41 research outputs found

    Experimental Flight Testing of an Adaptive Autopilot with Parameter Drift Mitigation

    Full text link
    This paper modifies an adaptive multicopter autopilot to mitigate instabilities caused by adaptive parameter drift and presents simulation and experimental results to validate the modified autopilot. The modified adaptive controller is obtained by including a static nonlinearity in the adaptive loop, updated by the retrospective cost adaptive control algorithm. It is shown in simulation and physical test experiments that the adaptive autopilot with proposed modifications can continually improve the fixed-gain autopilot as well as prevent the drift of the adaptive parameters, thus improving the robustness of the adaptive autopilot.Comment: 6 pages, 16 figures, submitted to IROS 202

    Planification de trajectoire et contrôle d'un système collaboratif : Application à un drone trirotor

    Get PDF
    This thesis is dedicated to the creation of a complete framework, from high-level to low-level, of trajectory generation for a group of independent dynamical systems. This framework, based for the trajectory generation, on the resolution of Burgers equation, is applied to a novel model of trirotor UAV and uses the flatness of the two levels of dynamical systems.The first part of this thesis is dedicated to the generation of trajectories. Formal solutions to the heat equation are created using the differential flatness of this equation. These solutions are transformed into solutions to Burgers' equation through Hopf-Cole transformation to match the desired formations. They are optimized to match specific requirements. Several examples of trajectories are given.The second part is dedicated to the autonomous trajectory tracking by a trirotor UAV. This UAV is totally actuated and a nonlinear closed-loop controller is suggested. This controller is tested on the ground and in flight by tracking, rolling or flying, a trajectory. A model is presented and a control approach is suggested to transport a pendulum load.L'objet de cette thèse est de proposer un cadre complet, du haut niveau au bas niveau, de génération de trajectoires pour un groupe de systèmes dynamiques indépendants. Ce cadre, basé sur la résolution de l'équation de Burgers pour la génération de trajectoires, est appliqué à un modèle original de drone trirotor et utilise la platitude des deux systèmes différentiels considérés. La première partie du manuscrit est consacrée à la génération de trajectoires. Celle-ci est effectuée en créant formellement, par le biais de la platitude du système considéré, des solutions à l'équation de la chaleur. Ces solutions sont transformées en solution de l'équation de Burgers par la transformation de Hopf-Cole pour correspondre aux formations voulues. Elles sont optimisées pour répondre à des contraintes spécifiques. Plusieurs exemples de trajectoires sont donnés.La deuxième partie est consacrée au suivi autonome de trajectoire par un drone trirotor. Ce drone est totalement actionné et un contrôleur en boucle fermée non-linéaire est proposé. Celui-ci est testé en suivant, en roulant, des trajectoires au sol et en vol. Un modèle est présenté et une démarche pour le contrôle est proposée pour transporter une charge pendulaire

    Aerial Robotics for Inspection and Maintenance

    Get PDF
    Aerial robots with perception, navigation, and manipulation capabilities are extending the range of applications of drones, allowing the integration of different sensor devices and robotic manipulators to perform inspection and maintenance operations on infrastructures such as power lines, bridges, viaducts, or walls, involving typically physical interactions on flight. New research and technological challenges arise from applications demanding the benefits of aerial robots, particularly in outdoor environments. This book collects eleven papers from different research groups from Spain, Croatia, Italy, Japan, the USA, the Netherlands, and Denmark, focused on the design, development, and experimental validation of methods and technologies for inspection and maintenance using aerial robots

    Model-based Design Development and Control of a Wind Resistant Multirotor UAV

    Get PDF
    Multirotor UAVs have in recent years become a trend among academics, engineers and hobbyists alike due to their mechanical simplicity and availability. Commercial uses range from surveillance to recreational flight with plenty of research being conducted in regards to design and control. With applications towards search and rescue missions in mind, the main objective of this thesis work is the development of a mechanical design and control algorithm aimed at maximizing wind resistance. To these ends, an advanced multirotor simulator, based on helicopter theory, has been developed to give an accurate description of the flight dynamics. Controllers are then designed and tuned to stabilize the attitude and position of the UAV followed by a discussion regarding disturbance attenuation. In order to study the impact of different design setups, the UAV model is constructed so that physical properties can be scaled. Parameter influence is then investigated for a specified wind test using a Design of Experiments methodology. These results are combined with a concept generation process and evaluated with a control engineering approach. It was concluded that the proposed final design should incorporate a compact three-armed airframe with six rotors configured coaxially

    Real-Time Support Framework for the Development of Unmanned Aerial Vehicles Software

    Get PDF
    The objective of this thesis is to provide a set of tools to support the development of navigation, guidance, and control algorithms for unmanned aerial vehicles. More precisely, the final goal is to build a friendly programming framework for supporting hardware-in-the-loop simulations. The possibility to run the generated code directly on the target device can provide a feasible way to verify and validate the performance of the various control components without requiring the real flight tests. For this reason, this technique reduces the development time and cost, eliminates the risk of crashes, while making use of the control system that will be employed in the final implementation. The work first presents a preliminary analysis of existing solutions and possible simulator architectures. A more specific analysis of the target device under interest is carried out. Hardware capabilities and limits are discussed to verify the feasibility of the hardware-in-the-loop simulation. The part of the firmware involved in the simulation loop has been inspected and integrated with the required features. The contribution of this work consists in a deep analysis of the simulation issues (typically neglected in the existing solutions) and in the development of a new structure to take them into account. The simulation environment developed under this thesis is also able to manage timing constraints specified on the computational activities. Performance tests have been run to verify the reliability of the framework. The obtained results, besides demonstrating the correct functionality of the application, showed which component could be improved in a future work

    A survey of single and multi-UAV aerial manipulation

    Get PDF
    Aerial manipulation has direct application prospects in environment, construction, forestry, agriculture, search, and rescue. It can be used to pick and place objects and hence can be used for transportation of goods. Aerial manipulation can be used to perform operations in environments inaccessible or unsafe for human workers. This paper is a survey of recent research in aerial manipulation. The aerial manipulation research has diverse aspects, which include the designing of aerial manipulation platforms, manipulators, grippers, the control of aerial platform and manipulators, the interaction of aerial manipulator with the environment, through forces and torque. In particular, the review paper presents the survey of the airborne platforms that can be used for aerial manipulation including the new aerial platforms with aerial manipulation capability. We also classified the aerial grippers and aerial manipulators based on their designs and characteristics. The recent contributions regarding the control of the aerial manipulator platform is also discussed. The environment interaction of aerial manipulators is also surveyed which includes, different strategies used for end-effectors interaction with the environment, application of force, application of torque and visual servoing. A recent and growing interest of researchers about the multi-UAV collaborative aerial manipulation was also noticed and hence different strategies for collaborative aerial manipulation are also surveyed, discussed and critically analyzed. Some key challenges regarding outdoor aerial manipulation and energy constraints in aerial manipulation are also discussed
    corecore