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maar steeds terechte opmerkingen en suggesties hebben echter steeds het

perfectionistisch kantje in mij geprikkeld; het kantje dat mij gedurende de

voorbije dagen weinig rust gunde, zorgde ervoor dat dit proefschrift dankzij hun

opmerkingen nog een stukje beter werd.

Verder wil ik ook mijn dichtste collega’s binnen het officieuze graphics lab

bedanken. Nadat ik van Bart, Charles en Aljosha veel heb geleerd tijdens mijn

vroege dagen binnen het Multimedia Lab, bleven ook hun resultaten binnen

Graphine inspirerend werken. Ondanks hun relatief korte verblijf bij ons, ben ik

verder ook El-Hassan, Steven, Gaétan en Jelle dankbaar voor de steeds interessante

samenwerking. Tenslotte heb ik met Ignace het langste een bureau gedeeld, en ik

wil hem ook zeker bedanken voor de vele constructieve discussies die hielpen

om mijn eigen inzichten te versterken, of om tot verrassende nieuwe inzichten te

komen. Ook van mijn andere collega’s heb ik veel bijgeleerd, zowel uit domeinen

die nauw aansluiten bij dit werk als uit domeinen die een stuk verder weg liggen.

Glenn, Sebastiaan en Jan in het bijzonder hebben mij als video-experten in mijn

vroegere onderzoeksjaren goed op weg gezet. Bedankt!

Mens sana in corpore sano, een gezonde geest in een gezond lichaam, maar

bij uitbreiding ook in een gezonde omgeving. Er zijn dus heel wat mensen die,
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zonder het zelf te beseffen, zeker hebben bijgedragen tot de kwaliteit van dit werk

en tot het behouden van mijn geestesgezondheid.

Ik kan dan al zeker alle ploeggenoten bij BBC Desselgem doorheen de jaren

bedanken. Zo hield ik er een relatief gezond lichaam op na, dat soms wel eens

tot uitersten gedreven werd (bedankt Bert). Niels, Kristof, Jens en Sander wil ik

ook bedanken. Ondanks universitaire studies en ondanks dit onderzoek zijn we

vrienden gebleven sinds het middelbaar, een vriendschap die mij zeer dierbaar is.

Mijn familie, waar ik steeds op kan rekenen, wil ik ook zeker bedanken.

Nonkels, tantes, neven, nichten staan steeds voor mij klaar. Ondertussen kan

ik daar ook een leuke schoonfamilie bij rekenen. Inderdaad, de belangrijkste
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ook al kan ik jullie niet meer persoonlijk bedanken, ik besef maar al te goed dat
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ben. Geduld en doorzettingsvermogen zijn maar enkele van de karaktertrekken

die jullie mij meegegeven hebben en die doorheen de jaren zo waardevol gebleken

zijn. Ma, je fierheid liet je zo vaak blijken, en je wist waarschijnlijk al veel eerder

dan ikzelf dat ik wel mijn universitair diploma zou halen. Jammer dat je het nooit

meer hebt mogen meemaken. Pa, ook jij verliet ons te vroeg. Zo trots als je was op

de proclamatie van zes jaar geleden, die trots kan ik mij nu enkel maar inbeelden.
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Region-of-Interest).
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C

continuous Levels-of-Detail A chain of levels of detail can be considered

continuous if the difference between two subsequent LODs is a single

vertex. In general, while this is per definition still discrte, one can consider

such a chain as continuous if hundreds or thousands of levels are present,

and the difference between two levels is nearly unnoticeable (see also:

Level-of-Detail).

D

degree The (vertex) degree: see valence.

discrete Levels-of-Detail A chain of levels of detail can be considered discrete

if the difference between two subsequent LODs are multiple vertices. In

general, one can consider such a chain as discrete if the amount of levels is

limited, and the difference between two levels more clearly noticeable over

the entire mesh (see also: Level-of-Detail)..

F

face The polygons that make up a polyhedron are called faces.

P

pixel Picture element. This represents a sample in a two-dimensional data set.

Q
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quantization In digitizing a continuous signal, quantization is the process of

limiting the signal values to a finite set of values. This does not suffice for

a digital representation as a continuous signal consists of an infinite amount

of signal values (see also: sampling).

R

Region-of-Interest The region of a mesh which is prioritized (see also:

background).

resolution An indication of the order of magnitude of the smallest details that can

be distinguished from one another. After sampling, this typically relates to

the sampling density: a denser sampling results in a higher resolution as

smaller details can be distinguished.

S

sampling When digitizing a continuous signal, sampling is the process of

determining a finite amount of signal values. This does not suffice for

a digital representation as each of the resulting values can still have any

continuous value (see also: quantization).

V

valence The number of neighbours a vertex has.

vertex Corner point of a polygon.
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–Dutch Summary–

Binnen de digitale media groeit het aanbod aan digitaal 3D materiaal aan een

enorme snelheid. Waar we enkele decennia geleden bij de term “3D” voornamelijk

aan videogames en gespecialiseerde CAD-software dachten, is 3D vandaag

alomtegenwoordig, mede dankzij de ontwikkeling van 3D-printers en de opkomst

van augmented en virtual reality. Augmented reality augmenteert of verrijkt

de reële wereld met virtuele objecten die met de nieuwste smart glasses gezien

kunnen worden, terwijl virtual reality elke toepassing omvat waarin een virtuele

wereld geschapen wordt. Denk bijvoorbeeld aan trainingssimulatoren, het digitaal

bewaren van cultureel erfgoed, of het ontwerp van jouw toekomstig droomhuis

door een architect. Naast de groeiende kwantiteit van 3D materiaal wordt

ook de kwaliteit van elk 3D-model van een object steeds hoger, enerzijds door

nauwkeurigere scanapparatuur, anderzijds door krachtigere modelleersoftware die

almaar geavanceerdere technieken toelaat om modellen tot in de fijnste details te

bewerken.

Helaas volstaat de groei in rekenkracht en geheugen in computers niet

om interactief met dergelijke modellen te werken. Daarenboven worden

onze toestellen zelf steeds gevarieerder: we moeten vandaag rekening houden

met allerhande computers, gaande van desktop PCs en laptops tot tablets en

smartphones die elk verschillend presteren. Verder moeten we ook rekening

houden met verschillende opslag- en transmissiemogelijkheden, van lokale opslag

en externe media tot cloudopslag die toegankelijk is via Wi-Fi of mobiele

netwerken. Enkel modellen opslaan die volstaan in elk mogelijk scenario leidt

tot ondermaatse kwaliteit; immers, op TV wil ik ook betere kwaliteit dan wat over

een mobiel netwerk naar mijn smartphone gestreamd wordt. Een model voorzien

per mogelijk denkbare configuratie, daarentegen, is onhoudbaar. Er is nood aan

schaalbare representaties.

De problemen zelf worden in Hoofdstuk 2 diepgaander behandeld. Om

een 3D-model digitaal te representeren wordt vaak gebruik gemaakt van een

zogenaamde polygonmesh, een datastructuur bestaande uit vertices die 3D-punten

in de ruimte voorstellen, en polygonen die de vertices met elkaar verbinden. Zijn

alle polygonen driehoeken, dan wordt er gesproken over driehoeksmeshes. Deze

laatste worden vaak gebruikt om virtuele scenes interactief te visualiseren; dit

proefschrift hanteert eveneens driehoeksmeshes, of kortweg meshes. Deze meshes

ontstaan na twee belangrijke processen die te vinden zijn in elke analoog-naar-
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digitaalconversie: samplen (of bemonsteren) en kwantisatie. Het samplen van

een object levert een discreet aantal samples of punten op het oppervlak van

het object op; hoe meer samples, hoe meer we weten over ons model maar hoe

meer opslag we ook nodig hebben. Elk van deze samples wordt een vertex van

de mesh, en elk van deze vertices wordt na kwantisatie voorgesteld door een

benadering met een eindige nauwkeurigheid. In tegenstelling tot traditionelere

multimediadomeinen moeten de relaties tussen verschillende samples expliciet

gekend zijn; deze connectiviteit wordt bepaald door de driehoeken die gevormd

worden tussen de verschillende vertices. Samen vormen deze driehoeken een

benadering van het oppervlak van het originele object. In Hoofdstuk 2 wordt

dieper ingegaan op het samplen en kwantiseren van modellen. Hierbij wordt ook

prijs-kwaliteit in rekening gebracht: hoeveel bits kan ik spenderen en wat is dan

de kwaliteit van mijn 3D-model?

We zullen zien dat deze representatie niet schaalt naar grotere 3D-modellen.

We hebben nood aan compressie en onderzoeken in dit proefschrift verliesloze

compressie, wat toelaat om het originele digitale model feilloos te reconstrueren.

Technieken om dit te bekomen worden ook behandeld in Hoofdstuk 2, waarbij

vormen van schaalbaarheid onder de loep genomen worden. Schaalbaarheid

moet toelaten dat één enkele representatie volstaat om het gevisualiseerde model

te laten schalen naargelang de vereisten van applicaties en de beperkingen van

systemen en netwerken. Hier kunnen drie belangrijke vormen van schaalbaarheid

bekeken worden: (1) resolutieschaalbaarheid, (2) kwaliteitsschaalbaarheid, en

(3) spatiale schaalbaarheid met interessegebieden (regions of interest, ROIs).

Het schalen van de resolutie bepaalt hoeveel vertices gebruikt worden om een

model te representeren, het schalen van de kwaliteit bepaalt de nauwkeurigheid

waarmee vertices gepositioneerd worden, en het encoderen en decoderen van

interessegebieden laat toe om specifieke gebieden uit een grotere mesh te

selecteren en enkel deze gebieden te verwerken. Hoofdstukken 3 en 4 behandelen

de ontworpen representatie en encodering die aan al deze schaalbaarheidsvormen

voldoet.

Het basisontwerp van de voorgestelde representatie en encodering wordt

besproken in het eerste deel van Hoofdstuk 3, wat leidt tot een resolutieschaalbaar

systeem. Hierin wordt de wavelet-transformatie beschouwd, die ervoor zorgt dat

een model op een efficiënte manier wordt ontbonden in enerzijds een model met

een lagere resolutie en anderzijds informatie over de details die ervoor zorgen

dat het originele hoge-resolutiemodel kan gereconstrueerd worden. Deze details

worden de waveletcoëfficiënten genoemd, in een zogenaamde waveletsubband

per resolutie. Een belangrijke keuze is dat er gewerkt wordt met onregelmatige

meshes: hierbij volgt de connectiviteit van de vertices geen vaste structuur. Dit

zorgt enerzijds voor een duurdere compressie, maar anderzijds zorgt dit ervoor

dat modellen kwaliteitsvol gerepresenteerd kunnen worden met minder vertices

en driehoeken. De voorgestelde wavelet-transformatie is zodanig ontworpen

dat belangrijke geometrische kenmerken, of dus, “scherpe randen”, behouden

worden in lagere resoluties, zonder expliciet aan te geven vanaf wanneer een

rand als belangrijk of scherp moet worden gezien. Dit zorgt er opnieuw voor
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dat modellen kwaliteitsvol gerepresenteerd blijven met minder vertices, en dus

bij lagere resoluties. De resulterende waveletcoëfficiënten kunnen compact

voorgesteld worden in zogenaamde octrees. Dit zijn abstracte datastructuren

die elke ruimte per stap onderverdelen in acht kleinere ruimtes door eenmaal

te splitsen per dimensie. Zodoende worden waveletcoëfficiënten die dichter bij

elkaar liggen en sterker gecorreleerd zijn met elkaar, samen geëncodeerd om

een betere compressie te bekomen. Het gebruik van onregelmatige meshes

levert resultaten op die competitief zijn met geavanceerde technieken in de

literatuur en waarbij modellen met veel geometrische kenmerken aan een

beduidend hogere kwaliteit weergegeven worden bij lagere resoluties. Bovenop

klassieke rate-distortie-evaluaties waar de distortie onderzocht wordt in functie

van de gespendeerde bitrate (d.i., het aantal bits per vertex), wordt een nieuwe

evaluatie voorgesteld waarbij de distortie uitgezet wordt in functie van het

percentage van gereconstrueerde vertices. Dit geeft een indicatie van het

geheugengebruik van schaalbare representaties in interactieve toepassingen, na

decodering, waarbij de voorgestelde representatie beduidend betere kwaliteit levert

met minder geheugen. Bijgevolg bevestigen de resultaten dat enerzijds een betere

kwaliteit bekomen wordt met minder vertices en dus geheugenvereisten voor

interactieve toepassingen reduceert, terwijl anderzijds de hogere prijs per vertex

gecompenseerd wordt door het lagere aantal vereiste vertices.

In het tweede deel van Hoofdstuk 3 wordt kwaliteitsschaalbaarheid

dieper onderzocht. Een fundamenteel probleem om de kwaliteit van de

waveletcoëfficiënten dynamisch te laten schalen, is het gesynchroniseerd houden

van de encoder en decoder: de decoder moet met dezelfde informatie kunnen

decoderen zoals waarmee de encoder zijn data encodeert. Er ontstaan

bijgevolg afwijkingen als een decoder een nieuwe resolutie aanvat vooraleer de

waveletcoëfficiënten van de voorgaande subband aan een maximale kwaliteit

gereconstrueerd zijn. Om desalniettemin kwaliteitsschaalbaarheid toe te laten,

wordt het gebruik van een sjabloonmesh of templatemesh onderzocht. In plaats van

de eigenlijke mesh te gebruiken in het encodeerproces, wordt deze templatemesh

gebruikt die zowel aan de encoderkant als aan de decoderkant bekomen kan

worden zonder waarden van de waveletcoëfficiënten te gebruiken. Het gebruik

van deze templatemesh laat toe om datablokken in een vrijwel arbitraire volgorde

op te slaan of te versturen. De interessantste toepassing die hierdoor mogelijk

wordt, is rate-distortie-optimalisatie (RD-optimalisatie): op elk moment in het

encodeerproces kan de encoder analyseren in hoeverre het opslaan van een

nieuwe resolutie of juist het verbeteren van een bestaande subband de globale

kwaliteit van een model het sterkst laat toenemen met een minimaal aantal bits.

De resultaten tonen duidelijk aan dat het gebruik van een templatemesh, die

kwaliteitsschaalbaarheid en bijgevolg RD-optimalisatie toelaat, geen significante

meerkost introduceert. Deze optimalisatie heeft ook een duidelijk waarneembaar

effect in lage en middelmatige bitrates; met andere woorden, voor elke rate kan

de beste kwaliteit verkregen worden, wat vooral bij lage resoluties een significant

verschil oplevert.

Resolutie- en kwaliteitsschaalbaarheid schalen een model globaal. Dit volstaat
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zolang een model in zijn geheel gevisualiseerd wordt. Hedendaagse meshes zijn

echter zo gedetailleerd dat de fijnste details te klein zijn om waar te nemen wanneer

deze modellen volledig gevisualiseerd worden. Pas wanneer we dichter bij het

model gaan kijken komen hogere resoluties tot hun recht, maar dan wordt een

hoge rate en veel rekentijd gespendeerd aan delen van de mesh die niet op het

scherm getoond worden. Hoofdstuk 4 onderzoekt Region-of-Interest- of ROI-

codering: hoe kan het concept van interessegebieden in rekening gebracht worden

om de resolutie en kwaliteit van een mesh spatiaal adaptief te laten variëren?

In het eerste deel van dit hoofdstuk wordt dit probleem aangekaart vanuit het

standpunt van de encoder. Onafhankelijk van welk deel de decoder zal opvragen,

kan de encoder specifieke gebieden prioriteren. Zo kunnen details in het gezicht

van een menselijk virtueel karakter voorrang krijgen op details in zijn kleren, of

kan de voorkant van virtueel monument voorrang krijgen op de achterkant. De

aanpak die voorgesteld wordt in dit hoofdstuk, maakt gebruik van het versterken

en verzwakken van waveletcoëfficiënten: de coëfficiënten die nodig zijn om

details in de ROI te reconstrueren worden versterkt vooraleer deze geëncodeerd

worden. Hierdoor zullen deze details vroeger in de datastroom terug te vinden zijn.

Dankzij de kwaliteitsschaalbaarheid die in het voorafgaande hoofdstuk bekomen

wordt, kan de datastroom zodanig opgesteld worden dat de ROI van elke resolutie

perfect gereconstrueerd wordt vooraleer de overige achtergrondgebieden verwerkt

worden. Deze aanpak laat zowel de wavelet-transformatie als de codeeroperaties

ongewijzigd. Echter, een onaangepaste transmissie, die de achtergrondgebieden

opschaalt en verder ongemoeid laat, resulteert in verminderde kwaliteit door

opstapelende fouten per resolutie. Om dit aan te pakken, wordt handig gebruik

gemaakt van het feit dat onregelmatige meshes gebruikt worden, namelijk door

het toevoegen van vertices – wat per resolutie normaal over de volledige mesh

gebeurt – te beperken tot de interessegebieden. In plaats van een groot aantal

vertices te behouden en deze glad te strijken in achtergrondgebieden, wordt

hetzelfde effect bekomen door er de resolutie lager te houden. Experimenten

met grote interessegebieden die een half model omvatten en als visueel verliesloos

kunnen beschouwd worden, leveren een globale winst op wanneer enkel de ROI

gedecodeerd wordt, ondanks een beperkte meerkost. Het hanteren van kleinere

interessegebieden resulteert in grotere bitbesparingen zonder hierbij de visuele

kwaliteit zichtbaar te reduceren.

De meest interessante toepassingen van interessegebieden liggen aan de

decoderkant, wat verder in het tweede deel van Hoofdstuk 4 besproken wordt.

Het doel van ROI-decoderen is dat de gevisualiseerde mesh perfect aangepast kan

worden aan de noden van de applicatie. Dit kan een dokter zijn die een manueel

bepaalde regio van een medisch beeld in detail wil kunnen bekijken, of dit kan

een interactieve visualisatie zijn waarbij modellen slechts deels ingeladen worden,

rekening houdend met waar een gebruiker zich in de virtuele wereld bevindt. Om

dit mogelijk te maken, zijn enkele wijzigingen nodig aan de originele aanpak.

Waar de ROI’s aan de encoderkant zodanig gekozen konden worden zodat het

decoderen van enkel deze gebieden voldoende informatie biedt om alle ROI’s in

hogere resoluties te reconstrueren, kan deze garantie niet gemaakt worden voor
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ROI-decodering: aangezien de decoder (per definitie) nog geen weet heeft van

hogere resoluties, noch van welke ROI’s bepaald zullen worden in die hogere

resoluties, is de kans steeds groot dat het reconstrueren van de ROI op een bepaalde

resolutie zal zorgen dat lagere resoluties opnieuw gereconstrueerd moeten worden

om voldoende informatie te voorzien. Deze adaptieve inverse transformatie laat

toe om meshes te genereren die perfect aangepast zijn aan de noden van de

applicatie. Voor een echt schaalbaar systeem volstaat dit echter niet. Hoewel

meshes aangepast zijn om het grafische geheugen optimaal te benutten, moeten

alle waveletcoëfficiënten gekend zijn en moet alle data bijgevolg gedecodeerd

worden. Om dit te vermijden, moet de informatie in het geëncodeerde bestand

willekeurig toegankelijk zijn. De mate waarin deze informatie toegankelijk is,

is sterk toepassingsgericht: in het ene extreme geval kan elke waveletcoëfficiënt

individueel opgevraagd worden maar dan is er van compressie geen sprake meer,

in het andere extreme geval worden alle coëfficiënten zo optimaal mogelijk samen

geëncodeerd maar dan is het willekeurig opvragen van coëfficiënten onmogelijk.

In dit proefschrift wordt voorgesteld om de informatie in drie dimensies te tegelen,

waarbij elke tegel nu onafhankelijk van naburige tegels verwerkt kan worden.

Bijgevolg kan deze betegeling per resolutie optimaal aangepast worden worden

aan de densiteit van de vertices. Daarenboven laat een dergelijke betegeling

van de geëncodeerde data toe om RD-optimalisatie lokaal uit te voeren: tegels

kunnen zodanig opgeslagen worden dat de regio’s die de kwaliteit het sterkst

laten toenemen met het minimum aan bits eerst geëncodeerd worden. Om

ROI-codering te evalueren worden twee gevallen beschouwd: enerzijds worden

maximale bruikbare interessegebieden bekeken, anderzijds worden minimaal

mogelijke interessegebieden gebruikt. Uit de resultaten blijkt dat de adaptieve

inverse transformatie zoals verwacht het aantal vertices en driehoeken in de mesh

perfect kan aanpassen aan de gevraagde ROI’s, enkel aan de rand van deze

gebieden zijn extra vertices nodig om te garanderen dat de ROI’s zelf zonder

afwijkingen gereconstrueerd worden. Bij grotere meshes wordt het aandeel van

deze extra vertices verwaarloosbaar. Het decoderen van tegels toont dat een groter

aantal kleinere tegels toelaat om een groot aantal bits uit te sparen, ondanks een

grotere meerkost om ROI-codering toe te laten. De resultaten tonen daarenboven

aan dat deze meerkost daalt voor groter wordende meshes, terwijl ook de relatieve

kost om één punt te decoderen (en bijgevolg alle vertices die in diezelfde tegel

geëncodeerd werden) daalt.

Het resultaat is een representatie en encodering voor 3D-modellen die

schaalt volgens de noden van applicaties en volgens de beperkingen van

systemen. Via een wavelet-transformatie die geometrisch kenmerkende

eigenschappen behoudt tot in lagere resoluties, wordt een model opgesplitst

in een lage-resolutiebenadering en een aantal waveletsubbanden die de details

beschrijven op een beter comprimeerbare manier. Deze resolutieschaalbare

codec laat eveneens kwaliteitsschaalbaarheid toe door gebruik te maken van

een templatemesh die bekomen wordt zonder waveletcoëfficiënten, en zo de

encodering van de representatie scheidt; dit vermijdt dat waveletcoëfficiënten

volledig moeten gereconstrueerd worden vooraleer een hogere resolutie te
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decoderen. De combinatie van beiden laat een rate-distortie-geoptimaliseerde

opslag en transmissie toe. Om te voorkomen dat een volledig model verwerkt moet

worden als maar een deel ervan vereist is, is het concept van ROI’s geı̈ntroduceerd.

Aan de encoderkant kan dit ingevoegd worden zonder veel aanpassingen; aan de

decoderkant is een adaptieve inverse transformatie nodig. Om ROI-decodering

efficiënt toe te laten, is een betegelde encodering voorgesteld om willekeurige

toegang in de datastroom toe te laten. De resulterende representatie en encodering

voor 3D-modellen laat alle vormen van schaalbaarheid toe.
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The amount of 3D content within digital media is growing at a steady pace. A few

decades ago, the term “3D” mainly brought video games and specialized CAD

software to mind; today 3D is ubiquitous due to the advent of 3D printers and

the rise of augmented reality (AR) and virtual reality (VR) applications. AR

augments the real world with virtual objects to be seen with the newest smart

glasses, whereas VR encompasses each application where an entire virtual world is

created. Training simulators, the preservation of digital heritage and an architect’s

design of your future dream house are just a few examples. In addition to the

growing quantity of 3D content, the quality of each 3D model is increasing because

of more accurate scanning devices and because of more powerful modeling tools

which allow for editing even the finest details.

Unfortunately, the rates at which the performance and memory of computers

increase do not suffice for interactively handling such models. Additionally, our

devices are becoming increasingly diversified: today we need to consider digital

devices from commodity desktop PCs and laptops to tablets and smartphones,

each with its own technical specifications. Furthermore, we also need to consider

several ways for storage and transmission, from local and external USB storage

to cloud storage which is only accessible through a WiFi or mobile connection.

Providing a single model which suffices for all use-cases results in reduced

quality; after all, on my TV I prefer a better quality than what is streamed to

my mobile device. Conversely, providing a model for each possible configuration

is unsustainable. There is a need for a scalable representation which can

accommodate for all storage, transmission and rendering limitations.

The actual challenges are discussed in Chapter 2. To represent a 3D model

digitally, polygon meshes are often used. A polygon mesh is a data structure which

represents 3D points as vertices, and which connects these vertices using polygons.

If all polygons are triangles, this is called a triangle mesh. The latter is often used

for interactive visualization of virtual scenes; triangle meshes will also be used in

this dissertation, and will be referred to shortly as meshes. Such meshes emerge

after two important processes occurring in each analogue-to-digital conversion:

sampling and quantization. Sampling an object results in a discrete amount of

samples or points on the surface of the object; more available samples means

more information is known about the surface, but also more storage is required.

Each of these samples becomes a vertex of the mesh, and each of these vertices

is represented by an approximation with a finite precision after quantization.

Contrary to more traditional multimedia domains, the relationships between the
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samples need to be known explicitly; this connectivity information is given by

the triangles which are formed between the vertices. These triangles approximate

the surface of the original object. Chapter 2 goes deeper into sampling and

quantization. Also, the quality for any given cost is considered: how many bits

can be spent and what quality can then be obtained?

We observe that this representation does not scale for larger 3D models. There

is a need for compression, and this dissertation investigates lossless compression

which allows for accurately reconstructing the original digital model. Approaches

to accomplish this are also discussed in Chapter 2, where forms of scalability

are investigated. A scalable representation needs to be able to provide sufficient

quality depending on the requirements of applications and the limitations of

systems and networks. Three important forms of scalability are considered: (1)

resolution scalability, (2) quality scalability, and (3) spatial scalability with regions

of interest (ROIs). Scaling the resolution determines the amount of samples

used for representing a model, scaling the quality determines the accuracy of

positioning the vertices, and encoding and decoding ROIs allows for selecting

specific regions out of a larger mesh and only processing these regions. Chapters

3 and 4 discuss the designed representation and encoding which meet all these

scalability considerations.

The base design of the proposed representation and encoding is discussed in

the first part of Chapter 3, leading to a resolution-scalable system. A wavelet-

based transform is discussed, which efficiently represents a high-resolution mesh

by a lower-resolution approximation together with the detail information which

allows for reconstructing the original mesh. These details are called wavelet

coefficients, collected in a wavelet subband per resolution. Contrary to many

approaches in literature, irregular meshes are considered in this dissertation. The

vertices of such meshes do not follow any regular structure, which results in

a more expensive compression on the one hand, but on the other hand allows

for improved quality using fewer vertices and triangles. The proposed mesh

codec preserves geometric features, or “sharp edges”, by design. Features are

preserved implicitly, without any explicit indication of which edges should be

considered as features. Such feature-preservation again improves the quality

of the lower-resolution approximations using fewer vertices and triangles. The

resulting wavelet coefficients are compactly represented using so-called octrees.

These are abstract data structures which iteratively subdivide each cell into eight

smaller cells by splitting once in every dimension. Hence, wavelet coefficients

which are located nearby and which are more strongly correlated, are encoded

together to improve the compression performance. The results show the trade-off

between more expensive irregular meshes and better quality using fewer vertices:

despite a higher cost per vertex, fewer vertices are required to obtain a similar

quality compared to semi-regular mesh coding systems. This results in competitive

coding performance, and even improves upon the state of the art when encoding

feature-rich models, especially at lower resolutions. In addition to the classical

rate-distortion (RD) evaluation where the distortion is evaluated w.r.t. the spent bit

rate (i.e., the amount of bits per vertex), a novel evaluation measure is proposed,
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showing the distortion in function of the percentage of reconstructed vertices.

This gives an indication of the memory footprint for interactive applications, after

having decoded the models. In this regard, the proposed representation using

irregular meshes clearly outperforms the state of the art.

In the second part of Chapter 3, quality scalability is investigated. A

fundamental issue for adaptively scaling the quality of the wavelet coefficients

is keeping the encoder and decoder synchronized: the decoder needs to use the

same information as was used by the encoder to encode the data. Consequently,

distortions due to decoding drift occurs if a decoder processes a higher resolution

before fully reconstructing all lower-resolution subbands. To allow for quality

scalability nonetheless, the use of template meshes is proposed. Instead of using

the real mesh in the encoding process, a template mesh is employed at both the

encoder and decoder side which is obtained without information about wavelet

coefficients. This approach allows for a nearly arbitrary storage and transmission

order of the data blocks. With both resolution and quality scalability available, the

most interesting application is RD optimization (RDO): at each moment during

the encoding process, the encoder can analyze what information improves the

global quality most optimally at a minimal rate, either the transmission of a new

resolution or the refinement of an existing subband. The results clearly show that

the use of template meshes, which allows for quality scalability and which unlocks

RDO, does not introduce a significant rate penalty. Furthermore, the optimization

has an observable effect at low and midrange bit rates; in other words, the system

allows for decoding the most optimal quality at each rate, with most noticeable

improvements at low resolutions.

Resolution and quality scalability operate on entire models. This suffices as

long as models are visualized entirely. Currently, however, meshes have such

high levels of detail that the finest details cannot be observed when visualizing

entire models. These fine details are only observable when displaying these models

from nearby, but then high rates and long computation times are spent on regions

that are not being displayed. Chapter 4 therefore investigates Region-of-Interest

(ROI) coding: how can the concept of regions of interest be used to vary the

resolution and quality in a spatially adaptive way? The first part of this chapter

tackles the problem from the point-of-view of an encoder. Independent of any

decoding, an encoder can prioritize specific regions of a model. The details in

the face of a virtual character can be prioritized over details in his clothes, or the

front side of a monument can be prioritized over the back side. The approach

suggested in this chapter uses boosted wavelet coefficients: the coefficients which

are required for accurately reconstructing the ROI per resolution are boosted before

encoding, which ensures that this information is found earlier within the data

stream. This approach leaves the wavelet transform and the encoding process

unaltered. Furthermore, by exploiting quality scalability, the data stream can

be constructed such that the ROI of each resolution is perfectly reconstructed

before any background region is processed. However, increasing the resolution

in background regions without refining these vertices results in deterioration due

to prediction errors accumulating per resolution. To remedy this, the addition of
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vertices – which occurs over the entire mesh – is limited to those vertices within

the ROIs: instead of preserving a large amount of vertices and smoothing the

background regions, smoothness is obtained by preserving a lower resolution in

the background. Experiments with large ROIs determined by all areas visible from

a given position, which on average cover half of a model and which are considered

visually lossless, show a global rate decrease when only decoding the ROI, despite

a limited rate penalty for lossless decoding. Employing smaller ROIs results in

larger rate savings without visually observable quality deterioration.

The most interesting application of ROIs is at the decoder side, which is

discussed further in the second part of Chapter 4. The goal of ROI decoding is

to adapt the visualized mesh perfectly to the needs of the application, whether

this is a doctor who needs to manually determine the part of a medical image to

display in more detail, or an interactive visualization whereby models are only

partly fetched based on the point-of-view of the user within the virtual world.

To allow for such ROI decoding, some modifications to the system as introduced

in Chapter 3 are required. Whereas encoder-side ROIs are determined such that

solely decoding these regions suffices for decoding all ROIs, such guarantees

cannot be made for decoder-side ROI coding. As a decoder (by definition) has

no knowledge of higher resolutions nor of which ROIs will be required at these

resolutions, there is a significant probability that the reconstruction of an ROI at

a specific resolution will require re-evaluating lower-resolution ROIs to ensure

sufficient information is available. This results in an adaptive inverse transform

which allows for reconstructing meshes that are perfectly adapted for interactive

visualization, making optimal use of the graphics memory. However, this does

not suffice for a truly scalable system as all data still needs to be decoded before

performing the transform using a limited selection of wavelet coefficients. A

random access strategy is proposed to reduce the amount of decoded data. The

granularity of random access is very application-specific: at one extreme case,

each coefficient is individually accessible but this allows little compression; at

the other extreme, all wavelet coefficients are optimally encoded together which

disallows random access. This dissertation proposes to tile the data in three

dimensions, where each tile can be processed individually. Consequently these

tiles can optimally adapt to the vertex densities. Additionally, such tiling of

the encoded data allows for performing RDO locally, storing tiles such that the

regions are stored first which improve the quality most optimally using a minimal

rate. To evaluate ROI coding, two cases are considered: on the one hand the

maximally useful regions and on the other hand the smallest possible regions are

investigated. The results show that the adaptive inverse transformation perfectly

adapts the amount of vertices and triangles to the requested ROIs. Only near the

borders of these regions, additional vertices are required to ensure that the ROIs

are perfectly reconstructed. These additional vertices become irrelevant for larger

meshes. Furthermore, experimenting with tile-based decoding shows that a larger

amount of smaller tiles allows for saving a significant amount of bits despite a

larger rate penalty to allow for ROI coding. The results also show that the penalty

reduces for larger meshes, as well as the relative cost for decoding a single vertex
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– and consequently each vertex which is encoded within the same tile.

The result is a representation and encoding system for 3D models which scales

according to the needs of the applications and the limitations of the systems. By

employing a wavelet transform which preserves geometric features down to the

lowest resolutions, a model is split into a low-resolution approximation and a

set of wavelet subbands which describe detail information in a compressible way.

This resolution scalable codec also allows for quality scalability by employing a

template mesh for the encoding. This template mesh decouples the encoding from

the representation, allowing for decoding higher resolutions prior to fully decoding

all lower-resolution subbands. Combining both resolution and quality scalability

furthermore allows for a rate-distortion-optimized storage and transmission order.

To avoid processing entire models if only a small part is required, the concept of

ROIs is introduced. At the encoder side, this can be employed while leaving the

transform and encoding process unaltered. For ROI decoding, a tiled encoding

is proposed to allow for random access into the data stream. The resulting

representation and coding system for 3D models hence allows for all required

forms of scalability.





1
Introduction

Ever since the dawn of mankind, we have been fascinated with modeling our

world. We want to understand structure, we need plans and simulations, we do

storytelling or we are merely interested for the sake of art. Examples are found

everywhere, from the cave paintings of the stone age, over the designs of Leonardo

Da Vinci, to the LEGO cars and Barbie doll houses of our own childhood.

With the advent of the digital era, all such models are being converted from

analogue to digital media. Additionally, media no longer needs to be stored locally

thanks to the online presence of many of our devices. We no longer use audio tapes,

and even our MP3 collection is becoming obsolete now that more and more of us

have a Spotify account. Our camera rolls have been swapped with SD cards, but

we increasingly take pictures using our phones which upload these to any online

platform. Our television cabinets are no longer filled with video cassettes and we

no longer need to go outside to rent DVDs now that we can enjoy Netflix. Similarly,

by now physical scale models are exchanged for digital models stored in the cloud.

Three-dimensional (3D) content has long been associated with computer-

animated films, video games and specialized computer-aided design (CAD)

software. Nowadays, 3D content is omnipresent, with applications ranging from

augmented reality and virtual reality to far outside the entertainment sector, such

as medical imagery, online virtual shopping, architectural heritage, scientific

data visualization, training simulators, remote sensing, 3D printing, geographic

information systems, etc. All these domains benefit from advancements in the

representation and encoding of 3D content. The main challenges that arise are

(1) how to manage this content which grows in amount and quality, (2) how to
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properly process and edit such highly detailed content, and (3) how to efficiently

display such complex data. In addition to considering the increasing data sizes,

obtained through the use of high-end scanning devices or designed using ever-

more capable modeling tools, the proposed solutions need to consider the wide

spectrum of devices ranging from high-end desktop PCs to low-end mobile

devices, with a very diversified range of capabilities and a very broad range of

interconnecting networks.

1.1 Representation of 3D Content

The concept of “3D” is very general, indicating merely that the data describes

“three independent dimensions”. For instance, audio only has one dimension:

audio data describes how air pressure changes over time. A picture is

two-dimensional (2D): color values change in both the horizontal and vertical

direction. Combining both a time dimension and two spatial dimensions, a video is

three-dimensional (3D), describing how a picture changes over time. Alternatively,

this dissertation covers 3D content which handles the three spatial dimensions we

observe in our world and which we can informally identify as depth, width and

height. Conventionally, these dimensions are indicated by x, y and z. This is

illustrated in Figure 1.1, which shows two points p1 and p2 decomposed into their

x, y and z components.

x

y

z

x1

z1

y1

p1

x2

z2

y2

p2

Figure 1.1: Points in 3D.

1.1.1 Volumetric Data

In general, 3D data defines a value for every point within a volume. Consider the

following mathematical example. Choose a fixed point c0 = (x0, y0, z0); the value
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(a) Slicing (b) Sliced visualization

(c) Isosurface visualization

Figure 1.2: Volumetric data visualization. A conventional approach to visualize volumetric

data is by slicing (a) and depicting the resulting 2D slices (b). Alternatively, an isosurface

(c) can represent all points having a specific X-ray absorption. However, while a set of

slices can be perfectly displayed on a 2D medium, this is not possible for a set of

isosurfaces. For instance, although the isosurface itself represents both the front and back

of this brain model, both cannot be displayed together.

at each point p = (x, y, z) can for instance be described by a distance function

F (p) = F (x, y, z) =
√

(x− x0)2 + (y − y0)2 + (z − z0)2, (1.1)

signifying that the value at each point p, i.e. F (p), is the distance from p to c0.

Real-world data often does not allow itself to be formalized easily in such

mathematical formulae. Consider, for instance, the data obtained during a CT

scan. At each point a scalar value represents the amount of X-ray absorption, and

these scalar values are visualized as grayscale values ranging from black to white.

A fundamental problem with 3D visualization is that we are limited to two

dimensions, be it on paper or on a display. A conventional approach to visualize

3D volumetric data is to “slice” the data, similar to how one would look inside

a physical object, only less destructive. Figure 1.2a depicts this approach for a

human skull, and the resulting slices are shown in Figure 1.2b. Alternatively, such

data is often visualized as short video sequences, displaying all slices in rapid

succession.
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1.1.2 Isosurfaces

A different approach to represent volumetric 3D data on a planar 2D display, such

as the pages of this dissertation, is to consider all points which have specific values.

This approach is well-known in 2D, where isolines connect all points in a plane

which have the same specific value, forming lines embedded in the 2D space.

Familiar examples include isohypses on an elevation map and isobars on a weather

map.

Similarly, volumetric data can be visualized using isosurfaces. Given a specific

value, all points which have this exact value form a continuous surface embedded

in the 3D space. Consider again the volumetric data given in Equation 1.1.

Choosing a positive value r, the set of all points (x, y, z) for which F (x, y, z) = r

form a sphere, as the distance from each of these points to c0 is exactly r. This is

known as an implicit surface, defined by F (x, y, z) = r or F (x, y, z)− r = 0.

Observe that such a surface is in fact a 2D construction: one can only traverse a

surface in two independent directions. Hence, it can be defined by two parameters

and the corresponding representation is known as a parametric surface. For

instance, the sphere is formally known by:

S : [0, 2π]× [0, π] ⊂ R
2 → R

3;

(φ, θ) 7→ S(φ, θ) = (x, y, z),

with





x = x0 + r cos(φ) sin(θ)

y = y0 + r sin(φ) sin(θ)

z = z0 + r cos(θ)

.

(1.2)

Each couple (φ, θ), maybe better known as longitude and latitude, corresponds to

a point (x, y, z) on the sphere with radius r around the point c = (x0, y0, z0). This

alternative definition of the sphere formed by F (x, y, z) = r clearly illustrates the

embedding of a 2D surface (i.e., there are two independent dimensions, φ and θ)

in the 3D space (i.e., values have three components, x, y and z).

For the scanned data of Figure 1.2, an appropriately chosen value could result

in the isosurface shown in Figure 1.2c. Observe that such a surface is still

embedded in 3D, giving rise again to the fundamental issue of how to visualize

3D content on a 2D medium. Fortunately, contrary to volumetric data where we

need to see inside a volume, we humans have been visualizing 3D surfaces for

centuries: apart from occlusions due to projecting on a 2D plane, the human brain

can be tricked into seeing a third dimension by making use of proper shading.

Nonetheless, for a full observation of the surface either a 3D printed model is

required, or it has to be viewed in an interactive 3D environment.

This dissertation will handle the processing of 3D surfaces. While isosurfaces

are often related to volumetric data, many applications merely require a

representation of the physical surfaces of objects. Consider in this case the
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volumetric data given by D(x, y, z), the distance of a point (x, y, z) to the surface.

The isosurface is then the implicit surface D(x, y, z) = 0.

1.1.3 Digital Surfaces: the 3D Mesh

Surfaces can be represented digitally in several ways. In theoretical cases, 3D data

can ideally be represented using mathematical equations such as Equation 1.2; for

instance, any sphere can be represented using only four numbers, i.e., a radius

and three numbers for the center. Such parametrized descriptions are great for

expressing perfect planes, spheres, cones or tori, and with a little bit more effort

these descriptions can describe combinations of (possibly transformed versions of)

such primitives. However, for arbitrary surfaces, an exact representation quickly

become cumbersome.

(a) Bézier curve (b) Resulting surface

Figure 1.3: Bézier curve and surface. This example shows how a bowling pin is modeled

using a Bézier curve. While this representation results in perfectly smooth curves, it is too

complex for real-time, interactive applications.

For approximating arbitrary surfaces, well-known approaches are built on

Bézier surfaces and B-splines. Such approximating surfaces can be designed

arbitrarily accurate by defining sufficient control points. These surfaces are

popular representations in CAD applications, but are overly complex for

interactive visualization. Figure 1.3 shows an example. A bowling pin can be

represented by cubic Bézier curves as shown in Figure 1.3a. By spinning this

curve around a fixed center axis, the surface shown in Figure 1.3b is obtained.

Instead of relying on the curvature defined by the tangential vectors formed

by control points, one can also consider a linear interpolation between control

points, resulting in a polygon mesh. Such a mesh is defined by the control points or

vertices, and the linear interpolation between these vertices which forms polygons.
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Newell’s Utah teapot (Figure 1.4) is a famous 3D mesh from the early computer

graphics days.

Figure 1.4: Example mesh: Utah teapot. This is an example of a 3D mesh. It represents the

surface of a teapot, and approximates this surface by defining vertices, i.e., the points

where multiple lines cross, and faces, i.e., the triangles formed between the vertices.

Observe that, while the geometry information as such is given by the vertices, the

connectivity information is equally important in defining the approximated surface.

Imagine what the surface would look like if vertices at the tip of the spout were connected

with top of the lid; while the geometry information remains unchanged, a new surface

would be defined.

Similar to other multimedia domains, the distortion associated with a digital

representation is related to the resolution determined by the sampling density on

the one hand, and the quality of the samples on the other hand. Let us compare

with image coding. Firstly, a digital image samples a picture, resulting for instance

in a resolution of 3 888× 2 592 picture elements or pixels, meaning there are only

3 888 columns of pixels, over 2 592 rows. When reducing the sampling density to

128 × 86 pixels, fine detail is lost, as is illustrated by Figure 1.5a and its lower

resolution approximation in Figure 1.5b. Secondly, the color value of each sample

or pixel is obtained by mixing three color components, namely red, green and blue.

Each color value can be quantized to, for instance, 8 bits per color component.

This allows for 28×3 ≈ 17 million possible color values. Reducing the amount of

quantization bits to 3 bits per component as shown in Figure 1.5c shows banding

artifacts: the colors can no longer vary smoothly, resulting in possibly large color

jumps between neighboring pixels.

For meshes, the distortion is similarly determined by the vertex density. For

instance, the brain surface depicted in Figure 1.2c is represented by a high-

resolution mesh as shown in Figure 1.6a. The amount of vertices relates to the

approximation accuracy. The denser sampling, as shown in Figure 1.6a, preserves
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(a) Original image (b) Low resolution (c) Coarse quantization

Figure 1.5: Image resolution and quantization. In (a), an original high-resolution and

finely-quantized image is displayed. (b) shows the resulting image at a much lower

resolution, i.e., using fewer pixels, while (c) shows the resulting image at a much coarser

quantization, i.e., with the same number of pixels but with a lower color quality.

(a) High resolution:

294 012 vertices

(b) Low resolution:

3 941 vertices

(c) Coarse quantization:

294 012 vertices

Figure 1.6: Mesh resolution and quantization. (a) shows an originally digitized version of

the brain isosurface depicted in Figure 1.2c. A lower-resolution mesh is shown in (b):

observe that the use of fewer vertices no longer preserves finer detail. (c) shows a

high-resolution mesh where the vertex positions have a coarser quantization. Observe that

fine detail is again lost.

fine detail better compared to the sparser sampling shown in Figure 1.6b. This

is referred to as the resolution of a mesh. Quantization additionally affects the

accuracy of the vertex locations and results in banding artifacts similar to what is

observed in image coding, where the x, y or z value of neighboring vertices either

stays fixed, or jumps by a significant amount. This is depicted in Figure 1.6c.

Functions on 3D Surfaces At this point, the mesh approximates the geometry

of an object, by combining vertices (i.e., geometry information which samples
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the actual geometry) and faces (i.e., connectivity information which defines the

remaining geometry by interpolation).

Taking these surfaces one step further, functions can be defined over a surface.

For instance, one could describe the average yearly temperature for each point on

the surface of planet Earth. Useful values for describing the surface of an object

often include appearance attributes, encompassing color information, reflectance,

transparency, etc. After sampling, such information is typically provided either

via specific vertex attributes in addition to the required geometric coordinates,

or via several texture maps which are indexed by (u, v) coordinates given per

vertex. Either the specific attributes or the (u, v) coordinates per vertex are then

interpolated over the faces to obtain values over the entire surface.

In this dissertation, only geometric information per vertex is considered. The

techniques proposed in this thesis can be extended to other attributes, which

will require taking into consideration other specific attribute-related decision

criteria. Additionally, only triangular meshes are considered, i.e., meshes for

which all faces are triangles. For real-time rendering, this mesh representation

is encountered most often; any polygon mesh can be converted to a triangle mesh

without altering its geometry.

1.2 Need for Scalable Representations

A typical rendering system can look as depicted in Figure 1.7. A server, which can

be located remotely in the cloud, nearby within your local network, or even locally

on a DVD or USB disk, holds the mesh data. This data either needs to be copied

to a local disk or uploaded immediately to memory for processing. Eventually,

the data is uploaded to a graphics processing unit (GPU) for interactive rendering.

GPUs are perfectly equipped to process triangular meshes, where a triangle mesh

is conventionally represented as a list of vertices together with a list of triangles,

each composed of three indices into the list of vertices. Nonetheless, the last

several decades have shown that this representation does not suffice. Using modern

modeling software and acquisition hardware, models with millions and even

billions of vertices are no exception. For instance, in the Digital Michelangelo

Project1 at Stanford University, a 3D mesh of the statue of David was obtained,

represented using a billion polygons. Interactive visualization of such models,

however, is not straightforward. Consider a current-day high-end GPU such as

the NVIDIA GTX 1080, which offers 8GB of memory. Assume that each vertex

is stored using three 2-byte coordinates, and that each triangle is stored by giving

three 4-byte indices into the list of vertices. Given the fact that, in general, the

amount of triangles is approximately twice the amount of vertices, the mesh is

1https://graphics.stanford.edu/projects/mich/

https://graphics.stanford.edu/projects/mich/
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SERVER

DISK DISK

CLIENT

GPU

RAM

Figure 1.7: Rendering system. In the most general case, a rendering system consists of the

components depicted in the figure. 3D meshes are stored on a server. When data is

requested by a client such as a PC or a smartphone, the data needs to be streamed to the

local disk, after which it can be loaded into memory to be uploaded to graphics memory.

More specific scenarios include cases where the data is read from a local DVD drive or

USB disk, or cases where data is already copied or installed on the local drive in advance.

stored using 30 bytes per vertex, i.e., 6 bytes for the vertices and 2 × 12 bytes for

the triangle indices. Then this GPU can render models of maximally 250 ∼ 300

million vertices, not yet billions. Table 1.1 gives some additional figures, for the

NVIDIA GeForce 940M found in laptops, and the iPhone X and LG Nexus 5X

mobile phones. Note that these mobile phones share their memory between the

CPU and GPU, such that the amount of memory available for graphics is limited

by active applications.

GPU memory Largest mesh

NV GTX 1080 8GB 267× 106 vertices

NV GF 940M 4GB 133× 106 vertices

iPhone X 3GB 100× 106 vertices (shared with the CPU!)

LG Nexus 5X 2GB 67× 106 vertices (shared with the CPU!)

Table 1.1: Mesh limitations w.r.t. storage capacity.

For many applications, this amount of memory suffices even though these

devices do not allow for rendering billions of vertices. However, real systems

require more than just this GPU storage to be taken into consideration, as is also

made clear by Figure 1.7. While a rendering system can operate smoothly when
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all required data resides on the GPU itself, one needs to consider the latency and

bandwidth requirements to offer a qualitative experience. When rendering at 60

frames per second, approximately 16.7ms are available between rendering one

frame and the next to do all required calculations for animations, physics, etc., to

fetch all required data and to do the actual rendering. If models are not available in

time, this results in a so-called popping effect by which geometry or texture data

is not visible instantaneously and an end-user only sees it appearing on the display

after a short instant. This severely reduces the quality of experience, and can be

addressed by proper prefetching mechanisms which accurately predict what data

will be needed in the near future and which fetches this data in advance if sufficient

bandwidth is available. Alternatively, such popping effects can be addressed by

progressive representations which allow for depicting lower-quality intermediate

approximations while fetching the higher-quality original data.

Some numerical facts give more insight. The NVIDIA GTX 1080 offers a

memory bandwidth of 320GB/s or 320MB/ms. Hence, if the data is readily

available on the GPU, approximately 10 000 000 vertices and their associated

triangles can be rendered per millisecond. If the data still needs to be streamed

to GPU memory over a 16-lane PCIe3.0, at 15.75GB/s or 15.75MB/ms only

500 000 vertices and their triangles can be streamed to the GPU per millisecond.

If this data is not available in memory, it must be read into local memory first,

either from local or remote storage. Table 1.2 indicates some common bandwidth

figures. Again, the amount of vertices needs to be interpreted as the amount of

vertices and associated triangles that can be rendered, streamed from local storage

or streamed from remote storage. That is, a geometry rate of n vertices/ms allows

for streaming, on average, n vertices and an estimated 2n triangles per millisecond.

Bandwidth Geometry per second

NV GTX 1080 320GB/s 10.6× 106 vertices/ms (rendering)

NV GF 940M 14.4GB/s 480× 103 vertices/ms (rendering)

PCIe3.0 (x16) 15.75GB/s 525× 103 vertices/ms (GPU upload)

SSD 500MB/s 16.7× 103 vertices/ms (RAM upload)

WiFi 100Mbps 417 vertices/ms (LAN download)

Coax 30Mbps 125 vertices/ms (WAN download)

Table 1.2: Mesh transmission w.r.t. bandwidth.

Observe that the limitations discussed above consider virtual environments

where only a single model is to be viewed, and only the geometry of the

approximated surface is relevant. When creating interactive virtual worlds, at least

the visible parts of the entire scene need to be stored on the GPU and preferably

even more. Depending on the scene complexity, tens or hundreds of objects

need to be available simultaneously. And in addition to the geometry information
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given by the three 2-byte coordinates, multiple additional attributes are required

for a realistic environment. These can include diffuse and specular color values,

information on surface reflectivity and transparency, normal vectors for lighting-

related surface material interactions, etc. These additional attributes can be stored

directly as vertex attributes or can be indirectly accessed in texture maps, which

all have to be available in graphics memory next to the required geometry and

connectivity information.

It is clear that compression and scalable representations are required to account

for less efficient GPUs, slower local drives, less optimal local network fetching

and even data retrieval over the world wide web. Indeed, in addition to the

increasing size of the meshes, today one needs to consider lower-end devices such

as tablets and smartphones with less processing power compared to commodity

PCs, possibly connected at lower bandwidths which further increase download

times. A scalable approach to handle meshes is well placed to address these

challenges.

Compression Data needs to be compressed to allow for efficient storage and

transmission. Compression techniques exploit correlations, similarities and

predictability to store data in a vastly compacted fashion. Several general-

purpose compression algorithms can be used for creating well-known .zip and

.rar files. However, these exploit general statistical properties without knowledge

on what the bytes actually represent. The compression of audio, image and

video data is improved via transformations which allow for exploiting domain-

specific knowledge, resulting for instance in .mp3, .png and .mp4 files. This

dissertation similarly explores knowledge on 3D data to improve compression.

The performance of a coder and decoder, i.e., a codec, is expressed as a bit rate:

instead of comparing absolute file sizes which vary with model complexity, the

performance is expressed by the required amount of bits per vertex (bpv).

Compression results in a file with a vastly reduced storage and transmission

footprint. However, such a file can no longer be used directly as it needs to be

decompressed in order to reconstruct the vertices and triangles of the mesh. If

reconstructing the mesh is only possible when decoding the entire file, i.e., a fixed

amount of bits per vertex, such compression is called single-rate compression.

Furthermore, decoded models still need to be loaded in GPU memory entirely,

such that the memory required for interactive rendering remains unchanged.

Levels of Detail Single-rate compression as such does not suffice. Using state

of the art single-rate compression methods, models have been represented at rates

down to 1.6 bpv. A billion-vertex model then needs 200MB of storage space. This

still takes 400ms to fetch from an SSD and 16 s to download from a local server.

Furthermore, this does not yet account for the additional processing power and
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time required for decoding the entire model before uploading it to the GPU. To

reduce popping effects, the conventional approach is to use several levels of detail

(LODs). Each lower level of detail is typically a lower-resolution version of an

original model. A low LOD can be visualized without delay, during which higher

LODs are being loaded. This is called a simulcast solution: several LODs are

encoded, stored and transmitted independently. This approach can be compared

to a website storing both thumbnail images and full-size images, with the full-size

images only depicted if a user needs to see them. Until today, employing several

LODs of complex 3D models is the conventional approach in interactive rendering

of virtual worlds. Artists and 3D modelers design several LODs of models

manually to ensure that the resulting models are of an adequate quality level when

considering specific memory constraints. This improves interactivity, but performs

suboptimal as the similarities between several LODs are not exploited, neither

for an optimal storage, nor for improved processing. After all, intuitively one

can assume that the information needed to represent a lower LOD must in some

sense be related to the information required to represent a higher LOD. These

correlations are exploited to offer scalability. One needs to be able to scale the

decoded data based on the requirements of the application or the limitations of the

network and hardware using a single representation.

1.2.1 Resolution Scalability

To cope with high-resolution data, a first real requirement of any mesh coding

system is resolution scalability, which improves upon LOD representations. An

application often does not require all visible models at their highest resolution.

Models far from a camera can be visualized using a reduced resolution without

visual distortion. Additional detail information can then be loaded as the camera

comes closer. Figure 1.8 displays three resolution levels.

In a resolution-scalable representation, only the differences with the previous

resolution need to be obtained in order to improve the reconstructed model,

contrary to LOD representations which have to decode an entirely new model

per level. Furthermore, the amount of resolutions offered by a resolution-scalable

system often surpasses the amount of levels of detail in an LOD system. This

results in smoother and more fine-grained improvements. Finally, such finer-

grained resolutions allow for more accurate memory and bandwidth management

in environments where memory or bandwidth is limited. Given an entire scene of

objects, the data can be streamed such that the distortion of the entire scene reduces

optimally given the available bit rate. Eventually, compared to LOD systems, each

object can be rendered more accurately at its most optimal resolution.
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1.2.2 Quality Scalability

It is clear that both the resolution, i.e., the sampling density of the vertices, and

the quality, i.e., the accuracy at which the vertices are given, affect the observed

geometric distortion of a model (see Figure 1.6). At low resolutions, it makes

less sense to reconstruct highly accurate vertices. This is illustrated in Figure

1.9. The transition from Figure 1.9d to Figure 1.9e shows the effect of adding

a decimal digit of precision to the x, y and z components of low-resolution

vertices, effectively increasing the quantization granularity tenfold. While there

are obvious changes, the quality improvement is minimal. Adding more decimal

digits of precision does not significantly alter the appearance of the brain model.

In contrast, a tenfold increase of the quantization granularity has a drastic effect on

the distinguishable features in the high-resolution mesh depicted on the top row,

and additional decimal digits of precision further improve the visual quality.

Quality scalability hence is a desirable trait of mesh coding systems: the

quality of the final vertices should be scalable, instead of blindly decoding all

vertices at their highest accuracy without taking the resolution into account.

Quality scalability ensures that the final accuracy of vertices can scale based on

the accuracy required by the decoding application.

Resolution and quality scalability together allow for RD optimization (RDO): a

rate-distortion optimized storage and transmission order can be obtained, in which

resolution and quality information is stored such that the distortion decreases

optimally w.r.t. the rate. That is, each additional block of information either

improves the reconstruction quality of existing vertices, or increases the resolution

by adding new vertices, and the blocks are stored in such an order that the

distortion is minimal at any arbitrary rate.

1.2.3 Region-of-Interest (ROI) Scalability

Finally, recall that a billion-vertex model cannot be stored entirely on the high-end

NVIDIA GTX 1080. Resolution scalability allows for obtaining and visualizing an

approximation which does fit on graphics memory. However, this does not allow

for inspecting the finest possible details. Instead of waiting for better hardware to

be developed, one can take into account that the amount of information that can

be visualized is limited, considering limited display resolutions. A 1 920 × 1 080

display only shows approximately 2 million pixels. Hence, a billion-vertex mesh

will never be entirely visible at its highest resolution. Either the entire model

is visible and a lower-resolution approximation suffices without any observable

deterioration, or the highest resolution of a specific part is required, leaving

large parts of the model invisible outside of the screen. Figure 1.10 depicts two

examples. In Figure 1.10a a particular part of the model is enhanced by the end-

user, while Figures 1.10b and 1.10c show the automatic determination of front-
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(a) 816 vertices (b) 3 952 vertices (c) 294 008 vertices

Figure 1.8: Resolution scalability.

(a) High resolution,

2 decimal digits

(b) High resolution,

3 decimal digits

(c) High resolution,

7 decimal digits

(d) Low resolution,

2 decimal digits

(e) Low resolution,

3 decimal digits

(f) Low resolution,

7 decimal digits

Figure 1.9: Effect of quantization at different resolution levels.

(a) Box-selected ROI (b) Front-side ROI

(front-view)

(c) Front-side ROI

(side-view)

Figure 1.10: Region-of-Interest scalability.
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facing regions. The side-view depicted in Figure 1.10c illustrates the reduced

resolution of back-facing regions.

Region-of-Interest (ROI) support is a final requirement for modern mesh

coding systems, allowing for adapting the resolution over a model based on the

prioritization of an encoder or the requirements of a decoder. Consequently, an

additional requirement to allow for ROI support, is random accessibility to avoid

the transmission of unnecessary data.

1.3 Outline

This dissertation discusses a mesh representation and coding system which tackles

the given requirements. A wavelet transform is described, by which a mesh is

transformed to obtain several resolutions. Feature-preservation over all resolutions

is an important property of the proposed transform. Consequently, even lower-

resolution versions should preserve clearly recognizable geometric features. This

preservation of features is achieved by allowing for irregularity in the mesh

connectivity, i.e., vertices do not have to be connected in any predefined fashion.

Such irregular connectivity information will allow for a more optimal trade-off

between coding performance and geometric information per resolution, taking into

account the fact that models need to be interactively visualized in addition to being

stored and transmitted. The transformed model is encoded using a scalable coder,

for which scalability entails the forms of scalability as discussed above, allowing

for resolution and quality scalability, offering ROI support and permitting a rate-

distortion optimized storage and transmission.

This thesis is structured as follows. Chapter 2 begins by describing the process

of obtaining a digital mesh from a continuous, analogue surface. Then, some

relevant properties of meshes are explained, after which methods for evaluating

coding systems are discussed, including a novel rendering performance measure.

Finally, the most significant works in the state of the art are covered.

Chapter 3 discusses the first part of this thesis, covering the global forms of

scalability. First, a feature-preserving wavelet-based mesh transform is described,

which transforms a high-resolution mesh into a lower-resolution mesh and a

set of wavelet coefficients describing surface details along the mesh. Octree-

based coding followed by context-adaptive binary arithmetic coding (CABAC)

subsequently allows for an efficient storage by exploiting the statistical properties

of the wavelet coefficients. Next, template meshes are introduced to decouple the

representation from the encoding steps, which in turn allows for quality scalability

and, consequently, for any arbitrary storage and transmission order of the data

layers. This arbitrary storage and transmission order allows for RD optimization

(RDO) and moreover allows for decoding the geometry information of multiple

resolutions in parallel.
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Next, Chapter 4 handles the second part of this thesis, which covers local

ROI coding. First, ROI at the encoder side is tackled. Encoder-side ROI

support entails prioritizing regions at the encoder side, resulting in faster quality

improvements in these regions when decoding. This is achieved by employing

boosted wavelet coefficients, leaving both the wavelet representation and wavelet

encoding untouched. Decoder-side ROI support is subsequently discussed: the

transmitted and decoded data needs to be adapted to the interactive needs of

the decoder. An adaptive inverse wavelet transform is discussed, which allows

for applying an inverse wavelet transform after separating the ROI from the

background. To reduce the actually transmitted and decoded data, wavelet

coefficients are partitioned into dynamic tiles, allowing for random accessibility.

Finally, such tiled encoding allows for more fine-grained RDO as the data can now

be reordered per tile instead of over the entire model. Tiled encoding furthermore

allows for the decoding step per resolution to benefit from parallelization as well.

In the end, the overall conclusions of this work are given in Chapter 5.
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2
Mesh Coding

Until today, triangle meshes have been the main representation of 3D models for

real-time rendering. A mesh is often seen as the combination of both geometry

information, i.e., the positions of sample points on a surface called vertices, and

connectivity or topology, i.e., the edges (and consequently the triangles) between

these vertices. Such a triangle mesh can be represented by a list of vertices and

a list of triangles. Denote by nv the amount of vertices, and by nt the amount

of triangles of a mesh M . In general, each vertex position is stored using three

coordinates of Q bits. In the remainder of this dissertation, storage is presented

in a normalized way by presenting bit rates, i.e., the amount of bits required per

vertex. This is also the convention in literature. Hence, the resulting geometry

can be stored at a bit rate of 3Q bpv, a rate which is independent of the model

complexity.

To allow for indexing all vertices, indices need to be at least ⌈log2 nv⌉ bit

large, with ⌈·⌉ the ceiling function which rounds values up to the nearest integer

value. Hence, each triangle is represented using 3⌈log2 nv⌉ bits: larger meshes

require more bits for indexing all vertices. One can prove that nt ≈ 2nv for large

meshes, hence the connectivity rate is 6⌈log2 nv⌉ bpv. Summarized, this results in

a theoretical raw storage size B of:

Braw = 3Qnv + 3⌈log2(nv)⌉nt ≈ 3Qnv + 6⌈log2(nv)⌉nv, (2.1)

or, equivalently, a bit rate Rraw of:

Rraw =
Braw

nv

≈ 3Q+ 6⌈log2(nv)⌉, (2.2)
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where the first term represents the geometry information, while the second term

represents the connectivity information.

Table 2.1 presents the required bit rates and storage sizes using Q = 32,

i.e., using the single-precision floating point format for vertex coordinates. The

connectivity is assumed to be optimally stored as given by the second term of

Equation 2.1; in practice, each index will often be aligned to a number of bytes

instead of bits.

vertices rate size

513 ∼ 1 024 156 = 60C + 96G bpv 10KB ∼ 20KB

8 193 ∼ 16 384 180 = 84C + 96G bpv 180KB ∼ 360KB

65 537 ∼ 131 072 198 = 102C + 96G bpv 1.6MB ∼ 3.2MB

524 289 ∼ 1 048 576 216 = 120C + 96G bpv 14MB ∼ 28MB

Table 2.1: Raw mesh storage rates and sizes using Q = 32 bits to quantize vertex

coordinates. The rate is split up into the connectivity part “C” and the geometry part “G”.

Practical Examples Equation 2.2 gives the optimal rates for uncompressed

representations and will be referred to in this dissertation when discussing the rate

required for any uncompressed mesh. Nonetheless, in practice higher rates are

observed. Instead of an exact amount of quantization bits and the optimal amount

of bits per vertex index, binary representations align these sizes to a number

of bytes. Furthermore, additional signaling is required to differentiate between

several topological, geometrical and surface material attributes. Finally, human-

readable formats are often used, which allow for easy modifications but further

increase the bit rate.

Table 2.2 gives an overview of actual rates obtained by storing the connectivity

and geometry information of several meshes in conventional 3D file formats using

Meshlab. The .ply format reduces the additional signaling to a minimum by

adhering to a strict order in which the information is stored, requiring only the

amount of vertices and faces to be specified in the file header. Observe that the

binary .ply format accurately depicts the most common uncompressed bit rate in

practice: each vertex is stored using 4 bytes, while each face is stored using 4 bytes

per vertex index and an additional byte to indicate the amount of vertices forming

the face. As the meshes are triangle meshes, this results in a rate of

Rply ≈ 3× 32 + 2(3× 32 + 8) = 304. (2.3)

If only triangular faces are allowed, the 8 bits for indicating the face degree can

be omitted, resulting in 288 bpv. This is the optimal bit rate for uncompressed

representations in practice, allowing for models with up to 4 × 109 vertices to be

represented.
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model (vertices) .obj size (rate) .ply.asc size (rate) .ply.bin size (rate)

epcot (770) 45.6KB (485 bpv) 36.6KB (390 bpv) 28.7KB (306 bpv)

bimba (8 857) 584KB (541 bpv) 555KB (514 bpv) 328KB (304 bpv)

rabbit (67 039) 5.04MB (631 bpv) 4.19MB (525 bpv) 2.42MB (304 bpv)

turbine (882 954) 71.6MB (681 bpv) 55.5MB (528 bpv) 31.9MB (304 bpv)

Table 2.2: Mesh storage in practice. Example mesh storage rates and sizes for the .obj file

format, the human-readable .ply file format and the binary .ply format.

This chapter will first discuss issues related to the processes of surface

sampling and quantization for digitizing continuous surfaces in Section 2.1. Then,

after an overview of some relevant mesh properties in Section 2.2, a discussion

on mesh distortion metrics and the comparison of mesh codecs is given in Section

2.3. Finally, a short overview of mesh compression is given. Single-rate mesh

compression, where only a single bit rate is available for decoding an entire

mesh, is discussed in Section 2.4.1; scalable mesh compression, which allows

for decoding progressively more accurate reconstructions, is discussed in Section

2.4.2.

2.1 Sampling and Quantization

Before any digital processing can be performed, a surface S needs to be digitized

to obtain a mesh M , as data needs to be stored on, and transmitted over, today’s

digital media. Contrary to the real world which is a continuous space (at least up

to some quantum level), the digital world does not allow such freedom: we can

only store a limited amount of bytes, and we can only transmit a limited amount

of bits per second. An important question in signal processing then becomes:

“what limited amount of information allows for reconstructing the most accurate

representation of a continuous, real-world data set?”

Any analogue-to-digital conversion encompasses two important steps: first, the

parametric domain needs to be discretized in a process called sampling. Instead of

considering all points, only a limited amount of samples can be represented. These

form the vertices of the mesh M . The remainder of the surface S is approximated

by interpolating between the samples. Furthermore, these samples cannot be

stored at an infinitesimal precision: a quantization step discretizes the range of

the signal, allowing only a limited amount of sample positions where vertices can

be located.

Hence, any digitization of a continuous signal introduces an error; denote this

error as ǫ. This error is caused by three factors [1]: acquisition noise ǫA, sampling

noise ǫS and quantization noise ǫQ. Acquisition noise ǫA emerges because a

surface S cannot be approximated more accurately than defined by the acquisition

devices. For instance, one cannot model an object at micrometer accuracy if
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n = 3 n = 5

n = 7 n = 12

n = 20 n = 36

(a) Sampled

∆ = 1/4 ∆ = 1/8

∆ = 1/16 ∆ = 1/30

∆ = 1/40 ∆ = 1/100

(b) Quantized

n = 3
∆ = 1/8

n = 5
∆ = 1/8

n = 7
∆ = 1/8

n = 7
∆ = 1/30

n = 12
∆ = 1/30

n = 36
∆ = 1/30

(c) Digitized

Figure 2.1: Circle approximation: sampling and quantization. Storing information to

reconstruct a surface requires sampling, i.e., only considering a limited amount of points,

and quantization, i.e., considering only a limited number of possible values for the

samples. Sampling is depicted in (a): given the number of samples n, the approximated

surface is obtained by linear interpolation between neighboring samples. Quantization is

depicted in (b): an infinite amount of samples is considered, but the samples are rounded

off to the nearest discretized value, i.e., the nearest crossing of two grid lines which lie a

distance ∆ apart. Finally, sampling and quantization are both required to allow for a finite

representation of a surface. This is depicted in (c).

the measuring tools only provide millimeter-accurate results. Sampling noise

ǫS originates from the linear interpolation between the samples in M where the

original surface S varies smoothly. Finally, quantization noise ǫQ is introduced

because only a finite set of positions can be represented with a limited amount of

bits.

2.1.1 Sampling

Sampling is the process of limiting the domain for which values are observed.

Consider for instance the approximation of a circle around the origin (0, 0) with

radius r in 2D, described by the parametric curve

C : [0, 2π] ⊂ R→ R
2;

θ 7→ (x, y) = C(θ),

with

{
x = r cos(θ)

y = r sin(θ)
.

(2.4)

A uniform sampling, as depicted in Figure 2.1a selects vertices spread out
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(a) UV sampling (b) Uniform sampling

Figure 2.2: Sampling a sphere.

evenly over the circle. In this case, the amount of samples is directly related to

the approximation quality: the sampling error ǫS is given by the area between

the black and gray lines in Figure 2.1a. The required amount of sampling

for a sufficient approximation depends on the scale at which the approximation

is observed. Given n = 20 samples, the circle looks round until observed

from a short distance where it again looks faceted. With n = 36 samples,

which corresponds with a sample per 10◦, the resulting polygon looks nearly

indistinguishable from the continuous circle. There is a threshold for the angles

within the polygon, under which the human visual system will be unable to

see corners; however, the above example shows that lower sampling densities

often suffice, depending on the display size and the distance at which objects are

observed.

Similar to how a curve (such as the circle in Figure 2.1) can be approximated

using short and/or long straight strokes, a surface can be approximated using

small and/or large polygons. Continuing on the sphere described by Equation

1.2, instead of considering all possible φ and θ, one could rotate in steps of 10◦,

resulting in only 36 × 18 = 648 samples for which we need a value. This

is illustrated in Figure 2.2a. A linear interpolation between the samples allows

for approximating the remaining values. The samples, called vertices, define the

geometry of the model, while neighborhood information of the samples, which

indicates how linear interpolation should be performed, defines the connectivity

of the model. This neighborhood information is represented as edges between the

vertices, and together they form polygons of a polygon mesh approximation of a

surface.

As Figure 2.2a depicts, a perfectly regular sampling in the domain (in this

case in perfect steps of 10◦ in both directions) does not necessarily distribute the
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samples evenly along the surface. Observe that, near the poles, the samples are

closer together. Moreover, at both poles themselves 36 samples have the exact

same position. Figure 2.2b shows an alternative, more uniform sampling1 where

the sampling error will be spread more evenly over the entire surface.

2.1.2 Coordinate Quantization

Sampling alone does not suffice for a digital storage. The value of even a single

sample can be any value of an infinite continuous set. Scalar quantization is the

process of representing the infinite set of real numbers R by a finite set of symbols

V = {v0, v1, v2, ..., vn−1}. After quantization, each of these symbols can now

be represented using a binary representation. Using b bits, one can represent 2b

possible values. For instance, using 4 bits, one can map v0 to 0000, v1 to 0001,

v2 to 0010, ..., and v15 to 1111. This is related to the precision of the samples:

a fine quantization signifies that samples closer together can still be differentiated

as a higher amount of bits is spent per sample; inversely, a coarser quantization

represents nearby samples as being located at the exact same position.

Vector quantization is the process of representing the vectors in R
k, i.e., k-

tuples such as the 3-tuples (x, y, z), by a finite set of symbols. In this dissertation

however, vertex positions are quantized by employing scalar quantization on each

of the three components independently.

Considering once more the circle defined by Equation 2.4. Both the x

and y component of each sample can take any real value between −r and

+r. Quantization reduces these possible values, for instance given by the

uniform quantization as depicted in Figure 2.1b where the difference between two

subsequent values is given by ∆. Despite sufficient samples, if the quantization

step ∆ is too big, clear blocking artifacts appear.

Embedded Quantizers In general, the set of real numbers R can be arbitrarily

partitioned into n cells, where each cell Ci is associated with a symbol q ∈ V .

Every value X ∈ Ci is mapped to the same q = Q(X) and after dequantization

the symbol q is mapped to a single value X̂ = Q−1(q). This is shown in Figure 2.3.

Due to the arbitrary partitioning into cells Ci, several quantization granularities are

not necessarily related.

For quality scalability, an important class of quantizers are embedded

quantizers. As the name suggests, in this case the quantization cells of a finer

quantizer are embedded within the cells of a coarser quantizer. Let p ∈ N

denote the quantizer number when ordered from finer to coarser quantizers. If

quantizer Qp has n quantization cells Ci
p and quantizer Qp−1 has k.n quantization

cells Cj
p−1, then each Ci

p embeds k cells Cj
p−1. Consequently, this construction

1In fact, it is a subdivided icosahedron.
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XC0 C1 C2

q0 1 2

X̂

Q(X)

Q−1(q)

Figure 2.3: Quantization Q(X) and dequantization Q−1(q).

allows for identifying the quantization cell for quantizer Qp−1 by identifying the

quantization cell for quantizer Qp, followed by identifying the correct cell of the

k embedded quantization cells. This naturally leads to an embedded, truncatable

data stream. Figure 2.4 illustrates this: each of the n = 3 cells Ci
1 embeds k = 3

cells Cj
0 . Once Ci

1 is identified, the k = 3 possible superscripts for Cj
0 are found

via j = 3i, j = 3i+ 1 and j = 3i+ 2.

X
C0

1 C1
1 C2

1

X

C0
0 C1

0 C
2
0 C3

0 C4
0 C5

0 C6
0C

7
0C

8
0

Figure 2.4: Embedded quantizers.

Embedded Deadzone Quantizers For binary representations, a popular choice

is to have k = 2, i.e., each finer quantizer arbitrarily subdivides each coarser

quantization cell into two finer cells, which can be identified by a single bit.

An interesting category of embedded quantizers is given by embedded deadzone

quantizers, where each coarser quantization cell is split into two equal finer

quantization cells, and where a so-called deadzone around zero can be treated

differently. In general, an embedded deadzone quantizer quantizes X to the integer

value

qp = Qp(X) =

{
sign(X) · ⌊ |X|

2p∆ + ξ
2p ⌋ if

|X|
2p∆ + ξ

2p > 0
0 otherwise

, (2.5)

where ξ < 1 determines the width of the deadzone and 2p∆ determines the

quantization cell width. Only the deadzone of Qp deviates from this 2p∆

cell width: it has a width of 2(2p∆− ξ∆), i.e. encompassing values X ∈

(−2p∆+ ξ∆, 2p∆− ξ∆). For X > 0, this is depicted in Figure 2.5 with

ξ = 0, ξ = 0.5 and ξ = −1. An example quantization with ξ = 0 is given in
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(c) ξ = −1
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(d) Reconstruction (ξ = 0, δ = 0.5)

Figure 2.5: Embedded deadzone quantization. Three examples are given for positive

values, each with four embedded quantizers {Q3, Q2, Q1, Q0}. It is clear that the ξ
variable alters the deadzone around zero. Looking at Q0, ξ = 0 results in a deadzone

within (−∆,∆), with ξ = 0.5 the deadzone shrinks to (−∆/2,∆/2) and with ξ = −1
the deadzone grows to (−2∆, 2∆). (d) illustrates the quantization and reconstruction of

X = 9.4∆. The quantized values are indicated by q3, q2, q1 and q0 and the reconstructed

values are indicated by the open circles.
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Figure 2.5d: the value X = 9.4∆ is quantized, resulting in

q3 = Q3(X) = 1, (2.6)

q2 = Q2(X) = 2, (2.7)

q1 = Q1(X) = 4, (2.8)

q0 = Q0(X) = 9. (2.9)

The figures show the embedding as well. q3 can take two values, 0 or 1. Knowing

q3 leaves only two of the four possible values for q2, i.e., 2 or 3 etc. This allows

for a binary representation where each additional bit represents the value of a more

fine-grained quantizer.

Conversely, the reconstruction is defined by

Q−1
p (qp) =

{
0, qp = 0

sign(qp)
(
|qp| −

ξ
2p + δ

)
2p∆, qp 6= 0

, (2.10)

where 0 ≤ δ < 1 determines which value within a quantization cell is used for

reconstructing X̂ . With δ = 0.5, values are reconstructed midway within the

quantization cells. For the coarsest quantization Q3, with ξ = 0 this signifies that

each original value X is approximated by either 0 or 12∆. The finer quantization

Q2 allows for an approximation by 0, 6∆, 10∆ or 14∆. Similar reasoning allows

for more accurate approximations by the even finer-grained quantizers Q1 and Q0.

This is again illustrated in the example of Figure 2.5d, for the given X = 9.4∆.

The reconstructed values are

Q−1
3 (q3) = 12∆, (2.11)

Q−1
2 (q2) = 10∆, (2.12)

Q−1
1 (q1) = 9∆, (2.13)

Q−1
0 (q0) = 9.5∆. (2.14)

In this example, the distortion decreases for more fine-grained quantization.

However, for k = 2 and δ = 0.5 this does not always hold. Consider for

instance X = 9.9∆. The same reconstruction values as above are obtained after

quantization and reconstruction; yet, Q−1
2 (q2) = 10∆ is now closer to the original

value X than Q−1
0 (q0) = 9.5∆ is.

Successive Approximation Quantization In this dissertation, successive

approximation quantization (SAQ) is used, which is a specific configuration of the

embedded deadzone quantizers: it is a particular instance for which the deadzone

width of quantizer Qp is twice as wide as the other cells of Qp, that is, ξ = 0. This

can be implemented via thresholding, by using thresholds of the form τp−1 = τp/2
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[2]. The binary value which is appended by each finer-grained quantizer Qp is

given by:

⌊
X

τp

⌋
mod 2. (2.15)

In other words, a binary 0 or 1 can be assigned by determining whether the cell

index is either odd or even. Additionally, the coarsest threshold τpmax
needs to

be such that no X surpasses 2τpmax
, otherwise so-called overflow issues arise

as the quantizers do not suffice for representing all required values. The binary

representations can be verified by Figures 2.5a and 2.5d, where τpmax
= τ3 = 8∆.

q3 = 1 =b0001 (τ3 = 8∆), (2.16)

q2 = 2 =b0010 (τ3 = 4∆), (2.17)

q1 = 4 =b0100 (τ3 = 2∆), (2.18)

q0 = 9 =b1001 (τ0 = ∆). (2.19)

For X = 9.4∆ in Figure 2.5d, Q3 adds 1, Q2 adds 0, Q1 adds 0 and Q0 adds 1,

resulting subsequently in the conventional binary representations for the decimal

numbers q3 = 1, q2 = 2, q1 = 4 and q0 = 9.

2.1.3 Numerical Example

Despite the quantization error ǫQ introduced by digitization, this error should not

be considered as loss when ǫQ ≈ ǫA + ǫS ; after all, values which are closer to the

acquisition data are not guaranteed to be closer to the actual physical object.

For instance, consider a volume of 1m × 1m × 1m which holds a single

object. If we employ a uniform 16 bit quantization in each dimension, we can

represent each dimension in steps of 1/216 m = 1/65 536m = 15.3µm. Hence,

the surface of the object can be accurately represented up to details of several

micrometers large. Similarly, a volume of 1 km × 1 km × 1 km is represented at

15mm accuracy.

Consider another numerical example. Assume a terrain of a certain square

area A represented as a height map, i.e., represented by points (x, y, h) where

each point (x, y) relates to a height h. If both horizontal dimensions are uniformly

quantized using b bits, there are 2b × 2b = 22b possible values for (x, y). Given

the area A, the terrain can be accurately represented up to A/22b. Table 2.3 gives

the required amount of bits to represent an area at 1m2 and 1 cm2 accuracy.
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Area
accuracy

1m
2

1 cm
2

1mm
2

Ghent 156.2 km2 14 bit 20 bit 24 bit

East-Flanders 13 522 km2 17 bit 24 bit 27 bit

Belgium 30 528 km2 18 bit 25 bit 28 bit

Europe 10 180 000 km2 22 bit 29 bit 32 bit

Earth 510 100 000 km2 25 bit 32 bit 35 bit

Table 2.3: Quantization required for specific area accuracy.

The area of Ghent is 156.2 km2, so to ensure that each sample covers 1m2,

156 200 000 samples are needed, which is possible using b = 14 bits. After all, 14

bits per dimension allow for 228 ≈ 268 000 000 samples. Using similar reasoning,

if East Flanders, Belgium, Europe and the Earth surface were square, these areas

can be represented at 1m2 accuracy as illustrated in Table 2.3. Furthermore,

changing the accuracy to 1 cm2 adds log2(100) = 6.6 bits per dimension to this,

increasing to 1mm2 adds log2(1000) = 9.9 bits. Hence, using b = 32 bits, which

is the conventional storage size for integers, suffices to sample Europe at 1mm2

accuracy, assuming that it was perfectly square.

Consider finally the height values h. The highest mountain on earth, the Mount

Everest, towers 8 848m above sea level, while the lowest known point, Challenger

Deep, is found 11 034m below sea level. To represent this range of 19 882m at

1m accuracy, b = 15 bits suffice, while 1mm accuracy requires b = 25 bits.

While these are very crude approximations, raising many questions and

remarks, they justify the conventional view that sampling uniformly using 12 ∼ 16

bits, i.e., using 212 = 4096 ∼ 216 = 65 536 samples per dimension suffices to

accurately represent most models. An additional 16 bits per dimension, which

allows for 64 000 times more accuracy per dimension, is often unnecessary. Table

2.4 repeats Table 2.1, now using Q = 12 bit quantization.

vertices rate size

513 ∼ 1 024 96 = 60C + 36G bpv 6.16KB ∼ 12.3KB

8 193 ∼ 16 384 120 = 84C + 36G bpv 123KB ∼ 246KB

65 537 ∼ 131 072 138 = 102C + 36G bpv 1.13MB ∼ 2.26MB

524 289 ∼ 1 048 576 156 = 120C + 36G bpv 10.2MB ∼ 20.4MB

Table 2.4: Raw mesh storage rates and sizes, using Q = 12 bits to quantize vertex

coordinates. The rate is split up into the connectivity part “C” and the geometry part “G”.
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2.2 Properties of Meshes

Before going deeper into mesh compression, some relevant topics are discussed

regarding mesh representations. First, neighborhood terminology is given in

Section 2.2.1, followed by a discussion on mesh regularity in Section 2.2.2 and

ending with some additional mesh properties in Section 2.2.3.

2.2.1 Neighborhood Information

In order to understand how vertices, edges and faces are related, some terminology

on topological neighborhoods is given.

Neighboring vertices

Two vertices are neighbors if an edge connects them. In this dissertation,

two indexed notations for vertices will be employed: a vertex can either be

indicated using its absolute index as vi, or via a relative, neighbor index as

vj,k, i.e., the kth neighbor of the jth vertex.

Valence/vertex degree

The amount of neighbors a vertex has; for a triangle mesh, this is 6 on

average. The valence of vertex v will be denoted as ν(v) in this dissertation.

Neighboring faces

Two faces are neighbors if they share an edge.

Neighboring vertices of an edge

The two vertices which define an edge.

Neighboring faces of an edge

The faces which have the edge in their border.

Boundary edge

An edge is a boundary edge if it only has a single neighboring face.

Boundary vertex

A vertex neighboring a boundary edge.

Boundary face

The face neighboring a boundary edge.

2.2.2 Mesh Regularity

The most important property within this dissertation is mesh regularity. On the one

hand, regularity results in predictability which benefits the coding performance.

However, as will be detailed next, on the other hand regularity limits the

approximation quality of the representation.
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Geometry, Parameter and Connectivity Information In many works,

including this dissertation, the information to represent a model is split into the

geometry of the model, which determines the positions of the vertices, and the

connectivity of the model, determining how faces are formed between vertices.

However, as is illustrated by Khodakovsky et al. [1], the information for the

positions of vertices can be further split into geometry and parameter information.

This is based on the idea that any tangential displacement of vertices along the

surface does not change the approximated surface geometry. Such parameter

information is related to where samples are located on a surface, and as such

altering this information affects the sampling noise ǫS . This is illustrated in

Figure 2.6 with a 2D example. Figure 2.6a depicts an original curve, and two

approximations are given in Figures 2.6b and 2.6c, representing the same geometry

information but differing in parameter information. Assuming a perfect acquisition

and no quantization noise (i.e., ǫA = ǫQ = 0), it is clear that the reconstruction

error due to sampling depends on the parameter information. For densely-sampled

surfaces, the effect of parameter information on the reconstruction quality becomes

negligible.

(a) Original curve (b) Regular

parameter

information

(c) Surface-adapted

parameter

information

Figure 2.6: Parameter information.

Explicit vs Implicit Information A semi-regular mesh has a regular

connectivity over large portions of its surface, with irregularity only found around

a limited amount of so-called extra-ordinary vertices. In practice, such a semi-

regular mesh is obtained by starting with a coarse approximation of a mesh, which

is called the base mesh, and by then iteratively subdividing its faces, for instance

using 1-to-4 subdivision which subdivides each triangle into four new triangles as

shown in Figure 2.7a. Figure 2.7b then shows the sphere of Figure 2.2b together

with the underlying base mesh. The vertices of the original icosahedron can still be

recognized as the extra-ordinary vertices with valence 5 whereas the other, regular

vertices have valence 6. Once all information on the extra-ordinary vertices is

known, i.e. once the base mesh is known, no additional connectivity information

is required: any decoder can reconstruct the correct mesh connectivity if it is given

the base mesh.

This immediately determines a first of three classes of semi-regular meshes.

Subdivision surfaces only require a base mesh to be encoded. No additional
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(a) 1-to-4 subdivision (b) Icosahedron after three subdivisions

Figure 2.7: Semi-regular meshes.

geometry or parameter information is given, and higher-resolution meshes are

obtained through the implicit subdivision rules. Secondly, if vertices created by

the subdivision procedure are only moved along the surface normal, only geometry

information is added per subdivision step. This actually alters the geometry of the

model but leaves parameter information unaltered. Normal meshes [3] are based

on this idea. And finally, in general semi-regular meshes, the vertices obtained

after subdivision can be perturbed tangentially over the surface of the sphere.

On the other hand, an irregular mesh is no longer implicitly constructed

starting from a base mesh. In this case, connectivity information has to be

explicitly provided in addition to the geometry and parameter information.

(a) Base mesh (b) Subdivision

surface

(c) Semi-regular

mesh

(d) Irregular mesh

Figure 2.8: Mesh regularity. As is described in [1], a mesh can in fact be seen as

composed of geometry, parameter and connectivity information. All meshes share the

same geometry information, yet (b) is represented solely based on the subdivision of (a),

the (c) has additional parameter information, and (d) also has connectivity information

which makes it an irregular mesh.

These ideas are illustrated in Figure 2.8. A low-resolution base mesh is shown

in Figure 2.8a, and a resulting subdivision surface is depicted in Figure 2.8b.

Parameter information is added to obtain the general semi-regular mesh shown in

Figure 2.8c. Observe that the same (implicit) connectivity is seen as in Figure 2.8b;

the vertices are merely displaced within the plane without altering the geometry.
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Finally, Figure 2.8d depicts the same plane, but now the connectivity does not

show any relationship with the connectivity at the lower resolution (Figure 2.8a).

Table 2.5 summarizes this.

type of mesh Connectivity Parameter Geometry

subdivision surface meshes implicit implicit implicit

normal meshes implicit implicit explicit

semi-regular meshes implicit explicit explicit

irregular meshes explicit explicit explicit

Table 2.5: Implicit vs explicit information. In addition to a possible base mesh, this table

depicts possible additional information that can be provided.

Mesh Coding To process irregular meshes, any semi-regular mesh codec

converts irregular meshes to semi-regular ones in a preprocessing step [1, 3, 4],

referred to as remeshing. This remeshing step finds an appropriate base mesh and

approximates the original surface via iterative subdivision. In applications where

original sampling and its connectivity information are relevant, such a remeshing

step is considered as a lossy step. After remeshing, normal meshes and other

semi-regular coding schemes exploit the fact that connectivity is predetermined by

the base mesh, while during remeshing they reduce the parameter information as

much as possible, aiming for better coding performance by reducing irregularity

and increasing predictability.

However, in this dissertation irregular mesh coding is considered, where

arbitrary faces can be formed between the vertices as in Figure 2.8d. While

it is challenging for an irregular mesh codec to achieve coding performances

similar to those of semi-regular ones due to the added cost of storing connectivity

information explicitly, its main advantage over semi-regular codecs is that irregular

meshes allow for better approximations using fewer vertices and faces, and

consequently using less memory for representing the intermediate approximations.

Indeed, it is a well-known fact that regular sampling, and by extension semi-

regular meshes with minimal parametric information, require higher sampling

densities compared to irregular sampling to preserve all details. A 2D example is

shown in Figure 2.9, which shows two approximations of the purple curve which

has high-frequency information on the left side and low-frequency information

on the right side. The approximations illustrate high-density and low-density

regular sampling. The high-density sampling in Figure 2.9a allows for accurately

reconstructing all information in the purple curve. However, many samples are

used on the right half of the curve which no longer necessarily aid in improving

the reconstructed quality. Using fewer samples in the right half, such as depicted

in Figure 2.9b suffices for representing these details. However, in this case the

high-frequency information on the left side of the curve is lost. This effect is
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Original signal
Reconstructed signal

(a) High sampling density

Original signal
Reconstructed signal

(b) Low sampling density

Figure 2.9: Sampling densities.

also found in semi-regular mesh representations. Similar to the 2D example of

Figure 2.9a, sufficient vertices need to be defined near high-frequency details

to ensure sufficient preservation in these regions. Consequently, this results in

denser vertex distributions in regions where this is not required. Irregular mesh

representations tackle this, allowing for a better surface-adapted distribution of

vertices and reducing the required amount of memory for rendering.

2.2.3 Additional Mesh Properties

A few additional mesh properties are discussed below. Depending on the

algorithms used in different codecs, some properties do not allow meshes to be

properly processed by specific codecs.

Manifoldness An important property of the represented surfaces is 2-

manifoldness: the neighborhood of each point on the surface is homeomorphic to

a two-dimensional Euclidean space, that is, each neighborhood is homeomorphic

to an open disk, or to a half-disk for points on the border. This is an important

requirement for many mesh coding systems as it allows for unambiguously

determining neighborhood information of vertices and faces. Figure 2.10 shows

an example of a non-manifold edge and a non-manifold vertex.

(a) Non-manifold edge (b) Non-manifold vertex

Figure 2.10: Non-manifoldness.

This dissertation also requires manifoldness; after all, any single, monolithic
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model that corresponds to a physical object must be 2-manifold. However, due to

the limited resolution and accuracy of any acquisition system, 2-manifoldness is

not guaranteed. Similarly, 2-manifoldness is not necessarily guaranteed in models

designed by 3D artists; depending on the applications in which these models are

employed, such non-manifoldness is not an issue.

Orientability Furthermore, meshes are required to be orientable, which is

defined as follows. Firstly, a face can have two orientations; informally, each

triangle has a front and a back side, and either one can be on the outside of

a surface. This determines the orientation of the surface normal and allows

for defining dihedral angles between triangles. In practice, the orientation of a

triangle is determined by the order in which its neighboring vertices are traversed

when defining the triangle. Two neighboring faces are said to have a compatible

orientation if the vertices of the shared edge are traversed in opposite directions

within the neighboring triangles. A mesh is then said to be orientable if there

exists an arrangement such that each pair of neighboring triangles is compatible.

This is again necessary to allow for unambiguously determining neighborhood

information. This is illustrated in Figure 2.11.

θ

(a) Compatible triangles (b) Möbius strip

Figure 2.11: Orientability. (a) shows two compatible triangles. The orientation determines

the surface normal, and the order in which the vertices are defined, is indicated by the

arrow around each normal vector. The traversal order of the shared vertices is explicitly

indicated, showing the opposite direction and hence the compatibility of both triangles. A

well-known example of a surface which is not orientable is the Möbius strip (b).

Closed vs Open Surfaces An open surface as one or more loops of border

edges and vertices. This is important as these vertices typically need to be

treated differently, due to their neighborhood no longer consisting of a full ring

of neighboring vertices. Several approaches are seen in literature to handle surface

borders. A first approach is to explicitly handle these vertices differently, which

provides the best results but complicates the algorithms. A second approach is

to add virtual vertices to close such holes, and further handle these surfaces as

closed surfaces. The decoder then needs to erase these virtual vertices again. This
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leaves the algorithms unaltered but no longer handles borders appropriately. In the

implementation for this dissertation, however, borders are not explicitly supported;

if border vertices are present, these are forced to be preserved. The next step must

be to handle border vertices explicitly, without adding virtual vertices.

Genus of a Surface The genus of a surface is related to the number of ways

in which a surface can be cut along closed loops without resulting in multiple

disconnected parts. Intuitively, this refers to the amount of handles seen in the

surface. For instance, a sphere has genus 0, a donut has genus 1, a 3D figure eight

has genus 2 and a toy typical fidget spinner has genus 3.

Important considerations are (a) whether a codec supports higher-genus

models, and (b) whether this topological genus is preserved. For the codec

proposed in the next chapters, the genus can be arbitrarily large, and will be

preserved in the base mesh.

2.3 Comparing Codecs

Before starting a discussion on mesh compression and mesh approximations, the

concepts of distortion measures need to be explored. This is done in Section 2.3.1.

Afterwards, Sections 2.3.2 and 2.3.3 discuss how single-rate and multi-rate codecs

are compared. The approaches used in the state of the art are detailed, as well as

some measures introduced in this dissertation.

2.3.1 Mesh Distortions: Measuring Differences

Measuring distortions in 3D requires determining a distance metric. For point-to-

point distances, e.g. between points p1 = (x1, y1, z1) and p2 = (x2, y2, z2), the

classical Euclidean distance is often used:

d(p1,p2) =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (2.20)

The distortion of a reconstructed point is defined as the distance between the

original position and the reconstructed position.

Measuring a surface-to-surface distance, however, is less straightforward.

Ideally, for closed surfaces an objective metric would measure the volume of the

space created between the two surfaces, but this is too computationally complex.

Furthermore, such a metric cannot handle open surfaces.

In practice, the point-to-surface distance is used. Given a point p and a surface

S , the point-to-surface distance is defined as the shortest distance between p and

any point q on the surface S:

d(p,S) = inf
q∈S

d(p,q). (2.21)
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The distance from surface S1 to S2, d(S1,S2), is now defined as the largest

distance from any point p on S1 to S2:

d(S1,S2) = sup
p∈S1

d(p,S2). (2.22)

S2

S1

d(S1,S2)
d
(S

2
,
S
1
)

Figure 2.12: Asymmetric distortion.

Observe that d(S1,S2) and d(S2,S1) are not necessarily equal. This is

illustrated in Figure 2.12. Based on this unidirectional surface-to-surface distance,

the Hausdorff distance is defined as:

dH(S1,S2) = max{d(S1,S2), d(S2,S1)}. (2.23)

The Hausdorff distance uses the largest distance from a point to a surface.

Outliers hence have a large influence on the measured distortion. Alternatively,

the point-to-surface distances can be integrated, resulting in, for instance, the mean

absolute deviation (MAD) and root mean squared (RMS) deviation:

dMAD(S1,S2) =
1

|S1|

∫

p

d(p,S2)dS1, (2.24)

dRMS(S1,S2) =

√
1

|S1|

∫

p

(
d(p,S2)

)2
dS1. (2.25)

Both are again unidirectional, as the distance d(S1,S2) is not necessarily equal

to d(S2,S1). Similar to the Hausdorff distance, one can define distances using

maximal values of the one-sided MAD and RMS deviation in the forward and in

the backward direction. In literature, one often encounters the sum and average of

the forward and backward distance, i.e.,

dsum
RMS = dRMS(S1,S2) + dRMS(S2,S1), (2.26)

davg
RMS = dsum

RMS/2. (2.27)

Finally, it is common practice to normalize these distances given the axis-

aligned bounding box. Informally, this is the smallest box with its length, width
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bmin

bmax

(a) Definition

bmin

bmax

di
ag

on
al

(b) Diagonal

Figure 2.13: Bounding box. The bounding box is defined by the point bmin and either the

point bmax, or the bounding box diagonal bmax − bmin.

and height parallel to the x, y and z axes which encompasses all points p ∈ S .

This is illustrated in Figure 2.13.

Denote by px, py and pz the x, y and z component of p respectively. The

bounding box can be defined by a lower bound bmin = (xmin, ymin, zmin) and an

upper bound bmax = (xmax, ymax, zmax), such that:

xmin = inf
p∈S

px and xmax = sup
p∈S

px, (2.28)

ymin = inf
p∈S

py and ymax = sup
p∈S

py, (2.29)

zmin = inf
p∈S

pz and zmax = sup
p∈S

pz. (2.30)

The measured distances are then rescaled according to the bounding box diagonal

d(bmin,bmax).

During the experimental evaluations throughout this dissertation, Hausdorff

and RMS distortions are obtained using the METRO tool, which is the standard

tool in literature for measuring mesh distortions. This tool numerically calculates

these distances by sampling the first surface and finding the distances from each

sample to the faces of the second surface. More details can be found in [5].

2.3.2 Comparing Single-Rate Codecs

Single-rate codecs, which only allow for a single mesh reconstruction, can be

compared in two ways.
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Bit Rates For lossless single-rate codecs, i.e. where the original mesh is

losslessly reconstructed, from a signal processing perspective only the final bit rate

needs to be evaluated as the reconstructed meshes are identical. The best encoding

is the one which best exploits all correlations and hence best reduces the storage

size.

Distortion versus Bit Rate Trade-off If one or more of the codecs are lossy, i.e.

the original mesh is not perfectly reconstructed, trade-offs need to be considered.

Better quality at a lower rate is obviously preferred over lower quality at a higher

rate. However, when a higher rate offers better quality, the actual scenarios in

which the codecs must be deployed, must be taken into account, e.g. whether

distortion must be minimized or rate must not surpass a specific threshold.

2.3.3 Comparing Multi-Rate Codecs

For multi-rate codecs, which allow for reconstructing multiple approximations

of an original mesh, the discussion of Section 2.3.2 still applies to the final bit

rate, which is indicated by the lossless rate regardless of the final reconstruction

being lossless or lossy. For comparing multi-rate codecs, the lossy rates need to be

considered as well.

For comparing codecs at lossy rates, the main evaluation criterion in literature

is the rate-distortion performance. Rate-distortion performance is discussed

below, followed by a novel measure which allows for a more compact numerical

comparison of multiple rate-distortion performance evaluations. In addition to

rate-distortion performance, the scalable representation after decoding is equally

important from a rendering point-of-view. This has been overlooked in the

state of the art, but is valuable for any use-case where interactivity is required.

This dissertation proposes a novel triangle-distortion measure which is related

to the rendering performance. Finally, a measure for more compact numerical

comparisons is similarly proposed.

Rate-Distortion (RD) Curves While a lossless rate comparison gives an

objective number to compare coding systems, it entirely ignores any scalability

functionalities. In this regard, the main measure for comparing scalable mesh

coding systems has been rate-distortion (RD) curves. These plots show the

distortions given the bit rates. For the distortion, either the Hausdorff distance or

the RMS distance are generally considered in literature. In the literature, no strict

convention is followed for the RMS distance whether the maximal value, the sum

or the average of the forward and backward distances must be used. Furthermore,

some results are reported with the distortions normalized w.r.t. the bounding box

diagonal while others are reported as absolute numbers. For fair comparisons, in
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this dissertation all values are normalized w.r.t. the bounding box of the original

model. Figure 2.14 shows an example with three consecutive rate points. With

increasing rate, the distortion needs to reduce. In practice, an encoder can indicate

non-decodable rate points when additional rate increases the distortion. Such rate

points are not considered for an RD comparison; instead, the curves are made

convex by removing such non-convex rate points.

R

D

D(k−1)

D(k)

D(k+1)

R(k−1) R(k) R(k+1)

Figure 2.14: Rate-distortion curve. The curve shows three rate points k − 1, k and k + 1.

Increasing the rate reduces the distortion.

Evaluating results using such RD curves comes with several issues. First of

all, as acknowledged in several multimedia domains, objective quality metrics

such as the RMS distortion as described in Section 2.3.1 do not necessarily match

subjective quality experience. This mismatch is even more notable for 3D meshes

because (a) metrics can no longer be defined on regularly spaced samples as can

for instance be done for images, and will, without proper weighing, result in even

worse correlation with subjective experience; and (b) the qualitative impression

of a 3D surface becomes even harder to express due to the interactive nature in

which these models are used. For instance, if there are large distortions on a

surface, but these distortions can only be seen from a very small space because

of self-occlusions, such distortions should be preferred over smaller distortions

which are spread over an entire model. Additional lighting in a virtual world can

either enhance or hide geometric aberrations. And finally, once additional vertex

attributes such as colors, specularity, transparency, etc., have to be taken into

account, traditional objective quality metrics are entirely insufficient to measure

mesh quality in an interactive environment. Due to this mismatch between

objective quality metrics and subjective visual quality, visual results accompany

an RD comparison.

Average Rate Difference The second issue of evaluating using RD curves is that

such a curve compares several codecs or parameters for a single model. From a
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practical point-of-view, it becomes cumbersome to compare codecs over a larger

test set. To account for this, a new metric is proposed which is similar to the

Bjøntegaard delta rate (BD-rate) [6]. The BD-rate uses four rate points to match

two peak signal-to-noise ratio (PSNR) curves and integrate the rate values over

a range of quality values. In this dissertation, an average rate difference ∆r
avg

is proposed: linearly interpolate the rate points and then take the average of the

differences in required rates to obtain specific, densely sampled distortion values.

R

D

Reference

Alternative

Rmin

Dmax

Rmax
Dmin

Figure 2.15: Average rate difference. The green area indicates where the reference

outperforms the alternative: to obtain a specific quality a lower rate suffices, or with the

same rate a better quality can be obtained. Conversely, the red area shows where the

reference codec is outperformed.

This is shown in Figure 2.15. For a desired range of rates given by

[Rmin, Rmax], the accompanying distortions for a reference codec can be

determined. Now, for each distortion d ∈ [Dmin, Dmax], the rates required by the

reference codec and an alternative codec can be determined. The rate differences

can now be averaged to give a single number which compares the two codecs

within the initial range [Rmin, Rmax]. The figure illustrates that a codec with

a worse lossless coding rate can still be valuable if it offers better quality at

lossy rates and only performs suboptimal at rates where distortions become nearly

unobservable.

Triangle-Distortion (TD) Curves Observe that conventional rate-based

evaluations only consider the coding step, which gives valuable information from

a storage and transmission perspective, but does not take into account memory

usage for visualization. While a semi-regular mesh codec is superior because no

connectivity information is required, such coding systems result in approximations
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Figure 2.16: Basic architecture of any mesh encoding system. A mesh M is transformed

into some format MTF with reduced entropy. The actual compression is obtained through

the encoding block, which makes use of residual or subband encoding and entropy coding

to obtain a compressed representation Menc of the input mesh.

which have far more triangles compared to approximations by irregular mesh

codecs with similar distortions. Consequently, despite requiring fewer bytes, a

semi-regular mesh codec can require more memory compared to an irregular mesh

codec for rendering at a specific quality level.

In this regard, a novel triangle-distortion (TD) measure is proposed in addition

to the classical RD quality measure: instead of evaluating the distortion in function

of the required rate, the distortion is measured given a specific percentage of

reconstructed triangles. Hence, this considers how the quality evolves, not from

a coding perspective but from a rendering perspective, and is related to the mesh

representation instead of its encoding. A better curve means that the same quality

can be obtained using less memory, or a higher quality can be obtained using the

same amount of memory.

Average Triangle Difference Similar to the BD-rate measure, two TD curves

can be compared by their average triangle percentage difference ∆t
avg, obtained

by linearly interpolating the rate points and averaging the triangle percentage

differences.

2.4 Mesh Compression

This final section on mesh coding covers some mesh compression techniques.

Mesh compression has been investigated for over two decades. Thorough

surveys can be found in, for instance, [7], [8], [9] and more recently [10]

and [11]. Nonetheless, a short overview is given, covering the basic ideas

of mesh compression. Single-rate coding is discussed first in Section 2.4.1.

Subsequently, multi-rate or scalable coding techniques are covered in Section

2.4.2, differentiating between fine-grained (Section 2.4.2.1) and coarse-grained

(Section 2.4.2.2) scalability.

Figure 2.16 depicts the architecture of a conventional mesh encoding system.

The process starts from an initial mesh M . First, a transform will change the way

the data is represented such that predictability emerges. This is indicated by MTF,

the TransFormed mesh. This data is now sent through an encoding block which



MESH CODING 43

Decoding
Inverse

TransformM
.e
n
c

M̂TF M̂
1001
1011
0110

Figure 2.17: General single-rate decoding system.

In a single-rate decoding, a model can only be decoded at one rate, i.e., the intended rate.

This results in a single M̂TF and consequently a single reconstructed mesh M̂ . This

reconstruction can be lossless (where M = M̂ ), or lossy (M 6= M̂ ). Observe the

symmetry with Fig. 2.16.

exploits the reduced entropy in MTF, and results in a binary file Menc. In many

cases, this encoding step is where compression is obtained.

Entropy is a measure of ‘chaos’; reducing entropy signifies increasing structure

and consequently predictability. Such predictability can be exploited, for instance

by storing patterns that occur more frequently using fewer bits than what is used

for storing less-frequently occurring patterns.

2.4.1 Single-Rate Mesh Compression

Single-rate mesh compression entails that the coding scheme shown in Figure 2.16

results in an encoding Menc which can only be decoded at a single rate; this single-

rate decoding is visualized in Figure 2.17. Table 2.6 gives single-rate compression

results when compressing the models of Table 2.2 to the general-purpose .zip

archive file format using default settings.

model (vertices) .obj.zip .ply.asc.zip .ply.bin.zip

epcot (770) 9.88KB (105 bpv) 9.13KB (97.2 bpv) 3.05KB (96.4 bpv)

bimba (8 857) 182KB (169 bpv) 175KB (163 bpv) 174KB (161 bpv)

rabbit (67 039) 1.55MB (195 bpv) 1.41MB (177 bpv) 1.25MB (158 bpv)

turbine (882 954) 14.3MB (137 bpv) 13.0MB (124 bpv) 11.0MB (105 bpv)

Table 2.6: General-purpose compression on meshes. Examples of Table 2.2, compressed to

.zip archive files.

Research into single-rate mesh compression started over two decades ago. A

first improvement on the storage using lists of vertices and triangles was given by

Deering [12]. He suggested that the connectivity of a mesh can be partitioned in

triangle strips and triangle fans. This allows for implicitly defining a triangle per

added vertex. After storing an initial triangle, a triangle strip creates a new triangle

by combining the new vertex with the last two created vertices. A triangle fan

creates new triangles by combining the new vertex with the last created vertex and

the very first created vertex. Ideally, the connectivity information converges to a

third of the original size as only one vertex index is needed per triangle, instead of
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three. The geometry is stored by looking at the difference between the last vertex

and the new one. These values are usually very small, and variable-length coding

will result in smaller values for the geometry information.

Taubin and Rossignac [13] proposed an approach called topological surgery

(TS). The connectivity is represented using a vertex spanning tree within the graph

of edges and vertices. Such a tree connects all vertices without visiting vertices

multiple times, i.e., without creating loops. Neighboring vertices within this

tree are likely to be close together geometrically, so representing the difference

between two vertices results in smaller values. Touma and Gotsman [14] make

clever use of the valences of the vertices. For the connectivity information they

traverse all vertices, always keeping track of the encoded portion and the unvisited

portion. Using three commands and the valences of the vertices, both of which are

very predictable and interesting for entropy coding, the decoder can reconstruct the

same connectivity. Two modes for predicting the positions of the vertices are used;

either a prediction similar to Deering’s approach, using the last encountered vertex

as the prediction, or a prediction using a parallelogram rule. This rule assumes

that a new vertex will form a parallelogram with the neighboring triangle. An even

more advanced approach considers the expected angle for the edge within this

parallelogram. The reported averages are 1.4 bpv for the connectivity and 9.0 bpv

for the geometry, when encoding at 8 bit precision. These results are reported to

be resp. 66% and 31% better w.r.t. the results of [13].

Rossignac described the Edgebreaker algorithm [15]. This is a traversal

approach which does not consider the vertex valences, but uses the relation

between a newly visited vertex and the boundary of the already encoded vertices.

Depending on whether it is a new vertex, or it is on the boundary, either to the left

or right of the current edge, the only remaining vertex, or any other vertex, one

of five symbols is encoded per triangle. The geometry encoding approach is not

detailed, but a prediction approach is assumed.

An improvement upon the work of Touma and Gotsman, which is nearly

optimal in the regular case, was proposed by Alliez and Desbrun [16]. Their

work mainly improves the results on coarse irregular meshes. Alliez and Desbrun

suggest to replace the deterministic conquest by an adaptive conquest which makes

the three commands and their parameters even more predictable. The geometry

coding has not been altered.

2.4.2 Scalable Mesh Compression

Single-rate mesh compression is great for storage and distribution, but does not

scale well for interactive applications. Regardless of the implementation, models

growing over certain sizes will require several seconds or minutes to decode and

visualize. A simulcast solution, of which a general scheme is depicted in Figure
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Figure 2.18: General simulcast decoding system.

In a simulcast system, a limited form of scalability is offered by having multiple versions of

M , e.g., M1,M2 and M3, sending these each through a single-rate encoding system and

storing them either in physically separate files or in a single byte stream Menc. Based on

the requirements of the system, a decoding system can now reconstruct either M̂0, M̂1 or

M̂2. Progressivity can be offered by decoding them in order, decoding M̂0 first, then M̂1

and finally M̂2. Note that these decoding steps are completely independent of each other;

consequently, on the one hand they can be performed in parallel, but on the other hand the

decoding of M̂1 does not take advantage of the work done in decoding M̂0. Each of the

three pipelines can be seen as a system as depicted in Fig. 2.17.
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Figure 2.19: General multi-rate decoding system.

In multi-rate decoding, a model can be decoded at several rates. Given the parts of Menc

which are streamed, this results in transformed data M̂TF
i . Using this data, several

possible reconstructions of mesh M can be obtained; three reconstructions, M̂0, M̂1 and

M̂2, are found. These versions can differ in amounts of vertices (resolution scalability) or

accuracy of the reconstructed vertices (quality scalability), where these differences can

either be found in the entire model or even just in selected parts (ROI decoding).
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2.18, addresses this issue: several reduced versions are created and independently

encoded, allowing for (1) a coarse visualization while a higher detailed model is

loading, and (2) only visualizing the appropriate detail if an application allows

for a reduced version. Such a reduced version could mean either reducing the

vertex quality by using a coarser quantization, or reducing the resolution by

downsampling the model which results in fewer samples and consequently fewer

vertices and triangles.

While such a simulcast solution of several LODs addresses the interactivity

issue, and exploits intra-LOD correlations using a single-rate coder, it is clearly a

suboptimal solution. Due to the independent handling of the LODs, the storage

requirements and total decoding time increases due to the storage and possible

decoding of several lower LODs. There are clear similarities between several

LODs M̂i; after all, they are approximations of the same high-detailed model

M . Hence, capturing such inter-LOD correlations reduces the storage cost and

decoding time, by considering the difference between subsequent LODs.

Depending on the granularity of subsequent LODs, the literature can be

partitioned into fine-grained continuous LOD systems and coarse-grained discrete

LOD systems, as discussed next.

2.4.2.1 Continuous LOD Systems

The first proposed approach to consider LODs and their relations was given

by Hoppe [17, 18], and was appropriately termed the progressive mesh (PM)

representation. This approach was further generalized to any number of

dimensions in [19]. In this system, the transformations occurred by iteratively

collapsing a single edge. This collapsing operation considers a single edge and

merges the two neighboring vertices, while removing the neighboring triangles.

This edge collapse operation is repeated until some base mesh M0 is obtained.

The transformed representation MTF comprises this base mesh M0 and a series

of vertex split operations which invert the edge collapse operations. Each edge

split operation takes one vertex, splits it into two vertices and creates an edge and

two triangles between them. The PM representation is progressive in the sense

that each additional part of MTF allows for reconstructing M at an increasingly

higher accuracy. For a model with thousands or millions of vertices, this results in

thousands or millions of LODs. The differences between these become nearly

unnoticeable at higher resolutions, such that despite the amount of LODs still

being discrete, such vertex-by-vertex systems can be considered as continuous

LOD (cLOD) systems.

In his original work, Hoppe does not describe any encoding system, i.e., MTF

is directly written to Menc (one can consider the encoding block as a simple

serialization operation). Hence the representation does not offer compression; the

data is merely given in a different way. As the name suggest, the advantage w.r.t.
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conventional mesh representations is the fact that partially reading Menc gives a

progressively improving approximation of M . An encoding step can be added as

described by Pajarola and Rossignac [20]. By grouping the vertex split operations

in batches and jointly encoding them, they obtain files at half the original storage

size.

In light of real-time rendering, aimed at higher resolutions, this work soon

shifted towards view-dependent representations. Such representations are related

to ROIs, which are typically not an issue for cLOD systems. [21] describes a view-

dependent variant for progressive meshes, which was later implemented for terrain

data in [22].

A similar transform was proposed in the IPR-codec of Valette et al. [23].

Their refinement operator, called an edge split, can be translated to the vertex

splits of the PM representation. After obtaining a base mesh M0 using an

approach similar to [24], their operation processes the ith largest edge at every

step, adding a single vertex and optimally assigning the quantization for the

surrounding vertices. Such an approach considers both resolution and quality to

obtain better RD performance. By ignoring the original connectivity information,

all intermediate resolutions can be stored more efficiently; the cost of obtaining

the actual connectivity is only required when the final vertex has been added, for

actually lossless decoding. The index i of which edge to split when the edges are

ordered from largest to smallest, is represented as a unary code, i.e., a series of

i − 1 zeros followed by a one. These bits are called midpoint codes. Arithmetic

coding is used both for these midpoint codes and for the prediction errors of the

vertex coordinates, which are predicted at the centers of the edges.

A different approach was taken by Alliez and Desbrun [25] who propose a

valence-driven conquest of vertices, resolution per resolution, inspired by the

work of Touma and Gotsman [14]. In this algorithm, a mesh is traversed in a

decimation conquest, forming patches based on some valence considerations. The

retriangulation per patch is done in a deterministic way to ensure that the decoder

can find the patches without additional information. Following the decimation

conquest, a cleaning conquest is performed, where only valence-3 vertices are

handled. Finally, the resulting data is arithmetically encoded.

2.4.2.2 Discrete LOD Systems

Inspired by the PM representation of Hoppe [17] and the TS single-rate codec

of Taubin and Rossignac [13], Taubin et al. [26] developed their progressive

forest split (PFS) compression algorithm. The PFS scheme is more coarse-

grained compared to the fine-grained PM scheme. In view of the continuous LOD

terminology given above, such coarser-grained LOD systems are termed discrete

LOD (dLOD) systems.

An important paradigm in many multimedia domains is the wavelet transform
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to obtain multiple resolutions and encode them in an efficient way. A wavelet

transform iteratively transforms a higher-resolution signal into a lower-resolution

signal and a wavelet subband. However, whereas 3D surfaces are inherently

irregularly sampled, wavelet coding conventionally considers regularly sampled

data. The regular connectivity of semi-regular meshes has been used in literature

for building wavelet transforms. Such meshes are often obtained via the

interpolating Butterfly [27] scheme or the approximating Loop [28] subdivision

scheme, where each subdivision step results in a resolution increment. After a 1-

to-4 subdivision, the Butterfly subdivision perturbs the newly added vertices based

on neighborhood information. For a vertex on a given edge, this neighborhood

information encompasses the two triangles neighboring this edge, and their four

additional neighboring triangles. Figure 2.20a depicts this and illustrates the

origin of the name ‘butterfly’ subdivision. Denote by j the amount of performed

subdivision steps. Given a tension parameter w, each new vertex voj+1 is located at

voj+1 =
1

2
(vAj + vBj ) + 2w(vCj + vDj )− w(vEj + vFj + vGj + vHj ). (2.31)

The Loop subdivision scheme on the other hand transforms both new and existing

vertices given the masks shown in Figure 2.20b and 2.20c respectively. Each new

vertex voj+1 is positioned at

voj+1 =
3

8
vAj +

3

8
vBj +

1

8
vCj +

1

8
vDj , (2.32)

while an exist vertex vej with degree ν(vej ) = n is repositioned, again given a

weighing factor w, to

vej+1 = (1− nw)vej + w

n∑

i=0

ve,ij . (2.33)

Wavelet-based mesh coding was initially proposed for such semi-regular

meshes: wavelets are defined on the 2D parametric surface defined by the base

mesh, and each higher-resolution wavelet subband is then related to the lower-

resolution subband given the subdivision scheme. The stencils depicted in Figure

2.20 and the weights given in Equations 2.31, 2.32 and 2.33 determine the

scaling coefficients, describing how a mesh is upscaled from a lower resolution

to a higher resolution. Wavelet coefficients then refine the vertices of the

mesh, for representing detail information which was not present in the lower-

resolution representation. Pioneering work was proposed by Khodakovsky et

al. [1], describing their progressive geometry compression (PGC) algorithm which

processes meshes by using semi-regular wavelet transforms and zerotree coding

[2]. Such a tree exploits the fact that the descendants of a wavelet coefficient

which is non-significant given a specific threshold τ are often non-significant as
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Figure 2.20: Butterfly and Loop neighborhoods.

well for the same threshold τ , and can be encoded together with a single zero.

This approach and other approaches such as those proposed by Khodakovsky and

Guskov [29] or by Avilés et al. [30] exploit interband correlations, i.e., correlations

between wavelet coefficients in subsequent wavelet subbands: at specific regions,

the properties are expected to be similar across resolutions and are encoded

together. The main issue with such approaches is that they do not allow for

resolution scalability.

While intraband correlations, i.e., the correlations between wavelet

coefficients within wavelet subbands, have been investigated for image

compression (see, for instance, [31–33]), few intraband mesh codecs have

been proposed. Payan and Antonini [34] describe a semi-regular mesh codec

which employs the Loop [28] Discrete Wavelet Transform and encodes the

quantized wavelet coefficients using independent embedded block coding with

optimized truncation (EBCOT) [33] of the embedded bit streams. The statistical

dependencies within and across wavelet subbands have been analyzed by Satti

et al. in [35] and [36] for semi-regular meshes and normal meshes respectively.

These works concluded that intraband dependencies are stronger than interband

dependencies, and that composite codecs which exploit both intraband and

interband statistical dependencies perform best.

For directly processing irregular meshes, few codecs have been proposed.

Early work was done by Bonneau [37], which compresses the data contained in an

irregular mesh, for instance the color data over an irregular mesh representing the

earth. As such, this work considers the changing mesh resolutions as “given” and

maps the color data to this domain. Actual compression results for the mesh itself

are not taken into consideration. Wavemesh, by Valette and Prost [38], is a state-of-

the-art wavelet-based irregular mesh coding system. In Wavemesh, the classical 1-

to-4 subdivision is generalized to any subdivision of triangles which adds vertices

to one, two or all three of the edges of a triangle. As with any irregular mesh
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coding system, irregularity comes at a cost: contrary to semi-regular codecs

where the mesh connectivity can be implicitly reconstructed at a decoding side,

irregular mesh codecs require additional information to properly reconstruct the

connectivity. The Wavemesh connectivity encoding has been reused by Valette

et al. in [39] which proposes zerotree encoding [2]. Lee et al. make use of the

Wavemesh representation but propose novel connectivity and geometry coding

approaches [40].

Roy et al. [41] have reformulated the PM representation, which was already

encoded in a batched form by Pajarola and Rossignac in [20], as a multiresolution

analysis problem. They additionally take into account multiple attributes per

vertex, but do not consider them together to optimize the coding performance.

Finally, Maglo et al. [42] similarly use edge collapses to generate several

LODs by decimating an original mesh, grouping edge collapse operations which

are mutually independent. At the finer LODs, clustering and their independent

compression enables random access, allowing for refining specific clusters more

or less than their neighboring clusters.

2.4.3 Decoding Granularity

The difference between single-rate (Section 2.4.1), cLOD (Section 2.4.2.1) and

dLOD decoding (Section 2.4.2.2) is illustrated in Figure 2.21. This figure depicts

the distortion w.r.t. the amount of reconstruction. In the end, all (lossless) schemes

reconstruct the same model. A single-rate codec only constructs this model,

so the error when limiting the reconstruction becomes infinite as there is no

approximation available. A dLOD system has a discrete amount of reconstructions

which can be obtained. For a system which relies on 1-to-4 subdivision of vertices,

a model with n vertices will have log4(n) resolutions; for instance, a 1 000 000-

vertex model will be represented using 10 resolution levels. Finally, a cLOD

system practically has a continuous amount of reconstructions. For instance,

the same 1 000 000-vertex model would result in almost 1 000 000 reconstruction

levels.

2.5 Conclusions

This chapter covered the basic principles of mesh compression. A discussion

on sampling and quantization detailed how a continuous surface is represented

digitally by using a polygon mesh. From this, one can learn that 12 to 16 bit

quantization per component often largely suffices for representing the mesh

geometry. Successive approximation quantization (SAQ) was covered, which will

allow for quality scalability due to the embedded nature of the quantizers. Next,

some definitions and properties of meshes are discussed, focusing mainly on mesh
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Figure 2.21: Reconstruction granularity of single-rate and LOD decoding. The full lines

show obtainable rate points. For single-rate decoding (on the right), only the full

reconstruction can be requested, requesting a lower reconstruction gives an “infinite

distortion” as the model is simply undefined. The bottom curved line and the top step line

respectively show cLOD and dLOD reconstructions. While cLOD is in fact still discrete,

plotting all (possibly millions of) reconstructed samples will give a nearly continuous

curve. In both cases, the minimal reconstruction is M0, i.e., the base mesh.

regularity. This reveals that, in general, semi-regular meshes can be compressed

more efficiently as no connectivity information needs to be stored. In contrast,

irregular meshes require more information to be encoded, but allow for better

approximations using fewer vertices due to better allocation of vertex densities.

This trade-off is further investigated in Chapter 3.

Subsequently, mesh distortion measures have been discussed. Both the

Hausdorff and RMS measure have been used in literature for rate-distortion

(RD) comparisons; however, this disregards memory requirements for real-time

rendering which relates to the amount of vertices and triangles used to represent

a model. This chapter proposed a triangle-distortion (TD) comparison to account

for this. Additionally, an average rate difference and an average triangle difference

have been suggested for more succinct comparisons of codecs over larger test sets.

Finally, an overview of mesh compression was given. This dissertation

advances the state of the art in wavelet-based discrete LOD (dLOD) systems for

irregular meshes. The main reference for such systems is Wavemesh. Furthermore,

IPR will be used for comparison with a state-of-the-art continuous LOD (cLOD)

system.

The novel evaluation measures have been introduced in the Computer Graphics

Forum publication:

• J. El Sayeh Khalil, A. Munteanu, L. Denis, P. Lambert, and R. Van de Walle.

Scalable Feature-Preserving Irregular Mesh Coding. Computer Graphics

Forum, 36(6):275–290, September 2017.
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3D Triangular Meshes with Progressive Precision. Computers & Graphics,

28(1):35–42, 2004.

[40] Dae-Youn Lee, Sanghoon Sull, and Chang-Su Kim. Progressive 3D Mesh

Compression using MOG-based Bayesian Entropy Coding and Gradual

Prediction. The Visual Computer, 30(10):1077–1091, October 2014.



56 CHAPTER 2
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3
Resolution-Scalable and

Quality-Scalable Coding

The first major part of this dissertation tackles the issue of resolution scalability.

As introduced, computer graphics are omnipresent, with applications ranging far

outside of the entertainment sector. Main concerns are the increasing size of

the data, the growing diversity in processing power and capabilities of rendering

devices, and the larger variety of available bandwidths. Compression as such does

not suffice for interactive use, due to the processing required to decode an entire

mesh. A representation which is allowed to scale based on the actual application

requirements, device limitations and network properties proves valuable for any

mesh coding system.

Similar to other signal processing domains, there is a need for a multiresolution

representation that takes advantage of the inherent similarities between levels of

detail (LODs). For many years, wavelets have been used for representing data

in a multiresolution fashion, and their usage has already been extended to 3D

meshes. A wavelet-based solution uses a set of high-pass and low-pass filters

to obtain a low-resolution base mesh where all high-frequency information has

been removed, and a set of wavelet subbands containing this increasingly higher

frequency information. However, even today scalable representations have not yet

seen a breakthrough into the commercial world. Using these scalable systems at

low bit rates results either in a high number of polygons or a low quality; hence,

manually designing high-quality LODs with a low number of polygons is still

preferred.
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Contributions This first part of the dissertation proposes a lossless wavelet-

based multiresolution representation and coding system for irregular meshes.

The focus lies on improving the feature preservation using a limited number of

triangles, resulting in a good rate-distortion (RD) trade-off while also improving

the rendering performance. This work improves over the state of the art in several

aspects.

• A signal-adaptive downsampling and retriangulation procedure targets

feature-preservation by design, without impeding the filtering process near

geometric features.

• Adaptive retriangulation is not purely topology-based but takes into account

the geometric properties.

• The downsampling procedure decreases the resolution at most by half for

each decomposition level, resulting in a higher granularity in terms of levels

of detail.

• A novel octree-based encoding of the connectivity information decouples

decoding from any mesh traversal order.

• Spatial correlations of wavelet coefficients are exploited by employing an

octree-based encoding of geometry information as a novel way to process a

connectivity-driven transform by a geometry-based encoding.

• A comparison of the distortion w.r.t. the number of triangles shows the

performance from a rendering point-of-view, rather than a storage or

transmission perspective.

By exploiting fine-grain quality scalability, which allows for scaling the quality

of reconstructed data by decoding per wavelet subband bit plane, data can be

transmitted such that the distortion in the reconstructed mesh decreases optimally.

The codec is then extended to offer quality scalability, further improving over the

state of the art in two ways.

• The coding performance at low bit rates is improved by the proposed

algorithm by performing RD optimization (RDO).

• Functionally, an additional form of scalability is offered without negatively

impacting the lossless coding rate.

The remainder of this chapter is structured as follows. First a more detailed

discussion on related work is given in Section 3.1. The proposed coding scheme is

presented in Section 3.2, with a discussion on the transform in Section 3.2.1 and

on the coding part in Section 3.2.2. Requirements for quality scalability are then
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discussed in Section 3.3, and RDO using both resolution and quality scalability is

discussed in Section 3.4. Next, the experimental evaluation is given in Section 3.5,

and finally Section 3.6 concludes this chapter.

3.1 Related Work

Whereas single-rate coding has not seen many improvements since the state-of-

the-art coder of Touma and Gotsman [1], multi-rate coding has been tackled using

several very different approaches. Multi-rate or scalable coding is possible on a

fine-grained vertex-by-vertex level as introduced by Hoppe [2], resulting in a nearly

continuous sequence of resolutions; or on a more coarse-grained multi-vertex level

as pioneered by Lounsbery et al. [3], resulting in a discrete sequence of resolutions.

Pioneering work in progressive mesh representations was done by Hoppe [2],

defining a mesh in terms of a base mesh and a sequence of vertex splits. In this

work, Hoppe describes how a mesh can be simplified vertex per vertex, minimizing

an energy function at every step. This results in a continuous LOD (cLOD) chain

as introduced in Section 2.4.2.1: this progressive mesh representation generates a

nearly continuous spectrum of LODs where each new level is obtained by splitting

one vertex of the previous level. It provides the optimal mesh given a fixed

triangle budget, but does not provide an efficient encoding solution. Pajarola and

Rossignac [4] proposed refining this progressive mesh representation by grouping

the individual increments in batches, each batch splitting half of the decoded

vertices. This allows for better compression results but reduces the granularity.

Alliez and Desbrun [5] describe a valence-driven progressive compression

approach which creates patches and retriangulates these in a deterministic fashion,

layer by layer. Within each layer, a deterministic traversal order removes vertices,

aiming at optimizing the valences of the vertices globally. Similarly, Maglo et

al. [6] describe a progressive compression scheme for polygon meshes existing of

polygons in general, i.e., not restricted to triangular faces. The state of the art

in cLOD codecs is given by the IPR-codec of Valette et al. [7]. In this work

the authors present a compression scheme which predicts the edge splits and

the required precision for each vertex. The prediction of which edge to split at

every step ensures a visually pleasing result by keeping the triangle areas similar

to each other. However, keeping these areas similar results in undersampling

near high-frequency regions, which is why the preservation of geometric features

cannot be guaranteed. Finally, Peng et al. also considered the importance of

feature preservation in their Feature Oriented Progressive Lossless Mesh Coder

(FOLProM) [8]. In their work, the authors achieved this goal by introducing

feature-based prioritization of vertex split operations.

The idea of constructing scalable representations and compression systems

is well-known in signal processing. In this context, wavelets play a major role,



60 CHAPTER 3

being used to generate multiresolution representations of an input signal and to

build scalable codecs based on them. Wavelet-based scalable codecs include

well-known examples for images [9–11], for video [12–14], and were introduced

for surfaces by Lounsbery et al. [3]. Essentially, Lounsbery et al. established

the link between subdivision schemes and multiresolution analysis for meshes.

Subdivision schemes result in semi-regular meshes; however, models are most

efficiently represented using irregular meshes, allowing for adaptive sampling of

a surface as described in Section 2.2.

To allow for adaptive sampling of a surface, the lossy remeshing step which

constructs semi-regular meshes from irregular meshes needs to be avoided, and

instead the original irregular mesh must be processed. Additionally, some

applications do not allow for a lossy remeshing step. This reveals a trade-off:

the superior representation efficiency offered by an adaptive vertex density can

compensate for the inferior compression performance due to explicit connectivity

information.

Few wavelet transforms for irregular meshes have been proposed in the

literature. The issue was tackled by Bonneau [15] who described a generalization

of Haar-wavelets for piecewise constant functions defined on irregular triangular

meshes. Valette et al. [16, 17] describe a wavelet transform as an extension of the

subdivision-based multiresolution analysis introduced by Lounsbery et al. in [3].

The main difference with the latter is that the downsampling procedure is not solely

restricted to inverse subdivision, where four triangles of the higher resolution

mesh are merged to form a single triangle in the lower resolution approximation.

Rather, the simplification algorithm of Valette et al. can merge two, three or four

triangles depending on the connectivity of the mesh, thus eliminating the need for

semi-regular connectivity. As the downsampling procedure is no longer trivial,

each simplification step must be stored to allow for reconstructing the wavelet-

transformed mesh. Later, Valette and Prost proposed Wavemesh [18], a codec

employing this wavelet transform for irregular meshes; this codec represents the

state of the art in wavelet-based irregular mesh coding.

A comprehensive overview and classification of all scalable coding systems

falls out of the scope of this dissertation; the interested reader is referred to

one of the many in-depth overviews such as [19], [20], [21], [22] and more

recently [23]. Whereas the proposed coder is connectivity-based just as the related

work described above, i.e., the connectivity is improved after which the geometry

is reconstructed, in this thesis geometry-based octree-based data structures are

employed similar to how these are employed by the semi-regular mesh codec of

Denis et al. [24]. Octree-based data structures have also been successfully used for

geometry-based coding in the past, as shown by the state-of-the-art coder by Peng

and Kuo [25]. Being geometry-based, such approaches can easily be extended to

point clouds [26].
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State-of-the-art coders mainly focus on optimizing their RD performance [27].

While optimizations in L2 sense might yield optimized performance in the mean

square sense, this does not necessarily imply that visual quality is optimal. In this

respect, the importance of geometric features in a model needs to be emphasized.

Human perception is focused on high-frequency changes [28], and as such,

preservation of geometric features will better serve the perceived visual quality.

Codecs have rarely considered this by design, often offering feature preservation

by prohibiting reductions near features. Furthermore, one should question the

focus of minimizing the rate as such. From a storage and transmission perspective

the rate is of key importance, but for interactivity, efficient rendering requires

minimizing the distortion for a given triangle limit, which is directly related to

a given memory limit.

3.2 Designing a Core Resolution-Scalable

Feature-Preserving Irregular Mesh Codec

Wj
Wavelet

Transform

Geometry Coder

Connectivity Coder

Base Mesh Coder

Wavelet Subband Coder

M

M0

Gj

Cj

M.enc

Figure 3.1: Basic architecture of a wavelet-based mesh encoding system. A mesh M is

transformed into a base mesh M0, and a set of wavelet subbands Wj required to

reconstruct intermediate meshes Mj . Each subband consists of both connectivity

information Cj for reconstructing the topology of the irregular mesh, and geometry

information Gj for reconstructing accurate geometry.

The conceptual overview, as presented in Figure 3.1, depicts the major

components of the proposed encoding system.

An input mesh is subjected to the proposed wavelet transform, resulting in a

base mesh and a sequence of wavelet subbands. The base mesh can be encoded

using any single-rate coder, such as the state-of-the-art coder of Touma and

Gotsman [1]. The wavelet subbands require a connectivity coder and a geometry

coder to encode the connectivity increments and the geometry refinements

respectively. These data streams are multiplexed, resulting in a bit stream which is

resolution scalable and, within each resolution, quality scalable. A key feature of

this coding system will be implicit geometric feature preservation while allowing
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for several forms of scalability. As such, the resulting coding system is named

SFWInCS, the Scalable Feature-preserving Wavelet-based Irregular mesh Coding

System.

Figure 3.2 shows several intermediate resolutions when applying the proposed

codec to the 5-million vertex Thai statue model. The visual results show the

growing importance of the lossy domain with increasing mesh sizes: while a

complete lossless decoding requires 27 bpv, Figure 3.2c shows that very good

approximations are possible at low bit rates. The proposed lossless codec aims

to improve upon the state of the art at these lossy bit rates. Furthermore note

that Figure 3.2c is obtained using only 13.5% of the triangles. Contrary to many

state-of-the-art wavelet-based coders where a low bit rate generates a large amount

of triangles due to the regularity to which they owe their efficient compression,

the proposed codec generates fewer triangles as the intermediate meshes have

irregular topologies, this in turn resulting in a lower memory footprint for real-

time rendering without impeding the visual quality (as discussed in Section 2.2).

The next sections describe the main components of SFWInCS in more

detail. Section 3.2.1 describes the wavelet transform employing a novel adaptive

downsampling and retriangulation step to preserve geometric features, together

with a two-mode feature-aware prediction step, while Section 3.2.2 discusses the

encoding: Section 3.2.2.1 handles the novel encoding of the connectivity changes

using an octree data structure, and Section 3.2.2.2 describes the proposed wavelet

coding system for irregular meshes.

3.2.1 Wavelet Transform

The conventional wavelet transform used in mesh coding is given in Figure 3.3,

depicting the transform of a mesh at resolution j to a mesh at resolution j − 1

and a corresponding wavelet subband. This scheme is generic and stems from the

classical synthesis of wavelet transforms based on lifting [29, 30], and is discussed

for irregular meshes in Section 3.2.1.1. The novel contributions are discussed in

the subsequent sections.

3.2.1.1 Conventional Wavelet Transform for Irregular Meshes

In general, the lifting scheme proposes three steps in transforming input data:

a high-pass and low-pass filtering step, a prediction step, and an update step.

In the filtering step the vertices of Mj are partitioned in odd and even vertices

Mo
j and Me

j , respectively. After downsampling to preserve only the even

vertices Me
j , retriangulating the connectivity and updating the vertex positions,

the vertices veij ∈Me
j form the vertices γ(veij ) = vij−1 ∈ Mj−1, where γ is the

bijective operator that maps Me
j to Mj−1. To allow for reconstructing Mj by

upsampling the lower-resolution mesh and refining the odd vertices, connectivity
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(a) 1 bpv (1.07% tris) (b) 3 bpv (7.88% tris)

(c) 5 bpv (13.5% tris) (d) 27 bpv (10 000 000 tris)

Figure 3.2: Rendered model: Thai statue. Several resolution levels of this 5-million-vertex

model, encoded with 16 bit quantization. The middle column shows close-ups of the

pedestal of the statue, at the same bit rates.
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Figure 3.3: Overview of the wavelet transform. During the analysis step, a mesh Mj is

decomposed into a lower-resolution mesh Mj−1 and wavelet coefficients Wj−1. To allow

for irregular mesh coding, additional connectivity information has to be provided (denoted

by Cj−1) in addition to the geometry information represented as conventional wavelet

coefficients (denoted by Gj−1). The sets of even and odd vertices after partitioning are

respectively indicated by Me
j and Mo

j , with additional connectivity information

represented by Co
j ; the set of predicted odd vertices is indicated by M̃o

j .

and geometry information is required in the form of the wavelet subband Wj−1.

Define the wavelet coefficients corresponding to the odd vertices voij ∈ Mo
j as

ω(voij ) = wi
j−1 ∈ Wj−1, where ω is the bijective operator that maps vj ∈ Mo

j to

wj−1 ∈Wj−1.

For semi-regular meshes, connectivity information is implicit, and needs not

be transmitted. To accommodate for irregular meshes, the dashed lines in Figure

3.3 have been added to indicate that connectivity information can no longer

be assumed to be implicitly known for this type of meshes. This connectivity

information is represented by Co
j = Cj−1, and the need for explicitly representing

this information is common to all irregular mesh codecs.

Hence, for irregular meshes each wavelet subband encompasses the geometry

information represented by the conventional wavelet coefficients Gj−1 obtained

via lifting, together with explicit connectivity information Cj−1 to ensure

the correct connectivity. The connectivity information Cj−1 and geometry

information Gj−1 are denoted together as the wavelet subband Wj−1.

The reconstruction of the high-resolution mesh Mj , given the low-resolution

mesh Mj−1 and wavelet subband Wj−1, is denoted as:

Mj = WT−1(Mj−1,Wj−1), (3.1)

where WT−1 denotes the inverse wavelet transform.

Denote by wc ∈ Cj−1 and wg ∈ Gj−1 the connectivity and geometry

information of wavelet coefficient wi
j−1 respectively. To simplify notations, the

index i and subband j − 1 are not explicitly given for these two variables. In the

inverse wavelet transform, each voij = ω−1(wi
j−1) is reconstructed as follows:

voij =
( ∑

k∈|Mj−1|

wk
c v

k
j−1

)
+ wg = ṽoij + wg, (3.2)
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where | · | is the cardinality of a set. In this equation, the first term represents the

‘Predict’ step in the wavelet transform in Figure 3.3, weighing all vertices vkj−1

of the lower-resolution mesh by weights given by the connectivity information in

wi
j−1. This results in the predicted vertex ṽoij ∈ M̃o

j . The second term corrects

this prediction. Define now the support S(wi
j−1) for a wavelet coefficient wi

j−1 as

the set of vertices with a non-zero weight in Equation 3.2:

S(wi
j−1) = {v

k
j−1 ∈Mj−1 | w

k
c 6= 0}. (3.3)

That is, S(wi
j−1) corresponds to the set of vertices vkj−1 ∈Mj−1 required for

reconstructing voij = ω−1(wi
j−1).

The next sections discuss these steps in more detail. In Section 3.2.1.2, the

partitioning of vertices into even and odd vertices is discussed, followed by the

retriangulation after downsampling. Section 3.2.1.3 then tackles the prediction

and update steps, and the reconstruction is discussed in Section 3.2.1.4.

3.2.1.2 Signal-Adaptive Downsampling and Retriangulation

The first step of the wavelet transform is splitting the mesh information into lower-

resolution surface information and higher-frequency detail information. This is

done by first splitting the vertices in even and odd vertices. After downsampling,

which preserves the even vertices and eliminates the odd ones, the resulting

polygonal patches are retriangulated to form a lower-resolution triangle mesh. In

the subsequent step, discussed in Section 3.2.1.3, the lower-resolution information

is used to predict the detail information.

Vertex Partitioning First, the vertices of Mj are partitioned into the two subsets

Me
j and Mo

j of even and odd vertices respectively. Vertices of the input mesh are

labeled in the following manner.

Choose an arbitrary start vertex vSj with a valence greater than 3 (for reasons

that will become clear in Section 3.2.2.1 on connectivity coding), and mark it as

odd. Next, iterate over the neighbors of vSj , marking them as even vertices. Push

all unlabeled neighbors of these newly marked even vertices on a queue which

keeps track of vertices that still need to be processed. Figure 3.4b illustrates an odd

vertex (depicted in green as it is the start vertex vSj ) and its neighbors, classified

as even vertices. When all neighbors of vSj have been marked, and their unlabeled

neighbors are added to a queue, as shown in Figure 3.4c, the labeling procedure is

repeated for the first element in the queue. The algorithm halts when the queue is

empty and no more vertices need to be processed. These steps are formalized in

Algorithm 3.1.
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(a) (b)

(c) (d)

Figure 3.4: Selecting odd (red) and even (blue) vertices. (a) shows an arbitrary start

vertex vSj , depicted in green, which is considered as the first odd vertex. In (b), its

neighbors vS,ij are marked as even vertices, and (c) shows, in black, the vertices that are

added to a queue. The first black vertex is considered as the next start vertex vSj and the

process is repeated. The resulting patches are shown in (d).

Figure 3.4d shows the resulting patches. The colored triangles are merged to

form patches, but due to the irregular nature of the connectivity, not all triangles

are necessarily associated with a patch. The latter, drawn in gray, are referred to

as even polygons as they are strictly made out of even vertices.

The largest possible reduction occurs if a mesh can be completely partitioned

in quadrilateral patches. This can reduce the amount of triangles by half at most,

resulting in a higher granularity compared to other wavelet-based coders which

often aim at 4-to-1 reduction. Observe furthermore that improved results can

be obtained by steering the vertex partitioning instead of employing the current

approach using a random start vertex and a first-in-first-out queue. A better vertex

partitioning can improve the downsampling efficiency by aiming for a better patch

coverage over the surface, the TD performance by improved overall triangulation,

or the RD performance by providing better meshes for encoding.

Because the connectivity information is straightforward and implicit in most

wavelet schemes, e.g., compression of images or semi-regular meshes, the

triangulation of Me
j is never emphasized in any of the papers describing lifting.
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However, for irregular meshes this triangulation requires proper attention, and

requires explicit information to be stored to allow for reconstructing the high-

resolution mesh. This connectivity information Co
j describes the patches in the

retriangulated low-resolution mesh, as discussed next.

1: O ← ∅ ⊲ odd vertices

2: E ← ∅ ⊲ even vertices

3: U ← {v : v ∈Mj} ⊲ unlabeled vertices

4: Q ← ∅ ⊲ vertex queue

5: vS ← vrandom ∈Mj

6: while U 6= ∅ do

7: U ← U \ {vS}
8: O ← O ∪ {vS}
9: for all i ∈ [1, ν(vS)] do

10: vN ← vS,i

11: U ← U \ {vN}
12: Q ← Q \ {vN}
13: E ← E ∪ {vN}
14: end for

15: for all i ∈ [1, ν(vS)] do

16: vN ← vS,i

17: for all k ∈ [1, ν(vN )] do

18: if vN,k ∈ U then

19: Q ← Q∪ {vN,i}
20: end if

21: end for

22: end for

23: vS ← Q[0]
24: Q ← Q \ {vS}
25: end while

Algorithm 3.1: Vertex partitioning

Adaptive Retriangulation After downsampling, the resulting mesh given by

the vertices Me
j has to be retriangulated to obtain a triangular mesh. As the

patch borders and the even polygons already make up for a large portion of the

connectivity of the lower resolution approximation, the triangulation problem is

reduced to triangulating each patch individually. The patches are similar to those

generated by Cohen-Or et al. in [31]. Contrary to [31], however, the retriangulation

is adapted to the underlying geometry, and allows for any retriangulation. Figure

3.5 illustrates how different triangulations of the patches can dramatically affect

the visual quality of the lower resolution approximation. The original mesh is

depicted in Figure 3.5a. Figures 3.5c and 3.5d show the result when removing the

odd vertices and applying two different retriangulations on the patches shown in
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(a) Original (b) Patches

(c) Feature-disrupting

retriangulation

(d) Feature-preserving

retriangulation

Figure 3.5: Importance of feature-preserving patch retriangulation.

Figure 3.5b. Though both meshes have the same resolution, it is clear that Figure

3.5d resembles 3.5a much more closely, demonstrating the importance of a proper,

feature-preserving triangulation of the patches.

Ultimately, the goal is to preserve the geometric features of the original mesh.

The term geometric feature is defined as a portion of the mesh that determines in

great extent the visual appearance of that mesh. More concretely, features are

sharp edges that introduce large discontinuities in the surface normals, greatly

influencing the final renderings of the mesh. Hence, the key to preserving

geometric features and thus, maintaining object fidelity, is to assure that those

normal discontinuities are kept. The following discusses how to achieve the latter,

by introducing a simple, yet very efficient criterion.

Consider the odd vertex lying on a geometric feature, as depicted in Figure

3.6a. From the figure, the key observation is that the normal discontinuity inside

the green patch can be captured after removing the odd vertex by ensuring the

existence of the red colored edge, constructed by connecting the two even vertices

indicated in the figure. The main idea of the retriangulation algorithm is to identify

for every patch a feature candidate; this is done in the following manner.

Define the edge connecting vertices va and vb as E(va, vb). Define
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(a) (b)

Figure 3.6: Feature candidates. (a) depicts an odd vertex along a geometric feature. After

retriangulation, the red edge is the feature candidate for the green patch, splitting the

patch in two sub-patches. In (b), the feature candidate of each patch is depicted. The

colors are merely illustrative, indicating whether the dihedral angle along each feature

candidate surpasses 45◦ (red) or not (green).

furthermore the distance from v to E(va, vb) by

d
(
v,E(va, vb)

)
=
|(v − va)× (v − vb)|

|vb − va|
. (3.4)

This equation makes use of the fact that the magnitude of a cross product of

two vectors is the area of the parallelogram spanned by these two vectors; this

is illustrated in Figure 3.7.

v

va

vb

h

h

Figure 3.7: Vertex-to-edge distance. To find h, i.e., the distance from v to E(va, vb), one

can compute the area of the parallelogram spanned by E(v, va) and E(v, vb) and divide

this area by the base of the two formed triangles, |E(va, vb)|.

Each patch consists of a center odd vertex vo and a neighboring ring of even

vertices vo,k, with k ∈ [1, ν(vo)], where ν(v) denotes the valence of vertex v.

The feature candidate FC(vo) corresponding to the given patch around vo is the

edge which minimizes the Euclidean distance between E(vo,ka , vo,kb) and vo .

Mathematically, this is expressed as: FC(vo) = E(vo,k
′

a , vo,k
′

b), with

(k′a, k
′
b) = argmin

(ka,kb)

d
(
vo, E(vo,ka , vo,kb)

)
. (3.5)
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Figure 3.6b shows the result obtained when using this equation in the

triangulation procedure. This approach does not require introducing an explicit

threshold to actually differentiate between feature candidates lying along actual

geometric features and candidates lying within a planar surface; for illustrative

purposes the edges along which a large dihedral angle (i.e., larger than 45◦) was

found are displayed in red, while the other candidates are displayed in green. The

figure clearly indicates that the feature candidates for patches that actually embed

geometric discontinuities, are capable of maintaining large normal discontinuities

typifying the overall shape of the mesh without any threshold definition or feature

detection preprocessing step.

(a) No Delaunay triangulation (b) Valid Delaunay triangulation

Figure 3.8: Delaunay triangulation condition. This condition states that the circumcircles

of all triangles must have empty interiors. In (a) it is not met as the red vertex is located

within the dashed circle, i.e, within the circumcircle of the hatched triangle. In (b) a valid

Delaunay triangulation is shown: no vertex lies inside the circumcircle of the right

triangle as illustrated, while similarly no vertex lies in the circumcircle of the left triangle.

Once the feature candidates are computed, the patches are retriangulated:

as demonstrated by Figure 3.6a, a feature candidate divides its corresponding

patch into two smaller sub-patches. Hence, triangulation of Me
j now consists

of triangulating these sub-patches. Although this step only slightly impacts the

overall visual quality of the mesh, it is wise to target a good triangulation in order to

facilitate the extraction of the lower resolution approximations for further wavelet

decompositions. In the implementation, a Delaunay triangulation [32] is targeted

for the sub-patches. For vertices in 3D, this triangulation is obtained by projecting

the vertices on their best fitting plane, performing Delaunay triangulation in this

plane, and mapping the projected vertices back to their respective original vertices.

A Delaunay triangulation optimizes the resulting triangles by avoiding long thin

triangles in favor of near-equilateral triangles. Figure 3.8 depicts the Delaunay

triangulation condition which must be met for all triangles. As both sub-patches

are assumed to be nearly planar, few issues may arise when using this projection

and triangulation. Care only has to be taken to avoid adding triangles when the

projected vertices form a concave polygon. In this case, only the triangles created

within the borders of the original patch will be used in the low-resolution patch.

In addition, whichever triangulation is used, triangle flips within the sub-

patches are not allowed after retriangulation. Assuming that a sub-patch is

relatively smooth, a triangle flip is defined as the appearance of a triangle whose
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Figure 3.9: Effect of geometry on triangulation. The top and bottom rows are topologically

equivalent. (a) can be retriangulated as in (b) or (c), (d) as in (e) or (f). The red dashed

line indicates the selected feature candidate. Although no real geometric features are

present for these nearly-coplanar vertices, a wrong triangulation can introduce a sharp

crease.

normal is rotated more than 90◦ compared to the other normals within the

sub-patch. Figure 3.9 illustrates this. Both rows share the same connectivity

information, but depending on the actual geometry, retriangulations such as

observed in Figure 3.9f are undesirable: this triangulation introduces a new

geometric feature CE between triangles ∆ACE and ∆ECD, changing the

underlying geometry. If the vertices are nearly coplanar, this will also result in

overlapping triangles and visual artifacts when considering the triangulation of the

neighboring patches. Hence, a triangulation as shown in Figure 3.9e should be

preferred.

Multiple-Feature Patches Though the previously detailed feature candidates

are very capable of maintaining the overall shape of the input mesh in most cases,

there are some occasions where they prove to be insufficient. Consider Figures

3.10a and 3.10c, which depict two odd vertices lying on geometric corners of the

surface. The results when removing those particular odd vertices and applying the

triangulation procedure are given in Figure 3.10b and 3.10d respectively. As is

obvious from the figures, the geometry of the original mesh is significantly altered

in both cases. This stems from the fact that any retriangulation of patches can only

accommodate for at most one normal discontinuity. In both Figures 3.10a and

3.10c the normals of the polygons incident to the odd vertex show three normal

discrepancies. As is illustrated by Figures 3.10b and 3.10d, respectively none or

at most one of the discrepancies can be captured by a feature candidate in the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.10: Multiple-feature patches. Removing the odd vertex shown in (a) and (c) alters

the visual appearance of the mesh due to aliasing, as is illustrated by (b) and (d),

respectively. (e) – (h) show how new patches are found around multiple-feature vertices.
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retriangulated patch. Currently, large normal discontinuities are detected based

on a dihedral angle threshold τMF: in the original patch, only two edges leaving

the odd vertex can lie along a large normal discontinuity; if more dihedral angles

surpassing τMF are found, these patches are referred to as multiple-feature patches,

and the odd vertex will be preserved in Me
j . Depending on the defined patches

in the neighborhood of the odd vertex, alternative patches can possibly be found

at the same resolution which now define this vertex as an even vertex around a

neighboring vertex that is allowed to change its label to ‘odd’. This is shown in

Figures 3.10e – 3.10h; the new patch retriangulations now appropriately preserve

features. As before, the feature candidate colors are again purely illustrative to

distinguish “sharper” feature candidates; these colors have no significance for the

wavelet transform.

The effect of the threshold τMF has not been investigated rigorously, yet the

value of τMF = 45◦ has resulted in adequate feature-preservation. The effects of

choosing this value too high or too low can be understood intuitively. Setting

threshold τMF too large will result in artifacts as shown in Figures 3.10b and

3.10d, i.e., multiple-feature patches go undetected. Setting threshold τMF too low

will limit the simplification performance as too many odd vertices are preserved.

This approach can become sensitive to noise, resulting in an overestimation of

the amount of multiple-feature patches and consequently a reduced downsampling

efficiency. Noise-resilience can be improved by denoising and more advanced

feature detection techniques. Lei He and Scott Schaefer [33] have shown

impressive results. However, investigating such techniques is left as topic of

further investigation; currently the models being considered are manually crafted,

such as high-complexity CAD models, video game assets or animation film assets.

In these cases, implicitly preserving a single feature within a patch, and explicitly

filtering multiple-feature patches using dihedral angles and threshold τMF, suffices.

3.2.1.3 Two-Mode Feature-Aware Prediction without Update

Following the downsampling and retriangulation (Section 3.2.1.2), indicated in

Figure 3.3 by the Split block, the proposed prediction and update steps of the

lifting-based multiresolution analysis are discussed next. The high-frequency data

is predicted using the local patch information: the lower-resolution mesh Me
j and

the information for upscaling the mesh connectivity as provided by Co
j together

allow for predicting odd vertices indicated by M̃o
j in Figure 3.1, determining a

prediction error per patch. Good prediction leads to a wavelet representation with

low entropy, which in turn is of particular interest for compression. A predictor

with two operating modes is proposed. If the largest dihedral angle in the low-

resolution patch surpasses the feature prediction threshold τFP, the new vertex is

predicted along the appropriate edge. If not, then no obvious geometric features

are detected and the new vertex is predicted as the average of the positions of the
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patch border vertices. For both operating modes, more advanced predictors will

improve the performance even further.

The coding results have not been evaluated extensively w.r.t. this threshold

value τFP, but short experiments have shown that τFP= 45◦ is an acceptable

threshold for obtaining good compression results. Yet, this value could be

optimized for each model individually; even more, an optimal τFP could be

determined per resolution level. The effect of this threshold is obvious. By

choosing τFP too high, some geometric features are not detected and the prediction

as a patch average will result in larger prediction error values. Choosing τFP

too low results in detecting random features when no actual geometric feature

is embedded, again resulting in larger prediction error values. Note that by

determining whether an edge is a geometric feature based solely on the low-

resolution mesh, both the encoder and decoder can do this same prediction without

communicating feature candidates.

Additionally, although theoretically and practically feasible, the choice was

made not to include the update step in the multiresolution analysis because of the

following reasons. In the original lifting-based designs, updating was introduced

to avoid aliasing. However, by preserving odd vertices in multiple-feature patches

aliasing artifacts are already reduced. Another objective of the update step is

to smooth the geometry in Mj−1, making the lower resolution approximation

more visually appealing. However, in the case of feature-rich meshes, smoothing

Mj−1 would also lead to a blurring of sharp corners such as the ones depicted

in Figures 3.10a and 3.10c, hence, severely altering the geometry of the original

mesh. Altering sharp discontinuities is totally unacceptable; the objective is to

generate high quality low-resolution meshes. Also note that the wavelet transforms

used in the state of the art in semi-regular mesh coding - see [24] - do not employ

the update step.

3.2.1.4 Reconstruction

Figure 3.11 illustrates the wavelet transform for a single patch which embeds a

geometric feature. Figure 3.11b shows the preservation of a feature due to the

adaptive retriangulation, and Figure 3.11c shows the prediction of the odd vertex

(blue) and the accompanying wavelet coefficient (red). Due to the presence of

the geometric feature in the low-resolution mesh, the new vertex will be predicted

along this feature, i.e., along the middle internal edge.

Reconstruction merely involves inserting a new vertex for each patch and

recovering the original triangulation. As detailed above in Section 3.2.1.3,

predicting the position of the new vertex is based on the presence of geometric

features in the low-resolution mesh, predicting the vertex either at the midpoint of

a geometric feature or as the average of the positions of the patch border vertices,

depending on the threshold τFP. In both cases, the new vertex ṽ ∈ M̃o is refined by
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(a) High-resolution patch (b) Downsampling &

retriangulation

(c) Prediction & wavelet

coefficient

Figure 3.11: Conceptual example of the wavelet transform.

displacing it, given the associated prediction error stored in the form of a wavelet

coefficient as shown in Equation 3.2. The connectivity of the high-resolution mesh

is rebuilt by discarding the triangulation inside the patches of the low-resolution

mesh, and connecting the newly inserted vertices with their corresponding patch

border vertices.

3.2.2 Wavelet Subband Coding

As depicted in Figure 3.1, the wavelet transform results in a base mesh M0 and

a set of wavelet subbands Wj . The next sections describe the encoding of the

wavelet subbands. First the encoding of the connectivity information Cj of these

subbands, which allows for properly upsampling irregular meshes, is described.

This is followed by a description of the encoding of the geometry information Gj ,

required for accurately refining the odd vertices per resolution.

3.2.2.1 Connectivity Coder

Octree

Construction

Octree

Coding

Entropy

CodingCj

Figure 3.12: Overview of the connectivity coder.

As detailed in Section 3.2.1, connectivity information comes in the form of

patches that have been constructed. Recall that, after downsampling a mesh Mj+1,

it has to be retriangulated to obtain a triangular mesh Mj . This retriangulation step

is required because the downsampling step results in a polygon mesh consisting

not only of triangles, but also of quadrilaterals, pentagons, hexagons, etc. Each
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of these polygons corresponds with a single patch. Hence, the patches can

be recovered by identifying which edges where available in the downsampled

polygon mesh, and which edges were created when retriangulating these polygons.

These edges are identified using a single bit per edge. Contrary to similar patch-

based coders, e.g., the work of Cohen-Or et al. [31], this approach does not pose

any restrictions on the retriangulation process, as reconstruction will always be

possible.

There is one caveat: when a patch in the high-resolution mesh consists of three

triangles, i.e., the odd vertex had valence three, it is merged into one triangle,

making it indistinguishable from even triangles that were simply preserved when

downsampling. To avoid the overhead of signaling these triangular patches

separately, such patches are not allowed to be created in the first place by

disallowing valence-three-vertices to be marked as odd vertices.

(a) (b) (c) (d)

Figure 3.13: Patch recovery with higher-order polygons allowed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.14: Patch recovery with a triangle mesh.

To recover the patches when given the edges that were obtained through

retriangulation, several approaches are possible. If a data structure is employed

which allows for quadrilaterals, pentagons, hexagons, etc. in the polygon mesh
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representation, then these edges simply need to be dissolved, merging triangles

into higher-order polygons. A traversal of the mesh then collects all higher-order

polygons, corresponding with the patches that need to be upsampled. This is

illustrated in Figure 3.13.

If the data structure only allows for triangles, then patches can be recovered by

realizing that the two neighboring triangles of each given edge are part of the same

patch. Figure 3.14 depicts this.

Connectivity Octree Construction To encode the connectivity information,

represented as a single bit per low-resolution edge as discussed above, the low-

resolution mesh Mj needs to be traversed to visit each edge. In this case, one has

to take care to ensure that both the encoder and decoder apply the same traversal

order, ensuring that edges are visited in the exact same order such that the decoder

assigns the binary values to the appropriate edges. Alternatively, to avoid defining

and imposing any traversal order, in this dissertation the connectivity information

is encoded in an octree data structure, which has been successfully used for

geometry coding (e.g., [25]). Such an octree structure makes use of the underlying

low-resolution geometry to assign a spatial location to each edge, and the binary

values are encoded by iteratively subdividing the space spanned by these locations

into eight smaller subcells. While this approach does not significantly affect the

connectivity coding performance, it allows for implementation optimizations as

subcells can be processed in parallel. The octree construction is detailed next.

The binary values associated with the edges are embedded in spatial cells as

follows. When denoting the components px, py and pz of a point p by p0, p1 and

p2, then a spatial cell in R
3 can be compactly defined as

C(k,u) = {p ∈ R
3|pi ∈ [ki, ki + ui[, for 0 ≤ i ≤ 2},k,u ∈ R

3. (3.6)

Such a spatial cell is illustrated in Figure 3.15a, encompassing all points p which

are located within the drawn box. Furthermore, a partitioning rule is defined

to iteratively segment spatial cells C(k,u) in eight subcells C(k∗,u/2) with

k∗ = (k0 + γ0u0, k1 + γ1u1, k2 + γ2u2) and each γi ∈ {0, 1/2}. This is

illustrated in Figure 3.15b: a cell C(k,u) is refined into eight smaller cells, where

the particular k∗ in Figure 3.15b is obtained with γ0 = 0, γ1 = 1/2 and γ2 = 0.

This octree construction can now be used for encoding the connectivity

information. First, samples are taken at the midpoints of the edges: that is, let

eij be the edge defined by viaj and vibj ∈ Mj , then the embedding of the sample

β(eij) for the edge eij is defined such that:

β(eij) ∈ C(k,u), if
[1
2
viaj +

1

2
vibj

]
∈ C(k,u). (3.7)

Now define Croot = C(kr,ur) such that all the samples are embedded within

this cell, i.e., so that β(eij) ∈ Croot, ∀e
i
j ∈ Mj . This can be done by considering
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the bounding box of the mesh, as described in Section 2.3.1 (Figure 2.13 on page

38), and considering the lower bound bmin as kr, and the bounding box diagonal

(bmax − bmin) as ur.

The cell refinement is guided by the significance of the samples. A sample is

considered significant if the corresponding edge was added during retriangulation

and hence will be dropped when reconstructing the high-resolution mesh. Cells are

only refined when significant samples are present, and iterative refinement halts

when the number of samples within a particular cell drops below a user-specified

threshold λC > 0. The samples within such a leaf cell are ordered based on the x

value of the edge midpoint, subsequently on its y value and finally on its z value,

resulting in a deterministic ordering.

k

u

(a) Spatial cell C(k,u)

k∗

u/2

(b) Cell refinement

Figure 3.15: Spatial cell refinement.

Example An example of this is shown in Figure 3.16. When the connectivity tree

construction is finished, the cell configuration can look, for instance, as depicted

in Figure 3.16a. With the numbering convention as depicted in 3.16b, this octree

can be visualized as in Figure 3.16c. There is at least one significant edge in

Croot such that it is split into eight new cells. As can be seen, both in Figure

3.16a and 3.16c, only the 7th cell is further refined; the other cells either contain

no significant edges, or these are leaf cells, where the number of edges does not

surpass λC . These steps are repeated: of this 7th cell, the 3rd and 7th are further

refined and finally, of the latter refinement, the first cell is once more subdivided.

An illustration of an actual mesh with its samples embedded in an octree is

shown in Figure 3.17.

Octree and Entropy Coding The octree, as constructed above, can now be

traversed and its embedded samples encoded by finding significant samples.

Starting from Croot, refinements will result in symbols sc and nc for significant

and non-significant cells respectively, while the encoding of leaf cells will result

in symbols se and ne for significant and non-significant edges.
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(a) Refinement of C(kr,ur)

1 3

5 7

2 4

6 8

(b) Subcell Ordering

(c) Octree

Figure 3.16: Example octree.

At every point during the coding procedure a symbol of only one specific

symbol pair is expected, either sc or nc, or either se or ne. Consequently, no

additional signaling is required to differentiate between these two binary signals.

To encode this, context-adaptive binary arithmetic coding (CABAC) is used, as in

several video coding standards [34]. In the connectivity codec, a separate context

is used for each of the two binary signals, i.e., one context for the bits indicating

cell significance, and a second context for the bits signaling edges being kept or

dropped.

Example (cont.) The symbol stream for encoding the samples embedded in the

octree of Figure 3.16c starts by sc. For each of the first six subcells: either the

number of samples in the cell surpasses λC and a single symbol nc encodes all

samples, or it is a leaf cell and each sample is encoded by a single symbol se or

ne. Then the 7th subcell is processed by encoding sc after which the steps above

are repeated for the new subcells. In the end, the 8th cell is encoded, again either

by a single nc or by a symbol se or ne per sample.
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(a) Low-resolution mesh (b) Sampling in an octree

Figure 3.17: Embedding connectivity in an octree. The samples, taken at the edge middles

shown in (a) are used for constructing the octree depicted in (b). In this example there is

only a single patch, located in the lower right corner (cell 7 as indicated in Figure 3.16b).

The following gives a possible symbol stream, where the ‘ ’ character is

merely added for clarity, indicating the refinement level. Only four samples in leaf

cells are encoded and are shown in boldface, two samples after three refinement

steps and two samples after four refinement steps:

sc,

nc, nc, nc, nc, nc, nc, sc,

nc, nc, sc
nc, nc, nc, nc, nc, nc, nc, se,ne,

nc, nc, nc, sc
sc,

ne, se, nc, nc, nc, nc, nc, nc, nc,

nc, nc, nc, nc, nc, nc, nc,

nc,

nc.

As the decoder starts the procedure with the same low-resolution mesh, it

obtains the same sample locations and consequently makes the same decision to

either decode all samples in a cell (then, the binary digit is interpreted as either se
or ne) or decode whether the cell is significant or non-significant (then, the digit is

interpreted as either sc or nc).

3.2.2.2 Geometry Coder

When predicting the positions of the odd vertices (as detailed in Section 3.2.1.3),

the deviations from the actual odd vertex positions are encoded as wavelet

coefficients, of which the distribution in each subband is typically zero-mean

Laplacian.

The geometry coder is based on the state-of-the-art SIM-codec for semi-
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Figure 3.18: Overview of the geometry coder.

regular meshes [24]. It avoids interband coding techniques as these prohibit

resolution scalability by traversing all subbands when encoding each bit plane. The

SIM-codec is an intraband codec which also uses an octree structure, to exploit

statistical dependencies between wavelet coefficients in each subband. It is the

extension into 3D of quadtree-based coding techniques used in the past in the

context of image coding [35].

Quantization In order to provide quality scalability per resolution, SAQ is used

as discussed in Section 2.1.2, i.e., the significance of the wavelet coefficients are

determined with respect to thresholds of the form τp = 2p, p > 0. The resulting

quantization indices are encoded using a bit plane coder, as described further in

the paragraph on intraband bit plane coding.

Geometry Octree Construction As the mesh vertices are quantized, the

wavelet coefficients can be represented using a limited number of bits, implicitly

determining their significance with respect to a series of monotonically decreasing

thresholds of the form 2p. The proposed scheme stores the wavelet components in

a hierarchical octree data structure, analogous to [24] and similar to the storage of

connectivity bits as described in Section 3.2.2.1. Consider again C(k,u) defined

in Equation 3.6. This spatial cell in R
3 now embeds wavelet coefficients. Denoting

ω(voij+1) as the wavelet coefficient corresponding to the odd vertex voij+1, define the

embedding such that

ω(voij+1) ∈ C(k,u), if ṽoij+1 ∈ C(k,u). (3.8)

Recall that ṽ in this equation is the predicted position of v, which is determined

at both the encoder and decoder side without additional geometry information

whereas the actual position of v is unknown for a decoder, prior to decoding

the wavelet subband. As neighboring wavelet coefficients are encoded by the

same octree cells, this approach is able to exploit spatial correlations and to
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improve the compression performance by more efficient encoding of neighboring

(non-)significance.

Contrary to the connectivity information where binary signals are trivially

determined as being significant, an operator σp(.) now determines the significance

of a wavelet coefficient with respect to the quantization threshold 2p, mapping

ω(vj) to the binary value

ωp(vj) = σp(ω(vj)) =

{
0 if |ω(vj)| < 2p

1 if |ω(vj)| ≥ 2p
. (3.9)

This allows again for defining a partitioning rule segmenting C(k,u) in eight

adjacent subcells C(k∗,u/2) as described in Section 3.2.2.1. A cell is partitioned

if at least one significant wavelet coefficient is present. This partitioning rule

allows for constructing a hierarchical octree. The construction starts by creating

the root Croot = C(kr,ur) so that ω(vj) ∈ Croot, ∀vj ∈ Mj . Next, Croot

is segmented using the partitioning rule and recursively applying it to all newly

created subcells C(k∗,u/2) until the number of coefficients in each cell is smaller

than a user-specified threshold λG> 0. The wavelet coefficients within the leaf

cells are ordered analogous to the ordering of connectivity samples as described in

Section 3.2.2.1, i.e., based on the x-, y-, and z-values of the predicted positions ṽ.

Intraband Bit Plane Coding The wavelet coefficients, now stored in an octree

data structure, are encoded in exactly the same way as described by Denis et

al. [24] for semi-regular 3D mesh coding, i.e., using a significance pass, non-

significance pass and refinement pass. This is similar to the set partitioning in

hierarchical trees (SPIHT) coding approach proposed by Said and Pearlman [9]

for image coding. Yet, whereas SPIHT exploits inter-resolution correlations for

its set partitioning, the proposed coding approach performs set partitioning, i.e.,

octree cell refinement, only based on intra-resolution information.

The significance pass encodes whether a cell is significant or non-significant

using symbols sc and nc. When the number of coefficients drops under the

user-defined threshold λG, this pass encodes whether the wavelet coefficients are

significant or non-significant using symbols sw and nw. The significant wavelet

coefficients are stored in a refinement list, while the non-significant wavelet

coefficients are stored in a non-significance list. Note that, as soon as a wavelet

coefficient is found to be significant, its sign is encoded as being positive, ps, or

negative, ns.

The non-significance pass traverses the non-significance list and encodes, with

sw and nw, whether or not each coefficient has become significant. If so, the

coefficient is moved from the non-significance list to the refinement list, and its

sign is encoded.
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Finally, the refinement pass refines the significant wavelet coefficients in the

refinement list using symbols sr and nr.

Similar to the coding as described in Section 3.2.2.1, the symbols as obtained

by the intraband coder are again encoded using CABAC. At every step in the

coding process a symbol of only one symbol pair can be emitted, that is, either

sc or nc, either sw or nw, either ps or ns, or either sr or nr. This allows the

binary encoding of these symbols using four separate contexts, which can again be

distinguished without additional signaling.

3.3 Introducing Template Meshes to Unlock

Quality Scalable Irregular Mesh Coding

The wavelet transform and encoding in SFWInCS as discussed above in Section

3.2 allows for resolution scalability and only for a limited form of quality

scalability: at each resolution, the decoder can determine the amount of quality

bits for the newly added vertices; however, a new resolution can only be decoded

after fully decoding the previous resolution. This is a disadvantage of using the

lower-resolution mesh for embedding the connectivity information and wavelet

coefficients in octrees. Dependencies between data blocks are shown in Figure

3.19a, clearly showing that this approach allows only one meaningful order in

which data can be transmitted, depicted in Figure 3.19b.

Instead, quality-scalable encoding of irregular meshes has been explored where

the wavelet subbands are encoded at possibly different quality levels. Moreover,

the subband bit planes are encoded in an RD-optimal manner, ensuring minimal

distortion in the reconstructed mesh for any target bit rate.

To allow for this, a so-called template mesh is introduced in order to decouple

the transform step from the encoding step, and to allow for quality scalability. The

necessity of such a template mesh originates from the octree encoding and the

embedding of samples therein based on geometrical information; it distinguishes

between the geometry of the transform step and the geometry used for embedding.

This approach using template meshes was proposed in [24] for semi-regular

meshes: proper decoding requires that the samples which are embedded within

the octrees can be embedded unambiguously, making use only of data which is

available at the decoder side.

Hence, for each subband Wj−1 a template mesh MT
j−1 is maintained, which

represents at least all connectivity information in the original mesh. This is the

minimal information which is required for decoding without drift, independent

of the reconstructed quality of M . As both Mj−1 and MT
j−1 share the same

connectivity information, there exists a bijective mapping µ linking the vertices
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Figure 3.19: Data dependencies for resolution-scalable coding. (a) shows dependencies in

resolution-scalable coding, and (b) the only possible coding order. For resolution j, Cj

represents the connectivity data and G
(i)
j the geometry data at bit plane i.

of both, that is:

∀v ∈Mj−1 : µ(v) ∈MT
j−1, (3.10)

∀vT ∈MT
j−1 : µ−1(vT ) ∈Mj−1. (3.11)

The embedding of connectivity samples in an octree explicitly makes use of

the mapping. Hence, Equations 3.7 and 3.8 become:

β(eij) ∈ C(k,u), if
[1
2
µ(viaj ) +

1

2
µ(vibj )

]
∈ C(k,u), (3.12)

ω(voij+1) ∈ C(k,u), if µ(ṽoij+1) ∈ C(k,u). (3.13)

That is, the embedding is determined by the geometry of the template mesh instead

of the real mesh, via the mapping µ.

Observe that the embedding, and consequently the encoding itself, only

requires the information available at the current resolution. Hence, the connectivity

information is required only up to the highest resolution where wavelet coefficients

are being refined; the quality does not need to be equal over all subbands. This is an

interesting difference with the work of Valette et al. [36], which proposes quality

scalability for the irregular wavelet transform of [17] and requires all wavelet

coefficients for its zerotree coding, thus requiring all connectivity information to

be encoded before any geometry information can be processed.
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3.3.1 Template Meshes for Resolution-Scalable Coding

When reformulating the approach as described in Section 3.2.2 following this

template paradigm, the template mesh for reconstructing Mj is an exact copy of

the low-resolution mesh: Mj−1 = MT
j−1, and µ is the identity operator, leaving its

argument unaltered. Denote by M̃j+1 the upsampled version of Mj before refining

the odd vertices. Equivalently, this would be the reconstruction of Mj+1 assuming

that wg = 0∀w ∈ Wj . Algorithm 3.2 reformulates the approach suggested in

Section 3.2.2 using template meshes.

1: MT
0 ←M0

2: for all j ∈ [0, R− 1] do

3: Cj = DECODECONNECTIVITY(MT
j )

4: M̃j+1 = UPSAMPLE(Mj, Cj)

5: M̃T
j+1 = UPSAMPLE(MT

j , Cj)

6: Gj = DECODEGEOMETRY(M̃T
j+1)

7: Mj+1 = REFINE(M̃j+1, Gj)

8: MT
j+1 = REFINE(M̃T

j+1, Gj) ⊲ Note: MT
j+1 ≡Mj+1

9: end for

Algorithm 3.2: Resolution-scalable coding using template meshes

By ensuring that the geometry of this template mesh MT
j is close to

the geometry of the real mesh Mj , this approach remains able to exploit

spatial correlations. The template mesh suggested above, which is a direct

implementation of the resolution-scalable encoding as described in Section 3.2,

matches the real mesh perfectly by construction (as MT = M ). This ensures

optimal preservation of spatial correlations, but disallows full quality scalability.

Only within a resolution, a decoder can decide on the reconstruction quality of the

wavelet coefficients.

To allow for quality scalability, this template mesh construction is altered as

described next.

3.3.2 Template Meshes for Quality-Scalable Coding

To allow for quality scalability, the following geometry-agnostic approach is

proposed. The base mesh is used as a first template mesh again. However, instead

of reconstructing each resolution using its previous resolution, effectively doing an

inverse transform on the template mesh which is identical to the inverse transform

performed on the real mesh, a modified inverse transform is performed which only

uses connectivity information. This results in a template mesh which increases

in resolution by only predicting the added vertices without requiring the decoded
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Figure 3.20: Data dependencies for quality-scalable coding. (a) shows dependencies when

quality scalability is allowed, (b), (c) and (d) show possible coding orders. For resolution

j, Cj represents the connectivity data and G
(i)
j the geometry data at bit plane i.
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wavelet coefficients to refine these vertices. The result is that the connectivity and

geometry of a resolution can be decoded as soon as the connectivity of the previous

resolution is known. The adapted algorithm is given in Algorithm 3.3, and is very

similar to Algorithm 3.2, only line 8 has been changed as this line introduced the

dependencies which made quality scalability without drift impossible.

1: MT
0 ←M0

2: for all j ∈ [0, R− 1] do

3: Cj = DECODECONNECTIVITY(MT
j )

4: M̃j+1 = UPSAMPLE(Mj, Cj)

5: M̃T
j+1 = UPSAMPLE(MT

j , Cj)

6: Gj = DECODEGEOMETRY(M̃T
j+1)

7: Mj+1 = REFINE(M̃j+1, Gj)

8: MT
j+1 = M̃T

j+1 ⊲ Note: MT
j+1 6≡Mj+1

9: end for

Algorithm 3.3: Quality-scalable coding using template meshes

The resulting dependencies are depicted in Figure 3.20a: the encoder is able to

store the data blocks in an unrestricted order as long as (a) the order of connectivity

information blocks is maintained, (b) geometry information within each resolution

is stored in the correct order, and (c) connectivity information for a specific

resolution is encoded before geometry information. This allows for storing and

transmitting the blocks in any order: resolution per resolution as before (Figure

3.20b), bit-plane-by-bit-plane or purely quality-scalable (Figure 3.20c), or in any

arbitrary order that meets the dependencies as indicated above (e.g., Figure 3.20d).

3.3.3 Geometry-Agnostic Template Meshes and Parallelization

The geometry-agnostic template meshes suggested in the previous section allow

for any arbitrary storage and transmission order. This allows for an encoder to

determine an optimal order in which to encode all data.

An added advantage of a geometry-agnostic template mesh is the

parallelization opportunities it offers at the decoder side. Assuming that a

resolution-scalable coding order is employed such as depicted in Figure 3.20b,

and furthermore assuming that sufficient signaling is provided such that a decoding

application is able to extract the individual resolutions from the data stream, then

each wavelet subband can be decoded in parallel, as soon as the appropriate

connectivity information is decoded. This has been illustrated in Figure 3.21c.
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Figure 3.21: Data dependencies and parallel decoding. Whereas the connectivity data Cj

needs to be read in the correct order, the geometry data no longer needs to be processed

per resolution: Gj1 and Gj2 can be processed in parallel.

3.4 Global RD Optimization

RDO requires encoding data blocks such that the distortion is minimal at all bit

rates. Such distortion optimization depends on the distortion measure used and as

such does not yet have an unambiguous solution. The aim is to show that such

optimizations are indeed possible by proposing an RDO algorithm, proving that

an optimized subband bit plane storage and transmission order is enabled by the

codec architecture.

3.4.1 Computing Distortions per Bit Plane

The optimization algorithm is constructed by considering the distortions

introduced by the wavelet transform. With Nj = |Wj | the number of wavelet

coefficients for resolution j, the remaining distortion D
(p)
j related to this jth

resolution decoded up to bit plane p is given by:

D
(p)
j =

Nj∑

i=1

αi
jd

i(p)

j , (3.14)

with di
(p)

j the distortion on the odd vertex voij when the most significant bits of

wavelet coefficient i of resolution j are decoded up to the pth bit plane, i.e.,
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voijṽoij
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Figure 3.22: Example reconstruction errors of a 4 bit wavelet coefficient. Except for the

first line, the resolution subscript j and the wavelet coefficient index superscript i are

omitted to simplify notations. ǫp(wg) represent the reconstructed wavelet coefficients and

ǫp(vo) represent the odd vertex reconstruction when decoding up to bit plane p.

di
(p)

j = |voij − ǫp(voij )|

= |voij −
(
ṽoij + ǫp(wi

g,j−1)
)
|.

(3.15)

In Equation 3.15, ṽoij is again the predicted position of odd vertex voij , and

ǫp(voij ) denotes its reconstructed position when decoding the most significant bit

planes of the accompanying wavelet coefficient wi
j−1 = ω(voij ) up to bit plane p;

that is, when considering the partly reconstructed wavelet coefficient ǫp(wi
g,j−1).

These notations are illustrated in Figure 3.22 where the example reconstruction

of a 4 bit wavelet coefficient (and the corresponding reconstructed odd vertex) is

given. To simplify notations, the superscript j and subscript i are dropped as the

following paragraphs always handle a specific odd sample i of a specific resolution

j.

Denoting the total number of bit planes by Q, then ǫQ(wg) = 0, i.e., when

all Q bit planes are still to be encoded, the wavelet coefficient is zero and the
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1: for all v ∈M do

2: β(v)← 1/nv

3: end for

4: while downsampling do

5: for all voij ∈Mo
j do

6: for all v ∈ neighborhood(voij ) do

7: β(v)← β(v) + β(voij )/ν(voij )
8: end for

9: end for

10: end while

Algorithm 3.4: Assigning weights to vertices

prediction is not refined: d(Q) = |vo − ṽo|. The distortion becomes exactly 0 as

soon as the least-significant bit plane is decoded: ǫ0(wg) = wg = vo − ṽo and

d(0) = |vo − (ṽo + ǫ0(wg)| = |v
o − (ṽo + vo − ṽo)| = 0.

As discussed in Section 3.2.2.2, the wavelet coefficients are encoded using

SAQ (see Section 2.1.2). Let qp = Qp(wg); the wavelet coefficient up to bit

plane p can be dequantized as ǫp(wg) = Q−1
p (qp) using Equation 2.10, where

0 ≤ δ < 1 determines the placement of ǫp(wg) within the quantization cell. In the

current implementation, it is chosen to be δ = 0.5.

To find weights αi
j = α

(
ω(voij )

)
for the wavelet coefficients, first assign

weights β(vij) to all vertices. These weights indicate an estimation of the effect

on the full-resolution mesh of repositioning vertices. The reconstructed position

of each odd vertex voij is influenced by the positions of its neighbors. Hence, the

weights of these neighbor vertices of voij each increase by β(voij )/ν(voij ) with

ν(voij ) the degree of voij . The weight of a wavelet coefficient is given by its

accompanying odd vertex, that is, α
(
ω(voij )

)
= β(voij ).

At the highest resolution, each of the nv vertices (and consequently each

wavelet coefficient) has a weight of 1/nv . If the downsampling terminates at

a tetrahedral base mesh counting four vertices, each vertex (and consequently

each wavelet coefficient on average) has a weight of 1/4. This indicates that a

single wavelet coefficient at a lower resolution is equally valuable as a multitude

of wavelet coefficients at a higher resolution. Note that the use of such weights

is similar to the scaling of wavelet coefficients prior to encoding – see e.g. [9],

rendering biorthogonal transforms approximately unitary. The complete algorithm

for assigning weights is presented in Algorithm 3.4.

3.4.2 Global RDO Implementation

At each resolution, an RD curve such as shown in Figure 3.23 can be found.

Optimization comes down to considering the RD curves for every resolution,
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and coding at every step the information which introduces the largest distortion

decrease at the lowest rate. With Pj the last encoded bit plane of resolution j,

encode the next bit plane of resolution j′ with

j′ = argmax
j:Pj 6=0

D
(Pj)
j −D

(Pj−1)
j

R
(Pj−1)
j −R

(Pj)
j

. (3.16)

Up to this point, connectivity blocks have not been considered. To start

decoding a specific resolution, the connectivity information of all previous

resolutions has to be decoded. This decoding comes at a rate but does not introduce

a distortion decrease in vertex-based mean-squared-error sense. Furthermore, as

the most-significant bit planes are mostly zero, decoding these highest bit planes

also requires rate often without decreasing distortion either. Hence, Equation 3.16

is adapted to consider multiple bit planes together to find the most optimal slope.

The definition of Pj is generalized to encompass any data block required to encode

resolution j. Consequently, Pj will start at Q + 1 as it counts for all Q wavelet

subband bit planes and an additional data block for the connectivity information.

With L the first unencoded resolution, encode k′ bit planes of resolution j′ using:

(j′, k′) = argmax
j∈[0,L],k∈[1,Pj ]

D
(Pj)
j −D

(Pj−k)
j

R
(Pj−k)
j −R

(Pj)
j

. (3.17)

For this, the following conventions are made:

R
(Q+1)
j = 0, (3.18)

Rconn
j = R

(Q)
j −R

(Q+1)
j = R

(Q)
j 6= 0, (3.19)

Rgeom
j = R

(0)
j −R

(Q)
j , (3.20)

D
(Q+1)
j = D

(Q)
j . (3.21)

This states that encoding the connectivity information, i.e., the first data block

of a resolution, introduces a rate of Rconn
j while not decreasing the distortion;

this corresponds to adding vertices to the decoded mesh without refining their

locations. The distortions D
(p)
j , ∀p ∈ [0, Q] are defined in Equation 3.14.

3.5 Evaluation

To evaluate SFWInCS as presented in Sections 3.2, 3.3 and 3.4, assume a raw

storage of the base mesh as given in Equation 2.1. In practice, the wavelet

transform stops at a resolution which is small enough to benefit from scalability,

while remaining qualitative enough to be useful as a base resolution. To evaluate,

however, the transform is applied until no more downsampling can be performed.
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Figure 3.23: Quality-scalable rate-distortion curve. With decreasing bit plane p the rate

increases and the distortion decreases. For each subband j such an RD curve is obtained.

The portion of the encoded data related to the base mesh is then negligible, and the

produced coding numbers can be entirely ascribed to the wavelet subband codec

itself. Resolution scalability is first evaluated as such in Section 3.5.1, followed by

an evaluation of the cost and benefit of allowing for quality scalability, in Section

3.5.2.

3.5.1 Resolution-Scalable Coding

This first evaluation section compares the codec presented in Section 3.2 with the

state of the art in wavelet-based coding for irregular meshes, which is Wavemesh

[18]. The experiments for Wavemesh were carried out using the software made

publicly available by its authors, using the standard settings with the wavelet

geometrical criterion (WGC) enabled as this avoids downscaling if the resulting

geometric distortion would be too large. For the proposed codec, the thresholds

were set to τMF = τFP = 45◦ for every tested model, and the employed leaf size

thresholds were λC= λG = 32. Furthermore, the results are compared with

IPR [7], which is not wavelet-based but does outperform Wavemesh in general.

As there only was access to a limited set of experimental results of IPR and not the

software itself, there is only a limited number of models for which both Wavemesh

and IPR can be compared.

These codecs are compared in three ways. First the RD performance of the

codecs is compared in Section 3.5.1.1. This distortion is measured against the

model after quantization, i.e., the quantization error is not taken into account, and
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lossless decoding actually results in zero distortion. For the distortion, both the

Hausdorff distance as well as the RMS distance are shown. The resulting RD

curves have been made convex by removing non-convex rate points. Next, the

distortion is discussed in function of the used number of triangles, in Section

3.5.1.2. This novel measure was introduced as the TD performance in Section

2.3.3 and is proportional to the rendering performance as it indicates runtime

memory usage; while it does not relate to storage or transmission efficiency,

it is equally important for practical visualization applications to have either a

better quality with the same number of triangles, or the same quality using fewer

triangles. Finally, a visual comparison is given for the organic model horse and

the synthetic model fandisk in Section 3.5.1.3.

This comparison is followed by a discussion on the computational complexity

of the implemented codec in Section 3.5.1.4.

3.5.1.1 Rate-Distortion Performance

Figure 3.24 depicts the RD curves for three test models, fandisk, horse and

rabbit (both for Hausdorff and RMS distortions). In case of fandisk (Figures

3.24a and 3.24b), where clear visual features are present, the improvements of

the proposed codec over Wavemesh are obvious. Experiments have shown that

it takes a rate higher than 10 bpv for Wavemesh to show lower distortions than

the proposed solution, at which point the improvements of Wavemesh over the

proposed solution are only marginal. The proposed codec also outperforms the

state-of-the-art IPR coder for such a feature-rich model.

Figures 3.24c and 3.24d show the RD curves for horse, and Figures 3.24e and

3.24f show the distortion curves for rabbit. The horse model still has a few distinct

geometric features, rabbit does not. Nonetheless the proposed codec performs

comparable or better compared to both Wavemesh and IPR. Note that different

metrics do not always lead to the same conclusions. Below, the visual comparison

of two of these models is discussed, showing improvements of the proposed codec

over the state of the art even more significantly than can be deduced from such

graphs.

More numerical results are given in Table 3.1, showing the distortions of

intermediate meshes at specific rate points. A final column adds average rate

differences which were introduced in Section 2.3.3, where the sampled distortion

values are taken in an interval such that the rate-values fall in the interval [1, 6],

i.e., comparing the average rate difference in the low-to-mid rate range. This

number ∆r
avg indicates the amount of bits per vertex other codecs need more (if the

difference is positive) or less (if the difference is negative) compared to SFWInCS.

In conclusion, the figures and tables show the improved RD performance of

the proposed solution over the state of the art when geometric features are present.

Also in the absence of these features the proposed solution stays competitive
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Figure 3.24: RD performance: resolution-scalable coding w.r.t. the state of the art. The

distortion is expressed either as the Hausdorff distance (left column) or the

forward+backwards RMS distance (right column), both computed relative to the bounding

box diagonal.
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Model
(#verts)

Coder

Bitrates (in bpv)

1.0 2.0 4.0 6.0 8.0 10.0

Hausdorff Distortion ∆r
avg

fandisk
(6 475)

SFWInCS 43 27 19 9.6 9.0 8.9
Wavemesh 77 25 15 8.2 8.2 6.2 +0.43bpv

IPR 43 28 24 13 10 10 +1.5bpv

horse
(19 851)

SFWInCS 46 13 8.3 7.1 4.7 3.2
Wavemesh 27 14 7.6 7.6 5.4 5.4 −0.13bpv

IPR 36 19 19 18 17 16 +4.4bpv

fertility

(241 607)

SFWInCS 5.9 4.5 2.6 1.4 1.3 1.3
Wavemesh 6.9 3.2 2.4 1.7 1.2 1.2 −0.53bpv

IPR 2.6 1.7 1.1 0.71 0.65 0.59 −1.6bpv

igea

(134 345)

SFWInCS 6.4 6.2 3.3 2.2 2.2 2.2
Wavemesh 8.0 7.5 3.7 2.7 2.7 2.3 +0.30bpv

IPR 4.2 3.1 1.8 1.8 1.7 1.6 −0.97bpv

rabbit
(67 039)

SFWInCS 9.5 7.1 2.7 2.6 1.8 1.8
Wavemesh 9.4 6.6 3.7 3.4 3.4 1.3 +0.59bpv

IPR 4.9 3.7 2.8 2.1 2.1 2.1 −0.30bpv

vaselion
(38 728)

SFWInCS 99 28 12 12 6.9 6.9
Wavemesh 36 26 15 8.4 7.8 7.8 −0.47bpv

bimba
(8 857)

SFWInCS 100 32 17 13 11 8.9
Wavemesh 65 52 18 12 12 8.8 +0.18bpv

golfball

(122 882)

SFWInCS 3.6 2.9 1.8 1.7 0.82 0.82
Wavemesh 1.8 1.3 0.54 0.29 0.29 0.29 −1.9bpv

RMS Distortion

fandisk
(6 475)

SFWInCS 15 4.5 2.3 1.1 0.76 0.56
Wavemesh 26 7.3 4.3 2.1 2.1 0.57 +0.90bpv

IPR 11 5.6 2.4 1.6 0.98 0.92 +0.45bpv

horse
(19 851)

SFWInCS 16 4.0 2.0 1.2 0.87 0.65
Wavemesh 11 5.7 2.1 2.1 1.1 1.1 +0.18bpv

IPR 8.7 3.1 1.4 1.0 0.75 0.60 −0.16bpv
fertility

(241 607)

SFWInCS 0.89 0.56 0.29 0.18 0.14 0.11
Wavemesh 1.5 0.60 0.36 0.21 0.11 0.11 −0.015bpv

IPR 0.33 0.20 0.12 0.073 0.056 0.046 −1.3bpv
igea

(134 345)

SFWInCS 1.6 1.1 0.53 0.31 0.24 0.19
Wavemesh 2.0 1.3 0.77 0.43 0.43 0.20 +0.21bpv

IPR 0.69 0.39 0.21 0.15 0.096 0.051 −1.4bpv

rabbit
(67 039)

SFWInCS 2.6 1.2 0.58 0.45 0.26 0.26
Wavemesh 2.7 1.6 0.88 0.47 0.47 0.20 +0.36bpv

IPR 0.77 0.46 0.24 0.17 0.12 0.084 −1.3bpv

vaselion
(38 728)

SFWInCS 35 8.0 3.4 2.3 1.5 1.5
Wavemesh 11 7.4 3.8 2.4 1.4 1.4 −0.50bpv

bimba
(8 857)

SFWInCS 68 16 5.6 3.6 2.9 2.4
Wavemesh 32 17 6.8 4.0 4.0 2.3 −0.27bpv

golfball

(122 882)

SFWInCS 1.7 0.94 0.45 0.35 0.20 0.20
Wavemesh 1.5 0.71 0.29 0.15 0.15 0.15 −0.72bpv

Table 3.1: Hausdorff and RMS distances (both in 1 000s) w.r.t. the bounding box at specific

bit rates. The rightmost column shows the average rate differences ∆r
avg relative to

SFWInCS, within the bit rate range [1, 6] bpv. Negative figures correspond to rate savings

compared to SFWInCS; positive figures, vice versa, correspond to rate savings of

SFWInCS compared to the state of the art.
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against the state of the art. The results focus on the low-to-midrange bit rates

as many applications require high-quality, feature-rich models specifically at

these bit rates. Only in lossless encoding, the proposed codec still performs

suboptimal; on average over a small set of 15 test models quantized at 12 bit

precision, Wavemesh requires approximately 17.02 bpv compared to 25.81 bpv for

the proposed solution. Of these 25.81 bpv, the connectivity information stays close

to 8 bpv, independent of the model being used. Wavemesh mainly shows superior

lossless results for this connectivity information, which is reduced to a minimal

amount for the regular meshes in the test set. Observe, however, that the irregular

topology in the downscaled models of the proposed codec, which increases the

connectivity information cost due to the added cost per triangle, does allow for a

higher quality using fewer triangles overall, which is beneficial for practical uses

as is discussed in the next paragraph.

3.5.1.2 Rendering Performance

Compression rates are important from a storage and transmission point-of-view.

From a rendering point of view, compression matters as data has to be streamed to

memory. The rendering performance, however, is proportional to the complexity

of the decoded meshes, as meshes are stored as decoded vertices and triangles on

the graphics hardware. Thus, the amount of vertices and triangles is directly related

to the memory usage during real-time visualization. This is why considerable

importance is also attached to the relation between the number of triangles and the

distortion, evaluating the scalable representation without considering the encoding

itself, as discussed in Section 2.3.3. Figure 3.25 shows the rendering performance

by plotting the distortion in function of the percentage of triangles used (both for

Hausdorff and RMS distortions). Table 3.2 gives numerical overviews of a larger

test set, giving the obtainable quality when limiting the number of triangles used.

The final column again adds a BD-rate-like measure, i.e., the average triangle

percentage difference ∆t
avg introduced in Section 2.3.3. This is done in an interval

such that the triangle percentages fall within [5%, 40%], i.e., again comparing the

differences in the low-to-mid rate range. Similarly, this number ∆t
avg indicates

the triangle percentage other codecs need more or less compared to the proposed

codec.

When geometric features are present, as in Figures 3.25a and 3.25b for fandisk

and Figures 3.25c and 3.25d for horse, the proposed solution clearly improves

upon the state of the art, by better preserving these features when downsampling.

When no sharp geometric features are present, as is the case for rabbit (Figures

3.25e and 3.25f), the improvements are still visible, albeit not as pronounced.

Additionally, the figures display the finer resolution granularity compared to

Wavemesh. Over a small set of models, one observes a significant increase in the

number of resolution levels offered: SFWInCS offers on average 40 resolution
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Figure 3.25: TD performance: resolution-scalable coding w.r.t. the state of the art. The

distortion is expressed either as the Hausdorff distance (top row) or the

forward+backwards RMS distance (bottom row), both computed relative to the bounding

box diagonal.
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Model
(#verts)

Coder

Percentage of triangles

5 10 20 30 50

Distortion ∆t
avg

fandisk
(6 475)

SFWInCS 27 19 9.6 8.9 7.8
Wavemesh 25 15 8.2 8.2 6.2 −0.14%

IPR 43 43 28 24 10 +27%

horse
(19 851)

SFWInCS 13 8.3 7.1 3.2 2.9
Wavemesh 14 9.6 7.6 5.4 3.4 +4.1%

IPR 36 19 19 19 17 +48%

fertility

(241 607)

SFWInCS 4.5 3.2 1.9 1.3 1.3
Wavemesh 5.1 3.2 2.4 1.7 1.2 +0.68%

IPR 4.4 2.6 1.7 1.7 1.1 −0.80%

igea

(134 345)

SFWInCS 6.2 3.3 3.2 2.2 2.2
Wavemesh 7.5 3.7 2.7 2.7 2.3 +4.8%

IPR 8.0 4.2 3.1 3.1 1.8 +3.0%

rabbit
(67 039)

SFWInCS 6.8 3.7 2.6 1.8 1.6
Wavemesh 9.4 3.7 3.4 3.4 1.3 +6.6%

IPR 7.5 4.9 3.7 2.8 2.1 +12%
vaselion
(38 728)

SFWInCS 21 12 8.8 6.9 4.5
Wavemesh 26 15 8.4 7.8 7.8 +1.8%

bimba
(8 857)

SFWInCS 22 17 11 8.9 8.7
Wavemesh 52 18 12 8.8 6.5 +1.4%

golfball

(122 882)

SFWInCS 3.5 1.9 1.7 0.82 0.63
Wavemesh 1.8 1.3 0.54 0.29 0.29 −11%

Distortion

fandisk
(6 475)

SFWInCS 4.5 2.3 1.1 0.56 0.44
Wavemesh 7.3 4.3 2.1 2.1 0.57 +10%

IPR 11 11 5.6 2.4 0.98 +21%

horse
(19 851)

SFWInCS 4.0 2.0 1.2 0.65 0.48
Wavemesh 5.7 3.5 2.1 1.1 0.45 +5.1%

IPR 8.7 3.1 3.1 1.4 0.75 +7.4%

fertility

(241 607)

SFWInCS 0.72 0.36 0.23 0.14 0.11
Wavemesh 1.0 0.60 0.36 0.21 0.11 +2.7%

IPR 0.70 0.33 0.20 0.20 0.12 −0.48%

igea

(134 345)

SFWInCS 1.3 0.68 0.42 0.24 0.19
Wavemesh 1.3 0.77 0.43 0.43 0.20 +3.6%

IPR 1.1 0.69 0.39 0.39 0.21 −0.70%

rabbit
(67 039)

SFWInCS 1.6 0.75 0.45 0.26 0.19
Wavemesh 2.7 0.88 0.47 0.47 0.20 +4.4%

IPR 1.5 0.77 0.46 0.24 0.17 −1.0%
vaselion
(38 728)

SFWInCS 6.4 3.4 1.8 1.5 0.83
Wavemesh 7.4 3.8 2.4 1.4 1.4 +1.6%

bimba
(8 857)

SFWInCS 11 5.6 2.9 2.4 1.5
Wavemesh 17 6.8 4.0 2.3 1.2 +1.5%

golfball

(122 882)

SFWInCS 1.2 0.57 0.35 0.20 0.15
Wavemesh 1.5 0.71 0.29 0.15 0.15 −3.3%

Table 3.2: Hausdorff and RMS distances (both in 1 000s) w.r.t. the bounding box at specific

triangle budgets. The rightmost column shows the average triangle percentage differences

∆t
avg relative to SFWInCS, within the triangle percentage range [5%, 40%]. Negative

figures correspond to savings compared to SFWInCS; positive figures then correspond to

savings of SFWInCS compared to the state of the art.



RESOLUTION-SCALABLE AND QUALITY-SCALABLE CODING 99

levels whereas Wavemesh offers on average 23 resolution levels. Moreover, the

penultimate resolution counts, on average, 73% of the triangles for SFWInCS

compared to 39% for Wavemesh, which Wavemesh obtains due to exploiting

4−to−1 subdivision regularity which results in a penultimate resolution with only

25% of the triangles in the perfectly regular case. Offering more fine-grained

control allows for more optimal memory management when using these models in

a real-time rendering environment, which is an advantage that cLOD systems such

as IPR have over wavelet-based systems such as Wavemesh.

3.5.1.3 Visual Comparisons

To conclude the comparison with the state of the art, some visual examples

belonging to the distortion curves given in Figures 3.24 and 3.25 are shown. Pay

special attention to the visual features, such as the ears and the hooves of horse, and

the sharp outlines of fandisk. Also pay attention to the number of triangles used.

The topology at lower resolutions of the proposed solution stays irregular, which

increases the coding cost per vertex and per triangle. However, fewer triangles

are required to obtain similar visual quality, and consequently similar bit rates

still deliver similar and even superior quality, while reducing the load on graphics

memory.

The first set of examples, in Figure 3.26, shows horse at up to 10 bpv. The

results show that Wavemesh achieves similar quality at similar bit rates, but needs

more triangles to render this. IPR generates even more triangles but is not able to

accurately reconstruct all visual features even at 10 bpv.

The second set of examples, in Figure 3.27, shows fandisk at bit rates up to

10 bpv. At 0.5 bpv, SFWInCS has preserved slightly more visual features than

Wavemesh. At 2 bpv the sharp features are already fully reconstructed, while

Wavemesh (even with the geometry criterion enabled) still has an obvious visual

artifact. The intermediate models produced by SFWInCS clearly are better suited

for rendering applications, as features are better preserved.

Observe the discrepancy between objective measures and (subjective) visual

assessment, which is also observable in other domains such as image processing.

Whereas distortion metrics show nearly equal quality, the visual quality is still

remarkably higher with SFWInCS due to the better avoidance of aliasing effects.

3.5.1.4 Complexity

The experiments were single-threadedly executed on a 2.40GHz Intel Core 2 Quad

CPU with 8GB of RAM for models up to 5 × 106 vertices. Figure 3.28 shows

encoding speeds in the order of 3 000 ∼ 8 000 vertices/s and decoding speeds in

the order of 20 000 ∼ 50 000 vertices/s. Variations are caused by the sparsity

of the test set, comprised of 30 models with their number of vertices distributed
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(a) Wavemesh

0.96 bpv

(954 tris)

(b) Wavemesh

2.46 bpv

(2 930 tris)

(c) Wavemesh

6.2 bpv

(9 190 tris)

(d) Wavemesh

10.94 bpv

(18 446 tris)

(e) IPR

1 bpv

(596 tris)

(f) IPR

2 bpv

(3 086 tris)

(g) IPR

6 bpv

(12 336 tris)

(h) IPR

10 bpv

(22 170 tris)

(i) Proposed

0.94 bpv

(546 tris)

(j) Proposed

1.95 bpv

(1 666 tris)

(k) Proposed

5.73 bpv

(6 618 tris)

(l) Proposed

9.34 bpv

(8 796 tris)

Figure 3.26: Visual comparison horse.
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(a) Wavemesh

0.55 bpv (128 tris)

(b) Wavemesh

1.92 bpv (632 tris)

(c) Wavemesh

5.47 bpv (2 296 tris)

(d) Wavemesh

9.61 bpv (4 802 tris)

(e) IPR

0.5 bpv (284 tris)

(f) IPR

2 bpv (1 420 tris)

(g) IPR

6 bpv (4 372 tris)

(h) IPR

10 bpv (7 604 tris)

(i) Proposed

0.45 bpv (74 tris)

(j) Proposed

1.94 bpv (540 tris)

(k) Proposed

5.87 bpv (2 084 tris)

(l) Proposed

9.66 bpv (3 716 tris)

Figure 3.27: Visual comparison fandisk.
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Figure 3.28: Encoding and decoding speed. The figures show the amount of vertices

encoded (a) and decoded (b) per second. An approximation of the encoding speed is given

by f(x) = 9 053.85− 251.98 log x, while the decoding speed is approximated by

f(x) = 65 628.10− 2 888.33 log x.

over a fairly large span. The encoding and decoding times depend on the number

of vertices as well as on other mesh properties. Nonetheless, except for a few

outliers, a slight linear decrease in encoding speed is still visible when the number

of vertices increases exponentially as is shown in the figure. This implies that both

the encoding and decoding speeds decrease O(log(n)), such that the complexity

of both the encoder and decoder in terms of encoding and decoding times is

O(n log(n)), with n the number of vertices. In future research, using a larger

benchmark of low- to high-complexity models should confirm this observation.

High-Resolution Models Despite the absence of a discussion on high-resolution

models in state-of-the-art papers, where high-resolution models should nowadays

be considered to be made up of at least over 500 000 vertices, a few of these

results are depicted here without any comparable data available. Figure 3.2 already

showed such a model, i.e., the Thai statue which counts 4 999 999 vertices. Two

additional examples are found in Figures 3.29 and 3.30. The figures point out

an important consequence of the current evolution towards higher resolutions:

whereas lossless compression is still desired for storage and transmission, the

lossy rates are becoming much more important for practical rendering applications.

This can be explained by the fact that the fine detail often does not add geometric

information and can be dropped without visual distortion. In practice, the small

curvature distortion will even be visually masked by shader techniques which

interpolate the surface normal over the triangle surfaces. Nevertheless, the figures

show that even without such shader techniques, very good visual results are

obtained already in the low-to-midrange bit rates.
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(a) 0.5 bpv (0.610% tris) (b) 1 bpv (2.08% tris)

(c) 5.75 bpv (17.5% tris) (d) 24.7 bpv (7 219 045 tris)

Figure 3.29: Rendered model: Asian dragon. Several resolution levels of the

3.5-million-vertex Asian dragon, encoded with 16 bit quantization.
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(a) 2.9 bpv (2.33% tris) (b) 4.8 bpv (7.38% tris)

(c) 12.4 bpv (29.6% tris) (d) 32.6 bpv (1 765 388 tris)

Figure 3.30: Rendered model: turbine blade. Several resolution levels of the

900-thousand-vertex turbine blade, encoded with 16 bit quantization. The middle column

shows a close-up of the text on the bottom half of the model at the same bit rates.
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Model (#verts) Rate increase

teapot (1 292) +0.068bpv (+0.21%)

beethoven (2 521) +0.187bpv (+0.55%)

triceratops (2 832) −0.017bpv (-0.052%)

elk (5 194) +0.015bpv (+0.049%)

fandisk (6 475) −0.015bpv (-0.057%)

maxplanck (7 399) −0.013bpv (-0.044%)

venushead (8 268) +0.022bpv (+0.074%)

bimba (8 857) +0.094bpv (+0.31%)

horse (19 851) +0.022bpv (+0.087%)

screwdriver (65 538) +0.182bpv (+0.89%)

rabbit (67 039) +0.073bpv (+0.32%)

dino (129 026) +0.074bpv (+0.37%)

Average +0.23%

Table 3.3: Additional cost when using a geometry-agnostic template. All models have been

encoded using 12 bit precision.

3.5.2 Quality-Scalable Coding

To evaluate quality-scalable coding, Section 3.5.2.1 handles the effect of using the

geometry-agnostic template meshes as constructed in Section 3.3.2. Subsequently,

the unlocked quality scalability allows for RDO which is evaluated in Section

3.5.2.2. Finally, the resolution-scalable mode of SFWInCS, as described in

Section 3.2, will be denoted as SFWInCSR and a comparison of SFWInCS with

SFWInCSR and with the state of the art is given in Section 3.5.2.3.

The distortion values are reported as RMS distortions, and the resulting RD

curves have again been made convex.

3.5.2.1 Accuracy of the Template Mesh

Using a template mesh which does not take into account geometry information,

i.e., a template which develops using only connectivity information as described in

Section 3.3.2, had an effect on the implementation: possibly overlapping vertices

in the template mesh have to be handled properly, by repositioning these vertices

equally by both the encoder and decoder without relying on the encounter order.

Note that these geometric modifications do not alter the geometry of the decoded

meshes after inverse wavelet transformation; they can only alter where samples are

encoded in the octrees.

Both the use of this alternative template mesh as well as the occasional

repositioning of overlapping sample positions can have an influence on the

exploitability of the spatial correlations within the data. However, the effects of

using the new geometry-agnostic template proved to be negligible.

This can also be seen in the final bit rates. Table 3.3 lists the changes in lossless

bit rates for several models. Observe that the bit rate increases on average by
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0.23%, while in some cases the bit rate even goes down. These results show that

lowering the accuracy of the template mesh does not hinder the exploitation of

spatial correlations, on the contrary it is clear that topological locality information

is preserved. Vertices that are located closely together will have mapped vertices

in the template mesh which are also located closely together due to topological

proximity, albeit possibly at another global position (and consequently, falling

within a different octree cell) due to geometry information not being taken into

account.

3.5.2.2 Rate-Distortion Optimization

RDO orders the data such that the quality gains come at the lowest rates. Figure

3.31 gives the results for the three models for which RD curves were given

in Section 3.5.1. For fandisk and horse the improvements compared with a

resolution-scalable transmission order are clear at low bit rates, obtaining similar

qualities at a lower cost. At higher bit rates the improvements are minimal. This

indicates that the resolution-scalable transmission at high bit rates is in general

already nearly optimal in rate-distortion sense.

Visual results of the proposed codec are given in Figure 3.32 for fertility. As it

was also observed in Section 3.5.1, the information in the lower resolution wavelet

subbands contributes the most to the shape of such densely sampled models, while

higher resolutions only serve to increase the quality when rendering from very

nearby: Figure 3.32c already resembles very closely the original mesh depicted in

Figure 3.32d.

In theory, an RD optimization should always be on par or better; in practice this

is the case if the optimization algorithm calculates distortions in the spatial domain.

The results show that an optimization based on the proposed weighted wavelet

coefficients while ignoring topological information also proves to give superior

results. The coding overhead is minimal: the storage increases only a fraction of

a bit per vertex, due to the need to identify the resolution of each subsequent data

block.

3.5.2.3 Comparison with the State of the Art

For comparison, mainly the overall improvement over SFWInCSR (for which the

results are given in Section 3.5.1) is investigated. As in Section 3.5.1, Wavemesh

[18] and IPR [7] are also compared with. SFWInCSR, presented in Section 3.2,

was implemented using rate points at every resolution; this is more coarse-grain

than the quality-scalable codec which gives a rate point after every bit plane.

Figure 3.33 shows a comparison with the state of the art. It shows even more

competitive results brought by SFWInCS compared with the resolution-scalable

mode, SFWInCSR. In the case of the feature-rich model fandisk, the results after
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Figure 3.31: RD performance: effect of RD optimization.
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(a) 0.25 bpv

(0.16% tris)

(b) 0.5 bpv

(0.73% tris)

(c) 3 bpv

(6.8% tris)

(d) 33.3 bpv

(241 607 tris)

Figure 3.32: Rendered model: fertility. (a), (b) and (c) show the model at increasing rates.

Observe that 3 bpv is still in the low bit rate range considering a lossless rate of 33.3 bpv

for this 18 bit quantized fertility model shown in (d).

RDO improve over both Wavemesh and IPR. In the case of horse, the results are

entirely on-par with or better than previous work, even at the lowest rates. Finally,

for the feature-poor model rabbit, results remain nearly unchanged compared with

resolution-scalable coding; IPR remains the better solution.

Results over a small set of models are summarized in Table 3.4. This table

makes use of the average rate difference ∆r
avg which as introduced in Section 2.3.3,

and which was used in Section 3.5.1. Additionally, in a similar way the maximal

and minimal rate differences are reported as ∆r
max and ∆r

min. This gives a maximal,

minimal and average value of the rate differences, with a positive difference

indicating that a state-of-the-art codec requires more bits for the same quality,

and a negative difference indicating that the state-of-the-art codec outperforms the

proposed codec. In this case, the limited rate range over which measurements

are done is taken up to 3 bpv for the proposed codec. Furthermore, RDO and

quality-scalable decoding improve all results of resolution-scalable coding. At

such low bit rates, relatively high gains of up to 1 bpv are obtained. Observe that

the minimal rate difference is zero as both the proposed codec and resolution-
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Figure 3.33: RD performance: RD-optimized coding w.r.t. the state of the art.
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Model Coder ∆r
avg ∆r

max ∆r
min

teapot

(1 292)
SFWInCS +0.22 +1.00 0.0

beethoven
(2 521)

SFWInCS +0.32 +0.81 0.0

triceratops

(2 832)

SFWInCS +0.07 +0.59 0.0
Wavemesh −0.72 +0.43 −1.30

elk
(5 194)

SFWInCS +0.16 +0.60 0.0
Wavemesh +0.10 +1.20 −0.28

fandisk
(6 475)

SFWInCS +0.08 +0.73 0.0
Wavemesh +0.25 +0.93 +0.04

IPR +0.43 +2.90 −0.03
maxplanck

(7 399)

SFWInCS +0.09 +0.39 0.0
Wavemesh −0.25 +0.04 −0.37

venushead
(8 268)

SFWInCS +0.06 +0.73 −0.04

bimba
(8 857)

SFWInCS +0.10 +0.39 0.0
Wavemesh +0.28 +1.1 +0.14

horse
(19 851)

SFWInCS +0.10 +0.39 0.0
Wavemesh +0.15 +0.84 −0.17

IPR +2.40 +7.60 +0.55
screwdriver

(65 538)
SFWInCS +0.01 +0.78 0.0
Wavemesh −0.04 +0.01 −2.1

rabbit
(67 039)

SFWInCS +0.011 +0.29 0.0
Wavemesh +0.06 +1.3 0.0

IPR −0.15 +0.40 −0.80
dino

(129 026)
SFWInCS +0.02 +0.94 0.0
Wavemesh −0.08 0.0 −2.50

Table 3.4: Rate savings w.r.t. the state of the art. To obtain the same quality at rates up to

3 bpv, the numbers indicate in bpv (∆r
avg) the average rate savings, (∆r

max) the largest rate

savings, and (∆r
min) the smallest rate savings. A positive value means more rate is required

than the proposed codec, a negative value means the proposed codec performs worse.

scalable coding start at the same base mesh, resulting in the same distortion at

the same rate. This confirms that the RD-optimized codec never performs worse

than resolution-scalable coding, as the minimal differences are never negative. The

comparison with Wavemesh and IPR shows that in most cases the proposed codec

is also more favorable at these low bit rates, except for dino where it is on par at

best.

3.6 Conclusions

In this first part of the dissertation a new wavelet-based representation of meshes

has been proposed, which relies on an adaptive subsampling and retriangulation

process to preserve geometric features of an original mesh. Visual results and

an analysis of the rendering performance showed its effectiveness compared to

the state of the art. Additional work concerning the transform could focus on
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improving the used predictors to take curvature into account. Furthermore, a two-

mode update step similar to the proposed two-mode predictor can be investigated

in order to further improve the quality at lower resolutions. Also, one notes that

thresholding dihedral angles is sensitive to noise; a deeper investigation could

handle the processing of noisy models as, e.g., obtained by scanning equipment.

Furthermore, a novel coding system was proposed, using octree coding

principles both to avoid defining and imposing any mesh traversal order for

connectivity encoding, and to exploit spatial correlations between wavelet

coefficients for geometry encoding. The proposed representation and coding

system improves the compression performance over the state of the art for feature-

rich models at low-to-midrange bit rates. Additional work can be aimed at a

better connectivity coding which has to exploit the statistical dependencies within

(intra-) and in between (inter-) various resolution levels. For geometry coding,

describing wavelet coefficients in tangential components, in effect splitting the

geometric information from the parametric information, should further improve

upon the rate-distortion performance.

Thirdly, requirements were shown to achieve quality scalability and an

optimized rate-distortion performance. Gains up to 1 bpv are obtained at low bit

rates, while at higher bit rates the original codec design is nearly optimal in rate-

distortion sense. Furthermore, the results and working implementation serve as

a proof-of-concept that an unrestricted storage and transmission of subband bit

planes can be provided using the proposed framework.

Overall, these improvements upon the state of the art are vital in the context

of automatic LOD generation and the use of models in a streaming environment.

The approach is a step forward in constructing multiresolution representations with

high-quality feature-preserving levels-of-detail.

The work presented in this chapter has led to the following publications:

• J. El Sayeh Khalil, A. Munteanu, L. Denis, P. Lambert, and R. Van de Walle.

Scalable Feature-Preserving Irregular Mesh Coding. Computer Graphics

Forum, 36(6):275–290, September 2017.

• J. El Sayeh Khalil, A. Munteanu, and P. Lambert. Rate-Distortion

Optimized Wavelet-based Irregular Mesh Coding. In Proceedings of the

12th International Joint Conference on Computer Vision, Imaging and

Computer Graphics Theory and Applications (VISIGRAPP), volume 1,

pages 212–219, Porto, Portugal, 27 February – 1 March 2017.
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[28] Stéphane G. Mallat. A Wavelet Tour of Signal Processing. Academic Press,

2nd edition, 1999.

[29] Ingrid Daubechies and Wim Sweldens. Factoring Wavelet Transform into

Lifting Steps. The Journal of Fourier Analysis and Applications, 4(3):247–

269, May 1998.

[30] Wim Sweldens. The Lifting Scheme: A Construction of Second Generation

Wavelets. SIAM Journal on Mathematical Analysis, 29(2):511–546, March

1998.

[31] Daniel Cohen-Or, David Levin, and Offir Remez. Progressive Compression

of Arbitrary Triangular Meshes. In Proceedings of the IEEE Conference on

Visualization (VIS), pages 67–72, San Francisco (California), United States,

24–29 October 1999.



RESOLUTION-SCALABLE AND QUALITY-SCALABLE CODING 115

[32] Boris Delaunay. Sur la sphère vide. A la mémoire de Georges Voronoı̈.
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4
Region-of-Interest Coding

The second part of this dissertation handles the issue of Region-of-Interest (ROI)

coding. In addition to resolution and quality scalability, which was tackled in

Chapter 3 and which allows for scaling the resolution and quality of an entire

model, a valuable functionality of any coding system is to allow for prioritizing

specific spatial regions. Such functionality allows, for instance, for prioritizing

the front side of a model or the face of a human virtual character. From the

point-of-view of an encoder, such functionality can enforce specific regions to

be transmitted and decoded prior to other regions. This can ensure that the most

valuable regions are visualized faster in case of reduced bandwidths, or this can

allow for limiting the decoding of the least valuable regions, only to be performed

if these regions are actually required. In such scenarios, the prioritized regions are

fixed by the encoding application; in other words, these regions are fixed within

the data stream. From the point-of-view of a decoder, such ROI functionality

can allow the decoding to adapt to specific use-cases, which in turn allows for

minimizing the memory usage or bandwidth requirements. Such functionality

becomes increasingly important with larger models which are to be processed.

In these scenarios, it no longer suffices to have an ROI-adapted representation of a

model: the functionality of random accessibility comes into play. Random access

entails that a decoding system is able to pick from a data stream the parts that are

required for decoding the desired ROIs without needing to read any other parts of

this data stream.
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Contributions In this second part of the dissertation, the required improvements

have been investigated to enhance a wavelet-based irregular mesh coding system to

allow for ROI coding both on the encoder and decoder side. These improvements

have been applied to SFWInCS which was described in Chapter 3, resulting in

a codec which has all fundamental functionalities to allow for the processing of

increasingly larger meshes in a scalable way.

The work described in this chapter improves over the state of the art in several

ways. From an encoder side, few prior work has been done considering prioritizing

spatial regions for wavelet-based encoding.

• Encoder-side ROI support for irregular meshes. This functionality has not

been proposed in literature so far, yet poses valuable opportunities as it

allows for prioritizing regions in more memory-efficient irregular meshes.

• ROI-steered upsampling. In addition to supporting ROIs, the use of

irregular meshes allows for upscaling only the ROI while representing the

remaining regions at a lower resolution. This is valuable as inaccurately

reconstructed high-resolution vertices still consume graphics memory space

when rendering, even if little processing power is spent in generating them.

An ROI-steered upsampling procedure avoids generating these altogether.

Such encoder-side ROI capabilities allow for optimizing data transmission in

order to reduce bit rate, transmission time and memory use while improving visual

quality in the region(s) of interest as determined valuable by an encoder. From a

decoding perspective, the investigated techniques improve over the state of the art

in the following ways:

• An adaptive inverse wavelet transform for irregular meshes. The wavelet

coefficients are filtered and the appropriate connectivity information is

provided before performing the inverse wavelet transform. This offers ROI

support and allows for reduced graphics memory requirements compared to

wavelet-based ROI decoding of semi-regular meshes.

• Dynamic tiling per resolution in the wavelet domain. By tiling in the wavelet

domain, random access is provided while avoiding tiling artifacts in the

spatial domain. The tiling adapts to the sampling densities within each

resolution, allowing for an optimal trade-off between coding performance

and random access granularity per resolution.

• Tile-based RD optimization (RDO). The tiled coding approach allows

for optimizing the rate-distortion (RD) performance. As the tiles are

independently encoded, this allows for reordering the tiles within a

resolution level, and even across resolutions, while still preserving the
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benefits offered by quality scalability. An RD-optimized bit plane

transmission order is then obtained such that those bit planes of the tiles

which give the largest quality gain at the lowest rate are coded first.

The remainder of the chapter discusses the following topics. Section 4.1 will

discuss work related both to encoder-side and decoder-side ROI coding. In Section

4.2, ROIs for meshes are introduced in general. Section 4.3 then handles work

done concerning encoder-side ROI coding. In this respect, Section 4.3.1 details

the propagation of ROIs to ensure proper reconstruction, Section 4.3.2 tackles

wavelet coefficient boosting which allows for encoding without altering the coding

system, Section 4.3.3 then discusses the approach to enable the transmission of a

predefined ROI, and Section 4.3.4 discusses how to further improve the results by

providing an ROI-steered upsampling. Next, Section 4.4 handles the work done

to allow for decoder-side ROIs. Here, Section 4.4.1 discusses the adaptive inverse

wavelet transform and Section 4.4.2 continues by defining tiles in the mesh data.

Subsequently, Section 4.5 details how these tiles can be exploited to improve the

RD performance. The evaluation is presented in Sections 4.6.1 and 4.6.2, followed

by conclusions in Section 4.7.

4.1 Related Work

Recall that a conventional mesh coding system initially transforms a mesh M

into MTF, after which an encoding step results in a compressed representation

Menc of the input mesh (see Figure 2.16, page 42). Scalable systems then allow

for progressively refining a mesh. In Chapter 3, such refinement operations

are performed over the entire mesh surface. The current chapter investigates

refinement operations which are localized in specific ROIs, defined either at the

encoder side or at the decoder side. This corresponds to encoder-side and decoder-

side ROI coding functionalities respectively.

The encoding of an encoder-side ROI is symmetric: the decoded data is

equivalent to the encoded data. Encoder-side ROIs are useful for prioritizing

regions within M for coping with reduced bandwidths; e.g., prioritizing facial

details of a virtual human character over details in the remainder of his body. This

codec functionality is further discussed in Section 4.1.1.

Conversely, a decoder-side ROI adapts the resolution over the mesh surface to

the needs of the decoder, requiring an encoding procedure which can no longer

be symmetric. A decoder must be able to request specific parts of a model at

specific resolutions, affecting either Menc, MTF or both. This type of functionality

is further addressed in Section 4.1.2.
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4.1.1 Encoder-Side Regions of Interest

The premise for encoder-side ROIs is easy to formulate: store data such that

the prioritized regions are transmitted and decoded before the unprioritized

background regions. Vertex-by-vertex based, cLOD systems such as [1] or [2] can

trivially prioritize regions: vertices are prioritized individually, directly altering

the refinement and encoding order. Multi-resolution systems such as [3–6] and

SFWInCS presented in Chapter 3 call for specific designs, as individual vertices

are no longer accessible after the transform which results in MTF. Few solutions

have been proposed for encoder-side ROIs for multi-resolution systems. A solution

which was inspired by the JPEG 2000 maxshift and general scaling operations [7]

was proposed for semi-regular codecs by Zheng et al. [8]. Encoder-side wavelet-

based ROI for irregular meshes has not been proposed in literature so far.

4.1.2 Decoder-Side Regions of Interest

Contrary to encoder-side ROIs which are based on predefined prioritizations of

specific spatial regions in the mesh, a decoder-side ROI is more involved as a

single bit stream needs to provide for a dynamic, arbitrary ROI selection in an

efficient way.

A first 3D graphics domain where arbitrary ROI decoding was required was

terrain visualization. Gobbetti et al. [9] proposed adaptive meshes for terrain

data. The employed grid-based structure of [9] allowed for easy random access

support as each two adjacent triangles form a root for further subdivision and

can be processed individually. Similar tiled approaches have been suggested e.g.

in [10, 11], and have proven to be successful for 2.5D surfaces, i.e. surfaces where

each (x, y) couple corresponds to, at most, a single point (x, y, z) on the surface.

However, such approaches are too restrictive for the general case of 3D surfaces.

In the following, a short overview of the literature is given by focusing on

transform-based ROI coding in Section 4.1.2.1 and tile-based ROI coding in

Section 4.1.2.2.

4.1.2.1 Transform-Based Region-of-Interest Coding

For cLOD representations, decoder-side ROIs (e.g., a view-dependent selection)

can be obtained by either carefully applying or skipping refinements. Such

approaches are often termed as selective refinement methods. Hoppe [12] proposed

such an ROI decoding approach for his progressive meshes method [1], which

was implemented on graphics hardware by Hu et al. [13]. For multi-resolution

representations, where each refinement step adds multiple vertices, the refinements

need to be restricted based on the required ROIs. Gioia et al. [14] have proposed

ROI support for wavelet representations of semi-regular meshes, whereby the
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resolution can be adapted over the geometric surfaces by suppressing wavelet

coefficients. This corresponds to what is proven to be an adaptive inverse wavelet

transform for semi-regular meshes. Roy et al. [15] have proposed a multi-

resolution analysis for meshes with surface attributes, using the edge collapse

operations of [1] and its selective refinement [12]. Similar to Gioia et al., the

detail coefficients are also selectively filtered [15].

These solutions are termed transform-based ROI coding methods as the

transform is enhanced to offer ROI scalability. This allows for adapting the

resolution in a fine-grained manner over the surface. However, these solutions

suffer from the fact that only the refinement steps are ROI-aware without providing

for random access within the data stream; that is, the ROIs are only defined on

the decoded transformed mesh M̂TF (see Figure 2.17 on page 43), requiring full

decoding of Menc.

4.1.2.2 Tile-Based Region-of-Interest Coding

The idea of tiling and encoding a mesh was proposed by [16] to allow for out-

of-core processing, i.e., to handle data which no longer fits into main memory.

However, this approach did not offer random access due to the dependencies

between the tiles during encoding. In most works, a global tiling is decided upon,

after which each tile is individually encoded. These approaches are termed as

tile-based, whereby ROI scalability is offered by the tiling process itself.

Initial tile-based approaches used a single-rate codec operating on a global

tiling of a mesh. Choe et al. [17] proposed a tiling which resulted in a wire-net

mesh representing the tile borders, and encoding each tile independently using

a single-rate encoder. In [18], the authors improved upon [17], allowing for

more control over random accessibility, better compression, and support for large

meshes which require out-of-core processing. Yoon and Lindstrom [19] also group

triangles in tiles, after which each of these tiles is compressed using their streaming

mesh compression approach [20]. In this method, each tile is also encoded at a

single rate. Such approaches make binary decisions on tile granularity: either the

tile is (partly) visible and is entirely decoded, or it is not visible and the decoding

is skipped. The main downside is that this does not allow for scaling the resolution

or quality of the visible regions, with issues similar to those of single-rate coding

without tiling.

By employing a progressive encoding per global tile, each tile can be decoded

at a different level of detail, for instance depending on the distance to a virtual

camera, or depending on some specified region of interest. Liu and Zhang

describe a wavelet-based mesh compression scheme with random access [21],

as one of the first works which combine random access with scalable coding,

as opposed to utilizing a single-rate compression per tile. Making use of [4],

their work operates on semi-regular meshes to obtain progressive encoding per
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tile, while random access is offered by exploiting the employed zerotree-based

encoding and considering the base triangles as tiles. A binary decision is still

made based on back-face culling: if an oriented triangle of the base mesh has its

front side facing the virtual camera, the corresponding trees of coefficients are

transmitted. This avoids tiling artifacts but results in a high sampling density,

which is common for semi-regular mesh representations. Roudet et al. [22]

similarly use [4], and define global tiles by projecting high-resolution data onto

the base triangles. In [23], Cheng et al. improve the progressive coder of [24] to

use multi-granular quantization, and use this coder to encode tiles obtained after

global tiling. No details are given concerning approaches to avoid artifacts at the

tile borders. Maglo et al. [25] continued on this approach, using the progressive

codec of [26] combined with post-processing of the tile borders to ensure a valid

topology. This is done by moving the border vertices of the higher-resolution

tile towards the border vertices of the lower-resolution tile, and triangulating any

remaining holes. This process results in visual blocking artifacts. This method was

further continued in [27], allowing for smooth transitions between adjacent tiles

without post-processing, with the restriction that neighboring regions can differ by

at most one resolution level. Du et al. [28] propose a coding method based on the

codec of Gandoin and Devillers [29], which refines vertex locations iteratively via

increasingly finer-grained quantizers. A two-level tree is proposed where the root

represents the coarsely-quantized base mesh to be decoded completely, while the

subtrees, i.e., the tiles, can be individually decoded each to its desired level. Again,

care has to be taken for border triangles lying across subtrees. Finer granularity

and random access for vertex-based selective-refinement coding was proposed by

Kim et al. in [30] by partitioning the original vertex hierarchy into sub-blocks

acting as tiles for random accessibility.

The downside of these tile-based solutions is that they cannot adapt the

resolution in a fine-granular way as offered by transform-based approaches; the

granularity is limited by the tile granularity. Consequently, care has to be taken

near tile borders to avoid artifacts, which can be challenging if the resolutions of

neighboring tiles differ by multiple levels. Tile-based approaches are compared to

transform-based approaches in Table 4.1.

Transform-Based ROI Tile-Based ROI

Transform single altered inverse transform unaltered instance per tile

Encoding unaltered encoding of all data unaltered encoding of data per tile

ROI granularity resolution varies over the surface single resolution per tile

Fixing tiling artifacts not necessary careful resolution selection

Random access not possible tiles independently encoded

Table 4.1: Summary of decoder-side ROI approaches. Transform-based approaches define

ROIs on the decoded, transformed data and require all data to be decoded. Tile-based

approaches partition a mesh, and transform and encode each partition individually.
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Dynamic Tiling A solution where the tiles used for random access change

dynamically is given by Courbet and Hudelot [31]. The authors propose a recursive

mesh splitting approach to obtain hierarchical random access for polygonal

meshes. The resulting representation allows to randomly access arbitrarily small

portions of a mesh, but does not support resolution scalability: the portions of a

mesh within the ROI have to be iteratively subdivided until the original triangle

mesh is obtained for the ROI. The subsequently smaller tiles of [31] allow for

more efficient processing.

4.2 Wavelet-Based Coding and Regions of Interest

WjWT

Geometry Coder

Connectivity Coder

Base Mesh Coder

Wavelet Subband Coder

Mj+1

M0

Gj

Cj

Mj

Figure 4.1: Single pass through a wavelet-based mesh encoding system. This figure depicts

a single pass through the mesh encoding system as was depicted in Figure 3.1. A mesh

Mj+1 is transformed into a lower-resolution mesh Mj and a wavelet subband Wj ,

consisting of connectivity information Cj and geometry information Gj . This

transformation is repeated until a base mesh M0 is obtained.

In Chapter 3, a resolution and quality scalable mesh coding system named

SFWInCS, was presented. Figure 3.1 (page 61) depicts the basic architecture

for such a wavelet-based mesh coding system, of which a single pass is once

more illustrated in Figure 4.1. The wavelet transform iteratively downsamples

an original mesh M , generating the multi-resolution representation (M=)MR,

MR−1, . . . , M0, i.e., there are R+1 resolutions. Downsampling Mj+1 results

in a lower-resolution mesh Mj , a wavelet subband Wj , consisting of geometry

information Gj and, for an irregular mesh codec, connectivity information Cj .

For a semi-regular mesh codec, no connectivity information is required as the

connectivity of a semi-regular mesh is determined by a subdivision scheme.

The base mesh M0 is encoded using any arbitrary single-rate coder, such as

the state-of-the-art codec of Touma and Gotsman [32]. The wavelet subbands

and connectivity information are encoded using the Geometry Encoder and

Connectivity Encoder respectively. As indicated in Figure 3.1, encoding the

connectivity information results in a single data block per resolution. The wavelet

coefficients however are typically quantized using successive approximation
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quantization (SAQ) [33] and are encoded in bit-plane-by-bit-plane fashion. This

is a conventional approach, e.g. employed by Denis et al. [6], which allows for

quality scalability and RDO (as was shown in Sections 3.3 and 3.4).

In the context of ROI coding, the concepts of Region-of-Interest (ROI) and

background (BG) are used. The ROI is the prioritized region, i.e., the regions

prioritized by an encoder or requested by a decoder. The BG, conversely, is formed

by the unprioritized regions or the regions that are not requested. To investigate the

ROI coding functionality, the codec presented in Chapter 3, which yields state-of-

the-art compression performance for irregular meshes, is enhanced. Given meshes

Mj , an (encoder-side or decoder-side) application can define subsets of vertices

as spatial regions of interest ROISj ⊂Mj . Employing the support of a wavelet

coefficient S(w) as defined in Equation 3.3, each ROISj is translated to a region

of interest in the wavelet domain ROIWj as follows:

ROIWj = {w ∈Wj | S(w) ∩ROISj 6= ∅}, (4.1)

i.e., ROIWj is the subset of those wavelet coefficients in Wj whose support

overlaps with the given ROISj . Additionally, define the support of the set ROIWj
as:

S(ROIWj ) =
⋃

w∈ROIW
j

S(w). (4.2)

To accommodate for the varying resolution across a surface, the notations

Mα≤j ,Mβ≤j , . . . are introduced to identify several partial reconstructions of Mj ,

i.e., the resolution varies over the surface, reaching at most resolution j. Given

such a partially reconstructed mesh Mα≤j and ROIWj , Equation 3.1 is generalized

as follows:

Mα≤j+1 = WT−1(Mα≤j , ROIWj ),

with S(ROIWj ) ⊂Mα≤j .
(4.3)

The requirement in Equation 4.3 states that if the support for each wavelet

coefficient w ∈ ROIWj is present in the partially reconstructed Mα≤j , then the

inverse wavelet transform results in an upsampled mesh Mα≤j+1. Otherwise, if

there exists at least one wavelet coefficient with a support which is not entirely

present in Mα≤j , then the inverse transform is topologically ill-defined as the

prediction term in Equation 3.2 cannot be evaluated properly.

4.3 Encoder-Side Region-of-Interest Coding

The encoding of an encoder-side ROI, or a predefined ROI, is based on the ROI

coding methods defined in the JPEG 2000 image coding standard [34]. The

standard defines (1) a general scaling based method which allows for scaling
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rectangular or elliptical regions at arbitrary scaling values, and (2) the maximum

shift (maxshift) method which allows for arbitrarily-shaped regions to be encoded.

The former allows for choosing for each region a relative importance w.r.t. the

BG but requires transmitting the ROI masks. The latter only allows for one shift,

i.e., the ROI gets full precedence over the BG, but the ROI masks are arbitrarily

shaped and are not encoded. This dissertation applies the maxshift method to 3D

mesh coding.

The next sections discuss the propagation of higher-resolution ROIs to lower

resolutions in Section 4.3.1 and wavelet coefficient boosting in Section 4.3.2.

Section 4.3.3 then details an ROI-aware transmission order, and Section 4.3.4

finally tackles deterioration in the BG by proposing an ROI-steered upsampling

step.

4.3.1 Propagating an ROI Mask

An encoder can decide, at any resolution, which regions are of interest. This

arbitrary choice is restricted by the fact that ROISj must be reconstructable after

upsampling the ROIs of all lower resolutions k < j. To ensure this, ROISj at

resolution j is propagated to the region σ(ROISj ) at resolution j − 1, additionally

requiring that σ(ROISj ) ⊆ ROISj−1, whereby σ is the region propagation

operator. This was described in [7] for image coding; analogue reasoning can

be applied for 3D meshes. The region σ(ROISj ) is obtained as follows:

σ(ROISj ) =

{v ∈Mj−1 | γ
−1(v) ∈ ROISj } ∪

{v ∈Mj−1 | ∃v
o
j ∈ (ROISj ∩Mo

j ), v ∈ S(ω(voj ))}.

(4.4)

That is, σ(ROISj ) consists of each vertex v ∈ Mj−1 which can either be mapped

to an (even) vertex in ROISj , or an odd vertex voj ∈ ROISj can be found

whose wavelet coefficient support S(ω(voj )) contains v. Hence, all even vertices

in ROISj are preserved in σ(ROISj ) while odd vertices require the support of

the corresponding wavelet coefficients to be present as well. Requiring that

σ(ROISk+1) ⊆ ROISk ∀k < j ensures that any reconstruction Mα≤j can be

obtained with ROISj properly reconstructed. The relationships between the high-

resolution ROISj and the low-resolution σ(ROISj ) and ROISj−1 are illustrated in

the example of Figure 4.2.

Following this process, a base mesh M0 is obtained, together with a set of

wavelet subbands Wj for which their ROIWj are known. These subbands Wj are

now encoded with information on their ROIWj without making changes to the

wavelet subband coder, as discussed next.
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ROISj

(a) ROI in Mj

σ(ROISj )

(b) Propagation to Mj−1

ROISj−1

(c) Final ROI in Mj−1

Figure 4.2: ROI propagation. (a) shows mesh Mj with a selected ROI. After

downsampling, the odd vertices (drawn in red) are no longer available in Mj−1 and the

ROI is expanded in (b) to properly represent ROISj at resolution j − 1. This ROI, denoted

as σ(ROISj ), is the propagation of ROISj to the lower resolution j − 1. σ(ROISj ) must

be a subset of the final ROI defined in Mj−1, denoted by ROISj−1 and depicted in (c).

4.3.2 Boosted Wavelet Coefficients

As wavelet coefficients are quantized, the same ideas underlying the maxshift

coding method can be applied, allowing for storage and transmission with ROI

support without altering the employed encoder and decoder. This is done by using

boosted wavelet coefficients: the quantized wavelet coefficients w ∈ ROIWj are

premultiplied by a scaling value sj . Given sj > |w|, ∀w ∈ Wj \ ROIWj , the set

of boosted wavelet coefficients WB
j is constructed as:

{
∀w ∈ ROIWj :sjw ∈WB

j

∀w ∈Wj \ROIWj :w ∈WB
j

. (4.5)

That is, the wavelet coefficients within the ROI are upscaled by a scaling factor

surpassing the largest wavelet coefficient magnitude found within the BG, as

illustrated in Figure 4.3.

log2 |w|

(a)

sj

log2 |w
B|

(b)

Figure 4.3: Boosted wavelet coefficients. An example magnitude profile of wavelet

coefficients w ∈ Wj is given in (a), with the coefficients within the ROI shown in darker

gray. (b) shows the boosted wavelet coefficients wB ∈ WB
j .
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The encoder processes WB
j instead of Wj , and is unaware of any ROI

functionality. As the wavelet coefficients pertaining to the ROI occupy bit planes

with a higher significance after scaling, these wavelet coefficients will be encoded

prior to the coefficients in the BG. At the decoder side, after decoding WB
j the

original wavelet coefficients can be obtained as:

{
∀w ∈WB

j ∧ w ≥ sj :w/sj ∈Wj

∀w ∈WB
j ∧ w < sj :w ∈Wj

. (4.6)

The decoder classifies wavelet coefficients with a magnitude larger than sj as being

part of the ROI and will scale them back down by this factor sj , after which the

classical inverse wavelet transform is performed.

4.3.3 ROI-Aware Transmission Order

Per wavelet subband, the ROI is stored or transmitted before the BG. One can also

ensure that the ROIs of all resolutions are stored or transmitted before any BG

information. To this end, the bit plane coding order must be altered such that the

coding layers associated with the BG information in every resolution are stored at

the end of the bit stream, after storing the ROIs.
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Figure 4.4: Predefined ROI transmission orders. (a) shows the data layers after coding;

for resolution j, Cj represents connectivity information and G
(i)
j geometry information for

bit plane i. (b) shows the default resolution-scalable encoding order of Chapter 3. (c)

depicts the ROI-aware transmission order.

Figure 4.4a shows a simplified example using 2 bit quantization and scaling

the obtained wavelet coefficients with s = 22. Note that this scaling value
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(and consequently the number of bit planes used for the BG information) varies,

in general, across subbands depending on the largest magnitude coefficient in

the corresponding subband. At each resolution level j, the system produces a

connectivity layer Cj and corresponding geometry layers G
(k)
j . The maxshift

method described above implicitly encodes the ROI before the BG, within each

subband. This is depicted in Figure 4.4b, where it is shown that the ROI bit

planes are coded before the BG bit planes. This prioritizes the ROI information

only within each resolution level, but not across resolutions: an ROI at a given

resolution is only streamed after streaming both the ROI and BG information of

the previous resolution. Analogue to how the rate allocator in JPEG 2000 reorders

the bit stream parts across coding blocks and wavelet subbands to have the ROI

streamed prior to the BG information, bit stream parts need to be reordered across

resolutions.

Section 3.3.2 showed that an arbitrary transmission order of wavelet coefficient

bit planes is possible without a negative impact on the lossless coding rate. Hence,

the transmission can be made ROI-aware by streaming per resolution level the

bit planes pertaining to the ROI, subsequently followed by streaming the BG

information of every resolution. This transmission order is shown in Figure 4.4c.

4.3.4 ROI-Steered Upsampling

Consider the ROI-aware transmission order described above and let Q denote

the amount of quantization bits, sj the scaling value for subband j, and

kj = log2 sj ; the decoder reads base mesh M0 and then receives C0, G
(Q+k0−1)
0 ,

. . . , G
(k0+1)
0 , G

(k0)
0 to reconstruct M1 for which the ROI will be accurately refined.

Subsequently, C1, G
(Q+k1−1)
1 , . . . , G

(k1+1)
1 , G

(k1)
1 are received to reconstruct M2,

and so on. The ROI is again accurately refined; in the BG, however, geometric

errors accumulate. Figure 4.5 shows the back of fandisk after decoding the ROIs

for all resolutions, i.e., up to G
(kR−1)
R−1 , without decoding BG information.

This quality degradation appears because the connectivity information is not

ROI-aware, that is, the set M̃o
j of reconstructed odd vertices, i.e.

M̃o
j = {ω−1(w) | w ∈Wj−1}, (4.7)

creates all vertices when upsampling while only the vertices in the ROI are

accurately positioned. The small distortions due to prediction errors accumulate

with each resolution, resulting in increasingly worse artifacts in the BG.

A trivial solution involves low-pass filtering the BG vertices to ensure a

smooth BG surface after decoding. However, irregular meshes allow for a more

straightforward and beneficial approach, which is to limit the upsampling to only

create vertices in the decoded ROI, that is:

M̃o
j = {ω−1(w) | w ∈ ROIWj−1 ⊂Wj−1}. (4.8)
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Figure 4.5: Geometric degradation in the BG

ROIWj−1 can be simply detected as the set of all non-zero wavelet coefficients when

only decoding layers associated with the ROI; however, one may miss possible

zero-magnitude coefficients in ROIWj−1. These zero-magnitude coefficients which

are effectively within the ROI are then nonetheless determined as BG and the

corresponding patches are not retriangulated, which may lead to topological issues

at higher resolutions: subsequent ROI-aware reconstruction steps possibly depend

on undetected ROI vertices.

To avoid this problem, in addition to pre-multiplication and post-division, one

can add a pre-increment and post-decrement to Equations 4.5 and 4.6 respectively,

to ensure accurate encoding and detection of ROIWj−1. Smoothness in the BG is

now ensured by the reduced resolution instead of by smoothed samples. Adapting

the resolution over the surface ensures a minimal amount of vertices and triangles,

which reduces memory load when rendering.

4.4 Decoder-Side Region-of-Interest Coding

Whereas encoder-side ROIs discussed in Section 4.3 allow for an encoder to

statically prioritize specific regions at specific resolutions, decoder-side ROIs are

dynamically determined and ask for an improved codec design to ensure efficient

data retrieval and mesh representations.

The next two sections describe decoder-side ROI coding. In Section 4.4.1

a novel adaptive inverse wavelet transform is described which allows for ROI

decoding of irregular meshes. Such an adaptive inverse transform offers fine-

grained resolution control over the entire mesh surface, ensuring an optimal mesh

representation. To allow for random access into the encoded data, ensuring

efficient data retrieval, dynamic tiling is described in Section 4.4.2.
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4.4.1 Adaptive Inverse Wavelet Transform

The ROI-steered upsampling discussed in Section 4.3.4 is suitable for encoder-

side ROI approaches for which ROIs are predefined at the encoding side: per

resolution j, a spatial-domain ROISj will be accurately reconstructed in Mα≤j .

In contrast, decoder-side ROI approaches have to accommodate interactive ROIs,

which are arbitrarily defined while resolutions are being reconstructed. That is, at

each resolution j, an ROISj is specified by the user at the decoder side. During

upsampling, these arbitrary ROIs cannot take into account (unknown) higher-

resolution ROIs, as done in the encoder-side ROI approach presented in Section

4.3.

The proper reconstruction of Mα≤j+1 given ROISj possibly requires

modifying lower-resolution meshes Mα≤k, k ≤ j to obtain additional samples to

satisfy the condition in Equation 4.3. These lower-resolution meshes Mα≤k need

to be reconstructed with a larger ROI denoted by ROIS
k|j , which is the expansion

of ROISk to yield a proper reconstruction at the higher-resolution j.

Consider for instance that Mα≤j is accurately reconstructed given all lower-

resolution regions of interest ROISk , k < j. To reconstruct Mα≤j+1 given ROISj ,

Mα≤j needs to be modified to Mβ≤j , obtaining the additional samples to ensure

S(ROIWj ) ⊂Mβ≤j . First, the given ROISj needs to be expanded to ROIS
j|j in

order to encompass the support S(ROIWj ) defined in Equation 4.2, i.e., to include

the supports of the wavelet coefficients w ∈Wj which overlap with ROISj :

ROISj|j = ROISj ∪ S(ROIWj ). (4.9)

To reconstruct Mβ≤j , the lower-resolution mesh Mα≤j−1 needs to be upsampled

considering the interactively-specified ROI at resolution j−1, ROISj−1, expanded

to ROIS
j−1|j , in order to ensure its accurate reconstruction at resolution j. One

can write:

ROISj−1|j = ROISj−1|j−1 ∪ σ(ROISj|j). (4.10)

The new ROI encompasses both ROIS
j−1|j−1, i.e., the expansion of ROIj−1

which yields a proper reconstruction at resolution j − 1, and the propagation of

ROIS
j|j to resolution j − 1, as defined in Equation 4.4.

Recursively, to reconstruct Mβ≤j given this further expanded ROIS
j−1|j ,

Mα≤j−1 needs to be modified to Mβ≤j−1, reconstructed from the subsequent

lower-resolution mesh Mα≤j−2 by considering ROIS
j−2|j , with:

ROISj−2|j = ROISj−2|j−1 ∪ σ(ROISj−1|j). (4.11)

Equations 4.10 and 4.11 can be generalized, defining the expansions for k < j

recursively as:

ROISk|j = ROISk|j−1 ∪ σ(ROISk+1|j). (4.12)



REGION-OF-INTEREST CODING 131

ROI
S
0|1 \ROI

S
0|0

ROI
S
0|0 \ROI

S
0

ROI
S
0

(a) M0

ROI
S
1|1 \ROI

S
1

ROI
S
1

(b) Mα≤1

ROI
S
1|1 \ROI

S
1

ROI
S
1

(c) Mβ≤1 (d) Mβ≤2

S(w0
0)

S(w1
0) S(w2

0)

S(w3
0)

S(w4
0) S(w5

0)

S(w6
0)

(e) MT
0 and

S(ROIW0 )

S(w0
1)

S(w1
1)

S(w2
1)

S(w3
1)

S(w4
1)

S(w5
1)

S(w6
1)

S(w7
1)

(f) MT
1 and

S(ROIW1 )

S(w0
0)

S(w1
0) S(w2

0)

S(w3
0)

S(w4
0) S(w5

0)

S(w6
0)

(g) MT
0 and

S(ROIW0|1)

Figure 4.6: Conceptual example of the adaptive inverse wavelet transform. The figure

shows the decoded mesh, with determined ROIs indicated in dark gray and expanded ROIs

in light gray. The inverse transform operations subsequently transform M0 (a) to Mα≤1

(b) at resolution 1, a second version Mβ≤1 (c) and finally Mβ≤2 (d). The requested

ROIS are shaded in dark gray, and the corresponding S(ROIW ) are depicted on the

bottom line.

The expansion ROIS
k|j of ROISk given the newly determined ROISj is the union

of its expansion ROIS
k|j−1 complying for the already known ROISj−1, and the

propagation σ(ROIS
k+1|j) of the higher-resolution expansion ROIS

k+1|j .

Given the spatial-domain ROISj with wavelet-domain ROIWj obtained via

Equation 4.1, and S(ROIWj ) 6⊂ Mα≤j , the adaptive inverse wavelet transform

can now be recursively defined to obtain Mβ≤j :

Mβ≤1 = WT−1(M0, ROIW0|j), (4.13)

Mβ≤k = WT−1(Mβ≤k−1,ROIWk−1|j). (4.14)

With this, WT−1(Mβ≤j , ROIWj ) is properly defined.

The adaptive inverse wavelet transform is illustrated via the example of Figure

4.6. The figure shows a mesh M on the top line, and its template mesh MT on

the bottom line. The ROIs in Figure 4.6 are shaded as indicated in the figure. The

performed steps are described in Listing 4.1.
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1: function UPSAMPLE(ROIS0 )

2: given M0 and ROIS0 ⊲ (Fig. 4.6a)

3: ROIW0 = {w3
0}

4: S(ROIW0 ) = S(w3
0) ⊂M0 ⊲ (Fig. 4.6e)

5: return Mα≤1 = WT−1(M0, ROIW0 ) ⊲ (Fig. 4.6b)

6: end function

7: function UPSAMPLE(ROIS1 )

8: given ROIS1 ⊲ (Fig. 4.6b)

9: ROIW1 = {w2
1, w

3
1, w

4
1}

10: S(ROIW1 ) = S(w2
1) ∪ S(w3

1) ∪ S(w4
1) ⊲ (Fig. 4.6f)

11: =⇒ S(ROIW1 ) 6⊂Mα≤1 ⊲ (Fig. 4.6b)

12: function UPSAMPLE(ROIS0|1)

13: ROIS0|1 = ROIS0|0 ∪ σ(ROIS1|1) ⊲ (Fig. 4.6a)

14: ROIW0|1 = {w1
0, w

2
0, w

3
0}

15: S(ROIW0|1) = S(w1
0) ∪ S(w2

0) ∪ S(w3
0) ⊲ (Fig. 4.6g)

16: return Mβ≤1 = WT−1(M0, ROIW0|1) ⊲ (Fig. 4.6c)

17: end function

18: return Mβ≤2 = WT−1(Mβ≤1, ROIW1 ) ⊲ (Fig. 4.6d)

19: end function

Example 4.1: Adaptive inverse wavelet transform

Observe that the mapping µ is no longer surjective if Mα≤j 6= Mj :

vT ∈MT
j ; ∃v ∈Mα≤j : µ(v) = vT . (4.15)

Although not all vT ∈ MT
j have a corresponding v ∈Mα≤j , the recursive

expansion and propagation of ROIs (Equation 4.12) does ensure such a

correspondence for the required vertices.

The main advantage of such an adaptive inverse wavelet transform is that a

rendering system is allowed to select its desired ROI, reducing the processing

power spent for the inverse wavelet transform, and reducing the data transmission

to, and the memory usage on, the graphics hardware. The main disadvantage

is that this approach still requires decoding all data in Menc. Additionally, one

notes that the size of the transformed data MTF, i.e., before any arithmetic or

entropy coding, is often proportional to the size of M itself. Hence, while graphics

memory requirements are optimized, the memory required to obtain this ROI-

adapted model is not.

4.4.2 Dynamic Tile-Based Coding

To reduce memory and bandwidth requirements when reconstructing Mα≤j+1

given ROISj , only the wavelet coefficients wj ∈ ROIWj and wk ∈ ROIW
k|j
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for k < j need to be decoded. This reveals the conventional trade-off

in randomly-accessible coding: at one end of the spectrum, all samples are

individually decodable which means there is no entropy coding but perfect

random accessibility; at the other end of the spectrum, all samples are

encoded simultaneously resulting in optimal coding performance but no random

accessibility. To solve this trade-off, the proposed coding paradigm makes use of

dynamic tile-based coding, detailed in this section.

The connectivity and geometry coder of Chapter 3 were employed, which can

be summarized as follows. For each wavelet coefficient w ∈ Wj , the connectivity

information wc ∈ Cj is represented by assigning a binary value β(ekj ) to each

edge ekj , indicating whether or not the edge is preserved when upsampling. This

is shown in Figure 4.6e for MT
0 using full lines for edges that are preserved,

and dashed lines across which triangles are merged. Merging triangles across

such edges results in non-triangular faces which are immediately recognized as

patches. An odd vertex voij+1 is added per patch, and the patch is retriangulated

(depicted in Figure 4.6f). The geometry information wg ∈ Gj allows for an

accurate reconstruction of the vertex positions.

The connectivity samples, i.e. a sample per edge for Cj , and the geometry

samples, i.e. a single sample per wavelet coefficient for Gj , are encoded using a

connectivity coder and a geometry coder respectively. Both make use of octree

coding, by embedding the samples through the template mesh. Let vka

j and vkb

j

denote the two vertices which define ekj . Given a spatial cell C(k,u) as defined in

Equation 3.6, the connectivity samples with binary values β(ekj ) are embedded at

ěkj =
[1
2
µ(viaj ) +

1

2
µ(vibj )

]
, (4.16)

such that

β(eij) ∈ C(k,u) if ěkj ∈ C(k,u), (4.17)

and the geometry samples for the wavelet coefficients ω(voij+1) are embedded at

v̌oi
j+1 = µ(ṽoij+1), (4.18)

such that

ω(voij+1) ∈ C(k,u), if v̌oi
j+1 ∈ C(k,u). (4.19)

In Chapter 3 the template mesh was used for embedding both the connectivity

and geometry samples in R
3 as described above. In Section 4.4.1, the same

template mesh is additionally used to map the wavelet coefficient supports S(w)

from MT
j where they are ensured to be accurately represented, to Mα≤j where

these supports are not necessarily fully reconstructed. The next sections discuss

approaches to avoid decoding an entire subband before performing an adaptive

inverse transform. Section 4.4.2.1 discusses tiling of the geometry samples v̌oi
j+1;

Section 4.4.2.2 goes on by discussing how the connectivity samples ěkj can be

tiled.
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4.4.2.1 Tiled Geometry Information

For an ROI-based reconstruction of Mα≤j+1, the decoding of the geometric

samples can be limited to w ∈ ROIW
k|j for each k ≤ j. A partial, ROI-based

decoding of these geometric samples does not hinder subsequent decoding steps

as each MT
j , which embeds the samples, is reconstructed using only connectivity

information.

At each resolution, Cj is fully decoded. To allow for random access into the

geometry data Gj , the geometry samples can be partitioned into tiles based on any

criterion that can be mirrored by a decoder; for instance, based on the topology of

MT
j+1 or based on the sampling locations v̌oi

j+1 within MT
j+1.

Each odd vertex corresponds to a single geometry sample, and can

consequently be mapped to a single tile after partitioning. Denote the mapping

of odd vertices voj to tile Tx
j as T (voj ) = Tx

j . The set of tiles required for ROIWj
is:

T req
j =

⋃

w∈ROIW
j

T
(
ω−1(w)

)
. (4.20)

Except for signaling the tiles within a bit stream, the only lossless rate

penalty is caused by the trade-off between fine-granular random access (requiring

smaller tiles) and high coding performance (requiring larger tiles). As the portion

of geometry information vastly surpasses the connectivity information (see, for

instance, [2, 5, 35]), large speed-ups and rate savings for ROI decoding can be

obtained. However, using a template mesh MT having the same number of

vertices as the original mesh has memory limitations: for instance, decoding

only a fraction of a multi-million-vertex model M still requires a multi-million

vertex MT in memory. One can solve this problem by tiling also the connectivity

information, as proposed next.

4.4.2.2 Tiled Connectivity Information

Tiling geometry samples is possible in a straightforward manner because the entire

template mesh MT
j at each resolution j is available for embedding the samples

before (partial) decoding, and each wavelet coefficient corresponds to a single

encoded sample. Connectivity information cannot be handled similarly as these

two assumptions are no longer true.

Firstly, partial decoding of the connectivity information results in only partly

upsampling MT
j to MT

α≤j+1, breaking the symmetry with the encoder side.

Denote the tiles obtained after tiling using any criterion as T̃x
j . Contrary to the

tiling of geometry samples in Section 4.4.2.1 where MT
j can be used entirely by

both the encoder and decoder to create identical tiles, the tiling of connectivity

samples which are only partly decoded can no longer depend on all template mesh

information.
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To tackle this, one approach is to tile the samples only once, as is done in

literature and which results in fixed tiles. While this tiling operation is often

performed on the base mesh, it can in general be performed at any resolution j. As

the samples are not tiled at resolutions k < j, MT
j will be entirely reconstructed

by the decoder and the tiling operation can still use all template mesh information.

Alternatively, a dynamic tiling approach is suggested in this dissertation. By

allowing the amount of tiles to change per resolution level, the tiling can be adapted

to the global average sampling density. Additionally, by allowing for non-uniform

tiling, the tiling can be adapted to local sampling densities. In this approach, only

the first tiling operation can use all template mesh information. Subsequent tiling

operations can only consider information local to each tile in order to preserve

the symmetry with the encoder. Consequently, either additional signaling in the

data stream allows for uniform tiling, or decoder-side tiling decisions result in

non-uniform tiling as only local information can be considered.

Secondly, whereas the geometry is decoded given a single sample ω(voij )

per wavelet coefficient, properly upsampling the connectivity requires multiple

samples β(ekj ) to define the wavelet coefficient supports. As these supports are

only known to a decoder after decoding connectivity samples, a tiling of the

connectivity samples before decoding them necessarily needs to duplicate vertices

of neighboring tiles to avoid patches being encoded only partially within a tile.

Two approaches are discussed for extending the obtained tiles T̃x
j to account

for patches across tile borders:

• extend tile samples with the minimal amount of samples such that each patch

is fully represented,

• or extend tile samples such that all subsequent resolutions are decodable

given the current tile.

The following two sections discuss these two approaches for extending the tiles

T̃x
j to form the tiles Tx

j which are encoded.

Due to only partially reconstructing MT
α≤j , the mapping of vertices to tiles

T (vj) = Tx
j is no longer straightforward. The vertices at resolutions where (fixed

or dynamic) tiling is performed, are trivially mapped. However, for vertices vo

reconstructed at higher resolutions, S(ω(vo)) possibly lies across a tile border and

is consequently duplicated across multiple tiles. In the implementation, higher-

resolution even vertices vej and odd vertices voj are mapped as follows:

T (vej ) = T
(
γ(vej )

)
, (4.21)

T (voj ) =
⋃

v∈S(ω(vo
j
))

T (v). (4.22)

That is, reconstructed vertices inherit the (possibly different) tiles of the vertices in

their support. The set of required tiles T req
j per resolution j can then be determined
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via:

T req
j =

⋃

v∈ROIS
j

T
(
v
)
, (4.23)

where a single tile of each T (v) suffices.

Contrary to Equation 4.20 the required tiles can no longer be determined

directly in the wavelet-domain ROIWj . As connectivity information is only

partially decoded, not all wc ∈ Cj , needed for determining S(w) using Equation

3.3, are known. Hence, ROIWj cannot be determined using Equation 4.1. The

extended tiles corresponding to the vertices in the spatial-domain ROISj are

decoded. Consequently, the extension of the tiles must ensure that sufficient

samples are being decoded such that ROIWj can accurately be obtained for

reconstructing Mα≤j+1.

Minimal Connectivity Information per Tile After partitioning, the vertices

in patches which lie across tile borders are scattered over multiple tiles. Hence,

decoding only a specific tile T̃x
j can result in inaccurate connectivity near the tile

borders, which in turn results in drift when decoding geometry samples for tile

T̃x
j . The most straightforward approach encodes the tiles Tx

j which extend T̃x
j as

follows:

T̃x
j ⊂ Tx

j and

∀wj ∈Wj : S(wj) ∩ T̃x
j 6= ∅ =⇒ S(wj) ⊂ Tx

j .
(4.24)

That is, if one vertex of the wavelet coefficient support S(wj) was partitioned into

T̃x
j , then the entire support needs to be encoded in Tx

j .

Observe that this tiling cannot be mirrored by a decoder: T̃x
j can be determined

in the same way as done at the encoder side, but without knowledge of Wj , Tx
j

cannot be found. The proposed approach encodes additional vertex rings per tile

T̃x
j until Tx

j is entirely taken into account; the number of additional vertex rings

is a parameter which needs to be encoded in the bit stream. Each encoded sample

which is not found in Tx
j is encoded as a null-value to ensure no patches are

determined outside of Tx
j . The actual values for these samples are irrelevant for

decoding T̃x
j ; if a decoder needs these values, the appropriate tile will be decoded.

The construction of the tiles Tx
j considering wavelet coefficient supports, as

given in Equation 4.24, ensures that decoding the tiles given in Equation 4.23

provides the necessary wavelet coefficients of Wj for accurately determining

ROIWj defined in Equation 4.1, which are, in turn, required for reconstructing

Mα≤j+1. However, as the encoder only takes into account Wj without considering

higher resolutions, there is no guarantee that a subsequent decoding step of a

higher resolution will be possible without drift.
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Figure 4.7: Tiling with minimal duplication. In (a), an adaptive inverse wavelet transform

requires the data of subband 0, limited to tile T̃ x,y . The black wave line indicates data

outside of this tile required to properly reconstruct the template mesh MT
α≤1 which

perfectly reconstructs MT
1 within tile T̃ x,y . As MT

0 is at resolution 0 over all tiles, all

required data is available. In (b), data of subband 1 is required to reconstruct MT
α≤2,

again limited to tile T̃ x,y . Additional data outside of this tile (indicated by the red wave

line) is no longer guaranteed to be available, as MT
α≤1 is not necessarily at resolution 1 in

the tiles neighboring T̃ x,y . To ensure that all required data is available, the neighboring

tiles need to be at resolution 1 before reconstructing MT
α≤2 (c). In general, if data of

subband j is required in a tile T̃ x,y , tiles minimally need to be decoded as depicted in (d).
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Figure 4.7 illustrates this effect. Figure 4.7a shows all tiles of MT
0 . The wave

line indicates the samples added to T̃ x,y
0 to obtain T x,y

0 . For the next upsampling

step, such additional samples are not necessarily available in Figure 4.7b as the

neighboring tiles T x±1,y
0 , T x,y±1

0 and T x±1,y±1
0 are not decoded, nor were these

additional samples taken into account when constructing T x,y
0 using Equation

4.24. Consequently, these neighboring tiles need to be decoded before T x,y
1 can

be decoded (Figure 4.7c). In general, if an ROISj requires T̃ x,y
j , the minimal

resolutions are shown in Figure 4.7d: neighboring tiles can differ by, at most, one

resolution level.

This tiling approach has the disadvantage that much of the decoding effort is

spent to support neighboring tiles instead of the highest resolution within the tile.

Furthermore, while dynamic tiling is possible, ensuring the appropriate resolutions

per tile becomes even more involved if tiles are non-uniformly distributed. To

solve these issues, an alternative tiling methodology is presented next.

Sufficient Connectivity Information for Independent Tiles Alternatively,

given tiles T̃x
j , a tiling Tx

j is proposed which takes into account all higher

resolutions. In a first step, traverse all higher resolutions to find wavelet

coefficients affected by vertices in T̃j , defining temporary tiles T̂x
k for k ≥ j.

Let T̂x
j = T̃x

j ; T̂x
k is recursively determined as follows:

∀vek ∈Me
k : γ(vek) ∈ T̂x

k−1 =⇒ vek ∈ T̂x
k ,

∀vok ∈Mo
k : S(ω(vok)) ∩ T̂x

k−1 6= ∅ =⇒ vok ∈ T̂x
k ,

(4.25)

for each k ∈ [j+1, R], with R the highest resolution. T̂x
R encompasses all highest-

resolution vertices which are, directly or indirectly, affected by the vertices in

T̃x
j . To ensure that these highest-resolution vertices are accurately reconstructed,

traverse back to resolution j to ensure that all wavelet coefficient supports are taken

into account. Define temporary tiles qTx
k for the traversal back to resolution j. Let

qTx
R = T̂x

R; we have:

∀vek+1 ∈ ( qTx
k+1 ∩Me

k+1) : γ(v
e
k+1) ∈ qTx

k ,

∀vok+1 ∈ ( qTx
k+1 ∩Mo

k+1) : S(ω(v
o
k+1)) ∈

qTx
k .

(4.26)

Using Equation 4.26 eventually gives qTx
j . The minimally required tile data which

needs to be encoded is Tx
j = qTx

j . This ensures that, given an initial T̃j , sufficient

additional samples are provided to decode this resolution j as was described for

the previous approach, and to decode future resolutions j + k as long as ROISj+k

is composed of vertices which are (directly or indirectly) affected by vertices in

the original T̃x
j . Additionally, as tiles can now be treated independently, tiling can

be easily adapted to the decoded sample densities per resolution.
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Similar to the approach for tiling with minimal connectivity information above,

the decoder has no knowledge about Wk with k ≥ j and cannot reconstruct Tx
j .

Consider again the vertex rings around T̃x
j which need to be added until Tx

j is

entirely taken into account. This number of vertex rings is communicated to ensure

that the same tiles are used at the encoder and decoder sides. Finally, observe that

the same Tx
j is obtained as in Equation 4.24 if only looking one resolution higher,

i.e., considering R = j + 1 and thus only apply Equations 4.25 and 4.26 once.

This approach lends itself perfectly to dynamic tiling, producing tiles

of various sizes, adapted on the local density of the tessellation. In the

implementation, the partitioning is based on the recursive octree decomposition

of the bounding box of template mesh vertices. Let τTS be the given tile-split

threshold which controls the amount of vertices within any given tile. The dynamic

tiling algorithm initially considers all vertices to be contained within a single tile

T̃ 0
0 = T 0

0 . The tile partitioning approach considers the axis-aligned bounding

box of all vertices within a tile, i.e., the box containing the points (x, y, z) with

x ∈ [xmin, xmax], y ∈ [ymin, ymax], z ∈ [zmin, zmax] and

xmin = min
v∈T 0

j

v0 and xmax = max
v∈T 0

j

v0, (4.27)

ymin = min
v∈T 0

j

v1 and ymax = max
v∈T 0

j

v1, (4.28)

zmin = min
v∈T 0

j

v2 and zmax = max
v∈T 0

j

v2. (4.29)

In these equations vi indicates the ith component of the position of v.

The vertices are partitioned by considering eight octants around the bounding

box center vC . The index of each of the octants is given by a triple x =

(x0, x1, x2) with xi ∈ {0, 1}, where xi = 0 indicates that the ith component of

each vertex position in the octant is smaller than vC,i, i.e., the ith component of

vC . Conversely, xi = 1 indicates that the vertices have an embedded position with

the ith component larger than vC,i. This condition can be represented compactly:

∀v ∈ T̃ x0,x1,x2

j : (−1)xi(vC,i − vi) > 0, i ∈ [0, 2]. (4.30)

The dynamic tile decoding algorithm is described in Example 4.1. T represents

the set of decodable tiles. At each resolution, ROISj determines the required tiles

T req
j using Equation 4.23. Each required tile that still needs to be decoded, denoted

by Tj in Listing 4.1, is removed from the decodable tiles (line 4), is decoded and

upsampled (line 5), and either the upsampled tile Tj+1 is added to the decodable

tiles as such (line 7) or Tj+1 is first split and each of the subtiles are added to the

decodable tiles (line 13).
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1: T ← {T 0
0 }

2: for all j ∈ [0, R− 1] do

3: for all Tj ∈ T : Tj ∈ T
req
j do

4: T ← T \ {Tj}
5: Tj+1 = DECODEANDUPSAMPLE(Tj)

6: if |Tj | < τTS then ⊲ keep Tj+1

7: T ← T ∪ {Tj+1}
8: else ⊲ split Tj+1

9: vC = (xmin+xmax

2 , ymin+ymax

2 , zmin+zmax

2 )
10: for all x ∈ {0, 1}3 do

11: T̃x
j+1 = {v ∈ Tj+1 : (−1)xi(vC,i − vi) > 0}

12: Tx
j+1: obtained using Equations 4.25 and 4.26

13: T ← T ∪ {Tx
j+1}

14: end for

15: end if

16: end for

17: end for

Algorithm 4.1: Dynamic tile decoding

An example illustrating an encoding and decoding of the proposed dynamic

tiling approach is shown in Figure 4.8, where tiles are split binary; tile indices x

are now scalar indices which stay constant between the resolution at which the

tile is created and the resolution where the tile is further split. A base mesh is

encoded using a single tile T 0. Tile T 0
0 encodes the first subband W0, i.e., G0

and C0. Tiles T 0
1 and T 0

2 encode the next two subbands. However, the amount of

samples after upsampling T 0
2 surpasses τTS so instead of encoding a single tile T 0

3 ,

the tile is split and T 1
3 and T 2

3 are encoded instead (see Figure 4.8). Information is

duplicated, such that each subtree is now processed independently. Because tiles

are processed independently they need not be split at the same resolution, allowing

for the tile splitting to adapt to the sampling densities within the model.

The decoding process follows the same steps. The given ROISj per resolution

j determines the tiles T req
j which need to be decoded, while no dependencies

occur between neighboring tiles. For instance, for a given ROI, tile T 8 can be

decoded up to resolution 7 while the neighboring tile T 2 can remain at resolution

3, without any blocking artifacts showing up due to the construction of the tiles.

At each step of the decoding process, the state is represented by a tile front which

is formed as illustrated by the dashed line in Figure 4.8, and corresponds with T

in Listing 4.1. In this example, T = {T 3
5 , T

7
6 , T

8
7 , T

2
3 } represents the four tiles

and their respective resolutions for decoding a specific mesh Mα≤7. T 2
3 spans

approximately half of the bounding box, T 3
5 spans a quarter and T 7

6 and T 8
7 span

1/8, showing that the decoded tiles appropriately adapt to the sampling densities

required for the requested ROIs.
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Figure 4.8: Dynamic tiling: tile hierarchy. This figure visualizes the tiles hierarchically.

The dashed line represents a possible front of tiles which are decoded at a particular time.

Contrary to the approach for tiling with minimal connectivity information,

tiles are only decoded in order to supply wavelet coefficients for the mesh

reconstruction within the tile and not as support for decoding neighboring tiles

located in the ROI. That is, given an ROISj , only the tiles given by Equation

4.23 need to be decoded, as sufficient samples are provided for decoding up

to resolution j without drift. Compared to regular tiling when using minimal

connectivity information, this reduces the amount of tiles being decoded for a

given resolution level and improves random accessibility. This is illustrated in

Figure 4.9 which compares the proposed dynamic tiling method (Figure 4.9b) with

the regular tiling when using minimal connectivity information (Figure 4.9a). One

notices that providing any given resolution level requires less tiles when following

dynamic tiling compared to the regular tiling when using minimal connectivity

information.

Although the proposed method with independent tiles (Figure 4.9b) improves

random accessibility compared to the method with minimally-sized tiles (Figure

4.9a), it also introduces an additional rate penalty. On the one hand, additional

samples are taken into account further outside of the tile borders; this is illustrated

by the overshoots of the dashed lines over the tile marks (indicated by the vertical

lines) in Figure 4.9b. If tiles are not decoded until the highest resolution, some

of these additional samples are irrelevant. On the other hand, information will

be duplicated over several neighboring tiles; this is indicated by the gray areas in

Figure 4.9b which illustrate data near the tile borders that has been decoded twice.

Nonetheless, while the lossless coding rate increases due to duplicate

information being encoded, the required rate when decoding specific ROIs is vastly
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lowered due to the tile resolutions scaling down as fast as the inverse wavelet

transform does. An example with 8 tiles is shown in Figure 4.10. For each tile,

the template mesh which is depicted is used to embed samples in its own octree.

It is clear from the figure that the connectivity information can be duplicated over

several tiles, as shown for instance by the connectivity information for the left

nostril of the dragon. Each of these tiles can be processed individually, hence each

tile can also be split further depending on the sampling density.

Decoded data profile
(minimal tiles)

Resolution profile

R
es

o
lu

ti
o
n

le
v
el

Resolution profile over 1 dimension of tiles

(a)

Decoded data profile
(independent tiles)
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Figure 4.9: Tile granularity. These two plots qualitatively compare tiling with minimal

connectivity information and tiling with sufficient information for independent tiles

respectively. Ideally, the dashed line which represents the decoded data (at tile granularity)

perfectly follows the full line which represents the amount of data used for the wavelet

transform (at triangle granularity). The gray areas indicate information which is

duplicated in order to provide random accessibility while avoiding tile dependencies.
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Figure 4.10: Independent tiles for model dragon. The two front top tiles clearly show that

overlapping information is present within the tiles: the left nostril of the dragon is encoded

in both tiles, as the reconstruction of higher resolution vertices near the tile border

depends on all these vertices around this nostril.

4.5 Local RD Optimization

With this tiling available, RD optimization of the coding system can now aim

at optimally allocating rate across different tiles. RD optimization for untiled

wavelet-based irregular mesh encoding was investigated in Section 3.4. This

approach is now generalized for dynamic tiling, as detailed next.

Without tiling, at each moment during encoding, either a new resolution is

decoded up to a specific number of bit planes, or the quality of an existing

resolution is improved by encoding an additional number of bit planes. This is

formalized as follows. Consider all wavelet coefficients being represented using

Q bit planes, and the connectivity information using an additional data layer. The

data layers are labeled decreasingly as Q for the connectivity information, and

Q−1, . . . , 0 for the geometry information from most significant to least significant

bit planes. This allows for constructing RD curves per resolution, where each curve

has Q + 2 rate points, one for each encoded data layer (including the case when

no information is sent for the given resolution). Each rate point is denoted by

(R
(p)
j , D

(p)
j ), with R

(p)
j the bit rate required to obtain the rate point with label p of

resolution j, and D
(p)
j the accompanying distortion.

Let Pj be the last encoded layer of resolution j, and let L be the first unencoded

resolution (hence, PL = Q + 1, the rate point before encoding any connectivity

information); in general, when performing RDO, we want to encode k′ layers of
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resolution j′ by maximizing the distortion-rate slopes given by:

(j′, k′) = argmax
j∈[0,L],k∈[1,Pj ]

D
(Pj)
j −D

(Pj−k)
j

R
(Pj−k)
j −R

(Pj)
j

. (4.31)

Per resolution j, the amount of data layers k ∈ [1, Pj ] which yields the largest

slope is determined. These data layers are encoded for the resolution for which

this largest slope is maximal.

With the availability of tiles, RDO can be further improved as the tiles can

be present at different resolutions and quality levels. Given that each resolution

j counts Tj tiles, the RD curves can now be found per resolution and per tile.

Each such curve has again Q + 2 rate points, denoted by (R
(p)
(j,t), D

(p)
(j,t)). Pj,t

now denotes the last encoded layer of tile t in resolution j, and R
(p)
(j,t) and D

(p)
(j,t)

respectively give the bit rate and distortion after encoding layer p of tile t at

resolution j. We now want to encode k′ layers of tile t′ of the j′th resolution

by determining:

(j′, t′, k′) = argmax
j∈[0,L]

t∈[0,Tj−1]
k∈[1,Pj,t]

D
(Pj,t)

(j,t) −D
(Pj,t−k)

(j,t)

R
(Pj,t−k)

(j,t) −R
(Pj,t)

(j,t)

. (4.32)

In these equations the following conventions are made, similar to the

conventions in Section 3.4:

R
(Q+1)
(j,t) = 0, (4.33)

Rconn
(j,t) = R

(Q)
(j,t) −R

(Q+1)
(j,t) = R

(Q)
(j,t), (4.34)

Rgeom

(j,t) = R
(0)
(j,t) −R

(Q)
(j,t), (4.35)

D
(Q+1)
(j,t) = D

(Q)
(j) . (4.36)

These conventions signify that the rate for each tile at each resolution starts at

0 as given by Equation 4.33; the rate for each tile t of each resolution j can be

attributed to connectivity information by the first data layer (Equation 4.34) and

geometry information in the remaining layers (Equation 4.35). Distortion decrease

by decoding the connectivity information (Equation 4.36) is not considered.

4.6 Evaluation

4.6.1 Encoder-Side Evaluation

ROI-aware encoding is compared with the ROI-agnostic encoding of Chapter 3

using a set of 25 conventional models ranging from 1 000 up to 350 000 vertices.
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The wavelet coefficients were quantized using 12 bits, and a scaling value was

determined per wavelet subband as illustrated in Figure 4.3. The ROI was

defined based on the surface orientation: regions where the surface normal has a

component in a specific direction are part of the ROI, i.e., the front-facing regions;

the other regions are part of the BG, i.e., the back-facing regions.

Model rate p s g vert%

teapot (1 292) 32.7 4.05 6.71 2.66 74%
drill bit (1 961) 33.3 3.29 7.01 3.72 77%

beethoven (2 521) 34.1 3.13 5.06 1.93 83%
triceratops (2 832) 32.4 2.73 4.15 1.42 87%

elk (5 194) 30.5 3.03 5.97 2.94 76%
parthenon (5 936) 27.2 2.73 5.09 2.36 74%
atomium (6 150) 26.8 2.42 4.24 1.82 80%

fandisk (6 475) 26.2 2.71 6.43 3.72 63%
maxplanck (7 399) 29.6 2.87 7.89 5.02 66%
venushead (8 268) 29.6 3.03 6.86 3.84 70%

bimba (8 857) 30.1 2.67 5.84 3.16 75%
horse (19 851) 25.1 2.59 6.23 3.64 65%

bunny (34 834) 24.2 2.26 5.61 3.35 67%
vaselion (38 728) 27.4 2.27 5.26 2.99 75%

screwdriver (65 538) 20.6 2.15 5.44 3.29 56%
rabbit (67 039) 22.6 1.60 6.07 4.47 60%

golfball (122 882) 21.8 1.24 6.26 5.02 56%
dino (129 026) 19.9 1.90 4.01 2.12 66%

headus (131 074) 19.8 1.44 4.53 3.09 58%
armadillo (172 974) 20.8 1.73 5.08 3.35 62%

igea (198 658) 19.2 1.50 5.18 3.67 52%
fertility (241 607) 21.3 1.90 6.12 4.23 57%

feline (258 046) 18.7 1.85 4.27 2.43 54%
heptoroid (286 678) 20.1 2.22 5.30 3.08 52%

skeleton hand (327 323) 19.8 2.09 5.44 3.35 50%
Average 25.4 2.376 5.602 3.226 66%

Table 4.2: Rate penalty and savings. The columns give, respectively, the models with their

amount of vertices, the original rate, the rate penalty p in lossless coding in bpv, the saved

rate s in bpv when viewing from the front, the final gain g in bpv, and the percentage of

vertices used for this viewing angle.

4.6.1.1 Penalty in Lossless Coding

The shifting method introduces a penalty for lossless coding due to the additional

bit planes which need to be encoded.

The second column in Table 4.2 gives the lossless rate for resolution-scalable

coding in bpv. On average, a coding rate of 25.4 bpv, a rate which decreases

with increasing number of vertices, is observed. The rate penalty introduced by

allowing ROI-aware decoding is given in the third column. An average rate penalty

of 2.38 bpv is observed.
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4.6.1.2 Rate Decrease for ROI Decoding

When viewing the models from the front, the described front-back ROI suffices

to attain visually lossless results when only decoding the ROI. Table 4.2 shows an

average rate saving of 5.60 bpv in this case. Taking into account the rate penalty,

gains up to 5 bpv are observed; on average 3.23 bpv was saved. Furthermore,

the ROI-aware inverse wavelet transform reduced the amount of vertices for such

visually lossless front-view rendering by 34%. Observe also that the ROI-aware

inverse transform performs better on higher-resolution data: with approximately

half of the vertices in the ROI, the decoded data saves up to 50% with increasing

model size.

A decreased quality can only be observed when viewing from an angle. Figure

4.11 shows the igea model, with Figure 4.11b showing the visually lossless

reconstruction of the front-facing regions, while Figure 4.11c shows the visually

lossless reconstruction of side-facing regions. The top line depicts visual results,

the second line depicts the distortions seen from the front, and the final line depicts

distortions visible from the side. In Figure 4.12 the wireframe renderings of both

predefined ROI examples are depicted.

4.6.1.3 ROI Coding with Visual Loss

Finally, the restriction of requiring all regions facing a specific direction is

softened. Denote the angle formed between a triangle normal and the desired

direction as θ, then the ROI determined before was given by θ ≤ 90◦. After

all, these are the regions of a surface which are physically visible from a given

direction, and in an efficient real-time rendering engine only these triangles are

rendered. Consider now ROIs determined by θ ≤ θlim ≤ 90. Table 4.3

shows the increased rate gains and the reduced amount of vertices used, for

θlim ∈ {90
◦, 70◦, 45◦}. While the rate penalty is not significantly influenced by

altering the amount of wavelet coefficients which are encoded in the ROI, the rate

savings, and consequently the final gains, are significant. Similarly, the amount of

required vertices is significantly reduced. Consequently, a careful selection of the

ROIs while ensuring adequate quality can significantly reduce the final bit rates

when only decoding the ROI. Next, this subjective visual quality is investigated.

Figure 4.13 clearly demonstrates the adaptive inverse wavelet transform, where

the front-facing regions have a high resolution, while back-facing regions are

smoothed out by providing fewer vertices. Figure 4.14 then demonstrates that

lower resolutions result in smoother surfaces as seen on the top row, where details

in the diadem are largely lost in Figure 4.14c. The errors are clearly increasing as

shown in the middle row. However, geometric errors in the visible areas are nearly

unobservable despite a lossy ROI selection. While no objective conclusions can be

made, one can visually claim, specifically for the igea model and the selected front
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(a) Original (b) front ROI (c) side ROI

Figure 4.11: Lossless predefined ROIs for model igea: visual results. Blue colors represent

accurate geometry reconstructions while red colors represent the largest distortions. In (a)

the original igea model is shown from the front and from the side. (b) shows the example of

a front-side ROI, while (c) shows an ROI on the side. No visual distortions can be observed

when viewing the front ROI from the front or when viewing the side ROI from the side.
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(a) front ROI (b) side ROI

Figure 4.12: Lossless predefined ROIs for model igea: wireframe results. Observe that the

sampling density varies while preserving a valid topology.

igea (19.2 bpv) p s g vert%

θlim = 90◦ 2.08 5.30 3.22 52
θlim = 70◦ 2.07 6.91 4.84 39
θlim = 45◦ 1.90 8.07 6.17 29

Table 4.3: Lossy rate penalty and savings for igea. The columns give, respectively, the

maximal angle with the viewing direction, the rate penalty p in lossless coding in bpv, the

saved rate s in bpv when viewing from the front, the final gain g in bpv, and the percentage

of vertices used for this viewing angle.

side, that the ROI with θlim = 45◦ does not reduce the quality when looking from

the front, while significant additional coding gains and vertex savings are obtained.

4.6.2 Decoder-Side Evaluation

For the evaluation of the proposed methods, experiments have been performed

with models up to the Asian Dragon model of 3 609 600 vertices. In the

literature, no proper evaluation criteria have been proposed for comparing different

approaches w.r.t. the quality of ROI decoding or the accuracy offered by random

accessibility. Comparative studies are usually limited to comparing the lossless

rates, and visual results without rate indications. These visual results are obtained

for instance using a click-and-drag approach in a virtual environment.

This section provides both lossless rates and visual results, but these are also

complemented by experimental results for two ROI decoding scenarios: front-view

ROI and point-based ROI.

The front-view ROI selects all “front-facing” triangles. Let n be the surface

normal of a triangle, and v the direction to the camera. As depicted in Figure 4.15a,

a triangle is front-facing if n and v form an angle smaller than 90◦, signifying that

the front of the triangle is visible when looking from the direction of the camera.
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(a) θlim = 90◦ (b) θlim = 70◦ (c) θlim = 45◦

Figure 4.13: Lossy predefined ROIs for model igea: wireframe results. Observe that the

sampling density varies while preserving a valid topology.

For the visible triangles, the proposed ROI coding methodology should guarantee

visually lossless results. Figure 4.16 shows examples for the heptoroid, fertility

and golfball models. Depending on the model, front-facing triangles can either be

found mainly in the front half of the model (e.g., golfball) or over the entire surface

(e.g., heptoroid). To avoid selecting ROIs over the entire surface, experimental

results are added where the front-view results are limited to those ROIs in the

front half, indicated by “front-view (half)”. This approach is depicted in Figure

4.15b, showing the bounding box of a model and shading, in gray, the volume

where ROIs are allowed when viewing from the right. The result for the fertility

model is shown in Figure 4.16d.

The point-based ROI selects a random vertex of the base mesh; at each

resolution j those triangles surrounding this selected vertex are selected as part

of ROISj , while each higher resolution either keeps the same vertex or one of the

newly created vertices to continue this process. Visual results with this method are

shown in Figure 4.17.

Such experiments are sensitive to the orientation, geometry and topology of the

models, but still give insights on how the proposed ROI decoding methodology

performs. The proposed evaluation scenarios are considered as soft extrema.

On the one hand, the front-view results give an estimation on the maximally

useful ROIs, considering the camera position but disregarding occlusion and

lower resolution requirements due to the distance to the camera. On the other

hand, point-based decoding can be considered as an estimation on the minimally

useful ROIs: only a single vertex is considered as ROI and the resolution over

the reconstructed mesh surface is minimal in order to provide for a valid mesh

topology.
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(a) θlim = 90◦ (b) θlim = 70◦ (c) θlim = 45◦

Figure 4.14: Lossy predefined ROIs for model igea: visual results. Observe that models

still appear identical when rendered from the front (bottom row).
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(a) front-view
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z
(b) front-view (half)

Figure 4.15: Front-view ROI selection. (a) shows the selection of front-facing triangles.

With v pointing towards the camera viewpoint and n the surface normal, the vertices of a

triangle are part of the ROI if n · v > 0. In (b), an alternative ROI is depicted, where only

half of the model is eligible for the ROI (i.e., the triangles in the gray volume).

4.6.2.1 Adaptive Inverse Wavelet Transform

This section evaluates the inverse wavelet transform proposed in Section 4.4.1,

which is independent of any tiling decisions. The amount of decoded vertices

is investigated for the three ROI decoding scenarios, i.e. front-view, front-view

(half) and point-based, indicating the ratio of ROI vertices w.r.t. the total amount

of vertices as:

ρ =
vROI

vtotal
. (4.37)

The results are shown in Figure 4.18. The lines connecting the samples have no

significance but were added for clarity.

For front-view decoding, ρ converges to 50%, which was expected assuming

that approximately half of the triangles are facing any camera in general. The

overhead caused by the ROI propagation (see Equation 4.12 and Figure 4.6c) is

only significant for smaller models, where ρ goes up to 80%. For point-based

decoding, ρ converges to 0% as the ROI, i.e., a single vertex, reduces relative to

the full-resolution sizes.

Such accurate representations are possible because the wavelet transform does

not depend on any tiling decisions. For tile-based solutions, the smallest ρ depends

on the tiling granularity. These results are valuable from a rendering perspective:

a reduction in the amount of vertices directly relates to the reduction in memory

usage for real-time rendering. However, as mentioned at the end of Section 4.4.1,

without tiling, this still requires lossless decoding and substantial amounts of

memory that linearly scale with the mesh sizes.
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(a) heptoroid (b) fertility

(c) golfball (d) fertility (half)

Figure 4.16: Front-view ROI selection: wireframe results. For each of the “Front-view

ROI” (a, b, c) scenarios, all regions facing a specific direction are considered ROI. In the

example of fertility, the front is considered as pointing towards the right: the naive

approach (b) selects regions at the back, i.e., the left side in the figure, while the

“Front-view (half)” approach (d) only allows ROIs to be selected on the front side, i.e., the

right half in the figure. For more topologically complex models, such as heptoroid (a), such

an approach does not suffice and more advanced occlusion checking and better adapted

resolutions per region are required. Less topologically complex models such as golfball

will not have significantly different results when limiting the ROIs to the front.

4.6.2.2 Dynamic Tile-Based Coding

The next set of experiments investigates the dynamic tiling discussed in Section

4.4.2, introduced to reduce the coding rate required by the ROI-aware inverse

transform. Consider again the front-view, front-view (half) and point-based ROI

coding scenarios. Additionally, the bit rates for lossless decoding are presented,

both with and without tiling, i.e., ROI-aware and ROI-agnostic. These figures

reveal the actual rate penalty introduced by tiling.

Given a fraction p, the effect of splitting tiles is evaluated by setting τTS =

p.nv , with nv the amount of vertices in a model. This results in similar tiling for

all models, independent of the model sizes. Results are given for models up to

350 000 vertices at 12 bit quantization, and models up to over 3.6 million vertices

at 21 bit quantization.

High values of p result in only splitting the tiles once. When splitting at

p = 40% (see plots in Figures 4.19a and 4.19b), the single base tile (see Figure
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(a) heptoroid (b) fertility (c) golfball

Figure 4.17: Point-based ROI selection: wireframe results. With a single point considered

as the ROI, the figures depict how the resolution reduces when the distance to this point

increases.
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Figure 4.18: Percentage of vertices of ROI-decoded models. This plot shows the

percentage ρ of decoded triangles when (i) considering front-facing regions (Front-view

ROI), (ii) front half regions (Front-view (half) ROI), and (iii) only considering the region

surrounding a random point (Point-based ROI).

4.8) will only be split at a high resolution. In general, none of the eight new

tiles will surpass this τTS again, resulting in a highest resolution with eight tiles.

Observe that the lossless penalty is minimal, which reduces with increasing model

sizes. Rate gains when decoding a single vertex are also observed. Finally, when

increasing the amount of quantization bits, the obtainable rate gains also increase,

showing that the proposed approach is valuable for high-accuracy models. The

gains are limited due to the large amount of data that is still encoded in a single

tile.

For low values of p, tiles are split at a lower resolution in Figure 4.8. Figures
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4.19c and 4.19d show the results when splitting at p = 2%. Although higher

lossless rate penalties are observed, also observe that these penalties reduce with

increasing model sizes. For ρ = 2%, models require 106 ∼ 107 vertices for

sufficiently reduced penalties. Using smaller tile sizes (resulting in more tiles)

requires larger models to be efficient. For ROI-decoding, however, much larger

gains can be obtained. For smaller models the gains are limited due to the

ROI propagation (as was also mentioned in Section 4.6.2.1); for larger models,

significant gains are observed. The dragon model of 437 645 vertices decodes the

21 bit quantized ROI around a single vertex at 16.4 bpv (while lossless decoding

requires 50.4 bpv); given that τTS = 8753 for this model, any ROI consisting of

several thousands of vertices will be decoded at a similar bit rate. Similarly, the

Asian dragon model of 3 609 600 vertices decodes the ROI around a single vertex

at 4.96 bpv (of the 39.7 lossless bpv); as τTS = 72 192, ROIs consisting of tens

of thousands of vertices will be decoded at a similar rate. Finally, remark that,

with increasing model sizes, the expected ROI will decrease w.r.t. the total model

size, which signifies that the actual rates will move closer towards the point-based

results.

Notice that decoding the front-view ROI mostly coincides with lossless

decoding. This confirms the fact that triangles which face the camera, i.e., front-

facing triangles, are not necessarily restricted to the front half of a model, as was

seen in Figures 4.16a and 4.16b. Consequently, depending on the tiling granularity,

nearly all of the tiles can be required, such that requiring all front-facing triangles

at the highest resolution is detrimental for random access. Allowing only front-

facing triangles in the front half for the ROIs, as depicted by the front-view (half)

results, still more than half of the tiles are required due to the ROI propagation

discussed in Section 4.4.1; these will require lower-resolution triangles in the back

half of the model to be upsampled, to ensure proper reconstruction of the front

half without blocking artifacts. To allow for efficient streaming, the distance to the

camera (i.e., using lower resolutions for far away regions) and the actual visibility

(considering, for instance, the view frustum and self-occlusions) need to be taken

into account.

Parallel Decoding An additional advantage of the proposed tiling approach is

the unlocked parallel decoding opportunity. Consider an example where a single

tile is split into eight tiles at some resolution R− k, with k > 0. For instance, this

is the case for p = 40% depicted in Figure 4.19a. The results show an average

lossless rate penalty of 14.8 bpv when considering all models, or, by ignoring

models with less than 20 000 vertices, an average rate penalty as low as 2.5 bpv.

Earlier, this rate penalty was already justified considering ROI decoding:

for large models a relatively small ROI will be required. Consequently, for

reconstructing ROI-aware versions of large models, the low value of ρ will result
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Figure 4.19: Decoding ROIs with relative tile sizes: bit rates. Bit rates for decoding ROIs,

for models encoded with relative tile sizes.

in reduced bit rates compared to ROI-agnostic coding.

In addition, if sufficient memory, processing power and bandwidth are

available and the full model needs to be decoded losslessly, the decoding of the

k highest resolution wavelet subbands (i.e., the computationally most expensive

subbands to decode) will benefit from a potential eightfold speedup. This is made

possible because the individual tiles can be decoded completely independently,

even across resolutions. This has not yet been experimented with, however.

4.7 Conclusions

In this second part of the dissertation, predefined Region-of-Interest (ROI) coding

for wavelet-based irregular mesh codecs has been proposed, showing how this can

be done in general by scaling wavelet coefficients, similar to the maxshift method

of JPEG 2000, and how an ROI-aware inverse wavelet transform can reduce

geometric errors and the required amount of vertices. A predefined ROI allows
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the encoder to prioritize regions if bandwidth or memory is limited. Furthermore,

if the ROI is appropriately selected, lossless visual quality can be obtained at a

reduced bit rate and using fewer vertices.

Additionally, an ROI based wavelet transform for irregular triangle meshes

has been proposed which allows for varying the resolution of a model over its

surface at the finest granularity level. To allow for randomly accessing parts of

the data, dynamic tiling in the wavelet domain was proposed where each tile can

be independently processed. This allows for adapting the tiling to the sampling

densities and the requested ROIs, while also permitting decoding speedups in

the lossless case by allowing for parallelism. Despite rate penalties which are

unavoidable when adding ROI support, decoding ROIs can be done at the fraction

of the lossless rate, for increasingly larger models.

The results show that we are at the turning point where ROI support proves its

value. In future work, a more efficient implementation will be able to process

models which are several orders of magnitude larger; the main challenge will

become the encoder which still needs to process the entire model, not just a

selected ROI.

For a truly scalable system, both this ROI coding as well as resolution

scalability are required. Together, the available bandwidth and memory usage

can be optimized, given a specific camera viewpoint. Viewing a model from far

away will result in the model taking up only a small portion of the display; full

resolution is not required as many triangles are simply displayed with a single

pixel. Resolution scalability in these cases reduces the amount of vertices and

triangles, limiting the transmitted data and the memory used for rendering. When

viewing the model from nearby such that triangles at the highest resolution can

be distinguished, larger portions of the model will no longer be visualizable. ROI

decoding will also reduce the amount of vertices and triangles by only decoding

the visible regions. Hence, given a viewpoint, the decoded models can be limited

to the requested regions and their appropriate resolutions.

The work presented in this chapter has led to the following publications:

• J. El Sayeh Khalil, A. Munteanu, and P. Lambert. Rate-Distortion

Optimized Wavelet-based Irregular Mesh Coding. In Proceedings of the

12th International Joint Conference on Computer Vision, Imaging and

Computer Graphics Theory and Applications (VISIGRAPP), volume 1,

pages 212–219, Porto, Portugal, 27 February – 1 March 2017.

• J. El Sayeh Khalil, A. Munteanu, and P. Lambert. Scalable Irregular Mesh

Coding with Interactive ROI Support. IEEE Transactions on Circuits and

Systems for Video Technology, accepted with minor revisions.
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5
Overall Conclusions

Over the last couple of decades, the portion of three-dimensional (3D) content

within the vast amount of digital media has been growing at an enormous

pace. Applications which render interactive virtual scenes can benefit from vastly

increased processing power and available memory in commodity PCs. Moreover,

mobile devices such as tablets, smartphones and smart glasses are becoming more

ubiquitous, allowing for even more ground to be covered by 3D media. However,

despite such a wide spread of digital 3D media, numerous limitations need to be

considered in order to provide good quality. Firstly, despite advances in network

bandwidth, memory capacity and CPU processing power, both the quantity and

quality of 3D models is growing at such a pace that compression techniques remain

a necessity. Secondly, models in interactive applications have been represented

using levels of detail to cope with system limitations. Compression techniques

hence should consider forms of scalability in order to provide similar functionality

in an efficient way. This has become an even more pronounced necessity given

the larger diversity in storage, bandwidth, memory and processing power available

to a more diverse set of devices. Good quality is then subjectively determined by

both the actually rendered quality as well as by the allowed interactiveness.

Issues related to 3D model storage and representation have been studied

more deeply in Chapter 2. 3D models are often modeled as polygon meshes;

for real-time rendering, triangle meshes are conventionally used. These digital

representations are obtained using the same two key processes found in any

analogue-to-digital conversion: sampling and quantization. The effect of sampling

regularity has been discussed: while regular meshes more succinctly describe
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mesh samples and allow for a more compressed storage per vertex, irregular

meshes allow for describing a mesh surface using fewer samples and consequently

allow for a reduced memory footprint when rendering. This idea has been explored

in the wavelet-based mesh representation presented later in Chapters 3 and 4.

Chapter 2 further described measures that are used for comparing mesh coding

systems. A conventional comparison considers the remaining distortions when

specific bit rates are spent, resulting in rate-distortion (RD) curves. In this

dissertation, the RD curve comparison was expanded upon by considering the

average rate difference to summarize a comparison using a single number. This

allows for reporting a codec comparison over a larger set of models. In addition

to the classical RD comparison, this dissertation also considered the memory

requirements after decoding a model. This rendering performance, denoted as

the triangle-distortion (TD) comparison, considers the remaining distortion given

a specific percentage of triangles used, which is directly related to the memory

used for rendering. Again, an average triangle percentage difference describes the

difference between two curves as a single number, allowing for the evaluation over

a larger test set to be reported.

Chapter 3 introduced a feature-preserving irregular mesh codec. The first

part of this chapter described all components of the proposed resolution-

scalable irregular mesh codec, which is composed of a wavelet transform which

preserves geometric features in an implicit way without any preprocessing or

any thresholding, and octree-based coders which allow for exploiting spatial

correlations via successive approximation quantization (SAQ), significance coding

and bit plane coding. The wavelet transform iteratively converts a high-resolution

mesh into a low-resolution mesh and a wavelet subband by partitioning the vertices

of the high-resolution mesh into odd and even vertices, where each odd vertex

is surrounded by even vertices. The odd vertices are removed, resulting in

patches which are then retriangulated while preserving geometric features. A

single parameter allows for detecting patches where multiple geometric features

coincide, which allows for preserving such key vertices. To obtain wavelet

coefficients, a two-mode prediction is employed by considering the dihedral angles

within the low-resolution patches. If a large angle is found, surpassing a second

threshold parameter, the prediction is based solely on the corresponding edge;

if not, the entire patch is considered for making a prediction. An octree-based

coding approach then efficiently encodes the resulting wavelet coefficients. This

same octree-based coding approach is also proposed for connectivity encoding:

by assigning a single bit per edge to indicate which edges are inside a patch,

the decoder is able to detect all patches for the inverse transform. The results

showed that the codec outperforms the state of the art for irregular and feature-

rich models while only performing suboptimally at the final, lossless rate when,

for 12 bit quantized models, average rates of 25 bits per vertex (bpv) are required,
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of which 8 bpv are needed for connectivity information. Visually pleasing results

are often obtained at under 10 bpv, where more densely sampled models can cope

with even lower bit rates. Furthermore, real-time rendering was considered by

investigating the distortion w.r.t. the amount of triangles instead of the amount of

bits, i.e., using the TD measure. This revealed that the proposed codec outperforms

the state of the art in an even more pronounced way, signifying that the proposed

codec obtains similar quality using less graphics memory, or vice versa that better

quality is obtained with the same amount of memory. The trade-off mentioned

above clarifies this aspect. Using irregular meshes allows for a more adaptive

(albeit more expensive) distribution of samples; consequently, the cost per sample

is higher but the same quality can be obtained using fewer samples. This ensures a

competitive RD performance while outperforming the state of the art considering

graphics memory usage for real-time rendering.

In the second part of Chapter 3, quality scalability was further investigated.

By using SAQ, quality scalability was already offered per resolution, i.e., the

smallest decodable part allows for refining a single bit plane within a resolution.

However, this does not allow for scaling the wavelet coefficient quality across

resolutions. Given a resolution which is not fully decoded, decoding parts of the

next resolution results in drift as the encoder and decoder use a different mesh for

embedding the samples within the octrees. Such drift is avoided by introducing

a template mesh per resolution. This template mesh has the same connectivity as

the real mesh, but does not rely on decoded geometry data. As it is synchronized

at both the encoder and decoder side, the template mesh is used for embedding

samples and allows for decoding without drift, even if geometry information is

incomplete. Results have shown that the impact on the coding rate is minimal with

increments up to 0.2 bpv observed, while allowing for an arbitrary storage and

transmission order. More importantly, this allowed for a rate-distortion-optimized

storage and transmission order. This entails that data is encoded such that the

distortion is reduced optimally: either a new resolution of vertices is added, or the

quality of any existing resolution is improved, whichever introduces the highest

quality increase at the lowest rate. This optimization showed clear additional

improvements in the low-to-midrange bit rates for feature-rich models.

The codec introduced in Chapter 3 offers resolution and quality scalability.

Both are global properties, that is, the resolution and wavelet coefficient quality

can be set for an entire model. This suffices for models where all details can be

observed when the models are displayed entirely. However, models currently have

such high resolutions that the finest details can only be observed from nearby, when

large parts of the models are no longer displayed. Efficiently handling such models

demands a new form of scalability. Region-of-Interest (ROI) scalability considers

the issue of handling specific regions within a model in order to optimize bit rates

and memory consumption further. This was addressed in Chapter 4.
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A first part of this chapter discussed encoder-side ROIs. An encoder-side ROI

is used for prioritizing specific regions in a model, e.g., ensuring that the details

in the face of a virtual human character are visualized prior to the details in the

clothes. ROIs need to be defined per resolution, where each lower-resolution

ROI needs to supply sufficient information to allow for decoding higher-resolution

ROIs. An ROI propagation method was proposed which ensures this. These ROIs,

defined in the spatial domain, are then mapped to ROIs in the wavelet domain.

With these wavelet-domain ROIs, any wavelet-based codec which encodes wavelet

coefficients in a bit-plane-by-bit-plane fashion can be enhanced, without altering

either the wavelet transform or the encoding step. This is done by a process

called wavelet coefficient boosting: upscaling wavelet coefficients within the ROI

prior to encoding, and downscaling these after decoding and prior to the inverse

transform. Irregular meshes allow for even further optimization: regions in the

background (BG) can be kept smooth by preserving a reduced resolution, as

opposed to upsampling and smoothing the resulting BG samples as is required for

semi-regular mesh coding. Evaluation is tightly coupled with the considered ROIs:

for a given camera position, all camera-facing regions were considered as the ROI

in this dissertation. If the decoder only needs to render from a specific camera

position and the encoder accurately predicts this position, the results showed that

only half of the vertices and triangles are required. Additionally, the required bit

rate is reduced by over 3 bpv without introducing any visual artifacts. Reducing the

selected ROI further reduces this bit rate and this amount of vertices and triangles,

while the introduced distortions remain unnoticeable. This has been explored for

angles with the viewing direction up to 45◦ (instead of the visually lossless 90◦)

where 6 bpv are saved, and only 30% of the triangles are used.

The second part of Chapter 4 discussed a novel ROI decoding approach with

dynamic tiling and random access. ROI decoding requires an adaptive inverse

wavelet transform which no longer considers an entire wavelet subband but only

a selection of wavelet coefficients. Due to the interactive selection of ROIs

per resolution, one cannot ensure that sufficient data is decoded for all future,

higher-resolution ROIs. Hence, the adaptive inverse wavelet transform needs to

recursively upsample lower-resolution meshes. This results in meshes which have

their resolution adapted to the requested ROIs while only providing additional

samples outside these ROIs to ensure a proper topology. While this addresses

issues related to graphics memory while rendering, this still requires decoding all

wavelet coefficients. To avoid this, a dynamic tiling approach was proposed. These

tiles are dynamically adapted to sampling densities per resolution instead of being

fixed at the base resolution. Only the tiles corresponding to the requested ROIs

need to be streamed and decoded. This tiling furthermore allowed for refining the

RD optimization discussed in Chapter 3: within each resolution, the individual

tiles can be considered to obtain the largest quality increase at the lowest rate. The



OVERALL CONCLUSIONS 165

evaluation of ROI decoding considered two scenarios: either decoding all regions

that face a specific camera location similar to the encoder-side ROI evaluation, or

decoding a randomly selected vertex as ROI. The former is an estimation of the

maximally required data, while the latter estimates the minimal amount of data

required for decoding. Evaluating the adaptive inverse wavelet transform showed

that the decoded amount of vertices and triangles is well adapted to the selected

ROI. Only for lower-resolution models, relatively high amounts of vertices are

reconstructed in the BG as well to ensure a proper topology, resulting in up to 80%

of vertices being reconstructed when requesting half of the models as ROIs. At

higher resolutions, these additional vertices are negligible and on average 50%

of the vertices are reconstructed. Evaluating the dynamic tiling revealed that

sufficiently large models in the order of 106 ∼ 107 vertices are required to benefit

from tiling, in order to overcome rate penalties. For these large models, the results

obtained for any realistic ROI will approach the results found for selecting a single

vertex as ROI, and will show large rate gains when only decoding these ROIs while

the lossless rate penalties becomes insignificant. A single tile of a 21 bit quantized

3×106-vertex model which is losslessly encoded using 40 bpv can now be decoded

at 5 bpv, reconstructing tens of thousands of vertices.

In conclusion, in this thesis a scalable feature-preserving irregular mesh

codec was proposed with three main forms of scalability. Resolution and

quality scalability allow for scaling respectively the amount of vertices and the

reconstruction quality of the vertices. Spatial scalability comes in the form of ROI

coding. This allows for an encoder to prioritize regions for encoding, while it

allows for a decoder to select which parts of a model to upsample. Additionally,

ROI decoding is enhanced by allowing for random access via dynamic tiling.

Combining all forms of scalability results in a truly scalable way of visualizing

3D models.

Future work The work described in this dissertation addressed several

fundamental challenges in 3D mesh representations, storage and transmission.

While the codec already competes with the state of the art, and outperforms

it for feature-rich models, the performance will further benefit from in-depth

optimization of each part of the coding system. This includes optimizing the

vertex partitioning to obtain better odd vertices per resolution, reconsidering

the retriangulation by trading off representation quality and connectivity

coding performance, investigating larger wavelet supports for better predictions,

improving the geometry coder by transforming wavelet coefficients to local

reference frames, and investigating techniques to reduce the connectivity cost.

Furthermore, the codec needs to be extended to encode arbitrary vertex

attributes in addition to geometry. This will allow for the joint coding of these

attributes, further optimizing the coding performance by exploiting correlations
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across vertex attributes. The relationship with texture data, finally, also requires

further investigation: scalable mesh representations which allow for both arbitrary

vertex attributes and scalable texture data will prove invaluable for real-time

rendering.






