5,975 research outputs found

    In situ decolorization monitoring of textile dyes for an optimized UV-LED/TiO2 reactor

    Get PDF
    Heterogeneous photocatalysis, using photocatalysts in suspension to eliminate diverse contaminants, including textile wastewater, has several advantages. Nevertheless, current absorbance and decolorization measurements imply sample acquisition by extraction at a fixed rate with consequent photocatalyst removal. This study presents online monitoring for the decolorization of six azo dyes, Orange PX-2R (OP2), Remazol Black B133 (RB), Procion Crimson H-EXL (PC), Procion Navy H-EXL (PN), Procion Blue H-EXL (PB), and Procion Yellow H-EXL (PY), analyzing the spectrum measured in situ by using the light scattering provided by the photocatalyst in suspension. The results obtained have corroborated the feasibility of obtaining absorbance and decolorization measurements, avoiding disturbances in the process due to a decrease in the volume in the reactor.Peer ReviewedPostprint (published version

    On-site surface reflectometry

    Get PDF
    The rapid development of Augmented Reality (AR) and Virtual Reality (VR) applications over the past years has created the need to quickly and accurately scan the real world to populate immersive, realistic virtual environments for the end user to enjoy. While geometry processing has already gone a long way towards that goal, with self-contained solutions commercially available for on-site acquisition of large scale 3D models, capturing the appearance of the materials that compose those models remains an open problem in general uncontrolled environments. The appearance of a material is indeed a complex function of its geometry, intrinsic physical properties and furthermore depends on the illumination conditions in which it is observed, thus traditionally limiting the scope of reflectometry to highly controlled lighting conditions in a laboratory setup. With the rapid development of digital photography, especially on mobile devices, a new trend in the appearance modelling community has emerged, that investigates novel acquisition methods and algorithms to relax the hard constraints imposed by laboratory-like setups, for easy use by digital artists. While arguably not as accurate, we demonstrate the ability of such self-contained methods to enable quick and easy solutions for on-site reflectometry, able to produce compelling, photo-realistic imagery. In particular, this dissertation investigates novel methods for on-site acquisition of surface reflectance based on off-the-shelf, commodity hardware. We successfully demonstrate how a mobile device can be utilised to capture high quality reflectance maps of spatially-varying planar surfaces in general indoor lighting conditions. We further present a novel methodology for the acquisition of highly detailed reflectance maps of permanent on-site, outdoor surfaces by exploiting polarisation from reflection under natural illumination. We demonstrate the versatility of the presented approaches by scanning various surfaces from the real world and show good qualitative and quantitative agreement with existing methods for appearance acquisition employing controlled or semi-controlled illumination setups.Open Acces

    Photoelastic Stress Analysis

    Get PDF

    Optimised multi-camera systems for dimensional control in factory environments

    Get PDF
    As part of the United Kingdom’s Light Controlled Factory project, University College London aims to develop a large-scale multi-camera system for dimensional control tasks in manufacturing, such as part assembly and tracking. Accuracy requirements in manufacturing are demanding, and improvements in the modelling and analysis of both camera imaging and the measurement environment are essential. A major aspect to improved camera modelling is the use of monochromatic imaging of retro-reflective target points, together with a camera model designed for a particular illumination wavelength. A small-scale system for laboratory testing has been constructed using eight low-cost monochrome cameras with C-mount lenses on a rigid metal framework. Red, green and blue monochromatic light-emitting diode ring illumination has been tested, with a broadband white illumination for comparison. Potentially, accuracy may be further enhanced by the reduction in refraction errors caused by a non-homogeneous factory environment, typically manifest in varying temperatures in the workspace. A refraction modelling tool under development in the parallel European Union LUMINAR project is being used to simulate refraction in order to test methods which may be able to reduce or eliminate this effect in practice

    NeRRF: 3D Reconstruction and View Synthesis for Transparent and Specular Objects with Neural Refractive-Reflective Fields

    Full text link
    Neural radiance fields (NeRF) have revolutionized the field of image-based view synthesis. However, NeRF uses straight rays and fails to deal with complicated light path changes caused by refraction and reflection. This prevents NeRF from successfully synthesizing transparent or specular objects, which are ubiquitous in real-world robotics and A/VR applications. In this paper, we introduce the refractive-reflective field. Taking the object silhouette as input, we first utilize marching tetrahedra with a progressive encoding to reconstruct the geometry of non-Lambertian objects and then model refraction and reflection effects of the object in a unified framework using Fresnel terms. Meanwhile, to achieve efficient and effective anti-aliasing, we propose a virtual cone supersampling technique. We benchmark our method on different shapes, backgrounds and Fresnel terms on both real-world and synthetic datasets. We also qualitatively and quantitatively benchmark the rendering results of various editing applications, including material editing, object replacement/insertion, and environment illumination estimation. Codes and data are publicly available at https://github.com/dawning77/NeRRF

    Polarization imaging reflectometry in the wild

    Get PDF
    We present a novel approach for on-site acquisition of surface reflectance for planar, spatially varying, isotropic materials in uncontrolled outdoor environments. Our method exploits the naturally occuring linear polarization of incident illumination: by rotating a linear polarizing filter in front of a camera at 3 different orientations, we measure the linear polarization reflected off the sample and combine this information with multiview analysis and inverse rendering in order to recover per-pixel, high resolution reflectance maps. We exploit polarization both for diffuse/specular separation and surface normals estimation by combining polarization measurements from at least two near orthogonal views close to Brewster angle of incidence. We then use our estimates of surface normals and albedos in an inverse rendering framework to recover specular roughness. To the best of our knowledge, our method is the first to successfully extract a complete set of reflectance parameters with passive capture in completely uncontrolled outdoor environments

    Sparse ellipsometry: portable acquisition of polarimetric SVBRDF and shape with unstructured flash photography

    Get PDF
    Ellipsometry techniques allow to measure polarization information of materials, requiring precise rotations of optical components with different configurations of lights and sensors. This results in cumbersome capture devices, carefully calibrated in lab conditions, and in very long acquisition times, usually in the order of a few days per object. Recent techniques allow to capture polarimetric spatially-varying reflectance information, but limited to a single view, or to cover all view directions, but limited to spherical objects made of a single homogeneous material. We present sparse ellipsometry, a portable polarimetric acquisition method that captures both polarimetric SVBRDF and 3D shape simultaneously. Our handheld device consists of off-the-shelf, fixed optical components. Instead of days, the total acquisition time varies between twenty and thirty minutes per object. We develop a complete polarimetric SVBRDF model that includes diffuse and specular components, as well as single scattering, and devise a novel polarimetric inverse rendering algorithm with data augmentation of specular reflection samples via generative modeling. Our results show a strong agreement with a recent ground-truth dataset of captured polarimetric BRDFs of real-world objects

    Review of machine-vision based methodologies for displacement measurement in civil structures

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.Vision-based systems are promising tools for displacement measurement in civil structures, possessing advantages over traditional displacement sensors in instrumentation cost, installation efforts and measurement capacity in terms of frequency range and spatial resolution. Approximately one hundred papers to date have appeared on this subject, investigating topics like: system development and improvement, the viability on field applications and the potential for structural condition assessment. The main contribution of this paper is to present a literature review of vision-based displacement measurement, from the perspectives of methodologies and applications. Video processing procedures in this paper are summarised as a three-component framework, camera calibration, target tracking and structural displacement calculation. Methods for each component are presented in principle, with discussions about the relative advantages and limitations. Applications in the two most active fields: bridge deformation and cable vibration measurement are examined followed by a summary of field challenges observed in monitoring tests. Important gaps requiring further investigation are presented e.g. robust tracking methods, non-contact sensing and measurement accuracy evaluation in field conditions

    Photonic low-cost sensors for in-line fluid monitoring. Design methodology

    Get PDF
    779 p.The paradigm of process monitoring has evolved in the last years, driven by a clear need for improving efficiency, quality and safety of processes and products. Sectors as manufacturing, energy, food and beverages, etc. are fostering the adoption of innovative methods for controlling their processes and products, in a non-destructive, in-place, reliable, fast, accurate and cost-efficient manner. Furthermore, the parameters requested by the industry for the quality assessment are evolving from basic magnitudes as pressures, temperatures, humidity, etc. to complete chemical and physical fingerprints of these products and processes. In this situation, techniques based on the UV/VIS/NIR light-matter interaction appear to be optimum candidates to face the request of the industry. Moreover, at this moment, when we are witnessing a technological revolution in the field of optoelectronic components, which are required for setting up these light-based analyzers.However, being able to integrate these optoelectronic components with the rest of subsystems (electronics, optics, mechanics, hydraulics, data processing, etc.) is not straightforward. The development of these multi-domain and heterogeneous sensor products meeting not just technological but also market objectives poses a considerable technical and organizational challenge for any company.In this context, a methodological hybrid and agile integration of photonic components within the rest of subsystems towards a sensor product development is presented as the main outcome of the thesis. The methodology has been validated in several industrial scenarios, being three of them included in this thesis, which covers from hydraulic fluid quality control to real-time monitoring of alcoholic beverage fermentation process

    Advanced photonic and electronic systems WILGA 2016

    Get PDF
    Young Researchers Symposium WILGA on Photonics Applications and Web Engineering has been organized since 1998, two times a year. Subject area of the Wilga Symposium are advanced photonic and electronic systems in all aspects: theoretical, design and application, hardware and software, academic, scientific, research, development, commissioning and industrial, but also educational and development of research and technical staff. Each year, during the international Spring edition, the Wilga Symposium is attended by a few hundred young researchers, graduated M.Sc. students, Ph.D. students, young doctors, young research workers from the R&D institutions, universities, innovative firms, etc. Wilga, gathering through years the organization experience, has turned out to be a perfect relevant information exchange platform between young researchers from Poland with participation  of international guests, all active in the research areas of electron and photon technologies, electronics, photonics, telecommunications, automation, robotics and information technology, but also technical physics. The paper summarizes the achievements of the 38th Spring Edition of 2016 WILGA Symposium, organized in Wilga Village Resort owned by Warsaw University of technology
    corecore