the

length supported by previous transformers. Also, the original study’s experi-

ments showed that Longformer could learn long-range contexts effectively.

BigBird (Zaheer et al., 2020): BigBird architecture also uses a sparse atten-

tion mechanism with complexity linear to the number of tokens. This is a

combination of random, window and global attention mechanisms. Similar to

the Longformer architecture, random blocks and sliding windows were used,

targeting the local context. Global attention was involved, targeting global in-

formation. BigBird can handle sequences of up to 4,096 using similar hardware

used by previous transformers, which are limited to the length of 512. Addi-

tionally, the original study’s experiment results revealed that BigBird gener-

ates better contextual representations than the limited length models, such as

RoBERTa, by learning from longer sequences.

However, Longformer and BigBird only support the English language cur-

rently. Therefore, to conduct multilingual experiments, we decided to use

multilingual BERT (mBERT) and XLM-RoBERTa (XLM-R) models, which sup-

port limited sequences of length up to 512, considering these models’ language

coverage and successful applications (Karthikeyan et al., 2020; Conneau et al.,

2020).
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mBERT (Devlin et al., 2019): mBERT follows the same architecture and is

pre-trained in the same way as the monolingual BERT model (Devlin et al.,

2019). However, mBERT is pre-trained on Wikipedia text from the top 104 lan-

guages, making it a multilingual model. Some languages were sub-sampled

and super-sampled, accounting for their data availability in Wikipedia while

preparing the training data corpus. In addition to using a multilingual cor-

pus, mBERT does not rely on any cross-lingual objectives or aligned data but

exhibited surprising cross-lingual abilities in recent work (Karthikeyan et al.,

2020).

XLM-R (Conneau et al., 2020): XLM-R architecture is proposed following the

Cross-lingual Language Model (XLM) (Conneau and Lample, 2019). However,

rather than using the translation language modelling (TLM) objective used by

XLM to leverage parallel data to obtain cross-lingual inference, XLM-R uses

MLM objective (Section 6.4.1) from the RoBERTa model (Liu et al., 2019b). The

unsupervised nature of MLM allowed the model to train on a large amount

of data, significantly boosting its performance. As the pre-training corpus,

XLM-R used cleaned CommonCrawl data (Wenzek et al., 2020), covering 100

languages, including low-resource languages, considering the relatively lim-

ited scale in Wikipedia data. Following these slight modifications to XLM,

XLM-R became the state-of-the-art for cross-lingual language understanding

outperforming other models, including mBERT.

7.1.3 Learning Strategies

We involve various language-based learning strategies described below for the

fine-tuning of TRED. They have been involved in different areas such as ma-

chine translation (Zoph et al., 2016), offensive language identification (Ranas-

inghe and Zampieri, 2020) and word sense disambiguation (Hettiarachchi and
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Ranasinghe, 2021), considering their diverse characteristics. We mainly target

analysing the effectiveness of each strategy in identifying event articles and

the cross-linguality of the proposed architecture.

1. Monolingual Learning: Monolingual learning fine-tunes a model using

data from a single language. This is the common learning strategy, and

mostly, it performs well for high-resource languages with the provision

of enough data to fine-tune a transformer (Devlin et al., 2019).

2. Multilingual Learning: Multilingual learning fine-tunes a model in mul-

tiple languages simultaneously, using a training dataset composed of

different languages. This strategy can supply more training data to the

model, overcoming data scarcity in low-resource languages (Ranasinghe

et al., 2020). Also, in general, this learning can help optimise the model

effectively for different languages capturing their interconnections, un-

like monolingual learning. Additionally, a model that supports multi-

ple languages is more resource-effective and easily manageable than a

monolingual model collection. However, this learning is only applicable

to multilingual transformers.

3. Language-based Zero-shot Learning: Language-based zero-shot learn-

ing uses a model fine-tuned for the same task in another language(s) to

make predictions. This is more useful in scenarios where no training

data are available for a particular language and is especially beneficial

for low-resource languages (Ranasinghe et al., 2020; Hettiarachchi and

Ranasinghe, 2021). The cross-lingual abilities of the transformer model

play a crucial role in the success of this strategy.
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4. Language-based Transfer Learning: Language-based transfer learning is

a variant of transfer learning (TL) (Weiss et al., 2016) that transfers knowl-

edge from one language to another. This strategy fine-tunes a model

learned in a particular language for the same task in another language.

Popularly, models trained on high-resource languages are fine-tuned for

low-resource languages following this idea (Zoph et al., 2016; Ranas-

inghe and Zampieri, 2020).

7.2 Experimental Setup

This section summarises the experimental setup used with TRED for event ar-

ticle identification. We used the document level data of the GLOCON gold

dataset, which is introduced in Section 6.2, for our experiments. This dataset

has data from four languages: English (En), Portuguese (Pt), Spanish (Es) and

Hindi (Hi), and we consider English as a high-resource language and others

as low-resource languages based on the data availability. We used the Macro

F1 measure described in Section 6.3 to assess the accuracy of built models.

Considering the targeted task and languages, we involved several pre-trained

transformer models, including long-sequence and multilingual models with

TRED, and their details are summarised in Section 7.2.1. Also, the hyper-

parameter configurations we used for our experiments are available in Section

7.2.2. We followed a common convention to format training data combinations

based on the learning strategies (Section 7.1.3) while reporting results as de-

scribed in Section 7.2.3. We implemented the neural network architectures in

Python, using PyTorch (Paszke et al., 2019) and Huggingface (Wolf et al., 2020)

libraries. Our implementation is publicly available on GitHub3. We used a

GeForce RTX 3090 GPU to conduct all experiments.

3The public GitHub repository is available on https://github.com/HHansi/EventMiner

https://github.com/HHansi/EventMiner
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7.2.1 Pre-trained Transformers

As mentioned in Section 7.1.2, we involved long- and limited-sequence mono-

lingual and multilingual pre-trained transformer models for our experiments

with TRED. We especially targeted evaluating and comparing the perfor-

mance of these models in event article identification. As long-sequence mod-

els, we used Longformer (longformer-base-4096) (Beltagy et al., 2020) and Big-

Bird (bigbird-roberta-large, bigbird-roberta-base) (Zaheer et al., 2020) pre-trained

transformers. Even though we targeted using large versions of the models,

we had to use Longformer’s base version for all experiments and BigBird’s

base version for a few long-sequence experiments due to resource limitations.

Also, these models only support English currently. Thus, for other languages’

monolingual experiments, we used limited-sequence models, BERTimbau

(BERTimbau-large) (Souza et al., 2020) and BETO (BETO-cased) (Canete et al.,

2020) trained in Portuguese and Spanish, which are variants of BERT (Devlin et

al., 2019). Also, we involved BERT (bert-large-cased) model trained in English to

compare with long-sequence model performance. As the multilingual models

also, limited-sequence models, mBERT (bert-base-multilingual-cased) and XLM-

R (xlm-roberta-large) (Conneau et al., 2020) trained in 104 and 100 languages,

including the targeted languages were involved considering the unavailability

of long-sequence multilingual models. We used HuggingFace’s model repos-

itory4 (Wolf et al., 2020) to obtain all of these pre-trained transformers. Table

7.1 summarises more details about these models’ design, and Table 7.2 sum-

marises the targeted language coverage in data used to pre-train these models.

4HuggingFace models are available on https://huggingface.co/models

https://huggingface.co/models
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TABLE 7.1: Pre-trained transformer model details, including the number of trained
languages (#Lgs.), maximum sequence (Max. Seq.) length, layers (L), hidden states
(Hm), attention heads (A), vocabulary size (V) and total parameters (#Params). Under
tokenisers, WPM and SPM refer to WordPiece (Wu et al., 2016) and SentencePiece
(Kudo and Richardson, 2018) models, BPE refers to Byte Pair Encoding (Sennrich et

al., 2016), and bBPE refers to byte-level BPE.

Model #Lgs. Tokeniser
Max. Seq.

Length
L Hm A V #Params

BERT 1 WPM 512 24 1024 16 30k 335M
BERTimbau 1 WPM 512 24 1024 16 30k 330M
BETO 1 BPE 512 12 1024 16 32k 110M
Longformer(Base) 1 bBPE 4096 12 768 12 50k 149M
BigBird(Base) 1 SPM 4096 12 768 12 50k 128M
BigBird(Large) 1 SPM 4096 24 1024 16 50k 360M
mBERT 104 WPM 512 12 768 12 110k 172M
XLM-R 100 SPM 512 24 1024 16 250k 550M

TABLE 7.2: Coverage of targeted languages by data corpora used to pre-train trans-
former models. Token counts are in Billions, and estimations of token percentages per
language compared to the full corpus are within brackets. For the mBERT model, we
approximated the given values using extrapolation (Conneau et al., 2020; Lee et al.,

2021), considering the unavailability of statistics.

Model
Tokens (B)

En Pt Es Hi

BERT 3.30 (100%) - - -
BERTimbau - 2.68 (100%) - -
BETO - - 3 (100%) -
Longformer 6.5 (100%) - - -
BigBird 19.2 (100%) - - -
mBERT 1.73 (28.8%) 0.18 (3%) 0.60 (10.1%) 0.07 (1.2%)
XLM-R 55.61 (18.8%) 8.41 (2.8%) 9.37 (3.2%) 1.72 (0.6%)

7.2.2 Hyper-parameters

To maintain the consistency among architectures to generate comparable re-

sults, we used a common set of hyper-parameters for our experiments. We also

believe this will provide a good starting configuration for researchers willing

to explore our approach further. We used the batch size of four, the learning
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rate of 1e−5 with Adam optimiser and epochs of three with an early stopping

patience of 10, considering the computational complexities associated with

transformers. We set evaluation steps allowing 6-12 evaluations per training

epoch depending on the size of the training dataset. A split of 10% from train-

ing data is used for these evaluations, and the rest is used for training. To

mitigate the impact on results by the randomness associated with deep neu-

ral networks, we used the majority-class self-ensemble approach, which also

helps improve the overall performance (Hettiarachchi and Ranasinghe, 2020).

With this setting, per experiment, we trained three models initialised with dif-

ferent random seeds and took the majority vote of model predictions as the

final prediction. We limit the ensemble model count to three due to the high

computational complexities in processing long sequences using transformers.

We varied the input sequence length during our experiments to analyse its im-

pact on the final outcome. Thus, more details about the used sequence lengths

are available in Section 7.3.

7.2.3 Training Formats

TABLE 7.3: Training data formats with learning strategies

Strategy Format Description

Monolingual
learning

L1 learn from data in language L1

Language-
based TL

L1→L2 learn the same task from data in language L1
and then from data in language L2

Multilingual
learning

L1+L2+..+Ln learn from data in multiple languages
L1, L2, ...Ln simultaneously

In our experiments, we involved all language-based learning strategies

introduced in Section 7.1.3. For simplicity, we use a common convention to



Chapter 7. TRED: Event Article Identification 181

format training data depending on the learning strategy to report our results

consistently, as described in Table 7.3.

7.3 Results and Discussion

This section mainly presents evaluation results and findings of event article

identification, targeting the accuracy in predictions. The transformer-based

sequence classification architecture introduced in Section 7.1.1 was used with

different pre-trained transformers to build models in TRED. Additionally, Sec-

tion 7.3.1 discusses the efficiency and scalability of proposed models.

Initially, we evaluated the performance of monolingual classifiers. We used

the monolingual transformers: BERT, Longformer, BigBird, BERTimbau and

BETO to build these models based on the languages in the training data. We

especially focused on analysing the effect of input sequence length on pre-

dictions. However, as mentioned in Section 7.2.1, only for English, there are

pre-trained long-sequence models which can handle up to 4,096-length se-

quences. Thus, for other languages, we had to limit the maximum sequence

length to 512 during our experiments. For English, we experimented up to

the sequence length of 900, considering the sequence length distributions of

targeted data (Figure 6.2). Table 7.4 summarises the results we obtained using

different monolingual models with varying sequence lengths.

According to the results in Table 7.4, for En, the Longformer-based model

performed better with long input sequences, but both BigBird- and BERT-

based models performed better with short sequences. Overall, long-sequence

models (Longformer and BigBird) outperformed the BERT-based model even

with short input sequences (≤512). Among long-sequence models, in the ma-

jority, BigBird made more accurate predictions than Longformer. For Pt, the

BERTimbau-based model with the longer input sequence (512) performed best
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TABLE 7.4: Evaluation results: Macro F1 of document classification using monolingual
transformers with different input sequence lengths. The best results per language are
in bold. Due to resource limitations, we had to use the base versions of the transform-

ers for some experiments, and they are marked with *.

Lang. Transformer
Sequence Length

256 512 700 900

En
Longformer 0.8168* 0.8162* 0.8184* 0.8329*
BigBird 0.8339 0.8276 0.8230* 0.8225*
BERT 0.8110 0.8096 - -

Pt BERTimbau 0.7405 0.8121 - -

Es BETO 0.7214 0.7064 - -

with a 7.16% increment of F1, but for Es, the BETO-based model with the

shorter sequence length (256) performed best with a 1.5% increment of F1.

Based on our results, we answer RQ1 as follows.

RQ1: Do higher input sequence lengths always improve the performance of

transformer-based event article identification?

During our experiments, we analysed the performance (or accuracy) of

transformer-based models with varying input sequence lengths. We noticed

different impacts on the final predictions by the sequence length, mainly de-

pending on the pre-trained transformer model. For En, we compared the per-

formance of long-sequence models (Longformer and BigBird) with the BERT

model, which can handle limited sequences up to the length of 512. Compar-

atively, long-sequence models were pre-trained on long input sequences and

large corpora (Table 7.2). Therefore, these models can effectively fine-tune for

a downstream task even seeing less amount of data (short sequences), outper-

forming the BERT model. Comparing Longformer and BigBird, in addition

to the variations in attention mechanisms, BigBird was pre-trained on a larger

corpus than Longformer (Table 7.2). This helps the fine-tuning process of the
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BigBird model, resulting in slightly improved F1 values than Longformer, es-

pecially with short input sequences. However, increasing the sequence length,

we noticed an increment of F1 values with Longformer and a decrement with

BigBird. This could mainly happen depending on the connections between

pre-trained knowledge and fine-tuning data. Contrary to Longformer, the

BigBird-based model gets slightly confused with increasing sequences. For

limited-sequence models (BERT, BERTimbau and BETO), En and Es resulted

in slightly better F1 with short input sequences (256), but Pt resulted in no-

tably better F1 with long sequences (512). Considering the average F1 from all

languages per sequence length, for 256 and 512, we get 0.7576 and 0.7761, re-

spectively. This further emphasises that if the transformer has seen fewer data

during the pre-training process, it requires to see more data (long sequences)

during the fine-tuning process for effective learning.

In summary, high input sequence lengths do not always improve the

performance of transformer-based event article identification. Using long-

sequence models (e.g. BigBird), we can get good results with short input se-

quences, reducing the processing and memory requirements. However, over-

all, high input sequences can improve document classification performance for

limited-sequence transformers such as BERT.

For multilingual experiments, we used multilingual transformers: mBERT

and XLM-R, which can process up to 512-length sequences with TRED due to

the unavailability of long-sequence multilingual models. Based on the find-

ings for RQ1, we fixed the input sequence to 512 during these experiments.

We involved different learning strategies introduced in Section 7.1.3 to assess

how they can improve the model’s accuracy on event document identifica-

tion with high- and low-resource languages. While applying these strategies,
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we only allowed transfer and zero-shot learning from high-resource to low-

resource languages because the contrary approach is not reasonable. Table 7.5

summarises the results we obtained.

TABLE 7.5: Evaluation results: Macro F1 of document classification using multilingual
transformers with different learning strategies. Language indicates the language of test
data. The best results per language are in bold, and zero-shot learning scenarios are

marked with ‡.

Strategy Transformer Training Data
Language

En Pt Es Hi

monolingual
learning

mBERT
Pt - 0.7885 - -
Es - - 0.5768 -
En 0.7998 0.7437‡ 0.6648‡ 0.5084‡

XLM-R
Pt - 0.4647 - -
Es - - 0.7333 -
En 0.8245 0.8277‡ 0.7333‡ 0.8047‡

transfer
learning

mBERT
En→Pt 0.7896 0.8015 0.6667‡ 0.6977‡

En→Es 0.8027 0.7633‡ 0.6719 0.6090‡

XLM-R
En→Pt 0.8184 0.8268 0.7556‡ 0.8160‡

En→Es 0.8095 0.7899‡ 0.6947 0.7685‡

multilingual
learning

mBERT
En+Pt 0.8092 0.7853 0.6595‡ 0.4396‡

En+Es 0.8120 0.7380‡ 0.6760 0.3520‡

En+Pt+Es 0.8029 0.7809 0.6889 0.5902‡

XLM-R
En+Pt 0.8244 0.8207 0.7172‡ 0.8126‡

En+Es 0.8006 0.7599‡ 0.7172 0.7944‡

En+Pt+Es 0.8248 0.8028 0.7598 0.7948‡

According to the results in Table 7.5, most of the multilingual models

fine-tuned in a particular language did not perform better than the monolin-

gual models trained in that language (Table 7.4). However, with zero-shot

learning, the XLM-R model trained on the high-resource (En) language made

more accurate predictions for low-resource languages (Pt and Es), outper-

forming monolingual and mBERT-based models. Overall, transfer learning
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a low-resource language after the high-resource language improved the re-

sults of most mBERT-based models but reduced the results of most XLM-R-

based models compared to the models which only fine-tuned on En. A similar

trend is also noticed with multilingual learning scenarios. However, XLM-R-

based models generally outperformed the mBERT-based models in all learning

strategies. Following these results, we answer RQ2 and RQ3 below.

RQ2: Can a multilingual transformer, which is only fine-tuned for a particular lan-

guage, outperform a monolingual transformer of that language in event article identi-

fication?

To answer this question, we focus on the results in Table 7.4 and under

monolingual learning of Table 7.5 except the zero-shot learning scenarios.

Among the transformers we used, the mBERT model is approximately pre-

trained on fewer data than that particular language data used by monolingual

models and the XLM-R model (Table 7.2). We also received the lowest F1 val-

ues from mBERT-based models in our experiments. Comparing the monolin-

gual models with the XLM-R model, XLM-R has seen more data per language

during the pre-training. Thus, it has a large vocabulary size, which leads to a

high number of parameters to learn during the fine-tuning (Table 7.1). There-

fore, when a small amount of data is available for fine-tuning, XLM-R cannot

learn the downstream task effectively, like in the scenario with Pt. However,

XLM-R-based models performed on par or better than monolingual models for

En and Es. These results also indicate that when a high proportion of language

data has seen during the pre-training, it positively affects fine-tuning.

In summary, our results suggest that for a particular language, if a suffi-

cient amount of data is provided for fine-tuning and that language covers an

adequate proportion in model pre-trained data, a multilingual transformer can

perform on par or better than a monolingual transformer of that language in
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event article identification. The fine-tuning data amount is relative to the in-

stance count as well as the sequence length.

RQ3: Can a high-resource language improve the event article identification perfor-

mance of a low-resource language using the cross-linguality in transformer models?

Targeting this question, we involved different learning strategies to anal-

yse the cross-lingual capabilities of the multilingual transformers (mBERT

and XLM-R) in document classification. According to the results (Table 7.5),

with zero-shot learning, the multilingual models, which only learned the

high-resource language (En), performed on par or better than the models

that learned corresponding low-resource languages (Pt and Es), in majority

cases. The XLM-R model fine-tuned in En outperformed the mBERT-based

and monolingual models that learned Pt or Es. Also, it resulted in a good F1

(≈80%) for Hi language, which does not have any training instances. These

results further emphasise the high data requirement for multilingual models

during the fine-tuning mentioned in RQ2’s findings. Also, they reveal that by

utilising the cross-linguality of transformers, effective predictions can make

for low-resource languages, only learning high-resource languages.

We also analysed the impact of transfer learning a low-resource language

after a high-resource language on document classification performance. Fol-

lowing our results, such learning is not much helpful for a high-resource

language, but it improves the low-resource language performance than only

learning from that particular language. This claim is further supported by the

evolution of Macro F1 scores computed on validation datasets during the train-

ing process’s evaluation steps. As shown in Figure 7.2, with transfer learning

(TL), multilingual models obtain high F1 values much earlier than with di-

rect learning. This indicates even with few training instances, a model can

learn well using the knowledge obtained from the high-resource language and
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(A) Pt vs En→Pt (B) Es vs En→Es

FIGURE 7.2: Macro F1 scores for the validation sets at different evaluation steps of
training processes, which involved direct language learning (Pt, Es) and transfer learn-
ing from a high-resource language (En→Pt, En→Es) with the sequence classification

model with mBERT and XLM-R transformers.

the transformer’s cross-lingual abilities. Also, our zero-shot learning results

under TL indicate that even transfer learning another low-resource language

could improve the performance of a low-resource language. Overall, com-

pared to fine-tuning on a high-resource language, TL showed improvements

in mBERT-based models (+4.61% F1 on average) and slight drops in XLM-R-

based models (-1.26% F1 on average). If the low-resource language datasets

are very small compared to the high-resource language data, TL will not make

notable improvements on final predictions, explaining the behaviour of these

XLM-R models. However, XLM-R outperformed mBERT models in all set-

tings, emphasising its superior cross-linguality.

Furthermore, we experimented with multilingual learning, which is espe-

cially advantageous in situations where there are few training instances from

low-resource languages that are insufficient for monolingual or transfer learn-

ing. It resulted in a combination of improvements and deteriorations com-

pared to learning only a high-resource language and transfer learning a low-

resource language afterwards. Especially for Hi, there are significant drops in

F1 in mBERT models. Overall, the multilingual results suggest that learning
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(A) En (B) Pt (C) Es

(D) En+Pt (E) En+Es (F) En+Pt+Es

FIGURE 7.3: Macro F1 scores for the validation sets at different evaluation steps of
training processes, which involved monolingual (En, Pt, Es) and multilingual (En+Pt,
En+Es, En+Pt+Es) learning with the sequence classification model with mBERT and
XLM-R transformers. During multilingual learnings, a composition of samples from

each language is used as the validation set.

from long sequences from multiple languages could sometimes confuse the

model, depending on the languages’ interconnections and the transformer’s

pre-trained knowledge. However, similar to TL, Figure 7.3 illustrates that mul-

tilingual learning also effectively helps the fine-tuning process than learning

the languages separately. Also, according to the results of En and Es, multi-

lingual learning applied XLM-R models outperformed all other combinations,

emphasising the potential of this strategy.

Based on the findings, we can conclude that high-resource languages can

improve low-resource languages’ event article identification performance us-

ing the cross-linguality in transformer models. Overall, comparing the multi-

lingual transformers, XLM-R is more effective in cross-lingual predictions than

mBERT. Considering the learning strategies, with zero-shot learning, XLM-R
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models that were trained only on a high-resource language could make ef-

fective predictions for low-resource languages, outperforming other monolin-

gual settings. Also, transfer and multilingual learning improved the model

learning process more than learning low-resource languages separately. How-

ever, sometimes, combined languages could also slightly confuse the model

depending on the fine-tuning data and the transformer’s original knowledge,

as seen in our results.

We submitted the best results obtained using our approaches to subtask 1:

Document Classification of CASE 2021 shared task 1: Multilingual Protest News

Detection (Hürriyetoğlu et al., 2021a). The official results of the competition

show that our approach won the first place in the English language while being

within the top four solutions for other languages: Portuguese (rank-2), Spanish

(rank-4) and Hindi (rank-3)5. These results further emphasise the novelty and

effectiveness of our approach for event article identification.

7.3.1 Efficiency and Scalability

In addition to being accurate, event detection approaches need to be efficient

and scalable for large data volumes (Section 1.1.4). The efficiency of a classifi-

cation model mainly relies on the inference speed as the training/fine-tuning

can be done offline without interfering with its later usage. We analysed the

inference speed of each transformer-based model, and obtained results are re-

ported in Appendix B.1. In summary, our analysis indicated that on a GPU

(GeForce RTX 3090), all the built models make predictions within less time

than a second. On a CPU (Intel(R) Xeon(R) @ 2.30GHz), the process took a lit-

tle longer but was limited to a maximum of 7 seconds with an average of 4.12

seconds, emphasising the efficiency of the models.

5The leader board of CASE 2021 shared task is publicly available on https://

competitions.codalab.org/competitions/31247

https://competitions.codalab.org/competitions/31247
https://competitions.codalab.org/competitions/31247
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There is no direct impact of increasing data volumes on an already trained

classifier. However, classifiers should be fast enough to make predictions on

large data volumes without any considerable delay. According to the efficiency

analyses done on a GPU and CPU, our models are sufficiently fast to handle

a query within a very short period. Also, these experiments indicated that

the inference speed could be improved more by increasing the machine’s com-

putational power. Furthermore, it is also possible to have multiple model in-

stances to parallelly process more data, considering the models’ memory util-

isation (Appendix B.1). Overall, these findings suggest the built models are

sufficiently scalable for handling large data volumes.

7.4 Conclusions

In this chapter, we proposed a TRansformer-based Event Document classifica-

tion architecture (TRED) using long-sequence transformer models to identify

event-described news articles. We especially involved transformers, consid-

ering their transferability, context awareness and state-of-the-art performance

in many NLP tasks. We also analysed how the proposed architecture can be

utilised for cross-lingual event article identification on high- and low-resource

languages, using different pre-trained transformer models and learning strate-

gies, opening wider research avenues.

We used the document level data of the GLOCON gold standard dataset

and several monolingual and multilingual pre-trained transformers, which

support long sequences as well as limited sequences of length 512 for our ex-

periments. We submitted the best results we obtained to subtask 1 of CASE

2021 shared task 1, and they won first place in English and ranked within

the top four solutions for Portuguese, Spanish and Hindi, emphasising the
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novelty and effectiveness of our approach. Our results show high input se-

quence lengths do not always improve the performance of transformer-based

event article identification, answering RQ1. This finding suggests the sequence

length should be picked mainly depending on the pre-trained transformer in

addition to the targeted task. Since low sequence lengths reduce the model’s

computational requirements during the training, this finding will also help to

build resource-efficient and effective models. Also, our experiments indicate

if sufficient data exist for fine-tuning and the corresponding language cov-

ers an adequate proportion of the transformer’s pre-trained data, a multilin-

gual model can outperform a monolingual model, addressing RQ2. Following

RQ3, our experiments reveal that high-resource languages can improve low-

resource languages’ event article identification performance using the cross-

linguality in transformer models, especially with zero-shot and multilingual

learning. Among the multilingual transformers we involved, XLM-R outper-

formed mBERT models in most cases, emphasising its effectiveness in cross-

lingual predictions. These findings will be beneficial from the viewpoint of

real applications because a multilingual event detection model can support

multiple languages in a more resource-efficient manner than maintaining a set

of monolingual models per language. Also, they provide a basis for possi-

ble language-based extensions in this area, combining high- and low-resource

languages.

Overall, the high F1 measures (>75%) received in four languages, despite

the training data availability, prove the built models’ accuracy and expand-

ability to different languages. Also, the approach proposed to build models is

independent of any domain- or language-specific features, being able to be ap-

plied to any data, further emphasising its expandability. In terms of efficiency,

inference speeds of all models are sufficiently fast to process data as they ap-

pear via news media. Furthermore, models’ resource utilisation and speed
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indicate that they can scale successfully to support efficient predictions on an

increased data volume, fulfilling all the essential requirements of an event de-

tection mechanism.

By the time we conducted our experiments, there were no pre-trained mul-

tilingual long-sequence transformers available, but recent research released a

multilingual longformer (Sagen, 2021), which can be utilised in future exper-

iments. Using this multilingual long-sequence transformer, we plan to anal-

yse the performance of TRED on cross-lingual predictions. Also, we aim to

extend our research to more languages, covering high- and low-resource lan-

guages and analyse how well TRED can handle the predictions. It is also worth

exploring how the interconnections between languages can be utilised to im-

prove long-sequence predictions.

Following the details on coarse-grained level event detection in news me-

dia in this chapter, we report our approaches for fine-grained level event de-

tection in the next chapter. At the coarse-grained level, we mainly targeted

notifying users about events by identifying event articles using a transformer-

based approach (TRED) involving long-sequence transformers. At the fine-

grained level, we target extracting event-described text segments (sentences

and words) from event articles to provide detailed event information to users

using an automated process, as described in Chapter 8.
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Chapter 8

TTL: Fine-grained Level – Event

Sentence and Word Extraction

In Chapter 7, we proposed TRED using long-sequence transformers to notify

users about events by identifying event-described news articles or event arti-

cles, covering the coarse-grained level of news media event detection. After

identifying event articles, users need to manually go through the content of

these articles to extract important event information. However, it is helpful

to develop approaches for fine-grained level detection, which extracts event-

described text segments following the coarse-grained level detection, to auto-

mate the complete event detection process. As the fine-grained level of news

media event detection, we target extracting event-described sentences (event

sentences) and words (triggers and arguments) from event articles. For ex-

ample, Figure 8.1 shows a non-event and event sentence from an event article

with corresponding event words. Event sentence extraction helps to locate the

important sentences within an article/document so that they can be further

processed to extract event triggers and arguments. Following this idea, fulfil-

ing the fine-grained level requirement of news media event detection, in this

chapter, we propose a novel learning strategy named Two-phase Transfer Learn-

ing (TTL) based on transformers, which can transfer knowledge between tasks

in different data granularity (i.e. sentence or token), to extract event sentences
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and words with mutual support. We also analyse how the proposed strat-

egy can be utilised for cross-lingual predictions. The findings reported in this

chapter have been published in (Hettiarachchi et al., 2023a).

FIGURE 8.1: Sample sentences from a news article which was recognised as an event
article. The first sentence does not describe the details of the targeted protest event, but
the second sentence describes the highlighted details (event trigger and arguments:

participant and event time).

Similar to the coarse-grained level approach, our approaches for fine-

grained extractions are also mainly motivated by the recent success of trans-

formers (Section 6.4). Transformer-based approaches have been proposed for

sentence and word/token level event extraction tasks recently, setting the

state-of-the-art performance (Section 2.3). However, to the best of our knowl-

edge, all the available approaches considered sentence and token level detec-

tion as two separate tasks and built separate models per task, ignoring their

interconnections, which would be helpful for mutual learning. Targeting this

gap, we propose TTL, which allows a transformer to learn a task, following

another related task in different data granularity (i.e. sentence or token), trans-

ferring knowledge from the first task. We apply this learning for sentence and

token level event detection tasks involving different pre-trained transformer

models and analyse their performance and involved tasks’ transferability.

We also investigate how pre-trained transformer models can be effectively

used in cross-lingual event sentence and word extraction, reporting a com-

prehensive experimental study covering three languages: a high-resource

language (English) and two low-resource languages (Portuguese and Span-

ish) (Section 6.2). We involve different pre-trained transformers, including
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monolingual and multilingual models for our experiments, along with several

language-based learning strategies: monolingual, multilingual, transfer and

zero-shot learning. We further extend these analyses with TTL to investigate

its performance with other language-based learning strategies. Figure 8.2 il-

lustrates a summary of learning strategies we devised in this study, including

the explored applications using different data types. To maintain simplicity,

we did not include zero-shot learning in this diagram because it is applicable

to all other strategies.

FIGURE 8.2: Learning strategies involved in this study

To the best of our knowledge, this is the first attempt to transfer knowledge

from different data granularities (i.e. sentence and token levels) and analyse

its performance on event sentence and word extraction in news media. Also,

we report the first comprehensive experimental study on cross-lingual event

detection at the sentence and token levels, as far as we are aware. In summary,

the main contributions of this chapter are as follows.
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1. We propose a novel learning strategy named Two-phase Transfer Learning

(TTL), involving different levels of data granularity and the capabilities

of state-of-the-art transformer models.

2. We apply the proposed strategy to sentence and word/token level tasks

of news media event detection and discuss its effectiveness and applica-

bility.

3. We empirically evaluate how the performance of news media event de-

tection at the sentence and token levels can be improved for differ-

ent languages involving the cross-linguality in transformer models and

language-based learning strategies along with TTL, answering the fol-

lowing research questions:

RQ1: Can an event detection model based on a multilingual transformer,

which is only fine-tuned for a particular language, outperform a model

based on a monolingual transformer of that language?

RQ2: Can a high-resource language improve the event detection per-

formance of a low-resource language using the cross-linguality in trans-

former models?

RQ3: Can TTL using sentence and token level event detection tasks im-

prove the performance of involved tasks in monolingual and multilin-

gual settings?

4. We release the implementation used for our experiments as an open-

source project1 to support related research and applications.

The rest of this chapter is organised as follows. Section 8.1 introduces the

proposed approach for event sentence and word extraction along with TTL.

1Our codebase is publicly available on https://github.com/HHansi/MultiEventMiner

https://github.com/HHansi/MultiEventMiner
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Section 8.2 describes the experimental setup we used for our experiments. Sec-

tion 8.3 comprehensively describes the conducted experiments and obtained

results along with discussions which address the targeted research questions.

Finally, Section 8.4 summarises the conclusions with aimed future work.

8.1 Methodology

Transformer-based approaches have recently been proposed for sentence and

word/token level event detection tasks, setting the state-of-the-art perfor-

mance (Section 2.3). Following these trends, we use the transformer-based ar-

chitectures described in Section 8.1.1 for sentence and token level predictions

in this research. However, as far as we know, none of the available methods

accounts for the interconnections between sentence and token levels, target-

ing possible mutual improvements, especially in settings where labelled data

are scarce, such as low-resource language predictions. Focusing on this gap,

we propose a novel Two-phase Transfer Learning (TTL) strategy combining the

characteristics of traditional transfer learning, multi-task learning and trans-

formers in Section 8.1.2. Using this approach, we aim to transfer knowledge

from data at different granularities (i.e. sentence and token levels). Also, to

the best of our knowledge, this is the first attempt to transfer knowledge from

different data granularities to identify events in news text.

8.1.1 Transformer-based Classifiers

Similar to our event article identification approach, we treat event sen-

tence identification as a sequence classification problem. Thus, we use the

transformer-based sequence classification architecture proposed in Section
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7.1.1, considering a sentence as an input sequence, for event sentence classi-

fication. For token level predictions, we use the transformer-based sequence

labelling architecture shown in Figure 8.3. Similar to the document/sentence

level model, this also requires processing a single sequence per instance. Thus,

we only need the special token [CLS] to format the input text. To perform the

token level classification, we feed the final hidden state of each token to a sep-

arate softmax layer. As described in Section 7.1.1, a softmax layer contains k

neurons equivalent to the number of classes targeted by the classifier, which

follow the softmax activation function (Equation 7.1). Each of these neurons re-

turns probabilities per class, and we pick the class with maximum probability

as the final prediction.

FIGURE 8.3: Transformer-based token classification architecture

8.1.2 Two-phase Transfer Learning (TTL)

Transfer learning (TL) is the process of improving a target predictive function

of task Tt at a target domain Dt using the related knowledge gained from a
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task Ts at a source domain Ds where Ds ̸= Dt or Ts ̸= Tt (Weiss et al., 2016).

This knowledge transfer also helps mitigate overfitting and underfitting prob-

lems that arise with deep neural networks due to data limitations, allowing

to use such networks for a wide range of tasks where training data is scarce

(He et al., 2020; Ranasinghe et al., 2020). Mainly, there are two TL types based

on the consistency between the source and the target feature and label spaces

(Zhuang et al., 2021). If both source and target feature and label spaces are

equivalent (Xs = Xt and Ys = Yt), it is named homogeneous TL, and if either

feature spaces or label spaces are not equivalent (Xs ̸= Xt and/or Ys ̸= Yt), it is

named heterogeneous TL. Comparatively, homogeneous TL is commonly used

in previous research, but heterogeneous TL is more advantageous considering

its ability to learn from different feature/label spaces (Day and Khoshgoftaar,

2017). However, most available solutions handle the heterogeneity by trans-

forming feature/label spaces into common spaces with the possibility of losing

important information in data or original data structure (Shi et al., 2010; Moon

and Carbonell, 2016).

The concept of multi-task learning (MTL) is popularly used in recent re-

search to handle heterogeneous tasks (Cruz et al., 2020; Mathew et al., 2021).

MTL optimises a model for more than one task simultaneously leveraging the

generalisation across all tasks (Zhang and Yang, 2021). It learns the intercon-

nections between tasks rather than transferring knowledge from a related task

as with TL. Also, this learning does not require space transformations simi-

lar to heterogeneous TL. However, this strategy requires shared training in-

stances across all tasks, which are unavailable in many scenarios, including

low-resource language-based predictions.
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Considering the above limitations in heterogeneous TL and MTL, we pro-

pose a hybrid strategy named TTL in this research. We mainly utilise the char-

acteristics of transformers for our approach. Transformer models are origi-

nally designed with the ability to fine-tune a pre-trained language model for

a downstream task by adding an additional output layer (Section 6.4.1). This

approach allows transferring the knowledge from the language model to the

downstream task predictions. Following this idea, we propose fine-tuning a

pre-trained transformer for two related tasks in two sequential phases, unlike

the simultaneous learning that happens with MTL. We add different output

layers to the model depending on the targeted task at each phase but share the

transformer weights among the tasks allowing the phase-2 task to learn from

the phase-1 task in addition to the original language model.

With TTL, we target transferring knowledge from different levels of data

granularity (i.e. sentence and token level) in news event detection. We aim to

analyse how the relationships and data sizes at different levels affect learning

and model performance. Sentence and token levels have intermediate rela-

tionships, specifically from the fine-grained (token) level to the coarse-grained

(sentence) level, which helps derive the final labels. For example, if a sentence

has an event trigger, it is an event sentence. Considering the data sizes, there

is a tendency to have more labelled data at the sentence level than the token

level due to the data annotation complexities at token data (Hürriyetoğlu et

al., 2021b). We use the transformer architectures introduced in Section 8.1.1 for

sentence and token level classifications with TTL as shown in Figure 8.4.

For the sentence to token level transfer learning, the transformer model is

initially fine-tuned for the sentence level task by feeding the output of [CLS] to

a softmax layer, which predicts probabilities per class in the sentence level,

P0, P1, ...Pk, as illustrated in Figure 8.4a. Then, the fine-tuned transformer

weights are again fine-tuned for the token level task by feeding the output
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(A) TTL: sentence level to token level

(B) TTL: token level to sentence level

FIGURE 8.4: Two-phase classification architectures

of each token to separate softmax layers, which predicts the token level class

probabilities, P
′
0, P

′
1, ...P

′
k, utilising the transformer’s pre-trained and phase-1

fine-tuned/sentence level knowledge. The same architectures are trained con-

versely for the token to sentence level transfer learning as shown in Figure 8.4b.

Initially, the transformer model is fine-tuned for the token level task by adding

multiple softmax layers per token and then fine-tuned again for the sentence

level task using a single softmax layer over the [CLS] output, transferring the

transformer’s pre-trained and phase-1 fine-tuned/token level knowledge for

sentence level predictions.
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8.2 Experimental Setup

This section summarises the experimental setup of our architectures for event

sentence and word (trigger and argument) extraction. We used the sentence

and token level data of the GLOCON gold dataset, introduced in Section 6.2

for our experiments. Over these levels, this dataset has data from three lan-

guages: English (En), Portuguese (Pt) and Spanish (Es). Among these lan-

guages, we consider English as a high-resource language and others as low-

resource languages based on data availability. We used Macro F1 and CoNLL

2003 F1 measures described in Section 6.3 to evaluate the models’ accuracy.

Considering the targeted languages, we involved four popular transformer

models, including a multilingual model for our experiments as detailed in Sec-

tion 8.2.1. The hyper-parameter configurations we used are available in Section

8.2.2. For model fine-tuning, we involved all language-based learning strate-

gies introduced in Section 7.1.3 to analyse their performance in cross-lingual

news event detection at the sentence and token levels and their impact on TTL.

We followed a common convention to format training data combinations along

with the learning strategies while reporting results, which is explained in Sec-

tion 8.2.3. We implemented all the neural network architectures in Python,

using PyTorch (Paszke et al., 2019), FARM2 and Huggingface (Wolf et al., 2020)

libraries. Our implementation is publicly available on GitHub3. We used a

GeForce RTX 3090 GPU to conduct all experiments.

8.2.1 Pre-trained Transformers

We used three monolingual pre-trained transformer models and one

multilingual model based on the targeted languages for our experiments. As

2FARM is available on https://github.com/deepset-ai/FARM
3Our codebase is publicly available on https://github.com/HHansi/MultiEventMiner

https://github.com/deepset-ai/FARM
https://github.com/HHansi/MultiEventMiner
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monolingual models, BERT (bert-large-cased) (Devlin et al., 2019), and its vari-

ants, BERTimbau (BERTimbau-large) (Souza et al., 2020) and BETO (BETO-

cased) (Canete et al., 2020) models trained in English, Portuguese and Spanish

were used. As the multilingual model, XLM-R (xlm-roberta-large) (Conneau et

al., 2020) model trained in 100 languages, including the targeted languages,

was used. Previous research had commonly used Multilingual BERT (mBERT)

and XLM-R models for multilingual experiments, but according to the results

in Chapter 7 and recent studies (Ranasinghe et al., 2020; Hettiarachchi et al.,

2021a), mostly, the XLM-R model outperformed the mBERT model, proving

its superior cross-linguality. Therefore, we only use the XLM-R model for our

experiments in this chapter. We used HuggingFace’s model repository4 (Wolf

et al., 2020) to obtain all these pre-trained transformers. More details about

these models’ design and language coverage in pre-training data are available

in Tables 7.1 and 7.2 in Chapter 7.

8.2.2 Hyper-parameters

We used a common set of hyper-parameters for our experiments to generate

comparable results, maintain consistency among architectures and provide a

good starting configuration for researchers willing to explore our approaches

further. For all models, we fixed the maximum sequence length to 128, con-

sidering the sequence length distribution of targeted data. We used the batch

size of eight, the learning rate of 1e−5 with Adam optimiser and epochs of three

with an early stopping patience of 10, considering the computational complex-

ities associated with transformers. We set evaluation steps allowing 6-13 eval-

uations per training epoch depending on the size of the training dataset. A

split of 10% from training data is used for these evaluations, and the rest is

4HuggingFace models are available on https://huggingface.co/models

https://huggingface.co/models
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used for training. To mitigate the impact on results by the randomness asso-

ciated with deep neural networks, we used the majority-class self-ensemble

approach, which also helps improve the overall performance, following recent

trends (Hettiarachchi et al., 2021a; Awasthy et al., 2021). With this setting, per

experiment, we trained five models initialised with different random seeds

and took the majority vote of model predictions as the final prediction.

8.2.3 Training Formats

We involved all language-based learning strategies described in Section 7.1.3

along with TTL for our experiments. To maintain consistency in result formats,

we use the convention introduced in Section 7.2.3 to format training data de-

pending on the learning strategy while reporting results in this chapter. Ad-

ditionally, we use the format of L(1) – L(2), which indicates learning the first

phase (task 1) from data in language/language combination L(1) and the sec-

ond phase (task 2) from data in language/language combination L(2), for TTL.

8.3 Results and Discussion

This section presents the evaluation results of event sentence and word (trig-

ger and argument) extraction targeting the accuracy of predictions made us-

ing proposed architectures and learning strategies. While applying language-

based learning strategies (Section 7.1.3), we only allowed transfer and zero-

shot learning from high-resource to low-resource languages because the con-

trary approach is not reasonable. We report the results of transformer-based

sequence and token classification architectures only learning the correspond-

ing level of data under one-phase learning (Section 8.3.1). In this section, we
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address the research questions: RQ1 and RQ2, analysing both sentence and to-

ken level results. Following this, Section 8.3.2 reports the results of two-phase

architectures, which learn both sentence and token level data sequentially, and

answers the RQ3 based on our overall findings.

8.3.1 One-phase Learning

We report and discuss the results of transformer-based sequence and token

classification architectures by learning one-phase (sentence or token level data)

in Sections 8.3.1.1 and 8.3.1.2, respectively.

8.3.1.1 Event Sentence Identification

For one-phase learning of event sentence identification, we conducted exper-

iments using transformer-based sequence classification architecture (Figure

7.1), involving the language-based learning strategies introduced in Section

7.1.3. To build classifiers, we used monolingual transformers: BERT, BERTim-

bau and BETO and the multilingual transformer: XLM-R. We refer to the mod-

els based on monolingual transformers as monolingual models and the models

based on multilingual transformers as multilingual models in the below con-

tent for simplicity. Table 8.1 summarises the results we obtained. The combi-

nations that are impossible (e.g. making predictions in En using a monolingual

model, BERTimbau, which only supports Pt) are marked with ‘-’ in the table.

According to results in Table 8.1, monolingual models trained in a partic-

ular language outperformed the multilingual models trained in that language

for high-resource (En) and low-resource (Pt and Es) languages. However, with

zero-shot learning, the multilingual model trained on the high-resource lan-

guage made more accurate predictions for low-resource languages than mono-

lingual models. A similar trend is also noticed with the multilingual models,
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TABLE 8.1: Sentence level results: Macro F1 using transformer-based sequence clas-
sification architecture. Strategy and Language indicate the language-based learning
strategy and language of test data. NT shows the models which were not trainable
due to data limitations. Zero-shot learning scenarios are marked with ‡, and the best

results per language are in bold.

Strategy Transformer Training Data
Language

En Pt Es

monolingual
learning

BERTimbau Pt - 0.7068 -
BETO Es - - 0.7958
BERT En 0.8253 - -
XLM-R Pt - NT -
XLM-R Es - - 0.4814
XLM-R En 0.7900 0.8518‡ 0.8121‡

transfer
learning

XLM-R
En→Pt 0.7991 0.8429 0.7547‡

En→Es 0.8174 0.8871‡ 0.8199

multilingual
learning

XLM-R
En+Pt 0.8307 0.8585 0.7547‡

En+Es 0.8265 0.8596‡ 0.8305
En+Pt+Es 0.8127 0.8665 0.8448

which transfer learned a low-resource language after the high-resource lan-

guage. The multilingual model performance could be further improved with

multilingual learning than with monolingual and multilingual models trained

using other learning strategies. Based on our results, we answer RQ1 and RQ2,

focusing on event sentence identification below.

RQ1: Can an event detection model based on a multilingual transformer, which is

only fine-tuned for a particular language, outperform a model based on a monolingual

transformer of that language?

During our experiments, we analysed models’ performance (or accuracy)

based on monolingual and multilingual transformers for identifying event sen-

tences in three languages (En, Pt and Es). Comparatively, the monolingual

transformers we used (i.e. BERT, BERTimbau and BETO) were pre-trained on
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fewer data than that particular language data used by the multilingual trans-

former (i.e. XLM-R) (Table 7.2). However, the larger the vocabulary size, the

transformer requires to learn more parameters during the fine-tuning (Table

7.1). Thus, as can be seen in our results in Table 8.1 under monolingual learn-

ing, when a few training instances are available for fine-tuning, monolingual

models can learn better to identify event sentences than the multilingual mod-

els, even though the monolingual transformers have seen fewer data during

language modelling. For the high-resource language (En) with 22,481 training

instances, the monolingual model improved the Macro F1 by 3.5% more than

the multilingual model. Monolingual models showed more improvements

than the multilingual model when the training data size became smaller. For

Pt, the XLM-R-based model did not converge (behaved as a majority class clas-

sifier), but BERTimbau returned 70.68% Macro F1, and for Es, BETO returned

31.44% higher Macro F1 than XLM-R.

In summary, multilingual transformer typically requires more training

data to fine-tune for the event sentence identification task than the monolin-

gual models, considering the parameter counts. Thus, if data are insufficient

for fine-tuning, multilingual models cannot perform better than monolingual

models. This claim is further supported by the variations in F1 gaps between

multilingual and monolingual models for different languages with different

training data sizes mentioned above. The higher the data size, a low gap is

returned, indicating that the multilingual model can perform on par or better

than the monolingual models if enough training data exists, agreeing with the

conclusions made by the XLM-R model’s original study (Conneau et al., 2020).
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RQ2: Can a high-resource language improve the event detection performance of a

low-resource language using the cross-linguality in transformer models?

Targeting this question, we involved different learning strategies to analyse

the cross-lingual capabilities of the multilingual transformer model we chose

(XLM-R). With zero-shot learning, the multilingual sentence classification

model, which only learned the high-resource language (En), outperformed

the monolingual models that learned corresponding low-resource languages

(Table 8.1). Agreeing with our findings for RQ1, the XLM-R model fine-

tunes well when sufficient training instances are provided. Utilising its cross-

linguality, effective predictions can make for low-resource languages, learning

high-resource languages.

(A) Pt vs En→Pt (B) Es vs En→Es

FIGURE 8.5: Macro F1 scores for the validation sets at different evaluation steps of the
sentence level training processes, which involved direct language learning (Pt, Es) and
transfer learning from a high-resource language (En→Pt, En→Es) with the sequence

classification model with XLM-R transformer.

Also, we obtained improved sentence classification results for low-resource

languages from multilingual models, which transfer learned the low-resource

language (Pt or Es) after the high-resource language (En) (Table 8.1). As shown

in Figure 8.5, with transfer learning (TL), multilingual models return high

Macro F1 values from the beginning of evaluation steps, unlike with direct

learning. This indicates that even with few training instances, a model can
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learn well following the knowledge obtained during high-resource language

training and the cross-lingual abilities of the transformer. Even for the scenario

with Pt where the model did not converge with direct learning due to data

limitations, TL returned Macro F1 scores of around 80% throughout the eval-

uations emphasising its effectiveness (Figure 8.5a). However, no notable im-

provements are recognised, mostly comparing the multilingual models which

transfer learned from the high-resource language and models which only

learned the high-resource language. This indicates that if the low-resource lan-

guage datasets are very small compared to the high-resource language data,

they cannot significantly impact the model performance via TL.

(A) En (B) Pt (C) Es

(D) En+Pt (E) En+Es (F) En+Pt+Es

FIGURE 8.6: Macro F1 scores for the validation sets at different evaluation steps of the
sentence level training processes, which involved monolingual (En, Pt, Es) and mul-
tilingual (En+Pt, En+Es, En+Pt+Es) learning with the sequence classification model
with XLM-R transformer. During multilingual learnings, a composition of samples

from each language is used as the validation set.

Furthermore, we experimented with multilingual learning. Mostly, mod-

els fine-tuned using multilingual learning outperformed the models which

only learned the high-resource language or transfer learned a low-resource
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language for sentence level predictions (Table 8.1). Additionally, Figure 8.6 il-

lustrates how Macro F1 values vary over evaluation steps with monolingual

and multilingual learning. With monolingual learnings, the high-resource lan-

guage (En) has a high F1 value from the second evaluation step, but other

low-resource languages have very low F1 values over all steps. However, with

multilingual learning, for all combinations, models return high F1 values (ap-

proximately ≥80%) throughout all evaluations (Figure 8.6d, 8.6e, 8.6f). These

results reveal that a cross-lingual model can train well on each language (or

adjust its parameters appropriate for multiple languages) when it sees all lan-

guage data together rather than seeing the languages separately. Also, this

way allows the effective utilisation of low-resource language data irrespective

of the data size, unlike the scenario with TL.

In summary, these findings lead to a positive answer to RQ2. High-resource

languages can improve the event sentence identification performance of low-

resource languages using the cross-linguality in transformer models. Zero-

shot learning can be effectively applied using a multilingual model that is fine-

tuned only on high-resource language data for a scenario with no training data

available for a low-resource language. When few training instances are avail-

able for low-resource languages, a multilingual model can be fine-tuned effec-

tively by combining all the data using multilingual learning, outperforming

the language-based TL approach.

8.3.1.2 Event Trigger and Argument Extraction

For event trigger and argument extraction, we utilised transformer-based

token classification architecture (Figure 8.3) along with the language-based

learning strategies introduced in Section 7.1.3. However, we had to skip a few

strategies due to training data limitations. For low-resource languages (Pt and
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Es), token level data are minimal (<100 instances), and thus, monolingual and

language-based TL experiments could not be conducted. Therefore, we only

required the English transformer model: BERT and the multilingual model:

XLM-R for token level experiments. However, similar to the above section,

we refer to the BERT-based models as monolingual models and XLM-R-based

models as multilingual models to maintain consistency and generality of the

content. Table 8.2 summarises the results we obtained.

TABLE 8.2: Token level results: CoNLL 2003 F1 using transformer-based token clas-
sification architecture. Strategy and Language indicate the language-based learning
strategies and language of test data. Zero-shot learning scenarios are marked with ‡,

and the best results per language are in bold.

Strategy Transformer Training Data
Language

En Pt Es

monolingual
learning

BERT En 0.7517 - -
XLM-R En 0.7511 0.7043‡ 0.6461‡

multilingual
learning

XLM-R
En+Pt 0.7678 0.7389 0.6587‡

En+Es 0.7540 0.7151‡ 0.6700
En+Pt+Es 0.7616 0.7441 0.6752

Comparatively, token level predictions are less accurate than sentence level

predictions, emphasising the complexity of the token level task. According to

Table 8.2 results, for the high-resource language (En), the monolingual model

performed slightly better than the multilingual model. For low-resource lan-

guages also, good F1 scores (≥65%) could be obtained with zero-shot learning

on the multilingual model trained on the high-resource language. The involve-

ment of multilingual learning further improved the results of high- and low-

resource languages, effectively utilising the few labelled instances available

with low-resource languages.

Following our results, we answer RQ2, focusing on event trigger and argu-

ment extraction below. Due to training data limitations, we could not train
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monolingual models for low-resource languages to compare with multilin-

gual models and thus skip addressing RQ1 for this task. However, for En, the

monolingual model slightly improved over the multilingual model, which is

only fine-tuned using that language, agreeing with our finding for RQ1 based

on sentence level results.

RQ2: Can a high-resource language improve the event detection performance of a

low-resource language using the cross-linguality in transformer models?

Similar to sentence level analysis, we used different learning strategies with

the selected multilingual transformer model (XLM-R) to address this ques-

tion, focusing on event trigger and argument extraction. However, language-

based TL could not be applied since there are insufficient training instances

from low-resource languages to learn separately. With zero-shot learning, the

multilingual token classification model, which only learned the high-resource

language (En), returned good results (F1 scores ≥65%) for low-resource lan-

guages, as can be seen in our results in Table 8.2. These results clearly high-

light the cross-linguality of the XLM-R model, which can effectively utilise for

low-resource language token level predictions with no training data.

The token level results were further improved with multilingual learning

(Table 8.2), similar to our findings with event sentence identification. Multi-

lingual learning allowed the model to learn using the high-resource language

(En) data and the few training instances of low-resource languages (Pt and

Es), which are insufficient to build separate models or apply language-based

TL. We also analysed how the CoNLL F1 scores vary over the evaluation steps

of each learning setting (Figure 8.7). However, we do not have monolingual

models from each language to compare with. Also, we cannot see clear dis-

tinctions in the F1 scores between the En and multilingual models, similar to

the sentence level analysis. When low-resource language data are limited, the
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validation split at each setting is almost identical to the En validation split.

Thus, we see nearly constant behaviour of F1 scores across all settings. Even

though the improvements are not clearly visible over the evaluation steps of

the training phase, the final predictions on test data emphasise the effective-

ness of multilingual learning.

(A) En

(B) En+Pt (C) En+Es (D) En+Pt+Es

FIGURE 8.7: CoNLL 2003 F1 scores for the validation sets at different evaluation steps
of the token level training processes, which involved monolingual (En) and multi-
lingual (En+Pt, En+Es, En+Pt+Es) learning with the token classification model with
XLM-R transformer. During multilingual learnings, a composition of samples from

each language is used as the validation set.

In summary, we can also provide a positive answer to RQ2 based on the to-

ken level results. High-resource languages can improve the event trigger and

argument extraction performance of low-resource languages, using the cross-

lingual capabilities of transformers. Zero-shot learning can be effectively used

in scenarios with no training data. It is effective to use multilingual learning

when few training instances are available from low-resource languages irre-

spective of their count.
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8.3.2 Two-phase Learning

In this section, we report and discuss the results of TTL along with the pre-

trained transformer models and language-based learning strategies we in-

volved with one-phase learning. For event sentence identification, we trained

the model for the token level task before the sentence level task using the

proposed architecture in Figure 8.4b. The opposite learning sequence is fol-

lowed for the event trigger and argument extraction (Figure 8.4a). Tables 8.3

and 8.4 summarise the results we obtained.

TABLE 8.3: Sentence level results: Macro F1 using two-phase classification architec-
ture, which learns the sentence level task following the token level task. Strategy
and Language indicate the language-based learning strategy and language of test data.
Zero-shot learning scenarios are marked with ‡, and the best results per language are
in bold. Highlighted cells indicate improved F1 scores than only learning sentence

data.

Strategy Transformer Training Data
Language

En Pt Es

monolingual
learning

BERT En – En 0.8049 - -
XLM-R En – Pt - 0.4997 -
XLM-R En – Es - - 0.7638
XLM-R En – En 0.7879 0.8543‡ 0.8034‡

transfer
learning

XLM-R
En – En→Pt 0.6028 0.5568 0.5763‡

En – En→Es 0.6985 0.8404‡ 0.7964

multilingual
learning

XLM-R

En – En+Pt 0.8219 0.8646 0.8088‡

En+Pt – En+Pt 0.8085 0.8658 0.8094‡

En – En+Es 0.7884 0.8749‡ 0.8255
En+Es – En+Es 0.8352 0.8631‡ 0.8328
En – En+Pt+Es 0.7943 0.8708 0.8186
En+Pt+Es – En+Pt+Es 0.8149 0.8772 0.8404

As can be seen in Table 8.3, TTL (learning token level task before sentence

level task) improved the accuracy of low-resource language predictions at the

sentence level in the majority of cases. Multilingual models trained on the

high-resource language token data before training on low-resource language
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sentence data outperformed the multilingual models, which only learned low-

resource language sentence data. Also, the multilingual models, which learned

the high-resource language token and sentence data, returned higher F1 values

for low-resource languages than the scores of monolingual models, which only

learned the sentence level of that particular language. However, combining

language-based TL with TTL did not improve the results for any language.

Contrarily, with multilingual learning, TTL performed better in most cases

than only learning sentence data.

TABLE 8.4: Token level results: CoNLL 2003 F1 using two-phase classification archi-
tecture, which learns the token level task following the sentence level task. Strategy
and Language indicate the language-based learning strategy and language of test data.
Zero-shot learning scenarios are marked with ‡, and the best results per language are
in bold. Highlighted cells indicate improved F1 scores than only learning token data.

Strategy Transformer Training Data
Language

En Pt Es

monolingual
learning

BERT En – En 0.7513 - -
XLM-R En – En 0.7566 0.6930‡ 0.6266‡

multilingual
learning

XLM-R

En – En+Pt 0.7548 0.7222 0.6478‡

En+Pt – En+Pt 0.7542 0.7275 0.6377‡

En – En+Es 0.7568 0.7164‡ 0.6652
En+Es – En+Es 0.7525 0.7012‡ 0.6567
En – En+Pt+Es 0.7575 0.7364 0.6620
En+Pt+Es – En+Pt+Es 0.7599 0.7441 0.6780

Following the results in Table 8.4, overall, TTL (learning sentence level

task before token level task) did not improve the token level predictions even

though more instances are available with sentence data. However, monolin-

gual learning could improve the multilingual model performance for the high-

resource language with TTL rather than only learning token data. Also, on a

few occasions, applying TTL with multilingual learning improved the results

compared to the models that only learned token data. Based on the results, we

answer RQ3, focusing on the tasks event sentence and word extraction below.
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RQ3: Can TTL using sentence and token level event detection tasks improve the

performance of involved tasks in monolingual and multilingual settings?

We analysed the performance of TTL involving the tasks: event sen-

tence identification and event trigger and argument extraction at two data

granularities: sentence and token level. Our experiments showed improve-

ments in the sentence level predictions in most cases using the models which

learned token level beforehand (Table 8.3). Further analysis on variations in

Macro F1 values over model evaluation steps also confirmed that TTL from to-

ken level helps sentence level learning. As can be seen in Figure 8.8, for mono-

lingual and multilingual learning, the sentence level learning process begins

with high F1 scores or achieves high F1 scores in a few steps with TTL than the

scores obtained by learning the sentence level task directly. However, in most

cases, token level predictions were not improved by learning sentence data

beforehand, even though more training instances are available at the sentence

level (Table 8.4). As shown in Figure 8.9, during the model training process

also, TTL behaves similar to learning token data directly. Since token level la-

bels directly help resolve sentence level labels, learning the token data help the

model to improve sentence level predictions. Contrarily, token labels cannot

be predicted by seeing sentence labels. Thus, learning sentence labels before-

hand does not help the model much with token level predictions, even though

the instance count is high.

In summary, TTL can improve the performance of a task in monolingual

and multilingual settings by learning a related task that can help derive the

targeted labels during the first phase. In other terms, this strategy can mainly

be used to improve the performance of a coarse-grained task based on a related

fine-grained task. This also reveals that the relatedness between tasks is more

crucial for this learning than the training dataset sizes. This strategy would

be more helpful in scenarios requiring predictions for low-resource languages
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(A) En vs En – En (B) Pt vs En – Pt

(C) Es vs En – Es (D) En+Pt+Es vs En+Pt+Es – En+Pt+Es

FIGURE 8.8: Macro F1 scores for the validation sets at different evaluation steps of the
sentence level training processes using the sequence classification model (one-phase
learning) and two-phase classification model (two-phase learning) with XLM-R trans-
former. For multilingual learning, a composition of samples from each language is

used as the validation set.

with few or no training instances, as data from other languages prepared for

related tasks can be used.

However, learning two phases requires more training time or computa-

tional resources than learning one phase. Yet, the training process has no im-

pact on the final model’s size or inference time, which are critical for its later

usage, as these factors only depend on the model architecture. Our analysis

reported in Appendix B.1 further confirmed this fact. Overall, all built models

took less time than a second on a GPU and a maximum of 7 seconds on a CPU
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(A) En vs En – En (B) En+Pt+Es vs En+Pt+Es – En+Pt+Es

FIGURE 8.9: CoNLL 2003 F1 scores for the validation set at different evaluation steps
of the token level training process using the token classification model (one-phase
learning) and two-phase classification model (two-phase learning) with XLM-R trans-
former. For multilingual learning, a composition of samples from each language is

used as the validation set.

to make a prediction. Therefore, if the training process helps improve the fi-

nal predictions, the additional time it takes can be neglected, considering the

possible later usages of the model for many effective predictions.

8.4 Conclusions

In this chapter, we proposed a novel learning strategy named Two-phase Trans-

fer Learning (TTL), allowing transformer models to learn from different lev-

els of data granularity. Transformers are especially involved in our approach,

considering their transferability, cross-linguality, context awareness and state-

of-the-art performance in many NLP applications. We applied TTL to news

event detection and analysed how it can improve sentence and word/token

level tasks by transferring knowledge. Also, to the best of our knowledge, this

is the first effort to report a comprehensive experimental study on cross-lingual

event detection, covering sentence and token level tasks and their transferabil-

ity.
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We used sentence and token level data of the multilingual version of GLO-

CON gold standard dataset and several monolingual and multilingual pre-

trained transformer models for our experiments. Our findings show that

if sufficient training data exist, a multilingual transformer-based model can

outperform a monolingual model, answering RQ1 of this research. Also,

our experiments indicate that high-resource languages can improve the event

sentence and word extraction performance of low-resource languages, using

cross-linguality in transformer models, especially with zero-shot and multi-

lingual learning, addressing RQ2. These findings will also be beneficial for

real-world applications because maintaining a multilingual transformer-based

model which can handle multiple languages is more resource-efficient than

having several monolingual models per language. Following RQ3, with the

involvement of TTL, we could further improve the model performances in

monolingual and multilingual settings. However, the relatedness of tasks is

more crucial with this learning than the training data sizes. Thus, we noticed

more improvements by learning the sentence level task after the token level

task since the token data can help derive the labels of sentences. Additionally,

the ability to learn from different language data at different granularities helps

build effective models for low-resource languages, utilising available data.

Overall, the relatively high F1 measures returned by sentence (Macro F1

>84%) and token (CoNLL 2003 F1 >67%) level experiments in three lan-

guages, even with low training resources, prove the accuracy of proposed ap-

proaches and expandability to multiple languages. The independence from

any domain- or language-specific features despite the complexity of the task

further emphasises the approaches’ expandability. Considering the efficiency

and scalability, findings reported with the coarse-grained level (event article

identification) approach (Section 7.3.1) indicate that the sentence and token

level approaches are also sufficiently fast and scalable, as these factors for a
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transformer-based classifier do not depend on the training process or classifi-

cation heads (Appendix B.1).

In future work, we plan to extend our research to more languages and anal-

yse how their interconnections can be utilised to improve the performance of

sentence and token level event detection tasks. Also, in this work, we only fo-

cused on the languages supported by available pre-trained transformer mod-

els such as XLM-R. To fill this gap, we aim to construct datasets for not sup-

ported languages and evaluate their performance in future. Considering TTL,

we designed it in a generic manner applicable to any related sentence and to-

ken level classification tasks without limiting it to event detection. Thus, we

also plan to investigate its applicability in different domains and research areas

thoroughly.

With this chapter, we conclude Part II of the thesis. In this part, we pro-

posed using long-sequence transformer models and a novel transformer-based

learning strategy (TTL) for coarse- and fine-grained level event detection from

news media data, respectively, which returned promising results. We par-

ticularly focused on capturing underlying linguistics while designing these

approaches, similar to our focus during Part I of this research (social media

event detection). With the involvement of transformers, we could allow the

proposed architectures to learn contextual relationships in the text to capture

linguistics while resolving text ambiguities and utilise the knowledge of pre-

trained models for event detection tasks, improving the overall performance.

Also, we believe TTL, which is proposed to transfer knowledge from different

data granularities (i.e. sentence and token levels), will pave a new path for

future studies and be useful for many research areas, considering its novelty

and broad applicability.



221

Chapter 9

Final Remarks and Perspectives

This research focused on developing event detection approaches for textual

data from social media data streams and news media articles. Social and news

media event detection has recently gained wide attention from researchers

due to the informativeness of data and their remarkable growth in genera-

tion. Without an automated intelligent mechanism, it is impractical to process

data manually to extract information, even at the current data generation rates.

Since there will be access to more data in future, according to the predictions,

a large proportion of the data will be useless unless proper mechanisms are

developed. Thus, the efforts to improve the current state or qualities of event

detection approaches would be invaluable.

In this research, we defined the problem of event detection based on two

data granularities, coarse- and fine-grained levels. The main target of coarse-

grained level detection is to notify users about event occurrences, giving them

space to take necessary future actions of their choice. Contrarily, fine-grained

level detection mainly focuses on identifying comprehensive event details to

automate the complete process. Since there can be different types of data with

varying levels of sensitivity unique to the users depending on their informa-

tion requirements, it is beneficial to focus on different information levels while
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developing event detection approaches. Furthermore, we believe this cate-

gorisation will encourage researchers to look at event detection from a more

detailed perspective.

We analysed the progress of previous work in event detection and its re-

quirements to specify the focus of this research. Overall, social and news me-

dia event detection evolved differently, mainly due to the variations in these

media and the information they generate. Efficient unsupervised techniques

were found to be more beneficial for social media event detection. Contrarily,

supervised approaches were popularly used for news media event detection.

However, underlying linguistics needs to be understood appropriately to ex-

tract information from text successfully. According to the recent NLP trends,

prediction-based text embedding models (e.g. Word2Vec, BERT, etc.) were

found to be the most effective approaches to capturing linguistics. Based on

these facts, we mainly focused on how the characteristics of prediction-based

text embeddings can be utilised to develop effective event detection mecha-

nisms while defeating the critical limitations in available approaches in this

research and comprehensively described our work in this thesis.

Overall, we provide a summary of our work in social and news media event

detection in this chapter, closing the thesis. Section 9.1 provides an overview of

the whole thesis, revisiting the aim and objectives of this research. Section 9.2

details the achievements made during this study. Finally, Section 9.3 describes

some potential directions for future work.

9.1 Overview

This research aimed to investigate how different capabilities of prediction-

based text embedding learning approaches can be utilised for effective event
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detection from textual data in social media data streams and news media arti-

cles while overcoming the limitations of traditional approaches. To achieve the

aim, five main objectives, introduced in Chapter 1, are followed. More details

on each objective’s fulfilment are stated below.

1. Conduct a thorough literature review covering the areas of social me-

dia event detection and news media event detection to understand the

strengths and weaknesses of available approaches: We conducted a thor-

ough literature review covering the areas of social and news media event

detection, fulfilling this objective, and described the findings in Chapter

2 of this thesis. We mainly focused on recent work in these areas (pri-

marily within the last decade) to understand the latest evolutions and

state-of-the-art methods. Based on the gained knowledge, we noticed

a considerable lack in involving linguistical features for social media

event detection, which could lead to a critical information loss due to the

characteristics of textual data. Similarly, in news media event detection,

capturing long-range dependencies and interconnections between differ-

ent data levels and supporting low-resource languages are recognised

as the major challenges that exist with state-of-the-art methods, which

need to be resolved to increase the accuracy and usability of the meth-

ods. Inspired by these findings, we focused on how the capabilities of

prediction-based text embedding learning approaches can be effectively

utilised to fill these gaps in the rest of this research.

2. Analyse the characteristics of social media data streams and limitations

in the available approaches and, focusing on the findings, develop effec-

tive methods for event detection by appropriately utilising the compe-

tencies of embedding learning approaches: We described our efforts on
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social media event detection in Part I of this thesis. Following the litera-

ture review findings, we further analysed the characteristics of social me-

dia data streams and the impact of the available approaches’ limitations

for event detection, as detailed in Chapter 3. Addressing the targeted

limitations, we developed two novel methods, Embed2Detect and What-

sUp, for coarse- and fine-grained (i.e. event window and co-occurring

event identification) event detection in social media. The proposed meth-

ods are described in Chapters 4 and 5. We mainly involved self-learned

word embeddings and their hierarchical relationships in dendrograms

to capture underlying text linguistics in our approaches, fulfilling this

objective. To the best of our knowledge, this is the first time of using

linguistics to detect both temporal and textual event details from social

media data streams. Thus, we believe our findings will lead future re-

search in social media event detection in a new direction. Also, the pro-

posed approaches will be useful for wide research and application areas,

as they are solely based on unsupervised techniques, which are easily

expandable to any domain, language or platform.

3. Evaluate the approaches proposed for social media event detection using

recent real datasets and compare the performance with state-of-the-art

methods: We empirically evaluated the proposed approaches for social

media event detection, Embed2Detect and WhatsUp, fulfilling this objec-

tive, and reported the findings in Chapters 4 and 5 of this thesis. To

support evaluations, we prepared and published a recent real dataset,

TED, covering two diverse domains (i.e. sports and politics), consider-

ing the limited availability of data for social media event detection, and

described its details in Chapter 3. We also designed a comprehensive set

of metrics to evaluate temporal and textual event details in a unified way,
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as detailed in Chapter 3. Furthermore, we used several recently proposed

methods from different competitive areas to provide stronger baselines

for comparisons during the experiments. In summary, the approaches

proposed by this research returned promising results on conducted ex-

periments, outperforming the recently proposed methods, emphasising

the proposed approaches’ effectiveness and applicability.

4. Analyse the characteristics of news media articles and limitations in

the available approaches and, focusing on the findings, develop effective

methods for event detection by appropriately utilising the competencies

of embedding learning approaches: We described our work in news me-

dia event detection in Part II of this thesis. Similar to the scenario with

social media, following the literature review findings, we further anal-

ysed the characteristics of news media data and the impact of the avail-

able approaches’ limitations for event detection, as detailed in Chapter 6.

Addressing the limitations, we proposed a TRansformer-based Event Doc-

ument classification architecture (TRED) using long-sequence transformer

models for coarse-grained event detection (i.e. event article identifica-

tion) in Chapter 7. As far as we know, this is the first time involving long-

sequence transformers for event detection. Targeting the fine-grained

event detection (i.e. event sentence and word extraction), we proposed a

novel learning strategy, Two-phase Transfer Learning (TTL), utilising trans-

former capabilities, which transfers knowledge from different data gran-

ularities (i.e. sentence and token levels) in Chapter 8, fulfilling this objec-

tive. We believe this learning technique will pave a new path for future

studies and be useful for many research areas, considering its novelty

and broad applicability.
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5. Evaluate the approaches proposed for news media event detection us-

ing recent real datasets and compare the performance with state-of-the-

art methods: We empirically evaluated the proposed architectures for

news media event detection, fulfilling this objective, and reported the

findings in Chapters 7 and 8 of this thesis. During the experiments,

we mainly focused on how the performance of proposed architectures

can be improved for different languages and data granularities using the

transformer models’ capabilities and different learning strategies. We in-

volved four languages (i.e. English, Portuguese, Spanish and Hindi) for

the experiments using GLOCON gold standard dataset (Hürriyetoğlu et

al., 2021b), covering high- and low-resource scenarios. Overall, the pro-

posed architectures returned promising results in all languages, irrespec-

tive of data availability, revealing the possibilities to improve the predic-

tions in a low-resource language using high-resource language data and

at a particular granularity (e.g. sentence) using data from another gran-

ularity (e.g. token). We believe these findings will help expand event de-

tection into more domains and languages while being useful for a wide

range of research which involves transformer models.

9.2 Achievements

This research aimed achieving four crucial strengths in the systems designed

for social and news media event detection as described in Chapter 1 (Section

1.1.4). Their successful achievement can be summarised as follows.

Accuracy: Achieving a high degree of accuracy in results/predictions is vi-

tal to confirm a system’s potential to solve an actual problem successfully. We

involved a wide variety of evaluation metrics, which capture textual event
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details from different data granularities: document to token level and tempo-

ral details, to conduct comprehensive evaluations appropriate for each com-

ponent developed by this research. According to the obtained results, Em-

bed2Detect and WhatsUp, the novel approaches proposed for social media

event detection, outperformed recent competitive methods, confirming their

high accuracy in capturing coarse- and fine-grained event details in data

streams. Similarly, TRED and TTL, along with different pre-trained trans-

former models and language-based learning strategies, improved the accu-

racy of predictions than state-of-the-art methods, proving the proposed ap-

proaches’ ability to successfully extract document, sentence and token level

event details from news media articles.

Efficiency: Efficiency is also a crucial strength required by event detection

mechanisms to extract information in (near) real-time before they get out-

dated. For social media event detection, we followed unsupervised ap-

proaches, mainly considering the requirement to capture newly arising events

along with the dynamicity in data streams. Thus, the designed approaches

need to process large data volumes to extract events. Even though the larger

the data size, the longer the processing time, our experiments revealed that

the proposed approaches are capable of completing the process in a very short

time than the time taken to generate data, proving their efficiency. For news

media event detection, we used supervised approaches, mainly considering

the pre-definitive nature of events reported in this media. Thus, the proposed

approaches’ efficiency solely relied on inference speeds, which were estimated

to be a few seconds on a CPU and faster on a GPU than on a CPU, confirming

their real-timeliness.
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Expandability: Event detection approaches need to be easily expandable to

any domain, language or platform to extract information from diverse data

available via social and news media. All the methods proposed in this re-

search for social and news media event detection are independent of domain-,

language- or platform-specific features, fulfilling this requirement. To further

confirm this fact, we experimented with the proposed social media event de-

tection approaches on two diverse domains and obtained competitive results

outperforming the recently proposed approaches. Similarly, we analysed the

performance of news media event detection approaches in multiple languages

and received relatively high accuracy values even with low training resources,

proving the methods’ expandability, including cross-lingual capabilities.

Scalability: Event detection mechanisms should be scalable to process large

data volumes, to support real applications and future usages, considering the

current data generation and its extensive growth estimated in future. Since

this research proposes unsupervised approaches for social media event detec-

tion, which require processing data streams to extract events, high data gener-

ation directly impacts their performance. Thus, we comprehensively analysed

their scalability theoretically and practically to ensure this critical requirement

is satisfied. Both the computational complexity estimations and results with

increasing data sizes indicated that the proposed approaches are sufficiently

scalable to handle large data volumes efficiently. On the contrary, the proposed

news media event detection approaches have no direct impact from high data

generation, as they are supervised approaches that make predictions on incom-

ing queries based on pre-trained models. However, the prediction/inference

process should be sufficiently fast, as confirmed by the experiments, to handle

large data volumes effectively. These experiments also indicated possibilities
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to improve model inference speeds further, emphasising the approaches’ scal-

ability. We involved CPUs with average specifications for all our experiments,

which are affordable to the majority.

Also, this work holds the following key strengths, which are helpful for

other research in social and news media event detection.

Replicability: Being replicable guarantees the reliability of research out-

comes while letting other researchers use them with their experiments or

further explore in the same directions. All the datasets used for the experi-

ments in this research, including the ones prepared as parts of this work, are

publicly available to be used by any researcher. Similarly, the implementa-

tions/codebases used for all conducted experiments have also been made pub-

licly available to confirm their replicability and support related research.

Competitiveness: Competitiveness is important for research outcomes to

support solving problems and draw new research avenues. We always in-

volved recent real datasets and state-of-the-art/recent competitive methods

for the experimental studies conducted under this work to ensure their up-

to-date competitiveness. According to these studies, proposed social media

event detection approaches resulted in effective results, outperforming the re-

cent competitive methods. For news media event detection, the proposed ap-

proach for document level extractions became the winning solution of CASE

2021 shared task 1 for the English language while being within the top four

solutions for other languages. The other approaches proposed for fine-grained

event detection of news media also returned more competitive results than the

state-of-the-art methods.
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9.3 Future Directions

There are many potential directions to extend this work in future. We already

discussed the future directions targeting the scope of each sub-component

within each contribution chapters (Chapters 4, 5, 7 and 8). Additionally, we de-

scribe some ideas for future work considering the bigger picture of this work

below.

• Code-mixed Language Processing: We had to limit the experiments of

this research to a few languages due to resource limitations. Still, we

guaranteed the expandability of the proposed methods to different lan-

guages by not involving any language-specific features. However, in

addition to processing multiple languages, the ability to process code-

mixed languages is also important as they are popularly used in social

media and to a certain extent in news media, especially by non-native

English speaking countries (Saumya et al., 2021; Qureshi et al., 2019).

Thus, it is worth exploring the performance of proposed approaches in

code-mixed languages.

• Other Domain Exploration: In this research, we explored the proposed

methods’ performance in multiple diverse domains (i.e. sports, politics

and protest). However, it would be interesting to extend the evaluations

into more domains such as economy, disasters and epidemiology, con-

sidering their importance and demand (Amen et al., 2022; Prasad et al.,

2023).

• Other Corpora Development: As a part of this research, we prepared

and published social media event datasets covering two diverse domains

(i.e. sports and politics), mainly due to the lack of recent data availabil-

ity. We also annotated the data with sentiment labels to facilitate event
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sentiment-based research. This initiative can be further extended to more

domains and languages, including code-mixed languages, to support a

wide range of future research.

• Event Summarisation: This research proposed approaches to extract

event details from social media data streams and news media articles.

The output would be more useful and easy to follow if natural language

summaries were generated per event using the extracted details (Babu

and Badugu, 2023).

• Event Tracking: This research only targeted the detection of events.

However, it would be interesting to analyse the temporal evolution of

detected events by tracking them. Event tracking would be especially

beneficial for social media event analysis, considering the data dynamic-

ity and user requirement to gain up-to-date knowledge (Houghton et al.,

2019). In news media also, it is advantageous to analyse the event pro-

gression mainly in the long term to study the event behaviours and their

impact.

• Combined Knowledge Generation: This research focused on separate

event detections from social and news media. The obtained outputs can

be merged to generate combined knowledge. Since social and news me-

dia have different characteristics, such a combination would hold a wide

range of useful aspects. Additionally, the public opinions which can be

extracted from social media also can be integrated to improve the infor-

mativeness of the outcome.

• Detailed Visualisations: The proposed approaches currently save the

outputs as token lists or JSON objects, which are unfamiliar to non-

technical people. Thus, designing an appropriate output visualisation
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strategy, which is simple, straightforward, detailed and visually appeal-

ing, is an important area to focus on in future work to support the effec-

tive utilisation of event detection approaches by different people groups.

• Web-based Application: The main idea behind developing event de-

tection mechanisms is to allow people to extract event details from so-

cial and news media effectively. The developed components need to be

hosted as services via an application to fulfil this requirement. Unlike a

standalone application, a web application would be more advantageous

for an initial step, as it centralises the application, facilitating easy up-

grades. Also, it provides access via the web through different devices,

open to different people groups, regardless of their technical knowledge.
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Appendix A

Social Media Event Detection

A.1 Embed2Detect Processing Time

TABLE A.1: Embed2Detect intermediate processing time on Common KVM CPU @
2.40GHz - MUNLIV

Step
Time(s): 1 worker Time(s): 8 workers

Total Average Total Average

Stream Chunker 66 1.1579 64 1.1228
Word Embedding Learner 114 2.0000 90 1.5789
Event Window Identifier 35 0.6140 34 0.5965
Event Word Extractor 0 0.0000 0 0.0000

Full Process 230 4.0351 202 3.5439

TABLE A.2: Embed2Detect intermediate processing time on Common KVM CPU @
2.40GHz - BrexitVote

Step
Time(s): 1 worker Time(s): 8 workers

Total Average Total Average

Stream Chunker 28 2.5455 27 2.4545
Word Embedding Learner 168 15.2727 78 7.0909
Event Window Identifier 562 51.0909 139 12.6364
Event Word Extractor 29 2.6364 29 2.6364

Full Process 824 74.9091 310 28.1818

We did an intermediate analysis to understand the complexities of Em-

bed2Detect’s components. The obtained results are summarised in Table A.1
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and A.2. Total time reports the time taken to process whole corpora (57 2-

minute windows of MUNLIV and 11 30-minute windows of BrexitVote), and

average time reports the time taken per window. Comparatively, word embed-

ding learner and event window identifier are the most time-consuming com-

ponents in Embed2Detect. Their time could be notably reduced with parallel

processing, making Embed2Detect more appropriate for real-time processing.

However, even with sequential processing (or single worker), the complete

process can be run in a very short time than the time taken to generate data.

A.2 WhatsUp Event Clusters

In addition to quantitative analyses reported in Chapter 5, we also analysed

the quality of events detected by WhatsUp, considering the word coverage and

novelty measures. Table A.3 summarises a few event windows with detected

events that match with GT events. We only report events from the MUNLIV

dataset, considering their briefness and simplicity than the BrexitVote events.

For MUNLIV, both s- and m-based clustering performed well with κ (Section

5.2.3). Among them, we used (m, κ) combination to extract events because m

fixes the number of words in a cluster easing the analysis and reporting.

As shown in Table A.3, detected events include the majority of keywords

in GT events. Additionally, event-related misspelt words, other/background

words, and emojis are also recognised, highlighting the potential of involved

linguistical features. Furthermore, the novelty measure provides a positive in-

sight into the newness of an event. However, comparing novelty values across

different event windows is less effective as they highly depend on the underly-

ing data. In the given samples, novelty varied from 0.30 to 0.44 for top-ranked

events within the windows. BrexitVote events also indicated a similar nature
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TABLE A.3: Sample events detected by WhatsUp for MUNLIV. TW, Nov. and R stand
for time window, novelty and rank, respectively. Rank indicates the event position
within the corresponding time window based on the descending order of event nov-

elties.

TW GT Event Detected Event Nov. R

16:52-
16:54

Marcus Rashford is one-
on-one with Virgil van
Dijk on the right touch-
line and gets fortunate as
the LFC defender slips.

bullied, see, mufc, love, mar-
cus, rashford, 21, dijk, puts,
van, floor, mulive, promising,
start, old, trafford, chances, far,
rt, counter-attack, either, fol-
lowers, side, , applying

0.4013 1

16:56-
16:58

Scott McTominay
(MUFC) right footed
shot from outside the box
is saved in the centre of
the goal by Alisson.

hosts, mctominay, 0-0, dis-
tance, effort, alisson, fires,
goalwards, saves, afternoon,
old, trafford, fixture, like,
smells, , love, marcus, rash-
ford, see, van, man, mufc, reds

0.3024 1

17:06-
17:08

Goal by Marcus Rashford
(MUFC)! Manchester
United 1, Liverpool 0.

goooaaalll, @marcusrashford,
munliv, mufc, man, marcus,
rashford, 1-0, 36, goal, utd,
, gives, lead, 0, 1, liverpool,
manchester, united, , ,

, 0-0, buuut

0.4430 1

VAR review is in
progress.

var, f**king, great, love, see,
atkinson, back, game, win, go-
ing, martin, origi, daniel, dijk,
range, van, today, far, players,
@manutd, come, front, f**k,
get, ggmu

0.2908 6

17:14-
17:16

Sadio Mané (LFC) scores
but the goal is ruled out
after a VAR review.

44, disallows, let, mulive, var,
equalises, mane, ruled, sadio,
fans, loving, man, utd, goal,
handball, overturned, disal-
lowed, mane’s, 1-0, golazo,
hosts, remains, every, f**k, get

0.3914 1

in word coverage and novelty measure. However, they formed larger clus-

ters with fewer emojis, following the event complexities and audience in the

political domain.
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A.3 WhatsUp Processing Time

TABLE A.4: WhatsUp(s, κ) intermediate processing time on Common KVM CPU @
2.40GHz - MUNLIV

Step
Time(s): 1 worker Time(s): 8 workers

Total Average Total Average

Stream Chunker 66 1.1579 69 1.2105
Word Embedding Learner 114 2.0000 87 1.5263
Statistical Information Extractor 1 0.0175 1 0.0175
Event Window Identifier 33 0.5789 31 0.5439
Event Cluster Detector 8 0.1404 8 0.1404

Full Process 235 4.1228 206 3.6140

TABLE A.5: WhatsUp(s, κ) intermediate processing time on Common KVM CPU @
2.40GHz - BrexitVote

Step
Time(s): 1 worker Time(s): 8 workers

Total Average Total Average

Stream Chunker 31 2.8182 32 2.9091
Word Embedding Learner 192 17.4545 73 6.6364
Statistical Information Extractor 3 0.2727 3 0.2727
Event Window Identifier 573 52.0909 152 13.8182
Event Cluster Detector 72 6.5455 65 5.9091

Full Process 899 81.7273 354 32.1818

We analysed the time taken by each step to understand the intermediate

complexities of WhatsUp. Table A.4 and A.5 summarises the obtained results.

Total time indicates the time taken to process full corpora (57 2-minute win-

dows of MUNLIV and 11 30-minute windows of BrexitVote), and average time

indicates the time taken per window. Word embedding learner and event win-

dow identifier are the most time complex components of WhatsUp. However,

they are sufficiently fast to complete the full process in a very short time than
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the time taken to generate data, even with sequential processing. With paral-

lel processing, these components’ speed can be further increased to facilitate

(near) real-time processing.
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Appendix B

News Media Event Detection

B.1 Transformer Resource Utilisation

TABLE B.1: Memory usage and inference speed of transformer-based models built for
news media event detection on GeForce RTX 3090 GPU and Intel(R) Xeon(R) CPU @

2.30GHz

Transformer
Disk

Usage (MB)
GPU CPU

RAM (MB) Time (s) RAM (MB) Time (s)

BERT 1274 6539 0.0562 3295 3.7190
BERTimbau 1277 6540 0.0560 3312 6.5957
BETO 420 5482 0.0481 1587 1.8834
Longformer(Base) 570 5270 0.1599 2292 3.0372
BigBird(Base) 489 5485 0.2063 1716 4.5594
BigBird(Large) 1372 5296 0.4265 3482 4.3118
mBERT 682 5503 0.1385 2101 1.9229
XLM-R 2150 7680 0.7040 5018 6.9053

The involvement of large pre-trained language models/transformers to

build text classifiers could affect the usability of the resulting models. There-

fore we analysed the memory usage and inference speed of built classifiers,

and our findings are summarised in Table B.1. Space requirements or inference

time of a model do not vary depending on the fine-tuned data or classification

heads. Thus, the reported values are common for document, sentence and to-

ken level models built using each transformer. Overall, the model size ranges

from 400 MB to 2,000 MB, depending on the transformer model utilised. The
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inference is clearly faster on a GPU with less time than a second. A CPU also

takes a few seconds (<7 seconds), confirming the efficiency of these models

appropriate for (near) real-time predictions.
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