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ABSTRACT

Social media platforms have emerged as the widely accessed form of communication chan-

nel on the world wide web in the modern day. The first ever social networking website

came into existence in the year 2002 and currently there are about 2.08 billion social media

users around the globe. The participation of users within a social network can be considered

as an act of sensing where they are interacting with the physical world and recording the

corresponding observations in the form of texts, pictures, videos, etc. This phenomenon is

termed as Social Sensing and motivates us to develop robust techniques which can estimate

the physical state from the human observations.

This dissertation addresses a set of problems related to detection and tracking of real-world

events. The term ‘event’ refers to an entity that can be characterized by spatial and temporal

properties. With the help of these properties we design novel mathematical models that help

us with our goals. We first focus on a simple event detection technique using ‘Twitter’ as

the source of information. The method described in this work allow us to perform detection

in a completely language independent and unsupervised fashion. We next extend the event

detection problem to a different type of social media, ‘Instagram’, which allows users to

share pictorial information of nearby observations. With the availability of geotagged data

we solve two different subproblems - the first one is to detect and geolocalize the instance of

an event and the second one is to estimate the path taken by an event during its course. The

next problem we look at is related to improving the quality of event localization with the help

of text and metadata information. Twitter, in general, has less volume of geotagged data

available in comparison to Instagram, which demands us to design methods that explore the

supplementary information available from the detected events. Finally, we take a look at

both the social networks at the same time in order to utilize the complementary advantages

and perform better than the methods designed for the individual networks.
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CHAPTER 1: INTRODUCTION

According to the United Nations, today, 54% of the world population lives in cities. Ar-

guably, humans are some of the most versatile and widely deployed “sensors” in smart cities.

They are often the owners and users of “smart things” on the Internet of Things. They are

witnesses of suspicious activity in national security scenarios, survivors and first-responders

in post-disaster operations, friendly locals in peacekeeping and stabilization missions, and

commuters in intelligent transportation applications. These individuals may relay important

information such as real-time state of traffic around recent accidents, locations of spreading

post-disaster damage such as flooding or fires, real-time progress of unfolding unpredictable

gatherings (e.g., demonstrations and protests), and unusual events that impact safety, such

as escalating confrontations or high-speed pursuits. Today, observations of such events are

voluntarily shared on social media, leading to the prospect of exploiting social media as

state observers of the physical world. It would be very benefiticial for many cyber-physical

applications to harvest the collective power of these observations to gain better situation

awareness.

The main contribution of this dissertation lies in establishing a signal processing approach

to social sensing. Specifically, we ask the question of whether social networks, such as Twit-

ter and Instagram, can be explored as a novel sensing modality in cyber-physical systems

(CPS). The data provided by human observers is more rich in context than the traditional

physical sensors. However, this advantage comes with a set of challenges and we try to

address them using basic principles that have a theory to explain why things work. By

far, we are not the first to use social media from a sensing point of view which has already

been discussed in quite a few past works [1–3]. In this disseration we explore a new sensing

approach to reconstruct the aspects of the state of the physical world from social network

feeds. Our work is new and unique in the way that (i) we do not perform any supervision of

historical data, such as within a geogrpahical region or a given period of time to construct a

model that can make prediction on new data, and (ii) we take a completely language agnostic

route to avoid the limitations posed by structural differences in text on system design. Us-

ing these two underpinnings we build on a system (or service) to enable event detection and

tracking using social media. The theme of this dissertation can be described as the following:

“A language agnostic event detection service using social media streams without supervi-

sion.”
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One of the first question we need to answer before moving further is that whether social

media platforms are actually feasible for event detection and, if so, which specific platforms

should be used to build this service? To answer this we took a look at few Twitter feeds

related to the most recent gun shooting incident that took place on March 18, 2018 by two

police officers in Sacramento, California leading to the death of Stephon Clark. This incident

sparked a few controversies resulting in protest marches around different cities. Table 1.1

shows a random sample of tweets associated with these protest events and provides a strong

evidence of a real-world event discussion in social media. With respect to the other question,

we consider the platforms that are more open, provide a better opportunity to retrieve

publicly shared data, and also fit well with our big goal.

Table 1.1: Example tweets for a protest event

Protestors at Sacramento City Hall #StephonClark protest
https://t.co/Sk2tgwR1BV

At #StephonClark protest outside Sacramento Co. DAs office, his older brother
Stevante leads demonstrators in chan https://t.co/ZEzENdYqon

#StephonClark march in NYC marching fearlessly at NYPD tries to repress the
protest. #BlackLivesMatter https://t.co/d3DLxzEd5S
Protest just ended on G and 9 Street. There will be another demonstration for
#StephonClark tomorrow starting at 3 https://t.co/XA6soXP7sm

Now that we have indicated the feasibility of social media for event detection, we also

need to define the term “event”. For all practical purposes, we consider events as incidents

that are observed by multiple human sensors within a limited time and space. This means

that events have a start time, an end time, and also spatial signatures associated with them.

Some events can be concentrated to a specific point in the space, some might move across

the space, and some might be widespread at different locations within a space. For example,

the protest events shown in table 1.1 are widespread in the sense that they are taking place

in different cities but the underlying reason is the same. Based on this, we next take a

look at few initial challenges that one might meet with while using data from social media

platforms.

1.1 CHALLENGES

The following are the main technical challenges associated with using social media plat-

forms for event detection:
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• Unlike physical sensors, which are usually distributed identically over a geographical

space, the human sensors are mobile and exhibit non-uniform behavior within the

same media. For example, the number of observations recorded for the same type of

event in two different locations depends on the popularity among the local crowd and

the severity of the event. A traffic accident on a major freeway will generate more

attention when compared to an accident on a country road.

• The quantity of data generated is not always an indication of an interesting activity.

One key part for analyzing the data generated on a social network is to identify and

eliminate the noise and redudancy. A single user posting a hundred tweets is more

often a noise as opposed to five users posting one tweet each describing the same event.

We need to be careful with modeling the noise elimination as each event is not equally

popular.

• The information available within a social network platform can often be not sufficient

to support the real-world facts. We can take the advantage of analyzing multiple social

networks with the help of techniques that strike a better balance between the tradeoffs

of the individual networks and find solutions that corroborate the events detected.

1.2 CONTRIBUTIONS

This dissertation addresses the challenges mentioned in section 1.1. We derive these

algorithms using basic principles of math and probability theorems that rely on distributions

obtained from the underlying data. The final outcome is a service that allows tracking the

physical events using Twitter and Instagram. In the following sections we describe the

proposed contributions:

1.2.1 Event Detection and Tracking with Twitter

This work leverages the emergence of crowd sensing services, where humans collect data

about their environment (using phones), allowing us to exploit the content shared on the

social media to detect and track physical urban events. We use Twitter feeds to build the

service that embodies novel algorithms for real-time detection, demultiplexing, and tracking

of physical events.
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1.2.2 Event Detection and Tracking with Instagram

This work develops an algorithm that exploits picture-oriented social networks to detect

urban events. We choose picture-oriented networks because taking a picture requires physi-

cal proximity, thereby revealing the location of the photographed event. Furthermore, most

modern cell phones are equipped with GPS, making picture location, and time metadata

commonly available. We consider Instagram as the social network of choice and limit our-

selves to urban events (noting that the majority of the world population lives in cities).

1.2.3 Fusing Twitter and Instagram

This work describes the implementation of a service to identify and geo-locate real world

events that may be present as social activity signals in two different social networks. Specifi-

cally, we focus on content shared by users on Twitter and Instagram in order to design a sys-

tem capable of fusing data across multiple networks. Our previous works has demonstrated

that it is indeed possible to detect physical events using the two social networks. However,

many of these signals need corroboration in order to handle events that lack proper support

within a single network. We leverage this insight to design an unsupervised approach that

can correlate event signals across multiple social networks. Our algorithm can detect events

and identify the location of the event occurrence. We evaluate our algorithm using both

simulations and real world datasets collected using Twitter and Instagram.

1.3 THESIS ORGANIZATION

The rest of the thesis is organized as follows. Chapter 2 introduces the event detection

and tracking technique for Twitter. We use feeds collected from the Twitter API service

for specific query keywords to identify clusters of tweets that represent the same event

entity in the real-world and also track the progress of these events over time. Chapter 3

analyzes the detected events from the previous chapter to measure the quality of information

available from the texts and metadata that can help localize the events to a specific point.

Chapter 4 extends the localization of Twitter-events by using a joint localization approach

between the the sources and the event clusters. A maximum-likelihood estimation algorithm

is described that improves the fraction of localized events in comparison to the baseline

method. Chapter 5 presents a new event detection method that uses data retrieved using

the Instagram API followed by an estimation technique to approximate the trajectory of

4



mobile events in Chapter 6. Chapter 7 introduces a new fusion based technique to utilize

the benefits of Twitter and Instagram together in order to perform better than the individual

social networks. Finally, we conclude the dissertation in Chapter 8, and explore avenues for

future research.
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CHAPTER 2: EVENT DETECTION AND TRACKING WITH TWITTER

Some of the most widely deployed IoT devices in urban areas are smart phones in the

possession of urban individuals. Their proliferation has led to the emergence of crowd-

sensing/crowdsourcing services, where humans collect data about their environment (using

phones), and servers aggregate the data for various application purposes of interest. With

the emergence of social media, a common alternative form of human data entry has become

media posts (e.g., on Twitter). This leads to the prospect of building crowdsensing services

on top of social media content, exploiting humans as “sensors”. In this chapter, we present

one such service, called StoryLine. The service detects and tracks physical urban events

of interest to the user, such as car accidents, infrastructure damage (in the aftermath of a

natural disaster), or instances of civil unrest. It offers an interface to client-side software

that allows browsing such events in real time, as well as an interface for software applications

to a structured representation of the events and their related statistics. The service embod-

ies novel algorithms for real-time detection, demultiplexing, and tracking of physical events

using social media data. In our evaluation with Twitter feeds, we show that our service

outperforms two state-of-the-art baselines in event detection and demultiplexing. We also

conduct two case-studies to show the effectiveness of the real-time event detection capability

and event tracking performance of our system.

2.1 OVERVIEW

The proliferation of smart phones in urban spaces makes them some of the most commonly

deployed devices in the emerging era of IoT. A common use of smart phones has been in

data collection by exploiting phone sensors for various city-wide measurement tasks. This

use is often termed crowd-sensing . While sensors offer a great opportunity for data collection

on smart phones, a common alternative form of data entry is by the user via social media

applications. This observation leads to the idea of building data collection/crowd-sensing

services on top of real-time social media content. We shall henceforth call the idea of

estimating physical state from social media posts, social sensing [4].

StoryLine is a novel social sensing (back-end) service that exploits real-time content posted

on social media to detect, demultiplex, and track instances of physical events of interest to

the user. The user may specify the category of events of interest, such as car accidents, road

closures, concerts, or urban protests. The current version of the tool uses Twitter. It is

intended to complement services that collect data from physical sensors. We leverage the
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Figure 2.1: The Social Sensing Modality and its Analogy with Physical Sensing

intuition that Twitter posts (and, by implication, possibly similar microblogging media) can

be exploited as a novel sensing modality , not unlike acoustic sensing, vibration sensing, or

magnetic sensing. The analogy is straightforward as illustrated in Figure 2.1. Much the way

physical objects induce distinguishable signals in their physical environment that can be

detected by observing the physical medium, socially-relevant events (such as car accidents,

attacks, natural disasters, parades, or protests) induce distinguishable signals in their social

environment that can be detected by observing the social medium. This chapter presents

an IoT service that exploits this social modality of sensing, motivated by the proliferation of

users who post in real-time to describe their surrounding world. The service offers a client-

side interface and a programmers interface to browse and retrieve detected events, receive

alerts when certain events occur, and compute historical statistics.

Our service makes a fundamental contribution to the state of the art in event detection

from social media. Namely, we identify separate instances of a given event type (which we

call, demultiplexing) in a manner that (i) does not need location information and (ii) is

entirely unsupervised (i.e., does not need prior training or remote supervision techniques).

None of the prior work offer event demultiplexing that has both of the above properties.

The idea that social media posts collectively constitute a form of sensing dates back

several years. In their pioneering work, Sakaki et al. [5] proposed an algorithm to detect and

track natural disasters, such as earthquakes and hurricanes, using Twitter feeds. The work

exploited the spatio-temporal footprint of media posts together with a trained text classifier

to detect and localize the events. Since then, work on event detection generally fell into

three categories.

First, some papers do detection but not demultiplexing [6–9]. That’s to say, they can

detect that a major traffic accident occurred, and can separate traffic accidents from floods,

but cannot not easily differentiate between two traffic accidents. Many papers in this cate-

gory do a form of burst detection and text-similarity-based clustering on tweets. Hence, for
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example, tweets containing words related to traffic, accidents, and death end up in the same

cluster (but can include descriptions of multiple similar events). A second category of work

does demultiplexing (separation of concurrent events of the same type) by clustering simi-

lar tweets based on location (and time) [10–12]. They often use some notion of coherence

(or higher frequency of keywords that are semantically related) at a given location as an

indicator that an event occured at that location [13]. Unfortunately, on Twitter, less than

2% of tweets are geotagged [14, 15], so this approach can easily miss small events. While

user account registration information is more commonly available (about 25% of accounts

have it), it is course-grained (city-scale only), and hence cannot distinguish different local

events. Finally, some papers indeed do demultiplexing without location information [14,15].

However, they use different degrees of natural-language processing or machine learning, and

thus are language-specific and/or need prior training. For example, some papers use shallow

analysis of text to identify location keywords (e.g., references to specific streets, cities, or

landmarks) [14–17], and cluster tweets based on locations referred to in their text. This

paper thus opens up a new category of event detection methods that can demultiplex events,

without use of location infocmation, in an entirely unsupervised NLP-free fashion.

Demultiplexing is essential to our IoT service, where a city planner, for example, might

want to know accurate statistics of events occurrence over time, which implies knowing how

many events (say, car accidents) occured. Not relying on location metadata means we can

identify more events. Not using language features means the service can be deployed inter-

nationally at little or no additional cost, regardless of local language. Finally, our approach

is unsupervised and hence does not require classifier training [18, 19], bootstrapping [20],

or significant pre-processing [21, 22]. We demonstrate the effectiveness and efficiency of our

algorithm in the evaluation section by comparing with state-of-the-art baselines using four

real Twitter feeds.

The rest of this chapter is organized as follows. We define our problem more formally

and propose our solution to unsupervised event detection, demultiplexing, and tracking in

Section 2.2. The evaluation is presented in Section 2.3. We discuss the related work in

Section 2.4 and conclude the chapter in Section 2.5.

2.2 THE DESIGN OF STORYLINE

In this section, we present informal intuitions, followed by descriptions of our unsupervised

detection, demultiplexing and tracking algorithms. To use StoryLine, the user issues a

8



StoryLine query such as “traffic” and “accident”.1 This query is like a subscription to a

newsfeed that filters content specific to the query terms. A process is started that repeatedly

uses Twitter API to obtain the latest tweets (subject to Twitter rate limits) that contain the

specified keywords (i.e., match the filter). The resulting real-time stream of arriving tweets

is then demultiplexed to separate descriptions of different events (e.g., different accidents),

which is the focus of the discussion below. The process continues indefinitely until terminated

by the user. At any given time, multiple such queries may be ongoing, depending on the

categories of events that the user is interested in following. In principle, other work in current

literature can be used to help the user select appropriate keywords for each query to better

filter the desired event category. In this chapter, we start at the point where a query has

been formulated and a stream of tweets matching the query filter has started arriving, and

needs to be demultiplexed.

2.2.1 Problem Statement

The purpose of StoryLine is to do for Twitter posts what back-end aggregation/fusion ser-

vices do for crowd-sourced sensor data with the purpose of detecting and tracking physical

events in urban spaces. We envision services like StoryLine complementing more traditional

sensor data fusion services in IoT applications. Towards that end, StoryLine represents the

monitored environment as a set of event instances, each given by an instance identifier, a gen-

eral class label, and an observation summary that accumulates chronologically sorted posts

(namely, Twitter messages, called tweets) regarding the event instance. The separation of

posts by event instance occurs in an entirely unsupervised manner (i.e., without prior train-

ing or prior knowledge of event-specific keywords/tags) and is language agnostic (i.e., does

not rely on language-specific knowledge). While StoryLine stores the demultiplexed stream

of tweets that describes each event instance, this stream – the story – is not interpreted by

the service.

New events may be generated over time and old events are eventually removed. Each

event has a finite lifespan during which the event is said to be ongoing . For the purposes of

this chapter, an event instance is broadly defined as an incident, independently observable

by multiple humans within limited time and space. The term “independently observable”

suggests that retweets be ignored, as they do not constitute independent observations. The

term “multiple humans” suggests that a threshold could be used on the rate of reported

1The query terms are presumably expressed in the user’s language and hence are language-specific. The
point we made earlier, however, is that none of our processing mechanisms use any language assumptions.
Hence, they work regardless of the language in which the user expresses the query.
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observations, below which an event is of no interest for the purposes of this paper. Finally,

“limited time and space” suggests that an event has a start time, an end time, and a location

trajectory. Event locations described by a single point in space constitute a special case of

a trajectory. Hence, vehicular traffic accidents, shootings, demonstrations, rallies, funeral

processions, insurgent attacks, bombings, and sports events, are different examples that

satisfy the definition of events used in this chapter.

In this chapter, we restrict our attention to the problem of demultiplexing of different

instances of the same (user-specified) event category, together with related instance detection

and instance tracking algorithms. As mentioned earlier, approaches that detect events by

looking for spikes in some coherence metric (e.g., a spike in keywords that commonly co-

occur) do not do well on demultiplexing different concurrent instances of the event. In

contrast, we look at spikes in keywords that do not commonly co-occur. An information

gain metric is derived to measure such spikes. For example, in description of car accidents,

a particular car accident involving a drunk driver who ran over a dog on Bay Bridge, might

be described by tweets containing such keywords as “drunk” and “dog”. These words do not

commonly co-occur in the same microblog post. Hence, if such an uncommon combination

of words spikes today in the context of tweets about car accidents, it is an indication that a

new event instance occurred.

In our problem, StoryLine discretizes time into slots, and abstracts the current state of

the monitored environment at any discrete time instant, k, by a dynamically evolving set of

ongoing event instances E(k), where an event instance Ei has a detection (or start) time, Si,

and a finish time, Fi. We say that Ei ∈ E(k) for Si ≤ k ≤ Fi. Each event instance is further

associated with a chronologically sorted list of all timestamped tweets that describe it up to

the current time, called its cumulative observation summary, Summaryi [k].

The social medium is said to emit a signal. The signal emitted in slot k (i.e., the slot

ending at time instant, k) is the body of text emitted on the social medium in slot k. In

the case of Twitter, this would be the set of tweets time-stamped in slot k. Our service uses

the Twitter programming API to collect tweets in real time as they are emitted. The signal

emitted on the social medium in slot k is denoted Signal(k). Given the stream, Signal(k),

the problem addressed in this paper is to determine for each time slot, k:

• The set of ongoing event instances, E(k).

• The observation summary, Summaryi[k], for each event instance, Ei ∈ E(k).
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2.2.2 Design Intuitions

Perhaps the most important contribution of our demultiplexing approach is its simplicity .

It is indeed based on a very simple intuition. The intuition underlying the approach lies

in a sparsity argument ; specifically, we find the simplest sparse feature space in which (by

virtue of sparsity) event instances are sufficiently separated. To illustrate what this means,

consider the lexicon of commonly used words in a language, such as English. Such a domain

may contain around 10, 000 words. We may want to distinguish 1000s of concurrent event

instances, each described by multiple characteristic words. In this case, the set of event

instances populate the space of words rather densely. (That is to say, there may be partial

overlap between sets of words commonly used in describing different event instances.) The

same is not true, however, of word pairs (i.e., the “second power” or Cartesian product of

the lexical domain). In a language of 10, 000 words, there are 100 million possible word

pairs. This is several orders of magnitude larger than the number of event instances we

might need to demultiplex within any given time slot. Hence, within a given time slot, the

set of word pairs that characterize ongoing event instances populate very sparsely the feature

space of all possible word pairs. The probability of overlap (i.e., different event instances

being characterized by the same word pair) is negligible.2 Two caveats must be understood

regarding our sparsity observation.

First, the validity of the sparsity observation in the feature space of keyword pairs hinges

on the lack of strong correlations between keywords used in the chosen pairs. The probability

of seeing two words, W1 and W2, on the medium is P (W1,W2) = P (W1)P (W2|W1). If these

words often come together as a single term, such as “Dodgers Stadium” or “Angela Merkel”,

the probability P (W2|W1) may be close to 1 and thus, P (W1,W2) ≈ P (W1). In other words,

the term should be considered as a single keyword. Hence, we remove from consideration

keywords pairs, where the individual keywords co-occur with a much higher probability than

the product of the probabilities of their occurrence individually. With that simple filtering,

we ensure lack of strong correlations between keywords in a pair.

Second, sparsity ensures that if two event instances are different, their discriminative

keyword pairs are different with high probability. The inverse is not always true. Given

two different discriminative keyword pairs, they may or may not be of two different event

instances. This will be the case, for example, if the event instance has more than two high

frequency keywords, allowing for multiple alternative subsets of two keywords to uniquely

2In a prior literature [23], an empirical study was conducted analyzing tweets about car accidents in
three major California cities. The study indeed showed that 2-keyword signatures tend to uniquely dis-
tinguish different car accidents. The above general argument presents a signal-sparsity justification of this
phenomenon.
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characterize the event. Such subsets would have to be consolidated.

As tweets arrive, new spikes in keyword pairs are detected and “bins” are associated with

spiking pairs, called discriminative pairs. Thereafter, subsequent tweets are inspected for

discriminative keyword pairs they contain and placed into the corresponding bins. The words

in the pair may apprear in any order within the tweet and need not be contiguous. A tweet

may be placed in multiple bins if it contains multiple discriminative keyword pairs. Note that,

identifying discriminative keyword pairs is not a quadratic problem in the number of words or

tweets in a time slot. This is because the only candidate pairs are those that occur together

somewhere in a tweet. Hence, the problem is quadratic in the number of words in a tweet,

but linear in the number of tweets in a timeslot. Since tweets are of short bounded size, the

former component can be bounded by a manageable constant. Accorrdingly, computationally

efficient solutions (linear in the number of tweets) are possible. Importantly, no prior training

is needed.

Two questions remain. First, how are discriminative keyword pairs selected? Second, how

to consolidate bins pertaining to the same event instance? (The latter is needed because an

event instance may give rise to multiple discriminative keyword pairs.) These questions are

addressed below.

2.2.3 Discriminative Keyword Pair Selection

Information gain is a common measure for detecting discriminative features that we lever-

age here. When a new event occurs, keyword pairs characteristic to that event will be present

disproportionately in the current window compared to the previous one. We thus compute

information gain of a keyword pair in a window as the amount of information gained in

distinguishing this window from previous windows if we were told whether or not the given

keyword pair occurred in that window. Clearly, pairs that occur more disproportionately

in the current window offer more information gain. These are pairs of words that do not

normally co-occur . Hence, information gain is a measure of co-occurrence surprise.

Let X be the variable associated with the keyword pair and Y be the variable associated

with time slot. The tuple (X, Y ) thus denotes whether a tweet contains the keyword pair

sj, and whether it is posted in the current time slot k. It can have four distinct values

(0, 0), (0, 1), (1, 0), (1, 1) that have the straighforward physical meaning respectively.

H(W ) dentoes the entropy of the variable W and is defined as:

H(W ) = −
∑
w∈W

p(w) log p(w),

12



where W is the value set of variable W .

More specifically, let there be wk distinct tweets emitted in window k, and wk−1 distinct

tweets emitted in window k−1. Hence, the probability of a tweet (taken at random from the

tweets in either window) to be present in the current window, k, is p(k) = wk/(wk + wk−1).

Similarly, the probability of a tweet (taken at random from the tweets in either window) to

be present in the previous window, k − 1, is p(k − 1) = wk−1/(wk + wk−1).

Let some keyword pair, sj, be present in wjk distinct tweets in window k, and wjk−1 distinct

tweets in window k−1. Hence, the probability of a tweet that contains the pair sj (taken at

random from those containing that pair in either window) to be from the current window,

k, is pj(k) = wjk/(w
j
k +wjk−1). Similarly, the probability of a tweet that contains sj (taken at

random from those containing that pair in either window) to be from the previous window,

k − 1, is pj(k − 1) = wjk−1/(w
j
k + wjk−1).

Let the entropy of the variable referring to window identity, Y , be denoted H(Y ), where

Y is either k or k − 1. By definition, H(Y ) is given by:

H(Y ) = −p(k)log2p(k)− p(k − 1)log2p(k − 1)

= − wk
(wk + wk−1)

log2
wk

(wk + wk−1)

− wk−1

(wk + wk−1)
log2

wk−1

(wk + wk−1)
(2.1)

Similarly, the conditional entropy of Y , given that we know whether pair sj occurred, is

denoted H(Y |sj). By definition, H(Y |sj) is given by:

H(Y |si) = −pi(k)log2pi(k)− pi(k − 1)log2pi(k − 1)

= − wik
(wik + wik−1)

log2
wik

(wik + wik−1)

−
wik−1

(wik + wik−1)
log2

wik−1

(wik + wik−1)
(2.2)

Finally, the information gain, IGj, associated with pair sj, is given by:

IGj = H(Y )−H(Y |sj) (2.3)

Equation (2.3) can be used to compute information gain for each keyword pair, sj, in each

time slot k. In computing information gain we do not count retweets, since they do not offer
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additional first-hand information on events. This helps remove rumors, opinion tweets and

slogans that propagate primarily by retweeting, as opposed to descriptions of independently

observable events. Only the keyword pairs with information gain greater than a threshold

would be selected as discriminative keyword pairs.

The above discussion focused on detection of discriminative keyword pairs; those with

high information gain. Remember that high information gain indicates that the words in

the pair do not normally co-occur. We show that this insight allows us to find new event

instances.

Besides detecting new discriminative pairs in the current window, the system also continues

demultiplexing based on discriminative pairs found in previous windows. Those correspond

to events detected earlier. Therefore, in each time slot k, we first inherit all discriminative

keyword pairs used in the previous slot whose clusters were still growing, (i.e., the cumulative

number of tweet containing that pair by time slot k − 1 is greater than that by slot k − 2).

We then augment that inherited set with new keyword pairs found discriminative in the

current window.

2.2.4 The Consolidation Algorithm

Events may contain more than one discriminative keyword pair. Therefore, it is important

to be able to consolidate different bins when their tweets are about the same event. Consider

the set of discriminative keyword pairs used in slot k. Each such pair, sj, is associated with a

bin of tweets, Cj, in which the pair occurs. Our approach for consolidating bins referring to

the same physical event lies in detecting similarity between their respective data clusters. In

our drunk driver example, presented earlier, a cluster of tweets about an accident involving

a drunk driver killing a dog on a bridge might be distinguished by discriminative keyword

pairs (“drunk”, “dog”), (“drunk”, “bridge”) and (“bridge”, “dog”). Each pair might end-up

associated with a bin that contains largely the same tweets. A distance metric can thus be

defined between content of different bins based on the statistical distribution of words in

the bins. The distance between two bins will decide if they are about the same event. Four

common distance metrics between statistical distributions of words are compared. Namely,

the Jaccard Distance, the Term Frequency Difference Ratio, the Cosine Similarity Distance,

and the KL Divergence.
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2.2.5 Event Tracking

Event tracking extends the consolidation algorithm in a straightforward manner by ap-

plying bin consolidation across successive time slots. That is, after consolidating the bins

in the current time slot k, we consolidate the bins between the time slot k and k − 1. One

challenge in event tracking is that the event signature, defined by the corresponding consol-

idated keywords, might evolve due to the evolution of the event and thus the way people

describe it.

To catch that change, we use an overlapping sliding window. It smoothes out the changes

in the lexical frequency distribution of fast developing events over time, as illustrated in

Figure 2.2. With overlapped windows, some part of the event signature remains the same

across the two slots. (Note that, the compared slots are overlapping here as in Figure 2.2.)

Therefore, by selecting a proper overlap, we can track the event smoothly and be able to

consolidate relevant clusters properly, even as its signature changes gradually over time.

Non-overlapping

Overlapping

Window Len

Slide Len

Figure 2.2: Illustration of the non-overlapping sliding window and the overlapping sliding
window (with 50% overlapping).

2.2.6 Final Architecture

The architecture of our social event tracking system is shown in Figure 2.3. The targeted

social medium of our system is Twitter [24]. The system is implemented in Python27 and

integrated into an existing social sensing tool, Apollo 3. StoryLine provides four interfaces,

Create, Pull, Kill, and Stats. Create enables the user to start an event-tracking

task, and Pull enables the user to get the real-time event tracking results. The key pa-

rameters of Create are (i) a list of keywords for crawling tweets, for example [protests,

confrontation], and (3) a user-customized window length (with default value of 24 hours).

After the user creates a tracking task, a task ID is returned, which is used in Pull to get

the real-time tracking results and in Kill to terminate the existing tracking task. Finally,

Stats allows retrieval of a set of statistics about the event type, such as the frequency of

occurrence of event instances over time.

3http://apollo3.cs.illinois.edu
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Figure 2.3: Event Tracking System Architecture

Once the tracking task is created, the crawling parameters are passed to the crawler that

uses the Twitter API to crawl tweets that satisfy the conditions defined in the parameters

in real time. For the tweets returned, we first filter out the redundant tweets, such as the

retweets, and then the filtered tweets are fed to our event detection module, where the event

signature detection and consolidation are performed. The text clusters are then passed to

the event-tracking module. When the user calls the Pull function with the task ID, the

most recent tracking results are returned encoded using the JSON format. An optional

localization module is included (to pin the events on a map, for example, by Giridhar et

al. [17]), but it is not relevant to this chapter. Please note that unless the user calls Kill,

the tracking task keeps working.

2.3 EVALUATION

In this section, we report the experience of using our tool on event detection and track-

ing on four datasets crawled from Twitter. We first describe the statistical details of the

four datasets, and then discuss the performance of our event signature consolidation for the

selected Jaccard distance metric. Next, we study the performance of event detection com-

pared with the state-of-the-art baselines. Finally, we conduct two case studies of Earthquake

events and show the real-time event detection capability and event tracking performance of

our proposed StoryLine system.

2.3.1 Twitter Datasets

For repeatability, we collected four data sets from Twitter using the API described in the

previous section. These were then replayed as the feeds used in the subsequent experiments

to enable fair comparisons across multiple algorithms and conditions. We summarize data

collected by the four tasks we created, labeled by (i) Disaster, (ii) Protest, (iii) Traffic, and
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(iv) Armed Conflict below.

• Disaster The dataset is collected with keywords “disaster”, “humanitarian”, “earth-

quake”. In this dataset, 1, 800, 952 tweets were collected after filtered out retweets,

and the time span is from Apr. 19th 19:41:08 UTC, 2015 to Feb. 03rd 06:07:15 UTC,

2016.

• Protest The dataset is collected with keywords “protest”, “confrontation”. In this

dataset, 1, 211, 920 tweets were collected after filtered out retweets, and the time span

is from Oct. 16th 05:41:02 UTC, 2015 to Feb. 01st 11:15:43 UTC, 2016.

• Chicago Traffic The keywords used here include “traffic”, “accident”, “chicago”. And

all tweets in the Chicago area were also collected in this dataset. In this dataset,

8, 013, 649 tweets were collected after filtered out retweets, and the time span is from

May. 15th 13:58:09 UTC, 2015 to Feb. 19th 17:33:43 UTC, 2016.

• Armed Conflict The keywords used here include “rebels”, “attack”, “bombing”. In

this dataset, 2, 739, 363 tweets were collected after filtered out retweets, and the time

span is from Oct. 16th 05:52:28 UTC, 2015 to Mar. 07th 02:27:03 UTC, 2016.

In the evaluation, each dataset is fed into our StoryLine system in real-time (i.e., we

discretize the time into slots and in each slot the tool only considers the current data or that

of the past slots but never in the future). Here, each time slot (i.e. window) spans 6 hours,

and slides 1 hours in each step.

2.3.2 Event Signature Consolidation

We test the performance of event signature consolidation based on each of the four lexical

frequency domain distance functions introduced earlier, namely Jaccard distance (Jaccard),

Term Frequency Difference Ratio (Tfreq), Cosine Distance (Cosine), and KL Divergence

(KL). The formal mathematical definitions of these distance metrics is provided below.

Let Si be the set of key words of the tweet cluster Ci. For each word, w ∈ Si, let fi(w)

denote its frequency. For notation simplicity, if w 6∈ Si, we define fi(w) = 0. We investigate

four broadly applied distance metrics described below for defining the lexical frequency

domain distance between clusters.

• Jaccard Distance: The Jaccard similarity (JS) between clusters Ci and Cj is defined

by

JS(i, j) = |Si ∩ Sj|/|Si ∪ Sj|,
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where |S| denotes the cardinality of the set S. The Jaccard distance is defined by

1− JS(i, j).

• Term Frequency Difference Ratio: The term frequency difference (FD) between

clusters Ci and Cj is defined by:

FD(i, j) =
∑

w∈Si∪Sj

|fi(w)− fj(w)|,

where abs(X) denotes the absolute value of X. The term frequency difference ratio is

the normalized term frequency difference, i.e. FD(i,j)∑
w∈Si

fi(w)+
∑
w∈Sj

fj(w)
.

• Cosine Distance: Cosine Similarity (CS) is defined by

CS(i, j) =

∑
w∈Si∩Sj fi(w)× fj(w)√∑

w∈Si(fi(w))2 ×
√∑

w∈Sj(fj(w))2
.

CS measures the cosine of the angle between two vectors whose elements are fi and

fj. The more similar the two vectors, the smaller the angle between them. The Cosine

distance is defined by 1− CS(i, j).

• KL Divergence: The KL divergence, KL, is a non-symmetric measure of the differ-

ence between two probability distributions, defined as follows in our case:

KL(i, j) =
∑

w∈Si∪Sj

pi(w) ln
pi(w)

pj(w)
,

pi(w) =
fi(w)∑

w∈Si∪Sj fi(w)
, pj(w) =

fj(w)∑
w∈Si∪Sj fj(w)

.

Note that, when fi(w) = 0 or fj(w) = 0, KL(i, j) is malformed. To avoid this problem,

we add 1 to fi(w) and to fj(w) for all w.

The consolidation error rate is defined as the ratio between the number of incorrectly

grouped 2-keyword signature pairs to the total number of signature pairs. Note that, a

2-keyword signature pair is said to be incorrectly grouped if two signatures corresponding to

the same event are put into different groups or if two signatures corresponding to different

events are put into the same group. Ground truth labeling is done manually.

Figure 2.4 shows the results, from which we observe that the Jaccard distance function

consistently performs the best for all the four datasets, which corroborates our selection of
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Jaccard distance as the lexical frequency domain distance in Section 2.2. The error rate
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Figure 2.4: The consolidation error rate.

of signature consolidation for the Traffic dataset is the smallest among the four datasets.

This is because traffic accidents have a relatively small social media footprint. Often a

single 2-keyword signature is associated with the traffic event, therefore only a very small

amount of consolidation occurs for this specific event class. We expect that urban events

of interest to IoT applications will mostly have small footprints. Examples may be urban

fires, shootings, traffic accidents, or road closures. It is therefore encouraging to see that the

algorithm is better at detecting and demultiplexing such small-footprint events. The error

rate of consolidation of Jaccard for the war dataset is less than 4%. For the protest dataset

and the disaster dataset, the error rates are 14% and 20%, respectively.

2.3.3 Event Demultiplexing

In this subsection, we first eliminate geotagging-based demultiplexing techniques based

on recall. We then include in the comparison those techniques that do not need location

information, illustrating an advantage in precision and purity of demultiplexing (i.e., correct

separation of instances).

Table 2.1 shows the percentage of tweets in our data sets that are geo-tagged. We also

cluster the tweets into events and show the number of event clusters that carry zero, one,

or more geotagged tweets. We consider fine-grained events here. For example, a war event

might refer to a cluster of tweets discussing a single explosion. The table clearly shows that

dependence on location information can render most of the events invisible, as they contain

no geotagged tweets.

Next, we study the precision of event detection and demultiplexing in our StoryLine

system. We compare our StoryLine with the following baselines:

1. ET [9]: In this work, an event is detected using common bi-grams, where the bi-grams
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Table 2.1: Prevalence of Geotags in Tweets and Events

Metric Traffic Disaster Protest
Armed
Conflict

Total tweets 8013649 1800952 1211920 2739363

Geotagged tweets
726663
(9%)

6068
(0.33%)

2323
(0.19%)

6381
(0.23%)

Events with no
Geotagged tweet

90.7% 99.4% 99.6% 99.6%

Events with 1
Geotagged tweet

3.9% 0.5% 0.4% 0.4%

Events with multiple
Geotagged tweets

5.4% 0.1% 0 0

are selected from among adjacent pairs of tokens, which is an example of techniques

that do not demultiplex well. The reason is that in looking for adjacent bi-grams that

have a high chance of co-occurence (for example, “traffic alert” or “crime scene”) one

often ends up with bi-grams characteristic of a whole category of events. In contrast, in

our solution, we look for unusual (i.e., rarely co-occurring) pairs of keywords. Results

will confirm that those are more characteristic of an event instance.

2. TopicModel [25]: This work proposes an online variation of LDA (Latent Dirichlet

Allocation) [26], a famous topic modelling technique. Events are defined and detected

by a topic model. This work is a representative event detection solution based on

training a text coherence metric (around a topic).

3. GeoTag : In this baseline, we only consider the geo-tagged tweets, and cluster them by

physical Euclidean distance. If two tweets are posted within 30 miles, then we cluster

them together. A limit is imposed on cluster size to prevent formation of geographically

diffuse clusters. This baseline is an example of demultiplexing approaches based on

location information.

We randomly selected one week data from our dataset, and compare the precision of event

detection/demultiplexing. Here, precision is defined by the ratio between the number of true

events output by the algorithm and the total number of events output by the algorithm. Note

that, some of the text that the algorithm bins as a separate event might in fact be a false

positive. For example, tweets such as “Can you recommend anyone for this #job?” or “these

rumors about louis coming to chicago are making me stressed” do not constitute legitimate

(geo-)events as defined in this chapter.
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Table 2.2: Event Detection Precision Comparison

Algorithm Traffic Disaster Protest
Armed
Conflict

StoryLine 72.55% 76.92% 80.95% 88.24%
ET 57.14% 36.36% 86.36% 61.90%

TopicModel 55.10% 60.87% 65.22% 69.57%
GeoTag 66.67% 23.33% 47.37% 41.38%

Table 2.2 summarizes the precision results of all the algorithms. From this table, we

can observe that our algorithm has the highest average performance rank of 1.25 (i.e. it

ranks first in Traffic, Disaster, and Armed Conflict datasets and second in Protest dataset),

whereas ET has average performance rank of 2.5, TopicModel has 2.75 and GeoTag has only

3.5.

In the Protest dataset, most of the events are related to some protests. The number of

tweets increases greatly when the protest starts, and at the same time, the total number of

tweets also increases. Therefore, the increase of the percentage of the event related tweets

and the total tweets is not that significant, thus some true events were not detected by our

information gain based approach. But some noisy events were not affected, thus the precision

of our algorithm is not the best. ET is based on the absolute increase of the number of event

related tweets, therefore, it beats our algorithm. We also notice that geo-tagging does not

perform well. We therefore drop it from further comparison.

Figure 2.5 shows the results of purity comparisons for the remaining algorithms, for all

the datasets. Purity is a measure of demultiplexing quality into different event instances.

Sometimes, the algorithm will output one event that might contain multiple instances. For

example, three instances of traffic accidents were output by the TopicModel algorithm: (1)

“I 70 now reporting 2 INJURY ACCIDENTS near OH 37”, (2) “When things go BOOM on

the US 60 @ArizonaDOT #12News”, and (3) “@WKYTTraffic tracking an ongoing closure

along I-75 near the TN stateline.” The purity is defined by a vector, that is the percentage

of output events that contain only (1) one event instance, (2) two to three instances, (3)

four to five instances and (4) greater than five instances. Ground truth is labelled manually

by two different people and conflicts are resolved by a third one.

From the pie charts, we clearly observe that our algorithm has the highest percentage of

output events that only contain one instance, which shows that our algorithm does better

at demultiplexing event instances compared with the baselines.
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Figure 2.5: The purity pie charts.

2.3.4 Language Agnostic Analysis

We also collected Twitter datasets in non-English languages to show the performance of

our component when new languages are involved. The query keywords used for this collection

are shown in figure 2.6. All the keywords mean the same in different languages, which is

“protest”. We again evaluate the demultiplexing quality for these datasets which is reported

in table 2.3.

Figure 2.6: Twitter query keywords used for non-English dataset collection
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Table 2.3: Demultiplexing Quality

Instances Korean Hindi Russian Arabic

1 52.83% 63.75% 93.34% 83.33%

2-3 41.5% 27.5% 6.67% 6.67%

4-5 3.77% 5% 0% 6.67%

5+ 1.88% 3.75% 0% 3.34%

There is clearly a variation in the performance when different languages are used. One

reason for this is the structure of sentences in each language. For example, Hindi has around

twice the number of characters as English and Korean has some special characters that are

appended to normal words and change the expression. These are just a few examples and

since our research is not really about understanding the language we leave this work for

future direction.

2.3.5 Case Study – Real-time Earthquake Detection

In this subsection, we conduct a case study to evaluate the delay in event detection. Here,

we select Earthquake events because it is easy to find out the exact (ground-truth) time at

which they occurred.

Table 2.4: Real-time Earthquake Detection Summary

Earthquake Location Earthquake Time Detection Time Delay
Midoro, Philippines 10/19/2015 13:50 10/19/2015 18:26 4:16

Vanuatu 10/20/15 21:52 10/21/2015 02:40 4:48
Afghanistan 10/26/15 09:09 10/26/15 10:17 1:08

Molucca islands 01/11/16 16:38 01/11/16, 20:41 4:03
Afghanistan 01/12/16 20:05 01/12/16 22:59 2:54

Alberta, Canada 01/12/16 17:30 01/12/16 22:59 5:29
Urakawa, Japan 01/14/16 03:30 01/14/16 04:09 0:39

Alaska 01/24/16 10:30 01/24/16 11:37 1:07
Morocco 01/25/16 04:22 01/25/16 10:44 6:22
Taiwan 02/06/16 19:57 02/06/16 21:39 1:42

Fiji 02/06/16 01:39 02/06/16 02:41 1:02
Indonesia 02/12/16 10:02 02/12/16 13:28 3:26
Oklahoma 02/13/16 17:07 02/13/16 22:37 5:30

NewZealand 02/14/16 00:13 02/14/16 04:38 4:25
Wasco, CA 02/24/16 00:02 02/24/16 00:37 0:35
Antarctica 02/23/16 18:08 02/24/16 00:37 6:29

Cebu, Phillipine 03/01/16 14:52 03/01/16 17:14 2:22
Sumatra, Indonesia 03/02/16 12:49 03/02/16 14:19 1:30

Table 2.4 shows a summary of the ground-truth occurrence time and detection time (in

UTC) of recent earthquake event instances. From the table, we observe that for most of

the instances, our algorithm can detect it within 4 hours. For earthquakes occurring in

regions with large numbers of active Twitter users, like Japan and California, we can detect
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earthquakes within 1 hour. (Note that our window sliding length is just 1 hour, so 1 hour is

the smallest delay feasible in this configuration.) The results confirm utility of the system

for detection of urban events.

2.3.6 Case Study – Nepal Earthquake Tracking

Finally, we conduct a case study of the Nepal earthquake to help the readers intuitively

understand the performance of the tracking functionality of our StoryLine system. The

result is summarized in Table 2.5.

An earthquake occurred on April 24th 2015 that resulted on the death of more than 8, 000

people in Nepal. The event was detected due to the rise of tweets with new high-information-

gain keyword pairs on the social medium. New keyword pairs were associated with the same

event as it evolved. The table shows detected keyword pairs and example tweets from their

clusters.

From the table, we observe that in the beginning of the earthquake, media posts focused

more on the earthquake itself using keywords such as “earthquake” and “death” in tweets.

As the earthquake developed, people switched their attention to relief efforts, using keywords

such as “donations” and “humanitarian”. Later, the discussion focused on survivors, using

keywords such as “survivor” and “hospital”. Neither the original occurrence of the event nor

any of the above keyword pairs was known to our algorithms in advance. They were detected

automatically and associated with the same event based on discussed distance metrics. The

example shows the capability of our algorithm to tracking real-world events as they evolve.

2.4 RELATED WORK

The idea of using social networks as sensor networks was discussed in recent literature [27,

28]. While much work focused on analysis of reliability of crowd-sourced observations, this

paper exploits social media (specifically, Twitter) to build an IoT service for event detection,

demultiplexing, and tracking.

Event detection in social spaces is an active research topic in information retrieval. Some

early work includes Allan et al. [20], in which they proposed an online event detection and

tracking algorithm. Their algorithm exploits features based on term frequency (TF) and

inverse document frequency (IDF), such that if the feature score for a new term is above a

predefined threshold then a new event or topic is found. Some recent literature exploits TF-

IDF-like features includes Shamma et al. [29] and Benharus et al. [30]. Shamma et al. [29]

proposed a peakiness score to identify words that are salient in some time window that were
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used to detect new events. Since unigrams may not always be sufficient to describe complex

events, Benharus et al. [30] proposed a different normalized frequency metric called the

trending score for identifying event related n-grams instead of unigrams. These approaches

are good at identifying event categories and topic. However, as shown in the evaluation,

they are less efficient at separating individual event instances. Our work is also related to

the text stream clustering literature [31]. An example is work utilizing optimizations of

k-means algorithms to cluster data streams, as proposed by Ordonez [32] and Zhong [33].

However, theirs need prior knowledge (such as the k), which is not always available in social

streams for event detection and de-multiplexing. Our approach, in contrast, depends on

detecting co-occurrence surprise; that is to say, new frequently co-occurring words in tweets

that did not previously co-occur. Moreover, our calculations are conducted based on only

two adjacent time windows, which is much more efficient than the TF-IDF approach that

needs to consider the whole (or a large portion of) corpus.

Topic modeling is another common approach for event detection [25,34,35]. Lau et al. [25]

proposed an online variation of Latent Dirichlet Allocation (LDA). In LDA, each topic is

modeled as a multinomial distribution of words in a volcabulary, and each document is

modeled as a multinomial distribution of k topics, where k is a predifined parameter denoting

the total amount of topics. And these two classes of multinomial distributions have two

Dirichlet priors respectively. (Dirichlet prior is chosen due to the fact that it is the conjugate

prior of the multinomial distribution.) The idea in Lau et al. [25] is incrementally updating

the priors in each time window based on previous calculated parameters, and maintaining

the one-to-one correpondence of the topics in the current time window and the last one. If

there is a sudden change in the topic word distribution, then a new event is supposed to

have occurred, where the distance of the distributions is measured by the Jensen-Shannon

divergence. Hu et al. [34] proposed ET-LDA (joint Event and Tweets LDA) that exploits

a search engine and aligns tweets with corresponding text of events provided by traditional

media. They showed that results are greatly improved. Zhou et al. [35] further expand LDA

with time and location of the tweets, and proposed a new graphical model called location-

time constrained topic (LTT). In their approach, the tweet content, timestamps and geo-tags

are all considered. As with TF-IDF based approaches, the topic modeling based approaches

also suffer when multiple event instances occur in parallel. Futhermore, on Twitter (which

is our focus), reliance on geotags is not sufficient to distinguish different event instances due

to the relative scarcity of geotagged tweets.

Similarly, Aggarwal and Subbian [8] considered the social network topology and pro-

posed a clustering solution for event detection. The rationale behind such techniques

is based on distinguishing shared human interests; namely, clustering text with similar
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retweet/communication patterns will isolate events with shared community interest. How-

ever, in such approaches, events that trigger a similar community response (such as different

terror attacks in nearby locations, or different assaults on police in nearby towns) cannot be

easily demultiplexed.

An entirely different line of event detection and demultiplexing techniques focus on location-

based (or more generally, spatio-temporal) features [10–12]. These approaches use different

forms of clustering by location metadata contained in tweets, which is indeed an effective

means of separation of event instances if the location metadata is sufficiently fine-grained.

Unfortunately, less than 2% of tweets are geotagged [14,15]. While location of other tweets

can be estimated from the registered account location of the source, the account metadata

carries only city-level location information, which is not sufficiently fine-grained for demul-

tiplexing events at sub-city scale, such as traffic accidents. An interesting approach in the

category of location-based event detection techniques is Geoburst [13]. It floats a circle of a

pre-specified radius and computes a measure of coherence of tweets originating within the

circle. Coherence measures semantic distances between words used in these tweets. When

coherence spikes (indicating shorter distances) an event is said to be detected. The rationale

is that event occurrence focuses the discussion around fewer topics related to the event,

leading to increased coherence of local tweets.

Finally, like us, some recent papers indeed propose demultiplexing schemes that do not use

location metadata [14–17]. Instead, they use language-specific features to distinguish events.

A common example of such processing is isolation of location keywords within the text of the

tweets [14, 15, 17], then clustering by the extracted location information. Our point is: an

approach that does not depend on having language-specific extraction rules is much easier to

port across languages, which is a big advantage when considering an international medium,

such as Twitter.

Our technique, in fact, often finds location keywords automatically as part of the detected

signature keyword pairs. Imortantly, however, it does so based on statistical analysis alone,

and not linguistic analysis of data. Unlike other event detection techniques that rely on

clustering, ours looks for frequent pairs that did not usually co-occur. In contrast, much of

the prior work looks for burstiness of keywords that are semantically related or frequently

co-occur is some context, as a way of detecting events that feature the indicated seman-

tics or context. This distinction, as we have shown, makes our solution better at event

demultiplexing, which is the main contribution of this chapter.
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2.5 SUMMARY

In this chapter, we presented a novel service for IoT applications that augments physical

sensor data aggregation and fusion with social media data processing for purposes of physical

event detection and demultiplexing. We argued that the social modality of sensing is not

unlike other sensing modalities, such as magnetic, acoustic, or seismic. In each case, a

useful practice is to transform the signal received from the environment into an appropriate

feature domain, and then perform signal processing on that domain. This paper described

an exercise in applying the above approach to Twitter text. A specific contribution was the

development of an event demultiplexing algorithm that allows separation of (text pertaining

to) different instances of a given user-defined category of urban events (e.g., car accidents).

In turn, this separation allows computing various statistics about the events in question,

such as their frequency over time. Evaluation results show that the approach is successful

at detecting, demultiplexing, and tracking physical events. The success of the approach is

analytically attributed to a sparsity argument that enables one to use a very simple feature

space to demultiplex instances of events.
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Table 2.5: Nepal Earthquake Tracking Summary

Date
New Detected

Keywords
Sample Tweets

04/25/2015
nepal,

earthquake,
death

Powerful magnitude-7.8 earthquake that rocked Nepal trig-
gered an avalanche on Mount Everest http://t.co/MULEuWhx3Q
http://t.co/QeRKg8QgYp
RT @BBCBreaking: At least 876 killed in Nepal #earth-
quake; deaths also reported in India, Tibet &amp; Bangladesh
http://t.co/3BTo9l1QZ4 http://2̆026

04/26/2015
help,

nepalearthquake

RT @cnnbrk: At least 2,263 people have died in Nepal
from massive #NepalEarthquake and aftershocks, official says.
http://t.co/hCyjO7YyS7
Anyone with information about my son Joseph Patrick please
help #NepalEarthquake #Pray4Joe http://t.co/X2Kn7mOtRO
http://t.co2̆026

04/27/2015

surges,
devastation,

drone,
thankyoupm,

donations

Nepal #earthquake: Death toll surges to 3,218; four aftershocks felt
in last 12 hours http://t.co/Njvru9k2kQ
@cnni: New drone footage shows the ex-
tent of devastation from the #NepalEarthquake:
http://t.co/7PiPjayQZ1https://t.co/phIGRkYoZQ
#ThankYouPM for massive rescue and relief operation by India in
Nepal after #earthquake
Nepal Earthquake: Facebook to Match Donations Made for Victims
http://t.co/aLooadYNxj Free Submission http://t.co/J90dT2qnXb

04/28/2015
salute2indianforces,
koirala, sanjay,
humanitarian

Thank you very much Indin Forces for being with us.It means alot....
#Salute2IndianForces
CNN’s Dr. Sanjay Gupta performs surgery on girl in
Nepal: CNN’s Dr. Sanjay Gupta performed a life-saving...
http://t.co/4EtmH28EwC #tcot
Live: Nepal earthquake kills 4,352, PM Sushil Koirala says death toll
could reach 10,000: A high-intensity ear... http://t.co/A68VtR6hWK

04/29/2015
survivor,hours,
hospital, field,

miracle

Nepal earthquake survivor drank urine while trapped for 82 hours
http://t.co/v9DHM5Jhnf #worldnews
That is amazing, Nepal Army rescued a 4-month kid alive after
22 hours! ::http://t.co/KzJPJeZDCx https://t.co/HvTkvS0Ba0 via
@sharethis
RT @haaretzcom: Nepal earthquake updates / Israeli field hospi-
tal opens, to treat 200 people per day http://t.co/PMwRlRT6YO
http://t.co/s9i

04/30/2015
pakistan, serves,
masala, teenage,

lydia

Pakistan serves ‘beef masala’ to earthquake-hit Nepal via
/r/worldnews http://t.co/GoFJO09mJP
Teenage boy pulled out of rubble alive five days after Nepal earthquake
http://t.co/0kiAigYE7M #telegraph #news
Lydia Ko donating earnings to Nepal relief effort: The 18-year-old Ko,
ranked No. 1 in the world, successfully... http://t.co/2nquCITqJa
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CHAPTER 3: EVENT LOCALIZATION WITH TWITTER

Social networks, such as Twitter, carry important information on ongoing events and as

such can be viewed as networks of sensors that monitor and report events in the physical

world. In this chapter, we concern ourselves with the challenge of event localization from

Twitter feeds. We explore the quality of information that can be derived either directly or

indirectly from microblog entries regarding locations of ongoing events. Contrary to prior

work that used Twitter to map regions of large-footprint events, or derived coarse-grained

location information, in this chapter, we are interested in point-events, such as building

fires or car accidents, and aim to pin-point them down to a street address. An algorithm

is presented that identifies distinct event signatures in the blogosphere, clusters microblogs

based on events they describe, and analyzes the resulting clusters for fine-grained location

indicators. An exact event location is then derived by fusing these indicators. To evaluate

the quality of derived location information, we use road-traffic-related Twitter feeds from

3 major cities in California and compare automatic event localization within our service to

manually obtained ground truth data. Results show a great correspondence between our

automatically determined locations and ground-truth.

3.1 OVERVIEW

The proliferation of social networks, where real-time information about ongoing events

is broadcast, suggests that the classical sensor network model may be extended to include

social sensing, where humans (either intentionally or unwittingly) act as sensors.

Prior work suggests a methodology for identifying events in social network feeds [36]. In

contrast, this chapter focuses on the challenge of localizing observed events. Specifically,

we address the question: what is the quality of information within social network feeds,

contained either directly or indirectly, about the locations of events they describe? We focus

on Twitter [24] feeds and point-events (such as car accidents), where the event is associated

with a small time and location footprint. While identifying the overall footprint of widely-

spread events, such as a heat wave in Europe, is also interesting, it is beyond the scope of

this chapter.

Localizing events from Twitter feeds is challenging because only 2-3% of Twitter data is

geotagged. Hence, a direct attempt at identifying locations of events through tweet geo-tags

is not effective. Moreover, individuals who are present at one location will often discuss

events that transpire at a different location. In the context of event localization, one is
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interested in locations of events, not sources. Accordingly, the geo-tag associated with the

source, even when present, may not necessarily correctly reflect the sought event location.

Instead of relying only on geo-tags, our service resorts to a complementary technique that

collectively improves the localization accuracy. The events detected as per the previous

chapter are analyzed for direct location references in tweet text. These references are trans-

lated into coordinates using the Google Maps geotagging API [37]. Finally, the resulting

coordinates are themselves averaged (after outlier elimination) to obtain an approximate

event location.

We compare the quality of localization obtained using the above insights by considering

Twitter feeds related to road traffic incidents from areas in and around three different cities

in California, namely San Francisco, San Diego, and Los Angeles, collected over a period

of three weeks. These feeds are first processed to recognize events and then analyzed to

determine possible event locations using the methodologies discussed above. A compari-

son between the determined locations and manually collected ground truth is then made.

The comparison suggests that sufficient location information is available (either directly or

indirectly) in tweets that makes high quality event localization possible.

The work is distinguished from recent efforts that attempt to localize individual sources

from their tweets [38–40], in that the goal in this paper is to localize physical events , not

sources. It is also different from prior coarse-grained attempts to localize events that focused

on identifying the city where the events took place [41], or the general region of wide-spread

events, such as Earthquakes [5]. In contrast, we focus on highly localized (i.e., point) events,

and seek to identify their street addresses.

The remainder of this chapter is organized as follows. We present our data collection

and event identification framework in Section 3.2. The evaluation of localization accuracy

is discussed in Section 3.3. We describe related work in Section 3.4. Finally, conclusions are

presented in Section 3.5.

3.2 SYSTEM DESIGN

There has been a big increase in the use of social networks to report various events observed

in day-to-day life. Since we aim to identify locations of events reported on social networks,

we are inherently concerned with those events that attract people’s attention, leading to the

propagation of information about them in the blogosphere. An example of such an event is

a building fire, a bombing, or a car accident. The event will likely cause comments that will

make their way to the social network.

Most Twitter users do not attach their current GPS information to their tweets. Many
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event descriptions, however, are accompanied by keywords that act as location indicators.

Such indicators may have different levels of precision. Some may be fairly precise, such as

tweets indicating a specific freeway exit. Others may be incomplete. For example, they

might only specify a street address, but not the city or state, or might indicate a local

landmark that is not a globally unique name. By clustering together tweets refering to

the same event, two benefits are achieved. First, redundant information may be obtained,

hence increasing confidence in the location estimate via corroboration. Second, by combin-

ing different partial indicators from different tweets in the same cluster one may pinpoint

the event. For example, a reference to a “Stadium” in one tweet and “Fenway Park” in

another may increase the confidence that the location in question is the Red Sox stadium.

Niether “Stadium”, nor “Fenway Park” are individually unambiguous location indicators.

Furthermore, an advantage of combining location indicators from tweet text together with

source-based location indicators is that local spatial references often omit coarser-grained

location information such as the city and state, restricting themselves to a street address or

landmark name. For example, “Illini-Alert: Suspicious package at Education Bldg, 1310 S

Sixth. Evacuate 2, 3, 4 floors to north side of bldg. Bomb unit on scene” (an actual tweet).

Hence, such location references are often ambiguous outside their local context. Conversely,

Twitter user accounts are more likely to contain coarse-grained location information, such

as city and state, because it presents the least threat to user privacy. Combining the two, a

complete and an unambiguous address can often be obtained.

For this chapter, we use the California highway system as a running example. Below we

describe our system and investigate the degree of accuracy to which traffic events identified

in this dataset can be localized. We then analyze the effect of different factors that contribute

to the quality of location information.

3.2.1 Data Collection and Event Detection

In order to evaluate the quality of location information in microblog data, we use the

StoryLine service to collect tweets followed by detection of event clusters. In our case, we

used the word “Traffic” as query.

Table 3.1 shows a few examples of tweet clusters associated with different events identified

by the StoryLine system. The first column is the high-information-gain keyword pair that

identifies the event. The second column is the set of all tweets that contains the pair and

hence is said to describe the event. The table produced for all events in the dataset is then

input to the localization step.
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Table 3.1: Examples of Events and Tweet Clusters

Keyword
Pair

Event

crash, rancho
(1) #BREAKING: Massive crash has traffic down to a trickle on
SB15 at Via Rancho Parkway in Escondido.

(2) #BreakingNews #SigAlert Major traffic crash on the
15-southbound at Via Rancho Parkway. traffic backed up for miles.
some lanes open now.

collision, north
(1) Traffic collision on SB I-5 just north of Encinitas Blvd. Vehicle
hit center median.

(2) One lane blocked on SB I-5 just north of the San
Diego-Coronado Bridge due to traffic collision.

monica, santa
(1) Avoid Santa Monica Blvd. in WestHollywood between Fairfax
and Orlando. #roadworks #traffic

(2) Training from 830-1115. And then sitting in traffic from 12-2 to
get up to Santa Monica is not recommended #fortheloveoffooty

(3) SMFD responding to a Motorcyclist Down in the intersection of
23RD ST / SANTA MONICA BLVD. Possible traffic congestion.
Inc.#14009277

lanes,
pasadena

(1) All lanes were closed on the westbound 210 Freeway in Pasadena
because of the crash and rush hour traffic

(2) NBCLA: TRAFFIC ALERT: Big rig crash shuts down lanes of
WB 210 Fwy in Pasadena.

(3) SIGALERT Pasadena - 210 W before Rosemead: The carpool &
2 left lanes are closed due to a crash. Traffic bad from Myrtle. E
heavy from Lake.

water, break
(1) Avoid Sunset Blvd around UCLA campus. Traffic really piling
up from major water main break. En route to the scene.

(2) If your commute takes you on #Sunset Blvd be aware that a
water-main break near #UCLA has shut down Sunset from Hilgard
to Veteran. #Traffic

(3) Reports saying water main break has created a 50-ft wide
sinkhole, flooding parts of #ucla. Traffic in area at standstill.

malibu, canyon
(1) JUST IN: #Malibu Canyon Road is closed between Seaver Drive
& #PCH due to police activity per CityMalibu. SB traffic is being
diverted

(2) Traffic Accident Involving Robbery Suspect Closes Malibu
Canyon Road

(3) UPDATE: #PCH WB closed at #Malibu Canyon Road for
police activity. Also, a traffic accident is blocking WB PCH near
Webb Way

3.2.2 Content Analysis to Extract Location Indicators

The task of identifying locations associated with an event is challenging due to sparsity

of tweets that actually contain exact location (e.g., GPS) information. Tweets describing

physical events, however, usually mention spatial landmarks or partial addresses that can

be used as implicit tags in order to determine possible locations. The task requires some

preprocessing so that spatial information can be extracted. The raw tweets are first tokenized

to delimit individual keywords forming event descriptions. These tokens are then tagged

using a part-of-speech (POS) tagger. We found that phrases describing locations were always

composed of Nouns (NN), Determiners (DT), Adjectives (JJ), Cardinal Numbers (CD),
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Conjunctions (CC), and Possessive Endings (PE). There is a special case in which freeway

numbers (such as I-91, etc) were classified as prepositions (PRP) because they started with

“I”. This case was handled separately.

The examples provided in Table 3.2 show all possible POS tags for phrases that consti-

tute location identifiers, obtained by manual inspection of events over the collected Twitter

dataset. Each row in the table indicates a rule number, the POS tags contained in the rule,

and an identifier example for the rule. The “+” sign indicates the presence of a tag at least

one or more times, the “?” sign indicates the presence of a tag zero or one time, and the “|”
sign indicates the presence of one of the two tags. Except for the first rule, all other rules

are composed of one or more previous rules in the table. All the POS tags that matched

any of the indicated rules are marked as “LOC” suggesting a possible location identifier for

the event.

Table 3.2: POS Tags for Location Identifiers

Rule
POS Tags Identifier Examples

1 <NN>+ tiburon blvd, san manteo

2 <DT>?<JJ>?<1> the golden gate bridge

3 <CD>?<2> third street

4 <2> <CD>? freeway 91

5 (3|4) <CC | PE> (3|4)
sunset blvd and market
street, levi’s stadium

Besides actual location indicators, several phrases were identified by these rules that did

not contain location information. They simply happenned to match. In order to avoid such

inappropiate phrases from being picked up, we observed a common pattern for the majority of

actual location identifiers. Namely, true location-identifiers (LOC) were commonly preceded

by Prepositions (IN) such as in, around, between, and after. Thus an additional grammar-

based rule was implemented to extract all such phrases providing chunks of actual possible

location identifiers. This grammar only looked at the LOC tags that followed any type of

IN tags in the description. The examples in table 3.3 show examples of chunks produced by

such a grammar.

Thus, for each event, we identify a set of location indicators (or references) represented

as chunks correspoding to each of the tweets within the cluster. Since a cluster may consist

of several tweets, we can get multiple location indicators for the same event. Independently

from extracting those indicators, we extract location metadata for all sources who tweeted

about the event (i.e., all sources who issued a tweet in the cluster). We use majority voting

to decide on the predominant coarse-grained location, given by city, state, and country. This

location is then combined with each of the fine-grained indicators extracted from tweet text,
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Table 3.3: Extracted Location Identifiers

Tweet Chunks

this overturned tanker in marin has created a
huge jam on wb 580 clear across the
richmond san rafael bridge & Four

(marin),(wb
580),(richmond

san rafael
bridge)

attn srv in and around the presidio area may
experience delays from traffic due to on going

traffic incident on golden gate bridge

(pre-
sidio),(golden
gate bridge)

southbound mission blvd between stevenson
blvd and las palmas ave is closed due to a

traffic collision

(stevenson
blvd)

castro valley car fire slowing traffic at 580
and crow canyon rd wildfire averted

(580), (crow
canyon rd)

a big rig truck hit a muni light rail train at
third street and innes avenue

(third
street),(innes

avenue)

and the combination is geotagged using the Google maps API. Once geotagged, the results

form a point cluster. Outliers are eliminated. The coordinates of non-outliers are averaged

to pin-point the event centroid.

3.3 EVALUATION

To evaluate the degree to which location information contained in tweets helps identify

event locations, we needed to find a data set, where ground truth information is available.

We opted for data on traffic accidents in California. In other to limit the amount of data

handled so that accuracy of our location estimation can be manually verified, we restricted

the study to Los Angeles (LA), San Francisco (SF), and San Diego (SD). Tweets were

collected from each of these cities for a period starting from July 13, 2014 to August 2, 2014.

Table 3.4 shows the number of events referring to traffic incidents, among those returned

by the information-gain-based event detection algorithm, along with the total number of

original tweets (excluding retweets) referring to those events.

Table 3.4: Tweets and Event Counts

City Events Original Tweets Tweets/Event

San Francisco (SF) 66 181 2.742

San Diego (SD) 24 68 2.833

Los Angeles (LA) 142 411 2.894

Note that, by construction of our experiment, only those tweets were collected that orig-

inated from sources within the indicated geographic circles. Hence, only those tweets were

collected whose sources published location metadata (otherwise they would not have matched

34



our crawler’s query). Our purpose, however, is to experiment with realistic conditions, where

only a subset of source profiles offer location metadata. The authors of [42] report that for a

random sample of over 1 million Twitter users only 26% have listed a user location as gran-

ular as a city name. Hence, in the first part of this evaluation, we consider the ideal case

where the location metadata of all sources is present, while in the second part we use 50%,

25%, and 10% of the metadata, respectively (while randomly deleting the rest). This allows

us to explore the degree to which availability of source location metadata affects localization

accuracy.

We first present how the accuracy of our service varies with the information gain (IG)

values of the keyword pair signatures used to determine the events. In order to determine

the correctness of our algorithm, we manually compared the output of the algorithm to

the location of the accident as reported by the California Department of Transportation.

Table 3.5 shows the percentage of events that were correctly localized for different intervals

of the IG values when the complete metadata from sources was used to determine the city

and state. In Los Angeles and San Diego, 100% of event clusters are correctly localized for

events with information gain of more than 0.01, whereas in San Francisco the percentage is

85.7%. The percentages tend to drop for events with a lower information gain.

Table 3.5: Percentage of Correctly Localized Events for Different Information Gain Values
& Full Source Metadata

IG Range San Francisco San Diego Los Angeles

[0 - 0.005) 76.7% 80.9% 75.36%

[0.005 - 0.01) 68.75% 100% 100%

[>0.01] 85.7% 100% 100%

The lower accuracy values for San Francisco compared to Los Angeles and San Diego

can be attributed to the fact that more tweets were collected on an average for the latter

cities. Hence, the number of tweets per event was lower for San Francisco, resulting in lower

accuracy. Overall, we correctly localized for Los Angeles 108 events out of 142, for San Diego

20 events out of 24, and for San Francisco 50 events out of 66. Table 3.6 shows examples of

events that were did not corectly localize by our algorithm.

For the second part of the evaluation, we randomly retained 50%, 25%, and 10% of the

source metadata respectively, which was used to identify the city and state part for an

event. As before, source-based coarse-grained location information was decided by majority

vote using the available metadata (for both the original tweets and retweets) in a cluster.

We again evaluated the localization accuracy for different IG ranges. The results are pre-

sented in Table 3.7, showing a modest drop in accuracy with reduced prevalence of location
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Table 3.6: Examples of Incorrectly Localized Events

Event Cluster of tweets

murray, alert
(1) traffic alert westbound i 8 closed near lake murray boulevard
while crew investigates suspicious device

(2) hmmm, law enforcement activity rt traffic alert law enforcement
activity forces closure of lake murray blvd on ramps to i 8

(3) traffic alert law enforcement activity forces closure of lake
murray blvd on ramps to i 8

lanes, heads
(1) heads up wb 80 before ashby motorcycle down lanes 2 3 blocked
traffic solid from central ave

(2) heads up nb 101 before ellis st ax involving an o t pick up truck
blocks the rt 2 lanes traffic b u to fair oaks wb 237 also affected

Table 3.7: Percentage of Correctly Localized Events for Different Information Gain Values
& Partial Metadata

Metadata %

50% 25% 10%

IG
Range

SF SD LA SF SD LA SF SD LA

[0 -
0.005)

51.16% 71.4% 52.89% 48.83% 66.67% 43.47% 44.18% 66.67% 39.13%

[0.005 -
0.01)

56.25% 100% 100% 50% 100% 100% 43.75% 100% 100%

[>0.01] 85.7% 100% 100% 57.14% 100% 100% 57.14% 100% 100%

information.

Table 3.8: Percentage of Non Localized Events with varying Metadata Prevalence

Prevalence of Source Location Metadata %

City 100% 50% 25% 10%

San Francisco 1.25% 6.27% 7.53% 10.8%

San Diego 0.6% 1.9% 2.62% 2.62%

Los Angeles 1.08% 8.07% 9.78% 11.8%

We also examined the events which were not localized by our algorithm. Table 3.8 shows

the percentage of physical events that could not be localized when the source metadata

was varied from 100% to 10%. Inability to localize an event is attributed to insufficient

location information. It is clear that, as the source metadata decreased, more events were

not localized. Table 3.9 shows examples of few events that did not get localized by our

algorithm even with full source location metadata. The location specific tags in these events

did not get classified correctly by the grammar rule as described in the design section of this

paper.

We also computed the effect of clustering of tweets corresponding to the same event, by

comparing the percentage of correctly localized events in the presence of clustering to the
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Table 3.9: Examples of Non-Localized Events

Event Cluster of tweets

police, chase
(1) awesome police chase in heavy traffic as some guy tried to get
away from police on a very crowded i 80 just minutes ago didn’t work

(2) oh shit i’m in the middle of a police chase on 80 not smart to go
through traffic when police are after you

gorge, mission-
trailsfire

(1) mission gorge rd missiontrailsfire rt traffic is stopped traveling
east but not west can’t say why

(2) rt traffic on mission gorge rd is now stopped traveling east at
golfcrest missiontrailsfire

pursuit,
elcaminoreal

(1) pursuit sb5 elcaminoreal 90 120mph traffic getting heavy

(2) pursuit sb5 elcaminoreal 90 120mph traffic getting heavy and i’m
sure somewhere in his dense head, he thinks he’ll get away

corresponding percentage when localization was done based on individual tweets. Table 3.10

shows the results when clustering was used (C) and when single tweets were localized sepa-

rately (NC). Localization was performed with source metadata prevalence ranging from 100%

to 10%. This table allows shows that clustering is an important component in improving

localization accuracy, especially when source metadata is not prevalent.

Table 3.10: Clustering versus No Clustering

Metadata %

100% 50% 25% 10%

City C NC C NC C NC C NC

SF 75.75% 72.72% 71.21% 68.78% 50% 46.96% 45.45% 40.9%

SD 83.33% 79.16% 75% 70.83% 70.83% 58.33% 70.83% 58.33%

LA 76.05% 76.05% 54.22% 52.81% 45.07% 42.55% 40.84% 39.43%

3.4 RELATED WORK

This chapter is related to research on localization and visualization of events described

in social networks. There have been several past efforts in the domain of localization for

social networks. Early work [43] tries to identify places of interest in tweets by building a

unigram language model. The approach uses web pages to improve localization accuracy.

It is geared for localizing landmarks, as opposed to fleeting events. In other interesting

work [44], images from the Flickr image sharing network are placed on a map by exploiting

textual tags associated with them, described by users. An initial language model is built

over a geo-coordinate grid by placing images along with tags for which locations are already

known and later used for prediction of other images.

Most prior work focused on identifying coarse-grained location information of sources or
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events. For example, the authors in [40] build a probabilistic localization framework and a

language model by looking at conversations between users in Twitter. Their work tries to

find city-level information for users, without relying on any other inputs besides the content

of their conversations. A work that comes close to ours describe the approach to localize

events detected on Twitter [41]. However, it does so at the granularity of a city, not a street

address. Similarly to ours, their approach is based on clustering tweets having the same text

and using metadata available such as user profile location information, content of tweets,

and GPS coordinates of tweets to build a Bayesian inference model that predicts the city

within a confidence interval.

Our work complements that past works by localizing point-events on Twitter. These

events are first detected by using an information-gain approach to find signatures which are

used to form a cluster of tweets about each event. We do not aim to localize individual

tweets or users in a social network, nor do we stop at city level granularity. Unlike building

a language specific model for each city, as shown in some of the previous research, we rely

on simple language processing techniques to predict location specific tags at a very fine-

grained level. The locations identified by our algorithm are highly accurate to street level

information for most of the events.

3.5 SUMMARY

In this chapter, we illustrate a localization tool capable of automatically identifying the

locations of physical events of interest from social network data. Preliminary evaluation

shows that the tool correctly identifies event locations most of the time. Not surprizingly,

more tweeted events (or more precisely, events with a higher information gain) are localized

more accurately. The correctness of localization depends on the number of original tweets

and retweets about the event. More original tweets correlates with a higher likelihood

of finding fine-grained location information, whereas more retweets correlates with finding

coarse-grained (city, state) information. This is because retweets do not offer new text to

extract fine-grained locations from, but do offer additional sources that are typically local

when considering local events. Overall, the fraction of events not localized successfully

remains low, even when most source do not have location metadata.
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CHAPTER 4: IMPROVING LOCALIZATION QUALITY FOR TWITTER

In the previous chapter we formulated a physical event localization problem from social

network data. This chapter improves on the above results by formulating a joint localization

problem of events and sources, leveraging the fact that sources on social networks often have

a location affinity: They tend to comment more on events in their locations of interest.

While social networks, such as Twitter, do not offer source location information for the

majority of sources, we show that our algorithms for jointly inferring source and event

location significantly improve localization quality by mutually enhancing location estimation

of both events and sources. We evaluate the performance of our algorithm both in simulation

and using Twitter data about current events. The results show that joint inference of source

and event location allows us to localize many more of the events identified in real-world

datasets.

4.1 OVERVIEW

This chapter presents and evaluates the first algorithm for joint localization of sources and

events in social networks acting as sensor networks. The intuition behind our joint event and

source localization approach lies in that sources often have a location affinity. (We verify this

intuition in Figure 4.2 of Section 4.2.) Hence, in the common case, they will tend to report

local events or events at a limited number of locations that are of most interest to them.

Only 26% of Twitter users have location information in their profile. This information tends

to be coarse-grained (e.g., city level). Fine-grained location information (e.g., current GPS

coordinates) is available for less than 3% of the tweets. However, aggregating a sufficient

number of tweets about an event, it becomes possible to both localize the event with a higher

probability and learn about the locations or location interests of sources. Doing so iteratively

over time eventually produces an accurate estimate of both source and event locations; an

insight we explore in this chapter.

We evaluate our framework using three Twitter datasets that we collected. Evaluation

results show that given a small fraction of ground truth labels associated with events and/or

sources, we are able to jointly localize a much larger fraction of both events and sources with

high accuracy. On comparing with a baseline approach, our framework performs better for

accurately determining the location labels associated with the events for all the test cases.

The rest of this chapter or organized as follows. We present the design of our framework

in Section 4.2. The evaluation of localization accuracy is discussed in Section 4.3. Finally,
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conclusions are presented in Section 4.4.

4.2 SYSTEM DESIGN

The objective of our localization system is to detect events and localize them to the finest

degree of granularity. We begin by describing the concept of an event. We are interested

in geographically contiguous events and thus aim to associate them with a single location

label at an appropriate level of spatial granularity. For a counter-example, a terror act that

results in simultaneous bombing of different capitals around the world is not an event that we

consider in this chapter. Such an event will be associated with multiple different legitimate

locations at the same time. In contrast, a political rally in a city, the outbreak of an epidemic

in a country, or the collapse of a bridge across a river constitute events that are appropriate

for localization using techniques developed in this chapter. Some of these events can be

localized more precisely than others. For example, the collapsed bridge could be associated

with a specific street address, whereas a rally may be localized to the level of a city, and the

epidemic to the level of a country. Our system attempts to find the finest-granularity single

location associated with each automatically-identified event.

Our work is novel in jointly localizing sources and events in the context of social (as op-

posed to physical) sensing. In doing so, we exploit the concept of location-affinity of sources.

Informally, the location affinity of a source refers to its tendency for reporting observations

about a specific location. It may not be the same as the actual location of the source, al-

though many sources will naturally have an affinity for their home location. For example,

a source who lives in France after immigrating from North Africa might have an affinity

to both French and North African locations. We exploit this property to probabilistically

infer event locations. The system is composed of four functional components as shown in

Figure 4.1.

• Event detection: Use the StoryLine system to detect events from the incoming set of

feeds.

• Location initialization: For each event, we identify the sources contributing to the

reporting and compute initial (noisy) estimates for both source location affinity and

event locations. Our initial estimate of source location affinity simply postulates that

sources have affinity to the location mentioned in their profile. Our initial estimate

of event location is based on any location or landmark references contained in tweets

describing the event.
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Social Feeds - Crawl Twitter

Event Detection - clus-
ter feeds into events

Initialization - estimate for source
affinity and event locations

Maximum likelihood estimation
of source and event locations

Find finer-
grained location

if present in
event description

Google
Maps API

Figure 4.1: Overall architecture of the joint event and source localization system

• Joint location estimation: We iteratively perform a joint maximum likelihood estima-

tion of locations associated with events and sources. Starting with the initial (noisy)

location estimates, the algorithm iteratively attempts to infer source location affini-

ties from estimated locations of events they report, as well as event locations from

estimated location affinities of reporting sources.

• Location refinement: Once a coarse-grained location estimate is obtained for an event

(e.g., at the level of a city and a country), we obtain a finer-grained estimate by

considering street address data, if found in event descriptions. This step considers the

approach described in the previous chapter.

4.2.1 Location Initialization

Our joint source and event location estimation requires that some source location affinities

be approximately known, and some events be approximately localized in the beginning. It

uses this initial knowledge to complete and enhance location estimates.

Given the tweet clusters computed by StoryLine, we first initialize source location affinities

to the advertised source location, where known. This approach assumes that sources tend

to report local events (possibly among other events). For example, a person who resides in

San Francisco is more likely to tweet about a road accident causing congestion in the Bay
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Area compared to a person in New York city. Hence, we identify sources of tweets in the

clusters and search source profiles for location information.

To support our assumption of the source location affinity, we study the frequency that a

source tweets an event with the same location as the source states in his/her profile using

the datasets crawled from Twitter. We randomly select 20 sources with locations indicated

in their profile, and manually detect the locations of their tweeted events. We then classify

their tweets into three categories based on the locations of their corresponding events: 1.

the event’s location is the same as the source’s profile location (tweets fall into this category

are called the Matched Tweets), 2. the location is different from the source’s profile location

(tweets here are called the Unmatched Tweets), and 3. the location is unidentifiable (tweets

here are called Unidentified Tweets). We plot the number of categorized tweets for each

source in Figure 4.2. From the figure, we observe that 14 (of the 20) sources only tweet

events in their near proximity. Only 2 sources have tweeted about events with locations not

matching the ones in their profile. The inner plot in Figure 4.2 shows the overall percentage

that a tweet falls into each category. In this case, 82% of the tweets are co-located with

their sources. The results shown in Figure 4.2 support our assumption that sources tend to

tweet something in their near proximity.
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Figure 4.2: The number of tweets in each of the three categories for the 20 sources. The
inner figure shows the overall percentage that a tweet falls into each category.

In our dataset, around 90% of the sources have location information in their profiles, which

is usually at the city level. We propagate this location label to all tweets of this source. As

a second source of location information, we scan tweet text for mention of known geographic

landmarks (e.g., the “Golden Gate Bridge”) and associate a location label with these tweets

accordingly. (Hence, a tweet can have multiple location labels from different indicators.)

We use labels formatted hierarchically from the more general to the more specific. That is

to say, each label is an ordered tuple containing the following fields: Country, State, City,

Street, Number, in that order. Not all elements may be present in the tuple. For example,
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a tweet might refer to a street address but omit the city and state. During evaluation using

real-world data sets we randomly remove some of the source profiles to see the effect on

localization accuracy for both the events and sources.

To initialize event location labels, we tally all labels of all tweets in each tweet cluster

and compute the majority label at each level of the address hierarchy (by voting on the

majority label in each field of the address tuple). Since data are noisy, inconsistencies may

arise. For example, we may obtain “USA”, “NY”, “New York”, and “Santa Monica Blvd” as

majority labels for country, state, city, and street, respectively, in some cluster. To remove

noise, starting from the first (most general) field, we keep the majority label as long as it

is consistent with its ancestors. To test that a label is consistent with its ancestors, we

use GoogleMaps API [37] to geotag the location based the subset of fields traversed so far.

If GoogleMaps succeeds, we move to the next field. We stop once GoogleMaps fails. In

the above example, since there is no “Santa Monica Blvd” in New York, the most detailed

address that GoogleMaps succeed at geotagging will be “USA”, “NY”, “New York”. This

address will be used as the initial event address. We call it the longest consistent hierarchical

location label . Hence, different events may be localized to a different degree of granularity

during initialization.

4.2.2 Joint Location Estimation

In order to estimate location labels associated with events we make use of an expectation

maximization approach. Consider a Twitter data set, whereM sources have generated tweets

that fall intoN clusters and collectively mention P landmarks. We compose a directed graph,

as shown in Figure 4.3, where the source nodes, denoted by S1, ..., SM , and landmark nodes,

denoted by L1, ..., LP , are connected to the event nodes, denoted by E1, ..., EN . A source

node, Si, is connected to an event node, Ej (denoted as Si → Ej), if source Si generates a

tweet that falls in the cluster of event Ej. A landmark node, Li, is connected to event node,

Ej (denoted as Li → Ej), if the landmark, Li, was mentioned in a tweet that falls in the

cluster of event Ej. The location of event Ej is denoted as Loc(Ej).

Our problem is to estimate (or refine) the longest consistent hierarchical location label for

each event. To do so, we would like to devise a maximum likelihood estimation algorithm to

jointly estimate the field values at each level of the address hierarchy for both sources and

events, subject to the consistency constraints with ancestor fields. In practice, checking field

consistency constraints (i.e., that the fields, taken together, form a valid address) entails a lot

of queries to GoogleMaps during the iterations, which is subject to rate limiting. Hence, as

an approximation, we relax these constraints during the iterations of the maximum likelihood
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algorithm and check them only upon completion. This allows is to estimate the fields at

each level of the address hierarchy separately and independently from estimation of fields at

other levels.

Consider the estimation of a single field in the hierarchy (e.g., “city”). Let each event be

associated with a latent variable corresponding to the city being identified. The vector of all

such latent variables for all events is called Z. These variables are initialized as described

in the preceding subsection. Moreover, let us define ai,k as the probability that source Si

tweets about an event, given that the event is at location k. Conversely, the probability that

an event is at location k, given it was mentioned by source Si is denoted as ti,k. Let us also

define li,k as the probability that a landmark Li be mentioned in a tweet about an event,

given that the event is at location k. The probability that an event is at location k, given

that landmark Li was mentioned in a tweet about this event is fi,k.

Figure 4.3: Graph network of sources, events and landmarks

As described in [45]

ai,k = P (Si → Ej|Loc(Ej) = k) (4.1a)

ti,k = P (Loc(Ej) = k|Si → Ej) (4.1b)

li,k = P (Li → Ej|Loc(Ej) = k) (4.1c)

fi,k = P (Loc(Ej) = k|Li → Ej) (4.1d)

With help of approach mentioned in [45] we jointly estimate (i) the latent variable vector Z for

the city level location labels of events, and (ii) the affinity of input sources using the parame-

ters represented by vectors θ = (θ1, θ2, . . . , θK), where θk = (a1,k, a2,k, . . . , aM,k, f1,k, f2,k, . . . , fP,k).

The values of ti,k, li,k can be computed using the estimated parameters ai,k, fi,k by applying

the Bayes’ theorem. The maximum likelihood estimator finds the values of the unknown

parameters θ that maximize the probability of observed input X, the graph network as

44



illustrated in Figure 4.3. The requirement is to maximize P (X|θ) using the Expectation-

Maximization (EM) algorithm that starts with some initial random values for θ and itera-

tively updates the parameters.

There are in total three steps derived to calculate the labels and input source parameters as

follows. We only give the result of each step. For the details of derivation, please refer to [45].

The time efficiency convergence property of the EM algorithm is the same as described in [45]:

• Defining the log-likelihood function, `(θ;X, z)

`(θ;X, z) = P (X, z|θ)

=
N∏
j=1

{
K∑
k=1

(
M∏
i=1

a
Xi,j
i,k (1− ai,k)(1−Xi,j) × dk × zkj

)
×(

M+P∏
i=M+1

f
Xi,j
i,k (1− fi,k)(1−Xi,j) × dk × zkj

)} (4.2)

where dk = P (zk = k).

• Deriving the E-step, Q(θ|θ(t)) = Ez|X,θt{logP (X, z|θ)}

Z(t, j, k) = p(zj = k|Xj , θ
t)

= A(t,j,k)×dk

A(
K∑
k=1

t,j,k)×dk

(4.3)

where A(t, j, k) is defined as:

A(t, j, k) =

(
M∏
i=1

a
(t)Xi,j
i,k (1− a(t)

i,k)
(1−Xi,j)

)
×(

M+P∏
i=M+1

f
(t)Xi,j
i,k (1− f (t)

i,k )(1−Xi,j)

) (4.4)

• The M-step, θt+1 = arg maxθQ(θ|θ(t))

a
(t+1)
i,k =

∑
j∈SEj

Z(t, j, k)

N∑
j=1

Z(t, j, k)

, f
(t+1)
i,k =

∑
j∈LEj

Z(t, j, k)

N∑
j=1

Z(t, j, k)

(4.5)

where SEj denotes all the events that the source connects, and similarly we define

LEj.
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The algorithm terminates when the difference of estimation parameter between consecutive

iterations becomes insignificant and the city level class label for Ej is assigned on the basis

of largest value of Z(t, j, k) for k = 1, 2, . . . , K.

The above algorithm is repeated for each field in the address. Note that, it also generates

the probability of different values of each field, P (zj = k), in each iteration. Values associated

with a probability that are below a configurable reliability threshold are removed. The

remaining values are deemed reliable. Once all reliable values have been computed, we

repeat the estimation of the longest consistent hierarchical location label as was done in the

initialization. Specifically, starting from the most general field (i.e., country), we keep the

computed field value as long as it is consistent with its ancestors. We use GoogleMaps API

to test if a field is consistent with its ancestors (i.e., generates a valid address). We stop

once GoogleMaps fails. The algorithm generates a location estimate at different degrees of

granularity for different events. For example, street-level events such as car accidents might

be localized to the nearest intersection, whereas city-level events (such as a carnival) might

end with the city they are in (since conflicting street-level information will likely be reported,

if any, thereby reducing the reliability of street-level estimates computed by the maximum

likelihood estimator).

4.3 EVALUATION
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Figure 4.4: Varying input sources from 100 to 500 and missing fraction of location labels
from 0.5 to 0.9 for constant number of events.

In this section we evaluate the performance of our localization framework by considering

real-world datasets collected during various events. We also carry out extensive simulation

experiments to see the variation in performance as we change different parameters for the

input. For comparing the accuracy of localization of events and sources we select two baseline

methods. The Baseline 1 method is the one described in [46] where the city level location

label for an event is determined by using the profile information of the sources linked to
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the event. The final location label is determined by taking a maximum vote among all the

available city location labels from the sources. The Baseline 2 method is the approach as

mentioned in [42]. This method as described by the authors makes use of a probabilistic

distribution over the city location labels for the words used in the content of tweets. The

basic assumption for building this model is the independence of the words occuring in the

events. Thus if there are K possible location labels then the probability of an event Ej

belonging to a particular location can be formulated as:

Location(Ej) = argmaxk∈KP (k|Ej) (4.6a)

= argmaxk∈K
P (Ej |k)P (k)

P (Ej)
(4.6b)

= argmaxk∈KP (Ej |k)P (k) (4.6c)

We can reformulate the above described equation as follows:

Location(Ej) = argmaxk∈KP (k)
∏

wi∈V
P (wi|k) (4.7a)

P (wi|k) =
count(wi, k) + 1∑

wi∈V (count(wi, k) + 1)
(4.7b)

In this equation wi are the set of words present in the event descriptions (tweets) and k is

a particular location type from K. The final location label is assigned to an event based on

the location which generates the maximum probability over the word distribution. For the

simulation study we use only the first baseline method for comparison since the generation

of word tokens following a distribution over locations was not supported by the simulator.

On the other hand we use both the baseline methods for real-world datasets.

4.3.1 Simulation Study

We conducted experiments using simulated data to see the variations in performance when

number of city location labels and number of input sources are varied. The simulator was

built using Matlab to generate a random number of sources and events with ground truth

labels for city locations. For the evaluation metric we determine the average accuracy of

localization in two scenarios: (i) when input sources and missing fraction of location labels

are varied with constant number of events, and (ii) when input sources and number of events
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are varied with constant number of missing fraction of location labels.

• Constant number of events - In this part we ran the simulator to generate 1000

events and varied the number of input sources from 100 to 500. The number of location

labels was set as K = 4, 5, 6. The links between the input sources and events were

generated using a uniform random distribution. The ground truth labels of the events is

also generated during the process and for the purpose of evaluation we randomly remove

50%, 70%. and 90% of the ground truth location labels. The input source parameters

are randomly initialized and the events for which ground truth location label was not

removed are not updated during the estimation step. When the algorithm converges,

we compare the estimated location labels with the original ground truth location labels

and obtain the accuracy for localization. This process is repeated 30 times for each

number of source and missing fraction to smooth the noise present during random

generation of the links between input sources and events. Finally the average accuracy

over all 30 iterations is calculated. Figure 4.4 shows the bar plot for each location label

when number of input sources vary in x-axis. For each source we report the average

accuracy for three missing location label fractions shown in different colors. It can be

clearly seen from the figure that as the fraction of missing location labels increased

the average accuracy for localization dropped by a large percentage margin. This can

be easily attributed to the fact that discovery of new location labels is dependent on

input source parameters that are computed using initial available location labels.
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Figure 4.5: Varying input sources from 100 to 500 and number of events from 2000 to 4000
for constant number of missing fraction of labels (90%).

• Constant number of missing fraction of location labels - In this part we ran

the simulator to generate events varying from 2000 to 4000, number of input sources

from 100 to 500. The number of city level location label was set as 4, 5, 6 and the

missing fraction as 90%. The links between sources and events were again generated

using the same uniform random distribution. The EM algorithm for each case was run
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for 30 iterations to find the average accuracy for localization. The results are shown

in Figure 4.5 where each sub-plot corresponds to the number of events, the x-axis for

the number of sources, and y-axis for the average accuracy respectively. The bars

in different colors correspond to the number of location labels and 90% of the labels

were removed randomly during each run to report the accuracy. It can be clearly seen

from the figure that as the number of events increased for the same number of sources

and missing fraction of location labels the performance of the algorithm improved

significantly.
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Figure 4.6: Comparison for simulation study between EM framework and Baseline 1
method for city level location labels varying 4 to 6.

• Comparison with Baseline 1 method - For the simulation study we use the first

baseline approach as described above in order to compare with our localization frame-

work using EM for estimating city level location labels. We generated 2000 events

and 50 sources with location affinity from the given type of location labels. The links

between sources and events were generated according to the source parameters us-

ing the affinity. For both the methods we removed X% of source profile information,

where X was set as 50, 70, and 90, in order to localize the events using the respective

algorithms. The first baseline method estimated the location labels using a maximum

vote scheme among the available location labels from source profile information and

then these events with estimated location labels from baseline method were used as

input to the EM algorithm. We compared the estimated locations by both the meth-

ods with the actual ground truth location labels in order to determine the accuracy

for localization of events and sources. This process was repeated 30 times and the

comparison between both the methods for average accuracy is shown in Figure 4.6.

The x-axis represents the number of location labels and the y-axis is the corresponding

localization accuracy. As seen from the plots the average localization accuracy for EM

method is always better than the first baseline method for any percentage of missing

source profiles. The best localization accuracy (50% source profile removed, 4 location

labels) for EM method is 93.3% compared to that of first baseline method which is
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53.16%.

4.3.2 Real-world datasets

In this part we perform the localization of events detected from real world data collected

from different locations using event related keywords on the crawler service. The focus is

specifically to localize the events among city level labels using the EM algorithm followed

by a finer granularity localization if possible. To ensure detection of events over different

topics we selected three data sets : (i) the 2015 North American Blizzard which had a severe

impact in Boston city from January 27-30, 2015, (ii) 2014 FIFA World Cup Semi Final 2

in Sao Paulo city and Final in Rio de Janeiro city from July 9-13, 2014, and (iii) One of

the strongest tropical cyclone ever recorded - Typhoon Yolanda which affected the cities

Cebu and Iloila in Philippines from November 9-11, 2013. The raw feeds corresponding to

these datasets where extracted only during and after the events and provided as input to

our localization framework. The events are detected using the information gain approach

using refinement followed by localization to highest possible granularity. To assign the initial

ground truth location labels at a city level we manually looked at the events. There were 5

different location labels corresponding to each city mentioned in the three datasets selected

for the evaluation. The landmarks associated with the events were obtained by looking at

the top 50 single keywords ranked by information gain during event detection. The choice

of landmarks from the ranked list required a manual inspection as well.

• Comparison with Baseline 1 method - We first study the localization accuracy

at city level for events using the baseline 1 method and compare it with that of EM

method. Briefly we remove X% of source profile information and estimate the location

at city level for the events using a maximum voting scheme from all the linked sources

with available profile. This gives the set of localized events according to baseline 1

method. Next we take this localized events list as input for the EM method along with

the sources and landmarks and get a new set a localized events along with source affini-

ties. We then compare the localized event labels at city level with the actual ground

truth location labels to find the accuracy. We repeat this process for 100 iterations for

each missing percentage of source profile information. The average accuracy compari-

son for both the methods is reported in table 4.1. From this table we can see that for

a realistic Twitter dataset with only 25% source profile information available we are

able to localize events along with sources with more than 10% accuracy compared to

baseline 1 method. Finally we use the grammar rule as described in [46] to extract
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finer level locations if present. The longest hierarchical location label is obtained with

the help of GoogleMaps.

Table 4.1: Average localization accuracy for EM and Baseline 1

% source
profile

removed
EM Baseline 1

20% 81.27% 78.5%

30% 69.96% 66.07%

50% 60.89% 54.41%

70% 42.63% 32.15%

90% 15.13% 10.54%

• Comparison with Baseline 2 method - The baseline 2 method as described in

the beginning of evaluation section makes use of a probabilistic distribution over the

city location labels for the words describing an event. Thus in order to compare the

localization accuracy we randomly remove a fraction (varying from 0.2 to 0.7) of ground

truth location labels. The events with location labels belong to training set and the

rest to test set. To build the model from the training set we perform a preprocessing

step to remove all the stop words belonging to English language and consider only

those words that have a string length above (i) 5, and (ii) 6. The location labels

are estimated as described in equation 4.7a and compared with the available ground

truth location labels. We also provide the same list of events with partial location

lables along with linked sources as input to the EM algorithm with completely random

initialization for the source parameters(θ). For both the methods we performed 100

iterations for each missing fraction value of location labels to find the average accuracy

over the entire run. The comparison between the two methods is reported in table 4.2.

On average the EM method outperforms the selected baseline method for all the cases.

Table 4.2: Average accuracy with partially localized events for EM and Baseline 2

Fraction non-localized EM Baseline 2

word length ≥ 5 word length ≥ 6

0.2 50.14% 41.85% 38.92%

0.3 48.63% 40.8% 38.21%

0.4 47.72% 40.24% 38.14%

0.5 46.59% 40.13% 37.86%

0.6 46.05% 39.53% 37.43%

0.7 44.89% 38.88% 36.44%
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4.4 SUMMARY

This chapter presents an approach for joint localization of both sources and events in

social networks. Our algorithm is not based on any language model once events are detected

from the text streams from social networks. The intuition is that sources tend to post tweets

corresponding to events happened in near proximity, which is verified in this paper using

the real datasets collected from Twitter. Our approach is built on top of the Expectation-

Maximization algorithm to jointly estimate the source location as well as the event location.

Evaluation results, from both extensive simulations and real-world datasets of Twitter, show

that our proposed algorithm outperforms the state-of-the-art solutions.
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CHAPTER 5: EVENT DETECTION WITH INSTAGRAM

This chapter describes methods to exploit picture-oriented social networks to localize ur-

ban events. We choose picture-oriented networks because taking a picture requires physical

proximity, thereby revealing the location of the photographed event. Furthermore, most

modern cell phones are equipped with GPS, making picture location, and time metadata

commonly available. We consider Instagram as the social network of choice and limit our-

selves to urban events (noting that the majority of the world population lives in cities). This

chapter introduces a new adaptive localization algorithm that does not require the user to

specify manually tunable parameters. We evaluate the performance of the algorithm for

various real-world datasets, comparing it against a few baseline methods.

5.1 OVERVIEW

This chapter investigates social networks that carry pictorial information as a means to

localize urban events of interest in time and in space. In turn, the ability to localize events

gives rise to new search services that allow users to view important events matching a

category of interest on a map, and remotely experience those events through the lenses of

eye-witnesses. Since the majority of the world population lives in cities [47], we restrict

ourselves to urban events.

The work is made possible thanks to the proliferation of picture-taking devices (e.g.,

over 2 billion smart phone users at present [48]) and picture-sharing media that offer a

real-time view of ongoing events. We consider Instagram [49] as our social medium of

choice. Instagram is a real-time picture sharing network, whose popularity has increased

dramatically in recent years. At the time of writing, Instagram has more than 500 million

users, who collectively upload 80 million pictures a day [50]. This is up from 400 million, 300

million, 150 million, and 30 million users in 2015, 2014, 2013, and 2012, respectively. Based

on an experiment from a sample of images we collected that are publicly viewable, more

than 15% contain location metadata, making it meaningful (given the large total volume)

to consider Instagram as a tool for localization.

One should mention, at this point, that a variety of other social networks also carry

location information, pictures, or references to geographic events, leading to the question:

why Instagram? There are four reasons behind our particular choice of social network in this

paper. First, many networks, such as Facebook or Nextdoor, consider their content private

to the user or group. As such, the content is not accessible for general browsing. In contrast,
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by default (unless explicitly designated otherwise), Instagram content is publicly available

via resellers, such as picodash.com, who offer an interface that allows anyone to search

for Instagram images (using tags or keywords). Hence, content access for a general event

localization service becomes feasible. Second, unlike text-based social networks with publicly

available content, such as Twitter, Instagram features a content type that generally requires

physical proximity to the event. While it is possible to tweet about a volcano from across

the globe, it is harder to take pictures of it without physical proximity. Hence, the spatial

distribution of Instagram content has a better correlation with actual event locations . Third,

unlike other picture-based social networks, such as Flickr, Instagram content is much more

real-time. For example, Flickr is often used to share art photography, scenic landscapes,

and other inspiring visuals. In contrast, Instagram is used to capture the moment, from

a meal being consumed to a local event of interest. Thus, the temporal distribution of

Instagram images offers a better reflection of event times . Finally, some social networks,

such as Foursquare, are explicitly location-centric, offering sign-ins to a set of participating

locations and associating all user posts with the sign-in location. Unfortunately, since the

set of participating locations is discrete (e.g., coffee shops, landmarks, etc), an event that

does not occur in the neighborhood of a sign-in location is harder to localize. In contrast,

Instagram can offer coverage anywhere that a person with a camera is present.

Localizing user-specified types of events based on Instagram pictures calls for a capability

to associate the pictures with specific event keywords. Fortunately, Instagram users fre-

quently associate customized metadata with images to identify what an image is of. Specifi-

cally, Instagram allows users to tag images they upload (in addition to associating a spatial

location based on the GPS). This makes it possible to search Instagram images for those

matching event-specific keywords.

The above suggests that a text query for an event such as “#JapanEarthquake” or “#Chicago-

Marathon” can retrieve pictures with annotations matching the query, from which the corre-

sponding event can be localized. The manner in which pictures matching a set of keywords

are identified is not the challenge addressed in this paper (It constitutes a standard database

indexing problem). The challenge we address below is the way one might identify and local-

ize events in space and in time given the set of retrieved pictures matching a query. While

several prior efforts used Instagram for localization, as we elaborate in related work, ours is

distinguished in that we try to design an intuitive algorithm to learn the parameters based

on the data being processed. As such there is no prior data based learning which makes our

algorithm more adaptive and robust to real time developing events.

The event localization solution we propose is based on a technique that uses the distri-

bution of pictures in the time domain along with a spatial range to observe the events to
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generate clusters followed by a false alarm elimination. We eliminate any manual inspection

for parameter settings with the help of a self-evaluation scoring metric. In order to help us

design an algorithm, we propose a set of requirements and hypotheses that guide us in the

derivation. The proposed requirements define the scope of applicability of the design while

the hypotheses are assumptions on content features that are verified during the evaluation

with the help of collected datasets.

The rest of this chapter is organized as follows. The assumptions for deriving the algorithm

are described in Section 5.2. We present the design of our system in Section 5.3. The

collection of datasets, verification of assumptions, and algorithm performance results are

discussed in Section 5.4. We then describe the state of the art and related work in Section 5.5.

Finally, we present conclusions from our work in Section 5.6.

5.2 ASSUMPTIONS

In this section, we describe a set of assumptions that we use to design our localization

algorithm. We divide our assumptions into two categories. The first category, called re-

quirements, list application conditions for which the algorithm is most suited. They may or

may not always be borne out by data, and as such can be thought of as targets for which

algorithm design is optimized, as opposed to truth about the physical world. The second

category, called data hypotheses, list properties we expect to see in input data. These prop-

erties are validated using experiments with real data sets. The first category allows us to set

ground rules on top of which to design our system. We do not expect these rules to always

be true, and instead evaluate the degree to which algorithm performance departs from ideal

in the real world (where such assumptions may or may not hold). For the second category,

the stated assumptions are empirically derived from data and exploited to make sure that

algorithm design works for real datasets.

5.2.1 Requirements

• Assumption 1: We need to uniquely distinguish only one event occurrence at a specific

point location (latitude, longitude) during a particular time interval. Hence, if more

than one event are exactly co-located in space and time, our algorithm thinks of them

as one.

• Assumption 2: Two or more independent events can take place (at different locations)

during the same time interval or have some overlap in their respective time intervals.

55



• Assumption 3: The users (sensors) generating the signals (pictures) are conditionally

independent of each other (conditioned on event occurrence). This means they re-

spond independently to the event as opposed to responding to one another. Hence, for

example, we filter out re-posted images (and subsequent images by the same user) as

they do not offer further independent evidence. We further assume that original valid

responses to an event (excluding noise and false positives) will generally occur within

a range R, which determines the maximum distance at which an event can be directly

observed.

• Assumption 4: True events generate response by multiple users. Hence, if there is only

one user producing (any number of) images of the event, we mark it as a false alarm.

5.2.2 Hypotheses

• Assumption 5: It is possible for users to post pictures of an event from a (false)

location different from the actual place of occurrence (or true location) of the event.

For example, multiple users watching a sports match at the stadium and those watching

the same match in a group at a bar in a different city can post pictures tagged by the

same event.

• Assumption 6: The number of users (sensors) generating signals (pictures) from the

true (actual) location of an event are always more than those located at any one of

the false locations for the same event. However, it is possible that the number of

users from the true location of an event are less than the total from all false locations.

For example, the number of images posted from bars and clubs tagged by (and thus

commenting on) a specific sports event can be globally larger than the number of

images taken at the stadium where the event occurs. However, the number of users

posting such images from any one bar or club is smaller than those posting from the

stadium.

• Assumption 7: Events generally belong to one of two major categories; expected and

unexpected . The distribution of the signals (pictures) generated in the time domain

follows a different pattern in the two cases:

1. Expected Events : Events that are scheduled well ahead of time, such as music

concerts, generate attention from users much before the event begins, and reach

a peak in observations after the event has actually started (and then gradually

fade over time).
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2. Unexpected Events : Events that are not scheduled ahead of their occurrence,

such as an earthquakes, generate no posts prior to the event, followed by a sharp

increase in observations at event occurrence leading to a peak during the event,

then gradually decrease over time.

Since the very first pictures that tag the event have a different relation to event start

time in both cases, we find it more robust to consider the first quartile of picture dis-

tribution as the estimated start. Similarly, we view the third quartile as the estimated

end time.

• Assumption 8: There is similarity in the popular tags used to describe an event at

both its true and false locations. This, together with Assumption 6 offers a way to

eliminate false positives (among similarly tagged picture clusters).

5.3 SYSTEM DESIGN

The goal of our work is to identify the locations of real-world events in time and space

based on the data shared by users on the Instagram social network. We derive an algorithm

that is capable of detecting and localizing the events in physical space with the help of the

assumptions described in the earlier section.
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Figure 5.1: Visual representation of the localization algoirthm

5.3.1 Problem Statement

Each picture generated by a user is a tuple of the format (l, t, u, tag), where l is the

Instagram location, t is the image post time, u is the user id, and tag is the set of tags. Note

that, Instagram does not use the original GPS coordinates for an uploaded image, but rather

gives the user a list of identifiers to choose from (e.g., street addresses or landmarks) and

associates the image with the user-chosen identifier. For a given time interval of interest,

let K denote the number of unique locations (i.e., location identifiers) referred to in images
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timestamped within that time interval. Let us further denote those locations by l1, l2, . . .,

lK . The goal of the localization algorithm is to (i) group these locations into clusters that

correspond to true spatio-temporally contiguous events occuring in the area covered by their

respective cluster, and (ii) eliminate false positives (i.e., clusters not corresponding to events

at the area covered by the cluster). Here, the area covered by a cluster refers to the set of

unique Instagram locations included in this cluster.

As mentioned in Assumption 3, events are associated with a radius, R, which determines

the maximum range at which an event can be locally observed. Hence, to do the above

clustering, we need to find the appropriate radius R for the categry of events we are interested

in. Unfortunately, the radius, R, is not known. Hence, the algorithm has to determine its

value automatically in an unsupervised fashion. We do so with the help of a metric called,

silhouette score, which determines the quality of clustering. We use it to comapre quality of

spacial clustering of unique picture locations, when clusters are limited to different values

of R, until we find the best R. Given a particular clustering output, this computation is a

three step process as follows:

• Cohesion Factor (ai): For the ith data point (i.e., Instagram location li), we find

the average (Euclidean) distance to all other data points (locations) within the same

cluster.

• Separation Factor (bi): For the ith data point (i.e., Instagram location li), we find the

average (Euclidean) distance from all the data points (locations) of another cluster to

which it does not belong. Then we take the minimum of the average distances from

all the clusters.

• Silhouette Coefficient: Finally, we assign the score to the ith data point using the

equation si =
(bi − ai)
max(ai, bi)

.

The silhouette coefficient for any data point is in the range [−1, 1]. The ideal best case is

when ai = 0 for which the maximum value of 1 is attained. For our algorithm, we vary the

value of R between 0.25 and 30 miles, and keep the clustering that maximizes the silhouette

score. Events in the current time interval are then represented by the resultig cluster set, ξ

= {E1,E2,. . .,Em}, where m ≤ K.

Finally, we eliminate false positives from the aforementioned set. False positives arise

because large events (e.g., football games) may be watched by groups of people at remote

locations, such as parties and bars, leading to additional found clusters (we call echo clusters)

at those locations. However, tags of images at those echo clusters bear much similarity to
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tags of images at the real event location. This insight is used to remove the smaller echo

clusters. Below, we detail the entire algorithm.

5.3.2 Data Preprocessing

Our system follows the feed subscription model as opposed to the search query model.

This allows the user to monitor the events of different types on a timely basis in near

real time. The user can view any posts from the past or create a new subscription with

the help of a “tag” keyword. The subscribed tag is then queried using the web service

picodash.com, where Instagram images are returned starting with the most recent posts

along with metadata information. In order to avoid spamming, we make the web requests at

an interval of one hour. Every image has a tag ID in the metadata that allows our crawler

service to identify the tag ID at which the call needs to be stopped for the current interval.

The retrieved images along with metadata are then sent to the next component for further

processing.

The image posts obtained from the crawler service are processed in this step to remove

any noise present. Every image has a metadata component, which contains several fields.

We make use of only image id, image url, user id, created time, tags, and location. We filter

out any image for which the location field is empty. Next we make use of created time of the

image post to divide the data feed into intervals. This step is repeated for every API call

and the image is added to the corresponding interval. Any updated interval is then analyzed

by the localization algorithm to detect events.

5.3.3 Localization Algorithm

Consider the set of all unique locations associated with pictures in the current time interval.

Let these locations be denoted by l1,l2, . . ., lK . For each location lk, 1 ≤ k ≤ K, let us

compose the sets Tk, Uk and Gk, denoting the set of unique timestamps, users, and tags,

respectively, that are associated with images from that location. Our algorithm is described

below:

1. In the current time interval, we arrange locations lk in descending order by size |Uk|.
(Ties are broken arbitrarily.) Let this be the ordered list of locations. We make use of

both Assumptions 1 and 6 for this step.

2. Process the locations from the ordered list one at a time. This refers to Step 1 from

Figure 5.1. For a selected location, use the sets Tk, Uk and Gk from the current interval
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padded by three past days. Using Assumption 7, we find the estimated start and

end time (i.e., the respective quartiles) of the distribution of timestamps in set Tk, as

indicated in Step 2 from Figure 5.1. There are 4 possible cases:

• Both estimated times are outside the current interval. This means that this event

occurred in one of the previous intervals. Discard this location and move to next

location.

• Both estimated time are inside the current interval. Use the location for analysis

with data within estimated time range.

• One of the estimated time is inside the current interval. Use the location for

analysis with data between boundary of interval and the estimated time.

• Both the estimated times capture the boundaries of current interval. Use the

location for analysis with all data within the interval boundary.

3. Let each suviving location lk, from the current interval, have tstart k as start time and

tend k as end time. If this is the very first location in the ordered list, then form a new

cluster E representing an event. Initialize the set of found clusters, ξ to {E}. Let lk be

the prime location, lEprime, for this newly formed cluster indicating the most probable

value.

4. If the lk is not the first location from the ordered list, then scan through each event

cluster, E, from ξ for two conditions:

• Interval [tstart k, tend k] has overlap with interval [tEstart prime, t
E
end prime] for the

prime location, lEprime, of cluster, E.

• Location lk is within R miles of distance from the prime location lEprime (using

Assumption 3).

If both conditions are satisfied, then lk goes into cluster E. Otherwise, we form a a

new cluster with lk as the prime location.

5. We repeat the Step (iv) for varying values of R, as indicated earlier, and compute the

silhouette score in each case as indicated in Step 3 from Figure 5.1. Finally, we select

the range Rsel with the maximum score and keep the resulting clustering.

6. Once all the locations from the ordered list are analyzed, we eliminate those clusters

that have only a single user inside according to Assumption 4.
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7. In order to eliminate the false alarm clusters, we use Assumption 8 to compute the

similarity in the vectors formed by considering the top 10 commonly used tags from

each cluster as shown in Step 4 from Figure 5.1. We process the clusters in the

order they were formed and check for similar clusters from the remaining subset. The

similarity threshold setting is described later in the text.

8. With false positives removed, the estimated location of a remaining event is set to the

weighted average of the locations l inside the event cluster. The weights are derived

using the fraction of images posted from a location compared to images present inside

the entire cluster.

For elimination of false positive clusters, we first need to identify the type of event. Events

can be broadly classified into two categories: (i) Single Entity (SE), and (ii) Multiple Entities

(ME). For example, Taylor Swift being a single entity (person) can perform only at one valid

location during a particular time interval. If there are several clusters identified for a SE

event in the same interval then only one of them can be a true positive, while the remaining

are false alarm clusters. However, a ME event such as marathon or tornado can occur at

several locations during the same interval. Based on the clusters generated, we looked at a

few random samples and noticed that the size of the main cluster in case of SE events was

always significantly larger compared to the false alarms. At the same time, the clusters in

case of ME events were comparable in size.

Table 5.1: Cluster Statistics For Events With Single Entity

Event Date City Top 5 cluster size

Taylor Swift 09/29/15 St. Louis, USA [169, 27, 6, 5, 1]

Taylor Swift 10/03/15 Toronto, Canada [940, 24, 6, 6, 5]

Maroon V 06/12/15 Milan, Italy [134, 13, 8, 5, 5]

Maroon V 09/17/15 Manila, Philippines [181, 11, 9]

Table 5.2: Cluster Statistics For Events With Multiple Entites

Event Date Cities Top 5 cluster size

Marathon 10/18/15 Columbus, OH, USA [266,172,112,79,74]

Detroit, MI, USA

Toronto, Canada

Marathon 10/25/15 Washington DC, USA [153,134,88,58,46]

Frankfurt, Germany

Jakarta, Indonesia

The cluster statistics for a random sample of events are provided in table 5.1 for SE and

table 5.2 for ME. The last column in the tables corresponds to the top five clusters by size
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(number of data points) for each event type on a particular date. It can be clearly observed

that in case of SE events the top most cluster by size is extremely dense in comparison to

other clusters, whereas in case of ME events the true clusters don’t have a huge difference.

This can be attributed to the fact ME events attract the attention of people from all the

ground truth locations at more or less the same rate.

Hence, we need to be careful while selecting the similarity threshold for these two types of

events. In case of SE events, almost all the clusters can be expected to have high similarity

among the popular tags, whereas the ME events may not share the popular tags across all

the clusters. This means we might have to set a really low threshold value for SE events but

a relatively higher threshold value for ME events. Based on the observations from tables 5.1

and 5.2, we use the size of the ordered clusters as a function to determine the threshold value.

A huge drop in size from first cluster (E1) to second cluster (E2) signifies a single entity event

and thus threshold = len(E2)
len(E1)

assigns a really small score. At the same time this score will

be much larger in case of multiple entities events due to comparable cluster sizes. This

function for assigning the score also satisfies the bounding range for similarity score [0, 1].

This threshold value is not hard coded but automatically computed based on the generated

clusters. We acknowledge that the above approach is a heuristic. In this chapter, initial

evidence is shown that it is viable based on the data sets we considered. More experience

with use of this heuristic is needed to make more general applicability claims.

5.4 EVALUATION

In this section, we first describe the various real-world datasets that we collected using

the Instagram API. With the help of these datasets, we validate the hypotheses presented

earlier in this paper. Finally, we show a comparison of the performance of our algorithm

against a few baseline methods for localizing events.

5.4.1 Collected Datasets

• Taylor Swift Music Tour (Dataset 1) - Taylor Swift, one of the most popular

American singers, conducted a music concert tour called The 1989 World Tour

in various cities across the world. We collected the complete set of Instagram posts

related to this tour using the hashtag #1989worldtour starting from May 5, 2015, until

December 12, 2015. We evaluate a total of 28 events spanning across the last three

months of the event tour that happened in various cities in United States, Canada,

Asia and Southeast Asia, and Australia. The ground-truth locations for all the events
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were obtained from the Wikipedia page [51] associated with the tour. The average

number of users per event was 113.5 and the average number of photos per user was

2.8 from the collected Instagram posts.

• Maroon V Music Tour (Dataset 2) - The Maroon V Tour is a music concert tour

by the popular American band Maroon V. We collected the Instagram posts related

to this tour using the hashtag #maroonvtour starting from February 16, 2015, until

October 4, 2015. We evaluate a total of 17 events from the months of September and

October spanning different cities in south east Asia and Australia. The ground-truth

locations for all the events were obtained from a Wikipedia page [52] associated with

the tour. The average number of users per event was 78.94 and the average number of

photos per user was 2.2 from the collected Instagram posts.

• Marathons (Dataset 3) - According to the 2014 annual marathon report [53], more

than 1, 100 races were completed across the United States, making it one of the most

popular urban sporting events. For the purpose of evaluating our work, we considered

the top 30 cities in the United States, ranked by population [54] that hosted a popular

marathon [55] during the fall of 2015. Based on this list we looked at the 5 popular

marathons in the largest cities by population as listed in table 5.3. The choice of

restricting to largest cities and most popular marathons was made to reduce the manual

effort in verifying the ground truth of detected events that were significantly high in

number as compared to music concert events. The average number of users per event

was 122.4 and the average number of photos per user was 2.85 from the collected

Instagram posts.

Table 5.3: List of major US Marathons, Fall 2015

Event City Marathon Date

1 Chicago
Bank of America

Marathon
Oct 11

2 Baltimore
The Under Armour

Marathon
Oct 17

3
Washington

D.C.
Marine Corps

Marathon
Oct 25

4 NY City TCS Marathon Nov 1

5 Las Vegas Rock n Roll Marathon Nov 15

Instagram posts related to marathon events were collected using the hashtag #marathon.

It is important to note that this search query tag is not targeted towards a particular

entity such as a name (Maroon V) as in the case of previous datasets. Thus, this data
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set is much more “noisy” compared to others, making it a very interesting case to

consider.

• Tornadoes (Dataset 4) - The number of fatalities caused by tornadoes in the United

States during the year 2015 [56] is estimated at 480, an exponential increase compared

to 54 recorded during 2014. The strength of a tornado is computed using the EF scale

ranging between (0, 5) based on the damage caused. In 2015 (Jan - Oct), there were

no EF5 tornadoes, while the count of EF4 was 2 and EF3 was 8. The EF3 tornadoes

have mostly occurred in rural areas with populations less than 5, 000, except for one

urban location. Instagram posts related to tornadoes were collected using the hashtag

#tornado. Table 5.4 lists the tornadoes that we selected by looking at the amount of

fatality caused in urban areas with a population of at least 5, 000. The average number

of users per event was 6 and the average number of photos per user was 2.16 from the

collected Instagram posts.

Table 5.4: List of Fatal Tornadoes, 2015 (Jan-Oct)

Event City EF Date

1 Rochelle, IL, USA 4 April 9, 2015

2
Oklahoma City, OK,

USA
3 May 6, 2015

3 Venice, Italy 4 July 8, 2015

5.4.2 Validation of Hypotheses

Before we present the performance results of our localization algorithm, we demonstrate

the validity of the assumptions that were made earlier while deriving the algorithm. Specif-

ically, we focus on Hypotheses that can be validated with the help of experiments using the

datasets collected. We evaluated a total of 53 events from these 4 datasets and for each of the

following validations we randomly sample few events in order to ensure that our assumptions

are not holding true only on the basis of best quality events.

• Validation of Assumptions 5 and 6 - In figure 5.2, we show the distribution of

unique users present in True versus the False clusters for fifteen events that were

randomly selected from the output of our localization algorithm using the collected

datasets. The x-axis represents the event ID while the y-axis represents the fraction of

users who posted images for that particular event. This figure validates two assump-

tions at the same time. Firstly, we can see that there are some groups of users who are

located at places other than the actual event location (Assumption 5), and secondly,
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the fraction of users from the True location is always greater than the False location

for the same event (Assumption 6).
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Figure 5.2: True and False event clusters

• Validation of Assumption 7 - For this validation we select two random event sam-

ples from each of the two categories (Expected and Unexpected) to plot the distribution

of the frequency of images shared form the True location. For these plots, the x-axis

represents the timestamp ID and y-axis represents the frequency of images that were

shared for a particular time interval. Figures 5.3, 5.4, consists of two subplots each

corresponding to Expected and Unexpected events. For each subplot the start and the

end time has also been indicated using the ground truth. Thus, it can be validated that

a peak in the frequency of images shared happens within the range of event occurrence.

Figure 5.3: Distribution of images for expected events

• Validation of Assumption 8 - In figure 5.5, we validate Assumption 8 using the same

random fifteen events that were selected for validation of Assumption 5. For each event,

we first identify the top 10 commonly used tags according to frequency (we remove the

tag word used for search query) from both True and False clusters. Next, we determine
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Figure 5.4: Distribution of images for unexpected events
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Figure 5.5: Prevalence of Commonly Used Tags

the similarity between the True cluster vector with each of the corresponding False

cluster vector as well as other True cluster vectors that are independent. Figure 5.5

shows the boxplot representation for similarity between identical events in plot A and

independent events in plot B. It is evident that the median for events and their echos

is around 0.65 and the minimum score is well above 0.5. At the same time independent

True events are well separated with a maximum outlier score of 0.3. Thus, there exists

some amount of prevalence of common tags between the True and False clusters of the

same event.

5.4.3 Performance of our Localization Algorithm

With the establishment of the validity of the assumptions that we made in order to derive

our localization algorithm, we now compare the performance of the results against a few

baseline methods using different metrics. The baselines and the metrics are discussed in

detail below followed by the comparison tables.

• Baseline Method 1 - Tag Similarity Localization - The first baseline method

is based on the intuition that all the observations for an event are closely linked to

each other in terms of common tags used for description (this is according to our

Assumption 8). We follow the same processing method for the incoming feed of data
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using the crawler. For any current interval, we consider all the unique K locations

(l1, l2, . . . , lk) along with the associated sets Tk, Uk and Gk. We then form a cluster by

grouping all the l’s for which the similarity score among the top 10 common tag words

is at least X%. We vary the value of X as 20, 40, 60, and 80 respectively. For each

case, we use the same false alarm cluster elimination technique as described in our own

algorithm. The higher the threshold for grouping locations, the better the results will

be.

• Baseline Method 2 - Geo Event Detection - For the second baseline method, we

use the work described by the authors of [57] for geographical social event detection in

social media. This work is very closely related to our motivation in terms of using geo-

tagged data to detect events. We implement their algorithm as mentioned to detect

the events on our collected datasets. Specifically, we do per day analysis for the four

time slots on each geographic region present for that day. A region comprises of geo-

coordinate with maximum number of users and all points within 30 miles of radius

from it. There is a threshold requirement for abnormal geographic regions. We vary

this θ value as 0.2, 0.4, 0.6 and 0.8 to see the effect on localization. The minimum

number of observations required in a cluster is set as 3. Values of θ greater than 0.8

provided the same results and hence we do not show them explicitly.

• Baseline Method 3 - Points of Interest - For the third baseline, we use the work

described by the authors of [58] in order to find points of interests using pictures

shared by users on the Instagram network. This work can be very well applied to

our interest of finding the locations of events. However, the authors conducted the

experiments on very popular locations. Thus, we again set the minimum number of

observation required in a cluster as 3 and use the approach as described in the paper.

• Metrics for comparison - We use three metrics in order to compare the performance

of our localization algorithm against the selected baseline methods:

– Recall : Determines the count of events that were detected and localized from the

available set of events.

– False Positives (FP): Determines the count of events that were falsely classified

as positive.

– Average Localization Error (ALE) : Determines the average error in the estimated

location from the actual ground truth for all the localized events.
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Table 5.5: Recall

Dataset

Our
Localiza-

tion
Algo-
rithm

Tag Similarity Localization Geo Event Detection [57]
Points

of Inter-
est [58]

X =
20%

X =
40%

X =
60%

X =
80%

θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8

Taylor
Swift

28/28 24/28 25/28 26/28 26/28 28/28 28/28 28/28 28/28 27/28

Ma-
roon

V
17/17 13/17 15/17 17/17 17/17 17/17 17/17 17/17 17/17 17/17

Marathon
5/5 3/5 4/5 4/5 4/5 5/5 5/5 5/5 5/5 5/5

Tor-
nado

3/3 2/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

Table 5.5 is the recall value comparison between our localization algorithm and the base-

line methods under different settings. Our method performed consistently well in correctly

identifying all the events. Baseline 2 method also gave a perfect recall.

Table 5.6: False Positives

Dataset

Our
Localiza-

tion
Algo-
rithm

Tag Similarity Localization Geo Event Detection [57]
Points

of Inter-
est [58]

X =
20%

X =
40%

X =
60%

X =
80%

θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8

Taylor
Swift

2 18 10 5 4 35 16 9 9 26

Ma-
roon

V
0 5 4 4 2 19 8 8 8 14

Marathon
0 16 10 7 6 17 11 11 11 15

Tor-
nado

1 3 3 3 2 6 6 6 6 19

Table 5.6 is the false positives value comparison between our localization algorithm and the

baseline methods under different settings. It can be clearly seen that our method generated

the least number of false alarm clusters for any dataset.

Table 5.7 is the ALE comparison between our localization algorithm and the baseline

methods under different settings. It can be clearly seen that our method has the best

average error rate for the estimated location from the actual ground truth. In case of first

two datasets (which are immobile events), the average error is almost close to zero, but for

the other two datasets (mobile events), the average error is close to 6 miles in worst case.
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Table 5.7: Average Localization Error (miles)

Dataset

Our
Localiza-

tion
Algo-
rithm

Tag Similarity Localization Geo Event Detection [57]
Points

of Inter-
est [58]

X =
20%

X =
40%

X =
60%

X =
80%

θ = 0.2 θ = 0.4 θ = 0.6 θ = 0.8

Taylor
Swift

0.03 102.87 25.06 2.86 1.02 0.78 0.78 0.78 0.78 0.17

Ma-
roon

V
0.12 75.34 32.78 10.23 2.67 1.23 1.23 1.23 1.23 1.32

Marathon
3.45 141.43 34.33 16.18 4.12 4.82 4.82 4.82 4.82 5.86

Tor-
nado

6.02 40.23 25.23 11.34 11.34 9.06 9.06 9.06 9.06 8.47

5.5 RELATED WORK

The exploitation of social networks that expose location information had been studied

in depth long before Instagram became popular. These networks provide location data in

different formats (text, images, etc.) enabling localization.

Foursquare: Foursquare is a widely used social network for checking into visited places

and sharing reviews online with other users. It features around 100 million check-in venues

worldwide. In [59], a study was reported using Foursquare to reveal user mobility patterns in

urban spaces. Other work [60] focused on analyzing the mobility patterns of users to identify

social ties based on co-location history, and determine the relation between location visits

and network strength of a user. In [61], clustering techniques were presented for finding the

dynamics of a city based on the check-ins posted by users on Foursquare. Noulas et al. [62]

proposed a method that uses Foursquare check-ins to identify regions that are similar within

a geographic area. Foursquare coverage, however, is much sparser than Instagram. With

more than 80 million pictures uploaded per day, Instagram sees more pictures in 10 days

than Foursquare since its creation in 2009.

Instagram and Flickr: Due to an explosive increase in the user base over the past three

years, Instagram has emerged as a popular platform among researchers to analyze social

networks from a crowdsensing point of view. In [63], Instagram was studied as a social me-

dia visualization tool to identify cultural dynamics in major cities. The study particularly

zoomed into the city of Tel Aviv, Israel, for a period of two weeks collecting images shared

on important national event days. In [64], an analysis was presented to identify different

types of users on Instagram and the categories of pictures they take. The work character-

ized Instagram based on eight categories of pictures shared by five distinct types of users.
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Another work [?] explored the feasibility of using Instagram pictures along with metadata to

find a correlation between obesity patterns and fast food restaurants located in few selected

counties within the United States. In the work by Mejova et al. [65], a further analysis

was performed on the food habits of users on a global scale to answer questions related to

health research. Prior work [58] also described an approach capable of identifying impor-

tant tourist attractions (POIs) with the help of Instagram. The focus of that work was to

identify locations that are extensively visited by tourists. The authors of [66] described the

implementation of a system capable of detecting events using geo-tagged data from networks

that include Instagram. Their method determines a burst of keywords (tags) within a time

interval, which is then modeled by Gaussians, and events are detected based on mapping the

bursts. In [67], an analysis of Flickr was presented to show the variation in the popularity of

photos around a geographical location. Related event detection work considered geo-tagged

data from Flickr [68]. They focused on nine events using an online event directory to define

a bounding box around using GPS data from Flickr images. The events were then detected

using time-series analysis within the box based on a threshold. The work presented in [69]

offered another example of event detection techniques using geo-tagged images from social

networks. A hybrid similarity graph was constructed based on tags and images to form

clusters that were then classified using a trained model.

Detecting and localizing events using Instagram (or Flickr) offers several challenges. For

example, not all events are equally popular. A baseball game or a large concert might

have more observers than a local flashmob event, and observers of the game or concert will

generally be more tightly packed in space than observers of, say, an earthquake. Some events

have echos ; namely, observers that are concentrated in space (e.g., at a large night club or

bar), who are observing the event remotely (e.g., on a TV screen). This may lead to sets of

clustered images tagged with the event name (as in “Bob watching #TaylorSwiftConcert in

bar”) that are not at the actual event location. Our work adds two contributions compared

to the aforementioned prior efforts. First, we adapt to the size and nature of the event in

an entirely usupervised fashion (without prior training), despite the large variability in size

(e.g., an echo of a Taylor Swift concert may be larger than an original flash mob event).

Hence, we provide a simple and robust approach that works online for streaming data feeds

without using a supervised classification model. Second, we offer mechanisms that discard

“echos” (of larger events) that may otherwise result in false positives. To our best knowledge,

this approach has never been explored before for event localization in urban spaces.
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5.6 SUMMARY

This chapter presents an algorithm for localizing urban events using geo-tagged media

from the Instagram social network. We chose Instagram because of its availability and ad-

vantages in reflecting spatio-temporal event distribution. Our solution employed a clustering

technique that is entirely unsupervised. It chooses an event radius adaptively to maximize

the quality of clusters generated. It further considers similarity between clusters to minimize

false positives. For evaluation, we considered three baseline methods and compared the re-

sults with our localization algorithm. The results show that we outperform the baselines in

all the three metrics considered for comparison. We achieve this result without the need to

tune any manual parameters.
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CHAPTER 6: EVENT PATH ESTIMATION WITH INSTAGRAM

This chapter describes a method to estimate the path of real-world events in space using

the data shared by users on social media platforms. Specifically, we focus on Instagram to

perform case studies on global as well as local events. In the previous chapter we demon-

strated that it is possible to detect events and we now extend the research to estimating

the path of mobile events. Past works using traditional estimation models such as particle

filtering work with an underlying assumption that arrival of observations is chronological

in order. However, in this chapter, we consider the case when observations are shared in a

random order and demonstrate a new capability to identify the path of an event and also

reconstruct its timeline as it moves across space. Our approach is completely unsupervised

and requires no prior training to identify the path. We evaluate our algorithm using case

studies on four different real-world events falling under different categories. The results

indicate we perform better than the baseline methods in estimating the path.

6.1 OVERVIEW

Target tracking is an age old problem in sensor systems and many efforts have been made

over the years to propose different solutions. For example, in [70] the authors have presented

an approach to track a moving object with the help of a new particle filtering style algorithm.

In physical sensor domain, most of the tracking problems [71–74] try to use some variant of

the particle filtering method [75] where a probabilistic model of state estimation is derived

with the help of measured data and motion of the object. This popular technique has also

been used for social network platform [5] to perform tracking of earthquakes and typhoons

with the help of tweets shared by users in real-time. One basic assumption in all the previous

works is that the measured data arrives in a timely order and the noise is introduced by

the sensors while transmitting the data. This correct order of arrival of observations allows

the model to learn the estimation parameters under a mobility constraint. The problem

we are trying to solve takes a different approach using the fact that observed data can

arrive in random order during the event occurrence. Using the approaches described in past

literature will cause the estimation to always rely on the mobility model and never take into

consideration the observations made by sensors if arrival order is too noisy. Hence, we need

a new technique that uses a noise model along with a mobility model for sensing events in

such an environment.

In this chapter we solve this problem by introducing a novel algorithm to identify the
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path along which an event moves in space over a period of time. We consider Instagram as

the social media to evaluate the performance of our algorithm in estimating the path of the

events. One important thing to note is that it is possible to share a picture at a timestamp

other than actual event occurrence. For example, an user taking pictures of a parade decides

to share them after going back home. Smart phones enabled with geotagging service encode

the location information in the picture which can be extracted by the Instagram app. Thus,

we see that even though the observation is geotagged with the true location but it arrives in

the network with some time delay. The problem arises when some observations are shared

in real-time and others shared with random delays which is the focus of this chapter for

estimating the path. Our approach can be used for any social media platform that provides

information containing geolocation information in the metadata.

Figure 6.1: Instagram posts shared during Total Solar Eclipse

Figure 6.2: Images posted by users on Instagram during different time intervals of the
Total Solar Eclipse

The key contribution of this work is an unsupervised approach to estimate the path of

an event for a random order of observation timestamps along the actual path and consists

of two components - the first is elimination of noise and the second is estimation of path

from candidate points. It is important to note that the term “noise” in this paper refers

to off-track points, however, they might be describing information of the actual event. For

example, figure 6.1 shows a map plot of the Instagram posts shared during the Total Solar
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Eclipse which occurred on August 21, 2017. These posts were retrieved from the Instagram

API using the query #totalsolareclipse. It can be clearly seen there is a sharing pattern

aligned with the with the actual path of the event (west coast to east coast) but at the same

time several images are posted from off-track locations. In figure 6.2 we show the shared

posts at every 22 minutes interval for the entire duration of the eclipse. The subplots reveal

that some users started sharing posts from locations (towards east) on the actual path before

the event as they were observing a partial eclipse and some users where still sharing posts

from locations (towards west) after the total eclipse ended.

The off-track points in our example occur mainly due to two reasons. One is the popularity

of the event that attracts attention from all cities that have a dense population. Cities such

as Los Angeles, San Francisco, and New York are the hot-spots in this example. The second

reason is that even the users observing a partial eclipse from other locations share their

images. Thus, we need to eliminate such noisy posts before estimating the path of the event.

The solar eclipse example used here is to only visulaize the existing problems that motivate

us to derive an approach which can be applied in general for any event. To demonstrate this

we provide two case studies using events pertaining to both a global and a local scale.

The rest of this chapter is organized as follows. Section 6.2 describes the architecture of

our model and the problem formulation followed by derivation of the algorithm. Section 6.3

introduces the real-world data collected from Instagram for our case studies. The evaluation

is discussed in Section 6.4. Related work is described in Section 6.5. Finally, conclusions are

presented in Section 6.6.

6.2 SYSTEM DESIGN

6.2.1 Pipeline Components

Our system comprises of four different modules each of which perform different tasks as

described below:

• Retrieve - The first module in this architecture is the crawler that sends request to

the Instagram API to retrieve posts that contain the user provided keywords. This

module also allows to specify the range of timestamps between which the posts are

required. Finally, the posts are processed to retain only the geo-tagged images.

• Eliminate - This module is the first core part of our algorithm that takes input from

the retrieve module and eliminates all the off-track points. The remaining candidate

points are then passed to the next module in the pipeline for estimation.
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• Estimate - This module is the second core part of our algorithm and it analyzes the

candidate points to estimate the approximate path taken by an event during a period

of time.

• Visualize - This final module of the systems helps us visualize the tracked path of an

event on a map interface.

6.2.2 Problem Formulation

The output obtained form the Retrieve module consists of geotagged posts. Each post in

this list ξ can be considered as an observation from a location Li. Our goal is to first analyze

all the unique locations in ξ such that we can produce two disjoint sets - (i) Φ containing all

the off-track locations, and (ii) Ψ containing all candidate locations for estimating the path.

This is done using the Eliminate module. We then process the set Ψ in the Estimate module

to produce the set Ω (where Ω ⊆ Ψ) which contains the ordered set of points corresponding

to the path of the event. The first location in this ordered set is the start point of the event

and each subsequent location is a next point on the continuous path. The notations used in

deriving our algorithm are indicated in table 6.1.

Table 6.1: Definition of Notations

ξ List of geo-tagged Instagram posts

Φ Set of off-track locations

Ψ Set of candidate locations for estimation

Ω Set of ordered locations on the event path

minsup
Minimum number of unique users required at
a location

Li A (lat, long) coordinate

N Number of unique locations in Ψ

Ci Frequency of Li in ξ

sij Distance of Li from Lj in miles

θij
Compass bearing direction of Lj from Li in
degrees

Our approach has two core modules - Eliminate and Estimate. The derivation of the

approach is completely unsupervised and uses the observed data for estimation. Figure 6.3

shows two independent events that share the same space. The red dots are the user observa-

tions and black cross points are the event locations at a given time t. Since the observations

do not come in a chronological order we strip the time factor and consider all the data points

at once. We also assume that the path taken by these events have no overlap and the density

of population is constant for each grid irrespective of the event.
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Figure 6.3: Two independent events

6.2.3 Eliminate

As seen in figure 6.3 we have a significant number of user observations made from grids

that are far off from the actual path. The expected value of an event can be calculated using

the sum of the expected values of the individual grids. Thus we have the following:

E(X(t)) = EA1 + EA2 + . . .+ EE5 (6.1a)

E(Y (t)) = EA1 + EA2 + . . .+ EE5 (6.1b)

Every grid can have two possible states for any event, s = 1 indicating that it is a true grid

where the event actually happened and s = 0 indicating that it is not a true grid. Using

this we can derive the expected value of any grid as following:

p(s = 0) = g(Density) (6.2a)

p(s = 1) = f(|TrueLoc,Observation|) (6.2b)

where g() is a function that depends on the density of a grid and f() is a function that

depends on the distance of the observation from the true location. For simplicity we can

consider the observation for each grid as the weighted average of data points within that

grid. Thus, with the help of an exponential distribution we can define p(s = 1) as following:

p(s = 1) =
1

α
e−

dist(T,obs)
α (6.3)

Next we perform grid wise subtraction of the two events. This means for every grid if there

is an observation for both events then we simply drop that observation. Using the above

equations we can have 3 cases for E(X(t))− E(Y (t)) as following:
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• Observation is present in a grid for X but not Y . For this case the g() values cancel

out each other and we are left with only the true value function. For example:

EB2(X(t))− EB2(Y (t)) =
1

α
e−

dist(Tx,obsx)
α (6.4)

• Observation is present in a grid for Y but not X. Like previous case g() function

again cancel out but since there is no user observation for X, the f() function value is

considered as 0. This step can be considered as a regularization of the grid to ensure

only non-negative values are retained. For example:

EE5(X(t))− EE5(Y (t)) = 0 (6.5)

• Observation is present in a grid for both the events. In this case the g() function values

cancel out again but the f() function values is dependent on the observation distance

from either events. If it is close to X then the value of Y gets subtracted and if it is

close to Y then it becomes 0 due to regularization. If the observation is far from both

the events then the f() values are close to each other and even they cancel out. For

example:

EA4(X(t))− EA4(Y (t)) = 0 (6.6)

Thus the subtraction operation of the two events retains the observations around the true

location as much as possible with a smaller amount of noise that is independent of the density.

In addition to this subtraction of locations,we also perform a couple of pre-processing steps

such remove all locations that have a frequency (Ci) less than a threshold. This threshold

value is 1 by default but can be changed to a different value as per the popularity of the

event. It needs to be also noted that for global scale events like eclipse or hurricane, the

path does not have sudden sharp turns but rather follows a smoother curve. We can further

eliminate the remaining off-track points by fitting a polynomial of degree k using the points

and retaining only those that are within certain distance from the curve. This property

cannot be applied to local scale events as the path might have sharp turns which requires us

to fit an infinite degree polynomial. Hence, for global scale events, the operation consists of

an additional elimination techqniue after the subtraction. The output of the entire operation

generates the sets Φ and Ψ.
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6.2.4 Estimate

In this module, we take the set Ψ produced by the Eliminate module to estimate the

path of an event. In deriving this algorithm we focus on two important factors - direction

and continuity. Every event, irrespective of the scale, needs to satisfy these factors. For

example, the eclipse event has a direction from west to east and the path is continuous along

this direction and the parade event has a direction from north to south with a continuous

path. Our second hypothesis is that an event cannot randomly jump off to a location in a

direction not within the range of its true motion or to a relatively far off location violating

continuity. Using this property, if the current location is Li ∈ Ψ, then the next possible

location Lj ∈ Ψ, is selected according to the following criteria:

Lj =
{
min(sij), θij ∈ [Θ1,Θ2]

This condition indicates that the next possible location in the continuous path is the one

that is closest to the current location and in a direction satisfying the motion. For example,

in the case of eclipse, we are aware of the direction being west to east, a valid range of motion

can be [0, 180] in degrees. The north direction of the compass is 0 and the south direction

is 180. We can reduce the range of motion for a better estimate of the path. Hence, at any

given point of time, all the locations out of the range of motion and the current location can

be marked as observed. When the count of the observed locations is equal to N , the current

location will be the last point of the tracked path and our algorithm ends. The final output

is Ω that contains the ordered set of locations lying on the tracked path of the event. To

initiate this module we need to provide with the start location as an input.

6.3 DATA DESCRIPTION

In this section we describe in detail the real-world data collected using the Instagram API.

We selected a total of four events. The following subsections provide a detailed information

on the datasets:

6.3.1 Dataset 1: Total Solar Eclipse

On Monday, August 21, 2017, an eclipse was observed all over the North America. The

path of totality stretched from Salem, Oregon to Charleston, South Carolina. We used the

keyword #totalsolareclipse to retrieve all the Instagram posts that contained this specific

hashtag along with geo-tag information for the day of the event. A total of 11,084 images
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were retrieved and the map plot corresponding to these geo-tagged images is shown in

figure 6.1.

6.3.2 Dataset 2: Hurricane Irma

Hurricane Irma is one of the strongest Atlantic basin hurricane ever recorded and lasted

from August 31, 2017 until September 11, 2017. We used the keyword #hurricaneirma

to retrieve all the Instagram posts that contained this specific hashtag along with geo-tag

information for the duration of the hurricane. A total of 5,009 images were retrieved and

the map plot corresponding to these geo-tagged images is shown in figure 6.4.

Figure 6.4: Instagram posts shared during Hurricane Irma

6.3.3 Dataset 3: New York City TCS Marathon

The New York City Marathon is an annual marathon that courses through the five bor-

oughs of New York City. It is the largest marathon in the world, with 98,247 applicants for

the 2017 race. This event took place on November 5, 2017. For this event we used multiple

keywords to retrieve the Instagram geo-tagged posts that contained the following hashtags

- #nycmarathon, #nycmarathon2017, #tcsnycmarathon, #tcsnycmarathon2017. A total of

21,550 images were retrieved and the map plot corresponding to these geo-tagged images is

shown in figure 6.5.

6.3.4 Dataset 4: New York City Thanksgiving Parade

The annual Macy’s Thanksgiving Day Parade in New York City, the world’s largest pa-

rade, is presented by the U.S.-based department store chain Macy’s. The 91st annual parade

took place on November 23, 2017. We again used a set of keywords to retrieve all Instagram
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Figure 6.5: Instagram posts shared during NYC Marathon

geo-tagged posts that contained the following hashtags - #thanksgivingparade, #macys-

thanksgivingparade, #nycparade. A total of 3,826 images were retrieved and the map plot

corresponding to these geo-tagged images is shown in figure 6.6.

Figure 6.6: Instagram posts shared during NYC Thanksgiving Parade

6.4 EVALUATION

Our evaluation is divided into two case studies. For each we consider the collected datasets

and run our algorithm for path estimation. In addition we also use past literature for

comparing our performance. The input for each baseline is the raw observations from the

dataset. Following are the baseline description:

• Baseline 1: We use the Kalman filtering method to track the path of an event as

described in [5]. The matrix parameters are considered as mentioned in the paper,
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velocity is set according to the event type and acceleration is set as zero.

• Baseline 2: We use the Particle filtering method to track the path of an event as

described in [5]. The value of N is set as 50 and weight distribution is calculated

according to number of users. The velocity is again set as per the event type and

acceleration is set as zero.

• Baseline 3: We use the path based target tracking as described in [76] in which the

observed points are weighted to generate candidate for a short time interval and then

line fitting is performed to estimate the path. The weighting scheme is based on the

distance of observed points from predicted location as per the laws of motion. After

this step the candiate is generated using the weighted centroid of the observations.

6.4.1 Case Study 1: Global Scale Events

In this case study, we show how our algorithm performs in estimating the path of two

global scale events. The first event is the Total Solar Eclipse and the second is Hurricane

Irma. For each of these events we perform the two operations - Eliminate and Estimate, and

show the ouput produced at the end of each operation in the following sections. We also

compare the estimated path of the events with the true path.

• Total Solar Eclipse: For this event we use Dataset 1 and process all the retrieved

images to get the list (ξeclipse) of locations from where observations were recorded. With

the help of this list we then use the Eliminate operation to produce the candidate set

(Ψeclipse) of locations that can be used to estimate the path of the event. During this

operation, we first use the list (ξhurricane) of locations from Dataset 2 to remove all

locations Li ∈ ξeclipse that are within Distancethreshold = 30 miles from any location

Li ∈ ξhurricane. This choice of the threshold was made keeping in mind that we are

estimating the path of a global scale event and a typical radius of densely populated

city is around 30 miles. The minsup value was set as 2 to get rid off all locations that

have no support from more than one user. Finally, we use the remaining candidate

locations to fit a polynomial of degree k = 5 and removed all the locations that were

more than 10 miles away from the curve. The output of all these steps is shown in the

first row of figure 6.7. The last image shows the set (Ψeclipse) of locations produced

by the Eliminate operation. During the Estimate operations, we provide the input

current as a location from Salem, Oregon and restrict the range of motion between

[80, 135] since we know that the eclipse moved from west coast to east coast. Based on
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Eclipse - Li ∈ ξeclipse
Hurrican Irma -
Li ∈ ξhurricane

Eclipse - Li ∈ Ψeclipse

Candidate locations
for Solar Eclipse

Hurricane Irma -
Li ∈ ξhurricane

Eclipse - Li ∈ ξeclipse
Hurricane Irma -
Li ∈ Ψhurricane

Candidate locations
for Hurricane Irma

Figure 6.7: Eliminate operation for Dataset 1 and Dataset 2

these parameters, the estimated path Ωeclipse was generated and in figure 6.8 we show

the comparison of our estimation against the baseline methods. The last subfigure

consists of 3 different paths - the red path is using baseline 1, the orange path is using

baseline 2 and the blue path is using baseline 3. The same start point is provided to

the baselines and the initial velocity is set as vx = 1600miles/hr towards east and

vy = 500miles/hour towards south. These values are based on typical eclipse speeds

and the actual trajectory.

(a) Actual Path (b) Our Algorithm (c) Baselines

Figure 6.8: Tracked path for Total Solar Eclipse
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• Hurricane Irma: For this event we use Dataset 2 and process all the retrieved images

to get the list (ξhurricane) of locations from where observations were recorded. With

the help of this list we then use the Eliminate operation to produce the candidate set

(Ψhurricane) of locations that can be used to estimate the path of the event. During

this operation, we first use the list (ξeclipse) of locations from Dataset 1 to remove all

locations Li ∈ ξhurricane that are within Distancethreshold = 30 miles from any location

Li ∈ ξeclipse. We again selected this radius due to analysis of a global scale event as

indicated for the previous dataset. The minsup value was set as 2 to get rid off all

locations that have no support from more than one user. Finally, we use the remaining

candidate locations to fit a polynomial of degree k = 10 and removed all the locations

that were more than 10 miles away from the curve. The output of all these steps is

shown in the second row of figure 6.7. The last image shows the set (Ψhurricane) of

locations produced by the Eliminate operation. During the Estimate operations, we

provide the input current as a location from right most candidate and restrict the

range of motion between [0, 15] ∪ [270, 360] since we know that the hurricane moved

from right to left direction until the Keywest coast of Florida, USA and then moved

in an upward direction. Based on these parameters, the estimated path Ωhurricane

was generated and in figure 6.9 we show the comparison of our estimation against the

baseline methods. The color code for baselines is same as previous dataset. The same

start point is provided to the baselines and the velocity is set as vx = 34m/s towards

west and vy = 40m/s towards north. These values are based on typical hurricane

speeds and the actual trajectory.

(a) Actual Path (b) Our Algorithm (c) Baselines

Figure 6.9: Tracked path for Hurricane Irma

83



6.4.2 Case Study 2: Local Scale Events

In this case study, we try to show that our approach can be directly applied to a city

level event as well for estimating the path. The dynamics of a city remain the same while

sharing posts on social media from the densely populated blocks. In other words, we can

assume that the posts from these regions occur so frequently that they appear uniformly

for all the events taking place in that city. Thus, this enables us to perform the Eliminate

operation in the same way as we do for global scale events. We again consider two events

- the first one is the NYC Marathon and the second is the NYC Thanksgiving Parade. For

each of these events we perform the two operations - Eliminate and Estimate, and show the

ouput produced at the end of each operation in the following sections. We also compare the

estimated path of the events with the true path.

NYC Marathon -
Li ∈ ξmarathon

NYC Parade -
Li ∈ ξparade

NYC Marathon -
Li ∈ Ψmarathon

Candidate locations
for NYC Marathon

NYC Parade -
Li ∈ ξparade

NYC Marathon -
Li ∈ ξmarathon

NYC Parade -
Li ∈ Ψparade

Candidate locations
for NYC Parade

Figure 6.10: Eliminate operation for Dataset 3 and Dataset 4

• NYC Marathon: For this event we use Dataset 3 and process all the retrieved images

to get the list (ξmarathon) of locations from where observations were recorded. With

84



the help of this list we then use the Eliminate operation to produce the candidate set

(Ψmarathon) of locations that can be used to estimate the path of the event. During

this operation, we first use the list (ξparade) of locations from Dataset 4 to remove all

locations Li ∈ ξmarathon that are within Distancethreshold = 0.5 miles from any location

Li ∈ ξparade. This choice of the threshold was made keeping in mind that we are

estimating the path of a local scale (within a city) event and the blocks are in 0.5

miles distance on average from each other. The minsup value was set as 5 to get

rid off all locations that have no support from more than four users. The output of

all these steps is shown in the first row of figure 6.10. The last image shows the set

(Ψmarathon) of locations produced by the Eliminate operation. During the Estimate

operations, we provide the input current as a location near the actual start point of

the marathon and restrict the range of motion between [0, 30]∪[345, 360] since we know

that the marathon runners moved in south to north direction with few sharp turns on

the path. Based on these parameters, the estimated path Ωmarathon was generated and

in figure 6.11 we show the comparison of our estimation against the baseline methods.

The color code for baselines is same as previous dataset. The same start point is

provided to the baselines and the velocity is set as vx = 1mile/hour towards east and

vy = 8miles/hour towards north. These values are based on average marathon speed

and the actual trajectory.

(a) Actual Path (b) Our Algorithm (c) Baselines

Figure 6.11: Tracked path for NYC Marathon

• NYC Parade: For this event we use Dataset 4 and process all the retrieved images to

get the list (ξparade) of locations from where observations were recorded. With the help

of this list we then use the Eliminate operation to produce the candidate set (Ψparade)

of locations that can be used to estimate the path of the event. During this operation,

we first use the list (ξmarathon) of locations from Dataset 3 to remove all locations Li ∈

85



ξparade that are within Distancethreshold = 0.1 miles from any location Li ∈ ξmarathon.

This choice of the threshold was made keeping in mind that the movement of parade

was relatively small event in comparison to marathon. The minsup value was set

as 2 to get rid off all locations that have no support from more than one user. The

output of all these steps is shown in the second row of figure 6.10. The last image

shows the set (Ψparade) of locations produced by the Eliminate operation. During

the Estimate operations, we provide the input current as a location near the actual

start point of the parade and restrict the range of motion between [90, 270] since we

know that the parade moved in north to south direction with few sharp turns on the

path. Based on these parameters, the estimated path Ωparade was generated and in

figure 6.12 we show the comparison of our estimation against the baseline methods.

The color code for baselines is same as previous dataset. The same start point is

provided to the baselines and the velocity is set as vx = 0.2miles/hour towards west

and vy = 2.5miles/hour towards south. These values are based on average parade

speed and the actual trajectory.

(a) Actual Path (b) Our Algorithm (c) Baselines

Figure 6.12: Tracked path for NYC Parade

In addition to the path estimation for the collected datasets, we also perform a quantitative

comparison of our algorithm with the baseline methods. To do this we consider the difference

between the area under the actual path and the estimated path. Table 6.2 shows the values

obtained for this comparison.

Table 6.2: Difference between area under actual and estimated paths

Dataset EventMap B1 B2 B3

Solar Eclipse 23.13 231.2 215.78 167.65

Hurricane Irma 8.16 23.33 21.76 15.36

NYC Marathon 0.13 0.65 0.65 0.37

NYC Parade 0.105 0.87 0.437 0.105
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6.5 RELATED WORK

The availability of geotagged data from social media has led to many new research prob-

lems over the past few years ranging from identifying interesting geographic regions, rec-

ommending places to users, building knowledge about a spatial region, detecting patterns

and monitoring unusual events over time. Many of these problems focus on finding intrinsic

characteristics associated with a region that govern its dynamics during the occurrence of

an event. Two of the earliest works include [77,78] where the authors use the location data

from a particular geographic area and try to build models in order to improve the knowledge

about these areas. Using the visit information of individual users they mine the trajectory

patterns which are later ranked. In another work [58] the authors use Instagram data to find

places of interest within a city. The city dynamics are shown to be correlated with temporal

photo sharing. The authors of [79] take advantage of the tourist activity within a city by

analyzing their check-ins and then construct a travel diary of important trajectories. They

suggest that such diary can be useful for applications in location and transportation man-

agement. Similar applications using geotagged data from social media have been proposed

by the authors of [80–82].

Apart from improving the knowledge about a geographic area the other problem which

gained a lot of interests among researchers was detecting an event. For example, in [68] the

authors present a very simple approach to identify events using Flickr data from a selected

set of geographic regions with the help of past activity. The work described in [83] uses

geotagged posts from Instagram to detect hyper-local events within New York City. The

authors use a time-ordered stream of media to detect abnormal signals followed by a classifier

implementation to decide if the signal corresponds to an actual signal. [84] is another event

detection work in which the authors used geotagged Instagram photos to analyze the time

series followed by a classification approach. In another work [85], the authors presented an

unsupervised approach to detect events and localize them based on the geotagged posts from

Instagram.

The problem we are trying to solve in this chapter is different from these past works. Our

focus is to estimate the path of an event in space during its time span. We try to achieve

this goal in a completely unsupervised way without any use of historical data from different

regions. One of the works which comes closest to our approach is presented by the authors

of [5]. An event detection model is first implemented based on temporal features which pro-

duces a set of candidates for location estimation. The positive examples are then processed

in the spatial model using the principles of Kalman filter and Particle filter techniques. One

drawback of using this kind of approach is that the observations need to be in chronological
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order along the true path. This might not be true in most cases because the human sensors,

unlike the physical sensors, do not have the strict property to send a signal as soon as some-

thing is sensed by them. Thus, this leads to a random order of data arrival which does not

fit the existing estimation models and we need a new solution to handle the scenario where

noise is present in both space and time domains.

6.6 SUMMARY

This chapter presents a novel algorithm using social media data to estimate the path

of an event as it moves across the space over a period of time. One important factor

which we consider in this chapter is that the observations made by users can be reported in

random order as the event moves. This poses a challenge for the traditional target estimation

models and requires a new solution. We propose a simple unsupervised algorithm that first

eliminates the noisy locations to produce a set of candidate locations which are then used to

estimate the path of the event. We also reconstruct the timeline of the event that matches

with the ground truth. Our performance evaluation using four real-world dataset shows that

we estimate the path more accurately than the baseline methods.
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CHAPTER 7: FUSING TWITTER AND INSTAGRAM

This chapter describes the implementation of a service to identify and geo-locate real

world events that may be present as social activity signals in two different social networks.

Specifically, we focus on content shared by users on Twitter and Instagram in order to

design a system capable of fusing data across multiple networks. In the first two chapters we

demonstrated the capability to detect physical events using Twitter and Instagram. However,

many of these signals need corroboration in order to handle events that lack proper support

within a single network. We leverage this insight to design an unsupervised approach that

can correlate event signals across multiple social networks. Our algorithm can detect events

and identify the location of the event occurrence. We evaluate our algorithm using both

simulations and real world datasets collected using Twitter and Instagram. The results

indicate that our algorithm significantly improves false positive elimination and attains high

precision compared to baseline methods on real world datasets.

7.1 OVERVIEW

The main contribution of this chapter lies in developing a service that uses a fusion al-

gorithm for physical event detection from multiple social networks as a way to improve the

accuracy of event detection. Specifically, we fuse data feeds from Twitter and Instagram.

The two networks have complementary advantages. Twitter data are more prolific, leading

to detection of more events, but as shown in our evaluation, it is also more noisy, generating

more false-positives. In contrast, Instagram data feeds are sparser, which leads to the benefit

of fewer false positives at the expense of detecting fewer events. We show that fusing the

two together can offer a solution that features the benefits of both; the results have a much

smaller fraction of false positives compared to using Twitter alone, and have more events de-

tected, compared to Instagram. We believe that the solution described in this chapter offers

a new point in the trade-off space between precision and recall in event detection techniques

from social media data, aiming to combine the benefits of past solutions.

The key underlying analytical contribution lies in a new expectation maximization algo-

rithm that enables event detection using fusion of data feeds from different social networks.

By combining data from multiple social media, we are able to detect events that may not

have enough corroboration in one network or be indistinguishable from “noise” in another.

The algorithm considers the smaller of the data feeds (presently, it is Instagram). For each

object in that feed, it attempts to find related objects in the larger feed (Twitter). It then
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uses a novel model to statistically estimate the likelihood that the found set of data objects

describe a consistent event. If so, an event is said to have been detected. Events detected

using this algorithm strike a better balance between false positives and false negatives, com-

pared to either network in isolation, which is the main contribution of the new work.

In Chapter 2 and 5, respectively, we described a system that uses feeds from Twitter [23]

(alone) and Instagram [85] (alone) to detect events. This chapter builds on such prior work

by offering a novel fusion algorithm that aims to offer a better trade-off between precision

and recall of the individual approaches.

The rest of this chapter is organized as follows. Section 7.2 describes the complete ar-

chitecture of the system we implemented on which the fusion algorithm runs followed the

problem formulation and the algorithm of our approach. The evaluation is discussed in

Section 7.3. Related work is described in Section 7.4. Finally, conclusions are presented in

Section 7.5.

7.2 SYSTEM DESIGN

Our service consists of several runtime modules as illustrated in Figure 7.1. The function-

ality of each module is described below:

Task Info
Twitter 

Crawler
Instagram 
Crawler

Daily
Data …

Daily
Data …

Hourly Periodic Task Hourly Periodic Task

Tweet 
Clustering 

Module
Instagram

Event Localizer

Hourly
Clusters ..

Hourly
Events ..

EM-Fusion
Hourly
Images

& Tweets

SocialFusion
Service

Hourly 
Periodic 

Task

REST API

Front End
Client

Figure 7.1: Implementing Social Fusion as a Service
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1. Crawler: This module is provided with a Task Info file which contains the keywords

entered by the user to initiate the search query. We crawl data every one hour from

both Twitter and Instagram with the help of APIs and store it on the disk by grouping

data into daily bins.

2. Tweet Clustering Module: We use the clustering approach described in [86] to remove

all the redundant tweets. This module is initiated as soon as a bin gets updated by

the crawler module and outputs a set of hourly clusters in a separate file on the disk.

3. Instagram Event Localizer: This module runs an user provided event detection tech-

nique on the crawled data from Instagram and generates hourly event clusters for each

bin.

4. EM-Fusion: This module contains the main fusion algorithm which we describe later

in the paper. It reads the data from disk generated by previous two modules and

produces an output for all detected events comprising of tweets and images.

5. Social Fusion Service: The last module of our service takes care of interaction with

the front end client and the output generated using the fusion algorithm.

7.2.1 Problem Statement

In our previous work, we used Instagram and Twitter separately as social networks to

localize events in urban spaces. In order to understand whether fusion is feasible, we need

to establish that the same events can leave a signature on both networks. Towards that

end, we collected data on the topic of protests (i.e., collected tweets and Instagram images

tagged “protest”). We then clustered Instagram posts on the topic with the expectation

that clusters of images containing the “protest” tag, that originate roughly from the same

time and space, likely describe a protest at the indicated time and location. We conducted a

small study on a few such clusters of Instagram objects, to check if the corresponding events

are also mentioned on Twitter. Table 7.1 contains two examples from the Instagram protest

dataset. Each of these correspond to cluster locations originating multiple pictures tagged

as a protest. The set of all hashtags of these pictures is indicated. We scanned the Twitter

protest dataset for the same 24 hour interval during which events were identified using our

Twitter-based event detection technique [23]. The technique identifies events together with

their salient keywords. It is clearly evident from the corresponding tweets and keywords

that they refer to the same events and locations. Thus, we can see that a mapping exists

between events detected on the two individual networks. The next step is to figure out a
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way that can automatically identify this mapping without user interference, even for events

that are not independently detected in one or both of the networks.

Table 7.1: Event match examples using Instagram and Twitter

Instagram
Location

Instagram Tags Tweets Event Signature

(39.045417,
-95.721562)

[’picket’,
’brainwashed’,
’westboro’, ’protest’,
’important’, ’wbc’,
’truth’,
’spreadtheword’,
’westborobap-
tistchurch’, ’true’,
’dontworrybehappy’]

(1) you realize christians protest
westboro baptists right is wrong
(2) westboro baptist church really
protest gunderson production laramie
project put years ago
(3) fisher westboro protest offers
gunderson students opportunity show
grizzly pride

(westboro, protest)

(37.7870288,
-122.407553)

[’protest’, ’themission’,
’gentrification’,
’valenciacorridor’,
’googlebus’,
’displacement’]

(1) laylamrazavi el desalojo ya basta
protest googlebus displacement
gentrification valenciacorridor
(2) video tech workers displaced
googlebus protest catch another bus
(3) tech buses blocked 45 minutes 2
yrs amp 2 months 1st googlebus
protest sfbos sfmayor sb50

(googlebus, protest)

The mapping between related Instagram and Twitter feeds, referred to above, is done on

two steps. First, we start with the smaller feed (Instagram). For each object posted in this

feed, we identify all potentially related posts in the larger (Twitter) feed. Second, with the

set of potentially related posts identified, we make a decision on whether they correspond to

a real event, or whether the similarity is accidental. These steps are described in the next

subsections, respectively.

7.2.2 Finding Potentially Related Posts

To find which Instagram posts are potentially related to which Twitter posts, we need a

logical distance metric between an Instagram post and Twitter posts. A convenient metric is

the location referred to in the post. However, most tweets do not mention location. Thus, we

also need to consider keywords. Instagram posts contain image tags (hashtags). We therefore

need to identify whether words contained in a tweet are related to these hashtags or not. In

this chapter, we choose a “quick and simple” approach that relies on string matching, but

does not consider semantics. Better algorithms can be developed by considering semantic

distance between different strings.

In developing a string-matching approach, an important question is which string to match?

A further look at the event examples in Table 7.1 reveals that not all the Instagram hashtags

are equally important in finding matching tweets. For example, in case of the first event
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“westboro” and “westborobaptistchurch” are the only significant tags that help identify the

three tweets corroborating the detection. Similarly, in the case of the second event “google-

bus”, “gentrification”, “valenciacorridor”, and “displacement” are the significant tags that

can identify the related tweets. We need to define a metric that helps us find all the tweets

that are potentially related to a given set of Instagram hashtags.

To reduce the noise, we first do some preprocessing on tweet text by removing the English

stopwords, special characters (non alphanumeric), and weblinks. We also do not consider

the query keyword (e.g., protest) as it will be present in all the Instagram/Twitter posts by

default.1 It is also important to note that the hashtags are sometimes composed of multiple

words merged together. For example, consider the first event again from Table 7.1 in which

the significant tag “westborobaptistchurch” is actually composed of three different words -

westboro, baptist, and church. In order to overcome this issue, we use the processed tweet

text and remove all the white spaces to form a single string. Next, we determine the number

of hashtags from the Instagram post that are present as a substring within the modified

tweet string. This metric known as tag similarity is defined as below:

tag sim =
# of tags present as substring in tweet string

# of tags
(7.1)

Based on equation 7.1, the similarity score for the tweet - “westboro baptist church really

protest gunderson production laramie project put years ago” will be 2
10

(We do not consider

the query keyword (protest) which was used to collect the datasets in this calculation).

Thus the only tags that are present as substrings within the main string are “westboro” and

“westborobaptistchurch”.

Table 7.2: Top 5 tweets for Instagram location using tag similarity metric

Instagram Location: (-33.89102, 151.277726)

Location Name: Bondi Beach, New South Wales, Australia

Tag Similarity Tweets

(1) great symbolic protest happening right bondi beach
sydney bondi electorate turnbull time
(2) the people wentworth tell letthemstay protest morning
bondi beach
(3) photos morning letthemstay protest bondi
(4) people gather across australia protest return
asylumseekers naru letthemstay
(5) saudiarabia wants behead teenager taking part protest
humanrights humanity bbc

Using the above defined metric we can now identify tweets that are potentially related to a

given Instagram post. If multiple Instagram posts originate from the same location, we can

1Remember that in our example, the data was collected by querying Instagram and Twitter for all posts
containing the query word, “protest”.
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combine their tags and compute distance of individual tweets with respect to that combined

tag set. This distance will yield similarity to a potential event at the given location. Table 7.2

shows the top five tweets using the metric for a given Instagram location. We emphasize

that these are potentially relevant tweets. We do not yet know, based on the above distance

metric alone, if they are truly relevant or not (i.e., only accidentally similar). A contribution

of our work, described below, is to offer a maximum likelihood estimate of actual relevance.

This algorithm leads to the discovery of three separate quantities: (i) whether an Instagram

location is an actual event location or not, (ii) for a given Instagram event location, what are

the significant tags and the corresponding relevant tweets corroborating the observation, and

(iii) what is the exact geo-coordinate where the event happened. We propose an unsupervised

method in which we assume that we have no prior knowledge of the significance of the

Instagram tags as well as the relevance of the tweets using the above similarity metric. The

details of this model are described in the following subsection.

7.2.3 Fusion Model

Let us assume that a selected Instagram event detection technique generates cluster

(E1.E2. . . . EK) within a time interval. We then identify the union of the hashtag words

W1,W2, . . .WM that are present in each event cluster Ek. With the help of the geo-tagged

coordinates associated with a cluster we also retrieve the exact location name using the

Google Maps API [37] service. This location name is of the form L1, L2, . . . LL where each

Ll is a component in the address hierarchy L. Let T be the set of tweets T1, T2, . . . TN

retrieved using the tag similarity metric for the hashtags. Since a tweet can have more

than one hashtag, we define Ai as the signature (comprising of one or more hashtags) which

retrieves the tweet Tj. We define Rj as the relevance variable (Rj ∈ {0, 1}) indicating if a

particular tweet Tj is relevant to an event cluster Ek or not. For every hashtag signature

Ai we have a group of associated tweets. This enables us to find the average word vector

that can be related to the hashtag signature Ai. We define the average word vector as the

list of all distinct words from the associated tweets using their average count. We also link

Ll to a tweet Tj depending on whether the location name appears in the tweet or not. The

definition of all the notations used are mentioned in Table 7.3.

For every tweet Tj we can now define a score based on its distance (using cosine similarity)

from the average word vector of corresponding hashtag signature Ai. It can be assumed that

all the relevant tweets are more likely to represent the same information. Thus a hashtag

signature Ai generating relevant tweets will have an average word vector close to all the

relevant tweets resulting in high similarity scores. Whereas a tag signature generating noisy
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Table 7.3: Definition of Notations

Ek Instagram Event Cluster

Ai
Signature composed of hashtags
used in a cluster Ek

Tj Tweet associated with a cluster Ek

Ll
Location name associated with a
cluster Ek

Rj Relevance of a tweet ∈ {0, 1}

Cij

Coherence score using word vector
of hashtag Ai and corresponding
tweet Tj

Llj
Indicator if location Ll appears in
Tj ∈ {0, 1}

B(α, β)
Beta distribution with parameters
α and β

tweets will produce a word vector that results in low similarity scores. We define this property

as Coherence which tries to distinguish between the two set of classes. At the same time we

also use the location information to increase the confidence of our assumption. For every

location name Ll we define pl as the probability that it appears in the tweet Tj given that

it is relevant and ql as the probability that it appears in the tweet Tj given that it is not

relevant. Mathematically, we can define these terms as follows:

pl = P (Llj = 1|Rj = 1) (7.2a)

ql = P (Llj = 1|Rj = 0) (7.2b)

We consider that a location name is more likely to be a part of relevant tweet than

the irrelevant tweet and hence put the condition pl ≥ ql. For example, in Table 7.2 the

location name Bondi Beach appears in all the relevant tweets. Also the Coherence property

varies in the range [0,1] which allows us to define a Beta distribution for the two classes.

The motivation behind using the Beta distribution is that it is more suitable for a random

behavior of proportions. We set the parameters as (αR, βR) for Rj = 1 and (αR̃, βR̃) for

Rj = 0. We can now define the conditional probabilities for a tweet Tj using the coherence

score and the location names as defined below:

95



P (Cij |Rj = 1) = B(αR, βR, Cij)

P (Cij |Rj = 0) = B(αR̃, βR̃, Cij)

P (L|Rj = 1) =
L∏
l=1

p
Llj

l (1− pl)(1−Llj)

P (L|Rj = 0) =
L∏
l=1

q
Llj

l (1− ql)(1−Llj)

We use the Expectation-Maximization (EM) algorithm in order to find the relevance

(latent variable) of the tweets and also estimate the unknown parameters for the Coherence

and location names. Given an observed data X, that is the Instagram tags and location

names along with retrieved tweets, one should carefully select the values of the latent variable

R and the unknown parameters θ to formulate the likelihood function f(θ;X,R) = p(X,R|θ).
The EM algorithm finds the maximum likelihood estimate by iteratively performing the

following steps:

• E-step: Compute the expected log likelihood function, where the expectation is taken

with respect to the computed conditional distribution of the latent variables given the

current settings and observed data:

Q(θ|θ(t)) = ER|X,θ(t) [logf(θ;X,R)] (7.4)

• M-step: Find the parameters that maximize the Q function in the E-step to be used

as the estimate of θ for the next iteration:

θ(t+1) = argmax Q(θ|θ(t)) (7.5)

We denote the probability of a tweet being relevant P (Rj = 1) as d. Thus, the set of

unknown parameters for the observed data X is given by θ = (pl, ql, αR, βR, αR̃, βR̃, d). The

likelihood function f(θ;X,R) is given by:

p(X,R|θ) =

N∏
j=1

{
L∏
l=1

p
Llj

l (1− pl)(1−Llj) ×B(αR, βR, Cij)× d×Rj

+
L∏
l=1

q
Llj

l (1− ql)(1−Llj) ×B(αR̃, βR̃, Cij)× (1− d)× (1−Rj)
}

(7.6)
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In eq. (7.6), d represents the overall prior probability that an arbitrary tweet is relevant.

We can now formulate an expectation maximization algorithm that jointly estimates the

parameter vector θ and the probability that latent variable Rj = 1.

7.2.4 Deriving the E-step and M-step

Given the likelihood function as described in eq. (7.6), we substitute it to the definition

of Q function of the Expectation Maximization. Thus the E-step becomes:

Q(θ|θ(t)) = ER|X,θ(t) [logf(θ;X,R)]

=

N∑
j=1

{
P (Rj = 1|Xj , θ(t))×

[ L∑
l=1

(Llj logpl + (1− Llj)log(1− pl))

+ logB(αR, βR, Cij) + logd

]
+

P (Rj = 0|Xj , θ(t))×
[ L∑
l=1

(Llj logql + (1− Llj)log(1− ql))

+ logB(αR̃, βR̃, Cij) + log(1− d)

]}
(7.7)

where Xj is the location names and the hashtag signature Ai associated with a tweet Tj and

P (Rj = 1|Xj, θ
(t)) is the conditional probability of the latent variable Rj to be true for the

given set of observations, which is given by:

P (Rj = 1|Xj , θ(t)) = R(t, j)

=
P (Xj , θ

(t)|Rj = 1)P (Rj = 1)

P (Xj , θ(t)|Rj = 1)P (Rj = 1) + P (Xj , θ(t)|Rj = 0)P (Rj = 0)

=
U(t, j)× d

U(t, j)× d+ V (t, j)× (1− d)
(7.8)

where U(t, j) and V (t, j) are defined as:

U(t, j) =

L∏
l=1

p
Llj

l (1− pl)(1−Llj) ×B(αR, βR, Cij) (7.9a)

V (t, j) =

L∏
l=1

q
Llj

l (1− ql)(1−Llj) ×B(αR̃, βR̃, Cij) (7.9b)
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Similarly, P (Rj = 0|Xj, θ
(t)) can be represented as:

P (Rj = 0|Xj , θ(t)) = 1−R(t, j)

=
V (t, j)× (1− d)

U(t, j)× d+ V (t, j)× (1− d)
(7.10)

Substituting from eq. (7.8) and eq. (7.10) into eq. (7.7) we get:

Q(θ|θ(t)) = ER|X,θ(t) [logf(θ;X,R)]

=
N∑
j=1

{
R(t, j)×

[ L∑
l=1

(Llj logpl + (1− Llj)log(1− pl))

+ logB(αR, βR, Cij) + logd

]
+

(1−R(t, j))×
[ L∑
l=1

(Llj logql + (1− Llj)log(1− ql))

+ logB(αR̃, βR̃, Cij) + log(1− d)

]}
(7.11)

For the M-step we select θ∗ that maximizes Q(θ|θ(t)). Thus, we set the derivatives ∂Q
∂pl

= 0,
∂Q
∂ql

= 0, ∂Q
∂αR

= 0, ∂Q
∂βR

= 0, ∂Q
∂αR̃

= 0, ∂Q
∂βR̃

= 0, and ∂Q
∂d

= 0. With respect to d we have the

following equation:

N∑
j=1

R(t, j)

d
+

N∑
j=1

(1−R(t, j))

1− d
(7.12)

Solving the eq. (7.12) we get the following value of d:

d(t+1) = d∗ =

∑N
j=1R(t, j)

N
(7.13)

Since we have an inequality defined with respect to pl and ql, we use the Karush-Kuhn-

Tucker (KKT) conditions while performing the maximization step. Thus our inequality

constraint (g : ql − pl ≤ 0) allows us to define two regions depending on whether the

constraint is inactive or active. In the case where g is inactive the Lagrangian multiplier (λ)

will have a value 0 and we get the following equations:
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N∑
j=1

[
R(t, j)(

Llj
p∗l
− 1− Llj

1− p∗l
)

]
= 0 (7.14a)

N∑
j=1

[
(1−R(t, j))(

Llj
q∗l
− 1− Llj

1− q∗l
)

]
= 0 (7.14b)

Solving the above set of equations we get the following values of p∗l and q∗l :

p
(t+1)
l = p∗l =

∑
Llj=1R(t, j)∑
R(t, j)

(7.15a)

q
(t+1)
l = q∗l =

Kl −
∑

Llj=1R(t, j)

N −
∑
R(t, j)

(7.15b)

where Kl is the total number of tweets in which location name Ll is present. However, if

the constraint is not satisfied and we are in the active region, then we need to solve for the

Lagrangian multiplier subject to the condition λ ≥ 0. By solving for the optimal values, we

get the following equation:

p∗l = q∗l =

∑N
j=1R(t, j)

N
(7.16)

From the above equation we see that pl and ql have the same value, which indicates that

the location name does not have a pivotal role in determining the relevancy of the tweet.

For the Beta distribution parameters, we get the following set of equations:

ψ(α∗R)− ψ(α∗R + β∗R) =
1

N

N∑
j=1

R(t, j)logCij (7.17a)

ψ(β∗R)− ψ(α∗R + β∗R) =
1

N

N∑
j=1

R(t, j)log(1− Cij) (7.17b)

ψ(α∗
R̃

)− ψ(α∗
R̃

+ β∗
R̃

) =
1

N

N∑
j=1

(1−R(t, j))logCij (7.17c)
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ψ(β∗
R̃

)− ψ(α∗
R̃

+ β∗
R̃

) =
1

N

N∑
j=1

(1−R(t, j))log(1− Cij) (7.17d)

In order to find the optimal values of the parameters, we use the Newton-Raphson method

on the above set of equations. The work described in [87] covers the Newton-Raphson

method derivation for maximum likelihood estimation. Once we have relevance computed

as a probability value, we can next run the event detection technique for Twitter as well.

For every Instagram cluster, we say that the event is true if it has a corresponding set of

relevant tweets and for every Twitter cluster we only retain the tweets that got classified as

relevant. In this way, we achieve our goal of corroborating the events detected on both the

networks.

7.3 EVALUATION

Our evaluation is divided into two sections. The first one is a simulation study on a

synthetic data which allows us to verify the formulated Expectation-Maximization (EM)

approach. The second one is an actual experiment on the Social Fusion service using real

world dataset. The details of both the experiments are presented below.

7.3.1 Simulation Study

We use Python programming language to code the simulator and the final algorithm. The

number (N) of tweets is varied between {100, 200, 500, 1000} and the Coherence score is

obtained using the Beta distribution. For every N tweets, we also pre-define the fraction

(d) of tweets that will be labeled as relevant (R = 1). The value of d is varied between

{0.1, 0.2, 0.5}. We also use three location names for every run of the simulation. The values

for the parameters associated with location names are shown in Table 7.4. For the case of

Street Name we expect the tweet to be more likely relevant while State has an equal chance

of being present in relevant and irrelevant tweets. For every N selected tweets we select the

fraction d that will be marked as relevant. Once we have the ground truth available for the

tweets we next use the the location specifier parameters to link the location names with the

tweets depending on the relevance value. Finally we assign the Coherence score using the

Beta distribution as described above.

Figure 7.2 shows the different parameter (α, β) settings that we consider to generate the

Coherence score of a tweet given the label. The x-axis is the Coherence score and the y-axis
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Table 7.4: Location specifier for simulation

Type (Ll) pl ql
Street Name 0.8 0.2

City 0.6 0.3

State 0.5 0.5

Figure 7.2: Different Parameter Settings on Beta Distribution for Coherence

is the probability density. The region in green color represents the relevant tweet scores and

the region in blue color represents the irrelevant tweet scores. Parameter setting I is the case

where majority of the relevant tweets are concentrated towards the high coherence score

and majority of the irrelevant tweets are concentrated towards the low coherence score.

Parameter setting II is the case where we keep relevant tweet score distribution same as

setting I but change the irrelevant tweet score distribution slightly towards a moderate score

range. Finally Paramete setting III is the case where there is a significant overlap between

the two distributions. In a real world environment, it would not be surprising to observe

this kind of distribution. For each parameter setting, we run our algorithm and compare

the expected labels with the original labels. We use three metrics - Precision, Recall, and

Accuracy to measure the performance. For every combination of N , d, and Coherence

parameter settings we run the simulator and the algorithm 10 times and take the average

value for each metric.

Figure 7.3 is the metric evaluation plot for simulation using the parameter setting I. The

first subplot is for precision, which measures the fraction of expected relevant tweets that are

correctly labeled (as relevant). The x-axis represent the number of tweets with d fraction of

tweets labeled as relevant. The y-axis represents the average precision value over 10 runs for

the corresponding settings. The second subplot is for recall, which measures what fraction

of relevant tweets that have been identified as such. The x-axis represents the number of

tweets with d fraction of tweets labeled as relevant and the y-axis represents the average

recall value over 10 runs for the corresponding setting. The third subplot shows the accuracy

of the overall algorithm at correctly labeling the relevant and irrelevant tweets. Figure 7.4

is the metric evaluation plot for simulation using the parameter setting II and figure 7.5 is
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the metric evaluation plot for simulation using the parameter setting III. For the first two

parameter settings, precision and accuracy of the model are well above 90% and recall is

above 80% on average. The third parameter setting, which has a significant overlap in the

Coherence distribution between the two classes generates slighlty lower values in terms of

precision and recall compared to the previous parameter settings.

Table 7.5: Average error in parameter estimation

Parameter Average Error

d 0.0122
pl, ql 0.0103, 0.0292
αR, βR 0.0231, 0.0366

αR̃, βR̃ 0.0128, 0.0488

In addition to the above comparisons, we also determine the average error in the estimation

of the fraction of tweets d, location name parameters, and the Beta distribution parameters

used for Coherence score. Table 7.5 indicates the average error values over all the runs

with different combinations of parameter and tweet count N settings. The average error

in estimating the value for different parameters is well within 0.05. Thus, with the help of

simulation experiments, we have established the fact that our fusion model using the EM

algorithm is very good at identifying the relevance of a given set of tweets associated with

an Instagram location and hashtags. It remains to verify that this is indeed the case with

real Twitter and Instagram data, which is the topic of the next section.

Figure 7.3: Evaluation plots for simulation using Parameter Setting I

Figure 7.4: Evaluation plots for simulation using Parameter Setting II
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Figure 7.5: Evaluation plots for simulation using Parameter Setting III

7.3.2 Dataset Experiments

In this section, we discuss evaluation using a real world dataset. We conduct this exper-

iment on the Social Fusion service that we implemented to run the fusion algorithm. The

Task Info file was provided with the keyword “protest” which initiated the crawler module to

collect data from both Twitter and Instagram. We specifically consider the data logged on to

the disk for the time duration February 1, 2016 to February 29, 2016. Table 7.6 summarizes

the data collected during this period. For each row we show the total number of tweets,

the fraction of tweets that are geotagged (tweets with latitude and longitude information

available), and the number of Instagram posts. We retain only those Instagram posts that

have location information available.

Table 7.6: Statistics of collected datasets

Dataset # Tweets
Geotag
Fraction

Insta-
gram
posts

Feb 2016 Week 1 77001 0.0016 1377
Feb 2016 Week 2 78334 0.0012 1424
Feb 2016 Week 3 75639 0.0015 1489

Feb 2016 Week 4 64669 0.0015 1398

We first show that our Coherence metric indeed meaningfully distinguishes relevant and

non-relevant tweets (to a given Instagram post). To do so we consider an arbitrary sample

of clusters generated by the Instagram Event Localizer module along with the candidate

tweets. For each cluster we manually label the tweets as relevant and non-relevant. We

then generate a frequency distribution of the respective Coherence scores which is shown

in figure 7.6, where the left subplot corresponds to the relevant tweet scores and the right

subplot corresponds to the non-relevant tweet scores. It can be observed that we have

two different Beta-like distributions that can be approximated using our model. This plot

validates our model assumptions regarding the distribution of Coherence of relevant and

non-relevant tweets.
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Figure 7.6: Frequency distribution for Coherence scores

In order to evaluate the performance of our fusion model at event detection, we select two

individual event detection techniques for each Instagram and Twitter. The Points of Interest

(POI) method described in [58] and the Instagram Event localization (InstaLoc) [85] are used

for detecting events on Instagram dataset. The Earthquake detection (TweetEvent) [5] and

ClariSense [23] are used for detecting events on Twitter dataset. The evaluation is done

using two separate criteria. The first one is the improvement in the amount of detected

events against the Instagram detection techniques itself. The second one is the fraction of

false positives present in the data against Twitter based detection techniques.

For both the Instagram event detection techniques, we eliminate the below threshold

clusters as mentioned in the respective papers but do not follow the same while applying the

social fusion method. This allows us to see if the clusters that got eliminated due to lack of

support can actually be identified using the fusion method. At the same time we use both

the Twitter detection techniques with the same parameters mentioned in the papers, and

for the fusion method we only retain those clusters that contain any relevant tweets. With

the mentioned techniques we have four pairs of baselines - (i) POI and TweetEvent (B1),

(ii) InstaLoc and TweetEvent (B2), (iii) POI and ClariSense (B3), and (iv) InstaLoc and

ClariSense (B4).

Figure 7.7 shows the plot for comparison with and without the fusion model for each

of the baseline methods in order to find the improvement in the number of total events

considering only Instagram detection techniques. There are four subplots for each week in

the dataset with x-axis representing the baseline method and the y-axis representing the

total detected events. It is evident from the plot that with the help of fusion model we are

able to detect more events in general for any selected baseline method. Figure 7.8 shows

the plot for comparison with and without the fusion model for each of the baseline methods

in order to find the precision considering only Twitter detection techniques. There are four

subplots for each week in the dataset with x-axis representing the baseline method and the
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y-axis representing the precision. This plot shows that with the help of fusion model we are

able to remove a significant amount of false positives thereby resulting in a higher precision.

The results substantiate the contribution claim made in this paper. Namely, the new

fusion based technique offers a better trade-off between false-positives and false-negatives

attained using techniques that exploit individual networks separately. We offer significantly

fewer false-positives than Twitter-based detection, and significantly fewer false-negatives

(i.e., more true positives) than Instagram-based detection, thereby attaining a new point in

the aformentioned trade-off space.

Figure 7.7: Instagram detection improvement - comparison of different baseline methods
with and without fusion method

Figure 7.8: Twitter detection precision - comparison of different baseline methods with and
without fusion method

7.4 RELATED WORK

Past works [5], [88], [89] have demonstrated that events can indeed be detected using

techniques that try to model the behavior of the pattern of extracted features before, during,

and after the events. One such technique, is described by the authors of [90] where they

apply wavelet analysis on the raw frequency of the words used on Twitter stream and then

remove trivial words using the signal correlation. In our previous work [23], we showed how

Twitter posts can be used to detect events in an unsupervised fashion. A few papers have also

focused on using the geo-tag information available within the content in order to find clusters

that have unusual behavior compared to a stored history within a spatial region. Instagram
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is another social network where people post pictures and videos with a higher percentage

of geo-tag compared to Twitter. The use of locations by the users tends to deliver much

credible information. However the amount of such data available is less but considerably

higher than Twitter. Various event detection techniques using Instagram have also been

studied in the past. One such work described by the authors of [84] has been promising for

monitoring city level local events. [58] is the earliest work that uses Instagram to study the

urban social behavior and the city dynamics. In our own recent work [85] we showed how

to identify events for urban spaces in an unsupervised way. Contrary to all the previous

approaches not much work has been done in fusing the same entities (or events) detected in

multiple networks thereby enhancing the overall credibility of the events. The work described

by authors of [91] considers Twitter and Instagram data to detect and summarize events

but they rely on supervised techniques along with geo-location information. However in this

chapter we aim at improving event detection by fusing data across multiple networks without

any dependence on historical data and detect events with varying degree of popularity.

Such events can be effectively retrieved by our fusion method provided enough correlation

exists between the data posts on different networks, even when it is hard to detect them by

analyzing each network independently. Our work provides an important means to fill the

gap in identifying and corroborating the events present in multiple networks.

7.5 SUMMARY

This chapter describes a service which uses a fusion model for integrating data from

two different social media platforms, namely, Twitter and Instagram. The work offers a

better trade-off between false-positives and false-negatives compared to approaches that

utilize individual networks independently. Specifically, we show that we offer fewer false

positives compared to Twitter and fewer false negatives compared to Instagram, offering a

new point on the trade-off curve. The motivation for our work comes from the fact that many

events offer signatures in multiple networks that can somehow be correlated with the help of

intrinsic characteristics such as location mentions and coherence among event descriptions.

We design an algorithm that is capable of fusing content from Twitter and Instagram in an

unsupervised way. We first study the validity of our model using simulations and evaluate

the performanace using precision and recall metrics. Finally, we use real world datasets to

confirm the advantages of the fusion approach. We would like to mention that even though

our experiments are based on two specific social networks but the same approach can be

generalized to other social networks provided they share some feature space (such as words)

to generate potential candidates from one of the networks.
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CHAPTER 8: CONCLUSIONS

This chapter provides a summary of the research presented in this dissertation and also a

follow-up discussion section focused on the things that we learnt from all the research, what

still needs to be explored, and future work.

8.1 SUMMARY

The explosive growth in social network content suggests that social sensing might be the

future of sensing. In this dissertation, we have presented a series of fundamental approaches

to detect, localize, and track events taking place in the real world with the help of data

shared by users on social media platforms. A key feature that distinguishes our research

from the past literature is the ability to produce quality output in an unsupervised fashion

while being language agnostic. We first start with a simple statistical approach to detect

and track events using Twitter feeds and evaluate the performance against some well known

supervised approaches. We then extend this work to measure the quality of information

available within the Twitter network in order to localize the detected events to a specific

coarse-grained location. We next move our focus to a different social network, Instagram,

that offers pictorial observations with more geo-tagged data as opposed to Twitter. The

higher fraction of geo-tagged data allows us to device a new approach to detect and localize

events for Instagram. In addition, we also try to estimate the trajectory of the events

that are mobile in the geospace. The path estimation problem poses new challenges due

to sporadic nature of the observations made by users. Finally, we come up with a new

solution that looks at the benefits associated with the two social networks, Twitter and

Instagram, in order to perform better than the approaches geared towards the individual

networks. A fusion method is applied that offers a trade-off between precision and recall for

event detection. The different research works described in this dissertation have also been

integrated as a unified software package that is available for public use. We hope that our

work provides a base to the future researchers and helps them build a stronger foundation.

8.2 DISCUSSION

The work presented in this dissertation opens up a new research direction for solving simple

yet challenging problems pertaining to event detection and tracking using social media. At

first, one needs to be specific with the definition of an event before buidling up the solution to
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handle the different challenges involved. For the purpose of our research, we confine ourselves

to events that are associated with temporal and spatial attributes. However, a broad number

of event categories can still fulfill the criteria of this definition, such as a person going for a

trip from home to office between 8:00 am to 8:30 am. This example has both spatial and

temporal attributes due to which it qualifies as an event. Rather, we focus on events that

not only have these two attributes but also carry some attraction from the users (acting as

human sensors) who are distibuted in the space. The users don’t necessarily (i) need to be

present at the place of event occurrence, and (ii) report the observations during the event

duration. In addition, the events can be irregular in nature, as opposed to a person taking

a trip daily from home to office, and also be spread over multiple disjoint regions in a vast

space. These are the high level descriptors in our event definition that require us to design

techniques capable of identifying the true signals from the user observations.

In Chapter 2 we introduced a language agnostic unsupervised technique to detect and

track events using the feeds from Twitter. Our technique is based on a very simple sparsity

analysis which lets us to use keyword pairs as signatures to detect events. But the same

analysis is valid for even keyword triplet and one might question about why did we stop at

keyword pairs? To answer this, we analyzed a subset of the traffic datasets collected from 3

different cities in California as described in Chapter 3.

Table 8.1: Event Signatures Mapping

Signature Events per Signature Signatures per Event

Single Keyword 3.621 1.1579

Keyword Pair 1.1416 1.2725

Keyword Triplet 1.0628 0.4393

The aim was to figure out if can one find a set of keywords that would have a one-to-

one correspondence with a unique event (to use as event signature)? We considered three

types of candidate event signatures; namely, signatures comprised of a single keyword (e.g.,

“fire”), those comprised of a keyword pair (e.g., “fire”, “stadium”), and those comprised of

a keyword triplet (e.g., “fire”, “stadium”, “killed”). We then mapped these signatures to

physical events they describe and for each candidate signature we determine (i) how many

distinct physical events match a single signature, and (ii) how many distinct signatures

match a single physical event? Ideally, both the values should be close to 1 for a one-to-one

mapping between events and their signatures. Table 8.1 shows the results for the three types

of signatures considered. From the table, it can be seen that keyword pairs come closest

to a one-to-one correspondence between independent events and their keyword signatures.
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Even though the number of events per signature for a keyword triplet is the least but the

keyword pairs create a sparse space that is enough to find the separate instances of the events.

Another factor to consider is the computational complexity associated with the candidate

signatures which increases monotonically from n for single keywords, to n2 for keyword pairs,

and to n3 for keyword triplets, assuming the language vocabulary has n distinct words.

There are also a few future work that can be addressed for this component in order

to improve the quality of information being generated. One extension is to understand

the semantics of the tweets present within an event cluster. Our approach is capable of

detecting and demultiplexing the event instances but does not completely answer the 5W s

- who, where, when, what, and why. A few popular techniques, such as the ones described

by the authors of [92, 93], have focused on using tweets to determine these traits. This

extension will enhance the output quality of our service thereby providing a storyboard of

event instances with rich context. Another extension is to add a multilingual flavor which

can improve the accuracy by detecting events in different languages. For example, we can

use the discriminative keyword signatures from one language and transfer that knowledge

to another language. Word embedding [94] is a popular technique to represent the words

from a corpus as vectors in a N dimensional space. The cross-lingual embedding technique

is designed using this principle that can find similar words in different languages. Thus,

this enables us to represent event signatures from one language as vectors and use this

information to find corresponding tweet cluster in a different language.

In Chapter 5 we introduced an event detection and localization technique for Instagram.

During the noise elimination step we categorized the events into two types: Single entity

(SE) and Multiple entity (ME). The false positive clusters for each type were eliminated

on the basis of content (hashtags) similarity between the clusters and the threshold was

obtained based using the size of the clusters generated. However, there are a couple of cases

which pose some limitation to the current technique - (i) when both SE and ME events

occur together within a time frame, and (ii) when an event on the same topic occurs at

different locations, for example, a protest event for the same reason in different cities across

the United States. One way to handle the first limitation is to consider the distribution of

images in time within the clusters. If two or more clusters are related to the same event, then

the time distribution of images will mimic each other along with a similarity in the words

present within the clusters. For example, if we take a sports event, then the time distribution

of images will be similar from the true location (stadium) as well as a false location (a bar)

in another city. However, the total number of images at each timestamp will be different

due to more people being present in the stadium. If all the goals are scored between 10pm

to 10:30pm, then maximum number of images will be shared between these timestamps
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irrespective of the location. With the combination of both words and time distribution, we

can handle SE and ME events together in a better way. For the second limitation we might

have to define a new type of event since it does not qualify as SE or ME. Based on this

definition our technique can be extended to analyze the properties (from the data) of such

events that distinguish them from the other two types.

In Chapter 6 we presented an approach to estimate the trajectory of events that move

across the space during a timeframe. The main contribution of this approach is the removal

of background noise associated with population density to generate candidate points. The

steps for estimating the trajectory from these candidate points are not fully automated. This

can be a possible extension for the future work. One of our challenge while developing the

solution was that of observations arriving out of order. But even then we can assume that

a larger fraction of observations will be present closer to the actual start point. Under this

assumption, we can use the localization technique from Chapter 5 to provide a default start

point for the estimation algorithm.

In Chapter 7 we introduced a fusion technique that considers both the social networks,

Twitter and Instagram, in order to perform better than the individual networks for event

detection. Specifically, we look at the candidate clusters from Instagram and try to find

corresponding events from Twitter which leads to a corroboration. During evaluation we

showed that the number of detected events increased against Instagram only technique and

the number of false positives decreased against Twitter only technique. In this discussion

section we take a look at the same dataset and analyze the different techniques for a randomly

selected period of 7 days to determine the trade-off in precision versus recall. Table 8.2

summarizes the precision and recall of all three algorithms at event detection. More precisely,

since we do not know exactly how many events occurred that might have not been reflected

in the dataset, we define recall by referring to the absolute number of true events detected.

From the table, as expected, we observe that the Instagram only technique has the highest

precision but lowest recall, whereas the Twitter only technique has the lowest precision.

Table 8.2: Precision and recall

Technique Total# events Precision Recall
Instagram 54 87.037% 47
Twitter 174 63.218% 110
Fusion 211 70.616% 149

We also investigate the F1 score for all the techniques, as shown in Figure 8.1. Since, we

do not know the ground-truth total number of true events that occurred in each window

(to properly compute recall), we plot the F1 score for different values of such total on the
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x-axis. From Figure 8.1, we observe that although the Instagram technique has the highest

precision, its F1 score is consistently the lowest due to its poor recall. In contrast, our fusion

based solution has the highest F1 score, which means that it offers the best trade-off between

precision and recall compared to the baselines.
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Figure 8.1: F1 score comparison with varied ground truth of total number of events

One future work extension for the fusion technique is to define the coherence in a better

way. At present, there is a significant overlap between the two coherence score distributions

and this happens due to the fact that we are considering all the words (even if some of them

are meaningless). Not all words are equally important and we can perform some simple

word statistics before forming the central vector. For example, we can simply keep a count

of all words in a timeframe and impose a constraint based on this count as well as word

length. This will eliminate the insignificant words and not include common words that are

too frequent. An additional technique to may be required to handle synonyms that are used

to describe the same event in different ways. We can again use the word embedding as

described earlier to understands the relations between words and train on a large training

corpus of the dataset before we actually begin the fusion for new data.

In addition to the above discussed limitations and future works, one can also argue about

the robustness of the entire system that encompasses the different components presented in

this dissertation. For example, What is the effect of population density on quality of social

sensing? We observed in Chapter 5 how the average number of users vary for different types

of events. Much of our focus is on detecting events that occur in urban spaces since we

expect a higher rate of smartphone adaptation as well as popularity of social media usage

from the corresponding population. There have been a few studies conducted in the past to

measure the quality assurance using social media streams. For example, the work [95] takes

a look at Twitter feeds to study the effect of different sampling techniques on information

diffusion. Similarly, one can conduct a series of new experiments in which the detected events

are sampled from different regions to study the relation of different metrics (precision, recall,
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F1) with the average number of feeds generated from a particular region. The average count

can be based on just the region or on a specific topic within a region. With the latter, we

also get an estimate of the regions that are more active on social media platforms for a given

topic leading to higher rate of event discovery for that topic.

In this discussion we looked at a few limitations of our work and proposed different ways

to handle them. We hope that our proposal will provide a wonderful opportunity for future

researchers to make a new contribution in the field of social sensing.
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