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Abstract: Heterogeneous photocatalysis, using photocatalysts in suspension to eliminate diverse
contaminants, including textile wastewater, has several advantages. Nevertheless, current absorbance
and decolorization measurements imply sample acquisition by extraction at a fixed rate with
consequent photocatalyst removal. This study presents online monitoring for the decolorization of six
azo dyes, Orange PX-2R (OP2), Remazol Black B133 (RB), Procion Crimson H-EXL (PC), Procion Navy
H-EXL (PN), Procion Blue H-EXL (PB), and Procion Yellow H-EXL (PY), analyzing the spectrum
measured in situ by using the light scattering provided by the photocatalyst in suspension. The results
obtained have corroborated the feasibility of obtaining absorbance and decolorization measurements,
avoiding disturbances in the process due to a decrease in the volume in the reactor.
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1. Introduction

Water pollution is presently one of the most worrying health problems, influencing the life of all
living beings. It also influences, among sectors with a large influence in the production of wastewater,
the textile industry [1–3], which uses more than 100,000 different dyes, with roughly 280,000 tons
lost in textile effluents every year [4,5]. Textile wastewater is commonly contaminated with high
concentrations of organic substances derived from various residues of dyes and different chemical
additives [3,5]. Synthetic azo dyes account for approximately 800,000 tons, widely used because of
their high reactivity and color resilience [6–8]. For their mineralization and degradation, advanced
oxidation processes (AOPs) are commonly used [8–10]. Among the AOPs, photocatalytic processes are
highlighted due to their high efficiency in the removal of contaminants, including synthetic dyes [11,12].

Current photocatalytic processes in aqueous solutions involve different types of reactors [13–22],
which can be classified in different groups according to their geometry (e.g., tubular or cylindrical,
rectangular or square reactors, etc.), liquid agitation techniques (e.g., continuous flow reactors,
e.g., stirrer rotation) and lighting source including mainly low or medium pressure ultraviolet
lamps [23–27], currently being replaced by LED lighting [28–34], which can reduce the size of the
reactors, allowing the making of compact photo reactors known as mini reactors or micro reactors [35–37].
These reactors usually work with less than one liter of water [33–42], using photocatalysts either in
suspension [41–45] or immobilized [46–48]. Reactors with photocatalysts in suspension are the most
used, since it is not necessary to obtain any previous treatment of the photocatalyst. On the other
hand, reactors with immobilized photocatalysts, used for diverse applications such as continuous flow
processes, need careful preparation to avoid low reaction rates [47].
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Monitoring of the degree of oxidation achieved in AOPs is a crucial parameter to determine
when the process is completed (i.e., measurement Chemical Oxygen Demand (COD), Total Organic
Carbon (TOC), Biochemical Oxygen Demand (BOD)) [24,25,39,41]. In particular, for dyed solutions, the
principal measurement of the degree of decolorization is used [49–53]. This analysis frequently involves
a measurement of the absorbance at different times, obtained by extracting samples periodically,
generating a decrease in the water volume (non-negligible in such mini reactors) and altering the
photocatalysts concentration [41,42]. An improvement of the existing monitoring techniques should
result in a more efficient control of the oxidation process. In particular, online monitoring could offer
a solution, conserving the volume and catalyst concentration of the treated water. This possibility was
recently proposed for monitoring in reactors with immobilized photocatalyst [30,35,54,55], but not for
photocatalyst in suspension due to its intrinsic large scattering [56–62].

In this study, we propose a novel implementation for the online monitoring of dye decolorization
in photocatalytic in suspension reactors, which can be adapted to different reactor geometries, profiting
from the natural process of scattering to measure the color removal. The frequency spectrum of the
scattered radiation when the solution is illuminated by a white light source is continuously monitored
by a fiber-coupled spectrometer, measuring the degree of decolorization in real-time.

2. Results

2.1. Online Monitoring

In the experiments, a photocatalytic microreactor with suspended TiO2 photocatalyst was used
(see details about the methodology in Section 4). The titanium dioxide spherical nanoparticles,
with diameter of 21 nm, surface area of 35−65 m2/g, molecular weight 78.87 g/mol and index of
refraction close to 2.8 in the visible region of the spectrum, are suspended in water and continuously
stirred to avoid precipitation of the suspension. As a consequence, the averaged particle density and
hence the averaged index of refraction at each microscopic volume element of the suspension will
show temporal fluctuations, leading to a quite uniform scattering distribution in all directions when
illuminated by a light beam. The size of the scattering centers, much smaller than the wavelength,
leads to Rayleigh-type scattering with omnidirectional dispersion acting quite effectively in the visible
part of the spectrum.

The conventional method to determine the decolorization degree requires filtering the suspended
photocatalyst to measure the absorbance using a spectrophotometer. The degree of decolorization is
directly related to the amount of oxidation achieved in the sample.

Online monitoring of the decolorization process would allow following the kinetics of the process
in real-time. In a first attempt to achieve this goal, the geometry of the photoreactor was modified,
including a pump to circulate the dye solution into an external circuit and using a 1 mm thick cuvette
to measure the degree of decolorization of the sample; nevertheless, this configuration presented
some problems: in the circulation process part of the catalyst was adsorbed at the circuit walls and
a direct measure through the cuvette in transmission was not possible due to the high scattering
present. Using immobilized TiO2 geometries can palliate the effect of the scattering but can introduce
other problems such as how to obtain a uniform illumination of the sample (this is a crucial aspect in
photocatalytic processes).

We propose a new solution, profiting from the natural scattering emitted over broad spectral
regions with the aim to perform an online monitoring of the spectrum directly from the reactor body.
We will also demonstrate its performance in the monitoring of the decolorization of azo dyes.

Figure 1 shows the implemented photoreactor with the elements required to perform online
monitoring. This reactor uses 86 LEDs, distributed in different arrays for the photocatalytic process
and was implemented according to the description in Figure 15 in Section 4.

For the monitoring, we used a white light source coupled to a fiber bundle and placed close to the
reactor wall, illuminating the dye solution. In the figure, the strong scattering present in the illuminated
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solution can be seen. The scattered radiation is captured by a second fiber bundle and coupled to
a spectrometer to record its frequency spectrum. Since the scattering of radiation is omnidirectional,
the detection fiber bundle can be placed in any location adequate to the geometry of the reactor.
In the experiments, the fiber bundle was placed close to the source using a screen in order to eliminate
direct coupling from the source to the detector. The acquisition process can be automatized allowing
the recording of the spectrum of the dye at selected times. In each experiment measures were taken
every 5 min automatically.Catalysts 2019, 9, x FOR PEER REVIEW 3 of 15 
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Figure 1. Implemented photocatalytic reactor with decolorization monitoring.

As an initial reference, the spectrum of clean deionized water with an amount of photocatalyst in
suspension, identical to that used in the dye samples and with identical magnetic stirring conditions,
was recorded. The capabilities of this system were tested by monitoring the decolorization process of
six different dyes with colors varying along the visible spectrum (details of the dyes used are presented
in Section 4). Figure 2 shows the intensity spectral curves, recorded for each sample. The arrows
indicate the direction of change of the spectra as a function of time, indicating that the intensity of
the spectrum signal recorded increases with time as the decolorization process takes place. For these
measurements, a calibrated optical illumination to obtain absolute values of irradiance is not needed,
since merely the relative variations of the spectrum are considered. From these curves, an increase of
the transparency of the samples, given by the increase of the overall spectrum intensity, can be inferred.

Taking as a reference the spectrum of the TiO2 suspension in deionized water, normalized values
of the transmittance of the dye during the oxidation process are shown in Figure 3. These curves also
allow determining which wavelengths are more sensitive to the decolorization process according to
the characteristics of the dye.

Figure 4 shows a measure of the normalized absorbance of the sample, obtained from the recorded
spectra using Equation (2). The absorbance values decrease when the color is removed from the
dyed water.

The decolorization percentages, calculated using Equation (3) using the maximum absorbance of
each dye (information in Table 2) allow extracting kinetic information from the oxidation process as
shown in Figure 5 (continuous line). These figures show that in all cases, 100% of the decolorization
was reached with varying oxidation velocities depending of the nature of each dye.
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Figure 5. Decolorization of dyes, in situ and traditional method. (a) OP2, (b) RB, (c) PC, (d) PN, (e) PB,
(f) PY.
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The total decolorization time for each one of the tested dyes is shown in Figure 6, ranging from
between 2 h and 10 h. The online measurement allowed making a completely automatized recording.
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Figure 6. Time of decolorization of each dye.

2.2. Measured Absorbance with Traditional Method

With the aim of comparing the results obtained in this in situ monitoring with the traditional
method employed, initial and final samples of each of the photocatalytic processes (each dye) were
analyzed. The absorbance values were measured using a 1/20 dilution after centrifugation to remove
the titanium dioxide in suspension. Figure 7 shows the absorbance curves obtained by the traditional
method; as can be seen, the curves show trends equivalent to those obtained by the in situ method
in Figure 4. The absorbance values obtained with the traditional method were used to calculate the
decolorization using Equation (3), and were plotted with circular marks in Figure 5.Catalysts 2019, 9, x FOR PEER REVIEW 7 of 15 
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2.3. Kinetic Values and Energy Consumption

The dyes degradation rate at each experiment follows a first-order kinetic model by
Langmuir–Hinshelwood; this model provides the kinetic values (K), calculated from the slope
of logarithmic absorbance values versus time of treatment, and the regression coefficients (R2).

In Table 1, the values for both methods corresponding to the regression coefficients (R2), and the
kinetic degradation rate (K) are listed. Moreover, since each decolorization process had a different
duration, the calculation of the energy consumption are also listed in the table.

Table 1. First-order degradation rate constant, and Energy Consumption for the decolorization of
azo dyes.

Dye R2 K (min−1) Energy Consumption (kWh/m3)

In situ monitoring
Orange PX-2R 0.9232 0.0159 332.53

Remazol Black B133 0.7218 0.0101 688.00
Procion Crimson H-EXL 0.9060 0.0281 269.47

Procion Navy H-EXL 0.9861 0.0232 131.87
Procion Blue H-EXL 0.7610 0.0131 292.40

Procion Yellow H-EXL 0.7870 0.0219 407.07
Traditional method

Orange PX-2R 0.9341 0.0132 344.00
Remazol Black B133 0.8022 0.0074 670.80

Procion Crimson H-EXL 0.9263 0.0285 275.20
Procion Navy H-EXL 0.9246 0.0271 137.60
Procion Blue H-EXL 0.8441 0.0118 275.20

Procion Yellow H-EXL 0.8618 0.0184 412.80

3. Discussion

The implementation of this online monitoring technique was developed as an alternative method
to the traditional decolorization analysis schemes based on photocatalytic processes.

In this work, it was proved that the scattering produced by suspended titanium dioxide, can be
exploited in order to perform the online monitoring of color removal of azo dyes in photocatalytic
processes. Thus avoiding alterations or interruptions during the process by maintaining unaltered
the photocatalyst concentration, as well as the volume of the contaminant (a crucial condition in
minireactors and microreactors).

Since the scattering is present due to the fluctuations in the suspended particles density, this
technique could be extended to other semiconductor photocatalysts with different index of refraction
or particle dimensions.

In addition, since this technique allows arbitrarily selecting the sampling frequency of the acquired
spectra, the precision in the determination of the degradation curve could be improved by taking more
samples. Furthermore, with more samples, we can know the exact moment at which the process has
reached the total decolorization, or the desired percentage. Moreover, it allows the determination of
the degradation to control the dynamics of the process.

4. Materials and Methods

4.1. Reagents

The photocatalyst used was commercial titanium dioxide powder (TiO2) from Sigma-Aldrich,
St. Louis, MO, USA (CAS number 13463-67-7, and Product Number 718467), with surface area of
35–65 m2/g, a molecular weight 78.87 g/mol, an average particle diameter of 21 nm, refractive index of
2.6–2.8, pH of 3.5–4.5 and a density of 4.26 g/mL.
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The textile dyes used for this study were six different textile dyes from the azo chromophore group
(Table 2), Orange PX-2R dye (CAS No. 12225-85-3, Figure 8), Remazol Black B133 (CAS No. 17095-24-8,
Figure 9), Procion Crimson H-EXL (CAS No. 186554-26-7, Figure 10), Procion Navy H-EXL (mixed of CAS
No. 186554-26-7, Figure 10 and CAS No. 186554-27-8, Figure 11), Procion Blue H-EXL (CAS No. 124448-55-1,
Figure 12), and Procion Yellow H-EXL (mixed of CAS No. 72906-24-2, Figure 13 and CAS No. 72906-25-3,
Figure 14).

Table 2. Description of the selected dyes.

Abbr. Name Commercial Name C. I. Name Num. Reactive Groups λmax Figure

OP2 Orange PX-2R Reactive Orange 13 1 487 nm 8
RB Remazol Black B133 Reactive Black 5 2 598 nm 9
PC Procion Crimson H-EXL Reactive Red 231 2 545 nm 10
PN Procion Navy H-EXL Not registered 2 606 nm 11
PB Procion Blue H-EXL Reactive Blue 198 2 624 nm 12
PY Procion Yellow H-EXL Reactive Yellow 138:1 2 416 nm 13, 14Catalysts 2019, 9, x FOR PEER REVIEW 9 of 15 
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4.2. Photocatalytic Reactor

For the measurements of the decolorization, a photocatalytic reactor was built using a 250 mL
borosilicate vessel and a magnetic stirrer. Figure 15a shows schematic diagram of the photoreactor
with the in situ monitoring configuration, Figure 15b shows the schematic diagram of the effect of
the scattering in a photoreactor with suspended catalyst, the reactor has two square UV-LED arrays
(UV-LED array (2) and(4)), placed at 120◦ around the container, at a distance of 8 cm from the center of
the reactor, and another three UV-LED arrays placed at 120◦ around the vessel (UV-LED array (1), (3)
and (5)), at a distance of 4 cm from the center of the reactor, and UV-LED radial array, placed in the
upper part of the photoreactor, at a distance of 10 cm with respect to the bottom of the vessel.
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White light
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Figure 15. Schematic diagrams. (a) Reactor with decolorization monitoring configuration. (b) Sample
scattering and monitoring system (top view).

The geometric configuration and the separation between UV-LEDs was selected with the aim
to obtain an illumination as uniform as possible in the reactor using uniform irradiance models [33].
The UV-LEDs were manufactured by Roithner LaserTechnik GmbH, Wien, Austria LED385-33 UVA,
with peak wavelength at 385 nm, radiated power of 11 mW and power dissipation of 200 mW.
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4.3. Online Monitoring

The online monitoring configuration used a white light lamp (OSL1-EC from Thorlabs GmbH,
Munich, Germany), whose irradiance is emitted in a spectral range different from the photocatalyst
activation zone (<380 nm) to avoid the alteration of the photocatalytic process, this lamp was placed
normal to the reactor’s surface, illuminating in the radial direction to induce the scattering from
the catalyst in suspension. Also, a fiber bundle connected to an spectrometer (Andor Shamrock
303i by Andor Technology Ltd., Belfast, UK) was oriented in order to collect the scattered radiation
from the reactor, but avoiding direct ultraviolet light from the UV sources of the photocatalytic
process, in addition between the reference lamp and the spectrometer a barrier was placed to avoid
erroneous readings.

The spectrometer was configured to take a sample every five minutes until the total decolorization
of each dye was reached.

The transmittance was calculated by:

%T =

(
I
I0

)
× 100 (1)

where I is the transmitted light intensity, and I0 is the original light intensity.
Absorbance can be calculated given its relation to transmittance by:

A = 2− log(%T) (2)

where %T is the transmittance as a percentage.
The percentage of decolorization was calculated by:

Decolorization (%) =

(
Abs0 −Abs

Abs0

)
× 100 (3)

where Abs0 is the initial absorbance, and Abs is the absorbance at time t of the taken sample.

4.4. Measurements with Traditional Method

To measure the absorbance value by the traditional method it is necessary to take a sample, and to
remove the titanium dioxide (e.g., filtration, centrifugation), to be able to use the spectrophotometer
(UV-2401 from Shimadzu Europa GmbH, Duisburg, Germany) at the maximum wavelength of the
visible spectrum of each dye (Table 2). Subsequently, the percentage of decolorization can be calculated
using Equation (3).

4.5. Photocatalytic Decolorization Experiments

To simulate the effluents after the dyeing process, 250 mL of distilled water was mixed with
0.1 g/L of each dye. Before photodegradation, the solution was mixed with 1 g/L of photocatalyst in
suspension and then the mixture was put on magnetic stirrer in complete darkness for 30 min to ensure
the adsorption of the dye on the surface of the catalyst. After 30 min, the UV-LED source was turned
on with the mixture in constant agitation. The catalytic process was carried out until the total color
removal of each dye was reached. Initial and final traditional samples of each dye were taken to verify
the decolorization values obtained with online monitoring against the traditional method.

5. Conclusions

In this study, we developed a simple non-invasive online monitoring technique for photocatalytic
reactors based on the detection of the variations in the decolorization of textile dyes by exploiting the
light scattering produced by the photocatalyst in suspension.
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The presented online monitoring technique operates regardless of the geometry or dimensions
of the reactor. For the conducted experimental scenarios, the lighting source remained external;
nevertheless, this technique also can be applied in photoreactors with traditional immersive lighting.

By exploiting the light scattering physical process, it can be achieved the online monitoring of
laboratory scale photoreactors (mini and micro reactors), while avoiding the use of supplementary
procedures during the photocatalytic process, as is the case of reactors with optical modified
characteristics (that permit lighting filtering techniques), or the use of immobilized photocatalysts.

Although for the experimental scenarios presented in this study a white light lamp was used,
it is also possible to use other types of lighting sources (e.g., laser or LED). Thus, since the degradation
assessment in the ultraviolet zone is also possible, the online monitoring is not only restricted
to the decolorization processes, allowing online degradation monitoring for different applications
(e.g., organic matter monitoring).

For this line of research, future work can be focused on developing and implementing automatic
control systems that enable the deactivation of the lighting source when the sample reaches the desired
degradation percentage, avoiding unnecessary energy consumption, as well as using in situ monitoring
to analyze different types of contaminants.
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8. Bilińska, L.; Gmurek, M.; Ledakowicz, S. Textile wastewater treatment by AOPs for brine reuse. Process Saf.
Environ. Prot. 2017, 109, 420–428. [CrossRef]

9. Bethi, B.; Sonawane, S.H.; Rohit, G.S.; Holkar, C.R.; Pinjari, D.V.; Bhanvase, B.A.; Pandit, A.B. Investigation of
TiO2 photocatalyst performance for decolorization in the presence of hydrodynamic cavitation as hybrid AOP.
Ultrason. Sonochem. 2016, 28, 150–160. [CrossRef]

10. Herrmann, J.M. Fundamentals and misconceptions in photocatalysis. J. Photochem. Photobiol. A Chem. 2010,
216, 85–93. [CrossRef]

http://dx.doi.org/10.1016/j.cattod.2017.05.061
http://dx.doi.org/10.3390/catal9050430
http://dx.doi.org/10.1016/j.proenv.2013.02.038
http://dx.doi.org/10.1016/S1872-2067(14)60205-9
http://dx.doi.org/10.1016/j.jbiosc.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28803054
http://dx.doi.org/10.1007/s11270-010-0520-z
http://dx.doi.org/10.1016/j.psep.2017.04.019
http://dx.doi.org/10.1016/j.ultsonch.2015.07.008
http://dx.doi.org/10.1016/j.jphotochem.2010.05.015


Catalysts 2019, 9, 669 13 of 15
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