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Nonlinear Model Predictive Control for the Stabilization of a
Wheeled Unmanned Aerial Vehicle on a Pipe

Suping Zhao'2, Fabio Ruggiero?, Giuseppe Andrea Fontanelli, Vincenzo Lippiello?,
Zhanxia Zhu!, Bruno Siciliano?

Abstract—This letter addresses the task of stabilizing a wheeled
unmanned aerial vehicle on a pipe, which is an emerging appli-
cation in oil and gas facilities for nondestructive measurements.
After the derivation of the dynamic model of the system, a
discrete-time nonlinear model predictive controller is designed
over a finite horizon. The analysis of the asymptotic stability of
the designed controller is carried out. Numerical tests show the
performance and the robustness of the proposed solution.

Index Terms—Nonlinear model predictive control, wheeled
unmanned aerial vehicle, nondestructive testing

I. INTRODUCTION

HE SPARC multi-annual roadmap, released in its final
version in December 2016, considers the inspection and
maintenance as a pillar domain in which robots can pro-
vide significant advantages over current methods. Within this
background, nondestructive contact measurements are widely
adopted in industrial scenarios such as oil and gas facilities.
In particular, this work is rooted in the HYFLIERS project
[www.oulu.fi/hyfliers] whose aim is to study and develop
solutions to perform inspection measurements with reduced
exposure to risks and costs. To this end, a hybrid aerial-
ground robot with a hyper-redundant lightweight robotic arm,
equipped with an inspection sensor, will be developed within
the project, together with supporting services for efficient and
safe navigation in a complex and safety-critical environment.
The hybrid aerial-ground robot is mainly made up by
a wheeled unmanned aerial vehicle (WUAV) landing on a
horizontal pipe to perform the required measurements. It is
supposed to have enough space for approaching and moving
around. The wheels are necessary to agilely navigate on the
pipe, thus reducing the power consumption for the case of
using only an aerial vehicle. As better specified in the attached
technical report, two Mecanum wheels are put in the front
of the vehicle to orientate and navigate on the pipe, while
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Fig. 1. Concept of the WUAYV device employed within the HYFLIERS project
for nondestructive tests within oil and gas facilities.

two Omni-wheels are put in the back for the orientation on
the pipe. Since the landing of the WUAV on the pipe may
be inaccurate (not exactly on the top), and because during
the navigation on the pipe some disturbances may affect the
motion, it is necessary to continually stabilize the vehicle
against gravity, avoiding the slippage of the wheels. To this
end, once the WUAV has landed on the pipe, its propellers
can be tilted providing a lateral thrust that can help in case the
torques of the wheels saturate. The concept of the described
WUAV is sketched in Fig. [I]

Therefore, this letter investigates the simpler yet interesting
task of stabilizing a planar WUAYV on a pipe through a discrete-
time nonlinear model predictive control (NMPC). The NMPC
controller is chosen to handle the slipping constraints explicitly
and the saturation of the actuators, robustifying the control
action. Closed-loop asymptotic stability is guaranteed as well.
Next section revises the current state of the art, having the
outcome that the novelty of this letter is doubtless the appli-
cation, whose solution may be relevant within nondestructive
measurements in oil and gas facilities. Section develops
the dynamic model of the planar WUAV on the pipe through
the Newton-Euler approach, considering as inputs the lateral
thrust (provided by the tilted propellers) and the torques of
the wheels. Afterwards, the constraints necessary to stabilize
the WUAV on the pipe are adequately derived. The discrete-
time optimal control problem and the NMPC are developed
in Section [[V] The performance of the proposed approach is
tested in Section [V] with a critical discussion about the carried
out results. Section [VI| concludes the letter. The technical
report, attached as multimedia material to this letter, illustrates
the devices under construction, their characteristics, and their
weakness. Besides, the first experiment on a device with only
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wheels, without the propellers, is shown.

II. STATE OF THE ART

Nondestructive measurement tests (NDT) in refineries are
currently performed by human operators climbing huge and
costly scaffolding. Several robotic commercial solutions are
currently (or are ready-to-be) available like the APPELLIX
drone [www.apellix.com], the Texo Drone Survey and Inspec-
tion platform [www.texodroneservices.co.uk/blog/56], and the
Ronik Inspectioneering UT device [www.inspectioneering.eu].
The listed devices are drones equipped with a stick, or a
telescopic arm, at whose tip is mounted an ultrasonic thickness
sensor. As highlighted in several research works, the contact
between the stick and the surface may destabilize the robot,
because the contact arises a torque at the center of mass of the
drone. Several solutions address such a problem. The impacts
destabilizing the aerial device are addressed in [1]] by combin-
ing mechanics, with the use of active and passive joints, and
control strategy. The impacts may also be absorbed through
a passive vacuum-cup technology as in [2]. The problem of
carrying out large forces in contact with the environment with
an underactuated drone is instead investigated in [3]] through
the use of LQR-optimized state feedback on the roll and yaw
angle. In case the inspections measurements are performed in
a crowded and narrow environment, and the drone is too bulky
to stay close to the surface to be inspected, a long reach aerial
manipulator can be employed [4].

The solution proposed within the HYFLIERS project for
NDT is innovative. The hybrid aerial-ground robot is efficient
since it does not require to fly during all the inspection
operation, but it can land and navigate on pipes. The stabi-
lization of a hybrid aerial-ground robot on a pipe is indeed a
new problem. To the authors’ knowledge, a thorough search
of the relevant literature reveals that it does not exist any
paper addressing a task similar to the one tackled by this
letter. The most similar applications may be found in those
employing climbing [5] and perching robots [6]. The former
can climb on the surface of objects with different surface
roughness, and the latter can perch on the surface of an
object to eventually perform some manipulation tasks. For both
categories of robots, the research usually focuses on the adhe-
sive mechanism, mainly including the magnetic adhesion [[7]],
the pneumatic adhesion [8]], the mechanical adhesion [9], the
electrostatic adhesion [[10]], and the chemical adhesion [11]].
As the aim of this work, the crucial element in climbing
and perching robots is the stability of robotic systems on the
surface of a telegraph pole [[12], [13] or a wall [14], [[15]. Both
the mechanical structure and the employed control methods
are critical for the stability of the system. A proportional-
integral-derivative (PID) controller is built in [[12]] to govern
the motion of a robotic system on a pipe, but the wheels
of the robotic system are assumed not to slip. A PID-based
methodology is also employed in [[14] to generate desired
pressure between a wheeled robotic system and a non-smooth
vertical wall and a horizontal ceiling. A proportional-derivative
(PD) controller is instead built in [13]] to achieve high-speed
climbing of a quadrupedal robot on a wooden telegraph pole.

A PD control method is also employed in [15] to follow the
desired motion of a hexapedal robot on brick- or stucco-walls.
Other methods include the autonomous control [16]] of the
motion of a robotic system with “mother-child”-structure on
thin surfaces and the decentralized parallel control [[17] of a
six-legged wall climbing robot with high payloads.

Other approaches solving such a kind of task make use
of the NMPC as in [[18] for an elastic tool interaction of
the drone with the ceiling. In general, in the last decades,
MPC and NMPC dominate the process industry for a large
variety of applications [[19]. Critical discussions, theoretical
advantages, and quantitative results of using MPC and NMPC
over the classical methodologies, like a PID-based controller,
can be found in [20], [21], [22, Section 1.3]. Therefore, the
use of NMPC over the classical control approaches allow
the possibility to explicitly include the slipping conditions
and saturation of the actuators within the control design.
The NMPC can be categorized into continuous-time [23] and
discrete-time [24] settings. The discrete-time setting, employed
in this letter, is preferred due to the simplicity of notation, the
conceptual formulation, and the intrinsic discrete nature of the
elaboration systems. Various approaches are then investigated
to guarantee the stability of a discrete-time NMPC, and they
are reviewed in [24]: the terminal state cost penalty [25]-
[28]], and the terminal inequality constraint [25]], [28]], [29] are
critical instruments in the design of the controller. Besides,
the linearization of the nonlinear system is addressed in [26]:
based on the stability of the locally linearized system, the
exponential stability at the equilibrium is guaranteed. A similar
approach with an infinite time horizon is tackled in [27].
In [30], the optimization problem with an infinite time horizon
is reduced to a convex optimization problem with linear
inequality constraints, and the uniform asymptotic stability
is proved through the Lyapunov approach. The NMPC with
a finite time horizon is also employed in [29] to control a
multiplicative noise stochastic system, where the input delay
is considered, and the stability is guaranteed by introducing
two terminal inequalities.

III. DYNAMIC MODEL AND STABILIZATION
CONSTRAINTS

A. Dynamic model of the WUAV system on a pipe

Some simplifications are made to derive the dynamic model
of the system briefly described in the introduction. i) The
wheels are in a fixed position, and they can move transversely
to the pipe to constrain the motion of the WUAV only around
the circumference. ii) The propellers are in a fixed position
such as the combined effect of the center of mass of the WUAV
is always parallel to the tangent to the pipe. iii) The wheels and
the pipe are rigid and a Coulomb friction model is assumed,
while the rolling friction is negligible. iv) The wheels do not
slip on the pipe. v) The inertia of the wheels and the propellers
are negligible compared to the inertia of the WUAV rotation
around the center of the pipe.

With the above assumptions, the resulting system is
sketched in Fig. Since the system is symmetric to the
vertical plane cutting the WUAV at its center of mass, a two-
dimensional (2-D) representation can be employed to further
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Fig. 2. Three-dimensional sketch of the WUAV system on a pipe. In red, the
actuation torques on the wheels. In blue, the effect of the propeller effects on
the center of mass of the WUAV.

Pipe

Fig. 3. 2-D sketch of the WUAV system on a pipe, with the illustration of
the symbols employed to derive the dynamic model of the WUAV and its
constraints.

simplify the derivation of the dynamic model. Therefore, with
reference to Fig. [3] the origin O of the inertial reference
frame X p is put in the center of the pipe, while the Y -axis is
directed along the gravity direction, and the X -axis is directed
along the radius of the pipe and parallel to the ground. Three
coordinate frames, ¥;, with ¢ = 0, 1,2, are instead attached
to the WUAV. The frame X is placed at the center of mass
of the WUAV, with n, € R2 the unit vector always directed
towards the center of the pipe, and t, € R? the unit vector
perpendicular to ny and parallel to the tangent to the pipe. The
frames 31 and X5 are placed at the center of the wheels, with
n1 € R? and ny € R? the unit vectors always directed towards

the center of the pipe, and t; € R? and ¢, € R? the unit
vectors perpendicular to n; and ns, respectively, and parallel
to the tangent to the pipe. The expression of the mentioned
vectors in X g are

to = [—cos(f) —sin(d)]" , (la)
ng = [sin(f) —cos(9)]" , (1b)
ty = [—cos(fs +60) —sin(fs + 9)]T , (1c)
ny = [sin(0s +6) —cos(fs + 9)]T ) (1d)
ty = [— cos(fs —0) sin(fs — 0)]T, (le)
ny = [—sin(f; — ) —cos(f, — 9)]T . (1

The inputs to the system are the lateral thrust F,, € R
created by the propellers, and the torques of the wheels
Twl, Tw2 € R. The following vectors can be thus defined in
¥B

F,=[-F,cos(0) —F, sin(@)]T , (2a)
Fui = [~Fuicos(0s+0) —Fuisin(0,+0)]", (2b)
Fyo = [~Fu2cos(0; —0) Fuosin(f, — 9)]T , (2¢)

with F}, = [[Fyll, Fuor = |[Ful = 7w1/Ru, Fuz =
|F w2l = Tw2/Rw, and R,, € R the radius of both wheels.
Throughout the letter, the norms are Euclidean.

Finally, let . € R™ be the distance between the center of
the pipe and the center of mass of the WUAV, 6 € R the
angle of the WUAV with respect to the Y-axis, v, € R and
0s € R two angles depending on the geometry of the device
and the pipe, and R, € R* the radius of the pipe. Based on
the Newton-Euler theory, the dynamic model of the system is
formulated as

. 1 . cos(6s)
0= — mgsin(f) + F, +

(Tw1 + Tw2) |,  (3)
where m € RT is the mass of the WUAV and g is the gravity
acceleration.

B. Derivation of the constraints for stabilization

From the walking robots domain, it is useful to import
the concept that the resultant of all the forces acting on
the robot must remain strictly inside the support polygon
to ensure the stability against gravity [31]. Denoting with
F, = F,+F,+F,;+F,; the resultant force at the center of
mass of the WUAV, expressed in X5 with F, = [0 —myg] r
these dynamical conditions imply that F'y must lie within the
cone of angle 2v,. Taking inspiration from the Coulomb’s
friction law [32], the aforementioned dynamic conditions can
be defined through the following constraints expressed in X5

FST’I’LO >0,
|F5Tt0| < tan(%)FsTno.

bl

“

The assumption iv) related to the non-slipping condition
of the wheels must be ensured by the controller. Such a
condition also ensures that the WUAV does not detach from
the pipe while moving. Taking inspiration from for the
case of a mobile robot on a flat floor, the procedure to find
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the non-slipping constraint is here extended for the case of a
wheeled robot on a circular tube. The presence of assumption
1) implies that there is not any lateral force acting on the wheels
pushing them along the pipe. Therefore, with reference to
Fig.[3] the total force acting on each wheel can be decomposed
into the tangential force F,;, with ¢ = {1,2}, and the
normal force F,; € R%. From the Coulomb model, the no-
slipping condition can be expressed as |F,;| < uF,;, where
Fni = ||Fp; and p € RT is the static friction coefficient
between each wheel and the pipe, whose value depends on
the materials at contact. The problem is how to relate Fly;
with the other involved forces. Writing the force and moment
balance in X p yields

Fong + Fpong = F, + F, 5)
FnlLl - Fn2L1 = 07

with L; € RT the distance between the center of each wheel
and the center of mass of the WUAV. By manipulating () with
some trigonometric formula, computing F}, in one equation
and folding it into the others, it is possible to obtain the

following expression for the normal force F,, = Fj,; = Fy0 =
mg cos(6) : . .
—————=. Hence, replacing the obtained expression into the
2 cos(fs)

mg cos ()
2 COS(&?

a condition is true to maintain the pure rolling assumption, it

is possible to write equivalently

Coulomb model yields |F;| < p , and since such

umgRy,cos(6)
2cos(0s)

umgRy,cos(6)
2cos(6s)

|Tw1| S

(6)

|Tw2| S

IV. DISCRETE-TIME NMPC ALGORITHM

The main idea of the NMPC algorithm is the repetitive
solution of an optimal nonlinear control problem (NLP).
Given the measured state T, := x(k), with the state vector
T = [z xg]T = [0 é]T € R2, at each controller time step
k=0,T,,2T,,..., with T, € R, the discretized version of
the dynamic model (3] is employed by the NMPC to predict
to future behaviour of the system Z(j), with j = 0,..., N—1,
where N > 2 denotes the finite prediction horizon. The
prediction sequence is useful to determine the optimal con-
trol sequence @(0),w(1),...,w(N — 1) minimizing the NLP
while satisfying the constraints, with the control input vector

T T .
u= [ul Us U3] = [Fp Twl ng] € R3. In this case,
the control and the prediction horizons are coincident. The
peculiarity of the NMPC is to apply only the first element
u(k) := w(0) € R? of the sequence to the real system. The
NLP is repeatedly solved from each new acquired measure.

Then, the NLP at each sampling time k, with initial state
T(, can be sketched out as

N-1
V(@(j),a(j) + Vv (Z(N))
§=0
subject to @)

J:

min
w@(0)... w(N—1)

z(j+1) = f (@) u0)),

T, € XO - X,

u e,

FsT'n,o > 0,

|Fs"to| < poFs" no,

pmgR,cos(6)
2cos(0s)

pmgR,cos(6)
2cos(0s)

lua| <

lus| <

with the initial state Z(j) = Ty, the discretized version of the
dynamic model

x1 + Tsxo
f(il?,u) = 2o+ T, (gsinL(xl) + % + (u2+TZSL)I§ZS(GS)) )
)
the cost function to minimize V(Z(j),u(j)) =

(@) —2.)" Q(@() — x.)+(@(j) — u.)’ R(@(j) — ),
the positive definite matrices Q € R?*2 and R € R3*3, the
desired equilibrium point of the system (@) =, = [0 O]T,
and the reference control input w, = [0 0 O}T. Finally,
let X C R? and U C R? denote the compact sets to impose
some bounds on the state and the control inputs, respectively.
Moreover, the terminal cost Vi (Z(IN)) is employed to
penalize the final state of the finite horizon, while the
terminal region X, is employed to guarantee that the final
state of the finite horizon is within a neighbourhood of the
reference point.

Both Viy ((N)) and X, are employed to guarantee the
asymptotic stability of the closed loop, as addressed in [24}
Theorem 5.13] as follows.

Theorem 1: Consider the NMPC algorithm with discrete-
time optimal control problem (7), together with sampling
time period T and finite time horizon N. If the following
assumptions are satisfied, the closed-loop system x(k + 1) =
f(x(k),u(k)) with NMPC feedback law w(k) is asymptoti-
cally stable.

e Al. The cost function V (Z(j),w(j)) and the opti-
mal value function F'(k) := infg)  7(n) J(k), must
obey the inequalities V(i(j),ﬁ(j)% > az(||le — x|
and oq(fle — z.|) < F(k) < as(|]z — z.]]), with
a1(+), az(-), as(-) € Koo

o A2, X is viable, meaning that for each T € X, there
exists Uz such that

e A3. For each & € X, there exists uz such that

Vn (f (,uz))+V (ZT,uz) < VN (). (10)

The proof of the theorem is given in [24] and it is omitted
for brevity. Since the chosen cost function V (Z(j),u(j))
in is a sum of quadratic forms with positive definite
matrices, it is straightforward to verify the first part of Al.
It remains to construct the terminal cost Vi and the terminal
inequality constraint through X, such as the assumptions in
Theorem 1 are satisfied. Following [24]], a linear quadratic reg-
ulator (LQR) is employed to get a penalty matrix P € R?*2.
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Then, Vv and Xy are constructed from P. The following A. Case I: Numerical test

procedure is carried out at each time step k before solving (7).
Step 1 Locally linearize the dynamic system (8) at the
references x, and u, as

f(z,uw) = AT + Bu, (an
with A= @B and B= @0

Step 2 Solve the following discrete-time algebraic Riccati
equation and get the penalty matrix P, which is positive
definite and symmetric

P—ATPA- (ATPB) (R + BTPB) ' (BTPA) +Q.

(12)
Step 3 Design a control law Uz, meeting (9) and (TI0), as the
feedback law for the LQR problem applied to the linearized

system (T1)

T oo
Ty = — (R+ B PB) BTPAz. (13)
Step 4 Let 0 € R* and § € RT be two constants. Assume
V = (z* —z)TP(z* — T) and compute X, and Vy(T) as

{ V(@) = oV (=)

SRS (14)
Xo :={=| V(z) € R? <6}
Remark It is worth highlighting that the control law uz
is only needed to compute V() and X, at each sampling
time k, and it is not applied to the real system. Once Vi (@)
and X, are obtained, the NLP is solved to address
the NPMC algorithm. Then, at each sampling time k, fold-
ing into (7) and solving (7), the optimal control sequence
u*(0), w*(1),..., w*(N—1) is obtained. Defining the NMPC
feedback law u (k) := w*(0), the system state at sampling time
k + 1 is obtained. In this way, the asymptotic stability of the
closed-loop system x(k + 1) = f(z(k),u(k)) with NMPC
feedback law (k) is guaranteed.

V. CASE STUDIES

Two case studies are developed in this section to validate the
proposed NMPC and test its robustness. Within the technical
report, the first preliminary experiment on a prototype without
propellers is shown. The former case study includes white
noise on the measurements, parametric uncertainty on the mass
of the vehicle, a one-step delay in the controller. The latter
case study considers a different physics engine to simulate the
system dynamics. The model parameters of the WUAV are
retrieved from the first prototypes under development within
HYFLIERS, while the specifications on the parameters of the
pipe are given from the oil and gas facilities involved in the
project. The parameters employed in these case studies are thus
selected as m = 5 kg, L = 0.15 m, R,, = 0.02 m, vy, = /3,
0s = /6, p = 0.85, R, = 4 in ~ 0.1016 m. Besides, the
control inputs must lie within the following bounds —10 <
u1 < 10 N and —200 < us,u3 < 200 N-m. The state space is
instead limited by X := {x € R%2:-20<x; <20 deg, =5 €
R}.

The numerical tests are performed on a standard PC through
the MATLAB/SIMULINK software environment under the
R2018a distribution. The real dynamic system is numer-
ically simulated through the ode45 solver with a maximum
time step which is ten times lower the 75 employed to run
the discrete-time optimal control problem (7). A first-order
filter with a time constant of 0.2 s is implemented for wu;
before applying it to the real system (3] to simulate the slower
propellers dynamics of the WUAV compared to the wheels. All
the presented simulations have a duration of 8 s.

The robustness of the designed NMPC controller is tested
by considering a white noise, whose standard deviation is
3.16 - 1074, on the measurements of x from the simu-
lated real system; a one-step time-delay of the controller;
a parametric uncertainty about the mass of the WUAV, in
particular, the mass considered by the controller is 5.5 kg
(10 % more of the value employed to simulate the real
system). The sampling time is 75 = 0.01 s. The gains of
the NLP have been practically tuned by a trial and error
procedure. The values employed within numerical tests are
Q =diag{0.5,0.04} and R =diag{0.04,0.4,0.4}. The matrices
to compute Vy and X, are given by A = [0 1;65.4 O]
and B = [0 0 0;1.2121 52.4864 52.4864]. By solving
the discrete-time algebraic Riccati equation (TI), the penalty
matrix is P = diag{0.8097,0.8497}. The gains in (I4) are
thus tuned as 0 = 1.1 and 6 = 0.15.

The objective is twofold: first, the investigation of how N
affects the control design; then, through a reasonable value of
N, different initial positions of the WUAV are considered.

1) Numerical simulations for different time horizons: The
initial position of WUAV is chosen as § = x; = 20 deg,
meaning that the device is subject to about 35% of the
gravity acceleration. The prediction horizon N is selected
as 6, 8, 10, and 12, respectively. The computational time in
MATLAB is 138 s, 212 s, 300 s, and 418 s, respectively. Notice
that these values can be reduced by employing optimized
libraries written in low-level compiled languages (e.g., C, C++,
...). The obtained simulations are depicted in Fig. 4] The
oscillatory behaviour is mostly due to the added delays and
uncertainties. The following legend is useful to understand
the different sub-figures: (a) and (b) correspond to the time
histories of the angular position 6 and the angular velocity
0 of the WUAV on the pipe, respectively; (c) shows the
fulfilment of the constraints (@) and (6), in particular F N7 :
= F,"n;(i = 1), FNi := |F,"to| — poFs no (i = 2),

Ry,cos(f
FNi = |ri| — W(i = 3), and FNi :=

|Twa| — (¢ = 4) ; (d-f) depict the control inputs.
2005(93%k
In particular, Fig. 4{c) shows only the case N = 6.

In the numerical simulation, the stabilization constraints (@)
and (6) are fulfilled, while the curves are not as smooth due to
the disturbance on the controller. Besides, the control inputs
u does not tend to zero with small N. Within Fig. @] when
N = 6, the input u tends to [—0.03 0 0 T, which is worse
than the tendency of u = [—0.006 0 O] when N = 8 and

umgR,,cos(6)
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Fig. 4. Case study 1: numerical test. Numerical simulations for different time horizons. (a)-Time history of €. (b)-Time history of 6. (c)-Time histories to

check the fulfilment of the constraints @) and @ (d)-(f) Time histories of the control inputs.
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Fig. 5. Case study 1: numerical test. Numerical simulations for different initial conditions. (a)-Time history of . (b)-Time history of 6. (c)-Time histories to
check the fulfilment of the constraints @) and @ (d)-(f) Time histories of the control inputs.

By observing the behaviour of the time histories and the

the tendency of u = [—6e™® 0 O]T when N = 10 and
above analysis, together with the fact that large /N increases

N =12.
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the computational effort, it may be worth selecting N = 10.
2) Numerical simulations for different initial conditions:
From the predefined 75 = 0.01 s and the selected N = 10,
different initial values of the WUAYV on the pipe are tackled in
this cases study. In particular, the considered initial values for
0 are +20 deg and +10 deg, since they contribute to the high
visibility of the generated figure and the related symmetry of
the plots. The obtained time histories are represented in Fig. [}
with the legend mentioned above. Fig. [5c) represent the case
with initial value of 20 deg. The plots show that the controller
can stabilize the WUAYV on the pipe from any of the considered
initial condition, while the control inputs remain within the

considered bounds, and the other constraints are fulfilled.

B. Case 2: Dynamic simulation

In this second case study, a dynamic simulation is car-
ried out by using the V-REP simulator and MATLAB. The
former is not employed as a visualizer of the simulation,
but its physics engine simulates the system dynamics. The
latter implements the proposed NMPC algorithm, and it is
connected with V-REP through suitable remote application
programming interfaces. A video of the simulation is available
as a multimedia attachment.

A proper time synchronization has been ensured using the
synchronous modality provided inside V-REP, with the control
loop running at 25 ms. In V-REP the simulated system is dy-
namically enabled considering physically consistent dynamic
parameters for the rover mass and inertia and the wheel-pipe
friction. In particular, the following parameters change from
the first case study because they are given by the CAD model
in Fig. 2] that has been imported into V-REP: m = 6.1 kg,
pw =208 L =011 m R, = 002 m, v, = 70.6 deg,
0s = /4 rad. The wheels are actuated with a torque controller
applied on the simulated joint motors. The V-REP model of
Fig. [2] is not planar, but it is symmetric to the vertical plane
cutting the WUAV at its center of mass. Therefore, the torques
of the wheels obtained from the NMPC algorithm running in
MATLAB are equally split between each of the symmetric
pair of wheels in V-REP. On the other hand, a force has been
applied to the rover to simulate the propeller lift force. The
gains of the NLP have been practically tuned by a trial and
error procedure. The values employed within such a dynamic
simulation are @ =diag{0.5,0.3} and R=diag{0.01,0.4,0.4}.
The control horizon is set to N = 7. The presented simulations
has a duration of 28 s. Other parameters are left unchanged.

The obtained simulations are depicted in Fig.[6] with the leg-
end mentioned above. The initial condition is set to —20 deg
with initial control input equal to zero. For this reason, it is
possible to appreciate a peak at the initial time instant in the
control inputs depicted in Fig. [6{d)-(f), and in the resulting
velocity shown in Fig. [6{b). The plots show that the controller
can stabilize the WUAV on the pipe also during the carried out
dynamic simulation (see Fig. [f[(a)). Besides, the control inputs
remain within the considered bounds, and the other constraints
are fulfilled (see Fig. @c)). The behaviour is less smooth than
the previous case study since the physics engine of V-REP
does not rely on the system modelled through (3)), and it does

not take into account all the assumptions made at the beginning
of Section[[IIl This is a further demonstration of the robustness
performance of the designed control algorithm.

VI. CONCLUSION

This letter addressed the problem of stabilizing a WUAV
on a pipe. The Newton-Euler dynamic equation of the system
was derived, along with some constraints necessary to stabilize
the WUAV on the pipe. The asymptotic stability of the
designed NMPC was guaranteed from proper terminal cost
and inequality constraints derived through an LQR approach.
Numerical tests and dynamic simulation were presented to
bolster the efficiency of the method, even in the presence of
band-limited disturbances, time-delays, parametric uncertain-
ties, and a different physics engine to simulate the systems
dynamics. Current work is focused on practical implementa-
tion. Preliminary results, not yet mature to be presented here,
are present in the technical report and the video attached as
multimedia material.
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