Polarization imaging reflectometry in the wild

Abstract

We present a novel approach for on-site acquisition of surface reflectance for planar, spatially varying, isotropic materials in uncontrolled outdoor environments. Our method exploits the naturally occuring linear polarization of incident illumination: by rotating a linear polarizing filter in front of a camera at 3 different orientations, we measure the linear polarization reflected off the sample and combine this information with multiview analysis and inverse rendering in order to recover per-pixel, high resolution reflectance maps. We exploit polarization both for diffuse/specular separation and surface normals estimation by combining polarization measurements from at least two near orthogonal views close to Brewster angle of incidence. We then use our estimates of surface normals and albedos in an inverse rendering framework to recover specular roughness. To the best of our knowledge, our method is the first to successfully extract a complete set of reflectance parameters with passive capture in completely uncontrolled outdoor environments

    Similar works