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Abstract

The concept of rainbow connection was introduced by Chartrand, Johns, McK-

eon and Zhang in 2008. Nowadays it has become a new and active subject in graph

theory. There is a book on this topic by Li and Sun in 2012, and a survey paper

by Li, Shi and Sun in 2013. More and more researchers are working in this field,

and many new papers have been published in journals. In this survey we attempt

to bring together most of the new results and papers that deal with this topic. We

begin with an introduction, and then try to organize the work into the following cat-

egories, rainbow connection coloring of edge-version, rainbow connection coloring of

vertex-version, rainbow k-connectivity, rainbow index, rainbow connection coloring of

total-version, rainbow connection on digraphs, rainbow connection on hypergraphs.

This survey also contains some conjectures, open problems and questions for further

study.

1 Introduction

For any notation or terminology not defined here, we follow those used in [5, 11]. Let r be
a positive integer, G be a nontrivial connected graph, and c : E(G) → {1, 2, · · · , r} be an
edge-coloring of G, where adjacent edges may be colored the same. A path is rainbow if
no two edges of it are colored the same. An edge-coloring graph G is rainbow connected
if every two vertices are connected by a rainbow path. An edge-coloring under which G is
rainbow connected is called a rainbow connection coloring. Clearly, if a graph is rainbow
connected, it must be connected. Conversely, any connected graph has a trivial edge-coloring
that makes it rainbow connected, namely, color the edges with distinct colors. As introduced
in [21], the rainbow connection number of a connected graph G, denoted by rc(G), is the
smallest number of colors that are needed in order to make G rainbow connected. A rainbow
connection coloring using rc(G) colors is called a minimum rainbow connection coloring.
By definition, if H is a connected spanning subgraph of G, then rc(G) ≤ rc(H).

Let c be a rainbow connection coloring of a connected graph G. For any two vertices u
and v of G, a rainbow u− v geodesic in G is a rainbow u− v path of length d(u, v), where
d(u, v) is the distance between u and v in G. A graph G is strongly rainbow connected
if there exists a rainbow u − v geodesic for any two vertices u and v in G. In this case,
the coloring c is called a strong rainbow connection coloring of G. Similarly, we define the
strong rainbow connection number of a connected graph G, denoted src(G), as the smallest
number of colors that are needed in order to make G strong rainbow connected [21]. Note that
this number is also called the rainbow diameter number in [20]. A strong rainbow connection
coloring of G using src(G) colors is called aminimum strong rainbow connection coloring of
G. Clearly, we have diam(G) ≤ rc(G) ≤ src(G) ≤ m, where diam(G) denotes the diameter
of G and m is the size of G.

In a rainbow connection coloring, we need only find one rainbow path connecting every
two vertices. There is a natural generalization: the number of rainbow paths between any
two vertices is at least an integer k with k ≥ 1 in some edge-coloring. A well-known theorem
of Menger [147] shows that in every κ-connected graph G with κ ≥ 1, there are k internally
disjoint u − v paths connecting any two distinct vertices u and v for every integer k with
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1 ≤ k ≤ κ. Similar to rainbow connection coloring, we call an edge-coloring a rainbow k-
connection coloring if there are at least k internally disjoint rainbow u− v paths connecting
any two distinct vertices u and v. Chartrand et al. [22] defined the rainbow k-connectivity
rck(G) of G to be the minimum integer j such that there exists a j-edge-coloring which is a
rainbow k-connection coloring. A rainbow k-connection coloring using rck(G) colors is called
a minimum rainbow k-connection coloring. By definition, rck(G) is the generalization of
rc(G) and rc1(G) = rc(G) is the rainbow connection number of G. By coloring the edges
of G with distinct colors, we see that every two vertices of G are connected by k internally
disjoint rainbow paths and that rck(G) is defined for every k with 1 ≤ k ≤ κ. So rck(G) is
well-defined. Furthermore, rck(G) ≤ rcj(G) for 1 ≤ k ≤ j ≤ κ. Note that this newly defined
rainbow k-connectivity computes the number of colors, which is distinct from connectivity
(edge-connectivity) which computes the number of internally disjoint (edge-disjoint) paths.
We can also call it rainbow k-connection number.

Now we introduce another generalization of rainbow connection number by Chartrand et
al. [28]. A tree T in G is called a rainbow tree if no two edges of T have the same color. For
S ⊆ V (G), a rainbow S-tree is a rainbow tree connecting (or containing) the vertices of S.
Given a positive integer k, an edge-coloring of G is called a k-rainbow connection coloring
if for every set S of k vertices of G, there exists one rainbow S-tree in G. Every connected
graph G has a trivial k-rainbow connection coloring: choose a spanning tree T of G and just
color each edge of T with a distinct color. The k-rainbow index rxk(G) of G is the minimum
number of colors needed in a k-rainbow connection coloring of G. By definition, we have
rc(G) = rx2(G) ≤ rx3(G) ≤ · · · ≤ rxn(G) ≤ n− 1.

The above four new graph-parameters are defined for all edge-colored graphs. Krivele-
vich and Yuster [79] naturally introduced a new parameter corresponding to the rainbow
connection number which is defined on vertex-colored graphs. A vertex-colored graph G
is rainbow vertex-connected if any two vertices are connected by a path whose internal
vertices have distinct colors. A vertex-coloring under which G is rainbow vertex-connected
is called a rainbow vertex-connection coloring. The rainbow vertex-connection number of
a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in
order to make G rainbow vertex-connected. The minimum rainbow vertex-connection col-
oring is defined similarly. Obviously, we always have rvc(G) ≤ n− 2 (except for the trivial
graph), and set rvc(G) = 0 if G is a complete graph. Also clearly, rvc(G) ≥ diam(G) − 1
with equality if and only if the diameter of G is 1 or 2.

Uchizawa et al. [145] introduced the rainbow connection of total-coloring version, named
total rainbow connection (some researchers call it rainbow total-connection, such as [140],
and we will use total rainbow connection in this survey). For a graph G = (V,E), let
c : V ∪ E −→ C be a total-coloring of G which is not necessarily proper. A path P in G
connecting two vertices u and v in V is called a total rainbow path between u and v if all
elements in V (P )∪E(P ), except for u and v, are assigned distinct colors by c. Similarly as
in the vertex-coloring version, we do not care about the colors assigned to the end-vertices u
and v of P . The total-colored graph G is total rainbow connected if G has a total rainbow
path between every two vertices in V . Now we define the total rainbow connection number,
denoted by trc(G), of a connected graph G as the minimum colors such that G can be
total-colored into a total rainbow connected graph.

A tree decomposition of G is a pair (T, {Xi : i ∈ I}) where Xi ⊆ V, i ∈ I, and T is a tree
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with elements of I as nodes such that:
1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and
2. for each vertex v ∈ V , T [{i ∈ I|v ∈ Xi}] is a (connected) tree with at least one node.
The width of a tree decomposition is maxi∈I |Xi|−1. The treewidth[132] of G is the minimum
width taken over all tree decomposition of G and it is denoted by tw(G). There are other
width measures, such as cliquewidth [36], pathwidth and bandwidth[73].

A chord is an edge joining two non-consecutive vertices in a cycle. A graph is chordal
if its every cycle of length four or more has a chord. Equivalently, a graph is chordal if
it contains no induced cycle of length four or more. A biconnected graph is a connected
graph having no cut vertices. A block graph is an undirected graph where every maximal
biconnected component, known as a block, is a clique. A split graph is a graph whose vertices
can be partitioned into a clique and an independent set. It is easy to see that a block graph
is chordal. Another well-known subclass of chordal graphs is formed by interval graphs.
To define such graphs, we will first introduce the notion of clique trees. A clique tree of a
connected chordal graph G is any tree T whose vertices are the maximal cliques of G such
that for every two maximal cliques CLi, CLj , each clique on the path from CLi to CLj in
T contains CLi ∩ CLj . A graph is an interval graph if and only if it admits a clique tree
that is a path. A graph is planar if it can be embedded in the plane without crossing edges.
A graph is outerplanar if it has a crossing-free embedding in the plane such that all vertices
are on the same face.

The Cartesian product of two graphs G andH , denoted by G�H , is defined to have vertex
set V (G) × V (H) such that (u, u′) and (v, v′) are adjacent if and only if either u = v and
u′v′ ∈ E(H), or u′ = v′ and uv ∈ E(G). The strong product of G and H is the graph G⊠H
whose vertex set is V (G) × V (H) and whose edge set is the set of all pairs (u, u′)(v, v′)
such that either u = v and u′v′ ∈ E(H), or u′ = v′ and uv ∈ E(G), or uv ∈ E(G) and
u′v′ ∈ E(H). Clearly, both of these two products are commutative, that is, G�H = H�G
and G ⊠ H = H ⊠ G. By definition, we also know that the graph G�H is a spanning
subgraph of the graph G⊠H for any two graphs G and H . The lexicographic product of two
graphs G and H , written as G◦H , is defined as follows: V (G◦H) = V (G)×V (H), and two
distinct vertices (u, v) and (u′, v′) of G◦H are adjacent if and only if either (u, u′) ∈ E(G) or
u = u′ and (v, v′) ∈ E(H). The lexicographic product is not commutative and is connected
whenever G is connected. The direct product G×H of graphs G and H has the vertex set
V (G)× V (H). Two vertices (u, v) and (u′, v′) are adjacent if uu′ ∈ E(G) and vv′ ∈ E(H).
Clearly it is commutative and associativity.

The three most frequently occurring models of random graphs are G(n,M), G(n, p) and
G(n,m, p) [10]. The model G(n,M) consists of all graphs with n vertices having M edges, in
which the graphs have the same probability. The model G(n, p) consists of all graphs with
n vertices in which the edges are chosen independently and with probability p. The model
G(n,m, p) consists of all bipartite graphs with class sizes n and m in which the edges are
chosen independently and with probability p.

Given sequences an and bn of real numbers (possibly taking negative values). an = O(bn)
if there is a constant C > 0 such that |an| ≤ C|bn| for all n; an = o(bn) if limn→∞an/bn = 0;
an = Ω(bn) if an ≥ 0 and bn = O(an); an = ω(bn) if an ≥ 0 and bn = o(an). We say
that an event A happens almost surely (or a.s. for short) if the probability that it happens
approaches 1 as n→∞, i.e., Pr[A] = 1− on(1).
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For a graph property P , a function p(n) is called a threshold function of P if for ev-
ery r(n) = ω(p(n)), G(n, r(n)) almost surely satisfies P ; and for every r′(n) = o(p(n)),
G(n, r′(n)) almost surely does not satisfy P . Furthermore, p(n) is called a sharp threshold
function of P if there exist two positive constants c and C such that for every r(n) ≥ C ·p(n),
G(n, r(n)) almost surely satisfies P ; and for every r′(n) ≤ c · p(n), G(n, r′(n)) almost surely
does not satisfy P .

Nowadays “Rainbow Connections of Graphs” becomes a new and active subject in graph
theory. There is a survey [104] and a book [112] which have been published on this topic.
More and more researchers are working in this field, and many new papers have been pub-
lished in journals. In this survey we attempt to bring together most of the new results and
papers that dealt with the topic.

In Section 2, we will focus on rainbow connection coloring of edge-version which concerns
two parameters, the rainbow connection number and strong rainbow connection number. We
collect many bounds, algorithms and computational complexity for these two parameters.
In Section 3, we will survey on rainbow connection coloring of vertex-version. In Section
4, we will introduce results on rainbow k-connectivity. In Section 5, results on rainbow
index are surveyed. From Section 6 to Section 8, three new categories of rainbow connection
colorings will be introduced: total rainbow connection coloring, rainbow connection coloring
on digraphs, rainbow connection coloring on hypergraphs.

2 Rainbow connection coloring of edge-version

In [18], Caro et al. investigated the rainbow connection number of graphs with minimum
degree at least 3. They asked the following question: Is it true that minimum degree at least
3 guarantees that rc(G) ≤ αn where α < 1 is independent of n? This turns out to be true,
and they proved: If G is a connected graph with n vertices and δ(G) ≥ 3, then rc(G) < 5

6
n.

Then Caro et al. conjectured: If G is a connected graph with n vertices and δ(G) ≥ 3, then
rc(G) < 3

4
n. Schiermeyer proved the conjecture in [133] by showing the following result: If

G is a connected graph with n vertices and δ(G) ≥ 3, then rc(G) < 3n−1
4

. Not surprisingly,
as the minimum degree increases, the graph would become more dense and therefore the
rainbow connection number would decrease. Schiermeyer raised the following open problem
in [133]:

Problem 2.1. [133] For every k ≥ 2 find a minimum constant ck with 0 < ck ≤ 1 such that
rc(G) ≤ ckn for all graphs G with minimum degree δ(G) ≥ k. Is it true that ck = 3

k+1
for

all k ≥ 2?

Chandran et al. [24] nearly settled the above problem by showing the following result:
For every connected graph G of order n and minimum degree δ, we have rc(G) ≤ 3n

δ+1
+ 3;

moreover, for every δ ≥ 2, there exist infinitely many connected graphs G such that rc(G) ≥
3(n−2)
δ+1

− 1.

For a graph G, σ2(G) = min{d(u)+d(v) | uv 6∈ E(G)}. Clearly, the degree sum condition
σ2 is weaker than the minimum degree condition. Dong and Li [40] derived an upper bound
on the rainbow connection numbers of graphs under given minimum degree sum condition
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σ2. Similarly, they [42] further got the following result for a general k: If G is a connected
graph of order with k independent vertices, then rc(G) ≤ 3kn

σk+k
+ 6k − 3.

With respect to the the relation between rc(G) and the connectivity κ(G), mentioned in
[133], Broersma asked a question at the IWOCA workshop:

Problem 2.2. [133] What happens with the value rc(G) for graphs with higher connectivity?

Li and Liu got a best possible upper bound in [95, 97] for 2-connected graphs: Let G
be a 2-connected graph of order n (n ≥ 3), then rc(G) ≤ ⌈n

2
⌉ and the upper bound is tight

for n ≥ 4. In [47], Ekstein et al. rediscovered this result. One could think of generalizing
the above result to the case of higher connectivity. Li and Liu [95, 97] raised the following
stronger conjecture that for every κ ≥ 1, if G is a κ-connected graph of order n, then
rc(G) ≤ ⌈n

κ
⌉. Unfortunately, Ekstein et al. in [47] found examples showing that for every κ

there are κ-connected graphs G of order n with rc(G) ≥ n−2
κ

+ 1, which is slightly bigger
than ⌈n

κ
⌉ when κ (≥ 3) divides n.

The diameter of a graph, and hence its radius, are obvious lower bounds for rainbow
connection number. Hence it is interesting to see if there is an upper bound which is a
function of the radius r or diameter alone. Such upper bounds were shown for some special
graph classes in [24]. In [6], Basavaraju et al. gave some upper bounds of rc(G) for a
bridgeless graph G in terms of radius. Dong and Li [41] considered graphs with bridges.
They bounded rc(G) above by the number of bridges and radius of a graph G.

Another approach for achieving upper bounds is based on the size (number of edges) m
of the graph. Those type of sufficient conditions are known as Erdős-Gallai type results.
Research on the following Erdős-Gallai type problem has been started in [76].

Problem 2.3. [76] For every k with 1 ≤ k ≤ n − 1, compute and minimize the function
f(n, k) with the following property: If |E(G)| ≥ f(n, k), then rc(G) ≤ k.

Kemnitz and Schiermeyer [76] investigated the lower bound for f(n, k). Kemnitz and
Schiermeyer [76], Li et al. [92] and Kemnitz et al. [77] showed the following result. Let k
and n be natural numbers with k ≤ n. Then f(n, k) ≥

(

n−k+1
2

)

+ (k − 1), where equality
holds for k = 1, 2, 3, 4, n− 6, n− 5, n− 4, n− 3, n− 2, n− 1.

In [111], Li and Sun provided a new approach to investigate the rainbow connection
number of a graph G according to some constraints to its complement graph G. They gave
two sufficient conditions to guarantee that rc(G) is bounded by a constant. In [31], Chen et
al. investigated Nordhaus-Gaddum-type results.

Graphs with small diameters were also discussed. In [84], Li et al. showed that rc(G) ≤ 5
and they also gave examples for which rc(G) ≤ 4. However, they could not show that the
upper bound 5 is sharp. In [43], Dong and Li gave another proof for the upper bound 5, and
moreover, examples are given to show that the bound is best possible. In [84], Li et al. also
showed that rc(G) ≤ k + 2 if G is connected with diameter 2 and k bridges, where k ≥ 1.
The bound k + 2 is sharp as there are infinity many graphs of diameter 2 and k bridges
whose rainbow connection numbers attain this bound. For diameter 3, Li et al. [85] proved
that rc(G) ≤ 9 if G is a bridgeless graph with diameter 3.

Products of graphs occur naturally in discrete mathematics as tools in combinatorial
constructions; they give rise to important classes of graphs and deep structural problems.
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The extensive literature on products that has evolved over the years presents a wealth of
profound and beautiful results [55, 68, 69]. Some nice bounds and exact values for rainbow
connection numbers of product graphs, such as Cartesian product graphs, were given in
[7, 52, 53, 109]. In particular, the following problem could be interesting but may be difficult:

Problem 2.4. [104] Characterize those graphs G with rc(G) = diam(G), or give some
sufficient conditions to guarantee that rc(G) = diam(G). Similar problems for the parameter
src(G) can be proposed.

For the topic of strong rainbow connection coloring of edge-version, Li and Sun [110]
derived a sharp upper bound for src(G) according to the number of edge-disjoint triangles
(if exist) in a graph G, and give a necessary and sufficient condition for the sharpness;
Gologranca et al. in [52] investigated the strong rainbow connection number on some product
graphs.

Unlike rainbow connection number, which is a monotone graph property (adding edges
never increases the rainbow connection number), this is not the case for the strong rainbow
connection number. Hence, the investigation of strong rainbow connection number is much
harder than that of rainbow connection number. Chakraborty et al. gave the following
conjecture.

Conjecture 2.5. [20] If G is a connected graph with minimum degree at least ǫn, then it
has a strong rainbow connection number bounded by a constant depending only on ǫ.

2.1 Bounds in terms of the independence number

Recall that an independent set of a graph G is a set of vertices such that any two of these
vertices are non-adjacent in G, and the independence number α(G) of G is the cardinality
of a maximum independent set of G. Dong and Li obtained a sharp upper bound for rc(G)
in terms of the independent number of G.

Theorem 2.6. [39] If G is a connected graph with δ(G) ≥ 2, then rc(G) ≤ 2α(G)− 1, and
the bound is sharp.

By using the above theorem, they got the following corollary, which is Theorem 10 of
[134].

Corollary 2.7. (Theorem 10, [134]) If G is a connected graph with chromatic number χ(G),
then rc(G) ≤ 2χ(Ḡ)− 1, where Ḡ is the complement of G.

2.2 Bounds in terms of the number of blocks

Recall that a block of a graph G is a maximal connected subgraph of G that does not have
any cut vertex. So every block of a nontrivial connected graph is either aK2 or a 2-connected
subgraph. All the blocks of a graph G form a block decomposition of G. A block B is called
an even (odd) block if the order of B is even (odd). Li and Liu [94] obtained a sharp upper
bound for rc(G) in terms of the number of blocks in G.
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Theorem 2.8. [94] If G is a connected graph of order n ≥ 3 and G has a block decomposition
B1, · · · , Bq (q ≥ 2), where r blocks are even blocks, then rc(G) ≤ n+r−1

2
and the upper bound

is tight.

Caro et al. [18] showed that if G is a connected bridgeless (2-edge-connected), graph with
n vertices, then rc(G) ≤ 4n/5−1. By using Theorem 2.8, Li and Liu [94] gave a tight upper
bound of the rainbow connection number for a 2-edge-connected graph which improves this
bound.

Theorem 2.9. [94] If G is a 2-edge-connected graph of order n ≥ 3, then rc(G) ≤ ⌊(2n −
2)/3⌋ and the upper bound is tight.

2.3 Forbidden subgraph

Let F be a family of connected graphs. We say that a graph G is F-free if G does not
contain an induced subgraph isomorphic to a graph from F . Specifically, for F = {H} we
say that G is H-free, and for F = {X, Y } we say that G is (X, Y )-free. The members of F
will be referred to in this context as forbidden induced subgraphs.

If X1, X2 are graphs, we write X1⊂INDX2 if X1 is an induced subgraph of X2 (not ex-
cluding the possibility that X1 = X2), and if {X1, Y1}, {X2, Y2} are pairs of graphs, we write
{X1, Y1}⊂IND{X2, Y2} if either X1⊂INDY1 and X2⊂INDY2, or X1⊂INDY2 and X2⊂INDY1.
It is straightforward to see that if X1⊂INDX2, then every X1-free graph is X2-free, and if
{X1, Y1}⊂IND{X2, Y2}, then every (X1, Y1)-free graph is (X2, Y2)-free.

Graphs characterized in terms of forbidden induced subgraphs are known to have many
interesting properties. Although, in general, there is no upper bound on rc(G) in terms of
diam(G), and, in bridgeless graphs, rc(G) can be quadratic in terms of diam(G) as shown
before, it turns out that forbidden subgraph conditions can remarkably lower the upper
bound on rc(G). In [66], Holub et al. considered the following problem.

Problem 2.10. For which families F of connected graphs, there is a constant kF such that
a connected graph G being F-free implies rc(G) ≤ diam(G) + kF?

In [66], the authors gave a complete answer for |F| ∈ {1, 2} by showing the following
two theorems. The first theorem characterizes all connected graphs H such every connected
H-free graph G satisfies rc(G) ≤ diam(G) + kG, where kG is a constant.

Theorem 2.11. [66] Let H be a connected graph. Then there is a constant kH such that
every connected H-free graph G satisfies rc(G) ≤ diam(G) + kH , if and only if H = P3.

The second theorem characterizes all forbidden pairs X, Y for which there is a constant
kXY such that G being (X, Y )-free implies rc(G) ≤ diam(G) + kXY . Here the net is the
graph obtained by attaching a pendant edge to each vertex of a triangle.

Theorem 2.12. [66] Let X, Y be connected graphs, X, Y 6= P3. Then there is a constant
kXY such that every connected (X, Y )-free graph G satisfies rc(G) ≤ diam(G) + kXY , if and
only if either {X, Y }⊂IND{K1,r, P4} for some r ≥ 4, or {X, Y }⊂IND{K1,3, N}.

As a next step, it is natural to ask for forbidden families F implying that rc(G) is bounded
by a linear function of diam(G). Thus, we can address the following problem.
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Problem 2.13. For which families F of connected graphs, there are constants qF , kF such
that a connected graph G being F-free implies rc(G) ≤ qFdiam(G) + kF?

For |F| = 1, it was shown in [66] that the answer for the above problem is the same as in
Theorem 2.11, that is, the only such graph H = P3. For |F| = 2, the following result shows
that this situation is the same as in Theorem 2.12.

Theorem 2.14. [66] Let X, Y be connected graphs, X, Y 6= P3. Then there are constants
qXY , kXY such that every connected (X, Y )-free graph G satisfies rc(G) ≤ qXY diam(G)+kXY ,
if and only if either {X, Y }⊂IND{K1,r, P4} for some r ≥ 4, or {X, Y }⊂IND{K1,3, N}.

In [65], the authors considered an analogous problem to Problem 2.10 under an additional
assumption δ(G) ≥ 2.

Problem 2.15. [65] For which families F of connected graphs, there is a constant kF such
that a connected graph G with δ(G) ≥ 2 being F-free implies rc(G) ≤ diam(G) + kF?

They gave a complete answer for |F| = 1 by proving the following theorem.

Theorem 2.16. [65] Let H be a connected graph. Then there is a constant kH such that every
connected H-free graph G with minimum degree δ(G) ≥ 2 satisfies rc(G) ≤ diam(G) + kH ,
if and only if H⊂INDP5.

Figure 1: The graphs S2,2,2, S3,3,3, S1,1,4, Z3, N2,2,2 and Zt
1.

We now introduce two graph classes. For i, j, k ∈ N, let Si,j,k denote the graph obtained
by identifying one end vertex from each of three vertex-disjoint paths of lengths i, j, k, and
Ni,j,k denote the graph obtained by identifying each vertex of a triangle with an end vertex
of one of three vertex-disjoint paths of lengths i, j, k. For example, as shown in Figure 1,
we can see the four graphs S2,2,2, S3,3,3, S1,1,4, and N2,2,2. Note that the net is the graph
N = N1,1,1.

For |F| = 2, the following theorem summarizes the results of the papers [65, 67] and gives
a complete characterization of all forbidden pairs {X, Y } implying rc(G) ≤ diam(G) + kXY

in (X, Y )-free graphs G with δ(G) ≥ 2.

Theorem 2.17. [67] Let X, Y 6⊂INDP5 be a pair of connected graphs. Then there is a con-
stant kXY such that every connected (X, Y )-free graph G with δ(G) ≥ 2 satisfies rc(G) ≤
diam(G) + kXY , if and only if either

• {X, Y }⊂IND{P6, Z
r
1} for some r ∈ N, or
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• {X, Y }⊂IND{Z3, P7}, or

• {X, Y }⊂IND{Z3, S1,1,4}, or

• {X, Y }⊂IND{Z3, S3,3,3}, or

• {X, Y }⊂IND{S2,2,2, N2,2,2}.

Similar to Problem 2.13, the authors in [65] addressed the following problem under the
assumption δ(G) ≥ 2.

Problem 2.18. [65] For which families F of connected graphs, there are constants qF , kF
such that a connected graph G with δ(G) ≥ 2 being F-free implies rc(G) ≤ qFdiam(G)+kF?

For |F| = 1, they showed that the answer is the same as in Theorem 2.16, that is, the
only such graph H is the path H = P5. For |F| = 2, they proved the following theorem.

Theorem 2.19. [65] Let X, Y 6= P5 be a maximal pair of connected graphs for which there are
constants qXY , kXY such that every connected (X, Y )-free graph G with δ(G) ≥ 2 satisfies
rc(G) ≤ qXY diam(G) + kXY . Then (up to symmetry) either X = S2,2,2 and Y = N2,2,2,
X = P6 and Y = Zr

1(r ∈ N), or Y = Z3 and X ∈ {P7, S3,3,3, S1,1,4}.

2.4 Graphs with large rainbow connection numbers

We need to introduce some graph classes firstly. Let G be a connected unicyclic graph with
the unique cycle C = v1v2 · · · vsv1. For brevity, orient C clockwise. Let l(vi) be the number
of leaves of the tree attached at the vertex vi from the unique cycle of G.

Let i be an integer with 1 ≤ i ≤ 3 and the addition is performed modulo 3. Let
G = {G : m = n, g(G) = 3}, G1 = {G ∈ G : l(vi) ≥ 1, l(vi+1) ≥ 1, l(vi+2) ≥ 1, or l(vi) ≥ 3},
G2 = {G ∈ G : l(vi) = 0, l(vi+1) ≤ 2, l(vi+2) ≤ 2}, where g(G) denotes the girth of G.
Obviously, G = G1 ∪ G2.

Let i be an integer with 1 ≤ i ≤ 4 and the addition is performed modulo 4. Let
H = {G : m = n, g(G) = 4} and H = H1 ∪H2 ∪H3, where H2 = {G ∈ H : l(vi) = l(vi+2) =
0, l(vi+1) ≤ 1, l(vi+3) ≤ 1}, H3 = {G ∈ H : l(vi) ≥ 4, or l(vi) ≥ 1, l(vi+1) ≥ 2, l(vi+2) ≥ 1}.

Let i be an integer with 1 ≤ i ≤ 5 and the addition is performed modulo 5. Let
J = {G : m = n, g(G) = 5} and J = J1∪J2∪C5, where J1 = {G ∈ J : l(vi) ≤ 2, l(vi+2) ≤
1, l(vi+1) = l(vi+3) = l(vi+4) = 0 or l(vi) ≤ 1, l(vi+1) ≤ 1, l(vi+2) ≤ 1, l(vi+3) = l(vi+4) = 0}.

Let i be an integer with 1 ≤ i ≤ 6 and the addition is performed modulo 6. Let
L = {G : m = n, g(G) = 6} and L = L1 ∪ L2, where L1 = {G ∈ L : l(vi) ≤ 1, l(vi+3) ≤
1, l(vi+1) = l(vi+2) = l(vi+4) = l(vi+5) = 0}.

Let M be a class of graphs where in each graph a path is attached at each vertex of
degree 2 of K4 − e, respectively. Note that, the path may be trivial.

Chartrand et al. obtained that G is a tree if and only if rc(G) = m, and it is easy to see
that G is not a tree if and only if rc(G) ≤ m − 2, where m is the number of edge of G. So
there is an interesting problem: Characterize the graphs G with rc(G) = m−2. In [113], Li,
Sun and Zhao settled down this problem. Furthermore, they also characterized the graphs
G with rc(G) = m− 3.
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Theorem 2.20. [113] rc(G) = m−2 if and only if G is isomorphic to a cycle C5 or belongs
to G2 ∪H2.

Theorem 2.21. [113] rc(G) = m−3 if and only if G is isomorphic to a cycle C7 or belongs
to G1 ∪H1 ∪ J1 ∪ L1 ∪M.

Furthermore, Li, Shi and Sun raised the following more general problem.

Problem 2.22. [104] Determine the graphs with rc(G) ≥ m − k (src(G) ≥ m − k), where
k is a small integer.

2.5 Minimally d-rainbow connected graphs

For integers n and d, let t(n, d) denote the minimum size (number of edges) in d-rainbow
connected graphs of order n. Because a network which satisfies our requirements and has
as few links as possible can cut costs, reduce the construction period and simplify later
maintenance, the study of this parameter is significant. Schiermeyer [135] mainly investigated
the upper bound of t(n, d) and showed the following results.

Theorem 2.23. [135]
(i) t(n, 1) =

(

n
2

)

.

(ii) t(n, 2) ≤ (n+ 1)⌊log2 n⌋ − 2⌊log2 n⌋ − 2.
(iii) t(n, 3) ≤ 2n− 5.
(iv) For 4 ≤ d ≤ n−1

2
, t(n, d) ≤ n− 1 + ⌈n−2

d−2
⌉.

(v) For n
2
≤ d ≤ n− 2, t(n, d) = n.

(vi) t(n, n− 1) = n− 1.

Schiermeyer [135] also got a lower bound of t(n, 2) by an indirect method, and showed
that t(n, 2) ≥ nlog2 n− 4nlog2 log2 n − 5n for sufficiently large n. Nevertheless, he did
not present a lower bound of t(n, d) for 3 ≤ d < ⌈n

2
⌉. In [86], Li et al. used a different

method to improve his lower bound of t(n, 2), and moreover, got a lower bound of t(n, d) for
3 ≤ d < ⌈n

2
⌉.

Theorem 2.24. [86]
(i) For sufficiently large n, t(n, 2) ≥ nlog2 n− 4nlog2 log2 n− 2n.

(ii) For 3 ≤ d < ⌈n
2
⌉, n− d− 3 + ⌈n−1

d
⌉ ≤ t(n, d) ≤ d(n−2)

d−1
.

In [9], Bode and Harborth proved that t(n, d) ≤ ⌈d(n−2)
d−1
⌉ for 3 ≤ d ≤ n − 1, and this

bound coincides with the exact value in Theorem 2.23 for the case that d ≥ n/2. Especially,
the exact value for t(n, 3) are given in [9].

Theorem 2.25. [9] t(n, 3) = ⌈3(n−2)
2
⌉ for n ≥ 3.

2.6 Graph classes

We always use G to denote a finite group with the identity e. The power graph ΓG has the
vertex set G and two distinct elements are adjacent if one is a power of the other [75]. A
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finite group is called a p-group if its order is a power of p, where p is a prime. In G, an
element of order 2 is called an involution. An involution x is maximal if the only cyclic
subgroup containing x is the subgroup generated by x. Denote by MG the set of all maximal
involutions of G. In [124], the authors used MG to discuss the rainbow connection number
of ΓG. They first expressed rc(ΓG) in terms of |MG| if |MG| 6= ∅.

Theorem 2.26. [124] Let G be a finite group of order at least 3. Then

rc(ΓG) =

{

3, if 1 ≤ |MG| ≤ 2;
|MG|, if |MG| ≥ 3.

For the case that |MG| = ∅, they obtained the following result.

Theorem 2.27. [124] Let G be a finite group with no maximal involutions.
(i) If G is cyclic, then

rc(ΓG) =

{

1, if |G| is a prime power;
2, otherwise.

(ii) If G is noncyclic, then rc(ΓG) = 2 or 3.
They also determined the rainbow connection number of the power graph of a nilpotent

group.

Proposition 2.28. [124] Let G be a noncyclic nilpotent group with no maximal involutions.
Then

rc(ΓG) =

{

2, if |G| is isomorphic to Q8 × Zn for some odd number n;
3, otherwise.

Given an integer n ≥ 3 and distinct integers s1, . . . , sk between 1 and n/2, the circulant
graph G(n;±s1,±s2, . . . ,±sk) is defined to be the undirected graph with vertex set the
additive group Zn of integers modulo n, such that each vertex i ∈ Zn is adjacent to i±s1, i±
s2, . . . , i ± sk, with integers involved modulo n. In [138], Sun obtained some precise values
and upper bounds for rainbow connection numbers of circulant graphs.

The line graph has a rich history [147], it is not only an important graph classes[62],
but also one of the most widely studied of all graph transformations in graph theory. In
[107] and [108], Li and Sun studied the rainbow connection numbers of line graphs in the
light of particular properties of line graphs shown in [61] and [62]. In particular, they
investigated the rainbow connection numbers of line graphs of graphs that contain triangles,
and gave two sharp upper bounds in terms of the number of edge-disjoint triangles of original
graphs. In [137], Sun maintained the research, and gave a sharp upper bound for the rainbow
connection numbers of line graphs of triangle-free graphs in terms of the cycle structure of
original graphs.

For line graphs, one may consider the relation between rc(G) and rc(L(G)).

Problem 2.29. [104] Determine the relationship between rc(G) and rc(L(G)), is there an
upper bound for one of these parameters in terms of the other?
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One also can consider the rainbow connection number of the general iterated line graph
Lk(G) when k is sufficiently large.

Problem 2.30. [104] Consider the value of rc(Lk(G)) as k →∞. Is it bounded by a constant
or does it convergence to a function of some graph parameters, such as the order n of G?

For Problem 2.30, we know if G is a cycle Cn (n ≥ 4), then Lk(G) = G, so rc(Lk(G)) =
⌈n
2
⌉. But for many graphs, we know, as k grows, Lk(G) will become more dense, and

rc(Lk(G)) may decrease.
There are many variations and generalizations of line graphs which have been proposed

and studied, a book by Prisner [131] describes these generalizations of line graphs. Middle
graph and total graph are two important generalizations of line graphs. In [137], Sun in-
vestigated rainbow connection numbers of middle graphs and total graphs of triangle-free
graphs.

In [24], some other special graph classes were discussed, such as interval graphs, unit
interval graphs, AT -free graphs, threshold graphs, chain graphs and circular arc graphs. Li
et al. [83] investigated the rainbow connection numbers of Cayley graphs on Abelian groups.
There are other results on some special graph classes. In [23], Chartrand et al. investigated
the rainbow connection numbers of cages, and in [71], Johns et al. investigated the rainbow
connection numbers of small cubic graphs. Cai et al. [17] studied rainbow connection numbers
of ladders and Mobius ladders. The details are omitted.

2.7 Random graphs

Let G = G(n, p) denote the binomial random graph on n vertices with edge probability p.
Let L = logn

log logn
and let A ∼ B denote A = (1 + o(1))B as n→∞.

Frieze and Tsourakakis [50] established the following theorem:

Theorem 2.31. [50] Let G = G(n, p), p = logn+ω
n

, ω →∞, ω = o(logn). Also, let Z1 be the
number of vertices of degree 1 in G. Then, with high probability rc(G) ∼ max{Z1, L}.

Theorem 2.32. [50] Let G = G(n, r) be a random r-regular graph where r ≥ 3 is a fixed
integer. Then, with high probability

rc(G) =

{

O(log4 n) if r = 3,

O(log2θr n) if r ≥ 4.

where θr =
log(r−1)
log(r−2)

.

In [46], the authors continued to study rainbow connection of random regular graphs and
proved the following result.

Theorem 2.33. [46] Let r ≥ 4 be a constant. Then with high probability, rc(G(n, r)) =
O(logn).

We know that the rainbow connection number of any graph G is at least as large as
its diameter. The diameter of G(n, r) is w.h.p. asymptotically logr−1 n and so the above

12

Theory and Applications of Graphs, Dynamic Surveys, Art. 3

https://digitalcommons.georgiasouthern.edu/tag/vol0/iss1/3
DOI: 10.20429/tag.2017.000103



theorem is best possible, up to a (hidden) constant factor. Dudek, Frieze and Tsourakakis
[46] conjectured that Theorem 2.33 can be extended to include the case r = 3. Unfortunately,
the approach taken in [46] does not seem to work in this case.

For the random regular graphs, Kamčev, Krivelevich and Sudakov [72] improved the
upper bound to an asymptotically tight bound by using the edge-splitting lemma.

Theorem 2.34. [72] There is an absolute constant c such that for r ≥ 5, rc(G(n, r)) ≤ clogn
log r

with high probability.

The following theorem can be viewed as a generalization of the previous theorem on
G(n, r).

Theorem 2.35. [72] Let ǫ > 0. Let G be a graph of order n and degree r whose edge
expansion is at least ǫr. Furthermore, assume that r ≥ max{64ǫ−1log (64ǫ−1), 324}. Then
rc(G) = O(ǫ−1logn).

In particular, the above theorem applies to (n, r, λ)-graphs with λ ≤ r(1 − 2ǫ), i.e. n-
vertex r-regular graphs whose all eigenvalues except the largest one are at most λ in absolute
value.

Heckel and Riordan [59] obtained the following results.

Theorem 2.36. [59] Let G = G(n, p) and p = p(n) =
√

2 logn+ω(n)
n

where ω(n) = o(logn).

Then, with high probability rc(G) = diam(G) ∈ {2, 3}.

Consider the random graph process (Gt)
N
t=0, N =

(

n
2

)

, which starts with the empty graph
on n vertices at time t = 0 and where at each step one edge is added, chosen uniformly at
random from those not already present in the graph, until at time N we have a complete
graph. A graph property is called monotone increasing if it is preserved under the addition of
further edges to a graph. For a monotone increasing graph property P, let τP be the hitting
time of P, i.e. the smallest t such that Gt has property P. Consider the graph properties
D and R given by D = {G : diam(G) ≤ 2} and R = {G : rc(G) ≤ 2}. Then D and R are
monotone increasing. Since D is necessary for R, we always have τD ≤ τR. In the following
theorem, Heckel and Riordan [59] proved that with high probability D and R occur at the
same time.

Theorem 2.37. [59] In the random graph process (Gt)
N
t=0, with high probability τD = τR.

As shown in Theorem 2.37 that for r = 2, rainbow connection number 2 and diameter 2
happen essentially at the same time in random graphs. For r > 3, Heckel and Riordan [60]
conjectured that this is not the case, propose an alternative threshold, and proved that this
is an upper bound for the threshold for rainbow connection number r.

Conjecture 2.38. [60] Fix an integer r ≥ 3, set C = rr−2

(r−2)!
, and let p(n) = (Clog n)1/r

n1−1/r . Then

p(n) is a sharp threshold for the graph property Rr, where Rr = {G : rc(G) ≤ r}.

Theorem 2.39. [60] Fix an integer r ≥ 3 and ǫ > 0. Set p = p(n) = (C(1+ǫ)log n)1/r

n1−1/r , and let
G ∼ G(n, p). Then with high probability, rc(G) = r.
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Kamčev, Krivelevich and Sudakov [72] also studied the rainbow vertex-connection number
for random regular graphs by using the vertex-splitting lemma.

Theorem 2.40. [72] There is an absolute constant c such that for all r ≥ 28, rvc(G(n, r)) ≤
clogn
log r

with high probability.

2.8 Algorithms and computational complexity

The computational complexity and algorithmic points of view for rainbow connection coloring
of edge-version have been studied extensively.

The problem of Rainbow k-Connection Coloring (k-RC) is stated as follows: for a con-
nected undirected graph G, does rc(G) ≤ k hold? The problem of Strong Rainbow k-
Connection Coloring (k-SRC) are then defined analogously for src(G).

In [18], Caro et al. conjectured that computing rc(G) is an NP-hard problem, as well
as that even deciding whether a graph has rc(G) = 2 is NP-complete. In [20], Chakraborty
et al. confirmed this conjecture. Though for a general graph G it is NP-complete to decide
whether rc(G) = 2 [20], Li, Li and Shi [87] showed that the problem becomes easy when G
is a bipartite graph. Whereas deciding whether rc(G) = 3 is still NP-complete, even when
G is a bipartite graph.

In [4], it was shown that given any natural number k ≥ 3 and a graph G, the problem
k-RC is NP-hard. Chandran and Rajendraprasad [25] strengthened this result to hold for
chordal graphs. In the same paper, the authors gave a linear time algorithm for rainbow
connection coloring split graphs which form a subclass of chordal graphs with at most one
more color than the optimum. Basavaraju et al. [6] gave an (r + 3)-factor approximation
algorithm to rainbow color a general graph of radius r. Later on, the inapproximability of
the problem was investigated by Chandran and Rajendraprasad [26]. They proved that there
is no polynomial time algorithm to rainbow color graphs with less than twice the minimum
number of colors, unless P = NP. For chordal graphs, they gave a 5/2-factor approximation
algorithm, and proved that it is impossible to do better than 5/4, unless P = NP.

In [27], the authors settled the computational complexity of k-RC on split graphs and
thereby discover an interesting dichotomy.

Theorem 2.41. [27] The problem k-RC on split graphs is NP-complete for k ∈ {2, 3} and
polynomial-time solvable for all other values of k.

It was also shown in [4] that given any natural number k ≥ 3 and a graph G, the problem
k-SRC is NP-complete even when G is bipartite, and also for split graphs [78].

Theorem 2.42. [78] For every integer k ≥ 3, the problem k-SRC is NP-complete when
restricted to the class of split graphs.

Furthermore, the strong rainbow connection number of an n-vertex bipartite graph cannot
be approximated within a factor of n1/2−ǫ, where ǫ > 0 unless NP = ZPP [4]. For split graphs,
the following result holds [78].

Theorem 2.43. [78] There is no polynomial time algorithm that approximates the strong
rainbow connection number of an n-vertex split graph with a factor of n1/2−ǫ for any ǫ > 0,
unless P = NP.
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In the same paper, Keranen et al. got following two results for block graphs.

Theorem 2.44. [78] Let G be a bridgeless block graph, and let k a positive integer such that
k ≤ 4. Deciding whether rc(G) = k is in P.

Theorem 2.45. [78] There is an algorithm such that given a block graph G, it computes
src(G) in O(n+m) time.

Recently, in [48], the authors also considered algorithms of problems k-RC and k-SRC.

Theorem 2.46. [48] Let p ∈ N be fixed. Then the problems k-RC and k-SRC can be solved
in time O(n) on n-vertex graphs of treewidth at most p.

In the same paper, the authors also considered the “saving” versions of the problem,
which ask whether it is possible to improve upon the trivial upper bound for the number
of colors. The problem of Saving k Rainbow Connection Colors (k-SavingRC) is stated as
follows: for a connected undirected graph G, does rc(G) ≤ |E(G)| − k hold?

Theorem 2.47. [48] For each k ∈ N, the problem k-SavingRC can be solved in time O(n)
on n-vertex graphs.

The problem of rainbow connection coloring (RC) is stated as follows: for a connected
undirected graph G and a positive integer k, does rc(G) ≤ k hold? Here k is given as part
of the input. The problems SRC is also defined analogously.

Theorem 2.48. [48] Let p ∈ N be fixed. Then the problem RC can be solved in time O(n)
on n-vertex graphs of vertex cover number at most p.

The problem of Rainbow Connectivity is stated as follows: for a connected undirected
graph G = (V,E) and an edge-coloring χ : E → C where C is a set of colors, is G rainbow
connected under χ? Similarly, we can define the problem Strong Rainbow Connectivity: for
a connected undirected graph G = (V,E) and an edge-coloring χ : E → C where C is a set
of colors, is G strong rainbow connected under χ?

The problem Rainbow Connectivity has gained considerably more attention in the liter-
ature. Chakraborty et al. [20] observed the problem is easy when the number of colors |C| is
bounded from above by a constant. However, they proved that for an arbitrary coloring, the
problem is NP-complete. Building on their result, Li et al. [87] proved Rainbow Connectivity
remains NP-complete for bipartite graphs. Furthermore, the problem is NP-complete even
for bipartite planar graphs as shown by Huang et al. [63]. Recently, Uchizawa et al. [145]
complemented these results by showing Rainbow Connectivity is NP-complete for outerpla-
nar graphs, and even for series-parallel graphs. In the same paper, the authors also gave
some positive results. Namely, they showed the problem is in P for cactus graphs, which
form a subclass of outerplanar graphs. Furthermore, they settled the precise complexity of
the problem from a viewpoint of graph diameter by showing the problem is in P for graphs
of diameter 1, but NP-complete already for graphs of diameter greater than or equal to 2.

Uchizawa et al. [145] also showed the following two theorems.

Theorem 2.49. [145] Rainbow Connectivity is NP-complete when restricted to the class of
bipartite outerplanar graphs.
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Theorem 2.50. [145] Strong Rainbow Connectivity is NP-complete when restricted to the
class of bipartite outerplanar graphs.

Lauri [80] obtained new hardness results for both Rainbow Connectivity and Strong
Rainbow Connectivity. He first considered the class of interval outerplanar graphs

Theorem 2.51. [80] Rainbow Connectivity is NP-complete when restricted to the class of
interval outerplanar graphs.

Corollary 2.52. [80] Strong Rainbow Connectivity is NP-complete when restricted to the
class of interval outerplanar graphs.

The following result concerns the class of interval block graphs

Theorem 2.53. [80] Rainbow Connectivity is NP-complete when restricted to the class of
interval block graphs.

The author also proved both Rainbow Connectivity and Strong Rainbow Connectivity
remain NP-complete for k-regular graphs, for k ≥ 3.

Theorem 2.54. [80] Rainbow Connectivity is NP-complete when restricted to the class of
k-regular graphs, where k ≥ 3.

Corollary 2.55. [80] Strong Rainbow Connectivity is NP-complete when restricted to the
class of k-regular graphs, where k ≥ 3.

In the last part of [80], the authors considered Strong Rainbow Connectivity from a
structural perspective. They observed some graph classes for which the problem is easy.

Theorem 2.56. [80] Strong Rainbow Connectivity is solvable in O(nd+3) time for graphs of
bounded diameter d ≥ 1, where n is the order the input graph.

If a graph G has exactly one shortest path between any pair of vertices, G is said to be
geodetic. A graph is k-geodetic if there are at most k shortest paths between any pair of
vertices.

Theorem 2.57. [80] Strong Rainbow Connectivity is solvable in polynomial time when re-
stricted to the class of k-geodetic graphs, where k = O(poly(n,m)), and n and m are the
order and size of the input graph, respectively.

By Theorem 2.57, the author got the following corollary.

Corollary 2.58. [80] Strong Rainbow Connectivity is solvable in polynomial time when re-
stricted to the class of block graphs.

The following three results concern the parameters pathwidth [73], bandwidth [73] and
tree-depth [129].

Theorem 2.59. [80] Both Rainbow Connectivity and Strong Rainbow Connectivity are NP-
complete for graphs of pathwidth p, for every p ≥ 2.
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Theorem 2.60. [80] Both Rainbow Connectivity and Strong Rainbow Connectivity are NP-
complete for graphs of bandwidth b, for every b ≥ 2.

A problem is said to be in XP [37] if it can be solved in O(nf(k)) time, where n is the
input size, k a parameter, and f some computable function.

Theorem 2.61. [80] Both Rainbow Connectivity and Strong Rainbow Connectivity are in
XP when parameterized by tree-depth.

3 Rainbow connection coloring of vertex-version

For the rainbow vertex-connection number, Chen et al. [33] showed that for a graph G,
deciding whether rvc(G) = 2 is NP-complete. Recently, Chen et al. [30] obtained a more
general result: for any fixed integer k ≥ 2, to decide whether rvc(G) ≤ k is NP-complete. In
[87], Li et al. continued focusing on the bipartite graph and obtained that deciding whether
rvc(G) = 2 can be solved in polynomial time, whereas deciding whether rvc(G) = 3 is
still NP-complete when G is a bipartite graph. Moreover, it is also NP-complete to decide
whether a given vertex-colored graph is rainbow vertex-connected [33]. Li et al. [87] proved
that this problem is still NP-complete even when the graph is bipartite.

In [136], Sun obtained two upper bounds according to complementary graphs.

Theorem 3.1. [136] For a graph G, we have:
(i) if G is disconnected, then rvc(G) = 0 or 1;
(ii) if diam(G) ≥ 4, then rvc(G) = 1;
(iii) if diam(G) = 3, then rvc(G) = 1 or 2; moreover, there are graphs G such that
diam(G) = 3 and rvc(G) = 2.

Theorem 3.2. [136] For a connected graph G, if G is triangle-free, then rvc(G) ≤ 3.

Ma [125] obtained the following result which can be obtained by Theorem 3.1: Let G be
a connected graph of order n, if diam(G) ≥ 2, then rvc(G) ≤ 2, and this bound is tight. Ma
also considered a graph whose complement graph is triangle-free.

Theorem 3.3. [125] For a connected graph G, if G is triangle-free and diam(G) = 2, then
rvc(G) ≤ 2, and this bound is tight.

Theorem 3.4. [125] For a connected graph G, if G is triangle-free and diam(G) = 3, then
rvc(G) ≤ 5, and this bound is tight.

For a set S, let |S| denote the cardinality of S. A k-subset of a set S is a subset of S
whose cardinality is k where k ≤ |S|. An inner vertex of a graph G is a vertex of degree
at least 2 in G and we use V2 to denote the set of inner vertices of G and let n2 = |V2|.
We use Vc to denote the set of cut vertices of the graph G and let nc = |Vc|. Clearly,
Vc ⊆ V2 and nc ≤ n2. We know that 0 ≤ rvc(G) ≤ n2. It is interesting to study graphs
with extremal rainbow vertex-connection numbers, that is, graphs with small (large) rainbow
vertex-connection numbers.

Proposition 3.5. [136] For a connected graph G, rvc(G) = n2 if and only if n2 = nc.
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We need to introduce the following two new graph classes:
G1 = {G : |V2 \ Vc| = 1 for graph G}, G2 = {G : V2 \ Vc ⊆ B and each 2−subset of V2 \
Vc is a vertex cut of G, where B is a 2-connected block of G}.

The following theorem concerns graphs G with rvc(G) = n2 − 1.

Theorem 3.6. [136] For a connected graph G, if rvc(G) = n2 − 1, then G ∈ G1 ∪ G2.

Sun also got a sharp upper bound for rainbow vertex-connection numbers of line graphs.

Theorem 3.7. [136] For a connected graph G, we have rvc(L(G)) ≤ rc(G). Moreover, the
bound is sharp.

Li and Liu [96] got a sharp upper bound for rainbow vertex-connection of 2-connected
graphs.

Theorem 3.8. [96] Let G be a 2-connected graph of order n(n ≥ 3). Then

rvc(G) ≤























0, if n = 3;
1, if n = 4, 5;
3, if n = 9;
⌈n
2
⌉ − 1, if n = 6, 7, 8, 10, 11, 12, 13 or 15;

⌈n
2
⌉, if n ≥ 16 or n = 14,

and the upper bound is tight, which is achieved by the cycle Cn.

As a consequence, they also showed the following result.

Theorem 3.9. [96] Let G be a connected graph. If G has a block decomposition B1, B2, · · · ,
Bk and t cut vertices, then rvc(G) ≤ rvc(B1) + rvc(B2) + · · ·+ rvc(Bk) + t.

A vertex-colored graph G is strongly rainbow vertex-connected, if for every pair u, v of
distinct vertices, there exists a rainbow u − v geodesic, i.e., shortest path. The minimum
number k for which there exists a k-coloring of G that results in a strongly rainbow vertex-
connected graph is called the strong rainbow vertex-connection number of G, denoted by
srvc(G). Similarly, we have rvc(G) ≤ srvc(G) for every nontrivial connected graph G.
Furthermore, for a nontrivial connected graph G, we have diam(G)−1 ≤ rvc(G) ≤ srvc(G),
where diam(G) denotes the diameter of G. The following results on srvc(G) are immediate
from definition.

Proposition 3.10. [100] Let G be a nontrivial connected graph of order n. Then
(a) srvc(G) = 0 if and only if G is a complete graph;
(b) srvc(G) = 1 if and only if diam(G) = 2.

The authors also determined the precise values for the strong rainbow vertex-connection
number of some special graph classes, such as complete bipartite graphs, complete multipar-
tite graphs, wheel graphs and paths.

Theorem 3.11. [100] Let G be a nontrivial connected graph of order n ≥ 3. Then 0 ≤
srvc(G) ≤ n− 2. Moreover, srvc(G) = n− 2 if and only if G is a path of order n.
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in [100], the authors also studied the difference of rvc(G) and srvc(G) by proving the
following result.

Theorem 3.12. [100] Let a and b be integers with a ≥ 5 and b ≥ (7a − 8)/5. Then there
exists a connected graph G such that rvc(G) = a and srvc(G) = b.

The problem of Rainbow Vertex k-Connection Coloring (k-RVC) is stated as follows: for
a connected undirected graph G, does rvc(G) ≤ k hold? The problem of Strong Rainbow
Vertex k-Connection Coloring (k-SRVC) are then defined analogously for srvc(G). In [48],
the authors considered the hardness of the problem k-SRVC.

Theorem 3.13. [48] The problem k-SRVC is NP-complete for every integer k ≥ 3, even
when the input is restricted to graphs of diameter 3.

By the above theorem, we can obtain the following corollary.

Corollary 3.14. [48] There is no polynomial time algorithm for approximating the strong
rainbow vertex connection number of an n-vertex graph of bounded diameter within a factor
of n1/2−ǫ for any ǫ, unless P = NP .

In the same paper, the authors also considered the algorithms for problems k-RVC and
k-SRVC.

Theorem 3.15. [48] Let p ∈ N be fixed. Then the problems k-RVC and k-SRVC can be solved
in time O(n) on n-vertex graphs of treewidth at most p. Furthermore, k-RVC, k-SRVC can
be solved in time O(n3) on n-vertex graphs of clique-width at most p.

In [48], the authors also considered the “saving” versions of the problem, which ask
whether it is possible to improve upon the trivial upper bound for the number of colors.
The problem of Saving k Rainbow Vertex Colors (k-SavingRVC) is stated as follows: for a
connected undirected graph G, does rvc(G) ≤ |E(G)| − k hold?

Theorem 3.16. [48] For each k ∈ N, the problem k-SavingRVC can be solved in time O(n)
on n-vertex graphs.

The problem of Rainbow Vertex Connection Coloring (RVC) is stated as follows: for a
connected undirected graph G and a positive integer k, does rvc(G) ≤ k hold? Here k is
given as part of the input. The problems SRVC is also defined analogously.

Theorem 3.17. [48] Let p ∈ N be fixed. Then the problems RVC and SRVC can be solved
in time O(n) on n-vertex graphs of vertex cover number at most p.

Liu [116], Lu and Ma[122] separately proposed the following problem.

Problem 3.18. [116, 122] Let G be a nontrivial connected graph of order n. For every
integer k, 0 ≤ k ≤ n − 2, compute and minimize the function s(n, k) with the following
property: If |E(G)| ≥ s(n, k), then rvc(G) ≤ k.

For k = 2, Liu [116], Lu and Ma[122] proved the following result.
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Theorem 3.19. [122] Let G be a connected graph of order n ≥ 4. If |E(G)| ≥
(

n−2
2

)

+ 2,
then rvc(G) ≤ 2.

Liu [116], Lu and Ma[122] also showed that s(n, k) ≥
(

n−k
2

)

+ k. Hence, this result and

the above theorem imply that s(n, 2) =
(

n−2
2

)

+ 2. In [122], Lu and Ma also investigated
graphs with rvc(G) = 2 and large clique number, here we omit the details.

For k = 3, Liu [116] proved the following result.

Theorem 3.20. [116] Let G be a connected graph of order n ≥ 5. If |E(G)| ≥
(

n−3
2

)

+ 3,
then rvc(G) ≤ 3.

For n− 6 ≤ k ≤ n− 4, Liu [116] proved the following result.

Theorem 3.21. [116] Let G be a connected graph of order n. If |E(G)| ≥
(

n−k
2

)

+ k, then
rvc(G) ≤ k for n− 6 ≤ k ≤ n− 4.

Liu [116] also computed s(n, k) for k ∈ {0, 1, n− 3, n− 2}.

Theorem 3.22. [116] s(n, 0) =
(

n
2

)

, s(n, 1) =
(

n−1
2

)

+1, s(n, n− 3) = n, s(n, n− 2) = n− 1.

We use Kh
r to denote the graph obtained by attaching a pendant edge to each vertex of

a complete graph Kr, and use Pk to denote the path on k vertices. For i, j, k ∈ N, the two
graph classes Si,j,k and Ni,j,k are introduced in Section 2.2.

In [90], Li, Li and Zhang characterized all connected graphs X such that every connected
X-free graph G satisfies rvc(G) ≤ diam(G) + kX , where kX is a constant.

Theorem 3.23. [90] Let X be a connected graph. Then there is a constant kX such that
every connected X-free graph G satisfies rvc(G) ≤ diam(G) + kX , if and only if X = P3 or
P4.

They also characterized all forbidden pairs X, Y for which there is a constant kXY such
that G being (X, Y )-free implies rvc(G) ≤ diam(G) + kXY .

Theorem 3.24. [90] Let X, Y 6= P3 or P4 be a pair of connected graphs. Then there is a
constant kXY such that every connected (X, Y )-free graph G satisfies rvc(G) ≤ diam(G) +
kXY , if and only if (up to symmetry) X = P5 and Y ⊂IND Kh

r (r ≥ 4), or X ⊂IND S1,2,2 and
Y ⊂IND N .

In [127], Mao et al. considered four standard products: the lexicographic, the strong, the
Cartesian and the direct products with respect to the (strong) rainbow vertex-connection
number.

Theorem 3.25. [127] Let G and H be graphs with |V (G)| ≥ 2, |V (H)| ≥ 3, and let G be
connected. Then we have
(i) rvc(G ◦H) ≤ max{rvc(G), 1};
(ii) srvc(G ◦H) ≤ max{srvc(G), 1}.
Moreover, both bounds are sharp.
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Theorem 3.26. [127] Let G and H be connected graphs. Then we have
(i) rvc(G⊠H) ≤ rvc(G)× rvc(H);
(ii) srvc(G⊠H) ≤ srvc(G)× srvc(H).
Moreover, both bounds are sharp.

Theorem 3.27. [127] Let G and H be connected graphs with diam(G) ≥ 2. Then we have
(i) rvc(G�H) ≤ rvc(G)× |V (H)|;
(ii) srvc(G�H) ≤ srvc(G)× |V (H)|.
Moreover, both bounds are sharp.

The authors also got an upper bound for rvc(G × H) for a non-bipartite connected
graph G and a connected graph H . Based on the above results, the authors also obtained
some bounds or exact values for the (strong) rainbow vertex-connection numbers of some
special Cartesian product and lexicographical product graphs, such as two-dimensional grid
graph, n-dimensional mesh, n-dimensional torus, n-dimensional generalized hypercube and
n-dimensional hyper Petersen network. Here we omit the details.

For the relationship between rvc(G) and srvc(G), Chen, Li, Liu and Liu [32] completely
characterized all pairs of positive integers a and b such that, there exists a graph G with
rvc(G) = a and srvc(G) = b.

Theorem 3.28. [32] Let a and b be positive integers. Then there exists a connected graph
G such that rvc(G) = a and srvc(G) = b if and only if a = b ∈ {1, 2} or 3 ≤ a ≤ b.

In the same paper, they also proposed the following problem on src(G) and srvc(G).

Problem 3.29. [32] Does there exist an infinite family of connected graphs F such that,
src(G) is bounded on F , while srvc(G) is unbounded ?

4 Rainbow k-connectivity

A well-known theorem of Menger shows that in every κ-connected graph G with κ ≥ 1, there
are k internally disjoint u − v paths connecting any two distinct vertices u and v for every
integer k with 1 ≤ k ≤ κ. For every integer 1 ≤ k ≤ κ(G), an edge-coloring is said to be a
rainbow k-connection coloring if there are at least k internally disjoint rainbow u− v paths
connecting any two distinct vertices u and v. Every κ-connected graph with k ≤ κ has a
trivial rainbow k-connection coloring: just color each edge with a distinct color. For every
integer 1 ≤ k ≤ κ(G), the rainbow k-connectivity of G, denoted by rck(G), is defined as the
minimum number of colors needed in a rainbow k-connection coloring. In this section, we
will survey results on rainbow k-connectivity.

4.1 Upper bounds

Fujita, Liu and Magnant [51] considered rc2(G) when G has fixed vertex-connectivity. By
using the Fan Lemma, they obtained the following result: If ℓ ≥ 2 and G is an ℓ-connected
graph on n ≥ ℓ+ 1 vertices, then rc2(G) ≤ (ℓ+1)n

ℓ
.
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A 2-connected series-parallel graph is a (simple) graph which can be obtained from a K3,
and then repeatedly applying a sequence of operations, each of which is a subdivision, or
replacement of an edge by a double edge. These graphs are a well-known subfamily of the
2-connected graphs, and for which we can do better [51]: If G is a 2-connected series-parallel
graph on n ≥ 3 vertices, then rc2(G) ≤ n.

Elmallah, Colbourn [49] proved any 3-connected planar graph contains a 2-connected
series-parallel spanning subgraph. As a consequence, one can get that if G is a 3-connected
planar graph of order n, then rc2(G) ≤ n [51].

In [51], Fujita et. al. proposed a problem.

Problem 4.1. What is the minimum constant α > 0 such that for all 2-connected graphs G
on n vertices, we have rc2(G) ≤ αn?

Li and Liu [93] solved the problem by proving that if G is a 2-connected graph on n
vertices, then rc2(G) ≤ n with equality holds if and only if G is a cycle of order n. More
generally, one may consider the following problem.

Problem 4.2. Let 2 ≤ k ≤ κ. Find the least constant c = c(k, κ), where 0 < c ≤ k, such
that for all κ-connected graph G on n vertices, we have rck(G) ≤ cn.

Note that a result of Mader implies that any minimally κ-connected graph on n vertices
has at most κn edges. If G is κ-connected on n vertices, then by considering a minimally
κ-connected spanning subgraph of G, we have rck(G) ≤ κn, thus c ≤ κ.

4.2 For some graph classes

4.2.1 Complete graphs

Chartrand, Johns, McKeon and Zhang [22] showed that for every integer k ≥ 2, there exists
an integer f(k) such that if n ≥ f(k), then rck(Kn) = 2. They proved that f(k) ≤ (k + 1)2.
Li and Sun [105] continued their investigation and improved the upper bound of f(k) from

O(k2) to O(k
3
2 ). Nevertheless, Dellamonica, Magnant and Martin [38] obtained the best

possible upper bound 2k, which is linear in k.

4.2.2 Complete bipartite graphs

Chartrand, Johns, McKeon and Zhang [22] also investigated the rainbow k-connectivity of
regular complete bipartite graphs: For every integer k ≥ 2, there exists an integer n such
that rck(Kn,n) = 3. It was showed that rck(Kn,n) = 3 for n = 2k⌈k

2
⌉. However, they left a

question.

Question 4.3. For every integer k ≥ 2, determine an integer (function) g(k), for which
rck(Kn,n) = 3 for every integer n ≥ g(k).

Li and Sun [106] solved this question using a similar but more complicated method to
the above result: For every integer k ≥ 2, there exists an integer g(k) = 2k⌈k

2
⌉ such that

rck(Kn,n) = 3 for any n ≥ g(k). With the probabilistic method, Fujita, Liu and Magnant
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[51] improved this result to g(k) = 2k + o(k): Let 0 < ε < 1
2
and k ≥ 1

2
(θ − 1)(1 − 2ε) + 2,

where θ = θ(ε) is the largest solution of 2x2e−ε2(x−2) = 1; if n ≥ 2k−4
1−2ε

+1, then rck(Kn,n) = 3.
On the other hand, how small can the function g(k) be? The next result shows that

the best we can hope for is approximately g(k) ≥ 3k
2

[51]: For any 3-coloring of the edges
of Kn,n, there exists u, v ∈ V (Kn,n) where the number of internally disjoint rainbow u − v

paths is at most 2n2

3(n−1)
.

4.2.3 Complete multipartite graphs

Fujita, Liu and Magnant [51] extended this to complete multipartite graphs with equipar-
titions. Let Kt×n denote the complete multipartite graph with t ≥ 3 vertex classes of the
same size n. Using a similar method, they got the following: Let 0 < ε < 1

2
, t ≥ 3 and

k ≥ 1
2
θ(t− 2)(1 − 2ε) + 1, where θ = θ(ε, t) is the largest solution of 1

2
t2x2e−(t−2)ε2x = 1. If

n ≥ 2k−2
(1−2ε)(t−2)

, then rck(Kt×n) = 2.
Again, the following result shows that the best lower bound for n would be approximately

n ≥ 2k
t−1

: Let t ≥ 3. For any 2-coloring of the edges of Kt×n, there exists u, v ∈ V (Kt×n)

where the number of internally disjoint rainbow u− v paths is at most (t−1)n2

2(n−1)
.

However, this question becomes much more difficult for general complete bipartite and
multipartite graphs. We have the following open problem:

Problem 4.4. For integers k, t ≥ 2 and n1 ≤ n2 ≤ · · · ≤ nt, is there an integer h(k, t) such
that if n1 ≥ h(k, t), we have

rck(Kn1,n2,··· ,nt) =

{

2 if t = 2
3 if t ≥ 3

If so, what is the smallest value of h(k, t)?

4.2.4 For graphs of a finite group

Let X be a finite group with identity element 1. Let A be a subset of X such that 1 6∈ A =
A−1 = {a|a ∈ A}. The Cayley graph Cay(X,A) is defined on vertex set X such that there
is an edge between two vertices x and y if and only if x−1y ∈ A. It is clear that Cay(X,A)
is connected if and only if A is a generating set of X . Let N be a normal subgroup of X .
The all (left) cosets of N in X form a group under the product (xN)(yN) = xyN , which
is denoted by X/N and called the quotient group of X with respect to N . For an element
x ∈ X , denote by |x| the order of x in X . A subset B of X is a minimal generating set
if X is generated by B but not by any proper subset of B. Let n ≥ 1 be an integer, we
use D2n to denote the dihedral group generated by two elements, say a and b, such that
|a| = n, |b| = 2, b−1ab = a−1.

Lu and Ma got the following upper bounds for the rainbow 2-connectivity of Cayley
graphs.

Theorem 4.5. [121] Let Γ = Cay(X,A) be a connected Cayley graph with 1 6∈ A = A−1.
Suppose that B ⊆ A such that N = 〈A \ (B ∪B−1)〉 6= X satisfying |X/N | ≥ 3 and |N | ≥ 3.
Set C = A \ (B ∪ B−1) and Σ = Cay(N,C). If N is normal in G, then

rc2(Γ) ≤ rc2(Σ) + rc2(Cay(X̄, B̄)),
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where X̄ = X/N and B̄ = {bN |x ∈ A \N}.

Theorem 4.6. [121] Let X be a finite Abelian group and A a generating set of X such that
1 6∈ A = A−1. Set Γ = Cay(X,A). Then the following statements hold.
(i) rc2(Γ) ≤

∑

b∈B |b|, where B is an arbitrary minimal generating set of X contained in A.
(ii) Either X is cyclic and A consists of generators of X; or there are two proper divisors
m and n of |X| such that |X| = mn and rc2(Γ) ≤ m+ n.

In the same paper, Lu and Ma also investigated the rainbow 2-connection numbers of
cubic Cayley graphs on dihedral groups, Cayley graphs on D2pk or D2pq, where k ≥ 1 is an
integer, p and q are distinct primes.

For a non-abelian group G, the non-commuting graph ΓG of G has the vertex set G\Z(G)
and two distinct vertices x and y are adjacent if xy 6= yx, where Z(G) is the center of G. In
[146], the authors studied the rainbow k-connectivity of non-commuting graphs and obtained
the following results.

Theorem 4.7. [146] Let G be a finite non-abelian group. Then rc2(ΓG) = 2. In particular,
rc(ΓG) = 2.

Theorem 4.8. [146] For any positive integer k, there exist infinitely many non-abelian
groups G such that rck(ΓG) = 2.

4.2.5 For random graphs

He and Liang [58] investigated the rainbow k-connectivity in the setting of random graphs.
They determined a sharp threshold function for the property rck(G(n, p)) ≤ d for every fixed

integer d ≥ 2: Let d ≥ 2 be a fixed integer and k = k(n) ≤ O(logn), then p = (log n)1/d

n(d−1)/d is a
sharp threshold function for the property rck(G(n, p)) ≤ d.

Chen, Li and Lian [35] generalized this result to another model of random graphs
G(m,n, p):

Theorem 4.9. [35] Let d ≥ 2 be a fixed positive integer and k = k(n) ≤ O(logn).
If d is odd, then

p = (log(mn))1/d/(m(d−1)/(2d)n(d−1)/(2d))

is a sharp threshold function for the property rck(G(m,n, p)) ≤ d+1, where m and n satisfy
that pn ≥ pm ≥ (log n)4;
If d is even, then

p = (log n)1/d/(m1/2n(d−2)/(2d))

is a sharp threshold function for the property rck(G(m,n, p)) ≤ d+1, where m and n satisfy
that there exists a small constant ǫ with 0 < ǫ < 1 such that pn1−ǫ ≥ pm1−ǫ ≥ (logn)4.

The following corollary follows immediately:

Corollary 4.10. [35] Let d ≥ 2 be a fixed integer and k = k(n) ≤ O(logn). Then p =
(log n)1/d/n(d−1)/d is a sharp threshold function for the property rck(G(n, n, p)) ≤ d+ 1.
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Fujita, Liu and Magnant [35] proved the following results: (i) The probability p =
√

logn/n is a sharp threshold function for the property rck(G(n, p)) ≤ 2 for all k ≥ 1; (ii) The

probability M =
√

n3logn is a sharp threshold function for the property rck(G(n,M)) ≤ 2

for all k ≥ 1; (iii) The probability p =
√

logn/n is a sharp threshold function for the
property rck(G(n, n, p)) ≤ 3 for all k ≥ 1.

4.3 Rainbow vertex k-connectivity

Similar to the concept of rainbow k-connectivity, Liu et al. [114] proposed the concept of
rainbow vertex k-connectivity. A vertex-coloring of a graph G is a mapping from V (G) to
some finite set of colors. A vertex colored path is vertex-rainbow if its internal vertices have
distinct colors. A vertex-coloring of a connected graph G, not necessarily proper, is rainbow
vertex k-connected if any two vertices of G are connected by k disjoint vertex-rainbow paths.
The rainbow vertex k-connectivity of G, denoted by rvck(G), is the minimum integer t so that
there exists a rainbow vertex k-connected coloring of G, using t colors. For convenience, we
write rvc(G) for rvc1(G). In [123], Lu and Ma determined the precise values for the rainbow
vertex connectivities of all small cubic graphs of order 8 or less. Liu et al. [114] investigated
the rainbow vertex k-connectivity for some other special graph classes, such as the cycle Cn,
the wheel graph Wn and the complete multipartite graph Kn1,n2,··· ,nt. In the same paper,
Liu et al. also compared the two parameters rck(G) and rvck(G). They construct graphs G
where rck(G) is larger than rvck(G).

Theorem 4.11. [114] Given 1 ≤ t < s, there exists a graph G such that rck(G) ≥ s and
rvck(G) = t.

They also construct graphs G where rvck(G) is larger than rck(G).

Theorem 4.12. [114] Let s ≥ (k + 1)2. Then there exists a graph G such that rck(G) ≤ 9
and rvck(G) = s.

5 Rainbow index

The k-rainbow connection coloring is another generalization of the rainbow connection col-
oring. In [28], Chartrand et al. did some basic research on this topic. There is a rather
simple upper bound for rxk(G) in terms of the order of G, regardless the value of k: Let
G be a nontrivial connected graph of order n ≥ 3. For each integer k with 3 ≤ k ≤ n − 1,
rxk(G) ≤ n− 1 while rxn(G) = n− 1.

The Steiner distance d(S) of a subset S of vertices in G is the minimum size of a tree
in G that connects S. The k-Steiner diameter sdiamk(G) of G is the maximum Steiner
distance of S among all k-subsets S of G. Clearly, sdiam2(G) = diam(G).

Observation 5.1. [28] For every connected graph G of order n ≥ 3 and each integer k with
3 ≤ k ≤ n, k − 1 ≤ sdiamk(G) ≤ rxk(G) ≤ n− 1.

Observation 5.2. [28] Let G be a connected graph and H be a connected spanning subgraph
of G. Then rxk(G) ≤ rxk(H).
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Problem 5.3. Derive a sharp upper bound for rx3(G).

Problem 5.4. For k ≥ 3, characterize the graphs with rxk(G) = n− 1.

Problem 5.5. Consider the relationship between rxk(G) and rxk(L(G)).

5.1 Upper and lower bounds

Cai, Li and Zhao [15] studied the true behavior of rxk(G) as a function of the minimum
degree δ(G). The following two upper bounds were obtained via Szemerédi’s Regularity
Lemma and graph decomposition, respectively.

Theorem 5.6. [15] For every ǫ > 0 and every fixed positive integer k, there is a constant
C = C(ǫ, k) such that if G is a connected graph with n vertices and minimum degree at least
ǫn, then rxk(G) ≤ C.

Theorem 5.7. [15] Let G be a connected graph with n vertices and minimum degree δ. Then
rxk(G) < 10nk2t/(δ− 2t+1 + 2)− k− 2, where t is the integer such that 2t ≤ k < 2t+1. This
implies that rxk(G) < 10nk2/(δ − k + 2)− k − 2.

Similar to rainbow connections, the rainbow index has a close relationship with dominat-
ing sets. Let G be a graph and k a positive integer. A set D ⊆ V (G) is called a dominating
set if every vertex of V \D is adjacent to at least one vertex of D. Further, if the subgraph
G[D] of G induced by D is connected, we call D a connected dominating set of G. A subset
D ⊆ V (G) is a k-dominating set of G if |NG(v) ∩D| ≥ k for every v ∈ V \D. In addition,
if G[D] is connected, we call D a connected k-dominating set. A dominating set D of G
is called a k-way dominating set if dG(v) ≥ k for every vertex v ∈ V \ D. In addition, if
G[D] is connected, we call D a connected k-way dominating set. Note that a (connected)
k-dominating set is also a (connected) k-way dominating set, but the converse is not true.

Liu and Hu [118] considered the relation between 3-rainbow index and connected 2-
dominating sets:

Theorem 5.8. [118] Let G be a connected graph with minimal degree δ ≥ 3. If D is a
connected 2-dominating set of G, then rx3(G) ≤ rx3(G[D]) + 4 and the bound is tight.

Cai, Li and Zhao [16] studied the 3-rainbow index with the aid of connected three-way
dominating sets and connected 3-dominating sets.

Theorem 5.9. [16] If D is a connected three-way dominating set of a connected graph G,
then rx3(G) ≤ rx3(G[D]) + 6. Moreover, the bound is tight.

Theorem 5.10. [16] If D is a connected 3-dominating set of a connected graph G with
δ(G) ≥ 3, then rx3(G) ≤ rx3(G[D]) + 3. Moreover, the bound is tight.

By using the results on spanning trees with many leaves, we obtain some upper bounds
for 3-rainbow index of a graph in terms of its order and minimum degree:

Corollary 5.11. [16] For every connected graph G on n vertices with minimum degree at
least δ (δ = 3, 4, 5), rx3(G) ≤ 3n

δ+1
+ 4. Moreover, there exist infinitely many graphs G∗ such

that rx3(G
∗) ≥ 3n

δ+1
− δ+7

δ+1
, thus this bound is tight up to an additive constant.
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Corollary 5.12. [16] For every connected graph G on n vertices with minimum degree

δ (δ ≥ 3), rx3(G) ≤ n ln(δ+1)
δ+1

(1 + oδ(1)) + 5.

They posed the following conjecture, which had already been proved for δ = 3, 4, 5 in
Corollary 5.11.

Conjecture 5.13. [16] For every connected graph G on n vertices with minimum degree δ
(δ ≥ 3), rx3(G) ≤ 3n

δ+1
+ C, where C is a positive constant.

Note that if the conjecture is true, it gives an upper bound tight up to an additive
constant. In [15], Q. Cai, X. Li and Y. Zhao generalized the above results to rxk(G) for a
general positive integer k.

Theorem 5.14. [15]
(i) Let D be a connected k-dominating set of a connected graph G. Then rxk(G) ≤ rxk(G[D])
+k, and thus rxk(G) ≤ γc

k(G) + k − 1.
(ii) Let D be a connected (k−1)-dominating set of a connected graph G with minimum degree
at least k. Then rxk(G) ≤ rxk(G[D]) + k + 1, and thus rxk(G) ≤ γc

k−1(G) + k.

Theorem 5.15. [15] Let k and δ be positive integers satisfying k <
√
lnδ and let G be a

graph on n vertices with minimum degree at least δ. Then rxk(G) ≤ n lnδ
δ
(1 + oδ(1)).

Liu and Hu [118] also derived a sharp upper bound for 3-rainbow index of general graphs
by block decomposition. Let A be the set of blocks of G, each of whose elements is a K2;
Let B be the set of blocks of G, each of whose elements is a K3; Let C be the set of blocks
of G, each of whose elements X is a cycle or a block of order 4 ≤ |V (X)| ≤ 6; Let D be the
set of blocks of G, each of whose elements X is not a cycle and |V (X)| ≥ 7.

Theorem 5.16. [118] Let G be a connected graph of order n (n ≥ 3). If G has a block
decomposition B1, B2, · · · , Bq, then rx3(G) ≤ n−|C|−2|D|−1, and the upper bound is tight.

5.2 Forbidden subgraphs

Li et al. [91] considered the following problem.

Problem 5.17. [91] For which families F of connected graphs, there is a constant CF such
that rxk(G) ≤ sdiamk(G) + CF if a connected graph G is F-free?

In general, it is very difficult to give answers to the above question, even if one considers
the case k = 4. So in [91], Li et al. paid their attention only on the case k = 3.

They first characterized all possible connected graphsX such that every connected X-free
graph G satisfies rx3(G) ≤ sdiam3(G) + CX , where CX is a constant.

Theorem 5.18. [91] Let X be a connected graph. Then there is a constant CX such that
every connected X-free graph G satisfies rx3(G) ≤ sdiam3(G) + CX , if and only if X = P3.

The following statement characterizes all possible forbidden pairs X, Y for which there
is a constant CXY such that rx3(G) ≤ sdiam3(G) + CXY if G is (X, Y )-free.
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Theorem 5.19. [91] Let X, Y 6= P3 be a pair of connected graphs. Then there is a constant
CXY such that every connected (X, Y )-free graph G satisfies rx3(G) ≤ sdiam3(G) + CXY , if
and only if (up to symmetry) X = K1,r, r ≥ 3 and Y = P4.

Theorem 5.20. [91] Let G be a connected (P4, K1,r)-free graph for some r ≥ 3. Then
rx3(G) ≤ sdiam3(G) + r + 3.

They continued to consider more and obtained an analogous result which character-
izes all forbidden triples F for which there is a constant CF such that G being F -free
implies rx3(G) ≤ sdiam3(G) + CF . Let F1 = {{P3}}, F2 = {{K1,r, P4}|r ≥ 3}, F3 =
{{K1,r, Y, Pℓ}|r ≥ 3, Y⊂INDK

h
s , s ≥ 3, ℓ > 4}.

Theorem 5.21. [91] Let F be a family of connected graphs with |F| = 3 such that F 6⊇ F ′

for any F ′ ∈ F1 ∪ F2. Then there is a constant CF such that every connected F-free graph
G satisfies rx3(G) ≤ sdiam3(G) + CF , if and only if F ∈ F3.

Theorem 5.22. [91] Let r ≥ 3, s ≥ 3, and ℓ > 4 be fixed integers. Then there is a
constant C(r, s, ℓ) such that every connected (K1,r, K

h
s , Pℓ)-free graph G satisfies rx3(G) ≤

sdiam3(G) + C(r, s, ℓ).

In the same paper, Li et al. also considered forbidden k-tuples for any positive integer k.

Theorem 5.23. [91] Let F be a finite family of connected graphs. Then there is a constant
CF such that every connected F-free graph G satisfies rx3(G) ≤ sdiam3(G)+CF , if and only
if F contains a subfamily F ′ ∈ F1 ∪ F2 ∪ F3.

5.3 For some graph classes

In [28], the authors determined the precise values for the k-rainbow index of trees and
unicyclic graphs and complete graphs. Chen, Li, Yang and Zhao [34] determined the 3-
rainbow index of Kn,n:

Theorem 5.24. [34] For integer n with n ≥ 3, rx3(Kn,n) = 3.

Liu and Hu [118] derived an upper bound for 3-rainbow index of Km,n by using the
connected 2-dominating set:

Theorem 5.25. [118] For any complete bipartite graphs Km,n with 3 ≤ m ≤ n, rx3(Km,n) ≤
min{6, m+ n− 3}, and the bound is tight.

Liu and Hu [119] obtained the exact value of rx3(K2,n) for different n (n ≥ 1).

Theorem 5.26. [119] For any integer n ≥ 1,

rx3(K2,n) =























2, if n = 1, 2;
3, if n = 3, 4;
4, if 5 ≤ n ≤ 8;
5, if 9 ≤ n ≤ 20;
k, if (k − 1)(k − 2) + 1 ≤ n ≤ k(k − 1), (k ≥ 6);
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Some interesting unsolved problems are as follows:

Problem 5.27. Let n1 ≤ n2 ≤ · · · ≤ nr be positive integers. If nr >> O(nα
1 ) for all positive

real number α (e.g. nr = O(2n1)), determine rxk(Kn1,n2,··· ,nr) for sufficiently large n1.

Problem 5.28. Let k ≥ 4 and k ≥ r ≥ 3. Determine when rxk(Kr×n) is k (resp. k+1) for
sufficiently large n.

Another well-known class of graphs are the wheels. For n ≥ 3, the wheel Wn is a graph
constructed by joining a vertex v to every vertex of a cycle Cn : v1, v2, · · · , vn, vn+1 = v1.

Chen, Li, Yang and Zhao [34] determined the 3-rainbow index of Wn.

Theorem 5.29. [34] For n ≥ 3, the 3-rainbow index of the wheel Wn is

rx3(Wn) =















2, if n = 3;
3, if 4 ≤ n ≤ 6;
4, if 7 ≤ n ≤ 16;
5, if n ≥ 17.

Cai, Li, Zhao [16] derived some tight upper bounds for the 3-rainbow index of threshold
graphs, chain graphs and interval graphs.

A graph G is called a threshold graph, if there exists a weight function w : V (G)→ R and
a real constant t such that two vertices u, v ∈ V (G) are adjacent if and only if w(u)+w(v) ≥ t.

Theorem 5.30. [16] If G is a connected threshold graph with δ(G) ≥ 3, then rx3(G) ≤ 5.

A bipartite graph G = G(A,B) is called a chain graph, if the vertices of A can be ordered
as A = (a1, a2, . . . , ak) such that N(a1) ⊆ N(a2) ⊆ . . . ⊆ N(ak).

Theorem 5.31. [16] If G is a connected chain graph with δ(G) ≥ 3, then rx3(G) ≤ 6.

An intersection graph of a family F of sets is a graph whose vertices can be mapped
to the sets in F such that there is an edge between two vertices in the graph if and only
if the corresponding two sets in F have a non-empty intersection. An interval graph is an
intersection graph of intervals on the real line.

Theorem 5.32. [16] If G is a connected interval graph with δ(G) ≥ 3, then rx3(G) ≤
diam(G) + 4, thus diam(G) ≤ rx3(G) ≤ diam(G) + 4.

Chen, Li, Yang, Zhao [34] obtained some upper bounds for 2-connected and 2-edge-
connected graphs.

Theorem 5.33. [34] Let G be a 2-connected graph of order n (n ≥ 4). Then rx3(G) ≤ n−2,
with equality if and only if G = Cn or G is a spanning subgraph of a 3-sun (see Figure 2) or
G is a spanning subgraph of a K5 − e or G is a spanning subgraph of K4.

Theorem 5.34. [34] Let G be a 2-edge-connected graph of order n ≥ 4. Then rx3(G) ≤ n−2,
with equality if and only if G is a graph attaining the upper bound in Theorem 5.33 or a graph
in Figure 3.
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Figure 2: A graph in Theorem 5.33.
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Figure 3: Graphs in Theorem 5.34.

5.4 Characterization problem for k = 3 and 4

Chen, Li, Yang and Zhao [34] depicted the extremal graphs with rx3(G)= 2, m,m−1, m−2.

Theorem 5.35. [34] Let G be a connected graph of order n. Then rx3(G) = 2 if and only
if G = K5 or G is a 2-connected graph of order 4 or G is of order 3.

Theorem 5.36. [34] Let G be a connected graph with m edges. Then
(i) rx3(G) = m if and only if G is a tree.
(ii) rx3(G) = m− 1 if and only if G is a unicyclic graph with girth 3.
(iii) rx3(G) = m− 2 if and only if G is a unicyclic graph with girth at least 4.

X. Li, I. Schiermeyer, K. Yang, Y. Zhao [102] depicted the extremal graphs with rx3(G)=
n− 1, n− 2.

Theorem 5.37. [102] Let G be a connected graph of order n. Then rx3(G) = n− 1 if and
only if G is a tree or G is a unicyclic graph with girth 3.

Theorem 5.38. [102] Let G be a connected graph of order n (n ≥ 6). Then rx3(G) = n− 2
if and only if G is a unicyclic graph with girth at least 4 or G ∈ G ∪H ∪ J or G = K5 − e.

Let Gi be the graphs shown in Figure 4, define by G∗i the set of graphs whose basic graph
is Gi, where 1 ≤ i ≤ 6. Set
G1 = {G ∈ G∗1 |U(v3) ≤ 1},
G2 = {G ∈ G∗2 |U(v3) + U(vi) ≤ 1, i = 4, 6},
G3 = {G ∈ G∗3 |U(vi) + U(vj) ≤ 2, vivj ∈ E(G3)},
G4 = {G ∈ G∗4 |U(vi) ≤ 2, i = 1, 3},
G5 = {G ∈ G∗5 |U(v2) + U(v3) ≤ 2, U(v4) + U(v5) ≤ 2},
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G6 = {G ∈ G∗6 |U(v2) = U(v6) = 0, U(v4) ≤ 1, U(v4) + U(vi) ≤ 2, i = 3, 5}
Set G = {G1,G2, · · · ,G6}.
Define by H∗

i the set of graphs whose basic graph is Hi, where Hi is shown in Figure 5
and 1 ≤ i ≤ 8.
H1 = {G ∈ H∗

1|U(G) = 0},
H2 = {G ∈ H∗

2|U(vi) ≤ 1, U(vj) = 0, i = 5, 6, j = 1, 3, 4},
H3 = {G ∈ H∗

3|U(v2) ≤ 1, U(v5) + U(v6) ≤ 1, U(vi) = 0, i = 1, 3, 4},
H4 = {G ∈ H∗

4|U(vi) ≤ 1, U(vj) ≤ 2, U(vi) + U(vj) ≤ 1, U(vj) + U(vk) ≤ 3, i =
1, 5, j, k = 2, 3, 4},
H5 = {G ∈ H∗

5|U(vi) ≤ 1, U(vj) = 0, i = 1, 3, 5, j = 2, 4, 6},
H6 = {G ∈ H∗

6|U(v3) = 0, U(vi) ≤ 1, U(v1) + U(v5) ≤ 1, i = 1, 2, 4, 5},
H7 = {G ∈ H∗

2|U(v2) + U(v4) ≤ 1, U(v3) + U(v5) ≤ 1, U(v5) + U(v1) ≤ 1, U(vj) +
U(vj+1) ≤ 1, j = 1, 2, 4},
H8 = {G ∈ H∗

8|U(vi) ≤ 2, U(vi) + U(vj) + U(vk) ≤ 3, i, j, k = 1, 2, 3, 4}.
Set H = {H1,H2, · · · ,H8}.
The third graph class is defined as follows. Let J1 be a class of graphs such that every

graph is obtained from a graph in H5 by adding an edge v4v6. Let J2 be a class of graphs
such that every graph is obtained from a graph in H7 where U(v2) = 0 and U(v5) = 0 by
adding an edge v2v5. Set J = {J1,J2,W4}.

Li, Schiermeyer, Yang, Zhao [103] depicted the extremal graphs with rx4(G) = 3, n− 1.

Theorem 5.39. [103] rx4(G) = 3 if and only if G is one of the following graphs:
(i) G is a connected graph of order 4;
(ii) G is of order 5 and G is a subgraph of P5 or K2 ∪K3;
(iii) G is of order 6 and G is a subgraph of C6 or 2K3;
(iv) G is of order 7 and G is a subgraph of C6 or 2K2 ∪K3 or P5 ∪K2 or 2K3;
(v) G is of order 8 and G is a subgraph of K2 ∪ 2K3 or P6 ∪K2;
(vi) G is of order 9 and G is a subgraph of 3K3 or P3 ∪ 3K2.

A graph G is a cactus if every edge is in at most one cycle of G. Let G1 be the set of
graphs by identifying each vertex of K4 with an end-vertex of an arbitrary path. Let G2 be
the set of graphs by identifying each vertex of K4 − e with the root of an arbitrary tree.

Theorem 5.40. [103] Let G be a graph of order n and size m. Then rx4(G) = n− 1 if and
only if G is a tree, or a unicyclic graph, or a cactus with m = n+ 1, or G ∈ G1 ∪ G2.

5.5 For random graphs

Cai, Li, Song [13] established a sharp threshold function for rxk(Gn,p) ≤ k and rxk(Gn,M) ≤
k, respectively.

Theorem 5.41. [13] For every positive integer k ≥ 3, p(n) =
k
√

logn/n is a sharp threshold
function for the property rxk(Gn,p) ≤ k.

Theorem 5.42. [13] For every positive integer k ≥ 3, M(n) =
k
√

n2k−1logn is a sharp
threshold function for the property rxk(Gn,M) ≤ k.
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However, we have no idea about a sharp threshold function for the property rxk(Gn,p) ≤ d
(or rxk(Gn,M) ≤ d) for every integer d ≥ k − 1. An answer to this question would be
interesting.

Problem 5.43. Find a sharp threshold function for the property rxk(Gn,p) ≤ d (or similarly
rxk(Gn,M) ≤ d) for every integer d ≥ k − 1.

5.6 For product graphs

In [117], Liu and Hu investigated the relationship between the 3-rainbow index of the original
graphs and that of the cartesian products.

Theorem 5.44. [117] Let G∗ = G1�G2� · · ·�Gt (t ≥ 2), where each Gi (1 ≤ i ≤ t) is a
connected graph with order at least three, then we have

rx3(G
∗) ≤

t
∑

i=1

rx3(Gi).

Moreover, if rx3(Gi) = sdiam3(Gi) for each Gi, then the equality holds.

Recall that the graph G�H is the spanning subgraph of the graph G⊠H for any graphs
G and H . The following result clearly holds.

Corollary 5.45. [117] Let G∗ = G1 ⊠G2 ⊠ · · ·⊠Gt (t ≥ 2), where each Gi (1 ≤ i ≤ t) is a
connected graph with order at least three, then we have

rx3(G∗) ≤
t

∑

i=1

rx3(Gi).

In [117], Liu and Hu also considered the relationship between 3-rainbow index of the
original graphs and their lexicographic product.

Theorem 5.46. [117] Let G and H be two connected graphs with |V (G)| ≥ 2 and |V (H)| ≥
2, and at least one of G and H be not complete. Then

rx3(G ◦H) ≤ rx3(G) + rc(H).

In particular, if diam(G) = rx3(G) and H is complete, then the equality holds.

5.7 For minimum size of graphs with given rainbow index

Let t(n, k, ℓ) denote the minimum size of a connected graph G of order n with rxk(G) ≤ ℓ,
where 2 ≤ ℓ ≤ n − 1 and 2 ≤ k ≤ n. In [120], the author obtained some exact values and
some upper bounds for t(n, k, ℓ).
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Proposition 5.47. [120] Let n ≥ 3 be a positive integer. Then
(i)

t(n, 3, 2) =







2, if n = 3;
4, if n = 4;
(

5
2

)

, if n = 5.

Furthermore, when n ≥ 6, there does not exist a connected graph G such that rx3(G) ≤ 2.
(ii)

t(n, 3, 3) =







2, if n = 3;
3, if n = 4;
5, if n = 5.

Furthermore, when n ≥ 6,

t(n, 3, 3) ≤
{

n2

4
, if n is even;

(n+3)(n−1)
4

, if n is odd.

Theorem 5.48. [120] Let n ≥ 3 be an integer. Then t(n, 3, 4) ≤
(

n
2

)

− n + 1.

Proposition 5.49. [120] Let n ≥ 3 be an integer. Then t(n, 3, 5) ≤ 2n− 2.

Theorem 5.50. [120] Let n ≥ 3 be an integer. Then t(n, 3, 6) ≤ 2n− 3.

Theorem 5.51. [120] Let n and ℓ be positive integers satisfying 7 ≤ ℓ ≤ n−1
2
. Then

t(n, 3, ℓ) ≤ n+t+

(

t

2

)

(n−2−⌊n− 2

ℓ− 3
⌋(ℓ−3))+

(

t+ ⌊n−2
ℓ−3
⌋ − ⌈n−2

ℓ−3
⌉

2

)

(ℓ+1−n+⌊n− 2

ℓ− 3
⌋(ℓ−3)),

where t = ⌈n−2
ℓ−3
⌉.

Theorem 5.52. [120] For n
2
≤ ℓ ≤ n− 3, t(n, 3, ℓ) ≤ 2n− ℓ− 1.

Proposition 5.53. [120] Let n ≥ 4 be an integer. Then
(1) t(n, 3, n− 2) = n;
(2) t(n, 3, n− 1) = n− 1.

Theorem 5.54. [120] t(n, n− 1, n− 2) ≤ 2n− 4.

5.8 For vertex-rainbow index

As a natural counterpart of the k-rainbow index, Mao introduced the concept of k-vertex-
rainbow index rvxk(G) in [126]. For S ⊆ V (G) and |S| ≥ 2, an S-Steiner tree T is said to
be a vertex-rainbow S-tree or a vertex-rainbow tree connecting S if the vertices of V (T ) \ S
have distinct colors. For a fixed integer k with 2 ≤ k ≤ n, a vertex-coloring c of G is called
a k-vertex-rainbow connection coloring if for every k-subset S of V (G) there exists a vertex-
rainbow S-tree. In this case, G is called vertex-rainbow k-tree-connected. The minimum
number of colors that are needed in a k-vertex-rainbow connection coloring of G is called
the k-vertex-rainbow index of G, denoted by rvxk(G). When k = 2, rvx2(G) is nothing
new but the rainbow vertex-connection number rvc(G) of G. It follows, for every nontrivial
connected graph G of order n, that rvc(G) = rvx2(G) ≤ rvx3(G) ≤ · · · ≤ rvxn(G). Some
basic result were obtained in [126].
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Proposition 5.55. [126] Let G be a nontrivial connected graph of order n. Then rvxk(G) =
0 if and only if sdiamk(G) = k − 1.

Proposition 5.56. [126] Let G be a nontrivial connected graph of order n (n ≥ 5), and let
k be an integer with 2 ≤ k ≤ n. Then 0 ≤ rvxk(G) ≤ n− 2.

Proposition 5.57. [126] Let Ks,t, Kn1,n2,··· ,nr , Wn and Pn denote the complete bipartite
graph, complete multipartite graph, wheel and path, respectively. Then
(i) for integers s and t with s ≥ 2, t ≥ 1, rvxk(Ks,t) = 1 for 2 ≤ k ≤ max{s, t};
(ii) for r ≥ 2, rvxk(Kn1,n2,··· ,nr) = 1 for 2 ≤ k ≤ max{ni|1 ≤ i ≤ r};
(iii) for n ≥ 5, rvxk(Wn) = 1 for 2 ≤ k ≤ n− 3;
(iv) for n ≥ 4, rvxk(Pn) = n− 2 for 2 ≤ k ≤ n− 2, rvxn−1(Pn) = 1, rvxn(Pn) = 0.

In the same paper, Mao also investigated the Nordhaus-Gaddum-type bound of the k-
vertex-rainbow index for the case k = 3.

Proposition 5.58. [126] Let G be a graph of order n such that G and G are connected
graphs. If n = 4, then rvx3(G) + rvx3(G) = 4. If n ≥ 5, then we have

2 ≤ rvx3(G) + rvx3(G) ≤ n− 1.

Moreover, the bounds are sharp.

Let t(n, k, ℓ) denote the minimal size of a connected graph G of order n with rvxk(G) ≤ ℓ,
where 2 ≤ ℓ ≤ n− 2 and 2 ≤ k ≤ n. Mao obtained the following result.

Proposition 5.59. [126] Let k, n, ℓ be three integers with 2 ≤ ℓ ≤ n− 3 and 2 ≤ k ≤ n. If
n and ℓ have different parity, then

n− 1 ≤ t(n, k, ℓ) ≤ n− 1 +
n− ℓ− 1

2
.

If n and ℓ have the same parity, then

n− 1 ≤ t(n, k, ℓ) ≤ n− 1 +
n− ℓ

2
.

In [30, 33], Chen et al. studied the complexity of determining the 2-vertex rainbow index
(that is, rainbow vertex-connection number) of a graph. In [128], Mao and Shi considered
the complexity of determining the 3-vertex-rainbow index rvx3(G) of a graph by showing
the following result.

Theorem 5.60. [128] It is NP-hard to compute the parameter rvx3(G). Moreover, it is
NP-complete to decide whether rvx3(G) = 3.

They also proved the following result.

Theorem 5.61. [128] The following problem is NP-complete: given a vertex-colored graph
G, check whether the given coloring makes G vertex-rainbow 3-tree-connected.
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5.9 (k, ℓ)-rainbow index

For a graph G = (V,E) and a set S ⊆ V of at least two vertices, an S-Steiner tree or a
Steiner tree connecting S (or simply, an S-tree) is a such subgraph T of G that is a tree with
S ⊆ V (T ). Two S-trees T1 and T2 are said to be internally disjoint if E(T1)∩E(T2) = ∅ and
V (T1)∩V (T2) = S. Two S-trees T1 and T2 are said to be edge-disjoint if E(T1)∩E(T2) = ∅.
The generalized local connectivity κG(S) is the maximum number of internally disjoint S-
trees in G. For an integer k with 2 ≤ k ≤ n, the generalized k-connectivity is defined as
κk(G) = min{κG(S)| S ⊆ V (G), |S| = k} [54]. Similarly, let λG(S) denote the maximum
number of edge-disjoint S-trees in G. For an integer k with 2 ≤ k ≤ n, the generalized k-
edge-connectivity is defined as λk(G) = min{λG(S)| S ⊆ V (G), |S| = k} [101]. The readers
can see [99] for a survey and [98] for a new monograph on the topic of generalized connectivity
and its applications.

There is a generalization of the k-rainbow index, say (k, ℓ)-rainbow index rxk,ℓ, of G
which was mentioned in [28]. Let G be a connected graph and let k ≥ 2 and ℓ be integers
with 1 ≤ ℓ ≤ κk(G). The (k, ℓ)-rainbow index rxk,ℓ(G) of G is the smallest number of
colors needed in an edge-coloring of G such that for every set S of k vertices of G, there
exist ℓ internally disjoint rainbow S-trees [28]. Hence rxk,1(G) = rxk(G). Chartrand et al.
obtained the following precise value for the (3, ℓ)-rainbow index of a complete graph for the
case ℓ = 1, 2.

Theorem 5.62. [28] For every integer n ≥ 6, rx3,ℓ(Kn) = 3 for ℓ = 1, 2.

From Theorem 5.62, Chartrand et al. put forward the following conjecture.

Conjecture 5.63. [28] For every positive integer ℓ, there exists a positive integer N such
that rx3,ℓ(Kn) = 3 for every integer n ≥ N .

There is a stronger conjecture.

Conjecture 5.64. [28] For every pair k, ℓ of positive integers with k ≥ 3, there exists a
positive integer N such that rxk,ℓ(Kn) = k for every integer n ≥ N .

In [12], Cai, Li and Song used the probabilistic method and Ramsey Theorem to establish
the above two conjectures. They first proved the following theorem for Conjecture 5.64.

Theorem 5.65. [12] For every pair of positive integers k, ℓ with k ≥ 3,
(i) if ℓ > ⌊k

2
⌋, then there is a positive integer N = 4⌈( k+ℓ−1

ln(1−k!/kk)
)2⌉ for every integer n ≥ N .

(ii) if ℓ ≤ ⌊k
2
⌋, there exists a positive integer N = max{4⌈( k+ℓ−1

ln(1−k!/kk)
)2⌉, Rk−1(k)} such that

rxk,ℓ(Kn) = k for every integer n ≥ N .

Note that here Rk−1(k) is the minimum number n such that for any (k − 1)-coloring of
the edges of Kn, there exists a monochromatic clique Kk.

For Conjecture 5.63, they proved the following result.

Theorem 5.66. [12] Let ǫ be a constant with 0 < ǫ < 1, and let ℓ be an integer with

ℓ ≥ 2
9
(θ−3)(1− ǫ)+1 where θ = θ(ǫ) is the largest solution of x3e−

1
9
ǫ2(x−3) = 1. Then, there

exists an integer N = max{6, ⌈9(ℓ−1)
2(1−ǫ)

+ 3⌉} such that rx3,ℓ(Kn) = 3 for every integer n ≥ N .
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Moreover, they showed that 9
2
ℓ + o(ℓ) is asymptotically the best possible for the lower

bound on N [14].
Cai, Li and Song [14] determined the (k, ℓ)-rainbow index of Kn,n for sufficiently large n:

Theorem 5.67. [14] For every pair of positive integers k, ℓ with k ≥ 3, there exists a positive
integer N = N(k, ℓ), such that

rxk,ℓ(Kn,n) =







3 if k = 3, ℓ = 1, 2
4 if k = 3, ℓ ≥ 3
k + 1 if k ≥ 4

for every integer n ≥ N .

Moreover, this result can be extended to more general complete bipartite graphs Km,n,
where m = O(nα) (i.e., m ≤ Cnα for some positive constant C), α ∈ R and α ≥ 1.

Let Kr×n denote the complete multipartite graph with r ≥ 3 vertex classes of the same
size n. Cai, Li and Song [14] obtained the following result about rxk,ℓ(Kr×n).

Theorem 5.68. [14] For every triple of positive integers k, ℓ, r with k ≥ 3 and r ≥ 3, there
exists a positive integer N = N(k, ℓ, r) such that

rxk,ℓ(Kr×n) =



















k if k < r

k or k + 1 if k ≥ r, ℓ ≤ (r2)⌈
k
r
⌉
2

⌊k
r
⌋

k + 1 if k ≥ r, ℓ >
(r2)⌈

k
r
⌉
2

⌊k
r
⌋

for every integer n ≥ N .

With similar arguments, these results can be extended to more general complete multi-
partite graphs Kn1,n2,··· ,nr with n1 ≤ n2 ≤ · · · ≤ nr and nr = O(nα

1 ), where α ∈ R and α ≥ 1
[14].

In [13], Cai, Li and Song studied the (k, ℓ)-rainbow index of random graphs and estab-
lished a sharp threshold function for the property rxk,ℓ(Gn,p) ≤ k and rxk,ℓ(Gn,M) ≤ k,
respectively.

Theorem 5.69. [13] For every pair of positive integers k, ℓ with k ≥ 3, k

√

loga n
n

is a sharp

threshold function for the property rxk,ℓ(Gn,p) ≤ k, where a = kk

kk−k!
.

Theorem 5.70. [13] For every pair of positive integers k, ℓ with k ≥ 3, k
√

n2k−1loga n is a

sharp threshold function for the property rxk,ℓ(Gn,M) ≤ k, where a = kk

kk−k!
.

Similarly, we can define the concept of (k, ℓ)-rainbow edge-index. Let k ≥ 2 and ℓ be
integers with 1 ≤ ℓ ≤ λk(G), the (k, ℓ)-rainbow edge-index rx′k,ℓ(G) of G is the smallest
number of colors needed in an edge-coloring of G such that for every set S of k vertices of
G, there exist ℓ edge-disjoint rainbow S-trees. By definition, rx′k,1(G) = rxk(G), it means
that the concept of (k, ℓ)-rainbow edge-index is a generalization of rxk(G).

Sun [139] obtained a sharp lower bound for the generalized 3-edge-connectivity of Carte-
sian product graphs.
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Theorem 5.71. [141] If G and H are connected graphs, then

λ3(G�H) ≥ λ3(G) + λ3(H).

Moreover, the bound is sharp.

The following result give a sharp upper bound for the (3, ℓ)-rainbow index of any two
connected graphs with orders at least three.

Theorem 5.72. [142] Let G and H be connected graphs with at least three vertices. For
1 ≤ ℓ ≤ ℓ0 = min{λ3(G), λ3(H)}, we have

rx′3,ℓ(G�H) ≤ rx′3,ℓ(G) + rx′3,ℓ(H).

Moreover, this bound is sharp.

Note that by Theorem 5.71, we know that λ3(G�H) ≥ λ3(G) + λ3(H) > ℓ0, so the
assumption that 1 ≤ ℓ ≤ ℓ0 = min{λ3(G), λ3(H)} in Theorem 5.72 is reasonable.

6 Rainbow connection coloring of total-version

Uchizawa et al. [145] obtained some hardness and algorithmic results. For a given total-
coloring c of a graph G, the Total Rainbow Connectivity problem is to determine whether
G is rainbow total-connected. A graph G is a cactus if every edge is part of at most one
cycle in G. They gave the following theorem from the viewpoints of diameter and graph
classes, respectively.

Theorem 6.1. [145]
(i) Total Rainbow Connectivity is in P for graphs of diameter 1, while is strongly NP-
complete for graphs of diameter 2.
(ii) Total Rainbow Connectivity is strongly NP-complete even for outerplanar graphs.
(iii) Total Rainbow Connectivity is solvable in polynomial time for cacti.

They also considered the FPT algorithms for total rainbow connection.

Theorem 6.2. [145] For a total-coloring of a graph G using k colors, one can determine
whether the total-colored graph G is total rainbow connected in time O(k2kmn) using O(k2kn)
space, where n and m are the numbers of vertices and edges in G, respectively.

Chen, Huo and Ma [29] gave the following two results.

Theorem 6.3. [29] The following problem is NP-complete: Given a total-colored graph G,
check whether the given coloring makes G total rainbow connected.

Theorem 6.4. [29] Given a graph G, deciding whether trc(G) = 3 is NP-complete. Thus,
computing trc(G) is NP-hard.

In [136], Sun did some basic research for total rainbow connection and will derive the
precise values of total rainbow connection numbers for some special graph classes, such as
cycles, wheel graphs.
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Proposition 6.5. [136] For a connected graph G, we have
(i) trc(G) = 1 if and only if G is a complete graph.
(ii) trc(G) 6= 2 for any noncomplete graph G.
(iii) trc(G) = m+ n2 if and only if G is a tree.

Thus, if G is not a tree, then trc(G) ≤ m(G) + n′(G) − 1. In [140], we will show that
trc(G) 6= m(G) + n′(G) − 1, m(G) + n′(G) − 2 and characterize the graphs with trc(G) =
m(G) + n′(G) − 3 by showing that trc(G) = m(G) + n′(G) − 3 if and only if G belongs to
five graph classes.

(a)

(b) (c)

u1

u1 u1

u2

u2
u2

u3

u3 u3

Figure 6: The graph class G2.

Let G be a connected unicyclic graph with girth ℓ and C be the cycle of G such that
V (C) = {ui|1 ≤ i ≤ ℓ} and E(C) = {uiui+1|1 ≤ i ≤ ℓ} where uℓ+1 = u1. Let TG = {Ti : 1 ≤
i ≤ ℓ}, where Ti denotes the component containing ui in the subgraph G \ E(C). Clearly,
each Ti is a tree rooted at ui for 1 ≤ i ≤ ℓ. If v 6= ui is a vertex of degree one in V (Ti),
then we call it a pendent vertex or a leaf of V (Ti) and the edge incident with it a pendent
edge of V (Ti). We say that Ti and Tj are adjacent (nonadjacent) if ui and uj are adjacent
(nonadjacent) in the cycle C.

Let G1 = {G : G is a unicyclic graph, ℓ = 3, all elements of TG are nontrivial}, G2 be
the class of graphs as shown in Figure 6, and G3 be the class of graphs as shown in Figure 7.
Note that in every graph of G2 and G3, each dashed line represents a path, and both T1 and T2

are nontrivial. Let G4 = {G : G is a unicyclic graph, ℓ = 4, TG contains two nonadjacent
trivial elements and the other two elements are nontrivial paths} and G5 = {G : G is a
unicyclic graph, ℓ = 4, all elements of TG are nontrivial paths}.

Theorem 6.6. [140] For a connected graph G, we have
(i) trc(G) 6= n′(G) +m(G)− 1, n′(G) +m(G)− 2;
(ii) trc(G) = n′(G) +m(G)− 3 if and only if G ∈ ⋃

1≤i≤5 Gi.

Theorem 6.7. [140] For a connected graph G, if G is not a tree, then trc(G) ≤ n′(G) +
m(G)− 3; moreover, the equality holds if and only if G ∈ ⋃

1≤i≤5 Gi.

It is easy to show that trc(G) ≤ 2n − 3, so it is interesting to study graphs with large
total rainbow connection numbers, that is, graphs whose total rainbow connection numbers
are close to 2n− 3. Sun, Jin and Tu [144] got the following result.
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(d)

(e) (f)

u1

u1 u1

u2

u2 u2

u3

u3 u3

Figure 7: The graph class G3.

Theorem 6.8. [144] For a connected graph G with order n, we have trc(G) ≤ 2n − 3.
Moreover, trc(G) = 2n− 3 if and only if G is a path; trc(G) = 2n− 4 if and only if G is a
tree with exactly three vertices of degree one.

A Nordhaus-Gaddum-type result is an upper or lower bound on the product or sum
of the values of a parameter for a graph and its complement. Nordhaus and Gaddum
[130] first established this type of result for the chromatic number of a graph and many
analogous results of other graph parameters are obtained since then, such as [56, 57]. Sun
[140] investigated the Nordhaus-Gaddum-type lower bounds for the total rainbow connection
number of a graph.

Theorem 6.9. [140] For a connected graph G of order n ≥ 8 with a connected complement,
we have trc(G) + trc(G) ≥ 6; moreover, the bound is sharp.

Theorem 6.10. [140] For a connected graph G of order n ≥ 8 with a connected complement,
we have trc(G)trc(G) ≥ 9; moreover, the bound is sharp.

In [125], Ma obtained the same lower bound for trc(G) + trc(G), and they also got an
upper bound for trc(G) + trc(G).

Theorem 6.11. [125] If G and G are both connected graphs with n vertices, then 6 ≤
trc(G) + trc(G) ≤ 4n − 6, and the lower bound is tight for n ≥ 7 and n = 5. Moreover, if
n = 4, then trc(G) + trc(G) = 10; if n = 6, trc(G) + trc(G) ≥ 7 and the lower bound is
tight.

However, Ma could not show that the upper bound is sharp, and proposed the following
conjecture.

Conjecture 6.12. [125] Let G and G be complementary connected graphs with n vertices.
Does there exist two constants C1 and C2 such that trc(G) + trc(G) ≤ C1n+ C2, where this
upper bound is tight.

This was solved recently by Li, Li, Magnant and Zhang in [88].

Theorem 6.13. [88] Let G and G be complementary connected graphs with n vertices. Then
trc(G) + trc(G) ≤ 2n for n ≥ 6, and trc(G) + trc(G) ≤ 2n + 1 for n = 5. Moreover, these
upper bounds are tight.
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Jiang, Li and Zhang [70] obtained two upper bounds for trc(G) in terms of minimum
degrees.

Theorem 6.14. [70] For a connected graph G of order n with minimum degree δ, trc(G) ≤
7n/4 − 3 for δ = 3, trc(G) ≤ 8n/5− 13/5 for δ = 4 and trc(G) ≤ 3n/2 − 3 for δ = 5. For
sufficiently large δ, trc(G) ≤ (1 + b ln δ/δ)n− 1, where b is any constant exceeding 2.5.

Theorem 6.15. [70] For a connected graph G of order n with minimum degree δ, trc(G) ≤
6n/(δ + 1) + 28 for δ ≥

√
n− 2 − 1 and n ≥ 291, while trc(G) ≤ 7n/(δ + 1) + 32 for

16 ≤ δ ≤
√
n− 2 − 2 and trc(G) ≤ 7n/(δ + 1) + 4C(δ) + 12 for 6 ≤ δ ≤ 15, where

C(δ) = e
3 log(δ3+2δ2+3)−3(log 3−1)

δ−3 − 2.

In [143], Sun, Jin and Li obtained a sharp upper bound for trc(G) in terms of the number
of vertex-disjoint cycles in G.

Theorem 6.16. [143] Suppose G is a connected graph with n′ inner vertices, and assume
that there is a set of t vertex-disjoint cycles that cover all but s vertices of G. Then trc(G) ≤
n′ + s+ 2t− 1; moreover, the bound is sharp.

As a corollary, some special cases were also discussed.

Corollary 6.17. [143] If one of the following conditions holds: (i) G has a 2-factor; (ii) G
is k-regular and k is even; (iii) G is k-regular and χ′(G) = k, then trc(G) < 19n/12.

By definitions, we clearly have trc(G) ≥ rc(G) and trc(G) ≥ rvc(G). We want to find
the difference between these parameters and the following the problem is very interesting:

Problem 6.18. Give good bounds for trc(G)− rc(G) and trc(G)− rvc(G).

However, rvc(G) may be much smaller than rc(G) for some graph G. For example,
we consider the star graph K1,n, we have rvc(K1,n) = 1 while rc(K1,n) = n. rvc(G) may
also be much larger than rc(G) for some graph G. For example (see [79]), take n vertex-
disjoint triangles and, by designating a vertex from each of them, add a complete graph
on the designated vertices. This graph has n cut vertices and hence rvc(G) ≥ n. In fact,
rvc(G) = n by coloring only the cut vertices with distinct colors. On the other hand, it is not
difficult to see that rc(G) ≤ 4. Just color the edges of Kn with color 1, and color the edges
of each triangle with the colors 2, 3, 4. Similarly, the following problem is also interesting.

Problem 6.19. Give good bounds for |rc(G)− rvc(G)|.
In [141], Sun answered the above two problems by giving sharp upper bounds for trc(G)−

rc(G), trc(G)− rvc(G) and |rc(G)− rvc(G)|; moreover, he gave a necessary and sufficient
condition for each equality to hold. Note that we define a class of graph G1 as follows: for
each G ∈ G1, the induced subgraph G[A] is a path of order diam(G)− 1, where A is the set
of inner vertices of G.

Theorem 6.20. [141] For a connected graph G of order n and size m, the following asser-
tions hold:
(i) trc(G)− rc(G) ≤ m(G) + n′(G)− diam(G), the equality holds if and only if G = Pn.
(ii) trc(G)− rvc(G) ≤ m(G)+n′(G)+1−diam(G), the equality holds if and only if G ∈ G1.
(iii) |rc(G)− rvc(G)| ≤ m(G) + 1− diam(G), the equality holds if and only if G ∈ G1.
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The following condition guarantees that trc(G) = 3.

Theorem 6.21. [141] Any non-complete graph with δ(G) ≥ n/2 + log2 n has trc(G) = 3.

For an integer k ≥ 3, we set α = k2

3k−2
and β = k4

10k3−35k2+50k−24
. Sun [141] obtained the

following result which is an extension of above theorem.

Theorem 6.22. [141] Let k ≥ 3 be an integer. If G is a non-complete graph of order n with
δ(G) ≥ n

2
− 1 + logα n, then trc(G) ≤ k.

It is tried to look for some other better parameters to replace δ(G). Such a natural
parameter is σk(G) which is defined as σk(G) = min{d(u1)+d(u2)+. . .+d(uk)|u1, u2, . . . , uk ∈
V (G), uiuj 6∈ E(G), i 6= j, i, j ∈ {1, . . . , k}}.
Theorem 6.23. [141] Let k ≥ 3 be an integer. If G is a non-complete graph of order n with
minimum degree-sum σ2(G) ≥ n− 2 + 2logα n, then trc(G) ≤ k.

Theorem 6.24. [141] If G is a non-complete bipartite graph with n vertices and any two
vertices in the same vertex class has at least 2logβ αlogα n common neighbors in the other
vertex class, then trc(G) ≤ k.

In [144], Sun, Jin and Tu investigated the total rainbow connection number of a graph G
under some constraints of its complement G. Three examples were given to show that trc(G)
can be sufficiently large if one of the three situations happens: diam(G) = 2, diam(G) = 3,
G contains exactly two connected components and one of them is trivial. However, the
parameter trc(G) can be bounded by a small constant if these three cases are excluded.

Theorem 6.25. [144] For a connected graph G, if G does not belong to the following two
cases: (i) diam(G) = 2, 3, (ii) G contains exactly two connected components and one of them
is trivial, then trc(G) ≤ 7; moreover, the bound is best possible.

In [144], Sun, Jin and Tu try to find some sufficient conditions that guarantee trc(G) ≤ k
in terms of the size of G. Hence, the following problem is very interesting.

Problem 6.26. For every k with k ≥ 1, compute the minimum value for f(n, k) with the
following property: if |E(G)| ≥ f(n, k), then trc(G) ≤ k.

By definition, we clearly have f(n, k) ≥ n− 1. In [144], Sun, Jin and Tu computed the
lower bounds and precise values for the function f(n, k).

Theorem 6.27. [144] The following assertions hold:
(i) f(n, 1) = f(n, 2) =

(

n
2

)

.

(ii) f(n, 3) =
(

n−1
2

)

+ 1.
(iii) For the case that 4 ≤ k ≤ 2n− 6. If k is even, then

f(n, k) ≥
(

n + 1− k
2

2

)

+
k − 2

2
;

Otherwise, we have

f(n, k) ≥
(

n + 1−k
2

2

)

+
k − 1

2
.

(iv) f(n, 2n− 5) = f(n, 2n− 4) = n.
(v) f(n, k) = n− 1 for k ≥ 2n− 3.
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In [143], Sun, Jin and Li studied minimally total rainbow k-connected graphs, that is,
total rainbow k-connected graphs with a minimum number of edges. For n, k ≥ 1, define
h(n, k) to be the minimum size of a total rainbow k-connected graph G of order n. A network
G which satisfies our requirements and has as few links as possible can reduce costs, shorten
the construction period and simplify later maintenance. Thus, the study of this parameter
is significant. Sun, Jin and Li computed exact values and upper bounds for h(n, k).

Theorem 6.28. [143] For an integer k ≥ 1, we have
(i) h(n, 1) = h(n, 2) =

(

n
2

)

;

(ii) h(n, 4) ≤ h(n, 3) ≤ ⌊log2 n⌋(n + 1)− 2⌊log2 n⌋+1 + 2;
(iii) h(n, 5) ≤ 2n− 5;

(iv) h(n, k) ≤ k(n−1)
k−2

for 6 ≤ k = 2ℓ ≤ 2n+2
3
⌉ − 1;

(v) h(n, k) ≤ (k−1)(n−1)
k−3

for 7 ≤ k = 2ℓ+ 1 ≤ 2n+2
3
⌉ − 1;

(vi) h(n, k) = n for ⌈2n+2
3
⌉ ≤ k ≤ n− 1;

(vii) h(n, k) = n− 1 for k ≥ n.

For random graph models G(n, p) and G(n,M), Sun [141] obtained the following two
results which concern the threshold functions for graph properties trc(G(n, p)) ≤ 3 and
trc(G(n,M)) ≤ 3.

Theorem 6.29. [141] p =
√

log2 n/n is a sharp threshold function for the graph property
trc(G(n, p)) ≤ 3.

Theorem 6.30. [141] M =
√

n3log2 n is a sharp threshold function for the graph property
trc(G(n,M)) ≤ 3.

In [32], Chen, Li, Liu and Liu introduced the concept of strong total rainbow connection
number. An edge-colored graph is called strongly total rainbow connected if any two vertices
of the graph are connected by a total rainbow geodesic, i.e., a path of length equals to
the distance between the two vertices. For a connected graph G, the strong total rainbow
connection number, denoted by strc(G), is the minimum number of colors that are needed
to make G strongly total rainbow connected. Among their results they stated some simple
observations about strc(G) for a connected graph G. They also investigated the strong total
rainbow connection numbers of some special graphs, such as trees, cycles, wheel graphs,
complete bipartite graphs and complete multipartite graphs. They obtained the following
results.

Theorem 6.31. [32]
(i) There exist infinitely many graphs G with strc(G) = src(G) = 3.
(ii) Given s ≥ 13, there exists a graph G with strc(G) = srvc(G) = s.
(ii) Given 1 ≤ t < s, there exists a graph G such that strc(G) ≥ s and srvc(G) = t.

For the relationship between trc(G) and strc(G), Chen, Li, Liu and Liu [32] completely
characterized all pairs of positive integers a and b such that, there exists a graph G with
trc(G) = a and strc(G) = b.

Theorem 6.32. [32] Let a and b be positive integers. Then there exists a connected graph
G such that trc(G) = a and strc(G) = b if and only if a = b ∈ {1, 3, 4} or 5 ≤ a ≤ b.
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In the same paper, they also proposed the following problem.

Problem 6.33. [32] Does there exist an infinite family of connected graphs F such that,
src(G) is bounded on F , while strc(G) is unbounded ? Similarly, does there exist an infi-
nite family of connected graphs F such that, max{src(G), srvc(G)} is bounded on F , while
strc(G) is unbounded ?

Liu et al. [115] introduced a version which involves total colorings. A total-colored path
is total-rainbow if its edges and internal vertices have distinct colors. The total rainbow k-
connection number of G, denoted by trck(G), is the minimum number of colors required to
color the edges and vertices of G, so that any two vertices of G are connected by k internally
vertex-disjoint total-rainbow paths.

Li, Li and Shi [87] showed that deciding whether trck(G) = 3 is NP-complete for fixed
k ≥ 1.

Theorem 6.34. [87] Given a graph G, deciding whether trck(G) = 3 is NP-complete for
fixed k ≥ 1.

Liu et al. [115] studied the function trck(G) when G is a cycle, a wheel, and a complete
multipartite graph. They also compared the functions rck(G), rvck(G), and trck(G), by
considering how close and how far apart trck(G) can be from rck(G) and rvck(G).

Theorem 6.35. [115] For every s ≥ 11k + 1470, there exists a graph G with trck(G) =
rvck(G) = s.

They raised the following problem.

Problem 6.36. [115] Let k ≥ 1. Does there exist an integer N = N(k) such that for all
s ≥ N , there exists a graph G with trck(G) = rck(G) = s ?

They also made the following conjecture.

Conjecture 6.37. [115] For every k ≥ 1, there exists a function fk : N→ N such that if G
is a k-connected graph and max{rck(G), rvck(G)} = c, then trck(G) ≤ fk(c).

7 Digraphs

7.1 For arc-colorings

Recently, Dorbec et al. [44] extended the concept of rainbow connection to digraphs. Given
a digraph D, a directed path, or simply a path P in D, is a sequence of vertices x0, x1, · · · , xℓ

in D such that xi−1xi is an arc of D for every 1 ≤ i ≤ ℓ. P is also called an x0 − xℓ

path, and its length is the number of arcs ℓ. An arc-colored path is rainbow if its arcs have
distinct colors. Let D be a strongly connected digraph, i.e. for any ordered pair of vertices
(u, v) in D, there exists a u − v path. An arc-coloring of D is rainbow connected if for any
ordered pair of vertices (u, v), there is a rainbow u−v path. The rainbow connection number
of D, denoted by ~rc(D), is the smallest possible number of colors in a rainbow connected
arc-coloring of D. An arc-coloring of D is strongly rainbow connected if for any ordered pair
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of vertices (u, v), there is a rainbow u − v geodesic, i.e. a rainbow u − v path of minimum
length. The strong rainbow connection number of D, denoted by ~src(D), is the smallest
possible number of colors in a strongly rainbow connected arc-coloring of D. The function
~src(D) was introduced by Alva-Samos and Montellano-Ballesteros [1].

Given a pair u, v ∈ V (D), if the arcs uv and vu are in D, then we say that uv and vu are
symmetric arcs. When every arc of D is symmetric, D is called a symmetric digraph. Given

a graph G = (V (G), E(G)), its biorientation is the symmetric digraph
←→
G obtained from G

by replacing each edge uv of G by the pair of symmetric arcs uv and vu.
An oriented graph G is strongly connected (strong for short) if there exists an (x−y)-path

in G for every two vertices x and y. The graph G is minimally strongly connected (MSC for
short) if G is strong and, for every arc xy in G, the graph G− xy is not strong.

The rainbow connection for digraphs was first presented by Dorbec, Schiermeyer, Sido-
rowicz and Sopena in [44]. They firstly studied the rainbow connection number of MSC by
giving the following result.

Theorem 7.1. [44] Let G be an MSC oriented graph on n vertices. If G is not a cycle then
~rc(G) ≤ n− 1.

Let C = x0 · · ·xk−1x0 be a cycle in an oriented graph G. A vertex xi ∈ V (C) is said to
satisfy the Head-Tail-property with respect to C if, when going along the cycle C from xi to
xi−1, we meet the head of each chord before its tail. In particular, if G is itself a cycle, then
every vertex of G has the Head-Tail-property with respect to G. Let C = x0 · · ·xk−1x0 be a
cycle in an oriented graph G. A pair of distinct vertices {xi, xj} in C is a strong pair of C
in G if both the induced subgraphs G[C[xi, xj−1]] and G[C[xj−1, xi]] are strong.

Dorbec, Schiermeyer, Sidorowicz and Sopena [44] also investigated oriented graphs with
maximum rainbow connection number by showing the following result.

Theorem 7.2. [44] Let G be a strong oriented graph on n vertices. The following statements
are equivalent:
(i) ~rc(G) = n,
(ii) G is Hamiltonian but has no special Hamiltonian cycle,
(iii) G has a Hamiltonian cycle C = x0x1 · · ·xn−1 and two distinct vertices xi and xj having
the Head-Tail-property with respect to C but not forming a strong pair of C in G.

The authors in [1] obtained some basic results on biorientations of graphs.

Theorem 7.3. [1] Let D be a nontrivial digraph, then

(i) ~src(D) = 1 if and only if ~rc(D) = 1 if and only if, for some n ≥ 2, D =
←→
K n;

(ii) ~rc(D) = 2 if and only if ~src(D) = 2.

Theorem 7.4. [1]

(i) For n ≥ 2, ~rc(
←→
P n) = ~src(

←→
P n) = n− 1;

(ii) For n ≥ 4, ~rc(
←→
C n) = ~src(

←→
C n) = ⌈n/2⌉;

(iii) Let k ≥ 2, if
←→
K n1,n2,··· ,nk

is the complete k-partite digraph where ni ≥ 2 for some i,

then ~rc(
←→
K n1,n2,··· ,nk

) = ~src(
←→
K n1,n2,··· ,nk

) = 2.
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Theorem 7.5. [1] Let D be a spanning strong connected subdigraph of
←→
C n with k ≥ 1

asymmetric arcs. Thus

~rc(D) =

{

n− 1, if k ≤ 2;
n, if k ≥ 2.

Moreover, if k ≥ 3, ~rc(D) = ~src(D) = n.

As a direct corollary of the previous result we have

Corollary 7.6. [1] Let D be a strong connected digraph with m ≥ 3 arcs. Thus ~rc(D) =

~src(D) = m if and only if D =
←→
C m.

For an integer n ≥ 2 and a set S ⊆ {1, 2, · · · , n−1}, the circulant digraph Cn(S) is defined
as follows: V (Cn(S)) = {v0, v1, · · · , vn−1} and A(Cn(S)) = {vivj : j − i=ns, s ∈ S}, where
a=nb means: a congruent with b modulo n. Given an integer k ≥ 1, let [k] = {1, 2, · · · , k}.
In [1], the authors also discussed some circulant digraphs.

Theorem 7.7. [1] If 1 ≤ k ≤ n− 2, then ~rc(Cn([k])) = ~src(Cn([k])) = ⌈nk ⌉.

Theorem 7.8. [1] For every integer k ≥ 2, the following assertions hold:
(i) ~rc(C2k({1, k})) = ~src(C2k({1, k})) = k.
(ii) ~rc(C2k({1, k + 1})) = ~src(C2k({1, k + 1})) = k.

Theorem 7.9. [1] For every integer k ≥ 3, we have

~src(C(k−1)2({1, k})) = ~rc(C(k−1)2({1, k})) = 2k − 4.

Theorem 7.10. [1] If n = ank with an ≥ k − 1 ≥ 2, then

~src(Cn({1, k})) = ~rc(Cn({1, k})) = an + k − 2.

A tournament is a digraph where every two vertices has exactly one arc joining them. In
[44], the following two theorems were proven:

Theorem 7.11. [44] If T is a strong tournament with n ≥ 5 vertices, then 2 ≤ ~rc(T ) ≤ n−1.

Theorem 7.12. [44] For every n and k such that 3 ≤ k ≤ n− 1, there exists a tournament
T on n vertices such that ~rc(T ) = k.

In [2], the following result was proved.

Theorem 7.13. [2] For every n ≥ 6, there exists a tournament T on n vertices such that
~rc(T ) = 2.

By combining Theorems 7.12 and 7.13, we have

Theorem 7.14. [2] For every n ≥ 6 and every k such that 2 ≤ k ≤ n − 1, there exists a
tournament T on n vertices such that ~rc(T ) = k.
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In [44], the authors obtained bounds for the rainbow connection number of a tournament
in terms of its diameter.

Theorem 7.15. [44] Let T be a tournament of diameter d. We have d ≤ ~rc(T ) ≤ d+ 2.

The authors in [44] noted that d + 2 may not be the best upper bound. Hence, there is
the following problem.

Problem 7.16. [64] For each diameter d, is d+ 1 or d+ 2 the sharp upper bound on ~rc(T )
where T has diameter d.

Holliday, Magnant and Nowbandegani [64] believed that a (d+1)-coloring is possible, at
least in some cases. Indeed, they showed that for tournaments of diameter 2, this improved
upper bound holds.

Theorem 7.17. [64] Let T be a tournament of diameter 2. We have 2 ≤ ~rc(T ) ≤ 3.

More generally, Holliday, Magnant and Nowbandegani [64] initiated the study of the rain-
bow k-connection number of a tournament. An edge-colored tournament is called rainbow
k-connected if, between every pair of vertices, there is a set of k internally disjoint rainbow
paths. The rainbow k-connection number of a tournament, denoted by ~rck(T ), is then the
minimum number of colors needed to produce a rainbow k-connected coloring of the tour-
nament T . Let the k-total-diameter, denoted by dk(T ), be the maximum (over all pairs of
vertices) of the smallest number of edges in a set of k internally disjoint paths between the
vertices.

Theorem 7.18. [64] Given an integer k ≥ 2 and a tournament T of order n with dk(T ) = d,
we have

~rck(T ) ≤
d

1− (1− 1
n2 )1/d

.

A set of k internally disjoint paths from a vertex x to a vertex y is said minimum if the
longest path in the set is as short as possible, over all such sets of paths. Let the kth diameter
denote the maximum length, over all pairs of vertices u, v, of the longest path in a minimum
set of k internally disjoint u − v paths. A tournament is called k-strongly connected (or
simply k-strong) if there are k internally disjoint directed paths from each vertex to every
other vertex.

Theorem 7.19. [64] A strongly connected tournament T of kth diameter 2 has ~rck(T ) ≤
3 + k + 2

(

k
2

)

.

Theorem 7.19 naturally leads to the following problem.

Problem 7.20. [64] Produce sharp bounds on ~rck(T ) in terms of the kth diameter of T .
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7.2 For vertex-coloring

In [81], the authors considered the (strong) rainbow vertex-connection number of digraphs.
Results on the (strong) rainbow vertex-connection number of biorientations of graphs, cycle
digraphs, circulant digraphs and tournaments were presented.

A vertex-colored path in a digraph is rainbow if its internal vertices have distinct colors.
A vertex-coloring of D is rainbow vertex-connected if for any ordered pair of vertices (u, v)
in D, there is a rainbow u − v path. The rainbow vertex-connection number of D, denoted
by ~rvc(D), is the smallest possible number of colors in a rainbow vertex-connected vertex-
coloring of D. Likewise, a vertex-coloring of D is strongly rainbow vertex-connected if for
any ordered pair of vertices (u, v), there exists a rainbow u− v geodesic. The strong rainbow
vertex-connection number ofD, denoted by ~srvc(D), is the smallest possible number of colors
in a strongly rainbow vertex-connected vertex-coloring of D.

Lei et al. [81] presented some remarks and basic results for the rainbow vertex-connection
and strong rainbow vertex-connection numbers.

Proposition 7.21. [81] Let D be a strongly connected digraph of order n and let diam(D)
be the diameter of D. Then

diam(D)− 1 ≤ ~rvc(D) ≤ ~srvc(D) ≤ n.

Theorem 7.22. [81] Let D be a non-trivial, strongly connected digraph.
(a) The following assertions are equivalent.

(i) D =
←→
Kn for some n ≥ 2.

(ii) diam(D) = 1.
(iii) ~srvc(D) = 0.
(iv) ~rvc(D) = 0.
(v) ~src(D) = 1.
(vi) ~rc(D) = 1.
(b) ~srvc(D) = 1, if and only if ~rvc(D) = 1, if and only if diam(D) = 2. Also, ~src(D) = 2
if and only if ~rc(D) = 2, and either of these two conditions implies any of the first three
conditions.

Proposition 7.23. [81] For a graph G, we have rvc(G) = ~rvc(
←→
G ) and srvc(G) = ~srvc(

←→
G ).

Proposition 7.24. [81] Let D and H be strongly connected digraphs such that, H is a
spanning subdigraph of D. Then ~rvc(D) ≤ ~rvc(H).

The following theorem determines the (strong) rainbow vertex-connection numbers for
the biorientations of paths, cycles, wheels, and complete multipartite graphs.

Theorem 7.25. [81]

(a) For n ≥ 2, ~rvc(
←→
P n) = ~srvc(

←→
P n) = n− 2.

(b) We have

~rvc(
←→
C n) = ~srvc(

←→
C n) =







⌈n
2
⌉ − 2, if n = 3, 5, 9;

⌈n
2
⌉ − 1, if n = 4, 6, 7, 8, 10, 12;

⌈n
2
⌉, if n = 14 or n ≥ 16.
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Also, ~rvc(
←→
C n) = ⌈n2 ⌉ − 1 and ~srvc(

←→
C n) = ⌈n2 ⌉ for n = 11, 13, 15.

(c) For n ≥ 4, ~rvc(
←→
W n) = ~srvc(

←→
W n) = 1.

(d) Let t ≥ 2, and let Kn1,n2,··· ,nt be a complete t-partite graph with ni ≥ 2 for some i. Then

~rvc(
←→
K n1,n2,··· ,nt) = ~srvc(

←→
K n1,n2,··· ,nt) = 1.

Proposition 7.26. [81] Let n ≥ 3. Then,

~rvc( ~Cn) = ~srvc( ~Cn) =

{

n− 2, if n = 3, 4;
n, if n ≥ 5.
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Figure 8: The digraphs D1 to D4.

The authors in [81] extent the results of Theorem 7.25 and Proposition 7.26 and got the
following result.

Theorem 7.27. [81] Let D be a spanning strongly connected subdigraph of
←→
C n, where n ≥ 3,

and with k ≥ 1 asymmetric arcs.
(a)

~rvc(D) =







n− 2, if k ≤ 2, or D = D2, or D = D4 with n = 4;
n− 1, if D = D3, or D = D4 with n ≥ 5;
n, otherwise.

(b)
(i) ~srvc(D) = n− 2 if one of the following holds.
(1) k = 1.

(2) D = D1 with n ≤ 8, or with n ≥ 9 and ℓ(
←→
P ), ℓ(

←→
P ′) ≤ ⌊n

2
⌋ + 1.

(3) D = D2 with n ≤ 8.
(4) D = D4 with n = 4.
(ii) ~srvc(D) = n− 1 if one of the following holds.

(1) D = D1 with n ≥ 9, and ℓ(
←→
P ) ∈ {0, ⌊n

2
⌋+ 2} or ℓ(

←→
P ′) ∈ {0, ⌊n

2
⌋ + 2}.

(2) D = D3 with 5 ≤ n ≤ 10, or with n ≥ 11 and ℓ(
←→
P ), ℓ(

←→
P ′) ≤ ⌊n

2
⌋+ 1.

(3) D = D4 with 5 ≤ n ≤ 8, or with n ≥ 9 and ℓ(
←→
P ), ℓ(

←→
P ′) ≤ ⌊n

2
⌋.

(iii) Otherwise, we have ~srvc(D) = n.

The authors in [81] also considered the circulant digraphs.
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Theorem 7.28. [81] Let 2 ≤ k ≤ ⌊n
2
⌋ − 1

(a) Let n 6≡ 0, 1 (mod k). Then ~rvc(Cn([k])) = ⌈nk ⌉− 1, and ~srvc(Cn([k])) = ⌈nk ⌉, where the
latter holds for n sufficiently large.
(b) Let n = ak + 1, where a ≥ 3.
(i) If a− 1|n, then ~rvc(Cn([k])) = ~srvc(Cn([k])) =

n−1
k
− 1.

(ii) If a− 1 ∤ n, then ~rvc(Cn([k])) =
n−1
k
, and

~srvc(Cn([k])) =

{

n−1
k
, if a < k + 2;

n−1
k

+ 1, if a > k + 2.

(c) Let n = ak, where a ≥ 3.
(i) If a = 3, 4, then ~rvc(Cn([k])) = ~srvc(Cn([k])) =

n
k
− 1.

(ii) If a ≥ 5, then ~rvc(Cn([k])) ∈ {nk − 1, n
k
}, and ~srvc(Cn([k])) =

n
k
.

In Theorem 7.28, the authors have been unable to determine ~rvc(Cn([k])) when n ≡
0 (mod k), and ~srvc(Cn([k])) for small n 6≡ 0, 1 (mod k). The first of these two tasks
appears more interesting, and Lei et al. left it as an open problem.

Problem 7.29. [81] Let n = ak, where k ≥ 2 and a ≥ 5. Determine ~rvc(Cn([k])).

Lei et al. [81] also studied the (strong) rainbow vertex-connection numbers of tourna-
ments.

Theorem 7.30. [81] If T is a strongly connected tournament on n ≥ 3 vertices, then
1 ≤ ~rvc(T ) ≤ ~srvc(T ) ≤ n− 2.

Theorem 7.31. [81] For n ≥ 5 and 1 ≤ k ≤ n − 2, there exists a tournament Tn,k on n
vertices such that ~rvc(Tn,k) = ~srvc(Tn,k) = k.

Theorem 7.32. [81] Let T be a tournament of diameter d. We have d−1 ≤ ~rvc(T ) ≤ d+3.

7.3 For total-coloring

In [82], the authors considered the (strong) total rainbow connection number of digraphs.
Results on the (strong) total rainbow connection number of biorientations of graphs, tour-
naments and cactus digraphs were presented.

Let D be a strongly connected digraph. A total-colored directed path in a digraph is
total-rainbow if its arcs and internal vertices have distinct colors. A total-coloring ofD is total
rainbow connected if for any ordered pair of vertices (u, v) in D, there exists a total-rainbow
u − v path. The total rainbow connection number of D, denoted by ~trc(D), is the smallest
possible number of colors in a total rainbow connected total-coloring of D. Likewise, a total-
coloring of D is strongly total rainbow connected if for any ordered pair of vertices (u, v),
there exists a total-rainbow u − v geodesic. The strong total rainbow connection number of
D, denoted by ~strc(D), is the smallest possible number of colors in a strongly total rainbow
connected total-coloring of D.

Lei et al. [82] presented some remarks and basic results for the total rainbow connection
and strong total rainbow connection numbers.
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Proposition 7.33. [82] Let D be a strongly connected digraph with n vertices and m arcs.
Then

2diam(D)− 1 ≤ ~trc(D) ≤ ~strc(D) ≤ n +m.

Theorem 7.34. [82] Let D be a non-trivial, strongly connected digraph.
(a) The following assertions are equivalent.
(i) D is a bioriented complete graph.
(ii) diam(D) = 1.
(iii) ~srvc(D) = 0.
(iv) ~rvc(D) = 0.
(v) ~src(D) = 1.
(vi) ~rc(D) = 1.
(vii) ~trc(D) = 1.
(viii) ~strc(D) = 1.
(b) ~strc(D) ≥ ~trc(D) ≥ 3 if and only if D is not a bioriented complete graph.
(c) The following assertions hold.
(i) ~rc(D) = 2 if and only if ~src(D) = 2.
(ii) ~rvc(D) = 1, if and only if ~srvc(D) = 1, if and only if diam(D) = 2.
(iii) ~trc(D) = 3 if and only if ~strc(D) = 3.
Moreover, any of the conditions in (i) implies any of the conditions in (iii), and any of the
conditions in (iii) implies any of the conditions in (ii).

In [82], the authors proposed the following problem.

Problem 7.35. [82] Among all digraphs D with diameter 2, are the functions~rc(D), ~src(D),
~trc(D), ~strc(D) unbounded?

Proposition 7.36. [82] For a connected graph G, we have ~trc(
←→
G ) ≤ trc(G) and ~strc(

←→
G )

≤ strc(G).

Proposition 7.37. [82] Let D and H be strongly connected digraphs such that, H is a
spanning subdigraph of D. Then ~trc(D) ≤ ~trc(H).

The following inequalities clearly hold: ~trc(D) ≥ max{~rc(D), ~rvc(D)}, ~strc(D) ≥ max
{ ~src(D), ~srvc(D)}. In the following result, we can see that there are infinitely many digraphs
where the inequalities are best possible.

Theorem 7.38. [82]
(a) There exist infinitely many strongly connected digraphs D with ~trc(D) = ~strc(D) =
~rc(D) = ~src(D) = 3.
(b) Given s ≥ 13, there exists a strongly connected digraph D with ~trc(D) = ~rvc(D) = s.
(c) Given s ≥ 13, there exists a strongly connected digraph D with ~strc(D) = ~srvc(D) = s.

We may also consider how far from equality we can be in the above inequalities. In the
following result, we can see that there is an infinite family of digraphs D such that ~trc(D) is
unbounded on D, while ~rc(D) is bounded. Similar results also hold for ~trc(D) in comparison
with ~rvc(D), and for ~strc(D) in comparison with each of ~src(D) and ~srvc(D).
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Theorem 7.39. [82]
(a) Given s ≥ 2, there exists a strongly connected digraph D such that ~strc(D) ≥ ~trc(D) ≥ s
and ~rc(D) = ~src(D) = 3.
(b) Given s ≥ 4, there exists a strongly connected digraph D such that ~trc(D) = ~strc(D) ≥ s
and ~rvc(D) = ~srvc(D) = 3.

Lei et al. proposed the following problem.

Problem 7.40. [82] Does there exist an infinite family of digraphs D such that ~trc(D) is
unbounded on D, while max{~rc(D), ~rvc(D)} is bounded? Similarly, does there exist an infi-
nite family of digraphs D such that ~strc(D) is unbounded on D, while max{ ~src(D), ~srvc(D)}
is bounded?

The following theorem determines the (strong) rainbow vertex-connection numbers for
the biorientations of paths, cycles, wheels, and complete multipartite graphs.

Theorem 7.41. [82]

(a) For n ≥ 2, ~trc(
←→
P n) = ~strc(

←→
P n) = 2n− 3.

(b) For n ≥ 3, We have

~trc(
←→
C n) = ~strc(

←→
C n) =







n− 2, if n = 3, 5;
n− 1, if n = 4, 6, 7, 8, 9, 10, 12;
n, if n = 11 or n ≥ 13.

(c) For n ≥ 4, ~tr(
←→
W n) = ~strc(

←→
W n) = 3.

(d) Let t ≥ 2, and let
←→
K n1,n2,··· ,nt be a complete t-partite digraph with ni ≥ 2 for some i.

Then ~trc(
←→
K n1,n2,··· ,nt) = ~strc(

←→
K n1,n2,··· ,nt) = 3.

Proposition 7.42. [82] Let n ≥ 3. Then,

~trc( ~Cn) = ~strc( ~Cn) =







3, if n = 3;
6, if n = 4;
2n, if n ≥ 5.

Lei et al. [82] also studied the (strong) total rainbow connection numbers of tournaments.

Theorem 7.43. [82] If T is a strongly connected tournament on n ≥ 3 vertices, then
3 ≤ ~trc(T ) ≤ 2n− 3.

Lei et al. [82] put forward the following problem.

Problem 7.44. [82] Let T be a strongly connected tournament on n ≥ 3 vertices. Find
non-trivial upper bounds, as functions of n, for ~src(T ) and ~strc(T ).

The following result is similar to Theorem 7.31.

Theorem 7.45. [82] For n ≥ 5 and 3 ≤ k ≤ 2n − 3 with k odd, there exists a tournament
Tn,k on n vertices such that ~trc(Tn,k) = ~strc(Tn,k) = k.
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In Theorem 7.45, the authors have not been able to consider the case when k is even.
Thus they posed the following problem.

Problem 7.46. [82] Do there exist n, k with 4 ≤ k ≤ 2n − 4 and k even such that, there
exists a tournament Tn,k on n vertices such that ~trc(Tn,k) = k? Similarly, what happens for
~strc(Tn,k)?

They proved the following analogue for the total rainbow connection number (Theo-
rem 7.32).

Theorem 7.47. [82] Let T be a tournament of diameter d.
(a) If d = 2, then 3 ≤ ~trc(T ) ≤ 5.
(b) If d ≥ 3, then 2d− 1 ≤ ~trc(T ) ≤ 2d+ 7.

In [3], Alva-Samos and Montellano-Ballesteros studied the rainbow connection number
of cactus digraphs. A cactus digraph is a strongly connected oriented graph where every arc
belongs to exactly one directed cycle. For a digraph D, a block is a maximal subdigraph
without a cut-vertex. The block graph of D, denoted by B(D), is the graph with V (B(D)) =
{Bi : Bi is block of D} and BiBj ∈ E(B(D)) if Bi and Bj share a vertex in D. Let KQ

denote the set formed by all the cut-vertices of Q. We say that a cactus on n vertices is
an (n, q)-cactus when it has a decomposition into q cycles. Alva-Samos and Montellano-
Ballesteros proved the following result.

Theorem 7.48. [3] Let Q be an (n, q)-cactus with q ≥ 2. We have the following.
(a) n− q + 1 ≤ ~rc(Q) ≤ n− 1.
(b) ~rc(Q) = n− q + 1 if and only if KQ is independent.

(c) ~rc(Q) = n− 1 if and only if B(Q) = Pq and Q[KQ] = ~Pq−1.

Lei et al. proved the following result, which contains the rainbow vertex-connection and
total rainbow connection.

Theorem 7.49. [82] Let Q be an (n, q)-cactus with q ≥ 2. We have the following.
(a) n− 2q + 2 ≤ ~rvc(Q) ≤ n− 2.
(b) 2n− 3q + 3 ≤ ~trc(Q) ≤ 2n− 3.

They also obtained the following characterizations.

Theorem 7.50. [82] Let Q be an (n, q)-cactus with q ≥ 2. The following are equivalent.
(a) ~rvc(Q) = n− 2q + 2.
(b) ~trc(Q) = 2n− 3q + 3.
(c) For all u, v ∈ KQ, we have d(u, v) ≥ 3.

Theorem 7.51. [82] Let Q be an (n, q)-cactus with q ≥ 2. The following are equivalent.
(a) ~rvc(Q) = n− 2.
(b) ~trc(Q) = 2n− 3.

(c) B(Q) = Pq and Q[KQ] = ~Pq−1.

Finally, in their paper [82], Lei et al. got the following result.
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Theorem 7.52. [82] Let q ≥ 2.
(a) Let 2 ≤ k ≤ 2q − 2. For every n where n ≥ 2q + 1 if k is even, and n ≥ 2q + 2 if k is
odd, there is an (n, q)-cactus Q with ~rvc(Q) = n− 2q + k.
(b) Let 3 ≤ k ≤ 3q − 3 with k 6= 3q − 4. For every n where n ≥ 2q + 1 if k ≡ 0 (mod 3),
n ≥ 2q + 2 if k ≡ 1 (mod 3), and n ≥ 2q + 3 if k ≡ 2 (mod 3), there is an (n, q)-cactus Q
with ~trc(Q) = 2n− 3q + k.
(c) For every (n, q)-cactus Q, we have ~trc(Q) 6= 2n− 4.

8 Hypergraphs

In this section, we shall consider hypergraphs which are finite, undirected and without multi-
ple edges. For any undefined terms we refer to [8]. For ℓ ≥ 1, a Berge path, or simply a path,
is a hypergraph P consisting of a sequence v1, e1, v2, e2, · · · , vℓ, eℓ, vℓ+1, where v1, · · · , vℓ+1 are
distinct vertices, e1, e2, · · · , eℓ are distinct edges, and vi, vi+1 ∈ ei for every 1 ≤ i ≤ ℓ. The
length of a path is the number of its edges. If H is a connected hypergraph, then for
x, y ∈ V (H), an x − y path is a path with a sequence v1, e1, v2, e2, · · · , vℓ, eℓ, vℓ+1, where
x = v1 and y = vℓ+1. The distance from x to y, denoted by d(x, y), is the minimum possible
length of an x− y path in H. The diameter of H is diam(H) = maxx,y∈V (H) d(x, y).

For ℓ ≥ 1 and 1 ≤ s < r, an (r, s)-path is an r-uniform hypergraph P ′ with vertex set

V (P ′) = {v1, · · · , v(ℓ−1)(r−s)+r}

and edge set

E(P ′) = {v1 · · · vr, vr−s+1 · · · vr−s+r, v2(r−s)+1 · · · v2(r−s)+r, · · · , v(ℓ−1)(r−s)+1 · · · v(ℓ−1)(r−s)+r}.

For a hypergraph H and x, y ∈ V (H), an x − y (r, s)-path is an (r, s)-path as described
above, with x = v1 and y = v(ℓ−1)(r−s)+r, if such an (r, s)-path exists in H. Let Fr,s be the
family of the hypergraphs H such that, for every x, y ∈ V (H), there exists an x − y (r, s)-
path. Note that every member of Fr,s is connected. For H ∈ Fr,s and x, y ∈ V (H), the
(r, s)-distance from x to y, denoted by dr,s(x, y), is the minimum possible length of an
x − y (r, s)-path in H. The (r, s)-diameter of H is diamr,s(H) = maxx,y∈V (H) dr,s(x, y). If
an (r, s)-path has edges e1, · · · , eℓ, then we will often write the (r, s)-path as {e1, · · · , eℓ}.
The definition of Berge paths was introduced by Berge in the 1970’s. The introduction of
(r, s)-paths appeared more recently. Notably, in 1999, Katona and Kierstead [74] studied
(r, s)-paths when they posed a problem concerning a generalization of Dirac’s theorem to
hypergraphs, and since then, such paths have been well-studied.

In [19], the authors defined the rainbow connection coloring of hypergraphs. An edge-
colored path or (r, s)-path (for 1 ≤ s < r) is rainbow if its edges have distinct colors. For a
connected hypergraph H, an edge-coloring of H is rainbow connected if for any two vertices
x, y ∈ V (H), there exists a rainbow x−y path. The rainbow connection number ofH, denoted
by rc(H), is the minimum integer t for which there exists a rainbow connected edge-coloring
of H with t colors. Clearly, we have rc(H) ≥ diam(H). Similarly, for H ∈ Fr,s, an edge-
coloring of H is (r, s)-rainbow connected if for any two vertices x, y ∈ V (H), there exists a
rainbow x−y (r, s)-path. The (r, s)-rainbow connection number of H, denoted by rc(H, r, s),
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is the minimum integer t for which there exists an (r, s)-rainbow connected edge-coloring of
H with t colors. Again, we have rc(H, r, s) ≥ diamr,s(H). Also, note that for n ≥ r ≥ 2,
we have rc(Kr

n) = rc(Kr
n, r, s) = 1, where Kr

n is the complete r-uniform hypergraph on n
vertices.

We say that a hypergraph H with e(H) ≥ 1 is minimally connected if H is connected,
and for every e ∈ E(H), the hypergrpah (V (H), E(H) \ {e}) is disconnected.

Theorem 8.1. [19] Let H be a connected hypergraph with e(H) ≥ 1. Then rc(H) = e(H) if
and only if H is minimally connected.

They also studied rainbow connection for hypergraph cycles. For n > r ≥ 2, the (n, r)-
cycle Crn is the r-uniform hypergraph on n vertices, say V (Crn) = {v0, · · · , vn−1}, with the
edge set E(Crn) = {ei = vivi+1 · · · vi+r−1 : i = 0, · · · , n−1}, where throughout this subsection
concerning cycles, indices of vertices and edges are always taken cyclically modulo n.

Theorem 8.2. [19] Let n > r ≥ 2 and 1 ≤ s ≤ r− 2. Then for sufficiently large n, we have
the following:
(i) rc(Crn) = rc(Crn, r, 1) = ⌈ n

2(r−1)
⌉.

(ii) rc(Crn, r, r − 1) = ⌈n
2
⌉.

(iii) rc(Crn, r, s) ∈ {d, d+ 1}, where d = diamr,s(Crn) = ⌈n+1−2s
2(r−s)

⌉.

They extended the results on complete multipartite graphs [21] to complete multipartite
hypergraphs. First, they considered rc(Kr

n1,··· ,nt
).

Theorem 8.3. [19] Let t ≥ r ≥ 3 and 1 ≤ n1 ≤ · · · ≤ nt. Then

rc(Kr
n1,··· ,nt

) =







1, if nt = 1;
2, if nt−1 ≥ 2, or t > r, nt−1 = 1 and nt ≥ 2;
nt, if t = r and nt−1 = 1.

Theorem 8.4. [19] Let t ≥ r ≥ 3, 1 ≤ s ≤ r − 2 and 1 ≤ n1 ≤ · · · ≤ nt. Suppose that one
of the following holds.
(i) nt = 1.
(ii) n2(t−r)+s+1 ≥ 2 (and 2(t− r) + s+ 1 ≤ t).
(iii) 2(t− r) + s+ 1 ≥ t.
Then

rc(Kr
n1,··· ,nt

, r, s) =

{

1, if nt = 1;
2, if nt ≥ 2.

Theorem 8.5. [19] Let t ≥ r ≥ 3, 1 ≤ n1 ≤ · · · ≤ nt, n = nt and b =
∑

S∈[t−1](r−1) Πi∈Sni,

where [t− 1](r−1) denotes the family of subsets of {1, · · · , t− 1} with size r − 1. Then

rc(Kr
n1,··· ,nt

, r, r − 1) =







⌈ b
√
n⌉, if t = r and n1 = 1;

min{⌈ b
√
n⌉, r + 2}, if t = r and n1 ≥ 2;

min{⌈ b
√
n⌉, 3}, if t > r.

In the final of [19], the authors proved that the functions rc(H), rc(H, r, s) and rc(H, r, s′)
are separated from one another.
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Theorem 8.6. [19] Let a > 0, r ≥ 3 and 1 ≤ s 6= s′ < r.
(i) There exists an r-uniform hypergraph H ∈ Fr,s such that rc(H, r, s) ≥ a and rc(H) = 2.
(ii) There exists an r-uniform hypergraph H ∈ Fr,s ∩ Fr,s′ such that rc(H, r, s) ≥ a and
rc(H, r, s′) = 2.

Acknowledgement: The authors would like to thank the referees and the editor for their
helpful suggestions and comments which helped to polish the presentation of the paper.
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subgraphs. Discrete Math., 338(10):1706–1713, 2015.
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