24 research outputs found

    Rapid Pole Climbing with a Quadrupedal Robot

    Get PDF
    This paper describes the development of a legged robot designed for general locomotion of complex terrain but specialized for dynamical, high-speed climbing of a uniformly convex cylindrical structure, such as an outdoor telephone pole. This robot, the RiSE V3 climbing machine—mass 5.4 kg, length 70 cm, excluding a 28 cm tail appendage—includes several novel mechanical features, including novel linkage designs for its legs and a non-backdrivable, energy-dense power transmission to enable high-speed climbing. We summarize the robot’s design and document a climbing behavior that achieves rapid ascent of a wooden telephone pole at 21 cm/s, a speed previously unachieved—and, we believe, heretofore impossible—with a robot of this scale. The behavioral gait of the robot employs the mechanical design to propel the body forward while passively maintaining yaw, pitch, and roll stability during climbing locomotion. The robot’s general-purpose legged design coupled with its specialized ability to quickly gain elevation and park at a vertical station silently with minimal energy consumption suggest potential applications including search and surveillance operations as well as ad hoc networking

    Rapid pole climbing with a quadrupedal robot

    Full text link

    On the Comparative Analysis of Locomotory Systems with Vertical Travel

    Get PDF
    This paper revisits the concept of specific resistance, a dimensionless measure of locomotive efficiency often used to compare the transport cost of vehicles (Gabrielli & von Karman 1950), and extends its use to the vertical domain. As specific resistance is designed for comparing horizontal locomotion, we introduce a compensation term in order to offset the gravitational potential gained or lost during locomotion. We observe that this modification requires an additional, experimentally fitted model estimating the efficiency at which a system is able to transfer energy to and from gravitational potential. This paper introduces a family of such models, thus introducing methods to allow fair comparisons of locomotion on level ground, sloped, and vertical surfaces, for any vehicle which necessarily gains or loses potential energy during travel

    The Problem of Adhesion Methods and Locomotion Mechanism Development for Wall-Climbing Robots

    Full text link
    This review considers a problem in the development of mobile robot adhesion methods with vertical surfaces and the appropriate locomotion mechanism design. The evolution of adhesion methods for wall-climbing robots (based on friction, magnetic forces, air pressure, electrostatic adhesion, molecular forces, rheological properties of fluids and their combinations) and their locomotion principles (wheeled, tracked, walking, sliding framed and hybrid) is studied. Wall-climbing robots are classified according to the applications, adhesion methods and locomotion mechanisms. The advantages and disadvantages of various adhesion methods and locomotion mechanisms are analyzed in terms of mobility, noiselessness, autonomy and energy efficiency. Focus is placed on the physical and technical aspects of the adhesion methods and the possibility of combining adhesion and locomotion methods

    Design of post climbing machine

    Get PDF
    Bakalářská práce se zabývá zařízeními šplhajícími po sloupech. Teoretická část práce se věnuje základnímu rozdělení robotů a popisem různých typů zařízení šplhajících po sloupech. Praktická část práce se zabývá koncepčním návrhem zařízení šplhajícího po sloupech. Zařízení je dimenzováno tak, aby zvládlo unést užitečné zatížení v řádu kilogramů. Napájení šplhajícího zařízení je řešeno externím zdrojem. Koncepční návrh je zpracován v programu SolidWorks.This bachelor thesis deals with post climbing machines. The theoretical part of the thesis deals with the basic division of robots and a description of different types of post climbing machines. The practical part of the thesis deals with the conceptual design of the post climbing machine. The machine is designed to carry on external payload in kilograms. The power supply of the post climbing machine will be realized by external power supply. Conceptual design is developed in SolidWorks.

    Gait Transitions for Quasi-Static Hexapedal Locomotion on Level Ground

    Get PDF
    As robot bodies become more capable, the motivation grows to better coordinate them—whether multiple limbs attached to a body or multiple bodies assigned to a task. This paper introduces a new formalism for coordination of periodic tasks, with specific application to gait transitions for legged platforms. Specifically, we make modest use of classical group theory to replace combinatorial search and optimization with a computationally simpler and conceptually more straightforward appeal to elementary algebra. We decompose the space of all periodic legged gaits into a cellular complex indexed using “Young Tableaux”, making transparent the proximity to steady state orbits and the neighborhood structure. We encounter the simple task of transitioning between these gaits while locomoting over level ground. Toward that end, we arrange a family of dynamical reference generators over the “Gait Complex” and construct automated coordination controllers to force the legged system to converge to a specified cell’s gait, while assessing the relative static stability of gaits by approximating their stability margin via transit through a “Stance Complex”. To integrate these two different constructs—the Gait Complex describing possible gaits, the Stance Complex defining safe locomotion—we utilize our compositional lexicon to plan switching policies for a hybrid control approach. Results include automated gait transitions for a variety of useful gaits, shown via tests on a hexapedal robot

    Nonlinear Model Predictive Control for the Stabilization of a Wheeled Unmanned Aerial Vehicle on a Pipe

    Get PDF
    This letter addresses the task of stabilizing a wheeled unmanned aerial vehicle on a pipe, which is an emerging applica- tion in oil and gas facilities for nondestructive measurements. After the derivation of the dynamic model of the system, a discrete-time nonlinear model predictive controller is designed over a finite horizon. The analysis of the asymptotic stability of the designed controller is carried out. Numerical tests show the performance and the robustness of the proposed solution

    The Effect of Tail Stiffness on a Sprawling Quadruped Locomotion

    Full text link
    A distinctive feature of quadrupeds that is integral to their locomotion is the tail. Tails serve many purposes in biological systems including propulsion, counterbalance, and stabilization while walking, running, climbing, or jumping. Similarly, tails in legged robots may augment the stability and maneuverability of legged robots by providing an additional point of contact with the ground. However, in the field of terrestrial bio-inspired legged robotics, the tail is often ignored because of the difficulties in design and control. This study will test the hypothesis that a variable stiffness robotic tail can improve the performance of a sprawling quadruped robot by enhancing its stability and maneuverability in various environments. To test our hypothesis, we add a multi-segment, cable-driven, flexible tail, whose stiffness is controlled by a single servo motor in conjunction with a reel and cable system, to the underactuated sprawling quadruped robot. By controlling the stiffness of the tail, we have shown that the stability of locomotion on rough terrain and the climbing ability of the robot are improved compared to the movement with a rigid tail and no tail. The flexible tail design also provides passively controlled tail undulation capabilities through the robot's lateral movement, which contributes to stability
    corecore