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Scalable Wavelet-based Coding of Irregular Meshes
with Interactive Region-of-Interest Support
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Abstract—This paper proposes a novel functionality in wavelet-
based irregular mesh coding which is interactive region-of-
interest (ROI) support. The proposed approach enables the user
to define arbitrary ROIs at the decoder side and to prioritize
and decode these regions at arbitrarily high granularity levels.
In this context, a novel adaptive wavelet transform for irregular
meshes is proposed which enables (i) varying the resolution across
the surface at arbitrarily fine granularity levels, and (ii) dynamic
tiling, which adapts the tile sizes to the local sampling densities
at each resolution level. The proposed tiling approach enables a
rate-distortion-optimal distribution of rate across spatial regions.

When limiting the highest-resolution ROI to the visible regions,
the fine granularity of the proposed adaptive wavelet transform
reduces the required amount of graphics memory by up to 50%.
Furthermore, the required graphics memory for an arbitrary
small ROI becomes negligible compared to rendering without
ROI support, independent of any tiling decisions. Random access
is provided by a novel dynamic tiling approach, which proves to
be particularly beneficial for large models of over 106 ∼ 107

vertices. The experiments show that dynamic tiling introduces
a limited lossless rate penalty compared to an equivalent codec
without ROI support. Additionally, rate savings up to 85% are
observed while decoding ROIs of tens of thousands of vertices.

Index Terms—Irregular mesh coding, Region-of-Interest cod-
ing, wavelet coding, random access

I. INTRODUCTION

3D acquisition devices generate increasingly larger and ge-
ometrically accurate models, delivering up to hundreds of

millions of vertices with every scan. The main issues that have
to be tackled when processing such models include storage
capacity and memory requirements, bandwidth limitations, la-
tency, and processing power. This resulted in advancements in
single-rate and progressive compression techniques to handle
storage and transmission problems, and out-of-core processing
approaches and random accessibility to address memory and
computational constraints.

These approaches are complementary. On the one hand,
compression techniques allow for a small storage footprint
and low transmission bandwidth, at the expense of larger pro-
cessing power requirements for actually decoding the required
mesh. Compression techniques should however offer resolu-
tion and quality scalability to cope with increasing sampling
densities and acquisition accuracy offered by modern scanning
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systems, as 3D assets become too large to fit within hardware
memory limits. Resolution-scalable coding solutions elegantly
provide a scalable representation of high-resolution meshes.
Starting from a base mesh, the resolution can progressively
increase until the desired level is reached. On the other hand,
out-of-core processing copes with memory and computational
limitations by only loading the required parts of a 3D model in
memory, though it does not reduce the total storage size. This
form of scalability is conventionally termed region-of-interest
(ROI) coding, and is well-suited for rendering detailed local
views of large data sets.

A combination of both resolution scalability and ROI coding
is required for a truly scalable mesh coding system, making
optimal use of the available bandwidth and memory when
given a specific camera viewpoint, or in other words, given
requested regions and their appropriate resolutions. This com-
bination is the main focus of this paper, and is achieved by
making use of wavelet-based coding.

Wavelet representations have been used in several multi-
media processing domains as an efficient way to represent
data in a multi-resolution fashion. In this work we build upon
the very nature of wavelets to construct multi-resolution mesh
representations, hereby tackling challenges for ROI coding, as
wavelet transforms are inherently global transforms.

The remainder of this paper is structured as follows. In
Section II we will discuss related work. An overview of
wavelet-based mesh coding is given in Section III. Section
IV reviews our work on encoder-side ROI coding. In Section
V we discuss the proposed adaptive inverse wavelet transform,
followed by our dynamic tiling approach presented in Section
VI. Details on how this approach can be exploited to improve
the rate-distortion performance are given in Section VII. The
experimental evaluation is presented in Section VIII, followed
by our conclusions drawn in Section IX.

II. RELATED WORK

Figure 1 depicts the architecture of a conventional mesh
coding system. After an initial transform of mesh M to MTF,
entropy can be reduced in an encoding step resulting in a
compressed representation Menc of the input mesh. Scalable
systems, which allow for progressively refining a mesh, are
divided into fine-grained vertex-by-vertex schemes which add
a single vertex per refinement step, and coarser-grained multi-
resolution schemes which refine a mesh over its entire surface.
Refinement operations can be localized in specific ROIs, which
can be defined at either the encoder or at the decoder side.
This corresponds to encoder-side and decoder-side ROI coding
functionalities respectively.
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Fig. 1. Basic architecture of any mesh encoding system. A mesh M is
transformed into MTF with reduced entropy. Compression is achieved through
the encoding block, which makes use of residual or subband encoding and
entropy coding to obtain a compressed representation Menc of the input mesh.

The encoding of an encoder-side ROI is symmetric: the
decoded data is equivalent to the encoded data. Encoder-side
ROIs are useful for prioritizing regions within M for coping
with reduced bandwidths; e.g., prioritizing facial details of a
virtual human character over details in his clothes. This codec
functionality is further discussed in Section II-A.

Conversely, a decoder-side ROI adapts the resolution over
the mesh surface to the needs of the decoder, requiring an
encoding procedure which can no longer be symmetric. A
decoder must be able to request specific parts of a model at
specific resolutions, affecting either Menc, MTF or both. This
type of functionality is further addressed in Section II-B.

A. Encoder-side Regions-of-Interest

The premise for encoder-side ROIs is easy to formulate:
store data such that the prioritized regions are transmitted and
decoded before the unprioritized background (BG) regions.

Vertex-by-vertex based systems such as [1] or [2] can
trivially prioritize regions: vertices are prioritized individually,
directly altering the refinement and encoding order.

Multi-resolution systems such as [3]–[7], where individual
vertices are no longer accessible after the transform, call
for specific designs. Few solutions have been proposed for
encoder-side ROIs for multi-resolution systems. A solution
which was inspired by the JPEG2000 maxshift and general
scaling operations [8] was proposed for semi-regular codecs by
Zheng et al. [9]. For wavelet-based irregular mesh codecs, we
have recently proposed an encoder-side ROI coding approach
in [10]. This method is similarly inspired by the maxshift
operation and introduces ROI-steered upsampling for irregular
wavelet transforms, which exploits the irregularity of meshes
to reduce memory requirements. We briefly review our earlier
encoder-side ROI coding method [10] in Section IV.

B. Decoder-side Regions-of-Interest

Contrary to encoder-side ROIs which are based on prede-
fined prioritizations of specific spatial regions in the mesh, a
decoder-side ROI is more involved as a single bit stream needs
to provide for a dynamic, arbitrary ROI selection at decoding
time in an efficient way.

A first 3D graphics domain where arbitrary ROI decoding
was required was terrain visualization. Gobbetti et al. [11]
proposed adaptive meshes for terrain data. The employed
grid-based structure of [11] allowed for easy random access
support as each two adjacent triangles form a root for further
subdivision and can be processed individually. Similar tiled
approaches have been suggested e.g. in [12], [13], and have
proven to be successful for 2.5D surfaces, i.e. surfaces where
each (x, y) couple corresponds to, at most, a single point

(x, y, z) on the surface. However, such approaches are too
restrictive for the general case of 3D surfaces.

In the following, we shortly overview the literature by
focusing on transform-based ROI coding in Section II-B1
and tile-based ROI coding in Section II-B2. We list our
contributions in Section II-C.

1) Transform-based ROI Coding: For vertex-by-vertex rep-
resentations, decoder-side ROIs (e.g., a view-dependent se-
lection) can be obtained by either carefully applying or
skipping refinements. Such approaches are often termed as
selective refinement methods. Hoppe [14] proposed such an
ROI decoding approach for his progressive meshes method
[1], which was implemented on graphics hardware by Hu
et al. [15]. For multi-resolution representations, where each
refinement step adds multiple vertices, the refinements need to
be restricted based on the required ROIs. Gioia et al. [16] have
proposed ROI support for wavelet representations of semi-
regular meshes, whereby the resolution can be adapted over
the geometric surfaces by suppressing wavelet coefficients.
This corresponds to what we prove to be an adaptive inverse
wavelet transform for semi-regular meshes. Roy et al. [17]
have proposed a multi-resolution analysis for meshes with
surface attributes, using the edge collapse operations of [1]
and its selective refinement [14]. Similar to Gioia et al., the
detail coefficients are also selectively filtered [17].

These solutions are termed transform-based ROI coding
methods as the transform is enhanced to offer ROI scalability.
This allows for adapting the resolution in a fine-grained
manner over the surface. However, these solutions suffer from
the fact that only the refinement steps are ROI-aware without
providing for random access within the data stream; that is,
the ROIs are only defined on the transformed mesh MTF in
Figure 1, requiring full decoding of Menc.

2) Tile-based ROI Coding: The idea of tiling and encoding
a mesh was proposed by [18] to allow for out-of-core pro-
cessing. However, this approach did not offer random access
due to the dependencies between encoded tiles. Most works
decide a global tiling, after which each tile is individually
encoded. These approaches are termed as tile-based, whereby
ROI scalability is offered by the tiling process itself.

Initial tile-based approaches used a single-rate codec oper-
ating on a global tiling of a mesh. Choe et al. [19] proposed
a tiling which resulted in a wire-net mesh representing the
tile borders, and encoding each tile independently using a
single-rate encoder. In [20], the authors improved upon [19],
allowing for more control over random accessibility, better
compression, and support for large meshes which require
out-of-core processing. Yoon and Lindstrom [21] also group
triangles in tiles, after which each of these tiles is then
compressed using their streaming mesh compression approach
[22]. In this method, each tile is also encoded at a single rate.
Such approaches make binary decisions on tile granularity:
either the tile is (partly) visible and is entirely decoded, or it
is not visible and the decoding is skipped. The main downside
is that this does not allow for scaling the resolution or quality
of the visible regions, with issues similar to those of single-rate
coding without tiling.

By employing a progressive encoding per global tile, each
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tile can be decoded at a different level of detail, for instance
depending on the distance to a virtual camera, or depending
on some specified region of interest. Liu and Zhang describe a
wavelet-based mesh compression scheme with random access
[23], as one of the first works which combine random access
with scalable coding, as opposed to utilizing a single-rate
compression per tile. Making use of [4], their work operates on
semi-regular meshes to obtain progressive encoding per tile,
while random access is offered by exploiting the employed
zerotree-based encoding and considering the base triangles
as tiles. A binary decision is still made based on back-face
culling: if an oriented triangle of the base mesh has its front
side facing the virtual camera, the corresponding trees of
coefficients are transmitted. This avoids tiling artefacts but
results in a high sampling density, which is common for semi-
regular mesh representations. Roudet et al. [24] similarly use
[4], and define tiles by projecting high-resolution data onto the
base triangles. In [25], Cheng et al. improve the progressive
coder of [26] to use multi-granular quantization, and use this
coder to encode tiles obtained after chartification. No details
are given concerning approaches to avoid artefacts at the tile
borders. Maglo et al. [27] continued on this approach, using
the progressive codec of [28] combined with post-processing
of the tile borders to ensure a valid topology. This is done
by moving the border vertices of the higher-resolution tile
towards the border vertices of the lower-resolution tile, and
triangulating any remaining holes. This process results in
visual blocking artefacts. This method was further continued
in [29], allowing for smooth transitions between adjacent tiles
without post-processing, with the restriction that neighbouring
regions can differ by at most one resolution level. Du et
al. [30] propose a coding method based on the codec of
Gandoin and Devillers [31], which lowers the quantization
of vertex locations iteratively. A two-level tree is proposed
where the root represents the coarsely-quantized base mesh
to be decoded completely, while the subtrees, i.e., the tiles,
can be individually decoded each to its desired level. Again,
care has to be taken for border triangles lying across subtrees.
Finer granularity and random access for vertex-based selective-
refinement coding was proposed by Kim et al. in [32] by
partitioning the original vertex hierarchy into sub-blocks acting
as tiles for random accessibility.

The downside of these tile-based solutions is that they
cannot adapt the resolution in a fine-granular way as offered
by transform-based approaches; the granularity is limited by
the tile granularity. Consequently, care has to be taken near
tile borders to avoid artefacts, which can be challenging if the
resolutions of neighbouring tiles differ by multiple levels.

Dynamic tiling: A solution where the tiles used for
random access change dynamically is given by Courbet and
Hudelot [33]. The authors propose a recursive mesh splitting
approach to obtain hierarchical random access for polygonal
meshes. The resulting representation allows to randomly ac-
cess arbitrarily small portions of a mesh, but does not support
resolution scalability: the portions of a mesh within the ROI
have to be iteratively subdivided until the original triangle
mesh is obtained for the ROI. The subsequently smaller tiles
of [33] allow for more efficient processing.
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Fig. 2. The conventional wavelet transform. During the analysis step, a
mesh Mj is decomposed into a lower-resolution mesh Mj−1 and wavelet
coefficients Wj−1. To allow for irregular mesh coding, additional connectivity
information has to be provided, denoted as Cj−1.

C. Contributions

This work is the first to provide decoder-side ROI support
for wavelet-based irregular mesh codecs. We bring the fol-
lowing contributions:
• An adaptive inverse wavelet transform for irregular

meshes. The wavelet coefficients are filtered and the
appropriate connectivity information is provided before
performing the inverse wavelet transform. This offers
transform-based ROI support and allows for reduced
graphics memory requirements compared to wavelet
transforms for semi-regular meshes.

• Dynamic tiling per resolution in the wavelet domain.
By tiling in the wavelet domain, random access is pro-
vided for our transform-based ROI while avoiding tiling
artefacts in the spatial domain. The tiling adapts to the
sampling densities within each resolution, allowing for
an optimal trade-off between coding performance and
random access granularity per resolution.

• Tile-based rate-distortion optimization. An independent
encoding of tiles allows for reordering tiles within a reso-
lution level and even across resolutions, while preserving
the benefits offered by our quality scalability. A rate-
distortion-optimized bitplane transmission order is then
obtained such that those bitplanes of the tiles which give
the largest quality gain at the lowest rate are coded first.

III. WAVELET-BASED MESH CODING AND ROIS

The conventional wavelet transform used in mesh coding
is given in Figure 2. This scheme is generic and stems from
the classical synthesis of wavelet transforms based on lifting
[34]. For semi-regular meshes, connectivity information is
implicit, and needs not be transmitted. To accommodate for
irregular meshes, the dashed lines in Figure 2 have been added
to indicate that connectivity information can no longer be
assumed to be implicitly known for this type of meshes.

For irregular meshes, each wavelet subband Wj−1 (see
Figure 2) contains the geometry information represented by the
conventional wavelet coefficients wg ∈ Gj−1 obtained via lift-
ing, together with explicit connectivity information wc ∈ Cj−1
to ensure the correct connectivity. For encoding, we employed
a so-called template mesh, proposed originally in our previous
works [7], [35], which was introduced in order to decouple
the transform step from the encoding step and to allow for
quality scalability. For each subband j − 1, a template mesh
MT
j−1 is maintained, representing all connectivity information

in the original mesh. As both Mj−1 and MT
j−1 share the same
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connectivity, there exists a bijective mapping µ linking the
vertices of both, that is:

∀v ∈Mj−1 : µ(v) ∈MT
j−1 (1)

∀vT ∈MT
j−1 : µ−1(vT ) ∈Mj−1 (2)

We will denote the reconstruction of the high-resolution
mesh Mj given the low-resolution mesh Mj−1 and wavelet
subband Wj−1 as:

Mj = WT−1(Mj−1,Wj−1) (3)

where WT−1 denotes the inverse wavelet transform. Let
Me
j and Mo

j represent the even and odd sets of vertices
respectively in Mj as obtained by the splitting step in Figure 2.
After downsampling, retriangulating and updating, the vertices
veij ∈Me

j form the vertices γ(veij ) = vij−1 of Mj−1, where γ
is the bijective operator that maps vj ∈Me

j to vj−1 ∈Mj−1.
We define the wavelet coefficients corresponding to the odd
vertices voij ∈Mo

j as ω(voij ) = wij−1 ∈Wj−1, where ω is the
bijective operator that maps vj ∈Mo

j to wj−1 ∈Wj−1.
Denote by wc and wg the connectivity and geometry infor-

mation of wavelet coefficient wij−1 respectively. To simplify
notations, the index i and subband j−1 are not explicitly given
for these two variables. In the inverse wavelet transform, each
voij = ω−1(wij−1) is reconstructed as follows:

voij =
( ∑
k∈|Mj−1|

wkc v
k
j−1

)
+ wg (4)

where | · | is the cardinality of a set. In this equation, the
first term represents the ‘Predict’ step in the inverse wavelet
transform in Figure 2, weighing all vertices vkj−1 of the
lower-resolution mesh by weights given by the connectivity
information in wij−1. The second term corrects this prediction.
We now define the support S(wij−1) for a wavelet coefficient
wij−1 as the set of vertices with a non-zero weight in (4):

S(wij−1) = {vkj−1 ∈Mj−1 : wkc 6= 0} (5)

That is, S(wij−1) corresponds to the set of vertices
vkj−1 ∈Mj−1 required for reconstructing voij = ω−1(wij−1).

Given meshes Mj , an (encoder-side or decoder-side) appli-
cation can now define subsets of vertices as spatial regions of
interest ROISj ⊂Mj . We translate these ROISj to regions of
interest in the wavelet domain as follows:

ROIWj = {w ∈Wj : S(w) ∩ROISj 6= ∅} (6)

i.e., ROIWj is the subset of those wavelet coefficients in Wj

whose support overlaps with the given ROISj . Additionally,
we define the support of the set ROIWj as:

S(ROIWj ) =
⋃

w∈ROIWj

S(w) (7)

To accommodate for the varying resolution across a surface,
we introduce the notations Mα≤j ,Mβ≤j , . . . to identify sev-
eral partial reconstructions of Mj , i.e., the resolution varies
over the surface, reaching at most resolution j. Given such a

partially reconstructed mesh Mα≤j and ROIWj , we generalize
(3) as follows:

Mα≤j+1 = WT−1(Mα≤j , ROI
W
j )

with S(ROIWj ) ⊂Mα≤j
(8)

The requirement in (8) states that if the support for each
wavelet coefficient w ∈ ROIWj is present in the partially
reconstructed Mα≤j , then the inverse wavelet transform results
in an upsampled mesh Mα≤j+1. Otherwise, if there exists
at least one wavelet coefficient with a support which is
not entirely present in Mα≤j , then the inverse transform is
topologically ill-defined as the prediction term in (4) cannot
be evaluated properly.

The codec design followed in this work follows the generic
architecture of Figure 1. A number of key ingredients offer
the required functionalities of quality and resolution scalability
and region of interest coding. These include:
• successive approximation quantization (SAQ) of the

wavelet coefficients [36] and bitplane coding, performing
scalable quantization and coding of the wavelet coeffi-
cients and enabling quality and resolution scalability [7],
[35] over entire models, without providing ROI support;

• wavelet coefficient boosting [10], discussed in Section IV,
enabling encoder-side ROI support;

• the adaptive wavelet transform proposed in Section V,
which is a key component to enable decoder-side ROI
coding support;

• dynamic tile-based coding proposed in Section VI, en-
abling interactive ROI-support; and

• rate-distortion optimization, detailed in Section VII, offer-
ing optimized allocation of rate across wavelet subbands
and bitplanes.

IV. IRREGULAR MESH CODING AND ENCODER-SIDE ROIS

In [10] we proposed an encoder-side ROI coding method
for wavelet-based irregular mesh codecs which allows for
prioritizing specific geometric regions at the encoder side by
defining an ROISj at each resolution j. These regions can be
encoded and transmitted without altering the coding step itself
by taking advantage of the employed successive approximation
quantization of the wavelet coefficients [10]. By scaling up
the wavelet coefficients in each ROIWj , indicated as wavelet
boosting, the ROI information is transmitted prior to the BG
information. For the sake of completeness, our encoder-side
ROI coding method [10] is shortly reviewed below. For a
complete overview we refer the reader to [10].

ROI propagation: To ensure that ROISj can be recon-
structed after upsampling ROISk ∀k < j, the propagation
operator σ is introduced, propagating ROISj at resolution j
to the region σ(ROISj ) at resolution j − 1: σ(ROISj ) =

{v ∈Mj−1,∃vej ∈ (ROISj ∩Me
j ) : v = γ(vej )} ∪

{v ∈Mj−1,∃voj ∈ (ROISj ∩Mo
j ) : v ∈ S(ω(voj ))}

(9)

That is, all even vertices in ROISj are preserved in σ(ROISj )
while odd vertices require the support of the corresponding
wavelet coefficients to be present as well. Requiring that
σ(ROISk+1) ⊆ ROISk ∀k < j ensures that any reconstruction
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ROISj σ(ROISj ) ROISj−1

Fig. 3. ROI propagation. This figure shows Mj and ROIj before downsam-
pling, and Mj−1 with σ(ROISj ) and a possible ROISj−1.

Mα≤j can be obtained with ROISj properly reconstructed.
ROISj , σ(ROISj ) and ROISj−1 are illustrated in Figure 3.

Boosted wavelet coefficients: Encoder-side ROI support
is offered by using boosted wavelet coefficients: the quantized
wavelet coefficients w ∈ ROIWj are premultiplied by a scaling
value sj > |w|,∀w ∈ Wj \ ROIWj . We construct the set of
boosted wavelet coefficients WB

j as:{
∀w ∈ ROIWj :sjw ∈WB

j

∀w ∈Wj \ROIWj :w ∈WB
j

(10)

The original wavelet coefficients can be obtained as:{
∀w ∈WB

j ∧ w ≥ sj :w/sj ∈Wj

∀w ∈WB
j ∧ w < sj :w ∈Wj

(11)

Bitplane coding ensures that the wavelet coefficients in the
ROI are encoded before those in the background, while quality
scalability allows for storing the ROIs of all resolutions before
any BG information.

ROI-steered upsampling: Limiting the decoder to the
coding layers associated with the ROI results in deterioration
in the BG, because the connectivity information is not ROI-
aware. The set M̃o

j of reconstructed odd vertices creates all
vertices when upsampling:

M̃o
j = {ω−1(w) : w ∈Wj−1} (12)

Only the vertices in the ROI are accurately positioned, while
prediction errors in BG-regions accumulate per resolution.
Instead of low-pass filtering the BG vertices to ensure a
smooth BG surface, irregular meshes allow for limiting the
upsampling to only create vertices in the decoded ROI:

M̃o
j = {ω−1(w) : w ∈ ROIWj−1 ⊂Wj−1} (13)

ROIWj−1 is detected as the set of all non-zero wavelet coeffi-
cients when only decoding the ROIs; detecting zero-magnitude
coefficients can be done by adding a pre-increment and post-
decrement to (10) and (11) respectively.

V. ADAPTIVE INVERSE WAVELET TRANSFORM

The ROI-steered upsampling proposed in our prior work
[10] (and discussed in Section IV) is suitable for encoder-
side ROI approaches for which ROIs are predefined at the
encoding side: per resolution j, a spatial-domain ROISj will
be accurately reconstructed in Mα≤j . In contrast, decoder-
side ROI approaches, such as proposed in the current paper,
have to accommodate interactive ROIs, which are arbitrarily
defined while resolutions are being reconstructed. That is, at
each resolution j, an ROISj is specified by the user at the

decoder side. During upsampling, these arbitrary ROIs cannot
take into account (unknown) higher-resolution ROIs, as was
done in our encoder-side ROI approach [10].

The proper reconstruction of Mα≤j+1 given ROISj possibly
requires modifying lower-resolution meshes Mα≤k, k ≤ j to
obtain additional samples to satisfy the condition in (8). These
lower-resolution Mα≤k must be reconstructed with a larger
ROI denoted by ROISk|j , which is the expansion of ROISk to
yield a proper reconstruction at the higher-resolution j.

Consider for instance that Mα≤j is accurately reconstructed
given all lower-resolution regions of interest ROISk , k < j.
To reconstruct Mα≤j+1 given ROISj , Mα≤j needs to be
modified to Mβ≤j , obtaining the additional samples to en-
sure S(ROIWj ) ⊂Mβ≤j . First, the given ROISj needs to
be expanded to ROISj|j in order to encompass the support
S(ROIWj ) defined in (7), i.e., to include the supports of the
wavelet coefficients w ∈Wj which overlap with ROISj :

ROISj|j = ROISj ∪ S(ROIWj ) (14)

To reconstruct Mβ≤j , the lower-resolution mesh Mα≤j−1
needs to be upsampled considering the interactively-specified
ROI at resolution j − 1, ROISj−1, expanded to ROISj−1|j , in
order to ensure its accurate reconstruction at resolution j. One
can write:

ROISj−1|j = ROISj−1|j−1 ∪ σ(ROISj|j) (15)

The new ROI encompasses both ROISj−1|j−1, i.e., the ex-
pansion of ROIj−1 which yields a proper reconstruction at
resolution j − 1, and the propagation of ROISj|j to resolution
j − 1, as defined in (9).

Recursively, to reconstruct Mβ≤j given this further ex-
panded ROISj−1|j , Mα≤j−1 needs to be modified to Mβ≤j−1,
reconstructed from the subsequent lower-resolution mesh
Mα≤j−2 by considering ROISj−2|j , with:

ROISj−2|j = ROISj−2|j−1 ∪ σ(ROISj−1|j) (16)

(15) and (16) can be generalized, defining the expansions for
k < j recursively as:

ROISk|j = ROISk|j−1 ∪ σ(ROISk+1|j) (17)

The expansion ROISk|j of ROISk given the newly determined
ROISj is the union of its expansion ROISk|j−1 complying for
the already known ROISj−1, and the propagation σ(ROISk+1|j)

of the higher-resolution expansion ROISk+1|j .
Given the spatial-domain ROISj with wavelet-domain

ROIWj obtained via (6), and S(ROIWj ) 6⊂ Mα≤j , the
adaptive inverse wavelet transform can now be recursively
defined to obtain Mβ≤j :

Mβ≤1 = WT−1(M0, ROI
W
0|j) (18)

Mβ≤k = WT−1(Mβ≤k−1,ROI
W
k−1|j) (19)

With this, WT−1(Mβ≤j , ROI
W
j ) is properly defined.

The adaptive inverse wavelet transform is illustrated via the
example of Figure 4. The figure shows a mesh M on the
top line, and its template mesh MT on the bottom line. The
ROIs in Figure 4 are shaded as indicated in the figure. The
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Fig. 4. Adaptive inverse wavelet transform. The figure shows the decoded mesh, with determined ROIs indicated in dark gray and expanded ROIs in light
gray. The inverse transform operations subsequently transform M0 (Fig. 4a) to Mα≤1 (Fig. 4b) at resolution 1, a second version Mβ≤1 (Fig. 4c) and finally
Mβ≤2 (Fig. 4d). The requested ROIS are shaded in dark gray, and the corresponding S(ROIW ) are depicted on the bottom line.

Listing 1 Example: Adaptive inverse wavelet transform

1: function UPSAMPLE(ROIS0 )
2: given M0 and ROIS0 . (Fig. 4a)
3: ROIW0 = {w3

0}
4: S(ROIW0 ) = S(w3

0) ⊂M0 . (Fig. 4e)
5: return Mα≤1 = WT−1(M0, ROI

W
0 ) . (Fig. 4b)

6: end function

7: function UPSAMPLE(ROIS1 )
8: given ROIS1 . (Fig. 4b)
9: ROIW1 = {w2

1, w
3
1, w

4
1}

10: S(ROIW1 ) = S(w2
1) ∪ S(w3

1) ∪ S(w4
1) . (Fig. 4f)

11: =⇒ S(ROIW1 )6⊂Mα≤1 . (Fig. 4b)

12: function UPSAMPLE(ROIS0|1)
13: ROIS0|1 = ROIS0|0 ∪ σ(ROIS1|1) . (Fig. 4a)
14: ROIW0|1 = {w1

0, w
2
0, w

3
0}

15: S(ROIW0|1) = S(w1
0) ∪ S(w2

0) ∪ S(w3
0) . (Fig. 4g)

16: return Mβ≤1 = WT−1(M0, ROI
W
0|1) . (Fig. 4c)

17: end function
18: return Mβ≤2 = WT−1(Mβ≤1, ROI

W
1 ) . (Fig. 4d)

19: end function

performed steps are described in Listing 1. Observe that the
mapping µ is no longer surjective if Mα≤j 6= Mj :

vT ∈MT
j ; ∃v ∈Mα≤j : µ(v) = vT (20)

Although not all vT ∈MT
j have a corresponding v ∈Mα≤j ,

the recursive expansion and propagation of ROIs (17) does
ensure such a correspondence for the required vertices.

The main advantage of such an adaptive inverse wavelet
transform is that a rendering system is allowed to select its
desired ROI, reducing the processing power spent for the
inverse wavelet transform, and reducing the data transmission
to, and the memory usage on, the graphics hardware. The
main disadvantage is that this approach still requires decoding
all data in Menc. Additionally, one notes that the size of
the transformed data MTF, i.e., before any arithmetic or
entropy coding, is often proportional to the size of M itself.
Hence, while graphics memory requirements are optimized,
the memory required to obtain this ROI-adapted model is not.

VI. DYNAMIC TILE-BASED CODING

To reduce memory and bandwidth requirements when re-
constructing Mα≤j+1 given ROISj , only the wavelet coeffi-
cients wj ∈ ROIWj and wk ∈ ROIWk|j for k < j need to be
decoded. This reveals the conventional trade-off in randomly-
accessible coding: at one end of the spectrum, all samples
are individually decodable which means there is no entropy
coding but perfect random accessibility; at the other end of the
spectrum, all samples are encoded simultaneously resulting in
optimal coding performance but no random accessibility. To
solve this trade-off, the proposed coding paradigm makes use
of dynamic tile-based coding, detailed in this section.

We employed the connectivity and geometry coder of [7].
For each wavelet coefficient w ∈ Wj , the connectivity infor-
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mation wc ∈ Cj is represented by assigning a binary value
β(ekj ) to each edge ekj , indicating whether or not the edge is
preserved when upsampling. This is shown in Figure 4e for
MT

0 using full lines for edges that are preserved, and dashed
lines across which triangles are merged. Merging triangles
across such edges results in non-triangular faces which are
immediately recognized as patches. An odd vertex voij+1 is
added per patch, and the patch is retriangulated (depicted in
Figure 4f). The geometry information wg ∈ Gj allows for an
accurate reconstruction of the vertex positions.

The connectivity samples, i.e. a sample per edge for Cj ,
and the geometry samples, i.e. a single sample per wavelet
coefficient for Gj , are encoded using a connectivity coder and
a geometry coder respectively. Both make use of octree coding,
by embedding the samples through the template mesh. Let vkaj
and vkbj denote the two vertices which define ekj . Given the
embedding operator ε which embeds a vertex v at position
ε(v) = v̌ ∈ R3, the binary values β(ekj ) are embedded at

ε(ekj ) = ěkj =
1

2
ε
(
µ(vkaj )

)
+

1

2
ε
(
µ(vkbj )

)
(21)

and the wavelet coefficients ω(voij+1) are embedded at

ε(voij+1) = v̌oij+1 = ε
(
µ(voij+1)

)
(22)

In [7], [35], we used the template mesh for embedding both
the connectivity and geometry samples in R3 as described
above. In Section V, the same template mesh is additionally
used to map the wavelet coefficient supports S(w) from MT

j

where they are ensured to be accurately represented, to Mα≤j
where these supports are not necessarily fully reconstructed.
The next sections discuss approaches to avoid decoding an en-
tire subband before performing an adaptive inverse transform.
Section VI-A discusses tiling of the geometry samples v̌oij+1;
Section VI-B goes on by discussing how the connectivity
samples ěkj can be tiled.

A. Tiled Geometry Information
For an ROI-based reconstruction of Mα≤j+1, the decoding

of the geometric samples can be limited to w ∈ ROIWk|j for
each k ≤ j. A partial, ROI-based decoding of these geometric
samples does not hinder subsequent decoding steps as each
MT
j , which embeds the samples, is reconstructed using only

connectivity information.
At each resolution, Cj is fully decoded. To allow for random

access into the geometry data Gj , the geometry samples can
be partitioned into tiles based on any criterion that can be
mirrored by a decoder; for instance, based on the topology of
MT
j+1 or based on the sampling locations v̌oij+1 within MT

j+1.
Each odd vertex corresponds to a single geometry sample,

and can consequently be mapped to a single tile after parti-
tioning. Denote the mapping of odd vertices voj to tile Tx

j as
T (voj ) = Tx

j . The set of tiles required for ROIWj is:

T req
j =

⋃
w∈ROIWj

T
(
ω−1(w)

)
(23)

Except for signalling the tiles within a bit stream, the only
lossless rate penalty is caused by the trade-off between fine-
granular random access (requiring smaller tiles) and high

coding performance (requiring larger tiles). As the portion
of geometry information vastly surpasses the connectivity
information (see, for instance, [2], [5], [37]), large speed-ups
and rate savings for ROI decoding can be obtained. However,
using a template mesh MT having the same number of vertices
as the original mesh has memory limitations: for instance,
decoding only a fraction of a multi-million vertex model M
still requires a multi-million vertex MT in memory. One can
solve this problem by tiling also the connectivity information,
as proposed next.

B. Tiled Connectivity Information
Tiling geometry samples is possible in a straightforward

manner because the entire template mesh MT
j at each resolu-

tion j is available for embedding the samples before (partial)
decoding, and each wavelet coefficient corresponds to a single
encoded sample. Connectivity information cannot be handled
similarly as these two assumptions are no longer true.

Firstly, partial decoding of the connectivity information
results in only partly upsampling MT

j to MT
α≤j+1, breaking

the symmetry with the encoder side. Denote the tiles obtained
after tiling using any criterion as T̃x

j . Contrary to the tiling
of geometry samples in Section VI-A where MT

j can be
used entirely by both the encoder and decoder to create
identical tiles, the tiling of connectivity samples which are
only partly decoded can no longer depend on all template
mesh information.

To tackle this, one approach is to tile the samples only
once, as is done in literature and which results in fixed tiles.
While this tiling operation is often performed on the base
mesh, it can in general be performed at any resolution j. As
the samples are not tiled at resolutions k < j, MT

j will be
entirely reconstructed by the decoder and the tiling operation
can still use all template mesh information. Alternatively, we
suggest a dynamic tiling approach. By allowing the amount
of tiles to change per resolution level, the tiling can be
adapted to the global average sampling density. Additionally,
by allowing for non-uniform tiling, the tiling can be adapted to
local sampling densities. In this approach, only the first tiling
operation can use all template mesh information. Subsequent
tiling operations can only consider information local to each
tile in order to preserve the symmetry with the encoder.
Consequently, either additional signalling in the data stream
allows for uniform tiling, or decoder-side tiling decisions
result in non-uniform tiling as only local information can be
considered.

Secondly, whereas the geometry is decoded given a single
sample ω(voij ) per wavelet coefficient, properly upsampling
the connectivity requires multiple samples β(ekj ) to define the
wavelet coefficient supports. As these supports are only known
to a decoder after decoding connectivity samples, a tiling of
the connectivity samples before decoding them necessarily
needs to duplicate vertices of neighbouring tiles to avoid
patches being encoded only partially within a tile.

We discuss two approaches for extending the obtained tiles
T̃x
j to account for patches across tile borders:
• extend tile samples with the minimal amount of samples

such that each patch is fully represented (Section VI-B1),
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• or extend tile samples such that all subsequent resolutions
are decodable given the current tile (Section VI-B2).

The following two sections discuss these two approaches for
extending the tiles T̃x

j to form the tiles Tx
j which are encoded.

Due to only partially reconstructing MT
α≤j , the mapping

of vertices to tiles T (vj) = Tx
j is no longer straightforward.

The vertices at resolutions where (fixed or dynamical) tiling
is performed, are trivially mapped. However, for vertices vo

reconstructed at higher resolutions, S(ω(vo)) possibly lies
across a tile border and is consequently duplicated across
multiple tiles. In our implementation, higher-resolution even
vertices vej and odd vertices voj are mapped as follows:

T (vej ) = T
(
γ(vej )

)
(24)

T (voj ) =
⋃

v∈S(ω(voj ))

T (v) (25)

That is, reconstructed vertices inherit the (possibly different)
tiles of the vertices in their support. The set of required tiles
T req
j per resolution j can then be determined via:

T req
j =

⋃
v∈ROISj

T
(
v
)

(26)

where a single tile of each T (v) suffices.
Contrary to (23) the required tiles can no longer be deter-

mined directly in the wavelet-domain ROIWj . As connectivity
information is only partially decoded, not all wc ∈ Cj , needed
for determining S(w) using (5), are known. Hence, ROIWj
cannot be determined using (6). We decode the extended tiles
corresponding to the vertices in the spatial-domain ROISj .
Hence, the extension of the tiles must ensure that sufficient
samples are being decoded such that ROIWj can accurately
be obtained for reconstructing Mα≤j+1.

1) Minimal connectivity information per tile: After parti-
tioning, the vertices in patches which lie across tile borders are
scattered over multiple tiles. Hence, decoding only a specific
tile T̃x

j can result in inaccurate connectivity near the tile
borders, which in turn results in drift when decoding geom-
etry samples for tile T̃x

j . The most straightforward approach
encodes the tiles Tx

j which extend T̃x
j as follows:

T̃x
j ⊂ Tx

j and

∀wj ∈Wj : S(wj) ∩ T̃x
j 6= ∅ =⇒ S(wj) ⊂ Tx

j

(27)

That is, if one vertex of the wavelet coefficient support S(wj)

was partitioned into T̃x
j , then the entire support needs to be

encoded in Tx
j .

Observe that this tiling cannot be mirrored by a decoder:
T̃x
j can be determined in the same way as done at the encoder

side, but without knowledge of Wj , Tx
j cannot be found. We

propose to encode additional vertex rings per tile T̃x
j until

Tx
j is entirely taken into account; the number of additional

vertex rings is a parameter which needs to be encoded in
the bitstream. Each encoded sample which is not found in
Tx
j is encoded as a null-value to ensure no patches are

determined outside of Tx
j . The actual values for these samples

are irrelevant for decoding T̃x
j ; if a decoder needs these values,

the appropriate tile will be decoded.
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Fig. 5. Connectivity tiling with minimal duplication. In Fig. 5a, an adaptive
inverse wavelet transform requires the data of subband 0, limited to tile T̃x,y .
The black wave line indicates data outside of this tile required to properly
reconstruct the template mesh MT

α≤1 which perfectly reconstructs MT
1 within

tile T̃x,y . As MT
0 is at resolution 0 over all tiles, all required data is available.

In Fig. 5b, data of subband 1 is required to reconstruct MT
α≤2, again limited

to tile T̃x,y . Additional data outside of this tile (indicated by the red wave
line) is no longer guaranteed to be available, as MT

α≤1 is not necessarily
at resolution 1 in the tiles neighbouring T̃x,y . To ensure that all required
data is available, the neighbouring tiles need to be at resolution 1 before
reconstructing MT

α≤2 (Fig. 5c). In general, if data of subband j is required
in a tile T̃x,y , tiles minimally need to be decoded as depicted in Fig. 5d.

The construction of the tiles Tx
j considering wavelet coeffi-

cient supports, as given in (27), ensures that decoding the tiles
given in (26) provides the necessary wavelet coefficients of Wj

for accurately determining ROIWj defined in (6), which are,
in turn, required for reconstructing Mα≤j+1. However, as the
encoder only takes into account Wj without considering higher
resolutions, there is no guarantee that a subsequent decoding
step of a higher resolution will be possible without drift.

Figure 5 illustrates this effect. Figure 5a shows all tiles
of MT

0 . The wave line indicates the samples added to T̃ x,y0

to obtain T x,y0 . For the next upsampling step, such addi-
tional samples are not necessarily available in Figure 5b
as the neighbouring tiles T x±1,y0 , T x,y±10 and T x±1,y±10 are
not decoded, nor were these additional samples taken into
account when constructing T x,y0 using (27). Consequently,
these neighbouring tiles need to be decoded before T x,y1 can
be decoded (Figure 5c). In general, if an ROISj requires T̃ x,yj ,
the minimal resolutions are shown in Figure 5d: neighbouring
tiles can differ by, at most, one resolution level.

This tiling approach has the disadvantage that much of
the decoding effort is spent to support neighbouring tiles
instead of the highest resolution within the tile. Furthermore,
while dynamic tiling is possible, ensuring the appropriate
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resolutions per tile becomes even more involved if tiles are
non-uniformly distributed. To solve these issues, an alternative
tiling methodology is presented next.

2) Sufficient connectivity information for independent tiles:
Alternatively, given tiles T̃x

j , we propose a tiling Tx
j which

takes into account all higher resolutions. In a first step, we
traverse all higher resolutions to find wavelet coefficients
affected by vertices in T̃j , defining temporary tiles T̂x

k for
k ≥ j. Let T̂x

j = T̃x
j ; T̂x

k is recursively determined as follows:

∀vek ∈Me
k : γ(vek) ∈ T̂x

k−1 =⇒ vek ∈ T̂x
k

∀vok ∈Mo
k : S(ω(vok)) ∩ T̂x

k−1 6= ∅ =⇒ vok ∈ T̂x
k

(28)

for each k ∈ [j+1, rmax], with rmax the highest resolution. T̂x
rmax

encompasses all highest-resolution vertices which are, directly
or indirectly, affected by the vertices in T̃x

j . To ensure that
these highest-resolution vertices are accurately reconstructed,
we traverse back to resolution j to ensure that all wavelet
coefficient supports are taken into account. Define temporary
tiles Ťx

k for the traversal back to resolution j. Let Ťx
rmax

= T̂x
rmax

;
we have:

∀vek+1 ∈ (Ťx
k+1 ∩Me

k+1) : γ(vek+1) ∈ Ťx
k

∀vok+1 ∈ (Ťx
k+1 ∩Mo

k+1) : S(ω(vok+1)) ∈ Ťx
k

(29)

Using (29) we eventually find Ťx
j . The minimally required tile

data which needs to be encoded is Tx
j = Ťx

j . This ensures that,
given an initial T̃j , sufficient additional samples are provided
to decode this resolution j as in Section VI-B1, and to decode
future resolutions j + k as long as ROISj+k is composed of
vertices which are (directly or indirectly) affected by vertices
in the original T̃x

j . Additionally, as tiles can now be treated
independently, tiling can be easily adapted to the decoded
sample densities per resolution.

Similar to the approach in Section VI-B1, the decoder has
no knowledge about Wk with k ≥ j and cannot reconstruct
Tx
j . We again consider the vertex rings around T̃x

j which
need to be added until Tx

j is entirely taken into account. This
number of vertex rings is communicated to ensure that the
same tiles are used at the encoder and decoder sides. Finally,
observe that we obtain the same Tx

j as in (27) if we only look
one resolution higher, i.e., if we consider rmax = j + 1 and
thus only apply (28) and (29) once.

This approach lends itself perfectly to dynamic tiling,
producing tiles of various sizes, adapted on the local density
of the tessellation. In our implementation, the partitioning is
based on the recursive octree decomposition of the bounding
box of template mesh vertices. Let τTS be the given tile-split
threshold which controls the amount of vertices within any
given tile. The dynamic tiling algorithm initially considers all
vertices to be contained within a single tile T̃ 0

0 = T 0
0 . The tile

partitioning approach considers the axis-aligned bounding box
of all vertices within a tile, i.e., the box containing the points
(x, y, z) with x ∈ [xmin, xmax], y ∈ [ymin, ymax], z ∈ [zmin, zmax]
and

xmin = min
v∈T 0

j

ε(v)0 and xmax = max
v∈T 0

j

ε(v)0 (30)

ymin = min
v∈T 0

j

ε(v)1 and ymax = max
v∈T 0

j

ε(v)1 (31)

Listing 2 Algorithm: Dynamic tile decoding

1: T := {T 0
0 }

2: for all j ∈ [0, rmax−1] do
3: for all Tj ∈ T : Tj ∈ T req

j do
4: T := T \ {Tj}
5: Tj+1 = DECODEANDUPSAMPLE(Tj)
6: if |Tj | < τTS then . keep Tj+1

7: T := T ∪ {Tj+1}
8: else . split Tj+1

9: vC = (xmin+xmax
2 , ymin+ymax

2 , zmin+zmax
2 )

10: for all x ∈ {0, 1}3 do
11: T̃x

j+1 = {v ∈ Tj+1 : (−1)xi(vC,i − ε(v)i) > 0}
12: Tx

j+1: obtained using (28) and (29)
13: T := T ∪ {Tx

j+1}
14: end for
15: end if
16: end for
17: end for

zmin = min
v∈T 0

j

ε(v)2 and zmax = max
v∈T 0

j

ε(v)2 (32)

In these notations ε(v)i indicates the ith component of the
embedding ε(v) ∈ R3.

The vertices are partitioned by considering eight octants
around the bounding box center vC . The index of each of the
octants is given by a triple x = (x0, x1, x2) with xi ∈ {0, 1},
where xi = 0 indicates that the ith component of each
vertex position in the octant is smaller than vC,i, i.e., the
ith component of vC . Conversely, xi = 1 indicates that the
vertices have an embedded position with the ith component
larger than vC,i. This condition can be represented compactly:

∀v ∈ T̃ x0,x1,x2

j : (−1)xi(vC,i − ε(v)i) > 0, i ∈ [0, 2] (33)

The dynamic tile decoding algorithm is described in Listing
2. T represents the set of decodable tiles. At each resolution,
ROISj determines the required tiles T req

j using (26). Each
required tile that still needs to be decoded, denoted by Tj
in Listing 2, is removed from the decodable tiles (line 4), is
decoded and upsampled (line 5), and either the upsampled tile
Tj+1 is added to the decodable tiles as such (line 7) or Tj+1 is
first split and each of the subtiles are added to the decodable
tiles (line 13).

An example illustrating an encoding and decoding of the
proposed dynamic tiling approach is shown in Figure 6, where
tiles are split binary; tile indices x are now scalar indices
which stay constant between the resolution at which the tile
is created and the resolution where the tile is further split. A
base mesh is encoded using a single tile T 0. Tile T 0

0 encodes
the first subband W0, i.e., G0 and C0. Tiles T 0

1 and T 0
2 encode

the next two subbands. However, the amount of samples after
upsampling T 0

2 surpasses τTS so instead of encoding a single
tile T 0

3 , the tile is split and T 1
3 and T 2

3 are encoded instead (see
Figure 6). Information is duplicated, such that each subtree
is now processed independently. Because tiles are processed
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Fig. 6. Dynamic tiling. This figure visualizes tiles hierarchically. The dashed
line represents a possible front of tiles which are decoded at a particular time.

independently they need not be split at the same resolution,
allowing for the tile splitting to adapt to the sampling densities
within the model.

The decoding process follows the same steps. The given
ROISj per resolution j determines the tiles T req

j which need to
be decoded, while no dependencies occur between neighbour-
ing tiles. For instance, for a given ROI, tile T 8 can be decoded
up to resolution 7 while the neighbouring tile T 2 can remain
at resolution 3, without any blocking artefacts showing up due
to our construction of the tiles. At each step of the decoding
process, the state is represented by a tile front which is formed
as illustrated by the dashed line in Figure 6, and corresponds
with T in Listing 2. In this example, T = {T 3

5 , T
7
6 , T

8
7 , T

2
3 }

represents the four tiles and their respective resolutions for
decoding a specific mesh Mα≤7. T 2

3 spans approximately half
of the bounding box, T 3

5 spans a quarter and T 7
6 and T 8

7 span
1/8, showing that the decoded tiles appropriately adapt to the
sampling densities required for the requested ROIs.

Contrary to our approach in Section VI-B1, tiles are only
decoded in order to supply wavelet coefficients for the mesh
reconstruction within the tile and not as support for decoding
neighbouring tiles located in the ROI. That is, given an ROISj ,
only the tiles given by (26) need to be decoded, as sufficient
samples are provided for decoding up to resolution j without
drift. Compared to regular tiling of Section VI-B1, this reduces
the amount of tiles being decoded for a given resolution level
and improves random accessibility. This is illustrated in Figure
7 which compares the proposed dynamic tiling method (Figure
7b) with the regular tiling of Section VI-B1 (Figure 7a). One
notices that providing any given resolution level requires less
tiles when following dynamic tiling compared to the regular
tiling of VI-B1.

Although the proposed method with independent tiles (Fig-
ure 7b) improves random accessibility compared to the method
with minimally-sized tiles (Figure 7a), it also introduces an
additional rate penalty. On the one hand, additional samples
are taken into account further outside of the tile borders; this
is illustrated by the overshoots of the dashed lines over the
tile marks (indicated by the vertical lines) in Figure 7b. If
tiles are not decoded until the highest resolution, some of
these additional samples are irrelevant. On the other hand,
information will be duplicated over several neighbouring tiles;
this is indicated by the gray areas in Figure 7b which illustrate
data near the tile borders that has been decoded twice.

Nonetheless, while the lossless coding rate increases due
to duplicate information being encoded, the required rate

when decoding specific ROIs is vastly lowered due to the
tile resolutions scaling down as fast as the inverse wavelet
transform does.
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Fig. 7. Tile granularity. These two plots qualitatively compare the methods
discussed in Sections VI-B1 and VI-B2 respectively. Ideally, the dashed line
which represents the decoded data (at tile granularity) perfectly follows the
full line which represents the amount of data used for the wavelet transform (at
triangle granularity). The gray areas indicate information which is duplicated
in order to provide random accessibility while avoiding tile dependencies.

VII. RATE-DISTORTION OPTIMIZED ENCODING

With this tiling available, we propose a rate-distortion
optimization of the coding system which aims at optimally
allocating rate across different tiles. We have investigated
rate-distortion optimization for untiled wavelet-based irregular
mesh encoding in [35]. In this paper, we generalize this
approach for dynamic tiling, as detailed next.

Without tiling, at each moment during encoding, either a
new resolution is decoded up to a specific number of bitplanes,
or the quality of an existing resolution is improved by encoding
an additional number of bitplanes. This is formalized as
follows. Consider all wavelet coefficients being represented
using pmax bitplanes, and the connectivity information us-
ing an additional data layer. The data layers are labeled
decreasingly as pmax for the connectivity information, and
pmax−1, . . . , 0 for the geometry information from most signif-
icant to least significant bitplanes. This allows for constructing
rate-distortion curves per resolution, where each curve has
pmax+2 ratepoints, one for each encoded data layer (including
the case when no information is sent for the given resolution).
Each ratepoint is denoted by (R

(j)
p , D

(j)
p ), with R(j)

p the bitrate
required to obtain the ratepoint with label p of resolution j,
and D(j)

p the accompanying distortion.
Let Pj be the last encoded layer of resolution j, and let

L be the first unencoded resolution (hence, PL = pmax + 1,
the ratepoint before encoding any connectivity information);
in general, when performing rate-distortion optimization, we
want to encode k′ layers of resolution j′ by maximizing the
distortion-rate slopes given by:

(j′, k′) = arg max
j∈[0,L],k∈[1,Pj ]

D
(j)
Pj
−D(j)

Pj−k

R
(j)
Pj−k −R

(j)
Pj

(34)



EL SAYEH KHALIL et al.: SCALABLE WAVELET-BASED CODING OF IRREGULAR MESHES WITH INTERACTIVE REGION-OF-INTEREST SUPPORT 11

Per resolution j, the amount of data layers k ∈ [1, Pj ]
which yields the largest slope is determined. We encode these
data layers for the resolution for which this largest slope is
maximal.

With the availability of tiles, rate-distortion optimization can
be further improved as the tiles can be present at different
resolutions and quality levels. Given that each resolution j
counts Tj tiles, we can now find the rate-distortion curves per
resolution and per tile. Each such curve has again pmax + 2

ratepoints, denoted by (R
(j,t)
p , D

(j,t)
p ). Pj,t now signifies the

last encoded layer of tile t in resolution j, and R(j,t)
p and D(j,t)

p

respectively give the bitrate and distortion after encoding layer
p of tile t at resolution j. We now want to encode k′ layers
of tile t′ of the j′th resolution by determining:

(j′, t′, k′) = arg max
j∈[0,L]

t∈[0,Tj−1]
k∈[1,Pj,t]

D
(j,t)
Pj,t
−D(j,t)

Pj,t−k

R
(j,t)
Pj,t−k −R

(j,t)
Pj,t

(35)

In these equations, we make the following conventions
(similar to the conventions in [35]):

R
(j,t)
pmax+1 = 0; (36)

R(j,t)
conn = R(j,t)

pmax
−R(j,t)

pmax+1 = R(j,t)
pmax

(37)

R(j,t)
geom = R

(j,t)
0 −R(j,t)

pmax
(38)

D
(j,t)
pmax+1 = D(j)

pmax
(39)

These conventions signify that the rate for each tile at each
resolution starts at 0 as given by (36); the rate for each tile t of
each resolution j can be attributed to connectivity information
by the first data layer (37) and geometry information in the
remaining layers (38). We do not consider any distortion
decrease by decoding the connectivity information (39).

VIII. EXPERIMENTAL RESULTS

For the evaluation of the proposed methods, we have
experimented with models up to the Asian Dragon model of
3 609 600 vertices. In the literature, no proper evaluation cri-
teria have been proposed for comparing different approaches
w.r.t. the quality of ROI decoding or the accuracy offered by
random accessibility. Comparative studies are usually limited
to comparing the lossless rates, and visual results without rate
indications. These visual results are obtained for instance using
a click-and-drag approach in a virtual environment.

In this section we provide both lossless rates and visual re-
sults, but we also complement them by providing experimental
results for two ROI decoding scenarios: front-view ROI and
point-based ROI.

The front-view ROI selects all “front-facing” triangles. Let
n be the surface normal of a triangle, and v the direction
to the camera. A triangle is front-facing if n and v form
an angle smaller than 90◦, signifying that the front of the
triangle is visible when looking from the direction of the
camera. For the visible triangles, the proposed ROI coding
methodology should guarantee visually lossless results. Figure
8 shows examples for the heptoroid, fertility and golfball
models. Depending on the model, front-facing triangles can

either be found mainly in the front half of the model (e.g.,
golfball) or over the entire surface (e.g., heptoroid). To avoid
selecting ROIs over the entire surface, we add experimental
results where the front-view results are limited to those ROIs
in the front half, indicated as “front-view (half)”. The result
for the fertility model is shown in Figure 8d.

The point-based ROI selects a random vertex at the base
(lowest) resolution; at each resolution j those triangles sur-
rounding this selected vertex are selected as part of ROISj ,
while each higher resolution either keeps the same vertex or
one of the newly created vertices to continue this process.
Visual results with this method are shown in Figure 9.

Such experiments are sensitive to the orientation, geometry
and topology of the models, but still give insights on how the
proposed ROI decoding methodology performs. The proposed
evaluation scenarios are considered as soft extrema. On the
one hand, the front-view results give an estimation on the
maximally useful ROIs, considering the camera position but
disregarding occlusion and lower resolution requirements due
to the distance to the camera. On the other hand, point-based
decoding can be considered as an estimation on the minimally
useful ROIs: only a single vertex is considered as ROI and the
resolution over the reconstructed mesh surface is minimal in
order to provide for a valid mesh topology.

A. Adaptive Inverse Wavelet Transform

This section evaluates the inverse wavelet transform pro-
posed in Section V, which is independent of any tiling
decisions. We investigate the amount of decoded vertices for
the three ROI decoding scenarios, i.e. front-view, front-view
(half) and point-based, indicating the ratio of ROI vertices
w.r.t. the total amount of vertices as:

ρ =
vROI
vtotal

(40)

The results are shown in Figure 10. The lines connecting the
samples have no significance but where added for clarity.

For front-view decoding, ρ converges to 50%, which was
expected assuming that approximately half of the triangles are
facing any camera in general. The overhead caused by the
ROI propagation (see (17) and Figure 4c) is only significant
for smaller models, where ρ goes up to 80%. For point-based
decoding, ρ converges to 0% as the ROI, i.e., a single vertex,
reduces relative to the full-resolution sizes.

Such accurate representations are possible because our
wavelet transform does not depend on any tiling decisions. For
tile-based solutions, the smallest ρ depends on the tiling granu-
larity. These results are valuable from a rendering perspective:
a reduction in the amount of vertices directly relates to the
reduction in memory usage for real-time rendering. However,
as mentioned at the end of Section V, without tiling, this still
requires lossless decoding and substantial amounts of memory
that linearly scale with the mesh sizes.

B. Dynamic Tile-based Coding

In the next set of experiments, we investigate the dynamic
tiling discussed in Section VI, introduced to reduce the coding
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(a) heptoroid (b) fertility (c) golfball (d) fertility (half)

Fig. 8. “Front-view ROI” (8a, 8b, 8c) and “Front-view (half) ROI” (8d).

(a) heptoroid (b) fertility (c) golfball

Fig. 9. Point-based ROI.
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Fig. 10. Percentage of vertices of ROI-decoded models. This plot shows the
percentage ρ of decoded triangles when (i) considering front-facing regions
(Front-view ROI), converging to ρ = 50%, (ii) front half regions (Front-view
(half) ROI), and (iii) only considering the region surrounding a random point
(Point-based ROI), converging to ρ = 0.

rate required by the ROI-aware inverse transform. We again
consider the front-view, front-view (half) and point-based ROI
coding scenarios. Additionally, we present the bitrates for
lossless decoding, both with and without tiling, i.e., ROI-aware
and ROI-agnostic. These figures will reveal the actual rate
penalty introduced by tiling.

Given a fraction p, we evaluate the effect of splitting tiles
by setting τTS = p.nv , with nv the amount of vertices in a
model. This results in similar tiling for all models, independent
of the model sizes. Results are given for models up to 350 000
vertices at 12 bit quantization, and models up to over 3.6
million vertices at 21 bit quantization.

High values of p result in only splitting the tiles once. When
splitting at p = 40% (see plots in Figures 11a and 11b), the
single base tile (see Figure 6) will only be split at a high
resolution. In general, none of the eight new tiles will surpass
this τTS again, resulting in a highest resolution with eight

tiles. We observe that the lossless penalty is minimal, which
reduces with increasing model sizes. We also observe rate
gains when decoding a single vertex. Finally, when increasing
the amount of quantization bits, the obtainable rate gains also
increase, showing that our approach is valuable for high-
accuracy models. The gains are limited due to the large amount
of data that is still encoded in a single tile.

For low values of p, tiles are split at a lower resolution
in Figure 6. Figures 11c and 11d show the results when
splitting at p = 2%. Although we observe higher lossless
rate penalties, we again observe that these penalties reduce
with increasing model sizes: using smaller tile sizes (resulting
in more tiles) requires larger models to be efficient. For
ROI-decoding, however, much larger gains can be obtained.
For smaller models the gains are reduced due to the ROI
propagation (as was also mentioned in Section VIII-A); for
larger models we observe significant gains. The dragon model
of 437 645 vertices decodes the 21 bit quantized ROI around
a single vertex at 16.4bpv (while lossless decoding requires
50.4bpv), which saves 67.5% of the lossless bitrate; given
that τTS = 8 753 for this model, any ROI consisting of
several thousands of vertices will be decoded at a similar
bitrate. Similarly, the Asian dragon model of 3 609 600 vertices
decodes the ROI around a single vertex at 4.96bpv (of the 39.7
lossless bpv); as τTS = 72 192, ROIs consisting of tens of
thousands of vertices will be decoded at a similar rate, saving
87.5% of the lossless bitrate. Finally, we remark that, with
increasing model sizes, the expected ROI will decrease w.r.t.
the total model size, which signifies that the actual rates will
move closer towards the point-based results.

Notice that decoding the front-view ROI mostly coincides
with lossless decoding. This confirms the fact that triangles
which face the camera, i.e., front-facing triangles, are not
necessarily restricted to the front half of a model, as was
seen in Figures 8a and 8b. Consequently, depending on the
tiling granularity, nearly all of the tiles can be required,
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Fig. 11. Bitrates for decoding ROIs, for models encoded with relative tile sizes.

such that requiring all front-facing triangles at the highest
resolution is detrimental for random access. Allowing only
front-facing triangles in the front half for the ROIs, as depicted
by the front-view (half) results, still more than half of the
tiles are required due to the ROI propagation discussed in
Section V; these will require lower-resolution triangles in the
back half of the model to be upsampled, to ensure proper
reconstruction of the front half without blocking artefacts. To
allow for efficient streaming, the distance to the camera (i.e.,
using lower resolutions for far away regions) and the actual
visibility (considering, for instance, the view frustum and self-
occlusions) need to be taken into account.

Parallel decoding: An additional advantage of the pro-
posed tiling approach is the unlocked parallel decoding op-
portunity. Let us consider an example where a single tile is
split into eight tiles at some resolution rmax−k. For instance,
this is the case for p = 40% depicted in Figure 11a. The
results show an average lossless rate penalty of 14.8 bpv when
considering all models, or, by ignoring models with less than
20 000 vertices, an average rate penalty as low as 2.5 bpv.

Earlier, this rate penalty was already justified considering
ROI decoding: for large models a relatively small ROI will be
required. Consequently, for reconstructing ROI-aware versions
of large models, the low value of ρ will result in reduced
bitrates compared to ROI-agnostic coding.

In addition, if sufficient memory, processing power and
bandwidth are available and the full model needs to be
decoded losslessly, the k highest resolutions (i.e., the most
computationally expensive resolutions) will benefit from a
potential eightfold speedup if all eight new tiles are equally
filled. This is made possible because the individual tiles can
be decoded completely independently, even across resolutions.

This is left as topic of further investigations.

IX. CONCLUSIONS

This work proposed a region-of-interest (ROI) based cod-
ing approach for irregular triangle meshes which allows for
varying the resolution of a model over its surface at the finest
granularity level. To allow for randomly accessing parts of
the data, we have proposed a dynamic tiling in the wavelet
domain where each tile can be independently processed. This
allows for adapting the tiling to the sampling densities and the
requested ROIs, while also permitting decoding speedups in
the lossless case by allowing for parallel decoding. Despite rate
penalties which are unavoidable when adding ROI support, we
observe that decoding ROIs can be done at the fraction of the
lossless rate, for increasingly larger models.

The results show that we are at the turning point where
ROI support proves its value. In future work, a more efficient
implementation will be able to process models which are
several orders of magnitude larger; the main challenge will
become the encoder which still needs to process the entire
model, not just a selected ROI.

ACKNOWLEDGMENTS

The research activities as described in this paper were
funded by Ghent University, imec, Innoviris (3DLicornea),
Flanders Innovation & Entrepreneurship (VLAIO), the Fund
for Scientific Research-Flanders (FWO-Flanders), and the Eu-
ropean Union.

Datasets are courtesy of the Stanford University, Georgia
Institute of Technology, Princeton Graphic Group, INRIA,
Cyberware and Aim@Shape.



14 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. X, MMMM YYYY

REFERENCES

[1] H. Hoppe, “Progressive meshes,” in Proc. 23rd Annu. Conf. on Computer
Graphics (SIGGRAPH), 1996, pp. 99–108.

[2] S. Valette, R. Chaine, and R. Prost, “Progressive lossless mesh com-
pression via incremental parametric refinement,” in Computer Graphics
Forum - Proc. Eurographics Symp. on Geometry Processing (SGP),
2009, pp. 1301–1310.

[3] M. Lounsbery, T. D. DeRose, and J. D. Warren, “Multiresolution
analysis for surfaces of arbitrary topological type,” ACM Transactions
on Graphics (TOG), vol. 16, no. 1, 1997.
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