
UNIVERSITY OF PISA
School of Engineering

M.Sc. in Robotics and Automation Engineering

Master’s Thesis

Real-Time Support Framework for
the Development of Unmanned Aerial

Vehicles Software

Supervisor:
Prof. Giorgio Buttazzo
Dott. Mauro Marinoni

Author:
Luigi Pannocchi

Academic Year 2014/2015

Contents

Abstract 2

1 Introduction 1
1.1 Context of the Application . 1
1.2 Related Work . 5

1.2.1 PX4 Project . 6
1.2.2 Limits of this approach 8

1.3 Contribution of this Work . 9

2 System Architecture 10
2.1 Quadrotor . 11
2.2 Simulation Block . 13
2.3 Autopilot . 14

2.3.1 Autopilot Operating System 15
2.4 Ground Station . 16

2.4.1 MAVLink Protocol . 18

3 Simulation Framework 22
3.1 Simulation Framework and Aims 22
3.2 Conventions . 23

3.2.1 Frames of Reference 23
3.2.2 Rotations . 25

3.3 UAV Dynamics Model . 27
3.3.1 Actuators . 28
3.3.2 Equations of Motion 29
3.3.3 Simulink Blocks . 30

3.4 Sensors’ Model . 34

4 Ground Station Application 43
4.1 Inter-Object Communication Approach 45

4.1.1 Signals and Slots: Description 45

i

Chapter 0

4.1.2 Signals and Slots: Performances 47

5 Autopilot Software 48
5.1 Operating System . 48
5.2 Middleware . 49

5.2.1 Publishing . 50
5.2.2 Subscribing . 51
5.2.3 Middleware as Synchonization means 51

5.3 Application Layer . 52
5.3.1 System Applications 52
5.3.2 Flight Control Applications 52
5.3.3 Tasks Synchronization 54

6 Data Governor 57
6.1 Application Structure . 60

7 Experiments 62
7.1 Experiment Setup . 62
7.2 Experiment Results . 64

8 Conclusions 69
8.1 Future Works . 70

University of Pisa, September 2015 ii

List of Figures

1.1 Embedded System Scheme . 2
1.2 Embedded System Simulation Scheme 3
1.3 Software in the Loop framework 4
1.4 Hardware in the Loop framework 4
1.5 PX4 Solution for the HIL simulation environment 7

2.1 Overall System Architecture 11
2.2 The quadcopter model equipped with the selected autopilot

board . 12
2.3 Scheme of the basic elements in a flight control system 14
2.4 PX4 Autopilot Board . 14
2.5 Nuttx Logo . 16
2.6 Ground Station: Overview on the Drone State 17
2.7 Ground Station: Drone Parameter settings 17
2.8 Ground Station: Map vision with waypoints 18
2.9 Ground Station: Plotting of received sensor data 18
2.10 Communication Between Applications 19
2.11 Structure of the mavlink packet 21

3.1 Simulation Block . 22
3.2 Simulation Framework . 23
3.3 Reference Frames commonly used for navigation purposes . . . 24
3.4 Reference Frame attached to the body 25
3.5 Schematical representation of the quadrotor and the forces/torques

acting on it . 30
3.6 Simulink Motors describing the motor dynamics 31
3.7 Simulink Block for the forces/torques computation 32
3.8 Simulink Block for the Dynamics integration 33
3.9 Simulink IMU block . 36
3.10 Earth Magnetic Vector components 38
3.11 Simulink Magnetic Sensor block 38

iii

Chapter 0

3.12 ISA Atmosphere Model Block 39
3.13 Simulink Pressure Sensor block 39
3.14 Simulink Pitot Sensor block 40
3.15 Simulink Temperature Sensor block 40
3.16 Simulink GPS Sensor block 41
3.17 Simulink Complete Model . 42

4.1 Ground Station: QGroundControl Logo 43
4.2 Application Structure . 44
4.3 Signal/Slot connection between objects 46

5.1 Software Architecture . 49
5.2 Publisher/Subscriber framework 50
5.3 Mavlink application: data flux 53
5.4 Sequence of events which determines low latency in the response 54
5.5 Sequence of events which determines high latency in the response 55
5.6 Control Chain Example . 56

6.1 Application Structure . 60

7.1 Experiment Setup . 63
7.2 Statistic of the inter-activation time between Inflow Thread

and Simulation Thread . 64
7.3 Statistic of the activation time of the Inflow Thread 65
7.4 Statistic of the activation time of the Simulation Thread . . . 65
7.5 Statistic of the execution time of the Inflow Thread 66
7.6 Statistic of the execution time of the Simulation Thread . . . 67
7.7 Statistic of the execution time of the Simulation Thread . . . 67
7.8 Statistic of the execution time of the Simulation Thread(Detail) 68
7.9 Statistic of the Response Time of the Simulator Block 68

University of Pisa, September 2015 1

Abstract

The objective of this thesis is to provide a set of tools to support the devel-
opment of navigation, guidance, and control algorithms for unmanned aerial
vehicles. More precisely, the final goal is to build a friendly programming
framework for supporting hardware-in-the-loop simulations. The possibility
to run the generated code directly on the target device can provide a feasible
way to verify and validate the performance of the various control components
without requiring the real flight tests. For this reason, this technique reduces
the development time and cost, eliminates the risk of crashes, while making
use of the control system that will be employed in the final implementation.

The work first presents a preliminary analysis of existing solutions and
possible simulator architectures. A more specific analysis of the target device
under interest is carried out. Hardware capabilities and limits are discussed
to verify the feasibility of the hardware-in-the-loop simulation. The part of
the firmware involved in the simulation loop has been inspected and inte-
grated with the required features.

The contribution of this work consists in a deep analysis of the simulation
issues (typically neglected in the existing solutions) and in the development
of a new structure to take them into account.

The simulation environment developed under this thesis is also able to
manage timing constraints specified on the computational activities. Perfor-
mance tests have been run to verify the reliability of the framework. The
obtained results, besides demonstrating the correct functionality of the ap-
plication, showed which component could be improved in a future work.

Chapters Description

Chapter 1 The first chapter introduces the context of the application,
also describing the motivations that drove the thesis. A state of the art is
then presented, describing the solutions existing in the literature with their
advantages and weaknesses. Starting from this point, the approach used in
this work is briefly introduced.

2

Chapter 0

Chapter 2 The second chapter illustrates the overall system architecture
in order to acquaint the reader with all the blocks constituting the proposed
framework. The main components include the AUV with its autopilot board,
the Ground Station, the simulation framework and the developed application
that manages the data flow between the various components.

Chapter 3 The third chapter is dedicated to the description of the simula-
tion part of the framework realized with Matlab/Simulink. Before illustrating
the simulation model, a review of the conventions used when representing the
motion of a vehicle are reported. The equations ruling the motion of the AUV
are presented together with the models of the various sensors. The chapter
ends illustrating the Simulink blocks used to implement the mathematical
models.

Chapter 4 The fourth chapter describes the features of the Ground Sta-
tion Application. After a brief introduction to the application’s role and its
internal structure, the attention is focused on the method used to manage
data flows.

Chapter 5 The fifth chapter gives an overview on the autopilot firmware
and the applications running on it. Particular attention is devoted to the
analysis of the mechanisms for data exchange and synchronization inside the
application.

Chapter 6 The sixth chapter describes the component that manages the
data flow in the structure considering timing constraints.

Chapter 7 The seventh chapter illustrates the results of the experiments
carried out to test the performance of the system.

Chapter 8 The last chapter states the conclusions, summarizing the work
done, the achieved results, and providing a list of possible future develop-
ments of the current solution to improve its performance.

University of Pisa, September 2015 3

Chapter 1

Introduction

1.1 Context of the Application

The adoption of autonomous vehicles has clearly increased over the last few
decades gradually substituting manned solutions. This success is justified
by the distinct advantages they provide: not only do they constitute a safer
solution for various applications but they are also more efficient in accom-
plishing tasks.

Practical applications which see autonomous systems in action comprise
operations in hazardous environments, where the human intervention is risky
or even impossible. Other tasks, such as surveillance of large areas, benefit
from autonomous systems since the amount of information gathered using
modern sensors is far superior to the humans’ capabilities and the reaction
time to events is lower. To provide practical examples, apart from the well
known usage for military operations, also civilian applications like agricul-
ture, fire monitoring etc. are arousing great interest in this field. This spread
towards the civilian sphere suggests that it will become a common technol-
ogy, providing new issues to research and work on.

The employment of autonomous vehicles would have been unfeasible if it
had not been for technological progress and continuous development of new
equipment. It follows that this animated field of study entails new challenges
for the engineer who has to provide feasible and efficient solutions in such
a variable environment. It is thus of paramount importance to dispose of
support frameworks to develop and validate the system under study. One of
the most useful tool is the simulation environment which allows to obtain a
feedback on the performance of the proposed solution.

1

Chapter 1

Autonomous vehicles, having the autopilot computer onboard, can be in-
cluded in the category of embedded systems. Indeed an embedded system
is a combination of computer hardware, “embedded” into the system to be
controlled, and software designed to perform a dedicated function in an envi-
ronment (Figure 1.1). This structure demands for particular considerations

Sensors Actuators

System
Control

Environment

System Dynamics

Embedded System

Figure 1.1: Embedded System Scheme

when dealing with the simulation step. When the interest is aimed to the de-
velopment of a particular algorithm, without taking into account its practical
implementation, the main requirement is the capability to reproduce a real-
istic simulation environment. On the other hand in this field, this approach
doesn’t suffice: not only is it necessary to model the behavior of the physical
part of the system, but also the computer hardware and software performing
the control functions must be taken into consideration if it is required to pro-
vide a truthful result. In a simulation environment the structure shown in
Figure 1.1 can be subdivided in two blocks (Figure 1.2): the part simulating
the plant and the part implementing the control law. The simulation flow
can be considered as a loop between these two block composed by two steps:

1. Reaction of the simulated plant, representing the system under control
to external stimuli(control input and environment)

2. Computation of a control action by the controller given simulated sen-
sor data

University of Pisa, September 2015 2

Chapter 1

Sensors Actuators

System
Control

Environment

System Dynamics

PLANT

CONTROL

Figure 1.2: Embedded System Simulation Scheme

In the case of theoretical approach to the control problem, the part imple-
menting the control law consists in pure code representing the theoretical
aspect of the algorithm, that is, only “what” is written and not “how” is
written matters. When moving a step forwards to the practical implemen-
tation there are two simulation techniques which attempt to include the
architecture of the control system in the simulation loop:

1. Software in the Loop (SIL)

2. Hardware in the Loop (HIL)

The former one consists in bare code running on a computer, that is, all the
simulation components are simulated on a host machine (Figure 1.3). To per-
form this kind of simulation it is necessary to run the code, originally hosted
on the embedded system, on the machine running the simulation. Since in
this case the control block is a sofware component the technique is called
”Software in the Loop”. The latter method makes use of a simulated plant
on a host computer and the real hardware on which developed algorithms
are run (Figure 1.4). The control block in this case consists in a hardware
resource and then the name ”Hardware in the Loop”.

The advantages of a SIL implementation resides in the possibility to run
it without having the physical board. Moreover it is possible to debug the

University of Pisa, September 2015 3

Chapter 1

applications more easily with respect to HIL case. On the other side the
execution is not in realtime and it is difficult to take into account the capa-
bilities of the end device. In chosing which way to follow it is thus necessary
to consider the requirements of the particular application. . If even the way
the algorithm is implemented is taken into account then the SIL simulation is
an useful tool. The HIL implementation, while being slightly more complex
and requiring the hardware, has the advantage of being more affine to the
real world case.

System ModelControl Software

PC

Simulation Environment

Figure 1.3: Software in the Loop framework

I/O

Real System

System Model

Simulation Environment

I/O

Control Software

I/O

Autopilot Board

PC

Figure 1.4: Hardware in the Loop framework

University of Pisa, September 2015 4

Chapter 1

In this work the interest is oriented towards the HIL simulation. The
reason of this lies in the fact that the purpose of HIL simulation is to provide
a test environment for developing and evaluating new algorithms considering
also the hardware which will run them. SIL simulation, in spite of a less
complex setup, does not allow to inspect the code execution as will be in
the real application, losing the capability to check the regularity of control
loops, the presence of jitter and eventual bugs in the implementation, whuch
could determine application faults etc. Summing up the key benefits of HIL
simulation that have been considered are

• Realistic testing of the autopilot performance and capability.

• Possibility to simulate different environment condition.

• Simulation testing is not destructive.

• Simulation testing is safe.

• Reduced development costs.

• Fast development of new solutions with respect to real testing.

Given the capability to provide the fidelity evaluation environment in the
laboratory, lot of complex embedded systems, such as guided weapon sys-
tems, vehicle’s breaking systems, robotic systems, adopt this technique as
a testing bed. In this particular case the interest concerns the testing of
guidance, navigation and control algorithms directly on the board allowing
to have a test bed for the real-time behaviour of the system. As a matter of
fact, the knowledge of these information allows the designer of the control
architecture to counteract eventual bad events achieving a more robust con-
trol performance. Since the objective is to accomplish a more realistic testing
environment, it turns out that the development itself of such an environment
requires particular attention to the time constraints in the processing of data.

1.2 Related Work

A support framework for the development of new solutions does not consist
only in a simulator component but it is also necessary to include the possi-
bility to interact with the system and have a feedback. The switch between
the simulation process and the utilization in the real evironment should be
as simple as possible. Some works like [4] dealt with the development of
evaluation environment of complex embedded systems. Such system reaches

University of Pisa, September 2015 5

Chapter 1

high complexity and could be difficult to be maintained, particularly in an
academical contex. Other solution like [5] are more feasible, but the low
level implementation reduce the scalability of the system. A solution which
is easy to maintain and update is preferable. An interesting work which is
oriented towards these needs is the PX4 Project ([7]). It is supported by
the PIXHAWK Project of the Computer Vision and Geometry Lab of ETH
Zurich (Swiss Federal Institute of Technology) and by the Autonomous Sys-
tems Lab and the Automatic Control Laboratory of the same university. It
is aimed to provide a complete solution for the usage and development of
UAVs solutions.

1.2.1 PX4 Project

The objectives of the PX4 Project are summarised by its creators as:

“PX4 is an independent, open-source, open-hardware project aim-
ing at providing a high-end autopilot to the academic, hobby and
industrial communities (BSD licensed) at low costs and high avail-
ability. It is a complete hardware and software platform, much
like a computer, and can run multiple autopilot applications.”

The testing environment provided by this group is made up of three compo-
nents:

1. Autopilot Board with firmware

2. Ground Station application

3. Simulator for aerial vehicles

With this configuration (Figure 1.5) they claim to be able to simulate differ-
ent aerial vehicles, such as multirotors and planes.

The core of the system is the ground station application, which is called
QGroundControl. This fulfills the functions of user interface with the system,
communication with the vehicle and communication with the simulator. The
Ground Station application can establish a communication via TCP, UDP,
serial or even wifi using radio or Xbees modules. An interesting part of this
work is the communication protocol and the respective libraries developed
for the data exchange with the autopilot board. This protocol is called
MAVLink.

The autopilot, which runs a real-time operating system, is equipped
with the necessary software to perform a hardware in the loop simulation.

University of Pisa, September 2015 6

Chapter 1

Ground Station Application

(QGroundControl)

Autopilot
Board

Simulator

User

Figure 1.5: PX4 Solution for the HIL simulation environment

The MAVLink protocol defines the necessary data structures and the devel-
oped software applications manage the switching between “Normal Operating
Mode” and “HIL mode”.

Regarding the simulator part of their system they provide several working
solutions, including free open-source simulators developed by other groups
and comunitites and one commercial flight simulator:

1. X-Plane ([10])
X-Plane is a very accurate flight simulator which supports fixed wing
models. To model flight dynamics it uses the “blade element theory”,
that is breaking the aircraft down into many small elements and then
finding the areodynamics forces on each little element. These forces
are then converted into accelerations, which are then integrated to ve-
locities and positions.

2. FligthGear ([9])
FlightGear is an open-source flight simulator. It supports a variety of
popular platforms (Windows, Mac, Linux, etc.) and is developed by
skilled volunteers from around the world. Source code for the entire
project is available and licensed under the GNU General Public License.
The flight dynamics is obtained using parametric models which give
the forces and moment acting on the vehicle independently from the
geometric shape of the vehicle.

3. Java-Phyton Simulators ([11])
These solutions are based on the same open source dynamics libraries
used by FlightGear but providing simpler interfaces written usign Java
and Phyton code.

University of Pisa, September 2015 7

Chapter 1

1.2.2 Limits of this approach

Whereas that project consitutes a big contribution some flaws have been
found which are worth to be considered.

1. Simulators

• X-Plane
This solution is not open source and it is not free. The fact that
vehicle’s model is based on the geometry makes the modeling not
a easy deal for someone who is not expert in airfoils and areodi-
namics.

• FlightGear
At first this solution was considered viable as a simulation environ-
ment. It is open source and the definition of the model dynamics
does not require geometrical modeling of the aircraft. Unfortu-
nately it has a big limitation for what concern the data exchange
with other applications. Indeed the frequency at which the sim-
ulated data can be provided cannot exceed the framerate. This
makes impossible to reach high frequencies which could be neces-
sary for the control algorithms. The attitude control loop of the
multirotor used for the test runs at 250 Hz, while the framerate
of the simulator is 60 Hz. This coupling makes this simulator
unsuitable for our aims.

• Java-Phyton Simulators
These solutions were considered unsuitable because they were not
completely developed and they were provided without documen-
tation which makes the usage difficult and error prone.

2. Ground Station Application
Whereas this application is very useful as graphical interface it is not
optimally suited to implement a simulation loop. As will be deeply
described in the following chapters, the way the data flow is managed
in the application is not optimal and lacks of predictability.

3. Autopilot Firwmare
The firmware of the Autopilot doesn’t allow to perform an hardware in
the loop simulation if the update frequency required by the algorithm
is higher than 50 Hz. This is due to the fact that there are some update
limits coded in the drivers which doesn’t allow to retrieve the actuator
control outputs at the required frequency.

University of Pisa, September 2015 8

Chapter 1

1.3 Contribution of this Work

Using the system described above as a starting point in this work the follow-
ing improvements have been proposed:

• The firmware of the Autopilot has been modified to support higher
data rates.

• A new simulation environment has been proposed to tackle the prob-
lems observed with the simulators cited before.

• A new structure for the overall system has been developed to achieve
better data exchange considering the different priorities of different
simulation tasks.

University of Pisa, September 2015 9

Chapter 2

System Architecture

The design of a hardware in the loop simulation architecture requires to take
into consideration different components. It is necessary to connect together
the simulator application, the user interface application and the physical
board. The setup proposed by this work is thus composed by a PC running
the various programs and the autopilot board. The architecure shown in
Figure 2.1 represents visually the interactions between the different parts.

The new idea which stands out here is to split the data flux with the
autopilot board in two channels. The data flux concerned with the simulation
loop should have higher priority since it is carrying information related to a
simulated “real world” with real time flow, while the one related to the user
interaction is less relevant in terms of realtime constraints.

The two fluxes are managed with the Data Governor application. This
is a C/C++ program written usign the ptask libraries which carries out also
the timing analysis to evaluate the performance of the system.

The overall architecture comprises the FligthGear application to repro-
duce a virtual environment. This is possible because of the integrated capa-
bility of Matlab/Simulink to communicate with it through UDP socket. This
feature allows to have a visual feedback on the behavior of the vehicle.

The transmission of data with the board is accomplished over UART in-
terface, while the data exchange between applications running on the PC is
made through UDP sockets. The motivations for the usage of UDP commu-
nication protocol, instead of the possible TCP, can be summarized as follows

1. No connection establishment
TCP uses a three-way handshake before it starts to transfer data. This
preliminary routine introduces delay in the communication. UDP does
not have this feature, thus it allows a more responsive messaging.

2. Smaller transmission overhead

10

Chapter 2

UDP requires less overhead to perform communication, that is slender
mechanisms and smaller data usage. The segment header is only 8
bytes versus the 20 of the TCP protocol.

3. Higher transmission rate
The UDP protocol has no self-regulation of the transmission rate. The
absence of the throttling mechanism present in the TCP protocol allows
to guarantee transmission rates at the expense of transmission errors.

The reliability of the UDP connection can be achieved implementing check-
outs on the application layer. In the following sections the single components

Pixhawk
Autopilot

QGroundControl

FlightGear
Visualization

Simulator
Matlab/Simulink

Low Priority

High Priority

Legend

Serial Interface

PC

UDP

Data Governor

UDP

Figure 2.1: Overall System Architecture

are described briefly.

2.1 Quadrotor

The autopilot board under study is mounted on the 3DR Iris+ quadcopter
(Figure 2.2) with the following characteristics:

• Autopilot: Pixhawk v2.4.5

University of Pisa, September 2015 11

Chapter 2

Figure 2.2: The quadcopter model equipped with the selected autopilot board

• GPS: 3DR uBlox GPS with Compass (LEA-6H module, 5 Hz update)

• Telemetry radio: 3DR Radio Telemetry v2 (915 mHz or 433 mHz)

• Motors: 950 kV

• Frame type: V

• Propellers:
9.5 x 4.5 T-Motor multirotor self-tightening counterclockwise (2)
9.5 x 4.5 T-Motor multirotor self-tightening clockwise (2)

• Battery: 3S 5.1 Ah 8C lithium polymer
Low battery voltage: 10.5 V
Maximum voltage: 12.6 V

• Battery cell limit: 3S

• Battery weight: 320 g

• Weight with battery: 1282 g

• Height: 100 mm

• Motor-to-motor: 550 mm

• Payload capacity: 400 g

University of Pisa, September 2015 12

Chapter 2

• Radio range: up to 1 km

• Flight time: 16-22 minutes

2.2 Simulation Block

The simulation block is the part of the system which should reproduce the
behavior of the real plant. The components which are included in it can be
seen in the schematic representation in Figure 1.2. In this case the system
dynamics is represented by the physics laws ruling the motion of a rigid body
in space. The sensors correspond to the ones onboard the vehicle and the
actuators are the motors of the quadrotor.

The simulation block is realized using Matlab/Simulink. The choice is
motivated by several factors and it is aimed to patch the flaws of the originally
proposed simulators. It constitutes a powerful instrument to model different
kind of systems and the frequency at which data can be handled is not limited
by other application components, except for the obvious computation time.
It offers also the possibility to integrate the FlightGear engine to visualize
the state of the simulation, thus satisfying all the demands to take the place
of a dedicated flight simulator. Then other reasons for this choice are

• The software is well documented

• It allows fast development of new systems thanks to the application
tools

• The software environment allows easy debugging of the developed ap-
plications

• The user friendly interface allows an easy maintenance and updating
of the code/models

• The application is mainteined and updated thus it is realiable

The data exchange with this block is made through UDP protocol. The
inputs to the block consist in the control signals to the motors evaluated by
the autopilot controller and routed by the Data Governor application. The
outputs of the simulation block are the simulated sensors data, which will
be routed by the Data Governor application back to the autopilot board,
and the vehicle navigation state for visual representation using FlightGear
simulator.

University of Pisa, September 2015 13

Chapter 2

2.3 Autopilot

The autopilot board is the flight computer of the aerial system (Figure 2.3).
It has the function of estimating the navigation state, perform waypoints
guidance and flight control. Once the state of the vehicle is estimated, us-
ing the information provided by onboard sensors, it translates the reference
inputs, which can be manual human input or waypoints information, to actu-
ator commands. The autopilot board chosen for this work is the PIXHAWK.

Sensors

UAV

Estimator
State

Flight Control

Actuator
Control

1 5

0

2

3

4

Waypoints

Manual Input

Estimated
State

Guidance
Law

Vehicle Kinematics

Inputs

Auto/Manual

Autopilot Board

Figure 2.3: Scheme of the basic elements in a flight control system

It is a high-performance autopilot module suitable (Figure 2.4) for drones and
other autonomous vehicles capable of running lightweight operating systems.

Autopilot Hardware

• Processor

– 32bit STM32F427 Cortex M4 core with FPU

– 168 MHz

– 256 KB RAM

– 2 MB Flash

– 32 bit STM32F103 failsafe co-processor

• Sensors

– ST Micro L3GD20H 16 bit gyroscope

– ST Micro LSM303D 14 bit accelerometer / magnetometer

University of Pisa, September 2015 14

Chapter 2

Figure 2.4: PX4 Autopilot Board

– Invensense MPU 6000 3-axis accelerometer/gyroscope

– MEAS MS5611 barometer

• Interfaces

– 5x UART (serial ports), one high-power capable, 2x with HW flow
control

– 2x CAN (one with internal 3.3V transceiver, one on expansion
connector)

– Futaba S.BUS compatible input and output

– PPM sum signal input

– RSSI (PWM or voltage) input

– I2C

– SPI

– 3.3 and 6.6V ADC inputs

– Internal microUSB port and external microUSB port extension

2.3.1 Autopilot Operating System

The Pixhawk autopilot module runs NUTTX, a very efficient real-time op-
erating system (RTOS), which provides a POSIX-style environment. The

University of Pisa, September 2015 15

Chapter 2

Figure 2.5: Nuttx Logo

software can be modified and updated with an USB bootloader. The OS has
been released under the permissive BSD license.

On top to the NuttX there are the Middleware and the Application layers.
The former provides device drivers and a micro object request broker for
asynchronous communication between the individual tasks running on the
autopilot. The latter provides the flight control functionalities: navigation,
guidance and control. The PX4 autopilot board support also other sets of
application to accomplish the flight, such as the APM Flight Stack. For this
work the PX4 Flight Stack, provided by the PX4 developer team, has been
chosen.

2.4 Ground Station

In this work the QGroundControl (Figure 4.1) application has been chosen.
The program is based on the Ground Station developed by the Pixhawk
Project([8]) and now it is maintained by the community.

The ground station is a necessary component of the system because it
constitutes the user interface with the vehicle. Through this application
it is possible to check the configuration of the AUV (Figure 2.6), calibrate
the sensors, modify the Flight Control Stack parameter (Figure 2.7) and to
assign command to the vehicle. Waypoints for a mission can be assigned with
a simple drag and drop on a map (Figure 2.8) and loaded on the autopilot
memory. Telemetry data describing the state of the vehicle and sensors
readings sent from the vehicle can be visualized in real time (Figure 2.9) and
saved for post processing.

As is the Ground Station supports multiple autopilot boards like Pix-
hawk autopilot, PX4 autopilot, pxIMU, ArduPilotMega, SLUGS, MatrixPi-
lot/UAVDevBoard and many more. The application can run on Linux, Mac
or Windows, thus it does not force to adopt a particular system.

University of Pisa, September 2015 16

Chapter 2

Figure 2.6: Ground Station: Overview on the Drone State

Figure 2.7: Ground Station: Drone Parameter settings

The possibility to modify the source code, together with the modular
design makes this application interesting for future developments. It would
be possible to add new devices, define new protocols or simply modify the
graphical interface with new widgets.

One of the features of this Ground Station consists in the implementa-
tion of the communication protocol for the data exchange with the AUV.

University of Pisa, September 2015 17

Chapter 2

Figure 2.8: Ground Station: Map vision with waypoints

Figure 2.9: Ground Station: Plotting of received sensor data
l

This protocol is called MAVLink (Figure ??), it is open-source, thus can be
taylored for particular needs, and it is become common in several autopilot
boards.

University of Pisa, September 2015 18

Chapter 2

2.4.1 MAVLink Protocol

The MAVLink communication protocol has been adopted in this work
because it is lightweight, so it does not constitute a possible bottleneck for
the system. Moreover it simplifies the communication management thanks
to the already developed and tested libraries which pack/unpack C-structs
in/from mavlink messages, check the message content and detect lost mes-
sages. MAVLink is a header-only library, that is, it doesn’t require to be
compiled on the target architecture, but the inclusion of the header files suf-
ficies. It is implemented in the Ground Control Station and it is embedded on
the firmware of the autopilot board. The Data Governor use the MAVLink
protocol to communicate with these two participants. Instead the commu-
nication with the simulation application is accomplished sending raw data
(Figure 2.10).

Pixhawk
Autopilot

QGroundControl

Simulator
Matlab/Simulink

Data Governor

MAVLink Messages

MAVLink Messages

RAW Data

Figure 2.10: Communication Between Applications

University of Pisa, September 2015 19

Chapter 2

MAVLink Features MAVLink supports fixed-size integer data types, IEEE
754 single precision floating point numbers, arrays of these data types. The
list of the supported data types is constituted by:

• char - Characters / strings

• uint8 t - Unsigned 8 bit

• int8 t - Signed 8 bit

• uint16 t - Unsigned 16 bit

• int16 t - Signed 16 bit

• uint32 t - Unsigned 32 bit

• int32 t - Signed 32 bit

• uint64 t - Unsigned 64 bit

• int64 t - Signed 64 bit

• float - IEEE 754 single precision floating point number

• double - IEEE 754 double precision floating point number

MAVLink Performances The developers of the this protocol have tuned
it to achieve good transmission performances while guaranteeing errors de-
tection. The final result is a protocol with only 8 bytes of overhead and
a payload capacity of 256 bytes. Some example of messages transmission
performances, using different hardware, are reported in the following table.

Mavlink Transmission Performances Examples

Link Speed Hardware Update Rate Payload
230400 baud UART 250 Hz 64 bytes
115200 baud XBeePro 2.4 GHz 50 Hz 224 bytes
115200 baud XBeePro 2.4 GHz 100 Hz 109 bytes
57600 baud XBeePro 2.4 GHz 100 Hz 51 bytes
9600 baud XBeePro XSC 900 50 Hz 13 bytes
9600 baud XBeePro XSC 900 20 Hz 42 bytes

Considering that the UART speed can be set up to 921600 baud it has
been verified that it is possible to sent the required data for the simulation.
Precisely it is necessary to receive 192616 bits/sec from the autopilot board
and to send 232000 bits/sec to the autopilot board.

University of Pisa, September 2015 20

Chapter 2

MAVLink Packet Structure The structure of the MAVLink packet(Figure
2.11) is inspired by the CAN and SAE AS-4 standards.

Figure 2.11: Structure of the mavlink packet

Mavlink Packet Structure

Byte
In-
dex

Content Value Explanation

0 Packet
start Sign

0xFE Indicates the start of a new
packet.

1 Payload
length

0-255 Indicates length of the fol-
lowing payload.

2 Packet se-
quence

0-255 Each component counts up
his send sequence. Allows
to detect packet loss.

3 System ID 1-255 ID of the SENDING sys-
tem. Allows to differentiate
different MAVs on the same
network.

4 Component
ID

0-255 ID of the SENDING compo-
nent. Allows to differentiate
different components of the
same system, e.g. the IMU
and the autopilot.

5 Message
ID

0-255 ID of the message - the
id defines what the payload
means and how it should be
correctly decoded.

6 to
(n+6)

Data 0-255 bytes Data of the message, de-
pends on the message id.

(n+7)
to
(n+8)

Checksum
(low byte,
high byte)

ITU X.25/SAE AS-4 hash, excluding
packet start sign.

University of Pisa, September 2015 21

Chapter 3

Simulation Framework

3.1 Simulation Framework and Aims

FlightGear
VisualizationVehicle Position

and Attitude
To Autopilot

Board

Simulator
Matlab/Simulink

Data Governor

Actuator Controls

Simulated Sensors

Figure 3.1: Simulation Block

The simulation part aims to provide realistic sensor data starting from
the actuator commands produced by the autopilot board. These sensor data
are then fed back to the autopilot board to close the simulation loop.

The simulation block (Figure 3.1) can be conceptually subdivided into 3
main parts:

1. AUV Dynamics Model
It describes the dynamics of the vehicle and allows to compute the
trajectory given the inputs to the system, that is the actuators actuator

22

Chapter 3

commands. In this part it is included also the dynamics of the brushless
motors which are the actuators of the UAV.

2. Sensors Model
It gives the outputs of the sensors given the state of the vehicle and
external inputs.

3. Environment Model
This model describes the variables of the environment such as gravi-
tational acceleration, earth magnetic field, temperature, density of the
air etc.

From Autopilot

Environment Model

Vehicle Dynamics Model

Sensor Output Model To Autopilot

Actuator Commands

Vehicle State

Sensors Measurements

Figure 3.2: Simulation Framework

The simulation flow is represented in Figure 3.2. The step accomplished by
the simulator are then

1. Use the AUV Dynamics Model to propagate the state

2. Compute the Output of the Sensors

3.2 Conventions

3.2.1 Frames of Reference

As said before the purpose of the simulator is to propagate and track the
flight of the UAV given forces and moments acting on it. When dealing with
moving objects in a 3D space it becomes necessary to specify the ”point
of view”, that is the reference frame with respect to which the values are
expressed. There are several frames which are commonly used in this kind
of application (Figure 3.3):

1. Earth Centered Inertial Frame (ECI, I):
This frame has the origin at the center of the earth with the zi axis

University of Pisa, September 2015 23

Chapter 3

Figure 3.3: Reference Frames commonly used for navigation purposes

parallel to the rotation axis of the earth and xi,yi axes located in the
equatorial plane. It is fixed to an inertial reference.

2. Earth Centered Earth Fixed Frame (ECEF, E):
This frame has the origin at the center of the earth and it is fixed to it.
The ze axis of the frame is parallel to and aligned with the rotation axis
of the earth. In the equatorial plane the xe axis locates the Greenwich
meridian. The ye axis completes the right hand system.

3. North-East-Down Frame (NED, N):
This frame has the origin at the vehicle center of mass with the x axis,
called N , pointing North; y axis, called E, pointing East; z axis, called
D, pointing Down.

4. Body Frame (B)(Figure 3.4):
This frame is rigidly attached to the vehicle’s body. It has the xb axis
pointing forwards out the nose of the aircraft, yb axis pointing out the
right side of the aircraft and zb axis consequently pointing down.

The previous frames are rotating one with respect to another and, for deriving
the various equations, it is necessary to consider this fact. The angular speed
that are usually considered are

• ωn/b : Angular velocity vector of the body frame with respect to the
navigation frame

University of Pisa, September 2015 24

Chapter 3

Figure 3.4: Reference Frame attached to the body

• ωe/n : Angular velocity vector of the navigation frame with respect to
the ECEF frame

• ωi/e : Angular velocity vector of the ECEF frame with respect to the
ECI frame, that is the earth rotation angular velocity

In describing the dynamics of a rigid body in space everything is referred to
an inertial reference. From the previous list of common frames this is the
case of the ECI. Theoretically it is necessary to take into account all the
contributions of the varius motions in the chain of compositions from the
inertial frame towards the body frame. Whereas for particular simulations
where the flight covers long distance, with long flight time, it is necessary to
consider every relative motion between frames to obtain an accurate simu-
lation, nevertheless in applications where the flight involves small distances
and short flight time the problem can be simplified. This is what has been
done in this work. Actually the equations of motion for the UAV have been
obtained considering the navigation frame NED as inertial. Indeed, flying
locally, the position of the NED frame can be considered fixed with respect
to the ECEF frame (ωe/n ≈ 0) and the effect of the earth rotation can be
neglected for short time flights.

3.2.2 Rotations

To accomplish the simulation it is often necessary to switch between a ref-
erence frame to another. For example the computation of torque, forces and
their effects is easier when accomplished considering the quantities espressed
in body frame. However, at the end, the velocity of the vehicle, the force and
the moments must be espressed with respect to the inertial reference frame
to carry on the integration step. This passages are made using rotation ma-
trices C ∈ <3×3. These matrices are function of the parameters describing

University of Pisa, September 2015 25

Chapter 3

the orientation between frames. In this text the convention adopted to ex-
press a rotation which brings the coordinates from frame N to frame B, or
equivalently, that rotates the N frame on the B frame is

Cb
n = Rotation Matrix (N) to (B). (3.1)

Whereas one matrix contains 9 elements only 3 parameters are necessary to
specify a rotation in space. This fact is due to the orthogonality property of
rotation matrices, that is

CCT = I, (3.2)

where CT is the transpose matrix of C and I is the identity matrix. Minimal
representations with 3 parameters can be obtained by using sets of 3 angles,
called also ”euler angles”. Each angle is associated with a single rotation
about one of the coordinate axes X,Y,Z. A generic rotation in space can be
thought as a composition of 3 sequential single rotations. The building block
of a general rotation are then the rotation matrices with respect to the three
axes of a reference frame X,Y,Z.

• Rotation around X axis:

Cx(θ) =

1 0 0
0 cos(θ) sin(θ)
0 −sin(θ) cos(θ)

 (3.3)

• Rotation around Y axis:

Cy(θ) =

cos(θ) 0 −sin(θ)
0 1 0

sin(θ) 0 cos(θ)

 (3.4)

• Rotation around Z axis:

Cz(θ) =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

 (3.5)

There are different way of composing the rotation, indeed the only require-
ment is to guardantee that two successive rotation are not made about par-
allel axes. To give an example, a common set of angles used in the Aerospace
field is the sequence Roll, Pitch, Yaw, corresponding respectively to rotations
about the X,Y,Z axes of the body frame of a vehicle. The general rotation
from frame N to frame B is then given by

Cb
n(φ, θ,ψ) = Cx(φ)Cy(θ)Cz(ψ). (3.6)

University of Pisa, September 2015 26

Chapter 3

Euler angles are not the only one method to represent rotations in space.
There are other methods such as axis/angle and quaternions.

The axis/angle (r, θ) representation parametrizes a rotation using a versor
r ∈ <3 to express the axis along with the rotation is carried out and an
angle θ to express the rotation angle. Quaternions (q) are another way of
representing rotations. They are vectors of 4 elements which can be thought
to be composed by two parts

q =

[
q0
qe

]
, (3.7)

where q0 ∈ < is the scalar part of the quaternion vector and qe = [q1, q2, q3]
T ∈

<3 is the vector part of the quaternion vector. If we want to link the geometry
of rotation with the vector it is interesting to consider the connection with
the axis/angle (r, θ) representation. Indeed it is found to be

q =

[
q0
qe

]
=

[
cos(θ/2)
rsin(θ/2)

]
. (3.8)

It is possible to notice that the vectorial part (qe) of the quaternion is re-
lated to the axis around with the rotation is performed, while the amount of
rotation is codified by the sin(θ), cos(θ) scaling factors.

Usually the euler angles representation is used when it is necessary to
interact with the user because they are easy to visualize and transmit quite
direcly the geometrical information about the rotation. For a computational
point of view quaternions are more efficient. Indeed in this simulation frame-
work the integration step is carried out using the quaternion representation
of orientation. The rotation matrix expressed with quaternions has the form

Cb
n(q) =

q20 + q21 − q22 − q23 2q1q2 + 2q0q3 2q1q3 − 2q0q2
2q1q2 − 2q0q3 q20 − q21 + q22 − q23 2q2q3 + 2q0q1
2q1q3 + 2q0q2 2q2q3 − 2q0q1 q20 − q21 − q22 + q23

 . (3.9)

In the simulink model these rotation matrices are labeled ”DCM”, which
stands for ”Direction Cosines Matrix” and they perform the rotation from
the Inertial Frame N to the Body Frame B.

In the following sections the parts composing the simulation framework
are described in details.

3.3 UAV Dynamics Model

The UAV considered for this work is a quadrotor. In the literature concerning
quadrotors there are several approaches to the vehicle dynamics modeling.

University of Pisa, September 2015 27

Chapter 3

Some works are oriented towards a deep analysis and identification of the
model like in [13], [15] and [16]. An accurate identification of the model
is necessary to design advanced control algorithms, particularly when the
vehicle on which they are going to be applied is definitive and won’t be
modified for a long period. Since the aim of the this work is not focused on a
particular vehicle with a particular configuration, it has been chosen to deal
with a simple geometrical model in order to simplify the development of the
dynamical equations. The geometry of the quadrotor can be schematized
as a cross-shaped frame, formed by 4 arms of equal length l, which old 4
motors. The center of mass of the vehicle, where all the mass M is lumped, is
considered located in the geometrical center of the structure. The rotational
inertia properties of the vehicle are described by the inertia tensor J expressed
in body frame coordinates.

3.3.1 Actuators

For this kind of vehicles the actuation, thus the generation of forces and
moments, is made varying the speed of the rotors ωmi

. Each rotor produces
a thrust Ti and a torque Qi, whose combination generates the main thrust,
the yaw torque, the pitch torque and the roll torque acting on the quadrotor.
for the thrust calculation it has been used a non linear expression where the
force depends quadratically on the angular speed of the rotor. Precisely the
expression for the generated thrust and torque is given by

Ti = CtρAr
2ω2

mi
(3.10)

Qi = CqρAr
3ω2

mi
(3.11)

Where

• Ct : Thrust Coefficient
This parameter is identified with empirical experiments or using refer-
ences. In this work an indicative reference value has been taken from
the work of Pounds and Co. [15].

• Cq : Torque Coefficient
Also for this parameter it is valid the identification method used for
the Ct and an indicative value has been retrieved from the same work
cited above.

• ρ : Air density
Depends on the altitude and there are look-at-table or model to retrieve
its value

University of Pisa, September 2015 28

Chapter 3

• A : Rotor disk area

• r : Rotor disk radius

• ωmi
: Angular velocity of the Rotor

Motors Dynamics The rotors are moved by DC motors. It was not the
aim of this work to produce a precise dynamical model of the vehicle, thus
they have been represented by a generic second order dynamical system it.

3.3.2 Equations of Motion

Having found the expression of the forces and torques acting on the structure,
it is possible to write the equations of the vehicle dynamics. The expression
for the linear velocity ṗn and linear acceleration v̇n is expressed in navigation
frame. The expression of the angular acceleration ω̇b

n/b is given in body frame.
The computation of the rotational dynamics in body frame coordinates is
more computationally efficient since the inertia matrix J is constant. In the
end the expressions are:

ṗn = vn (3.12)

v̇n =
1

M
(Cn

b F
b)− Cn

b (ωb
n/b × vb) +Gn (3.13)

ω̇b
n/b = J−1

[
−ωb

n/b × Jωb
n/b +M b

]
(3.14)

where F b is the thrust generated by all the rotors expressed in Body Frame

F b =
4∑

i=1

0
0
1

Ti, (3.15)

Cb
n is the rotation matrix which maps the coordinates from navigation frame

to body frame, Gn is the gravity vector expressed in navigation frame and
M b is the resultants of the torques in body frame, which for the particular
quadrotor configuration is given by

M b =

l
√
2
2

(T1 − T2 − T3 + T4)

l
√
2
2

(T1 + T2 − T3 − T4)
−Q1 +Q2 −Q3 +Q4

 . (3.16)

University of Pisa, September 2015 29

Chapter 3

ω
n/b x_b

y_b

z_b

T_1
Q_1

T_2
Q_2

Q_3T_3

Q_4
T_4

M , J

ωm
3

ωm
1

ωm
2

ωm
4

p

N

E

D

l

l

l

l

Figure 3.5: Schematical representation of the quadrotor and the
forces/torques acting on it

3.3.3 Simulink Blocks

In Simulink the dynamics of the vehicle has been implemented with three
blocks:

University of Pisa, September 2015 30

Chapter 3

1. Dynamics of the motors

2. Forces/Moments computation

3. Integration of the forces/moments

The first block (Figure 3.6) has the function of taking into account the rota-
tive dynamics of the motor. In this work no identification procedures have
been run to precisely evalute the dynamics of the motors. The motors are
thus represented by general second order dynamical system. The input to
the motors block is the voltage in V from the battery and the vector of 4
pwd signals mapped in the interval [0, 1]. The output of the block are the 4
rotational speed in rad/s.

Figure 3.6: Simulink Motors describing the motor dynamics

The second block (Figure 3.7) has the function of computing the resultant
force and torque acting on the UAV from the single contributions of the
motors. The inputs to the block are defined as

• DCM : Rotation Matrix from the navigatio frame to the body frame

• V elocity: Velocity in m/s of the AUV expressed in body coordinates

• Density: Density of the air at the current altitude in Kg/m3

• Rotors: Angular speed of the 4 propellers rad/s

The output of this block are given by

• F : Force resultant in body frame N

• Q: Torque resultant in body frame Nm

• Thrusts: Force exerted by each single propeller N

The third block (Figure 3.8) perform the integration of the forces/torques
to obtain the state of the rigid body. The inputs to the block are

University of Pisa, September 2015 31

Chapter 3

Figure 3.7: Simulink Block for the forces/torques computation

• Fxyz: Resultant of the forces in N applied to the rigid body and ex-
pressed in body frame coordinates

• Mxyz: Resultant of the torques in Nm applied to the rigid body and
expressed in body frame coordinates

The outputs of the block consists in

• Ve: Velocity in m/s of the AUV in navigation frame

• Xe: Position in m of the AUV in navigation frame

• φ θ ψ: Roll, Pitch, Yaw angles in rad parametrizing the attitude of
the AUV with respect to the navigation frame

• DCMbe: Direct Cosines Matrix, that is rotation matrix from the navi-
gation frame to the body frame

• Vb: Velocity in m/s of the AUV in body frame

• ωb: Angular velocity in rad/s of the AUV in body frame

• dωb/dt: Angular acceleration in rad/s2 of the AUV in body frame

• Ab: Acceleration in m/s2 of the AUV in body frame

University of Pisa, September 2015 32

Chapter 3

Figure 3.8: Simulink Block for the Dynamics integration

University of Pisa, September 2015 33

Chapter 3

3.4 Sensors’ Model

The Simulink programming environment offers plenty of functionalities to
develop sensors model. It includes also several libraries with already devel-
oped sensor blocks. In order to run a functional simulator the sensor data
used by the algorithms onboard the autopilot have been simulated. The data
necessary to build the required HIL SENSOR and HIL GPS messages are
reported in the following tables:

Data necessary to build the HIL SENSOR message

Field
Name

Type Description

xacc float X acceleration (m/s2)
yacc float Y acceleration (m/s2)
zacc float Z acceleration (m/s2)
xgyro float Angular speed around X axis body frame

(rad/s)
ygyro float Angular speed around Y axis body frame

(rad/s)
zgyro float Angular speed around Z axis body frame

(rad/s)
xmag float X Magnetic field (Gauss)
ymag float Y Magnetic field (Gauss)
zmag float Z Magnetic field (Gauss)
abs pressure float Absolute pressure (mBar)
diff pressure float Differential pressure (mBar)
pressure alt float Altitude calculated from pressure (m)
temperature float Temperature (Co)

University of Pisa, September 2015 34

Chapter 3

Data necessary to build the HIL GPS message

Field
Name

Type Description

lat int32 t Latitude (WGS84), in degrees * 1E7
lon int32 t Longitude (WGS84), in degrees * 1E7
alt int32 t Altitude (AMSL), in meters * 1000 (positive

for up)
vel uint16 t GPS ground speed (m/s * 100)
vn int16 t GPS velocity in cm/s in NORTH direction in

earth-fixed NED frame
ve int16 t GPS velocity in cm/s in EAST direction in

earth-fixed NED frame
vd int16 t GPS velocity in cm/s in DOWN direction in

earth-fixed NED frame
cog uint16 t Course over ground in degrees * 100

The list of sensors that are necessary to produce the previous information
are

• Accelerometers

• Gyroscopes

• Magnetometers

• Barometer

• Airspeed Sensor (for fixed wing UAV)

• Temperature Sensor

IMU model The Inertial Measurement Unit contains accelerometers and
gyros. It returns the acceleration and angular velocity of the body on which
is attached, with respect to the inertial frame. The accelerometer and gy-
ros model has been provided by the IMU simulink block (Figure 3.9) in the
Areospace Blockset library and allows to simulate the behavior of a 3-axis
Inertial Measurement Unit considering sensors biases, measurement noise,
centripetal effects, scaling factors and misalignment. The position of the
sensor and of the center of mass of the vehicle are specified using the Struc-
tural Frame. This frame is a common manufacturer’s frame of reference and
is used to define points on aircrafts. In the structural frame the x axis in-
creases from the nose towards the tail, the y axis increases from the fuselage
out towards the right and the z axis is positive upwards.

University of Pisa, September 2015 35

Chapter 3

Figure 3.9: Simulink IMU block

There is a broad range of parameters which can be provided to the
simulink block to simulate the features of real sensors. For the purpose
of this work only a subset of the all possibilities has been specified taking
into consideration the features of the real IMU onboard the autopilot board
(Inversense MPU-6000):

• Sensor Biases Abias, ωbias

• Sensor Saturations

• Measurements Noise Anoise, ωnoise

• Position of the IMU in structural frame Pimu

The block inputs consist in

• Ab: Acceleration of the vehicle expressed in body frame in

• ω: Angular Velocity of the vehicle expressed in body frame

• ω̇: Angular Acceleration of the vehicle expressed in body frame

• CG: Position of the center of mass of the vehicle in structural frame

• g: Gravity expressed in body frame

The block ouptuts consist in

• Ameas: Measured Acceleration in body frame

University of Pisa, September 2015 36

Chapter 3

• ωmeas: Measured Angular Velocity in body frame

For a rigid body, which is moving in space effected by a gravitational acceler-
ation g, having acceleration Ab, angular velocity ω and angular acceleration
ω̇ the equations ruling the IMU model will produce the following ouputs:

Ameas = ASFCC (Ab + ω × (ω × d) + ω̇ × d− g) + Abias + Anoise (3.17)

ωmeas = BSFCCω + ωbias +Gs× ωgsens + ωnoise, (3.18)

where the 3-by-3 matrices ASFCC , BFSCC contain the scaling factors on the
diagonal and misalignement terms in the nondiagonal respectively for the ac-
celerometers and the gyros. In the previous expressions d is the displacement
between the center of mass of the rigid body and the position of the IMU
and it is defined as

d =

dxdy
dz

 =

−(xacc − xCG)
yacc − yCG

−(zacc − zCG)

 . (3.19)

The minus signs are due to the way the positions of the CG and of the sensor
were given (structural reference frame).

Magnetometer Sensor The magnetometer is a device used to sense the
earth magnetic field. The direction of the Earth Magnetic field at any point
on the Earth is defined in terms of its orientation with respect to true north,
known as the angle of “Magnetic Declination” and its angle with respect to
the horizontal, the angle of “dip” (Figure 3.10). This vector in navigation
coordinates is expressed as

H =

Hx

Hy

Hz

 = H0

cos δ cos γ
cos δ sin γ

sin δ

 , (3.20)

where H0 is the intensity of the earth magnetic field in that point. In the
simulation the assumption of local displacement of the vehicle has been made,
allowing to consider the vector constant.

The block inputs consist in

• DCM : Rotation matrix from navigation to body frame coordinates
(Cb

n)

• dip: Angle of “dip”

• declination: Declination Angle

University of Pisa, September 2015 37

Chapter 3

Figure 3.10: Earth Magnetic Vector components

The block ouptut consists in

• Mmeas: Measured magnetic field in body frame

The parameter of the sensors describing measurement noises, biases, satura-
tion can be specified through the block mask. The sensor output have been

Figure 3.11: Simulink Magnetic Sensor block

computed rotating this vector from NED to Body and adding measurement
noise and bias.

Mmeas = Cb
nH +Mbias +Mnoise, (3.21)

where Mnoise and Mbias are the respectively the measurement noises and the
measurement bias.

Barometer Sensor This sensor should return the static pressure in mil-
liBar. To produce the output of this sensor a Simulink block modeling the

University of Pisa, September 2015 38

Chapter 3

standard atmosphere is used (Figure 3.12). The ISA Atmosphere Model block
implements the mathematical representation of the international standard
atmosphere values for ambient temperature, pressure, density, and speed of
sound for the input geopotential altitude. The input to the block (Figure

Figure 3.12: ISA Atmosphere Model Block

3.13) consists in the real pressure retrieved from the previously cited block.
The ouput is the measured static pressure and has been modeled as

Pmeas = P + Pbias + Pnoise, (3.22)

where Pnoise, Pbias are the respectively the measurement noises and the mea-
surement bias and the P is the real pressure value provided by the ISA
model. The parameters for the sensor noise and bias can be specified through
simulink interface. The output of the sensor is provided in mBar.

Figure 3.13: Simulink Pressure Sensor block

Airspeed Sensor The airspeed sensor is a pitot tube which measures the
wind relative AUV axial speed throught the dynamic pressure readings. The
simulation of this sensor consists in calculating the expected dynamic pres-
sure related to the UAV speed. It is used with fixed wing vehicles but it has
been included in the simulation framework for eventual future usages. The
inputs to the block (Figure 3.14) consist in

University of Pisa, September 2015 39

Chapter 3

• AirDensity: Air density at the current altitude in Kg/m3

• V el: Velocity of the vehicle in m/s

The block output consists in

• dPmeas: Differential Pressure in mBar,

and is evaluated as

dPmeas =
1

2
ρ||v||2 + dPbias + dPnoise. (3.23)

The values dPbias, dPnoise are the respectively the measurement noises and
the measurement bias, ρ is the air density at that altitude and ||v|| is the
module of the vehicle’s speed’s. The output of this sensors is provided in
mBar.

Figure 3.14: Simulink Pitot Sensor block

Temperature Sensor The temperature sensor block (Figure 3.15) simply
takes the temperature T in Kelvin degrees of the atmosphere, provided by
the ISA Atmosphere Model, converts it to Celsius degree and introduces
measurement bias Tbias and noise Tnoise.

Tmeas = T + Tbias + Tnoise, (3.24)

The output of these blocks are then sent to the Data Governor application

Figure 3.15: Simulink Temperature Sensor block

which encode the mavlink messages containing the HIL SENSOR data.

University of Pisa, September 2015 40

Chapter 3

GPS Sensor The GPS measurements on the autopilot board consists in
the coordinates latitude/longitude/altitude (LLA). In matlab the sensor
model has been obtained taking the local coordinates and translating them in
Latitude/Longitude/Altitude usign the Simulink block “Flat Earth to LLA”.
This block uses the WGS84 planet model to convert from local coordinates
to angular coordinates. The block inputs consist in

• Xe: Coordinates in flat earth, that is the local displacement of the
vehicle in the North, East, Down directions.

• href : Reference Altitude, that is the altitude with respect to the sea
level of the local earth surface.

The block ouptut consists in

• Latmeas: GPS Measured Latitude

• Lonmeas: GPS Measured Longitude

• Altmeas: GPS Measured Altitude

The parameter of the sensors describing measurement noises can be specified
through the block mask. It hasn’t been introduced a measurement bias since
the gps data is considered to be noisy but without long-term drift. The
measurement noise is added to the local position of the AUV before the
conversion in LLA coordinates. The output of this block are sent together

Figure 3.16: Simulink GPS Sensor block

with the rest of sensor data to the Data Governor where the mavlink packet
HIL GPS is encoded.

University of Pisa, September 2015 41

Chapter 3

Figure 3.17: Simulink Complete Model

University of Pisa, September 2015 42

Chapter 4

Ground Station Application

In order to provide the functionalities of a Ground Station it is necessary to
have an application which carries out the communication with the UAV. For
this purpose QGroundControl (fig. 4.1) has been chosen. The fact of being
open source allows to view the source code, feature which turns out to be
useful when it is necessary to judge the performance of the software. This is

Figure 4.1: Ground Station: QGroundControl Logo

an object-oriented C++/Qt application that permits to represent and con-
trol micro areal vehicles. As said in the introductory chapter, consitutes the
user friendly interface with the UAV. Given this function the QGroundCon-
trol adheres to the model-view-controller (MVC) and ISO/OSI layer design
patterns. This means that data, data manipulation and user interface rep-
resentation are separated and that the access on hardware/communication
links is abstracted from the application layer. In a MVC structure the com-
ponents are classified as

• Model: Data structure / container representing a physical object (e.g.
a UAV)

• View: User interface component visualizing the data of the model

• Controller: Class/functions to manipulate the model

43

Chapter 4

The application manages the data flux with Link classes representing various
communication means like Serial Interface or Ethernet or WiFi. The raw
data is internally handled/parsed by the Protocol class and then fed into the
model representing one unmanned system (UAV), which in the application is
called UAS class. Because QGroundControl is a streaming/control centered
application, model and controller are often combined in the same class. The
structure is represented in fig. 4.2. The choice is justified by the need of

UAV System

UDP LinkSerial Link. . .

Communication Protocol

Communication Abstraction Layer

UAV1 UAV2. . .

UAVs Abstraction Layer

2D Map
Interface

Commands
Interface. . .

User Interface

HUD
Interface

QGroundControl

Inter−Object
Communication

UART/Radio/UDP/. . .

Figure 4.2: Application Structure

modularity, easiness of maintenance and update. Indeed the objectives of
the application developers are summarized as:

• The stable and long term support of a standardized communication
interface to the micro air vehicles

• A standardized interface of different user interface components

• Full separation of communications, protocol and user interface

University of Pisa, September 2015 44

Chapter 4

• The long term support for Windows, Linux and Mac OS

• The long term openness for any type of micro air vehicle

4.1 Inter-Object Communication Approach

The software architectural pattern is tipical of user interfaces. This feature
comprehends also how the communication between different components of
the application is carried out and this has some implications when consid-
ering simulation requirements. When programming graphical user interfaces
(GUIs) it is necessary to link actions of the user, such as clicking buttons,
with routines. This connection can be made using pointers to functions. In
this way it is possible to associate to an user action the address of the rela-
tive processing routine. This solution is called “callback”. Qt libraries offer
another method, precisely the Signals & Slots mechanism has been used.

4.1.1 Signals and Slots: Description

Signals and slots are used for communication between objects. The signals
and slots mechanism is a central feature of Qt and probably it is the part
that differs most from the features provided by other frameworks. It works
like software interrupts between different objects: an event during the exe-
cution of code inside a class can trigger routines in other classes. The two
components of this way of interacting are

• The signal is a pubblic access function associated to the change of an
object value

• The slot is a function that is called in response to a particular signal

Signals and slots are losely coupled: a class which emits a signal neither
knows nor cares which slots receive the signal. Signals and slots can take any
number of arguments of any types. Using this method the implementation
of communication between different components is easy. Signals are emitted
by objects when they change their state in a way that may be interesting to
other objects. This is all the object does to communicate. The source does
not know or care whether anything is receiving the signals it emits.

Slots can be used for receiving signals, but they are also normal member
functions. Just as an object does not know if anything receives its signals,
a slot does not know if it has any signals connected to it. This ensures that
truly independent components can be created with Qt. When a signal is
emitted, the slots connected to it are usually executed immediately, just like

University of Pisa, September 2015 45

Chapter 4

Figure 4.3: Signal/Slot connection between objects

University of Pisa, September 2015 46

Chapter 4

a normal function call. When this happens, the signals and slots mechanism
is totally independent of any GUI event loop. Execution of the code following
the emit statement will occur once all slots have returned. If several slots
are connected to one signal, the slots will be executed one after the other, in
the order they have been connected, when the signal is emitted.

You can connect as many signals as you want to a single slot, and a
signal can be connected to as many slots as you need. It is even possible to
connect a signal directly to another signal. (This will emit the second signal
immediately whenever the first is emitted.)

4.1.2 Signals and Slots: Performances

It is worth considering the perfomances of this communication method. Users
of the Qt libraries asses that compared to callbacks, signals and slots are
slightly slower because of the increased flexibility they provide, but the dif-
ference for real applications should be insignificant. In general, emitting a
signal that is connected to some slots, is approximately ten times slower
than calling the receivers directly, with non-virtual function calls. This is
the overhead required to locate the connection object, to safely iterate over
all connections (i.e. checking that subsequent receivers have not been de-
stroyed during the emission), and to marshall any parameters in a generic
fashion. While ten non-virtual function calls may sound like a lot, it’s much
less overhead than any new or delete operation, for example. As soon as you
perform a string, vector or list operation that behind the scene requires new
or delete, the signals and slots overhead is only responsible for a very small
proportion of the complete function call costs. The same is true whenever
you do a system call in a slot; or indirectly call more than ten functions.
Summing up it turns out that it is accepted an overhead in the inter-object
communication process in order to deal with it in a simple and flexibile way.

Whereas this consideration could be valid for a user interface application
is not acceptable when dealing with realtime systems. It is necessary to
assure the fulfilment of certain routines and in this way even insignificant
operations triggered by the user could preempt them. For this reason in the
system architecture proposed in this work the Ground Station Application
has been decoupled from the simulation loop.

University of Pisa, September 2015 47

Chapter 5

Autopilot Software

The Pixhawk software architecture is modeled to address typical estimation
and control task in deeply embedded platforms with a modular approach
providing a standard programming interface. Modularity helps to develop
software solutions for sophisticated problems allowing also the reusability of
the code. Applications should be self contained and this is the case for the
Pixhawk software where the architecture is multithreaded node-like and de-
couples individual applications.

The software architecture is modular and can be thought as organized
into 3 layers (fig. 5.1):

1. Operating System (NuttX)

2. Middle Layer

3. Application Layer

In the following sections each layer is described more carefully. Understand-
ing the functioning of the software onboard the autopilot is necessary to
interact with it efficiently.

5.1 Operating System

NuttX is a real-time operating system (RTOS) with an emphasis on stan-
dards compliance and small footprint. Scalable from 8-bit to 32-bit micro-
controller environments. The primary governing standards in NuttX are
Posix and ANSI standards. Additional standard APIs from Unix and other
common RTOS’s (such as VxWorks) are adopted for functionality not avail-
able under these standards, or for functionality that is not appropriate for

48

Chapter 5

State Estimation . . .Flight Control

Object Request Broker (uORB)

Device Drivers

Embedded Hardware

NuttX RTOS

Operating System

Application Layer

Middleware

Software Architecture

Figure 5.1: Software Architecture

deeply-embedded environments. It also offers a lightweight, bash-like shell
with rich feature set and small footprint for basic user interaction. All these
features make NuttX an useful interface and starting point for the develop-
ers who have a programming background on unix systems. This was one of
the aims of the autopilot software developers who attempted to provide an
environment to takle research topics with ease.

For what concernt the multithreading environment NuttX is fully pre-
emptible. By defaultit performs strict priority scheduling (Fixed Priority):
tasks with higher priority have exclusive access to the CPU until they be-
come blocked. At that time, the CPU is available to tasks of lower priority.
Tasks of equal priority are scheduled FIFO.

Optionally, a Nuttx task or thread can be configured with round-robin
scheduler. The round-robin is similar to Fixed Priority except that tasks
with equal priority share CPU time via time-slicing.

5.2 Middleware

This layer provides the necessary data structures and functions to imple-
ment inter process communication such that it is possible to develop de-
coupled applications. The method has been called Micro Object Request
Broker (uORB). Understanding how different applications exchange data is
of paramount importance for the timing analysis of the system and to make

University of Pisa, September 2015 49

Chapter 5

out how to interact efficiently with the device.
The various participants to the communication are called “nodes”. Nodes

which send messages are called “publishers” while the nodes which receive
messages are called “subscribers”. The data flows are subdivided in logical
channels called “topics”. In this implementation of the uORB each topic
contains only one message type and there aren’t queues.

In this messaging pattern senders do not know anything about the re-
ceivers, and at the same time the receivers simply declare their interest in
receiving data belonging to the selected topics, without caring about who
produces it. The resulting communication framework is then composed by
nodes which remain ignorant of system topology: the applications are de-
coupled as required. Nodes can be publisher and subscriber at the same
time (fig. 5.2). Few steps are required to set up a data exchange using this

Process i
Topic A

Topic B
Process k

Process j
Topic X

publish(data_A) subscribe(topic_A)

subscribe(topic_A)

publish(data_B)

subscribe(topic_B)

subscribe(topic_X)

Figure 5.2: Publisher/Subscriber framework

method. This is clear looking at the publishing and subscribing procedures:

5.2.1 Publishing

In order to publish data on a topic it is necessary to follow a procedure which
provides to initialize the communication channel:

1. Topic definition (only once):
It is necessary to define the data structure (message) on that channel.
Clearly the topic definition is necessary only if it is not already present
in the system.

2. Topic advertisement (only once):
Before data can be published to a topic, it must be advertised, that is
the publisher has to register itself in the publishers’ list of that topic.

3. Topic publication:
Once a topic has been advertised it is possible to publish updates to it.

University of Pisa, September 2015 50

Chapter 5

The publication is made with an atomical operation to guarantee the
consistency of the data.

When publishing, since there is no queue for the transmitted data, the pre-
vious value is replaced and all the subscribers can only receive the last value.

5.2.2 Subscribing

The reception procedure is also subdivided in several steps:

1. Subscription to the selected topic (only once):
The node declares its interest in the selected channel.

2. Checking for update:
The node can verify the presence of new data on the channel. Each
subscriber keeps track of the time of the last data received and thus can
compare it with the current data timestamp (updated by the publisher)
when checking the update.

3. Copying data from the topic:
The data is copied in a local structure atomically.

5.2.3 Middleware as Synchonization means

This framework offers the possibility to achieve a synchronization between
tasks. A subscriber that depends on publications as a source of data can
wait for publications to any number of subscriptions simultaneously. This is
done using the poll() function in the same fashion as waiting for data on a
file descriptor. This works because subscriptions are actually file descriptors
themselves. Since some topics are updated at a high frequency (sensors
topics) it is possible to limit the rate at which subscribers receive updates
on it. Summing up this architecture has particular strenghts for realtime
control applications:

• The topic handle is implemented as virtual file, allowing listeners to do
blocking waits on interfaces and drivers

• The read-write lock of the publication allows efficient concurrency and
ensures atomic operations one the topic content

• Subscribers can ask for notification limit when retrieving data from
high rate publishers.

University of Pisa, September 2015 51

Chapter 5

• The asynchronous/blocking wait approach combined with the task pri-
ority setup of the operating system allows minimal latency and deter-
ministic scheduling in the control pipeline

5.3 Application Layer

The Application Layer can be subdivided into 2 groups:

1. System Applications

2. Flight Control Applications(PX4 Stack)

5.3.1 System Applications

The system applications provide functionalities for the user and also for other
running processes. There are functions to log data to SD-card, to retrieve
a list of running applications and resource usage, to obtain timing statistics
of running processes. A foundamental application on which is based the off-
board communicationis the mavlink application. It manages the send/receive
of MAVLink packets through the serial interface and carries out the conver-
sion between those packets and the object request brocker structures for the
inter process communication (fig. 5.3).

5.3.2 Flight Control Applications

The PX4 flight control stack is a custom, BSD licensed flight control stack,
providing fully autonomous waypoint flight for multicopter and fixed wing
aircraft. It uses a common codebase and common flight management code.
It follows a very flexible and structured approach, which allows to run plane
and multicopter controllers with the same waypoint and safety state machine
handling. The applications tightly involved in the flight of the quadrotor are
represented, grouped for functionality, by

• Flight Safety and Navigation

– commander

– navigator

• Attitude and Position Estimator

– attitude estimator ekf : EKF-based attitude estimator

– position estimator inav : Inertial navigation position estimator

University of Pisa, September 2015 52

Chapter 5

Autopilot
Board Serial Interface

uORB Application

App1 App2 App3 . . .

uORB Structures

uORB Structures

Mavlink Packets

. . .

Mavlink Application

Send Receive

Mavlink Packets

Figure 5.3: Mavlink application: data flux

University of Pisa, September 2015 53

Chapter 5

• Multirotor Attitude and Position Controllers

– Multirotor attitude controller

– Multirotor position controller

5.3.3 Tasks Synchronization

The various tasks running onboard have precedences because each of them
needs the data provided by others to execute: estimators needs new measure-
ments to run and other applications in turn need state estimate to execute. It
is thus necessary to synchronize applications and a possible approach might
be to run algorithms in a single loop, such that the precedences constraints
are meet automatically. This method gives birth to a coupled system with
low design flexibility and cumbersome functioning in case of components run-
ning at different rate. Since the system supports multithreading, it might
be possible to run the algorithms in separate tasks, each one with its own
period, and check for the presence of new input data at each attivation time.
This solution, although constituting a decoupled system, it is not efficient.
Ideed in some circumstances, depending on the order of execution of the
tasks, each loop can miss the next loop making the system experience high
latency (fig. 5.4 and fig. 5.5).

t

t

t

Lucky Case

Estimator

Controller

Sensors

time from sensor data to control response

Figure 5.4: Sequence of events which determines low latency in the response

This issue is of paramount importance for the control loops performances.
Given the tools offered by the OS and the uORB communication mechanism
it is possible to tackle the control problem minimizing the latency of the
system while maintaining the decoupled structure.

University of Pisa, September 2015 54

Chapter 5

t

t

t

Unlucky Case

Estimator

Controller

Sensors

time from sensor data to control response

Figure 5.5: Sequence of events which determines high latency in the response

Each application, run as a separated thread, exchanges data with the oth-
ers via uORB. As pointed out in the part describing the messaging structure
it is possible to call a poll() on the requested topic and wait for new data
without usign CPU. In this way the components of a control chain are run
in the same order, without the risk of bad interlacing, and thus with low
latency in between.

An example of functioning is shown in fig. 5.6 where three tasks involved
in the control loop are synchronized in a control chain. The starting point is
the tread publishing the sensor data, which triggers the attitude estimator
task waiting from them. When the estimator publishes the estimated atti-
tude the control task is triggered. Even if, for some reason, the starting task
involved with sensor data publication should be delayed, the architecture as-
sures the maintance of the execution order as can be observed in the same
figure, where a possible instance of functioning has been drawn.

Onboard the pixhawk the fast attitude control loop is achieved in this way.
The loop frequency is 250Hz. The tasks have the same priority, are sched-
uled FIFO and with the technique saw before it is possible to achieve the
requested precedences.

University of Pisa, September 2015 55

Chapter 5

Sensor Task

Sensor
Topic

Task
Attitude Estimation

Read New
Sensor Data

Publish New
Sensor Data

Estimated
State Topic

Attitute Control
Task

Publish New
Estimated Attitude

Read New
Estimated Attitude

poll()

poll()

Estimator

Controller

Sensors

t

t

t

The response time is maintained optimal even in case
of fluctuations in the sensor publication period

Figure 5.6: Control Chain Example

University of Pisa, September 2015 56

Chapter 6

Data Governor

Given the architecture described in the previous chapters it is clear that in
order to close the loop between hardware and software it is necessary to
consider the timing of the operations. The Graphical Interface approach of
QGroundControl makes impossible to predict the time of accomplishment
and puts on the same level the interaction of the user with the interface and
messages exchange between simulator and autopilot board.

A viable solution for this problem consists in developing an external Ap-
plication able to manage messages, decoupling the User Interface section of
the framework from the Simulative part.

In order to realize this decoupling the data flow is sorted into two cate-
gories: one regarding the functioning of the Ground Station Application; the
other regarding the Simulator Block.

The data stream pertinent the ground station consists in the state of the
UAV, such as estimated position, estimated attitude, fightmode etc; whereas,
the datastream regarding the simulator consists in sensor data (??) and and
actuation outputs. The data exchange with the Ground Station Application
allows to maintain the capability to send commands to the Autopilot Board,
to visualize telemetry data in realtime, to check the state of the vehicle during
the simulation.

57

Chapter 6

HIL SENSOR Message

Field Name Type Description
time usec uint64 t Timestamp
xacc float X acceleration (m/s2)
yacc float Y acceleration (m/s2)
zacc float Z acceleration (m/s2)
xgyro float Angular speed around X axis body frame

(rad/s)
ygyro float Angular speed around Y axis body frame

(rad/s)
zgyro float Angular speed around Z axis body frame

(rad/s)
xmag float X Magnetic field (Gauss)
ymag float Y Magnetic field (Gauss)
zmag float Z Magnetic field (Gauss)
abs pressure float Absolute pressure (mBar)
diff pressure float Differential pressure (mBar)
pressure alt float Altitude calculated from pressure (m)
temperature float Temperature (Co)
fields updated uint32 t Bitmask for fields that have updated since

last message

University of Pisa, September 2015 58

Chapter 6

HIL GPS Message

Field Name Type Description
time usec uint64 t Timestamp
fix type uint8 t 0-1: no fix, 2: 2D fix, 3: 3D fix
lat int32 t Latitude (WGS84), in degrees * 1E7
lon int32 t Longitude (WGS84), in degrees * 1E7
alt int32 t Altitude (AMSL), in meters * 1000 (positive

for up)
eph uint16 t GPS HDOP horizontal dilution of position in

cm (m*100)
epv int16 t GPS VDOP vertical dilution of position in

cm (m*100)
vel uint16 t GPS ground speed (m/s * 100)
vn int16 t GPS velocity in cm/s in NORTH direction in

earth-fixed NED frame
ve int16 t GPS velocity in cm/s in EAST direction in

earth-fixed NED frame
vd int16 t GPS velocity in cm/s in DOWN direction in

earth-fixed NED frame
cog uint16 t Course over groundin degrees * 100
satellites visible uint8 t Number of satellites visible

This data flow should have the highest priority because is involved in
the control algorithm onboard the Autopilot Board. The application not
only accomplishes the data routing between participants managing priorities
but also synchonizes threads and assures correct timings of the messages
transmission.

Since the function of the Data Governor application is to assure a reli-
able simulation result, that is that the feedback returned is more realistic
as possible, consideration have been made when dealing with possible data
frequency variation. Indeed the capability to assure a constant data rate
has been considered more important then exchanging totally coherent data.
Following this approach in case of missing data, due to eventual delays in the
execution flow, the application provides to patch the missing value inserting
an artificial value equal to the previously sent data. Indeed for the autopilot
computer the situation of missing data sensor is more severe that elaborating
an artificial value.

University of Pisa, September 2015 59

Chapter 6

I/O

Simulator
Matlab/Simulink

QGroundControl

Low Priority

High Priority

Legend

Simulator
Thread

Thread
Inflow

I/O

I/O

Pixhawk
Autopilot

Data Governor

Thread
GS

UDP

Serial Interface

Figure 6.1: Application Structure

6.1 Application Structure

The application has been developed usign the ptask library [18]. This is a
C library that simplifies the real-time programming in Linux, allowing to
create tasks, synchronize them and perform other functions without the low
level implementation details of the standard pthread library. The design of
the application has been carried out with the goal of minimizing the resource
sharing between different threads. The functionalities of the Data Governor
are accomplished using three threads:

1. Inflow Thread:
This thread retrieves data from the board polling the serial interface
and routing the obtained packet to the destination structures:

2. Simulator Thread:
This thread retrieves data from the the simulator application and send
them back to the Autopilot Board:

3. Ground Station Thread:
This thread retrieves data from the ground station application and send
them to the Autopilot Board

University of Pisa, September 2015 60

Chapter 6

Variables initialization();
while not time to exit do

fetch message from autopilot interface();
for each received message do

if controls for the simulator? then
update controls();

else
send to groundstation();

end

end
send controls to simulator();
wait for period();

end

Algorithm 1: Inflow Thread

Variables initialization();
while not time to exit do

fetch sensor from simulator interface();
update sensors data(); compose mavlink message();
if Is the Autopilot in HIL mode? then

send sensorData to autopilot();
end
wait for period();

end

Algorithm 2: Simulator Thread

Variables initialization();
while not time to exit do

check new data from GS();
send message to autopilot();

end
wait for period();

Algorithm 3: Ground Station Thread

University of Pisa, September 2015 61

Chapter 7

Experiments

The final part of the work is spent in the testing of the overall structure. The
tests consist in profiling the time characteristics of the processes involved in
the simulation and verifying the fulfilment of time constraints. The character-
ization of the timing properties of the system is necessary to check the correct
functioning and to identify the critical parts which need to be improved in
future works. Using the gathered data, mean values, standard deviations
and worst case execution times of the various operations are evaluated. In
this way it is possible to describe statistically the timing performance of the
framework.

7.1 Experiment Setup

In the experiment the autopilot board has been connected to an host pc
running the Data Governor application and the FlightGear instance. The
Matlab/Simulink application has been run on another machine on the LAN.
A further serial connection has been established with the autopilot board to
check the status of the system throught debugging shell.

Several simulation have been run and the data is collected and succes-
sively analyzed with Matlab to extract the statistical information. In the
experiment the Ground Station Thread is not active, so there are only two
tasks running.
The quantities of interests are:

1. Interval of time between the activation of the Inflow thread and the
Simulator thread

2. Attivation Time of the single tasks

3. Time necessary to the simulator to produce sensor data

62

Chapter 7

Autopilot Board

Matlab/Simulink

Debug Shell

Data Governor Flight Gear

Serial Interfaces

PC1

PC2

UDP

Figure 7.1: Experiment Setup

University of Pisa, September 2015 63

Chapter 7

samples ×10 4
0 1 2 3 4 5 6 7

∆
 T

 (
us

)

-1000
-850
-700
-550
-400
-250
-100

50
200
350

Time between activation of synched tasks

∆ T (us)
-300 -250 -200 -150 -100 -50 0 50 100 150 200 250 300

In
st

an
ce

s

×10 4

0

1

2

3

4
Time between activation of synched tasks [Histogram]

Mean Value: 120us
Standard Deviation: 20us
Worst Case: 850us

Figure 7.2: Statistic of the inter-activation time between Inflow Thread and
Simulation Thread

4. Time necessary to the tasks to perform the operation in a cycle

7.2 Experiment Results

The data collected relative to the interval of time between the activation of
the Inflow thread and the Simulator thread shows (Figure 7.2) that there is
no drift and that the two treads are synchronized as requested. The mean
value of the inter-activation time is 120us with a variance of 20us. The worst
case has been recorded to be 850us.

The measurements of the activation times of the tasks show that it is
possible to achieve good triggering precision (Figure 7.3 and Figure 7.4).
This property is foundamental if it is necessary to guarantee the delivery
of the messages in with a given frequency. The standard deviation of the
measured data has been found to be 23us for the activation period of the
Inflow Thread and 26us for the activation period of the Simulator Thread.

The execution time of the two threads is shown in Figure 7.5 and in Figure
7.6. These values confirm that the data exchange operations performed in
the tasks’ periods are accomplished without coming up against considerable
delays. The time to accomplish the simulation step is reported in Figure 7.9.
Even if the mean value is included in the maximum admissibile time it has
been noticed that the standard deviation of 3720us is quite large. Indeed, as
it is shown in the Figure 7.8, the inter-arrival time of sensor data from the

University of Pisa, September 2015 64

Chapter 7

∆ T (us)
3600 3700 3800 3900 4000 4100 4200 4300 4400

In
st

an
ce

s
×10 4

0

0.5

1

1.5

2

2.5

3

3.5
Period of Activation Inflow Thread [Histogram]

Mean Value: 3999.9467ms
Standard Deviation: 23.7856ms

Figure 7.3: Statistic of the activation time of the Inflow Thread

∆ T (us)
3600 3700 3800 3900 4000 4100 4200 4300 4400

In
st

an
ce

s

×10 4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Period of Activation Simulator Thread [Histogram]

Mean Value: 3999.9468us
Standard Deviation: 26.7351us

Figure 7.4: Statistic of the activation time of the Simulation Thread

University of Pisa, September 2015 65

Chapter 7

samples ×10 4
0 1 2 3 4 5 6 7

∆
 T

 (
us

)

0

50

100

150

200

250
Execution Time of the Inflow Thread

∆ T (us)
0 50 100 150 200 250

In
st

an
ce

s

×10 4

0

1

2

3

4
Execution Time of the Inflow Thread [Histogram]

Mean Value: 18.7096us
Standard Deviation: 4.8504us
Worst Case: 231

Figure 7.5: Statistic of the execution time of the Inflow Thread

simulator can be far above the requested 4000us.
A negative result has been obtained analysing the data on the simulator

response time. Unfortunately the time necessary to obtain a response from
simulation is bigger than the 4ms sampling time of the autopilot board. The
mean response time is 10.942ms with a standard deviation of 11.834ms. This
issue is probably due to the way simulink implements the UDP block used
to communicate.

University of Pisa, September 2015 66

Chapter 7

samples ×10 4
0 1 2 3 4 5 6 7

∆
 T

 (
us

)

0

500

1000

1500
Execution Time of the Simulation Thread

∆ T (us)
0 200 400 600 800 1000 1200 1400

In
st

an
ce

s

×10 4

0

1

2

3

4

5
Execution Time of the Simulation Thread [Histogram]

Mean Value: 14.7683us
Standard Deviation: 10.0236us
Worst Case: 1328

Figure 7.6: Statistic of the execution time of the Simulation Thread

∆ T (us) ×10 4
0 2 4 6 8 10 12 14

In
st

an
ce

s

×10 4

0

0.5

1

1.5

2

2.5

3

3.5

4
Simulation Execution Time [Histogram]

Mean Value: 3999us
Standard Deviation: 3720us

Figure 7.7: Statistic of the execution time of the Simulation Thread

University of Pisa, September 2015 67

Chapter 7

∆ T (us)
2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

In
st

an
ce

s
×10 4

0

0.5

1

1.5

2

2.5

3

3.5

Simulation Execution Time [Histogram]

Mean Value: 3999us
Standard Deviation: 3720us

Figure 7.8: Statistic of the execution time of the Simulation Thread(Detail)

∆ T (ms)
0 10 20 30 40 50 60 70 80 90 100

In
st

an
ce

s

0

2000

4000

6000

8000

10000

12000
Simulation Delay [Histogram]

Mean Value: 10.9442ms
Standard Deviation: 11.8344ms

Figure 7.9: Statistic of the Response Time of the Simulator Block

University of Pisa, September 2015 68

Chapter 8

Conclusions

In this chapter a summary of the work done is presented in order to analize
the obtained results and compare them with the initial objectives. At the
end of the summary some guidelines for future works will be proposed.

In this thesis period, after an analysis of the state of the art and related
works, a new structure for a hardware in the loop simulation environment
has been proposed. The starting point of the work is the open-source PX4
project which offers the necessary components to start developing without
rebuild everything from scratch. Given the absence of a clear documentation,
the information about the functioning of the various application, firmware
and tools has been retrieved mainly by direct inspection of the code.

Whereas this approach is difficult and slows down considerably the achieve-
ment of the results, it has revealed issues in the PX4 implementation. Trying
to improve the current solution and to fix the detected problems a new frame-
work has been developed. Precisely it has been considered necessary to find
another solution for what concern the simulator and the architecture of the
overall system.

The obtained new framework is aimed to constitute an useful tool for
the development of guidance, navigation and control algorithms. Precisely it
allows check the correct execution of the designed algorithms directly on the
target control board. This result is possible thanks to the achieved timing
precision with the time constraints are met. The ability to take the execution
time into consideration allows to check the correctness of the simulation
flow itself guaranteeing the feature of hardware in the loop simulator. The
work ends with tests aimed to verify the capability to manage activation
times and synchronization between threads with sufficient precision. The
results show that the required data exchange is accomplished and thus it
is a viable option for the realization of an hardware in the loop simulator.

69

Chapter 8

The tests show also that the simulator component introduces a consistent
and not negligible delay. The problem has been associated with the way
Matlab/Simulink manages the UDP connection.

8.1 Future Works

The results of the tests show that the simulation approach proposed is not
able to fully satisfy the requirements. Precisely the failing has been at-
tributed to the implementation of the UDP communication in the Mat-
lab/Simulink environment. It is thus necessary to reimplement the UDP
communication in a more efficient method or find another solution for what
concern the simulator application.

The tests that have been carried out without considering the presence of
the Ground Station. It would be necessary to check the effects on the sys-
tem when another tasks participate to the data exchange with the autopilot
board.

University of Pisa, September 2015 70

Bibliography

[1] Luis Merino, Fernando Caballero, J.R. Martinez-de-Dios, Ivan Maza,
Anibal Ollero An Unmanned Aircraft System for Automatic Forest Fire
Monitoring and Measurement Journal of Intelligent & Robotic Systems
January 2012, Volume 65, Issue 1, pp 533-548

[2] Andre‘ Posch, Salah Sukkarieh UAV based search for a radio tagged an-
imal using particle filters Australasian Conference on Robotics and Au-
tomation (ACRA), December 2-4, 2009, Sydney, Australia

[3] Mitch Bryson, Alistair Reid, Fabio Ramos and Salah Sukkarieh Airborne
Vision-Based Mapping and Classification of Large Farmland Environ-
ments, Journal of Field Robotics Special Issue: Visual Mapping and Nav-
igation Outdoors Volume 27, Issue 5, pages 632655, September/October
2010

[4] WoonSik Kim, ByungSun Lee, KyungSoo Kim, TaeSoo Yang A real-time
HWIL simulation control system architecture for implementing evaluation
environment of complex embedded systems, International Conference on
Advanced Communication Technology (ICACT), Seoul 2011

[5] Lorenzo Pollini, Valeria Parnenzini, Mario Innocenti Distributed Real-
Time Hardware- and Man-in-the-loop Simulation for the ICARO II Un-
manned Systems Autopilot, Latest Trends in Information Technology,
2012

[6] Aradi S., Becsi T., Gasparq P. Experimental Vehicle Development for
Testing Autonomous Vehicle Functions 10th International Conference on
Mechatronic and Embedded Systems and Applications (MESA), 2014

[7] Home - PX4 Autopilot Project https://pixhawk.org/start

[8] ETH PIXHAWK https://pixhawk.ethz.ch/

[9] FlightGear Flight Simulator http://www.flightgear.org/ 2015

71

Chapter 8

[10] X-Plane 10 Flight Simulator http://www.x-plane.com/desktop/home/
2015

[11] Simple multirotor simulator with MAVLink protocol support
https://github.com/DrTon/jMAVSim 2015

[12] Qt Documentation: Signal and Slots http://doc.qt.io/qt-
5/signalsandslots.html

[13] Gabriel M. Hoffmann, Haomiao Huang, Steven L. Waslander, Claire J.
Tomlin Quadrotor Helicopter Flight Dynamics and Control: Theory and
Experiment AIAA Guidance, Navigation and Control Conference and
Exhibit 20 - 23 August 2007, Hilton Head, South Carolina

[14] Engr. M. Yasir Amir, Dr. Valiuddin Abbass Modeling of Quadrotor Heli-
copter Dynamics International Conference on Smart Manufacturing Ap-
plication April. 9-11, 2008 in KINTEX, Gyeonggi-do, Korea

[15] Paul Pounds, Robert Mahony, Peter Corke Modelling and Control of a
Quad-Rotor Robot Australian National University, Canberra, Australia
CSIRO ICT Centre, Brisbane, Australia

[16] Paul Pounds, Robert Mahony, Joel Gresham Towards Dynamically-
Favourable Quad-Rotor Aerial Robots Australian National University,
Canberra, Australia CSIRO ICT Centre, Brisbane, Australia

[17] Nathan Michael, Daniel Mellinger, Quentin Lindsey, Vijay Kumar The
GRASP Multiple Micro-UAV Test Bed IEEE Robotics & Automation
Magazine September 2010

[18] Giorgio Buttazzo, Giuseppe Lipari, Ptask: an Educational C Library for
Programming Real-Time Systems on Linux 18th Conference on Emerging
Technologies & Factory Automation (ETFA), IEEE 2013

University of Pisa, September 2015 72

	Frontth
	Abstract
	Introduction
	Context of the Application
	Related Work
	PX4 Project
	Limits of this approach

	Contribution of this Work

	System Architecture
	Quadrotor
	Simulation Block
	Autopilot
	Autopilot Operating System

	Ground Station
	MAVLink Protocol

	Simulation Framework
	Simulation Framework and Aims
	Conventions
	Frames of Reference
	Rotations

	UAV Dynamics Model
	Actuators
	Equations of Motion
	Simulink Blocks

	Sensors' Model

	Ground Station Application
	Inter-Object Communication Approach
	Signals and Slots: Description
	Signals and Slots: Performances

	Autopilot Software
	Operating System
	Middleware
	Publishing
	Subscribing
	Middleware as Synchonization means

	Application Layer
	System Applications
	Flight Control Applications
	Tasks Synchronization

	Data Governor
	Application Structure

	Experiments
	Experiment Setup
	Experiment Results

	Conclusions
	Future Works

