7 research outputs found

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k3k \geq 3, deciding whether src(G)k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    On the fine-grained complexity of rainbow coloring

    Get PDF
    The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored in kk colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all edges of different colors. Our main result states that for any k2k\ge 2, there is no algorithm for Rainbow k-Coloring running in time 2o(n3/2)2^{o(n^{3/2})}, unless ETH fails. Motivated by this negative result we consider two parameterized variants of the problem. In Subset Rainbow k-Coloring problem, introduced by Chakraborty et al. [STACS 2009, J. Comb. Opt. 2009], we are additionally given a set SS of pairs of vertices and we ask if there is a coloring in which all the pairs in SS are connected by rainbow paths. We show that Subset Rainbow k-Coloring is FPT when parameterized by S|S|. We also study Maximum Rainbow k-Coloring problem, where we are additionally given an integer qq and we ask if there is a coloring in which at least qq anti-edges are connected by rainbow paths. We show that the problem is FPT when parameterized by qq and has a kernel of size O(q)O(q) for every k2k\ge 2 (thus proving that the problem is FPT), extending the result of Ananth et al. [FSTTCS 2011]

    An updated survey on rainbow connections of graphs - a dynamic survey

    Get PDF
    The concept of rainbow connection was introduced by Chartrand, Johns, McKeon and Zhang in 2008. Nowadays it has become a new and active subject in graph theory. There is a book on this topic by Li and Sun in 2012, and a survey paper by Li, Shi and Sun in 2013. More and more researchers are working in this field, and many new papers have been published in journals. In this survey we attempt to bring together most of the new results and papers that deal with this topic. We begin with an introduction, and then try to organize the work into the following categories, rainbow connection coloring of edge-version, rainbow connection coloring of vertex-version, rainbow kk-connectivity, rainbow index, rainbow connection coloring of total-version, rainbow connection on digraphs, rainbow connection on hypergraphs. This survey also contains some conjectures, open problems and questions for further study

    Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds

    Get PDF
    We study rainbow connectivity of graphs from the algorithmic and graph-theoretic points of view. The study is divided into three parts. First, we study the complexity of deciding whether a given edge-colored graph is rainbow-connected. That is, we seek to verify whether the graph has a path on which no color repeats between each pair of its vertices. We obtain a comprehensive map of the hardness landscape of the problem. While the problem is NP-complete in general, we identify several structural properties that render the problem tractable. At the same time, we strengthen the known NP-completeness results for the problem. We pinpoint various parameters for which the problem is fixed-parameter tractable, including dichotomy results for popular width parameters, such as treewidth and pathwidth. The study extends to variants of the problem that consider vertex-colored graphs and/or rainbow shortest paths. We also consider upper and lower bounds for exact parameterized algorithms. In particular, we show that when parameterized by the number of colors k, the existence of a rainbow s-t path can be decided in O∗ (2k ) time and polynomial space. For the highly related problem of finding a path on which all the k colors appear, i.e., a colorful path, we explain the modest progress over the last twenty years. Namely, we prove that the existence of an algorithm for finding a colorful path in (2 − ε)k nO(1) time for some ε > 0 disproves the so-called Set Cover Conjecture.Second, we focus on the problem of finding a rainbow coloring. The minimum number of colors for which a graph G is rainbow-connected is known as its rainbow connection number, denoted by rc(G). Likewise, the minimum number of colors required to establish a rainbow shortest path between each pair of vertices in G is known as its strong rainbow connection number, denoted by src(G). We give new hardness results for computing rc(G) and src(G), including their vertex variants. The hardness results exclude polynomial-time algorithms for restricted graph classes and also fast exact exponential-time algorithms (under reasonable complexity assumptions). For positive results, we show that rainbow coloring is tractable for e.g., graphs of bounded treewidth. In addition, we give positive parameterized results for certain variants and relaxations of the problems in which the goal is to save k colors from a trivial upper bound, or to rainbow connect only a certain number of vertex pairs.Third, we take a more graph-theoretic view on rainbow coloring. We observe upper bounds on the rainbow connection numbers in terms of other well-known graph parameters. Furthermore, despite the interest, there have been few results on the strong rainbow connection number of a graph. We give improved bounds and determine exactly the rainbow and strong rainbow connection numbers for some subclasses of chordal graphs. Finally, we pose open problems and conjectures arising from our work

    Rainbow colouring of split graphs

    No full text
    A rainbow path in an edge coloured graph is a path in which no two edges are coloured the same. A rainbow colouring of a connected graph G is a colouring of the edges of G such that every pair of vertices in G is connected by at least one rainbow path. The minimum number of colours required to rainbow colour G is called its rainbow connection number. It is known that, unless P = NP, the rainbow connection number of a graph cannot be approximated in polynomial time to a multiplicative factor less than 5/4, even when the input graph is chordal Chandran and Rajendraprasad, FSTTCS 2013]. In this article, we determine the computational complexity of the above problem on successively more restricted graph classes, viz.: split graphs and threshold graphs. In particular, we establish the following: 1. The problem of deciding whether a given split graph can be rainbow coloured using k colours is NP-complete for k is an element of {2, 3}, but can be solved in polynomial time for all other values of k. Furthermore, any split graph can be rainbow coloured in linear time using at most one more colour than the optimum. 2. For every positive integer k, threshold graphs with rainbow connection number k can be characterised based on their degree sequence alone. Furthermore, we can optimally rainbow colour a threshold graph in linear time. (C) 2015 Elsevier B.V. All rights reserved
    corecore