14,691 research outputs found

    Intertemporal Choice of Fuzzy Soft Sets

    Get PDF
    This paper first merges two noteworthy aspects of choice. On the one hand, soft sets and fuzzy soft sets are popular models that have been largely applied to decision making problems, such as real estate valuation, medical diagnosis (glaucoma, prostate cancer, etc.), data mining, or international trade. They provide crisp or fuzzy parameterized descriptions of the universe of alternatives. On the other hand, in many decisions, costs and benefits occur at different points in time. This brings about intertemporal choices, which may involve an indefinitely large number of periods. However, the literature does not provide a model, let alone a solution, to the intertemporal problem when the alternatives are described by (fuzzy) parameterizations. In this paper, we propose a novel soft set inspired model that applies to the intertemporal framework, hence it fills an important gap in the development of fuzzy soft set theory. An algorithm allows the selection of the optimal option in intertemporal choice problems with an infinite time horizon. We illustrate its application with a numerical example involving alternative portfolios of projects that a public administration may undertake. This allows us to establish a pioneering intertemporal model of choice in the framework of extended fuzzy set theorie

    Decision support model for the selection of asphalt wearing courses in highly trafficked roads

    Get PDF
    The suitable choice of the materials forming the wearing course of highly trafficked roads is a delicate task because of their direct interaction with vehicles. Furthermore, modern roads must be planned according to sustainable development goals, which is complex because some of these might be in conflict. Under this premise, this paper develops a multi-criteria decision support model based on the analytic hierarchy process and the technique for order of preference by similarity to ideal solution to facilitate the selection of wearing courses in European countries. Variables were modelled using either fuzzy logic or Monte Carlo methods, depending on their nature. The views of a panel of experts on the problem were collected and processed using the generalized reduced gradient algorithm and a distance-based aggregation approach. The results showed a clear preponderance by stone mastic asphalt over the remaining alternatives in different scenarios evaluated through sensitivity analysis. The research leading to these results was framed in the European FP7 Project DURABROADS (No. 605404).The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 605404

    An overview of fuzzy multi-criteria decisionmaking methods in hospitality and tourism industries: bibliometrics, methodologies, applications and future directions

    Get PDF
    Stakeholders in hospitality and tourism industries are involved in many decision-making scenarios. Multi-criteria decision-making (MCDM) methods have been widely used in hospitality and tourism industries. Although some articles summarised the applications of MCDM models in hospitality and tourism industries, they ignored the fuzziness of individual cognition in an uncertain environment. In addition, these surveys lacked a comprehensive overview from the perspective of bibliometrics analysis and content analysis regarding the whole hospitality and tourism industries. To analyse the applications of fuzzy MCDM methods in hospitality and tourism industries and further explore future research directions, this article reviews 85 selected papers published from 1997 to 2022 regarding fuzzy MCDM models applied in hospitality and tourism industries. Through analysing the results of bibliometric analysis, methodologies and applications, we found that analytic hierarchy process (AHP) and TOPSIS methods are the most widely used MCDM methods, and tourism evaluation, hotel evaluation and selection, tourism destination evaluation and selection are the most attractive research issues in hospitality and tourism industries. Finally, future research directions are proposed from three aspects. This article provides insights for researchers and practitioners who have interest in fuzzy MCDM models in hospitality and tourism industries

    A multi-attribute decision making procedure using fuzzy numbers and hybrid aggregators

    Get PDF
    The classical Analytical Hierarchy Process (AHP) has two limitations. Firstly, it disregards the aspect of uncertainty that usually embedded in the data or information expressed by human. Secondly, it ignores the aspect of interdependencies among attributes during aggregation. The application of fuzzy numbers aids in confronting the former issue whereas, the usage of Choquet Integral operator helps in dealing with the later issue. However, the application of fuzzy numbers into multi-attribute decision making (MADM) demands some additional steps and inputs from decision maker(s). Similarly, identification of monotone measure weights prior to employing Choquet Integral requires huge number of computational steps and amount of inputs from decision makers, especially with the increasing number of attributes. Therefore, this research proposed a MADM procedure which able to reduce the number of computational steps and amount of information required from the decision makers when dealing with these two aspects simultaneously. To attain primary goal of this research, five phases were executed. First, the concept of fuzzy set theory and its application in AHP were investigated. Second, an analysis on the aggregation operators was conducted. Third, the investigation was narrowed on Choquet Integral and its associate monotone measure. Subsequently, the proposed procedure was developed with the convergence of five major components namely Factor Analysis, Fuzzy-Linguistic Estimator, Choquet Integral, Mikhailov‘s Fuzzy AHP, and Simple Weighted Average. Finally, the feasibility of the proposed procedure was verified by solving a real MADM problem where the image of three stores located in Sabak Bernam, Selangor, Malaysia was analysed from the homemakers‘ perspective. This research has a potential in motivating more decision makers to simultaneously include uncertainties in human‘s data and interdependencies among attributes when solving any MADM problems

    Pythagorean 2-tuple linguistic power aggregation operators in multiple attribute decision making

    Get PDF
    In this paper, we investigate the multiple attribute decision making problems with Pythagorean 2-tuple linguistic information. Then, we utilize power average and power geometric operations to develop some Pythagorean 2-tuple linguistic power aggregation operators: Pythagorean 2-tuple linguistic power weighted average (P2TLPWA) operator, Pythagorean 2-tuple linguistic power weighted geometric (P2TLPWG) operator, Pythagorean 2-tuple linguistic power ordered weighted average (P2TLPOWA) operator, Pythagorean 2-tuple linguistic power ordered weighted geometric (P2TLPOWG) operator, Pythagorean 2-tuple linguistic power hybrid average (P2TLPHA) operator and Pythagorean 2-tuple linguistic power hybrid geometric (P2TLPHG) operator. The prominent characteristic of these proposed operators are studied. Then, we have utilized these operators to develop some approaches to solve the Pythagorean 2-tuple linguistic multiple attribute decision making problems. Finally, a practical example for enterprise resource planning (ERP) system selection is given to verify the developed approach and to demonstrate its practicality and effectiveness

    Using Pythagorean Fuzzy Sets (PFS) in Multiple Criteria Group Decision Making (MCGDM) Methods for Engineering Materials Selection Applications

    Get PDF
    The process of materials’ selection is very critical during the initial stages of designing manufactured products. Inefficient decision-making outcomes in the material selection process could result in poor quality of products and unnecessary costs. In the last century, numerous materials have been developed for manufacturing mechanical components in different industries. Many of these new materials are similar in their properties and performances, thus creating great challenges for designers and engineers to make accurate selections. Our main objective in this work is to assist decision makers (DMs) within the manufacturing field to evaluate materials alternatives and to select the best alternative for specific manufacturing purposes. In this research, new hybrid fuzzy Multiple Criteria Group Decision Making (MCGDM) methods are proposed for the material selection problem. The proposed methods tackle some challenges that are associated with the material selection decision making process, such as aggregating decision makers’ (DMs) decisions appropriately and modeling uncertainty. In the proposed hybrid models, a novel aggregation approach is developed to convert DMs crisp decisions to Pythagorean fuzzy sets (PFS). This approach gives more flexibility to DMs to express their opinions than the traditional fuzzy and intuitionistic sets (IFS). Then, the proposed aggregation approach is integrated with a ranking method to solve the Pythagorean Fuzzy Multi Criteria Decision Making (PFMCGDM) problem and rank the material alternatives. The ranking methods used in the hybrid models are the Pythagorean Fuzzy TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) and Pythagorean Fuzzy COPRAS (COmplex PRoportional Assessment). TOPSIS and COPRAS are selected based on their effectiveness and practicality in dealing with the nature of material selection problems. In the aggregation approach, the Sugeno Fuzzy measure and the Shapley value are used to fairly distribute the DMs weight in the Pythagorean Fuzzy numbers. Additionally, new functions to calculate uncertainty from DMs recommendations are developed using the Takagai-Sugeno approach. The literature reveals some work on these methods, but to our knowledge, there are no published works that integrate the proposed aggregation approach with the selected MCDM ranking methods under the Pythagorean Fuzzy environment for the use in materials selection problems. Furthermore, the proposed methods might be applied, due to its novelty, to any MCDM problem in other areas. A practical validation of the proposed hybrid PFMCGDM methods is investigated through conducting a case study of material selection for high pressure turbine blades in jet engines. The main objectives of the case study were: 1) to investigate the new developed aggregation approach in converting real DMs crisp decisions into Pythagorean fuzzy numbers; 2) to test the applicability of both the hybrid PFMCGDM TOPSIS and the hybrid PFMCGDM COPRAS methods in the field of material selection. In this case study, a group of five DMs, faculty members and graduate students, from the Materials Science and Engineering Department at the University of Wisconsin-Milwaukee, were selected to participate as DMs. Their evaluations fulfilled the first objective of the case study. A computer application for material selection was developed to assist designers and engineers in real life problems. A comparative analysis was performed to compare the results of both hybrid MCGDM methods. A sensitivity analysis was conducted to show the robustness and reliability of the outcomes obtained from both methods. It is concluded that using the proposed hybrid PFMCGDM TOPSIS method is more effective and practical in the material selection process than the proposed hybrid PFMCGDM COPRAS method. Additionally, recommendations for further research are suggested
    • 

    corecore