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Abstract
Twitter has become the social network of news and journalism. Monitoring what is

said on Twitter is a frequent task for anyone who requires timely access to inform-

ation: journalists, traders, and the emergency services have all invested heavily in

monitoring Twitter in recent years. Given this, there is a need to develop systems

that can automatically monitor Twitter to detect real-world events as they happen,

and alert users to novel events. However, this is not an easy task due to the noise and

volume of data that is produced from socialmedia streams such as Twitter. Although

a range of approaches have been developed,many are unevaluated, cannot scale past

low volume streams, or can only detect specific types of event.

In this thesis, we develop novel approaches to event detection, and enable the eval-

uation and comparison of event detection approaches by creating a large-scale test

collectioncalledEvents 2012, containing 120million tweets andwith relevance judge-

ments for over 500events. Weuse existing eventdetection approaches andWikipedia

to generate candidate events, then use crowdsourcing to gather annotations.

We propose a novel entity-based, real-time, event detection approach that we eval-

uate using the Events 2012 collection, and show that it outperforms existing state-

of-the-art approaches to event detection whilst also being scalable. We examine and

compare automated and crowdsourced evaluation methodologies for the evaluation

of event detection.

Finally, we propose a Newsworthiness score that is learned in real-time from heurist-

ically labeled data. The score is able to accurately classify individual tweets as news-

worthy or noise in real-time. We adapt the score for use as a feature for event detec-

tion, andfind that it can easily beused tofilter out noisy clusters and improve existing

event detection techniques.

We conclude with a summary of our research findings and answers to our research

questions. We discuss some of the difficulties that remain to be solved in event de-

tection on Twitter and propose some possible future directions for research into real-

time event detection on Twitter.
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CHAP T E R 1

Introduction

Newshas transformed from something delivered to your door, and read only once per

day, to a deluge of real-time updates on events as they happen around the world, de-

livered on a device that is kept in your pocket. Social media plays perhaps one of the

most important roles in news delivery today, with services such as Twitter allowing

users to “See what’s happening in the world right now1”. However, Twitter is not just

used to consume news, but also to produce it. The first reaction of many people in-

volved innewsworthy events – fromsmall accidents, toheadlinehitting terror attacks

– is to report what they are witnessing on social media.

Twitter’s reputation for breaking news has grown throughout the years, transforming

it from a social network for posting photos of your breakfast, to the social network of

news. A number of high-profile news events have broken on Twitter: from the first

reports of a plane landing in New York’s Hudson River in 2009, to leaked reports of

Osama bin Laden’s death in 2011 by White House staffers. More recently, partially

due to the election of Donald Trump as President of theUnited States, Twitter has be-

come a broadcast tool for world leaders, with some even worrying that Twitter could

be the medium through which a nuclear war is started2 (something that, in this au-

thor’s opinion, is not as far-fetched as it sounds).

Hu et al. [2012] demonstrated the effectiveness of Twitter as a medium for breaking

news, and found that news of Osama bin Laden’s death not only broke onTwitter, but

had reachedmillions of people before the official announcement. Given this, it is not

surprising that there is considerable interest in following world-wide events bymon-

itoring what is said on Twitter. News organizations are employing increasingly large

numbers of staff tomonitor social media for breaking news, or using commercial en-

tities such as Storyful3 and Dataminr4 whomonitor social media on their behalf. For

1Twitter’s slogan, as of March 2018
2https://www.indy100.com/article/trump-ban-twitter-threaten-nuclear-war-

big-button-north-korea-desk-8139211
3https://storyful.com/
4https://www.dataminr.com/

1



2

almost 10 years, the Twitter account for ‘Breaking News’ (@breakingnews5), an or-

ganizationwhich aimed to report breaking news in real-time, had over a dozen journ-

alistsworkingaround theclock,monitoringTwitter to report onbreakingnewsstories

as they happened. The account had over ninemillion followers when it shut down in

January 2017.

The ability to automatically detect and track ongoing real-world events would clearly

be useful, however it has been shown to be an extremely difficult task, even on news-

wire documents [Allan et al. 2000a]. Twitter poses a number of challenges over and

above those found innewswiredocuments. DespiteTwitter’s reputation fornews, the

majority of tweets discuss trivial ormundane events. Even today, it is not uncommon

for a user to only post about the food they have eaten or the music they are listen-

ing to. The relatively low quality of tweets poses further issues. Due to the limited

message length on Twitter (tweets were originally limited to 140 characters, however

this was increased to 280 in 2017), spelling and grammar errors are very common, as

is the use of abbreviations and acronyms. Twitter has over 500 million users who,

combined, post thousands of tweets every second6. Approaches developed for news-

wire documents simply do not scale from hundreds of newswire documents per day

to thousands of tweets per second, and have no way of filtering out themundane and

noisy content.

Sakaki et al. [2010] were perhaps one of the first to show how Twitter could be used

to detect real-world events. They were able to use Twitter as a social-sensor to detect

the size and direction of earthquakes in real-time, notifying users of incoming earth-

quakes much faster than even the Japan Meteorological Agency. Since then, a num-

ber of approaches have been developed that attempt to detect and track real-world

events in amore generalmanner. Petrović et al. [2010a] used Locality SensitiveHash-

ing to scale a clustering approach that has been found to be effective on newswire

documents to Twitter, demonstrating that it was possible to perform real-time and

generalizable event detection on Twitter, opening the door for improved approaches.

Based on this, we define a number of characteristics that we believe are important for

the development of improved event detection approaches for Twitter:

• Real-Time: Although techniques like batch processing can, in theory, make

the task of event detection easier, it also reduces usefulness. Real-time pro-

5https://twitter.com/BreakingNews
6https://blog.twitter.com/marketing/en_us/a/2015/testing-promoted-

tweets-on-our-logged-out-experience.html
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cessingmeans that event detection approaches should be able to detect events

as they are still happening, and with minimal delay. Old news is not useful.

• Generalizable: Event detection approaches should be able to detect news of

any type, and without being explicitly told what to look for. Approaches that

canonly detect certain types of event, such as earthquakes or sports events, are

only useful in their specific domains.

• Nomanual labels: A reliance onmanually labeled training data or interaction

by a user would introduce a number of restrictions on the types of event that

can be detected, and be vulnerable to any changes that Twitter make (such as

increasing the character limit).

• Comparable:Without aneffectivemethodof comparingdifferent approaches,

it is impossible to say if improvements are being made. A robust evaluation

methodology and standard data set are important for progress to be made.

We first build a corpus and set of events with relevance judgements, called Events

2012, that allows us to fairly evaluate and benchmark event detection approaches for

Twitter. We refine the definition of ‘event’ for detection on Twitter after surveying

existing definitions and finding that there was a lack of agreement and consistency.

We then reduce a set of over one billion tweets to amoremanageable 120million cov-

ering a continuous 28 day period to provide a standard set of tweets that event detec-

tionapproaches canuse to emulate ahigh-volumeTwitter stream. We implement two

existing event detection approaches: the Locality Sensitive Hashing (LSH) approach

proposedbyPetrović et al. [2010a], and theCluster Summarization (CS) approachpro-

posed by Aggarwal and Subbian [2012], and extract candidate events from the corpus

by running both approaches over it. We perform a crowdsourced evaluation to annot-

ate each of the candidate events as either a true event or noise, and gather relevance

judgements for the tweets of each true event. We supplement these events by using

Wikipedia’s Current Events Portal to identify a number of events that occurred dur-

ing the period covered by the collection, and use another crowdsourced evaluation

to gather annotations for these events. We then use a crowdsourced evaluation and a

clustering approach to merge any duplicate or overlapping events, and create a final

set of relevance judgements that can be used to evaluate event detection approaches.

One of the biggest challenges for real-time event detection on Twitter is efficiently
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clustering thehugevolumeof tweets in real-time. Previousworkhasusedapproaches

such as Locality Sensitive Hashing (LSH) [Petrović et al. 2010a] to reduce the number

of comparisons that need to be made in order to efficiently cluster tweets. We exam-

ine the structure of events at a high level, and find that named entities play a key role

in describing events. We exploit this to improve clustering efficiency by partitioning

tweets using the named entities they contain, and only compare tweets that have at

least one overlappingnamed entity. This allowsus to efficiently cluster tweets in real-

time, then using a lightweight burst detection approach, wemonitor tweet usage over

time to determine when entity mentions burst, suggesting a possible event. We then

use a number of heuristic features to identify interesting clusters that are likely to be

related to events. We solve event fragmentation, a common problem for event detec-

tion approaches on Twitter where a single seminal event is split into multiple parts,

by combining events with high entity concurrence. We evaluate our entity-based ap-

proach using the Events 2012 corpus, and find that it outperforms the LSH andCS ap-

proach thatweuse asbaselines. A crowdsourcedevaluationfinds that theprecisionof

our approach is more than three times better than suggested using annotations from

the collection to evaluate, and we discuss some of the issues arising from the evalu-

ation of event detection approaches in situations where there are no queries and the

relevance judgements are incomplete.

Generally, event detection approaches use the volume of tweets as an indication that

something significant has happened, either by measuring the size of a cluster, or the

frequency of a term over time. This often requires tens of tweets before events can

be detected with reasonable precision. However, the ability to automatically determ-

ine hownewsworthy an individual tweet is would allow for events to be detectedwith

fewer tweets, and much earlier. We propose a set of heuristics that can be used to

automatically label tweets as High or Low Quality. We then use use these labels to

feed tweets into a newsworthiness scoringmodel. We use this model to assign tweets

with a Newsworthiness Score that can be positive or negative (Newsworthy or Noise),

and can be used for both classification and scoring. We evaluate the classification ac-

curacy and score appropriateness using relevance judgements from the Events 2012

corpus. We then propose a cluster based Newsworthiness Score that can be used as

a feature for event detection. We evaluate the performance of our newsworthiness

feature by removing clusters with low newsworthiness scores and find that it per-

forms favorably compared to our entity based approach. A furthermanual evaluation

finds near-perfect precision with as few as 5 tweets (0.950), and perfect precision at

50 tweets.
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1.1 ResearchQuestions

The hypothesis of this thesis is that we can automatically identify real-world events,

in real-time, from posts on social media, with a particular focus on Twitter. To de-

termine if this hypothesis is true, we pose a number of key research questions that we

aim to answer and that determine the scope of this thesis:

RQ1 Can we develop amethodology that allows us to build a test collection for

the evaluation of event detection approaches on Twitter?

RQ2 Can entities (people, places, and organizations) be used to improve

real-world event detection in a streaming setting on Twitter?

RQ3 Can event detection approaches be evaluated in a systematic and fair way?

RQ4 Can we determine the newsworthiness of an individual tweet from content

alone?

1.2 Contributions

In summary, the main contributions of this thesis are:

• The creation of the first large-scale corpus for the evaluation of event detection

approaches for Twitter.

• A definition of ‘event’ for the purpose of event detection on Twitter that uses a

the qualifier ‘significant’ allowing it to be adapted for different use-cases.

• A novel, real-time event detection approach that is computationally efficient

and scalable, and that outperforms existing state-of-the-art approaches.

• The first in-depth and comparable evaluation of an event detection approach

for Twitter.

• A novel method of scoring tweets to determine newsworthiness, that requires

nomanually labeled training and that is capable of being integrated into exist-

ing event detection approaches, resulting in significant improvements to pre-

cision.
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1.3 OrganizationofThesis

The remainder of this thesis is organized as follows:

Chapter 2 gives the background information that is needed to understand the rest

of this thesis. We give a brief overview of Information Retrieval and describe some

common evaluation measures. We then describe the role of the Topic Detection and

Tracking project in developing early event detection approaches for newswire docu-

ments, and how these approaches relate to modern event detection approaches for

social media. We then discuss various strategies used by event detection approaches

for social media, and review related work with a focus on novel approaches of event

detection on Twitter. Finally, we survey existing event detection corpora for Twit-

ter and definitions of ‘event’ and examine their suitable for the evaluation of event

detection approaches.

Chapter 3 describes the creation of the Events 2012 corpus for the evaluation of

event detection approaches on Twitter. We propose a new definition of ‘event’ using

the qualifier ‘significant’ to make it adaptable to different uses-cases. We then use a

combination of existing event detection approaches and Wikipedia to create a set of

candidate events, which we annotate through a crowdsourced evaluation, to create

the first large-scale corpus for the evaluation of event detection on Twitter. Parts of

this work were first presented in McMinn et al. [2013].

Chapter4 examines the role of named entities in events and proposes a new entity-

basedeventdetectionapproach. Ourapproachusesnamedentities toefficiently cluster

tweets in real-time, and a lightweight burst detection technique to identify clusters

that are likely to be related to real-world events. We evaluate the approach using the

Events 2012 corpus created in chapter 3 and find that our approach out-performs two

state-of-the-art baselines. We compare automatic evaluation approaches to a crowd-

sourced approach and find that although automatic evaluation of event detection on

Twitter is effective, there remain a number of challenges. Parts of this work were first

presented in McMinn et al. [2014] andMcMinn and Jose [2015].

Chapter 5 describes a newsworthiness scoring approach that uses heuristics to la-

bel tweets as high or low quality, and trains a number of models in real-time that we
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then use to estimateNewsworthiness Scores for tweets. We evaluate the performance

of our approach as both a classification and scoring task using the Events 2012 corpus

and find that it is convincingly able to classify tweets as either newsworthy or noise.

We examine how our newsworthiness score can be used as a feature for event detec-

tion, find that it can be used to greatly increase precision.

Chapter6 summarizes themain contributions of this thesis, and examines remain-

ing issues for event detection on Twitter, describing possible directions for future

work.





CHAP T E R 2

Background

In this chapter, we review the background information required to understand the

remainder of this thesis. We draw on several areas of research, such as Information

Retrieval (IR) and Natural Language Processing (NLP), and describe how documents

are represented and compared, and detail a number of IR measures. We then give

a brief overview of the Topic Detection and Tracking project, and how it relates to

modern approaches for event detectiononTwitter. Finally, we give a surveyof related

work in the area of event detection Twitter and describe how it relates to the work

presented in this thesis.

2.1 InformationRetrieval

Fist we discuss the area of InformationRetrieval, and describe some of themost com-

mon concepts that we use throughout this thesis. In a traditional IR task, the goal is

to take a query describing some information need, and return a ranked list of docu-

ments that are relevant to that query. In the remainder of this section, we examine

some of the basic techniques used to complete this task, and describe how they relate

to event detection on Twitter.

2.1.1 DocumentRepresentation

One of the most commonly used document and query representations is the Vector

SpaceModel [Salton et al. 1975]. The Vector SpaceModel represents both queries and

documents as a vector, where each term in the document corresponds to a dimension

in the vector. Terms that occur in a documentwill have a non-zero value in the vector,

while terms that do not appear will have a value of 0. The Vector SpaceModel is used

throughout this thesis to represent documents (tweets).

9
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TF-IDF

One of the most common ways of calculating the weight a term has in a vector is

known as the Term Frequency-Inverse Document Frequency model, or TF-IDF. TF-

IDF attempts to estimate the importance of a termwith regards to both the collection

as a whole and document itself.

The TF component is concerned with the weight of the term in relation to the docu-

ment, the basic premise being that themore frequently a term occurs in a document,

themoreweight it should carry. The IDF component, on the other hand, is concerned

with the weight of the term in relation to the corpus as a whole. The IDF component

attempts to estimate the amount of information that a term carries on the basis that

rare terms should be givenmoreweight as their presence in a document ismore likely

to be an indication of topic, whilst common terms should be given less weight as they

are less topically specific. TF-IDF is calculated as so:

wt,d = tft,d · log
|D|

|{d′ ∈ D | t ∈ d′}|
(2.1)

where tft,d is the term frequency of term t in document d, |D| is the total number of

documents in the collection, and |{d′ ∈ D | t ∈ d′}| is the number of documents

contain term t. Note that for retrieval tasks on Twitter, the TF component is often

ignored as tweets are very short, and generally do not contain repeated terms.

Cosine

Many IR tasks, including event detection, are concerned with the the notion of simil-

arity. One such similarity measure is cosine similarity, which measures the cosine of

the angle between two documents in vector space:

cos θ =
d1 · d2
∥d1∥ ∥d2∥

(2.2)

where d1 · d2 is the dot product of term weighted vectors for the documents, and the

norm for vector d is calculated as such:

∥d∥ =

√√√√ n∑
i=1

d2i (2.3)
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2.1.2 EvaluationMeasures

Throughout this thesis, we use a number of evaluation metrics that are commonly

used in IR evaluations. These measures are based on the concept of relevance. In IR,

relevance is determined based on some information need, usually represented as a

textual query. In event detection, there is no query. Instead, relevance is defined in

relation to an event, either by subjectively evaluating if a cluster of tweetsmeets some

definition of ‘event’, or by matching tweets in the cluster to a pre-determined event

in the relevance judgements (represented by a set of tweets). We discuss this further

in chapter 4.

Recall

Recall is measured as the fraction of relevant documents that are retrieved from all

possible relevant documents. Recall is given as:

recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
(2.4)

Precision

In a traditional IR setting, precision is measured as the fraction of retrieved docu-

ments that are relevant to a given query. For the purpose of evaluating event detec-

tion approaches, the lack of a query means that we must consider relevance differ-

ently; either in terms of meeting some definition of ‘event’, or by matching back to

some event from the relevance judgements. How this is done is examined in chapters

3 and 4.

In a standard IR setting, precision is given as:

precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
(2.5)

F-measure

Individually, precision and recall showonly one aspect of performance. Perfect recall

can be achieved by returning every document in the collection, whilst perfect preci-

sion can be achieved by returning none of them.

F-measure takes both precision and recall into consideration, and combines them
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into a single score. F-measure ranges between 0 at worst and 1 at best (a perfect sys-

tem). Although it is possible to weight F-measure to prefer precision or recall, the

most commonlyusedF-measuregivesequalweight toboth, and is theharmonicmean

of precision and recall. This is usually called F1 score:

F1 = 2 · 1
1

recall
+ 1

precision

= 2 · precision · recall
precision+ recall

(2.6)

B-Cubed

B-Cubed Precision and B-Cubed Recall are similar in theory to the Precision and Re-

call measures given previously, however B-Cubed Precision and Recall are calculated

for each document or item in the collection, rather than for each category or topic,

and aremost commonly used for the evaluation of clustering algorithms. For a given

item e, B-Cubed Precision is the proportion of items in the same cluster as e that have

the same category as e, whilst B-Cubed Recall represents the proportion of items in

the same category as e are in the same cluster as e. Figure 2.1 illustrates howPrecision

and Recall for one item, e, is computed.

e

Precision = 4/5

e

Recall = 4/6

Figure 2.1: An illustration of how B-Cubed Precision and Recall are computed

SinceB-CubedPrecision andRecall are computed on aper-itembasis, the overall Pre-

cision and Recall values are taken as the average Precision and Recall values com-

puted over all items. This is often combined into a single B-Cubed score using the

same F-measure equation as given in Equation 2.6.

2.2 TopicDetectionandTracking

The Topic Detection and Tracking (TDT) project began in 1997, and was a body of re-

search and an evaluation paradigm that addressed the event-based organization of
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broadcast news [Allan 2002]. The motivation behind the project was a system which

was capable of monitoring broadcast news and could produce an alert when a new

event occurred.

The project was split into five distinct subtasks [Allan 2002]:

• StorySegmentationwas the taskofdividingaudio transcripts taken fromnews

shows into individual stories.

• FirstStoryDetectionwas the taskof recognizing theonsetof anewtopic (event)

in the stream of news stories.

• ClusterDetectionwas the task of grouping all stories as they arrived, based on

the topics they discuss.

• Tracking was a task that required systems to identify news stories discussing

the same topic as a set of sample stories, by monitoring the stream of news

stories as they appeared.

• StoryLinkDetectionwas the task of decidingwhether two randomly selected

stories discussed the same topic (event).

With the exception of Story Segmentation, the tasks focus on various aspects of doc-

ument clustering, with the main difference between each task being how it is evalu-

ated. Of the five tasks, First Story Detection (FSD, although often called New Event

Detection, NED) was considered the most difficult [Allan et al. 2000a] as an effective

FSD systemmust be effective across all of the TDT tasks.

Story Segmentation differs in nature from the others as it pertains specifically to a

pre-processing step thatmust be performed before the other tasks can be carried out.

All other tasks work with stories, however the aim of the Story Segmentation task is

to detect boundaries between stories automatically using transcripts from the spoken

audioofbroadcastnewsshows. Ofall the tasksof theTDTproject, StorySegmentation

is the least relevant to event detection onTwitter as tweets almost always discuss only

a single topic due to their short length.

2.2.1 Approaches toTDT

At a high level, almost all of the approaches proposed by the TDT project follow the

same nearest-neighbour clustering approach shown in Algorithm 1. As documents

appear in the stream, they are compared to every document that has been seen be-

fore (or, if an inverted index is used, then all documents they share a term with), and

the similarity between the new document and every other document in the Corpus
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is calculated. If one or more similar documents is found (based on some pre-defined

threshold), the new document is added to the cluster containing it closestmatch, sig-

naling that they discuss the same event. If no similar documents are found, then a

new event has been detected, and a new cluster is formed [Allan et al. 2000a].

ALGORITHM1: A basic TDT approach, similar to that used by UMass and other TDT par-
ticipants
Input: Minimum similarity thresholdm

1 index← []
2 clusters← []
3 foreach document d in the stream do
4 S(d)← ∅ // set of documents that share a term with d
5 foreach term t in d do
6 foreach document d’ in index[t] do
7 S(d)← S(d) ∪ d′

8 end
9 index[t]← index[t]∪ d
10 end
11 cmax ← 0 // maximum cosine between d and documents in S(d)
12 nd ← nil // document with maximum cosine to d
13 foreach document d’ in S(d) do
14 c := cosine(d, d′)
15 if c > cmax then
16 cmax ← c
17 nd ← d′

18 end

19 end
20 if cmax ≥ m then
21 add d to clusters[nd]
22 else
23 clusters[d]← new cluster(d) // Report d as a new event
24 end

25 end

Unfortunately, the approach shown in Algorithm 1 does not scale to extremely high

volume streams. The approach takesO(|Dt|) to compute in the worst case, and al-

though the use of an inverted index helps to reduce the average case, it continues to

take increasingly longer to process newdocuments as they are seen. This has obvious

drawbacks when the volume of data is increased from a few thousand documents, to

manyhundreds ofmillions of documents per day, whichquicklymakes this approach

computationally infeasible.

This basic model persisted throughout the TDT project, and variations of this model

(with efficiency optimizations) are commonly found in event detection approaches

for socialmedia [Becker et al. 2011b; Petrović et al. 2010b; Aggarwal and Subbian 2012;

Ozdikis et al. 2012].
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2.2.2 PerformanceofTDTSystems

TheTDTprojectproducedsomereasonablyeffective systems [Allanet al. 2000b;Yang

et al. 1998; Allan et al. 2005], however performance was still far below that required

for systems to be considered adequate for complete automation [Allan et al. 2000a].

When the TDT project ended in 2004, research in event detection slowed. It is be-

lieved that a plateau had been reached, and that without a radically different ap-

proach, the performance of these systems was unlikely to ever improve significantly

[Allan et al. 2000a]. This belief has remained true in the context of newswire doc-

uments, and many state-of-the-art systems are now over a decade old [Allan et al.

2000b;Yanget al. 1998;Allanet al. 2005]. TheTDTprojectwasacornerstone in thede-

velopment of event detection approaches and is responsible for much of the founda-

tiononwhichmany state-of-the-art eventdetectionapproaches forTwitter arebased.

2.3 DefininganEvent

Despite the significant interest and body of work covering the detection and tracking

of events, there is little consensus on the exact definition of event. This leads to ob-

vious issues when evaluating and comparing event-based systems, as differences in

what is considered an event can make it difficult, or even impossible to compare two

systems.

The TDT project defines an event as ‘something that happens at some specific time

and place, and the unavoidable consequences’ [Allan 2002]. Specific elections, ac-

cidents, crimes and natural disasters are examples of events under the TDT defini-

tion. They also define an activity as a connected set of actions that have a common

focus or purpose. Specific campaigns, investigations, and disaster relief efforts are

examples of activities. Furthermore, a topic is defined as a seminal event or activity,

alongwith all directly related events and activities. The TDT project dealt with news-

wire documents, implying a level of significance to the topics being discussed – it was

reasonable to assume that the vast majority of topics in the TDT datasets were signi-

ficant events. However this is not the case in Twitter, where a very large portion of

documents discuss insignificant personalmatters, such as the song a user is listening

to. The TDT project was concerned with the detection of topics, the US Presidential

Elections is considered a single topic, and stories about the candidates’ campaigns,

debates, election results, and reactions to the election are all part of the same topic.

There is no distinction made between each of the events within a topic, even though

they could occur several days apart. We believe that this does not make sense in the
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context of Twitter as discussionmoves very quickly and is fixated on the present, un-

like newswire documents, which often summarize several days worth of events into

a single article.

Aggarwal and Subbian [2012] define a news event as being any event (something hap-

pening at a specific time and place) of interest to the media. They also consider any

such event (e.g. a speech or rally) as being a single episode in a larger story arc (i.e. a

presidential campaign). They use the term episode to mean any such event, and saga

to refer to the collection of events related within a broader context.

Becker et al. [2011a] go as far as to define an event in amuchmore formal, but still sub-

jective manner. They define an event as a real-world occurrence e with (1) an associ-

ated time periodTe and (2) a time-ordered stream of Twittermessages, of substantial

volume, discussing the occurrence and published during time Te. Other definitions,

such as that used by Weng and Lee [2011], define an event simply as a burst in the

usage of a related group of terms.

Clearly there is a consensus that events are temporal, as time is a reoccurring theme

within all definitions. However, the consensus appears to end there. Whilst Aggar-

wal and Subbian [2012] and the TDT definition [Allan 2002] show a parallel in their

hierarchical organization of events (events and topics, news events and sagas), this

is less common in other definitions where a distinction between events and topics is

not made. This makes comparisons very difficult; one definition may break an elec-

tion into many events, while another could consider the election as a single event,

or not as an event at all. Issues are also caused by the subjective nature of what is

considered newsworthy. For example, the definitions used by Weng and Lee [2011]

and Becker et al. [2011a] require a substantial number of tweets to discuss a topic be-

fore that topic can be considered an event. This limits the types of topic that can be

considered an event to those that generate a substantial volume of tweets, creating

a bias towards larger events at the expense of smaller events or those that generate

less discussion, such as business or financial news. In chapter 3.1 we propose a new

definition for ‘event’ that tries to overcome some of these issues.

2.4 EventDetectiononSocialMedia

Analysis of social media has received a lot of attention from the research community

in recent years. However,much of this work focused on blog and email streams [Zhao

et al. 2007; Jurgens and Stevens 2009; Becker et al. 2010; Nguyen et al. 2012], using
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datasets such as theEnron email dataset [Klimt andYang 2004] or theBlogLines data-

set [Sia et al. 2008]. More recently, the focushasmoved towardsTwitter due to its pop-

ularity with individuals and organizations as a method of real-time broadcast com-

munication, making it interesting to study as a source of information about ongoing

real-world events.

Hu et al. [2012] demonstrated the effectiveness of Twitter as a medium for breaking

news by examining how the news of Osama bin Laden’s death broke on Twitter. They

found that Twitter had broken the news, and as a result, millions already knew of his

death before the official announcement. Kwak et al. [2010] analyzed the top trending

topics to show that the majority of topics (over 85%) are related to headline news or

persistent news. They also found that once a tweet is retweeted, it can be expected to

reach an average of 1,000 users.

Osborne et al. [2012] measured the delay between a new event appearing on Twitter,

and the time taken for the same event to be updated onWikipedia. Their results show

that Twitter appears to be around two hours ahead of Wikipedia. They suggest that

Wikipedia could be used as a filter, decreasing the number of spurious events, how-

ever at the cost of greatly increased latency. They demonstrate its effectiveness as a

filter for their First Story Detection approach [Petrović et al. 2010b], significantly de-

creasing thenumberof spurious events. Petrovic et al. [2013] also analyzedhowminor

andmajor events are covered by newswire providers and on Twitter. They found that

Twitter broadly reports the same events as newswire providers, however found that

Twitter tends to provide better coverage of sports, the unpredictable, and other high-

impact events.

2.5 EventDetectiononTwitter

A number of excellent survey papers covering Event Detection on Twitter have been

published in recent years, including Hasan et al. [2017], Goswami and Kumar [2016],

and Atefeh and Khreich [2015]. Rather than replicate their work here, we invite inter-

ested readers to refer to these papers for a full survey all event detection approaches

for Twitter. Instead, we survey only themost novel and relevant work in this section.

Sankaranarayanan et al. [2009] proposed one of the first systems which aimed to de-

tect breaking news and events from tweets. In conjunction with the Twitter garden-

hose, they utilize a set of 2,000 handpicked seeds – Twitter accounts who primarily

post news-related tweets – that they used as a trusted source of news. An initial layer
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of filtering is performed on all incoming tweets, excluding those from the seeds, us-

ing Naive-Bayes classifier trained on a corpus of news and “junk” tweets. Next they

use an online clustering approach that maintains a list of active clusters, along with

an associated TF-IDF [Salton and Buckley 1988] feature-vector of the terms used by

tweets in the cluster. An incoming tweet is added to a cluster if its similarity with the

cluster’s feature-vector is above a set threshold, measured using a time-decayed co-

sine similarity function. An inverted index is maintained so that only active clusters

which contain at least some of the terms from the incoming tweet are used for com-

parison, and clusters with a time centroid greater than 3 days old are marked as in-

active and removed from the index. To further reduce the number of noisy clusters,

Sankaranarayanan et al. [2009] impose an interesting restriction, in that for a cluster

to remain active after k tweets have been added, one of the tweets must come from

a seed account. Despite a number of efficiency optimizations, their approach is un-

able to scale, or produce results in real-time. Unfortunately, no attempt is made to

evaluate the effectiveness of their system other than a small number of empirical ob-

servations.

Becker et al. [2011b] use the clustering approach proposed by Yang et al. [1998] as part

of the TDT project, and a filtering layer similar to Sankaranarayanan et al. [2009].

However, filtering is performed after clustering has taken place, and they attempt to

identify likely event clusters, rather thanevent tweets. Theyuse anumberof features,

such as top terms and number of retweets to classify clusters as either event or non-

event. Although evaluation of their approach seems to show that it is very effective, it

is still based on a TDTmodel designed formuch lower volume streams, and is simply

too slow to scale past very small corpora due to the clustering approach used.

Sakaki et al. [2010]were concernedwith thedetectionof specific typesof event, inpar-

ticular, earthquakes and typhoons, with the aim of issuing alerts to those in the path

of these disasters. Their approach, although simple, is very effective. They specify

a set of predefined keywords which are associated with the type of events they are

trying to detect (e.g. earthquake, shake, cyclone, typhoon, etc.,). They monitor an

incoming stream of tweets for these keywords, and for each tweet found, they clas-

sify it using a Support Vector Machine (SVM) as either event-related or not. If they

find enough event-related tweets in a short period of time, then their systems decides

that the event is real, and issues alerts to those who could be affected. Despite the ef-

fectiveness of their approach, there are obvious drawbacks. Firstly, it can only detect

specific types of event, and secondly, it requires training data for each of the types of

event we want to detect.
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2.5.1 LocalitySensitiveHashing (LSH)usingRandomHyperplanes

Earlier we discussed how the basic TDT approach as described in section 2.2.1 could

not scale to extremely high volume streams (even with the aid of an inverted index),

making it infeasible to use for event detection on Twitter. Petrović et al. [2010b] pro-

posed a solution to this using a technique called Locality Sensitive Hashing (LSH).

LSH uses special hash functions that produce the same hash for documents that are

similar, but not necessarily completely identical, allowing documents that are close

in vector space to be placed into the same bucket. Using a set of randomhyperplanes

and a family of hash functions proposed by Charikar [2002], the buckets are defined

by the subspaces between hyperplanes, such that the probability of similar docu-

ments being placed into the same bucket of a hash table is proportional to their sim-

ilarity.

Byusingmultiple hash tables, eachwith independently chosen randomhyperplanes,

the probability of the true nearest neighbour colliding in at least one table can be in-

creased to any desired probability (at the cost of additional computations). The num-

ber of hash tablesL needed to give the desired probability ofmissing a nearest neigh-

bour δ can be computed as:

L = log1−Pk
coll

δ (2.7)

where k is the number the number of hyperplanes. Pcoll is computed as 1 − θ(x,y)
π

where θ(x, y) is the expected angle between similar documents x and y. Petrović

et al. [2010b] use values of k = 13, θ(x, y) = 0.2 and δ = 0.025 to compute L,

values which we also use when replicating their work in chapter 3.

EfficiencyEnhancements

Since the number of buckets is limited, in a streaming scenario where the number of

documents is unbounded, the number of documents in each bucket will continue to

grow as new documents are processed. This would require an unbounded amount

of space and the number of comparisons made would also grow for each new docu-

ment, eventuallymaking even the LSH approach infeasible. To overcome this, Petro-

vić et al. [2010b] limit the number of documents in a bucket to a fixed number based

on the expected number of collisions, which can be computed asn/2k wheren is the

total number of documents and k is the number of hyperplanes used. When a bucket

is full, the oldest document in the bucket is removed from that bucket (and only that

bucket) to make room for new documents. Due to the use of multiple independent

hash tables, the removal of the document from a bucket does not prevent it from be-
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ing retrieved from other hash tables, although eventually all documents are removed

from all hash tables.

Rather than compare each new document to every document that has been seen be-

fore, similarity comparisons are performed for atmost 3L documents (whereL is the

number of hash tables). Thedocuments are selected by counting thenumber of times

a document collides across theL hash tables, and taking the top 3L documents with

the most collisions.

VarianceReduction

Although the use of LSH improves computational efficiency, it proves to be consider-

ably less effective than the standard TDT approach. This is because LSH is most ef-

fective when the true nearest neighbour is very close (i.e. has a high similarity) to the

query document. If the nearest neighbour is far from the query document, then LSH

often fails to find it. To overcome this, Petrović et al. [2010b] use a ‘variance reduc-

tion’ strategy when a nearest neighbour is not found using LSH. In these instances,

the approach falls back the traditional TDT model, and uses an inverted index to re-

trieve a list of documents to search for a nearest neighbour. However, unlike the basic

TDTmodel, a limit is placed on the number of documents searched, and only the 200

most recent documents returned from the inverted index are compared. This helps

to improve the effectiveness, and brings it inline with that of the basic model, whilst

still being considerably more efficient.

ClusterRanking

Although the use of LSH improves computational efficiency and allows the applica-

tion of a TDT approaches on Twitter-scale data, it does not address the issue of noise

and spam, which is found in excess on Twitter but is not present in the TDT datasets.

Petrovićet al. [2010b] investigatedanumberof rankingapproaches for rankingclusters

produced by their system. They found that ranking clusters by the number unique

users was more effective than the raw number of tweets. They also found that the

amount of information contained in the thread, measured using Shannon entropy

[Shannon 2001], was a good indicator of quality. Shannon entropy,H , is measured

as:

H = −
∑
i

ni

N
log

ni

N
(2.8)
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where ni is the number of occurrences of term i in a cluster, and N =
∑

i ni is

the total number of all term occurrences in the cluster. Clusters with a low entropy,

defined asH < 3.5 by Petrović et al., are moved to the bottom of the ranking – ef-

fectivelymarking themas noise. The same approach is used by Benhardus andKalita

[2013] to remove spam and noisy topics when performing trend detection.

This entropy based approach to removing noise and spam works because it helps to

filter out automated “bot” content, where the same message is published by many

different accounts in an automated manner. Clusters where the content shows very

little or no variationwill have a relatively low entropy (information content), whereas

clusters that show more variation (due to having different sources and authors) will

have a higher entropy and containmore information. By combining both the unique

user counts and entropy based filters, Petrović et al. [2010b] are effectively requiring

a topic to be discussed by a broad range of users for it to be considered an event.

Note that this ranking approach requires either a fixed period to have elapsed or a set

number of tweets to be processed before the ranking can be made. For example, the

rankingmaybeupdated once per hour, or once every 100,000 tweets. This takes away

from the usefulness of the approach in a real-time scenario, making it more batch-

based than real-time.

2.5.2 EfficientClusteringUsingaFixedNumberofClusters

If documents are restricted to a single cluster, an easy efficiency gain can be found by

comparing new documents to existing clusters (rather than every other document).

Since the number of clusters will always be smaller than the number of documents,

fewer comparisons are needed to find the nearest neighbour cluster. This approach

was used by Aggarwal and Subbian [2012], with the additional constraint that the

number of clusters (usually several hundred) is kept constant, ensuring linear com-

plexity (i.e., the time taken to process each newdocument is a constant). An overview

of their clustering approach is given in Algorithm 2.

IdentifyingEventClusters

Aggarwal and Subbian [2012] define two ways that a new event can occur using their

clustering approach:

• novel events, which are caused by the creation of a new cluster containing only

a single document (thus, also requiring the removal of a “stale” cluster)
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• evolution events, where a cluster experiences a rapid increase in the relative

volume of documents it receives due to the emergence of a new topic

New clusters (novel events) are created when a nearest neighbour cluster cannot be

found among the existing clusters. Unlike most event detection and TDT systems,

Aggarwal and Subbian [2012] use an adaptive similarity threshold based on the Three

Sigma rule [Pukelsheim 1994], which states that the expected similarity value should

be within 3 standard deviations of themean similarity across all previously seen doc-

uments. For use as aminimum threshold for similarity, only the lower bound is used:

threshold = µ− 3 · σ (2.9)

where µ is the mean and σ is the standard deviation of all similarity measures that

have been seen before.

To compute the µ and σ values efficiently, Aggarwal and Subbian [2012] use the first

threemoments of the set of highest similarity scoresS (i.e., the set of similarity scores

ALGORITHM 2: A clustering approach as given by Aggarwal and Subbian [2012] with a
fixed number of clusters
Input: Number of clusters k

1 clusters← [k]
2 i, µ, σ,M0,M1,M2 ← 0
3 foreach document d in the stream do
4 smax ← 0 // maximum similarity between d and all clusters
5 nc ← nil // cluster with maximum similarity to d
6 foreach cluster c in clusters do
7 s← similarity(d, c)
8 if s > smax then
9 smax ← s
10 nc ← c

11 end

12 end
13 if smax < µ− 3 · σ then
14 replace most stale cluster with new cluster containing d
15 else
16 add d to clusters[nc]
17 end
18 updateM0,M1,M2 additive
19 µ←M1/M0

20 σ←
√

(M0M2 −M2
1 )/M0

21 end
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for each document to its nearest neighbour cluster):

M0 =

|S|∑
i=0

S0
i M1 =

|S|∑
i=0

S1
i M2 =

|S|∑
i=0

S2
i (2.10)

These values canbeupdatedas eachnewdocument is clustered, andused to calculate

µ and σ as shown in Algorithm 2.

If adocumenthasahighest similarity scorebelowµ−3·σ thenanewcluster is created

and the document is added to it. Since this approach requires a constant number of

clusters for linear time complexity, the creation of a new cluster requires the removal

of an existing cluster. Aggarwal and Subbian [2012] opt for the simplest approach in

this case, and remove the clusterwhich has not had a document added for the longest

period of time.

An evolution event is said to have occurredwhen the fraction of documents added to a

cluster during time ti is greater than the fraction added during period ti−1 by a factor

ofα. For a cluster c, during time periods ti and ti−1, an evolution event occurs if:

F (c, ti)

F (c, ti−1)
≥ α (2.11)

whereF gives the fraction of all documents during time t thatwere added to cluster c.

Evolution events are necessary to capture real-world events that are similar enough

to an existing cluster that they do not cause a new cluster to be created. The change

in relative volume of documents represents a change in behavior which can be seen

as an indicator of a new event.

2.5.3 NaturalLanguageApproaches

ChoudhuryandBreslin [2011] examinedhowlinguistic featuresandbackgroundknow-

ledge could beused to detect specific types of sports eventswithhighprecision. How-

ever their approach requires significant domainknowledgeof the sporting events and

large amounts ofmanual labeling toprepare a classifier for each specific typeof event,

making it difficult and time-consuming to generalize.

The use of named entities for event detection has been suggested in the past, Ku-

maran and Allan [2004] used named entities to improve First Story Detection per-

formance on Topic Detection and Tracking corpora, however there was concern that

its effectivenesswouldbe too lowwhendealingwith the lowquality andnoisy content
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found on Twitter. Li et al. [2012b] examined the performance of current state-of-the-

art Named Entity Recognition (NER) software on Twitter, and although they found

that it was possible to significantly improve upon current performance, their results

show that out-of-the-box solutions, such as the Stanford NER1, perform adequately

for most tasks.

Ritter et al. [2012] used named entities, “event phrases” and temporal expressions to

extract a calendar of significant events from Twitter. However, their approach re-

quires that tweets contain temporal resolution phrases, such as “tomorrow” or “Wed-

nesday” for their approach to resolve between an entity and a specific time. This

means that smaller events, which do not generate much discussion before they hap-

pen, are unlikely to be detected. Additionally, unexpected events, which are often

the events which are of most interest, are unlikely to be detected as they will only be

discussed as they are happen, and without any temporal resolution phrases.

Most similar to our work is that of Li et al. [2017], who use a partitioning technique to

efficiently cluster documents by splitting the tweet term space into groups they call

‘semantic categories’, such as named entities, mentions, hashtags, nouns and verbs.

To ensure that only novel events are reported, they compare each new event to old

events, filteringoutanyevents thathavealreadybeen reported. Theymergeeventsby

comparing the top 20%of entity terms, basedon term frequency,which reduces event

fragmentation. They evaluate their approach using the Events 2012 corpus we create

in chapter 3, finding that their approach outperforms the LSH approach whenmeas-

ured using NMI and B-Cubed cluster performance metrics. Although this approach

outperforms their baseline approach (theLSHapproachof Petrović et al. [2010b]) they

donot report precisionor recall values at an event level,making it difficult to compare

to other approaches.

2.5.4 Clustering Issues forEventDetectiononTwitter

Volume is only part of what makes Event Detection a difficult task on Twitter data.

Due to the short length of tweets, lexical mismatch is a common issue, where users

may describe an event using semantically similar yet different words, such as ‘bomb’

and ‘explosion’ or ‘crashed’ and ‘rammed’. Topic drift is yet another issue. As events

develop and new subtopics emerge, it can cause a rapid change in discussion that, to

a cluster-based event detection system, can appear as if a new real-world event has

occurred.

1http://www-nlp.stanford.edu/software/tagger.shtml
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To address the issue of lexicalmismatch, Petrović et al. [2012] suggest amethod of in-

tegrating paraphrasing with their LSH-based approach, which shows improvements

when applied toTDTdatasets, but fails to showany significant improvement onTwit-

ter data (in fact, it often performs worse). Additionally, since Tweets themselves are

very short and tend to discuss only a single moment in time, the use of paraphrasing

does not address issues such as topic drift or divergence.

Insteadof relyingoncontent-only features for clustering,Aggarwal andSubbian [2012]

adapt their approach (described in detail in section 2.5.2) to use the structure of the

underlying social network to improve clustering. Using the graphical structure of

Twitter, where each user is a node in a graph and their followers/followees form the

vertices, they maintain two summaries for each cluster in their detection approach:

(i) a node-summary, which is a set of users and their frequencies and (ii) a content-

summary,which is a set ofwords and their TF-IDF [Salton andBuckley 1988]weighted

frequencies. Bycombining these twosummaries, they suggest anovel similarity score

which exploits the underlying structure of the social network, and improves upon

content-only measures. Similarity between tweet t and cluster c is calculated as:

Sim(t, c) = λ · SimS(t, c) + (1− λ) · SimC(t, c) (2.12)

where SimS and SimC are the structural and content based similarities respect-

ively. λ can be adjusted to give more or less weigh to the structural similarity.

Although Aggarwal and Subbian [2012] found that is was possible to improve both

precision and recall of their detection approach by combining network structurewith

content similarity, theuseofnetwork structureposesaproblemwhenapplied toTwit-

ter data. Since Twitter does not include full follower information in a standard tweet

payload, researchersmust insteadqueryTwitter’sAPI separately,which is rate-limited

to only a few hundred requests per hour. Thismakes it extremely time-consuming to

retrieve largevolumesof follower information fornetworkstructurecalculations. The

temporal nature of followers also causes a problem. Users follow and unfollow each

other on a regular basis,meaning that the underlying network structure changes over

time. This can cause issues even in the short term if a user emerges as good source of

information, spurring many other users to follow them, and poses a particular prob-

lem for researchers using a datatset which is several years old as a users current fol-

lower network is unlikely to bear any resemblance to their network from several years

ago.

Indeed, clustering alone appears to be inadequate for effective detection and tracking
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tracking of complex or evolving events on Twitter. The limited length of a tweet re-

stricts discussion to a verynarrow topic, howeverdiscussionaroundanongoing event

may quickly jump from one subtopic to another, making it difficult to find links. The

use of network structure is a possible solution, but as we have discussed, is unlikely

to be feasible unless the network is known in advance. More recent advances in areas

such as word embedding may provide a solution to these issues, however at the time

of writing, much work remains to be done in this regard.

2.5.5 Burst andTrendAnalysis

Although document-based event detection is the most common approach, another

common approach involves the use of burst or trend detection to identify individual

terms (or clusters of terms) that describe real-world events. The aim of these ap-

proaches is to produce a set of terms that can either be interpreted by users to give

them some understating of the event that occurred, or as query terms that can then

be used to retrieve relevant tweets from the period that that burst or trend occurred.

For example, Li et al. [2012a] developed an event detection system called ‘Twevent’

which produced the following cluster of terms describing the South Korea vs. Greece

match for the 2010 FIFAWorld Cup: “south korea, greece, korea vs greece, korea won,

korea”.

Their approachextractsword segments (phrases that couldbenamedentities or other

semantically meaningful units) from tweets, and using statistical information from

theMicrosoftWebN-Gram Service2 andWikipedia. Bursty event segments are found

by identifying any segment that has unexpectedly highusage, definedby it appearing

inmore thanµ+(2 ·σ) tweets during a time period, whereµ is the expected number

of tweets containing the segment during a time period, and σ is the standard devi-

ation. However, they found that this approach produced an extremely high number

of bursts relative to thenumber of tweets beingprocessed. Rather than take all bursts,

they instead weight each burst using the number of unique users who posted a tweet

using the segment, and take the top-K bursty segments fromeach timeperiod,where

K is the square root of the total number of tweets postedduring the timeperiod. They

then use a variant of the Jarvis-Patrick [Jarvis and Patrick 1973] clustering algorithm

to cluster related segments into events using the content of tweets containing the seg-

ments and the segment frequency correlation. Finally, the events are filtered based

on their newsworthiness, which is calculated using Wikipedia as a knowledge-base,

and requires the segment to appear in the anchor text linkingWikipedia articles.

2https://www.microsoft.com/en-us/research/project/web-n-gram-services/
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Twevent outperforms their baselines approach [Weng and Lee 2011], however relies

heavily on both Wikipedia and Microsoft’s Web N-Gram service, which means it is

likely biased by these services. Additionally, since it has already been shown that

Twitter is often ahead of Wikipedia by more than two hours [Osborne et al. 2012],

the use of Wikipedia as a knowledge base and its reliance on anchor text for filter-

ing means that it is likely to miss novel events if they have not already been reported

onWikipedia.

TwitInfo [Marcus et al. 2011] allows users to track an event based on a set of keywords,

providing a visualization and summary of the event. Part of this involves providing

sub-event detection within the stream, using burst (or peak) detection to alert users

whena significant sub-eventor change in topicoccurs. TwitInfo identifies termpeaks

by creating a histogram of tweet frequencies and applying TCP’s congestion control

mechanism (which determines whether a packet is taking unusually long to be ac-

knowledged and is thus an outlier). This approach uses theweightedmoving average

and the variance in tweet frequency do detect outliers. An outlier is said to have oc-

curred when the current frequency is more than 2 mean deviations from the current

mean, and the frequency is increasing (i.e., it is higher than the previous value). The

top ranking TF-IDF weighted terms used during the outlier period are then used to

provide a set of meaningful labels for the sub-event.

Weng and Lee [2011] developed a system called EDCoW (Event Detection with Clus-

tering of Wavelet-based Signals) that builds signals for individual words by applying

wavelet analysis on the frequency-based raw signals of the worlds. They then use sig-

nal auto-correlation (i.e. its correlation with itself) to identify and filter out trivial

words. The remaining words are clustered into events by performing a modularity-

basedgraphpartitioning techniqueusing signal cross-correlation. Theyevaluate their

approach on 3.2 million tweets posted by users based in Singapore, starting with a

list of the top 1000 users with the most followers, and then expanding the graph by

following their friends and followers 2-hops, giving them 19,256 unique users. Their

approach can be tuned to given high precision (P = 0.76), however discovers only

21 events over amonth long period, themajority of which correspond tomatches tak-

ing place for the 2010 World Cup. Due to the high computation costs of the cross-

correlation and graph partitioning steps, this approach is unable to run in real-time,

and struggles with event small datasets.
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2.5.6 Newsworthiness andCredibility

The topic of newsworthiness is related to event detection through it’s use as a com-

mon pre-processing step in credibility assessment and summarization of events after

detection. Noyunsan et al. [2016] used cosine similarity to filter out non-newsworthy

posts on Facebook by comparing new posts to known non-newsworthy posts. They

created a groundtruth of 1,005 non-newsworthy Facebook posts, annotated and col-

lected via a browser extension installedby volunteers. Their approach compares each

new post to every post in the groundtruth, and classifies posts as non-newsworthy

(noise) if its similarity to any document in the groundtruth is above a threshold. They

later examined how the removal of non-newsworthy posts affects credibility assess-

mentand found thatby removingnon-newsworthyposts theycould increase thecred-

ibility assessment effectiveness [Noyunsan et al. 2017].

Madhawa andAtukorale [2015] examined the performance of difference classifiers for

labelling tweets as newsworthy or noise as the first step in a pipeline for the summar-

ization of events on Twitter. However, Madhawa and Atukorale [2015] define news-

worthy and noise as ‘objectivity’ and ‘subjectivity’ respectively. Although this dis-

tinction is true inmany cases, and provides a useful distinction for summarization, it

does not apply in all cases. Subjective comments by noteworthy individuals, such as

politicians or public figures, are often a newsworthy event. For this reason, we argue

that simple objectivity and subjectivity labelling does not capture the true newswor-

thiness of a post, and instead a more robust newsworthiness score is required.

2.6 TestCollections

In order to fairly and accurately evaluate InformationRetrieval systems of any kind, a

standard test collection and set of relevance judgements are required. Themajority of

modern test collections are created using a pooling approach, where a set of topics or

queries are selected and used to retrieve documents from a number of different sys-

tems. The union of the top n documents per topic, taken from each system systems,

is then used create a pool of documents for each topic. Each document in the pool is

then judged to be relevant or non-relevant to the topic, and documents which are not

in the pool are assumed to be non-relevant.

This pooling approach is commonly (but not exclusively) used to generate relevance

judgements for collections provided to researchers participating in conferences such

as theTextREtrieval Conference (TREC),which is sponsoredby theNational Institute
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of Standards and Technology (NIST) in the United States. Researchers are first given

the test collectionswitha setofpre-selected topics, andareasked to submit the results

from their retrieval systems to experts who then perform the pooling and annotate

the documents. Given the scale of modern test collections, this can be a slow and

expensive undertaking, which restricts the number of “tracks” (a set of tasks focused

on some facet of a retrieval problem) that can be run each year, and thus limits how

many test collections and relevance judgments can be created this way.

More recently, crowdsourcing has become a popular method of cheaply and quickly

generating relevance judgements since it doesnot relyon the timingofparticular con-

ferences and does not require experts to gather relevance judgements. Alonso et al.

[2008] describe how crowdsourcing can be used to gather relevance judgements and

discuss their crowdsourcingmethodologycalled ‘TERC’,which theyfindprovides fast

turnaroundswhilst being low cost and producing high quality results. However, they

also describe some of the issues and limitations which need to be addressed, such as

theneed for strict quality control and the ‘artificiality’ of the task. Whilst theypropose

some solutions to these issues, they recognize that many of the solutions are domain

specific, and not applicable in all situations.

Issues remainwith thepoolingmethod itself. Buckley et al. [2007] highlighted anum-

ber of issues associatedwith poolingwhendealingwith large collections, and showed

that standard pooling techniques can introduce bias when dealing with large collec-

tions. Theymake a number of suggestions, such as engineering the topics or forming

pools differently, that could reduce bias and allow for the creation of large unbiased

test collections using pooling. Zobel [1998] found that although TREC-style pooling

produced test collections which give reliablemeasures of relative performance, there

are potential issueswith the depth of the pool used,meaning thatmany relevant doc-

uments are not found (30%-50%), even in smaller collections. They suggest that pool

sizes for each topic should be increased when it is highly likely that further relevant

documents will be found. However, the use of pooling to create a test collection for

event detection poses additional challenges which require more substantial changes

to the TREC-style pooling methodology than those proposed by Buckley et al. [2007]

and Zobel [1998].

2.6.1 ThePoolingApproachandEventDetection

Despite often being viewed as an IR task, Event Detection has a number of character-

istics that differ from more common IR tasks. The most obvious of these is the lack
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of pre-defined topics or queries for event detection systems to use. Rather, systems

aim to automatically discover a sub-set of all topics being discussed in the collection

thatmeet the criteria for being an event (aswewill discuss in chapter 3, defining these

criteria is not straightforward). A perfect systemwould detect all documents for each

event being discussed, however in practice, different event detection approaches dis-

cover different events. This makes it impossible to pool the results from event detec-

tion approaches using a TREC-style poolingmethodology since it is not obviouswhat

the various topics are or how they should bemerged to create the pools for judgment.

Even if it was possible to identify and pool tweets for each of the topics, event detec-

tion systems generally do not produce a rank for each tweet, instead relying on their

temporal order. Temporal order is a natural and useful way of ordering tweets that

discuss real-world events, as events are often discussed in real-time. Since this does

not infer any sort of quality or usefulness score from the system, there is no way of

identifying the top n documents from each event from each system, making it diffi-

cult to efficiently pool them for judgment.

2.6.2 TwitterCorpora

A broad range of Twitter collections have been created for various tasks, however the

majority of these lack relevance judgements or are simply collections of tweets that

contain specificwords orhashtags. Therehavebeenvery fewattempts to create large-

scale, robust test collections containing a wide range of topics with relevance judg-

ments. Table 2.1 shows themost noteworthy and relevant Twitter corpora, compared

to the collection we describe the creation of in chapter 3.

TREC utilized the pooling approach to gather relevance judgements in 2011 and 2012

as part of the Microblog Track. An ad-hoc retrieval task was used both years on the

Tweets2011 [McCreadie et al. 2012] collection, across 100 queries (50 each year). The

Table 2.1: A comparison of the different Twitter corpora available prior to this collection. Val-
ues marked with * are estimates as exact numbers are not given. A question mark
(?) indicates that the number of events is not clear.

Collection Period Tweets Event based Events Unbiased

McCreadie et al. [2012] 14 days 16M No - -

Becker et al. [2012] 28 days* 2.6M Yes ? No

Petrović et al. [2012] 75 days* 50M Yes 27 No

Events 2012 (ThisWork) 28 days 120M Yes 506 Yes
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collection was the first publicly available, large-scale, Twitter corpus, consisting of a

random sample of 16 million tweets collected over a period of two weeks in 2011.

The Tweets2011 corpus contains tweets in all languages, however queries and judge-

ments were only made using English language tweets, of which there are approxim-

ately only four million in the corpus. Furthermore, the topics and relevance judg-

ments were designed specifically for ad-hoc retrieval (one example query being ‘fish-

ing guidebooks’), meaning that the relevance judgements are unsuitable for event-

based analysis. The TRECMicroblog Track also ran in 2013, however the trackmoved

toanexperimental track-as-a-serviceapproach,where thecorpuswashostedbyTREC

and participants had to be queried using an API. The only way to obtain tweets from

the collectionwas to query theAPI for specific keywords,making it impossible to pro-

cess the corpus as a time-ordered stream. Once again, the set of topics used were

designed specifically for ad-hoc retrieval, making them unsuitable for event-based

analysis. More recently, the merger of the TREC Microblog and Temporal Summer-

ization tracks resulted in the creation of a new Real-Time Summerization track [Lin

et al. 2017] which overcomes some of the problems with the track-as-a-services ap-

proach by instead requiring all participants to sample from Twitter’s streaming API

concurrently during a fixed time period.

Becker et al. [2012] producedwhatwebelievewas thefirst Twitter collectionof events.

Their collection contains 2.6 million tweets posted by users fromNew York, however

this limits its usefulness for the evaluation of event detection systems as it limits the

types of event that can be detected. The small size of the corpus also limits its use-

fulness. The 2.6 million tweets represents just 0.02% of the volume of tweets posted

to Twitter over the 28 day period that the collection covers, meaning that it does not

give a true representation of the scale found on Twitter.

Petrović et al. [2012] created a corpus designed to evaluation the First Story Detec-

tion task of the TDT project. While their collection contains a relatively high 50 mil-

lion tweets from the beginning of July untilmid-September 2011, they gathered judg-

ments for only 27 events. The small number of events is not a problem for the evalu-

ation of First StoryDetection, a sub-task of event detection, where the aim is to detect

the first story discussing a new event. However, it does prevent the collection from

being used to evaluate event detection, since missing any of the 27 events will have

a large impact on measured performance, and any differences between systems will

likely not be statistically significant due to the small sample size.

Although these collectionshavebeenmadeavailable, albeit in a limited fashion, none
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appear suitable for theanalysisof events andcomparisonof eventdetectionapproaches.

The collection produced by Becker et al. is simply too small to be of practical use for

event detection, while the collection created by Petrović et al. covers too few events

for a fair comparison to bemade. One reason for the lack of comparative corporamay

be the difficulty and expense of creating one. A reasonable sized Twitter corpus will

contain tens ofmillions of documents –performing amanual searchon corpus of that

magnitude is simply impossible. To overcome this, Petrović et al. used a procedure

similar toNIST, where expert annotators (primarily the authors of the paper) read the

description of an event and used keywords to search for relevant documents. How-

ever, this approachmeans that events (i) must be carefully identified in advance (po-

tentially introducing bias) (ii) annotation requires expensive and slow experts, and

(iii) it does not scale well past a certain size (Petrović et al. were only able to create

judgements for 27 events).

2.6.3 ACorpus forEventDetection

Issues with both TREC-style pooling and crowdsourcing, as well as the lack of an un-

biased and comparable test collections for event detection, highlights the need for a

new methodology that can be used for the creation of large-scale test collections for

event detection on Twitter. A new pooling approach is needed to cope with the lack

of predefined topics and document ranking, whilst new crowdsourcing techniques

are neededwhichmaintain the fast turnarounds and low-cost associatedwith crowd-

sourcing, but ensure high-quality results.





CHAP T E R 3

BuildingaTwitterCorpus for
EvaluatingEventDetection

The lackof a large-scaleTwitter corpusmakes theevaluationandcomparisonof event

detection approaches incredibly difficult. Indeed, it is not uncommon for research-

ers to create a bespokedataset and carry out a time-consuming andpotentially biased

manual evaluationof their eventdetectionapproach, forwhich thedataset and judge-

ments are often not made publicly available.

A small number of Twitter corpora with relevance judgements have beenmade avail-

able (these are detailed in section 2.6), however none are suitable for the large-scale

evaluation of event detection approaches due to their small size or number of top-

ics. This is partially due to the massive scale of Twitter, which makes the creation

of corpora difficult, time-consuming and expensive, but also due to disagreement on

the definition of event, which can often make comparisons difficult or impossible.

Furthermore, Twitter’s Terms of Service restrict the distribution of tweets, and do

not allow the content of tweets to be distributed as part of a corpus. Instead, tweet

IDs must be released, and those wishing to use a dataset must register for a Twitter

developer account and use Twitter’s rate-limited API to crawl the tweets. As a res-

ult, there are very few publicly available Twitter corpora, and in some cases, corpora

fromothermediumare used in place of a Twitter corpus [Aggarwal and Subbian 2012;

Petrović et al. 2010b, 2012]. However, it is not clear that effectiveness of event detec-

tion approaches on a non-Twitter corpus is comparable to effectiveness on a Twitter

corpus, with some evidence suggesting that this is not the case [Petrović et al. 2012].

This scenario leads to a situation in which event detection techniques are not prop-

erly benchmarked.

As we discussed in section 2.6, there are a number of issues that make it impossible

to use a standard pooling approach to create a collection for the evaluation of event

detection approaches on Twitter. This motivates the need for a new methodology to

create large-scale test collections for the evaluation of event detection approaches.

34
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In this chapter, we propose a new, Twitter centric, definition of event which we be-

lieve better fits how users perceive events and how events are discussed on Twitter.

Then, using this new definition, we propose a new methodology for creating a set of

relevance judgements for the evaluation of event detection approaches on Twitter.

To do so, we create a collection of 120million tweets, and by implementing two exist-

ing event detection approaches, we extract a set of candidate events and their associ-

ated tweets. We use crowdsourcing to evaluate each candidate event using our defin-

ition of event, and gather tweet-level relevance judgements for each event. We also

extract a list of significant events fromWikipedia’sCurrentEventsPortal, and for each

event, extract potentially relevant tweets and use crowdsourcing to gather relevance

judgements. We then use a clustering approach to merge events from each approach

so that each event discusses the same real-world event. Wemake this corpus available

for other researchers to use at http://mir.dcs.gla.ac.uk/resources/. This
chapter has a number of novel contributions:

• We create the first test collection of this scale for event detection on Twitter

• We propose a new and robust definition of ‘event’ that deals with the nuances

of events on Twitter

• We propose a novel methodology for the creation of relevance judgements us-

ing two state-of-the-art event detection approaches, Wikipedia, and Amazon

Mechanical Turk

• We study the quality and characteristics of the corpus and the relevance judge-

ments

3.1 DefininganEvent

In section 2.3we discussed that, although there is a consensus that events have a tem-

poral nature, there is a lack of a concrete definition of event for the evaluationof event

detection approaches on Twitter. This makes it difficult to compare the effectiveness

of different event detection approaches as different definitions may lead to different

judgements being made for the same topic.

To solve these issues, we take themost basic definition of event (something that hap-

pens at a particular time and place), and introduce the requirement that an event

should be significant. By requiring that an event is significant, we are able to filter

out every-day personal and trivial events which are extremely common on Twitter

(such as getting a phone call or going to the gym).
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Event: An event is a significant thing that happens at some specific time and place.

As discussed in chapter 2.3, it was reasonable to assume that all events in the TDT

datasets were significant events due to the use of newswire documents, something

which is not true in the case of Twitter. Given this, we attempt tomodel our definition

of significance so that an event under our definition would be of a similar level of

significance to those found in the TDT datasets, despite the disparity between the

two sources.

Significant: Something is significant if it may be discussed in the media. For ex-

ample, youmay read a news article or watch a news report about it.

It is important to note that something does not necessarily have to be discussed by

themedia in order for it to be an event, we simply use this as an indication of the level

of significance required for something to be considered an event. Whilst this is still

somewhat subjective, we believe that it is impossible to further restrict significance

whilst keeping our definition of event generalizable. Given this definition of event,

our aim is to create a collection of significant events which have been discussed on

Twitter, and set of relevance judgements for tweets which discuss the events.

We also note that by using the term significant to qualify a topic as an event (or not),

we allow for the definition of event to be kept constant even for different use-cases.

While we align our definition of significant such that it brings our definition of event

in line with that of the TDT project, we do not exclude the possibility that signific-

ant could be altered to suit other use-cases. For example, a system designed to assist

the emergency services may only consider an event to be significant if it requires an

emergency response, whereas a system designed for financial tradersmay define sig-

nificant as something that might affect the price of a security.

3.2 CollectingTweets for theCorpus

We collected approximately one billion tweets using the Twitter Streaming API1 over

a period of 28 days, starting on the 10th of October 2012 and ending on the 7th of

November. This period was chosen specifically because it covers a number of inter-

esting and significant events, including natural disasters such as Hurricane Sandy,

and large-scale political events such as the U.S. Presidential Elections.

1https://dev.twitter.com/docs/streaming-apis
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Since Twitter only allow datasets to be distributed as a list of tweet IDs and requires

researchers to crawl the tweets using the Twitter REST API (a time consuming pro-

cess due to rate limits), we opted to perform a number of basic filters on the corpus to

reduce its overall size. Language filtering was performed using a language detection

library for Java2 to remove non-English tweets. Further filtering removed common

types of Twitter spam (i.e. tweets which contain more than 3 hashtags, more than 3

mentions, or more than 2 URLs, as these have been shown to be strongly associated

with spam [Benevenuto et al. 2010]). After spam and language filtering, we were left

with a corpus of 120million tweets.

Of the 120million tweets in thecorpus, around30%(40million) are retweets. A retweet

is a copy of another user’s tweet which was broadcast by a second user to their fol-

lowers, often prefixed with ‘RT’. In the context of Twitter, retweets are a very useful

method of spreading information. However, retweets are commonly associated with

the spread of spam [Boyd et al. 2010], and because they are an unmodified copy of an-

other user’s tweet, theydonot generally add anynew information. Although retweets

are included in the collectionwe chose not to include retweets in the relevance judge-

ments. This allows event detection approaches that make use of retweets to use the

collection, whilst reducing the complexity of creating relevance judgements.

3.3 Generating Candidate Events using State-of-the-art Event

DetectionApproaches

To generate a set of candidate events for judgment, we choose to use two state-of-the-

art detection approaches (at the time of this work was carried out), which were de-

signed specifically for Twitter, namely the Locality Sensitive Hashing approach pro-

posed by Petrović et al. [2010b] and the Cluster Summarization approach proposed

by Aggarwal and Subbian [2012], both of which are described in detail in chapter 2.

These were chosen based upon a number of desirable characteristics. Firstly, both

approaches produce clusters of tweets, rather than clusters of terms. Many event

detection approaches for Twitter attempt to reduce the problem by clustering terms

rather than documents. However, this is considerably less useful in our case as they

are much more difficult to evaluate and would require an additional step in order to

retrieve tweets. Secondly, both approaches are efficient and we were confident that

they would finish in a reasonable time frame (i.e. days rather than weeks or months).

Whilst it would have been desirable to implement additional detection approaches,

2https://code.google.com/p/language-detection/
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the time taken to implement, run and evaluate each approach is prohibitive. Fur-

thermore, sincemostdetectionapproachesuse similarmethods to clusterdocuments

and detect events, it is doubtful that a small increase in the number of detection ap-

proaches used would significantly increase the coverage of events.

LocalitySensitiveHashing (LSH)

Where practical, we used parameters as close as possible to those used by Petrović

et al. [2010b]. More precisely, 13 bits per key, a maximum distance of 0.45 and 70

hash tables. However, we chose to measure the fastest growing clusters on a hourly

basis, rather than every 100,000 tweets as used in the original paper. We made this

decision due the fact that 100,000 tweet covers only a short period of time in our col-

lection (approximately 30 minutes) due to its high volume. Since the LSH approach

keeps several hours worth of tweets in memory at all times, this would have gener-

ated twice as many candidate events without necessarily increasing the number of

real-world events detected,making it prohibitivelymore expensive to generate judge-

ments. Simply taking the list of candidate events everyhourwould still have yielded a

prohibitively high number of clusters (in the hundreds of thousands). However by re-

moving clusters outside the optimal entropy range of 3.5 to 4.25 [Petrović et al. 2010b],

and by removing clusters with fewer than 30 tweets (which ensures the cluster con-

tains enough tweets for effective evaluation), we are left with a final set of 1340 can-

didate events and a run-time of approximately twodays (using desktop classmachine

with an Intel i5 2500S and 16GB RAM).

Cluster Summarization (CS)

We ran the CS approach with 1200 clusters, slightly more than used by Aggarwal and

Subbian [2012], however due to the increased volume of tweets in the collection, we

opted to increase the number of clusters so thatmore topics could be kept inmemory.

This gave a reasonable runtime of approximately four days. Retweets were not used

as input to the algorithm as we found that they tended to causemore spam and noise

clusters to form and be identified as events. We used a λ value of 0.0 (i.e. full weight

was given to text when calculating similarity) as this greatly decreased the runtime

whilst having only a small effect on performance [Aggarwal and Subbian 2012], and

meant that follower information did not have to be crawled, as this would have taken

several years to obtain via the Twitter API due to rate limits and would have intro-

duced future information.
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Similarly to the LSH approach, we removed clusters with fewer than 30 tweets, and

those with α values smaller than 12 (i.e. slow growth rates) [Aggarwal and Subbian

2012]. Empirically we found that very few clusters with anα value below 12 discussed

events, and by removing these clusters we were able to significantly reduce the num-

ber of candidate events to a manageable size of 1097.

3.4 GatheringRelevanceJudgements forCandidateEvents

This sectiondescribes themethodologyused to gather relevance judgements for each

of the candidate events and their associated tweets. The objective is to identifywhich

of the 2437 candidate events (1240 from the LSH approach and 1097 from the CS ap-

proach) fit our definition of event (i.e. which candidate events are ‘true events’), and

to gather relevance judgements for a sample of the tweets for each true event. In addi-

tion, we alsowant to gather high-level descriptions and category information for each

of the events, which will be useful for merging the events from the different sources

(discussed in section 3.6), and will also be useful as human readable summaries of

each event.

The remainder of this section describes the challenges associated with the gathering

of relevance judgements for our collection, including how the number of annotators

were selected, howmuch information was gathered using each HIT (Amazon’s name

for a single crowdsourced job, which stands for ‘Human Intelligence Task’), and how

quality control was performed.

3.4.1 Selecting theNumberofAnnotators

In order to ensure that noise and spam have minimum impact on the evaluations,

multiple annotators need to be used for each evaluation. To help us choose the num-

ber of annotators, we ran a pilot using 20 carefully selected candidate events covering

a range of categories and with varying degrees of perceived difficulty or ambiguity.

Several candidate events were selected specifically because they were either difficult

to judge or fell between event and non-event (i.e. they were very subjective), while

other candidates were selected because they contained a mix of relevant and non-

relevant tweets, making themmore difficult to judge. Each candidate was annotated

by 10 different workers, resulting in 16 of the 20 candidates being identified as an

event by amajority (k = 0.66, using Free-marginalmultirater kappa [Randolph et al.

2005]).
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It is desirable to minimize the number of annotators per candidate event to reduce

the cost and time taken to perform the evaluations, however this must be done care-

fully and without significantly affecting the quality of the results. As aminimum, we

need 3 annotators for each event to agree and form a majority. This means that at a

minimum, each candidate event needs to be evaluated by 5 annotators. In order to

verify that the reduced number of annotators per event gives similar results to the

original 10, we randomly selected 5 evaluations for each of the candidates events and

compared the results. With 5 annotators per candidate, 17 of the 20 candidates were

identified as events (k = 0.61). Whilst this differs slightly from the results obtained

using 10 annotators and there is a very slight drop in overall agreement, it requires

only half the number of annotators and greatly reduces costs both financially and in

termsof time taken. Given the similarity of the results usingboth 5 and 10 annotators,

and the fact that 5 annotators still guarantees a minimum agreement of 3 annotators

per event, we chose to use 5 annotators for all remaining evaluations.

3.4.2 WorkperEvaluation

One of the biggest issues when designing a crowdsourced evaluation is how much

work each HIT should entail. Too much work per HIT and workers will quickly be-

come bored and fatigued, potentially reducing the quality of their annotations. We

decided to try and limit the time taken to perform an individual evaluation to 60

seconds, reducing the chance the workers will become bored or fatigued. Thismeant

thatwecouldaskonlya limitednumberofquestions ineachevaluation, and thenum-

ber of tweetswhichwe couldhave annotated in each evaluationwas also very limited.

In addition to the time taken to answer questions, we also have to consider howmuch

time is required to read the tweets and make a decision about the candidate event

(i.e. does the candidate fit our definition of event?), further reducing the amount of

questions we could ask in our desired time limit.

Initially, we chose to use 30 tweets, however this caused the time taken to read the

tweets and make a judgement about the candidate to be considerably over a minute.

To solve this, we ran empirical evaluations to measure how many tweets we could

read in 20 seconds, leaving 40 seconds to answer questions and annotate the tweets.

We found that wewere able to carefully read around 13 tweets in a 20 secondwindow,

and so used that number for pilots and the evaluation of the detection approaches.
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3.4.3 AnnotatingTweets

We ran a number of small pilots to test the best method of gathering judgements (i.e.

mark relevant, mark non-relevant, or select relevant / non-relevant for each tweet).

Empirically we found that all three options gave similar results, but that selecting

relevant / non-relevant for each tweet seemed to give very slightlymore accurate res-

ults when compared to our own annotations, although these differences weremostly

found when annotating subjective tweets. However, selecting relevant/non-relevant

for each tweet is significantly more work than selecting the relevant or non-relevant

tweets only, and fatigues annotators much faster than the other methods. Of the two

remainingmethods (i.e. selecting only relevant or onlynon-relevant), we chose touse

the selection of non-relevant tweets only as it allows us to more easily use a number

of spam detection techniques (described in section 3.4.5).

To ensure consistency and quality, the following relevance statement was given to

each annotator before the evaluation:

Anything that discusses the described event is considered relevant, even if

the information is nowout-of-date or does not necessarilymatch that given

inother tweets (e.g. thenumberofdeaths isdifferent). However, care should

betakentomarkanyuntrustworthyorclearly false statementsasnon-relevant.

Tweetswhich give auser’s opinion of an event, andare obviously discussing

the event but do necessarily describe what happened, are still considered

relevant.

The definition was intentionally very open as we wanted to capture as many tweets

about each event as possible. Specifically, as well as objective tweets, we wanted to

include subjective tweets (i.e. the opinion of users) as they are one of themain attrac-

tions for using socialmedia datawhen studying or reporting events, and are generally

not found in newswire documents.

3.4.4 AnnotatingaCandidateEvent

Before starting their first HIT, annotators were asked to carefully read our definitions

of ‘event’ and ‘significant’. Each annotator was shown 13 tweets (selected at random,

however kept constant between annotators) for a single candidate event. They were

then asked Question 1:



3.4. GATHERING RELEVANCE JUDGEMENTS FORCANDIDATE EVENTS 42

“Do themajority of tweets discuss the same real-life topic?”

If they answered ‘no’ then the evaluationwas complete and theywere allowed to sub-

mit as this meant that the candidate was not an event. However, if they answered

‘yes’, they were reminded of our definition of ‘event’ and asked Question 2:

“Do the tweets discuss an event?”

Again, annotators who answered ‘no’ were allowed to submit the evaluation as, des-

pite discussing the same topic, the candidate was not an event and there was little

point gathering any further information.

Annotators who confirmed that the tweets discussed an event were asked to re-read

the tweets andmark any that were non-relevant or off-topic. Finally, they were asked

to provide a brief description of the event and select the most appropriate category.

Rather than ask the annotators to choose between a large number of categories, we

chose to use the categories defined and used by the Topic Detection and Tracking

(TDT) project [Allan 2002]. The 13 categories defined cover a wide range of topics,

with a Miscellaneous category for topics which do not fit elsewhere:

• Acts of Violence or War • Celebrity and Human Interest News

• Financial News • Accidents

• Natural Disasters • Elections

• Political and Diplomatic Meetings • Legal / Criminal Cases

• New Laws • Scandals / Hearings

• Sports News • Science and Discovery News

• Miscellaneous News

3.4.5 QualityControl

During our pilot evaluations, we found that a small number of users were abusing the

ability to quicklyfinish evaluations by answering ‘no’ toQuestions 1 or 2. Tomake this

less appealing, we implemented a 20 second minimum time limit for all evaluations

to deter users who simply wanted to spam submission for easy money. The intuition

for this being that users who are only interested quick money will not be willing to

wait between successive HITs, and so will not participate in our evaluation.
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Despite the minimum time limit, a number of workers continued to abuse the abil-

ity to end the evaluation early by answering ‘no’ to either of the first questions. By

examining the ratio of evaluations performed to the number of candidates marked

as true events by each user, we were able to identify users who had submitted either

exceptionally high numbers of ‘yes’ or ‘no’ answers to the questionsDo the tweets dis-

cuss an event?. We removed users who had performed over 75 evaluations and had

over 90% ‘yes’ answers or over 90% ‘no’ answers. This resulted in the removal of 12

users who had performed 4560 evaluations in total. This amounts to around 35% of

the total number of evaluations for the detection approaches. Interestingly, we noted

that of the 12 users removed due to spam, 9 appeared in the top 10 users by number of

evaluations performed. This suggests that limiting the number of evaluations which

a single user canperformcould be a very reliablemethod of reducingnoise and spam.

Wealsodeveloped severalmethods of detecting spamsubmissions so that they canbe

removed and re-run. We employed a honey-pot technique to detect users who were

not correctly classifying tweets as relevant or non-relevant. We insert a tweet from a

pre-selected set of spamtweetswhichweknowdonotdiscuss anevent. Since theuser

has already indicated that the tweets they are annotating do discuss an event, we can

be sure that a spam tweet is non-relevant. If the user does not identify this tweet as

beingnon-relevant then their evaluation ismarked as being spoiled andwe re-run the

evaluationwith anotheruser. Of those evaluations submitted as events, only 286were

markedasbeing spoiled (i.e., theworker failed to identify thehoney-pot tweet), which

is a good indication that workers were doing a reasonable job of judging relevance.

3.4.6 AnnotationResults

Eachcandidate eventwasconsidered tobea trueevent ifmore than50%ofannotators

marked it as so, and greater than 90% of judged tweets for the event were found to be

relevant by a majority of annotators. This resulted in a total of 435 true events: 382

(of 1340) true events for the LSH approach, and 53 (of 1097) for the CS approach.

The choice of 5 annotators for each candidate event was useful for a number of reas-

ons, as we discussed in section 3.4.1, and appears to have been a reasonable choice.

Event agreement increases slightly when 5 annotators are used as opposed to 3 (k =

0.91 and k = 0.82 respectively, using Free-marginal multirater kappa [Randolph

et al. 2005]), whilst agreement at a tweet level remains almost unaffected between 5

and 3 annotators (k = 0.91 and k = 0.90 respectively). Although this suggests that

perhaps 3 annotators would have been sufficient to gather judgements at an event
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level, itwouldhave resulted inmany caseswhere fewer than 3 annotators judged each

tweet, breaking the requirementsweoutlined in section3.4.1 and reducedoverall con-

fidence in the annotations.

3.5 TheWikipediaCurrentEventsPortal (CEP)

Although the use of twodifferent event detection approaches should give us a reason-

able sample of events, using events from those systems alonewould result in a bias to-

wards easily detectable events. Wikipedia maintains a Current Events Portal3, which

offers a curated set of significant and noteworthy events from the around the world.

The use of Wikipedia offers a number of advantages over the use of additional de-

tection approaches. Firstly, each of the events listed on the current events portal is

substantiated by a link to a news article from a reputable news source. This allows a

high level of confidence that the events are accurate and significant under our defin-

ition. Secondly, much of the work has already been done for us by unpaid editors

and is of a high quality, ensured byWikipedia’s editorial guidelines. This means that

we do not have to pay workers to evaluate non-event clusters, reducing the cost and

time taken to produce judgements. In addition, Wikipedia provides complimentary

results to the detection approaches thanks to its wide coverage and diversity.

3.5.1 ExtractingEventsusing theWikipediaCurrentEventsPortal

Eachevent listedon theCurrentEvents Portal is representedby adescription (atmost

a few sentences), a category, and a link (or links) to relevant news article. An example

event may look similar to:

Date October 25, 2012

Category Business and economics

Description Official [[GDP]] figures indicate the [[2012 Summer Olympic]]

helped the [[UK economy]] emerge from recession in the three

months from July to September, with growth of 1.0%.

Reference http://www.bbc.co.uk/news/business-20078231

Note that words surrounded by [[ and ]] are links to other Wikipedia pages.

Unlike the event detection approaches, we already know that each of the events is a

true event, however we still need to identify tweets that discuss each of the events.

3http://en.wikipedia.org/wiki/Portal:Current_events
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First, we must identify a list of candidate tweets. To do this, we indexed the corpus

using Lucene 4.24. Stopword removal was performed, Porter stemming was applied,

and prefixes (#, @ characters) were remove from hashtags andmentions.

We then use the description from each of the Wikipedia events as an initial query to

retrieve tweets from the Lucene index. Query expansion is performed to decrease

lexical mismatch, and has been shown to give some of best retrieval performance as

part of the TREC Microblog track in 2011 [Amati et al. 2011; Ferguson et al. 2011; Li

et al. 2011] and 2012 [Kim et al.; Aboulnaga et al.; Han et al.]. In particular, we ex-

pand links to other Wikipedia pages to the full title of that page (e.g. “UK economy”

→ “Economy of the United Kingdom”), and expand/contract acronyms (e.g. “U.K.”

→ “United Kingdom”, “United States”→ “U.S.”). Furthermore, terms used as links

to other pages were given double weighting as they are generally the most important

and contextual terms in the description. Divergence fromRandomness using Inverse

Document Frequency as the basic randomnessmodelwas used for retrieval, as exper-

imentation using the TREC11 corpus showed that, of the retrieval models included

with Lucene 4.2, it gives the best retrieval performance.

For each of the 367 events on theWikipedia Current Events Portal listed between the

dates covered by the corpus, we retrieved the top 2000 tweets from a window of 72

hours, centred around the day of the event (i.e. for an event on the 16th of October,

retrieval was restricted to tweets posted between the 15th and 17th of October inclus-

ively). The window was used to reduce the probability that tweets discussing similar

events would be retrieved, whilst still being long enough to capture any run-up to the

event, and at least 24 hours worth of discussion after the event.

Since we only need to gather relevance judgements for tweets, we are able to have

more tweets annotated within our desired oneminute time limit, allowing us to have

eachworkerannotate30 tweetsperHIT.Additionally, sinceweknowthat everyworker

will annotate the tweets, we can reduce the number of workers per event from 5 to 3,

incurring additional savings.

Choosinga stoppingpoint

Whereas tweets from the detection approaches are unranked, tweets obtained using

the Wikipedia approach are ranked using the Divergence From Randomness (DFR)

[Amati andVanRijsbergen 2002] retrievalmodel. Thismeans that as we progress fur-

ther down the rankings, the tweets are less likely to be relevant. Rather than annotate

4http://lucene.apache.org/
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all 2000 tweets for eachevent fromtheCEP,wechose touse an incremental approach,

inspired by the methodology used by the TDT project, where annotation is stopped

once it is unlikely that more relevant tweets will be found.

The ranked list of tweets for each event are split into batches of 30. Once all an-

notations are obtained for single batch, a decision is made based upon the number

of tweets annotated as relevant by the majority of annotator. If a batch contains at

least 50% relevant tweets, then the next batch of 30 is submitted for annotation. On

the other hand, if a batch contains less than 50% relevant tweets, then annotation is

stopped for that event and it is marked as complete. This process is repeated until all

events have beenmarked as complete or all 2000 tweets have been annotated.

In order to determine if our stopping point was effective, we created a pilot study

where annotators were shown tweets from after the automatic stopping point (i.e.

where there were very few or no relevant tweets). Surprisingly, the number of tweets

marked as relevant by annotators was generally very high, often above 50%. We be-

lieve that themajority of annotatorswere confused by the lack of relevant tweets, and

created their own pseudo-topic based upon the tweets being shown to them. For ex-

ample, where the event described amass shooting inNigeria, all 3 annotators seemed

to switch toanother event, annotatingonly tweetsdiscussingabombingat achurch in

Nigeria as relevant. Although these events share a similar location, the events them-

selves are very distinct. Unfortunately, because of the short length of each tweet, it

is easy for a single term to dominate the rankings – in this case, the only common

term between both events was Nigeria. This indicates that continuing to ask for an-

notations after our stopping pointwould actually harm the accuracy of results, rather

than improve them.

Annotating theEvent

Annotation for the CEP events was considerably more straightforward than for can-

didate events from the detection approaches. For each batch, we asked three annot-

ators to read a description of the event, as taken from theWikipedia CEP.We also sup-

plied a link to a relevant news article they could use as a reference. They were asked

to enter a short description of the event that theymight use if theywere searching for

tweets about the event themselves. Finally, they were shown 30 tweets and asked to

mark any non-relevant tweets as so.

The spam and quality control measures, as described in section 3.4.5, we also used

here. Specifically, a 20 second minimum time limit, and the honey-pot technique to
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identify low-quality annotators, resulting in 714being removed (just 4.5%of the22,114

total evaluationsbetweenboth theWikipediaandEventDetectionannotations). Learn-

ing from the results of the previous evaluations, we recorded the number of bad sub-

missions for eachuser, andanyuser that failed to identify thehoney-pot tweet 3 times

was banned from performing further evaluations.

3.5.2 AnnotationResults

Of the 368 events listed on Wikipedia, relevant tweets were found for 361. In total,

39,980 tweets were annotated as relevant to at least one of the 361 events by more

than 50% of annotators. Annotator agreement was very high at 0.72, although this is

lower than tweet-level agreement for the candidate events generated using the event

detection approaches. It is difficult to say why the agreement is lower for the Wiki-

pedia approach in comparison. However, we hypothesize that the majority of low

quality annotators simply took the easy option for the detection approaches (i.e. an-

swer ‘no’ to either of the first two questions), so never had to judge tweets. Since there

is no “easy” option for theWikipedia evaluations, lazy and low quality annotators are

more likely to have a detrimental effect on the quality of the annotations.

3.6 MergingEvents fromfromMultiple Sources

Our methodology thus far has focused on gathering relevance judgements for each

event (in the case of candidate events from the detection approaches) and identify-

ing a set of tweets discussing each event. However, each of the three approaches (two

detection approaches and the Wikipedia approach) results in a separate (but not dis-

tinct) set of events, which overlap in terms of the events and tweets they cover. To

produce a final set of events and relevance judgements, events from each of the three

approaches must be combined into a single set of events. For example, all three ap-

proaches independently produce at least one event for the third U.S. Presidential De-

bate, and unless they are combined, wewill have at least three separate ‘events’ in our

relevance judgements, all of which discuss the same real-world event. Additionally,

each method can produce multiple results for the same event. For example, the LSH

approach produced no fewer than 40 clusters which discuss the third U.S. Presiden-

tial Debate. Although each cluster could potentially bemapped down to specific sub-

events within the Debate (such as individual questions or memorable quotes), they

would better suit our definition of event if they were combined into a single event

(i.e. the Debate as a whole).
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Given this, we attempt tomerge events, both fromdifferent sources (e.g. the LSH and

CS algorithms) and the same sources (i.e. two events from the LSH algorithmdiscuss-

ing the same real-world event), such that they fit our definition of event as closely as

possible. To aid this process and reduce the amount ofmanualmerging that needs to

be performed, we use an automated clustering approach (which we detail in section

3.6.2). Wedonot expect the clustering approach to produce perfect results, somanual

correctionwill be required toproduce thefinal set ofmergedevents. However,wefirst

gather a sample of relevance judgements that we can use to optimize weights for the

clustering approach, improving its effectiveness and reducing the number ofmanual

corrections required.

3.6.1 GatheringRelevanceJudgements forEventMerging

Since our event clustering approach is unlikely to be perfect and affects the number

of events in our relevance judgements, an evaluation of its effectiveness is important.

Amigó et al. [2009] define a number of constraints which need to be met in order for

different aspects of cluster quality to bemeasured. They compared a number of met-

rics and conclude that only B-Cubed [Bagga and Baldwin 1998] satisfies all of their

constraints. As described in chapter 2, B-Cubedmeasures the precision and recall as-

sociated with individual items in a distribution, with Recall representing how many

items from the same category appear in the target’s cluster, and Precision represent-

ing how many items in the cluster belong to the same category [Amigó et al. 2009].

Since B-Cubed averages are calculated over items rather than clusters, this means

that we can gather relevance judgements for a subset of the items, rather than the

full 796 events, whilst still being able to accurately estimate the overall quality and

optimize feature weights. Additionally, this means that it is not necessary to apply

any weighting due to cluster or category size [Amigó et al. 2009].

We took a random sample of 100 events (12.5% of the total), which we refer to as tar-

gets. We identified all events which had centroid times (i.e. the average time of all the

tweets in the event) within a 24 hourwindowof a target event (i.e. 12 hours either side

of a target). We call these events candidates. For each target, we performed a crowd-

sourced evaluation. Workers were asked to read a description of the event and shown

a random sample of 10 tweets from the event. For each candidate event, they were

asked to judge if the two descriptions and set of tweets being displayed discussed the

same (or different) real-world events. Sincemany of the targets had a large number of

candidates (the highest being 78), we split candidates into batches of 28, reducing the

likelihood that workers would become bored or fatigued. Each target and candidate
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Figure 3.1: A screenshot of the cluster quality evaluation interface used by Mechanical Turk
workers

pair was evaluated by aminimumof 3workers to ensure amajority of at least 2. Event

descriptions forwere takenas the longest (bynumber of characters) description given

byusers as part of the original crowdsourced evaluations,whichweempirically found

tobeof ahighquality. Figure 3.1 showsa screenshot fromtheevaluation interface that

was used by workers.

In order to reduce spam, we again used a honey-pot technique, where a known relev-

ant and a known non-relevant candidate was inserted into the evaluation, for a max-

imum of 30 candidates per evaluation (28 real candidates, 2 honey-pots). To gener-

ate the known-relevant candidate event, workers were simply shown the target event

withadifferentdescription (the second longestdescription) anddifferent setof tweets.

For the known non-relevant candidate, the worker was shown a candidate which had

occurred outside of the candidate window (i.e. more than 12 hours before or after

the target event). Once again, users who submitted more than 3 bad evaluations (i.e.

marking the known relevant candidate as non-relevant or vice versa) were banned for
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performingmore evaluations. Candidates were considered relevant whenmore than

50% of workers identified them as so, which resulted in 235 of the 790 candidates be-

ing matched to at least one target, giving 589 relevance relationships in total.

3.6.2 ClusteringFeatures

The content similarity between a target and candidate event is a potentially very use-

ful feature for merging events that discuss the same real-world event. Similarly to

how many event detection approaches define tweet similarity, we define event con-

tent similarity as the cosine of the angle between the term frequency vectors for the

target event and candidate event:

St = cos(et, e
′
t) (3.1)

where vectors et and e
′
t contain counts for the top 10most frequent terms (after stem-

ming and stopword removal) for all tweets in the target and candidate events respect-

ively.

We note that in certain cases, a target and candidate eventmay have very low content

similarity despite discussing the same real-world event. This is particularity common

for events from the same detection approach, where the tweet text has already been

used to perform clustering. This can result in several clusters discussing the same

real-world event, often with very dissimilar content, making it difficult to identify

any relationship based on content alone. For example, again using the presidential

debate as an example, the quote “Well, Governor, we also have fewer horses and bay-

onets, because the nature of our military’s changed.” was extremely popular and rel-

evant to the debate itself, however, matching this back to the election is very difficult

if the context is not known, and using only tweet content based features tomatch it to

other clusters is very difficult. This means that we cannot rely only on tweet content

features when performing event clustering.

Fortunately, for bothEventDetection andWikipedia events, we alsohave thedescrip-

tions given by annotators for each of the events. Since the descriptions are often (but

not always) higher level than the tweets, they are more likely to provide useful in-

formation for linking two events. Thus, we define the description similarity, Sd, as

the cosine of the angle between the term frequency vectors of the descriptions for the

target and candidate events:

Sd = cos(ed, e
′
d) (3.2)



3.6. MERGING EVENTS FROMFROMMULTIPLE SOURCES 51

where the vectors ed and e′d contain term counts (after stemming and stopword re-

moval) for all descriptions given by annotators for the target and candidate events

respectively.

Manual inspection of the descriptions shows that the vast majority contain at least

one named entity (such as a person, location or organization), andmany descriptions

containonly anameentitywithnoother descriptive terms. Wealsonote that, in cases

where the descriptions describe different aspects of the same real-world event, often

the only constant is the mention of a named entity or named entities. Of the 20 or so

events that discuss Felix Baumgartner’s record-breaking space jump,many of the de-

scriptions focus onparticularmoments before, during or after the jump. For example,

one description given for tweets discussing his ascent reads: “Felix Baumgartner is

ready to jump fromaheight that no onehas ever done”, while one given for tweets dis-

cussing his successful landing: “felix baumgartner breaks world record free fall”. Al-

though both describe the same real-world event, they are different moments in time,

and the descriptions given contain no overlapping terms other than the name of the

person involved. This is a common occurrence for events that were followed in real-

time, particularity broadcast events watched bymany users withmany different sub-

topics. This canmake it difficult to use annotator descriptions tomeasure event sim-

ilarity, as although theymay describe the same real-world event, the descriptions can

be quite dissimilar depending on the granularity of the events. To solve this, rather

than rely purely on description similarity, we also calculated the named entity simil-

aritySn, and take themaximumvalue for eitherSn orSd as the annotation similarity,

Sa:

Sn = cos(en, e
′
n) Sa = max(Sn, Sd) (3.3)

where en ad e
′
n are the entity frequency vectors containing counts for eachnamed en-

tity mentioned in the annotator descriptions (extracted using the NLTK 2.0.5 Python

library with default Englishmodels) for target event e and candidate event e′. Taking

the maximum similarity of the two allows us to optimize for the two cases: (i) when

the descriptions describe an event at the same level of granularity (often the case for

events from different sources) the full description can be used, however when events

are described at different levels of granularity or at different moments in time, entity

similarity can be used.
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Table 3.1: Combined categories with their corresponding TDT andWikipedia categories

Combined TDTCategories Wikipedia Categories

Armed Conflicts and Attacks Acts of Violence or War Armed conflicts,
Attacks

Arts, Culture and Entertainment Celebrity and Human Interest
News

Arts, Culture,
Literature, Religion,
Spirituality

Business and Economy Financial News Business, Economics

Disasters and Accidents Accidents, Natural Disaster Accidents, Disasters

Law, Politics and Scandals Elections, Political and Diplomatic
Meetings, Legal / Criminal Cases,
New Laws, Scandals / Hearings

International relations,
Human rights, Law,
Crime, Politics,
Elections

Sports Sports News Sports

Science and Technology Science and Discovery News Exploration,
Innovation, Science,
Technology

Miscellaneous Miscellaneous News Anything not listed
above. e.g. Heath,
Transport

Categories

As described in section 3.4.4, for each event, we asked annotators to select the cat-

egory that best fit the event from the 13 categories used by theTDTproject. Annotator

agreement across categories was substantial (k = 0.76), however closer examination

of the annotations raises a number of potential issues that could effect the usefulness

of categories for clustering. Using the third U.S. Presidential Debate as an example of

a large eventwithmany different subtopics, we note that the LSH approach produced

over 40 clusters discussing various sub-events and topics within the debate. Many of

the subjects of the debate were related to economics, business and international re-

lations. This is an issue because annotators often categorized events using only the

topic of discussion (e.g. New Laws, Political or Diplomatic Meetings), rather than the

the specific real world event, in this case, the debate as part of the U.S Presidential

Election (which would fall under the TDT category Elections). Despite it being clear

at a high level that the debate should be categorized as Election, it is not as clearwhen

looking at the specific subtopics within the debate — the categorization changes as

the level of granularity is changed. Similarly, theWikipedia Current Events Portal as-

signs a category to each event, however these categories are often very low-level and

specific, such as ‘History’, ‘Literature’, and ‘Spirituality’.
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Before we can use the TDT and Wikipedia categories as a feature for clustering, we

must create a mapping between them. Simply creating a direct mapping between

TDT categories and Wikipedia categories would solve the mapping problem but not

increase agreement between the annotations from the event detection approaches.

Thus, we created a new set of categories, each of which covers a much broader range

than either the TDT or Wikipedia categories. Table 3.1 shows the new categories and

the corresponding categories from theTDTproject andWikipedia. Re-computing an-

notator agreement for the event detection event annotation after mapping the TDT

categories to the combined categories shows an improvement from k = 0.76 to

k = 0.81. This is a good indication that our combined categories improve categoriz-

ation and should help to make categories a more effective feature for clustering.

We compute the category similarity Sc between events e and e′ as as the cosine of

the angle in vector space between their category frequency vectors (ec and e
′
c respect-

ively):

Sc = cos(ec, e
′
c) (3.4)

Category frequency vectors ec and e
′
c are counts of how frequently a category was se-

lected by annotators for a given event (after mapping to combined categories). For

events fromWikipedia, the vector simply contained a 1 for the category givenbyWiki-

pedia (aftermapping to the combined categories). Since cosine is already length nor-

malized, it is not necessary to perform any sort of length orweight adjustments to the

vectors.

TemporalProximity

Temporal proximity is extremely important in the clustering of events – eventswhich

have a significant period of time between them are unlikely to be related to the same

real-world event. For example, the three U.S. Presidential Debates are all likely to be

very similar in terms of category features content-based features. The largest differ-

entiating factor is the specific time when the events took place.

On the other hand, events which share similar characteristics in terms of both cat-

egory and content-based features are still relatively common in the same temporal

region. Sports events are an example of this type of event — it is not uncommon for

two footballmatches to occur simultaneously, such asWorldCupqualifyingmatches.

These share the same category, will have similar content, and overlap in time,making

them particular difficult to distinguish.
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ALGORITHM3: Pseudocode for our event clustering approach

1 clustered = ∅;
2 foreach event e in targets do
3 add e to clustered;
4 foreach event e’ in candidates do
5 Sa =max{cos(ed, e′d), cos(en, e′n)};
6 Sc = cos(ec, e

′
c);

7 St = cos(et, e
′
t);

8 Sf = (0.3 ∗ St) + (0.c ∗ Sc) + (0.4 ∗ Sa);
9 if Sf ≥ 0.5 and time_diff(e, e′)≤T then
10 if neither e nor e’ have clusters then
11 create new cluster containing e and e’;
12 if both e and e’ have clusters then
13 merge cluster(e) and cluster(e’);
14 else
15 add e or e’ to existing cluster;
16 end

17 end

18 end

19 end

Taking this into consideration, we chose not to use temporal proximity as a measure

of similarity. Rather, we use it as a filter, and say that events which are more than T

hours apart cannot be merged.

3.6.3 ClusteringAlgorithm

For each event e, our algorithm calculates its similarity Sf against every candidate

event e′ within a time window of 6 hours. The similarity is calculated as so:

Sf = (0.3 ∗ St) + (0.3 ∗ Sc) + (0.4 ∗ Sa) (3.5)

If two events are found to have anSf value above 0.5 then they are clustered together

(merged). If both e and e′ already have clusters then the two clusters aremerged. The

pseudo-code for our clustering approach is shown in Algorithm 3.

Parameterweightswere optimized by varying between0.0 and 1.0 in steps of 0.1, such

that the sumof all weights was 1.0. Theweights given in equation 3.5 gave the highest

B-Cubed precision (0.92) and recall (0.86) values (F1 = 0.86). The maximum time dif-

ference,T , was set to 6hours as only a 3.4%of eventswerematchedoutside of a 6hour

window, as show in Figure 3.2. This allows for lag between events, whilst still giving

a reasonable guarantee that the events generated will fit our definition of event.



3.7. CORPUS STATISTICS 55

0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10 11 12

N
u
m
be
r	
of
	M
at
ch
in
g	
E
ve
n
ts

Time	Difference	(hours)

Figure 3.2: The distribution of times between matched events, based upon the number of
hours between the centroid times of the events

3.7 CorpusStatistics

Candidates from the detection approaches are considered to be an event ifmore than

50%of annotatorsmarked it as so and greater than90%of judged tweetsweremarked

as relevant. This resulted in 382 events for the LSH approach, and 53 for the CS ap-

proach. Candidates from theWikipedia approach are considered an event if they pro-

duced at least one relevant tweet, resulting in 361 events and 7 non-events (i.e. can-

didates where no tweets weremarked as relevant). In total, this resulted in 796 events

beforemerging.

Individual tweets are regarded as relevant if more than 50% of annotators agreed.

Table 3.2 shows the distribution of tweets broken down by both approach and judg-

ment type (explicit or implicit). Explicit judgements are thosemadebyhumanannot-

ators, whereas implicit judgements are tweets from events with high precision (>0.9)

however that were not judged by human annotators directly. This gave 4,009 explicit

and 93,398 implicit judged tweets for the LSH approach, 465 explicit and 15,098 im-

plicit judgements for the CS approach, and 39,980 explicit judgements (with no im-

plicit judgements) for the Wikipedia approach. Although the use of implicit judge-

ments will have introduced some noise to the relevance judgements, because we re-
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move candidates with low precision we are able to minimize noise whilst increasing

the number of judgements by over 200%.

Table 3.2: The distribution of relevance judgements across the different approaches. Explicit
judgements are made by human annotators, implicit judgements are taken from
events with high precision (>0.9) but not judged by human annotators individually.

Approach Explicit Implicit Total

LSH 4,009 93,398 97,407

CS 465 15,098 15,563

Wikipedia 39,980 0 39,980

Total 44,454 108,496 152,950

3.7.1 EventsAfterMerging

Our merging approach merges the original 796 events down to 516: 355 are merged

into 75 events, whilst 441 are left unmerged. We then performed amanual pass of the

remaining 516 events, finding a total of 12 events that could be furthermerged, giving

a final set of 506 events consisting of 367 eventsmerged down to 77, and 429 that were

not merged. As expected, large-scale and broadcast events, such as the various US

PresidentialDebates, votingonElectionday, or FelixBaumgartner’s space jump,were

the most difficult for the merging approach: of the 12 events that required manual

merging, all fell into this category.

The detection approaches contributed to 186 events after merging, while theWikipe-

dia approach contributed 342, almost double that of the detectionmethod. However,

the detection approaches contribute over 110,000 of the 150,000 relevance judge-

ments in the corpus, with an average of 259 tweets per event (before merging). The

Wikipedia approach contributes just 39,980 of the relevance judgements, at an aver-

age of 85 tweets per event. This is presumably because of the different types of event

identifiedby eachof themethods. While thedetection approaches rely on the volume

of tweets to identify events, the Wikipedia approach does not, meaning that it was

able to product a much larger set of small events.

It is interesting tonote that, althoughwecouldhaveused thenumber of shared tweets

as a feature for clustering, it would havemade no difference to the resulting clusters.

Out of 41 cases where events share more than 10 tweets, there is only a single case

where they do not have a similarity score above our threshold, and the events are

subsequentlymerged through shared similarity to a third event. Thishelps todemon-
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strate the effectiveness and robustness of our event merging approach.

The combination of the two approaches allows their different characteristics to com-

plement each other, producing a much more robust corpus than would have been

produced had a single approach been used. If only one approach had been used, then

the results would have been unevenly skewed towards large-scale events that are dis-

cussed by huge volumes of people, such as sports events or election debates. The use

of both Event Detection approaches andWikipedia better reflects the distribution of

events that occur in the real world, rather than what is discussed by more users on

Twitter.

3.7.2 EventCategories

Categories areassigned toeventsbasedon thecombinedcategoriesdefined inTable3.1.

For events where multiple categories where given by annotators (particularly com-

mon after events have been merged), the category with the highest frequency was

used. In cases where there was a tie between the categories, an author was used to

give the deciding vote.

Table 3.3 gives a breakdown of the number of events per category before and after

merging. Both the detection approaches and the Wikipedia approach produced very

different category distributions, however seem to complement each other, and the

combined results showmuch less variation than if only one approach had been used.

As expected, the detection approaches (LSH and CS) seems to closely reflect to the

Table 3.3: The distribution of events across the eight different categories, broken down by
method used. The LSH, CS andWiki columns show numbers of events before clus-
tering, while the Clustered column shows the number of events after clustering has
been performed.

Category Merged LSH CS Wiki

Armed Conflicts & Attacks 98 3 1 95

Arts, Culture & Entertainment 53 26 3 34

Business & Economy 23 2 1 22

Disasters & Accidents 29 16 4 23

Law, Politics and Scandals 140 124 12 128

Miscellaneous 21 26 6 3

Science and Technology 16 10 2 11

Sports 126 175 24 26
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types of events most commonly discussed on Twitter [Zhao and Jiang 2011], while

theWikipedia approach gives amore realistic representation of real-world events and

news.

For example, the detection approach contributes a large number of Sports events,

something which is lacking from the Wikipedia approach. Likewise, the Wikipedia

approach contributes a large number of events fromArmedConflicts andAttacks, and

Business and Economy, both categories where the detection approach produces less

results. This could be due to the volume of discussion associated with each of these

categories. Law, Politics and Scandals have very few tweets per event in comparison

withSports,meaning that restricting thedetectionapproaches to clusterswithat least

30 tweetsmay have removedmanywhichwere discussing these types of event. Since

we did not put this restriction in place for theWikipedia approach, it was not affected

by the low volume of discussion, so is able to produce more events of this type.

3.7.3 Completeness andRe-usability

Since the aimof the test collection is to enable the comparable evaluation of event de-

tection approaches, it is necessary to discuss the completeness and re-usability of the

collection. It is infeasible for the collection to contain relevance judgements for all

tweets and for every event. Even with our definition of event, deciding what consti-

tutes an event is a subjective task, andhavingmultiple annotators read all 120million

tweets in the collection to annotate all events and all relevant tweets is an impossible

task. For that reason, the pooling strategy we employed is one of the few strategies

that are ever likely to be effective for building a large scale collection for event de-

tection. However, the lack of completeness raises a number of issues that need to be

examined, and if possible, addressed when performing evaluations using this collec-

tion.

Since we know that the relevance judgements are incomplete in terms of tweets for

each event, and that an event detection system is unlikely to correctly identify every

tweet for an event, we must consider how this will affect evaluations. For example,

we cannot expect to ever have full relevance judgements for even a fraction of themil-

lions of tweets that were posted about the US Presidential debates in 20125. Addition-

ally, because automated methods were used to generate the relevance judgements,

each with differing levels of granularity, there are a number of events in the judge-

5http://www.nbcnews.com/technology/presidential-debate-sets-twitter
-record-6281796
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ments where only part of an event has been detected (for example, a single goal in a

footballmatch, rather than the footballmatch itself). Thismeans that any evaluation

using the collection must allow for inexact matching when determining relevance,

otherwise it will greatly underestimate effectiveness.

It is easy to show thatmore than 506 events occurred between the dates the collection

covers, meaning that there will certainly be events we have no annotations for. Any

sort of comparative evaluationusing this collectionmust take this into consideration.

However, the collection should contain enough events and relevance judgements to

serve as a representative sample, and should still be useful when performing evalu-

ations. Although precision and recall are likely to be underestimated, results should

still be comparable, particularly between different runs of the same approach during

development and testing. A crowdsourced evaluation, using the methodology pro-

posed in this chapter, could then be used to perform a thorough and more accurate

evaluation.

3.8 Conclusion

In this chapter, we propose a methodology for the creation of a large-scale collection

for the evaluationof eventdetectionapproaches, anduse it to create sucha collection.

We propose a new definition of event that better fits the characteristics of events on

Twitter. We describe our methodology for the creation of a large-scale event detec-

tion collection, using state-of-the-art event detection approaches, and theWikipedia

Current Events Portal to create a pool of events. We then use crowdsourcing to gen-

erate relevance judgements for the pool of events and propose a method of merging

events from different sources, so that the final events fit our definition of event. Fi-

nally, we discuss the quality of the results obtained, and note a number of areas that

merit further investigation.

Wemake the corpus,whichcontains 120million tweets, and relevance judgements for

150,000 tweets and over 500 events, available for further research and development:

http://mir.dcs.gla.ac.uk/resources/.





CHAP T E R 4

Entity-BasedEventDetection

Namedentities are thebuildingblocks of events; thepeople, places andorganizations

involved are crucial in describing an event. For example, given the event “Hilary

Mantelwins the 2012ManBooker Prize for her novel Bring Up the Bodies”, it is clear

that named entities (highlighted in bold) play a crucial role in describing an event,

and are often enough to decipher what happened.

Kumaran andAllan [2004, 2005] showed that the use of named entities can give signi-

ficant improvements to the performance of event detection techniques on newswire

documents as part of the TDT project. However, as their approach was created as

part of the TDT project, it does not implement any sort of noise filtering, and uses

an O(n2) clustering algorithm, so is unlikely to scale or cope with the noise found

in a Twitter-sized corpora. In this chapter, we propose a novel event detection ap-

proach which exploits the role that named entities play in describing events. Our

approach identifies bursty named entities and performs semantic linking to identify

other entities also involved in the same real-world event. We evaluate our approach

using the collection and relevance judgements created in chapter 3, and show that

our approach improves detection precision and recall over current state-of-the-art

approaches whilst maintaining real-time performance. Parts of this work were pub-

lished in McMinn and Jose [2015] andMcMinn et al. [2014].

4.1 NamedEntities inEvents

Webelieve that named entities play a key role in describing events, such as the people

involved, or the location where the event took place. Without this information, or

some other contextual clue, it is unreasonable to expect a person or machine to de-

termine the specificsof anevent. Forexample, given thedocument “Abombexploded.”,

it is impossible to determinewhowas involved or where the event took place –we are

only able to say that a bomb exploded somewhere (assuming the tweet itself is true).

Only by introducing entities or other contextual information canwe begin to determ-

61
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ine the specifics of an event: “BokoHaram claims responsibility for a bomb which ex-

ploded in the north-eastNigerian town of Potiskum.”. Given this information, we are

now able to say who was involved (Boko Haram), where the event took place (Pot-

iskum, Nigeria), and due to Twitter’s real-time nature, infer with some confidence

that the event took place recently.

Clearly entitiesplayan important role in events, and this canbeexploited inanumber

of ways. It is not unreasonable to assume that tweets which do not discuss the same

entities (that is to say, do not share at least one common entity) are unlikely to discuss

the same event. Conversely, it is not unreasonable to assume that tweets which dis-

cuss the same entities are more likely to discuss the same event. We believe that by

exploiting the role that entities play in real-world events, we can produce an effect-

ive and efficient event detection algorithm. Furthermore, by using the relationship

between entities within events, we believe that we can improve upon current state-

of-the-art performanceusing semantic links between entities to improve event-based

retrieval.

4.2 Entity-basedEventDetection

In this section we describe our entity-based event detection approach. The approach

comprises of six key stages, as shown in Figure 4.1. Tweets are processed as stream,

ordered by creation time, using a pipelines architecture that allows for parallel pro-

cessing, with each component relying only on the output of the previous component

to complete its task.

Pre-
Processing Clustering Cluster 

Selection

Twitter
Burst 

Detection
Event 

Creation Event 
Merging

Event 
Merging

Event 
Merging

Figure 4.1: The pipeline architecture and components of our entity-based approach

4.2.1 TweetPre-processing

Ourapproachusesanumberofpre-processing steps. Thishelps tofilteroutunwanted

tweets, such as common types of spam, and attempts to provide a noise free stream

of tweets which can used to detect events.
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Parsing&Tagging

We use the Stanford CoreNLP Toolkit to perform Part-of-Speech (POS) tagging and

Named Entity Recognition (NER) on the text of each tweet. We use the GATE Twit-

ter POS model [Derczynski et al. 2013] for Part-of-Speech tagging, and the Stanford

three class model for Named Entity Recognition. The GATE Twitter POS model is a

Part-of-Speech tagger trained specifically on tweets, and tends to providemuch high

accuracy (> 90%) that part-of-speechmodels trained on non-Twitter corpora.

We extract all nouns, verbs and named entities from each tweet. Nouns and verbs are

lemmatized, and entities are kept in their longest form to ensure that names are as

distinguishing as possible (i.e. “Paul Ryan” rather than “Paul” and “Ryan”).

The Stanford three class NERmodel is able to perform automatic class-based disam-

biguation such that entitymentions are also give a class (person, location, or organiz-

ation). We use this class information and consider named entities of different classes

to be distinct, even if the name itself is identical. For example, the entity “Spain”

in the context of the football team (an organization consisting on many people that

play football) is conceptually different from “Spain” the (the landmass, a location), as

this helps to retain as much distinguishing power as possible. We evaluate and give

reasoning for this choice in section 4.4.6.1. All terms and entities are converted to

lowercase and any non-alphanumeric characters are removed (however whitespace

is retained in the case of named entities).

Filtering

Event detection is analogous to a filtering task in many ways – by removing as many

non-event related tweets as possible, we are more likely to find event related ones.

To this end, we apply a set of filters which remove over 95% of tweets. This has a

number of benefits. Firstly, assuming that the filters remove more noise than signal,

it becomes considerably easier to extract events. Secondly, unlike other approaches

which filter after clustering [Petrović et al. 2010b; Becker et al. 2011b], filtering before

clustering reduces the amount of datawhich needs to be processed, and plays a signi-

ficant role in the ability of our approach to detect events in a time and space efficient

manner.

Wefirst remove tweets that contain no named entities. This is ourmost aggressive fil-

ter, removing over 90% of tweets. As discussed in section 4.1, we believe that named

entities play a crucial role in describing events, thus do not believe that this filter sig-
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nificantly harms detection performance, and provide some evidence towards this in

section 4.4.6. Furthermore, in order to efficiently cluster tweets, our clustering ap-

proach (described in section 4.2.2) requires each tweet to contain at least one named

entity, making this filter necessary.

We also remove retweets, which make up approximately 30% of all tweets and are

simply a copy of an existing tweet. Retweets require little effort to produce, mean-

ing that they are often associated with the spread of spam, memes and misinform-

ation [Grier et al. 2010], and do not provide any new information. We examine the

effect of removing retweets in section 4.4.5, and show that their removal improves

precision.

We also use a range of term-level filters that remove terms and entities that are un-

likely to be related to an event or that are known tobe associatedwith spamandnoise.

As well as stopwords and expletives, we remove terms associated with watching tele-

vision (“watch”, “film”,“movie”, “episode”, etc.) or listening tomusic (“listen”, “song”,

“play”, etc.). This helps to reduce the number of false positives created by large num-

bers of users watching a television show while using a “second screen” to discuss it,

as significant, but fictional events in television shows can often cause reactions that

appear similar to real-world events. We also remove terms and entities associated

with traditional news and broadcast agencies, such as “bbc news”, “cnn”, “fox news”

and “reuters”. Tweets from these agencies often contain their own name, which can

cause issues with our entity-based clustering and merging approaches (described in

sections 4.2.2 and 4.2.5) as the same entity can appear to be associated with a large

number of events simultaneously. Term level filters such as these are likely to require

some maintenance as the usage of Twitter continues to evolve and require some do-

main knowledge to construct, however this small amount of expert work helps to re-

move vast amounts of noise. Finally, terms under 3 characters in length are removed.

4.2.2 Entity-basedOnlineClustering

Almost all event detection approachesmake use of single pass nearest neighbor clus-

tering to find documents that discuss the same topic or event, similar to those used

by the TDT project described in section 2.2.1. As we have already discussed, these

approaches get slower as the number of documents grows, eventually causing them

to become too slow for high volume streams like Twitter [Petrović et al. 2010a]. A

number of solutions have been proposed to solve this, including the use of Locality

Sensitive Hashing [Petrović et al. 2010a], which we described in section 2.5.1. How-
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ALGORITHM4: Pseudocode for our entity-basedmethod of clustering
Input: Minimum similarity thresholdm

1 index← [][]
2 clusters← [][]
3 foreach tweet d in the stream do
4 foreach entity e in d do
5 S(d)← ∅ // set of documents that share a term with d
6 foreach non-entity term t in d do
7 foreach tweet d’ in index[e][t] do
8 S(d)← S(d) ∪ d′

9 end
10 index[e][t]← index[e][t]∪ d
11 end
12 cmax ← 0 // maximum cosine between d and tweets in S(d)
13 nd ← nil // tweet with maximum cosine to d
14 foreach tweet d’ in S(d) do
15 c := cosine(d, d′)
16 if c > cmax then
17 cmax ← c
18 nd ← d′

19 end

20 end
21 if cmax ≥ m then
22 add d to clusters[e][nd]
23 else

// Unlike most approaches, we do not assume a new
cluster is a new event

24 clusters[e][d]← new cluster(d)

25 end

26 end

27 end

ever, these approaches are general purpose, and do not make use of any domain or

task specific information. Given the role that named entities play in describing real-

world events, we believe it makes sense to use their presence to improve clustering

efficiency and effectiveness for the task of event detection.

Algorithm 4 shows the pseudocode for our entity-based clustering approach. Using

the premise that tweets discussing an event must contain at least one of the named

entities involved in the event, we adapt the traditional TDT clustering model by par-

titioning tweets based upon the entities they contain, and add a tweet to a cluster for

every entity it contains, as shown in Figure 4.2.

For thepurpose of clustering, this canbe thought of as having aunique inverted index

per namedentity that the systemhas seen. For eachnamedentitye in tweetd, a list of

tweetsD is retrieved from the inverted index for e and the maximum TF-IDF weight
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Obama and Romney begin the Third Presidential Debate.

Obama Romney

Figure 4.2: Tweets are added to a cluster for each entity they contain. The example showshow
a tweet containing both ‘Obama’ and ‘Romney’would be put into two clusters, one
for the entity ‘Obama’ and one for the entity ‘Romney’.

cosine similarity score is calculated between d and each tweet inD. The new tweet is

then added to the inverted index for entity e.

To ensure that our approach is able to run in real-time, we limit the number of tweets

that can be retrieved from an entity’s inverted index to a fixed number per term (usu-

ally between 100-1000), anduse only the top 10TF-IDFweighed termsper tweet. Less

than 1% of tweets from our test collection contain more than 10 terms, meaning that

we lose very little informationbyenforcing this limit, whilst ensuring anupperbound

of 10N comparisons are made, whereN is the maximum number of documents re-

trieved per term. Nouns, verbs and named entities are used when calculating the co-

sine similarity between tweets. The named entity whose inverted index was used to

retrieve comparison documents is given a weight of 0 to give as much weight as pos-

sible to other topical terms.

If themaximumscore is above a set threshold (usually in the range0.4−0.6 [Petrović
et al. 2010a], discussed in section 4.4.3), then d is added to the same cluster as its

nearest neighbour, or when a nearest neighbor cannot be foundwithin the threshold,

a new cluster is created containing only d.

At a very high level, our clustering approach has similarities to those used by many

TDTapproaches, in that it performssingle-passnearestneighbor clusteringandmakes

use of an inverted index. However, the similarities end there, and unlike TDT, we do

not assume that the formation of a new cluster indicates a new event. The remainder

of this section describes how our approach decides that a new real-world event has

occurred, and how clusters relating to those real-world events are identified.

4.2.3 IdentifyingBurstyEntities

For an effective event detection approach, it is important to have amethod of detect-

ing significant events and filtering the mundane. We do this by looking for temporal

bursts in the frequency of an entity, which can occur over periods ranging from a few

minutes to several hours. To model this, we use a set of windows for each entity to
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ALGORITHM5: Efficient computation ofµ and σ statistics for multiple windows and en-
tities

1 lengths← [5m, 10m, 20m, 40m, 80m, 160m, 320m]
2 M0,M1,M2 ← [][], [][], [][]
3 µ, σ ← [][], [][]
4 bursting← []
5 burstUntil← []
6 foreach tweet d in the stream do
7 foreach entity e in d do
8 if bursting[e] is true and burstUntil[e]< t then
9 bursting[e]← false // mark the entity as finished bursting
10 burstUntil[e]← 0

11 end
12 foreach windoww in lengths do
13 c← number of times entity e has appered in lastw seconds

// Update window statistics if enough time has passed
14 if seconds since last statistics update for window≥ lengths[w] then
15 M0 ←M0 + 1
16 M1 ←M1 + c
17 M2 ←M2 + c

2

18 µ[e][w]←M1/M0

19 σ[e][w]←
√

(M0M2 −M2
1 )/M0

20 end
21 if c > µ[e][w] + (3 · σ[e][w]) then
22 bursting[e]← true // mark the entity as bursting
23 burstUntil[e]← t+ (w × 1.5)

24 end

25 end

26 end

27 end

capture their frequency over time, starting at 5minutes, and doubling in length up to

320minutes (i.e. 5, 10, 20, …, 320).

We use the Three Sigma Rule as the basis for a lightweight burst detection approach,

which states that a value is considered to be statistically unlikely if it is further than 3

standarddeviations fromtheexpectedvalue [Pukelsheim1994]. A similar approach is

used by Aggarwal and Subbian [2012] to determine anminimum similarity threshold

for their clustering approach described in section 2.5.2.

For each window, we maintain the mean and standard deviation statistics, updating

them periodically with the current entity frequency. It is possible to efficiently com-

pute themovingmean (µ) and standard deviation (σ) using a set of three power sums

M0,M1 andM2, for vector E containing counts of how frequently entity e is men-
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tioned during each window:

M0 =

|E|∑
i=0

E0
i M1 =

|E|∑
i=0

E1
i M2 =

|E|∑
i=0

E2
i (4.1)

The currentmean and standard deviation (µ andσ respectively), can then calculated

as so:

µ =
M1

M0
σ =

√
M0M2 −M2

1

M0

(4.2)

Wecomputeµandσ for eachnamedentity andeachwindow length, requiring |e|·7·3
integers to be stored, where |e| is the number of named entities seen by the system,

7 is the number of windows, and 3 represents the M0, M1 and M2 values. Entity

frequencies are updated periodically based upon the length of the window (i.e., a 5

minute window is updated every 5 minutes). Algorithm 5 gives the pseudocode for

this approach.

Once a tweet has been clustered and added to entity indexes, we update the entity

statistics, and check if the newly added tweet caused the entity to burst in any of the

windows. If the number of tweets in a given window is greater thanµ+ (3 · σ), then
we say that the entity is bursting.

In order to smooth and reduce noise, statistics are not updated while a window is

bursting, and windows are kept in a bursting state for 1.5 × window_length after

the window’s statistics suggest that it has stopped bursting. For example, an entity

which is marked as bursty in the 80 minute window would remain bursting for 120

minutes after the 80minute window stops bursting. The extra time allows for fluctu-

ations in frequency as an event develops, and helps prevent a state of flux where an

entity rapidly switches between bursting and normal states, particularly in the early

stages of an event where the overall volume of discussionmay still be quite low.

When a tweet is no longer covered by the largest window (i.e., it is older than 320

minutes) it is removed from all inverted indexes. This helps to reduce the number of

comparisons required when calculating the nearest neighbour, and allows resources

to be freed for incoming tweets. We do not believe that removing older tweets will af-

fect the effectiveness of the algorithmdue to the real-timenature of Twitter, as tweets

which are more than a few hours old are unlikely to be relevant to any ongoing real-

world events, and those which will hopefully have already been marked as so by the

algorithm, ensuring that they are recorded elsewhere.
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4.2.4 EventCreationandCluster Selection

Onceaburst hasbeendetected (lines 20-24 inAlgorithm5),wehavepotentiallydetec-

tedanevent. However,wemustfirst identify a set of clusters thatdiscuss theeventbe-

fore reporting it as a new event. We cannot simply take all clusters containing tweets

posted during the burst as these will contain background topics about the bursting

entity, such as discussion about visiting a location or listening to a particular artist’s

music. To solve this, we propose the use of a number of heuristics to select clusters

that are the most likely to be related to the event that caused the burst.

We require that the centroid time of a cluster (i.e. the average timestamp associated

with all tweets in a cluster) is greater thanBe, whereBe is the time atwhich the entity

began to burst. This helps to ensure that clusters which discuss background topics

are not included as they are likely to have existed for some time before the burst took

place. A cluster’s centroid time is updated as new tweets are added, ensuring that

clusters which initially had a centroid time prior to the burst can still be added to an

event. This is important as it allows clusters containing early reports of the event,

which often occur before any burst takes places, to be included.

We also require that a cluster meets a minimum size threshold, usually between 5

and 20 tweets (10 is used for our evaluations). This is to ensure that the cluster covers

a significant portion of the event and to prevent small but noisy clusters from being

included. Theminimumsize has an effect on the precision of our approach, and large

minimum cluster sizes can give a large increase in precision for a small reduction in

recall. We discuss the minimum cluster size in detail in section 4.4.3.

If at least one cluster meets the time and size requirements outlined above, then it is

added to the event for the entity to which it belongs, or, if it is the first cluster to be

identified after a burst, then it is added to a new event. An event is kept as long as it

has at least one bursting entity associated with it. Once all entities associated with

an event have stopped bursting, the event is finalized, and nomore clusters or tweets

can be added to it.

4.2.5 Entity-EventLinkingandMerging

New events are related to only a single entity. However, most events involve more

than one entity, such as a person and a location, or an interaction between two organ-

izations. In additional, events are often discussed using a number of synonyms. For

example “Barack Obama” is often shortened to simply “Obama”. These issues mean
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that there are generally a number of events, each created by separate named entit-

ies, which discuss the same real-world event. Entity disambiguation tools, such as

TagMe, can perform entity disambiguation andmay help for common cases, such as

mentions of significant people. However, their reliance on existing ontologies such

as Wikipedia mean that there will always be a lag between an event occurring and

that information being updated [Osborne et al. 2012], which makes them less useful

for rapidly developing real-world events. Our approach relies on no external sources

of information, and is able to generate links between entities and events in real-time

based using entity co-occurrence statistics.

Formally, if an named entity n is mentioned in the majority (i.e. < 50%) of tweets in

an event e, thenwe say there is a link between the event e and the entityn. If entityn

is bursting andhas an event e′, then events e an e′ andmerged to create event e′′. This

process is can be repeated many times, and any entity which is mentioned in event

e′′ by more than 50% of tweets is said to have a link to event e′′, and so on until no

more links are found. This process is repeated as new tweets or clusters are added to

the event.

If an entity stops bursting, then any links to an event are ended, and no new clusters

from the entity can be added to the event. However, tweets added to clusters that

are already part of the event are still added to the event. An events continues to be

updated until all linked entities have stopped bursting and all clusters in the event

have become inactive (i.e. all the of the tweets in the event’s clusters have been re-

moved from the inverted index associatedwith its entity). This helps to capturemore

information about the event, even after discussion has died down.

Note that the 50% requirement is uni-directional, not bi-directional, and only one of

the two events needs tomeet the 50% requirement to link the events. This allows less

frequently mentioned entities to be merged into large events, which often discuss a

diverse range of subtopics, making it difficult for any single entity to be mentioned

in 50% of tweets. For example, during one of the U.S. Presidential Debates between

‘Obama’ and ‘Romney’, there were a wide range of topics discussed. It is unlikely that

any single topic, such as ‘China’, would be mentioned in the majority of tweets, mak-

ing it impossible to form a link if the 50% requirement was bi-directional. It is how-

ever likely that an event for the ‘China’ subtopic will mention ‘Obama’ or ‘Romney’ in

the majority of tweets, allowing it to be merged into the main event for the debate.
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EntityNormalization

As described in section 4.2.2, entities are kept in their longest form rather than split

into individual components (e.g. ‘Barack Obama’, rather than ‘Barack’ and ‘Obama’).

However, this can cause issues as multiple events are created for different forms of

the same entity. Using our previous example, it is unlikely that single tweet will men-

tion both ‘Barck Obama’ and ‘Obama’, resulting in two separate events that our entity

linking approach is unlikely to merge.

To solve this, we perform a naive entity normalization technique. When measuring

the frequency of entity mentions within an event, we perform a normalization step,

which counts the last term of people and organization names as a separate entity. For

example, for every mention of ‘barack obama’, we also increase the count of ‘obama’.

Note thatweonlydo this for People andOrganizations, butnotLocations, as locations

tend to lose much of their meaning when split (e.g. United Kingdom→ Kingdom).

4.3 Experimentation

We ran our entity-based approach on the Events 2012 collectionwe created in chapter

3, treating it as a time-ordered stream. Named Entity Recognition and Part of Speech

Tagging was performed using the Stanford Core NLP Toolkit1 (version 3.2.0). Unless

otherwise stated, all runs were performed using the top 10 IDF-weighted terms per

tweet, amaximumof 500 tweetswere retrieved per term, and aminimumcosine sim-

ilarity of 0.5.

Although the collection contains 150,000 relevance judgements for 506 events, we

note that it does not cover all events that occurred during the 28 days it covers, and

that it is also likely that it does not have full relevance judgements for discussing

events it does cover. This does not prevent us from using the collection for compar-

ison purposes, however it means that event precision and recall can only be estim-

ated. Whilst this is an issue in many IR collections, we note that the effect is more

pronounced when dealing with event detection as, unlike most IR tasks, there is no

query. This makes it likely that we will detect events, or parts of events, that are not

in the judgements. We verify this hypothesis and show that we detect a large number

of events which are not in the relevance judgements by performing a crowdsourced

evaluation.

1http://www-nlp.stanford.edu/software/tagger.shtml
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4.3.1 AutomaticEvaluations

To perform systematic, automatic evaluations, we must make changes to the stand-

ard relevance judging process to account for the incomplete relevance judgements.

Rather than requiring that every tweet matches for a candidate event to be determ-

ined a true-positive, we use a threshold based judgment process. The thresholdmust

be both low enough to enable partial matches, but still identify any false-positives.

Too high a threshold will make it difficult for an event to be found relevant if the

system being evaluated operates at a different level of granularity from the relev-

ance judgements or has only detected part of the event. For example, a full football

match rather thanan individual goal, or groupingmanysmall but relatedevents intoa

‘super-event’, such asHurricane Sandy causing damage as itmoves across theUnited

States. Too low a threshold could result in many false-positives and misleading res-

ults.

Empirically,we found that if 5%or 15 tweets (whatever the smallest is) canbematched

from a candidate event to an event in the relevance judgements, then is is almost al-

ways correctly labeled as a true-positive. Precision and recall can then be calculated

on an event basis using the standard precision and recall metrics given in chapter

2. While this may seem like a low threshold, empirically, we found that it produces

very few false-positives (i.e. non-relevant events being identified as relevant), whilst

allowing for a great deal of flexibility in terms of event granularity.

Automatic Evaluations were performed on all events with more than 30 tweets, us-

ing a 5% threshold and/or minimum of 15 matching tweets. Any variation from these

thresholds is noted alongside the results presented in section 4.4.

4.3.2 CrowdsourcedEvaluation

Given thatnoeventdetection technique forTwitterhasbeen robustly evaluatedagainst

a publicly available Twitter collection, the only options available to us as a baseline

are the LSH [Petrović et al. 2010a] and CS [Aggarwal and Subbian 2012] approaches

used to generate the collection in chapter 3. Thismeans that the results are extremely

biased towards these approaches, and only a crowdsourced evaluation will allow for

a direct comparison between our entity-based approach and the baselines. As we use

the results from the crowdsourced evaluation, baseline parameters have not changed

from those used in chapter 3.

In order to keep the comparison between the baselines and our approach as fair as
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possible, we use the same methodology here as we did in chapter 3 to gather relev-

ance judgements for the baseline approaches. 5 annotators were used per event, and

to keep category classification fair, we used the same 13 categories defined by the

TopicDetection andTrackingproject [Allan 2002]. To generate the results that follow,

we mapped the TDT categories back to the eight categories used by the collection. A

number of spamandquality controlmeasureswere used, identical to those described

in chapter 3.

CrowdsourcedEvaluationLimitations

Since resourceswere limited, andourapproachgeneratesa largenumberof candidate

events, we use a random sample of 250 events from the 1210 candidate events identi-

fied by our approach. We can then estimate precision across all 1210 events by taking

thenumberof true-positives found in the250crowdsourcedevaluationsand interpol-

ating up to 1210. For example, if 159 of the 250 events are found to be true-positives

after crowdsourcing (P = 0.636), thenwe can estimate that 769 of all 1210 events are

true-positives (1210× 0.636 = 769).

Recall is much more difficult to estimate and poses and number of issues. If our

entity-based approach discovers many new events, leading to a much higher preci-

sion score using crowdsourcing compared to automatic evaluations, we cannot be

certain how many of these are new events or if we are simply lacking some relev-

ance judgements for part of an event already in the collection. This is a particular

problem for large events that may have many thousands, or in some cases, millions

of tweets, discussing them, such as the U.S. Presidential Debates or Hurricane Sandy.

Whilst the event merging approach we developed in chapter 3 may seem like an ob-

vious solution, there are a number of issues that prevent us from using it to calcu-

late recall. Although we are able to estimate precision, we do not know which events

are true-positives and which are false-positives, other than the 250 that were evalu-

ated using crowdsourcing. Without first removing all false-positives, we cannot ac-

curately merge events and determine how many new events have been detected. To

do so would require a full crowdsourced evaluation of all 1210 events, a prohibitively

costly and time intensive task, despite having all the tools and infrastructure already

in place.

This means that recall for the crowdsourced evaluationmust still be based on events

already in the collection’s relevance judgements, and that the estimated recall will

always under-measure the true recall.
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Table 4.1: Results for two baseline approaches (LSH & CS) compared to our entity-based ap-
proach using the Events 2012 collection.

CS LSH Entity (Crowd) Entity (Auto)

Precision 53/1097 (0.048) 382/1340 (0.285) 769/1210 (0.636) 162/465 (0.348)

Recall 32/506 (0.063) 156/506 (0.308) 194/506 (0.383) 148/506 (0.292)

F1 0.054 0.296 0.478 0.306

4.4 Results

We believe that results presented here, when first published in 2015, were the first in-

depthandcomparableevaluationof aneventdetectionapproach forTwitter. Table4.1

shows results for the two baseline approaches and our entity-based approach when

runandevaluatedagainst theEvents 2012 collection. Wegive results forbothacrowd-

sourced (Crowd) evaluation and an automatic (Auto) evaluation for our entity-based

approach. We present results for our best performing automatic evaluation, which

filtered out events with fewer than 100 tweets but used otherwise default parameters

as described in section 4.2.

Automatic evaluationgivesourentity-basedapproachanestimatedprecisionof0.348

and recall of 0.292 for events with 100 ormore tweets. This gives the highest F1meas-

ure (0.318) across all automatic runs tested. Precision beats that of the LSH baseline,

despitebeingdisadvantageddue to thepartial relevance judgements. Recall is slightly

lower than that of the LSH approach, although by only a small margin (0.016).

Table 4.2 shows how the effectiveness of our entity-based approach varies as themin-

imum event size is increased from 30 tweets to 300. Overall effectiveness, taken as

the F1 score, increases betweenminimum sizes of 30 and 100 tweets, reaching amax-

imum F1 score of 0.318. Overall effectiveness decreases as the minimum event size

is increase above 100 as increases to precision are outweighed by decreases in recall.

For events with at least 75 tweets, automatic evaluation shows that our entity-based

approach outperforms the LSH approach in both precision (0.302) and recall (0.310),

despite being disadvantaged by a biased evaluationmethodology.

For the crowdsourced evaluation, events with fewer than 30 tweets were removed so

that results were directly comparable to the baseline approaches. Precision values

fromthe250crowdsourcedevaluationswereused toextrapolatehowmanyof the 1210

candidate events were likely to be true events. Of the 250 candidate events, 159 were

identified as true events by the majority of annotators, giving a precision of 0.636.
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Table 4.2: Effectiveness of our entity-based approach at varies minimum event sizes

Min. Tweets Precision Recall F1

30 242/1210 (0.200) 194/506 (0.383) 0.263

50 199/799 (0.249) 173/506 (0.342) 0.288

75 176/582 (0.302) 157/506 (0.310) 0.306

100 162/465 (0.348) 148/506 (0.292) 0.318

150 131/329 (0.398) 124/506 (0.245) 0.303

300 85/178 (0.478) 91/506 (0.180) 0.261

Scaled up to include all events, thismeans that approximately 769 of the 1210 candid-

ate events are true events. Recall for the crowdsourced run was calculated automat-

ically using events with 30 or more tweets, as discussed in section 4.3.2.

4.4.1 CategoryPerformance

Table 4.3 shows recall across the eight categories defined by the Events 2012 collec-

tionusingaminimumevent sizeof 30 tweets. There is a largevariation in recall across

the categories. Our approach seems to be most effective at detecting events categor-

ized asArmedConflicts &Attacks (R = 0.520) andDisasters &Accidents (R = 0.448).

This is extremely promising as these are the types of event that are most likely to be-

nefit from eye-witness accounts and the use of socialmedia as the event unfolds. The

ability to find information about these types of event in real-time can be useful for

law enforcement and emergency services, and serves as one of main motivations for

event detection and tracking on Twitter.

Our approach also appears to be effective at detecting events in the Business & Eco-

nomy (R = 0.391), Sports (R = 0.373), and Law, Politics & Scandals (R = 0.386)

categories. Law, Politics & Scandals, as well as the Sports events make up over 50%

of the total events in the collection, so given our approach’s overall high recall, it is

not surprising to find that it performs well on events in these categories. This is most

likely due to a number of factors. Firstly, these types of event tend to focus on a small

number of easily identified entities, such as sports teams, politicians, or company

names. Secondly, these types of event are of interest to a large number of people,

making themmore likely to burst and be detectable, with sports events in particular

being well suited to discussion on social media, something we examine later in this

section.

Our approach performs worst onMiscellaneous (R = 0.190), Arts, Culture & Enter-
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Table 4.3: Distributionofdetectedevents across theeight categoriesdefinedby thecollection.
The average entities shows the average number of entities linked to each event for
the specific category.

Category Recall
Average
Entities

Armed Conflicts & Attacks 51/99 (0.520) 1.85

Arts, Culture & Entertainment 12/54 (0.226) 1.68

Business & Economy 9/24 (0.391) 3.66

Disasters & Accidents 13/30 (0.448) 2.65

Law, Politics & Scandals 54/141 (0.386) 3.35

Miscellaneous 4/22 (0.190) 1.78

Science & Technology 4/17 (0.250) 2.91

Sports 47/127 (0.373) 4.01

tainment (R = 0.226), and Science & Technology (R = 0.250) events. The low recall

for science and technology events can be somewhat explained by a lack of easily de-

tectable named entities, particularity for science events, such as “Astronomers detect

what appears to be light from the first stars in the universe”. Of the 22Miscellaneous

events, 10 of them have fewer than 15 tweets in the relevance judgements which con-

tain named entities. This lack of named entities makes Miscellaneous very difficult

to detect for our approach, and the effect is examined in detail in section 4.4.6. Low

recall for Entertainment events could be explained by our removal of tweets that con-

tain terms related to television, such as ‘watch’, as many of the events are broadcasts

of award shows or the launch of new television shows.

The Average Entities column of Table 4.3 shows the average number of entities per

detected event for each category. There is a moderate positive correlation between

the average number of entities per detected event and category recall (r = 0.52).

This is not unexpected, as the more entities that are involved in an event, the easier

it is for our entity-based approach to find tweets and other content related to it.

Sports events have, on average, the most entities per event. This makes sense given

that sports events are generally team based or involve a large number of people. The

largenumberof entitiesper sports event also suggests that our approach is reasonably

successful at finding and linking entities which discuss the same events. Empirical

evaluation of the entity linking seems to show this to be the case. For example, our

approach produced an event with the following entities for a football match between

ManchesterUnitedandStokeCityon20thOctober, 2012: “carrick,hernandez,kagawa,

evans, nani, de gea, cleverley, buttner, rooney, rafael, fletcher”. Each of the entities
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refers to one of the Manchester United players that day, and whilst an ideal list of

entities would also have included Stoke City players, this demonstrates how effective

our approach can be at creating semantic links between entities involved in an event.

Miscellaneous events are by their very nature difficult to accurately classify, which

makes analysing their relatively low performance more difficult. Empirical examin-

ation of the 22 Miscellaneous events in the collection shows that many of them are

simply not very bursty or are developments in long-running events, such as a call by

the U.N. to release Iranian lawyer Mohammad Ali Dadkhah who was imprisoned six

months earlier. Events such are these are particularity hard for our approach to de-

tect because the volume of discussion is relatively low, and new developments tend

not to generate wide spread and bursty discussion when compared to novel events.

4.4.2 BurstDetection

Our burst detection technique is one of the key components in our detectionpipeline.

Events begin and end based on our burst detection technique, so it is important that

weexaminedifferentaspectsofhowwehaveconfigured theburstdetectionapproach.

Table 4.4 shows how increasing and decreasing the number of windows affects the

performance of our approachat anumber of differentminimumevent sizes. Decreas-

ing the number of windows to 6, meaning that windows cover period from 5minutes

Table 4.4: Effectiveness of our approach with 6, 7 and 8 windows (160, 320 and 640 minutes,
respectively)

MaxWindowLength Precision Recall F1

Eventswith 30+Tweets

160minutes 225/1040 (0.216) 185/506 (0.366) 0.272

320minutes 242/1210 (0.200) 194/506 (0.383) 0.263

640minutes 248/1340 (0.185) 198/506 (0.391) 0.251

Eventswith 100+Tweets

160minutes 141/374 (0.377) 126/506 (0.249) 0.300

320minutes 162/465 (0.348) 148/506 (0.292) 0.318

640minutes 175/555 (0.315) 157/506 (0.310) 0.313

Eventswith 300+Tweets

160minutes 66/136 (0.485) 74/506 (0.146) 0.225

320minutes 85/178 (0.478) 91/506 (0.180) 0.261

640minutes 101/235 (0.430) 101/506 (0.200) 0.273
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up to 160 minutes, results in a slight increase in precision across all event sizes, at

the cost of recall. The effect is mirrored by increasing the number of windows to 8,

so that themaximumperiod is 640minutes: recall increases but precision decreases.

These differences appear to be linked primarily to the number of events returned: as

the number of candidate events increases, recall increases but precision decreases, a

pattern that is common across a wide range of IR tasks andmodels.

Our default of 7 windows appears to offer the best ratio of precision and recall using

a starting window length of 5 minutes, and gives the highest overall F1 measure of

0.318 at a minimum event size of 100 tweets. We note, however, that at 30 tweets, 6

windows gives a higher F1 score than 7 windows: although 6 windows detects only

9 fewer events, it produced 170 fewer candidate events. This could be caused by the

reduced maximum burst length with 6 windows causing events to be ended earlier,

and so fewer reach the minimum size of 30.

LimitingHistoricalData forBurstDetection

Table 4.5 shows how limiting the amount of historic data used to calculate mean and

standarddeviationvalues for burst detectionaffects theoverall performance. Assum-

Table 4.5: The effect of using only data from the last N updates when calculating mean and
standard deviation values

History Length Precision Recall F1

Eventswith 30+Tweets

No Limit 241/1293 (0.186) 190/506 (0.375) 0.249

6 237/1139 (0.208) 192/506 (0.379) 0.269

12 242/1210 (0.200) 194/506 (0.383) 0.263

24 247/1262 (0.196) 191/506 (0.377) 0.258

Eventswith 100+Tweets

No Limit 154/476 (0.324) 137/506 (0.271) 0.295

6 159/459 (0.346) 146/506 (0.289) 0.315

12 162/465 (0.348) 148/506 (0.292) 0.318

24 163/465 (0.351) 142/506 (0.281) 0.312

Eventswith 300+Tweets

No Limit 82/174 (0.471) 81/506 (0.160) 0.239

6 89/174 (0.511) 97/506 (0.192) 0.279

12 85/178 (0.478) 91/506 (0.180) 0.261

24 89/179 (0.497) 86/506 (0.170) 0.253
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ing 7windows, with the smallest period of 5minutes, andusing only 6 historic values,

our shortest window uses data from the past 6× 5 = 30 minutes, whilst our longest

windowusesdata for6×320= 1920minutes, or 32hours. Limiting theamountofdata

used to calculate µ and σ values has an effect of the overall performance. Although

the performance differences between 6 and 24 is small, and there does not appear to

bea singlebesthistory lengthacross the rangeof event sizes, there is a cleardifference

between limited and unlimited historical data.

By limiting the amount of historic data used at each window size, we remove a type

of smoothing. Placing no limits on historic data means that we capture the change

in usage of each entity, but also changes in how the entity is used through the day

as people wake up, go to work, return home, and go to sleep. The overall volume of

tweets changes as the day progresses, introducing variance that affects the standard

deviation. No limits on historic data also means that events which build slowly, such

as discussion of an upcoming sports event or political debate can cause a ‘burst’ des-

pite being gradual increases in volume. By limiting the amount of historic data used,

we ensure that the statistics reflect how the entity is discussed recently, not histor-

ically. This might appear counter-intuitive, as the aim of the burst detection is to

detect recent changes in the volume of discussion around an entity. However, our

use of multiple window lengths means that our burst detection approach captures

information over a wide range of time periods.

Table 4.6: Effects of minimum similarity thresholds on detection performance

Min. Similarity Precision Recall F1

Eventswith 30+Tweets

0.40 256/1430 (0.179) 206/506 (0.407) 0.249

0.45 242/1210 (0.200) 194/506 (0.383) 0.263

0.50 227/1133 (0.200) 180/506 (0.356) 0.256

0.55 205/929 (0.221) 175/506 (0.346) 0.269

0.60 181/804 (0.225) 154/506 (0.304) 0.259

Eventswith 100+Tweets

0.40 176/566 (0.311) 155/506 (0.306) 0.309

0.45 162/465 (0.348) 148/506 (0.292) 0.318

0.50 154/446 (0.345) 135/506 (0.267) 0.301

0.55 134/346 (0.387) 128/506 (0.253) 0.306

0.60 113/300 (0.377) 111/506 (0.219) 0.277
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4.4.3 Clustering

Table 4.6 shows how different similarity thresholds affect the performance across a

range of event sizes. High thresholds make it more difficult to cluster similar tweets,

meaning that there tends to be a larger number of smaller clusters, as well as more

tweets that belong to no cluster. Since our approach only adds clusters above certain

sizes to an event (see Table 4.7 for details), a decrease in the average size of a clusters

means that fewer events are discovered. Inversely, a low threshold makes it easier

to cluster tweets, resulting in more large clusters. This means more clusters can be

added to events, and results in more events overall. This is reflected by the number

of events at varying levels of similarity and across the twominimum event sizes.

Table 4.7 shows the effect of different minimum cluster sizes on the effectiveness

of our approach. Clusters are only added to an event if they contain more than the

minimumnumber of tweets, so theminimum cluster size has an effect on the overall

performance, particularity at lower minimum event sizes. The effect on overall per-

formance (F1 score) is less pronounced for larger events as these events have much

higher volumes of discussion, so the number of large clusters that can to be added

to the event is much higher. Increasing the minimum cluster size has an effect on

precision at both minimum event sizes. There is a distinct jump in precision when

the minimum cluster size is increased from 5 to 10 tweets, but with only a very small

impact on recall, motivating our use of 10 as the minimum cluster size in all of our

evaluations.

Table 4.7: Effects of minimum cluster size on detection performance

Min. Tweets Precision Recall F1

Eventswith 30+Tweets

2 tweets 306/2575 (0.119) 227/506 (0.449) 0.188

3 tweets 292/2038 (0.143) 220/506 (0.435) 0.216

5 tweets 261/1644 (0.159) 207/506 (0.409) 0.229

10 tweets 242/1210 (0.200) 194/506 (0.383) 0.263

20 tweets 196/816 (0.240) 170/506 (0.336) 0.280

Eventswith 100+Tweets

2 tweets 216/1032 (0.209) 181/506 (0.358) 0.264

3 tweets 192/795 (0.242) 167/506 (0.330) 0.279

5 tweets 171/621 (0.275) 153/506 (0.302) 0.288

10 tweets 162/465 (0.348) 148/506 (0.292) 0.318

20 tweets 129/326 (0.396) 121/506 (0.239) 0.298
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4.4.4 Nouns,VerbsandHashtags

Table 4.8 shows the effect of using different term combinations for clustering. Note

that for verb only clustering, althoughnounswere not usedwhen calculating similar-

ity scores, the use of named entities to partition documentsmeans that proper nouns

were still used for clustering in an ad-hoc manner. Despite this, we feel that results

presented here are still interesting and insightful.

Although F1 scores show only small changes, both precision and recall values seem

to be affected by type of terms used for clustering. The use of nouns only gives the

highest recall but the lowest precision (F1 = 0.249), whereas using verbs only res-

ults in the lowest recall but the highest precision (F1 = 0.259). Using both nouns

and verbs seems to take the best characteristic of both, giving the highest overall F1

score (F1 = 0.263). The high recall associated with nouns fits with our hypothesis

that events are about entities, as named entities are proper nouns, and entity classes

(i.e. city, person, plant) are common nouns. If nouns had not been used to describe

these events thenwewould not have been able to detect them. This is again reflected

in the low recall when using verbs only, and had we been able to remove the depend-

ency on named entities (i.e. proper nouns) then recall would have been much lower.

At the highest level, these results seem to agreewith our premise that events describe

the effect of a verb on a noun (a real-world entity).

The use of Hashtags seems to cause a small reduction in both precision and recall,

a somewhat unexpected result, as Hashtags are commonly thought to be very good

Table 4.8: The effect of using different combinations of nouns (NN), verbs (VB) and hashtags
(HT) as terms for clustering on events with at least 30 and 100 tweets

POS Precision Recall F1

Eventswith 30+Tweets

NNOnly 242/1324 (0.183) 198/506 (0.391) 0.249

VB Only 196/912 (0.215) 165/506 (0.326) 0.259

NN, VB 242/1210 (0.200) 194/506 (0.383) 0.263

NN, VB, HT 232/1174 (0.198) 192/506 (0.379) 0.260

Eventswith 100+Tweets

NNOnly 156/522 (0.299) 146/506 (0.289) 0.294

VB Only 122/367 (0.332) 113/506 (0.223) 0.267

NN, VB 162/465 (0.348) 148/506 (0.292) 0.318

HT, NN, VB 157/447 (0.351) 142/506 (0.281) 0.312
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indicators for the topic of a tweet. We hypothesis that this is due to the specificity of

named entities, and by requiring every tweet to contain a named entitywe are remov-

ing any uncertainty and rendering Hashtags redundant as an indicator of topic.

4.4.5 Retweets

The use of retweets has a large impact, reducing precision from 0.200 to 0.063. The

use of retweets does provide a small increase in recall (from 0.383 to 0.390), and can

likely be attributed to a 60% increase in the average number of tweets per event from

125 to 198, creating many events with more than 30 tweets. This finding is somewhat

unsurprising as retweets are commonly associated with the spread of spam and re-

quire little effort to produce.

4.4.6 NamedEntities

One concernswith our entity-based approach is the use of entities on event and tweet

recall, since we rely on entities to cluster tweets and detect events. Running the Stan-

fordPOSTaggerandNERover tweets fromthe relevance judgements shows that47.4%

of relevant tweets contain at least one entity. This is promising, and considerably

higher than the 11% of tweets that contain name entities across the collection as a

whole, confirming our hypothesis that there is a relationship between entities and

events. Our approach achieves a tweet Recall of 0.242 across the events it detects,

and a Recall of 0.511 if we measure only against tweets in the relevance judgements

which contain a named entity.

Thisdoeshighlight onedrawback toour entity-basedapproach. Even ifwewere tode-

tect every event in the collection, we could never achieve a tweet Recall above 0.474.

Some of this is likely due to the difficulty of NER on Twitter, as noted by Li et al.

[2012b], and could be improved with better NER models for Twitter. However, it is

likely that themajority of tweets simply do not contain any named entities, meaning

that we must consider the effect this has on detection effectiveness – if an event has

very few or no tweets with named entities then our approach will be unable to detect

them. Of the 506 events in the relevance judgements, 14 have fewer than 5 associated

tweets, 42 have fewer than 15, and 72 have fewer than 30. In addition, 41 events in the

relevance judgements have fewer than 5 tweets with entities, 109 events have fewer

than 15, and 163 have fewer than 30. For those 41 events with fewer than 5 tweets con-

taining entities, even if our system was to perform perfectly, we would be unable to

detect them – accounting for just over 8% of all the events in the collection.
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EntityClasses

There are a number of cases where entities with the same name, such as Spain the

football team and Spain the land mass are different classes of entity. In this case,

Spain can be both an Organization (the football team) and a location (Spain the land

mass). Table 4.9 shows the effect of differentiating between classes, and ignoring

classes. Using a single class seems to give a small increase in recall at the cost of a

small decrease inprecisionwhencompared tousingmultiple classes. However,when

measured using F1, multiple entity classes has a small performance advantage up to

events containing at least 100 tweets, whereas the single entity class seems to per-

form slight better on larger events. This increase in recall using a single class could

be caused by the burst detection having more data to work with per entity – rather

than tweets being partitioned into three separate classes, they are left as one, mak-

ing bursts easier to detect. However, closer inspection of the events detected shows

that is unlikely to be the only cause. We find that using a single class tends to merge

events which are about different entities with the same name. For example, a foot-

ball match between Spain and France takes place at the same time as the captain of

the Liberian-owned Prestige oil tanker goes on trial in Spain. Because the single en-

tity class is unable to differentiate between the Spanish football team and Spain the

location, then the two events cannot be distinguished from each other, producing a

single large event with an effective recall of two events. Despite the fact that only

a small percentage of the tweets are about the trial, they still cover over 65% (25/38)

of the tweets in the relevant judgements for the trial, so it is difficult to simply say

that these small events have not been detected, even when merged with other larger

Table 4.9: Precision and recall differences between using no entity classes and three classes
(person, location, organization)

Entity Classes Precision Recall F1

Eventswith 30+Tweets

3 Classes 242/1210 (0.200) 194/506 (0.383) 0.263

Single Class 257/1389 (0.185) 201/506 (0.397) 0.252

Eventswith 100+Tweets

3 Classes 162/465 (0.348) 148/506 (0.292) 0.318

Single Class 170/525 (0.324) 152/506 (0.300) 0.312

Eventswith 300+Tweets

3 Classes 85/178 (0.478) 91/506 (0.180) 0.261

Single Class 94/193 (0.487) 91/506 (0.180) 0.263
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events. There are a number of examples where similar errors are made, and this ap-

pears to be themain cause for the increase in recall and the higher number of of large

events (193 with at least 300 tweets in comparison with only 178 when usingmultiple

classes).

4.5 EventDetectionEvaluationApproaches

In section 4.3 we discussed evaluation issues and limitations that made the evalu-

ation of event detection approaches difficult. Here we examine how our automatic

evaluation approach compares to our crowdsourcedmethodology.

Table4.10 shows the resultsofourentity-basedapproachevaluatedagainst theEvents

2012 collection using both automated and crowdsourced evaluation methodologies.

Of the 250 events evaluated using crowdsourcing, 159 were determined to be true

events, while 91 were found to be false events, giving a precision of 0.636. By scal-

ing these values to all events returned by our approach, we can estimate that 769 of

the 1210 events are true events. Precision under a crowdsourced evaluation is more

than three times higher than calculated using the automated approach, indicating

as expected, that the Events 2012 collection does not have relevance judgements for

all events that occurred during the 28 days it covers. As we discussed in section 4.3,

there are a number of issues that prevent us from accurately calculating recall for the

crowdsourced evaluation, so recall is not given in Table 4.10.

Table 4.11 shows the distribution of events between categories, calculated automat-

ically and through crowdsourcing. Both the automatic and crowdsourced evaluation

give somewhat similar distributions (R = 0.59), suggesting that there is a somewhat

moderate positive correlation between the distribution of results returned by both

methods of evaluation, despite differences in the absolute values. However, there are

a number of outliers, such as Armed Conflicts and Attacks, and Sports.

The automatic evaluation suggests thatArmedConflicts andAttacksmakeup 26.3%of

Table 4.10: Results obtained through crowdsourcing vs automatically at a minimum event
size of 30

Automatic Crowdsourced Crowdsourced (Scaled)

Precision 242/1210 (0.200) 159/250 (0.636) 769/1210 (0.636)

Recall 194/506 (0.383) - -
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Table 4.11: Thedistribution of events between categories,measuredusing both theCollection
and Crowdsourcing

Category Automatic Crowdsourced %ofCollection

Armed Conflicts & Attacks 26.3% 3.4% 19.4%

Arts, Culture & Entertainment 6.2% 9.4% 10.5%

Business & Economy 4.6% 1.7% 4.5%

Disasters & Accidents 6.7% 3.4% 5.7%

Law, Politics & Scandals 27.8% 21.4% 27.7%

Miscellaneous 2.1% 11.1% 4.2%

Science & Technology 2.1% 2.6% 3.2%

Sports 24.2% 45.3% 24.9%

the events detected by our approach, however the crowdsourced evaluation determ-

ined this to be only 3.4%. Similarly, the automatic evaluation found 24.2% of events

to be related to Sports, however the crowdsourced evaluation found that 45.3% dis-

cussed a Sports event. Closer examination shows that the distribution of events using

the automatic evaluation has an almost perfect correlation with the distribution of

events in the collection (R = 0.96). This is not unexpected, and in fact gives some

confidence that the automatic approach is doing a reasonable job ofmatching events

being evaluated to events from the collection.

Comparing the crowdsourced results from our entity-based approach to those of the

LSH approach (which can be found in Table 3.3), we find that the category correlation

is almost perfect (R = 0.96). This means that our approach and the LSH approach

detected very similar types of event (although our approach was able to do it with

much higher precision), suggesting the certain types of event are more commonly

discussed on Twitter than they are covered by themedia. This is in linewith the find-

ings of Petrovic et al. [2013], where they found that Twitter tends to provide better

coverage of sports, the unpredictable, and other high-impact events.

4.6 EfficiencyandEnsuringReal-TimeProcessing

One of our aimswhen developing our entity-based approachwas to ensure that it was

both real-time and efficient. In essence, a real-time algorithm can be seen as having

O(1) complexity. While a real-time approach is often efficient, it does not have to

be, and many real-time approaches fail to scale as the volume of information is in-

creased, causing effectiveness to drop. Clearly a real-time system cannot be expected

to process an infinite volume of data, however an efficient real-time systems should
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be able to scale reasonably without a significant loss of effectiveness.

Our approach is both real-time and efficient, in that we guarantee a maximum time

per tweet, and it is able to scale as the volume of data increases. The real-time aspect

is guaranteed by using only the top 10 IDF-weighted terms in each tweet (a restriction

which affects less than 0.02% of tweets) and by retrieving only the N most recent

documents per term (in our experimentsN = 500), we ensure that in theworst case,

no more than 10N comparisons are made per document, givingO(1) complexity.

The efficiency of our approach comes from a number of aspects. Firstly, as discussed

in section 4.2, our approach only uses tweets which contain named entities. This

means that the vast majority of noisy and unspecific tweets can be removed before

computationally expensive clustering or analysis is performed. This greatly reduces

the number of tweets which need to be clustered and the the number of comparisons

which need to be made. Although Named Entity Recognition itself can be computa-

tionally expensive, this can be scaled across any number of machines before tweets

reach the event detection stage. Secondly, the average number of comparisonsmade

per tweet is extremely low. Table 4.12 shows the complexity, worst case, and aver-

age number of comparisons for baseline approaches and our entity based approach.

Although our worst case performance requires up to 5000 comparisons (this can be

lowered by reducing N , the maximum number of documents retrieved per term),

the average number of comparisons per tweet is only 72, a tiny fraction of the worst

case, and significantly below that of the CS and LSH approaches. This is due to our

entity-basedclusteringapproach. Byonly comparing tweets that containoverlapping

named entities, we greatly reduce the candidate set, and thus the number of compar-

isons that need to be made to find a nearest neighbour. This partitioning has the ad-

ded benefit that tweets could theoretically be distributed across multiple servers for

processing, using the named entities in a tweet to determine which server processes

it. Finally, our pipeline architecture allows for each component to work independ-

ently and in parallel, allowing it to scale more easily.

Table 4.12: Different complexity aspects of our detection approach and the two baselines ap-
proaches. Theaverage complexity for LSHwas calculatedwithout theuseof a vari-
ance reduction technique which would push the average higher.

Approach Complexity Worst Case Average

Entity O(1) 5,000 72

LSH O(1) 3,000 210

CS O(1) 1,200 1200
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4.7 Conclusion

In this chapter, we proposed a novel, efficient and real-time event detection tech-

nique, which uses named entities to partition a stream of incoming tweets and per-

form clustering. We showed how a lightweight burst detection scheme can be used

effectively to detect bursty entities, and how semantic links can be formed between

bursting entities todescribe real-world events. Weperformedwhatwebelievewas the

first in-depth analysis of an event detection approach for Twitter, using a large-scale

collection of 120 million tweets and over 500 events. We validated our hypothesis

using the collection and through crowdsourcing, showing that our approach makes

significant improvements over two state-of-the-art baselines andperformed in-depth

analysis of the results. Finally, we described a number of issues with automatic eval-

uation of event detection on Twitter and describe a number of possible solutions.





CHAP T E R 5

ScoringTweets
forNewsworthiness

The unpredictable nature of news, combined with the limited length and unstruc-

tured nature of Twitter makes it very difficult to predict the newsworthiness of an

individual tweet, especially in real-time. Classifying tweets as newsworthy or noise

is a common step in credibility scoring, where the aim is to determine if a tweet is

newsworthy, and then to decide how credible information contained in the tweet is.

However, the newsworthiness of an individual tweets is often ignored in event de-

tection, where clusters of documents or terms are examined, rather than individual

tweets.

In this chapter, we examine how newsworthiness can be predicated at a more fine-

grained tweet level, and attempt to predict the newsworthiness of individual tweets,

which we then use as a feature for event detection. The aim of this work is to enable

event detection approaches to more easily separate signal (newsworthy tweets) from

noise (general discussion and chatter), and to demonstrate that event detection ap-

proaches canmove away from existing cluster or graph based significancemeasures,

such as the volume of tweets mentioning a specific term or the size of a cluster. We

aim to show that event detection approaches can instead rely on latent features that

allow for the higher precision while requiring fewer tweets.

For the purpose of this work, we say that a tweet is newsworthy if it discusses a topic

that is of interest to the news media. For example, a tweet describing an apartment

fire would be considered newsworthy, whereas a tweet describing a user’s breakfast

would not. Note that the concept of newsworthiness with regards to an individual

tweet is very similar to the definition of significant in the context of events, defined in

section 3.1, however applied at a tweet level rather than over an event as a whole. Al-

though still subjective, a topic is either considered significant enough to be an event,

or it is not. Newsworthiness, on the other hand, can bemeasured on a scale. Whilst a

tweet asking others to “pray for those involved” in the aforementioned apartment fire
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is relevant to a newsworthy event because it mentions the apartment fire, it is con-

siderably less newsworthy than a tweet providing information about the fire or the

people involved. The aim of this work is to determine whether an individual tweet is

newsworthy (its direction), and assign a relative score (itsmagnitude).

Given theabove,wedefine threekeycharacteristics thatwewantourNewsworthiness

Scorer to satisfy:

• Generalizability: as specified in chapter 1, the scoring system should be able

to score a tweet about any event or event type, even if it has never encountered

a similar event before. It should not, for example, only be able to score tweets

about sports events or earthquakes, rather it should be general enough to ac-

curately score tweets about anything that could be reported by themedia (i.e.,

anything significant).

• Real-time: also specified in chapter 1, the real-time characteristic means that

tweets should be scored as soon as received, and there should be no delay to

wait for new information (i.e., no batch processing). This ensures that the scor-

ing is useful for real-time event detection systems.

• Adaptive: it should be possible to update the model in an online manner and

incorporate new information as it is found. For example, as an event detection

system discovers new events or tweets related to ongoing events, it should be

able incorporate this new information into the scoring model, allowing sub-

sequent tweets to be more accurately scored.

Tomeet these characteristics, we propose a newsworthiness scoring approach which

boosts or reduces a tweet’s Newsworthiness Score based on the likelihood ratio of a

term with regards to term distributions across different tweet qualities. Rather than

usingmanually annotated training data, we instead use a form of distant supervision

where training data is identified in real-time using a small set of heuristics. We can

thenbolster themodels by feedingexceptional tweets, identifiedeither throughevent

detection or using their Newsworthiness Score, back into the models. This approach

allows the scoringmodel to quickly adapt to new events and information in real-time

and in an onlinemanner, giving it a significant advantage over approaches which use

only manually labeled training data.

The intuition here is that by identifying high and low quality tweets, we can compare

termusage statistics to the corpus as awhole, givingus an insight intowhich termsare

newsworthy, or which add noise. By identifying terms (or groups of terms) that ap-

pear more commonly in newsworthy tweets when compared to the background cor-
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pus, and measuring their significance using likelihood ratios, we can assign a News-

worthiness Scores to a tweet by combining individual term scores.

In this chapter, we aim to answer the following research questions:

• Can heuristics be used to automatically train newsworthiness scoringmodels?

• Can an automatic approach identify the newsworthiness and magnitude of a

tweet?

• Cannewsworthinessbeusedasa feature to improveeventdetectionapproaches?

In section 5.1 we describe a set of heuristics for automatically classifying content into

high and low quality sets, which can then be used to trainmodels for newsworthiness

scoring. We thenuse thesemodels to identify and scorenewsworthy content, evaluat-

ing the effectiveness of our proposed approach in section 5.3. Finally, in section 5.4,

we demonstrate how our newsworthiness scoring approach can be used to improve

upon a simple cluster-based event detection approach and outperform current state

of the art event detection approaches.

5.1 HeuristicLabelingandQualityClassification

Wepropose a semi-automatic labeling approach using a set of heuristics to label high

quality (newsworthy) and low quality (noisy) content. Our labeling approach is spe-

cifically designed not to label the majority of content. Instead, we want to identify

exceptional content which we can compare to the ‘random’ background corpus, al-

lowing the model to learn specific newsworthy and noisy features.

The use of heuristics has a number of advantages over the use of existing datasets and

requires only minimal effort in comparison to creating a labeled dataset specifically

for this task. Many existing datasets that could be used for newsworthiness predic-

tion are extremely small, or focus on a single large event or topic [Kang et al. 2012;

Madhawa and Atukorale 2015], making them less generalizable for training a news-

worthiness classifier, and less likely to perform well across a broad range of events

and event types.

Even large datasets with relevance judgements, such as the Events 2012 corpus from

chapter 3, covering 506 eventswithmore than 100,000 relevance judgements, are un-

likely to be suitable for supervised training. Datasets of this size, although useful for

evaluation, make no claims of completeness. Despite having relevance judgements

for a large number of events and tweets, the Events 2012 corpus covers only covers a
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tiny fraction of the many thousands of newsworthy events that take place every day,

so training specifically on these events could result in over-fitting and decreased ef-

fectiveness on other datasets.

The use of heuristic labeling, rather than manual labeling, allows training data to be

labeled in real-time and fed into the scoring approaches that follow. This allows our

approach to learn new features in real-time, as described in section 5.2.

Madhawa and Atukorale [2015] used heuristic labeling to generate training data for

newsworthiness classification. They developed a classifier capable of classifying doc-

umentsaseitherobjective (highquality, newsworthy), or subjective (lowquality, noise)

as a filtering step before summarization. However, their approach used only a small,

manually curated lists of accounts as newsworthy sources, and labeled any tweet con-

taining an emoticon or emoji as noise. Instead, we use a broader set of heuristics that

place fewer restrictions on what constitutes newsworthy and noisy sources, allowing

for a broader range of sources andmore training data.

As the inclusion of ‘conversational’ or non-newsworthy posts has been shown to have

a negative effect on credibility assessments [Noyunsan et al. 2017; Sikdar et al. 2013b],

manycredibility assessmentapproachesuse features that attempt tocapture thenews-

worthiness of a post before assessment. We basemany of the heuristics that follow on

those shown to be effective for credibility assessment [Sikdar et al. 2013a; Kang et al.

2012; Castillo et al. 2011; Madhawa and Atukorale 2015].

Although these heuristics form an important part of this work, as we demonstrate

in section 5.3, the exact choice of features and weights is less important than it may

initially appear, as we use a very simple score cutoff to determine quality. As long

as the heuristics give a reasonable level of accuracy when selecting training data, the

performance of the Newsworthiness Scorer is only mildly affected by changes to the

heuristics or their weights.

5.1.1 Features

We define a number of weighted heuristics designed to identify exceptionally high

or low quality content. Weights are multiplicative, and we take the product of the

weights from each feature as the overall Quality Score,Qd.
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UserDescription:Wdesc

Wemanually created a list of keywords and phrases commonly used by news broad-

casters, journalists andfinancial traders in their UserDescription onTwitter. The full

list of these terms and their weights can be found in Table 5.1.

Table 5.1: Terms and weights assigned to each term for scoring a user’s profile description.

Type Weight Terms

News & Journalism 2.0 news, report, journal, write, editor, analyst,
analysis, media, updates, stories

Finance & Trading 2.0 trader, investor, forex, stock, finance, market

Spam 0.1 ebay, review, shopping, deal, sales, marketing,
promot, discount, products, store, diet, weight,
porn, follow back, followback

Positive termswere identifiedmanually basedoncommon termsusedbynewsorgan-

izations, journalists, and financial traders on Twitter. The list of spam terms was also

createdmanually based on common types of lowqualitymarketing spam that is often

found on Twitter. The ‘follow back’ terms are commonly associated with users who

artificially inflate their follower count by ‘following back’ anyone who follows them.

We penalise them here to correct for any boost given by the Number of Followers fea-

ture described later in this section.

Rather than match whole words, we match on a prefix basis. For example, ‘report’

matches report, aswell as reporterand reports. Note that this is similar, butnot identical

to, matching on stemmed terms. This helps to keep the list of terms short whilst giv-

ing high coverage. The overall feature score is a product of weights for anymatching

terms.

We note that some of the terms used for scoring could be subjective or change over

time due to topic drift. While these terms work well for the Events 2012 corpus that

we use for evaluation, theymay requiremodifications for other datasets, or could po-

tentially be replaced with a supervised classification approach.

AccountAge:Wage

Young accounts are generally viewed as less credible than accounts that have been

active for longer periods of time [Sikdar et al. 2013a], so we give accounts created

within the last 90 days a lower weight.
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Table 5.2: Follower ranges and weights assigned to accounts who have followers between the
range defined.

AccountAge (days) Weight

< 1 day 0.05

< 30 days 0.10

< 90 days 0.25

90+ days 1.00

NumberofFollowers:Wfollowers

It is often the case that something becomes news not because of what was said, but

who said it. A head of state or public figure expressing sympathy for victims of an

accident is considerably more newsworthy than the average person doing the same.

The number of followers a users has can infer how influential or newsworthy the user

is, and thus how newsworthy the user’s tweets are likely to be, and is a commonly

used feature for automatic credibility assessment [Kang et al. 2012; Sikdar et al. 2013a;

Gün and Karagöz 2014; Madhawa and Atukorale 2015]. Given this, we assign higher

weights to users with more followers, and a lower weight to users with very few fol-

lowers, as shown in Table 5.3.

The vast majority of tweets (83.81%) are posted by users who have between 50 and

4,999 followers, and are unaffected by this feature. The aim is to affect only the ex-

tremes: users with very few, or very many followers.

Table 5.3: Follower ranges and weights assigned to accounts who have followers between the
range defined.

Number of Followers Weight

0 - 49 0.5

50 - 4,999 1.0

5,000 - 9,999 1.5

10,000 - 99,999 2.0

100,000 - 999,999 2.5

1,000,000+ 3.0

UserVerifiedStatus:Wverified

Politicians, organizations, celebrities, journalists andother public figures can request

that Twitter ‘verify’ their identity bymarking their account as verified and displaying
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a blue badge near to their name or display picture 1. Although the exact requirements

for verification are undocumented, verification is often seen as a sign of authenticity

and significance.

At the time of writing, approximately 290,000 accounts have been verified by Twit-

ter, a full list of which can be obtained by examining the list of accounts followed by

Twitter’s @verified2 account. A survey of Verified accounts in 2015 found that ap-

proximately 41% of account are related to news, journalism, politics or government3.

This supports our hypothesis that verified accounts are a good source of high qual-

ity, newsworthy content, so we give Verified users a weight of 1.5. Unverified users as

unaffected by this feature (i.e. given weight of 1.0).

PostsPerDay:Wppd

Quality and quantity often have an inverse correlation, especially on social media.

Accounts which produce an extremely high volume of posts are often automated ac-

counts repeating content from other sources with the aim of acquiring followers, ad-

vertising a product or service, and more recently, for the purpose of propaganda and

misinformation [Forelle et al. 2015; Howard and Kollanyi 2016].

Accounts thatpostmore than50 timesperdayareoftenconsidered tobeheavily auto-

mated [Howard and Kollanyi 2016]. For this reason, we penalize any account that

posts more than 50 times per day on average (weight of 0.5), and apply a more severe

penalty for accounts which tweet more than 100 times per day on average (weight of

0.25).

We note, however, thatmany heavily automated accounts are in fact prominent news

andmedia organizations. Toprevent these legitimate accounts frombeingpenalized,

we do no apply any penalty to Verified accounts.

HasDefaultProfile Image:Wimage

Twitter users who do not provide a custom profile image (often nicknamed “eggs”

due to Twitter’s historic use of a egg as the default profile image) are generally con-

sidered less trustworthy and credible [Castillo et al. 2011; Sikdar et al. 2013a; Gün and

1https://help.twitter.com/en/managing-your-account/about-twitter-
verified-accounts

2https://twitter.com/verified/following
3https://medium.com/three-pipe-vc/who-are-twitter-s-verified-users-

af976fc1b032
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Karagöz 2014] than userswho have taken the time to provide a custom image. Twitter

themselves noted that users who create ‘throwaway’ accounts, often for the purpose

of spamming or to post abuse, tendnot to personalize their accounts. The association

between the default egg image and low quality accounts has been noted in published

work previously [Sikdar et al. 2013a], and the public association was one of the key

reasons noted by Twitter for changes to their default profile image in March 20174.

We assign user accounts that have not specified a custom profile image a weight of

0.5.

5.1.2 Labeling

As described earlier, document d is assigned an overall Quality Score, Qd, taken as

the product of scores from each feature:

Qd = Wdesc ×Wage ×Wfollowers ×Wverified ×Wppd ×Wimage (5.1)

For example, a tweetdwithweights 2.0 forWdesc, 1.5 forWfollowers, and 1.0 for the all

other features would have an overall Quality Score,Qd = 2.0 × 1.0 × 1.5 × 1.0 ×
1.0× 1.0 = 3.0.

Cutoff values are used to determine quality labels fromQs. We examine how various

cutoff values affect performance in section 5.3, however unless otherwise stated, we

label tweets withQd ≥ 4.0 as High Quality, andQd ≤ 0.25 as Low Quality, as these

give the best classification rates for the Events 2012 corpus. Documents between this

range are unlabeled.

5.2 NewsworthinessScoring

Asdocuments areprocessed in temporal order, they are added to abackgroundmodel

containing all documents. In addition, documents labeled either High or Low Qual-

ity are also added to corresponding quality specificmodels: documents labeled High

Quality are added to theHQmodel, and documents labeled LowQuality are added to

the LQmodel.

The backgroundmodel serves as a ‘random’ distribution thatwe can compare against

to identify terms that are more likely to appear in newsworthy content than at ran-

4https://blog.twitter.com/en_us/topics/product/2017/rethinking-our-
default-profile-photo.html
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dom, and conversely, terms that are more likely to appear in noise than at random.

This concept is somewhat similar to the intuition behind the Divergence From Ran-

domness (DFR)Frameworkand its associatedmodels [Amati andVanRijsbergen2002]:

where themore a term’s frequency within the HQ or LQmodels differs from the term

frequency of the collection as a whole, the more weight a term carries.

5.2.1 Term-BasedLikelihoodRatioScoring

The likelihood ratio for term t, R(t), gives us an indication of the relative import-

ance of the term in the particular qualitymodelwhen compared to the ‘random’ back-

ground model. A likelihood ratio greater than 1.0 means that the term is more com-

mon in the model than random, whereas a ratio less than 1.0 means that the term is

less common in the model than random. We believe that this can be used to identify

terms that indicate newsworthiness (or lack thereof).

The likelihood ratio for a term is calculated for both the High Quality (RHQ(t)) and

Low Quality (RLQ(t)) models as:

RHQ(t) =
P (t|HQ)

P (t|BG)
=

tft,HQ

FHQ

tft,BG

FBG

(5.2)

RLQ(t) =
P (t|LQ)

P (t|BG)
=

tft,LQ

FLQ

tft,BG

FBG

(5.3)

where HQ, LQ and BG correspond to the High Quality, Low Quality and Back-

groundmodels respectively. tft is the raw frequency of term t in the givenmodel, and

F is the raw frequency of all terms in themodel (i.e. F =
∑

ft). Since documents are

added to each model as they are labelled, but before scoring, we can guarantee that

division by 0 will never happen.

For each term t, we define an score St for each of the High and Low quality models.

The aim is to use the HQ likelihood ratio to boost scores for documents containing

terms associated with newsworthy content, and the LQ likelihood ratio to dampen

scores for documents containing terms associated with noise. Note that we do not

assign scores for every term. Instead, we only use the likelihood ratio for terms with

ratios of at least 2.0 in one of the twomodels, and instead assign a score of 0where the

term has a ratio of less than 2.0 for both the HQ and LQmodels. This prevents terms

which have no clear associationwith either high or lowquality content fromaffecting

the overall score of a document.
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SHQ(t) =

RHQ(t), ifRHQ(t) orRLQ(t) ≥ 2.0

0, otherwise

(5.4)

SLQ(t) =

RLQ(t), ifRHQ(t) orRLQ(t) ≥ 2.0

0, otherwise

(5.5)

CombiningTermsScores

We calculate the overall Newsworthiness ScoreNd of a document d as follows:

Nd = log2

(
1+

∑
t∈d SHQ(t)

D
1+

∑
t∈d SLQ(t)

D

)
= log2

(
1 +

∑
t∈d SHQ(t)

1 +
∑

t∈d SLQ(t)

)
(5.6)

where t refers to a term in document d which containsD number of terms. AsD is

constant, it can be ignored, simplifying the calculation.

We calculate the average term score S(t) (as described earlier) against both the high

and low quality models. By taking the ratio of these scores, we can estimate how

newsworthy the terms used in the document are. Documents where the average high

quality term score is greater than that of low quality terms (i.e.
∑

t∈d SHQ(t) >∑
t∈d SLQ(t)) are considered newsworthy, whilst documents where the average low

quality term score is greater are considered noise.

We add 1 to both the numerator and denominator which has a number of benefits.

Firstly, it reduced the effect of high or low quality terms when the number of terms is

small (i.e. when there is little evidence), but has a smaller effect when there are more

terms (i.e. more evidence). Secondly, it prevents division by 0 and log(0), both of

which are undefined. In cases where there was no evidence for or against newswor-

thiness (i.e. no high or low quality terms are found), this ensures that the scoreNd is

log(1) = 0.

Finally, we take log2 of the score ratio, decreasing the effect of outliers. Using log

ensures that scores are centred around 0: tweets with a ratio greater than 1 are given

a positive score, whilst tweets with a ratio less than 1 are given a negative score. Al-

though it may seem counter intuitive for a tweet to have a negative Newsworthiness

Score, anegative scorehelps tobetter represent that the tweet isbothnon-newsworthy,

and is likely to be of very low quality or spam. In other-words, it highlights that the

tweet is noise.
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5.3 Evaluation

Since there is no existing collection specifically for the evaluation of newsworthiness,

and our overall aim is to develop a score that can be used to improve real-time event

detect techniques, we evaluate our newsworthiness scoring approach on the Events

2012 corpus since it was created specifically for the evaluation of event detection ap-

proaches.

First we examine the different heuristic features defined in section 5.1 in the context

of the Events 2012 corpus. We then test a number of different threshold values for

labeling tweets as high and low quality, and examine howNewsworthiness Scores are

distributed. We look at howdifferent event types and categories behave, and examine

how different term representations (unigrams, bigrams) affect performance.

We process the Events 2012 corpus in a onlinemanner, simulating a real-time stream

of time-ordered tweets. We filter out retweets, URLs are removed for tweets, and each

tweet is tokenized. Unless otherwise noted, a unigram representation is used, we per-

formno stemming or stopword removal, and all tokens are transformed to lowercase.

5.3.1 Heuristics

In section5.1, wedefinedanumberofheuristic featuresused to calculate abasicQual-

ity Score that we then use to label tweets as either high or low quality. We examine

how these heuristics behave against tweets from the Events 2012 corpus, in terms of

the percentage of tweets affected by each heuristic. Although our heuristics are all

user-based, rather than content-based, we report the number of tweets, rather than

the number of unique users, as the volume of tweets affects the performance of our

approach, not the number of unique users.

UserDescription

Figure 5.1 shows the number of tweets posted by users whose User Description con-

tains one of the terms used for scoring, sorted by raw frequency. Note that the most

commonphrases “followback/followback” refer to a common type of spamdescribed

in section 5.1, where a user promotes the fact that they will follow any user who fol-

lows them. This is often used to artificially grow followers and increase the accounts

perceived significance. Since we use high numbers of followers as a positive weight,

it is important that we are able to detect these accounts appropriately.
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Figure 5.1: The total number of tweets posted by userswith any of the terms listed in Table 5.1,
sorted by frequency.

Terms related to news and journalism appear high in the list: ‘media’, ‘news’ and

‘write’ are the most common non-spam related terms, with other news and journal-

ism related terms (‘report’, ‘journal’, ‘editor’) appearing slightly lower in terms of raw

frequency. These are extremely strong indicators that the user is either a news broad-

caster or a journalist.

Finance related terms appear less frequently, with the exception of ‘market’. How-

ever, the bulk of this is due to the term ‘market’ also matching ‘marketing’, which is

the next most common term. Although ‘market’ has a weight of 2.0, tweets by users

whose description contains the phrase ‘marketing’ (weight 0.1) will still be given an

overall weight of 2.0× 0.1 = 0.2, ensuring that the overall Quality Score is kept low.

Despite the overall low frequency of financially related terms, we feel that their inclu-

sion is important to capture discussion of financial newswhichmay be discussed less

broadly than other types of news.

Followers

Table 5.4 shows the number of tweets from users with particular follower ranges, and

the percentage of tweets being posted by each group. As mentioned in section 5.1,

the vast majority (83.81%) of tweets are posted by users with between 50 and 4,999
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Table 5.4: Follower ranges and and the number of tweets posted by users (excluding retweets)
within the given range of followers.

Number of Followers Tweets %

0 - 49 10,358,082 13.78%

50 - 4,999 63,006,739 83.81%

5,000 - 9,999 806,565 1.07%

10,000 - 99,999 905,533 1.20%

100,000 - 999,999 90,620 0.12%

1,000,000+ 9,457 0.01%

followers. This means that for themajority of tweets, this feature has no effect on the

Quality Score since this range is given a weight of 1.0. However, for tweets posted by

users with fewer than 50 followers, whichmake up 13.78% of tweets in the collection,

this feature has a negative effect on the Quality Score. Very few tweets come from

users with more than one million followers, a total of only 9,457 tweets, or 0.01% of

tweets in the collection, however this relatively small number of tweets will receive a

significant boost in their Quality Score (Wfollowers = 3.0).

PostsPerDay

Table 5.5 shows the number of tweets posted by users who post the specified average

number of tweets per day since creating their account. We can see that although the

vastmajority of tweets are posted byuserswho tweet less than 50 times per day, 12.4%

of tweets come from users who post more than 50 timer per day, meaning that these

tweets will receive a Quality Score penalty under our heuristic scoring approach.

AccountAge

Table 5.6 shows the distribution of tweets posted by users with accounts of varying

age. Over 90% of tweets are posted from accounts older than 90 days, however a

Table 5.5: The number of tweets in the collection (excluding retweets) from users who post
various volumes of tweets per day, on average.

AveragePosts PerDay Tweets %

< 50 65,856,339 87.60%

50 - 100 6,334,083 8.43%

> 100 2,986,574 3.97%
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Table 5.6: The number of tweets in the collection (excluding retweets) from users who post
various volumes of tweets per day, on average.

AccountAge Tweets %

< 1 day 786,989 1.05%

1-29 days 2,286,548 3.04%

30-90 days 3,863,935 5.14%

> 90 days 68,239,524 90.77%

not-insignificant number of posts come from accounts younger than 90 days. A sur-

prisingly large number of tweets, over 1%, come from accounts created in the past 24

hours, and 9.23% from accounts created in the past 90 days.

VerifiedUsers

The collection contains 110,768 tweets posted by Verified users, accounting for 0.15%

of the total tweet volume (excluding retweets).

Defaultprofile image

The collection contains 1,574,774 tweets posted by users with the default profile im-

age, accounting for 2.09% of the total tweet volume (excluding retweets).

5.3.2 QualityScores

Figure 5.2 shows the percentage of tweets assigned a Quality Scores Qd < 1.0. A

total of 24,713,071 (32.87%) tweets were given a ‘low’ Quality Score of less than 1.0. A

large number of tweets have scores of precisely 0.5 or 0.25 (10,270,675 and 3,903,268

respectively) due to the particular weights assigned to features such as Account Age

and Average Tweets Per Day. The average low Quality Score is 0.29, with a median of

0.25.

Similarly, Figure 5.3 shows thepercentageof tweets assigned ‘high’Quality Scores (i.e.

Qd > 1.0). Note thatonly3,230,830 (4.30%)of tweets areassignedscoresgreater than

1.0, significantly fewer than assigned a score of less than 1.0.

The average high Quality Score is 2.46, however this is warped by a small number of

outliers with extremely high Quality Scores (19 tweets have the maximum score of

224). The median high Quality Score is 2.0.
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Figure 5.2: Cumulative percentages of tweets with Quality ScoreQd lower than the value on
the x-axis, up to a maximum of 1.0
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Figure 5.3: Cumulative percentage of tweets with Quality ScoresQd higher than the value on
thex-axis. Thex-axisuses a log2 scale as thedistribution isheavily skewed towards
1.
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A total of 47,233,095 (62.83%) tweets are assigned aQuality Score of exactly 1.0,mean-

ing that they were either assigned weights of 1.0 for all heuristic quality features, or

assigned scores that canceled. Themedian score across all tweets is 1.0.

5.3.3 QualityThresholds

We examine how different thresholds affect the overall performance of our news-

worthiness predictions. Sincewe lack groundtruthwith appropriateNewsworthiness

Scores, we instead examine the differences between scores and newsworthiness clas-

sifications for tweets known to be relevant to events in the Events 2012 corpus, and

those that were not evaluated. It is important to note that we say ‘not evaluated’,

rather than non-relevant, as we cannot be certain that tweets that were not evalu-

ated are not newsworthy, since only a fraction of the 120million tweets in the Events

2012 corpus were evaluated to create relevance judgements. It is likely that there are

a significant number of unevaluated but newsworthy tweets not included in the rel-

evance judgements. This means that making absolute statements is impossible. In-

stead we must assume that the percentage of unevaluated but newsworthy tweets is

low enough not to mask any differences in classification rates or scores.

QualityLabels

Table 5.7 shows the percentage of tweets labeled as High Quality or Low Quality. We

divide tweets into two sets: those known to be relevant to an event from the Events

2012 corpus (‘Event’), andall other tweets (‘Other’). Wealso include the ratioofEvent /

Other tweets so that the relative percentages can bemore easily compared as Quality

Score thresholds are varied. The threshold values represent the minimum or max-

imum scores for a tweet to be labeled as High Quality or Low Quality respectively.

For example, a tweet with a Quality Score of 2.00 would be labeled High Quality at

threshold values of 2.00 and below, but not at threshold values of 4.00 or 8.00. Simil-

arly, a tweet with a Quality Score of 0.67 would be classified as LowQuality only if the

threshold value was set to 0.67 or above.

Ratios greater than 1.0 for High Quality labels suggests that Event tweets are more

likely to be labeled as High Quality than a tweet selected at random. Conversely, a

ratio of less than 1.0 for Low Quality labels means that Event tweets are less likely to

be labeled as Low Quality than a tweet selected at random.

A clear difference can be seen between Event and Other tweets. A much higher per-
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Table 5.7: Percentages of Event and Other tweets given High Quality and Low Quality labels
at a range of Quality Score thresholds.

HighQuality

Quality Score Event Other Ratio

≥ 1.25 12.346% 4.286% 2.881

≥ 1.50 12.313% 4.275% 2.880

≥ 2.00 11.505% 3.755% 3.064

≥ 4.00 3.345% 0.677% 4.944

≥ 8.00 0.772% 0.116% 6.626

≥ 16.00 0.149% 0.017% 8.546

LowQuality

Quality Score Event Other Ratio

≤ 0.25 15.358% 18.497% 0.830

≤ 0.50 31.713% 32.536% 0.975

≤ 0.75 32.041% 32.713% 0.979

centage of Event tweets are labeledHighQuality at each threshold compared toOther

tweets, with a general trend suggesting the ratio increases with threshold for High

Quality labels: as the High Quality score threshold is increased, the ratio increases

from 2.881 at 1.25 to 8.546 at 16.00. A similar, but inverse and weaker trend can be

seen as the threshold is decreased for Low Quality labels.

This is a good indication that the selected heuristics are reasonable choices, and per-

form better than random at labeling content, as a randombaselinewould show ratios

close to 1 for both Low and High Quality labels.

5.3.4 Effect of Quality ScoreQd Thresholds on Newsworthiness Classifica-

tion

Table 5.8 gives the percentage of tweets classified as Newsworthy or Noise (i.e. News-

worthiness Scores that are greater than 0 or less than 0, respectively), across a range

of Quality Score (QD) threshold combinations. At all Quality Score thresholds tested,

a higher percentage of Event tweets are classified as Newsworthy and a smaller per-

centage are classified as Noise, compared with Other tweets. Compared to a ran-

dom baseline, which would give similar classification rates for both Event and Other

tweets, our newsworthiness classification appears to perform well. Event tweets are

classified as Newsworthy at a ratio of approximately 4 to 1 when compared to Other

tweets, and classified as Noise only one third as often as Other tweets. The deviation
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Table 5.8: Percentages of tweets classified as either Newsworthy or Noise for Event and Other
tweets, across a range of Quality Score threshold values.

Qd Thresholds Newsworthy Noise

HQ LQ Event Other Event Other

1.25 0.75 49.759% 11.146% 6.649% 19.138%

1.25 0.50 50.334% 11.287% 6.696% 19.218%

1.25 0.25 61.537% 13.694% 5.736% 19.678%

1.50 0.25 61.564% 13.713% 5.738% 19.682%

2.00 0.25 64.122% 14.370% 6.601% 22.218%

4.00 0.25 76.504% 18.830% 14.567% 50.133%

8.00 0.25 72.748% 17.137% 18.834% 66.536%

16.00 0.25 65.307% 17.232% 22.650% 67.193%

from a ratio of 1 suggests that our Newsworthiness Scoring approach is effective at

separating newsworthy content from noise.

Varying the LQ threshold appears to have only a small overall effect on the classific-

ation rates between 0.75 and 0.5. However, once the threshold is dropped to 0.25, a

more substantial change occurs. This can likely be explained by the volume of tweets

with scores below these thresholds, which remains around 32% between 0.75 and 0.5,

but drops to 18% for 0.25, as can be seen in Table 5.7.

Thepercentage of tweets classified as newsworthy reaches amaximumwhenweuse a

HQ thresholdof 4.00. Referringback toTable 5.7, we can see that only 3.345%ofEvent

tweets have a Quality Score that meets or exceeds this threshold and would be used

by the HQmodel. Despite this, 76.504% of Event tweets are classified as newsworthy,

but only 18.830% of Other tweets are, giving a ratio of 4.063. As the HQ threshold in-

creases, the average tweet quality also increases, but decreases the volume of tweets

added to the model. This has the effect of reducing noise, and seems to benefit our

newsworthiness scoring approachby increasing theproportional probability ofnews-

worthy terms. However, increasing the HQ threshold offers improvements only to a

point, as the percentage of Event tweets given positive Newsworthiness Scores de-

creases as we increase the HQ threshold above 4.0. The is likely due to the volume of

tweets added to the HQmodel drops sharply to less than 1% of Event tweets, causing

the model to miss important and useful information.

As overall classification ratios seem to reach a maximum around 4.0 and 0.25 for HQ

and LQ thresholds, we use these thresholds for all experiments that follow.
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Table 5.9: Percentages of tweets classified as either Newsworthy or Noise for Event and Other
tweets, across a range of Newsworthiness Score threshold values.

Newsworthy Noise

Nd Event Other Ratio Nd Event Other Ratio

> 0.0 76.504% 18.830% 4.063 < 0.0 14.567% 50.133% 0.291

≥ 1.0 71.109% 16.223% 4.383 ≤ -1.0 10.262% 47.076% 0.218

≥ 2.0 59.848% 11.117% 5.383 ≤ -2.0 6.964% 34.800% 0.200

≥ 3.0 40.301% 4.701% 8.573 ≤ -3.0 2.752% 16.797% 0.164

≥ 4.0 11.707% 1.147% 10.207 ≤ -4.0 0.575% 5.240% 0.110

≥ 5.0 1.342% 0.221% 6.078 ≤ -5.0 0.111% 1.562% 0.071

≥ 6.0 0.183% 0.046% 3.969 ≤ -6.0 0.024% 0.519% 0.047

≥ 7.0 0.030% 0.011% 2.858 ≤ -7.0 0.014% 0.245% 0.058

5.3.5 NewsworthinessScores

Table 5.9 shows the percentage of tweets classified as Newsworthy or Noise across a

range of Newsworthiness Scores thresholds. For Newsworthy tweets, we can see that

as the minimum Newsworthiness Score increases towards 4.0, the ratio of Event to

Other tweets increases from 4.063 to 10.207; whilst 11.707% of Event tweets have a

Newsworthiness Score of 4.0 or greater, only 1.147% of Other tweets do. Similarly, for

Noise tweets, the ratio of Event to Other tweets decreases as we decrease the max-

imumNewsworthiness Score. The smaller ratio in this case means that Event tweets

are less likely to be classified as Noise than Other tweets. We stop at -7.0 as no Event

tweet had Newsworthiness Score of -8.0 or lower. These trends can be seen in Figure

5.4.

These results are encouraging, and follow a reasonable score distribution. The in-

creasinganddecreasing ratios forNewsworthyandNoise tweets respectively suggests

thatNewsworthinessScoresdo incorporate somenotionofnewsworthinessmagnitude,

something we examinemore closely in sections 5.3.6 and 5.3.7.

5.3.6 EventCategories

Table 5.10 shows the distribution of tweets labeled Newsworthy, Noise, or Unclassi-

fied (i.e., Newsworthiness Scores greater than, less than, or exactly 0 respectively)

across the different event categories defined by the Events 2012 corpus. Category

scores vary considerably around the mean values of 76.504% for Newsworthy and

18.497% for Noise (taken from Table 5.8). Table 5.11 shows the average overall News-
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Figure 5.4: Event/Other Ratios asNd is increased (top) and decreased (bottom).

worthiness Score across all Event tweets for each category, as well as independently

calculated averages for tweets classified as Newsworthy or Noise.

Table 5.10 shows that over 97% of tweets discussing Armed Conflicts & Attacks events

are classified as Newsworthy, whereas only 42.105% of Arts, Culture & Entertainment

tweets are. This disparity can also been seen in the average Newsworthiness Scores

for both categories: Armed Conflicts & Attacks has an average Newsworthiness Score

of 3.317, whilst Arts, Culture & Entertainment has an average of only 0.427, although

this difference is reducedwhen looking at averages for tweet classifiedasNewsworthy

only (3.428 and 2.806, respectively). This difference seems intuitive: armed conflicts

and attacks, such as bombings, school shootings and assassination attempts are ex-
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Table 5.10: The raw counts and percentages per category of tweets classified as Newsworthy
or Noise.

Category Newsworthy (%) Noise (%) Unclassified (%)

Armed Conflicts & Attacks 8425 (97.613) 120 (1.390) 86 (0.996)

Arts, Culture & Entertainment 3477 (42.105) 2609 (31.594) 2172 (26.302)

Business & Economy 3589 (90.746) 127 (3.211) 239 (6.043)

Disasters & Accidents 4196 (85.146) 453 (9.192) 279 (5.662)

Law, Politics & Scandals 33197 (89.620) 3031 (8.183) 814 (2.198)

Miscellaneous 2004 (53.698) 856 (22.937) 872 (23.365)

Science & Technology 1958 (82.896) 133 (5.631) 271 (11.473)

Sports 19077 (62.892) 7127 (23.496) 4129 (13.612)

tremely newsworthy events that are likely tomakeheadlinesworldwide. On the other

hand, entertainment events, such as the launch of new television shows, or award ce-

remonies such as the Black Entertainment Awards, are less likely to make worldwide

headlines but will still generate a high volume of subjective and low quality discus-

sion. Other categories behave similarly to Armed Conflicts & Attacks, such as Busi-

ness & Economy, where events are generally headline news, but generate a relatively

low volume of discussion. Sports andMiscellaneous events, such as Felix Baumgart-

ner’s record-breaking jump from the edge of space or the start of Daylight savings

time in the United States, show similar behavior to Arts, Culture & Entertainment.

These types of events generate a high volume of low quality chatter, resulting in a

lower percentage of tweets classified as Newsworthy and lower average Newsworthi-

ness Scores.

Table 5.11: Average Newsworthiness Scores for each event category, calculated for all tweets,
only tweets classified as Newsworthy, and only tweets classified as Noise.

AverageNewsworthiness Scores

Category All Tweets Newsworthy Noise

Armed Conflicts & Attacks 3.317 3.428 -2.044

Arts, Culture & Entertainment 0.427 2.806 -2.388

Business & Economy 3.260 3.659 -1.880

Disasters & Accidents 2.329 2.913 -1.645

Law, Politics & Scandals 2.620 3.040 -1.274

Miscellaneous 0.803 2.249 -1.764

Science & Technology 2.613 3.294 -2.089

Sports 1.044 2.410 -2.007
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Table 5.12: A sample of tweets and their Newsworthiness Scores from Event #81 of the Events
2012 corpus, sorted by Newsworthiness Score from highest to lowest.

Score Tweet

4.102 H-P, Lenovo jockey for No. 1 in PCs: reports: SAN FRANCISCO (MarketWatch)
Hewlett-Packard and Lenovo were jockey...

3.411 Lenovo knocks HP off top of global PCmarket: Gartner: SAN FRANCISCO
(Reuters) - China’s Lenovo Group...

2.177 HP, Lenovo battle for top spot in PCmarket - Computerworld

2.070 HP, Lenovo battle for top spot in PCmarket - Computerworld

1.964 Lenovo Overtakes HP as World’s Top PCMaker in Q3

1.542 Lenovo passes HP to be top PCmaker: The Chinese group has a 15.7% share of
worldwide shipments of units, compare...

0.000 Lenovo IdeaPad Yoga 11: Hands-on with the bendyWindows RT tablet -

-0.105 John Cusack says Lenovo overtakes HP

-0.507 Lenovo Yoga Transforming Laptop Arrives, With Friends

-1.894 Lady’s Black Laptop Bag for 15.6 inch Lenovo G560-0679AKUNotebook + An
Ekatomi Hook. | Laptop Cases 15.6

-3.263 Lenovo IBM 0764 Series Notebook / Laptop Battery 5000mAh (Replacement):
Lenovo IBM 0764 Series Notebook / Laptop...

5.3.7 ExampleEvent: LenovoovertakesHP

Table 5.12 gives a sample of tweets from Event #81 of the Events 2012 corpus, sorted

by Newsworthiness Score from highest to lowest. The event describes how Lenovo, a

Chinese computer manufacturer, has taken the top spot fromHP in terms of number

of PCs soldworldwide. The judgements for this event identify 41 tweets thought to be

relevant to the event. Whilst the 36 of the 41 tweets are relevant, our newsworthiness

scoring approach correctly identifies a number of spam and non-relevant tweets and

scores them appropriately.

Two non-relevant reviews of Lenovo laptops have been given scores of 0.0 and -0.507.

By themselves, these tweets are unlikely to be newsworthy, and the scores could be

considered appropriate. Our approach does give a slightly negative score to one rel-

evant tweet (“John Cusack says Lenovo overtakes HP”), however the tweet is fairly

informal in tone, and outwith the context of the other tweets would be difficult to

interprate even for a human.

Note that the same text appears twice in Table 5.12: “HP, Lenovo battle for top spot in

PCmarket - Computerworld”. Although the text is identical, these are distinct tweets,

posted by different users at different times, and given different scores (2.177 / 2.070).
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The difference in scores is due to the adaptive nature of our newsworthiness scoring

approach. Asnew tweets are processed, themodels areupdated in real-time, allowing

for new information to be incorporated and used to score subsequent tweets, result-

ing in the score difference.

5.3.8 TermModels

Althoughunigram terms are used for all experiments, it is interesting to examinehow

the use of bigrams affect performance. Table 5.13 shows how unigrams and bigrams

performed using our standard test thresholds of 4.0 and 0.25 for LQ and HQ mod-

els respectively. Bigrams consistently underperform compared to the unigrammod-

els across all quality threshold scores tested, although the differences are often very

small.

Table 5.13: Newsworthiness classifications for Event and Other tweets using Unigram and Bi-
gram termmodels.

Newsworthy Noise

Model Event Other Event Other

Unigram 76.504% 18.830% 14.567% 50.133%

Bigrams 74.775% 20.829% 12.715% 54.677%

Table 5.14 shows some of the most frequent unigrams and bigrams for both the HQ

and LQ models, filtered to remove any terms with likelihood ratios of less than 2.0.

Many of the high quality bigrams refer to specific incidents or events, such as ‘peace

prize’ or the infamous “Binders full of women” phrase used by Mitt Romney during

the second U.S. Presidential Debate of 2012. This suggests that perhaps the bigram

model is over-fitting and, rather than learning a generalizable scoring model, it is

learning event-specific newsworthy phrases. Unigrams, on the other hand, are con-

siderably more general, and tend to be verbs associated with common newsworthy

event types, such as ‘arrested’ or ‘shot’. The low quality unigrams and bigrams are

semantically more similar to each other, and are often associated with games, mar-

keting and publishing.

5.4 Newsworthiness as aFeature forEventDetection

One of the aims of this work is to determine if newsworthiness can be incorporated

into an existing event detection approach and whether it can be used as a feature
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Table 5.14: The most frequent unigrams and bigrams with likelihood ratios of 2.0 or greater
for both the HQ and LQmodels.

Unigrams

HighQuality has, says, win, check, read, vote, set, takes, join, using, writing,
breaking, wins, killed, shows, closed, leads, arrested, shot,
update, expected, lead, create, add, hits

LowQuality completed, earned, joined, laughed, received, signed, upgrade,
collected, androidgames, led, harvesting, collect, harvested,
discover, correct, submitted, increase, reviews, includes,
published, mount, provides, provided, determine, marketing

Bigrams

HighQuality tribute to, peace prize, top news, us your, to lead, obama
campaign, binders full, for its, courtesy of, this years, post on,
south africa, in india, on october, at 35, new single, talks about,
says he, 1 day, the election, this weeks, heres a, new video,
presidential debate, fair and

LowQuality step towards, pm rageoȈahamut, the tribez, a member, surveys
cant, 2 months, i earned, quest in, in valor, just completed, and is,
this made, doing surveys, is making, clubmy, far from, android
androidgames, androidgames gameinsight, mademe, the club,
completed the, rageoȈahamut rageoȈahamut, more look, for
more, so far

to improve effectiveness. In this section, we examine how newsworthiness can be

combinedwith a simple entity-based approach and used to filter out noisy clusters or

clusters with a low Newsworthiness Score, improving event detection effectiveness.

The entity-based event detection approach described in chapter 4 provides a reason-

able base approach which can be built upon. Since the aim is to evaluate the effect-

iveness of our Newsworthiness Score as a feature to identify newsworthy content, we

ignore all non-clustering features used by the entity-based approach, such as burst

detection. Without burst detection there is no way to combine clusters into larger

events, so we report each cluster as an individual event.

ClusterNewsworthiness

Wedefine theNewsworthinessScoreN of clustercas themeanNewsworthinessScore

of each tweet d in the cluster:

Nc =

∑
Nd

D
(5.7)

whereD is the total number of tweets in the cluster.
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5.4.1 Evaluation

Cosine is used to measure the distance between tweets, and each tweet is clustered

with its nearest neighbour within a distance of 0.5. Although stopword removal and

stemming are not used to calculate Newsworthiness Scores, we do stem and remove

stopwords for clustering.

Clustering is performed in a streamingmanner, and individual tweet newsworthiness

is calculated in real-time, however mean cluster newsworthiness is calculated post-

hoc, so results presented here do not represent a true streaming situation. However,

the aim is to demonstrate that newsworthiness can be used as an effective feature for

event detection, rather than to develop a novel real-time event detection technique.

In practice, calculating the mean Newsworthiness Score for a cluster in real-time is

trivial, and any difference in performance is likely to be small, however we note the

difference for accuracy.

As we evaluate individual clusters as separate events, precision values reported here

are likely to be lower than if similar clusters were combined using either the event

merging approach from chapter 3 or by grouping using burst detection. This is due to

an increase in the number of small clusters evaluated, which increases the likelihood

that a newsworthy and event-relevant cluster will be evaluated as non-relevant due

to the incomplete relevance judgements.

Results

Table 5.15 showsPrecision andRecall values at for clusters of variousminimumNews-

worthiness Scores andsizes. The top row,markedAny, showsbaselinefigureswithout

any restrictions on cluster Newsworthiness, while other rows show precision and re-

call values after removing any clusters with Newsworthiness Scores below the filter

value.

Aclear trendcanbe seeasboth theminimumcluster size andminimumclusterNews-

worthiness Score are increased; recall drops, but precision increases. With a min-

imumcluster size of 5, amaximum recall of 0.755 is achieved, howevermeasured pre-

cision is very low at only 0.010. As we increase the minimum cluster Newsworthi-

ness Score, recall drops off, however precision increases significantly. Although F1

scores are not shown, increasing the minimumNewsworthiness score towards three

increases the F1 measure for all cluster sizes, however after 3, overall F1 score begins

to decrease.
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Table 5.15: Newsworthiness scores using different term models for tweets known to be rel-
evant to a newsworthy event against the average score for all other tweets in the
collection.

5Tweets 30Tweets 50Tweets 100Tweets

Score P R P R P R P R

Any 0.010 0.755 0.053 0.587 0.075 0.508 0.121 0.399

≥ 0 0.016 0.715 0.093 0.540 0.134 0.464 0.220 0.354

≥ 1 0.019 0.690 0.108 0.518 0.156 0.439 0.254 0.326

≥ 2 0.023 0.607 0.123 0.439 0.175 0.356 0.290 0.243

≥ 3 0.033 0.466 0.154 0.298 0.220 0.227 0.366 0.136

≥ 4 0.040 0.132 0.248 0.055 0.374 0.030 0.585 0.020

Although a fully crowdsourced evaluation would provide a detailed picture of how

our Newsworthiness Scoring approach performs when used as a feature for event de-

tection, it goes beyond the scope of this chapter. Instead, we perform a small manual

evaluation focused on determining the precision of our Newsworthiness Scoring ap-

proach. We chose to evaluate clusters using a similar methodology to that used to

create the Events 2012 corpus, however used only a single expert rather than 5 crowd-

sourced workers. We selected two sets of clusters to evaluate:

• 100 randomly selected clusters (froma total of 4,270)with 5 ormore tweets and

a cluster Newsworthiness Score ≥ 4.

• All 115 clusters with 50 or more tweets and a cluster Newsworthiness score ≥ 4.

Of the 100randomlyselectedclusters from4,270with5ormore tweets, 95/100clusters

were marked as a significantly real-world event, giving a precision of 0.950. Since

there were only 115 clusters with 50 or more tweets, we evaluated all 115, rather than

take a sample of 100. All 115 were marked as significant real-world events, giving a

precision of 1.0. Both of these results far exceed the automatically calculated preci-

sion values of 0.040 and 0.347 respectively. The reasons for this are similar to those

described in chapter 4; although the collection has relevance judgements for a relat-

ively largenumber of events, it doesnot cover all events during themonth longperiod

the collection covers, or even all tweets for the 506 events it has judgements for.

These manually obtained results vastly outperform even the crowdsourced results

presented inchapter4andsuggest thatNewsworthiness couldbeusedasanextremely

effective noise filter, requiring only 5 tweets for extremely high precision, and ob-

tainingperfect precision at only 50 tweets. The automaticallymeasuredperformance
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values are comparable to that of our entity-based event detection approach, despite

being considerably simpler and being disadvantaged due to our use of clusters for

evaluation rather than full events, as noted in section 5.4.1.

5.5 Conclusion

In this chapter, we proposed a newsworthiness scoring approach that uses a set of

heuristics to automatically label content and learn term likelihood ratios to produce

Newsworthiness Scores for tweets in real-time. We evaluated its classification and

scoring effectiveness on the Events 2012 corpus and found that it was able to distin-

guish between content related to real-world events and noise. Automatic evaluation

on the Events 2012 corpus showed that by using Newsworthiness as a feature to fil-

ter out noisy clusters, we could significantly improve the effectiveness of a simple

cluster-based event detection approach, achieving significant improvements to pre-

cisionwithonly slight decreases to recall. Finally, amanual evaluation suggested that

high newsworthiness scores can be extremely effective at filtering out noise, and we

achieved precision values of 0.950 on clusters as small as 5 tweets, and perfect preci-

sion with as few as 50.





CHAP T E R 6

ConclusionsandFutureWork

Weconcludewith a summary of each chapter anddetail theirmain contributions. We

then examine our findings in relation to the research questions set out in chapter 1.

Finally, we describe future areas and directions of research.

In chapter 2 we described the background information necessary to understand this

thesis. We gave an overview of Information Retrieval, how documents are repres-

ented, and what evaluation measures are used. We described the Topic Detection

and Tracking (TDT) project, and gave a basic overview of how approaches to TDT ap-

proaches worked. We defined what an event is, and summarised the most relevant

literature in event detection on social media, and finished with an overview of exist-

ing test collections and how they are created.

In chapter 3wedescribed the creation of the first large-scale corpus for the evaluation

of event detection approaches on Twitter. We proposed a new and refined definition

of ‘event’ for event detection on Twitter. We detailed the approaches used to gen-

erate candidate events, and the crowdsourced methodology used to gather annota-

tions and relevance judgements. The collection and relevance judgments represent

thefirst large-scale test collection that is suitable for the evaluation of event detection

on Twitter.

In chapter 4 we proposed a novel entity-based event detection approach for Twitter,

that uses named entities to partition and efficiently cluster tweets, and a burst de-

tection method to identify clusters related to real-world events. We performed an

in-depth evaluation of the detection approach using the Events 2012 corpus, which

we believe was the first of its kind, and compared automated evaluation approaches

witha crowdsourcedevaluation. Ourapproachoutperformsexistingapproacheswith

large improvements tobothprecision and recall. Wedescribed someof the issues that

remain to be solved before automated evaluation can full replace crowdsourced eval-

uations of event detection approaches.

117



6.1. RESEARCHQUESTIONS 118

Finally, in chapter 5, we proposed a method of scoring tweets based on their News-

worthiness. We used heuristics to assign quality labels to tweets and learn term like-

lihood ratios, and calculate Newsworthiness scores. We evaluated the classification

and scoring accuracyusing theEvents 2012 corpus, and found it to be effective at clas-

sifying documents as Newsworthy or Noise. We proposed a cluster Newsworthiness

score that can be used as a feature for event detection, and evaluated it by filtering

clusters produced using the entity-based clustering approach proposed in chapter 4,

finding that it can be used to increase precision even at small cluster sizes.

6.1 ResearchQuestions

RQ1: Canwedevelopamethodologythatallowsustobuildatestcollectionfor the

evaluation of event detection approaches onTwitter?

In chapter 3, we answered this research question by creating a large-scale corpuswith

relevance judgements for the evaluation of event detection onTwitter. Since the pub-

lication ofMcMinn et al. [2013] describing the corpus, more than 240 researchers and

groups have registered to download the Events 2012 corpus, and it has been cited by

more than 90 publications, and used in the development and evaluation of several

event detection approaches for Twitter (including several PhD and Masters theses).

We used the collectionwe developed to evaluate our entity-based event detection ap-

proach, and our newsworthiness scoring technique, demonstrating that the collec-

tion is suitable for evaluating event detection approaches on Twitter.

RQ2: Can entities (people, places, organizations) be used to improve real-world

event detection in a streaming setting onTwitter?

Chapter 4 describes our entity-based, real-time event detection approach for Twitter.

Our entity-based approachpartitions tweets based on the entities they contain to per-

form real-time clustering in an efficient manner, and uses a lightweight burst detec-

tion approach to identify unusual volumes of discussion around entities. We found

that it is possible to use entities to detect real-world event in a streaming setting on

Twitter, and by evaluating this approach using the Events 2012 corpus, we found that

it out-performed two state-of-the-art baselines in both precision (0.636 vs 0.285) and

recall (0.383 vs 0.308).

RQ3: Can event detection approaches be evaluated in a systematic and fairway?

In chapter 4, we used an automated evaluation methodology to evaluate our pro-

posedeventdetectionapproach, andexaminedhowthese results compare toacrowd-

sourced evaluation. We determined that although it is possible to automatically eval-
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uate event detection approaches for Twitter, there remain anumber of key challenges

and issues that need to be addressed before automated evaluation can fully replace

manual evaluation of event detection approaches. Hasan et al. [2017] surveyed real-

time event detection techniques for Twitter in early 2017, and noted that the Events

2012corpus remained theonlycorpus for theevaluationof eventdetectionapproaches

on Twitter, suggesting that its continued use could help conduct fair performance

comparisons between different event detection approaches.

RQ4: Canwedetermine the newsworthiness of an individual tweet from content

alone?

The Newsworthiness Scoring approach we developed in chapter 5 uses a set of heur-

istics to assign quality labels to tweets and learn term likelihood ratios to produce

Newsworthiness Score for tweets in real-time. We evaluated the scores as a classi-

fication and scoring task, and found that the approach is able to label Newsworthy

and Noise tweets with a high degree of accuracy. We then used the Newsworthiness

Score to estimate cluster Newsworthiness as a feature for event detection. We used

the entity-based clustering approach proposed in chapter 4, but filtered out clusters

with low newsworthiness scores, resulting in extremely high precision with very few

tweets.

6.2 FutureWork

This thesis makes a number of contributions to the topic of event detection on Twit-

ter. We have built upon decades of previous work and made a number of proposals

that improve upon existing approaches, enabling the creation of a test collection and

improvements to event detection approaches for Twitter. During this, we have iden-

tified a number of key areas where we believe future research could be focused and

taken further.

AnUpdatedCollection

There are a number of opportunities to improve test collections for the evaluation of

event detection. We note a number of areas where the Events 2012 corpus is lack-

ing, such as a non-exhaustive list of events, and incomplete relevance judgements.

Whilst we do not believe these issues can ever be fully solved, improvements could

bemade by applying our methodology to additional event detection approaches and

using these results to enrich the existing events and annotations. Although we be-

lieve itmay always benecessary to use crowdsourced evaluations to fullymeasure the
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effectiveness of an event detection approach, improvements to annotation coverage

could help to improve performance estimates using the Events 2012 corpus.

NewCollections

The Events 2012 corpus is now over six years old. Twitter has changed considerably

in that time: the userbase has grown and changed, and the length of tweets has in-

creased from 140 to 280 characters. We have proposed a methodology and demon-

strated that it can be used to (relatively) quickly and easily build a test collection for

Twitter. The creation of new test collectionswould allowus to better understand how

changes to Twitter have affected the performance of event detection approaches, and

would enable a more thorough evaluation by comparing performance across two or

more datasets.

NameEntityRecognition

In chapter 4, we argue that named entities play a strong role in describing events, and

base our event detection approach on name entities. We also rely heavily on them for

event merging in chapter 3. However, named entity recognition on tweets is still a

difficult task, and although performance of standard toolkits like the StanfordNER is

adequate, there is much room for improved recognition, which could then feed im-

provements in entity-based event detection approaches. In this vein, a detailed ana-

lysis of howNERperformance affects detection performancewould be an interesting

area of research that could give insight into the limits of entity-based event detection

approaches.

EntityLinkingandDisambiguation

The application of Entity Linking andmore robust disambiguation techniques could

improveperformance inanumberofways, particularly for eventdetectionapproaches

such as ours that rely heavily on named entities. We found that using three entity

classes (person, locationororganization)offers some improvementsoverusinga single

entity class, and it is likely that better disambiguation techniques would yield even

better results. Improvements to entity linking could help in a number of areas. Al-

though the co-occurrence method we used worked reasonably well, there are clearly

improvements that could bemade. Theuse of an ontology to automatically link entit-

ies could offer improvements in a number of areas, for example, by linking a CEO to a
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company, or a politician to their country. If this information was known in advance,

then links could be found between events even without explicit mentions.

SupervisedLearning

Supervised learning could offer vast improvements to event detection approaches

and have yet to be explored in depth. Word Embeddings, such as word2vec [Mikolov

et al. 2013], GloVe [Pennington et al. 2014] or ELMo [Peters et al. 2018], offer poten-

tial improvements to clustering performance through improved similarity measure-

ments and could offer a solution to issues such as lexical mismatch and the use of

slang or abbreviations.

User classification, for example to identify good and reliable information sources,

couldhelp to improve thedetectionof smaller eventsby reducing thevolumeof tweets

requiredbefore adecisioncanbemade. Itwouldbe interesting to examinehowdiffer-

ent types of user could be leveraged to improve detection. Journalists, for example,

may be useful for the detection of political or business news, however for unexpec-

ted events, it may be necessary to quickly identify reliable eye-witnesses and sources

whoarephysically close to the event as they are likely tohave themost up-to-date and

correct information. A supervised approach may prove to be effective at discovering

these users quickly.

Supervised approaches could also prove useful for identifying things such as fake

news, or the manipulation of news by state actors – something that is becoming an

increasingly important as socialmedia plays amore important role in people’s voting

decisions.

ScoringFeatures

The majority of event detection approaches still rely on basic tweet or user volume

for cluster ranking and to perform filtering. However, basic features like these ignore

many of the benefits of event detection on Twitter, such as the ability to detect break-

ing news events before they have been widely reported (and thus have only a very

small volume). The Newsworthiness Score we developed shows promise and is able

to detect eventswithhighprecision fromvery few tweets, however this approachuses

only content based features to determine newsworthiness and could be improved in

a number of ways. The heuristics used to select tweets and train themodels could be

improved, or, more likely, replaced by supervised approaches. Non-content features,
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such as the user’s credibility, description and location could also be taken into con-

sideration for scoring, perhaps evenusing the context of the event to improve scoring.

Of course, there is a wide range of novel features that could be explored, and as more

training data is gathered, supervised approaches could be trained that will likely out-

perform current approaches to event detection.

Evaluation Improvements

The evaluation of event detection is still a very challenging area that would bene-

fit from considerably work. Determining the performance of an event detection ap-

proach is difficult without also performing crowdsourced evaluations. Precision and

Recall will be underestimated using the Events 2012 annotations due to incomplete

relevance judgements and event coverage, however it is not yet clear if this underes-

timation will apply evenly to all event detection approaches or if it will affect some

more than others. An investigation into this would prove invaluable and could pave a

path forward. As it stands, it is not clear ifwork should focuson increasing annotation

coverage, developing a more robust evaluation methodology and set of metrics, or

developing an entirely novel evaluation framework. It is likely that modest improve-

ments can bemade simply by tweaking themethodology used by this work, with per-

haps a new set of metrics to measure different aspects of event detection, similar to

the different evaluationmethodologies used by the TDT project. The development of

an entirely new evaluation framework, whilst the most radical solution, is also likely

to be the most successful. A number of approaches could be taken, from automatic-

ally matching candidate events to news articles, to a fully crowdsourced evaluation

methodology where only the differences between runs are evaluated.
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