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Abstract
The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored
in k colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all
edges of different colors. Our main result states that for any k ≥ 2, there is no algorithm for
Rainbow k-Coloring running in time 2o(n3/2), unless ETH fails. Motivated by this negative
result we consider two parameterized variants of the problem. In the Subset Rainbow k-
Coloring problem, introduced by Chakraborty et al. [STACS 2009, J. Comb. Opt. 2009], we
are additionally given a set S of pairs of vertices and we ask if there is a coloring in which all the
pairs in S are connected by rainbow paths. We show that Subset Rainbow k-Coloring is FPT
when parameterized by |S|. We also study Maximum Rainbow k-Coloring problem, where we
are additionally given an integer q and we ask if there is a coloring in which at least q anti-edges
are connected by rainbow paths. We show that the problem is FPT when parameterized by q
and has a kernel of size O(q) for every k ≥ 2, extending the result of Ananth et al. [FSTTCS
2011]. We believe that our techniques used for the lower bounds may shed some light on the
complexity of the classical Edge Coloring problem, where it is a major open question if a
2O(n)-time algorithm exists.
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1 Introduction

The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored
in k colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all
edges of different colors. A minimum such k, called the rainbow connection number can be
viewed as yet another measure of graph connectivity. The concept of rainbow coloring was
introduced by Chartrand, Johns, McKeon, and Zhang [7] in 2008, while also featured in an
earlier book of Chartrand and Zhang [8]. Chakraborty, Fischer, Matsliah, and Yuster [3]
describe an interesting application of rainbow coloring in telecommunications. The problem
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is intensively studied from the combinatorial perspective, with over 100 papers published by
now (see the survey of Li, Shi, and Sun [20] for an overview). However, the computational
complexity of the problem seems less explored. It was conjectured by Caro, Lev, Roditty,
Tuza, and Yuster [2] that the Rainbow k-Coloring problem is NP-complete for k = 2.
This conjecture was confirmed by Chakraborty et al. [3]. Ananth, Nasre, and Sarpatwar [1]
noticed that the proof of Chakraborty et al. in fact proves NP-completeness for every even
k > 1, and complemented this by showing NP-completeness of the odd cases as well. An
alternative hardness proof for every k > 1 was provided by Le and Tuza [19]. For complexity
results on restricted graph classes, see e.g., [4, 5, 6, 12].

For many NP-complete graph problems there are algorithms running in time 2O(n) for
an n-vertex graph. This is obviously the case for problems asking for a set of vertices, like
Clique or Vertex Cover, or more generally, for problems which admit polynomially
(or even subexponentially) checkable O(n)-bit certificates. However, there are 2O(n)-time
algorithms also for some problems for which such certificates are not known, including e.g.,
Hamiltonicity [13] and Vertex Coloring [18]. Unfortunately it seems that the best
known worst-case running time bound for Rainbow k-Coloring is km2knO(1), where m is
the number of edges, which is obtained by checking each of the km colorings by a simple
2knO(1)-time dynamic programming algorithm [23]. Even in the simplest variant of just two
colors, i.e., k = 2, this algorithm takes 2O(n2) time if the input graph is dense. It raises a
natural question: is this problem really much harder than, say, Hamiltonicity, or have
we just not found the right approach yet? Questions of this kind have received considerable
attention recently. For example, the existence of a 2O(n)-time algorithm for Edge Coloring
is a notorious question, appearing in numerous open problem lists. On the other hand, it was
shown that unless the Exponential Time Hypothesis fails, there is no algorithm running in
time 2o(n logn) for Channel Assignment [21], Subgraph Homomorphism, and Subgraph
Isomorphism [9]. Let us recall the precise statement of the Exponential Time Hypothesis
(ETH).

I Hypothesis 1 (Exponential Time Hypothesis [14]). There exists a constant c > 0, such that
there is no deterministic algorithm solving 3-SAT in time O∗(2cn).

Note that some kind of a complexity assumption, like ETH, is hard to avoid when we
prove exponential lower bounds, unless one aims at proving P 6= NP.

Main Result. Our main result is the following theorem.

I Theorem 2. For any k ≥ 2, Rainbow k-Coloring can be solved neither in 2o(n3/2) nor
2o(m/ logm) time where n and m are the number of vertices and edges respectively, unless
ETH fails.

Hence, this is an NP-complete graph problem which does not admit a 2o(n1+ε)-time
algorithm (under reasonable complexity assumptions), for an ε > 0. Such lower bounds
are fairly rare in the literature. The best known algorithm for Rainbow k-Coloring just
verifies all possible colorings and thus it runs in time 2O(m) for any fixed k. Our lower bounds
mean that one cannot hope for substantial improvements in this running time.

Remaining Lower Bounds. We also study a natural generalized problem, called Subset
Rainbow k-Coloring, introduced by Chakraborty et al. [3] as a natural intermediate step
in reductions from 3-SAT to Rainbow k-Coloring. In Subset Rainbow k-Coloring,
we are given a connected graph G, and a set of pairs of vertices S ⊆

(
V (G)

2
)
. Elements of S
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are called requests. For a given coloring of E(G) we say that a request {u, v} is satisfied if u
and v are connected by a rainbow path. The goal in Subset Rainbow k-Coloring is to
determine whether there is a k-coloring of E(G) such that every pair in S is satisfied. Our
main result implies that Subset Rainbow k-Coloring admits no algorithm running in
time 2o(n3/2), under ETH. We show also two more lower bounds, as follows.

I Theorem 3. For any k ≥ 2, Subset Rainbow k-Coloring can be solved neither in
time 2o(n3/2), nor in time 2o(m), nor in time 2o(s) where n is the number of vertices, m is
the number of edges, and s is the number of requests, unless ETH fails.

An interesting feature here is that for k = 2 the 2o(m) and 2o(s) bounds are tight up to
a polynomial factor (a 2mnO(1) algorithm is immediate, and a 2|S|nO(1)-time algorithm is
discussed in the next paragraph).

New Algorithms. In the context of the hardness results mentioned above it is natural to
ask for FPT algorithms for Subset Rainbow k-Coloring. We show that for every fixed k,
Subset Rainbow k-Coloring parameterized by |S| is FPT:

I Theorem 4. For every integer k, Subset Rainbow k-Coloring is FPT and it has an
algorithm running in time |S|O(|S|)nO(1).

For the 2 color case we are able to show a different, faster algorithm running in time
2|S|nO(1), which is tight up to a polynomial factor.

We also study the Maximum Rainbow k-Coloring problem, introduced by Ananth,
Nasre, and Sarpatwar [1]. Intuitively, the idea is to parameterize the problem by the number
of pairs to satisfy. However, all pairs of adjacent vertices are trivially satisfied by any
edge-coloring. Hence, we parameterize by the number of anti-edges to satisfy. More formally,
in Maximum Rainbow k-Coloring we are given a graph G = (V,E), an integer q, and
asked whether there is a coloring of E that satisfies at least q anti-edges. First, we show
that the maximization version of the problem (find maximum such q) admits a constant
factor approximation algorithm for every fixed value of k. Second, we show that Maximum
Rainbow k-Coloring is FPT for every k ≥ 2, which generalizes the result of Ananth et
al. [1] who showed this claim for the k = 2 case. Our algorithm runs in time 2q log qnO(1) for
any k, which is faster than the algorithm of Ananth et al. for 2 colors. For 2 colors we give
an even faster algorithm, running in time 8qnO(1). We also show that the problem admits a
kernel size O(q), i.e., that there is a polynomial-time algorithm that returns an equivalent
instance with O(q) vertices. (For more background on kernelization see e.g., [10].) Before,
this was known only for k = 2 (due to Ananth et al. [1]). Our main results for Maximum
Rainbow k-Coloring are summarized in the following theorem.

I Theorem 5. Maximum Rainbow k-Coloring parameterized by the number of anti-edges
q is FPT for every k ≥ 2. Moreover, it admits a kernel of linear size.

Notation. For standard graph-theoretic notions, we refer the reader to [11]. All graphs we
consider in this paper are simple and undirected. We denote ∆1(G) = max{∆(G), 1}.

By Ē we denote the set of anti-edges, i.e., Ē =
(
V
2
)
\ E. When G = (V,E) is a

graph then Ḡ = (V, Ē) is its complement graph. By xk we denote the falling factorial, i.e.,
xk = x(x− 1) · · · (x− k + 1). For an integer k, we denote [k] = {1, . . . , k}. For a (partial)
function c, by Dom(c) we denote its domain.

If I and J are instances of decision problems P and R, respectively, then we say that I
and J are equivalent, when either both I and J are YES-instances or both are NO-instances.

ESA 2016
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Figure 1 A simplified road map of our reductions.

Organization of the paper. In Section 2 we present our hardness results. The main
difficulties we encountered are sketched at the beginning of that section. Due to space
constraints proofs of the claims marked by F are skipped and can be found in the full
version [17]. Next, in Section 3 we present our algorithms for Subset Rainbow k-Coloring.
Again because of the space limitations, our algorithms for Maximum Rainbow k-Coloring
are skipped in this extended abstract and are available in the full version [17].

2 Hardness of rainbow coloring

2.1 Overview
The main goal of this section is to show that for any k ≥ 2 Rainbow k-Coloring does not
admit an algorithm running in time 2o(n3/2), unless the Exponential Time Hypothesis fails.
Let us give a high-level overview of our proof. A natural idea would be to begin with a 3-SAT
formula φ with n variables and then transform it in time 2o(n) to an equivalent instance
G = (V,E) of Rainbow k-Coloring with O(n2/3) vertices. Then indeed a 2o(|V |3/2)-time
algorithm that solves Rainbow 2-Coloring can be used to decide 3-SAT in time 2o(n).
Note that in a typical NP-hardness reduction, we observe some polynomial blow-up of the
instance size. For example, one can verify that in the reduction of Chakraborty et al. [3],
the initial 3-SAT formula with n variables and m clauses is transformed into a graph with
Θ(n4 + m4) vertices and edges. In our case, instead of a blow-up we aim at compression:
the number of vertices needs to be much smaller than the number of variables in the input
formula φ. As usual in reductions, variables and clauses in φ are going to correspond to
some structures in G, called gadgets. The compression requirement means that our gadgets
need to share vertices. To make our lives slightly easier, we apply the following well-known
Sparsification Lemma, which allows for assuming that the number of clauses is O(n).

I Lemma 6 (Sparsification Lemma [15]). For each ε > 0 there exist a constants cε, such
that any 3-SAT formula ϕ with n variables can be expressed as ϕ = ∨ti=1ψi, where t ≤ 2εn
and each ψi is a 3-SAT formula with the same variable set as ϕ, but contains at most cεn
clauses. Moreover, this disjunction can be computed in time O∗(2εn).

Note that by using the Sparsification Lemma we tweak our general plan a bit: instead of
creating one equivalent instance, we are going to create 2εn instances (for arbitrarily small
ε), each with O(n2/3) vertices. The following lemma further simplifies the instance.

I Lemma 7 ([22]). Given a 3-SAT formula ϕ with m clauses one can transform it in
polynomial time into a formula ϕ′ with O(m) variables and O(m) clauses, such that ϕ′ is
satisfiable iff ϕ′ is satisfiable, and moreover each clause of ϕ′ contains exactly three different
variables and each variable occurs in at most 4 clauses of ϕ′.

Now our goal is to transform a 3-SAT formula φ with n variables such that every variable
occurs in at most 4 clauses, to a graph with O(n2/3) vertices — an equivalent instance of
Rainbow k-Coloring. We do it in three steps (see Fig 1).
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In the first step we transform φ to an instance I = (G,S, c0) of Subset Rainbow
2-Coloring Extension, which is a generalization of Subset Rainbow 2-Coloring,
where c0, called a precoloring, is a partial coloring of the edges of G into two colors and the
goal is to determine if there is an edge-coloring of E(G) which extends c0 and such that all
pairs of S are satisfied. The first step is crucial, because here the compression takes place:
|V (G)| = O(n2/3) and E(G) = O(n). The major challenge in the construction is avoiding
interference between gadgets that share a vertex: to this end we define various conflict graphs
and we show that they can be vertex-colored in a few colors. This reduction is described in
Section 2.2.

In the second step (Lemma 9) we reduce Subset Rainbow 2-Coloring Extension to
Subset Rainbow k-Coloring, for every k ≥ 2. In fact, in the full version this is done in
two sub-steps, via Subset Rainbow k-Coloring Extension. The number of the vertices
in the resulting instance does not increase more than by a constant factor. This step is
rather standard, though some technicalities appear because we need to guarantee additional
properties of the output instance, which are needed by the reduction in the third step.

The last step (Section 2.3), where we reduce an instance (G = (V,E), S) of Subset
Rainbow k-Coloring to an instance G′ of Rainbow k-Coloring, is yet another challenge.
We would like to get rid of the set of requests somehow. For simplicity, let us focus on the
k = 2 case now. Here, the natural idea, used actually by Chakraborty et al. [3] is to create,
for every {u, v} 6∈ S, a path (u, xuv, v) through a new vertex xuv. Such a path cannot help
any of the requests {u′, v′} ∈ S to get satisfied (since if it creates a new path P ′ between u′
and v′, then P ′ has length at least 3), and by coloring it into two different colors we can
satisfy {u, v}. Unfortunately, in our case we cannot afford for creating a new vertex for every
such {u, v}, because that would result in a quadratic blow up in the number of vertices.
However, one can observe that for any biclique (a complete bipartite subgraph) in the graph
(V,
(
V
2
)
\ S) it is sufficient to use just one such vertex x (connected to all the vertices of the

biclique). By applying a result of Jukna [16] we can show that in our specific instance of
Subset Rainbow 2-Coloring which results from a 3-SAT formula, the number of bicliques
needed to cover all the pairs in

(
V
2
)
\ S is small enough. We show a 2|V (G)||V (G)|O(1)-time

algorithm to find such a cover. Although this algorithm does not seem fast, in our case
|V (G)| = O(n2/3), so this complexity is subexponential in the number of variables of the
input formula, which is enough for our goal. The case of k ≥ 3 is similar, i.e., we also use
the biclique cover. However, the details are much more technical because for each biclique
we need to introduce a much more complex gadget.

2.2 From 3-SAT to Subset Rainbow k-Coloring
Let Subset Rainbow k-Coloring Extension be a generalization of Subset Rainbow
k-Coloring, where c0 is a partial k-coloring of the edges of G and the goal is to determine if
there is an edge-coloring of E(G) which extends c0 and such that all pairs of S are satisfied. In
this section we show a reduction (Lemma 8) from 3-SAT to Subset Rainbow 2-Coloring
Extension.

For an instance I = (G,S, c0) of Subset Rainbow k-Coloring Extension (for any
k ≥ 2), let us define a precoloring conflict graph CGI . Its vertex set is the set of colored
edges, i.e., V (CGI) = Dom(c0). Two different colored edges e1 and e2 (treated as vertices of
CGI) are adjacent in CGI when they are incident in G or there is a pair of endpoints u ∈ e1
and v ∈ e2 such that uv ∈ E(G) ∪ S.

In what follows the reduction in Lemma 8 is going to be pipelined with further reductions
going through Subset Rainbow k-Coloring Extension and Subset Rainbow k-
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Coloring to Rainbow k-Coloring. In these three reductions we need to keep the instance
small. To this end, the instance of Subset Rainbow 2-Coloring Extension resulting
in Lemma 8 has to satisfy some additional properties, which are formulated in the claim of
Lemma 8. Their role will become clearer later on.

I Lemma 8. Given a 3-SAT formula ϕ with n variables such that each clause of ϕ contains
exactly three variables and each variable occurs in at most four clauses, one can construct
in polynomial time an equivalent instance (G,S, c0) of Subset Rainbow 2-Coloring
Extension such that G has O(n2/3) vertices and O(n) edges. Moreover, ∆(G) = O(n1/3),
∆(V (G), S) = O(n1/3), |Dom(c0)| = O(n2/3) and along with the instance I = (G,S, c0) the
algorithm constructs a proper vertex 4-coloring of (V (G), E ∪ S) (so also of (V (G), S)) and
a proper vertex O(n1/3)-coloring of the precoloring conflict graph CGI .

Proof. Let m denote the number of clauses in ϕ. Observe that m ≤ 4
3n. Let Var and Cl

denote the sets of variables and clauses of ϕ. For more clarity, the two colors of the partial
coloring c0 will be called T and F . Let us describe the graph G along with a set of anti-edges
S. Graph G consists of two disjoint vertex subsets: the variable part and the clause part.
The intuition is that in any 2-edge coloring of G that extends c0 and satisfies all pairs in S

edge colors in the variable part represent an assignment of the variables of ϕ,
edge colors in the clause part represent a choice of literals that satisfy all the clauses, and
edge colors between the two parts make the values of the literals from the clause part
consistent with the assignment represented by the variable part.

The variable part. The vertices of the variable part consist of the middle set M and⌈
n1/3⌉ layers L1 ∪ L2 · · · ∪ Ldn1/3e. The middle set M consists of vertices mi for each
i = 1, . . . ,

⌈
n2/3⌉+ 9. For every i = 1, . . . ,

⌈
n1/3⌉ the layer Li consists of two parts: upper

L↑i = {ui,j : j = 1, . . . ,
⌈
n1/3⌉+ 3} and lower L↓i = {li,j : j = 1, . . . ,

⌈
n1/3⌉+ 3}.

We are going to define four functions: mid : Var → M , lay,up, low : Var → [
⌈
n1/3⌉].

Then, for every variable x ∈ Var we add two edges ulay(x),up(x)mid(x) and mid(x)llay(x),low(x).
Moreover, we add the pair px = {ulay(x),up(x), llay(x),low(x)} to S. In other words, x corres-
ponds to the 2-path ulay(x),up(x)mid(x)llay(x),low(x). Now we describe a careful construction
of the four functions, that guarantee several useful properties (for example edge-disjointness
of paths corresponding to different variables).

Let us define the variable conflict graph GV = (Var, EGV ), where for two variables
x, y ∈ Var we have xy are adjacent iff they both occur in the same clause. Since every
variable occurs in at most 4 clauses, ∆(GV ) ≤ 8. It follows that there is a proper vertex
9-coloring α : V ar → [9] of Gv, and it can be found by a simple linear time algorithm. Next,
each of the 9 color classes α−1(i) is partitioned into

⌈
|α−1(i)|/

⌈
n1/3⌉⌉ disjoint groups, each

of size at most
⌈
n1/3⌉. It follows that the total number ng of groups is at most

⌈
n2/3⌉+ 9.

Let us number the groups arbitrarily from 1 to ng and for every variable x ∈ Var, let g(x) be
the number of the group that contains x. Then we define mid(x) = mg(x). Since any group
contains only vertices of the same color we can state the following property:
(P1) If variables x and y occur in the same clause then mid(x) 6= mid(y).

Now, for every variable x we define its layer, i.e., the value of the function lay(x). Recall
that for every i = 1, . . . ,

⌈
n2/3⌉ + 9 the i-th group mid−1(mi) contains at most

⌈
n1/3⌉

variables. Inside each group, number the variables arbitrarily and let lay(x) be the number
of variable x in its group, lay(x) ∈ [n1/3]. This implies another important property.
(P2) If variables x and y belong to the same layer then mid(x) 6= mid(y).
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Observe that every layer gets assigned at most
⌈
n2/3⌉+ 9 variables. For every layer Li

pick any injective function hi : lay−1(i)→ [
⌈
n1/3⌉+ 3]2. Then, for every variable x ∈ Var we

put (up(x), low(x)) = hlay(x)(x). Note that by (P2) we have the following.
(P3) For every variable x there is exactly one 2-path inG connecting px, namely (ulay(x),up(x),

mid(x), llay(x),low(x)).
(P4) For every pair of variables x, y the two unique paths connecting px and py are edge-

disjoint.

Although we are going to add more edges and vertices to G, none of these edges has any
endpoint in

⋃
i Li, so P3 will stay satisfied.

The clause part. The vertices of the clause part are partitioned into O(m1/3) clusters.
Similarly as in the case of variables, each clause is going to correspond to a pair of vertices
in the same cluster. Again, the assignment of clauses to clusters has to be done carefully. To
this end we introduce the clause conflict graph GC = (Cl, EGC ). Two different clauses C1 and
C2 are adjacent in GC if C1 contains a variable x1 and C2 contains a variable x2 such that
mid(x1) = mid(x2). Fix a variable x1. Since |mid−1(mid(x1))| ≤

⌈
n1/3⌉, there are at most⌈

n1/3⌉ variables x2 such that mid(x1) = mid(x2). Since every clause contains 3 variables,
and each of them is in at most 4 clauses, ∆(GC) ≤ 12

⌈
n1/3⌉. It follows that in polynomial

time we can find a proper coloring β of the vertices of GC into at most 12
⌈
n1/3⌉+ 1 colors.

Moreover, if for any color j its color class β−1(j) is larger than
⌈
n2/3⌉ we partition it into⌈

|β−1(j)|/
⌈
n2/3⌉⌉ new colors. Clearly, in total we produce at most 4

3
⌈
n1/3⌉ new colors in

this way because m ≤ 4
3n ≤

4
3
⌈
n1/3⌉ · ⌈n2/3⌉. Hence, in what follows we assume that each

color class of β is of size at most
⌈
n2/3⌉, and the total number of colors s ≤ 14

⌈
n1/3⌉+ 1. In

what follows we construct s clusters Q1, . . . , Qs. Every clause C ∈ Cl is going to correspond
to a pair of vertices in the cluster Qβ(C).

Fix i = 1, . . . , s. Let us describe the subgraph induced by cluster Qi. Define cluster
conflict graph Gi = (β−1(i), EGi). Two different clauses C1, C2 ∈ β−1(i) are adjacent in Gi if
there are three variables x1, x2, and x3 such that (i) C1 contains x1, (ii) C2 contains x2, (iii)
(lay(x1), up(x1)) = (lay(x3), up(x3)) and (iv) mid(x2) = mid(x3). Fix a variable x1 which
appears in a clause C1 ∈ β−1(i). By our construction, there are at most

⌈
n1/3⌉+ 2 other

variables x3 that map to the same pair as x1 by functions lay and up. For each such x3
there are at most

⌈
n1/3⌉ variables x2 such that mid(x2) = mid(x3); however, at most one of

these variables belongs to a clause C2 from the same cluster β−1(i), by the definition of the
coloring β. It follows that ∆(Gi) ≤ 12(

⌈
n1/3⌉+ 2). Hence in polynomial time we can find

a proper coloring γi of the vertices of Gi into at most 12(
⌈
n1/3⌉+ 2) + 1 colors. Similarly

as in the case of the coloring β, we can assume that each of the color classes of γi has at
most

⌈
n1/3⌉ clauses, at the expense of at most

⌈
n1/3⌉ additional colors. It follows that we

can construct in polynomial time a function g : Cl → [
⌈
n1/3⌉] such that for every cluster

i = 1, . . . , s and for every color class S of γi g is injective on S. Let ni ≤ 13
⌈
n1/3⌉ + 25

be the number of colors used by γi. For notational convenience, let us define a function
γ : Cl→ [maxi ni] such that for any clause C we have γ(C) = γβ(C)(C).

We are ready to define the vertices and edges of Qi. It is a union of three disjoint vertex
sets Ai, Bi, and Ci. We have Ai = {ai,j : j = 1, . . . ,

⌈
n1/3⌉}, Bi = {bki,j : j = 1, . . . , ni, k =

1, 2, 3}, and Ci = {ci,j : j = 1, . . . , ni}. For every j = 1, . . . , ni and for every k = 1, 2, 3 we
add edge ci,jbki,j to G, and we color it by c0 to color F . (These are the only edges pre-colored
in the whole graph G.) For every clause C ∈ β−1(i) we do the following. For each k = 1, 2, 3,
add the edge (ai,g(C), b

k
i,γ(C)) to G. Finally, add the pair {ai,g(C), ci,γ(C)} to S. Clearly, the

following holds:
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Variable Gadget Clause Gadget
(one of O(n1/3) clusters)

O(n1/3) O(n1/3) O(n1/3)

O(n1/3) O(n1/3) O(n1/3) O(n1/3)

O(n1/3)

O(n1/3)O(n2/3)

Figure 2 A simplified view of the obtained instance. Edges (solid lines) and requests (dashed
lines) representing one variable and one clause that contains this variable are presented on the
picture.

(P5) Let C be any clause. Let i = β(C) and let j = g(C). Then there are exactly three
2-paths between aβ(C),g(C) and cβ(C),γ(C), each going through bkβ(C),γ(C) for k = 1, 2, 3.

Connections between the two parts. Consider a clause C = {`1, `2, `3} and its k-th literal
`k for each k = 1, 2, 3. Then for some variable x we have `k = x or `k = x̄. We add the edge
bkβ(C),γ(C)mid(x) and we add the pair {mid(x), aβ(C),g(C)} to S. If `k = x, we also add the
pair {bkβ(C),γ(C), ulay(x),up(x)} to S; otherwise we add the pair {bkβ(C),γ(C), llay(x),low(x)} to S.
We claim the following.
(P6) Every edge between the two parts was added exactly once, i.e., for every edge uv such

that u is in the clause part and v is in the variable part, there is exactly one clause C
and exactly one literal `k ∈ C such that u = bkβ(C),γ(C) and v = mid(x), where x is the
variable in `k.

Indeed, assume for a contradiction that there is a clause C1 with its k1-th literal containing
x1 and a clause C2 with its k2-th literal containing x2 such that bk1

β(C1),γ(C1) = bk2
β(C2),γ(C2)

and mid(x1) = mid(x2). Then C1 6= C2 by (P1). Since mid(x1) = mid(x2), C1 and C2 are
adjacent in the clause conflict graph GC . It follows that β(C1) 6= β(C2), so two different
clusters share a vertex, a contradiction.

This finishes the description of the instance (G,S, c0). (See Fig. 2.)

From an assignment to a coloring. Let ξ : Var→ {T, F} be a satisfying assignment of ϕ.
We claim that there is a coloring c of E(G) which extends c0 and satisfies all pairs in S. We
define c as follows. Denote F = T , T = F and ξ(x) = ξ(x). For every variable x ∈ Var we
put c(ulay(x),up(x)mid(x)) = ξ(x) and c(mid(x)llay(x),low(x)) = ξ(x). By (P3) and (P4) each
edge is colored exactly once. Note that it satisfies all the pairs in S between vertices in the
variable part.

For each clause C and each of its literals `k do the following. Let us color the edge
aβ(C),g(C)b

k
β(C),γ(C) with the color ξ(`k). Since g is injective on color classes of γβ(C), after

processing all the literals in all the clauses, no edge is colored more than once. Recall that
for every clause C we added exactly one pair to S, namely {aβ(C),g(C), cβ(C),γ(C)}. Pick any
of C’s satisfied literals, say `k. Note that the pair {aβ(C),g(C), cβ(C),γ(C)} is then satisfied,
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because edge aβ(C),g(C)b
k
β(C),γ(C) is colored by T and bkβ(C),γ(C)cβ(C),γ(C) is colored by F .

Hence all the pairs in S between vertices in the clause part are satisfied.
Now let us color the edges between the clause part and the variable part. Consider any

such edge uv, i.e., u is in the clause part and v is in the variable part. By (P6), there is
exactly one clause C and exactly one literal `k ∈ C such that u = bkβ(C),γ(C) and v = mid(x),
where x is the variable in `k. Color the edge bkβ(C),γ(C)mid(x) with the color ξ(`k). Then
the pair {mid(x), aβ(C),g(C)} is satisfied by the path (mid(x), bkβ(C),γ(C), aβ(C),g(C)), since
c(bkβ(C),γ(C)aβ(C),g(C)) = ξ(`k). Assume `k = x. Then the pair {bkβ(C),γ(C), ulay(x),up(x)}
is satisfied by the path (bkβ(C),γ(C),mid(x), ulay(x),up(x)), since its first edge is colored by
ξ(`k) = ξ(x) and its second edge is colored by ξ(x). Analogously, when `k = x̄, then the
pair {bkβ(C),γ(C), llay(x),low(x)} is satisfied by the path (bkβ(C),γ(C),mid(x), llay(x),low(x)), since
its first edge is colored by ξ(`k) = ξ(x) and its second edge is colored by ξ(x).

It follows that we colored all the edges and all the pairs in S are satisfied, so (G,S, c0) is
a YES-instance, as required.

From a coloring to an assignment. Let c : E(G)→ {T, F} be a coloring which extends c0
and satisfies all pairs in S. Consider the following variable assignment: for every x ∈ Var,
we put ξ(x) = c(ulay(x),up(x)mid(x)). We claim that ξ satisfies all the clauses of ϕ. Consider
an arbitrary clause C = {`1, `2, `3}.

Since the pair {aβ(C),g(C), cβ(C),γ(C)} is satisfied, there is a 2-color 2-path P between
aβ(C),g(C) and cβ(C),γ(C). Recall that N(cβ(C),γ(C)) = {bkβ(C),γ(C) : k = 1, 2, 3}, so there
is k = 1, 2, 3 such that bkβ(C),γ(C) is the internal vertex on P . Since c extends c0 and
c0(bkβ(C),γ(C)cβ(C),γ(C)) = F , we infer that c(aβ(C),g(C)b

k
β(C),γ(C)) = T . Let x be the variable

in the literal `k.
Since the pair {mid(x), aβ(C),g(C)} is satisfied, there is a 2-color 2-path Q between

mid(x) and aβ(C),g(C). Then the internal vertex of Q is bk′β(C′),γ(C′), for some clause C ′
and integer k′ = 1, 2, 3. Let y be the variable in the k′-th literal of C ′. Since there is an
edge between mid(x) and bk′β(C′),γ(C′), from (P6) we infer that mid(y) = mid(x). If C = C ′

and k′ 6= k, then by (P1) we get that mid(x) 6= mid(y), a contradiction. If C 6= C ′, since
mid(y) = mid(x), the clauses C and C ′ are adjacent in the clause conflict graph GC , so
β(C ′) 6= β(C). However, then the edge bk′β(C′),γ(C′)aβ(C),g(C) of Q goes between two clusters,
a contradiction. Hence C ′ = C and k′ = k, i.e., Q = (mid(x), bkβ(C),γ(C), aβ(C),g(C)). Since
c(bkβ(C),γ(C)aβ(C),g(C)) = T , we get c(mid(x)bkβ(C),γ(C)) = F . Now assume w.l.o.g. that
`k = x, the case `k = x̄ is analogous.

Since the pair {bkβ(C),γ(C), ulay(x),up(x)} is satisfied, there is a 2-color 2-path R between
bkβ(C),γ(C) and ulay(x),up(x). Then the internal vertex z of R belongs to M . By (P6) there is a
literal `k which belongs to a clause C2 and contains a variable x2 such that z = mid(x2) and
bkβ(C),γ(C) = bkβ(C2),γ(C2). In particular, β(C) = β(C2) and γ(C) = γ(C2). Assume C2 6= C.
There is a variable, say x3, corresponding to edge mid(x2)ulay(x),up(x), i.e., mid(x2) = mid(x3)
and ulay(x),up(x) = ulay(x3),up(x3). It follows that C and C2 are adjacent in Gβ(C), which
contradicts the fact that γ(C) = γ(C2). Hence C2 = C, i.e., there is exactly one 2-path
between bkβ(C),γ(C) and ulay(x),up(x), and it goes through mid(x). Since c(mid(x)bkβ(C),γ(C)) =
F and the path is 2-color, we get that c(ulay(x),up(x)mid(x)) = T . Hence ξ(`k) = ξ(x) = T ,
so clause C is satisfied, as required.

It finishes the proof. (The analysis of the size of the resulting instance and its other
properties described in the claim is not immediate; because of the space constraints we skip
them here.) J
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The proof of the following lemma is non-trivial, but standard (see lemmas 4 and 5 in the
full version [17].)

I Lemma 9 (F). For any fixed k ≥ 2, there is a polynomial time algorithm which given an
instance I = (G = (V,E), S, c0) of Subset Rainbow 2-Coloring Extension constructs
an equivalent instance (G′ = (V ′, E′), S′) of Subset Rainbow k-Coloring such that |V ′| =
O(k|V |k2`), |E′| = |E|+O(k|V |)+|Dom(c0)|+O(k2`), |S′| = |S|+|E|+2|Dom(c0)|+O(k2`).
Let GS = (V, S) and GS′ = (V ′, S′). Then ∆(GS′) = O(∆(GS) + ∆(G) + |Dom(c0)|/`).
Moreover if we are given a proper vertex p-coloring of the graph GS = (V, S) then we can
output also a proper vertex (p+ 3)-coloring of the graph GS′ = (V ′, S′).

2.3 From Subset Rainbow k-Coloring to Rainbow k-Coloring
The basic idea of our reduction from Subset Rainbow k-Coloring to Rainbow k-
Coloring is to modify the graph so that the pairs of vertices from Ē \ S can be somehow
trivially satisfied, without affecting the satisfiability of S. To this end we use a notion of
biclique covering number (called also bipartite dimension). The biclique covering number
bc(G) of a graph G is the smallest number of biclique subgraphs of G that cover all edges of
G. The following proposition is well-known.

I Proposition 10 (Folklore). It holds that bc(Kn) = dlogne, and the corresponding cover
can be constructed in polynomial time.

Proof. Assume V (Kn) = {0, . . . , n−1}. The i-th biclique contains edges between the vertices
that have 0 at the i-th bit and the vertices that have 1 at the i-th bit. J

Let G = (V1, V2, E) be a bipartite graph. Then Ĝ denotes the bipartite complement of G,
i.e, the bipartite graph (V1, V2, {v1v2 : v1 ∈ V1, v2 ∈ V2, and v1v2 6∈ E}). We will use the
following result of Jukna. Recall that we denote ∆1(G) = max{∆(G), 1}.

I Theorem 11 (Jukna [16]). If G is an n-vertex bipartite graph, then bc(Ĝ) = O(∆1(G) logn).

Let us call the cover from Theorem 11 the Jukna cover. In our application we need to be
able to compute the Jukna cover fast.

I Lemma 12. The Jukna cover can be constructed in (i) expected polynomial time, or (ii)
deterministic 2nnO(1) time.

Proof. Denote ∆ = ∆(G). If ∆ = 0 the claim follows from Proposition 10, so in what
follows assume ∆ ≥ 1. Jukna [16] shows a simple worst-case linear time algorithm which
samples a biclique in G. Then it is proved that after sampling t bicliques, the probability
that there is an edge not covered by one of the bicliques is at most n2e−t/(∆e). It follows
that the probability that more than ∆e(2 lnn + 1) samples are needed is at most e−1. If
after ∆e(2 lnn + 1) samples some edges is not covered, we discard all the bicliques found
and repeat the whole algorithm from the scratch. The expected number of such restarts is
1/(1− e−1) = O(1).

Now we proceed to the second part of the claim. Let G = (V1, V2, E). For every subset
A ⊆ V1 we define the biclique BA = (A,B,EA), where B is the set of vertices of V2 adjacent
in Ĝ to all vertices of A. Clearly, BA is a subgraph of Ĝ and for every subset A ⊆ V1 it can
be found in time linear in the size of Ĝ. Our deterministic algorithm works as follows: as
long as not all edges of Ĝ are covered, it picks the biclique BA which maximizes the number
of new covered edges of Ĝ. Since all the bicliques in the set {BA : A ⊆ V1} can be listed
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in time O(2n|E(Ĝ)|), the total running time is t2nnO(1), where t is the size of the returned
cover. It suffices to show that t = O(∆ logn).

Jukna [16] shows that if set A is chosen by picking every vertex of V1 independently with
probability 1

∆ , then for any edge uv ∈ E(Ĝ), Pr[uv ∈ EA] ≥ 1
∆e . Consider any step of our

algorithm and let R ⊆ E(Ĝ) be the set of the edges of Ĝ which are not covered yet. By the
bound on Pr[uv ∈ EA] and the linearity of expectation a set A sampled as described above
covers at least |R|/(∆e) new edges in expectation. In particular, it implies that there exists
a set A ⊆ V1 that covers at least |R|/(∆e) new edges. Let α = (1− 1

∆e )−1. By the Taylor
expansion of log(1−x), it follows that t = O(logα |E(Ĝ)|) = O(logn/ logα) = O(∆ logn). J

I Lemma 13. Let G be an n-vertex graph with a given proper vertex p-coloring. Then the
edges of Ḡ can be covered by O(p2∆1(G) logn) bicliques from Ḡ so that any edge of G and
any biclique have at most one common vertex. This cover can be constructed in (i) expected
polynomial time, or (ii) deterministic 2nnO(1) time.

Proof. The edges of Ḡ between the vertices of any color class form a clique, so by Proposi-
tion 10 we can cover its edges using O(logn) bicliques. If an edge of G has both endpoints in
such a biclique, these endpoints have the same color, contradiction. For two different colors i
and j the edges of G between their color classes form a bipartite graph of maximum degree
at most ∆(G). Hence by Lemma 12 we can cover the edges of its bipartite complement using
O(∆1(G) logn) bicliques. If an edge uv of G has both endpoints in such a biclique, then either
(i) these endpoints have the same color, contradiction, or (ii) these endpoints belong to two
different parts of the biclique, so uv is in the biclique and hence uv ∈ E(Ḡ), a contradiction.
Summing over all color classes and pairs of color classes, we use O(p2∆1(G) logn) bicliques,
as required. J

Now we proceed to the actual reduction.

I Lemma 14. Given an instance (G = (V,E), S) of Subset Rainbow 2-Coloring
together with a proper p-coloring of the graph GS = (V, S), one can construct an equivalent
instance G′ of Rainbow 2-Coloring such that |V (G′)| = O(|V | + kp2∆1(GS) log |V |),
|E(G′)| = O(|E(G)|+(|V |+p2∆1(GS) log |V |)·p2∆1(GS) log |V |). The construction algorithm
can run in (i) expected polynomial time, or (ii) deterministic 2|V ||V |O(1) time.

Proof. Here we focus on the k = 2 case. The k ≥ 3 case is significantly more technical — see
the details in the full version. Let us consider a biclique covering of the complement of the
graph GS with q = O(p2∆1(GS) logn) bicliques (U1, V1;E1), (U2, V2;E2), . . . , (Uq, Vq;Eq)
as in Lemma 13. Let W = {w1, w2, . . . , wq}, T = {t1, t2, t3}, V (G′) = V ∪ W ∪ T and
E(G′) = E(G)∪(W×W )∪(T×T )∪({t2}×W )∪({t3}×(V ∪W ))∪

(⋃
1≤i≤q{wi} × (Ui ∪ Vi)

)
(we abuse the notation assuming that × operator returns unordered pairs minus loops).
Because of the space limitation the equivalence proof is deferred to the full version. J

2.4 Putting everything together
By pipelining lemmas 7, 8, and 9 we get the following corollary.

I Corollary 15. Fix k ≥ 2. Given a 3-SAT formula ϕ with m clauses one can construct in
polynomial time an equivalent instance (G = (V,E), S) of Subset Rainbow k-Coloring
such that |V | = O(m2/3), |E| = O(m), ∆((V, S)) = O(m1/3), and the graph GS = (V, S) is
O(1)-colorable.
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Note that in Corollary 15 we have |S| = |V |∆((V, S)) = O(m). It follows that the
Sparsification Lemma (Lemma 6) and Corollary 15 imply Theorem 3.

Pipelining Corollary 15 and Lemma 14 gives the following corollary.

I Corollary 16. Fix k ≥ 2. Given a 3-SAT formula ϕ with O(m) clauses one can construct an
equivalent instance G of Rainbow k-Coloring with O(m2/3) vertices and O(m logm) edges.
The construction algorithm can run in (i) expected polynomial time, or (ii) deterministic
2O(m2/3) time.

Again, the above and the Sparsification Lemma immediately imply Theorem 2.

3 Algorithms for Subset Rainbow k-Coloring

In this section we study FPT algorithms for Subset Rainbow k-Coloring parameterized
by |S|. We provide two such algorithms, based on different approaches: one for k = 2 case,
and one (slightly slower) for the general case. Consider an instance (G,S) of the Subset
Rainbow k-Coloring problem. Note that we can assume that S ⊆ Ē, since any constraint
{u, v} ∈ E is satisfied in every edge coloring. Moreover, we say that a pair {u, v} is feasible
when the distance between u and v is at most k. The set of all feasible pairs is denoted
by F (G). Clearly, when S contains a request which is not feasible, then (G,S) is a trivial
NO-instance. Hence, throughout this section we assume S ⊆ Ē ∩ F (G).

3.1 The k = 2 case
For any X ⊆ S let PX be the set of all 2-edge paths between the pairs of vertices in X.
Denote E(PX) =

⋃
P∈PX E(P ). For two edges e1, e2 ∈ E(G) we say that e1 and e2 are linked

by X, denoted as e1 ∼X e2 when there are two paths P1, P2 ∈ PX (possibly P1 = P2) such
that e1 ∈ E(P1), e2 ∈ E(P2) and E(P1) ∩ E(P2) 6= ∅. Let ≈X be the transitive closure of
∼X . Then ≈X is an equivalence relation. Recall that E(G)/ ≈X denotes the quotient set of
the relation ≈X . The main observation of this section is the following theorem.

I Theorem 17. The number of 2-colorings of E(G) that satisfy all the pairs in S is equal to∑
X⊆S(−1)|X|2|E(G)/≈X |.

In the proof we make use of the well-known inclusion-exclusion principle. Below we state
it in the intersection version (see, e.g., [10])

I Theorem 18 (Inclusion–exclusion principle, intersection version). Let A1, . . . , An ⊆ U , where
U is a finite set. Denote

⋂
i∈∅(U \Ai) = U . Then∣∣ ⋂

i∈[n]

Ai
∣∣ =

∑
X⊆[n]

(−1)|X|
∣∣ ⋂
i∈X

(U \Ai)
∣∣.

Proof of Theorem 17. Let us define, for every pair {u, v} ∈ S (say, u < v), the set Au,v of
2-edge colorings of G that satisfy {u, v}. Note that the number of rainbow 2-colorings of G
that satisfy all the pairs in S is equal to |

⋂
{u,v}∈S Au,v|. By Theorem 18 it suffices to show

that, for any subset X ⊆ S, the number #X of 2-colorings such that none of the pairs in X
is satisfied, equals 2|E(G)/≈X |.

Fix any coloring c that does not satisfy any pair from X. Then every path from PX has
both edges of the same color. Hence, for two edges e1, e2 ∈ E(G), if e1 ∼X e2 then e1 and e2
are colored by c with the same color. It follows that for any equivalence class A of ≈X , all
edges of A are have the same color in c. This proves that #X ≤ 2|E(G)/≈X |.
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For every function c0 : (E(G)/ ≈X)→ {1, 2} we can define the coloring c : E(G)→ {1, 2}
by putting c(e) = c0([e]≈X ) for every edge e ∈ E(G). (Note that the edges that do not belong
to any path in PX form singleton equivalence classes.) Then, c does not satisfy any pair from
X, because if some pair {u, v} is satisfied then there is a 2-color path uxv; but ux ∼X xv, so
[ux]≈X = [xv]≈X and c(ux) = c(xv), a contradiction. It follows that #X ≥ 2|E(G)/≈X |. J

Since it is a standard exercise to compute the relation X ⊆ S in O(|E|+ |S| · |V |) time
(see the full version), we get the following corollary. (Let us remark here that the algorithm
from Corollary 19 only decides whether the coloring exists, without finding it. However, by a
minor modification of the algorithm it can construct the coloring; see the full version.)

I Corollary 19. For any graph G = (V,E) and a set of requests S the number of 2-colorings
of E that satisfy all the pairs in S can be computed in O(2|S|(|E| + |S| · |V |)) time and
polynomial space. In particular, Subset Rainbow 2-Coloring can be decided within the
same time.

3.2 The general case
In this section we use partial colorings. For convenience, a partial coloring is represented
as a function c : E → [k] ∪ {⊥}, where the value ⊥ corresponds to an uncolored edge. By
Dom(c) we denote the domain of the corresponding partial function, i.e., Dom(c) = c−1([k]).
The partial coloring which does not color anything, i.e., is constantly equal to ⊥ is denoted
by c⊥.

For a graph G = (V,E) consider a partial edge coloring c : E → [k] ∪ {⊥}. A guide
function is any function of the form f : S →

(Dom(c)
≤k

)
, i.e., any function that assigns sets of

at most k colored edges to all requests in S. A constant guide function equal to ∅ for every
request in S is denoted by gS,∅. Pick any pair {u, v} ∈ S. We say that a walk W connecting
u and v is f -guided if every color appears at most once onW , and f({u, v}) ⊆ E(W ). We say
that a coloring c is (f, S)-rainbow when for every pair {u, v} ∈ S there is an f -guided walk
between u and v. Note that (G,S) is a YES-instance of Subset Rainbow k-Coloring iff
there is an (gS,∅, S)-rainbow coloring. Indeed, every rainbow walk contains a rainbow path.

The following lemma is going to be useful in our branching algorithm.

I Lemma 20. Let G = (V,E) be a graph, and let S be a set of requests. Let c0 : E → [k]
be a partial edge coloring and let f : S →

(Dom(c0)
≤k

)
be a guide function. Then, given a pair

{u, v} ∈ S in time 2knO(1) one can find an f -guided u-v walk of length at most k, if it exists.

Proof. The algorithm is as follows. We can assume that f({u, v}) does not contain two edges
of the same color, for otherwise the requested walk does not exist. For every e ∈ f({u, v})
we remove all the edges of color c0(e). Next, we put back edges of f({u, v}). Then it
suffices to find in the resulting graph G′ any u-v path of length at most k and with no
repeated colors that visits all the colors of the edges in f({u, v}). This is done using dynamic
programming. For every vertex x ∈ V , subset X ⊆ [k] and integer ` = 0, . . . , k we find the
boolean value T [x,X, `] which is true iff there is a u-x walk of length ` which does not repeat
colors and visits all the colors from X, but not more. We initialize T [u, ∅, 0] = true and
T [x, ∅, 0] = false for every x 6= u. Next we iterate through the remaining triples (x,X, `), in
the nondecreasing order of ` and X’s cardinalities. The value of T [x,X, `] is then computed
using the formula

T [x,X, `] =
∨

yx∈c−1
0 (X∪{⊥})∩E(G′)

T [y,X \ {c0(yx)}, `− 1].
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Pseudocode 1: FindColoring(S0, c0, f)
1 if S0 = ∅ then
2 return c0

3 if for some r ∈ S0 there are edges e1, e2 ∈ f(r) with c0(e1) = c0(e2) then
4 return null

5 Pick any {u, v} ∈ S0;
6 Find any f -guided u-v walk W of length at most k using Lemma 20;
7 if W does not exist then
8 return null

9 Let c1 be obtained from c0 by coloring the uncolored edges of W to get a rainbow walk;
10 if FindColoring(S0 \ {u, v}, c1, f |S0\{u,v}) 6= null then return the coloring found;
11 for e ∈ E(W ) \ Dom(c0) do
12 for α ∈ [k] do
13 for r ∈ S0 \ {{u, v}} do
14 Let ce,α be obtained from c0 by coloring e with α;
15 Let fe,r be obtained from f by putting f(r) := f(r) ∪ {e};
16 if FindColoring(S0, ce,α, fe,r) 6= null then return the coloring found;

17 return null

The requested walk exists iff T [v,X, `] = true for any ` = 0, . . . , k and X such that
c0(f({u, v})) ⊆ X. The walk is retrieved using standard DP methods. J

Now we are ready to describe our branching algorithm. Let (G = (V,E), S) be the input
instance. Our algorithm consists of a recursive procedure FindColoring which gets three
parameters: S0 (a set of requests), c0 : E → [k] ∪ {⊥} (a partial coloring), and a guide
function f : S →

(Dom(c0)
≤k

)
. It is assumed that for every request r ∈ S, every pair of different

edges e1, e2 ∈ f(r) is colored differently by c0. The goal of the procedure FindColoring is
to find an (f, S0)-rainbow coloring c : E → [k] which extends c0. Thus the whole problem is
solved by invoking FindColoring(S, c⊥, gS,∅). A rough description of FindColoring is
as follows. We pick any pair {u, v} ∈ S0 and we find any f -guided u-v walk W of length at
most k using Lemma 20. Let c1 be obtained from c0 by coloring the uncolored edges of W to
get a rainbow walk. If FindColoring(S0 \ {u, v}, c1, f |S0\{u,v}) returns a coloring, we are
done. But if no such coloring exists then we know that we made a wrong decision: coloring
some of the uncolored edges e of W into c1(e) (instead of some color α) makes some other
request r ∈ S0 \ {{u, v}} impossible to satisfy. For every possible triple (e, α, r) we invoke
FindColoring with the same set of requests S0, partial coloring c0 extended by coloring e
with α, and the guide function f extended by putting f(r) := f(r) ∪ {e}.

A precise description of procedure FindColoring can be found in Pseudocode 1. The
following lemma proves its correctness.

I Lemma 21. Procedure FindColoring invoked with parameters (S0, c0, f) finds an (f, S0)-
rainbow coloring c : E → [k] which extends c0, whenever it exists.

Proof. The proof is by induction on the sum of |S0| and the number of uncolored edges. It
is clear that if |S0| = 0 or all the edges are colored then the algorithm behaves correctly. In
the induction step, the only non-trivial thing to check is whether any of the calls in lines 10
or 16 returns a coloring, provided that there is a solution, i.e., an (f, S0)-rainbow coloring
c : E → [k] which extends c0. Assume that no coloring is returned in Line 16. Then for every
edge e ∈ E(W ) \Dom(c0), and request r ∈ S0 \ {{u, v}} coloring c is not a (fe,r, S0)-rainbow
coloring, for otherwise the call FindColoring(S0, ce,c(e), fe,r) returns a coloring. If follows
that for every edge e ∈ E(W ) \Dom(c0) and request r ∈ S0 \ {{u, v}} the walk that realizes



Ł. Kowalik, J. Lauri, and A. Socała 58:15

the request r in the coloring c does not contain e. Hence, the following coloring

c′(e) =
{
c(e) if e 6∈ E(W ),
c1(e) if e ∈ E(W ).

is another (f, S0)-rainbow coloring, and it extends c1. It follows that the call in Line 10
returns a coloring, as required. J

I Theorem 22. For every integer k, there is an FPT algorithm for Subset Rainbow k-
Coloring parameterized by |S|. The algorithm runs in time (k2|S|)k|S|2knO(1), in particular
in |S|O(|S|)nO(1) time for every fixed k.

Proof. By Lemma 21 Subset Rainbow k-Coloring is solved by invoking FindColoring(
S, c⊥, gS,∅). Note that whenever we go deeper in the recursion either some request of S0 gets
satisfied, or |f(r)| increases for some r ∈ S0. When |f(r)| increases to k+1, the corresponding
recursive call returns null immediately (because the condition in Line 3 holds). It follows
that the depth of the recursion is at most |S|k. Since in every call of Subset Rainbow
k-Coloring the algorithm uses time 2knO(1) (by Lemma 21) and branches into at most
1 + k2(|S| − 1) ≤ k2|S| recursive calls, the total time is (k2|S|)k|S|2knO(1), as required. J

4 Further Work

We believe that this work only initiates the study of fine-grained complexity of variants
of Rainbow k-Coloring. In particular, many open questions are still unanswered. The
ultimate goal is certainly to get tight bounds. We pose the following two conjectures.

I Conjecture 23. For any integer k ≥ 2, there is no 2o(|E|)nO(1)-time algorithm for Rainbow
k-Coloring, unless ETH fails.

I Conjecture 24. For any integer k ≥ 2, there is no 2o(n2)nO(1)-time algorithm for Rainbow
k-Coloring, unless ETH fails.

Note that in this work we have settled Conjecture 23 for Subset Rainbow k-Coloring,
and for Rainbow k-Coloring we showed a slightly weaker, 2o(|E|/ log |E|)nO(1) bound.
However, avoiding this log |E| factor seems to constitute a considerable technical challenge.

In this paper we gave two algorithms for Subset Rainbow k-Coloring parameterized
by |S|, one working in 2|S|nO(1) time for k = 2 and another, working in time |S|O(|S|)nO(1)

for every fixed k. We conjecture that there exists an algorithm running in time 2O(|S|)nO(1)

for every fixed k.
Finally, we would like to propose yet another parameterization of Rainbow k-Coloring.

Assume we are given a graph G = (V,E) and a subset of vertices S ⊆ V . In the Steiner
Rainbow k-Coloring problem the goal is to determine whether there is a rainbow k-coloring
such that every pair of vertices in S is connected by a rainbow path. By our Theorem 2,
Steiner Rainbow k-Coloring has no algorithm running in time 2o(|S|3/2), under ETH.
On the other hand, our algorithm for Subset Rainbow k-Coloring implies that Steiner
Rainbow k-Coloring parameterized by |S| admits an FPT algorithm with running time
of 2O(|S|2 log |S|)nO(1). It would be interesting make the gap between these bounds smaller.
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