3,060 research outputs found

    A predictive approach for a real-time remote visualization of large meshes

    Get PDF
    DĂ©jĂ  sur HALRemote access to large meshes is the subject of studies since several years. We propose in this paper a contribution to the problem of remote mesh viewing. We work on triangular meshes. After a study of existing methods of remote viewing, we propose a visualization approach based on a client-server architecture, in which almost all operations are performed on the server. Our approach includes three main steps: a first step of partitioning the original mesh, generating several fragments of the original mesh that can be supported by the supposed smaller Transfer Control Protocol (TCP) window size of the network, a second step called pre-simplification of the mesh partitioned, generating simplified models of fragments at different levels of detail, which aims to accelerate the visualization process when a client(that we also call remote user) requests a visualization of a specific area of interest, the final step involves the actual visualization of an area which interest the client, the latter having the possibility to visualize more accurately the area of interest, and less accurately the areas out of context. In this step, the reconstruction of the object taking into account the connectivity of fragments before simplifying a fragment is necessary.Pestiv-3D projec

    Scalable wavelet-based coding of irregular meshes with interactive region-of-interest support

    Get PDF
    This paper proposes a novel functionality in wavelet-based irregular mesh coding, which is interactive region-of-interest (ROI) support. The proposed approach enables the user to define the arbitrary ROIs at the decoder side and to prioritize and decode these regions at arbitrarily high-granularity levels. In this context, a novel adaptive wavelet transform for irregular meshes is proposed, which enables: 1) varying the resolution across the surface at arbitrarily fine-granularity levels and 2) dynamic tiling, which adapts the tile sizes to the local sampling densities at each resolution level. The proposed tiling approach enables a rate-distortion-optimal distribution of rate across spatial regions. When limiting the highest resolution ROI to the visible regions, the fine granularity of the proposed adaptive wavelet transform reduces the required amount of graphics memory by up to 50%. Furthermore, the required graphics memory for an arbitrary small ROI becomes negligible compared to rendering without ROI support, independent of any tiling decisions. Random access is provided by a novel dynamic tiling approach, which proves to be particularly beneficial for large models of over 10(6) similar to 10(7) vertices. The experiments show that the dynamic tiling introduces a limited lossless rate penalty compared to an equivalent codec without ROI support. Additionally, rate savings up to 85% are observed while decoding ROIs of tens of thousands of vertices

    Parallel Mesh Processing

    Get PDF
    Die aktuelle Forschung im Bereich der Computergrafik versucht den zunehmenden Ansprüchen der Anwender gerecht zu werden und erzeugt immer realistischer wirkende Bilder. Dementsprechend werden die Szenen und Verfahren, die zur Darstellung der Bilder genutzt werden, immer komplexer. So eine Entwicklung ist unweigerlich mit der Steigerung der erforderlichen Rechenleistung verbunden, da die Modelle, aus denen eine Szene besteht, aus Milliarden von Polygonen bestehen können und in Echtzeit dargestellt werden müssen. Die realistische Bilddarstellung ruht auf drei Säulen: Modelle, Materialien und Beleuchtung. Heutzutage gibt es einige Verfahren für effiziente und realistische Approximation der globalen Beleuchtung. Genauso existieren Algorithmen zur Erstellung von realistischen Materialien. Es gibt zwar auch Verfahren für das Rendering von Modellen in Echtzeit, diese funktionieren aber meist nur für Szenen mittlerer Komplexität und scheitern bei sehr komplexen Szenen. Die Modelle bilden die Grundlage einer Szene; deren Optimierung hat unmittelbare Auswirkungen auf die Effizienz der Verfahren zur Materialdarstellung und Beleuchtung, so dass erst eine optimierte Modellrepräsentation eine Echtzeitdarstellung ermöglicht. Viele der in der Computergrafik verwendeten Modelle werden mit Hilfe der Dreiecksnetze repräsentiert. Das darin enthaltende Datenvolumen ist enorm, um letztlich den Detailreichtum der jeweiligen Objekte darstellen bzw. den wachsenden Realitätsanspruch bewältigen zu können. Das Rendern von komplexen, aus Millionen von Dreiecken bestehenden Modellen stellt selbst für moderne Grafikkarten eine große Herausforderung dar. Daher ist es insbesondere für die Echtzeitsimulationen notwendig, effiziente Algorithmen zu entwickeln. Solche Algorithmen sollten einerseits Visibility Culling1, Level-of-Detail, (LOD), Out-of-Core Speicherverwaltung und Kompression unterstützen. Anderseits sollte diese Optimierung sehr effizient arbeiten, um das Rendering nicht noch zusätzlich zu behindern. Dies erfordert die Entwicklung paralleler Verfahren, die in der Lage sind, die enorme Datenflut effizient zu verarbeiten. Der Kernbeitrag dieser Arbeit sind neuartige Algorithmen und Datenstrukturen, die speziell für eine effiziente parallele Datenverarbeitung entwickelt wurden und in der Lage sind sehr komplexe Modelle und Szenen in Echtzeit darzustellen, sowie zu modellieren. Diese Algorithmen arbeiten in zwei Phasen: Zunächst wird in einer Offline-Phase die Datenstruktur erzeugt und für parallele Verarbeitung optimiert. Die optimierte Datenstruktur wird dann in der zweiten Phase für das Echtzeitrendering verwendet. Ein weiterer Beitrag dieser Arbeit ist ein Algorithmus, welcher in der Lage ist, einen sehr realistisch wirkenden Planeten prozedural zu generieren und in Echtzeit zu rendern

    Data modeling and handling for analysis and visualization in a collaborative setting

    Get PDF
    This paper discusses the development of a data modeling and handling methodology to display results from a large-scale Finite Element Analysis in real-time from any geographic location in the world to aid in complex decision-making. The developed methodology enables real-time collaboration before, during, and after a complex engineering analysis. The collaborative capabilities include a three dimensional, interactive representation of the analysis data available through the Internet on any computing platform without the need of installed software or specialized hardware. A scientist has the ability to change data resolutions on-the-fly as well as view animated representations of the analysis results. In this paper, the developed methodology was applied to a geophysical situation. However, the benefits could be realized in a range of application areas from mechanical design to biomedical imaging. The details of the development are presented in this paper. The full paper will present additional descriptions as well as example problems

    Interactive Visualization of the Largest Radioastronomy Cubes

    Full text link
    3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output, and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS - 12 GB) southern sky and the Galactic All Sky Survey (GASS - 26 GB) data cubes were used to demonstrate our framework's performance. The framework can render the GASS data cube with a maximum render time < 0.3 second with 1024 x 1024 pixels output resolution using 3 rendering workstations and 8 GPUs. Our framework will scale to visualize larger datasets, even of Terabyte order, if proper hardware infrastructure is available.Comment: 15 pages, 12 figures, Accepted New Astronomy July 201

    A Framework for Dynamic Terrain with Application in Off-road Ground Vehicle Simulations

    Get PDF
    The dissertation develops a framework for the visualization of dynamic terrains for use in interactive real-time 3D systems. Terrain visualization techniques may be classified as either static or dynamic. Static terrain solutions simulate rigid surface types exclusively; whereas dynamic solutions can also represent non-rigid surfaces. Systems that employ a static terrain approach lack realism due to their rigid nature. Disregarding the accurate representation of terrain surface interaction is rationalized because of the inherent difficulties associated with providing runtime dynamism. Nonetheless, dynamic terrain systems are a more correct solution because they allow the terrain database to be modified at run-time for the purpose of deforming the surface. Many established techniques in terrain visualization rely on invalid assumptions and weak computational models that hinder the use of dynamic terrain. Moreover, many existing techniques do not exploit the capabilities offered by current computer hardware. In this research, we present a component framework for terrain visualization that is useful in research, entertainment, and simulation systems. In addition, we present a novel method for deforming the terrain that can be used in real-time, interactive systems. The development of a component framework unifies disparate works under a single architecture. The high-level nature of the framework makes it flexible and adaptable for developing a variety of systems, independent of the static or dynamic nature of the solution. Currently, there are only a handful of documented deformation techniques and, in particular, none make explicit use of graphics hardware. The approach developed by this research offloads extra work to the graphics processing unit; in an effort to alleviate the overhead associated with deforming the terrain. Off-road ground vehicle simulation is used as an application domain to demonstrate the practical nature of the framework and the deformation technique. In order to realistically simulate terrain surface interactivity with the vehicle, the solution balances visual fidelity and speed. Accurately depicting terrain surface interactivity in off-road ground vehicle simulations improves visual realism; thereby, increasing the significance and worth of the application. Systems in academia, government, and commercial institutes can make use of the research findings to achieve the real-time display of interactive terrain surfaces
    • …
    corecore