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Abstract 8 

Vision-based systems are promising tools for displacement measurement in civil structures, possessing advantages 9 

over traditional displacement sensors in instrumentation cost, installation efforts and measurement capacity in 10 

terms of frequency range and spatial resolution. Approximately one hundred papers to date have appeared on this 11 

subject, investigating topics like: system development and improvement, the viability on field applications and 12 

the potential for structural condition assessment. The main contribution of this paper is to present a literature 13 

review of vision-based displacement measurement, from the perspectives of methodologies and applications. 14 

Video processing procedures in this paper are summarised as a three-component framework, camera calibration, 15 

target tracking and structural displacement calculation. Methods for each component are presented in principle, 16 

with discussions about the relative advantages and limitations. Applications in the two most active fields: bridge 17 

deformation and cable vibration measurement are examined followed by a summary of field challenges observed 18 

in monitoring tests. Important gaps requiring further investigation are presented e.g. robust tracking methods, non-19 

contact sensing and measurement accuracy evaluation in field conditions. 20 
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 INTRODUCTION 23 

Structural health monitoring (SHM) is aimed at providing valuable information for structural assessment and 24 

decision support for maintenance through relevant measures of structural response. Deformation is an important 25 

metric for structural condition and performance assessment for several reasons. In particular serviceability is 26 

reflected through deformation during normal operation, since extreme values and ranges indicate problems that 27 

may limit operational use, while time-varying deformation patterns constructed from discrete displacement 28 

measurements can provide a wealth of information about structure condition. 29 

Conventional sensors like linear variable differential transformers (LVDT) require a stationary reference point for 30 

installation and direct access to monitoring structures that could be challenging on site. The global positioning 31 

systems (GPS) have the limitation of measurement accuracy (i.e. sub-centimetre [1] or centimetre level [2]) and 32 

are mostly applied for monitoring campaigns in flexible large-scale structures. Integration schemes from 33 

acceleration measurement are only feasible for short-time signals and might fail to capture the static or quasi-34 

static components in displacement signals. Such limitations of more traditional displacement sensing technologies 35 

have driven research in non-contact optical sensing. Vision-based monitoring methods have promising features 36 

e.g. simple instrumentation and installation, operation remote from the structure and capacity for multi-point 37 

measurement using a single (camera) sensor. 38 

Although there have been earlier optics-based methods used for monitoring civil structure deformation e.g. in the 39 

Tacoma Narrows Bridge [3] and the Tagus Bridge [4], among the earliest applications of opto-electronic vision-40 

based continuous structural deformation monitoring using CCD (charge-coupled device) arrays was to Humber 41 

Bridge and Severn Bridge in the UK [5], [6]. Since then a number of systems have been developed and evaluated 42 

for structural deformation monitoring in high-rise buildings [7], short-span bridges [8], [9], [10], [11] and long-43 

span bridges [12], [13], [14]. 44 

Vision-based systems offer significant potential for structural condition assessment, in particular for system 45 

identification [15–17]. In addition, deformation information has been used for finite element model calibration 46 

[18], damage detection [19] and contribution to bridge weigh-in-motion system with camera assistance for traffic 47 

monitoring [20]. 48 

Investigations have been made in system improvement in both video acquisition hardware and video processing 49 

software. The feasible video acquisition devices are expanded to include smartphone cameras [15][21], while 50 

artificial targets required in conventional systems were discarded in some recent applications under specific 51 
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camera configurations [8, 15, 22]. Efficient target tracking techniques in the computer vision field have been 52 

validated in structural deformation monitoring [15], [22], [23] and the measurement results describing structural 53 

displacement have been expanded to three-dimensional [24, 25], [17], [26] and six degree of freedom (DOF) 54 

motions [11, 14]. 55 

This paper aims to present a summary of key work in the field of vision-based systems for structural displacement 56 

monitoring while highlighting the principles, advantages and shortcomings of these systems. Although previous 57 

reviews of vision-based structural monitoring exist [27–29], the contribution of this work is to provide an overview 58 

of system classifications, methodologies and applications in field monitoring. 59 

The paper is organised as follows. The components of a vision-based system for displacement monitoring are 60 

introduced, followed by a comparison of several mature vision-based systems in application scopes in section 2. 61 

In section 3, vision-based systems are categorised based on methods of video processing, with three components 62 

in video processing procedures (i.e. camera calibration, target tracking and structural displacement calculation) 63 

reviewed in terms of principle, applications, advantages and shortcomings, respectively. In section 4, applications 64 

for bridge deformation and cable vibration measurement are reviewed followed by a discussion of measurement 65 

challenges in field applications. Finally, important gaps requiring further investigation are presented e.g. robust 66 

tracking methods, non-contact sensing and measurement accuracy evaluation in field conditions. 67 

 VISION-BASED DISPLACEMENT MONITORING SYSTEMS 68 

Applying a vision-based system for structural displacement monitoring requires setting up one or more cameras 69 

in a stable location, looking at the ‘target’ contained in a structure and deriving the structural displacement through 70 

target tracking. Here the ‘target’ could be either artificial (e.g. pre-installed marker, LED lamp or planar panel 71 

with special patterns) or an existing structural feature (e.g. bolts or holes). As shown in Fig. 1, the hardware 72 

generally comprises camera, lens, laptop/portable computer with video-processing package and some accessories 73 

e.g. tripod. The video processing software is critical: its role is acquiring the video frames covering the target 74 

region, tracking the target locations in image sequences and finally transforming the target location in image to 75 

time history of structural displacement. 76 

Systems for extracting metric information from images or videos exist in several fields as indicated in Table 1 e.g. 77 

digital image correlation (DIC) [9], [31], [32], photogrammetric techniques [33] and motion capture systems 78 

(MCS) [17, 34]. DIC is a measurement tool to extract full-field displacements or strains of a member surface in 79 

experimental solid mechanics [32, 35, 36]. Photogrammetry, originally in the production of topographic maps 80 
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[37], is expanded to include deflection monitoring of bridge structures [38]. Motion capture systems (MCS) are 81 

usually applied to capture the movements of a high degree-of-freedom skeleton structure with a number of joints 82 

(e.g. human bodies) [39].  83 

A vision-based system for structural displacement monitoring owns its unique features, as indicated in the last 84 

row of Table 1. Researchers have performed several investigations into system development targeted at structural 85 

applications and these studies will be reviewed in terms of methodologies in the next section. 86 

 REVIEW OF VISION-BASED STRUCTURAL DISPLACEMENT MEASUREMENT 87 

In this study, vision-based systems in literature are classified based on video-processing methodologies. A typical 88 

video processing software package could fit into a three-component framework shown in Fig. 2. The derived 89 

displacement data could be interpreted for bridge condition assessment. 90 

If the monitoring campaign is only for system identification and exact vibration values [40, 41] are not required, 91 

target tracking may be the only part of the whole video processing procedure needed, but coordinate 92 

transformation might be necessary to align the image motion directions with the structural axes. 93 

Next, the methods for camera calibration, target tracking and structural displacement calculation in literature are 94 

reviewed separately. 95 

3.1 Camera calibration 96 

Camera calibration concerns building the projection relationship between the 3D structural points in the structural 97 

coordinate system and the corresponding 2D points in the image plane. The determined projection transformation 98 

could be used to recover the real locations of targets in structure given the target locations in the image.  99 

Three categories of projection transformation are reported in the literature including the full projection matrix, 100 

planar homography and scale factor as indicated in Table 2. In most cases, the projection transformation is 101 

following the full perspective model while it could be simplified to an affine camera model when cameras are 102 

equipped with large focal length lenses [25]. 103 

3.1.1 Full projection matrix  104 

Principle 105 

The full projection matrix is the general form of projection transformation from the 3D structural system to the 106 

2D image plane under no constraint on camera orientation and structural movement directions and is usually used 107 

to reconstruct the target 3D structural displacement. The projection relationship is demonstrated in Fig. 3 with a 108 
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point 
T

S WP ( [X,Y,Z,1] )X in the structural coordinate system mapping to a point 
T

IP ( [ , ,1] )u vu  in the 2D 109 

image plane, 110 

    3 4 W[H] u X  (1) 111 

where 3 4[H]   is a full projection matrix and   is an arbitrary coefficient.  112 

The calibration process is shown in Fig. 4 with two main steps. The camera intrinsic matrix is usually estimated 113 

in the laboratory by analysing a set of images of a calibration object taken from different viewpoints [42]. The 114 

calibration object is typically a flat plane or 3D object with a dot or grid pattern of known spacing such as the 115 

chessboard pattern shown in Fig. 4. At least three views of the calibration object with four corner points are 116 

required, but it is suggested to use at least ten images to derive more robust estimates [43]. After laboratory 117 

calibration, any lens functions e.g. autofocus and automated image stabilisation that might lead to changes in 118 

camera internal parameters are disabled. 119 

Consumer-grade cameras and smartphone cameras always employ wide angle lenses to increase the field-of-view 120 

[15], leading to distorted images particularly in the corner regions of the frame as shown in Fig. 5(a). The lens 121 

distortion parameters could also be estimated in laboratory calibration and applied to correct the image with the 122 

rectified one in Fig. 5(b). For cameras equipped with lenses producing no apparent lens distortion, the distortion 123 

correction step is not necessary. Naturally for the monitoring measurements, it is preferable to locate the target 124 

region in the central area of the field of view [10] which suffers less lens distortion, as shown in Fig. 5(a).  125 

In the second step, the camera extrinsic matrix representing the camera position and orientation is estimated on 126 

site through point correspondences, i.e. 3D structural coordinates of control points and 2D image coordinates of 127 

their projections in an image. Given at least four sets of point correspondences, least-squares optimisation is used 128 

to find the best option of camera extrinsic matrix that minimises the total re-projection error between the detected 129 

image points and the calculated image projection points.  130 

The calibration algorithms are available in the Vision System Toolbox of MATLAB and the open-source library 131 

OpenCV. 132 

Application review 133 

Camera calibration for full projection matrix estimation is commonly used to measure 3D structural displacement, 134 

with a few examples illustrating the method: The procedures of laboratory and site camera calibration are 135 

described by Kim et al. [44] in an application to structural displacement monitoring in a three-span bridge under 136 

truck-induced vibration. The viability of motion capture systems for the laboratory vibration measurement was 137 
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verified [34] using a T-shaped calibration wand for the estimation of camera extrinsic parameters. In the case of 138 

a long span bridge, Martins et al. [14] applied the calibration method to measure the 3D structural displacement 139 

at mid-span with the assistance of a set of four active targets. The estimated camera parameters can be refined 140 

when multiple cameras with overlapped views are involved. For example, the methodology described by Chang 141 

and Ji [24] is based on the epipolar geometry principle of stereoscopic vision where five points including structural 142 

point SP , projection points in two image planes 
1

IP  and 
2

IP , and two camera optical centres should all be coplanar, 143 

as shown in Fig. 6. 144 

Remarks 145 

The full projection matrix is an accurate representation of the projection relationship and is thus applicable to any 146 

configuration of cameras on site. The lens distortion problems common for consumer-grade cameras do not 147 

prevent their use for such measurements, since corrections are readily made for distortion using laboratory camera 148 

calibration. 149 

Camera calibration on site requires position information for some structural points. In existing studies this has 150 

been mainly acquired through the installation of artificial targets. Including artificial targets in laboratory tests is 151 

easy e.g. attaching a planar chessboard target [24, 44] or placing a planar T-shaped wand in the field of view [17, 152 

34] while the installation efforts in field tests [14] are much greater. The existing examples of two field 153 

applications are summarised in Table 3, indicating the feasibility of this method for both short-range and long-154 

range monitoring tests. 155 

3.1.2 Planar homography  156 

Principle 157 

For the case where the target moves within a plane contained in the 3D structural system (e.g. the XY plane), the 158 

projection relationship could be simplified to a planar homography between a 2D structural plane 159 

T

P( [X,Y,1] )X  and a 2D image plane 
T( [ , ,1] )u vu  160 

    3 3 P[P] u X   (2) 161 

where 3 3[P]   is the planar homography matrix and   is an arbitrary coefficient.  162 

The reconstructed results using planar homography are usually the 2D structural displacement of targets.  163 

The calibration process requires at least four sets of 2D-to-2D point correspondences [46], similar to the estimation 164 

process on site in full projection method. 165 

Application review 166 
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The planar homography considers the geometric distortion in the projection process and thus has no constraint on 167 

camera positioning [47]. The 2D direct linear transform is effective for the planar homography estimation [48], 168 

for example the method was applied to monitor the oscillation of a laboratory steel frame with a dense array of 169 

markers glued to the surface [48] and the mid-span deformation of a long-span bridge with an attached planar 170 

artificial target [49]. 171 

Remarks 172 

Planar homography applies no constraint on camera positioning and can be used to recover the target 2D structural 173 

displacements. In its application it is usual that the geometric information needed for calibration is provided by 174 

attaching artificial planar targets with known dimensions.  175 

This calibration method is based on the assumption that the target moves within a structural plane with negligible 176 

motion along the third axis. Any motion not contained within this plane will lead to measurement error unless the 177 

motion is purely perpendicular to the camera optical axis. 178 

3.1.3 Scale factor  179 

Principle 180 

Scale factor is the simplest projection transformation and assumes an equal depth-of-field for all projected points 181 

or a camera configuration where the optical axis is perpendicular to one structural plane [48]. With this assumption, 182 

the mapping process converts to a 1D-1D projection indicated in Fig. 7. The scale factor SF  from the structural 183 

displacement to the image motion could be determined by one-dimensional correspondence or the camera-to-184 

target distance, 185 

 
I I

S S

P Q
SF

P Q
   (3) 186 

or SF
pixf

D
   (4) 187 

where S SP Q  and I IP Q  are the known physical dimension on the structural surface and the corresponding pixel 188 

length of the projection in image; pixf  is the camera lens focal length in terms of pixel units; and D  denotes the 189 

distance from the camera optical centre to the structural surface plane.  190 

For the system combining a camera with a total station, a projection coefficient called angular resolution [50, 51] 191 

is used to perform the transformation which represents the angle value (  in Fig. 7) from the camera optical axis 192 

to a projection line with the projection length ( I IO P ) of one pixel. In principle, this projection transformation is 193 
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similar to the scale factor estimated by camera-to-target distance in Equation (4) where the distance D  is 194 

measured directly by electronic distance measurement (EDM) instrument and the focal length pixf  is related to 195 

the angular resolution   by 196 

 tan 1/ pixf    (5) 197 

Application review 198 

Scale factor has been widely used to transform image motion to structural displacement with the features 199 

summarised in Table 4. Mostly the scale factor is determined via a known dimensions in an artificial target 200 

attached to structure [5, 8–10, 12, 13, 15, 52–57] while the method using the camera-to-target distance [22] is less 201 

popular. For 2D structural displacement measurement, the scale factors for two axes within the target plane are 202 

calibrated separately according to dimension correspondences [53–56]. Error analysis indicates that the scale 203 

factor by dimension correspondence is less sensitive to the tilt of camera optical axis [8]. However, the scale factor 204 

using the camera-to-target distance has no dependence on artificial targets and thus is an easier way to realise 205 

completely non-contact monitoring [22]. 206 

Remarks 207 

Scale factor is the simplest projection transformation, particularly when no artificial target is used [15, 22] and 208 

works when the camera optical axis is perpendicular to the structural surface. Camera positioning is less critical 209 

[8] when known structural dimensions are used for calibration. However, when applying the scale factor derived 210 

from the camera-to-target distance, the tilt angle of the camera optical axis is suggested to be less than 10 through 211 

laboratory validation tests in short distance (≤ 3.7 m) [58]. Care must be taken that different scale factors are 212 

applied to different axes to measure the 2D displacement. This simple method can also be used with cameras 213 

having apparent lens distortion, since the lens distortion correction method previously described can be used [15, 214 

57].  215 

3.2 Target tracking 216 

Target tracking is the key part of a video processing software package. In this study, target tracking techniques 217 

are categorised into four types based on target characteristics shown in Table 5, partly referring to [59]. 218 

3.2.1 Template matching 219 

Principle 220 

Template matching is a classic technique for target tracking by searching in a new frame for an area most closely 221 

resembling a predefined template, following the procedures demonstrated in Fig. 8. A rectangular region that is a 222 
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subset in the reference frame is first selected as the template, and could be either an artificial target [5] or a feature 223 

target on the structural surface [8]. A correlation criterion is required in order to evaluate the similarity level 224 

between the template and the new image subset. Robust criteria for matching are zero-mean normalised cross 225 

correlation (ZNCC) and zero-mean normalized sum of squared differences (ZNSSD) which are insensitive to 226 

offset and linear scale in illumination [35] while another similarity criterion based on orientation code is also 227 

reported to be effective [60]. The definition of the ZNCC criterion is provided as an example in Equation (6) while 228 

more details are given in [35]. 229 

 
  ' '( , ) ( , )M N

i j m i j m

ZNCC

i M j N

f x y f g x y g
C

f g 

  
 

   
   (6) 230 

where ( , )i jf x y  and 
' '( , )i jg x y  denote the image intensity values at the specified pixel locations in the template 231 

region and the new frame; mf  and mg  denote the average intensity values in the template region and the new 232 

frame; and f  and g  denote the standard deviations of intensity values in the template region and the new 233 

frame. 234 

The location in the correlation map reaching the highest similarity is taken as the new image location of the target. 235 

The default resolution is at pixel level, so interpolation schemes [8] are used to refine the result to the subpixel 236 

level. The feasible interpolation methods include bi-cubic interpolation [56], second-order polynomial 237 

interpolation [57] in spatial domain and zero-padding interpolation in frequency domain [8]. If the selected target 238 

includes robust and identifiable features, Harris corner detection that identifies the edge intersection points 239 

through a score value related to the eigenvalues of image gradient matrix could be an alternative to refine the 240 

initial matching location [24]. 241 

Application review 242 

Template matching is an established method widely applied in structural monitoring from the earliest work on the 243 

Humber and Severn Bridges in 1990s [5, 6]. Recent applications include displacement monitoring tests on a 244 

railway bridge [8], a long-span bridge [13] and a high-rise building [7]. 245 

Digital image correlation (DIC) is an extension of template matching mostly used in experimental mechanics [32, 246 

35], with the difference that DIC considers the shape distortion under large deformation [61] i.e. Lucas-Kanade 247 

template matching [62]. As an example, a short-span railway bridge monitoring exercise [63] used normalised 248 

correlation-based matching and Lucas-Kanade matching and indicated high similarity in both time and frequency 249 

domain.  250 



10 

Remarks 251 

Template matching is easy to use without user intervention apart from the initial selection of the template region. 252 

It does not have any special requirement for target patterns and has been validated to work well to track artificial 253 

planar targets with specific patterns [5, 6, 24], LED lamp targets [13] and feature targets on structural surfaces [8].  254 

Template matching is not robust to changes in shading, illumination [30, 63] and background conditions [64] in 255 

field, although sensitivity to lighting changes might be reduced using camera auto-exposure settings [30]. The 256 

method is also not appropriate for tracking slender structural components, since the rectangular subset image used 257 

as a template might include background pixels with inconsistent motion.  258 

 259 

3.2.2 Feature point matching 260 

Principle 261 

Instead of analysing all the locations within the target, feature point matching applies to sparse ‘special’ points 262 

within the target region, independently detecting these special points in two images and then finding point 263 

correspondences based on their local appearance. ‘Special’ points in an image, termed ‘interest points’ or 264 

‘keypoints’ in computer vision, are those which are stable, distinctive and invariant to image transformation and 265 

illumination changes, such as building corners, connection bolts, or other patches with interesting shapes [65].  266 

The procedures are indicated in Fig. 9. A popular keypoint detector in step (1) is the Harris corner detector [66] 267 

which is widely used in structural monitoring applications [11, 15, 22, 24, 57]. Instead of using the pixel values 268 

directly for similarity comparison, keypoints are often extracted and described by a more complex representation 269 

(i.e. feature descriptor) according to the shape and appearance of a small window around the keypoint [65]. The 270 

common descriptors and their matching criteria are indicated in Table 6. Float point based descriptors (e.g. scale-271 

invariant feature transform (SIFT) [67] and speeded up robust features (SURF) [68]) are represented by float 272 

vectors, commonly reflecting various local intensity gradients of a pattern around the keypoint. Binary string 273 

based descriptors (e.g. Binary robust independent elementary features (BRIEF) [69], Oriented FAST and Rotated 274 

BRIEF (ORB) [70] and Fast retina keypoint descriptor (FREAK) [71]) are represented by binary vectors (with 275 

elements of 0 and 1) through pairwise comparisons of image intensities (i.e. whether the former is greater or less 276 

than the latter) over a special pattern around the keypoint. The matching criterion between two binary descriptors 277 

is usually the Hamming distance [69] equal to the number of elements which differ between the two vectors. 278 

To verify the matched keypoint correspondences in step (3), geometric alignment is often used based on whether 279 

the keypoints in the first image could fit with the keypoints in the second image after a specific geometric 280 
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transformation. The widely used approaches for discarding outliers are RANdom SAmple Consensus (RANSAC) 281 

[72] and least median of squares (LMS) [73]. The tracking output is the average motion of keypoints in an image 282 

that inherently has sub-pixel resolution and could be converted to the target location in the image. 283 

Application review 284 

Song et al. [74] proposed a target tracking method based on circular Hough transform for marker detection and 285 

coherent point drift algorithm for marker matching and the method was applied for system identification of a steel 286 

cantilever beam in the laboratory. Field applications include Khuc and Catbas [22, 75] who applied the FREAK 287 

and SIFT methods for deformation measurement in a stadium structure and a railway bridge and Ehrhart and 288 

Lienhart [59, 64] who applied the ORB method for deformation measurement in a short-span footbridge. 289 

Remarks 290 

Feature point matching is an efficient technique since it deals with sparse points instead of the whole region as in 291 

template matching. This technique uses local descriptors to represent keypoints instead of the raw image 292 

intensities and are less sensitive to illumination change, shape change and scale variation. 293 

However, feature point matching requires the target region to have rich textures for distinctiveness during the 294 

whole recording period. Also several parameters need to be adjusted manually according to users’ experience or 295 

judgement, e.g. contrast threshold for feature detector and distance threshold in matching criteria. These parameter 296 

adjustments might depend on environmental changes, e.g. the threshold for outlier removal might vary with the 297 

illumination condition [22]. 298 

Currently feature point matching technique has only been validated in several short-range measurement tests [22, 299 

59, 64, 75]. However, the feasibility for long-range monitoring in terms of stability over several hours and how 300 

to choose the best feature descriptors are open questions.  301 

3.2.3 Optical flow estimation 302 

Principle 303 

Instead of finding matching locations of a complete region or sparse keypoints, optical flow estimation detects 304 

motions or flows of all pixels within the target region. Optical flow is the apparent velocity of movement in an 305 

image resulting from brightness pattern shift [76]. The calculation imposes two constraints, one temporal 306 

constraint on image properties (e.g. image intensity constancy for the same pattern over time) and one spatial 307 

constraint that models the flow properties in an image (e.g. coherent motion in adjacent pixels) [77]. A function 308 

reflecting these two constraints is then defined and optimised to derive a dense estimation of velocity flow for 309 

each pixel. In structural monitoring applications, the output could be converted to image motion instead of velocity 310 
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by replacing the temporal gradient of image properties in the function with the variation of image properties 311 

between two discrete frames. Outlier removal is used to retain only sensible image motions, and average image 312 

motion of the inlier pixels is converted to target location inherently having sub-pixel resolution. 313 

Optical flow estimation is an established method with several variant techniques, such as ‘differential’, 314 

‘spatiotemporal energy’ and ‘phase-based’. In this section only two methods, the differential technique of Lucas 315 

and Kanade (LK) [78] and the phase-based technique [79] are discussed. 316 

LK optical flow estimation [78] is based on brightness constancy assumption, i.e. projection of the same point has 317 

the same image intensity in every frame. Since corner points or keypoints are good features mathematically for 318 

the computation of optical flows, LK method is usually applied for sparse estimation instead of computation at 319 

every pixel. With keypoints detected in the reference frame usually using the Shi-Tomasi corner detector [80], 320 

LK algorithm is applied to compute the image motion of each keypoint in the new frame from spatial-temporal 321 

image brightness variations, 322 

 

2

2

xi tixi xi yi ii i

yi tixi yi yi ii i

I II I I dx

dy I II I I

    
    

       

 
 

  (7) 323 

where dx  and dy  denote the optical flows in the horizontal and vertical directions of the image plane; xI , yI  324 

and tI  represent the spatial and temporal gradients of image intensities; and i  denotes the ith pixel location in a 325 

square patch (e.g. 3 3 ) around a feature point ( , )x y . The image motion is then estimated after discarding false 326 

motion estimates according to RANSAC or LMS, as with feature point matching. 327 

Phase-based optical flow estimation is based on local phase constancy assumption. The method first proposed by 328 

Fleet and Jepson in 1990 [79], is receiving new attention together with the motion magnification technique [81] 329 

which visualises motions in image sequences that are not visible to the naked eye. The mathematical details of 330 

phase-based optical flow estimation are explained in [23] and the algorithm is briefly summarised here. 331 

The Fourier shift theorem indicates that a delay of a signal in the time domain corresponds to a linear phase 332 

variation in the frequency domain. Similarly, the image motion in spatial domain is also reflected in phase changes 333 

in spatial frequency domain. The phase here is the local phase [82] corresponding to a specific spatial location 334 

instead of the whole image, usually derived by employing a quadrature pair of filters consisting of an even real 335 

part and an odd imaginary part [83] i.e. Gabor filters [84] and Gaussian derivative filters [23] (demonstrated in 336 

Fig. 10). The image motion at each pixel is then estimated from the spatial-temporal variations of the local phase 337 

for the filtered image.  338 
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Application review 339 

LK optical flow estimation was applied in a laboratory test of a multi-storey metal tower [15] for system 340 

identification, and for field application in deformation measurement in a footbridge [59] and bridge stay-cable 341 

vibration measurement [85, 86]. 342 

Implementations of phase-based optical flow estimation were mostly focused on system identification, i.e. 343 

extracting modal frequencies and mode shapes in laboratory tests [23, 87] and identifying modal frequencies of 344 

high-rise tower buildings [88]. 345 

Remarks 346 

Optical flow estimation enables tracking of features on a structural surface without the requirement for artificial 347 

targets. It provides fast and accurate results in controlled environmental conditions. 348 

Like feature point matching, optical flow estimation prefers target patterns with distinct and robust features over 349 

the whole test period. Edges are not suitable for tracking due to the ‘aperture problem’ i.e. only the motion 350 

component perpendicular to the local edge direction could be detected instead of the true motion of the edge. If 351 

the structural motion along edges is one dimensional translation with known direction e.g. bridge stay cable 352 

vibration [85], optical flow estimation is viable. 353 

Phase-based optical flow estimation is mostly applied for system identification in the laboratory but is harder to 354 

use in field conditions due to high signal noise [88]. Measurement of image motion is sensitive to the choice of 355 

pixel location [89], while a selection strategy to ensure satisfactory measurement has not yet been clearly reported. 356 

Changes of lighting and background conditions might lead to apparent measurement error [88]. 357 

3.2.4 Shape-based tracking 358 

Other than general techniques, there are also some target tracking methods that depend on the special shapes of 359 

target patterns which could appear in custom-made artificial targets or structural components (e.g. line-like cables). 360 

Table 7 provides a summary of target patterns commonly used. With lack of generality, these methods have 361 

limitations for application. 362 

3.2.5 Summary of target tracking performance 363 

In terms of target tracking, the nominal algorithm resolution can be better than 0.01 pixel while the reported 364 

accuracy in practice varies from 0.5 to 0.01 pixel [95]. The real-time processing was realised in [8] [49] [63] using 365 

the template matching method, in [16] [86] using the optical flow estimation method and in [13] [51] [52] [53] 366 

using the shape-based tracking approaches. Although not reported in the existing applications, the feature point 367 

matching approach is capable of being used for real-time application [70]. Among the four tracking methods, 368 
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template matching requires the least user intervention apart from the initial selection of template region while in 369 

the other three methods, some threshold values that might be environmentally dependent are required as user 370 

inputs. 371 

Ehrhart and Lienhart [64] evaluated the performance of three techniques (optical flow, template matching and 372 

feature point matching) by tracking structural features of a footbridge and reported that feature point matching is 373 

robust to the changes of background condition (i.e. snowfall) whereas drift over time was observed in the 374 

measurement by the two other methods. Busca et al. [96] evaluated three techniques (template matching, edge 375 

detection and digital image correlation) on a steel truss railway bridge, concluding that the three techniques 376 

provide similar tracking performance while tracking accuracy is slightly poorer for natural targets. Khaloo and 377 

Lattanzi [97] investigated four optical flow estimation methods for dense displacement measurement. The study 378 

indicated that classic+NL method (i.e. introducing a weighted non-local term into the classical optical flow 379 

formulations [77]) provided the most consistent and accurate measurement. However, the coarse-to-fine schemes 380 

(i.e. building image pyramids for each frame and computing optical flows on each layer of pyramids to get rid of 381 

the small motion constraint) are necessary for Lucas–Kanade and Horn–Schunck methods to deal with large 382 

displacement. 383 

3.3 Structural displacement calculation 384 

Structural displacement could be easily derived from the change of structural coordinates given the image location 385 

of a target (output of target tracking) and the projection transformation relationship (output of camera calibration). 386 

In this case, the projection transformation is a fixed value or matrix without any update during the test. 387 

Another less common method to derive structural displacement is based on the variation of real-time camera 388 

extrinsic matrix. The camera extrinsic matrix represents the camera pose i.e. position and orientation relative to 389 

the structural system. Since the camera is physically fixed during the recording, variation of camera extrinsic 390 

matrix is related to the change of target pose (position and orientation) and could be used to estimate the target 391 

motions in six degrees of freedom (6DOF). 392 

3.3.1 Offline projection transformation  393 

Principle 394 

For single camera applications using scale factor or planar homography, the 2D structural coordinate/displacement 395 

is derived uniquely through transforming the target location/motion in an image to that in the structure via a 396 

projection transformation value or matrix. 397 
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When two or more cameras with overlapped views are used to monitor the same target, 3D structural displacement 398 

can be extracted based on triangulation method [46].  399 

Application review 400 

Applications of scale factor and planar homography for 2D structural displacement measurement have been 401 

reviewed in Section 3.1.  402 

For stereoscopic view or multiple cameras, the triangulation method was used in [24], [33], [98] for 3D structural 403 

displacement measurement. A multi-camera arrangement provides more reliable results than a single view but the 404 

measurement quality has high dependency on the time-synchronisation of camera recordings.  405 

3.3.2 Online pose estimation  406 

Principle 407 

For single camera applications, using a fixed projection transformation relationship only supports recovery of 2D 408 

structural displacement. Some researchers tried to extract more information about target motion (up to 6DOF) 409 

using a single camera by updating the real-time target pose in the structural system. 410 

Estimation of camera extrinsic matrix is performed for every frame and the 3D translational and rotational target 411 

motions are extracted from the changes of camera extrinsic matrix compared to the initial frame. The calibration 412 

process requires at least four non-collinear points with known dimensions or spacing in structure that should have 413 

consistent motion. 414 

Application review 415 

Greenbaum et al. [99] applied the online pose estimation method for the laboratory 3D motion measurement of 416 

an oscillating rigid object with a few targets of known positions distributed on its surface. In field applications, 417 

Chang and Xiao [11] used a planar target with square grid patterns attached to a bridge surface for the 418 

measurement of 6DOF structural displacement while Martins et al. [14] tracked four non-coplanar LED targets 419 

together to reconstruct the 3D structural motion in a long span bridge.  420 

Remarks 421 

The greatest advantage of the method is the capacity to extract 6DOF structural motions from single camera, but 422 

it has a high requirement on the nature of tracked targets which should consist of at least four non-collinear points 423 

with precisely known geometry. The target or a set of target points should have rigid motions and be visible during 424 

the whole recording period e.g. artificial planar targets with salient corner points [11], distributed target points on 425 

structural surface [99] or a set of LED targets [14]. 426 
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This technique cannot measure translation along the camera optical axis [11], thus the camera should be 427 

configured to avoid facing any motion direction of interest.  428 

The measurement accuracy of this method might be poorer than offline projection transformation method. In a 429 

footbridge monitoring test by Chang and Xiao [11], using a 36.4 mm focal length camera placed about 5.2 m from 430 

mid-span generated measurement noise with standard deviations of 0.76 mm and 1.09 mm in two horizontal 431 

directions. This was much larger than would be achieved by offline projection transformation method in a similar 432 

test [100] (tracking 0.2 mm bridge vertical displacement with the 85 mm focal length and 27 m camera-to-target 433 

distance). Therefore this method is not recommended for field applications  unless the target size is not negligible 434 

compared to the camera-to-target distance [96]. 435 

 FIELD APPLICATIONS AND CHALLENGES 436 

This section summarises the existing field applications of vision-based systems in two active fields, bridge 437 

deformation measurement and cable vibration measurement. A discussion about measurement challenges in field 438 

applications is also presented. 439 

4.1 Application examples 440 

Video acquisition devices are now expanded to include smartphone cameras, with numerous 441 

applications including vibration measurement of a laboratory multi-floor tower structure [15] and cable 442 

vibration measurement of a cable-stayed footbridge [21]. In these two applications, smartphones are 443 

only used as the data acquisition system with the recorded video files post-processing for data 444 

extraction. Smartphone applications for real-time video acquisition and processing are also viable [101] 445 

through experimental validations. 446 

The existing applications of vision-based systems in field tests involve the deformation measurement 447 

of a wide range of structural types including: high-rise buildings [7, 88], bridges [5, 6, 8, 10–14, 18, 20, 448 

22, 30, 44, 45, 49, 51–55, 59, 63, 64, 75, 98, 102–104] and stadium structures [22, 105]. Work in the 449 

two most active fields, i.e. bridge deformation measurement and cable vibration measurement are 450 

summarised in Table 8 and Table 9, respectively. 451 

The viability of vision-based systems for bridge displacement measurement has been verified through comparison 452 

with traditional displacement sensors, e.g. LVDT [10, 55, 103], laser sensors [55] and potentiometers [44] for 453 

short-span bridge and GPS [13, 30, 49] for long-span bridges. The displacement data could be interpreted for 454 
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system identification [8, 11, 12, 49, 54, 55, 63, 75], evaluation of load carrying capacity [53], model calibration 455 

[18] and estimation of vehicle weights [20]. Artificial targets are commonly used in existing applications to assist 456 

camera calibration, whereas recent investigations [51, 63, 75, 103, 104] overcome the dependence on artificial 457 

targets and realise completely non-contact sensing based on a simplified projection transformation i.e. scale factor. 458 

Another promising application of vision-based systems is to estimate cable tension forces based on  vibration 459 

measurement. Measurement accuracy was verified through comparison work with traditional sensors e.g. 460 

accelerometers [40, 85, 106], velocimeters [41] and load cells [105]. Vision-based systems require no access to 461 

cables [16, 30, 40, 85, 86, 90, 105, 106] and are capable of measuring the vibrations of multiple cables using a 462 

single camera [16, 86, 105, 106] that is comparable to an array of accelerometers. 463 

4.2 Measurement accuracy and challenges 464 

Measurement accuracy of vision-based systems depends on several parameters, e.g. camera-to-target distance, 465 

target pattern features, lighting conditions, camera mounting stability and video processing methods. Khuc et al. 466 

[22] investigated the measurement accuracy of a vision-based system in a laboratory and suggested an accuracy 467 

of 0.04 mm in a short-range distance (< 14 m). Martins et al. [14] demonstrated the uncertainty evaluation of 468 

displacement measurement by a vision-based system on a long-span bridge monitoring test and illustrated a 469 

standard measurement accuracy of 1.7 mm in the vertical direction. The high noise range might limit the field 470 

application of vision-based systems for system identification on civil structures although high frame rate is taken 471 

for vision-based systems.  472 

The achievable accuracy in field tests might be much poorer than that of controlled conditions. The authors 473 

investigated the field challenges through a series of monitoring tests in two short-span and two long-span bridges 474 

which have been reported in [30]. A summary of the main findings from the tests and the literature is presented 475 

here. 476 

 Camera and support motion induced by wind [10] might lead to apparent measurement error. Except for 477 

improving camera mounting configurations [30], a common correction method is to additionally track the 478 

‘nominal’ motion of a fixed target e.g. bridge towers or adjacent buildings. Recent work [97] indicates another 479 

promising approach for camera motion compensation through removing the averaged motion of background 480 

pixels based on dense optical flow estimation. 481 

 Variation in lighting and background conditions is one of the critical challenges during field tests. The 482 

influence of lighting variations might be reduced by enabling camera auto-exposure settings [30]. 483 
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Correlation-based template matching is not robust to this effect apart from testing during overcast weather, 484 

whilst the feature point matching method was reported to be less sensitive [64]. 485 

 Atmospheric refraction and turbulence of optical light propagating through the air are common error sources 486 

for any optical-based instrument, especially for long-range measurements. Refraction deviation could be 487 

minimal for short-term displacement measurement while the air turbulence movement has a larger influence 488 

[52]. Quantification of the induced error based on mathematical models is demonstrated in a vision-based 489 

measurement test of a long-span bridge [107]. 490 

 Observations from short-term tests (with duration less than twelve hours) do not find an apparent influence 491 

of temperature variations on measurement accuracy, while this effect is necessary to consider for long-term 492 

tests e.g. with duration a few months or more. A time-frequency approach indicates the potential for error 493 

compensation based on investigation of the correlation models linking measurement errors and temperatures 494 

[108].  495 

 SUMMARY AND PROSPECTS 496 

As evidenced from the review, vision-based systems are promising tools for structural displacement measurement 497 

having advantages in cost, installation efforts and measurement capacities of frequency range and spatial 498 

resolution. Although the potential in field applications has been validated in many articles, there are a few aspects 499 

still to mature. 500 

 Robust target tracking methods. Template matching and optical flow estimation are established methods 501 

widely used in short-range and long-range measurement tests, but they are not robust to lighting and 502 

background changes. Feature point matching is a relatively new and promising tracking method, but 503 

investigations regarding several aspects e.g. selection strategy of proper threshold parameters, sensitivity on 504 

environmental effects and field viability for long-range measurement are rare, and need to be expanded. It is 505 

still an open question about the most robust tracking method for vision-based systems to deal with changes 506 

in lighting conditions during field tests. 507 

 Completely non-contact measurement. Artificial targets are commonly included to assist the camera 508 

calibration process, but dependence on artificial targets is eliminated in a few field applications [15, 22, 75, 509 

104]. These studies were based on a simplified projection transformation i.e. scale factor that is not a general 510 

approach and imposes constraints on camera positioning. To develop a non-contact vision-based system for 511 
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the general case, requiring control points with known locations is the main obstacle which could possibly be 512 

resolved via the assistance of surveying instruments, such as total station. 513 

 Distributed sensing of structural displacement. Vision-based systems have the capacity for simultaneous 514 

multi-point displacement measurement that is comparable or superior to an array of accelerometers for system 515 

identification. Currently, bridge applications primarily focus on the mid-span displacement measurement, 516 

while the potential of distributed sensing and system identification is not well investigated. 517 

 Measurement uncertainty evaluation. Measurement accuracy and uncertainty are of great importance for a 518 

mature measurement system. Quantified descriptions about measurement accuracy haven been made in some 519 

references (e.g. [8, 22, 54, 64]) through comparisons with reference measurements. However, the quality of 520 

vision-based measurements could be time-varying, environmentally dependent and differ significantly with 521 

various test configurations. The influential factors include the test configurations (e.g. the camera-to-target 522 

distance and the target features), the video processing methods used and the environmental conditions (e.g. 523 

the lighting conditions, the atmospheric refraction and turbulence). A systematic evaluation of vision-based 524 

measurement methodologies will require extensive experimental effort by the research community with 525 

publication of case studies contributing to evolving guidance for field applications. 526 
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LIST OF ABBREVIATIONS 527 

The following table describes the abbreviations and acronyms used throughout this article. 528 

Abbreviation Meaning 

BRIEF Binary robust independent elementary features  

DIC digital image correlation  

DOF degree of freedom 

FREAK Fast retina keypoint descriptor  

LK Lucas and Kanade optical flow 

LMS least median of squares  

MCS motion capture systems  

ORB Oriented FAST and Rotated BRIEF  

RANSAC RANdom SAmple Consensus  

SF scale factor 

SIFT scale-invariant feature transform  

SURF speeded up robust features  

ZNCC zero-mean normalised cross correlation  

ZNSSD zero-mean normalised sum of squared differences 
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TABLES 778 

Table 1 Summary of vision-based systems 779 

Vision-based 

systems 

Main study objects Measurement 

information 

Features 

Digital image 

correlation (DIC)  

Small-scale experimental 

members under large 

distortional deformation 

Full-field 

displacements or 

strains on member 

surface 

 Laboratory application in 

controlled environment; 

 Fixed camera locations;  

 Dense measurement with 

high resolution;  

 Usually large deformation 

with shape distortion. 

Motion capture 

systems (MCS) 

Objects or human bodies 

with a high degree-of-

freedom skeleton 

structure 

3D locations of each 

joints in structure 
 Laboratory application in 

controlled environment; 

 Fixed camera locations; 

 At least two cameras with 

overlapped views; 

 Markers and calibration 

object for calibration 

assistance. 

Photogrammetry Initially aerial and 

terrestrial applications; 

now bridges under live 

loads 

3D geometry of 

objects and deflection 

measurement 

 Field applications on 

structures mainly in 

stationary status; 

 Movable locations of 

camera; 

 Distributed control points 

for calibration assistance. 

System for 

structural 

monitoring 

Structures with small 

deformation compared 

with structure scale. 

2D or 3D 

displacement with 

proper sample rate. 

 Field applications and easy 

installation preferred; 

 High accuracy and also high 

calculation efficiency (for 

real-time dynamic 

measurement);  

 Small deformation 

compared with structure 

scale and camera-to-

structure distance. 
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Table 2 Projection transformation from structure to image plane 781 

Projection transformation Assumptions 
Recovered localisation 

information of target 

(1) Full projection matrix -- 3D structural coordinates 

(2) Planar homography  
The motion along one axis in structural 

coordinate system is negligible 
2D structural coordinates 

(3) Scale factor 

The camera optical axis is perpendicular to one 

plane in the structural coordinate system (e.g. 

the target plane XY). 

2D motions within the 

target plane  
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Table 3 Summary of two field applications in literature using the full projection matrix as projection 783 

transformation 784 

References [11] [14, 45] 

Focal length 36.4 mm 600 mm (composed by a 300 mm telephoto 

lens and a 2x tele-converter) 

Camera-to-target 

distance 

5.2 m 500 m 

Artificial targets 

installed 

A planar 3x3 chessboard A 3D target set combined by distributed four 

LED targets with the whole dimensions of 250 

mm, 350 mm and 250 mm along the three axes 

Observed 

maximum 

displacement 

6 mm 1.82 m 

Measurement 

evaluation 

Not commented about vertical 

measurement; 

Measurement noise along the two other 

directions with the standard deviations 

at 0.76 mm and 1.09 mm, respectively. 

Uncertainty at 15 mm to 20 mm in the vertical 

and transverse directions. 

785 



33 

Table 4 Features of two calibration methods for scale factor 786 

Scale factor By camera-to-target distance By dimension correspondences 

Target dependence Target free Artificial targets always required 

Camera positioning 

constraint 

Very sensitive to the tilt of camera 

optical axis 

Less sensitive to the tilt of camera 

optical axis 

Applications Mostly used in the short-range 

measurement; 

The long-range measurement feasible 

for the vision-based systems assisted the 

total station. 

Widely used in both the short-range and 

the long-range measurement 
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Table 5 Categories of target tracking methods  788 

Tracking methods Regions or points tracked for matching 

(1) Template matching Rectangular subset of the frame as the target region 

(2) Feature point matching Sparse ‘special’ points with salient features within the target region 

(3) Optical flow estimation Every pixel location within the target region 

(4) Shape-based tracking Line-type, circular-shaped or custom-made targets 

789 
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Table 6 Categories of feature descriptors and corresponding matching criteria 790 

Descriptor 

categories 

Descriptor names Matching criteria 

Float point based Scale-invariant feature transform (SIFT) [67] 

Speeded up robust features (SURF) [68] 

Euclidean distances in feature 

space [65] 

Binary string 

based  

Binary robust independent elementary features 

(BRIEF) [69] 

Oriented FAST and Rotated BRIEF (ORB) [70] 

Fast retina keypoint descriptor (FREAK) [71] 

Hamming distance [69] 
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Table 7 Examples of shape-based tracking  792 

Ref. Target patterns Determination of target location 

[30, 90] 

 

Detecting the edges of line-shaped patterns and building image 

point correspondences among image sequences [90] or computing 

the cable motion from the distance between two identified edges 

[30] 

[12, 

41][91][92] 

 

Detecting the edges of circular-shaped patterns through brightness 

thresholding or edge detection and computing the centroid 

coordinates for the circle  

[52] 

 

Detecting the edges of cross-shaped patterns through image 

gradient and computing the arithmetic mean of edge coordinates 

as the target location 

[53–

55][93][94] 

 

Detecting four spots through brightness thresholding and 

computing the motions along the specified horizontal and vertical 

directions 

[11] 

 

Detecting grid dots by Harris corner detector and applying the 

image coordinates of grid dots for the estimation of camera 

extrinsic matrix 

[10] 

 

Detecting the edges of squares through brightness thresholding 

and computing the coordinates of the intersection point  

793 
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Table 8 Review of studies about bridge displacement measurement using vision-based systems 794 

Ref. Application 

structures 

Camera 

calibration 

Target tracking 

method 

Target type Measured displacement Data interpretation 

[5, 6] Humber Bridge & 

Second Severn 

Crossing, UK 

Scale factor Correlation-based 

template matching 

Planar target 2D displacement at mid-span  
 

[52] A highway bridge 

& a railway viaduct 

Scale factor Shape-based 

tracking 

Planar target Vertical displacement at mid-

span 

 

[12] Vincent Thomas 

Bridge, USA 

Scale factor Shape-based 

tracking 

LED targets Vertical displacement at mid-

span 
 Extracting modal frequencies 

[53–55] Highway bridges Scale factor Shape-based 

tracking 

Planar target 2D displacement at mid-span   Estimating load carrying 

capacity for load test 

 Evaluating measurement by 

comparison with the reference 

sensors (LVDT & Laser) 

[44] A roadway bridge Full projection 

matrix 

Shape-based 

tracking 

Planar target 2D displacement at mid-span  Evaluating measurement by 

comparison with the reference 

sensor (potentiometer) 

[11] A cable-stayed 

footbridge 

Online pose 

estimation 

Shape-based 

tracking 

Planar target 3D displacement at mid-span   Extracting modal frequencies 

[13] Tsing Ma Bridge, 

Hong Kong 

Scale factor Correlation-based 

template matching 

LED targets Vertical displacement at mid-

span 
 Evaluating measurement  by 

comparison with the reference 

sensor (GPS) 

[63] A railway viaduct Scale factor Lucas-Kanade 

template matching 

Natural features Vertical displacement of 

sound barrier 
 Extracting modal frequencies 

[10] A railway bridge Scale factor Shape-based 

tracking 

Planar target Vertical displacement at mid-

span 
 Evaluating measurement by 

comparison with reference 

sensor (LVDT) 

[8, 18, 103, 

104] 

A footbridge, a 

highway bridge & a 

railway bridge 

Scale factor Correlation-based 

template matching 

Both planar target 

and natural 

features 

Vertical displacement at mid-

span 
 Extracting modal frequencies 

 FE model calibration 

[14, 45] P25A bridge, 

Portugal 

Online pose 

estimation 

Shape-based 

tracking 

LED targets 3D displacement at mid-span   Evaluating measurement 

uncertainty 

[51, 59, 64] A footbridge Scale factor Correlation-based 

template matching 

Both planar target 

and natural 

features 

Vertical displacement at mid-

span 
 Extracting modal frequencies 
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Ref. Application 

structures 

Camera 

calibration 

Target tracking 

method 

Target type Measured displacement Data interpretation 

Feature point 

matching 

Optical flow 

estimation 

 Evaluating measurement 

accuracy and stability of three 

tracking methods 

[30, 49] Humber Bridge, 

UK 

Planar 

homography  

Correlation-based 

template matching 

Planar target 2D displacement at mid-span   Extracting modal frequencies 

 Evaluating measurement by 

comparison with the reference 

sensor (GPS) 

[20] A roadway bridge Scale factor Lukas–Kanade 

method 

Natural features Vertical displacement at mid-

span 
 Estimating vehicle weights 

[75] A railway bridge Scale factor Feature point 

matching 

Natural features Vertical displacement at mid-

span 
 Extracting modal frequencies 
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Table 9 Review of studies about cable vibration measurement using vision-based systems 796 

Ref. Application structures Target tracking 

methods 

Data interpretation 

[85] A footbridge  Optical flow estimation   Extracting modal frequencies 

[90] A footbridge  Shape-based tracking  Extracting modal frequencies 

 Identifying mode shapes. 

[86] Guadiana Bridge, Portugal  Optical flow estimation   Extracting modal frequencies 

[40, 106] Gwangan Bridge and a 

two-pylon cable-stayed 

bridge in Busan-Geoje 

Fixed Link, Korea 

Correlation-based 

template matching  
 Extracting modal frequencies 

 Estimating cable tension 

[41] Chi-Lu Bridge, Taiwan 

China 

Shape-based tracking  Extracting modal frequencies 

 Identifying the mode shape ratio 

of cables 

[105] Hard Rock Stadium, USA Correlation-based 

template matching  
 Extracting modal frequencies 

 Estimating cable tension 

[30] A footbridge  Shape-based tracking  Extracting modal frequencies 

[21] A footbridge Edge detection  Extracting modal frequencies 

 Estimating cable tension 
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FIGURE CAPTIONS 798 

 799 

Fig. 1 Vision-based system for structural displacement monitoring of the Humber Bridge [30]: (a) site 800 

configuration of the vision-based monitoring system; and (b) 10-min time history signal of vertical displacement 801 

at the bridge mid-span measured by the vision-based monitoring system. 802 
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 803 

Fig. 2 Video processing procedures for structural displacement measurement and common methods in each step. 804 
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 805 

Fig. 3 Camera projection model: central perspective projection. 806 
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 807 

Fig. 4 Calibration steps for estimation of full projection matrix. 808 
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 809 

Fig. 5 Images of chessboard taken by GoPro Hero 4 Session camera: (a) raw image; and (b) image after distortion 810 

correction. 811 
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 812 

Fig. 6 Epipolar geometry principle of stereoscopic vision 813 
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 814 

Fig. 7 Camera projection model when the optical axis of camera is perpendicular to the structural surface. 815 
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 816 

Fig. 8 Procedures of template matching method for target tracking: The horizontal and vertical coordinates of the 817 

target centre in the image plane are denoted as U and V, respectively; and the subscripts 0 and 1 represents the 818 

image coordinates in the reference and new frames, respectively. 819 
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 820 

Fig. 9 Procedures of feature point matching for target tracking 821 
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 822 

Fig. 10 Image after filtering by a quadrature pair of Gaussian derivative filters in the image width direction: (a) 823 

the real part of Gaussian derivative filters; (b) the imaginary part of Gaussian derivative filters; (c) the raw image 824 

of footbridge stay cables; (d) the real part of filtered image data; and (e) the imaginary part of filtered image data. 825 

 826 


