
Parallel Mesh Processing

Dissertation

zur
Erlangung des Doktorgrades (Dr. rer. nat.)

des
Fachbereichs Mathematik und Informatik

der Philipps-Universität Marburg

vorgelegt von
Dipl.-Inform. Evgenij Derzapf

(geboren Mirnyj)

Marburg, Oktober 2012

Philipps-Universität Marburg
Fachbereich Mathematik und Informatik
Hans-Meerwein Straße 3, 35032 Marburg

Parallel Mesh Processing

Dissertation

zur
Erlangung des Doktorgrades (Dr. rer. nat.)

des
Fachbereichs Mathematik und Informatik

der Philipps-Universität Marburg

vorgelegt von
Dipl.-Inform. Evgenij Derzapf

(geboren Mirnyj)

Marburg, Oktober 2012

Philipps-Universität Marburg
Fachbereich Mathematik und Informatik
Hans-Meerwein Straße 3, 35032 Marburg

Angefertigt mit Genehmigung des Fachbereichs Mathematik und
Informatik der Philipps-Universität Marburg

Gutachter:
Prof. Dr. Michael Guthe, Philipps-Universität Marburg
Prof. Dr. Günther Greiner, Friedrich-Alexander-Universität Erlangen-Nürnberg

Prüfungskommission:
Prof. Dr. Michael Guthe, Philipps-Universität Marburg
Prof. Dr. Günther Greiner, Friedrich-Alexander-Universität Erlangen-Nürnberg
Prof. Dr. Manfred Sommer, Philipps-Universität Marburg
Prof. Dr. Rita Loogen, Philipps-Universität Marburg
Prof. Dr. Ekaterina Kostina, Philipps-Universität Marburg

Abgabetermin: 23. August 2012
Prüfungstermin: 11. Oktober 2012

To my wife Diana,
my parents Irene and Johann

and my sister Viktoria.

Acknowledgments

The presented work has been produced within the scope of the AG Grafik und Multimedia
at the Institute of Computer Science of the University Marburg. At this point I like to
thank all people who were directly or indirectly involved in the creation of this work.

My thanks belong primarily to Prof. Michael Guthe without whose ideas, many
discussions, and support this work would not possible.

I thank Prof. Manfred Sommer, my second adviser and all members of the group for
useful advices. Especially I also thank Nicolas Menzel, Nico Grund, and Christine Ulrich
for the joint publications.

Additionally I thank the Stanford 3D Scanning Repository, The volume library, Tur-
bosquid, Eurographics, Crytek, and the Digital Michelangelo Project for the models used
in this thesis.

ix

Zusammenfassung

Die aktuelle Forschung im Bereich der Computergrafik versucht den zunehmenden An-
sprüchen der Anwender gerecht zu werden und erzeugt immer realistischer wirkende Bilder.
Dementsprechend werden die Szenen und Verfahren, die zur Darstellung der Bilder genutzt
werden, immer komplexer. So eine Entwicklung ist unweigerlich mit der Steigerung der
erforderlichen Rechenleistung verbunden, da die Modelle, aus denen eine Szene besteht,
aus Milliarden von Polygonen bestehen können und in Echtzeit dargestellt werden müssen.

Die realistische Bilddarstellung ruht auf drei Säulen: Modelle, Materialien und Beleuch-
tung. Heutzutage gibt es einige Verfahren für effiziente und realistische Approximation der
globalen Beleuchtung. Genauso existieren Algorithmen zur Erstellung von realistischen
Materialien. Es gibt zwar auch Verfahren für das Rendering von Modellen in Echtzeit,
diese funktionieren aber meist nur für Szenen mittlerer Komplexität und scheitern bei sehr
komplexen Szenen.

Die Modelle bilden die Grundlage einer Szene; deren Optimierung hat unmittelbare
Auswirkungen auf die Effizienz der Verfahren zur Materialdarstellung und Beleuchtung, so
dass erst eine optimierte Modellrepräsentation eine Echtzeitdarstellung ermöglicht.

Viele der in der Computergrafik verwendeten Modelle werden mit Hilfe der Dreiecks-
netze repräsentiert. Das darin enthaltende Datenvolumen ist enorm, um letztlich den
Detailreichtum der jeweiligen Objekte darstellen bzw. den wachsenden Realitätsanspruch
bewältigen zu können. Das Rendern von komplexen, aus Millionen von Dreiecken beste-
henden Modellen stellt selbst für moderne Grafikkarten eine große Herausforderung dar.
Daher ist es insbesondere für die Echtzeitsimulationen notwendig, effiziente Algorithmen
zu entwickeln. Solche Algorithmen sollten einerseits Visibility Culling1, Level-of-Detail
(LOD)2, Out-of-Core Speicherverwaltung3 und Kompression unterstützen. Anderseits
sollte diese Optimierung sehr effizient arbeiten, um das Rendering nicht noch zusätzlich
zu behindern. Dies erfordert die Entwicklung paralleler Verfahren, die in der Lage sind,
die enorme Datenflut effizient zu verarbeiten.

Der Kernbeitrag dieser Arbeit sind neuartige Algorithmen und Datenstrukturen, die
speziell für eine effiziente parallele Datenverarbeitung entwickelt wurden und in der Lage

1 Entfernen nicht sichtbarer Geometrie.
2 Repräsentation der Modell durch verschiedene Detailstufen.
3 Auslagerung der Daten auf externe Datenträger.

xi

xii

sind sehr komplexe Modelle und Szenen in Echtzeit darzustellen, sowie zu modellieren.
Diese Algorithmen arbeiten in zwei Phasen: Zunächst wird in einer Offline-Phase4 die
Datenstruktur erzeugt und für parallele Verarbeitung optimiert. Die optimierte Daten-
struktur wird dann in der zweiten Phase für das Echtzeitrendering verwendet.

Ein weiterer Beitrag dieser Arbeit ist ein Algorithmus, welcher in der Lage ist, einen
sehr realistisch wirkenden Planeten prozedural zu generieren und in Echtzeit zu rendern.

4 Vorverarbeitungsschritt

Abstract

Current research in the field of computer graphics tries to meet the increasing user
requirements and produces more realistic looking images. Accordingly, the scenes and
techniques that are used to display the images tend to be come more complex. This
increases the required computing power, because the models of the scene can consist of
billions of polygons and must be displayed in real-time.

Realistic image rendering consist of three parts: models, materials and illumination.
Today, some methods for efficient and realistic approximation of the global illumination
exist. Similarly, there are algorithms for the creation of realistic materials. There are
also methods for real-time rendering of models available, but most of them work only for
scenes of average complexity and fail for very complex scenes.

The models are the base of a scene. The optimization of the model representation has a
direct impact on the efficiency of algorithms for rendering of material and illumination, so
that only an optimized model representation enables real-time rendering.

Many models used in computer graphics are represented by triangle meshes. The amount
of data is mostly enormous, to represent the richness of detail and meet the increasing
requirements for real-time rendering. Despite the enormous processing power of modern
GPUs, highly detailed models cannot be rendered in real-time. Therefore, particularly
with regard to real-time simulations, it is necessary to develop efficient algorithms. These
algorithms need to be used for visibility culling5, level-of-detail (LOD)6, out-of-core
memory management7, and compression. On the other hand, these algorithms should
work very efficiently, to avoid impeding the rendering. Parallel data processing is required
to efficiently process large amounts of data.

The core contributions of this thesis are new algorithms and data structures which
are specially developed for efficient parallel data processing. They allow for real time
rendering and editing of very complex models and scenes. These algorithms are divided
into two phases: First, in an offline-phase8, data structures are generated and optimized
for parallel processing. In the second phase, the generated data structures are used for

5 Removing of non-visible geometry.
6 Different levels of detail of the models.
7 Swapping the data on external devices.
8 Preprocessing step

xiii

xiv

real time rendering.
Another contribution of this thesis is an algorithm which generates procedurally a very

realistic looking planet and render it in real-time.

Vorwort

Falls Gott die Welt geschaffen hat, war seine Hauptsorge sicher nicht, sie so
zu machen, dass wir sie verstehen können.

Albert Einstein

Ich kann mich noch gut daran erinnern, als ich Anfang der 90er, meinen ersten Computer
gesehen habe. Ich muss 8 oder 9 Jahre alt gewesen sein. Zusammen mit meinem damaligen
Kumpel saß ich unerlaubt vor dem Computer seines Vaters. Dieses Gebilde, aus Metall und
Plastik auf wundersame Weise verbunden, schien zu leben. Aber wie Kinder nun einmal so
sind, hatten wir nur ein Gedanken, welcher kein anderer sein konnte, als ein Computerspiel
zu spielen. Lange haben wir uns durch das Menü kämpfen müssen, geblendet durch den
grellen blauen Hintergrund. Doch dann war es geschafft. Endlich, nach minutenlangen
Rattern und Knirschen startete das Spiel. Eine Echtzeit-Kampfflugsimulation hat uns in
ihren Bann gezogen. Diese faszinierende 3D-Grafik, verpixelt, aber dennoch ein Zeugnis
von menschlichem Streben nach Vollkommenheit, hat uns für mehrere Stunden in eine
andere Welt entführt.

Jetzt, viele Jahre später, hat sich vieles geändert, Eines blieb: Der menschliche Wille die
Welt zu verstehen. So hoffe ich mit meiner Arbeit einen entsprechenden Beitrag geleistet
und mit diesem die Menschheit jenem Ziel ein Stückchen näher gebracht zu haben.

xv

Contents

1 Introduction 1

2 Basics 3
2.1 Complex Meshes . 3

2.1.1 Visibility Culling . 4
2.1.2 Level of Detail . 4
2.1.3 Memory Management . 4
2.1.4 Compression . 5

2.1.4.1 Fixed-to-Fixed . 5
2.1.4.2 Fixed-to-Variable . 6
2.1.4.3 Variable-to-Fixed . 6
2.1.4.4 Variable-to-Variable . 7
2.1.4.5 Discussion . 7

2.2 Mesh Extraction . 7
2.2.1 Marching Cubes Algorithm . 8

2.3 Procedural Algorithms . 8
2.3.1 Fractional Brownian Motion . 9

2.4 CUDA . 10
2.4.1 CPU vs. GPU . 11
2.4.2 CUDA-Hardware Layer . 12
2.4.3 CUDA-Software Layer . 14
2.4.4 Code Optimization . 15

3 Mesh Simplification 17
3.1 Previous Work . 19

3.1.1 Vertex Clustering . 19
3.1.2 Quadric Error Metrics . 19

3.2 Instant Level-of-Detail . 20
3.2.1 Quadric Error Metric . 21
3.2.2 Overview . 22

i

ii Contents

3.2.2.1 Connectivity Data Structure 23
3.2.3 Parallel Simplification . 24

3.2.3.1 Vertex Quadrics . 25
3.2.3.2 Quadric Error Optimization 26
3.2.3.3 Parallel Edge Collapses 26
3.2.3.4 Connectivity Update . 27
3.2.3.5 Edge Buffer Compaction 27
3.2.3.6 LOD Creation . 28

3.2.4 Results . 28
3.2.5 Conclusion and Limitations . 32

4 Iso-Surface Extraction and Simplification 33
4.1 Previous Work . 35

4.1.1 Iso-Surface Extraction . 35
4.1.2 Simplification . 36
4.1.3 Hybrid Algorithms . 36

4.2 Parallel Out-of-Core Iso-Surface Extraction and Simplification 36
4.2.1 Overview . 37
4.2.2 Parallel Marching Cubes . 37
4.2.3 Parallel Stream Simplification . 39
4.2.4 Results . 41
4.2.5 Conclusion and Limitations . 43

5 Progressive Mesh Rendering 47
5.1 Previous Work . 49

5.1.1 Progressive Meshes . 49
5.1.2 Hierarchical Level of Detail . 50
5.1.3 Compression Approaches . 51

5.2 Parallel View-Dependent Refinement of Compact Progressive Meshes . . 51
5.2.1 Overview . 51

5.2.1.1 Tree Structure and Dependency Coding 52
5.2.1.2 Topology Encoding . 53
5.2.1.3 Attribute Encoding . 54
5.2.1.4 Refinement Criteria . 55
5.2.1.5 Dynamic Data Structures 56

5.2.2 Runtime Algorithm . 58
5.2.2.1 Vertex State Update . 59
5.2.2.2 Parallel Vertex Splits . 60
5.2.2.3 Parallel Edge Collapses 62
5.2.2.4 Buffer Compaction . 62

Contents iii

5.2.2.5 Memory Management . 63
5.2.3 Results . 64
5.2.4 Conclusion and Limitations . 69

5.3 Parallel View-Dependent Out-of-Core Progressive Meshes 69
5.3.1 Overview . 69

5.3.1.1 Spatial Operation Hierarchy 72
5.3.1.2 Tree Structure . 73
5.3.1.3 Data Structures . 73

5.3.2 Runtime Algorithm . 74
5.3.2.1 Out-of-Core Memory Management 75
5.3.2.2 Parallel Adaption Algorithm 75
5.3.2.3 Prefetching . 77

5.3.3 Results . 77
5.3.4 Conclusion and Limitations . 82

5.4 Dependency Free Parallel Progressive Meshes 83
5.4.1 Overview . 83

5.4.1.1 Neighborhood Dependencies 84
5.4.1.2 Split Operations . 85
5.4.1.3 GPU Adaption . 86

5.4.2 Data Structure . 86
5.4.2.1 Out-of-Core Hierarchy . 87
5.4.2.2 Operation Encoding . 88

5.4.3 Runtime Algorithm . 92
5.4.3.1 Vertex State Update . 92
5.4.3.2 Parallel Edge Collapses 94
5.4.3.3 Memory Management . 95
5.4.3.4 Parallel Vertex Splits . 95
5.4.3.5 Index Update . 96
5.4.3.6 Buffer Compaction . 96
5.4.3.7 Out-of-Core Memory Management 97

5.4.4 Results . 97
5.4.4.1 Discussion . 99
5.4.4.2 Analysis . 102

5.4.5 Conclusion and Limitations . 103

6 Progressive Mesh Editing 105
6.1 Related Work . 106

6.1.1 Multi Resolution Modeling . 106
6.1.2 Mesh Simplification . 106

6.2 Parallel Progressive Mesh Editing . 106

iv Contents

6.2.1 Overview . 107
6.2.1.1 Progressive Mesh . 107
6.2.1.2 Operation Coding . 108
6.2.1.3 Local and Global Attributes 109

6.2.2 Progressive Mesh Generation . 110
6.2.3 Editing . 111

6.2.3.1 Local and Global Attributes 112
6.2.3.2 Edit Propagation . 114

6.2.4 Adaption Algorithm . 114
6.2.4.1 Illegal Operation Removal 115
6.2.4.2 Parallel Edge Collapses 116
6.2.4.3 Parallel Vertex Splits . 116

6.2.5 Results . 117
6.2.6 Conclusion and Limitations . 119

7 Procedural Mesh Generation 121
7.1 PreviousWork . 123

7.1.1 Fractal and Procedural Approaches 123
7.1.2 Erosion Simulation . 124
7.1.3 Terrain Rendering and Parallel Level-of-Detail 124
7.1.4 Analysis . 125

7.2 River Networks for Instant Procedural Planets 125
7.2.1 Overview . 126

7.2.1.1 Reproducibility . 126
7.2.1.2 Types of Edges and Faces 127
7.2.1.3 Water Levels . 127

7.2.2 Planet Generation . 127
7.2.2.1 Base Shape and Continents 128
7.2.2.2 Initial River Networks . 128

7.2.3 Runtime Algorithm . 130
7.2.3.1 Vertex State Update . 131
7.2.3.2 Memory Management . 132
7.2.3.3 Parallel Edge Splits . 133
7.2.3.4 Parallel Vertex Collapses 134
7.2.3.5 Buffer Compaction . 135

7.2.4 Results . 135
7.2.5 Discussion and Conclusion . 139

8 Conclusion and Future Work 141
8.1 Conclusion . 141

Contents v

8.2 Future Work . 143

List of Figures 145

List of Tables 149

List of Algorithms 151

Glossary 153

Bibliography 155

CHAPTER 1
Introduction

Today, high quality simulations of the real world, called virtual reality, can be found in
many aspects of the daily life (e.g. films, computer games and medical applications). The
user requirements increase and therefore the virtual reality becomes more complex.

To satisfy the ever growing demand for realistic images, the complexity of polygonal
models constantly increases. Possible methods for generating such models are procedural
creation9, 3D laser scanner, medical devices (e.g. Computer Tomograph (CT) or Magnetic
Resonance Tomograph (MRT)) or geological scans. Most interesting are the procedurally
generated terrains or even complete planets. Such planets can be generated without
user. They can contain realistic mountains, seas, rivers, atmosphere, climate zones and
vegetation. The rivers are one of the most important parts of terrain, since they are vital
for life and can be important for navigation. In particular, the real-time generation of
realistic rivers networks is a major problem. The realistic rivers can branch, have different
depth and slope. Moreover, the river bed and course need to satisfy a certain degree of
realism. Additionally, it is important to have a possibility for editing of the generated
or scanned models. Such real-time editing algorithms can be used for post editing or
animation.

The constantly increasing complexity of polygonal models in interactive applications
imposes two major problems. First, the number of primitives that can be rendered at
real-time frame rates is currently limited to a few million. Second, less than 45 million
triangles10 - with vertices and normal - can be stored per gigabyte. Additionally, the
editing of the the generated or scanned models is very problematic, because of the high
number of vertices and high memory consumption.

Despite the enormous processing power of the GPU (Graphics Processing Unit), such
models can not be rendered, generated or edited in real-time. While the rendering
time can be reduced using level-of-detail (LOD) algorithms, representing a model at

9 Using mathematical functions.
10 Using 32 bit floats.

1

2 1 Introduction

different complexity levels11 , these often even increase memory consumption. Out-of-core
algorithms solve this problem by transferring the data currently required for rendering
from external devices. Compression techniques are commonly used in this context, because
of the bandwidth limitations. To achieve real-time frame rates, parallel data processing
is required. For this, new data structures, which are suitable for parallel processing and
real-time decompression, need to be developed. Such data structures are mostly created
in one preprocessing simplification step, which can be highly complex and thus can take
several hours, days or even months. Therefore, parallel simplification algorithms need to
be developed, to reduce the preprocessing time.

To conform all these requirements, this thesis is focused on parallel simplification,
rendering, editing and procedural generation of very large 3D models, with sizes of several
gigabytes. To achieve the real-time frame rates, all of the data structures and algorithms
presented in this thesis, are specially developed for acceleration through parallel processing.
All algorithms use CUDA (Compute Unified Device Architecture) for parallel processing
to exploit the advantage of GPGPU (General Purpose Compution on Graphics Processing
Unit). Because almost every modern computer offers hardware accelerated graphics, no
special hardware is required. The inexpensive customary NVIDIA GPU12 is enough for
execution of algorithms developed in this thesis.

NVIDIA developed the new programming language CUDA specifically for GPGPU
computing to allow taking the advantage of enormous parallel computational power of
the GPU for acceleration of non-graphical algorithms. By using CUDA for parallel data
processing, these new techniques can be developed for real-time rendering, generation and
editing of complex models.

The remainder of this thesis is structured as follows: Chapter 2 gives an brief overview
of the theoretical basis used in this thesis and the NVIDIA CUDA programing technology.
The remaining chapters present the algorithms which are developed in this thesis. Chap-
ter 3 describes a technique for parallel static LOD mesh simplification. In chapter 4 a
combination of a parallel out-of-core marching cubes implementation with a parallel stream
simplification algorithm is presented. In chapter 5, progressive meshes based techniques for
real-time in-core and out-of-core view-dependent mesh rendering of gigabyte-sized models
are proposed. Chapter 6 describes a technique for parallel mesh editing. In chapter 7
procedural planet generation with realistic river networks is discuss. Finally, the chapter 8
gives an brief overview of the algorithms proposed in this thesis. Additionally, the possible
improvements are presented.

11 Defined by the number of triangles.
12 Low cost consumer market NVIDIA GPU.

CHAPTER 2
Basics

This chapter is structured as follows: In section 2.1 the techniques for rendering complex
(gigabyte-sized) triangle mesh models are briefly discussed. Section 2.2 gives a brief
overview of the mesh extraction from volume data. In section 2.3 procedural mesh
generation is briefly discussed. Finally, in section 2.4 Compute Unified Device Architecture
(CUDA) is presented.

2.1 Complex Meshes

The graphics processors (GPUs) are constructed for rendering triangle (face) mesh models,
which are discrete approximations of the model surface. The quality of the approximation
depends on the number of triangles. The triangle mesh is an undirected graph with a
set of vertices and edges. Two vertices define an edge and three edges or three vertices a
face [CH91].

The need for high quality triangle models in interactive applications is constantly
increasing. Despite the enormous processing power of the GPU, highly detailed models
cannot be rendered in real-time. Often they even do not fit into graphics memory since a
scene may contain several of them. To solve this problem, the number of triangles must be
reduced using techniques such as visibility culling and levels of detail (LOD). Compressed
data representations and out-of-core techniques are often used to further reduce the data
size. Parallel data processing must be used to achieve real-time frame rates.

The remainder of this section is structured as follows: In section 2.1.1 visibility culling
of triangle mesh models is discussed. Section 2.1.2 gives an brief overview of the levels
of detail techniques. Finally, in section 2.1.3 and 2.1.4 memory management and data
compression techniques are briefly discussed.

3

4 2 Basics

2.1.1 Visibility Culling

Visibility culling techniques try to determine the visible and invisible parts of a scene, in
order to remove the invisible parts. View frustum culling removes triangles outside the
view frustum. Triangles on the backside of an object are hidden by the objects front side.
Backface culling takes advantage of this by testing if the normal of a triangle faces away
from the position of the viewer. Finally, occlusion culling is used to remove all occluded
triangles. For efficient occlusion culling the scene is typically partitioned using a spatial
hierarchy.

2.1.2 Level of Detail

To reduce the number of triangles, existing techniques either use static or dynamic levels of
detail (LODs). Static LODs represent each model at several resolutions. During rendering,
a level is chosen per object based e.g. on the distance to the viewer (see Figure 2.1). Static
LODs are easy to use since simplification and rendering are decoupled, but suffer from
popping artifacts13 if the simplification levels are not similar enough. In addition, the
memory overhead compared to an ordinary mesh is typically about 50%. Dynamic LODs
depart from this approach by encoding the simplification operations into a continuous
sequence. The simplification algorithm often generates the simplified models by collapsing
the edges. All data for the reconstruction operation is stored in advance. The edge collapse
operation contracts an edge and the connecting vertices into a one collapse vertex and
remove degenerated faces. As a result, popping artifacts are often nearly invisible. As the
LOD is view-dependent14, it uses no more faces than necessary. Another advantage is that
back-facing polygons don’t have to be refined, resulting in an overall reduction by a factor
of three to four compared to static LODs15.

2.1.3 Memory Management

The limitation of most level of detail algorithms is in-core memory management16, i.e. the
whole scene must fit into graphics memory. This constraint does not allow for rendering
huge scenes exceeding the amount of available graphics memory. The memory problem
is often solved by partitioning the scene using a spatial hierarchy and generating a level
of detail for each node. Then out-of-core memory management is used by loading only
currently required nodes in the GPU memory from external devices.

13 Visible transitions between two quality levels.
14 i.e. visibility culling techniques are used
15 For average scenes.
16 Existing algorithms for managing the level of detail are often limited to data sets that fit into main memory. This is called

in-core memory management. Algorithms that work with data that does not fit into memory are classified as out-of-core.

2.1 Complex Meshes 5

Figure 2.1: With increasing distance, coarser approximations of the triangle mesh model
can be used, without affecting the visual appearance .

2.1.4 Compression

The problem of static and dynamic LOD techniques is that required memory is significantly
higher as of the original model. For this reason, compressed representations of the data are
often used to reduce the memory consumption and the required bandwidth for out-of-core
memory management. To achieve real-time frame rates, the compression algorithm needs
to have high compression rates and support high efficient decompression.

In the remainder of this section the different types of the coding algorithms are briefly
discussed.

2.1.4.1 Fixed-to-Fixed

The fixed-to-fixed compression technique reduce a large set of n-bit words to a smaller set
of m-bit codewords17, where m < n.

Vector quantization is a lossy fixed-to-fixed compression technique. The vector data is
divided in groups (clusters) that are approximately similar by using clustering algorithms
(e.g. k-means) to determine the centroid of the cluster18. Then all centroids build a
database and the data is encoded by the database index of the closest centroid. The
decompression performance of the vector quantization is very high, but compression is
lossy. Therefore, the usage for compressing the data that needs to be reconstructed exactly
is only only limited, e.g. vertex position or normal, but for other values like colours.

17 e.g. 32-bit integer to 8-bit char.
18 i.e. there exists no injective transformation.

6 2 Basics

2.1.4.2 Fixed-to-Variable

Fixed-to-variable compression techniques encode n-bit words to codewords with the variable
length.

The Huffman algorithm [Huf52] is a lossless fixed-to-variable data compression technique.
The data is encoded using the frequency of occurrence of the strings. Strings with high
occurrence are encoded using few bits and strings with low occurrence are encoded using
more bits. The goal is to reduce the total length of the encoded sequence. The codewords
are determined by constructing a Huffman tree (see [Huf52]). Left and right subtrees are
labeled with 0 and 1, and traversing the tree yields the encoded string for a symbol.

The other lossless fixed-to-variable data compression technique is range arithmetic
coding [Mar79, WNC87]. Unlike Huffman coding, the optimal number of bits is used
for each codeword. The data are encoded by assigning an interval to each string. The
algorithm begins with the interval [0..1), which is divided in subintervals. The size of
the subintervals is dependent on the probability of the values, stored in the probability
table. The algorithm starts with the first value of the string and selects the subinterval
accordingly to the probability table. The interval for the next value is the subinterval of
the current one and so on. The codewords are determined by choosing the subinterval of
the last value. Context adaptive arithmetic coding is another form of arithmetic coding.
It use different probability tables to achieve higher compression rates. The decompression
performance of range arithmetic coding is low, but the compression rate is high.

2.1.4.3 Variable-to-Fixed

Variable-to-fixed compression techniques encode words of variable length to m-bit code-
words.

Run-length coding [JT98] is a lossless variable-to-fixed data compression technique. The
data is encoded as sequence of consecutive 0 or 1. The decompression performance is very
high, but the compression rate is only high if the number of 0 and 1 is highly unbalanced.

Simple9 [AM04] is a variable-to-fixed data compression technique that is specifically
developed for highly efficient decoding. The algorithm tries to pack as much integers as
possible into 32 bits. For this, the 32 bits are split in 4 control and 28 data bits. On this
way, the data bits can be divided in 9 ways. The possible cases are: 28 1-bit numbers,
14 2-bit numbers, 7 4-bit numbers, 5 5-bit numbers, 4 7-bit numbers, 3 9-bit numbers, 2
14-bit numbers and 1 28-bit number. The control bits are used to determine which of the
cases is used. Later, the authors of Simple9 improve the compression rate by proposing
similar algorithms called Relate10, Carryover12 and Simple16.

The other lossless variable-to-fixed data compression technique is LZW [KWP∗03]. It
uses a dictionary, that contains a frequently occurring strings. The new dictionary entries
are generated by adding the next character to the already existing entry. Then the data
is encoded by storing the dictionary index with a fixed size. The dictionary is encoded

2.2 Mesh Extraction 7

implicitly into the data and does not need to be stored.

2.1.4.4 Variable-to-Variable

Variable-to-variable compression techniques encode words of variable length to codewords
of variable length.

Compression techniques of this type are a combination of variable-to-fixed and fixed-to-
variable compression. Bzip2 is a variable-to-variable compression technique which combines
run-length, Burrows Wheeler Transform (BWT) algorithm [Man99] and Huffman coding.
BWT permutes the order of the input characters. After permutation the output word
contains many repeated characters and allows for higher compression rate.

2.1.4.5 Discussion

The algorithms proposed in this thesis use massive parallel data processing to achieve
real-time frame rates. Because of fine granularity of the data, the number of parallel
threads is high. Therefore, the used compression techniques need to support high decom-
pression performance and high compression rates for data blocks of less than 1 KByte.
For this reason, the best choice are the fixed-to-variable compression techniques. For
these requirements, the context adaptive arithmetic coding has the best compression
rates [ZLS08].

2.2 Mesh Extraction

Medical devices, e.g. CT or MRT, and geological scans produce data in form of a 3D
Cartesian discretized scalar field (volume data set), often called voxel grid, to approximate
the surface of an object. Such volume data sets have higher memory consumption than the
triangle meshes and the visualisation takes significantly longer. Additionally, the editing
is very complex or even not possible.

To reduce the rendering time and memory consumption, the triangle mesh is often
extracted from volume data set. Such extraction algorithms are based on selecting an iso-
value for the density and generating a triangle mesh that approximates the corresponding
iso-surface. For the mesh extraction, the marching cubes algorithm (Section 2.2.1) is often
used.

Due to the progress made in medical and geological imaging systems during the last
decades, the resolution of volume data sets has constantly grown. This also increased
the memory requirements and computation times. The number of triangles generated by
iso-surface extraction algorithms has also grown. Therefore, the extracted triangle meshes
need to be rendered using known algorithms (Section 2.1) to reduce the number of faces
and memory consumption.

8 2 Basics

2.2.1 Marching Cubes Algorithm

The classical marching cubes algorithm [LC87] is based on a linear interpolation of the
density between the vertices of the volume. The algorithm divides the data into cubes
and processes them sequentially. The cubes are defined by rectilinear voxel grid, produced
by devices (e.g. CT or MRT).

In every cube, the scalar values are classified using a user-defined iso-value. To approxi-
mate the surface of an object, the algorithm determines the intersection of the surface
with the cubes. For this, a bit is assigned for each of eight vertices of the cube. The vertex
is marked with 1, if the value of the vertex is higher or equals to the user-defined iso-value
and 0 else. Then, all vertices marked with 1 are inside the object and the vertices marked
with 0 outside. Accordingly, only 28 = 256 cases19 for the intersection of the object and
cube are possible. All possible cases are stored in a lookup-table and used at runtime, to
determine the intersected edges of the cube and triangles that are required for the surface
approximation (some of cases are shown in the Figure 2.2). The intersections of the object
and the edges of the cube are calculated using linear interpolation of the density between
the vertices of the current edge. Finally, the gradients of the cube vertices are estimated
to compute the normals for each vertex of the generated triangles.

Figure 2.2: Five of 256 possible cases from the lookup-table. The vertices inside the ob-
ject are marked in red and triangles required for the surface approximation in green [LC87].

Because every edge is shared by several cubes, the calculated intersections can be reused.
Therefore, only three intersections need to be calculated for the cubes inside the grid. This
reduces the computational time and memory consumption.

2.3 Procedural Algorithms

Rendering natural objects is a great challenge for todays computer graphics. Early,
before Mandelbrot [Man83] found the high self-similarity grade of the natural objects (e.g.
landscapes, trees or clouds), the formal definition of such objects with high richness of
detail was not possible. Using fractals, such objects can be easy defined and automatical
created using procedural algorithms. Accordingly to Mandelbrot [Man83] the fractals are
defined as:

19 8 vertices, with two possible cases per vertex.

2.3 Procedural Algorithms 9

A fractal is by definition a set for which the Hausdorff Besicovitch dimension
strictly exceeds the topological dimension.

The fractals are often defined recursively(see Figure 2.3). In this way, the visual richness
of the object increases.

In each iteration, the number of copies N is given by the scaling factor ε and fractal
dimension D:

N =
1

εD
, (2.1)

The fractal dimension20 give the measure for the complexity of the self-similar object. In
a broader sense, it is a measure for the spatial extension and is defined as:

D =
log(N)
log(ε)

, (2.2)

For example, the Sierpinski triangle (see Figure 2.3) consist of N = 3 copies with a scaling
factor of ε = 2. The fractal dimension is calculated using equation 2.2 as:

D =
log(3)
log(2)

= 1.58. (2.3)

Figure 2.3: Construction of the Sierpinski triangle.

2.3.1 Fractional Brownian Motion

In a early 18th century Brown analyzed the motion of the particles (Brownian mo-
tion) [Bro28] in a fluid as a result of collisions between the particles. Later, the movement
could be exactly described mathematically with particle theory and served as basis for
creation of fractal objects (e.g. landscapes). Mandelbrot [MVN68] expands on Brownian
motion with a Hurst exponent H ∈ (0,1), to simulate a Brownian motion of a dimension
D = 2 − H (fBm – fractional Brownian motion) and determines a fractal dimension of
1.2 for the silhouette of a mountain. To define a landscapes the fBm need to be expand
to 2D by overlap of several 1D fBms. The Hurst exponent is used to control the fractal

20 Also known as Hausdorff dimension or Hausdorff-Besicovitch dimension.

10 2 Basics

dimension, which is defined as:
D = E + 1 − H, (2.4)

where E is the euclid dimension. With increasing H the created fractal objects obtain a
rougher surface.

The fractional Brownian motion is a basic technique for landscape creation. Currently,
three main techniques are used to generate fractal landscapes: Fourier Filtering, Noise
Synthesis and Midpoint Displacement. Fourier filtering approximates the fBm using
2D inverse fourier transformation of Gaussian white noise function. The quality of the
generated landscape is high, but the level of detail is fixed. Noise Synthesis approximate
the fBm using continued noise function [Per85, Per02]. Midpoint displacement recursively
inserts new vertices which split polygons into several new polygons. A new vertex’s altitude
is the average altitude of the surrounding vertices. Midpoint displacement and other
techniques for landscape definition are discussed in section 7.1.

2.4 CUDA

Almost every modern computer offers hardware accelerated graphics, used by graphics
applications. But this enormous computational power can also be used for acceleration of
non-graphical applications (e.g. scientific simulations and mesh simplification).

Early21, graphics hardware was hardwired for specific rendering algorithms, reprogram-
ming was not possible or very difficult using low-level graphic assembly language or register
combiners. Faced with increasing parallel computing power, GPU (Graphics Processing
Unit) vendors decided to execute code written for the CPU (Central Processing Unit) on
the GPU. The next logical step of the GPU progress was programmable hardware. The
first language for GPU programming was a shading language (e.g. NVIDIA Cg and HLSL),
but the programming possibilities were limited. As advancement of the shading languages,
a new language CUDA (Compute Unified Device Architecture) [NVI11b] was presented
by NVIDIA in 2007. CUDA was developed for GPGPU (General Purpose Compution
on Graphics Processing Unit) computing, to allow users to take advantage of enormous
parallel computational power of the GPU for acceleration of non-graphical algorithms.

The remainder of this section is structured as follows: Section 2.4.1 analyzes parallel
performance and flexibility of CPU and GPU. Section 2.4.2 and section 2.4.3 give a brief
overview of the CUDA hardware and software layer. Finally, the optimization possibilities
are briefly discussed in section 2.4.4.

21 Early nineties.

2.4 CUDA 11

2.4.1 CPU vs. GPU

Roughly between 2000 and 2003, the CPU market perceived a battle between Intel and
AMD. This was reflected in rapidly rising CPU frequencies and associated increases of
the CPU computing power. But then it came to an abrupt end, because of increasing
production of thermal energy. The performance of the new CPUs was not more increased
by the frequency, but by launching of the Multi-core CPUs 22. Frequencies increased only
slightly in the next few years and therefore the increase of the CPU performance was
rather poor (Figure 2.4). The reason for it is, that the number of transistors increases
exponentially with increasing CPU frequencies. Therefore, vast amounts of transistors
were necessary to get only a few additional MHz. This increase the production of thermal
energy drastically.

Figure 2.4: Comparison of the CPU and GPU performance (Floating-Point Operations
per Second (FLOP/s)) of the last years [NVI11b].

In comparison to the CPU, the GPU computational power increase in the last years
was enormous. During 2003 it was approximately equal to the CPU and increased in 2010
by about 10 times (Figure 2.4). The reason for this is that the single-core and multi-core
CPUs are designed to produce maximal performance from a stream of instructions. These
instructions can operate on different data, access memory randomly and run on divergent
paths. Possibilities of parallel execution of instruction are very limited, because the
CPUs are optimized for a sequential stream of instructions. This makes blindly increasing
calculating units and cores useless.

22 Started by AMD.

12 2 Basics

The CPU manufacturers attempted to solve this problem using technologies such Hyper-
Threading, SSE (Intel’s extension of SIMD) and reordering of the instructions, but with
moderate success. In contrast to the CPU, the job of the GPU is to handle a set of pixels
and polygons, which can be executed independently. Therefore, the GPU is designed much
more consequently for parallel execution and the performance benefits from increasing
number of calculating units and cores. Additionally, the memory access of the GPU is
extremely coherent, because of coherency of data (e.g. pixel and polygons). Therefore,
the memory bandwidth corresponds nearly to the theoretical bandwidth. This reduces the
size of required cache.

The CPU manufacturers are trying to improve parallelism in the execution of the
instructions, while the GPU manufacturers attempt to organize GPUs more flexibly. CUDA
offers nearly the flexibility of an ordinary programming language and allows to rewrite
algorithms for execution on the GPU. But note, to achieve a full performance, the algorithm
must be able to run in parallel without or with only few race conditions23. Additionally,
the algorithms and data structures need to be optimized for parallel execution.

2.4.2 CUDA-Hardware Layer

NVIDIA designed a new GPU architecture specially for CUDA. The most important
improvement was the fusion of the vertex and fragment processor to only one Streaming
Processor (SP). The new processors were able to execute both tasks and increased the
efficiency of the GPU. A new GPU consists of a set of SPs, which are grouped into
Streaming Multiprocessors (SMs) and the SMs are grouped into Graphics Processor
Clusters (GPCs)24(Figure 2.5). All new GPUs from NVIDIA use this architecture. The
number of GPCs per GPU, SMs per GPC and SPs per SM varies depending on the GPU
model and determines the performance of the GPU.

In the CUDA hardware architecture, a distinction is drawn between two memory spaces:

Device Memory: A very large memory of DDRX SDRAM architecture25. All SPs of the
GPU may access data from this memory, but the access latency is very high.

On-Chip Memory: Each SM has its own on-chip memory, only SPs of the same SM may
access data from this memory. The on-chip memory consists of constant cache,
texture cache, shared memory and registers. This memory is very small, but the
access latency is very low.

The GPCs use MIMD architecture (Multiple Instruction Multiple Data) and the SMs
SIMT architecture (Single Instruction Multiple Threads). NVIDIA designed the SIMT

23 To deal with the race conditions, atomic operations are in CUDA available, but this reduce the performance drastically.
24 GTX 580 GPU consists of 4 GPSs, 16 SMs and 512 SPs. Each GPC consists of 4 SMs and each SM consists of 32 SPs (Figure 2.5).
25 DDR5 SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory) architecture on the GTX 580 GPU, with

size of 1.5 GB or 3.0 GB.

2.4 CUDA 13

Figure 2.5: NVIDA GF100/GF110 (alias GTX480/GTX580) GPU core [NVI10].

architecture specially for CUDA. SIMT architecture is akin to the SIMD, but more flexible,
e.g. the thread divergence is handled automatically by the hardware. Each SM executes
groups of 32 threads in parallel, so called warps26. Therefore, the number of warps that
can be executed in parallel depends on the number of SMs in the GPU. All threads in
a warp start with the same instruction, but each thread has its own instruction count
and can execute divergently on their own SP of the SM. Only these threads inside a warp
that have the same instruction count can be executed in parallel. If the instruction count
is different, the threads of the warp with the same count are grouped and the groups
are executed sequentially on the SM. In the worst case, if all threads of the warp have
different instruction counts, the execution is fully sequentially. Furthermore, the warps
are grouped to the blocks. The warps of the same block are executed on the same SM.
Then, the blocks are grouped in to the grid and can be executed on different GPCs in
parallel. The grid can be 1D and 2D and the block 1D, 2D and 3D. The maximal number
of threads per block and grid is limited by the GPU architecture27 and is defined by the
programmer. The decomposition of blocks to warps and the distribution of the resources
is hardware supervised and cannot be controlled from programmer.

26 Each SM of the GTX 580 GPU consists 32 SPs and can execute all treads of the warp in parallel. E.g. the SM of the older GPU
architecture GT200 (alias GTX285) consists 8 SPs, therefore only 8 threads (alias quarter-warp) of the warp can be executed in
parallel.

27 On the GTX 580 the maximal number of threads per block is 1024 and the dimension is limited to maximum of 1024 × 1024 × 64
threads. The grid dimension is limited to maximum of 65535 × 65535 × 1 threads.

14 2 Basics

On the grid, block and thread layers, different memory spaces are available. The
following list shows memory spaces on the grid layer (all threads of the same grid may
access data from this memory):

Global Memory: A large cached device memory28 with high latency.

Constant Memory: A small read only cached device memory29 with low latency.

Texture Memory: A large read only cached device memory. It is optimized for data
filtering and different addressing modes.

Memory available on the block layer (all threads of the same block may access data
from this memory):

Shared Memory: A small on-chip memory30 with low latency. It can be used for thread
communication inside the block. The communication between the blocks through
shared memory is not possible, because the blocks can be executed on different SMs.

Memory available on the thread layer (the access is exclusive for each thread):

Register: A small on-chip memory31 with very low latency.

Local Memory: A large cached part of device memory.

The distribution of register and local memory is supervised by the compiler and cannot be
controlled by programmer.

2.4.3 CUDA-Software Layer

CUDA allows to define host code, which is execute sequentially on the CPU, and device
code, which is execute in parallel on the GPU. The device code consists of C functions,
called kernels. On the new GPU architectures, the kernels can be executed concurrently.
During program execution, the kernels are called from host code. The size of the grid and
the number of threads per block can be defined per kernel at runtime.

CUDA allows to define host and device functions by extension of the function head.
The possible function extensions are:

__global__: Called from host code and define a kernel.

__device__: Called from device code to define a device function.

__host__: Called from host code to define a host function.

28 1.5 GB or 3.0 GB global memory on the GTX 580 GPU.
29 64 KB constant memory on the GTX 580 GPU.
30 48 KB per SM on the GTX 580 GPU.
31 32768 32 bit register per SM on the GTX 580 GPU.

2.4 CUDA 15

__host__ __device__: Called from host or device code to define a host and device
function.

Variables can be one, two, or three-dimensional. Possible extensions for variables are:

no extension: The variable is stored in register or local memory.

__shared__: The variable is stored in shared memory.

__constant__: The variable is stored in constant memory.

__device__: The variable is stored in device memory.

The function __syncthreads() can be used for thread synchronisation in a block and is
required for shared memory access. For global synchronisation of the threads, new kernels
need to be defined. To prevent race conditions, atomic operations are available. For data
transfer from host memory to device global memory, copy functions are available: host to
device, device to host and device to device. For efficient data transfer between CUDA and
OpenGL vertex buffer objects (VBOs) are used.

2.4.4 Code Optimization

In section 2.4.2 different memory spaces were discussed. The optimising the usage of
memory spaces on the grid, block and thread layer and optimising of the memory accesses
can improve the performance of CUDA program. Additionally, memory allocation on the
device and data copy from host to device (or device to host) is very expensive. Therefore,
if possible, memory transfer should be avoided or asynchronous and overlapping transfers
should be uses to improve the performance. Moreover, coalesced access to global memory
(see [NVI11a]) should be used to reduce the memory transfer cost on the thread layer.

The instructions for flow control (e.g. if, for, switch and while) can cause the threads
of the same warp to branch. In this case, the threads of the same warp with different
execution paths need to be executed sequentially. This increases the number of required
instructions and reduces the performance.

CHAPTER 3
Mesh Simplification

Highly detailed geometric models are very popular in interactive applications such as
computer games or internet shops. These models are usually represented as triangle
meshes. To render several of these models at real-time frame rates, level-of-detail (LOD)
techniques are commonly used. For multiple smaller objects, static LODs are usually the
method of choice. Each model is represented at several resolutions. During rendering,
a level is chosen per object based e.g. on the distance to the viewer (see Figure 3.1).
Simplification algorithms can be used to automatically generate the different resolutions,
so that designers only need to model the finest level.

Figure 3.1: With increasing distance, coarser approximations of the model can be used.

The main goal of simplification algorithms is to reduce the number of rendered triangles
while introducing little or no visual difference. The maximum screen-space deviation εs

in pixels and the simplification error ε between simplified and original model induce a
minimum view distance d. The distance also depends on the field of view α and the screen
resolution r. It can be computed by d = ε r

2εs tan α
2

.
As the distance depends on the maximum error, a simplification error that reduces

the model up to a specified error bound is desirable in this context. An efficient way to

17

18 3 Mesh Simplification

reduce the model to a specified ε are the quadric error metrics proposed by Garland and
Heckbert [GH97a]. The distance between an simplified and original model is estimated by
accumulating quadratic plane distances. While this is an overestimation of the real error,
the specified error is still an upper bound. The simplification is based on successive edge
collapse operations. After an edge of the model is collapsed, the degenerated faces are
removed. This process is repeated, until no more collapses are possible without exceeding
the error bound. Despite the existance of more accurate algorithms to estimate the
simplification error, the quadric error metrics are still commonly used because of the
possibility to compute an optimal placement of the collapsed vertex.

Due to the processing time, simplification algorithms are normally used as a preprocessing
step. Considering that the average performance of the quadric error metrics simplifier is
about 50,000 operations per second, the LOD generation needs 20 seconds for a model
with one million vertices. Therefore, the levels are stored on disk and loaded at program
startup. As the LODs in total normally contain as many triangles as the original mesh,
the loading times are doubled. While this is unproblematic when loading from a local
disk, it might be inacceptible for online applications. Here the LODs need to be generated
from the transferred original mesh. Although almost every customer level computer
contains a graphics card that can be used for general purpose computations, edge-collapse
simplification algorithms are still working sequentially. This is mainly due to the fact
that a significant amount of neighborhood information is required to compute an optimal
ordering of operations.

The main contribution is a high-quality parallel simplification algorithm using edge
collapse operations. Based on the observation, that the ordering only needs to be preserved
locally, all possible edges are determine and collapse in parallel. The collapsed vertex
locations and the simplification errors are computed using the quadric error metric. This
leads to an exceedingly fast high-quality simplification algorithm. Using the proposed
implementation, a complete set of 10 detail levels from the welsh dragon model (2.2 million
faces) can be genereted within 0.73 seconds. Figure 3.2 shows a subset of the generated
levels.

Figure 3.2: A subset of the 10 detail levels for the Welsh Dragon generated with the
proposed algorithm.

3.1 Previous Work 19

3.1 Previous Work

Mesh simplification is one of the fundamental techniques for real-time rendering of polygonal
models. There is an extensive amount of methods that mainly focus on accurate bounds
of the simplification error. A detailed review of simplification algorithms is given by
Luebke [Lue01]. As the focus of this thesis is real-time simplification, only the methods
that would be suitable candidates are brief discuss.

3.1.1 Vertex Clustering

Rossignac and Borrel [RB93] proposed to use uniform vertex clustering. The bounding
box of the model is subdivided using a regular grid and all vertices inside the same
grid cell are collapsed to their mean. Low and Tan [LT97] proposed a weighted vertex
clustering to preserve edge features that are not aligned with the grid. While uniform
clustering is relatively fast and a precise upper bound for the simplification error can be
given, a further reduction in flat regions would be possible. An adaptive vertex clustering
using octrees was later proposed by Schaefer and Warren [SW03]. The runtime is even
higher than using a BSP tree, but the quality of the simplified mesh can almost compete
with edge collapse simplification. Additionally, DeCoro and Tatarchuk [DT07] proposed
a parallel implementation of vertex clustering on the GPU. It is based on the octree
clustering approach of Schaefer and Warren [SW03] by implementing an efficient octree
data structure on the GPU. While the performance is extremely high, it still has the same
quality problems as all vertex clustering algorithms:

• Although geometry can be optimized, the optimization of the topology is only limited,
given by the cluster structure (e.g. grid or octree). This significantly increases the
requiered number of faces.

• The cell size is defined by the factor of 2, this reduces the number of possible quality
levels.

• No smooth transitions between LODs possible.

3.1.2 Quadric Error Metrics

Garland and Heckbert [GH97a] as well as Popović and Hoppe [PH97] introduced the vertex
pair contraction. The contraction operation is combined with the introduced quadric error
metric. It allows a flexible control over the geometric error and can be used to calculate
optimal vertex positions. This approach has become the most common technique for
the simplification of triangle meshes. Although the performance is lower, it overcome
the quality problems of the vertex clustering. Later Garland and Heckbert extended
their approach to an arbitrary number of vertex attributes [GH98]. While the generated

20 3 Mesh Simplification

approximations are superior to vertex clustering at the same number of triangles, the
simplification performance is significantly lower. On the other hand, the required levels
can be generated using a single simplification sequence from the original model to the
coarsest level.

Lindstrom [Lin00] proposed a combination of vertex clustering with error quadrics to
improve the placement of the clustered vertices. Nevertheless, a high number of triangles
is used in flat regions. Shaffer and Garland [SG01] proposed to overcome this problem
by using a BSP tree instead of a uniform grid. The runtime is increased by a factor of
three compared to uniform clustering, but the method is still faster than edge collapse
simplification.

Garland and Shaffer developed a multiphase algorithm [GS02] which combines vertex
clustering with a subsequent edge contraction to generate a drastic simplification. While
this is faster than edge collapses alone, it can only be used to generate a single detail level.

3.2 Instant Level-of-Detail32

The simplification algorithm generates the simplified models by collapsing all non-conflict
edges in parallel. Figure 3.3 shows the principle of an edge collapse operation colv, which
contracts an edge, connecting the vertices v and vu, into a point. By applying colv the
adjacent faces fl and fr of the vertices v and vu disappear and the position of the collapse
vertex v is computed by minimizing the costs of the collapse operation colv. To provide
control over the simplification error and to evaluate the costs for colv a suitable measure is
required. Garland and Heckbert [GH97a] proposed a quadric error metric that estimates
the distance between simplified and original mesh.

v

vu

colv

fn0
fn6

fn3

fr
fl

fn1

fn5 fn2

fn4

fn0
fn6

fn3

fn1

fn5 fn2

fn4

v

Figure 3.3: Edge collapse. The edge defined by vertex v and vu is collapsed into the
vertex v. During the collapse operation colv the position of v is estimated concerning a
specified quadric error metric Q.

32 In proceedings of Vision Modeling and Visualization (VMV2011) [GDG11].

3.2 Instant Level-of-Detail 21

3.2.1 Quadric Error Metric

The quadric error metric approximation is based on the distances of the simplified vertex
to the planes defined by the adjacent triangles in the original mesh. Let P (v) be the set
of planes adjacent to mesh vertex v, then the maximum error can be estimated with the
sum of squared distances:

Δ(v) = Δ[vx vy vz 1]T =
∑

p∈P (v)
(pT v)2, (3.1)

where p = [a b c d]T is the implicit plane equation ax + by + cz + d = 0 in normalized
form, i.e. a2 + b2 + c2 = 1. Note, that the coefficients a, b and c are the plane normal and
d the signed distance between the origin and the plane. The sum of the squared distances
can be transformed into a quadratic form:

Δ(v) =
∑

p∈P (v)
(vT p)(pT v) (3.2)

=
∑

p∈P (v)
vT (ppT) v (3.3)

= vT

⎛
⎝ ∑

p∈P (v)
Qp

⎞
⎠ v, (3.4)

where Qp is the convariance matrix of the planes p in P (v):

Qp = ppT =

⎡
⎢⎢⎢⎢⎣

a2 ab ac ad

ab b2 bc bd

ac bc c2 cd

ad bd cd d2

⎤
⎥⎥⎥⎥⎦ (3.5)

By summing up the error quadric Qp for a set of planes P (v) associated to a vertex v it is
possible to represent the corresponding error quadric by a single matrix Qv.

To prevent a degeneration of the mesh boundary, we use the same approach as Garland
and Heckbert. In addition to the vertex quadrics, a boundary quadric is calculated for
each boundary edge. It is computed from a virtual plane that is orthogonal to the triangle
plane. Let v1 and v2 be the vertices of the boundary edge and v3 the third vertex of the
only adjacent face. Then the normal equation of the virtual plane is:

txx + tyy + tzz − n · v1 = 0, (3.6)

with

e1 =
v2 − v1

‖v2 − v1‖ , e2 =
v3 − v1

‖v3 − v1‖ , t =
e2 − (e1 · e2)e1

‖e2 − (e1 · e2)e1‖ . (3.7)

22 3 Mesh Simplification

The quadric error metrics can be generalized to arbitrary dimensions [GH98]. The
general quadric Qp can be written as:

Qp =
(

A b
bT d

)
, (3.8)

with

A = Id − e1eT
1 − ttT (3.9)

b = (v1 · e1)e1 + (v1 · t)t − v1 (3.10)

d = v1 · v1 − v1 · e1 − v1 · t (3.11)

In order to compute the cost of collapsing a pair of vertices v and vu, the associated
error from the vertex quadrics Qv and Qu can be derived. The total sum of squared
distances is Q = Qv + Qu. In addition, Q can be used to find the optimal position of
the collapsed vertex v. The optimal vertex minimizes the sum of squared distances Δ(v).
This translates into solving the following linear equation system:

∇Q (v) =
(

A b
0 · · · 0 1

) (
v

1

)
=

⎛
⎜⎜⎜⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎟⎟⎟⎠ (3.12)

3.2.2 Overview

Traditionally, edge collapse simplification works by sequentially collapsing the edge with
the minimum induced error. When generating a specific level-of-detail, the simplification
stops when collapsing the next edge would exceed the error threshold. This can also be
seen as successively collapsing the vertex va that is adjacent to the edge with the minimum
error with the other vertex of that edge vb. With this, the minimal adjacent edge error can
be associated with the vertex. In the example, va and vb will have the same error which is
also the global minimum. The quadric error of the collapsed vertex is then the minimum
of the other edges adjacent to the collapsed one. By construction, the vertex quadrics are
monotonically increasing and thus the quadric error of the adjacent edges will be at least
as high as that of the collapsed edge. This means that the edge with the minimal error
can not only be collapsed, but also all other edges that have a local minimum of the error
below the given threshold. Due to the monotonically increasing error of the other edges,
these will also be collapsed in the sequential algorithm. The overall algorithm therefore
works as follows:

1. Compute vertex quadrics.

3.2 Instant Level-of-Detail 23

2. Compute placement and error for each edge.

3. Find local error minima below threshold and collapse edges.

4. Continue with 2. until no collapses can be performed.

To perform the quadric computations and the edge collapses in parallel, an adequate
data structure is require. In addition to vertices and faces, a data structure for the edges
of the mesh is needed. To compute the target placement for an edge collapse, access to
the vertices and the associated vertex quadrics from the edge is required. Theoretically,
all edges from a vertex need to be accessed in order to find the edge with minimal error.
Since this is computed for all vertices, the atomic operations can be used and process all
edges instead. The same holds for removing the degenerated faces. There the indices can
be simply updated and the faces removed using a compaction algorithm.

3.2.2.1 Connectivity Data Structure

As discussed above, the edges of the mesh need to be extract. In addition, the boundary
edges for the boundary quadrics need to be determined. Initially, an indexed face set (IFS)
is loaded and transfered it to the GPU. This means that it are attributes per vertex and
three indices per triangle available. Algorithm 1 shows how the edge information is build
from this data.

foreach face f in parallel do
i1,i2,i3 = get_face_indices(f)
edge1 = create_edge(min(i1,i2),max(i1,i2),i3)
edge2 = create_edge(min(i2,i3),max(i2,i3),i1)
edge3 = create_edge(min(i3,i1),max(i3,i1),i2)

RADIX SORT edges in parallel by imax

RADIX SORT edges in parallel by imin

foreach edge e in parallel do
ep = get_previous_edge(e)
if ep==e

set_edge_flag(e, 0)
else

set_edge_flag(e, 1)
if get_previous_edge(e)==e

set_single_flag(e, 0)
else

set_single_flag(e, 1)
COMPACT edges in parallel

Algorithm 1: Parallel generation of the edge data structure.

First an edge for each of the three half-edges of a triangle is generated. Then the edges
are sorted by their higher vertex imax and then by the lower one imin using radix sort.
Since radix sort is stable, the edges are now sortened in lexicographic order and duplicates

24 3 Mesh Simplification

can be marked for removal. During this process, the third vertex of the face is stored and
single edges are flaged.

The complete data structure required for the edge setup and the allocated memory (per
entry) are shown in Table 3.1. The input data are the vertex and the index buffer. Both
are stored as vertex buffer objects (VBOs) and are therefore separated from all other data.
All generated data are stored per edge, where the opposite vertex and single edge flag are
only required to compute the vertex quadric. The total memory required during this phase
is 246 + 4k bytes per vertex, where k is the number of vertex attributes, or 222 bytes in
addition to the IFS. After removing the duplicate edges and freeing the temporary arrays,
this is reduced to 63 + 4k bytes per vertex, or 39 additional bytes.

buffers elements bytes per entry
vertices vertex VBO 4k
faces index VBO 12

edges
vertex index (×2) 8
vertex index (opposite) 4
single edge flag 1

temporary per edge

sorting edge (×3) 12
sort order 4
sort key 4
sort prefix sum (scan) 4

Table 3.1: Mesh data structure after generating the edge information, where k is the
number of vertex attributes.

3.2.3 Parallel Simplification

The algorithm is subdivided into several consecutive steps to implement the simplification
on massively parallel hardware. The partitioning is required for thread synchronisation
while each step can be processed completely in parallel. Figure 3.4 shows the steps of the
algorithm. The first step is to compute the vertex quadrics. These are sums of all adjacent
face and boundary edge quadrics. After this step, the opposite vertex and single edge flag
arrays can be deallocated. Then the parallel simplification loop starts. First, the optimal

Figure 3.4: The steps of the algorithm.

3.2 Instant Level-of-Detail 25

collapse position and cost are computed per edge. Then the local cost minima are found
and the associated collapses are performed. After updating the face and edge connectivity,
the collapsed edges are removed. If no further collapses are possible without exceeding the
threshold, the current level can be copied to a vertex and index buffer. The simplification
loop is then continued with an increased threshold, until all required LODs are generated.

The complete data structure maintained during simplification is shown in Table 3.2.
For each vertex the quadric, the index of the adjacent edge with the minimal cost are
required. Due to the symmetry of Q only the upper triangular matrix is stored. This
only need 2k2 + 6k + 4 bytes instead of 4k2 + 8k + 4 bytes per quadric. Again, k is the
number of vertex attributes. In addition, inactive vertices need to flagged to generate an
IFS for each level-of-detail. To determine the minimal cost edge, the minimal cost over
all adjacent edges are needed as temporary data. Later, when the collapse target of each
vertex is required, this array can be reused. For the faces, only the flag for degenerated
triangles during construction of the indexed face set is required. Finally, the collapse cost
and the optimal placement v for each edge are stored, together with the collapse state and
a flag to mark degenerated edges. In total 2k2 + 22k + 120 bytes per vertex are required,
which is 204 bytes for k = 3 and 324 bytes for k = 6.

buffers elements per entry (bytes)

vertices

vertex VBO 4k
vertex quadric 2k2 + 6k + 4
min edge ID 4
active flag 4
min edge cost / target vertex 4

faces index VBO 12
active flag 4

edges

vertex indices 8
edge cost 4
optimal placement 4k
collapse state 4
active flag 4

temporary perfix sum (scan) 4

Table 3.2: Data structure used during simplification loop.

3.2.3.1 Vertex Quadrics

The first step is the computation of the vertex quadrics which are the sum of all adjacent
face quadrics. In addition, the boundary quadrics need to be computed and accumulated.
As the boundary edges are already flagged, simply the virtual plane need to be computed
and add the corresponding quadric to the edge vertices. The complete parallel vertex
quadric calcuation is shown in Algorithm 2. Note, that atomic float addition is used in
the implementation, parallel binning could also be used to accumulate the quadrics for

26 3 Mesh Simplification

GPU this operation.

foreach face f in parallel do
i1,i2,i3 = get_face_indices(f)
quad = compute_face_quadric(f)
add_quadric(i1, quad)
add_quadric(i2, quad)
add_quadric(i3, quad)

foreach single_edge e in parallel do
i3 = get_opposite_vertex(e)
quad = compute_boundary_quadric(imin[e], imax[e], i3)
add_quadric(imin[e], quad)
add_quadric(imax[e], quad)

Algorithm 2: Parallel calculation of the vertex quadrics.

3.2.3.2 Quadric Error Optimization

The first step of the simplification loop is calculating the edge cost and to determine the
possible collapses. The edge e can be collapse if its cost is at most ε2, where ε is the error
threshold. If the cost is below the threshold, the edge is marked as a collapse candidate.
To compute the cost, first the optimal placement v need to found and then evaluate
the quadric Q for v. The edge quadric v is the sum of the two vertex quadrics Qvmin

and Qvmax . Since A is a symmetric, positiv-semidefinite matrix, the LDL decomposition
(cholesky decomposition without square roots) is used to solve the linear equations. The
symmetry of Q is also exploited when calculating the quadric error. Then for each vertex
the minimal edge cost is stored using the atomic min operation. Similar to the vertex
quadric accumulation, binning on GPU is used without atomic operations. Algorithm 3
shows the parallel quadric error minimization.

foreach edge e in parallel do
quad = calc_edge_quadric(vertex_quadric[vmin],vertex_quadric[vmax])
collapse_pos[e] = optimize_pos(quad)
edge_cost[e] = calc_cost(quad, collapse_pos[e])
if edge_cost[e] ≤ ε2

collapse_state[e] = collapse
atomic_min(min_edge_cost[vmin], edge_cost[e])
atomic_min(min_edge_cost[vmax], edge_cost[e])

else
collapse_state[e] = no_operation

Algorithm 3: Parallel quadric error minimization algorithm.

3.2.3.3 Parallel Edge Collapses

The collapse of an edge is only possible if its cost is a local minimum. As the minimal cost
per vertex is already stored, now the edge with the associated cost need to be determined.

3.2 Instant Level-of-Detail 27

Then the edge can be collapsed if both vertices store a reference to it as minimal cost
edge. For all other edges, the collapse flag is cleared. After the possible collapses are
determined, they can be applied to the mesh. The collapse operation then simply moves
vertex v = vmin to its new position v, which is stored with the edge and marks vu = vmax

as invalid and stores v as its target index. The new quadric Qv is the sum of the vertex
quadrics Qvmin and Qvmax . Algorithm 4 shows the parallel processing of the edge collapse
operations.

foreach edge e in parallel do
if collapse_state[e] == collapse

cost = get_edge_cost(e)
if min_edge_cost[vmin] == cost: edge_ID[vmin] = e
if min_edge_cost[vmax] == cost: edge_ID[vmax] = e

foreach edge e in parallel do
if collapse_state[e] == collapse

if edge_ID[vmin] == e and edge_ID[vmax] == e
v = collapse_pos[e]
vertex_quadric[vmin] += vertex_quadric[vmax]
collapse_target[vmax]=vmin

vertex_active[vmax]=false

Algorithm 4: Parallel edge collapse algorithm.

3.2.3.4 Connectivity Update

After performing the collapses, the indices of the adjacent faces and edges need to be
updated (i.e. fn1 − fn6, fl, and fr in Figure 3.3). Algorithm 5 shows the parallel index
update. Here the collapse targets set is used during the edge collapses. If a face or edge
becomes degenerated it is marked as invalid and will be removed in a subsequent stage.

foreach face f in parallel do
update_indices(f ,collapse_target)
if degenerate(f): face_vaid[f]=false

foreach edge e in parallel do
update_indices(e,collapse_target)
if degenerate(e): edge_vaild[e]=false

Algorithm 5: Parallel index update.

3.2.3.5 Edge Buffer Compaction

The final step of the adaption is the compaction of the edge buffer. The removal of
invalid edges is not only necessary for performance reasons, but also tells us when the
simplification has finished. Algorithm 6 shows the edge compaction. At the end the storage
for the old edge buffer can be freed and thus gradually reduce the memory consumption.
If no duplicate or degenerated edge was found, the compaction is skipped and the LOD

28 3 Mesh Simplification

RADIX SORT edges in parallel by imax

RADIX SORT edges in parallel by imin

foreach edge e in parallel do
ep = get_previous_edge(e)
if ep==e or degenerate(e)

set_edge_flag(e, 0)
else

set_edge_flag(e, 1)
COMPACT edges in parallel

Algorithm 6: Edge compaction algorithm.

creation can be started. Otherwise, the simplification loop is continue. Note, that the
edges are sorted after each fifth iteration only as the speedup from the removed duplicates
is less than the time required for sorting.

A specialized in-place compaction algorithm (Section 5.2.2.4) is used, since the ordering
does not need to be preserved. The main advantage besides a minor speedup is that these
buffer need not to be duplicate.

3.2.3.6 LOD Creation

If no collapses were performed, the generated level can be stored. To store the mesh, first
the vertex buffer is compacted according to the active flag of the vertices. The compacted
vertices are directly stored in a vertex VBO. Then the indices are compacted according
to the active flag of the faces and store them in an index buffer. If the number of faces
is above a user specified threshold, the error threshold is doubled and another level is
generated. Otherwise, all data structures can be freed except the original and generated
VBOs and can now render them as static LODs.

3.2.4 Results

The test system consists of a 3.333 GHz Intel Core i7-980X CPU with 6 GB DDR3-1333
main memory and an NVIDIA GTX580 (841/4204MHz). CUDA is used to implement the
parallel simplification and generate indexed face sets for OpenGL. For comparison with
loading precomputed LODs, a SATAII hard disk (8.5ms/64MB/7200rpm) is used with
approximately 100 MB/s read speed. Table 3.3 gives an overview of the simplified models.
All models use position and normal as vertex attributes (k = 6). Additionally, the original
model size (IFS) and the size of the generated LODs are shown.

Figure 3.1, 3.2, and 3.7 show the generated LODs and Table 3.4 gives an overview of all
generated levels with their number of faces. The first level was generated with an error
threshold of ε = 0.1% of the bounding box diagonal. With each level, the threshold is
doubled and LOD generation is stopped as soon as a level contains less than 10k triangles.
Depending on the complexity of the model, 8 to 10 levels are generated this way.

3.2 Instant Level-of-Detail 29

model # vertices # faces IFS LODs
Apache 445,836 807,365 19.4 MB 16.7 MB
St. Dragon 437,645 871,414 19.9 MB 17.5 MB
Buddha 543,652 1,087,716 24.9 MB 24.7 MB
Welsh Dragon 1,105,352 2,210,673 50.5 MB 45.9 MB
Youthful 1,728,305 3,411,563 78.6 MB 70.6 MB
Awakening 2,057,930 4,060,497 93.5 MB 81.4 MB

Table 3.3: Models used for evaluation.

level Apache St. Dragon Buddha Welsh Dragon Youthful Awakening
original 807,365 871,414 1,087,716 2,210,673 3,411,563 4,060,497
level 1 321,072 328,733 454,844 871,236 1,255,238 1,514,414
level 2 187,542 190,002 273,860 469,588 750.257 893,595
level 3 112,622 110,765 162,282 278,126 455,584 517,640
level 4 66,433 63,105 92,352 163,848 267.815 284,144
level 5 39,359 35,218 51,124 95,372 152,008 149,370
level 6 22,701 19,096 27,504 53,074 83,185 75,750
level 7 12,908 10,058 14,508 30,768 42,530 37,273
level 8 7,249 5,132 7,608 17,552 19,368 15,203
level 9 - - - 11,500 8,982 5,639
level 10 - - - 7,476 - -

Table 3.4: Generated levels with number of faces.

Table 3.5 shows a comparison of the proposed approach to the reference QSlim imple-
mentation of Garland and Heckbert [GH97a]. The runtime complexity of their approach is
O(N log N), due to the required priority queue. In contrast to that, the complexity of the
proposed algorithm is O(N) (Figure 3.6) as it only use radix sorting with fixed key length.
Compared to CPU simplification, it achieve a speedup of 30 to 40 and can perform up to
2 million collapses per second. The simplification time is similar to the transfer time of
the levels from HDD to the GPU and is significantly faster than the transfer time over a
network. The total amount of consumed graphics memory is approximately 7 to 8 times

QSlim proposed approach
model time (s) k Op/s memory time (s) k Op/s speedup
Apache 8.0 55.7 136.4 MB 0.29 1537 28
St. Dragon 8.0 54.7 139.9 MB 0.28 1564 29
Buddha 10.0 54.4 174.3 MB 0.35 1552 29
Welsh Dragon 22.2 49.8 354.2 MB 0.73 1519 31
Youthful 35.8 48.3 550.7 MB 0.89 1941 40
Awakening 43.9 46.9 655.6 MB 1.03 2003 43

Table 3.5: Comparison of processing time and the number of operations per second with
QSlim tested of the test system.

30 3 Mesh Simplification

higher than that of the original models. This is equal slightly less than the main memory
consumed by CPU quadric error metrics.

Compared to the vertex clustering algorithm of Lindstrom [Lin00] the speedup is
approximate 10. Consequently, the proposed method is 20 times faster than using BSP
trees [GS02] and 70 times faster than octree vertex clustering [SW03]. Compared to the
GPU implementation of vertex clustering by DeCoro and Tatarchuk [DT07], the proposed
method is 3 to 4 times slower. They implemented the method however for vertex position
only (k = 3). With increasing quadric dimension, the difference vanishes since most of the
time is spent to optimize the vertex placement. In addition, even octree vertex clustering
requires slightly more triangles to achieve the same quality.

Finally, the runtime of each step is analyzed of the adaption and rendering algorithm
in Figure 3.5. Already for k = 6, the most time consuming part of the algorithm is the
quadric error minimization. As the LDL decomposition has a time complexity of O(Nk),
this dominates the runtime for higher number of attributes.

8%

28%

42%

6%
3%

10%
3%Connectivity Data Structure

Vertex Quadrics
Quadric Error Optimization
Parallel Edge Collapses
Connectivity Update
Edge Buffer Compaction
LOD Creation

Figure 3.5: Relative time of the adaption steps compared to rendering.

0,0

0,2

0,4

0,6

0,8

1,0

0 0,5 1 1,5 2 2,5 3 3,5 4

Ti
m

e
(s

)

M Faces

Figure 3.6: Processing time and number of faces of the proposed algorithm for the models
from Table 3.5.

3.2 Instant Level-of-Detail 31

Figure 3.7: Each second generated LOD of the Apache, Buddha, Youthful and Awakening
model. The first level is the original model.

32 3 Mesh Simplification

3.2.5 Conclusion and Limitations

In this chapter a parallel implementation of the quadric error simplification developed
by Garland and Heckbert [GH97a] was proposed. By collapsing all edges with a local
minimum of the collapse cost, the generated meshes are identical to those produced by
the sequential algorithm for a given error bound. On a customer level graphics card, the
method can generate a set of LODs for a model containing over 4 million faces in less than
a second. This is comparable to loading the generated LODs from disk and significantly
faster than network transfer.

The main limitation of the proposed algorithm is that the computation of the target
placement is rather expensive. With increasing number of attributes, this dominates
the total runtime. Another limitation is, that the triangle flips are not checked during
simplification. While this was unproblematic for the models I examined, it might produce
visible artifacts for others.

A possible extension of the proposed method would be the addition of vertex pair
contractions. These could be integrated by adding an additional set of virtual edges before
simplifying the mesh for a level. The maximum vertex distance would then be in the range
of the error threshold.

CHAPTER 4
Iso-Surface Extraction and Simplification

During the last decades, the resolution of volume data sets has constantly grown which also
increased the memory requirements and computation times. A high number of triangles
is generated from such data sets when using iso-surface extraction algorithms. Such
algorithms are based on selecting an iso-value for the density and generating a triangle
mesh that approximates the corresponding iso-surface. Often finding the correct iso-values
requires user feedback to interactively determine the optimal one. In such cases, fast and
efficient algorithms are required to reduce feedback time.

For high quality meshes, the classical marching cubes algorithm is often used. It is based
on a linear interpolation of the density between the vertices of the volume. Unfortunately,
it produces a mesh than contains a high number of sliver triangles. This also results in
a high number of faces, which increases rendering time and memory consumption of the
mesh. While other approaches, especially the dual marching cubes algorithm, reduce the
number of triangles and improve their shape, the approximation error is higher. Instead
of improving the mesh during extraction, another approach is to reduce the number of
triangles by collapsing sliver and co-planar ones after iso-surface extraction. The classical
approach is to use a mesh simplification algorithm after the whole iso-surface is extracted.
The simplification step itself generates a finial mesh, that is a further approximation
of the initial iso-surface. One of the main problems is the huge memory consumption
when starting to simplify a detailed iso-surface mesh. This can only be solved by using
out-of-core simplification algorithms, especially stream simplification methods.

Another possibility is to directly simplify the mesh while it is being reconstructed. The
volume is either processed using a plane sweep algorithm or by partitioning it into a
regular grid or octree. As the processing front of the iso-surface extraction algorithm
needs to be fixed during simplification, the vertices on the current boundary must not be
collapsed. This however leads to strong artifacts because the neighborhood of the vertices
was already strongly simplified. The main effect is that the number of vertices along the
boundaries remains high and a lot of sliver triangles appear in that regions. The so-called
tandem algorithm alleviates this problem by introducing a time lag. The simplification

33

34 4 Iso-Surface Extraction and Simplification

error is reduced for vertices close to the current front and thus the vertex density gradually
increases. When the front proceeds, the vertices on the previous boundary can now be
better simplified as their neighbors were not reduced too much. While the mesh quality is
better, the error falloff constitutes a trade off between memory consumption and processing
time on one side and mesh quality on the other.

Instead of using a time lag, the proposed algorithm locally block only those collapse
operations that might not be performed when simplifying the complete mesh. Traditional
simplification algorithms perform the collapse operations sorted by their introduced
error. As the operations are local, the same mesh can be produced by any global
operation ordering, as long as the local order remains. The proposed algorithm exploit this
property and simply block all operations in the direct neighborhood of the processing front.
When additionally enforcing the correct local order, the simplification error automatically
decreases for vertices close to the current boundary (see Figure 4.1). This way, the result
will be identical to a simplification of the complete mesh and the operations are performed
as soon as possible.

Figure 4.1: The interleaved iso-surface extraction with the locally blocking stream sim-
plification of the proposed algorithm. Notice the automatic increase of the triangle density
towards the processing front of the extraction.

Recent iso-surface extraction and simplification algorithms were implemented on the
GPU. In this chapter, a massively parallel algorithm is proposed, which combined iso-
surface extraction and simplification. The main contributions of the proposed approach
are:

• A high quality out-of-core iso-surface extraction algorithm running within seconds
on current GPUs.

• A parallel stream simplification algorithm to directly reduce the number of triangles
that produces the same result as a simplification of the whole mesh.

4.1 Previous Work 35

4.1 Previous Work

As mentioned above, the proposed approach combines techniques from iso-surface extraction
and simplification algorithms. In this section a short overview of recent approaches in
both fields is given.

4.1.1 Iso-Surface Extraction

The marching cubes algorithm [LC87] was designed for volume data sets defined on
a rectilinear grid. The grid is a three-dimensional Cartesian discretized scalar field,
often called voxel grid. The algorithm divides the whole data into cubes and processes
them sequentially. In every cube, the scalar values are classified using an iso-value (see
Section 2.2.1). One drawback of the classical marching cubes algorithm is the possibility
of holes in the mesh. These are caused by ambiguous cases, when two or three vertices
are above or below the surface but not connected by cube edges. Soon extensions were
proposed to solve the ambiguities and generate hole free meshes [HGB93, MSS94, Pau94].
Another possibility is to use tetrahedrons [TPG99] instead of cubes, but this drastically
increases the number of triangles. Later, Chernyaev also defined a topologically correct
iso-surface based on tri-linear interpolation [Che95].

In addition, several methods were proposed to improve the performance. Wilhelms and
van Gelder [WG90] introduced a modified branch-on-need-octree with min-max decisions
to save calculation time. The methods of Shen et al. [SHLJ96] and Livnat [Liv99] further
improved this idea. They use span spaces, by which the eight corners of a cube are reduced
to a two-dimensional point. Then partitions (lattice elements) and k-d-trees allow a fast
extraction of the iso-surface. To improve the mesh quality, Schaefer and Warren [SW04]
proposed the Dual Marching Cubes algorithm. A dual grid lying in the primal grid and
the use of the quadric error function combined with the method of Lindstrom [Lin00]
for positioning dual vertices generate a mesh with better quality and less triangles. The
algorithm is also very good in reconstructing sharp features (e.g. edges or corners) but the
surface does not accurately approximate the tri-linearly interpolated iso-value. Mueller
and Stark [MS91] proposed an adaptive method, which is called Splitting Boxes. Here the
box (i.e. the cube) will be split and checked for just one sign-change in every edge. The
splitting is applied recursively up to a given lowest level.

Recent approaches exploit the processing power of massively parallel graphics proces-
sors (GPUs). Reck et al. [RDG∗04] proposed an algorithm to extract iso-surfaces from
tetrahedral volumes. This method pre-selects the intersections of surface and voxel grid
on the CPU and generates the mesh on the GPU using an interval tree. For rectilinear
grids, a tetrahedalization is required that leads to a higher number of triangles and also
introduces some artifacts. Johansson et al. [JC06] also use span spaces for pre-selection and
pre-classification. The GPU is used for interpolation and their approach is not restricted

36 4 Iso-Surface Extraction and Simplification

to tetrahedral grids anymore. Tatarchuk et al. [TSD07] propose a hybrid of marching
cubes and marching tetrahedra running on the GPU. First they pre-process the scalar
values to calculate the gradients. After voxelization, the cubes are used as input and
tessellated into tetrahedra. The iso-surface is generated on GPU but again contains a
higher number of triangles than the original marching cubes algorithm.

4.1.2 Simplification

Mesh simplification is one of the fundamental techniques for real-time rendering of complex
polygonal models. There is an extensive amount of methods that mainly focus on accurate
bounds of the simplification error. A review of simplification algorithms is given in a
section 3.1.

4.1.3 Hybrid Algorithms

Current iso-surface extraction algorithms are based on a combination of the extraction
itself with a simplification algorithm. The methods of Attali et al. [ACSE05] and Dupuy et
al. [DJG∗10] directly simplify the mesh while it is being generated. Attali et al. [ACSE05]
uses a serial marching cubes, which runs in a tandem with a simplification algorithm.
There is an extraction step and a simplification step alternating layer-by-layer. Their
main contribution is to introduce a time-lag to the simplification. This means that edge
collapses are delayed until the extraction front is further away from the cut plane and
therefore results in a better approximation of the initial mesh. Dupuy et al. [DJG∗10] this
idea by using a load-balanced-cluster (Load Sharing Facility High Performance Computing)
to parallelize extraction and simplification. In addition, they do not use a plane sweep
algorithm but partition the volume using an octree. Another extension is that the parts
of the mesh that cannot be simplified further are stored on disk to reduce the memory
consumption.

4.2 Parallel Out-of-Core Iso-Surface Extraction and Simplification33

The core idea of the proposed approach is to interleave a massively parallel marching
cubes algorithm with a massively parallel stream simplifier. As both algorithms run on
the GPU, the proposed algorithm also minimize device to host communication since only
the reduced mesh is transferred. Due to its simplicity, or partition strategy is a plane
sweep algorithm, i.e. the data are processed in layers, although other partitionings would
easily be possible.

33 Unpublished [UDG12].

4.2 Parallel Out-of-Core Iso-Surface Extraction and Simplification 37

4.2.1 Overview

The first module of the proposed method is the surface extraction itself that is based on
a modified marching cubes algorithm. Implementing the algorithm in CUDA allows to
extract the mesh of each cube in parallel. The proposed algorithm do not use textures but
plain CUDA arrays which are easier to handle, especially during memory management.
In addition, the algorithm support non-power of two rectangular volumes of arbitrary
dimensions. Section 4.2.2 describes the implementation in detail.

The second module is the mesh simplification that receives the output of the first one as
input. The simplification is based on edge collapse operations colv that contract edges by
collapsing two connected vertices v and vu (see Figure 4.2). By applying colv the adjacent
faces fl and fr of the vertices v and vu disappear. The position and normal of the collapse
vertex v are computed by minimizing the quadric error metric [GH97a], which is also used
to compute the collapse cost. An in depth discussion of the simplification algorithm is
given in Section 4.2.3.

v

vu

colv

fn0
fn6

fn3

fr
fl

fn1

fn5 fn2

fn4

fn0
fn6

fn3

fn1

fn5 fn2

fn4

v

Figure 4.2: Edge collapse. The edge defined by vertex v and vu is collapsed into the
vertex v (comp. Figure 3.3).

4.2.2 Parallel Marching Cubes

The proposed algorithm divide the volume of dimension dimX × dimY × dimZ into layers
and slices like Attali et al. [ACSE05]. The k-th slice contains all vertices with the same
y-coordinate. The k-th layer as a set of all vertices, edges and patches between or on the
k-th and the (k+1)-th layer. So the volume comprises the layers from 0 to (dimY − 1).
The algorithm then process the layers in ascending order.

During surface extraction the algorithm group the slices and layers into partitions. Every
partition is composed of N slices and N − 2 layers respectively, which are processed in
two loops and mainly by two kernels (see Algorithm 7). The first kernel calculates the
cube codes and, if necessary, the intersection between iso-surface and cube edges. The
second one creates the triangles and thus builds up the mesh contained in the layers.

Note that two additional slices are required to compute surface normals from the

38 4 Iso-Surface Extraction and Simplification

P, REST = partition(N)
kernel_cubecode_init()
for j = 0 to P − 1 do

kernel_cubecode(N − 2)
kernel_generate(N − 2)
call_simplification_module()

kernel_cubecode_rest(REST)
kernel_generate_rest(REST)
call_simplification_module()

Algorithm 7: Parallel Marching Cubes Module.

gradients. Consequently the partitions overlap by one slice in each direction. As the
vertices of the first slice were already calculated in the previous partition, the algorithm do
however only need one additional slice in each partition. This means that when a partition
has N slices only N − 2 layers can be used for extraction (see Algorithm 7). In addition,
separate kernels for the first and last slices are needed.

For each cube, the cube code kernel is executed (see Algorithm 8) using a thread block
dimension of 16 × 16. Assuming that the four corners and four edges of the cube’s bottom
are already processed, every single thread just processes vertex v4 and the edges e4, e7
and e8 (see Figure 4.3). An exception are threads on the ’right’ and/or ’front’ border of
a grid, that also process the edges e5, e6, e9, e10 and e11 and the vertices v5, v6 and v7.
When f : R3 → R is the scalar field and ρ ∈ R is the iso-value, every density value will
be classified by:

∀v ∈ R : f ′(f(v)) =

⎧⎨
⎩1, f(v) ≥ ρ

0, f(v) < ρ
. (4.1)

If f ′ is zero, then the vertex is below the surface and if f ′ is one, it is inside or on the
surface. When encoding the eight corner vertices of a cube into an eight-bit value, it
uniquely defines the topology of the intersecting surface. If e.g. the corner vertices v1 and
v4 are inside, the cube code would be f ′(f(v7, v6, v5, v4, v3, v2, v1, v0)) = 00010010.

Every thread also calculates the gradient of vertex v4. Threads at the grid’s border

kth − layer = i ∗ (N − 2)
for j = 0 to N − 2 do

foreach cube ∈ kth − layer in parallel do
calculate_gradients()
generate_cubecode()
if 0 < cubecode < 255

calculate_intersections()
shift_cubecode()

kth − layer = kth − layer + 1

Algorithm 8: Cube code kernel.

4.2 Parallel Out-of-Core Iso-Surface Extraction and Simplification 39

e0

e8

e3

v0 v1

v4

v2

v3

v5

v6v7

e1

e2

e5

e4

e6

e10

e7

e11

e9

Figure 4.3: Edge and vertex indices similar to [Pau94]. Every single thread in a kernel
just processes the blue corner and edges.

process up to four gradients. The gradients and the cube code always have to be calculated
for the previous layer. A thread sets the first four bits of the cube code and then shifts
the code four bits to the right at the end. The parallelization enforces to enumerate cube
edges not just locally, as depicted in Figure 4.3, but also globally. The proposed algorithm
prevent a multiple calculation of intersection points between the iso-surface and cube edges
by storing the results in an array with the following order: first all x-edges are stored, then
all z-edges, and finally the y-edges between the 0 − th slice and the 1 − st slice. Then the
algorithm continue with the next slice and the array ends with all z-edges of the (N − th)
slice. Algorithm 8 gives an overview of the cube code kernel. Note that Algorithm 7 and
8 omit special cases that must be handled explicitly, for example when there is just one
partition and no rest.

When the first kernel calculated the intersections (including gradients) and cube codes,
kernel_generate produces the mesh with help of the classical lookup-table. The lookup
table provides the topology of the surface. With its help patches can be defined and only
intersections of cube edges and iso-surface has to be calculated. The result is a level set
Iρ := {v ∈ R3|f(v) = ρ}, which formula can be simplified by subtracting ρ from the whole
dataset. At the end this kernel also removes degenerate triangles and feeds the mesh to
the second module, the stream simplification. Table 4.1 lists all data structures required
during iso-surface extraction.

4.2.3 Parallel Stream Simplification

The simplification module is based on the parallel edge collapse simplification algorithm
proposed in the section 3.2 which was originally developed to process a single input mesh
in-core. Figure 4.4 gives an overview of the extensions and modifications necessary to

40 4 Iso-Surface Extraction and Simplification

buffers bytes per entry
marching cubes

slices (dimX · dimZ)N
gradients 12(dimX · dimZ)N
voxel edges 24((dimX · dimZ)(3N − 1) − (dimX + dimZ)N)
cube code (dimX − 1)(dimZ − 1)(N − 1)
triangles 60(dimX − 1)(dimZ − 1)(N − 1)

Table 4.1: Memory consumption and data structures required for the iso-surface extrac-
tion. dimX, dimY and dimZ are the size of the input grid and N is the number of slices.

level complete
no

remove illegal
collapses

compact mesh

quadric error
optimization

parallel
edge collapses

connectivity
update

edge compaction

extensions modifications previous

connect meshes

append mesh of
next N slices

all slices processed

yes

no

save mesh

update vertex
quadrics

yes

Figure 4.4: Simplification including the extensions (left) and modifications (middle) of the
previous simplification algorithm (right).

implement a streaming out-of-core simplification running on the GPU.
First, the mesh build from N slices is transferred from extraction module. Then the

vertex quadrics are computed for all new and all connecting vertices. The edge data
structure is filled as in the original simplification algorithm. Afterwards, the parallel
simplification loop starts. First, the quadric error is optimized and illegal collapses are
removed. The edge can collapse, if none of its vertices is on the processing front. In
addition, collapses of edges directly connected to these boundary edges are also not possible
since the algorithm do not know their local ordering yet. After removing all illegal collapses,
the operations can be applied. Finally, the collapsed edges are removed after updating the

4.2 Parallel Out-of-Core Iso-Surface Extraction and Simplification 41

face and edge connectivity. If no further collapses are possible, the next partition is added
to the simplified mesh. During compaction, the positions of the vertices inside the vertex
buffer can change. Therefore, the new positions need to be stored in a lookup table to
connect the mesh with the next slices. If no further slices are available, the simplified mesh
can be rendered or stored on disk. Note that despite the modifications, the total memory
consumption is the same as that of the original simplification algorithm. In addition, the
temporary memory required for the extraction module is larger that the total memory
required for simplification.

4.2.4 Results

The test system consists of a 3.333 GHz Intel Core i7-980X CPU with 6 GB DDR3-1333
main memory and an NVIDIA GTX580 (841/4204MHz). CUDA is used to implement
the parallel simplification and reconstruction. To produce the rendering OpenGL is used.
As input different models of ’The Volume Library’ [Roe] are used. Table 4.2 gives an
overview of the volume datasets which is used for evaluation. The largest volume is the
Porsche model car. It also produces the most faces and thus consumes the highest amount
of resources. The volumes bonsai tree and CTA-head have a medium size. The CTA-head
is chosen to evaluate the proposed algorithm on medical data sets. The bonsai contains
many ramifications, which yields in a high number of faces in the simplified model.

model grid-dim (x,y,z) file size (MB)
bonsai #2 512 × 189 × 512 48.384
CTA head 512 × 120 × 512 30.720
Porsche 559 × 347 × 1023 193.784

Table 4.2: The dimension and file size of the models which are used. The pvm-format
of [Roe] is converted to a raw-file.

Table 4.3 shows the relative and absolute number of cubes crossed by the iso-surface for
different iso-values. The number of generated triangles is roughly twice the number of
crossed cubes.

model % Xed cubes # Xed cubes # faces
bonsai #2 (20) 4.488921 2,203,645 4,405,952
bonsai #2 (25) 2.293320 1,125,808 2,252,046
bonsai #2 (50) 0.671935 329,858 658,158
CTA head (50) 3.078006 956,441 1,913,256
CTA head (60) 9.529183 2,961,041 5,878,764
CTA head (250) 2.235819 694,745 1,392,432
Porsche (14) 2.404524 4,744,499 9,580,084

Table 4.3: Relative and absolute number of crossed cubes depending on the iso-value,
given in parenthesis. In addition, the number of generated faces before simplification is
shown.

42 4 Iso-Surface Extraction and Simplification

As partitioning, a fixed size of 12 slices per iteration of the algorithm is used. By
comparing the data of the Table 4.4, it can be seen that the extraction time is almost
linear in the number of cubes and slightly increases with a higher number of generated
faces. The processing performance ranges from 12.0M (CTA head, 60) to 12.9M (Porsche,
14) cubes per second and the number of generated triangles lies between 174k (bonsai #2,
25) and 2.24M (CTA head, 60) per second. The memory consumption is also dominated
by the partition size with a small overhead for the simplified mesh. Notice that there is
no significant difference in processing times or memory consumption between medical and
other data sets. The generated meshes are shown in Figure 4.6 and 4.7.

model extr. simp. # faces mem.
bonsai #2 (20) 4.09s 5.74s 4,396,060 480.5 MB
bonsai #2 (25) 3.99s 2.86s 2,245,412 430.6 MB
bonsai #2 (50) 3.78s 0.95s 658,158 394.7 MB
CTA head (50) 2.58s 1.19s 1,845,976 423.4 MB
CTA head (60) 2.62s 5.31s 1,216,734 514.2 MB
CTA head (250) 2.58s 1.37s 1,392,432 411.5 MB
Porsche (14) 15.34s 21.12s 4,140,690 923.2 MB

Table 4.4: Computation time for surface extraction and simplification, number of faces
after simplification and maximum memory consumption.

The CTA head dataset with an iso-value of 250 has a similar percentage of crossed
cubes as the old bone (2.04%) in [ACSE05] and contains a similar medical structure. The
CPU used by Attali et al. (1.4 GHz) was approximately three times slower than of used
test system (3.333 GHz). Processing the old bone would thus require approximately 7.64
seconds on the used test system, which is roughly three times slower than the proposed
extraction algorithm (2.58 seconds). Considering that the total number of cubes is 87.5
percent higher, the speedup is approximately by a factor of 5.6. Comparing the total time,
the improvement of the proposed method is even higher. Following the same argument as
for the extraction, the total speedup is almost tenfold.

Figure 4.5 analyzes the total memory consumption when processing the Porsche model
in detail. For each partition, the maximum memory consumption during extraction and
simplification along with the number of faces after simplification is plotted. While the
memory gradually increases with the size of the generated mesh, it is dominated by the
data required to process the current partition.

When considering mesh quality, the proposed method does not require a time lag being
a trade off between memory consumption and quality. Instead, the proposed method
guarantees that the ordering of collapse operations is locally preserved and thus produce
meshes of the same quality as the underlying simplification algorithm. In contrast to
Attali et al. [ACSE05], the directional bias is for example close to zero.

4.2 Parallel Out-of-Core Iso-Surface Extraction and Simplification 43

810

830

850

870

890

910

930

0

1

2

3

4

5

0 3 6 9 12 15 18 21 24 27

M
em

or
y

Partition (layer × 10)

Faces
Total memory

M
 F

ac
es

Figure 4.5: Total memory consumption and number of faces contained in the extracted
after each partition of the Porsche model was processed.

4.2.5 Conclusion and Limitations

The proposed algorithm shows superior performance and mesh quality compared to previous
approaches. Especially removing the need for an explicit time lag by locally blocking
simplification operations allows to improve the mesh quality while even reducing the
memory overhead. Due to the massively parallel implementation, the proposed approach
directly benefits from the future improvements of graphics hardware or other parallel
systems.

By guaranteeing the same local order of collapse operations as a simplification of the
complete mesh, the same quality as the underlying simplification algorithm is achieved.
This also implies a better mesh quality since no artifacts at partition boundaries are
introduced.

Currently the proposed implementation is limited to models for which at least three
slices fit into memory. The reason for this is that a simple plane sweep partitioning is
used. For very large volume datasets it would be possible to use a regular grid instead
without changing the core algorithm. The only part that needs to be modified in this case
is the connection of the new partition’s mesh with the currently simplified one.

44 4 Iso-Surface Extraction and Simplification

Figure 4.6: Renderings of the extracted and simplified meshes of bonsai #2 (iso 20, 25
and 50). The images on the right show closeups with the mesh overlaid as wire frame.

4.2 Parallel Out-of-Core Iso-Surface Extraction and Simplification 45

Figure 4.7: Renderings of the extracted and simplified meshes of CTA head (iso 50, 60
and 250) and Porsche (iso 14). The images on the right show closeups with the mesh over-
laid as wire frame.

CHAPTER 5
Progressive Mesh Rendering

The desire for high quality polygonal models in interactive applications is constantly
increasing. Despite the enormous processing power of graphics processors (GPUs), highly
detailed models cannot be rendered in real-time. Often they even do not fit into graphics
memory since only models with up to 44.7 million triangles using34 can be stored within a
gigabyte. This even drops to 38.3 million if per vertex texture coordinates are used and so
on. The standard solution to reduce rendering time are static or dynamic levels-of-detail
(LODs). While static LODs are simply a set of polygon meshes, dynamic LODs store
a coarse base mesh and a sequence of refinement operations. Dynamic LODs have the
advantages that view-dependent adaption is possible and transitions between LODs, so-
called popping artifacts, are much less visible. The most common data structure used in
this context are progressive meshes. Sequential algorithms can however not process enough
data to fully feed the GPU and the problem of all previous parallel approach are the local
vertex dependencies. While this is unproblematic for serial algorithms, the dependencies
drastically reduce the number of parallel operations. Thus they do not only increase the
number of triangles but also reduce the adaption speed. A high adaption speed is on the
other hand the only way to prevent popping artifacts since even prefetching algorithms
cannot compensate slow adaption for more than a few frames.

Out-of-core techniques were developed as LOD techniques normally increase the total
memory consumption. For static LODs, the model is typically partitioned using a spatial
hierarchy. Then a single LOD is generated for each node. This results in a hierarchical LOD
(HLOD) structure where only the currently required nodes need to be kept in memory. The
approach can also be extended using dynamic LODs for each node for fully view-dependent
adaption. In any case, special care must be taken at the boundaries between nodes to
prevent visible holes in the model. Out-of-core techniques only shift the problem of limited
fast memory to limited bandwidth of slower external devices. Compression techniques are
widely used to reduce the bandwidth. Unfortunately, efficient compression approaches

34 Using 32 bit floats.

47

48 5 Progressive Mesh Rendering

provide only coarse grained random access. For HLODs, the problem can be circumvented
using node-wise compression. The contents of each node are compressed separately and
decompressed during loading. The compression however cannot be used to reduce the
graphics memory consumption.

The algorithms proposed in this chapter solve the problems discussed above by intro-
ducing a novel progressive mesh data structures that are specifically designed for real-time
parallel adaption on the GPU.

In a section 5.2, a compact in-core data structure for progressive meshes is presented. It
is optimized for parallel processing and low memory consumption on the GPU. The main
contributions are:

• A novel random access data structure for progressive meshes that requires less than
50% of an ordinary mesh.

• A massively parallel adaption algorithm running on the GPU that is almost as fast
as rendering the adapted mesh. The approach outperforms previous techniques by
almost an order of magnitude.

In a section 5.3, a new out-of-core algorithm for real-time view-dependent rendering of
huge models is presented, which combine the advantages of view-dependent progressive
meshes and HLODs. Using a spatial hierarchy the previous in-core algorithm (Section 5.2)
is extended to support out-of-core rendering. In addition a compact data structure for
progressive meshes is presented, optimized for parallel GPU-processing and out-of-core
memory management. The main contributions are:

• A view-dependent out-of-core progressive mesh data structure which can also be
used for occlusion culling.

• No simplification constraints between nodes of the spatial hierarchy.

• A massively parallel adaption algorithm with stable, real-time frame rates.

The in-core (Section 5.2) and out-of-core (Section 5.3) algorithms presented above are
suitable for real time rendering of large models, but they have severe limitation. Some splits
are postponed several frames as they are waiting for others to be applied before them. This
neighborhood dependencies are very problematic for fast panning over the model, because
of visible popping artifacts. The same problem have all previous approaches. To solve this
problem a novel algorithm for real-time view-dependent rendering of gigabyte-sized models
is proposed in a section 5.4, which use a less restrictive dependency scheme and combine
the advantages of both previous algorithms. It is based on a neighborhood dependency
free progressive mesh data structure. Using a per operation compression method, it is
suitable for parallel random-access decompression, without storing decompressed data.
By using an optional bounding volume hierarchy, it is suitable for in-core and out-of-core
rendering. The main contributions are:

5.1 Previous Work 49

• A view-dependent in-core and out-of-core full random access compressed progressive
mesh data structure.

• No inter-dependencies between adjacent vertices to prevent waiting for dependent
operations.

• A massively parallel adaption algorithm with stable, real-time frame rates.

• A bounding volume hierarchy for out-of-core rendering and occlusion culling.

5.1 Previous Work

View-dependent simplification has been an active field of research over the last two decades.

5.1.1 Progressive Meshes

In addition to the existing static LOD techniques [GH97b], Hoppe [Hop96] introduced
progressive meshes (PMs) that smoothly interpolate between different levels-of-detail.
Depending on the view position and distance, a sequence of split- or collapse operations
can be performed for each vertex to generate a view-dependent simplification. The inter-
dependency of split operations can either be encoded explicitly [XV96] or implicitly [Hop97].
Depending on the view position and distance, a sequence of split- or collapse operations can
be performed for each vertex to generate a view-dependent simplification [XV96, Hop97].
Hoppe later optimized the data structures and improved the performance of the refinement
algorithm [Hop98]. El-Sana et al. [ESV99] prevented fold-overs of triangles by introducing
a view-dependent tree containing modified rules for the operations. The dependency
also requires no additional memory, but a suitable neighborhood data structure for the
adapted mesh. In addition, the split operations cannot be stored as compactly as with
the approach of Hoppe. De Floriani et al. [DFMP98] used multi-triangulations (MTs)
based on vertex insertion and removal and proposed a direct acyclic graph (DAG) to the
reduce memory. Unfortunately, updates in the MT are computational more expensive
than vertex split and collapse operations. Pajarola and Rossignac [PR00] introduced
compressed progressive meshes, where the input mesh is simplified in batches. A batch
is created by selecting the first 11% of non-adjacent edges from a priority queue. All of
these edge-collapses have to be performed in parallel. This allows for a very compact
coding, but view-dependent adaption is impossible. Pajarola et al. [PR00] introduced
compressed progressive meshes, that allow for a very compact coding, but view-dependent
adaption was impossible. Pajarola and DeCoro [Paj01, PD04] developed an optimized
sequential view-dependent refinement algorithm. Their FastMesh is based on the half-
edge data structure and manages split-dependencies by storing a collapse-operation for
each half-edge. Diaz-Gutierrez et al. [DGGP05] proposed a hierarchyless simplification

50 5 Progressive Mesh Rendering

algorithm that can also be used for stripification and compression. While they completely
remove any inter-dependency of split operations, an efficient view-dependent adaption is
not possible since that requires a split-hierarchy. This however requires 24 additional bytes
per vertex of the adapted mesh. In the case of terrains, where vertices lie on regular 2D
grids, Levenberg [Lev02] proposed a method that is predicated on fine-grain mesh updates
and coarse-grain updates. The GPU-based approach by Ji et al. [JWLL06] generates
an LOD texture atlas by resampling the original model onto a regular remesh over a
polycube map. They use a vertex shader to displace invisible vertices to infinity. This
however has a significant impact on performance since no vertex transformations are saved.
DeCoro and Tatarchuk [DT07] propose an octree-based vertex clustering for real-time
simplification on the GPU. Adaptive simplification is supported by warping the input
mesh. While the algorithm is fast enough to generate LODs at runtime, the visual quality
is suboptimal due to the primtive vertex-clustering. Hu et al. [HSH09] proposed a parallel
adaption algorithm for progressive meshes. They introduced a relatively compact explicit
dependency structure that allows to group vertex splits and half-edge collapses into parallel
steps. The drawbacks of this technique are the explicit dependencies that need additional
memory and that only half-edge collapses are supported.

5.1.2 Hierarchical Level of Detail

The first HLOD approach was proposed by Erikson et al. [EMB01]. The problem of this
technique is that no simplification along cuts between hierarchy nodes is possible without
introducing visible gaps. Constraining the simplification however leads to a significant
increase of the number of primitives and thus low frame rates. Guthe et al. [GBK03]
solved this problem by first using an unconstrained simplification of the nodes. The
gaps are then filled during rendering using line strips. Cignoni et al. [CGG∗04] proposed
a different solution by creating alternating diamond shaped hierarchies. This way the
triangles along a node boundary can be simplified at coarser levels. Finally, Borgeat et
al. [BGB∗05] proposed to use geomorphing to simplify the triangles along node boundaries
during rendering. Unfortunately, the transform performance is approximately halved
this way such that the previous two approaches are faster. On the other hand, popping
artifacts are drastically reduced due to smoother LOD transitions. Another approach are
the FarVoxels [GM05], which replace pixel sized triangles by a point and use an octree for
point clustering. Sander et al. [SM06] proposed an algorithm that performs geomorphing
on the GPU to render a given mesh. This approach extends the idea of Borgeat et al. and
applies geomorping on all triangles. The clustered hierarchy of progressive meshes (CHPM)
approach [YSGM04] was the first to combine HLOD and progressive meshes. A progressive
mesh is stored for each node to allow for smoother LOD transitions. Nevertheless, fully
view-dependent adaption is still not possible due to the use of view-independent adaption
inside each node.

5.2 Parallel View-Dependent Refinement of Compact Progressive Meshes 51

5.1.3 Compression Approaches

Mesh compression approaches have good compression rates [TR99, AAR05], but random
access is not possible. The first approach allowing random access was introduced by Choe
et al. [CKL∗04]. Kim et al. [KCL06] provide a more effective approach for random access
compression, based on their multi-resolution data structure [KL01]. Yoon et al. [YL07] use
streaming mesh compression to improve the compression rate over previous approaches.
The data are divided into blocks and each block is compressed separately. The approach
of Choe et al. [CKLL09] is similar to [CKL∗04] but contains some improvements. The
performance of this approach was slightly improved by Du et al. [DJCM09] using a k-d tree.
The approach of Courbet et al. [CH09] has a slightly better performance but uses a single-
rate compression scheme. The CHuMI Viewer [JGA09] introduces a primary hierarchical
structure (nSP-tree) in which a kd-tree is embedded to improve the performance. Although
all previous compression approaches have good compression rate, only coarse grained
random access is supported and interactive rendering is not possible without severe popping
artifacts.

5.2 Parallel View-Dependent Refinement of Compact Progressive
Meshes35

The proposed view-dependent refinement algorithm is based on the vertex hierarchy of
progressive meshes [Hop97]. The construction of the split hierarchy is unmodified, but
instead of directly using the quadric error (Sections 3.1.2 and 3.2.1) for the LOD selection,
the appearance error of Guthe et al. [GBBK04] is utilized to support arbitrary vertex
attributes, because it significantly improves the visual quality at the cost of a slightly
higher primitive count.

5.2.1 Overview

The progressive mesh is generated by simplifying the original mesh to the base mesh with
a series of collapse operations. The original mesh can then be reconstructed by applying
the corresponding split operations in reverse order. A view-dependent reconstruction can
be generated by performing only those splits that are necessary for the current view point.
During this process the local ordering of operations needs to be preserved. This leads to
the dependency rules formulated by Hoppe [Hop97]:

• The ordering of operations applied to a single vertex must be preserved.

35 In proceedings of Eurographics Symposium on Parallel Graphics and Visualization (EGPGV2010) [DMG10a], based on the
diploma thesis [Der09].

52 5 Progressive Mesh Rendering

• A split can only be applied if the next split operation of each neighboring vertex
was generated earlier during simplification.

• Edge collapse operations are only legal if the next collapse of each neighboring vertex
was created later.

The first dependency rule can be efficiently encoded in a forest of binary trees where the
root nodes are the vertices of the base mesh. Figure 5.1 shows an edge collapse operation
colv which removes the vertex vu and modifies v. The adjacent faces fl and fr of v and vu

degenerate and are removed from the mesh. The corresponding vertex split splv inverts
this operation. Accordingly the faces fl and fr are generated when the vertex v is split
into v and vu. In addition, some of the faces adjacent to v become adjacent to the new
vertex vu.

colv

fn5fn2 f
vu

f

fn1

fn2

fn4 fn1

fn5fn2

f
vl

vr
v vl

vr
v

fn0
fn3

fr
fl

fn0
fn3

fn1fn4

splv

fn0
fn6

fn0
fn6

Figure 5.1: Edge collapse and vertex split operation.

5.2.1.1 Tree Structure and Dependency Coding

The operations are stored in a one-dimensional array. The tree structure could now be
encoded by storing the indices i of the left and right child for every node. This would
however require 8 bytes per operation, whereas a binary tree can be encoded using only
two bits per node with a succinct coding. It is only store if left and right child are present
using a single bit for each of them in a tree structure byte. Then the indices il and ir are
calculated from the current index i:

il = 2i + nr − skipi (5.1)

ir = 2i + nr − skipi + 1, (5.2)

where skipi is the number of empty nodes up to the left child and nr is the number of root
nodes (i.e. base mesh vertices). An example of the operation tree is shown in Figure 5.2.
Unfortunately, calculating the current skipi requires parsing the complete data structure
up to the current node and counting the number of zero bits. Instead of this, the skip
count is stored with every operation. This would again require 4.25 bytes per operation. A

5.2 Parallel View-Dependent Refinement of Compact Progressive Meshes 53

4/23/2

1/10/0 2/1

8/87/6

5/4

10/129/10

6/4

01/111/0 10/1 11/2 00/2 00/411/4 00/6 00/8 00/10 00/12

level 0 level 1 level 2

index/skip

children/skip offset

Figure 5.2: Compactly encoded forest of binary trees.

far more compact encoding with equal computational complexity can be achieved by only
storing the skip for every n-th node. Then the number of zero bits is counted from the
last base skip. In the proposed approach, the counting is completely avoided by encoding
the difference between skipi and the base skip. This difference is stored the six remaining
bits of the tree structure byte. In these six bits the numbers up to 63 can be encoded.
Considering the fact that skipi can be at most two larger than skipi−1, the base skip for
every 32nd node need to be stored. This sums up to a total of 1.125 bytes per node to
encode the tree structure.

Unfortunately the operation indices cannot be used to preserve the local ordering since
the tree encoding has changed their sequence. This necessitates to explicitly encode the
neighborhood dependency for each operation. A compact encoding of this dependency
can however be derived rather simple: the algorithm start with the base mesh M0 and
collect all operations that can be applied directly. After applying these, the algorithm
get the maximally refined next mesh M1. Repeating this procedure, a series of meshes
{M0, M1, . . . , Mn} is generated, where Mn is the original mesh. A split that refines Mi

to Mi+1 is then defined as having a split level of i. The local ordering is preserved if
only splits with a lower split level than those of the neighboring vertices are applied. The
corresponding condition for an edge collapse is simply that the split level is less or equal
for all vertices adjacent to v and vu. As the level n of the original mesh is proportional
to the logarithm of its vertices, a single byte is sufficient to store the split level even for
models with several millions of triangles.

5.2.1.2 Topology Encoding

To efficiently encode which of the neighbor vertices are adjacent to the new faces, an
ordering on the vertex neighborhood is imposed. Then the algorithm can simply encode
the vertices vl and vr by their rank in this ordered sequence. The same applies to the
partitioning of the neighbor faces into those that are adjacent to vu after the split and

54 5 Progressive Mesh Rendering

those that remain adjacent to v. Here a bit vector can simply used where an entry is set
to one of the v is replaced by vu for that face. Previous approaches use a cyclic ordering
that requires a neighborhood graph. Instead, a unique ID is assigned to every vertex and
face which remains constant over any modification of the mesh. This allows for an efficient
handling of vertex and face orderings and enables the algorithm to support non-manifold
meshes. While the unique ID’s of base mesh vertices and faces are simply their indices,
the ID’s of vertices and faces created by a split operation are defined as follows:

IDvu = v0 + is (5.3)

IDfl
= f0 + 2is (5.4)

IDfr = f0 + 2is + 1, (5.5)

where v0 and f0 are the number of vertices and faces in the base mesh and is is the index
of the split operation.

Since a split creates zero to two faces, the algorithm also need to encode the case
that fl or fr are not present. If both ranks are encoded using four bits each, up to 15
neighboring vertices can be handled within a single byte. When storing this partitioning
in two bytes, vertices with up to 16 neighboring faces are supported. The limitations to 15
neighboring vertices and 16 faces do not impose significant restrictions since the average
valence in a triangle mesh is 6 and valences above 15 are extremely rare. Nevertheless, the
simplification algorithm needs to adhere to these restrictions. If the original mesh contains
vertices with higher valence, they can not be collapsed until enough adjacent vertices are
removed.

5.2.1.3 Attribute Encoding

In addition to the connectivity, the new attributes (position, normal, texture coordinates,
etc.) of v and vu must also be stored. Both of them are encoded as difference to the
attributes of v before the split. In contrast to previous approaches a linear quantization of
the whole input data is not used but an individual one for each operation. This allows
to reduce the quantization error by inserting a dummy split that does not change the
connectivity. As the same quantization is used for all attribute differences of the operation,
they must be scaled relatively to each other. Since the overall quantization error needs
to be minimized, the relative scale factors should be as close as possible to the absolute
difference values of all compression operations. This is achieved by computing the mean
absolute difference of each attribute difference over all split operations. Then these norms
are used as scale factors. As the scaling is relative to the other attributes, all of them can
multiply with an arbitrary factor. This factor is chosen such that the maximum absolute
difference is scaled to MAX_HALF in order to utilize the complete range of values for
the scaling of each operation. This per operation scaling is a division by a factor s such

5.2 Parallel View-Dependent Refinement of Compact Progressive Meshes 55

that the difference values are mapped into the interval [−1 . . . 1]. The optimal scaling (the
minimal s) is then stored as half precision floating point. Despite the adaptive scaling one
difference is most of the time significantly larger than the others. To accurately represent
small and large values a cubic function is applied before the final quantization to n bits.
Given a discrete value d ∈ [−1 . . . 1], the quantized value q is:

q = 3√
d(2n−1 − 1), (5.6)

where n is the number of bits. The dequantization is:

d =
q3

2n−1 − 1
(5.7)

5.2.1.4 Refinement Criteria

Three view-dependent criteria determine whether a vertex needs to be split or can be
collapsed. A vertex can be collapsed if it is either outside of the view frustum or its normal
if facing away from the viewer. Since each vertex of the adapted mesh represents several
original vertices, there exists no single normal. Instead, the maximum angular deviation α

from the normal of the simplified vertex is encoded. Given the view direction d = p−e
‖p−e‖ ,

where p and e are the vertex and eye position, and the normal n, the vertex is back-facing
if:

n · d > sin α (5.8)

To save memory sin α is not stored as floating point value but only a quantized value
using four bits. During quantization the ceiling is used such that the inaccuracy only leads
to back-facing vertices being classified as front-facing. Note that even the quantization
to four bits, as it is used in the implementation, only marginally increases the number
of rendered triangles. The vertex can possibly be collapsed when it is back-facing or
outside the view frustum. Otherwise the algorithm need to check the simplification error
of the associated split and collapse operations. The projected simplification error εs of the
vertices’ split operation s consists of the geometric distance γs and the attribute difference
μs. The maximum simplification error δs is then simply max(γs, μs). While the attribute
difference is equal for all view directions, the projected geometric error depends on the
angle between n and d. The squared projected error can now be written as:

ε2
s =

((n · d)μs)2 + (||n × d||δs)2

D2 , (5.9)

where D = ‖p − e‖ is the view distance. To efficiently store the two simplification errors,
the fact is exploited that δs is more important as it dominates the projected error. So
instead of two floating point values, only δs is stored as half float and quantize the ratio

56 5 Progressive Mesh Rendering

λs = μs

δs
using four bits. The ratio and sin α are stored into a common byte. Then the

projected error is written as follows:

ε2
s =

((n · d)λs)2 + ||n × d||2
D2 δ2

s (5.10)

=
(n · d)2(λ2

s − 1) + 1
D2 δ2

s (5.11)

If εs exceeds a given threshold the split operation has to be applied. On the other hand,
the vertex can be collapsed, if the simplification error εc of its collapse operation c is below
the threshold. In the current implementation, tan 1

60
◦ is used as threshold to guarantee

that the difference is not perceived if the projection matches the real-world view condition.
Other thresholds, e.g. 1

2 pixel screen space error, are also possible.

5.2.1.5 Dynamic Data Structures

The adaption algorithm maintains a static split tree storing the split hierarchy as well as a
dynamically updated VertexBuffer, IndexBuffer, and some other temporary data. The
SplitTree contains both the topologic and the geometric information of the progressive
mesh. The base mesh is only used to initialize the dynamic data and thus not kept in
memory. By using these data structures, the selectively refined mesh can be rendered in
real-time. Table 5.1 shows the static and dynamic data structures in detail, which are
required to maintain the relevant buffers. Since the complete algorithm runs on the GPU,
the all data is stored in graphics memory.

The main data structures required for rendering are the vertex buffer, which contains
the position and attributes of the adapted vertex and the index buffer that contains
the connectivity. Both are stored as vertex buffer objects (VBOs) and are therefore
separated from all other data. The neighborhood information for the currently applied
split operations is stored in the neighborhood array. It contains the number of adjacent
triangles and their indices for each vertex that will be split. Since up to 16 neighbor
triangles exist, 68 bytes per split are needed. As only a quarter of the vertices can be
split in parallel, this translates to 17 bytes per active vertex. For each active vertex v,
the algorithm additionally stores its state, the unique ID and the next split and collapse
operation.

As the tree structure of the progressive mesh is only stored from root towards the leaves,
the upwards references are kept in the dynamically updated collapse tree. Its elements
consist of the index of the corresponding split operation is, a reference to the previous
collapse, and a reference to the vertex vu that is removed by this operation. In addition,
each active vertex v holds a reference to the corresponding entry in the collapse tree.
The complete structure is shown in Figure 5.3. In addition, three temporary buffers are
required for the compactions: one for the scan input, one for the output and one temporary

5.2 Parallel View-Dependent Refinement of Compact Progressive Meshes 57

buffers elements memory (bytes)
static structures

operations

tree structure 1 1
8 n

dependency 1n
ref. criteria 3n
topology 3n

delta vectors quant. delta 2kn
delta scale 2n

dynamic structures

active faces index VBO 24m
triangle ID 8m

active vertices

vertex VBO 4km
vertex ID 4m
next split 4m
next collapse 4m
state vstate 1m

collapse tree
split index ic 4m
prev collapse 4m
vertex vu 4m

temporary prefix sum 24m

neighborhood size 1m
triangle index 16m

total (10 1
8 + 2k)n + (98 + 4k)m

Table 5.1: Elements of the data structure. k, n, and m are the number of attributes, origi-
nal, and base mesh vertices.

buffer [SHZO07]. Each buffer contains four bytes per entry and the maximum number
of entries is the number of triangles in the current mesh which is twice the number of
vertices.

Most other algorithms support meshes with k = 8 attributes only consisting of position,
normal, and 2d texture coordinates. With k = 8 the complete hierarchy and adapted
mesh use a total of 261

8n + 130m bytes, where n and m are the numbers of vertices in the
original and adapted meshes respectively. Table 5.2 shows a comparison with previous
view-dependent LOD schemes. As for highly detailed models, it is generally impossible
to view the whole surface at high resolution within a single frame, one can assume that
m << n. Therefore, the requirements for the static data structures that are the only
depending on n are more important than the ones of the dynamic structures. With only
261

8n the proposed data structure favorably compares to all other view-dependent methods
with at least a reduction of 62%, so roughly a third of the memory.

Compared to the 129 bits per vertex (bpv) the proposed algorithm need, the compressed
progressive meshes of Hoppe [Hop96] and Pajarola and Rossignac [PR00] require 31–50
and 21–28 bpv only. The drawback of those is that both use variable length coding which
is not suitable for efficient random access decompression. Therefore, their approaches

58 5 Progressive Mesh Rendering

nil

M0
Base Mesh

M
Active Mesh

v

nil

prev.
collapse

collapse

is

collapse operation (ic)

vu

...

... ...

... ...

Figure 5.3: Linking between active vertices, the SplitTree, and the CollapseTree.

View-Dependent LOD scheme Memory size (bytes)
VDPM [Hop97] 216n
SVDLOD [Hop98] 88n + 100m
MT [DFMP98] 75n
VDT [ESV99] 90n
FastMesh [PD04] 88n + 6m
PVDPM [HSH09] 69n + 56m
Proposed scheme 26 1

8 n + 130m
Indexed Face Set 44n

Table 5.2: Comparison of memory size with previous schemes for k = 8 attributes.

cannot be used for selective parallel LOD adaption. In addition, [PR00] does not support
view-dependent refinement at all.

5.2.2 Runtime Algorithm

In order to efficiently exploit the parallel architecture of the Compute Unified Device
Architecture (CUDA), the algorithm is subdivided into several steps, that are performed
for each parallel adaption. The partitioning is chosen such that each step can be processed
completely in parallel.

To classify which operation can or should be applied to a vertex, those options are tracked
in a status byte vstate. Two bit flags, potential_split and potential_collapse, are used to
mark those vertices that can possibly be split and/or collapsed. If their neighborhood
prevents any of these operations, the according bit is cleared. The operation that should
be applied to the vertex is stored in two other bit flags, want_split and want_collapse. A
combination with the corresponding potential flags marks a vertex for a split or collapse
operation. In addition, a vertex can have one of the following two special states after a
collapse operation: the vertex that was removed is labeled with the removed state and

5.2 Parallel View-Dependent Refinement of Compact Progressive Meshes 59

the other one is marked as collapsed. The state is stored in a separate array to facilitate
coalesced reading and writing since it is accessed very often to by aligned to four bytes.
Based on these states, split and collapse operations are applied. The parallel stages of the
algorithm are discussed in the following. The basic phases of the algorithm are shown in
Figure 5.4 together with the static and dynamic data they access.

UpdateVertexState
Operations

VertexState (vstate)
ActiveVertices
Collapse (colv)DeltaVec

Static structures Dynamic structures

Indices
Attribute

A l S li
Operations

VertexState (vstate)
ActiveVertices
C ll (l)ApplySplits Collapse (colv)DeltaVec

Indices
Attribute

VertexState (vstate)
A ti V ti

ApplyCollapses
Operations ActiveVertices

Collapse (colv)DeltaVec
Indices

Attribute

VertexState (v)

CompactBuffers
Operations

VertexState (vstate)
ActiveVertices
Collapse (colv)DeltaVec

Indices
Attribute

Figure 5.4: Read/Write Access of the individual refinement steps.

5.2.2.1 Vertex State Update

If the refinement criteria determine that vertex v needs to be split, the want_split flag is
set in its state. Otherwise, the want_collapse flag is set if the refinement criteria allow a
collapse and the vertex is marked as potential_collapse. In all other cases no operation is
required for v, unless it was already marked as want_split in a previous iteration. In both
of these cases the state remains unchanged. After the desired operation is determined
for each vertex, the algorithm need to check if both vertices of a collapse operation are
marked for coarsening. If only one of them is marked, the want_collapse flag is removed
again. Note that since the algorithm check for impossible operations later, this step is not
strictly necessary but leads to a considerable speedup.

Due to the dependency of split operations the algorithm may have marked vertices for

60 5 Progressive Mesh Rendering

split or collapse operations that cannot be performed. In case of a collapse this is not
problematic since the operation is not necessary to achieve a desired quality. For a split
operation however, those neighboring vertices that must be split before the current vertex
v need to be found. For this purpose, each face f is checked whether one of its vertices
is marked as want_split but another vertex of the same face has a lower split level. If
this vertex is not already marked for splitting as well, its want_split flag also needs to
be set. The procedure is performed twice since only the neighboring dependent splits are
marked each time. This way, every dependent split with a topological distance of dt is
marked after at most dt

2 adaption iterations. To remove splits and collapses that cannot
be performed yet, the algorithm traverses all triangles and again checks the vertex states.
For the split operations, only the vertex with the lowest split level can be split in each face
f . In addition, if any vertex is marked for splitting, no vertex of f can be collapsed. If no
vertex of the face needs to be split, finally the collapse operations are checked. Here only
the collapse operation with the highest level can be performed in each triangle. Note that
the corresponding want flags are not changed, but the potential flags to prevent repeated
checking of the same vertices. Algorithm 9 shows the complete vertex update partitioned
into the four stages described above.

When processing large amounts of data on the GPU the aligned memory access of each
thread group (warp) is crucial for performance. This access pattern is called coalesced
reading and writing. When looping over all faces, the three vertex indices of each face
are needed but directly loading them from global memory would violate coalescing. To
prevent this, the algorithm read all vertex indices of a thread block into its shared local
memory and then fetch the indices of the current triangle from there.

5.2.2.2 Parallel Vertex Splits

After updating the state of all active vertices and removing illegal splits and collapses,
the operations can be applied. Before the splits can be performed, the neighborhood
of each split vertex needs to be known. The neighborhood information is collected by
traversing all faces and if a face f is adjacent to a split sv, the face index is added to the
neighborhood of v. As the algorithm only want to collect the neighborhood for the vertices
that are currently split, a so-called compaction operation on the split indices is performed
firs. For this purpose, the parallel compaction algorithm of Sengupta et al. [SHZO07] is
used to compute an array of split indices. After generating this array and collecting the
face neighbors for each split vertex v, the following operations are performed:

1. The new vertex vu is generated and v is moved to it’s new position.

2. The two faces fl and fr are added to the index buffer and the triangle ID array.

3. The other faces in the neighborhood of v are relinked according to the encoded
topology changes.

5.2 Parallel View-Dependent Refinement of Compact Progressive Meshes 61

foreach vertex v in parallel do
if marked(v, collapsed)

mark(v, potential_split, potential_collapse)
if need_split(v)

mark(v, want_split)
elif may_collapse(v) && marked(v, potential_collapse)

mark(v, want_collapse)
foreach vertex v in parallel do

vu = get_other(v)
if v! = vu

if !marked(vu, want_collapse)
unmark(v, want_collapse)

if !marked(v, want_collapse)
unmark(vu, want_collapse)

repeat twice
foreach face f in parallel do

if any_vertex_marked(f , want_split)
levelmax = get_max_active_split_level(f)
mark_dependent_splits(f , levelmax, want_split)

foreach face f in parallel do
if any_vertex_marked(f , split)

levelmin = get_min_active_split_level(f)
unmark_dependent_splits(f , levelmin)

if any_vertex_marked(f , want_split)
unmark_all_collapses(f)

elif any_vertex_marked(f , collapse)
levelmax = get_max_active_collapse_level(f)
unmark_illegal_collapses(f , levelmax)

Algorithm 9: The four parallel stages to update the vertex states. The third stage is
performed twice to speed up the propagation of dependent splits through the mesh.

4. The adjacent vertices of v and vu are marked as potential_split as their split could
be waiting for the current one. As the adjacent vertices cannot be collapsed, the
potential_collapse flag is cleared.

5. v and vu are marked as potential_split and potential_collapse since both operations
could be possible in the next frame.

Algorithm 10 gives an overview of the complete parallel vertex split procedure.
As the neighborhood information is parsed identically for every split vertex, the coalesced

reading is achieved with the following layout: First, the number of adjacent faces is stored,
then the indices of the first neighbor triangle, than that of the second and so on. In
addition to this layout, the algorithm must assure that each new block of indices begins at
an address that is a multiple of 128. Therefore, the number of splits is rounded up to the
next multiple of 32 for addressing in the neighborhood array.

62 5 Progressive Mesh Rendering

compact(splits)
foreach face f in parallel do

if adjacent_to_split(f)
append_to_neighborhoods(f)

foreach split sv in parallel do
split_vertex(v)
add_faces(v)
relink_neighbor_faces(v)
mark_neighbor_vertices(v, potential_split)

Algorithm 10: Parallel vertex split algorithm.

5.2.2.3 Parallel Edge Collapses

To perform the collapse cv, the corresponding vertex vu is required. Since vu is stored with
the collapse operation, the algorithm simply need to check whether the current vertex
is different. The collapse is only applied if both are marked as collapse. The operation
cv marks vertex vu as removed, moves v to the target position and marks it as collapsed.
In addition, the target vertex for vu is stored in the next split since this is not required
any more after removing vu. Then all faces are relinked by checking if a vertex of face f

was removed. In this case, the target vertex is fetched and the vertex of the face is set
accordingly. If the face becomes degenerated it is removed as well. When a collapse was
applied to one vertex of the face, all other vertices are candidates for a possible collapse
and are marked as such. Algorithm 11 shows the parallel processing of the edge collapse
operations.

foreach vertex v in parallel do
if marked(v, collapse)

vu = get_other(v)
if v! = vu && marked(vu, collapse)

collapse_vertices(v, vu)
foreach face f in parallel do

relink_vertices(f)
if degenerate(f)

remove_face(f)
else if changed(f)

mark_vertices(f , potential_collapse)

Algorithm 11: Parallel edge collapse algorithm.

5.2.2.4 Buffer Compaction

The final step of the adaption is the compaction of buffers where elements have been
removed. These buffers are the active vertices (including the vertex VBO), active faces
(with the index VBO), and collapse operations. Note that when compacting the vertices
or collapses, the references to them must be updated accordingly. While the compaction

5.2 Parallel View-Dependent Refinement of Compact Progressive Meshes 63

of the faces and thus the indices is mandatory since the index VBO is used for rendering,
the compaction of the vertices and collapse operations is not. The latter two only need to
be compacted every few frames to prevent bloating of the buffers. As only a few elements
are removed each time and the ordering does not need to be preserved, a specialized
in-place compaction algorithm was developed. In contrast to previous approaches, it has
the advantage that it do not need to duplicate the array that is compacted. Otherwise it
would need copies of all dynamic data structures except the temporary buffers and the
neighborhood information which would drastically increase the memory consumption.

The main idea of the compaction is to first calculate the number nc of elements after
the compaction. Then all gaps before nc are filled with elements after nc (see Figure 5.5).
First the valid elements are marked with one and the invalid ones with zero. Then the
prefix sum is computed using the parallel algorithm of Sengupta et al. [SHZO07]. This
gives us the number of valid elements nc as well as the first valid element that needs
to be moved. Then the positions of the empty elements is gathered in the final array.
Their position in the free position array can be computed by subtracting the prefix sum
from their index. Finally, the target position of the elements that need to be moved are
computed by subtracting the first moved from the prefix sum of the current element. Then
the position is looked up in the free position array and can copy the element into the
compacted buffer. The algorithm does not require additional temporary memory except
that used to compute the prefix sum. The free positions can overwrite the flag array, since
the flags are not required anymore after computing the sums.

elements 0 1 2 3 4 5 6 7 8 9 10 11 12 13

valid y y n y n y y n y y n n y y

flag 1 1 0 1 0 1 1 0 1 1 0 0 1 1

sum 0 1 2 2 3 3 4 5 5 6 7 7 7 8 9

i – sum 0 0 0 1 1 2 2 2 3 3 3 4 5 5 5

free pos. 2 4 7

compacted 0 1 9 3 12 5 6 13 8

size after compaction num. used

first moved

Figure 5.5: Basic principle of the in-place compaction algorithm.

5.2.2.5 Memory Management

During adaption the memory requirements of the dynamic data structures can grow or
shrink. To alleviate the cost for memory allocation and copy when the size of an array is
modified, more memory is reserved always than currently required. In addition, the array
size is restricted to multiples of 4096 elements. Figure 5.6 shows an example of growing
and shrinking a data structure. If the currently required amount of memory exceeds the

64 5 Progressive Mesh Rendering

Growing Shrinking
required
memory

available
memory

Figure 5.6: Growing (left) and shrinking (right) of an allocated array during adaption.

array size, one additional block is allocated to prevent re-allocation in the next frame. For
shrinking a similar strategy is employed by only allocating a smaller array if more than
two blocks are empty. Despite reducing the memory consumption, one free block is still
keep to prevent quick re-allocation when the array is growing again.

To improve the rendering performance, the triangles are sorted such that the transform
cache can be utilized. As the ordering is gradually destroyed when inserting new faces
at the end of the buffer, the algorithm need to restore it every few frames. Since the
memory consumption also changes when many operations are applied, the sorting is simply
integrated into the memory management. When a new buffer is allocated for the index
VBO and the face IDs, the triangles are sorted by their minimum index during the copy
operation. This results in a mesh that is mainly composed of triangle fans and reduces the
transform cost by a factor between of two to three. In total, the rendering time is reduced
by 20% to 50% depending on the complexity of the fragment shader. If no allocation
occured for more than two seconds, a re-allocation is forced and thus a sorting of the faces.
This is necessary as gradual movements do not quickly enough lead to changes in memory
consumption but nevertheless perturb the ordering.

5.2.3 Results

The test system is built of a 3 GHz Intel Core2 Duo CPU with 2 GByte of main memory
and a GeForce GTX 285. The OpenGL API is used for rendering and CUDA to implement
the parallel algorithm. First the memory requirements of the static progressive mesh data
structure are evaluated. Table 5.3 gives an overview of the progressive meshes that are
used as input and the number of added dummy split operations.

With the exception of the Phlegmatic Dragon, the number of dummy splits is significantly
below 1% of the original number of operations. But fortunately, the compression ratio of
this model will increase again as it has the highest number of attributes k as tangents and
texture coordinates are required to map a BTF on the model. All other models except the
manuscript, which additionally stores per vertex color, only use position and normal as
vertex attributes. The maximum split level is proportional to the logarithm of the ratio of

5.2 Parallel View-Dependent Refinement of Compact Progressive Meshes 65

model v0 f0 k # ops. # dummy ops. lvl.
Phl. Dragon 41 44 14 240,016 6,099 (2.54%) 142
St. Dragon 815 536 6 436,830 3,215 (0.74%) 207
Buddha 727 1866 6 542,925 3,529 (0.65%) 135
Manuscript 42 17 10 2,155,575 3,369 (0.16%) 191
Asian Dragon 35 16 6 3,609,565 7,801 (0.22%) 253

Table 5.3: Progressive meshes used as input, number of added dummy split operations,
and maximum split level.

original to base mesh vertices. Therefore, larger models can be handled by increasing the
complexity of the base mesh. The resulting compressed sizes, compared to an indexed
face set that is traditionally stored on the GPU for rendering, are listed in Table 5.4. As
expected, the models with higher number of attributes are slightly less compressed by the
proposed method. Nevertheless, the memory reduction is relatively similar for all models.
The memory consumption lies between 46% and 50% compared to an indexed face set.

model vmax fmax mem. IFS mem. PM
Phl. Dragon 240,057 480,076 18.3MB 9.0MB (49.2%)
St. Dragon 437,645 871,414 19.9MB 9.3MB (46.5%)
Buddha 543,652 1,087,716 24.9MB 11.5MB (46.2%)
Manuscript 2,152,840 4,305,679 123.3MB 57.9MB (47.0%)
Asian Dragon 3,609,455 7,218,906 165.2MB 76.1MB (46.1%)

Table 5.4: Comparison of the static data that resides in graphics memory compared to an
indexed face set.

During rendering, the dynamic data structures consume additional memory. For all
models except the phlegmatic dragon, the total amount of graphics memory nevertheless
stays below that of an indexed face set. Table 5.5 shows the number of rendered faces, the
total rendering time, and the memory consumption for the views shown in Figure 5.9. For
almost all models the required memory and total frame time are always less than that of
the original mesh. The coarsening on the back faces and outside the view frustum can
be clearly seen in the external views of the adapted models. The reduced level-of-detail
further away from the camera can also be noticed at the example of the Asian Dragon.

Figure 5.7 shows the adaption and rendering time together with the memory consumption
for a pre-recorded movement around the Asian Dragon. The consumed graphics memory is
always less than required by the original model. The frame rate seldomly drops below the
60 Hz of the display even when a high number of triangles is required. As the time required
for each frame is often significantly below 16 ms, more than one adaption iteration could
even performed and only render once. Compared to static hierarchical LODs (HLODs)
using the same error measure [GBBK04], the number of primitives is reduced by a factor of
3 to 5 and the frame rate improves by a factor between two and three. A special problem

66 5 Progressive Mesh Rendering

model rendered memory total frame
faces (MB) time (ms)

Phl. Dragon 224,090 (46.7%) 24.1 (129.1%) 10.4 (131.4%)
St. Dragon 190,236 (21.8%) 19.1 (93.3%) 3.2 (95.8%)
Buddha 152,716 (14.0%) 19.5 (78.1%) 3.3 (68.7%)
Manuscript 274,678 (6.4%) 73.5 (59.6%) 4.5 (39.8%)
Asian Dragon 646,844 (9.0%) 108.9 (65.9%) 10.5 (41.2%)

Table 5.5: Memory consumption and total rendering time of the different models. The ra-
tio compared to rendering an indexed face set of the original model is shown in parenthesis.

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500
Frame

m
s

0

20

40

60

80

100

120

140

160

180

M
B

Adaption time (ms)
Total time (ms)
Memory (MB)
IFS memory (MB)

Figure 5.7: Timings and memory consumption for the Asian dragon with a pre-recorded
camera path.

of HLODs is that rendering is split into several independent render calls which reduces
the number of primitives per second compared to a single mesh.

Figure 5.8 shows a detailed analysis of the runtime of each step of the adaption and
rendering. Note that the rendering performance is identical to rendering a static model
with the same number of triangles and thus the proposed method needs approximately
2.6 times as long as rendering a static mesh. Considering that the vertices already cut
down by half due to the simplification of back faces, the proposed method will almost
always be faster than rendering an indexed face set of the original model. While this
even holds for rather coarse models, the performance gain increases with the complexity
of the original mesh. Due to the time required for the pixel shaders, the speedup is of
course not linear with the reduction. On average the algorithm can process 120 million
triangles per second (M�/sec). This is a speedup of factor 9.2 compared to the approach
of Hoppe et al. [HSH09] that only achieves 13 M�/sec on the used test system. The
main source of speedup is probably due to the fact a single CUDA compaction is used

5.2 Parallel View-Dependent Refinement of Compact Progressive Meshes 67

Update State

Apply Splits

Figure 5.8: Time per frame partition for the serveral steps of the proposed algorithm and
for map-/unmap as well as rendering.

instead of several geometry shaders to construct a compact indexed buffer for rendering.
In addition, rendering the adapted mesh is also approximately twice as fast using the
proposed approach due to the compact vertex buffer. Due to ther stronger neighborhood
contraints the proposed method however requires thrice the number of iterations to reach
the specified LOD than the method of Hoppe et al. [HSH09]. Since on the other hand
each iteration is more than nine times faster, the proposed method still converges in a
third of the time. Nevertheless, popping artifacts are still visible during a fast pan over
the model which can be observed in the accompanying video. Note that the relatively
large amount of time required for memory management could be reduced by using larger
blocks during allocation. This would on the other hand increase the amount of memory
used up by the dynamic data structures.

Even with most recent graphics drivers approximately 25% of additional rendering time
is required for the mapping and unmapping of the index and vertex buffer for access from
CUDA. According to the documentation the time for mapping should be insignificant if
the device is set to OpenGL interoperability. As I have observed no difference between
activating OpenGL interoperability or not, I consider this to be a driver problem and did
not include this time in the results. This is also one of the reasons for the rather large
share of the memory managemant as allocating a new VBO requires unmapping the old
and mapping the new one.

68 5 Progressive Mesh Rendering

Figure 5.9: Renderings of view-dependently refined meshes. The images on the right show
external views with the view frustum in yellow. The color coding depicts the level of detail,
where red is low LOD and green high.

5.3 Parallel View-Dependent Out-of-Core Progressive Meshes 69

5.2.4 Conclusion and Limitations

In this section a compressed progressive mesh representation is proposed. It was specifically
developed for parallel refinement on modern graphics hardware. By performing all currently
possible adaption operations in parallel, the algorithm only need 1.6 times as long as
for rendering of the adapted mesh. In total the algorithm need 2.6 times as long as for
rendering alone. This means that the performance is increased as soon as 62% of the
vertices are removed by simplification. Due to the view-dependent adaption, this reduction
is almost achieved by coarsening the back faces alone. Compared to prevoius parallel
view-dependent refinement algorithms the proposed method achieve an almost ten-fold
performance improvement. The proposed algorithm even outperforms hierarchical LODs
that were considered near-optimal for current graphics hardware by a factor of more than
two.

In addition to the improved performance, the proposed method also requires even less
graphics memory than the original model stored as indexed face set. For larger models,
approximately 30% to 40% are saved on average while other algorithms need more memory
than the original model.

One limitation of the proposed algorithm is that despite sorting the triangle into fans
to utilize the vertex cache, an additional memory reduction would be possible by using a
generalized triangle strip. Another, probably more severe limitation is that some splits
are postponed several frames as they are waiting for others to be applied before them.
Although this is only problematic for fast panning over the model, a less restrictive
dependency scheme would be desirable.

5.3 Parallel View-Dependent Out-of-Core Progressive Meshes36

The proposed view-dependent out-of-core refinement algorithm is based on the previously
discussed Parallel View-Dependent Refinement of Compact Progressive Meshes in-core
algorithm (Section 5.2) which is briefly describe before discussing the modifications.

5.3.1 Overview

After building a progressive mesh, a view-dependent reconstruction is generated by
performing only those split operations necessary for the current view. During this process
the local ordering of operations needs to be preserved. This leads to the dependency rules
formulated by Hoppe [Hop97]:

• The ordering of operations applied to a single vertex must be preserved.

36 In proceedings of Vision Modeling and Visualization (VMV2010) [DMG10b].

70 5 Progressive Mesh Rendering

• A split can only be applied if the next split operation of each neighboring vertex
was generated earlier during simplification.

• Edge collapse operations are only legal if the next collapse of each neighboring vertex
was created later.

The first dependency rule can be efficiently encoded in a forest of binary trees as shown
in Figure 5.10. For each vertex of the base mesh, a binary tree is constructed.

Figure 5.10: Split/collapse operation hierarchy represented as a forest of binary trees.

The operation indices cannot be used to preserve the local ordering because their
sequence is not preserved. Therefore the neighborhood dependency is encoded explicitly
for each operation. For compact encoding the main idea is to construct consecutive
independent sets:

1. Start with base mesh Mi = M0.

2. Store all currently possible operations in level i.

3. Perform all operations of level i on Mi to construct Mi+1.

4. Increment i and continue with the second step until no operations are left.

The split level is then stored for each operation and the local ordering is preserved if only
the vertex with lowest level in each face is split. Accordingly, only the vertex with the
highest level in each face can be collapsed.

A compact data structure is used to store the topology and attribute modifications of
each operation. The up to two new faces created by a split operation are defined by two
neighbor vertices vl and vr. These are stored by first defining an ordering on the vertex
neighborhood. For this purpose an operation index i is used and the index of each vertex
is either its base mesh index or the operation index plus the number of base mesh vertices.

5.3 Parallel View-Dependent Out-of-Core Progressive Meshes 71

Then, vl and vr are encoded by their rank in the ordered sequence of neighbor vertices. In
the example shown in Figure 5.11, the ranks are 0 and 4. In addition, the connectivity
modifications are encoded using an ordering of the neighbor triangles. The triangle index
is calculated analogously to the vertex index. A bit flag is then set to one for each triangle
adjacent to vu after the split. In Figure 5.11 the modified faces and the resulting bit vector
are shown.

vl
vr

vu

v

colv

splv

vl

vr
v

fn0

fn6

fn3

fr
fl

fn1

fn5fn2

fn4

fn0

fn6

fn3

fn1

fn5fn2

fn4

3

 = 0
 = 4

6

1

5 2

1 1

1 1

0
0

0

fn: 0110110

Figure 5.11: Example of topology encoding.

Both, the ranks of vl and vr, and the bit flag are encoded with fixed length variables.
The valence of the vertices is restricted to 15 and the number of neighbor faces to 16.
Thus 8 bits are sufficient for the new faces and 16 bits for the connectivity modifications.
Vertices with higher valence are not collapsed during simplification. As the collapse of two
neighbor vertices reduces their valence they will be collapsed at a later stage if suitable.

In addition to the topology, the attribute differences (position, normal, texture coordi-
nates etc.) of v and vu are stored. First, each attribute is scaled such that the variances
are confined to the same range. Then the differences are scaled to the range [−1,1] per
operation and quantized to n bits using a cubic function. To reduce the quantization error,
dummy splits are introduced if necessary. For the refinement criteria, the simplification
distance, normal cone angle, and the ratio of geometric to attribut error are stored.

The adaption algorithm additionally maintains a few dynamic data structures. They
store the split hierarchy as well as a dynamically updated vertex buffer and index buffer.
The main data structures required for rendering are the vertex buffer, which contains
the position and attributes of the adapted vertex and the index buffer that contains the
connectivity. Both are stored as vertex buffer objects (VBOs) and are therefore separated
from all other data. Together they form the indexed face set that is used for rendering.
To store the prefix sum, neighborhood and collapse information additional memory is
required.

72 5 Progressive Mesh Rendering

5.3.1.1 Spatial Operation Hierarchy

For out-of-core rendering a spatial hierarchy of split/collapse operations is now build.
The advantage over previous approaches is that this way no special boundary constraints
between adjacent hierarchy nodes are introduced. The hierarchy serves two purposes: first
of all, the operations should be grouped such that those which are likely to be performed
simultaneously or successively are stored together. In addition, it is also to be used
for occlusion culling in order to coarsen invisible parts of the model. During hierarchy
construction it thus needs to be optimized for both purposes.

For occlusion culling, Meißner et al. [MBH∗01] proposed a simple heuristic to construct
efficient kd-tree hierarchies for triangle meshes using a greedy algorithm. It is based on
the idea to minimize the total area of all bounding boxes in a hierarchy with a fixed
maximum number of triangles nmax per leaf node. Starting from the root node, an optimal
partition with respect to an estimated total bounding box area is performed. The area A

is estimated as:

A ≈ Al

(
1 + log2

⌈
nl

nmax

⌉)
+ Ar

(
1 + log2

⌈
nr

nmax

⌉)
, (5.12)

where Al and Ar are the bounding box areas of left and right child node and nl and nr

the respective number of triangles. Finding the optimal split is performed by sorting the
triangles in x-, y-, and z-direction and then calculating the estimated area for all ordered
partitions.

In contrast to a hierarchy for triangles, the operations are not only stored at leaf level but
also at inner nodes to reconstruct coarse approximations of the model. When processing a
node, the operations need to determined first that are stored in the current node. Then
their subtrees are partitioned into the child nodes. Finding the directly stored operations is
rather straightforward as those with the highest simplification error are required first. Since
it is not efficent to skip a node for two successive refinements of a vertex, all operations
which are referenced from the previous node are added first. For the root node, these
are the operations of the base mesh. When the operations are stored in the current node
their next operations are partitioned into the child nodes. This way a complete operation
subtree is stored in a single subtree. Due to storing operations not only at the leaf nodes,
the estimated area is slightly different than in the approach of Meißner et al.:

A ≈ Al log2

⌈
nl

nmax + 1

⌉
+ Ar log2

⌈
nr

nmax + 1

⌉
, (5.13)

where n∗ now is the number of operations.

5.3 Parallel View-Dependent Out-of-Core Progressive Meshes 73

5.3.1.2 Tree Structure

The child relations of the operation tree are encoded by storing the operations relative
to the current node. The relative indices are stored as cl for left and cr for right child
operation. Each operation is accessed using two values: the node index in and the local
index of the operation in this node il. A unique global index i which is required later can
be computed as:

i = nmaxin + il (5.14)

The node and local index of the child nodes are calculated as follows:

in,l/r =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cl,r < nmax : in

nmax ≤ cl/r < 2nmax : left_child(in)
cl,r ≥ 2nmax : right_child(in)
else : no operation

(5.15)

il,l/r = cl/r mod nmax, (5.16)

where in is the node of the current operation.
To lessen the constraint of 256 split levels as in the in-core case, 10 bits are used instead

of only a single byte for the level. Together with 11 bits for each of the child indices, the
ordering and dependency are encoded in four bytes per operation. Using the index coding
described above, up to 682 operations can be stored per node.

5.3.1.3 Data Structures

In contrast to the Parallel View-Dependent Refinement of Compact Progressive Meshes
in-core algorithm (Section 5.2) only the currently required parts of the static data are
stored in graphics memory. By using these data structures, the view-dependent mesh can
be refined and rendered in real-time with minimal memory requirements. Table 5.6 shows
the static and dynamic data structures required to maintain and update the vertex and
index buffers in detail. Differences to the in-core algorithm are marked in blue. Since the
complete algorithm runs on the GPU, all the relevant data is stored in graphics memory
and the main memory consumption is minimal. Besides temporary memory for loading,
only the mapping of nodes to memory positions and file offsets required for out-of-core
management are stored in main memory.

As the operations are referenced using a node and a local ID, these are stored instead of
the next split or collapse operation index. To apply the operations the operation hierarchy
also need to stored. To determine which nodes are loaded, pointers of the operation
nodes are additionally stored in device memory. For occlusion culling the visibility of
the nodes is additionally stored. In summary, the out-of-core data management requires
1.875 additional bytes for each operation, 4 bytes for each active vertex and 13 bytes for

74 5 Progressive Mesh Rendering

buffers elements memory (bytes)
static structures

nodes

nodes 8o
offset 4o
visibility 1o

operations

tree structure 3n
dependency 1n
ref. criteria 3n
topology 3n
quant. delta 2kn
delta scale 2n

dynamic structures

active faces index VBO 24m
triangle ID 8m

active vertices

vertex VBO 4km
vertex ID 4m
node ID 4m
local ID 2m
next collapse 4m
vstate 1m

collapse tree
node ID 4m
local ID 2m
prev. collapse 4m
vu 4m

temporary
prefix sum 24m
neighb. size 1m
neighb. index 16m

total 13o + (12 + 2k)n
+(102 + 4k)m

Table 5.6: Elements of the data structure. o, k, n, and m are the number of operation
nodes, attributes, operations in graphics memory, and vertices of the adapted mesh.

each node. As each node stores many operations, their number is rather low. In total
1.875n + 4m + 13o bytes additional memory is require for the out-of-core data management
compared to Parallel View-Dependent Refinement of Compact Progressive Meshes in-core
algorithm (Section 5.2). On the other hand, the memory requirements for the static data
are drastically reduced as only a subset of the operations is kept in graphics memory.

5.3.2 Runtime Algorithm

For the dynamic data structures the same block based memory management as in Parallel
View-Dependent Refinement of Compact Progressive Meshes in-core algorithm (Section
5.2) is used, but additionally introduce an out-of-core management for the static data
structures.

5.3 Parallel View-Dependent Out-of-Core Progressive Meshes 75

5.3.2.1 Out-of-Core Memory Management

The operations and attributes are subdivided into the nodes described above and stored
in a large file. Then only the currently necessary nodes are loaded into graphics memory.
A node is required when at least one of the active vertices or collapses has a reference
to it. A split operation can create vertices that reference nodes not available in graphics
memory. In this case, this node is loaded from disk into graphics memory. Before loading
the currently required nodes all inactive ones are removed first.

Since accessing the hard disk is a severe bottleneck, loading nodes into main memory
is preformed in a second thread. As soon as the data is available in main memory,
the rendering thread can copy it into graphics memory. To prevent strong frame rate
fluctuations only a maximum number of lmax nodes per frame is loaded, because the
memory transfer to the graphics card is relatively expensive. This approach slightly
slows down the adaption, but guarantees stable frame rates. If the number of required
nodes exceeds lmax the ones that were requested the highest number of consecutive frames
are loaded. This has the advantage that the model is uniformly adapted and no LOD
starvation can occur.

The operation memory is shared for all progressive models of the scene and a maximum
number of nodes omax kept in graphics memory is specified. If the number of totally
required nodes exceeds omax, a global level of detail scaling factor is used to coarsen all
models until enough memory is available. If later more free node are available the factor
is gradually reduced again.

5.3.2.2 Parallel Adaption Algorithm

In order to optimally exploit the parallel architecture of the GPU, the adaption algorithm
is subdivided into several consecutive steps. Each step is then performed in parallel. The
algorithm is based on 4 bit-states to encode possible and necessary operations and 2
temporary states for collapsed and removed vertices. It is composed of the five following
main stages, where the first three steps are similar to the in-core variant.

In the first step the state of the vertices is updated, where the refinement criteria
determine which vertices need to be split and which can be collapsed. In addition to the
original refinement criteria – i.e. view-frustum culling, back-face culling and projected
error – occlusion culling is also used to further reduce the number of active vertices. The
occlusion culling is based on the operation nodes whose visibility is determined after
rendering.

If the next split or collapse of a vertex is in an occluded node, the vertex itself is
marked as invisible. Visible (green) and invisible (red) blocks of a model are shown in
Figure 5.12. After checking if a vertex is occluded, the original refinement criteria are
tested to determine which operations need to be performed. When the necessary operations
are determined, the splits of neighbor vertices needed to force due to the face dependencies

76 5 Progressive Mesh Rendering

Figure 5.12: Red blocks - out of view frustum or occluded. Green blocks - visible.

and all impossible operations removed. Since not all static data is available in graphics
memory, the algorithm need to check whether the required operation and the operations
of its neighbor vertices are available. If this is not the case, the operation need to delay.

In a second step all remaining operations are applied. For this purpose the neighborhood
of the split vertices is collected first and then the split operations are performed. Applying
a split operation includes generating the new vertex vu, moving the vertex v and creating
two new faces fl and fr. After the split operations the collapse operations are performed.
For each collapse vertex v the corresponding vertex vu is removed, the faces are updated
and degenerate ones are removed.

The third step of the adaption is the compaction of buffers where elements have been
removed. These buffers are the active vertices (including the vertex VBO), active faces
(with the index VBO), and collapse operations. To improve rendering performance, the
index VBO is periodically sorted to exploit vertex caching.

Finally the algorithm determine which of the nodes are occluded to use this information
for the next frame. For this purpose hardware occlusion queries [CCG∗01] are used and
render the bounding boxes of the nodes. The query is performed after rendering the
complete scene and the result is fetched before the next parallel adaption. This way the
visibility is lagging one frame behind which is not problematic as it is only used for LOD
selection, but not for rendering. Regardless of the query results the complete adapted
mesh is always rendered. This approach is very efficient because the number of the active
nodes is small compared to the number of triangles, only asynchronous queries are used,
and only require a single switch between rendering and occlusion queries per frame.

5.3 Parallel View-Dependent Out-of-Core Progressive Meshes 77

5.3.2.3 Prefetching

When the user moves through the screen, the visible portions and the required LOD of
the object change. This results in a continuous change of the nodes currently required
in device memory. Due to the high latency of the hard disk, loading out-of-core data
results in a visible delay of the mesh refinement. This problem is solved with a two-step
prefetching algorithm: First, not only the currently required nodes are loaded, but also
their direct children if enough space is available. In addition, the current camera movement
is extrapolated and the view frustum is enlarged to contain all frusta of the subsequent 10
frames. This results in a dynamic adaption of the view frustum, which means that the
algorithm pre-refine parts of the model before they become visible.

Note that the prefetching algorithm is memory sensitive: it only works if enough memory
is available on the device. This is achieved by assigning a low priority to all prefetching
candidates, so these nodes are only processed after all other ones are loaded.

5.3.3 Results

The test system is built of a 2.4 GHz Intel Core2 Duo CPU with 2 GB of DDR2 main
memory, 16 lanes PCIe slot, and a GeForce GTX 480. The OpenGL API is used for
rendering and CUDA to implement the parallel algorithm. The out-of-core progressive
meshes are stored on a Seagate SATAII hard disk with 7200 rpm and 32 MB cache. The
access time is 8.5 ms and approximately 100 MB can be read per second. The resolution
of 1920 × 1080 is used in all experiments. Table 5.7 gives an overview of the progressive
meshes that are in the experiments used.

model v0 f0 # ops. # dummy ops. lvl. nodes
Asian Dragon 40 19 3,612,383 2968 (0.08%) 213 5507
David 659 1416 3,615,968 2529 (0.07%) 276 5536
Statuette 16 40 5,014,234 14254 (0.28%) 212 7678
Lucy 15 29 14,040,204 24681 (0.17%) 268 21421
Sponza scene 730 1504 26,282,789 44432 (1.69%) 276 40142

Table 5.7: Progressive meshes used in the experiments, number of base mesh vertices,
base mesh faces, operations, added dummy split operations, maximum split level and
nodes.

All models use position and normal as vertex attributes only (i.e. k = 6 attributes). The
resulting file sizes – compared to an indexed face set – are listed in Table 5.8. The file
size reduction is almost identical for all models and is approximately 50% due to identical
number of attributes. Note that HLODs and Quick-VDR both need 50% to 80% more
disk storage than an indexed face set.

Table 5.9 shows the number of rendered faces, the total rendering time, and the memory
consumption for the views shown in Figure 5.13 and the Sponza scene in the accompanied

78 5 Progressive Mesh Rendering

model vmax fmax mem. IFS mem. PM
Asian Dragon 3,609,455 7,218,906 165.2MB 82.9MB (50.2%)
David 3,614,098 7,227,031 165.4MB 83.0MB (50.2%)
Statuette 4,999,996 10,000,000 228.8MB 115.0MB (50.2%)
Lucy 14,027,872 28,055,742 642.2MB 322.1MB (50.2%)
Sponza scene 26,251,421 52,501,679 1201.6MB 603.0MB (50.2%)

Table 5.8: Number of original mesh vertices and faces and comparison of the static data
(PM) to an indexed face set (IFS).

model rendered memory total frame
faces (MB) time (ms)

Asian Dragon 853,667 (11.8%) 112.07 (67.9%) 11.0 (89.7%)
David 916,044 (12.6%) 115.48 (69.8%) 11.8 (87.0%)
Statuette 1,450,698 (14.5%) 144.05 (62.9%) 18.7 (88.0%)
Lucy 2,125,849 (7.6%) 224.59 (34.9%) 24.9 (20.3%)
Sponza scene 2,116,626 (4.0%) 220.65 (18.3%) 33.2 (19.8%)

Table 5.9: Memory consumption and total rendering time of the different models. The ra-
tio compared to rendering an indexed face set of the original model is shown in parenthesis.

video, where the numbers are taken from the most complex frame. For the Asian Dragon,
David and Statuette 4096 nodes (64.0 MB) are used. For the Lucy and Sponza scene 6144
nodes (95.9 MB) are used, whereas each node contains 682 operations. During rendering,
the dynamic data structures consume additional memory. For all models, the total amount
of graphics memory nevertheless stays below that of an indexed face set. The savings
to an IFS are about 30% for the medium sized and up to 82% for larger models. This
allows to safe up to 1 GB of graphics memory for the sponza scene and over 80% of the
rendering time. Figure 5.13 also shows the coarsening of the back faces, faces outside the
view frustum and occluded ones.

Table 5.10 shows the number of rendered faces, the total rendering time and the memory
consumption of the in-core algorithm for identical views. Comparisons to David, Lucy and
Sponza scene are not possible, because the split level is too high. With the occlusion-culling
the number of active faces is significantly (over 50%) reduced. Additionally, the algorithm
need about 44% less memory and up to 29% less rendering time for identical views.

model rendered memory total frame
faces (MB) time (ms)

Asian Dragon 1,740,953 (+103.9%) 174.02 (+55.3%) 15.4 (+40.0%)
Statuette 2,536,238 (+74.8%) 246.25 (+70.9%) 21.1 (+12.9%)

Table 5.10: Memory consumption and total rendering time of the Parallel View-
Dependent Refinement of Compact Progressive Meshes in-core algorithm (Section 5.2).
The ratio compared to the values in the Table 5.9 for identical views.

5.3 Parallel View-Dependent Out-of-Core Progressive Meshes 79

Figure 5.13: Renderings of view-dependently refined meshes. The images on the left show
the models as rendered from the point of view. In the middle external views with the view
frustum (yellow) are shown. The color coding depicts the level of detail, where red is low
LOD and green high. The image on the right shows the nodes used for occlusion culling.
Occluded nodes are shown in red and visible ones in green.

Compared to static hierarchical LODs (HLODs) [GBBK04] using the same error measure,
the number of primitives is reduced by a factor of 3 to 5 and the frame rate improves
by a factor between two and three. On the used test system, for the David model and
identical view, the HLOD rendering requires approximately 4.1 M faces, 175 MB graphics
memory and 56 ms (17.8 fps) for rendering. When the LOD switches, the frame rate

80 5 Progressive Mesh Rendering

can even drop below 10 fps. This is due to the fact that the LODs can only be selected
based on the viewing distance as only a single mesh is stored per node. The performance
of Quick-VDR [YSGM04] is only slightly better than static HLODs while the number
of triangles is approximately halved. On the used test system, for the David model
and identical view, Quick-VDR requires approximately 2.1 M faces, 200 MB graphics
memory, 600 MB main memory and achieves 25-30 fps. Additionally, the adaption of the
Quick-VBR is very slow. It achieves approximately 60 k operations per second on my test
system whereas the proposed approach achieves over 1.2 M operations per second.

Figure 5.14 and 5.15 shows the adaption and rendering time, the memory consumption,
and the number of active faces for a pre-recorded movement for the Asian Dragon. The
frame time and consumed graphics memory is always significantly lower than required by
the in-core algorithm, because the number of active faces is reduced with the occlusion-
culling significantly (up to 60%). In addition to the reduced frame time up to 50% less
memory is required.

Figure 5.14: Comparison of timings and memory consumption of the proposed approach
(OOC) with in-core algorithm for the Asian Dragon with a pre-recorded camera path.

Figure 5.16 and 5.17 shows the adaption and rendering time together with the memory
consumption and the number of active faces for a pre-recorded movement through the
Sponza scene. The consumed graphics memory is always below 220 MB. The frame rate is
constantly about 50 frames per second, with some drops down to 40 fps. The number of
faces during the walk through slightly exceeds 2 millions in some situations. The proposed
approach quickly reacts to changes of the view direction with fast adaption of the scene
complexity.

Since the rendering performance is identical to rendering a static model with the same
number of triangles, the proposed method needs approximately five times as long as
rendering a static mesh. Considering that the algorithm already cut down the vertices

5.3 Parallel View-Dependent Out-of-Core Progressive Meshes 81

Figure 5.15: Comparison of the number of active faces of the proposed approach (OOC)
with in-core algorithm for the Asian Dragon with a pre-recorded camera path.

Figure 5.16: Timings and memory consumption for the Sponza scene with a pre-recorded
camera path.

significantly due to the simplification of back-faces, faces outside the view frustum and
occluded faces. I can conclude that the proposed method will almost always be faster
than rendering an indexed face set of the original model. While this even holds for rather
coarse models, the performance gain increases with the complexity of the original mesh.
Due to the time required for the pixel shaders, the speedup is of course not linear with
the reduction.

82 5 Progressive Mesh Rendering

Figure 5.17: The number of faces for the Sponza scene with a pre-recorded camera path.

5.3.4 Conclusion and Limitations

In this section an out-of-core progressive mesh representation was proposed. It was
specifically developed for parallel refinement on modern graphics hardware. In this
section proposed algorithm extends the Parallel View-Dependent Refinement of Compact
Progressive Meshes in-core algorithm (Section 5.2) with out-of-core data management and
is the first out-of-core approach that is completely based on view-dependent progressive
meshes. The dependency and operation coding are modified for large models and the
dynamic data structures, static data structures, and first three steps of the algorithm
are extended for out-of-core data management. In addition, a spatial hierarchy for the
operations that is also used for occlusion culling was proposed.

The proposed algorithm remove more than two thirds of the vertices by view-dependent
simplification compared to HLODs. Due to the much finer granularity, this reduction is
practically always surpassed. Compared to HLODs the frame rate is more than double. In
addition, the frame rate drop when changing the LOD is insignificant whereas for HLODs
the frame rate can drop by a factor of more than two.

One limitation of the proposed algorithm is that an additional memory reduction would
be possible by using a generalized triangle strip. Another, probably more severe limitation
is that some splits are postponed several frames as they are waiting for others to be applied
before them. Although this is only problematic for fast panning over the model, a less
restrictive dependency scheme would be desirable.

5.4 Dependency Free Parallel Progressive Meshes 83

5.4 Dependency Free Parallel Progressive Meshes37

The proposed compressed progressive mesh data structure is based on Hoppe’s original
progressive mesh algorithm [Hop96]. The progressive mesh is generated by simplifying the
original mesh with a sequence of collapse operations until no faces are left. The original
mesh can then be reconstructed by applying the corresponding split operations in reverse
order.

5.4.1 Overview

Figure 5.18 shows an edge collapse operation colv which removes the vertex vu and modifies
vt to v. The adjacent faces fl and fr of vt and vu degenerate and are removed from the
mesh. The corresponding vertex split splv inverts this operation. Accordingly the faces fl

and fr are generated when the vertex v is split into vt and vu. In addition, some of the
faces adjacent to v become adjacent to the new vertex vu, the others remain connected to
vt.

vl
vr

vu

vt

colv

splv

vl
vr

v
fn0

fn6

fn3

frfl

fn1

fn5fn2

fn4

fn0
fn6

fn3

fn1

fn5fn2

fn4

vn1 vn1

vn2 vn2

vn3 vn4 vn3 vn4

vn5 vn5

Figure 5.18: Edge collapse and vertex split operation.

After building a progressive mesh, a view-dependent reconstruction can be generated
by performing only those split operations necessary for the current view. Performing a
local adaption requires a random access data structure that allows to locally perform the
operations. While the operations are already local by definition, the method of encoding
the connectivity strongly influences the degree of locality. The main idea of the proposed
data structure is to store the connectivity changes in the triangles instead of storing it
within the operation. This way, the connectivity of each face can be updated without
considering its current neighborhood.

37 In Computer Graphics Forum 2012 [DG12].

84 5 Progressive Mesh Rendering

5.4.1.1 Neighborhood Dependencies

Originally, Hoppe [Hop96] explicitly encoded the vertex indices of vl and vr, and the
indices of the faces adjacent to vu. Xia et al. [XV96] optimized the data structures by
encoding the vertex and face indices relative to the neighborhood of the split operation.
The memory consumption can be drastically reduced this way since vl and vr can be
encoded in a few bits. This encoding was previously used in the algorithms proposed in
the section 5.2 and 5.3 for parallel view-dependent refinement. While view-dependent
adaption is possible, the local dependencies require that vl, vr, and vn1 − vn5 exist when
performing a split operation of v (see Figure 5.18). Hoppe [Hop97] proposed a slightly
different approach that does not require vl and vr to be present, but nevertheless forces
splitting of their ancestors afterwards to prevent foldovers. These of course cannot be
encoded as compactly as in the previous approach. The faces adjacent to vu are then found
by traversing the edges in clockwise order from vl to vr. Hu et al. [HSH09] later used a
modification of this technique for parallel refinement. In both cases, the simplification
constructs a forest of binary trees (Figure 5.19). The neighborhood dependencies (dotted
lines) are either encoded explicitly, or implicitly by using a special numbering of the
vertices.

Active vertices

Performed spl

Performed col

. . .

. . .

vl vr

vn1 vn2

vn3

vn4

vn5

v

vt vu

Figure 5.19: Vertex hierarchy represented as a forest of binary trees with full (green) and
reduced (red) neighborhood dependencies.

The drawback of these approaches is that when vertex v needs to be split, it often needs
to wait for neighboring splits. Figure 5.20 shows such a case. The vertices v1 and v3
need to split before v4. In addition, v2 also needs to split if all neighboring vertices are
required. As splitting v3 requires v2u and v2 requires v1u, the splits can only be performed
sequentially. While this is unproblematic in a sequential refinement algorithm, a parallel
algorithm needs four adaption passes. By removing all neighborhood dependencies, the
proposed method can split all four vertices in parallel.

5.4 Dependency Free Parallel Progressive Meshes 85

v1

v4

v2v3

v1t

v4 = v1r

v2v3

v1u v1t

v4

v2uv3

v1u = v2r

v2t

v1t

v4

v2u = v3l
v3t

v1u
v2t

v3u

v1t = v4l

v4u
v2uv3u

v1u
v2t

v3t = v4r

v4tproposed approach

previous
approaches

Figure 5.20: Dependent split operations. Each arrow denotes a parallel adaption step.

5.4.1.2 Split Operations

While previous approaches require at least vl and vr to exist, the proposed algorithm
remove this constraint and only require v to exist. This allows to perform splits of all
currently active vertices completely in parallel. In the example above (Figure 5.20), all
four vertices can be split within a single adaption pass. The proposed algorithm achieve
this by encoding all possible topology modifications within the vertex indices of the faces.
The faces are then stored along with the split where they are generated. To support
non-manifold meshes, the proposed algorithm first store the number of generated faces and
then the faces themselves. The faces are encoded by storing their vertex indices FVID0..2
for the finest resolution. The current indices can then be found by searching those vertices
into which the final vertices are collapsed. Thus the vertices need to be numbered such
that the proposed algorithm can efficiently find the currently active vertex into which the
vertex with FVIDi is collapsed. Figure 5.21 shows this numbering of the vertices. The
leaf nodes of the binary tree forest are simply numbered from left to right. Then the
collapsed vertex v receives the FVID of its left child vt which is the smaller one. The
resulting encoding of the faces is shown on the right side of the figure for a simple model.
If a face is now decoded, when the split operation is performed, the current vertices are
either those with the same FVID, or the one with the greatest FVID smaller FVIDi. In
the example, the algorithm need to find the active vertex for the FVID 1 when performing
split 1. The currently active vertex with the greatest FVID smaller than 1 is vertex 0
which is the collapse target of vertex 1.

In theory this can lead to foldovers as the generated triangles can be flipped if vl or
vr change their position. This can however not happen if the simplification errors of
collapsing vl and vr are at least that of collapsing v. Note, since the edge collapses are
generated with increasing error, this is automatically handled during simplification. The
local monotonicity is enforced by tracking the simplification error of the adjacent vertices

86 5 Progressive Mesh Rendering

20

0

10 2 3

0
0 2

0
3

2
f1: 2 3 1

split 0

split 2 1

0 3

2

f2: 0 1 3

f1: 2 3 1

v

vt vu

split 1

Figure 5.21: Computation of the final vertex IDs and encoding of the generated faces.

during simplification and using the maximum of all neighbor’s errors as the actual error.
Now the proposed algorithm only need to make sure that a vertex is split if any adjacent
triangle is visible and the simplification error exceeds the screen space threshold to prevent
visible foldovers. This would be the case if the model was adapted to a constant error,
leading to the same sequence of operations as generated during simplification. Although
the algorithm do not explicitly force splitting of vl and vr, I did not notice any visible
foldovers in the experiments as the error is smoothly changing over the mesh anyways. In
addition, each split operation needs to encode the refinement criteria for LOD selection,
the vertex attributes of vt and vu, and the references to the splits of vt and vu. Finally,
the operations are compressed using arithmetic coding to reduce the memory consumption
of the progressive mesh. In contrast to previous approaches the compression is performed
independently for each operation to retain random access.

5.4.1.3 GPU Adaption

The adaption algorithm is subdivided into several consecutive steps to implement the
refinements on massively parallel hardware. The partitioning is required for thread
synchronisation while each step can be processed completely in parallel. First, each vertex
is classified to be split, kept, or collapsed. Then the necessary operations are performed on
the adapted mesh. This mesh is then used as input for the next frame to exploit temporal
coherence.

5.4.2 Data Structure

Table 5.11 gives an overview of the complete split operation data structure. The proposed
algorithm use several view-dependent refinement criteria to determine whether a vertex
needs to be split or can be collapsed. It can be collapsed if it is either outside of the
view frustum or all adjacent triangles are back-facing. At runtime only the normal of the
adapted vertex is available. The algorithm thus encode the maximum angular deviation
α from the normal of the simplified vertex forming a normal cone [Hop97]. Since each

5.4 Dependency Free Parallel Progressive Meshes 87

group element memory (bytes)

connectivity
vu (FVID) 4
number of faces 1
faces (FVID) 12f

refinement criteria
α (normal cone angle) 4
εg (geometric error) 4
εa (attribute error) 4

attributes Δvt 4k
Δvu 4k

binary tree forest children present 1
child pointer 4

Table 5.11: Elements and size of the uncompressed split operation, where f is the number
of generated faces and k the number of vertex attributes.

vertex of the adapted mesh can be adjacent to triangles on different levels-of-detail the
algorithm need to consider the normals of all possibly adjacent faces. To prevent the
computation of trigonometric functions at runtime, sin α is stored. A vertex needs to be
split if it is visible and the simplification error exceeds some pre-defined limit in screen
space. Instead of directly using the quadric error for the LOD selection the algorithm
compute the geometric attribute error [GBBK04] after simplification to improve the visual
quality. The simplification error is comprised of a geometric error εg and an attribute error
εa. While the attribute error is independent of the view direction d, the geometric error
originates from a displacement in normal direction n. As in most previous approaches,
the proposed algorithm do not directly store the attributes of vt and vu, but only the
differences Δvt/u to the attributes of v. This has the advantage that the algorithm can
reconstruct the attributes of v from those of vt and the data stored in the split operation.
For the binary tree forest the algorithm first encode whether vt and vu are further split.
Then pointers to their operations are stored as address offset to the end of the current
operation. The algorithm do not need to store an offset for vt since that operation starts
directly after the current one. The proposed algorithm also do not need to store an offset
for the next operation of vu if only a single child is present.

5.4.2.1 Out-of-Core Hierarchy

The algorithm additionally build a bounding volume (BV) hierarchy over the split/collapse
operations for out-of-core rendering. The hierarchy serves two purposes: first, the oper-
ations are grouped such that those which are likely to be performed simultaneously or
successively are stored together. And second, it should be used for occlusion culling in
order to coarsen invisible parts of the model. During hierarchy construction it thus needs
to be optimized for both purposes. Meißner et al. [MBH∗01] proposed a simple heuristic
to construct efficient kd-tree hierarchies of triangle meshes for occlusion culling using a

88 5 Progressive Mesh Rendering

greedy algorithm. In the proposed algorithm this approach was adapted to a bounding
volume hierarchy of variable size split operations. Note, that storing operations only is
different than the hierarchy used in Quick VDR, where each node contains a complete
progressive meshes. The algorithm do not only store operations at leaf level but also
at inner volumes to reconstruct coarse approximations of the model. When processing
a BV, the algorithm first need to determine the operations that are stored in it. Then
the operation subtrees are partitioned into the child nodes. Finding the directly stored
operations is straightforward as those with the highest simplification error are required first.
After storing the operations in the current node their operation subtrees are partitioned
into the child nodes. This way a complete operation subtree is stored in a single BV
hierarchy subtree. Due to storing operations not only at the leaf volumes, the estimated
subtree area is slightly modified:

A ≈ Al log2

⌈
sl

smax + 1

⌉
+ Ar log2

⌈
sr

smax + 1

⌉
, (5.17)

where Al and Ar are the bounding box areas of left and right child node and sl/r the size
of the operations in bytes.

5.4.2.2 Operation Encoding

The proposed algorithm use arithmetic compression [Sai04] (Section 2.1.4) to store the
operations in graphics memory. Due to this optimal entropy coding, the key to achieve
a high compression rate, is to reduce the entropy. Therefore, the rest of this section
describes how the algorithm encode the data with low entropy. As each operation needs
to be decoded independently, the proposed algorithm use common probability tables but
encode each operation in a separate byte stream. This way the algorithm only need the
starting address to decode an operation. As the compression changes the length of the
data and thus the starting address offsets, the algorithm need to perform a bottom up
compression of the operations. With the sequential ordering of operations, this leads to
compressing them in reverse order. In addition, the algorithm can only determine the
symbol probabilities after compression. Therefore, the algorithm start with probability
tables that are constructed with zero offsets and the re-compress the data with the correct
probabilities afterwards. The overall compression thus works as follows:

1. Compute uncompressed operations with zero address offsets.

2. Compute the probability tables.

3. Compress the operations in reverse order, computing the correct address offsets.

4. Re-compute the probability tables and re-compress.

5.4 Dependency Free Parallel Progressive Meshes 89

The compression rate of arithmetic coding depends on the entropy of the data. Most of
the data form zero centered normal distributions that can be compressed quite well. As
some of these distibutions contain only absolute values the others are remapped to positive
numbers. The algorithm use the following mapping to maintain a normal distribution:

u =
{

v ≥ 0 : 2v

v < 0 : 2|v| − 1,
(5.18)

where v is a variable from a signed distribution and the u’s form a positive distribution.
Arithmetic coding independently processes single bits or bytes to restrict the probability

table to a reasonable size. Unfortunately the progressive mesh data do not fit into single
bytes but often require 32 or even 48 bits in the out-of-core case. The proposed algorithm
therefore use a context based arithmetic compression. A separate probability table is used
depending on the byte significance. If a preceding byte of the currently encoded value is
non-zero, the probabilities drastically change. In this case an additional table is used to
encode the successive bytes (see Figure 5.22).

Figure 5.22: To decode 6 byte numbers (e.g. uint combined with ushort) the algorithm
begins at table B6, for 4 byte numbers (e.g. uint) at table B4, for 2 byte numbers (e.g.
ushort) at table B2 and for 1 byte numbers (e.g. uchar) at table B1. If a preceding byte of
the currently encoded value is non-zero, the table Rest is used.

The algorithm perform a bottom up coding of the operation tree compressing the
operations from end to start. As the relative symbol frequencies have changed, the
algorithm also rebuild the probability table and restart compression. The spatial hierarchy
is also rebuilt after each compression run as the operations might exceed the maximum
node size. The proposed algorithm iteratively reduce the maximum node size when building
the hierarchy and store the model as soon as all nodes are small enough after compression.

Successive Operations
The possibilities of split operations for vt and vu are sorted by descending probability and
the algorithm store: 0 if none are present, 1 for both, and 2 and 3 for vt and vu only.
As mentioned above, the proposed algorithm only need to store the address of vu since
the operation of vt directly starts after the one of v. The address offset oaddr for vu can
be estimated as savg(vu − v − 1) if the algorithm know the average operation size savg.

90 5 Progressive Mesh Rendering

Then only the difference to the estimation is stored. In the out-of-core case the operation
address is split into a BV index in and the local address depending on the index addrl

inside the hierarchy node due to the partitioning of operations. Using a node size of up to
216 bytes, the combined offset oooc is stored as:

oooc =
{

in = n : oaddr

in = n : 216(in − n) + addrl,
(5.19)

where oaddr is the offset inside the node and n the current BV node. In contrast to the
in-core case, oooc of vt can be non-zero and needs to be stored as well. Additionally, the
offsets cannot be estimated any more since the proposed algorithm do not know how many
subtree operations are contained in the current node. Figure 5.23 compares the operation
ordering of both cases.

4(1/3)1(1/0)

5(0/1)0(0/0)

3(1/2)

6(2/0)

8(2/2)7(2/1)

10(2/3)

(in/il) - OOC index

i - in-core index

2(1/1)

9(0/2) i(in/il) - operation

- hierarchy node

Figure 5.23: Split/collapse operation hierarchy represented as a forest of binary trees.
The operations are shown in blue and the bounding volumes in red.

Connectivity Coding
In theory the proposed algorithm do not need to store the FVID of vu as the difference
to v is simply one plus the number of split operations in the subtree of vt. If no split for
vt exists, the algorithm thus know that the offset is one and do not need to store it. In
practice, not storing the FVID of vu in other cases would require to traverse the whole
subtree. As it is then at least two, the algorithm store the offset minus two to prevent the
traversal. The triangle indices (FVID0..2) are sorted such that the first two are children
of vt and vu respectively. Then these two are encoded as differences to the FVID’s of vt

and vu. While the proposed algorithm could also encode the topology modifications of vt

and vu bit-wise, as proposed by Kim and Lee [KL01]. This would however not be optimal
as the tree is not balanced. The third vertex cannot be a child vertex of v. Its FVID is
either less than v or at least the next higher FVID vn of the currently active vertices. In
the first case, a negative offset to v is stored and in the second case, a positive offset to vn.
The offset vo3 is then again mapped to a positive value as described above. If more than
one triangle is generated by the operation the algorithm can exploit an additional degree
of freedom. First the triangle with the smallest third vertex offset vo3 is compressed. The

5.4 Dependency Free Parallel Progressive Meshes 91

successive triangles are sorted by increasing vo3 and only the difference to the previous
offset is stored. In addition to the indices, the proposed algorithm also store the number
of faces to support non-manifold meshes and improve the compression rate for boundary
edges.

Refinement Criteria
As no high accuracy is required for back-face culling, sin α is quantized to eight bits.
Due to the shrinking neighborhood, sin α becomes smaller for the successive splits. The
proposed algorithm thus encode the difference to the parent operation to exploit this fact.
A separate probability table is used as the distribution is nevertheless not centered at zero
but at a model dependent value.

The proposed algorithm encode εg and εa together as the screen space error εs is a
combination of these two:

εs = max (εa, εg(d · n)) , (5.20)

where d is the view direction and n the normal. The geometric error is only relevant if it
is greater than the attribute error and the algorithm thus encode the maximum error ε

and the ratio μ of εa to εg. Then the algorithm can then simply clamp μ to be at most one.
Similar to the normal cone angle, the probabilities significantly deviate from a normal
distribution. Thus the algorithm also encode μ quantized in a single byte with its own
probability table. The maximum error can vary over a huge range. The upper bound
depends on the model size and its lower bound is the quantization step q. To compactly
encode this range, the proposed algorithm exploit the fact that only a rather low accuracy
is required. In the current implementation the algorithm use a relative accuracy of 2%
which is expressed by the following coding function:

εenc =
⌈ ln ε − ln q

ln 1.02

⌉
, (5.21)

where εenc is the encoded simplification error. Similar to sin α the simplification error
is monotonously decreasing and the algorithm also encode the difference to the parent
operation. In contrast to sin α and μ, the difference exhibits a normal distribution.

Note that the refinement criteria are stored as the first four bytes of the operation since
they need to be decoded first to evaluate the necessary operations. The ID of vu and the
number of faces are stored directly after the refinement criteria as they are also required
when checking for and preparing the required operations.

Attributes
To prepare the attributes for compression, the proposed algorithm first quantize each
coordinate. The quantization step is chosen depending on the progressive mesh to be

92 5 Progressive Mesh Rendering

encoded. The algorithm calculate the root mean square attribute difference σi for each
attribute i over all operations and then use q = ascaleσi as quantization step. In my
implementation the algorithm chose ascale = 1

16 which is a reasonable trade off between
accuracy and compression rate. Assuming the vertices were collapsed to their midpoint,
the algorithm use second order prediction for Δvu (i.e. −Δvt) and store the difference.
More sophisticated estimations using subdivision schemes are not possible as this would
again require at least the adjacent vertices to be present.

Note, that vt and vu of each split operation can be swapped without altering the encoded
progressive mesh. The proposed algorithm exploit this to improve the compression rate.
All operations are checked and if the total size of the encoded model is reduced when
swapping the vertices, the swap is performed. The size reduction can be due to the different
vertex attributes (especially for half-edge collapses), the FVID of the generated vertex,
and – especially for operations close to the base vertices – due to smaller FVID offsets. To
exactly calculate the compression improvement the algorithm would need to compress the
complete progressive mesh twice for each operation, leading to a total complexity of O(n2).
Swapping an operation however only influences the geometry offsets of the operation itself
and the FVID offsets of all operations on neighbor vertices. Using an fixed approximate
probability table, the algorithm can estimate the first one in O(n) time for all operations.
The neighborhood for the FVID offsets grows by a factor of

√
2 with each level of the

hierarchy. Thus the total number of influenced operations throughout the whole hierarchy
is:

∑log2 n
i=0 2i

√
n
2i = O(n). Starting from leaf level, the algorithm collect all operations that

generate neighboring triangles and propagate them up to the root operations. During this
process, triangles that lie completely between the two collapsed vertices are stored at that
operation. After searching the influenced operations, the algorithm can estimate the effect
of the swap on the compressed size of the FVIDs in total linear time as well.

5.4.3 Runtime Algorithm

Besides classifying the vertices before applying the operations, the adaption is split into
first applying all collapse operations. Then the memory for the new vertices and faces is
allocated while the data of collapsed ones is freed. Finally, the split operations can be
performed by updating the vertices and then the current vertex indices. The dynamic
data structures required for rendering are the vertex buffer containing the position and
attributes and the index buffer storing the connectivity of the adapted mesh. Both are
stored as vertex buffer objects (VBOs) and are separated from all other data. Table 5.12
gives an overview of all dynamic data structures.

5.4.3.1 Vertex State Update

In the first step the necessary operations are determined. If the vertex v needs to be split
according to its refinement criteria, its number of child vertices in the next iteration need

5.4 Dependency Free Parallel Progressive Meshes 93

buffers elements memory (bytes)

active faces index VBO 24m
FVIDs 24m

active vertices

vertex VBO (×2) 8km
vertex ID (×2) 8m
split & collapse cache (×2) 16m
collapse target (×2) 8m
next split & collapse (×2) 16m a / 24m b

temporary

vertex count 4m
face count 4m
vertex prefix sum 4m
face prefix sum 4m

total in-core / out-of-core (112 + 8k)m / (120 + 8k)m

Table 5.12: Elements of the dynamic data structure. k and m are the number attributes
and adapted mesh vertices. Next split and collapse are stored with 32 bits in the in-core (a)
and 48 bits in the out-of-core case (b).

to be set to two. Additionally the number of faces that are created by this operation is
decoded. Otherwise the number of vertices is set to zero if the refinement criteria allow
a collapse, or to one if not. The collapse of a vertex is only possible if its corresponding
and its target vertex vt have not performed further splits. This can efficiently be checked
by keeping the vertices sorted based on their FVID. In this case the previous vertex of v

needs to be its target vt and the target of the next vertex must not be v.
Two or three refinement criteria are checked for each active vertex for in-core and

out-of-core rendering respectively. The most simple one is view frustum culling as a vertex
can be collapsed if it lies outside the view frustum regardless of the simplification error. To
prevent foldovers, all vertices that are outside of the view frustum are however not simply
collapse, but modify the distance d of these vertices for the following LOD selection:

d̃ =
(

cLOD

(max(|x|,|y|,|z|)
w

− 1
)

+ 1
)

d, (5.22)

where x, y, z and w are the homogeneous coordinates of the vertex after projective
transformation and cLOD a constant value. In the experiments cLOD = 100 is used for
a smooth LOD falloff outside the view frustum which prevents foldovers and popping
artifacts when rotating or panning. The next test is back-face culling. The vertex is culled
if

n · d > sin α, (5.23)

where d is the normalized view direction, p the vertex position, n the normal, and α the
normal cone angle as discussed in Section 5.4.2.2. In addition occlusion culling is used for

94 5 Progressive Mesh Rendering

out-of-core rendering based on the visibility of the bounding volumes. The vertex can be
collapsed if its split or collapse is stored in an occluded bounding volume. The hardware
occlusion queries [CCG∗01] are used to determine which bounding volumes are visible.
The queries are performed after rendering the complete scene and the results are fetched
before the next adaption. This way the visibility is lagging behind by one frame but this
is unproblematic as it is not used for rendering but for LOD selection only. Regardless of
the query results the complete adapted mesh is always rendered. The simplification error
is evaluated after culling. For this the first four bytes of the operation are required. Each
active vertex has an eight byte cache storing the split and collapse refinement criteria to
reduce decoding time and unaligned global memory access. The split cache only needs
to be updated if the vertex was modified or created by a split operation in the previous
frame. The complete vertex update is shown in Algorithm 12.

foreach vertex v in parallel do
update_split_cache(v)
set_vertex_cnt(v, 1)
set_face_cnt(v, 0)
if need_split(v)

decode_number_of_faces(v)
set_vertex_cnt(v, 2)

elif need_collapse(v)
target = get_target(v)
targetnext = get_target(next(v))
if prev(v) == target && v != targetnext

set_vertex_cnt(v, 0)

Algorithm 12: Parallel vertex state update algorithm.

5.4.3.2 Parallel Edge Collapses

To perform a collapse, the algorithm need to check whether the target vt of the current
vertex vu was not marked for splitting in the first stage. The collapse operation then
simply moves vertex vt to its old position v and copies the collapse cache of vu to the split
cache of v. Removal of vertex vu and the degenerate faces are handled in later stages.
Algorithm 13 shows the parallel processing of the edge collapse operations to prepare
removal of the collapsed vertices and faces.

foreach vertex vu in parallel do
vt = get_target(vu)
if !marked(vt, split)

collapse_vertices(vt, vu)
else

set_vertex_cnt(vu, 1)

Algorithm 13: Parallel edge collapse algorithm.

5.4 Dependency Free Parallel Progressive Meshes 95

5.4.3.3 Memory Management

Memory must be reserved for the additional vertices and faces before the split operations
can be applied. While the ordering of faces is irrelevant for the algorithm, the vertices
must be sorted by their FVID as discussed above. If the index and FVID buffers are
large enough, the faces can be directly appended. To determine the position of the faces
in the index buffer, the parallel prefix sum [SHZO07] of the number of generated faces
is computed. After calculating the prefix sum, the total number of faces after all split
operations can be determined. If the size of the face buffers is too small or significantly
too large, new buffers are allocated and the content of the old ones is copied into them.
When a reallocation is performed, the buffer size is set to the number of faces nf plus
a user-defined threshold nalloc. If the buffer is larger than nf + 2nalloc it is reduced to
nf + nalloc. While the buffer resizing is applied to the vertices as well, new vertices cannot
be simply appended to the vertex buffer. They need to be sorted by their ID as discussed
above. This means that they have to be inserted after the corresponding split vertex.
The algorithm accomplish this by copying the old vertices into a new buffer. During this
process, the collapsed vertices are also removed by calculating the parallel prefix sum of
the vertex count to determine the positions in the new buffer. The vertex IDs, caches and
next split/collapse buffers need to be processed this way as well. While the memory of the
old buffers could be freed after this step, the repeating allocation would drastically reduce
the performance. The reorganisation and compaction of the vertex buffer are shown in
Algorithm 14.

face_sum = prefix_sum(face_cnt)
if need_face_buffer_resize()

resize_face_buffers()
vertex_sum = prefix_sum(vertex_cnt)
if need_vertex_buffer_resize()

resize_vertex_buffers()
foreach vertex v in parallel do

new_pos = vertex_sum[v]
next_pos = vertex_sum[v+1]
if new_pos != next_pos

copy_vertex(v, new_pos)

Algorithm 14: Memory management algorithm.

5.4.3.4 Parallel Vertex Splits

The split operations are performed after memory allocation and reorganisation of the vertex
buffer. To improve thread utilization the algorithm first compact the splits [SHZO07] such
that each thread performs an operation. Every operation generates a new vertex vu and
moves v to its new position vt. Additionally, the new faces are added to the index and the
FVID buffers. For this the current indices for each of the new faces need to be determined.

96 5 Progressive Mesh Rendering

Fortunately, the first two vertices of each new face are known as they are vt and vu. The
third vertex needs to be located in the vertex buffer. By construction it is the vertex
with the greatest FVID less or equal to the one stored in the face. The Binary Search is
used to find this vertex in the vertex buffer. Note that while this does not fully utilize
memory bandwidth it keeps the threads within every warp running in parallel which is
also important for performance. Algorithm 15 shows the parallel vertex split.

compact(splits)
foreach split vertex v in parallel do

vu = v + 1
split_vertex(v, vu)
append_faces(v)

Algorithm 15: Parallel vertex split algorithm.

5.4.3.5 Index Update

The indices of the faces adjacent to split and collapse vertices need to be updated
(e.g. fn1 − fn6, fl, and fr in Figure 5.18) after performing all operations. This is necessary
as the vertices of adjacent faces can perform their operations in parallel. The correct
vertex can either be the previous one, the current one, or the next vertex in the sorted
array. The first case occurs when the vertex was collapsed, while the last one occurs when
the vertex was split. The second case can either happen when no operation was performed
or the operation did not change the connectivity of that face. Algorithm 16 shows the
parallel index update.

foreach indices i in parallel do
ID = get_vertex_id(i)
FVID = get_final_id(i)
if ID < FVID

set_vertex_id(i, ID + 1)
elif ID > FVID

set_vertex_id(i, ID - 1)

Algorithm 16: Parallel index update.

5.4.3.6 Buffer Compaction

The final step of the adaption is the compaction of the index buffers to delete degenerate
faces. Note that as the index VBO is used for rendering it needs to be compact anyways.
For the buffer compaction a specialized in-place compaction algorithm from the section 5.2
is used, since the ordering does not need to be preserved. The main advantage besides a
minor speedup is that these buffers need not to be duplicated.

5.4 Dependency Free Parallel Progressive Meshes 97

5.4.3.7 Out-of-Core Memory Management

An additional memory management of the static data structures is performed for out-
of-core rendering. Only the currently necessary bounding volumes are kept in graphics
memory based on a priority scheduling. All relevant data is stored in graphics memory and
the main memory consumption is minimal, as the complete algorithm runs on the GPU.
In addition to temporary memory for loading, only the mapping of bounding volumes to
memory positions, the file offsets required for out-of-core management, and the bounding
boxes are stored in main memory. For loaded bounding volumes the pointers to their data
in device memory are also stored. A bounding volume is required when at least one of the
active vertices has a reference to it. A split operation can create vertices that reference
volumes not available in graphics memory and the data needs to be loaded from disk. Each
BV contains operations with different simplification errors. Based on the maximum error
of the operations stored in a volume, a distance dn beyond which no split is ever necessary
can be derived. Then a priority p = dn

dv
is calculated, where dv is the distance between the

viewer and the bounding box. The data of the bounding volume is only required if its
priority is at least one. The bounding volumes with higher priority are loaded first if the
transfer from disk to graphics memory is not fast enough. This has the advantage that
the model is uniformly adapted and no LOD starvation can occur. To limit the memory
consumption, a maximum number of nodes nmax kept in graphics memory is specified by
the user. When rendering several progressive meshes, the node memory is shared among
all models. When the user moves through the scene, the visibility and the required LOD of
the object change. This results in a continuous change of the bounding volumes currently
required in graphics memory. As discussed above, loading data results in a visible delay of
the adaption. This problem is solved by not only loading the currently required nodes, but
also the nodes with lower priority, as long as enough space is available. Before uploading
the currently required bounding volumes to graphics memory the unnecessary ones are
first removed, until enough space is available. Since accessing the hard disk causes high
delays, loading operations into main memory is preformed in a second thread. As soon
as the data is available in main memory, the rendering thread can copy it into graphics
memory after scheduling the occlusion queries.

5.4.4 Results

The test system consists of a 3.333 GHz Intel Core i7-980X CPU with 6 GB DDR3-1333
main memory, 16 lanes PCIe 2.0 slot, and an NVIDIA GTX580 (841/4204MHz) graphics
card. OpenGL is used for rendering and CUDA for the adaption algorithm. The out-of-core
data is stored on a SATAII hard disk (8.5ms/64MB/7200rpm) with approximately 100
MB/s read speed. The bounding volume data size is set to 64 kB, as host to device copy
of blocks with up to this size is asynchronous. The resolution of 1920 × 1080 with a screen
space error of 0.5 pixel is used. At most nmax = 4096 (256 MB cache) for all out-of-core

98 5 Progressive Mesh Rendering

models is used. Table 5.13 gives an overview of the progressive meshes, which are tested
in the experiments. All models use position and normal as vertex attributes (k = 6).
The original meshes contain vmax vertices and fmax faces. The number of base mesh
faces is zero and that of base mesh vertices v0 is very low. The number of operations is
vmax − v0. The resulting file sizes and compression rates for the in-core (ic) and out-of-core
(ooc) case are listed in Table 5.13 together with the number of BV nodes and bytes per
vertex (bpv). Compared to in-core, the out-of-core static data requires approximately 1
additional byte for each operation. On average 1.2 bpv are consumed by the refinement
information and 1.0/2.0 bpv by the tree structure in the in-core and out-of-core case. The
connectivity and geometry need 2.4 and 5.8 bpv and 0.6 bpv are wasted due to the per
operation compression. Additionally, 35 bytes main memory (bounding box, visibility,
offset, and file position) and 5 bytes graphics memory (visibility and offset) are required
per BV node. The compression performance is approximately 7 kop/s (in-core) and 4.3
kop/s (out-of-core). In the first case, approximately half of the time is required for the
optimization and the other half for the two arithmetic coding runs. In the second, three
additional arithmethic coding runs were required until convergence for all models.

Table 5.14 also lists the number of rendered faces, the total rendering time, and the
memory consumption for the views shown in Figure 5.24, and the scene in the accompanying
video, where the numbers are taken from the most complex frame. The ratio compared to
an indexed face set (IFS) of the original model is shown in parenthesis. During rendering,
the dynamic data structures consume additional memory. The total amount of graphics
memory nevertheless stays below that of the original models. The out-of-core algorithm
facilitates occlusion culling and out-of-core memory management, therefore the frame time
is approximately 10% higher compared to in-core rendering although the number of faces
is approximately 10% lower. The culling overhead is low because the number of bounding
volumes is small compared to the number of triangles, only asynchronous queries are
used, and only require a single switch between rendering and occlusion queries per frame.

model vmax fmax orig. (MB) PM (MB) BV nodes bpv compr. time
Dragon 3,609,455 7,218,906 165.2 ic: 43.0 (26.1%) 12.5 9m

ooc: 48.2 (29.1%) 843 14.0 14m
Statuette 4,999,996 10,000,000 228.8 ic: 58.7 (25.7%) 12.3 12m

ooc: 64.9 (28.3%) 1136 13.6 19m
Lucy 14,027,872 28,055,742 642.2 ic: 152.9 (23.8%) 11.4 37m

ooc: 168.6 (26.3%) 2965 12.6 56m
David 28,184,526 56,230,343 1288.6 ic: 303.3 (23.5%) 11.3 1h 10m

ooc: 335.2 (26.3%) 5945 12.5 1h 49m
St.Matthew 186,810,938 372,422,615 8537.8 ooc: 2038.0 (23.9%) 36034 11.4 11h 54m
Atlas 254,837,027 509,674,062 11665.5 ooc: 3039.7 (26.0%) 53159 12.5 16h 27m
Scene 492,469,814 983,601,668 22528.1 ooc: 5694.6 (25.3%) 100082 12.1

Table 5.13: Progressive meshes examined in the experiments and compression results.

5.4 Dependency Free Parallel Progressive Meshes 99

model rendered # faces memory (MB) frame time (ms) MTPS
Dragon ic: 1,301,757 (18.0%) 152.3 (92.2%) 6.5 200.3

ooc: 1,023,843 (14.2%) 142.2 (86.1%) 5.9 173.5
Statuette ic: 1,479,282 (14.8%) 180.9 (79.1%) 7.2 205.4

ooc: 1,338,246 (13.4%) 182.4 (79.7%) 7.3 183.3
Lucy ic: 2,804,876 (10.0%) 379.9 (59.1%) 11.6 241.8

ooc: 2,672,566 (9.5%) 397.3 (61.9%) 13.5 198.0
David ic: 2,954,923 (5.2%) 541.8 (42.0%) 12.1 244.2

ooc: 2,859,350 (5.1%) 498.0 (38.6%) 14.3 200.0
St.Matthew ooc: 3,412,032 (0.9%) 541.7 (6.3%) 15.3 223.0
Atlas ooc: 4,025,064 (0.8%) 605,7 (5.2%) 17.8 226.1
Scene ooc: 5,514,913 (0.6%) 795.8 (3.5%) 39.7 138.9

Table 5.14: Rendering statistics of the experiments.

The algorithm can process up to 244/226 million triangles per second (MTPS) for static
views in the in-core and out-of-core case respectively. The frame time linearly increases
with the number of faces. This face count converges to a constant value with increasing
model size which is a typical behavior of all LOD algorithms. Therefore, the frame time
converges to a constant value as well. The same holds for the memory consumption of the
out-of-core algorithm. As the test GPU can render an indexed face set with 600 MTPS,
the performance of the proposed method is faster than rendering the original model as
soon as 60% of the faces are removed. Figure 5.24 also shows the coarsening of culled
faces.

The adaption and rendering time together with the memory consumption and number
of faces for a pre-recorded movement through the scene are shown in Figure 5.25. The
consumed memory is always below 796 MB, the frame rate is constantly above 30 frames
per second (fps) with an average of 50 fps and 140 MTPS. The proposed approach quickly
reacts to changes of the view with fast adaption of the scene complexity. Due to the high
adaption performance no popping artifacts are visible in the video despite fast movements
and the screen space error of 0.5 pixel is always achieved.

5.4.4.1 Discussion

In Table 5.15 the proposed algorithm are compared with three different types of approaches.
The algorithm can render 180/140 MTPS (in-core/out-of-core) for dynamic views and up
to 23/13 MTPS can be generated. Note that the number of generated triangles of the
out-of-core algorithm is limited by the HDD speed. Due to the slightly reduced number of
triangles for identical views, the relative rendering performance is 155 MTPS with up to
14.44 MTPS generated. The progressive mesh requires 11-14 bytes per vertex (bpv).

While compression approaches of course achieve better compression ratios, they have
significant shortcomings regarding rendering. First of all, most of them do not support

100 5 Progressive Mesh Rendering

Figure 5.24: Renderings of view-dependently refined meshes. The external views show
the view frustum (yellow), LOD (red: low; green: high), and the nodes used for occlusion
culling (red: occluded; green: visible).

extracting a level-of-detail and thus only support view frustum culling (VFC) [CKLL09,
CH09]. Others only allow simple level-of-detail schemes based on regular vertex cluster-
ing [DJCM09, JGA09]. This is however known to require at least an order of magnitude
more primitives to achieve the same quality. Note that high compression ratios are also
achieved by not encoding vertex normals which also reduces the visual quality as the
normals computed from a simplified mesh can drastically differ from correctly simplified
ones. Another problem is the complex connectivity coding that prevents parallel decom-
pression. The fastest compression approach only achieves decoding of up to 0.3 MTPS.

5.4 Dependency Free Parallel Progressive Meshes 101

Time (s)

Figure 5.25: Timings, memory consumption and triangle rate for the scene using a pre-
recorded camera path.

Considering the increased number of triangles compared to the proposed approach, the
relative adaption performance is less that 30,000 triangles per second so it at least 500
times slower. Once generated, the resulting mesh can be rendered at full performance.
Again it need to consider the tenfold increase in model complexity which translates to a
relative performance of less than 60 MTPS or less than 40% compared to the proposed
algorithm. So the proposed approach can render the same view more than twice as fast
and can adapt the LOD more than two orders of magnitude faster.

Hierarchical level-of-detail (HLOD) algorithms also generally achieve high rendering
performance unless special shaders are used [GBK03, GM05]. Compared to view-dependent
progressive meshes, the number of primitives is however drastically increased. This is due
to three reasons: First, the LOD is only evaluated per node of the hierarchy. This already
doubles the number of primitives considering that there is usually a resolution factor of two
between successive level. The second reason is that the LOD is only distance instead of
fully view-dependent which prevents coarsening of back-facing and non-silhouette triangles.
This also approximately doubles the number of primitives. Finally, special care must be
taken at the node boundaries which also slightly increases the primitive count. In total,
the number of primitives is 5 to 7 times higher for the same view [GBK03, CGG∗04].
This factor can exceed 10 if vertex clustering is used [GM05]. The number of generated
triangles either depends on the hard disk speed or the mesh decompression. On the used
system, between 3.4 and 4.6 MTPS can be generated. Due to the higher primitive count,
these are reduced to a relative performance of at most 1.47 MTPS [GBK03] (10% of the
adaption performance of the proposed algorithm). The relative rendering performance

102 5 Progressive Mesh Rendering

Algorithm relative #triangles rendered MTPS generated MTPS bpv
Proposed ic 1 180 23 11-13
Proposed ooc 0.9 140 (155) 13 (14.44) 11-14
Compression approaches
[CKLL09]* ooc VFC only 600 (n.a.) 0.07 (n.a.) 1-3
[CH09]* ic VFC only 600 (n.a.) 0.4 (n.a.) 2-4
[DJCM09]* ooc >10 600 (<60) 0.04 (<0.004) 1-3
[JGA09]* ooc >10 600 (<60) 0.3 (<0.03) 2-4
HLOD approaches
[GBK03] ooc ∼5.5 400 (73) 4.6 (0.84) 26
[CGG∗04] ooc ∼6.5 500 (76) 4.6 (0.71) 33
[GM05] ooc >10 190 (<19) 3.4 (<0.34) 61
Progressive Meshes
[YSGM04] ooc ∼2.5 90 (36) 0.015 (0.006) 79
[HSH09] ic ∼1.05 30 (28) 0.8 (0.76) 69
Section 5.2 ic ∼1.2 80 (66) 4.4 (3.66) 22
Section 5.3 ooc ∼1.1 60 (55) 4.0 (3.63) 24

Table 5.15: Comparison of triangle rate and memory consumption with previous ap-
proaches. The relative performance is shown in parenthesis. Results marked with * are
results of the original authors scaled to the performance of the used system, while all other
were measured.

is also reduced to at most 76 MTPS [CGG∗04] or 49% of the proposed approach. In
summary, the proposed approach renders approximately twice as fast and can react ten
times quicker to view changes.

View-dependent adaption algorithms can better compete with the proposed approach
regarding the number of primitives. The actual factor depends on whether view- or
distance-dependent adaption is used. It also depends on the degree of neighborhood
dependencies and lies between 1.05 [HSH09] and 1.2 section 5.2 with view-dependent
adaption and 2.5 [YSGM04] otherwise. The rendering performance is significantly lower
than for HLODs due to the continuous geometry changes and interleaving adaption
with rendering. The relative rendering performance lies between 28 MTPS [HSH09]
and 66 MTPS section 5.3 which is 16-37% of the proposed approach. The adaption
performance of the GPU algorithms (up to 4.4 MTPS) is significantly higher than CPU
algorithms [YSGM04] with only 15,000 triangles per second. The relative adaption rate is
at most 3.66 MTPS which is 25% of the proposed method. Compared to these algorithms,
the proposed method can render the same views three times faster and adapt the LOD
four times faster.

5.4.4.2 Analysis

Finally, the runtime of each step of the adaption and rendering algorithm is analyzed in
Figure 5.26. As the rendering performance is identical to rendering a static model with the

5.4 Dependency Free Parallel Progressive Meshes 103

Figure 5.26: Relative time of the adaption steps compared to rendering.

same number of triangles, the proposed method needs approximately four times as long
as rendering a static mesh. Considering that the proposed algorithm already cut down
the vertices significantly due to the simplification of culled faces, the proposed method
will almost always be faster than rendering the original model. The most expensive steps
of the proposed algorithm are the state update and reorganisation. The state update is
expensive because each active vertex needs to perform this step and the reorganisation as
the algorithm need to maintain a sorted vertex buffer. The split/collapse cache reduced the
state update time by 40%. Map and unmap are required for the mapping and unmapping
of the index and vertex buffer for access from CUDA and can hardly be reduced or
prevented.

5.4.5 Conclusion and Limitations

In this section an in-core and out-of-core dependence free progressive mesh representation
was proposed. It is specifically designed for parallel view-dependent adaption and based
on an implicit coding of topology modification inside the faces. In contrast to previous
approaches no splits need to be postponed as they are waiting for others to be applied
before them, which is otherwise very problematic for fast movements. Compared to
progressive meshes and HLOD approaches the proposed algorithm reduce the rendering
time, popping artefacts and the memory consumption significantly. This allows rendering
of large models with fast movement nearly without popping artefacts. Compared to
compression approaches the proposed algorithm require more disk space, but can keep
compressed data in graphics memory. Further drawbacks of compression approaches
are coarse grained random access and slow decompression, resulting in severe popping
artefacts. Moreover, the refinement criteria and normals are not encoded. This improves
the compression rate, but reduces the quality and significantly increases the number of
faces.

104 5 Progressive Mesh Rendering

The main limitation of the proposed algorithm is that the reorganisation of the vertices
is rather expensive. An acceleration or prevention of this step would significantly increase
the performance. Of course, the efficiency of the method soley depends on the underlying
mesh simplification. If a model cannot be reduced using geometric simplification, other
approaches (e.g. Fax Voxels [GM05]) are better suited.

CHAPTER 6
Progressive Mesh Editing

Highly detailed geometric models are very popular in interactive applications such as
computer games. These models are usually represented as triangle meshes. To render
several of these models at real-time frame rates, level-of-detail (LOD) techniques are
commonly used. Mesh editing is used to correct errors or animate the models. In the
traditional work flow simplification algorithms are used afterwards to generate the LODs.
This requires a re-simplification after editing and restricts animations to space deformations.
To solve this problem, multi resolution modeling approaches were proposed that create
a set of LODs with increasing resolution. These subdivision meshes are comparable to
static LODs that are simply a set of polygon meshes. Although multi resolution modeling
is restricted to geometric deformations and cannot directly modify the connectivity, it is
still a very valuable tool of the modeling pipeline.

In contrast to the static LODs used for previous multi resolution modeling algorithms,
dynamic LODs store a coarse base mesh and a sequence of refinement operations. The
most common data structure used in this context are progressive meshes. Using the
proposed approach it is possible to edit the mesh at a lower quality while modifications
are automatically propagated to finer resolutions. Thus only a few vertices need to be
modified, to achieve large scale or small scale deformations, depending on the current LOD.
In contrast to progressive meshes, multi resolution modeling requires a local geometry
encoding to allow editing and the propagation of the geometric modifications. The proposed
approach use a parallel simplification algorithm to generate the progressive mesh and
to propagate changes to coarser resolutions. The main contributions of the proposed
approach are:

• Real-time editing of large progressive meshes.

• Mesh simplification and progressive mesh generation on the GPU.

• A data structure that allows animated progressive meshes.

105

106 6 Progressive Mesh Editing

6.1 Related Work

Mesh editing has been an active field of research over the last three decades. Early
approaches focused on editing of smooth surfaces while later ones tried to preserve local
properties of the mesh. The algorithm of Welch and Witkin [WW94] is based on arbitrary
triangle meshes and allows free-form shape design. Taubin [Tau95] later optimized this
approach and improved the efficiency. Editing of smooth surfaces is still an active field of
research [LF03].

6.1.1 Multi Resolution Modeling

Meshes that contain geometric details require special techniques to preserve these during
editing. Such techniques mostly use multi resolution representations of the mesh. The
details are stored relative to the coarser model for one or more quality levels [FB88, ZSS97,
KCVS98, KVS99, GSS99, Gar99]. The user can edit the mesh on a lower quality level and
the changes are automatically propagated to the higher levels. This way only a few vertices
need to be edited to achieve large changes. When representing details of a surface in
terms of so-called Laplacian or differential coordinates [LSCo∗04, SCOL∗04], the fine-scale
surface can be reconstructed by solving a linear Laplacian system containing the modified
differential coordinates. For the manipulation of a mesh Sorkine et al. [SCOL∗04] proposed
an editor that includes operations like the interactive free-form deformation in a region of
influence (ROI) or the possibility to integrate detail of one surface into another. These
transformations are performed on a Laplacian representation of the given surface. Marinov
et al. [MBK07] mapped a multi resolution deformation framework to the GPU that does
not support a direct transformation of the surface. Since the displacement vectors are
encoded independently for each component and details are not preserved uniformly over
the surface, visible artifacts in highly deformed regions can occur.

6.1.2 Mesh Simplification

Mesh simplification is one of the fundamental techniques for real-time rendering of complex
polygonal models. There is an extensive amount of methods that mainly focus on accurate
bounds of the simplification error. A review of simplification algorithms is given in a
section 3.1 and 5.1.

6.2 Parallel Progressive Mesh Editing38

Traditionally, multi resolution editing performs global deformations by decomposing
the geometry of a highly-detailed model into a coarse base surface and reconstructing

38 Submitted, Vision Modeling and Visualization 2012 (VMV2012) [DGG12].

6.2 Parallel Progressive Mesh Editing 107

the applied modifications using a displacement in normal direction. In contrast to this
the proposed algorithm use edge split operations of a progressive mesh to propagate the
transformations to finer resolutions. Therefore, an appropriate data structure that contains
relevant informations about the connectivity and vertex attributes is proposed.

6.2.1 Overview

The operations are stored in a tree structure that is generated by a parallel simplification
of the original mesh. Based on the operation tree the model can continuously be adapted
using parallel vertex split and edge collapse operations. The proposed algorithm can be
divided in two main phases:

1. Simplification of the model and generation of the progressive mesh operation tree.

2. Multi resolution editing of the progressive mesh.

To preserve the connectivity during the propagation of the modifications the local ordering
of operations needs to be preserved. This implies for example that a collapse is only
allowed, if no further vertex in any adjacent triangle is collapsed or split. The current
resolution can be edited using a handle and a euclidean distance based region of influence
(ROI). The handle can be translated and rotated and the transformation is applied to the
whole ROI (see Figure 6.1).

Figure 6.1: Editing of the Armadillo progressive mesh. Notice how the fine geometric
details are preserved by the local encoding of the split operations.

6.2.1.1 Progressive Mesh

The original model is simplified by collapsing all non-conflict edges in parallel. The
original model can then be reconstructed by performing a sequence of parallel vertex split
operations. Figure 6.2 shows the principle of an edge collapse operation colv and the
corresponding split operation splv. By applying colv to an edge defined by the vertices
vt and vu it is contracted into the vertex v. The new vertex v is computed based on the
neighboring triangles. The adjacent faces fl and fr of vt and vu degenerate and are removed.
Since splv represents the inverse operation of colv, the faces fl and fr are generated by
splitting the vertex v into vt and vu. Additionally, an update of the connectivity between
the vertices vt and vu and the adjacent faces is performed.

108 6 Progressive Mesh Editing

colv

fn5fn2 f
vu

f

fn1

fn2

fn4 fn1

fn5fn2

f
vl

vr
v vl

vr
v

fn0
fn3

fr
fl

fn0
fn3

fn1fn4

splv

fn0
fn6

fn0
fn6

Figure 6.2: Edge collapse and vertex split operation (comp. Figure 5.1).

6.2.1.2 Operation Coding

The data structure used to encode the operations is based on the one proposed in
the section 5.4. In this context, the main advantage is that non-manifold meshes are
supported by storing the successive topology modifications within the triangles instead of
the operations. For this the proposed algorithm need to generate so-called final vertex IDs
(FVIDs) by enumerating the vertices after computing all edge collapses and storing them
in the data structure. During a collapse operation an edge, which is defined by the vertices
vt and vu, is contracted into v. Thereby, the vertex vu disappears and vt can be used as
the collapse vertex v after updating the vertex position. In addition, for each operation
the number of the vertices, which are collapsed into the current active vertex v is summed
up and stored in the data structure. To compute the required FVIDs the algorithm start
with the base mesh vertices and enumerate them with respect to their vertex count, that
is stored in the corresponding operation. Then the FVIDs for the next finer level can be
computed, where vt receives the ID of the collapse vertex v and that of vu is increased by
the stored vertex count of vt. This way all possible topology modifications are encoded
within the vertex indices of the faces. The faces are then stored in the split operation
where they are generated. The faces are encoded by storing their vertex FVID0..2 for the
finest resolution.

Figure 6.3 shows this numbering of the vertices. The leaf nodes of the binary tree forest
are simply numbered from left to right. Then the collapsed vertex v receives the FVID of
its left child vt which is the smaller one. The resulting encoding of the faces is shown on
the right side of the figure for a simple model. If a face is now decoded, when performing
the split operation, the current vertices are either those with the same FVID, or the one
with the greatest FVID smaller FVIDi. In the example, the active vertex for the FVID 1
when performing split 1 need to be found. The currently active vertex with the greatest
FVID smaller than 1 is vertex 0 which is the collapse target of vertex 1.

In summary each operation encodes the attributes of vt and vu, the refinement criteria,
the generated faces including later modifications and the subsequent operations. In contrast

6.2 Parallel Progressive Mesh Editing 109

20

0

10 2 3

0
0 2

0
3

2
f1: 2 3 1

split 0

split 2 1

0 3

2

f2: 0 1 3

f1: 2 3 1

v

vt vu

split 1

Figure 6.3: Computation of the final vertex IDs and encoding of the generated faces
(comp. Figure 5.21).

to the algorithm proposed in the section 5.4 the operations are not compressed, but keep
their uncompressed form to allow editing. The local ordering is preserved by storing the
maximum of the simplification error and the errors stored for the neighbor vertices plus a
small epsilon. This way only the errors of neighboring vertices need to checked to enforce
a strict local ordering of split and collapse operations.

6.2.1.3 Local and Global Attributes

In compression approaches the vertex offsets are often encoded in the local coordinate
system of the split vertex. While this improves compression rates, a transformation of
the split vertex directly applies to all its decendents. To support a smooth propagation of
the transformation to neighboring split vertices, the local coordinate system is averaged
from all adjacent vertices (see Figure 6.4). Local position, normal and tangent (Pint, Nint,
Tint) are computed as weighted average of v and all vertices adjacent to vt or vu. Then
the position and normal offsets (Poff , Noff) are encoded in the local coordinate system
spanned by Nint and Tint. Note that for the tangent only one degree of freedom remains
and it is thus encoded as rotation about N .

Nint

Bint

Tint

N

P

Noff

Poff

BBBBBBBBBBBBBBBBBBBBBBBBBBBint

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTint

PPPP
Poff

Figure 6.4: Vertex attributes encoded relative to the local coordinate system interpolated
from neighboring vertices.

110 6 Progressive Mesh Editing

6.2.2 Progressive Mesh Generation

The progressive mesh generation is based on the parallel edge collapse simplification
algorithm proposed in the section 3.2 which is restricted to generate a set of static LODs.
Figure 6.5 gives an overview of the extensions and modifications necessary to construct a
progressive mesh that allows both parallel adaption and real-time editing.

Collect Vertex
Neighborhood

Calculate Local
Coordinate Plane

Store Operations

#Faces < Threshold Assign FVIDs
No Yes

Remove Illegal
Collapses

Remove
Duplicates

Initial Mesh

Quadric Error
Optimization

Vertex Quadrics

Parallel
Edge Collapse

Connectivity
Update

Edge Compaction

Extensions Modifications Previous

Figure 6.5: Progressive mesh generation including the extensions (left) and modifications
(middle) of the previous simplification algorithm (right).

After loading the initial mesh from an indexed face set, the attributes and indices are
transferred to the GPU and stored in a vertex buffer and index buffer. Then the edge
data structure is filled as in the original simplification algorithm. Additionally, the edge
indices for each face are stored since them are later required to guarantee a fixed collapse
neighborhood. In contrast to the previous simplification algorithm the proposed algorithm
use memoryless simplification [LT98] which results in computing the vertex quadrics inside
the simplification loop.

All adjacent faces and boundary edge quadrics are accumulated to calculate the vertex

6.2 Parallel Progressive Mesh Editing 111

quadrics. The quadric error optimization is identical to the original method with the
exception that the stored simplification error εv of vertex v is:

εv = max
(

εquadric, (1 + εfloat) max
i∈neighbors(v)

εs
i

)
, (6.1)

where εquadric is the quadric error, εs
i is the previous simplification error stored for vertex

i, and the multiplication with 1 + εfloat assures that the error stored for collapsing vt

and vu to v is larger than the error of previous neighboring collapses. This property is
later used during adaption and modeling to guarantee a fixed neighborhood for each split
and collapse operation. This also necessitates a modification of the overlapping collapse
removal step that requires the additional edge references stored for each face. Fixing
the neighborhood requires that two vertices sharing a common edge are not collapsed in
parallel. For static LODs preventing a collapse of two adjacent edges was sufficient. In
addition, the collapse can also not be performed, if vl or vr are not connected to vu or vt

by another triangle in addition to fl and fr. This condition is necessary because otherwise
vl or vr will be missing in the neighborhood of vu and vt when performing the vertex split.

After performing the collapses, the split operations can be stored in the progressive
mesh data structure. This is done by first collecting the neighborhoods for all operations
and then encoding the attribute offsets in the local coordinate system of the neighborhood.
Finally, the connectivity is updated and the collapsed and duplicate edges are removed.
The edge references stored in the faces are also updated during the compaction of the edge
buffer.

When the number of faces falls below a specified threshold, the simplification loop is
exited and the FVIDs are assigned to the vertices and split operations. The data structures
required during simplification are listed in Table 6.1. Note that not all data are required
during the complete algorithm and the corresponding buffers can be freed as soon as they
are not used anymore.

6.2.3 Editing

Editing is based on modifying the attribute offsets of vertices encoded in split operations or
the attributes of base mesh vertices. If a vertex is edited, its global attributes are changed
and need to be mapped to modified local attributes. The editing is transferred to finer
levels by encoding the split offsets in the local coordinate system of the neighbor vertices.
For the coarse levels, the global attributes need to be recomputed after editing. Thus the
proposed algorithm need to constantly convert between local and global attributes.

112 6 Progressive Mesh Editing

buffers elements bytes per entry

vertices

vertex VBO 4k
vertex quadric 2k2 + 6k + 4
min edge ID 4
min edge cost 4
active flag 4
adjacent vertex attributes 4k
adjacent vertex count 4
operation index 4
split index 4
FVID (x2) 8

edges

vertex index (x2) 8
active flag 4
collapse state 4
optimal placement 4k
temporary data 28

faces
index VBO 12
active flag 4
edge index (x3) 12

operations

vertex local attributes (x2) 8(k + 1)
vertex index (x2) 8
target vertex 4
cost 4
split index (x2) 8
child count 4
face index 4
temporary 4

temporary
edge sort order (x2) 8
edge sort key 4
edge prefix sum (scan) 4

Table 6.1: Data structure used during mesh simplification, where k is the number of at-
tributes.

6.2.3.1 Local and Global Attributes

The interpolated local coordinate systems of the neighbor vertices are used as reference
coordinate system. As only the collapse target and its one ring are available only these
can be used for interpolation. Therefore, it need to be guarantee, that the neighbor
vertices are the same for a split and its inverse collapse operation. This is assured by the
definition of the local ordering of the operations (see Section 6.2.1.2). Figure 6.6 shows the
neighborhood used as reference for vertex vt. Note that vertex v is weighted by a factor of
two as it is closest to vt.

Given the attribute offsets in the global coordinate system and the local coordinate

6.2 Parallel Progressive Mesh Editing 113

v1
v5

vu

vt

v2

v3

v4

v6 v7

v

Figure 6.6: Vertices in the split neighborhood of vt. The ones used to interpolate the
reference coordinate system of vt are marked in red.

system of the neighborhood, the local offsets (Plocal, Nlocal and α) are calculated as:

Plocal = (Poff · Tint, Poff · Bint, Poff · Nint)t (6.2)

Nlocal = (Noff · Tint, Noff · Bint, Noff · Nint)t (6.3)

Tortho = normalize (Tint − N (N · Tint)) (6.4)

α = arctan
Tortho · (N × T)

Tortho · T
, (6.5)

where P , N and T are position, normal and tangent of the vertex vt or vu, Bint = Nint×Tint

the interpolated bitangent and α the rotation of T about the normal of the local coordinate
system. The required position and normal offsets are:

Poff = P − Pint (6.6)

Noff = N − Nint. (6.7)

On the other hand, the global attributes of the vertex can be calculated as:

Poff = (Tint Bint Nint)tPlocal (6.8)

Noff = (Tint Bint Nint)tNlocal (6.9)

Pglobal = P + Poff (6.10)

Nglobal = N + Noff (6.11)

Tglobal = Tint cos(α) + (Nlocal × Tint) sin(α). (6.12)

114 6 Progressive Mesh Editing

6.2.3.2 Edit Propagation

After editing the changes need to be propagated to the coarser meshes. As noted earlier,
the propagation to finer resolutions is handled automatically during the split operations.
During editing, all modified vertices are marked by setting their modified flag to one. This
value means that the local coordinate system and the global attributes where changed.
Then the edited vertices are used for the calculation of the interpolated coordinate system.
By adding the attribute offsets, which are encoded in the local coordinate system, finer
details can be rebuild. For the propagation to coarser resolutions, the local coordinate
systems of the modified vertices need to be recalculated during the collapses. As the
proposed algorithm use memoryless simplification and guarantee a fixed neighborhood
for every collapse, the edge quadrics can be simply recomputed. Then the quadric is
again minimized to calculate the new vertex attributes in the coarser mesh. The new
simplification error is also calculated as discussed in Section 6.2.2. Due to storing the
attribute offsets in the local coordinate system of the neighborhood, the proposed algorithm
need to recompute the collapse for every vertex that is adjacent to a modified one. This
can be checked by simply traversing all triangles in parallel and setting the modified flag
of each triangle vertex to two if it is zero and at least one of the others in the triangle has
a modified flag of one. A modified value of two now means that the vertex has a new local
coordinate system but still its old global attributes. Note that the proposed algorithm
do not need to prevent race conditions here as it only change the flag from zero to two.
The modification flag is then set for all vertices for which the collapse was recomputed to
transfer the editing up to the base mesh. This implies that the progressive mesh has to be
collapsed down to the base mesh before saving.

6.2.4 Adaption Algorithm

The adaption algorithm is based on the progressive mesh rendering algorithm proposed in
the section 5.4. The algorithm is subdivided into several consecutive steps to implement
the adaption on massively parallel hardware. The partitioning is required for thread
synchronisation while each step can be processed completely in parallel. In the first
step the proposed algorithm update the state of the vertices as in the original algorithm,
but a global simplification error is used instead of view dependent refinement criteria
during editing. Additionally, overlapping split and collapse operations are removed to
guarantee the fixed neighborhood. This is necessary to assure that all for the operation
required neighbors exist. Then all edge collapses are performed in parallel. Another
modification is that the proposed algorithm recalculate the local coordinate system of the
corresponding split operation if the vertex v was marked as modified (see Section 6.2.3.2).
The memory management required before splitting is unmodified. For the split operations
the proposed algorithm additionally need to calculate the global attributes of the vertex
(see Section 6.2.3.1). Finally, the index update and buffer compaction of the original

6.2 Parallel Progressive Mesh Editing 115

algorithm are performed.
The dynamic data structures required for adaption and editing are listed in Table 6.2.

The vertex buffer containing position and attributes and the index buffer storing the
connectivity of the adapted mesh are required for rendering and thus separated from all
other data. The modification flag is used to mark all vertices for which the split operations
need to be updated. In the following the extensions of the progressive meshes adaption
algorithm are discussed in detail.

buffers elements bytes per entry

active faces index VBO 12
FVIDs 12

active vertices

vertex VBO (×2) 8k
vertex ID (×2) 8
modified flag (×2) 2
collapse target (×2) 8
next split & collapse (×2) 16

temporary

vertex count 4
face count 4
vertex prefix sum 4
face prefix sum 4
vertex quadric 2k2 + 6k + 4

Table 6.2: Elements of the dynamic data structure, where k is the number attributes and
additions are marked bold.

6.2.4.1 Illegal Operation Removal

After updating the state of all active vertices, splits and collapses that cannot currently
be performed are removed. The algorithm traverses all triangles in parallel and checks the
vertex states again. For the split operations, only the vertex with the highest simplification
error can be split in each face f . In addition, no vertex of f can be collapsed, if any
other is marked for splitting. Finally, a collapse operation can only be performed, if its
simplification error is the lowest in the triangle. The complete removal of illegal operations
is shown in Algorithm 17.

foreach face f in parallel do
if any_vertex_marked(f , split)

simplification_errormax = get_max_split_error(f)
unmark_dependent_splits(f , errormax)

if any_vertex_marked(f , collapse)
simplification_errormin = get_min_collapse_error(f)
unmark_illegal_collapses(f , errormin)

Algorithm 17: Parallel removal of illegal operations.

116 6 Progressive Mesh Editing

6.2.4.2 Parallel Edge Collapses

When no neighboring vertices of the edge are marked, the collapse operation simply moves
vertex vt to its old position v. Otherwise, the weigthed average of the adjacent vertex
attributes is required. This is calculated by counting the number of adjacent vertices and
accumulating their attributes. If the vertex was marked as modified, the local coordinate
system of the next split operation needs to be recalculated and the modified flag has to be
propagated to the parent vertex and its neighborhood. The removal of vertex vu and the
degenerated faces are handled in later stages. Algorithm 18 shows the parallel processing
of the edge collapse operations to update the operation after editing and to prepare the
removal of the collapsed vertices and faces.

foreach face f in parallel do
v1, v2, v3 = get_vertices(f)
atomic_add(acc_adjacent_sum(v1), v2 + v3)
atomic_add(acc_adjacent_sum(v2), v1 + v3)
atomic_add(acc_adjacent_sum(v3), v1 + v2)
atomic_add(adjacent_number(v1), 2)
atomic_add(adjacent_number(v2), 2)
atomic_add(adjacent_number(v3), 2)
q = face_quadric(f)
atomic_add(vertex_quadric(v1), q)
atomic_add(vertex_quadric(v2), q)
atomic_add(vertex_quadric(v3), q)

foreach vertex vu in parallel do
v = get_target(vu)
if marked(v, modified) || marked(vu, modified)

LCS_V T = optimize_quadric(v)
LCS_V U = optimize_quadric(vu)
update_split(v, LCS_V T)
update_split(vu, LCS_V U)

else
restore_attributes(v)

collapse_vertices(v, vu)

Algorithm 18: Parallel edge collapse algorithm.

6.2.4.3 Parallel Vertex Splits

As in the algorithm proposed in the section 5.4 the split operations compact first to improve
thread utilization. Then the global position of vt and vu need to be calculated from the
weighted average of the local offsets stored in the operation. For this the weighted average
of the adjacent vertex attributes is required again (see Section 6.2.1.3). For splitting, the
new faces need to be added to the mesh at first. Then the global attributes are calculated.
Algorithm 19 shows the parallel vertex split.

6.2 Parallel Progressive Mesh Editing 117

compact(splits)
foreach split vertex v in parallel do

vu = v + 1
split_vertex(v, vu)
append_faces(v, face_sum[v])

foreach face f in parallel do
v1, v2, v3 = get_vertices(f)
atomic_add(acc_adjacent_sum(v1), v2 + v3)
atomic_add(acc_adjacent_sum(v2), v1 + v3)
atomic_add(acc_adjacent_sum(v3), v1 + v2)
atomic_add(adjacent_number(v1), 2)
atomic_add(adjacent_number(v2), 2)
atomic_add(adjacent_number(v3), 2)

foreach split vertex v in parallel do
LCS_V T = acc_adjacent_sum(v) / adjacent_number(vt)
LCS_V U = acc_adjacent_sum(vu) / adjacent_number(vu)
calc_attributes(v, vu, LCS_V T , LCS_V U)

Algorithm 19: Parallel vertex split algorithm.

6.2.5 Results

The test system consists of a 3.333 GHz Intel Core i7-980X CPU with 6 GB DDR3-1333
main memory and an NVIDIA GTX580 (841/4204MHz). CUDA is used to implement the
parallel simplification and editing and OpenGL for rendering. Table 6.3 and 6.4 gives an
overview of the generated progressive meshes and the runtime performance during modeling.
All models use position and normal as vertex attributes (k = 6). The original meshes
contain vmax vertices and fmax faces. As the progressive meshes are uncompressed, they
require approximately twice the memory than the original models (IFS). The maximum
memory consumption is between 16 times (for small models) and 11 times (for larger
ones) than that for the original model. This maximum is reached at the beginning of the
simplification. During rendering the maximum is approximately 2

3 since the edge data
structures are not required anymore. Similarly to the simplification, the maximum is
reached when the model is refined to full resolution. Compared to the approach proposed
in the section 3.2 the preprocessing performance is lower by a factor of 5.8. The two
main reasons for this are the larger neigborhood that reduces the number of parallel
collapses by a factor of two and the generation of the progressive mesh data structure.
In addition, the memoryless simplification is computationally more expensive than the
normal quadric error simplification used in that algorithm. The adaption performance is
even by a factor of 9.6 lower than that of the algorithm proposed in the section 5.4. This is
partially again due to the fact that the proposed editing algorithm introduce neighborhood
dependencies which reduce the number of parallel operations by a factor of approximately
6. On the other hand, the uncompressed data requires more memory bandwidth and
the transformation from local to global coordintes also slows down the adaption. The

118 6 Progressive Mesh Editing

model vmax fmax IFS
Horse 48,485 96,966 2.7 MB
Armadillo 172,974 345,944 7.9 MB
St. Dragon 437,645 871,414 19.9 MB
Welsh Dragon 1,105,352 2,210,673 50.5 MB
Dragon 3,609,455 7,218,906 165.2 MB

Table 6.3: Models used for evaluation.

Simplification Rendering
model PM memory time (s) kOp/s split kOp/s collapse kOp/s update kOp/s
Horse 5.4 MB 41.3 MB 0.3 162 595 443 384
Armadillo 19.1 MB 147.3 MB 0.6 288 1181 810 631
St. Dragon 48.3 MB 372.2 MB 1.4 313 1201 882 674
Welsh Dragon 122.3 MB 941.6 MB 3.2 346 986 381 336
Dragon 399.0 MB 1872.6 MB 10.4 347 760 379 335

Table 6.4: Simplification, adaption, and update performance.

reduction of the number of operations and thus decreasing performance for larger models
is due to the fact that fewer operations were performed in parallel. The reason for this is
that these models were not pre-simplified and therefore contained many coplanar faces. In
the current implementation this blocks many collapses as only those are performed that
have a smaller error than all of their neighbors. Although the proposed algorithm broke
the possible deadlock by adding a small random number to the error, a more sophisticated
solution would lead to more parallel collapses and thus increase the split and collapse
performance.

The modeling performance of the proposed approach is approximately on par with
algorithm of Marinov et al. [MBK07]. In contrast to their approach the proposed algorithm
are however able to edit a mesh at different resolutions and the modifications are transferred
directly to all LODs. Previous multi resolution modeling approaches like the method
of Zorin et al. [ZSS97] are only suitable for models with subdivision connectivity. In
Laplacian mesh editing [SCOL∗04] a smoothed surface is used for editing and the topology
is transferred back to the surface afterwards. The drawback of that approach is that
modifications can only be performed for small ROIs with at most 100K vertices at interative
frame rates. The proposed algorithm is on the other hand able to handle models containing
up to serveral million triangles and edit them at real-time frame rates, independent of
the ROI size. Figure 6.1 and 6.7 show some of the generated progressive meshes during
editing.

6.2 Parallel Progressive Mesh Editing 119

Figure 6.7: Several progressive meshes used in the evaluation. From left to right: original
models, three frames captured during editing where the purple spheres show the ROIs, and
the final proressive meshes refined to full resolution.

6.2.6 Conclusion and Limitations

In this chapter a parallel progressive mesh generation and editing algorithm was proposed.
Its input is an indexed face set from which it first generates a progressive mesh data
structure. The progressive mesh can then be edited at any resolution. The modifications
are automatically propagated to finer resolution using an encoding of the split operations
based on local coordinate systems. In addition to that the coarser resolutions up to the
base mesh are updated using memoryless simplification. This leads to a valid progressive
mesh during the complete editing pipeline.

The main limitation of the proposed algorithm is that the model size is currently limited
to a few million triangles. In the future it can be expanded and improved for larger models
by using out-of-core or possibly even compression techniques as in the algorithm proposed
in the section 5.4. Another limitation is that the local ordering of operations is fixed after
initial simplification. While this is necessary for animations, a partial re-simplification

120 6 Progressive Mesh Editing

might be desirable after huge deformations.
Like all multi resolution modeling techniques, the proposed algorithm is limited to

geometric modifications of the vertices. Modifying the connectivity of the mesh would
require rebuilding of the progressive mesh data structure. While it would be possible to
locally re-compute the operations after large deformations, changing the mesh connectivity
would require longer processing times than geometric modifications.

CHAPTER 7
Procedural Mesh Generation

Movies, simulations, and computer games allow to explore a wide variety of realistic,
fictional terrains. In some cases, using real terrain would break the illusion of exploring
unknown planets. The computer games Spore and Civilization employ procedural models
to generate planets from a set of rules automatically. Procedural models have the advantage
that no geometry needs to be stored or streamed, instead they are created when needed.
While procedural models may use numerous parameters, default values and help texts
allow the user to tweak the planets as desired with minimal effort. In recent years, these
algorithms were improved to interactively adapt the geometry to a moving camera, in
order to support view-dependent level of detail.

While terrain can be generated quickly using previous procedural models, these terrains
lack realistic rivers. Rivers are vital for life and can be important for navigation, as rivers
often lead to communities or to the sea. Erosion simulations model the natural processes
that form rivers. Unfortunately, these algorithms are computationally expensive and can
therefore not be used to generate a locally adaptive, high resolution landscape during
a fly-through. Instead of attempting to recreate the physical processes of erosion, the
proposed algorithm for river networks that obey the following observations:

• While endorheic basins exist, most continental areas transport precipitation to the
sea over the river networks.

• River networks are surrounded by valleys between mountains and hills.

• Rivers do not cross, they are mostly above ground, and they follow the steepest
decline until they reach the coast.

I call such river networks realistic. The proposed procedural algorithm creates complete
planets and landscapes with realistic river networks without performing an erosion simula-
tion, rendering it suitable for on-the-fly generation of terrain. The algorithm starts by
creating a coarse representation of the terrain. Additional geometry has to be produced
in order to locally adapt the geometry to the camera position and perspective as the

121

122 7 Procedural Mesh Generation

user traverses the terrain. This must be done in a manner that is consistent with the
constraints named above. The algorithm uses massively parallel graphics hardware to
reach sufficient performance. Figure 7.1 shows a zoom in on the planet generated with the
algorithm.

In summary, the main contribution is a novel algorithm that combines the following
properties:

• Adaptive level of detail: The terrain metadata are stored in the edges and vertices
of a mesh and describe rules to refine terrain based on that information. As a result,
the algorithm generates river networks at adaptive level of detail.

• Realistic river networks without an erosion simulation: Water levels are
computed directly and rivers carve into the landscape without an iterative simulation
of water movement. Plausibility of the river networks is maintained while adapting
the level of detail.

• Fast terrain synthesis: The data structures support massively parallel operations,
allowing us to generate a base mesh in less than a second and to process refinements
in real time.

• Reproducibility: The results of the algorithm are reproducible. This is necessary
to ensure that the same terrain is generated when the player returns. It would also

Figure 7.1: As the user zooms in, terrain geometry is created to adaptively refine the
planet.

7.1 PreviousWork 123

guarantee that all players see the same terrain if the algorithm would be integrated
into a networked game.

The remainder of this chapter is structured as follows: Section 7.1 analyzes why previous
systems cannot generate terrain with river systems spontaneously. Section 7.2.1 gives
an overview of the operations, reproducibility and computing water levels. Section 7.2.2
describes generating the base mesh in detail. In Section 7.2.3, the adaption algorithm for
real-time rendering is outlined. Finally, the algorithm is evaluated in Section 7.2.4, which
leads to the conclusion (Section 7.2.5).

7.1 PreviousWork

Geomorphology studies the processes that shape the relief of Earth. Among these are
crust movements, vulcanism and erosion. Erosion can be caused by temperature changes
(thermal erosion), water (fluvial erosion), glaciers (glacial erosion), wind (eolian erosion),
and other effects.

7.1.1 Fractal and Procedural Approaches

Mandelbrot [Man83] has analyzed the fractal nature of many types of objects that are used
in this thesis, including mountains, river networks, and coast lines. Fournier et al. [FFC82]
demonstrated how to produce terrain or entire planets using midpoint displacement. Their
algorithm starts with a polygon or sphere and recursively inserts new vertices which split
polygons into several new polygons. A new vertex’s altitude is the average altitude of
the surrounding vertices, plus or minus a random value depending on the length of the
edges. Midpoint displacement can be used to increase the resolution of terrain. Bokeloh
and Wand [BW06] propose a GPU-based implementation of the midpoint displacement
algorithm.

Kelley et al. [KMN88] proposed an algorithm for generating procedural terrain with
river networks. Their algorithm uses the observation that water flows along edges that are
lower than the surrounding landscape. They first create a river network, calculate river
vertex altitudes, and finally assign higher altitudes to the surrounding mountains. All
tributaries in the terrain lead into a single, main river.

Hnaidi et al. have proposed a method that defines terrain from user-defined control curves
that include ridge lines, river beds, hills, cracks and cliffs [HGA∗10]. Two-dimensional
piecewise Bezier cubic splines are used to define the control curves. The terrain is computed
from a set of partial differential equations which are solved on the GPU.

Several algorithms that generate new terrain by transplanting detail from existing terrain
have been proposed [BSS06, EF01, ZSTR07]. A number of approaches generate terrain that
satisfies user-given constraints [ST89, PGTG04, SS05, Bel07]. These algorithms could also
be used for procedural modeling by defining the constraints procedurally. Prusinkiewicz

124 7 Procedural Mesh Generation

and Hammel integrated midpoint displacement and the creation of a single river into a text
rewriting system [PH93]. While a lot of research has focused on modeling streets using
grammars, most recent approaches model streets as splines or graphs without grammars
[GPMG10, LSWW11].

7.1.2 Erosion Simulation

Musgrave et al. proposed to simulate fluvial and thermal erosion on fractal terrain
[MKM89]. During every step of erosion simulation, rain is dropped onto the surface and
gathered in lakes until it leaks at the lake’s lowest border and forms a river bed. As the
simulation proceeds, many initial lakes are converted to river beds in this manner and a
river network is created. Numerous extensions to erosion simulation have been proposed.
Beneš and Forsbach proposed a data structure that stores several layers of material in
a grid. For each layer, material information and thickness are stored [BF01a]. They
also showed that if the terrain is split into strips, erosion simulation can run in parallel
for each strip, only the boundary areas need to be treated separately [BF01b] and they
demonstrated how to integrate evaporation into erosion simulations [BF02]. Rather than
calculating erosion based on amounts of exchanged water, erosion can be simulated with
particles [CMF97, KBKv09]. An optimized GPU implementation of erosion simulation
has been proposed by Št’ava et al. [SBBK08].

7.1.3 Terrain Rendering and Parallel Level-of-Detail

View-dependent simplification has been an active field of research over the last two decades.
Hoppe [Hop96] introduced progressive meshes that smoothly interpolate between different
levels of detail. Depending on the view position and distance, a sequence of split- or
collapse operations is performed for the vertices to generate a view-dependent simplifica-
tion. The inter-dependency of split operations can either be encoded explicitly [XV96]
or implicitly [Hop97]. Hoppe later optimized the data structures and improved the per-
formance of the refinement algorithm [Hop98]. Duchaineau et al. store triangles in a
binary tree, where each level stores the geometry for a single level of detail [DWS∗97].
Pajarola and DeCoro [Paj01, PD04] developed an optimized sequential view-dependent
refinement algorithm. Losasso introduced the geometry clipmap, which stores geometry
for quadratic regions centered around the user, similar to mipmapping [Los04]. Hu et
al. [HSH09] proposed a parallel adaption algorithm for progressive meshes. They intro-
duced a relatively compact explicit dependency structure that allows to group vertex
splits and half-edge collapses into parallel steps. The drawbacks of this technique are that
the explicit dependencies need additional memory and that only half-edge collapses are
supported. A more compact data structure for progressive meshes was proposed by me at
chapter 5. It is based on Hoppe’s original view-dependent refinement algorithm [Hop96]
and supports a massively parallel adaption algorithm.

7.2 River Networks for Instant Procedural Planets 125

7.1.4 Analysis

Table 7.1 summarizes the features of the previous algorithms. Ideally, such an algorithm
would be interactive, support realistic water and erosion effects, and immediately generate
terrain at any desired level of detail while the user explores the terrain. For a number of
algorithms, the level of detail is fixed. In other cases, the level of detail is limited by the
functions that are used to define the terrain. At high polygon counts, additional polygons
make features rounder but do not add further detail. In these cases, Table 1 reports
the level of detail as limited. Midpoint displacement can be used to add further detail
to a terrain [Bel07]. Unfortunately, the algorithm lacks the necessary rules to prevent
introducing mountain peaks into rivers. Some algorithms do not support river networks.
However, water effects are vitally important as river networks are a defining element of
natural landscapes. As a result, in related work, either the level of detail is limited or river
networks are missing.

Both midpoint displacement and the method of Kelley et al. come very close to satisfying
the stated requirements. The one lacks river networks, while the other lacks adaptive
level of detail. Both methods also operate on a mesh. This thesis demonstrates how they
can be combined into a new algorithm. A parallel implementation is required to reach
sufficient performance for interactive applications.

Algorithm/Authors Input Output Precomputation/Size Water Effects Level of Detail
Midpoint Displacement Parameters Mesh Very fast Global sea level Adaptive
Kelley et al. Parameters Mesh Very fast River networks Fixed
Erosion Simulation Grid Layered grid[BF01a] Minutes Many Fixed
Constrained Modeling Constraints Grid 2.97s / 1024×1024 [Bel07] Global Sea Level Limited
Transplant Terrain Two grids Grid 2.5 s / 2794×394 [BSS06] Global Sea Level Fixed
Hnaidi et al. Control curves Grid 0.3 s / 1024×1024 [HGA∗10] User-defined rivers Limited
Proposed algorithm Parameters Mesh Very Fast (Table 7.4) Realistic river networks Adaptive (Fig. 7.6)

Table 7.1: Comparison of features in previous algorithms.

7.2 River Networks for Instant Procedural Planets39

The proposed algorithm consists of two phases. In the first phase, the algorithm creates a
rough representation of the planet, the so-called base mesh: It creates a sphere, assigns
continents, river networks, and altitudes (Section 7.2.2). The second phase is adaption
(Section 7.2.3), where the algorithm interactively and adaptively refines the terrain while
the user moves about freely. The adaption phase consists of a number of steps that were
optimized to take advantage of massively parallel graphics hardware.

39 In Computer Graphics Forum (PG2011) [DGGK11].

126 7 Procedural Mesh Generation

7.2.1 Overview

The mesh data structure is used because the algorithm of Kelley et al. requires labeled
edges. While it would be possible to store the planet in a displacement map wrapped around
a sphere, only eight directions are possible for transporting water between neighboring
cells, and a solution would be needed that can exceed these 8 directions when zooming in.
Otherwise, parallel rivers would emerge. The mesh data structure supports two atomic
operations – edge split and vertex collapse – that are used to manage the level of detail.
Edge split operations can be applied to increase the level of detail locally when the user
comes closer to parts of the terrain. The reverse operation, vertex collapse, restores the
representation at the lower level of detail. Figure 7.2 shows a split operation that creates
faces f3 and f4, edges e2, e3, e4 and vertex vnv, while a vertex collapse operation reverses
this operation by removing these entities. The designations in Figure 7.2 are used in the
entire chapter.

vev1
vev2

vt

vd

split

collapse

fn0
fn6

fn3
f2

f1

fn1

fn5fn2

fn4

vev1
vev2

vt

vdfn0
fn6

fn5fn2

fn4

fn3

vnv

f1 f3

f2 f4

fn1

e1 e1

e2 e3

e4

Figure 7.2: Vertex collapse and edge split operation.

7.2.1.1 Reproducibility

Procedural models can often be recreated from a random seed, but a naïve implementation
of midpoint displacement would still produce different results when zooming into the
terrain along a different path. This is because the adaptive refinements would apply the
random values in different local order. However, when the terrain is reproducible, only
its current representation needs to be stored, as geometry at different levels of detail can
be created when needed. Otherwise, exploring the terrain would create new data until
storage is exhausted. Therefore, the method asserts that the same terrain is generated
regardless of the path of exploration, which allows several players to explore a planet
without streaming geometry over networks. A single random seed is used to compute the
entire planet. The base mesh is produced from the random seed using a deterministic
algorithm and is thus reproducible, including the random seeds for all vertices. As the
order of refinements may vary, reproducibility of the edge splits is guaranteed using the
random seeds stored in the vertices. The sum of the seeds of vertices vev1 and vev2 is used

7.2 River Networks for Instant Procedural Planets 127

as the seed of vnv. However, the pseudo-random numbers alone are not enough to ensure
that refinements are reproducible. The algorithm also need to preserve the local order of
the operations, so a split level is assigned to every edge. For each split, the edge’s split
level is incremented and decremented it for each collapse. Similar to [ESV99], only the
edge with the lowest split level can be split in each face.

7.2.1.2 Types of Edges and Faces

A flag in each face stores whether the polygon belongs to the sea or to a continent. Edges
are marked as sea, coast, or continent depending on their surrounding polygons. In
addition, edges between continental polygons may be flagged as rivers. If a river edge is
split, two river edges and two continent edges are created. When a coast edge is split,
there will be two coast edges, one sea edge, and one continent or river edge. If a sea edge
is split, there will be four new sea edges. When a continent edge is split, the new vertex
vnv will have four new continent edges. If the new continent faces are not connected to
the river network, the edge between the new vertex vnv and an existing river vertex is
converted to a river, to assert that polygons created later are still connected to the river
network. While an edge only has one type, vertices have all the types of their incident
edges.

7.2.1.3 Water Levels

The ground and water altitudes is stored in each vertex to define water levels for the sea
and rivers. If the altitude of the water surface is higher than the ground altitude, the
vertex is submerged. If the ground altitude of the river vertex is higher than the water
altitude, the vertex is not submerged, but its edges may still be partially submerged by
adjacent submerged vertices. While executing a split operation, the ground altitude and
the water altitude of vnv are calculated from the values of the adjacent vertices vt, vd, vev1
and vev2. As a result, polygons that have both submerged vertices and vertices above water
level are partially flooded and form coasts and river banks. A 2D lookup texture is used to
define colors for the climate zones and water depth. The ground altitude, water altitude
and geographical position of the vertex are used to compute the texture coordinates. A
high quality shader is used to create the water effects.

7.2.2 Planet Generation

Base mesh creation must be fast as the user wants to start exploring the planet without
delay but still all information for refining the geometry has to be generated. This process
consists of two steps: First, a base shape and the land masses are generated. Then the
inital river networks is produced.

128 7 Procedural Mesh Generation

7.2.2.1 Base Shape and Continents

The base shape is created by inserting vertices into an octahedron to form a sphere. During
each split, each new vertex vnv needs to be lifted to the surface of the base shape:

vnv ← (r + anv)
vnv − c

‖vnv − c‖ + c, (7.1)

where r is the sphere’s radius, anv is the vertex’s ground altitude, and c is the sphere’s
center. Positions for new vertices vnv are chosen from a randomized weighted sum of the
surrounding vertices:

vnv = (1 − η) (ξvev1 + (1 − ξ)vt) + η(ξvd + (1 − ξ)vev2) , (7.2)

where ξ,η ∈ [0.25,0.75[are uniformly distributed pseudo-random numbers.
In this context, a continent is a connected land mass above sea level. Initially, all

faces are labeled as sea. For every continent, a starting face is selected and labeled as a
continent. Faces that have at most one pure sea vertex can be added to the continent. The
other vertices in a new face must already belong to the continent. This ensures that two
continents are always separated by an edge. The face and its edges are labeled to belong
to the continent. This is repeated until the percentage of the total land mass reaches a
user-defined value. Any edges and vertices between continental and sea faces are marked
as coast. Alternatively, instead of creating a random base mesh, types of polygons, edges
and vertices are read from a digital elevation model.

Ground altitudes for continental and coastal vertices are assigned during river network
creation and are initialized with zero. Sea vertices are assigned an altitude below sea
level and a water altitude that equals the sea level, εsea. If terrain below sea level is
also required, pure midpoint displacement can be used to compute altitudes. In order to
generate pseudo random numbers for the vertices in a reproducible manner, each vertex is
assigned an initial random seed and its split count is set to zero.

7.2.2.2 Initial River Networks

At this point, continents consist only of continent and coast edges and vertices. The
algorithm still need to generate river networks and compute continental vertex altitudes.
First the maximal depth of the rivers εriver < εsea is defined. Creating the river networks
starts at the river mouths. The algorithm consider all vertices in pseudo-random order,
looking for continental vertices that are adjacent to a coast vertex. In a river mouth,
typically only one river mouths into the sea, therefore the coast vertex should not have a
river edge yet. The edge between the chosen vertices is flagged as a river edge. In order to
complete the river networks, the algorithm pick edges that connect a river vertex with
a continent vertex in pseudo-random order and convert these edges to river edges. Two

7.2 River Networks for Instant Procedural Planets 129

rivers may merge in a river vertex, but if possible, alternative river edges should be used
to prevent merging more than two rivers in a single vertex. When all continental vertices
have been connected to the river network, the river networks are complete.

While the river network is created, ground altitudes and water altitudes are assigned to
the river vertices, starting from the coast vertices at sea level:

av = au + ealeξ, ea =
amax_river

lr
, (7.3)

wv = av + ewle, ew =
εriver

lcr
, (7.4)

where v is the current vertex, u is reached by v’s outgoing river edge, au, av are the
ground altitudes, wv is the water altitude of v, average ground elevation ea, average water
elevation ew, river length lr, length of the river between v and river spring lcr, length of the
current edge le and ξ ∈ [0,1[is a uniformly distributed pseudo-random number. Assigning
river altitudes using a constant elevation leads to sharp cliffs in places where a branch of a
long river neighbors a branch of a smaller river. Instead, the algorithm assign a maximum
altitude amax_river for the river spring, depending on the length of the river. The ground
altitude of the river mouth is εsea − εriver. The ground altitudes of the river springs are
not allowed to exceed amax_river and the water altitude is equal the ground altitude. The
altitude for all other river vertices is interpolated linearly between these (see Figure 7.3).
Vertex normals are stored for lighting. As river vertices are hidden, this variable is used
to store a tangent towards the river mouth instead, which is used to generate round rivers
during later vertex splits.

river spring

river vertices

water surface

river mouth

sea

river<

seavv wa == ,0 rivervriverseav wa == ,

riverv aa max_

vv aw =

+= eauv leaa
ewvv leaw +=

sea vertices

sea river

Figure 7.3: Water and ground altitudes of the river vertices.

Now, the river networks are separated by continent or coast edges but there are no river
beds. Therefore, the algorithm insert a continent vertex into every continent edge between
two river vertices or between a river vertex and a coast vertex. Coast edges with two river
mouth vertices must be split in the same manner. While producing the river networks,
pure mountain vertices are inserted to separate the rivers. These vertices are placed at
higher altitude than their surrounding river vertices, so the algorithm compute an altitude

130 7 Procedural Mesh Generation

anv for vnv using the altitude ar of the highest adjacent river vertex vr:

anv = ar + emleξ, (7.5)

where em is the elevation of mountain edges, le is the horizontal length of the edge between
vnv and vr, and ξ ∈ [0,1[is a uniformly distributed random number. This ensures that
rivers follow the steepest decline, because the rivers are surrounded by continental vertices
at higher altitude. Table 7.2 gives an overview of the parameters used in the algorithm.

Symbol/Name Description Value
Basic shape Sphere, ring or flat polygons Sphere
r Size or radius 6371 km
Continents Number of continents (optionally islands) 6
Land Percentage of land area to total planet’s surface 50%
Bitmap Alternatively, to define the continents
Edge length Minimum edge length 1 cm
Base shape accuracy Number of triangles for base shape 5000
2D Lookup Texture To define colors for the climate zones
amax_river Max. river altitude 12 km
amax_mountain Max. mountain altitude 13 km
εsea Global water level (sea level) 3 km
εriver Max. river depth 300 m
lrmin Min. river length 200 km
sr Min. river slope 1 m/km
srb Min. riverbed slope 300 m/km
sp Min. slope near river 1 m/km
εrb Riverbed edge height above water 10 m
sg Max. ground slope 1000 m/km

Table 7.2: Main parameters used to define a planet in the algorithm.

7.2.3 Runtime Algorithm

The adaption algorithm is divided into several consecutive steps to take advantage of
massively parallel hardware. The partitioning is required for thread synchronization while
each step can be processed completely in parallel. First, the algorithm test which edges
have to be split and which vertices must be collapsed to adapt the mesh to the new camera
position. Then the selected operations are performed. This mesh is then used as input for
the next frame to exploit temporal coherence.

The main data structures required for rendering are the vertex buffer containing the
position and normals and the index buffer storing the connectivity of the adapted mesh.
Both are stored as vertex buffer objects (VBOs) and are therefore separate from all other
data. Table 7.3 gives an overview of the dynamic data structures that are discussed in the
following.

7.2 River Networks for Instant Procedural Planets 131

Buffers Elements Memory New entities
(bytes per entity) (per new vertex)

active edges

face ID (×2) 8

3length 4
split count 2
type 1

active faces

index VBO 12

2edge ID (×3) 12
normal 12
type 1

active vertices

vertex VBO 24

1

ground altitude 4
water altitude 4
edge ID 4
maximal edge length 4
seed 4
type 1
coast marker 1

temporary
split flag 4 3
collapse flag 4 1
temp 4 3

Total memory (per vertex) 193 byte

Table 7.3: Elements of the data structure.

7.2.3.1 Vertex State Update

In the first step, the necessary operations are determined. If the vertex v needs to be split
according to its refinement criteria, the split flag is set in its state. Otherwise, the collapse
flag is set if the refinement criteria allow a collapse. In all other cases no operation is
required for v. Then the state of the edges is determined by traversing all edges. An
edge is split if one of the edge vertices meets the criteria for a split. As some splits and
collapses cannot be executed immediately, an additional check has to be performed to
remove conflicting operations. For the split operations, only the edge with the lowest
split level can be split in each face f . In addition, if any edge is marked for splitting,
no vertex of f can be collapsed. If no edge of the face needs to be split, the collapse
operations are checked. vnv can only be collapsed if all incident edges (e1, e2, e3 and e4)
have the same split level. This assures that only one edge in a face can be split and only
one vertex can be collapsed to avoid race conditions. Split and collapse operations can be
executed in parallel provided that each triangle is affected by only one operation. If there
are several operations affecting a single triangle, the most important operation is executed
immediately, while the other operations may be executed in one of the following frames.
Due to camera movement, the priority of delayed operations may change. Splitting all
three edges on a triangle would take three frames.

The algorithm check several criteria to remove invisible vertices. The most simple one

132 7 Procedural Mesh Generation

is view frustum culling: A vertex can be collapsed if it lies outside the view frustum
regardless of the screen space error. To prevent foldovers and popping artifacts when
rotating or panning, the algorithm do however not simply collapse all vertices that are
outside of the view frustum but modify the distance d of these vertices for the following
LOD selection:

d̃ =
(

cLOD

(max(|x| , |y| , |z|)
w

− 1
)2

+ 1
)

d, (7.6)

where x, y, z and w are the homogeneous coordinates of the vertex after projective
transformation and cLOD is a constant value. In the experiments, cLOD = 20 resulted
in a smooth LOD falloff outside the view frustum. Then backface culling is performed
and the screen space error evaluated. For splitting and merging vertices based on camera
distance, l

d̃
> c is tested, where l is the maximal length of the edge assigned to the vertex

(stored) and c is a constant value, and set split/collapse flags according to the result of
the test. Different values of c are used for sea and continent vertices because the sea can
be rendered at a lower resolution to reach the same quality as the land. Algorithm 20
summarizes the vertex update operations.

foreach vertex v in parallel do
if need_split(v)

mark(v, split)
elif may_collapse(v)

mark(v, collapse)
foreach edge e in parallel do

determine_edges_state(e,vev1,vev2)
if edge_marked(e, split)

levelmin = get_min_active_split_level(f)
unmark_dependent_splits(f , levelmin)
unmark_all_collapses(f)

foreach vertex v in parallel do
if any_vertex_marked(v, collapse)

if neighboring_edges_level_not_equals(vnv, e1-e4)
unmark_collapse(vnv)

Algorithm 20: The parallel vertex states update.

7.2.3.2 Memory Management

Before split and collapse operations can be performed, the algorithm may need to adjust
the size of the buffers. The algorithm always reserve slightly more memory than currently
required to reduce the runtime cost for allocating memory and copying data when the
size of an array is modified. If the size of the vertex, edge or face buffers is too small or
significantly too large, new buffers are allocated and the content of the old ones is copied
into them. When a reallocation is performed, the buffer size is set to the number of faces

7.2 River Networks for Instant Procedural Planets 133

nf plus a user-defined threshold nalloc. If the buffer is larger than nf + 2nalloc it is reduced
to nf + nalloc.

7.2.3.3 Parallel Edge Splits

After updating the state of all active edges and removing illegal splits and collapses, the
operations can be applied. First the splits [SHZO07] are compacted to ensure that each
thread performs an operation to improve the thread utilization. Then, the following steps
are performed for each split operation (summarized in Algorithm 21):

1. Calculate the seed snv = sev1 + sev2 of the new vertex vnv, where snv is the seed of
vertex vnv.

2. Two new faces f3 and f4 and three new edges e2, e3 and e4 are generated and added
to the buffers (Figure 7.2).

3. Change the connectivity of neighboring faces edges and vertices, as demonstrated in
Figure 7.2.

4. Assign types to the new faces, edges and vertices using the rules from section 7.2.1.2.
The type of f1 is assigned to the new face f3 and new edge e2. Similarly, the type of
f4 and e4 is the type of f2.

5. The position of the sea vertices is the center of the edge that is split. For continent
and coast vertices the position of vnv is calculated from the adjacent vertices vev1,
vev2, vt, and vd using equation 7.2. The position of the river vertices is calculated
from vt and vd only:

vnv = (1 − ξ)vt + ξvd, (7.7)

where again ξ ∈ [0.25,0.75[is a uniformly distributed pseudo-random number,
calculated with a seed of vnv. In addition, ξ is biased to generate smooth rivers. If
the edge length is less than the minimal river length lrmin the use:

ξ′ = ξ +
(vs − vd) · (vt − vd)

‖vt − vd‖2 , (7.8)

with
vs =

vev1 + vev2
2

+ ‖vev1 − vev2‖ tev1 − tev2
4

, (7.9)

where tev1 and tev2 are the stored tangents of vev1 and vev2. Equation 7.9 assumes
that the river flows from vev1 to vev2. Additionally, the tangent is calculated for the
new river vertex vnv and stored instead of the normal. Finally, vnv is added to the
vertex buffer.

134 7 Procedural Mesh Generation

6. Calculate the ground altitude anv and water altitude wnv of vnv. The altitude of
sea vertices is simply the sea bottom and the water altitude the sea level. For river
vertices it is 1

2(wev1 + wev2) and 1
4(wev1 + wev2 + wvt + wvd) for all others. For

continent vertices the algorithm then check if it can construct a new river arm, where
wnv is set to anv. It can be generated if the split edge is not a river edge and one
of the four edges can be converted into a river. This is only possible if the edge is
longer than lrmin and anv can be at least lesr above the other river vertex and below
all neighboring non-river vertices c:

anv < min
c

(ac − min (lesrb, εrb + (lesp),)) . (7.10)

where le length of the edge between vnv and neighboring non-river vertex vc, sr

minimal river slope, srb minimal riverbed slope, sp minimal slope near river and εrb

riverbed edge height above water. For continent vertices similar bounds apply (see
Figure 7.4):

anv > min
bw

(min (abw + lesrb, wbwεrb + (lesp))) , (7.11)

max
c

(ac − (lesg)) < anv < min
c

(ac + (lesg)) , (7.12)

where sg maximal ground slope, bw are the neighboring river vertices or those covered
by water and c the remaining ones. The final altitude is then a random value inside
the previously computed bounds.

7. Calculate normals for f1, f2, f3 and f4 and the vertex normal of vnv unless it is a
river vertex. The normals for each vertex are computed from the surrounding face
normals.

river vertex rbs

ps
rb

Figure 7.4: Riverbed shaping parameters.

7.2.3.4 Parallel Vertex Collapses

After applying the split operations, the collapse operations need to be performed. Each
collapse operation removes vertex vnv and edges e2, e3 and e4. In addition, faces f3 and
f4 degenerate and are removed from the mesh. Then faces f1 and f2, edge e1, and all
incident faces and edges are relinked (Figure 7.2). The member variable edgeID is used
in each vertex to store an edge that contains the vertex. This helps us locate the other

7.2 River Networks for Instant Procedural Planets 135

compact(splits)
foreach split edge e in parallel do

calc_seed(vnv)
add_new_faces_edges_vertex(e1-e4, f1-f4, vnv)
relink_neighbors()
assign_types(e1-e4, f1-f4, vnv)
calculate_altitudes(vnv)
vnv = split_edge(e)
calculate_faces_normals(f1-f4)

Algorithm 21: Parallel edge split algorithm.

edges around the vertex quickly for collapse operations. When all operations have been
applied, the maximal length of the adjacent edge of the new vertices and the vertices in the
neighborhood of the split and collapse operations need to be recalculated. Algorithm 22
shows the parallel processing of the edge collapse operations and how maximal lengths are
recalculated.

foreach vertex v in parallel do
if marked(v, collapse)

remove_faces_edges_vertex(v)
relink_neighbors(v)

foreach vertex v in parallel do
if required_length_recalc(v)

recalc_max_length(v)

Algorithm 22: Parallel edge collapse algorithm.

7.2.3.5 Buffer Compaction

If vertices were removed, the active vertices (including the vertex VBO), active faces
(including the index VBO), and active edges are compacted in the final step of adaption.
Note that when compacting the vertices, faces or edges, the references to them must be
updated accordingly. While the compaction of the faces and thus the indices is mandatory
since the index VBO are used for rendering, the compaction of the vertices and edges
is not. The latter two only need to be compacted every few frames to prevent bloating
of the buffers. To save time and memory, a specialized in-place compaction algorithm
(Section 5.2) is used since the ordering does not need to be preserved.

7.2.4 Results

The test system consists of a 3.333 GHz Intel Core i7-980X CPU with 6 GB of DDR3-1333
main memory, 16 lanes PCIe 2.0 slot, and a GeForce GTX 580 (841/4200MHz). OpenGL
is used for rendering and CUDA for the adaption algorithm. Terrains were reproducible
over networks and on different PCs. All images were generated under real-time conditions

136 7 Procedural Mesh Generation

at a resolution of 1920 × 1080 with an edge length of 0.5 pixel for the land and 5 pixels for
the water. The number of polygons is limited dynamically to a value that ensures that 20
to 30 frames can be rendered per second, to adjust the algorithm to the capabilities of
different hardware.

Table 7.4 lists the number of rendered faces, the total time (rendering and adaption
per frame), total and adapt number of triangles per second (TPS), and the memory
consumption for the views shown in Figure 7.5 and the fly through in the accompanying
video, where the numbers are taken from the most complex frame. A base mesh with
approximately 5000 faces is used. Creating the base mesh took 0.27 seconds. Table 7.2
shows the values that were used to produce the accompanying results. While the user
explores the planet, the dynamic data structures reside on the graphics card only. This
has the advantage that the data can be rendered and adapted without passing it over
the PCIe bus. The algorithm can process up to 34/100 (total/adapt) M TPS for static
views. The high quality shaders are used to demonstrate that the algorithm is suitable for
real-time rendering of terrains at high quality. However, the shaders require 50% to 80%
of the rendering time. With simpler shaders, the adaption time lies between at 40% to
70% of the total frame time.

model # rendered faces memory (MB) frame time (ms) total/adapt M TPS
orbit view 1,153,435 115.8 35.8 (38.3%) 32.2/84.1
ground view 1 1,296,562 130.2 38.5 (33.6%) 33.7/100.2
ground view 2 858,562 92.6 33.8 (36.9%) 25.4/68.8
video (max.) 1,041,970 139.5 58.4 (46.8%) 17.8/38.1

Table 7.4: Memory consumption, total rendering time and total number of triangles per
second (TPS) of the different views. The ratio of adaption time compared to total time is
given in parenthesis.

Timings for adaption and rendering together with memory consumption and the number
of active faces for the fly through in the accompanying video are shown in Figure 7.6. The
data structures consumed less than 139.5 MB and the average frame rate is 30 frames per
second (fps). The peak performance for dynamic views is 27/72 MTPS (total/adapt) and
up to 7/15 MTPS can be generated. The proposed approach quickly reacts to changes of
the view direction with fast adaption of the terrain complexity. Due to the high adaption
performance, only few popping artifacts are visible in the video despite the fast movements.
Figures 7.1, 7.5, and 7.8 show example planets.

Finally, the runtime of each step is analyzed inside the adaption and rendering algorithm
in Figure 7.7. The most expensive step of the algorithm is the state update, because it
must be performed for each active vertex. The time spent on mapping and unmapping the
index and vertex buffers for access by CUDA/OpenGL cannot be reduced or prevented.
Rendering takes up to 63% of the frame time.

7.2 River Networks for Instant Procedural Planets 137

Figure 7.5: The images show the models as rendered from the point of view. The bottom
image demonstrates that parts of the terrain that are outside the view frustum (yellow) are
reduced to the base mesh.

138 7 Procedural Mesh Generation

0

20

40

60

80

100

120

140

160

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

M
Bm

s

Time (s)

Adaption time
Total time
Memory

Figure 7.6: Timings and memory consumption for the scene using a pre-recorded camera
path.

Figure 7.7: Relative time of the several adaption steps compared to rendering.

Figure 7.8: Left: Alternatively, the algorithm can be used to generate river networks for
user-provided maps. Right: Meandering rivers.

7.2 River Networks for Instant Procedural Planets 139

7.2.5 Discussion and Conclusion

In this chapter a new procedural algorithm that spontaneously creates planets or terrain
parts with continents and realistic river networks was proposed. It is specifically developed
for massively parallel view-dependent adaption. While previous algorithms are not able to
generate planets at adaptive level of detail within seconds while ensuring consistency of
the river networks, the proposed algorithm is the first to present a parallelized pipeline
that combines these features. The algorithm correctly models how valleys and mountain
tops differ in that rivers flow through the valleys. While many applications use a fixed
level of detail, interactively adapting the level of detail to the camera perspective is a
necessity when dealing with large terrains, such as planets. The algorithm does not require
storage except for the mesh representing the terrain, and the geometry does not have to be
streamed over network, even when several users wish to explore the same terrain. Only a
small parameter set and an initial random seed are needed to completely recreate a planet
because of reproducibility.

The system by Kelley et al. produces only a single river network, and it does not support
refinement [KMN88]. The proposed technique is suitable for interactively adapting large
terrains to a moving camera. The only other technique that can do this is the midpoint
displacement algorithm by Fournier et al. [FFC82], which does not produce river networks.
When using midpoint displacement on realistic terrain, rivers may be interrupted by
mountains, which would likely block the rivers, resulting in large endorheic basins or
inconsistencies. In contrast to that, the rules implemented by the proposed algorithm
ensure consistency of the river networks.

Erosion simulation can also produce eroded terrain with continents and river networks,
but that family of algorithms requires much more computation time and has to run
supervised. Otherwise, either too many large lakes remain, or the rivers carve too deeply
into the terrain. Bad choices for the parameter values often mean that the entire simulation
must be restarted, whereas the proposed algorithm produces a viable solution much faster.
While it may be possible to combine erosion simulation with adaptive level of detail,
ultimately similar problems would have to be solved, and users might note changes in
the terrain caused by the simulation. In contrast to that, the terrain generated in the
proposed algorithm is immediately realistic and stable.

The proposed system yields correct results for glaciofluvial erosion. Thermal and eolian
erosion are modeled by limiting terrain slope. These effects are computed in the proposed
method without time-intensive simulations. The proposed algorithm can be used for
simulations that require spontaneously created terrain. This includes computer games and
learning to steer vehicles, e.g. flight school.

CHAPTER 8
Conclusion and Future Work

In addition to the discussion in the previous chapters, this chapter gives an brief overview
of the algorithms proposed in this thesis. Moreover, limitations and possible extensions
are discussed.

8.1 Conclusion

Highly detailed models are commonly used in computer games and other interactive
rendering applications. The complexity of such models still grows faster than the ability
of the graphics hardware to render them in real-time. This thesis addressed this problem
by introducing data structures for efficient LOD rendering, simplification, edition and
generation of meshes optimized for parallel processing and low memory consumption on
the GPU.

In chapter 3 a parallel implementation of the quadric error simplification developed
by Garland and Heckbert [GH97a] is proposed. The generated meshes are identical to
those produced by the sequential algorithm for a given error bound. On a customer level
graphics card, the method can generate a set of LODs for a model containing over 4 million
faces in less than a second40. This is comparable to loading the generated LODs from
disk and significantly faster than network transfer. It is significantly faster compared to
existing approaches.

A combination of a parallel out-of-core marching cubes implementation with a parallel
stream simplification algorithm is presented in the chapter 4. In contrast to previous
approaches the proposed algorithm can generate simplified iso-surface meshes of the same
quality as standard simplification after complete iso-surface extraction. Since the presented
parallel algorithm does not need to store and simplify the complete mesh, the pre-simplified
iso-surfaces of large volume data sets can be parallel generated within less than a minute.

In chapter 5 the novel parallel implementations and data structures for in-core and

40 On NVIDIA GTX 580 GPU.

141

142 8 Conclusion and Future Work

out-of-core view-dependent progressive meshes are proposed. In section 5.2, a compact
in-core data structure for progressive meshes is presented. This in-core data structure
is extended in section 5.3 for out-of-core memory management. The main problem of
the algorithms proposed in section 5.2 and 5.3 and over previous approaches, are the
inter-dependency of split operations. Due to the inter-dependency of split operations,
the adaption rate is reduced, leading to visible popping artifacts during fast movements.
Section 5.4 proposes a novel in-core and out-of-core dependence free progressive mesh
representation. It is specifically designed for massively parallel view-dependent adaption
of gigabyte-sized models. In contrast to the previous approaches, no splits need to be
postponed as they are waiting for others to be applied before them. It is based on a
neighborhood dependency free progressive mesh data structure. Using a per operation
compression method, it is suitable for parallel random-access decompression and out-of-
core memory management without storing decompressed data. In contrast to existing
approaches, this allows rendering of very large models with fast movement nearly without
popping artifacts.

Progressive meshes are often employed to improve the rendering performance by reducing
the number of rasterized triangles. The classical work flow is to generate a model and
then use simplification algorithms to construct the progressive mesh. Thus the whole
simplification has to be performed again after editing the model. This does not only require
additional processing time but also hinders animations of progressive meshes. Based on
this observation a real-time parallel multi resolution modeling algorithm for progressive
meshes is proposed in the chapter 6. It can be used for real-time editing and animation
of complex progressive meshes. Due to the progressive representation it can intuitively
modify the overall shape or small scale details. In contrast to existing approaches, it
quickly generates a progressive mesh from a complex triangle model. It is also proposed
a massively parallel simplification algorithm that generates all required data structures
within a few seconds.

In chapter 7, a new procedural algorithm that spontaneously creates planets or terrain
parts with continents and realistic river networks is proposed. It is specifically developed
for massively parallel view-dependent adaption. The technique is suitable for interactively
adapting large terrains to a moving camera. In contrast to previous algorithms, it
combines the generation of planets at adaptive level of detail within seconds while ensuring
consistency of the river networks. The algorithm does not require storage except for
the mesh representing the terrain, and the geometry does not have to be streamed over
network, even when several users wish to explore the same terrain. The algorithm can be
used for simulations that require spontaneously created terrain. This includes computer
games and learning to steer vehicles, e.g. flight school.

8.2 Future Work 143

8.2 Future Work

For the mesh simplification proposed in chapter 3 and 4, the out-of-core data structure
should to be developed. It allows the simplification of very huge models that exceed the
amount of available graphics memory. The main limitation of the algorithms is that the
computation of the target placement is rather expensive. With increasing number of
attributes, this dominates the total runtime. An acceleration of the computation would
significantly increase the performance. Another limitation is that the algorithms do not
check for triangle flips during simplification, which can produce visible artifacts. A possible
extension of the method would be the addition of vertex pair contractions. These could
be integrated by adding an additional set of virtual edges before simplifying the mesh for
a level. The maximum vertex distance would then be in the range of the error threshold.

The main limitation of the dependency free parallel progressive meshes algorithm
proposed in section 5.4 is that the reorganization of the vertices is rather expensive.
An acceleration or prevention of this step would significantly increase the performance.
Moreover, increasing the compression rate without limiting random access would increase
the performance and reduce the required memory.

The main limitation of the progressive mesh editing algorithm presented in chapter 6 is
that the model size is currently limited to a few million triangles. In the future it can be
expanded for larger models by using out-of-core or possibly even compression techniques
as in the algorithm proposed in section 5.4. Another limitation is that the local ordering
of operations is fixed after initial simplification. While this is necessary for animations, a
partial re-simplification might be desirable after huge deformations.

For the procedural planet generation proposed in chapter 7, the new texturing techniques
need to be developed. By using photo-realistic textures, the quality of the terrain can be
improved. Such textures are produced using satellites or aeroplanes and can be used to
create a sample dataset. This dataset is then used for texturing of the terrain. Additionally,
plate tectonics could be simulated to create a more realistic base mesh, which would
improve the quality of the generated terrain.

List of Figures

2.1 With increasing distance, coarser approximations of the triangle mesh model can be
used, without affecting the visual appearance . 5

2.2 Five of 256 possible cases from the lookup-table. The vertices inside the object are
marked in red and triangles required for the surface approximation in green [LC87]. 8

2.3 Construction of the Sierpinski triangle. 9
2.4 Comparison of the CPU and GPU performance (Floating-Point Operations per

Second (FLOP/s)) of the last years [NVI11b]. 11
2.5 NVIDA GF100/GF110 (alias GTX480/GTX580) GPU core [NVI10]. 13

3.1 With increasing distance, coarser approximations of the model can be used. 17
3.2 A subset of the 10 detail levels for the Welsh Dragon generated with the proposed

algorithm. 18
3.3 Edge collapse. The edge defined by vertex v and vu is collapsed into the vertex

v. During the collapse operation colv the position of v is estimated concerning a
specified quadric error metric Q. 20

3.4 The steps of the algorithm. 24
3.5 Relative time of the adaption steps compared to rendering. 30
3.6 Processing time and number of faces of the proposed algorithm for the models from

Table 3.5. 30
3.7 Each second generated LOD of the Apache, Buddha, Youthful and Awakening

model. The first level is the original model. 31

4.1 The interleaved iso-surface extraction with the locally blocking stream simplification
of the proposed algorithm. Notice the automatic increase of the triangle density
towards the processing front of the extraction. 34

4.2 Edge collapse. The edge defined by vertex v and vu is collapsed into the vertex v

(comp. Figure 3.3). 37
4.3 Edge and vertex indices similar to [Pau94]. Every single thread in a kernel just

processes the blue corner and edges. 39
4.4 Simplification including the extensions (left) and modifications (middle) of the

previous simplification algorithm (right). 40
4.5 Total memory consumption and number of faces contained in the extracted after

each partition of the Porsche model was processed. 43

145

146 List of Figures

4.6 Renderings of the extracted and simplified meshes of bonsai #2 (iso 20, 25 and 50).
The images on the right show closeups with the mesh overlaid as wire frame. . . . 44

4.7 Renderings of the extracted and simplified meshes of CTA head (iso 50, 60 and 250)
and Porsche (iso 14). The images on the right show closeups with the mesh overlaid
as wire frame. 45

5.1 Edge collapse and vertex split operation. 52
5.2 Compactly encoded forest of binary trees. 53
5.3 Linking between active vertices, the SplitTree, and the CollapseTree. 58
5.4 Read/Write Access of the individual refinement steps. 59
5.5 Basic principle of the in-place compaction algorithm. 63
5.6 Growing (left) and shrinking (right) of an allocated array during adaption. 64
5.7 Timings and memory consumption for the Asian dragon with a pre-recorded camera

path. 66
5.8 Time per frame partition for the serveral steps of the proposed algorithm and for

map-/unmap as well as rendering. 67
5.9 Renderings of view-dependently refined meshes. The images on the right show

external views with the view frustum in yellow. The color coding depicts the level
of detail, where red is low LOD and green high. 68

5.10 Split/collapse operation hierarchy represented as a forest of binary trees. 70
5.11 Example of topology encoding. 71
5.12 Red blocks - out of view frustum or occluded. Green blocks - visible. 76
5.13 Renderings of view-dependently refined meshes. The images on the left show the

models as rendered from the point of view. In the middle external views with the
view frustum (yellow) are shown. The color coding depicts the level of detail, where
red is low LOD and green high. The image on the right shows the nodes used for
occlusion culling. Occluded nodes are shown in red and visible ones in green. . . . 79

5.14 Comparison of timings and memory consumption of the proposed approach (OOC)
with in-core algorithm for the Asian Dragon with a pre-recorded camera path. . . 80

5.15 Comparison of the number of active faces of the proposed approach (OOC) with
in-core algorithm for the Asian Dragon with a pre-recorded camera path. 81

5.16 Timings and memory consumption for the Sponza scene with a pre-recorded camera
path. 81

5.17 The number of faces for the Sponza scene with a pre-recorded camera path. 82
5.18 Edge collapse and vertex split operation. 83
5.19 Vertex hierarchy represented as a forest of binary trees with full (green) and reduced

(red) neighborhood dependencies. 84
5.20 Dependent split operations. Each arrow denotes a parallel adaption step. 85
5.21 Computation of the final vertex IDs and encoding of the generated faces. 86
5.22 To decode 6 byte numbers (e.g. uint combined with ushort) the algorithm begins

at table B6, for 4 byte numbers (e.g. uint) at table B4, for 2 byte numbers (e.g.
ushort) at table B2 and for 1 byte numbers (e.g. uchar) at table B1. If a preceding
byte of the currently encoded value is non-zero, the table Rest is used. 89

5.23 Split/collapse operation hierarchy represented as a forest of binary trees. The
operations are shown in blue and the bounding volumes in red. 90

List of Figures 147

5.24 Renderings of view-dependently refined meshes. The external views show the view
frustum (yellow), LOD (red: low; green: high), and the nodes used for occlusion
culling (red: occluded; green: visible). 100

5.25 Timings, memory consumption and triangle rate for the scene using a pre-recorded
camera path. 101

5.26 Relative time of the adaption steps compared to rendering. 103

6.1 Editing of the Armadillo progressive mesh. Notice how the fine geometric details
are preserved by the local encoding of the split operations. 107

6.2 Edge collapse and vertex split operation (comp. Figure 5.1). 108
6.3 Computation of the final vertex IDs and encoding of the generated faces (comp.

Figure 5.21). 109
6.4 Vertex attributes encoded relative to the local coordinate system interpolated from

neighboring vertices. 109
6.5 Progressive mesh generation including the extensions (left) and modifications (mid-

dle) of the previous simplification algorithm (right). 110
6.6 Vertices in the split neighborhood of vt. The ones used to interpolate the reference

coordinate system of vt are marked in red. 113
6.7 Several progressive meshes used in the evaluation. From left to right: original

models, three frames captured during editing where the purple spheres show the
ROIs, and the final proressive meshes refined to full resolution. 119

7.1 As the user zooms in, terrain geometry is created to adaptively refine the planet. . 122
7.2 Vertex collapse and edge split operation. 126
7.3 Water and ground altitudes of the river vertices. 129
7.4 Riverbed shaping parameters. 134
7.5 The images show the models as rendered from the point of view. The bottom image

demonstrates that parts of the terrain that are outside the view frustum (yellow)
are reduced to the base mesh. 137

7.6 Timings and memory consumption for the scene using a pre-recorded camera path. 138
7.7 Relative time of the several adaption steps compared to rendering. 138
7.8 Left: Alternatively, the algorithm can be used to generate river networks for user-

provided maps. Right: Meandering rivers. 138

List of Tables

3.1 Mesh data structure after generating the edge information, where k is the number
of vertex attributes. 24

3.2 Data structure used during simplification loop. 25
3.3 Models used for evaluation. 29
3.4 Generated levels with number of faces. 29
3.5 Comparison of processing time and the number of operations per second with QSlim

tested of the test system. 29

4.1 Memory consumption and data structures required for the iso-surface extraction.
dimX, dimY and dimZ are the size of the input grid and N is the number of slices. 40

4.2 The dimension and file size of the models which are used. The pvm-format of [Roe]
is converted to a raw-file. 41

4.3 Relative and absolute number of crossed cubes depending on the iso-value, given in
parenthesis. In addition, the number of generated faces before simplification is shown. 41

4.4 Computation time for surface extraction and simplification, number of faces after
simplification and maximum memory consumption. 42

5.1 Elements of the data structure. k, n, and m are the number of attributes, original,
and base mesh vertices. 57

5.2 Comparison of memory size with previous schemes for k = 8 attributes. 58
5.3 Progressive meshes used as input, number of added dummy split operations, and

maximum split level. 65
5.4 Comparison of the static data that resides in graphics memory compared to an

indexed face set. 65
5.5 Memory consumption and total rendering time of the different models. The ratio

compared to rendering an indexed face set of the original model is shown in parenthesis. 66
5.6 Elements of the data structure. o, k, n, and m are the number of operation nodes,

attributes, operations in graphics memory, and vertices of the adapted mesh. . . . 74
5.7 Progressive meshes used in the experiments, number of base mesh vertices, base

mesh faces, operations, added dummy split operations, maximum split level and
nodes. 77

5.8 Number of original mesh vertices and faces and comparison of the static data (PM)
to an indexed face set (IFS). 78

149

150 List of Tables

5.9 Memory consumption and total rendering time of the different models. The ratio
compared to rendering an indexed face set of the original model is shown in parenthesis. 78

5.10 Memory consumption and total rendering time of the Parallel View-Dependent
Refinement of Compact Progressive Meshes in-core algorithm (Section 5.2). The
ratio compared to the values in the Table 5.9 for identical views. 78

5.11 Elements and size of the uncompressed split operation, where f is the number of
generated faces and k the number of vertex attributes. 87

5.12 Elements of the dynamic data structure. k and m are the number attributes and
adapted mesh vertices. Next split and collapse are stored with 32 bits in the in-core
(a) and 48 bits in the out-of-core case (b). 93

5.13 Progressive meshes examined in the experiments and compression results. 98
5.14 Rendering statistics of the experiments. 99
5.15 Comparison of triangle rate and memory consumption with previous approaches.

The relative performance is shown in parenthesis. Results marked with * are results
of the original authors scaled to the performance of the used system, while all other
were measured. 102

6.1 Data structure used during mesh simplification, where k is the number of attributes.112
6.2 Elements of the dynamic data structure, where k is the number attributes and

additions are marked bold. 115
6.3 Models used for evaluation. 118
6.4 Simplification, adaption, and update performance. 118

7.1 Comparison of features in previous algorithms. 125
7.2 Main parameters used to define a planet in the algorithm. 130
7.3 Elements of the data structure. 131
7.4 Memory consumption, total rendering time and total number of triangles per second

(TPS) of the different views. The ratio of adaption time compared to total time is
given in parenthesis. 136

List of Algorithms

1 Parallel generation of the edge data structure. 23
2 Parallel calculation of the vertex quadrics. 26
3 Parallel quadric error minimization algorithm. 26
4 Parallel edge collapse algorithm. 27
5 Parallel index update. 27
6 Edge compaction algorithm. 28

7 Parallel Marching Cubes Module. 38
8 Cube code kernel. 38

9 The four parallel stages to update the vertex states. The third stage is performed
twice to speed up the propagation of dependent splits through the mesh. 61

10 Parallel vertex split algorithm. 62
11 Parallel edge collapse algorithm. 62
12 Parallel vertex state update algorithm. 94
13 Parallel edge collapse algorithm. 94
14 Memory management algorithm. 95
15 Parallel vertex split algorithm. 96
16 Parallel index update. 96

17 Parallel removal of illegal operations. 115
18 Parallel edge collapse algorithm. 116
19 Parallel vertex split algorithm. 117

20 The parallel vertex states update. 132
21 Parallel edge split algorithm. 135
22 Parallel edge collapse algorithm. 135

151

Glossary

1D One-dimensional space
2D Two-dimensional space
3D Three-dimensional space

bpv bytes per vertex
BWT Burrows Wheeler Transform

CPU Central Processing Unit
CT Computer Tomograph
CUDA Compute Unified Device Architecture

DAG Direct Acyclic Graph
DDR SDRAM Double Data Rate Synchronous Dynamic Random-Access

Memory

fBm Fractional Brownian Motion
FLOP Floating-Point Operation
FPS Frames per Second

GPC Graphics Processor Cluster
GPGPU General Purpose Compution on Graphics Processing Unit
GPU Graphics Processing Unit

HDD Hard Disk Drive
HLOD Hierarchical Level of Detail

ic In Core

LOD Level of Detail

MIMD Multiple Instruction Multiple Data

153

154 Glossary

MRT Magnetic Resonance Tomograph
MT Multi-Triangulations
MTPS Million Triangles per Second

ooc Out of Core

PM Progressive Mesh

SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SM Streaming Multiprocessor
SP Streaming Processors
SSE Streaming SIMD Extensions

TPS Triangles per Second

uchar unsigned character
uint unsigned integer
ushort unsigned short integer

VBO Vertex Buffer Object
VFC View Frustum Culling

Bibliography

[AAR05] Alregib G., Altunbasak Y., Rossignac J.: Error-resilient transmission of 3d
models. ACM Trans. Graph. 24, 2 (April 2005), 182–208.

[ACSE05] Attali D., Cohen-Steiner D., Edelsbrunner H.: Extraction and simplification of
iso-surfaces in tandem. In Proceedings of the third Eurographics symposium on Geometry
processing (Aire-la-Ville, Switzerland, Switzerland, 2005), SGP ’05, Eurographics
Association.

[AM04] Anh V. N., Moffat A.: Index compression using fixed binary codewords. In
Proceedings of the 15th Australasian database conference - Volume 27 (2004), ADC
’04, Australian Computer Society, Inc., pp. 61–67.

[Bel07] Belhadj F.: Terrain modeling: a constrained fractal model. In Proc. of AFRIGRAPH
07 (2007), AFRIGRAPH ’07, pp. 197–204.

[BF01a] Beneš B., Forsbach R.: Layered data representation for visual simulation of terrain
erosion. In SCCG ’01: Proceedings of the 17th Spring conference on Computer graphics
(2001), p. 80.

[BF01b] Beneš B., Forsbach R.: Parallel implementation of terrain erosion applied to the
surface of mars. In Proc. of AFRIGRAPH 01 (2001), pp. 53–57.

[BF02] Beneš B., Forsbach R.: Visual simulation of hydraulic erosion. In WSCG (2002),
pp. 79–94.

[BGB∗05] Borgeat L., Godin G., Blais F., Massicotte P., Lahanier C.: Gold: interactive
display of huge colored and textured models. ACM Trans. Graph. 24, 3 (2005), 869–877.

[Bro28] Brown R.: A Brief Account of Microscopical Observations, Made in the Months
of June, July and August 1827, on the Particles Contained in the Pollen of Plants
and on the General Existence of Active Molecules in Organic and Inorganic Bodies.
Reprinted in Edinburgh New Philos. J. 5, 358 (1928), 1828.

[BSS06] Brosz J., Samavati F. F., Sousa M. C.: Terrain synthesis by-example. In
Proceedings of the first International Conference on Computer Graphics Theory and
Applications (2006).

155

156 Bibliography

[BW06] Bokeloh M., Wand M.: Hardware accelerated multi-resolution geometry synthesis.
In Proceedings of the 2006 symposium on Interactive 3D graphics and games (2006),
I3D ’06, pp. 191–198.

[CCG∗01] Cunniff R., Craighead M., Ginsburg D., Lefebvre K., Licea-Kane B.,

Triantos N.: ARB occlusion query. Tech. rep., NVIDIA and ATI, 2001.

[CGG∗04] Cignoni P., Ganovelli F., Gobbetti E., Marton F., Ponchio F., Scopigno

R.: Adaptive tetrapuzzles: efficient out-of-core construction and visualization of
gigantic multiresolution polygonal models. ACM Trans. Graph. 23, 3 (2004), 796–803.

[CH91] Clark J., Holton D. A.: A First Look at Graph Theory. World Scientific, 1991.

[CH09] Courbet C., Hudelot C.: Random accessible hierarchical mesh compression for
interactive visualization. In Proceedings of the Symposium on Geometry Processing
(2009), pp. 1311–1318.

[Che95] Chernyaev E. V.: Marching Cubes 33: Construction of Topologically Correct
Isosurfaces. Tech. rep., Technical Report CERN CN 95-17, 1995.

[CKL∗04] Choe S., Kim J., Lee H., Lee S., Seidel H. P.: Mesh compression with random
accessibility. In Israel-Korea Bi-National Conf (2004), pp. 81–86.

[CKLL09] Choe S., Kim J., Lee H., Lee S.: Random accessible mesh compression using
mesh chartification. IEEE Transactions on Visualization and Computer Graphics 15,
1 (January 2009), 160–173.

[CMF97] Chiba N., Muraoka K., Fujita K.: An erosion model based on velocity fields for
the visual simulation of mountain scenery. The Journal of Visualization and Computer
Animation 9, 4 (1997), 185 – 194.

[Der09] Derzapf E.: Progressive meshes mit cuda. In Diploma Thesis (Dec. 2009), Philipps-
Universität Marburg. Fachbereich 12 - Mathematik und Informatik, Arbeitsgruppe
Grafik und Multimedia Programmierung.

[DFMP98] De Floriani L., Magillo P., Puppo E.: Efficient implementation of multi-
triangulations. In VIS ’98: Proceedings of the conference on Visualization ’98 (1998),
pp. 43–50.

[DG12] Derzapf E., Guthe M.: Dependency free parallel progressive meshes. Computer
Graphics Forum to appear, to appear (2012), to appear.

[DGG12] Derzapf E., Grund N., Guthe M.: Parallel Progressive Mesh Editing. Tech.
rep., Philipps-Universität Marburg, Fachbereich 12 - Mathematik und Informatik,
Arbeitsgruppe Grafik und Multimedia Programmierung, 2012.

[DGGK11] Derzapf E., Ganster B., Guthe M., Klein R.: River networks for instant
procedural planets. Computer Graphics Forum 30, 7 (2011), 2031–2040.

Bibliography 157

[DGGP05] Diaz-Gutierrez P., Gopi M., Pajarola R.: Hierarchyless simplification, stripifi-
cation and compression of triangulated two-manifolds. Computer Graphics Forum 24,
3 (2005), 457–467.

[DJCM09] Du Z., Jaromersky P., Chiang Y.-J., Memon N.: Out-of-core progressive lossless
compression and selective decompression of large triangle meshes. In Proceedings of the
2009 Data Compression Conference (Washington, DC, USA, 2009), IEEE Computer
Society, pp. 420–429.

[DJG∗10] Dupuy G., Jobard B., Guillon S., Keskes N., Komatitsch D.: Parallel
extraction and simplification of large isosurfaces using an extended tandem algorithm.
Comput. Aided Des. 42, 2 (2010), 129–138.

[DMG10a] Derzapf E., Menzel N., Guthe M.: Parallel view-dependent refinement of compact
progressive meshes. In Eurographics Symposium on Parallel Graphics and Visualization
(2010), pp. 53–62.

[DMG10b] Derzapf E., Menzel N., Guthe M.: Parallel view-dependent out-of-core progressive
meshes. In Vision, Modeling, and Visualization (2010), pp. 25–32.

[DT07] DeCoro C., Tatarchuk N.: Real-time mesh simplification using the gpu. In I3D
’07: Proceedings of the 2007 symposium on Interactive 3D graphics and games (2007),
pp. 161–166.

[DWS∗97] Duchaineau M., Wolinsky M., Sigeti D., Miller M., Aldrich C., Mineev-

Weinstein M.: Roaming terrain: real-time optimally adapting meshes. In Proceedings
of the 8th Conference on Visualization’97 (1997), pp. 81–88.

[EF01] Efros A. A., Freeman W. T.: Image quilting for texture synthesis and transfer.
In Proceedings of the 28th annual conference on Computer graphics and interactive
techniques (2001), SIGGRAPH ’01, pp. 341–346.

[EMB01] Erikson C., Manocha D., Baxter III W. V.: Hlods for faster display of large
static and dynamic environments. In I3D ’01: Proceedings of the 2001 symposium on
Interactive 3D graphics (2001), pp. 111–120.

[ESV99] El-Sana J., Varshney A.: Generalized view-dependent simplification. Computer
Graphics Forum 18, 3 (1999), 83–94.

[FB88] Forsey D. R., Bartels R. H.: Hierarchical b-spline refinement. In Proceedings of
the 15th annual conference on Computer graphics and interactive techniques (1988),
SIGGRAPH ’88, ACM, pp. 205–212.

[FFC82] Fournier A., Fussell D., Carpenter L.: Computer rendering of stochastic
models. Communications of the ACM 25, 6 (1982), 371–384.

[Gar99] Garland M.: Multiresolution modeling: Survey & future opportunities. In EURO-
GRAPHICS 1999 - State of The Art Reports (STARs) (1999), pp. 111–131.

158 Bibliography

[GBBK04] Guthe M., Borodin P., Balázs Á., Klein R.: Real-time appearance preserving
out-of-core rendering with shadows. In Rendering Techniques 2004 (Proceedings of
Eurographics Symposium on Rendering) (2004), pp. 69–79.

[GBK03] Guthe M., Borodin P., Klein R.: Efficient view-dependent out-of-core visualiza-
tion. In Proceedings of the 4th International Conference on Virtual Reality and its
Applications in Industry (VRAI ’2003) (2003), pp. 428–438.

[GDG11] Grund N., Derzapf E., Guthe M.: Instant level-of-detail. In Vision, Modeling,
and Visualization (VMV2011) (2011), pp. 293–299.

[GH97a] Garland M., Heckbert P. S.: Surface simplification using quadric error metrics.
In Proceedings of the 24th annual conference on Computer graphics and interactive
techniques (1997), SIGGRAPH ’97, pp. 209–216.

[GH97b] Garland M., Heckbert P. S.: Surface simplification using quadric error metrics.
In SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer graphics
and interactive techniques (1997), pp. 209–216.

[GH98] Garland M., Heckbert P. S.: Simplifying surfaces with color and texture using
quadric error metrics. In Proceedings of the conference on Visualization ’98 (1998),
pp. 263–269.

[GM05] Gobbetti E., Marton F.: Far voxels: a multiresolution framework for interactive
rendering of huge complex 3d models on commodity graphics platforms. ACM Trans.
Graph. 24, 3 (2005), 878–885.

[GPMG10] Galin E., Peytavie A., Marchal N., Guérin E.: Procedural generation of roads.
In Computer Graphics Forum: Proceedings of Eurographics (2010), vol. 29.

[GS02] Garland M., Shaffer E.: A multiphase approach to efficient surface simplification.
In Proceedings of the conference on Visualization ’02 (2002), pp. 117–124.

[GSS99] Guskov I., Sweldens W., Schröder P.: Multiresolution signal processing for
meshes. In Proceedings of the 26th annual conference on Computer graphics and
interactive techniques (1999), SIGGRAPH ’99, pp. 325–334.

[HGA∗10] Hnaidi H., Guérin E., Akkouche S., Peytavie A., Galin E.: Feature based
terrain generation using diffusion equation. Computer Graphics Forum 29, 7 (2010),
2179–2186.

[HGB93] Heiden W., Goetze T., Brickmann J.: Fast generation of molecular surfaces from
3d data fields with an enhanced marching cube algorithm. Journal of Computational
Chemistry 14, 2 (1993), 246–250.

[Hop96] Hoppe H.: Progressive meshes. In SIGGRAPH ’96: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques (1996), pp. 99–108.

[Hop97] Hoppe H.: View-dependent refinement of progressive meshes. In SIGGRAPH
’97: Proceedings of the 24th annual conference on Computer graphics and interactive
techniques (1997), pp. 189–198.

Bibliography 159

[Hop98] Hoppe H.: Efficient implementation of progressive meshes. Computers & Graphics
22, 1 (1998), 27–36.

[HSH09] Hu L., Sander P. V., Hoppe H.: Parallel view-dependent refinement of progressive
meshes. In I3D ’09: Proceedings of the 2009 symposium on Interactive 3D graphics
and games (2009), pp. 169–176.

[Huf52] Huffman D.: A method for the construction of minimum redundancy codes. Pro-
ceedings of the IRE 40, 9 (Sep. 1952), 1098–1101.

[JC06] Johansson G., Carr H.: Accelerating marching cubes with graphics hardware. In
Proceedings of the 2006 conference of the Center for Advanced Studies on Collaborative
research (New York, NY, USA, 2006), CASCON ’06, ACM.

[JGA09] Jamin C., Gandoin P.-M., Akkouche S.: Technical section: Chumi viewer:
Compressive huge mesh interactive viewer. Comput. Graph. 33, 4 (August 2009),
542–553.

[JT98] Jas A., Touba N. A.: Test vector decompression via cyclical scan chains and its
application to testing core-based designs. In ITC’98 (1998), pp. 458–464.

[JWLL06] Ji J., Wu E., Li S., Liu X.: View-dependent refinement of multiresolution meshes
using programmable graphics hardware. Vis. Comput. 22, 6 (2006), 424–433.

[KBKv09] Kristof P., Beneš B., Krivanek J., Št’ava O.: Hydraulic erosion using smoothed
particle hydrodynamics. In Proceedings of Eurographics 2009: Computer Graphics
Forum 28 (2) (2009).

[KCL06] Kim J., Choe S., Lee S.: Multiresolution random accessible mesh compression.
Computer Graphics Forum 25, 3 (2006), 323–332.

[KCVS98] Kobbelt L., Campagna S., Vorsatz J., Seidel H.-P.: Interactive multi-resolution
modeling on arbitrary meshes. In SIGGRAPH (1998), pp. 105–114.

[KL01] Kim J., Lee S.: Truly selective refinement of progressive meshes. In Graphics Interface
2001 (2001), pp. 101–110.

[KMN88] Kelley A. D., Malin M. C., Nielson G. M.: Terrain simulation using a model
of stream erosion. In SIGGRAPH ’88: Proceedings of the 15th annual conference on
Computer graphics and interactive techniques (1988), pp. 263–268.

[KVS99] Kobbelt L., Vorsatz J., Seidel H.-P.: Multiresolution hierarchies on unstructured
triangle meshes. Comput. Geom. 14, 1-3 (1999), 5–24.

[KWP∗03] Knieser M. J., Wolff F. G., Papachristou C. A., Weyer D. J., McIntyre

D. R.: A technique for high ratio lzw compression. In Proceedings of the conference
on Design, Automation and Test in Europe - Volume 1 (Washington, DC, USA, 2003),
DATE ’03, IEEE Computer Society, pp. 10116–.

[LC87] Lorensen W. E., Cline H. E.: Marching cubes: A high resolution 3d surface
construction algorithm. ACM SIGGRAPH Computer Graphics 21, 4 (1987), 163–169.

160 Bibliography

[Lev02] Levenberg J.: Fast view-dependent level-of-detail rendering using cached geometry.
In VIS ’02: Proceedings of the conference on Visualization ’02 (2002), pp. 259–266.

[LF03] Le Feuvre L.: Modelling and deformation of surfaces defined over finite elements.
In Proceedings of the Shape Modeling International (2003), IEEE Computer Society,
p. 175.

[Lin00] Lindstrom P.: Out-of-core simplification of large polygonal models. In Proceedings
of the 27th annual conference on Computer graphics and interactive techniques (2000),
SIGGRAPH ’00, pp. 259–262.

[Liv99] Livnat Y.: NOISE, WISE and SAGE: Algorithms for Rapid Isosurface Extraction.
PhD thesis, Univeristy of Utah, December 1999.

[Los04] Losasso F.: Geometry clipmaps: terrain rendering using nested regular grids. ACM
Transactions on Graphics 23 (2004), 769–776.

[LSCo∗04] Lipman Y., Sorkine O., Cohen-or D., Levin D., Rössl C., peter Seidel

H.: Differential coordinates for interactive mesh editing. In In Proceedings of Shape
Modeling International (2004), Society Press, pp. 181–190.

[LSWW11] Lipp M., Scherzer D., Wonka P., Wimmer M.: Interactive modeling of city
layouts using layers of procedural content. Computer Graphics Forum (EG 2011) 30,
2 (Apr 2011), 345–354.

[LT97] Low K.-L., Tan T.-S.: Model simplification using vertex-clustering. In Proceedings
of the 1997 symposium on Interactive 3D graphics (1997), pp. 75–ff.

[LT98] Lindstrom P., Turk G.: Fast and memory efficient polygonal simplification. In
IEEE Visualization (1998), pp. 279–286.

[Lue01] Luebke D. P.: A developer’s survey of polygonal simplification algorithms. IEEE
Comp. Graph. Appl. 21 (2001), 24–35.

[Man83] Mandelbrot B. B.: The fractal geometry of nature. Freeman and Company, New
York, 1983.

[Man99] Manzini G.: The burrows-wheeler transform: Theory and practice. In Lecture Notes
in Computer Science (1999), Springer, pp. 34–47.

[Mar79] Martin G. N. N.: Range encoding: an algorithm for removing redundancy from a
digitised message. In In Video and Data Recording Conference (July 1979).

[MBH∗01] Meißner M., Bartz D., Hüttner T., Müller G., Einighammer J.: Generation
of decomposition hierarchies for efficient occlusion culling of large polygonal models.
In Vision, Modeling, and Visualization (2001), pp. 225–232.

[MBK07] Marinov M., Botsch M., Kobbelt L.: Gpu-based multiresolution deformation
using approximate normal field reconstruction. journal of graphics, gpu, and game
tools 12, 1 (2007), 27–46.

Bibliography 161

[MKM89] Musgrave F. K., Kolb C. E., Mace R. S.: The synthesis and rendering of eroded
fractal terrains. SIGGRAPH Computer Graphics 23, 3 (1989), 41–50.

[MS91] Mueller H., Stark M.: Adaptive Generation of Surfaces in Volume Data. Tech.
rep., Albert-Ludwigs University at Freiburg, 1991.

[MSS94] Montani C., Scateni R., Scopigno R.: A modified look-up table for implicit
disambiguation of marching cubes. The Visual Computer 10, 6 (Dec. 1994), 353–355.

[MVN68] Mandelbrot B. B., Van Ness J. W.: Fractional brownian motions, fractional
noises and applications. SIAM Review 10, 4 (1968), 422–437.

[NVI10] NVIDIA: GF100 Processor Architecture, 2010.

[NVI11a] NVIDIA: CUDA C BEST PRACTICES GUIDE. Design Guide Version 4.1, NVIDIA
Corporation, 2011.

[NVI11b] NVIDIA: NVIDIA CUDA. C Programming Guide Version 4.1, NVIDIA Corporation,
2011.

[Paj01] Pajarola R.: Fastmesh: Efficient view-dependent meshing. In 9th Pacific Conference
on Computer Graphics and Applications (2001), pp. 20–30.

[Pau94] Paul Bourke: Polygonising a scalar field: Also known as: 3d contouring, marching
cubes, surface reconstruction, May 1994.

[PD04] Pajarola R., DeCoro C.: Efficient implementation of real-time view-dependent
multiresolution meshing. IEEE Transactions on Visualization and Computer Graphics
10, 3 (2004), 353–368.

[Per85] Perlin K.: An image synthesizer. SIGGRAPH Comput. Graph. 19, 3 (July 1985),
287–296.

[Per02] Perlin K.: Improving noise. ACM Trans. Graph. 21, 3 (July 2002), 681–682.

[PGTG04] Pouderoux J., Gonzato J.-C., Tobor I., Guitton P.: Adaptive hierarchical rbf
interpolation for creating smooth digital elevation models. In GIS ’04: Proceedings
of the 12th annual ACM international workshop on Geographic information systems
(2004), pp. 232–240.

[PH93] Prusinkiewicz P., Hammel M.: A fractal model of mountains with rivers. In
Graphics Interface ’93 (1993), pp. 174–180.

[PH97] Popović J., Hoppe H.: Progressive simplicial complexes. In Proceedings of the 24th
annual conference on Computer graphics and interactive techniques (1997), SIGGRAPH
’97, pp. 217–224.

[PR00] Pajarola R., Rossignac J.: Compressed progressive meshes. IEEE Transactions
on Visualization and Computer Graphics 6, 1 (2000), 79–93.

162 Bibliography

[RB93] Rossignac J., Borel P.: Multi-resolution 3d approximations for rendering complex
scenes. In Modeling in Computer Graphics: Methods and Applications (Berlin, June
1993), Falcidieno B., Kunii T., (Eds.), Springer Verlag, pp. 455–465.

[RDG∗04] Reck F., Dachsbacher C., Grosso R., Greiner G., Stamminger M.: Realtime
isosurface extraction with graphics hardware. In Eurographics 2004, Short Presentations
and Interactive Demos (2004), pp. 33–36.

[Roe] Roettger S.: The volume library. http://www9.informatik.uni-erlangen.de/
External/vollib/ (31.05.2012).

[Sai04] Said A.: Introduction to Arithmetic Coding Theory and Practice. Tech. Rep. HPL-
2004-76, Hewlett-Packard Laboratories, 2004.

[SBBK08] Stava O., Benes B., Brisbin M., Krivanek J.: Interactive terrain modeling using
hydraulic erosion. In Eurographics/SIGGRAPH Symposium on Computer Animation
(2008), Gross M., James D., (Eds.), pp. 201–210.

[SCOL∗04] Sorkine O., Cohen-Or D., Lipman Y., Alexa M., Rössl C., Seidel H.-P.:
Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH
symposium on Geometry processing (New York, NY, USA, 2004), SGP ’04, ACM,
pp. 175–184.

[SG01] Shaffer E., Garland M.: Efficient adaptive simplification of massive meshes. In
Proceedings of the conference on Visualization ’01 (2001), pp. 127–134.

[SHLJ96] Shen H.-W., Hansen C. D., Livnat Y., Johnson C. R.: Isosurfacing in span
space with utmost efficiency (issue). In VIS ’96: Proceedings of the 7th conference
on Visualization ’96 (Los Alamitos, CA, USA, 28-29 October 1996), IEEE Computer
Society Press, pp. 287–ff.

[SHZO07] Sengupta S., Harris M., Zhang Y., Owens J. D.: Scan primitives for gpu
computing. In Graphics Hardware 2007 (2007), pp. 97–106.

[SM06] Sander P. V., Mitchell J. L.: Progressive buffers: view-dependent geometry and
texture lod rendering. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses (2006),
pp. 1–18.

[SS05] Stachniak S., Stuerzlinger W.: An algorithm for automated fractal terrain
deformation. In Proceedings of Computer Graphics and Artificial Intelligence (2005),
pp. 64–76.

[ST89] Szeliski R., Terzopoulos D.: From splines to fractals. SIGGRAPH Computer
Graphics 23 (1989), 51–60.

[SW03] Schaefer S., Warren J.: Adaptive vertex clustering using octrees. In SIAM
Geometric Design and Computing (2003).

Bibliography 163

[SW04] Schaefer S., Warren J.: Dual marching cubes: Primal contouring of dual grids.
In PG ’04: Proceedings of the Computer Graphics and Applications, 12th Pacific
Conference (Washington, DC, USA, 6-8 October 2004), IEEE Computer Society,
pp. 70–76.

[Tau95] Taubin G.: A signal processing approach to fair surface design. In Proceedings of
the 22nd annual conference on Computer graphics and interactive techniques (1995),
SIGGRAPH ’95, ACM, pp. 351–358.

[TPG99] Treece G. M., Prager R. W., Gee A. H.: Regularised marching tetrahedra:
improved iso-surface extraction. Computers and Graphics 23, 4 (1999), 583–598.

[TR99] Taubin G., Rossignac J.: 3d geometry compression. In SIGGRAPH ’99: Course
Notes. ACM, Los Angeles, Aug. 1999. Course 22.

[TSD07] Tatarchuk N., Shopf J., DeCoro C.: Real-time isosurface extraction using the
gpu programmable geometry pipeline. In ACM SIGGRAPH 2007 courses (New York,
NY, USA, 2007), SIGGRAPH ’07, ACM, pp. 122–137.

[UDG12] Ulrich C., Derzapf E., Guthe M.: Parallel Out-of-Core Iso-Surface Extraction and
Simplification. Tech. rep., Philipps-Universität Marburg, Fachbereich 12 - Mathematik
und Informatik, Arbeitsgruppe Grafik und Multimedia Programmierung, 2012.

[WG90] Wilhelms J., Gelder A. V.: Octrees for faster isosurface generation. ACM
SIGGRAPH Computer Graphics 24, 5 (November 1990), 57–62.

[WNC87] Witten I. H., Neal R. M., Cleary J. G.: Arithmetic coding for data compression.
Commun. ACM 30 (June 1987), 520–540.

[WW94] Welch W., Witkin A.: Free-form shape design using triangulated surfaces. In
Proceedings of the 21st annual conference on Computer graphics and interactive
techniques (1994), SIGGRAPH ’94, ACM, pp. 247–256.

[XV96] Xia J. C., Varshney A.: Dynamic view-dependent simplification for polygonal
models. In VIS ’96: Proceedings of the 7th conference on Visualization ’96 (1996),
p. 327 ff.

[YL07] Yoon S.-e., Lindstrom P.: Random-accessible compressed triangle meshes. IEEE
Transactions on Visualization and Computer Graphics 13, 6 (November 2007), 1536–
1543.

[YSGM04] Yoon S.-E., Salomon B., Gayle R., Manocha D.: Quick-vdr: Interactive
view-dependent rendering of massive models. In VIS ’04: Proceedings of the conference
on Visualization ’04 (2004), pp. 131–138.

[ZLS08] Zhang J., Long X., Suel T.: Performance of compressed inverted list caching in
search engines. In Proceedings of the 17th international conference on World Wide
Web (2008), WWW ’08, ACM, pp. 387–396.

164 Bibliography

[ZSS97] Zorin D., Schröder P., Sweldens W.: Interactive multiresolution mesh editing.
In Proceedings of the 24th annual conference on Computer graphics and interactive
techniques (1997), SIGGRAPH ’97, pp. 259–268.

[ZSTR07] Zhou H., Sun J., Turk G., Rehg J. M.: Terrain synthesis from digital elevation
models. IEEE Transactions on Visualization and Computer Graphics 13, 4 (2007),
834–848.

Publications

Title Authors Year Journal
Parallel View-Dependent Refinement E. Derzapf, 2010 Eurographics Symposium on Parallel
of Compact Progressive Meshes N. Menzel, Graphics and Visualization 2010

M. Guthe (EGPGV10)

Parallel View-Dependent Out-of-Core E. Derzapf, 2010 Vision Modeling and Visualization
Progressive Meshes N. Menzel, 2010 (VMV2010)

M. Guthe

River Networks for Instant Procedural E. Derzapf, 2011 In Computer Graphics Forum 2011
Planets B. Ganster, (Pacific Graphics 2011)

M. Guthe,
R. Klein

Instant Level-of-Detail N. Grund, 2011 Vision Modeling and Visualization
E. Derzapf, 2011 (VMV2011)
M. Guthe

Dependency Free Parallel Progressive E. Derzapf, 2012 In Computer Graphics Forum 2012
Meshes M. Guthe

Parallel Progressive Mesh Editing E. Derzapf, 2012 Unpublished
N. Grund,
M. Guthe

Parallel Out-of-Core Iso-Surface C. Ulrich, 2012 Unpublished
Extraction and Simplification E. Derzapf,

M. Guthe

LEBENSLAUF

Dipl. Inf. Evgenij Derzapf

Anschrift: Erlenweg 35
 35321 Laubach
 Deutschland

Telefon: 06405/950210
E-Mail: derzapf@mathematik.uni-marburg.de

Geburtsdatum: 03.02.1984
Geburtsort: Mirnij

Familienstand: verheiratet

Ausbildung / Studium

Seit 2010

2004 – 2010

2000 – 2003

Philipps-Universität Marburg
Fachbereich Mathematik und Informatik - AG Grafik und Multimedia
Doktorand

Philipps-Universität Marburg
Hauptfach Informatik mit den Nebenfächer Physik (Grundstudium) und
Mathematik

Thema der Diplomarbeit: „Progressive Meshes mit CUDA“
Abschluss: Diplom-Informatiker
Schwerpunkte:

Grafikprogrammierung
(Modellgetriebene) Softwaretechnik/-entwicklung
Mathematik (Schwerpunkte: Numerik und Kryptologie)

Herderschule Giessen
Abschluss: Abitur

1998 – 2000

1991 – 1998

Friedrich-Magnus-Gesamtschule Laubach

Abschluss: Realschule

Gymnasialschule in Sankt-Petersburg

Eidesstattliche Erklärung

Hiermit versichere ich, dass ich meine Dissertation

Parallel Mesh Processing

selbständig, ohne unerlaubte Hilfe angefertigt und mich dabei keiner anderen als der von
mir ausdrücklich gekennzeichneten Quellen und Hilfen bedient habe.

Einer Doktorprüfung habe ich mich bisher nicht unterzogen. Die Dissertation wurde in
der jetzigen oder einer ähnlichen Form noch bei keiner anderen Hochschule eingereicht
und hat noch keinen sonstigen Prüfungszwecken gedient.

Marburg, 22. Oktober 2012

