2,936 research outputs found

    A Random Walk Model for Item Recommendation in Social Tagging Systems

    Get PDF
    Social tagging, as a novel approach to information organization and discovery, has been widely adopted in many Web 2.0 applications. Tags contributed by users to annotate a variety of Web resources or items provide a new type of information that can be exploited by recommender systems. Nevertheless, the sparsity of the ternary interaction data among users, items, and tags limits the performance of tag-based recommendation algorithms. In this article, we propose to deal with the sparsity problem in social tagging by applying random walks on ternary interaction graphs to explore transitive associations between users and items. The transitive associations in this article refer to the path of the link between any two nodes whose length is greater than one. Taking advantage of these transitive associations can allow more accurate measurement of the relevance between two entities (e.g., user-item, user-user, and item-item). A PageRank-like algorithm has been developed to explore these transitive associations by spreading users\u27 preferences on an item similarity graph and spreading items\u27 influences on a user similarity graph. Empirical evaluation on three real-world datasets demonstrates that our approach can effectively alleviate the sparsity problem and improve the quality of item recommendation

    On social networks and collaborative recommendation

    Get PDF
    Social network systems, like last.fm, play a significant role in Web 2.0, containing large amounts of multimedia-enriched data that are enhanced both by explicit user-provided annotations and implicit aggregated feedback describing the personal preferences of each user. It is also a common tendency for these systems to encourage the creation of virtual networks among their users by allowing them to establish bonds of friendship and thus provide a novel and direct medium for the exchange of data. We investigate the role of these additional relationships in developing a track recommendation system. Taking into account both the social annotation and friendships inherent in the social graph established among users, items and tags, we created a collaborative recommendation system that effectively adapts to the personal information needs of each user. We adopt the generic framework of Random Walk with Restarts in order to provide with a more natural and efficient way to represent social networks. In this work we collected a representative enough portion of the music social network last.fm, capturing explicitly expressed bonds of friendship of the user as well as social tags. We performed a series of comparison experiments between the Random Walk with Restarts model and a user-based collaborative filtering method using the Pearson Correlation similarity. The results show that the graph model system benefits from the additional information embedded in social knowledge. In addition, the graph model outperforms the standard collaborative filtering method.</p

    Link Prediction in Complex Networks: A Survey

    Full text link
    Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labelled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.Comment: 44 pages, 5 figure

    Graph Convolutional Neural Networks for Web-Scale Recommender Systems

    Full text link
    Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.Comment: KDD 201
    • …
    corecore