875 research outputs found

    Privacy and Security Assessment of Biometric Template Protection

    Full text link

    Automated reliability assessment for spectroscopic redshift measurements

    Get PDF
    We present a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function (PDF). We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process, and produce a redshift posterior PDF that will be the starting-point for ML algorithms to provide an automated assessment of a redshift reliability. As a use case, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification to describe different types of redshift PDFs, but due to the subjective definition of these flags, soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions, unlabelled data from preliminary mock simulations for the Euclid space mission are projected into this mapping to predict their redshift reliability labels.Comment: Submitted on 02 June 2017 (v1). Revised on 08 September 2017 (v2). Latest version 28 September 2017 (this version v3

    Visual Feature Learning

    Get PDF
    Categorization is a fundamental problem of many computer vision applications, e.g., image classification, pedestrian detection and face recognition. The robustness of a categorization system heavily relies on the quality of features, by which data are represented. The prior arts of feature extraction can be concluded in different levels, which, in a bottom up order, are low level features (e.g., pixels and gradients) and middle/high-level features (e.g., the BoW model and sparse coding). Low level features can be directly extracted from images or videos, while middle/high-level features are constructed upon low-level features, and are designed to enhance the capability of categorization systems based on different considerations (e.g., guaranteeing the domain-invariance and improving the discriminative power). This thesis focuses on the study of visual feature learning. Challenges that remain in designing visual features lie in intra-class variation, occlusions, illumination and view-point changes and insufficient prior knowledge. To address these challenges, I present several visual feature learning methods, where these methods cover the following sub-topics: (i) I start by introducing a segmentation-based object recognition system. (ii) When training data are insufficient, I seek data from other resources, which include images or videos in a different domain, actions captured from a different viewpoint and information in a different media form. In order to appropriately transfer such resources into the target categorization system, four transfer learning-based feature learning methods are presented in this section, where both cross-view, cross-domain and cross-modality scenarios are addressed accordingly. (iii) Finally, I present a random-forest based feature fusion method for multi-view action recognition

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    Boosted Feature Generation for Classification Problems Involving High Numbers of Inputs and Classes

    Get PDF
    Classification problems involving high numbers of inputs and classes play an important role in the field of machine learning. Image classification, in particular, is a very active field of research with numerous applications. In addition to their high number, inputs of image classification problems often show significant correlation. Also, in proportion to the number of inputs, the number of available training samples is usually low. Therefore techniques combining low susceptibility to overfitting with good classification performance have to be found. Since for many tasks data has to be processed in real time, computational efficiency is crucial as well. Boosting is a machine learning technique, which is used successfully in a number of application areas, in particular in the field of machine vision. Due to it's modular design and flexibility, Boosting can be adapted to new problems easily. In addition, techniques for optimizing classifiers produced by Boosting with respect to computational efficiency exist. Boosting builds linear ensembles of base classifiers in a stage-wise fashion. Sample-weights reflect whether training samples are hard-to-classify or not. Therefore Boosting is able to adapt to the given classification problem over the course of training. The present work deals with the design of techniques for adapting Boosting to problems involving high numbers of inputs and classes. In the first part, application of Boosting to multi-class problems is analyzed. After giving an overview of existing approaches, a new formulation for base-classifiers solving multi-class problems by splitting them into pair-wise binary subproblems is presented. Experimental evaluation shows the good performance and computational efficiency of the proposed technique compared to state-of-the-art techniques. In the second part of the work, techniques that use Boosting for feature generation are presented. These techniques use the distribution of sample weights, produced by Boosting, to learn features that are adapted to the problems solved in each Boosting stage. By using smoothing-spline base classifiers, gradient descent schemes can be incorporated to find features that minimize the cost function of the current base classifier. Experimental evaluation shows, that Boosting with linear projective features significantly outperforms state-of-the-art approaches like e.g. SVM and Random Forests. In order to be applicable to image classification problems, the presented feature generation scheme is extended to produce shift-invariant features. The utilized features are inspired by the features used in Convolutional Neural Networks and perform a combination of convolution and subsampling. Experimental evaluation for classification of handwritten digits and car side-views shows that the proposed system is competitive to the best published results. The presented scheme has the advantages of being very simple and involving a low number of design parameters only

    Learning words from sights and sounds: a computational model

    Get PDF

    Inference on Highly-Connected Discrete Graphical Models with Applications to Visual Object Recognition

    Get PDF
    Das Erkennen und Finden von Objekten in Bildern ist eines der wichtigsten Teilprobleme in modernen Bildverarbeitungssystemen. Während die Detektion von starren Objekten aus beliebigen Blickwinkeln vor einigen Jahren noch als schwierig galt, verfolgt die momentane Forschung das Ziel, verformbare, artikulierte Objekte zu erkennen und zu detektieren. Bedingt durch die hohe Varianz innerhalb der Objektklasse, Verdeckungen und Hintergrund mit ähnlichem Aussehen, ist dies jedoch sehr schwer. Des Weiteren wird die Klassifikation der Objekte dadurch erschwert, dass die Beschreibung von ganzheitlichen Modellen häufig in dem dazugehörigen Merkmalsraum keine Cluster bildet. Daher hat sich in den letzten Jahren die Beschreibung von Objekten weg von einem ganzheitlichen hin zu auf Teilen basierenden Modellen verschoben. Dabei wird ein Objekt aus einer Menge von individuellen Teilen zusammen mit Informationen über deren Abhängigkeiten beschrieben. In diesem Zusammenhang stellen wir ein vielseitig anwendbares und erweiterbares Modell zur auf Teilen basierenden Objekterkennung vor. Die Theorie über probabilistische graphische Modelle ermöglicht es, aus manuell notierten Trainingsdaten alle Modellparameter in einer mathematisch fundierten Weise zu lernen. Ein besonderer Augenmerk liegt des Weiteren auf der Berechnung der optimalen Pose eines Objektes in einem Bild. Im probabilistischem Sinne ist dies die Objektbeschreibung mit der maximalen a posteriori Wahrscheinlichkeit (MAP). Das Finden dieser wird auch als das MAP-Problem bezeichnet. Sowohl das Lernen der Modellparameter als auch das Finden der optimalen Objektpose bedingen das Lösen von kombinatorischen Optimierungsproblemen, die in der Regel NP-schwer sind. Beschränkt man sich auf effizient berechenbare Modelle, können viele wichtige Abhängigkeiten zwischen den einzelnen Teilen nicht mehr beschrieben werden. Daher geht die Tendenz in der Modellierung zu generellen Modellen, welche weitaus komplexere Optimierungsprobleme mit sich bringen. In dieser Arbeit schlagen wir zwei neue Methoden zur Lösung des MAP-Problems für generelle diskrete Modelle vor. Unser erster Ansatz transformiert das MAP-Problem in ein Kürzeste-Wege-Problem, welches mittels einer A*-Suche unter Verwendung einer zulässigen Heuristik gelöst wird. Die zulässige Heuristik basiert auf einer azyklisch strukturierter Abschätzung des urspr"unglichen Problems. Da diese Methode für Modelle mit sehr vielen Modellteilen nicht mehr anwendbar ist, betrachten wir alternative Möglichkeiten. Hierzu transformieren wir das kombinatorische Problem unter Zuhilfenahme von exponentiellen Familien in ein lineares Programm. Dies ist jedoch, bedingt durch die große Anzahl von affinen Nebenbedingungen, in dieser Form praktisch nicht lösbar. Daher schlagen wir eine neuartige Zerlegung des MAP Problems in Teilprobleme mit einer k-fan Struktur vor. Alle diese Teilprobleme sind trotz ihrer zyklischen Struktur mit unserer A*-Methode effizient lösbar. Mittels der Lagrange-Methode und dieser Zerlegung erhalten wir bessere Relaxationen als mit der Standardrelaxation über dem lokalen Polytope. In Experimenten auf künstlichen und realen Daten wurden diese Verfahren mit Standardverfahren aus dem Bereich der Bildverarbeitung und kommerzieller Software zum Lösen von lineare und ganzzahlige Optimierungsproblemen verglichen. Abgesehen von Modellen mit sehr vielen Teilen zeigte der A*-Ansatz die besten Ergebnisse im Bezug auf Optimalität und Laufzeit. Auch die auf k-fan Zerlegungen basierenden Methode zeigte viel versprechende Ergebnisse bezüglich der Optimalität, konvergierte jedoch im Allgemeinen sehr langsam

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Bias in Deep Learning and Applications to Face Analysis

    Get PDF
    Deep learning has fostered the progress in the field of face analysis, resulting in the integration of these models in multiple aspects of society. Even though the majority of research has focused on optimizing standard evaluation metrics, recent work has exposed the bias of such algorithms as well as the dangers of their unaccountable utilization.n this thesis, we explore the bias of deep learning models in the discriminative and the generative setting. We begin by investigating the bias of face analysis models with regards to different demographics. To this end, we collect KANFace, a large-scale video and image dataset of faces captured ``in-the-wild’'. The rich set of annotations allows us to expose the demographic bias of deep learning models, which we mitigate by utilizing adversarial learning to debias the deep representations. Furthermore, we explore neural augmentation as a strategy towards training fair classifiers. We propose a style-based multi-attribute transfer framework that is able to synthesize photo-realistic faces of the underrepresented demographics. This is achieved by introducing a multi-attribute extension to Adaptive Instance Normalisation that captures the multiplicative interactions between the representations of different attributes. Focusing on bias in gender recognition, we showcase the efficacy of the framework in training classifiers that are more fair compared to generative and fairness-aware methods.In the second part, we focus on bias in deep generative models. In particular, we start by studying the generalization of generative models on images of unseen attribute combinations. To this end, we extend the conditional Variational Autoencoder by introducing a multilinear conditioning framework. The proposed method is able to synthesize unseen attribute combinations by modeling the multiplicative interactions between the attributes. Lastly, in order to control protected attributes, we investigate controlled image generation without training on a labelled dataset. We leverage pre-trained Generative Adversarial Networks that are trained in an unsupervised fashion and exploit the clustering that occurs in the representation space of intermediate layers of the generator. We show that these clusters capture semantic attribute information and condition image synthesis on the cluster assignment using Implicit Maximum Likelihood Estimation.Open Acces

    Diabetic retinopathy screening and treatment

    Get PDF
    • …
    corecore