
43rd International Symposium on
Mathematical Foundations of
Computer Science

MFCS 2018, August 27-31, 2018, Liverpool, United Kingdom

Edited by

Igor Potapov
Paul Spirakis
James Worrell

LIPIcs – Vo l . 117 – MFCS 2018 www.dagstuh l .de/ l ip i c s

Editors
Igor Potapov Paul Spirakis
Department of Computer Science Department of Computer Science
University of Liverpool University of Liverpool
Potapov@liverpool.ac.uk P.Spirakis@liverpool.ac.uk

James Worrell
Department of Computer Science
University of Oxford
jbw@cs.ox.ac.uk

ACM Classification 2012
Theory of computation

ISBN 978-3-95977-086-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-086-6.

Publication date
August, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.MFCS.2018.0

ISBN 978-3-95977-086-6 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-086-6
http://www.dagstuhl.de/dagpub/978-3-95977-086-6
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-086-6
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Christel Baier (TU Dresden)
Javier Esparza (TU München)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

MFCS 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Igor Potapov, Paul Spirakis, and James Worrell . 0:xi–0:xii

Regular Papers

Consensus Strings with Small Maximum Distance and Small Distance Sum
Laurent Bulteau and Markus L. Schmid . 1:1–1:15

Plain Stopping Time and Conditional Complexities Revisited
Mikhail Andreev, Gleb Posobin, and Alexander Shen . 2:1–2:12

Error-Tolerant Non-Adaptive Learning of a Hidden Hypergraph
Hasan Abasi . 3:1–3:15

From Expanders to Hitting Distributions and Simulation Theorems
Alexander Kozachinskiy . 4:1–4:15

Balance Problems for Integer Circuits
Titus Dose . 5:1–5:16

On Hadamard Series and Rotating Q -Automata
Louis-Marie Dando and Sylvain Lombardy . 6:1–6:14

One-Sided Error Communication Complexity of Gap Hamming Distance
Egor Klenin and Alexander Kozachinskiy . 7:1–7:15

Online Maximum Matching with Recourse
Spyros Angelopoulos, Christoph Dürr, and Shendan Jin . 8:1–8:15

Linking Focusing and Resolution with Selection
Guillaume Burel . 9:1–9:14

Team Semantics for the Specification and Verification of Hyperproperties
Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann 10:1–10:16

Consistency for Counting Quantifiers
Florent R. Madelaine and Barnaby Martin . 11:1–11:13

The b-Branching Problem in Digraphs
Naonori Kakimura, Naoyuki Kamiyama, and Kenjiro Takazawa 12:1–12:15

Pairing heaps: the forward variant
Dani Dorfman, Haim Kaplan, László Kozma, and Uri Zwick . 13:1–13:14

Simultaneous Multiparty Communication Protocols for Composed Functions
Yassine Hamoudi . 14:1–14:15

Sliding Windows over Context-Free Languages
Moses Ganardi, Artur Jeż, and Markus Lohrey . 15:1–15:15

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:vi Contents

Average Case Analysis of Leaf-Centric Binary Tree Sources
Louisa Seelbach Benkner and Markus Lohrey . 16:1–16:15

Expressive Power, Satisfiability and Equivalence of Circuits over Nilpotent
Algebras

Paweł M. Idziak, Piotr Kawałek, and Jacek Krzaczkowski . 17:1–17:15

Lagrange’s Theorem for Binary Squares
P. Madhusudan, Dirk Nowotka, Aayush Rajasekaran, and Jeffrey Shallit 18:1–18:14

A Two-Sided Error Distributed Property Tester For Conductance
Hendrik Fichtenberger and Yadu Vasudev . 19:1–19:15

Graph Similarity and Approximate Isomorphism
Martin Grohe, Gaurav Rattan, and Gerhard J. Woeginger . 20:1–20:16

Finding Short Synchronizing Words for Prefix Codes
Andrew Ryzhikov and Marek Szykuła . 21:1–21:14

Quantum vs. Classical Proofs and Subset Verification
Bill Fefferman and Shelby Kimmel . 22:1–22:23

Timed Network Games with Clocks
Guy Avni, Shibashis Guha, and Orna Kupferman . 23:1–23:18

Hardness Results for Consensus-Halving
Aris Filos-Ratsikas, Søren Kristoffer Stiil Frederiksen, Paul W. Goldberg, and
Jie Zhang . 24:1–24:16

Maximum Rooted Connected Expansion
Ioannis Lamprou, Russell Martin, Sven Schewe, Ioannis Sigalas, and Vassilis
Zissimopoulos . 25:1–25:14

Interactive Proofs with Polynomial-Time Quantum Prover for Computing the
Order of Solvable Groups

François Le Gall, Tomoyuki Morimae, Harumichi Nishimura, and Yuki Takeuchi . 26:1–26:13

On the Complexity of Team Logic and Its Two-Variable Fragment
Martin Lück . 27:1–27:22

A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors
Andrea Clementi, Mohsen Ghaffari, Luciano Gualà, Emanuele Natale,
Francesco Pasquale, and Giacomo Scornavacca . 28:1–28:15

Recovering Sparse Graphs
Jakub Gajarský and Daniel Král’ . 29:1–29:15

Average-Case Polynomial-Time Computability of Hamiltonian Dynamics
Akitoshi Kawamura, Holger Thies, and Martin Ziegler . 30:1–30:17

Generalized Budgeted Submodular Set Function Maximization
Francesco Cellinese, Gianlorenzo D’Angelo, Gianpiero Monaco, and Yllka Velaj . . 31:1–31:14

Contents 0:vii

Complexity of Preimage Problems for Deterministic Finite Automata
Mikhail V. Berlinkov, Robert Ferens, and Marek Szykuła . 32:1–32:14

The Complexity of Disjunctive Linear Diophantine Constraints
Manuel Bodirsky, Barnaby Martin, Marcello Mamino, and Antoine Mottet 33:1–33:16

Give Me Some Slack: Efficient Network Measurements
Ran Ben Basat, Gil Einziger, and Roy Friedman . 34:1–34:16

Spanning-Tree Games
Dan Hefetz, Orna Kupferman, Amir Lellouche, and Gal Vardi 35:1–35:16

Faster Exploration of Degree-Bounded Temporal Graphs
Thomas Erlebach and Jakob T. Spooner . 36:1–36:13

Approximating Dominating Set on Intersection Graphs of Rectangles and L-frames
Sayan Bandyapadhyay, Anil Maheshwari, Saeed Mehrabi, and Subhash Suri 37:1–37:15

On Efficiently Solvable Cases of Quantum k-SAT
Marco Aldi, Niel de Beaudrap, Sevag Gharibian, and Seyran Saeedi 38:1–38:16

Balanced Connected Partitioning of Unweighted Grid Graphs
Cedric Berenger, Peter Niebert, and Kevin Perrot . 39:1–39:18

Concurrent Games and Semi-Random Determinacy
Stéphane Le Roux . 40:1–40:15

Low Rank Approximation of Binary Matrices: Column Subset Selection and
Generalizations

Chen Dan, Kristoffer Arnsfelt Hansen, He Jiang, Liwei Wang, and Yuchen Zhou . 41:1–41:16

Optimal Strategies in Pushdown Reachability Games
Arnaud Carayol and Matthew Hague . 42:1–42:14

Why are CSPs Based on Partition Schemes Computationally Hard?
Peter Jonsson and Victor Lagerkvist . 43:1–43:15

Directed Graph Minors and Serial-Parallel Width
Argyrios Deligkas and Reshef Meir . 44:1–44:14

The Complexity of Finding Small Separators in Temporal Graphs
Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier 45:1–45:17

The Complexity of Transducer Synthesis from Multi-Sequential Specifications
Léo Exibard, Emmanuel Filiot, and Ismaël Jecker . 46:1–46:16

Pricing Problems with Buyer Preselection
Vittorio Bilò, Michele Flammini, Gianpiero Monaco, and Luca Moscardelli 47:1–47:16

On Randomized Generation of Slowly Synchronizing Automata
Costanza Catalano and Raphaël M. Jungers . 48:1–48:16

Counting Homomorphisms to Trees Modulo a Prime
Andreas Göbel, J. A. Gregor Lagodzinski, and Karen Seidel . 49:1–49:13

MFCS 2018

0:viii Contents

Car-Sharing between Two Locations: Online Scheduling with Two Servers
Kelin Luo, Thomas Erlebach, and Yinfeng Xu . 50:1–50:14

The Robustness of LWPP and WPP, with an Application to Graph Reconstruction
Edith Hemaspaandra, Lane A. Hemaspaandra, Holger Spakowski, and
Osamu Watanabe . 51:1–51:14

Shape Recognition by a Finite Automaton Robot
Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn,
Dorian Rudolph, and Christian Scheideler . 52:1–52:15

Conflict Free Feedback Vertex Set:
A Parameterized Dichotomy

Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, Daniel Lokshtanov, and
Saket Saurabh . 53:1–53:15

Largest Weight Common Subtree Embeddings with Distance Penalties
Andre Droschinsky, Nils M. Kriege, and Petra Mutzel . 54:1–54:15

Enumerating Minimal Transversals of Hypergraphs without Small Holes
Mamadou M. Kanté, Kaveh Khoshkhah, and Mozhgan Pourmoradnasseri 55:1–55:15

Collective Fast Delivery by Energy-Efficient Agents
Andreas Bärtschi, Daniel Graf, and Matúš Mihalák . 56:1–56:16

Parity to Safety in Polynomial Time for Pushdown and Collapsible Pushdown
Systems

Matthew Hague, Roland Meyer, Sebastian Muskalla, and Martin Zimmermann . . . 57:1–57:15

Quantum Generalizations of the Polynomial Hierarchy with Applications to
QMA(2)

Sevag Gharibian, Miklos Santha, Jamie Sikora, Aarthi Sundaram, and Justin Yirka 58:1–58:16

A Subquadratic Algorithm for 3XOR
Martin Dietzfelbinger, Philipp Schlag, and Stefan Walzer . 59:1–59:15

Treewidth-Two Graphs as a Free Algebra
Christian Doczkal and Damien Pous . 60:1–60:15

On Pseudodeterministic Approximation Algorithms
Peter Dixon, A. Pavan, and N.V. Vinodchandran . 61:1–61:11

Testing Simon’s congruence
Lukas Fleischer and Manfred Kufleitner . 62:1–62:13

On the Price of Independence for Vertex Cover, Feedback Vertex Set and Odd
Cycle Transversal

Konrad K. Dabrowski, Matthew Johnson, Giacomo Paesani, Daniël Paulusma, and
Viktor Zamaraev . 63:1–63:15

Probabilistic Secret Sharing
Paolo D’Arco, Roberto De Prisco, Alfredo De Santis, Angel Pérez del Pozo, and
Ugo Vaccaro . 64:1–64:16

Contents 0:ix

Extra Space during Initialization of Succinct Data Structures and Dynamical
Initializable Arrays

Frank Kammer and Andrej Sajenko . 65:1–65:16

Fast Entropy-Bounded String Dictionary Look-Up with Mismatches
Paweł Gawrychowski, Gad M. Landau, and Tatiana Starikovskaya 66:1–66:15

New Results on Directed Edge Dominating Set
Rémy Belmonte, Tesshu Hanaka, Ioannis Katsikarelis, Eun Jung Kim, and
Michael Lampis . 67:1–67:16

Interval-Like Graphs and Digraphs
Pavol Hell, Jing Huang, Ross M. McConnell, and Arash Rafiey 68:1–68:13

Double Threshold Digraphs
Peter Hamburger, Ross M. McConnell, Attila Pór, Jeremy P. Spinrad, and
Zhisheng Xu . 69:1–69:12

Tree Tribes and Lower Bounds for Switching Lemmas
Jenish C. Mehta . 70:1–70:11

Projection Theorems Using Effective Dimension
Neil Lutz and Donald M. Stull . 71:1–71:15

Polynomial-Time Equivalence Testing for Deterministic Fresh-Register Automata
Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos 72:1–72:14

On W[1]-Hardness as Evidence for Intractability
Ralph Christian Bottesch . 73:1–73:15

A Simple Augmentation Method for Matchings with Applications to Streaming
Algorithms

Christian Konrad . 74:1–74:16

Reconfiguration of Graph Minors
Benjamin Moore, Naomi Nishimura, and Vijay Subramanya . 75:1–75:15

A Feferman-Vaught Decomposition Theorem for Weighted MSO Logic
Manfred Droste and Erik Paul . 76:1–76:15

Maximum Area Axis-Aligned Square Packings
Hugo A. Akitaya, Matthew D. Jones, David Stalfa, and Csaba D. Tóth 77:1–77:15

Deterministically Counting Satisfying Assignments for Constant-Depth Circuits
with Parity Gates, with Implications for Lower Bounds

Ninad Rajgopal, Rahul Santhanam, and Srikanth Srinivasan . 78:1–78:15

Results on the Dimension Spectra of Planar Lines
Donald M. Stull . 79:1–79:15

Tight Bounds for Deterministic h-Shot Broadcast in Ad-Hoc Directed Radio
Networks

Aris Pagourtzis and Tomasz Radzik . 80:1–80:13

Depth Two Majority Circuits for Majority and List Expanders
Kazuyuki Amano . 81:1–81:13

MFCS 2018

0:x Contents

Optimization over the Boolean Hypercube via Sums of Nonnegative Circuit
Polynomials

Mareike Dressler, Adam Kurpisz, and Timo de Wolff . 82:1–82:17

Rainbow Vertex Coloring Bipartite Graphs and Chordal Graphs
Pinar Heggernes, Davis Issac, Juho Lauri, Paloma T. Lima, and
Erik Jan van Leeuwen . 83:1–83:13

Listing Subgraphs by Cartesian Decomposition
Alessio Conte, Roberto Grossi, Andrea Marino, Romeo Rizzi, and Luca Versari . . 84:1–84:16

Preface

The International Symposium on Mathematical Foundations of Computer Science (MFCS
conference series) is a well-established venue for presenting research papers in theoretical
computer science. The broad scope of the conference encourages interactions between
researchers who might not meet at more specialized venues. The first MFCS conference
was organized in 1972 in Jablonna (near Warsaw, Poland). Since then, the conference
traditionally moved between the Czech Republic, Slovakia, and Poland. A few years ago,
the conference started traveling around Europe: in 2013 it was held in Austria, in 2014 in
Hungary, in 2015 in Italy, and most recently, in 2016, the conference returned to Poland
and then in 2017 was organized in Denmark. This year the conference has been visiting the
United Kingdom for the first time and was organized in Liverpool.

Over 210 abstracts were submitted, of which 185 materialized as papers, of which 84
were finally accepted. The authors of the submitted papers represent nearly 40 countries.
The authors first registered their papers’ abstracts (by the 20th of April, 2018) and only
then their content (by the 24th of April, 2018). This division in two stages has helped with
the assignment of the papers to the PC members. Each paper was assigned to three PC
members, who reviewed and discussed them thoroughly over a period of nearly six weeks.
As the co-chairs of the program committee, we would like to express our deep gratitude to
all the committee members for their hard, dedicated work. The quality of the submitted
papers was very high and many good papers had to be rejected. The conference featured five
invited talks, by Christel Baier (TU Dresden, Germany)m Olivier Bournez (LIX, France),
Herbert Edelsbrunner (IST, Austria), Leslie Ann Goldberg (University of Oxford, UK) and
Christos H. Papadimitriou (Columbia University, USA):

Christel Baier - On energy conditions and stochastic shortest path problems for
Markov Decision Processes
Abstract: Markov decision processes (MDP) are widely used to formalize algorithmic prob-
lems where the task is to find a policy for traversing a weighted probabilistic graph structure
in a somehow optimal way. Examples are the stochastic shortest-path problem where the goal
is to minimize the expected accumulated weight until reaching a target or decision problems
for MDPs with energy constraints that, e.g., aims to ensure that almost surely a target will
be reached while the accumulated weight (“energy”) meets a given bound. The talk will
discuss solutions for such and related problems for MDPs with integer weights. These rely on
a new classification of so-called end components of MDPs according to their limiting behavior
with respect to the accumulated weights. This classification will be used to show that the
stochastic shortest path problem is solvable in polynomial time for arbitrary finite-state
MDPs, generalizing previous results for sub-classes of MDPs. Furthermore, it will be used to
provide algorithms for deciding the existence of a policy ensuring that a weight-bounded
(repeated) reachability condition or holds almost surely or with positive probability, and the
analogous problems for universal rather than existential quantification over policies.

Olivier Bournez - Descriptive Mathematics and Computer Science with Polyno-
mial Ordinary Differential Equations
Abstract: We will see that many continuous and discrete concepts from mathematics and
computer science can be presented using ordinary differential equations. Basically, we will
start from the following observation: if you know what 0, 1, -1 are, as well as what an
43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xii Preface

addition and a multiplication are, and if you remember what an ordinary differential equa-
tion is, then you can define and program many concepts from Mathematics and Computer
Science. In particular we will present/rediscover descriptive complexity, computability and
complexity using polynomial ordinary differential equations only. A title for this talk could
also be "Programming with Ordinary Differential Equations”, as these questions also relate
to analog models of computations, and in particular to the 1941 General Purpose Analog
Computer of Claude Shannon. In some way, we are rediscovering the forgotten art of their
programming, and we are only starting to understand the true power of these very old models.

Herbert Edelsbrunner - Tri-partition of a simplicial complex
Abstract: We prove that for every simplicial complex, K, and every dimension, p, there is a
partition of the p-simplices into a maximal p-tree, a maximal p-cotree, and the remaining
p-simplices defining the p-th homology of K. Given a monotonic order of the simplices, this
tri-partition is unique and can be computed by matrix reduction. Collecting the sets over all
monotonic orders, we get matroids over the set of p-simplices (Joint work with Katharina
Oelsboeck).

Leslie Ann Goldberg - Computational Complexity and the Independence Poly-
nomial
Abstract: The independence polynomial is one of the most well-studied graph polynomials,
arising in combinatorics and computer science. It is also known in statistical physics as
the "partition function of the hard-core model". After describing the polynomial, I will
tell you something about the complexity of approximating this polynomial, including the
now-classical breakthrough results of Weitz and Sly, incursions into the complex plane by
Harvey, Srivastava, and Vondrák and by Patel and Regts and finally more recent work using
tools from complex analysis by Peters and Regts and also in joint work with Bezakova,
Galanis, and Stefankovic.

Christos H. Papadimitriou - A computer scientist thinks about the Brain
Abstract: How does the Brain give rise to the Mind? How do neurons and synapses, molecules
and genes, evolution and development, give rise to behavior and cognition, language and
intelligence? Despite lightning progress in recording and molecular technology and a deluge
of experimental data, we do not seem to get closer to an answer. This is a talk about admiring
and appreciating the problem, and proposing a new approach based on a recognized but
little studied intermediate level of Brain computation carried out by the synchronous firing
of large and highly interconnected sets of neurons called assemblies. We show that assemblies
give rise to a novel computational system, and we speculate that they may instrument higher
cognitive functions, such as language and math.

We would like to thank them deeply for their contributions and their time. This is the
third time that the MFCS proceedings are published in the Dagstuhl/LIPIcs series. We
would like to particularly thank Marc Herbstritt and the LIPIcs team for all the help and
support. We believe that the cooperation between MFCS and Dagstuhl/LIPIcs in the future
will continue to be as seamless and fruitful as ours.

Program Committee

Eric Allender Rutgers University
Andris Ambainis University of Latvia
Valerie Berthe CNRS IRIF
Patricia Bouyer LSV, CNRS & ENS Cachan, Université Paris Saclay
Jean Cardinal Universite Libre de Bruxelles (ULB)
Stephanie Delaune IRISA
Xiaotie Deng Peking University
Volker Diekert University of Stuttgart
Nathanaël Fijalkow CNRS, LaBRI, University of Bordeaux
Dimitris Fotakis Yahoo Research NY and National Technical University of Athens
Leszek Gasieniec University of Liverpool
Gregory Gutin Royal Holloway, University of London
Christoph Haase University of Oxford
Mika Hirvensalo University of Turku
Juraj Hromkovic ETH Zurich
Jarkko Kari University of Turku
Bakhadyr Khoussainov The University of Auckland
Lefteris Kirousis National and Kapodistrian University of Athens
Bartek Klin University of Warsaw
Adrian Kosowski IRIF (LIAFA) / Inria Paris
Steve Kremer INRIA
Antonin Kucera Masaryk University
Orna Kupferman Hebrew University
Vitaliy Kurlin University of Liverpool
Ranko Lazic The University of Warwick
Vadim Lozin The University of Warwick
Conrado Martínez Dept. Computer Science, Univ. Politècnica de Catalunya
Richard Mayr The University of Edinburgh
Pierre Mckenzie University of Montreal
George Mertzios Durham University
Sotiris Nikoletseas University of Patras
Vangelis Paschos LAMSADE, University Paris-Dauphine
Giuseppe Persiano Università degli Studi di Salerno
Igor Potapov University of Liverpool
Pierre-Alain Reynier Aix-Marseille Université
Jose Rolim University of Geneva
Christian Scheideler University of Paderborn
Maria Serna Universitat Politècnica de Catalunya
Alexandra Silva University College London
Paul Spirakis Research Academic Computer Technology Institute and University of Patras
Philippas Tsigas School of Computer Science and Engineering, Chalmers University
Prudence W.H. Wong University of Liverpool
James Worrell University of Oxford
Moti Yung Columbia University
Stanislav Živný University of Oxford

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Additional Reviewers

Aaronson, Scott Abramsky, Samson Alecu, Bogdan
Amanatidis, Giorgos Arad, Itai Arroyuelo, Diego
Bampis, Evripidis Barbero, Florian Basset, Nicolas
Baste, Julien Belazzougui, Djamal Berlinkov, Mikhail
Bezakova, Ivona Bhrushundi, Abhishek Bilò, Davide
Bodwin, Greg Boeckenhauer, Hans-Joachim Boiret, Adrien
Bollig, Benedikt Bonacina, Ilario Bouland, Adam
Brazdil, Tomas Bredariol Grilo, Alex Brlek, Srecko
Bulatov, Andrei Burjons Pujol, Elisabet Busatto-Gaston, Damien
Buss, Sam Buwaya, Julia Béal, Marie-Pierre
Cadilhac, Michaël Camby, Eglantine Capelli, Florent
Caragiannis, Ioannis Carayol, Arnaud Carbonnel, Clément
Carton, Olivier Chakraborty, Diptarka Chen, Lin
Chen, Yijia Chen, Yu-Fang Chistikov, Dmitry
Chlebikova, Janka Choffrut, Christian Clemente, Lorenzo
Clementi, Andrea Colcombet, Thomas Cote, Hugo
Courcelle, Bruno Czerwiński, Wojciech Dabrowski, Konrad Kazimierz
Das, Bireswar Daviaud, Laure Dawar, Anuj
De Marco, Gianluca Delaplace, Claire Deligkas, Argyrios
Dereniowski, Dariusz Diaz, Josep Didier, Gilles
Dinneen, Michael Downey, Rod Doyen, Laurent
Droste, Manfred Duan, Ran Dublois, Louis
Dudek, Bartlomiej Dzamonja, Mirna Elbassioni, Khaled
Epstein, Leah Erlebach, Thomas Escoffier, Bruno
Fagerberg, Rolf Faran, Rachel Feldmann, Andreas Emil
Feldmann, Michael Fellows, Michael Fernique, Thomas
Ferraioli, Diodato Fischer, Johannes Fleischer, Lukas
Fluschnik, Till Fox, Kyle Frei, Fabian
Frid, Anna Fuchs, Michael Fulla, Peter
Gai, Ling Galesi, Nicola Galliani, Pietro
Ganardi, Moses Ganian, Robert Garg, Mohit
Gavryushkin, Alex Gawrychowski, Pawel Gańczorz, Michał
Genitrini, Antoine Gharibian, Sevag Giannakos, Aristotelis
Giannopoulou, Archontia Gittenberger, Bernhard Godin, Thibault
Golovach, Petr Goto, Keisuke Gouveia, João
Graham-Lengrand, Stéphane Graça, Daniel Grellois, Charles
Grohe, Martin Grossman, Ofer Groß, Martin
Guillon, Bruno Guo, Heng Gurski, Frank
Götte, Thorsten Göös, Mika Hadjicostas, Petros
Hague, Matthew Halava, Vesa Hamoudi, Yassine
Han, Xin Harju, Tero Harutyunyan, Ararat

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:xvi Additional Reviewers

Hatzel, Meike Hell, Pavol Helouet, Loic
Hertrampf, Ulrich Hinnenthal, Kristian Hlineny, Petr
Hofman, Piotrek Holmes, Randall Iacono, John
Ikenmeyer, Christian Ito, Takehiro Jain, Sanjay
Jansson, Jesper Jerrum, Mark Jeż, Artur
Ji, Zhengfeng Johnson, Matthew Jonsson, Peter
Jugé, Vincent Jurdzinski, Marcin Kaaser, Dominik
Kabanets, Valentine Kacem, Imed Kalnishkan, Yuri
Kamali, Shahin Karhumaki, Juhani Katsikarelis, Ioannis
Király, Csaba Klaska, David Kling, Peter
Klíma, Ondřej Koiran, Pascal Kolb, Christina
Kolokolova, Antonina Komm, Dennis Kontonis, Vasilis
Kontopoulou, Eugenia Korpelainen, Nicholas Korwar, Arpita
Koucky, Michal Kretinsky, Jan Kufleitner, Manfred
Kuinke, Philipp Kulikov, Alexander Kumar, Mrinal
Kunc, Michal Kuperberg, Greg Kwisthout, Johan
Kwon, O-Joung Kyropoulou, Maria Labbé, Sébastien
Lampis, Michael Lapinskas, John Lauria, Massimo
Le Gall, Francois Lenzen, Christoph Levy, Caleb
Lhote, Nathan Lianeas, Thanasis Limouzy, Vincent
Lin, Anthony Widjaja Lingas, Andrzej Livieratos, John
Loff, Bruno Lohrey, Markus Lombardy, Sylvain
Lubiw, Anna Lucarelli, Giorgio Lumbroso, Jérémie
Malod, Guillaume Malyshev, Dmitriy Manea, Florin
Maneth, Sebastian Markey, Nicolas Marsault, Victor
Martin, Barnaby Mary, Arnaud Maubert, Bastien
Mayordomo, Elvira Mazowiecki, Filip Medina, Moti
Mengel, Stefan Michail, Othon Milanič, Martin
Molter, Hendrik Monmege, Benjamin Monteil, Thierry
Morris, Rob Moser, Philippe Mukhopadhyay, Sagnik
Nagaj, Daniel Nichterlein, André Niemi, Valtteri
Nikolopoulos, Stavros Nishimura, Naomi Niwinski, Damian
Nowotka, Dirk Obdrzalek, Jan Ochremiak, Joanna
Ohlmann, Pierre Ordyniak, Sebastian Ossona de Mendez, Patrice
Otachi, Yota Oveis Gharan, Shayan Paesani, Giacomo
Papadigenopoulos, Vasileios-Orestis Pasquale, Francesco Paulusma, Daniel
Paz, Ami Perifel, Sylvain Petersen, Holger
Pietracaprina, Andrea Pilipczuk, Marcin Pissis, Solon
Place, Thomas Portugal, Renato Potechin, Aaron
Pouly, Amaury Prūsis, Krišjānis Puppis, Gabriele
Pérez-Lantero, Pablo Radzik, Tomasz Ralaivaosaona, Dimbinaina
Rao, Anup Rao, Michael Raptopoulos, Christoforos
Rehak, Vojtech Reimann, Jan Reiter, Fabian
Remila, Eric Rescigno, Adele Reutenauer, Christophe
Rossmanith, Peter Rubin, Sasha S, Krishna
Saarela, Aleksi Saivasan, Prakash Salamanca, Julian

Additional Reviewers 0:xvii

Salo, Ville Santhanam, Rahul Sassolas, Mathieu
Saule, Erik Saurabh, Saket Schnoebelen, Philippe
Schramm, Tselil Schwartz, Oded Schwoon, Stefan
Serre, Olivier Setzer, Alexander Sherstov, Sasha
Shioura, Akiyoshi Shitov, Yaroslav Siebertz, Sebastian
Sklinos, Rizos Skoulakis, Stratis Skrzypczak, Michał
Slivovsky, Friedrich Spoerhase, Joachim Stamoulis, Georgios
Starikovskaya, Tatiana Stojakovic, Milos Straubing, Howard
Strozecki, Yann Taati, Siamak Tabareau, Nicolas
Takahashi, Yasuhiro Talbot, Jean-Marc Tamaki, Suguru
Tamir, Tami Thilikos, Dimitrios Todinca, Ioan
Totzke, Patrick Toulouse, Sophie Turowski, Krzysztof
Vaananen, Jouko Valeriote, Matt Van Den Bogaard, Marie
Vardi, Gal Vaux, Lionel Venturini, Rossano
Villagra, Marcos Villevalois, Didier Viola, Emanuele
Volkov, Mikhail Wahlström, Magnus Wang, Kai
Wasa, Kunihiro Watrous, John Wehner, David
Weimann, Oren Weiss, Armin Wimmer, Karl
Xiao, Mingy Xu, Rupei Yamamoto, Masaki
Yamanaka, Katsuhisa Zamaraev, Viktor Zamaraeva, Elena
Zetzsche, Georg Zheng, Shenggen Zhou, Zixin
Zimmermann, Martin Zolotykh, Nikolai Zou, Mengchuan

MFCS 2018

Steering Committee

Juraj Hromkovič ETH, Zurich, Switzerland
Antonín Kučera Masaryk University, Brno, Czech Republic, (chair)
Jerzy Marcinkowski University of Wrocław, Poland
Damian Niwinski University of Warsaw, Poland
Branislav Rovan Comenius University, Bratislava, Slovakia
Jiří Sgall Charles University, Prague, Czech Republic

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Consensus Strings with Small Maximum Distance
and Small Distance Sum
Laurent Bulteau
Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, F-77454,
Marne-la-Vallée, France
laurent.bulteau@u-pem.fr

Markus L. Schmid
Fachbereich 4 – Abteilung Informatikwissenschaften, Universität Trier, 54286 Trier, Germany
mlschmid@mlschmid.de

Abstract
The parameterised complexity of consensus string problems (Closest String, Closest Sub-
string, Closest String with Outliers) is investigated in a more general setting, i. e., with
a bound on the maximum Hamming distance and a bound on the sum of Hamming distances
between solution and input strings. We completely settle the parameterised complexity of these
generalised variants of Closest String and Closest Substring, and partly for Closest
String with Outliers; in addition, we answer some open questions from the literature re-
garding the classical problem variants with only one distance bound. Finally, we investigate the
question of polynomial kernels and respective lower bounds.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness, Theory of computation → Fixed parameter tractability, Theory of computation → W
hierarchy

Keywords and phrases Consensus String Problems, Closest String, Closest Substring, Paramet-
erised Complexity, Kernelisation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.1

1 Introduction

Consensus string problems have the following general form: given input strings S =
{s1, . . . , sk} and a distance bound d, find a string s with distance at most d from the
input strings. With the Hamming distance as the central distance measure for strings,
there are two obvious types of distance between a single string and a set S of strings: the
maximum distance between s and any string from S (called radius) and the sum of all
distances between s and strings from S (called distance sum). The most basic consensus
string problem is Closest String, where we get a set S of k length-` strings and a bound
d, and ask whether there exists a length-` solution string s with radius at most d. This
problem is NP-complete (see [16]), but fixed-parameter tractable for many variants (see [17]),
including the parameterisation by d, which in biological applications can often be assumed to
be small (see [12, 18]). A classical extension is Closest Substring, where the strings of S

have length at most `, the solution string must have a given length m and the radius bound d

is w. r. t. some length-m substrings of the input strings. A parameterised complexity analysis
(see [13, 14, 20]) has shown Closest Substring to be harder than Closest String. If we
bound the distance sum instead of the radius, then Closest String collapses to a trivial
problem, while Closest Substring, which is then called Consensus Patterns, remains

© Laurent Bulteau and Markus L. Schmid;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 1; pp. 1:1–1:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:laurent.bulteau@u-pem.fr
mailto:mlschmid@mlschmid.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Consensus Strings with Small Maximum Distance and Small Distance Sum

NP-complete. Closest String with Outliers is a recent extension, which is defined like
Closest String, but with the possibility to ignore a given number of t input strings.

The main motivation for consensus string problems comes from the important task of
finding similar regions in DNA or other protein sequences, which arises in many different
contexts of computational biology, e. g., universal PCR primer design [9, 18,19,23], genetic
probe design [18], antisense drug design [8,18], finding transcription factor binding sites in
genomic data [25], determining an unbiased consensus of a protein family [3], and motif-
recognition [18,21,22]. The consensus string problems are a formalisation of this computational
task and most variants of them are NP-hard. However, due to their high practical relevance,
it is necessary to solve them despite their intractability, which has motivated the study of
their approximability, on the one hand, but also their fixed-parameter tractability, on the
other (see the survey [6] for an overview of the parameterised complexity of consensus string
problems). This work is a contribution to the latter branch of research.

Problem Definition. Let Σ be a finite alphabet, Σ∗ be the set of all strings over Σ,
including the empty string ε and Σ+ = Σ∗ \ {ε}. For w ∈ Σ∗, |w| is the length of w and,
for every i, 1 ≤ i ≤ |w|, by w[i], we refer to the symbol at position i of w. For every
n ∈ N ∪ {0}, let Σn = {w ∈ Σ∗ | |w| = n} and Σ≤n =

⋃n
i=0 Σi. By �, we denote the

substring relation over the set of strings, i. e., for u, v ∈ Σ∗, u� v if v = xuy, for some
x, y ∈ Σ∗. We use the concatenation of sets of strings as usually defined, i. e., for A, B ⊆ Σ∗,
A ·B = {uv | u ∈ A, v ∈ B}.

For strings u, v ∈ Σ∗ with |u| = |v|, dH(u, v) is the Hamming distance between u and v.
For a multi-set S = {ui | 1 ≤ i ≤ n} ⊆ Σ` and a string v ∈ Σ`, for some ` ∈ N, the radius of S

(w. r. t. v) is defined by rH(v, S) = max{dH(v, u) | u ∈ S} and the distance sum of S (w. r. t. v)
is defined by sH(v, S) =

∑
u∈S dH(v, u).1 Next, we state the problem (r, s)-Closest String

in full detail, from which we then derive the other considered problems:

(r, s)-Closest String
Instance: Multi-set S = {si | 1 ≤ i ≤ k} ⊆ Σ`, ` ∈ N, and integers dr, ds ∈ N.
Question: Is there an s ∈ Σ` with rH(s, S) ≤ dr and sH(s, S) ≤ ds?

For (r, s)-Closest Substring, we have S ⊆ Σ≤` and an additional input integer
m ∈ N, and we ask whether there is a multi-set S′ = {s′i | s′i� si, 1 ≤ i ≤ k} ⊆ Σm

with rH(s, S′) ≤ dr and sH(s, S′) ≤ ds. For (r, s)-Closest String with Outliers (or
(r, s)-Closest String-wo for short) we have an additional input integer t ∈ N, and we
ask whether there is a multi-set S′ ⊆ S with |S′| = k − t such that rH(s, S′) ≤ dr and
sH(s, S′) ≤ ds. We also call (r, s)-Closest String the general variant of Closest String,
while (r)-Closest String and (s)-Closest String denote the variants, where the only
distance bound is dr or ds, respectively; we shall also call them the (r)- and (s)-variant of
Closest String. Analogous notation apply to the other consensus string problems. The
problem names that are also commonly used in the literature translate into our terminology
as follows: Closest String = (r)-Closest String, Closest Substring = (r)-Closest
Substring, Consensus Patterns = (s)-Closest Substring and Closest String-wo
= (r)-Closest String-wo.

1 Note that we slightly abuse notation with respect to the subset relation: for a multi-set A and a set B,
A ⊆ B means that A′ ⊆ B, where A′ is the set obtained from A by deleting duplicates; for multi-sets
A, B, A ⊆ B is defined as usual. Moreover, whenever it is clear from the context that we talk about
multi-sets, we also simply use the term set.

L. Bulteau and M. L. Schmid 1:3

The motivation for our more general setting with respect to the bounds dr and ds is the
following. While the distance measures of radius and distance sum are well-motivated, they
have, if considered individually, also obvious deficiencies. In the distance sum variant, we
may consider strings as close enough that are very close to some, but totally different to the
other input strings. In the radius variant, on the other hand, we may consider strings as too
different, even though they are very similar to all input strings except one, for which the
bound is exceeded by only a small amount. Using an upper bound on the distance per each
input string and an upper bound on the total sum of distances caters for these cases.2

For any problem K, by K(p1, p2, . . .), we denote the variant of K parameterised by the
parameters p1, p2, For unexplained concepts of parameterised complexity, we refer to the
textbooks [7, 10,15].

Known Results. In contrast to graph problems, where interesting parameters are often
hidden in the graph structure, string problems typically contain a variety of obvious, but
nevertheless interesting parameters that could be exploited in terms of fixed-parameter
tractability. For the consensus string problems these are the number of input strings k,
their length `, the radius bound dr, the distance sum bound ds, the alphabet size |Σ|, the
substring length m (in case of (r, s)-Closest Substring), the number of outliers t and
inliers k− t (in case of (r, s)-Closest String-wo). This leads to a large number of different
parameterisations, which justifies the hope for fixed-parameter tractable variants.

The parameterised complexity (w. r. t. the above mentioned parameters) of the radius
as well as the distance sum variant of Closest String and Closest Substring has
been settled by a sequence of papers (see [13, 14, 16, 17, 20] and, for a survey, [6]), except
(s)-Closest Substring with respect to parameter `, which has been neglected in these
papers and mentioned as an open problem in [24], in which it is shown that the fixed-parameter
tractability results from (r)-Closest String carry over to (r)-Closest Substring, if we
additionally parameterise by (`−m). The parameterised complexity analysis of the radius
variant of Closest String with Outliers has been started more recently in [5] and, to
the knowledge of the authors, the distance sum variant has not yet been considered.

The parameterised complexity of the general variants, where we have a bound on both the
radius and the distance sum, has not yet been considered in the literature. While there are
obvious reductions from the (r)- and (s)-variants to the general variant, these three variants
describe, especially in the parameterised setting, rather different problems.

Our Contribution. In this work, we answer some open questions from the literature re-
garding the (r)- and (s)-variants of the consensus string problems, and we initiate the
parameterised complexity analysis of the general variants.

We extend all the FPT-results from (r)-Closest String to the general variant; thus, we
completely settle the fixed-parameter tractability of (r, s)-Closest String. While for some
parameterisations, this is straightforward, the case of parameter dr follows from a non-trivial
extension of the known branching algorithm for (r)-Closest String(dr) (see [17]).

For (r, s)-Closest Substring, we classify all parameterised variants as being in FPT or
W[1]-hard, which is done by answering the open question whether (s)-Closest Substring(`)
is in FPT (see [24]) in the negative (which also settles the parameterised complexity of
(s)-Closest Substring) and by slightly adapting the existing FPT-algorithms.

2 To the knowledge of the authors, optimising both the radius and the distance sum has been considered
first in [1], where algorithms for the special case k = 3 are considered.

MFCS 2018

1:4 Consensus Strings with Small Maximum Distance and Small Distance Sum

Regarding (r, s)-Closest String-wo, we solve an open question from [5] w. r. t. the
radius variant, we show W[1]-hardness for a strong parameterisation of the (s)-variant, we
show fixed-parameter tractability for some parameter combinations of the general variant and,
as our main result, we present an FPT-algorithm (for the general variant) for parameters dr

and t (which is the same algorithm that shows (r, s)-Closest String(dr) ∈ FPT mentioned
above). Many other cases are left open for further research.

Finally, we investigate the question whether the fixed-parameter tractable variants of the
considered consensus string problems allow polynomial kernels; thus, continuing a line of work
initiated by Basavaraju et al. [2], in which kernelisation lower bounds for (r)-Closest String
and (r)-Closest Substring are proved. Our respective main result is a cross-composition
from (r)-Closest String into (r)-Closest String-wo.

Due to space constraints, proofs for results marked with (∗) are omitted.

2 Closest String and Closest String-wo

In this section, we investigate (r, s)-Closest String and (r, s)-Closest String-wo (and
their (r)- and (s)-variants) and we shall first give some useful definitions.

It will be convenient to treat a set S = {si | 1 ≤ i ≤ k} ⊆ Σ` as a k × ` matrix with
entries from Σ. By the term column of S, we refer to the transpose of a column of the matrix
S, which is an element from Σk; thus, the introduced string notations apply, e. g., if c is the
ith column of S, then c[j] corresponds to sj [i]. A string s ∈ Σ` is a majority string (for a
set S ⊆ Σ`) if, for every i, 1 ≤ i ≤ `, s[i] is a symbol with majority in the ith column of S.
Obviously, sH(s, S) = min{sH(s′, S) | s′ ∈ Σ`} if and only if s is a majority string for S. We
call a string s ∈ Σ` radius optimal or distance sum optimal (with respect to a set S ⊆ Σ`) if
rH(s, S) = min{rH(s′, S) | s′ ∈ Σ`} or sH(s, S) = min{sH(s′, S) | s′ ∈ Σ`}, respectively.

It is a well-known fact that (r)-Closest String allows FPT-algorithms for any of the
single parameters k, dr or `, and it is still NP-hard for |Σ| = 2 (see [17]). While the latter
hardness result trivially carries over to (r, s)-Closest String (by setting ds = k dr), we
have to modify the FPT-algorithms for extending the fixed-parameter tractability results
to (r, s)-Closest String. We start with parameter k, for which we can extend the ILP-
approach that is used in [17] to show (r)-Closest String(k) ∈ FPT.

I Theorem 1 (*). (r, s)-Closest String(k) ∈ FPT.

Next, we consider the parameter dr. For the (r)-variant of (r, s)-Closest String,
the fixed-parameter tractability with respect to dr is shown in [17] by a branching al-
gorithm, which proved itself as rather versatile: it has successfully been extended in [5] to
(r)-Closest String-wo(dr, t) and in [24] to (r)-Closest Substring(dr, (`−m)).

We propose an extension of the same branching algorithm, that allows for a bound ds on the
distance sum; thus, it works for (r, s)-Closest String(dr). In fact, we prove in Theorem 7
an even stronger result, where we also extend the algorithm to exclude up to t outlier strings
from the input set S, i. e., we extend it to the problem (r, s)-Closest String-wo(dr, t).
Since Theorem 3 can therefore be seen as a corollary of this result by taking t = 0, we only
give an informal description of a direct approach that solves (r, s)-Closest String(dr) (and
refer to Theorem 7 for a formal proof).

The core idea is to apply the branching algorithm starting with the majority string for
the input set S, instead of any random string from S. Then, as in [17], the algorithm would
replace some characters of the current string with characters of the solution string. This way,
it can be shown that the distance sum of the current string is always a lower bound of the

L. Bulteau and M. L. Schmid 1:5

Table 1 Results for (r, s)-Closest String.

k dr ds |Σ| ` Result Note/Ref.

p – – – – FPT Thm. 1
– p – – – FPT Thm. 3
– – p – – FPT Cor. 4
– – – 2 – NP-hard from (r)-variant [16]
– – – – p FPT Cor. 4

distance sum of the optimal string, which allows to cut any branch where the distance sum
goes beyond the threshold ds. We prove the following lemma, which allows to bound the
depth of the search tree (and shall also be used in the proof of Theorem 7 later on):

I Lemma 2 (*). Let S ⊆ Σ`, s ∈ Σ` such that rH(s, S) ≤ dr, and let sm be a majority string
for S. Then dH(sm, s) ≤ 2dr.

I Theorem 3. (r, s)-Closest String(dr) ∈ FPT.

Obviously, we can assume dr ≤ ` and we can further assume that every column of S

contains at least two different symbols (all columns without this property could be removed),
which implies sH(si, S) ≥ ` for every s ∈ Σ`; thus, we can assume ` ≤ ds. Consequently, we
obtain the following corollary:

I Corollary 4. (r, s)-Closest String(`) ∈ FPT, (r, s)-Closest String(ds) ∈ FPT.

This completely settles the parameterised complexity of (r, s)-Closest String with
respect to parameters k, dr, ds, |Σ| and `; recall that the (r)-variant is already settled, while
the (s)-variant is trivial.

2.1 (r, s)-Closest String-wo
We now turn to the problem (r, s)-Closest String-wo and we first prove several fixed-
parameter tractability results for the general variant; in Sec. 2.2, we consider the (r)- and
(s)-variants separately.

First, we note that solving an instance of (r, s)-Closest String-wo(k) can be reduced
to solving f(k) many (r, s)-Closest String(k)-instances, which, due to the fixed-parameter
tractability of the latter problem, yields the fixed-parameter tractability of the former.

I Theorem 5 (*). (r, s)-Closest String-wo(k) ∈ FPT.

If the number k − t of inliers exceeds ds, then an (r, s)-Closest String-wo-instance
becomes easily solvable; thus, k − t can be bounded by ds, which yields the following result:

I Theorem 6 (*). (r, s)-Closest String-wo(ds, t) ∈ FPT.

The algorithm introduced in [17] to prove (r)-Closest String(dr) ∈ FPT has been exten-
ded in [5] with an additional branching that guesses whether a string sj should be considered an
outlier or not; thus, yielding fixed-parameter tractability of (r)-Closest String-wo(dr, t).
We present a non-trivial extension of this algorithm, with a carefully selected starting
string, to obtain the fixed-parameter tractability of (r, s)-Closest String-wo(dr, t) (and,
as explained in Section 2, also of (r, s)-Closest String(dr)):

I Theorem 7. (r, s)-Closest String-wo(dr, t) ∈ FPT.

MFCS 2018

1:6 Consensus Strings with Small Maximum Distance and Small Distance Sum

Input: s1 = d b a d d c b c d b b d b b
dr = 5 s2 = d a a a a c b c d c c d b d
ds = 14 s3 = d a a d d a b c a c c d b d
t = 2 s4 = a a c d a c c d c c c a b d

s5 = a a c d a a b d a c c a d d
D = 10 s6 = a c a a a a b c d d b a d d

Step S′ t s′ d rH(s′, S′) action
1 {s1, s2, . . . , s6} 2 � a � � � � b � � c � � � d 20 13 s[3]← s1[3]
2 {s1, s2, . . . , s6} 2 � a a � � � b � � c � � � d 19 12 s[12]← s1[12]
3 {s1, s2, . . . , s6} 2 � a a � � � b � � c � d � d 18 11 remove s6
4 {s1, s2, . . . , s5} 1 � a a � � � b � � c � d � d 18 11 s[6]← s1[6]
5 {s1, s2, . . . , s5} 1 � a a � � c b � � c � d � d 17 10 remove s5
6 {s1, . . . , s4} 0 � a a � � c b � � c � d � d 17 10

s′′ = d a a d a c b c d c c d b d s[7]← s4[7]
7 {s1, . . . , s4} 0 � a a � � c c � � c � d � d 16 10

s′′ = d a a d a c c c d c c d b d return S′, s′′

Figure 1 Example for Algorithm 1 on an instance of (r, s)-Closest String-wo. The shown
steps correspond to one branch that yields a correct solution. The algorithm starts with the majority
string where disputed characters are replaced by �. At each step, the algorithm either inserts a
character from an input string at maximal distance from s′ (note that even non-disputed characters
may be replaced), or removes one such string. When t = 0, it is checked whether the completion s′′

of s′ is a correct solution. At step 7, we return a solution with rH(s′′, S′) = 5 and sH(s′′, S′) = 14.

Proof. Let (S, ds, dr, t) be a positive instance of (r, s)-Closest String-wo(dr, t) with k ≥
5t (otherwise k can be considered as a parameter). A character x is frequent in column i if it
has at least as many occurrences as the majority character minus t (thus, for any S′ ⊆ S,
|S′| ≥ |S| − t, all majority characters for S′ are frequent characters). A column i is disputed
if it contains at least two frequent characters. Let D be the number of disputed columns.

Let (S∗, s∗) be a solution for this instance. In a disputed column i, no character
occurs more than k+t

2 times, hence, among the k − t strings of S∗, there are at least
(k− t)− k+t

2 = k−3t
2 mismatches at position i. The disputed columns thus introduce at least

D k−3t
2 mismatches. Since the overall number of mismatches is upper-bounded by dr(k − t),

we have D ≤ 2dr(k−t)
k−3t = 2dr

(
1 + 2t

k−3t

)
, and, with k ≥ 5t, the upper-bound D ≤ 4dr follows.

We introduce a new character � /∈ Σ. A string s′ ∈ (Σ ∪ {�})` is a lower bound for a
solution s∗, if, for every i such that s′[i] 6= s∗[i], either i is a disputed column and s′[i] = �, or
i is not disputed and s′[i] is the majority character for column i of S∗ (which is equal to the
majority character for column i of S). Intuitively speaking, whenever a character s′[i] differs
from s∗[i], it is the majority character of its column (except for disputed columns in which
we use an “undecided” character �). Finally, the completion for S′ of a string s′ ∈ (Σ∪ {�})∗
is the string obtained by replacing each occurrence of � by a majority character of the
corresponding column in S′.

We now prove that Algorithm 1 solves (r, s)-Closest String-wo in time at most
O∗((dr + 1)6dr 26dr+t), using the following three claims (see Figure 1 for an example).

Claim 1. Any call to Solve Closest String-wo(S′, t, s′, d) always returns after a time
O∗((dr + 1)d2d+t).

L. Bulteau and M. L. Schmid 1:7

ALGORITHM 1: Solve Closest String-wo.
Input : S′ ⊆ S, t ∈ N, s′ ∈ (Σ ∪ {�})`, d ∈ N
Output : a pair (S∗, s∗) or the symbol O

1 if t = 0 then
2 s′′ = completion of s′ in S′;
3 if sH(s′′, S′) ≤ ds, and rH(s′′, S′) ≤ dr then return (S′, s′′);
4 if d = 0 then return O;
5 Let sj ∈ S′ be such that dH(s′, sj) is maximal;
6 if t > 0 then
7 sol = Solve Closest String-wo(S′ \ {sj}, t− 1, s′, d);
8 if sol 6= O then return sol;
9 if d > 0 then

10 Let I ⊆ {1, . . . , `} contain dr + 1 indices i s. t. s′[i] 6= sj [i] (or all indices if dH(sj , s′) ≤ dr);
11 for i ∈ I do
12 s′′ = s′, s′′[i] = sj [i];
13 sol = Solve Closest String-wo(S′, t, s′′, d− 1);
14 if sol 6= O then return sol;
15 return O;

Proof of Claim 1. We prove this running time by induction: if d = t = 0, then the function
returns in Line 3 or 4; thus, it returns after polynomial time. Otherwise, it performs at most
dr +1 recursive calls with parameters (d−1, t), and one recursive call with parameters (d, t−1).
By induction, the complexity of this step is O∗((dr +1)(dr +1)d−12d+t−1 +(dr +1)d2d+t−1) =
O∗((dr + 1)d2d+t). J

A tuple (S′, t′, s′, d) is valid if |S′| − t′ = |S| − t, there exists an optimal solution (S∗, s∗)
for which S∗ ⊆ S′, |S∗| = |S′| − t′, dH(s′, s∗) ≤ d, and s′ is a lower bound for s∗. A call of
the algorithm is valid if its parameters form a valid tuple, its witness is the pair (S∗, s∗).

Claim 2. Any valid call to Solve Closest String-wo either directly returns a solution
or performs at least one recursive valid call.

Proof of Claim 2. Let S′ ⊆ Σ`, t′ ≥ 0, s′ ∈ (Σ ∪ {�})`, and d ≥ 0. Consider the call to
Solve Closest String-wo(S′, t′, s′, d). Assume it is valid, with witness (S∗, s∗).

Case 1. If d = t′ = 0, then s∗ = s′ and S∗ = S′. The completion s′′ of s′ is exactly s′, and
since (S′, s′) is a solution, it satisfies the conditions of Line 3 and is returned on Line 3.

Case 2. If t′ = 0 and ∀s ∈ S′ : dH(s, s′) ≤ dr. Then S∗ = S′ and s′ is a lower bound for
s∗. Let s′′ be the completion of s′. We show that sH(s′′, S′) ≤ sH(s∗, S′) ≤ ds. Indeed,
consider any column i with s′′[i] 6= s∗[i]. Either s′[i] = �, in which case s′′[i] is the
majority character for column i of S′, or s′[i] 6= �, in which case by the definition of lower
bound, i is not a disputed column and s′[i] = s′′[i] contains the only frequent character
of this column, which is the majority character for S′. In both cases, s′′[i] is a majority
character for S′ in any column where it differs from s∗; thus, it satisfies the upper-bound
on the distance sum. Since it also satisfies the distance radius (by the case hypothesis:
dH(s, s′′) ≤ dH(s, s′) ≤ dr for all s ∈ S′), it satisfies the conditions of Line 3; thus, solution
(S′, s′′) is returned on Line 3.
In the following cases, we can thus assume that the algorithm reaches Line 5. Indeed, if
it returns on Line 3 then it returns a solution, and if it returns on Line 4 then we have
d = t′ = 0, which is dealt in Case 1 above (the algorithm may not return on this line
when it has a valid input). We can thus define sj to be the string selected in Line 5.

MFCS 2018

1:8 Consensus Strings with Small Maximum Distance and Small Distance Sum

Case 3. sj ∈ S′ \ S∗. Then in particular t′ > 0; and since S∗ ⊆ S′ \ {sj}, the recursive call
in Line 7 is valid, with the same witness (S∗, s∗).

Case 4. sj ∈ S∗, d = 0 and t′ > 0. Then s′ = s∗, let s′j be any string of S′ \ S∗, and
S+ = S∗ \ {s′j} ∪ {sj}. Then the pair (S+, s∗) is a solution, since dH(s∗, s′j) ≤ dH(s∗, sj)
by definition of sj . Thus the recursive call on Line 7 is valid, with witness (S+, s∗).

Case 5. sj ∈ S∗, d > 0 and dH(sj , s′) > dr. Consider the set I defined in Line 10. I has size
dr + 1, hence there exists i0 ∈ I such that sj [i0] = s∗[i0]. Then the recursive call with
parameters (S′, t, s′′, d− 1) in Line 13 with i = i0 is valid with the same witness (S∗, s∗).
Indeed, s′′ is obtained from s′ by setting s′′[i0] = s∗[i0] 6= s′[i0], hence, all mismatches
between s′′ and s∗ already exist between s′ and s∗, which implies that s′′ is still a lower
bound for s∗. Moreover, dH(s′′, s∗) = dH(s′, s∗)− 1 ≤ d− 1.
From now on, we can assume that d > 0 and t′ > 0. Indeed, d = 0 is dealt with in cases
1, 3 and 4, and t′ = 0, d > 0 is dealt with in cases 2 and 5. Moreover, with cases 3 and 5,
we can assume that sj ∈ S∗ and dH(sj , s′) ≤ dr (i.e. dH(s, s′) ≤ dr for all s ∈ S∗).

Case 6. There exists i0 such that sj [i0] = s∗[i0] 6= s′[i0]. Then again consider the set I

defined in Line 10. Since dH(sj , s′) ≤ dr, we have i0 ∈ I, and, with the same argument as
in Case 5, there is a valid recursive call in Line 13 when i = i0.

Case 7. For all i, sj [i] 6= s′[i]⇒ sj [i] 6= s∗[i]. In this case no character from sj can be used
to improve our current solution, so the character switching procedure Line 13 will not
improve the solution, but still sj is part of our witness set S∗, so it is not clear a priori
that we can remove sj from our current solution, i.e. that the recursive call on Line 7 is
valid.
We handle this situation as follows. Let s+ be obtained from s′ by filling the �-positions of
s′ with the corresponding symbols of s∗. We now show that (S∗, s+) is a solution. To this
end, let s ∈ S∗. For every i, 1 ≤ i ≤ `, if s[i] 6= s+[i], then either s′[i] = � or s′[i] ∈ Σ with
s′[i] = s+[i]. In both cases, we have s[i] 6= s′[i], which implies dH(s, s+) ≤ dH(s, s′) ≤ dr,
i. e., the radius is satisfied. Regarding the distance sum, we note that if s+[i] 6= s∗[i],
then, since occurrences of � of s′ have been replaced by the corresponding symbol from s∗,
s′[i] 6= �, which, by the definition of lower bound, implies that s+[i] = s′[i] is the majority
character for column i of S∗. Consequently,

∑
s∈S∗ dH(s+[i], s[i]) ≤

∑
s∈S∗ dH(s∗[i], s[i]),

which implies sH(s+, S∗) ≤ sH(s∗, S∗) ≤ ds.
Having defined a new solution string s+ (with respect to S∗), we now prove that s+

is also a solution string with respect to S+ = (S∗ \ {sj}) ∪ {s′j}, where s′j is any
string of S′ \ S∗. To this end, we prove that dH(s′j , s+) ≤ dH(sj , s+); together with
the fact that dH(s′j , s′) ≤ dr, this implies that (S+, s+) is a solution. For two strings
s1, s2 ∈ Σ`, let d�(s1, s2) be the number of mismatches between s1 and s2 at positions
i such that s′[i] = �, and dΣ(s1, s2) be the number of mismatches at other positions.
Clearly dH(s1, s2) = d�(s1, s2) + dΣ(s1, s2). Comparing strings sj and s′j to s′, we have
d�(sj , s′) = d�(s′j , s′) (both distances are equal to the number of occurrences of � in s′).
Since dH(sj , s′) is maximal, we have dΣ(s′j , s′) ≤ dΣ(sj , s′). Consider now s+. Since s+

is equal to s′ in every non-� characters, we have dΣ(s′j , s+) ≤ dΣ(sj , s+). Finally, for
any i such that s′[i] = �, by hypothesis of this case we have sj [i] 6= s∗[i] = s+[i], hence
d�(sj , s+) is equal to the number of occurrences of � in s′, which is an upper bound for
d�(s′j , s+). Overall, d(s′j , s+) ≤ d(sj , s+), and (S+, s+) is a solution.
Thus, (S+, s+) is a solution such that S+ ⊆ S′ \ {sj}, s′ is a lower bound for s+, and
dH(s′, s+) ≤ d, hence the recursive call in Line 7 is valid. J

It follows from the claim above that any valid call to Solve Closest String-wo returns
a solution. Indeed, if it does not directly return a solution, then it receives a solution of a
more constrained instance from a valid recursive call, which is returned on Line 8 or 14.

L. Bulteau and M. L. Schmid 1:9

Claim 3. Let s′ be the majority string for S where for every disputed column i, s′[i] = �.
Then Solve Closest String-wo(S, t, s′, 2dr + D) is a valid call.

Proof of Claim 3. Consider a solution (S∗, s∗). We need to check whether dH(s∗, s′) ≤
2dr +D, and whether s′ is a lower bound of s∗. The fact that s′ is a lower bound follows from
the definition, since � is selected in every disputed column, and the majority character is
selected in the other columns. String s∗ can be seen as a solution of (r, s)-Closest String
over S∗, dr, ds, thus, we can use Lemma 2: the distance between s∗ and the majority string of
S∗ is at most 2dr. Hence there are at most 2dr mismatches between s′ and s∗ in non-disputed
columns (since in those columns, the majority characters are identical in S and S∗). Adding
the D mismatches from disputed columns, we get the 2dr + D upper bound. J

J

2.2 The (r)- and (s)-Variants of Closest String-wo
In [5], the fixed-parameter tractability of (r)-Closest String-wo w. r. t. parameter k and
w. r. t. parameters (|Σ|, dr, k− t) are reported as open problems. Since Theorem 5 also applies
to (r)-Closest String-wo, the only open cases left for the (r)-variant are the following:

I Open Problem 8. What is the fixed-parameter tractability of (r)-Closest String-wo
with respect to (|Σ|, k − t), (|Σ|, dr) and (|Σ|, dr, k − t)?

Next, we consider the (s)-variant of Closest String-wo. We recall that replacing
the radius bound by a bound on the distance sum turns (r)-Closest String into a
trivial problem, while (s)-Closest Substring remains hard. The next result shows that
Closest String-wo behaves like Closest Substring in this regard. For the proof, we
use Multi-Coloured Clique (which is W[1]-hard, see [11]), which is identical to the
standard parameterisation of Clique, but the input graph G = (V, E) has a partition
V = V1 ∪ . . . ∪ Vkc , such that every Vi, 1 ≤ i ≤ kc, is an independent set (we denote the
parameter by kc to avoid confusion with the number of input strings k).

I Theorem 9. (s)-Closest String-wo(ds, `, k − t) is W[1]-hard.

Proof. Let G = (V1 ∪ . . . ∪ Vkc , E) be a Multi-Coloured Clique-instance. We assume
that, for some q ∈ N, Vi = {vi,1, vi,2, . . . vi,q}, 1 ≤ i ≤ kc, i. e., each vertex has an index
depending on its colour-class and its rank within its colour-class. Let Σ = V ∪ Γ, where
Γ is some alphabet with |Γ| = |E|(kc−2). For every e = (vi,j , vi′,j′) ∈ E, let se ∈ Σkc

with se[i] = vi,j , se[i′] = vi′,j′ and all other non-defined positions are filled with symbols
from Γ such that each x ∈ Γ has exactly one occurrence in the strings se, e ∈ E. We set
S = {se | e ∈ E}, t = |E| −

(kc
2

)
(i. e., the number of inliers is

(kc
2

)
) and ds =

(kc
2

)
(kc−2).

Let K be a clique of G of size kc, let s ∈ Σkc be defined by {s[i]} = K∩Vi, 1 ≤ i ≤ kc, and
let S′ = {se | e ⊆ K}. Since dH(s, s′) = kc−2, for every s′ ∈ S′, sH(s, S′) = ds. Consequently,
S′ and s is a solution for the (s)-Closest String-wo-instance S, t, ds.

Now let s ∈ Σkc and S′ ⊆ S with |S′| =
(kc

2
)
be a solution for the (s)-Closest String-wo-

instance S, t, ds. If, for some s′1 ∈ S′, dH(s′1, s) ≥ kc−1, then there is an s′2 ∈ S′ with
dH(s′2, s) ≤ kc−3. Thus, for some i, 1 ≤ i ≤ kc, s[i] = s′2[i] and s′2[i] ∈ Γ, which implies that
replacing s[i] by s′1[i] does not increase sH(s, S′). Moreover, after this modification, dH(s′1, s)
has decreased by 1, while dH(s′2, s) ≤ kc−2. By repeating such operations, we can transform
s such that dH(s′, s) ≤ kc−2, s′ ∈ S′. Next, assume that, for some i, 1 ≤ i ≤ kc, there is an
S′′ ⊆ S′ with |S′′| = kc and, for every s′ ∈ S′′, s[i] = s′[i]. Since dH(s′, s) ≤ kc−2 for every

MFCS 2018

1:10 Consensus Strings with Small Maximum Distance and Small Distance Sum

Table 2 Results for (r, s)-Closest String-wo, including (r)- and (s)-variants.

k t |Σ| ` dr ds k − t Result Note/Ref.

p – – – – – – FPT Thm. 5, Open Prob. in [5]
– 0 2 – – – – NP-hard even for dr-var., but P for ds-var.
– p – p – – – FPT dr ≤ `

– p – – p – – FPT Thm. 7, and [5] for dr-var.
– p – – – p – FPT Thm. 6
– p – – – – p FPT k = t + (k − t)
– – p p – – – FPT trivial
– – p – ? ? ? Open param. |Σ| and some of dr, ds, k − t

– – – p p p p W[1]-hard even for dr-var. [5] and ds-var. (Thm. 9)

s′ ∈ S′′, pigeon-hole principle implies that there are s′1, s′2 ∈ S′′ with s′1[i′] = s′2[i′] = s[i′], for
some i′, 1 ≤ i′ ≤ kc, and i′ 6= i, which, by the structure of the strings of S, is a contradiction.
Consequently, for every i, 1 ≤ i ≤ kc, s matches with at most kc−1 strings from S′ at
position i. Since there are at least 2

(kc
2

)
= kc(kc−1) matches, we conclude that, for every

i, 1 ≤ i ≤ kc, s[i] matches exactly kc − 1 times with the ith position of a string from
S′. Hence, s[i] ∈ Vi, 1 ≤ i ≤ kc, i. e., s = v1,r1v2,r2 . . . vkc,rkc

, for some rj ∈ {1, 2, . . . , q},
1 ≤ j ≤ kc. Let K = {v1,r1 , v2,r2 , . . . , vkc,rkc

}. For every s′ ∈ S′, by definition of the strings
se, we have dH(s, s′) ≥ kc−2, combining with the lower-bound proved ealier, we conclude
dH(s, s′) = kc−2, for every s′ ∈ S. Now let e = (vi,j , vi′,j′) ∈ E be such that se ∈ S′. From
dH(s, se) = kc−2 its follows that s[i] = vi,j and s[i′] = vi′,j′ , which implies e ⊆ K. Since
|S| =

(kc
2

)
, there are

(kc
2

)
edges connecting vertices from K; thus, K is a clique. J

Setting dr = kc−2 instead of ds =
(kc

2
)
(kc−2) in the reduction of Theorem 9 leads to a

simpler proof for the W[1]-hardness of (r)-Closest String-wo(dr, `, k− t) shown in [5] (on
the other hand, the reduction of [5] does not work for (s)-Closest String-wo(ds, `, k− t)).
The results obtained in this section are summarized in Table 2.

3 Closest Substring

In this section, we consider the problem (r, s)-Closest Substring and, as done in Section 2
for (r, s)-Closest String, we classify all parameterisations of (r, s)-Closest Substring
(and its (r)- and (s)-variants) with respect to the parameters `, k, m, dr, ds and |Σ| into
either fixed-parameter tractable or W[1]-hard. Of course, many of those questions are already
solved in the literature, but, unlike for (r, s)-Closest String, not all cases of the (r)- and
(s)-variants are settled, i. e., the status of (s)-Closest Substring(`) is unknown, which is
mentioned as open problem in [24]. We shall first close this gap by defining a reduction from
Multi-Coloured Clique to (s)-Closest Substring.

Let G = (V1∪. . .∪Vkc , E) be a Multi-Coloured Clique-instance. We assume that, for
some q ∈ N, Vi = {vi,1, vi,2, . . . vi,q}, 1 ≤ i ≤ kc, i. e., each vertex has an index depending on
its colour-class and its rank within its colour-class. Let Σ = V ∪{$, �}. For every j, 1 ≤ j ≤ q,
we list all jth elements of the colour-classes as a string Vj = $v1,jv2,j . . . vkc,j . For every edge
e = (vi,j , vi′,j′) with i < i′, we define a string Ee = $�ivi,j�i′−i−1vi′,j′�kc−i′−1. Note that
Ee = $�E ′e, where |E ′e| = kc, the positions i and i′ of E ′e are vi,j and vi′,j′ , respectively, and all
remaining positions are �. The (s)-Closest Substring-instance is now defined as follows.
Let S contain N = |E|(kc +2) + 1 occurrences of each Vj , 1 ≤ j ≤ q, and one occurrence of
each Ee, e ∈ E, and let m = kc +1. We note that ` = kc +2. See Figure 2 for an example.

L. Bulteau and M. L. Schmid 1:11

a

b

c

d

e

f

V1 : $ a c e

V2 : $ b d f

E1 : $ � a c �
E2 : $ � a d �
E3 : $ � a � e

E4 : $ � b c �
E5 : $ � b � e

E6 : $ � � c f

E7 : $ � � d e

s : $ a d e

Repeat

N = 36

times

Figure 2 Illustration of the parameterized reduction from a Multi-Coloured Clique-instance
to (s)-Closest Substring. The colour-classes of the graph are V1 = {a, b} (red), V2 = {c, d} (blue)
and V1 = {e, f} (yellow), the occurrences of symbols from V in the strings Vj and Ei are coloured
according to their colour-classes. The string s = $ade is an optimal solution with respect to the
substrings emphasised with grey background (positions producing a match are in bold). Note that
vertices {a, d, e} form a clique in G.

In the following, we extend the notation of radius optimal and distance sum optimal
to sets S ⊆ Σ≤` and strings s ∈ Σm in the natural way by taking all sets S′ of length-m
substrings of the string in S into account. The next lemma shows that distance sum optimal
strings (with respect to S and m) are basically lists of vertices from each colour-class.

I Lemma 10 (*). If s ∈ Σk+1 is distance sum optimal w. r. t. S, then s ∈ {$} ·V1 ·V2 · . . . ·Vk.

Now let s be distance sum optimal with respect to S and m. From Lemma 10, we can
conclude that s = $v1,r1v2,r2 . . . vkc,rkc

, for some rj ∈ {1, 2, . . . , q}, 1 ≤ j ≤ kc. Let K be the
corresponding set of vertices, i. e., K = {v1,r1 , v2,r2 , . . . , vkc,rkc

}.

I Lemma 11 (*). Let e ∈ E. The optimal distance between s and a length-(kc +1) substring
of Ee is kc−1 if e ⊆ K, and kc otherwise.

Using the lemmas from above, we can now show the correctness of the reduction.

I Theorem 12. (s)-Closest Substring(`, m) is W[1]-hard.

Proof. Let s ∈ Σkc +1 be distance sum optimal with respect to S and m, and let K

be the corresponding set of vertices. We first note that the total distance from s to
the N copies of the strings Vj , 1 ≤ j ≤ q, is exactly Nq kc. According to Lemma 11,
for every e ∈ E, the optimal distance sum between s and the respective substring of
Ee is kc−1 if e ⊆ K, and kc otherwise. Hence, the total distance sum from s to the
respective substrings of Ee, e ∈ E, is |E| kc−r, where r = {e ∈ E | e ⊆ K}, and the
total distance sum between s and S is therefore Nq kc +|E| kc−r. This implies that the
distance sum between s and S is Nq kc +|E| kc−kc(kc−1)

2 if and only if r = kc(kc−1)
2 if and

only if K is a clique of size kc. Consequently, the above reduction, with the addition of
ds = Nq kc +|E| kc−kc(kc−1)

2 , is a parameterised reduction from Multi-Coloured Clique
to (s)-Closest Substring(`, m). J

MFCS 2018

1:12 Consensus Strings with Small Maximum Distance and Small Distance Sum

Table 3 Results for (s)-Closest Substring.

` k m ds |Σ| Result Reference

– – p – p FPT trivial
p – – – p FPT [24]
p p – – – FPT [24]
p – – p – FPT [24]
– – – p p FPT [20]
– p – – 2 W[1]-hard [14]
– p p p – W[1]-hard [14]
p – p – – W[1]-hard Thm. 12

Table 4 Results for (r, s)-Closest Substring.

` k m dr ds |Σ| Result Reference

– – p – – p FPT Thm. 14
p p – – – – FPT Thm. 14
p – – – p – FPT Thm. 14
p – – – – p FPT Thm. 14
p – p p – – W[1]-hard Cor. 13, Open Prob. in [24]
– p – p p p W[1]-hard [20]
– p p p p – W[1]-hard [14]

As illustrated by Table 3, Theorem 12 together with known results from the literature
completely settle the parameterised complexity of (s)-Closest Substring.

Moving on to the problem (r, s)-Closest Substring, we first observe that reducing
(s)-Closest Substring to (r, s)-Closest Substring by setting dr = m is a parameterised
reduction from (s)-Closest Substring(`, m) to (r, s)-Closest Substring(`, m, dr), which
implies the following corollary:

I Corollary 13. (r, s)-Closest Substring(`, m, dr) is W[1]-hard.

Next, we consider several fixed-parameter tractable variants of (r, s)-Closest Substring.

I Theorem 14 (*). (r, s)-Closest Substring(x) ∈ FPT, for every x ∈ {(m, |Σ|), (`, k),
(`, |Σ|), (`, ds)}.

It remains to observe that all remaining parameterisations of (r, s)-Closest Substring
are W[1]-hard. More precisely, it is known that (r)-Closest Substring is W[1]-hard
for parameterisations (k, dr, |Σ|) (see [20]) and (k, m, dr) (see [14]). Hence, the obvious
reduction from (r)-Closest Substring to (r, s)-Closest Substring, i. e., setting ds =
k dr, shows that (r, s)-Closest Substring is W[1]-hard for parameterisations (k, dr, ds, |Σ|)
and (k, m, dr, ds). As can be checked with the help of Table 4, this now classifies all
parameterised variants of (r, s)-Closest Substring.

4 Kernelisation

Neither (r)-Closest String(dr, `, |Σ|) nor (r)-Closest Substring(k, m, dr) admit poly-
nomial kernels unless coNP ⊆ NP/Poly (see [2]), and (r)-Closest String(k, dr) has a kernel
of size O(k2dr log k) (see [17]). From these results, we can conclude the following:

L. Bulteau and M. L. Schmid 1:13

I Proposition 15 (*).
(r, s)-Closest String(dr, `, |Σ|) has no polynomial kernel unless coNP ⊆ NP/Poly.
(r, s)-Closest String(k, dr) has a kernel of size O(k2dr log k).
(r, s)-Closest String(ds) has a kernel of size O((ds)3 log ds).

This only leaves the case open, where only k (or k and |Σ|, which, due to the dependency
|Σ| ≤ k (see [17]), is the same question) is a parameter (regarding this case, note that for
(r)-Closest String(k) no combinatorial kernel or combinatorial FPT-algorithm is known).

I Proposition 16 (*).
(r, s)-Closest Substring(k, m, dr, ds, |Σ|) has no polynomial kernel unless coNP ⊆
NP/Poly.
(r, s)-Closest Substring(`, k) and (r, s)-Closest Substring(`, ds) have kernels of
size O(`k) and O(`ds), respectively.

This almost settles the (r, s)-variant, for which only the parameterisation (`, |Σ|) is open.
For the (r)-variant, the parameterisations `, (`, dr) and (`, |Σ|), and for the (s)-variant, the
parameterisations (m, |Σ|) and (ds, |Σ|) are open.

For (r)-Closest String-wo no kernelisation lower bounds are known so far. However,
the following can be concluded from [2]:

I Proposition 17 (*). (r)-Closest String-wo(dr, `, t, |Σ|) has no polynomial kernel unless
coNP ⊆ NP/Poly.

By a cross-composition3 from (r)-Closest String into (r)-Closest String-wo, we
can rule out a polynomial kernel for the parameterisation (dr, ds, `, (k − t), |Σ|).

To this end, we define a polynomial equivalence relation ∼ over the (r)-Closest String-
instances as follows. For j ∈ {1, 2}, let Sj = {sj,i | 1 ≤ i ≤ kj} ⊆ Σ`j and dr,j ∈ N. Then
(S1, dr,1) ∼ (S2, dr,2) if k1 = k2, `1 = `2 and dr,1 = dr,2. Now let (S1, dr), (S2, dr), . . . , (Sq, dr)
be ∼-equivalent (r)-Closest String-instances, where, for the sake of convenience, Si =
{si,1, si,2, . . . , si,k} ⊆ Σ`, 1 ≤ i ≤ q. For every i, 1 ≤ i ≤ q, let Bi denote the binary
representation of i with exactly dlog(q)e bits, and let Ci = (Bi)2dr+1. Moreover, for every i,
1 ≤ i ≤ q, let S′i = {s′i,1, s′i,2, . . . , s′i,k}, where, for every j, 1 ≤ j ≤ k, s′i,j = si,jCi. Finally,
let the (r, s)-Closest String-wo-instance be (S′, d′r, d′s, t) with S′ =

⋃q
i=1 S′i, d′r = dr,

d′s = kdr and t = (q − 1)k.

I Theorem 18 (*). (r, s)-Closest String-wo(dr, ds, `, (k − t), |Σ|) does not admit a poly-
nomial kernel unless coNP ⊆ NP/Poly.

5 Conclusions

The parameterised complexity of the (r)-, (s)- and general variant of Closest String
and Closest Substring with respect to `, k, m, dr, ds, |Σ| is now completely settled. For
(r, s)-Closest Substring, where positive results are less abundant, it might be worthwhile to
identify other parameters that yield fixed-parameter tractability. For (r, s)-Closest String,
it should be pointed out that the FPT-algorithms with respect to k are based on ILP and are
most likely practically not relevant; direct combinatorial FPT-algorithms are still unknown.
For the outlier variant of (r, s)-Closest String, many cases are left open, most prominently,
the ones with |Σ| as parameter, and we expect those to be challenging. Moreover, for several
FPT-variants, the existence of polynomial kernels is not yet answered.

3 For the technique of cross-composition, see Bodlaender et al. [4].

MFCS 2018

1:14 Consensus Strings with Small Maximum Distance and Small Distance Sum

References
1 A. Amir, G. M. Landau, J. C. Na, H. Park, K. Park, and J. S. Sim. Efficient algorithms for

consensus string problems minimizing both distance sum and radius. Theoretical Computer
Science, 412:5239–5246, 2011.

2 M. Basavaraju, F. Panolan, A. Rai, M. S. Ramanujan, and S. Saurabh. On the kernelization
complexity of string problems. In Proc. 20th International Conference on Computing and
Combinatorics, COCOON 2014, volume 8591 of LNCS, pages 141–153, 2014.

3 A. Ben-Dor, G. Lancia, R. Ravi, and J. Perone. Banishing bias from consensus sequences.
In Proc. 8th Annual Symposium on Combinatorial Pattern Matching, CPM 1997, volume
1264 of LNCS, pages 247–261, 1997.

4 H. L. Bodlaender, B. M. P. Jansen, and S. Kratsch. Kernelization lower bounds by cross-
composition. SIAM Journal of Discrete Mathematics, 28(1):277–305, 2014.

5 C. Boucher and B. Ma. Closest string with outliers. BMC Bioinformatics, 12:S55, 2011.
6 L. Bulteau, F. Hüffner, C. Komusiewicz, and R. Niedermeier. Multivariate algorithmics for

NP-hard string problems. Bulletin of the EATCS, 114:31–73, 2014.
7 M. Cygan, F. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,

and S. Saurabh. Parameterized Algorithms. Springer, 2015.
8 X. Deng, G. Li, Z. Li, B. Ma, and L. Wang. Genetic design of drugs without side-effects.

SIAM Journal of Computing, 32(4):1073–1090, 2003.
9 J. Dopazo, A. Rodríguez, J. Sáiz, and F. Sobrino. Design of primers for PCR amplification

of highly variable genomes. Computer Applications in the Biosciences, 9(2):123–125, 1993.
10 R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in

Computer Science. Springer, 2013.
11 Rodney G Downey and Michael Ralph Fellows. Parameterized complexity. Springer Science

& Business Media, 2012.
12 P. A. Evans, A. Smith, and H. T. Wareham. The parameterized complexity of p-center

approximate substring problems. Technical Report TR01-149, Faculty of Computer Science,
University of New Brunswick, Canada, 2001.

13 P. A. Evans, A. D. Smith, and H. T. Wareham. On the complexity of finding common
approximate substrings. Theoretical Computer Science, 306:407–430, 2003.

14 M. R. Fellows, J. Gramm, and R. Niedermeier. On the parameterized intractability of motif
search problems. Combinatorica, 26:141–167, 2006.

15 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
16 M. Frances and A. Litman. On covering problems of codes. Theory of Computing Systems,

30:113–119, 1997.
17 J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for closest

string and related problems. Algorithmica, 37:25–42, 2003.
18 J. K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selection

problems. Information and Computation, 185:41–55, 2003.
19 K. Lucas, M. Busch, S. Mössinger, and J. A. Thompson. An improved microcomputer pro-

gram for finding gene- or gene family-specific oligonucleotides suitable as primers for poly-
merase chain reactions or as probes. Computer Applications in the Biosciences, 7(4):525–
529, 1991.

20 D. Marx. Closest substring problems with small distances. SIAM Journal on Computing,
38:1382–1410, 2008.

21 G. Pavesi, G. Mauri, and G. Pesole. An algorithm for finding signals of unknown length in
DNA sequences. Bioinformatics, 17:S207–S214, 2001.

22 P. Pevzner and S. Sze. Combinatorial approaches to finding subtle signals in DNA strings.
In Proceedings of the 8th International Conference on Intelligent Systems for Molecular
Biology, ISMB 2000, pages 269–278, 2000.

L. Bulteau and M. L. Schmid 1:15

23 V. Proutski and E. C. Holmes. Primer master: a new program for the design and analysis
of PCR primers. Computer Applications in the Biosciences, 12(3):253–255, 1996.

24 Markus L. Schmid. Finding consensus strings with small length difference between input
and solution strings. ACM Transactions on Computation Theory, 9(3):13:1–13:18, 2017.

25 M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. De Moor, E. Eskin, A. V. Favorov,
M. C. Frith, Y. Fu, W. J. Kent, V. J. Makeev, A. A. Mironov, W. S. Noble, G. Pavesi,
G. Pesole, M. Régnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M. Vandenbogaert,
Z. Weng, C. Workman, C. Ye, and Z. Zhu. Assessing computational tools for the discovery
of transcription factor binding sites. Nature Biotechnology, 23(1):137–144, 2005.

MFCS 2018

Plain Stopping Time and Conditional
Complexities Revisited
Mikhail Andreev
IPONWEB, Berlin, Germany
amishaa@mail.ru

Gleb Posobin1

National Research University – Higher School of Economics, Moscow, Russia
posobin@gmail.com

Alexander Shen2

LIRMM CNRS / University of Montpellier, France. On leave from IITP RAS, Moscow, Russia
alexander.shen@lirmm.fr

https://orcid.org/0000-0001-8605-7734

Abstract
In this paper we analyze the notion of “stopping time complexity”, the amount of information
needed to specify when to stop while reading an infinite sequence. This notion was introduced
by Vovk and Pavlovic [9]. It turns out that plain stopping time complexity of a binary string
x could be equivalently defined as (a) the minimal plain complexity of a Turing machine that
stops after reading x on a one-directional input tape; (b) the minimal plain complexity of an
algorithm that enumerates a prefix-free set containing x; (c) the conditional complexity C(x |x∗)
where x in the condition is understood as a prefix of an infinite binary sequence while the first x
is understood as a terminated binary string; (d) as a minimal upper semicomputable function K
such that each binary sequence has at most 2n prefixes z such that K(z) < n; (e) as max CX(x)
where CX(z) is plain Kolmogorov complexity of z relative to oracle X and the maximum is taken
over all extensions X of x.

We also show that some of these equivalent definitions become non-equivalent in the more
general setting where the condition y and the object x may differ, and answer an open question
from Chernov, Hutter and Schmidhuber [3].

2012 ACM Subject Classification Mathematics of computing → Information theory

Keywords and phrases Kolmogorov complexity, stopping time complexity, structured condi-
tional complexity, algorithmic information theory

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.2

Related Version A full version of the paper is available at [1], https://arxiv.org/abs/1708.
08100.

Funding Supported by RaCAF ANR-15-CE40-0016-01 RaCAF grant

Acknowledgements The authors are grateful to Alexey Chernov, Volodya Vovk, members of the
ESCAPE team (LIRMM, Montpellier), Kolmogorov seminar (Moscow) and Theoretical Com-
puter Science Laboratory (National Research University Higher School of Economics, Computer
Science department, Moscow), the participants of Dagstuhl meeting where some results of the
paper were presented [2], and the reviewers of preliminary versions of this paper.

1 Supported by Russian Academic Excellence Project 5–100
2 Supported by RaCAF ANR-15-CE40-0016-01 RaCAF grant

© Mikhail Andreev, Gleb Posobin, and Alexander Shen;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 2; pp. 2:1–2:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amishaa@mail.ru
mailto:posobin@gmail.com
mailto:alexander.shen@lirmm.fr
https://orcid.org/0000-0001-8605-7734
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.2
https://arxiv.org/abs/1708.08100
https://arxiv.org/abs/1708.08100
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Plain Stopping Time and Conditional Complexities Revisited

1 Introduction: stopping time complexity

Imagine that you explain to someone which exit on a long road she should take. You can
just say “Nth exit”; for that you need logN bits. You may also say something like “the first
exit after the first bridge”, and this message has bounded length even if the bridge is very
far away.3

More formally, consider a machine with one-directional read-only input tape that contains
bits x0, x1, . . . xn, We want to program the machine in such a way that it stops after
reading bits x0, . . . , xn−1 (and never sees xn and the subsequent bits). Obviously, the
complexity of this task does not depend on the values of xn, xn+1, . . ., because the machine
never sees them, so this complexity should be a function of a bit string x = x0x1 . . . xn−1. It
can be called the “stopping time complexity” of x.

Such a notion was introduced recently by Vovk and Pavlovic [9]. In their paper an
“interactive” version of stopping time complexity is considered where even (x2n) and odd
(x2n+1) terms are considered differently, but this is just a special case, so we do not consider
this setting. It turns out that the stopping time complexity is a special case of conditional
Kolmogorov complexity with structured conditions. (In this paper we consider the plain
version of stopping time complexity and postpone similar questions for prefix versions.)

The Kolmogorov complexity was introduced independently by Solomonoff, Kolmogorov,
and Chaitin to measure the “amount of information” in a finite object (say, in a binary
string). One can also consider the conditional version of complexity where some other object
(a condition) is given “for free”. Later different versions of Kolmogorov complexity appeared
(plain, prefix, a priori, monotone complexities). We assume that the reader is familiar with
basic notions of algorithmic information theory, see, for example, [6] for a short introduction
and [7] for a detailed exposition.

For the plain version of stopping time complexity we prove the equivalence between
five different definitions (Section 2). First, we show that it can be equivalently defined
as (1) the minimal plain complexity of a machine with one-way read-only input tape that
stops after reading x, or (2) the minimal enumeration complexity of a prefix-free set that
contains x. Then we show how the stopping time complexity can be expressed in terms
of plain conditional complexity that is monotone with respect to conditions. Namely, we
prove that (3) the stopping time complexity equals C(x |x∗) where x is used both as an
object and a condition. Of course, according to standard definitions, the complexity C(x |x)
is O(1), but now we treat these two strings x differently (and use a star in the notation
to stress this). One may say that the topologies in the space of objects and the space of
conditions are different. The first x (object to be described) is considered as an isolated
object (terminated string). The second x (in the condition) is considered as a prefix of an
infinite sequence. In [7, Section 6.3] this approach is described in general (see also [5] for even
more general setting); to make this paper self-contained, we give all necessary definitions for
our special case. We call this version of complexity “monotone-conditional complexity” since
this function is monotone with respect to the condition. Then we provide a characterization
of stopping time complexity in quantitative terms proving that (4) stopping time complexity
is the minimal upper semicomputable function satisfying some restrictions (no more than 2n

prefixes of any given sequence could have complexity at most n). Finally, we point out the
connections with the relativized version CA(x) of plain complexity and prove that (5) the

3 We do not allow, however, the description “the last exit before the bridge”, since it uses information
that is unavailable at the moment when we have to take the exit.

M. Andreev, G. Posobin, and A. Shen 2:3

stopping time complexity of a binary string x is the maximal value of CA(x) for all oracles
(infinite bit sequences) A that have prefix x.

Having such a robust definition for plain stopping time complexity, one may ask whether
similar characterizations can be obtained for a more general notion of C(y |x∗) where x and
y are arbitrary strings. Unfortunately, here the situation is much worse, and we prove mostly
negative results (Section 3). We show that while C(y |x∗) can be defined as a minimal plain
complexity of a prefix-stable program that maps x to y (Theorem 12), it cannot be defined
as a minimal plain complexity of a prefix-free program that maps some prefix of x to y
(Theorem 13; this result answers a question posed in [3]). Then we show that the attempt to
define C(y |x∗) by quantitative restrictions also fails: we get another function that may be
up to two times less (Theorem 14).

2 Equivalent definitions

2.1 Machines and prefix-free sets
Consider a Turing machine M that has one-directional read-only input tape with binary
alphabet, and a work tape with arbitrary alphabet (or many work tapes). Let x be a binary
string. We say that M stops at x if M , being started with the input tape x (and an empty
work tape, as usual), reads all the bits of x and stops without trying to read more bits. (We
assume that initially the input head is on the left of x, so it needs to move right before seeing
the first bit of x.) For a given x, we may consider the minimal plain Kolmogorov complexity of
a machine M that stops at x. This quantity is independent (up to O(1)-additive term) of the
details of the definition (work tape alphabet, number of work tapes, etc.) since computable
conversion algorithms exist, and a computable transformation may increase complexity only
by O(1). We arrive at the following definition:

I Definition 1. The plain stopping time complexity of x is the minimal plain Kolmogorov
complexity of a Turing machine that stops at x.

Here is a machine-independent equivalent characterization of the plain stopping time
complexity.

I Theorem 2. Plain stopping time complexity of x equals (up to an O(1) additive term) the
minimal complexity of a program that enumerates some prefix-free set containing x.

(A set of strings is called prefix-free if it does not contain a string and its proper prefix at
the same time.)

Proof. One direction is simple: For a Turing machine M of the type described the set
{x : M stops at x} is enumerable (we may simulate all runs) and prefix-free (if M stops at
some x, then for every extension y of x the machine M will behave in the same way on
tapes x and y, so M with input y stops after reading x and never reads the rest of y). This
computable conversion (of a machine into an enumeration program) increases complexity at
most by O(1).

The other direction is a bit more complicated. Imagine that we have a program that
enumerates some prefix-free set U of strings. How can we construct a machine that stops
exactly at the strings in U? Initially no bits of x are read. Enumerating U , we wait until
some element u of U appears. (If this never happens, the machine never stops, and this is
OK.) If u is empty, machine stops. In this case U cannot contain non-empty strings (being
prefix-free), so the machine’s behavior is correct. If u is not empty, we know that empty

MFCS 2018

2:4 Plain Stopping Time and Conditional Complexities Revisited

string is not in U (since U is prefix-free), so we may read the first bit of x without any risk,
and get some one-bit string v. Then we wait until v or some extension of v appears in U (it
may have already happened if u is an extension of v). If v itself appears, the computation
stops; if a proper extension of v appears, then v is not in U and we can safely read the next
bit, etc. It is easy to check that indeed this machine stops at some x if and only if x belongs
to U . J

2.2 Monotone-conditional complexity
In this section we show how the stopping time complexity can be obtained as a special case
of some general scheme [5, 8, 7]. This scheme can be used to define different versions of
Kolmogorov complexity. We consider decompressors, called also description modes. In our
case decompressor is a subset D of the set

(descriptions)× (conditions)× (objects).

Here descriptions, conditions, and objects are binary strings. If (p, x, y) ∈ D, we say that p
is a description of y given x as condition, and define the conditional complexity of y given
x (with respect to the description mode D) as the length of the shortest description. The
different versions of complexity correspond to different topologies on the spaces involved,
and imply different restrictions on description modes. This is explained in [8] or [7, Chapter
6], and we do not go into technical details here. Let us mention only that descriptions
and objects can be considered as isolated entities (terminated strings, natural numbers) or
prefixes of an infinite sequence (extension of a string provides more information than the
string itself). In this way we get four classical versions of complexity:

isolated descriptions descriptions as prefixes

isolated objects plain complexity prefix complexity
objects as prefixes decision complexity monotone complexity

As noted in [7], one can also consider different structures on the condition space, thus getting
eight versions of complexity instead of four in the table. In this paper we use only one
of them: objects and descriptions are isolated objects, and conditions are considered as
prefixes. (Vovk and Pavlovic [9] consider also another version of stopping time complexity
that corresponds to the other topology on the description space, but we do not consider this
version now.)

To make this paper self-contained, let us give the definitions tailored to the special case
we consider (the plain version of monotone-conditional complexity). In this case the set D is
called a description mode if it satisfies the following requirements:

D is (computably) enumerable;
for every p and x there exists at most one y such that (p, x, y) ∈ D;
if (p, x, y) ∈ D and x is a prefix of some x′, then (p, x′, y) ∈ D.

The last requirement reflects the idea that x is considered as a known prefix of a yet unknown
infinite sequence; if x′ extends x, then x′ contains more information than x and can be used
instead of x. To stress this kind of monotonicity, we use ∗ in the notation suggested by the
following definition.

I Definition 3. For a given description mode D, we define the function

CD(y |x∗) = min{|p| : (p, x, y) ∈ D}

and call it monotone-conditional complexity of y with condition x with respect to description
mode D.

M. Andreev, G. Posobin, and A. Shen 2:5

By definition, if x is a prefix of some x′, the same description can be used, so CD(y |x′∗) ≤
CD(y |x∗). Therefore, this function is indeed monotone with respect to the condition in a
natural sense.

One could also use a name plain monotone-conditional complexity to distinguish this
notion from prefix monotone-conditional complexity that can be defined in a similar way by
adding the monotonicity restriction along the p-coordinate.

I Proposition 4 (Solomonoff–Kolmogorov’s optimality theorem). There exists a description
mode D that makes CD minimal up to O(1) additive term in the class of all functions CD′

for all description modes D′.

Proof. As usual, we first note that description modes can be effectively enumerated. This
enumeration is obtained as follows. We generate all enumerable sets of triples and then
modify them in such a way that the modified set becomes a description mode and is left
unchanged if it already was a description mode. Namely, when a triple (p, x, y) appears in
the enumeration, we add this triple and all triples (p, x′, y) for all extensions x′ of x, unless
the second condition would be violated after that; in the latter case we ignore (p, x, y).

Let Un be the nth set in this enumeration. The optimal set U can be constructed as

U = {(0n1p, x, y) : (p, x, y) ∈ Un};

the standard argument shows that CU ≤ CUn
+n+ 1 as required. J

I Definition 5. Fix some optimal description mode D provided by Proposition 4. The
function CD(y |x∗) is denoted by C(y |x∗) and called the (plain) monotone-conditional
complexity of y given x, or the (plain) conditional complexity of y given x as a prefix.

If we omit the third requirement for description modes, we get the standard conditional
complexity C(y |x) in the same way. The notation we use (placing ∗ after the condition)
follows [3] though a different version of monotone-conditional complexity is considered there.
In general, C(y |x∗) is greater than the standard conditional complexity C(y |x) since we
have more requirements for the description modes. One may say also that the condition now
is weaker than in C(y |x) since we do not know where x terminates. It is easy to show that
the difference is bounded by O(log |x|), since we need at most O(log |x|) bits to specify how
many bits should be read in the condition x. Difference of this order is possible: for example,
C(n |0n) = O(1), but C(n |0n∗) = C(n) +O(1) (the condition 0n is a prefix of a computable
sequence 000 . . ., so it does not help at all).

The following simple result shows that the plain stopping time complexity (Definition 1)
is a special case of this definition when x = y (so we do not need a separate notation for the
stopping time complexity).

I Theorem 6. The complexity C(x |x∗) is equal (up to O(1) additive term) to the plain
stopping time complexity of x.

Proof. Let D be a description mode. Then for every p we may consider the set Sp of strings
x such that (p, x, x) ∈ D. This set is prefix-free: if (p, x, x) and (p, x′, x′) belong to D and x is
a prefix of x′, then (p, x′, x) ∈ D according to the third condition, and then x = x′ according
to the second condition. The algorithm enumerating Sp can be constructed effectively if p is
known, so its complexity is bounded by the length of p (plus O(1), as usual). Choosing the
shortest p such that (p, x, x) ∈ D, we conclude that the minimal complexity of an algorithm
enumerating a prefix-free set containing x does not exceed C(x |x∗) +O(1).

MFCS 2018

2:6 Plain Stopping Time and Conditional Complexities Revisited

Going in the other direction, consider an optimal decompressor U(·) that defines the
(plain Kolmogorov) complexity of programs enumerating sets of strings. A standard trimming
argument shows that we may modify U in such a way that all algorithms U(p) enumerate
only prefix-free sets of strings (not changing the sets there were already prefix-free). Then
consider a set D of triples

(p, x, y) ∈ D ⇔ y is a prefix of x and y is enumerated by U(p).

This set in obviously enumerable; the second requirement is satisfied since D(p) enumerates a
prefix-free set; the third requirement is true by construction, so D is a description mode. If p
is the shortest description of a program that enumerates a set containing x, then (p, x, x) ∈ D,
so CD(x |x∗) ≤ |p|. Switching to the optimal description mode, we get similar inequality
with O(1) additive term, as required. J

Another simple observation shows that indeed this complexity may be called the stopping
time complexity.

I Proposition 7. If x has length n, then C(x |x∗) = C(n |x∗) +O(1).

Proof. If D is the optimal description mode used to define C(y |x∗), we may consider a
new set D′ = {(p, u, |x|) : (p, u, x) ∈ D} that also is a description mode, and then note that
CD′(n |x∗) ≤ CD(x |x∗). For the other direction, we consider D′ = {(p, u, z) : ∃n [(p, u, n) ∈
D, |u| ≥ n, and z = (n-bit prefix of u)]}. J

I Remark. If a0a1a2 . . . is a computable sequence, then

C(a0 . . . an−1 |a0 . . . an−1∗) = C(n |a0 . . . an−1∗) = C(n)

with O(1)-precision (the constant depends on the computable sequence, but not on n), so
the stopping time complexity can be considered as a generalization of the plain complexity
(of a natural number n).

2.3 Quantitative characterization
There is a well known characterization (see, e.g., [8, Section 1.1, Theorem 8]) for plain
complexity in terms of upper semicomputable functions that satisfy some properties. Recall
that a function is called upper semicomputable if it is a pointwise limit of a decreasing
sequence of uniformly computable total functions. (Now we need this notion for integer-
valued functions; in this case we may assume without loss of generality that the total
computable functions used in the definition are also integer-valued; in the general case one
needs to consider rational-valued functions.) An equivalent definition of a semicomputable
natural-valued function S(x) requires the set {(n, x) : S(x) < n} to be enumerable.

Plain complexity function C(x) is upper semicomputable; we know also that

#{x : C(x) < n} < 2n (*)

since there are less than 2n programs of length less than n. The characterization that we
mentioned says that there exist a minimal (up to O(1) additive term) upper semicomputable
function that satisfies the requirement (∗), and it coincides with the plain complexity function
with O(1)-precision.

It turns out that this characterization can be generalized to plain stopping time complexity
(though the proof becomes more involved). Consider upper semicomputable functions S(x)

M. Andreev, G. Posobin, and A. Shen 2:7

on strings that have the following property: for each infinite binary sequence α and for each
n there exists less than 2n prefixes x of α such that S(x) < n. The following statement is
true (it appears as Theorem 18 in the extended version of Vovk–Pavlovic’s paper [9]).

I Theorem 8. There exist a minimal (up to O(1) additive term) function in this class; it
coincides with the plain stopping time complexity C(x |x∗) with O(1)-precision.

Proof. The easy part is to show that C(x |x∗) belongs to the class. It is upper semicomputable,
since in general the function C(x |y∗) is upper semicomputable (enumerating the set D of
triples, we get better and better upper bounds, finally reaching the limit value).

Let α be some infinite sequence. There are less than 2n algorithms of complexity less
than n enumerating prefix-free sets, and each of this prefix-free sets may contain at most one
prefix of α. So the second condition is also true.

In the other direction we use some online (interactive) version of Dilworth’s theorem
(saying that a partially ordered finite set where maximal chain is of length at most k can be
partitioned into k antichains) where the set is growing and splitting into antichains should
be performed at each stage (and cannot be changed later). The exact statement is as follows.

Consider a game with two players. Alice and Bob alternate. Alice may at each move
(irreversibly) mark a vertex of the full binary tree. The restriction is that each infinite branch
should contain at most k marked vertices. Bob replies by assigning a color from 1, . . . , k
to the newly marked vertex. No vertices of the same color should be comparable (be on
the same branch). The colors cannot be changed after they are assigned. Bob loses if he is
unable to assign color at some stage (not violating the rules).

I Lemma 9. Bob has a computable strategy that prevents him from losing.

Proof of Lemma 9. This lemma can be proven in different ways. In the extended version of
Vovk–Pavlovic’s paper [9] the following simple strategy is suggested: Bob assigns the first
available color. In other terms, for a new vertex x Bob chooses the first color that is not
used for any vertex comparable with x. One needs to check that k colors are always enough.
It is not immediately obvious, since more than k vertices could be comparable with x (being
its descendants, for example). However, we may note that during the process:

Colors of comparable vertices are different. (By construction.)
If a vertex x gets color i, then each smaller color is used either for a predecessor of x or
for a descendant of x. (By construction.)
If x is a vertex (colored or not), Tx is the set of colors used in the subtree rooted at x
(including x itself), and Px is the set of colors used on the path to x (not including x), then
Tx and Px are disjoint and Tx is the initial segment in the complement to Px. (Indeed,
the disjointness is mentioned above. If y appears in Tx, then all smaller colors appear
either below y (therefore in Px or in Tx), or above y (therefore in Tx).
The sets Tx0 and Tx1 for two brother vertices x0 and x1 are comparable with respect to
inclusion. (Indeed, they are two initial segments of the same ordered set, the complement
to Px0 or Px1; note that Px0 = Px1.)
For each x the total number of colors used in Tx is minimal, i.e., this number equals the
maximal number of marked vertices on some path in Tx. (Induction using the previous
property.)

The last property implies that Bob never uses more than k colors, since by assumption
the total number of marked vertices on a path is at most k.

A different description of the same strategy that explains why it is successful is provided
in the extended version of this paper [1]. J

MFCS 2018

2:8 Plain Stopping Time and Conditional Complexities Revisited

Now let us show how the lemma is used to finish the proof of Theorem 8. Let S be
a function in the class; since S is upper semicomputable, Alice may, given n, enumerate
strings x such that S(x) < n; we know that there is at most 2n strings of this type along
any branch of the tree, so Alice never violates the restriction for k = 2n. The lemma then
says that Bob can assign 2n colors (represented as n-bit strings) to all the vertices in such
a way that compatible vertices (a string and its prefix) never get the same color. We run
these games for all n in parallel; if vertex x gets color c, we put x into an enumerable set
indexed by c. The rules of the game guarantee that all these sets are prefix-free, and the
algorithm enumerating cth set needs only |c| bits of information. So, if S(x) < n, there exists
an algorithm of complexity n+ O(1) that enumerates a prefix-free set containing x. This
means that C(x |x∗) ≤ S(x) +O(1) as required. J

2.4 Oracles and the stopping time complexity
It is natural to compare the stopping time complexity C(x |x∗) and the relativized complexity
CX(x) where X is some oracle (infinite binary sequence) that has x as a prefix. (The
relativized complexity CX(x) can be naturally defined as a function of two arguments, a
binary string x and an infinite binary sequence X, up to O(1) additive term.)

It is easy to see that

CX(x) ≤ C(x |x∗)

for every X that has prefix x: an oracle access to entire sequence X is more powerful than
a bit-by-bit sequential access to x without the right to read too much (beyond x). More
formally, let D be a set of triples (p, x, y) used to define C(y |x∗) (Definition 5). Then we say
that p is a description of x with oracle X (as the definition of CX(x) requires) if (p, z, x) ∈ D
for some z that is a prefix of X. For a given X every string p can be a description of only one
x, since D is monotone. If (p, x, x) ∈ D and X is an extension of x, then p is a description
of x, and we get the required inequality.

The “last exit before the bridge” example shows that CX(x) can be much smaller than
C(x |x∗) for some extensions X of x: we have C(0n |0n∗) = C(n) +O(1), but CX(0n) = O(1)
for X = 0n10∞.

So it is natural to take maximum over all oracles X that extend a given string x. Indeed
this approach works:

I Theorem 10.

C(x |x∗) = max{CX(x) : X is an infinite extension of x}+O(1).

Proof. As we have already mentioned, CX(x) ≤ C(x |x∗) +O(1) for every infinite extension
X of x. This shows that right hand side does not exceed the left hand side.

Before proving the reverse inequality, let us discuss informally its meaning (this discussion
is not used in the argument below and can be omitted). The reverse inequality is a minimax-
type result that shows that either (1) there exists a short program that produces x given
any extension of x as an oracle (and never reads bits after x, but this is not so important for
us now), or (2) there exists a “hard to use” extension X of x such that any program that
computes x given X is long. In other words, it is not possible that for every extension X of
x there exists a short program that computes x given X as an oracle, but these programs
depend on X and only a much longer program works for all extensions.

For the proof of the reverse inequality we use the quantitative characterization of stopping
time complexity (Theorem 8). Let S(x) be the value of the right hand side. It is enough to

M. Andreev, G. Posobin, and A. Shen 2:9

prove that S is upper semicomputable and that S(x) < n cannot happen for 2n different
prefixes x of some infinite branch X.

The second claim follows directly from the definition. Let x1, . . . , xk be some prefixes of
an infinite sequence X such that S(xi) < n for all i = 1, . . . , k. We need to show that k < 2n.
Since S(xi) is defined as maximum and X is an extension of xi, we know that CX(xi) < n

for all i and the same X. It remains to note that the number of different programs of length
less than n is smaller than 2n (and the same programs with the same oracles give the same
results).

To show that S(x) is upper semicomputable, we use the standard compactness argument.
As usual, it is enough to show that the binary relation S(x) < n is (computably) enumerable.
Indeed, for every x, the set {X : CX(x) < n} is the union, taken over all strings p of length
less than n, of the sets

{X : p is a description of x with oracle X}.

Each of these sets is an open set in the Cantor space, since every terminating oracle
computation uses only a finite part of the oracle, and the intervals in the Cantor space that
form these sets, can be effectively enumerated for all p and x. The inequality S(x) < n

means that the union of these intervals for all p of length less than n covers the Cantor
space. Now compactness guarantees that this happens already at some finite stage of the
enumeration, so the property S(x) < n is indeed enumerable. J

3 Non-equivalence results

3.1 Prefix-stable or prefix-free functions?
Looking at the characterization of C(x |x∗) as the minimal enumeration complexity of a
prefix-free set containing x (Theorem 6), one can ask whether a similar characterization works
for the general case, i.e., whether C(y |x∗) can be characterized as a minimal complexity
of programs (machines) with some property. The answer is ‘yes’, but we should be careful
choosing a property of programs used in this characterization. Here are the details.

I Definition 11. A partial function f defined on binary strings is called
prefix-free if its domain is prefix-free (function is never defined on a string and its extension
at the same time);
prefix-stable if for every x, if f(x) is defined, then f is defined and has the same value on
all (finite) extensions of x.

It is easy to see that the definition of C(y |x∗) can be reformulated in terms of prefix-stable
functions:

I Theorem 12. The minimal plain complexity of a program that computes a prefix-stable
function mapping x to y is equal to C(y |x∗) +O(1).

Proof. A description mode can be considered as a family of prefix-stable functions (indexed
by the first argument p). This shows that there exist a program for a prefix stable function
mapping x to y of complexity at most C(y |x∗) +O(1). On the other hand, one can efficiently
“trim” all programs to make them prefix-stable; if û is the trimmed version of a program
u and U is the decompressor used to define plain complexity of programs, then the set
D = {p, x, Û(p)(x) : p, x} satisfies the conditions and may be considered as a decompressor
in the definition of C(y |x∗). Using this decompressor, we get the reverse inequality. J

MFCS 2018

2:10 Plain Stopping Time and Conditional Complexities Revisited

More interesting question: is a similar statement true for prefix-free functions instead of
prefix-stable ones? As we mentioned above, Theorem 6 implies that this is the case when
x = y. (We spoke about programs that stop at x, but we may assume without loss of
generality that the output is also x.) But in the general case it is not true anymore. Let us
make this statement more precise. The first idea is to consider the minimal plain complexity
of a program computing a prefix-free function mapping x to y. But this quantity does not
look reasonable: the complexity of empty string Λ with condition x defined in this way may
be arbitrarily large (and is actually the stopping time complexity of the condition x).

A more reasonable approach is to consider function C′(y |x∗) defined as the minimal
complexity of a prefix-free program that maps some prefix of x to y. This approach still does
not work, as the following result shows.

I Theorem 13. The inequality C(y |x∗) ≤ C′(y |x∗)+c holds for some c and for all x, y. The
reverse inequality does not: there exist strings xi, yi (for i = 0, 1, 2, . . .) such that C(yi |xi∗)
is bounded while C′(yi |xi∗) is unbounded.

Proof. The first part is easy: if an algorithm computing a prefix-free function f is given,
we can effectively transform it into an algorithm that computes its prefix-stable extension g
such that g(x) = y if f(u) = y for some prefix u of x.

For the second part of the proof (using game arguments in the sense of [4]) see the
extended version of this paper [1]. J

Theorem 13 implies that the conjecture from [3, p. 254] is false, and the function CT

defined there may exceed CE more than by O(1) additive term. We do not go into the details
of the definition used in [3]; let us mention only that CE(yi |xi) is bounded while CT (yi |xi)
is not: for every twice prefix machine (as defined in [3, p. 252]) we get a prefix-free function
if we fix the first argument (denoted there by p).

3.2 Quantitative characterization of C(y |x∗) works only up to factor 2
In Section 2.3 we provided a quantitative characterization of stopping time complexity,
or C(x |x∗), with O(1)-precision (Theorem 8). The natural question is whether a similar
characterization works in the general case, i.e., for C(x |y∗). As we will see, the answer is
negative.

For C(x |y) (the standard version of conditional complexity, with no monotonicity require-
ment) such a characterization is well known: C(x |y) is the minimal upper semicomputable
function of two arguments K(x, y) such that for every string y and every number n there is
at most 2n different strings x such that K(x, y) < n.

The natural approach is to keep this restriction and add the monotonicity requirements:

K(x, y0) ≤ K(x, y) and K(x, y1) ≤ K(x, y), for every x and y.

We get some class of functions (that are upper semicomputable, satisfy the cardinality
restriction and are monotone in the sense described). Can we characterize C(x |y∗) as the
minimal function in this class? No, as the following theorem shows.

I Theorem 14.
(a) Function C(x |y∗) belongs to this class.
(b) There exists a minimal (up to O(1) additive term) function in this class;
(c) Function C(x |y∗) is not minimal in this class: there exist a function K in this class,

and sequences of strings xn and yn such that K(xn, yn) ≤ n, but C(xn |yn∗) ≥ 2n − c
for some c and for every n.

M. Andreev, G. Posobin, and A. Shen 2:11

(d) The factor 2 that appears in the previous statement is optimal: if K is a function in the
class (for example, the minimal one), then C(x |y∗) ≤ 2K(x, y) + c for some c and for
all x and y.

Proof. The statements (a) and (b) are “good news”, while the statement (c) is “bad news”
showing that our characterization does not work. (It is possible a priori that one can get
a natural characterization of C(x |y∗) by adding some other restrictions, but it is quite
unclear what kind of restrictions could help here.) Finally, the statement (d) partly saves
the situation and shows that the minimal function in the class and C(x |y∗) differ at most by
factor 2.

The statement (a) is obvious; note that C(x |y∗) is bigger than C(x |y), so the cardinality
restriction remains true. Other requirements immediately follow from the definition.

The statement (b) can be proved in a standard way. We can enumerate all functions
in the class and get a uniformly computable sequence of functions Km(x, y). For that we
enumerate all monotone upper semicomputable functions and then “trim” them by deleting
small values that make the cardinality restriction false. Then we construct the minimal
function K(x, y) by letting

K(x, y) = min
m

(Km(x, y) +m+ 1).

It is upper semicomputable and monotone; for every y, the set of x such that K(x, y) < n

is the union of sets {x : Km(x, y) < n−m− 1} that have cardinality at most 2n−m−1, and
2n−1 + 2n−2 + . . . < 2n. The function K is minimal, since K ≤ Km +m+ 1.

For the proofs of statements (c) and (d) see the extended version of this paper [1]. These
proofs use game arguments in the sense of [4]. J

4 Questions

I Question 1. Imagine Turing machines with two read-only input tapes; for such a machine
M consider a function fM such that fM (x, y) = z if M stops at x and y on first and second
tape respectively (reading all bits and not more) and produces z. Could we characterize
the functions fM (called twice prefix free in [3, page 242]) or at least their domains? Such
a domain is an enumerable set of pairs that does not contain two pairs (x, y) and (x′, y′)
where x is compatible with x′ (one is a prefix of the other) and y is compatible with y′.
Still this necessary condition is not sufficient, as the following argument shows. Let zi be a
computable sequence of pairwise incompatible strings (say, zi = 0i1). Let P and Q be two
enumerable sets that are inseparable (do not have a decidable separating set). Consider the
set of pairs that contains

(zi0, zi0) for all i;
(zi, zi1) for i ∈ P ;
(zi1, zi) for i ∈ Q.

This set satisfies the necessary condition above (does not contain two compatible pairs).
However, assume that some twice prefix free machine has this set as a domain. Then it
should terminate after reading zi0 on the first tape and zi0 on the second tape. Consider
the last zero bits on both tapes. One of these bits should be read first (if they are read
simultaneously, we may choose any of two). If this is the first bit, then i ∈ P is impossible
(since the machine cannot read 1 on the second tape before reading 0 on the first tape). For
the same reason, i ∈ Q is impossible if the second bit is read first. Therefore, a decidable
separator exists.

Can we add some conditions to get a characterization of domains of twice prefix free
machines? What do we get if we define stopping time complexity for pairs using machines of

MFCS 2018

2:12 Plain Stopping Time and Conditional Complexities Revisited

this type? Does it have some equivalent description (for example, can it be defined using
monotone-conditional complexity with pairs as conditions, Section 2.2)?
I Question 2. Do we have C(x |x∗) = maxz C(x |z) +O(1) where the maximum is taken over
all finite extensions z of x? (The problem is that the compactness argument does not work
anymore.)
I Question 3. One may consider the function

K(x, y) = max{CY (x) : Y is an infinite extension of y}

We have shown that for x = y it coincides with C(x |x∗), showing that it does not exceed
C(x |x∗) and satisfies the quantitative restrictions of Theorem 8. Both arguments remain
valid (with minimal changes) for the general case, and we conclude that K(x, y) defined in this
way does not exceed C(x |y∗) and also satisfies the cardinality restrictions of Theorem 14, (b).
However, now these upper bound and lower bound differ, and we do not know where the
function K(x, y) defined as shown above lies. Does it coincide with its upper bound C(x |y∗)
for arbitrary x and y, or with its lower bound, the minimal upper semicomputable function
that satisfies the cardinality requirements (see Theorem 14), or neither?

References
1 Mikhail Andreev, Gleb Posobin, and Alexander Shen. Plain stopping time and conditional

complexities revisited. CoRR, abs/1708.08100, 2017. arXiv:1708.08100.
2 Mikhail Andreev, Gleb Posobin, and Alexander Shen. Stopping time complexity, abstract.

Dagstuhl Reports, Computability Theory, Dagstuhl Seminar 17081, February 2017, page 97,
2017. doi:10.4230/DagRep.7.2.89.

3 Alexey V. Chernov, Marcus Hutter, and Jürgen Schmidhuber. Algorithmic complexity
bounds on future prediction errors. Information and Computation, 205(2):242–261, 2007.

4 Andrei A. Muchnik, Ilya Mezhirov, Alexander Shen, and Nikolay Vereshchagin. Game
interpretation of Kolmogorov complexity. CoRR, abs/1003.4712, 2010. arXiv:1003.4712.

5 Alexander Shen. Algorithmic variants of the notion of entropy. Soviet Mathematics Doklady,
29(3):569–573, 1984.

6 Alexander Shen. Around Kolmogorov complexity: Basic notions and results. In Vladimir
Vovk, Harris Papadopoulos, and Alexander Gammerman, editors, Measures of Complexity:
Festschrift for Alexey Chervonenkis, chapter 7, pages 75–116. Springer, Cham, 2015. doi:
10.1007/978-3-319-21852-6_7.

7 Alexander Shen, Vladimir A. Uspensky, and Nikolay Vereshchagin. Kolmogorov complexity
and algorithmic randomness, volume 220 of Mathematical Surveys and Monographs. Amer-
ican Mathematical Society, http://www.lirmm.fr/~ashen/kolmbook.pdf, 2017.

8 Vladimir A. Uspensky and Alexander Shen. Relations between varieties of Kolmogorov
complexities. Mathematical Systems Theory, 29(3):271–292, Jun 1996. doi:10.1007/
BF01201280.

9 Vladimir Vovk and Dusko Pavlovic. Universal probability-free conformal prediction. In
Alexander Gammerman, Zhiyuan Luo, Jesús Vega, and Vladimir Vovk, editors, Conformal
and Probabilistic Prediction with Applications, pages 40–47, Cham, 2016. Springer, see also
https://arxiv.org/pdf/1603.04283.pdf (March 2016; extended version, April 2017).

http://arxiv.org/abs/1708.08100
http://dx.doi.org/10.4230/DagRep.7.2.89
http://arxiv.org/abs/1003.4712
http://dx.doi.org/10.1007/978-3-319-21852-6_7
http://dx.doi.org/10.1007/978-3-319-21852-6_7
http://www.lirmm.fr/~ashen/kolmbook.pdf
http://dx.doi.org/10.1007/BF01201280
http://dx.doi.org/10.1007/BF01201280
https://arxiv.org/pdf/1603.04283.pdf

Error-Tolerant Non-Adaptive Learning of a Hidden
Hypergraph
Hasan Abasi
Department of Computer Science, Technion, Haifa, 32000, Israel
hassan@cs.technion.ac.il

Abstract
We consider the problem of learning the hypergraph using edge-detecting queries. In this model,
the learner is allowed to query whether a set of vertices includes an edge from a hidden hypergraph.
Except a few, all previous algorithms assume that a query’s result is always correct. In this paper
we study the problem of learning a hypergraph where α-fraction of the queries are incorrect. The
main contribution of this paper is generalizing the well-known structure CFF (Cover Free Family)
to be Dense (we will call it DCFF - Dense Cover Free Family) while presenting three different
constructions for DCFF. Later, we use these constructions wisely to give a polynomial time non-
adaptive learning algorithm for a hypergraph problem with at most α-fracion incorrect queries.
The hypergraph problem is also known as both monotone DNF learning problem, and complexes
group testing problem.

2012 ACM Subject Classification Theory of computation → Boolean function learning

Keywords and phrases Error Tolerant Algorithm, Hidden Hypergraph, Montone DNF, Group
Testing, Non-Adaptive Learning

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.3

1 Introduction

The classical group testing model consists of a set of n items, where s of these items are
defective (positive) while others are good (negative) items. The problem is to identify all
defective (positive) items with a small number of group tests. A group test is a test with a
negative/positive result, where you can choose an arbitrary group S ⊆ [n] and ask whether
S contains at least one defective item. The outcome is negative if all the items within the
group are good (negative), and positive otherwise (See [13, 12] for more details about group
testing).

Torney [20] was the first who generalized the group testing model to the complex group
testing model, where we have the same set of n items, as in the first model, but instead of
s defective elements, we have s defective groups M1, · · · ,Ms, that are known as positive
complexes, where Mi ⊆ [n] and for any i1, i2 ∈ [s] where i1 6= i2 Mi1 6⊆Mi2 and Mi2 6⊆Mi1 .
In complex group testing model, a complex group test is a test with a negative/positive
result, where you can choose an arbitrary group S ⊆ [n] and ask whether S contains at least
one positive complex. The outcome is negative if all the complexes within the group are
negative, and positive otherwise. A usual assumption is that each positive complex has at
most r items (|Mi| ≤ r).

This problem is also known as graph testing, where a hypergraph H = (V,E) with
s edges and n vertices is given, our objective is to learn the hypergraph by asking edge-
detecting queries (denote query function by Q). An edge detecting-query is a test with a
negative/positive result, where you can choose an arbitrary group of vertices S ⊆ [n] and ask
whether this group of vertices has at least one edge or not. A usual assumption is that each
edge has at most r vertices. It is easy to see that this model is equivalent to the complex

© Hasan Abasi;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hassan@cs.technion.ac.il
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Error-Tolerant Learning of Hypergraph

group testing model (see [1]). In addition to complex group testing and graph testing, this
problem is also known as the learning monotone DNF problem with s monomials, where
each monomial contains at most r variables. In this paper, we will use the latter terminology
rather than complexes or graphs.

Tests can be adaptive (sequential), non-adaptive or multi-stage. Adaptive tests are tests
that may be affected by the outcome of earlier tests. Non-adaptive tests, all tests are executed
in parallel without knowledge of any other tests’ outcome. Multi-stage tests are divided into
stages, and all tests within each stage are executed in parallel, but different stages may be
affected by the outcome of earlier stages.

This problem has many applications in chemical reactions, molecular biology and genome
sequencing (see [15, 14, 7, 17, 6]). In these types of applications, an experiment corresponding
to a group test could take several hours or even several days. Thus, non-adaptive algorithms
are most desirable. In addition to the prolonged process, errors in applications are unavoidable.
And as the number of tests increases, the number of errors occurring is increased as well.
Therefore, it is very important to construct error-tolerant algorithms, where the number of
the errors is a fraction of the number of queries. In all of the above applications the size of
each term (rank of the hypergraph) is much smaller than the number of terms (edges), and
both are much smaller than the number of variables (vertices) n. Therefore, throughout the
paper, we will assume that r < s < n (this assumption will be used in the constructions in
Section 3) and will denote d , r + s.

Both adaptive and non-adaptive learning of monotone DNF problem are well-known and
well-studied. In the Adaptive model, Angluin et al. [5] was the first to present a deterministic
optimal adaptive algorithm for learning s-term 2-MDNF (s terms each of size 2). Later,
Abasi et al., [1], gave an almost optimal adaptive algorithm for the general s-term r-MDNF
case and they proved that any algorithm that learns s-term r-MDNF needs to ask at leastr > s Ω

(
(r/s)s−1 + rs log n

)
Queries

r ≤ s Ω
(

(2s/r)r/2 + rs log n
)

Queries

On the non-adaptive side many works studied the s-term r-MDNF. Abasi et al. [2], gave
the first deterministic algorithm which runs in polynomial time and non-adaptively learns a
hypergraph that asks an almost optimal number of queries. On the other hand, only few
algorithms discussed the error-tolerant problems. Stinson and Wei, [18], proved a lower
bound

0.7c
d
(
d
r

)
log
(
d
r

) log n+ c(z − 1)
2

(
d

r

)
= s

(es
r

)r+o(1)
log n+ z

(es
r

)r+o(1)
,

where z is constant and the algorithm is tolerant to z/2 errors (constant number of errors).
In the same paper they proved an upper bound of

O

(
z

(
d

r

)
(rs)log∗ n log n

)
= z

(es
r

)r+o(1)
(rs)log∗ n log n.

Chen et al., [11], improved the last upper bound to

z

(
d

r

)r (
d

s

)s (
1 + ln

(n
d

+ 1
))

= z
(es
r

)r+o(1)
log n.

Lang et al., [16], considered the problem where z errors occur in every m tests. They gave a
random algorithm which identifies all the target function’s terms with high probability. All

H. Abasi 3:3

previous algorithms either run in exponential time, are non-deterministic or are tolerant to a
constant number of errors.

In this paper we introduce the first algorithm, to the best of our knowledge, that handles
α-fraction of incorrect queries which is deterministic and runs in polynomial time. In [2], the
authors use the (n, (s, r))-cover-free family ((n, (s, r)) -CFF). This family is a set A ⊆ {0, 1}n
of assignments such that for every distinct i1, . . . , is, j1, . . . , jr ∈ {1, . . . , n}, there is an
assignment a ∈ A such that

ai1 = · · · = ais = 0 and aj1 = · · · = ajr
= 1.

In this paper we extend the definition of (n, (s, r)) -CFF to be

(n, (s, r) , α) - Dense CFF (DCFF),

where the DCFF is a CFF with an additional requirement, which is that for every dis-
tinct i1, . . . , is, j1, . . . , jr ∈ {1, . . . , n}, an α-fraction of the assignments a ∈ A satisfy the
following:

ai1 = · · · = ais = 0 and aj1 = · · · = ajr
= 1.

Improving techniques that were used in [2], by customizing them to comply with DCFF,
results in the needed algorithm. In the improvement process we used what we defined above
as DCFF. In order to do so, we present three constructions of DCFF, each of which has an
advantage over the other. One of these constructions is superior in terms of density, while
the other two have better time complexities. One of them is better when r < T (s), while
the other is better when r ≥ T (s), where T is a function of s. In addition to the extension
described above, we also prove that α in (n, (s, r) , α)-DCFF cannot exceed

DNS(s, r) , 1(r+s
r
) = 1(d

r
) .

It is also known, [19], that any non-adaptive learning algorithm must ask at least

Ω
((es

r

)r
log n

)
= Ω

(
sr(1+o(1)) log n

)
queries, and therefore any algorithm must run in time poly (n, sr). An algorithm that runs
in time poly (n, sr) is called efficient algorithm.

This paper is organized as follows. Section 2 gives some definitions and preliminary
results that will be used throughout the paper. Section 3 gives three different algebraic
constructions for Dense Cover Free family (see Section 3 for full definition). Section 4 gives
an inefficient algorithm by using DCFF directly. Section 5 gives a reduction to reduce any
non-linear α-error tolerant algorithm that depends on d variables at most to be linear in
log n. And finally in Section 6 we use all the constructions and the reduction to generate an
efficient algorithm that asks

O
(
r11 (4s)r+7 log n

)
= O

(
sr(1+o(1)) log n

)
noisy membership queries and runs in poly (n, sr) , and handles

Ω
(

DNS(s, r)1+o(1)
)

fraction of incorrect queries.

MFCS 2018

3:4 Error-Tolerant Learning of Hypergraph

1.1 Optimality for r = 2 (or any constant r)
The learning problem of a graph (when r = 2) has been considered and well-studied. Angluin
et al., [4, 5], studied the graph problem for the adaptive, nonadaptive and multistage models.
Our construction and algorithm are almost optimal when r = 2 (or any constant r) in terms
of density and query complexity, where the density in case r is constant is Ω (DNS(s, r)) .

1.2 Algorithm idea overview
One can easily see that using (n, (s, r) , α) -DCFF solves the problem of s-term r-MDNF
when less than α/2-fraction of the queries can be incorrect. That is true because for each
subset of s terms there are at least α/2-fraction of the DCFF’s assignments that satisfy one
term (r 1’s) and assigns 0 to all other terms (s− 1 0’s) (see Section 4 for more details).
The problem with using DCFF directly is the time complexity, and that is because we need
to find out whether each possible subset of s terms each of size at most r satisfies a given set
of conditions or not (again, see Section 4 for more details).
In order to achieve a polynomial time complexity, we use bit-wise conjunction of assignments
in each DCFF. The general idea is to create two DCFFs. One of them spreads the set of
terms over different sets, and the other is used afterward with other structures and techniques
to find each term explicitly (see Section 6 and Section 5 for more details).

2 Definitions and Preliminary Results

2.1 Monotone Boolean Functions
For a vector w, we denote by wi the ith entry of w. For a positive integer j, we denote by
[j] the set {1, 2, . . . , j}. For two assignments a, b ∈ {0, 1}n we denote by (a∧ b) ∈ {0, 1}n the
bitwise AND assignment. That is, (a ∧ b)i = ai ∧ bi for all i ∈ [n].

Let f(x1, x2, . . . , xn) be a Boolean function from {0, 1}n to {0, 1}. We say that the
variable xi is relevant in f if f |xi←0 6≡ f |xi←1. A variable xi is irrelevant in f if it is not
relevant in f . We say that the class of functions C is closed under variable projections if for
every function f ∈ C and every two variables xi and xj , i, j ≤ n, we have f |xi←xj

∈ C.
For two assignments a, b ∈ {0, 1}n, we write a ≤ b if for every i ∈ [n], ai ≤ bi. A Boolean

function f : {0, 1}n → {0, 1} is said to be monotone if for every two assignments a, b ∈ {0, 1}n,
if a ≤ b then f(a) ≤ f(b). In other words, there is no negated variables in f . Every monotone
Boolean function f has a unique representation as a reduced monotone DNF, [3].

An s-term r-MDNF is a monotone DNF with at most s monomials, where each monomial
contains at most r variables. It is easy to see that the class s-term r-MDNF is closed under
variable projections.

For a function f = M1 ∨ · · · ∨Ms that belongs to an s-term r-MDNF class, we say that
b ∈ {0, 1}n separates a term Mi in f from other terms if Mi(b) = 1 and Mj(b) = 0 for any
i 6= j. In the same way, we say that b ∈ {0, 1}n separates the terms Mi1 , . . . ,Mik in f from
other terms if Mj(b) = 1 for any j ∈ {i1, . . . , ik}, and otherwise Mj(b) = 0.

2.2 α-Error Tolerant Learning from Noisy Membership Queries
Consider a teacher that has a target function f : {0, 1}n → {0, 1} that is an s-term r-MDNF.
The teacher can answer noisy membership queries. That is, when receiving a ∈ {0, 1}n, it
returns f(a) = 1 − f(a) for α-fraction of the queries, and f(a) for the rest. This teacher
is called α-Liar Teacher. An α-error tolerant learning algorithm is an algorithm that can

H. Abasi 3:5

ask the α-Liar Teacher noisy membership queries. The goal of the learning algorithm is
to exactly learn (exactly find) f with a minimum number of noisy membership queries and
optimal time complexity.

2.3 Dense Perfect Hash Function, Cover Free Family and Dense Cover
Free Family

I Definition 1 (Perfect Hash Family). Let H be a family of functions h : [n]→ [q]. For d ≤ q
we say that H is an (n, q, d, 1− ε)- dense perfect hash family ((n, q, d, 1− ε) -DPHF) if for
every subset S ⊆ [n] of size |S| = d there are at least (1− ε)|H| hash functions h ∈ H such
that h|S is injective (one-to-one) on S, i.e., |h(S)| = d.

I Lemma 2 ([8]). Let q be a power of prime. If ε > 4(d(d − 1)/2 + 1)/q, then there is a
(n, q, d, 1− ε)-DPHF of size

O

(
d2 log n
ε log εq

d2

)
,

that can be constructed in linear time.

I Definition 3 (Cover Free Family). An (n, (s, r))- cover free family ((n, (s, r)) -CFF), is a
set A ⊆ {0, 1}n, such that for every 1 ≤ i1 < i2 < · · · < id ≤ n where d = s+ r and every
J ⊆ [d] of size |J | = s, there is a ∈ A such that aik = 0 for all k ∈ J and aij = 1 for all
j ∈ [d]\J . Denote by N(n, (s, r)) the minimum size of such set.

I Definition 4 (Dense Cover Free Family). An (n, (s, r), α)- dense cover free family
((n, (s, r), α) -DCFF), is a set A ⊆ {0, 1}n, such that for every 1 ≤ i1 < i2 < · · · < id ≤ n

where d = s+ r and every J ⊆ [d] of size |J | = s, the following holds for α-fraction vectors
a ∈ A: aik = 0 for all k ∈ J and aij = 1 for all j ∈ [d]\J . Denote by N(n, (s, r), α) the
minimum size of such set.

I Lemma 5. Let A be an (n, (s, r), α) -DCFF, then α ≤ 1
(d

r)
, DNS(s, r).

Proof. For any d = r + s variables, we must have exactly
(
d
r

)
different assignments to cover

all the possible assignments over d variables. Otherwise, one assignments at least will be
missed. Denote these assignments by R. If there is at least one assignment r0 ∈ R that
appears among (n, (s, r), α)-DCFF more than 1/

(
d
r

)
times, then by pigeonhole principle,

there exists at least one assignment r1 ∈ R, that appears less than 1/
(
d
r

)
times. Therefore, α

cannot exceed 1/
(
d
r

)
. J

For completeness we show:

I Lemma 6. Let H1 be an (n, q, d, 1− ε)-DPHF, and H0 is a (q, (r, s), α)-DCFF, then
DC = {h0(h1)|h0 ∈ H0, h1 ∈ H1} is an (n, (r, s), α(1− ε))-DCFF of size |H0||H1|.

Proof. We will show that for every 1 ≤ i1 < i2 < · · · < id ≤ n where d = s+ r and for every
J ⊆ [d] of size |J | = s there are α(1− ε)|H0||H1| vectors h ∈ DC such that h(ik) = 0 for all
k ∈ J , and h(ij) = 1 for all j ∈ [d]\J .
Since H1 is (n, q, d, 1 − ε)-DPHF, then there are (1 − ε)|H1| functions h1 ∈ H where
h1(i1), . . . , h1(id) are distinct. And since H0 is a (q, (r, s), α)-DCFF, then for each
h1(i1), . . . , h1(id) distinct values there are α|H0| vectors h0 ∈ H0, where for every J ⊆ [d]
of size |J | = s, such that h0(h1(ik)) = 0 for all k ∈ J and h0(h1(ij)) = 1 for all j ∈ [d]\J .
Accordingly, there are (1− ε)|H1| ·α|H0| vectors h ∈ DC where for every 1 ≤ i1 < i2 < · · · <
id ≤ n where d = s + r and for every J ⊆ [d] of size |J | = s, h(ik) = 0 for all k ∈ J and
h(ij) = 1 for all j ∈ [d]\J . J

MFCS 2018

3:6 Error-Tolerant Learning of Hypergraph

Table 1 Dense CFF, assuming r ≤ O
(
(log2 d)/(log log d)

)
.

Constr. Construction Time Size Density

I O
(

d
√

r
log r

(
d
r

)r
n log n

)
O
(

d
√

r
log r

(
d
r

)r log n
)

Ω
(

DNS(s, r)d−
√ r

log r

)
II O

(
cd · d2d+6s2 (es

r

)2r
n log n

)
O
(
d3s2 (es

r

)r log n
)

Ω (DNS(s, r))

III O

(
d3
(

ed3

r

)r+2
(4s)2r+4 n log n

)
O
(
d3 (4s)r+2 log n

)
Ω
(

DNS(s,r)
(c·r)r

)

3 Explicit Dense Cover Free Family Constructions

In this section we will show three different constructions of (n, (r, s), α)-DCFF - each of
which has an advantage on the other. Before we introduce the constructions, we will state
the results for each construction in Table 1.

Note that construction II is the best construction in terms of density. When r is non-
constant then construction I and III are much better than construction II in terms of time
complexity. Accordingly, when

ω(1) < r < O

(
log2 d

log log d

)
,

then we prefer construction III over I. Otherwise we prefer construction I over III.
In our algorithms, we will distinguish between the cases r is constant and r is non-

constant. When r is non-constant, we will only deal with the case where ω(1) < r <

O
(
(log2 d)/(log log d)

)
, and it can be done similarly for the other case.

3.1 Explicit Construction
Before we start our explicit constructions, we will start with lemmas from [10, 9], that are
necessary for our constructions.

I Lemma 7 ([9] - Derandomization lemma). Let S be a finite sample space with a probability
distribution D.
Let X1, . . . , XN be random variables over S that take values from {0, 1}. Suppose that for
every s ∈ S = S1 × S2 × · · · × Sn, the values X1(s), . . . , XN (s) can be computed in Õ(N)1.
Let

N ′ ≤ N, 0 < ε ≤ 1
2 .

λi = (1− ε)pi, where 0 < pi ≤ Es∼D[Xi(s)] for all i ∈ [N ′] := {1, . . . , N ′}.
λj = (1 + ε)pj, where 1 > pj ≥ Es∼D[Xj(s)] for all j ∈ (N ′, N} := {N ′ + 1, . . . , N}.
α = mini min (1/(1− pi), 1/(1− λi)) and m ≥ 4 lnN

mini piε2 .
If any expectation of the form E[Xi(x1, . . . , xn)|x1 = ξ1, . . . , xj = ξj] can be computed in
time T , then there is an algorithm that runs in time

Õ
(
T (|S1|+ · · ·+ |Sn|) ·Nm2 logα

)
, and outputs S′ = {s1, . . . , sm+1} ⊆ S

such that for all i ∈ [N ′] and j ∈ (N ′, N] : Es∼US′ [Xi(s)] ≥ λi, Es∼US′ [Xj(s)] ≤ λj , where
US′ is the uniform distribution over S′.

1 Õ(N) is O(N · poly(log T)) where T is the time complexity of the construction.

H. Abasi 3:7

In other words, the lemma says if you have a set of random variables over a big range S,
in our case |S| = 2n, then there is a smaller set S′ that can replace S while keeping the
expectation of each variable the same to the factor of (1± ε). This lemma will help us convert
a random algorithm to a deterministic one, since the set S′ is “small” and we can go over all
possible values in a polynomial time.

I Lemma 8 ([10] - CFF explicit construction). Fix any integers r < s < d with d = r+s, there
is an almost optimal (n, (r, s))-CFF, i.e., of size N(r, s)1+o(1) log n, where N(r, s) = d(d

r)
log (d

r)
,

that can be constructed in linear time.

I Corollary 9. There is an
(
n, (r, s), 1

N(r,s)1+o(1) logn

)
-DCFF of size N(r, s)1+o(1) log n, that

can be constructed in linear time.

3.2 First Construction
From the proof of Lemma 8, we infer that the accurate value of the size is

N(n) = t(d)
(
d
r

)r log n.

where

t(d) =

2O(r log log d) r > O

(
log2 d

log log d

)
2
O

(√
r log d√

log r

)
Otherwise

Now we can build the first DCFF by Lemma 2, Lemma 6 and Lemma 8.
Simply choose ε = 0.01 (or any small constant) and a prime q = O(d3). By Lemma 2,
there is a (n, q, d,Ω(1))-DPHF of size O

(
d2 log n

)
. By Corollary 9 and the claim above, for

q = O
(
d3), there is

an
(
O
(
d3) , r, s,Ω(DNS(s,r)

t(d)

))
-DCFF, that can be constructed in linear time.

By using Lemma 6, we can get(
n, r, s,Ω

(
DNS(s, r)

t(d)

))
-DCFF of size O

(
t(d)

(
d

r

)r
log n

)
.

I Theorem 10. There is an
(
n, (r, s),Ω

(
DNS(s,r)

t(d)

))
-DCFF

of size O
(
d2 log dN(r, s)1+o(1) log n

)
that can be constructed in linear time.

3.3 Second Construction
I Theorem 11. There is an (n, (r, s),Ω (DNS(s, r)))-DCFF of size O

(
s
(
es
r

)r log n
)
that

can be constructed in poly
(
nd
)
.

Proof. We define a probability space over the vectors x = (x1, . . . , xn) ∈ {0, 1}n, where

xi =
{

0, with probability sd
1, with probability rd

For every couple of sets {i1, . . . , ir}, {j1, . . . , js}, we define the random variable
Xi1,··· ,ir,j1,··· ,js

where

Xi1,··· ,ir,j1,··· ,js(x) =
{

1, If xi1 = · · · = xir = 1, xj1 = · · · = xjs
= 0.

0, Otherwise

MFCS 2018

3:8 Error-Tolerant Learning of Hypergraph

Note that the number of random variables is N =
(
n
d

)(
d
r

)
, and that the expectation of each

random variable is E[Xi1,··· ,ir,j1,··· ,js
] =

(
r
d

)r (s
d

)s
.

We now use Lemma 7. Note that

N ′ = N, ε = 1
2 , pi1,··· ,ir,j1,··· ,js = p :=

(
rrss

dd

)
.

λi = λ := 1
2p, m ≥ 4 ln (n

d)(d
r)

p
4

= O
(
s
(
es
r

)r log n
)
.

Therefore, according to Lemma 7, there is an algorithm that runs in

Õ(nNm2 logα) = O
(
n
(
en
d

)d
s2 (es

r

)2r log2 n
)
time, and outputs

S′ = {s1, . . . , sm+1} ⊆ S, such that, for all i = (i1, . . . , ir, j1 . . . , js) ∈ [n]d, holds:

Es∼US′ [Xi(s)] ≥ 1
2
(
r
d

)r (s
d

)s = Ω (DNS(s, r)) J

The size of the construction is almost optimal, while the running time is exponential. In the
third construction we will reduce the exponent from d to r.

3.4 Third Construction
I Theorem 12. There is an

(
n, (r, s),Ω

(
DNS(s,r)

(cr)r

))
-DCFF of size O

(
(4s)r+2 log n

)
that

can be constructed in poly (nr).

Through applying the same technique from the Second construction wisely, we reduce the
number of random variables this time, leading to a reduced construction time.

Proof. We define a probability space over the vectors x = (x1, . . . , xn) ∈ {0, 1}n, where

xi =
{

1, with probability 1
4s

0, with probability 4s−1
4s .

For every couple of sets {i1, . . . , ir}, {j1, . . . , js}, we define the following random variables:

Xi1,··· ,ir,j1,··· ,js(x) =
{

1, If xi1 = · · · = xir = 1, xj1 = · · · = xjs
= 0.

0, Otherwise.

Yi1,··· ,ir,j(x) =
{

1, If xi1 = · · · = xir = xj = 1.
0, Otherwise.

, j ∈ {j1, . . . , js}

Zi1,··· ,ir (x) =
{

1, If xi1 = · · · = xir = 1.
0, Otherwise.

Note that we can bound the random variable X, by an expression of Y and Z in the
following way:

Xi1,··· ,ir,j1,··· ,js
≥ Zi1,··· ,ir −

∑s
k=1 Yi1,··· ,ir,jk

The correctness of the above equation follows immediately from the definition.
Note that instead of

(
n
d

)
that we used in the previous construction, now we can do a similar

construction by using the following number of random variables

N =
(
n
r+1
)
(r + 1) +

(
n
r

)

H. Abasi 3:9

and the expectation of each random variable is

E[Xi1,··· ,ir,j1,··· ,js
] ≥ E[Zi1,··· ,ir]−

∑s
k=1 E[Yi1,··· ,ir,jk

] = 3
4

1
(4s)r

Again we use Lemma 7 for the random variables Z and Y . Note that
1. N ′ =

(
n
r

)
, ε = 1

2 .
2. pi1,··· ,ir = p0 :=

(1
4s
)r
.

3. pi1,··· ,ir,j = p1 :=
(1

4s
)r+1

.

4. λi1,··· ,ir = λ0 := 1
2p0.

5. λi1,··· ,ir,j = λ1 := 3
2p1.

6. m ≥ 4 ln((n
r+1)(r+1)+(n

r))
p1
4

= O
(
(4s)r+2 log n

)
.

Therefore, according to Lemma 7, there is an algorithm that runs

Õ
(
nNm2 logα

)
= O

(
n
(en
r

)r+2
(4s)2r+4 log2 n

)
, and outputs

S′ = {s1, . . . , sm+1} ⊆ S,

such that for all i = (i1, . . . , ir) ∈ [n]r, j = (j1, . . . , jr, jr+1) ∈ [n]r+1:

Es∼US′ [Zi(s)] ≥
1
2 (1

4s)r and Es∼US′ [Yj(s)] ≤
3
2 (1

4s)r+1, so

E[Xi1,··· ,ir,j1,··· ,js
] ≥ E[Zi1,··· ,ir]−

∑s
k=1 E[Yi1,··· ,ir,jk

] ≥ 1
2 (1

4s)r − s · 3
2 (1

4s)r+1

E[Xi1,··· ,ir,j1,··· ,js] ≥ 1
8 (1

4s)r J

Note that we can apply Lemma 2 and Lemma 6 on the second and third constructions,
the same way we did in the first construction to get the needed results.

4 Direct Usage of DCFF: α-Error Tolerant Algorithm

In this section we discuss and explain the intuition behind using DCFF, and show how we can
use it directly to present an α-error tolerant algorithm of a hidden hypergraph. Unfortunately
though, the time complexity of the algorithm will not be polynomial. The issue of the time
complexity will be solved in the following sections by wise use of the DCFF combined with
other algebraic structures.

We assume our function is f = M1 ∨ · · · ∨ Ms′ , s′ ≤ s, and each Mi is of size at
most r. For simplicity we assume that s′ = s and each term is of size exactly r. Denote
Sterms = {xi1 · · ·xir |1 ≤ i1 < . . . < ir ≤ n and xi1 · · ·xir 6∈ {M1, . . . ,Ms}}.
In order to find M1 we need a set of assignments AM1 such that:
1. ∃a ∈ AM1 such that M1(a) = 1,Mi(a) = 0 (1 < i ≤ s).
2. ∀t ∈ Sterms ∃a ∈ AM1 where t(a) = 1 and f(a) = 0.
If all the above is satisfied, then we can find M1 simply by trying all the possible terms of
size r. One can easily see that any (n, (s, r), α)-DCFF(CFF) has a subset that satisfies all
the above requirements. To satisfy the first requirement we need r 1′s (to satisfy M1) and
s− 1 0′s (to falsify Mi, 1 < i ≤ s), and to satisfy the second requirement we need s 0′s (to
falsify Mi, 1 ≤ i ≤ s) and r 1′s (to satisfy a given term t ∈ Sterms).
Now we present the details of the algorithm:

We construct an (n, (s, r), β)-DCFF A, where β = 2α + 1
|A| . Denote by A′(M) the set

{a ∈ A|M(a) = 1 and Q′(a) = 1}. Now, take every monomial M of size at most r where
|A′(M)| ≤ α|A|. The disjunction of all such monomials is equivalent to the target function.

MFCS 2018

3:10 Error-Tolerant Learning of Hypergraph

This follows from the following two facts: (1) for any monomial M ′ such that M ′ 6⇒ f , there
are at least

(
α+ 1

|A|

)
|A| assignments a ∈ A such that Q′(a) = 0 and M ′(a) = 1 (2) for any

monomial M ′ ⇒ f , there are at least
(
α+ 1

|A|

)
|A| assignments a ∈ A such that Q′(a) = 1

and M ′(a) = 1. Since only α|A| queries can be incorrect, and there are β|A| assignments
where M ′(a) = 1 and Q(a) = 0 for each M ′ 6⇒ f , then there are more than α|A| assignments
a ∈ A where Q(a) = 0 and M ′(a) = 1. Similarly, for each M ′ ⇒ f there are at most α|A|
assignments a ∈ A where Q(a) = 0 and M ′(a) = 1.

I Lemma 13. If an
(
n, (s, r), 2α+ 1

|A|

)
-DCFF A of size N can be constructed in time T ,

then there is an algorithm that learns the class s-term r-MDNF with N noisy membership
queries in time

O

(
T +Nr

r∑
r′=0

(
n

r′

))
.

Correctness and time complexity of the algorithm follows from the above explanation
and from the correctness of the error-free folklore algorithm [2].

5 α-Error Tolerant Reduction

In this section, we give a reduction to reduce the query complexity of any α-error tolerant
algorithm that depends on d variables to become linear in log n. The idea behind this is to
map the n-dimensional variables space to g(d)-dimensional space, where g is a polynomial
function of d. Then we run the original algorithm over the new space. The main challenge
here is to recover the original function efficiently (in terms of time complexity), while keeping
the algorithm Ω(α)-error tolerant. This can be done by using PHF in the following way: by
the definition of PHF, it contains a function h such that h maps each variable of MDNF
to a distinct variable. After finding this h, we use it to reduce the variables space from
n-dimensional to g(d)-dimensional. Here is the main theorem of this section:

I Theorem 14. Let H be a class of boolean functions that is closed under variable projection.
And suppose there is an algorithm that, given f ∈ H as an input, finds the relevant variables
of f in time R(n).

If H is non-adaptively learnable in time T (n) with Q′(n) noisy membership queries, and
αQ′(n)-errors might occur, then H is non-adaptively learnable in time

O

(
d2n log n
ε log(εq/d3) + d2 log n

ε log(εq/d3) (T (q) +Q′(q)n+R(q))
)
,with

Qnew(n) = O

(
d2Q′(q)

ε log(εq/d3) log n
)

noisy membership queries where less than 1−ε
2 αQnew(n) errors might occur, and d is an

upper bound on the number of relevant variables in f ∈ C and q is any integer such that
q ≥ 2(d+ 1)2.

Consider the algorithm in Figure 1.
Let A(n, α) be a non-adaptive algorithm that learns H in T (n) time with Q′(n) noisy

membership queries, where αQ′(n) errors might occur. Let f ∈ Hn be the target function.
Consider the (n, q, d+ 1, 1− ε)-DPHF P that was constructed in Lemma 2 (Step 1 in the
algorithm).

The following lemma follows from the fact that H is closed under variable projection:

H. Abasi 3:11

Reduction
A(n, α) is a non-adaptive α error tolerant learning algorithm for H.
1) Construct an (n, q, d+ 1, (1− ε))-DPHF P .
2) For each h ∈ P

Run A(q, α) to learn fh := f(xh(1), . . . , xh(n)).
Let f ′h ∈ H be the output of A(q, α).

3) For each h ∈ P
Vh ← the relevant variables in f ′h

4) G(h) = |{h′||Vh′ | = |Vh|, h′ ∈ P}|, H ′ = {h ∈ H|G(h) ≥ 1−ε
2 |P |}

dmax ← maxh∈H′ |Vh|.
5) X ← {x1, x2, . . . , xn}.
6) For each i ∈ [n], W (i) = |{h ∈ H|xh(i) 6∈ Vh, |Vh| = dmax}|

If W (i) ≥ 1−ε
2 |P |, then X ← X\{xi}

7) Take all h ∈ H with |Vh| = dmax
8) Replace each relevant variable xi in f ′h by xj ∈ X where h(j) = i.
9) Output the function that appears at least 1−ε

2 |P | times from step (8).

Figure 1 Reduction.

I Lemma 15. For every h ∈ P , the function fh := f(xh(1), . . . , xh(n)) is in Hq.

I Lemma 16. The total number of queries after the reduction is Qnew = |P |Q′(q).

Proof. For each h ∈ P , we run A(q, α) to learn fh. It is known that A(q, α) generates Q′(q)
queries, so overall we have |P |Q′(q) queries. J

I Lemma 17. (Step 2 in the algorithm) Let f ′h be the output of algorithm A(q, α) when it
runs on fh, and let K = {h|h ∈ P and f ′h 6≡ fh}, then K < 1−ε

2 |P |.

Proof. The lemma follows from the fact that the number of times when αQ′(q) errors appear
while running A(q, α) is less than 1−ε

2 |P |. Otherwise, the number of errors will be at least
1−ε

2 α|P |Q′(q) = 1−ε
2 αQnew(n). J

(Step 3 in the algorithm) Note that if the number of errors when running A(q, α) is less than
αQ′(q)-errors, then the algorithm finds the correct relevant variables of f ′h, by the definition
of A(q, α).

I Lemma 18. (Step 4 in the algorithm) Suppose xi1 , . . . , xid′ , d
′ ≤ d are the relevant

variables in the target function f , then dmax = d′.

Proof. Let Vh be the set of relevant variables of f ′h and let dmax = maxh∈H′ |Vh|. By the
definition of P there are at least (1 − ε)|P | maps h′ ∈ P such that h′(i1), . . . , h′(id′) are
distinct, and since more than αQ′(q) errors might occur in less than 1−ε

2 |P | functions h ∈ H
(as mentioned above), then there are at least (1− ε)|P | − 1−ε

2 |P | =
1−ε

2 |P | functions h
′ ∈ P

where h′(i1), . . . , h′(id′) are distinct and their Vh′ equals d′. Such h′ satisfies G(h′) ≥ 1−ε
2 |P |,

so h′ ∈ H ′. Stemming from the same fact, there are less than 1−ε
2 |P | functions h ∈ P where

the learned function f ′h can have number of relevant variables greater than d′. Such h satisfies
G(h) < 1−ε

2 |P |, so h 6∈ H
′. And therefore, dmax = d′. J

I Lemma 19. (Step 6 in the algorithm) If xi is an irrelevant variable, then for at least
1−ε

2 |P | maps h ∈ P |Vh| = dmax and xh(i) 6∈ Vh.

MFCS 2018

3:12 Error-Tolerant Learning of Hypergraph

Learn(fMDNF)
1) Construct an (n, (1, r), α1)-DCFF A and an (n, (s− 1, r), α2)-DCFF B.
2) Ask noisy membership queries for all a ∧ b, a ∈ A and b ∈ B.
3) For every b ∈ B.
4) Tb ← 1.
5) For every i ∈ [n].
6) If for at most β1|A| assignments a ∈ A, (a ∧ b)i < Q′(a ∧ b)
7) then Tb ← Tb ∧ xi.
8) T ← T ∪ {Tb}.
9) Remove from T all the terms that appear at most β2|B|-times.
10) Remove from T the term ∧i∈[n]xi

and all subterms of a larger term.

Figure 2 An algorithm for learning s term r MDNF.

Proof. Consider any irrelevant variable xj 6∈ {xi1 , . . . , xid′}. Since P is (n, q, d + 1, 1 − ε)-
DPHF, there are (1 − ε)|P | functions h′′ ∈ P such that h′′(j) and h′′(i1), . . . , h′′(id′) are
distinct. Again since αQnew errors might occur, then f ′h′′ depends on xh′′(i1), . . . , xh′′(id′),
and not on xh′′(j) and |Vh| = dmax for at least 1−ε

2 |P | functions h
′′ ∈ P . J

This way the irrelevant variables can be eliminated. Since the above is true for every irrelevant
variable, the set X contains only the relevant variables of f , after Step 6 in the algorithm.
Then in Steps 7 and 8, we find all functions f for which the number of relevant variables is
d′. The target function appears at least 1−ε

2 |P | times, and any other function appears less
than 1−ε

2 |P | times. This is Step 9 in the algorithm. The correctness of the algorithm follows
immediately from the above lemmas and explanation.

6 Efficient α-Error Tolerant Algorithm

In Section 4 we used DCFF directly to present a non-polynomial algorithm. In order to
improve the time complexity we will now use two DCFFs. One of them is used to spread the
set of terms over different sets, and the other is used afterwards to find each term explicitly.
The complexity of this process is the bit-wise conjunction of assignments in each DCFF is
f(r, s) log2 n, where f(r, s) is a monotone function of s and r. In order to make our algorithm
linear in log n, we use the reduction from the previous section.

I Theorem 20. Let A be an (n, (1, r), α1)-DCFF and B be an (n, (s − 1, r), α2)-DCFF,
and let β1 , α1

2 −
1
|A| , β2 , α2

2 −
1
|B| . There is a non-adaptive α-error tolerant learning

algorithm for s-term r-MDNF that asks all the queries A ∧B and finds the target function,
when α = β1β2.

This gives the algorithm in Figure 2.

I Lemma 21. If b ∈ B separates a term T in f from other terms, and at most β1|A| errors
can occur, then Tb = T .

Proof. According to the definition of A, for each distinct i1, . . . , ir and j1 there are α1|A|
assignments a ∈ A, where ai1 = · · · = air = 1 and aj1 = 0. Since β1|A| of the queries might
have incorrect results, then each xi ∈ T can appear as xi = 1 while also Q = 1 in at least

H. Abasi 3:13

α1− β1 > β1 fraction of the assignments. Each xi 6∈ T can appear as xi = 0 while also Q = 1
in at least α1 − β1 > β1 fraction of the assignments. So by the definition of Tb, Tb = T . J

I Lemma 22. Let Ab = {a ∧ b|a ∈ A}. If α , β1β2 is the fraction of queries that can be
incorrect, then for at most β2|B| assignments b ∈ B, Ab contains more than β1|A| errors.

Proof. If there are more than β2|B| b ∈ B such that Ab contains more than β1|A| errors,
then the fraction of errors is bigger than (β2|B|)(β1|A|)

|A||B| = β1β2. J

Now we are ready to prove Theorem 20

Proof. Let f = M1 ∨M2 ∨ · · · ∨Ms be the target function. For every b ∈ B, let Fb(i) =
{a|a ∈ A, (a ∧ b)i < Q′(a ∧ b)}, Ab = {a ∧ b|a ∈ A}, Ib = {i||Fb(i)| ≤ β1|A|}, and Tb be the
following term: Tb := ∧i∈Ib

xi. We will show:
1. For each T in f , there are more than β2|B| assignments b ∈ B, such that Tb = T .
2. Every other term Tb that appears more than β2|B| times, is either equal to ∧i∈[n]xi or to

a subterm of one of the terms in f .
In case no errors occur, the term that can be learned from each block Ab is either one of the
following:
1. In case b separates a term in f then Ib will be the separated term.
2. In case b separates k terms in f then Ib will be a subterm of one of the terms in f (the

intersection of the k terms).
3. In case b separates no term in f then Ib will be ∧i∈[n]xi.

(For more details see Lemma 13 in [2]).
By Lemma 22, the number of assignments b ∈ B where Ab has more than β1|A| errors is
β2|B|, so any term different than a term in f , a subterm of one of the terms in f and ∧i∈[n]xi
appears at most β2|B| times.
Now we prove that each term T in f appears more than β2|B| times.

Since there are α2|B| assignments b ∈ B that separate T from all other terms in f , among
which at most β2|B| assignments Ab can have more than β1|A| errors, then by Lemma 21
(α2 − β2)|B| > β2|B| of Ab will return Tb = T . J

I Theorem 23. Fix any integers r < s < d with d = r + s, and let d ≤ n. There is
a non-adaptive proper α error tolerant learning algorithm for s-term r-MDNF that asks
O
(
r9(4s)r+5 log2 n

)
queries and runs in time poly(n, sr), with

α = Ω
(1
rr DNS(1 , r)DNS(s − 1 , r)

)
-fraction of the queries might be incorrect.

Proof. By Theorem 11 (second construction), we can construct a (n, (1, r), α1)-DCFF, of
size |A| = O

(
r6 log n

)
, where α1 = Ω (DNS(1 , r)) . And by Theorem 12 (third construc-

tion), we can construct a (n, (s− 1, r), α2)-DCFF of size |B| = O
(
d3 (4s)r+2 log n

)
, where

α2 = Ω
((1
rr

)
DNS(s − 1 , r)

)
.

The construction of the above DCFFs takes poly (n, |A|, |B|) time. By Theorem 20, the
learning takes |A∧B| · n = poly (n, |A|, |B|) time. The number of queries of the algorithm is
|A ∧B| ≤ |A| · |B| = O

(
r9(4s)r+5 log2 n

)
. J

We are now ready to prove the main result:

I Theorem 24. Fix any integers r < s < d with d = r + s, and let d ≤ n. There is a
non-adaptive proper α error tolerant learning algorithm for s-term r-MDNF that asks

O(r11(4s)r+7 log n)

queries where α = Ω
(1
rr DNS(1 , r)DNS(s − 1 , r)

)
-fraction of the queries might return incor-

rect result, and runs in time (n log n) · poly(sr).

MFCS 2018

3:14 Error-Tolerant Learning of Hypergraph

Proof. We use Theorem 14. H is the class of s-term r-MDNF. This class is closed under
variable projection. Given f that is s-term r-MDNF, one can find all the relevant variables in
R(n) = O(sr) time. The algorithm in the previous section runs in time T (n) = poly(n, sr) and
asks Q′(n) = O(r9(4s)r+5 log2 n) queries. The number of variables in the target is bounded
by d = rs. Let q = O

(
d3) ≥ 2d2. By Theorem 14, there is a non-adaptive algorithm

that runs in time O
(
qd2n log n+ d2 logn

log(q/d2) (T (q)n+R(q))
)

= (n log n)poly(sr), and asks

O
(
d2Q′(q)

log(q/d2) log n
)

= O(r11(4s)r+7 log n), noisy membership queries. J

References

1 Hasan Abasi, Nader H. Bshouty, and Hanna Mazzawi. On exact learning monotone DNF
from membership queries. In Peter Auer, Alexander Clark, Thomas Zeugmann, and Sandra
Zilles, editors, Algorithmic Learning Theory - 25th International Conference, ALT 2014,
Bled, Slovenia, October 8-10, 2014. Proceedings, volume 8776 of Lecture Notes in Computer
Science, pages 111–124. Springer, 2014. doi:10.1007/978-3-319-11662-4_9.

2 Hasan Abasi, Nader H. Bshouty, and Hanna Mazzawi. Non-adaptive learning of a hidden
hypergraph. Theor. Comput. Sci., 716:15–27, 2018. doi:10.1016/j.tcs.2017.11.019.

3 Dana Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987. doi:
10.1007/BF00116828.

4 Dana Angluin and Jiang Chen. Learning a hidden hypergraph. Journal of Machine Learning
Research, 7:2215–2236, 2006. URL: http://www.jmlr.org/papers/v7/angluin06a.html.

5 Dana Angluin and Jiang Chen. Learning a hidden graph using o(logn) queries per edge. J.
Comput. Syst. Sci., 74(4):546–556, 2008. doi:10.1016/j.jcss.2007.06.006.

6 Richard Beigel, Noga Alon, Simon Kasif, Mehmet Serkan Apaydin, and Lance Fortnow.
An optimal procedure for gap closing in whole genome shotgun sequencing. In Thomas
Lengauer, editor, Proceedings of the Fifth Annual International Conference on Computa-
tional Biology, RECOMB 2001, Montréal, Québec, Canada, April 22-25, 2001, pages 22–30.
ACM, 2001. doi:10.1145/369133.369152.

7 Mathilde Bouvel, Vladimir Grebinski, and Gregory Kucherov. Combinatorial search on
graphs motivated by bioinformatics applications: A brief survey. In Dieter Kratsch, editor,
Graph-Theoretic Concepts in Computer Science, 31st International Workshop, WG 2005,
Metz, France, June 23-25, 2005, Revised Selected Papers, volume 3787 of Lecture Notes in
Computer Science, pages 16–27. Springer, 2005. doi:10.1007/11604686_2.

8 Nader H. Bshouty. Linear time constructions of some d -restriction problems. In Van-
gelis Th. Paschos and Peter Widmayer, editors, Algorithms and Complexity - 9th Inter-
national Conference, CIAC 2015, Paris, France, May 20-22, 2015. Proceedings, volume
9079 of Lecture Notes in Computer Science, pages 74–88. Springer, 2015. doi:10.1007/
978-3-319-18173-8_5.

9 Nader H. Bshouty. Derandomizing chernoff bound with union bound with an application
to k-wise independent sets. CoRR, abs/1608.01568, 2016. arXiv:1608.01568.

10 Nader H. Bshouty and Ariel Gabizon. Almost optimal cover-free families. In Dimitris
Fotakis, Aris Pagourtzis, and Vangelis Th. Paschos, editors, Algorithms and Complexity -
10th International Conference, CIAC 2017, Athens, Greece, May 24-26, 2017, Proceedings,
volume 10236 of Lecture Notes in Computer Science, pages 140–151, 2017. doi:10.1007/
978-3-319-57586-5_13.

11 Hong-Bin Chen, Hung-Lin Fu, and Frank K. Hwang. An upper bound of the number of tests
in pooling designs for the error-tolerant complex model. Optimization Letters, 2(3):425–431,
2008. doi:10.1007/s11590-007-0070-5.

http://dx.doi.org/10.1007/978-3-319-11662-4_9
http://dx.doi.org/10.1016/j.tcs.2017.11.019
http://dx.doi.org/10.1007/BF00116828
http://dx.doi.org/10.1007/BF00116828
http://www.jmlr.org/papers/v7/angluin06a.html
http://dx.doi.org/10.1016/j.jcss.2007.06.006
http://dx.doi.org/10.1145/369133.369152
http://dx.doi.org/10.1007/11604686_2
http://dx.doi.org/10.1007/978-3-319-18173-8_5
http://dx.doi.org/10.1007/978-3-319-18173-8_5
http://arxiv.org/abs/1608.01568
http://dx.doi.org/10.1007/978-3-319-57586-5_13
http://dx.doi.org/10.1007/978-3-319-57586-5_13
http://dx.doi.org/10.1007/s11590-007-0070-5

H. Abasi 3:15

12 Hong-Bin Chen and Frank K. Hwang. A survey on nonadaptive group testing algorithms
through the angle of decoding. J. Comb. Optim., 15(1):49–59, 2008. doi:10.1007/
s10878-007-9083-3.

13 Dingzhu Du, Frank K Hwang, and Frank Hwang. Combinatorial group testing and its
applications, volume 12. World Scientific, 2000.

14 Vladimir Grebinski and Gregory Kucherov. Reconstructing a hamiltonian cycle by querying
the graph: Application to DNA physical mapping. Discrete Applied Mathematics, 88(1-
3):147–165, 1998. doi:10.1016/S0166-218X(98)00070-5.

15 Hwang Frank Kwang-ming and Du Ding-zhu. Pooling designs and nonadaptive group test-
ing: important tools for DNA sequencing, volume 18. World Scientific, 2006.

16 Weiwei Lang, Yuexuan Wang, James Yu, Suogang Gao, and Weili Wu. Error-tolerant trivial
two-stage group testing for complexes using almost separable and almost disjunct matrices.
Discrete Math., Alg. and Appl., 1(2):235–252, 2009. doi:10.1142/S1793830909000191.

17 Anthony J. Macula and Leonard J. Popyack. A group testing method for finding patterns
in data. Discrete Applied Mathematics, 144(1-2):149–157, 2004. doi:10.1016/j.dam.2003.
07.009.

18 Douglas R. Stinson and Ruizhong Wei. Generalized cover-free families. Discrete Mathem-
atics, 279(1-3):463–477, 2004. doi:10.1016/S0012-365X(03)00287-5.

19 Douglas R. Stinson, Ruizhong Wei, and Lie Zhu. Some new bounds for cover-free families.
J. Comb. Theory, Ser. A, 90(1):224–234, 2000. doi:10.1006/jcta.1999.3036.

20 David C Torney. Sets pooling designs. Annals of Combinatorics, 3(1):95–101, 1999.

MFCS 2018

http://dx.doi.org/10.1007/s10878-007-9083-3
http://dx.doi.org/10.1007/s10878-007-9083-3
http://dx.doi.org/10.1016/S0166-218X(98)00070-5
http://dx.doi.org/10.1142/S1793830909000191
http://dx.doi.org/10.1016/j.dam.2003.07.009
http://dx.doi.org/10.1016/j.dam.2003.07.009
http://dx.doi.org/10.1016/S0012-365X(03)00287-5
http://dx.doi.org/10.1006/jcta.1999.3036

From Expanders to Hitting Distributions and
Simulation Theorems
Alexander Kozachinskiy1

National Research University Higher School of Economics, Moscow, Russia
Moscow, 3 Kochnovsky Proezd, Russia
akozachinskiy@hse.ru

https://orcid.org/0000-0002-9956-9023

Abstract
In this paper we explore hitting distributions, a notion that arose recently in the context of

deterministic “query-to-communication” simulation theorems. We show that any expander in
which any two distinct vertices have at most one common neighbor can be transformed into a
gadget possessing good hitting distributions. We demonstrate that this result is applicable to
affine plane expanders and to Lubotzky-Phillips-Sarnak construction of Ramanujan graphs . In
particular, from affine plane expanders we extract a gadget achieving the best known trade-off
between the arity of outer function and the size of gadget. More specifically, when this gadget
has k bits on input, it admits a simulation theorem for all outer function of arity roughly 2k/2 or
less (the same was also known for k-bit Inner Product). In addition we show that, unlike Inner
Product, underlying hitting distributions in our new gadget are “polynomial-time listable” in the
sense that their supports can be written down in time 2O(k), i.e. in time polynomial in size of
gadget’s matrix.

We also obtain two results showing that with current technique no better trade-off between
the arity of outer function and the size of gadget can be achieved. Namely, we observe that no
gadget can have hitting distributions with significantly better parameters than Inner Product
or our new affine plane gadget. We also show that Thickness Lemma, a place which causes
restrictions on the arity of outer functions in proofs of simulation theorems, is unimprovable.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases simulation theorems, hitting distributions, expanders

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.4

1 Introduction

Assume that we have a Boolean function f : {0, 1}n → {0, 1} called outer function and
a Boolean function g : A × B → {0, 1} called gadget. Consider a composed function
f ◦ g : An ×Bn → {0, 1}, defined as follows:

(f ◦ g)((a1, . . . , an), (b1, . . . , bn)) = f(g(a1, b1), . . . , g(an, bn)).

How can we deal with deterministic communication complexity of f ◦ g, denoted below by
Dcc(f ◦ g)? Obviously, we have the following inequality:

Dcc(f ◦ g) ≤ Ddt(f) ·Dcc(g),

where Ddt(f) stands for deterministic query complexity of f . Indeed, we can transform a
decision tree for f making q queries into a protocol of communication cost q · Dcc(g) by

1 Supported in part by RFBR grapnt 16-01-00362 and by the Russian Academic Excellence Project
“5-100”.

© Alexander Kozachinskiy;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 4; pp. 4:1–4:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akozachinskiy@hse.ru
 https://orcid.org/0000-0002-9956-9023
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 From Expanders to Hitting Distributions and Simulation Theorems

simulating each query to f with Dcc(g) bits. It turns out that for some gadgets g and for all
f of arity at most some function of g’s size this simple protocol is essentially optimal. The
first gadget for which this was proved is the Indexing Function

INDk : {1, 2, . . . , k} × {0, 1}k → {0, 1}, g(x, y) = yx.

More specifically, in 2015 Göös et al. ([4]) proved that for all n ≤ 2k1/20 and for all
f : {0, 1}n → {0, 1} it holds that

Dcc(f ◦ INDk) = Ω(Ddt(f) log k). (1)

Actually, instead of f we can have not only a Boolean function but any relation R ⊂ {0, 1}n×C.
The work of Göös et al. was a generalization of the theorem of Raz and McKenzie ([9]), who
in 1997 established (1) for a certain class of outer relations, called DNF-Search problems.

Theorems of this kind, called usually simulation theorems, can be viewed as a new
method of proving lower bounds in communication complexity. Namely, lower bound
on communication complexity of a composed function reduces to lower bound on query
complexity of an outer function, and usually it is much easier to deal with the latter. As
was shown by Raz and McKenzie, this method turns out to be powerful enough to separate
monotone NC-hierarchy. Moreover, as was discovered by Göös et al., this method can be
quadratically better than the logarithm of the partition number, another classical lower
bound method in deterministic communication complexity.

There are simulation theorems not only for deterministic communication and query
complexities, but for other models too, see, e.g., [2, 5, 6, 3].

Note that input length of a gadget in (1) is even bigger than input length of an outer
function. Göös et al. in [4] asked, whether it is possible to prove a simulation theorem
for a gadget which input length is logarithmic in input length of an outer function. This
question was answered positively by Chattopadhyay et al. ([1]) and independently by Wu
et al. ([12]). Moreover, Chattopadhyay et al. significantly generalized the proof of Göös
et al., having discovered a certain property of a gadget g : A × B → {0, 1} which can be
used as a black-box to show new simulation theorems: once g satisfies this property, we have
a simulation theorem for g. This property can be defined as follows. Let µ be probability
distribution over rectangles U × V ⊂ A × B. Distribution µ is called (δ, h)-hitting, where
δ ∈ (0, 1) and h is a positive integer, if for every X ⊂ A of size at least 2−h|A| and for every
Y ⊂ B of size at least 2−h|B| we have that

Pr
U×V∼µ

[U × V ∩X × Y 6= ∅] ≥ 1− δ.

It turns out that if for every b ∈ {0, 1} there is (δ, h)-hitting distribution over b-
monochromatic rectangles of g , then there is a simulation theorem for g. The smaller
δ and the bigger h, the better simulation theorem. More precisely, Chattopadhyay et al.
proved the following theorem.

I Theorem 1. Assume that ε ∈ (0, 1) and an integer h are such that h ≥ 6/ε. Then the
following holds. For every (possibly partial) Boolean function g : A× B → {0, 1} that has
two (1

10 , h)-hitting distribution, the one over 0-monochromatic rectangles and the other over
1-monochromatic rectangles, for every n ≤ 2h(1−ε) and f : {0, 1}n → {0, 1} it holds that

Dcc(f ◦ gn) ≥ εh

4 ·D
dt(f).

A. Kozachinskiy 4:3

Further, they showed that Inner Product and Gap Hamming Distance gadgets on k

bits have (o(1),Ω(k))-hitting distributions for both kinds of monochromatic rectangles.
More precisely, for every constant γ > 0 and for all large enough k they constructed
(o(1), (1/2− γ)k)-hitting distributions for k-bit Inner Product (denoted below by IPk) . Due
to Theorem 1 this yields the following simulation theorem for IPk: for every constant γ > 0
and for all k large enough

Dcc(f ◦ IPk) = Ω(Ddt(f) · k),

where f is any Boolean function depending on at most 2(1/2−γ)k variables. Other gadgets
studied until this work do not achieve the same trade-off between the size of outer functions and
the size of gadget. Namely, for k-bit Gap Hamming Distance the lower bound Dcc(f ◦GHD) =
Ω(Ddt(f) · k) is shown in [1] only for f depending on roughly 20.45k variables or less. For
Indexing gadget, as we saw, this trade-off is exponentially worse.

We also touch upon the following question. Theorem 1 transforms a communication
protocol for f ◦ gn into decision tree for f (here n is the arity of f). It is an interesting
open question whether resulting decision tree can be made efficient, provided that the initial
protocol is efficient. More precisely, a decision tree should decide which variable to query
in time polynomial in n (provided that messages of the initial protocol can be computed
by players in time polynomial in n). Let us note here that we are mostly interested in the
regime when n is exponential in k (the size of input to g) and hence in this regime the size
of g’s matrix is polynomial in n.

Unfortunately, known constructions does not provide this – resulting decision trees work
in exponential time. Among other obstacles to resolve this issue there is a particular step
in transformation which deals with hitting distributions. Namely, a tree constantly runs
a subroutine which, having a family of subrectangles (not necessarily monochromatic) of
g’s matrix on input, outputs single monochromatic rectangle which intersects most of them.
Namely, a subroutine samples rectangle at random from a hitting distribution, which with
good probability gives us a correct answer. To derandomize this procedure instead of sampling
a rectangle we can just try all the rectangles from the support of hitting distribution. If the
support is of size 2O(k) (i.e. polynomial in size of g’s matrix) and, moreover, the support
can be listed in time 2O(k), we call a corresponding hitting distribution (or, more precisely,
family of distributions) polynomial-time listable.

For example, hitting distribution from [1] for k-bit Gap Hamming Distance gadget are
polynomial-time listable (roughly speaking, we just have to list all Hamming balls of a certain
radius). At the same time, hitting distributions for k-bit Inner Product from [1] are not
polynomial-time listable. Namely, their supports are of size 2Ω(k2) (this number corresponds
to the number of k/2-dimensional subspaces of Fk2). Though due to Chernoff bound it is
possible to transform any (0.1, h)-hitting distribution into , say, (0.2, h)-hitting distribution
with support size 2O(k) (see Proposition 7 below), this does not give explicit construction.

1.1 Our results

We show how to transform any explicit expander satisfying one additional restriction into a
gadget with polynomial-time listable hitting distributions. The transformation is as follows.
Assume that we have a graph G = (V,E) and a coloring c : V → {0, 1}. For v ∈ V let Γ(v)
denote the set of all u ∈ V such that u and v are connected by en edge in G. Assume further
that for any two distinct u, v ∈ V it holds that |Γ(u) ∩ Γ(v)| ≤ 1. Then the following partial

MFCS 2018

4:4 From Expanders to Hitting Distributions and Simulation Theorems

function is well defined:

g(G, c) : V × V → {0, 1},

g(G, c)(u, v) =

1 u 6= v and there is w ∈ Γ(u) ∩ Γ(v) s.t. c(w) = 1,
0 u 6= v and there is w ∈ Γ(u) ∩ Γ(v) s.t. c(w) = 0,
undefined otherwise.

Call c balanced if each color is used at least |V |/3 times in c. It turns out that if G is a
good expander and if c is balanced, then g(G, c) possesses good hitting distributions:

I Theorem 2. Assume that G = (V,E) is a (m, d, γ)-spectral expander in which for any two
distinct u, v ∈ V it holds that |Γ(u) ∩ Γ(v)| ≤ 1 and c : V → {0, 1} is a balanced coloring of
G. Assume also that m ≥ 1/γ2. Then for any b ∈ {0, 1} there is a

(1
10 , b2 log2(1/γ)c − 100

)
-

hitting distribution µb over b-monochromatic rectangles of g(G, c). All the probabilities of µb
are rational. Moreover, there is a deterministic Turing machine which, having b, G and c on
input, in time mO(1) lists all the rectangles from the support of µb, together with probabilities
µb assigns to them.

Provided that G’s adjacency matrix and c’s truth table can be computed in time mO(1),
from Theorem 2 we obtain polynomial-time listable family of hitting distributions.

In particular, we apply Theorem 2 to the following explicit family of expanders. If q is a
power of prime, let APq denote a graph in which vertices are pairs of elements of Fq and in
which (a, b), (x, y) ∈ F2

q are connected by an edge if and only if ax = b+ y. It is known that
APq is a (q2, q, 1/√q)-spectral expander. It can be easily shown that for any two distinct
vertices u, v of APq it holds that |Γ(u) ∩ Γ(v)| ≤ 1.

I Corollary 3. Let q be a power of prime. Then in APq for any two distinct vertices u, v it
holds that |Γ(u) ∩ Γ(v)| ≤ 1. Moreover, for all n ≤ 2log2 q−200 and f : {0, 1}n → {0, 1} the
following holds: if c is a balanced coloring of APq, then

Dcc(f ◦ g(APq, c)) ≥
log2(q/n)− 200

4 ·Ddt(f)

(in g(APq, c) each party receives 2 log2 q bits).

We also give an example of a natural-looking gadget for which Corollary 3 implies a
simulation theorem. Our gadget is the following one: Alice gets a ∈ Fq2 and Bob gets b ∈ Fq2 .
Here q is a power of an odd prime. Their goal is to output 1, if a− b is a square in Fq2 (by
that we mean that there is c ∈ Fq2 such that a − b = c2), and 0 otherwise. Let us denote
this gadget by SQRq.

Since Fq2 is a linear space over Fq, we can naturally identify inputs to SQRq with F2
q , i.e

SQRq can be viewed as a function of the form SQRq : F2
q × F2

q → {0, 1}.

I Proposition 4. For all large enough q the following holds. If q is a power of an odd prime,
then there exists a balanced covering c of APq such that g(APq, c) is a sub-function of SQRp,
i.e. whenever g(APq, c)(a, b) is defined, we have g(APq, c)(a, b) = SQRq(a, b). A truth table
of c can be computed in time qO(1).

This Proposition implies a simulation theorem for SQRq, with the same parameters as in
Corollary 3 and with polynomial-time listable underlying hitting distributions.

Next we observe that any spectral expander “similar” to APq automatically satisfies
restrictions of Theorem 2.

A. Kozachinskiy 4:5

I Proposition 5. Assume that G = (V,E) is a (m, d, γ)-spectral expander and

2d+ 4 > d2
(

2γ2 + 4(1− γ2)
m

)
.

Then for any two distinct vertices u, v ∈ V it holds that |Γ(u) ∩ Γ(v)| ≤ 1.

In particular, all (m2,m, 1/
√
m)-spectral expanders satisfy these restrictions. However,

Proposition 5 is by no means a necessary condition. For example, Theorem 2 can be also
applied Lubotzky-Phillips-Sarnak construction of Ramanujan graphs ([8]). More specifically,
if p, q are unequal primes, p, q ≡ 1 (mod 4) and p is a quadratic residue modulo q, the paper
[8] constructs an explicit graph Xp,q which, in particular, is a (q(q2−1)/2, p+1, 2√p/(p+1))-
spectral expander and in which the shortest cycle is of length at least 2 logp q. It can also
be easily shown that provided p < q2 there are no self-loops in Xp,q. Thus if p < √q, then
any two distinct vertices of Xp,q have at most one common neighbor, while inequality from
Proposition 5 is false for Xp,q.

We then obtain some results related to the following question: what is the best possible
trade-off between the arity of outer functions and the size of gadget in deterministic simulation
theorems? Once again, consider SQRq. Note that in SQRq each party receives k = 2 log2 q

bits. Corollary 3 lower bounds Dcc(f ◦ SQRq) whenever arity of f is at most 2k/2−O(1). In
this regime the lower bound is of the form Ω(Ddt(f)) (compare it to the O(k ·Ddt(f)) upper
bound). In turn, if the arity of f is at most 2(1/2−Ω(1))k, the lower bound becomes tight,
namely Ω(k ·Ddt(f)). Thus SQRq achieves the same trade-off between the arity of f and
the size of a gadget as k-bit Inner Product (while underlying hitting distributions for SQRq,
unlike Inner Product, are polynomial-time listable).

Ramanujan graphs yield gadgets with much worse trade-off. Namely, if p is of order √q
and c is a balanced coloring of Xp,q, then g(Xp,q, c) is a gadget on k ≈ 3 log2 q bits which
admits a simulation theorem for all outer functions of arity roughly 2log2 p = 2k/6.

This raises the following question: for a given k what is the maximal h such that there is
a gadget on k bits having two (1

10 , h)-hitting distributions, the one over 0-monochromatic
rectangles and the other over 1-monochromatic rectangles? Above discussion shows that h
can be about k/2. In the following Proposition we observe that it is impossible to obtain
any constant bigger than 1/2 before k.

I Proposition 6. For every g : {0, 1}k × {0, 1}k → {0, 1} and for every integer h ≥ 1 there
exists b ∈ {0, 1} such that the following holds. For every probability distribution µ over
b-monochromatic rectangles of g there are X,Y ⊂ {0, 1}k of size at least 2k−h such that

Pr
R∼µ

[R ∩X × Y 6= ∅] ≤ 2k−2h+1.

In addition we show the following simple proposition, studying the minimal possible
support size of hitting distributions.

I Proposition 7. For every g : {0, 1}k × {0, 1}k → {0, 1} the following holds
if there is

(1
20 , h

)
-hitting distribution over b-monochromatic rectangles of g for some

b ∈ {0, 1}, then there is
(1

10 , h
)
-hitting distribution over b-monochromatic rectangles of g

which support is of size 2O(k).
Assume that for some δ < 1 and h ∈ N there are two (δ, h)-hitting distributions µ0, µ1,
where µb is over b-monochromatic rectangles of g. Then the support of µb is of size at
least 2h, for every b ∈ {0, 1}.

MFCS 2018

4:6 From Expanders to Hitting Distributions and Simulation Theorems

So it is impossible to improve a trade-off between the size of outer functions and the
size of gadgets simply by improving hitting distributions. However, until now we only spoke
about improving gadgets. What about outer functions? What causes a restriction on the
arity of f in Theorem 1? It can be verified that the only place in which arity of f appears in
the proof is so-called Thickness Lemma. Let us state this Lemma.

Assume that A is a finite set and X is a subset of An. Here n corresponds to the
arity of f . Let X[n]/{i} denote the projection of X onto all the coordinates except the i-th
one. Define the following auxiliary bipartite graph Gi(X). Left side vertices of Gi(X) are
taken from A, right side vertices of Gi(X) are taken from X[n]/{i}. We connect a ∈ A with
(x1, . . . , xi−1, xi+1, . . . xn) ∈ X[n]/{i} if and only if

(x1, . . . , xi−1, a, xi+1, . . . xn) ∈ X.

Clearly, there are |X| edges in Gi(X).
Let MinDegi(X) denote the minimal possible degree of a right side vertex of Gi(X).

Similarly, let AvgDegi(X) denote the average degree of a right side vertex of Gi(X). There
are |X| edges and |X[n]/{i}| right side vertices, hence it is naturally to define AvgDegi(X) as

AvgDegi(X) = |X|
|X[n]/{i}|

.

Thickness Lemma relates this two measures. Namely, it states that if for every i average
degree of Gi(X) is big, then there is a large subset X ′ ⊂ X such that for every i minimal
degree of Gi(X ′) is big. The precise bounds can be found in the following

I Lemma 8 ([9]). Consider any δ ∈ (0, 1). Assume that for every i ∈ {1, 2, . . . , n} we have
that AvgDegi(X) ≥ d. Then there is X ′ ⊂ X of size at least (1− δ)|X| such that for every
i ∈ [n] it holds that MinDegi(X ′) ≥ δd

n .

One possible way to improve a trade-off between the arity of f and the size of gadget is
to improve Thickness Lemma. For example, if we could replace δd

n with δd√
n
in Lemma 8 ,

this would mean that k-bit Inner Product and k-bit SQR-gadget admit simulation theorems
for all outer functions of arity roughly 2k (rather than 2k/2).

However, such an improvement is impossible and the bounds given in Lemma 8 are
near-optimal. Note that Thickness Lemma says nothing about whether there even exists
a non-empty subset X ′ ⊂ X such that for all i ∈ [n] it holds that MinDegi(X ′) is larger,
say, by a constant than d

n . And indeed, we show that for some X there is no such X ′ at all.
More precisely, we show the following

I Theorem 9. For every ε > 0 and for all integer n ≥ 2, s ≥ 1 there exists m ∈ N and a
non-empty set X ⊂ {0, 1, . . . ,m− 1}n such that

for all i ∈ [n] it holds that AvgDegi(X) ≥ s(n− ε);
there is no non-empty Y ⊂ X such that for all i ∈ [n] it holds that MinDegi(Y) ≥ s+ 1.

1.2 Organization of the paper
The rest of the paper is organized as follows.

In Section 2 we give Preliminaries. In Section 3 we prove Theorem 2 and derive Corollary
3. In Section 4 we prove Proposition 4. In Section 5 we prove Theorem 9. In Section 6
we prove Proposition 5. In section 7 we prove proposition 6. The proof of Proposition 7 is
omitted due to space constraints.

A. Kozachinskiy 4:7

2 Preliminaries

2.1 Sets notations
Let [n] be the set {1, 2, . . . , n}.

Assume that A is a finite set, X is a subset of An and S = {i1, . . . , ik}, where i1 < i2 <

. . . < ik, is a subset of [n]. Let XS denote the following set:

XS = {(xi1 , . . . , xik) : (x1, . . . , xn) ∈ X} ⊂ A|S|.

GivenX ⊂ An and i ∈ [n], consider the following bipartite graph Gi(X) = (A,X[n]\{i}, E),
where

E = {(xi, (x1, . . . , xi−1, xi+1, . . . , xn)) : (x1, . . . , xn) ∈ X} .

Vertices of Gi(X) which are from A will be called left vertices. Similarly, vertices of
Gi(X) which are from X[n]\{i} will be called right vertices.

Define MinDegi(X) as minimal d such that there is a right vertex of Gi(X) with degree
d. Define AvgDegi(X) = |X|/|X[n]\{i}|.

2.2 Communication and query complexity
For introduction in both query and communication complexities see, e.g., [7]. We will use
the following notation.

For a Boolean function f : {0, 1}n → {0, 1} let Ddt(f) denote f ’s deterministic query
complexity, i.e. minimal d such that there is a deterministic decision tree of depth d computing
f . For a (possibly partial) Boolean function g : A×B → {0, 1}, where A,B are some finite
sets, let Dcc(g) denote g’s deterministic communication complexity, i.e. minimal d such that
there is a deterministic communication protocol of depth d, computing g. Let us stress that
in the case when g is partial by “deterministic communication protocol computes g” we
mean only that a protocol outputs 0 on (a, b) whenever g(a, b) = 0 and outputs 1 on (a, b)
whenever g(a, b) = 1; on inputs on which g is not defined the protocol may output anything.

If f, g are as above, let f ◦ g denote the following (possibly partial) function:

f ◦ g :An ×Bn → {0, 1},
(f ◦ g)((a1, . . . , an), (b1, . . . , bn)) = f(g(a1, b1), . . . , g(an, bn)).

We can also measure Dcc(f ◦g), deterministic communication complexity of f ◦g, assuming
that Alice’s input is (a1, . . . , an) ∈ An and Bob’s input is (b1, . . . , bn) ∈ Bn.

2.3 Hitting distributions
Fix a (possibly partial) Boolean function g : A × B → {0, 1}. A set R ⊂ A × B is called
rectangle if there are U ⊂ A, V ⊂ B such that R = U × V . If b ∈ {0, 1}, then we say that
rectangle R is b-monochromatic for g if g(a, b) = b whenever (a, b) ∈ R. We stress that if g is
partial, then in the definition of b-monochromatic rectangle we require that g is everywhere
defined on R.

Let δ be positive real and h be positive integer. A probability distribution µ over rectangles
R ⊂ A × B is called (δ, h)-hitting if for all X ⊂ A, Y ⊂ B such that |X| ≥ 2−h|A|, |Y | ≥
2−h|B| it holds that

Pr
R∼µ

[R ∩X × Y 6= ∅] ≥ 1− δ.

MFCS 2018

4:8 From Expanders to Hitting Distributions and Simulation Theorems

In this paper we are focused only on those µ such that there exists b ∈ {0, 1} for which all
rectangles from the support of µ are b-monochromatic for g. In this case we simply say that
µ is over b-monochromatic rectangles of g.

Let gt : {0, 1}kt × {0, 1}kt → {0, 1} be family of gadgets and µt be family of probability
distributions, where µt is over rectangles of gt. We call µt polynomial-time listable if the
following holds:

the size of the support of µt is 2O(kt);
all the probabilities of µt are rational;
there is a deterministic Turing machine which, having kt on input, in time 2O(kt) computes
gt’s matrix and lists all the rectangles from the support of µt, together with probabilities
µt assigns to them.

2.4 SQR-gadget
Consider a finite field of size q, denoted below by Fq. We call a ∈ Fq a square if there is
b ∈ Fq such that a = b2 in Fq. Let SQRq denote the following Booelan function:

SQRq : Fq2 × Fq2 → {0, 1}, SQRq(a, b) =
{

1 if a− b is a square in Fq2 ,
0 if a− b is not a square in Fq2 .

2.5 Expanders
We consider undirected graphs which may have parallel edges and self-loops. We assume
that a self-loop at vertex v contributes 1 to degree of v. A graph is called d-regular if each
its vertex has degree d.

A coloring of a graph G = (V,E) is a function c : V → {0, 1}. It is called balanced if
|V |/3 ≤ |c−1(1)| ≤ 2|V |/3. For any A ⊂ V let Γ(A) denote the set of all v ∈ V such that
there is u ∈ A connected with v by an edge of G. If v ∈ V , define Γ(v) = Γ({v}).

Fix graph G = (V,E) and a coloring c : V → {0, 1}. Assume that for any two distinct
u, v ∈ V it holds that |Γ(u) ∩ Γ(v)| ≤ 1. Then the following partial function is well defined:

g(G, c) : V × V → {0, 1},

g(G, c)(u, v) =

1 u 6= v and there is w ∈ Γ(u) ∩ Γ(v) s.t. c(w) = 1,
0 u 6= v and there is w ∈ Γ(u) ∩ Γ(v) s.t. c(w) = 0,
undefined otherwise.

Let MG be an adjacency matrix of a d-regular graph G = (V,E) with |V | = m. Note
that d is an eigenvalue of MG. A graph G is called (m, d, γ)-spectral expander if MG satisfies
the following conditions:

multiplicity of an eigenvalue d is 1;
absolute value of any other eigenvalue of MG is at most γd.

I Proposition 10 ([11], Theorem 4.6). Assume that a graph G = (V,E) is (m, d, γ)-spectral
expander. Then for any A ⊂ V :

|Γ(A)|
|A|

≥ 1
γ2 + (1− γ2) |A|m

.

A. Kozachinskiy 4:9

Assume the q is a power of prime. Let APq denote the following graph. Vertices of APq
are pairs of elements of Fq so that the number of vertices is q2. We connect (x, y) with (a, b)
by an edge if and only if ax = b+ y in Fq. It is easy to see that APq is q-regular.

I Proposition 11 ([10], Lemma 5.1). APq is (q2, q, 1/√q)-spectral expander.

2.6 k-wise independent hash functions
We will need the following

I Proposition 12 ([11], Corollary 3.34). For every n, k ∈ N there exists a polynomial-time
computable function ψ : {0, 1}kn × {0, 1}n → {0, 1} such for all distinct x1, . . . , xk ∈ {0, 1}n
and for all b1, . . . , bk ∈ {0, 1} the following holds:

Pr[ψ(s, x1) = b1, . . . , ψ(s, xk) = bk] = 2−k,

where the probability is over uniformly random s ∈ {0, 1}kn.

2.7 Some useful facts
We will use the following inequality involving binomial coefficients:

I Lemma 13. For every k,m the following holds: if k ≤ m/2, then
(
m−k
k

)
/
(
m
k

)
≥ 1− k2

m−k .

Proof. Observe that:(
m−k
k

)(
m
k

) = m− k
m

· m− k − 1
m− 1 · . . . · m− 2k + 1

m− k + 1 ≥
(
m− 2k
m− k

)k
=
(

1− k

m− k

)k
≥ 1− k2

m− k
.

The first inequality here is due to the fact that for all positive i we have:
k

m− k + i
≤ k

m− k
=⇒ 1− k

m− k + i
≥ 1− k

m− k

=⇒ m− 2k + i

m− k + i
≥ m− 2k

m− k
.

The second inequality here is Bernoulli’s inequality. It is legal to apply this inequality because
k ≤ m/2 and hence k

m−k ≤ 1. J

Note that Fq2 contains a subfield of size q. Namely, Fq = {x ∈ Fq2 : xq = x}.

I Lemma 14. Assume that q is a power of an odd prime. Let α be a primitive root of Fq2 .
Then the following holds:

0, α2, α4, . . . , αq
2−1 are the only squares in Fq2 ;

all the elements of Fq are squares in Fq2 .

Proof. Let us prove the first statement of the lemma. Assume that j ∈ {1, 2, . . . , q2 − 1}
is an odd integer. We will show that αj is not a square. Indeed, assume for contradiction
there is a non-zero y ∈ Fq2 such that αj = y2. Therefore for some integer i we have that
αj−2i = 1. Since α is the primitive root of Fq2 , this means that j − 2i is divisible by q2 − 1.
But j − 2i is odd and q2 − 1 is even.

To show the second statement of the lemma assume that x = αk is a non-zero root of
xq = x. Then we have that αk(q−1) = 1. Due to the same argument as above k(q − 1) is
divisible by q2 − 1. This implies that k is divisible by q + 1. Hence k is even and x = αk is a
square. J

MFCS 2018

4:10 From Expanders to Hitting Distributions and Simulation Theorems

3 Transforming Expanders into Gadgets

In this section we prove Theorem 2 and derive Corollary 3.

Proof of Theorem 2. Fix b ∈ {0, 1} and set h = b2 log2(1/γ)c − 100. Let us define a
(1

10 , h)-hitting distribution µb over b-monochromatic rectangles of g(G, c). Take v ∈ c−1(b)
uniformly at random. Split Γ(v) into two disjoints subsets A,B randomly according to 10-wise
independent hash function ψ : {0, 1}10·dlog2 me × {0, 1}dlog2 me → {0, 1} from Proposition 12.
Namely, take s ∈ {0, 1}10dlog2 me uniformly at random. An element u ∈ Γ(v) goes into A if
ψ(s, u) = 0 and into B if ψ(s, u) = 1. By definition A×B is a b-monochromatic rectangle
of g(G, c). Indeed, any two distinct vertices from Γ(v) have a common neighbor colored in
b. It remains to show that for all S, T ⊂ V of size at least 2−hm with probability at least
0.9 we have that A×B ∩ S × T 6= ∅. It is enough to show that Pr[A ∩ S 6= ∅] ≥ 0.96 and
Pr[B ∩ T 6= ∅] ≥ 0.96. Let us show that the first inequality holds, the proof of the second
inequality is exactly the same. Actually we will show that Pr[|Γ(v)∩S| ≥ 10] ≥ 0.97. This is
enough for our purposes: conditioned on [|Γ(v)∩S| ≥ 10] the probability that A is disjoint with
S is at most 2−10 (due to proposition 12 this is the probability that ψ(s, ·) sends 10 fixed points
of Γ(v) into B). Therefore Pr[A ∩ S] ≥ (1− 2−10) Pr[|Γ(v) ∩ S| ≥ 10] ≥ 0.999 · 0.97 > 0.96.

The size of S is at least 2100γ2m. Partition S into 10 disjoint subsets S1, . . . , S10, each
of size at least 2000bγ2mc. Since m ≥ 1/γ2, we also have |S1|, . . . , |S10| ≥ 1000γ2m. If
|Γ(v) ∩ S| < 10, then Γ(v) is disjoint with Si for some i ∈ [10]. Hence

Pr[|Γ(v) ∩ S| < 10] ≤
10∑
i=1

Pr[Γ(v) ∩ Si = ∅].

If we show for all i ∈ [10] that Pr[Γ(v)∩Si = ∅] ≤ 0.003, we are done. Observe that Γ(v)
is disjoint with Si if and only if v /∈ Γ(Si). This implies that

Pr[Γ(v) ∩ Si = ∅] = |c
−1(b) \ Γ(Si)|
|c−1(b)| ≤ m− |Γ(Si)|

m
3

. (2)

In the last inequality we use the fact that c is balanced. By Proposition 10 we get

|Γ(Si)| ≥
|Si|

γ2 + |Si|
m

≥ |Si|
|Si|

1000·m + |Si|
m

≥ 1000 ·m
1001 > 0.999m.

Here in the second inequality we use the fact that |Si| ≥ 1000γ2m. Due to (2) this means
that Pr[Γ(v) ∩ Si = ∅] ≤ 0.003 and thus the proof that µb is

(1
10 , h

)
-hitting is finished.

Let us now show that µb can be “written down” in time mO(1) from G and c. First
of all, note that g(G, c) is a gadget on k = dlog2me bits. To specify a rectangle from a
support of µb we need to specify a vertex of G and a “seed” s of length 10k. This shows
that the support of µb is of size mO(1) = 2O(k). This observation also allows us to list all the
rectangles from the support of µb in time 2O(k) – just go through all vertices from c−1(b)
and all seeds. Further, the µb-probability of A×B can be computed as follows:

µb(A×B) = |{v ∈ V : Γ(v) = A ∪B}|
|c−1(b)| ·

∣∣{s ∈ {0, 1}10k : φ(s, ·) splits A ∪B into A and B}
∣∣

210k .

This probability is rational and can be computed in time 2O(k), again by exhaustive search
over all vertices and seeds. J

A. Kozachinskiy 4:11

Now let us derive Corollary 3. Indeed, APq is (q2, q, 1/√q)-spectral expander by Pro-
position 11. Thus theorem 2, applied to APq, states that for any balanced coloring c of
APq and for any b ∈ {0, 1} there exists

(1
10 , blog2(q)c − 100

)
-hitting distribution over b-

monochromatic rectangles of g(APq, c). Apply Theorem 1 to these hitting distributions with
ε = 1− log2(n)/(blog2(q)c − 100).

We only need to check that in APq for any two distinct vertices u, v is holds that
|Γ(u) ∩ Γ(v)| ≤ 1. Assume that (x, y) and (u, v) are distinct vertices of APq. Take any
(a, b) ∈ Γ((x, y)) ∩ Γ((u, v)). Then

(
x −1
u −1

)
·
(
a

b

)
=
(
y

v

)
. (3)

If x 6= u, then det
(
x −1
u −1

)
6= 0 and hence system (3) has exactly one solution. If x = u,

then y 6= v and system (3) has no solution. Therefore |Γ((x, y)) ∩ Γ((u, v))| ≤ 1.

4 SQRq Gadget

In this section we prove Proposition 4.
Fix w ∈ Fq2 such that {1, w} is a basis of Fq2 over Fq. Consider the following coloring of

APq: set c((a, b)) = 1 if and only if 1 + wa is a square in Fq2 ; clearly a truth table of such c
can be computed in time qO(1). Note that g(APq, c)((x, y), (u, v)) is defined if and only if
(x, y), (u, v) are distinct and there is (a, b) ∈ Γ((x, y)) ∩ Γ((u, v)). Let us show that for any
such (x, y), (u, v) it holds that

g(APq, c)((x, y), (u, v)) = c((a, b)) = SQRq(x+ yw, u+ vw). (4)

Indeed, we have that ax = b+ y, au = b+ v. This means that y − v = a(x− u). Moreover,
due to distinctness of (x, y), (u, v) we have that x 6= u. Further,

x+ yw − (u+ vw) = (x− u) + w(y − v) = (x− u)(1 + wa).

Note that x− u is a non-zero element of Fq. By the second item of Lemma 14 this implies
that x+ yw − (u+ vw) is a square if and only if 1 +wa is a square. Hence (4) is true for all
(x, y), (u, v) from the domain of g(APq, c).

It remains to show that c is balanced. Take (a, b, λ) ∈ Fq × Fq × (Fq \ {0}) uniformly
at random. Note that c((a, b)) = 1 if and only if 1 + wa is a square. Thus |c−1(1)| =
q2 Pr[1 + wa is a square]. Due to the second item of Lemma 14 we have that 1 + wa is a
square if and only if λ(1 + wa) is a square. Note that λ(1 + wa) = λ+ λaw is distributed
uniformly in {i + wj : i, j ∈ Fq, i 6= 0} (this is because for any λ0 the distribution of λa
given λ = λ0 is uniform in Fq). Due to the first item of Lemma 14 for all large enough q

there are at least 0.4q2 squares and at least 0.4q2 non-squares in {i+ wj : i, j ∈ Fq, i 6= 0}.
This means that 1/3 ≤ Pr[λ(1 + wa) is a square] ≤ 2/3 for all large enough q. Hence
q2/3 ≤ |c−1(1)| ≤ 2q2/3 and c is balanced.

5 Unimprovability of Thickness Lemma

Consider any set X ⊂ {0, 1, . . . ,m − 1}n and take any i ∈ [n]. Let us say that x ∈ X is
i-unique in X if there is no other x′ ∈ X such that

x1 = x′1, . . . , xi−1 = x′i−1, xi+1 = x′i+1, . . . , xn = x′n.

MFCS 2018

4:12 From Expanders to Hitting Distributions and Simulation Theorems

Call a set X ⊂ {0, 1, . . . ,m− 1}n reducible if for all non-empty Y ⊂ X there is i ∈ [n]
such that MinDegi(Y) = 1. Note that X is reducible if and only if for all non-empty Y ⊂ X
there is y ∈ Y which is i-unique in Y for some i ∈ [n].

I Lemma 15. For every ε > 0 and for every n ≥ 2 there exists m > 0 and a reducible set
X ⊂ {0, 1, . . . ,m− 1}n such that for all i ∈ [n] it holds that AvgDegi(X) ≥ n− ε.

Proof. Take any m > 0. Consider the following sequence of sets X2, X3, . . ., where Xn is a
subset of {0, 1, . . . ,m− 1}n:

X2 = {(j, j) : j ∈ {0, 1, . . . ,m− 1}} ∪ {(j, j + 1) : j ∈ {0, 1, . . . ,m− 2}},

X`+1 = {(x, j) : x ∈ X`, j ∈ {0, 1, . . . ,m− 1}}
∪
{

(y, 0) : y ∈ {0, 1, . . . ,m− 1}`/X`

}
.

We have the following relation between the size of X`+1 and the size of X`:

|X`+1| = m · |X`|+m` − |X`| = m · (|X`| − 1) +m`.

Let us show by induction on n that |Xn| ≥ nmn−1 − n(1 +m+ . . .+mn−2). Indeed, for
n = 2 this inequality is true: |X2| = 2m − 1 > 2m − 2. Now, assume that for n = ` this
inequality is proved, i.e. |X`| ≥ `m` − `(1 +m+ . . .+m`−2). Then

|X`+1| = m · (|X`| − 1) +m`

≥ m ·
(
`m`−1 − `(1 +m+ . . .+m`−2)− 1

)
+m`

≥ (`+ 1) ·m` − (`+ 1) · (1 +m+ . . .+m`−1).

This means that for every n and i ∈ [n] it holds that

AvgDegi(Xn) = |Xn|
|(Xn)[n]/{i}|

≥ nmn−1 − n(1 +m+ . . .+mn−2)
mn−1 ,

and the latter tends to n as m→∞. Thus to show the lemma it is sufficient to show that
Xn is reducible. Once again, we will show it by induction on n.

Consider n = 2 and take any non-empty Y ⊂ X2. Let y ∈ Y be the smallest element of
Y in lexicographical order. If y = (j, j), then y is 1-unique in Y and hence MinDeg1(Y) = 1.
If y = (j, j + 1), then y is 2-unique in Y and hence MinDeg2(Y) = 1.

Further, assume that for n = ` the statement is proved, i.e. X` is reducible. Consider any
non-empty Y ⊂ X`+1. Assume that Y intersects

{
(y, 0) : y ∈ {0, 1, . . . ,m− 1}`/X`

}
and

hence for some y /∈ X` it holds that (y, 0) ∈ Y . Then MinDeg`+1(Y) = 1. Indeed, in this
case (y, 0) is (`+ 1)-unique in Y , because if (y, j) ∈ Y ⊂ X`+1 for some j > 0, then y ∈ X`,
contradiction.

Now assume that Y is a subset of {(x, j) : x ∈ X`, j ∈ {0, 1, . . . ,m− 1}}. Then for some
j ∈ {0, 1, . . . ,m − 1} a set Y ′ = {x ∈ X` : (x, j) ∈ Y } is non-empty. Since by induction
hypothesis X` is reducible, there is y ∈ Y ′ which is i-unique in Y ′ for some i ∈ [`]. Let us
show that (y, j) is i-unique in Y (this would mean that MinDegi(Y) = 1). Indeed, assume
that there is (y′, j′) ∈ Y which coincides with (y, j) on all the coordinates except the ith one.
Then j = j′ and y′ ∈ Y ′. Due to i-uniqueness of y ∈ Y ′ we also have that y = y′. J

I Definition 16. Let s,m, n be positive integers and assume that X is a subset of {0, 1, . . . ,
m− 1}n. Let In(X, s) ⊂ {0, 1, . . . , sm− 1}n denote the following set:

In(X, s) = {(sx1 + r1, sx2 + r2, . . . , sxn + rn) :
(x1, . . . , xn) ∈ X, r1, . . . , rn ∈ {0, 1, . . . , s− 1}}.

A. Kozachinskiy 4:13

Observe that for every (y1, . . . , yn) ∈ In(X, s) there is exactly one (x1, . . . , xn) ∈ X such
that for some r1, . . . , rn ∈ {0, 1, . . . , s− 1} it holds that

y1 = sx1 + r1, . . . , yn = sxn + rn.

I Lemma 17. For every i ∈ {1, 2, . . . , n} it holds that AvgDegi(In(X, s)) = s ·AvgDegi(X).

Proof. Lemma follows from the following two equalities:

|In(X, s)| = sn · |X|, |In(X, s)[n]/{i}| = sn−1 · |X[n]/{i}|. J

I Lemma 18. Assume that X ⊂ {0, 1, . . . ,m − 1}n is reducible. Then for all non-empty
Y ⊂ In(X, s) there is i ∈ [n] such that MinDegi(Y) ≤ s.

Proof. Let Y ′ be the set of all (x1, . . . , xn) ∈ X for which there are

r1, . . . , rn ∈ {0, 1, . . . , s− 1}

such that (sx1 + r1, . . . , sxn + rn) ∈ Y . Clearly Y ′ is non-empty. Let x′ = (x′1, . . . , x′n) ∈ Y ′
be a string which is i-unique in Y ′. Let us show that MinDegi(Y) ≤ s. By definition there
are r1, . . . , rn ∈ {0, 1, . . . , s− 1} such that (y′1, . . . , y′n) = (sx′1 + r1, . . . , sx

′
n + rn) ∈ Y . It is

easy to see that (y′1, . . . , y′i−1, y
′
i+1, . . . , y

′
n) ∈ Y[n]/{i} is connected with at most s left vertices

of Gi(Y). More precisely, the only possible neighbors of (y′1, . . . , y′i−1, y
′
i+1, . . . , y

′
n) are

sx′i, sx
′
i + 1, . . . , sx′i + s− 1.

Indeed, otherwise there is xi 6= x′i such that (x′1, . . . , x′i−1, xi, x
′
i+1, . . . , x

′
n) ∈ Y . The latter

contradicts the fact that x′ is i-unique in Y . J

Proof of Theorem 9. Due to Lemma 15 there is a reducible X ′ ⊂ {0, 1, . . . ,m− 1}n such
that for every i ∈ [n] we have AvgDegi(X ′) ≥ n−ε. By Lemma 17, applied to X = In(X ′, s)
for every i ∈ [n] we have: AvgDegi(X) ≥ s(n − ε). Finally, due to Lemma 18, for all
non-empty Y ⊂ X there is i ∈ [n] such that MinDegi(Y) ≤ s. J

6 Expanders Similar to APq

In this section we prove Proposition 5. Let us stress that this Proposition is just a slight
improvement of Proposition 10 for sets of size 2. Proposition 10 itself is not strong enough
to conclude that in all (m2,m, 1/

√
m)-spectral expanders any two distinct vertices have at

most 1 common neighbor.
For S ⊂ V let IS ∈ R|V | denote characteristic vector of a set S. Assume for contradiction

that there are distinct u, v ∈ V such that |Γ(u) ∩ Γ(v)| ≥ 2. Then the size of Γ({u, v}) is at
most 2d− 2. Assume that M is the adjacency matrix of G. Denote w = {u, v}. Let us show
that

‖MIw‖2 ≤ d2
(

2γ2 + 4(1− γ2)
m

)
. (5)

Indeed, observe that Iw = 2
m IV + (Iw − 2

m IV) and (Iw − 2
m IV) is perpendicular to IV . Since

MFCS 2018

4:14 From Expanders to Hitting Distributions and Simulation Theorems

G is a (m, d, γ)-spectral expander, this implies that

‖MIw‖2 = ‖M
(

2
m
Iw
)
‖2 + ‖M

(
Iw −

2
m
IV
)
‖2 ≤ 4d2

m
+ γ2d2‖

(
Iw −

2
m
IV
)
‖2

= 4d2

m
+ γ2d2

(
2
(

1− 2
m

)2
+ (m− 2) 4

m2

)

= 4d2

m
+ γ2d2

(
2− 4

m

)
= d2

(
2γ2 + 4(1− γ2)

m

)
,

and thus (5) is proved.
To obtain a contradiction it is enough to show the following inequality

‖MIw‖2 ≥ 2d+ 4. (6)

Assume that there are t ≤ 2d − 2 non-zero coordinates in MIw. Let ξ1, . . . , ξt be the
values of these coordinates. Their sum is 2d. We need to show that ξ2

1 + . . .+ ξ2
t ≥ 2d+ 4.

Observe that ξ1 − 1, . . . , ξt − 1 are non-negative integers and their sum is 2d− t ≥ 2. Clearly
this implies that (ξ1− 1)2 + . . .+ (ξt− 1)2 ≥ 2. Indeed, otherwise the sum of ξ1− 1, . . . , ξt− 1
is either 0 or 1. Hence

ξ2
1 + . . .+ ξ2

t = (ξ1 − 1)2 + . . .+ (ξt − 1)2 + 4d− t ≥ 2 + 4d− t ≥ 2d+ 4.

7 Proof of Proposition 6

Denote s = 2k−h. Assume that there is a 0-monochromatic rectangle A×B of g such that
|A| ≥ s and B ≥ s. Then clearly the proposition is true for b = 1 and X = A, Y = B.

Now assume that if A× B is a 0-monochromatic rectangle of g, then either |A| < s or
B < s. Take X ,Y independently and uniformly at random from the set of all s-element
subsets of {0, 1}k. Fix any 0-monochromatic rectangle A×B of g. Let us show that X × Y
intersects A × B with probability at most 2k−2h+1. Indeed, assume WLOG that |A| < s.
Then

Pr[X × Y ∩A×B 6= ∅] ≤ Pr[X ∩A 6= ∅] = 1−
(2k−|A|

s

)(2k

s

) ≤ 1−
(2k−s

s

)(2k

s

)
Since h ≥ 1, we have that s ≤ 2k/2. Applying Lemma 13 we obtain:

Pr[X × Y ∩A×B 6= ∅] ≤ s2

2k − s ≤
s2

2k/2 = 2k−2h+1.

Due to the standard averaging argument this means that for any probability distribution
µ over 0-monochromatic rectangles of g it is possible to fix X = X,Y = Y in such a way that

Pr
R∼µ

[R ∩X × Y 6= ∅] ≤ 2k−2h+1.

A. Kozachinskiy 4:15

References
1 Arkadev Chattopadhyay, Michal Kouckỳ, Bruno Loff, and Sagnik Mukhopadhyay. Simula-

tion theorems via pseudorandom properties. arXiv preprint arXiv:1704.06807, 2017.
2 Susanna F de Rezende, Jakob Nordström, and Marc Vinyals. How limited interaction

hinders real communication (and what it means for proof and circuit complexity). In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages
295–304. IEEE, 2016.

3 Mika Goos, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rect-
angles are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016.

4 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. par-
tition number. In Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual
Symposium on, pages 1077–1088. IEEE, 2015.

5 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for bpp.
arXiv preprint arXiv:1703.07666, 2017.

6 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for xor func-
tions. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium
on, pages 282–288. IEEE, 2016.

7 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, 2006.

8 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

9 Ran Raz and Pierre McKenzie. Separation of the monotone nc hierarchy. In Foundations of
Computer Science, 1997. Proceedings., 38th Annual Symposium on, pages 234–243. IEEE,
1997.

10 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders. Annals of mathematics, pages 157–187, 2002.

11 Salil P Vadhan et al. Pseudorandomness. Foundations and Trends® in Theoretical Com-
puter Science, 7(1–3):1–336, 2012.

12 Xiaodi Wu, Penghui Yao, and Henry Yuen. Raz-mckenzie simulation with the inner product
gadget. In Electronic Colloquium on Computational Complexity (ECCC), 2017.

MFCS 2018

Balance Problems for Integer Circuits
Titus Dose
Institute of Computer Science, Julius-Maximilians Universität Würzburg, Germany
titus.dose@uni-wuerzburg.de

Abstract
We investigate the computational complexity of balance problems for {−, ·}-circuits computing
finite sets of natural numbers. These problems naturally build on problems for integer expressions
and integer circuits studied by Stockmeyer and Meyer (1973), McKenzie and Wagner (2007), and
Glaßer et al. (2010).

Our work shows that the balance problem for {−, ·}-circuits is undecidable which is the first
natural problem for integer circuits or related constraint satisfaction problems that admits only
one arithmetic operation and is proven to be undecidable.

Starting from this result we precisely characterize the complexity of balance problems for
proper subsets of {−, ·}. These problems turn out to be complete for one of the classes L, NL,
and NP.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness, Theory of computation → Computability

Keywords and phrases computational complexity, integer expressions, integer circuits

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.5

Related Version For a more comprehensive presentation of the results we refer to the technical
report [6], https://eccc.weizmann.ac.il/report/2018/055.

1 Introduction

In 1973, Stockmeyer and Meyer [18] defined and studied membership and equivalence
problems for integer expressions. They considered expressions built up from single natural
numbers by using set operations (∪, ∩,), pairwise addition (+), and pairwise multiplication
(·). For example, 1 · 1 ∩ 1 describes the set of primes P.

The membership problem for integer expressions asks whether some given number is
contained in the set described by a given integer expression, whereas the equivalence problem
for integer expressions asks whether two given integer expression describe the same set.
Restricting the set of allowed operations results in problems of different complexities.

Wagner [20] studied a more succinct way to represent such expressions, namely circuits
over sets of natural numbers, also called integer circuits. Each input gate of such a circuit
is labeled with a natural number, the inner gates compute set operations and arithmetic
operations (∪, ∩, , +, ·). The following circuit with only 4 inner gates computes the set of
primes.

1 · ∩

Starting from this circuit, one can use integer circuits to express fundamental number
theoretic questions: thus, a circuit describing the set of all twin primes or the set of all

© Titus Dose;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 5; pp. 5:1–5:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:titus.dose@uni-wuerzburg.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.5
https://eccc.weizmann.ac.il/report/2018/055
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Balance Problems for Integer Circuits

Sophie Germain primes can be constructed. McKenzie and Wagner [15] constructed a circuit
C computing a set that contains 0 if and only if the Goldbach conjecture holds.

Wagner [20], Yang [21], and McKenzie and Wagner [15] investigated the complexity of
membership problems for circuits over natural numbers: here, for a given circuit C, one has
to decide whether a given number n belongs to the set described by C. Travers [19] and
Breunig [2] considered membership problems for circuits over integers and positive integers,
respectively. Glaßer et al. [9] studied equivalence problems for circuits over sets of natural
numbers, i.e., the problem of deciding whether two given circuits compute the same set.

Satisfiability problems for circuits over sets of natural numbers, investigated by Glaßer
et al. [11], are a generalization of the membership problems investigated by McKenzie and
Wagner [15]: the circuits can have unassigned input gates and the question is: on input of a
circuit C with gate labels from O ⊆ {∪,∩, ,+, ·} and a natural number b, does there exist
an assignment of the unassigned input gates with natural numbers such that b is contained
in the set described by the circuit?

Barth et al. [1] investigated emptiness problems for integer circuits. Here, for both circuits
with unassigned inputs and circuits without unassigned inputs, the question of whether
an integer circuit computes the empty set (for some/all assignment(s) if the circuits allow
unassigned inputs) is raised and investigated.

Apart from the mentioned research on circuit problems there has been work on related
variants like functions computed by circuits [17] and constraint satisfaction problems (csp)
over natural numbers [10, 5]. The constraint satisfaction problems by Glaßer, Jonsson,
and Martin [10] can be considered as conjunctions of equations of integer expressions with
variables standing for singleton sets of natural numbers. Here the question is whether there
is an assignment of the variables such that all equations are satisfied. These constraint
satisfaction problems have the peculiarity that expressions describe sets of integers whereas
variables can only store singleton sets of natural numbers. Dose [5] addressed this and
studied constraint satisfaction problems over finite subsets of N, consequently replaced the
set complement with the set difference −, and allowed the variables to describe arbitrary
finite subsets of N.

Our Model and Contributions

The definition of the circuits investigated in this paper follows the definition of previous
papers such as [15, 9, 11, 1]. Yet there are some differences:

Our circuit problems are about balanced sets where a finite and non-empty set S ⊆
N is balanced if |S| = |{0, 1, . . . ,max(S)} − S|. Analogously, S is unbalanced if |S| 6=
|{0, 1, . . . ,max(S)} − S|. That means, the maximum of a set marks the relevant area and
then we ask whether there are as many elements inside the set as outside of it. As the notion
of balanced sets only makes sense for finite sets, our circuits should solely compute finite sets.
Due to that we replace the commonly used set complement with the set difference −. Now,
as the circuits only work over the domain of finite subsets of N, it suggests itself to also allow
the input gates of a circuit to compute arbitrary finite subsets of N and not only singleton
sets (cf. Dose [5] where the analogous step was made for constraint satisfaction problems).

For such circuits we ask: is there an assignment of the unassigned inputs with arbitrary
finite subsets of N under which the circuit computes a balanced set? This problem is denoted
by BC(O), where O ⊆ {∪,∩,−,+, ·} is the set of allowed operations.

The notion of balance is important in computational complexity. It occurs when consid-
ering counting classes [12] like C=L or C=P for instance. There, the question is whether for
some problem A there is a non-deterministic logarithmic space or polynomial-time machine

T. Dose 5:3

M accepting A, where M accepts some input x if and only if the number of accepting paths
equals the number of rejecting paths.

Balance problems for integer circuits are interesting for another reason. To our knowledge,
there is no natural decision problem for integer circuits or constraint satisfaction problems
over sets of natural numbers that allows only one arithmetic operation and is known to be
undecidable. In this paper, however, it is shown that BC(−, ·) is undecidable.

Starting from this undecidable problem BC(−, ·), we also investigate BC(O) for arbitrary
proper subsets of {−, ·} and precisely characterize the complexity of each such problem. It
turns out that all these problems are in NP. In detail, we show that BC(·) is NL-complete,
BC(−) is NP-complete, and BC(∅) ∈ L.

2 Preliminaries

Basic Notions

Let N denote the set of natural numbers. N+ = N − {0} is the set of positive naturals.
Moreover, the set of primes is denoted by P.

We extend the arithmetical operations + and · to sets of naturals: for A,B ⊆ N define
A+ B = {a+ b | a ∈ A, b ∈ B} and A · B = {a · b | a ∈ A, b ∈ B}. In contrast to previous
papers, in this paper the multiplication of sets is not denoted by × but by ·. Instead, ×
denotes the cartesian product. Furthermore, for arbitrary sets, the operations ∪, ∩, and −
define the union, intersection, and set difference, respectively. The power set of a set M is
denoted by P(M) whereas Pfin(M) = {A ∈ P(M) | A finite}. For a finite and non-empty set
S let max(S) (resp., min(S)) denote the maximum (resp., minimum) number of S. Finite
intervals {x | a ≤ x ≤ b} for a, b ∈ Z are denoted by [a, b].

L, NL, and NP denote standard complexity classes [16] and RE is the set of computably
enumerable problems.

For problems A and B we say that A is (logarithmic-space) many-one reducible to B if
there is some (logarithmic-space) computable function f with cA(x) = cB(f(x)), where cX

for a set X is the characteristic function of X. We denote this by A ≤m B (resp., A ≤log
m B).

For pairs (A,B) and (C,D) with A ∩ B = C ∩D = ∅ we say that (A,B) is many-one
reducible to (C,D) (denoted as (A,B) ≤m (C,D)) if there is a computable function f with
x ∈ A⇒ f(x) ∈ C and x ∈ B ⇒ f(x) ∈ D. Note that if B = A and D = C this coincides
with the usual many-one reducibility, i.e., (A,A) ≤m (C,C)⇔ A ≤m C.

CSAT is the circuit satisfiability problem, i.e., the problem of determining whether a
given Boolean circuit has an assignment of the unassigned inputs that makes the output gate
true. The problem is ≤log

m -complete for NP via a trivial reduction from SAT which itself can
be shown to be ≤log

m -complete for NP via a construction by Cook [3].

Balanced Sets

A finite and non-empty set S ⊆ N is balanced (resp., unbalanced) if |S| = |{0, 1, . . . ,max(S)}−
S| (resp., |S| 6= |{0, 1, . . . ,max(S)} − S|). Intuitively spoken, max(S) defines the universe
{0, 1, . . . ,max(S)} and then S is balanced if it contains the same number of elements as
its complement. Note that the notion of balance/unbalance only makes sense if there is
some maximum element defining the universe. Hence the empty set is neither balanced nor
unbalanced.

The following lemma immediately follows from the definition.

I Lemma 1. Let S ∈ Pfin(N) be balanced. Then S 6= ∅ and max(S) is odd.

MFCS 2018

5:4 Balance Problems for Integer Circuits

Moreover, we say that S is subbalanced if |S| < (max(S) + 1)/2 which is equivalent to
|S| ≤ max(S)/2. As we want to investigate the complexity of balance problems with
respect to deterministic logarithmic-space reductions, it is important to see that the test of
whether some input set is balanced can be done in deterministic logarithmic space. Define
Bal = {S ∈ Pfin(N) | S is balanced} and the slightly more general problem BalM = {S ∈
Pfin(N) | M · S is balanced} for a non-empty and finite set M . Standard arguments yield
the following proposition.

I Proposition 2. BalM ∈ L. In particular, Bal ∈ L.

Circuits and Balance Problems for Circuits

In previous papers such as [1] it was differentiated between completely and partially assigned
circuits. As we restrict on partially assigned circuits in this paper, we define circuits in
general as partially assigned circuits.

A circuit C is a triple (V,E, gC) where (V,E) is a finite, non-empty, directed, acyclic
graph with a designated vertex gC ∈ V and a topologically ordered vertex set V ⊆ N, i.e., if
u, v ∈ V are vertices with u < v, then there is no edge from v to u. Here, graphs may contain
multi-edges and are not necessarily connected. But we require that C is topologically ordered.
Note that the test of whether a graph is topologically ordered or not is possible in deterministic
logarithmic space. Consequently, we are able to check in deterministic logarithmic space
whether an input graph is acyclic. Hence there is a deterministic logarithmic-space algorithm
that on input of a graph tests whether the input is a circuit. Therefore, when presenting
algorithms for circuits we may always assume that the input is a valid circuit.

Let O ⊆ {∪,∩,−,+, ·}. An O-circuit (or circuit for short if O is apparent from the
context) is a quintuple C = (V,E, gC , α, β) where (V,E, gC) is a circuit whose nodes are
labeled by the labeling function α : V → O∪Pfin(N)∪ {�} such that each node has indegree
0 or 2, nodes with indegree 0 have a label from Pfin(N) (encoded as a list of all the numbers
in the set) or from {�}, and nodes with indegree 2 have labels from O. Moreover, β is a
function E → {l, r} and we require that for each node u with predecessors u1 and u2 it holds
{β(u1), β(u2)} = {l, r}. Thus, β marks whether an edge starts in the left or right predecessor
of the node it points to.

In the context of circuits, nodes are also called gates. A gate with indegree 0 is called
input gate, all other nodes are inner gates, the designated gate gC is also called output gate.
Input gates with a label from Pfin(N) are assigned input gates whereas input gates with label
� are unassigned input gates.
O-circuits are also called integer circuits. If g is some gate of C with α(g) = ⊗ ∈ O and

with predecessors g′ and g′′ satisfying β(g′) = l and β(g′′) = r, then we also write g = g′⊗ g′′.
For an O-circuit C with unassigned input gates g1 < · · · < gn and X1, . . . , Xn ∈ Pfin(N),

let C(X1, . . . , Xn) be the circuit that arises from C by modifying the labeling function α

such that α(gi) = Xi for every 1 ≤ i ≤ n.
For a circuit C = (V,E, gC , α) without unassigned input gates we inductively define the

set I(g;C) computed by a gate g ∈ V for g = 1, . . . , |V | by

I(g;C) =
{
α(g) ⊆ N if g has indegree 0,
I(g′, C)⊗ I(g′′, C) if g = g′ ⊗ g′′.

The set computed by the circuit is denoted by I(C) and defined to be the set computed by
the output gate I(gC ;C).

T. Dose 5:5

It is convenient to introduce notations for basic constructions of circuits. For X ∈ Pfin(N)
we use X as an abbreviation for the circuit ({1},∅, {1}, 1 7→ X). For O-circuits C,C ′ for
some O and ⊗ ∈ {∪,∩, ,−+, ·} let C ⊗C ′ be the circuit obtained from C ′ and C ′′ by feeding
their output gates to the new output gate ⊗. This is possible in logarithmic space.

As an example, for an unassigned input gate g = 0, consider the circuit C = (g − {0})−
((g − {0}) · {2}), which is the following circuit

0, �

1, {0}

2,−

3, {2}

4, · 5,−

l

r
l

l

r
r

where each node is given by its number and its label. The node 5 is the output gate and it
computes the set {1} if and only if I(2;C) is a set of the form {20, 21, 22, . . . , 2r} for r ∈ N.

Now we define the problems this paper focuses on.

I Definition 3. Let O ⊆ {−,∪,∩,+, ·} and define

BC(O) = {C | C is an O-circuit with n unassigned inputs and there exist
X1, . . . , Xn ∈ Pfin(N) such that I(C(X1, . . . , Xn)) is balanced}.

We use the following abbreviations if confusions are impossible: we write g or I(g) for
I(g;C), where C is a circuit and g is a gate of C; we write C for I(C), where C is a circuit;
we write BC(−, ·) for BC({−, ·}) and the like.

3 Set Difference and Multiplication Lead to Undecidability

This section contains our main result: the undecidability of BC(−, ·) which is achieved by a
reduction from a famously known RE-complete problem. According to the Matiyasevich-
Robinson-Davis-Putnam theorem [14, 4] the problem of determining whether there is a
solution for a given Diophantine equation is RE-complete. It can be derived by standard
arguments that also the following problem is RE-complete (with regard to ≤m).

DE = {(p(x1, . . . , xn),q(x1, . . . , xn)) | ∃a1, . . . , an ∈ N+, p(a1, . . . , an) = q(a1, . . . , an)
for multivariate polynomials p and q with coefficients from N+}.

I Theorem 4. BC(−, ·) is RE-complete.

Let for the remainder of this section O = {−, ·} unless stated differently. For the sake of
brevity, we make use of intersection gates but note that A ∩ B is just an abbreviation for
A−(A−B). Further abbreviated notations are A−

⋃n
i=1Bi for (. . . ((A−B1)−B2)−. . .)−Bn

and A− (
⋃n

i=1Bi − {1}) for (. . . ((A− (B1 − {1}))− (B2 − {1}))− . . .− (Bn − {1}).

In order to prove Theorem 4 we define a slightly different version of the problem BC(−, ·)
which can be reduced to the original version in logarithmic space.

I Definition 5. Define

BC′(O) = {(C,Q) | C is a partially assigned O-circuit, Q is a subset of the nodes of C,
and there exist X1, . . . , Xn ∈ Pfin(N+) such that I(C(X1, . . . , Xn))
is balanced and I(K;C(X1, . . . , Xn)) = {1} for all K ∈ Q}.

For the sake of simplicity, we call instances of BC′(O) O-circuits as well.

MFCS 2018

5:6 Balance Problems for Integer Circuits

I Lemma 6. 1. For K ∈ Pfin(N) with κ := max(K) ≥ 3 it holds |K ·K ·K| < κ3/2.
2. BC′(O) ≤log

m BC(O) for O = {−, ·}.

Proof sketch. We only sketch the proof of statement 2. Let C be a partially assigned
O-circuit with output node gC and let Q be a subset of the nodes of C. Starting with this
circuit, we build a new circuit and denote this modified circuit by C ′:

For each assigned or unassigned input node g, add a node g′ of type − which computes
the set g − {0}, replace all edges (g, h) with (g′, h), and in case g ∈ Q, remove g from Q and
add g′. Then add a new output node gC′ = gC ·

∏
K∈Q(K ·K ·K).

Making use of Statement 1, it can be proved that BC′(O) ≤log
m BC(O) via C 7→ C ′. J

Before proving Theorem 4 we introduce some O-circuits which will be used extensively
as components of circuits expressing Diophantine equations.

I Lemma 7. For every finite P = {p1, . . . , pn} ⊆ P with n = |P | ≥ 1 there is an O-circuit
(CP , QP) containing gates g1

P , . . . , g
n
P satisfying the following properties:

1. For an arbitrary assignment with values from Pfin(N+) it holds:
if K = {1} for all K ∈ QP , then ∃m∈N ∀i=1,...,n g

i
P = {1, pi, . . . , p

m
i }.

2. For each m ∈ N there is an assignment with values from Pfin(N+) under which gi
P =

{1, pi, . . . , p
m
i } and K = {1} for all K ∈ QP .

Proof sketch. Construct the O-circuit (CP , QP) as follows.
For each p ∈ P insert an input gate Xp and gates hp = Xp − (Xp · {p}) and h′p =
({1, p} ·Xp)− (Xp − {1}). Put all the nodes hp into QP .
Similarly, for k ∈ {p1 · p2, p2 · p3, . . . , pn−1 · pn} insert an input gate Xk and gates
hk = Xk − (Xk · {k}) and h′k = ({1, k} ·Xk)− (Xk − {1}). Insert all nodes hk into QP .
For each k = pi · pi+1 with i ∈ {1, . . . , n− 1} add a node γk = h′k −

(
(h′pi
· h′pi+1

)− {1}
)

and let QP contain all these nodes.
Denote gi

P = Xpi
.

It can be shown that (CP , QP) satisfies the requirements of the lemma. J

By adding nodes of the form
∏i

j=1 g
j
P for some i we receive the following.

I Lemma 8. For every finite P = {p1, . . . , pn} ⊆ P with n = |P | ≥ 1 there is an O-circuit
(DP , QP) with gates g0

P , g
1
P , . . . , g

n
P satisfying the following properties:

1. For an arbitrary assignment with values from Pfin(N+) it holds

∀K∈QP
K = {1} ⇒ ∃m∈N+∀i=0,...,n |gi

P | = mi, 1 ∈ gi
P , and the prime divisors

of numbers in gi
P are all in P .

2. For each m ∈ N+ there is an assignment with values from Pfin(N+) under which |gi
P | = mi

and 1 ∈ gi
P for all i, the prime divisors of numbers in gi

P are all in P , and K = {1} for
all K ∈ QP .

Proof of Theorem 4. Due to Lemma 6 it suffices to show DE ≤m BC′(−, ·). Instead of
showing this reduction directly we define an intermediate problem, the cardinality circuit
problem CC given by

{(C,Q, s, t) | C = (V,E, gC , α, β) is a {−, ·}-circuit, Q ⊆ V , s, t ∈ V , and there exists
an assignment with values from Pfin(N+) under which
1. |I(s)| = |I(t)|
2. 1 ∈ I(s) ∩ I(t)
3. I(K) = {1} for all K ∈ Q
4. I(s) and I(t) only contain numbers whose prime divisors are all > 3}.

T. Dose 5:7

Moreover, define

C = {(C,Q, s, t) | C = (V,E, gC , α, β) is a {−, ·}-circuit, Q ⊆ V , s, t ∈ V , for all assign-
ments with values from Pfin(N+) satisfying ∀K∈Q K = {1} it holds that
s ≥ t and s and t only contain numbers whose prime divisors are > 3},

i.e., for all circuits in C each relevant assignment maps s to a set with higher or equal
cardinality than the set it maps t to and each relevant assignment maps s and t to sets that
do not contain any numbers with prime divisors ≤ 3. For the sake of simplicity, we also call
tuples (C,Q, s, t) {−, ·}-circuits.

The proof will be given in the two steps
1. (DE,DE) ≤m (CC,CC ∩ C)
2. (CC,CC ∩ C) ≤m (BC′(−, ·),BC′(−, ·)).
Thus the function composition of the two reduction functions shows DE ≤m BC′(−, ·).
1. Roughly speaking, the first of the two reductions generates a circuit computing two sets
whose cardinalities express the results of two multivariate polynomials.

Let q and q′ be multivariate polynomials with variables x1, . . . , xn. Then for any assign-
ment with positive natural numbers a1, . . . , an it holds q(a1, . . . , an) = q′(a1, . . . , an) if and
only if q(a1, . . . , an)2 + q′(a1, . . . , an)2 = 2 · q(a1, . . . , an) · q′(a1, . . . , an). Observe that here
because of (q(a1, . . . , an) − q′(a1, . . . , an))2 ≥ 0 we have q(a1, . . . , an)2 + q′(a1, . . . , an)2 ≥
2 · q(a1, . . . , an) · q′(a1, . . . , an) for any assignment. Due to that we may assume that we are
given multivariate polynomials q and q′ with variables x1, . . . , xn such that q ≥ q′ for all
assignments of the variables with values from N+. Let

q =
m∑

i=1
ai ·

n∏
j=1

x
di,j

j and q′ =
m′∑
i=1

a′i

n∏
j=1

x
d′

i,j

j

for positive numbers m, m′, ai, and a′i and natural numbers di,j and d′i,j . Moreover, for each
variable xj define ej = max({d1,j , . . . , dm,j , d

′
1,j , . . . , d

′
m′,j}), i.e., ej denotes the maximum

exponent of the variable xj occurring in a monomial of q or q′.
We now successively build the output circuit (C,Q, s, t). For the single steps we give

intuition which is written italic.
1. For each variable xj select a set Pj = {pj,1, . . . , pj,ej

} of primes greater than 3 such that
|Pj | = ej and Pj ∩ Pj′ = ∅ for j 6= j′. Then insert a circuit (CPj , QPj) according to
Lemma 8 and for all Pj , insert the nodes of QPj

into Q.
We will make use of the notation of Lemma 8, in particular of the nodes g0

Pj
, . . . , g

ej

Pj
.

That means, for any assignment which satisfies K = {1} for all K ∈ Q ⊇ QPj
, it holds

|gi
Pj
| = mi

j for mj ∈ N+ and for all i ≤ ej . Moreover, in that case all primes dividing
some number of gi

Pj
are in Pj .

For intuition, think of the node gi
Pj

as a set whose cardinality describes xi
j.

2. a. Choose a prime p > 3 not used before and insert gates hi = {1, p, . . . , pai−1}·
∏n

j=1 g
di,j

Pj

for all i = 1, . . . ,m.
Loosely speaking, the cardinality of hi describes the value of the i-th monomial of q.

b. For each node hi choose a prime pi > 3 not used before and insert a node h′i =
({1, pi} · hi)−

(
hi − {1}

)
.

As addition is supposed to be simulated by union, we need to make sure that the sets
standing for distinct monomials are disjoint. Still, for a technical reason we have to
keep 1 in each set. So the idea is to let h′i consist of 1 and a copy of hi multiplied with
an additional prime factor.

MFCS 2018

5:8 Balance Problems for Integer Circuits

c. For i = 1, . . . ,m add an unassigned input node zq. Finally add nodes zq −
(⋃m

i=1 h
′
i −

{1}
)
and h′i − (zq − {1}) (for i = 1, . . . ,m) and insert these nodes into Q.

Roughly speaking, zq describes the value of q + 1 as it is the union of all the h′i.
3. Do the same as in step 2 but for q′. In particular a node zq′ is added.
4. Define s = zq and t = zq′ .

First, observe that the function (q, q′) 7→ (C,Q, s, t) is computable. In order to show

(q, q′) ∈ DE⇒ (C,Q, s, t) ∈ CC and (q, q′) /∈ DE⇒ (C,Q, s, t) ∈ CC ∩ C

we make the following central observation.

I Claim 9.
1. For each y1, . . . , yn ∈ N+ there is an assignment of the circuit (C,Q) with values from
Pfin(N+) such that s (resp., t) consists of 1 + q(y1, . . . , yn) (resp., 1 + q′(y1 . . . , yn))
numbers whose prime divisors are greater than 3, 1 ∈ s ∩ t, and K = {1} for all K ∈ Q.

2. If K = {1} for all K ∈ Q under some assignment with values from Pfin(N+), then there
are y1, . . . , yn ∈ N+ such that |s| = 1 + q(y1, . . . , yn) and |t| = 1 + q′(y1, . . . , yn) and s
and t solely contain numbers whose prime divisors are all greater than 3.

Proof of Claim 9.
1. Let y1, . . . , yn ∈ N+. Then according to Lemma 8 the inputs of the circuits (CPj

, QPj
)

can be chosen such that
K = {1} for all K ∈ QPj

,
|gi

Pj
| = yi

j and 1 ∈ gi
Pj

for i = 1, . . . , ej , and
all prime divisors of numbers in gi

Pj
are in Pj and greater than 3.

As the set of primes chosen for two different variables are disjoint and in step 2b we select
primes not used before, the gate hi associated with the monomial ai ·

∏n
j=1 x

di,j

j contains
ai ·

∏n
j=1 y

di,j

j elements that only have prime divisors greater than 3. Furthermore, as
1 ∈ hi for all i, we have |h′i| = 2 · |hi| − (|hi| − 1) = |hi| + 1. Moreover, observe that
h′i ∩ h′j = {1} for arbitrary i 6= j.
For the node zq choose the assignment

⋃m
i=1 h

′
i. Consequently, 1 ∈ zq and

|zq| = 1 +
m∑

i=1
(|h′i| − 1)︸ ︷︷ ︸

=|hi|

= 1 +
m∑

i=1
ai ·

n∏
j=1

x
di,j

j = 1 + q(y1, . . . , yn).

Since we do the same for the nodes associated with the polynomial q′ we have |zq′ | =
1 + q′(y1, . . . , yn) and 1 ∈ zq′ . Observe that the prime divisors of numbers in zq and zq′

are greater than 3.
It remains to observe that all nodes added into Q in step 2c compute the set {1}. This
holds since zq was chosen to be

⋃m
i=1 h

′
i.

2. Consider an assignment with K = {1} for all K ∈ Q. Then according to Lemma 8 for
each variable xj we have |gi

Pj
| = yi

j for some yj ∈ N+ and i = 0, . . . , ej and all numbers in
these gates solely have prime divisors in Pj . As the Pj are pairwise disjoint and in step 2b
we select primes not used before, we obtain |hi| = ai ·

∏n
j=1 y

di,j

j and |h′i| = |hi|+ 1. As
h′i ∩ h′j = {1} for i 6= j and each h′i contains 1, it holds |zq| = 1 +

∑n
i=1 ai ·

∏n
j=1 y

di,j

j =
1 + q(y1, . . . , yn). Similarly we obtain |zq′ | = 1 + q′(y1, . . . , yn).
It remains to argue that under the given assignment s and t do not contain any numbers
with prime divisors ≤ 3. Obviously, the assigned inputs only compute sets whose elements
solely have prime divisors greater than 3. By our construction and Lemma 8 the same

T. Dose 5:9

holds for all nodes gi
Pj
. As a consequence, all nodes hi and h′i have the same property

and due to zq −
(⋃m

i=1 h
′
i − {1}

)
= {1} (cf. Step 2c) this also holds for zq = s. An

analogous argumentation shows that also t does not contain any numbers with prime
divisors ≤ 3. J

As it has been argued above that |q| ≥ |q′|, Claim 9 implies the following two statements:
If (q, q′) ∈ DE, then (C,Q, s, t) ∈ CC. If (q, q′) /∈ DE, then (C,Q, s, t) ∈ CC ∩ C.

2. Now we show (CC,CC ∩ C) ≤m (BC′(−, ·),BC′(−, ·)). The following algorithm computes
the reduction function. The italic comments are supposed to give some intuition.

1. Let a circuit (C,Q, s, t) be given. We construct a circuit (C ′, Q′) by successively updating
the given circuit.

2. Add new unassigned input gates X and X ′. Insert the following nodes into Q′:

{1, 2} · s− (X − {1}), (1)
{1, 2} · t− (X − {1}), (2)
{1, 2} · (X − s)−

(
(X ′ ∪ (X − s))− {1}

)
, (3)

X ′ − {2} · (X − s). (4)

The basic idea is as follows: X is supposed to be an interval containing s and t and X ′
basically encodes the set X − s where this set is made disjoint to t by multiplying it with
{2}. As |s| ≥ |t|, the set X ′ ∪ t is subbalanced. But if |s| = |t|, then X ′ ∪ t is almost
balanced. Adding the element max(X ′)+1 would make the set balanced. This element is
generated in the next step.

3. Let p1 = 2 and p2 = 3. Add a circuit (C{p1,p2}, Q{p1,p2}) according to Lemma 7. Put all
nodes of Q{p1,p2} into Q′. Add a node g =

(
g2
{p1,p2} · {1, 3}

)
− (g2

{p1,p2} − {1}).
4. Add a new unassigned input node O and the following nodes which are also added to Q′:

O −
((
X ′ ∪ t ∪ g

)
− {1}

)
, (5)

X ′ − (O − {1}), (6)
t− (O − {1}), (7)
g − (O − {1}). (8)

Thus, roughly speaking, the output set O equals X ′ ∪ t ∪ g and is only balanced if |t| ≥ |s|.
5. Let O be the output node of the circuit (C ′, Q′).

I Claim 10. If (C,Q, s, t) ∈ CC, then (C ′, Q′) ∈ BC′(−, ·).

Proof of Claim 10. Let (C,Q, s, t) ∈ CC. Then there is some assignment with
|s| = |t|,
1 ∈ s ∩ t,
K = {1} for all K ∈ Q, and
s and t only contain numbers whose prime divisors are all greater than 3.

We now consider the circuit (C ′, Q′) under an assignment satisfying the four conditions just
mentioned. Moreover, we choose the input of C{p1,p2}, X, X ′, and O such that

g = {1, 3m} for m minimal with 4 · (max(s∪ t) + 1) < 3m and 4 | 3m − 1 and all nodes in
Q{p1,p2} compute {1} (such an assignment exists by Lemma 7),
X = {x | 1 ≤ x ≤ (3m − 1)/2},
X ′ = {1} ∪ {2} · (X − s), and
O = X ′ ∪ t ∪ g =

((
{2} · (X − s)

))
∪ t ∪ {3m}.

MFCS 2018

5:10 Balance Problems for Integer Circuits

In order to seeK = {1} for allK ∈ Q′ it remains to consider the nodes added in the steps 2
and 4. Due to the choice of g andX it holds max(X) > 2·max(s∪t) and thus the nodes defined
in (1) and (2) compute {1}. The choice of X ′ immediately implies that the node defined in (4)
computes {1}. Now we argue for the node defined in (3): As X ′ = {1}∪{2} · (X−s) we have
{1, 2} · (X − s)−

(
(X ′ ∪ (X − s))−{1}

)
= {1, 2} · (X − s)−

(
({1, 2} · (X − s))−{1}

)
= {1}.

The nodes defined in (5), (6), (7), and (8) compute {1} by the choice of g, X, X ′, and O.
As s and t only contain numbers whose prime divisors are > 3, the sets {2} · (X − s), t,

and {3m} are disjoint. Hence, |O| = max(X)− |s|+ |t|+ 1 = max(X) + 1 = max(O)−1
2 + 1 =

max(O)+1
2 and thus O is balanced. J

I Claim 11. If (C,Q, s, t) ∈ CC ∩ C, then (C ′, Q′) ∈ BC′(−, ·).

Proof of Claim 11. For a contradiction, assume that (C,Q, s, t) ∈ CC ∩ C and (C ′, Q′) ∈
BC′(−, ·). As the second circuit is an extended version of the first circuit, both circuits can
now be considered under the same assignment. Choose an assignment with values from
Pfin(N+) under which O is balanced and all K ∈ Q′ satisfy K = {1}. As by construction
Q ⊆ Q′, we have K = {1} for K ∈ Q.

As in particular the nodes defined in (1) and (2) compute {1}, we obtain 1 ∈ s ∩ t,
X ⊇ {1, 2} · s ∪ {1, 2} · t, and in particular s ⊆ X and max(X) > max(s) ≥ 1. As
{1, 2} · (X − s) −

(
(X ′ ∪ (X − s)) − {1}

)
= {1} (cf. (3)), it holds 2 ·max(X) ∈ X ′. Since

the node defined in (4) computes {1}, we obtain X ′ ⊆ {1} ∪ {2} · (X − s). In particular,
max(X ′) = 2 ·max(X).

The fact that the nodes defined in (5), (6), (7), and (8) compute {1} implies 1 ∈ O∩X ′∩t∩g
and O = X ′ ∪ t ∪ g. Moreover, it follows from Lemma 7 that g = {1, 3m} for some m ∈ N+.
Thus, as 1 ∈ t,

O ⊆ {1} ∪
(
{2} · (X − s)

)
∪ t ∪ g =

(
{2} · (X − s)

)
∪ t ∪ {3m}. (9)

As O is balanced, max(O) is odd by Lemma 1. Since X ⊇ t and max(X ′) = 2 ·max(X) is
even, max(O) = 3m > max(X ′). Due to (C,Q, s, t) ∈ C, under the given assignment |s| ≥ |t|
and s and t do not contain any numbers with prime divisors ≤ 3. Due to that, since we have
seen 1 ∈ s ∩ t, and as by assumption (C,Q, s, t) /∈ CC, it even holds |s| > |t|.

Putting things together, as we have proven (9), |s| > |t|, 1 ∈ t, s ⊆ X, max(X ′) =
2 · max(X), and max(O) > max(X ′), we now obtain |O| ≤ max(X) − |s| + |t| + 1 <

max(X) + 1 = max(X′)+2
2 ≤ max(O)+1

2 , which contradicts the fact that O is balanced. J

This completes the proof of (CC,CC ∩ C) ≤m (BC′(−, ·),BC′(−, ·)) and thus BC′(−, ·) and
BC(−, ·) are ≤m-complete for RE. J

4 Smaller Sets of Operations Lead to Problems in NP

In this section it is shown that all problems BC(O) for O ({−, ·} are in NP. Each of these
problems is proven to be ≤log

m -complete for one of the classes L, NL, and NP.

4.1 The Complexity of the Problem Solely Admitting Multiplication
This section’s purpose is to argue for the NL-completeness of BC(·). Special cases of strong
results from the literature [7, 8, 13] essentially yield the following theorem.

I Theorem 12. There exists µ ∈ N such that for all non-empty sets A,B ∈ Pfin(N) with
max(A) ≥ µ and max(B) ≥ µ the set A ·B is subbalanced.

T. Dose 5:11

I Theorem 13. BC(·) is ≤log
m -complete for NL.

Proof. In the following we present an NL-algorithm for BC(·). We make use of the fact that
the graph accessibility problem for directed graphs and the modifications of this problem

GAP≥k = {(G, s, t) | G is an directed graph, there exist k paths from s to t}

and consequently

GAP=k = {(G, s, t) | G is an directed graph, the number of paths from s to t is k}

for k ∈ N+ are in NL. We may assume the following for the input circuit C:
1. All gates in C are connected to the output gate gC . Otherwise, delete all edges not

connected to the output, which can be done by an NL-subroutine.
2. No assigned input computes the empty set or the set {0}. Otherwise, under the assumption

of 1 we may reject immediately.
3. There is an assigned input gate a computing a set with maximum ≥ 2. Otherwise: under

the assumption of 1 and 2,
we may accept if there is an unassigned input or no assigned input computes {0, 1}
we may reject if there does not exist an unassigned input and there is an assigned
input computing {0, 1}.

4. No assigned input gate but possibly a computes a set containing 0. Otherwise, under the
assumptions 1 and 3 we may delete 0 from all assigned inputs and insert 0 into a.

5. There is an assigned input node g1 computing {1}.
6. For each set M ⊆ Pfin(N) there is at most one assigned input computing M . Otherwise,

select one of the nodes computing M , let all outgoing edges of nodes computing M start
in this node, and delete all other nodes computing M and their incident edges.

Assume there is an NL-algorithm P that accepts the set of those circuits C which satisfy
the mentioned properties and whose unassigned inputs can be assigned with sets of positive
naturals such that the output set is balanced. Then the following NL-algorithm accepts
BC(·) (on input of a circuit C satisfying the properties listed above).

If P accepts on C, accept.
If there is an unassigned input, then add 0 into the set computed by the aforementioned
node a and accept if P accepts the modified circuit.
Reject.

Now we sketch P and argue that it is an NL-algorithm. Let µ ≥ 2 be the number mentioned in
Theorem 12, i.e., for A,B ∈ Pfin(N) with max(A) ≥ µ ≤ max(B) the set A ·B is subbalanced.
The algorithm will query the following constant-size problem

Θ = {(B, k1, k2) |B ⊆ {(h, ih) | h ⊆ {0, 1, . . . , µ}, 1 ≤ ih ≤ 2}, |B| ≤ µ, k1 ≤ µ, k2 ≤ µ,

∃E1,...,Ek1 ,F1,...,Fk2∈Pfin(N+)
∏

(h,ih)∈B

hih ·
k1∏

i=1
Ei ·

k2∏
i=1

F 2
i is balanced}.

1. If there are two assigned input gates each containing an element ≥ µ, reject.
If there is an assigned input gate with two paths to gC containing an element ≥ µ, reject.

2. If there are at least µ assigned input gates computing a set with maximum ≥ 2, reject.
3. In case there is an assigned input gate computing a set with maximum ≥ 2 with at least

three paths to the output, reject.
4. Let v1, . . . , vn be the nodes of the circuit in topological order. For i = 1, . . . , n, if one of

the conditions

MFCS 2018

5:12 Balance Problems for Integer Circuits

vi is an unassigned input with at least three paths to gC .
vi is an unassigned input with precisely one path to gC , such that there are at least µ
unassigned inputs < vi with precisely one path to gC .
vi is an unassigned input with precisely two paths to gC , such that there are at least
µ unassigned inputs < vi with precisely two paths to gC .
g1 is the only input with a path to vi.

is satisfied, then delete vi and let all outgoing edges of vi start in g1.
This step can be implemented as a non-deterministic logarithmic-space subroutine.

5. Let n1 (resp., n2) be the number of unassigned inputs with 1 path (resp., 2 paths) to
gC . Due to Step 4 we have max(n1, n2) ≤ µ. Moreover, let A be a set consisting of all
pairs (h, ih) where h is a set computed by an assigned input with 1 < max(h) ≤ µ and
ih ∈ {1, 2} is the number of paths from h to gC . Due to Step 2 it holds |A| ≤ µ. We have
the following cases.
a. In case there is no assigned input gate with an element ≥ µ:

If (A,n1, n2) ∈ Θ, then accept. Otherwise reject.
Computing the triple (A,n1, n2) is possible in non-deterministic logarithmic space
whereas the subsequent test only requires constant time.

b. In case there is one assigned input gate g with an element ≥ µ:
Due to Step 1 the node g only has one path to the output.
i. For all E1, . . . , En1 , F1, . . . , Fn2 ∈ P({1, . . . , µ}) do the following

Compute the constant-size set

M =
n1∏

i=1
Ei ·

n2∏
i=1

F 2
i ·

∏
(h,ih)∈A,h 6=g

hih .

Test whether g ∈ BalM and accept in case the answer is “yes”.
ii. Reject.
By Proposition 2 this step can be executed in logarithmic space.

In the following we observe that each step of the algorithm P accepts (resp., rejects) if
and only if the circuit at the beginning of the execution of the respective step has a (resp.,
no) balancing assignment with values from Pfin(N+). It suffices to argue for the following
steps.
1. If the algorithm rejects in this step, then there are sets A and B with max(A) ≥ µ ≤

max(B) and a set M such that gC = A · B ·M . Then according to Theorem 12 it
holds |(A ∪ {0}) · B| ≤ max(A) · max(B)/2. Hence for each set M ∈ Pfin(N) the set
M ·A·B ⊆ (A∪{0})·B ·(M−{0}) contains at most max(A)·max(B)·max(M)/2 elements
and its greatest element is max(A) ·max(B) ·max(M). Thus, the set is subbalanced.

2. If there are ≥ µ sets with maximum greater 2 connected to the output, then we can
interpret these sets as two sets with maxima ≥ µ and argue in the same way as in the
step before.

3. If the algorithm rejects in this step, then there are sets A and M with max(A) ≥ 2 and
gC = A ·A ·A ·M . If max(A) = 2, then Lemma 1 states that the output set is not balanced.
Otherwise, max(A) ≥ 3 and according to Statement 2 of Lemma 6 the set A · A · A
contains less than max(A)3/2 elements. Hence gC contains less than max(A)3 ·max(M)/2
elements and the maximum of this set is max(A)3 ·max(M). Thus gC is subbalanced.

5. At the beginning of the execution of this step we have the following situation: Due to the
steps 1, 2, and 3 and because of the assumption we made on the input circuit there

T. Dose 5:13

is at most one assigned input containing an element > µ and this has at most one
path to the output gate.
are at most µ assigned inputs with maximum ≥ 2 and all these inputs have at most
two paths to the output gate.
is one assigned input with maximum < 2, namely g1 = {1}.

Moreover, as observed above, because of Step 4 it holds max(n1, n2) ≤ µ and there are
no unassigned inputs with more than 2 paths to the output.
Thus we have to consider two cases. Either there is no assigned input with maximum
> µ or there is one. In the first case the circuit has a balancing assignment with values
from Pfin(N+) if and only if there are n1 + n2 sets E1, . . . , En1 , F1, . . . , Fn2 ∈ Pfin(N+)
such that

∏
(h,ih)∈B h

ih ·
∏k1

i=1Ei ·
∏k2

i=1 F
2
i is balanced. This is what the algorithm tests.

In the second case, assigning one of the unassigned inputs with a set with maximum
> µ would lead to a subbalanced output with the same argument as was used for
Step 1. Thus, only assignments with values from P({1, . . . , µ}) have to be consid-
ered. Hence, there is a balancing assignment with values from Pfin(N+) if and only
if there are sets E1, . . . , En1 , F1, . . . , Fn2 ∈ P({1, . . . , µ}) such that

∏n1
i=1Ei ·

∏n2
i=1 F

2
i ·(∏

(h,ih)∈A,h 6=g h
ih
)
· g is balanced. This is what the algorithm tests.

It remains to observe that the circuit has a balancing assignment with values from
Pfin(N+) before the execution of Step 4 if and only if it has afterwards:
In case there are more than µ unassigned inputs with one path (resp., two paths) to the
output and more than µ of them are mapped to sets containing elements ≥ 2, then the same
arguments as for Step 2 yield that the output is subbalanced. Therefore, all but µ of these
nodes can be replaced with g1.
Let g be an unassigned input with at least three paths to the output (if such a node exists).
Assigning this node with a set with maximum ≥ 2 leads to a subbalanced output set with
the same arguments as were used for Step 3. Therefore, g can be replaced with g1.
For each node vi there exists an input that has a path to vi. Hence, if no input different
from g1 has a path to vi, then vi computes {1} and can be replaced with g1.

By a straightforward reduction from a problem investigated by McKenzie and Wagner
[15] one receives the NL-hardness of BC(·). J

4.2 The Complexity of the Problems Not Admitting Multiplication
We consider the two remaining problems and prove that BC(−) is ≤log

m -complete for NP and
BC(∅) is in L. The NP-hardness of BC(−) can be obtained by a straightforward reduction
from CSAT. Hence, for the following theorem it suffices to argue for the membership in NP.

I Theorem 14. BC(−) is ≤log
m -complete for NP.

Proof. We sketch an NP-algorithm that accepts BC(−).
1. Input: a circuit C with output node gC and labeling function α.
2. Go from gC upwards always taking the left predecessor. Denote the input gate finally

reached by g.
3. If g is assigned, then: guess an assignment with values from P(α(g)) and accept if the

output set is balanced for this assignment, otherwise reject.
4. Here g is unassigned. Let M be the union of all sets computed by assigned inputs. Let

m = max(M) + 1. Guess an assignment such that I(g) = {m} and each unassigned input
either computes {m} or ∅. If under this assignment gC contains m, then accept.

MFCS 2018

5:14 Balance Problems for Integer Circuits

5. Guess an assignment of the unassigned inputs such that each of them computes a subset
of M . In case gC is balanced, accept. Otherwise reject.

If the algorithm accepts, then C ∈ BC(−): It suffices to consider the 4-th step. If the
algorithm accepts in this step, then there is an assignment that maps each unassigned
input either to {m} or to ∅ such that m is in the output set. Now change this assignment
such that the sets mapped to {m} are now mapped to {m+ 1,m+ 2, . . . , 2m+ 1}. Then
I(C) = {m+ 1,m+ 2, . . . , 2m+ 1} is balanced and C ∈ BC(−). Trivially, in case C is
accepted in the 5-th step, C ∈ BC(−).

If the algorithm rejects, then C /∈ BC(−): If the algorithm rejects, then this happens in
step 3 or step 5. We argue for the first case. Here g is an assigned input gate. As the
output set is a subset of α(g), it holds gc ⊆ α(g) for any assignment and hence it suffices to
consider assignments that map all unassigned inputs to subsets of α(g). As the algorithm
rejects, gC is not balanced under any of these assignments and thus C /∈ BC(−).
It remains to argue for the case where the algorithm rejects in step 5. In this case, g is an
unassigned input and as step 4 did not accept, there is no assignment putting elements
outside of M into the circuit’s output set. Hence, it is sufficient to consider assignments
that solely map to subsets of M . As the algorithm rejects, none of these assignments
yields a balanced output set and hence there is no assignment at all under which the
output set is balanced. Therefore, C /∈ BC(−). J

The following theorem basically follows from Proposition 2.

I Theorem 15. BC(∅) ∈ L.

5 Conclusion and Open Questions

The following table summarizes our results, namely the lower and upper complexity bounds
for the complexity of BC(O) with O ⊆ {−, ·}.

BC(O) for O = ≤log
m -hard for contained in

∅ L L, Theorem 15
{−} NP, Theorem 14 NP, Theorem 14
{·} NL, Theorem 13 NL, Theorem 13
{·,−} undecidable, Theorem 4

To our knowledge, in contrast to all results from previous papers on complexty issues
concerning decision problems for integer circuits (e.g., [15, 19, 2, 9, 11, 1]) or related constraint
satisfaction problems ([10, 5]), a problem admitting only one arithmetic operation is shown
to be undecidable. Beginning with this problem, namely BC(−, ·), the problems BC(O) for
O ⊆ {−, ·} are systematically investigated and for each of these problems the complexity is
precisely characterized. It turns out that decreasing the size of the set of allowed operations
yields problems that are in NP. In particular, all these problems are ≤log

m -complete for one
of the classes L, NL, and NP.

Hence, in some sense the questions of this paper are completely answered. Nevertheless,
there arise new questions from our results: Is there a set O ⊆ {−,∪,∩} such that BC(O∪{+})
is undecidable? And if so, for which of the sets this is the case and for which it is not?

T. Dose 5:15

References

1 D. Barth, M. Beck, T. Dose, C. Glaßer, L. Michler, and M. Technau. Emptiness problems
for integer circuits. In 42nd International Symposium on Mathematical Foundations of
Computer Science, MFCS 2017, August 21-25, 2017 - Aalborg, Denmark, pages 33:1–33:14,
2017. doi:10.4230/LIPIcs.MFCS.2017.33.

2 H.-G. Breunig. The complexity of membership problems for circuits over sets of positive
numbers. In Fundamentals of Computation Theory, 16th International Symposium, FCT
2007, Budapest, Hungary, August 27-30, 2007, Proceedings, pages 125–136, 2007. doi:
10.1007/978-3-540-74240-1_12.

3 S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio,
USA, pages 151–158, 1971. doi:10.1145/800157.805047.

4 M. Davis, H. Putnam, and J. Robinson. The decision problem for exponential Diophantine
equations. Annals of Mathematics, 74(2):425–436, 1961.

5 T. Dose. Complexity of constraint satisfaction problems over finite subsets of natural
numbers. In 41st International Symposium on Mathematical Foundations of Computer
Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages 32:1–32:13, 2016. doi:
10.4230/LIPIcs.MFCS.2016.32.

6 T. Dose. Balance problems for integer circuits. Technical Report 18-055, Electronic Collo-
quium on Computational Complexity (ECCC), 2018. URL: https://eccc.weizmann.ac.
il/report/2018/055.

7 K. Ford. integers with a divisor in (y, 2y]. In Anatomy of integers, volume 46 of CRM Proc.
and Lect. Notes, pages 65–81. Amer. Math. Soc., Providence, RI, 2008.

8 K. Ford. the distribution of integers with a divisor in a given interval. Annals of Math. (2),
168:367–433, 2008.

9 C. Glaßer, K. Herr, C. Reitwießner, S. D. Travers, and M. Waldherr. Equivalence problems
for circuits over sets of natural numbers. Theory Comput. Syst., 46(1):80–103, 2010. doi:
10.1007/s00224-008-9144-8.

10 C. Glaßer, P. Jonsson, and B. Martin. Circuit satisfiability and constraint satisfaction
around skolem arithmetic. Theor. Comput. Sci., 703:18–36, 2017. doi:10.1016/j.tcs.
2017.08.025.

11 C. Glaßer, C. Reitwießner, S. D. Travers, and M. Waldherr. Satisfiability of algebraic
circuits over sets of natural numbers. Discrete Applied Mathematics, 158(13):1394–1403,
2010. doi:10.1016/j.dam.2010.04.001.

12 Thomas Gundermann, Nasser Ali Nasser, and Gerd Wechsung. A survey on counting
classes. In Proceedings: Fifth Annual Structure in Complexity Theory Conference, Uni-
versitat Politècnica de Catalunya, Barcelona, Spain, July 8-11, 1990, pages 140–153, 1990.
doi:10.1109/SCT.1990.113963.

13 D. Koukoulopoulos. On the number of integers in a generalized multiplication table.
Journal für die reine und angewandte Mathematik, 689:33–99, 2014. doi:10.1515/
crelle-2012-0064.

14 Y. V. Matiyasevich. Enumerable sets are Diophantine. Doklady Akad. Nauk SSSR, 191:279–
282, 1970. Translation in Soviet Math. Doklady, 11:354–357, 1970.

15 P. McKenzie and K. W. Wagner. The complexity of membership problems for circuits over
sets of natural numbers. Computational Complexity, 16(3):211–244, 2007. doi:10.1007/
s00037-007-0229-6.

16 C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts,
1994.

MFCS 2018

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.33
http://dx.doi.org/10.1007/978-3-540-74240-1_12
http://dx.doi.org/10.1007/978-3-540-74240-1_12
http://dx.doi.org/10.1145/800157.805047
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.32
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.32
https://eccc.weizmann.ac.il/report/2018/055
https://eccc.weizmann.ac.il/report/2018/055
http://dx.doi.org/10.1007/s00224-008-9144-8
http://dx.doi.org/10.1007/s00224-008-9144-8
http://dx.doi.org/10.1016/j.tcs.2017.08.025
http://dx.doi.org/10.1016/j.tcs.2017.08.025
http://dx.doi.org/10.1016/j.dam.2010.04.001
http://dx.doi.org/10.1109/SCT.1990.113963
http://dx.doi.org/10.1515/crelle-2012-0064
http://dx.doi.org/10.1515/crelle-2012-0064
http://dx.doi.org/10.1007/s00037-007-0229-6
http://dx.doi.org/10.1007/s00037-007-0229-6

5:16 Balance Problems for Integer Circuits

17 I. Pratt-Hartmann and I. Düntsch. Functions definable by arithmetic circuits. In Math-
ematical Theory and Computational Practice, 5th Conference on Computability in Eu-
rope, CiE 2009, Heidelberg, Germany, July 19-24, 2009. Proceedings, pages 409–418, 2009.
doi:10.1007/978-3-642-03073-4_42.

18 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time: Preliminary
report. In Proceedings of the 5th Annual ACM Symposium on Theory of Computing, April
30 - May 2, 1973, Austin, Texas, USA, pages 1–9, 1973. doi:10.1145/800125.804029.

19 S. D. Travers. The complexity of membership problems for circuits over sets of integers.
Theor. Comput. Sci., 369(1-3):211–229, 2006. doi:10.1016/j.tcs.2006.08.017.

20 K. W. Wagner. The complexity of problems concerning graphs with regularities (extended
abstract). In Mathematical Foundations of Computer Science 1984, Praha, Czechoslovakia,
September 3-7, 1984, Proceedings, pages 544–552, 1984. doi:10.1007/BFb0030338.

21 K. Yang. Integer circuit evaluation is pspace-complete. J. Comput. Syst. Sci., 63(2):288–
303, 2001. doi:10.1006/jcss.2001.1768.

http://dx.doi.org/10.1007/978-3-642-03073-4_42
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1016/j.tcs.2006.08.017
http://dx.doi.org/10.1007/BFb0030338
http://dx.doi.org/10.1006/jcss.2001.1768

On Hadamard Series and Rotating Q-Automata
Louis-Marie Dando
LaBRI UMR 5800, Université de Bordeaux, INP Bordeaux, CNRS
Bordeaux, FRANCE
louis-marie.dando@labri.fr

Sylvain Lombardy
LaBRI UMR 5800, Université de Bordeaux, INP Bordeaux, CNRS
Bordeaux, FRANCE
sylvain.lombardy@labri.fr

Abstract
In this paper, we study rotating Q-automata, which are (memoryless) automata with weights
in Q, that can read the input tape from left to right several times. We show that the series realized
by valid rotating Q-automata are Q-Hadamard series (which are the closure of Q-rational series
by pointwise inverse), and that every Q-Hadamard series can be realized by such an automaton.
We prove that, although validity of rotating Q-automata is undecidable, the equivalence problem
is decidable on rotating Q-automata. Finally, we prove that every valid two-way Q-automaton
admits an equivalent rotating Q-automaton. The conversion, which is effective, implies the
decidability of equivalence of two-way Q-automata.

2012 ACM Subject Classification Theory of computation → Formal languages and automata
theory, Theory of computation → Quantitative automata, Theory of computation → Algebraic
language theory

Keywords and phrases Rational series, Hadamard operations, Rotating automata, Two-way
automata

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.6

1 Introduction

Rotating automata are a natural model of automata. They were first considered as a
restriction of two-way automata [8, 11]. In this model, the automaton reads the input from
the left to the right, but when the right end of the input is reached, either the automaton
stops, or the tape is rewinded back to the left end of the input. In the Boolean case, rotating
automata are as expressive as NFA, but they have been studied since their size can be much
smaller [8]. In particular they can compute the intersection of two regular languages with a
linear number of states.

In the framework of weighted automata or transducers, rotating automata are more
expressive than one-way automata or transducers [9]. In particular, in rationally additive
semirings [5], they realize Hadamard series, which are the closure of rational series by
Hadamard product and Hadamard inverse. This is a sound class of series, and in this
framework, algorithms have been defined to convert rotating automata to expressions
describing Hadamard series and to synthesize rotating automata from such expressions [4].

Hadamard series over a field have been studied for a long time [12] and it is not surprising
that rotating automata can realize them. Nevertheless, fields are not rationally additive
semirings, and the potentially infinite number of runs for some input must be handled in a
more subtle way to translate rotating automata to Hadamard series. In this paper we prove
that the set of Hadamard series over Q is exactly the behaviour of rotating Q -automata.

© Louis-Marie Dando and Sylvain Lombardy;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 6; pp. 6:1–6:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:louis-marie.dando@labri.fr
mailto:sylvain.lombardy@labri.fr
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 On Rotating Q-Automata

We also prove that two-way Q-automata realize the same class of series. This is an
extension of the work of Anselmo and Bertoni on probabilistic two-way automata [1]. In
contrast, sweeping transducers with unary outputs are equivalent to rotating transducers
and they are weaker than two-way transducers [7]. Notice that the algebraic characterization
of series realized by weighted two-way automata is in general not achieved.

In Section 2, we briefly recall the definition of rational series and weighted automata.
In Section 3, we define Hadamard series, which form a strictly larger class than rational
series, and study different ways to describe them as well as the conversions between these
descriptions. Finally we show that it is undecidable whether the description of a Hadamard
series, called a Hadamard expression, is well defined, but in the case where two expressions
actually define a Hadamard series, their equivalence is decidable.

In Section 4, we introduce rotating Q -automata and we prove that they actually realize
Q -Hadamard series and that, conversely, a rotating Q -automaton can be synthesized from
any expression denoting a Hadamard series. In particular, rotating Q -automata are strictly
more expressive than one-way Q -automata.

Finally, in Section 5 we formally define two-way Q-automata and we show that they
can be simulated by rotating Q-automata. As a consequence, the equivalence of two-way
Q -automata is decidable.

2 Rational series and weighted automata

For every alphabet A, we denote A∗ the free monoid generated by A. The set of formal
power series over A∗ with coefficients in Q is denoted Q〈〈A∗〉〉. A series s in Q〈〈A∗〉〉 is a
mapping from A∗ into Q; the coefficient of a word w in s is denoted 〈s, w〉, the coefficient of
the empty word is the constant term of the series, and s itself is denoted as a formal sum:

s =
∑
w∈A∗

〈s, w〉w. (1)

The sum s+ t of two series is the pointwise sum. The Cauchy product is the extension of the
usual polynomial product to series; the series 1 (where all the coefficients are 0 except the
constant term equal to 1) is neutral for this product. The Cauchy product is associative and
distributes over the sum. Hence (Q〈〈A∗〉〉,+, ·) is a semiring.

In a semiring, the star of an element is defined as the sum of the powers of the element,
if it exists. Hence, in (Q〈〈A∗〉〉,+, ·), the star of s is defined if the constant term belongs to
] − 1; 1[; it is called the Kleene star of s and is denoted s∗. In contrast to the case of the
Boolean semiring, the Kleene star is not idempotent in Q, neither in series with coefficients
in Q.

The support of a series s is the set of words w such that 〈s, w〉 6= 0. A series with a finite
support is a polynomial; if every word of A∗ belongs to the support, we say that the series
has a full support.

I Definition 1. The set QRatA∗ of rational series is the closure of polynomials in Q〈〈A∗〉〉
under sum, Cauchy product and Kleene star.

Likewise, the set of Q+-rational series is the closure of polynomials with positive coefficients
under sum, Cauchy product and Kleene star.

The behaviour of an automaton is the language or series that describes the result of the
automaton on every input. For instance, the behaviour of an NFA is the language of accepted
words. The behaviour of a Q -automaton is the series which maps every word to the weight
of this word in the automaton.

L.-M. Dando and S. Lombardy 6:3

I Definition 2. A Q -automaton over an alphabet A is a tuple A = (Q,E, I, T), where
Q is a finite set of states;
I and T are, respectively, the initial and the final weight functions from Q into Q;
E is the transition weight function from Q×A×Q into Q.

The set of initial (resp. final) states is the support of I (resp. T), i.e. the states p such
that I(p) 6= 0 (resp. T (p) 6= 0). The set of transitions is the support of E.

As usual, a run with label w = w1w2 . . . wk in A∗ is a sequence of states (pi)i∈J0;kK such
that p0 is an initial state, pk is a final state, and for every i in J1; kK, (pi−1, wi, pi) is a
transition. The weight of the run is equal to I(p0).

∏k
i=1E(pi−1, xi, pi).T (pk). The weight

A(w) of a word w in A is the sum of all runs with label w. The behaviour of A is the series∑
w∈A∗ A(w)w. We say that A realizes the series s if s is the behaviour of A. Like regular

languages are the behaviour of NFA, by the Kleene-Schützenberger Theorem [15], Q -rational
series are the behaviour of one-way Q -automata.

In the sequel, it will be useful to consider automata with particular properties.

I Lemma 3. Every Q-automaton is equivalent to an automaton with a single initial state
with initial weight 1 and such that the weight of every transition is positive.

Proof. Let A = (Q,E, I, T) be a Q-automaton. We first show that A is equivalent to an
automaton with a single initial state with initial weight 1. An initial state i is added; for
every state q and every letter a, we extend E with E(i, a, q) =

∑
p I(p).E(p, a, q), and T with

T (i) =
∑
p I(p).T (p). The automaton A′ = (Q ∪ {i}, E, χi, T), where χi is the characteristic

function of i, is then equivalent to A.
We assume now that A = (Q,E, χi, T) has a single initial state with initial weight 1. We
define B = (Q×{−1, 1}, E′, χ(i,1), T

′) such that, for every p, q in Q, every letter a, and every
i, j in {−1, 1},

E′((p, i), a, (q, j)) =
{
i.j.E(p, a, q) if i.j.E(p, a, q) > 0,
0 otherwise;

T ′(p, i) = iT (p). (2)

There is a natural bijection between runs of A and runs of B such that corresponding runs
have the same weights, hence B is equivalent to A. J

3 Hadamard series

3.1 Hadamard operations
We consider now the Hadamard product of two series: if s and t are two series in Q〈〈A∗〉〉,
then for every word w in A∗, 〈s � t, w〉 = 〈s, w〉.〈t, w〉. This product is also called the
pointwise product. The neutral for this product is the series where the coefficient of every
word is 1; this series is the characteristic series of A∗ and is denoted itself A∗. Like in any
commutative semiring, the Hadamard product preserves the rationality of series.

I Proposition 4 ([16]). The Hadamard product of two Q-rational series is a Q-rational
series.

This result is constructive (cf. for instance [13]): if two rational series are realized by two
Q-automata, their Hadamard product is realized by the direct product of the Q-automata.
As usual, the Hadamard power of a series can be defined from the Hadamard product. The
0-th Hadamard power of every series is the neutral for the Hadamard product, that is A∗. If

MFCS 2018

6:4 On Rotating Q-Automata

s is a series with each coefficient in]− 1; 1[, then the sum of the Hadamard powers of s is
defined; it is called the Hadamard iteration of s and denoted s~.

Likewise, if the support of s is full, the Hadamard inverse of s is defined, and for every
series t, the Hadamard quotient of t by s is defined as

∀w ∈ A∗, 〈
t

�

s
, w〉 = 〈t, w〉

〈s, w〉
. (3)

With this notation, the Hadamard inverse of s is
A∗

�

s
.

I Definition 5. The set QHadA∗ of Hadamard series over Q is the set of series which are
equal to the Hadamard quotient of two rational series.

The set of Hadamard series is closed under sum and Hadamard product:

t
�

s
�

t′
�

s′
=

t� t′
�

s� s′
,

t
�

s
+

t′
�

s′
=

t� s′ + t′ � s
�

s� s′
. (4)

If x is a rational number in] − 1; 1[, the sum of powers of x is a rational number
x∗ = (1−x)−1. Since the Hadamard product is a pointwise operation, this extends to formal
power series: if every coefficient of a series s is in]− 1; 1[, then

s~ =
A∗

�

A∗ − s
. (5)

Therefore, series generated from rational series using sum, Hadamard product, and Hadamard
iteration are Hadamard series.
Conversely, the Hadamard inverse can also be computed from the Hadamard iteration. To
this end, for every rational number λ, we define Geom(λ) as the series over A∗ such that, for
every word w, 〈Geom(λ), w〉 = λ|w|+1.

I Lemma 6. Let t be a Q-rational series such that, for every word w, 〈t, w〉 > 0.1 There
exists a positive rational number λ such that t′ = A∗ − t� Geom(λ) is a Q+-rational series
where every coefficient is in [0; 1[.

Proof. By Lemma 3, there exists a Q-automaton A = (Q,E, I, T) that realizes t, with a
single initial state i with weight 1 and positive transitions.

Let M = max(maxp,a
∑
q E(p, a, q),maxp T (p)) and λ = 1/M . We define B = (Q ∪

{⊥}, E′, I, T ′), where ⊥ is a fresh state and, for every p, q in Q ∪ {⊥} and every letter a,

E′(p, a, q) =

E(p, a, q).λ if p, q ∈ Q,
1−

∑
r∈Q

E(p, a, r).λ if p ∈ Q and q = ⊥,

1 if p = q = ⊥,
0 otherwise.

(6)

Depending on T ′, the automaton B may realize different series:

1 In particular, t has full support.

L.-M. Dando and S. Lombardy 6:5

(a) T ′(p) = T (p).λ for every p in Q and T ′(⊥) = 0; then there is a natural bijection between
runs of B and runs of A; the weight of each run with label w in B is equal to the weight
of the corresponding run in A multiplied by λ|w|+1. Hence 〈B, w〉 = 〈t, w〉.λ|w|+1.

(b) T ′(p) = 1 for every p in Q∪ {⊥}; for every letter a and every state p, the sum of weights
of outgoing transitions from p with label a is equal to 1. As there is only one initial state
with weight 1, the weight of every word in B is 1.

(c) T ′(p) = 1− T (p).λ for every p in Q and T ′(⊥) = 1. In this case, the behaviour is the
difference between the two previous behaviours and 〈B, w〉 = 1− 〈t, w〉.λ|w|+1, which is
in [0; 1[.

In the last case, every weight in B is positive; hence B is a Q+-automaton which realizes a
Q+-rational series. J

I Proposition 7. For every Q-rational series s with full support, there exists a positive
rational number λ such that the Hadamard iteration of A∗ − s� s� Geom(λ) is defined and

A∗
�

s
= (A∗ − s� s� Geom(λ))~ � s� Geom(λ). (7)

Proof. If s is a Q-rational series with full support, t = s� s is also rational with positive
coefficients. Hence, by Lemma 6, there exists λ such that 1− 〈s, w〉2.λ|w|+1 is in [0; 1[for
every word w, and

(A∗ − t� Geom(λ))~ � s� Geom(λ) =
A∗

�

t� Geom(λ)
� s� Geom(λ) =

A∗
�

s
. (8)

J

Finally, our definition of Hadamard series is consistent with the definition of [4]:

I Corollary 8. QHadA∗ is the closure of QRatA∗ under Hadamard product, sum, and
Hadamard iteration.

I Proposition 9. There exist Q-Hadamard series which are not rational.

Proof. Let t be the series such that, for every k in N, 〈t, ak〉 = k + 1. It is a rational
series: t = a∗.a∗. Let s be the Hadamard inverse of t: for every k in N, 〈s, ak〉 = 1

k+1 . The
coefficients of a rational series over one variable satisfy a linear recurrence relation (cf. for
instance [2]). Therefore s is not rational. J

I Proposition 10. The set QHadA∗ is not closed under Cauchy product.

Proof. Let s be the series defined in the proof of Proposition 9. We consider the Cauchy
product of s with itself; for large integers k, it holds:

〈s.s, ak〉 = 2
k + 2

k∑
i=0

1
i+ 1 ∼

2 ln k
k

. (9)

If s.s is a Hadamard series, it is the Hadamard quotient of two rational series x and y. If x
(resp. y) is rational, its coefficients satisfy a linear recurrence relation. The ratio of 〈x, ak〉
and 〈y, ak〉 can not be equivalent to 2 ln k

k . J

I Remark. By Lemma 6, if a series is the Hadamard quotient of two Q+-rational series, it is
also in the closure of Q+RatA∗ under sum, Hadamard product and Hadamard iteration.

Nevertheless, it is unknown whether a series in this closure is always the Hadamard
quotient of two Q+-rational series.

MFCS 2018

6:6 On Rotating Q-Automata

3.2 Validity and equivalence
Rational series over Q are represented by rational expressions. It is well known that such
an expression may be non valid if the star operator is applied to a subexpression whose
interpretation is a series s on which the star is not defined. Nevertheless, the star can be
applied if and only if the constant term of s is in] − 1; 1[; this condition is decidable on
rational expressions; thus it is decidable whether a rational expression is valid.

There are two ways to describe Q-Hadamard series. First, a Q-Hadamard series is a
quotient of s by t where s and t are two Q-rational series; hence, it can be described as a pair
of rational expressions. Such a representation is valid if and only if both rational expressions
are valid and t has full support.

It is undecidable whether a Q-rational series has full support (cf. [2, 13]). Notice that it
is decidable whether a Q+-rational series has full support.

I Proposition 11. It is undecidable whether the representation of a Q-Hadamard series as a
pair of Q-rational series is valid.
If the denominator series is Q+-rational, the validity of the representation is decidable.

Another description of Q-Hadamard series consists in the application of pointwise opera-
tors (sum, Hadamard product, Hadamard iteration) to Q-rational expressions. This leads
to Q-Hadamard expressions as defined in [4]. The validity of Q-Hadamard expressions is
undecidable, as well as the validity of Q+-Hadamard expressions.

I Proposition 12. It is undecidable whether a Q+-Hadamard expression is valid.

Proof. It is undecidable whether a probabilistic automaton with weights in {0; 1
2 ; 1} accepts

some word with a probability larger than or equal to 1
2 [10]. Let s be the Q+-rational series

which is the behaviour of this automaton. It is undecidable whether (2s)~ is defined. J

Assume now that h1 = (s1, t1) and h2 = (s2, t2) are two valid representations of Q-
Hadamard series as pairs of Q-rational series. Then h1 and h2 represent the same series if
and only if s1� t2 = s2� t1. The Hadamard product of two Q-rational series is a computable
Q-rational series (Prop. 4), and the equivalence of Q-rational series is decidable (cf. [2, 13]).

If Q-Hadamard series are described by Q-Hadamard expressions, these descriptions can
be converted into pairs of Q-rational series. Actually, using Equations (4) and (5), every
Q-Hadamard expression can be turned into a pair of expressions which are combinations of
Q-rational expressions connected with sum and Hadamard product operators. Each of these
expressions denotes a Q-rational series.

I Theorem 13. The equivalence of valid descriptions of Q-Hadamard series is decidable.

3.3 Extension to real and complex numbers
All results presented in this section apply directly to series over R, up to the calculability of
operations with real numbers.

To apply them on series over C, we need to consider the complex conjugacy. The conjugacy
commutes with rational operations; hence, if s is a C-rational series, its complex conjugacy s
is also a C-rational series. Thus, Proposition 7 can be extended.

I Proposition 14. For every C-rational series s with full support, there exists a positive real
number λ such that the Hadamard iteration of A∗ − s� s� Geom(λ) is defined and

A∗
�

s
= (A∗ − s� s� Geom(λ))~ � s� Geom(λ). (10)

Actually, s� s is a C-rational series whose coefficients are positive real numbers, hence, it is
a R-rational series [6] and Lemma 6 applies.

L.-M. Dando and S. Lombardy 6:7

4 Weighted rotating automata

A rotating Q -automaton is a Q -automaton that can read its input from left to right several
times. To this end, it is endowed with transitions with a special label r, which is not in A.

A run of a rotating Q -automaton is accepting for a word w in A∗ if the label of the run
is in (wr)∗w.

For every word w, if the sum of the weights of the accepting runs for w is defined, the
weight A(w) of w in A is equal to this sum. The automaton is valid if the weight of every
word in A∗ is defined.
I Remark. Every one-way Q -automaton over an alphabet A can be considered as a rotating
Q -automaton without any transition with label r. In this case, every run accepting a word
w has label w, hence, its behaviour as a rotating Q -automaton is the same as its behaviour
as a one-way Q -automaton.

I Proposition 15. The behaviour of a valid rotating Q-automaton is a Q-Hadamard series.

Proof. Q+ ∪ {∞} is a rationally additive semiring: the star of every element is defined.
By [9], every rotating (Q+ ∪ {∞})-automaton realizes a Hadamard series. Thus every valid
rotating Q+-automaton realizes a Q -Hadamard series. If A is a valid rotating Q -automaton,
its behaviour s can be split into s = s+ − s−, where s+ and s− are realized by rotating
Q+-automata. This construction is similar to the one described in the proof of Lemma 3.
Since s+ and s− are Q -Hadamard series, the behaviour of A is a Q -Hadamard series. J

I Remark. In the definition of validity, it is not assumed that the potentially infinite sums of
weights are in Q (they might be in R); it appears that these sums can be computed through
the rational operations (sum, product and star), hence, if they are defined, they belong to Q.
I Remark. Clearly, Proposition 15 extends to R. It also holds for rotating C-automata.
Using a construction similar to the construction in the proof of Lemma 3 (with Q′ =
Q× {−1, 1, i,−i}), one shows that every series s with coefficients in C can be split into four
series with positive real coefficients: s = sre+ − sre− + i.sim+ − i.sim−.

The following proposition is a corollary of Proposition 15 and Theorem 13, since every
rotating Q -automaton can be turned into a Q -Hadamard expression.

I Proposition 16. The equivalence of valid rotating Q-automata is decidable.

We prove now that every Q -Hadamard series can be realized by a rotating Q -automaton.
If two automata A and B respectively realize series s and t, it is straightforward that the
union of A and B realizes the series s+ t. Likewise, s� t is realized by the automaton A�B
based on the union of A and B, where

for every final state p of A and every initial state q of B there is a transition with label r
and weight TA(p)IB(q);
the initial function is restricted to states of A and the final function to states of B.

In order to realize s~, a similar construction could be applied to A by adding transitions with
label r from final states to initial states. This construction may lead to an infinite number
of runs accepting a given word w, and, even if the weight of w is in] − 1; 1[, there is no
guarantee that the sum of all these runs is defined. Therefore, we consider that Q -Hadamard
series are Hadamard quotients of Q -rational series and we prove that such a quotient can be
realized by a rotating Q -automaton.

I Proposition 17. Let s be a Q-rational series with full support. There exists a valid rotating
Q-automaton A such that the behaviour of A is the Hadamard inverse of s.

MFCS 2018

6:8 On Rotating Q-Automata

Proof. By Lemma 6, there exists a positive rational number λ such that t = A∗ − s �
s � Geom(λ) is a series with coefficients in [0; 1[that can be realized by a Q+-automaton
A = (Q,E, I, T). Without loss of generality, we assume that A has a single initial state i
with weight 1. Let B be the rotating Q -automaton built from A by:

adding a transition from each final state p to state i with label r and weight T (p);
adding a new state ⊥, which is initial and final with weight 1, and such that there is a
loop on the state with weight 1 for every label except r.

Every run with label w in B is either a circuit in ⊥ with weight 1, or a concatenation of runs
in A (glued with r-transitions). The weight of every run in A is positive and for every word
w, the sum of the weights of all runs with label w in A is smaller than 1. Hence, the weight
of w in B is defined: it is the star of the weight of w in A. Therefore, B is valid and its

behaviour is (A∗ − s� s� Geom(λ))~ = A∗

�
s�s�Geom(λ)

. It is then easy to build a rotating

automaton that realizes (A∗ − s� s� Geom(λ))~ � s� Geom(λ) = A∗

�
s

. J

I Theorem 18. The set of series which are behaviours of valid rotating Q-automata is the
set of Q-Hadamard series.

Rotating Q-automata and Q-Hadamard expressions are therefore equivalent. Proof of
Proposition 11 applies on rotating Q -automata and their validity is therefore undecidable.

I Proposition 19. The validity of a rotating Q-automaton is undecidable.

A sweeping Q-automaton is an automaton that can read its input from left to right
and right to left, but can only change the direction of the reading head on one of the
endmarkers. Every rotating Q-automaton can be simulated by a sweeping Q-automaton.
Conversely, like in any commutative semiring, sweeping Q-automata can be simulated by
rotating Q-automata.

Hence, the validity of sweeping Q-automata is undecidable, but the equivalence of valid
sweeping Q-automata is decidable.

5 From two-way to rotating automata

In this section, we formally define two-way Q-automata and we show that they can be
simulated by rotating Q -automata. The proof presented here is inspired by the work in [1]
on two-way probabilistic automata. Starting with a two-way Q -automaton, for every word w,
we define a matrix Mw such that the weight of w in the two-way Q -automaton is an entry of
M∗w, the sum of iterated powers of Mw. We show that since M∗w is the inverse of Id−Mw, the
weight of w can be computed as the ratio of an entry of the matrix of cofactors of Id−Mw

by the determinant of Id−Mw. We prove that both the entry of the matrix of cofactors and
the determinant are rational power series (when w spans over A∗), therefore the behaviour of
the two-way Q -automaton is the Hadamard quotient of two rational series, i.e. a Hadamard
series.

5.1 Weighted two-way automata
There are different models of two-way automata. If reading the left and right endmarks is
allowed, they are all equivalent; depending on the model, the computation can start (resp.
stop) at the beginning, the middle or the end of the word, and the move of the reading head
can be performed in each state or during each transition traversal.

L.-M. Dando and S. Lombardy 6:9

p q

1

2
a,← 1

4
a,→

1

3
a,→

2b,←

(a) The automaton A1.

⊢ a b b ⊣

p

q

p

p

1

3
a

2b

1

2
a

(b) A run over the word abb.

Figure 1 A two-way automaton and one run over the word abb.

For convenience in the conversion from two-way Q -automata to rotating Q -automata, we
use in this paper two-way Q -automata where computations start and stop at the left end of
the word.

Formally, if A is an alphabet, a two-way Q -automaton over A is a tuple A = (Q,E, I, T),
where

Q is the finite set of states;
E is the transition function: Q× (A ∪ {`,a} ×Q −→ Q;
I and T are respectively the initial and final functions in Q −→ Q.

A transition is an element t of Q × (A ∪ {`,a} × Q such that E(t) is different from 0.
Likewise a state p is initial if I(p) 6= 0; it is final if T (p) 6= 0.

The value in {−1,+1} on each transition shows the direction of the move of the head of
the automaton on the current letter. If it is equal to +1, the head moves forward and we
can denote it by →, if it is equal to −1, the head moves backward and it can be denoted ←.
There is no transition with backward move and label `; likewise, there is no transition with
forward move and label a.

A path compatible with a word w = w1 . . . wk in A∗ is a sequence of consecutive transitions
ρ = (pi−1, xi,mi, pi)i∈J1;`K such that there exists a function pos : J0; `K −→ J0; k+1K satisfying

for every i > 0, pos(i) = pos(i− 1) +mi;
for every i ∈ J1; `K, if pos(i− 1) = 0, xi =`, and if pos(i− 1) = k + 1, xi =a, otherwise
xi = wpos(i−1).

If furthermore, p0 is initial, pos(0) = 1, p` is final, and pos(`) = 0, then ρ is a run (over w).

The weight of such a run is I(p0).
(∏̀
i=1

E(pi−1, xi,mi, pi)
)
.T (p`).

Notice that with this model, a run over the empty word w can exist; it contains at
least one transition. For instance, if p is an initial state, q a final state and (p,a,←, q) is a
transition, there is a run over the empty word formed with this single transition.

The weight computed by A on a word w in A∗ is the sum (if defined) of the weights of
all runs over w. The automaton A is valid if for every word w, the sum of the weights of
runs over w is defined.

I Example 20. Let A1 be the two-way automaton of Figure 1a. A run of this automaton
over the word abb is described in Figure 1b; it is the path (p, a,→, q)(q, b,←, p)(p, a,←, p):
it starts at position 1 in an initial state, and ends at position 0 in a final state.

We use a classical extension of the model of adjacency matrices for graphs. We suppose
from now that Q = J1;nK where n is a positive integer. For every letter a in A ∪ {`,a} we
define F (a) (resp. B(a)) as the matrix of size n× n such that F (a)p,q = E(p, a,→, q) (resp.
B(a)p,q = E(p, a,←, q)).

MFCS 2018

6:10 On Rotating Q-Automata

These matrices represent paths of length 1. In graphs or one-way automata, paths of
length k are represented by the k-th power of the adjacency matrix. In the case of a two-way
automaton, the position of the head (given by the function pos) must be taken into account,
and since there may exist runs with arbitrary large length for a given input, all the powers
of the suitable matrix must be considered.

To this end, we define the star of a (square) matrix M as the (infinite) sum of its powers,
if it is defined. It satisfies M∗ = Id +M.M∗, where Id is the identity matrix, and it can be
inductively computed (cf [3]):[

A B

C D

]∗
=
[

(A∗BD∗C)∗A∗ A∗(BD∗CA∗)∗BD∗

D∗C(A∗BD∗C)∗A∗ D∗ +D∗CA∗(BD∗CA∗)∗BD∗

]
. (11)

We fix from now w as a word with length k: w = w1 . . . wk. To study paths involved in
the runs over w, we consider block matrices with dimension (k + 2)× (k + 2) where every
entry is itself a n× n matrix. We assume that indices of blocks are integers in J0; k + 1K. If
X is such a matrix, Xi,j is a matrix and (Xi,j)p,q represents some subpaths of runs over w
which start in position i and state p, and end in position j and state q.

We first consider the matrix Mw that represents subpaths of runs over w with length 1:

Mw =

0 F (`) 0 . . . 0

B(w1) 0 F (w1) . . .
...

0 B(w2)
. 0

...
...

. . . 0 F (wk)

0 . . . 0 B(a) 0

. (12)

During the computation, if the automaton reads the letter wi (in position i) and follows a
forward transition, the head moves to position i+ 1. Hence, for every i, the matrix F (wi) is
the block (i, i+ 1) of Mw; likewise the matrix B(wi) is the block (i, i− 1), F (`) is the block
(0, 1), and B(a) is the block (k + 1, k).

We show that (M∗w)i,j represent all the subpaths of runs over w which start in position i
and end in position j.

For r in J0; k + 1K, let C(r) be the (r + 1)× (r + 1) block matrix where C(r)
i,j is a n× n

matrix such that the entry at position (p, q) is the sum of the weights of the paths compatible
with w from position i and state p to position j and state q with no position larger than r.

I Lemma 21. With the notations above, M∗w = C(k+1).

The proof is by induction on k and on the star of the restriction of Mw to the k + 1 first row
blocks and the k + 1 column blocks.

On a two-way automaton, the initial and final functions can respectively be seen as row
and column vectors in Qn. We let Li denote the 1× (k + 1) block matrix where every block
is null, except the i-th block, which is the identity matrix. Proposition 22 follows then from
Lemma 21:

I Proposition 22. The weight of w computed by A is equal to I.L2.M
∗
w.

tL1.T .

L.-M. Dando and S. Lombardy 6:11

If A is valid, the star of Mw is defined for every word w, hence Id −Mw is invertible.
Otherwise, there would exist a non zero vector v such that Mw.v = v; since M∗w is defined,
M∗w.v = (Id + M∗w.Mw).v = v + M∗w.v, and v = 0 which is a contradiction. Therefore, for
every word w,

〈A, w〉 = I.L2.(Id−Mw)−1. tL1.T = 1
det (Id−Mw)

∑
p,q∈Q

Ip.(adj (Id−Mw))n+p,q.Tq, (13)

where adj (X) is the adjugate matrix of X and det (X) is the determinant of X. For every
p, q in Q, let αp,q be the series defined by 〈αp,q, w〉 = (adj (Id−Mw))n+p,q and let δ be the
series defined by 〈δ, w〉 = det (Id−Mw). We show in the next part that all these series are
Q -rational.

5.2 Inductive computation of a determinant of a tridiagonal block
matrix

Inductive computations of determinants of tridiagonal block matrices have already been
studied [14]. We give here a new presentation of this computation in order to show that it
can be realized by a (one-way) Q-automaton.

Let n and k be two positive integers. We consider two families (Ai)i∈J1;kK and (A′i)i∈J0;kK

of matrices in Qn×n.
For every r in J0; kK, we consider the matrix N (r) in Q(r+1)n×(r+2)n defined as:

N (r) =

A′r Idn Ar 0
0 A′r−1 Idn Ar−1

.

A′1 Idn A1
0 A′0 Idn

, (14)

where Idn is the identity matrix with size n.
We introduce now some notations.
For every set X and every positive integer i, PiX denotes the set of subsets of X with i
elements.
If M is a matrix, the determinant of M is denoted |M |.
If X is a set of indices, X is its complementary set, and ΣX is the sum of elements of X.
If X and Y are two subsets of indices of a matrix M , MX×Y is the restriction of M to
rows in X and columns in Y .
For every C in PnJ1; 2nK, we let G(r)(C) denote the square matrix N (r)

J1;(r+1)nK×C
.

For every C,D in PnJ1; 2nK,

K(r)(C,D) =
[
A′r Idn Ar 0
0 A′r−1 Idn Ar−1

]
J1;2nK×(C∩J1;2nK)∪(D+2n)

. (15)

I Lemma 23. For every r ∈ J2; kK, for every C in PnJ1; 2nK,∣∣∣G(r)(C)
∣∣∣ =

∑
D∈PnJ1;2nK

(−1)sig(D+n).
∣∣∣K(r)(C,D)

∣∣∣ . ∣∣∣G(r−2)(D)
∣∣∣ (16)

where sig(D + n) = n(n+ 1)
2 + ΣD.

MFCS 2018

6:12 On Rotating Q-Automata

The proof is an application of the Laplace expansion of the determinant:

∀N ∈ Qd×d, ∀X ⊆ J1; dK, |N | =
∑

Y ∈P|X|J1;dK

(−1)ΣX+ΣY |NX×Y | .
∣∣∣NX×Y ∣∣∣ . (17)

We apply now Lemma 23 to the computation of the determinant of Id −Mw. For every
matrix X, we let �X denote the rotation of X by half-turn; notice that |X| = |�X|. For
every word w = w1 . . . wk, we set A0 = −�B(a), A′k+1 = −�F (`), Ai = −�B(wi), and
A′i = −�F (wi), for every i in J1; kK, then G(k+1)(J1;nK) is equal to �(Id−Mw).

5.3 The transformation automaton
We describe the (one-way) automaton that computes det (Id−Mw), based on the induction
described in Lemma 23. The set of states is {i} ∪ PnJ1; 2nK ∪A× PnJ1; 2nK. The order of
the induction is 2; there are two different kinds of initial states, depending on the parity of
the length of the input.

State i is initial with weight 1 and, for every D in PnJ1; 2nK and every a in A, there is a
transition from i to D with label a and weight∣∣∣∣∣

[
−�F (a) Idn −�B(a)

0 −�F (`) Idn

]
J1;2nK×D

∣∣∣∣∣ . (18)

For every D in PnJ1; 2nK, D is initial with weight
∣∣∣[−�F (`) Idn

]
J1;nK×D

∣∣∣, and for every
a in A, there is a transition from D to (a,D) with label a and weight (−1)sig(D+n).
For every C,D in PnJ1; 2nK and every a, b in A, there is a transition from (a,D) to C
with label b and weight∣∣∣∣∣

[
−�F (b) In −�B(b) 0

0 −�F (a) Idn −�B(a)

]
J1;2nK×(C∩J1;2nK)∪(D+2n)

∣∣∣∣∣ . (19)

Every state (a,D) is final with weight

∣∣∣∣∣
[

Idn −�B(a) 0
−�F (a) Idn −�B(a)

]
J1;2nK×(J1;nK∪D+n)

∣∣∣∣∣.
By Lemma 23, this automaton computes det (Id−Mw) for every word w; it realizes the
series δ which is thus Q -rational.

Likewise, for every p, q in J1;nK, (adj (Id −Mw))p+n,q is equal to the determinant of
C

(q,p+n)
w , which is the matrix Id −Mw where every coefficient of the q-th row and every

coefficient of the p+ n-th column is replaced by 0, except the coefficient in (q, p+ n) which
is replaced by 1. The determinant of C(q,p+n)

w can be computed with the same induction as
for det (Id−Mw) with different initial conditions.

Hence, for every p, q in Q, the series αp,q is rational; so is the series α =
∑
p,q∈Q Ip.αp,q.Tp.

Finally, the series realized by the two-way Q-automaton is the Hadamard quotient of two
rational series. It is therefore a Hadamard series that can be realized by a rotating Q-
automaton.

I Theorem 24. The set of series realized by two-way Q-automata is exactly the set QHadA∗
of series realized by rotating Q-automata.

Notice that the conversion of two-way Q -automata to rotating Q -automata is effective,
hence the decidability of equivalence of rotating Q -automata extends to two-way Q -automata.

I Theorem 25. The equivalence of valid two-way Q-automata is decidable.

L.-M. Dando and S. Lombardy 6:13

6 Conclusion

The results presented in this paper can be extended to other fields. Section 5 actually
shows that the behaviour of a two-way automaton over a field is the Hadamard quotient of
two rational series. It extends to any field. Notice that the definition of the behaviour of
a two-way automaton involves infinite sums; hence, a structure (topology for instance) is
required to handle these sums, and this structure must transfer to matrices to define the star
of a matrix.

To show that two-way automata are equivalent to rotating automata, it must be proved
that every Hadamard quotient of two rational series can be realized by a rotating automaton
(Theorem 18), and Proposition 7 is crucial in this proof. This proposition applies to Q and
R; it can also be used to prove Theorem 18 in C. For other fields, dedicated proofs should
be provided.

The conversion from two-way Q-automata to rotating Q-automata heavily relies on
the inversion of a matrix describing the computations in the two-way Q-automaton. This
inversion is considered as the quotient between some coefficients of the adjugate matrix and
the determinant and we exhibit one-way Q -automata that realize this computation. It is still
an open question to find a more combinatorial argument to the equivalence between the two
models. It could help in characterizing semirings where two-way and rotating automata are
equivalent. It could also lead to more efficient algorithms to convert two-way Q-automata
into rotating Q -automata or to compute Q -Hadamard expressions of the series they realize.

References
1 Marcella Anselmo and Alberto Bertoni. Two-way probabilistic automata and rational power

series. In Proc. IV Conv. It. Inform. Teor., pages 9–23. World Scientific, 1992.
2 Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series with Applica-

tions, volume 137 of Encyclopedia of Mathematics and its Applications. Cambridge Univer-
sity Press, 2010.

3 John H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, London, 1971.
4 Louis-Marie Dando and Sylvain Lombardy. From Hadamard Expressions to Weighted Ro-

tating Automata and Back. In CIAA’17, volume 10328 of LNCS, pages 163–174. Springer,
2017. doi:10.1007/978-3-319-60134-2_14.

5 Zoltán Ésik and Werner Kuich. Rationally additive semirings. J. UCS, 8(2):173–183, 2002.
doi:10.3217/jucs-008-02-0173.

6 Michel Fliess. Matrices de Hankel. J. Math. Pures et Appl., 53:197–222, 1974.
7 Bruno Guillon. Input- or output-unary sweeping transducers are weaker than their 2-way

counterparts. RAIRO - Theor. Inf. and Applic., 50(4):275–294, 2016. doi:10.1051/ita/
2016028.

8 Christos Kapoutsis, Richard Královič, and Tobias Mömke. Size complexity of rotating
and sweeping automata. Journal of Computer and System Sciences, 78(2):537–558, 2012.
doi:10.1016/j.jcss.2011.06.004.

9 Sylvain Lombardy. Two-way representations and weighted automata. RAIRO - Theoretical
Informatics and Applications, 50(4):331–350, 2016. doi:10.1051/ita/2016026.

10 Azaria Paz. Introduction to Probabilistic Automata (Computer Science and Applied Math-
ematics). Academic Press, Inc., Orlando, FL, USA, 1971.

11 Giovanni Pighizzini. Two-way finite automata: Old and recent results. Fundam. Inform.,
126(2-3):225–246, 2013. doi:10.3233/FI-2013-879.

12 Christophe Reutenauer. Sur les éléments inversibles de l’algèbre de Hadamard des séries
rationnelles. Bull. Soc. Math. France, 110:225–232, 1982.

MFCS 2018

http://dx.doi.org/10.1007/978-3-319-60134-2_14
http://dx.doi.org/10.3217/jucs-008-02-0173
http://dx.doi.org/10.1051/ita/2016028
http://dx.doi.org/10.1051/ita/2016028
http://dx.doi.org/10.1016/j.jcss.2011.06.004
http://dx.doi.org/10.1016/j.jcss.2011.06.004
http://dx.doi.org/10.1051/ita/2016026
http://dx.doi.org/10.3233/FI-2013-879

6:14 On Rotating Q-Automata

13 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
14 Davod Khojasteh Salkuyeh. Comments on “a note on a three-term recurrence for a tridiag-

onal matrix”. Appl. Math. Comput., 176(2):442–444, 2006. doi:10.1016/j.amc.2005.09.
033.

15 Marcel-Paul Schützenberger. On the definition of a family of automata. Inform. and
Control, 4:245–270, 1961. doi:10.1016/S0019-9958(61)80020-X.

16 Marcel-Paul Schützenberger. On a theorem of R. Jungen. Proc. Amer. Math. Soc.,
13(6):885–890, 1962.

http://eudml.org/doc/87430
http://dx.doi.org/10.1016/j.amc.2005.09.033
http://dx.doi.org/10.1016/j.amc.2005.09.033
http://dx.doi.org/10.1016/S0019-9958(61)80020-X
http://dx.doi.org/10.2307/2034080

One-Sided Error Communication Complexity of
Gap Hamming Distance

Egor Klenin
Lomonosov Moscow State University, Moscow, Russia
Moscow, 1 Leninskiye Gory, Russia
yegorklenin@gmail.com

Alexander Kozachinskiy1

National Research University Higher School of Economics, Moscow, Russia
Moscow, 3 Kochnovsky Proezd, Russia
akozachinskiy@hse.ru

https://orcid.org/0000-0002-9956-9023

Abstract
Assume that Alice has a binary string x and Bob a binary string y, both strings are of length n.
Their goal is to output 0, if x and y are at least L-close in Hamming distance, and output 1, if x
and y are at least U -far in Hamming distance, where L < U are some integer parameters known
to both parties. If the Hamming distance between x and y lies in the interval (L,U), they are
allowed to output anything. This problem is called the Gap Hamming Distance. In this paper
we study public-coin one-sided error communication complexity of this problem. The error with
probability at most 1/2 is allowed only for pairs at Hamming distance at least U . In this paper
we determine this complexity up to factors logarithmic in L. The protocol we construct for the
upper bound is simultaneous.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases Communication Complexity, Gap Hamming Distance, one-sided error

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.7

1 Communication complexity of GHD

Given two strings x = x1 . . . xn ∈ {0, 1}n, y = y1 . . . yn ∈ {0, 1}n, Hamming distance between
x and y is defined as the number of positions, where x and y differ:

d(x, y) = |{i ∈ {1, . . . , n} |xi 6= yi}| .

Let L < U 6 n be integer numbers. In this paper we consider the following communication
problem GHDL,U , called the Gap Hamming Distance problem:

I Definition 1. Let Alice receive an n-bit string x and Bob an n-bit string y such that either
d(x, y) 6 L, or d(x, y) > U . They have to output 0, if the first inequality holds, and 1, if the
second inequality holds. If the promise is not fulfilled, they may output anything.

1 Supported in part by RFBR grapnt 16-01-00362 and by the Russian Academic Excellence Project
“5-100”.

© Egor Klenin and Alexander Kozachinskiy;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto: yegorklenin@gmail.com
mailto:akozachinskiy@hse.ru
 https://orcid.org/0000-0002-9956-9023
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 One-Sided Error Communication Complexity of Gap Hamming Distance

1.1 Prior work
1.1.1 Two-sided error upper bounds
Let R(GHDL,U) denote randomized two-sided error public coin communication complexity
of GHDL,U . It is known (see [11, 15]) that R(GHDL,U)) = O(L2/(U − L)2) (assuming the
constant error probability less than 1/2).

The paper [9] established the upper bound R(GHDL,U) = O(L logL) in the case U = L+1,
that is, there is no gap. This bound is much better than O(L2/(U − L)2), which is O(L2) in
this case.

It turns out that the protocols attaining these two upper bounds are simultaneous. That is,
in these protocols Alice and Bob do not communicate at all, but rather send messages to the
third party, Charlie, who then computes the output of the protocol. Charlie doesn’t see inputs
of Alice and Bob but sees public coins. The corresponding model, called simultaneous message
passing (SMP) model, is even more restricted than one-way public-coin communication:
every simultaneous protocol can be converted into one-way protocol without increasing
communication cost.

1.1.2 One-sided error public coin communication protocols
The one-sided error public coin communication complexity will be denoted by R0. The
superscript 0 means that the protocol is allowed to err only for input pairs which are at least
U -far in Hamming distance. Here we assume that the maximal probability of error2 is 1/2
The superscript 1 will mean the opposite: protocols are allowed to err only for input pairs
which are at least L-close in Hamming distance.

Let us first note that for all x, y we have

GHDL,U (x, y) = ¬GHDn−U,n−L(¬x, y).

(Alice flips all bits of her input string.) Thus GHDL,U (x, y) reduces to GHDn−U,n−L and
the other way around. This reduction maps 0-instances to 1-instances and vice verse. This
observation implies that

R1(GHDL,U) = R0(GHDn−U,n−L).

Thus it suffices to study only one of these quantities and we will stick to R0 (the error is
allowed when the distance is at least U) .

The paper [8] noticed that for all U > L it holds that R0(GHDL,U) = O(L log n). Once
again, there is a public coin SMP protocol attaining this bound (which is just a simple
modification of the standard protocol for EQUALITY).

1.1.3 GHD and the lower bounds in data streams and property testing
Several works used GHD to obtain lower bounds for streaming algorithms and for property
testing problems. As was discovered in [14] by Woodruff, there is a reduction from GHD to a
number of fundamental data stream problems, including the problem of estimating frequency
moments. More specifically, if there is a Ω(n) lower bound against any r-round two-sided
error communication protocol for GHDn/2−Θ(

√
n), n/2+Θ(

√
n), then there is a Ω(1/(rε2)) lower

bound on the space complexity of any r-pass streaming algorithm estimating the frequency
moments in a data stream within a factor of (1 + ε).

2 By the standard amplification argument we could have any constant between 0 and 1 instead of 1/2.

E. Klenin and A. Kozachinskiy 7:3

In [14] Woodruff proved Ω(n) lower bound against 1-round protocols (see also [10] for
more direct and simple proof). In a subsequent works ([2, 3]) this lower bound was extended
to O(1)-round protocols. Finally, Ω(n) lower bound in the most general setting, when there
is no restriction on the number of rounds at all, was obtained in [6, 13, 12].

As it turns out, lower bounds on the one-sided error version of GHD are also useful.
In [5] Buhrman, Cleve and Wigderson proved that for any constant c < 1 it holds that
R1(GHD0, cn) = Ω(n). Moreover, they showed that Ω(n) lower bound holds also for a weaker
version of GHD0, cn problem, in which Hamming distance between the inputs is either 0 or
exactly cn (provided that cn is an even integer).

Blais, Brody and Matulef in [1] used this result to obtain lower bounds on testing decision
trees and signed majorities with one-sided error.

Further, Brody and Woodruff ([4]) used lower bound on one-sided error GHD from [5]
to obtain lower bounds for streaming algorithms with one-sided approximation, i.e., for
algorithms which either always return an overestimate or always return an underestimate on
the objective function. Their results include lower bounds for the problem of over(under)-
estimating the number of non-zero rows in a matrix and the Earth Mover Distance between
two multisets.

1.2 This work
In this paper we study public-coin one-sided error communication complexity R0 of GHDL,U .
Once again, the error is allowed only for pairs at Hamming distance at least U .

1.2.1 The upper bound
Our main result is a one-sided error public-coin simultaneous protocol for GHDL,U on n-bit
strings with communication complexity O((L2/U) logL). It is constructed in the following 4
steps (description of the protocol in this section is a bit informal, and the precise bounds
can be found below in the paper). Let us stress that steps 1 and 2 are enough to obtain
O((L2/U) log n) solution; the purpose of steps 3 and 4 is to replace O(log n)-factor by
O(logL)-factor. Importance of eliminating dependency on n in the upper bounds was also
acknowledged in previous works ([15, 9]).

Step 1. On this step we construct our main novel protocol, called the Triangle Inequality
Protocol. This protocol communicates O((L2/U) log n) bits (which is a bit more than required,
since logL is replaced by log n) and solves the GHDL,U problem when the ratio U/L is larger
than a certain constant.

The protocol works as follows. It randomly splits x and y in b = O(L2/U) blocks
x1, . . . , xb and y1, . . . , yb. The ith bit xi of x goes in the block xj where j is chosen at
random with uniform probability distribution over {1, . . . , b}, and decisions for different i’s
are independent. Each bit yi of y goes in the block yj with the same index as xi goes in.
This partition is made using the shared random source (so that the parties have the same
partition). Both parties also read random strings r1, . . . , rb from the shared random source
and Alice communicates d(xj , rj) to Charlie for all j = 1, . . . , b. Bob does the same with
d(yj , rj). Thus the communication is b log n = O((L2/U) log n). Charlie outputs 0 if the sum

b∑
j=1
|d(xj , rj)− d(yj , rj)|

MFCS 2018

7:4 One-Sided Error Communication Complexity of Gap Hamming Distance

is at most L and 1 otherwise. By the triangle inequality each term in this sum is at
most d(xj , yj) and thus the sum is at most d(x, y). Therefore this protocol does not err if
d(x, y) 6 L.

On the other hand, if d(x, y) > U > C ′L for a certain constant C ′, then for any fixed
j the average value of d(xj , yj) is at least 2. From the properties of binomial distributions
it follows that we have d(xj , yj) > d(x, y)/10b with probability at least 1/3. The value
d(xj , rj) − d(yj , rj) is distributed as the distance from the origin in a random walk with
d(xj , yj) steps along a line (each step has length 1 and is directed to the left or to the
right with equal probabilities). From the properties of random walks it follows that for
every j we have |d(xj , rj) − d(yj , rj)| >

√
d(xj , yj) with constant positive probability.

These two facts imply that with constant probability the sum
∑b
j=1 |d(xj , rj)− d(yj , rj)| is

Ω(b
√
d(x, y)/10b) = Ω(

√
bd(x, y)). Recall that b = O(L2/U) and we assume that d(x, y) > U .

If the constant hidden in O-notation is large enough then the lower bound Ω(
√
bd(x, y)) for

the sum
∑b
j=1 |d(xj , rj)− d(yj , rj)| is larger than L.

Step 2. In [8] it was noticed that for all L < U there is one-sided error public-coin
simultaneous protocol for GHDL,U with communication O(L log n). This protocol is just a
modification of the standard protocol for equality and it never errs for inputs at distance at
most L.

Our second protocol runs the Triangle Inequality Protocol if U > C ′L and the protocol
from [8] otherwise. Notice that in the latter case L = O(L2/U), and thus we obtain a
protocol with communication O((L2/U) log n) for all L,U .

Step 3. On this step we use the techniques from [9] to replace the log n factor by a logL
factor. More specifically, we run the protocol from the second step for the strings u, v of
length O(L8) obtained from the original strings x, y by the following transformation. As
in the Triangle Inequality Protocol, we split x, y into b = O(L8) blocks and then replace
each block by the parity of its bits. Obviously, d(u, v) 6 d(x, y). We then show that
d(u, v) = d(x, y) with constant probability provided d(x, y) 6 L4. Therefore this protocol has
constant one-sided error probability for all input pairs with d(x, y) 6 L4. By construction
this protocol communicates O((L2/U) logL) bits.

Step 4. Finally, to handle the case d(x, y) > L4, we consider the following protocol. We
run the protocol from step 3 and then a simplified version of the Triangle Inequality Protocol.
If any of these two protocols output 1, we output 1 and otherwise 0. The simplified version
of the Triangle Inequality Protocol works as follows. Alice and Bob read a random n-bit
string r from the shared random source. They compute distance from their inputs to r.
Observe that due to triangle inequality |d(x, r)−d(y, r)| 6 d(x, y). Hence d(x, y) 6 L implies
|d(x, r) − d(y, r)| 6 L. On the other hand, if d(x, y) > L4, then due to the properties of
random walks with constant positive probability it holds that |d(x, r)− d(y, r)| > L2.

Thus step 4 is reduced to the following communication problem. Alice holds a number
a ∈ {0, 1, . . . , n}, Bob holds a number b ∈ {0, 1, . . . , n} and it is known that either |a− b| 6 L

or |a− b| > L2. The goal is to find out whether the first or the second inequality is true. We
construct a public-coin simultaneous protocol with communication O(logL) which always
outputs 0 when |a − b| 6 L and which with some constant positive probability outputs 1
when |a− b| > L2.

There is a simple SMP protocol communicating O(logL+log log n) bits to solve even a gap-
less (L vs L+ 1) version of this problem. Let p1, . . . , pk be the first k = (4L+ 2) · log2(n+L)

E. Klenin and A. Kozachinskiy 7:5

primes. Parties read a random p ∈ {p1, . . . , pk} from the shared random source. Alice
and Bob communicate a (mod p) and b (mod p) to Charlie. He checks, whether there is
i ∈ [−L,L] such that a+ i (mod p) = b (mod p). If there is such i, he outputs 0, otherwise
1. A straightforward analysis shows that this protocol has an error at most 1/2 only in the
case when |a− b| > L+ 1.

The problem with this protocol is that a and b range from 0 to n. To get rid of O(log log n)
term we do the following. Instead of taking remainders modulo p1, . . . , pk we just hash our
O(n)-size universe into O(L)-size universe simply by taking remainder modulo 4L+ 2. Of
course this may lead to a collision when two number which were far from each other become
L-close. We resolve this issue by considering Z0 + . . .+Za and Z0 + . . .+Zb instead of a and
b, where Z0, . . . , Zn are independent symmetric Bernoulli random variables. It can be shown
that provided |a − b| > L2, the difference Za+1 + . . . + Zb is distributed almost uniformly
modulo 4L+ 2. This guaranties that the collision probability is by a constant bounded away
from 1.

1.2.2 Lower bounds
As it turns out, a very simple argument proves an almost matching Ω(L2/U) lower bound.
We include this argument for completeness.

As we mentioned, provided that U is even and U = (1 − Ω(1))n, the paper [5] proves
Ω(n) lower bound on one-sided error communication complexity R1 of an easier version
of GHD0, U , in which the distance between inputs is either 0 or exactly U . However, we
need a lower bound in the regime when U is very close to n. We observe that a simple
modification of a proof from [5] works as well in such regime when one switches to a harder
problem, in which the distance between inputs can be greater than U . Namely, we show that
R1(GHD0, U) = Ω((n− U)2/n) for GHD0U on n-bit strings.

As a corollary we obtain the lower bound Ω(L2/U) for one-sided error complexity R0

of GHDL,U (the error is allowed when the distance is at least U). As we explained earlier,
R1 of GHD0,U−L on U -bit strings equals R0 of GHDL,U on U -bit strings. As the former is
Ω((U − (U −L))2/U) we obtain the lower bound Ω(L2/U) for the latter. On the other hand,
the problem GHDL,U on U -bit strings reduces to the problem GHDL,U on n-bit strings (Alice
and Bob append n − U zeros to their strings), hence the one-sided complexity R0 of the
latter is also Ω(L2/U).

1.2.3 The summary
Let us summarize our results.

I Theorem 2. The one-sided error public-coin communication complexity R0 of GHDL,U on
n-bit strings is at most

O

((
L2

U
+ 1
)

log(L+ 2)
)

(The error is allowed only when the distance is at least U .) There is a public-coin simultaneous
protocol attaining this bound.

I Theorem 3. The one-sided error public-coin communication complexity R1 of GHD0,U on
n-bit strings is at least

Ω
(

(n− U)2

n
+ 1
)
.

(The error is allowed only when the distance is 0.)

MFCS 2018

7:6 One-Sided Error Communication Complexity of Gap Hamming Distance

I Corollary 4. The one-sided error public-coin communication complexity R0 of GHDL,U on
n-bit strings is at least

Ω
(
L2

U
+ 1
)
.

(The error is allowed only when the distance is at least U .)

Thus our results determine the one-sided public-coin communication complexity of
GHDL,U (up to a factor O(logL)) in the case when the parties are allowed to err only for
input pairs at distance at least U . If the parties are allowed to err only for input pairs at
distance at most L, then the one-sided public-coin communication complexity of GHDL,U is
(n− U)2/(n− L) up to a factor of O(log(n− U)).

2 Preliminaries

2.1 Communication Complexity
Let f : X × Y → {0, 1} be a Boolean function.

I Definition 5. A deterministic communication protocol is a rooted binary tree, in which
each non-leaf vertex is associated either with Alice or with Bob and each leaf is labeled by 0
or 1. Each non-leaf vertex v, associated with Alice, is assigned a function fv : X → {0, 1}
and each non-leaf vertex u, associated with Bob, is assigned a function gu : Y → {0, 1}. For
each non-leaf vertex one of its out-going edges is labeled by 0 and other one is labeled by 1.

A computation according to a deterministic protocol runs as follows. Alice is given x ∈ X ,
Bob is given y ∈ Y. They start at the root of tree. If they are in a non-leaf vertex v,
associated with Alice, Alice sends fv(x) to Bob and they move to the son of v by the edge
labeled by fv(x). If they are in a non-leaf vertex, associated with Bob, they act in a similar
same way, however this time it is Bob who sends a bit to Alice. When they reach a leaf, they
output the bit which labels this leaf.

I Definition 6. Communication complexity of a deterministic protocol π, denoted by CC(π),
is defined as the depth of the corresponding binary tree.

Randomized protocols with shared randomness (aka public-coin protocols) can be defined
as follows:

I Definition 7. A public-coin communication protocol is a probability distribution over
deterministic protocols. Communication complexity of a public-coin protocol τ , denoted by
CC(τ), is defined as max

π
CC(π), where π is taken over the deterministic protocols from the

support of τ (recall that τ is a distribution).

Given a public-coin protocol τ , Alice and Bob choose the deterministic protocol to be
executed according to the distribution, defined by τ .

I Definition 8. We say that a public-coin protocol computes a partial function f with error
probability ε, if for every pair of inputs (x, y) in the domain of f with probability at least
1− ε that protocol outputs f(x, y). Randomized communication complexity of f is defined as

Rε(f) = min
π
CC(π),

where minimum is over all protocols that compute f with error probability ε.

E. Klenin and A. Kozachinskiy 7:7

A deterministic simultaneous protocol τ is a triple 〈φ, ψ, θ〉 where

φ : X → {0, 1}c1 , ψ : Y → {0, 1}c2 ,

θ : {0, 1}c1 × {0, 1}c2 → {0, 1}.
The communication cost of τ is c1 + c2. A public-coin simultaneous protocol π is a

probability distribution over deterministic simultaneous protocols. Communication cost of π
is the maximal possible communication cost of τ , where τ is a deterministic simultaneous
protocol taken from the support of π.

Assume that Alice is given x ∈ X and Bob is given y ∈ Y. The output of a public-
coin simultaneous protocol π on (x, y) is a random variable defined as follows. Sample a
deterministic simultaneous protocol τ = 〈φ, ψ, θ〉 according to π. Output θ(φ(x), ψ(y)).

If for i ∈ {0, 1} we require that the protocol never errs on inputs from f−1(i), then the
corresponding notion is called “randomized one-sided error communication complexity” and
is denoted by Riε(f).

The Gap Hamming Distance problem is the problem of computing the following partial
function:

GHDn
L,U (x, y) =

0 d(x, y) 6 L,

1 d(x, y) > U,

undefined L < d(x, y) < U,

forx, y ∈ {0, 1}n.

2.2 Hamming Space
I Definition 9. The function

h(x) = x log2
1
x

+ (1− x) log2
1

1− x
is called the Shannon function.

For any B ⊂ {0, 1}n define diam(B) = max
x,y∈B

d(x, y). Let V2(n, r) denote the size of

Hamming ball of radius r, that is V2(n, r) =
(
n
0
)

+ . . .+
(
n
r

)
.

We will use the following well-known facts about the size of Hamming balls.

I Proposition 10 ([7]). If r 6 n
2 , then V2(n, r) 6 2h(

r
n)n.

I Proposition 11 ([7]). If B ⊂ {0, 1}n, r is natural, diam(B) 6 2r and n > 2r + 1, then

|B| 6 V2(n, r).

Propositions 11, 10 and the fact that h′(1/2) = 0, h′′(1/2) < 0 easily imply the following

I Lemma 12. Assume that r < n/2. Then the cardinality of every set B ⊂ {0, 1}n with
diam(B) 6 2r is at most 2n(1−c(1−(2r/n))2) for some absolute positive constant c.

2.3 Probability Theory
I Definition 13 (Probability distributions). Let B(n, p) denote the binomial distribution with
parameters n ∈ N and p ∈ (0, 1). For every natural n let Sn denote the one-dimensional
random walk with n steps. More specifically, let Sn be equal to

Sn = X1 + . . .+Xn,

where X1, . . . , Xn are independent random variables taking values in {−1, 1}, such that for
each i the following holds: Pr[Xi = 1] = Pr[Xi = −1] = 1

2 .

MFCS 2018

7:8 One-Sided Error Communication Complexity of Gap Hamming Distance

3 The upper bound

The protocol for Theorem 2 is a combination of three different protocols. The most important
of them solves GHDL,U with one sided error in the case when U/L exceeds some constant. Its
communication length is O((L2/U + 1) log n). We call that protocol the “Triangle Inequality
Protocol”, because it uses the triangle inequality for Hamming distance.

3.1 The Triangle Inequality Protocol
The following Lemma is the standard fact of Probability Theory:

I Lemma 14. There exists a positive constant α > 0 such that for every m it holds that

Pr[Sm >
√
m] > α,

where Sm denotes one-dimensional random walk with m steps, i.e, Sm is equal to the sum of
m independent random variables, each taking the values 1 and −1 with probabilities 1/2.

Everywhere below α stands for the constant from Lemma 14.
Let x, y ∈ {0, 1}n denote Alice’s and Bob’s input strings, respectively. The parties set

b = dCL2/U + 1e, where C = 360/α2. Then they use public coins to sample a function
χ : {1, 2, . . . , n} → {1, 2, . . . , b} uniformly at random. They use χ to divide x and y into b
blocks

x1, . . . , xb, y1, . . . , yb.

The block xj consists of all bits xi of x such that χ(i) = j. Similarly, yj consists of all bits
yi with χ(i) = j. The order in which bits of jth block are arranged is not important, the
parties care only that they use the same order.

Then they use public coins to sample b random strings r1, . . . , rb of the same lengths, as
x1, . . . , xb and y1, . . . , yb. Alice then sends b numbers to Charlie:

d(x1, r1), . . . , d(xb, rb).

In turn, Bob sends

d(y1, r1), . . . , d(yb, rb).

Then Charlie computes the sum

T =
b∑
j=1

∣∣d(xj , rj)− d(yj , rj)
∣∣ .

If T 6 L, Charlie outputs 0. Otherwise he outputs 1.
If d(x, y) 6 L, then the protocol always outputs 0. Indeed, since Hamming distance

satisfies the triangle inequality, we have that

T =
b∑
j=1

∣∣d(xj , rj)− d(yj , rj)
∣∣ 6 b∑

j=1
d(xj , yj) = d(x, y) 6 L.

Thus this protocol has a one-sided error: it can err only if d(x, y) > U . Now we will estimate
the probability of error in the case when d(x, y) > U .

E. Klenin and A. Kozachinskiy 7:9

I Lemma 15. Assume that U > 2b. Then the protocol for the input pair x, y at distance at
least U outputs 1 with some positive constant probability (more specifically, with probability
at least α/6).

Proof. Assume that U,L, x, y satisfy the assumption of the lemma. Fix j = 1, . . . , b. First
we have to understand what is the distribution of the random variable |d(xj , rj)− d(yj , rj)|.
By construction Alice and Bob choose a random function χ that governs the partition of x, y
into blocks. For each i such that xi 6= yi the probability that xi, yi land into the block with
number j is 1/b. Hence the random variable d(xj , yj) has binomial distribution B(d(x, y), 1/b)
with parameters d(x, y) and 1/b, i.e., the probability of the event d(xj , yj) = k equals(

d(x, y)
k

)
(1/b)k(1− 1/b)d(x,y)−k.

The average value of d(xj , yj) is thus equal to d(x, y)/b.
Once xj , yj are determined, Alice and Bob sample rj . The value d(xj , rj)− d(yj , rj) can

be represented as the sum of |xj | = |yj | terms where each term corresponds to a number i
with χ(i) = j. If xi = yi then the term is 0. Otherwise it is either −1 or 1 depending on
whether the respective bit of rj is equal to xi or to yi. Thus for every fixed partition into
blocks the value |d(xj , rj)−d(yj , rj)| is distributed as the distance from origin in the random
walk along the line with d(xj , yj) independent steps where each step is 1 with probability
1/2 and −1 with the same probability.

To finish the proof we will use the following fact about binomial distribution.

I Lemma 16. If X is distributed according to the binomial distribution B(n, p) and pn > 2,
then

Pr
[
X >

pn

10

]
>

1
3 .

Proof of Lemma 16. The expectation and variation of X are given by:

EX = pn, VarX = p(1− p)n 6 pn.

Hence by Chebyshev inequality we get

Pr
[
X 6

pn

10

]
6

VarX(
pn ·

(
1− 1

10
))2 6

100
81
pn

6
100
162 6

2
3 . J

Recall that the random variable d(xj , yj) has binomial distribution B(d(x, y), 1/b) and
we assume that d(x, y)/b > U/b > 2. Hence by Lemma 16 with probability at least 1/3 we
have d(xj , yj) > d(x, y)/10b.

Fix any partition into blocks such that d(xj , yj) > d(x, y)/10b. By Lemma 14 with
probability at least α we have

|d(xj , rj)− d(yj , rj)| >
√
d(xj , yj) >

√
d(x, y)/10b.

We have proved that for every fixed j with probability at least α/3 we have |d(xj , rj)−
d(yj , rj)| >

√
d(x, y)/10b. A simple averaging argument shows that with probability at least

α/6 the fraction of j that satisfy this inequality is bigger than α/6. Indeed, let the random
variable θ denote the fraction of j that satisfy this inequality. Its average is at least α/3. On
the other hand, we can upperbound its average by the sum

Pr[θ > α/6] · 1 + Pr[θ 6 α/6] · (α/6) 6 Pr[θ > α/6] + α/6.

MFCS 2018

7:10 One-Sided Error Communication Complexity of Gap Hamming Distance

Thus with probability α/6 we have

b∑
j=1
|d(xj , rj)− d(yj , rj)| > (α/6)b

√
d(x, y)/10b = (α/6)

√
b · d(x, y)/10.

Recall that b = dCL2/U + 1e, where C = 360/α2, and d(x, y) > U . So the right hand side of
the last displayed inequality is strictly larger than L. J

If the ratio U/L is larger than a certain constant then the protocol solves GHDL,U with
constant one-sided error-probability. One can verify that the assumption U > 2b of Lemma 15
is met for all U > 2CL+ 4.

Recall that the communication length of the protocol is O((L2/U + 1) log n). Now we
need a protocol with the same communication length for L,U such that U 6 2CL + 3.
Notice that in this case the upper bound O((L2/U) log n) for communication boils down to
O(L log n). A protocol with such performance was constructed in [8].

3.2 The protocol of [8]
For the reader’s convenience and to stress that the protocol from [8] has one-sided error we
give here its full description.

Here ⊕ stands for the bit-wise XOR over n-bit vectors and 〈·, ·〉 : {0, 1}n×{0, 1}n → {0, 1}
denotes the inner product over F2:

〈a, b〉 =
n∑
i=1

aibi (mod 2).

Let x, y ∈ {0, 1}n denote Alice’s and Bob’s input strings, respectively. They use public
coins to sample N vectors

R1, . . . , RN ∈ {0, 1}n

independently uniformly at random. Alice sends 〈x,R1〉, . . . , 〈x,RN 〉 to Charlie. Bob does
the same with y. If there is f ∈ {0, 1}n of Hamming weight at most L such that:

〈x⊕ f,R1〉 = 〈y,R1〉, . . . , 〈x⊕ f,RN 〉 = 〈y,RN 〉, (1)

then Charlie outputs 0. Otherwise Charlie outputs 1.
Such protocol costs O(N) bits. If d(x, y) 6 L, then the protocol outputs 0 with probability

1. Indeed, f = x⊕ y (which is of Hamming weight at most L in this case) satisfies (1).
Now assume that d(x, y) > L. Then any f ∈ {0, 1}n of Hamming weight at most L

satisfies (1) only with probability at most 2−N (because x + f 6= y). Hence the error
probability of the protocol is at most V2(n,L) · 2−N in this case. Here V2(n,L) is the size of
Hamming ball of radius L. As V2(n,L) 6 (n+ 1)L, it is enough to take N = O(L log n).

3.3 The simplified version of the Triangle Inequality Protocol
Thus for all L,U we have a public-coin simultaneous protocol with communication length
O((L2/U + 1) log n) to solve GHDL,U with constant one-sided error probability. To replace
log n factor by logL factor we will need the following public-coin simultaneous protocol
with communication length O(logL) to solve GHDL, (4L+2+N0)4 with constant one-sided error
probability. Here N0 is a constant from the following Lemma.

E. Klenin and A. Kozachinskiy 7:11

I Lemma 17. There is a positive integer N0 and a positive real c such that the following
holds. Assume that m and N are positive integers and N > max{N0,m

2}. Consider N
independent random variables Z1, . . . , ZN , where each variable takes the values 0 and 1 with
probabilities 1/2. Then for every i ∈ {0, 1, . . . ,m− 1} it holds that:

Pr[Z1 + . . .+ ZN = i (mod m)] > c

m
.

(The proof of this Lemma will be given in the end of this subsection). Notice that O((L2/U +
1) logL) becomes just O(logL) for U = (4L+ 2 +N0)4.

The protocol. The parties use public coins to sample a vector r ∈ {0, 1}n uniformly at
random. Alice and Bob compute the distance from r to their input strings. If d(x, y) 6 L,
then by Triangle Inequality we have |d(x, r) − d(y, r)| 6 d(x, y) 6 L. On the other hand,
assume that d(x, y) > (4L + 2 + N0)4. From Lemma 14 it follows that in this case with
constant positive probability we have |d(x, r)− d(y, r)| >

√
d(x, y) > (4L+ 2)2 +N2

0 .
Consider the following auxiliary problem. Alice holds a number a ∈ {0, 1, . . . , n}, Bob

holds a number b ∈ {0, 1, . . . n} and it is promised that either |a − b| 6 L or |a − b| >
(4L+ 2)2 +N2

0 . They want to know whether the first or the second inequality is true. As
the previous paragraph shows, if there is a public-coin SMP protocol with communication
length O(logL), which always outputs 0 when |a− b| 6 L and which with constant positive
probability outputs 1 when |a− b| > (4L+ 2)2 +N2

0 , then we are done.
Define m = 4L+ 2. Use public coins to sample n+ 1 independent random variables

Z0, Z1, Z2, . . . , Zn,

where each variable takes the values 0 and 1 with probabilities 1/2.

Alice sends
a∑
i=0

Zi (mod m) to Charlie, Bob sends
b∑
i=0

Zi (mod m) to Charlie. This takes

only O(logm) = O(logL) bits. Let (s, t) be any pair of integers satisfying the following three
conditions:

s ≡
a∑
i=0

Zi (mod m) (2)

t ≡
b∑
i=0

Zi (mod m) (3)

|s− t| = min
{
|s′ − t′| : s′ ≡

a∑
i=0

Zi (mod m), t′ ≡
b∑
i=0

Zi (mod m)
}
. (4)

Obviously, knowing
a∑
i=0

Zi (mod m),
b∑
i=0

Zi (mod m), Charlie is able to find (s, t) satisfying

these tree conditions. He then simply checks whether |s − t| 6 L. If this is the case, he
outputs 0. Otherwise he outputs 1.

Once again, the protocol communicates only O(logL) bits, as required. Further, it is
easy to see that the protocol has one-sided error. Indeed, assume that |a− b| 6 L. Note that

a pair (
a∑
i=0

Zi,
b∑
i=0

Zi) satisfies (2) and (3) . Hence |s− t| 6
∣∣∣∣ a∑
i=0

Zi −
b∑
i=0

Zi

∣∣∣∣ 6 |a− b| 6 L.

Now, let’s consider the case when |a−b| > (4L+2)2+N2
0 . Assume without loss of generality

that a < b. Let E be the event that there is no r ∈ [−L,L] such that Za+1 + . . .+ Zb ≡ r

MFCS 2018

7:12 One-Sided Error Communication Complexity of Gap Hamming Distance

(mod m). Let us verify that E implies that |s− t| > L (which means that Charlie outputs
1). Indeed, observe that

t− s ≡
b∑
i=0

Zi −
a∑
i=0

Zi ≡ Za+1 + . . .+ Zb (mod m),

but if |s− t| 6 L, this contradicts E.
It only remains to show that E happens with constant positive probability. This follows

from Lemma 17. Namely, this lemma implies that Pr[E] > c(m−2L−1)
m = c/2. Parameters

are chosen in such a way that restrictions of Lemma 17 are satisfied:

b− a > (4L+ 2)2 +N2
0 > (max{N0, 4L+ 2})2 > max{N0,m

2}.

Proof of Lemma 17. Take N0 to be the first natural satisfying the following condition: there
exists d > 0 such that for all N > N0 and for every k between N/2−

√
N and N/2 +

√
N

the following holds:

Pr[Z1 + . . .+ ZN = k] =
(
N

k

)
2−N >

d√
N
.

The existence of such N0, d is just a standard corollary of the Stirling formula, applied to(
N
k

)
.
Now let us show that for all m > 0, N > m2 and i ∈ {0, 1, . . . ,m− 1} the number of k

between N/2−
√
N and N/2 +

√
N such that k ≡ i (mod m) is at least

√
N
m . The number

of such k is equal to the number of r ∈ Z satisfying:

N/2−
√
N 6 mr + i 6 N/2 +

√
N,

This number is at least⌊
N/2 +

√
N − i

m

⌋
−

⌈
N/2−

√
N − i

m

⌉
+ 1 >

2
√
N

m
− 1.

Provided N > m2, the last expression is at least
√
N
m .

Set c = d and observe that for all m,N such that m > 0 and N > max{N0,m
2} and for

every i ∈ {0, 1, . . . ,m− 1} it holds that

Pr[Z1 + . . .+ ZN ≡ i (mod m)] >
√
N

m
· d√

N
= c

m
.

J

3.4 The final protocol for Theorem 2
The protocol. Step 1. Alice and Bob first run the Simplified Triangle Inequality Protocol
from the previous subsection. If that protocol outputs 1 they output 1 and halt. Otherwise
they proceed to Step 2.

Step 2. They divide x and y into w = 2(4L + 2 + N0)8 blocks randomly (as in the
construction of the Triangle Inequality Protocol). Let

x1, . . . , xw, y1, . . . , yw

E. Klenin and A. Kozachinskiy 7:13

denote the resulting blocks. Let ui be the XOR of all bits from xi and let vi be the XOR of
all bits from yi. Alice privately computes u1, . . . , uw and sets u = u1 . . . uw. Bob privately
computes v1, . . . , vw and sets v = v1 . . . vw.

Recall that we have a protocol (a combination of the Triangle Inequality Protocol and
the protocol of [8]) with communication length O((L2/U + 1) logw) = O((L2/U + 1) logL)
to solve GHDL,U on w-bit strings with constant positive one-sided error probability.

Alice and Bob run this protocol for input pair (u, v) (and not (x, y)). They output the
result of this run.

The communication length of the constructed protocol is O((L2/U + 1) logL). We have
to show that it has one-sided constant error probability.

If d(x, y) 6 L then the run of the Simplified Triangle Inequality Protocol will output 0
with probability 1. Thus they proceed to Step 2. The distance between u and v does not
exceed the distance between x and y and hence is at most L. Thus the run of the second
protocol also outputs 0 with probability 1.

Assume that d(x, y) > U . If d(x, y) > (4L + 2 + N0)4, then the Simplified Triangle
Inequality Protocol outputs 1 with positive constant probability, they output 1 and halt.

Assume that U 6 d(x, y) < (4L + 2 + N0)4. We claim that in this case with constant
positive probability we have d(u, v) = d(x, y). Indeed, consider any two positions in which x
and y differ. Those positions land into the same block with probability 1

w . By union bound,
with probability at least

1− d(x, y)2

w
> 1− (4L+ 2 +N0)8

2(4L+ 2 +N0)8 = 0.5

all the positions in which x and y differ land in different blocks. The latter means that for
all i the blocks xi and yi differ in at most 1 position and hence d(u, v) = d(x, y). Thus
with probability at least 1/2 we have d(u, v) > U and Alice and Bob output 1 with positive
constant probability on the second step.

4 The lower bound

In this section we prove Theorem 3.

Proof of Theorem 3. Let τ be a protocol witnessing R1
1
2
(GHD0, U). Then the following hold:

for each x ∈ {0, 1}n the protocol τ for input (x, x) outputs 0 with probability at least 1
2 ;

for all x, y ∈ {0, 1}n with d(x, y) > U the protocol τ always outputs 1.

By the standard averaging argument due to von Neumann there is a deterministic protocol
π such that

the communication complexity of π is at most R1
1
2
(GHD0, U);

π outputs 0 for at least half of diagonal input pairs (x, x);
π outputs 1 for all inputs pairs at Hamming distance at least U .

Consider any 0-leaf of π and the corresponding rectangle R = A×B ⊂ {0, 1}n × {0, 1}n.
The number of diagonal pairs from R is equal to |A ∩B|. Diameter of A ∩B must be less
than U . Indeed, if there are x, y ∈ A ∩B such that d(x, y) > U , then π outputs 0 for input
pair (x, y).

It turns out that the largest set of diameter 2r < n is the Hamming ball of radius r and
the diameter of the latter is at most 2n(1−c(1−2r/n)2) for some positive constant c (Lemma 12).

MFCS 2018

7:14 One-Sided Error Communication Complexity of Gap Hamming Distance

Let r = bU/2c. For U = n the lower bound in Theorem 3 is constant and thus the
statement is obvious. Therefore we may assume that U < n and hence r < n/2. The
diameter of A ∩B is at most 2r (recall that the diameter of A ∩B is strictly less than U).
By Lemma 12 we have

|A ∩B| 6 2n(1−c(1−2r/n)2) 6 2n(1−c(1−U/n)2).

We have shown that if R is the rectangle corresponding to a 0-leaf of π, then R covers
at most 2n(1−c(1−U/n)2) diagonal pairs. As the total number of diagonal pairs covered by
0-leaves of π is at least 2n−1, the number of 0-leaves in π is at least 2cn(1−U/n)2−1. Thus we
have

R1
1
2
(GHD0, U) > c · (n− U)2

n
− 1. (5)

Obviously we also have

R1
1
2
(GHD0, U) > 1. (6)

From inequalities (5) and (6) we can easily deduce that

R1
1
2
(GHD0, U) > Ω

(
(n− U)2

n
+ 1
)

(for example, we can add these inequalities with appropriate positive weights). J

References
1 Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via commu-

nication complexity. Computational Complexity, 21(2):311–358, 2012.
2 Joshua Brody and Amit Chakrabarti. A multi-round communication lower bound for

gap hamming and some consequences. In Computational Complexity, 2009. CCC’09. 24th
Annual IEEE Conference on, pages 358–368. IEEE, 2009.

3 Joshua Brody, Amit Chakrabarti, Oded Regev, Thomas Vidick, and Ronald DeWolf. Better
gap-hamming lower bounds via better round elimination. In Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques, pages 476–489. Springer,
2010.

4 Joshua Brody and David P Woodruff. Streaming algorithms with one-sided estimation. In
APPROX-RANDOM, pages 436–447. Springer, 2011.

5 Harry Buhrman, Richard Cleve, and Avi Wigderson. Quantum vs. classical communication
and computation. In Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 63–68. ACM, 1998.

6 Amit Chakrabarti and Oded Regev. An optimal lower bound on the communication com-
plexity of gap-hamming-distance. SIAM Journal on Computing, 41(5):1299–1317, 2012.

7 Gérard Cohen, Iiro Honkala, Simon Litsyn, and Antoine Lobstein. Covering codes,
volume 54. Elsevier, 1997.

8 Dmitry Gavinsky, Julia Kempe, and Ronald de Wolf. Quantum communication cannot
simulate a public coin. arXiv preprint quant-ph/0411051, 2004.

9 Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan Zhu. The communication complexity
of the hamming distance problem. Information Processing Letters, 99(4):149–153, 2006.

10 Thathachar S Jayram, Ravi Kumar, and D Sivakumar. The one-way communication com-
plexity of hamming distance. Theory of Computing, 4(1):129–135, 2008.

E. Klenin and A. Kozachinskiy 7:15

11 Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. SIAM Journal on Computing, 30(2):457–474,
2000.

12 Alexander A Sherstov. The communication complexity of gap hamming distance. Theory
of Computing, 8(1):197–208, 2012.

13 Thomas Vidick. A concentration inequality for the overlap of a vector on a large set,
with application to the communication complexity of the gap-hamming-distance problem.
Chicago Journal of Theoretical Computer Science, 1, 2012.

14 David Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 167–175. Society
for Industrial and Applied Mathematics, 2004.

15 Andrew Chi-Chih Yao. On the power of quantum fingerprinting. In Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing, pages 77–81. ACM, 2003.

MFCS 2018

Online Maximum Matching with Recourse

Spyros Angelopoulos
Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, F-75252 Paris, France
Spyros.Angelopoulos@lip6.fr

https://orcid.org/0000-0001-9819-9158

Christoph Dürr
Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, F-75252 Paris, France
Christoph.Durr@lip6.fr

https://orcid.org/0000-0001-8103-5333

Shendan Jin
Sorbonne Université, CNRS, Laboratoire d’informatique de Paris 6, LIP6, F-75252 Paris, France
Shendan.Jin@lip6.fr

https://orcid.org/0000-0003-1218-9085

Abstract
We study the online maximum matching problem in a model in which the edges are associated
with a known recourse parameter k. An online algorithm for this problem has to maintain a
valid matching while edges of the underlying graph are presented one after the other. At any
moment the algorithm can decide to include an edge into the matching or to exclude it, under the
restriction that at most k such actions per edge take place, where k is typically a small constant.
This problem was introduced and studied in the context of general online packing problems with
recourse by Avitabile et al. [1], whereas the special case k = 2 was studied by Boyar et al. [3].

In the first part of this paper, we consider the edge arrival model, in which an arriving edge
never disappears from the graph. Here, we first show an improved analysis on the performance of
the algorithm AMP given in [1], by exploiting the structure of the matching problem. In addition,
we extend the result of [3] and show that the greedy algorithm has competitive ratio 3/2 for every
even k and ratio 2 for every odd k. Moreover, we present and analyze an improvement of the
greedy algorithm which we call L-Greedy, and we show that for small values of k it outperforms
the algorithm of [1]. In terms of lower bounds, we show that no deterministic algorithm better
than 1 + 1/(k − 1) exists, improving upon the lower bound of 1 + 1/k shown in [1].

The second part of the paper is devoted to the edge arrival/departure model, which is the
fully dynamic variant of online matching with recourse. The analysis of L-Greedy and AMP
carry through in this model; moreover we show a lower bound of k2−3k+6

k2−4k+7 for all even k ≥ 4. For
k ∈ {2, 3}, the competitive ratio is 3/2.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Online algorithms

Keywords and phrases Competitive ratio, maximum cardinality matching, recourse

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.8

Related Version A full version of this paper is available at https://arxiv.org/abs/1801.
03462.

Funding Supported by ANR OATA, DIM RFSI DACM and Labex Mathématique Hadamard.

© Spyros Angelopoulos, Christoph Dürr, and Shendan Jin;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Spyros.Angelopoulos@lip6.fr
https://orcid.org/0000-0001-9819-9158
mailto:Christoph.Durr@lip6.fr
https://orcid.org/0000-0001-8103-5333
mailto:Shendan.Jin@lip6.fr
https://orcid.org/0000-0003-1218-9085
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.8
https://arxiv.org/abs/1801.03462
https://arxiv.org/abs/1801.03462
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Online Maximum Matching with Recourse

1 Introduction

In the standard framework of online computation, the input to the algorithm is revealed
incrementally, i.e., request by request. For each such requested input item, the online
algorithm must make a decision that is typically irrevocable, in the sense that the algorithm
commits, in a permanent manner, to the decision associated with the request. More precisely,
the algorithm may not alter any previously made decisions while considering later requests.
This rather stringent constraint is meant to capture what informally can be described as
“the past cannot be undone”; equally significantly, it is at the heart of adversarial arguments
that can be used to argue that the competitive ratio of a given online problem cannot be
improved beyond a certain bound.

Nevertheless, there are real-life applications in which some (limited) rearrangement of
the online solution during the execution of the algorithm may be doable, or even requisite.
For instance, online call admission protocols may sporadically reconfigure the virtual paths
assigned in the network. For a different example, in online scheduling (or resource allocation)
problems, it may be permissible for a job to be transfered to a processor other than the one
specified by the original decision associated with the job. Clearly, a trade-off is to be found
between the guaranteed competitive ratio and the cost of re-optimizing the current solution.
Different approaches to this objective have been considered. One such approach has studied
the minimum total re-optimization cost required in order to maintain an optimal solution,
see Bernstein et al. [2]. Another approach has focused on the best achievable competitive
ratio when there is some bound on the allowed re-optimization, which has been first studied
by Avitabile et al. [1], and is the main model we consider in this paper.

More specifically, we study the online maximum cardinality matching problem, in which
the goal is to maintain a vertex disjoint edge set of maximum cardinality for a given graph.
Two different online models have been studied in the past. In the vertex arrival model, vertices
arrive in online fashion, revealing, at the same time, the edges incident to previously arrived
vertices. This model has mainly been considered for bipartite graphs, with left side vertices
arriving online, and right side vertices being initially known (see the survey [16]). In the edge
arrival model the edges arrive online in arbitrary order, revealing at the same time incident
vertices. We emphasize that in this work we consider the maximum cardinality matching
problem; some previous work (with or without recourse) has considered the generalized
weighted matching problem, in which each edge has a weight and the objective is to maximize
the weight of matched edges.

In the standard model, every edge constitutes a request and has to be immediately either
accepted in the matching, or rejected. To quantify the impact of recourse, several models
have been proposed that relax the irrevocable nature of a decision. In the late reject model
[3], which is also called the preemptive model [5], an edge can be accepted only upon its
arrival, but can be later rejected. In the edge-bounded recourse model, introduced in [1], the
algorithm can switch between accepting and rejecting an edge that has already appeared,
but is allowed up to k such modifications per edge. We emphasize that the initial default
state of an edge is rejected, and therefore rejecting a newly arriving edge does not count as
decision modification. However, accepting an edge or rejecting a previously accepted edge
does count as a decision modification. For concreteness, we call this problem the online
maximum cardinality matching problem with edge-bounded recourse. Boyar et al. [3] refer
to this model for k = 1 as the late accept model, and for k = 2 as the late accept/reject
model. Clearly, the competitive ratio is monotone in k, and our objective is to quantify this
dependency. Figure 1 illustrates the algorithm’s actions under the different models.

S. Angelopoulos, C. Dürr, and S. Jin 8:3

release
reject

accept

Standard model.

release accept reject

Late reject model, also called free disposal or preemptive model.

release reject accept

Late accept model, also called edge 1-bounded recourse model.

release reject accept reject

Late accept/reject model, also called edge 2-bounded recourse model.

release reject accept reject accept reject

k

Edge-bounded recourse model with general parameter k.

Figure 1 Illustration of the actions of an online matching algorithm under the different edge-arrival
models with recourse.

In this work we also introduce and study the setting in which edges may undergo both
arrivals and departures. In other words, edges may not only arrive (in the form of a request),
but may also disappear adversarially (subsequently to their appearance). This setting is
motivated by similar models that have been studied in the context of the online Steiner tree
problem [9]. We call this problem the online maximum matching problem under the edge
arrival/departure model with edge-bounded recourse. For this problem, we further distinguish
two models concerning the edge departures. In the full departure model, the adversary
is allowed to delete any edge in the graph, and thus also any edge that may have been
provisionally accepted by the online algorithm. We show that this model is quite restrictive,
since it yields excessive power to the adversary. We thus also study the limited departure
model, in which the adversary may delete only edges not currently accepted by the online
algorithm.

The limited departure setting can also model some natural applications related to resource
allocation. For instance, consider a bipartite graph representing compatibility between tasks
and workers, and that we seek to maximize the number of tasks assigned to workers. The
compatibility of tasks and worker skills can change over time. Then the limited departure
model stipulates that if worker w remains assigned to task t by the online algorithm, then w
does not lose his qualification for t, in the sense that the worker has a continual occupation
with the said task and maintains the required skills for the task. However, once the online
algorithm decides to remove worker w from task t (i.e., the online algorithm provisionally
rejects edge (w, t)), then the worker might lose his qualification for the task over time.

MFCS 2018

8:4 Online Maximum Matching with Recourse

An online algorithm ALG for a maximization problem is said to be c-competitive if there
is a constant d such that ALG(σ) ≥ OPT(σ)/c−d, for all request sequences σ. Here ALG(σ)
stands for the objective value of the solution produced by ALG on σ, while OPT(σ) stands
for the value of the optimal solution. If d = 0, the algorithm is called strictly c-competitive.
Note that some previous work on the matching problem has used the reciprocal ratio. The
smallest c for which an online algorithm ALG is c-competitive is called the competitive
ratio of ALG. The strict competitive ratio is defined similarly. If it so happens that this
minimum value does not exist, the competitive ratio is actually defined by the corresponding
infimum. In this setting an upper bound on the (strict or not) competitive ratio establishes
the performance guarantee of an online algorithm, whereas a lower bound is a negative result.

Both upper and lower bounds in this work are shown for the strict competitive ratio.
This implies that the upper bounds carry over to the more general definition, but this
generalization does not necessarily hold for the lower bounds. We emphasize, however, that
the known lower bounds for edge-bounded recourse problems in [1, 3] are likewise expressed
in terms of the strict competitive ratio. This is due, perhaps, to difficulties in applying
techniques that extend the lower bounds to the standard definition of the competitive ratio
that are inherent to the recourse setting, and which do not arise in the traditional online
framework of irrevocable decisions. Specifically, it is not obvious how to use techniques
based on multiple copies of an adversarial instance in order to lower-bound the performance
of any online algorithm, although this may be possible for specific online algorithms. For
convenience, we will henceforth refer to the strict competitive ratio as simply the “competitive
ratio”.

Related work

Several online optimization problems have been studied under the recourse setting. The
broad objective is to quantify the trade-off between the competitive ratio and a measure
on the modifications allowed on the solution. Some representative examples include online
problems such as minimum spanning trees and TSP [15], Steiner trees [9, 8], knapsack
problems [11, 12], assignment problems in bipartite unweighted graphs [10], and general
packing problems [1]. In the remainder of this section we review work related to online
maximum matching.

Online matching in the standard model. For online weighted matching in the standard
model (without recourse), it is easy to see that no algorithm can achieve a bounded competitive
ratio. This holds for both the vertex and the edge arrival models. For unweighted matching,
the seminal work of Karp et al. [13, 7] gave a randomized online algorithm with competitive
ratio e/(e − 1) in the vertex arrival model together with a matching lower bound on any
online algorithm. For the edge arrival model and the randomized competitive ratio, [4]
showed a lower bound of (3 + 1/ϕ2)/2, where ϕ is the golden ratio, as well as an upper bound
of 1.8 for the special case of forests.

It is well known that any inclusion-wise maximal matching has cardinality at least half
of the optimal maximum cardinality matching. From this it follows that the greedy online
algorithm has competitive ratio at most 2, which in the standard model is optimal among all
deterministic online algorithms.

Late reject. In the vertex arrival model, the greedy algorithm achieves trivially the com-
petitive ratio of 2, which is optimal for all deterministic online algorithms. The situation
differs in the edge arrival model. Epstein et al. [6] showed that for online weighted matching,

S. Angelopoulos, C. Dürr, and S. Jin 8:5

the deterministic competitive ratio is exactly 3 + 2
√

2 ≈ 5.828, as the upper bound of [14]
matches the lower bound of [18]. The same paper [6] shows that the randomized competitive
ratio is between 1 + log 2 ≈ 1.693 and 5.356. Chiplunkar et al. [5] presented a randomized
28/15-competitive algorithm for trees and a 4/3-competitive algorithm for paths.

Edge k-bounded recourse. This model was introduced and studied by Avitabile et al. [1]
for the edge arrival setting, in the context of a much broader class of online packing problems.
They gave an algorithm, which we call AMP, that combines doubling techniques with optimal
solutions to offline instances of the problem, which has competitive ratio 1 +O

(
log k

k

)
(see

Section 2.1 for an analysis of AMP). On the negative side, they showed that no randomized
algorithm can be better than 1 + 1/(9k− 1)-competitive; we note also that their construction
implies a lower bound of 1 + 1/k for all deterministic algorithms.

Boyar et al. [3] showed that the deterministic competitive ratio is 2 for k = 1 and 3/2 for
k = 2, and these optimal ratios are achieved by the greedy algorithm. Moreover, [3] studied
several other problems for a value of the recourse parameter equal to 2, such as independent
set, vertex cover and minimum spanning forest.

Minimizing recourse. Bernstein et al. [2] studied a different recourse model in which the
algorithm has to maintain an optimal matching, while minimizing a recourse measure, namely
the number of times edges enter or leave the matching maintained by the algorithm. They
considered the setting of a bipartite graph and the vertex arrival model and showed that a
simple greedy algorithm achieves optimality using O(n log2 n) replacements, where n is the
number of nodes in the arriving bipartition, whereas the corresponding lower bound for any
replacement strategy is Ω(n log n).

The results of Avitabile et al. [1] were originally formulated in a similar dual setting.
More precisely, [1] asks the question: how big should the edge budget k be such that there is
a 1 + ε competitive online algorithm that makes at most k changes per edge? They showed
that k = O(log(1/ε)/ε) suffices.

Contribution of this work

In the first part of this work, we study the online matching problem with edge k-bounded
recourse under the edge arrival model. For this problem, we provide improvements on both
upper and lower bounds. First, we revisit the doubling algorithm of [1] that was originally
analyzed in the general context of online packing problems. We give a better analysis,
specifically for the problem at hand, that uses concepts and ideas related to the matching
problem; we also show that the AMP algorithm has competitive ratio 1 + O(log k

k). On
the negative side, we show that no deterministic algorithm is better than 1 + 1/(k − 1)
competitive, improving upon the known bound of 1 + 1/k of [1].

At first sight these improvements may seem marginal; however one should take into
consideration that k is typically a small parameter, and thus the improvements are by no
means negligible. In this spirit, we propose and analyze a variant of the greedy algorithm
which we call L-Greedy. This algorithm applies, at any step, augmenting paths as long as
their length is at most 2L + 1. We show that for a suitable choice of L, this algorithm is
(1 +O(1/

√
k))-competitive. While this algorithm is thus not superior to AMP for large k

(and more specifically, to its improved analysis in the context of the matching problem), for
small k (and in particular, for k ≤ 20) it does achieve an improved competitive ratio. Boyar
et al. [3] showed that the greedy algorithm is 3/2-competitive for k = 2. We extended this
result to all even k, while for odd k, the competitive ratio is 2.

MFCS 2018

8:6 Online Maximum Matching with Recourse

In terms of techniques, we analyze both AMP and L-Greedy using amortization argu-
ments in which the profit of the algorithms is expressed in terms of weights appropriately
distributed over nodes in the graph. We achieve these improvements by exploiting properties
of augmenting paths in matching algorithms.

The second part of the paper is devoted to the edge arrival/departure model, which is the
fully dynamic variant of the online matching problem. First, we observe that the analysis of
L-Greedy and AMP carries through in this model as well. On the negative side, we show a
lower bound of (k2− 3k+ 6)/(k2− 4k+ 7) for all even k ≥ 4. For k ∈ {2, 3}, the competitive
ratio is 3/2. We obtain the lower bounds by modeling the game between the algorithm and
the adversary as a game played over strings of numbers 0 up to k.

We note that, for the analysis of AMP and of L-Greedy, we assume that k is even.
This assumption is borrowed from [1] and is required for the analysis. Of course for odd
k ≥ 3 these algorithms can be run with budget k − 1, providing a valid upper bound on the
competitive ratio. Note that our lower bound in the arrival model holds for all values of k.

Due to space limitations some of the proofs are omitted in this paper.

1.1 Preliminaries
A matching in a graph G = (V,E) is a set of edges M ⊆ E with disjoint endpoints. A
vertex v ∈ V is said to be matched by M if there is an edge e ∈ M incident to v, and is
unmatched otherwise. A key concept in maximum matching algorithms is the notion of an
augmenting alternating path, or simply augmenting path. A path P in G is a sequence of
vertices v0, v1, . . . , v` for some length ` ≥ 2, such that (vi, vi+1) ∈ E for all i = 0, . . . , `−1. It
is said to be alternating with respect to M if every other edge of P belongs to M . Moreover
it is said to be augmenting if the first and the last vertex is unmatched by M . Applying such
a path P to M consists in removing from M the edges in M ∩ P and adding the edges in
P \M . The resulting matching has cardinality M + 1, and every previously matched vertex
remains matched.

We define some concepts that will be useful in the analysis of algorithms throughout the
paper. We will associate each edge with a type which is an integer in [0, k]. An edge is of
type i if it has undergone i decision flips by the algorithm. Hence, for an edge of type k,
where k is the recourse budget, its decision has been finalized, and cannot change further;
we call such an edge blocked. The type of a path P is defined by the sequence of the types of
its edges, and to make this concept unambiguous, we choose between the two orientations
of the path the one that results in the lexicographically minimal such sequence. Note that
when the algorithm applies some augmenting path P to its current matching M , then the
type of every edge in P is increased by 1. Moreover, the two extreme edges of an augmenting
path are of type 0, because the endpoints of P are unmatched. We will call a path blocked if
it contains a blocked edge.

2 The edge arrival model

2.1 The algorithm AMP
In the more general online set packing problem sets arrive online and the goal is to maintain a
collection of disjoint sets, maximizing their number. Avitabile et al. [1] proposed the doubling
algorithm which is defined for even k only. It has a parameter r > 1 and there is a decision
variable for every set which can be changed at most k times. The algorithm works in phases,
sequentially numbered by an integer p. Initially p = 0, and ALG0 = ∅. Let ` be the largest

S. Angelopoulos, C. Dürr, and S. Jin 8:7

integer such that the optimal solution has value at least r`, and let ` be −∞ if the optimal
solution is empty. Whenever this value increases, the algorithms starts a new phase. We
define `(p) as the value ` during phase p. We have `(p) + i ≤ `(p + i) for every positive
integer i. At the beginning of a new phase, all decision variables that have been changed
fewer than k times are set as in OPT, resulting in the current solution ALGp (note that the
algorithm crucially depends on k being even in order to produce a feasible solution).

Avitabile et al. show that the competitive ratio of the algorithm is at most

min
r>r0

rk(r − 1)
rk−1(r − 1)− r , (1)

where r0 is the solution to the equation rk−1(r − 1)− r = 0 in [1,+∞).
We will show how to obtain an improved analysis of the algorithm in the context of the

matching problem. Since we know optimal algorithms for k = 1, 2 [3] and for k = 3 (see
Section 2.4), for the analysis we assume k ≥ 4. We begin by a restatement of the update
phase that will help us exploit the structure of solutions obtained via augmenting paths.
More specifically, on every edge arrival the algorithm updates a current optimal solution
OPT.

At the beginning of a new phase, the algorithm produces a matching ALGp obtained from
ALGp−1 as follows: every edge e ∈ ALGp−1 \OPT is removed from the current matching,
and every edge e ∈ OPT \ALGp−1 which is of type strictly smaller than k is added to the
current matching. Note that edges adjacent to e have been removed, hence ALGp is indeed
a matching. Also note that all edges added or removed by the algorithm have their type
increased by one.

Since ALGp−1 and OPT are matchings, their symmetric difference, excluding type k
edges, consists of alternating cycles and alternating paths which can be of even or odd length.
This means that the algorithm simply applies at the beginning of every phase all those
alternating paths and cycles.

We start the analysis of the competitive ratio by bounding OPT during phase p as

r`(p) ≤ OPT < r`(p)+1, (2)

which follows by the definition of phases.
During the phase p ≥ 1 the competitive ratio is OPT/ALGp. The type of an edge

increases by 1 at most with each phase. Hence in the beginning of the k first phases the
algorithm synchronizes with OPT as there are no blocked edges yet, and as a result during
these phases the ratio is 1 at the beginning and does not exceed r by the upper bound in (2).

For the remaining phases we need the following argument.

I Proposition 1. For even k and any phase p ≥ k + 1, AMP maintains a matching ALGp

of size at least r`(p) − r`(p−k+1)+1.

Proof. We denote by the type of a vertex v the maximum type of the edges adjacent to v,
and by ni,p the number of vertices of type i in phase p. In addition, we denote by OPTp the
value of OPT at the beginning of phase p. With every new phase the type of a vertex can
increase at most by 1. Hence every vertex of type k in phase p had positive type in phase
p− k + 1. Thus

nk,p ≤
k∑

i=1
ni,p−k+1 ≤ 2 ·OPTp−k+1,

MFCS 2018

8:8 Online Maximum Matching with Recourse

where the last inequality uses the fact that the left hand side counts the number of vertices
matched by the algorithm. In phase p, the difference between the optimal matching and the
matching of the algorithm is at most the number of blocked augmenting paths, and each of
them contains at least two type k vertices. Hence

ALGp ≥ OPTp −
1
2 · nk,p

≥ OPTp −OPTp−k+1

> r`(p) − r`(p−k+1)+1.

The last inequality holds since r`(p) ≤ OPTp < r`(p)+1. J

Combining this proposition with the bounds (2) we obtain the following bound.

I Proposition 2. The competitive ratio of AMP for k ≥ 4 is upper bounded by the expression

min
r>1

rk

rk−1 − r
. (3)

In addition we can show that this is a better upper bound.

I Proposition 3. For all even k ≥ 4, Expression (1) upper bounds Expression (3).

The following theorem concludes the asymptotic analysis of the performance of AMP.

I Theorem 1. For all even k, AMP has competitive ratio 1 +O(log k
k).

Proof sketch. We first sketch a simple argument based on the Puiseux series expansion [17]:
this is a type of power series that allows fractional powers, as opposed to only integer ones
(e.g., Taylor series). In the full version we provide a second proof that relies only on standard
calculus. Let r denote the optimal choice of the parameter, namely the one that minimizes (3).
By analyzing the derivative, it follows that r = (k − 1)1/(k−2), hence the competitive ratio is

at most (k−1)
k−1
k−2

k−2 , whose Puiseux series expansion at k =∞ is 1 + log k+1
k +O(1

k2). J

2.2 The algorithm Greedy
We consider the algorithm Greedy, which repeatedly applies an arbitrary augmenting path
whenever possible. This algorithm achieves an upper bound of 3/2 for k = 2 as has been
shown in [3]. We show that the same guarantee holds for all even k.In what concerns the
lower bound, the idea is to force the algorithm to augment an arbitrarily long path in order
to create a configuration with an arbitrarily large number of blocked augmenting paths of
lengths 5, which locally have ratio 3/2.

I Proposition 4. The competitive ratio of Greedy is 3/2 for every even k and 2 for every
odd k.

2.3 The algorithm L-Greedy
The greedy algorithm has inferior performance because it augments along arbitrarily long
augmenting paths, therefore sometimes sacrificing edge budget for only a marginal increase
in the matching size. A natural idea towards an improvement would be to apply only short
augmenting paths, as they are more budget efficient. For technical reasons, we restrict the
choice of augmenting paths even further.

S. Angelopoulos, C. Dürr, and S. Jin 8:9

We define the algorithm L-Greedy for some given parameter L, which applies any non-
blocked augmenting path of length at most 2L+1 that is in the symmetric difference between
the current matching and some particular optimal matching OPT. The latter is updated
after each edge arrival by applying an augmenting path for OPT. Note that L-Greedy may
not change its solution even if there is a short augmenting path in the current graph if it
contains edges which are not in this particular optimal matching OPT. We will later optimize
the parameter L as function of k.

2.3.1 Analysis of L-Greedy

We begin by observing that for L = 0 the algorithm collects greedily vertex disjoint edges
without any recourse, which is precisely the behavior of Greedy for k = 1 and has competitive
ratio 2. For L = 1 the algorithm L-Greedy applies only augmenting paths of length at
most 3. In this case, the same argument as in the proof of Proposition 4 shows that the
competitive ratio of L-Greedy is 3/2.

In what follows we analyze the general case L ≥ 2. To this end, we assign weights to
vertices in such a way that the total vertex weight equals the size of the current matching.
Therefore, whenever the size of the matching is increased by 1, a total weight of 1 is distributed
on the vertices along the augmenting path. Vertices in this path that were already matched
receive a weight α, where α ≥ 0 is some constant that we specify later. Finally, the two
vertices on the endpoints of the augmenting path receive the remaining weight, that is
1/2 − `α, where 2` + 1 is the length of the path. It follows, from this weight assignment,
that every unmatched vertex has weight 0, that every matched vertex has weight at least
1/2− Lα, and that every endpoint of a type k edge has weight at least 1/2− Lα+ (k − 1)α.

Suppose that the online algorithm reaches a configuration in which it cannot apply any
augmenting path, as specified in its statement. We consider the symmetric difference between
the matching produced by the algorithm and the optimal matching maintained internally by
the algorithm. This symmetric difference consists of alternating paths and/or alternating
cycles, and we will upper bound for each such component the ratio between the number
of edges in the optimal matching and the total vertex weight, which we call the local ratio.
In particular, a component in the symmetric difference falls in one of the following cases:
Either it is an augmenting path of length 2`+ 1 ≤ 2L+ 1, or an augmenting path of length
2`+ 1 > 2L+ 1, or an alternating cycle or alternating path of even length.

Case 1: Augmenting path of length 2` + 1 ≤ 2L + 1. Such a path contains at least
one edge of type k. It follows that ` ≥ 2, since an augmenting path of length 1 is a single
type 0 edge, and an augmenting path of length 3 has edge types respectively 0, t, 0 for
some odd t (and k is assumed to be even). The path contains 2` matched vertices, and
at least 2 of them are adjacent to a type k edge. Hence the total vertex weight is at least
2`
(1

2 − Lα
)

+ 2(k − 1)α, and the local ratio of this component is at most

`+ 1
`− 2`Lα+ 2(k − 1)α. (4)

Case 2: Augmenting path of length 2` + 1 > 2L + 1. Such a path contains 2` matched
vertices and therefore the local ratio is at most

`+ 1
`− 2`Lα. (5)

MFCS 2018

8:10 Online Maximum Matching with Recourse

Case 3: Alternating cycle or path of even length. Such a component contains 2` matched
vertices and therefore the local ratio is at most

`

`− 2`Lα, (6)

which is dominated by (5). We choose α so as to minimize the maximum of the local ratios,

as defined by (4) and (5). Then for this choice of α we optimize L; namely we choose the
value L = b

√
k − 1c. Note that for k = 4, this leads to the choice L = 1, which we analyzed

in the beginning of the section. We obtain the following performance guarantee.

I Theorem 2. The competitive ratio of L-Greedy with L = b
√
k − 1c is at most

k(L+ 2)− 2
(L+ 1)(k − 1) = 1 +O

(
1√
k

)
,

for even k ≥ 6 and at most 3/2 for k = 4.

One can show that this analysis of L-Greedy is essentially tight.

2.4 Lower bound for deterministic algorithms
Boyar et al. [3] show that the deterministic competitive ratio of the problem is 2 for k = 1
and 3/2 for k = 2. We complete this picture by showing a lower bound of 1 + 1

k−1 for all
k ≥ 3. Note that the lower bound is tight for k = 3, as the algorithm Greedy, which works
by assuming that k is only 2, has competitive ratio 3/2.

I Theorem 3. The deterministic competitive ratio of the online matching problem with
edge-bounded recourse is at least 1 + 1

k−1 for all k ≥ 3.

Proof sketch. We consider three cases, namely the cases k = 3, k is even and at least 4,
and finally k is odd and at least 5. For each case we present an appropriate adversarial
argument. Due to space limitations we only present the case k = 3. Suppose, by way of
contradiction, that for k = 3 some algorithm claims a competitive ratio strictly smaller than
(3n+ 2)/(2n+ 2) for some arbitrary n ≥ 1. The adversary releases a single edge, creating an
augmenting path of length 1. Then the algorithm applies the augmenting path, which the
adversary extends by appending one edge on each side, creating an augmenting path of type
0,1,0, as shown in Figure 2(a). Since the current ratio is 2, the algorithm needs to apply this
path, which the adversary again extends by appending an edge on each side, creating an
augmenting path of type 0,1,2,1,0, as shown in Figure 2(b). Since the current ratio is 3/2,
the algorithm applies this path. In response the adversary appends an edge at each endpoint
of the type 3 edge, and at each endpoint of one of the type 1 edges, as shown in Figure 2(c).
The resulting graph has a blocked augmenting path of type 0,3,0, and an augmenting path
of type 0,1,0, as shown in Figure 2(c). The algorithm needs to apply the latter one as the
ratio is currently 5/3 > 3/2.

At this point, the adversary repeats this construction n − 1 times, by identifying the
shaded part of Figure 2(c) as the graph of Figure 2(a), and reapplying the above construction.
The final graph consists of n blocked augmenting paths of type 0,3,0 and n+ 1 edges of type
1 that belong both to the optimal and the algorithm’s matchings. Figure 2(d) illustrates this
final graph for n = 4. Hence the competitive ratio is (3n+ 1)/(2n+ 1), contradicting the
claimed ratio and showing a lower bound of 3/2. J

S. Angelopoulos, C. Dürr, and S. Jin 8:11

(a) (b) (c)
1

0

0

01

2 1 0

1

2

0

3

0 2

0

1 0

(d)
0 0

32

2

1

0 0

32

2

1

0 0

32

2

1

0 0

32

2

1

1

Figure 2 Lower bound construction for the case k = 3.

Table 1 Summary of lower bounds (LB) and upper bounds on the competitive ratio for the
problem, for all even 4 ≤ k ≤ 22. The lower bounds for the arrival/departure model are discussed in
Section 3. The analysis of L-Greedy and AMP carry through to the (limited) edge arrival/departure
model. For k ≥ 22, the upper bound of AMP is superior to the upper bound of L-Greedy.

k LB (arr.) LB (arr./dep.) L-Greedy AMP
4 1.333333 1.428571 1.5 2.598076
6 1.2 1.263158 1.466667 1.869186
8 1.142857 1.179487 1.428571 1.613602
10 1.111111 1.134328 1.333333 1.480583
12 1.090909 1.106796 1.318182 1.398080
14 1.076923 1.088435 1.307692 1.341500
16 1.066666 1.075377 1.300000 1.300080
18 1.058823 1.065637 1.247059 1.268330
20 1.052631 1.058104 1.242105 1.243150
22 1.047619 1.052109 1.238095 1.222640

2.5 Comparing the algorithms L-Greedy and AMP
We have analyzed two deterministic online algorithms: the algorithm AMP, which has
competitive ratio 1+O (log(k)/k), and the algorithm L-Greedy, which has competitive ratio
1 + Θ(1/

√
k). Since the analysis of L-Greedy is tight, it follows that AMP is asymptotically

(i.e., for large k) superior to L-Greedy. However, for small values of k, namely k ≤ 20, we
observe that L-Greedy performs better, in comparison to the performance bound we have
shown for AMP. These findings are summarized in Table 1 and Figure 3.

3 The edge arrival/departure model

In this section we consider the online matching problem in the setting in which edges may
arrive but also depart online. In this context one can distinguish two models. In the limited
departure model an edge cannot be removed from the instance while it is matched by the
online algorithm, while in the stronger full departure model any edge can be removed.

It turns out that the latter model is quite restrictive. This is because it is possible for the
adversary to force an online algorithm to augment some augmenting path and then to remove
one of the edges in its matching. Eventually the algorithm can end up with blocked edges
(type k), without having the chance to augment its matching. This intuition is formalized in
the following lemma.

MFCS 2018

8:12 Online Maximum Matching with Recourse

4 6 8 10 12 14 16 18 20 22

1.5

2

2.5

edge budget k

co
m
pe

tit
iv
e
ra
tio

original AMP analysis
improved AMP analysis

L-Greedy

Figure 3 Comparison of the competitive ratios of the algorithm AMP and the algorithm L-
Greedy.

I Lemma 4. The competitive ratio in the full departure model is 2.

Since the full departure model is very restrictive for the algorithm, as shown in Lemma 4,
we will concentrate on the limited departure model, as defined in the introduction. For this
model, we observe that the algorithms L-Greedy and AMP have the same performance
guarantee as in the edge arrival model. This is because the analysis of L-Greedy uses
weights on vertices which are not affected by edge departures, and the analysis of AMP is
based on an upper bound over the number of type k edges, which still holds under edge
departures. We thus focus on obtaining stronger lower bounds in this model (also included in
Table 1). We begin by observing that the bound of 3/2 of the competitive ratio in the edge
arrival model for k ∈ {2, 3} still holds for the limited departure model, where the adversary
is stronger. Hence, the smallest interesting value for k in this model is k = 4, for which we
provide the following specific lower bound. The proof will also provide some intuition about
the adversarial argument for general k.

I Theorem 5. The competitive ratio in the limited departure model is at least 10/7 for
k = 4.

Proof. We specify a particular adversary that maintains a graph such that the symmetric
difference between the matching produced by the algorithm and the optimal matching consists
only of augmenting paths and has no alternating cycles or alternating paths of even length.

The edge types along any path form a string over the integers {0, 1, . . . , k} with alternating
parity and starting and ending with 0. We call these strings alternating. Thus, rather than a
game played between the algorithm and the adversary on a graph, we will consider the game
played on a collection of alternating strings.

Whenever the algorithm applies an augmenting path, this translates into the increment
of each integer of the corresponding string, for example 01210 → 12321. The adversary
responds to this action by three types of actions. First, the adversary may possibly split the
string into smaller strings, for example 12321→ 123, 1 or 12321→ 1, 3, 1. This corresponds
to deleting some edges which are currently not matched by the algorithm. Second, the
adversary may possibly merge some of the resulting strings by concatenating them on both

S. Angelopoulos, C. Dürr, and S. Jin 8:13

sides of a 0, for example 1, 1→ 101. Finally the adversary may append 0’s to the ends of the
strings, where needed to make them alternating, for example 101 → 01010. The last two
actions correspond to the insertion of (type 0) edges by the adversary.

The main idea is as follows. Consider an algorithm that claims a competitive ratio at
most (10− ε)/7 for some sufficiently small ε > 0. We will then show that the adversary can
force the algorithm into a final configuration of ratio at least 10/7, a contradiction.

We describe the current configuration by variables v, w, x, y, z which count the number of
the specific strings that are described in Figure 4. In particular, z is the total number of
strings 030 and 01410, which we call bad strings. The name is motivated by the fact that
01410 has worst local ratio among all blocked strings and is created from 030 strings.

The adversary starts by presenting the string 0, which the algorithm has to augment,
resulting in a single string 010. This unique adversarial action has been omitted for simplifi-
cation from Figure 4. From this moment onwards, we distinguish 3 different phases during
the game, decided by the adversary, and depicted in Figure 4. For example, if the algorithm
augments the string 01010, then in phase 1 the adversary will replace it with the strings 010
and 01210, while in phases 2 and 3 he will replace it with the string 0121210.

At a high level, the objective in phase 1 is to create a large enough number of bad strings,
while phase 2 creates a large enough proportion of bad strings. Last, phase 3 leads the
algorithm to a configuration which consists only of blocked strings.

The game starts with phase 1. During this phase the competitive ratio is at least 3/2,
thus forcing the algorithm to continue augmenting strings. After a finite number of steps,
the condition 7z + 3 > 4/ε holds and the game moves to phase 2. During the second phase
we have the invariants (1) 7z + 3 > 4/ε and (2) 2x + y + 2w ≤ z + 1. Invariant (1) holds
because the left-hand side will not decrease throughout the phase. Moreover, Invariant (2)
follows from the definitions of the involved parameters and the transitions between strings, as
defined by the statement of the phase. Together both invariants imply that the competitive
ratio is strictly larger than (10 − ε)/7, forcing the algorithm to augment strings. This is
because the competitive ratio can be lower bounded by

3z + 3y + 4(x+ w)
2z + 2y + 3(x+ w) ≥

10z + 2y + 4
7z + y + 3 ≥ 10z + 4

7z + 3 ≥
10− ε/2

7 ,

where the first inequality follows from Invariant (2) and the last one from (1).
In phase 2, at some moment eventually the condition z ≥ 8(x+ y+ v+w) will hold since

x + y + v + w does not change, but any sequence of x + y + 1 steps increases z. At that
moment, the game starts phase 3. We note that the condition is preserved during phase 3
and that it implies a ratio of at least 10/7, forcing the algorithm to a configuration consisting
only of the blocked strings 01410 and 012343210. This is because z ≥ 8(x+y+v+w) implies
z + y + x ≥ 2w + 8v, which in turn implies

3(x+ y + z) + 4w + 6v
2(x+ y + z) + 3w + 5v ≥

10
7 ,

where the left hand side lower bounds the competitive ratio in phase 3. J

We can generalize the ideas in the proof of Theorem 5 so as to obtain a non-trivial lower
bound for general even k ≥ 4, see Figure 5.

I Theorem 6. The competitive ratio in the limited departure model is at least k2−3k+6
k2−4k+7 , for

all even k ≥ 4.

Since k2−3k+6
k2−4k+7 > 1 + 1

k−1 for all k ≥ 4, Theorem 6 shows a stronger lower bound for even k
than Theorem 3 under the limited departure model.

MFCS 2018

8:14 Online Maximum Matching with Recourse

phase 2 phase 3phase 1
010

01210

030

01410

01010

010

01210

030

01410

01010

0121210

010

01210

030

01410

01010

0121210

012323210

01234343210

counting
010

01210

030

01410

01010

0121210

012323210

01234343210

zy

x
w
v

Figure 4 The lower bound construction in the arrival/departure model and k = 4.

a8
phase 2phase 1

010

01210

030

01410

01010

y

x
w

050 070

01610 01810

01010

0121210

012323210

010

01210

030

01410

050 070

01610 01810

01234343210

0123454543210

012345656543210

v 0123450

012345610

0123456783210

01234567210

a4 a6y

x

a4 a6 a8

Figure 5 The lower bound construction in the arrival/departure model illustrated for k = 8.
Blocked strings are depicted in red. The arcs illustrate the adversarial strategy. For example, if the
algorithm augments the string 012345656543210, the adversary replaces the resulting string by two
strings 070 and two strings 0123450.

References

1 Tess Avitabile, Claire Mathieu, and Laura H. Parkinson. Online constrained optimization
with recourse. Information Processing Letters, 113(3):81–86, 2013.

2 Aaron Bernstein, Jacob Holm, and Eva Rotenberg. Online bipartite matching with amor-
tized replacements. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms, (SODA), pages 947–959. SIAM, 2018.

3 Joan Boyar, Lene M. Favrholdt, Michal Kotrbčík, and Kim S. Larsen. Relaxing the irrevo-
cability requirement for online graph algorithms. In Proceedings of the 15th Workshop on
Algorithms and Data Structures, (WADS), pages 217–228. Springer, 2017.

4 Niv Buchbinder, Danny Segev, and Yevgeny Tkach. Online algorithms for maximum cardi-
nality matching with edge arrivals. In Proceedings of the 25th Annual European Symposium
on Algorithms, (ESA), Vienna, Austria, pages 22:1–22:14, 2017.

5 Ashish Chiplunkar, Sumedh Tirodkar, and Sundar Vishwanathan. On randomized algo-
rithms for matching in the online preemptive model. In Proceedings of the 23rd Annual
European Symposium on Algorithms, (ESA), pages 325–336. Springer, 2015.

6 Leah Epstein, Asaf Levin, Danny Segev, and Oren Weimann. Improved bounds for online
preemptive matching. In Proceedings of the 30th International Symposium on Theoretical

S. Angelopoulos, C. Dürr, and S. Jin 8:15

Aspects of Computer Science, (STACS), pages 389–399, 2013.
7 Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with

applications to adwords. In Proceedings of the nineteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 982–991. Society for Industrial and Applied Mathematics,
2008.

8 Albert Gu, Anupam Gupta, and Amit Kumar. The power of deferral: maintaining a
constant-competitive steiner tree online. SIAM Journal on Computing, 45(1):1–28, 2016.

9 Anupam Gupta and Amit Kumar. Online steiner tree with deletions. In Proceedings of the
25th Annual ACM-SIAM Symposium on Discrete Algorithms, (SODA), Portland, Oregon,
USA, pages 455–467, 2014.

10 Anupam Gupta, Amit Kumar, and Cliff Stein. Maintaining assignments online: Match-
ing, scheduling, and flows. In Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms, (SODA), pages 468–479, 2014.

11 Xin Han and Kazuhisa Makino. Online minimization knapsack problem. In Proceedings of
the 7th International Workshop on Approximation and Online Algorithms, (WAOA), pages
182–193. Springer, 2009.

12 Kazuo Iwama and Shiro Taketomi. Removable online knapsack problems. In Proceedings of
the 29th International Colloquium on Automata, Languages and Programming, (ICALP),
pages 293–305, 2002.

13 Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, (STOC), pages 352–358. ACM, 1990.

14 Andrew McGregor. Finding graph matchings in data streams. In Approximation,
Randomization and Combinatorial Optimization, Algorithms and Techniques, (APPROX-
RANDOM), pages 170–181. Springer, 2005.

15 Nicole Megow, Martin Skutella, José Verschae, and Andreas Wiese. The power of recourse
for online MST and TSP. SIAM Journal on Computing, 45(3):859–880, 2016.

16 Aranyak Mehta. Online matching and ad allocation. Foundations and Trends in Theoretical
Computer Science, 8(4):265–368, 2013.

17 C.L. Siegel. Topics in Complex Function Theory, Vol. 1: Elliptic Functions and Uni-
formization Theory. New York: Wiley, 1988.

18 Ashwinkumar Badanidiyuru Varadaraja. Buyback problem-approximate matroid intersec-
tion with cancellation costs. In Proceedings of the 38th International Colloquium on Au-
tomata, Languages, and Programming, (ICALP), pages 379–390. Springer, 2011.

MFCS 2018

Linking Focusing and Resolution with Selection
Guillaume Burel
ENSIIE and Samovar, Télécom SudParis and CNRS, Université Paris-Saclay, Évry, France
Inria and LSV, CNRS and ENS Paris-Saclay, Université Paris-Saclay, Cachan, France
guillaume.burel@ensiie.fr

Abstract
Focusing and selection are techniques that shrink the proof search space for respectively sequent
calculi and resolution. To bring out a link between them, we generalize them both: we introduce
a sequent calculus where each occurrence of an atom can have a positive or a negative polarity;
and a resolution method where each literal, whatever its sign, can be selected in input clauses. We
prove the equivalence between cut-free proofs in this sequent calculus and derivations of the empty
clause in that resolution method. Such a generalization is not semi-complete in general, which
allows us to consider complete instances that correspond to theories of any logical strength. We
present three complete instances: first, our framework allows us to show that ordinary focusing
corresponds to hyperresolution and semantic resolution; the second instance is deduction modulo
theory; and a new setting, not captured by any existing framework, extends deduction modulo
theory with rewriting rules having several left-hand sides, which restricts even more the proof
search space.

2012 ACM Subject Classification Theory of computation → Proof theory, Theory of computa-
tion → Automated reasoning

Keywords and phrases logic in computer science, automated deduction, proof theory, sequent
calculus, refinements of resolution, deduction modulo theory, polarization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.9

Related Version A full version of the paper can be found at https://hal.inria.fr/hal-
01670476.

1 Introduction

In addition to clever implementation techniques and data structures, a key point that
explains the success of state-of-the-art automated theorem provers is the use of calculi that
dramatically reduce proof search space. In the last decades, the independent developments
of two families of techniques can be highlighted. First, in the kind of methods based on
resolution, proof search space can be shrunk using ordering and selection techniques. The
intuition is to restrict the application of the resolution rule to only some literals in a clause.
If equality is considered, this leads to the superposition calculus [2] which is the base calculus
of the currently most efficient automated provers for first-order classical logic. Second, in
sequent calculi, Andreoli [1] introduced a technique called focusing to reduce non-determinism
in the application of sequent-calculus rules. It works by first applying all invertible rules
(those whose conclusion is logically equivalent to their premises) and second by chaining
the application of non-invertible rules. Originally developed for linear logic, focusing has
been extended to intuitionistic and classical first-order logic [26]. Focusing is mostly used
in fields where sequent calculi, and related inverse and tableaux methods, are the most
accurate proving method. For instance, there exists tools for first-order linear logic [12], for
intuitionistic logic [27] and for modal logic [28]. Focusing is also the key ingredient in Miller’s
ProofCert project aiming at building a universal framework for proof certification [15].

© Guillaume Burel;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.burel@ensiie.fr
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.9
https://hal.inria.fr/hal-01670476
https://hal.inria.fr/hal-01670476
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Linking Focusing and Resolution with Selection

Despite their apparent lack of relation, we show in this paper that selection in refinements
of the resolution calculus and focusing in sequent calculus are in fact strongly related, so
that ordinary focusing in classical first-order logic corresponds actually to hyperresolution,
where all negative literals are selected in a clause and are resolved at once. This connection
is obtained by relaxing both techniques: concerning resolution, we allow any literal of the
input clauses to be selected, whatever its sign; for the focusing part, we allow polarization
not only of connectives, but also of all occurrences of literals. The main theorem of this
paper, Theorem 3, shows that the sets of clauses whose insatisfiability can be proved by the
resolution method with arbitrary input selection are exactly the sequents that have a cut-free
proof in the generalized focusing setting.

This generalization allows us to cover a wider spectrum of proof systems. In particular,
this permits to consider systems that search for proofs modulo some theory. Indeed, in real
world applications, proof obligations are often verified within one or several theories. This
explains the interest in and the success of Satisfiability Modulo Theory tools in recent years.
Embedding a theory in our framework amounts to giving an axiomatic presentation of it
where some literals are selected.

By relaxing the conditions for selecting literals, our framework is not always refutationaly
complete. However, this should not be considered as a drawback, but as an essential point
to be able to represent efficiently all kinds of theories. Indeed, let us consider a proof search
method P(T) parameterized by a theory T . Ideally, P(T) should be as efficient as a generic
proof search method if it is fed with a formula that is not related to the theory T . In
particular, if it tries to refute the true formula >, it should terminate, and with the answer
“NO”. Let us say that P(T) is relatively consistent if it is the case. As we pointed out with
Dowek [8], we cannot have a generic proof of the completeness of a relatively consistent
method P(T) that would work for all T . Indeed, such a proof would imply the consistency
of the theory T , and, according to Gödel, this cannot be performed in T itself. So either the
completeness of the proof system is proved once and for all, but it cannot represent theories
that are logically at least as strong as that proof of completeness; or it is not complete in
general but it can be proved to be complete for particular theories of some arbitrary logical
strength. What is interesting therefore is to give proofs of completeness of P(T) for particular
theories T .

Therefore, we give three instances of our framework, where we can have proofs of
completeness. First, as stated above, we link ordinary focusing with hyperresolution, and,
in the ground case, with semantic resolution. Second, we show that Deduction Modulo
Theory [20] is also a particular instance of this framework, knowing that there exists numerous
proof techniques to prove the completeness of Deduction Modulo a particular theory, for
instance [24, 21, 18, 7]. Third, we show how completeness in our framework can be reduced
to completeness of several instances of Deduction Modulo Theory. To give an intuition about
this last part, and to illustrate how much the proof search space can be constrained without
losing completeness, let us consider for example the theory defining the powerset:

∀X, ∀Y, (X ∈ P(Y))⇔ (∀Z, (Z ∈ X)⇒ (Z ∈ Y))

This theory can be put in clausal normal form, using d as a Skolem symbol, and we select
(by underlining them) some literals in these clauses1:

1 We use the associative-commutative-idempotent symbol g in clauses to distinguish it from the symbol
∨ that is used in formulas.

G. Burel 9:3

¬X ∈ P(Y)g¬Z ∈ X gZ ∈ Y (1)

X ∈ P(Y)g d(X,Y) ∈ X (2)

X ∈ P(Y)g¬d(X,Y) ∈ Y (3)

Using focusing in general, and in our framework in particular, the decomposition of connectives
is so restricted that, given an axiom, a proof derivation decomposing this axiom would
necessarily have certain shapes. Thus, the axiom can be replaced by new inference rules,
called synthetic rules, that are used instead of the derivation of those shapes. See end of
Section 2, page 6, for more details. In our framework, this would lead to the following three
synthetic rules, that can be used in place of the axioms (the explanation how these rules are
obtained is given in Section 5.3):

∆, u ∈ P(v), t ∈ u, t ∈ v −
(1)−

∆, u ∈ P(v), t ∈ u −
∆,¬u ∈ P(v), d(u, v) ∈ u −

(2)−
∆,¬u ∈ P(v) −

(3)−
∆,¬u ∈ P(v), d(u, v) ∈ v −

The only proof of transitivity of the membership in the powerset is then
(3)−

a ∈ P(b), b ∈ P(c),¬a ∈ P(c)
::::::::

, d(a, c) ∈ a, d(a, c) ∈ b, d(a, c) ∈ c
::::::::

−
(1)−

a ∈ P(b), b ∈ P(c)
:::::::

,¬a ∈ P(c), d(a, c) ∈ a, d(a, c) ∈ b
::::::::

−
(1)−

a ∈ P(b)
:::::::

, b ∈ P(c),¬a ∈ P(c), d(a, c) ∈ a
::::::::

−
(2)−

a ∈ P(b), b ∈ P(c),¬a ∈ P(c)
::::::::

−
∧−

a ∈ P(b) ∧ b ∈ P(c) ∧ ¬a ∈ P(c)
::::::::::::::::::::::::::::

−
∃−
∃A. ∃B. ∃C. A ∈ P(B) ∧B ∈ P(C) ∧ ¬A ∈ P(C)
:::

−

where the active formulas in a sequent are underwaved, and double lines indicate potentially
several applications of an inference rule.

On the resolution side, clauses (1) to (3) lead to the following ground derived rules (see
also Section 5.3):

u ∈ P(v)gC t ∈ ugD
(1)

t ∈ vgC gD
¬u ∈ P(v)gC

(2)
d(u, v) ∈ ugC

¬u ∈ P(v)gC d(u, v) ∈ vgD
(3)

C gD
Once again, there is only one proof of transitivity, i.e. starting from the set of clauses
{a ∈ P(b); b ∈ P(c);¬a ∈ P(c)}:

¬a ∈ P(c)
b ∈ P(c)

a ∈ P(b)
¬a ∈ P(c)

(2)
d(a, c) ∈ a

(1)
d(a, c) ∈ b

(1)
d(a, c) ∈ c

(3)
�

and we cannot even infer other clauses than those. We let the reader compare with what
happens if we used clauses (1) to (3) in resolution, even using the ordered resolution with
selection refinement.

MFCS 2018

9:4 Linking Focusing and Resolution with Selection

Related work. Chaudhuri et al. [13] show that hyperresolution for Horn clauses can be
explained as an instance of a sequent calculus for intuitionistic linear logic with focusing
where atoms are given a negative polarity.

Farooque et al. [23] developed a sequent calculus, based on focusing, that is able to
simulate DPLL(T), the most common calculus used in SMT provers. The main difference
with our framework is that in [23], the theory is considered as a black box which is called as
an oracle. Here, the theory is considered as a first-class citizen.

Within the ProofCert project, resolution proofs can be checked by a kernel built upon
a sequent calculus with focusing [15]. Based on this, the tool Checkers [14] is able to
verify proofs coming from automated theorem provers based on resolution such as E-prover.
Different from here, they translate resolution derivations using cuts to get smaller proofs.

Hermant [25] proves the correspondance between the cut-free fragment of a sequent
calculus and a resolution method, in the setting of Deduction Modulo Theory. Since
Deduction Modulo Theory is subsumed by our framework, Theorem 3 is a generalization of
Hermant’s work. Proving it is simpler in our setting because focusing restrains the shape of
possible sequent calculus proofs, whereas Hermant had to prove technical lemmas to give
proofs a canonical shape.

Notations and conventions. We use standard definitions for terms, predicates, formulas
(with connectives ⊥,>,¬,∧,∨ and quantifiers ∀, ∃), sequents and substitutions. A literal
is an atom or its negation. A clause is a set of literals. We will identify a literal with the
unit clause containing it. Unless stated otherwise, letters P,Q,R, P ′, P1, . . . denote atoms,
L,K,L′, L1, . . . denote literals, A,B,A′, A1, . . . denote formulas, C,D,C ′, C1, . . . denote
clauses, Γ,∆ denote set of clauses or set of formulas (depending on the context). A⊥ denotes
the negation normal form of ¬A.

2 Focusing with Polarized Occurrences of Atoms

Focusing was introduced by Andreoli [1] to restrict the non-determinism in some sequent
calculus for linear logic. It relies on the alternation of two phases: During the asynchronous
phase (sequents with ⇑), all invertible rules are applied on the formulas of the sequent. Recall
that a rule is said invertible if its conclusion implies the conjunction of its premises. During
the synchronous phase (sequents with ⇓), a particular formula is selected – the focus is on
it – and all possible non-invertible rules are successively applied on it. This idea has been
extended to intuitionistic and classical first-order logic [26]. In these, connectives may have
invertible and non-invertible versions of their sequent calculus rules. Therefore, one considers
in that case two versions of a connective, one called positive when the right introduction
rule is non-invertible, and one called negative when it is invertible. Some connectives, i.e.
∃ in classical logic, only have a positive version, and dually, others, such as ∀ in classical
logic, only have a negative version. Given a usual formula, one can decide which version of
a connective one wants to use at a particular occurrence, which is called a polarization of
the formula.2 Note that the polarity of a connective does not affect its semantics, it only
alters the shape of the sequent calculus proofs. Similarly, one can decide the polarity of
each literal. If a literal with negative polarity L is focused on in a branch, then this branch

2 Let us note that this notion of polarity is a standard denomination when dealing with focusing, and should
not be confused with the more usual but unrelated notion defined by the parity of the negation-depth
of a position in a formula.

G. Burel 9:5

Asynchronous phase:
_
⇑ − Γ, L, L⊥ ⇑ −

Γ ⇑ ∆, A −
⇑∃− x not free in Γ,∆

Γ ⇑ ∆, ∃x. A −
Γ ⇑ ∆, A − Γ ⇑ ∆, B −

⇑∨−
Γ ⇑ ∆, A ∨+ B −

Γ ⇑ ∆, A,B −
⇑∧−

Γ ⇑ ∆, A ∧+ B −
Γ ⇑ ∆ −

⇑>−
Γ ⇑ ∆,> −

Synchronous phase:
_
⇓ − Γ, L⊥ ⇓ L −

Γ ⇓ {t/x}A −
⇓∀−

Γ ⇓ ∀x. A −
⇓⊥−

Γ ⇓ ⊥ −

Γ ⇓ A − Γ ⇓ B −
⇓∨−

Γ ⇓ A ∨− B −
Γ ⇓ A −

⇓∧1−
Γ ⇓ A ∧− B −

Γ ⇓ B −
⇓∧2−

Γ ⇓ A ∧− B −

Γ, A ⇓ A −
Focus Γ, A ⇑ −
A negative

Γ ⇑ A −
Release Γ ⇓ A −
A positive

Γ, A ⇑ ∆ −
Store Γ ⇑ A,∆ −
A negative or literal

Figure 1 The sequent calculus LKF⊥.

must necessarily be closed, with L⊥ in the same context. (See rule _
⇓ − in Figure 1.) In the

ordinary presentation of focusing, this polarity is chosen globally for all occurrences of each
atom, and the polarity of ¬P is defined as the inverse of that of P . In our setting, the polarity
is attached to the position of the literal in the formula. In particular, if a substitution is
applied to the formula, the polarities of the resulting literals do not change. The polarity
of a formula is defined as the polarity of its top connective. Besides, note that to switch
the polarity of a formula, e.g. to impose a change of phase, one can prefix it by so-called
delays: δ−A is negative whatever the polarity of A. Delays can be defined for instance by
δ−A = ∀x. A where x is not free in A, so we do not need them in the syntax and the rules.

Liang and Miller [26] introduce the sequent calculus LKF, and prove it to be complete
for classical first-order logic. In Figure 1, we present the calculus LKF⊥, which is almost the
same with the following differences:

All formulas are put on the left-hand side of the sequent, instead of the right-hand side.
Therefore, one does not try to prove a disjunction of formulas, but one tries to refute a
conjunction of formulas. This is the same thanks to the dual nature of classical first-order
logic, and this helps to be closer to the resolution derivations. Note that, consequently,
the focus is on negative formulas, and invertible rules are applied on positive formulas.
The polarity of atoms is not chosen globally, but each occurrence of a literal can have a
positive or a negative polarity. In particular, we can have two literals L and L⊥ which
are both negative, or both positive. We denote by L the fact that the literal L has a
negative polarity. To be able to close branches on which we have two positive opposed
literals, we add a rule _

⇑ −.

We denote by Γ ⇑ ∆ ` (with Γ or ∆, possibly empty, containing polarized formulas)
the fact that there exists a proof of the sequent Γ ⇑ ∆ − in LKF⊥, that is, a derivation
starting from this sequent and whose branches are all closed (by _

⇓ −, _
⇑ − or ⇓⊥−). Thanks

to focusing, such a proof has the following shape :
Since one starts in an asynchronous (⇑) phase, invertible rules are successively applied to
the positive formulas of ∆, until one obtains negative formulas or literals that are put on
the left of ⇑ using Store.
When no formula appears on the right of ⇑, then either the branch is closed by _

⇑ −; or
the focus is put on a negative formula using Focus.
In the latter case, one is now in synchronous (⇓) phase where non-invertible rules are

MFCS 2018

9:6 Linking Focusing and Resolution with Selection

successively applied to the formula upon which the focus is, until either the branch is
closed using _

⇓ − or ⇓⊥−; or one obtains a positive formula and the synchronous phase
ends using Release.
In the latter case, one starts again in the asynchronous phase.

Focusing therefore strongly constraints the shape of possible proofs, and therefore reduces
the proof search space. The _

⇓ − in particular imposes to close branches immediately when
the focus is on a negative literal, and thus rules out many derivations.

Note that proofs can be closed when the polarities of an atom and its negation are both
positive (rule _

⇑ −), or when one is positive and the other negative (rule _
⇓ −), but not when

they are both negative. Therefore, this restricts how formulas that contains literals with
negative polarities can interact one with the others, and this is the main point of LKF⊥ to
reduce the proof search space.

Restricting proof search using focusing leads to what are called synthetic rules (see for
instance [13, pp.148–150] where they are called derived rules). The idea is to replace some
formula A in the context of the sequent by new inference rules. Instead of proving the sequent
A,∆ − in LKF⊥, one proves ∆ − in (LKF⊥+ the synthetic rules obtained from A). Indeed,
a proof focusing on A can only have certain shapes, and thus instead of having A in the
context, it can be replaced by new rules synthesizing those shapes. For instance, the formula
P ∨− (Q ∧+ R) in a context Γ can only lead to the following derivations when the focus is
put on it:

_
⇓ − Γ ⇓ P −

Γ, Q ⇑ −
Store Γ ⇑ Q −

Release Γ ⇓ Q −
⇓∧1−

Γ ⇓ Q ∧− R −
⇓∨−

Γ ⇓ P ∨− (Q ∧− R) −
Focus Γ ⇑ −

and
_
⇓ − Γ ⇓ P −

_
⇓ − Γ ⇓ R −

⇓∧2−
Γ ⇓ Q ∧− R −

⇓∨−
Γ ⇓ P ∨− (Q ∧− R) −

Focus Γ ⇑ −

.

In the left derivation, P⊥ must be in Γ to be able to close the left branch, so Γ is
in fact of the form P ∨− (Q ∧+ R),∆, P⊥. In the right one, Γ must be of the form
P ∨− (Q ∧+ R),∆, P⊥, R⊥. Instead of searching for a proof with P ∨− (Q ∧+ R) in the
context, the following two synthetic rules can therefore be used:

∆, P⊥, Q ⇑ −Syn1
∆, P⊥ ⇑ −

Syn2
∆, P⊥, R⊥ ⇑ −

Provability is the same because each application of a synthetic rule can be replaced by
applying Focus on P ∨− (Q∧+R) and following the derivation leading the synthetic rule, and
vice versa. This is used for instance in provers based on the inverse method and focusing [27].

The sequent calculus LKF⊥ is not complete in general. One of the simplest examples
of incompleteness is the sequent P ∨− Q,¬P ∨− Q,¬Q ⇑− which has no proof although
P ∨Q,¬P ∨Q,¬Q is not satisfiable.

3 Resolution with Input Selection

Two approaches can be used to reduce the proof search space of the resolution calculus: first,
one can restrict on which pairs of clauses the resolution rule can be applied; this leads for
instance to the set-of-support strategy [32], in which clauses are split into two sets, called the
theory and the set of support; at least one of the clauses involved in a resolution step must
be in the set of support. Second, one can restrict which literals in the clauses can be resolved

G. Burel 9:7

LgC L′⊥gDResolution
σ(C gD)

S(LgC) = ∅
S(L′⊥gD) = ∅
σ is the most general unifier of L =? L′

LgL′gCFactoring
σ(LgC)

S(LgL′gC) = ∅
σ is the most general unifier of L =? L′

K1g . . .gKngC K ′1
⊥gD1 . . . K ′n

⊥gDn
Resolution with Selection

σ(C gD1g . . .gDn)
S(K1g . . .gKngC) = {K1; . . . ;Kn}
S(K ′i⊥gDi) = ∅
σ is the mgu of the simultaneous unification problem K1 =? K ′1, . . . ,Kn =? K ′n

Figure 2 Resolution with Input Selection.

upon; those literals are said to be selected in the clause. Resolution with free selection is
complete for Horn clauses, but incomplete in general. Selecting a subset of the negative
literals (if no literal is selected, then any literal of the clause can be used in resolution) is
however complete, and combining this with an ordering restriction on clauses with no selected
literals leads to Ordered Resolution with Selection, which was introduced by Bachmair and
Ganzinger [2] (see also [3]) as a complete refinement of resolution.

Resolution with Input Selection combines these two approaches. It is parameterized by a
selection function S that associate to each input clause a subset of its literals. If the selection
function selects at least one literal, only those can be used in Resolution. Otherwise, any
of them can be used. Note that for generated clauses, we impose that S(C) = ∅. We also
allow to have the same input clause several times with different selections. (That is, we
actually work with couples composed of a clause and its selected literals.) The inference
rules of Resolution with Input Selection are presented in Fig. 2. Literals that are selected in
a clause are underlined. We will see that they indeed correspond to the literals that have a
negative polarization in LKF⊥. As usual, variables are renamed in the clauses to avoid that
premises of the inference rules share variables. We have two flavors of the resolution rule:
the usual binary resolution, that is applied on two premises that do not select any literal;
and Resolution with Selection that is applied on a clause in which n literals are selected and
n clauses is which no literal is selected. Consequently, clauses with a non-empty selection
cannot be resolved one with the others. By considering them as the theory part, and the
clauses with an empty selection as the set of support, it is easy to see that Resolution with
Input Selection is a generalization of the set-of-support strategy. Notwithstanding, note
that neither Resolution with Input Selection is a generalization of Ordered Resolution with
Selection nor the converse.

I Definition 1 (Resolution derivation). We write Γ C if C can be derived from some clauses
in Γ using the inference rules Resolution with Selection, Resolution, or Factoring presented in
Figure 2. We write Γ ∗ C if

C ∈ Γ or if
there exists D such that Γ D and Γ, D ∗ C.

As usual in resolution methods, the goal is to produce the empty clause � starting from a
set of clauses Γ to show, since all rules are sound, that Γ is unsatisfiable. Here again, the
calculus is not complete in general: from the set of clauses P gQ,¬P gQ,¬Q, no inference
rule can be applied: to apply Resolution with Selection, we would need a clause where P , or
¬P , is not selected, and Resolution needs two clauses without selection.

MFCS 2018

9:8 Linking Focusing and Resolution with Selection

4 LKF⊥ is a Conservative Extension of Resolution with Input
Selection

To link LKF⊥ with Resolution with Input Selection, we need to indicate how clauses are
related to polarized formulas.

I Definition 2. Given a clause C = L1g · · ·gLngK1g . . .gKm whose free variables are
x1, . . . , xl and such that S(C) = {L1; . . . ;Ln}, we define the associated formula pCq =
∀x1, . . . , xl. L1 ∨− · · · ∨− Ln ∨− δ−(K1 ∨+ · · · ∨+ Km). pCq is said to be in clausal form.
By extension, pΓq is the set of the formulas associated to the clauses of the set Γ.

The main theorem of this article relates LKF⊥ with Resolution with Input Selection:

I Theorem 3. Let Γ be a set of clauses. We have pΓq ⇑` iff Γ ∗ �.

The proof can be found in the long version of the paper (https://hal.inria.fr/
hal-01670476). To prove the right-to-left direction, we prove that all inference rules of
Resolution with Input Selection are admissible in LKF⊥, in the sense that if Γ C then
LKF⊥ proofs of pΓq, pCq ⇑− can be turned into proofs of pΓq ⇑−. Note that they are
admissible, but they are not derivable. In particular, the size of the proof in LKF⊥ can
be much larger than the resolution derivation, as expected in a cut-free sequent calculus.
Using cuts would lead to a closer correspondence between resolution derivations and sequent-
calculus proofs, as in [15]. However, we chose to stay in the cut-free fragment to prove that,
even in the incomplete case, resolution coincides with cut-free proofs, as in [25].

5 Complete Instances

5.1 Ordinary Focusing and Semantic Hyperresolution
As said earlier, in standard LKF, not all occurrences of literals can have an arbitrary polarity.
Instead, each atom P is given globally a polarity, and P⊥ has the opposite polarity.

Let us first look at the simple case where atoms are given a positive polarity. We recall
the completeness proof of LKF:

I Theorem 4 (Corollary of [26, Theorem 17]). If the literals with a positive polarity are
exactly the atoms, LKF⊥ is (sound and) complete.

If we look at the corresponding resolution calculus, Resolution with Selection for this particular
instance becomes:

¬P1g . . .g¬PngC P ′1gD1 . . . P ′ngDnR.w.S.
σ(C gD1g . . .gDn)

where C and Di for all i contain only positive literals, and σ is the most general unifier of
P1 =? P ′1, . . . , Pn =? P ′n. Note that the clause σ(C gD1g . . .gDn) contains only positive
literals, so no literal would be selected in it even if it was an input clause. Besides, Resolution
cannot be applied, since there exists no clause ¬P gC with S(¬P gC) = ∅.

This corresponding resolution calculus is therefore exactly hyperresolution of [29]: premises
of an inference contains all only positive literals, except one clause whose all negative literals
are resolved at once. Theorem 3 therefore links ordinary focusing with hyperresolution.
Consequently, Theorem 4 implies the completeness of hyperresolution.

Chaudhuri et al. [13, Theorem 16] prove a similar result by establishing a correspondence
between hyperresolution derivations and proofs in a focused sequent calculus for intuitionistic

https://hal.inria.fr/hal-01670476
https://hal.inria.fr/hal-01670476

G. Burel 9:9

linear logic, but only considering Horn clauses. In their setting, choosing a negative polarity
for atoms leads to SLD resolution, which is the reasoning mechanism of Prolog.

Let us now look at the general case, where atoms are given an arbitrary polarity. Let
us stick to the ground case. We first recall a refinement of resolution called Semantic
hyperresolution [31][11, Sect. 1.3.5.3]. Let I be an arbitrary Herbrand interpretation, i.e.
a model whose domain is the set of terms interpreted as themselves. Note that I is not
assumed to be a model of the input set of clauses (which is fortunate, since one is trying
to show that it is unsatisfiable). Given a clause C, the idea of semantic hyperresolution is
to resolve all literals of C that are valid in I at once, with clauses whose literals are all not
valid in I. This gives the rule:

K1g . . .gKngC K1
⊥gD1 . . . Kn

⊥gDnSHR
C gD1g . . .gDn

where for all i, I |= Ki (and thus I 6|= K⊥i), I 6|= C and I 6|= Di. Note that I 6|=
C gD1g . . .gDn.

Semantic hyperresolution for a Herbrand interpretation I can be seen as an instance of
Resolution with Input Selection by using the following polarization of atoms: a literal L
has a negative polarity iff I |= L. In that case, SHR corresponds exactly to Resolution with
Selection, and Resolution cannot be applied since we cannot have clauses P gC and ¬P gD
where both P and ¬P are not valid in I.

This particular instance of polarization is in fact the ordinary version of focusing. Indeed,
once a global polarity is assigned to each atom, the set of literals whose polarity is negative
defines an Herbrand interpretation, and we saw reciprocally how to design a global polarization
from the Herbrand interpretation. Theorem 3 therefore links ordinary focusing in the ground
case with semantic hyperresolution. They are both complete, thanks to this theorem:

I Theorem 5 (Corollary of [26, Theorem 17]). Given a global polarization of atoms, where
the polarity of P⊥ is the opposite of that of P , LKF⊥ is (sound and) complete.

5.2 Deduction Modulo Theory
Deduction Modulo Theory [20] is a framework that consists in applying the inference rules of
an existing proof system modulo some congruence over formulas. This congruence represents
the theory, and it is in general defined by means of rewriting rules. To be expressive enough,
these rules are defined not only at the term level, but also for formulas. To get simpler
presentations of theories, we distinguish between rewrite rules that can be applied at positive
and at negative positions by giving them a polarity3, where by negative position we mean
under an odd number of ¬. We therefore have positive rules P →+ A and negative rules
P →− A where P is an atom and A an arbitrary formula whose free variables appears in
P . Given a rule P →+ A, the rewrite relation B1

+−→B2 is defined as usual by saying that
there exists a position p and a substitution σ such that the subformula of B1 at position
p is σP and B2 equals B1 where the subformula at position p is replaced by σA. −−→ is
defined similarly. In Polarized Sequent Calculus Modulo theory [17], the inference rules of
the sequent calculus are applied modulo such a polarized rewriting system, as in for instance
in Γ − A,∆ Γ − B,∆
−∧ C

+−→ ∗A ∧BΓ − C,∆
. Note that the implicit semantics of a negative

3 This polarity must not be confused with the other notions of polarity mentioned in the paper.

MFCS 2018

9:10 Linking Focusing and Resolution with Selection

_−
Γ, L, L⊥ −

Γ −>− Γ,> −
⊥− Γ,⊥ −

Γ, A − Γ, B −
∨−

Γ, A ∨B −
Γ, A,B −

∧−
Γ, A ∧B −

Γ, A −
∃− x not free in ΓΓ, ∃x. A −

Γ, ∀x. A, {t/x}A −
∀− Γ, ∀x. A −

Γ, P,A −
↑−− P

−−→AΓ, P −
Γ,¬P,A⊥ −

↑+− P
+−→AΓ,¬P −

Figure 3 The sequent calculus PUSC⊥.

rule P →− A is therefore ∀x. (P ⇒ A), whereas the semantics of P →+ A is ∀x. (A⇒ P),
where x are the free variables of P .

With Kirchner [9], we proved the equivalence of Polarized Sequent Calculus Modulo
theory to a sequent calculus where polarized rewriting rules are applied only on literals, using
explicit rules. This calculus, Polarized Unfolding Sequent Calculus, is almost the calculus
PUSC⊥ presented in Figure 3. The only difference is that all formulas are put on the left
of the sequent in PUSC⊥. We denote by Γ `R the fact that Γ − can be proved in PUSC⊥
using the polarized rewriting system R. Note that the rule for the universal quantifier ∀−
as well as the unfolding rules ↑−− and ↑+− contain an implicit contraction rule, as in the
sequent calculus G4 of Kleene, in order to ensure that all rules of PUSC⊥ are invertible.

We can translate polarized rewriting rules as formulas with selection, and see PUSC⊥ as
an instance of LKF⊥. We first consider how to translate formulas of the right-hand side of
polarized rewriting rules. We polarize them by choosing positive connectives for ∨ and ∧
and, to unchain the introduction of the universal quantifier, we introduce delays. (Let us
recall that a delay δ+ allows to force a formula to be positive, and it can be encoded using
an existantial quantifier.) This gives the translation:

|L| = L when L is >, ⊥ or a literal |A ∧B| = |A| ∧+ |B|
|A ∨B| = |A| ∨+ |B| |∃x. A| = ∃x. |A| |∀x. A| = ∀x. δ+|A|

I Definition 6. Given a negative rewriting rule P →− A where the free variables of P are
x1, . . . , xn, its translation as a formula with selection is [|P →− A|] = ∀x1 . . . xn. ¬P ∨− δ+|A|.

Given a positive rewriting rule P →+ A where the free variables of P are x1, . . . , xn, its
translation as a formula with selection is [|P →+ A|] = ∀x1. . . . ∀xn. P ∨− δ+|A⊥|.

The translation [|R|] of a polarized rewriting system R is the multiset of the translation
of its rules.

I Definition 7. Let N1, . . . , Nn be a multiset of formulas whose top connective is ∀ or ⊥ or
that are literals, and let P1, . . . , Pm be a multiset of non-literal formulas whose top connective
is neither ∀ nor ⊥, then the translation of the PUSC⊥ sequent N1, . . . , Nn, P1, . . . , Pm −
modulo the rewriting system R is the LKF⊥ sequent [|R|], |N1|, . . . , |Nn| ⇑ |P1|, . . . , |Pm| −.

I Theorem 8. With the same assumptions as previous definition, N1, . . . , Nn, P1, . . . , Pm `R
in PUSC⊥ iff [|R|], |N1|, . . . , |Nn| ⇑ |P1|, . . . , |Pm| ` in LKF⊥.

The proof can be found in the long version of the paper.
Let us now consider the subcase where the rewriting rules are clausal, according to the

terminology of [19], e.g. they are of the form P →− C or P →+ ¬C for some formula C
in clausal normal form. In that case, the resolution method based on Deduction Modulo
Theory [20] can be refined into what is called Polarized Resolution Modulo theory [19], whose
rules are given in Fig. 4. (A refinement of) Polarized Resolution Modulo theory is actually
implemented in the automated theorem prover iProverModulo [5].

G. Burel 9:11

P gC ¬QgD
Resolution a

σ(C gD)
LgK gCFactoring σ = mgu(L,K)
σ(LgC)

P gCExt. Narr.− a, Q→− D
σ(DgC)

¬QgD
Ext. Narr.+ a, P →+ ¬C

σ(C gD)
a σ = mgu(P,Q)

Figure 4 Inference rules of Polarized Resolution Modulo theory.

By noting that the translation of the rule Q→− D is [|Q→− D|] = ∀x1. . . . ∀xn. ¬Q ∨−
δ+|D| whereas p¬QgDq = ∀x1. . . . ∀xn. ¬Q∨− δ−|D|, we can relate the rule Q→− D with
the clause with selection ¬QgD, which is called a one-way clause by Dowek [19]. Indeed,
the change of phase is always needed in that particular case, so that the delays are in fact
useless. Ext. Narr.− can therefore be seen as an instance of the Resolution with Selection rule:

¬QgD P gC
Resolution with Selection σ = mgu(P,Q)

σ(DgC)
.

Similarly, P →+ ¬C is related to P gC.
Consequently, since PUSC⊥ corresponds to LKF⊥, and Resolution with Input Selection

corresponds to Polarized Resolution Modulo theory, Theorem 3 leads to a new and more
generic proof of the correspondence between PUSC⊥ and Polarized Resolution Modulo theory.

Deduction Modulo Theory is not always complete. This is the case only if the cut rule
is admissible in Polarized Sequent Calculus Modulo theory. It holds for some particular
theories, e.g. Simple Type Theory [20] and arithmetic [22]. There are more or less powerful
techniques that ensures this property [24, 21, 18, 7]. We even proved that any consistent
first-order theory can be presented by a rewriting system admitting the cut rule [6]. As
presented with Dowek [8] and discussed in the introduction, the fact that completeness is not
proved once for all, but needs to be proved for each particular theory, is essential. Indeed, if
a theory is presented entirely by rewriting rules, completeness implies the consistency of the
theory, since no rule can be applied on the empty set of clauses. Consequently, the proof of
the completeness cannot be easier than the proof of consistency of the theory, and, according
to Gödel, cannot be proven in the theory itself.

5.3 Beyond Deduction Modulo Theory
We now consider the general case where several literals are selected in a clause, and show how
proving completeness in LKF⊥ can be reduced to proving completeness of several systems in
Deduction Modulo Theory.

I Example 9. Let us recall the set of clauses from the Introduction:

¬X ∈ P(Y)g¬Z ∈ X gZ ∈ Y (1) X ∈ P(Y)g d(X,Y) ∈ X (2)

X ∈ P(Y)g¬d(X,Y) ∈ Y (3)

Note that this example is not covered by Ordered Resolution with Selection, at least
not if a simplification ordering is used, because we cannot have X ∈ P(Y) � δ(X,Y) ∈ X
since with θ = {X 7→ P(Z);Y 7→ Z} their instances are ordered in the wrong direction:
P(Z) ∈ P(Z) ≺ δ(P(Z), Z) ∈ P(Z).

The synthetic rules of the example from the Introduction correspond to the derivations
when one of the clauses is focused. For instance, if we consider the clause (1), in a context

MFCS 2018

9:12 Linking Focusing and Resolution with Selection

Γ containing this clause, a proof putting the focus on p(1)q necessarily is of the following
shape:

_
⇓ − Γ ⇓ ¬u ∈ P(v) −

_
⇓ − Γ ⇓ ¬t ∈ u −

Γ, t ∈ v ⇑ −
Store Γ ⇑ t ∈ v −

Release Γ ⇓ t ∈ v −
⇓∨−

Γ ⇓ ¬u ∈ P(v) ∨− ¬t ∈ u ∨− t ∈ v −
⇓∀−

Γ ⇓ ∀X Y Z. ¬X ∈ P(Y) ∨− ¬Z ∈ X ∨− Z ∈ Y −
Focus Γ ⇑ −

where t, u, v are arbitrary terms, and where, to be able to close the left and middle branches,
u ∈ P(v) and t ∈ u must belong to Γ. So Γ is in fact of the form
∀X Y Z. ¬X ∈ P(Y) ∨+ ¬Z ∈ X ∨+ Z ∈ Y,∆, u ∈ P(v), t ∈ u for some ∆, and the axiom
∀X Y Z. ¬X ∈ P(Y) ∨+ ¬Z ∈ X ∨+ Z ∈ Y can be replaced by the synthetic rule:

∆, u ∈ P(v), t ∈ u, t ∈ v ⇑ −
(1)−

∆, u ∈ P(v), t ∈ u ⇑ −
.

The computation of the other synthetic rules is left as an exercise for the reader.
The resolution rules given in the Introduction corresponds to the ground instances of

Resolution with Selection with our three input clauses.

The question that remains is how we can prove the completeness of such a selection. We can
in fact consider only subselections.

I Definition 10 (Singleton subselection). Given a selection function S, the selection function
S1 is a singleton subselection of S if
S1(C) ⊆ S(C) for all C
if S(C) 6= ∅ then card(S1(C)) = 1

I Example 11. A singleton subselection of Example 9 can be

¬X ∈ P(Y)g¬Z ∈ X gZ ∈ Y X ∈ P(Y)g d(X,Y) ∈ X X ∈ P(Y)g¬d(X,Y) ∈ Y

I Theorem 12. Resolution with input selection S is complete iff for all singleton subselections
S1 of S, Resolution with input selection S1 is complete.

The proof can be found in the long version of the paper.
Since singleton subselections can be linked with rewriting systems in Deduction Modulo

Theory according to last subsection, we can reduce the problem of completeness in our
framework to several problems of completeness in Deduction Modulo Theory.

Conclusion and Further Work

We generalized focusing and resolution with selection, proved that they correspond, and
showed how known calculi are instances of this framework, namely ordinary focusing, hyper-
resolution and Deduction Modulo Theory. In the long version of the paper, other frameworks,
such as Superdeduction [4] or Schroeder-Heister’s Definitional reflection [30], are also consid-
ered. Furthermore, we presented how to reduce completeness of this framework to several
completeness proofs in Deduction Modulo Theory. We can therefore reuse the various tech-
niques for proving completeness in Deduction Modulo Theory [24, 21, 18, 7] in our framework.
As Deduction Modulo Theory already gives significant results in industrial applications when
the theory is a variant of set theory (more precisely, set theory of the B method) [10], we

G. Burel 9:13

can expect our framework to lead to even better outcomes. The notable results presented
here raise the following new areas of investigations.

First, we need to study how to apply selection also in the generated clauses. This should
allow us to cover the cases of Ordered Resolution with Selection and of Semantic Resolution
in the first-order case. Dually, in the sequent calculus part, this would correspond to the
possibility to dynamically add selection in formulas of subderivations. This could probably
be linked with the work of Deplagne [16] where rewrite rules corresponding to induction
hypotheses are dynamically added in the rewriting system of a sequent calculus for Deduction
Modulo Theory. Note that we already have one direction, namely from Resolution with Input
Selection to LKF⊥, since the proof for this direction (see the long version) does not assume
anything on the generated clauses; except, for Factoring, that it selects only instances of
literals that were already selected. The converse direction would require a meta-theorem of
completeness, since obviously it is not complete for all possible dynamic choices of selection.

Since focusing is defined not only for classical first-order logic but also for linear, intu-
itionistic, modal logics, the work in this paper could serve as a starting point to study how
to get automated proof search methods for these logics with a selection mechanism.

Another worthwhile point is how equality should be handled in our framework. In partic-
ular, it would be interesting to see how paramodulation calculi, in particular superposition,
can be embedded into a sequent calculus.

Finally, it would be worth investigating whether completeness proofs based on model
construction, such as semantic completeness proofs of tableaux (related to sequent calculus),
and completeness proof of superposition [2], can be linked in our framework.

References
1 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of

Logic and Computation, 2(3):297–347, 1992.
2 L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection

and simplification. Journal of Logic and Computation, 4(3):1–31, 1994.
3 Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan Robinson

and Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 19–99. Elsevier
and MIT Press, 2001.

4 Paul Brauner, Clément Houtmann, and Claude Kirchner. Principle of superdeduction. In
Luke Ong, editor, LICS, pages 41–50, 2007.

5 Guillaume Burel. Experimenting with deduction modulo. In Viorica Sofronie-Stokkermans
and Nikolaj Bjørner, editors, CADE, volume 6803 of LNCS, pages 162–176. Springer, 2011.

6 Guillaume Burel. From axioms to rewriting rules. Available on author’s web page, 2013.
7 Guillaume Burel. Cut admissibility by saturation. In Gilles Dowek, editor, RTA-TLCA,

volume 8560 of LNCS, pages 124–138. Springer, 2014.
8 Guillaume Burel and Gilles Dowek. How can we prove that a proof search method is not an

instance of another? In LFMTP, ACM International Conference Proceeding Series, pages
84–87. ACM, 2009.

9 Guillaume Burel and Claude Kirchner. Regaining cut admissibility in deduction modulo
using abstract completion. Information and Computation, 208(2):140–164, 2010.

10 Guillaume Bury, David Delahaye, Damien Doligez, Pierre Halmagrand, and Olivier Her-
mant. Automated deduction in the B set theory using typed proof search and deduction
modulo. In Ansgar Fehnker, Annabelle McIver, Geoff Sutcliffe, and Andrei Voronkov, edi-
tors, LPAR, volume 35 of EPiC Series in Computing, pages 42–58. EasyChair, 2015.

11 Samuel R. Buss, editor. Handbook of proof theory. Studies in logic and the foundations of
mathematics. Elsevier, Amsterdam, 1998.

MFCS 2018

9:14 Linking Focusing and Resolution with Selection

12 Kaustuv Chaudhuri and Frank Pfenning. A focusing inverse method theorem prover for
first-order linear logic. In Robert Nieuwenhuis, editor, CADE, volume 3632 of LNCS, pages
69–83. Springer, 2005.

13 Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical characterization of forward
and backward chaining in the inverse method. Journal of Automated Reasoning, 40(2-
3):133–177, 2008.

14 Zakaria Chihani, Tomer Libal, and Giselle Reis. The proof certifier checkers. In
TABLEAUX, volume 9323 of LNCS, pages 201–210, Wroclaw, Poland, 2015. Springer.

15 Zakaria Chihani, Dale Miller, and Fabien Renaud. Foundational proof certificates in first-
order logic. In Maria Paola Bonacina, editor, CADE, volume 7898 of LNCS, pages 162–177.
Springer, 2013.

16 Eric Deplagne and Claude Kirchner. Induction as deduction modulo. Rapport de recherche,
LORIA, Nov 2004. URL: https://hal.inria.fr/LORIA/inria-00099871.

17 Gilles Dowek. What is a theory? In Helmut Alt and Afonso Ferreira, editors, STACS,
volume 2285 of LNCS, pages 50–64. Springer, 2002.

18 Gilles Dowek. Truth values algebras and proof normalization. In Thorsten Altenkirch and
Conor McBride, editors, TYPES, volume 4502 of LNCS, pages 110–124. Springer, 2006.

19 Gilles Dowek. Polarized resolution modulo. In Cristian S. Calude and Vladimiro Sassone,
editors, IFIP TCS, volume 323 of IFIP AICT, pages 182–196. Springer, 2010.

20 Gilles Dowek, Thérèse Hardin, and Claude Kirchner. Theorem proving modulo. Journal
of Automated Reasoning, 31(1):33–72, 2003.

21 Gilles Dowek and Benjamin Werner. Proof normalization modulo. The Journal of Symbolic
Logic, 68(4):1289–1316, 2003.

22 Gilles Dowek and Benjamin Werner. Arithmetic as a theory modulo. In Jürgen Giesl,
editor, RTA, volume 3467 of LNCS, pages 423–437. Springer, 2005.

23 Mahfuza Farooque, Stéphane Graham-Lengrand, and Assia Mahboubi. A bisimulation
between DPLL(T) and a proof-search strategy for the focused sequent calculus. In Alberto
Momigliano, Brigitte Pientka, and Randy Pollack, editors, LFMTP, pages 3–14. ACM,
2013.

24 Olivier Hermant. Méthodes Sémantiques en Déduction Modulo. PhD thesis, École Poly-
technique, 2005.

25 Olivier Hermant. Resolution is cut-free. Journal of Automated Reasoning, 44(3):245–276,
2009.

26 Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and classi-
cal logics. Theoretical Computer Science, 410(46):4747–4768, 2009. Abstract Interpretation
and Logic Programming: In honor of professor Giorgio Levi.

27 Sean McLaughlin and Frank Pfenning. Imogen: Focusing the polarized inverse method for
intuitionistic propositional logic. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov,
editors, LPAR, volume 5330 of Lecture Notes in Computer Science, pages 174–181. Springer,
2008.

28 Dale Miller and Marco Volpe. Focused labeled proof systems for modal logic. In Martin
Davis, Ansgar Fehnker, Annabelle McIver, and Andrei Voronkov, editors, LPAR, volume
9450 of LNCS, pages 266–280. Springer, 2015.

29 J. A. Robinson. Automatic deduction with hyper-resolution. International Journal of
Computer Mathematics, 1:227–234, 1965.

30 Peter Schroeder-Heister. Cut elimination for logics with definitional reflection. In Non-
classical Logics and Information Processing, volume 619 of LNCS, pages 146–171. Springer,
1990.

31 James R. Slagle. Automatic theorem proving with renamable and semantic resolution. J.
ACM, 14(4):687–697, 1967.

32 Larry Wos, George A. Robinson, and Daniel F. Carson. Efficiency and completeness of the
set of support strategy in theorem proving. J. ACM, 12(4):536–541, 1965.

https://hal.inria.fr/LORIA/inria-00099871

Team Semantics for the Specification and
Verification of Hyperproperties
Andreas Krebs
Universität Tübingen, Wilhelm-Schickard-Institut für Informatik, Tübingen, Germany
krebs@informatik.uni-tuebingen.de

Arne Meier1

Leibniz Universität Hannover, Institut für Theoretische Informatik, Hannover, Germany
meier@thi.uni-hannover.de

https://orcid.org/0000-0002-8061-5376

Jonni Virtema
Hasselt University, Databases and Theoretical Computer Science Group, Diepenbeek, Belgium
jonni.virtema@uhasselt.be

https://orcid.org/0000-0002-1582-3718

Martin Zimmermann2

Saarland University, Reactive Systems Group, Saarbrücken, Germany
zimmermann@react.uni-saarland.de

Abstract
We develop team semantics for Linear Temporal Logic (LTL) to express hyperproperties, which
have recently been identified as a key concept in the verification of information flow properties.
Conceptually, we consider an asynchronous and a synchronous variant of team semantics. We
study basic properties of this new logic and classify the computational complexity of its satis-
fiability, path, and model checking problem. Further, we examine how extensions of these basic
logics react on adding other atomic operators. Finally, we compare its expressivity to the one
of HyperLTL, another recently introduced logic for hyperproperties. Our results show that LTL
under team semantics is a viable alternative to HyperLTL, which complements the expressivity
of HyperLTL and has partially better algorithmic properties.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases LTL, Hyperproperties, Team Semantics, Model Checking, Satisfiability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.10

Related Version [21], https://arxiv.org/abs/1709.08510

Acknowledgements We thank Alexander Weinert for numerous fruitful discussions.

1 Introduction

Guaranteeing security and privacy of user information is a key requirement in software
development. However, it is also one of the hardest goals to accomplish. One reason
for this difficulty is that such requirements typically amount to reasoning about the flow
of information and relating different execution traces of the system. In particular, these

1 Funded by the German Research Foundation DFG, project ME 4279/1-2.
2 Funded by the German Research Foundation DFG, project “TriCS” (ZI 1516/1-1).

© Andreas Krebs and Arne Meier and Jonni Virtema, and Martin Zimmermann;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 10; pp. 10:1–10:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:krebs@informatik.uni-tuebingen.de
mailto:meier@thi.uni-hannover.de
https://orcid.org/0000-0002-8061-5376
mailto:jonni.virtema@uhasselt.be
https://orcid.org/0000-0002-1582-3718
mailto:zimmermann@react.uni-saarland.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.10
https://arxiv.org/abs/1709.08510
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Team Semantics for the Specification and Verification of Hyperproperties

requirements are no longer trace properties, i.e., properties whose satisfaction can be verified
by considering each trace in isolation. For example, the property “the system terminates
eventually” is satisfied if every trace eventually reaches a final state. Formally, a trace
property ϕ is a set of traces and a system satisfies ϕ if each of its traces is in ϕ.

In contrast, the property “the system terminates within a bounded amount of time” is no
longer a trace property; consider a system that has a trace tn for every n, so that tn only
reaches a final state after n steps. This system does not satisfy the bounded termination
property, but each individual trace tn could also stem from a system that does satisfy it.
Thus, satisfaction of the property cannot be verified by considering each trace in isolation.

Properties with this characteristic were termed hyperproperties by Clarkson and Schnei-
der [6]. Formally, a hyperproperty ϕ is a set of sets of traces and a system satisfies ϕ if its set
of traces is contained in ϕ. The conceptual difference to trace properties allows specifying a
much richer landscape of properties including information flow and trace properties. Further,
one can also express specifications for symmetric access to critical resources in distributed
protocols and Hamming distances between code words in coding theory [29]. However, the
increase in expressiveness requires novel approaches to specification and verification.

HyperLTL. Trace properties are typically specified in temporal logics, most prominently in
Linear Temporal Logic (LTL) [28]. Verification of LTL specifications is routinely employed
in industrial settings and marks one of the most successful applications of formal methods to
real-life problems. Recently, this work has been extended to hyperproperties: HyperLTL,
LTL equipped with trace quantifiers, has been introduced to specify hyperproperties [5].
Accordingly, a model of a HyperLTL formula is a set of traces and the quantifiers range over
these traces. This logic is able to express the majority of the information flow properties
found in the literature (we refer to Section 3 of [5] for a full list). The satisfiability problem
for HyperLTL is undecidable [10] while the model checking problem is decidable, albeit of
non-elementary complexity [5, 13]. In view of this, the full logic is too strong. Fortunately
most information flow properties found in the literature can be expressed with at most
one quantifier alternation and consequently belong to decidable (and tractable) fragments.
Further works have studied runtime verification [2, 11], connections to first-order logic [14],
provided tool support [13, 10], and presented applications to “software doping” [7] and
the verification of web-based workflows [12]. In contrast, there are natural properties, e.g.,
bounded termination, which are not expressible in HyperLTL (which is an easy consequence
of a much stronger non-expressibility result [3]).

Team Semantics. Intriguingly, there exists another modern family of logics, Dependence
Logics [32, 9], which operate as well on sets of objects instead of objects alone. Informally,
these logics extend first-order logic (FO) by atoms expressing, e.g., that “the value of a
variable x functionally determines the value of a variable y” or that “the value of a variable x
is informationally independent of the value of a variable y”. Obviously, such statements only
make sense when being evaluated over a set of assignments. In the language of dependence
logic, such sets are called teams and the semantics is termed team semantics.

In 1997, Hodges introduced compositional semantics for Hintikka’s Independence-friendly
logic [19]. This can be seen as the cornerstone of the mathematical framework of dependence
logics. Intuitively, this semantics allows for interpreting a team as a database table. In this
approach, variables of the table correspond to attributes and assignments to rows or records.
In 2007, Väänänen [32] introduced his modern approach to such logics and adopted team
semantics as a core notion, as dependence atoms are meaningless under Tarskian semantics.

A. Krebs, A. Meier, J. Virtema, and M. Zimmermann 10:3

After the introduction of dependence logic, a whole family of logics with different atomic
statements have been introduced in this framework: independence logic [17] and inclusion
logic [15] being the most prominent. Interest in these logics is rapidly growing and the
research community aims to connect their area to a plethora of disciplines, e.g., linguistics [16],
biology [16], game [4] and social choice theory [30], philosophy [30], and computer science [16].
We are the first to exhibit connections to formal languages via application of Büchi automata
(see Theorem 4.3). Team semantics has also found their way into modal [33] and temporal
logic [20], as well as statistics [8].

Recently, Krebs et al. [20] proposed team semantics for Computation Tree Logic (CTL),
where a team consists of worlds of the transition system under consideration. They considered
synchronous and asynchronous team semantics, which differ in how time evolves in the
semantics of the temporal operators. They proved that satisfiability is EXPTIME-complete
under both semantics while model checking is PSPACE-complete under synchronous semantics
and P-complete under asynchronous semantics.

Our Contribution. The conceptual similarities between HyperLTL and team semantics
raise the question how an LTL variant under team semantics relates to HyperLTL. For this
reason, we develop team semantics for LTL, analyse the complexity of its satisfiability and
model checking problems, and subsequently compare the novel logic to HyperLTL.

When defining the logic, we follow the approach of Krebs et al. [20] for defining team
semantics for CTL: we introduce synchronous and asynchronous team semantics for LTL,
where teams are now sets of traces. In particular, as a result, we have to consider potentially
uncountable teams, while all previous work on model checking problems for logics under
team semantics has been restricted to the realm of finite teams.

We prove that the satisfiability problem for team LTL is PSPACE-complete under both
semantics, by showing that the problems are equivalent to LTL satisfiability under classical
semantics. Generally, we observe that for the basic asynchronous variant all of our investigated
problems trivially reduce to and from classical LTL semantics. However, for the synchronous
semantics this is not the case for two variants of the model checking problem. As there
are uncountably many traces, we have to represent teams, i.e., sets of traces, in a finitary
manner. The path checking problem asks to check whether a finite team of ultimately
periodic traces satisfies a given formula. As our main result, we establish this problem to be
PSPACE-complete for synchronous semantics. In the (general) model checking problem, a
team is represented by a finite transition system. Formally, given a transition system and
a formula, the model checking problem asks to determine whether the set of traces of the
system satisfies the formula. For the synchronous case we give a polynomial space algorithm
for the model checking problem for the disjunction-free fragment, while we leave open the
complexity of the general problem. Disjunction plays a special role in team semantics, as it
splits a team into two. As a result, this operator is commonly called splitjunction instead of
disjunction. In our setting, the splitjunction requires us to deal with possibly infinitely many
splits of uncountable teams, if a splitjunction is under the scope of a G-operator, which raises
interesting language-theoretic questions.

Further, we study the effects for complexity that follow when our logics are extended by
dependence atoms and the contradictory negation. Finally, we show that LTL under team
semantics is able to specify properties which are not expressible in HyperLTL and vice versa.

Recall that satisfiability for HyperLTL is undecidable and model checking of non-
elementary complexity. Our results show that similar problems for LTL under team semantics
have a much simpler complexity while some hyperproperties are still expressible (e.g., input

MFCS 2018

10:4 Team Semantics for the Specification and Verification of Hyperproperties

determinism, see page 11, or bounded termination). This proposes LTL under team semantics
to be a significant alternative for the specification and verification of hyperproperties that
complements HyperLTL.

2 Preliminaries

The non-negative integers are denoted by N and the power set of a set S is denoted by 2S .
Throughout the paper, we fix a finite set AP of atomic propositions.

Computational Complexity. We will make use of standard notions in complexity theory.
In particular, we will use the complexity classes P and PSPACE. Most reductions used in
the paper are ≤p

m-reductions, that is, polynomial time, many-to-one reductions.

Traces. A trace over AP is an infinite sequence from (2AP)ω; a finite trace is a finite
sequence from (2AP)∗. The length of a finite trace t is denoted by |t|. The empty trace is
denoted by ε and the concatenation of two finite traces t0 and t1 by t0t1. Unless stated
otherwise, a trace is always assumed to be infinite. A team is a (potentially infinite) set of
traces.

Given a trace t = t(0)t(1)t(2) · · · and i ≥ 0, we define t[i,∞) := t(i)t(i+ 1)t(i+ 2) · · · ,
which we lift to teams T ⊆ (2AP)ω by defining T [i,∞) := {t[i,∞) | t ∈ T}. A trace t
is ultimately periodic, if it is of the form t = t0 · tω1 = t0t1t1t1 · · · for two finite traces t0
and t1 with |t1| > 0. As a result, an ultimately periodic trace t is finitely represented
by the pair (t0, t1); we define J(t0, t1)K = t0t

ω
1 . Given a set T of such pairs, we define

JT K = {J(t0, t1)K | (t0, t1) ∈ T }, which is a team of ultimately periodic traces. We call T a
team encoding of JT K.

Linear Temporal Logic. The formulas of Linear Temporal Logic (LTL) [28] are defined
via the grammar ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ | ϕRϕ, where p ranges
over the atomic propositions in AP. The length of a formula is defined to be the number of
Boolean and temporal connectives occurring in it. The length of an LTL formula is often
defined to be the number of syntactically different subformulas, which might be exponentially
smaller. Here, we need to distinguish syntactically equal subformulas which becomes clearer
after defining the semantics (see also Example 2.1 afterwards on this). As we only consider
formulas in negation normal form, we use the full set of temporal operators.

Next, we recall the classical semantics of LTL before we introduce team semantics. For
traces t ∈ (2AP)ω we define

t |=c p if p ∈ t(0),
t |=c ¬p if p /∈ t(0),
t |=c ψ ∧ ϕ if t |=c ψ and t |=c ϕ,
t |=c ψ ∨ ϕ if t |=c ψ or t |=c ϕ,
t |=c Xϕ if t[1,∞) |=c ϕ,
t |=c Fϕ if ∃k ≥ 0 : t[k,∞) |=c ϕ,

t |=c Gϕ if ∀k ≥ 0 : t[k,∞) |=c ϕ,
t |=c ψUϕ if ∃k ≥ 0 : t[k,∞) |=c ϕ and

∀k′ < k : t[k′,∞) |=c ψ,
t |=c ψRϕ if ∀k ≥ 0 : t[k,∞) |=c ϕ or

∃k′ < k : t[k′,∞) |=c ψ.

Team Semantics for LTL. Next, we introduce two variants of team semantics for LTL,
which differ in their interpretation of the temporal operators: a synchronous semantics (|=s),
where time proceeds in lockstep along all traces of the team, and an asynchronous semantics
(|=a) in which, on each trace of the team, time proceeds independently. We write |=? whenever

A. Krebs, A. Meier, J. Virtema, and M. Zimmermann 10:5

property definition |=a |=s

empty team property ∅ |=? ϕ X X

downwards closure T |=? ϕ implies ∀T ′ ⊆ T : T ′ |=? ϕ X X

union closure T |=? ϕ, T ′ |=? ϕ implies T ∪ T ′ |=? ϕ X ×
flatness T |=? ϕ if and only if ∀t ∈ T : {t} |=? ϕ X ×
singleton equivalence {t} |=? ϕ if and only if t |=c ϕ X X

Figure 1 Structural properties overview.

a definition coincides for both semantics. For teams T ⊆ (2AP)ω let

T |=? p if ∀t ∈ T : p ∈ t(0),
T |=? ¬p if ∀t ∈ T : p /∈ t(0),
T |=? ψ ∧ ϕ if T |=? ψ and T |=? ϕ,

T |=? ψ ∨ ϕ if ∃T1 ∪ T2 = T : T1 |=? ψ and T2 |=? ϕ,
T |=? Xϕ if T [1,∞) |=? ϕ.

This concludes the cases where both semantics coincide. Next, we present the remaining
cases for the synchronous semantics, which are inherited from the classical semantics of LTL.

T |=s Fϕ if ∃k ≥ 0 : T [k,∞) |=s ϕ,
T |=s Gϕ if ∀k ≥ 0 : T [k,∞) |=s ϕ,
T |=s ψUϕ if ∃k ≥ 0 : T [k,∞) |=s ϕ and ∀k′ < k : T [k′,∞) |=s ψ, and
T |=s ψRϕ if ∀k ≥ 0 : T [k,∞) |=s ϕ or ∃k′ < k : T [k′,∞) |=s ψ.

Finally, we present the remaining cases for the asynchronous semantics. Note that,
here there is no unique timepoint k, but a timepoint kt for every trace t, i.e., time evolves
asynchronously between different traces.

T |=a Fϕ if ∃kt ≥ 0, for each t ∈ T : {t[kt,∞) | t ∈ T} |=a ϕ
T |=a Gϕ if ∀kt ≥ 0, for each t ∈ T : {t[kt,∞) | t ∈ T} |=a ϕ,
T |=a ψUϕ if ∃kt ≥ 0, for each t ∈ T : {t[kt,∞) | t ∈ T} |=a ϕ, and

∀k′t < kt, for each t ∈ T : {t[k′t,∞) | t ∈ T} |=a ψ, and
T |=a ψRϕ if ∀kt ≥ 0, for each t ∈ T : {t[kt,∞) | t ∈ T} |=a ϕ or

∃k′t < kt, for each t ∈ T : {t[k′t,∞) | t ∈ T} |=a ψ.

We call expressions of the form ψ ∨ ϕ splitjunctions to emphasise on the team semantics
where we split a team into two parts. Similarly, the ∨-operator is referred to as a splitjunction.

Let us illustrate the difference between synchronous and asynchronous semantics with
an example involving the F operator. Similar examples can be constructed for the other
temporal operators (but for X) as well.

I Example 2.1. Let T = {{p}∅ω, ∅{p}∅ω}. We have that T |=a Fp, as we can pick kt = 0
if t = {p}∅ω, and kt = 1 if t = ∅{p}∅ω. On the other hand, there is no single k such that
T [k,∞) |=s p, as the occurrences of p are at different positions. Consequently T 6|=s Fp.

Moreover, consider the formula Fp∨Fp which is satisfied by T on both semantics. However,
Fp is not satisfied by T under synchronous semantics. Accordingly, we need to distinguish
the two disjuncts Fp and Fp of Fp ∨ Fp to assign them to different teams.

In contrast, synchronous satisfaction implies asynchronous satisfaction, i.e., T |=s ϕ implies
T |=a ϕ. The simplest way to prove this is by applying downward closure, singleton equivalence,
and flatness (see Fig. 1). Example 2.1 shows that the converse does not hold.

Next, we define the most important verification problems for LTL in team semantics
setting, namely satisfiability and two variants of the model checking problem: For classical

MFCS 2018

10:6 Team Semantics for the Specification and Verification of Hyperproperties

LTL, one studies the path checking problem and the model checking problem. The difference
between these two problems lies in the type of structures one considers. Recall that a model
of an LTL formula is a single trace. In the path checking problem, a trace t and a formula ϕ
are given, and one has to decide whether t |=c ϕ. This problem has applications to runtime
verification and monitoring of reactive systems [23, 26]. In the model checking problem, a
Kripke structure K and a formula ϕ are given, and one has to decide whether every execution
trace t of K satisfies ϕ.

The satisfiability problem of LTL under team semantics is defined as follows.
Problem: LTL satisfiability w.r.t. teams (TSAT?) for ? ∈ {a, s}.
Input: LTL formula ϕ.
Question: Is there a non-empty team T such that T |=? ϕ?
The non-emptiness condition is necessary, as otherwise every formula is satisfiable due to the
empty team property (see Fig. 1).

We consider the generalisation of the path checking problem for LTL (denoted by LTL-PC),
which asks for a given ultimately periodic trace t and a given formula ϕ, whether t |=c ϕ holds.
In the team semantics setting, the corresponding question is whether a given finite team
comprised of ultimately periodic traces satisfies a given formula. Such a team is given by a
team encoding T . To simplify our notation, we will write T |=? ϕ instead of JT K |=? ϕ.

Problem: TeamPathChecking (TPC?) for ? ∈ {a, s}.
Input: LTL formula ϕ and a finite team encoding T .
Question: T |=? ϕ?

Consider the generalised model checking problem where one checks whether the team of
traces of a Kripke structure satisfies a given formula. This is the natural generalisation of
the model checking problem for classical semantics, denoted by LTL-MC, which asks, for a
given Kripke structure K and a given LTL formula ϕ, whether t |=c ϕ for every trace t of K.

A Kripke structure K = (W,R, η, wI) consists of a finite set W of worlds, a left-total
transition relation R ⊆W ×W , a labeling function η : W → 2AP, and an initial world wI ∈
W . A path π through K is an infinite sequence π = π(0)π(1)π(2) · · · ∈ Wω such that
π(0) = wI and (π(i), π(i + 1)) ∈ R for every i ≥ 0. The trace of π is defined as t(π) =
η(π(0))η(π(1))η(π(2)) · · · ∈ (2AP)ω. The Kripke structure K induces the team T (K) = {t(π) |
π is a path through K}.

Problem: TeamModelChecking (TMC?) for ? ∈ {a, s}.
Input: LTL formula ϕ and a Kripke structure K.
Question: T (K) |=? ϕ?

3 Basic Properties

We consider several standard properties of team semantics (cf., e.g. [9]) and verify which
of these hold for our two semantics for LTL. These properties are later used to analyse the
complexity of the satisfiability and model checking problems. To simplify our notation, |=?

denotes |=a or |=s . See Figure 1 for the definitions of the properties and a summary for which
semantics the properties hold. The positive results follow via simple inductive arguments.
For the fact that synchronous semantics is not union closed, consider teams T = {{p}∅ω}
and T ′ = {∅{p}∅ω}. Then, we have T |=s Fp and T ′ |=s Fp but T ∪ T ′ 6|=s Fp. Note also that
flatness is equivalent of being both downward and union closed.

It turns out that, by Figure 1, LTL under asynchronous team semantics is essentially
classical LTL with a bit of universal quantification: for a team T and an LTL-formula ϕ,

A. Krebs, A. Meier, J. Virtema, and M. Zimmermann 10:7

U(i)

qi

$

$

$

qi

$
#

E(i)
T (i,1) T (i,0)

xi
qi

$

$
#

$

xi,qi

$,#

if `jk = xi,
then L(j, k) :

xi

$

$
#

1

2

3

if `jk = ¬xi,
then L(j, k) :

$

xi

$
#

cj at positions {1, 2, 3} \ {k}

Figure 2 Traces for the reduction defined in the proof of Lemma 4.1.

we have T |=a ϕ if and only if ∀t ∈ T : t |=c ϕ. This however does not mean that LTL under
asynchronous team semantics is not worth of a study; it only means that asynchronous LTL
is essentially classical LTL if we do not introduce additional atomic formulas that describe
properties of teams directly. This is a common phenomenon in the team semantics setting.
For instance, team semantics of first-order logic has the flatness property, but its extension
by so-called dependence atoms, is equi-expressive with existential second-order logic [32].
Extensions of LTL under team semantics are discussed in Section 5.

At this point, it should not come as a surprise that, due to the flatness property and
singleton equivalence, the complexity of satisfiability, path checking, and model checking for
LTL under asynchronous team semantics coincides with those of classical LTL semantics.
Firstly, note that an LTL-formula ϕ is satisfiable under asynchronous or synchronous team
semantics if and only if there is a singleton team that satisfies the formula. Secondly, note
that to check whether a given team satisfies ϕ under asynchronous semantics, it is enough to
check whether each trace in the team satisfies ϕ under classical LTL; this can be computed
by an AC0-circuit using oracle gates for LTL-PC. Putting these observations together, we
obtain the following results from the identical results for LTL under classical semantics
[22, 23, 26, 31].

The circuit complexity class ACi encompass of polynomial sized circuits of depth
O(logi(n)) and unbounded fan-in; NCi is similarly defined but with bounded fan-in. A
language A is constant-depth reducible to a language B, in symbols A ≤cd B, if there exists
a logtime-uniform AC0-circuit family with oracle gates for B that decides membership in A.
In this context, logtime-uniform means that there exists a deterministic Turing machine that
can check the structure of the circuit family C in time O(log |C|). For further information
on circuit complexity, we refer the reader to the textbook of Vollmer [35]. Furthermore,
logDCFL is the set of languages which are logspace reducible to a deterministic context-free
language.

I Proposition 3.1.
1. TMCa, TSATa, and TSATs are PSPACE-complete w.r.t. ≤p

m-reductions.
2. TPCa is in AC1(logDCFL) and NC1-hard w.r.t. ≤cd-reductions.

4 Classification of Decision Problems Under Synchronous Semantics

In this section, we examine the computational complexity of path and model checking with
respect to the synchronous semantics. Our main result settles the complexity of TPCs. It
turns out that this problem is harder than the asynchronous version.

I Lemma 4.1. TPCs is PSPACE-hard w.r.t. ≤p
m-reductions.

MFCS 2018

10:8 Team Semantics for the Specification and Verification of Hyperproperties

Proof. Determining whether a given quantified Boolean formula (qBf) is valid (QBF-VAL)
is a well-known PSPACE-complete problem [25]. The problem stays PSPACE-complete if
the matrix (i.e., the propositional part) of the given qBf is in 3CNF. To prove the claim
of the lemma, we will show that QBF-VAL ≤p

m TPCs. Given a quantified Boolean formula
ϕ, we stipulate, w.l.o.g., that ϕ is of the form ∃x1∀x2 · · ·Qxnχ, where χ =

∧m
j=1

∨3
k=1 `jk,

Q ∈ {∃, ∀}, and x1, . . . , xn are exactly the free variables of χ and pairwise distinct.
In the following we define a reduction which is composed of two functions f and g. Given

a qBf ϕ, the function f will define an LTL-formula and g will define a team such that ϕ
is valid if and only if g(ϕ) |=s f(ϕ). Essentially, the team g(ϕ) will contain three kinds of
traces, see Figure 2: (i) traces which are used to mimic universal quantification (U(i) and
E(i)), (ii) traces that are used to simulate existential quantification (E(i)), and (iii) traces
used to encode the matrix of ϕ (L(j, k)). Moreover the trace T (i, 1) (T (i, 0), resp.) is used
inside the proof to encode an assignment that maps the variable xi true (false, resp.). Note
that, U(i), T (i, 1), T (i, 0), L(j, k) are technically singleton sets of traces. For convenience, we
identify them with the traces they contain.

Next we inductively define the reduction function f that maps qBf-formulas to LTL-
formulas:

f(χ) :=
n∨
i=1

Fxi ∨
m∨
i=1

Fci,

where χ is the 3CNF-formula
∧m
j=1

∨3
k=1 `jk with free variables x1, . . . , xn,

f(∃xiψ) := (Fqi) ∨ f(ψ),
f(∀xiψ) :=

(
$ ∨ (¬qiUqi) ∨ F[# ∧ Xf(ψ)]

)
U#.

The reduction function g that maps qBf-formulas to teams is defined as follows with
respect to the traces in Figure 2.

g(χ) :=
m⋃
j=1

L(j, 1) ∪ L(j, 2) ∪ L(j, 3),

where χ is the 3CNF-formula
∧m
j=1

∨3
k=1 `jk with free variables x1, . . . , xn and

g(∃xiψ) := E(i) ∪ g(ψ),
g(∀xiψ) := U(i) ∪ E(i) ∪ g(ψ).

In Fig. 2, the first position of each trace is marked with a white circle. For instance, the
trace of U(i) is then encoded via

(ε, ∅{qi, $}{$}∅{$}{qi, $,#}).

The reduction function showing QBF-VAL ≤p
m TPCs is then ϕ 7→ 〈g(ϕ), f(ϕ)〉. Clearly f(ϕ)

and g(ϕ) can be computed in linear time with respect to |ϕ|.
Intuitively, for the existential quantifier case, the formula (Fqi) ∨ f(ψ) allows to continue

in f(ψ) with exactly one of T (i, 1) or T (i, 0). If b ∈ {0, 1} is a truth value then selecting
T (i, b) in the team is the same as setting xi to b. For the case of f(∀xiψ), the formula
(¬qiUqi)∨F[#∧Xf(ψ)] with respect to the team (U(i)∪E(i))[0,∞) is similar to the existential
case choosing xi to be 1 whereas for (U(i) ∪ E(i))[3,∞) one selects xi to be 0. The use of
the until operator in combination with $ and # then forces both cases to happen.

A. Krebs, A. Meier, J. Virtema, and M. Zimmermann 10:9

Let ϕ′ = Q′xn′+1 · · ·Qxnχ, where Q′, Q ∈ {∃, ∀} and let I be an assignment of the
variables in {x1, . . . , xn′} for n′ ≤ n. Then, let

g(I, ϕ′) := g(ϕ′) ∪
⋃

xi∈Dom(I)

T (i, I(xi)).

We claim I |= ϕ′ if and only if g(I, ϕ′) |=s f(ϕ′).
Note that when ϕ′ = ϕ it follows that I = ∅ and that g(I, ϕ′) = g(ϕ). Accordingly, the

lemma follows from the claim of correctness. The claim is proven by induction on the number
of quantifier alternations in ϕ′. The details can be found in the full version [21]. J

The matching upper bound follows via a PSPACE algorithm implementing the semantics
in straightforward way. The details can be found in the full version [21].

I Theorem 4.2. TPCs is PSPACE-complete w.r.t. ≤p
m-reductions.

The next theorem deals with model checking of the splitjunction-free fragment of LTL
under synchronous team semantics.

I Theorem 4.3. TMCs restricted to splitjunction-free formulas is in PSPACE.

Proof. Fix K = (W,R, η, wI) and a splitjunction-free formula ϕ. We define S0 = {wI} and
Si+1 = {w′ ∈ W | (w,w′) ∈ R for some w ∈ Si} for all i ≥ 0. By the pigeonhole principle,
this sequence is ultimately periodic with a characteristic (s, p) with s+ p ≤ 2|W |.3 Next, we
define a trace t over AP ∪ {p | p ∈ AP} via

t(i) = {p ∈ AP | p ∈ η(w) for all w ∈ Si} ∪ {p | p /∈ η(w) for all w ∈ Si}

that reflects the team semantics of (negated) atomic formulas, which have to hold in every
element of the team.

An induction over the construction of ϕ shows that T (K) |=s ϕ if and only if t |=c ϕ, where
ϕ is obtained from ϕ by replacing each negated atomic proposition ¬p by p. To conclude the
proof, we show that t |=c ϕ can be checked in non-deterministic polynomial space, exploiting
the fact that t is ultimately periodic and of the same characteristic as S0S1S2 · · · . However,
as s + p might be exponential, we cannot just construct a finite representation of t of
characteristic (s, p) and then check satisfaction in polynomial space.

Instead, we present an on-the-fly approach which is inspired by similar algorithms in the
literature. It is based on two properties:
1. Every Si can be represented in polynomial space, and from Si one can compute Si+1 in

polynomial time.
2. For every LTL formula ϕ, there is an equivalent non-deterministic Büchi automaton Aϕ

of exponential size (see, e.g., [1] for a formal definition of Büchi automata and for the
construction of Aϕ). States of Aϕ can be represented in polynomial space and given two
states, one can check in polynomial time, whether one is a successor of the other.

These properties allow us to construct both t and a run of Aϕ on t on the fly. The details
can be found in the full version [21]. J

3 The characteristic of an encoding (t0, t1) of an ultimately periodic trace t0t1t1t1 · · · is the pair (|t0|, |t1|).
Slightly abusively, we say that (|t0|, |t1|) is the characteristic of t0t1t1t1 · · · , although this is not unique.

MFCS 2018

10:10 Team Semantics for the Specification and Verification of Hyperproperties

The complexity of general model checking problem is left open. It is trivially PSPACE-
hard, due to Theorem 4.2 and the fact that finite teams of ultimately periodic traces can be
represented by Kripke structures. However, the problem is potentially much harder, as one
has to deal with infinitely many splits of possibly uncountable teams with non-periodic traces,
if a split occurs under the scope of a G-operator. Currently, we are working on interesting
language-theoretic problems one encounters when trying to generalise our algorithms for
the general path checking problem and for the splitjunction-free model checking problem,
e.g., how complex can an LTL-definable split be, if the team to be split is one induced by a
Kripke structure.

5 Extensions

In this section we take a brief look into extensions of our logics by dependence atoms and
contradictory negation. Contradictory negation combined with team semantics allows for
powerful constructions. For instance, the complexity of model checking for propositional
logic jumps from NC1 to PSPACE [27], whereas the complexity of validity and satisfiability
jumps all the way to alternating exponential time with polynomially many alternations
(ATIME-ALT(exp, pol)) [18].

Formally, we define that T |=? ∼ϕ if T 6|=? ϕ. Note that the negation ∼ is not equivalent to
the negation ¬ of atomic propositions defined earlier, i.e., ∼p and ¬p are not equivalent. In
the following, problems of the form TPCa(∼), etc., refer to LTL-formulas with negation ∼.

Also, we are interested in atoms expressible in first-order (FO) logic over the atomic
propositions; the most widely studied ones are dependence, independence, and inclusion
atoms [9]. The notion of generalised atoms in the setting of first-order team semantics was
introduced by Kuusisto [24]. It turns out that the algorithm for TPCs is very robust to such
strengthenings of the logic under consideration.

We consider FO-formulas over the signature (Ap)p∈AP, where each Ap is a unary predicate.
Furthermore, we interpret a team T as a relational structure A(T) over the same signature
with universe T such that t ∈ T is in AA

p if and only if p ∈ t(0). The formulas then express
properties of the atomic propositions holding in the initial positions of traces in T . An
FO-formula ϕ FO-defines the atomic formula D with T |=? D ⇐⇒ A(T) |= ϕ. In this case, D
is also called an FO-definable generalised atom.

For instance, the dependence atom dep(x; y) is FO-definable by ∀t∀t′((Ax(t)↔ Ax(t′))→(
Ay(t)↔ Ay(t′))), for x, y ∈ AP. We call an LTL-formula extended by a generalised atom D

an LTL(D)-formula. Similarly, we lift this notion to sets of generalised atoms as well as
to the corresponding decision problems, i.e., TPCs(D) is the path checking problem over
synchronous semantics with LTL formulas which may use the generalised atom D.

The result of Theorem 4.2 can be extended to facilitate also the contradictory negation
and first-order definable generalised atoms.

I Theorem 5.1. Let D be a finite set of first-order definable generalised atoms. Then
TPCs(D) and TPCs(∼) are PSPACE-complete w.r.t. ≤p

m-reductions.

The next proposition translates a result from Hannula et al. [18] to our setting. They
show completeness for ATIME-ALT(exp, pol) for the satisfiability problem of propositional
team logic with negation. This logic coincides with LTL-formulas without temporal operators
under team semantics.

I Proposition 5.2 ([18]). TSATa(∼) and TSATs(∼) for formulas without temporal operators
are complete for ATIME-ALT(exp, pol) w.r.t. ≤p

m-reductions.

A. Krebs, A. Meier, J. Virtema, and M. Zimmermann 10:11

KP : r

a1p1 b1 p1

a2p2 b2 p2

anpn bn pn

Figure 3 Kripke structure for the proof of Theorem 5.3.

I Theorem 5.3. TMCa(∼) and TMCs(∼) are hard for ATIME-ALT(exp, pol) w.r.t. ≤p
m-

reductions.

Proof. We will state a reduction from the satisfiability problem of propositional team logic
with negation ∼ (short PL(∼)). The stated hardness then follows from Proposition 5.2.

For P = {p1, . . . , pn}, consider the traces starting from the root r of the Kripke structure
KP depicted in Figure 3 using proposition symbols p1, . . . , pn, p1, . . . , pn. Each trace in the
model corresponds to a propositional assignment on P . For ϕ ∈ PL(∼), let ϕ∗ denote the
LTL(∼)-formula obtained by simultaneously replacing each (non-negated) variable pi by
Fpi and each negated variable ¬pi by Fpi. Let P denote the set of variables that occur in
ϕ. Define > := (p ∨ ¬p) and ⊥ := p ∧ ¬p, then T (KP) |=?

(
> ∨ ((∼⊥) ∧ ϕ∗)

)
if and only if

T ′ |=? ϕ∗ for some non-empty T ′ ⊆ T (KP). It is easy to check that T ′ |=? ϕ∗ if and only if the
propositional team corresponding to T ′ satisfies ϕ and thus the above holds if and only if ϕ
is satisfiable. J

In the following, we define the semantics for dependence atoms. For Teams T ⊆ (2AP)ω
we define T |=? dep(p1, . . . , pn; q1, . . . , qm) if

∀t, t′ ∈ T : (t(0) p1⇔ t′(0), . . . , t(0) pn⇔ t′(0)) implies (t(0) q1⇔ t′(0), . . . , t(0) qm⇔ t′(0)),

where t(i) p⇔ t(j) means the sets t(i) and t(j) agree on proposition p, i.e., both contain
p or not. Observe that the formula dep(; p) merely means that p has to be constant on
the team. Often, due to convenience we will write dep(p) instead of dep(; p). Note that
the hyperproperties ‘input determinism’ now can be very easily expressed via the formula
dep(i1, . . . , in; o1, . . . , om), where ij are the (public) input variables and oj are the (public)
output variables.

Problems of the form TSATa(dep), etc., refer to LTL-formulas with dependence operator
dep. The following proposition follows from the corresponding result for classical LTL using
downwards closure and the fact that on singleton teams dependence atoms are trivially
fulfilled.

I Proposition 5.4. TSATa(dep) and TSATs(dep) are PSPACE-complete.

In the following, we will show a lower bound while the matching upper bound still is
open.

I Theorem 5.5. TPCa(dep) is PSPACE-hard w.r.t. ≤p
m-reductions.

Proof. As in the proof of Lemma 4.1, we reduce from QBF-VAL.
Consider a given quantified Boolean formula ∃x1∀x2 · · ·Qxnχ, where χ =

∧m
j=1

∨3
k=1 `jk,

Q ∈ {∃, ∀}, and x1, . . . , xn are exactly the free variables of χ and pairwise distinct. We will
use two traces for each variable xi (gadget for xi) as shown in Figure 4.

MFCS 2018

10:12 Team Semantics for the Specification and Verification of Hyperproperties

pi
qi
ri
si

qi
ri
pi

qi
si
pi

everywhere pj , pj for i 6= j

Figure 4 Traces in the proof of Theorem 5.5.

Intuitively, the proposition pi marks that the variable xi is set true while the proposition
pi marks that xi is set false, qi encodes that the gadget is used to quantify xi, and si, ri are
auxiliary propositions. Picking the left trace corresponds to setting xi to true and picking
the right trace corresponds to setting xi to false. In the following, we omit the pj and pj ,
when j 6= i, for readability. Then, the team T is defined as

T := {(ε, {pi, qi, ri, si}), (ε, {qi, ri, pi}{qi, si, pi}) | 1 ≤ i ≤ n}.

Next, we recursively define the LTL(dep)-formula used in the reduction: f(χ) is obtained
from χ by substituting every positive literal xi by pi and negated literal ¬xi by pi, f(∃xiψ) :=(
qi ∧ dep(pi)

)
∨ f(ψ)

)
, and

f(∀xiψ) := G
((

dep(pi) ∧ qi ∧ ri
)
∨
(
si ∧ f(ψ)

))
.

In the existential quantification of xi, the splitjunction requires for the xi-trace-pair to put
(ε, {pi, qi, ri, si}) into the left or right subteam (of the split). The trace (ε, {qi, ri, pi}{qi, si, pi})
has to go to the opposite subteam as dep(pi) requires pi to be of constant value. (Technically
both of the traces could be put to the right subteam, but this logic is downwards closed and,
accordingly, this allows to omit this case.) As explained before, we existentially quantify xi
by this split. For universal quantification, the idea is a bit more involved. To verify T |=? Gθ,
where Gθ = f(∀xiψ) essentially two different teams T ′ for which T ′ |= θ need to be verified.
(1.) (ε, {pi, qi, ri, si}), (ε, {qi, ri, pi}{qi, si, pi}) ∈ T ′. In this case, (ε, {pi, qi, ri, si}) must be
put to the right subteam of the split and (ε, {qi, ri, pi}{qi, si, pi}) to the left subteam, setting
xi true.
(2.) (ε, {pi, qi, ri, si}), (ε, {qi, si, pi}{qi, ri, pi}) ∈ T ′. In this case, (ε, {pi, qi, ri, si}) must be
put to the left and (ε, {qi, si, pi}{qi, ri, pi}) to the right subteam, implicitly forcing xi to be
false. These observations are utilised to prove that 〈∃x1∀x2 · · ·Qxnχ〉 ∈ QBF-VAL if and
only if 〈f(∃x1∀x2 · · ·Qxnχ), T 〉 ∈ TPCa(dep). The reduction is polynomial time computable
in the input size. J

The following result from Virtema talks about the validity problem of propositional team
logic.

I Proposition 5.6 ([34]). Validity of propositional logic with dependence atoms is
NEXPTIME-complete w.r.t. ≤p

m-reductions.

I Theorem 5.7. TMCa(dep) and TMCs(dep) are NEXPTIME-hard w.r.t. ≤p
m-reductions.

Proof. The proof of this result uses the same construction idea as in the proof of Theorem 5.3,
but this time from a different problem, namely, validity of propositional logic with dependence
atoms which settles the lower bound by Proposition 5.6. Due to downwards closure the
validity of propositional formulas with dependence atoms boils down to model checking
the maximal team in the propositional (and not in the trace) setting, which essentially is
achieved by T (K), where K is the Kripke structure from the proof of Theorem 5.3. J

A. Krebs, A. Meier, J. Virtema, and M. Zimmermann 10:13

6 LTL under Team Semantics vs. HyperLTL

LTL under team semantics expresses hyperproperties [6], that is, sets of teams, or equivalently,
sets of sets of traces. Recently, HyperLTL [5] was proposed to express information flow
properties, which are naturally hyperproperties. For example, input determinism can be
expressed as follows: every pair of traces that coincides on their input variables, also coincides
on their output variables (this can be expressed in LTL with team semantics by a dependence
atom dep as sketched is Section 5). To formalise such properties, HyperLTL allows to
quantify over traces. This results in a powerful formalism with vastly different properties
than LTL [14]. After introducing syntax and semantics of HyperLTL, we compare the
expressive power of LTL under team semantics and HyperLTL.

The formulas of HyperLTL are given by the grammar

ϕ ::= ∃π.ϕ | ∀π.ϕ | ψ, ψ ::= pπ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ,

where p ranges over atomic propositions in AP and where π ranges over a given countable
set V of trace variables. The other Boolean connectives and the temporal operators release R,
eventually F, and always G are derived as usual, due to closure under negation. A sentence
is a closed formula, i.e., one without free trace variables.

The semantics of HyperLTL is defined with respect to trace assignments that are a
partial mappings Π: V → (2AP)ω. The assignment with empty domain is denoted by Π∅.
Given a trace assignment Π, a trace variable π, and a trace t, denote by Π[π → t] the
assignment that coincides with Π everywhere but at π, which is mapped to t. Further,
Π[i,∞) denotes the assignment mapping every π in Π’s domain to Π(π)[i,∞). For teams T
and trace-assignments Π we define

(T,Π) |=h pπ if p ∈ Π(π)(0),
(T,Π) |=h ¬ψ if (T,Π) 6|=h ψ,
(T,Π) |=h ψ1 ∨ ψ2 if (T,Π) |=h ψ1 or (T,Π) |=h ψ2,
(T,Π) |=h Xψ if (T,Π[1,∞)) |=h ψ,
(T,Π) |=h ψ1Uψ2 if ∃k ≥ 0 : (T,Π[k,∞)) |=h ψ2 and ∀0 ≤ k′ < k : (T,Π[k′,∞)) |=h ψ1,
(T,Π) |=h ∃π.ψ if ∃t ∈ T : (T,Π[π → t]) |=h ψ, and
(T,Π) |=h ∀π.ψ if ∀t ∈ T : (T,Π[π → t]) |=h ψ.

We say that T satisfies a sentence ϕ, if (T,Π∅) |=h ϕ, and write T |=h ϕ. The semantics of
HyperLTL are synchronous, i.e., the semantics of the until refers to a single k. Accordingly,
one could expect that HyperLTL is closer related to LTL under synchronous team semantics
than to LTL under asynchronous team semantics. In the following, we refute this intuition.

Formally, a HyperLTL sentence ϕ and an LTL formula ϕ′ under synchronous (asynchron-
ous) team semantics are equivalent, if for all teams T : T |=h ϕ if and only if T |=s ϕ′ (T |=a ϕ′).
In the following, let ∀-HyperLTL denote that set of HyperLTL sentences of the form ∀π. ψ
with quantifier-free ψ, i.e., sentences with a single universal quantifier.

I Theorem 6.1. 1. No LTL-formula under synchronous or asynchronous team semantics
is equivalent to ∃π.pπ.

2. No HyperLTL sentence is equivalent to Fp under synchronous team semantics.
3. LTL under asynchronous team semantics is as expressive as ∀-HyperLTL.

Proof.
1. Consider T = {∅ω, {p}∅ω}. We have T |=h ∃π.pπ. Assume there is an equivalent LTL

formula under team semantics, call it ϕ. Then, T |=? ϕ and thus {∅ω} |=? ϕ by downwards
closure. Hence, by equivalence, {∅ω} |=h ∃π.pπ, yielding a contradiction.

MFCS 2018

10:14 Team Semantics for the Specification and Verification of Hyperproperties

2. Bozzelli et al. proved that the property encoded by Fp under synchronous team semantics
cannot be expressed in HyperLTL [3].

3. Let ϕ be an LTL-formula and define ϕh := ∀π.ϕ′, where ϕ′ is obtained from ϕ by
replacing each atomic proposition p by pπ. Then, due to singleton equivalence, T |=a ϕ if
and only if T |=h ϕh. For the other implication, let ϕ = ∀π.ψ be a HyperLTL sentence with
quantifier-free ψ and let ψ′ be obtained from ψ by replacing each atomic proposition pπ
by p. Then, again due to the singleton equivalence, we have T |=h ϕ if and only if T |=a ψ′.

J

Note that these separations are obtained by very simple formulas, and are valid for
LTL(dep) formulas, too. In particular, the HyperLTL formulas are all negation-free.

I Corollary 6.2. HyperLTL and LTL under synchronous team semantics are of incomparable
expressiveness and HyperLTL is strictly more expressive than LTL under asynchronous team
semantics.

7 Conclusion

We introduced synchronous and asynchronous team semantics for linear temporal logic LTL,
studied complexity and expressive power of related logics, and compared them to HyperLTL.
We concluded that LTL under team semantics is a valuable logic which allows to express
relevant hyperproperties and complements the expressiveness of HyperLTL while allowing
for computationally simpler decision problems. We conclude with some directions of future
work and open problems.
1. We showed that some important properties that cannot be expressed in HyperLTL (such

as uniform termination) can be expressed by LTL-formulas in synchronous team semantics.
Moreover input determinism can be expressed in LTL(dep). What other important and
practical hyperproperties can be expressed in LTL under team semantics? What about in
its extensions with dependence, inclusion, and independence atoms, or the contradictory
negation.

2. We showed that with respect to expressive power HyperLTL and LTL under synchronous
team semantics are incomparable. What about the extensions of LTL under team
semantics? For example the HyperLTL formula ∃π.pπ is expressible in LTL(∼). Can we
characterise the expressive power of relevant extensions of team LTL as has been done in
first-order and modal contexts?

3. We studied the complexity of path-checking, model checking, and satisfiability problems
of team LTL and its extensions with dependence atoms and the contradictory negation.
Many problems are still open: Can we show matching upper bounds for the hardness
results of Section 5? What is the complexity of TMCs when splitjunctions are allowed?
What happens when LTL is extended with inclusion or independence atoms?

4. Can we give a natural team semantics to CTL∗ and compare it to HyperCTL∗ [5]?

References
1 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,

2008.
2 Borzoo Bonakdarpour and Bernd Finkbeiner. Runtime verification for HyperLTL. In

Yliès Falcone and César Sánchez, editors, RV 2016, volume 10012 of LNCS, pages 41–45.
Springer, 2016.

A. Krebs, A. Meier, J. Virtema, and M. Zimmermann 10:15

3 Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. Unifying hyper and epistemic
temporal logics. In Andrew M. Pitts, editor, FoSSaCS 2015, volume 9034 of LNCS, pages
167–182. Springer, 2015.

4 Julian Bradfield. On the structure of events in boolean games. In Logics for Dependence
and Independence. Dagstuhl Reports, 2015.

5 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Martín Abadi and Steve
Kremer, editors, POST 2014, volume 8414 of LNCS, pages 265–284. Springer, 2014.

6 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010.

7 Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner, and Holger Her-
manns. Is your software on dope? - formal analysis of surreptitiously "enhanced" programs.
In Hongseok Yang, editor, ESOP 2017, volume 10201 of LNCS, pages 83–110. Springer,
2017.

8 Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni Virtema. Approx-
imation and dependence via multiteam semantics. In FoIKS 2016, pages 271–291, 2016.

9 Arnaud Durand, Juha Kontinen, and Heribert Vollmer. Expressivity and complexity of
dependence logic. In Dependence Logic: Theory and Applications, pages 5–32. Birkhäuser,
2016.

10 Bernd Finkbeiner and Christopher Hahn. Deciding Hyperproperties. In Josée Desharnais
and Radha Jagadeesan, editors, CONCUR 2016, volume 59 of LIPIcs, pages 13:1–13:14,
Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

11 Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitoring
hyperproperties. In Shuvendu K. Lahiri and Giles Reger, editors, RV 2017, volume 10548
of LNCS, pages 190–207. Springer, 2017.

12 Bernd Finkbeiner, Christian Müller, Helmut Seidl, and Eugen Zalinescu. Verifying security
policies in multi-agent workflows with loops. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, CCS 2017, pages 633–645. ACM, 2017. doi:10.
1145/3133956.

13 Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model checking
HyperLTL and HyperCTL∗. In Daniel Kroening and Corina S. Pasareanu, editors, CAV
2015 (Part I), volume 9206 of LNCS, pages 30–48. Springer, 2015.

14 Bernd Finkbeiner and Martin Zimmermann. The first-order logic of hyperproperties. In
Heribert Vollmer and Brigitte Vallée, editors, STACS 2017, volume 66 of LIPIcs, pages
30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

15 Pietro Galliani. Inclusion and exclusion dependencies in team semantics - on some logics
of imperfect information. Ann. Pure Appl. Logic, 163(1):68–84, 2012.

16 Erich Grädel, Juha Kontinen, Jouko Väänänen, and Heribert Vollmer. Logics for depend-
ence and independence (Dagstuhl seminar 15261). Dagstuhl Reports, 5(6):70–85, 2015.

17 Erich Grädel and Jouko Väänänen. Dependence and independence. Studia Logica,
101(2):399–410, 2013.

18 Miika Hannula, Juha Kontinen, Jonni Virtema, and Heribert Vollmer. Complexity of
propositional logics in team semantic. ACM Trans. Comput. Logic, 19(1):2:1–2:14, 2018.

19 Wilfrid Hodges. Compositional semantics for a language of imperfect information. Logic
Journal of the IGPL, 5(4):539–563, 1997.

20 Andreas Krebs, Arne Meier, and Jonni Virtema. A team based variant of CTL. In Fabio
Grandi, Martin Lange, and Alessio Lomuscio, editors, TIME 2015, pages 140–149. IEEE
Computer Society, 2015.

MFCS 2018

http://dx.doi.org/10.1145/3133956
http://dx.doi.org/10.1145/3133956

10:16 Team Semantics for the Specification and Verification of Hyperproperties

21 Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. Team semantics for
the specification and verification of hyperproperties. CoRR, abs/1709.08510, 2017. arXiv:
1709.08510.

22 Lars Kuhtz. Model checking finite paths and trees. PhD thesis, Saarland University, 2010.
23 Lars Kuhtz and Bernd Finkbeiner. LTL path checking is efficiently parallelizable. In

Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and
Wolfgang Thomas, editors, ICALP 2009 (Part II), volume 5556 of LNCS, pages 235–246.
Springer, 2009.

24 Antti Kuusisto. A Double Team Semantics for Generalized Quantifiers. Journal of Logic,
Language and Information, 24(2):149–191, 2015.

25 Richard Ladner. The computational complexity of provability in systems of modal propos-
itional logic. SIAM J. Comput., 6(3):467–480, 1977.

26 Nicolas Markey and Philippe Schnoebelen. Model checking a path. In Roberto M. Amadio
and Denis Lugiez, editors, CONCUR 2003, volume 2761 of LNCS, pages 248–262. Springer,
2003.

27 Julian-Steffen Müller. Satisfiability and Model Checking in Team Based Logics. PhD thesis,
Leibniz University of Hannover, 2014.

28 Amir Pnueli. The temporal logic of programs. In FOCS 1977, pages 46–57. IEEE Computer
Society, 1977.

29 Markus N. Rabe. A Temporal Logic Approach to Information-flow Control. PhD thesis,
Saarland University, 2016.

30 Ilya Shpitser. Causal inference and logics of dependence and independence. In Logics for
Dependence and Independence. Dagstuhl Reports, 2015.

31 A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985.

32 Jouko Väänänen. Dependence Logic. Cambridge University Press, 2007.
33 Jouko Väänänen. Modal Dependence Logic. In New Perspectives on Games and Interaction.

Amsterdam University Press, Amsterdam, 2008.
34 Jonni Virtema. Complexity of validity for propositional dependence logics. Inf. Comput.,

253:224–236, 2017. doi:10.1016/j.ic.2016.07.008.
35 Heribert Vollmer. Introduction to Circuit Complexity – A Uniform Approach. Texts in

Theoretical Computer Science. An EATCS Series. Springer, 1999.

http://arxiv.org/abs/1709.08510
http://arxiv.org/abs/1709.08510
http://dx.doi.org/10.1016/j.ic.2016.07.008

Consistency for Counting Quantifiers
Florent R. Madelaine
LIMOS, Université d’Auvergne, Clermont-Ferrand, France

Barnaby Martin
Department of Computer Science, Durham University, U.K.

Abstract
We apply the algebraic approach for Constraint Satisfaction Problems (CSPs) with counting
quantifiers, developed by Bulatov and Hedayaty, for the first time to obtain classifications for
computational complexity. We develop the consistency approach for expanding polymorphisms
to deduce that, if H has an expanding majority polymorphism, then the corresponding CSP
with counting quantifiers is tractable. We elaborate some applications of our result, in particular
deriving a complexity classification for partially reflexive graphs endowed with all unary relations.
For each such structure, either the corresponding CSP with counting quantifiers is in P, or it is
NP-hard.

2012 ACM Subject Classification Theory of computation→ Constraint and logic programming

Keywords and phrases Quantified Constraints, Constraint Satisfaction, Logic in Computer Sci-
ence, Universal Algebra, Computational Complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.11

1 Introduction

The constraint satisfaction problem, CSP(B), originating in artificial intelligence, is known to
admit several equivalent formulations. Two of the best known consider the parameter B to
be a relational structure and may be phrased as the problem of query evaluation of primitive
positive (pp) sentences – those involving only {∃,∧,=} – on B, and the homomorphism
problem to B (see, e.g., [19]). For finite B, CSP(B) is NP-complete in general, and a great
deal of effort was expended in classifying its complexity in various different classes. It was
conjectured by Feder and Vardi [13] that all such CSP(B) are either in P or NP-complete
and this was finally proved last year independently by Bulatov [6] and Zhuk [23].

A popular generalisation of the CSP involves considering the query evaluation problem
for the logic involving only {∀, ∃,∧,=}. (This logic admits various names but we will leave
it nameless in this work as was the case in the foundational [2].) The resulting Quantified
Constraint Satisfaction Problem, QCSP(B), allows for a broader class, used in artificial
intelligence to capture non-monotonic reasoning, whose complexities rise to Pspace-complete.

In this paper, we study counting quantifiers of the form ∃≥j , which allow one to assert the
existence of at least j elements such that the ensuing property holds. Thus, on a structure
B with domain of size n, the quantifiers ∃≥1 and ∃≥n are precisely ∃ and ∀, respectively.
Counting quantifiers have been fiercely studied in finite model theory (see [12, 22]), where
the focus is on supplementing the descriptive power of various logics. Of wider interest is
the majority quantifier ∃≥n/2 (on a structure of domain size n), which sits broadly midway
between ∃ and ∀. Majority quantifiers turn up across diverse fields of logic and have various
practical applications, e.g. in cognitive appraisal and voting theory [11].

We postulate variants of CSP(B) in which the input sentence to be evaluated on B (of
size |B|) remains positive conjunctive in its quantifier-free part, but is quantified by various
counting quantifiers from some non-empty set.

© Florent R. Madelaine and Barnaby Martin;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 11; pp. 11:1–11:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Consistency for Counting Quantifiers

For X ⊆ {1, . . . , |B|}, X 6= ∅, the X-CSP(B), introduced in [21], takes as input a sentence
given by a conjunction of atoms quantified by quantifiers of the form ∃≥j for j ∈ X (this
logic is termed X-pp). It then asks whether this sentence is true on B. In the present paper,
we will mostly consider the situation in which all counting quantifiers are present, and we
will denote this problem CQCSP(B), instead of {1, . . . , |B|}-CSP(B). The corresponding
logic, involving only {∃≥1, . . . , ∃≥|B|,∧,=}, we will call cq-pp.

The algebraic method has been very potent in understanding the complexity of CSPs
and QCSPs [5, 6, 23, 10]. Recently, an algebraic theory tailored to counting quantifiers has
been given [8] (early version was [7]).

A polymorphism of a structure B is a homomorphism from Bk to B, for some k. Let {1} ⊆
X ⊆ {1, . . . , |B|}. Call a function f : Bk → B expanding on X if, for all X1, . . . , Xk ⊆ B

such that |X1| = . . . = |Xk| = j ∈ X, we have |f(X1, . . . , Xk)| ≥ j. This condition at j = 1
is trivial (it says that f is a function) and at j = |B| asserts surjectivity. If X = {1, . . . , |B|}
we simply term f expanding.

I Lemma 1 (Theorem 8 [7]; Corollary 14 [8]). The relations that are cq-pp-definable over B
are exactly those that are preserved by the expanding polymorphisms of B.

In this paper, we will only make use of the “easy” direction of Lemma 1, that is, any relation
that is cq-pp-definable over B is preserved by the expanding polymorphisms of B.

The list homomorphism problem, which we will call List-CSP(B), is defined as CSP(B),
save that one gives lists for each input variable stating which elements of the domain B

that variable may be evaluated on. This is equivalent to CSP(B∗), where B∗ is B endowed
with additional unary relations for each subset of B. Indeed, this class of CSPs was among
the first to be proved in line with the Feder-Vardi dichotomy conjecture [4]. The key
class of polymorphisms here is known as conservative and the property they have is that
f(x1, . . . , xk) ∈ {x1, . . . , xk}, for all x1, . . . , xk in the domain. Let us give explicitly the
classification for this problem in the special case of graphs. We call a k-ary operation
near-unanimity, for k ≥ 3, if it returns the repeated argument when all but at most one of
its arguments is the same. Ternary near-unanimity operations are called majority. We refer
to a graph as partially reflexive to indicate that each vertex may or may not have a self-loop.

I Theorem 2 (From Theorem 5.3 [3] and Theorem 2.1 [15]). Let H∗ be a partially reflexive
graph expanded with all possible unary relations. Then either H∗ admits a conservative
majority polymorphism and CSP(H∗) is in P; or CSP(H∗) is NP-complete.

Contribution

It is easy to see, but does not appear to have been noted, that conservative polymorphisms
are expanding polymorphisms in excelsis. That is, they are the most natural examples of
such polymorphisms that one is likely to imagine.

I Lemma 3. Let f be a k-ary operation that is conservative. Then f is also expanding.

Proof. Consider k subsets of the domain A of f , A1, . . . , Ak, each of size m ≤ |A|. We need
to argue that |f(A1, . . . , Ak)| ≥ m. We proceed by induction on m where the base case m = 1
is trivial. Suppose it holds for m but does not hold for m+ 1. Take A′1, . . . , A′k, each of size
m+1 ≤ |A|. There must be a′1 ∈ A′1, . . . , a′k ∈ A′k so that none of a′1, . . . , a′k ∈ f(A′1, . . . , A′k),
since |f(A′1, . . . , A′k)| < m+ 1. By inductive hypothesis, |f(A′1 \ {a′1}, . . . , A′k \ {a′k})| ≥ m.
But f(a′1, . . . , a′k) ∈ {a′1, . . . , a′k} by conservativity, which is a contradiction. J

F. R. Madelaine and B. Martin 11:3

We prove that if a finite structure B admits an expanding majority polymorphism, then
CQCSP(B) is in P. In doing so, we answer Question 1 of [21], for the case in the paragraph
immediately after it. The algorithm is rather more sophisticated than in the case of CSP or
QCSP. We note that a majority that is not expanding can appear as a polymorphism of B
despite that CQCSP(B) is NP-hard. We derive as a corollary a complexity classification for
CQCSP(H∗), where H∗ is a partially reflexive graph endowed with all unary relations. This
classification is in line with that of Theorem 2. We further derive a classification for successive
approximations to CQCSP(B), where B is a binary first-order expansion of (Z; succ), whose
relations (as digraphs) have bounded-degree. We then make some further observations on
the usefulness of expanding majority polymorphisms and relate our work to some recent
developments in surjective CSP involving the concept of endo-triviality.

Structure of the paper

This paper is organised as follows. After the preliminaries, Section 3 elaborates the consistency
algorithm, and Section 4 gives some applications of this algorithm to complexity classifications.
In Section 5, we close with some final remarks about the relationship between List-CSP and
CQCSP. Owing to reasons of space, some proofs are deferred to the appendix.

2 Preliminaries

The reader will probably already have picked up that, if B is a relational structure, then
B is its domain and |B| the size of its domain. A homomorphism, from a structure A
to a structure B over the same signature σ, is a function h : A → B such that, for each
relation R ∈ σ, if (x1, . . . , xr) ∈ RA, then (h(x1), . . . , h(xr)) ∈ RB. A k-ary polymorphism
of B is a k-ary operation f on B so that, (x1

1, . . . , x
1
r), . . . , (xk1 , . . . , xkr) ∈ RB, then also

(f(x1
1, . . . , x

k
1), . . . , f(x1

r, . . . , x
k
r)) ∈ RB.

Given a set B, and an integer i ≥ 0, we denote its ith power by Bi (B0 being
∅). For an integer c ≥ 1 We write

(
B
c

)
for the following set of subsets of B : {S ⊆

B such that S has c elements}. A Skolem (partial) function gx for a variable x quantified
as ∃≥cx in the sentence is a partial function to

(
B
c

)
, whose arity is the number of variables

coming before x in the quantifier prefix of the formula.
The Skolem functions gi from Bi−1 to

(
B
ci

)
(1 ≤ i ≤ m) witness that ϕ holds in B iff

∀b1 ∈ g1∀b2 ∈ g2(b1) . . . ∀bn ∈ gn(b1, b2, . . . , bn−1) B |= ϕ(b1, b2, . . . , bm). If there are such
Skolem functions then B models ϕ.

For a r-ary relation R in σ and sets B1, B2, . . . , Br, we write that R(B1, B2, . . . , Br) holds
in B iff for every 1 ≤ i ≤ r and every bi in Bi, it is the case that R(b1, b2, . . . , br) holds in B.

Let us note that counting quantifiers of the same cardinality do not in general commute.
In particular, for every choice of 1 < i < n, there exists a structure B over the signature of
digraph (a single binary predicate E) of size |B| = n, such that ∃≥ix∃≥iy E(x, y) holds in B
but ∃≥iy∃≥ixE(x, y) does not. For more on this, see [21].

3 An algorithm for consistency

In this section we will prove the following main theorem.

I Theorem 4. Suppose B has an expanding majority polymorphism. Then CQCSP(B) is
in P.

MFCS 2018

11:4 Consistency for Counting Quantifiers

Just as in the case of CSP and QCSP, by monotonicity, a sentence does not hold if any
subsentence does not. Here, by subsentence we mean the sentence induced by selecting some
variables. This means that for any structure, a not necessarily complete but polynomial
algorithm consists in selecting some subsentences of bounded size and checking whether they
hold : if one subsentence fails to hold, then we may answer no. A slightly cleverer way of
doing this consists in propagating a potential solution from subsentences with overlapping
variables. This is a basic approach known as enforcing local consistency, which is known
to imply global consistency for CSP whenever the constraint language is closed under a
majority operation [16, 18]. Our algorithm is a careful adaptation to our context.

The consistency argument will be somewhat more fiddly than for CSP. This is due to the
fact that quantifiers do not commute and also that we have counting quantifiers and need to
keep track of Skolem functions that witness (un)satisfiability of a sentence with counting
quantifiers.

The consistency algorithm for establishing our Theorem 4 that we propose does this
for the constraints induced by subsentences obtained by selecting up to 3 variables of the
prefix and the atoms involving them in the quantifier-free part (we assume w.l.o.g. that
the sentence is in prenex form) and maintaining consistency between the witnesses. These
witnesses are sets of suitable size, namely the range of the Skolem functions corresponding
to the counting quantifiers.

In the following and unless specified otherwise, subset means subset of the domain B of
the structure B. We assume some arbitrary order over B and subsets are ordered accordingly.

3.1 Sentences with three variables
Let us examine first a 3 variable sentence ϕ of the following form:

∃≥c1x1∃≥c2x2∃≥c3x3R1,2(x1, x2) ∧R2,3(x2, x3) ∧R1,3(x1, x3).

For a subset S of size c1, and subsets Ti of size c2, we write OK1,2(S, T1, . . . , Tc1) whenever
R1,2(si, Ti) holds for all si in S (recall that sets are ordered). We proceed similarly to define
the c1 + 1-ary predicate OK1,3 between a subset of size c1 and c1 subsets of size c3 and the
c2 + 1-ary predicate OK2,3 between a subset of size c2 and c2 subsets of size c3. The sentence
ϕ holds whenever there is a subset S of size c1, subsets Ti of size c2 with 1 ≤ i ≤ c1, subsets
Ui,j of size c3 with 1 ≤ j ≤ c2 such that :

OK1,2(S, T1, . . . , Tc1) ∧
∧

1≤i≤c1
OK2,3(Ti, Ui,1, . . . , Ui,c2) ∧

∧
1≤j1≤c2

. . .
∧

1≤jc1≤c2
OK1,3(S,U1,j1 , . . . , Uc1,jc1

).

3.2 Data structure
With this small example in mind, the following data structure used by our algorithm should
become clearer.

Each variable ∃≥cixi is represented by a domain that consists of subsets S of size ci.
We maintain a ci + 1-ary predicate OKi,j as in the above example between the domains
of any pair of variables xi, xj as long as xj comes after xi in the prefix of quantification
and that xi and xj occur both in some atom.

3.3 Binary Predicates Only
Of course, unlike in our small example, the input sentence ϕ′ may well have non binary
atoms and the parameter structure B′ corresponding relations of arity 3 or more. We project
almost in the usual fashion all atoms/relations involving two variables x1 and x2 into a single
binary constraint Rx1,x2 (if there are constraints, otherwise there is no binary constraint).

F. R. Madelaine and B. Martin 11:5

Unlike in the CSP case, we check that counting requirements induced by the sentence are met.
Formally, for every pair of distinct variables x1, x2 quantified as ∃≥c1x1∃≥c2x2, we consider
the binary constraint Rx1,x2 to be the intersection of the binary relations R′x1,x2

induced by
atoms R′(ȳ) such that both x1 and x2 occur in ȳ as follows. R′x1,x2

(b1, b2) holds whenever
for any variable y distinct from both x1 and x2 with quantifier prefix ∃≥cyy occurring at
position i in ȳ (to distinguish the potentially many occurrences of y, we will write yi for the
occurrence of y at position i) there exists a set Bi of size at least cy such that R′(π(ȳ)) holds
where π(x1) = b1, π(x2) = b2 and π(yi) = Bi.

We denote by ϕ this sentence with binary atoms and by ψ(x̄) its subsentence induced
naturally by the variables x̄. We write B for the structure with binary relations. Note that
these relations are cq-pp interpretations of the relations of B′.

I Proposition 1. If B′ has an expanding majority f , then
(i) B has also f as an expanding majority
(ii) B models ϕ (binary setting) iff B′ models ϕ′ (general setting).

Proof. Since B was obtained by cq-pp interpretation from B′, it follows that B has also a
majority polymorphism f (via the easy direction of the Galois connection of Lemma 1).

We now show that a collection of Skolem functions witnesses ϕ iff it does also for ϕ′. The
right to left implication holds by construction and for any structure B′. We only need to
establish the left to right implication in the presence of an expanding majority f .

Let g1, g2, . . . , gn be a collection of Skolem functions witnessing that B |= ϕ. Let
b1 ∈ g1, b2 ∈ g2(b1) . . . bn ∈ gn(b1, b2, . . . , bn−1). We write gi(b̄) as an abbreviation for
gi(b1, b2, . . . , bi−1).

Let R(xi1 , xi2 , . . . , xir) be some r-ary atom of ϕ′ with r ≥ 3. We write cij to denote the
counting requirement on variable ij for 1 ≤ j ≤ r.

Since Rxi1 ,xi2
(gi1(b̄), gi2(b̄)) holds in B, by construction there are some set of values

Si3 , Si4 , . . . , Sir of respective sizes ci3 , ci4 , . . . , cir . Similarly, there are some sets of the
correct count such that R(gi1(b̄), S′i2 , gi3(b̄), S′i4 , . . . , S

′
ir

) and R(S′′i1 , gi2(b̄), gi3(b̄), S′′i4 , . . . , S
′′
ir

).
Applying f , since it is a majority, it means the following holds.

R(gi1(b̄), gi2(b̄), gi3(b̄), f(Si4 , S′i4 , S
′′
i4), . . . , f(Sir , S′ir , S

′′
ir)).

Since it is expanding, we may select arbitrarily subsets S̃i4 ⊆ f(Si4 , S′i4 , S
′′
i4

) . . . S̃ir ⊆
f(Sir , S′ir , S

′′
ir

) of respective sizes ci4 , . . . , cir such that the following holds.

R(gi1(b̄), gi2(b̄), gi3(b̄), S̃i4 , . . . , S̃ir).

Note that there is nothing special about the position 1, 2 and 3 within the tuple R. The
same argument applies to any choice of three positions. Furthermore, there is nothing special
in our argument using the fact that we have only three positions that agree with the value of
the Skolem functions. So we can bootstrap the same argument to extend progressively the
tuple by one position and show eventually that : R(gi1(b̄), gi2(b̄), gi3(b̄), . . . , gir (b̄)) holds. J

From now on, instead of considering a structure B′, in the light of Proposition 1, we will
concentrate on the corresponding binary structure B (to fulfill this we may need to expand
the signature but it will still remain finite).

MFCS 2018

11:6 Consistency for Counting Quantifiers

3.4 The Algorithm: path consistency for counting quantifiers (PCCQ)
Initialisation

The domain of xi contains all subsets that are consistent with all unary atoms involving
xi, that is {S ∈

(
B
ci

)
such that S ⊆MB for every unary atom M(xi) of ϕ}

For every binary relation Ri,j , the predicate OKi,j holds between any set S in the domain
of xi and ci sets T1, . . . , Tci

in the domain of xj whenever Ri,j(sk, Tk) holds for any
1 ≤ k ≤ ci

Maintaining consistency

Do
For all triples of variables xi1 , xi2 , xi3 (in the order of quantification),
For every distinct k, l in {i1, i2, i3},
For every S in the domain of xk,
If there are no OK tuple OKk,l mentioning S (in the first coordinate), then
discard S and all other OK tuples that mention S.

For every OKk,l tuple t
if there are no additional OK tuples witnessing that t participates in a solution to

ϕ(xi1 , xi2 , xi3)
Remove the OKk,l tuple t.
If there are no more OKk,l tuples then reject.

Loop until no further OK tuples are deleted.

3.5 Properties of the PCCQ algoritm
I Proposition 2. PCCQ runs in polynomial time.

Proof. Let]v denote the number of variables of ϕ. The data structure needs to store at
most |B|j ≤ 2|B| sets of size at most j ≤ |B| for each variable associated with a count j.
One OK tuple originating from this variable with count j to a variable with count k will
relate at most j + 1 sets, one of size j and the others of size k. There are therefore at most
2j .(2k)j ≤ (2|B|)|B|+1 such OK tuples for one binary constraint. There are at most]v(]v− 1)
such constraints. The algorithm runs clearly in time polynomial in these quantities, and
(2|B|)|B|+1 is a constant since |B| is fixed. J

Let OKi,j(S, T1, . . . , Tci
) be a list of some OK tuples, as many as the arity of an expanding

polymorphism f . Applying f coordinate wise, as we would for an ordinary tuple, we have
f(S) = S′ and f(Tj) = T ′j for any 1 ≤ j ≤ ci. However, the images S′, T ′1, . . . , T ′ci

may be
too large to feature in an OK tuple. We will say that an OK tuple (with aptly sized sets)
OKi,j(S′′, T ′′1 , . . . , T ′′ci

) belongs to f(OKi,j(S, T1, . . . , Tci)), whenever S′′ ⊆ S′, T ′′j ⊆ T ′j for
all 1 ≤ j ≤ ci.

We say that a set R of OK tuples are preserved by f if, and only if, for any OK
tuples OKi,j(S, T1, . . . , Tci

) in R, any OK tuple that belongs to f(OKi,j(S, T1, . . . , Tci
)),

also belongs to R.

I Proposition 3. Let f be an expanding polymorphism of B. If the algorithm PCCQ does
not reject, the OK tuples that remain when the algorithm stops are preserved by f .

Proof. Let OKi,j(S′′, T ′′1 , . . . , T ′′ci
) be an OK tuple in the image f(OKi,j(S, T1, . . . , Tci

))
under f of remaining OK tuples OKi,j(S, T1, . . . , Tci). We prove that OKi,j(S′′, T ′′1 , . . . , T ′′ci

)
can not be removed by the algorithm as follows.

F. R. Madelaine and B. Martin 11:7

Initially, the relations are preserved under f , so it is straightforward to verify that OK
tuples are also closed under f . So this removal of OKi,j(S′′, T ′′1 , . . . , T ′′ci

) must happen after
initialisation. We shall assume further that OKi,j(S′′, T ′′1 , . . . , T ′′ci

) is the first OK tuple in
the image of f of remaining OK tuples that is removed by the algorithm PCCQ.

Assume further that OKi,j(S′′, T ′′1 , . . . , T ′′ci
) is removed by the algorithm while checking

the sentence with some other variable k. Assume for now that the order of quantification
induces the order i, j, k over the indices.

Since the tuples OKi,j(S, T1, . . . , Tci) are remaining OK tuples, there must be remaining
tuples OKi,k and OKj,k witnessing that each of them participate in a solution to ϕ(xi, xj , xk).

Taking the image of these witnesses under f provide us with OKi,k and OKi,k witnessing
that OKi,j(S′′, T ′′1 , . . . , T ′′ci

) participate in a solution to ϕ(xi, xj , xk).
By time minimality of the removal of OKi,j(S′′, T ′′1 , . . . , T ′′ci

), these last witnesses may not
be remaining tuples but they must remain at the time of removal of OKi,j(S′′, T ′′1 , . . . , T ′′ci

).
This contradicts the fact that the algorithm could remove OKi,j(S′′, T ′′1 , . . . , T ′′ci

).
To conclude the proof, note further that the above argument applies independently of

the quantification order of i, j and k. J

I Proposition 4. If B has an expanding majority f and the algorithm PCCQ does not reject,
then B models ϕ.

Proof. Let x1, x2, . . . , xn be the variables occurring in ϕ. For any choice of variables x in
{x1, x2, . . . , xn}, we denote by ψ(x) the subsentence of ϕ induced by the variables x.

We prove by induction on 2 ≤ i < n that : for any choice of i variables x, for any
additional variable z occurring after the variables x in the order of quantification, any Skolem
witnesses {g1, g2, . . . , gi} for ψ(x) can be extended by an i-ary Skolem function gz for the
variable z such that {g1, g2, . . . , gi, gz} witnesses that ϕ(x, z) holds. Moreover, this Skolem
function ranges over sets that were not removed by the algorithm from the domain of z.

The base case for i = 2 holds : this is precisely the property that is enforced by the
consistency algorithm we outlined.

We proceed to show the induction step. Let x1, x2, x3, . . . , xi be a choice of i ≥ 3
variables and z a variable occurring after them. Let {g1, g2, g3, . . . , gi} be a collection of
Skolem functions witnessing that ψ(x1, x2, x3, . . . , xi) holds.

We write I1 for the image of g1 and for 1 < j ≤ i, we write Ij for gj(I1, . . . , Ij−1). Let
α : ∅ → I1, β : I1 → I2 and γ : I1 × I2 → I3. We pick only such functions that are consistent
with the fact that {g1, g2, g3, . . . , gi} are Skolem functions, namely we insist that for any b1
in I1, β(b1) belongs to the image of g2(b1) and for any b1 in I1, and any b2 in g2(b1), γ(b1, b2)
lies in the image of g3(b1, b2).

We derive naturally three collections of i− 1 Skolem functions by essentially fixing the
first, second or third coordinate of the i Skolem functions at hand. Each collection witnesses
the subsentence obtained by removal of x1, x2 or x3.

Let the Skolem functions {gα2 , gα3 , . . . , gαi } be defined as gαj (x2, . . . , xj−1) = gj(α, x2, . . .

, xj−1)1. By construction, they are witnessing that ψ(x2, x3, . . . , xi) holds. By the
induction hypothesis, they can be extended by some (i− 1)-ary function gαz witnessing
ψ(x2, x3, . . . , xi, z).

1 If gj is undefined, we let gαj be also undefined. Alternatively, we could have defined our Skolem functions
precisely where we cared, e.g. for any x2 in g1(α), any x3 in g(α, x2), etc. But this would only introduce
unnecessary notation.

MFCS 2018

11:8 Consistency for Counting Quantifiers

Similarly, we derive Skolem functions {gβ1 , g
β
3 , . . . , g

β
i } witnessing ψ(x1, x3, . . . , xi) from

{g1, g2, . . . , gi} by setting gβ1 = g1 and for any 3 ≤ j ≤ i, and any b1 in I1, we define
gβj (b1, x3, x4, . . . , xj−1) := gj(b1, β(b1), x3, . . . , xj−1). By the induction hypothesis, they
can be extended by some (i− 1)-ary function gβz witnessing ψ(x1, x3, . . . , xi, z).
Finally, we derive Skolem functions {gγ1 , g

γ
2 , g

γ
4 . . . , g

γ
i } witnessing ψ(x1, x2, x4 . . . , xi)

from {g1, g2, . . . , gi} by setting gγ1 = g1, gγ2 = g2 and for any 4 ≤ j ≤ i any b1 in I1 and
any b2 in g2(b1) that gγj (b1, b2, x4, . . . , xj−1) := gj(b1, b2, γ(b1, b2), x4, . . . , xj−1). By the
induction hypothesis, they can be extended by some (i− 1)-ary function gγz witnessing
ψ(x1, x2, x4, . . . , xi, z).

We will define the Skolem function gz piecewise for each choice of the first three variables.
For specific b1 in I1 and b2 in g2(b1) and b3 in g3(b1, b2), we set α() := b1, β(b1) := b2,

and γ(b1, b2) := b3. The other values of β and γ are arbitrary but constrained as explained
above.

Recall that f is an expanding majority of B.
We define the Skolem function gz as follows for this choice to the first three variables :

gz(b1, b2, b3, x4, . . . , xi) := f(gαz (b2, b3, x4 . . . , xi), gβz (b1, b3, x4 . . . , xi), gγz (b1, b2, x4 . . . , xi)).

The fact that f is expanding2 implies that gz has a range of correct size.
Note that this definition ensures that indeed gz ranges over sets that were not filtered

out by the algorithm from the domain of z by the (previous) Proposition 3.
The fact that f is a majority will allow us to derive that gz is indeed an extension of

{g1, g2, g3, g4, . . . , gi} witnessing ϕ(x1, x2, x3, x4 . . . , xi, z). We need only check this inde-
pendently for each pair of variables xj , z, since all atoms are binary. Since, we defined gz
piecewise, we can also check this independently for each piece, induced by the choices of
b1, b2, b3. For simplicity, we denote by R an atom that should hold between xj and z.

If j ≥ 4, then applying majority on the variants α, β and γ works naturally, since the
value for j is the same for each variant by construction and f is idempotent.
With full notational details : by assumption R(gαj (b2, b3, x4, . . . , xj−1), gαz (b2, b3, x4 . . . , xi))
holds and R(gβj (b1, b3, x4, . . . , xj−1), gβz (b1, b3, x4 . . . , xi)) holds and

R(gγj (b1, b2, x4, . . . , xj−1), gγz (b1, b2, x4 . . . , xi))

holds. By construction of gαj , g
β
j , g

γ
j and the specific choice of values b1, b2, b3, we have

gαj (b2, b3, x4, . . . , xj−1) = gβj (b1, b3, x4, . . . , xj−1) =
gγj (b1, b2, x4, . . . , xj−1) = gj(b1, b2, b3, x4, . . . , xj−1).

Hence the image of the first coordinate under f is gj(b1, b2, b3, x4, . . . , xj−1) since f is
idempotent. The second coordinates is precisely the value we defined for gz. Thus we
conclude that R(gj(b1, b2, b3, x4, . . . , xj−1), gz(b1, b2, b3, x4, . . . , xi)) holds as required.
If j = 1. The value for gαz (b2, b3, x4 . . . , xi) occurs as a set in the domain of the variable
z after variable x1. So the algorithm must have left an OK tuple between x1 and z

that mentions gαz (b2, b3, x4 . . . , xi). This means that there is a singleton b′1 such that
R(b′1, gαz (b2, b3, x4 . . . , xi)) holds. Further, by assumption R(gβ1 , gβz (b1, b3, x4 . . . , xi)) holds
and R(gγ1 , gγz (b1, b2, x4 . . . , xi)) holds. Since gβ1 = gγ1 = b1, applying f we obtain b1 for
the first coordinate since f is a majority operation. For the second coordinate we obtain
the value we defined for gz. Thus we conclude that R(b1, gz(b1, b2, b3, x4, . . . , xi)) holds
as required.

F. R. Madelaine and B. Martin 11:9

If j = 2, then similarly to the previous case, there is some singleton b′2 in the domain of x2
such that R(b′2, gβz (b1, b3, x4 . . . , xi)) holds. Further, by assumption R(gα2 (b1), gαz (b2, b3, x4
. . . , xi)) holds and R(gγ2 (b1), gγz (b1, b2, x4 . . . , xi)) holds. Since gα2 (b1) = gγ2 (b1) = b2,
applying f we obtain b2 for the first coordinate since f is a majority operation. For
the second coordinate we obtain the value we defined for gz. Thus we conclude that
R(b2, gz(b1, b2, b3, x4, . . . , xi)) holds as required.
If j = 3, then similarly to the two previous cases, there is some singleton b′3 in
the domain of x3 such that R(b′3, gγz (b1, b2, x4 . . . , xi)) holds. Further, by assump-
tion R(gα3 (b2), gαz (b2, b3, x4 . . . , xi)) holds and R(gβ3 (b1), gβz (b1, b2, x4 . . . , xi)) holds. Since
gα3 (b2) = gβ3 (b1) = g3(b1, b2) = b3, applying f we obtain b3 for the first coordinate since f
is a majority operation. For the second coordinate we obtain the value we defined for gz.
Thus we conclude that R(b3, gz(b1, b2, b3, x4, . . . , xi)) holds as required. J

We can now wrap-up to complete the proof of our main theorem.

Proof of Theorem 4. By Proposition 1, we reduce the question whether ϕ′ holds on B′ to
the question whether ϕ holds on B. This can be achieved in polynomial time, since we
assume we assume a fixed signature, and have therefore bounded arity. We know that B is
also preserved by the same expanding majority, thus we can appeal to Proposition 4, which
states that if PCCQ does not reject then the sentence ϕ holds in B. Since PCCQ runs in
polynomial time by Proposition 2, we are done. J

Suppose now that X is some strict subset of {1, . . . , |B|}. The variant of Lemma 1 that talks
of X-pp-definability and polymorphisms that expand at cardinalities in X is not explicit in [8].
However, the easy direction, that X-pp-definability entails preservation by polymorphisms
that expand at cardinalities in X, is straightforward to prove.

I Theorem 5. Suppose B has an majority polymorphism that expands at cardinalities
{c1, . . . , cm}. Then {c1, . . . , cm}-CSP(B) is in P.

3.6 Expanding polymorphisms are necessary
We will now argue that the condition of expansion was necessary in Theorem 4, since there
is a structure admitting non-expanding majority whose CQCSP is NP-hard. Let H4 be the
4-vertex graph built from the irreflexive triangle K3 on {1, 2, 3} by adding a dominating
vertex 0 with a self-loop. It is easy to verify that H4 enjoys the majority polymorphism f

that maps any tuple of distinct arguments to 0. This f is clearly not conservative and it
even violates the condition of expansion because |f({0, 1}, {0, 2}, {0, 3})| = 1.

I Lemma 6. CQCSP(H4) is NP-hard.

Proof. By reduction from 3-COL, a.k.a. CSP(K3). Take an input ϕ for CSP(K3) and build
an input ψ for CQCSP(H4) by changing all ∃ quantifiers to ∃≥2.

(K3 |= ϕ implies H4 |= ψ.) Evaluate each variables v in ψ according to its evaluation ϕ
but additionally with the second possibility 0.

(H4 |= ψ implies K3 |= ϕ.) Evaluate each variable v in ϕ according to one of the
possibilities for v in ψ that is not equal to 0. J

4 Applications of our result

We will now see that conservative majority polymorphisms demarcate tractability in diverse
places.

MFCS 2018

11:10 Consistency for Counting Quantifiers

I Corollary 7. Let H∗ be a partially reflexive graph H endowed with all unary relations.
Either H∗ admits an expanding majority and CQCSP(H∗) is in P, or CQCSP(H∗) is
NP-hard.

Proof. We know all polymorphisms of H∗ are conservative since it has all unary relations.
From Theorem 2 we further know that eitherH∗ admits a conservative majority polymorphism
or CSP(H∗) is NP-hard. The result follows from Lemma 3 and Theorem 4. J

The following is a strengthening of Theorem 7.16 of [21] in the case of paths.3

I Corollary 8. Let P be an irreflexive (undirected) path. Then CQCSP(P) is in P.

Proof. Suppose P is over vertices {1, . . . , n} so that (i, i + 1) ∈ EP . Then P admits the
conservative majority polymorphism m communicated to us by Tomás Feder: m(x, y, z) is
defined to be the median of x, y, z, if they all have the same parity; otherwise it is the smaller
of the pair with repeated parity. The result follows from Lemma 3 and Theorem 4. J

Sadly we cannot use conservative majorities for irreflexive trees, since it is well-known that
the tree T10, built from three paths on four vertices by identifying one end of each of these
three paths as a single vertex, does not admit a conservative majority. This has been known,
based on complexity-theoretic assumptions, since [14, 4] but we have checked also using the
polymorphism program of Miklós Maróti4.

We will now see how to apply our result to infinite-domain (CQ)CSPs. The (d-)modular
median operation of [1] is defined on Z as follows. f(x, y, z) = median(x, y, z), if x ≡ y ≡
z mod d. If two among {x, y, z} are equivalent mod d, then f(x, y, z) is the minimum of these
two; otherwise f(x, y, z) = x. Note that these modular median operations are conservative
majorities.

I Corollary 9. Let B be a finite-signature binary first-order expansion of (Z; succ) whose
relations, viewed as digraphs, have bounded degree. Either B admits a modular median
polymorphism, and, for each j, {1, . . . , j}-CSP(B) is in P, or CSP(B) is NP-hard.

Proof. By Proposition 6 in [1],5 we know that if B omits all modular median operations, then
CSP(B) is NP-hard. Thus, we are left with the question of tractability. Let e be maximal so
that (x, x+ e) appears in some relation of B. Let φ be an input for CQCSP(B) involving
n variables. Now, we can see that φ is true on B just in case it is true on the substructure
B′of B induced by the interval [0, ne]. B′ admits the same conservative majority that B does
and the result follows from Propositions 4 when we consider from the proof of Proposition 2
that the size of subsets in the OK tuples is bounded by j. This is because the number of
OK tuples per binary constraint is bound by (j(ne)j)j+1 (which takes the place of the term
(2|B|)|B|+1 in the calculation for complexity in Proposition 2). J

To consider CQCSP over an infinite-domain structure, albeit with a finite signature, one
must consider how to encode i in ∃≥i. The most natural encoding here is binary. We leave
as an open question whether CQCSP(B) is in P, whenever B is a finite-signature binary
first-order expansion of (Z; succ) whose relations, viewed as digraphs, have bounded degree,

3 Theorem 7.16 of [21] deals with {1, 2}-CSP on trees, but its very long proof does not become much
simpler if one restricts to paths.

4 See: http://www.math.u-szeged.hu∼maroti/applets/GraphPoly.html
5 Proposition 6 lacks a counterpart in the journal version of [1] For a proof, see Proposition 35 in v2 of

the arxiv version.

F. R. Madelaine and B. Martin 11:11

which admits a modular median polymorphism. Note that this question remains open even
if we choose the unary encoding for i.

4.1 Endo-triviality
The concept of endo-triviality has recently been introduced in the context of surjective CSPs
[20]. We note here that endo-triviality is strong enough to deduce results also for CQCSPs.
An endomorphism of a digraph H is a homomorphism from H to itself. Call H a core if all
of its endomorphisms of H are automorphisms (the importance of cores is discussed, e.g.,
in [17]). Call H endo-trivial if all of its endomorphisms either have range of size 1 or are
automorphisms.

The retraction problem Ret(H) takes as input a graph G containing H as an induced
substructure and asks whether there is a homomorphism from G to H that is the identity on
H (such an endomorphism of G is termed a retraction to H)

The proofs of the following are deferred to the appendix.

I Lemma 10. Let H be a graph that is endo-trivial. The there is a polynomial-time reduction
from Ret(H) to CQCSP(H).

I Corollary 11. Let C be a reflexive directed cycle. If C is of length 2 then CQCSP(C) is in
L, otherwise CQCSP(C) is NP-hard.

5 Final remarks

Near-unanimity polymorphisms. Note that Theorem 4 relativises to any subset of counts
X ⊂ {1, 2 . . . , |B|} for the problem X-CSP(B) with the weaker hypothesis that requires that
B has a majority f that is expanding on X. Note that, if 1 /∈ X, one has to move to partial
polymorphisms. Indeed, we do not need f to be a majority, only that it satisfies the identities
of a majority where we replace uniformly the variables by set variables of the same size from
X.

We can also generalise the algorithm and the proof principle to a larger class of structures.

I Theorem 12. If B has an expanding near unanimity polymorphism. Then CQCSP(B) is
in P.

CQCSP and List-CSP. We have seen that conservative operations are expanding, but
what is the actual relationship between CQCSP and List-CSP? Does ability to quantify set
cardinalities with ∃≥j relate to talking about subsets of size j? For this latter question, it
seems the answer is no. Designate {1, 2}-List-CSP the restriction of List-CSP in which only
subsets of size 1 and 2 are available. Recall the tree T10, built from three paths on four
vertices by identifying one end of each of these three paths as a single vertex. List-CSP(T10)
is known to be NP-complete since [14]. NP-completeness for {1, 2}-List-CSP(T10) follows
from [4]. On the other hand, {1, 2}-CSP(T10) is in P, as proved in Theorem 7.16 of [21].
However, we are still missing an exemplar B so that one of CQCSP(B) and List-CSP(B) is
tractable and the other is not.

CQCSP and Retraction. In Lemma 10, we show a sufficient condition for which Ret(B) is
polynomially reducible to CQCSP(B). It should be possible to reconstruct the argument from
[20] in order to prove that, if H is a reflexive tournament, then either H has a conservative
majority polymorphism (the median) and CQCSP(B) is in P; or Ret(H) can be polynomially

MFCS 2018

11:12 Consistency for Counting Quantifiers

reduced to CQCSP(H) and both are NP-hard. Note that a classification for QCSP on
reflexive tournaments is not yet known. However, what we would like is much stronger : is it
the case that for all finite B, Ret(H) can be polynomially reduced to CQCSP(H)? That is,
are all constants cq-pp-definable up to isomorphism?

Core-ness and finite categoricity. Closely related to the previous question is whether all
non-isomorphic finite structures can be distinguished by cq-pp. Let us explore this question
through the Weisfeiler-Lehman (WL) method, as discussed in [9] (where logics with counting
also play a central role). The degree sequence of a graph is a non-increasing list of positive
integers that list the degrees of its vertices. This can be thought of as a 0-dimensional WL
descriptor. Obviously, if two graphs are isomorphic, then they have the same degree sequence,
but the converse is not necessarily true. Cq-pp can not specify vertex degree but it can
specify a lower bound for it. Firstly, then, two graphs on vertex sets of distinct sizes can be
distinguished by some ∃≥a1x (x = x). For two graphs with vertex sets the same size, if their
two degree sequences differ, with the first being lexicographically the larger, then counting
down from the top until the first difference, one will find necessarily some a1, a2 so that
∃≥a1x1∃≥a2x2 E(x1, x2) is true on the first graph but false on the second. We do this by
setting a1 − 1 to be the number of vertices before the degree sequence differs and a2 to be
the degree at which the degree sequences diverge.

The 1-dimensional WL descriptor is defined inductively by expanding each integer
associated with a vertex from the 0-dimensional WL descriptor into a tree of depth one
whose leaves list, in descending order, the degrees of that vertex’s neighbours. These leaves
are now associated with that corresponding neighbour. The process is then iterated, and
would go on for ever, save that we stop it when a fixed-point is reached in terms of the
subtrees added being endlessly the same. Now suppose two graphs each give rise to a forest
built in this fashion and let k be the height at which these forests first differ (else they
are indistinguishable by 1-dimensional WL) and let the first graph be lexicographically
the smaller (apply closeness to the root as higher in the lexicography). We can follow the
previous reasoning, and the path through the forests on which the graphs differ, to find
some ∃≥a1x1∃≥a2x2 . . . ∃≥akxk∃≥ak+1xk+1 E(x1, x2) ∧ . . . ∧ E(xk, xk+1) that is true on the
first graph but not the second.

The 1-dimensional WL descriptor does not capture isomorphism, and unfortunately, we
do not see an implementation of the more general r-dimensional WL descriptor in cq-pp,
since this can measure isomorphism type of an induced subgraph of size r.

References

1 Manuel Bodirsky, Víctor Dalmau, Barnaby Martin, and Michael Pinsker. Distance con-
straint satisfaction problems. In Mathematical Foundations of Computer Science 2010,
35th International Symposium, MFCS 2010, Brno, Czech Republic, August 23-27, 2010.
Proceedings, pages 162–173, 2010. doi:10.1007/978-3-642-15155-2_16.

2 F. Börner, A. Krokhin, A. Bulatov, and P. Jeavons. Quantified constraints and surjective
polymorphisms. Technical Report PRG-RR-02-11, Oxford University, 2002.

3 Richard C. Brewster, Tomás Feder, Pavol Hell, Jing Huang, and Gary MacGillivray. Near-
unanimity functions and varieties of reflexive graphs. SIAM J. Discrete Math., 22(3):938–
960, 2008. doi:10.1137/S0895480103436748.

4 A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings of
LICS’03, pages 321–330, 2003.

http://dx.doi.org/10.1007/978-3-642-15155-2_16
http://dx.doi.org/10.1137/S0895480103436748

F. R. Madelaine and B. Martin 11:13

5 A. Bulatov, A. Krokhin, and P. G. Jeavons. Classifying the complexity of constraints using
finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

6 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. Proc. FOCS 2017, pages
319–330, 2017.

7 Andrei A. Bulatov and Amir Hedayaty. Counting predicates, subset surjective functions,
and counting csps. In 42nd IEEE International Symposium on Multiple-Valued Logic, IS-
MVL 2012, pages 331–336, 2012.

8 Andrei A. Bulatov and Amir Hedayaty. Galois correspondence for counting quantifiers.
Multiple-Valued Logic and Soft Computing, 24:405–424, 2015.

9 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12(4):389–410, Dec 1992. doi:10.1007/
BF01305232.

10 Hubie Chen. The complexity of quantified constraint satisfaction: Collapsibility, sink
algebras, and the three-element case. SIAM J. Comput., 37(5):1674–1701, 2008. doi:
10.1137/060668572.

11 Robin Clark and Murray Grossman. Number sense and quantifier interpretation. Topoi,
26(1):51–62, 2007.

12 H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 1999. 2nd edition.
13 T. Feder and M. Vardi. The computational structure of monotone monadic SNP and

constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28:57–104, 1999.

14 Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc graphs.
Combinatorica, 19(4):487–505, 1999. URL: http://link.springer.de/link/service/
journals/00493/bibs/9019004/90190487.htm.

15 Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list homo-
morphisms. J. Graph Theory, 42:61–80, 2003.

16 E.C. Freuder. A sufficient condition for backtrack-free search. Journal of the ACM, 29(1):24–
32, 1982.

17 P. Hell and J. Nešetřil. Graphs and Homomorphisms. OUP, 2004.
18 Peter Jeavons, David Cohen, and Martin Cooper. Constraints, consistency and closure. AI,

101(1-2):251–265, 1998.
19 P. G. Kolaitis and M. Y. Vardi. Finite Model Theory and Its Applications (Texts in The-

oretical Computer Science. An EATCS Series), chapter A logical Approach to Constraint
Satisfaction. Springer-Verlag New York, Inc., 2005.

20 Benoit Larose, Barnaby Martin, and Daniël Paulusma. Surjective h-colouring over reflexive
digraphs. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France,
volume 96 of LIPIcs, pages 49:1–49:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018. doi:10.4230/LIPIcs.STACS.2018.49.

21 Barnaby Martin, Florent R. Madelaine, and Juraj Stacho. Constraint satisfaction with
counting quantifiers. SIAM J. Discrete Math., 29(2):1065–1113, 2015. doi:10.1137/
140981332.

22 M. Otto. Bounded variable logics and counting – A study in finite models, volume 9.
Springer-Verlag, 1997. IX+183 pages.

23 Dmitriy Zhuk. A proof of CSP dichotomy conjecture. Proc. FOCS 2017, pages 331–342,
2017.

MFCS 2018

http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.1007/BF01305232
http://dx.doi.org/10.1137/060668572
http://dx.doi.org/10.1137/060668572
http://link.springer.de/link/service/journals/00493/bibs/9019004/90190487.htm
http://link.springer.de/link/service/journals/00493/bibs/9019004/90190487.htm
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.49
http://dx.doi.org/10.1137/140981332
http://dx.doi.org/10.1137/140981332

The b-Branching Problem in Digraphs
Naonori Kakimura1

Keio University, Kanagawa 223-8522, Japan
kakimura@math.keio.ac.jp

Naoyuki Kamiyama2

Kyushu University and JST, PRESTO, Fukuoka 819-0395, Japan
kamiyama@imi.kyushu-u.ac.jp

Kenjiro Takazawa3

Hosei University, Tokyo 184-8584, Japan
takazawa@hosei.ac.jp

Abstract
In this paper, we introduce the concept of b-branchings in digraphs, which is a generalization
of branchings serving as a counterpart of b-matchings. Here b is a positive integer vector on
the vertex set of a digraph, and a b-branching is defined as a common independent set of two
matroids defined by b: an arc set is a b-branching if it has at most b(v) arcs sharing the terminal
vertex v, and it is an independent set of a certain sparsity matroid defined by b. We demonstrate
that b-branchings yield an appropriate generalization of branchings by extending several classical
results on branchings. We first present a multi-phase greedy algorithm for finding a maximum-
weight b-branching. We then prove a packing theorem extending Edmonds’ disjoint branchings
theorem, and provide a strongly polynomial algorithm for finding optimal disjoint b-branchings.
As a consequence of the packing theorem, we prove the integer decomposition property of the b-
branching polytope. Finally, we deal with a further generalization in which a matroid constraint
is imposed on the b(v) arcs sharing the terminal vertex v.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Greedy Algorithm, Packing, Matroid Intersection, Sparsity Matroid,
Arborescence

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.12

Related Version A full version of the paper is available at [31], https://arxiv.org/abs/1802.
02381.

1 Introduction

Since the pioneering work of Edmonds [12, 14], the importance of matroid intersection has
been well appreciated. A special case of matroid intersection is branchings (or arborescences)
in digraphs. Branchings have several good properties which do not hold for general matroid
intersection. The objective of this paper is to propose a class of the matroid intersection
problem which generalizes branchings and inherits those good properties of branchings.

1 Supported by JST ERATO Grant Number JPMJER1201, JSPS KAKENHI Grant Number JP17K00028,
Japan.

2 Supported by JST PRESTO Grant Number JPMJPR14E1, Japan.
3 Supported by JST CREST Grant Number JPMJCR1402, JSPS KAKENHI Grant Numbers JP16K16012,

JP26280001, Japan.

© N. Kakimura, N. Kamiyama, and K. Takazawa;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 12; pp. 12:1–12:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kakimura@math.keio.ac.jp
mailto:kamiyama@imi.kyushu-u.ac.jp
mailto:takazawa@hosei.ac.jp
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.12
https://arxiv.org/abs/1802.02381
https://arxiv.org/abs/1802.02381
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 The b-Branching Problem in Digraphs

One of the good properties of branchings is that a maximum-weight branching can be
found by a simple combinatorial algorithm [4, 6, 11, 23]. This algorithm is much simpler
than general weighted matroid intersection algorithms, and is referred to as a “multi-phase
greedy algorithm” in the textbook by Kleinberg and Tardos [35].

Another good property is the elegant theorem for packing disjoint branchings [13]. In
terms of matroid intersection, this theorem says that, if there exist k disjoint bases in each
of the two matroids, then there exist k disjoint common bases. This packing theorem leads
to a proof that the branching polytope has the integer decomposition property (defined in
Section 2).

In this paper, we propose b-branchings, a class of matroid intersection generalizing
branchings, while maintaining the above two good properties. This offers a new direction of
fundamental extensions of the classical theorems on branchings.

Let D = (V,A) be a digraph and let b ∈ ZV
++ be a positive integer vector on V . For

v ∈ V and F ⊆ A, let δ−F (v) denote the set of arcs in F entering v, and let d−F (v) = |δ−F (v)|.
One matroid Min on A has its independent set family Iin defined by

Iin = {F ⊆ A : d−F (v) ≤ b(v) for each v ∈ V }. (1)

That is, Min is the direct sum of a uniform matroid on δ−A(v) of rank b(v) for every v ∈ V .
Hence, each vertex can have indegree at most b(v), which can be more than one. Indeed,
this is the reason why we refer to it as a b-branching, as a counterpart of a b-matching.

In order to make b-branchings a satisfying generalization of branchings, the other matroid
should be defined appropriately. Our answer is a sparsity matroid determined by D and
b, which is defined as follows. For F ⊆ A and X ⊆ V , let F [X] denote the set of arcs in
F induced by X. Also, denote

∑
v∈X b(v) by b(X). Now define a matroid Msp on A with

independent set family Isp by

Isp = {F ⊆ A : |F [X]| ≤ b(X)− 1 (∅ 6= X ⊆ V)}. (2)

It is known that Msp is a matroid [20, Theorem 13.5.1], referred to as a count matroid or a
sparsity matroid.

Now we refer to an arc set F ⊆ A as a b-branching if F ∈ Iin ∩ Isp. It is clear that a
branching is a special case of a b-branching where b(v) = 1 for each v ∈ V . We demonstrate
that b-branchings yield a reasonable generalization of branching by proving that the two
fundamental results on branchings can be extended. That is, we present a multi-phase greedy
algorithm for finding a maximum-weight b-branching, and a theorem for packing disjoint
b-branchings.

Our multi-phase greedy algorithm is an extension of the weighted branching algorithm
[4, 6, 11, 23], and it has the following features. First, its running time is O(|V ||A|), which is
as fast as a simple implementation of the weighted branching algorithm [4, 6, 11, 23], and
faster than the current best general weighted matroid intersection algorithm. Second, our
algorithm also finds an optimal dual solution, which is integer if the arc weights are integer.
Thus, the algorithm constructively proves the total dual integrality of the associated linear
system. Finally, the algorithm leads to a characterization of the existence of a b-branching
with prescribed indegree, which is a generalization of that for an arborescence [4, 11, 23].

This characterization theorem is extended to a theorem on packing disjoint b-branchings.
Let k be a positive integer, and b1, . . . , bk be nonnegative integer vectors on V such that
bi(v) ≤ b(v) for each v ∈ V and bi 6= b (i = 1, . . . , k). Note that, when there exists a b-
branching Bi satisfying d−Bi

(v) = bi(v) for each v ∈ V (i = 1, . . . , k), these assumptions about
bi follow from the definition (1) and (2) of b-branchings. We provide a necessary and sufficient

N. Kakimura, N. Kamiyama, and K. Takazawa 12:3

condition for D to contain k disjoint b-branchings B1, . . . , Bk satisfying d−Bi
(v) = bi(v) for

every v ∈ V and i = 1, . . . , k, which extends Edmonds’ disjoint branching theorem [13]. We
then show such disjoint b-branchings B1, . . . , Bk can be found in strongly polynomial time
by at most |A| times of submodular function minimization [28, 37, 46]. We further prove
that, when the arc-weight vector w ∈ RA

+ is given, disjoint b-branchings B1, . . . , Bk that
minimize w(B1) + · · ·+ w(Bk) can be found in strongly polynomial time by optimization
over a submodular flow polyhedron [16, 21, 29, 30]. By utilizing our disjoint b-branchings
theorem, we also prove the integer decomposition property of the b-branching polytope.

We further deal with a generalized class of matroid-restricted b-branchings. This is a
special case of matroid intersection in which Min is the direct sum of an arbitrary matroid
on δ−A(v) of rank b(v) for all v ∈ V . Note that, in the class of b-branchings, the matroid Min
is the direct sum of a uniform matroid on δ−A(v) of rank b(v). We show that our multi-phase
greedy algorithm can be extended to this generalized class.

Let us conclude this section with describing related work. The weighted matroid inter-
section problem is a common generalization of various combinatorial optimization problems
such as bipartite matchings, packing spanning trees, and branchings (or arborescences)
in a digraph. The problem has also been applied to various engineering problems, e.g.,
in electric circuit theory [43, 44], rigidity theory [44], and network coding [8, 25]. Since
1970s, quite a few algorithms have been proposed for matroid intersection problems, e.g.,
[5, 18, 27, 37, 39, 40] (See [26] for further references). However, all known algorithms are not
greedy, but based on augmentation; repeatedly incrementing a current solution by exchanging
some elements.

The matroids in branchings are a partition matroid and a graphic matroid, which are
interconnected by a given digraph. Such interconnection makes branchings more interesting.
As mentioned before, branchings have properties that matroid intersection of an arbitrary
pair of a partition matroid and a graphic matroid does not have. In particular, extending
the packing theorem of branchings [13] is indeed a recent active topic. Kamiyama, Katoh,
and Takizawa [33] presented a fundamental extension based on reachability in digraphs,
which is followed by a further extension based on convexity in digraphs due to Fujishige [22].
Durand de Gevigney, Nguyen, and Szigeti [9] proved a theorem for packing arborescences
with matroid constraints. Király [34] generalized the result of [9] in the same direction of [33].
A matroid-restricted packing of arborescences [3, 19] is another generalization concerning a
matroid constraint. We remark that our packing and matroid restriction for b-branchings
differ from the above matroidal extensions of packing of arborescences.

The organization of this paper is as follows. In Section 2, we review the literature of
branchings and matroid intersection, including algorithmic, polyhedral, and packing results.
In Section 3, we present a multi-phase greedy algorithm for finding a maximum-weight
b-branching. Section 4 is devoted to proving a theorem on packing disjoint b-branchings. In
Section 5, we extend the multi-phase greedy algorithm to matroid-restricted b-branchings.
In Section 6, we conclude this paper with a couple of remarks.

2 Preliminaries

In this section, we review fundamental results on branchings and related theory of matroid
intersection and polyhedral combinatorics. For more details, refer to [32, 36, 47].

In a digraph D = (V,A), an arc subset B ⊆ A is a branching if, in the subgraph (V,B),
the indegree of every vertex is at most one and there does not exist a cycle in the undirected
sense. In terms of matroid intersection, a branching is a common independent set of a

MFCS 2018

12:4 The b-Branching Problem in Digraphs

partition matroid and a graphic matroid, i.e., intersection of

{F ⊆ A : d−F (v) ≤ 1 for each v ∈ V }, (3)
{F ⊆ A : |F [X]| ≤ |X| − 1 (∅ 6= X ⊆ V)}. (4)

Recall that a branching is a special case of a b-branching where b(v) = 1 for each v ∈ V .
Indeed, by putting b(v) = 1 for each v ∈ V in (1) and (2), we obtain (3) and (4), respectively.

As stated in Section 1, a maximum-weight branching can be found by a multi-phase
greedy algorithm [4, 6, 11, 23], which appears in standard textbooks such as [35, 36, 47]. To
the best of our knowledge, we have no other nontrivial special case of matroid intersection
which can be solved greedily. For example, intersection of two partition matroids is equivalent
to bipartite matching. This seems the simplest nontrivial example of matroid intersection,
but we do not know a greedy algorithm for finding a maximum bipartite matching.

Another important result on branchings is the disjoint branchings theorem by Edmonds
[13], described as follows. For a positive integer k, the set of integers {1, . . . , k} is denoted
by [k]. For F ⊆ A and X ⊆ V , let δ−F (X) ⊆ A denote the set of arcs in F from V \X to X,
and let d−F (X) = |δ−F (X)|.

I Theorem 1 (Edmonds [13]). Let D = (V,A) be a digraph and k be a positive integer,
and U1, . . . , Uk be subsets of V . Then, there exist disjoint branchings B1, . . . , Bk such that
Ui = {v ∈ V : d−Bi

(v) = 1} for each i ∈ [k] if and only if

d−A(X) ≥ |{i ∈ [k] : X ⊆ Ui}| (∅ 6= X ⊆ V).

From Theorem 1, we obtain a theorem on covering a digraph by branchings [17, 41].

I Theorem 2 ([17, 41]). Let D = (V,A) be a digraph and let k be a nonnegative integer.
Then, the arc set A can be covered by k branchings if and only if

d−A(v) ≤ k (v ∈ V),
|A[X]| ≤ k(|X| − 1) (∅ 6= X ⊆ V).

Theorem 2 leads to the integer decomposition property of the branching polytope. The
branching polytope is a convex hull of the characteristic vectors of all branchings. It follows
from the total dual integrality of matroid intersection [12] that the branching polytope is
determined by the following linear system:

x(δ−(v)) ≤ 1 (v ∈ V), (5)
x(A[X]) ≤ |X| − 1 (∅ 6= X ⊆ V), (6)
x(a) ≥ 0 (a ∈ A). (7)

I Theorem 3 (see [47]). The linear system (5)–(7) is totally dual integral.

I Corollary 4 (see [47]). The linear system (5)–(7) determines the branching polytope.

For a polytope P and a positive integer k, define kP = {x : ∃x′ ∈ P, x = kx′}. A polytope
P has the integer decomposition property if, for each positive integer k, any integer vector
x ∈ kP can be represented as the sum of k integer vectors in P . The integer decomposition
property of the branching polytope is a direct consequence of Theorem 2 and Corollary 4.

I Corollary 5 ([1]). The branching polytope has the integer decomposition property.

N. Kakimura, N. Kamiyama, and K. Takazawa 12:5

We remark that the integer decomposition property does not hold for an arbitrary matroid
intersection polytope. Schrijver [47] presents an example of matroid intersection defined
on the edge set of K4 without integer decomposition property. Indeed, finding a class of
polyhedra with integer decomposition property is a classical topic in combinatorics. Typical
examples of polyhedra with integer decomposition property include polymatroids [1, 24],
the branching polytope [1], and intersection of two strongly base orderable matroids [7, 42].
While there is some recent progress [2], the integer decomposition property of polyhedra is
far from being well understood. In Section 4, we will prove that the b-branching polytope is
a new example of polytopes with integer decomposition property.

3 Multi-phase greedy algorithm

3.1 Algorithm description
In this subsection, we present a multi-phase greedy algorithm for finding a maximum-weight
b-branching by extending the one for branchings [4, 6, 11, 23]. Let D = (V,A) be a digraph
and b ∈ ZV

++ be a positive integer vector on V . Recall that an arc set F ⊆ A is a b-branching
if F ∈ Iin ∩ Isp, where Iin and Isp are defined by (1) and (2), respectively.

We first show a key property of Min and Msp, which plays an important role in our
algorithm. Its proof can be found in the full version [31].

I Lemma 6. An independent set F in Min is not independent in Msp if and only if (V, F)
has a strong component X such that

|F [X]| = b(X). (8)

Moreover, for every strong component X in (V, F) satisfying (8), F [X] is a circuit of Msp.

Lemma 6 enables us to design the following multi-phase greedy algorithm for finding a
maximum-weight b-branching:

Find a maximum-weight independent set F in Min.
If (V, F) has a strong component X satisfying (8), then contract X, reset b and the
weights of the remaining arcs appropriately, and recurse.

At the end of the algorithm, we expand every contracted component X in the following
manner. Suppose that the solution F has an arc a′ entering the vertex vX created when
contracting X. Denote the terminal vertex of a′ before contracting X by v′ ∈ X. In
expanding X, we add b(X)−1 arcs to F , consisting of b(v) heaviest arcs among δ−A(v)∩A[X]
for each v ∈ X \{v′} and b(v′)−1 heaviest arcs among δ−A(v′)∩A[X]. If F has no arc entering
vX , then we add b(X)− 1 arcs to F , consisting of b(v) heaviest arcs among δ−A(v)∩A[X] for
each v ∈ X except for the arc of minimum weight among those b(X) arcs.

A formal description of the algorithm is as follows. We denote an arc a ∈ A with initial
vertex u and terminal vertex v by (u, v). We assume that the arc weights are nonnegative,
which are represented by a vector w ∈ RA

+. For F ⊆ A, we denote w(F) =
∑

a∈F w(a).
The complexity of Algorithm bB is analyzed as follows. It is clear that there are at most

|V | iterations. It is also straightforward to see that the i-th iteration requires O(|A(i)|) time:
Steps 2, 3, and 4 respectively require O(|A(i)|) time. Thus, the total time complexity of the
algorithms is O(|V ||A|).

3.2 Optimality of the algorithm and totally dual integral system
In this subsection, we prove that the output of Algorithm bB is a maximum-weight b-
branching by the following primal-dual argument. We first present a linear program describing

MFCS 2018

12:6 The b-Branching Problem in Digraphs

Algorithm 1 Algorithm bB.

Input. A digraph D = (V,A), and vectors b ∈ ZV
++ and w ∈ RA

+.
Output. A b-branching F ⊆ A maximizing w(F).
Step 1. Set i := 0, D(0) := D, b(0) := b, and w(0) := w.
Step 2. Define a matroid M(i)

in = (A(i), I(i)
in) accordingly to D(i) and b(i) by (1). Then, find

F (i) ∈ I(i)
in maximizing w(i)(F (i)).

Step 3. If (V (i), F (i)) has a strong component X such that

|F (i)[X]| = b(i)(X), (9)

then go to Step 4. Otherwise, let F := F (i) and go to Step 5.
Step 4. Denote by X ⊆ 2V (i) the family of strong components X in (V (i), F (i)) satisfying (9).

Execute the following updates to construct D(i+1) = (V (i+1), A(i+1)), b(i+1) ∈ ZV (i+1)

++ ,
and w(i+1) ∈ RA(i+1)

+ .
For each X ∈ X , execute the following updates. First, contract X to obtain a new
vertex vX . Then, for every arc a = (z, y) ∈ A(i) with z ∈ V (i) \X and y ∈ X,

z′ :=
{
vX′ (z ∈ X ′ for some X ′ ∈ X),
z (otherwise),

a′ := (z′, vX),
Ψ(a′) := a,

w(i+1)(a′) := w(i)(a)− w(i)(α(a, F (i))) + w(i)(aX),

where α(a, F (i)) is an arc in δ−
F (i)(y) minimizing w(i), and aX is an arc in F (i)[X]

minimizing w(i).4
Define b(i+1) ∈ ZV (i+1)

++ by

b(i+1)(v) :=
{

1 (v = vX for some X ∈ X),
b(i)(v) (otherwise).

Let i := i+ 1 and go back to Step 2.
Step 5. If i = 0, then return F .
Step 6. For every strong component X in (V (i−1), F (i−1)) such that (9) holds, apply the

following update:

F :=
{

((F \ {a′}) ∪ {Ψ(a′)}) ∪ (F (i−1)[X] \ {α(Ψ(a′), F (i−1))}) (∃a′ = (z, vX) ∈ F),
F ∪ (F (i−1)[X] \ {aX}) (otherwise).

Let i := i− 1 and go back to Step 5.

the maximum-weight b-branching problem. It is a special case of the linear program for
weighted matroid intersection, and hence we already know that the linear system is endowed
with total dual integrality. Here we show an algorithmic proof for the total dual integrality.
That is, we show that, when w is an integer vector, integral optimal primal and dual solutions
can be computed via Algorithm bB.

N. Kakimura, N. Kamiyama, and K. Takazawa 12:7

Consider the following linear program, in variable x ∈ RA, associated with the maximum-
weight b-branching problem:

maximize
∑
a∈A

w(a)x(a) (10)

subject to x(δ−A(v)) ≤ b(v) (v ∈ V), (11)
x(A[X]) ≤ b(X)− 1 (∅ 6= X ⊆ V), (12)
0 ≤ x(a) ≤ 1 (a ∈ A). (13)

The constraints (11)–(13) are indeed a special case of a linear system describing the common
independent sets in two matroids, which is totally dual integral (see [47]).

I Theorem 7. The linear system (11)–(13) is totally dual integral. In particular, the linear
system (11)–(13) determines the b-branching polytope.

The dual problem of (10)–(13), in variable p ∈ R2V and q ∈ RA, is described as follows.

minimize
∑
v∈V

b(v)p(v) +
∑

X : ∅6=X⊆V

(b(X)− 1)p(X) +
∑
a∈A

q(a) (14)

subject to p(v) +
∑

X : a∈A[X]

p(X) + q(a) ≥ w(a) (a = uv ∈ A), (15)

p(X) ≥ 0 (X ⊆ V), (16)
q(a) ≥ 0 (a ∈ A). (17)

Note that the dual variable p(X) corresponds to the primal constraint (11) if |X| = 1,
and to (12) if |X| ≥ 2. The primal constraint (12) for X with |X| = 1 does not have a
corresponding dual variable, since it is redundant in the linear problem (10)–(13).

An optimal solution (p∗, q∗) is computed via Algorithm bB in the following manner.
At the beginning of Algorithm bB, set w◦ = w, p(X) = 0 for each X ⊆ V , and q(a) = 0
for each a ∈ A. In Step 4 of Algorithm bB, for each strong component X ∈ X , define
p∗(X) ∈ R by

p∗(X) = min{min{w◦(α◦(a))− w◦(a) : a ∈ δ−
A(i)(X)},min{w◦(a′) : a′ ∈ F (i)[X]}},

where α◦(a) is the b(y)-th optimal arc with respect to w◦ among the arcs sharing the
terminal vertex y ∈ V with a in the original digraph D. Then for each arc a ∈ A such
that a ∈ A(i)[X] or a is deleted in the contraction of X ′ with vX′ included in X, set
w◦(a) := w◦(a) − p∗(X). After the termination of Algorithm bB, let the value p∗(v)
be equal to the b(v)-th maximum value among {w◦(a) : a ∈ δ−A(v)} for each vertex v ∈ V .
Finally, let q∗(a) = max{w(a)−p∗(v)−

∑
X : a∈A[X] p

∗(X), 0}. Observe that w◦(a) ≥ 0 holds
for a ∈ F , and w◦(a) ≤ 0 for a 6∈ F .

We can prove the optimality of F and (p∗, q∗) in the following way. We first show that
F is a b-branching. It is straightforward to see that F ∈ Iin. Then, it follows from Lemma
6 that F ∈ Isp as well, since a strong component X satisfying (8) is always contracted in
the algorithm and hence never exists in the output F . Next, the feasibility of (p∗, q∗) for
(15)–(17) is obvious. Finally, we prove that the characteristic vector χF of the output F and
(p∗, q∗) satisfy the complementary slackness condition as follows:

MFCS 2018

12:8 The b-Branching Problem in Digraphs

Suppose χF (δ−A(v)) < b(v) for v ∈ V . If v is not contained in a contracted vertex set,
then, by Step 2 of Algorithm bB, δ−A(v) contains less than b(v) arcs with positive weight,
and hence p∗(v) = 0. If v is contained in a contracted vertex set X ⊆ V (i), it follows
that v is the terminal vertex of aX ∈ F (i)[X] and p∗(X) = w◦(aX). Then w◦(aX) is the
b(v)-th maximum value among {w◦(a) : a ∈ δ−A(v)} and becomes zero after contracting
X, which implies that p∗(v) = 0.
If χF (A[X]) < b(X)− 1 for X ⊆ V with |X| ≥ 2, it follows that X is not contracted in
the algorithm, and thus p∗(X) is never changed from zero.
If χF (a) > 0 for a ∈ A, then it follows that w◦(a) = w(a)−p∗(v)−

∑
X : a∈A[X] p

∗(X) ≥ 0,
and thus q∗(a) = w(a)− p∗(v)−

∑
X : a∈A[X] p

∗(X), implying the equality in (15).
If χF (a) < 1 for a ∈ A, then it follows that w◦(a) = w(a)−p∗(v)−

∑
X : a∈A[X] p

∗(X) ≤ 0
and thus q∗(a) = 0.

Therefore, F and (p∗, q∗) are optimal solutions for the linear programs (10)–(13) and (14)–
(17), respectively. Moreover, (p∗, q∗) is integer if w is integer, which implies that (11)–(13) is
totally dual integral.

3.3 Existence of a b-branching with prescribed indegree

Our algorithm leads to the following theorem characterizing the existence of b-branching
with prescribed indegree, which is an extension of that for arborescences [4, 11, 23].

I Theorem 8. Let D = (V,A) be a digraph and b ∈ Zv
++ be a positive integer vector on V .

Let b′ ∈ ZV
+ be a nonnegative integer vector such that b′(v) ≤ b(v) for every v ∈ V and b′ 6= b.

Then, D has a b-branching B such that d−B(v) = b′(v) for each v ∈ V if and only if

d−A(v) ≥ b′(v) (v ∈ V), (18)
d−A(X) ≥ 1 (∅ 6= X (V , b′(X) = b(X) 6= 0). (19)

Let r ∈ V be a specified vertex. A characterization of the existence of an r-arborescence
[4, 11, 23] is obtained as a special case of Theorem 8, by putting b(v) = 1 for every v ∈ V ,
b′(v) = 1 for every v ∈ V \ {r}, and b′(r) = 0.

Theorem 8 can be proved in two ways. The necessity of (18) and (19) is clear. One
way to derive the sufficiency of (18) and (19) is Algorithm bB. Apply Algorithm bB to the
case where b = b′ and w(a) = 1 for each a ∈ A. Then, (18) and (19) certify that F (i) found
in Step 2 of Algorithm bB is always a base of M(i)

in . It thus follows that the output F of
Algorithm bB is a b-branching with d−F = b′. An alternative proof for the sufficiency of (18)
and (19) is implied by the proof for Theorem 10 in Section 4, which extends Theorem 8 to a
characterization of the existence of disjoint b-branchings with prescribed indegree.

4 Packing disjoint b-branchings

In this section, we present a theorem on packing disjoint b-branchings B1, . . . , Bk with
prescribed indegree, which extends Theorem 1, as well as Theorem 8. We then show that
such disjoint b-branchings can be found in strongly polynomial time. We further show that
disjoint b-branchings B1, . . . , Bk minimizing the weight w(B1) + · · ·+ w(Bk) can be found
in strongly polynomial time. Finally, as a consequence of our packing theorem, we prove the
integer decomposition property of the b-branching polytope.

N. Kakimura, N. Kamiyama, and K. Takazawa 12:9

4.1 Characterizing theorem for disjoint b-branchings
Let D = (V,A) be a digraph, b ∈ ZV

++ be a positive integer vector on V , and k be a positive
integer. For i ∈ [k], let bi ∈ ZV

+ be a nonnegative integer vector such that bi(v) ≤ b(v) for
every v ∈ V and bi 6= b. We present a theorem for chracterizing whether D contains disjoint
b-branchings B1, . . . , Bk such that d−Bi

= bi for each i ∈ [k].
We begin with introducing a function which plays a key role in the sequel. Define a

function g : 2V → Z+ by

g(X) = |{i ∈ [k] : bi(X) = b(X) 6= 0}| (X ⊆ V). (20)

The following lemma is straightforward to observe. Its proof is described in the full version
[31].

I Lemma 9. The function g is supermodular.

Our characterization theorem is described as follows.

I Theorem 10. Let D = (V,A) be a digraph, b ∈ ZV
++ be a positive integer vector on V ,

and k be a positive integer. For i ∈ [k], let bi ∈ ZV
+ be a nonnegative integer vector such that

bi(v) ≤ b(v) for every v ∈ V and bi 6= b. Then, D has disjoint b-branchings B1, . . . , Bk such
that d−Bi

= bi for each i ∈ [k] if and only if the following two conditions are satisfied:

d−A(v) ≥
k∑

i=1
bi(v) (v ∈ V), (21)

d−A(X) ≥ g(X) (X ⊆ V). (22)

We remark that Szegő’s generalization of Theorem 1 for packing arc sets which cover
some intersecting families [48] (see also [19, Theorem 10.3.2]) looks similar to Theorem 10,
but it does not directly implies Theorem 10. In Theorem 10, every arc set should cover δ−A(v)
multiple times (i.e., δ−A(v) should be covered bi(v) times by Bi), and this coverage is not
immediately rephrased in the form of [48].

Below is a proof for Theorem 10, which extends the proof for Theorem 1 by Lovász [38].

Proof of Theorem 10. Necessity is clear. We prove sufficiency by induction on
∑k

i=1 bi(V).
The case

∑k
i=1 bi(V) = 0 is trivial; Bi = ∅ for each i ∈ [k].

Without loss of generality, suppose b1(V) > 0. Define a partition {V0, V1, V2} of V by
V0 = {v ∈ V : b1(v) = 0}, V1 = {v ∈ V : 0 < b1(v) < b(v)}, and V2 = {v ∈ V : b1(v) = b(v)}.
Then, it holds that

V0 ∪ V1 6= ∅, (23)
V0 6= V, (24)

which follow from b1 6= b and b1(V) > 0, respectively.
For X ⊆ V , define g(X) = |{i ∈ [k] : bi(X) = b(X) 6= 0}|. Let W ⊆ V be an inclusionwise

minimal vertex subset satisfying

W ∩ (V0 ∪ V1) 6= ∅, (25)
W \ V0 6= ∅, (26)
d−A(W) = g(W). (27)

Such W always exists, since W = V satisfies (25)–(27): (25) follows from (23); (26) from
(24); and (27) from bi 6= b (i ∈ [k]) and hence g(V) = 0. Let Wj = W ∩ Vj (j = 0, 1, 2).

MFCS 2018

12:10 The b-Branching Problem in Digraphs

I Claim 1. There exists an arc (u, v) ∈ A such that u ∈W0 ∪W1 and v ∈W1 ∪W2.

Proof. First, suppose that W2 6= ∅. Then, it holds that g(W2) > g(W), since every i ∈ [k]
contributing to g(W) also contributes to g(W2), and i = 1 does not contribute to g(W) but
to g(W2). Hence we obtain that

d−A(W2) ≥ g(W2) > g(W) = d−A(W). (28)

Now (28) implies that there exists an arc (u, v) ∈ A such that u ∈W0 ∪W1 and v ∈W2.
Next, suppose that W2 = ∅. By (26), we have that W1 6= ∅. Then, it holds that

∑
v∈W1

d−A(v) ≥
k∑

i=1
bi(W1) (∵ (21))

>
k∑

i=2
bi(W1) (∵ b1(W1) > 0)

≥ |{i ∈ [k] : bi(W) = b(W) 6= 0}| (∵ b1(W) 6= b(W))
= g(W) = d−A(W),

implying that there exists an arc (u, v) ∈ A such that u ∈W = W0 ∪W1 and v ∈W1. J

Let a = (u, v) ∈ A be an arc in Claim 1. We then show that resetting

A := A \ {a}, (29)
b1(v) := b1(v)− 1 (30)

maintains (21) and (22). (This resetting amounts to augmenting B1 by adding a.)
It is straightforward to see that the resetting (29) and (30) maintain (21). To prove that

it also maintain (22), suppose to the contrary that X ⊆ V violates (22) after the resetting.
This violation implies that d−A(X) = g(X) before the resetting, and d−A(X) has decreased

by one while g(X) has remained unchanged by the resetting. It then follows that

u ∈ V \X and v ∈ X. (31)

It also follows that i = 1 does not contribute to g(X), and hence before the resetting, it
holds that

X ∩ (V0 ∪ V1) 6= ∅. (32)

By (31), we have that u ∈W \X and v ∈ X ∩W , and hence ∅ 6= X ∩W $W . Here we
show that X ∩W satisfies (25)–(27), which contradicts the minimality of W .

Before the resetting, it holds that

d−A(X ∩W) ≤ d−A(X) + d−A(W)− d−A(X ∪W) (33)
≤ g(X) + g(W)− g(X ∪W) (34)
≤ g(X ∩W). (35)

Indeed, (33) follows from submodularity of d−A. The inequality (34) follows from d−A(X) =
g(X), d−A(W) = g(W), and d−A(X ∪W) ≥ g(X ∪W). Finally, (35) follows from Lemma 9.

Since d−A(X ∩W) ≥ g(X ∩W) by (22), all inequalities (33)–(35) hold with equality, and
hence d−A(X ∩W) = g(X ∩W) holds before the resetting.

N. Kakimura, N. Kamiyama, and K. Takazawa 12:11

Equality in (35) implies that (X∩W)∩(V0∪V1) 6= ∅. Indeed, we have thatW∩(V0∪V1) 6= ∅
because u ∈W ∩ (V0 ∪ V1), and hence i = 1 does not contribute to g(W). Combined with
(32), i = 1 contributes to none of g(X), g(W), and g(X ∪W). Thus, by the equality in (35),
i = 1 does not contribute to g(X ∩W) as well, and hence (X ∩W)∩ (V0 ∪V1) 6= ∅ must hold.

We also have (X ∩W) \ V0 6= ∅, because v ∈ (X ∩W) \ V0. Therefore, X ∩W satisfies
(25)–(27), contradicting the minimality of W . Thus, we have finished proving that resetting
of (29) and (30) maintains (22).

Now we can apply induction to obtain disjoint b-branchings B1, . . . , Bk in the digraph
(V,A \ {a}) such that d−B1

= b1 − χv and d−Bi
= bi for i = 2, . . . , k, where χv ∈ ZV is a vector

defined by χv(v) = 1 and χv(u) = 0 for e very u ∈ V \ {v}. We complete the proof by
showing that B1 ∪ {a} is a b-branching.

In resetting, we always have u ∈ W0 ∪W1, which implies that the construction of B1
begins with a vertex r with b1(r) < b(r) and the component in (V,B1) containing a includes
r. Thus, no X ⊆ V comes to satisfy |B1[X]| = b(X). J

4.2 Algorithm for finding disjoint b-branchings
Let us discuss the algorithmic aspect of Theorem 10. First, we can determine whether (21)
and (22) hold in strongly polynomial time. Condition (21) is clear. For (22), we have that
d−A(X) is submodular and g(X) is supermodular (Lemma 9), and hence d−A(X) − g(X) is
submodular. Thus, we can determine whether there exists X with d−A(X) − g(X) < 0 by
submodular function minimization, in strongly polynomial time [28, 37, 46].

Finding b-branchings B1, . . . , Bk can also be done in strongly polynomial time. By the
proof for Theorem 10, it suffices to find an arc a ∈ A such that resetting

A := A \ {a}, b1(v) := b1(v)− 1 (36)

maintains (22). This can be done by determining whether there exists X with d−A(X)−g(X) <
0 after resetting (36) for each a ∈ A, i.e., at most |A| times of submodular function
minimization [28, 37, 46].

I Theorem 11. Conditions (21) and (22) can be checked in strongly polynomial time.
Moreover, if (21) and (22) hold, then disjoint b-branchings B1, . . . , Bk such that d−Bi

= bi

for each i ∈ [k] can be found in strongly polynomial time.

Further, if a weight vector w ∈ RA
+ is given, we can find disjoint b-branchings B1, . . . , Bk

minimizing w(B1) + · · ·+ w(Bk) in strongly polynomial time. Indeed, conditions (21) and
(22) derive a totally dual integral system which determines a submodular flow polyhedron.
A set family C ⊆ 2V is called a crossing family if, for each X,Y ∈ C with X ∪ Y 6= V and
X ∩Y 6= ∅, it holds that X ∪Y,X ∩Y ∈ C. A function f : C → R defined on a crossing family
C ⊆ V is called crossing submodular if, for each X,Y ∈ C with X ∪ Y 6= V and X ∩ Y 6= ∅,
it holds that f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y). A function f is crossing supermodular if
−f is crossing submodular. A submodular flow polyhedron is a polyhedron described as

x(δ−A(X))− x(δ+
A(X)) ≤ f(X) (X ∈ C),

l(a) ≤ x(a) ≤ u(a) (a ∈ A)

by some digraph (V,A), crossing submodular function f on a crossing family C ⊆ 2V , and
vectors l, u ∈ RA, where δ+

A(X) denotes the set of arcs in A from X to V \X.

MFCS 2018

12:12 The b-Branching Problem in Digraphs

I Lemma 12 ([45]). For a digraph D = (V,A), let f : 2V → R be a crossing supermodular
function on C ⊆ 2V and u ∈ RA. Then, a polyhedron determined by

x(δ−A(X)) ≥ f(X) (X ∈ C),
0 ≤ x(a) ≤ u(a) (a ∈ A)

is a submodular flow polyhedron.

By Lemma 12, the linear inequality system (21) and (22) determines a submodular flow
polyhedron. Indeed, we can define a crossing supermodular function f : 2V → R by

f(X) =

k∑

i=1
bi(v) (X = {v} for some v ∈ V),

g(X) (otherwise).

Since a submodular flow polyherdron is totally dual integral [15], an arc set B ⊆ A with (21)
and (22) minimizing w(B) can be found by optimization over a submodular flow polyhedron,
which can be done in strongly polynomial time [16, 21, 29, 30]. After that, we can partition
B into b-branchings B1, . . . , Bk with d−Bi

= bi (i ∈ [k]) in the same manner as above.

I Theorem 13. If (21) and (22) hold, disjoint b-branchings B1, . . . , Bk such that d−Bi
= bi

for each i ∈ [k] minimizing w(B1) + · · ·+ w(Bk) can be found in strongly polynomial time.

4.3 Integer decomposition property of the b-branching polytope
In this subsection we show another consequence of Theorem 10: the integer decomposition
property of the b-branching polytope. First, Theorem 10 leads to the following min-max
relation on covering by b-branchings. This is an extension of Theorem 2, the theorem on
covering by branchings [17, 41]. Its proof appears in the full version [31].

I Corollary 14. Let D = (V,A) be a digraph, b ∈ ZV
++ be a positive integer vector on V , and

k be a positive integer. Then, the arc set A can be covered by k b-branchings if and only if

d−A(v) ≤ k · b(v) (v ∈ V), (37)
|A[X]| ≤ k(b(X)− 1) (∅ 6= X ⊆ V). (38)

The integer decomposition property of the b-branching polytope is a direct consequence
of Corollary 14. Its proof is described in the full version [31].

I Corollary 15. The b-branching polytope has the integer decomposition property.

5 Matroid-restricted b-branchings

Our multi-phase greedy algorithm (Algorithm bB) can be extended to a more generalized
problem of finding a maximum-weight matroid-restricted b-branching. Let D = (V,A) be a
digraph and b ∈ ZV

++ be a positive integer vector on V . For each vertex v ∈ V , a matroid
Mv = (δ−(v), Iv) with rank b(v) is attached. We denote the direct sum of Mv for every v ∈ V
by MV = (A, IV). Now an arc set F ⊆ A is an MV -restricted b-branching if F ∈ IV ∩ Isp.
Note that a b-branching is a special case where Mv is a uniform matroid for each v ∈ V .

A maximum-weight MV -restricted b-branching can be found by a slight extension of
Algorithm bB. The extended algorithm is described in the full version [31].

N. Kakimura, N. Kamiyama, and K. Takazawa 12:13

6 Concluding remarks

In this paper, we have proposed b-branchings, a generalization of branchings. In a b-branching,
a vertex v can have indegree at most b(v), and thus b-branchings serve as a counterpart of
b-matchings for matchings.

It is somewhat surprising that, to the best of our knowledge, such a fundamental
generalization of branchings has never appeared in the literature. The reason might be that,
in order to obtain a reasonable generalization, it is far from being trivial how the other
matroid (graphic matroid) in branchings is generalized. We have succeeded in obtaining
a generalization inheriting the multi-phase greedy algorithm [4, 6, 11, 23] and the packing
theorem [13] for branchings by setting a sparsity matroid defined by (2) as the other matroid.

An important property of the two matroids is Lemma 6, which says that an independent
set of one matroid is decomposed into an independent set and some circuits in the other
matroid. This plays an important role in the design of a multi-phase greedy algorithm: find
an optimal independent F set in one matroid; contract the circuits in F with respect to
the other matroid; and the optimal common independent set can be found recursively. We
remark that the definitions (1) and (2) are essential to attain this property. For example,
the property fails if the vector b is not identical in (1) and (2). It also fails if the sparsity
matroid is defined by |F [X]| ≤ b(X)− k for k 6= 1.

Another remark is on the similarity of our algorithm and the blossom algorithm for non-
bipartite matchings [10], where a factor-critical component can be contracted and expanded.
In our b-branching algorithm, for each strong component X ∈ X and each v∗ ∈ X, there
exists an arc set FX ⊆ A[X] such that d−FX

(v∗) = b(v∗) − 1 and d−FX
(v) = b(v) for each

v ∈ X \ {v∗}. In the blossom algorithm for nonbipatite matchings, for each factor-critical
component X and each vertex v∗ ∈ X, there exists a matching exactly covering X \ {v∗}.

We finally remark that the problem of finding a maximum-weight b-branching is a special
case of a modest generalization of the framework of the U-feasible t-matching problem in
bipartite graphs [49]. In [49], it is proved that the U -feasible t-matching problem in bipartite
graphs is efficiently tractable under certain assumptions on the family of excluded structures
U . The b-branching problem can be regarded as a new problem which falls in this tractable
class of the (generalized) U -feasible t-matching problem.

References
1 S. Baum and L.E. Trotter, Jr.: Integer rounding for polymatroid and branching optimiza-

tion problems, SIAM Journal on Algebraic and Discrete Methods, 2 (1981), 416–425.
2 Y. Benchetrit: Integer round-up property for the chromatic number of some h-perfect

graphs, Mathematical Programming, 164 (2017), 245–262.
3 A. Bernáth and T. Király: Blocking optimal k-arborescences, in Proc. 27th SODA, 2016,

1682–1694.
4 F. Bock: An algorithm to construct a minimum directed spanning tree in a directed network,

in Developments in Operations Research, Gordon and Breach, 1971, 29–44.
5 C. Brezovec, G. Cornuéjols and F. Glover: Two algorithms for weighted matroid intersec-

tion, Mathematical Programming, 36 (1986), 39–53.
6 Y.J. Chu and T.H. Liu: On the shortest arborescence of a directed graph, Scientia Sinica,

14 (1965), 1396–1400.
7 J. Davies and C. McDiarmid: Disjoint common transversals and exchange structures, The

Journal of the London Mathematical Society, 14 (1976), 55–62.
8 R. Dougherty, C. Freiling and K. Zeger: Network coding and matroid theory, Proceedings

of the IEEE, 99 (2011), 388–405.

MFCS 2018

12:14 The b-Branching Problem in Digraphs

9 O. Durand de Gevigney, V.-H. Nguyen and Z. Szigeti: Matroid-based packing of arbores-
cences, SIAM Journal on Discrete Mathematics, 27 (2013), 567–574.

10 J. Edmonds: Paths, trees, and flowers, Canadian Journal of Mathematics, 17 (1965), 449–
467.

11 J. Edmonds: Optimum branchings, Journal of Research National Bureau of Standards,
Section B, 71 (1967), 233–240.

12 J. Edmonds: Submodular functions, matroids, and certain polyhedra, Combinatorial Struc-
tures and Their Applications, New York, 1970, Gordon and Breach, 69–87.

13 J. Edmonds: Edge-disjoint branchings, in R. Rustin, ed., Combinatorial Algorithms, Al-
gorithmics Press, 1973, 285–301.

14 J. Edmonds: Matroid intersection, Annals of Discrete Mathematics, 4 (1979), 39–49.
15 J. Edmonds and R. Giles: A min-max relation for submodular functions on graphs, Annals

of Discrete Mathematics, 1 (1977), 185–204.
16 L. Fleischer, S. Iwata and S.T. McCormick: A faster capacity scaling algorithm for min-

imum cost submodular flow, Mathematical Programming, 92 (2002), 119–139.
17 A. Frank: Covering branchings, Acta Scientiarum Mathematicarum, 41 (1979), 77–81.
18 A. Frank: A weighted matroid intersection algorithm, Journal of Algorithms, 2 (1981),

328–336.
19 A. Frank: Rooted k-connections in digraphs, Discrete Applied Mathematics, 157 (2009),

1242–1254.
20 A. Frank: Connections in Combinatorial Optimization, Oxford University Press, New York,

2011.
21 A. Frank and É. Tardos: An application of simultaneous Diophantine approximation in

combinatorial optimization, Combinatorica, 7 (1987), 49–65.
22 S. Fujishige: A note on disjoint arborescences, Combinatorica, 30 (2010), 247–252.
23 D.R. Fulkerson: Packing rooted directed cuts in a weighted directed graph, Mathematical

Programming, 6 (1974), 1–13.
24 F.R. Giles: Submodular Functions, Graphs and Integer Polyhedra, Ph.D. thesis, University

of Waterloo, 1975.
25 N.J.A. Harvey, D.R. Karger and K. Murota: Deterministic network coding by matrix

completion, in Proc. 16th SODA, 2005, 489–498.
26 C.-C. Huang, N. Kakimura and N. Kamiyama: Exact and approximation algorithms for

weighted matroid intersection, Mathematical Programming, to appear.
27 M. Iri and N. Tomizawa: An algorithm for finding an optimal “independent assignment”,

Journal of the Operations Research Society of Japan, 19 (1976), 32–57.
28 S. Iwata, L. Fleischer and S. Fujishige: A combinatorial strongly polynomial algorithm for

minimizing submodular functions, Journal of the ACM, 48 (2001), 761–777.
29 S. Iwata, S.T. McCormick and M. Shigeno: A fast cost scaling algorithm for submodular

flow, Information Processing Letters, 74 (2000), 123–128.
30 S. Iwata, S.T. McCormick and M. Shigeno: Fast cycle canceling algorithms for minimum

cost submodular flow, Combinatorica, 23 (2003), 503–525.
31 N. Kakimura, N. Kamiyama, and K. Takazawa: The b-branching problem in digraphs,

CoRR, abs/1802.02381 (2018).
32 N. Kamiyama: Arborescence problems in directed graphs: Theorems and algorithms, In-

terdisciplinary Information Sciences, 20 (2014), 51–70.
33 N. Kamiyama, N. Katoh, and A. Takizawa: Arc-disjoint in-trees in directed graphs, Com-

binatorica, 29 (2009), 197–214.
34 C. Király: On maximal independent arborescence packing, SIAM Journal on Discrete

Mathematics, 30 (2016), 2107–2114.
35 J. Kleinberg and É. Tardos: Algorithm Design, Addison Wesley, Boston, 2005.

N. Kakimura, N. Kamiyama, and K. Takazawa 12:15

36 B. Korte and J. Vygen: Combinatorial Optimization – Theory and Algorithms, Springer,
Berlin, 5th ed., 2012.

37 Y. Lee, A. Sidford, and S.C.-W. Wong: A faster cutting plane method and its implications
for combinatorial and convex optimization, in Proc. 56th FOCS, IEEE Computer Society,
2015, 1049–1065.

38 L. Lovász: On two minimax theorems in graph, Journal of Combinatorial Theory, Series
B, 21 (1976), 96–103.

39 E.L. Lawler: Optimal matroid intersections, Combinatorial Structures and Their Applica-
tions, New York, 1970, Gordon and Breach, 233–234.

40 E.L. Lawler: Matroid intersection algorithms, Mathematical Programming, 9 (1975), 31–56.
41 S.E. Markosyan and G.S. Gasparyan: Optimal’noe razlozhenie orientirovannykh

mul’tigrafov na orlesa [Russian; The optimal decomposition of directed multigraphs into
a diforest], Metody Diskretnogo Analiza v Teorii Grafov i Logicheskikh Funkts̆ı, 43 (1986),
75–86.

42 C. McDiarmid: On pairs of strongly-base-orderable matroids, Technical report, No. 283,
School of Operations Research and Industrial Engineering, College of Engineering, Cornell
University, 1976.

43 K. Murota: Matrices and Matroids for Systems Analysis, Springer, Berlin, 2nd ed., 2000.
44 A. Recski: Matroid Theory and Its Applications in Electric Network Theory and in Statics,

Springer, Berlin, 1989.
45 A. Schrijver: Totally dual integral system from directed graphs, crossing families and sub-

and supermodular functions, in W.R. Pulleyblank, ed., Progress in Combinatorial Optmiz-
ation, Toronto, 1984, Academic Press, 315–361.

46 A. Schrijver: A combinatorial algorithm minimizing submodular functions in strongly poly-
nomial time, Journal of Combinatorial Theory, Series B, 80 (2000), 346–355.

47 A. Schrijver: Combinatorial Optimization – Polyhedra and Efficiency, Springer, Heidelberg,
2003.

48 L. Szegő: On covering intersecting set-systems by digraphs, Discrete Mathematics, 234
(2001), 187–189.

49 K. Takazawa: Excluded t-factors: A unified framework for nonbipartite matchings and
restricted 2-matchings, in Proc. 19th IPCO, LNCS 10328, Springer, 2017, 430–441.

MFCS 2018

Pairing heaps: the forward variant
Dani Dorfman
Blavatnik School of Computer Science, Tel Aviv University, Israel
dannatand@mail.tau.ac.il

Haim Kaplan1

Blavatnik School of Computer Science, Tel Aviv University, Israel
haimk@post.tau.ac.il

László Kozma2

Eindhoven University of Technology, The Netherlands
l.kozma@tue.nl

Uri Zwick3

Blavatnik School of Computer Science, Tel Aviv University, Israel
zwick@tau.ac.il

Abstract
The pairing heap is a classical heap data structure introduced in 1986 by Fredman, Sedgewick,
Sleator, and Tarjan. It is remarkable both for its simplicity and for its excellent performance in
practice. The “magic” of pairing heaps lies in the restructuring that happens after the deletion of
the smallest item. The resulting collection of trees is consolidated in two rounds: a left-to-right
pairing round, followed by a right-to-left accumulation round. Fredman et al. showed, via an
elegant correspondence to splay trees, that in a pairing heap of size n all heap operations take
O(log n) amortized time. They also proposed an arguably more natural variant, where both
pairing and accumulation are performed in a combined left-to-right round (called the forward
variant of pairing heaps). The analogy to splaying breaks down in this case, and the analysis of
the forward variant was left open.

In this paper we show that inserting an item and deleting the minimum in a forward-variant
pairing heap both take amortized time O(log n · 4

√
log n). This is the first improvement over the

O(
√
n) bound showed by Fredman et al. three decades ago. Our analysis relies on a new potential

function that tracks parent-child rank-differences in the heap.

2012 ACM Subject Classification Theory of computation→ Data structures design and analysis

Keywords and phrases data structure, priority queue, pairing heap

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.13

1 Introduction

A heap is an abstract data structure that stores a set of keys, supporting the usual operations
of creating an empty heap, inserting a key, finding and deleting the smallest key, decreasing
a key, and merging (“melding”) two heaps. Heaps are ubiquitous in computer science, used,

1 Research supported by The Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11),
Israel Science Foundation grant no. 1841-14.

2 Work done while at Tel Aviv University. Research supported by The Israeli Centers of Research
Excellence (I-CORE) program (Center No. 4/11).

3 Research supported by BSF grant no. 2012338 and by The Israeli Centers of Research Excellence
(I-CORE) program (Center No. 4/11).

© Dani Dorfman, Haim Kaplan, László Kozma, and Uri Zwick;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dannatand@mail.tau.ac.il
mailto:haimk@post.tau.ac.il
mailto:l.kozma@tue.nl
mailto:zwick@tau.ac.il
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Pairing heaps: the forward variant

for instance, in Dijkstra’s shortest path algorithm and in the Jarník-Prim minimum spanning
tree algorithm (see e.g., [5]). Heaps are typically implemented as trees (binary or multiary),
where each node stores a key, and no key may be smaller than its parent-key.

The pairing heap, introduced by Fredman, Sedgewick, Sleator, and Tarjan [9], is a popular
heap implementation that supports all operations in O(log n) amortized time. It is intended
to be a simpler, self-adjusting alternative to the Fibonacci heap [10], and has been observed to
have excellent performance in practice [27, 23, 20, 22]. Despite significant research, the exact
complexity of pairing heap operations is still not fully understood [9, 8, 14, 24, 6, 17, 18].

Self-adjusting data structures. Many of the fundamental heap- and tree- data structures
in the literature are designed with a certain “good structure” in mind, which guarantees
their efficiency. Binary search trees, for instance, need to be (more or less) balanced in order
to support operations in O(log n) time. In the case of heaps, a reasonable goal is to keep
node-degrees low, as it is costly to delete a node with many children. Maintaining a tree
structure in such a favorable state at all times requires considerable book-keeping. Indeed,
data structures of this flavor (AVL-trees [1], red-black trees [2, 11], Binomial heaps [29],
Fibonacci heaps [10], etc.) store structural parameters in the nodes of the tree, and enforce
strict rules on how the tree may evolve.

By contrast, pairing heaps and other self-adjusting data structures store no additional
information besides the keys and the pointers that represent the tree itself. Instead, they
perform local re-adjustments after each operation, seemingly ignoring global structure. Due
to their simplicity and low memory footprint, self-adjusting data structures are appealing in
practice. Moreover, self-adjustment allows data structures to adapt to various usage patterns.
This has led, in the case of search trees, to a rich theory of instance-specific bounds (see
e.g., [26, 15]). The price to pay for the simplicity and power of self-adjusting data structures
is the complexity of their analysis. With no rigid structure, self-adjusting data structures are
typically analysed via potential functions that measure, informally speaking, how far the
data structure is from an ideal state.

The standard analysis of pairing heaps [9] borrows the potential function developed for
splay trees by Sleator and Tarjan [26]. This technique is not directly applicable to other
variants of pairing heaps. There is a large design space of self-adjusting heaps similar to
pairing heaps, yet, we currently lack the tools to analyse their behavior (apart from isolated
cases). We find it a worthy task to develop tools to remedy this situation.

Description of pairing heaps. A pairing heap is built as a single tree with nodes of arbitrary
degree. Each node is identified with a key, with the usual min-heap condition: every (non-root)
key is larger than its parent key.

The heap operations are implemented using the unit-cost linking primitive: given two
nodes x and y (with their respective subtrees), link(x, y) compares x and y and lets the
greater of the two become the leftmost child of the smaller.

The delete-min operation works as follows. We first delete (and return) the root r of
the heap (i.e., the minimum), whose children are x1, . . . , xk. We then perform a left-to-right
pairing round, calling link(x2i−1, x2i) for all i = 1, . . . , bk/2c. The resulting roots are
denoted y1, . . . , ydk/2e. (Observe that if k is odd, the last root is not linked.) Finally, we
perform a right-to-left accumulate round, calling link(pi, yi−1) for all i = dk/2e, . . . , 2, where
pi is the minimum among yi, . . . , ydk/2e. We illustrate this process in Figure 1.

The other operations are straightforward. In decrease-key, we cut out the node whose
key is decreased (together with its subtree) and link it with the root. In insert, we link the
new node with the root. In meld, we link the two roots.

D. Dorfman, H. Kaplan, L. Kozma, and U. Zwick 13:3

Fredman et al. [9] showed that the amortized time of all operations is O(log n). They
also conjectured that, similarly to Fibonacci heaps, the amortized time of decrease-key is
in fact constant. This conjecture was disproved by Fredman [8], who showed that in certain
sequences, decrease-key requires Ω(log log n) time. In fact, the result of Fredman holds for a
more general family of heap algorithms. Iacono and Özkan [17, 16] gave a similar lower bound
for a different generalization4 of pairing heaps. Assuming O(log n) time for decrease-key,
Iacono [14] showed that insert takes constant amortized time. Pettie [24] proved that both
decrease-key and insert take O(4

√
log log n) time. Improving these trade-offs remains a

challenging open problem.

Pairing heap variants. We refer to the pairing heap data structure described above as the
standard pairing heap. Fredman et al. [9] also proposed a number of variants that differ in
the way the heap is consolidated during a delete-min operation.

We describe first the forward variant, which is the main subject of this paper (in the
original pairing heap paper this is called the front-to-back variant). The pairing round in
the forward variant is identical to the standard variant, resulting in roots y1, . . . , yt, where
t = dk/2e, and k is the number of children of the deleted root. In the forward variant,
however, we perform the second round also from left to right: for all i = 1, . . . , t − 1, we
call link(pi, yi+1), where pi is the minimum among y1, . . . , yi. Occasionally we refer to pi as
the current left-to-right minimum. See Figure 1 for an illustration. What may seem like a
minor change causes the data structure to behave differently. Currently, the forward variant
appears to be much more difficult to analyse than the standard variant.

The implementation of the forward variant is arguably simpler. The two passes can be
performed together in a single pass, using only the standard leftmost child and right sibling
pointers. In fact, it is possible to implement the two rounds in one pass also in the standard
variant. To achieve this, we need to perform both the pairing and accumulation rounds
from right to left. As shown by Fredman et al. [9], this can be done with a slightly more
complicated link structure, and the original analysis goes through essentially unchanged.
Regardless of the low-level details, it remains the case that of the two most natural pairing
heap variants one is significantly better understood than the other.

Yet another variant described by Fredman et al. [8] is the multipass pairing heap. Here,
instead of an accumulation round, repeated pairing rounds are executed, until a single root
remains. For multipass pairing heaps, the bound of O

(
log n · log log n/ log log log n

)
was

shown [9] on the cost of a delete-min.5

Fredman et al. [9] also describe what we could call the arbitrary pairing and linking
variant. Here, before performing the initial pairing round, the roots may be arbitrarily
reordered. After the pairing round, arbitrary pairs of roots (not necessarily neighbors) are
linked, until there is a single root left. For this general case (that subsumes all previous
variants) Fredman et al. [9] show a tight6 Θ(

√
n) amortized bound for delete-min. Even in

the special case of the forward variant, the O(
√
n) upper bound has never been improved.

Our main result is the following.

4 Both results are rather subtle, for instance, it is not clear whether decrease-key remains costly in an
implementation where we cut an affected node only if its decreased key is smaller than that of its parent.

5 A recently claimed improvement by Pettie [25] would reduce this to an almost, but not quite, logarithmic
bound. The result of Pettie has, in some sense, inspired our results.

6 It is not clear how efficient this strategy is if we only allow link operations between neighboring siblings.

MFCS 2018

13:4 Pairing heaps: the forward variant

I Theorem 1. In the forward variant of pairing heaps, the amortized costs of delete-min and
insert are O(log n · 4

√
log n), where n is the number of items in the heap when the operation

is performed.

The result holds for sequences of insert and delete-min operations arbitrarily intermixed,
starting from an empty heap. Note that an insert operation performs a single link, its
worst-case cost is therefore constant.

The quantity in the running time is asymptotically smaller than nε, for all ε > 0. We
remark that the 4

√
log n term grows much faster than the log n term, as for arbitrary constants

c, d > 1 it holds that c
√

log n = ω(logd n).
Besides the concrete result (heaps with proven logarithmic cost are known, afterall), the

contribution of our paper is in the development of a new, fairly general potential function,
that may have further applications.

There has been significant further work in designing heap data structures, with the goal
of finding a simpler alternative to Fibonacci heaps, matching, or almost matching their
theoretical guarantees (e.g., [27, 19, 7, 12, 13, 4]). These heaps are typically more complicated
than pairing heaps. Moreover, they are not self-adjusting, i.e., they store extra information
at the nodes, are thus out of the scope of this paper.

Splaying and sorting. There is a standard representation of multi-way rooted trees as
binary trees ([21, § 2.3.2], [9]), by renaming the leftmost child and right sibling pointers as
left child and right child. (See Figure 1.) In this binary tree representation, the restructuring
performed when we delete the minimum from a pairing heap closely resembles the restructuring
performed by an access to an item in a splay tree. The correspondence is sufficiently close
that the proof of logarithmic access cost in splay trees [26] also goes through for the pairing
heap. (We note that this correspondence is far from trivial: one has to relabel some nodes
and swap their left and right children in the analysis to make it work; we refer to the original
pairing heap paper [9] for details.)

In case of the forward variant, the analogy with splay trees breaks down, with no apparent
way to fix it. The reason is that the accumulation round of the forward variant may reverse
the ordering of large groups of consecutive neighbors. In splay-view, this has the effect of
turning long portions of the search path upside-down, something known to be notoriously
hard to analyse, see [28, 3].

There is a close link between heaps and sorting. The ancestor-descendant relationship in a
heap captures everything we know about the order of the keys at a certain time. A sequence
of delete-mins in a pairing heap (or in any other heap, for that matter), can be seen as
transitioning from the current partial order towards the total order, i.e., sorting. (More
precisely, we have here a special kind of selection-sort, in which only candidate minima are
ever compared.) It would then be natural for the potential function to capture some measure
of “sortedness” of the heap, for example, the entropy of the partial order or some other
quantity related to the number of linear extensions. In general, as observed by Pettie [24],
this is far from being the case for the splay potential.

The potential function in the classical analysis of splay trees is equal to the sum of the
logarithms of subtree-sizes of all nodes in the tree. A subtree in the splay-view corresponds,
in the heap-view, to the set of subtrees of a node and all of its right siblings (Figure 1). It
is far from intuitive why such a quantity would be useful in analysing pairing heaps. In
particular, this potential function does not distinguish between left and right children in
the splay-view, even though, in the heap-view, they play different roles: one is a provably
larger key, and the other is (so far) incomparable. It may seem that, implicitly, the splay

D. Dorfman, H. Kaplan, L. Kozma, and U. Zwick 13:5

Figure 1 Pairing heap delete-min operation. Left: heap-view, right: binary tree-view (splay-
view). From top to bottom: (i) initial heap, (ii) deleting the root and a left-to-right pairing round,
(iii) standard variant, resulting heap after right-to-left accumulation round, (iv) forward-variant,
resulting heap after left-to-right accumulation round. Circled numbers are keys, letters indicate
arbitrary subtrees. Observe that the forward variant (iv) reverses the ordering of the siblings with
keys 2,6,5.

potential assumes that the left-to-right ordering of siblings (in heap-view) is, to some extent,
correlated with the sorted order. We argue that such an assumption is reasonable for the
standard variant of pairing heaps, but not for the forward variant (since the accumulation
round of the forward variant frequently reverses blocks of consecutive siblings).

As a simple example, consider either the standard or the forward variant, and look at a
group of consecutive siblings x1, x2, . . . , xk, y (arbitrarily shuffled), of which y is the smallest.
Suppose, for simplicity, that these nodes interact with each other only in pairing rounds, i.e.,
the minimum of the accumulation round always comes from “outside the group”, and does
not change within the group. Assume also that, in each pairing round following a deletion of
the parent of the group, y gains one node from the group as its new leftmost child.

If xi and xj both become children of y, and xi is to the left of xj , then xi became the
child of y in a later round than xj , having “survived” more rounds (winning the links it took
part in) at the same level as y. This fact is an indication that xi may be smaller than xj .

MFCS 2018

13:6 Pairing heaps: the forward variant

When y is eventually deleted, the standard variant will preserve the order of its children,
whereas the forward variant will reverse it (assuming again, that there is no minimum-change
within the group during the accumulation round).

There are limits to this intuition, and it is easy to construct examples that break it.
Nonetheless, this interpretation suggests that we analyse the forward variant by somehow
directly using the order-information, instead of trying to infer it from the tree structure.
This motivates our potential function in § 2.

The intuition described earlier also hints at why the standard variant of pairing heaps
may in fact be faster than the forward variant. If the left-to-right ordering of siblings is
indeed the increasing order, then a right-to-left accumulate round is vastly more efficient then
a left-to-right round. (The former immediately achieves the sorted order, whereas the latter
merely finds the minimum.) On the other hand, in this case, the left-to-right round also
reverses the order of siblings, making it optimal for the subsequent round. This intuition is
consistent with our experiments that show the forward-variant to be somewhat slower7 than
the standard variant. However, the possibility that the forward-variant also has logarithmic
cost has not been ruled out.

It remains an interesting open question to determine the exact complexity of the forward
variant, and to characterize the types of instances on which it may outperform the standard
variant. We also leave open the question whether decrease-key may take o(log n) time in
this variant, noting that the lower bound of Fredman [8] applies to this case, whereas the
upper bound of Pettie [24] does not.

More importantly, one can hope that new techniques for the analysis of pairing heaps
will find their way to the analysis of splay trees and other dynamic search tree algorithms.
Splaying and its variants pose some of the most intriguing and central open questions of the
field, such as the dynamic optimality conjecture [26, 15].

2 Analysis of the forward variant of pairing heaps

Before proving our main result, as a warm-up, we look at the arbitrary pairing and linking
variant of pairing heaps. First we introduce some terminology.

We define the rank of a node x as the number of nodes in the heap with a smaller key,8 e.g.,
the rank of the root is 0. (For simplicity, we assume that the keys are unique.) We denote the
rank of x by r(x). The rank-difference rd(x) of a node x is defined as rd(x) = r(x)− r(p(x)),
where p(x) is the parent node of x. It is clear that rd(x) is positive for all non-root nodes x.
For the root r, we define rd(r) = 0.

2.1 Arbitrary pairing and linking
We show that starting with an arbitrary initial heap of size n, the cost of n delete-mins
using arbitrary pairing and linking is O(n

√
n). This was already known, as a corollary of

Fredman et al.’s result in the original pairing heap paper [9]. Our proof is different (and
arguably simpler), and is intended to illustrate the use of rank-differences in the analysis.

Consider a heap of size n. Let Φ denote the sum of rank-differences over all nodes of the
heap. Observe that the ranks take all values 0, . . . , n− 1, and the rank-difference of a node
is not more than its rank. It follows that 0 ≤ Φ ≤ n(n− 1)/2.

7 Experiments also suggest that multipass is somewhat slower than the standard variant [27].
8 Contrary to many other ranks in the data structures literature, we use the word in its “original” meaning.

D. Dorfman, H. Kaplan, L. Kozma, and U. Zwick 13:7

For the purpose of the analysis, we slightly change the implementation of delete-min.
Rather than deleting the root first, we first do the pairing and accumulation rounds on the
children of the root, until the root has only one child. Only then, we actually delete the root.
This modified algorithm is equivalent to the original.

In this implementation, all link operations take place between children of the root.
Consider a link between nodes x and y, whose rank-differences are a and b, respectively.
Suppose x < y, and consequently a < b. After the operation, y becomes the leftmost child of
x. The new rank-difference of y is b− a. Observe that the rank-differences of nodes other
than y remain unchanged, therefore the potential Φ decreases by a.

I Theorem 2. The cost of n delete-min operations from an arbitrary initial heap of size n,
using arbitrary pairing and linking, is O(n

√
n).

Proof. Consider a delete-min in which the root has k children. In the pairing round we
perform bk/2c link operations. By the earlier observation, the potential Φ goes down by
a1 + · · ·+ abk/2c, where ai is the rank-difference of the “winner” (i.e., smaller node) in the
i-th link. The values ai are distinct (since all respective nodes have different ranks, and
the same parent), and ai > 0 for all i. Thus, the entire pairing round reduces Φ by at least
1 + 2 + · · ·+ bk/2c ≥ (k2 − 1)/8 ≥ (k − 1)2/8. The remaining operations can only further
decrease the potential.

Let ki be the number of children of the root before the i-th delete-min operation. (This
is also our estimate for the cost of the operation.) The total reduction in potential due to this
operation is at least

∑n
i=1 (ki − 1)2

/8. On the other hand, the total reduction in potential
over all n operations is not more than n2/2. It follows that

∑
i (ki − 1)2 ≤ 4n2. Under this

condition, setting k1 = · · · = kn = 2
√
n+ 1 maximizes the total real cost

∑
i ki. J

In its current form, the potential function is not well suited for analysing operations
other than delete-min; a single insert, for example, may increase Φ by a linear term. We
sketch a new analysis for sequences of insert and delete-min operations that foretells the
technique used in § 2.2.

Define the potential of a node x, denoted by φ(x), to be rd(x), if rd(x) ≤
√
n− 1, and√

n − 1 + rd(x)/
√
n otherwise. Call nodes of the first kind light, and nodes of the second

kind heavy. The potential function Φ is now defined as the sum of φ(x) over all nodes x.
Observe that for a heap of size n, the total potential is Φ < 2n

√
n.

Consider the pairing round in a delete-min operation. Since there are less than
√
n light

nodes among the children of the root, all but
√
n of the link operations are between heavy

nodes. It is easy to verify that a link between two heavy nodes reduces the potential by at
least 1. The amortized O(

√
n) cost of delete-min follows.

Next we bound the amortized cost of an insert operation, considering the increase in
potential that it may cause.

First, we have to add the potential of the newly inserted key, which is at most 2
√
n. (In

case the newly inserted key is the new minimum, it does not contribute to the potential.)
The second, more subtle effect of insert is that it may cause a change in the rank-

differences of other nodes. A given node y is affected by a newly inserted node x if the rank
of x falls between the rank of y and that of its parent p(y). If the affected node y is a light
node (before the insert), then its rank r(y) (before the insert) can be larger than r(x) by
at most

√
n− 2 (otherwise, the rank-difference of y would have been too large). There can

be at most
√
n− 1 such nodes, and the potential of each may go up by 1. Otherwise, if y is

a heavy node, then φ(y) may go up only by 1/
√
n. Overall, the potential Φ increases by at

most 2
√
n. The amortized O(

√
n) cost of insert follows.

MFCS 2018

13:8 Pairing heaps: the forward variant

The reader may observe that we ignored the change in potential due to the change in the
value of n. We can deal with this technicality by keeping n unchanged, as long as it does not
get too far away from the true number of elements. When that happens, n can be updated
by a standard doubling-halving strategy, without affecting the claimed amortized costs. We
discuss this issue in more detail in the context of our main result.

2.2 The main result
I Theorem 1. In the forward variant of pairing heaps, the amortized costs of delete-min and
insert are O(log n · 4

√
log n), where n is the number of items in the heap when the operation

is performed.

To prove Theorem 1, we replace the simple potential function used in § 2.1 by one with a
more fine-grained scaling. Again, first we present the tools necessary to analyse the heap in
a sorting mode, i.e., we compute the cost of n delete-min operations on an arbitrary initial
heap of size n, then we make the necessary changes to analyse both insert and delete-min.

In the following, for the purpose of analysis, we assume that n is an upper bound on the
number of nodes in the heap, not greater than four times the true value. (Except for the
beginning, when the heap is empty, and we set n to a small constant value, say n = 4.) At
the end, we describe how we update n, if, after a certain number of operations, the true
value reaches n, or falls far below n.

Let q = q(n) be the scaling factor for n, an integer that we optimize later; assume
for now that 1 < q < n. The category of a (non-root) node x, denoted c(x) is defined as
c(x) = blogq rd(x)c. Observe that c = c(x) is the unique integer for which qc ≤ rd(x) < qc+1.
For all nodes x we have 0 ≤ c(x) < t, where t = t(n) = blogq (n− 1)c+ 1, and t ≥ 2.

For all non-root nodes x, we define the node potential of x as

φ(x) = rd(x)− qc

qc − qc−1 + c · q, where c = c(x).

For the root r, we let φ(r) = 0. The total node potential is ΦN =
∑
φ(x), where the sum

ranges over all nodes x. Some observations about the node potential are in order.

I Lemma 3. With the previous definitions, we have:
(i) If rd(y) = rd(x) + 1, and rd(x) ≥ 1, then φ(y) = φ(x) + 1/(qc − qc−1), where c = c(x).
(ii) For every node x, it holds that 0 ≤ φ(x) ≤ t · q, and therefore ΦN ≤ n · t · q.
(iii) If two nodes of the same category are linked, then ΦN decreases by at least 1.

Proof.
(i) Suppose c(y) = c(x) = c. Then, φ(y)− φ(x) = (rd(y)− rd(x)) /(qc − qc−1) = 1/(qc −

qc−1). Otherwise, suppose c(y) = c(x) + 1. Let c = c(x). Then, rd(y) = qc+1, and
rd(x) = qc+1 − 1. Thus, φ(y)− φ(x) = (c+ 1) · q− (qc+1 − 1− qc)/(qc − qc−1)− c · q =
1/(qc − qc−1).

(ii) From (i) it follows that φ(x) is maximal if rd(x) = n − 1. Then, c(x) = t − 1, and
φ(x) ≤ (qt − qt−1)/(qt−1 − qt−2) + (t− 1) · q = t · q.

(iii) Let us define the function f(·) that maps rd(x) to φ(x) for all x. It is easy to verify
that f(·) is strictly increasing for rd(x) ≥ 1.
Suppose that x < y, and c(x) = c(y) = c. Then, qc ≤ rd(x) < rd(y) < qc+1. Only the
potential of y changes after the link operation, from f(rd(y)) to f(rd(y)− rd(x)).
We want to show f(rd(y)) − f(rd(y) − rd(x)) ≥ 1. This quantity is minimized if
rd(x) = qc. By (i), f(rd(y) − qc) ≤ f(rd(y)) − qc/(qc − qc−1) ≤ f(rd(y)) − 1. The
result follows. J

D. Dorfman, H. Kaplan, L. Kozma, and U. Zwick 13:9

Suppose that x1, . . . , xk are children of the same node in the heap, indexed in left-to-right
order. A subset {xi, xi+1, . . . , xj} of these nodes, for 1 ≤ i < j ≤ k, is referred to as a
contiguous group of siblings. Within the heap, we consider certain contiguous groups of
siblings to be in a box; this is only for the purpose of the analysis, with no effect on the
implementation.

We define a second kind of potential to capture the current state of the boxes. Throughout
the lifetime of the heap we maintain a number of invariants about the boxes, as follows.
(A) The size of a box (i.e., the number of nodes in a box) is of the form 2b − 1, for some

2 ≤ b ≤ t.
(B) Boxes are pairwise disjoint.
(C) A box of size 2b − 1 can only contain nodes of category b− 2 or smaller.

The box potential, denoted ΦB is a sum over all boxes of (b− t− 1)/t, where 2b − 1 is the
size of the box. In particular, the largest possible box of size 2t − 1 contributes −1/t to the
box potential, and the smallest possible box of size 3 contributes (1/t − 1). Observe that
−n < ΦB ≤ 0. At the beginning of the operations there are no boxes, therefore ΦB = 0.

The total potential Φ combines the node potential and the box potential, as Φ = ΦN +ΦB .
We are ready to analyse the individual operations and their effect on the potential.

Delete-min only. Again, assume that the delete-min operation performs the pairing and
accumulation rounds first, and deleting the root afterwards. We need to account for the
change of node and box potential in all steps.

Consider an operation link(x, y), and assume w.l.o.g. that x < y, and therefore x becomes
the parent of y. We say that the link is a good link if one of the following holds:
(1) before the link x and y were of the same category,
(2) the link occurs in the accumulation round, is not of type (1), and y is the left-to-right

minimum before the link (being replaced by x in this role).

At a high level, our strategy is to show that for every t · 2t link operations, one good link
occurs. A good link of the type specified in case (1) decreases the node potential by at least
1. Therefore, by Lemma 3(ii), there are at most n · t · q such links. (In our current setting no
action increases the node potential.) A good link of the type specified in case (2) can occur
at most t− 1 times during a delete-min. To see that there are no more than t− 1 type-(2)
good links in a delete-min, observe that such an event necessarily leads to a decrease in
category of the current left-to-right minimum, and the number of possible categories is t.

The link operations that we charge to a single good link may be scattered through multiple
delete-min operations. The purpose of the boxes is to keep track of link operations that we
have not yet accounted for.

Let k denote the number of children of the deleted root, i.e., the real cost of the operation,
up to a constant factor, and let us look in turn at the pairing round, accumulation round,
and the deletion of the root.

Pairing round. Consider the links involving nodes from a box of size 2b − 1. If at least one
of these is a good link of type (1), we simply remove the box. The result is an increase
in box potential by (t − b + 1)/t due to the deletion of the box, and a decrease in node
potential by at least 1 due to the good link. This amounts to a decrease in total potential of
(b− 1)/t ≥ 1/t. Observe that if the box size before the operation is 22− 1 = 3 (i.e., minimal),
then the link operation within the box is always a good link. This is because, by invariant
(C), all nodes in the box are of category 0.

MFCS 2018

13:10 Pairing heaps: the forward variant

...

Figure 2 The evolution of a box. Numbers indicate categories of nodes. The losers of the
comparisons drop out of the box.

Suppose that we process a box of size 2b − 1 for b > 2, and no good link occurs within
the box. Then, the box continues to exist around the winners of the link operations where
both nodes were in the same box, i.e., the losers of the link operations, and possibly the
nodes “on the margin” leave the box. Observe that the size of the box goes from 2b − 1 to
2b−1 − 1. Due to the decrease of the box size, we have a decrease in box potential by 1/t,
and consequently a decrease by 1/t in total potential. (See Figure 2 for illustration.)

Now suppose we execute T = 2t − 1 consecutive non-good link operations without
encountering a box. Then, we form a box around the 2t − 1 winners of these links. Due to
the newly created box of maximum size, the total potential decreases by 1/t.

Consider a sequence of T consecutive links. Then, either (i) one of the links is good, or
(ii) we create a new box containing the T winners, or (iii) we encounter an existing box.
In the latter case, we process the box until its end. Thus, in all cases, for at most 2T − 1
consecutive link operations, we achieve a saving in potential of at least 1/t. This yields (for
the entire pairing round) a decrease in potential of at least⌊ bk/2c

2 · 2t − 3

⌋
· 1
t
≥ k

4 · t · 2t
− 2
t
.

We need to argue that in the cases described above, the box invariants are maintained.
Condition (A) clearly holds in every case. When we create a new box, we only use nodes
that are not in a box, therefore condition (B) holds. We never add new nodes to an existing
box, thus (B) continues to hold. We next discuss the validity of invariant (C), which is the
crucial ingredient of the proof.

When a new box of size 2t − 1 is created, we claim that there cannot be any node of
category t− 1 within the box. This is because, if any node in the box was of category t− 1,
its “winning” of the linking would have happened against another node of category t− 1, a
type-(1) good link that contradicts our condition for creating the box.

Similarly, when shrinking an existing box from size 2b − 1 to 2b−1 − 1, if invariant (C)
was true before the operation (i.e., there were only nodes of category 0, . . . , b− 2 in the box),
then the nodes in the box after the operation can only be of category 0, . . . , b− 3. A node of
category b− 2 could only have “won” against another node of category b− 2, a type-(1) good
link that contradicts our condition for maintaining the box. This establishes the invariants.

Accumulation round. By Lemma 3(i), the node potential can only further decrease. We need
to argue that the box-structure is not destroyed by this round.

Recall that we start with the leftmost node (the current minimum), and keep linking
against the nodes from left to right. As long as there is no type-(2) good link, the nodes that
we encounter left-to-right become the children of the current minimum in right-to-left order.
The box invariants are clearly not affected by this reversal of order, the box, together with
its parent node simply moves further down the tree. (Categories of nodes in the box can
only decrease.)

D. Dorfman, H. Kaplan, L. Kozma, and U. Zwick 13:11

If there is a change in the minimum, i.e., a type-(2) event, while we are processing the
nodes in a box, then we delete the box. By deleting the box, we may increase the box
potential by 1− 1/t < 1. This is the only kind of potential-change we need to consider in
this round, yielding an increase in total potential of at most t− 1 (since there are at most
t− 1 type-(2) events).

Deleting the root. The actual deletion of the root leaves the node potential unchanged, since
at that time the root has only one child, its successor, which has rank-difference 1, and con-
sequently, node potential 0. The box potential is unaffected, since the root cannot be in a box.

To summarize, if the actual cost of delete-min is k, then, collecting the terms from the
different rounds, the decrease in potential is at least k/(4t · 2t)− 2/t− (t− 1) ≥ k/(4t · 2t)− t.

Denoting the actual costs of the n delete-min oparations by k1, . . . , kn, for the total
potential decrease ∆Φ we have:

∆Φ ≥
(

1
4t · 2t

n∑
i=1

ki

)
− n · t.

From Lemma 3(i) it follows that Φ ≤ n ·t ·q, for an arbitrary heap. For the empty heap, we
have Φ = 0. Thus, ∆Φ ≤ n · t ·q. It follows that the total cost is

∑
ki ≤ (n · t ·q+n · t) ·(4t ·2t).

Let us now choose the scaling factor used in the analysis. Recall that t = blogq (n− 1)c.
Fixing t = b

√
log nc, we have q = O(n1/

√
log n) = O(2

√
log n). Thus, we obtain that the

amortized cost of delete-min is O(log n · 4
√

log n).

Insert and Delete-min. Next, we consider sequences of insert and delete-min operations,
arbitrarily intermixed. The amortised cost of an operation is defined as the true cost plus
the increase in potential due to the operation.

The analysis of delete-min is the same as before, yielding a decrease in total potential
due to a delete-min of at least k/(4t · 2t)− t, where k is the actual cost of the operation.

The true cost of insert is O(1), but we also need to consider the increase in potential.
The box potential is not affected by insert, as we do not create any new boxes and neither
the root, nor the newly inserted node are in a box.

When a key x is inserted, its first contribution is its own node potential φ(x), in case it
becomes the child of the root. (If x is smaller than the root, then, after the linking, both x
and the old root have node potential zero.) By Lemma 3(ii), the resulting increase in the
node potential is at most t · q.

As in § 2.1, we need to deal with the fact that an insert operation may change the
ranks of existing nodes, possibly increasing their rank-difference. We could proceed with an
argument similar to the one in § 2.1, estimating the change in potential for nodes in each
category. The argument gets complicated, however, because the increase in rank-difference
may also cause an increase in category, invalidating the box invariants.9

To avoid the issue of updating ranks during an insert operation, we redefine rank to
take into account not just the items currently in the heap, but also the items that will be
inserted into the heap in the future. (Since we use ranks only in the analysis, we can assume
that future operations are known to us.) In this way, an insert operation has no effect on

9 We observe that our problem of maintaining the ranks under insertions is reminiscent of the well-studied
ordered list maintenance problem, for which efficient (although quite involved) solutions exist. Luckily,
we can get away with a simpler solution.

MFCS 2018

13:12 Pairing heaps: the forward variant

ranks, rank-differences, or categories of existing items, since the rank of the newly inserted
item has already been taken into consideration. Therefore, there is no further change in
potential that we need to consider.

There remains the issue, that we cannot afford to look too far into the future, as we want
the value n to be, at all times, close to the current size of the heap. Therefore, we split the
operations into epochs, and keep the value of n fixed throughout an epoch. If the heap is
empty, e.g., in the beginning, we let n = 4.

An epoch ends when the true size of the heap increases to n (after an insert), or decreases
to bn/4c (after a delete-min), or if, within the epoch, n distinct keys have already been
encountered (including those that were in the heap at the beginning of the epoch). In all
three cases, we reset n to be twice the true size of the heap, remove all boxes, and start a
new epoch. (We stress that epochs and boxes are used only in the analysis, with no effect
on the actual operation of the data structure.) As mentioned, the ranks of the items are
computed with respect to all items encountered during an epoch, they are therefore, fixed
within the epoch. Clearly, all ranks and rank-differences are still upper bounded by n.

We make four observations, all of which are easy to verify based on the preceding
discussion: (1) The true size of the heap is between bn/4c and n. (2) Within a finished epoch
there must have been at least dn/4e operations. (3) The increase in node potential due to
the resetting of n is not more than n · t · q. (4) Since the boxes are disjoint, there are less
than n boxes that we are removing, increasing the total potential by at most n.

We distribute the increase in potential of at most n · t · q+ n among the dn/4e operations
in the finished epoch, obtaining that the increase in potential during an insert is at most
5·t·q+4, and the increase in potential during a delete-min is at most t−k/(4t·2t)+4·t·q+4.
Scaling the potential by t · 2t, we obtain that the amortized cost of both insert and
delete-min is O(t2 · q · 2t).

Again, choosing t = b
√

log nc, we obtain q = O(n1/
√

log n) = O(2
√

log n), and the
amortized costs of O(log n · 4

√
log n) follow.

Meld. A meld operation is similar to an insert, in that only one node changes its rank-
difference, and thereby its node potential (the root with the larger key). Furthermore,
meld also leaves the box potential unaffected, so its analysis goes through similarly to the
analysis of insert, yielding the same amortized cost for meld as for insert and delete-min.
Observe, however, that if we also include meld operations in a sequence of operations, then
the value n that appears in the cost no longer denotes just the size of the affected heap, it is
instead, the number of items in all heaps that we are currently working with.

Other variants. The presented analysis is fairly general. It is not difficult to adapt it to
the standard and multipass variants of pairing heaps, yielding similar upper bounds. For
the standard variant the analysis is essentially the same as for the forward variant. For
multipass, the analysis becomes simpler, since boxes need to be maintained only during
individual delete-min operations. However, for these variants, stronger upper bounds are
already known, as discussed in § 1.

Recall that during a link operation, the larger of the two items is linked as the leftmost
child of the smaller. The reader may observe that the different behaviors of the standard
and forward variants depend on this particular way of implementing link. If we were to
link by making the larger item the rightmost child of the smaller, then the situation would
reverse, with the forward variant being easy, and the standard variant hard to analyse.

D. Dorfman, H. Kaplan, L. Kozma, and U. Zwick 13:13

We may modify the implementation of link, such as to link arbitrarily as the leftmost
or rightmost child (i.e., deciding independently for every link operation whether to link at
the left or at the right). Our analysis also extends to this more general class of pairing heap
algorithms (that use the modified link implementation) with minimal changes. The only
difficulty that arises in the new setting is that during the accumulation round, an existing
box may split into two, one part going to the left, the other to the right side of the current
minimum. To account for this loss, we need to start with a larger initial box (4t instead of
2t). The resulting bounds are still of the form 2O(

√
log n).

Improving (significantly) the bounds presented in the paper and extending the analysis
to other operations should be possible but will likely require new ideas.

References
1 G. M. Adelson-Velskĭı and E. M. Landis. An algorithm for organization of information.

Dokl. Akad. Nauk SSSR, 146:263–266, 1962.
2 Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta

Informatica, 1(4):290–306, Dec 1972. doi:10.1007/BF00289509.
3 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol

Saranurak. Self-adjusting binary search trees: What makes them tick? In ESA 2015, pages
300–312, 2015. doi:10.1007/978-3-662-48350-3_26.

4 Timothy M. Chan. Quake Heaps: A Simple Alternative to Fibonacci Heaps, pages 27–32.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013. doi:10.1007/978-3-642-40273-9_
3.

5 Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

6 Amr Elmasry. Pairing heaps with O(log log n) decrease cost. In Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA,
January 4-6, 2009, pages 471–476, 2009. URL: http://dl.acm.org/citation.cfm?id=
1496770.1496822.

7 Amr Elmasry. The violation heap: a relaxed fibonacci-like heap. Discrete Math., Alg. and
Appl., 2(4):493–504, 2010. doi:10.1142/S1793830910000838.

8 Michael L. Fredman. On the efficiency of pairing heaps and related data structures. J.
ACM, 46(4):473–501, 1999. doi:10.1145/320211.320214.

9 Michael L. Fredman, Robert Sedgewick, Daniel Dominic Sleator, and Robert Endre Tarjan.
The pairing heap: A new form of self-adjusting heap. Algorithmica, 1(1):111–129, 1986.
doi:10.1007/BF01840439.

10 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. In 25th Annual Symposium on Foundations of Computer
Science, West Palm Beach, Florida, USA, 24-26 October 1984, pages 338–346, 1984. doi:
10.1109/SFCS.1984.715934.

11 Leonidas J. Guibas and Robert Sedgewick. A dichromatic framework for balanced trees.
In 19th Annual Symposium on Foundations of Computer Science, Ann Arbor, Michigan,
USA, 16-18 October 1978, pages 8–21, 1978. doi:10.1109/SFCS.1978.3.

12 Bernhard Haeupler, Siddhartha Sen, and Robert Endre Tarjan. Rank-pairing heaps. SIAM
J. Comput., 40(6):1463–1485, 2011. doi:10.1137/100785351.

13 Thomas Dueholm Hansen, Haim Kaplan, Robert Endre Tarjan, and Uri Zwick. Hol-
low heaps. In Automata, Languages, and Programming - 42nd International Colloquium,
ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, pages 689–700, 2015.
doi:10.1007/978-3-662-47672-7_56.

MFCS 2018

http://dx.doi.org/10.1007/BF00289509
http://dx.doi.org/10.1007/978-3-662-48350-3_26
http://dx.doi.org/10.1007/978-3-642-40273-9_3
http://dx.doi.org/10.1007/978-3-642-40273-9_3
http://dl.acm.org/citation.cfm?id=1496770.1496822
http://dl.acm.org/citation.cfm?id=1496770.1496822
http://dx.doi.org/10.1142/S1793830910000838
http://dx.doi.org/10.1145/320211.320214
http://dx.doi.org/10.1007/BF01840439
http://dx.doi.org/10.1109/SFCS.1984.715934
http://dx.doi.org/10.1109/SFCS.1984.715934
http://dx.doi.org/10.1109/SFCS.1978.3
http://dx.doi.org/10.1137/100785351
http://dx.doi.org/10.1007/978-3-662-47672-7_56

13:14 Pairing heaps: the forward variant

14 John Iacono. Improved upper bounds for pairing heaps. In Algorithm Theory - SWAT
2000, 7th Scandinavian Workshop on Algorithm Theory, Bergen, Norway, July 5-7, 2000,
Proceedings, pages 32–45, 2000. doi:10.1007/3-540-44985-X_5.

15 John Iacono. In pursuit of the dynamic optimality conjecture. In Space-Efficient Data
Structures, Streams, and Algorithms, volume 8066 of Lecture Notes in Computer Science,
pages 236–250. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-40273-9_16.

16 John Iacono and Özgür Özkan. A tight lower bound for decrease-key in the pure heap
model. CoRR, abs/1407.6665, 2014. URL: http://arxiv.org/abs/1407.6665.

17 John Iacono and Özgür Özkan. Why some heaps support constant-amortized-time decrease-
key operations, and others do not. In Automata, Languages, and Programming - 41st Inter-
national Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part I, pages 637–649, 2014. doi:10.1007/978-3-662-43948-7_53.

18 John Iacono and Mark Yagnatinsky. A Linear Potential Function for Pairing Heaps,
pages 489–504. Springer International Publishing, Cham, 2016. doi:10.1007/
978-3-319-48749-6_36.

19 Haim Kaplan and Robert Endre Tarjan. Thin heaps, thick heaps. ACM Trans. Algorithms,
4(1):3:1–3:14, 2008. doi:10.1145/1328911.1328914.

20 Irit Katriel, Peter Sanders, and Jesper Larsson Träff. A practical minimum spanning tree
algorithm using the cycle property. In Algorithms - ESA 2003, 11th Annual European
Symposium, Budapest, Hungary, September 16-19, 2003, Proceedings, pages 679–690, 2003.
doi:10.1007/978-3-540-39658-1_61.

21 Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.

22 Daniel H. Larkin, Siddhartha Sen, and Robert Endre Tarjan. A back-to-basics empirical
study of priority queues. In 2014 Proceedings of the Sixteenth Workshop on Algorithm
Engineering and Experiments, ALENEX 2014, Portland, Oregon, USA, January 5, 2014,
pages 61–72, 2014. doi:10.1137/1.9781611973198.7.

23 Bernard M. E. Moret and Henry D. Shapiro. An empirical analysis of algorithms for
constructing a minimum spanning tree, pages 400–411. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1991. doi:10.1007/BFb0028279.

24 Seth Pettie. Towards a final analysis of pairing heaps. In 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA,
USA, Proceedings, pages 174–183, 2005. doi:10.1109/SFCS.2005.75.

25 Seth Pettie. Thirteen ways of looking at a splay tree. Unpublished lecture, 2014.
26 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J.

ACM, 32(3):652–686, 1985. doi:10.1145/3828.3835.
27 John T. Stasko and Jeffrey Scott Vitter. Pairing heaps: Experiments and analysis. Com-

mun. ACM, 30(3):234–249, 1987. doi:10.1145/214748.214759.
28 Ashok Subramanian. An explanation of splaying. J. Algorithms, 20(3):512–525, 1996.

doi:10.1006/jagm.1996.0025.
29 Jean Vuillemin. A data structure for manipulating priority queues. Commun. ACM,

21(4):309–315, 1978. doi:10.1145/359460.359478.

http://dx.doi.org/10.1007/3-540-44985-X_5
http://dx.doi.org/10.1007/978-3-642-40273-9_16
http://arxiv.org/abs/1407.6665
http://dx.doi.org/10.1007/978-3-662-43948-7_53
http://dx.doi.org/10.1007/978-3-319-48749-6_36
http://dx.doi.org/10.1007/978-3-319-48749-6_36
http://dx.doi.org/10.1145/1328911.1328914
http://dx.doi.org/10.1007/978-3-540-39658-1_61
http://dx.doi.org/10.1137/1.9781611973198.7
http://dx.doi.org/10.1007/BFb0028279
http://dx.doi.org/10.1109/SFCS.2005.75
http://dx.doi.org/10.1145/3828.3835
http://dx.doi.org/10.1145/214748.214759
http://dx.doi.org/10.1006/jagm.1996.0025
http://dx.doi.org/10.1145/359460.359478

Simultaneous Multiparty Communication
Protocols for Composed Functions

Yassine Hamoudi
IRIF, Université Paris Diderot, France
hamoudi@irif.fr

https://orcid.org/0000-0002-3762-0612

Abstract

The Number On the Forehead (NOF) model is a multiparty communication game between
k players that collaboratively want to evaluate a given function F : X1 × · · · × Xk → Y on some
input (x1, . . . , xk) by broadcasting bits according to a predetermined protocol. The input is
distributed in such a way that each player i sees all of it except xi (as if xi is written on the
forehead of player i). In the Simultaneous Message Passing (SMP) model, the players have the
extra condition that they cannot speak to each other, but instead send information to a referee.
The referee does not know the players’ inputs, and cannot give any information back. At the
end, the referee must be able to recover F (x1, . . . , xk) from what she obtained from the players.

A central open question in the simultaneous NOF model, called the log n barrier, is to find a
function which is hard to compute when the number of players is polylog(n) or more (where the
xi’s have size poly(n)). This has an important application in circuit complexity, as it could help
to separate ACC0 from other complexity classes [22, 3]. One of the candidates for breaking the
log n barrier belongs to the family of composed functions. The input to these functions in the
k-party NOF model is represented by a k× (t · n) boolean matrix M , whose row i is the number
xi on the forehead of player i and t is a block-width parameter. A symmetric composed function
acting on M is specified by two symmetric n- and kt-variate functions f and g (respectively),
that output f ◦ g(M) = f(g(B1), . . . , g(Bn)) where Bj is the j-th block of width t of M . As
the majority function Maj is conjectured to be outside of ACC0, Babai et. al. [5, 3] suggested
to study the composed function Maj ◦Majt, with t large enough, for breaking the log n barrier
(where Majt outputs 1 if at least kt/2 bits of the input block are set to 1).

So far, it was only known that block-width t = 1 is not enough for Maj ◦Majt to break the
log n barrier in the simultaneous NOF model [3] (Chattopadhyay and Saks [17] found an efficient
protocol for t ≤ polyloglog(n), but it requires randomness to be simultaneous). In this paper,
we extend this result to any constant block-width t > 1 by giving a deterministic simultaneous
protocol of cost 2O(2t) log2t+1

(n) for any symmetric composed function f ◦ g (which includes
Maj ◦Majt) when there are more than 2Ω(2t) log n players.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases Communication complexity, Number On the Forehead model, Simultan-
eous Message Passing, Log n barrier, Symmetric Composed functions

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.14

Acknowledgements This work was initiated during a visit to Carnegie Mellon University. The
author is very grateful to Anil Ada, who introduced him to the log n barrier problem and the
Maj◦Majt conjecture for composed functions. He also thanks him for helpful discussions on this
subject, as well as the anonymous referees for their valuable comments and suggestions which
helped to improve this paper.

© Yassine Hamoudi;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hamoudi@irif.fr
https://orcid.org/0000-0002-3762-0612
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Simultaneous Multiparty Communication Protocols for Composed Functions

1 Introduction

1.1 Number On the Forehead and Simultaneous models
The Number On the Forehead (NOF) model is a multiparty communication model introduced
by Chandra, Furst and Lipton [15] that generalizes the two player communication game of
Yao [36]. In this model, k players are given k inputs x1 ∈ X1, . . . , xk ∈ Xk on which they
want to compute some function F : X1 × · · · × Xk → Y. Each player i sees all of the input
(x1, . . . , xk), except xi. The situation is as if input xi is written on the forehead of player i.

In order to collaboratively evaluate F (x1, . . . , xk), the players communicate by broadcast-
ing bits according to a predetermined protocol. This protocol specifies whose turn it is to
speak, and which bit is to be sent given the information exchanged so far and the input seen
by the speaking player. It also determines when communication stops. At the end, all the
players must be able to recover F (x1, . . . , xk) from the input they see and the transcript of
the exchange. The cost of the protocol on input (x1, . . . , xk) is the number of exchanged
bits, and the total cost is the worst case cost on all inputs. The k-party deterministic
communication complexity of F , denoted Dk(F), is the cost of the most efficient protocol
computing F .

In most of the settings, the xi’s are polyn-bits long (for some parameter n) and Y = {0, 1}.
In this case, the naive protocol is to broadcast first the entire input x1 (this can be done by
player 2), and then player 1 computes F (x1, . . . , xk) and sends the result to the other players.
This protocol has cost m+ 1 (where m = poly(n) is the number of bits required for sending
x1), which proves Dk(F) = O (polyn). Consequently, a protocol will be said to be efficient
if it has cost O (polylog n) (i.e. we seek for exponential speed-up over the naive protocol).

Among the many variants of the previous framework (randomized, quantum, etc.), we
will be interested in the simultaneous (or Simultaneous Message Passing - SMP) model
[36, 25, 5, 28] in which the players cannot speak to each other but instead send information
to a referee. The referee does not know the players’ inputs, and cannot give any information
back. At the end, the referee must be able to recover F (x1, . . . , xk) from what she obtained
from the players. The simultaneous deterministic communication complexity is denoted
D||k(F), and it always satisfies Dk(F) ≤ D||k(F). It has often been easier to reason first in this
weaker model for proving lower bounds [3, 28, 10, 7]. It is also more suitable and fruitful for
studying certain functions, such as Equality in the two party setting [36, 2, 24, 4, 14, 19, 13].
We will show in the next section that the simultaneous deterministic communication model
is also closely connected to lower bound results in the complexity class ACC0.

1.2 The log n barrier problem and ACC0 lower bounds
The NOF model has proved to be of value in the study of many areas of computer science,
such as branching programs [15], Ramsey theory [15], circuit complexity [22, 12], quasirandom
graphs [18], proof complexity [9], etc. One of the most interesting connections, pointed out
by Håstad and Goldmann [22] and refined in [3], is a way to derive lower bounds for the
complexity class1 ACC0 from lower bounds in the simultaneous NOF model. More precisely,
according to a result from Yao, Beigel and Tarui [37, 12], any function f ∈ ACC0 can be
expressed as a depth-2 circuit whose top gate is a symmetric gate of fan-in 2logc n, and each
bottom gate is an And gate of fan-in logd n (for some constants c, d). Consequently, for

1 ACC0 refers to the functions computable by constant-depth poly-size circuits with unbounded fan-in
And, OR, Not and Modm gates (where Modm outputs 0 iff the sum of its inputs is divisible by m).

Y. Hamoudi 14:3

any partition of the input of f between k = logd n − 1 players in the simultaneous NOF
model, there exists a partition of the And gates between the players such that each of them
sees all the input bits she needs to evaluate the gates she received. The players can then
send to the referee the number of gates that evaluate to 1, which enables the referee to
compute f . The total cost of this protocol is O

(
k log

(
2logc n

))
= O

(
logc+d n

)
. Conversely,

any super-polylogarithmic lower bound in the simultaneous NOF model for a function f and
a partition of its input between polylog(n) players would imply f /∈ ACC0.

Separating ACC0 from other complexity classes is a central question in complexity theory.
It is conjectured that ACC0 does not contain the majority function Maj, but the only result
known so far is NEXP 6⊂ ACC0 [35]. The aforementioned connection with communication
complexity has motivated the search for a function which is hard to compute for k ≥ log n
players in the simultaneous NOF model. This problem is called the log n barrier.

Obtaining lower bounds in the NOF model is a challenging task, as the current methods
become very weak when k ≥ log n. The only general lower bound technique known so far is
the discrepancy method and its variants [6, 18, 30, 31]. One of the early application of it was
an Ω(n/4k) lower bound on the randomized complexity of the Generalized Inner Product
(Gip) function [6]. A long series of generalizations and improvements of the discrepancy
method subsequently led to an Ω

(√
n

k2k

)
(resp. Ω(n/4k)) lower bound on the randomized (resp.

deterministic) complexity of the Disjointness (Disj) function [34, 11, 16, 23, 8, 33, 32, 29].
It might seem like other lower bound arguments could prove that Gip and Disj remain hard
for k ≥ log n players. However, surprising non-simultaneous [21, 1] and simultaneous [3, 1]
protocols proved that the aforementioned lower bounds are nearly optimal, and that these
two functions cannot break the log n barrier. Very recently, Podolskii and Sherstov [27]
showed that the randomized complexity of Gip and Disj is exactly Θ

(
logn

d1+k/ logne + 1
)
when

k ≥ log n, and built a function having complexity Ω(log n) independently of k. Although
these last results do not break the log n barrier, they are the first superconstant lower bounds
proved for explicit functions when k ≥ log n.

1.3 Composed Functions
An input x1, . . . , xk ∈ {0, 1}n to k players in the NOF model can be visualized as a k × n
boolean matrix M where row i is the number xi on the forehead of player i. The protocols
known so far for Gip and Disj strongly rely on the particular way these functions act on
matrix M . They both consist in applying the g = And function on each of the n columns of
M , followed by the f = Mod2 (for Gip) or f = Nor (for Disj) function on the n resulting
bits. Since Gip and Disj do not break the log n barrier, a natural move has been to try other
f and g functions, and to increase the number t of columns on which each g function applies.
These are called the composed functions, formally defined below and depicted in Figure 1.

I Definition 1 (Boolean input version). Fix a block-width parameter t ≥ 1, and consider
functions f : {0, 1}n → {0, 1} and ~g = (g1, . . . , gn) where gj : ({0, 1}t)k → {0, 1}. Given
x1, . . . , xk ∈ {0, 1}t·n, the composed function f ◦ ~g for k players outputs f ◦ ~g(x1, . . . , xk) =
f(g1(B1), . . . , gn(Bn)) where Bj ∈ ({0, 1}t)k is the jth block of width t in the matrix
representation M of the input. When g = g1 = · · · = gn, we denote f ◦ ~g by f ◦ g.

Both Gip = Mod2 ◦And and Disj = Nor ◦And are composed functions for t = 1, with
the additional property that Mod2, Nor and And are symmetric functions (i.e. invariant
under any permutation of their input). Since the majority function Maj is conjectured to be
outside of ACC0, Babai et. al. [5, 3] suggested to look at Maj ◦Majt and Maj ◦Thrst for

MFCS 2018

14:4 Simultaneous Multiparty Communication Protocols for Composed Functions

· · · · · ·...

x1,1 x1,t

x2,1 x2,t

xk,1 xk,t

x1,tn

x2,tn

xk,tn

Player 1 (x1)
Player 2 (x2)

Player k (xk)

t · n

k

g1 gn f

Figure 1 Matrix structure of a composed function f ◦ ~g of block-width t.

breaking the log n barrier (where Majt outputs 1 if at least kt/2 bits of the input block are
set to 1, and Thrst (r1, . . . , rk) = 1 if r1 + · · ·+ rk ≥ s for r1, . . . , rk seen as t-bits numbers).

Another way to look at composed functions of block-width t is to interpret each sub-row
r ∈ {0, 1}t of each block as a number in Zd, where d = 2t. This representation of the input
as a k × n matrix M over some set Zd is sometimes more convenient to use. Below, we
reformulate Definition 1 using this point of view.

I Definition 2 (Integer input version). Fix an integer d ≥ 2 and consider functions f :
{0, 1}n → {0, 1} and ~g = (g1, . . . , gn) where gj : Zkd → {0, 1}. Given x1, . . . , xk ∈ Znd , the
composed function f ◦ ~g for k players outputs f ◦ ~g(x1, . . . , xk) = f(g1(C1), . . . , gn(Cn))
where Cj ∈ Zkd is the jth column in the matrix representation M of the input. When
g = g1 = · · · = gn, we denote f ◦ ~g by f ◦ g.

The set of all composed functions f ◦~g (resp. f ◦g) over Zd is denoted ANY◦
−−→
ANYZd

(resp.
ANY ◦ ANYZd

). Similarly, SYM ◦ SYMZd
is the set of f ◦ g for symmetric f and symmetric

g functions, SYM ◦
−−→
ANYZd

is the set of f ◦ ~g for symmetric f and any ~g, etc. If d = 2
(which corresponds to block-width t = 1), we will drop the subscript and write ANY ◦

−−→
ANY,

SYM◦SYM, etc. We have for instance Gip,Disj ∈ SYM◦SYM and Maj◦Majt,Maj◦Thrst ∈
SYM ◦ SYMZ2t .

The first efficient protocol for composed functions with polylog(n) or more players was
given by Grolmusz [21]. It is a non-simultaneous protocol of cost O

(
log2 n

)
for any composed

function in SYM ◦And (the inner function is fixed to be And) when k ≥ log n. The study
of composed functions with symmetric outer function f was subsequently continued, as
it captures many other interesting cases in communication complexity. Babai et. al. [5]
proposed first Maj◦Maj1 as a candidate to break the log n barrier. However, in a subsequent
work [3], they found a simultaneous protocol that applies to SYM ◦ COMPc (where COMPc

holds for c-compressible symmetric functions2, a subset of SYM that contains Maj and And).
It has cost O

(
log2+c n

)
when k > 1 + log n. Later, Ada et. al. [1] generalized this result to

SYM ◦
−−→
ANY, with a simultaneous protocol of cost O

(
log3 n

)
for k > 1 + 2 log n players. The

only protocol known so far for block-width t > 1 has been discovered by Chattopadhyay and
Saks [17]. It has cost O (d log n log(dn)) for SYM ◦

−−→
ANYZd

when k > 1 + d log(3n) (which is

2 A class G (parameterized by k) of symmetric functions g : {0, 1}k → {0, 1} is c-compressible if for
any function g ∈ G, set S ({1, . . . , k} and input (xi)i∈S ∈ {0, 1}|S| there is a message mS of size
O (1) + c log(k− |S|) such that g(x1, . . . , xk) can be computed for all (xi)i∈{1,...,k}\S ∈ {0, 1}k−|S| from
knowledge of mS and (xi)i∈{1,...,k}\S only. The Maj1 and Thrs

1 functions are 1-compressible [3].

Y. Hamoudi 14:5

Table 1 Deterministic protocols for different families of composed functions. The top three
results apply only to block-width 1 (i.e. d = 2), whereas the last two results work for any d. Note
that the protocol of [17] can be made simultaneous using shared randomness between the players.

Supported
functions

Complexity of
the protocol

Simultaneous
Number of players

required
Grolmusz [21] SYM ◦And O

(
log2 n

)
No k ≥ log n

Babai et. al. [3] SYM ◦ COMPc O
(
log2+c n

)
Yes k > 1 + log n

Ada et. al. [1] SYM ◦
−−→
ANY O

(
log3 n

)
Yes k > 1 + 2 log n

C. and Saks [17] SYM ◦
−−→
ANYZd O (d log n log(dn)) No k > 1 + d log(3n)

This work SYM ◦
−−→
SYMZd 2O(d) log4d(n) Yes k ≥ 42d log n

efficient for d ≤ polylog n). However, it is not simultaneous in the deterministic setting (the
authors showed how to make it simultaneous using shared randomness between the players).
Thus, none of these previous results prevents from breaking the log n barrier in the SMP
model with composed functions of block-width as small as t = 2. The goal of this paper is to
rule out this possibility for all symmetric composed functions of constant block-width t > 1.

1.4 Summary of Results and Comparison to Previous Protocols
Below, we describe our main results, and summarize in Table 1 the complexity of all the
known protocols for composed functions. Then, we review the main ideas used in the previous
literature, and we explain how we differ from them.

Our results. In this paper, we describe the first deterministic simultaneous protocol for
symmetric composed functions of block-width t > 1. Our result is divided into two parts.
We first give (Section 3.1) a protocol of cost O

(
k(k + d)d−1 log n

)
for SYM ◦ SYMZd

when
the number of players is k ≥ 4d−1 log n. In a second time (Section 3.2), we build upon
this result to give a simultaneous protocol of cost 2O(d) log2·2dlog de

(n) for SYM ◦
−−→
SYMZd

when k ≥ 42d log n. Unlike the first protocol, this last result also works with different inner
functions g1, . . . , gn and it is efficient even if k is super-polylogarithmic.

Adjacent vertices of the {0, 1}n hypercube. For block-width t = 1 and an input matrix
M ∈ {0, 1}k×n, denote nc the number of times column c ∈ {0, 1}k occurs in M . Grolsmusz
[21] noticed that if c1, . . . , cm is a sequence of adjacent vertices of the {0, 1}k hypercube (i.e.
cl+1 differs from cl by exactly one coordinate) then nc1 =

(∑m−1
l=1 (−1)l+1(ncl

+ ncl+1)
)

+
(−1)m+1ncm . Moreover, if position i is the coordinate at which cl and cl+1 differ, then the
quantity ncl

+ ncl+1 is known by player i. This leads to a straightforward simultaneous
protocol of cost O (k log n) for computing nc1 , provided that ncm is known by the referee. In
his initial work, Grolsmusz [21] gave a non-simultaneous way to find some initial ncm

. Ada
et. al. [1] noticed later that this step can be made simultaneous using the protocol of Babai
et. al. [3], and that the idea of Grolsmusz (initially designed for SYM ◦And) easily adapts
to SYM ◦

−−→
ANY. Unfortunately, this “hypercube view” does not generalize to block-width

t > 1: for each i and c ∈ ({0, 1}t)k, the number of vertices that differ from c only at position
i is now 2t− 1 > 1. It is easy to see that writing a similar telescoping sum as above, in which
each term would be known by a player, is no longer possible.

Counting up to symmetry. Given a k × n matrix M over Zd, for all 0 ≤ e1 + · · ·+ ed−1 ≤ k

MFCS 2018

14:6 Simultaneous Multiparty Communication Protocols for Composed Functions

denote ye1,...,ed−1 the number of columns ofM with exactly es occurrences of each s ∈ Zd\{0}
(we do not put e0 since it is always equal to k − (e1 + · · ·+ ed−1)). These numbers provide
less information than the nc’s defined above, but they still unable us to compute f ◦ g(M)
for all f ◦ g ∈ SYM ◦SYMZd

. If M is distributed between k players in the NOF model (player
i does not see row i), a naive simultaneous protocol is to have each player i send the number
of columns aie1,...,ed−1

which contain, from her point of view, exactly es occurrences of each
element s ∈ {1, . . . , d− 1} (for all e1 + · · ·+ ed−1 ≤ k − 1). Babai et. al. [3] analyzed this
protocol in the case d = 2, and showed that it gives the referee enough information to recover
the ye1,...,ed−1 ’s, provided that k > 1 + log n. In Section 3.1, we extend this analysis to any
d > 2. The core of the proof, as in [3], is to define a specific equation (using the aie1,...,ed−1

’s)
whose only integral solution is the ye1,...,ed−1 ’s.

The shifted basis technique. The only protocol [17] known prior to this work for block-width
t > 1 is based on the following observation: given polynomial representations of the inner
functions gj (over variables x1,j , . . . , xk,j), each term involving strictly less than k variables
can be evaluated on input matrix M by at least one player (in fact, by all the players that
have one of the missing variables on their foreheads). The key idea of [17] is to get rid of the
remaining terms by expressing the gj in a s-shifted basis where all terms of degree k will
evaluate to 0 on M (shifting for instance monomial x1,j · · ·xk,j by s = (s1, . . . , sk) means to
replace it with (x1,j − s1) · · · (xk,j − sk)). To this end, it would suffice to find some s that
shares at least one coordinate in common with each column of M . Provided that k is large
enough, [17] showed that a randomly picked s has this property with high probability. This
gives rise to a simultaneous protocol for SYM ◦

−−→
ANYZd

if the players have access to a shared
random string. In the deterministic setting (no shared randomness), it is not known how to
make this protocol simultaneous.

Different inner functions, and reducing the number of players. The communication complexity
is expected to decrease as k grows up (since the overlap of information among the players
increases). However, this fact is not reflected in the cost of our first protocol (Section 3.1).
This issue is closely related to that of having different inner functions g1, . . . , gn. Indeed, the
problem of computing f ◦ g ∈ SYM ◦ SYMZd

with k players on a matrix M ∈ Zk×nd can be
changed into computing f ◦ (g̃1, . . . , g̃n) ∈ SYM ◦

−−→
SYMZd

with the first ` < k players on the
submatrix M̃ ∈ Z`×nd (first ` rows of M), where g̃j : Z`d → {0, 1} is defined as g̃j(u) = g(u ·vj)
and vj is the values occurring from row `+ 1 to k in the j-th column of M (note that the
new g̃j functions are still symmetric, but unknown to the referee). Our first protocol cannot
handle different inner functions, but this issue will be solved in Section 3.2 where we describe
a protocol for SYM ◦

−−→
SYMZd

based on a new use of the polynomial representations (different
than [17]). We will show that each inner function g̃j can be represented into a (small) basis of
symmetric functions {ma}a (Section 2), which will allow us to split the problem of computing
f ◦ (g̃1, . . . , g̃n) on M̃ into computing each f ◦ma ∈ SYM ◦ SYMZd

on a well-chosen matrix
M̃a. This last step can be done with the initial protocol of Section 3.1.

2 Polynomial Representations for Symmetric Functions

Throughout this paper, Zd will denote the set of integers {0, . . . , d− 1} and Fp is the finite
field with p elements. Furthermore, a function f : Xm → Y is said to be m-symmetric (or
symmetric) if it is invariant under any permutation of the input variables (i.e. for any input
(x1, . . . , xm) and permutation σ ∈ Sm, we have f(x1, . . . , xm) = f(xσ(1), . . . , xσ(m))).

The protocol designed in Section 3.2 for composed functions f ◦ ~g requires a concise
polynomial representation of the inner functions g1, . . . , gn : ({0, 1}t)k → {0, 1}. Informally,

Y. Hamoudi 14:7

we look for a field K and polynomials Gj ∈ K[X] with variables X = (xu,v)1≤u≤k,1≤v≤t,
such that:
(a) for all x ∈ ({0, 1}t)k, gj(x) = Gj(x)
(b) the order of K is at least n+ 1 (so that the set {0, . . . , n} of values taken by

∑
j gj(x(j))

for x(1), . . . , x(n) ∈ ({0, 1}t)k can be embedded into K)
(c) the Gj polynomials can be represented in a basis of size O (poly k) when t is constant
(d) the values of the coefficients of the Gj polynomials in this basis are less than nc, for

some absolute constant c independent of k and t.

The first step towards this end is to look at the usual R-multilinear representation
(also called Fourier expansion [26]) of a function g : ({0, 1}t)k → {0, 1}. For each a =
(au,v)1≤u≤k,1≤v≤t ∈ ({0, 1}t)k we define the indicator polynomial 1{a}(x) to be 1{a}(x) =∏

1≤u≤k,1≤v≤t(1− au,v + (2au,v − 1)xu,v). It is easy to see that it takes value 1 when x = a

and value 0 when x ∈ ({0, 1}t)k \{a}. Consequently, we have g(x) =
∑
a∈({0,1}t)k g(a)1{a}(x)

for all x ∈ ({0, 1}t)k. If we let xa be the monomial
∏

(u,v):au,v=1 xu,v, then there exist real
coefficients ĝ(a) such that it can be rewritten as the following multilinear polynomial

g(x) =
∑

a∈({0,1}t)k

ĝ(a)xa (1)

Moreover, the ĝ(a) coefficients are given by the Möbius inversion formula

ĝ(a) =
∑
a′⊆a

(−1)|a|−|a
′|g(a′) (2)

where |a| is the number of 1 in a ∈ ({0, 1}t)k, and a′ ⊆ a means a′u,v = 0 whenever au,v = 0.
Polynomial (1) is called the R-multilinear representation of function g. It satisfies

requirements (a) and (b) above, but not requirement (c). Indeed, these polynomials are
expressed in the basis of monomials {xa}a∈({0,1}t)k which has size 2t·k.

In order to reduce the size of the basis, we restrict ourselves to the k-symmetric functions
g : ({0, 1}t)k → {0, 1} (as will be the case in Section 3.2). This condition leads to the
following equalities between coefficients.

I Lemma 3. For any a = (a1, . . . , ak) ∈ ({0, 1}t)k and any permutation σ ∈ Sk, if g :
({0, 1}t)k → {0, 1} is a k-symmetric function then the coefficients ĝ(a) and ĝ(σ(a)) in the
R-multilinear representation of g are equal (where σ(a) = (aσ(1), . . . , aσ(k))).

Proof. The proof is direct from Equation (2). J

This lemma motivates the definition of the following polynomials, that will be used to
obtain a basis for the k-symmetric functions over ({0, 1}t)k.

I Definition 4. Given a ∈ ({0, 1}t)k, the monomial k-symmetric polynomial ma(x) over
variables (xu,v)1≤u≤k,1≤v≤t is defined to be the sum of all the distinct monomials xσ(a) where
σ ∈ Sk ranges over all the permutations.

I Example 5. If (t, k) = (2, 3) and a = ((1, 1), (0, 1), (0, 1)) then ma(x) = x1,1x1,2x2,2x3,2 +
x1,2x2,1x2,2x3,2 + x1,2x2,2x3,1x3,2.

According to Lemma 3, any k-symmetric function g : ({0, 1}t)k → {0, 1} can be expressed
as a linear combination of monomial k-symmetric polynomials. From this observation, we can
derive a basis for the k-symmetric functions by taking all the distinct monomial k-symmetric
polynomials. We specify a subset of elements a ∈ ({0, 1}t)k that corresponds to this basis.

MFCS 2018

14:8 Simultaneous Multiparty Communication Protocols for Composed Functions

I Definition 6. We define a tuple a = (a1, . . . , ak) ∈ ({0, 1}t)k to be sorted, if |au| ≤ |au′ |
for all 1 ≤ u ≤ u′ ≤ k, and au ≤lex au′ whenever |au| = |au′ | (where |au| is the Hamming
weight of au, and ≤lex is the lexicographic order over {0, 1}t). The set of all the sorted tuples
over ({0, 1}t)k is denoted S(t, k).

I Lemma 7. The set {ma(x) : a ∈ S(t, k)} is a basis for the k-symmetric functions g :
({0, 1}t)k → {0, 1}. Moreover, it has size

(
k+2t−1

2t−1
)
.

Proof. It is straightforward to see that all the possible monomial k-symmetric polynomials
belong to {ma(x) : a ∈ S(t, k)}, and that no two elements in this set have a monomial in
common. Thus, it is a basis for the k-symmetric functions.

Consider the total order ≺ over {0, 1}t defined as au ≺ au′ if and only if |au| ≤ |au′ |,
or |au| = |au′ | and au ≤lex au′ . Each a ∈ S(t, k) can be seen as a (distinct) non-decreasing
sequence of length k from the totally ordered set ({0, 1}t,≺) of size 2t. The total number of
such sequences is known to be

(
k+2t−1

2t−1
)
. J

Finally, given a parameter n, we want the coefficients of the k-symmetric functions in the
chosen basis to be less than nc for some constant c independent of k and t (requirement (d)).
To this end, it suffices to reformulate the previous results over a field Fp, for some prime
p ∈ (n, 2n). We obtain the following polynomial representation for k-symmetric functions:

I Proposition 8. Any k-symmetric function g : ({0, 1}t)k → {0, 1} can be written as

g(x) =
∑

a∈S(t,k)

ca(g) ·ma(x) mod p

where p ∈ (n, 2n) is prime, ca(g) ∈ Fp and ma is the monomial k-symmetric polynomial
corresponding to the sorted tuple a. Moreover, S(t, k) has size

(
k+2t−1

2t−1
)
.

3 Simultaneous Protocol for SYM ◦
−−→
SYMZd

We now describe in detail our simultaneous protocol for symmetric composed functions.
The result is divided into two parts. We first give in Section 3.1 a protocol of cost
O
(
k(k + d)d−1 log n

)
for SYM ◦ SYMZd

when k ≥ 4d−1 log n. This is a generalization
of the idea of [3], which was based on solving a particular equation. We build upon this
result in Section 3.2 to give an efficient protocol of cost O

(
log4d(n)

)
for SYM ◦

−−→
SYMZd

when k ≥ 42d log n and d is constant. This last result uses the protocol of Theorem 9 as a
subroutine, and the polynomial representations described in Section 2.

3.1 The Equation Solving part
We extend the protocol for SYM ◦ SYMZ2 from [3] to any d > 1. It applies to all functions in
SYM ◦ SYMZd

as long as k ≥ 4d−1 log n, but it is not efficient if d is nonconstant or if the
number k of players is super-polylogarithmic (we will remove this last condition in the next
section). For convenience in the proof, we state the result over Zd+1 instead of Zd:

I Theorem 9. Let M be a k × n matrix over Zd+1, where n ≥ 2 and d ≥ 1. For 0 ≤
e1 + · · ·+ ed ≤ k, denote ye1,...,ed

the number of columns of M with exactly es occurrences of
each s ∈ Zd+1\{0}. For each i = 1, . . . , k, let player i see all ofM except row i. If k ≥ 4d log n
then there exists a deterministic simultaneous NOF protocol of cost k

(
k+d
d

)
dlog ne, at the end

of which the referee knows all the ye1,...,ed
’s.

Y. Hamoudi 14:9

Proof. The communication part of the protocol is pretty simple: each player i sends to the
referee the number of columns aie1,...,ed

which contain, from her point of view (i.e. without
taking row i into account), exactly es occurrences of each element s ∈ {1, . . . , d} (for all
e1 + · · ·+ ed ≤ k − 1).

The referee computes then be1,...,ed
=
∑k
i=1 a

i
e1,...,ed

(for all e1 + · · ·+ ed ≤ k − 1). The
important thing to note is that these numbers must verify the following equalities:

(k − (e1 + · · ·+ ed))ye1,...,ed
+

d∑
s=1

(es + 1)ye1,...,es−1,es+1,es+1,...,ed
= be1,...,ed

0 ≤ e1 + · · ·+ ed ≤ k − 1
(3)

To see why it is true, consider a column C of M that contributes to a given be1,...,ed
.

Either C contains exactly es occurrences of each element s ∈ {1, . . . , d}, or there is one
s′ ∈ {1, . . . , d} that occurs es′ +1 times in C (the other s having exactly es occurrences in C).
In the first case, C contributes to ye1,...,ed

and to the quantity ai(e1, . . . , ed) of each player i
having a 0 entry of C on her forehead (there are k−(e1 + · · ·+ed) such players). In the second
case, C contributes to ye1,...,es′−1,es′+1,es′+1,...,ed

and to the quantity ai(e1, . . . , ed) of each
player i having a s′ entry of C on her forehead (there are es′+1 such players). Thus, the total
contribution for be1,...,ed

is (k−(e1+· · ·+ed))ye1,...,ed
+
∑d
s′=1(es′+1)ye1,...,es′−1,es′+1,es′+1,...,ed

.
Equalities (3) can be seen as a system of equations whose unknowns are the ye1,...,ed

’s.
Since the referee is not computationally restricted she can enumerate all the integral solutions,
but she does not know which one corresponds to matrix M . The key lemma is to show that
Equations (3), under mild constraints

ye1,...,ed
≥ 0, 0 ≤ e1 + · · ·+ ed ≤ k and

∑
e1+···+ed≤k

ye1,...,ed
≤ n (4)

have at most one integral solution when k ≥ 4d log n. We prove it by induction on d (the
base case d = 1 corresponds to the work of [3], the induction step is more involved and is
given in Appendix A). Consequently, the referee is able to know unambiguously the correct
ye1,...,ed

’s that correspond to M . This protocol is clearly simultaneous since the players do
not need to talk to each other. Each of the k players sends

(
k+d
d

)
numbers ai(e1, . . . , ed) ≤ n.

Thus the total communication cost is at most k
(
k+d
d

)
dlog ne. J

I Corollary 10. Let n ≥ 2, d ≥ 2 and suppose k ≥ 4d−1 log n. There is a deterministic
simultaneous NOF protocol of cost k

(
k+d−1
d−1

)
dlog ne, at the end of which the referee can

compute all composed functions f ◦ g ∈ SYM ◦ SYMZd
of her choice.

This result can also be adapted to the case of k < 4d log n players by splitting the initial
matrix into sufficiently many parts. Previously, Ada et. al. [1] also generalized their work to
any number k of players, by giving a protocol of cost O

(
n/2k · log n+ k log n

)
for SYM◦

−−→
ANY.

However, it was not simultaneous and it did not apply to t > 1.

I Proposition 11. Let M be a k × n matrix over Zd+1, where n ≥ 2 and d ≥ 1. For
0 ≤ e1 + · · ·+ed ≤ k, denote ye1,...,ed

the number of columns of M with exactly es occurrences
of each s ∈ Zd+1\{0}. For each i = 1, . . . , k, let player i see all of M except row i. If
4d ≤ k < 4d log n then there exists a deterministic simultaneous NOF protocol of cost at most
O
(

n

2k/4d · (k + d)d+2
)
, at the end of which the referee knows all the ye1,...,ed

’s.

Proof. We split M into
⌈

n

b2k/4dc

⌉
matrices, each of size k×

⌊
2k/4d

⌋
(except one matrix that

can have less columns). These matrices have few enough columns to apply (separately) the

MFCS 2018

14:10 Simultaneous Multiparty Communication Protocols for Composed Functions

protocol of Theorem 9 on them. The ye1,...,ed
’s for the original matrix M are computed by

recombining all the obtained results. The total cost is O
(

n

2k/4d · k
(
k+d
d

)
log
(

2k/4d
))

. J

3.2 The Polynomial Representation part

Using the polynomial representation of Proposition 8, we give a protocol that improves upon
Corollary 10 in two ways: it is still efficient when k is super-polylogarithmic, and the inner
functions g1, . . . , gn can be different (i.e. it applies to SYM◦

−−→
SYMZd

instead of SYM◦SYMZd
).

I Theorem 12. Let n ≥ 2, d ≥ 2 and suppose k ≥ 42dlog de log n. For any composed function
f ◦ ~g ∈ SYM ◦

−−→
SYMZd

there exists a deterministic simultaneous NOF protocol that computes
it with cost 42dlog de+2 log2·2dlog de

(n).

Proof. Let ~g = (g1, . . . , gn). In order to use the polynomial representation of Section 2, we
change the range of the gj functions as gj : ({0, 1}t)k → {0, 1}, where t = dlog de. This
requires to encode each number x ∈ Zd as an element x̄ ∈ {0, 1}t. If d is not a power of two
then some y ∈ {0, 1}t will not correspond to any x ∈ Zd. We extend each gj as the zero
function on inputs that contain such numbers (note that the functions are still k-symmetric).

The input is now a k × (t · n) boolean matrix M . Each function gj acts on the jth
block of M , which will be denoted Bj ∈ ({0, 1}t)k. Let ` = 42t log n, so that only the
first ` players are going to speak. For each block Bj , if we let vj ∈ ({0, 1}t)(k−`) be the
sub-block occurring from row `+ 1 to k, then gj : ({0, 1}t)k → {0, 1} induces a new function
g̃j : ({0, 1}t)` → {0, 1} such that g̃j(u) = gj(u ·vj). Moreover, g̃j is still a symmetric function.
Thus, our task reduces to find an efficient simultaneous protocol for f ◦ (g̃1, . . . , g̃n) with
` = 42t log n players. We denote M̃ the `× (t · n) submatrix of M on which we now work,
and B̃j ∈ ({0, 1}t)` is the sub-block of Bj corresponding to M̃ .

We cannot apply directly the protocol of Theorem 9, since it only works for equal inner
functions g̃1 = · · · = g̃n. Instead, we use first Proposition 8 on the g̃j functions: for each j ∈
{1, . . . , n} there exist coefficients (ca(g̃j))a∈S(t,`) over Fp such that g̃j(x) =

∑
a∈S(t,`) ca(g̃j) ·

ma(x) mod p where p ∈ (n, 2n), ma is the monomial k-symmetric polynomial corresponding
to the sorted tuple a and |S(t, `)| =

(
`+2t−1

2t−1
)
. The coefficients ca(g̃j) are known by the first `

players, but not by the referee (since they depend on rows `+ 1 to k of M).
For each a ∈ S(t, `), the players build a new matrix M̃a of size `× (ca(g̃1) + · · ·+ ca(g̃n))

where block B̃j from M̃ is copied ca(g̃j) ∈ [0, 2n) times. Note that M̃a has at most 2n2

blocks, and there are enough players ` = 42t log n for applying (the boolean input version of)
the simultaneous protocol of Theorem 9. It allows the referee to know the number of blocks
of M̃a which are equal – up to row permutation – to any B̃ ∈ ({0, 1}t)` . This information is
sufficient to compute

∑n
j=1 ca(g̃j) ·ma(B̃j) since the ma functions are k-symmetric.

Finally, the referee sums these quantities modulo p over all a. It gives her
∑
a∈S(t,`)∑n

j=1 ca(g̃j) · ma(B̃j) mod p =
∑n
j=1 g̃j(B̃j) mod p. Since

∑n
j=1 g̃j(B̃j) ≤ n and p >

n, it equals
∑n
j=1 g̃j(B̃j) =

∑n
j=1 gj(Bj). Knowing this, the referee can compute f ◦

(g1, . . . , gn)(M) since f is symmetric.
Regarding the cost of the protocol, we applied |S(t, `)| =

(
`+2t−1

2t−1
)
times the protocol of

Theorem 9, with ` players and inputs of size at most 2n2. Thus the total cost is at most(
`+2t−1

2t−1
)
· `
(
`+2t−1

2t−1
)
dlog 2n2e ≤ `(`+ 2t)2t+1−2 log n. Since ` = 42t log n and t = dlog de, this

is less than 42t+(2t+1)(2t+1−2) log2t+1
(n) ≤ 42dlog de+2 log2·2dlog de

(n). J

Y. Hamoudi 14:11

4 Conclusion and Open Problems

One of the main open problems in communication complexity remains to find a function
which is hard to compute for k ≥ log n players in the simultaneous Number On the Forehead
model. We discarded this possibility for the composed functions in SYM◦

−−→
SYMZd

(for constant
d) by giving the first efficient deterministic simultaneous protocol for composed functions
of block-width t > 1. In the non-simultaneous setting, the best result so far applies to
SYM ◦

−−→
ANYZd

and d = O (polylog n) [17]. Extending these protocols to larger d, bigger
families of composed functions or to the simultaneous setting (for [17]) would give a better
insight on composed functions. Indeed, it is conjectured that the log n barrier can be broken
by such functions for large d, two of the candidates being Maj ◦Majt and Maj ◦Thrst .

Note that both the Equation Solving and the Polynomial Representation parts of our
protocol are bottleneck for handling non-constant d in our result. It could be interesting to
restrict to smaller families than symmetric functions (or to choose specific inner or outer
functions, such as threshold functions), or to find other relevant equations that could be
solved by the referee with fewer information than in our protocol.

Apart from composed functions, there are a few other candidates for breaking the log n
barrier. Some of them are matrix related problems, such as deciding the top-left entry of
the multiplication of k matrices in Fn×n2 (an Ω(n/2k) lower bound has been obtained by
Raz [30]). More recently, Gowers and Viola [20] studied the interleaved group products,
where each player receives a tuple (xi,1, . . . , xi,n) in G = SL(2, q), with the promise that∏n
i=1 x1,i · · ·xk,i = g or h. Finding which is the case has cost Ω(n log |G|) when k = 2, and

it is conjectured to remain hard for larger k.

References
1 A. Ada, A. Chattopadhyay, O. Fawzi, and P. Nguyen. The NOF multiparty communication

complexity of composed functions. Computational Complexity, 24(3):645–694, 2015.
2 A. Ambainis. Communication complexity in a 3-computer model. Algorithmica, 16(3):298–

301, 1996.
3 L. Babai, A. Gál, P. G. Kimmel, and S. V. Lokam. Communication complexity of simul-

taneous messages. SIAM J. Comput., 33(1):137–166, 2004.
4 L. Babai and P. G. Kimmel. Randomized simultaneous messages: solution of a problem of

Yao in communication complexity. In Proceedings of Computational Complexity. Twelfth
Annual IEEE Conference, pages 239–246, 1997.

5 L. Babai, P. G. Kimmel, and S. V. Lokam. Simultaneous messages vs. communication.
In 12th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages
361–372. Springer, 1995.

6 L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for
logspace, and time-space trade-offs. J. Comput. Syst. Sci., 45(2):204–232, 1992.

7 Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. Information theory methods
in communication complexity. In Proceedings 17th IEEE Annual Conference on Computa-
tional Complexity, pages 72–81, 2002.

8 P. Beame and T. Huynh. Multiparty communication complexity and threshold circuit size
of AC0. SIAM Journal on Computing, 41(3):484–518, 2012.

9 P. Beame, T. Pitassi, and N. Segerlind. Lower bounds for Lovász–Schrijver systems and
beyond follow from multiparty communication complexity. SIAM J. Comput., 37(3):845–
869, 2007.

10 P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson. A direct sum theorem for corruption
and the multiparty NOF communication complexity of set disjointness. In Proceedings of

MFCS 2018

14:12 Simultaneous Multiparty Communication Protocols for Composed Functions

the 20th Annual IEEE Conference on Computational Complexity, CCC ’05, pages 52–66.
IEEE Computer Society, 2005.

11 P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson. A strong direct product theorem
for corruption and the multiparty communication complexity of disjointness. Comput.
Complex., 15(4):391–432, 2006.

12 R. Beigel and J. Tarui. On ACC. Computational Complexity, 4(4):350–366, 1994.
13 R. C. Bottesch, D. Gavinsky, and H. Klauck. Equality, revisited. CoRR, abs/1511.01211,

2015.
14 H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf. Quantum fingerprinting. Phys. Rev.

Lett., 87:167902, 2001.
15 A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party protocols. In Proceedings of

the Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages 94–99.
ACM, 1983.

16 A. Chattopadhyay and A. Ada. Multiparty communication complexity of disjointness.
arXiv preprint arXiv:0801.3624, 2008.

17 A. Chattopadhyay and M. E. Saks. The power of super-logarithmic number of players.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM), 2014.

18 F. R. K. Chung and P. Tetali. Communication complexity and quasi randomness.
SIAMJDiscreteMath, 6(1):110–123, 1993.

19 D. Gavinsky, O. Regev, and R. de Wolf. Simultaneous communication protocols with
quantum and classical messages. Chicago Journal of Theoretical Computer Science, 7,
2008.

20 T. Gowers and E. Viola. The communication complexity of interleaved group products.
In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC ’15, pages 351–360. ACM, 2015.

21 V. Grolmusz. The BNS lower bound for multi-party protocols is nearly optimal. Information
and Computation, 112:51–54, 1994.

22 J. Håstad and M. Goldmann. On the power of small-depth threshold circuits. Computa-
tional Complexity, 1(2):113–129, 1991.

23 T. Lee and A. Shraibman. Disjointness is hard in the multiparty number-on-the-forehead
model. Computational Complexity, 18(2):309–336, 2009.

24 I. Newman and M. Szegedy. Public vs. private coin flips in one round communication
games (extended abstract). In Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing, STOC ’96, pages 561–570. ACM, 1996.

25 N. Nisan and A. Wigderson. Rounds in communication complexity revisited. SIAM J.
Comput., 22(1):211–219, 1993.

26 R. O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
27 V. V. Podolskii and A. A. Sherstov. Inner product and set disjointness: Beyond logarith-

mically many parties. CoRR, abs/1711.10661, 2017.
28 P. Pudlák, V. Rödl, and J. Sgall. Boolean circuits, tensor ranks, and communication

complexity. SIAM J. Comput., 26(3):605–633, 1997.
29 A. Rao and A. Yehudayoff. Simplified lower bounds on the multiparty communication

complexity of disjointness. In Proceedings of the 30th Conference on Computational Com-
plexity, CCC ’15, pages 88–101, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik.

30 R. Raz. The BNS-Chung criterion for multi-party communication complexity. Computa-
tional Complexity, 9:2000, 2000.

31 A. A. Sherstov. The pattern matrix method. SIAM Journal on Computing, 40(6):1969–
2000, 2011.

Y. Hamoudi 14:13

32 A. A. Sherstov. Communication lower bounds using directional derivatives. J. ACM,
61(6):34:1–34:71, 2014.

33 A. A. Sherstov. The multiparty communication complexity of set disjointness. SIAM
Journal on Computing, 45(4):1450–1489, 2016.

34 P. Tesson. Computational Complexity Questions Related to Finite Monoids and Semigroups.
PhD thesis, McGill University, Montreal, Canada, 2003.

35 R. Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
36 A. Yao. Some complexity questions related to distributive computing. In Proceedings of

the Eleventh Annual ACM Symposium on Theory of Computing, STOC ’79, pages 209–213.
ACM, 1979.

37 A. Yao. On ACC and threshold circuits. In Proceedings 31st Annual Symposium on Found-
ations of Computer Science, pages 619–627 vol.2, 1990.

A Lemma for the Equation Solving part

In this section, we prove the following lemma:

I Lemma 13. Let n ≥ 2, d ≥ 1 and k ≥ 4d log n. Let (be1,...,ed
)0≤e1+···+ed≤k−1 be integers.

Consider the following system of equations:
(k − (e1 + · · ·+ ed))ye1,...,ed

+
d∑
s=1

(es + 1)ye1,...,es−1,es+1,es+1,...,ed
= be1,...,ed

0 ≤ e1 + · · ·+ ed ≤ k − 1
(5)

Assume further that

ye1,...,ed
≥ 0, 0 ≤ e1 + · · ·+ ed ≤ k and

∑
e1+···+ed≤k

ye1,...,ed
≤ n (6)

Then, under constraints (6), the system of equations (5) has at most one integral solution.

We will show a stronger result:

I Lemma 14. Let n ≥ 2, d ≥ 1 and k > 4d log n − d. Let (be1,...,ed
)0≤e1+···+ed≤k−1 be

integers. Consider the following system of equations:
(k − (e1 + · · ·+ ed))ze1,...,ed

+
d∑
s=1

(es + 1)ze1,...,es−1,es+1,es+1,...,ed
= 0

0 ≤ e1 + · · ·+ ed ≤ k − 1
(7)

Assume further that∑
e1+···+ed≤k

|ze1,...,ed
| ≤ 2n (8)

Then, under constraints (8), the system of equations (7) cannot have a non-zero integral
solution.

Proof that Lemma 14 implies Lemma 13. Assume by contradiction that Equations (5)
under Constraints (6) have two different integral solutions y = (ye1,...,ed

)0≤e1+···+ed≤k and
y′ = (y′e1,...,ed

)0≤e1+···+ed≤k for k ≥ 4d log n. Define ze1,...,ed
= ye1,...,ed

− y′e1,...,ed
. It is easy

MFCS 2018

14:14 Simultaneous Multiparty Communication Protocols for Composed Functions

to see that it must verify (7), and since y 6= y′ there is at least one ze1,...,ed
6= 0. Finally,

since ze1,...,ed
= |ye1,...,ed

− y′e1,...,ed
| ≤ ye1,...,ed

+ y′e1,...,ed
, we have∑

e1+···+ed≤k

|ze1,...,ed
| ≤

∑
e1+···+ed≤k

(ye1,...,ed
+ y′e1,...,ed

) ≤ 2n

J

Proof of Lemma 14. We prove the result by induction on d. The base case has already
been established in [3], we recall it for completeness.

Base case (d = 1). We denote (zi)0≤i≤k the variables. Equations (7) under Constraints (8)
become (k − i)zi + (i+ 1)zi+1 = 0, i = 0, 1, . . . , k − 1∑k

i=0 |zi| ≤ 2n

Thus, z1 = −kz0 = −
(
k
1
)
z0, z2 = −k−1

2 z1 =
(
k
2
)
z0, and more generally zi = (−1)i

(
k
i

)
z0.

Consequently, if (zi)0≤i≤k is a nonzero integral solution, then z0 6= 0 and |zi| =
(
k
i

)
|z0| ≥(

k
i

)
for all i. We obtain a contradiction: 2n ≥

∑k
i=0 |zi| ≥

∑k
i=0
(
k
i

)
= 2k > 24 logn−1 > 2n.

Thus, Lemma 14 is true for d = 1.
Induction step. Assuming that Lemma 14 is true for d − 1, we prove that it is also the

case for d ≥ 2. Suppose by contradiction that Equations (7) under Constraints (8) have
a non-zero integral solution z = (ze1,...,ed

)0≤e1+···+ed≤k for k > 4d log n − d. As in the
proof of the base case, we want to show

∑
e1+···+ed≤k |ze1,...,ed

| > 2n, which would be a
contradiction.
To this end, we are going to focus for each 0 ≤ i ≤ k on the largest element of
{|ze1,...,ed

| : e1 + · · ·+ ed = i}. We define

Zi = max
e1+···+ed=i

|ze1,...,ed
| and k+ = min{i : Zi 6= 0}

Since z is a nonzero solution, k+ is well defined. We conduct the proof as follows:
(a) Using the induction hypothesis, we show that the first nonzero Zi must occur for

i = k+ ≤ 4d−1 log n− (d− 1).
(b) The sequence (Zi)i verifies k−i

i+dZi ≤ Zi+1.
(c) Using the two previous results, we prove

∑k
i=0 Zi > 2n.

The contradiction comes then from
∑k
i=0 Zi ≤

∑
e1+···+ed≤k |ze1,...,ed

| ≤ 2n
Proof of (a). Assume k+ > 0 (otherwise the result is trivial). According to Equations (7),
and knowing that ze1,...,ed

= 0 whenever e1 + · · ·+ ed < k+, we have

d∑
s=1

(es + 1)ze1,...,es−1,es+1,es+1,...,ed
= 0

for all e1 + · · ·+ ed = k+ − 1. If we set apart the last term ze1,...,ed−1,ed+1, we obtain

(k+ − (e1 + · · ·+ ed−1))ze1,...,ed−1,ed+1 +
d−1∑
s=1

(es + 1)ze1,...,es−1,es+1,es+1,...,ed
= 0

Y. Hamoudi 14:15

Let z′e1,...,ed−1
= ze1,...,ed−1,k+−(e1+···+ed−1) for all 0 ≤ e1 + · · · + ed−1 ≤ k+. We can

change the variables in the previous equation as follows
(k+ − (e1 + · · ·+ ed−1))z′e1,...,ed−1

+
d−1∑
s=1

(es + 1)z′e1,...,es−1,es+1,es+1,...,ed−1
= 0

0 ≤ e1 + · · ·+ ed−1 ≤ k+ − 1

This is equivalent to Equations (7) at rank d−1. Moreover,
∑

e1+···+ed−1≤k+
|z′e1,...,ed−1

| ≤ 2n,

and there exists e1 + · · · + ed = k+ such that ze1,...,ed
6= 0 (by definition of k+), i.e.

z′e1,...,ed−1
6= 0. Consequently, it corresponds to a nonzero integral solution to Equations

(7) under Constraints (8) at rank d− 1 with parameter k+. According to our induction
hypothesis it implies k+ ≤ 4d−1 log n− (d− 1).
Proof of (b). Setting apart ze1,...,ed

in Equations (7), and using the triangle inequality,
we obtain

(k − (e1 + · · ·+ ed))|ze1,...,ed
| ≤

d∑
s=1

(es + 1)|ze1,...,es−1,es+1,es+1,...,ed
|

for all e1 + · · ·+ ed ≤ k. In particular, if we choose e1 + · · ·+ ed such that Ze1+···+ed
=

|ze1,...,ed
| then

(k − (e1 + · · ·+ ed))Ze1+···+ed
≤

d∑
s=1

(es + 1)|ze1,...,es−1,es+1,es+1,...,ed
|

≤
d∑
s=1

(es + 1)Ze1+···+ed+1

≤ (e1 + · · ·+ ed + d)Ze1+···+ed+1

Thus (k − i)Zi ≤ (i+ d)Zi+1, where i = e1 + · · ·+ ed.
Proof of (c). Using (b), first note for i > k+ that

Zi ≥
k − (i− 1)
(i− 1) + d

· k − (i− 2)
(i− 2) + d

· · · k − k
+

k+ + d
· Zk+

= (k − k+)!
(k − i)! ·

(k+ + d− 1)!
(i+ d− 1)! · Zk

+

= (k + d− 1)!
(k − i)!(i+ d− 1)! ·

(k − k+)!(k+ + d− 1)!
(k + d− 1)! · Zk+

=
(
k + d− 1
i+ d− 1

)(
k + d− 1
k+ + d− 1

)−1
· Zk+

≥
(
k + d− 1
i+ d− 1

)(
k + d− 1
k+ + d− 1

)−1
since Zk+ ≥ 1

According to (a) and our initial hypothesis on k, we have k+ + d − 1 ≤ 4d−1 log n ≤
(k + d− 1)/4. Thus

∑k
i=k+

(
k+d−1
i+d−1

)
≥ 1

2 ·
∑k+d−1
i=0

(
k+d−1

i

)
= 2k+d−2 and

(
k+d−1
k++d−1

)−1 ≥
2−(k+d−1)H(1/4) (using the well-known bound

(
m
αm

)
≤ 2mH(α) where H(α) = − log(αα(1−

α)1−α)). Consequently, since d ≥ 2 and n ≥ 2, we obtain
∑k
i=k+ Zi ≥ 2(1−H(1/4))(k+d−1)−1

≥ 2(1−H(1/4))4d logn−1 > 2n. J

MFCS 2018

Sliding Windows over Context-Free Languages
Moses Ganardi
Universität Siegen, Germany
ganardi@eti.uni-siegen.de

Artur Jeż
University of Wrocław, Poland
aje@cs.uni.wroc.pl

Markus Lohrey
Universität Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract
We study the space complexity of sliding window streaming algorithms that check membership
of the window content in a fixed context-free language. For regular languages, this complexity
is either constant, logarithmic or linear [4]. We prove that every context-free language whose
sliding window space complexity is log2(n)− ω(1) must be regular and has constant space com-
plexity. Moreover, for every c ∈ N, c ≥ 1 we construct a (nondeterministic) context-free language
whose sliding window space complexity is O(n1/c) \ o(n1/c). Finally, we give an example of
a deterministic one-counter language whose sliding window space complexity is Θ((log n)2).

2012 ACM Subject Classification Theory of computation → Streaming models

Keywords and phrases sliding windows, streaming algorithms, context-free languages

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.15

1 Introduction

In many streaming applications, data items are outdated after a certain time and the sliding
window model is a simple way to model this: Sliding window algorithms process an input
sequence a1a2 · · · am from left to right and have at time t only direct access to the current
symbol at. Moreover, at each time instant t the algorithm is required to compute a value
that depends on the last n symbols. The value n is called the window size and the last n
symbols form the active window at time t. A general goal in the area of sliding window
algorithms is to avoid the explicit storage of the window content (which requires Ω(n) bits),
and, instead, to work in considerably smaller space, e.g., polylogarithmic space in the window
size n. An introduction into the sliding window model can be found in [1, Chapter 8].

In our recent papers [3, 4] we initiated the study of sliding window algorithms for regular
languages. In general, a sliding window algorithm for a language L ⊆ Σ∗ decides, at every
time instant, whether the word in the active window belongs to L. In [4] we proved that
for every regular language L the optimal space bound for a sliding window algorithm for
L is either constant, logarithmic or linear in the window size. In [3] we also gave several
characterizations for the three space classes: A regular language has a sliding window
algorithm with space bound O(log n) (resp., O(1)) if and only if it belongs to the Boolean
closure of regular left ideals and regular length languages (resp., the Boolean closure of
suffix-testable languages and regular length languages); see [3] for the formal definition of
these language classes.

© Moses Ganardi, Artur Jeż, Markus Lohrey;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 15; pp. 15:1–15:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ganardi@eti.uni-siegen.de
mailto:aje@cs.uni.wroc.pl
mailto:lohrey@eti.uni-siegen.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Sliding Windows over Context-Free Languages

In this paper we investigate to which extent the results from [3, 4] can be generalized to
context-free languages. Our first main result (Theorem 2) states that if L is a context-free
language that has a sliding window algorithm with space bound log2(n)− ω(1) (recall that
f(n) ∈ ω(1) iff ∀c > 0 ∃m ∀n ≥ m : f(n) ≥ c) then L must be regular. By the results from
[3, 4] this implies that L has a constant space sliding window algorithm and is a Boolean
combination of suffix-testable languages and regular length languages. Our proof uses a
variant of the classical pumping lemma. The crucial observation is that taking a reversed
Greibach normal form grammar for G, we can ensure that pumping in a word of length n
does not affect a suffix of length o(n).

Theorem 2 shows that, analogously to regular languages, there is a gap between O(1)
and O(log n) in the space complexity spectrum for context-free languages. This leads to the
question whether there is also a gap between O(log n) and O(n) (as it is the case for regular
languages). We answer this question negatively. For this we construct from a linear bounded
automaton (LBA) a context-free language, whose sliding window space complexity is related
to the time complexity of the LBA in a certain way. The precise technical statement can
be found in Theorem 9. From this result we obtain for every c ∈ N a context-free language,
whose optimal sliding window algorithm uses space O(n1/c) (Theorem 10).

The context-free languages from the proof of Theorem 9 are non-deterministic. They are
obtained by taking the complement of all accepting computations of an LBA on an input
from a∗ (as usual, a computation is encoded by a sequence of configuration words). These
complements are context-free since one can guess errors, but they are not deterministic context-
free. This leads to the question whether there exist deterministic context-free languages for
which the optimal sliding window algorithm has space complexity o(n) \O(log n). We answer
this question positively by constructing a deterministic one-counter language whose optimal
sliding window algorithm uses space O((log n)2) (Theorem 15).

The results from Theorem 10 and 15 are also shown for a more general sliding window
model, which is known as the variable-size model in the literature. In the sliding window model
discussed so far, the window size is fixed and for every window size there exists a streaming
algorithm. In contrast, in the variable-size model, there is a single streaming algorithm and
the window can grow and shrink. In other words, the arrival of new symbols and expiration
of old symbols can happen independently. A formal definition can be found in Section 2.
The space complexity of a variable-size streaming algorithm is measured with respect to the
maximal window size seen in the past. In [4] it was shown that analogously to the fixed-size
model, the space complexity of a regular language with respect to the variable-size model is
either constant, logarithmic, or linear. Moreover, a regular language has space complexity
O(log n) in the variable-size model if and only if it has space complexity O(log n) in the
fixed-size model (on the other hand only trivial languages have constant space complexity in
the variable-size model). Corollary 13 states that there exists a deterministic one-counter
language whose optimal variable-size sliding window algorithm uses space Θ((log n)2).

Finally, we prove that our results for deterministic one-counter languages can be also
shown for the reversals of the latter (i.e., for languages that can be accepted by a deterministic
one-counter automaton that works from right to left). This is not obvious, since the reversal
of a deterministic context-free language is in general not deterministic context-free. Moreover,
the arguments for our space trichotomy result for regular languages [3, 4] mainly use a DFA
for the reverse language, hence one might think that these arguments extend to reversals of
deterministic context-free languages.

M. Ganardi, A. Jeż, and M. Lohrey 15:3

2 Preliminaries

For a function f : N→ N, we use the standard Landau notations O(f), Ω(f), o(f) and Θ(f).
We assume that the reader is familiar with the basic notions of formal languages, in

particular regular languages, see e.g. [7] for more details. Let Σ be a finite alphabet of
symbols. With ε we denote the empty word. For a word w = a1 · · · am ∈ Σ∗ of length
|w| = m we define w[i] = ai and w[i : j] = ai · · · aj if i ≤ j and w[i : j] = ε if i > j. We define
w[i :] = w[i : m] and w[: j] = [1 : j]. Let Σn = {w ∈ Σ∗ : |w| = n}, Σ≤n = {w ∈ Σ∗ : |w| ≤ n},
and Σ≥n = {w ∈ Σ∗ : |w| ≥ n}. A word v ∈ Σ∗ is a prefix (resp., suffix) of the word w if
there exists a word u ∈ Σ∗ such that w = vu (resp., w = uv). With prefix(w) we denote
the set of all prefixes of w. For a word w = a1a2 · · · am let rev(w) = am · · · a2a1 denotes the
word w read from right to left.

2.1 Automata and streaming algorithms
We use standard definitions from automata theory. A deterministic automaton is a tuple
A = (Q,Σ, q0, δ, F), where Q is a possibly infinite set of states, Σ is an alphabet, q0 ∈ Q
is the initial states, δ : Q × Σ → Q is the transition relation, and F is the set of final
states. The transition function δ is extended to a function δ : Q× Σ∗ → Q in the usual way
and we set A(x) = δ(q0, x) for all x ∈ Σ∗. The language accepted from a state q ∈ Q is
denoted by L(A, q) = {x ∈ Σ∗ | δ(q, x) ∈ F} and the language accepted by A is defined by
L(A) = L(A, q0). If Q is finite, then A is a deterministic finite automaton (DFA).

A data stream is a finite sequence of data values. We make the assumption that these
data values are from a finite set Σ. Thus, a data stream is a finite word w = a1a2 · · · am ∈ Σ∗.
A streaming algorithm reads the symbols of a data stream from left to right. At time
instant t the algorithm has only access to the symbol at and the internal storage, which
is encoded by a bit string. The goal of the streaming algorithm is to compute a certain
function f : Σ∗ → A into some domain A, which means that at time instant t the streaming
algorithm outputs the value f(a1a2 · · · at). In this paper, we only consider the Boolean
case A = {0, 1}; in other words, the streaming algorithm tests membership in a fixed
language. Thus, a streaming algorithm over Σ can be seen as a deterministic (possibly
infinite) automaton A = (S,Σ, s0, δ, F). Furthermore, we abstract away from the actual
computation and only analyze the space requirement, which in particular means that we
encode the states of A by bit strings. We describe this encoding by an injective function
enc: S → {0, 1}∗. The space function space(A, ·) : Σ∗ → N specifies the space used by A on
a certain input: For w ∈ Σ∗ let space(A, w) = max{|enc(A(u))| : u ∈ prefix(w)}. We also
say that A is a streaming algorithm for the accepted language L(A).

2.2 Sliding window streaming models
In the above streaming model, the output value of the streaming algorithm at time t depends
on the whole past a1a2 · · · at of the data stream. However, in many practical applications
one is only interested in the relevant part of the past. Two formalizations of “relevant past”
can be found in the literature:

Only the suffix of a1a2 · · · at of length n is relevant. Here, n is a fixed constant. This
streaming model is called the fixed-size sliding window model.
The relevant suffix of a1a2 · · · at is determined by an adversary. In this model, at every
time instant the adversary can either remove the first symbol from the active window
(expiration of a data value), or add a new symbol at the right end (arrival of a new data
value). This streaming model is also called the variable-size sliding window model.

MFCS 2018

15:4 Sliding Windows over Context-Free Languages

In the following we formally define these two models.

Fixed-size sliding windows. Given a word w ∈ Σ∗ of length m and a window size n ≥ 0,
we define lastn(w) ∈ Σn by

lastn(w) =
{
w[m− n+ 1 :] if n ≤ m,
an−mw, if n > m,

which is called the active window. Here a ∈ Σ is an arbitrary, but fixed, symbol, which
fills the initial window. For a language L and n ≥ 0 let Ln = {w ∈ Σ∗ : lastn(w) ∈ L}.
A sequence A = (An)n≥0 is a fixed-size sliding window algorithm for a language L ⊆ Σ∗
if for each n the An is a streaming algorithm for Ln. Its space complexity is the function
fA : N→ N ∪ {∞} where fA(n) is the maximum encoding length of a state in An.

Note that for every language L and every n the language Ln is regular, which ensures
that An can be chosen to be a DFA and hence fA(n) < ∞ for all n ≥ 0. The trivial
fixed-size sliding window algorithm for L is the sequence B = (Bn)n≥0, where Bn is the
DFA with state set Σn and transitions au b−→ ub for a, b ∈ Σ, u ∈ Σn−1. States of Bn can
be encoded with O(log |Σ| · n) bits. Let An be the minimal DFA for Ln and encode each
state of An with at most blog2(an)c bits, where an is the number of states of An. Then
A = (An)n≥0 is an optimal fixed-size sliding window algorithm A for L. Finally, we define
FL(n) = fA(n) = blog2(an)c. Thus, FL is the space complexity of an optimal fixed-size
sliding window algorithm for L. Notice that FL is not necessarily monotonic. For instance,
for L = {au : u ∈ {a, b}∗, |u| odd} we have FL(2n) ∈ Θ(n) and FL(2n + 1) ∈ O(1). The
above trivial algorithm B yields FL(n) ∈ O(n) for every language L.

Note that the fixed-size sliding window is a non-uniform model: for every window size we
have a separate streaming algorithm and these algorithms do not have to follow a common
pattern. Working with a non-uniform model makes lower bounds stronger. In contrast, the
variable-size sliding window model that we discuss next is a uniform model in the sense that
there is a single streaming algorithm that works for every window size.

Variable-size sliding windows. For an alphabet Σ we define the extended alphabet Σ =
Σ ∪ {↓}. In the variable-size model the active window wnd(u) ∈ Σ∗ for a stream u ∈ Σ∗ is
defined by

wnd(ε) = ε

wnd(ua) = wnd(u)a for a ∈ Σ
wnd(u↓) = ε if wnd(u) = ε

wnd(u↓) = v if wnd(u) = av for a ∈ Σ
A variable-size sliding window algorithm for a language L ⊆ Σ∗ is a streaming algorithm A
for {w ∈ Σ∗ : wnd(w) ∈ L}. Following [3], we define its space complexity as the function
vA : N → N ∪ {∞} mapping each window size n to the maximum number of bits used by
A on inputs producing an active window of size at most n. Formally, it is the monotonic
function vA(n) = max{space(A, u) : u ∈ Σ∗, |wnd(v)| ≤ n for all v ∈ prefix(u)}. By taking
the minimal (possibly infinite) deterministic automaton for {w ∈ Σ∗ : wnd(w) ∈ L} and
encoding states appropriately one can prove that there exists an optimal space bound:

I Lemma 1 ([3]). For every language L ⊆ Σ∗ there exists a variable-size sliding window
algorithm A for L such that vA(n) ≤ vB(n) for every variable-size sliding window algorithm
B for L and every n.

M. Ganardi, A. Jeż, and M. Lohrey 15:5

We define VL(n) = vA(n), where A is a space optimal variable-size sliding window algorithm
for L from Lemma 1. Since any algorithm in the variable-size model yields an algorithm in
the fixed-size model, we have FL(n) ≤ VL(n).

3 Sliding windows over context-free languages: below logspace

The goal of this section is to prove the following result:

I Theorem 2. If L is a context-free language with FL(n) ∈ log2(n)−ω(1), then L is regular
and FL(n) ∈ O(1).

We start with some definitions. A language L ⊆ Σ∗ is k-suffix testable if it is a finite
Boolean combination of languages of the form Σ∗w where w ∈ Σ≤k. An equivalent condition
is: for all x, y, z ∈ Σ∗ with |z| = k we have xz ∈ L if and only if yz ∈ L. We call L suffix
testable if it is k-suffix testable for some k. Note that every suffix testable language is regular.
Let f : N → N be a function. A language L ⊆ Σ∗ is f-suffix definable if for all n ∈ N and
words u, v, w ∈ Σ∗ such that |uw| = |vw| = n and |w| = f(n) we have uw ∈ L if and only
if vw ∈ L. Similarly, one defines prefix testable and f -prefix definable languages. A length
language is a language L ⊆ Σ∗ such that for every n ≥ 0, either Σn ⊆ L or L ∩ Σn = ∅. We
prove Theorem 2 in two steps:

I Theorem 3. Every language L ⊆ Σ∗ is (2FL(n)+1 − 1)-suffix definable.

I Theorem 4. If a context-free language L is f -suffix definable for a function f(n) ∈ o(n),
then L is a finite Boolean combination of suffix testable languages and regular length languages.

Combining Theorem 3 and 4 yields Theorem 2: If a context-free language L satisfies
FL(n) ∈ log2(n)− ω(1) then L is f -suffix definable for a function f(n) ∈ o(n) by Theorem 3.
Theorem 4 implies that L is a finite Boolean combination of suffix testable languages and
regular length languages. Hence L is regular and FL(n) ∈ O(1). The rest of this section is
devoted to the proofs of Theorem 3 and 4.

3.1 Proof of Theorem 3
For two languages L1 and L2 we define their distance d(L1, L2) as follows: If L1 = L2,
then we set d(L1, L2) = 0, and otherwise d(L1, L2) = sup{|u| : u ∈ L14L2} + 1 where
L14L2 = (L1 \ L2) ∪ (L2 \ L1) denotes the symmetric difference of L1 and L2. Notice that
d(L1, L2) <∞ if and only if L14L2 is finite. If A = (Q,Σ, q0, δ, F) is a DFA, we define the
distance between two states p, q ∈ Q by d(p, q) = d(L(A, p), L(A, q)). We will use a result
from [5, Lemma 1] stating that d(p, q) <∞ implies that d(p, q) ≤ |Q|.

I Lemma 5. Let L ⊆ Σ∗ be regular and A = (Q,Σ, q0, δ, F) be its minimal DFA. We have:
(i) d(p, q) ≤ k if and only if δ(p, z) = δ(q, z) for all p, q ∈ Q and z ∈ Σk.
(ii) L is k-suffix testable if and only if d(p, q) ≤ k for all p, q ∈ Q.
(iii) If there exists k ≥ 0 such that L is k-suffix testable, then L is |Q|-suffix testable.

Proof. The proof of (i) is an easy induction: If k = 0, the statement is d(p, q) = 0 iff p = q,
which is true because A is minimal. For the induction step, we have d(p, q) ≤ k + 1 iff
d(δ(p, a), δ(q, a)) ≤ k for all a ∈ Σ iff δ(p, z) = δ(q, z) for all z ∈ Σk+1.

For (ii), assume that L is k-suffix testable and consider two states p = A(x) and q = A(y).
If z ∈ L(A, p)4L(A, q), then |z| < k because xz ∈ L iff yz /∈ L and L is k-suffix testable.
Now assume that d(p, q) ≤ k for all p, q ∈ Q and consider x, y ∈ Σ∗, z ∈ Σk. Since

MFCS 2018

15:6 Sliding Windows over Context-Free Languages

d(A(x),A(y)) ≤ k, (i) implies A(xz) = A(yz), and in particular xz ∈ L iff yz ∈ L. Therefore,
L is k-suffix testable.

Point (iii) follows from (ii) and the above mentioned result from [5, Lemma 1]. J

Proof of Theorem 3. Let n ≥ 0 and Ln = {w ∈ Σ∗ : lastn(w) ∈ L}. Let An be the minimal
DFA for Ln, which has at most f(n) := 2FL(n)+1 − 1 states. Since lastn(xy) = y for all
x ∈ Σ∗ and y ∈ Σn, the language Ln is n-suffix testable. Therefore Ln is f(n)-suffix testable
by Lemma 5(iii). This implies that L is f -suffix definable because for all words u, v, w ∈ Σ∗
such that |uw| = |vw| = n and |w| = f(n) we have uw ∈ L iff uw ∈ Ln iff vw ∈ Ln iff
vw ∈ L. J

3.2 Proof of Theorem 4
We prove the variant of Theorem 4 that talks about prefix-definability. This makes no
difference, since the reversal of a context-free languages is again context-free. Also note that
the requirement f(n) ∈ o(n) in Theorem 4 cannot be relaxed: For every k ≥ 1, the language
{xay : x, y ∈ {a, b}∗, |x| = k|ay|} is context-free and dn/(k+ 1)e-suffix definable but not even
regular.

First, we show that in the proof of Theorem 4 we can restrict ourselves to functions f with
the following property: A monotonic function f : N→ N has the increasing plateau property
if for every k ≥ 1 there exists an n0 such that for all n ≥ n0 we have: f(n+ k)− f(n) ≤ 1.
Clearly, if f has the increasing plateau property then f ∈ o(n).

I Lemma 6. Let f : N → R≥0. If f(n) ∈ o(n) then there exists a monotonic function
g : N→ N with the increasing plateau property and such that f(n) ≤ g(n) for all n ∈ N.

Proof. For a linear function g : R≥0 → R≥0 of the form g(x) = α · x+ β we call α the slope
of g. We will first define a sequence of natural numbers n1 < n2 < n3 · · · such that f is
bounded by a continuous piecewise linear function h : R≥0 → R≥0 that has slope 1/i on the
interval [ni, ni+1] and slope 0 on the interval [0, n1]. Then we show that g : N → N with
g(n) = dh(n)e has the properties from the lemma.

First, for every i ≥ 1 we define ni ∈ N and a linear function hi : R≥0 → R≥0 of slope 1/i
such that: (i) ni+1 > ni, (ii) for all natural numbers n ≥ ni we have f(n) ≤ hi(n), and (iii)
hi(ni+1) = hi+1(ni+1).

Let n1 ≥ 0 be the smallest natural number such that f(n) ≤ n for n ≥ n1 and f(n) ≤ n1
for n < n1. Clearly such an n1 exists, as f(n) ∈ o(n). Define h1 by h1(x) = x for all x ∈ R≥0.
Hence, we have f(n) ≤ h1(n) for all n ≥ n1.

For the induction step, assume that ni and the linear function hi : R≥0 → R≥0 (of
slope 1/i) are defined such that f(n) ≤ hi(n) for all n ≥ ni. Define the linear function
ui+1(x) = hi(ni) + (x − ni)/(i + 1), which has a slope 1/(i + 1) and ui+1(ni) = hi(ni).
Then there is a smallest natural ni+1 such that ni+1 > ni and ui+1(n) ≥ f(n) for each
n ≥ ni+1. This holds because f(n) ∈ o(n), and hence for any constants α > 0, β ∈ R
we have f(n) ≤ α · n + β for large enough n. Take this ni+1 and define the function
hi+1 by hi+1(x) = hi(ni+1) + (x − ni+1)/(i + 1). It has slope 1/(i + 1) and satisfies
hi+1(ni+1) = hi(ni+1). Finally, for all n ≥ ni+1 we have

hi+1(n) = hi(ni+1) + (n− ni+1)/(i+ 1)
= hi(ni) + (ni+1 − ni)/i+ (n− ni+1)/(i+ 1)
≥ hi(ni) + (ni+1 − ni)/(i+ 1) + (n− ni+1)/(i+ 1)
= hi(ni) + (n− ni)/(i+ 1) = ui+1(n) ≥ f(n).

M. Ganardi, A. Jeż, and M. Lohrey 15:7

Hence, ni+1 and hi+1 have all the desired properties.
We now define the function h : R≥0 → R≥0:

h(x) =
{
n1 if x ∈ [0, n1]
hi(x) if x ∈ [ni, ni+1] for some i ≥ 1.

Since hi(ni+1) = hi+1(ni+1) and h1(n1) = n1, h is uniquely defined. Finally, let g(n) = dh(n)e
for all n ∈ N.

Since f(n) ≤ hi(n) for all n ≥ ni and f(n) ≤ f(n1) ≤ n1 for all n ≤ n1, we have
f(n) ≤ h(n) ≤ g(n) for all n ∈ N. Moreover, h is clearly monotonic, which implies that g is
monotonic, too. It remains to show that g has the increasing plateau property.

Let k ≥ 1 and n ≥ nk. Since h is continuous and piecewise linear with slopes ≤ 1/k on
[nk,∞), we have h(n+ k)− h(n) ≤ (n+ k− n)/k = 1. This implies g(n+ k)− g(n) ≤ 1. J

I Lemma 7. Let L be a context-free language and f : N → N \ {0} be monotonic with
f(n) ∈ o(n). There are constants n0 and c > 0 (only depending on L and f) such that the
following hold for every n ≥ n0:

n ≥ f(n) + c and
for all words u, v with uv ∈ L, |uv| = n, |u| = f(n), and |v| = n− f(n), there exist words
v′, v′′ with |v′| = |v| − c, |v′′| = |v|+ c, and uv′, uv′′ ∈ L.

Proof. Consider the following variant of the pumping lemma for context-free languages
(see also [7, Chapter 6.1]), which simultaneously considers all languages defined by various
nonterminals of the grammar; it can be shown in the same way as the standard variant:

Given a context-free grammar G with set of nonterminals N and productions P , let
LA denote the language generated by the grammar GA with productions P and the start
nonterminal A. Then there exists a natural number c1 depending only on G and not on
A, such that if w ∈ LA and |w| ≥ c1, then w can be written as w = w1w2w3w4w5 with:
w1w

k
2w3w

k
4w5 ∈ LA for every k ≥ 0, |w2w3w4| ≤ c1 and |w2w4| > 0. In particular, the word

w1w
1+c1!/|w2w4|
2 w3w

1+c1!/|w2w4|
4 w5 of length |w|+ c1! belongs to LA.

Let G be a grammar for L in Greibach normal form, i.e., all productions are of the form
A → aA1 · · ·Ak for k ≥ 0, nonterminals A,A1, . . . , Ak and a terminal a (such a grammar
exists for every context-free language); see also [7, Chapter 4.6]. Let r be the maximal length
of the productions’ right-hand sides in G, let N be the set of nonterminals, and let c1 be the
constant from the above pumping lemma for G. We can assume that r ≥ 2, otherwise L is
finite and the lemma holds. Define c = c1! and choose an n0 such that for all n ≥ n0 the
following three inequalities hold:

n

f(n) > 1 + (r − 1)r2|N |·(rc1|N |+1)! (1)

n

f(n) > 1 + c1(r − 1) (2)

n > f(n) + c

As the right-hand sides are constant and f(n) ∈ o(n), such an n0 exists. Hence, for all n ≥ n0
the following two inequalities hold ((1) is equivalent to (3) and (2) is equivalent to (4)):

logr
(

n− f(n)
f(n)(r − 1)

)
> 2|N |(rc1|N |+ 1)! (3)

n− f(n)
f(n)(r − 1) > c1 (4)

MFCS 2018

15:8 Sliding Windows over Context-Free Languages

Consider a string uv of length n ≥ n0 generated by G, where |u| = f(n). Fix a leftmost
derivation of uv and consider the first moment, at which the current sentential form has
u as a prefix. This happens after |u| = f(n) derivation steps since G is in Greibach
normal form. Apart from the prefix u, the rest of the sentential form has length at most
1 + f(n)(r − 2) ≤ f(n)(r − 1) and it derives the word v of length n− f(n). So one of the
nonterminals in the sentential form, say A, generates a word x with

|x| ≥ n− f(n)
f(n)(r − 1)

(4)
> c1 . (5)

The further analysis splits into several cases depending on the claim we want to prove.
We first show the second claim of the lemma, that there exists v′′ such that |v′′| = |v|+ c

and uv′′ ∈ L(G). Since |x| ≥ c1, we can apply the pumping lemma and replace in the
derivation of uv the word x by a word of length |x|+ c1! = |x|+ c. The resulting derivation
yields a word uv′′ with |v′′| = |v|+ c, as claimed.

So let us now prove that there is v′ such that uv′ ∈ L(G), where |v′| = |v| − c. Again,
consider the nonterminal A that generates a string x satisfying (5). Since the length of each
right-hand side is at most r, there is a path Π in the derivation tree of length at least

logr
(

n− f(n)
f(n)(r − 1)

)
> 2|N | · (rc1|N |+ 1)! ,

where the estimation follows from (3). We are going to color some nodes on the path Π black
or grey: if a node v on Π has a child that does not belong to Π and derives a string of length
at least c1, then we color v black. Then, as long as there are two uncolored nodes v, v′ on Π
(v above v′) such that (i) v and v′ are labelled with the same nonterminal, (ii) the path from
v to v′ has length at most |N |, and (iii) does not contain a black node, then we color v black
and v′ grey.

There can be at most |N | consecutive nodes on the path that are not colored and there
are at least as many black nodes as grey nodes. Thus, the number of black nodes is at least⌊

1
2

⌊
2|N | · (rc1|N |+ 1)!

|N |

⌋⌋
= (rc1|N |+ 1)!

For each black node we can shorten the derivation such that the derived word is shorter by
at least 1 and at most rc1|N | without affecting other colored nodes:

For the first type of black nodes this follows directly from the pumping lemma. Note that
we can apply the pumping lemma to a subtree that is disjoint from Π.
For the second kind of black nodes, let v and v′ be the corresponding nodes colored black
and grey, respectively. We can delete the subtree rooted in v and replace it with the one
rooted in v′. The length of the path is ≤ |N |, the arity of the rules ≤ r and each deleted
nonterminal derived a string of length ≤ c1 (otherwise it would be black).

So for some m ∈ {1, 2, . . . , rc1|N |} there are (rc1|N |+1)!
rc1|N | > (rc1|N |)! different possibilities to

shorten the derived word by m letters. We choose (rc1|N |)!/m of them so that the word is
shortened by (rc1|N |)! letters. Thus we showed that there exists v′ such that uv′ ∈ L(G)
and |uv′| = n− (rc1|N |)!. As c = c1! divides (rc1|N |)!, by applying ((rc1|N |)!/c− 1) times
the already proved second claim of the lemma we can first obtain a word uz ∈ L(G) such
that |uz| = n+ (rc1|N |)!− c and then use the argument above to obtain a word uv′ ∈ L(G)
such that |uv′| = |uz| − (rc1|N |)! = |uv| − c. Here, we use monotonicity of f , which ensures
that the prefix u is not touched when using the above argument for the longer word uz. J

M. Ganardi, A. Jeż, and M. Lohrey 15:9

I Lemma 8. Let L be a context-free language that is f-prefix definable for a function
f(n) ∈ o(n). Then there exists a constant α such that for every word u of length α and all
words v, w with |v| = |w| we have uv ∈ L if and only if uw ∈ L.

Proof. By Lemma 6 there exists a monotonic function g(n) ∈ o(n) having the increasing
plateau property and such that f(n) ≤ g(n) for all n ≥ 0. Hence, L is still g-prefix definable.
Moreover, let f ′ ∈ o(n) be defined by f ′(n) = g(n) + 1 for all n. Take the constants n0 and
c from Lemma 7 for L and f ′ (instead of f). Choose m such that (i) m ≥ n0 + c and (ii)
g(n)− g(n− c) ≤ 1 for all n ≥ m, which is possible by the increasing plateau property. We
take α = g(m). Heading for a contradiction, let us take words u, v, w such that |u| = α,
|v| = |w|, uv ∈ L and uw 6∈ L. We can assume that |v| = |w| is minimal with these properties.
Let n = |uv| = |uw| in the following. We now distinguish two cases.

Case 1. n ≤ m, which implies g(n) ≤ g(m) = |u|. Hence, uv and uw have the same prefix
of length g(n). Since L is g-prefix definable, we have uv ∈ L iff uw ∈ L, which is a
contradiction.

Case 2. n > m, and thus n > n0 + c and g(n) ≥ g(m) = |u|. Since n− g(m) ≥ n− g(n) =
n − f ′(n) + 1 > c > 0, we can write v = v1av2 and w = w1bw2 such that a, b ∈ Σ and
|uv1| = |uw1| = g(n). Thus, |uv1a| = |uw1b| = f ′(n). By Lemma 7 there exists a word
v′2 with |v′2| = |v2| − c and uv1av

′
2 ∈ L. Take any word w′2 of length |w′2| = |w2| − c. By

the length-minimality of v and w we must have uw1bw
′
2 ∈ L (note that c > 0). Note that

|uw1bw
′
2| = |uw|−c = n−c > n0. Therefore, we can apply Lemma 7 to the word uw1bw

′
2.

Note that g(n)− g(n− c) ≤ 1 since n ≥ m. Thus, f ′(n− c) = g(n− c) + 1 ≥ g(n) and
the prefix of uw1bw

′
2 of length f ′(n− c) starts with uw1. We can conclude with Lemma 7

that there is a word w′′2 such that uw1w
′′
2 ∈ L and |uw1w

′′
2 | = n. But since |uw1| = g(n)

and |uw1w
′′
2 | = n, the g-prefix definability of L implies that uw1y ∈ L for all words y of

length n− g(n). In particular, we get uw1bw2 = uw ∈ L, which is a contradiction. J

We can now prove (the prefix version of) Theorem 4:

Proof of Theorem 4. Let L be a f -prefix definable context-free language with f(n) ∈ o(n).
Let α be the constant from Lemma 8. For every word u of length α let Lu = {w : uw ∈ L}.
Each of these finitely many languages is context-free and by Lemma 8 it is a length language.
It is a direct consequence of Parikh’s theorem [8] (or the fact that every unary context-free
language is regular) that a context-free length language is regular. Hence, every Lu (for
|u| = α) is a regular length language. We can now decompose L as follows:

L = (L ∩ Σ<α) ∪
⋃
u∈Σα

uLu = (L ∩ Σ<α) ∪
⋃
u∈Σα

(uΣ∗ ∩ ΣαLu).

Since Lu is a regular length language, also ΣαLu is a regular length language. Moreover,
uΣ∗ is prefix testable. Finally, every finite language (and hence L ∩ Σ<α) is a finite Boolean
combination of prefix testable languages. This shows the theorem. J

4 Sliding windows over context-free languages: above logspace

In this section, we show that the trichotomy result for regular languages [4] does not carry
over the context-free languages. More precisely, we show that for every natural number
c ≥ 1 there exists a one-counter language Lc such that FLc(n) ∈ O(n1/c) \ o(n1/c) and
VLc(n) ∈ Θ(n1/c). Recall that a one-counter language is a language that can be accepted by
a nondeterministic pushdown automaton with a singleton pushdown alphabet (a so called

MFCS 2018

15:10 Sliding Windows over Context-Free Languages

one-counter automaton). Also recall that a linear bounded automaton (LBA for short) is a
Turing machine that only uses the space that is occupied by the input word; see also [7,
Chapter 9.3]. We first show the following technical result:

I Theorem 9. Let t(k) be a monotonically increasing function and M be an LBA which
halts on input ak after exactly t(k) steps. Let f(n) be the function with1

f(n) =
{
k if n = k(t(k) + 3) for some k
0 else

and let g(n) = max{f(m) : m ≤ n}. There is a one-counter language L such that FL(n) ∈
Θ(f(n)) and VL(n) ∈ Θ(g(n)).

Proof. Let Γ be the tape alphabet of M and Q the set of states of M . A configuration of M
is encoded by a word from Γ∗(Q× Γ)Γ∗ over the alphabet ∆ := Γ∪ (Q× Γ). A computation
of M on an input ak (k ≥ 1) is a sequence of configurations c0 `M · · · `M ct(k) where |ci| = k

for all 1 ≤ i ≤ t(k), c0 = (q0, a)ak−1 is the start configuration on input ak, every ci+1 is
obtained from ci by applying a transition of M for 0 ≤ i ≤ t(k)− 1, and ct(k) is an accepting
computation. Let ∆′ = {x′ | x ∈ ∆} be a disjoint copy of ∆ and define w′ for a word w ∈ ∆∗
by applying the homomorphism x 7→ x′ (x ∈ ∆) to w. Finally, let K be the set of all words

c0 rev(c1)′ c2 rev(c3)′ · · · ct(k) s rev(s) or (6)
c0 rev(c1)′ c2 rev(c3)′ · · · rev(ct(k))′ s rev(s) (7)

such that k ≥ 1, c0 `M · · · `M ct(k) is a computation on input ak, s ∈ {0, 1}∗ is an arbitrary
word of length k (0 and 1 are arbitrary symbols not in ∆∪∆′), and t(k) even (resp., odd) in
case (6) (resp., (7)). Notice that the words in (6) and (7) have length k(t(k) + 3). We can
assume that M never goes back to the initial state q0. This ensures that every word has at
most one non-empty suffix that is a prefix of a word from K.

For the language L from the theorem, we take the complement of K. It is not hard to see
that L can be recognized by a nondeterministic one-counter automaton by guessing an error
in the input word w. Possible errors are the following, where we call a block of w a maximal
factor from ∆+ ∪ (∆′)+ ∪ {0, 1}+ in w, m is the number of blocks of w and ui denotes the
i-th block of w for 1 ≤ i ≤ m:
1. m < 2,
2. u1 is not an initial configuration, i.e., of the form (q0, a)ak−1 for some k ≥ 1,
3. for some odd i < m, ui is not a configuration,
4. for some even i < m, ui is not of the form c′ for a configuration c,
5. um−1 is not an accepting confiuration,
6. there exists 1 ≤ i < m− 1 with |ui| 6= |ui+1|,
7. |um| 6= 2|um−1|,
8. there exists 1 ≤ i < m− 1 odd such that ui `M rev(u) does not hold for u′ = ui+1,
9. there exists 1 ≤ i < m− 1 even such that rev(u) `M ui+1 does not hold for u′ = ui,

10. um is not a palindrome over the alphabet {0, 1}∗.
The conditions in points 1–5 are regular. Points 6–10 can be checked with a single counter.

The upper bound in the theorem has to be shown for the variable-size model. Since
FK(n) = FL(n) and VK(n) = VL(n), it is enough to show the bounds for the language K. Let
us first present a variable-size streaming algorithm with space complexity O(g(n)). Assume
that w is the active window. The algorithm stores the following data n, i, t, k, `, s:

1 Since t(k) is monotonically increasing, the number k in the first case is unique.

M. Ganardi, A. Jeż, and M. Lohrey 15:11

n = |w| is the length of the active window.
i is the smallest position x such that w[x :] is a prefix of a word from K. If this prefix is
empty, then i = n+ 1.
t is the number of blocks in w[i :] minus 1 (where i is from the previous point); this tells
us the number of computation steps that M has executed.
k is the largest number y such that w[i :] starts with (q0, a)ay−1; hence, k tells us the
input length.
In case 1 ≤ t ≤ t(k), ` is the length of the last block of w[i :] (if t = 0 or t = t(k) + 1 we
store some dummy value in `).
In case t = t(k) + 1, s is the maximal suffix of w[i :] from {0, 1}∗. If the length of this
suffix exceeds k then s stores only its prefix of length k.

It is easy to see that these variables can be updated. The main observation is that in case
1 ≤ t ≤ t(k) and ` < k then the algorithm internally simulates M for t steps on input ak. In
this way, the algorithm can check whether the arriving symbol is the right one, namely the
(possibly primed) (`+ 1)-th symbol of the configuration reached after t steps on input ak. In
this case, the algorithm sets ` := `+ 1, otherwise the algorithm sets i := n+ 1. If t is set to
t(k) + 1 then the algorithm starts to accumulate the window suffix s ∈ {0, 1}∗ up to length
k. If s has length k then the next k arriving symbols are compared in reversed order with s.
If a match is obtained, the algorithm accepts if i = 1 at the same time.

Let us now compute the space complexity of the algorithm. The numbers n, i, t,
k and ` need O(log n) bits. Recall that s has maximal length k. But we only store
symbols in s if n ≥ k(t(k) + 1) ≥ bk/3c(t(bk/3c) + 3), since the window must already
contain a complete computation on input ak before s becomes non-empty. We get bk/3c =
f(bk/3c(t(bk/3c) + 3)) ≤ g(n), i.e., k ≤ 3g(n) + 3. Finally, since g(n) is the maximal value
k such that k(t(k) + 3) ≤ n and t(k) ∈ 2O(k), we get g(n) ∈ Ω(log n). This shows that the
algorithm works in space O(g(n)).

To show that FK(n) ∈ O(f(n)) we can argue similarly. Of course, in the fixed-size model,
we do not have to store the window size n. If the window size n is not of the form k(t(k) + 3)
for some k then the algorithm always rejects and no space at all is needed. Otherwise, since
t(k) is monotonically increasing, there is a unique k with n = k(t(k) + 3).

Finally, we show that FK(n) ≥ f(n) for all n, which implies that VK(n) ≥ g(n) for
all n since VK(n) ≥ FK(n) and VK(n) is monotonic. It suffices to consider a window size
n = k(t(k) + 3) for some k, as otherwise f(n) = 0. Hence, f(n) = k. Moreover, consider
an accepting computation c0 `M c1 `M · · · `M ct(k) where |c0| = · · · = |ct(k)| = k. Let us
assume that k is even; the case that k is odd is analogous. Now consider the 2k many distinct
words w(s) := 0k c0 rev(c1)′ c2 rev(c3)′ · · · ct(k) s for s ∈ {0, 1}k. The length of these words is
n = k(t(k) + 3), which is the window size.

Consider now the minimal DFA An for the language Kn, and let r be the number of states
of An (hence, FK(n) = blog2 rc). We claim that An(w(s)) 6= An(w(u)) for all s, u ∈ {0, 1}k
with s 6= u. To see this, assume that An(w(s)) = An(w(u)) for s, u ∈ {0, 1}k with s 6= u.
Hence, An(w(s) rev(s)) = An(w(u) rev(s)). On the other hand, the above definition of w(s)
and w(u) implies w(s) rev(s) ∈ K and w(u) rev(s) 6∈ K, which yields a contradiction. We
get r ≥ 2k, and thus FK(n) ≥ k = f(n). J

Theorem 9 yields a quite dense spectrum of space complexity functions for context-free
languages. We only prove the existence of context-free languages with sliding-window space
complexity n1/c for c ∈ N, c ≥ 1:

MFCS 2018

15:12 Sliding Windows over Context-Free Languages

I Theorem 10. For every c ∈ N, c ≥ 1, there exists a one-counter language Lc such that
FLc(n) ∈ O(n1/c) \ o(n1/c) and VLc(n) ∈ Θ(n1/c).

Proof. One can easily construct a deterministic LBA M that on input ak terminates after
exactly kc−1 steps. For instance, an LBA that terminates after exactly k2 steps makes k
phases, where in each phase the read-write head moves from the left input end to the right
end or vice versa and thereby replaces the first a that is seen on the tape by a b-symbol. This
construction can be iterated to obtain the above LBA M for an arbitrary k. The mapping
f(n) from Theorem 9 then satisfies f(k(t(k) + 3)) = f(k(kc−1 + 3)) = f(kc + 3k) = k and
f(n) = 0 if n is not of the form kc + 3k for some k. This implies f(n) ∈ O(n1/c) \ o(n1/c)
and g(n) ∈ Θ(n1/c) for the mapping g(n) from Theorem 9. Hence, by Theorem 9 there is a
one-counter language Lc with the properties stated in the theorem. J

To fully exploit Theorem 9 one would have to analyze the spectrum of time complexity
functions of linear bounded automata. We are not aware of specific results in this direction.

5 Sliding windows over deterministic one-counter languages

The context-free language Lc from Theorem 10 is not deterministic context-free and it is
open whether the same result can be obtained for deterministic context-free languages. In
this section we exhibit a deterministic one-turn one-counter language with space complexity
Θ((log n)2) in the variable-size (resp., fixed-size) model. A t-turn pushdown automaton has
the property that in any accepting run there are at most t alternations between push and
pop operations [6].

We start with the variable-size model. A maximal factor β in a word w ∈ {a, b}∗ of the
form β = abi is called a block of length i+ 1 in w (this notion is not related to the blocks
used in the proof of Theorem 9). Define the language

L = {abkav : k ≥ 0, v ∈ {a, b}≤k} ∪ ab∗, (8)

which is recognized by a deterministic one-turn one-counter automaton. Put differently, L
contains those words w ∈ {a, b}∗ which begin with a block of length ≥ |w|/2.

I Lemma 11. We have VL(n) ∈ O((log n)2).

Proof. Any word w ∈ {a, b}∗ can be uniquely factorized as w = bsβmβm−1 · · ·β2β1 where
s,m ≥ 0 and each βi is a block. A block βi is relevant if it is at least as long as the remaining
suffix, i.e. |βi| ≥

∑i−1
j=1 |βj |. For an active window w ∈ {a, b}∗ our variable-size algorithm

maintains the window size and for each relevant block βi its starting position and its length.
If the first symbol in the window expires, every relevant block stays relevant (and the starting
position is decremented) with the possible exception of a relevant block with starting position
1, which is removed. If an a arrives, we create a new relevant block of length 1. If a b arrives,
we prolong the rightmost relevant block (which is also rightmost among all blocks) by 1.
Furthermore, using this information we can determine whether w ∈ L: This is the case if
and only if the leftmost relevant block starts at the first position and its length is at least
n/2 where n is the current window size.

To show that the space complexity of the algorithm is O((log n)2), it suffices to show that
each word w ∈ {a, b}n has O(log n) relevant blocks. Let γk, γk−1, . . . , γ2, γ1 be the sequence
of relevant blocks in w. Then we know that |γi| ≥

∑i−1
j=1 |γj | for all 1 ≤ i ≤ k. Inductively,

we show that |γi| ≥ 2i−2|γ1| for all 2 ≤ i ≤ k. This is immediate for i = 2 and for the
induction step, observe that |γi| ≥ |γ1|+

∑i−1
j=2 |γj | ≥ |γ1|+ |γ1|

∑i−1
j=2 2j−2 = 2i−2|γ1| for all

i ≥ 3. This proves k = O(log n), which concludes the proof. J

M. Ganardi, A. Jeż, and M. Lohrey 15:13

I Lemma 12. We have VL(n) ∈ Ω((log n)2).

Proof. For each k ≥ 0 we define arrangements of length 3k: The word a is the only
arrangement of length 30 = 1. An arrangement of length 3k+1 is any word of the form ub3

k

v

where u, v ∈ {a, b}3k , u begins with a and has at most one other a-symbol and v is any
arrangement of length 3k. Notice that an arrangement ub3kv contains one or two blocks
in the factor ub3k , one of which is relevant. If α1 6= α2 are distinct arrangements of length
3k, consider the maximal common suffix α3 of α1 and α2 which is again an arrangement.
Consider the suffixes of α1, α2 of length 3|α3|. By the construction, these suffixes are also
arrangements. Hence, their “middle parts” consist solely of b’s, so they have the common
suffix b|α3|α3. Since α1 and α2 differ, there exists a number ` ≥ |α3| such that α1 has the
suffix ab`α3 and α2 has the suffix b`+1α3, or vice versa.

Now consider a variable-size sliding window algorithm for L. We claim that the algorithm
can distinguish any two distinct arrangements α1 6= α2 of length 3k. Consider two instances
of the algorithm, where the active windows are α1 and α2, respectively. By performing
a suitable number of ↓-operations the two windows contain the words ab`α3 and b`+1α3,
respectively. Since |α3| ≤ `, we have ab`α3 ∈ L and b`+1α3 6∈ L.

It is easy to see that the number nk of arrangements of length 3k is exactly
∏k−1
i=0 3i:

to construct an arrangement of length 3k, note that among its first 3k−1 letters the first
one is a and there is at most one further a. So, there are 3k−1 choices for the prefix of
length 3k−1. The next 3k−1 letters are fixed, and then one of nk−1 many arrangements of
length 3k−1 follows. Thus nk = 3k−1nk−1 and n0 = 1, which yields the claim. Note that
log3(nk) =

∑k−1
i=0 i = Θ(k2). Therefore, the algorithm needs Ω((log n)2) bits of space. J

I Corollary 13. There exists a deterministic one-turn one-counter language L such that
VL(n) = Θ((log n)2).

The language L from (8) is an example of a language where the space complexity in the
fixed-size model is strictly below the space complexity in the variable-size model:

I Lemma 14. We have FL(n) ∈ O(log n).

Proof. Let n ≥ 0 be the window size. For the active window we store (i) the starting position
of the leftmost block of length at least n/2 (if such a block does not exist we set a special
flag) and (ii) the length of the unique suffix from ab∗ (again, a flag is set if the window
content is in b∗). This information can be stored with O(log n) bits and it can be updated
at each step. Moreover, the active window belongs to L if the leftmost block of length at
least n/2 starts at position 1. J

We now prove the variant of Corollary 13 for the fixed-size model: For the language L from
(8) let K = Lc∗, which is a deterministic one-turn one-counter language.

I Theorem 15. We have FK(n) = Θ((log n)2).

Proof. Let n be the window size. Consider the maximal suffix of the active window which
has the form vci where v ∈ {a, b}∗. Using O(log n) bits we maintain the starting position of
that suffix and the length |v|. Furthermore, we maintain the same data structure as in the
proof of Lemma 11 for the word v ∈ {a, b}∗. The algorithm accepts iff v begins at the first
position, the leftmost relevant block also starts at the first position and has length at least
|v|/2. In total, the space complexity is bounded by O((log n)2).

The proof for the lower bound is similar to the proof of Lemma 12. Let k be maximal
such that 3k ≤ n. Then the number of bits required to encode an arrangement of length 3k
is Ω((log n)2). The rest of the proof follows the proof of Lemma 12; we only have to replace
every ↓-operation by the insertion of a c-symbol. J

MFCS 2018

15:14 Sliding Windows over Context-Free Languages

For the language L from (8) let L′ = {#jrev(u)v$i : u ∈ L, i ≥ 0, v ∈ {a, b}i, j ≥ 1}. Its
reversal rev(L′) = {$iv | i ≥ 0, v ∈ {a, b}i}L#+ is accepted by a deterministic one-counter
three-turn automaton.

I Theorem 16. We have VL′(n) = O((log n)2) and FL′(n) /∈ o((log n)2).

Proof. We first exhibit a variable-size sliding window algorithm for L′. Of course, we
maintain the window size n. For the active window consider its longest suffix of the form
#jw$i where w ∈ {a, b}∗ and i, j ≥ 0. Using O(log n) bits we can maintain the numbers i, j,
the length |w|, and the maximal number k such that bk is a suffix of w.

Furthermore, if j ≥ 1 we maintain for each relevant block in rev(w) its starting position
and its length, which requires O((log n)2) bits (see the proof of Lemma 11). Let us argue
why this information can be maintained. Let n, i, j, k and w have the meaning from the
previous paragraph. If j is set from 0 to 1, then w is empty and rev(w) contains no blocks.
If j ≥ 1 we can prolong w as long as the active window does not end with $-symbols (i = 0).
In this case, every time an a-symbol arrives, a new block in rev(w) is formed, which has
length k + 1. If it is not relevant, then it is immediately discarded. Also notice that when w
is prolonged by a or b, all relevant blocks in rev(w) stay relevant. A ↓-operation only affects
w if j ∈ {0, 1} and n = j + |w|+ i. In this case j is set to zero, and we no longer have to
store the relevant blocks of w.

It remains to show the lower bound. Let the window size n be of the form 2 · 3k. Again
we show that any fixed-size sliding window algorithm for L′ must distinguish any two distinct
arrangements. Let α1 6= α2 be two arrangements of length 3k. As shown in the proof of
Lemma 12, there exists a number 0 ≤ ` < 3k and an arrangement α3 of length at most `
such that α1 and α2 have the suffixes ab`α3 ∈ L and b`+1α3 /∈ L, respectively (or vice versa).
Without loss of generality, α1 = v1ab

`α3 and α2 = v2b
`+1α3 for some v1, v2 ∈ {a, b}∗. Both

words v1 and v2 have length r := 3k − (`+ 1 + |α3|). We have

lastn(#3krev(α1)$r) = #3k−rrev(ab`α3) rev(v1)$r ∈ L′ and

lastn(#3krev(α2)$r) = #3k−rrev(b`+1α3) rev(v2)$r /∈ L′.

This shows that the algorithm must distinguish the words #3krev(α1) and #3krev(α2). Note
that adding a $ at the right end of the word removes the right-most symbol (a or b) in the
factor which has to belong to rev(L) in order to have a word from L′. The rest of the proof
follows the arguments from the proof of Lemma 12. J

6 Open problems

Our results lead to several open problems; in particular for deterministic context-free
languages: Are there deterministic context-free languages where the optimal space bound
(for the variable-size or the fixed-size model) is in o(n) ∩ ω((log n)2)?

An interesting subclass of the deterministic context-free languages are the visibly pushdown
languages [2, 9], which are also known as input-driven languages. Visibly pushdown languages
have better algorithmic properties than general deterministic context-free languages [2, 9].
Our deterministic context-free languages from Section 5 are not visibly pushdown languages.
This leads to the question, whether our space trichotomy result for regular languages [4]
extends to visibly pushdown languages (or at least visibly one-counter languages).

M. Ganardi, A. Jeż, and M. Lohrey 15:15

References
1 Charu C. Aggarwal. Data Streams - Models and Algorithms. Springer, 2007.
2 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In Proceedings of the

36th Annual ACM Symposium on Theory of Computing, STOC 2004, pages 202–211. ACM
Press, 2004.

3 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras.
Automata theory on sliding windows. In Proceedings of the 35th Symposium on Theoretical
Aspects of Computer Science, STACS 2018, volume 96 of LIPIcs, pages 31:1–31:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

4 Moses Ganardi, Danny Hucke, and Markus Lohrey. Querying regular languages over sliding
windows. In Proceedings of the 36th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2016, volume 65 of LIPIcs, pages
18:1–18:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

5 Paweł Gawrychowski and Artur Jeż. Hyper-minimisation made efficient. In Proceedings
of the 34th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2009, volume 5734 of Lecture Notes in Computer Science, pages 356–368. Springer,
2009.

6 Seymour Ginsburg and Edwin H Spanier. Finite-turn pushdown automata. SIAM Journal
on Control, 4(3):429–453, 1966.

7 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison–Wesley, Reading, MA, 1979.

8 Rohit Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
9 Burchard von Braunmühl and Rutger Verbeek. Input-driven languages are recognized in

log n space. In Proceedings of the 1983 International FCT-Conference, FCT 1983, volume
158 of Lecture Notes in Computer Science, pages 40–51. Springer, 1983.

MFCS 2018

Average Case Analysis of Leaf-Centric Binary Tree
Sources
Louisa Seelbach Benkner
Universität Siegen, Germany
seelbach@eti.uni-siegen.de

Markus Lohrey
Universität Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract
We study the average size of the minimal directed acyclic graph (DAG) with respect to so-called
leaf-centric binary tree sources as studied by Zhang, Yang, and Kieffer. A leaf-centric binary
tree source induces for every n ≥ 2 a probability distribution on all binary trees with n leaves.
We generalize a result shown by Flajolet, Gourdon, Martinez and Devroye according to which
the average size of the minimal DAG of a binary tree that is produced by the binary search tree
model is Θ(n/ log n).

2012 ACM Subject Classification Mathematics of computing → Enumeration

Keywords and phrases Directed acylic graphs, average case analysis, tree compression

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.16

Related Version A full version of the paper is available at [2], http://arxiv.org/abs/1804.
10396.

1 Introduction

One of the most important and widely used compression methods for trees is to represent a
tree by its minimal directed acyclic graph, shortly referred to as minimal DAG. The minimal
DAG of a tree t is obtained by keeping for each subtree s of t only one isomorphic copy of s
to which all edges leading to roots of s-copies are redirected. DAGs found applications in
numerous areas of computer science; let us mention compiler construction [1, Chapter 6.1
and 8.5], unification [14], XML compression and querying [5, 9], and symbolic model-checking
(binary decision diagrams) [4]. Recently, in information theory the average size of the minimal
DAG with respect to a probability distribution turned out to be the key in order to obtain
tree compressors whose average redundancy converges to zero [10, 16].

In this paper, we consider the problem of deriving asymptotic estimates for the average
size of the minimal DAG of a randomly chosen binary tree of size n. So far, this problem has
been analyzed mainly for two particular distributions: In [8], Flajolet, Sipala and Steyaert
proved that the average size of the minimal DAG with respect to the uniform distribution
on all binary trees of size n is asymptotically equal to c · n/

√
lnn, where c is the constant

2
√

ln(4/π). This result was extended to unranked and node-labelled trees in [3] (with a
different constant c). An alternative proof to the result of Flajolet et al. was presented in
[15] by Ralaivaosaona and Wagner. For the so-called binary search tree model, Flajolet,
Gourdon and Martinez [7] and Devroye [6] proved that the average size of the minimal DAG
becomes Θ(n/ log n). In the binary search tree model, a binary search tree of size n is built by
inserting the keys 1, . . . , n according to a uniformly chosen random permutation on 1, . . . , n.

© Louisa Seelbach Benker and Markus Lohrey;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:seelbach@eti.uni-siegen.de
mailto:lohrey@eti.uni-siegen.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.16
http://arxiv.org/abs/1804.10396
http://arxiv.org/abs/1804.10396
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Average Case Analysis of Leaf-Centric Binary Tree Sources

A general concept to produce probability distributions on the set of binary trees of size
n was introduced by Zhang, Yang, and Kieffer in [16] (see also [11]), where the authors
extend the classical notion of an information source on finite sequences to so-called structured
binary tree sources, or binary tree sources for short. This yields a general framework for
studying the average size of a minimal DAG. Let T denote the set of all binary trees1
and let Tn denote the set of binary trees with n leaves. A binary tree source is a tuple
(T , (Tn)n∈N, P), in which P is a mapping from the set of binary trees to the unit intervall
[0, 1], such that

∑
t∈Tn P (t) = 1 for every n ≥ 1. This is a very general definition that

was further restricted by Zhang et al. in order to yield interesting results. More precisely,
they considered so-called leaf-centric binary tree sources, which are induced by a mapping
σ : (N \ {0})× (N \ {0})→ [0, 1] that satisfies

∑n−1
i=1 σ(i, n− i) = 1 for every n ≥ 2. In other

words, σ restricted to Sn := {(i, n− i) : 1 ≤ i ≤ n− 1} is a probability mass function for
every n ≥ 2. To randomly produce a tree with n leaves, one starts with a single root node
labelled with n and randomly chooses a pair (i, n− i) according to the distribution σ on Sn.
Then, a left (resp., right) child labelled with i (resp.-, n − i) is attached to the root, and
the process is repeated with these two nodes. The process stops at nodes with label 1. This
yields a function Pσ that restricts to a probability mass function on every set Tn for n ≥ 2.

The binary search tree model is the leaf-centric binary tree source where σ corresponds
to the uniform distribution on Sn for every n ≥ 2. Moreover, also the uniform distribution
on all trees with n leaves can be obtained from a leaf-centric binary tree source by choosing
σ suitably, see Section 4. Another well-known leaf-centric binary tree source is the digitial
search tree model [13], where the distribution on Sn is a binomial distribution.

Let Dt denote the minimal DAG of a binary tree t and let |Dt| denote the number of
nodes of Dt. The average size of the minimal DAG with respect to a leaf-centric binary tree
source (T , (Tn)n∈N, Pσ) is the mapping

Dσ(n) :=
∑
t∈Tn

Pσ(t)|Dt|. (1)

In this work, we generalize the results of [6, 7] on the average size of the minimal DAG with
respect to the binary search tree model in several ways. For this, we consider three classes of
leaf-centric binary tree sources, which are defined by the following three properties of the
corresponding σ-mappings:
(i) There exists an integer N ≥ 2 and a monotonically decreasing function ψ : R→ (0, 1]

such that ψ(n) ≥ 2
n−1 and σ∗(i, n− i) ≤ ψ(n) for every n ≥ N and 1 ≤ i ≤ n− 1. Here,

σ∗ is defined by σ∗(i, i) = σ(i, i) and σ∗(i, j) = σ(i, j) + σ(j, i) for i 6= j.
(ii) There exists an integer N ≥ 2 and a constant 0 < ρ < 1, such that σ(i, n− i) ≤ ρ for

every n ≥ N and 1 ≤ i ≤ n− 1.
(iii) There is a monotonically decreasing function φ : N→ (0, 1] and a constant c ≥ 3 such

that for every n ≥ 2,∑
n
c≤i≤n−

n
c

σ(i, n− i) ≥ φ(n).

Property (iii) generalizes the concept of balanced binary tree sources from [10, 11]: When
randomly constructing a binary tree with respect to a leaf-centric source of type (iii), the
probability that the current weight is roughly equally splitted among the two children is

1 We consider binary trees, where every non-leaf node has a left and a right child, but the whole framework
can be easily extended to binary trees, where a node may have only a left or right child.

L. Seelbach and M. Lohrey 16:3

lower bounded by a function. Therefore, for slowly decreasing functions φ, balanced trees are
preferred by this model. The binary search tree model satisfies all three conditions (i), (ii)
and (iii). As our main results, we obtain for each of these three types of leaf-centric binary
tree sources asymptotic bounds for the average size of the minimal DAG:
(a) For leaf-centric sources of type (i), the average size of the minimal DAG is upper bounded

by O
(
ψ
(1

2 log4(n)
)
n
)
, which is in o(n) if ψ(x) ∈ o(1).

(b) Using a simple entropy argument based on a result from [11], we show that for every
leaf-centric binary tree source of type (ii), the average size of the minimal DAG is lower
bounded by Ω(n/ log n).

(c) For leaf-centric binary tree sources of type (iii), the average size of the minimal DAG is
upper bounded by O

(
n

φ(n) logn
)
, which is in o(n) if φ(n) ∈ ω(1/ log n).

Both (a) and (c) imply the upper bound O(n/ log n) for the binary search tree model [7],
whereas (b) yields an information-theoretic proof of the lower bound Ω(n/ log n) from [6].

The upper bounds (a) and (c) can be applied to the problem of universal tree compression
[10, 16]. It is shown in [16] that a suitable binary encoding of the DAG yields a tree encoding
whose average-case redundancy converges to zero assuming the trees are produced by a
leaf-centric tree source for which the average DAG size is o(n). See [16] for precise definitions.

2 Preliminaries

We use the classical Landau notations O, o, Ω and ω. Quite often, we write sums of the form∑
q0≤k≤q1

ak for rational numbers q0, q1. With this, we mean the sum
∑bq1c
k=dq0e ak. In the

following, log x will always denote the binary logarithm log2 x of a positive real number x.
With [0, 1] we denote the unit interval of reals, and (0, 1] = [0, 1] \ {0}.

2.1 Trees and DAGs

We define binary trees as terms over the two symbols a (for leaves) and f (for binary nodes).
The set T of binary trees is the smallest set of terms in f and a such that (i) a ∈ T , and (ii)
if t1, t2 ∈ T , then f(t1, t2) ∈ T . Thus, if we consider elements in T as graphs in the usual
way, a binary tree is an ordered, rooted tree such that each node has either exactly two or no
children. With Tn we denote the set of binary trees which have exactly n leaves. The size of
a binary tree t is the number of leaves of t and denoted with |t|. A fringe subtree of a binary
tree t is a subtree which consists of a node of t and all its descendants. For a node v of a
binary tree t ∈ T , let t[v] denote the fringe subtree of t which is rooted at v. The leaf-size of
a node v of t is the size of the subtree t[v]. For a binary tree t ∈ T and an integer k ≥ 1, let
N(t, k) denote the number of nodes of t of leaf-size greater than k.

For a binary tree t ∈ T , let Dt denote its minimal directed acyclic graph, often shortly
referred to as its minimal DAG. It is obtained by merging nodes u and v if t[u] and t[v] are
isomorphic. The size |Dt| of Dt is the number of different pairwise non-isomorphic fringe
subtrees of t. An example of a binary tree and its minimal DAG can be found in Figure 1.

2.2 Leaf-centric binary tree sources

In this paper we are interested in the average size of minimal DAGs. For this, we need
for every n ≥ 1 a probability distribution on Tn. We restrict here to so-called leaf-centric
binary tree sources that were studied in [11, 16]. Let Σ denote the set of all functions

MFCS 2018

16:4 Average Case Analysis of Leaf-Centric Binary Tree Sources

Figure 1 A binary tree (left) and its minimal DAG (right).

σ : (N \ {0})× (N \ {0})→ [0, 1] which satisfy

n−1∑
i=1

σ(i, n− i) = 1

for every integer n ≥ 2. We define Pσ : T → [0, 1] inductively by Pσ(a) = 1 and Pσ(f(u, v)) =
σ(|u|, |v|) · Pσ(u) · Pσ(v). For every n ≥ 1, Pσ restricts to a probability mass function on Tn.
The tuple (T , (Tn)n∈N, Pσ) is called a leaf-centric binary tree source.

For an element σ ∈ Σ define the mapping σ∗ : (N \ {0})× (N \ {0})→ [0, 1] by

σ∗(i, j) =
{
σ(i, j) + σ(j, i) if i 6= j

σ(i, j) if i = j.

Note that σ∗(i, j) ≤ 1 for all i, j and that
∑bn/2c
k=1 σ∗(k, n− k) = 1.

3 Average size of the minimal DAG

Consider σ ∈ Σ. The average size of the minimal DAG with respect to the leaf-centric binary
tree source (T , (Tn)n∈N, Pσ) is the function Dσ : N → R defined by equation (1). In the
following, we present three natural classes of leaf-centric binary tree sources and investigate
the average size of the minimal DAG with respect to these leaf-centric binary tree sources.
In particular, we present conditions on σ ∈ Σ that imply Dσ(n) ∈ o(n). In order to estimate
Dσ, we use the so-called cut-point argument that was applied in several papers [6, 15].

For a mapping σ ∈ Σ and integers b ≥ 1 and n ≥ 1, let Eσ,b(n) denote the expected value
of N(t, b) with respect to the probability mass function Pσ on the set of binary trees Tn:

Eσ,b(n) =
∑
t∈Tn

Pσ(t) ·N(t, b).

Clearly, Eσ,b(n) = 0 if n ≤ b. The following lemma constitutes the crucial argument we need
in order to estimate the average size of a minimal DAG.

I Lemma 1. Let σ ∈ Σ and let n ≥ b ≥ 1. Then Dσ(n) ≤ Eσ,b(n) + 4b/3.

Proof. Let t ∈ Tn. The size of the minimal DAG Dt of t is upper bounded by
(i) the number N(t, b) of nodes of t of leaf-size greater than b plus
(ii) the number of binary trees with at most b leaves.
Recall that the number of binary trees with k leaves is the (k − 1)th Catalan number Ck−1,
which is bounded by 4k−1. Hence, the number in (ii) is upper bounded by

∑b
k=1 4k−1 ≤ 4b/3.

This proves the lemma. J

L. Seelbach and M. Lohrey 16:5

The integer b ≥ 1 from Lemma 1 is called the cutpoint. In order to apply Lemma 1 to
estimate Dσ, we first have to obtain estimates for Eσ,b(n). This will be done inductively:
Let t = f(u, v) ∈ Tn and let b < n. The number of nodes of t of leaf-size greater than b is
composed of the number of nodes of the left subtree u of leaf-size greater than b plus the
number of nodes of the right subtree v of leaf-size greater than b plus one (for the root),
i.e., N(t, b) = N(u, b) +N(v, b) + 1. This observation easily yields the following recurrence
relation for the expected value Eσ,b(n):

Eσ,b(n) = 1 +
n−1∑
k=b+1

(σ(k, n− k) + σ(n− k, k)) · Eσ,b(k).

With our definition of σ∗, this is equivalent to

Eσ,b(n) = 1 +
n−1∑
k=b+1

σ∗(k, n− k) · Eσ,b(k) (2)

if b+ 1 > n
2 and

Eσ,b(n) = 1 +
n−b−1∑
k=b+1

σ(k, n− k)(Eσ,b(k) + Eσ,b(n− k)) +
n−1∑
k=n−b

σ∗(k, n− k)Eσ,b(k) (3)

if b+ 1 ≤ n
2 .

3.1 Average size of the minimal DAG for bounded σ-functions
First, we consider leaf-centric binary tree sources (T , (Tn)n∈N, Pσ), where the function values
of σ (or σ∗) are upper bounded by a function. We will prove an upper as well as a lower
bound on the average DAG size.

3.1.1 Upper bound on the average DAG size
I Definition 2 (the class Σψ∗). For a monotonically decreasing function ψ : R→ (0, 1] such
that ψ(x) ≥ 2/(x − 1) for all large enough x > 1, let Σψ

∗ ⊆ Σ denote the set of mappings
σ ∈ Σ such that σ∗(k, n− k) ≤ ψ(n) for all large enough n ≥ 2 and all 1 ≤ k ≤ n− 1.

The restriction ψ(x) ≥ 2/(x − 1) is quite natural, at least for odd x ∈ N, because∑n−1
k=1 σ

∗(k, n− k) = 2 if n is odd.
As our first main theorem, we prove an upper bound on Dσ(n) for every σ ∈ Σψ∗ :

I Theorem 3. For every σ ∈ Σψ∗ , we have Dσ(n) ∈ O
(
ψ
(1

2 log4(n)
)
· n
)
.

Note that Theorem 3 only makes a nontrivial statement if ψ converges to zero: if ψ is
lower bounded by a nonzero constant then we only obtain the trivial bound Dσ(n) ∈
O(n). Moreover, the bound Dσ(n) ∈ O

(
ψ
(1

2 log4(n)
)
· n
)
also holds if we require that

σ(k, n − k) ≤ ψ(n) for all large enough n and 1 ≤ k ≤ n − 1, since the latter implies that
σ∗(k, n− k) ≤ 2ψ(n).

Let us fix a monotonically decreasing function ψ : R→ (0, 1] such that ψ(n) ≥ 2/(n− 1)
for all large enough n. Moreover, let σ ∈ Σψ

∗ . We can choose a constant Nσ such that
ψ(n) ≥ 2/(n− 1) and σ∗(k, n− k) ≤ ψ(n) for all n ≥ Nσ and all 1 ≤ k ≤ n− 1. In order to
prove Theorem 3, we use the cut-point argument from Lemma 1. Thus, we start with an
upper bound for Eσ,b(n). A similar statement for the special case of the binary search tree
model was shown by Knuth [12, p. 121].

MFCS 2018

16:6 Average Case Analysis of Leaf-Centric Binary Tree Sources

I Lemma 4. For all n, b with n ≥ b+ 1 > Nσ we have Eσ,b(n) ≤ 4nψ(b)− 2.

In the proof of Lemma 4, we make use of the following lemma from linear optimization:

I Lemma 5. Let a0 ≤ a1 ≤ · · · ≤ an−1 be a finite sequence of monotonically increasing
positive real numbers and let 0 ≤ c, ω ≤ 1 and l := bω/cc. Moreover, let x0, . . . , xn−1 denote
real numbers satisfying 0 ≤ xi ≤ c for every 0 ≤ i ≤ n− 1 and

∑n−1
k=0 xk = ω. Then

n−1∑
i=0

aixi ≤ c
n−1∑
i=n−l

ai + (ω − lc)an−l−1. (4)

Proof. Since 0 ≤ a0 ≤ a1 ≤ · · · ≤ an−1 and 0 ≤ xi ≤ c, the sum
∑n−1
i=0 aixi is maximized if

we choose the maximal weight c for the l largest values an−l ≤ · · · ≤ an−1 (i.e., xn−l = · · · =
xn−1 = c), and put the remaining weight ω − lc (note that ω/c− 1 ≤ l ≤ ω/c, which implies
0 ≤ ω− lc ≤ c) on the (l− 1)-th largest value an−l−1 (i.e., xn−l−1 = ω− l · c). The remaining
x1, . . . , xn−l−2 are set to zero. Then

∑n−1
i=0 aixi becomes the right-hand side of (4). J

Proof of Lemma 4. We prove the statement inductively in n ≥ b+ 1 > Nσ. For the base
case, let n = b+ 1. We have Eσ,b(b+ 1) = 1 ≤ 4(b+ 1)ψ(b)− 2, as ψ(b) ≥ 2

b−1 by assumption.
For the induction step take an n > b+ 1 > Nσ such that Eσ,b(k) ≤ 4kψ(b)− 2 for every

b < k ≤ n− 1. By assumption, we have n− 1 ≥ n− 1
ψ(n) >

n
2 , as n > Nσ. We distinguish

three subcases:

Case 1: n
2 < b + 1 < n − 1

ψ(n) . By equation (2) and the induction hypothesis, we have

Eσ,b(n) ≤ 1 +
n−1∑
k=b+1

σ∗(k, n− k) (4kψ(b)− 2) . (5)

Note that n
2 < b + 1 implies that

∑n−1
k=b+1 σ

∗(k, n − k) ≤ 1. Without loss of generality,
we can assume that

∑n−1
k=b+1 σ

∗(k, n − k) = 1: since 4kψ(b)− 2 > 0 for every k with
b+ 1 ≤ k ≤ n− 1, this makes the right-hand side in (5) only larger. Let l :=

⌊
1

ψ(n)

⌋
and

δ := 1
ψ(n) − l. Applying Lemma 5 (with ak = 4kψ(b)− 2, xk = σ∗(k, n− k), c = ψ(n) and

ω = 1), we get

Eσ,b(n) ≤ 1 + ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2) + (1− lψ(n)) (4(n− l − 1)ψ(b)− 2) . (6)

By simplifying the right hand side and using 0 ≤ δ < 1 and ψ(n) ≤ ψ(b), we get
Eσ,b(n) ≤ 4nψ(b)− 1− 4lψ(b)− 4ψ(b) + 2l2ψ(n)ψ(b) + 2lψ(n)ψ(b)

= 4nψ(b)− 1− 2ψ(b)
ψ(n) − 2ψ(b)− 2δψ(n)ψ(b) + 2δ2ψ(n)ψ(b)

≤ 4nψ(b)− 1− 2ψ(b)
ψ(n) − 2ψ(b) ≤ 4nψ(b)− 2.

Case 2: b + 1 ≥ n − 1
ψ(n) . By equation (2) and by the induction hypothesis, we get

Eσ,b(n) ≤ 1 +
n−1∑
k=b+1

σ∗(k, n− k) (4kψ(b)− 2) .

L. Seelbach and M. Lohrey 16:7

Again, let l :=
⌊

1
ψ(n)

⌋
and δ := 1

ψ(n) − l. Since b + 1 ≥ n − 1
ψ(n) by assumption and

b+ 1 ∈ N we have b+ 1 ≥ n− l. Moreover, n− 1
ψ(n) >

n
2 implies n− l > n

2 . Since n− l
is an integer, we get n− l − 1 ≥ n−1

2 . This implies

4(n− l− 1)ψ(b)− 2 ≥ 2(n− 1)ψ(b)− 2 ≥ 2(n− 1)ψ(n)− 2 ≥ 2(n− 1) 2
n− 1 − 2 > 0

and hence also 4kψ(b) − 2 > 0 for all n − l − 1 ≤ k ≤ n − 1. As σ ∈ Σψ
∗ , we have

σ∗(k, n− k) ≤ ψ(n) for every 1 ≤ k ≤ n− 1. We get

Eσ,b(n) ≤ 1 + ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2) .

Moreover, we have 1− ψ(n)l ≥ 0 and 4(n− l − 1)ψ(b)− 2 ≥ 0 and thus

Eσ,b(n) ≤ 1 + ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2) + (1− ψ(n)l) (4(n− l − 1)ψ(b)− 2) .

This is equation (6) from Case 1. The statement follows now as in Case 1.
Case 3: b + 1 ≤ n

2 . By equation (3) and the induction hypothesis, we have

Eσ,b(n) = 1 +
n−b−1∑
k=b+1

σ(k, n− k) (Eσ,b(k) + Eσ,b(n− k)) +
n−1∑
k=n−b

σ∗(k, n− k)Eσ,b(k)

≤ 1 + (4nψ(b)− 4)
n−b−1∑
k=b+1

σ(k, n− k) +
n−1∑
k=n−b

σ∗(k, n− k) (4kψ(b)− 2) .

We set α :=
∑n−b−1
k=b+1 σ(k, n − k). Hence, we have

∑n−1
k=n−b σ

∗(k, n − k) = 1 − α. Set
l := b 1−α

ψ(n)c. Note that l ≤ 1
ψ(n) ≤

n−1
2 and that 4kψ(b)− 2 ≥ 0 for all n− b ≤ k ≤ n− 1

since n− b > n
2 and ψ(b) ≥ ψ(n) > 2

n . We distinguish two subcases:
Case 3.1: b > l and thus, n − b < n − l. Applying Lemma 5 (with ak = 4kψ(b)− 2 and

xk = σ∗(k, n− k) for n− b ≤ k ≤ n− 1 and c = ψ(n), ω = 1− α) yields

Eσ,b(n) ≤ 1 + (4nψ(b)− 4)α+ ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2)

+ (1− α− lψ(n)) (4(n− l − 1)ψ(b)− 2) .

(7)

Simplifying the right-hand side yields

Eσ,b(n) ≤ 4nψ(b)− 2α− 1 + 2lψ(n)ψ(b) + 2l2ψ(n)ψ(b)− 4(1−α)ψ(b)− 4(1−α)lψ(b).

Setting δ := (1−α)
ψ(n) − l, we get

Eσ,b(n) ≤ 4nψ(b)−2α−1−2(1−α)ψ(b)− 2ψ(b)(1− α)2

ψ(n) −2δψ(n)ψ(b)+2δ2ψ(n)ψ(b).

As 0 ≤ δ < 1 and ψ(n) ≤ ψ(b), we have

Eσ,b(n) ≤ 4nψ(b)− 2α− 1− 2(1− α)ψ(b)− 2ψ(b)(1− α)2

ψ(n)
≤ 4nψ(b)− 2α− 1− 2(1− α)ψ(b)− 2(1− α)2.

With −2α− 2(1− α)2 ≤ −1 for every value 0 ≤ α ≤ 1, the statement follows.

MFCS 2018

16:8 Average Case Analysis of Leaf-Centric Binary Tree Sources

Case 3.2: b ≤ l and thus n − b ≥ n − l. Since n − l − 1 ≥ n − n−1
2 − 1 = n−1

2 and
ψ(b) ≥ ψ(n) ≥ 2

n−1 we have 4(n− l− 1)ψ(b)− 2 ≥ 0. Thus, we also have 4kψ(b)− 2 ≥ 0
for every n− l ≤ k ≤ n− 1. Moreover, as σ∗(k, n− k) ≤ ψ(n), we get

Eσ,b(n) ≤ 1 + (4nψ(b)− 4)α+ ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2) .

Furthermore, as 1− α− lψ(n) ≥ 0, we obtain

Eσ,b(n) ≤ 1 + (4nψ(b)− 4)α+ ψ(n)
n−1∑
k=n−l

(4kψ(b)− 2)

+ (1− α− lψ(n)) (4(n− l − 1)ψ(b)− 2) .

This is equation (7) from Case 3.1, and we can conclude as in Case 3.1. This finishes the
proof of Lemma 4. J

With Lemma 4, we are able to prove Theorem 3 using the cut-point argument from Lemma 1:

Proof of Theorem 3. Let σ ∈ Σψ∗ , n > 42Nσ and Nσ ≤ b < n. By Lemma 1 and 4 we have
Dσ(n) ≤ Eσ,b(n) + 4b/3 ≤ 4n · ψ(b) + 4b/3. Choose b := dlog4(n)/2e. As n > 42Nσ , this
accords with b ≥ Nσ. We obtain Dσ(n) ≤ 4n·ψ (log4(n)/2)+Θ(

√
n). Since n·ψ (log4(n)/2) ≥

2n
log4(n)/2−1 grows faster than Θ(

√
n), this finishes the proof. J

In the following examples, we consider the results of Theorem 3 with respect to some concrete
functions ψ:

I Example 6. Let σbst(k, n − k) = 1
n−1 for every integer 1 ≤ k ≤ n − 1 and n ≥ 2. The

leaf-centric binary tree source (T , (Tn)n≥1, Pσbst) corresponds to the well-known binary search
tree model. Let ψ(x) = 2

x−1 for every x > 1. We find σbst ∈ Σψ∗ . With Theorem 3, we have
Dσbst ∈ O(n/ log n), which accords with the results of [6]. J

I Example 7. There are plenty of other ways to choose ψ in Theorem 3. For example
ψ(x) ∈ Θ(1/xα) with 0 ≤ α ≤ 1 yields Dσ(n) ∈ O(n/ log(n)α) for every σ ∈ Σψ

∗ . For
ψ(x) ∈ Θ(1/ log x) we get Dσ(n) ∈ O(n/ log log n) for every σ ∈ Σψ∗ . J

3.1.2 Lower bound on the average DAG size
In this section we prove a lower bound for Dσ(n).

I Definition 8 (the class Σρ). For a constant ρ with 0 < ρ < 1 let Σρ denote the set of
mappings σ ∈ Σ such that σ(k, n− k) ≤ ρ for all large enough n and all 1 ≤ k ≤ n− 1.

By Theorem 3, we only know Dσ(n) ∈ O(n) for σ ∈ Σρ. In the following theorem, we present
a lower bound for Dσ(n) with respect to a mapping σ ∈ Σρ:

I Theorem 9. If σ ∈ Σρ, then Dσ(n) ∈ Ω(n/ log n).

Let us fix a mapping σ ∈ Σρ, where 0 < ρ < 1, and let Nσ ≥ 2 such that σ(k, n− k) ≤ ρ
for all n ≥ Nσ and all 1 ≤ k ≤ n − 1. In order to prove Theorem 9, we make use of an
information-theoretic argument. We need the following notations: For a mapping σ ∈ Σ,
let Xn

σ denote the random variable taking values in Tn according to the probability mass
function Pσ on Tn. Moreover, let H(Xn

σ) denote the Shannon entropy of Xn
σ , i.e.,

H(Xn
σ) =

∑
t∈Tn

Pσ(t) · log(1/Pσ(t)).

L. Seelbach and M. Lohrey 16:9

I Lemma 10. If σ ∈ Σρ, then H(Xn
σ) ≥ log

(1
ρ

)(
n

4Nσ−4
)
for every n ≥ Nσ.

In order to prove Lemma 10, we need a lower bound for Eσ,b(n):

I Lemma 11. For a mapping σ ∈ Σ and integers n > b ≥ 1, we have Eσ,b(n) ≥ n
4b .

Proof. We prove the statement inductively in n ≥ b+ 1: For the base case, let n = b+ 1. A
binary tree t ∈ Tb+1 has exactly one node of leaf-size greater than b, which is the root of t.
Thus, Eσ,b(b+ 1) = 1 ≥ b+1

4b for every integer b ≥ 1. For the induction hypothesis, take an
integer n > b+ 1 such that Eσ,b(k) ≥ k

4b for every integer b+ 1 ≤ k ≤ n− 1.
In the induction step, we distinguish two cases:

Case 1: n
2 < b + 1 ≤ n − 1. We thus have n

4b ≤ 1. By equation (2), we have

Eσ,b(n) = 1 +
n−1∑
k=b+1

σ∗(k, n− k)Eσ,b(k) ≥ 1 ≥ n

4b .

Case 2: b + 1 ≤ n
2 . Let α :=

∑n−b−1
k=b+1 σ(k, n − k). From equation (3) and the induction

hypothesis we get

Eσ,b(n) = 1 +
n−b−1∑
k=b+1

σ(k, n− k)(Eσ,b(k) + Eσ,b(n− k)) +
n−1∑
k=n−b

σ∗(k, n− k)Eσ,b(k)

≥ 1 +
n−b−1∑
k=b+1

σ(k, n− k) n4b +
n−1∑
k=n−b

σ∗(k, n− k) k4b

≥ 1 + n

4b

n−b−1∑
k=b+1

σ(k, n− k) + n− b
4b

n−1∑
k=n−b

σ∗(k, n− k)

= 1 + α
n

4b + (1− α)
(
n− b

4b

)
= n

4b + 3
4 + α

4 .

As 0 ≤ α ≤ 1, the statement follows. J

Proof of Lemma 10. Lemma 10 follows from identity (4) in [11]: Define

hk(σ) :=
∑
i,j≥1
i+j=k

σ(i, j) log
(

1
σ(i, j)

)
,

that is, hk(σ) is the Shannon entropy of the random variable taking values in {(i, k− i) : 1 ≤
i ≤ k − 1} according to the probility mass function σ. As σ(i, j) ≤ ρ for i+ j ≥ Nσ, we find

hk(σ) ≥ log
(

1
ρ

) ∑
i,j≥1
i+j=k

σ(i, j) = log
(

1
ρ

)

for every k ≥ Nσ. Identity (4) in [11] states that H(Xn
σ) =

∑n
j=2 (Eσ,j−1(n)− Eσ,j(n))hj(σ).

With n ≥ Nσ, we obtain

H(Xn
σ) ≥

n∑
j=Nσ

(Eσ,j−1(n)− Eσ,j(n))hj(σ) ≥ log
(

1
ρ

) n∑
j=Nσ

(Eσ,j−1(n)− Eσ,j(n))

= log
(

1
ρ

)
(Eσ,Nσ−1(n)− Eσ,n(n)) = log

(
1
ρ

)
Eσ,Nσ−1(n).

By Lemma 11, we have H(Xn
σ) ≥ log

(1
ρ

)(
n

4Nσ−4
)
. This proves the statement. J

MFCS 2018

16:10 Average Case Analysis of Leaf-Centric Binary Tree Sources

With Lemma 10, we are able to prove Theorem 9:

Proof of Theorem 9. We first show that a binary tree t ∈ Tn can be encoded with at most
2mdlog(2n− 1)e bits, where m = |Dt| ≤ 2n− 1 (note that t has exactly 2n− 1 nodes). It
suffices to encode Dt. W.l.o.g. assume that the nodes of Dt are the numbers 1, . . . ,m, where
m is the unique leaf node of Dt. For 1 ≤ k ≤ m − 1 let lk (resp., rk) be the left (resp.,
right) child of node k. We encode each number 1, . . . ,m by a bit string of length exactly
dlog(2n− 1)e. The DAG Dt can be uniquely encoded by the bit string l1r1l2r2 · · · lm−1rm−1,
which has length 2(m− 1)dlog(2n− 1)e.

Let σ ∈ Σρ. By Lemma 10, we know that H(Xn
σ) ≥ log

(1
ρ

)(
n

4Nσ−4
)
for every n ≥ Nσ.

Shannon’s coding theorem implies

H(Xn
σ) ≤ 2dlog(2n− 1)e

∑
t∈Tn

Pσ(t)|Dt| = 2dlog(2n− 1)eDσ(n).

We get log(1/ρ)
(

n
4Nσ−4

)
≤ 2dlog(2n− 1)eDσ(n) for all n ≥ 2, which concludes the proof. J

3.2 Average size of the minimal DAG for weakly balanced tree sources
In this subsection, we present so-called weakly balanced binary tree sources, which represent
a generalization of balanced binary tree sources introduced in [11] and further analysed in
[10]. Let us fix a constant c ≥ 3 for the rest of this subsection.

I Definition 12 (the class Σφ). For a monotonically decreasing function φ : N→ (0, 1] let
Σφ ⊆ Σ denote the set of mappings σ such that for every n ≥ 2,∑

n
c≤k≤n−

n
c

σ(k, n− k) ≥ φ(n).

We call a binary tree source (T , (Tn)n≥1, Pσ) with σ ∈ Σφ weakly balanced. We obtain the
following upper bound for Dσ with respect to a weakly balanced tree source:

I Theorem 13. For every σ ∈ Σφ, we have Dσ(n) ∈ O
(

n
φ(n) logn

)
.

Theorem 13 can be used to reprove the upper bound Dσbst(n) ∈ O(n/ log n) for the binary
search tree model from Example 6 (note that

∑
n/4≤k≤3n/4

1
n−1 > 1

2). More generally, if
φ(n) ∈ ω(1/ log n), then Theorem 13 yields Dσ(n) ∈ o(n) for every σ ∈ Σφ.

Analogously to Theorem 3, we show Theorem 13 using the cut-point argument from
Lemma 1. The strategy in the proof of the following lemma is similar to Lemma 4.

I Lemma 14. For every σ ∈ Σφ and all b ≥ 1, n ≥ b+ 1 we have Eσ,b(n) ≤ cn
φ(n)b −

1
φ(n) .

Proof. We prove the statement inductively in n ≥ b + 1. For the base case, note that a
binary tree t ∈ Tb+1 has exactly one node of leaf-size > b, which is the root of t. Thus,

Eσ,b(b+ 1) = 1 ≤ c(b+ 1)
φ(b+ 1)b −

1
φ(b+ 1) .

Let us now deal with the induction step. Take an integer n > b + 1 such that Eσ,b(k) ≤
ck

φ(k)b −
1

φ(k) for every integer b+ 1 ≤ k ≤ n− 1. We distinguish six cases:

Case 1: c ≥ n and thus c > b. We have n
c ≤ 1 and n− 1 ≤ n− n

c . Case 1 splits into two
subcases:

L. Seelbach and M. Lohrey 16:11

Case 1.1: n
2 < b + 1 ≤ n − 1. By equation (2), the induction hypothesis, and the fact

that φ is monotonically decreasing, we get

Eσ,b(n) = 1 +
n−1∑
k=b+1

σ∗(k, n− k)
(

ck

φ(k)b −
1

φ(k)

)

≤ 1 +
(
c(n− 1)
φ(n)b −

1
φ(n)

) n−1∑
k=b+1

σ∗(k, n− k).

As b+ 1 > n
2 and σ ∈ Σ, we have

∑n−1
k=b+1 σ

∗(k, n− k) ≤ 1 and thus

Eσ,b(n) ≤ cn

φ(n)b −
c

φ(n)b −
1

φ(n) + 1 ≤ cn

φ(n)b −
1

φ(n) .

Case 1.2: b + 1 ≤ n
2 . Equation (3), the induction hypothesis, and the fact that φ is mono-

tonically decreasing yield

Eσ,b(n) = 1 +
n−b−1∑
k=b+1

σ(k, n− k) (Eσ,b(k) + Eσ,b(n− k)) +
n−1∑
k=n−b

σ∗(k, n− k)Eσ,b(k)

≤ 1 +
n−b−1∑
k=b+1

σ(k, n− k)
(

cn

φ(n)b −
2

φ(n)

)

+
n−1∑
k=n−b

σ∗(k, n− k)
(

ck

φ(k)b −
1

φ(k)

)

≤ 1 +
(

cn

φ(n)b −
2

φ(n)

) n−b−1∑
k=b+1

σ(k, n− k)

+
(
c(n− 1)
φ(n)b −

1
φ(n)

) n−1∑
k=n−b

σ∗(k, n− k).

We set α :=
∑n−b−1
k=b+1 σ(k, n− k) and get

Eσ,b(n) ≤ 1 +
(

cn

φ(n)b −
2

φ(n)

)
α+

(
c(n− 1)
φ(n)b −

1
φ(n)

)
(1− α)

= cn

φ(n)b −
c

φ(n)b + 1− 1
φ(n) + α

(
c

φ(n)b −
1

φ(n)

)
.

As c > b by assumption, the last term is monotonically increasing in α. With α ≤ 1, we
have

Eσ,b(n) ≤ cn

φ(n)b −
2

φ(n) + 1 ≤ cn

φ(n)b −
1

φ(n) .

Case 2: n > c. We have n
c > 1 and n− n

c < n− 1. Case 2 splits into four subcases:
Case 2.1: n − n

c
< b + 1 ≤ n − 1. This case is very similar to Case 1.1 and left to the

reader; see also the long version [2].
Case 2.2: n

2 < b + 1 ≤ n − n
c
. Equation (2), the induction hypothesis and the monotonici-

ty of φ yield
Eσ,b(n) = 1 +

∑
b+1≤k≤n−nc

σ∗(k, n− k)Eσ,b(k) +
∑

n−nc<k≤n−1
σ∗(k, n− k)Eσ,b(k)

≤ 1 +
(

(c− 1)n
φ(n)b −

1
φ(n)

) ∑
b+1≤k≤n−nc

σ∗(k, n− k)

+
(
c(n− 1)
φ(n)b −

1
φ(n)

) ∑
n−nc<k≤n−1

σ∗(k, n− k).

MFCS 2018

16:12 Average Case Analysis of Leaf-Centric Binary Tree Sources

We set α :=
∑
n−nc<k≤n−1 σ

∗(k, n− k). Since b+ 1 > n
2 we have

∑
b+1≤k≤n−nc

σ∗(k, n−
k) ≤ 1− α and get

Eσ,b(n) ≤ 1 + (1− α)
(

(c− 1)n
φ(n)b −

1
φ(n)

)
+ α

(
c(n− 1)
φ(n)b −

1
φ(n)

)
= cn

φ(n)b −
n

φ(n)b −
1

φ(n) + 1 + α
(n− c)
φ(n)b .

As n > c by assumption, the last term is monotonically increasing in α. With α ≤ 1−φ(n)
as σ ∈ Σφ, we find

Eσ,b(n) ≤ cn

φ(n)b −
1

φ(n) + 1− c

φ(n)b + c

b
− n

b
≤ cn

φ(n)b −
1

φ(n) .

Case 2.3: n
c

≤ b + 1 ≤ n
2 . Equation (3), the induction hypothesis, and the monotonicity

of φ yield

Eσ,b(n) = 1 +
n−b−1∑
k=b+1

σ(k, n− k)(Eσ,b(k) + Eσ,b(n− k))

+
∑

n−b≤k≤n−nc

σ∗(k, n− k)Eσ,b(k) +
∑

n−nc<k≤n−1
σ∗(k, n− k)Eσ,b(k)

≤ 1 +
(

cn

φ(n)b −
2

φ(n)

) n−b−1∑
k=b+1

σ(k, n− k)

+
(

(c− 1)n
φ(n)b −

1
φ(n)

) ∑
n−b≤k≤n−nc

σ∗(k, n− k)

+
(
c(n− 1)
φ(n)b −

1
φ(n)

) ∑
n−nc<k≤n−1

σ∗(k, n− k).

With α :=
∑n−b−1
k=b+1 σ(k, n− k) and β :=

∑
n−nc<k≤n−1 σ

∗(k, n− k) one can simplify this
to

Eσ,b(n) = cn

φ(n)b −
n

φ(n)b −
1

φ(n) + 1 + α

(
n

φ(n)b −
1

φ(n)

)
+ β

(
n− c
φ(n)b

)
. (8)

As b < n and c < n by assumption, the term in the last line is monotonically increasing
in α and β. Using this fact, as well as 0 ≤ β ≤ 1 − φ(n) (as σ ∈ Σφ), 0 ≤ α ≤ 1 and
α+ β ≤ 1, one can show that

α

(
n

φ(n)b −
1

φ(n)

)
+ β

(
n− c
φ(n)b

)
≤ n

φ(n)b − 1

(see the long version [2] for details). Plugging this into (8) yields

Eσ,b(n) ≤ cn

φ(n)b −
n

φ(n)b −
1

φ(n) + 1 + n

φ(n)b − 1 = cn

φ(n)b −
1

φ(n) .

Case 2.4: b + 1 < n
c
. This case is very similar to Case 1.2 and left to the reader; see also

the long version [2].
J

Proof of Theorem 13. Let n ≥ 2 and let 1 ≤ b < n. By Lemma 1 and 14, we have

Dσ(n) ≤ Eσ,b(n) + 4b

3 ≤
cn

φ(n)b + 4b

3 .

Choosing b :=
⌈ 1

2 log4(n)
⌉
, the statement follows. J

L. Seelbach and M. Lohrey 16:13

In the following corollary we identify a constant ν ∈ (0, 1] with the function mapping
every n ∈ N to ν. The corollary follows immediately from Theorem 13 and 9.

I Corollary 15. For all 0 < ν, ρ < 1 and all σ ∈ Σν ∩ Σρ we have Dσ(n) ∈ Θ(n/ log n).

I Example 16. In this example, we investigate the binomial random tree model, which was
studied in [11] for the case p = 1/2, and which is a slight variant of the digital search tree
model, see [13]. Let 0 < p < 1 and define σp ∈ Σ by

σp(k, n− k) = pk−1(1− p)n−k−1
(
n− 2
k − 1

)
for every integer n ≥ 2 and 1 ≤ k ≤ n− 1. We use the abbreviation π(i) = σp(i, n− i) in the
following. By the binomial theorem, we have

∑n−1
k=1 π(k) = 1. In the following, we will prove

that Dσp(n) ∈ O(n/ log n). We distinguish two cases.

Case 1: 0 < p ≤ 1
2 . Let ν := 1− 4−4p

4+p . We find ν > 0 for 0 < p ≤ 1
2 . We claim that with

c := 6
p , we have σp ∈ Σν . Then Theorem 13 yields Dσp(n) ∈ O(n/ log n).

In order to prove σp ∈ Σν , we show∑
np
6 ≤i≤n−

np
6

σp(i, n− i) =
∑

np
6 ≤i≤n−

np
6

π(i) ≥ 1− 4− 4p
4 + p

.

Without loss of generality, let n ≥ 3. Let Xn
p denote the random variable taking values in

the set {1, . . . , n− 1} according to the probability mass function π. Thus, Xn
p = 1 + Y np ,

where Y np is binomially distributed with parameters n− 2 and p. For the expected value
and variance of Xn

p we obtain E[Xn
p] = p(n − 2) + 1 and Var[Xn

p] = p(1 − p)(n − 2).
Let κ := p(n− 2)/2 so that E[Xn

p] = 2κ+ 1 and Var[Xn
p] = 2κ(1− p). By Chebyshev’s

inequality, we have (Prob(A) denotes the probability of the event A)

Prob
(∣∣Xn

p − E[Xn
p]
∣∣ < κ+ 1

)
≥ 1−

Var[Xn
p]

(κ+ 1)2 = 1− 2κ(1− p)
κ2 + 2κ+ 1 ≥ 1− 2(1− p)

κ+ 2

= 1− 4(1− p)
p(n− 2) + 4 ≥ 1− 4(1− p)

p+ 4
where the last inequality holds due to n ≥ 3. Moreover, with E[Xn

p] = 2κ+ 1, we have

Prob
(
|Xn

p − E[Xn
p]| < κ+ 1

)
=

∑
κ<i<3κ+2

π(i).

As n ≥ 3 and 0 < p ≤ 1
2 , we have κ ≥ pn

6 and 3κ+ 2 ≤ n− pn
6 . Thus, we have

∑
pn
6 ≤i≤n−

pn
6

π(i) ≥
∑

κ<i<3κ+2
π(i) = Prob

(
|Xn

p − E[Xn
p]| < κ+ 1

)
≥ 1− 4(1− p)

p+ 4 .

This finishes the proof of Case 1.
Case 2: 1

2 < p < 1. Define a mapping ϑ : T → T inductively by ϑ(a) = a and ϑ(f(u, v)) =
f(ϑ(v), ϑ(u)). Intuitively, ϑ exchanges the right child node and the left child node of
every node of a binary tree t. It is easy to see that ϑ : Tn → Tn is a bijection for every
n ≥ 1 and that ϑ2 is the identity mapping. Moreover, t and ϑ(t) have the same number of
different pairwise non-isomorphic subtrees and thus, |Dt| = |Dϑ(t)|. We show inductively
in n ≥ 1, that Pσp(ϑ(t)) = Pσ1−p(t) for a binary tree t ∈ Tn: For the base case, let t = a.
We find Pσp(ϑ(a)) = 1 = Pσ1−p(a).

MFCS 2018

16:14 Average Case Analysis of Leaf-Centric Binary Tree Sources

For the induction step, let t = f(u, v) ∈ Tn. We have
Pσp(ϑ(t)) = Pσp(f(ϑ(v), ϑ(u))) = σp(|ϑ(v)|, |ϑ(u)|)Pσp(ϑ(v))Pσp(ϑ(u))

= σp(|v|, |u|)Pσ1−p(u)Pσ1−p(v),
where the last equality holds by the induction hypothesis. Moreover, with |u| = n− |v|
and by definition of σp, we find that σp(|v|, |u|) = σ1−p(|u|, |v|). Thus, we have

σp(|v|, |u|)Pσ1−p(u)Pσ1−p(v) = σ1−p(|u|, |v|)Pσ1−p(u)Pσ1−p(v) = Pσ1−p(t).

This finishes the induction. Altogether, and as ϑ : Tn → Tn is a bijection, we get

Dσp(n) =
∑
t∈Tn

Pσp(t)|Dt| =
∑
t∈Tn

Pσp(ϑ(t))|Dϑ(t)| =
∑
t∈Tn

Pσ1−p(t)|Dt| = Dσ1−p(n).

Since 1
2 < p < 1, we have 0 < 1− p < 1

2 . Thus, the result for Case 2 follows from Case 1.

4 Open Problems

Perhaps the most natural probability distribution on the set of binary trees with n leaves is the
uniform distribution with Pσ(t) = 1/Cn−1 for every t ∈ Tn, where Cn denotes the nth Catalan
number. The corresponding leaf-centric binary tree source is induced by the mapping σeq ∈ Σ
with σeq(k, n− k) = Ck−1Cn−k−1/Cn−1. In [8], it was shown that Dσeq(n) ∈ Θ(n/

√
log n).

Unfortunately, our main results Theorem 3 and Theorem 13 only yield the trivial bound
Dσeq ∈ O(n): An easy computation shows that σeq ∈ Σρ with ρ = 1/4 and σeq ∈ Σφ with
φ(n) ∈ Θ(1/

√
n). An interesting open problem would be to find a nontrivial subset Σ′ ⊆ Σ

that contains σeq and such that Dσ(n) ∈ O(n/
√

log n) for all σ ∈ Σ′.
Another type of binary tree sources are so-called depth-centric binary tree sources, which

yield probability distributions on the set of binary trees of a fixed depth; see for example
[10, 16]. Depth-centric binary tree sources resemble leaf-centric binary tree sources in many
ways. An interesting problem would be to estimate the average size of the minimal DAG
with respect to certain classes of depth-centric binary tree sources.

References
1 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley series in computer science / World student series edition. Addison-
Wesley, 1986.

2 Louisa Seelbach Benkner and Markus Lohrey. Average case analysis of leaf-centric binary
tree sources. CoRR, abs/1804.10396, 2018. arXiv:1804.10396.

3 Mireille Bousquet-Mélou, Markus Lohrey, Sebastian Maneth, and Eric Noeth. XML com-
pression via DAGs. Theory of Computing Systems, 57(4):1322–1371, 2015.

4 Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys, 24(3):293–318, 1992.

5 Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on compressed XML.
In Johann Christoph Freytag et al., editors, Proceedings of the 29th Conference on Very
Large Data Bases, VLDB 2003, pages 141–152. Morgan Kaufmann, 2003.

6 Luc Devroye. On the richness of the collection of subtrees in random binary search trees.
Information Processing Letters, 65(4):195–199, 1998.

7 Philippe Flajolet, Xavier Gourdon, and Conrado Martínez. Patterns in random binary
search trees. Random Structures & Algorithms, 11(3):223–244, 1997.

http://arxiv.org/abs/1804.10396

L. Seelbach and M. Lohrey 16:15

8 Philippe Flajolet, Paolo Sipala, and Jean-Marc Steyaert. Analytic variations on the com-
mon subexpression problem. In Proceedings of the 17th International Colloquium on Auto-
mata, Languages and Programming, ICALP 1990, volume 443 of Lecture Notes in Computer
Science, pages 220–234. Springer, 1990.

9 Markus Frick, Martin Grohe, and Christoph Koch. Query evaluation on compressed trees
(extended abstract). In Proceedings of the 18th Annual IEEE Symposium on Logic in
Computer Science, LICS 2003, pages 188–197. IEEE Computer Society Press, 2003.

10 Danny Hucke and Markus Lohrey. Universal tree source coding using grammar-based
compression. In Proceedings of the 2017 IEEE International Symposium on Information
Theory, ISIT 2017, pages 1753–1757. IEEE, 2017.

11 John C. Kieffer, En-Hui Yang, and Wojciech Szpankowski. Structural complexity of random
binary trees. In Proceedings of the 2009 IEEE International Symposium on Information
Theory, ISIT 2009, pages 635–639. IEEE, 2009.

12 Donald E. Knuth. The Art of Computer Programming: Volume 3 – Sorting and Searching.
Addison-Wesley, 1998.

13 Conrado Martínez. Statistics under the BST model. Dissertation, Universidad Politécnica
de Cataluna, 1991.

14 Mike Paterson and Mark N. Wegman. Linear unification. Journal of Computer and System
Sciences, 16(2):158–167, 1978.

15 Dimbinaina Ralaivaosaona and Stephan G. Wagner. Repeated fringe subtrees in random
rooted trees. In Proceedings of the Twelfth Workshop on Analytic Algorithmics and Com-
binatorics, ANALCO 2015, pages 78–88. SIAM, 2015.

16 Jie Zhang, En-Hui Yang, and John C. Kieffer. A universal grammar-based code for lossless
compression of binary trees. IEEE Transactions on Information Theory, 60(3):1373–1386,
2014.

MFCS 2018

Expressive Power, Satisfiability and Equivalence of
Circuits over Nilpotent Algebras

Paweł M. Idziak
Jagiellonian University, Faculty of Mathematics and Computer Science,
Department of Theoretical Computer Science
Krakow, Poland
idziak@tcs.uj.edu.pl

Piotr Kawałek
Jagiellonian University, Faculty of Mathematics and Computer Science,
Department of Theoretical Computer Science
Krakow, Poland
piotr.kawalek@student.uj.edu.pl

Jacek Krzaczkowski
Jagiellonian University, Faculty of Mathematics and Computer Science,
Department of Theoretical Computer Science
Krakow, Poland
jacek.krzaczkowski@uj.edu.pl

Abstract
Satisfiability of Boolean circuits is NP-complete in general but becomes polynomial time when
restricted for example either to monotone gates or linear gates. We go outside Boolean realm
and consider circuits built of any fixed set of gates on an arbitrary large finite domain. From
the complexity point of view this is connected with solving equations over finite algebras. This
in turn is one of the oldest and well-known mathematical problems which for centuries was the
driving force of research in algebra. Let us only mention Galois theory, Gaussian elimination or
Diophantine Equations. The last problem has been shown to be undecidable, however in finite
realms such problems are obviously decidable in nondeterministic polynomial time.

A project of characterizing finite algebras A with polynomial time algorithms deciding satis-
fiability of circuits over A has been undertaken in [12]. Unfortunately that paper leaves a gap
for nilpotent but not supernilpotent algebras. In this paper we discuss possible attacks on filling
this gap.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic, The-
ory of computation→ Problems, reductions and completeness, Theory of computation→ Circuit
complexity, Theory of computation → Constraint and logic programming, Mathematics of com-
puting → Combinatorial algorithms

Keywords and phrases circuit satisfiability, solving equations, Constraint Satisfaction Problem,
structure theory

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.17

Funding The project is partially supported by Polish NCN Grant # 2014/14/A/ST6/00138.

© Paweł M. Idziak, Piotr Kawałek, and Jacek Krzaczkowski;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 17; pp. 17:1–17:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idziak@tcs.uj.edu.pl
mailto:piotr.kawalek@student.uj.edu.pl
mailto:jacek.krzaczkowski@uj.edu.pl
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Expressive Power, Satisfiability and Equivalence of Circuits over Nilpotent Algebras

1 Introduction

Solving equations (or systems of equations) over an algebra A is one of the oldest and well-
known mathematical problems which for centuries was the driving force of research in algebra.
Let us only mention Galois theory, Gaussian elimination or Diophantine Equations. In fact,
for A being the ring of integers this is the famous 10th Hilbert Problem on Diophantine
Equations, which has been shown to be undecidable [17]. In finite realms such problems are
obviously decidable in nondeterministic polynomial time.

The decision version of solving systems of equations is strictly connected with Constraint
Satisfaction Problem for relational structures. A bisimulation between these two problems
has been presented in [15] and [5]. Due to this bisimulation and the recent dichotomy results
for CSP [2, 20] one can translate the beautiful splitting conditions into the language of
satisfiability of systems of equations. Unfortunately such a bisimulation between satisfiability
of a single equation (denoted by PolSat) and CSP is not known. Therefore the search for a
characterization of finite algebras with tractable PolSat seems to be challenging. There were
isolated results for particular algebraic structures like groups [7, 10, 9], rings [8] or lattices
[19]. However, already a study of PolSat for groups has shown [11] that for the alternating
group A4 the problem has a polynomial time solution in the pure group language, while it
is NP-complete after endowing A4 with binary commutator operation (which is obviously
definable by group multiplication). Here the polynomial time complexity is a result of
artificial inflation of the size of input – indeed the terms used in proving NP-completeness are
exponentially longer in pure group language than in the language allowing group commutator.
This unwanted phenomena should be eliminated when one wants to get a characterization
of abstract algebras with polynomial time procedures for satisfiability of single equations.
This project has been taken over in [12] where a measure of the size of input is based on
circuits representing terms/polynomials. This eliminates the mentioned exponential inflation
of the size of terms by replacing all terms by circuits that computes them. For a detailed
discussion of this we refer to [12]. Here we only recall definitions (in this new setting) of two
problems based on PolSat and its dual.

Csat(A)
given a circuit over the algebra A with two output gates g1,g2 is there a valuation of input
gates x = (x1, . . . , xn) that gives the same output on both g1 and g2, i.e. g1(x) = g2(x)
for some x ∈ An.
Ceqv(A)
given a circuit over the algebra A is it true that for all inputs x we have the same values
on given two output gates g1,g2, i.e. g1(x) = g2(x).

This new approach proved itself to be very useful as the mentioned results for groups, rings
and lattices have been extended in [12] to much more general setting. Actually the main
result of [12] shows that both nilpotent groups and distributive lattices (isolated in [7] and
[19] as those with Ptime algorithm for PolSat) form a paradigm for algebras with Csat
solvable in polynomial time. Unfortunately nilpotent groups hide an extremely interesting
phenomena, namely every finite nilpotent group is a direct product of groups of prime power
order. In universal algebraic terms this means that nilpotent groups are supernilpotent. In
fact, one of the the results contained in [12] (independently also shown in [14]) generalizes
polynomial time algorithms from nilpotent groups to supernilpotent algebras. On the other
hand, the results of [12] leave a gap: solvable algebras considered in [12] that are not nilpotent
have NP-complete Csat and co-NP-complete Ceqv, while the complexity of Csat and Ceqv
for nilpotent but not supernilpotent algebras is not known. Unfortunately to fill this gap the

P.M. Idziak, P. Kawałek, and J. Krzaczkowski 17:3

Ptime algorithms presented in [1, 12, 14] are useless – they do not work in general nilpotent
setting. They rely on the fact that if an equation has a solution then it must have one among
relatively small set S of tuples (although there may exist some other solutions outside the
set S). More precisely: if A is a supernilpotent algebra (or a distributive lattice) then there
is a constant d so that for each natural number n there is Sn ⊆ An such that
|Sn| is O(nd),
for two n-ary polynomials s and t the equation s(x) = t(x) has a solution x ∈ An iff it
has a solution in Sn.

Also showing that two n-ary polynomials over an algebra determine the same n-ary function
is reduced to checking this on a relatively small set Sn.

In this paper we show two things:
1. For nilpotent but not supernilpotent finite algebras one cannot expect polynomial time

algorithms for Csat or Ceqv based on small search spaces Sn described above, (unless
P = NP).

2. On the other hand there are finite nilpotent but not supernilpotent algebras with tractable
Csat and Ceqv problems.

The examples mentioned in the second item are expanded abelian groups (Zpq; +, f) where
p, q are different primes, + is the addition modulo pq and f(x) is a unary function that
returns x modulo p. Algorithms solving Ceqv and Csat for those algebras in polynomial
time are described in sections 4 and 5, respectively. Those algorithms are based on a precise
analysis of some kind of normal form of polynomials. The existence of such nice normal form
is shown in section 3.

The evidence for the first item is provided by algebras with the very same clone of all
polynomials as (Zpq; +, f) but given by a different and infinite set of precisely chosen basic
operations. In fact we show in section 6 that such algebras have co-NP-complete Ceqv
problem and NP-complete Csat.

The reader should be warned here that leaving the safe realm, in which only finitely many
basic operations are allowed, results in several fundamental problems. To start with, note that
presenting an equation s(x) = t(x) we need to identify the basic operations that occur in s or
t. In fact, even the decidability of such redefined Csat is not clear. One way to overcome this
is to have an algebra A = (A; f0, f1, . . .) encoded by a Turing machine TMA which given the
(k-ary) operation fm and a1, . . . , ak ∈ A returns TMA(m, a1, . . . , ak) = fm(a1, . . . , ak). Such
approach puts extended Csat(A) into NP whenever TMA works in polynomial time. But it
can be applied only to algebras with recursively enumerable set of fundamental operations.

The other way is to present an instance s(x) = t(x) of the problem together with the
descriptions of all fundamental operations that occur in s or t. Again such description may
be done twofold:

(CsatT) by presenting the tables of the occurring basic operations, or
(CsatTM) by (polynomial time) algorithms TMf computing the values f(a1, . . . , ak).

It may seem that presenting operations by tables is more natural, as in many cases the
complexity of such extended CsatT coincides with the complexity of its original (finite)
version Csat whenever the clone of an algebra is finitely generated (cf. Theorems 4.2, 5.2 and
6.2). On the other hand presenting the tables can again be treated as an artificial inflation
of the input size. Indeed, Theorems 6.1 and 6.2 provide examples of nilpotent algebras with
polynomial time CsatT and NP-complete CsatTM. In fact item (1) above relies on such
examples.

MFCS 2018

17:4 Expressive Power, Satisfiability and Equivalence of Circuits over Nilpotent Algebras

2 Background material

We use standard notation of universal algebra and computational complexity theory which
can be found for example in [4], [18]. In particular, by an algebra we mean a pair A = (A;F),
where A is a nonempty set and F is a family of finitary operations on A. Together with
basic operations of A, i.e. the operations from the set F , we often consider the derived
operations – terms and polynomials of A. By a polynomial of A we mean its term with some
variables substituted by constants from A. We often refer to the syntactical side of the set
F of operations as the type of A. If F = {f1, . . . , fs} we simply write (A; f1, . . . , fs) rather
than (A;F) and say that A is of finite type. We restrict ourselves to finite algebras, i.e.
algebras with finite universe A but we do allow infinite sets F of basic operations. The set of
all terms (or polynomials) of A is to be denoted by Clo A (or Pol A). Two algebras A and
B are said to be polynomially equivalent if they have the same universes and Pol A = Pol B.

This paper is also restricted to algebras that belong to congruence modular varieties, i.e.
to algebras A that together with all subalgebras D of the powers An having modular lattices
Con D of their congruences. Congruence modular varieties include most known and well-
studied algebras such as groups, rings, modules (and their generalizations like quasigroups,
loops, near-rings, nonassociative rings, Lie algebras), lattices (and their extensions like
Boolean algebras, Heyting algebras or other algebras connected with multi-valued logics
including MV-algebras).

One reason of our restriction to algebras from congruence modular varieties is that the
paper [12] deals with such algebras. The other one is that in congruence modular setting
there is a pretty well working notion of commutator of congruences that nicely generalizes
commutator of normal subgroups (in group theory) and multiplication of ideals (in ring
theory). A deep study of this commutator is described in [6]. Here we only recall a couple of
definitions needed later. For congruences α, β, γ ∈ Con A we say that α centralizes β modulo
γ (and denote this by C(α, β; γ)) if for every n > 1, every (n + 1)-ary term t of A, every
(a, b) ∈ α, and every (c1, d1), . . . , (cn, dn) ∈ β we have

t(a, c)
γ
≡ t(a, d) iff t(b, c)

γ
≡ t(b, d).

Now the commutator [α, β] of the congruences α, β ∈ Con A is the smallest congruence
γ ∈ Con A for which C(α, β; γ). With the help of the commutator one can define solvable,
nilpotent and Abelian congruences. In this paper we are interested only in the two last
concepts. To define nilpotency we first iterate the commutator by putting θ(0) = θ and
θ(i+1) = [θ, θ(i)], whenever θ ∈ Con A. Now we say that θ is k-nilpotent if θk is the identity
relation 0A on A and the algebra A is nilpotent if the largest congruence 1A of A is k-
nilpotent for some positive integer k. As in group theory, A is called Abelian if 1A is
1-nilpotent. Abelian algebras from congruence modular varieties have been shown in [6]
to have particularly nice structure. In fact they are affine, i.e. polynomially equivalent to
unitary modules (over a ring with unit).

We will also need the following strengthening of the nilpotency. First, for a bunch of
congruences α1, . . . , αk, β, γ ∈ Con A we say that α1, . . . , αk centralize β modulo γ, and write
C(α1, . . . , αk, β; γ), if for all polynomials p ∈ Pol A and all tuples a1

α1≡ b1, . . . , ak
αk≡ bk and

u
β
≡ v such that

p(x1, . . . , xk, u)
γ
≡ p(x1, . . . , xk, v)

for all possible choices of (x1, . . . , xk) in
{
a1, b1

}
× . . . ×

{
ak, bk

}
but (b1,bk), we also

have

p(b1, . . . , bk, u)
γ
≡ p(b1, . . . , bk, v).

P.M. Idziak, P. Kawałek, and J. Krzaczkowski 17:5

This notion was introduced by A. Bulatov [3] and further developed by E. Aichinger and
N. Mudrinski [1]. In particular they have shown that for all α1, . . . , αk ∈ Con A there is the
smallest congruence γ with C(α1, . . . , αk; γ) called the k-ary commutator and denoted by
[α1, . . . , αk]. Such generalized commutator behaves especially well in algebras from congruence
modular varieties. In particular this commutator is monotone, join-distributive and we have
[α1, [α2, . . . , αk]] 6 [α1, . . . , αk] . Thus every k-supernilpotent algebra, i.e. algebra satisfying
[1, . . . , 1︸ ︷︷ ︸
k+1 times

] = 0, is k-nilpotent. The following properties, that can be easily inferred from the

deep work of R. Freese and R. McKenzie [6] and K. Kearnes [13], have been summarized in
[1].

I Theorem 2.1. For a finite algebra A from a congruence modular variety the following
conditions are equivalent:
1. A is k-supernilpotent,
2. A is k-nilpotent, decomposes into a direct product of algebras of prime power order and

the clone Clo A is generated by finitely many operations,
3. A is k-nilpotent and all commutator polynomials have rank at most k.
Commutator polynomials mentioned in condition (3) of Theorem 2.1 are the paradigms for
the failure of supernilpotency and are easily seen to be useful in coding a k-ary conjunction.
We say that t(x1, . . . , xk−1, z) ∈ PolkA is a commutator polynomial of rank k if

t(a1, . . . , ak−1, b) = b whenever b ∈ {a1, . . . , ak−1} ⊆ A,
t(a1, . . . , ak−1, b) 6= b for some a1, . . . , ak−1, b ∈ A.

As we have mentioned in the Introduction this paper is intended to give a better
understanding of the problems Csat and Ceqv for nilpotent but not supernilpotent algebras.
Like in the groups, in nilpotent setting the inputs g1(x) = g2(x) of Csat or Ceqv can
be restricted to the ones in which one of the polynomials is constant, i.e. of the form
g(x) = c. Indeed, with the help of Corollary 7.4 in [6] it suffices to choose any c ∈ A and put
g(x) = m(g1(x),g2(x), c), where m(x, y, z) is a Mal’cev term for A, i.e. a term satisfying
m(x, x, y) = y = m(y, x, x) for all x, y ∈ A.

3 The structure of 2-nilpotent algebras

To fill the nilpotent versus supernilpotent gap mentioned in the Introduction we need to
understand the structure of nilpotent algebras. Since all algebras considered in this paper
are 2-nilpotent we will use the description of their structure presented in Chapter VII of [6].
It reduces to an action of one abelian algebra over the other abelian one. Thus, after fixing
the set F of operations we need two affine algebras:

an upper one, say U, which is polynomially equivalent to a module (U ;⊕) over a ring
RU , and
a lower one, say L, which is polynomially equivalent to a module (L; +) over a ring RL,

and for each basic operation f ∈ F , say k-ary, we need a function f̂ : Uk −→ L. This allows
us to construct an algebra L⊗F U of type F on the set L× U by putting

fL⊗FU((l1, u1), . . . , (lk, uk)) = (fL(l1, . . . , lk) + f̂(u1, . . . , uk), fU(u1, . . . , uk)). (1)

The usefulness of this construction is described in Corollary 7.2 in [6], where every 2-nilpotent
algebra of type F is shown to be of the form L⊗F U for some triple U,L,

{
f̂ : f ∈ F

}
. The

rest of this section is devoted to presenting a nice normal form of arbitrary polynomial p of
A that will be useful to construct polynomial time algorithms for Ceqv(A) and Csat(A).

MFCS 2018

17:6 Expressive Power, Satisfiability and Equivalence of Circuits over Nilpotent Algebras

To start with, note that the equation (1) remains valid for f being not just a basic
operation but an arbitrary polynomial of A, where f̂ is appropriately chosen. Moreover
having in mind that both L and U are affine we know that fL(l1, . . . , lk) and fU(u1, . . . , uk)
are affine combinations

∑k
i=1 λili + l0 and

⊕k
i=1 αiui⊕ u0. Thus for a polynomial p we have

pL⊗FU((l1, u1), . . . , (lk, uk)) =
(

k∑
i=1

λili + p̂(u1, . . . , uk),
k⊕
i=1

αiui + u0

)
,

where l0 is absorbed by p̂. Moreover, p̂(u1, . . . , uk) can be presented as a sum of elements of
the form

µ · ĝ

(
k⊕
i=1

β
(1)
i ui ⊕ u(1)

0 , . . . ,
k⊕
i=1

β
(s)
i ui ⊕ u(s)

0

)
,

with ĝ ranging over basic operations (and its occurrences) used to build p.
The normal form, we have just started to build, has particularly nice shape in the cases

where the ĝ’s can be presented as affine combinations of unary f̂ ’s. One of such case is
presented in the following Lemma.

I Lemma 3.1. Let U and L be algebras polynomially equivalent to 1-dimentional vector
spaces over prime fields of different characteristics. Moreover let f : U −→ L be such that
f(0U) = 0L and

∑
u∈U f(u) 6= 0L. Then, every function g : Uk −→ L can be expressed by

g(x1, . . . , xk) =
∑

(β,u)∈Fk
U
×U

µβ,u · f

(
k⊕
i=1

βixi ⊕ u

)
. (2)

Proof. Let hka1,...,ak,a
: Uk −→ L be constantly 0L except hka1,...,ak,a

(a1, . . . , ak) = a. Observe
that for every function g : Uk −→ L we have

g(x1, . . . , xk) =
∑

(a1,...,ak)∈Uk
hka1,...,ak,g(a1,...,ak)(x1, . . . , xk).

Moreover we can express one spike function by any other one by putting

hka1,...,ak,a
(x1, . . . , xk) = a · b−1 · hkb1,...,bk,b

(x1 − a1 + b1, . . . , xk − ak + bk).

In the above we use 1-dimensionality so that the universes of L and FL coincide, so that the
vectors a, b ∈ L can be also treated as scalars from FL.

The last two displays yield that to finish the proof of the Lemma it suffices to represent,
for each k, one spike function in the form described in (2). The rest of the proof shows how
this can be done in the presence of a unary function f described in the Lemma, which is to
be called (U,L)-normal in the rest of the paper. Our construction of such spike functions is
based on counting partitions (into special sums) of elements in vector spaces over finite fields.

Being left with representing one spike function of arbitrary large arity by an expression
of the form (2) we start with letting p and q to be characteristics of the fields FU and FL,
respectively. Moreover let f : U −→ L be (U,L)-normal . Put

ts(x1, . . . , xs) =
∑

∅6=I⊆{1,...,s}

(−1)|I|f
(⊕
i∈I

xi

)

P.M. Idziak, P. Kawałek, and J. Krzaczkowski 17:7

and note that ts(x1, . . . , xs) = 0L whenever 0U ∈ {x1, . . . , xs}. We fix an enumeration of the
set U = {0U, u1, . . . , up−1} and define

wk(x1, . . . , xk)= tk(p−1)(x1−u1, . . . , xk−u1, x1−u2, . . . , xk−u2, . . . , x1−up−1, . . . , xk−up−1).

Observe that wk(x) = 0L whenever at least one of the xi’s is non-zero. To prove that wk is a
spike function it remains to show wk(0U, . . . , 0U) 6= 0L. Our first claim is

wk(0U, . . . , 0U) = tp−1(u1, . . . , up−1). (3)

Since ts is fully symetric, we have

wk(0U, . . . , 0U) = tk(p−1)(
k times︷ ︸︸ ︷

u1, . . . , u1,

k times︷ ︸︸ ︷
u2, . . . , u2, . . . ,

k times︷ ︸︸ ︷
up−1, . . . , up−1).

Without loss of generality we may assume that k = qa, as for any other k′ to get a k′-ary
spike we choose the smallest power qa > k′ and replace qa − k′ arguments with 0U. From
the definition of tk(p−1) we get

tk(p−1)(u1, . . . , u1, u2, . . . , u2, . . . , up−1, . . . , up−1) =

=
(p−1)·qa∑
k=1

(−1)k
∑

k1+...+kp−1=k
ki6q

a

(
qa

k1

)
· . . . ·

(
qa

kp−1

)
f

 k1⊕
i=1

u1 ⊕ . . .⊕
kp−1⊕
i=1

up−1

 .

Observe that
(
qa

ki

)
is divisible by q whenever ki 6∈ {0, qa}. Thus the only summands that

do not vanish are those with ki ∈ {0, qa} for all i so that
(
qa

k1

)
· . . . ·

(
qa

kp−1

)
= 1. Thus, by

changing notation, we have

tk(p−1)(u1, . . . , u1, u2, . . . , u2, . . . , up−1, . . . , up−1) =

=
p−1∑
k′=1

(−1)k
′·qa

∑
k′1+...+k′

p−1=k′

k′
i
∈{0,1}

f

k′1·q
a⊕

i=1
u1 ⊕ . . .⊕

k′p−1·q
a⊕

i=1
up−1

 =

=
p−1∑
k′=1

(−1)k
′·qa

∑
S⊆{1,...,p−1}
|S|=k′

f

(⊕
i∈S

ui

)
,

where the last equality follows from the fact that the multisets

k′1·q

a⊕
i=1

u1 ⊕ . . .⊕
k′p−1·q

a⊕
i=1

up−1 : k′1 + . . .+ k′p−1 = k′, k′i ∈ {0, 1}

and{{⊕
i∈S

ui : S ⊆ {1, . . . , p− 1}, |S| = k′

}}
.

are equal. To complete the proof of (3) observe that (−1)k′·qa = (−1)k′ . This is obvious for
q being odd, while otherwise it follows from the fact that x = −x.

We will conclude our proof by showing that

wk(0U, . . . , 0U) 6= 0L. (4)

MFCS 2018

17:8 Expressive Power, Satisfiability and Equivalence of Circuits over Nilpotent Algebras

From the definition of ts we know that

tp−1(u1, . . . , up−1) =
p−1∑
k=1

(−1)k
∑

S⊆{1,...,p−1}
|S|=k

f

(⊕
i∈S

ui

)
.

Now, if `kui denotes a number of partition of the element ui into a sum of k non-zero pairwise
different elements from U then by appropriately grouping the f

(⊕
i∈S ui

)
’s and noting that

f(0U) = 0L we can replace the last sum by
p−1∑
k=1

(−1)k
p−1∑
i=1

`kuif(ui)

The numbers `kui were calculated in [16] to be `k = `kui = 1
p

((
p−1
k

)
+ (−1)k+1) independently

of ui 6= 0U. This gives that

tp−1(u1, . . . , up−1) =
p−1∑
k=1

(−1)k`k
p−1∑
i=1

f(ui) =
(
p−1∑
k=1

(−1)k`k
)(

p−1∑
i=1

f(ui)
)
.

Using the explicit formulas for the `k’s we get
p−1∑
k=1

(−1)k`k = 1
p

p−1∑
k=1

(−1)k
[(

p− 1
k

)
+ (−1)k+1

]

= 1
p

p−1∑
k=1

[
(−1)k

(
p− 1
k

)
+ (−1)2k+1

]

= 1
p

[
p−1∑
k=1

(−1)k
(
p− 1
k

)
+
p−1∑
k=1

(−1)
]

= 1
p

[−1− (p− 1)] = −1

This gives us that

wk(0U, . . . , 0U) = tp−1(u1, . . . , up−1) = −
p−1∑
i=1

f(ui)

is not equal to 0L as f is (U,L)-normal . Thus the claim (4) holds, proving that wk is a
spike function, as required. J

Lemma 3.1 yields that, in its setting, every polynomial p of A = L ⊗F U can be
represented as

p((l1, u1), . . . , (lk, uk)) =

 k∑
i=1

λili +
∑
β∈Rk

U
u∈U

µβ,u · f

(
k⊕
i=1

βiui ⊕ u

)
,
k⊕
i=1

αiui ⊕ u0

 (5)

where f is a (U,L)-normal function. Representations of the above form are to be called
f -normal. The size of such normal form is essentially the number of non-zero coefficients
among the λi’s, µβ,u’s and αi’s.

Most of our arguments in this paper refer to f -normal forms where the modules hidden in
U and L are actually 1-dimensional vector spaces over prime fields of different characteristics.
However f -normal forms could be useful in more general settings as shown in the following
Lemma as well as in Lemma 4.1.

P.M. Idziak, P. Kawałek, and J. Krzaczkowski 17:9

I Lemma 3.2. Let A = L⊗F U be a finite 2-nilpotent algebra. Then for each f : U −→ L

there exists a polynomial time procedure that returns f -normal form for a polynomial g of A
presented together with f -normal forms of all the basic operations occurring in g.

Proof. To prove the lemma we start with two polynomials h1,h2 of A presented in their
f -normal forms to carefully compute f -normal form of the superposition

g(x1, . . . , xk1+k2−1) = h2(h1(x1, . . . , xk1), xk1+1, . . . , xk1+k2−1)

in a polynomial time. Let

hj((l1, u1), . . . , (lkj , ukj)) =

 kj∑
i=1

λ
(j)
i li +

∑
(β,u)∈Γj

µ
(j)
β,c
· f

 kj⊕
i=1

βiui ⊕ u

 ,

kj⊕
i=1

α
(j)
i ui ⊕ u(j)

0

for appropriate Γj ⊆ Rkj

U × U .
Now the second and the first coordinates of g((l1, u1), . . . , (lk1+k2−1, uk1+k2−1)) are easily
seen to be

k1⊕
i=1

α
(2)
1 α

(1)
i ui ⊕

k2⊕
i=2

α
(2)
i ui+k1−1 ⊕ α(2)

1 u
(1)
0 ⊕ u

(2)
0 ,

and
k1∑
i=1

λ
(2)
1 λ

(1)
i li +

k2∑
i=2

λ
(2)
i li+k1−1 + λ

(2)
1 ·

∑
(β,u)∈Γ1

µ
(1)
β,u
· f

(
k1⊕
i=1

βiui ⊕ u

)
+ g′(u),

where g′(u1, . . . , uk1+k2−1) is obtained from
∑

(β,u)∈Γ2
µ

(2)
β,u
· f
(
β1u1 ⊕

⊕k2
i=2 βiuk1+i−1 ⊕ u

)
by substituting every occurrence of u1 by

⊕k1
i=1 α

(1)
i ui ⊕ u(1)

0 .

It should be obvious that both these coordinates give f -normal form of g and that they
can be computed in a polynomial time in size of f -normal forms of h1 and h2. Actually a
careful inspection of our argument allows us to bound the number of non-zero summands so
that the f -normal forms of more complicated superpositions of polynomials of A can be also
computed efficiently. J

Combining Lemmas 3.1 and 3.2 we get

I Corollary 3.3. Let L and U be algebras polynomially equivalent to one dimensional vectors
spaces over prime fields of different characteristics and f : U −→ L be (U,L)-normal . Then
every polynomial operation of A = L⊗F U has f-normal forms and, if the type F of A is
finite then one of these f -normal forms can be computed in polynomial time.

4 Equivalence

The last paragraph of Section 2 shows that in the nilpotent setting in Ceqv it suffices to
consider equivalence of two polynomials one of which is constant.

I Lemma 4.1. Let A = L ⊗F U with L and U being polynomially equivalent to one-
dimensional vector spaces over finite fields of different characteristics. Then there exists
a polynomial time algorithm which for polynomials p of A given in some f-normal form
decides if p is a constant function.

MFCS 2018

17:10 Expressive Power, Satisfiability and Equivalence of Circuits over Nilpotent Algebras

Proof. Let

p((l1, u1), . . . , (lk, uk)) =

pL(l1, . . . , lk) +
∑
β∈Fk

U
u∈U

µβ,u · f

(
k⊕
i=1

βiui ⊕ u

)
,pU(u1, . . . , uk)

be an f -normal form of p. Obviously such polynomial p is constant iff both coordinates of
the right-hand side above are constant. This can be efficiently checked for pU(u1, . . . , uk) as
it is simply a polynomial of a vector space. Since both summands of the first coordinate on
the right-hand side depend on disjoint sets of variables (the li’s and the ui’s) to keep their
sum constant we need to keep both summands constant. Again, checking that for pL (in a
vector space) is fast so that we are left with the expression of the form

p̂(u1, . . . , uk) =
∑

(β,u)∈FkU×U
β 6=0

µβ,u · f

(
k⊕
i=1

βiui ⊕ u

)
. (6)

This in turn can be done with the help of the following claim.
(?) p̂ is constant iff for each β ∈ FkU\

{
0
}
the function Sβ(x) =

∑
(κ,u)∈F∗

U
×U µκ·β,u ·f(κx⊕u)

is constant on U .
Indeed, having (?) we argue as follows. If for a particular β all the µκ·β,u’s are zero then
Sβ(x) = 0 for all x ∈ U . For any other β we simply check if Sβ is constant by computing all
of the |U | values for the x’s. This is fast as we have at most |U |2 summands. Finally, the
number of the β’s of the second kind is linear in the number of non-zero coefficients µβ,u.
This in turn is bounded by the length of the expression (6) which is the part of the input.

Thus we are left with the proof of (?). To see the ‘only if’ direction for β ∈ FkU \
{

0
}

and a ∈ U define Oa,β = {u ∈ Uk :
⊕k

i=1 βiui = a}. Observe that the size of the solution
set Oa,β of a nontrivial linear equation is always |U |k−1 independently of the choice of (a, β).
Now, since p̂ is constant, for each β ∈ F kU \ {0}

k and a, b ∈ L we have

0 =
∑

u∈O
a,β

p̂(u)−
∑

u∈O
b,β

p̂(u)

=
∑

u∈O
a,β

∑
(γ,u)∈FkU×U

γ 6=0

µγ,u · f

(
k⊕
i=1

γiui ⊕ u

)
−
∑

u∈O
b,β

∑
(γ,u)∈FkU×U

γ 6=0

µγ,u · f

(
k⊕
i=1

γiui ⊕ u

)

=
∑

(γ,u)∈FkU×U
γ 6=0

µγ,u ·

 ∑
u∈O

a,β

f

(
k⊕
i=1

γiui ⊕ u

)
−

∑
u∈O

b,β

f

(
k⊕
i=1

γiui ⊕ u

)
=

∑
(γ,u)∈FkU×U

γ 6=0

µγ,u ·
(
t(a, β, γ, u)− t(b, β, γ, u)

)
,

where t(x, β, γ, u) =
∑
u∈O

x,β
f
(⊕k

i=1 γiui ⊕ u
)
. Now, if the vectors β, γ ∈ FkU are linearly

dependent, i.e. γ = κ · β we have t(x, β, γ, u) = |U |k−1 · f(κ · x⊕ u). Otherwise, if β and γ
are linearly independent then t(x, β, γ, u) = |U |k−2∑

d∈U f(d), as the system of the following

P.M. Idziak, P. Kawałek, and J. Krzaczkowski 17:11

two equations{⊕k
i=1 βiui = x⊕k
i=1 γiui ⊕ u = d

has exactly |U |k−2 solutions. Summing up in the big display above the summands with γ’s
that are linearly independent with β diminishes so that this display reduces to

0 =
∑

(γ,u)∈FkU×U
γ 6=0

µγ,u ·
(
t(a, β, γ, u)− t(b, β, γ, u)

)

= |U |k−1 ·

 ∑
(κ,u)∈F∗U×U

µκ·β,uf (κ · a⊕ u)−
∑

(κ,u)∈F∗U×U

µκ·β,uf (κ · b⊕ u)

 .

Since |U | and |L| are coprime, the difference in the parenthesis is zero which shows the ‘only
if’ direction of (?).

To prove the ‘if’ direction observe that R =
{

(β, κβ) : β ∈ F kU \
{

0
}
, κ ∈ F∗U

}
is an

equivalence relation. Let β(1)
, β

(2)
, . . . , β

(m) be the transversal of R. Then for x ∈ Uk we
have

p̂(x1, . . . , xk) =
∑

(γ,u)∈FkU×U
γ 6=0

µγ,u · f

(
k⊕
i=1

γi · xi ⊕ u

)

=
∑

j∈{1,...,m}

∑
(κ,u)∈F∗U×U

µ
κ·β(j)

,u
· f

(
κ ·

k⊕
i=1

β
(j)
i xi ⊕ u

)

=
∑

j∈{1,...,m}

S
β

(j)

(
k⊕
i=1

β
(j)
i xi

)
.

Now our assumption that all the S
β

(j) are constant shows that p̂ is constant, as well. J

Corollary 3.3 together with Lemma 4.1 immediately give the following theorem.

I Theorem 4.2. Let A = L⊗F U with L and U being polynomially equivalent to 1-dimen-
sional vector spaces over prime fields of different characteristics. Then Ceqv(A) is in P.

5 Satisfiability

Again, in nilpotent realm the last paragraph of Section 2 allows us to fix one side of the
equations considered in Csat to be a constant polynomial.

I Lemma 5.1. Let A = L ⊗F U with L and U being polynomially equivalent to one-
dimensional vector spaces over finite fields of different characteristics. Then there exists a
polynomial time algorithm which for a constant c ∈ A and polynomials p of A given in some
f -normal form decides if the equation p(x) = c has a solution.

Proof. Since our polynomial is given in f -normal form we start with the following equationpL(l1, . . . , lk) +
∑

(β,u)∈Fk
U
×U

µβ,u · f

(
k⊕
i=1

βi · ui ⊕ u

)
, pU(u1, . . . , uk)

 = (cL, cU). (7)

MFCS 2018

17:12 Expressive Power, Satisfiability and Equivalence of Circuits over Nilpotent Algebras

We start with observing that since L and U are polynomially equivalent to one-dimensional
vector spaces the range of pL (and pU) is either one element or the entire L (or U). Now, if
pL is not constant then it suffices to check whether pU(u1, . . . , uk) = cU has a solution in U ,
as the solution in first coordinate always exists. Thus we assume that pL is constant and put
d = cL − pL(0L, . . . , 0L). Moreover we may assume that pU is not constant or equal to cU ,
as otherwise our equation has no solution.

We want to reduce our equation in A to an equivalent equation of the form∑
(β,u)∈Fk

U
×U

νβ,u · f

(
k⊕
i=1

βi · ui ⊕ u

)
= d (8)

in L, but with the ui’s taking values in U . Now, if pU is constant (and therefore equal to cU)
then we are done with νβ,u = µβ,u for all β’s and u’s. Otherwise pU(u1, . . . , uk) = cU reduces
to something of the form uj =

⊕
i6=j δiui ⊕ cU . This allows us to replace all occurrences of

the uj by the sum
⊕

i6=j δiui ⊕ cU and after recalculating the coefficients µβ,u we get the
desired νβ,u’s as required in (8).

Denote the left-hand side of (8) by p′(u1, . . . , uk) and note that since the set L carries the
multiplication inherited from the field FL the equation p′(u1, . . . , uk) = d has a solution iff∏

d′∈L−{d}

(p′(u1, . . . , uk)− d′) = 0L

is not an identity. Note however that the product above is not directly expressible as a
polynomial of A. Nevertheless distributing over the factors we can replace the product by
the sum

∑
(β(1)

,u(1))

∑
(β(2)

,u(2))

. . .
∑

(β(m)
,u(m))

νI · f

(
k⊕
i=1

β
(1)
i ui ⊕ u(1)

)
· . . . · f

(
k⊕
i=1

β
(m)
i ui ⊕ u(m)

)
,

where I =
(
β

(1)
, u(1), . . . , β

(m)
, u(m)

)
and m = |U | − 1. Lemma 3.1 supplies us with a

representation of the product f(x1) · . . . · f(xm) sending Um into L by an expression of the
right-hand side of (2). This leads to the representation of the form

∏
d′∈L−{d}

(p′(u1, . . . , uk)− d′) =
∑

(β,u)∈Fn
U
×U

µ′
β,u
· f

(
k⊕
i=1

βi · ui ⊕ u

)

which, with the help of Lemma 4.1, can be efficiently checked not to be constantly 0L. This
in turn is equivalent for the starting equation to have a solution. J

Corollary 3.3 and Lemma 5.1 yield the following result.

I Theorem 5.2. Let A = L ⊗F U with L and U being polynomially equivalent to one
dimensional vectors spaces over prime fields of different characteristics. Then Csat(A) is in
P.

6 Algebras with infinitely many operations

The reasons we consider infinite languages in this paper are twofold. One motivation comes
from the fact that a desire for a simple extension of our polynomial time algorithms from
supernilpotent algebras to nilpotent ones is hopeless. Indeed, as it has been already mentioned

P.M. Idziak, P. Kawałek, and J. Krzaczkowski 17:13

in the Introduction, those algorithms are based on a reduction to a small search space. Its
size and shape is bounded as a result of the bound for the essential arity of commutator
terms (they serve as multi-ary internal conjunctions replacing lack of an external one). At
first glance the existence of polynomial time algorithms for nilpotent but not supernilpotent
algebras is not so obvious as they do have commutator terms of arbitrary large arity so
that one can try to interpret NP-complete problems like in solvable but nonnilpotent case.
However all known commutator terms have exponential size with respect to the number of
variables whenever they are produced from finitely many operations. In fact the circuits
representing those known commutator polynomials are also of exponential size. However,
allowing infinitely many operations, we do have the possibility to express arbitrary large
conjunctions by short polynomials. This phenomena is presented in the next Theorem.

I Theorem 6.1. For two different prime numbers p, q there exists a 2-nilpotent algebra
A = L⊗F U with U and L being polynomially equivalent to one dimensional vector spaces
over the fields GF (p) and GF (q) respectively, such that CeqvTM(A) is co-NP-complete and
CsatTM(A) is NP-complete.

Proof. We start with choosing a ∈ U −{0} and b ∈ L−{0} to define the following family of
functions:

fk((l11, u1
1), (l12, u1

2), (l13, u1
3), . . . , (lk1 , uk1), (lk2 , uk2), (lk3 , uk3)) = (f̂k(u1

1, u
1
2, u

1
3, . . . , u

k
1 , u

k
2 , u

k
3), 0),

where

f̂k(u1
1, u

1
2, u

1
3, . . . , u

k
1 , u

k
2 , u

k
3) =

{
b, if a ∈

{
ui1, u

i
2, u

i
3
}
for each i,

0, otherwise.

Obviously the values of the fk’s can be computed by a single Turing machine in O(k) time.
Now we define A to be (L× U ; +A, {fk}∞k=1), where (L; +) and (U ;⊕) are the groups of

order q and p, respectively, and (l1, u1) +A (l2, u2) = (l1 + l2, u1 ⊕ u2).
To see that CsatTM(A) is NP-complete observe that a 3-CNF formula

(`11 ∨ `12 ∨ `13) ∧ · · · ∧ (`k1 ∨ `k2 ∨ `k3) (9)

is satisfiable if and only if the following equation has a solution in A

fk(z1
1 , z

1
2 , z

1
3 , . . . , z

k
1 , z

k
2 , z

k
3) = (b, 0),

where zji = xji if `
j
i is a positive literal and zji = (0, a)− xji otherwise.

Similarly a formula (9) is not satisfiable iff the following equation holds in A.

fk(z1
1 , z

1
2 , z

1
3 , . . . , z

k
1 , z

k
2 , z

k
3) = (0, 0).

This shows co-NP-completeness of CeqvTM(A). J

Note here that the examples with co-NP-complete CeqvTM and NP-complete CsatTM
do exist even for p = q. Actually they are provided (but without detailed description of the
input size) in [14]. However, if p = q the resulting algebras must have infinitely many basic
operations (as otherwise they would be supernilpotent), while for p 6= q the algebras have
finitely generated clone of operations but are presented with infinitely many basic operations
only to (artificially) compress the size of the input.

Note also that in fact Theorem 6.1 actually establishes much more than just hardness of
CsatTM and CeqvTM. Indeed, these examples show that (unless P = NP) for nilpotent but

MFCS 2018

17:14 Expressive Power, Satisfiability and Equivalence of Circuits over Nilpotent Algebras

not supernilpotent finite algebras one cannot expect polynomial time algorithms for Csat or
Ceqv based on small search spaces Sn described in the Introduction. This is because the
existence of such search spaces do not depend on the finiteness of the language.

Representing functions by Turing machines gives us a way to compress the input. However
one can consider this as a drawback. That is because in this approach we can no longer
treat basic operations occurring in the input as parameters in the way we do it for the
finite set of operations. This probably denies the intuition behind what should an algorithm
parameterized by an algebra mean. That is why CeqvT(A) and CsatT(A), as described
in the Introduction, appear to be more natural candidates for transferring these problems
to the realm with possibly infinitely many basic operations. In contrast to Theorem 6.1 we
have the following.

I Theorem 6.2. Let A = L ⊗F U with L and U being polynomially equivalent to one
dimensional vector spaces over prime fields of different characteristics. Then CeqvT(A) and
CsatT(A) are in P.

Proof. First note that from Corollary 3.3 every polynomial over A can be represented in
some f -normal form. In view of Lemmas 3.2, 4.1 and 5.1 it suffices to show that obtaining
f -normal forms of basic operations can be done in time polynomial in size of their tables.

To represent the basic operation g in the form of the right-hand side of (5) we need to
compute all the λi’s, µβ,u’s, αi’s and u0 from the table of g. For x ∈ L×U we will use ΠL(x)
and ΠU (x) to denote the first and second coordinate of x.

Now, to compute the αi’s and u0 it suffices to solve the following system of k + 1 linear
equations

k⊕
i=1

αiui ⊕ u0 = ΠU (g((0, u1), . . . , (0, uk))) ,

where (u1, . . . , uk) ranges over the set {(0, . . . , 0), (1, 0, . . . , 0), (0, 1, 0, . . . , 0) . . . , (0, . . . , 0, 1)}
⊆ Uk and ΠU (g((0, u1), . . . , (0, uk))) can be read from the table of g. Similarly, the λi’s are
the solutions of the following system of k linear equations

k∑
i=1

λili + ΠL(g((0, 0), . . . , (0, 0))) = ΠL(g((l1, 0), . . . , (lk, 0))) ,

where again (l1, . . . , lk) ranges over the set {(1, 0, . . . , 0), (0, 1, 0, . . . , 0) . . . , (0, . . . , 0, 1)} ⊆ Lk.
Finally, the µβ,u’s can be recovered from the following system of linear equations

∑
(β,u)∈Fk

U
×U

µβ,u · f

(
k⊕
i=1

βiui ⊕ u

)
= ΠL(g((0, u1), . . . , (0, uk))) .

This time the system consists of |U |k equations (one for each (u1, . . . , uk) ∈ Uk) but this
number is linear in the size of the table of g, as g is k-ary. J

References
1 Erhard Aichinger and Nebojša Mudrinski. Some applications of higher commutators in

Mal’cev algebras. Algebra Universalis, 63(4):367–403, 2010.
2 A. A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual

Symposium on Foundations of Computer Science (FOCS), pages 319–330, Oct. 2017. doi:
10.1109/FOCS.2017.37.

http://dx.doi.org/10.1109/FOCS.2017.37
http://dx.doi.org/10.1109/FOCS.2017.37

P.M. Idziak, P. Kawałek, and J. Krzaczkowski 17:15

3 Andrei Bulatov. On the number of finite Mal’tsev algebras. Contributions to General
Algebra, 13:41–54, 2000.

4 Stanley Burris and H. P. Sankappanavar. A course in universal algebra, volume 78 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 1981.

5 Tomás Feder, Florent Madelaine, and Iain A. Stewart. Dichotomies for classes of homo-
morphism problems involving unary functions. Theoret. Comput. Sci., 314(1-2):1–43, 2004.

6 Ralph Freese and Ralph McKenzie. Commutator theory for congruence modular varieties,
volume 125 of London Mathematical Society Lecture Note Series. Cambridge University
Press, Cambridge, 1987.

7 Mikael Goldmann and Alexander Russell. The complexity of solving equations over finite
groups. Inform. and Comput., 178(1):253–262, 2002.

8 Gábor Horváth. The complexity of the equivalence and equation solvability problems over
nilpotent rings and groups. Algebra Universalis, 66(4):391–403, 2011.

9 Gábor Horváth. The complexity of the equivalence and equation solvability problems over
meta-Abelian groups. Journal of Algebra, 433:208–230, 2015.

10 Gábor Horváth and Csaba Szabó. The Complexity of Checking Identities over Fi-
nite Groups. Internat. J. Algebra Comput., 16(5):931–940, 2006. doi:10.1142/
S0218196706003256.

11 Gábor Horváth and Csaba Szabó. Equivalence and equation solvability problems for the
alternating group A4. Journal of Pure and Applied Algebra, 216(10):2170–2176, 2012.

12 Paweł M. Idziak and Jacek Krzaczkowski. Satisfiability in multi-valued circuits. In 2018
Thirty-Third Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2018.

13 K.A. Kearnes. Congruence modular varieties with small free spectra. Algebra Universalis,
42(3):165–181, Oct 1999. doi:10.1007/s000120050132.

14 Michael Kompatscher. The equation solvability problem over nilpotent mal’cev algebras.
arXiv, 2017. arXiv:1710.03083.

15 Benoit Larose and László Zádori. Taylor terms, constraint satisfaction and the complexity
of polynomial equations over finite algebras. Internat. J. Algebra Comput., 16(3):563–581,
2006.

16 Jiyou Li and Daqing Wan. On the subset sum problem over finite fields. Finite Fields and
Their Applications, 14(4):911–929, 2008. doi:10.1016/j.ffa.2008.05.003.

17 Ju. V. Matijasevič. The Diophantineness of enumerable sets. Dokl. Akad. Nauk SSSR,
191:279–282, 1970.

18 Christos H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Com-
pany, Reading, MA, 1994.

19 Bernhard Schwarz. The Complexity of Satisfiability Problems over Finite Lattices. In 2004
21st Annual Symposium on Theoretical Aspects of Computer Science (STACS), page 31–43,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

20 D. Zhuk. A proof of CSP dichotomy conjecture. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 331–342, Oct. 2017. doi:10.1109/FOCS.
2017.38.

MFCS 2018

http://dx.doi.org/10.1142/S0218196706003256
http://dx.doi.org/10.1142/S0218196706003256
http://dx.doi.org/10.1007/s000120050132
http://arxiv.org/abs/1710.03083
http://dx.doi.org/10.1016/j.ffa.2008.05.003
http://dx.doi.org/10.1109/FOCS.2017.38
http://dx.doi.org/10.1109/FOCS.2017.38

Lagrange’s Theorem for Binary Squares
P. Madhusudan1

Department of Computer Science, Thomas M. Siebel Center for Computer Science,
201 North Goodwin Avenue, Urbana, IL 61801-2302, USA
madhu@illinois.edu

https://orcid.org/0000-0002-9782-721X

Dirk Nowotka
Department of Computer Science, Kiel University, D-24098 Kiel, Germany
dn@informatik.uni-kiel.de

https://orcid.org/0000-0002-5422-2229

Aayush Rajasekaran
School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
arajasekaran@uwaterloo.ca

Jeffrey Shallit
School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
shallit@uwaterloo.ca

https://orcid.org/0000-0003-1197-3820

Abstract
We show how to prove theorems in additive number theory using a decision procedure based on
finite automata. Among other things, we obtain the following analogue of Lagrange’s theorem:
every natural number > 686 is the sum of at most 4 natural numbers whose canonical base-2
representation is a binary square, that is, a string of the form xx for some block of bits x. Here
the number 4 is optimal. While we cannot embed this theorem itself in a decidable theory, we
show that stronger lemmas that imply the theorem can be embedded in decidable theories, and
show how automated methods can be used to search for these stronger lemmas.

2012 ACM Subject Classification Theory of computation → Models of computation, Theory of
computation → Constructive mathematics, Mathematics of computing → Discrete mathematics

Keywords and phrases binary square, theorem-proving, finite automaton, decision procedure,
decidable theory, additive number theory

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.18

1 Introduction

Additive number theory is the study of the additive properties of integers [12]. In particular,
an additive basis of order h is a subset S ⊆ N such that every natural number is the sum of
h members, not necessarily distinct, of S. The principal problem of additive number theory
is to determine whether a given subset S is an additive basis of order h for some h, and if so,
to determine the smallest value of h. There has been much research in the area, and deep
techniques, such as the Hardy-Littlewood circle method, have been developed to solve these
kinds of problems [20].

One of the earliest results in additive number theory is Lagrange’s famous theorem
[10] that every natural number is the sum of four squares [5, 11]. In the terminology of

1 This material is based upon work supported by the National Science Foundation under Grant No. 1527395.

© Parthasarathy Madhusudan, Dirk Nowotka, Aayush Rajasekaran, and Jeffrey Shallit;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 18; pp. 18:1–18:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:madhu@illinois.edu
https://orcid.org/0000-0002-9782-721X
mailto:dn@informatik.uni-kiel.de
https://orcid.org/0000-0002-5422-2229
mailto:arajasekaran@uwaterloo.ca
mailto:shallit@uwaterloo.ca
https://orcid.org/0000-0003-1197-3820
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Lagrange’s Theorem for Binary Squares

the previous paragraph, this means that S = {02, 12, 22, 32, . . .} forms an additive basis of
order 4. The celebrated problem of Waring (1770) (see, e.g., [4, 19, 21]) is to determine the
corresponding least order g(k) for k’th powers. Since it is easy to see that numbers of the
form 4a(8k + 7) cannot be expressed as the sum of three squares, it follows that g(2) = 4. It
is known that g(3) = 9 and g(4) = 19.

In a variation on this concept we say that S ⊆ N is an asymptotic additive basis of order
h if every sufficiently large natural number is the sum of h members, not necessarily distinct,
of S. The classical function G(k) is defined to be the least asymptotic basis order for k’th
powers. From above we have G(2) = 4. It is known that G(14) = 16, and 4 ≤ G(3) ≤ 7.
Despite much work, the exact value of G(3) is currently unknown.

Recently there has been interest in doing additive number theory on sets of natural
numbers whose base-k representations have certain properties. For example, Banks [1]
proved that every natural number is the sum of at most 49 natural numbers whose decimal
representation is a palindrome. This was improved by Cilleruelo, Luca, and Baxter [2] to 3
summands for every base b ≥ 5. The remaining cases b = 2, 3, 4 were recently resolved [17].

In this paper we consider a variation on Lagrange’s theorem. Instead of the ordinary
notion of the square of an integer, we consider “squares” in the sense of formal language
theory [8]. That is, we consider x, the canonical binary (base-2) representation of an integer
N , and call N a binary square if N = 0, or if x = yy for some nonempty string y that
starts with a 1. Thus, for example, N = 221 is a binary square, since 221 in base 2 is
11011101 = (1101)(1101). The first few binary squares are

0, 3, 10, 15, 36, 45, 54, 63, 136, 153, 170, 187, 204, 221, 238, 255, . . . ;

they form sequence A020330 in the On-Line Encyclopedia of Integer Sequences (OEIS) [18].
Clearly a number N > 0 is a binary square if and only if it is of the form a(2n + 1) for
n ≥ 1 and 2n−1 ≤ a < 2n. This is a very natural sequence to study, since the binary squares
have density Θ(N1/2) in the natural numbers, just like the ordinary squares. (There exist
sets of density Θ(N1/2) that do not form an asymptotic basis of finite order, so density
considerations alone do not imply our result.)

In this paper we prove the following result.

I Theorem 1. The binary squares form an asymptotic basis of order 4. More precisely,
every natural number N > 686 is the sum of 4 binary squares. There are 56 exceptions, given
below:

1, 2, 4, 5, 7, 8, 11, 14, 17, 22, 27, 29, 32, 34, 37, 41, 44, 47, 53, 62, 95, 104, 107, 113, 116, 122, 125,

131, 134, 140, 143, 148, 155, 158, 160, 167, 407, 424, 441, 458, 475, 492, 509, 526, 552, 560,

569, 587, 599, 608, 613, 620, 638, 653, 671, 686. J

The novelty in our approach is that we obtain this theorem in additive number theory using
very little number theory at all. Instead, we use an approach based on formal language theory,
reducing the proof of the theorem to a decidable language emptiness problem. Previously we
obtained similar results for palindromes [15, 16, 17].

1.1 Search for appropriate lemmas and proving the theorem
The technique we use for encoding Theorem 1 as a problem dealing with automata is to ask,
for all sufficiently large integers N , whether there exist four binary squares with representation
xixi, 1 ≤ i ≤ 4, such that the sum of the numbers they represent is N . Since the language of

http://oeis.org/A020330

P. Madhusudan, D. Nowotka, A. Rajasekaran, and J. Shallit 18:3

binary squares is not regular, we use an encoding where we represent only one copy of each
xi and reuse it to represent the number. However, it turns out that we cannot represent the
desired theorem directly as an emptiness/universality problem of finite automata. The reason
is that when representing only one copy of the xi, we can do “school addition” (aligning
them and adding the numbers, columnwise, with a carry) only if the words xi are roughly of
the same length. More precisely, we require the lengths of the squares employed to either be
bounded by a constant, or differ from each other and from the number N only by a bounded
length.

For fixed constants ki, 1 ≤ i ≤ 4, we observe that the set of all binary representations
of N for which there exist four words xi, 1 ≤ i ≤ 4, of lengths L− ki, such that the binary
representation of N is of length 2L and the sum of the numbers represented by xixi, 1 ≤ i ≤ 4
is N , is a regular language. Thus we can prove, using known decision algorithms for automata,
lemmas that assert that all numbers of a particular form can be represented by a sum of
four binary squares, where the binary squares are of various lengths L− k1, L− k2, L− k3,
and L− k4, for a finite set of tuples 〈k1, k2, k3, k4〉 (see Lemma 5 for such a lemma).

Proving such a lemma for a particular set of combinations of lengths implies the theorem,
of course, but the lemma itself is stronger. The truth of such stronger lemmas is decidable,
while we don’t have a way to directly decide the theorem itself!

Thus we need a search for an appropriate lemma for a particular combination of length
differences that is valid. Given that checking these lemmas for any set of combinations is
decidable, we can do the search for these lemmas automatically. We tried various combinations
and succeeded in proving one lemma, namely Lemma 5, that implies our theorem.

The above technique can be generalized to some extent – evidently, we could also consider
the analogous results for other powers such as cubes, and bases b ≥ 2, but we do not do that
in this paper.

1.2 Notation
We are concerned with the binary representation of numbers, so let us introduce some
notation. If N is a natural number, then by (N)2 we mean the string giving the canonical
base-2 representation of N , having no leading zeroes. For example, (43)2 = 101011. The
canonical representation of 0 is ε, the empty string.

If 2n−1 ≤ N < 2n for n ≥ 1, we say that N is an n-bit integer in base 2. Note that the
first bit of the binary representation of an n-bit integer is always nonzero. The length of
an integer N satisfying 2n−1 ≤ N < 2n is defined to be n; alternatively, the length of N is
1 + blog2 Nc. For n ≥ 1 we define Cn = {a · (2n + 1) : 2n−1 ≤ a < 2n}, the set of all 2n-bit
binary squares.

2 A classical approach

In this section we describe how one can apply classical number-theoretic and combinatorial
tools to this problem to obtain some results weaker than Theorem 1. The idea is to show that
the numbers that are the sum of two binary squares form a set of positive lower asymptotic
density. (In contrast, our approach via automata, which we discuss in later sections, provides
more precise results.)

For sets S, T ⊆ N we define the sumset S + T = {s+ t : s ∈ S, t ∈ T}. The cardinality
of a finite set S is denoted by |S|. Given a set S ⊆ N, the lower asymptotic density of S is
defined to be

d(S) = lim inf
n→∞

|{x ∈ S : 1 ≤ x ≤ n}|
n

.

MFCS 2018

18:4 Lagrange’s Theorem for Binary Squares

We first prove

I Lemma 2. For n ≥ 1 we have |Cn + Cn+1| = 22n−1.

Proof. Since |Cn| = 2n−1 and |Cn+1| = 2n, this lemma is equivalent to the claim that each
member of the sumset Cn + Cn+1 has a unique representation as the sum of one element of
Cn and one element of Cn+1.

We argue by contradiction. Suppose the representation is not unique, and there exist
integers a, a′ with 2n−1 ≤ a, a′ < 2n − 1 and integers b, b′ with 2n ≤ b, b′ < 2n+1 such that
(a, a′) 6= (b, b′) but

a · (2n + 1) + b · (2n+1 + 1) = a′ · (2n + 1) + b′ · (2n+1 + 1). (1)

Computing Eq. (1) modulo 2n+1, we see that −b ≡ −b′ (mod 2n+1). Since 2n ≤ b, b′ < 2n+1

we see the congruence in fact implies that b = b′. But then a = a′, a contradiction. J

I Theorem 3. The numbers that are the sum of two binary squares form a set of lower
asymptotic density ≥ 1/40.

Proof. Let S2 be the set of numbers that are the sum of two binary squares. Clearly
Cn + Cn+1 ⊆ S2.

There are 22n−1 elements in the sumset Cn + Cn+1, whose largest element is (2n −
1)2n + (2n+1 − 1)2n+1 = 5 · 22n − 3 · 2n. Given an integer m ≥ 14, choose n ≥ 1 such that
5 · 22n − 3 · 2n ≤ m < 5 · 22n+2 − 3 · 2n+1. Then

|{x ∈ S2 : 1 ≤ x ≤ m}|
m

≥ 22n−1

5 · 22n+2 = 1
40 .

J

I Corollary 4. The binary squares form an asymptotic basis of finite order.

Proof. This is a direct consequence of a result of Nathanson [13, Theorem 11.6, p. 366],
which says that if a subset S of N has 0 ∈ S, gcd(S) = 1, and has positive lower asymptotic
density, then it is an asymptotic basis of finite order. It is now easy to check that the
hypotheses are fulfilled for S = S2. J

I Remark. It would be interesting to determine the exact lower asymptotic density of the
set S2. Numerical computation suggests that perhaps d(S2) .= .14.

3 The automaton approach: the main lemma

Now we turn to a completely different approach to the theorem for binary squares, as sketched
in Section 1, using automata theory. This allows us to obtain the upper bound 4 for the
number of binary squares, a stronger result than obtained using the classical approach.

Our main lemma is

I Lemma 5.
(a) Every length-n integer, n odd, n ≥ 13, is the sum of binary squares as follows: either

one of length n− 1 and one of length n− 3, or
two of length n− 1 and one of length n− 3, or
one of length n− 1 and two of length n− 3, or
one each of lengths n− 1, n− 3, and n− 5, or
two of length n− 1 and two of length n− 3, or
two of length n− 1, one of length n− 3, and one of length n− 5.

P. Madhusudan, D. Nowotka, A. Rajasekaran, and J. Shallit 18:5

(b) Every length-n integer, n even, n ≥ 18, is the sum of binary squares as follows: either
two of length n− 2 and two of length n− 4, or
three of length n− 2 and one of length n− 4, or
one each of lengths n, n− 4, and n− 6, or
two of length n− 2, one of length n− 4, and one of length n− 6.

Lemma 5 almost immediately proves Theorem 1:

Proof. If N < 217 = 131072, the result can be proved by a completely straightforward
computation using dynamic programming: to form the sumset S ⊕ T , given finite sets of
natural numbers S and T , we use a bit vector corresponding to the elements of S, and then
take its XOR shifted by each element of T . When we do this, we find that there are

256 binary squares < 217;
19542 numbers < 217 that are the sum of two binary squares;
95422 numbers < 217 that are the sum of three binary squares;
131016 numbers < 217 that are the sum of four binary squares.

Otherwise N ≥ 217, so (N)2 is a binary string of length n ≥ 18. If n is odd, the result follows
from Lemma 5 (a). If n is even, the result follows from Lemma 5 (b). J

It now remains to prove Lemma 5. We do this in the next section.

4 Proof of Lemma 5

In this section we prove Lemma 5 in detail.

Proof. The basic idea is to use nondeterministic finite automata (NFAs). These are finite-
state machines where each input corresponds to multiple computational paths; an input
is accepted iff some computational path leads to a final state. We assume the reader is
familiar with the basics of this theory; if not, please consult, e.g., [8]. For us, an NFA is
a quintuple (Q,Σ, δ, q0, F), where Q is the set of states, Σ is the input alphabet, δ is the
transition function, q0 is the initial state, and F is the set of final states.

We construct an NFA that, on input an integer N written in binary, “guesses” a repres-
entation as a sum of binary squares, and then verifies that the sum is indeed N . Everything
is done using a reversed representation, with least significant digits processed first. There
are some complications, however.

First, with an NFA we cannot verify that a guessed string is indeed a binary square, as
the language {xx : x ∈ 1{0, 1}∗} is not a regular language. So instead we only guess the
“first half” of a binary square. Now, however, we are forced to choose a slightly unusual
representation for N , in order to be able to compare the sum of our guessed powers with
the input N . If N were represented in its ordinary base-2 representation, this would be
impossible with an NFA, since once we process the guessed “first half” and compare it to the
input, we would no longer have the “second half” (identical to the first) to compare to the
rest of the input.

To get around this problem, we represent integers N in a kind of “folded representation”
over the input alphabet Σ2 ∪ (Σ2 ×Σ2), where Σk = {0, 1, . . . , k − 1}. The idea is to present
our NFA with two bits of the input string at once, so that we can add both halves of
our guessed powers at the same time, verifying that we are producing N as we go. Note
that we use slightly different representations for the two parts of Lemma 5. The precise
representations are detailed in their respective subsections.

We can now prove Lemma 5 by phrasing it as a language inclusion problem. For each of
the two parts of the lemma, we can build an NFA A that only accepts such folded strings if

MFCS 2018

18:6 Lagrange’s Theorem for Binary Squares

they repesent numbers that are the sum of any of the combination of squares as described in
the lemma. We also create an NFA, B, that accepts all valid folded representations that are
sufficiently long. We then check the assertion that the language recognized by B is a subset
of that recognized by A.

4.1 Odd-length inputs
Again, to flag certain positions of the input tape, we use an extended alphabet. Define

Γ = {1f} ∪
⋃

α∈{a,b,c,d,e}

{[0, 0]α, [0, 1]α, [1, 0]α, [1, 1]α}.

Let N be an integer, and let n = 2i+ 1 be the length of its binary representation. We
write (N)2 = a2ia2i−1 · · · a1a0 and fold this to produce the input string

[ai, a0]a[ai+1, a1]a · · · [a2i−5, ai−5]a[a2i−4, ai−4]b[a2i−3, ai−3]c[a2i−2, ai−2]d[a2i−1, ai−1]ea2if .

Let Aodd be the NFA that recognizes those odd-length integers, represented in this
folded format, that are the sum of binary squares meeting any of the 6 conditions listed in
Lemma 5 (a). We construct Aodd as the union of several automata A(tn−1, tn−3,ma) and
B(tn−1, tn−3, tn−5,mb). The parameters tp represent the number of summands of length p
we are guessing. The parameters ma and mb are the carries that we are guessing will be
produced by the first half of the summed binary squares. A-type machines try summands
of lengths n− 1 and n− 3 only, while B-type machines include at least one (n− 5)-length
summand. We note that for the purpose of summing, guessing t binary squares is equivalent
to guessing a single square over the larger alphabet Σt+1.

We now consider the construction of a single automaton

A(tn−1, tn−3,m) = (Q ∪ {qacc, q0, s1},Γ, δ, q0, {qacc}).

The elements of Q have 4 non-negative parameters and are of the form q(x1, x2, c1, c2).
Because the tn−3 summand is not aligned with the input, we use our states to “remember”
our guesses. When we make a guess at the higher end of the tn−3 summand, it must be used
as the guess for its lower end on the next step. We remember this guess by storing it as the
x2 parameter. The parameter x1 ≤ tn−3 is the last digit of the guessed summand of length
n− 3. We use c1 to track the higher carry, and c2 to track the lower carry. We must have
c1, c2 < tn−1 + tn−3.

We now discuss the transition function, δ of our NFA. In this section, we say that the
sum of natural numbers, µ1 and µ2, “produces” an output bit of θ ∈ Σ2 with a “carry” of γ
if µ1 + µ2 ≡ θ (mod 2) and γ =

⌊
µ1+µ2

2
⌋
.

We allow a transition from q0 to q(x1, x2, c1, c2) on the letter [j, k]a iff there exists
0 ≤ r ≤ tn−1 such that x2 + r +m produces an output of j with a carry of c1 and x1 + r

produces an output of k with a carry of c2.
We allow a transition from q(x1, x2, c1, c2) to q(x′1, x′2, c′1, c′2) on the letters [j, k]a and

[j, k]b iff there exists 0 ≤ r ≤ tn−1 such that x′2 + r + c1 produces an output of j with a
carry of c′1 and x2 + r + c2 produces an output of k with a carry of c′2. Elements of Q have
identical transitions on inputs with subscripts a and b. The reason we have the letters with
subscript b is for B-machines, which guess a summand of length n− 5.

There is only one letter of the input with the subscript c, and it corresponds to the last
higher guess of the summand of length n − 3. We allow a transition from q(x1, x2, c1, c2)
to q(x′1, tn−3, c

′
1, c
′
2) on the letter [j, k]c iff there exists 0 ≤ r ≤ tn−1 such that tn−3 + r + c1

P. Madhusudan, D. Nowotka, A. Rajasekaran, and J. Shallit 18:7

produces an output of j with a carry of c′1 and x2 + r + c2 produces an output of k with a
carry of c′2.

There is only one letter of the input with the subscript d, and it corresponds to the second-
last lower guess of the summand of length n− 3. We allow a transition from q(x1, tn−3, c1, c2)
to q(x′1, 0, c′1, c′2) on the letter [j, k]d iff there exists 0 ≤ r ≤ tn−1 such that r+ c1 produces an
output of j with a carry of c′1 and tn−3 + r + c2 produces an output of k with a carry of c′2.

There is only one letter of the input with the subscript e, and it corresponds to the last
lower guess of the summand of length n− 3. We allow a transition from q(x1, 0, c1, c2) to s1
on the letter [j, k]e iff tn−1 + c1 produces an output of j with a carry of 1 and x1 + tn−1 + c2
produces an output of k with a carry of m.

Finally, we add a transition from s1 to qacc on the letter 1f .
We now consider the construction of a single automaton

B(tn−1, tn−3, tn−5,m) = (P ∪Q ∪ {qacc, q0, s1},Γ, δ, q0, {qacc}).

The elements of P have 6 non-negative parameters and are of the form q(x1, x2, y1, y3, c1, c2).
The parameter x1 ≤ tn−3 is the last digit of the guessed summand of length n − 3 and
x2 ≤ tn−3 is the previous higher guess of the length-n−3 summand. The parameter y1 ≤ tn−5
is the last digit of the guessed summand of length n − 5 and y3 ≤ tn−5 is the previous
higher guess of the length-n− 5 summand. We use c1 to track the higher carry, and c2 to
track the lower carry. We must have c1, c2 < tn−1 + tn−3 + tn−5. The elements of Q have 8
non-negative parameters and are of the form

q(x1, x2, y1, y2, y3, y4, c1, c2).

The parameter x1 ≤ tn−3 is the last digit of the guessed summand of length n − 3 and
x2 ≤ tn−3 is the previous higher guess of the length-n − 3 summand. The parameters
y1, y2 ≤ tn−5 are the last digit and the second-last digit of the guessed summand of length
n− 5 respectively. The parameter y3, y4 ≤ tn−5 are the two most recent higher guess of the
length-n− 5 summand, with y4 being the most recent one. We use c1 to track the higher
carry, and c2 to track the lower carry. We must have c1, c2 < tn−1 + tn−3 + tn−5.

We now discuss the transition function, δ of our NFA. We allow a transition from q0 to
p(x1, x2, y1, y3, c1, c2) on the letter [j, k]a iff there exists 0 ≤ r ≤ tn−1 such that x2 +y3 +r+m
produces an output of j with a carry of c1 and x1 + y1 + r produces an output of k with a
carry of c2.

We use a transition from p(x1, x2, y1, y3, c1, c2) to q(x1, x
′
2, y1, y

′
2, y3, y

′
4, c
′
1, c
′
2) on the

letter [j, k]a iff there exists 0 ≤ r ≤ tn−1 such that x′2 + y′4 + r + c1 produces an output of j
with a carry of c1 and x2 + y′2 + r + c2 produces an output of k with a carry of c2.

We use a transition from q(x1, x2, y1, y2, y3, y4, c1, c2) to q(x1, x
′
2, y1, y2, y4, y

′
4, c
′
1, c
′
2) on

the letter [j, k]a iff there exists 0 ≤ r ≤ tn−1 such that x′2 + y′4 + r + c1 produces an output
of j with a carry of c1 and x2 + y3 + r + c2 produces an output of k with a carry of c2.

We use a transition from q(x1, x2, y1, y2, y3, tn−5, c1, c2) to q(x1, x
′
2, y1, y2, tn−5, tn−5, c

′
1,

c′2) on the letter [j, k]b iff there exists 0 ≤ r ≤ tn−1 such that x′2 + r+ c1 produces an output
of j with a carry of c1 and x2 + y3 + r + c2 produces an output of k with a carry of c2.

We use a transition from q(x1, x2, y1, y2, tn−5, tn−5, c1, c2) to q(x1, tn−3, y1, y2, tn−5, tn−5,

c′1, c
′
2) on the letter [j, k]c iff there exists 0 ≤ r ≤ tn−1 such that tn−3 + r + c1 produces an

output of j with a carry of c1 and x2 + y3 + r+ c2 produces an output of k with a carry of c2.
We use a transition from q(x1, tn−3, y1, y2, tn−5, tn−5, c1, c2) to q(x1, tn−3, y1, y2, tn−5,

tn−5, c
′
1, c
′
2) on the letter [j, k]d iff there exists 0 ≤ r ≤ tn−1 such that r + c1 produces an

MFCS 2018

18:8 Lagrange’s Theorem for Binary Squares

output of j with a carry of c1 and tn−3 + y1 + r + c2 produces an output of k with a carry
of c2.

We use a transition from q(x1, tn−3, y1, y2, tn−5, tn−5, c1, c2) to s1 on the letter [j, k]e iff
tn−1 + c1 produces an output of j with a carry of 1 and x1 + y2 + tn−1 + c2 produces an
output of k with a carry of m.

Finally, we add a transition from s1 to qacc on the letter 1f .
We now turn to verification of the inclusion assertion. We used the Automata Library

toolchain of the ULTIMATE program analysis framework [7, 6] to establish our results. The
ULTIMATE code proving our result can be found in the file OddSquareConjecture.ats at
https://cs.uwaterloo.ca/~shallit/papers.html. Since the constructed machines get
very large, we wrote a C++ program generating these machines, which can be found in the
file OddSquares.cpp at the same location.

The final machine, Aodd, has 2258 states. The syntax checker, B, has 8 states. We then
asserted that the language recognized by B is a subset of that recognized by A. ULTIMATE
verified this assertion in under a minute. Since this test succeeded, the proof of Lemma 5 (a)
is complete.

4.2 Even-length inputs
In order to flag certain positions of the input tape, we use an extended alphabet. Define

Γ =

 ⋃
α∈{a,b,c,d,e}

{[0, 0]α, [0, 1]α, [1, 0]α, [1, 1]α}

 ∪
 ⋃
β∈{f,g,h,i}

{0β , 1β}

 .

Let N be an integer, and let n = 2i+ 4 be the length of its binary representation. We
write (N)2 = a2i+3a2i+2 · · · a1a0 and fold this to produce the input string

[ai, a0]a[ai+1, a1]b[ai+2, a2]c[ai+3, a3]c · · ·
· · · [a2i−3, ai−3]c[a2i−2, ai−2]d[a2i−1, ai−1]ea2if a2i+1g

a2i+2h
a2i+3i

.

Let Aeven be the NFA that recognizes the even-length integers, represented in this folded
format, iff the integer is the sum of binary squares meeting any of the 4 conditions listed in
Lemma 5 (b). We construct Aeven as the union of several automata A(tn, tn−2, tn−4, tn−6,m).
The parameters tp represent the number of summands of length p we are guessing. The
parameter m is the carry that we are guessing will be produced by the first half of the
summed binary squares. Again, guessing t binary squares is equivalent to guessing a single
square over the larger alphabet Σt+1.

We now consider the construction of a single automaton

A(tn, tn−2, tn−4, tn−6,m) = (Q ∪ {qacc},Γ, δ, q0, {qacc}).

The elements of Q have 8 non-negative parameters and are of the form q(x1, x2, x3, y1, z1, z2,

c1, c2). The parameter x1 is the second digit of the guessed summand of length n. The
parameters x2 and x3 represent the previous 2 lower guesses of the length-n summand;
these must be the next 2 higher guesses of this summand. The parameter y1 represents
the previous lower guess of the length-(n− 2) summand. We set z1 as the last digit of the
guessed summand of length n− 6, while z2 is the previous higher guess of this summand.
Finally, c1 tracks the lower carry, while c2 tracks the higher carry. For any p, we must have
xp ≤ tn, yp ≤ tn−2, zp ≤ tn−6, and cp < tn + tn−2 + tn−4 + tn−6. The initial state, q0, is
q(0, 0, 0, 0, 0, 0, 0, 0).

https://cs.uwaterloo.ca/~shallit/papers.html

P. Madhusudan, D. Nowotka, A. Rajasekaran, and J. Shallit 18:9

We now discuss the transition function, δ of our NFA. Note that in our representation of
even-length integers, the first letter of the input must have the subscript a, and it is the only
letter to do so. We only allow the initial state to have outgoing transitions on such letters.

We allow a transition from q0 to q(x1, 0, x3, y1, z1, z2, c1, c2) on the letter [j, k]a iff there
exists 0 ≤ r ≤ tn−4 such that x1 + tn−2 + r+ z2 +m produces an output of j with a carry of
c2 and x3 + y1 + r + z1 produces an output of k with a carry of c1.

The second letter of the input must have the subscript b, and it is the only letter to do so.
We allow a transition from q(x1, 0, x3, y1, z1, z2, c1, c2) to q(x1, x3, x

′
3, y
′
1, z1, z

′
2, c
′
1, c
′
2) on the

letter [j, k]b iff there exists 0 ≤ r ≤ tn−4 such that tn + y1 + r + z′2 + c2 produces an output
of j with a carry of c′2 and x′3 + y′1 + r + z2 + c1 produces an output of k with a carry of c′1.

We allow a transition from q(x1, x2, x3, y1, z1, z2, c1, c2) to q(x1, x3, x
′
3, y
′
1, z1, z

′
2, c
′
1, c
′
2) on

the letter [j, k]c iff there exists 0 ≤ r ≤ tn−4 such that x2 + y1 + r + z′2 + c2 produces an
output of j with a carry of c′2 and x′3 + y′1 + r+ z2 + c1 produces an output of k with a carry
of c′1.

The letter of the input with the subscript d corresponds to the last guess of the lower
half of the summand of length n− 6, and it is the only letter to do so. We allow a transition
from q(x1, x2, x3, y1, z1, tn−6, c1, c2) to q(x1, x3, x

′
3, y
′
1, z1, 0, c′1, c′2) on the letter [j, k]d iff there

exists 0 ≤ r ≤ tn−4 such that x2 + y1 + r + c2 produces an output of j with a carry of c′2
and x′3 + y′1 + r + tn−6 + c1 produces an output of k with a carry of c′1.

The letter of the input with the subscript e corresponds to the last guess of both
halves of the summand of length n − 4, and it is the only letter to do so. We allow a
transition from q(x1, x2, x3, y1, z1, 0, c1, c2) to q(x1, x3, x

′
3, y
′
1, 0, 0, 0, c′2) on the letter [j, k]e

iff x2 + y1 + tn−4 + c2 produces an output of j with a carry of c′2 and x′3 + y′1 + tn−4 + z1 + c1
produces an output of k with a carry of m.

We allow a transition from q(x1, x2, x3, y1, 0, 0, 0, c2) to q(x1, x3, 0, 0, 0, 0, 0, c′2) on the
letter jf iff x2 + y1 + c2 produces an output of j with a carry of c′2.

We allow a transition from q(x1, x2, 0, 0, 0, 0, c2) to q(x1, 0, 0, 0, 0, 0, 0, c′2) on the letter jg
iff x2 + tn−2 + c2 produces an output of j with a carry of c′2.

We allow a transition from q(x1, 0, 0, 0, 0, 0, c2) to q(0, 0, 0, 0, 0, 0, 0, c′2) on the letter jh iff
x1 + c2 produces an output of j with a carry of c′2.

We allow a transition from q(0, 0, 0, 0, 0, 0, 0, c2) to qacc on the letter 1i iff tn+ c2 produces
an output of 1 with a carry of 0.

The final machine, Aeven is constructed as the union of 15 automata:
A(0, 2, 2, 0,m), varying m from 0 to 3
A(0, 3, 1, 0,m), varying m from 0 to 3
A(1, 0, 1, 1,m), varying m from 0 to 2
A(0, 2, 1, 1,m), varying m from 0 to 3

We now turn to verification of the inclusion assertion. The ULTIMATE code proving our
result can be found in the file EvenSquareConjecture.ats at https://cs.uwaterloo.ca/
~shallit/papers.html. Since the constructed machines get very large, we wrote a C++
program generating these machines, which can be found in the file EvenSquares.cpp at the
same location.

The final machine, Aeven, has 1343 states. The syntax checker, B, has 12 states. We then
asserted that the language recognized by B is a subset of that recognized by A. ULTIMATE
verified this assertion in under a minute. Since this test succeeded, the proof of Lemma 5 (b)
is complete. J

MFCS 2018

https://cs.uwaterloo.ca/~shallit/papers.html
https://cs.uwaterloo.ca/~shallit/papers.html

18:10 Lagrange’s Theorem for Binary Squares

I Corollary 6. Given an integer N > 686, we can find an expression for N as the sum of
four binary squares in time linear in logN .

Proof. For N < 131072, we do this with a simple brute-force search via dynamic pro-
gramming, as explained previously. Otherwise we construct the appropriate automaton A
(depending on whether the binary representation of N has either even or odd length). Now
carry out the usual direct product construction for intersection of languages on A and B,
where B is the automaton accepting the folded binary representation of N . The resulting
automaton has at most c logN states and transitions. Now use the usual depth-first search
of the transition graph to find a path from the initial state to a final state. The labels of this
path gives the desired representation. J

4.3 Ensuring correctness
As in every machine-based proof, we want some assurance that our calculations were correct.

We tested our machine by calculating those integers of length 8 that can be expressed
as the sum of up to 3 binary squares of length 4, and up to 4 binary squares of length 6.
We then used the ULTIMATE framework to test that those length-8 integers are accepted
by our machine, but all others are rejected. The code running this test can be found
as Minus2Minus4SquareConjecture - Test 1 at https://cs.uwaterloo.ca/ shallit/
papers.html.

We also tested the machine by calculating those integers of length 10 that can be expressed
as the sum of up to to 2 binary squares of length 6, and up to 4 binary squares of length 8. We
then built the analogous machine and confirmed that these length-10 integers are accepted, but
all others are rejected. We then repeated this test for those integers of length 10 that can be ex-
pressed as the sum of up to to 3 binary squares of length 6, and up to 3 binary squares of length
8. The code running these tests can be found as Minus2Minus4SquareConjecture - Test 2
and Minus2Minus4SquareConjecture - Test 3 at https://cs.uwaterloo.ca/~shallit/
papers.html.

5 Optimality

In this section we show that the “4” in Theorem 1 is optimal.

I Theorem 7. For n ≥ 1, n odd, n 6= 9, the number 2n is not the sum of three or fewer
(positive) binary squares.

Proof. Let m ≥ 0 and n = 2m + 1 be odd. The cases m = 0, 1, 2, 3 are easy to verify by
hand, so assume m ≥ 4.

In what follows we distinguish between “mod” used in the ordinary notion of congruence
(where x ≡ a (mod b) means that b divides x− a), and the use of “mod” as a function, where
x = a mod b means both that x ≡ a (mod b) and that 0 ≤ a < b.

Clearly N := 2n is not a binary square.
Suppose N is the sum of two positive binary squares. The largest binary square < N is

clearly 22m − 1. Hence the sum of two binary squares is either larger than N , or no larger
than 2(22m − 1) = 22m+1 − 2 < N , a contradiction.

The remaining case is that 22m+1 is the sum of three binary squares, say N = A+B +C

with

A = a(2e + 1) ≥ B = b(2f + 1) ≥ C = c(2g + 1)

https://cs.uwaterloo.ca/~shallit/papers.html
https://cs.uwaterloo.ca/~shallit/papers.html
https://cs.uwaterloo.ca/~shallit/papers.html
https://cs.uwaterloo.ca/~shallit/papers.html

P. Madhusudan, D. Nowotka, A. Rajasekaran, and J. Shallit 18:11

with e ≥ f ≥ g and 2e−1 ≤ a < 2e, 2f−1 ≤ b < 2f , and 2g−1 ≤ c < 2g. Clearly
1 ≤ e, f, g ≤ m.

We first observe that e = m. For otherwise, e ≤ m − 1 and the inequality e ≥ f ≥ g

implies

N = A+B + C ≤ 3(2m−1 − 1)2m−1 < 3 · 22m−2 < N,

a contradiction.
Similarly, we observe that f = m. For otherwise

N = A+B + C ≤ (2m − 1)2m + 2(2m−1 − 1)2m−1 < 3 · 22m−1 < N,

a contradiction.
Thus, setting d = a+ b, we see that N = d(2m + 1) + c(2g + 1) where 2m ≤ d ≤ 2m+1− 2.

Suppose d = 2m+1 − 2. Then N = d(2m + 1) + c(2g + 1) implies that C = c(2g + 1) = 2. But
C = 2 is not a binary square. So in fact 2m ≤ d ≤ 2m+1 − 3.

Next we argue that g > m/2. For otherwise g ≤ m/2 and we have

N = d(2m+1)+c(2g+1) ≤ (2m+1−3)(2m+1)+(2m/2−1)(2m/2 +1) = 22m+1−4 = N−4,

a contradiction.
Next we argue that g < m. For otherwise g = m and then N = 22m+1 = A+B + C =

(a+ b+ c)(2m + 1). But then 22m+1 is divisible by the odd number 2m + 1, a contradiction.
Now consider the equation N = d(2m+ 1) + c(2g + 1) and take it modulo 2m+ 1. We have

22m+1 − 2 = 2(2m − 1)(2m + 1) ≡ 0 (mod 2m + 1), and so N = 22m+1 ≡ 2 (mod 2m + 1).
Thus we get

c(2g + 1) ≡ 2 (mod 2m + 1). (2)

It suffices to show that the congruence (2) has no solutions in the possible range for c, except
when m = 4 and g = 3. In order to see this, we need a technical lemma.

I Lemma 8. Suppose m, g ≥ 1 are integers with m/2 < g < m. Suppose c is an integer with
2g−1 ≤ c < 2g. Using Euclidean division, find the unique expression of c as t · 2m−g + u for
0 ≤ u < 2m−g. Then

c(2g + 1) mod (2m + 1) = t(2m−g − 1) + u(2g + 1).

Proof. We have

c(2g + 1) = (t · 2m−g + u)(2g + 1)
= t · 2m + t · 2m−g + u(2g + 1)
= t(2m + 1) + t(2m−g − 1) + u(2g + 1)
≡ t(2m−g − 1) + u(2g + 1) (mod 2m + 1).

This last congruence alone does not prove what we want; we also have to show that

0 ≤ t(2m−g − 1) + u(2g + 1) < 2m + 1

so that the residues don’t “wrap around” when computed modulo 2m + 1. However, t =
bc/2m−gc = 22g−m − 1, and so

t(2m−g − 1) + u(2g + 1) ≤ (22g−m − 1)(2m−g − 1) + (2m−g − 1)(2g + 1)
= 2m − 22g−m < 2m + 1,

as desired. J

MFCS 2018

18:12 Lagrange’s Theorem for Binary Squares

Now from the Lemma we see that the expression c(2g + 1) mod (2m + 1) achieves its
smallest value when c = 2g−1 (for then t = 22g−m−1 and u = 0), and this smallest value is
22g−m−1(2m−g − 1) > 2, except when m = 4, g = 3. J

I Remark. When m = 4 and g = 3, letting c = 28 and d = 4 we get the solution
512 = 29 = 28 · (24 + 1) + 4 · (23 + 1). This corresponds to two distinct expressions of 29 as
the sum of three binary squares: 512 = 255 + 221 + 36 and 512 = 238 + 238 + 36.

6 Other results

Our technique can be used to obtain other results in additive number theory. For example,
recently Crocker [3] and Platt & Trudgian [14] studied the integers representable as the sum
of two ordinary squares and two powers of 2. The analogue of this theorem is the following:

I Lemma 9.
(a) Every length-n integer, n odd, n ≥ 7, is the sum of at most two powers of 2 and either:

at most two binary squares of length n− 1, or
at most one binary square of length n− 1 and one of length n− 3.

(b) Every length-n integer, n even, n ≥ 10, is the sum of at most two powers of 2 and either:
at most one binary square of length n and one of length n− 4, or
at most one binary square of length n− 2 and one of length n− 4.

Proof. We use a similar proof strategy as before. The ULTIMATE code proving our result can be
found in the files OddSquarePowerConjecture.ats and EvenSquarePowerConjecture.ats at
https://cs.uwaterloo.ca/~shallit/papers.html; there one can also find the generators
can be found as OddSquarePower.cpp and EvenSquarePower.cpp.

The final machines for the odd-length and even-length cases have 806 and 2175 states
respectively. The language inclusion assertions all hold. This concludes the proof. J

We thus have the following theorem:

I Theorem 10. Every natural number N is the sum of at most two binary squares and at
most two powers of 2.

Proof. For N < 512, the result can be easily verified. Otherwise, we use Lemma 9 (a) if N
is an odd-length binary number and Lemma 9 (b) if it is even. J

We also consider the notion of generalized binary squares. A number N is called a generalized
binary square if one can concatenate 0 or more leading zeroes to its binary representation to
produce a binary square. As an example, 9 is a generalized binary square, since 9 in base
2 is 1001, which can be written as 001001 = (001)(001). The first few generalized binary
squares are

0, 3, 5, 9, 10, 15, 17, 18, 27, 33, 34, 36, 45, 51, 54, 63, . . . ;

they form sequence A175468 in the OEIS [18].
In what follows, when we refer to the length of a generalized binary square, we mean the

length including the leading zeroes. Thus, 9 is a generalized binary square of length 6 (and
not 4).

I Lemma 11.
(a) Every length-n integer, n ≥ 7, n odd, is the sum of 3 generalized binary squares, of

lengths n+ 1, n− 1, and n− 3.

https://cs.uwaterloo.ca/~shallit/papers.html
http://oeis.org/A175468

P. Madhusudan, D. Nowotka, A. Rajasekaran, and J. Shallit 18:13

(b) Every length-n integer, n ≥ 8, n even, is the sum of 3 generalized binary squares, of
lengths n, n− 2, and n− 4.

Proof. We use a very similar proof strategy as in the proof of Lemma 5. We drop the
requirement that the most significant digit of our guessed squares be 1, thus allowing for
generalized binary squares. Note that the square of length n+ 1 in part (a) must start with
a 0.

The ULTIMATE code proving our result can be found in the files OddGenSquareConjecture.
ats and EvenGenSquareConjecture.ats at https://cs.uwaterloo.ca/~shallit/papers.
html; there one can also find the generators OddGeneralizedSquares.cpp and
EvenGeneralizedSquares.cpp. The final machines for the odd-length and even-length cases
have 132 and 263 states respectively. J

We thus have the following theorem:

I Theorem 12. Every natural number N > 7 is the sum of 3 generalized binary squares.

Proof. For 7 < N < 64 the result can be easily verified. Otherwise, we use Lemma b (a) is
an odd-length binary number and Lemma b (b) if it is even. J

7 Further work

Numerical evidence suggests the following two conjectures:

I Conjecture 13. Let α3 denote the lower asymptotic density of the set S3 of natural
numbers that are the sum of three binary squares. Then α3 < 0.9.

We could also focus on sums of positive binary squares. (For the analogous problem dealing
with ordinary squares, see, e.g., [5, Chapter 6].) It seems likely that our method could be
used to prove the following result.

I Conjecture 14. Every natural number > 1772 is the sum of exactly four positive binary
squares. There are 112 exceptions, given below:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 34, 35,

37, 39, 41, 42, 44, 46, 47, 49, 51, 53, 56, 58, 62, 65, 67, 74, 83, 88, 95, 100, 104, 107, 109, 113, 116,

122, 125, 131, 134, 140, 143, 148, 149, 155, 158, 160, 161, 167, 170, 173, 175, 182, 184, 368, 385,

402, 407, 419, 424, 436, 441, 458, 475, 492, 509, 526, 543, 552, 560, 569, 587, 599, 608, 613,

620, 625, 638, 647, 653, 671, 686, 698, 713, 1508, 1541, 1574, 1607, 1640, 1673, 1706, 1739, 1772.

Other interesting things to investigate include estimating the number of distinct representa-
tions of N as a sum of four binary squares, both in the case where order matters, and where
order does not matter. These are sequences A290335 and A298731 in the OEIS, respectively.

In recent work [9] it was proved, using a combinatorial and number-theoretic approach,
that the binary k’th powers form an asymptotic basis of finite order for the multiples of
gcd(k, 2k − 1). However, the constant obtained thereby is rather large.

References
1 W. D. Banks. Every natural number is the sum of forty-nine palindromes. INTEGERS —

Electronic J. Combinat. Number Theory, 16, 2016. #A3.
2 J. Cilleruelo, F. Luca, and L. Baxter. Every positive integer is a sum of three palindromes.

Math. Comp., 2017. Published electronically at http://dx.doi.org/10.1090/mcom/3221.

MFCS 2018

https://cs.uwaterloo.ca/~shallit/papers.html
https://cs.uwaterloo.ca/~shallit/papers.html
http://oeis.org/A290335
http://oeis.org/A298731
http://dx.doi.org/10.1090/mcom/3221

18:14 Lagrange’s Theorem for Binary Squares

3 R. C. Crocker. On the sum of two squares and two powers of k. Colloq. Math., 112:235–267,
2008.

4 W. J. Ellison. Waring’s problem. Amer. Math. Monthly, 78:10–36, 1971.
5 E. Grosswald. Representations of Integers as Sums of Squares. Springer-Verlag, 1985.
6 M. Heizmann, D. Dietsch, M. Greitschus, J. Leike, B. Musa, C. Schätzle, and A. Podelski.

Ultimate automizer with two-track proofs. In M. Chechik and J.-F. Raskin, editors, Tools
and Algorithms for the Construction and Analysis of Systems — 22nd International Con-
ference, TACAS 2016, volume 9636 of Lecture Notes in Computer Science, pages 950–953.
Springer-Verlag, 2016.

7 M. Heizmann, J. Hoenicke, and A. Podelski. Software model checking for people who love
automata. In N. Sharygina and H. Veith, editors, Computer Aided Verification — 25th
International Conference, CAV 2013, volume 8044 of Lecture Notes in Computer Science,
pages 36–52. Springer-Verlag, 2013.

8 J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, 1979.

9 D. M. Kane, C. Sanna, and J. Shallit. Waring’s theorem for binary powers. Preprint,
available at https://arxiv.org/abs/1801.04483, 2018.

10 J.-L. Lagrange. Démonstration d’un théoréme d’arithmétique. Nouv. Mém. Acad. Roy. Sc.
de Berlin, pages 123–133, 1770. Also in Oeuvres de Lagrange, 3 (1869), pp. 189–201.

11 C. J. Moreno and S. S. Wagstaff, Jr. Sums of Squares of Integers. Chapman and Hall/CRC,
2005.

12 M. B. Nathanson. Additive Number Theory: The Classical Bases. Springer-Verlag, 1996.
13 M. B. Nathanson. Elementary Methods in Number Theory. Springer-Verlag, 2000.
14 D. Platt and T. Trudgian. On the sum of two squares and at most two powers of 2. Preprint,

available at https://arxiv.org/abs/1610.01672, 2016.
15 A. Rajasekaran. Using automata theory to solve problems in additive number theory.

Master’s thesis, School of Computer Science, University of Waterloo, 2018.
16 A. Rajasekaran, J. Shallit, and T. Smith. Sums of palindromes: an approach via nested-

word automata. Preprint, available at https://arxiv.org/abs/1706.10206, 2017.
17 A. Rajasekaran, J. Shallit, and T. Smith. Sums of palindromes: an approach via auto-

mata. In R. Niedermeier and B. Vallée, editors, 35th Symposium on Theoretical Aspects of
Computer Science (STACS 2018), Leibniz International Proceedings in Informatics, pages
54:1–54:12. Schloss Dagstuhl — Leibniz-Zentrum für Informatik, 2018.

18 N. J. A. Sloane. The on-line encyclopedia of integer sequences. Available at https://oeis.
org, 2016.

19 C. Small. Waring’s problem. Math. Mag., 50:12–16, 1977.
20 R. C. Vaughan. The Hardy–Littlewood Method, volume 125 of Cambridge Tracts in Math-

ematics. Cambridge University Press, 2nd edition, 1997.
21 R. C. Vaughan and T. Wooley. Waring’s problem: a survey. In M. A. Bennett, B. C.

Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand, and W. Philipp, editors, Number
Theory for the Millennium. III, pages 301–340. A. K. Peters, 2002.

https://arxiv.org/abs/1801.04483
https://arxiv.org/abs/1610.01672
https://arxiv.org/abs/1706.10206
https://oeis.org
https://oeis.org

A Two-Sided Error Distributed Property Tester
For Conductance
Hendrik Fichtenberger
TU Dortmund, Dortmund, Germany
hendrik.fichtenberger@tu-dortmund.de

https://orcid.org/0000-0003-3246-5323

Yadu Vasudev
Indian Institute of Technology Madras, Chennai, India
yadu@cse.iitm.ac.in

https://orcid.org/0000-0001-7918-7194

Abstract
We study property testing in the distributed model and extend its setting from testing with one-
sided error to testing with two-sided error. In particular, we develop a two-sided error property
tester for general graphs with round complexity O(log(n)/(εΦ2)) in the CONGEST model, which
accepts graphs with conductance Φ and rejects graphs that are ε-far from having conductance at
least Φ2/1000 with constant probability. Our main insight is that one can start poly(n) random
walks from a few random vertices without violating the congestion and unite the results to obtain
a consistent answer from all vertices. For connected graphs, this is even possible when the number
of vertices is unknown. We also obtain a matching Ω(log n) lower bound for the LOCAL and
CONGEST models by an indistinguishability argument. Although the power of vertex labels
that arises from two-sided error might seem to be much stronger than in the sequential query
model, we can show that this is not the case.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases property testing, distributed algorithms, conductance

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.19

Related Version https://arxiv.org/abs/1707.06126

Funding The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC
grant agreement n◦ 307696.

Acknowledgements We would like to thank Gopal Pandurangan for pointing out related work
[7, 21], and we would like to thank Pan Peng for inspiring discussions on spectral graph theory.
We are grateful for the helpful comments of anonymous reviewers.

1 Introduction

Property testing algorithms derive approximate decisions by probing a sublinear part of
the input only. A tester for a graph property P is a randomized algorithm that, with high
constant probability, accepts graphs that have the property P and rejects graphs that are
ε-far from having the property P, that is, at least an ε-fraction of the edges have to be
modified to make the graph have the property P. Two-sided error testers may err on all
graphs, while one-sided error testers have to present a witness when rejecting a graph. See
[12, 13, 14] for introductions and surveys.

© Hendrik Fichtenberger and Yadu Vasudev;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 19; pp. 19:1–19:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hendrik.fichtenberger@tu-dortmund.de
https://orcid.org/0000-0003-3246-5323
mailto:yadu@cse.iitm.ac.in
https://orcid.org/0000-0001-7918-7194
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.19
https://arxiv.org/abs/1707.06126
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 A Two-Sided Error Distributed Property Tester For Conductance

Testing graph properties in the classic, sequential computing model has been studied
quite extensively. Property testing in the distributed CONGEST model was first studied by
Brakerski and Patt-Shamir [1] and later more thoroughly by Censor-Hillel et al. [2]. In this
model, each vertex of the graph is equipped with a processor that has a unique identifier of
size O(log n) (alternatively, one may define the model such that vertices pick their identifier
randomly) and it knows only its neighboring vertices. The vertices of the graph communicate
with each other in synchronized rounds such that in each round only communication of length
O(log n) is allowed on every edge. Finally, every vertex casts a vote and a decision rule is
applied on all votes to derive the answer of the tester. The complexity measure is the amount
of rounds required to test the property. Edge congestion and round complexity strictly limit
the amount of information on the whole graph that a single vertex can gather. In [2], it is
shown that many one-sided error testers for dense graphs carry over from the sequential to
the distributed setting. Furthermore, tight logarithmic bounds for testing bipartiteness and
cycle-freeness in bounded degree graphs are proved. In [8, 11], subgraph-freeness is studied
for subgraphs on at most five vertices, trees and cliques.

1.1 Our Results
We extend the study of distributed property testing to testers with two-sided error. In
particular, we present a two-sided error distributed testing algorithm in the CONGEST
model for conductance.

I Theorem 1. Testing whether a graph G = (V,E) has conductance at least Φ or is ε-far
from having conductance at least Φ2/1000 with two-sided error has complexity O(log(|V |+
|E|)/(εΦ2)) in the CONGEST model.

In contrast to previous one-sided error testers, our tester can be implemented such that
all vertices accept or all vertices reject (see also the discussion of decision rules in Section 5).
Furthermore, we prove that the size of the input graph is not required to be known a priori to
perform the test if it is connected. On the other hand, there exists no tester for disconnected
graphs if no prior knowledge of the graph is assumed at all. Since communication between two
connected components is not allowed, we cannot distinguish a graph G with high conductance
from a graph G′ that is composed of two isolated copies of G.

In the setting of property testing, we aim for an efficient method to check whether the
input has the desired property or is at least close to it. For example, we might run the tester
for conductance once in a while on a peer-to-peer network to check whether the topology has
changed significantly such that efficient communication is no longer possible. Therefore, we
think of Φ as a parameter with no or only weak dependence on n.

We complement this result by showing that any distributed tester with this gap requires
Ω(log(n+m)) rounds of communication regardless of the final decision rule.

I Theorem 2. Let ε, d > 0 be constants, and let Φ, c be constants that depend on d. Testing
whether a d-regular graph G = (V,E) has conductance at least Φ or is ε-far from having
conductance at least cΦ2 requires Ω(log(|V |+ |E|)) rounds of communication in the LOCAL
and CONGEST models.

1.2 Related Work
In the classic, sequential setting of property testing, the problem of testing conductance in
bounded degree graphs was first studied in [6, 15]. Kale and Seshadhri [16] and Nachmias
and Shapira [22] give Õ(Φ−2√n)-query two-sided error testers that accept graphs that have

H. Fichtenberger and Y. Vasudev 19:3

conductance at least Φ and reject graphs that are ε-far from having conductance at least
Ω(Φ2). An algorithm for testing the cluster structure of graphs has been given in [5]. Testing
conductance in unbounded degree graphs in the stronger rotation map model with query
complexity roughly Õ(Φ−2√m) was studied in [17], and testing conductance properties
restricted to small sets has been studied in [18]. However, the optimal query complexity for
testing conductance in general graphs of unbounded degree is still open.

In the CONGEST model, random walks have been analyzed by Censor-Hillel et al. [2] to
design a tester for bipartiteness. The idea there is to perform a constant number of random
walks from every vertex and to test if two such walks intersect in a cycle of odd length. It is
crucial to bound the number of random walks that traverse an edge in one step. In contrast,
we can perform polynomially many random walks from a constant number of vertices in the
graph and we can afford that all walks traverse the same edge simultaneously.

Distributed random walks have also been studied in [7] and [21]. In particular, [21]
show that one can approximate the mixing time τv of a vertex v in O(τv log n) rounds
by running poly(n) random walks v and comparing their endpoint distribution to the
stationary distribution. The graph’s mixing time τ = maxv τv relates to the conduct-
ance by c1Φ2/ log n ≤ 1/τ ≤ c2Φ. A straightforward approach based on [21] leads to an
O(n log2(n)/Φ2) round algorithm for approximating Φ with a multiplicative gap of Θ(Φ/ log n).
In comparison, our tester’s gap does not depend on n and its complexity is only logarithmic
in n. One reason is that if the graph is far from having conductance Ω(Φ2), there exist many
vertices with large mixing times compared to the case that the graph has conductance Φ
(see the proof of Theorem 1 for details). This is not necessarily the case if the graph is not
ε-far from having conductance Ω(Φ2).

1.3 Overview
The classic tester [16] for bounded degree graphs exploits that random walks converge rapidly
to the uniform distribution in graphs with high conductance and they mix slowly for at
least a small fraction of start vertices in graphs that are ε-far from having high conductance.
This boils down to approximating the collision probability of random walks for a few start
vertices. However, in general graphs the stationary distribution is not uniform, and collisions
at vertices with high degree are more important than at vertices with low degree.

In the distributed model, one has to take care of edge congestion, too. Simulating ω(1)
random walks while keeping them distinguishable is very costly. A key observation is that for
approximating the discrepancy, it is sufficient to maintain only some statistics of the random
walks, which reduces the congestion significantly: one has to transfer only the number of
random walks that pass through an edge for each of a constant number of start vertices.

For the lower bound, we construct two distributions on graphs of high and low conductance
respectively such that the vertices’ neighborhoods of radius Ω(log n) are isomorphic. The
idea is that within only O(log n) rounds, all vertices receive the same information up to
isomorphism and therefore cannot distinguish between the two distributions. However, since
the tester is allowed to have two-sided error and it only needs to distinguish graphs that have
the property from graphs that are far, it is plausible that it can glean information about the
two distributions from the vertex labels of the subgraphs it has seen. For example, certain sets
of labeled subgraphs might be present in (many of) the graphs with high conductance that
are absent in (many of) the graphs with low conductance. Lower bounds for sequential testers
usually argue that with high probability, one can assume that all probes are independent.
Since the local views of the vertices in the distributed model always have a large overlap, we
base our argument on a reduction and a random labeling argument instead.

MFCS 2018

19:4 A Two-Sided Error Distributed Property Tester For Conductance

2 Preliminaries

Let G = (V,E) be a graph and let S, T ⊆ V, S ∩ T = ∅ be sets of vertices. We denote |V |
and |E| by n and m respectively for the graph G at hand. Let d(v) be the degree of vertex
v ∈ V . We write S̄ for the set V \S. The set of vertices in S̄ that are adjacent to some
u ∈ S is denoted by Γ(S). The volume of S is the sum of degrees of vertices in S, that is,
vol(S) :=

∑
v∈S d(v). The cut between S and T is denoted by E(S, T) = E ∩ (S × T). For a

set S ⊆ V such that vol(S) ≤ vol(S̄), the conductance of S is cond(S) = |E(S, S̄)|/vol(S).
The conductance of G is defined as Φ(G) = minS⊂V,vol(S)≤vol(S̄) cond(S).

2.1 Distributed Computing
In the distributed computational model, a computation network G = (V,E) with a processor
associated to each vertex v ∈ V is given. Each processor v has access to numbered commu-
nication channels to its neighbors in G. Additionally, it may have some specific input I(v).
The computation operates in synchronized rounds that are divided into three phases. In
each round, each processor may do some local computation first, then it may send a message
to each of its neighbors, and finally it receives the messages sent from its neighbors.

I Definition 3 (Distributed Computational Model, DCM). Let G = (V,E) be a graph and
pG = (pv)v∈V with pv : [d(v)] → Γ(v) be a bijective function, that is, an adjacency list
representation of G. Let I : V → {0, 1}∗ be a mapping from the set of vertices to bit strings.
An instance of the distributed computational model on G, pG and I, DCM(G, pG, I), is defined
as follows. Each vertex v ∈ V is a processor that has communication access to its neighbors
pv(1), . . . , pv(d(v)) by ports numbered 1, . . . , d(v). The model operates in synchronized rounds,
where each round r consists of three phases: (i) Each vertex performs local computation,
(ii) each vertex v sends a message to its neighbor pv(i), denoted sr(v, i), for all i ∈ d(v),
(iii) each vertex u receives a message from its neighbor pu(j), for all j ∈ d(u). The distributed
computational model DCM is the set of all instances DCM(G, pG, I).

The LOCAL model is the subset of the DCM such that for each vertex v ∈ V , the input
I(v) is only n and a numerical vertex identifier from [nc] for some universal constant c. The
CONGEST model is the subset of the LOCAL model such that the size of each message
sr(v, i) is restricted to c log n bits.

A distributed network decision algorithm DNDA(A, O) is an algorithm A that is deployed
to the vertices of a DCM to decide a property of an instance of the model. In particular, the
output of A is a single bit, and the final decision is obtained by applying a function O(·) to
the union of all vertices’ answers.

I Definition 4 (Distributed Network Decision Algorithm). Let A be an algorithm that takes
a bit string as input and outputs a single bit, and let O : {0, 1}∗ → {0, 1} be a func-
tion. When the distributed network decision algorithm DNDA(A, O) is run on an instance
DCM(G, pG, I), a copy of A is deployed to every vertex v with input I(v) and run in parallel
as described in Definition 3. We refer to the copy of A deployed to v by Av. When every
vertex vi has terminated its computation with output bit bvi

, the decision of DNDA(A, O) is
O(bv1bv2 · · · bvn

).

2.2 Distributed property testing
A distributed property testing algorithm is a distributed algorithm as defined in Definition 4
that accepts graphs that have a property, and rejects graphs that are ε-far from the property.
We say that a graph G with n vertices and m edges is ε-far from a property P if at least εm

H. Fichtenberger and Y. Vasudev 19:5

edges of G have to be modified to make the new graph have the property P . A one-sided error
distributed ε-tester accepts all graphs with property P, whereas it rejects, with probability
at least 2/3, all graphs that are ε-far from the property. In this paper, we give a two-sided
(error) property tester that is also allowed to err, with probability at most 1/3, when the
graph has the property.

I Definition 5 (Two-sided tester). A two-sided (error) distributed ε-tester for a property P is
a DNDA(A, O), where O(bv1bv2 · · · bvn) = 1 iff bvi = 1 for all vi ∈ V such that the following
conditions hold: (i) if G has the property P, then, with probability at least 2/3, bvi

= 1 for
all vi ∈ V , (ii) if G is ε-far from P, then, with probability at least 2/3, there exists a vi ∈ V
such that bvi

= 0.

The guarantees given by our tester are actually a bit stronger in the sense that the tester
can be modified such that either bv = 0 or bv = 1 for all v ∈ V simultaneously.

3 Testing Using Random Walks

In this section we will present the distributed algorithm for testing whether a graph has
conductance at least Φ or is ε-far from having conductance at least Φ2/1000. The core idea
of the algorithm is to perform random walks from a small set of vertices and test whether
these walks converge to the stationary distribution rapidly, which is the case for graphs with
high conductance. It is based on the ideas of Kale and Seshadhri [16] and Goldreich and
Ron[15].

Before we describe the algorithm, we give a few useful definitions and lemmas. A lazy
random walk on a graph G = (V,E) on n vertices is a random walk on the graph, where
at each vertex v the walk chooses to stay at v with probability 1/2 and chooses a neighbor
u with probability 1/(2d(v)). The walk matrix W = [wuv]u,v∈[n] is defined by wuv := 1/2
if u = v, wuv := 1/(2d(v)) if u 6= v, (u, v) ∈ E and wuv := 0 otherwise. Notice that for
irregular graphs, W is not symmetric. To analyze these random walks, one can draw on the
normalized walk matrix, which is a symmetric matrix similar to W . The normalized walk
matrix N of G is D−1/2WD1/2, where D is the diagonal matrix with D(u, u) := d(u).

Since N is a real symmetric matrix, it has real eigenvalues. Let 1 = µ1, . . . , µn ≥ 0 be its
eigenvalues, and let { ~fi}i∈[n] be its orthonormal eigenbasis. We have ~f1 =

√
~π, where ~π is the

random walk’s stationary distribution. In particular, it is well known that ~πv = d(v)/(2m).
For more details on spectral graph theory, refer to [4].

It is well known that graphs with high conductance have small diameter.

I Lemma 6 ([3, cf. Theorem 2]). Let G = (V,E) be a graph with conductance Φ. The
diameter of G is at most (3/Φ) ln(m).

Sinclair [24] proved that there is a tight connection between the conductance and the
mixing time of random walks. In particular, the L2 distance of any starting distribution ~π′

to ~π after Φ−2 log n steps is O(1/n).

I Lemma 7 ([24, cf. Theorem 2.5]). Let G = (V,E) be a graph with conductance Φ. For any
starting distribution ~π′, it holds that ‖W ` ~π′ − ~π‖2 ≤

(
1− Φ2/2

)`.
3.1 Algorithm
We discuss the algorithm from a global point of view instead of describing an algorithm A
for a single vertex to provide a better explanation of the interactions between vertices.

MFCS 2018

19:6 A Two-Sided Error Distributed Property Tester For Conductance

Lemma 6 implies that if the graph has high conductance, then it has diameter O(log n/Φ),
which we want to use as an assumption in the algorithm later. To test the diameter, we
perform a BFS of depth O(log n/Φ) of the graph starting from an arbitrary vertex. Initially,
every vertex chooses itself as root of the BFS and announces itself as root to all its neighbors.
To break the symmetry between the vertices, a vertex accepts every vertex with a lower
identifier than its current root as new root and forwards its messages. If the diameter
is O(log n/Φ), a unique root has been chosen after O(log n/Φ) rounds and every vertex
knows its parent and its children in the BFS tree. Otherwise, at least one of the remaining
candidates will reject. Algorithm 3 gives a formal description of the BFS.

From now on, assume that the diameter is O(log n/Φ). Using the previously computed
BFS tree, we can compute the number of edges in the graph by summing up vertex degrees
from the leaves to the root and transmitting this number to all vertices afterwards. Algorithm 4
describes the procedure in detail.

The key technical lemma from [16] for bounded degree graphs states that if a graph
is ε-far from having conductance Ω(Φ2), then there exists a Ω(ε)-fraction of weak vertices
such that random walks starting from these vertices converge only slowly to the stationary
distribution. Therefore, a sample S ⊂ V of size O(1) will likely contain a weak vertex
(technically, we sample each vertex v independently into S with probability Θ(d(v)/εm). By
Markov’s inequality, we may reject if S is much larger than its expected size.). We extend
this lemma to unbounded degree graphs. Then, we perform N = n100 random walks of
length ` = 40/Φ2 · log n = O(log n/Φ2) starting from each of the vertices in S to approximate
the rate of convergence.

The crucial point here is that in each round of the algorithm, we do not send the full trace
of every random walk. Instead, for every origin v ∈ S, every vertex u ∈ V only transmits
the total number of random walks that are leaving it through an edge (u,w) to its neighbor
w ∈ Γ(u). Since the size of S is constant, we require O(log n) bits per edge to communicate
this. On the other hand, this information is sufficient because we are only interested in
the distribution of endpoints of the lazy random walks for every v ∈ S. Algorithm 2 gives
a formal description of this procedure. Finally, the estimated distribution of endpoints is
used to approximate the distance to the stationary distribution for each v ∈ S. The whole
algorithm is summarized in Algorithm 1.

First, we show that either the estimates Ŵ `
v,u of Algorithm 2 are good or the algorithm

rejects in line 14 because G has low conductance.

I Lemma 8. Consider Algorithm 2. For every v, u ∈ V , it holds with probability at least
1 − m−10 that (i) |Ŵ `

v,u − W `(v, u)| ≤ m−20 and, conditioned on the previous, (ii) if
Ŵ `
v,u < m−2 then G has conductance less than Φ.

Proof. We have E[Ŵ `
v,u] = W `(v, u). By Hoeffding’s inequality, it holds that

Pr[|Ŵ `
v,u − E[Ŵ `

v,u]| ≥ m−10] ≤ 2 exp
(
− N

3m40

)
≤ m−10 . (1)

Condition on |Ŵ `
v,u−E[Ŵ `

v,u]| < m−20, which happens with probability at least 1−1/m10.
If Ŵ `

v,u < m−2, then

W `(v, u) = E[Ŵ `
v,u] < Ŵ `

v,u +m−20 = m−2 +m−10 < 2m−2 .

Let π′ = 1v. We bound ‖W ` ~π′ − ~π‖2 from below.

‖W ` ~π′ − ~π‖2 ≥ |W `(v, u)− d(u)/2m| ≥ −(2m−2 − 1/(2m)) ≥ 1/(4m) .

By the contrapositive of Lemma 7, G has conductance less than Φ. J

H. Fichtenberger and Y. Vasudev 19:7

Algorithm 1 Conductance tester.
1: procedure TestConductance(G = (V,E), n, Φ)
2: BFS(G, 6/Φ lnn) . construct BFS of depth 6/Φ logn, Algorithm 3
3: if BFS visited less than n vertices then reject
4: m← AggegrateSum(G, 12/Φ lnn, f) . f(v) := d(v)/2, Algorithm 4
5: let every vertex v ∈ V do
6: with probability min{1, 104d(v)/2εm}, mark v
7: S ← marked v, r ← root of BFS tree
8: if |S| > 105/ε then reject
9: RandomWalk(G, S, 40/Φ2 · log n, n100) . compute local sv,u, Algorithm 2

10: for all v ∈ S do sv ← AggegrateSum(G, 12/Φ lnn, f) . f(u) := sv,u, Alg. 4
11: let every vertex v ∈ V do
12: if sv ≤ m−15 for all v ∈ S then accept
13: else reject

Algorithm 2 Perform random walks.
1: procedure RandomWalk(G,S,`,N)
2: let every vertex v ∈ S do
3: sample u1, · · · , uN independently according to W ~ev

4: for all w ∈ Γ(v) do send (v, v, |{i | w = ui}|) to w
5: for ` rounds, let every vertex x do
6: receive (u1, x

′
1, k1), (u2, x

′
2, k2), . . .

7: for all v ∈ S do
8: sample u1, · · · , unv

independently according to W ~ex, where nv =
∑
ui=v ki

9: for all w ∈ Γ(v) do send (v, x, |{i | w = ui}|) to w
10: let every vertex u ∈ V do
11: receive (u1, x

′
1, k1), (u2, x

′
2, k2), . . .

12: for all v ∈ S do
13: Ŵ `

v,u ←
∑
vi=v ni/N

14: if Ŵ `
v,u ≤ 2m−2 then reject

15: sv,u ← (Ŵ `
v,u −

d(v)
2m)2

Algorithm 3 Construct BFS tree.
1: procedure BFS(G, D)
2: let every vertex v do
3: Tv ← (v, ·) . set root to itself, parent to empty
4: minid← v

5: send (v, v) to every neighbor u ∈ Γ(v)
6: for D rounds, let every vertex w do
7: Rv ← {(v′, u′) received | u′ ∈ Γ(w)}
8: (v, u)← arg min(v′,u′)∈Rv

v′

9: if Tw = (·) or v′ < minid then
10: Tw ← (v, u) . set root to v, parent to u
11: send (v, w) to all neighbors 6= u

MFCS 2018

19:8 A Two-Sided Error Distributed Property Tester For Conductance

Algorithm 4 Aggregate sum of vertex values and propagate it to all vertices.
Require: ∀v : v has local information f(v)
Ensure: ∀v : v has information

∑
u∈V f(u)

1: procedure AggregateSum(G, D, f : V → R)
2: for D rounds, let every vertex v do
3: if v received partial sums su from all its children u in BFS tree then
4: sv ← f(v) +

∑
u su

5: send sv to parent in BFS tree
6: let vertex root r of BFS tree do
7: send total sum s =

∑
v f(v) to all children

8: for D rounds, let every vertex v do
9: if v received total sum s from its parent then

10: send sv to all children in BFS tree
11: return sv . consider sv to be the output of the algorithm

Furthermore, Lemma 8 implies that the estimates sv in Algorithm 1 (see line 10) are also
good if Algorithm 2 has not rejected before.

I Lemma 9. Consider Algorithm 1. With probability at least 1 −m−8 it holds for every
v ∈ S in line 10 that

∣∣‖W `(v, ·)− ~π‖22 − sv
∣∣ ≤ 3m−19.

Proof. Let v ∈ S. We have the following equality for the discrepancy of the distribution of
the random walks’ endpoints that start at v and the stationary distribution:

‖W `(v, ·)− ~π‖22 =
∑
u∈V

(
W `(v, u)− d(u)

2m

)2
. (2)

By Lemma 8, we know that for every u ∈ V we have |Ŵ `
u,v − W `(v, u)| ≤ m−20with

probability 1− 1/m9. Then, by the triangle inequality, |(W `(v, u)− d(u)
2m)2 − sv,u| ≤ 3m−20.

Combining this with Eq. (2), a union bound over all u ∈ V implies that with probability
at least 1− n ·m−10 ≥ 1−m−9, we have that

∣∣‖W `(v, ·)− ~π‖22 −
∑
u∈V sv,u

∣∣ ≤ 3m−19. A
union bound over all v ∈ S gives that with probability at least 1 − |S|/m−9 ≥ 1 −m−8,∣∣‖W `(v, ·)− ~π‖22 −

∑
u∈V sv,u

∣∣ ≤ 3m−19 for every v ∈ S. J

3.2 Completeness and Soundness
The proof of completeness is a straightforward application of the results from the previous
section.

I Lemma 10 (Completeness). Let G(V,E) be a graph with conductance at least Φ. Then,
with probability at least 2/3, each vertex in G returns accept when it runs Algorithm 1.

Proof. The probability that the algorithm rejects in Line 8 of Algorithm 1 is at most 1/10,
and we assume, for the remainder of the proof, that this event did not occur. If G has
conductance at least Φ, then from Lemma 7 we know that ‖W `(·, v)− ~π‖22 ≤

(
1− Φ2/2

)2` ≤
exp(−Φ2`/2) ≤ m−20 for every vertex v. Lemma 9 implies that with probability at least
9/10, it holds that

∣∣‖W `(·, v)− ~π‖22 − sv
∣∣ ≤ 3m−19. Conditioning on this event, every vertex

accepts in line 12 of Algorithm 1. J

To complete the analysis of the tester, we show that whenever the graph is ε-far from
having conductance Ω(Φ2), the tester rejects with probability at least 2/3. To this end, we

H. Fichtenberger and Y. Vasudev 19:9

actually show that if the volume of weak vertices is small, then the graph can be converted to
another graph G′ by modifying at most εm edges such that the conductance is Ω(Φ2). The
idea of the analysis is due to Kale and Seshadhri [16], who analyzed a classic property tester
for testing expansion in graphs with vertex degrees bounded by a constant. We deviate from
their analysis where it becomes necessary to take care of arbitrary vertex degrees.

Let a vertex v ∈ V be called weak if ‖W `(v, ·) − ~π‖2 > 6m−15. The following lemma
states that if there exists a set of vertices S with small conductance, then there exists a set
of weak vertices T whose volume is at least a constant fraction of the volume of S.

I Lemma 11. Let S ⊂ V be such that vol(S) ≤ vol(S̄) and cond(S) ≤ δ. Then, for any
` ∈ N and any 0 < θ ≤ 1/10, there exists a set T ⊆ S such that vol(T) ≥ θvol(S) and for
every v ∈ T , it holds that ‖W `(v, ·)− ~π‖22 > 1

80m7 (1− 4δ)2`.

The proof can be found in the arXiv version [10]. We can use Lemma 11 to separate weak
vertices from the remaining graph.

I Lemma 12. Let G = (V,E) be a graph. If the volume of weak vertices in G is at
most (1/100)εm, then there is a partition of V into P ∪ P̄ such that vol(P) ≤ εm/10 and
Φ(G[P̄]) ≥ Φ2/256.

Proof. We partition the graph recursively into two sets (P, P̄). At the beginning, P0 = ∅
and P̄0 = V . As long as there is a cut (Ci, C̄i) in P̄i−1 in step i with vol(Ci) ≤ vol(C̄i)
and E(Ci, C̄i)/vol(Ci) ≤ Φ2/256, we set Pi = Pi−1 ∪ Ci and P̄i = V \Pi. We continue this
until we don’t find such a cut or the condition vol(Pi+1) ≤ vol(P̄i+1) would be violated.
The number of edges going across the cut (P, P̄) is at most

∑
i |E(Ci, C̄i)|. Therefore,

|E(P, P̄)| ≤ Φ2

256
∑
i vol(Ci) ≤ Φ2

256vol(P).
Now, assume that vol(P) > (1/10)εm. Lemma 11 implies that there exists P ′ ⊆ P

such that vol(P ′) ≥ 1
10vol(P) > εm/100 (where θ = 1/10) and for all v ∈ P ′ we have

‖W `(v, ·) − ~π‖2 > 1
80m7 (1 − 4Φ2/256)2` > 1

80m10 . This means that P ′ contains only weak
vertices and has volume at least εm/100, which contradicts our assumption that the volume
of weak vertices in G is at most εm/100. Therefore, vol(P) ≤ εm/10 when the partitioning
terminates. Hence Φ(G[P̄]) ≥ Φ2/256. J

Finally, the following lemma states that few edge modifications in a graph with separated
weak vertices are sufficient to make it a graph with high conductance.

I Lemma 13 ([18, Lemma 9]). Let G = (V,E) be a graph. If there exists a set P ⊆ V

such that vol(P) ≤ εm/10 and the subgraph G[V \P] is a Φ′-expander, then there exists an
algorithm that modifies at most εm edges to get a Φ′/3-expander G′ = (V,E′).

Combining the results on the separation of weak vertices and patching the graph (Lem-
mas 11 to 13) and approximating the endpoint distribution (Lemmas 8 and 9), we prove the
soundness of the algorithm.

I Lemma 14 (Soundness). Let G(V,E) be a graph. If G is ε-far from having conductance
at least Φ2/768, then, with probability at least 2/3, each vertex in G returns reject when it
runs Algorithm 1.

Proof. First we note that if the volume of weak vertices is less than εm/100, then by
Lemmas 12 and 13, the graph is ε-close to having conductance at least Φ2/768. Therefore,
the volume of weak vertices is at least εm/100. Each vertex v is contained in S with
probability Θ(d(v)/εm). Hence, the expected number of weak vertices that are present in

MFCS 2018

19:10 A Two-Sided Error Distributed Property Tester For Conductance

the sample S is at least 100. Therefore, with probability at least 9/10, at least one weak
vertex is sampled in S.

If W `(v, u) < m−2 for some v ∈ S, u ∈ V , then with probability at least 9/10, Ŵ `
v,u <

2m−2 by Lemma 8. In this case, the algorithm will reject in line 14 of Algorithm 2. If
W `(v, u) ≥ m−2 for all v ∈ S, u ∈ V , then with probability at least 9/10, it holds that∣∣‖W `(v, ·)− ~π‖2 − sv

∣∣ ≤ 3m−19 for every v ∈ S by Lemma 9. Since at least one vertex v ∈ S
is weak, that is, ‖W `(v, ·)−~π‖2 > 6m−15, the algorithm rejects in line 13 of Algorithm 1. J

3.3 Unknown Size of the Graph
We describe how to get rid of the assumption that the size n of the graph G is known to the
tester if G is connected. Note that without any prior knowledge of G, no distributed tester
can distinguish between a graph with conductance Φ and two distinct copies of it (the latter
is ε-far from being a graph with conductance Φc for ε < Φc/2, c ≥ 1).

First, we describe a slightly simpler version of the final algorithm. In the setting of the
simpler algorithm, we mark a single vertex that will initiate the test and will also give the
final answer of the tester. We call this vertex the maintainer (of the graph). The algorithm
can be easily adapted to the CONGEST model.

Let v ∈ V be a fixed vertex. The algorithm either makes n available at all vertices and
runs Algorithm 1 afterwards or v rejects because G does not have conductance Φ. If G has
conductance Φ, the algorithm never rejects.

We start with an initial set S = {v} that is grown in two phases. In the first phase, we
extend S to S ∪ Γ(S) as long as cond(S) ≥ Φ. In particular, v starts a BFS and in every
round, the vertices in the last level report their degree and the number of neighbors outside
of S to their parents. Similar to Algorithm 1, these are aggregated and sent to v along the
edges of the BFS tree. If cond(S) < Φ for the first time, the algorithm proceeds to the
second phase. It continues the BFS for − log(vol(S))/ log(1− Φ) rounds and stops. If any
vertex in the graph notices a neighbor that is not in S after these rounds, then S 6= V and
the algorithm rejects. Otherwise, we have obtained the value of n = |S| that can be sent to
all vertices, and we continue by executing Algorithm 1.

I Lemma 15. Let G = (V,E) be a graph and Φ ∈ [0, 1]. There is an algorithm that computes
n if G has conductance at least Φ. Otherwise, it either computes n or rejects. The round
complexity is O(logm/ log(1− Φ)).

Proof. It is easy to see that if the algorithm explores the whole graph, it computes n correctly,
and else it rejects. Without loss of generality, let G have conductance Φ. Let Si be the set S
after i rounds and let S̄i = V \Si. We denote the last round of the first (second) phase by k
(`).

In the first phase, we have that vol(Si) ≥ (1 + Φ) · vol(Si−1) for every round i and by
induction, k ≤ log vol(Sk)/ log(1+Φ) ≤ logm/ log(1+Φ). We also have that vol(Sk) ≥ m/2 ≥
vol(S̄k) because G has conductance Φ. In the second phase, we have that vol(S̄i) ≤ (1−Φ) ·
vol(S̄i−1) for every round i. By induction, `−k ≥ − logm/ log(1−Φ) ≥ log vol(S̄k)−1/ log(1−
Φ) implies that that vol(S̄`) = 0. Therefore, the algorithm has explored the whole graph.
Clearly, ` ∈ O(logm/ log(1− Φ)). J

To transform the algorithm into a tester in the CONGEST model, we start with each
vertex being a maintainer initially. In every round every vertex chooses the vertex with the
smallest id it has ever received a message from to be the maintainer and it forwards only this
vertex’ messages (the latter maintains the congestion bound). At the end of the algorithm, if

H. Fichtenberger and Y. Vasudev 19:11

G has conductance Φ, then there is only one maintainer (the vertex with the smallest id)
and the algorithm continues by executing Algorithm 1. Otherwise, there might be multiple
vertices that are still maintainers. However, none of these vertices has explored the whole
graph, so all of them send a broadcast message to reject.

4 Lower Bound

In this section, we prove a lower bound of Ω(log(n+m)) on the round complexity for testing
the conductance of a graph in the LOCAL model regardless of how the final decision of the
tester is derived from the single votes of the vertices.

For any v ∈ V , the k-disc of v, denoted by disck(G, v), is defined as the subgraph that
is induced by the vertices that are at distance at most k to v without the edges between
vertices at distance exactly k, and it is rooted at v. We refer to the isomorphism type of
disck(G, v), that is, the set of all rooted graphs isomorphic to disck(G, v), by disc∗k(G, v). Let
girth(G) denote the length of the shortest cycle in G. We need the following two lemmas to
obtain the distribution over graphs to prove the lower bound.

I Lemma 16 ([20]; cf. [23, Section 16.8.3]). For every n′ ∈ N and every d′ ∈ N there
exists a d-regular graph G of size n such that G has conductance Φ(G) = 1/

√
2d and girth

2 logn/ log d, and n ≥ n′, d ≥ d′.

The second lemma states that we can sparsify an arbitrary cut E(V1, V2) in a d-regular
graph with girth 3k without changing disc∗k(G, v) for any v ∈ V . In particular, it states
that we can remove two edges in the cut and add them somewhere else, or the cut has size
poly(dk) only. It is obtained as a special case by observing that we can assume L = 1 and
λ = 0 in [9, Lemma 8].

I Lemma 17 ([9, Lemma 8]). Let G = (V,E) be a d-regular graph with girth(G) ≥ 3k
for k ≥ 2 and let V1 ∪̇ V2 = V be a partitioning of V . Then either there exists a graph
H = (V, F) such that (i) girth(H) ≥ 3k, (ii) |F ∩ (V1 × V2)| ≤ |E ∩ (V1 × V2)| − 2, and
(iii) disc∗k(H,w) = disc∗k(G,w)∀w ∈ V (that is, H is d-regular), or E(V1, V2) ≤ 6d3k.

To prove the lower bound, we use an auxiliary model we call the ISO-LOCAL model. In
this model, the input I(·) is empty but an additional oracle provides every vertex v with
the ability to construct disc∗r(G, v) in round r if it knows disc∗r−1(G, ui) of its neighbors
u1, . . . , ud(v). It should be noted that the ISO-LOCAL model is not a DCM due to the
additional oracle.

I Definition 18 (ISO-LOCAL model). Let DCM(G, pG, I) be a DCM instance such that I(·)
maps the whole domain to the empty string. In addition to sending and receiving messages, in
every round r every vertex v is provided access to a function er,v : (N∪ {?})r × (N∪ {?})r →
{0, 1} during the local computation phase. The value of er,v((i1, . . . , ir′), (j1, . . . , jr′′)) is 1
iff p′v(i1, . . . , ir′) = p′v(j1, . . . , jr′′), where

p′v(i1, . . . , ir) :=
{
v if ir = ?

pp′v(?,i1,...,ir−1)(ir) otherwise .

The instance DCM(G, pG, I) equipped with such an oracle is called ISO-LOCAL.

In other words, p′v(·) takes a path of length at most r that starts at v and that is defined by
a sequence of port numbers as input. Then, it maps the path to its endpoint in V . Finally,
er,v(·) tells whether two such paths end at the same vertex.

MFCS 2018

19:12 A Two-Sided Error Distributed Property Tester For Conductance

The ISO-LOCAL model is a graph where the nodes are not labeled by any strings. To
argue the lower bound, we need to prove the existence of graphs that have same local
neighborhoods such that one is a good expander and the other is far from having good
conductance. Now it is possible that the algorithm can glean information about the different
graphs based on the vertex labels even if the local neighborhoods are identical. Without
ISO-LOCAL, we would need to argue that a randomized algorithm cannot deduce information
from the vertex labels in the LOCAL model directly. This would be easy if for every good
expander G we use, there is a bad expander H with exactly the same set of (labeled) k-discs.
However, this is not the case as it would imply that G and H are isomorphic. The ISO-
LOCAL model formalizes the intuition that, still, isomorphic k-discs should be sufficient to
establish the lower bound even for randomized algorithms.

It is a basic observation that a distributed algorithm can only depend on information
that has reached it until the moment it performs the computation in question.

I Lemma 19 (folklore; cf. [19, Section 2]). Let DNDA(A, O) be a DNDA. After r rounds,
the state of Av may depend only on d(v), I(v), the state of Au at time r − dist(v, u) for
vertices u with dist(v, u) < r and the random coins of A.

4.1 Proof of the Lower Bound
Let G = (V,E) be an expander graph obtained from applying Lemma 16 and let k = Θ(log n).
Observe that if a graph is d-regular and it has girth 3k, then all its k-discs are pairwise
isomorphic. In particular, all k-discs are full d-ary trees of depth k.

We will prove that a distributed algorithm DNDA(A, O) with round complexity r in the
ISO-LOCAL model decides based on the set of views disc∗r(G, v) that the different instances
of A have (see Lemma 20). Using Lemma 17, it will be easy to come up with a graph H that
is a bad expander but whose k-discs are isomorphic to the ones of G. This implies a lower
bound of k = Θ(log n) for testing conductance in the ISO-LOCAL model (see Proposition 21).
Finally, we prove that a lower bound on the round complexity of a tester in the ISO-LOCAL
model implies the same bound in the LOCAL model. Actually, we prove the contrapositive:
a tester in the LOCAL model implies a tester in the ISO-LOCAL model (see Proposition 22).

I Lemma 20. Let DNDA(A, O) be a deterministic DNDA in the ISO-LOCAL model. The
output of Av depends only on disc∗r(G, v) and the port numbering (pv)v∈V .

Proof. Instead of analyzing DNDA(A, O), we analyze a canonical algorithm DNDA(B, O)
that simulates DNDA(A, O) depending only on disc∗r(G, v). Employing B, we prove the
following statement by induction: After the local computation phase of round r, the state of
Av depends only on disc∗r(G, v).

The first local computation phase of Av can only depend on the port numbering and I(v)
(the empty string). Therefore, Bv can simulate the execution of the first round of Av.

Let the current round be r > 1. Algorithm Bv maintains a rooted graph Hv that resembles
disc∗r(G, v). The adjacency lists of Hv are ordered according to (pv)v∈V . Let Hv(r) be the
value of Hv after the computation phase of round r. In the send phase, vertex v sends Hv(r)
to each of its neighbors. In the receive phase, vertex v receives graphs Hu1(r), . . . ,Hud(v)(r)
from its neighbors u1, . . . , ud(v). In the subsequent computation phase of round r + 1, vertex
v extends Hv(r) = disc∗r(G, v) to disc∗r+1(G, v) = Hv(r + 1) by querying er,v on all pairs of
vertices of V (Hv(r)) ∪ V (Hu1(r)) ∪ . . . ∪ V (Hud(v)(r)) to identity vertices and patching the
different views together.

Note that Hv(r + 1) also provides the isomorphism type of disc∗r−dist(v,u)(G, u) for every
vertex u at distance at most r from v. Since the adjacency lists of Hv are ordered according

H. Fichtenberger and Y. Vasudev 19:13

to the port numbering, it is also possible to reconstruct er−dist(v,u),u(·). By the induction
hypothesis, Bv can now simulate round r − dist(v, u) of Au for every such u. By Lemma 19,
this is enough to simulate the local computation phase of round r of Au. J

We show that there is no tester for conductance in the ISO-LOCAL model.

I Proposition 21. Let G = (V,E) be d-regular graph on n vertices, and let Φ = 1/
√

2d be a
constant. Any algorithm for testing if G has conductance at least Φ or is ε-far from having
conductance at least cΦ2 (for constants c and ε) in the ISO-LOCAL model that succeeds with
probability 2/3 requires Ω(log n) rounds of communication.

Proof. Let G = (V,E) be a d-regular graph provided by Lemma 16 and choose k =
1
3 logd

(
cΦ2−ε

6 dn
)
. Without loss of generality assume that n is even, and let S ⊂ V be a set of

size n/2. Apply Lemma 17 (with V1 = S and V2 = V \S) repeatedly toG until |E(S, V \S)| ≤
6d3k holds. LetH = (V,E′) be the resulting graph. We have that |E′(S, V \S)| ≤ (cΦ2−ε)dn,
and vol(S) = nd/2. Therefore, H is ε-far from having conductance cΦ2. Let DG (DH) be
the uniform distribution over all ISO-LOCAL models DCM(G, pG, I) (DCM(H, pH , I)) such
that pG (pH) ranges over all possible mappings, that is, port numberings.

We use Yao’s principle to prove the lower bound. Let DNDA(A, O) be a tester for
conductance that has round complexity smaller than k in the ISO-LOCAL model. Since G
is d-regular and girth(G) ≥ 3k, disc∗k(G, v) is a full d-ary tree of depth k for every v ∈ V .
For any pair u, v ∈ V , we have that disc∗k(G, u) is equal to disc∗k(H, v) by Lemma 17. Since
the port numberings of two vertices are independent of each other, (pv)v∈V is a valid port
numbering for G ∈ DG iff it is valid for H ∈ DH . By Lemma 20, DNDA(A, O) cannot
distinguish between G and H. J

To complete the proof of the lower bound, we show that each vertex in the graph in the
ISO-LOCAL model can choose an id randomly.

I Proposition 22. Let DNDA(A, O) be a randomized tester in the LOCAL model that
succeeds with probability p. Then, there is a randomized tester DNDA(B, O) in the ISO-
LOCAL model that succeeds with probability at least p − o(1), and has the same round
complexity.

Proof. We make a simple modification to A to obtain B: In the first local computation
phase, Bv draws a random number idv uniformly from {1, . . . , n3} and feeds it into Av as
I(v). Then, Av is executed as normal. For u, v ∈ V , the probability that idu and idv are
equal is 1/n3. Applying a union bound, with probability 1− o(1), it holds that idu 6= idv for
every u, v ∈ V . We then run algorithm A on this new instance and output the result. J

5 Open Problems

In the case of one-sided distributed testers, it is natural to define the decision rule O(·)
of a distributed tester such that all vertices have to accept or at least one vertex has to
reject. This is because in the case of rejection, the tester is required to observe a witness.
However, for two-sided testers no such requirement exists. Requiring that all vertices either
accept or reject simultaneously seems to be quite strong. For example, if all should vertices
accept or at least one vertex should reject, one may overcome the lack of communication
between connected components and test, e. g., whether a graph has more than two connected
components with two-sided error. On the other hand, it might not always be possible to
obtain a lower bound that is independent of the decision rule as in Theorem 2. To this end,
it would be interesting to compare the power of different rules.

MFCS 2018

19:14 A Two-Sided Error Distributed Property Tester For Conductance

References
1 Zvika Brakerski and Boaz Patt-Shamir. Distributed discovery of large near-cliques. Dis-

tributed Computing, 24(2), 2011. doi:10.1007/s00446-011-0132-x.
2 Keren Censor-Hillel, Eldar Fischer, Gregory Schwartzman, and Yadu Vasudev. Fast dis-

tributed algorithms for testing graph properties. In Proceedings of the 30th International
Symposium on Distributed Computing (DISC), 2016.

3 Fan R. K. Chung. Diameters and eigenvalues. Journal of the American Mathematical
Society, 2(2), 1989.

4 Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society, 1997.
5 Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of graphs. In

Proccedings of the 47th ACM Symposium on Theory of Computing (STOC), 2015.
6 Artur Czumaj and Christian Sohler. Testing expansion in bounded-degree graphs. In

Proccedings of the 48th IEEE Symposium on Foundations of Computer Science (FOCS),
2007.

7 Atish Das Sarma, Danupon Nanongkai, Gopal Pandurangan, and Prasad Tetali. Distrib-
uted random walks. Journal of the ACM (JACM), 60(1), 2013.

8 Guy Even, Orr Fischer, Pierre Fraigniaud, Tzlil Gonen, Reut Levi, Moti Medina, Pedro
Montealegre, Dennis Olivetti, Rotem Oshman, Ivan Rapaport, and Ioan Todinca. Three
Notes on Distributed Property Testing. In Proceedings of the 31st International Symposium
on Distributed Computing (DISC), 2017.

9 Hendrik Fichtenberger, Pan Peng, and Christian Sohler. On constant-size graphs that
preserve the local structure of high-girth graphs. In Proccedings of the 19th International
Workshop on Randomization and Computation (RANDOM), 2015.

10 Hendrik Fichtenberger and Yadu Vasudev. A Two-Sided Error Distributed Property Tester
For Conductance. arXiv:1705.08174, 2018. URL: http://arxiv.org/abs/1705.08174.

11 Pierre Fraigniaud, Ivan Rapaport, Ville Salo, and Ioan Todinca. Distributed testing of
excluded subgraphs. In Proceedings of the 30th International Symposium on Distributed
Computing (DISC), 2016.

12 Oded Goldreich. Introduction to testing graph properties. In Property Testing. Springer,
2010.

13 Oded Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.
14 Oded Goldreich, Shari Goldwasser, and Dana Ron. Property Testing and Its Connection

to Learning and Approximation. Journal of the ACM (JACM), 45(4), 1998. doi:10.1145/
285055.285060.

15 Oded Goldreich and Dana Ron. On Testing Expansion in Bounded-Degree Graphs. Elec-
tronic Colloquium on Computational Complexity (ECCC), 2000. URL: https://eccc.
weizmann.ac.il/report/2000/020/.

16 Satyen Kale and C. Seshadhri. An expansion tester for bounded degree graphs. SIAM
Journal on Computing (SICOMP), 40(3), 2011. doi:10.1137/100802980.

17 Angsheng Li, Yicheng Pan, and Pan Peng. Testing Conductance in General Graphs. Elec-
tronic Colloquium on Computational Complexity (ECCC), 18(101), 2011. URL: http:
//eccc.hpi-web.de/report/2011/101/.

18 Angsheng Li and Pan Peng. Testing Small Set Expansion in General Graphs. In Proceedings
of the 32nd International Symposium on Theoretical Aspects of Computer Science (STACS),
2015.

19 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing
(SICOMP), 21(1), 1992. doi:10.1137/0221015.

20 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3), 1988. doi:10.1007/BF02126799.

http://dx.doi.org/10.1007/s00446-011-0132-x
http://arxiv.org/abs/1705.08174
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1145/285055.285060
https://eccc.weizmann.ac.il/report/2000/020/
https://eccc.weizmann.ac.il/report/2000/020/
http://dx.doi.org/10.1137/100802980
http://eccc.hpi-web.de/report/2011/101/
http://eccc.hpi-web.de/report/2011/101/
http://dx.doi.org/10.1137/0221015
http://dx.doi.org/10.1007/BF02126799

H. Fichtenberger and Y. Vasudev 19:15

21 Anisur Rahaman Molla and Gopal Pandurangan. Distributed Computation of Mixing
Time. In Proceedings of the 18th International Conference on Distributed Computing and
Networking (ICDCN), 2017.

22 Asaf Nachmias and Asaf Shapira. Testing the expansion of a graph. Information and
Computation, 208(4), 2010. doi:10.1016/j.ic.2009.09.002.

23 Uwe Naumann and Olaf Schenk, editors. Combinatorial Scientific Computing. CRC Press,
2012.

24 Alistair Sinclair. Algorithms for Random Generation and Counting: A Markov Chain
Approach. Birkhauser Verlag, 1993.

MFCS 2018

http://dx.doi.org/10.1016/j.ic.2009.09.002

Graph Similarity and Approximate Isomorphism

Martin Grohe
RWTH Aachen University, Aachen, Germany
grohe@informatik.rwth-aachen.de

https://orcid.org/0000-0002-0292-9142

Gaurav Rattan
RWTH Aachen University, Aachen, Germany
rattan@informatik.rwth-aachen.de

https://orcid.org/0000-0002-5095-860X

Gerhard J. Woeginger
RWTH Aachen University, Aachen, Germany
woeginger@informatik.rwth-aachen.de

https://orcid.org/0000-0001-8816-2693

Abstract
The graph similarity problem, also known as approximate graph isomorphism or graph matching
problem, has been extensively studied in the machine learning community, but has not received
much attention in the algorithms community: Given two graphs G,H of the same order n with
adjacency matrices AG, AH , a well-studied measure of similarity is the Frobenius distance

dist(G,H) := min
π
‖AπG −AH‖F ,

where π ranges over all permutations of the vertex set of G, where AπG denotes the matrix
obtained from AG by permuting rows and columns according to π, and where ‖M‖F is the
Frobenius norm of a matrix M . The (weighted) graph similarity problem, denoted by GSim
(WSim), is the problem of computing this distance for two graphs of same order. This problem
is closely related to the notoriously hard quadratic assignment problem (QAP), which is known
to be NP-hard even for severely restricted cases.

It is known that GSim (WSim) is NP-hard; we strengthen this hardness result by showing that
the problem remains NP-hard even for the class of trees. Identifying the boundary of tractability
for WSim is best done in the framework of linear algebra. We show that WSim is NP-hard as
long as one of the matrices has unbounded rank or negative eigenvalues: hence, the realm of
tractability is restricted to positive semi-definite matrices of bounded rank. Our main result is a
polynomial time algorithm for the special case where the associated (weighted) adjacency graph
for one of the matrices has a bounded number of twin equivalence classes. The key parameter
underlying our algorithm is the clustering number of a graph; this parameter arises in context of
the spectral graph drawing machinery.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Graph Similarity, Quadratic Assignment Problem, Approximate Graph
Isomorphism

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.20

Related Version A full version of the paper is available at https://arxiv.org/abs/1802.
08509.

© Martin Grohe, Gaurav Rattan, and Gerhard J. Woeginger;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 20; pp. 20:1–20:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:grohe@informatik.rwth-aachen.de
https://orcid.org/0000-0002-0292-9142
mailto:rattan@informatik.rwth-aachen.de
https://orcid.org/0000-0002-5095-860X
mailto:woeginger@informatik.rwth-aachen.de
https://orcid.org/0000-0001-8816-2693
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.20
https://arxiv.org/abs/1802.08509
https://arxiv.org/abs/1802.08509
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Graph Similarity and Approximate Isomorphism

1 Introduction

Graph isomorphism has been a central open problem in algorithmics for the last 50 years.
The question of whether graph isomorphism is in polynomial time is still wide open, but at
least we know that it is in quasi-polynomial time [4]. On the practical side, the problem
is largely viewed as solved; there are excellent tools [9, 15, 21, 22] that efficiently decide
isomorphism on all but very contrived graphs [25]. However, for many applications, notably in
machine learning, we only need to know whether two graphs are “approximately isomorphic”,
or more generally, how “similar” they are. The resulting graph similarity problem has
been extensively studied in the machine learning literature under the name graph matching
(e.g. [1, 10, 14, 29, 30]), and also in the context of the schema matching problem in database
systems (e.g. [23]). Given the practical significance of the problem, surprisingly few theoretical
results are known. Before we discuss these known and our new results, let us state the
problem formally.

Graph Similarity. It is not obvious how to define the distance between two graphs, but
the distance measure that we study here seems to be the most straightforward one, and it
certainly is the one that has been studied most. For two n-vertex graphs G and H with
adjacency matrices AG and AH , we define the Frobenius distance between G and H to be

dist(G,H) := min
π
‖AπG −AH‖F . (1)

Here π ranges over all permutations of the vertex set of G, AπG denotes the matrix obtained
from AG by permuting rows and columns according to π, and the norm ‖M‖F :=

√∑
i,jM

2
ij

is the Frobenius norm of a matrix M = (Mij). Note that dist(G,H)2 counts the number of
edge mismatches in an optimal alignment of the two graphs. The graph similarity problem,
denoted by GSim, is the problem of computing dist(G,H) for graphs G,H of the same
order, or, depending on the context, the decision version of this problem (decide whether
dist(G,H) ≤ d for a given d). We can easily extend the definitions to weighted graphs and
denote the weighted graph similarity problem by WSim. In practice, this is often the more
relevant problem. Instead of the adjacency matrices of graphs, we may also use the Laplacian
matrices of the graphs to define distances. Recall that the Laplacian matrix of a graph G is
the matrix LG := DG−AG, where DG is the diagonal matrix in which the entry (DG)ii is the
degree of the ith vertex, or in the weighted case, the sum of the weights of the incident edges.
Let distL(G,H) := minπ ‖LπG − LH‖F be the corresponding distance measure. Intuitively,
in the definition of distL(G,H) we prefer permutations that map vertices of similar degrees
onto one another. Technically, distL(G,H) is interesting, because the Laplacian matrices
are positive semidefinite (if the weights are nonnegative). Both the (weighted) similarity
problem and its version for the Laplacian matrices are special cases of the problem MSim
of computing minP ‖A − PBP−1‖F for given symmetric matrices A,B ∈ Rn×n. In the
Laplacian case, these matrices are positive semidefinite.1

The QAP. The graph similarity problem is closely related to quadratic assignment problem
(QAP) [6]: given two (n× n)-matrices A,B, the goal is to find a permutation π ∈ Sn that
minimizes

∑
i,j AijBπ(i)π(j). The usual interpretation is that we have n facilities that we

1 Note that the notion of similarity that we use here has nothing to do with the standard notion of
“matrix similarity” from linear algebra.

M. Grohe, G. Rattan, and G. J. Woeginger 20:3

want to assign to n locations. The entry Aij is the flow from the ith to the jth facility,
and the entry Bij is the distance from the ith to the jth location. The goal is to find an
assignment of facilities to locations that minimizes the total cost, where the cost for each pair
of facilities is defined as the flow times the distance between their locations. The QAP has a
large number of real-world applications, as for instance hospital planning [11], typewriter
keyboard design [27], ranking of archeological data [18], and scheduling parallel production
lines [13]. On the theoretical side, the QAP contains well-known optimization problems as
special cases, as for instance the Travelling Salesman Problem, the feedback arc set problem,
the maximum clique problem, and all kinds of problems centered around graph partitioning,
graph embedding, and graph packing.

In the maximization version max-QAP of QAP, the objective is to maximize the
quantity

∑
i,j AijBπ(i)π(j) (see [19, 24]). Both QAP and max-QAP are notoriously hard

combinatorial optimization problems, in terms of practical solvability [28] as well as in terms
of theoretical hardness results even for very restricted special cases [5, 8, 7]. It is easy to
see that MSim is equivalent to max-QAP, because in reductions between QAP and MSim
the sign of one of the two matrices is flipped. Most of the known results for GSim and its
variants are derived from results for (max)QAP.

Previous Work. It seems to be folklore knowledge that GSim is NP-complete. For example,
this can be seen by a reduction from the Hamiltonian path problem: take G to be the
n-vertex input graph and H a path of length n; then dist(G,H) ≤

√
|E(G)| − n if and

only if G has a Hamiltonian path. By the same argument, we can actually reduce the
subgraph isomorphism problem to GSim. Arvind, Köbler, Kuhnert, and Vasudev [3] study
several versions of what they call approximate graph isomorphism; their problem Min-PGI
is the same as our GSim. They prove various hardness of approximation results. Based on
an earlier QAP-approximation algorithm due to Arora, Frieze, and Kaplan [2], they also
obtain a quasi-polynomial time approximation algorithm for the related problem Max-PGI.
Further hardness results were obtained by Makarychev, Manokaran, and Sviridenko [19]
and O’Donnell, Wright, Wu, and Zhou [26], who prove an average case hardness result for a
variant of GSim problem that they call robust graph isomorphism. Keldenich [16] studied
the similarity problem for a wide range matrix norms (instead of the Frobenius norm) and
proved hardness for essentially all of them.

Our (hardness) results. So where does all this leave us? Well, GSim is obviously an
extremely hard optimization problem. We start our investigations by adding to the body of
known hardness results: we prove that GSim remains NP-hard even if both input graphs are
trees (Theorem 8). Note that in strong contrast to this, the subgraph isomorphism problem
becomes easy if both input graphs are trees [20]. The reduction from Hamiltonian path
sketched above shows that GSim is also hard if one input graph is a path. We prove that
GSim is tractable in the very restricted case that one of the input graphs is a path and the
other one is a tree (Theorem 9).

As WSim and MSim are essentially linear algebraic problems, it makes sense to look
for algebraic tractability criteria. We explore bounded rank (of the adjacency matrices) as
a tractability criteria for WSim and MSim. Indeed, the NP-hardness reductions for GSim
involve graphs which have adjacency matrices of high rank (e.g. paths, cycles). We show
that the problem GSim (and WSim) remains NP-hard as long as one of the matrices has
unbounded rank or negative eigenvalues. (Theorems 10, 11 and 12). Consequently, the realm
of tractability for WSim (and MSim) is restricted to the class of positive semi-definite (PSD)
matrices of bounded rank.

MFCS 2018

20:4 Graph Similarity and Approximate Isomorphism

Block Partition Structure. We feel that for a problem as hard as QAP or MSim, identifying
any somewhat natural tractable special case is worthwhile. Since the spectral structure of
PSD matrices of bounded rank is quite limited, we consider combinatorial restrictions: in
particular, restricting the block structure of these matrices is a natural line of investigation.

Given a weighted graph G, we call two vertices twins if they have identical (weighted)
adjacency to every vertex of G. The twin-equivalence partition of V (G), corresponding to
this equivalence relation, induces a block structure on the adjacency matrix AG. Indeed, if
S1∪̇ . . . ∪̇Sp = V (G) are the twin-equivalence classes, the submatrix AG[Si, Sj] is a constant
matrix. Hence, the rows and columns of the matrix AG can be simultaneously rearranged
to yield a p× p block matrix. The number of twin-equivalence classes will be an important
parameter of our interest: we denote this parameter by τ(G).

Our (algorithmic) results. Our main result is a polynomial time algorithm for MSim if
both input matrices are positive semidefinite and have bounded-rank, and where one of the
input matrices has a bounded number of twin-equivalence classes. Formally, we prove the
following theorem. Here, the Õ notation hides factors polynomial in the input representation.

I Theorem 1. The problem MSim can be solved in Õ(nkp2) time where
(i) the input matrices are n× n PSD matrices of rank at most k, and
(ii) one of the input matrices has at most p twin-equivalence classes.

For the proof of Theorem 1, we can re-write the (squared) objective function as ‖AP −
PB‖2F , where P ranges over all permutation matrices. This is a convex function, and it
would be feasible to minimize it over a convex domain. The real difficulty of the problem
lies in the fact that we are optimizing over the complicated discrete space of permutation
matrices. Our approach relies on a linearization of the solution space, and the key insight
(Lemma 19) is that the optimal solution is essentially determined by polynomially many
hyperplanes. To prove this, we exploit the convexity of the objective function in a peculiar
way.

2 Preliminaries

We denote the set {1, . . . , n} by [n]. Unless specified otherwise, we will always assume that
the vertex set of an n-vertex graph G is [n]. We denote the degree of a vertex v by dG(v).

Twins. Given a n× n symmetric matrix A with real entries, let GA denote the associated
weighted adjacency graph. Two vertices are called twins if they have identical (weighted)
adjacency to every vertex in the graph. Hence, two vertices labeled i, j ∈ [n] are twins if and
only if Ail = Ajl for all l ∈ [n]. This is an equivalence relation; call the resulting partition
of the vertex set as the twin-equivalence partition. The number of twin-equivalence classes
will be an important parameter of our interest: we denote this parameter by τ(G). In these
definitions, we use the matrix A and its adjacency graph AG interchangeably. This allows us
to define τ(A) for a matrix A to be τ(GA), for the associated weighted adjacency graph GA.
The connection with block structure of the matrix is straighforward: observe that we can
simultaneously rearrange the rows and columns of A to obtain a τ(A)× τ(A) block matrix W .
If S1∪̇ . . . ∪̇Sp = [n] be the twin-equivalence partition, the block Wlm (where l,m ∈ [τ(A)])
is the adjacency matrix for the induced subgraph GA[Sl, Sm]. Moreover, the definition of
twin-equivalence partition implies that this subgraph is a weighted complete bipartite graph.

M. Grohe, G. Rattan, and G. J. Woeginger 20:5

Matrices. Given an m× n matrix M , the ith row (column) of M is denoted by M i (Mi).
The multiset {M1, . . . ,Mm} is denoted by rows(M). Given S ⊆ [m], the sum

∑
i∈SM

i

is denoted by MS . We denote the n × n identity matrix by In. A real symmetric n × n
matrix M is called positive semi-definite (PSD), denoted by M � 0, if the scalar zTMz is
non-negative for every z ∈ Rn. The following conditions are well-known to be equivalent.

(i) M � 0
(ii) Every eigenvalue of M is non-negative.
(iii) M = WTW for some n×n matrixW . In other words, there exist n vectors w1, . . . , wn ∈

Rn such that Mij = wTi wj .

Given two vectors x, y ∈ Rn, their dot product 〈x, y〉 is defined to be xT y. Given M � 0,
the inner product of x, y w.r.t. M, denoted by 〈x, y〉M , is defined to be xTMy. The usual
dot product corresponds to the case M = I, the identity matrix. Every n × n symmetric
matrix M has a spectral decomposition M = UΣUT , where the rows of U form an eigenbasis.
If M has rank k, we can truncate the zero eigenvalues in Σ to obtain a truncated spectral
decomposition. Now, Σ is a k × k diagonal matrix with the eigenvalues λ1, . . . , λk ∈ R on
the diagonal. The matrix U is a n× k matrix with the corresponding eigenvectors v1, . . . , vk
as the columns U1, . . . , Uk. We will always work with truncated spectral decompositions
henceforth.

Frobenius Norm. The trace of a matrix M , denoted by Tr(M), is defined to be
∑
i∈[n]Mii.

The trace inner product of two matrices A and B, denoted by Tr(A,B), is the scalar Tr(ATB).
The Frobenius norm ‖M‖F of a matrix M is defined to be

∑
i,j∈[n]Mij

2. It is easy to check
that ‖M‖2F = Tr(M,M). Given two n-vertex graphs G and H and a permutation π ∈ Sn, a
π-mismatch between G and H is a pair {i, j} such that {i, j} ∈ E(G) and {iπ, jπ} /∈ E(H)
(or vice-versa). In other words, π : V (G)→ V (H) does not preserve adjacency for the pair
{i, j}. The following claim will be useful as a combinatorial interpretation of the Frobenius
norm. Let ∆ denote the number of π-mismatches between G and H.

I Claim 2. ‖AπG −AH‖2F = 2∆.

Proof. The only non-zero terms in the expansion of summation ‖AπG − AH‖2F correspond
to π-mismatches. Since every mismatch {i, j} contributes 1 and is counted twice in the
summation, the claim follows. J

Clustering Number. Spectral Graph Drawing is a well-established technique for visualizing
graphs via their spectral properties (see e.g. [17]). We introduce the details necessary for our
results. Let A be a n× n matrix of rank k. Let G be the corresponding adjacency graph,
with the vertex set [n]. Given a spectral decomposition A = UΛUT , Σ is a k × k matrix
and U is a n × k matrix. Since the spectral decomposition of a matrix is not unique, the
following claim will be useful.

I Claim 3. Given two spectral decompositions A = UΛUT and A = U ′ΛU ′T , the number of
distinct elements in the multi-set rows(U) is equal to the number of distinct elements in the
multi-set rows(U ′).

Therefore, the number of distinct elements in the multi-set rows(U) is invariant of our choice
of spectral decomposition A = UΛUT . This allows us to define the clustering number of a
graph G, denoted by cn(G), as the number of distinct elements in the multi-set rows(U), for

MFCS 2018

20:6 Graph Similarity and Approximate Isomorphism

some spectral decomposition A = UΛUT . The clustering number of a matrix A, denoted by
cn(A), is defined to be the clustering number of the corresponding adjacency graph.

Let A = UΛUT be a PSD matrix. The following theorem relates the clustering number
cn(A) to the number of twin-equivalence partitions τ(A).

I Theorem 4. Let A be a PSD matrix. The number of twin-equivalence classes τ(A) is equal
to p if and only if A has p distinct elements in the set rows(U) for a spectral decomposition
A = UΛUT .

Hyperplanes and Convex Functions. A hyperplane H in the Euclidean space Rk is a (k−1)-
dimensional affine subspace. The usual representation of a hyperplane is a linear equation
〈c, x〉 = α for some c ∈ Rk, α ∈ R. The convex sets {x | 〈c, x〉 > α} and {x | 〈c, x〉 < α} are
called the open half-spaces corresponding to H, denoted by H+, H− respectively.

Two sets (S, T) are weakly linearly separated if there exists a hyperplane H such that
S ⊆ H+ ∪H and T ⊆ H− ∪H . In this case, we call them weakly linearly separated along H .
A family of sets S1, . . . , Sp is weakly linearly separated if for every l,m ∈ [p], the sets Sl, Sm
are weakly linearly separated. Let Π be a partition of a set S into p sets S1, . . . , Sp. The
partition Π is said to be mutually linearly separated if the family of sets S1, . . . , Sp is weakly
linearly separated.

Recall that a subset S ⊆ Rk is called convex if for every x, y ∈ S, αx + (1 − α)y ∈ S,
α ∈ [0, 1]. A function f : Rk → R is called convex on a convex set S if for every x, y ∈ S,
f(αx+ (1−α)y) ≤ αf(x) + (1−α)f(y). The following theorem about linearization of convex
differentiable functions is well-known and is stated without proof. The gradient of a function
f : Rk → R, denoted by ∇f , is the vector-valued function [∂f∂x1

. . . ∂f∂xk]. Given X∗ ∈ Rk, let
µ∗ denote the vector ∇f(X∗).

I Theorem 5 (Convex function linearization). Let f : Rk → R be a convex function. For all
X ∈ Rk, f(X)− f(X∗) ≥ 〈µ∗, X −X∗〉.

Finally, we state an important fact about the convexity of quadratic functions. Given a
PSD matrix M ∈ Rk×k, the quadratic function QM : Rk → R is defined as QM (x) = 〈x, x〉M .

I Lemma 6 (Convexity of PSD). QM is convex on Rk.

3 Hardness Results

In this section, we show several new hardness results for problems GSim,WSim and MSim.
As we will observe, these problems turn out to be algorithmically intractable, even for severely
restricted cases. We begin by recalling the following observation.

I Theorem 7 (Folklore). GSim is NP-hard for the class of simple undirected graphs.

In fact, the problem turns out to be NP-hard even for very restricted graph classes. The
following theorem is the main hardness result of this section.

I Theorem 8. GSim is NP-hard for the class of trees.

Proof. The proof is by a reduction from the following NP-hard variant of the Three-
Partition problem [12], which is defined as follows. The input consists of integers A and
a1, . . . , a3m in unary representation, with

∑3m
i=1 ai = mA and with A/4 < ai < A/2 for

1 ≤ i ≤ 3m. The question is to decide whether a1, . . . , a3m can be partitioned into m triples
so that the elements in each triple sum up to precisely A.

M. Grohe, G. Rattan, and G. J. Woeginger 20:7

We first show that the restriction of GSim to forests is NP-hard. Given an instance of
Three-Partition, we compute an instance of GSim on the following two forests F1 and F2.
Forest F1 is the disjoint union of 3m paths with a1, . . . , a3m vertices, respectively. Forest
F2 is the disjoint union of m paths that each consists of A vertices. We claim that the
Three-Partition instance has answer YES, if and only if there exists a permutation π

such that there are at most 2m mismatches. If the desired partition exists, then for each
triple we we can pack the three corresponding paths in F1 into one of the paths in F2 with
two mismatches per triple. Conversely, if there exists a permutation π with at most 2m
mismatches, then these 2m mismatches cut the paths in F2 into 3m subpaths (we consider
isolated vertices as paths of length 0). As each of these 3m subpaths must be matched with
a path in F1, we easily deduce from this a solution for the Three-Partition instance.

To show that GSim is NP-hard for the class of trees, we modify the above forests F1
and F2 into trees T1 and T2. Formally, we add a new vertex v1 to V (F1) and then connect
one end-point of every path in F1 to v1 by an edge; note that the degree of vertex v1 in
the resulting tree is 3m. Analogously, we add a new vertex v2 to V (F2), connect it to all
paths, and thus produce a tree in which vertex v2 has degree m. For technical reasons, we
furthermore attach 8m newly created leaves to every single vertex in V (F1) and V (F2). k
The resulting trees are denoted T1 and T2, respectively.

We claim that the considered Three-Partition instance has answer YES, if and only if
there exists π : V (T1)→ V (T2) with at most 4m mismatches. If the desired partition exists,
the natural bijection maps every original forest edge in T1 to an original forest edge in T2,
except for some 2m out of the 3m edges that are incident to v1 in T1; this yields a total
number of 2m+ 2m = 4m mismatches. Conversely, suppose that there exists a permutation
π with at most 4m mismatches. Then π must map v1 in T1 to v2 in T2, since otherwise
we pay a penalty of more than 4m mismatches alone for the edges incident to the vertex
mapped into v2. As the number of mismatches for edges incident to v1 and v2 amounts to
2m, there remain at most 2m further mismatches for the remaining edges. Similarly as in
our above argument for the forests, these at most 2m mismatches yield a solution for the
Three-Partition instance. J

On the other hand, if we restrict one of the input instances to be a path, the problem
can be solved in polynomial time. The following theorem provides a positive example of
tractability of GSim.

I Theorem 9. An input instance (G,H) of GSim, where G is a path and H is a tree, can
be solved in polynomial time.

The above results exhibit the hardness of GSim, and consequently, the hardness of the
more general problems WSim and MSim. Since the graphs (for instance cycles and paths)
involved in the hardness reductions have adjacency matrices of high rank, it is natural to
ask whether MSim would become tractable for matrices of low rank. Our following theorem
shows that MSim is NP-hard even for matrices of rank at most 2. The underlying reason for
hardness is the well-known problem QAP, which shares the optimization domain Sn.

I Theorem 10. MSim is NP-hard for symmetric matrices of rank at most 2.

The key to the above reduction is the fact that one of the matrices has non-negative
eigenvalues while the other matrix has non-positive eigenvalues. We show that the MSim
is NP-hard even for positive semi-definite matrices. The main idea is to reformulate the
hardness reduction in Theorem 7 in terms of Laplacian matrices.

MFCS 2018

20:8 Graph Similarity and Approximate Isomorphism

I Theorem 11. MSim is NP-hard for positive semi-definite matrices.

In fact, we show that the problem remains NP-hard, even if one of the matrices is of rank
1. The proof follows by modifying the matrices in the proof of Theorem 10 so that they are
positive semi-definite.

I Theorem 12. MSim is NP-hard for positive semi-definite matrices, even if one of the
matrices has rank 1.

Therefore, the realm of tractability for MSim is restricted to positive definite matrices of
bounded rank.

4 The QVP Problem

We proceed towards the proof of Theorem 1, our main algorithmic result about MSim.
In order to prove this theorem, we need to define an intermediate problem, called the
Quadratic-Vector-Partition (QVP). In this section, we study several aspects of this
problem. First, we state this problem, and show an efficient reduction from MSim to QVP
(Sections 4.1 and 4.2). The definition of the problem QVP is slightly technical; the ensuing
reduction, from MSim to QVP, will justify the introduction of this intermediate problem. In
Sections 4.3 and 4.4, we will establish strong conditions on the optimal solutions for a QVP
instance. Later on, in Section 5, these conditions will allow us to design efficient algorithms
for QVP, which will finish the proof of Theorem 1.

4.1 QVP, definition

Let p and k be fixed positive integers. The input instance to QVP is a tuple (W,K,Λ,∆),
where

W is a set of n vectors {w1, . . . , wn} ⊆ Rk,
K is a p× p PSD matrix,
Λ is a k × k diagonal matrix with non-negative entries, and,
∆ is (the unary encoding of) a p-tuple (n1, . . . , np) such that n1 + · · ·+ np = n.

Some additional notation is required, before we proceed further. An ordered partition
T1∪̇ · · · ∪̇Tp of [n] is said to have type ∆ if the cardinalities |Tl| = nl, for all l ∈ [p]. Let P∆
denote the set of all (ordered) partitions of [n] of type ∆. Let T be a subset of [n]. Denote
the subset of W indexed by the set T as W [T] = {wj | j ∈ T}. The centroid of the subset
W [T] is denoted by ŵT . In other words, ŵT = 1

|T |
∑
i∈T wi.

We continue with the definition of QVP. Given a partition P = (T1, . . . , Tp) ∈ P∆, the
QVP objective function F (P) is defined as

F (P) =
∑

l,m∈[p]

Klm 〈ŵTl , ŵTm〉Λ .

The optimization problem QVP is to compute a partition P ∗ ∈ P∆ which is a maximizer of
the objective function F (P) over the domain P∆.

M. Grohe, G. Rattan, and G. J. Woeginger 20:9

4.2 MSim reduces to QVP
Let k and p be fixed positive integers. Let (A,B) be an MSim instance, as defined in
Theorem 1: the PSD matrices A and B are of rank at most k, and moreover, τ(B) = p.
The following lemma describes a reduction from MSim to QVP. Here, the Õ notation hides
factors polynomial in the size of the input representation.

I Lemma 13. There exists an Õ(n3) running time algorithm which can transform the MSim
instance (A,B) into a QVP-instance (W,K,Λ,∆), with the following property. Given an
optimal solution for this QVP-instance, we can compute an optimal solution for the MSim
instance, in O(n) running time.

Proof. Fix two spectral decompositions A = UΛUT and B = V ΓV T of A and B respectively.
Since τ(B) = p, the multiset rows(V) has exactly p distinct vectors (by Theorem 4). Let
these p distinct vectors be denoted by {Ṽ 1, . . . , Ṽ p}. Let n1, . . . , np be the multiplicity of the
elements Ṽ 1, . . . , Ṽ p in the multiset rows(V). Clearly, n1 + · · ·+np = n. Let P̃ = S1∪· · ·∪Sp
be the partition of the set [n] such that Sl = {i |V i = Ṽ l}, for l ∈ [p]. In other words, the
partition P̃ encodes the equivalence relation V i = V j , where i, j ∈ [n].

Let us describe the polynomial time transformation of the MSim instance (A,B) into
the QVP instance (W,K,Λ,∆). Define W as the multiset rows(U). In other words, we
can denote W = {w1, . . . , wn} where wi = U i. Define K to be the p× p matrix defined as
Klm = |Sl| · |Sm| · 〈Ṽ l, Ṽ m〉Γ, for l,m ∈ [p]. Since we can write Klm = 〈|Sl| · Ṽ l, |Sm| · Ṽ m〉Γ,
we can show that K is positive semi-definite. We set Λ to be the k× k diagonal matrix in the
spectral decomposition A = UΛUT . Finally, we set ∆ to be (n1, . . . , np): these numbers were
defined in the previous paragraph. The computation of this QVP instance can be performed
in Õ(n3) time, which is the time taken to compute the spectral decompositions for A and B.

It remains to show that an optimal solution for this QVP instance yields an optimal
solution for the MSim instance inO(n) time. Observe that ‖Aπ−B‖2F = Tr(Aπ−B,Aπ−B) =
Tr(Aπ, Aπ) + Tr(B,B) − 2 Tr(Aπ, B). Since Tr(Aπ, Aπ) = ‖Aπ‖2F = ‖A‖2F = Tr(A,A), we
have ‖Aπ −B‖2F = Tr(A,A) + Tr(B,B)− 2 Tr(Aπ, B). This derivation implies that we can
equivalently maximize Tr(Aπ, B) over π ∈ Sn. Observe that Tr(Aπ, B) can be rewritten as

Tr(Aπ, B) =
∑
i,j∈[n]

aiπjπ bij

=
∑
i,j∈[n]

〈U i
π

, U j
π

〉Λ · 〈V i, V j〉Γ

=
∑

l,m∈[p]

 ∑
i∈Sl, j∈Sm

〈U i
π

, U j
π

〉Λ · 〈V i, V j〉Γ

which can be further re-written as

Tr(Aπ, B) =
∑

l,m∈[p]

 ∑
i∈Sl, j∈Sm

〈U i
π

, U j
π

〉Λ

 · 〈Ṽ l, Ṽ m〉Γ
=

∑
l,m∈[p]

〈∑
i∈Sl

U i
π

,
∑
j∈Sm

U j
π

〉
Λ

· 〈Ṽ l, Ṽ m〉Γ

=
∑

l,m∈[p]

|Sl| · |Sm| ·
〈
ŵSπ

l
, ŵSπm

〉
Λ
· 〈Ṽ l, Ṽ m〉Γ

MFCS 2018

20:10 Graph Similarity and Approximate Isomorphism

Define the partition Pπ of [n] to be Pπ = (Sπ1 , . . . , Sπp). Observe that Pπ is of type ∆, and
therefore, Pπ ∈ P∆. Using the definition of the matrix K, we can thus rewrite

Tr(Aπ, B) =
∑

l,m∈[p]

|Sl| · |Sm| ·
〈
ŵSπ

l
, ŵSπm

〉
Λ
· 〈Ṽ l, Ṽ m〉Γ

=
∑

l,m∈[p]

〈
ŵSπ

l
, ŵSπm

〉
Λ
· Klm

= F (Pπ),

which allows us to state the following equality.

‖Aπ −B‖2F = Tr(A,A) + Tr(B,B)− 2F (Pπ). (2)

We continue with the proof of the lemma. Let P ∗ be an optimal solution for our QVP
instance. In other words, the partition P ∗ = (T ∗1 , . . . , T ∗p) is a maximizer of F (P) over the set
P∆. Let π∗ be a permutation which maps the sets Sl to T ∗l , for all l ∈ [p]. We claim that π∗
is an optimal solution for the MSim instance. To see this, suppose π∗ is not optimal. Instead,
let π′ be an optimal solution for the MSim instance, and hence, ‖Aπ∗ −B‖2F > ‖Aπ

′ −B‖2F .
Define a related partition Pπ′ = (Sπ′1 , . . . , Sπ

′

p): clearly, π′ ∈ P∆. Since Equation 2 implies
that

‖Aπ
∗
−B‖2F = Tr(A,A) + Tr(B,B)− 2F (P ∗),

‖Aπ
′
−B‖2F = Tr(A,A) + Tr(B,B)− 2F (Pπ′),

we use ‖Aπ∗ − B‖2F > ‖Aπ′ − B‖2F to obtain that F (P ∗) < F (Pπ′). This contradicts the
maximality of P ∗. Hence, π∗ must be an optimal solution for the QVP instance.

Given such an optimal solution P ∗ for the QVP instance, the computation of the optimal
solution π∗ for the MSim instance is a straightforward Õ(n) procedure: we define π∗ by
choosing arbitrary bijections between the sets Sl and T ∗l , for all l ∈ [p]. This finishes the
proof of our lemma. J

4.3 Linearization of Convex Functions
We take a small detour towards the properties of convex functions. These properties will be
useful for studying the optimal solutions to the QVP problem. In general, we show that
the linearization of a convex function can be useful in understanding its optima over a finite
domain. In this context, we prove the following lemma about convex functions, which is
interesting in its own right.

I Lemma 14. Let Ω be a finite subset of Rk × R`. Let G : Rk → R, H : R` → R such
that H is convex, and let F : Rk × R` → R be defined as F (X,Y) = G(X) + H(Y). Let
(X∗, Y ∗) ∈ arg max(X,Y)∈Ω F (X,Y).

Then there exist a µ∗ ∈ R` such that:
(i) (X∗, Y ∗) ∈ arg max(X,Y)∈Ω L(X,Y) where L(X,Y) = G(X) + 〈µ∗, Y 〉;
(ii) arg max(X,Y)∈Ω L(X,Y) ⊆ arg max(X,Y)∈Ω F (X,Y).

Proof. Let (X∗, Y ∗) ∈ arg maxS∈Ω F (S). Since H is convex, we can use Theorem 5 to
linearize H around Y ∗ ∈ R`. Hence, there exists a µ∗ ∈ R` such that H(Y) − H(Y ∗) ≥
〈µ∗, Y − Y ∗〉, or equivalently,

H(Y)− 〈µ∗, Y 〉 ≥ H(Y ∗)− 〈µ∗, Y ∗〉, (3)

M. Grohe, G. Rattan, and G. J. Woeginger 20:11

for all Y ∈ R`. Hence with L(X,Y) = G(X) + 〈µ∗, Y 〉, for all (X,Y) ∈ Ω we have

L(X∗, Y ∗) = F (X∗, Y ∗)−H(Y ∗) + 〈µ∗, Y ∗〉 ≥ F (X,Y)−H(Y) + 〈µ∗, Y 〉 = L(X,Y),

where the inequality holds by (3) and because (X∗, Y ∗) maximizes F . Hence (X∗, Y ∗)
maximizes L as well, which proves (i).

For (ii), consider (X∗∗, Y ∗∗) ∈ arg max(X,Y)∈Ω L(X,Y). To prove that (X∗∗, Y ∗∗) ∈
arg max(X,Y)∈Ω F (X,Y), it suffices to prove that F (X∗∗, Y ∗∗) ≥ F (X∗, Y ∗). By (i), we have
L(X∗, Y ∗) = L(X∗∗, Y ∗∗). Thus

F (X∗∗, Y ∗∗) = L(X∗∗, Y ∗∗) +H(Y ∗∗)− 〈µ∗, Y ∗∗〉 ≥ L(X∗, Y ∗) +H(Y ∗)− 〈µ∗, Y ∗〉
= F (X∗, Y ∗),

where the inequality holds by (3) with (X,Y) := (X∗∗, Y ∗∗) and as (X∗∗, Y ∗∗) maximizes L.
J

In other words, for every (X∗, Y ∗) which maximizes F over Ω, there exists a partially
“linearized” function L such that (X∗, Y ∗) maximizes L over Ω. Moreover, every maximizer
of L over Ω is a maximizer of F over Ω. This additional condition is necessary so that this
“linearization” does not create spurious optimal solutions.

I Corollary 15. Let Ω be a finite subset of Rkp. For all i ∈ [k], let Gi : Rk → R be a convex
function. Let F : Rkp → R be defined as F (X1, . . . , Xk) := G1(X1) + . . . + Gk(Xk). Let
X∗ = (X∗1 , . . . , X∗k) ∈ arg maxX∈Ω F (X).

Then there are µ∗1, . . . , µ∗k ∈ Rp such that:
(i) X∗ ∈ arg maxX∈Ω L(X) where L(X1, . . . , Xk) =

∑k
i=1〈µ∗i , Xi〉;

(ii) arg maxX∈Ω L(X) ⊆ arg max∈Ω F (X).

Proof. Inductively apply the lemma to the functions

F i((X1, . . . , Xi−1, Xi+1, . . . , Xk), Xi) =

i−1∑
j=1
〈µ∗j , Xj〉 +

k∑
j=i+1

Gj(Xj)

︸ ︷︷ ︸

=:Gi(X1,...,Xi−1,Xi+1,...,Xk)

+ Gi(Xi)︸ ︷︷ ︸
=:Hi(Xi)

. J

4.4 Optimal Solution Structure for QVP
Let us express the QVP objective function

F (P) =
∑

l,m∈[p]

Klm 〈ŵTl , ŵTm〉Λ

as a restriction of a convex function to a finite domain. Using the results above for linearization
of convex functions, we show that the optimal solutions for a QVP instance must satisfy
certain structural constraints, specified by Lemma 19.

Formally, given a QVP instance (W,K,Λ,∆), and a partition P = (T1, . . . , Tp) ∈ P∆,
we define k vectors X1, . . . , Xk as follows. For q ∈ [k], let Xq be the vector of length p

corresponding to the qth coordinates of vectors ŵT1 , . . . , ŵTp . Clearly, the vectors X1, . . . , Xk

are a function of the partition P . Recall that Λ is a diagonal matrix with k non-negative
entries, say λ1, . . . , λk.

I Claim 16. F (P) =
k∑
q=1

λq〈Xq, Xq〉K .

MFCS 2018

20:12 Graph Similarity and Approximate Isomorphism

Observe that the function G : Rp 7→ R defined by G(Y) = 〈Y, Y 〉K is a convex function
(by Lemma 6). Define a function F̃ (Y1, . . . , Yp) = λ1G(Y1) + · · · + λkG(Yk), where the
vectors Y1, . . . , Yk ∈ Rp. This function is convex as well: it is a linear combination of convex
functions, with positive co-efficients. Observe that F (P) = F̃ (X1, . . . , Xp). Therefore, the
problem of maximizing F over P∆ is, essentially, a problem of maximizing a convex function
F̃ (Y1, . . . , Yk) over a finite discrete domain.

Using Corollary 15, we claim that a maximizer P ∗ = (T ∗1 , . . . , T ∗p) of the objective function
F (P) over the domain P∆ must be a maximizer for some linear objective function L1(P)
over the domain P∆.

I Claim 17. There exist vectors µ∗1, . . . , µ∗k ∈ Rp such that P ∗ is a maximizer of the function

L1(P) =
k∑
q=1

λq〈µ∗q , Xq〉K over P∆. Moreover, every maximizer of L1(P) is a maximizer of

F (P).

We can further reformulate the optimality conditions of Claim 17 as follows.

I Claim 18. There exist vectors µ1, . . . , µp ∈ Rk such that P ∗ is a maximizer of the function

L2(P) =
p∑

m=1
〈µm, ŵTm〉 over P∆. Moreover, every maximizer of L2(P) is a maximizer of

L1(P), and consequently, a maximizer of F (P).

The above claim leads to a strong geometrical restriction on the partition W [T ∗1], . . . ,W [T ∗p]
of W , induced by the optimal partition P ∗ ∈ P∆.

I Lemma 19. Let P ∗ = (T ∗1 , . . . , T ∗p) be an optimal solution for a QVP instance (W,K,Λ,∆).
The partition (W [T ∗1], . . . ,W [T ∗p]) of the set W is (weakly) mutually linearly separated.

Proof. By Claim 18, there exist vectors µ1, . . . , µp ∈ Rk such that P ∗ is a maximizer of
L2(P). Suppose there exist q, r such that W [T ∗q] and W [T ∗r] are not (weakly) linearly
separated. We claim that this leads to a contradiction.

Let nq and nr be the cardinalities of the sets T ∗q and T ∗r . We use the notation WT

to denote the sum of the vectors in the set W [T], for a subset T ⊆ [n]. Let us isolate
the two terms 〈µq, ŵT∗q 〉 + 〈µr, ŵT∗r 〉 and rewrite them as 〈µqnq ,W

T∗q 〉 + 〈µrnr ,W
T∗r 〉. Let us

denote 1
nq
µq by µ′q, and 1

nr
µr by µ′r. Therefore, the terms can be re-written as 〈µ′q,WT∗q 〉 +

〈µ′r,WT∗r 〉.
Rewriting further, we can express the above terms as 〈(µ′q−µ′r),WT∗q 〉+〈µ′r, (WT∗q +WT∗r)〉.

Recall that the sets W [T ∗q] and W [T ∗r] are not weakly linearly separated. Let us partition
the set W [T ∗q]∪W [T ∗r] into two sets W [T ′q] and W [T ′r] such that (a) |T ′q| = nq, |T ′r| = nr and
(b) the sets W [T ′q] and W [T ′r] are weakly linearly separated along the direction (µ′q − µ′r).
Indeed, we can sort all elements w in W [T ∗q] ∪W [T ∗r] in a descending order, according to
their (signed) projection 〈(µ′q − µ′r), w〉 along (µ′q − µ′r). Pick the top nq elements in this
ordering to obtain the set T ′q and collect the remaining nr elements to form the set T ′r. Note
that the sets T ′q and T ′r are weakly linearly separated along the direction (µ′q − µ′r), and
hence, the pair (T ∗q , T ∗r) 6= (T ′q, T ′r).

Clearly, 〈(µ′q−µ′r),WT ′q 〉 > 〈(µ′q−µ′r),WT∗q 〉 by our construction. Moreover, 〈µ′r, (WT ′q +
WT ′r)〉 = 〈µ′r, (WT∗q +WT∗r)〉, because T ′q ∪ T ′r = T ∗q ∪ T ∗r . Hence, 〈µ′q,WT ′q 〉 + 〈µ′r,WT ′r 〉 >
〈µ′q,WT∗q 〉 + 〈µ′r,WT∗r 〉, which implies that 〈µq, ŵT ′q 〉 + 〈µr, ŵT ′r 〉 > 〈µq, ŵT∗q 〉 + 〈µr, ŵT∗r 〉.
This contradicts the maximality of P ∗ for the function L2(P) over the domain P∆. J

M. Grohe, G. Rattan, and G. J. Woeginger 20:13

5 Proof of Theorem 1

In this section, we prove the following algorithmic result about QVP.

I Theorem 20. Given a QVP instance (W,K,Λ,∆), we can compute an optimal solution
for this instance in Õ(nkp2) time.

In this section, we will prove Theorem 20 in a restricted setting: we assume that the set
W is in General Position (G.P.). The proof for the general case is not very different: using a
technical tool to handle degeneracies in W , we can reduce the general case to this restricted
case. We defer the proof of Theorem 20 (i.e., the general case) to the full version of the
paper, and continue with the proof for this restricted setting.

Observe that the proof of Theorem 1 follows immediately from the above theorem.

Proof of Theorem 1. Let (A,B) be an MSim instance, as defined in the statement of
Theorem 1. Using the reduction in Lemma 13, we can compute a QVP instance (W,K,Λ,∆)
in Õ(n3) with the following property: an optimal solution to this QVP instance can be used
to compute an optimal solution for the MSim instance (A,B), in O(n) time. Using Theorem
20, we can compute an optimal solution for the QVP instance (W,K,Λ,∆) in Õ(nkp2) time.
Therefore, we can compute an optimal solution for the MSim instance in overall Õ(nkp2)
time. J

5.1 Algorithm for QVP, restricted version
We proceed with the proof of Theorem 20, under the G.P. assumption. In other words,
given a QVP instance (W,K,Λ,∆), the input set W is in General Position. Recall that
a set S of n points w1, . . . , wn ∈ Rk is said to be in general position (G.P.), if there is no
subset S′ ⊆ S with |S′| > k that lies on a common hyperplane. Moreover, we can associate
a unique hyperplane HS with every k-element subset S of W . Let H be the set of

(
n
k

)
hyperplanes, defined by each k-element subset of W . Under the G.P. assumption, we can
further strengthen Lemma 19, as follows.

I Lemma 21. Let P ∗ = (T1, . . . , Tp) be an optimal solution for a QVP instance (W,K,Λ,∆).
For every pair of sets W [Ti] and W [Tj], where i < j, there exists a hyperplane Hij in the set
H such that W [Ti] and W [Tj] are weakly linearly separated along Hij.

The proof of this lemma follows immediately from the following claim.

I Claim 22. Let W be a set of n points {w1, . . . , wn} ⊂ Rk in general position, where
n > k. Suppose W1,W2 are two disjoint subsets of W which are weakly linearly separated by
a hyperplane H. Then, there exists another hyperplane H̃ with the following properties: (a)
H̃ passes through exactly k points of W , and (b) H̃ also weakly linearly separates W1,W2.

Enumerative Algorithm. We proceed with an informal description of the algorithm. The
overall strategy of our algorithm follows from Lemma 19 and Lemma 21. We will enumerate
a particular subset P of P∆ defined as follows. The set P is the set of all weakly linearly
separated partitions P = (T1, . . . , Tp) of W with the following property (stated in Lemma
21). For every pair of sets W [Ti] and W [Tj], where i < j, there exists a hyperplane Hij

in H such that W [Ti] and W [Tj] are weakly linearly separated along Hij . Clearly, we can
maximize the objective function F (P) over the set P, instead of the original domain P∆:

MFCS 2018

20:14 Graph Similarity and Approximate Isomorphism

by Lemma 21, an optimal solution must lie in the set P. Therefore, it suffices to prove the
following lemma.

I Lemma 23 (Enumeration, under G.P. assumption). Given a QVP instance (W,K,Λ,∆),
assume that the set W is in General Position. Then, we can enumerate the set P in Õ(nkp2)
time.

Proof. From Lemma 21, we can deduce that a partition P = (T1, . . . , Tp) ∈ P can be
associated with a sequence of

(
p
2
)
separating hyperplanes Hij ∈ H, i < j, i, j ∈ [p]. In

particular, the hyperplane Hij weakly linearly separates W [Ti] and W [Tj].

Therefore, we enumerate the set P as follows. We branch over every choice of |H|(
p
2) ≤ n

kp2
2

sequences of hyperplanes. We can define p convex regions R1, . . . , Rp using these hyperplanes;
the region Ri is supposed to contain the set W [Ti], i ∈ [p].

We assign the elements of W to these p disjoint convex regions R1, . . . , Rp. It is possible
that an element wj might lie on one or more of the hyperplanes Hij . For such an ‘ambigious’
point, we brute-force try all possible p assignments of regions Ri. Since every hyperplane in
H contains exactly k points of W , there can be at most

(
p
2
)
· k such ambigious points: this

leads to an additional branching factor of at most p(
p
2)·k. For each such branch, we obtain

a partition (W1, . . . ,Wp) of W . If the type of this partition is not equal to ∆, we reject it;
otherwise we add it to the list P . The overall branching is bounded by n

kp2
2 · p(

p
2)·k which is

bounded by n
kp2

2 · n
kp2

2 ≤ nkp2 . The overall running time is bounded by Õ(nkp2).
Clearly, every partition P in P can be discovered along some branch of our computation:

we branch over all hyperplane sequences and further, over all assignments of ‘ambigious’
points. Moreover, every partition enumerated above belongs to P , by our construction. Our
overall branching factor of Õ(nkp2) is also an upper bound on the cardinality of P. This
finishes the proof of the lemma. J

Since we can enumerate the set P in Õ(nkp2) time, the optimal solution can be computed
in a similar time as well. We summarize the above discussion as the following theorem.

I Theorem 24 (QVP algorithm, G.P. assumption). QVP can be solved in Õ(nkp2) running
time.

6 Conclusion

Through our results, we were able to gain insight into the tractibility of the problems GSim
and MSim. However, there are a few open threads which remain elusive. The regime of
bounded rank k and unbounded parameter τ(G) is still not fully understood for MSim, in
the case of positive semi-definite matrices. It is not clear whether the problem is P-time or
NP-hard in this case. Indeed, an nO(k) algorithm for MSim, in the case of positive semi-
definite matrices, remains a possibility. From the perspective of parameterized complexity,
we can ask if MSim is W[1]-hard, where the parameter of interest is the rank k. Finally, the
approximability for the problems MSim deserves further examination, especially for the case
of bounded rank.

M. Grohe, G. Rattan, and G. J. Woeginger 20:15

References

1 H.A. Almohamad and S.O. Duffuaa. A linear programming approach for the weighted
graph matching problem. IEEE Transactions on pattern analysis and machine intelligence,
15(5):522–525, 1993.

2 S. Arora, A. Frieze, and H. Kaplan. A new rounding procedure for the assignment prob-
lem with applications to dense graph arrangement problems. Mathematical programming,
92(1):1–36, 2002.

3 V. Arvind, J. Köbler, S. Kuhnert, and Y. Vasudev. Approximate graph isomorphism. In
B. Rovan, V. Sassone, and P. Widmayer, editors, Proceedings of the 37th International
Symposium on Mathematical Foundations of Computer Science, volume 7464 of Lecture
Notes in Computer Science, pages 100–111. Springer Verlag, 2012.

4 L. Babai. Graph isomorphism in quasipolynomial time. In Proceedings of the 48th Annual
ACM Symposium on Theory of Computing (STOC ’16), pages 684–697, 2016.

5 R.E. Burkard, E. Cela, G. Rote, and G.J. Woeginger. The quadratic assignment prob-
lem with a monotone anti-monge and a symmetric toeplitz matrix: easy and hard cases.
Mathematical Programming, 82:125–158, 1998.

6 E. Cela. The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1998.

7 E. Cela, V.G. Deineko, and G.J. Woeginger. Well-solvable cases of the qap with block-
structured matrices. Discrete Applied Mathematics, 186:56–65, 2015.

8 E. Cela, N. Schmuck, S. Wimer, and G.J. Woeginger. The wiener maximum quadratic
assignment problem. Discrete Optimization, 8:411–416, 2011.

9 P. Codenotti, H. Katebi, K. A. Sakallah, and I. L. Markov. Conflict analysis and branch-
ing heuristics in the search for graph automorphisms. In 2013 IEEE 25th International
Conference on Tools with Artificial Intelligence, Herndon, VA, USA, November 4-6, 2013,
pages 907–914, 2013.

10 D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty years of graph matching in pat-
tern recognition. International journal of pattern recognition and artificial intelligence,
18(3):265–298, 2004.

11 A.N. Elshafei. Hospital layout as a quadratic assignment problem. Operational Research
Quarterly, 28:167–179, 1977.

12 M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, 1979.

13 A.M. Geoffrion and G.W. Graves. Scheduling parallel production lines with changeover
costs: Practical application of a quadratic assignment/lp approach. Operational Research,
24:595–610, 1976.

14 S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE
Transactions on pattern analysis and machine intelligence, 18(4):377–388, 1996.

15 T. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large and sparse
graphs. In Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments
and the Fourth Workshop on Analytic Algorithms and Combinatorics, pages 135–149. SIAM,
2007.

16 P. Keldenich. Random robust graph isomorphism. Master’s thesis, Department of Compter
Science, RWTH Aachen University, 2015.

17 Y. Koren. Drawing graphs by eigenvectors: theory and practice. Computers and Mathem-
atics with Applications, 49(11):1867–1888, 2005.

18 J. Krarup and Pruzan P.M. Computer-aided layout design. Mathematical Programming
Study, 9:75–94, 1978.

MFCS 2018

20:16 Graph Similarity and Approximate Isomorphism

19 K. Makarychev, R. Manokaran, and M. Sviridenko. Maximum quadratic assignment prob-
lem: Reduction from maximum label cover and lp-based approximation algorithm. ACM
Transactions on Algorithms, 10(4):18, 2014.

20 D.W. Matula. Subtree isomorphism in o(n5/2). In P. H. B. Alspach and D. Miller, editors,
Algorithmic Aspects of Combinatorics, volume 2 of Annals of Discrete Mathematics, pages
91–106. Elsevier, 1978.

21 B. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.
22 B. D. McKay and A. Piperno. Practical graph isomorphism, II. J. Symb. Comput., 60:94–

112, 2014.
23 S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph match-

ing algorithm and its application to schema matching. In Proceedings. 18th International
Conference on Data Engineering, pages 117–128, 2002.

24 V. Nagarajan and M. Sviridenko. On the maximum quadratic assignment problem. In
Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
516–524, 2009.

25 D. Neuen and P. Schweitzer. Benchmark graphs for practical graph isomorphism. ArXiv
(CoRR), arXiv:1705.03686 [cs.DS], 2017.

26 R. O’Donnell, J. Wright, C. Wu, and Y. Zhou. Hardness of robust graph isomorphism,
Lasserre gaps, and asymmetry of random graphs. In Proceedings of the 25th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 1659–1677, 2014.

27 M.A. Pollatschek, N. Gershoni, and Y.T. Radday. Optimization of the typewriter keyboard
by simulation. Angewandte Informatik, 17:438–439, 1976.

28 F. Rendl and H. Wolkowicz. Applications of parametric programming and Eigenvalue
maximization to the quadratic assignment problem. Mathematical Programming, 53:63–78,
1992.

29 S. Umeyama. An eigendecomposition approach to weighted graph matching problems.
IEEE transactions on pattern analysis and machine intelligence, 10(5):695–703, 1988.

30 M. Zaslavskiy, F. Bach, and J.-P. Vert. A path following algorithm for the graph matching
problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12):2227–
2242, 2009.

Finding Short Synchronizing Words for Prefix
Codes
Andrew Ryzhikov
Université Paris-Est, LIGM, Marne-la-Vallée, France
ryzhikov.andrew@gmail.com

Marek Szykuła1

Institute of Computer Science, University of Wrocław, Wrocław, Poland
msz@cs.uni.wroc.pl

Abstract
We study the problems of finding a shortest synchronizing word and its length for a given prefix
code. This is done in two different settings: when the code is defined by an arbitrary decoder
recognizing its star and when the code is defined by its literal decoder (whose size is polynomially
equivalent to the total length of all words in the code). For the first case for every ε > 0 we prove
n1−ε-inapproximability for recognizable binary maximal prefix codes, Θ(log n)-inapproximability
for finite binary maximal prefix codes and n 1

2−ε-inapproximability for finite binary prefix codes.
By c-inapproximability here we mean the non-existence of a c-approximation polynomial time
algorithm under the assumption P 6= NP, and by n the number of states of the decoder in the
input. For the second case, we propose approximation and exact algorithms and conjecture that
for finite maximal prefix codes the problem can be solved in polynomial time. We also study the
related problems of finding a shortest mortal and a shortest avoiding word.

2012 ACM Subject Classification Theory of computation → Formal languages and automata
theory

Keywords and phrases synchronizing word, mortal word, avoiding word, Huffman decoder, in-
approximability

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.21

Acknowledgements The first author would like to thank Dominique Perrin for many useful
discussions. We are also grateful to anonymous reviewers for their comments that improved
presentation of the paper.

1 Introduction

Prefix codes are a simple and powerful class of variable-length codes that are widely used in
information compression and transmission. A famous example of prefix codes is Huffman’s
codes [15]. In general, variable length codes are not resistant to errors, since one deletion,
insertion or change of a symbol can desynchronize the decoder causing incorrect decoding of
all the remaining part of the message. However, in a large class of codes called synchronizing
codes resynchronization of the decoder is possible in such situations. It is known that almost
all maximal finite prefix codes are synchronizing [12]. Synchronization of finite prefix codes
has been investigated a lot [5, 7, 8, 10, 21, 22], see also the book [6] and references therein.
For efficiency reasons, it is important to use as short words resynchronizing the decoder as

1 Supported in part by the National Science Centre, Poland under project numbers 2017/25/B/ST6/01920
and 2014/15/B/ST6/00615.

© Andrew Ryzhikov and Marek Szykuła;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ryzhikov.andrew@gmail.com
mailto:msz@cs.uni.wroc.pl
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Finding Short Synchronizing Words for Prefix Codes

q0

q1q2

1
0

0, 1

0, 1

ε(q0)

1(q1)

11(q2)

111(q0)110(q0)

10(q2)

101(q0)100(q0)

0(q2)

01(q0)00(q0)

Figure 1 The Wielandt automaton on three states and the tree of the code 0{0, 1} ∪ 1{0, 1}2.

possible to decrease synchronization time. However, despite the interest in synchronizing
prefix codes, the computational complexity of finding short synchronizing words for them has
not been studied so far. In this paper, we provide a systematic investigation of this topic.

Each recognizable (by a finite automaton) maximal prefix code can be represented by
an automaton decoding the star of this code. For a finite code, this automaton can be
exponentially smaller than the representation of the code by listing all its words (consider,
for example, the code of all words of some fixed length). This can, of course, happen even if
the code is synchronizing. An important example here is the code 0{0, 1}n−1 ∪ 1{0, 1}n. The
minimized decoder of this code is a famous Wielandt automaton with n+ 1 states (see ex.
[1]), while the literal automaton contains 2n−1 + 2n states, see Figure 1 for the case n = 3.
In different applications, the first or the second way of representing the code can be useful.
In some cases large codes having a short description may be represented by a minimized
decoder, while in other applications the code can be described by simply providing the list of
all codewords. The number of states of the literal decoder is equal to the number of different
prefixes of the codewords, and thus the representations of a prefix code by listing all its
codewords and by providing its literal automaton are polynomially equivalent. We study the
complexity of problems for both arbitrary and literal decoders of finite prefix codes.

In this paper we study the existence of approximation algorithms for the problem Short
Sync Word of finding a shortest synchronizing words in several classes of deterministic
automata decoding prefix codes. In Section 2 we describe main definitions and survey
existing results in the computational complexity of Short Sync Word. In Section 3 we
provide a strong inapproximability result for this problem in the class of strongly connected
automata. Section 4 is devoted to the same problem in acyclic automata, which are then
used in Section 5 to show logarithmic inapproximability of Short Sync Word in the class
of Huffman decoders. In Section 6 we provide a much stronger inapproximability result for
partial Huffman decoders. In Section 7 we provide several algorithms for literal Huffman
decoders and conjecture that Short Sync Word can be solved in polynomial time in this
class. Finally, in Section 8 we apply the developed techniques to the problems of finding
shortest mortal and avoiding words.

2 Main Definitions and Related Results

A partial deterministic finite automaton (which we simply call a partial automaton in this
paper) is a triple A = (Q,Σ, δ), where Q is a set of states, Σ is a finite alphabet and
δ : Q × Σ → Q is a (possibly incomplete) transition function. The function delta can be
canonically extended to a function δ : Q× Σ∗ → Q by defining δ(q, wx) = δ(δ(q, w), x) for

A. Ryzhikov and M. Szykuła 21:3

x ∈ Σ, w ∈ Σ∗. If δ is a complete function, the automaton is called complete (in this case we
call it just an automaton). An automaton is called strongly connected if for every ordered
pair q, q′ of states there is a word mapping q to q′.

A state in a partial automaton is called sink if each letter either maps the state to itself
or is undefined. A simple cycle in a partial automaton A = (Q,Σ, δ) is a sequence q1, . . . , qk
of its states such that all the states in the sequence are different and there exist letters
x1, . . . , xk ∈ Σ such that δ(qi, xi) = qi+1 for 1 ≤ i ≤ k− 1 and δ(qk, xk) = q1. A simple cycle
is a self-loop if it consists of only one state. We call a partial automaton weakly acyclic if all
its cycles are self-loops, and strongly acyclic if moreover all its states with self-loops are sink
states. Some properties of these automata have been studied in [19].

There is a strong relation between partial automata and prefix codes [6]. A set X of words
is called a prefix code if no word in X is a prefix of another word. The class of recognizable
(by an automaton) prefix codes can be described as follows. Take a strongly connected
partial automaton A and pick a state r in it. Then the set of all first return words of r (that
is, words mapping r to itself such that each non-empty prefix does not map r to itself) is
a recognizable prefix code. Moreover, each recognizable prefix code can be obtained this
way. A prefix code is called maximal if it is not a subset of another prefix code. The class
of maximal recognizable prefix codes corresponds to the class of complete automata. If a
state r can be picked in an automaton in such a way that the set of all first return words is
a finite prefix code, we call the automaton a partial Huffman decoder. If such automaton is
complete (and thus the finite prefix code is maximal), we call it simply a Huffman decoder.

Let A be a partial automaton. A word w is called synchronizing for A if there exists a
state q such that w maps each state of A either to q or the mapping of w is undefined for
this state, and there is at least one state such that the mapping of w is defined for it. That
is, a word is called synchronizing if it maps the whole set of states of the automaton to a
set of size exactly one. An automaton having a synchronizing word is called synchronizing.
A recognizable prefix code is synchronizing if a trim (partial) automaton recognizing the
star of this code is synchronizing [6] (an automaton is called trim if there exists a state such
that each state is accessible from this state, and there exists a state such that each state is
coaccessible from this state). It can be checked in polynomial time that a strongly connected
partial automaton is synchronizing (Proposition 3.6.5 of [6]).

Synchronizing automata have applications in different domains, such as synchronizing
codes, symbolic dynamics, manufacturing and testing of reactive systems. They are also
the subject of the Černý conjecture, one of the main open problems in automata theory. It
stays that every n-state synchronizing automaton has a synchronizing word of length at most
(n− 1)2, while the best known upper bounds are cubic [17, 24]. See [26] for a survey on this
topic. The upper bound on the length of a shortest synchronizing word has been improved
in particular for Huffman decoders [2] and further for literal Huffman decoders [5].

We consider the following computational problem.
Short Sync Word
Input: A synchronizing partial automaton A;
Output: The length of a shortest synchronizing word for A.

Now we shortly survey existing results and techniques in the computational complexity
and approximability of finding shortest synchronizing words for deterministic automata.
To the best of our knowledge, there are no such results for partial automata. See [23] for
an introduction to NP-completeness and [25] for an introduction to inapproximability and
gap-preserving reductions.

MFCS 2018

21:4 Finding Short Synchronizing Words for Prefix Codes

There exist several techniques of proving that Short Sync Word is hard for different
classes of automata. The very first and the most widely used idea is the one of Eppstein [11].
Here, the automaton in the reduction is composed of a set of “pipes”, and transitions define
the way the active states are changed inside the pipes to reach the state where synchronization
takes place. This idea (sometimes extended a lot) allows to prove NP-completeness of Short
Sync Word in the classes of strongly acyclic [11], ternary Eulerian [16], binary Eulerian [27],
binary cyclic [16] automata. This idea is also used in the proofs of [3] for inapproximability
within arbitrary constant factor for binary automata, and for n1−ε-inapproximability for
n-state binary automata [13] (the last proof uses the theory of Probabilistically Checkable
Proofs). In fact, the proof in [13] holds true for binary automata with linear (in the number
of states of the automaton) length of a shortest synchronizing word and a sink state.

Another idea is to construct a reduction from the Set Cover problem. It can be used
to show logarithmic inapproximability of the Short Sync Word in weakly acyclic [14]
and binary automata [4]. Finally, a reduction from Shortest Common Supersequence
provides inapproximability of this problem within a constant factor [14].

In the class of monotonic automata Short Sync Word is solvable in polynomial
time: because of the structure of these automata this problem reduces to a problem of
finding a shortest words synchronizing a pair of states [20]. For general n-state automata, a
dn−1
k−1 e-approximation polynomial time algorithm exists for every k [14].

3 The Construction of Gawrychowski and Straszak

In this section we briefly recall the construction of a gadget invented by Gawrychowski and
Straszak [13] to show n1−ε-inapproximability of the Short Sync Word problem in the
general class of automata. Below we will use this construction several times.

Suppose that we have a constraint satisfiablity problem (CSP) with N variables and M
constraints such that each constraint is satisfied by at most K assignments (see [13] for the
definitions and missing details). Following the results in [13], we can assume that N,K ≤Mε,
and also that either the CSP is satisfiable, or at most 1

M1−ε fraction of all constraints can be
satisfied by an assignment. It is possible to construct the following ternary automaton Aφ in
polynomial time. For each constraint C the automaton Aφ contains a corresponding binary
(over {0, 1}) gadget TC which is a compressed tree (that is, an acyclic digraph) of height N
and the number of states at most N2K having different leaves corresponding to satisfying
and non-satisfying assignments. The automaton Aφ also contains a sink state s such that
all the leaves corresponding to satisfying assignments are mapped to s, and all other leaves
are mapped to the roots of the corresponding trees. The third letter is defined to map all
the states of each gadget to its root and to map s to itself. For every ε > 0 it is possible
to construct such an automaton with at most MN2K ≤M1+3ε states in polynomial time.
Moreover, for a satisfiable CSP we get an automaton with a shortest synchronizing word
of length at most N + 1 = O(Mε), and for a non-satisfiable CSP the length of a shortest
synchronizing word is at least NM1−ε ≥M1−ε. Since ε can be chosen arbitrary small, this
provides a gap-preserving reduction with a gap of M1−ε.

The described construction can be modified to get the same inapproximability in the
class of strongly connected automata.

I Theorem 1. The Short Sync Word problem cannot be approximated in polynomial
time within a factor of n1−ε for every ε > 0 for n-state binary strongly connected automata
unless P = NP.

A. Ryzhikov and M. Szykuła 21:5

Proof. Consider the automaton Aφ described above. Add a new letter c that cyclically
permutes the roots of all gadgets, maps s to the root of one of the gadgets and acts as
a self-loop for all the remaining states. Observe that thus constructed automaton A is
strongly connected and has the property that every non-satisfying assignment satisfies at
most the fraction of 1

M1−ε of all constraints. Thus, the gap between the length of a shortest
synchronizing word for a satisfying and non-satisfying assignment is still Θ(M1−ε).

It remains to make the automaton binary. This can be done by using Lemma 3 of [4].
This way we get a binary automaton with Θ(M1+3ε) states and a gap between Θ(Mε) and
Θ(M1−ε) in the length of a shortest synchronizing word. By choosing appropriate small
enough ε, we get a reduction with gap n1−ε for binary strongly connected n-state automata,
which proves the statement. J

4 Acyclic Automata

In this section we investigate the simply-defined classes of weakly acyclic and strongly
acyclic automata. The results for strongly acyclic automata are used in Section 5 to obtain
inapproximability for Huffman decoders. Even though the automata in the classes of weakly
and strongly acyclic automata are very restricted and have a very simple structure, the
inapproximability bounds for them are quite strong. Thus we believe that these classes are
of independent interest.

We will need the following problem.
Set Cover
Input: A set X of p elements and a family C of m subsets of X;
Output: A subfamily of C of minimum size covering X.

A family C ′ of subsets of X is said to cover X if X is a subset of the union of the sets in
C ′. For every γ > 0, the Set Cover problem with |C| ≤ |X|1+γ cannot be approximated in
polynomial time within a factor of c′ log p for some c′ > 0 unless P = NP [4].

I Theorem 2. The Short Sync Word problem cannot be approximated in polynomial
time within a factor of c log n for some c > 0 for n-state strongly acyclic automata over an
alphabet of size n1+γ for every γ > 0 unless P = NP .

Proof. We reduce the Set Cover problem. Provided X and C, we construct the automaton
A = (Q,Σ, δ) as follows. To each set ck in C we assign a letter k ∈ Σ. To each element xj in
X we assign a “pipe” of states q(j)

1 , . . . , q
(j)
p in Q. Additionally, we construct a state f in Q.

For 1 ≤ i ≤ p − 1 and all k and j we define δ(q(j)
i , k) = f if ck contains xj , and

δ(q(j)
i , k) = q

(j)
i+1 otherwise. We also define δ(q(j)

p , k) = f for all j and k.
We claim that the length of a shortest synchronizing word for A is equal to the minimum

size of a set cover in C. Let C ′ be a set cover of minimum size. Then a concatenation of the
letters corresponding to the elements of C ′ is a synchronizing word of corresponding length.

In the other direction, consider a shortest synchronizing word w for A. No letter appears
in w at least twice. If the length of w is less than p, then by construction of A the subset of
elements in C corresponding to the letters in w form a set cover. Otherwise we can take an
arbitrary subfamily of C of size p which is a set cover (such subfamily trivially exists if C
covers X).

The resulting automaton has p2 + 1 states and m letters. Thus we get a reduction with
gap c′ log p ≥ c′′ log

√
|Q| = 1

2c
′′ log |Q| for some c′′ > 0. Because of the mentioned result of

Berlinkov, we can also assume that m < p1+γ for arbitrary small γ > 0. J

Now we are going to extend this result to the case of binary weakly acyclic automata.

MFCS 2018

21:6 Finding Short Synchronizing Words for Prefix Codes

I Corollary 3. The Short Sync Word problem cannot be approximated in polynomial time
within a factor of c log n for some c > 0 for n-state binary weakly acyclic automata unless
P = NP .

Proof. We extend the construction from the proof of Theorem 2 by using Lemma 3 of [4].
If we start with a strongly acyclic automaton with p states and k letters, this results in a
binary weakly acyclic automaton with 4pk states. Moreover, the length of a shortest word of
the new automaton is between `(log k + 1) and (`+ 1)(log k + 1), where ` is the length of a
shortest word of the original automaton. Since we can assume p < k < p1+γ for arbitrary
small γ > 0, we have log n = Θ(log p), where n is the number of states of the new automaton.
Thus we get a gap of Θ(log p) = Θ(log n). J

For ternary strongly acyclic automata it is possible to get (2− ε)-inapproximability.

I Theorem 4. The Short Sync Word problem cannot be approximated in polynomial
time within a factor of 2− ε for every ε > 0 for n-state strongly acyclic automata over an
alphabet of size three unless P = NP .

5 Huffman Decoders

We start with a statement relating strongly acyclic automata to Huffman decoders.

I Lemma 5. Let A be a synchronizing strongly acyclic automaton over an alphabet of size k.
Let ` be the length of a shortest synchronizing word for A. Then there exists a Huffman
decoder AH over an alphabet of size k + 2 with the same length of a shortest synchronizing
word, and AH can be constructed in polynomial time.

Proof. Provided a strongly acyclic automaton A = (Q,Σ, δ) we construct a Huffman decoder
AH = (QH ,ΣH , δH).

Since A is a synchronizing strongly acyclic automaton, it has a unique sink state f . We
define the alphabet ΣH as the union of Σ with two additional letters b1, b2. The set of states
QH is the union of Q with some auxiliary states defined as follows. Consider the set S of
states in A having no incoming transitions. Construct a full binary tree with the root f
having S as the set of its leaves (if |S| is not a power of two, some subtrees of the tree can be
merged). Define b1 to map each state of this tree to the left child, and b2 to the right child.
Transfer the action of δ to δH for all states in Q and all letters in Σ. For all the internal
states of the tree define all the letters of Σ to map these states to f . Finally, for all the states
in Q define the action of b1, b2 in the same way as some fixed letter in Σ.

Observe that any word w over alphabet Σ synchronizing A also synchronizes AH . In the
other direction, any synchronizing word for AH has to synchronize Q, which means that each
state in Q has to be mapped to f first, so the length of a shortest synchronizing word for
AH is at least the length of a shortest synchronizing word for A. J

Now we use Lemma 5 to get preliminary inapproximability results for Huffman decoders.

I Corollary 6.
(i) The Short Sync Word problem is NP-complete for Huffman decoders over an alphabet

of size 4.
(ii) The Short Sync Word problem cannot be approximated in polynomial time within a

factor of 2− ε for every ε > 0 for Huffman decoders over an alphabet of size 5 unless
P = NP .

A. Ryzhikov and M. Szykuła 21:7

(iii) For every γ > 0, the Short Sync Word problem cannot be approximated in polynomial
time within a factor of c log n for some c > 0 for Huffman decoders over an alphabet of
size n1+γ unless P = NP .

Proof.
(i) The automaton in the Eppstein’s proof of NP-completeness of Short Sync Word

[11] is strongly acyclic. Then the reduction described in Lemma 5 can be applied.
(ii) A direct consequence of Theorem 4 and Lemma 5.
(iii) A direct consequence of Theorem 2 and Lemma 5. J

Now we show how to get a better inapproximability result for binary Huffman decoders
using the composition of synchronizing prefix codes. We present a more general result for
the composition of synchronizing codes which is of its own interest. This result shows how
to change the size of the alphabet of a synchronizing complete code in such a way that the
approximate length of a shortest synchronizing pair for it is preserved.

A set X of words over an alphabet Σ is a code if no word can be represented as a
concatenation of elements in X in two different ways. In particular, every prefix code is a
code. A pair (`X , rX) of words in X∗ is called absorbing if `XΣ∗ ∩ Σ∗rX ⊆ X∗. The length
of a pair is the total length of two word. A code X over an alphabet Σ is called complete if
every word w ∈ Σ∗ is a factor of some word in X∗, that is, if for every word w ∈ Σ∗ there
exist words v1, v2 ∈ Σ∗, u ∈ X∗ such that v1wv2 = u. In particular, every maximal (by
inclusion) code is complete. A complete code having an absorbing pair is called synchronizing.
We refer to [6] for a survey on the theory of codes.

Let Y be a code over ΣY and Z be a code over ΣZ . Suppose that there exists a bijection
β : ΣY → Z. The composition Y ◦β Z is then defined as the code X = {β(y) | y ∈ Y } over
the alphabet ΣZ [6]. Here β(y) is defined as β(y1)β(y2) . . . β(yk) for y = y1y2 . . . yk, yi ∈ ΣY .
Sometimes β is omitted in the notation of composition.

I Theorem 7. Let Y and Z be two synchronizing complete codes, such that Z is finite
and m and M are the lengths of a shortest and a longest codeword in Z. Suppose that the
composition Y ◦ Z is defined. Then the code X = Y ◦ Z is synchronizing, and the length of a
shortest absorbing pair for X is between m` and 2M`+ 2c, where ` is the length of a shortest
absorbing pair for Y and c is the length of a shortest absorbing pair for Z.

Proof. Let Y ⊆ Σ∗Y , X,Z ⊆ Σ∗Z , and β : ΣY → Z be such that X = Y ◦β Z. First,
assume that Y and Z are synchronizing, and let (`Y , rY), (`Z , rZ) be shortest absorb-
ing pairs for Y and Z. Then `Y Σ∗Y ∩ Σ∗Y rY ⊆ Y ∗ and `ZΣ∗Z ∩ Σ∗ZrZ ⊆ Z∗. We will
show that p1 = (β(`Y)`ZrZβ(rY), β(`Y)`ZrZβ(rY)) is an absorbing pair for X. Consider
the set β(`Y)`ZrZβ(rY)Σ∗Z ∩ Σ∗Zβ(`Y)`ZrZβ(rY). It is a subset of the set β(`Y)(`ZΣ∗Z ∩
Σ∗ZrZ)β(rY) ⊆ β(`Y)Z∗β(rY) = β(`Y Σ∗Y rY) ⊆ β(Y ∗) = X∗. Thus, p1 is an absorbing pair
for X. Moreover, the length of this pair is between 2m(|`Y | + |rY |) + 2(|`Z | + |rZ |) and
2M(|`Y |+ |rY |) + 2(|`Z |+ |rZ |).

Conversely, assume that (`X , rX) is a shortest absorbing pair for X, hence `XΣ∗Z∩Σ∗ZrX ⊆
X∗. Then by the definition of composition X∗ ⊆ Z∗ and `X , rX ∈ Z∗; thus, (`X , rX)
is also absorbing for Z. Next, let `Y = β−1(`X), rY = β−1(rX), `Y , rY ∈ Y ∗. Then
β(`Y Σ∗Y ∩ Σ∗Y rY) = `XZ

∗ ∩ Z∗rX ⊆ `XΣ∗Z ∩ Σ∗ZrX ⊆ X∗ = β(Y ∗). Since the mapping β is
injective, `YB∗ ∩B∗rY ⊆ Y ∗. Consequently Y is synchronizing, and (`Y , rY) is an absorbing
pair for it of length between 1

M (|`X |+ |rX |) and 1
m (|`X |+ |rX |).

Summarizing, we get that the length of a shortest absorbing pair for X is between
m(|`Y |+ |rY |) and 2M(|`Y |+ |rY |) + 2(|`Z |+ |rZ |). J

MFCS 2018

21:8 Finding Short Synchronizing Words for Prefix Codes

q0 q1

a
b, c

a, b

c
ε

1

11(c)10(b)

0(a) q0

q′
0

q1

q′
1

1
0

0, 1

0 1

1
0

Figure 2 An automaton recognizing some infinite maximal prefix code, the tree of a finite maximal
prefix code and an automaton recognizing their composition.

In the case of maximal prefix codes the first element of the absorbing pair can be taken
as an empty word. For recognizable maximal prefix codes Y and Z, where Z is finite, a
Huffman decoder recognizing the star of X = Y ◦ Z can be constructed as follows. Let HY

be a Huffman decoder for Y . Consider the full tree TZ for Z, where each edge is marked by
the corresponding letter. For each state q in HY we substitute the transitions going from this
state with a copy of TZ as follows. The root of TZ coincides with q, and the inner vertices
are new states of the resulting automaton. Suppose that v is a leaf of TZ , and the path from
the root to v is marked by a word w. Let a be the letter of the alphabet of HY which is
mapped to the word w in the composition. Then the image of q under the mapping defined
by a is merged with v. In such a way we get a Huffman decoder with Θ(nY nZ) states, where
nY , nZ is the number of states in HY and TZ . By the definition of composition, this decoder
has the same alphabet as Z. See Figure 2 for an example.

I Corollary 8. The Short Sync Word problem cannot be approximated in polynomial
time within a factor of c log n for some c > 0 for binary n-states Huffman decoders unless
P = NP .

Proof. We start with claim (iii) in Corollary 6 and use Theorem 7 to reduce the size of the
alphabet. Thus, we reduce Short Sync Word for Huffman decoders over an alphabet of
size n1+γ to Short Sync Word for binary Huffman decoders.

Assume that the size of the alphabet k = n1+γ is a power of two (if no, duplicate some
letter the required number of times). We take the code 0{0, 1}log k−1 ∪ 1{0, 1}log k as Z.
This is a code where some words are of length log k and the other words are of length
log k + 1 (after minimization the star of this code is recognized by a Wielandt automaton
with log k + 1 states discussed in the introduction). This code has a synchronizing word of
length Θ((log k)2) [1]. The number of vertices in the tree of this code is Θ(n).

Let ` be the length of a shortest synchronizing word for the original automaton. By
Theorem 7, the length of a shortest synchronizing word for the result of the composition is
between ` log k and 2(log k + 1)`+ Θ((log k)2) = Θ((`+ log k) log k).

For the Set Cover problem the inapproximability result holds even if we assume that
the size of the optimal solution is of size at least d log |X| for some d > 0. Indeed, if d is
a constant we can check all the subsets of C of size at most d log |X| in polynomial time.
Thus, we can assume that ` ≥ log k implying (`+ log k) log k = Θ(` log k). Hence after the
composition the length of a shortest synchronizing word is changed by at most constant
multiplicative factor, and we we get a gap-reserving reduction with gap Θ(log n). The
resulting automaton is of size Θ(n2+γ), and the (2 + γ) dependence is hidden in the constant
c in the statement of this corollary. J

A. Ryzhikov and M. Szykuła 21:9

6 Partial Huffman Decoders

In this section we investigate automata recognizing the star of a non-maximal finite prefix
code. Such codes have some noticeable properties which do not hold for maximal finite
prefix codes. For example, there exist non-trivial non-maximal finite prefix codes with finite
synchronization delay, which provides guarantees on the synchronization time [9]. This allows
to read a stream of correctly transmitted compressed data from arbitrary position, which
can be useful for audio and video decompression.

First we show that the known upper bounds and approximability for Short Sync Word
hold true for strongly connected partial automata. Because of Proposition 3.6.5 of [6],
Algorithm 1 of [26] works without any changes for strongly connected partial automata. The
analysis of its approximation ratio is the same as in [14]. Thus we get the following.

I Theorem 9. There exists a polynomial time algorithm (Algorithm 1 of [26]) finding a
synchronizing word of length at most n

3−n
6 for a n-state strongly connected partial automaton.

Moreover, this algorithm provides a O(n)-approximation for the Short Sync Word problem.

Now we provide a lower bound on the approximability of the Short Sync Word problem
for partial Huffman decoders by extending the idea used to prove inapproximability for
Huffman decoders in the previous sections. First we prove the result for alphabet of size 5
and then use a composition with a maximal finite prefix code to get the same result for the
binary case.

I Theorem 10. The Short Sync Word problem cannot be approximated within a factor
of n 1

2−ε for every ε > 0 for n-state partial Huffman decoders over an alphabet of size 5 unless
P = NP .

Proof. First we prove inapproximability for the class of partial strongly acyclic automata,
that is, automata having no simple cycles but loops in the sink state. We start with the CSP
problem described in Section 3 with all the restriction defined there. Having an instance
of this problem with N variables and M constraints such that each constraint is satisfied
by at most K assignments, we construct an automaton Abφ over the alphabet {0, 1}. For
each constraint j, we construct M identical compressed trees T 1

j , . . . , T
M
j corresponding to

this constraint (also described in Section 3). Then for 1 ≤ i ≤M − 1 we merge the leaves
of T ij corresponding to non-satisfying assignments with the root of T i+1

j , and delete all the
leaves corresponding to satisfying assignments (leaving all the transition leading to deleted
states undefined). For each TMj , we again delete all the leaves corresponding to satisfying
assignments and merge all the leaves corresponding to non-satisfying assignments with a new
state s. This state is a self-loop, that is, 0, 1 map s to itself. Now we define an additional
letter a and M new states r1, . . . , rM . We define a to map rj to the root of T 1

j . Finally,
we add N + 1 new states c0, . . . , cN such that a maps c0 to c1, and 0, 1 map ci to ci+1 for
1 ≤ i ≤ N − 1, and map cN to s. All other transitions are left undefined.

If a is applied first, the set S of states to be synchronized is c1 together with the roots of
T 1
j for all j. Observe that a cannot be applied anymore, since it would result in mapping all

the active states of the automaton to void. If a letter other than a is applied first, a superset
of S must be synchronized then.

If there exists a satisfying assignment x1, . . . , xN then the word ax1 . . . xN is synchronizing,
since it maps all the states but c0 to void. Otherwise, to synchronize the automaton we need
to pass through M compressed trees, since each tree can map only at most Mε states to
void (since for every non-satisfiable CSP the maximum number of satisfiable constraints is

MFCS 2018

21:10 Finding Short Synchronizing Words for Prefix Codes

Mε in the construction, see Section 3). Thus we get a gap of M1−ε = n
1
2−ε for the class of

n-state strongly acyclic partial automata.
Now we are going to transfer this result to the case of partial Huffman decoders. We

extend the idea of Lemma 5. All we need is to define transitions leading from s to the states
having no incoming transitions (which are r1, . . . , rM together with c0). The only difference
is that now we have to make sure that a cannot be applied too early resulting in mapping all
the states of the compressed trees to void leaving the state s active.

To do that, we introduce two new letters b1, b2 and perform branching as described in
Lemma 5. Thus we get M + 1 leaves of the constructed full binary tree. To each leave we
attach a chain of states of length MN ending in the root of T 1

j (or in c0). This means that
we introduce MN new states and define the letters b1, b2 to map a state in each chain to the
next state in the same chain. This guarantees that if the letter a appears twice in a word of
length at most MN , this word maps all the states of the automaton to void. Finally, the
action of b1, b2 on the compressed trees and the states c0, . . . , cN repeats, for example, the
action of the letter 0.

The number of states of the automaton in the construction is O(M2+3ε) The gap is then
M1−2ε. By choosing small enough ε we thus get a gap of n 1

2−ε as required. J

The next lemma shows that under some restrictions it is possible to reduce the alphabet
of a non-maximal prefix code in a way that approximate length of a shortest synchronizing
word is preserved. A word is called non-mortal for a prefix code X if it is a factor of some
word in X∗.

I Lemma 11. Let Y, Z be synchronizing prefix codes such that Z is finite and maximal. Let
m and M be the lengths of a shortest and a longest codeword in Z. Suppose that Y ◦β Z is
defined for some β. If there exists a synchronizing word wZ for Z such that β−1(w) is a
non-mortal word for Y , then the composition X = Y ◦β Z is synchronizing. Moreover, then
the length of a shortest synchronizing word for X is between m` and M`+ |wZ |, where ` is
the length of a shortest synchronizing word for Y .

Proof. Let Y ⊆ Σ∗Y , X,Z ⊆ Σ∗Z , and β : ΣY → Z be such that X = Y ◦β Z. Let wY be a
synchronizing word for Y . Then wZβ(wY) is a synchronizing word for X of length at most
M`+ |wZ |. In the other direction, let wX be a synchronizing word for X. Then β−1(wX) is
a synchronizing word for Y . Thus, |wX | ≥ m`. J

I Corollary 12. The Short Sync Word problem cannot be approximated in polynomial
time within a factor of n 1

2−ε for every ε > 0 for binary n-state partial Huffman decoders
unless P = NP .

Proof. We use the composition of the automaton constructed in the proof of Theorem 10
with the prefix code {aaa, aab, ab, ba, bb} having a synchronizing word baab. The word baab
is a concatenation of two different codewords, so their pre-images can be taken to be a and
0, resulting in a non-mortal word a0 for A, so we can use Lemma 11. J

7 Literal Huffman Decoders

In this section we deal with literal Huffman decoders. Given a finite maximal prefix code
X over an alphabet Σ, the literal automaton recognizing X∗ is an automaton A = (Q,Σ, δ)
defined as follows. The states of A correspond to all proper prefixes of the words in X, and
the transition function is defined as

A. Ryzhikov and M. Szykuła 21:11

δ(q, x) =
{
qx if qx 6∈ X,
ε if qx ∈ X

We will need the following useful lemma. The rank of a word w ∈ Σ∗ with respect to an
automaton A = (Q,Σ, δ) is the size of the image of Q under the mapping defined by w.

I Lemma 13 ([5, Lemma 16]). For every n-state literal Huffman decoder over an alphabet
of size k there exists a word of length dlogk ne and rank at most dlogk ne.

Note that if a n-state literal Huffman decoder has a synchronizing word of length at
most O(log n), this word can be found in polynomial time by examining all words of length
up to O(log n). Thus, in further algorithms we will assume that the length of a shortest
synchronizing word is greater than this value. Lemma 13 stays that a word of rank at most
dlogk ne can also be found in polynomial time.

I Theorem 14. There exists a O(log n)-approximation polynomial time algorithm for the
Short Sync Word problem for literal Huffman decoders.

Proof. Let A = (Q,Σ, δ) be a literal Huffman decoder, and |Σ| = k. Let w be a word
of rank at most dlogk ne found as described above. Let Q′ be the image of Q under the
mapping defined by w, i.e. Q′ = δ(Q,w). Define by v the word subsequently merging pairs
of states in Q′ with shortest possible words. Note than a shortest word synchronizing A has
to synchronize every pair of states, in particular, one that requires a longest word. Thus the
length of v is at most dlogk ne times greater than the length of a shortest word synchronizing
A. Then the word wv is a O(log n)-approximation for the Short Sync Word problem. J

I Theorem 15. For every ε > 0, there exists a (1+ε)-approximation O(nlogn)-time algorithm
for the problem Short Sync Word for n-state literal Huffman decoders.

Proof. Let A = (Q,Σ, δ) be a literal Huffman decoder, and |Σ| = k. First we check all words
of length at most 1

εdlogk ne, whether they are synchronizing. The number of these words is
polynomial, and the check can be performed in polynomial time. If a synchronizing word is
found then we have an exact solution. Otherwise, a shortest synchronizing word must be
longer than that and we proceed to the second stage.

Let w be a word of rank at most dlogk ne found as before. Now we construct the power
automaton A≤dlogk ne restricted to all the subsets of size at most dlogk ne. Using it, we find
a shortest word synchronizing the subset δ(Q,w); let this word be v. We return wv.

Let w′ be a shortest synchronizing word for |A|. Clearly, |w′| ≥ |v| and ε|w′| > dlogk ne.
Thus |wv| ≤ (1 + ε)|w′|, so wv is a (1 + ε)-approximation as required. J

In view of the presented results we propose the following conjecture.

I Conjecture 16. There exists an exact polynomial time algorithm for the Short Sync
Word problem for literal Huffman decoders.

Finally, we remark that it is possible to define the notion of the literal automaton of a
non-maximal finite prefix code in the same way. In this case we leave undefined the transitions
for a state w and a letter a such that w is a proper prefix of a codeword, but wa is neither
a proper prefix of a codeword nor a codeword itself. However, the statement of Lemma 13
is false for partial automata. Indeed, consider a two-word prefix code {(0n1n)n, (1n0n)n}.
Its literal automaton has 2n2 − 1 states, and a shortest synchronizing word for it is 0n+1 of
length n+ 1. Every word of length at most n which is defined for at least one state is of the
form 0∗1∗ or 1∗0∗ and thus has rank at least n− 1.

MFCS 2018

21:12 Finding Short Synchronizing Words for Prefix Codes

8 Mortal and Avoiding Words

A word w is called mortal for a partial automaton A if its mapping is undefined for all the
states of A. The techniques described in this paper can be easily adapted to get the same
inapproximability for the Short Mortal Word problem defined as follows.

Short Mortal Word
Input: A partial automaton A with at least one undefined transition;
Output: The length of a shortest mortal word for A.

This problem is connected for instance to the famous Restivo’s conjecture [18].

I Theorem 17. Unless P = NP, the Short Mortal Word problem cannot be approximated
in polynomial time within a factor of
(i) n1−ε for every ε > 0 for n-state binary strongly connected partial automata;
(ii) c log n for some c > 0 for n-state binary partial Huffman decoders.

Proof. It can be seen that in Theorem 1 and Corollary 8 we construct an automaton with
a state s such that each state has to visit s before synchronization. Introduce a new state
s′ having all the transitions the same as s, and for s set the only defined transition (for an
arbitrary letter) to map to s′. Thus we get an automaton such that every mortal word has
to map each state to s before mapping it to nowhere. Thus we preserve all the estimations
on the length of a shortest mortal word, which proves both statements. J

Moreover, it is easy to get a O(log n)-approximation polynomial time algorithm for Short
Mortal Word for literal Huffman decoders following the idea of Theorem 14. Indeed, it
follows from Lemma 13 that either there exists a mortal word of length at most dlogk ne, or
there exists a word w of rank at most dlogk ne. In the latter case we can find a word which
is a concatenation of w and a shortest word mapping all this states to nowhere one by one.
By the arguments similar to the proof of Theorem 14 we then get the following.

I Proposition 18. There exists a O(log n)-approximation polynomial time algorithm for the
Short Mortal Word problem for n-state literal Huffman decoders. This algorithm always
finds a mortal word of length O(n log n).

Another connected and important problem is to find a shortest avoiding word. Given an
automaton A = (Q,Σ, δ), a word w is called avoiding for a state q ∈ Q if q is not contained
in the image of Q, that is, q 6∈ δ(Q,w). Avoiding words play an important role in the recent
improvement on the upper bound on the length of a shortest synchronizing word [24]. They
are in some sense dual to synchronizing words.

Short Avoiding word
Input: An automaton A and its state q admitting a word avoiding q;
Output: The length of a shortest word avoiding q in A.

If q is not the root of a literal Huffman decoder A (that is, not the state corresponding
to the empty prefix), then a shortest avoiding word consists of just one letter. So avoiding is
non-trivial only for the root state.

I Proposition 19. For every ε > 0, there exists a (1 + ε)-approximation O(nlogn)-time
algorithm for the problem Short Sync Word for n-state literal Huffman decoders.

Proof. We use the same algorithm as in the proof of Theorem 15. The only difference is
that we check whether the words are avoiding instead of synchronizing. J

A. Ryzhikov and M. Szykuła 21:13

9 Concluding Remarks

For prefix codes, a synchronizing word is usually required to map all the states to the root [6].
One can see that this property holds for all the constructions of the paper. Moreover, in all
the constructions the length of a shortest synchronizing word is linear in the number of states
of the automaton. Thus, if we restrict to this case, we still get the same inapproximability
results. Also, it should be noted that all the inapproximability results are proved by providing
a gap-preserving reduction, thus proving NP-hardness of approximating the Short Sync
Word problem within a given factor.

References

1 Dmitry S. Ananichev, Vladimir V. Gusev, and Mikhail V. Volkov. Slowly synchronizing
automata and digraphs. In Mathematical Foundations of Computer Science, LNCS vol.
6281, pages 55–65. Springer, 2010.

2 Marie-Pierre Béal, Mikhail V. Berlinkov, and Dominique Perrin. A quadratic upper bound
on the size of a synchronizing word in one-cluster automata. International Journal of
Foundations of Computer Science, 22(2):277–288, 2011.

3 Mikhail V. Berlinkov. Approximating the minimum length of synchronizing words is hard.
Theory of Computing Systems, 54(2):211–223, 2014.

4 Mikhail V. Berlinkov. On two algorithmic problems about synchronizing automata. In
Arseny M. Shur and Mikhail V. Volkov, editors, DLT 2014. LNCS, vol. 8633, pages 61–67.
Springer, Cham, 2014.

5 Mikhail V. Berlinkov and Marek Szykuła. Algebraic synchronization criterion and comput-
ing reset words. Information Sciences, 369:718–730, 2016.

6 Jean Berstel, Dominique Perrin, and Christophe Reutenauer. Codes and Automata. Encyc-
lopedia of Mathematics and its Applications 129. Cambridge University Press, 2010.

7 Marek Biskup. Error Resilience in Compressed Data – Selected Topics. PhD thesis, Faculty
of Mathematics, Informatics and Mechanics, University of Warsaw, 2008.

8 Marek Tomasz Biskup andWojciech Plandowski. Shortest synchronizing strings for huffman
codes. Theoretical Computer Science, 410(38):3925–3941, 2009.

9 Véronique Bruyère. On maximal codes with bounded synchronization delay. Theoretical
Computer Science, 204(1):11–28, 1998.

10 Renato M. Capocelli, A. A. De Santis, Luisa Gargano, and Ugo Vaccaro. On the con-
struction of statistically synchronizable codes. IEEE Transactions on Information Theory,
38(2):407–414, 1992.

11 David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing,
19(3):500–510, 1990.

12 Christopher F Freiling, Douglas S Jungreis, François Théberge, and Kenneth Zeger. Almost
all complete binary prefix codes have a self-synchronizing string. IEEE Transactions on
Information Theory, 49(9):2219–2225, 2003.

13 Paweł Gawrychowski and Damian Straszak. Strong inapproximability of the shortest reset
word. In F. Giuseppe Italiano, Giovanni Pighizzini, and T. Donald Sannella, editors, MFCS
2015. LNCS, vol. 9234, pages 243–255. Springer, Heidelberg, 2015.

14 Michael Gerbush and Brent Heeringa. Approximating Minimum Reset Sequences, pages
154–162. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

15 David A. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE, 40(9):1098–1101, 1952.

MFCS 2018

21:14 Finding Short Synchronizing Words for Prefix Codes

16 Pavel Martyugin. Complexity of problems concerning reset words for cyclic and eulerian
automata. Theoretical Computer Science, 450(Supplement C):3–9, 2012. Implementation
and Application of Automata (CIAA 2011).

17 Jean-Eric Pin. On two combinatorial problems arising from automata theory. In C. Berge,
D. Bresson, P. Camion, J.F. Maurras, and F. Sterboul, editors, Combinatorial Mathem-
atics Proceedings of the International Colloquium on Graph Theory and Combinatorics,
volume 75 of North-Holland Mathematics Studies, pages 535–548. North-Holland, 1983.

18 Antonio Restivo. Some remarks on complete subsets of a free monoid. Quaderni de ”La
ricerca scientifica”, CNR Roma, 109:19–25, 1981.

19 Andrew Ryzhikov. Synchronization problems in automata without non-trivial cycles. In
Arnaud Carayol and Cyril Nicaud, editors, CIAA 2017, LNCS, vol. 10329, pages 188–200.
Springer, Cham, 2017.

20 Andrew Ryzhikov and Anton Shemyakov. Subset synchronization in monotonic automata.
In Juhani Karhumäki and Aleksi Saarela, editors, Proceedings of the Fourth Russian Finnish
Symposium on Discrete Mathematics, TUCS Lecture Notes 26, pages 154–164, 2017. Ac-
cepted to Fundamenta Informaticae.

21 Marcel-Paul Schützenberger. On the synchronizing properties of certain prefix codes. In-
formation and Control, 7(1):23–36, 1964.

22 Marcel-Paul Schützenberger. On synchronizing prefix codes. Information and Control,
11(4):396–401, 1967.

23 Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, 3rd edition,
2012.

24 Marek Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word. In
STACS 2018, LIPIcs, pages 56:1–56:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018.

25 Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, 2001.
26 Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Carlos Martín-

Vide, Friedrich Otto, and Henning Fernau, editors, LATA 2008. LNCS, vol. 5196, pages
11–27. Springer, Heidelberg, 2008.

27 Vojtěch Vorel. Complexity of a problem concerning reset words for eulerian binary auto-
mata. Information and Computation, 253(Part 3):497–509, 2017. LATA 2014.

Quantum vs. Classical Proofs and Subset
Verification
Bill Fefferman
Department of EECS, University of California at Berkeley, Berkeley, CA and
NIST, Gaithersburg, MD, USA
wjf@berkeley.edu

Shelby Kimmel
Department of Computer Science, Middlebury College, Middlebury, VT, USA
skimmel@middlebury.edu

Abstract
We study the ability of efficient quantum verifiers to decide properties of exponentially large
subsets given either a classical or quantum witness. We develop a general framework that can be
used to prove that QCMA machines, with only classical witnesses, cannot verify certain properties
of subsets given implicitly via an oracle. We use this framework to prove an oracle separation
between QCMA and QMA using an “in-place” permutation oracle, making the first progress on
this question since Aaronson and Kuperberg in 2007 [3]. We also use the framework to prove a
particularly simple standard oracle separation between QCMA and AM.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory, The-
ory of computation → Complexity classes

Keywords and phrases Quantum Complexity Theory, Quantum Proofs

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.22

Acknowledgements We are grateful for multiple discussions with Stephen Jordan regarding per-
mutation oracle verification strategies. We appreciate the many people who discussed this project
with us, including Scott Aaronson, David Gosset, Gus Gutoski, Yi-Kai Liu, Ronald de Wolf,
Robin Kothari, Dvir Kafri, and Chris Umans. SK completed much of this work while at the Joint
Center for Quantum Information and Computer Science (QuICS), University of Maryland.

1 Introduction

How much computational power does an efficient quantum verifier gain when given a
polynomial sized quantum state to support the validity of a mathematical claim? In
particular, is there a problem that can be solved in this model, that cannot be solved if the
verifier were instead given a classical bitstring? This question, the so-called QMA vs. QCMA
problem, is fundamental in quantum complexity theory. To complexity theorists, the question
can be motivated simply by trying to understand the power of quantum nondeterminism,
where both QMA and QCMA can be seen as “quantum analogues” of NP. More physically,
QMA is characterized by the k-local Hamiltonian problem, in which we must decide if the
ground state energy of a local Hamiltonian is above or below a specified threshold [16, 5].
In this setting, the QMA vs. QCMA question asks whether there exists a purely classical
description of the ground state that allows us to make this decision. For instance, if the
ground state of any local Hamiltonian can be prepared by an efficient quantum circuit, then
QMA = QCMA, as the classical witness for the k-local Hamiltonian problem would be the

© Bill Fefferman and Shelby Kimmel;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 22; pp. 22:1–22:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wjf@berkeley.edu
mailto:skimmel@middlebury.edu
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Quantum vs. Classical Proofs and Subset Verification

classical description of this quantum circuit. It was this intuition that caused Aharonov and
Naveh to conjecture that these classes are equal, in the paper that first defined QCMA [5].

It was recently established [12] that the witness to a QMA machine may always be replaced
by a subset state, where a subset state on n qubits has the form |S〉 = 1/

√
|S|
∑
i∈S |i〉 for

some subset S ⊂ [2n]. However, it seems difficult to create a classical witness on n bits
that captures the information in a subset state |S〉. Therefore, problems involving subsets
seem like ripe ground for understanding the QMA vs. QCMA problem. We investigate the
following question: under what circumstances is it possible for a quantum machine to verify
properties of a subset? This question is not answered by [12]; they study general properties
of languages that are in QMA and QCMA, while we attempt to prove specific languages of
interest (that are related to subsets) are either in or not in QMA or QCMA.

In the hopes of further exploring these questions, we exhibit a general framework that
can be used to obtain oracle separations against QCMA for subset-based problems. We use
this framework to prove the existence of an “in-place” permutation oracle PPP (a unitary that
permutes standard basis states within a single register) [10, 2] for which QMAPPP 6⊆ QCMAPPP ,
making the first progress on this problem since Aaronson and Kuperberg in 2007 [3], who
attained a “quantum oracle” separation (i.e., a separation relative to an arbitrary black-box
unitary transformation acting on a polynomial number of qubits). In this problem, for the
case of QMA, the in-place permutation oracle allows us to verify that the given witness is
indeed the correct subset state. On the other hand, our framework allows us to prove the
language is not in QCMA. Our framework is quite general, and we are also able to use it to
establish a particularly simple example of a (conventional) oracle OOO so that AMOOO 6⊆ QCMAOOO.1

1.1 Subset-Verifying Oracle Problems
We consider two oracle problems related to verifying properties of subsets. In Subset Size
Checking, we are given a black box function f : [N2] → {0, 1}, that marks elements with
either a 0 or 1. We are promised that the number of marked items is either N or 0.99N , and
we would like to decide which is the case. We want to verify the size of the subset marked
by f.

In the other oracle problem, Preimage Checking, we are given a black box permutation
on N2 elements. We are promised that the preimage of the first N elements under the
permutation is either mostly even or mostly odd, and we would like to decide which is the
case. In this problem, we want to verify this parity property of a subset of the preimage of
the function.

Subset Size Checking is in AM [11], and we give a procedure that proves Preimage
Checking is in QMA when the permutation is given as an in-place quantum oracle. An
in-place permutation unitary Pσ acts as Pσ|i〉 = |σ(i)〉 for a permutation σ. For Preimage
Checking, we are interested in the set Spre(σ) = {i : σ(i) ∈ [N]}. Given the subset state
|Spre(σ)〉, it is easy to verify that the correct state was sent, because Pσ|Spre(σ)〉 = |[N]〉,
which is easy to verify using a measurement in the Hadamard basis.

However, we do not expect subset-based oracle languages like Subset Size Checking and
Preimage Checking to be in QCMA because the classical witness does not have enough
information to identify the relevant subset. We make this intuition more precise by providing
a general recipe for proving that subset-verifying oracle languages are not in QCMA. We

1 Note there was previously an example of an oracle separating AM from PP [20]. Since QMA ⊆ PP [18],
this is formally a stronger result. Nonetheless, our oracle is substantially different, and uses completely
different ideas.

B. Fefferman and S. Kimmel 22:3

apply this procedure to show that both Preimage Checking (with a randomized in-place
oracle - see Section 3 for more details) and Subset Size Checking are not in QCMA. The
procedure involves familiar tools, like the adversary bound [6] (although adapted to our
in-place oracle when necessary), as well as a new tool, the Fixing Procedure, which finds
subsets with nice structure within a large arbitrary set. We now sketch the recipe:

1. We show that for every QCMA machine, there are more valid oracles than possible
classical witnesses, so by a counting argument, there must be one classical witness w∗
that corresponds to a large number of potential oracles. We then restrict ourselves to
considering oracles that correspond to w∗.

2. Because we are considering subset-verifying problems, if we have a collection of black
box functions that corresponds to w∗, we immediately have some set of subsets that
corresponds to w∗. At this point, we know nothing about this set of subsets except its
size, thanks to the counting argument. We next show (using the Fixing Procedure) that
if we have a set of subsets of a certain size, we can always find a subset of the original set
that has nice structure.

3. We apply the adversary bound to the subset with nice structure to show that the number
of quantum queries needed to distinguish between YES and NO cases is exponential.

4. We finally put these pieces together in a standard diagonalization argument.

1.2 Technical Contributions
Our adversary bound for in-place permutation oracles provides a query lower-bounding
technique for unitary oracles when access is not given to the inverse of the oracle. (While
Belovs [9] created an adversary bound for arbitrary unitaries, his results assume access to
an inverse.) While we typically assume quantum oracles include access to an inverse or are
self-inverting, in open quantum systems it is natural to not have an inverse.

When proving that Preimage Checking is not in QCMA, we use an oracle that is not
unitary. The oracle is a completely-positive trace-preserving (CPTP) map that at each
application applies one unitary chosen uniformly at random from among a set of unitaries.
Standard lower bounding techniques fail for such an oracle. The closest result is from Regev
and Schiff [19] who give a lower bound on solving Grover’s problem with an oracle that
produces errors. Regev and Schiff deal with the non-unitarity of the map by modeling the
state of the system using pure states. This strategy does not work in our case. Instead,
we use the fact that every non-unitary CPTP map can be implemented as a unitary on
a larger system. In our case, we simulate our random oracle using a unitary black box
oracle acting on subsystem B, followed by a fixed unitary that entangles subsystems A and
B. The entangling operation can not be efficiently implemented, but as we are bounding
query complexity, this is acceptable. This technique may be of use for similar problems; for
example, we do not know the query complexity of solving Grover’s problem with an oracle
that produces a depolarizing error with each application. A depolarizing map is similar to
our CPTP map in that both maps can be thought of as applying a unitary at random from
among a set of unitaries, and so perhaps this approach will stimulate new approaches for the
Grover problem.

1.3 Impact and Directions for Future Research
While Aaronson and Kuperberg have previously proved an oracle separation between QMA
and QCMA [3], their oracle seems to be especially quantum, as it is defined by a Haar
random quantum state. Our in-place oracle has more of a classical feel, in that it encodes

MFCS 2018

22:4 Quantum vs. Classical Proofs and Subset Verification

a classical permutation function. However, it is still not a standard quantum oracle, as it
is not self-inverting. Is there a standard (i.e. not in-place) oracle language that separates
QMA and QCMA? Although we can only prove a separation when our in-place oracle also has
randomness, we believe our techniques could be adapted to prove a similar result but without
oracle randomness. While we give a recipe for showing certain subset-based problems are not
in QCMA, we believe some of these problems are also not in QMA; for example, is it possible
to prove Subset Size Checking is not in QMA?

Our contributions to techniques for lower bounding query complexity for non-standard
oracles raise several questions. Is there a general adversary bound [14, 17] for in-place
permutation oracles? There are examples of problems for which in-place permutation
oracles require exponentially fewer queries that standard permutation oracles e.g., [7]. We
conjecture that there are also examples of problems for which standard permutation oracles
require exponentially fewer queries than in-place oracles. In fact, we do not believe it is
possible to obtain a Grover-type speed-up with an in-place oracle; we believe the problem of
determining the inverse of an element of an in-place permutation oracle requires N queries
for a permutation on N elements. However, in order to prove these results, we suspect one
needs a more powerful tool, like a general adversary bound for in-place oracles.

1.4 Organization

The rest of the paper is organized as follows, in Section 2, we introduce notation that will be
used throughout the rest of the paper, and define QMA and QCMA. In Section 3, we define
and discuss standard, in-place, and randomized in-place quantum permutations, as well as
state an adversary lower bound for in-place permutation unitaries. In Section 4, we describe
the Preimage Checking Problem and prove it is in QMA. In Section 5, we lay out the general
recipe for proving subset-based languages are not in QCMA. In Section 6, we apply this
procedure to the Subset Size Checking problem, and use it to prove an oracle separation
between AM and QCMA. Finally, in Section 7, we apply the procedure to Preimage Checking
and show this problem is not in QCMA.

2 Definitions and Notation

We use the notation [M] = {1, 2, . . . ,M}. σ will refer to a permutation. Unless otherwise
specified, the sets we use, generally denoted S, will be a set of positive integers. Also, we
will use bold type-face to denote a set of sets. For instance, S will refer to a set of sets of
positive integers. To make our notation clearer, we will refer to such a set of sets as a set
family. Likewise, we denote σσσ to be a set of permutations acting on the same set of elements.

For S a set of positive integers, a subset state |S〉 is |S〉 = 1√
|S|

∑
i∈S |i〉.

Throughout, we use N = 2n. All logarithms are in base 2. We use σσσn to be the set of
permutations acting on N2 elements. That is, if σ ∈ σσσn, σ : [N2]→ [N2]. For positive integers
i > j, let C(i, j) be the set family containing j elements of [i] : C(i, j) = {S ⊂ [i] : |S| = j}.

We use calligraphic font P , U to denote unitary operations. We use elaborated calligraphic
font P, U to denote CPTP maps. For a unitary CPTP map U acting on a density matrix
ρ, we have U (ρ) = UρU†, where (·)† denotes conjugate transpose. We will use O to denote
a unitary oracle, and O to denote a CPTP map oracle.

We include the following standard definition for completeness (e.g., see also [1, 3]).

B. Fefferman and S. Kimmel 22:5

I Definition 1. QMA is the set of promise problems A = (AY es, ANo) so that there exists
an efficient quantum verifier VA and a polynomial p(·):
1. Completeness: For all x ∈ AY es there exists a p(|x|)-qubit pure quantum state |ψ〉 so

that Pr [VA(x, |ψ〉) = 1] ≥ 2/3
2. Soundness: For all x ∈ ANo and any pure quantum state |ψ〉, Pr [VA(x, |ψ〉) = 1] ≤ 1/3.
QCMA is the same class, with the witness |ψ〉 replaced by a polynomial length classical
bitstring.

3 Permutation Maps

3.1 Permutations as Oracles: In-Place Permutation vs. Standard
Permutation

Black box permutation unitaries have been considered previously, most notably in the
collision and element distinctness problems [2, 4]. However, the unitaries considered in these
works were standard oracles. A standard oracle implements the permutation σ ∈ σσσn as
Pstand
σ |i〉|b〉 = |i〉|b⊕ σ(i)〉 for i, b ∈ [N2], where |i〉 for i ∈ [N2] are standard basis states and
⊕ denotes bitwise XOR. Note that (Pstand

σ)2 = IN4 ; that is, acting with the unitary twice
produces the N4 ×N4 identity operation.

We consider in-place permutation unitaries, which implement the permutation σ ∈ σσσn as
Pσ|i〉 = |σ(i)〉. In general (Pσ)2 6= IN2 . Crucially, given black box access to Pσ, we do not
give black box access to its inverse. In fact, in Section 3.2, we show that given only Pσ, it
is hard to invert its action. Non-self-inverting permutation unitaries have been considered
previously, in [10, 2].

We believe standard and in-place permutation unitaries are of incomparable computational
power. That is, given one type that implements σ, you can not efficiently simulate the other
type implementing the permutation σ. For example, if we have the state

∑
y∈S |y〉|σ(y)〉

(normalization omitted), we can create the state
∑
y∈S |y〉|0〉 with a single query to Pstand

σ .
However, if we only have access to the in-place permutation Pσ and not to P(σ)−1 = (Pσ)−1,
it seems difficult to create this state.

On the other hand, suppose we want to prepare the state
∑
y∈[N] |σ(y)〉 (normalization

omitted). We can create this state in one query to the in-place permutation oracle Pσ by
applying the oracle to the uniform superposition

∑
y∈[N] |y〉. In the standard model, this

problem is called “index erasure,” and requires an exponential number of queries in n to
Pstand
σ [7].

3.2 An Adversary Bound for In-Place Permutation Oracles

In Appendix A, we prove a non-weighted adversary bound for in-place permutations oracles
that is identical to what Ambainis proves in Theorem 6 in [6] for standard permutation
oracles.

I Lemma 2. Let σσσ ⊂ [V]→ [V] be a subset of permutations acting on the elements [V]. Let
f : σσσ → {0, 1} be a function of permutations. Let σσσX ⊂ σσσ be a set of permutations such that
if σ ∈ σσσX , then f(σ) = 1. Let σσσY ⊂ σσσ be a permutation family such that if σ ∈ σσσY then
f(σ) = 0. Let R ⊂ σσσX × σσσY be such that

For every σx ∈ σσσX , there exists at least m different σy ∈ σσσY such that (σx, σy) ∈ R.
For every σy ∈ σσσY , there exists at least m′ different σx ∈ σσσX such that (σx, σy) ∈ R.

MFCS 2018

22:6 Quantum vs. Classical Proofs and Subset Verification

Let lx,i be the number of σy ∈ σσσY such that (σx, σy) ∈ R and σx(i) 6= σy(i). Let
ly,i be the number of σx ∈ σσσY such that (σx, σy) ∈ R and σx(i) 6= σy(i). Then let
lmax = max(σx,σy)∈R,i lx,ily,i.

Then given an in-place permutation oracle Pσ for σ ∈ σσσ that acts as Pσ|i〉 = |σ(i)〉, any
quantum algorithm that correctly evaluates f(σ) with probability 1− ε for every element of
σσσX and σσσY must use

(
1− 2

√
ε(1− ε)

)√
mm′

lmax
queries to the oracle.

As a corollary of Lemma 2, (using exactly the same technique as Theorem 7 in [6]), we
have that the query complexity of inverting an in-place permutation oracle on V elements is
Ω(V 1/2).

3.3 Permutations with Randomness
Additionally, we consider in-place permutation oracles with internal randomness that are
CPTP (completely-positive trace-preserving) maps, rather than unitaries. Oracles with
internal randomness were shown to cause a complete loss of quantum speed-up in [19], while
in [13], such oracles were shown to give an infinite quantum speed-up.

We consider oracles that apply an in-place permutation at random from among a family
of possible permutations. Let σσσ ⊆ σσσn be a set of |σσσ| permutations. Then the CPTP map
Pσσσ acts as follows:

Pσσσ(ρ) = 1
|σσσ|
∑
σ∈σσσ
PσρP†σ. (1)

4 Pre-Image Checking

In this section, we define a property of oracle families which we call randomized-preimage-
correct, and construct a decision language based on such oracles that is in QMA. Essentially,
the problem is to decide whether the preimage of the first N elements of a permutation is
mostly even or odd.

Given a permutation σ ∈ σσσn, we associate a preimage subset Spre(σ) to that permutation
(“pre” is for “preimage”), where Spre(σ) = {j : σ(j) ∈ [N]}. That is, Spre(σ) is the subset of
elements in [N2] whose image under σ is in [N]. Additionally, to each subset S ⊆ [N2] with
|S| = N , we associate a set of permutations σσσpre(S), where σσσpre(S) = {σ : σ ∈ σσσn, Spre(σ) =
S}. Let

SSSneven = {S : S ⊂ [N2], |S| = N, |S ∩ Zeven| = 2/3N}
SSSnodd = {S : S ⊂ [N2], |S| = N, |S ∩ Zodd| = 2/3N}. (2)

I Definition 3 (randomized-preimage-correct oracles). Let OOO be a countably infinite set
of quantum operators (CPTP maps): OOO = {O1,O2, . . . }, where each On implements an
operation on (2n)-qubits. We say that OOO is randomized-preimage-correct if for every n,
On = Pσσσpre(S), with S ∈ SSSneven ∪SSSnodd.

I Theorem 4. For any randomized-preimage-correct OOO, the unary language LOOO, which
contains those unary strings 1n such that On = Pσσσpre(S) with S ∈ SSSneven, is in QMAOOO.

Proof. We first prove completeness. We assume 1n ∈ LOOO, so On = Pσσσpre(S) for some
S ∈ SSSneven. We consider using as a witness the subset state |S〉 on 2n qubits. We analyze the
following verifier: with probability 1/2, do either

B. Fefferman and S. Kimmel 22:7

Test (i) Apply Pσσσpre(S) to |S〉, and measure whether the resultant state is |[N]〉. This
measurement can be done by applying H⊗n to the first n qubits, and then
measuring all qubits in the standard basis. If the outcome is 0, output 1; otherwise,
output 0.

Test (ii) Measure |S〉 in the standard basis. Let i∗ be the resulting standard basis state. If
i∗ is odd, output 0. Otherwise, apply Pσσσpre(S) to |i∗〉 and measure the resultant
standard basis state. If the resultant state is not in [N], output 0; otherwise,
output 1.

If Test (i) is implemented, the verifier always outputs 1 because all the permutations that
might be applied by Pσσσpre(S) transform |S〉 into |[N]〉. If Test (ii) is implemented, the
verifier outputs 1 with probability 2/3. Averaging over both Tests, the verifier outputs 1
with probability 5/6.

Now we show soundness. Let 1n /∈ LOOO, so On = Pσσσpre(S) for some S ∈ Snodd. Without
loss of generality, let the witness be the 2n-qubit state |ψ(S)〉 =

∑N2

i=1 βi|i〉. If p(i) (resp.
p(ii)) is the probability the verifier outputs 1 after performing Test (i) (resp. Test (ii)), then
we have

p(i) = 1
N

∣∣∣∣∣∑
i∈S

βi

∣∣∣∣∣
2

, p(ii) =
∑

i∈Zeven∩S

|βi|2. (3)

regardless of which permutation the map Pσσσpre(S) applies.
Using Cauchy-Schwarz and the triangle inequality, we have

1 ≥
(√

3p(i) + (
√

2− 1)p(ii)

)
/
√

2. Thus the total probability that the verifier outputs 1 is

1
2
(
p(i) + p(ii)

)
≤ 1

2

(
2
3

(
1−
√

2− 1√
2

p(ii)

)2

+ p(ii)

)
. (4)

The derivative of the right hand side is positive for 0 ≤ p(ii) ≤ 1, so to maximize the right
hand side we take p(ii) = 1. Doing this, we find the probability that the verifier outputs 1 is
at most 2/3. J

We will show that the Preimage Checking problem is not in QCMA in Section 7.
Our proof that the Preimage Checking problem is in QMA works equally well for an

in-place oracle without randomness. We use the randomness in our oracle in the proof
that randomized-preimage-correct languages can not be decided by QCMA. We believe the
separation holds even without randomness in the oracle.

5 Strategy for Proving Subset-Based Oracle Languages are not in
QCMA

In this section, we describe a general strategy for showing that certain oracle languages are
not in QCMA. In particular, we consider the case when the oracles are related to sets of
integers:

I Definition 5 (Subset-Based Oracle). Let OOO = {O1,O2, . . . } be an oracle such that each
On implements a p1(n)-qubit CPTP map from some set of maps OOOn. Then we say OOO is a
subset-based oracle if there exists a set of bijective functions {g1, g2, . . . } with gn :OOOn → Sn
where Sn is the union of disjoint subset families SnX and SnY .

We also use the following definition:

MFCS 2018

22:8 Quantum vs. Classical Proofs and Subset Verification

I Definition 6. Given a subset family S containing subsets of positive integers, and β ∈ R
such that β > 0, we say S is β-distributed if:
(1) There exists a (possibly empty) set Sfixed such that Sfixed ⊂ S for all S ∈ S.
(2) For every element i ∈

(⋃
S∈S S

)
\ Sfixed, i appears in at most a 2−β-fraction of S ∈ S.

We call Sfixed the “fixed subset” of S.
We use the following Recipe for proving a subset-based oracle language is not in QCMA:

I Recipe 1.
Set-up. Fix some enumeration over all poly(n)-size quantum verifiers M1,M2, ..., which

we can do because the number of such machines is countably infinite (by the Solovay-
Kitaev theorem [15]). Some of these verifiers may try to decide a language by trivially
“hardwiring” its outputs; for example, by returning 1 independent of the input. We start
by fixing a unary language L such that no machine Mi hardwires the language. We can
always do this because there are more languages than poly(n)-sized machines. Then our
goal is to associate a subset-based oracle OOO = {O1,O2, . . . } with L, such that 1n ∈ L if
and only if gn(On) ∈ SnX , and to show that even with access to OOO, no Mi can efficiently
decide L for all n.
Consider the QCMA machine Mi, and suppose it is given access to a subset-based oracle
OOO, as well as a witness of pMi

(n) bits for each input 1n. Then for each On ∈ OOO there is
some subset of integers S ∈ Sn such that gn(On) = S. Since gn is bijective, S uniquely
defines On, so the optimal witness that causes Mi to accept On can be thought of as a
function of S. Let wi(S) be the witness that gives the highest probability of success in
convincing Mi that S ∈ SnX . Then we denote Si,wit(w) = {S : S ∈ SnX , w = wi(S)}.
Using the pigeonhole principle, there exists some string wi,n of pMi

(n) bits such that

|Si,wit(wi,n)| ≥ 1
2pMi

(n) |S
n
X | . (5)

That is, there exists a witness such that a large number of subsets correspond to that
witness.

1. Prove that for n ≥ n∗i , there is a subset family SX ⊆ Si,wit(wi,n) that is α-distributed
with fixed subset Sfixed. Let SY = {S : S ∈ SnY , Sfixed ⊂ S}. Show the cardinality of SY is
large.

2. Create a relation R ⊆ {O : O ∈ OOOn, g(O) ∈ SX} × {O : O ∈ OOOn, g(O) ∈ SY } and use R
to apply an adversary bound to prove a lower bound of Ω(Nα/2) = Ω(2nα/2) on the number
of queries Mi requires to distinguish some oracle Ox,n,i ∈ OOOn such that gn(Ox,n,i) ∈ SnX
from an oracle Oy,n,i ∈ OOOn such that gn(Oy,n,i) ∈ SnY .

3. Apply a standard Baker-Gill-Solovay diagonalization argument [8] to complete the proof.
That is, for each Mi, choose a unique ni ≥ n∗i , and if 1ni ∈ L, set Oni

= Ox,ni,i and if
1ni /∈ L, set Oni = Oy,ni,i. Then no QCMA machine can efficiently decide the language.

6 Subset Size Checking

In this section, we create a subset-based oracle language LOOO, such that LOOO ∈ AMOOO, but
LOOO /∈ QCMAOOO. We use the strategy of Section 5 to prove LOOO /∈ QCMAOOO.

Let fS be a function that marks a subset S ⊂ [N2]. That is fS : {0, 1}2n → {0, 1}, such
that fS(i) = 1 if i ∈ S and 0 otherwise. Let FS be the unitary such that FS |i〉 = (−1)fS(i)|i〉.

I Definition 7. Let OOO be a countably infinite set of unitaries (resp. boolean functions):
OOO = {O1,O2, ...}, where On implements a 2n-qubit (resp. bit) unitary (function). We say OOO
is subset-gapped if for every n, On = FS (resp. On = fS) for |S| = N or |S| = 0.99N .

B. Fefferman and S. Kimmel 22:9

Clearly OOO is a subset-based oracle (see Definition 5), with gn(On) = gn(FS) = S.

Then the following two lemmas give the desired oracle separation between AM and QCMA:

I Lemma 8. For any subset-gapped OOO, the language LOOO that contains those strings 1n such
that On = fS with |S| = N , is in AMOOO.

Lemma 8 is proven by Goldwasser and Sipser in [11].

I Lemma 9. For any subset-gapped OOO, the language LOOO that contains those strings 1n such
that On = FS with |S| = N , is not in QCMAOOO.

To prove this lemma, we follow Recipe 1. We address step 2 of the recipe in Lemma 10:

I Lemma 10. Let 0 < α < 1/2 be a constant and p(·) be a polynomial function. Then there
exists a positive integer n∗(p, α), such that for every positive integer n > n∗(p, α), and every
subset family S ⊆ C(N2, N) such that |S| ≥ |C(N2, N)|2−p(n), there exists a subset family
SX ⊆ S such that SX is α-distributed with |Sfixed| < .5N .

(Since |Sfixed| < .5N , this implies |{S : S ∈ SnY , Sfixed ⊂ S}| is large, as desired.)

Proof Sketch. (Full proof in Appendix B.) We prove the existence of SX by construction.
Let S be any subset of C(N2, N) with |S| ≥ |C(N2, N)|2−p(n). We construct SX using the
Fixing Procedure:

Fixing Procedure
1. Set SX = S, and set Sfixed = ∅.
2. a. Let ν(i) be the number of subsets S ∈ SX such that i ∈ S.

b. If there exists some element i for which |SX | > ν(i) ≥ |SX |N−α, set S′ ←
{S : S ∈ SX and i ∈ S}, set Sfixed ← Sfixed ∪ i, and return to step 2(a).
Otherwise exit the Fixing Procedure.

By construction, the Fixing Procedure returns a set that is α-distributed (see Definition
6), so we only need to ensure that not too many elements are fixed. We obtain a lower bound
on the final size of SX because each time an element is fixed, the size of the set decreases
by at most N−α. On the other hand, because SX is contained in C(N2, N), if a certain
number of items are fixed, we have an upper bound on the size of SX using the structure of
C(N2, N) and a combinatorial argument. We show that if more than .5N items are fixed,
these upper and lower bounds contradict each other, proving that less than .5N items must
be fixed before the Fixing Procedure terminates.

We address Step 3 of Recipe 1 with the following Lemma:

I Lemma 11. Suppose SX ⊂ C(N2, N) is the α-distributed subset created using the Fixing
Procedure of Lemma 10, with fixed subset Sfixed. Let SY = {S : S ∈ C(N2, 0.99N), Sfixed ⊂
S}. Then we can construct an adversary bound to prove that for every quantum algorithm G,
there exists Sx ∈ SX , and Sy ∈ SY , (that depend on G) such that, given oracle access to FSx or
FSy , G can not distinguish them with probability ε > .5 without using

(
1− 2

√
ε(1− ε)

)
Nα/2

queries.

Proof Sketch. (Full proof in Appendix B.) We use Theorem 6 from [6]. This result is
identical to our Lemma 2, except with standard oracles rather than permutation oracles.

We let R = SX × SY . To apply Theorem 6, we need to show that for elements i such
that i ∈ Sx but i /∈ Sy for (Sx, Sy) ∈ R that either (1) Sx is not connected to many other

MFCS 2018

22:10 Quantum vs. Classical Proofs and Subset Verification

sets Sy where i /∈ Sy or (2) Sy is not connected to many other sets Sx where i ∈ Sx. We use
the α-distributed property of SX to show that property (2) holds. We show a similar result
for the case i /∈ Sx but i ∈ Sy for (Sx, Sy) ∈ R.

7 Oracle Separation of QMA and QCMA

In this section, we prove an oracle separation between QMA and QCMA. In particular, we
show:

I Theorem 12. There exists a randomized-preimage-correct oracle OOO, and a language LOOO
which contains those unary strings 1n where On = Pσσσpre(S) with S ∈ SSSneven such that
LOOO /∈ QCMAOOO.

Combined with Theorem 4, this gives the desired separation between QMA and QCMA.
Really, we would like to prove a different result, one that involves preimage-correct oracles:

I Definition 13 (preimage-correct oracles). Let OOO be a countably infinite set of unitaries:
OOO = {O1,O2, . . . }, where each On implements an (2n)-qubit unitary. We say that OOO is
preimage-correct if for every n, On = Pσ, for some σ such that Spre(σ) ∈ Sneven ∪ Snodd.

The definition of preimage-correct oracles is very similar to that of randomized-preimage-
correct oracles in Definition 3, except there is no randomness in preimage-correct oracles –
they are unitaries. In fact, we believe:

I Conjecture 1. There exists a preimage-correct oracle OOO, and a language LOOO which contains
those unary strings 1n where On = Pσ with Spre(σ) ∈ SSSneven, such that LOOO /∈ QCMAOOO.

Theorem 4 applies equally well whether the oracle is preimage-correct or randomized-
preimage-correct. So why is it harder to prove Conjecture 1 than Theorem 12? The answer is
that Recipe 1 is much easier to use if the optimal witness depends only on a subset of integers.
Note randomized-preimage-correct oracles have a one-to-one relationship with a subset of
integers, and so the optimal witness only depends on that subset. However for preimage-
correct oracles, the optimal witness might depend on some details of the permutation, which
is more challenging to handle.

For convenience, we define the complexity class QCMAexp,poly to be the analogue of
QCMA, in which the quantum verifier is allowed exponential time and space, but receives
a polynomial length classical witness. While trivially bounded-error quantum exponential
time, BQEXP = QCMAexp,poly, in general the query complexity of a QCMAexp,poly machine is
not the same as the query complexity of a BQEXP machine.

Our proof works as follows. We first show that if there is a QCMA machine that decides
LOOO, for all randomized-preimage-correct oracles OOO, then there will be a QCMAexp,poly machine
that decides LÕOO for any preimage-correct oracle ÕOO, where, crucially, the optimal witness only
depends on the pre-image subset of the permutation implemented by the oracle. Then using
Recipe 1, we show that there is a language LÕOO for a preimage-correct oracle ÕOO such that no
QCMAexp,poly machine that can decide the language using an efficient number of queries to ÕOO
(with a witness that only depends on the pre-image subset). This implies that there is no
QCMA machine that solves the randomized-preimage-correct oracle problem.

We first prove the reduction from deciding languages on pre-image correct oracles to
languages on randomized pre-image correct oracles.

B. Fefferman and S. Kimmel 22:11

I Lemma 14. Given a randomized-preimage-correct oracle OOO, let 1n ∈ LOOO if On = Pσσσpre(S)
with S ∈ SSSneven. Given a preimage-correct oracle ÕOO let 1n ∈ LÕOO if On = Pσ with Spre(σ) ∈
Sneven. Then if there is a QCMA machine M that decides LOOO for every randomized-preimage-
correct OOO, then there is a QCMAexp,poly machine M̃ that decides LÕOO for every preimage-correct
ÕOO such that M̃ uses at most a polynomial number of queries to ÕOO, and on input 1n takes as
input a classical witness w that depends only on Spre(σ).

Proof Sketch. (Full proof in Appendix C.) Given a permutation σ, we can obtain all
permutations σ′ such that Spre(σ′) = Spre(σ) by first applying σ, and then permuting the
first N elements and the last N2 − N elements separately. Consider a controlled-unitary
that, if system A is in state |i〉, implements the ith in-place permutation of the first N and
last N2 − N elements on system B. If we start with system A in an equal superposition,
apply Pσ to B, apply the control to A and B, and then trace out system A, the result is
PSpre(σ) on system A. Thus, given any preimage-correct oracle Pσ, we can simulate the
randomized-preimage-correct oracle PSpre(σ).

Using this simulation trick, we can create an algorithm M̃ using a preimage-correct oracle
that has the same outcomes as any algorithm M using a randomized-preimage-correct oracle,
which uses the oracle the same number of times, and has a witness that only depends on the
preimage subset. However, we do not believe the control permutation can be implemented
efficiently, and that is why we must consider the class QCMAexp,poly.

I Lemma 15. There exists a preimage-correct OOO such that there is no QCMAexp,poly
OOO machine

M that decides LOOO using a polynomial number of queries, where the classical witness on
input 1n depends only on Spre(σ), when On = Pσ.

Note that Lemma 15, combined with the contrapositive of Lemma 14, proves Theorem
12.

To prove Lemma 15, we use Recipe 1. Even though we do not have a true subset-based
oracle (the function g(Pσ) = Spre(σ) is not injective), using the constraint that the classical
witness depends only on Spre(σ), we can apply the recipe.

Additionally, while Recipe 1 refers to the class QCMA, because we are only making a
statement about query complexity (and say nothing about space or time complexity), the
approach also applies to the query complexity of QCMAexp,poly.

We prove steps 2 and 3 of Recipe 1 in Lemmas 16 and 17. These proofs are quite similar
to the proofs of Lemmas 10 and 11; the full proofs can be found in Appendix D.

I Lemma 16. Let 0 < α < 1/2 be a constant and p(·) be a polynomial function. Then there
exists a positive integer n∗(p, α), such that for every n > n∗(p, α), and every subset family
S ⊂ Sneven such that |S| ≥ |Sneven|2−p(n), there exists a subset family SX ⊂ S such that SX is
α-distributed. Furthermore the fixed subset Sfixed of SX contains at most N/3 even elements.

I Lemma 17. Let SX be the α-distributed set created using the Fixing Procedure from Lemma
16, with fixed subset Sfixed. Let SY = {S : S ∈ Snodd, Sfixed ⊂ S}. Then we can construct
an adversary bound to prove that for every quantum algorithm G, there exists permutations
σx, σy ∈ σσσn with Spre(σx) ∈ SX and Spre(σy) ∈ SY , (that depend on G) such that, given
oracle access to Pσx or Pσy , G can not distinguish them with probability ε > .5 without using(

1− 2
√
ε(1− ε)

)
Nα/2 queries.

The proof strategy of Lemma 16 (like Lemma 10) involves a Fixing Procedure. However,
the details are slightly more complex because we must deal with fixing even and odd elements.

MFCS 2018

22:12 Quantum vs. Classical Proofs and Subset Verification

The proof strategy of Lemma 17 is similar to Lemma 11, except we use a more complex
relation R for the adversary bound. The challenge is that for two similar subsets Sx and Sy,
there exist permutations σx and σy that are extremely dissimilar but for which Spre(σx) = Sx
and Spre(σy) = Sy. We want to create a relationship R that connects similar permutations,
while only having information about the structure of the related subsets. To address this
problem, we note that for any two subsets Sx and Sy, we can create a one-to-one matching
between the elements of σσσpre(Sx) and the elements of σσσpre(Sy) such that each permutation is
matched with a similar permutation. Using this one-to-one matching, we create a relationship
R between permutations that inherits the properties of the related subsets.

As an immediate corollary of Theorem 4 and Theorem 12, there exists a randomized-
preimage-correct oracle OOO and language LOOO such that L /∈ QCMAOOO but L ∈ QMAOOO, and so
QMAOOO 6⊆ QCMAOOO.

References

1 Complexity zoo. URL: https://complexityzoo.uwaterloo.ca/Complexity_Zoo.
2 Scott Aaronson. Quantum lower bound for the collision problem. In John H. Reif, editor,

Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002,
Montréal, Québec, Canada, pages 635–642. ACM, 2002. doi:10.1145/509907.509999.

3 Scott Aaronson and Greg Kuperberg. Quantum versus classical proofs and advice. In
Computational Complexity, 2007. CCC’07. Twenty-Second Annual IEEE Conference on,
pages 115–128. IEEE, 2007.

4 Scott Aaronson and Yaoyun Shi. Quantum lower bounds for the collision and the element
distinctness problems. J. ACM, 51(4):595–605, 2004. doi:10.1145/1008731.1008735.

5 Dorit Aharonov and Tomer Naveh. Quantum NP – a survey. arXiv preprint quant-
ph/0210077, 2002.

6 Andris Ambainis. Quantum lower bounds by quantum arguments. In Proceedings of the
thirty-second annual ACM symposium on Theory of computing, pages 636–643. ACM, 2000.

7 Andris Ambainis, Loïck Magnin, Martin Roetteler, and Jérémie Roland. Symmetry-assisted
adversaries for quantum state generation. In Computational Complexity (CCC), 2011 IEEE
26th Annual Conference on, pages 167–177. IEEE, 2011.

8 Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP question.
SIAM J. Comput., 4(4):431–442, 1975. doi:10.1137/0204037.

9 Aleksandrs Belovs. Variations on quantum adversary. arXiv preprint 1504.06943, 2015.
10 J Niel De Beaudrap, Richard Cleve, and John Watrous. Sharp quantum versus classical

query complexity separations. Algorithmica, 34(4):449–461, 2002.
11 Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof

systems. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, May 28-30, 1986, Berkeley, California, USA, pages 59–68. ACM,
1986. doi:10.1145/12130.12137.

12 Alex B Grilo, Iordanis Kerenidis, and Jamie Sikora. QMA with subset state witnesses.
arXiv preprint arXiv:1410.2882, 2014.

13 Aram W Harrow and David J Rosenbaum. Uselessness for an oracle model with internal
randomness. Quantum Information & Computation, 14(7&8):608–624, 2014.

14 Peter Hoyer, Troy Lee, and Robert Špalek. Negative weights make adversaries stronger.
In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages
526–535. ACM, 2007.

15 Alexei Yu Kitaev. Quantum computation: Algorithms and error correction. Russian Math.
Surveys, 52(6):1191–1249, 1997.

https://complexityzoo.uwaterloo.ca/Complexity_Zoo
http://dx.doi.org/10.1145/509907.509999
http://dx.doi.org/10.1145/1008731.1008735
http://dx.doi.org/10.1137/0204037
http://dx.doi.org/10.1145/12130.12137

B. Fefferman and S. Kimmel 22:13

16 Alexei Yu Kitaev, Alexander Shen, and Mikhail N Vyalyi. Classical and quantum computa-
tion. Number 47 in Graduate Studies in Mathematics. American Mathematical Soc., 2002.
doi:10.1090/gsm/047.

17 Troy Lee, Rajat Mittal, Ben W Reichardt, Robert Špalek, and Mario Szegedy. Quantum
query complexity of state conversion. In Foundations of Computer Science (FOCS), 2011
IEEE 52nd Annual Symposium on, pages 344–353. IEEE, 2011.

18 Chris Marriott and John Watrous. Quantum Arthur-Merlin games. Comput. Complex.,
14(2):122–152, 2005. doi:10.1007/s00037-005-0194-x.

19 Oded Regev and Liron Schiff. Impossibility of a quantum speed-up with a faulty oracle. In
Automata, Languages and Programming, pages 773–781. Springer, 2008.

20 Nikolay K. Vereshchagin. Oracle separation of complexity classes and lower bounds for
perceptrons solving separation problems. Izvestiya: Mathematics, 59:1103–1122, 1995. doi:
10.1070/IM1995v059n06ABEH000050.

A An Adversary Bound for Permutation Oracles

We will prove Lemma 2:

I Lemma 2. Let σσσ ⊂ [V]→ [V] be a subset of permutations acting on the elements [V]. Let
f : σσσ → {0, 1} be a function of permutations. Let σσσX ⊂ σσσ be a set of permutations such that
if σ ∈ σσσX , then f(σ) = 1. Let σσσY ⊂ σσσ be a permutation family such that if σ ∈ σσσY then
f(σ) = 0. Let R ⊂ σσσX × σσσY be such that

For every σx ∈ σσσX , there exists at least m different σy ∈ σσσY such that (σx, σy) ∈ R.
For every σy ∈ σσσY , there exists at least m′ different σx ∈ σσσX such that (σx, σy) ∈ R.
Let lx,i be the number of σy ∈ σσσY such that (σx, σy) ∈ R and σx(i) 6= σy(i). Let
ly,i be the number of σx ∈ σσσY such that (σx, σy) ∈ R and σx(i) 6= σy(i). Then let
lmax = max(σx,σy)∈R,i lx,ily,i.

Then given an in-place permutation oracle Pσ for σ ∈ σσσ that acts as Pσ|i〉 = |σ(i)〉, any
quantum algorithm that correctly evaluates f(σ) with probability 1− ε for every element of
σσσX and σσσY must use

(
1− 2

√
ε(1− ε)

)√
mm′

lmax
queries to the oracle.

We note that this is identical to Ambainis’ adversary bound for permutations (see Theorem
6 in [6]).

Proof. We assume that we have a control permutation oracle, that acts as

P|x〉C |i〉A|z〉Q = |x〉|σx(i)〉|z〉 (6)

where the Hilbert space HC has dimension |σσσ|,the Hilbert space HA has dimension V and is
where the permutation is carried out, and HQ is a set of ancilla qubits.

Let |ψt〉 be the state of the system immediately after t uses of the control oracle. Let |ϕt〉
be the state of the system immediately before the tth use of the control oracle. Let ρt be the
reduced state of the system immediately after t uses of the control oracle, where systems A
and Q have been traced out. That is, ρt = trAQ(|ψt〉〈ψt|). Let (ρt)xy be the (x, y)th element
of the density matrix. Then we will track the progress of the following measure:

W t =
∑

(σx,σy)∈R

∣∣(ρt)xy∣∣ . (7)

Notice that unitaries that only act on the subsystems Q and A do not affect W t.

MFCS 2018

http://dx.doi.org/10.1090/gsm/047
http://dx.doi.org/10.1007/s00037-005-0194-x
http://dx.doi.org/10.1070/IM1995v059n06ABEH000050
http://dx.doi.org/10.1070/IM1995v059n06ABEH000050

22:14 Quantum vs. Classical Proofs and Subset Verification

If the state before the first use of the oracle is

|ψ0〉 =

 1√
2|σσσX |

∑
σx∈σσσX

|x〉+ 1√
2|σσσY |

∑
σy∈σσσY

|y〉

⊗ |φ〉AQ, (8)

then following Ambainis (e.g. Theorem 2 [6]), we have that for an algorithm to succeed with
probability at least 1− ε after T uses of the oracle, we must have

W 0 −WT >
(

1− 2
√
ε(1− ε)

)√
mm′ (9)

Now we calculate how much W t can change between uses of the oracle. Suppose without
loss of generality that

|ϕt〉 = 1√
2|σσσX |

∑
σx∈σσσX

∑
i,z

αx,i,z|x, i, z〉CAQ + 1√
2|σσσY |

∑
σy∈σσσY

∑
i,z

αy,i,z|y, i, z〉CAQ. (10)

Then we have

|ψt〉 = 1√
2|σσσX |

∑
σx∈σσσX

∑
i,z

αx,i,z|x, σx(i), z〉CAQ + 1√
2|σσσY |

∑
σy∈σσσY

∑
i,z

αy,i,z|y, σy(i), z〉CAQ

= 1√
2|σσσX |

∑
σx∈σσσX

∑
i,z

α
x,σ−1

x (i),z|x, i, z〉CAQ + 1√
2|σσσY |

∑
σy∈σσσY

∑
i,z

α
y,σ−1

y (i),z|y, i, z〉CAQ.

(11)

Hence for (σx, σy) ∈ R, we have

(ρt)xy = 1
2
√
|σσσX ||σσσY |

∑
i,z

αx,σ−1
x (i),zα

∗
y,σ−1

y (i),z

(ρt−1)xy = 1
2
√
|σσσX ||σσσY |

∑
i,z

αx,i,zα
∗
y,i,z, (12)

where (·)∗ signifies the complex conjugate. Now we can calculate W t −W t−1 :

W t−1 −W t =
∑

(σx,σy)∈R

|(ρt−1)xy| − |(ρt)xy|

≤
∑

(σx,σy)∈R

|(ρt−1)xy − (ρt)xy|. (13)

From Eq. (12), we see that whenever σ−1
x (i) = σ−1

y (i), we have a cancellation between
the corresponding elements of (ρt)xy and (ρt−1)xy. However, when σ−1

x (i) 6= σ−1
y (i), terms

do not cancel. To see this more explicitly, we rewrite Eq. (13) as

W t−1 −W t ≤

1
2
√
|σσσX ||σσσY |

∑
(σx,σy)∈R

∣∣∣∣∣∣
∑
z

 ∑
i:σx(i)=σy(i)

αx,i,zα
∗
y,i,z +

∑
i:σx(i) 6=σy(i)

αx,i,zα
∗
y,i,z

−
∑

i:σ−1
x (i)=σ−1

y (i)

αx,σ−1
x (i),zα

∗
y,σ−1

y (i),z −
∑

i:σ−1
x (i)6=σ−1

y (i)

αx,σ−1
x (i),zα

∗
y,σ−1

y (i),z

∣∣∣∣∣∣ . (14)

Consider the sets Tx,y = {i : σx(i) = σy(i)} and Ux,y = {σ−1
x (i) : σ−1

x (i) = σ−1
y (i)}. We will

show Ux,y = Tx,y. Suppose i ∈ Tx,y. Then σx(i) = σy(i) = i′, for some i′. But that implies

B. Fefferman and S. Kimmel 22:15

σ−1
x (i′) = σ−1

y (i′) = i, so σ−1
x (i′) = i ∈ Ux,y, and thus Tx,y ⊂ Ux,y. The opposite direction is

shown similarly. Therefore, those two sums in Eq. (14) cancel, and, moving the summation
over z and i outside the absolute values by the triangle inequality, we are left with

W t−1 −W t ≤

1
2
√
|σσσX ||σσσY |

∑
z,(σx,σy)∈R

 ∑
i:σx(i)6=σy(i)

∣∣αx,i,zα∗y,i,z∣∣+
∑

i:σ−1
x (i)6=σ−1

y (i)

∣∣∣αx,σ−1
x (i),zα

∗
y,σ−1

y (i),z

∣∣∣
 .

(15)

Now we use the AM-GM to bound the terms in the absolute values:

W t−1 −W t ≤

1
2

∑
z,(σx,σy)∈R

 ∑
i:σx(i)6=σy(i)

(√
ly,i
lx,i

|αx,i,z|2

2|σσσX |
+

√
lx,i
ly,i

|α∗y,i,z|2

2|σσσY |

)
+ 1

2
∑

z,(σx,σy)∈R

 ∑
i:σ−1

x (i) 6=σ−1
y (i)

√ ly,i
lx,i

∣∣∣αx,σ−1
x (i),z

∣∣∣2
2|σσσX |

+

√
lx,i
ly,i

∣∣∣α∗
y,σ−1

y (i),z

∣∣∣2
2|σσσY |

(16)

We now show that for (σx, σy) ∈ R,∑
i:σ−1

x (i)6=σ−1
y (i)

|αx,σ−1
x (i),z|

2 =
∑

i:σx(i)6=σy(i)

|αx,i,z|2,

∑
i:σ−1

x (i)6=σ−1
y (i)

|αy,σ−1
y (i),z|

2 =
∑

i:σx(i)6=σy(i)

|αy,i,z|2. (17)

We prove the first equality, and the second is proven similarly. We define

T ′x,y = [V] \ Tx,y,
U ′x,y = [V] \ Ux,y. (18)

Looking at the definition of Tx,y and Ux,y, we see that

T ′x,y = {i : σx(i) 6= σy(i)}
U ′x,y = {σ−1

x (i) : σ−1
x (i) 6= σ−1

y (i)}. (19)

We previously showed Tx,y = Ux,y, so we have T ′x,y = U ′x,y. Therefore∑
i:σ−1

x (i)6=σ−1
y (i)

|αx,σ−1
x (i),z|

2 =
∑
i:U ′x,y

|αx,j,z|2 =
∑
i:T ′x,y

|αx,i,z|2
∑

i:σx(i)6=σy(i)

|αx,i,z|2. (20)

Thus, Eq. (16) becomes

W t−1 −W t ≤
∑

z,(σx,σy)∈R

 ∑
i:σx(i) 6=σy(i)

(√
ly,i
lx,i

|αx,i,z|2

2|σσσX |
+

√
lx,i
ly,i

|α∗y,i,z|2

2|σσσY |

) . (21)

MFCS 2018

22:16 Quantum vs. Classical Proofs and Subset Verification

Now we switch the order of summation and then use the definition of lx,i and ly,i to get

W t−1 −W t

≤
∑

i∈[V],z

 ∑
(σx,σy)∈R:σx(i)6=σy(i)

(√
ly,i
lx,i

|αx,i,z|2

2|σσσX |
+

√
lx,i
ly,i

|α∗y,i,z|2

2|σσσY |

)
≤
∑

i∈[V],z

 ∑
σx∈σσσX

√
lx,i max

σy :(σx,σy)∈R
ly,i
|αx,i,z|2

2|σσσX |
+
∑

σy∈σσσY

√
ly,i max

σx:(σx,σy)∈R
lx,i
|α∗y,i,z|2

2|σσσY |

(22)

Finally, using the definition of lmax we have

W t−1 −W t ≤
√
lmax

∑
i∈[V],z

∑
x∈σσσX

|αx,i,z|2

2|σσσX |
+
∑

σy∈σσσY

|α∗y,i,z|2

2|σσσY |

≤
√
lmax, (23)

where we have used that Eq. (10) is a normalized state. J

B Proofs of Lemmas 10 and 11

I Lemma 10. Let 0 < α < 1/2 be a constant and p(·) be a polynomial function. Then there
exists a positive integer n∗(p, α), such that for every positive integer n > n∗(p, α), and every
subset family S ⊆ C(N2, N) such that |S| ≥ |C(N2, N)|2−p(n), there exists a subset family
SX ⊆ S such that SX is α-distributed with |Sfixed| < .5N .

Proof. We prove the existence of S′ by construction. Let S be any subset family of C(N2, N)
such that |S| ≥ |C(N2, N)|2−p(n). We construct S′ using the following procedure:

Fixing Procedure
1. Set S′ = S, and set Sfixed = ∅.
2. a. Let ν(i) be the number of subsets S ∈ SX such that i ∈ S.

b. If there exists some element i for which

|SX | > ν(i) ≥ |SX |N−α (24)

set S′ ← {S : S ∈ SX and i ∈ S}, set Sfixed ← Sfixed ∪ i, and return to step
2(a). Otherwise exit the Fixing Procedure.

The Fixing Procedure by construction will always return a set that satisfies Definition 6.
Now we just need to bound the size of Sfixed.

Let’s suppose that at some point in the Fixing Procedure, for sets S′ and Sfixed, we have
.5N items fixed. Suppose for contradiction there is some element i∗ /∈ Sfixed that appears in
greater than N−α fraction of S ∈ S′.

Let us look at the set family S′′ = {S : S ∈ S′, i∗ ∈ S}. Because (Sfixed ∪ i∗) ⊂ S for
all S ∈ S′′, there are .5N − 1 elements in each S ∈ S′′ that can be chosen freely from the
remaining N2 − .5N − 1 un-fixed elements. Thus, we have

|S′′| ≤
(
N2 − .5N − 1
.5N − 1

)
. (25)

B. Fefferman and S. Kimmel 22:17

By assumption |S′′| ≥ |S′|N−α, so

|S′| ≤
(
N2 − .5N − 1
.5N − 1

)
Nα

≤
(
N2

.5N

)
Nα

≤ (2Ne)N/2Nα

= 2N/2(log(2e)+logN)+log(N)α

= 2O(N)+(N/2) logN . (26)

However, we can also bound the size of S′ from the Fixing Procedure. Notice that at
every step of the Fixing Procedure, the size of S′ is reduced by at most a factor N−α. Since
we are assuming .5N elements are in Sfixed, the Fixing Procedure can reduce the original set
S by at most a factor N−αN/2. Since |S| ≥ |C(N2, N)|2−p(n), we have that at this point in
the Fixing Procedure

|S′| ≥ |C(N2, N)|2−p(n)N−αN/2

=
(
N2

N

)
2−p(n)N−αN/2

≥ NN2−p(n)N−αN/2

= 2N logN−p(n)−log(N)αN/2

= 2−O(N)+N logN(1−α/2). (27)

Notice that as long as α < 1, for large enough N (in particular, for N > 2n∗ for some positive
integer n∗, where n∗ depends on α and p(·)), the bound of Eq. (27) will be larger than
the bound of Eq. (26), giving a contradiction. Therefore, our assumption must have been
false, and more than N/2 elements can not have been fixed during the Fixing Procedure.
Therefore, the final set produced by the Fixing Procedure will satisfy point (2) of Definition
6. J

I Lemma 11. Suppose SX ⊂ C(N2, N) is the α-distributed subset created using the Fixing
Procedure of Lemma 10, with fixed subset Sfixed. Let SY = {S : S ∈ C(N2, 0.99N), Sfixed ⊂
S}. Then we can construct an adversary bound to prove that for every quantum algorithm G,
there exists Sx ∈ SX , and Sy ∈ SY , (that depend on G) such that, given oracle access to FSx or
FSy

, G can not distinguish them with probability ε > .5 without using
(

1− 2
√
ε(1− ε)

)
Nα/2

queries.

Proof. Note SY is non-empty, since only .5N elements are in Sfixed.
We will use Theorem 6 from [6]. This result is identical to our Lemma 2, except with

standard oracles rather than permutation oracles. We define the relation R as:

R = {(Sx, Sy) : Sx ∈ SX , Sy ∈ SY }. (28)

Notice that each Sx ∈ SSSX is paired with every element of SY . Thus m = |SY |. Likewise
m′ = |SX |.

Now consider (Sx, Sy) ∈ R. We first consider the case of some element j such that j ∈ Sx
but j /∈ Sy. By our construction of SY , j /∈ Sfixed. We upper bound lx,j , the number of Sy′
such that (Sx, Sy′) ∈ R and j /∈ Sy′ . We use the trivial upper bound lx,j ≤ |SY |, which is
sufficient for our purposes. Next we need to upper bound ly,j , the number of Sx′ such that

MFCS 2018

22:18 Quantum vs. Classical Proofs and Subset Verification

(Sx′ , Sy) ∈ R and j ∈ Sx. Since Sy is paired with every element of SX in R, we just need to
determine the number of sets in SX that contain j. Because SX is α-distributed, there can
be at most N−α|SX | elements of SX that contain j. In this case we have

lx,j ly,j ≤ |SX ||SY |N−α. (29)

We now consider the case that j ∈ Sy but j /∈ Sx. (Note this case only occurs when
Sfixed contains less than 0.99N elements.) We upper bound ly,j , the number of Sx′ such
that (Sx′ , Sy) ∈ R and j /∈ Sx′ . Again, we use the trivial upper bound of ly,j ≤ |SX |,
which is sufficient for our analysis. Next we upper bound lx,j , the number of Sy′ such that
(Sx, Sy′) ∈ R and j ∈ Sy′ . In our choice of R, Sx is paired with every Sy ∈ SY , so we need
to count the number of S ∈ SY that contain j. We have

lx,j =
(

N2 − Sfixed − 1
0.99N − Sfixed − 1

)
=0.99N − Sfixed

N2 − Sfixed
|SY |

≤ 1
N
|SY |. (30)

Therefore in this case, we have

lx,j ly,j ≤ |SX ||SY |N−1. (31)

Looking at Eq. (29) and Eq. (31), we see that because α < 1, the bound of Eq. (29)
dominates, and so we have that√

mm′

lx,j ly,j
≥

√
|SX ||SY |

|SX ||SY |N−α
= Nα/2. (32)

Using the contrapositive of Lemma 2, if an algorithm G makes less than q queries to an
oracle FS where S is promised to be in SX or SY , there exists at least one element of SX
and one element of SY such that the probability of distinguishing between the corresponding
oracles less than is 1/2 + ε, where

1
2
√

2N−α/2q > ε. (33)

Equivalently, there exists at least one element of SSSX and one element of SSSY such that in
order for A to distinguish them with constant bias, one requires Ω(Nα/2) queries. J

C Proof of Lemma 14

I Lemma 14. Given a randomized-preimage-correct oracle OOO, let 1n ∈ LOOO if On = Pσσσpre(S)
with S ∈ SSSneven. Given a preimage-correct oracle ÕOO let 1n ∈ LÕOO if On = Pσ with Spre(σ) ∈
Sneven. Then if there is a QCMA machine M that decides LOOO for every randomized-preimage-
correct OOO, then there is a QCMAexp,poly machine M̃ that decides LÕOO for every preimage-correct
ÕOO such that M̃ uses at most a polynomial number of queries to ÕOO, and on input 1n takes as
input a classical witness w that depends only on Spre(σ).

Proof. We denote the composition of two CPTP maps with ◦, so E ◦F means apply F

first, and then E .

B. Fefferman and S. Kimmel 22:19

For each input 1n, M applies an algorithm that takes as input a standard basis state.
Because S completely characterizes Pσσσpre(S), the optimal witness will depend only on S.

Suppose on input 1n to M , the algorithm is the following:

LAB ◦ (O)A ◦ (Ut)AB ◦ · · · ◦ (U2)AB ◦ (O)A ◦ (U1)AB(|w〉〈w| ⊗ |ψ0〉〈ψ0|)AB (34)

where |w〉〈w| is the witness state (that depends only on S) in the standard basis and Ui are
fixed unitaries and L . The two subspaces A and B refer to the subset where the oracle acts
(A) and the rest of the workspace (B). The two subspaces do not refer to the tensor product
structure of the initial state.

For i ∈ [N !(N2 −N)!] let τττn = {τi} be the set of permutations on the elements of [N2]
that do not mix the first N elements with the last N2 −N elements. Then let PC

n be the
following control-permutation:

PC
n |i〉|j〉 =

{
|i〉|τi(j)〉 for i ∈ [N !(N2 −N)!]
|i〉|j〉 otherwise.

(35)

PC
n is the respective CPTP map.
PC
n is a completely known unitary that is independent of the oracle, however, we do

not know how to implement this unitary in polynomial time. This unitary is the reason
we consider the class QCMAexp,poly in this proof rather than the more standard QCMA.
Ultimately, we care about query complexity - not the complexity of the unitaries that occur
between the oracle applications.

Let

|χn〉 = 1√
N !(N2 −N)!

N !(N2−N)!∑
i=1

|i〉 (36)

Then on input 1n we have M̃ implement the algorithm

LAB ◦ (PC
n)CtA ◦ (O)A ◦ (Ut)AB ◦ · · ·

◦ (U2)AB ◦ (PC
n)C1A ◦ (O)A ◦ (U1)AB

(
|χn〉〈χn|tC ⊗ (|w〉〈w| ⊗ |ψ0〉〈ψ0|)AB

)
(37)

where (PC
τ)CiA means the Cith register controls the Ath register, and initially, the Cith

register is the ith copy of |χn〉, and O is the CPTP version of the oracle O.
Let ρi(O) (resp. ρ̃i(O)) be the state of the system during the algorithm M (resp. M̃)

after the ith use of the oracle. Let ρ0(O) (resp. ρ̃0(O)) be the initial state of the respective
algorithms. Then we will show that

ρi(Pσσσpre(Spre(σ))) = trC1,...,Ct
(ρ̃i(Pσ)) . (38)

As a consequence of this, the probability distribution of measurement outcome of the two
algorithms will be identical.

We prove this by induction. For the initial step, we have

ρ0(Pσσσpre(Spre(σ))) = |w〉〈w| ⊗ |ψ0〉〈ψ0| (39)

while

trC(ρ̃0(Pσ)) = trC
(
|χn〉〈χn|tC ⊗ (|w〉〈w| ⊗ |ψ0〉〈ψ0|)AB

)
=|w〉〈w| ⊗ |ψ0〉〈ψ0|. (40)

MFCS 2018

22:20 Quantum vs. Classical Proofs and Subset Verification

For the induction step, we need to show

ρk(Pσσσpre(Spre(σ))) = trC1,...,Ct (ρ̃k(Pσ)) . (41)

Because Pσσσpre(Spre(σ)) has an equal probability of applying Pσ for each σ such that S(σ) = S,
we have

ρk(Pσσσpre(Spre(σ))) =Pσσσpre(Spre(σ))

(
Ukρk−1(Pσσσpre(Spre(σ)))U†k

)
= 1
N !(N2 −N)!

N !(N2−N)!∑
i=1

Pτi
PσUkρk−1(Pσσσpre(Spre(σ)))U†kP

†
σP†τi

. (42)

On the other hand

trC (ρ̃k(Pσ)) = trC
(

(PC
τ)CkAPσUk(ρ̃k−1(Pσ))U†kP

†
σ(PC

τ)†CkA

)
= 1
N !(N2 −N)!

N !(N2−N)!∑
i=1

Pτi
PσUk trC (ρ̃k−1(Pσ))U†kP

†
σP†τi

(43)

Now we need to show M̃ decides LOOO for a preimage-correct oracle OOO. Let’s consider an
input 1n. Suppose On = Pσ, where Spre(σ) ∈ Sneven. Then because M decides LOOO for any
randomized-preimage-correct, there exists a witness w that depends only on Spre(σ) such
that when the oracle is Pσσσpre(Spre(σ)) the output of M is 1 with probability at least 2/3.
Using the same witness w, M̃ will therefore produce output 1 with probability at least 2/3.

Now consider an input 1n such that On = Pσ where Spre(σ) ∈ Snodd. Because M decides
LOOO for a randomized-preimage-correct oracle OOO, whenM is run with the oracle Pσσσpre(Spre(σ)),
for any witness w, M will output 1 with probability at most 1/3. But because M̃ will have
the same probability distribution of outcomes, this means that for any witness w to M̃ , with
oracle Pσ, M̃ will output 1 with probability at most 1/3. J

D Proofs of Lemmas 16 and 17

I Lemma 16. Let 0 < α < 1/2 be a constant and p(·) be a polynomial function. Then there
exists a positive integer n∗(p, α), such that for every n > n∗(p, α), and every subset family
S ⊂ Sneven such that |S| ≥ |Sneven|2−p(n), there exists a subset family SX ⊂ S such that SX is
α-distributed. Furthermore the fixed subset Sfixed of SX contains at most N/3 even elements.

Proof. We prove the existence of S′ by construction. Let S be any subset of Sneven such that
|S| ≥ |Sneven|2−p(n). We construct SX using the following procedure, which we call the fixing
procedure.

Fixing Procedure
1. Set SX = S, and set Sfixed = ∅.
2. a. Let ν(i) be the number of subsets S ∈ SX such that i ∈ S.

b. If there exists some element i for which

|SX | > ν(i) ≥ |SX |N−α (44)

set SX ← {S : S ∈ SX and i ∈ S}, set Sfixed ← Sfixed ∪ i, and return to step
2(a). Otherwise exit the Fixing Procedure.

B. Fefferman and S. Kimmel 22:21

By construction, SX will satisfy Definition 6. Now we need to check that the Fixing
Procedure stops before fixing more than N/3 even items.

Let’s suppose that at some point in the Fixing Procedure, for sets SX and Sfixed, we
have N/3 even items fixed. Suppose for contradiction, that at this point, there is some even
element i∗ such that i∗ appears in greater than N−α fraction of S ∈ SX . Let’s also assume
without loss of generality that |Sfixed ∩ Zodd| = kodd ≤ N/3.

Let us look at the set

S′′ = {S : S ∈ SX , i∗ ∈ S}. (45)

Because (Sfixed ∪ i∗) ⊂ S for all S ∈ S′′, there are N/3− 1 even elements that can be freely
chosen for S ∈ S′′ and N/3− kodd odd elements that can be freely chosen. Thus, we have

|S′′| ≤
(
N2/2−N/3− 1

N/3− 1

)(
N2/2− kodd
N/3− kodd

)
. (46)

By assumption

|S′′| ≥ |SX |N−α, (47)

so

|SX | ≤
(
N2/2−N/3− 1

N/3− 1

)(
N2/2− kodd
N/3− kodd

)
Nα

≤
(
N2/2
N/3

)(
N2/2
N/3

)
Nα

≤ (3Ne/2)2N/3Nα

= 22N/3(log(3e/2)+logN)+log(N)α

= 2O(N)+(2N/3) logN . (48)

However, we can also bound the size of SX from the Fixing Procedure. Notice that at
every step of the Fixing Procedure, the size of SX is reduced by at most a factor N−α. Since
we are assuming N/3 even elements are in Sfixed and kodd ≤ N/3 odd elements are in Sfixed,
the Fixing Procedure can reduce the original set family S by at most a factor N−α(2N/3).

Since |S| ≥ |Sneven|2−p(n), we have that at this point in the Fixing Procedure

|SX | ≥ |Sneven|2−p(n)N−α(2N/3)

=
(
N2/2
2N/3

)(
N2/2
N/3

)
2−p(n)N−α(2N/3)

≤ (3N/4)2N/3(3N/4)N/32−p(n)N−α(2N/3)

= 22N/3(log(3/4)+logN)+N/3(log(3/4)+logN)−p(n)−log(N)α2N/3

= 2N logN(1−2α/3)+N log(3/4)−p(log(N))

= 2−O(N)+N logN(1−2α/3). (49)

Notice that as long as α < 1/2, for large enough N (in particular, for N > 2n∗ for some
positive integer n∗, where n∗ depends on α and p(·)), the bound of Eq. (49) will be larger
than the bound of Eq. (48), giving a contradiction. Therefore, our assumption, must have
been false, and at this point in the Fixing Procedure, all even elements i ∈ [N2]/Sfixed will
appear in at most a fraction N−α of S ∈ SX . Thus at the next step of the Fixing Procedure,
an even element will not be added to Sfixed, and the number of even elements in Sfixed
will stay bounded by N/3. The same logic can be reapplied at future steps of the Fixing
Procedure, even if additional odd items are added. J

MFCS 2018

22:22 Quantum vs. Classical Proofs and Subset Verification

I Lemma 17. Let SX be the α-distributed set created using the Fixing Procedure from Lemma
16, with fixed subset Sfixed. Let SY = {S : S ∈ Snodd, Sfixed ⊂ S}. Then we can construct
an adversary bound to prove that for every quantum algorithm G, there exists permutations
σx, σy ∈ σσσn with Spre(σx) ∈ SX and Spre(σy) ∈ SY , (that depend on G) such that, given
oracle access to Pσx

or Pσy
, G can not distinguish them with probability ε > .5 without using(

1− 2
√
ε(1− ε)

)
Nα/2 queries.

Proof. Since SX is α-distributed, there exists a set Sfixed of elements such that Sfixed ⊂ S for
all S ∈ SX , where Sfixed contains at most N/3 odd elements and at most N/3 even elements.
(Otherwise Condition (2) of Definition 6 will not be satisfied.) We choose

σσσY = {σ : Spre(σ) ∈ SY },
σσσX = {σ : Spre(σ) ∈ SX}. (50)

We now define the relation R needed to apply our adversary bound. For each (Sx, Sy) ∈
SX × SY , we will create a one-to-one matching in R between the elements of σσσpre(Sx)
and σσσpre(Sy). We first choose any element σ∗x ∈ σσσpre(Sx). Then we choose a permutation
σ∗y ∈ σσσpre(Sy) such that
∀j ∈ (Sx ∩ Sy), σ∗x(j) = σ∗y(j),
∀j ∈ [N2] \ (Sx ∪ Sy), σ∗x(j) = σ∗y(j),
∀j ∈ Sx \ (Sx ∩ Sy), ∃i ∈ Sy \ (Sx ∩ Sy) such that σ∗x(j) = σ∗y(i) and σ∗x(i) = σ∗y(j).

Since every permutation corresponding to Sy is in σσσpre(Sy), there will always be such a σ∗y
that satisfies the above criterion. We choose (σ∗x, σ∗y) ∈ R.

For i ∈ [N !(N2 −N)!] let τττn = {τi} be the set of permutations on the elements of [N2]
that do not mix the first N elements with the last N2 −N elements. By σa ◦ σb, we mean
apply first permutation σb, and then permutation σa. Notice that

σσσpre(Sx) ={τ ◦ σ∗x : τ ∈ τττn}
σσσpre(Sy) ={τ ◦ σ∗y : τ ∈ τττn}. (51)

Furthermore given τ ∈ τττn, we have
∀j ∈ (Sx ∩ Sy), τ ◦ σ∗x(j) = τ ◦ σ∗y(j),
∀j ∈ [N2] \ (Sx ∪ Sy), τ ◦ σ∗x(j) = τ ◦ σ∗y(j),
∀j ∈ Sx \ (Sx ∩ Sy), ∃i ∈ Sy \ (Sx ∩ Sy) such that τ ◦ σ∗x(j) = τ ◦ σ∗y(i) and σ ◦ σ∗x(i) =
σ ◦ σ∗y(j).

For every τ ∈ τττn, we set (τ ◦ σ∗x, τ ◦ σ∗y) ∈ R. In doing so, we create a one-to-one
correspondance in R between the elements of σσσpre(Sx) and σσσpre(Sy). We then repeat this
process for all pairs (Sx, Sy) ∈ SX × SY . The end result is the R that we will use.

Now we need to analyze the properties of this R. Notice that each σx ∈ σσσX is paired to
exactly one element of σσσpre(Sy) for each Sy ∈ SY . Thus m = |SY |. Likewise m′ = |SX |.

Now consider (σx, σy) ∈ R. We consider some element j such that σx(j) 6= σy(j). We
first consider the case that j ∈ Sx. We upper bound lx,j , the number of σy′ such that
(σx, σy′) ∈ R and σy′(j) 6= σx(j). To simplify analysis, we use the simple upper bound
lx,j ≤ |SY |, which is sufficient for our purposes. Next we need to upper bound ly,j , the
number of σx′ such that (σx′ , σy) ∈ R and σx′(j) 6= σy(j). By our construction of R, we
have j /∈ Sy. Also, by construction, if j /∈ Sy, σx′(j) 6= σy(j) if and only if j ∈ Sx′ . Since
σy is paired to only one element σx for each set Sx, ly,j is bounded by the number of sets

B. Fefferman and S. Kimmel 22:23

Sx ∈ SX such that j ∈ Sx. Because SX is α-distributed, at most a fraction N−α of the sets
of SX can contain j, so ly,j ≤ |SX |N−α. In this case we have

lx,j ly,j ≤ |SX ||SY |N−α. (52)

We now consider the case that j ∈ Sy. We upper bound ly,j , the number of σx′ such that
(σx′ , σy) ∈ R and σx′(j) 6= σy(j). To simplify analysis, we use the upper bound of ly,j ≤ |SX |,
which is sufficient for our analysis. Next we need to upper bound lx,j , the number of σy′ such
that (σx, σy′) ∈ R and σy′(j) 6= σx(j). By our construction of R, we have j /∈ Sx. Also, by
construction, if j /∈ Sx, σy′(j) 6= σx(j) if and only if j ∈ Sy′ . Since σx is paired to only one
element σx for each set Sx, lx,j is bounded by the number of sets Sy ∈ SY such that j ∈ Sy.
Suppose Sfixed contains keven even elements and kodd odd elements. If j is odd, we have

lx,j =
(
N2/2− kodd − 1
2N/3− kodd − 1

)(
N2/2− keven
N/3− keven

)
≤ 2N/3
N2/2−N/3 |SY |, (53)

while if j is even (in that case, we must have keven < N/3), we have

lx,j =
(
N2/2− kodd
2N/3− kodd

)(
N2/2− keven − 1
N/3− keven − 1

)
≤ N/3
N2/2−N/3 |SY |, (54)

where we’ve used that

|SY | =
(
N2/2− kodd
2N/3− kodd

)(
N2/2− keven
N/3− keven

)
. (55)

Therefore in this case, we have

lx,j ly,j = |SX ||SY |O(N−1). (56)

Looking at Eq. (52) and Eq. (56), we see that because α < 1, the bound of Eq. (52)
dominates, and so we have that√

mm′

lx,j ly,j
≥

√
|SX ||SY |

|SX ||SY |N−α
= Nα/2. (57)

Using the contrapositive of Lemma 2, if an algorithm G makes less than q queries to an
oracle Oσx where σx is promised to be in σσσX or σσσY , there exists at least one element of σσσX
and one element of σσσY such that the probability of distinguishing between the corresponding
oracles less than is 1/2 + ε, where

1
2
√

2N−α/2q > ε. (58)

Equivalently, there exists at least one element of σσσX and one element of σσσY such that in
order for A to distinguish them with constant bias, one requires Ω(Nα/2) queries. J

MFCS 2018

Timed Network Games with Clocks

Guy Avni1

IST Austria, Klosterneuburg, Austria
guy.avni@ist.ac.at

Shibashis Guha2

Université Libre de Bruxelles, Brussels, Belgium
shibashis.guha@ulb.ac.be

Orna Kupferman3

Hebrew University, Jerusalem, Israel
orna@cs.huji.ac.il

Abstract
Network games are widely used as a model for selfish resource-allocation problems. In the classical
model, each player selects a path connecting her source and target vertices. The cost of traversing
an edge depends on the load; namely, number of players that traverse it. Thus, it abstracts the fact
that different users may use a resource at different times and for different durations, which plays
an important role in determining the costs of the users in reality. For example, when transmitting
packets in a communication network, routing traffic in a road network, or processing a task in a
production system, actual sharing and congestion of resources crucially depends on time.

In [13], we introduced timed network games, which add a time component to network games.
Each vertex v in the network is associated with a cost function, mapping the load on v to the
price that a player pays for staying in v for one time unit with this load. Each edge in the
network is guarded by the time intervals in which it can be traversed, which forces the players to
spend time in the vertices. In this work we significantly extend the way time can be referred to
in timed network games. In the model we study, the network is equipped with clocks, and, as in
timed automata, edges are guarded by constraints on the values of the clocks, and their traversal
may involve a reset of some clocks. We argue that the stronger model captures many realistic
networks. The addition of clocks breaks the techniques we developed in [13] and we develop
new techniques in order to show that positive results on classic network games carry over to the
stronger timed setting.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory, Theory
of computation → Network formation, Theory of computation → Timed and hybrid models

Keywords and phrases Network games, Timed automata, Nash equilibrium, Equilibrium ineffi-
ciency

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.23

Related Version A full version of the paper is available at [14], http://arxiv.org/abs/1808.
04882.

1 Supported by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE), Z211-N23
(Wittgenstein Award), and M2369-N33 (Meitner fellowship).

2 Supported partially by the ARC project “Non-Zero Sum Game Graphs: Applications to Reactive
Synthesis and Beyond” (Fédération Wallonie-Bruxelles).

3 Supported by the European Research Council (FP7/2007-2013) / ERC grant agreement no 278410.

© Guy Avni, Shibashis Guha, and Orna Kupferman;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guy.avni@ist.ac.at
mailto:shibashis.guha@ulb.ac.be
mailto:orna@cs.huji.ac.il
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.23
http://arxiv.org/abs/1808.04882
http://arxiv.org/abs/1808.04882
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Timed Network Games with Clocks

1 Introduction

Network games (NGs, for short) [10, 48, 49] constitute a well studied model of non-cooperative
games. The game is played among selfish players on a network, which is a directed graph.
Each player has a source and a target vertex, and a strategy is a choice of a path that
connects these two vertices. The cost a player pays for an edge depends on the load on it,
namely the number of players that use the edge, and the total cost is the sum of costs of the
edges she uses. In cost-sharing games, load has a positive effect on cost: each edge has a
cost and the players that use it split the cost among them. Then, in congestion games4, load
has a negative effect on cost: each edge has a non-decreasing latency function that maps the
load on the edge to its cost.

One limitation of NGs is that the cost of using a resource abstracts the fact that different
users may use the resource at different times and for different durations. This is a real
limitation, as time plays an important role in many real-life settings. For example, in a road
or a communication system, congestion only affects cars or messages that use a road or a
channel simultaneously. We are interested in settings in which congestion affects the quality
of service (QoS) or the way a price is shared by entities using a resource at the same time
(rather than affecting the travel time). For example, discomfort increases in a crowded train
(in congestion games) or price is shared by the passengers in a taxi (in cost-sharing games).

The need to address temporal behaviors has attracted a lot of research in theoretical
computer science. Formalisms like temporal logic [46] enable the specification of the temporal
ordering of events. Its refinement to formalisms like real-time temporal logic [7], interval
temporal logic [42], and timed automata (TAs, for short) [6] enables the specification of
real-time behaviors. Extensions of TAs include priced timed automata (PTAs, for short) that
assign costs to real-time behaviors. Thus, PTAs are suitable for reasoning about quality of
real-time systems. They lack, however, the capability to reason about multi-agent systems in
which the players’ choices affect the incurred costs.

We study timed network games (TNGs, for short) – a new model that adds a time
component to NGs. A TNG is played on a timed-network in which edges are labeled by
guards that specify time restrictions on when the edge can be traversed. Similar to NGs,
each player has a source and target vertex, but a strategy is now a timed path that specifies,
in addition to which vertices are traversed, the amount of time that is spent in each vertex.
Players pay for staying in vertices, and the cost of staying in a vertex v in a time interval
I ⊆ IR≥0 is affected by the load in v during I. In [13], we studied a class of TNGs that
offered a first extension of NGs to a timed variant in which the reference to time is restricted:
the guards on the edges refer only to global time, i.e., the time that has elapsed since the
beginning of the game. In the model in [13], it is impossible to refer to the duration of certain
events that occur during the game, for example, it is not possible to express constraints that
require staying exactly one time unit in a vertex. Accordingly, we refer to that class as global
TNGs (GTNGs, for short).

In this work, we significantly extend the way time can be referred to in TNGs. We do this
by adding clocks that may be reset along the edges, and by allowing the guards on the edges
to refer to the values of all clocks. GTNGs can be viewed as a fragment in which there is
only a single clock that is never reset. We demonstrate our model in the following example.

4 The name congestion games is sometimes used to refer to games with general latency functions. We
find it more appropriate to use it to refer to games with non-decreasing functions.

G. Avni, S. Guha, and O. Kupferman 23:3

m 2m 3m

u1 v1 s v2 u2

1 ≤ x ≤ 2∧

3 ≤ y ≤ 4, {x}

1 ≤ x ≤ 2, {x} 1 ≤ x ≤ 2, {x} 1 ≤ x ≤ 2∧

4 ≤ y ≤ 5, {x}
1 ≤ x ≤ 2, {x}

Figure 1 A congestion TNG.

I Example 1. Consider a setting in which messages are sent through a network of routers.
Messages are owned by selfish agents who try to avoid congested routes, where there is a
greater chance of loss or corruption. The owners of the messages decide how much time
they spend in each router. Using TNGs, we can model constraints on these times, as well as
constraints on global events, in particular, arrival time. Note that in some applications, c.f.,
advertising or security, messages need to patrol the network with a lower bound on their
arrival time.

Consider the TNG appearing in Figure 1. The vertices in the TNG model the routers.
There are two players that model two agents, each sending a message. The source of both
messages is s and the targets are u1 and u2, for messages 1 and 2, respectively. The latency
functions are described in the vertices, as a function of the load m; e.g., the latency function
in v2 is `v2(m) = 3m. Thus, when a single message stays in v2 the cost for each time unit is
3, and when the two messages visit v2 simultaneously, the cost for each of them is 6 per unit
time. The network has two clocks, x and y. Clock x is reset in each transition and thus is
used to impose restrictions on the time that can be spent in each router: since all transitions
can be taken when 1 ≤ x ≤ 2, a message stays between 1 and 2 time units in a router. Clock
y is never reset, thus it keeps track of the global time. The guards on clock y guarantee that
message 1 reaches its destination by time 4 but not before time 3 and message 2 reaches its
destination by time 5 but not before time 4.

Suppose the first agent chooses the timed path (s, 2), (v1, 1), u1, thus message 1 stays in
s for two time units and in v1 for one time unit before reaching its destination u1. Suppose
the second agent chooses the path (s, 2), (v1, 2), (v2, 1), u2. Note that crossing an edge is
instantaneous. Since both messages stay in the same vertices during the intervals I1 = [0, 2]
and I2 = [2, 3], the load in the corresponding vertices is 2. During interval I1, each of the
agents pays |I1| · `s(2) = 2 · 4 and during I2, each pays |I2| · `v1(2) = 1 · 2. Message 2 stays in
v1 alone during the interval [3, 4] and in v2 during the interval [4, 5], for which it pays 1 and
3, respectively. The total costs are thus 10 and 14.

Before we elaborate on our contribution, let us survey relevant works, namely, extensions
of NGs with temporal aspects and extensions of timed-automata to games. Extensions of
NGs that involve reasoning about time mostly study a cost model in which the players try to
minimize the time of arrival at their destinations (c.f., [36, 39, 47, 45]), where, for example,
congestion affects the duration of crossing an edge. These works are different from ours since
we consider a QoS cost model. An exception is [36], which studies the QoS costs. A key
difference in the models is that there, time is discrete and the players have finitely many
strategies. Thus, reductions to classical resource allocation games is straightforward while for
TNGs it is not possible, as we elaborate below. Games on timed automata were first studied
in [11] in which an algorithm to solve timed games with timed reachability objective was
given. The work was later generalized and improved [4, 20, 35, 23]. Average timed games,
games with parity objectives, mean-payoff games and energy games have also been studied in
the context of timed automata [2, 37, 27, 21, 34]. All the timed games above are two-player
zero-sum ongoing games. Prices are fixed and there is no notion of load. Also, the questions

MFCS 2018

23:4 Timed Network Games with Clocks

studied on these games concern their decidability, namely finding winners and strategies
for them. TNGs are not zero-sum games, so winning strategies do not exist. Instead, the
problems we study here concern rationality and stability.

The first question that arises in the context of non-zero-sum games is the existence of
stable outcomes. In the context of NGs, the most prominent stability concept is that of a
(pure) Nash equilibrium (NE, for short) [43] – a profile such that no player can decrease her
cost by unilaterally deviating from her current strategy.5 Decentralized decision-making may
lead to solutions that are sub-optimal for the society as a whole. The standard measures
to quantify the inefficiency incurred due to selfish behavior is the price of stability (PoS)
[10] and the price of anarchy (PoA) [38]. In both measures we compare against the social
optimum (SO, for short), namely a profile that minimizes the sum of costs of all players. The
PoS (PoA, respectively) is the best-case (worst-case) inefficiency of an NE; that is, the ratio
between the cost of a best (worst) NE and the SO.

The picture of stability and equilibrium inefficiency for standard NGs is well understood.
Every NG has an NE, and in fact these games are potential games [48], which have the
following stronger property: a best response sequence is a sequence of profiles P1, P2, . . .

such that, for i ≥ 1, the profile Pi+1 is obtained from Pi by letting some player deviate and
decrease her personal cost. In finite potential games, every best-response sequence converges
to an NE. For k-player cost-sharing NGs, the PoS and PoA are log k and k, respectively [10].
For congestion games with affine cost functions, PoS ≈ 1.577 [29, 1] and PoA = 5

2 [30].
In [13], we showed that these positive results carry over to GTNGs. A key technical

feature of GTNGs is that since guards refer to global time, it is easy to find an upper bound
T on the time by which all players reach their destinations. Proving existence of NE follows
from a reduction to NGs, using a zone-like structure [5, 18]. The introduction of clocks
with resets breaks the direct reduction to NGs and questions the existence of a bound by
which the players arrive at their destinations.6 To see the difficulty in finding such a bound,
consider, for example, a cost-sharing game in which all players, on their paths to their targets,
need to stay for one time unit in a “gateway” vertex v that costs 1 (see details in Section 6).
Assume also that, for 1 ≤ i ≤ k, Player i can only reach v in times that are multiples of pi,
for relatively prime numbers p1, . . . , pk. The SO is obtained when all players synchronize
their visits to v, and such a synchronization forces them to wait till time p1 · . . . · pk, which is
exponential in the TNG.

The lack of an upper bound on the global time in TNGs demonstrates that we need a
different approach to obtain positive results for general TNGs. We show that TNGs are
guaranteed to have an NE. Our proof uses a combination of techniques from real-time models
and resource allocation games. Recall that a PTA assigns a price to a timed word. We are
able to reduce the best-response and the social-optimum problems to and from the problem of
finding cheapest runs in PTAs [19], showing that the problems are PSPACE-complete. Next,
we show that TNGs are potential games. Note that since players have uncountably many
strategies, the fact that TNGs are potential games does not immediately imply existence of
an NE, as a best-response sequence may not be finite. We show that there is a best-response
sequence that terminates in an NE. For this, we first need to show the existence of an integral
best-response, which is obtained from the reduction to PTAs. Finally, given a TNG, we find
a time T such that there exists an NE in which all players reach their destination by time T .

Due to lack of space, some of the proofs appear in the full version [14].

5 Throughout this paper, we consider pure strategies, as is the case for the vast literature on NGs.
6 In the full version we show that even with an upper bound on time, a reduction from TNGs to NGs is

not likely.

G. Avni, S. Guha, and O. Kupferman 23:5

2 Preliminaries

2.1 Resource allocation games and network games
For k ∈ N, let [k] = {1, . . . , k}. A resource allocation game (RAG, for short) is R =
〈k,E, {Σi}i∈[k], {`e}e∈E〉, where k ∈ N is the number of players; E is a set of resources;
for i ∈ [k], the set strategies of Player i is Σi ⊆ 2E ; and, for e ∈ E, the latency function
`e : [k]→ Q≥0 maps a load on e to its cost under this load. A profile is a choice of a strategy
for each player. The set of profiles of R is profiles(R) = Σ1×. . .×Σk. For e ∈ E, we define the
load on e in a profile P = 〈σ1, . . . , σk〉, denoted loadP (e), as the number of players using e in
P , thus loadP (e) = |{i ∈ [k] : e ∈ σi}|. The cost a player pays in profile P , denoted costi(P),
depends on the choices of the other players. We define costi(P) =

∑
e∈σi

`e(loadP (e)).
Network games (NGs, for short) can be viewed as a special case of RAGs where

strategies are succinctly represented by means of paths in graphs. An NG is N = 〈k, V , E,
{〈si, ui〉}i∈[k], {`e}e∈E〉, where 〈V,E〉 is a directed graph; for i ∈ [k], the vertices si and ui
are the source and target vertices of Player i; and the latency functions are as in RAGs. The
set of strategies for Player i is the set of simple paths from si to ui in N . Thus, in NGs, the
resources are the edges in the graph.

We distinguish between two types of latency functions. In cost-sharing games, the players
that visit a vertex share its cost equally. Formally, every e ∈ E has a cost ce ∈ Q≥0 and its
latency function is `e(l) = ce

l . Note that these latency functions are decreasing, thus the
load has a positive effect on the cost. In contrast, in congestion games, the cost functions
are non-decreasing and so the load has a negative effect on the cost. Typically, the latency
functions are restricted to simple functions such as linear latency functions, polynomials, and
so forth.

2.2 Timed networks and timed network games
A clock is a variable that gets values from IR≥0 and whose value increases as time elapses.
A reset of a clock x assigns value 0 to x. A guard over a set C of clocks is a conjunction
of clock constraints of the form x ∼ m, for x ∈ C, ∼∈ {≤,=,≥}, and m ∈ N. Note that
we disallow guards that use the operators < and > (see Remark 4). A guard of the form∧
x∈C x ≥ 0 is called true. The set of guards over C is denoted Φ(C). A clock valuation is

an assignment κ : C → IR≥0. A clock valuation κ satisfies a guard g, denoted κ |= g, if the
expression obtained from g by replacing each clock x ∈ C with the value κ(x) is valid.

A timed network is a tuple A = 〈C, V,E〉, where C is a set of clocks, V is a set of vertices,
and E ⊆ V × Φ(C) × 2C × V is a set of directed edges in which each edge e is associated
with a guard g ∈ Φ(C) that should be satisfied when e is traversed and a set R ⊆ C of clocks
that are reset along the traversal of e.

When traversing a path in a timed network, time is spent in vertices, and edges are
traversed instantaneously. Accordingly, a timed path in A is a sequence η = 〈τ1, e1〉, . . . ,
〈τn, en〉 ∈ (IR≥0 × E)∗, describing edges that the path traverses along with their traversal
times. The timed path η is legal if the edges are successive and the guards associated with
them are satisfied. Formally, there is a sequence 〈v0, t0〉, . . . , 〈vn−1, tn−1〉, vn ∈ (V ×IR≥0)∗ ·V ,
describing the vertices that η visits and the time spent in these vertices, such that for every
1 ≤ j ≤ n, the following hold: (1) tj−1 = τj − τj−1, with τ0 = 0, (2) there is gj ∈ Φ(C) and
Rj ⊆ C, such that ej = 〈vj−1, gj , Rj , vj〉, (3) there is a clock valuation κj that describes the
values of the clocks before the incoming edge to vertex vj is traversed. Thus, κ1(x) = t0,
for all x ∈ C, and for 1 < j ≤ n, we distinguish between clocks that are reset when ej−1

MFCS 2018

23:6 Timed Network Games with Clocks

is traversed and clocks that are not reset: for x ∈ Rj−1, we define κj(x) = tj−1, and for
x ∈ (C \Rj−1), we define κj(x) = κj−1(x) + tj−1, and (4) for every 1 ≤ j ≤ n, we have that
κj |= gj . We sometimes refer to η also as the sequence 〈v0, t0〉, . . . , 〈vn−1, tn−1〉, vn.

Consider a finite set T ⊆ IR≥0 of time points. We say that a timed path η is a T -path if
all edges in η are taken at times in T . Formally, for all 1 ≤ j ≤ n, we have that τj ∈ T . We
refer to the time at which η ends as the time τn at which the destination is reached. We say
that η is integral if T ⊆ N.

A timed network game (TNG, for short) extends an NG by imposing constraints on the
times at which edges may be traversed. Formally, T = 〈k, C, V,E, {`v}v∈V , 〈si, ui〉i∈[k]〉
includes a set C of clocks, and 〈C, V,E〉 is a timed network. Recall that while traversing a
path in a timed network, time is spent in vertices. Accordingly, the latency functions now
apply to vertices, thus `v : [k] → Q≥0 maps a load on vertex v to its cost under this load.
Traversing an edge is instantaneous and is free of charge. A strategy for Player i, for i ∈ [k],
is then a legal timed path from si to ui. We assume all players have at least one strategy.
I Remark. A possible extension of TNGs is to allow costs on edges. Since edges are traversed
instantaneously, these costs would not be affected by load. Such an extension does not affect
our results and we leave it out for sake of simplicity. Another possible extension is allowing
strict time guards, which we discuss in Remark 4.

The cost Player i pays in profile P , denoted costi(P), depends on the vertices in her
timed path, the time spent on them, and the load during the visits. In order to define the
cost formally, we need some definitions. For a finite set T ⊆ IR≥0 of time points, we say that
a timed path is a T -strategy if it is a T -path. Then, a profile P is a T -profile if it consists
only of T -strategies. Let tmax = max(T). For t ∈ T such that t < tmax, let nextT (t) be the
minimal time point in T that is strictly larger than t. We partition the interval [0, tmax] into
a set Υ of sub-intervals [m,nextT (m)] for every m ∈ (T ∪ {0}) \ {tmax}. We refer to the
sub-intervals in Υ as periods. Suppose T is the minimal set such that P is a T -profile. Note
that Υ is the coarsest partition of [0, tmax] into periods such that no player crosses an edge
within a period in Υ. We denote this partition by ΥP .

For a player i ∈ [k] and a period γ ∈ ΥP , let visitsP (i, γ) be the vertex that Player i
visits during period γ. That is, if πi = 〈vi0, ti0〉, . . . , 〈vini−1, t

i
ni−1〉, vini

is a legal timed path
that is a strategy for Player i and γ = [m1,m2], then visitsP (i, γ) is the vertex vij for the
index 1 ≤ j < ni such that τ ij ≤ m1 ≤ m2 ≤ τ ij+1, and visitsP (i, γ) is the vertex vi0 if
0 = m1 ≤ m2 ≤ τ i1. Note that since P is a T -profile, for each period γ ∈ ΥP , the number
of players that stay in each vertex v during γ is fixed. Let loadP (v, γ) denote this number.
Formally loadP (v, γ) = |{i : visitsP (i, γ) = v}|. Finally, for a period γ = [m1,m2], let
|γ| = m2 −m1 be the duration of γ. Suppose Player i’s path ends at time τ i. Let Υi

P ⊆ ΥP

denote the periods that end by time τi.
Recall that the latency function `v : [k] −→ Q≥0 maps the number of players that simul-

taneously visit vertex v to the price that each of them pays per time unit. If visitsP (i, γ) = v,
then the cost of Player i in P , over the period γ is costγ,i(P) = `v(loadP (v, γ)) · |γ|. We
define costi(P) =

∑
γ∈Υi

P
costγ,i(P). The cost of the profile P , denoted cost(P), is the total

cost incurred by all the players, i.e., cost(P) =
∑k
i=1 costi(P).

A T -strategy is called an integral strategy when T ⊆ N, and similarly for integral profile.
A profile P = 〈π1, . . . , πk〉 is said to end by time τ if for each i ∈ [k], the strategy πi ends

by time τ . Consider a TNG T that has a cycle such that a clock x of T is reset on the cycle.
It is not difficult to see that this may lead to T having infinitely many integral profiles that
end by different times. A TNG T is called global if it has a single clock x that is never reset.
We use GTNG to indicate that a TNG is global.

G. Avni, S. Guha, and O. Kupferman 23:7

As in RAGs, we distinguish between cost-sharing TNGs that have cost-sharing latency
functions and congestion TNGs in which the latency functions are non-decreasing.

2.3 Stability and efficiency
Consider a game G. For a profile P and a strategy π of player i ∈ [k], let P [i← π] denote
the profile obtained from P by replacing the strategy of Player i in P by π. A profile P is
said to be a (pure) Nash equilibrium (NE) if none of the players in [k] can benefit from a
unilateral deviation from her strategy in P to another strategy. Formally, for every Player i
and every strategy π for Player i, it holds that costi(P [i← π]) ≥ costi(P).

A social optimum (SO) of a game G is a profile that attains the infimum cost over all
profiles. We denote by SO(G) the cost of an SO profile; i.e., SO(G) = infP∈profiles(G) cost(P).
It is well known that decentralized decision-making may lead to sub-optimal solutions from
the point of view of the society as a whole. We quantify the inefficiency incurred due to
self-interested behavior by the price of anarchy (PoA) [38, 44] and price of stability (PoS)
[10] measures. The PoA is the worst-case inefficiency of a Nash equilibrium, while the PoS
measures the best-case inefficiency of a Nash equilibrium. Note that unlike resource allocation
games in which the set of profiles is finite, in TNGs there can be uncountably many NEs,
so both PoS and PoA need to be defined using infimum/supremum rather than min/max.
Formally,

I Definition 2. Let G be a family of games, and let G ∈ G be a game in G. Let Γ(G) be the
set of Nash equilibria of the game G. Assume that Γ(G) 6= ∅.

The price of anarchy of G is PoA(G) = supP∈Γ(G) cost(P)/SO(G). The price of anarchy
of the family of games G is PoA(G) = supG∈GPoA(G).
The price of stability of G is PoS(G) = infP∈Γ(G) cost(P)/SO(G). The price of stability
of the family of games G is PoS(G) = supG∈GPoS(G).

3 The Best-Response and the Social-Optimum Problems

Consider a TNG T = 〈k, C, V,E, {`v}v∈V , 〈si, ui〉i∈[k]〉. In the best-response problem (BR
problem, for short), we ask how a player reacts to a choice of strategies of the other players.
Formally, let π1, . . . , πk−1 be a choice of integral7 strategies for Players 1, . . . , k− 1 in T . We
look for a strategy πk that minimizes costk(〈π1, . . . , πk〉). The choice of allowing Player k to
react is arbitrary and is done for convenience of notation. In the social optimum problem
(SOPT problem, for short), we seek a profile that maximizes the social welfare, or in other
words, minimizes the sum of players’ costs.

In this section we describe priced timed automata (PTAs, for short) [9, 17] and show that
while they are different from TNGs both in terms of the model and the questions asked on
it, they offer a useful framework for reasoning about TNGs. In particular, we solve the BR
and SOPT problems by reductions to problems about PTAs.

3.1 From TNGs to priced timed automata
A PTA [9, 17] is P = 〈C, V,E, {rv}v∈V 〉, where 〈C, V,E〉 is a timed network and rv ∈ Q≥0
is the rate of vertex v ∈ V . Intuitively, the rate rv specifies the cost of staying in v for a
duration of one time unit. Thus, a timed path η = 〈v0, t0〉, . . . , 〈vn, tn〉, vn+1 in a PTA has a

7 We choose integral strategies since strategies with irrational times cannot be represented as part of
the input; for strategies that use rational times, the best response problem can be solved with little
modification in the proof of Theorem 4.

MFCS 2018

23:8 Timed Network Games with Clocks

price, denoted price(η), which is
∑

0≤j≤n rv · tv. The size of P is |V |+ |E| plus the number
of bits needed in the binary encoding of the numbers appearing in guards and rates in P . 8

Consider a PTA P and two vertices s and u. Let paths(s, u) be the set of timed paths
from s to u. We are interested in cheapest timed paths in paths(s, u). A priori, there
is no reason to assume that the minimal price is attained, thus we are interested in the
optimal price, denoted opt(s, u), which we define to be inf{price(η) : η ∈ paths(s, u)}. The
corresponding decision problem, called the cost optimal reachability problem (COR, for short)
takes in addition a threshold µ, and the goal is to decide whether opt(s, t) ≤ µ. Recall that
we do not allow the guards to use the operators < and >.

I Theorem 3. [19, 32] The COR problem is PSPACE-complete for PTAs with two or more
clocks. Moreover, the optimal price is attained by an integral path, i.e., there is an integral
path η ∈ paths(s, u) with price(η) = opt(s, u).

In Sections 3.2 and 3.3 below, we reduce problems on TNGs to problems on PTAs. The
reductions allow us to obtain properties on strategies and profiles in TNGs using results on
PTAs, which we later use in combination with techniques for NGs in order to solve problems
on TNGs.

3.2 The best-response problem
I Theorem 4. Consider a TNG T with n clocks and integral strategies π1, . . . , πk−1 for
Players 1, . . . , k − 1. There is a PTA P with n+ 1 clocks and two vertices v and u such that
there is a one-to-one cost-preserving correspondence between strategies for Player k in T and
timed paths from v to u: for every strategy πk in T and its corresponding path η in P, we
have costk(〈π1, . . . , πk〉) = price(η).

Proof. We describe the intuition of the reduction and the details can be found in the full
version. Consider a TNG T = 〈k, V,E,C, {`v}v∈V , 〈si, ui〉i∈[k]〉, where C = {x1, . . . , xm}.
Let Q = 〈π1, . . . , πk−1〉 be a choice of timed paths for Players 1, . . . , k − 1. Note that Q can
be seen as a profile in a game that is obtained from T by removing Player k, and we use
the definitions for profiles on Q in the expected manner. Let T ⊆ Q be the minimal set of
time points for which all the strategies in Q are T -strategies. Consider two consecutive time
points a, b ∈ T , i.e., there is no c ∈ T with a < c < b. Then, there are players that cross
edges at times a and b, and no player crosses an edge at time points in the interval (a, b).
Moreover, let tmax be the latest time in T , then tmax is the latest time at which a player
reaches her destination. Let ΥQ be a partition of [0, tmax] according to T . We obtain Υ′Q
from ΥQ by adding the interval [tmax,∞).

A key observation is that the load on all the vertices is unchanged during every interval
in Υ′Q. For a vertex v ∈ V and δ ∈ ΥQ, the cost Player k pays per unit time for using v in
the interval δ is `v(loadQ(v, δ) + 1). On the other hand, since all k − 1 players reach their
destination by time tmax, the load on v after tmax is 0, and the cost Player k pays for using
it then is `v(1).

The PTA P that we construct has |Υ′Q| copies of T , thus its vertices are V ×Υ′Q. Let
δ0 = [0, b] ∈ Υ′Q be the first interval. We consider paths from the vertex v = 〈sk, δ0〉,
which is the copy of Player k’s source in the first copy of T , to a target u, which is a new
vertex we add and whose only incoming edges are from vertices of the form 〈uk, δ〉, namely,

8 In general, PTAs have rates on transitions and strict time guards, which we do not need here.

G. Avni, S. Guha, and O. Kupferman 23:9

the copies of the target vertex uk of Player k. We construct P such that each such path
η from v to u in P corresponds to a legal strategy πk for Player k in T , and such that
costk(〈π1, . . . , πk−1, πk〉) = price(η). The main difference between the copies are the vertices’
costs, which depend on the load as in the above. We refer to the n clocks in T as local clocks.
In each copy of P , we use the local clocks and their guards in T as well as an additional global
clock that is never reset to keep track of global time. Let δ = [a, b] ∈ ΥQ and δ′ = [b, c] ∈ Υ′Q
be the following interval. Let Tδ and Tδ′ be the copies of T that corresponds to the respective
intervals. The local clocks guarantee that a path in Tδ is a legal path in T . The global
clock allows us to make sure that (1) proceeding from Tδ to Tδ′ can only occur precisely at
time b, and (2) proceeding from 〈uk, δ〉 in Tδ to the target u can only occur at a time in the
interval δ. J

We conclude with the computational complexity of the BR problem. The decision-
problem variant gets as input a TNG T , integral strategies π1, . . . , πk−1 for Players 1, . . .,
k − 1, and a value µ, and the goal is to decide whether Player k has a strategy πk such that
costk(〈π1, . . . , πk〉) ≤ µ. Theorem 4 implies a reduction from the BR problem to the COR
problem and a reduction in the other direction is easy since PTAs can be seen as TNGs
with a single player. For one-clock instances, we show that the BR problem is NP-hard
by a reduction from the subset-sum problem. Note the contrast with the COR problem
in one-clock instances, which is NLOGSPACE-complete [41]. The proof of the following
theorem can be found in the full version.

I Theorem 5. The BR problem is PSPACE-complete for TNGs with two or more clocks.
For one-clock cost-sharing and congestion TNGs it is in PSPACE and NP-hard.

Proof. We reduce the BR problem to and from the COR problem, which is PSPACE-complete
for PTAs with at least two clocks [19]. A PTA can be seen as a one-player TNG, thus the
BR problem for TNGs with two or more clocks is PSPACE-hard. For the upper bound,
given a TNG T , strategies Q = 〈π1, . . . , πk−1〉 for Players 1, . . . , k − 1, and a threshold µ,
we construct a PTA P as in the proof of Theorem 4. Note that the size of P is polynomial
in the size of the input and that P has one more clock than T . An optimal path in P is a
best response for Player k, and such a path can be found in PSPACE.

The final case to consider is TNGs with one clock. We show that the BR problem is
NP-hard for such instances using a reduction from the subset-sum problem. The input to
that problem is a set of natural numbers A = {a1, . . . , an} and µ ∈ N, and the goal is to
decide whether there is a subset of A whose sum is µ. We start with the cost-sharing case.
The game we construct is a two-player game on a network that is depicted in Figure 2.
Player 2 has a unique strategy that visits vertex vn+1 in the time interval [µ, µ + 1]. A
Player 1 strategy π corresponds to a choice of a subset of A. Player 1’s source is v1 and her
target is u2. The vertex vn+1 is the only vertex that has a cost, which is 1, and the other
vertices cost 0. For 1 ≤ i ≤ n, Player 1 needs to choose between staying in vertex vi for a
duration of ai time units, and exiting the vertex through the top edge, or staying 0 time
units, and exiting the vertex through the bottom edge. Finally, she must stay in vn+1 for
exactly one time unit. The cost Player 1 pays for vn+1 depends on the load. If she stays
there in the global time interval [µ, µ + 1], she pays 1/2, and otherwise she pays 1. Thus,
Player 1 has a strategy with which she pays 1/2 iff there is a subset of A whose sum is µ,
and we are done.

The reduction for congestion games is similar. Recall that in congestion games, the cost
increases with the load, thus a player would aim at using a vertex together with as few
other players as possible. The network is the same as the one used above. Instead of two

MFCS 2018

23:10 Timed Network Games with Clocks

v1 v2 v3

· · · 1

v
n+1

u1

s2

u2

x = µ, ∅

x = µ+ 1, ∅

x = a1, {x}

x = 0, {x}

x = a2, {x}

x = 0, {x}

x = a3, {x}

x = 0, {x}

x = a
n
, {x}

x = 0, {x}

x = 1, {x}

Figure 2 NP-hardness proof of best response problem in one clock TNG.

players, we use three players, where Players 2 and 3 have a unique strategy each. Player 2
must stay in vn+1 in the time interval [0, µ] and Player 3 must stay there during the interval
[µ+ 1,

∑
1≤i≤n ai]. As in the above, Player 1 has a strategy in which she uses vn+1 alone in

the time interval [µ, µ+ 1] iff there is a subset of A whose sum is µ. J

3.3 The social-optimum problem
I Theorem 6. Consider a TNG T = 〈k, C, V,E, {`v}v∈V , 〈si, ui〉i∈[k]〉. There is a PTA P
with k · |C| clocks, |V |k vertices, and two vertices s̄ and ū such that there is a one-to-one
cost-preserving correspondence between profiles in T and paths from s̄ to ū; namely, for a
profile P and its corresponding path ηP , we have cost(P) = price(ηP).

Proof. We describe the intuition of the construction and the details can be found in the
full version. Recall that the social optimum is obtained when the players do not act
selfishly, rather they cooperate to find the profile that minimizes their sum of costs. Let
T = 〈k, C, V,E, {`v}v∈V , 〈si, ui〉i∈[k]〉. We construct a PTA P by taking k copies of T . For
i ∈ [k], the i-th copy is used to keep track of the timed path that Player i uses. We need k
copies of the clocks of T to guarantee that the individual paths are legal. Recall that the
players’ goal is to minimize their total cost, thus for each point in time, the price they pay in
P is the sum of their individual costs in T . More formally, consider a vertex v̄ = 〈v1, . . . , vk〉
in P and let Sv̄ ⊆ V be the set of vertices that appear in v̄. Then, the load on a vertex
v ∈ Sv̄ in v̄ is loadv̄(v) = |{i : vi = v}|, and the rate of v̄ is

∑
v∈Sv̄

`v(loadv̄(v)). The cost
of the social optimum in T coincides with the price of the optimal timed path in P from
〈s1, . . . , sk〉 to the vertex 〈u1, . . . , uk〉, i.e., the vertices that respectively correspond to the
sources and targets of all players. J

We turn to study the complexity of the SOPT problem. In the decision-problem variant,
we are given a TNG T and a value µ and the goal is to decide whether there is a profile P in
T with cost(P) ≤ µ. Theorem 6 implies a reduction from the SOPT problem to the COR
problem, and, as in the BR problem, the other direction is trivial. For one-clock instances,
we use the same NP-hardness proof as in the BR problem. The details can be found in the
full version.

I Theorem 7. The SOPT problem is PSPACE-complete for at least two clocks and it is
NP-hard for TNGs with one clock.

4 Existence of a Nash Equilibrium

The first question that arises in the context of games is the existence of an NE. In [13], we
showed that GTNGs are guaranteed to have an NE by reducing every GTNG to an NG. We
strengthen the result by showing that every TNG has an NE.

G. Avni, S. Guha, and O. Kupferman 23:11

In order to prove existence, we combine techniques from NGs and use the reduction to
PTA in Theorem 4. A standard method for finding an NE is showing that a best-response
sequence converges: Starting from some profile P = 〈π1, . . . , πk〉, one searches for a player that
can benefit from a unilateral deviation. If no such player exists, then P is an NE and we are
done. Otherwise, let π′i be a beneficial deviation for Player i, i.e., costi(P) > costi(P [i← π′i]).
The profile P [i← π′i] is considered next and the above procedure repeats.

A potential function for a game is a function Ψ that maps profiles to costs, such that the
following holds: for every profile P = 〈π1, . . . , πk〉, i ∈ [k], and strategy π′i for Player i, we
have Ψ(P)−Ψ(P [i← π′i]) = costi(P)− costi(P [i← π′i]), i.e., the change in potential equals
the change in cost of the deviating player. A game is a potential game if it has a potential
function. In a potential game with finitely many profiles, since the potential of every profile
is non-negative and in every step of a best-response sequence the potential strictly decreases,
every best-response sequence terminates in an NE. It is well-known that RAGs are potential
games [48] and since they are finite, this implies that an NE always exists.

The idea of our proof is as follows. First, we show that TNGs are potential games, which
does not imply existence of NE since TNGs have infinitely many profiles. Then, we focus on
a specific best-response sequence that starts from an integral profile and allows the players
to deviate only to integral strategies. Finally, we define normalized TNGs and show how to
normalize a TNG in a way that preserves existence of NE. For normalized TNGs, we show
that the potential reduces at least by 1 along each step in the best-response sequence, thus it
converges to an NE.

I Theorem 8. TNGs are potential games.

Proof. Consider a TNG T = 〈k, C, V,E, {`v}v∈V , 〈si, ui〉i∈[k]〉. Recall that for a profile P ,
the set of intervals that are used in P is ΥP . We define a potential function Ψ that is an
adaptation of Rosenthal’s potential function [48] to TNGs. We decompose the definition of Ψ
into smaller components, which will be helpful later on. For every γ ∈ ΥP and v ∈ V , we define
Ψγ,v(P) =

∑loadP (v,γ)
j=1 |γ| · `v(j), that is, we take the sum of |γ| · `v(j) for all j ∈ [loadP (v, γ)].

We define Ψγ(P) =
∑
v∈V Ψγ,v(P), and we define Ψ(P) =

∑
γ∈ΥP

Ψγ(P). Let for some
i ∈ [k], we have P ′ to be a profile that is obtained by an unilateral deviation of Player i to a
strictly beneficial strategy π′i from her current strategy in P , that is P ′ = P [i← π′] for some
i ∈ [k]. In the full version, we show that Ψ(P)−Ψ(P ′) = costi(P)− costi(P ′). J

Recall from Theorem 4, that given a TNG, a profile P and an index i, we find the best
response of Player i by constructing a PTA. If P is an integral profile, from Theorem 3, we
have that the best response of Player i also leads to an integer profile. Thus we have the
following lemma.

I Lemma 9. Consider a TNG T and an integral profile P . For i ∈ [k], if Player i has a
beneficial deviation from P , then she has an integral beneficial deviation.

The last ingredient of the proof gives a lower bound for the difference in cost that is
achieved in a beneficial integral deviation for some player i ∈ [k], which in turn bounds the
change in potential.

We first need to introduce a normalized form of TNGs. Recall that the latency function in
a TNG T is of the form `v : [k]→ Q≥0. In a normalized TNG all the latency functions map
loads to natural numbers, thus for every vertex v ∈ V , we have `v : [k]→ N. Constructing a
normalized TNG from a TNG is easy. Let L be the least common multiple of the denominators
of the elements in the set {`v(l) : v ∈ V and l ∈ [k]}. For every latency function `v and every
l ∈ [k] , we construct a new latency function `′v by `′v(l) = `v(l) · L.

MFCS 2018

23:12 Timed Network Games with Clocks

Consider a TNG T and let T ′ be the normalized TNG that is constructed from T . It is
not hard to see that for every profile P and i ∈ [k], we have costi(P) in T ′ is L ·costi(P) in T .
We can thus restrict attention to normalized TNGs as the existence of NE and convergence
of best-response sequence in T ′ implies the same properties in T . In order to show that
a best-response sequence converges in TNGs, we bound the change of potential in each
best-response step by observing that in normalized TNGs, the cost a player pays is an integer.

I Lemma 10. Let T be a normalized TNG, P = 〈π1, . . . , πk〉 be an integral profile in T , and
π′i be a beneficial integral deviation for Player i, for some i ∈ [k]. Then, costi(P)−costi(P [i←
π′i]) ≥ 1.

We can now prove the main result in this section.

I Theorem 11. Every TNG has an integral NE. Moreover, from an integral profile P , there
is a best-response sequence that converges to an integral NE.

Proof. Lemma 9 allows us to restrict attention to integral deviations. Indeed, consider an
integral profile P . Lemma 9 implies that if no player has a beneficial integral deviation from
P , then P is an NE in T . We start best-response sequence from some integral profile PI
and allow the players to deviate with integral strategies only. Consider a profile P and let
P ′ be a profile that is obtained from P by a deviation of Player i. Recall from Theorem 8
that costi(P) − costi(P ′) = Ψ(P) −Ψ(P ′). Lemma 10 implies that when the deviation is
beneficial, we have Ψ(P)−Ψ(P ′) ≥ 1. Since the potential is non-negative, the best-response
sequence above converges within Ψ(PI) steps. J

I Remark. A TNG that allows < and > operators on the guards is not guaranteed to have
an NE. Indeed, in a PTA, which can be seen as a one-player TNG, strict guards imply that
an optimal timed path may not be achieved. In turn, this means that an NE does not exist.
To overcome this issue, we use ε-NE, for ε > 0; an ε-deviation is one that improves the payoff
of a player at least by ε, and an ε-NE is a profile in which no player has a ε-deviation. Our
techniques can be adapted to show that ε-NE exist in TNGs with strict guards. The proof
uses the results of [19] that show that an ε-optimal timed path exists in PTAs. The proof
technique for existence of NE in TNGs with non-strict guards can then be adapted to the
strict-guard case.

5 Equilibrium Inefficiency

In this section we address the problem of measuring the degradation in social welfare due
to selfish behavior, which is measured by the PoS and PoA measures. We show that the
upper bounds from RAGs on these two measures apply to TNGs. For cost-sharing TNGs,
we show that the PoS and PoA are at most log k and k, respectively, as it is in cost-sharing
RAGs. Matching lower bounds were given in [13] already for GTNGs. For congestion TNGs
with affine latency functions, we show that the PoS and PoA are 1 +

√
(3)/3 ≈ 1.577 and 5

2 ,
respectively, as it is in congestion RAGs. Again, a matching lower bound for PoA is shown
in [13] for GTNGs, and a matching lower bound for the PoS remains open. Let F denote a
family of latency functions and F-TNGs and F-RAGs denote, respectively, the family of
TNGs and RAGs that use latency functions from this family.

I Theorem 12. Consider a family of latency functions F . We have PoS(F-TNGs) ≤
PoS(F-RAGs) and PoA(F-TNGs) ≤ PoA(F-RAGs). In particular, the PoS and PoA for
cost-sharing TNGs with k players is at most log(k) and k, respectively, and for congestion
TNGs with affine latency functions it is at most roughly 1.577 and 5

2 respectively.

G. Avni, S. Guha, and O. Kupferman 23:13

Proof. We prove for PoS in cost-sharing games and the other proofs are similar. Consider
a TNG T and let N1, N2, . . . be a sequence of NEs whose cost tends to c∗ = infP∈Γ(T) cost(P).
Let O be a social optimum profile in T , which exists due to Theorem 6. Thus, PoS(T) =
limj→∞ cost(N j)/ cost(O). We show that each element in the sequence is bounded above
by PoS(cost-sharing RAGs), which implies that PoS(T) ≤ PoS(cost-sharing RAGs), and
hence PoS(cost-sharing TNGs) ≤ PoS(cost-sharing RAGs). In the full version, for each
j ≥ 1, we construct a RAG Rj that has PoS(Rj) = cost(N j)/cost(O), and since Rj is a
cost-sharing RAG, we have PoS(Rj) ≤ PoS(cost- sharing RAGs), and we are done. J

6 Time Bounds

Recall that due to resets of clocks, the time by which a profile ends can be potentially
unbounded. It is interesting to know, given a TNG, whether there are time bounds within
which some interesting profiles like an NE and an SO are guaranteed to exist. Earlier we
showed that every TNG is guaranteed to have an integral NE (Theorem 11) and an integral
SO (Theorem 6). In this section we give bounds on the time by which such profiles end.
That is, given a TNG T , we find tNE(T), TSO(T) ∈ Q≥0 such that an integral NE N and
an integral SO O exist in T in which the players reach their destinations by time tNE(T)
and TSO(T) respectively.

We start by showing a time bound on an optimal timed path in a PTA, and then proceed
to TNGs.

I Lemma 13. Consider a PTA P = 〈C, V,E, {rv}v∈V 〉, and let χ be the largest constant
appearing in the guards on the edges of P. Then, for every s, u ∈ V , there is an integral
optimal timed path from s to u that ends by time |V | · (χ+ 2)|C|.

Proof. Consider an optimal integral timed path η in P that ends in the earliest time and
includes no loop that is traversed instantaneously. Let v0, . . . , vn be the sequence of vertices
that η traverses, and, for 0 ≤ i < n, let κi be the clock valuation before exiting the vertex vi.
Since η is integral, κi assigns integral values to clocks. Note that since the largest constant
appearing in a guard in P is χ, the guards in P cannot differentiate between clock values
greater than χ. We abstract away such values and define the restriction of a clock valuation
κi to be βi : C → ({0} ∪ [χ] ∪ {>}) by setting, for x ∈ C, the value βi(x) = κi(x), when
κi(x) ≤ χ, and βi(x) = >, when κi(x) > χ. Assume towards contradiction that η ends
after time |V | · (χ+ 2)|C|. Then, there are 0 ≤ i < j < n such that 〈vi, βi〉 = 〈vj , βj〉. Let
η = η1 · η2 · η3 be a partition of η such that η2 is the sub-path between the i-th and j-th
indices. Consider the path η′ = η′1 · η′3 that is obtained from η by removing the sub-path η2.
First, note that η′ is a legal path. Indeed, the restrictions of the clock valuations in η1 and
η3 match these in η′1 and η′3, that is, η′ = η1 · η3. Second, since we assume that traversing
the loop η2 is not instantaneous, we know that η′ ends before η. Moreover, since the rates in
P are non-negative, we have price(η′) ≤ price(η), and we reach a contradiction to the fact
that η is an optimal timed path that ends earliest. J

I Theorem 14. For a k-player TNG T with a set V of vertices and a set C of clocks, there
exists an SO that ends by time O(|V |k · χk|C|), where χ is the maximum constant appearing
in T . For every k ≥ 1, there is a k-player (cost-sharing and congestion) TNG Tk such that
Tk has O(k) states, the boundaries in the guards in Tk are bounded by O(k log k), and any
SO in Tk requires time 2Ω(k).

MFCS 2018

23:14 Timed Network Games with Clocks

1

...

s1

s
k

v u

x = p1, {x}

x = p
k
, {x}

x = 1

x = p1, {x}

x = p
k
, {x} s1 s2 u1u2

x =1

x=p1, {x}

x=p2, {x}
x=1

x=p1, {x} x=p2, {x}

Figure 3 The time required for the SO is not polynomial.

Proof. We start with the upper bound. Consider a TNG T with a set V of vertices and
a set C of clocks. By Theorem 6, we can construct a PTA P with |V |k vertices and k|C|
clocks such that a social optimum of T is an optimal timed path in P . Applying Lemma 13,
we are done.

We turn to the lower bounds. We show that for every k ≥ 1, there is a k-player (cost-
sharing and congestion) TNG Tk such that Tk has O(k) states, the boundaries in the guards
in Tk are bounded by O(k log k), and any SO in Tk requires time 2Ω(k).

Consider the k-player cost-sharing TNG appearing on the left of Figure 3. Let p1, . . . , pk
be relatively prime (e.g., the the first k prime numbers). All the vertices in the TNG have
cost 0, except for v, which has some positive cost function. Each player i has to spend one
time unit in v in her path from si to u. In an SO, all k players spend this one time unit
simultaneously, which forces them all to reach v at time

∏
1≤i≤k pi. Since the i-th prime

number is O(i log i) and the product of the first i prime numbers is 2Ω(i), we are done. We
note that we could define the TNG also with no free vertices, that is vertics with 0 cost, by
setting the cost in v to be much higher than those in the source vertices.

For congestion games, the example is more complicated. We start with the case of two
players. Consider the congestion TNG appearing on the right of Figure 3. Assume that p1
and p2 are relatively prime, rs1(1) = rs2(1) = 0, and rs1(2) = rs2(2) = 1. In the SO, the two
players avoid each other in their paths from si to ui, and the way to do so is to wait p1 · p2
time units before the edge from si to s3−i is traversed. In the full version,we generalize this
example to k players. Again, we could define the TNG with no free vertices. J

We proceed to derive a time bound for the existence of an NE. For a TNG T , let LT ∈ N
be the smallest number such that multiplying the latency functions by LT results in a
normalized TNG. Recall the SO(T) is the cost of a social optimum in T .

I Theorem 15. Consider a TNG T with k players, played on a timed network 〈V,E,C〉,
and let χ be the maximum constant appearing in a guard. Then, there is an NE in T that
ends by time O(ϕ · |V | · χ|C| + |V |k · χk|C|), where ϕ = LT · SO(T) for congestion TNGs and
ϕ = LT · log(k) · SO(T) for cost-sharing TNGs.

Proof. Recall the proof of Theorem 11 that shows that every TNG has an integral NE: we
choose an initial integral profile P and perform integral best-response moves until an NE
is reached. The number of iterations is bounded by the potential Ψ(P) of P . We start the
best-response sequence from a social-optimum profile O that ends earliest. By Theorem 14,
there is such a profile that ends by time O(|V |k · χk|C|). Let ϕ = LT · SO(T) in the case of
congestion TNGs and ϕ = LT · (ln(k) + 1) · SO(T) in the case of cost-sharing TNGs. It is
not hard to show that Ψ(O) ≤ ϕ.

Next, we bound the time that is added in a best-response step. We recall the construction
in Theorem 4 of the PTA P for finding a best-response move. Consider a TNG T and a
profile of strategies P , where, w.l.o.g., we look for a best-response for Player k. Suppose the
strategies of Players 1, . . . , k − 1 take transitions at times τ1, . . . , τn. We construct a PTA P

G. Avni, S. Guha, and O. Kupferman 23:15

with n+ 1 copies of T . For 1 ≤ i ≤ n+ 1, an optimal path in P starts in the first copy and
moves from copy i to copy (i+ 1) at time τi. We use the additional “global” clock to enforce
these transitions. A key observation is that in the last copy, this additional clock is never
used. Thus, the largest constant in a guard in the last copy coincides with χ, the largest
constant appearing in T . Let η be an optimal path in P and πk the corresponding strategy
for Player k. We distinguish between two cases. If η does not enter the last copy of P , then
it ends before time τn, namely the latest time at which a player reaches her destination.
Then, the profile P [k ← πk] ends no later than P . In the second case, the path η ends in the
last copy of P. We view the last copy of P as a PTA. By Lemma 13, the time at which η
ends is within |V | · (χ+ 2)|C| since its entrance into the copy, which is τn. Then, P [i← πk]
ends at most |V | · (χ + 2)|C| time units after P . To conclude, the best-response sequence
terminates in an NE that ends by time O(ϕ · |V | · (χ+ 2)|C| + |V |k · χk|C|). J

7 Discussion and Future Work

The model of TNGs studied in this paper extends the model of GTNGs introduced in [13] by
adding clocks. From a practical point of view, the addition of clocks makes TNGs significantly
more expressive than GTNGs and enables them to model the behavior of many systems that
cannot be modeled using GTNGs. From a theoretical point of view, the analysis of TNGs
poses different and difficult technical challenges. In the case of GTNGs, a main tool for
obtaining positive results is a reduction between GTNGs and NGs. Here, in order to obtain
positive results we need to combine techniques from NGs and PTAs.

We left several open problems. In Theorem 11, we describe a method for finding an
integral NE through a sequence of BR moves. We leave open the complexity of finding an
NE in TNGs. For the upper bound, we conjecture that there is a PSPACE algorithm for the
problem. For the lower bound, we would need to find an appropriate complexity class of
search problems and show hardness for that class. For example, PLS [31], which lies “close”
to P, and includes the problem of finding an NE in NGs, consists of search problems in which
a local search, e.g., a BR sequence, terminates. Unlike NGs, where a BR can be found in
polynomial time, in TNGs, the problem is PSPACE-complete. To the best of our knowledge,
complexity classes for search problems that are higher than PLS were not studied. Further
we show that the BR and SO problems for one-clock TNGs is in PSPACE and is NP-hard,
leaving open the tight complexity.

This work belongs to a line of works that transfer concepts and ideas between the areas
of formal verification and algorithmic game theory: logics for specifying multi-agent systems
[8, 26], studies of equilibria in games related to synthesis and repair problems [25, 24, 33, 3],
and of non-zero-sum games in formal verification [28, 22]. This line of work also includes
efficient reasoning about NGs with huge networks [40, 12], an extension of NGs to objectives
that are richer than reachability [16], and NGs in which the players select their paths
dynamically [15]. For future work, we plan to apply the real-time behavior of TNGs to these
last two concepts; namely, TNGs in which the players’ objectives are given as a specification
that is more general than simple reachability or TNGs in which the players reveal their
choice of timed path in steps, bringing TNGs closer to the timed games of [11, 2].

MFCS 2018

23:16 Timed Network Games with Clocks

References
1 S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann. Exact price of anarchy

for polynomial congestion games. SIAM J. Comput., 40(5):1211–1233, 2011.
2 L. Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, and M. Stoelinga. The element of

surprise in timed games. In Proc. 14th Int. Conf. on Concurrency Theory, pages 142–156,
2003.

3 S. Almagor, G. Avni, and O. Kupferman. Repairing multi-player games. In Proc. 26th Int.
Conf. on Concurrency Theory, volume 42 of LIPIcs, pages 325–339, 2015.

4 R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reachability for weighted timed
games. In Proc. 31st Int. Colloq. on Automata, Languages, and Programming, pages 122–
133, 2004.

5 R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138(1):3–34, 1995.

6 R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
236, 1994.

7 R. Alur and T. Henzinger. Real-time logics: complexity and expressiveness. In Proc. 5th
IEEE Symp. on Logic in Computer Science, pages 390–401, 1990.

8 R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. Journal of
the ACM, 49(5):672–713, 2002.

9 R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed automata.
Theoretical Computer Science, 318(3):297–322, 2004.

10 E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos, T. Wexler, and T. Roughgarden.
The price of stability for network design with fair cost allocation. SIAM J. Comput.,
38(4):1602–1623, 2008.

11 E. Asarin and O. Maler. As soon as possible: Time optimal control for timed automata.
In Proc 2nd International Workshop on Hybrid Systems: Computation and Control, pages
19–30, London, UK, UK, 1999. Springer-Verlag.

12 G. Avni, S. Guha, and O. Kupferman. An abstraction-refinement methodology for reasoning
about network games. In Proc. 33rd Int. Joint Conf. on Artificial Intelligence, pages 70–76,
2017.

13 G. Avni, S. Guha, and O. Kupferman. Timed network games. In 42nd Int. Symp. on Math-
ematical Foundations of Computer Science, LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, 2017.

14 G. Avni, S. Guha, and O. Kupferman. Timed network games with clocks. CoRR,
abs/1808.04882, 2018. arXiv:1808.04882.

15 G. Avni, T.A. Henzinger, and O. Kupferman. Dynamic resource allocation games. In Proc.
9th International Symposium on Algorithmic Game Theory, volume 9928 of Lecture Notes
in Computer Science, pages 153–166, 2016.

16 G. Avni, O. Kupferman, and T. Tamir. Network-formation games with regular objectives.
Information and Computation, 251:165–178, 2016.

17 G. Behrmann, A. A. Fehnker, T. Hune, K.G. Larsen, P. Pettersson, J. Romijn, and F. W.
Vaandrager. Minimum-cost reachability for priced timed automata. In Proc 4th Interna-
tional Workshop on Hybrid Systems: Computation and Control, pages 147–161, London,
UK, 2001. Springer-Verlag.

18 J. Bengtsson and W.Yi. Timed automata: Semantics, algorithms and tools. In Lectures on
Concurrency and Petri Nets, Advances in Petri Nets, pages 87–124, 2003.

19 P. Bouyer, T. Brihaye, V. Bruyère, and J-F. Raskin. On the optimal reachability problem
of weighted timed automata. Formal Methods in System Design, 31(2):135–175, oct 2007.

http://arxiv.org/abs/1808.04882

G. Avni, S. Guha, and O. Kupferman 23:17

20 P. Bouyer, F. Cassez, E. Fleury, and K.G. Larsen. Optimal strategies in priced timed game
automata. In Proc. 24th Conf. on Foundations of Software Technology and Theoretical
Computer Science, Lecture Notes in Computer Science, pages 148–160, 2004.

21 R. Brenguier, F. Cassez, and J-F Raskin. Energy and mean-payoff timed games. In Proc
17th International Workshop on Hybrid Systems: Computation and Control, pages 283–292,
2014.

22 T. Brihaye, V. Bruyère, J. De Pril, and H. Gimbert. On subgame perfection in quantitative
reachability games. Logical Methods in Computer Science, 9(1), 2012.

23 T. Brihaye, G. Geeraerts, S. N. Krishna, L. Manasa, B. Monmege, and A. Trivedi. Adding
negative prices to priced timed games. In Proc. 25th Int. Conf. on Concurrency Theory,
pages 560–575, 2014.

24 K. Chatterjee. Nash equilibrium for upward-closed objectives. In Proc. 15th Annual Conf.
of the European Association for Computer Science Logic, volume 4207 of Lecture Notes in
Computer Science, pages 271–286. Springer, 2006.

25 K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Games with secure equilibria. Theor-
etical Computer Science, 365(1-2):67–82, 2006.

26 K. Chatterjee, T. A. Henzinger, and N. Piterman. Strategy logic. In Proc. 18th Int. Conf.
on Concurrency Theory, pages 59–73, 2007.

27 K. Chatterjee, T. A. Henzinger, and V. S. Prabhu. Timed parity games: Complexity and
robustness. Logical Methods in Computer Science, 7(4), 2011.

28 K. Chatterjee, R. Majumdar, and M. Jurdzinski. On Nash equilibria in stochastic games. In
Proc. 13th Annual Conf. of the European Association for Computer Science Logic, volume
3210 of Lecture Notes in Computer Science, pages 26–40. Springer, 2004.

29 G. Christodoulou and E. Koutsoupias. On the price of anarchy and stability of correlated
equilibria of linear congestion games. In ESA, pages 59–70, 2005.

30 G. Christodoulou and E. Koutsoupias. The price of anarchy of finite congestion games. In
Proc. 37th ACM Symp. on Theory of Computing, pages 67–73, 2005.

31 A. Fabrikant, C. Papadimitriou, and K. Talwar. The complexity of pure nash equilibria.
In Proc. 36th ACM Symp. on Theory of Computing, pages 604–612, 2004.

32 J. Fearnley and M. Jurdziński. Reachability in two-clock timed automata is pspace-
complete. In Proc. 40th Int. Colloq. on Automata, Languages, and Programming, pages
212–223, Berlin, Heidelberg, 2013. Springer-Verlag.

33 D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. In Proc. 16th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, volume 6015 of Lecture
Notes in Computer Science, pages 190–204. Springer, 2010.

34 S. Guha, M. Jurdzinski, S. N. Krishna, and A. Trivedi. Mean-payoff games on timed
automata. In Proc. 36th Conf. on Foundations of Software Technology and Theoretical
Computer Science, pages 44:1–44:14, 2016.

35 T. Dueholm Hansen, R. Ibsen-Jensen, and P. Bro Miltersen. A faster algorithm for solving
one-clock priced timed games. In Proc. 24th Int. Conf. on Concurrency Theory, pages
531–545, 2013.

36 M. Hoefer, V. S. Mirrokni, H. Röglin, and S. Teng. Competitive routing over time. Theor.
Comput. Sci., 412(39):5420–5432, 2011. doi:10.1016/j.tcs.2011.05.055.

37 M. Jurdzinski and A. Trivedi. Average-time games. In Proc. 28th Conf. on Foundations of
Software Technology and Theoretical Computer Science, pages 340–351, 2008.

38 E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science Review,
3(2):65–69, 2009.

39 E. Koutsoupias and K. Papakonstantinopoulou. Contention issues in congestion games. In
Proceedings of the 39th International Colloquium Conference on Automata, Languages, and
Programming - Volume Part II, ICALP’12, pages 623–635. Springer-Verlag, 2012.

MFCS 2018

http://dx.doi.org/10.1016/j.tcs.2011.05.055

23:18 Timed Network Games with Clocks

40 O. Kupferman and T. Tamir. Hierarchical network formation games. In Proc. 23rd Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems, volume 10205
of Lecture Notes in Computer Science, pages 229–246. Springer, 2017.

41 F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking timed automata with one
or two clocks. In Proc. 15th Int. Conf. on Concurrency Theory, pages 387–401, 2004.

42 B.C. Moszkowski and Z. Manna. Reasoning in interval temporal logic. In Logics of Programs,
volume 164 of Lecture Notes in Computer Science, pages 371–382. Springer, 1983.

43 J.F. Nash. Equilibrium points in n-person games. In Proceedings of the National Academy
of Sciences of the United States of America, 1950.

44 C. H. Papadimitriou. Algorithms, games, and the internet. In Proc. 33rd ACM Symp. on
Theory of Computing, pages 749–753, 2001.

45 M. Penn, M. Polukarov, and M. Tennenholtz. Random order congestion games. Mathem-
atics of Operations Research, 34(3):706–725, 2009.

46 A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer Science,
13:45–60, 1981.

47 K. Ronald and S. Martin. Nash equilibria and the price of anarchy for flows over time.
Theoretical Computer Science, 49(1):71–97, 2011.

48 R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International
Journal of Game Theory, 2:65–67, 1973.

49 T. Roughgarden and E. Tardos. How bad is selfish routing? Journal of the ACM, 49(2):236–
259, 2002.

Hardness Results for Consensus-Halving
Aris Filos-Ratsikas1

École Polytechnique Fédérale de Lausanne, Switzerland
aris.filosratsikas@epfl.ch

Søren Kristoffer Stiil Frederiksen
Aarhus University, Denmark
sorensf@gmail.com

Paul W. Goldberg
University of Oxford, United Kingdom
paul.goldberg@cs.ox.ac.uk

Jie Zhang2

University of Southampton, United Kingdom
jie.zhang@soton.ac.uk

Abstract
The Consensus-halving problem is the problem of dividing an object into two portions, such that
each of n agents has equal valuation for the two portions. We study the ε-approximate version,
which allows each agent to have an ε discrepancy on the values of the portions. It was recently
proven in [13] that the problem of computing an ε-approximate Consensus-halving solution (for
n agents and n cuts) is PPA-complete when ε is inverse-exponential. In this paper, we prove
that when ε is constant, the problem is PPAD-hard and the problem remains PPAD-hard when
we allow a constant number of additional cuts. Additionally, we prove that deciding whether a
solution with n− 1 cuts exists for the problem is NP-hard.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases PPAD, PPA, consensus halving, generalized-circuit, reduction

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.24

Related Version A full version of the paper is available at https://arxiv.org/abs/1609.
05136.

1 Introduction

Suppose that two families wish to split a piece of land into two regions such that every
member of each family believes that the land is equally divided, or suppose that a conference
organizer wants to assign the conference presentations to the morning and the afternoon
sessions, so that every participant thinks that the two sessions are equally interesting. Is it
possible to achieve these objectives? If yes, how can it be done and how efficiently? What if
we aim for “almost equal” instead of “equal”?

These real-life problems can be modeled as the Consensus-halving problem [27]. More
formally, there are n agents and an object to be divided; each agent may have a different
opinion as to which part of the object is more valuable. The problem is to divide the object

1 The author was supported by the ERC Advanced Grant 321171 (ALGAME).
2 The author was supported by the ERC Advanced Grant 321171 (ALGAME).

© Aris Filos-Ratsikas, Søren Kristoffer Stiil Frederiksen, Paul W. Goldberg, and Jie Zhang;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 24; pp. 24:1–24:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aris.filosratsikas@epfl.ch
mailto:sorensf@gmail.com
mailto:paul.goldberg@cs.ox.ac.uk
mailto:jie.zhang@soton.ac.uk
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.24
https://arxiv.org/abs/1609.05136
https://arxiv.org/abs/1609.05136
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Hardness Results for Consensus-Halving

into two portions such that each of the n agents believes that the two portions have equal
value, according to her personal opinion. The division may need to cut the object into pieces
and then label each piece appropriately to include it in one of the two portions.

The importance of the Consensus-halving problem - or to be precise, of its approximate
version, where there is an associated precision parameter ε - other than the fact that it models
real-life problems like the ones described above, lies in in the following fact: It is the first
“natural” problem that is complete for the complexity class PPA, where “natural” here means
that its does not contain a circuit explicitly in its definition; this was proven quite recently
by Filos-Ratsikas and Goldberg [13]. PPA is a class of total search problems [19] defined
in [22], and is a superclass of the class PPAD, which precisely captures the complexity of
computing a Nash equilibrium [11, 9]. Therefore, generally speaking, a PPA-hardness result
is stronger than a PPAD-hardness result.

Crucially however, the hardness result in [13] requires the precision parameter to be
inverse-exponential in the number of agents and does not even provably preclude the possibility
of efficient algorithms, if we allow larger discrepancies in the values for the two portions.
In this paper, we prove that this is actually not possible3, by showing that even when the
allowed discrepancy is independent of the number of agents, the problem is PPAD-hard.
Understanding the problem for increasing values of the discrepancy parameter is quite
important in terms of capturing precisely its complexity and resembles closely the series
of results establishing hardness of computing a mixed ε-Nash equilibrium, from ε being
inverse-polynomial in [11, 9] to being constant in [26], as well as several other problems
(see [26]). Additionally, one could imagine that solutions where constant discrepancies are
acceptable are the ones arising in several real-life scenarios, such as splitting land.

1.1 Our results
We are interested in the computational complexity of computing an ε-approximate solution
to the Consensus-halving problem where ε is a constant function of the number of agents, as
well as the complexity of deciding whether given an input instance, n− 1 cuts are sufficient
to achieve an ε-approximate solution. We discuss our main results below.

We prove that the problem of finding an ε-approximate solution to the Consensus-halving
problem for n agents using n cuts is PPAD-hard. Moreover, the problem remains PPAD-
hard even if we allow a constant number of additional cuts. The result is established via
a reduction from the approximate Generalized Circuit problem [9, 11, 26].

We prove that it is NP-hard to decide whether or not an ε-approximate solution to the
Consensus-halving problem for n agents using n − 1 cuts exists. Using the gadgetry
already developed for the PPAD-hardness proof, we establish the result via a reduction
from 3-SAT.

We prove that the problem of finding an ε-approximate solution to the Consensus-halving
problem for n agents using n cuts is in the computational class PPA; we obtain the result
via a reduction to the computational version of Tucker’s Lemma [22, 1].

We remark here that an earlier version of this paper actually predated [13], and some of the
results in [13] are established by referencing the results in the present paper. Specifically:

3 Under usual computational complexity assumptions, here that PPAD-hard problems do not admit
polynomial-time algorithms.

A. Filos-Ratsikas, S. K. S. Frederiksen, P.W. Goldberg, and J. Zhang 24:3

While the authors of [13] provide a rather elaborate reduction to establish PPA-hardness
of the problem, the inclusion in the class PPA is established with reference to the present
paper. In turn, the inclusion result follows from a formalization of the ideas of the
algorithms by [27] and [24] and Fan’s version of Tucker’s Lemma [12, 31].

In [13], the authors obtain a computational equivalence between the Necklace Splitting
problem [2] and ε-approximate Consensus-halving, for ε being at least inverse-polynomial.
The inverse-polynomial dependence on ε implies that PPA-hardness of the former problem
does not follow from their hardness result, but PPAD-hardness does follow from their
reduction and our main result here.

Due to lack of space, some of the proofs and details are left for the the full version of the
paper. Most emphasis is put on the main PPAD-hardness proof of Section 3, which is
presented in sufficient detail, and the NP-hardness proof of Section 4. The exposition of the
results in Section 5 is limited to higher-level intuition, with full proofs in the full version.

1.2 Related work
The Consensus-halving problem was explicitly formalized and studied firstly by Simmons
and Su [27], who proved that a solution with n cuts always exists and constructed a protocol
that finds an approximate solution, which allows for a small discrepancy on the values of the
two portions. Their proofs are based on one of the most applied theorems in topology, the
Borsuk-Ulam Theorem [6] and its combinatorial analogue, known as Tucker’s Lemma [31].
The existence of solutions to the problem was already known since [16, 3, 4] but the algorithm
in [27] is constructive, in the sense that it actually finds such a solution and furthermore, it
does not require the valuations of the players to be additively separable over subintervals,
like some of the previous papers do. Actually, for the case of valuations which are probability
measures, the existence of a solution with n cuts was known since as early as the 1940s
[20] and can also be obtained as an application of the Hobby-Rice Theorem [18] (also see
[2]). Despite proposing an explicit protocol however, the authors in [27] do not answer the
question of “efficiency”, i.e. how fast can a protocol find an (approximate) solution and the
running time of their protocol is worst-case exponential-time.4

To this end, Filos-Ratsikas and Goldberg [13] recently proved that the problem is PPA-
complete, but as we explained in the introduction, the hardness holds only when the precision
parameter is inversely exponential. Even more recently, the authors strengthened their result
to PPA-completeness of the problem for inversely polynomial precision [14]. However, since
our hardness result holds for constant precision, it is not subsumed by neither [13] or [14].

The computational classes PPA (Polynomial Parity Arguments) and PPAD (Polynomial
Parity Arguments on Directed graphs) were introduced by Papadimitriou [22] in an attempt
to capture the precise complexity of several interesting problems of a topological nature such
as computational analogues of Sperner’s Lemma [28] and Brouwer’s and Kakutani’s fixed
point theorems [5], which are all known to be in PPAD [22]. Interestingly, Aisenberg et al.
[1] recently proved that the search problems associated with the Borsuk-Ulam Theorem and
Tucker’s Lemma are PPA-complete; this is the starting point for the reduction in [13], but it
will also be used for our “in-PPA” result, which complements the hardness result of [13].

Our PPAD-hardness reduction goes via the Generalized Circuit problem. Generalized
circuits differ from usual circuits in the sense that they can contain cycles, a fact which
basically induces a continuous function on the gates, and the solution is guaranteed to exist

4 The protocol exhaustively iterates through all the vertices of triangulated geometric object, which, to
achieve a small discrepancy, has to be exponentially large.

MFCS 2018

24:4 Hardness Results for Consensus-Halving

by Brouwer’s fixed point theorem. The ε-approximate Generalized Circuit problem was
implicitly proven to be PPAD-complete for exponentially small ε in [11] and explicitly for
polynomial small ε [9], en route to proving that perhaps the most interesting problem in
PPAD, that of computing a mixed-Nash equilibrium, is also complete for the class. The same
problem was also used in [10] to prove that finding an approximate competitive equilibrium
for the Arrow-Debreu market with linear and non-monotone utilities is PPAD-complete and
in [21] to prove that finding an approximate solution of the Competitive Equilibrium with
Equal Incomes (CEEI) for indivisible items is PPAD-complete. More recently, Rubinstein
[26] showed that computing an ε-approximate solution for the Generalized Circuit problem
is PPAD-complete for a constant ε, which implies that finding an ε-approximate Nash
equilibrium is PPAD-complete for constant ε, in the context of graphical games; we reduce
from that version of the problem. This improvement should also lead to stronger hardness
results in [10] and [21], as well as other problems that rely on the Generalized Circuit problem.

The Consensus-halving problem is a typical fair division problem that studies how to
divide a set of resources between a set of agents who have valuations on the resources,
such that some fairness properties are fulfilled. The fair division literature, which dates
back to the late 1940s [29], has studied a plethora of such problems, with chore-division
[23, 15], rent-partitioning [17, 7, 30] and the perhaps the most well-known one, cake-cutting
[8, 25] being notable examples. Note that Consensus-halving is inherently different from
cake-cutting, since the objective is that all participants are (approximately) equally satisfied
with the solution, and they do not have “ownership” over the resulting pieces.

2 Preliminaries

We represent the object O as a line segment [0, 1]. Each agent in the set of agents N =
{1, . . . , n} has its own valuation over any subset of interval [0, 1]. These valuations are:

non-negative and bounded, i.e. there existsM > 0, such that for any subinterval X ⊆ [0, 1],
it holds that 0 ≤ ui(X) ≤M .
non-atomic, i.e. agents have no value on any single point on the interval.

For simplicity, the reader may assume that the valuations are represented as step functions
(where agents have constant values over distinct intervals), although this is not necessary for
the results to hold.5

A set of k cuts {t1, . . . , tk}, where 0 ≤ t1 ≤ . . . ≤ tk ≤ 1, means that we cut along the
points t1, . . . , tk, such that the object is cut into k+1 pieces Xi = [ti−1, ti] for i = 1, . . . , k+1,
where t0 = 0 and tk+1 = 1. A labelling of an interval Xi means that we assign a label
` ∈ {+,−} to Xi, which corresponds to including Xi in a set of intervals, either O+ or O−.
In case some cuts happen to be on the same point, say tj−1 = tj , then the corresponding
subinterval Xj is a single point on which agents have no value. We will consider cuts on the
same points to be the same cut, e.g. if there is only one such occurrence, we will consider
the number of cuts to be k − 1.

The Consensus-halving problem is to divide the object O into two portions O+ and
O−, such that every agent derives equal valuation from the two portions, i.e., ui(O+) =

5 The inclusion result actually holds for more general functions, while our hardness results (PPAD-hardness
and NP-hardness) hold even for well-behaved functions, such as step functions. We note here that while
an exact solution to Consensus-halving generally requires the valuations to be continuous, this is not
necessary for the existence of an approximate solution; the algorithm of [27] can find such a solution
assuming that valuations are bounded and non-atomic.

A. Filos-Ratsikas, S. K. S. Frederiksen, P.W. Goldberg, and J. Zhang 24:5

ui(O−), ∀i ∈ N . The ε-approximate Consensus-halving problem allows that each agent has
a small discrepancy on the values of the two partitions, i.e., |ui(O+) − ui(O−)| < ε. As
discussed in the Introduction, such a solution always exists [27].

We define the following search problem, called (n, k, ε)-ConHalving.

I Problem 1. (n, k, ε)-ConHalving.
Input: The value density functions (valuation functions) vi : O → R+, i = 1, · · · , n.
Output: A partition (O+, O−) with k cuts such that |ui(O+)− ui(O−)| ≤ ε.

We will also consider the following decision problem, called (n, n− 1, ε)-ConHalving. Note
that for n agents and n− 1 cuts, a solution to the ε-approximate Consensus-halving problem
is not guaranteed to exist.

I Problem 2. (n, n− 1, ε)-ConHalving.
Input: The valensity functions vi : O → R+, i = 1, · · · , n.
Output: Yes, if a partition (O+, O−) with n− 1 cuts such that |ui(O+)− ui(O−)| ≤ ε

for all agents i ∈ N exists, and No otherwise.

TFNP, PPA and PPAD: Most of the problems that we will consider in this paper belong to
the class of total search problems, i.e. search problems for which a solution is guaranteed to
exist, regardless of the input. In particular, we will be interested in problems in the class
TFNP, i.e. total search problems for which a solution is verifiable in polynomial time [19].

An important subclass of TFNP is the class PPAD, defined by Papadimitriou in [22].
PPAD stands for “Polynomial Parity Argument on a Directed graph” and is defined formally
in terms of the problem End-Of-Line [22]. The class PPAD is defined in terms of an
exponentially large digraph G = (V,E) consisting of 2n vertices with indegree and outdegree
at most 1. An edge between vertices v1 and v2 is present in E if and only if the successor
S(v1) of node v1 is v2 and the predecessor P (v2) of node v2 is v1. By construction, the point
0n has indegree 0 and we are looking for a point with outdegree 0, which is guaranteed to
exist. Note that the graph is given implicitly to the input, through a function that given any
vertex v, returns its set of neighbours (predecessor and successor) in polynomial time. PPAD
is a subclass of the class PPA (“Polynomial Parity Argument”) which is defined similarly,
but in terms of an undirected graph in which every vertex has degree at most 2, and given
a vertex of degree 1, we are asked to find another vertex of degree 1; the computational
problem associated with the class is called Leaf [22] and a problem is the class PPA if it is
polynomial-time reducible to Leaf.

The formal definitions of End-Of-Line and Leaf are not required for the results
presented in this version and therefore are left for the full version.

2.1 Generalized Circuits
A generalized circuit S = (V, T) consists of a set of nodes V and a set of gates T and let
N = |V | and M = |T |. Every gate T ∈ T is a 5-tuple T = (G, vin1 , vin2 , vout, α) where

G ∈ {Gζ , G×ζ , G=, G+, G−, G<, G∨, G∧, G¬} is the type of the gate,
vin1 , vin2 ∈ V ∪ {nil} are the first and second input nodes of the gate or nil if not
applicable,
vout ∈ V is the output node, and α ∈ [0, 1] ∪ {nil} is a parameter if applicable,
for any two gates T = (G, vin1 , vin2 , vout, α) and T ′ = (G′, v′in1

, v′in2
, v′out, α

′) in T where
T 6= T ′, they must satisfy vout 6= v′out.

MFCS 2018

24:6 Hardness Results for Consensus-Halving

Table 1 Gate constraint T = (G, vin1 , vin2 , vout, α).

Gate Constraint
(Gζ , nil, nil, vout, α) α− ε ≤ x[vout] ≤ α+ ε

(G×ζ , vin1 , nil, vout, α) α · x[vin1]− ε ≤ x[vout] ≤ α · x[vin1] + ε

(G=, vin1 , nil, vout, nil) x[vin1]− ε ≤ x[vout] ≤ x[vin1] + ε

(G+, vin1 , vin2 , vout, nil) x[vout] ∈ [min(x[vin1] + x[vin2], 1)− ε,min(x[vin1] + x[vin2], 1) + ε]
(G−, vin1 , vin2 , vout, nil) x[vout] ∈ [max(x[vin1]− x[vin2], 0)− ε,max(x[vin1]− x[vin2], 0) + ε]

(G<, vin1 , vin2 , vout, nil) x[vout] =
{

1± ε, if x[vin1] < x[vin2]− ε;
0± ε, if x[vin1] > x[vin2] + ε.

(G∨, vin1 , vin2 , vout, nil) x[vout] =
{

1± ε, if x[vin1] = 1± ε or x[vin2] = 1± ε;
0± ε, if x[vin1] = 0± ε and x[vin2] = 0± ε.

(G∧, vin1 , vin2 , vout, nil) x[vout] =
{

1± ε, if x[vin1] = 1± ε and x[vin2] = 1± ε;
0± ε, if x[vin1] = 0± ε or x[vin2] = 0± ε.

(G¬, vin1 , nil, vout, nil) x[vout] =
{

1± ε, if x[vin1] = 0± ε;
0± ε, if x[vin1] = 1± ε.

Note that generalized circuits extend the standard boolean or arithmetic circuits in the sense
that generalized circuits allow cycles in the directed graph defined by the nodes and gates.
We define the search problem ε-Gcircuit [9, 26].

I Problem 3. ε-Gcircuit
Input: A generalized circuit S = (V, T).
Output: A vector x ∈ [0, 1]N of values for the nodes, satisfying the conditions from Table

1.

Note that a solution to ε-Gcircuit always exists [9] and hence the problem is well-defined.
Also, notice that for the logic gates G∨, G∧ and G¬, if the input conditions are not fulfilled,
the output is unconstrained, and for the multiplication gate, it holds that α ∈ (0, 1]. ε-
Gcircuit was proven to be PPAD-complete implicitly or explicitly in [11, 9] for inversely
polynomial error ε and in [26] for constant ε. We state the latter theorem here as a lemma:

I Lemma 1 ([26]). There exists a constant ε > 0 such that ε-Gcircuit is PPAD-complete.

3 Consensus-Halving with n+ k cuts is is PPAD-hard

In this section, we will first prove that finding an approximate partition for Consensus-halving
using n cuts is PPAD-hard, even if the allowed discrepancy between the two portions is a
constant. We describe the reduction from ε-Gcircuit that we will be using for the PPAD-
hardness proof. Given an instance S = (V, T) of ε-Gcircuit, we will construct an instance
of (n, n, ε′)-ConHalving with n = 2N agents, in which each node vi ∈ V of the circuit will
correspond to two agents vari and copyi and where ε′ will be defined later. As a matter
of convenience in the reduction, we will assume that for every gate (G, vin1 , vin2 , vout, α)
in T , vin1 , vin2 and vout are distinct. This does not affect the hardness of the problem as
any ε-generalized circuit can be converted to this form by use of at most 2N additional
equality-gates and nodes, and also since an (ε/2)-approximate solution to the converted
problem can clearly be converted to a solution in the original circuit.

For ease of notation, we consider a Consensus-halving instance on the interval [0, 6N].
Let di := 6(i− 1).

A. Filos-Ratsikas, S. K. S. Frederiksen, P.W. Goldberg, and J. Zhang 24:7

v1 v2 v3

+ ¬

var1

copy1

var2

copy2

var3

copy3

v−1 v+
1 v−2 v+

2 v−3 v+
3

Figure 1 An instance of ε-Gcircuitwith the corresponding construction for (n, ε′)-ConHalving.

The two agents vari and copyi that we construct for every node vi have valuations

vari =
{
borderi(t) +Gτ (t), if vi is the output of τ
borderi(t), otherwise

copyi =

4, t ∈ [di + 3, di + 4] ∪ [di + 5, di + 6]
1, t ∈ [di + 1, di + 2] ∪ [di + 4, di + 5]
0, otherwise

where borderi =
{

4, if t ∈ [di, di + 1] ∪ [di + 2, di + 3]
0, otherwise

Since each node is the output of at most one gate, vari is well-defined. Note that apart
from the valuation defined by the function Gτ , agents vari and copyi only have valuations
on the sub-interval [di, di+1], i.e., the agents associated with node v1 only have valuations
on [0, 6], the agents associated with v2 only on have valuations on [6, 12] and so on. Let
v−i := [di + 1, di + 2] and the right and left endpoints respectively be v−i,` and v−i,r, (and
analogously for v+

i := [di + 3, di + 4], v+
i,` and v

+
i,r). Now, we are ready to define the functions

Gτ according to Table 2. Notice that because of the assumption that the two input nodes
and the output node are distinct, the graphs of the functions are as in Table 2. Figure 1
demonstrates an example of a Consensus-halving instance corresponding to a small circuit.

I Lemma 2. Given the construction of a (n, n, ε′)-ConHalving instance above, for ε′ <
min{ε/11, 1/40}, a partition with n cuts corresponds to a solution to ε-Gcircuit.

Proof. First observe that since all of the agents vari and copyi are constructed to have at
least 3/4 of their valuation on [di, di+3] and [di+3, di+6] respectively, there must be at least
one cut in each one of those intervals in any ε′-approximate solution to Consensus-halving
(with ε′ < 1/4) and therefore any ε′-approximate solution to Consensus-halving with 2N
cuts must have exactly one cut in each interval. Furthermore, since the constructed instance
consists of 2N agents, by [27], such a partition with 2N cuts is guaranteed to exist.

Now consider such a solution C to (n, n, ε′)-ConHalving with 2N cuts. For each agent
vari (and associated gate Gτ , if any), since her valuation in v−i is at least the same as
her valuation outside the interval [di, di + 3], the cut from C in [di, di + 3] must be in
[di + 1 − ε′, di + 2 + ε′], since C is a solution to (n, n, ε′)-ConHalving. We will assume
without loss of generality that the leftmost piece of the partition C is in O−. Notice then

MFCS 2018

24:8 Hardness Results for Consensus-Halving

Table 2 Agent preferences from gate τ = (G, vin1 , vin2 , vout, α). For the gate G×ζ , the figure
depicts the case when α+ ε < 1.

Gτ (t) Picture

Gζ
{

1 if t ∈ [v−
out,`

+ α− 1
2 , v

−
out,`

+ α + 1
2]

0 otherwise
v−out

α + 1
2

G×ζ

{
1 if t ∈ v+

in

1/α if t ∈ [v−
out,`

, v−
out,`

+ min(α + ε, 1)]
0 otherwise

α + ε

1/α

v+
in v−out

G¬

1 if t ∈ v−

in

1/2ε if t ∈ [v−
out,`

, v−
out,`

+ ε]
1/2ε if t ∈ [v−

out,r − ε, v
−
out,r]

0 otherwise v−in1 v−out

ε ε

1
2ε

G+

1 if t ∈ v+

in1
∪ v+

in2
1 if t ∈ [v−

out,`
, v−
out,r − ε]

1/ε + 1 if t ∈ [v−
out,r − ε, v

−
out,r]

0 otherwise v+
in1 v+

in2 v−out

ε

1
ε

G−

1 if t ∈ v+

in1
∪ v−

in2
1 if t ∈ [v−

out,`
+ ε, v−

out,r]
1/ε + 1 if t ∈ [v−

out,`
, v−
out,`

+ ε]
0 otherwise

v+
in1 v−in2 v−out

ε

1
ε

G<

1 if t ∈ v+

in1
∪ v−

in2
1/ε if t ∈ [v−

out,`
, v−
out,`

+ ε]
1/ε if t ∈ [v−

out,r − ε, v
−
out,r]

0 otherwise v+
in1 v−in2 v−out

ε ε

1
ε

G∨

1 if t ∈ v+

in1
∪ v+

in2
0.5/ε if t ∈ [v−

out,`
, v−
out,`

+ ε]
1.5/ε if t ∈ [v−

out,r − ε, v
−
out,r]

0 otherwise v+
in1 v+

in2 v−out

ε

0.5
ε

ε

1.5
ε

G∧

1 if t ∈ v+

in1
∪ v+

in2
1.5/ε if t ∈ [v−

out,`
, v−
out,`

+ ε]
0.5/ε if t ∈ [v−

out,r − ε, v
−
out,r]

0 otherwise v+
in1 v+

in2 v−out

ε

1.5
ε

ε

0.5
ε

that for each node vi, the piece on the left-hand side of the cut in v−i is always in O− and
the piece on the left-hand side of the cut in v+

i is always in O+. Let the location of the cut
be di + 1 + t−i where t−i ∈ [−ε′, 1 + ε′]. Analogously, the same argument holds for agent copyi
and the interval [di + 3− ε′, di + 4 + ε′], and define t+i ∈ [−ε′, 1 + ε′] similarly.

Now consider the agent copyi and the cut at location di + 1 + t−i . If t−i ∈ [0, 1], then
since agent copyi has valuation 1 on interval v−i , t

−
i of her valuation will be on a piece in

O− and 1 − t−i of her valuation will be on a piece in O+. Then, since C is a solution to

A. Filos-Ratsikas, S. K. S. Frederiksen, P.W. Goldberg, and J. Zhang 24:9

(n, n, ε′)-ConHalving, the cut in di+3+t+i must be placed so that |t−i −t
+
i | ≤ ε′/2; similarly

for the cases where t−i /∈ [0, 1]. In other words, copyi ensures that the cut at di + 1 + t−i is
“copied” ε′-approximately.

We will interpret the solution C as a solution to ε-Gcircuit in the following way. For
each node vi and each associated cut at di + 1 + t−i let

xi :=

0 , t−i < 0
t−i , t−i ∈ [0, 1]
1 , t−i > 1

(1)

and notice
|t+i − xi| ≤ 2ε′ , |t−i − xi| ≤ 2ε′ (2)

To complete the proof, we just need to argue that these variables satisfy the constraints of
the gates of the circuit. Due to lack of space, we will only argue the correctness of some of
the gates here; the arguments for the remaining gates follow a similar spirit and are presented
in detail in the full version.

Constant gate τ = (Gζ, nil, nil, vout, α). The valuation of agent varout for the intervals
[di, di + 1 +α] and [di + 1 +α, di + 3] is the same and since the height of the agent’s value
density function is at least 1 in [di, di + 3],6 it holds that t−out ∈ [α− ε′, α+ ε′]. Then, by
Equation 2, it holds that xout ∈ [α− 3ε′, α+ 3ε′], so for ε′ < ε/3 the gate constraint is
satisfied.

Multiplication-by-scalar gate τ = (G×ζ, vin, nil, vout, α). Notice that for any given cut
t+in and 1−α ≥ ε, it holds that t−out ∈ [αt+in + ε/2− ε′, αt+in + ε/2 + ε′] as the height of Gτ
in v−out is at least 1. Similarly, for the case 1− α < ε and any given cut t+in, it holds that
t−out ∈ [αt+in+(1−α)/2−ε′, αt+in+(1−α)/2+ε′] as the height of Gτ in v−out is at least 1. In
particular, since 1−α < ε, it also holds that t−out ∈ [αt+in+ ε/2− ε′, αt+in+ ε/2 + ε′] for this
case as well. Then, by Equation 2, it holds that xout ∈ [αt+in + ε/2− 3ε′, αt+in + ε/2 + 3ε′]
and since α ≤ 1 it also holds that xout ∈ [αxin + ε/2 − 5ε′, αxin + ε/2 + 5ε′], again by
Equation 2. Then the gate constraint is satisfied whenever ε′ < ε/10.

Addition gateτ = (G+, vin1 , vin2 , vout, nil). If for the cuts t+in1
and t+in2

it holds that
t+in1

+ t+in2
< 1− ε+ 4ε′ then t−out ∈ [t+in1

+ t+in2
− 5ε′, t+in1

+ t+in2
+ 5ε′] as the height of Gτ

in v−out is at least 1. This then implies that xout ∈ [x+
in1

+ x+
in2
− 11ε′, x+

in1
+ x+

in2
+ 11ε′],

by Inequality 2. On the other hand, when t+in1
+ t+in2

≥ 1− ε+ 4ε′, then by Definition 1,
it holds that xin1 + xin2 ∈ [1− ε, 1] and clearly t−out ∈ [1− ε, 1 + ε′] which by Definition 1
implies that xout ∈ [1− ε, 1]. The gate constraints are satisfied for ε′ < ε/11 for each of
the cases.

Less-than-equal gate τ = (G<, vin1 , vin2 , vout, nil). We will consider three cases, de-
pending on the positions of the cuts t+in1

and t−in2
. First, when |t+in1

− t−in2
| < ε− 4ε′, by

Inequality 2 it holds that |xin1 − xin2 | < ε and the output of the gate is unconstrained.
When t+in1

− t−in2
≥ ε− 4ε′ then by Inequality 2 it holds that xin1 ≥ xin2 + ε. Additionally,

since the height of Gτ in [v−out,r − ε, v−out,r] is at least 1, it holds that t−out ∈ [1− ε, 1 + ε′],
which by Definition 1 implies that x−out ∈ [1 − ε, 1] and the gate constraint is satisfied.
The argument for the case when t−in2

> t+in1
− 2ε′ is completely symmetrical.

Logic OR gate τ = (G∨, vin1 , vin2 , vout, nil). We will consider three cases depending
on the position of the cuts t+in1

and t+in2
. First, when t+in1

+ t+in2
< 0.4 it holds that

6 Notice that the constant gate is the only gate where borderi and Gτ overlap.

MFCS 2018

24:10 Hardness Results for Consensus-Halving

t−out ∈ [−ε′, ε] and hence by Definition 1, it holds that xout ∈ [0, ε]. Furthermore, by
Inequality 2 it holds that xin1 + xin2 < 0.4 + 4ε′ and for ε′ < 1/40, it also holds that
xin1 , xin2 < 0.5 and the gate constraint is satisfied. Next, when t+in1

+ t+in2
∈ [0.4, 0.8]

then by Inequality 2, it holds that xin1 , xin2 ∈ [0.4− ε′, 0.8 + 4ε′] and in particular, when
ε′ < 1/40 then it also holds that xin1 + xin2 ∈ [0.3, 0.9] and the output of the gate in
unconstrained. Finally when t+in1

+ t+in2
> 0.8, it holds that t−out ∈ [1− ε, 1 + ε′] and hence

by Definition 1, we have that xout ∈ [1 − ε, 1]. Furthermore, by Inequality 2 we have
that xin1 + xin2 > 0.8 + 4ε′ which is greater than 0.9 when ε′ < 1/40 which implies that
at least one of the two inputs is greater than ε. In particular, the gate’s output lies in
[1− ε, ε] when the inputs are smaller than ε or greater than 1− ε and at least one of them
is greater than 1− ε. This shows that the gate constraint is satisfied.

Given the discussion above, by setting ε′ < min{ε/11, 1/40}7, the gate constraints are
satisfied, and the vector (xi) obtained from C is a solution to ε-Gcircuit. J

Now from Lemma 2, we obtain the following result.

I Theorem 3. There exists a constant ε′ > 0 such that (n, n, ε′)-ConHalving is PPAD-hard.

Proof. Recall that in the proof of Lemma 2, ε′ was constrained to be at most min{1/40, ε/11}
and in particular by Lemma 1, there exists a constant ε′ that would make the reduction work.
Recall however that we “expanded” the instance of (n, ε′)-ConHalving from the interval
[a, b] to [0, 6N] for convenience, which implies that after rescaling the instance to a constant
interval [a, b], the allowed error ε′ goes down to O(1/n). To get a constant error ε′, we simply
multiply all valuations by N . J

Theorem 3 implies that although a solution with n cuts is generally desirable, it might
be hard to compute, even for a relatively simple class of valuations like those used in the
reduction. In fact, we can extend our results to the more general case of finding a partition
with n+ k cuts where k is a constant.

I Theorem 4. Let k be any constant. Then there exists a constant ε′ such that (n, n+ k, ε′)-
ConHalving is PPAD-hard.

Proof. Let S = (V, T) be an instance of ε-Gcircuit with N nodes, consisting of smaller
identical sub-circuits Si = (Vi, Ti), for i = 1, 2, . . . , k + 1, with with N/(k + 1) nodes each
such that for all i, j ∈ [k + 1] such that i 6= j, it holds that Vi ∩ Vj = ∅. and Ti ∩ Tj = ∅. In
other words, the circuit S consists of k + 1 copies of a smaller circuit Si that do not have
any common nodes or gates. Furthermore, for convenience, assume without loss of generality
that for two nodes l and m such that ul ∈ Vi and um ∈ Vj , with i < j, it holds that l < m.
In other words, the labeling of the nodes is such that nodes in circuits with smaller indices
have smaller indices.

Let H be the instance of (n, n, ε′)-ConHalving corresponding to the circuit S following
the reduction described in the beginning of the section and recall that n = 2N in the
construction. Note that according to the convention adopted above for the labeling of
the nodes, for i < j, the agents corresponding to Vi lie in the interval [`i, ri], whereas the
agents corresponding to Vj lie in the interval [`j , rj] and ri ≤ `j . In other words, agents
corresponding to sub-circuits with smaller indices are placed before agents with higher indices,
and there is no overlap between agents corresponding to different sub-circuits.

7 We can in fact assume some ε ≤ 11/40, as the smaller the ε, the harder the problem is, since we are
interested in establishing hardness for some constant ε.

A. Filos-Ratsikas, S. K. S. Frederiksen, P.W. Goldberg, and J. Zhang 24:11

Now suppose that we have a solution to (n, n + k, ε′)-ConHalving. Since there is no
overlap between valuations corresponding to different sub-circuits, an approximate solution
with n+k cuts for the instance H implies that there exists some interval [`i, ri] corresponding
to the set of nodes Vi of sub-circuit Si, such that at least n/(k+1) cuts lie in [`i, ri], otherwise
the total number of cuts on H would be at least n+ k + 1. Since there are exactly n/(k + 1)
agents with valuations on [`i, ri], this would imply an approximate solution for n′ agents
with n′ cuts and the problem reduces to (n, n, ε′)-ConHalving. J

4 Consensus-Halving with n− 1 cuts is NP-hard

We have proved that the problem of finding an approximate solution with n players and n
cuts is PPAD-complete. For n players and n− 1 cuts however, we no longer have a guarantee
that a solution exists. We prove that deciding whether this is the case or not is NP-hard.

I Theorem 5. There exists a constant ε′ > 0 such that (n, n−1, ε′)-ConHalving is NP-hard.

Proof. We will first describe the construction that we will use in the reduction. For
consistency with the previous section, we will denote the error of the Consensus-halving
problem by ε′ and the error of the (implict) generalized circuits by functions of ε. Let Rε(S)
be the construction for the reduction of Section 3, that encodes an ε-generalized circuit S
into an (n, n − 1, ε′)-ConHalving instance when ε′ < ε/11. We will reduce from 3-SAT,
which is known to be NP-complete.

Let φ be any 3-SAT formula with m clauses, k ≤ 3m variables x1, . . . , xk, and let ε > 0
be given. For convenience of notation, let δ = ε/11. We will (implicitly) create a generalized
circuit S with the following building blocks:

k input nodes x1, . . . , xk corresponding to the variables x1, . . . , xk.

k sub-circuits Bool(xi) for i = 1, 2, . . . , k that input the real value xi ∈ [0, 1] and output
a boolean value xbooli ∈ [0, 4δ] ∪ [1− 4δ, 1] (see the lower stage of Figure 2). The allowed
error for these circuits will be δ. The implementation of the circuit in terms of the gates
of the generalized circuit can be seen in Algorithm 1. Note that the sub-circuit containing
all the Bool(xi) sub-circuits has at most 4k nodes as each Bool(xi) sub-circuit could be
implemented with one constant gate, one subtraction gate, one addition gate and one
equality gate; the latter is to maintain the convention that all inputs to each gate are
distinct.

A sub-circuit Φ(xbool1 , . . . , xboolk) that implements the formula φ, inputing the boolean
variables xbooli and outputting a value xout corresponding to the value of the assignment
plus the error introduced by the approximate gates. The allowed error for this circuit will
be 4δ. A pictorial representation of such a circuit can be seen in Figure 2; note that the
circuits Bool(xi) are also shown in the picture. This circuit has at most k + 3m nodes.
First, there might be k possible negation gates to negate the input variables. Secondly,
for each clause, in order to implement an OR gate of fan-in 3, we need 2 OR gates of
fan-in 2, for a total of 2m gates for all clauses. Finally, in order to simulate the AND
gate with fan-in m, we need m AND gates of fan-in 2. Overall, since k ≤ 3m, we need at
most 6m nodes to implement this sub-circuit, using elements of the generalized circuit.

A sub-circuit Rebool(x1, . . . , xk, xout) that inputs the variables xi, for i = 1, 2, . . . , k and
the variable xout and computes the function

min(xout,max(x1, 1− x1), . . . ,max(xk, 1− xk)).

MFCS 2018

24:12 Hardness Results for Consensus-Halving

Algorithm 1 Computing bool(x).
a← x− 1/4
bool← a+ a

Algorithm 2 Computing min(x, y) and max(x, y).
a← x− y ; b← y − x ; c← a+ b

d← c/2 ; `← (x/2) + (y/2)
min← `− d ; max← `+ d

The function can be computed using the gates of the generalized circuit as shown in
Algorithm 2. Let xboolout be the output of that sub-circuit with allowed error 4δ. Note that
this circuit has at most 16k nodes. Each min and max operation requires 8 nodes and we
need to do 2k such computations overall; k for the k max operations and k to implement
the min operation of fan-in k with min operations of fan-in 2. Again, since k ≤ 3m, this
sub-circuit requires at most 48m nodes in total.

Following the notation introduced above, let Rδ(Bool), R4δ(Φ) and R4δ(Rebool) denote
the valuations of the agents in the instance of Consensus-halving corresponding to those
sub-circuits, according to the reduction described in Section 3. In other words, based on the
circuit described above, we create an instance H of Consensus-halving where we have:

2k agents (as each node corresponds to two agents, vari and copyi) that correspond to
the input variables x1, . . . , xk, who are not the output of any gate
at most 2(4k + k + 3m+ 16k) nodes corresponding to the internal nodes and the output
node of the circuit.
an additional agent with valuation

un =

1, if t ∈ [b− 18mε′ − 1, b− 18mε′]
1, if t ∈ [b, b+ 1]
0, otherwise

where [a, b] is the interval where the value of xboolout is “read” in the instance of Consensus-
halving, i.e. the interval where the cut tboolout − will be placed in the Consensus-halving
solution.

Recall Definition 1 from Section 3 and note that as far as agent n is concerned, any cut
tboolout − such that 1− 18mε ≤ xboolout ≤ 1 is a Consensus-halving solution.

We will now argue about the correctness of the reduction. Let n be the number of agents and
notice that there are n− 1 agents that correspond to the nodes of the circuit and a single
agent constraining the value of xboolout . Notice that since the allowed error for the sub-circuit
Rebool(x1, . . . , xk, xout) is 4δ, the total additive error of the agents of R4δ(Rebool) will be
at most 4δ · 48m ≤ 18mε′.

First, assume that there exists a a solution to ε′-approximate Consensus-halving with
n−1 cuts. By the correctness of the construction of Section 3 and the fact that ε′ < ε/11 = δ,
the solution encodes a valid assignment to the variables of the generalized circuit S. Due
to the valuation of agent n, the output of C must satisfy xboolout ≥ 1− 18mε′ − ε′, otherwise
the corresponding cut tboolout − could not be a part of a valid solution. Since the total additive
error for the circuit Rebool(x1, . . . , xk, xout) is at most 18mε′, if we choose ε′ < 1/90m, it

A. Filos-Ratsikas, S. K. S. Frederiksen, P.W. Goldberg, and J. Zhang 24:13

Bool Bool Bool

¬
∨

∨ ∨

∧

x1 x2 x3

xout

Figure 2 A generalized circuit corresponding to a 3-SAT formula φ, where the first clause is
(x1 ∨ x2 ∨ x3). The nodes of the circuit between different layers are omitted. The layer at the output
layer that “restores” the boolean values is also not shown, therefore xout is the outcome of the
emulated formula φ.

holds that xboolout ≥ 4/5− ε′, which implies that xout ≥ 3/4, by the function implemented by
the circuit Rebool(x1, . . . , xk, xout). For the same reason, for each i = 1, . . . , k it holds that
xi ∈ [0, 1/4] ∪ [3/4, 1], and hence the output of Bool(xi) will lie in [0, 4δ] ∪ [1− 4δ, 1], which
means that the inputs xbool1 , . . . , xboolk to the gates of the sub-circuit Φ(xbool1 , . . . , xboolk) will
be treated correctly as boolean values by the gates of the circuit (since the allowed error of
the sub-circuit is 4δ). Since the circuit Φ(xbool1 , . . . , xboolk) computes the boolean operations
correctly and xout ≥ 3/4, the formula φ is satisfiable.

For the other direction, assume that φ is satisfiable and let x̃ = (x̃1, . . . , x̃k) be a satisfying
assignment. First we set the values of the variables x1, . . . , xk to 0 or 1 according to x̃ and
then we propagate the values up the circuit S using the exact operation of the gates, which
by our construction can be encoded to an instance of exact Consensus-halving for the (n− 1)
agents corresponding to the nodes of S, i.e. the first n− 1 will be exactly satisfied with the
partition resulting from the encoded satisfying assignment. For the n-th agent, again, since
the total additive error is bounded by 18mε′, the agent will be satisfied with the solution. J

5 Consensus-Halving with n cuts is in PPA

In this section, we prove that (n, n, ε)-ConHalving is in PPA. As we discussed in the
introduction, this result of ours was referenced in [13] to complement the PPA-hardness
reduction of the inverse-exponential precision version and obtain PPA-completeness.

I Theorem 6. (n, n, ε)-ConHalving is in PPA.

For establishing this result, we construct a reduction from (n, n, ε)-ConHalving to the
PPA-complete problem Leaf which goes via (n, T)-Tucker the computational version of
Tucker’s Lemma.

More precisely, to prove that (n, n, ε)-ConHalving is in PPA, we follow the main idea
of the algorithm provided in [27] for obtaining a Consensus-halving solution: the coordinates
of any vertex x in the unit cross polytope Cn naturally correspond to a partition that uses
n cuts on the [0, 1] interval. This is because the coordinates of any vertex x ∈ Cn satisfy

MFCS 2018

24:14 Hardness Results for Consensus-Halving

∑n+1
i=1 |xi| = 1, and a partition with n cuts on [0, 1] can be interpreted as partitioning the

interval into n+ 1 pieces such that the length of each piece is equal to |xi|, i = 1, . . . , n+ 1.
Furthermore, if the sign of the i-th coordinate xi is “+”, piece |xi| is assigned to portion
O+; otherwise it is assigned to portion O−. We note that the use of the [0, 1] interval is for
convenience and without loss of generality; for any choice of the interval we could use a a
sphere of a different radius.

Given a sub-division of this sphere into small simplices (i.e. a triangulation) T of mesh size
τ , we label each point of the triangulation by the label of the agent that is most dissatisfied
by the corresponding set of cuts (and the sign indicates the direction of the discrepancy).
This labelling satisfies the boundary conditions of Tucker’s lemma and solutions to (n, T)-
Tucker correspond to solutions of (n, n, ε)-ConHalving. In simple words, we show that the
algorithm of [27] solves the computational version of Consensus-halving, using an algorithm
for the computational version of Tucker as a subroutine.

The “in PPA” result is then established by the fact that Tucker is in PPA, i.e. it reduces
to Leaf in polynomial time; this was already known from [22], where the problem is defined
with respect to a subdivision of a hypercube. Technically, the algorithm of [27] that we use
in our reduction requires the problem to be defined on the triangulation of a cross polytope,
so one would have to prove that this version of the problem is in PPA as well. While this
was already sketched in [22], we also prove it here via explaining how a constructive proof of
Fan’s combinatorial lemma [12] proposed by Prescott and Su [24] can be converted into a
reduction to Leaf. The details along with all the necessary definitions are included in the
full version.

6 Conclusion and Future Work

Our work takes an extra step in the direction of capturing the exact complexity of the
Consensus-halving problem for all precision parameters. While, as we mentioned in the
introduction, the techniques developed in [13] were successfully extended to obtain PPA-
hardness of the problem for an inverse-polynomial precision parameter [14], it seems unlikely
that they could be applicable when the precision is constant. In that sense, our main result
is not implied by [13, 14], neither can it be subsumed by modifications to those reductions,
even those involving highly non-trivial alterations. In other words, it seems that a PPA-
completeness result for constant precision would require techniques fundamentally different
from those used in [13, 14], and one can not even exclude the possibility of the problem being
complete for PPAD instead.

References
1 James Aisenberg, Maria Luisa Bonet, and Sam Buss. 2-D Tucker is PPA complete. ECCC

TR15, 163, 2015.
2 Noga Alon. Splitting necklaces. Advances in Mathematics, 63(3):247–253, 1987.
3 Noga Alon and Douglas B. West. The Borsuk-Ulam theorem and bisection of necklaces.

Proceedings of the American Mathematical Society, 98(4):623–628, 1986.
4 Julius B Barbanel. Super envy-free cake division and independence of measures. Journal

of Mathematical Analysis and Applications, 197(1):54–60, 1996.
5 Kim C Border. Fixed point theorems with applications to economics and game theory.

Cambridge University Press, 1989.
6 Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre. Fundamenta Math-

ematicae, 1(20):177–190, 1933.

A. Filos-Ratsikas, S. K. S. Frederiksen, P.W. Goldberg, and J. Zhang 24:15

7 Steven J. Brams and D. Marc Kilgour. Competitive fair division. Journal of Political
Economy, 109(2):418–443, 2001.

8 Steven J. Brams and Alan D. Taylor. Fair Division: From cake-cutting to dispute resolution.
Cambridge University Press, 1996.

9 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-
player Nash equilibria. Journal of the ACM (JACM), 56(3):14, 2009.

10 Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-monotone
markets. In Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC), pages 181–190. ACM, 2013.

11 Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The com-
plexity of computing a Nash equilibrium. SIAM Journal on Computing, 39(1):195–259,
2009.

12 Ky Fan. Simplicial maps from an orientable n-pseudomanifold into Sm with the octahedral
triangulation. Journal of Combinatorial Theory, 2(4):588–602, 1967.

13 Aris Filos-Ratsikas and Paul W. Goldberg. Consensus Halving is PPA-Complete. In Pro-
ceedings of the 50th Annual ACM Symposium on Theory of Computing (STOC), pages
51–64. ACM, 2018.

14 Aris Filos-Ratsikas and Paul W. Goldberg. The Complexity of Splitting Necklaces and
Bisecting Ham Sandwiches. arXiv preprint arXiv:1805.12559, 2018.

15 Martin Gardner. Aha! Aha! insight, volume 1. Scientific American, 1978.
16 Charles H. Goldberg and Douglas B. West. Bisection of circle colorings. SIAM Journal on

Algebraic Discrete Methods, 6(1):93–106, 1985.
17 Claus-Jochen Haake, Matthias G. Raith, and Francis Edward Su. Bidding for envy-freeness:

A procedural approach to n-player fair-division problems. Social Choice and Welfare,
19(4):723–749, 2002.

18 Charles R. Hobby and John R. Rice. A moment problem in L1 approximation. Proceedings
of the American Mathematical Society, 16(4):665–670, 1965.

19 Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2):317–324, 1991.

20 Jerzy Neyman. Un theoreme d’existence. C. R. Acad. Sci. Paris Ser. A-B 222, pages
843–845, 1946.

21 Abraham Othman, Christos H. Papadimitriou, and Aviad Rubinstein. The complexity of
fairness through equilibrium. In Proceedings of the 15th ACM conference on Economics
and Computation (EC), pages 209–226. ACM, 2014.

22 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.

23 Elisha Peterson and Francis Edward Su. Four-person envy-free chore division. Mathematics
Magazine, 75(2):117–122, 2002.

24 Timothy Prescott and Francis Edward Su. A constructive proof of Ky Fan’s generalization
of Tucker’s lemma. Journal of Combinatorial Theory, Series A, 111(2):257–265, 2005.

25 Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can. Natick:
AK Peters, 1998.

26 Aviad Rubinstein. Inapproximability of Nash equilibrium. In Proceedings of the 47th Annual
ACM on Symposium on Theory of Computing (STOC), pages 409–418. ACM, 2015.

27 Forest W. Simmons and Francis Edward Su. Consensus-halving via theorems of Borsuk-
Ulam and Tucker. Mathematical Social Sciences, 45(1):15–25, 2003.

28 Emanuel Sperner. Neuer Beweis für die Invarianz der Dimensionszahl und des Gebietes. In
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, volume 6 (1),
pages 265–272. Springer, 1928.

29 Hugo Steinhaus. The problem of fair division. Econometrica, 16(1), 1948.

MFCS 2018

24:16 Hardness Results for Consensus-Halving

30 Francis Edward Su. Rental harmony: Sperner’s lemma in fair division. The American
mathematical monthly, 106(10):930–942, 1999.

31 Albert William Tucker. Some Topological Properties of Disk and Sphere. Proc. First
Canadian Math. Congress, Montreal, pages 285—-309, 1945.

Maximum Rooted Connected Expansion

Ioannis Lamprou
Department of Computer Science, University of Liverpool, Liverpool, UK
lamprou@liverpool.ac.uk

Russell Martin
Department of Computer Science, University of Liverpool, Liverpool, UK
ramartin@liverpool.ac.uk

Sven Schewe
Department of Computer Science, University of Liverpool, Liverpool, UK
svens@liverpool.ac.uk

Ioannis Sigalas
Department of Informatics & Telecommunications, University of Athens, Athens, Greece
sigalasi@di.uoa.gr

Vassilis Zissimopoulos
Department of Informatics & Telecommunications, University of Athens, Athens, Greece
vassilis@di.uoa.gr

Abstract
Prefetching constitutes a valuable tool toward the goal of efficient Web surfing. As a result,
estimating the amount of resources that need to be preloaded during a surfer’s browsing becomes
an important task. In this regard, prefetching can be modeled as a two-player combinatorial
game [Fomin et al., Theoretical Computer Science 2014], where a surfer and a marker alternately
play on a given graph (representing the Web graph). During its turn, the marker chooses a set
of k nodes to mark (prefetch), whereas the surfer, represented as a token resting on graph nodes,
moves to a neighboring node (Web resource). The surfer’s objective is to reach an unmarked node
before all nodes become marked and the marker wins. Intuitively, since the surfer is step-by-step
traversing a subset of nodes in the Web graph, a satisfactory prefetching procedure would load
in cache (without any delay) all resources lying in the neighborhood of this growing subset.

Motivated by the above, we consider the following maximization problem to which we refer
to as the Maximum Rooted Connected Expansion (MRCE) problem. Given a graph G and a
root node v0, we wish to find a subset of vertices S such that S is connected, S contains v0 and
the ratio |N [S]|

|S| is maximized, where N [S] denotes the closed neighborhood of S, that is, N [S]
contains all nodes in S and all nodes with at least one neighbor in S.

We prove that the problem is NP-hard even when the input graph G is restricted to be a split
graph. On the positive side, we demonstrate a polynomial time approximation scheme for split
graphs. Furthermore, we present a 1

6 (1− 1
e)-approximation algorithm for general graphs based on

techniques for the Budgeted Connected Domination problem [Khuller et al., SODA 2014]. Finally,
we provide a polynomial-time algorithm for the special case of interval graphs. Our algorithm
returns an optimal solution for MRCE in O(n3) time, where n is the number of nodes in G.

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis

Keywords and phrases prefetching, domination, expansion, ratio

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.25

© Ioannis Lamprou, Russell Martin, Sven Schewe, Ioannis Sigalas, and Vassilis Zissimopoulos;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lamprou@liverpool.ac.uk
mailto:ramartin@liverpool.ac.uk
mailto:svens@liverpool.ac.uk
mailto:sigalasi@di.uoa.gr
mailto:vassilis@di.uoa.gr
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Maximum Rooted Connected Expansion

1 Introduction

In the evergrowing World Wide Web landscape, browsers compete against each other to offer
the best quality of surfing to their users. A key characteristic in terms of quality is the speed
attained when retrieving a new page or, in general, resource. Thus, a browser’s objective is
to minimize latency when moving from one resource to another. One way to achieve this goal
is via prefetching: when the user lies at a certain Web node, predict what links she is more
likely to visit next and preload them in cache so that, when the user selects to visit one of
them, the transition appears to be instantaneous. Indeed, the World Wide Web Consortium
(W3C) provides standards for prefetching in HTML [16]. Also, besides being nowadays a
common practice for popular browsers, prefetching constitutes an intriguing research theme,
e.g., see the surveys in [17, 1] for further references.

However, prefetching may come with a high network load cost if employed at a large
scale. In other words, there is a trade-off that needs to be highlighted: more prefetching may
mean less speed and even delays. For this reason, it becomes essential to acquire knowledge
about the maximum number of resources to be prefetched over any potential Web nodes a
surfer may visit. In this respect, Fomin et al. [4] define the Surveillance Game as a model
for worst-case prefetching. The game is played by two players, namely the surfer and the
marker, on a (directed) graph G representing (some view of) the Web graph. The surfer
controls a token initially lying at a designated pre-marked start node v0. In each round,
the marker marks, i.e., prefetches, up to k so-far unmarked nodes during her turn and then
the surfer chooses to move her token at a neighboring node of its current position. Notice
that, once marked, a node always remains marked thereafter. The surfer wins if she arrives
at an unmarked node, otherwise the marker wins if she manages to mark the whole graph
before such an event occurs. In optimization terms, the quantity under consideration is the
surveillance number, denoted sn(G, v0) for a graph G and a start (root) node v0, which is
the minimum number of marks the marker needs to use per round in order to ensure that a
surfer walking on G (starting from v0) never reaches an unmarked node.

A main observation regarding the above game is that the surfer follows some connected
trajectory on the graph G. Let S stand for the set of nodes included in this trajectory. The
marker’s objective is to ensure that all nodes in S or in the neighborhood of S get marked
promptly. Let N [S] stand for the closed neighborhood of S, i.e., N [S] includes all nodes in
S and all nodes with at least one neighbor in S. Fomin et al. prove (Theorem 20 [4]) that,
for any graph G and root v0, it holds sn(G, v0) ≥ maxd |N [S]|−1

|S| e, where the maximum is
taken over all subsets S that induce a connected subgraph of G containing v0. Moreover,
equality holds in case G is a tree. That is, a ratio of the form |N [S]|/|S| (minus one and
ceiling operator removed for clarity) provides a good lower bound and possibly in many
occasions a good prediction on the prefetching load necessary to satisfy an impatient Web
surfer. Hence, in this paper, we believe it is worth to independently study the problem of
determining max |N [S]|

|S| where the maximum is taken over all subsets S inducing a connected
subgraph of G containing v0. We refer to this problem as the Maximum Rooted Connected
Expansion problem (shortly MRCE) since we seek to find a connected set S (containing the
root v0) maximizing its expansion ratio in the form of |N [S]|/|S|.

Except for the prefetching motivation, such a problem can stand alone as an extension to
the well-studied family of domination problems. Indeed, we later use connections between
our problem and a domination variant in [14] to prove certain results. Finally, notice that
removing the root node requirement makes the problem trivial. Let ∆ stand for the maximum
degree of a given graph G. Then, a solution consisting of a single max-degree node gives

I. Lamprou, R. Martin, S. Schewe, I. Sigalas, and V. Zissimopoulos 25:3

a ratio of ∆ + 1. In addition, the ratio is at most ∆ + 1, since given any connected set S
consisting of k nodes, |N [S]|≤ (∆ + 1)k due to the fact that each node can contribute at
most ∆ + 1 new neighbors (including itself).

Related Work. The Surveillance Game was introduced in [4], where it was shown that
computing sn(G, v0) is NP-hard in split graphs, nonetheless, it can be computed in polynomial
time in trees and interval graphs. Furthermore, in the case of trees, the MRCE ratio is proved
[4] to be equal to sn(G, v0) and therefore can be computed in polynomial time. In [7], the
connected variant of the problem is considered, i.e., when the set of marked nodes is required
to be connected after each round. For the corresponding optimization objective, namely the
connected surveillance number denoted csn(G, v0), it holds csn(G, v0) ≤

√
sn(G, v0)n for

any n-node graph G. The more natural online version of the problem is also considered and
(unfortunately) a competitive ratio of Ω(∆) is shown to be the best possible.

A problem closely related to ours (as demonstrated later in Section 4) is the Budgeted
Connected Dominating Set problem (shortly BCDS), where, given a budget of k, one must
choose a connected subset of k nodes with a maximum size of closed neighborhood. This
problem is shown to have a (1− 1/e)/13-approximation algorithm (in general graphs) in [14].

Regarding problems dealing with some ratio of quantities, we are familiar with the
isoperimetric number problem [10], where the objective is to minimize |∂X|/|X| over all
node-subsets X, where ∂X denotes the set of edges with exactly one endpoint in X. Vertex-
isoperimetric variants also exist; see for example [12, 2]. Up to our knowledge, a ratio similar
to the MRCE ratio we currently examine has not been considered.

Our Results. We initiate the study for MRCE. We prove that the decision version of MRCE
is NP-complete, even when the given graph G is restricted to be a split graph. For the same
case, we demonstrate a polynomial-time approximation scheme running in O(nk+1) time
with a constant-factor k

k+2 guarantee, for any fixed integer k > 0. Our algorithm exploits a
growth property for MRCE and the special topology of split graphs. Moving on, we provide
another algorithm for general graphs, i.e., when no assumption is made on the topology of
the given graph besides it being connected. The algorithm is inspired by an approximation
algorithm for BCDS [14] and achieves an approximation guarantee of (1− 1/e)/6. Finally,
we show that in the case of interval graphs, the MRCE ratio can be computed optimally in
O(n3) time for any given n-node graph.

Outline. In Section 2, we first define some necessary preliminary graph-theoretic notions
and then formally define the MRCE problem. In Section 3, we present our results for split
graphs. Later, in Section 4, we give the approximation algorithm for general graphs. Next,
in Section 5, we demonstrate the polynomial-time algorithm for interval graphs. Finally, in
Section 6 we cite some concluding remarks and further work directions.

2 Preliminaries

A graph G is denoted as a pair (V (G), E(G)) of the nodes and edges of G. The graphs
considered are simple (neither loops nor multi-edges are allowed), connected and undirected.

Two nodes connected by an edge are called adjacent or neighboring. The open neighborhood
of a node v ∈ V (G) is defined as N(v) = {u ∈ V (G) : {v, u} ∈ E(G)}, while the closed
neighborhood is defined as N [v] = {v}∪N(v). For a subset of nodes S ⊆ V (G), we expand the
definitions of open and closed neighborhood as N(S) =

⋃
v∈S(N(v)\S) and N [S] = N(S)∪S.

MFCS 2018

25:4 Maximum Rooted Connected Expansion

The degree of a node v ∈ V (G) is defined as d(v) = |N(v)|. The minimum (resp. maximum)
degree of G is denoted by δ(G) = minv∈V (G) d(v) (resp. ∆(G) = maxv∈V (G) d(v)).

A clique is a set of nodes, where there exists an edge between each pair of them. The
maximum size of a clique in G, i.e., the clique number of G, is denoted by ω(G).

An independent set is a set of nodes, where there exists no edge between any pair of them.
The max. size of such a set in G, i.e., the independence number of G, is denoted by α(G).

In the results to follow, we consider two specific families of graphs, namely split and
interval graphs. Any necessary preliminary knowledge for these two graph families is given
more formally in their corresponding sections.

Finally, let us provide a formal definition of the quantity under consideration and the
decision version of the corresponding optimization problem.

I Definition 1. We define the Maximum Rooted Connected Expansion number for a graph
G and a node v0 as follows, where Con(G, v0) := {S ⊆ V (G) | v0 ∈ S and S is connected}:

MRCE(G, v0) = max
S∈Con(G,v0)

|N [S]|
|S|

I Definition 2 (MRCE). Given a graph G, a node v0 ∈ V (G) and two natural numbers
a, b, decide whether MRCE(G, v0) ≥ a/b.

When the input graph is known to be split, respectively interval, we refer to the corres-
ponding optimization problem as SplitMRCE , respectively IntervalMRCE .

3 Split Graphs

In this section, we define split graphs and cite a useful preliminary result regarding their
structure. We proceed with our results and prove that SplitMRCE is NP-hard, but it can
be approximated within a constant factor of k

k+2 for any fixed integer k > 0.

I Definition 3. A graph is split if it can be partitioned into a clique and an independent set.

Given the above definition, we denote by (I, C) a partition for a split graph G where I
stands for the independent set and C for the clique. However, there may be many different
ways to partition a split graph into an independent set and a clique [11].

I Theorem 4 (Follows from Theorem 3.1 [3]). A split graph has at most a polynomial number
of partitions into a clique and an independent set. Furthermore, all these partitions can be
found in polynomial time.

3.1 Hardness
We now move onward to investigate the complexity of SplitMRCE . Initially, let us a define
a pair of satisfiability problems we rely on in order to prove NP-hardness.

I Definition 5 (3-SAT). Given a CNF formula φ with n variables and m clauses, where
each clause is a disjunction of exactly 3 literals, decide whether φ is satisfiable.

I Definition 6 (3-SAT equal). Given a CNF formula φ with n variables and n clauses, where
each clause is a disjunction of exactly 3 literals, decide whether φ is satisfiable.

To demonstrate the hardness result in a more presentable way, we employ an auxiliary
reduction from 3-SAT to 3-SAT equal and then a reduction from 3-SAT equal to SplitMRCE .

We recall that 3-SAT is well-known to be NP-hard, e.g. see [5].

I Lemma 7. 3-SAT equal is NP-hard.

I. Lamprou, R. Martin, S. Schewe, I. Sigalas, and V. Zissimopoulos 25:5

v0

x1 x1 x2 x2 xn xn

.

y11

y1,3n+2

. .
. y21

y2,3n+2

. .
. yn1

yn,3n+2

. .
.

.
.

.
. . . .

c1 c2 cn

Figure 1 The graph G constructed for the reduction.

The Reduction. Given a 3-SAT equal formula φ, we create a graph G with a node v0 ∈
V (G). Let x1, x2, . . . , xn stand for the variables of φ and c1, c2, . . . , cn for the clauses of
φ. We construct the graph G in the following way: we place a node v0, one node per
literal xi, xi (2n nodes in total), one node per clause ci (n nodes in total) and a set of
3n + 2 “leaf” nodes for each variable (namely yij for j = 1, . . . , 3n + 2) summing up to
(3n + 2) · n = 3n2 + 2n “leaf” nodes in total. We call the two nodes xi, xi a literal-pair
and each node ci a clause-node. Then, we connect v0 to each literal node and each literal
node to all the other literal nodes. Moreover, each literal-node is connected to all the
corresponding clause-nodes where it appears in φ. Finally, xi and xi are connected to
yij for all j. It is clear that the construction can be done in polynomial time. Formally,
V (G) = {v0} ∪ {xi, xi : 1 ≤ i ≤ n} ∪ {ci : 1 ≤ i ≤ n} ∪ {yij : 1 ≤ i ≤ n, 1 ≤ j ≤ 3n+ 2} and

E(G) = {[v0, xi] : 1 ≤ i ≤ n} ∪ {[v0, xi] : 1 ≤ i ≤ n}∪
∪ {[xi, xj] : 1 ≤ i, j ≤ n, i 6= j} ∪ {[xi, xj] : 1 ≤ i, j ≤ n, i 6= j} ∪ {[xi, xj] : 1 ≤ i, j ≤ n, i 6= j}∪
∪ {[xi, yij] : 1 ≤ i ≤ n, 1 ≤ j ≤ 3n+ 2} ∪ {[xi, yij] : 1 ≤ i ≤ n, 1 ≤ j ≤ 3n+ 2}∪
∪ {[xi, cj] : xi in clause cj}

That is, we get |V (G)|= 1 + 5n+ 3n2 and |E(G)|= 2n+
(2n

2
)

+ 2n(3n+ 2) + 3n = 8n2 + 8n.
Figure 1 demonstrates an example of such a construction; the literal-nodes within the dashed
ellipsis form a clique.

I Proposition 1. G is a split graph.

Proof. x1, x1, x2, x2, . . . , xn, xn form a clique; all other nodes form an independent set. J

I Claim 1. If φ is satisfiable, then MRCE(G, v0) ≥ 1+5n+3n2

1+n .

Proof. Let A stand for a truth assignment under which φ is satisfiable. Then, to form a
feasible solution for MRCE, we choose a set S including v0 and these literal-nodes (either
xi or xi) whose corresponding literals are set true under A. Therefore, we get |S|= 1 + n.
Since, in φ, each clause is satisfied by at least one literal set true under A, each clause-node
ci is connected to at least one literal-node in S. Moreover, any node yij is connected to S,
since exactly one out of xi and xi is in S (due to A being a truth assignment). Overall, we
see that |N [S]|= |V (G)|= 1 + 5n+ 3n2. J

I Claim 2. If there exists no satisfiable assignment for φ, then MRCE(G, v0) < 1+5n+3n2

1+n .

Proof. Let us first show a proposition to restrict the shape of a feasible MRCE solution.
Intuitively, adding any yij or ci node does not contribute any new neighbors to the ratio.

MFCS 2018

25:6 Maximum Rooted Connected Expansion

Algorithm 1: Approximate Split MRCE.
Input :A split graph G = (V (G), E(G)), a node v0 ∈ V (G) and a fixed integer

k > 0
Output :An MRCE solution and its corresponding ratio as a pair

1 Sapx ← arg maxS∈Con(G,v0),1≤|S|≤k+2|N [S]|/|S|
2 return (Sapx, |N [Sapx]|/|Sapx|)

I Proposition 2. Adding any yij , ci node can only decrease the ratio of a feasible solution.

The above proposition suggests it suffices to upper-bound potential solutions S containing
v0 and only literal nodes. Below, let R = 1+5n+3n2

1+n . To conclude the proof, we show that, if
φ is unsatisfiable, then the ratio we can obtain is strictly less than R.

If S = {v0}, then the ratio we get is |N [{v0}]|
|{v0}| = 1+2n

1 < R for any n > 0.
If S contains v0 and k literal nodes (any k of them), we distinguish three cases.
Case k ≤ n − 1: For a fixed k, the ratio becomes at most 1+3n+k(3n+2)

1+k , since at most
k families of y nodes are in the neighborhood. We observe ∂

(
1+3n+k(3n+2)

1+k

)
/∂k =

1
(k+1)2 > 0 for any k > 0. Hence, the worst case is k = n − 1, which yields a ratio
1+3n+(n−1)·(3n+2)

n = 3n2+2n−1
n < R for any n > 0.

Case k = n: If exactly one node from each literal pair is in S (i.e. S corresponds to
a truth assignment), then the ratio becomes at most 1+3n−1+n(3n+2)

1+n < R, since φ is
unsatisfiable and therefore any truth assignment leaves at least one uncovered clause
node. On the other hand, if there exists at least one literal-pair where both xi and xi are
not in S, then the ratio is at most 1+3n+(n−1)(3n+2)

1+n < R, since at least one set of 3n+ 2
“leaf” nodes are not in N [S].
Case k > n: The ratio becomes at most |(V (G)|

1+k = 1+5n+3n2

1+k < 1+5n+3n2

1+n = R. J

I Theorem 8. SplitMRCE is NP-complete.

3.2 Approximation
We now turn our attention to a polynomial time approximation scheme for SplitMRCE .
Our algorithm is parameterized by any fixed integer k > 0 and provides an approximation
guarantee of k

k+2 . Intuitively, the idea is that, given the best MRCE ratio when the set size is
restricted to be at most k+ 2, the overall optimal ratio cannot be much better due to a ratio
growth property. Additionally, connectivity is ensured due to the special topology of split
graphs. Below, the approach is described formally in Algorithm 1. Lemma 9 restricts the
structure of a feasible MRCE solution on split graphs and the analysis follows in Theorem 10.

I Lemma 9. Let G be a split graph, v0 ∈ V (G) the requested root node and (I, C) a partition
of G into an independent set I and a clique C where |C|= ω(G). Any feasible solution for
SplitMRCE containing nodes in I can be transformed into another feasible solution with no
nodes in I (except maybe for v0) which achieves a non-decreased MRCE ratio.

I Theorem 10. For any fixed integer k > 0, Algorithm 1 runs in O(nk+1) time and returns
a k
k+2 -approximation for SplitMRCE .

Proof. The algorithm computes a maximum value out of all connected subsets of size at
most k + 2, including v0, and so it runs in O(nk+1) time.

I. Lamprou, R. Martin, S. Schewe, I. Sigalas, and V. Zissimopoulos 25:7

Let Sopt stand for an optimal solution for SplitMRCE . In other words, it holds Sopt ∈
arg maxS∈Con(G,v0)|N [S]|/|S|. We distinguish two cases based on the size of Sopt.

If |Sopt|≤ k+ 2, then Algorithm 1 considers Sopt and either returns it or another solution
achieving the same ratio.

If |Sopt|> k + 2, then consider the following procedure: repeatedly remove from Sopt the
node with the least contribution in the numerator until k nodes are left. More formally,
let us denote |Sopt|= l and then Sopt = Sl. For i = l − 1, . . . , k, let Si = Si+1 \ {ui+1}
for some node ui+1 that maximizes |N [Si+1 \ {v}]| over all v ∈ Si+1. Equivalently, let
p(v) = |N [Si+1]|−|N [Si+1 \ {v}]| denote the number of exclusive neighbors of v in N [Si+1].
Then, ui+1 ∈ arg minv∈Si+1 p(v). Notice that, for any i = l − 1, . . . , k, it may be the case
that Si is not a feasible MRCE solution, since v0 may be removed during this process.

Now, let us show that the ratio does not decrease while performing the above process.
For any i ∈ {l − 1, . . . , k}, let |N [Si]|= Ni and |Si|= ni. Assume Ni+1

ni+1
> Ni

ni
. We rewrite

the inequality as Ni+1
ni+1

> Ni+1−p(ui+1)
ni+1−1 which implies p(ui+1) > Ni+1

ni+1
. Since ui+1 minim-

izes the value of p(·), it follows that, for every v ∈ Si+1, p(v) ≥ p(ui+1). Furthermore,
Ni+1 ≥

∑
v∈Si+1

p(v) because N [Si+1] includes all exclusive neighbors of each node. Putting
everything together, we get Ni+1 ≥

∑
v∈Si+1

p(v) >
∑
v∈Si+1

Ni+1
ni+1

= ni+1
Ni+1
ni+1

= Ni+1, a
contradiction. Based on this observation, we get Nk

nk
≥ Nk+1

nk+1
≥ . . . ≥ Nl

nl
= OPT , where

OPT stands for the optimal MRCE number.
From Lemma 9, we may assume without loss of generality that Sopt \{v0} ⊆ C. Moreover,

due to the removal procedure followed, Sk \ {v0} ⊆ Sopt \ {v0} ⊆ C. In the worst case,
when v0 ∈ I and v0 has no neighbor in Sk, we form S′ = Sk ∪ {v0, r} where r ∈ N(v0) is a
representative of v0 in the clique C such that Sk ⊆ N(r). Notice that, since S′ ⊇ Sk, then
N [S′] ⊇ N [Sk]. Since |S′|= k + 2, S′ is considered by Algorithm 1 and therefore it holds
|N [Sapx]|
|Sapx| ≥

|N [S′]|
|S′| where Sapx is the solution returned by Algorithm 1. Overall, we get the

approximation guarantee |N [Sapx]|
|Sapx| ≥

|N [S′]|
|S′| ≥

|N [Sk]|
k+2 = k

k+2
|N [Sk]
k ≥ k

k+2
Nl

nl
= k

k+2OPT . J

4 General Graphs

We hereby state a constant-factor approximation algorithm for the general case when the
input graph G has no specified structure. Our algorithm and analysis closely follow the work
in [14] for the Budgeted Connected Dominating Set (shortly BCDS) problem.

In BCDS, the input is a graph G with n vertices and a natural number k and we are
asked to return a connected subgraph, say S, of at most k vertices of G which maximizes the
number of dominated vertices |N [S]|. Khuller et al. [14] prove that there is a (1− 1/e)/13
approximation algorithm for BCDS. In broad lines, their algorithmic idea is to compute a
greedy dominating set and its corresponding profit function and then obtain a connected
subgraph via an approximation algorithm for the Quota Steiner Tree (shortly QST) problem.

I Definition 11 (QST). Given a graph G, a node profit function p : V (G)→ N ∪ {0}, an
edge cost function c : E(G)→ N ∪ {0} and a quota q ∈ N, find a subtree T that minimizes∑
e∈E(T) c(e) subject to the condition

∑
v∈V (T) p(v) ≥ q.

Evidently, both MRCE and BCDS require finding a connected subset S ⊆ V (G) with
many neighbors. Nonetheless, while in BCDS we only care about maximizing |N [S]|, in
MRCE we care about maximizing |N [S]|/|S| with the additional demand that v0 ∈ S. In
order to deal with this extra requirement, in this paper, we are going to employ the rooted
version of QST, namely the Rooted Quota Steiner Tree (shortly RQST) problem.

MFCS 2018

25:8 Maximum Rooted Connected Expansion

I Definition 12 (RQST). Given a graph G, a root v0 ∈ V (G), a profit function p : V (G)→
N ∪ {0}, an edge cost function c : E(G)→ N ∪ {0} and a quota q ∈ N, find a subtree T that
minimizes

∑
e∈E(T) c(e) subject to the conditions

∑
v∈V (T) p(v) ≥ q and v0 ∈ T .

Garg [6] gave a 2-approximation algorithm for the (rooted) k-Minimum Spanning Tree
(shortly k-MST) problem based on the Goemans-Williamson Prize-Collecting Steiner Tree
approximation algorithm (shortly GW) [8, 9]. Johnson et al. [13] showed that any polynomial-
time α-approximation algorithm for (rooted) k-MST, which applies GW, yields a polynomial-
time α-approximation algorithm for (rooted) QST. Hence, Theorem 13 below follows.

I Theorem 13 ([6, 13]). There is a 2-approximation algorithm for RQST .

The Algorithm. Algorithm 2, namely the Greedy Dominating Set (shortly GDS) algorithm,
describes a greedy procedure to obtain a dominating set and a corresponding profit function
for the input graph G. At each step, a node dominating the maximum number of the
currently undominated vertices is chosen for addition into the dominating set.

Algorithm 3, namely the Greedy MRCE algorithm, makes use of GDS to obtain a
dominating set for a slightly modified version of G, namely a graph G′, which is the same
as G with the addition of n2 leaves to node v0. Then, the algorithm outputs a connected
subset Ti (containing v0) for any possible size i. Finally, the subset yielding the best MRCE
ratio is chosen as our approximate solution.

In terms of notation, we refer to the approximation algorithm implied by Theorem 13 as
the 2-RQST (G, v0, p, q) algorithm with a graph G, a root node v0 ∈ V (G), a profit function
p : V (G)→ N∪{0} and a quota q as input. We omit including an edge cost function, since in
our case all edges have the same cost, that is, cost 1. Furthermore, let [n] := {1, 2, 3, . . . , n}.

Now, consider a connected set Si of size i (which contains v0) yielding the maximum
number of dominated vertices, i.e. Si ∈ arg maxS: S∈Con(G,v0), |S|=i|N [S]|. We then denote
OPTi := |N [Si]| and use it in the quota parameter of 2-RQST at line 4 of Greedy MRCE.
Yet, in the general case, we do not know OPTi and also such a quantity may be hard to
compute. To overcome this obstacle, notice that OPTi ∈ [i, n] and therefore we could guess
OPTi, e.g., by running a sequential or binary search within the loop of Greedy MRCE and
then keeping the best tree returned by 2-RQST . Notice that such an extra step requires
at most a linear time overhead. Therefore, the running time of Greedy MRCE remains
polynomial and is dominated by the running time of 2-RQST . For presentation purposes,
we omit this extra step and assume OPTi is known for each i ∈ [n].

In the analysis to follow, we focus on why this specific (1− 1/e)OPTi quota is selected
and how it leads to a (1− 1/e)/6 approximation factor.

Analysis. Let us consider some step i of the loop in the Greedy MRCE algorithm. Recall
that OPTi = maxS: S∈Con(G,v0), |S|=i|N [S]|. That is, OPTi stands for the maximum number
of dominated vertices by a connected subset of size i, which contains v0. In the call to
2-RQST , notice that, although OPTi refers to the graph G and by definition contains v0, the
profit function p (as well as the corresponding greedy dominating set D) stems from running
GDS on G′. The reason for this choice is, due to the extra n2 leaves attached to v0 in G′, to
force v0 into the greedy dominating set D and assign to it the highest profit amongst all nodes.
Below, let Si,G′ ∈ arg maxS: S⊆V (G), |S|=i, S is connected|N [S]| and OPTG′i := |N [Si,G′]|, i.e.,
OPTi,G′ denotes the maximum number of nodes dominated by a size-i subset of nodes in G′.

I Claim 3. For any i ∈ [n], it holds v0 ∈ Si,G′ .

I. Lamprou, R. Martin, S. Schewe, I. Sigalas, and V. Zissimopoulos 25:9

Algorithm 2: Greedy Dominating Set (GDS) [14].
Input :A graph G = (V (G), E(G))
Output :A dominating set D ⊆ V (G) and a profit function p : V (G)→ N ∪ {0}

1 D ← ∅
2 U ← V (G)
3 foreach υ ∈ V (G) do
4 p(υ)← 0
5 end
6 while U 6= ∅ do
7 w ← arg maxυ∈V (G)\D|NU (υ)| /* NU (υ) = N [{υ}] ∩ U */
8 p(w)← |NU (w)|
9 U ← U \NU (w)

10 D ← D ∪ {w}
11 end
12 return (D, p)

Algorithm 3: Greedy MRCE.
Input :A graph plus node pair (G, v0)
Output :An MRCE solution S and its corresponding ratio s

1 Construct G′: same as G with extra n2 leaves attached to v0
2 (D, p)← GDS(G′)
3 foreach i ∈ [n] do
4 Ti ← 2-RQST (G, v0, p, (1− 1

e)OPTi)
5 end
6 Let i∗ = arg maxi∈[n]|N [Ti]|/|Ti|
7 return (Ti∗ , |N [Ti∗]|/|Ti∗ |)

Let us introduce some further notation for the proofs to follow. Let L1 = Si,G′ and L2 =
N(L1), that is, OPTi,G′ = |L1∪L2|. Also, let L3 = N(L2)\L1 and R = V (G)\(L1∪L2∪L3),
where R denotes the remaining vertices, i.e., those outside the three layers L1, L2, L3. Let
us now consider the intersection of these layers with the greedy dominating set D returned
by GDS. Let L′j = D ∩ Lj for j = 1, 2, 3 and D′i = {v1, v2, . . . , vi} denote the first i vertices
from L′1 ∪L′2 ∪L′3 in the order selected by the greedy algorithm. In order to bound the total
profit in D′i, we define gj =

∑j
k=1 p(vk) as the profit we gain from the first j vertices of D′i.

I Claim 4 (Variation of Claim 1 in [14]). It holds gj+1 − gj ≥ 1
i (OPTi,G′ − gj).

I Lemma 14 (Variation of Lemma 5.1 in [14]). There exists a subset D′i ⊆ D of size i with
total profit at least (1− 1

e)OPTi. Further, D′i can be connected using at most 2i Steiner nodes
and contains v0.

I Theorem 15. There exists a 1
6 (1− 1

e)-approximation for MRCE in general graphs.

Proof. For each i ∈ [n], by Lemma 14, there exists a solution of at most 3i vertices with profit
at least (1 − 1

e)OPTi. In Algorithm 3, we run 2-RQST , therefore obtaining a, connected
and including v0, solution of at most 6i vertices with profit at least (1− 1

e)OPTi. Let APXi

MFCS 2018

25:10 Maximum Rooted Connected Expansion

stand for the MRCE ratio of the approximate solution corresponding to Ti. Then

APXi ≥
(1− 1

e)OPTi
6i = 1

6

(
1− 1

e

)
OPTi
i

Now, let OPT stand for the optimal ratio for MRCE. Then, OPT = maxi∈[n]
{
OPTi

i

}
.

Let i∗ be the solution size returned by Algorithm 3 and i0 = arg maxi∈[n]
{
OPTi

i

}
. Then,

APXi∗ ≥ APXi0 ≥ 1
6
(
1− 1

e

)
OPT , which concludes the proof. J

5 Interval Graphs

In this section, we provide an optimal polynomial time algorithm for the special case of
interval graphs. We commence with some useful preliminaries and then provide the algorithm
and its correctness.

Preliminaries. All intervals considered in this section are defined on the real line, closed
and non-trivial (i.e., not a single point). Their form is [α, β], where α < β and α, β ∈ R.

I Definition 16. A graph is called interval if it is the intersection graph of a set of intervals
on the real line.

Following the above definition, each graph node corresponds to a specific interval and
two nodes are connected with an edge if and only if their corresponding intervals overlap.

I Definition 17. Given an interval graph G, a realization of G (namely I(G)) is a set of
intervals on the real line corresponding to G, where

for each node v ∈ V (G), the corresponding interval is given by I(v) ∈ I(G), and
for v, u ∈ V (G), I(v) intersects I(u) if and only if [v, u] ∈ E(G).

Notice that we can always derive a realization, where all interval ends are distinct.
Suppose that two intervals share a common end. One need only extend one of them by ε > 0
chosen small enough such that neighboring relationships are not altered.

Below, we provide a definition caring for the relative position of two intervals with regards
to each other. Building on that, we define a partition of V (G) with respect to the position
of the vertices’ corresponding intervals apropos of the v0−interval.

I Definition 18. Given two intervals x = [xl, xr] and y = [yl, yr] , we denote the following:
x @ y, i.e. x is contained in y, when xl > yl and xr < yr.
x ∩L y, i.e. x intersects y to the left, when xl < yl and yl < xr < yr.
x ∩R y, i.e. x intersects y to the right, when xr > yr and yl < xl < yr.
x ≺L y, i.e. x is strictly to the left of y, when xr < yl.
x �R y, i.e. x is strictly to the right of y, when xl > yr.

I Definition 19. We define the following sets:
Let C := {v ∈ V (G) : I(v0) @ I(v)}. Notice that v0 /∈ C.
Let C ′ := {v ∈ V (G) : I(v) @ I(v0)}. Notice that v0 /∈ C ′.
Let CL := {v ∈ V (G) : I(v) ∩L I(v0)}.
Let CR := {v ∈ V (G) : I(v) ∩R I(v0)}.
Let L := {v ∈ V (G) : I(v) ≺L I(v0)}.
Let R := {v ∈ V (G) : I(v) �R I(v0)}.

I Proposition 3. (L,CL, C ′, C, {v0}, CR, R) forms a partition of V (G).

I. Lamprou, R. Martin, S. Schewe, I. Sigalas, and V. Zissimopoulos 25:11

Let us proceed with some useful propositions regarding the form of an optimal solution.

I Proposition 4. The addition of any node v ∈ C ′ to any feasible IntervalMRCE set does
not increase the solution ratio.

Let us now show that we need only care about a specific subset of C, namely C∗, defined
as C∗ := {v ∈ C | @ v′ ∈ C : v 6= v′ ∧ I(v) @ I(v′)}. That is, we restrict ourselves to those
vertices whose corresponding intervals contain I(v0), but are not contained in any other
interval. In other words, we are only interested in the intervals that maximally contain I(v0).

I Proposition 5. Any feasible IntervalMRCE solution S ⊆ V (G) containing a node
v ∈ C \ C∗ can be transformed into another feasible solution S′, where v /∈ S′, with at least
the same ratio as S.

The Algorithm. The general idea of the algorithm is to start from the feasible solution
{v0} and then consider a family of the best out of all possible expansions, while maintaining
feasibility, either moving toward the left or the right in terms of the real line. The key in this
approach is that the left and right part of the graph are dealt with independently from each
other. Of course, special care needs to be taken when other intervals contain I(v0). During
this left/right subroutine, we save a series of possible expansion stop-nodes with maximal
ratio. In the end, we conflate each left ratio with each right ratio and pick the combination
providing the maximum one. The algorithm is given in Algorithm 4 and the other routines
follow in Algorithms 5, 6. We hereby provide a short description for each function.

Interval: This is the main routine. The input is an interval graph G and a starting node
v0 ∈ V (G). The output is a solution set together with its corresponding ratio. Initially,
the algorithm computes a realization I(G), a partition of V (G) and the core set C∗ as
defined in the preliminaries. Then, possible left and right expansions to {v0} are sought.
These are combined to get a best solution for this case. Finally, these basic steps are
repeated for each c ∈ C∗ and the best are kept in the Sols pool. It then suffices to
calculate the max out of the best candidate solutions.
Expand: This function is responsible for providing a set of possible expansions either
left or right of a starting node. A direction, the starting node, the realization, the node
partition and a counter are given as input. The counter serves to save different solutions
in a vector, which is returned as output. Notice that the solution vector is static, i.e.
it can be accessed by any recursive call. The main step of the function is to select a
node whose interval intersects the starting interval to the requested direction. At the
same time, this interval needs to be the farthest away in this direction, i.e., its left/right
endpoint needs to be smaller/greater to any other candidate’s. The potential expansion
is saved and the function is called recursively with the new node as a start point. The
process continues till no further expansion can be made, i.e., the farthest interval is
reached. The returned vector does contain a no-expansion solution (case count = 0).
Combine: This function takes as input the potential left and right expansions. It then
computes a ratio for each possible combination of left and right expansions and outputs
the solution and ratio pair attaining the maximum ratio for the given starting node-set.
MaxRatio: This routine simply returns the maximum set-ratio pair out of a set of different
such pairs.
Ratio: Simply returns the MRCE ratio for a given set.

MFCS 2018

25:12 Maximum Rooted Connected Expansion

Algorithm 4: Interval.
Input :An interval graph plus node pair (G, v0)
Output :A set-ratio pair (S, s)

1 I ←− Realization(G)
2 P ←− Partition(G, I)
3 C∗ ←− Core(C, I)
4 Lsols ←− Expand(L, v0, I, P, 0)
5 Rsols ←− Expand(R, v0, I, P, 0)
6 Sols←− Combine({v0}, Lsols, Rsols, G)
7 foreach c ∈ C∗ do
8 Lsols ←− Expand(L, c, I, P, 0)
9 Rsols ←− Expand(R, c, I, P, 0)

10 Sols←− Sols ∪ {Combine({v0, c}, Lsols, Rsols, G)}
11 end
12 return MaxRatio(Sols)

Algorithm 5: Expand.
Input :A direction, node, realization, partition and counter (D, v, I, P, count)
Output :A vector of sets of nodes Sols

1 if count == 0 then
2 Sols(count)←− {v}
3 end
4 Pick v′ such that I(v′) is the farthest interval on direction D with I(v′) ∩D I(v)
5 if @ such a v′ then
6 return Sols

7 else
8 Sols(count+ 1)←− Sols(count) ∪ {v′}
9 return Expand(D, v′, I, P, count+ 1)

10 end

Algorithm 6: Combine.
Input :A node-set, left/right possible solutions and graph (S,Left, Right,G)
Output :A set-ratio pair (Argmax,Max)

1 (Argmax,Max)←− (S,Ratio(S))
2 foreach l ∈ Left do
3 foreach r ∈ Right do
4 if Ratio(S ∪ l ∪ r) > Max then
5 (Argmax,Max)←− (S ∪ l ∪ r,Ratio(S ∪ l ∪ r))
6 end
7 end
8 end
9 return (Argmax,Max)

I. Lamprou, R. Martin, S. Schewe, I. Sigalas, and V. Zissimopoulos 25:13

Correctness & Complexity. Lemma 20 argues about the fact that the solutions Expand()
ignores do not have any effect on optimality. We state the lemma for the left expansion case
and the reader can similarly adapt it to the right expansion case. Then, we conclude with
the optimality and running time of the overall procedure (Theorem 21).

I Lemma 20. Let Lsols stand for the vector returned by the function call Expand(L, v, I, P, 0)
for some node v ∈ V (G). For any node-set S ⊆ CL ∪L ∪ {v} such that v ∈ S and S /∈ Lsols,
there exists a set S′ ∈ Lsols such that Ratio(S′) ≥ Ratio(S).

I Theorem 21. Interval(G, v0) optimally solves Interval MRCE in O(n3) time.

6 Conclusion & Further Work

We proved that MRCE is NP-complete for split graphs. We showed that, in this case, the
problem admits a polynomial time approximation scheme, whereas for interval graphs we
proposed a polynomial-time algorithm. For general graphs, we also gave a constant-factor
approximation algorithm by exploring the relation of MRCE with BCDS [14].

The major open question is to improve the approximability of the problem on general
graphs without applying BCDS techniques, but using rather MRCE properties. Another
open problem is the design of an approximation algorithm for chordal graphs. Towards this
direction, we notice that even for chordal graphs with a dominating clique (a superclass of
split graphs), equivalently chordal graphs with diameter at most three (Theorem 2.1 [15]),
the assumption that only clique nodes need to be included in a solution (Lemma 9) now fails.

References
1 Waleed Ali, Siti Mariyam Hj. Shamsuddin, and Abdul Samad Ismail. A survey of web

caching and prefetching. International Journal of Advances in Soft Computing and its
Application, 3(1), 2011.

2 Sergei L. Bezrukov, Miquel Rius, and Oriol Serra. The vertex isoperimetric problem for
the powers of the diamond graph. Discrete Mathematics, 308:2067–2074, 2008.

3 T. Feder, P. Hell, S. Klein, and R. Motwani. List partitions. SIAM Journal on Discrete
Mathematics, 16(3):449–478, 2003.

4 Fedor V. Fomin, Frédéric Giroire, Alain Jean-Marie, Dorian Mazauric, and Nicolas Nisse.
To satisfy impatient web surfers is hard. Theoretical Computer Science, 526:1–17, 2014.

5 Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

6 Naveen Garg. Saving an epsilon: A 2-approximation for the k-mst problem in graphs.
In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of Computing,
STOC ’05, pages 396–402, New York, NY, USA, 2005. ACM.

7 F. Giroire, I. Lamprou, D. Mazauric, N. Nisse, S. Pérennes, and R. Soares. Connected
surveillance game. Theoretical Computer Science, 584:131–143, 2015. Special Issue on
Structural Information and Communication Complexity.

8 Michel X. Goemans and David P. Williamson. A general approximation technique for
constrained forest problems. SIAM J. Comput., 24(2):296–317, 1995.

9 Michel X. Goemans and David P. Williamson. The primal-dual method for approximation
algorithms and its application to network design problems. In Dorit S. Hochbaum, editor,
Approximation Algorithms for NP-hard Problems, pages 144–191. PWS Publishing Co.,
Boston, MA, USA, 1997.

10 PA Golovach. Computing the isoperimetric number of a graph. Cybernetics and Systems
Analysis, 30(3):453–457, 1994.

MFCS 2018

25:14 Maximum Rooted Connected Expansion

11 Martin Charles Golumbic. Chapter 6 - split graphs. In Martin Charles Golumbic, editor,
Algorithmic Graph Theory and Perfect Graphs, pages 149–156. Academic Press, 1980.

12 L.H. Harper. On an isoperimetric problem for hamming graphs. Discrete Applied Mathem-
atics, 95(1):285–309, 1999.

13 David S. Johnson, Maria Minkoff, and Steven Phillips. The prize collecting steiner tree
problem: Theory and practice. In Proceedings of the Eleventh Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’00, pages 760–769, Philadelphia, PA, USA, 2000.

14 Samir Khuller, Manish Purohit, and Kanthi K. Sarpatwar. Analyzing the optimal neigh-
borhood: Algorithms for budgeted and partial connected dominating set problems. In
Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’14, pages 1702–1713, Philadelphia, PA, USA, 2014.

15 Dieter Kratsch, Peter Damaschke, and Anna Lubiw. Dominating cliques in chordal graphs.
Discrete Mathematics, 128(1):269–275, 1994.

16 W3C Resource Hints, 2018. URL: https://www.w3.org/TR/resource-hints/.
17 Jia Wang. A survey of web caching schemes for the internet. SIGCOMM Comput. Commun.

Rev., 29(5):36–46, 1999.

https://www.w3.org/TR/resource-hints/

Interactive Proofs with Polynomial-Time
Quantum Prover for Computing the Order of
Solvable Groups
François Le Gall1

Graduate School of Informatics, Kyoto University
Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

Tomoyuki Morimae2

Yukawa Institute for Theoretical Physics, Kyoto University
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan

Harumichi Nishimura3

Graduate School of Informatics, Nagoya University
Chikusa-ku, Nagoya, Aichi 464-8601, Japan

Yuki Takeuchi4

NTT Communication Science Laboratories, NTT Corporation
3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
Graduate School of Engineering Science, Osaka University
1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan

Abstract
In this paper we consider what can be computed by a user interacting with a potentially malicious
server, when the server performs polynomial-time quantum computation but the user can only
perform polynomial-time classical (i.e., non-quantum) computation. Understanding the compu-
tational power of this model, which corresponds to polynomial-time quantum computation that
can be efficiently verified classically, is a well-known open problem in quantum computing. Our
result shows that computing the order of a solvable group, which is one of the most general prob-
lems for which quantum computing exhibits an exponential speed-up with respect to classical
computing, can be realized in this model.

2012 ACM Subject Classification Theory of computation → Quantum computation theory

Keywords and phrases Quantum computing, interactive proofs, group-theoretic problems

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.26

1 Introduction

First-generation quantum computers will be implemented in the “cloud” style, since only few
groups, such as governments or huge companies, will be able to possess such expensive and
high-maintenance machines. In fact, IBM has recently opened their 16-qubit machine for
a cloud service [34]. In a future when many companies provide their own quantum cloud
computing services, a malicious company might emerge who is trying to palm a user off with

1 Partially supported by the JSPS KAKENHI grants No. 15H01677, No. 16H01705 and No. 16H05853.
2 Supported by JST PRESTO No. JPMJPR176A, and the Grant-in-Aid for Young Scientists (B)

No. JP17K12637 of JSPS.
3 Partially supported by the JSPS KAKENHI grants No. 26247016, No. 16H01705 and No. 16K00015.
4 Supported by the Program for Leading Graduate Schools: Interactive Materials Science Cadet Program.

© François Le Gall, Tomoyuki Morimae, Harumichi Nishimura, and Yuki Takeuchi;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 26; pp. 26:1–26:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Interactive Proofs for Order of Solvable Groups

a wrong result forged from their fake quantum computer. In addition, even if a fortunate user
is interacting with a honest server, some noises in the server’s gate operations might change
the result. How can a user verify the correctness of the server’s quantum computation? If
the user has his/her own quantum computer, the user can of course check the server’s result,
but in this case the user may not need the cloud service in the first place. If the solution
of the problem is easily verifiable (e.g., integer factoring), the user can naturally verify the
correctness of the server’s result, but many problems considered in quantum computing are
not believed to have this property. Verifying classically and efficiently a server’s quantum
computation is indeed in general highly nontrivial.

It is known that if at least two servers, who are entangled but not communicating
with each other, are allowed, then any problem solvable in quantum polynomial time can
be verified by a classical polynomial-time user who exchanges classical messages with the
servers [20, 24, 27]. However, the assumption that servers are not communicating with
each other is somehow unrealistic: how can the user guarantee that remote servers are not
communicating with each other?

Whether the number of the servers can be reduced to one is a well-known open problem [4].
For certain computational problems solvable in quantum polynomial time, it is known that
this can be done. Simon’s problem [31] and factoring [30] are trivial examples, since the
answer can be directly checked in classical polynomial time. It is known that recursive
Fourier sampling [10], which was the first problem that separates efficient quantum and
classical computing, can be verified by a polynomial number of message exchanges with a
single quantum server [23]. Moreover, it was shown that certain promise problems related
to quantum circuits in the second level of the Fourier hierarchy [29] are verifiable by a
classical polynomial-time user interacting with a single quantum server who sends only a
single message to the user [12, 26].

Our results. In this paper we consider the problem of computing the order, i.e., the number
of elements, of a finite group given as a black-box group (the concept of black-box groups
is defined in Section 2). This problem is central in computational group theory, especially
since the ability of computing the order makes possible to decide membership in subgroups.
This problem has also been the subject of several investigations in computational complexity
[1, 6, 7, 9, 32, 33]. The seminal result by Babai [6], especially, which put this problem in
the complexity class AM, has been one of the fundamental motivations behind the concept
of interactive proofs. Note that this is clearly a hard problem for classical computation: it
is easy to show that no polynomial-time classical algorithm exists in the black-box setting,
even if the input is an abelian group [9].

Most of the known quantum algorithms that achieve exponential speedups with respect to
the best known classical algorithms are for group-theoretic problems, and especially problems
over abelian groups. Shor’s algorithm for factoring [30], for instance, actually computes the
order of a cyclic black-box group. Watrous has shown that the group order problem can be
solved in quantum polynomial time when the input group is solvable [33]. Since the class
of solvable groups, defined in Section 2, is a large5 class of finite groups that includes all

5 It is known (see for instance [11]) that

lim
m→∞

log Gs(m)
log G(m) = 1,

where G(m) denotes the number of finite groups of order at most m and Gs(m) denotes the number of
finite solvable groups of order at most m. It is even conjectured that the quotient Gs(m)/G(m) goes
to 1 when m goes to infinity, i.e., most finite groups are solvable.

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:3

abelian groups, this result significantly generalized Shor’s algorithm. Watrous’ algorithm can
actually be seen as one of the most general results achieving an exponential speedup with
respect to classical computation.

In this paper we show that the group order problem over solvable groups is also verifiable
with a single server. More formally, in Section 2, where we introduce the relevant model
of interactive protocols, we will introduce the notation IP[k, qpoly] to denote the class of
computational problems that are verifiable by a classical polynomial-time user interacting
in k messages with a server who works in quantum polynomial time. Our main result is as
follows.

I Theorem 1. The solvable group order problem is in the complexity class IP[3, qpoly].
Moreover, if the set of prime factors of the order is also given as input, then the solvable
group order problem is in IP[2, qpoly].

This result shows that for this important computational problem, the number of servers can
be reduced to one as well, using a small number of messages. Note that assuming, in the
second part of Theorem 1, that the set of prime factors of the order is known corresponds
to several practical situations. An important example is computing the order of p-groups6
with p known, which cannot be done in polynomial time in the classical setting [9]. The
main open question is whether the number of messages can also be reduced to 2 without any
assumption on the prime factors.

Other related works. In addition to the introduction of multiple servers mentioned above,
there are other approaches considered in the literature for constructing verification systems
for quantum computation.

First, if the user is allowed to be “slightly quantum”, any problem solvable in quantum
polynomial time can be efficiently verified with a single quantum server. For example,
Refs. [2, 14] assume that the user can generate randomly-rotated single-qubit states, and
Refs. [13, 16, 25] assume that the user can measure single-qubit states.

Second, since the class BQP (the class of decision problems that can be solved in quantum
polynomial-time) is trivially in PSPACE and PSPACE = IP [21, 28], any problem in BQP
can be classically verified using generic interactive proof protocols for PSPACE. In such
protocols, however, the server has unbounded computational power. A tempting approach is
to try to specialize these generic protocols to the class BQP, with the hope that the server’s
necessary computational power may be reduced. Ref. [3] made an significant first step in
this direction.

Finally, it has been shown very recently that assuming that the learning with errors
problem is intractable for polynomial-time quantum computation, any problem solvable in
quantum polynomial time can be efficiently verified with a single quantum server and a single
classical user [22].

2 Preliminaries

In this paper we assume that the reader is familiar with the standard notions of group theory
(we refer to, e.g., [18] for a good introduction). All the groups considered will be finite. Given

6 A (finite) p-group, where p is a prime, is a group of order pr for some integer r ≥ 1. A basic result from
group theory shows that any p-group is solvable.

MFCS 2018

26:4 Interactive Proofs for Order of Solvable Groups

a group G, we use |G| to denote its order (i.e., the number of elements in G), and use e
to denote its identity element. Given elements g1, . . . , gr ∈ G, we denote 〈g1, . . . , gr〉 the
subgroup of G generated by g1, . . . , gr.

Black-box groups. We now describe the model of black-box groups. This concept, in which
each group element is represented by a string and each group operation is implemented
using an oracle, was first introduced by Babai and Szemerédi [9] to describe group-theoretic
algorithms in the most general way, without having to concretely specify how the elements
are represented and how groups operations are implemented. Indeed, any efficient algorithm
in the black-box group model gives rise to an efficient concrete algorithm whenever the
oracle operations can be replaced by efficient procedures. Especially, performing group
operations can be done directly on the elements in polynomial time for many natural groups,
including permutation groups and matrix groups where the group elements are represented
by permutations and matrices, respectively. In the quantum setting, black-box groups have
first been considered by Ivanyos et al. [19] and Watrous [32, 33].

A black-box group is a representation of a group G where each element of G is uniquely
encoded by a binary string of a fixed length n, which is called the encoding length. The
encoding length n is known. In order to be able to express the complexity of black-box
group algorithms in terms of the group order |G|, and not in terms of the encoding length,
we make the standard assumption that n = O(log |G|). Oracles are available to perform
group operations. More precisely, two oracles are available. A first oracle performs the group
product: given two strings representing two group elements g and h, the oracle outputs the
string representing gh. The second oracle performs inversion: given a string representing an
element g ∈ G, the oracle outputs the string representing the element g−1. Note that the
two oracles may behave arbitrarily on strings not corresponding to elements in G; this is
not a problem since our protocols will never use the oracles on such strings. We say that a
group G is input as a black-box if a set of strings representing generators {g1, . . . , gs} of G
with s = O(log |G|) is given as input and queries to the oracles can be done at cost 1.7 The
input length is thus sn = poly(log |G|).

To be able to take advantage of the power of quantum computation when dealing
with black-box groups, the oracles performing the group operations have to be able to
deal with quantum superpositions. Concretely, this is done as follows (see [19, 32, 33]).
Let s : G → {0, 1}n denote the encoding of elements as binary strings. We assume that
a quantum oracle VG is available, such that VG(|s(g)〉|s(h)〉) = |s(g)〉|s(gh)〉 for any two
elements g, h ∈ G, and behaving in an arbitrary way on other inputs (i.e., strings not in s(G)).
Another quantum oracle V ′G is also available, such that V ′G(|s(g)〉|s(h)〉) = |s(g)〉|s(g−1h)〉
for any g, h ∈ G and again behaving in an arbitrary way on other inputs.

Approximate sampling in black-box groups. Babai [5] proved the following result for
general groups, which shows that elements of a black-box group can be efficiently sampled
nearly uniformly.

I Theorem 2. ([5]) Let G be a black-box group. For any ε > 0, there exists a classical
randomized algorithm running in time polynomial in log(|G|) and log(1/ε) that outputs an
element of G such that each g ∈ G is output with probability in range (1/|G| − ε, 1/|G|+ ε).

7 The assumption s = O(log |G|) is standard. Indeed, every group G has a generating set of size O(log |G|).
Additionally, a set of generators of any size can be converted efficiently into a set of generators of size
O(log |G|) by taking random products of elements [5].

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:5

Solvable groups. Before discussing solvable groups, let us introduce the following concept
of polycyclic generating sequences (see [17] for details).

I Definition 3. Let G be a group. A polycyclic generating sequence of G is a sequence
(h1, . . . , ht) of t elements from G, for some integer t, such that:
1. 〈h1, . . . , ht〉 = G;
2. for each 1 < j ≤ t, the subgroup 〈h1, . . . , hj−1〉 is normal in 〈h1, . . . , hj〉.

There are many equivalent definitions of solvable groups in the literature (see, e.g., [17]
for a thorough discussion). In this paper we will use the following characterization: a finite
group is solvable if and only if it has a polycyclic generating sequence. This characterization,
which was already used by Watrous [33], is the most convenient for our purpose. As discussed
in [33], for any finite solvable group G given as a black box, a polycyclic generating sequence
(h1, . . . , ht) with t = O(log |G|) can be computed classically in polynomial time with high
probability using for instance the randomized algorithm by Babai et al. [8].

Watrous showed that the order of a solvable black-box group can be computed in
polynomial time in the quantum setting. We state this result in the following theorem.

I Theorem 4. ([33]) Let G be a solvable group given as a black-box group. There exists a
quantum algorithm running in time poly(log |G|) that outputs |G| with probability at least
1− 1/poly(|G|).

Let G be a solvable group and (h1, . . . , ht) be a polycyclic generating sequence of G. In
the following we will write Hj = 〈h1, . . . , hj〉 for each j ∈ {1, . . . , t}, and for convenience
write H0 = {e}. Since Hj is obtained from Hj−1 by adding one generator, the factor group
Hj/Hj−1 is cyclic. Let us write its order mj . Note that the order of G is thus the product
m1m2 · · ·mt. A fundamental (and easy to show) property of polycyclic generating sequences
is the following: For any j ∈ {1, . . . , t}, any element h ∈ Hj can be written, in a unique
way, as h = ha1

1 ha2
2 · · ·h

aj

j with integers ai ∈ {0, 1, . . . ,mi − 1} for i ∈ {1, . . . , j}. We call
this sequence (a1, . . . , aj) the decomposition of h over Hj . Watrous [33] showed that the
decomposition of any element can be computed efficiently in the quantum setting, which
immediately leads to an efficient algorithm for membership testing in the subgroups Hj . We
state these two results, separately, in the following theorem.

I Theorem 5. ([33]) Let G be a solvable group given as a black-box group and let (h1, . . . , ht)
be a polycyclic generating sequence of G with t = O(log |G|). There exist two quantum
algorithms A1 and A2 running in time polynomial in log |G| as follows.

Algorithm A1 receives an integer j ∈ {1, . . . t} and an element h ∈ Hj, and outputs with
probability at least 1− 1/poly(|G|) the decomposition of h over Hj.
Algorithm A2 receives an integer j ∈ {1, . . . t} and an element h ∈ G, and decides whether
h ∈ Hj or not. The decision is correct with probability at least 1− 1/poly(|G|).

Interactive proofs with efficient quantum prover. Interactive proof systems are typically
described as protocols for decision problems. In this paper it will be more convenient to
consider interactive proofs for computing functions, since we are interested in computing the
order of the input group.8 The definition we give below is inspired by [15].

8 In order to be completely rigorous, we should actually define this concept for functional problems where
the input is represented using oracles (since we are dealing with black-box groups where the group
operation is represented by oracles). We nevertheless omit this purely technical point in the exposition.

MFCS 2018

26:6 Interactive Proofs for Order of Solvable Groups

Let f : X → {0, 1}∗ be a function, where X is a finite set. We consider protocols between
a prover and a verifier, who both receives as input an element x ∈ X and can exchange
classical messages of polynomial length. At the end of the protocol, the verifier outputs
either some y ∈ {0, 1}∗ or one special element ⊥. We say that the function f has a k-message
polynomial-time interactive proof if there exists a k-message protocol in which the verifier
works in classical polynomial time, such that the following properties hold:
1. (completeness) there is a prover P such that the verifier’s output y satisfies y = f(x)

with probability at least 2/3 when interacting with P ;
2. (soundness) for any prover P ′, the verifier’s output y satisfies y ∈ {f(x),⊥} with probab-

ility at least 2/3 when interacting with P ′.
The prover P in the completeness condition is called the honest prover.

The above definition makes no assumption on the computational powers of the provers.
Our main definition is obtained by restricting the computational power of the honest prover,
i.e., the prover P in the completeness condition.

I Definition 6. A function f is in the class IP[k, qpoly] if it has a k-message polynomial-time
interactive proof where the honest prover P works in quantum polynomial time.

The notation IP[k, qpoly] comes from its definition as a k-message interactive protocol with
a prover working in quantum polynomial time (when honest). We stress that in Definition 6
there is no assumption on the computational power of P ′ for the soundness.

3 2-Message Protocol with Known Prime Factors

In this section we assume that the prime factors of the order of the black-box group G

are known. We present a 2-message protocol in this case, which proves the second part of
Theorem 1.

3.1 Preliminaries
We will need the following result in our protocol. This result essentially shows how to reduce
the computation of the order of a solvable group G to the problem of deciding if its factor
groups Hi/Hi−1 have order 1 or not.

I Theorem 7. Let G be a solvable group given as a black-box group. Let p1, . . . , p` denote
the prime factors of |G| and assume that the set S = {p1, . . . , p`} is also given as input.
There exists a classical algorithm running in time polynomial in log |G| that outputs elements
h1, . . . , ht ∈ G, with t = poly(log |G|), and t prime numbers r1, . . . , rt ∈ S such that, with
probability at least 1− 1/poly(|G|), the following conditions hold:

(h1, . . . , ht) is a polycyclic generating sequence of G;
the order of Hi/Hi−1 is either 1 or ri for each 1 ≤ i ≤ t, where we denote Hi = 〈h1, . . . , hi〉
for 1 ≤ i ≤ t and H0 = {e}.

Before proving Theorem 7, let us discuss the main idea of the algorithm in this theorem. The
approach is to start with an arbitrary polycyclic generating sequence and refine it by replacing
each element by decreasing powers of it. Consider for instance the cyclic group of order 12, for
which we have ` = 2, p1 = 2, p2 = 3 and |G| = 12. Assume that we start with the polycyclic
generating sequence (k1) consisting of a unique element k1 of order 12. We refine this
sequence as (h1, h2, h3) with h1 = k

|G|/p1
1 = k6

1, h2 = k
|G|/p2

1
1 = k3

1 and h3 = k
|G|/(p2

1p2)
1 = k1.

This is a polycyclic generating sequence with |H1/H0| = 2, |H2/H1| = 2 and |H3/H2| = 3.
The difficulty is that naturally we do not know the order |G|. Remember nevertheless that

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:7

we know the encoding length n of the black-box group, which is an upper bound on log2 |G|.
This means that the quantity m = pn1 × . . . × pn` is a multiple of the order |G|, and thus
we can use the same approach, working with m instead of |G| when refining the original
polycyclic generating sequence.

Proof of Theorem 7. Let us consider the function λ : {1, . . . , `} × {1, . . . , n} → Z such that

λ(i, a) = pn−ai × pni+1 × · · · × pn`

for any (i, a) ∈ {1, . . . , `} × {1, . . . , n}. Now consider the sequence

(λ(1, 1), . . . , λ(1, n), λ(2, 1), . . . , λ(2, n), . . . , λ(`, 1), . . . , λ(`, n)) (1)

consisting of `n integers (the integers in the sequence are strictly decreasing). Define the
function µ : {1, . . . , `n} → Z such that µ(j) is the j-th integer in Sequence (1). Note that
µ(j − 1)/µ(j) ∈ S for any j ∈ {2, . . . , `n}.

We now describe our algorithm that computes the claimed generating sequence.
We first compute a polycyclic generating sequence (k1, . . . , kt′) of G with t′ = O(log |G|)

using the randomized polynomial-time algorithm from [8], already mentioned in Section 2,
which succeeds with probability at least 1− 1/poly(|G|). Let us write Ki′ = 〈k1, . . . , ki′〉 for
each 1 ≤ i′ ≤ t′, and K0 = {e}.

We now show how to refine the polycyclic generating sequence. For each i′ ∈ {1, . . . , t′},
we replace ki′ by the sequence of `n elements (kµ(1)

i′ , . . . k
µ(`n)
i′), which gives a new sequence(

k
µ(1)
1 , . . . , k

µ(`n)
1 , k

µ(1)
2 , . . . , k

µ(`n)
2 , . . . , k

µ(1)
t′ , . . . , k

µ(`n)
t′

)
, (2)

of `nt′ elements. Sequence (2) is a polycyclic generating sequence of G since (k1, . . . , kt′) is
a polycyclic generating sequence of G and µ(`n) = 1. For any i′ ∈ {1, . . . , t′}, observe that∣∣∣〈kµ(1)

1 , . . . , k
µ(j)
i′ 〉/〈k

µ(1)
1 , . . . , k

µ(j−1)
i′ 〉

∣∣∣ ∈ {1, µ(j − 1)/µ(j)} (3)

for any j ∈ {2, . . . `n}. Similarly for any i′ ∈ {2, . . . t′} we have∣∣∣〈kµ(1)
1 , . . . , k

µ(1)
i′ 〉/〈k

µ(1)
1 , . . . , k

µ(`n)
i′−1 〉

∣∣∣ ∈ {1, p1}. (4)

Let us rename the elements of Sequence (2) as h1, . . . , ht, with t = `nt′. Note that
t = O(`(log |G|)2) = O((log |G|)3). Let us write Hi = 〈h1, . . . , hi〉 for 1 ≤ i ≤ t and
K0 = {e}. For each 1 ≤ i ≤ t, the order of Hi/Hi−1 is either 1 or ri, where ri can be
determined from Equations (3) and (4). More concretely, ri is of the form µ(j − 1)/µ(j)
for some j (which can be immediately computed from i) when Hi/Hi−1 corresponds to the
case of Equation (3), and ri = p1 when Hi/Hi−1 corresponds to the case of Equation (4).
Note that in both cases we have ri ∈ S, from the property µ(j − 1)/µ(j) ∈ S mentioned
before. J

3.2 The protocol
Let S = {p1, . . . , p`} denote the set of prime factors of |G|, which is given as an additional
input. The protocol is given in Figure 1. The main idea is that the verifier can, using
Theorem 7, compute by itself a polycyclic generating sequence (h1, . . . , ht) and prime
numbers r1, . . . , rt such that |Hi/Hi−1| ∈ {1, ri} for each 1 ≤ i ≤ t. This is done at Step 1
of the protocol. Note that |G| =

∏t
i=1 |Hi/Hi−1|. The purpose of Steps 2-5 is to decide

MFCS 2018

26:8 Interactive Proofs for Order of Solvable Groups

Input: • a black-box solvable group G with generators {g1, . . . , gs}
• the set S = {p1, . . . , p`} of prime factors of |G|

1. The verifier uses the algorithm of Theorem 7 to compute elements h1, . . . , ht and
prime numbers r1, . . . , rt ∈ S. Let us write Hi = 〈h1, . . . , hi〉 for each 1 ≤ i ≤ t

and H0 = {e}.

2. For each i ∈ {1, . . . , t}, the verifier takes a bit si ∈ {0, 1} uniformly at random
and takes a random element xi ∈ Hi−1 using the algorithm of Theorem 2 with
ε = 1/22n (where n represents the encoding length of the black-box group).

3. The verifier sends to the prover the elements h1, . . . , ht and, for each i ∈ {1, . . . , t},
the element hsi

i xi.

4. The prover sends to the verifier bits b1, . . . , bt and integers ai,j for i ∈ {1, . . . t}
and j ∈ {1, . . . , i− 1}.

5. For each i ∈ {1, . . . , t} the verifier does the following:
5.1 If hi = h

ai,1
1 · · ·hai,i−1

i−1 then set `i = 1;
5.2 If hi 6= h

ai,1
1 · · ·hai,i−1

i−1 and bi = si then set `i = ri;
5.3 If neither of these two conditions holds, then abort the protocol and output ⊥.

6. The verifier outputs the product of the `i’s.

Figure 1 Our 2-message protocol computing the order of a solvable group when the prime factors
of the order are known.

whether |Hi/Hi−1| = 1 or |Hi/Hi−1| = ri, for each i ∈ {1, . . . , t}, by interacting with the
prover. More precisely, the verifier interacts with the prover to test, for each i, whether
hi ∈ Hi−1 or hi /∈ Hi−1. This requires testing non-membership in a solvable group with a
polynomial-time quantum prover, which is achieved by sending (at Step 3) to the prover the
element hsi

i xi for a random bit si and a random element xi, and asking the prover to find
the chosen bit si. These tests enable the verifier to decide which of the two cases holds (at
Steps 5.1 and 5.2), and then to compute |G| at Step 6, or to detect cheating (at Step 5.3).

3.3 Analysis of the protocol
We now analyze the protocol of Figure 1. Let h1, . . . , ht be the group elements and r1, . . . , rt ∈
S be the prime numbers computed at Step 1. The analysis below is done under the assumption
that (h1, . . . , ht) is a polycyclic generating sequence of G and |Hi/Hi−1| ∈ {1, ri} for all
i ∈ {1, . . . , t}, which is true with probability at least 1− 1/poly(|G|) from Theorem 7.

Let us first consider the correctness, i.e., showing that there exists a prover (working in
quantum polynomial time) who enables the verifier to compute |G| with high probability.
This prover acts as follows. For each i ∈ {1, . . . , t}, the prover checks if the element hsi

i xi
received at Step 3 is in the subgroup Hi−1, using Algorithm A2 of Theorem 5. If the prover
learns that this element is in Hi−1 then the prover applies Algorithm A1 of Theorem 5 to
obtain a decomposition (ai,1, . . . , ai,i−1) of hi over Hi−1, and sends to the verifier the bit
bi = 0 and these values ai,1, . . . , ai,i−1. If the prover learns that this element is not in Hi−1,
then the prover sends to the verifier the bit bi = 1 and arbitrary values ai,1, . . . , ai,i−1.

Let us analyze the verifier’s output when interacting with the above prover. If |Hi/Hi−1| =
1 then we have hi ∈ Hi−1 and thus hsi

i xi ∈ Hi−1 whatever the value of si is. With probability
at least 1− 1/poly(|G|), the prover’s message is thus bi = 0 and ai,1, . . . , ai,i−1 corresponding

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:9

to the decomposition of hi over Hi−1, and then the verifier sets `i = 1. If |Hi/Hi−1| = ri
then we have hi /∈ Hi−1 and thus hsi

i xi ∈ Hi−1 if and only if si = 0. With probability at
least 1 − 1/poly(|G|), the bit bi sent by the prover satisfies bi = si, and thus the verifier
sets `i = ri (since the second part of the message ai,1, . . . , ai,i−1 cannot correspond to the
decomposition of hi over Hi−1). In conclusion, with probability at least 1− 1/poly(|G|) the
output at Step 6 is

t∏
i=1

`i =
t∏
i=1
|Hi/Hi−1| = |G|.

Let us now consider the soundness, i.e., showing that for any prover the verifier outputs
either |G| or ⊥ with high probability. It is clear that if |Hi/Hi−1| = ri, then the prover
cannot convince the verifier to set `i = 1, since there is no set of integers ai,1, . . . , ai,i−1
such that hi = h

ai,1
1 · · ·hai,i−1

i−1 . On the other hand, if |Hi/Hi−1| = 1 then the prover cannot
convince the verifier to set `i = ri unless the prover is able to decide whether si = 0 or si = 1
from the element hsi

i xi received, which cannot be done with probability larger than 1
2 + 1

2δ,
where

δ = 1
2
∑

h∈Hi−1

∣∣∣∣Pr
xi

[xi = h]− Pr
xi

[hixi = h]
∣∣∣∣

represents the variational distance between the two probability distributions xi and hixi
(seen as distributions over Hi−1). We have

δ ≤ 1
2
∑

h∈Hi−1

∣∣∣∣Pr[xi = h]− 1
|Hi−1|

∣∣∣∣+ 1
2
∑

h∈Hi−1

∣∣∣∣Pr[hixi = h]− 1
|Hi−1|

∣∣∣∣
= 1

2
∑

h∈Hi−1

∣∣∣∣Pr[xi = h]− 1
|Hi−1|

∣∣∣∣+ 1
2
∑

h∈Hi−1

∣∣∣∣Pr[xi = h−1
i h]− 1

|Hi−1|

∣∣∣∣
=

∑
h∈Hi−1

∣∣∣∣Pr[xi = h]− 1
|Hi−1|

∣∣∣∣
≤ |Hi−1|ε
≤ 1/2n,

where the second inequality follows from Theorem 2 and the third inequality follows from our
choice of ε and the upper bound |G| ≤ 2n. Thus, for any fixed i such that |Hi/Hi−1| = 1, the
prover cannot convince the verifier to set `i = ri with probability greater than 1

2 + 1
2n+1 =

1/2 + 1/poly(|G|). Let us now bound the probability that the verifier’s output is either |G| or
⊥. This corresponds to the probability that the verifier does not output an integer different
from the order of G. Note that the verifier can output an integer not equal to the order only
if the prover forces the verifier to set `i 6= |Hi/Hi−1| for at least one index i. From the above
analysis, we know that this can happen with probability at most 1/2 + 1/poly(|G|), i.e., such
a cheating is detected by the verifier at Step 5.3 with probability at least 1/2− 1/poly(|G|),
in which case the verifier immediately aborts the protocol and outputs ⊥. Thus the overall
probability that the verifier’s output is either |G| or ⊥ is at least 1/2− 1/poly(|G|). Note
finally that this probability can be amplified to reach the soundness threshold of 2/3 used in
Definition 6 by repeating the protocol of Figure 1 a constant number of times in parallel and
deciding the output based on a standard threshold argument.

MFCS 2018

26:10 Interactive Proofs for Order of Solvable Groups

Input: a black-box solvable group G with generators {g1, . . . , gs}

0. The prover sends to the verifier the following:
a. a list of t elements h1, . . . , ht ∈ G, for some t = poly(log |G|);9
b. a list of t prime numbers r1, . . . , rt;
c. a list of integers αi,j , for i ∈ {1, . . . , s} and j ∈ {1, . . . , t};
d. a list of integers βi,j , for i ∈ {2, . . . , t} and j ∈ {1, . . . , i− 1};
e. a list of integers γi,j,`, for i ∈ {2, . . . , t} and j, ` ∈ {1, . . . , i− 1}.
Let us write Hi = 〈h1, . . . , hi〉 for each 1 ≤ i ≤ t and H0 = {e}.

1. The verifier checks that the following equalities hold:
a. gi = h

αi,1
1 · · ·hαi,t

t for all i ∈ {1, . . . , s};
b. hri

i = h
βi,1
1 · · ·hβi,i−1

i−1 for all i ∈ {2, . . . , t} and hr1
1 = e;

c. hih`h−1
i = h

γi,1,`

1 · · ·hγi,i−1,`

i−1 for all i ∈ {2, . . . , t} and all ` ∈ {1, . . . , i− 1}.
If any of these equalities fails, then the verifier aborts the protocol and outputs ⊥.

2. For each i ∈ {1, . . . , t}, the verifier takes a bit si ∈ {0, 1} uniformly at random
and takes a random element xi ∈ Hi−1 using the algorithm of Theorem 2 with
ε = 1/22n.

3. The verifier sends, for each i ∈ {1, . . . , t}, the element hsi
i xi.

4. The prover sends to the verifier bits b1, . . . , bt and integers ai,j for i ∈ {1, . . . t}
and j ∈ {1, . . . , i− 1}.

5. For each i ∈ {1, . . . , t} the verifier does the following:
5.1 If hi = h

ai,1
1 · · ·hai,i−1

i−1 then set `i = 1;
5.2 If hi 6= h

ai,1
1 · · ·hai,i−1

i−1 and bi = si then set `i = ri;
5.3 If neither of these two conditions holds, then abort the protocol and output ⊥.

6. The verifier outputs the product of the `i’s.

Figure 2 Our 3-message protocol computing the order of a solvable group.

4 General 3-Message Protocol

In this section we show that when the prime factors of the order of G are not known, we can
design a 3-message protocol, which proves the first part of Theorem 1.

4.1 The protocol

Our 3-message protocol, described in Figure 2, is obtained by modifying the protocol of the
previous section. More precisely, Step 1 in the protocol of the previous section is replaced by
two steps (Steps 0 and 1 in Figure 2): instead of having the verifier compute a polycyclic
generating sequence (h1, . . . , ht) using Theorem 7, which requires the knowledge of the set of
factors of |G|, in the new protocol the prover computes by itself this sequence and sends it
at Step 0 to the verifier, who then checks that the sequence is really correct at Step 1. All
the other steps 2-6 are exactly the same as for the protocol in Figure 1 (one small exception
is Step 3, which is slightly rewritten since the polycyclic generating sequence does not need
to be sent to the prover anymore).

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:11

4.2 Analysis of the protocol
Let us consider the correctness. In that case the prover first uses the algorithm of Theorem 4
to compute the order |G|, then factorizes it using Shor’s algorithm [30] and collects the prime
factors in a set S. The prover then uses the algorithm of Theorem 7 using the set S as
input to obtain group elements h1, . . . , ht and a list of integers r1, . . . , rt ∈ S such that with
probability at least 1− 1/poly(|G|) the following two conditions hold:
(i) (h1, . . . , ht) is a polycyclic generating sequence of G, with t = poly(log |G|),
(ii) the order of Hi/Hi−1 is either 1 or ri for each 1 ≤ i ≤ t,

where as usual we use the notation Hi = 〈h1, . . . , hi〉 for any i ∈ {1, . . . , t} and the convention
H0 = {e}. These two conditions are equivalent to the following:
(a) Ht = G, i.e., gi ∈ Ht for each i ∈ {1, . . . , s};
(b) hri

i ∈ Hi−1 for each i ∈ {1, . . . , t};
(c) Hi−1 is normal in Hi for any i ∈ {2, . . . , t}, i.e., hih`h−1

i ∈ Hi−1 for any ` ∈ {1, . . . , i−1}.
Thus, with probability at least 1 − 1/poly(|G|), the prover can compute the following
decompositions in quantum polynomial time using Algorithm A1 of Theorem 5:

a decomposition (αi,1, . . . , αi,t) of gi over Ht, for each i ∈ {1, . . . , s};
a decomposition (βi,1, . . . , βi,i−1) of hri

i over Hi−1, for each i ∈ {2, . . . , t};
a decomposition (γi,1,`, . . . , γi,i−1,`) of hih`h−1

i over Hi−1, for each i ∈ {2, . . . , t} and
each ` ∈ {1, . . . , i− 1}.

At Step 0, the prover sends all these integers, along with the elements h1, . . . , ht and the
primes r1, . . . , rt. All the tests performed by the verifier at Step 1 then pass. The analysis of
the second part of the protocol (Steps 2-6) is then exactly the same as the analysis of the
protocol of Section 3.

The soundness follows by observing that passing the tests performed by the verifier at
Step 1 guarantees that Conditions (a)-(c) of the previous paragraph hold. This guarantees
that Conditions (i)-(ii) hold as well, and thus the soundness analysis for the second part of
the protocol (Steps 2-6) is exactly the same as the analysis of the protocol of Section 3.

References
1 Scott Aaronson and Greg Kuperberg. Quantum versus classical proofs and advice. Theory

of Computing, 3:129–157, 2007. doi:10.4086/toc.2007.v003a007.
2 Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive proofs for

quantum computations. arXiv:1704.04487, 2017.
3 Dorit Aharonov and Ayal Green. A quantum inspired proof of P#P ⊆ IP .

arXiv:1710.09078, 2017.
4 Dorit Aharonov and Umesh Vazirani. Is quantum mechanics falsifiable? A computational

perspective on the foundations of quantum mechanics. arXiv:1206.3686, 2012.
5 László Babai. Local expansion of vertex-transitive graphs and random generation in finite

groups. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, pages
164–174, 1991. doi:10.1145/103418.103440.

9 Naturally, this is binary strings corresponding to the elements h1, . . . , ht (i.e., the oracle representations
of these elements) that are actually sent, not the elements themselves. Note also that, to simplify the
exposition, we are assuming that these strings do correspond to elements of G. To deal with a cheating
prover that may send strings not corresponding to group elements, we can simply ask the prover to
send a certificate of membership in G for each string (such a certificate can be computed in quantum
polynomial time using the algorithms of Theorem 5).

MFCS 2018

http://dx.doi.org/10.4086/toc.2007.v003a007
http://dx.doi.org/10.1145/103418.103440

26:12 Interactive Proofs for Order of Solvable Groups

6 László Babai. Bounded round interactive proofs in finite groups. SIAM Journal on Discrete
Mathematics, 5(1):88–111, 1992. doi:10.1137/0405008.

7 László Babai, Robert Beals, and Ákos Seress. Polynomial-time theory of matrix groups.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pages 55–64,
2009. doi:10.1145/1536414.1536425.

8 László Babai, Gene Cooperman, Larry Finkelstein, Eugene M. Luks, and Ákos Seress. Fast
monte carlo algorithms for permutation groups. Journal of Computer and System Sciences,
50(2):296–308, 1995. doi:10.1006/jcss.1995.1024.

9 László Babai and Endre Szemerédi. On the complexity of matrix group problems I. In
Proceedings of the 25th Annual Symposium on Foundations of Computer Science, pages
229–240, 1984. doi:10.1109/SFCS.1984.715919.

10 Ethan Bernstein and Umesh Vazirani. Quantum complexity theory. SIAM Journal on
Computing, 26:1411–1473, 1997. doi:10.1137/S0097539796300921.

11 Simon R. Blackburn, Peter M. Neumann, and Geetha Venkataraman. Enumeration of
Finite Groups. Cambridge University Press, 2017. doi:10.1017/CBO9780511542756.

12 Tommaso F. Demarie, Yungkai Ouyang, and Joseph F. Fitzsimons. Classical verification
of quantum circuits containing few basis changes. arXiv:1612.04914, 2016.

13 Joseph F. Fitzsimons, Michael Hajdušek, and Tomoyuki Morimae. Post hoc verifica-
tion of quantum computation. Physical Review Letters, 120:040501, 2018. doi:10.1103/
PhysRevLett.120.040501.

14 Joseph F. Fitzsimons and Elham Kashefi. Unconditionally verifiable blind computation.
Physical Review A, 96:012303, 2017. doi:10.1103/PhysRevA.96.012303.

15 Shafi Goldwasser, Ofer Grossman, and Dhiraj Holden. Pseudo-deterministic proofs. In
Proceedings of the 9th Innovations in Theoretical Computer Science Conference, pages 17:1–
17:18, 2018. doi:10.4230/LIPIcs.ITCS.2018.17.

16 Masahito Hayashi and Tomoyuki Morimae. Verifiable measurement-only blind quantum
computing with stabilizer testing. Physical Review Letters, 115:220502, 2015. doi:10.
1103/PhysRevLett.115.220502.

17 Derek F. Holt, Bettina Eick, and Eamonn A. O’Brien. Handbook of computational group
theory. Chapman & Hall/CRC, 2005. doi:10.1201/9781420035216.

18 I. Martin Isaacs. Finite group theory. American Mathematical Society, 2008.
19 Gábor Ivanyos, Frédéric Magniez, and Miklos Santha. Efficient quantum algorithms

for some instances of the non-abelian hidden subgroup problem. International
Journal of Foundations of Computer Science, 14(5):723–740, 2003. doi:10.1142/
S0129054103001996.

20 Zhengfeng Ji. Classical verification of quantum proofs. In Proceedings of the 48th Annual
ACM symposium on Theory of Computing, pages 885–898, 2016. doi:10.1145/2897518.
2897634.

21 Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. Journal of the ACM, 39(4):859–868, 1992. doi:10.1145/
146585.146605.

22 Urmila Mahadev. Classical verification of quantum computations. arXiv:1804.01082, 2018.
23 Mathew McKague. Interactive proofs with efficient quantum prover for recursive fourier

sampling. Chicago Journal of Theoretical Computer Science, 2012(6), 2012. doi:10.4086/
cjtcs.2012.006.

24 Mathew McKague. Interactive proofs for BQP via self-tested graph states. Theory of
Computing, 12(3):1–42, 2016. doi:10.4086/toc.2016.v012a003.

25 Tomoyuki Morimae, Daniel Nagaj, and Norbert Schuch. Quantum proofs can be verified
using only single-qubit measurements. Physical Review A, 93:022326, 2016. doi:10.1103/
PhysRevA.93.022326.

http://dx.doi.org/10.1137/0405008
http://dx.doi.org/10.1145/1536414.1536425
http://dx.doi.org/10.1006/jcss.1995.1024
http://dx.doi.org/10.1109/SFCS.1984.715919
http://dx.doi.org/10.1137/S0097539796300921
http://dx.doi.org/10.1017/CBO9780511542756
http://dx.doi.org/10.1103/PhysRevLett.120.040501
http://dx.doi.org/10.1103/PhysRevLett.120.040501
http://dx.doi.org/10.1103/PhysRevA.96.012303
http://dx.doi.org/10.4230/LIPIcs.ITCS.2018.17
http://dx.doi.org/10.1103/PhysRevLett.115.220502
http://dx.doi.org/10.1103/PhysRevLett.115.220502
http://dx.doi.org/10.1201/9781420035216
http://dx.doi.org/10.1142/S0129054103001996
http://dx.doi.org/10.1142/S0129054103001996
http://dx.doi.org/10.1145/2897518.2897634
http://dx.doi.org/10.1145/2897518.2897634
http://dx.doi.org/10.1145/146585.146605
http://dx.doi.org/10.1145/146585.146605
http://dx.doi.org/10.4086/cjtcs.2012.006
http://dx.doi.org/10.4086/cjtcs.2012.006
http://dx.doi.org/10.4086/toc.2016.v012a003
http://dx.doi.org/10.1103/PhysRevA.93.022326
http://dx.doi.org/10.1103/PhysRevA.93.022326

F. Le Gall, T. Morimae, H. Nishimura, and Y. Takeuchi 26:13

26 Tomoyuki Morimae, Yuki Takeuchi, and Harumichi Nishimura. Merlin-Arthur with efficient
quantum Merlin and quantum supremacy for the second level of the fourier hierarchy.
arXiv:1711.10605, 2017.

27 Ben W. Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum
systems. Nature, 496:456–460, 2013. doi:10.1038/nature12035.

28 Adi Shamir. IP = PSPACE. Journal of the ACM, 39(4):869–877, 1992. doi:10.1145/
146585.146609.

29 Yaoyun Shi. Quantum and classical tradeoffs. Theoretical Computer Science, 344:335–343,
2005. doi:10.1016/j.tcs.2005.03.053.

30 Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, 1997. doi:10.
1137/S0097539795293172.

31 Daniel R. Simon. On the power of quantum computation. SIAM Journal on Computing,
26(5):1474–1483, 1997. doi:10.1137/S0097539796298637.

32 John Watrous. Succinct quantum proofs for properties of finite groups. In Proceedings
of the 41st Annual Symposium on Foundations of Computer Science, pages 537–546, 2000.
doi:10.1109/SFCS.2000.892141.

33 John Watrous. Quantum algorithms for solvable groups. In Proceedings of the 33rd An-
nual ACM Symposium on Theory of Computing, pages 60–67, 2001. doi:10.1145/380752.
380759.

34 https://www-03.ibm.com/press/us/en/pressrelease/52403.wss.

MFCS 2018

http://dx.doi.org/10.1038/nature12035
http://dx.doi.org/10.1145/146585.146609
http://dx.doi.org/10.1145/146585.146609
http://dx.doi.org/10.1016/j.tcs.2005.03.053
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539796298637
http://dx.doi.org/10.1109/SFCS.2000.892141
http://dx.doi.org/10.1145/380752.380759
http://dx.doi.org/10.1145/380752.380759
https://www-03.ibm.com/press/us/en/pressrelease/52403.wss

On the Complexity of Team Logic and Its
Two-Variable Fragment
Martin Lück
Institut für Theoretische Informatik, Leibniz Universität Hannover
Appelstraße 4, 30167 Hannover, Germany
lueck@thi.uni-hannover.de

Abstract
We study the logic FO(∼), the extension of first-order logic with team semantics by unrestricted
Boolean negation. It was recently shown to be axiomatizable, but otherwise has not yet received
much attention in questions of computational complexity. In this paper, we consider its two-
variable fragment FO2(∼) and prove that its satisfiability problem is decidable, and in fact
complete for the recently introduced non-elementary class TOWER(poly). Moreover, we classify
the complexity of model checking of FO(∼) with respect to the number of variables and the
quantifier rank, and prove a dichotomy between PSPACE- and ATIME-ALT(exp, poly)-complete
fragments. For the lower bounds, we propose a translation from modal team logic MTL to FO2(∼)
that extends the well-known standard translation from modal logic ML to FO2. For the upper
bounds, we translate FO(∼) to fragments of second-order logic with PSPACE-complete and
ATIME-ALT(exp, poly)-complete model checking, respectively.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic, The-
ory of computation → Logic

Keywords and phrases team logic, two-variable logic, complexity, satisfiability, model checking

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.27

Related Version A full version of the paper can be found at [30], https://arxiv.org/abs/1804.
04968.

Acknowledgements I wish to thank Juha Kontinen, Heribert Vollmer and the anonymous refer-
ees for many helpful comments.

1 Introduction

In the past decades, the work of logicians has unearthed a plethora of decidable fragments of
first-order logic FO. Many decidability results are rooted in a finite model property: if there
exists a (computable) upper bound on the size of minimal models with respect to a class of
formulas, and if the logic admits sufficiently feasible model checking, then the question of
satisfiability can be settled by exhaustively searching all structures of suitable size. Prominent
examples meeting the above criteria are logics with restricted quantifier prefixes, such as the
BSR-fragment which contains only ∃∗∀∗-sentences [34]. Others include the monadic class [27],
the guarded fragment GF [2], the recently introduced separated fragment SF [36, 37], or the
two-variable fragment FO2 [31, 35, 19], which all are decidable. See also the excellent book
by Börger et al. [6] for a comprehensive classification.

The above fragments all have been subject to intensive research with the purpose of
further pushing the boundary of decidability. One example is the guarded fixpoint logic, µGF,
which extends GF and is 2-EXPTIME-complete [18, 3]. Another is FOC2, the extension FO2

© Martin Lück;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 27; pp. 27:1–27:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lueck@thi.uni-hannover.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.27
https://arxiv.org/abs/1804.04968
https://arxiv.org/abs/1804.04968
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 On the Complexity of Team Logic and Its Two-Variable Fragment

with counting quantifiers. Due to an exponential model property, satisfiability is NEXPTIME-
complete for both FO2 and FOC2 [16, 33].

Another novel and very actively studied formalism is team semantics, introduced by
Hodges [22]. At its core, it refers to the simultaneous evaluation of formulas on whole sets
of assignments, called teams. This extension is conservative in the sense that the evaluation
of singleton teams, which consist of a single assignment, coincides with classical Tarski
semantics. Logics with team semantics offer many applications in areas such as statistics,
database theory, physics, cryptography and social choice theory (see also Abramsky et al. [1]).

As a prototypical logic with team semantics, Väänänen [38] introduced dependence logic
D. It extends FO by dependence atoms =(x1, . . . , xn, y), which intuitively state that the value
of y in the team functionally depends on the values of x1, . . . , xn. With respect to expressive
power, D coincides with existential second-order logic. Nonetheless, its two-variable fragment
D2 was recently proved by Kontinen et al. [23] to have a NEXPTIME-complete satisfiability
problem due to a satisfiability-preserving translation to FOC2. However, D is not closed
under Boolean negation, and the validity problem of D2 is in fact undecidable [24], and non-
arithmetical for full D [38]. By adding a negation operator ∼ to D, Väänänen [38] introduced
team logic TL, which is equivalent to full second-order logic SO [25].

As a generalization of TL, we study the logic FO(∼,D) introduced by Galliani [13, 12]. It
extends FO under team semantics by a Boolean negation ∼ and a setD of so-called generalized
dependence atoms (cf. [26]). We focus on FO-definable atoms, which covers the dependence
atom and many other important atoms such as the independence ⊥ [17] or inclusion atom
⊆ [10]. We abbreviate FO(∼, ∅) as FO(∼). While FO(∼) and D have incomparable expressive
power, in terms of complexity, FO(∼) is much weaker than D. In particular, unlike D it
is axiomatizable [29] and its validity problem is complete for the class Σ0

1 of recursively
enumerable sets, as with ordinary FO.

As a new result, we prove in Section 4 that its two-variable fragment FO2(∼) is decidable.
More precisely, we show that satisfiability and validity of FO2(∼) are complete for the
recently introduced non-elementary complexity class TOWER(poly) [28]. This pushes the
“decidability frontier” away from FO2 into a new direction, and creates the curious situation
that the satisfiability problem for FO2(∼) is strictly harder than for D2, while for validity
the exact opposite is the case (cf. Table 1).

On the path to decidability, we also investigate the model checking problem of FO(∼,D).
In the first-order setting, model checking in team semantics has received only little attention
so far, unlike the well-understood propositional [21] and modal [9, 32, 39] variants of team
logic and dependence logic. In Section 3 and 6, we fill this gap and show that model checking
for FO(∼,D) (for “well-behaved” D) is complete for the class ATIME-ALT(exp, poly), i.e.,
for exponential runtime with polynomially many alternations. This complements the result
of Grädel [14] that model checking for D is NEXPTIME-complete.

Finally, we also consider fragments FOn
k (∼,D) which have only n variables and quantifier

rank k, and relate them to certain “sparse” fragments of SO which we call SO[p]. We prove that
model checking of SO[p] and FOn

k (∼,D) is only PSPACE-complete, as opposed to unrestricted
SO and FOω

ω(∼,D).

Due to space constraints, some proofs are moved to the appendix and marked with (?),
and can also be found in the full version of this paper [30].

M. Lück 27:3

Table 1 Complexity of logics with team semantics. Completeness unless stated otherwise. D is
a set of generalized dependency atoms, the superscript refers to the number of variables, and the
subscript to the quantifier rank.

Logic Satisfiability Validity References

FO2 NEXPTIME co-NEXPTIME [19]
D2 NEXPTIME Σ0

1-hard [24]
FO2(∼) TOWER(poly) TOWER(poly) Theorem 6.6
TL2

2 Π0
1-hard Σ0

1-hard Theorem 6.7

Model Checking

FOk,FOn ∈ PTIME see, e.g., [15]
FO PSPACE see, e.g., [15]

FOk(∼,D),FOn(∼,D) PSPACE Theorem 6.4
FO(∼,D) ATIME-ALT(exp, poly) Theorem 6.4

2 Preliminaries

The domain of a function f is dom f . For f : X → Y and Z ⊆ X, f�Z is the restriction of f
to the domain Z. The power set of X is P(X). The cardinality of the natural numbers is ω.
The class of recursively enumerable sets (resp. their complements) is Σ0

1 (resp. Π0
1).

Given a logic L, the sets of all satisfiable and valid formulas of L are written SAT(L)
and VAL(L), respectively. Likewise, the model checking problem MC(L) contains the tuples
(A,ϕ) such that ϕ is an L-formula and A is a model of ϕ.

We assume the reader to be familiar with basic complexity theory and alternating Turing
machines [7]. When stating that a problem is hard or complete for a complexity class C, we
refer to logspace-computable reductions. In this paper, we require Turing machines that are
restricted in both their runtime and their alternation depth, as introduced by Berman [4],
where the alternation depth is the maximal number of alternations between existential and
universal non-determinism that a given machine performs on any computation path.

In what follows, we use the tetration function expk, defined by exp0(n) := n and
expk+1(n) := 2expk(n). We write exp(n) instead of exp1(n).

I Definition 2.1. For k ≥ 0, ATIME-ALT(expk, poly) is the class of problems decided by an
alternating Turing machine with at most p(n) alternations and runtime at most expk(p(n)),
for a polynomial p.

I Definition 2.2. TOWER(poly) is the class of problems that are decided by a deterministic
Turing machine in time expp(n)(1) for some polynomial p.

The reader may verify that both ATIME-ALT(expk, poly) and TOWER(poly) are closed
under all Boolean operations and under polynomial time resp. logspace computable reduc-
tions.

First-order Team Logic
A vocabulary τ is a set of function symbols f and predicate symbols P , with their respective
arity denoted by arity(f) and arity(P). τ is called relational if it contains no function symbols.
We explicitly state = ∈ τ if we permit equality as part of the syntax. For obvious reasons,
we require that a vocabulary always contains at least one predicate or =.

MFCS 2018

27:4 On the Complexity of Team Logic and Its Two-Variable Fragment

We fix a set Var = {x1, x2, . . .} of first-order variables. If ~t is a tuple of τ -terms, Var(~t) is
the set of variables appearing in ~t. Formulas are interpreted in τ -structures, denoted as pairs
A = (A, τA), with the domain A of A also written domA. We sometimes identify A and
domA if the meaning is clear. If s : X → A, t is a τ -term, and dom s ⊇ Var(t), then t〈s〉 ∈ A
is the evaluation of t in A under s. Likewise, if ~t = (t1, . . . , tn), then ~t〈s〉 := (t1〈s〉, . . . , tn〈s〉).

A team T (in A) is a set of assignments s : X → A, where X is called domain of T . If
X ⊇ Var(~t) and ~t is a tuple of terms, then ~t〈T 〉 := {~t〈s〉 | s ∈ T}. If T is a team with domain
X ⊇ Y , then its restriction to Y is T �Y := {s�Y | s ∈ T}. In slight abuse of notation, we
sometimes identify a tuple ~x with its underlying set, e.g., write T �~x for T �{x1, . . . , xn}.

If s : X → A and x ∈ Var, then sxa : X ∪ {x} → A is the assignment that maps x to a
and y ∈ X \ {x} to s(y). If T is a team in A with domain X, then f : T → P(A) \ {∅} is
called a supplementing function of T . It extends (or modifies) T to the supplementing team
T xf := { sxa | s ∈ T, a ∈ f(s) }. If f(s) = A is constant, we write T xA for T xf .

In this paper, we consider generalized dependencies in team semantics (cf. [26, 12]), but
restrict ourselves to the special case of FO-definable dependencies. For this reason, in our
setting, the definition boils down to the following.

I Definition 2.3 (Dependencies). If P is a predicate and τP = {P,=}, then a τP -FO-formula
δ is called dependency. Furthermore, if arity(P) = k, then δ is also called k-ary dependency.

Let D = {δ1, δ2, . . .} be a (possibly infinite) set of dependencies. Then we consider special
atoms Ai~t, called generalized dependency atoms, to represent the dependencies δi in the
syntax. The logic τ -FO(∼,D) extends τ -FO as follows:

ϕ ::= α | Ai~t | ∼ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ,

where α is any τ -FO-formula, δi ∈ D is a k-ary dependency, ~t is a k-tuple of τ -terms, and
x ∈ Var. For easier distinction, we usually call classical FO-formulas α, β, γ, . . . and reserve
ϕ,ψ, ϑ, . . . for FO(∼,D)-formulas. If ~t = (t1, . . . , tn) and ~u = (u1, . . . , un) are tuples of
τ -terms, then we use the shorthand ~t = ~u for

∧n
i=1 ti = ui.

From now on, we usually omit τ . The ∼-free fragment of FO(∼,D) is FO(D), and we
abbreviate FO(∼, ∅) as FO(∼).

I Example 2.4. Let dep := {dep1, dep2, . . .} be defined by

depn(R) := ∀x1 · · · ∀xn−1∀y∀z(Rx1 · · ·xn−1y ∧Rx1 · · ·xn−1z → y = z).

Then dep is set of dependencies, and the corresponding atom An~t is called n-ary dependence
atom and is also written =(t1, . . . , tn). It holds (A, T) � =(t1, . . . , tn) if and only if for all
s, s′ ∈ T we have that t1〈s〉 = t1〈s′〉, . . . , tn−1〈s〉 = tn−1〈s′〉 implies tn〈s〉 = tn〈s′〉. Likewise,
for the case n = 1, the atom =(t) means that t is constant, i.e., t〈s〉 = t〈s′〉 for all s, s′ ∈ T .

In this notation, Väänänen’s dependence logic D is FO(dep), and team logic TL is
FO(∼, dep) [38]. Many other important atoms are FO-definable, such as independence [17],
inclusion and exclusion [10] (see also Durand et al. [8]).

If ϕ is a formula, Fr(ϕ) and Var(ϕ) denote the set of free resp. of all variables in ϕ, with
Fr(Ai~t) := Var(Ai~t) := Var(~t). If Fr(ϕ) = ∅, then ϕ is called sentence. We write ϕ(x1, . . . , xn)
to indicate that x1, . . . , xn are free in ϕ. The width w(ϕ) of ϕ is |Var(ϕ)|.

The quantifier rank qr(ϕ) of ϕ is 0 if ϕ is atomic, and otherwise defined recursively as
qr(∼ϕ) := qr(¬ϕ) := qr(ϕ), qr(ϕ ∧ ψ) := qr(ϕ ∨ ψ) := max{qr(ϕ), qr(ψ)}, and qr(∃xϕ) :=
qr(∀xϕ) := qr(ϕ) + 1, respectively. The fragment of FO with formulas of width at most n

M. Lück 27:5

and quantifier rank at most k is FOn
k . The corresponding fragments Dnk , TLnk , FOn

k (∼,D),
FOn

k (∼) and FOn
k (D) are defined analogously.

We evaluate τ -FO(∼,D)-formulas ϕ on pairs (A, T) as follows, where A is a τ -structure
and T a team in A with domain X ⊇ Fr(ϕ):

(A, T) � ϕ ⇔ ∀s ∈ T : (A, s) � ϕ (in Tarski semantics), for ϕ ∈ FO,
(A, T) � Ai~t ⇔ A � δi(~t〈T 〉), where δi ∈ D,
(A, T) � ∼ψ ⇔ (A, T) 2 ψ,
(A, T) � ψ ∧ θ ⇔ (A, T) � ψ and (A, T) � θ,
(A, T) � ψ ∨ θ ⇔ ∃S,U ⊆ T such that T = S ∪ U , (A, S) � ψ, and (A, U) � θ,
(A, T) � ∃xϕ ⇔ (A, T xf) � ϕ for some f : T → P(domA) \ {∅},
(A, T) � ∀xϕ ⇔ (A, T xdomA) � ϕ.

A τ -formula ϕ is satisfiable if there exists a τ -structure A and team T with domain
X ⊇ Fr(ϕ) in A such that (A, T) � ϕ. Likewise, ϕ is valid if (A, T) � ϕ for all such
τ -structures A and teams T .

The so-called locality property ensures that the truth of a formula, as in classical semantics,
depends only on the assignments to variables that occur free in it.

I Proposition 2.5 (Locality). Let ϕ ∈ FO(∼,D) and X ⊇ Fr(ϕ). If T is a team in A with
domain Y ⊇ X, then (A, T) � ϕ if and only if (A, T �X) � ϕ.

Proof. Proof by induction on ϕ. The base case of FO-formulas and the inductive step for
∧, ∨, ∃ and ∀ work similarly to Galliani’s proof for inclusion/exclusion logic [10, Theorem
4.22], to which the ∼-case can be added in the obvious manner. It remains to consider the
dependence atoms Ai~t. As X ⊇ Fr(Ai~t) = Var(~t), clearly ~t〈s〉 = ~t〈s�X〉 for any s ∈ T , and
consequently, ~t〈T 〉 = ~t〈T �X〉. Hence, A � δi(~t〈T 〉) iff A � δi(~t〈T �X〉). J

Second-Order Logic
Second-order logic τ -SO (or simply SO) extends τ -FO by second-order quantifiers ∃f , ∀f , ∃P
and ∀P for function and predicate variables. For an SO-formula α, the sets Var(α) and Fr(α)
refer to all resp. all free variables in α (first-order or second-order). SO is evaluated on pairs
(A,J), where A is a structure and J maps first-order variables x to elements J (x) ∈ A,
function variables f to functions J (f) : Aarity(f) → A, and predicate variables P to relations
J (P) ⊆ Aarity(P). The notation JXY for a (first-order or second-order) variable X and an
element resp. function resp. relation Y is defined as in the first-order setting. Instead of
(A,J) � α(X1, . . . , Xn) and J (X1) = X1, . . . ,J (Xn) = Xn, we also write A � α(X1, . . . ,Xn).

Second-order model checking, MC(SO), is decidable using a straightforward algorithm:
Given a formula α and a finite input structure A, evaluate α in recursive top-down manner,
using non-deterministic guesses for the quantified elements, functions and relations, which
are of exponential size with respect to |domA|.

I Proposition 2.6 (?). MC(SO) is decidable on input (A,J , α) in time 2nO(1) and with |α|
alternations.

If the arity of quantified functions and relations is bounded by c, then each quantified
function and relation has at most |domA|c elements and hence takes only polynomial space:

I Corollary 2.7. Let c-SO be the fragment of SO where all quantified functions and relations
have arity at most c. Then MC(c-SO) is PSPACE-complete.

MFCS 2018

27:6 On the Complexity of Team Logic and Its Two-Variable Fragment

3 From FO(∼) to SO: Upper bounds for model checking

In this section, we present upper bounds for the model checking problem of FO(∼,D). On that
account, we assume all first-order structures A and teams T to be finite and to have a suitable
encoding. Instead of deciding MC(FO(∼,D)) directly, we reduce it to the corresponding
problem of second-order logic, MC(SO). For this purpose, we build on top of a result of
Väänänen [38], which roughly speaking states that TL-formulas can efficiently be translated
to SO.

However, in Väänänen’s original translation [38, Theorem 8.12, p. 159] from TL to SO it
is assumed that the truth in a team is preserved when taking subteams (which is not the case
if ∼ is available), and that all variables in a formula are quantified at most once. However,
in fragments FOn(∼,D) of finite width n, re-quantification of variables cannot be avoided in
general. In what follows, we adapt the translation accordingly. Furthermore, we extend it to
include generalized dependency atoms.

Suppose ~x = (x1, . . . , xn) is a tuple of variables. In order to avoid repetitions of variables,
we define the notation ~x;y as follows: ~x;y := ~x if y ∈ ~x, and ~x;y := (x1, . . . , xn, y) if y /∈ ~x.
Let now ϕ ∈ FO(∼,D) such that Fr(ϕ) ⊆ ~x, and R be a n-ary predicate. Then we inductively
define the SO-formula η~xϕ(R) as shown below.

If ϕ is a classical first-order formula, then η~xϕ(R) := ∀~x(R~x→ ϕ).
If ϕ = Ai(~t) and δi ∈ D is k-ary, then let ~z = (z1, . . . , zk) be pairwise distinct variables
disjoint from ~x and η~xϕ(R) := ∃S ∀~z (S~z ↔ (∃~xR~x ∧~t = ~z)) ∧ δi(S).1

If ϕ = ∼ψ, then η~xϕ(R) := ¬η~xψ(R).
If ϕ = ψ ∧ θ, then η~xϕ(R) := η~xψ(R) ∧ η~xθ (R).
If ϕ = ψ ∨ θ, then η~xϕ(R) := ∃S ∃U ∀~x(R~x↔ (S~x ∨ U~x)) ∧ η~xψ(S) ∧ η~xθ (U).

If ϕ = ∃y ψ , then η~xϕ(R) := ∃S ∀~x((∃yR~x)↔ (∃y S~x;y)) ∧ η~x;y
ψ (S).

If ϕ = ∀y ψ, then η~xϕ(R) := ∃S ∀~x((∃yR~x)↔ (∃y S~x;y)) ∧ η~x;y
ψ (S) ∧ ∀~x(R~x→ ∀y S~x;y).

By an inductive proof, the formulas ϕ and η~xϕ(R) can be shown equivalent, provided that
the team T is represented as a relation R := ~x〈T 〉:

I Theorem 3.1 (?). Let ϕ ∈ FO(∼,D), let ~x ⊇ Fr(ϕ) be a tuple of variables, and T be a
team in A with domain Y ⊇ ~x. Then (A, T) � ϕ if and only if A � η~xϕ(~x〈T 〉).

I Definition 3.2. We call a set D = {δ1, δ2, . . .} of dependencies p-uniform if there is a
polynomial time algorithm that for all i, when given Ai~t, computes δi.

I Corollary 3.3. Let D be a p-uniform set of dependencies. Then MC(FO(∼,D)) is decidable
on input (A, T, ϕ) in time 2nO(1) and with |ϕ|O(1) alternations.

Proof. First, we compute ~x := Fr(ϕ), the formula η~xϕ and the relation ~x〈T 〉 from ϕ and
T in polynomial time. When translating the atoms Ai~t, we apply the p-uniformity of D.
Afterwards, we accept if and only if A � η~xϕ(~x〈T 〉). By Proposition 2.6, the latter can be
checked by an algorithm with |η~xϕ| alternations and time exponential in (A, ~x〈T 〉, η~xϕ). In
total, this leads to |ϕ|O(1) alternations and runtime exponential in the size of (A, T, ϕ). J

1 Note that the “obvious” translation η~x
ϕ(R) := δi(R) does not work in general if Ai(~t) contains proper

terms. For instance, any team T satisfies =(c) for any constant term c, but R represents only ~x〈T 〉,
which might or might not satisfy δi. To properly reflect such atoms, we quantify ~t〈T 〉 in the relation S;
in our example, S = {(c)}) for T 6= ∅.

M. Lück 27:7

Sparse second-order logic

The complexity of the model checking problem of FO(∼,D) significantly drops if either the
number of variables or the quantifier rank is bounded by an arbitrary constant. To prove this,
we introduce a fragment of SO that corresponds to these restricted fragments of FO(∼,D).
We call this fragment sparse second-order logic, based on sparse quantifiers ∃p and ∀p:

(A,J) � ∃pP ψ ⇔ there exists R ⊆ Aarity(P) such that |R| ≤ p(|A|) and (A,J PR) � ψ,

(A,J) � ∀pP ψ ⇔ for all R ⊆ Aarity(P) such that |R| ≤ p(|A|) it holds (A,J PR) � ψ,

where p : N→ N and |A| := |domA|+
∑
X∈τ |XA|. In other words, all quantified relations

have bounded cardinality relative to the underlying structure. For obvious reasons, there are
no sparse function quantifiers.

The logic SO[p] is now defined as SO, but with only ∃p and ∀p as permitted second-order
quantifiers. Consider the case where p is bounded by a polynomial. The interpretation of each
quantified relation then contains at most |A|O(1) tuples. Consequently, on SO[p]-formulas,
the recursive model checking algorithm from Proposition 2.6 then runs in polynomial time:

I Corollary 3.4. If p is bounded by a polynomial, then MC(SO[p]) is decidable on input
(A,J , α) in polynomial time and with |α| alternations.

It remains to show that the translation from team logic with bounded width or quantifier
rank takes place in this fragment of SO. This can be seen as follows. Intuitively, every
quantified relation in η~xϕ represents either a subteam of an existing team (for the ∨-case), or
it is a supplementing team (for the ∃-case and ∀-case). For this reason, the cardinality of the
quantified relations grows at most by a factor of |domA| for every occurrence of ∨, ∃ or ∀.

Now, for p : N → N, define the SO[p]-formula ζ~x,pϕ like η~xϕ, but with all second-order
quantifiers replaced by ∃p. The next theorem states that ζ~x,pϕ is an appropriate translation
of ϕ, similarly to η~xϕ, if ϕ has sufficiently small width or quantifier rank:

I Theorem 3.5 (?). Let ϕ ∈ FO(∼,D), let ~x ⊇ Fr(ϕ) be a tuple of variables, and T be a
team in A with domain Y ⊇ ~x. If p(n) ≥ |T | · nqr(ϕ) or p(n) ≥ nw(ϕ), then (A, T) � ϕ if and
only if A � ζ~x,pϕ (~x〈T 〉).

Proof. By a careful analysis, it can be shown that all second-order quantifiers ∃S in η~xϕ can
be replaced by ∃pS. See the appendix for details. As then η~xϕ and ζ~x,pϕ agree on (A, T), the
claim follows by Theorem 3.1. J

I Corollary 3.6. Let D be a p-uniform set of dependencies and m < ω. MC(FOm
ω (∼,D))

and MC(FOω
m(∼,D)) are then decidable on input (A, T, ϕ) in polynomial time with |ϕ|O(1)

alternations.

Proof. Let p(n) := nm+1. Analogously to Corollary 3.3, we reduce both MC(FOm
ω (∼,D)) and

MC(FOω
m(∼,D)) to MC(SO[p]). Assume that (A, T, ϕ) is the input, and that either w(ϕ) ≤ m

or qr(ϕ) ≤ m. Then the input is mapped to (A, ~x〈T 〉, ζp,~xϕ), where ~x = Fr(ϕ).
If w(ϕ) ≤ m, then (A, T) � ϕ if and only if A � ζp,~xϕ (~x〈T 〉) by Theorem 3.5.
If qr(ϕ) ≤ m, then w.l.o.g. |T | ≤ |A| (if necessary, pad A with a dummy predicate in
polynomial time). Then |T | · |A|m ≤ p(|A|), and we can again apply Theorem 3.5. J

MFCS 2018

27:8 On the Complexity of Team Logic and Its Two-Variable Fragment

4 From FO2(∼) to FO2: Upper bounds for satisfiability

In this section, we turn to the satisfiability problem of FO2(∼) and prove that it is complete
for TOWER(poly) (cf. Definition 2.2). Our approach is to establish a finite model property for
FO2(∼). However, instead of constructing a finite model directly, we reduce FO2(∼)-formulas
to FO2-formulas, and use the exponential model property of FO2 [19]. As a first step, we
expand FO2(∼)-formulas into a specific “disjunctive normal form” over ∧ and ∼. Recall that
∨ is not the Boolean disjunction, which we instead define via ϕ 6 ψ := ∼(∼ϕ ∧ ∼ψ). We
also use the abbreviation Eβ := ∼¬β (“at least one assignment in the team satisfies β”).

I Lemma 4.1 (?). Every τ -FOn
k (∼)-formula ϕ is equivalent to a formula of the form

ψ :=
n

6
i=1

αi ∧ mi∧
j=1

Eβi,j

such that {α1, . . . , αn, β1,1, . . . , βn,mn} ⊆ τ -FOn

k and |ψ| ≤ expO(|ϕ|)(1).

Proof. The proof is by induction on ϕ, and consists of repeatedly applying the following
distributive laws. Here, ϕ ≡ ψ means that ϕ and ψ are logically equivalent. See the appendix
for details.

α ∧
n∧
i=1

Eβi ≡
n∨
i=1

(α ∧ Eβi)
n∨
i=1

(αi ∧ Eβi) ≡
(n∨
i=1

αi

)
∧

n∧
i=1

E(αi ∧ βi)

(ϑ1 6 ϑ2) ∨ ϑ3 ≡ (ϑ1 ∨ ϑ3) 6 (ϑ2 ∨ ϑ3) ϑ1 ∨ (ϑ2 6 ϑ3) ≡ (ϑ1 ∨ ϑ2) 6 (ϑ1 ∨ ϑ3)
(ϑ1 6 ϑ2) ∧ ϑ3 ≡ (ϑ1 ∧ ϑ3) 6 (ϑ2 ∧ ϑ3) ϑ1 ∧ (ϑ2 6 ϑ3) ≡ (ϑ1 ∧ ϑ2) 6 (ϑ1 ∧ ϑ3)
∃v (ϑ1 6 ϑ2) ≡ (∃v ϑ1) 6 (∃xϑ2) ∃v (ϑ1 ∨ ϑ2) ≡ (∃v ϑ1) ∨ (∃v ϑ2)
∃v (α ∧ Eβ) ≡ (∃v α) ∧ E ∃v (α ∧ β) ∀v (ϑ1 ∧ ϑ2) ≡ (∀v ϑ1) ∧ (∀v ϑ2)
∀v∼ϑ ≡ ∼∀v ϑ J

I Theorem 4.2. If τ is a relational vocabulary, then every satisfiable ϕ ∈ τ -FO2(∼) has a
model of size expO(|ϕ|)(1).

Proof. Let ϕ ∈ τ -FO2(∼) be satisfiable. ϕ is equivalent to a disjunction of size expO(|ϕ|)(1)
as stated in Lemma 4.1. Clearly, this disjunction must have at least one satisfiable disjunct,
which is of the form

ψ = α ∧
m∧
i=1

Eβi,

for {α, β1, . . . , βm} ⊆ τ -FO2 and w.l.o.g. Var(ψ) ⊆ {x, y}. Let (A, T) be a model of ψ. For
every i, as ψ implies E(α ∧ βi), there exists s ∈ T such that (A, s) � α ∧ βi. But then A also
satisfies – in Tarski semantics – the classical FO2-sentence

γ :=
m∧
i=1
∃x ∃y α ∧ βi,

as s(x) and s(y) are witnesses for ∃x and ∃y. However, by the exponential model property
of FO2 [19], there exists a model B of size 2O(|γ|) for γ. As for every i there is ŝi : {x, y} → B
such that (B, ŝi) � α∧ βi, we conclude (B, {ŝ1, . . . , ŝm}) � ψ by definition of team semantics.
Clearly, this shows that ψ and hence ϕ has a model of size expO(|ϕ|)(1). J

M. Lück 27:9

I Corollary 4.3. If τ is a relational vocabulary, then SAT(τ -FO2(∼)) and VAL(τ -FO2(∼))
are in TOWER(poly).

Proof. By Corollary 3.6, model checking for FO2(∼) is possible in alternating polyno-
mial time, and hence in deterministic exponential time. The following is a TOWER(poly)-
algorithm for SAT(τ -FO2(∼)). Given a formula ϕ, iterate over all interpretations (A, T) of
size expO(|ϕ|)(1) and accept if (A, T) � ϕ. The algorithm for VAL(τ -FO2(∼)) is similar. J

5 From MTL to FO2(∼): A team-semantical standard translation

In order to prove the lower bounds for FO2(∼) and FOn
k (∼), we reduce from the corresponding

satisfiability, validity and model checking problems of so-called modal team logic MTL. This
logic was introduced by Müller [32], and extends classical modal logic ML by ∼ in the same
fashion as FO(∼) extends FO.

We fix a countably infinite set Φ of propositions. MTL is defined as follows, where ϕ
denotes an MTL-formula, α an ML-formula, and p a proposition.

ϕ ::= ∼ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ | α α ::= ¬α | α ∧ α | α ∨ α | �α | ♦α | p

The modal depth md(ϕ) of ϕ is defined recursively, i.e., md(p) := 0,md(∼ϕ) := md(¬ϕ) :=
md(ϕ),md(ϕ∧ψ) := md(ϕ∨ψ) := max{md(ϕ),md(ψ)}, and md(�ϕ) := md(♦ϕ) := md(ϕ)+1.
MTLk is the fragment of MTL with modal depth at most k. The set of propositional variables
occurring in ϕ ∈ MTL is written Prop(ϕ).

Let X ⊆ Φ be finite. Then, a Kripke structure (over X) is a tuple K = (W,R, V), where
W is a set of worlds or points, (W,R) is a directed graph, and V : X → P(W). If w ∈ W ,
then (K, w) is called pointed Kripke structure.

ML is evaluated on pointed Kripke structures in the classical Kripke semantics, whereas
MTL is evaluated on pairs (K, T), where K is a Kripke structure and – analogously to the
first-order case – T ⊆W is called team (in K). The team RT := {v ∈W | ∃w ∈ T : Rwv} is
the image of T , and we write Rw instead of R{w} for brevity. A successor team of T is a
team S such that every w ∈ T has at least one successor in S, and every v ∈ S has at least
one predecessor in T . The semantics of MTL is now defined as follows:

(K, T) � ϕ ⇔ ∀w ∈ T : (K, w) � ϕ (in Kripke semantics) for ϕ ∈ ML,
(K, T) � ∼ψ ⇔ (K, T) 2 ψ,
(K, T) � ψ ∧ θ ⇔ (K, T) � ψ and (K, T) � θ,
(K, T) � ψ ∨ θ ⇔ ∃S,U ⊆ T such that T = S ∪ U , (K, S) � ψ, and (K, U) � θ,
(K, T) � ♦ψ ⇔ ∃S such that S is a successor team of T and (K, S) � ψ,
(K, T) � �ψ ⇔ (K, RT) � ψ.

A formula ϕ ∈ MTL is satisfiable if (K, T) � ϕ for some Kripke structure K over X ⊇ Prop(ϕ)
and team T in K. Likewise, ϕ is valid if it is true in every such pair.

The modality-free fragment MTL0 syntactically coincides with propositional team logic
PTL [20, 21, 40]. The usual interpretations of the latter, i.e., via sets of Boolean assignments,
can easily be simulated by teams in Kripke structures. For this reason, we identify PTL and
MTL0 in this paper.

The following lower bounds due to Hannula et al. [21] are logspace reductions.

I Theorem 5.1 ([21]). MC(PTL) is PSPACE-complete.

MFCS 2018

27:10 On the Complexity of Team Logic and Its Two-Variable Fragment

I Theorem 5.2 ([21]). SAT(PTL) and VAL(PTL) are ATIME-ALT(exp, poly)-complete.

For each increment in modal depth, the complexity of the satisfiability problem increases
by an exponential, reaching the non-elementary class TOWER(poly) in the unbounded case:

I Theorem 5.3 ([28]). SAT(MTL) and VAL(MTL) are TOWER(poly)-complete. SAT(MTLk)
and VAL(MTLk) are ATIME-ALT(expk+1, poly)-complete for every k < ω.

Next, let us demonstrate how MTL can be embedded into FO2(∼). More precisely, we
present an extension of the well-known standard translation that embeds modal logic ML into
FO2. The underlying relational vocabulary usually is τst = (R,P1, P2, . . .), where arity(R) = 2
and arity(Pi) = 1 for all i. The translation of an ML-formula α is denoted by stx(α) resp.
sty(α), and is defined by mutual recursion:

stx(pi) := Pix for pi ∈ PS stx(¬α) := ¬stx(α)
stx(�α) := ∀y Rxy → sty(α) stx(α ∧ β) := stx(α) ∧ stx(β)
stx(♦α) := ∃y Rxy ∧ sty(α) stx(α ∨ β) := stx(α) ∨ stx(β),

with sty(α) defined symmetrically via stx(α). The corresponding first-order interpretation
of a Kripke structure K = (W,R′, V) is the τst-structure A(K) defined by domA(K) = W ,
RA(K) = R′ and PA(K)

i = V (pi). For a world w, let wx : {x} →W be defined by wx(x) = w.

I Theorem 5.4 (see, e.g., Blackburn et al. [5]). Let (K, w) be a pointed Kripke structure and
α ∈ ML. Then (K, w) � α if and only if (A(K), wx) � stx(α).

Let us now turn to team semantics. On the model side, the first-order interpretation of
a team T in a Kripke structure is straightforwardly T x := { wx | w ∈ T }. For the syntax,
we require the additional operator ↪→. It was introduced by Galliani [12] and Kontinen and
Nurmi [25] in the first-order setting, but was also adapted to the modal setting [28]. For
α ∈ ML and ϕ ∈ MTL, define α ↪→ ϕ := ¬α ∨ (α ∧ ϕ). If (K, T) is a Kripke structure with
team, let Tα := { w ∈ T | (K, w) � α }.

I Proposition 5.5. (A, T) � α ↪→ ϕ if and only if (A, Tα) � ϕ.

Proof. Straightforward. See also Galliani [12, Lemma 16]. J

We extend the above translation by an ∼-case, and in the �-case replace → by ↪→.2 The
standard translation for MTL, denoted by st∗x resp. st∗y, then becomes:

st∗x(α) := stx(α) for α ∈ ML st∗x(∼ϕ) := ∼st∗x(ϕ)
st∗x(�ϕ) := ∀y Rxy ↪→ st∗y(ϕ) st∗x(ϕ ∧ ψ) := st∗x(ϕ) ∧ st∗x(ψ)
st∗x(♦ϕ) := ∃y Rxy ∧ st∗y(ϕ) st∗x(ϕ ∨ ψ) := st∗x(ϕ) ∨ st∗x(ψ),

with st∗y(ϕ) again defined symmetrically.

I Theorem 5.6. For every Kripke structure K, team T in K and ϕ ∈ MTL it holds (K, T) � ϕ
if and only if (A(K), T x) � st∗x(ϕ).

Proof. Proof by induction on ϕ. We omit K and A(K) and simply write, e.g., T � ϕ.

2 It is not hard to show that the “classical” translation of �ϕ to ∀y Rxy → st∗
y(ϕ) = ∀y (¬Rxy ∨ st∗

y(ϕ))
is unsound under team semantics.

M. Lück 27:11

ϕ ∈ ML: We have T � ϕ iff ∀w ∈ T : w � ϕ by definition of the semantics of MTL, which
by Theorem 5.4 is equivalent to ∀wx ∈ T x : wx � stx(ϕ). However, as stx(ϕ) ∈ FO, the
latter is equivalent to T x � stx(ϕ) by the semantics of FO(∼), and hence T x � st∗x(ϕ).
ϕ = ψ ∧ ϑ and ϕ = ∼ψ are clear.
ϕ = ψ ∨ θ: Suppose T � ψ ∨ θ. Then T = S ∪U such that S � ψ and U � θ. By induction
hypothesis, Sx � st∗x(ψ) and Ux � st∗x(θ). As S ∪ U = T , clearly Sx ∪ Ux = T x. As a
consequence, T x � st∗x(ψ) ∨ st∗x(θ) = st∗x(ψ ∨ θ).

For the other direction, suppose T x � st∗x(ψ ∨ θ) = st∗x(ψ) ∨ st∗x(θ) by the means of some
subteams S′ ∪ U ′ = T x such that S′ � st∗x(ψ) and U ′ � st∗x(θ). As T x has domain {x},
there are unique S,U ⊆ T such that S′ = Sx and U ′ = Ux. By induction hypothesis,
S � ψ and U � θ. In order to prove T � ψ ∨ θ, it remains to show T ⊆ S ∪ U . For this
purpose, let w ∈ T . As then wx ∈ T x, as least one of wx ∈ S′ or wx ∈ U ′ holds. But then
w ∈ S or w ∈ U .
ϕ = �ψ: We define subteams S and U of the duplicating team (T x)yW as follows: S
contains all “outgoing edges”: S := {s ∈ (T x)yW | s(y) ∈ Rs(x)}. On the other hand, U
contains all “non-edges”: U := {s ∈ (T x)yW | s(y) /∈ Rs(x)}. Then clearly (T x)yW = S∪U ,
S � Rxy and U � ¬Rxy. Moreover, the above division of (T x)yW into S and U is the only
possible splitting of (T x)yW such that S � Rxy and U � ¬Rxy.
By induction hypothesis, clearly T � �ψ ⇔ (RT)y � st∗y(ψ). Moreover, by the above
argument, T x � st∗x(�ψ)⇔ S � st∗y(ψ). Consequently, it suffices to show that (RT)y and
S agree on st∗y(ψ). This follows from Proposition 2.5, since

(RT)y = {s : {y} →W | ∃w ∈ T : s(y) ∈ Rw}
= {s�y | s ∈ (T x)yW and s(y) ∈ Rs(x)} = S�y.

ϕ = ♦ψ: Suppose T � ♦ψ, i.e., S � ψ for some successor team S of T . By induction
hypothesis, Sy � st∗y(ψ). In order to prove T x � ∃y Rxy∧st∗y(ψ), we define a supplementing
function f : T x → P(W) \ {∅} such that (T x)yf � Rxy ∧ st∗y(ψ).
Let f(wx) := Rw ∩ S. Then f(wx) is non-empty for each w, as S is a successor team.
Moreover, (T x)yf � Rxy. It remains to show that (T x)yf � st∗y(ψ) follows from Sy � st∗y(ψ).
Here, we combine Proposition A.1 and 2.5, since

y〈Sy〉 = S =
⋃
w∈T

Rw ∩ S =
⋃

wx∈Tx

f(wx) = {s(y) | s ∈ (T x)yf} = y〈(T x)yf 〉.

For the other direction, suppose T x � ∃y Rxy ∧ st∗y(ψ) by the means of a supplementing
function f : T x → P(W) \ {∅} such that (T x)yf � Rxy ∧ st∗y(ψ).
We define S :=

⋃
w∈T f(wx), and first prove that it is a successor team of T , i.e., that

every v ∈ S has a predecessor in T and that every w ∈ T has a successor in S.
Let v ∈ S. Then there exists w ∈ T such that v ∈ f(wx). As a consequence, the assignment
s given by s(x) = w and s(y) = v is in (T x)yf , and hence satisfies Rxy. In other words, v
has a predecessor in T . Conversely, if w ∈ T , then f(wx) is non-empty, i.e., contains an
element v. As before, v is a successor of w. Since v ∈ f(wx), v ∈ S, so w has a successor
in S. By a similar argument as above, y〈(T x)yf 〉 = S = y〈Sy〉, hence Sy � st∗y(ψ), and
consequently S � ψ by induction hypothesis. J

MFCS 2018

27:12 On the Complexity of Team Logic and Its Two-Variable Fragment

6 Lower bounds

As a first application of the extended standard translation from the previous section, we
prove several complexity theoretic lower bounds.

I Lemma 6.1. MC(τ -FO1
0(∼)) is PSPACE-hard if τ contains infinitely many predicates.

Proof. We reduce from MC(PTL), which is PSPACE-hard by Theorem 5.1. The reduction
maps (K, T, ϕ) to (A(K), T x, st∗x(ϕ)). W.l.o.g. τ contains unary predicates P0, P1, . . .; other-
wise they are easily simulated by predicates of higher arity. It is now easy to see that st∗x(ϕ)
is quantifier-free and contains only the variable x. Moreover, by Theorem 5.6, (K, T) � ϕ if
and only if (A(K), T x) � st∗x(ϕ). J

I Lemma 6.2. MC(τ -FOω
ω(∼)) is ATIME-ALT(exp, poly)-hard for all vocabularies τ , even

on sentences and for a fixed τ -structure A with domain {0, 1} and a fixed team {∅}.

Proof. Here, we reduce from SAT(PTL), which is ATIME-ALT(exp, poly)-hard by Theo-
rem 5.2. Given ϕ ∈ PTL, suppose Prop(ϕ) = {p1, . . . , pn}. The idea is that a team of worlds
(and their Boolean assignments to p1, . . . , pn), are simulated by a team of first-order assign-
ments s : X → B, where X = {z, x1, . . . , xn} and B := {0, 1}. Here, the variable z acts as
the constant 1, while xi simulates pi. For each b ∈ B, define the team Vb := ({∅}z{b})

x1
B · · ·

xn

B .
In other words, Vb is the n-fold supplemented team of {∅}z{b} = {{z 7→ b}}.

In the remaining proof, we distinguish two cases based on τ . By definition of a vocabulary,
either = ∈ τ , or τ contains a predicate. First, we consider the case = ∈ τ . We reduce
via the mapping ϕ 7→ (A, {∅}, ψ), where A is a fixed τ -structure with domA = B, ψ :=
∃z ∀x1 · · · ∀xn> ∨ ϕ∗, and ϕ∗ is obtained from ϕ by replacing each pi by xi = z. We prove
that the reduction is correct, and begin with the following equivalence:

∃U ⊆ V1 : (A, U) � ϕ∗ iff (A, V1) � > ∨ ϕ∗ iff (A, {∅}) � ψ. (1)

Here, “⇒” follows from the semantics of ∨ and the definition of ψ. For “⇐”, suppose (A, {∅}) �
ψ. Then, again by definition of ψ, we have (A, U) � ϕ∗ for some U ⊆ V0 ∪ V1. In particular,
the variable z can take the values 0, 1 or both in U . However, for all s ∈ U ∩ V0, we can
simply flip the ones and zeroes of s. This leaves the truth of any atomic formula xi = z

unchanged, and by induction preserves the semantics of ϕ∗.
Next, we proceed with the correctness of the reduction. Assume that ϕ is satisfiable,

i.e., has a model (K, T). For each world w ∈ T , define sw : X → B by sw(z) = 1 and
sw(xi) = 1 ⇔ (K, w) � pi. Then (K, w) � pi if and only if (A, sw) � xi = z. By induction
on the syntax of ϕ, we obtain (A, U) � ϕ∗, where U := {sw | w ∈ T}. As U ⊆ V1, the
equivalence (1) yields (A, {∅}) � ψ. The other direction is similar.

Next, consider the case where = /∈ τ ; then τ contains a predicate P . We define A as
above, but let PA := {(1, . . . , 1)}. Furthermore, ψ := ∀x1 · · · ∀xn> ∨ ϕ∗, and ϕ∗ is now as
ϕ, with pi replaced by P (xi, . . . , xi). The remaining proof is similar to the previous one. J

Clearly, the standard translation of satisfiable formulas is itself satisfiable. A converse
result holds as well. Loosely speaking, from a first-order structure (and team) for st∗x(ϕ) we
can reconstruct a Kripke model (and team) for ϕ.

I Lemma 6.3. If ϕ ∈ MTL, then ϕ is satisfiable if and only if st∗x(ϕ) is satisfiable.

Proof. As Theorem 5.6 implies “⇒”, we show “⇐”. Suppose (B, S) � st∗x(ϕ). Then B
interprets the binary predicate R and unary predicates P1, P2, By Proposition 2.5, w.l.o.g.
S has domain {x}, i.e., S = (x〈S〉)x. Define now the Kripke structure K = (domB, RB, V)
such that V (pi) := PBi . Then clearly A(K) = B. By Theorem 5.6, (K, x〈S〉) � ϕ. J

M. Lück 27:13

Finally, with the above lower bounds, let us gather the completeness results for the
satisfiability, validity and model checking problems.

I Theorem 6.4. Let D be any p-uniform set of dependencies and τ any vocabulary.
MC(τ -FOω

ω(∼,D)) is ATIME-ALT(exp, poly)-complete, with hardness already on sen-
tences and for a fixed τ -structure A with domain {0, 1} and a fixed team {∅}.
If τ contains infinitely many relations and at least one of k ≥ 0, n ≥ 1 is finite, then
MC(τ -FOn

k (∼,D)) is PSPACE-complete.

Proof. The upper bounds are due to Corollary 3.3 and 3.6, since alternating polynomial
time coincides with PSPACE [7]. The lower bounds are due to Lemma 6.1 and 6.2. J

I Corollary 6.5. MC(τ -SO) is ATIME-ALT(exp, poly)-complete for all vocabularies τ , with
hardness already on sentences and with a fixed τ -interpretation A with domA = {0, 1}.

Proof. The upper bound is by Proposition 2.6. The lower bound is by the previous theorem
and reduction from MC(τ -FO(∼)). Let R be a nullary predicate variable. In the spirit of
Corollary 3.3, we map (A, {∅}, ϕ) to (A, ∅, ∃R η∅ϕ(R)∧R), where ϕ w.l.o.g. is a sentence. J

The next theorem settles the complexity of the satisfiability and validity problem of
FO2(∼), and provides lower bounds for FO1

0(∼) and FO2
k(∼).

I Theorem 6.6. Let τ contain at least one binary predicate, infinitely many unary predicates,
and no functions. Then the problems SAT(τ -FOn

k (∼)) and VAL(τ -FOn
k (∼)) are

TOWER(poly)-complete for n = 2 and k = ω,
ATIME-ALT(expk+1, poly)-hard for n = 2 and 0 ≤ k < ω,
ATIME-ALT(exp, poly)-hard for n = 1 and 0 ≤ k < ω.

Proof. The upper bound for τ -FO2(∼) is by Corollary 4.3. For the lower bounds, the map-
ping ϕ 7→ st∗x(ϕ) is a reduction from SAT(MTL) resp. SAT(MTLk) (see Theorem 5.3 and
Lemma 6.3). Finally, the validity cases follow since the logic is closed under negation. J

Let us contrast the above decidable cases with the following negative result, where a
single unary dependence atom is added to the logic (cf. p. 4).

I Theorem 6.7. There is a vocabulary τ such that SAT(L) is Π0
1-hard and VAL(L) is Σ0

1-hard,
where L = τ -FO2

2(∼, {dep1}).

Proof. Kontinen et al. [24] showed that VAL(D2
2) is Σ0

1-hard, and their reduction in fact uses
only unary and binary dependence atoms. Moreover, the binary dependence atom =(x, y)
can equivalently be rewritten as ∼(> ∨ (=(x) ∧ ∼=(y))), where > is an arbitrary tautology.
Intuitively, this formula stipulates that every subteam constant in x is also constant in y.
This concludes the reduction to VAL(τ -FO2

2(∼, {dep1})). Again, the proof for the satisfiability
problem is analogous. J

7 Conclusion

In this paper, we proved that the logic FO2(∼) is complete for the class TOWER(poly) and
hence decidable. In particular, it has the finite model property, but exhibits non-elementary
succinctness compared to classical FO2, which enjoys an exponential model property [19].

For FOn
k (∼,D), where n ≥ 1 and k ≥ 0, we proved a dichotomy regarding its model

checking complexity: It is ATIME-ALT(exp, poly)-complete if n = k = ω, and otherwise
PSPACE-complete. This only requires that D is a p-uniformly FO-definable set of generalized

MFCS 2018

27:14 On the Complexity of Team Logic and Its Two-Variable Fragment

dependency atoms (cf. Definition 3.2), which covers first-order team logic TL as well as
independence [17] and inclusion logic [10] augmented with Boolean negation.

We conclude with some open questions:
Can the translation from FOn

k (∼,D) to SO[p] be inverted, i.e., can we translate every SO[p]-
formula to FOn

k (∼,D) for suitable n and k? This would be an interesting generalization
of the translation from SO to TL given by Kontinen and Nurmi [25].
What is the exact complexity of SAT(FO2

k(∼))? In the modal setting, every satisfiable
MTLk-formula has a (k + 1)-fold exponential model. It would be interesting to learn
whether the same holds for FO2

k(∼). Due to Corollary 3.6, a positive answer would
immediately yield a tight ATIME-ALT(expk+1, poly) upper bound.
It is a well-known fact that the standard translation of an ML-formula is in the two-
variable guarded fragment GF2. It is conceivable to consider a similar fragment GF2(∼)
for the standard translation of MTL. Studying the corresponding fragments GF2

k(∼) of
bounded quantifier rank could also be a first step towards finding the complexity of
FO2

k(∼).

References
1 Samson Abramsky, Juha Kontinen, Jouko Väänänen, and Heribert Vollmer, editors. Depen-

dence Logic, Theory and Applications. Springer, 2016. doi:10.1007/978-3-319-31803-5.
2 Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded

fragments of predicate logic. J. Philosophical Logic, 27(3):217–274, 1998. doi:10.1023/A:
1004275029985.

3 Vince Bárány and Mikołaj Bojańczyk. Finite satisfiability for guarded fixpoint logic. Inf.
Process. Lett., 112(10):371–375, 2012. doi:10.1016/j.ipl.2012.02.005.

4 Leonard Berman. The complexitiy of logical theories. Theor. Comput. Sci., 11:71–77, 1980.
doi:10.1016/0304-3975(80)90037-7.

5 Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic. Cambridge University
Press, New York, NY, USA, 2001.

6 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspec-
tives in Mathematical Logic. Springer, 1997.

7 Ashok K. Chandra, Dexter C. Kozen, and Larry J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981. doi:10.1145/322234.322243.

8 Arnaud Durand, Juha Kontinen, and Heribert Vollmer. Expressivity and Complexity of
Dependence Logic. In Samson Abramsky, Juha Kontinen, Jouko Väänänen, and Heribert
Vollmer, editors, Dependence Logic, pages 5–32. Springer International Publishing, 2016.
doi:10.1007/978-3-319-31803-5_2.

9 Johannes Ebbing, Lauri Hella, Arne Meier, Julian-Steffen Müller, Jonni Virtema, and
Heribert Vollmer. Extended modal dependence logic. In Logic, Language, Information,
and Computation - 20th International Workshop, WoLLIC 2013., pages 126–137, 2013.
doi:10.1007/978-3-642-39992-3_13.

10 Pietro Galliani. Inclusion and exclusion dependencies in team semantics - on some logics of
imperfect information. Ann. Pure Appl. Logic, 163(1):68–84, 2012. doi:10.1016/j.apal.
2011.08.005.

11 Pietro Galliani. General Models and Entailment Semantics for Independence Logic. Notre
Dame Journal of Formal Logic, 54(2):253–275, 2013. doi:10.1215/00294527-1960506.

12 Pietro Galliani. Upwards closed dependencies in team semantics. Inf. Comput., 245:124–
135, 2015. doi:10.1016/j.ic.2015.06.008.

13 Pietro Galliani. On strongly first-order dependencies. In Dependence Logic, Theory and
Applications, pages 53–71. Springer, 2016. doi:10.1007/978-3-319-31803-5_4.

http://dx.doi.org/10.1007/978-3-319-31803-5
http://dx.doi.org/10.1023/A:1004275029985
http://dx.doi.org/10.1023/A:1004275029985
http://dx.doi.org/10.1016/j.ipl.2012.02.005
http://dx.doi.org/10.1016/0304-3975(80)90037-7
http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1007/978-3-319-31803-5_2
http://dx.doi.org/10.1007/978-3-642-39992-3_13
http://dx.doi.org/10.1016/j.apal.2011.08.005
http://dx.doi.org/10.1016/j.apal.2011.08.005
http://dx.doi.org/10.1215/00294527-1960506
http://dx.doi.org/10.1016/j.ic.2015.06.008
http://dx.doi.org/10.1007/978-3-319-31803-5_4

M. Lück 27:15

14 Erich Grädel. Model-checking games for logics of imperfect information. Theor. Comput.
Sci., 493:2–14, 2013. doi:10.1016/j.tcs.2012.10.033.

15 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y.
Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications.
Texts in Theoretical Computer Science. An EATCS Series. Springer, 2007. doi:10.1007/
3-540-68804-8.

16 Erich Grädel, Martin Otto, and Eric Rosen. Two-variable logic with counting is decidable.
In Proceedings, 12th Annual IEEE Symposium on Logic in Computer Science, 1997, pages
306–317, 1997. doi:10.1109/LICS.1997.614957.

17 Erich Grädel and Jouko Väänänen. Dependence and independence. Studia Logica,
101(2):399–410, 2013. doi:10.1007/s11225-013-9479-2.

18 Erich Grädel and Igor Walukiewicz. Guarded fixed point logic. In 14th Annual IEEE
Symposium on Logic in Computer Science, pages 45–54, 1999. doi:10.1109/LICS.1999.
782585.

19 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for
two-variable first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997. doi:10.2307/
421196.

20 Miika Hannula, Juha Kontinen, Martin Lück, and Jonni Virtema. On quantified proposi-
tional logics and the exponential time hierarchy. In Proceedings of the Seventh International
Symposium on Games, Automata, Logics and Formal Verification, GandALF 2016., pages
198–212, 2016. doi:10.4204/EPTCS.226.14.

21 Miika Hannula, Juha Kontinen, Jonni Virtema, and Heribert Vollmer. Complexity of Propo-
sitional Logics in Team Semantic. ACM Transactions on Computational Logic, 19(1):1–14,
jan 2018. doi:10.1145/3157054.

22 Wilfrid Hodges. Compositional semantics for a language of imperfect information. Logic
Journal of IGPL, 5(4):539–563, 1997. doi:10.1093/jigpal/5.4.539.

23 Juha Kontinen, Antti Kuusisto, Peter Lohmann, and Jonni Virtema. Complexity of two-
variable dependence logic and IF-logic. Information and Computation, 239:237–253, 2014.
doi:10.1016/j.ic.2014.08.004.

24 Juha Kontinen, Antti Kuusisto, and Jonni Virtema. Decidability of Predicate Logics with
Team Semantics. In 41st International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2016), volume 58 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 60:1–60:14, 2016. doi:10.4230/LIPIcs.MFCS.2016.60.

25 Juha Kontinen and Ville Nurmi. Team logic and second-order logic. Fundam. Inform.,
106(2-4):259–272, 2011. doi:10.3233/FI-2011-386.

26 Antti Kuusisto. A Double Team Semantics for Generalized Quantifiers. Journal of Logic,
Language and Information, 24(2):149–191, 2015. doi:10.1007/s10849-015-9217-4.

27 Leopold Löwenheim. Über möglichkeiten im relativkalkül. Mathematische Annalen, 76:447–
470, 1915. URL: http://eudml.org/doc/158703.

28 Martin Lück. Canonical Models and the Complexity of Modal Team Logic. Computer
Science Logic (CSL) 2018. To appear.

29 Martin Lück. Axiomatizations of team logics. Annals of Pure and Applied Logic, 169(9):928–
969, 2018. doi:10.1016/j.apal.2018.04.010.

30 Martin Lück. On the Complexity of Team Logic and its Two-Variable Fragment. CoRR,
abs/1804.04968, 2018. URL: https://arxiv.org/abs/1804.04968.

31 Michael Mortimer. On languages with two variables. Math. Log. Q., 21(1):135–140, 1975.
doi:10.1002/malq.19750210118.

32 Julian-Steffen Müller. Satisfiability and model checking in team based logics. PhD thesis,
University of Hanover, 2014. URL: http://d-nb.info/1054741921.

MFCS 2018

http://dx.doi.org/10.1016/j.tcs.2012.10.033
http://dx.doi.org/10.1007/3-540-68804-8
http://dx.doi.org/10.1007/3-540-68804-8
http://dx.doi.org/10.1109/LICS.1997.614957
http://dx.doi.org/10.1007/s11225-013-9479-2
http://dx.doi.org/10.1109/LICS.1999.782585
http://dx.doi.org/10.1109/LICS.1999.782585
http://dx.doi.org/10.2307/421196
http://dx.doi.org/10.2307/421196
http://dx.doi.org/10.4204/EPTCS.226.14
http://dx.doi.org/10.1145/3157054
http://dx.doi.org/10.1093/jigpal/5.4.539
http://dx.doi.org/10.1016/j.ic.2014.08.004
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.60
http://dx.doi.org/10.3233/FI-2011-386
http://dx.doi.org/10.1007/s10849-015-9217-4
http://eudml.org/doc/158703
http://dx.doi.org/10.1016/j.apal.2018.04.010
https://arxiv.org/abs/1804.04968
http://dx.doi.org/10.1002/malq.19750210118
http://d-nb.info/1054741921

27:16 On the Complexity of Team Logic and Its Two-Variable Fragment

33 Ian Pratt-Hartmann. The two-variable fragment with counting revisited. In Logic, Lan-
guage, Information and Computation, 17th International Workshop, WoLLIC 2010., pages
42–54, 2010. doi:10.1007/978-3-642-13824-9_4.

34 Frank P. Ramsey. On a Problem of Formal Logic, pages 1–24. Birkhäuser Boston, Boston,
MA, 1987. doi:10.1007/978-0-8176-4842-8_1.

35 Dana Scott. A decision method for validity of sentences in two variables. Journal of
Symbolic Logic, 27(4):477, 1962.

36 Thomas Sturm, Marco Voigt, and Christoph Weidenbach. Deciding first-order satisfiability
when universal and existential variables are separated. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2016, pages 86–95, 2016.
doi:10.1145/2933575.2934532.

37 Marco Voigt. A fine-grained hierarchy of hard problems in the separated fragment. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pages
1–12, 2017. doi:10.1109/LICS.2017.8005094.

38 Jouko Väänänen. Dependence logic: A New Approach to Independence Friendly Logic. Num-
ber 70 in London Mathematical Society student texts. Cambridge University Press, Cam-
bridge ; New York, 2007.

39 Fan Yang. On extensions and variants of dependence logic. PhD thesis, Univer-
sity of Helsinki, 2014. URL: http://www.math.helsinki.fi/logic/people/fan.yang/
dissertation_fyang.pdf.

40 Fan Yang and Jouko Väänänen. Propositional team logics. Ann. Pure Appl. Logic,
168(7):1406–1441, 2017. doi:10.1016/j.apal.2017.01.007.

http://dx.doi.org/10.1007/978-3-642-13824-9_4
http://dx.doi.org/10.1007/978-0-8176-4842-8_1
http://dx.doi.org/10.1145/2933575.2934532
http://dx.doi.org/10.1109/LICS.2017.8005094
http://www.math.helsinki.fi/logic/people/fan.yang/dissertation_fyang.pdf
http://www.math.helsinki.fi/logic/people/fan.yang/dissertation_fyang.pdf
http://dx.doi.org/10.1016/j.apal.2017.01.007

M. Lück 27:17

Algorithm 1: Decision procedure for MC(SO).

Algorithm: check(α,A,J) for α ∈ τ -SO in negation normal form, a τ -structure A,
and a second-order interpretation J of Fr(α).

1 if α is an atomic formula or the negation of an atomic formula then
2 return true if (A,J) � α and false otherwise;
3 else if α = γ1 ∨ γ2 then existentially choose i ∈ {1, 2} and let α := γi
4 else if α = γ1 ∧ γ2 then universally choose i ∈ {1, 2} and let α := γi
5 else if α = aXγ for a ∈ {∃, ∀} and X ∈ Var(α) then
6 α := γ

7 if X ∈ Fr(γ) then
8 if a = ∃ then switch to existential branching else switch to universal

branching
9 if X is a first-order variable then

10 non-deterministically choose a ∈ A and let J (X) := a

11 else if X is a function variable then
12 non-deterministically choose F : Aarity(X) → A and let J (X) := F

13 else if X is a relation variable then
14 non-deterministically choose R ⊆ Aarity(X) and let J (X) := R

15 return check(α,A,J �Fr(α))

A Appendix

Proof of Proposition 2.6
I Proposition 2.6. MC(SO) is decidable on input (A,J , α) in time 2nO(1) and with |α|
alternations.

Proof. W.l.o.g., ¬ appears in α only in front of atomic formulas, and domJ = Fr(α). Let
A := domA. We abbreviate

|J | :=
∑

X∈domJ
X second-order

|J (X)|,

i.e., the sum of the cardinalities of functions and relations in J . Since for any second-order
variable X it holds |J (X)| ≤ |A|arity(X) ≤ |A||α|, and furthermore |domJ | = |Fr(α)| ≤ |α|,
the sum |J | is at most |α| · |A||α|.

Now we run Algorithm 1. It performs at most |α| recursive calls, and clearly at most
|α| alternations. Furthermore, the i-th recursive call is of the form check(αi,A,Ji) with
|αi| ≤ |α| and, by the same argument as before, |Ji| ≤ |α| · |A||α|. For this reason, it is easy
to see that the overall runtime is polynomial in |J | and |A||α|, and consequently exponential
in the input size. J

Proofs of Theorem 3.1 and 3.5
We require the next propositions in order to prove Theorem 3.1 and 3.5.

MFCS 2018

27:18 Appendix

I Proposition A.1. Let A be a structure, ~t a tuple of terms, and X ⊇ Fr(~t). For i ∈ {1, 2},
let Ti be a team in A with domain Xi ⊇ X. Then T1�X = T2�X implies ~t〈T1〉 = ~t〈T2〉.
Furthermore, for any tuple ~x ⊆ X of variables, ~x〈T1〉 = ~x〈T2〉 iff T1�~x = T2�~x.

Proof. For the first part of the proposition, assume T1�X = T2�X. Exploiting symmetry,
we only show that ~t〈T1〉 ⊆ ~t〈T2〉. Hence, let ~a ∈ ~t〈T1〉 be arbitrary. Then ~a = ~t〈s〉 for some
s ∈ T1. By assumption, there is s′ ∈ T2 such that s�X = s′�X. Since Fr(~t) ⊆ X, clearly
~t〈s〉 = ~t〈s′〉. Consequently, ~a ∈ ~t〈T2〉.

For the second part, suppose ~x〈T1〉 = ~x〈T2〉 and let s ∈ T1�~x be arbitrary. We show
s ∈ T2�~x, which again suffices due to symmetry. Clearly, s = s′�~x for some s′ ∈ T1. Then
~x〈s〉 = ~x〈s′〉 ∈ ~x〈T1〉 = ~x〈T2〉, and consequently, ~x〈s〉 ∈ ~x〈T2〉. But then ~x〈s〉 = ~x〈s′′〉 for
some s′′ ∈ T2, which implies s = s′′�~x, and hence s ∈ T2�~x. J

I Proposition A.2. Let A be a structure, ~x a tuple of variables, and V := {s : ~x → A}.
Then P(V) is the set of all teams in A with domain ~x, and the mapping r : S 7→ ~x〈S〉 is an
order isomorphism between (P(V),⊆) and (P((domA)|~x|),⊆).

Proof. Let n := |~x|. Clearly, every team with domain ~x is in P(V). It is easy to show
that r is surjective: Given A ⊆ (domA)n, define the team S := {s ∈ V | ~x〈s〉 ∈ A}. Then
r(S) = ~x〈S〉 = {~x〈s〉 | s ∈ V and ~x〈s〉 ∈ A} = A.

Moreover, r preserves⊆ in both directions: Suppose S ⊆ S′ and let ~a = (a1, . . . , an) ∈ r(S)
be arbitrary. We show ~a ∈ r(S′), which proves r(S) ⊆ r(S′). Since ~a ∈ r(S) = ~x〈S〉, there
exists s ∈ S such that ~x〈s〉 = ~a. By assumption, s ∈ S′. Consequently, ~a ∈ ~x〈S′〉 = r(S′).

Conversely, suppose r(S) ⊆ r(S′) and let s ∈ S be arbitrary. As ~x〈s〉 ∈ r(S) ⊆ r(S′) =
~x〈S′〉, there exists an assignment s′ ∈ S′ such that ~x〈s〉 = ~x〈s′〉. However, as dom s =
dom s′ = ~x, necessarily s = s′, i.e., s ∈ S′. As S ⊆ S′ ⇔ r(S) ⊆ r(S′), and r is surjective, we
conclude that r is also injective and hence an order isomorphism. J

As an alternative definition of supplementing functions, Galliani [11] coined the term
x-variations, which are teams that “agree” on all variables but x:

I Proposition A.3. Let T be a team with domain X and S a team with domain X ∪ {x}
(with possibly x ∈ X), and let X ′ := X \ {x}. Then S�X ′ = T �X ′ if and only if there is a
supplementing function f such that S = T xf .

Proof. Let A be the underlying structure.
“⇒”: Suppose S�X ′ = T �X ′. First, we show that for every s′ ∈ S there is s ∈ T such

that s′ = sxa for some a. By assumption, s′�X ′ = s�X ′ for some s ∈ T . But then s′ = sxs′(x).
We define the function f(s) := { a ∈ A | sxa ∈ S }, and prove that it is a supplementing
function of T . Here, it suffices to show that f(s) 6= ∅ for all s ∈ T , i.e., that for every
s ∈ T there exists a ∈ A such that sxa ∈ S. This follows again by S�X ′ = T �X ′. Moreover,
T xf = {sxa | s ∈ T, a ∈ f(s)} = {sxa | s ∈ T, sxa ∈ S}, which equals S by the above argument.

“⇐”: First, we show “⊆”, i.e., that s ∈ T �X ′ for arbitrary s ∈ S�X ′. By definition, for
such s we have s = s′�X ′ for some s′ ∈ S. Since S = T xf , there exists s′′ ∈ T and a ∈ A such
that s′ = (s′′)xa. As x /∈ X ′, we have s = s′�X ′ = s′′�X ′ ∈ T �X ′, as desired.

For the other direction, “⊇”, let s ∈ T �X ′ be arbitrary. Then s = s′�X ′ for some s′ ∈ T .
As S = T xf , there exists some s′′ ∈ S and a ∈ A such that s′′ = (s′)xa. Again we have
s = s′�X ′ = s′′�X ′, i.e., s ∈ S�X ′. J

I Lemma A.4. Let T have domain ~x and S have domain ~x ∪ {y} (with possibly y ∈ X),
and let X ′ := ~x \ {y}. Then T �X ′ = S�X ′ if and only if A � π(~x〈T 〉, ~x;y〈S〉), where
π(T, S) := ∀~x((∃yT~x)↔ (∃yS~x;y)).

M. Lück 27:19

Proof. First, let us consider the case y /∈ X, i.e., X ′ = X. Then:

T �X ′ = S�X ′

⇔ ~x〈T 〉 = ~x〈S〉 (by Proposition A.1)
⇔ ∀~a : (~a ∈ ~x〈T 〉 ⇔ ∃b : (~a, b) ∈ (~x; y)〈S〉) (since T has domain ~x)
⇔ A � π(~x〈T 〉, ~x;y〈S〉) (since ∃yT~x ≡ T~x)

Next, assume y ∈ X and w.l.o.g. y = xn. Then ~x;y = ~x and X ′ = {x1, . . . , xn−1}. Let
~x′ = (x1, . . . , xn−1). Analogously as before, we have:

T �X ′ = S�X ′

⇔ ~x′〈T 〉 = ~x′〈S〉
⇔ ∀~a :

(
(∃b : (~a, b) ∈ ~x〈T 〉)⇔ (∃b : (~a, b) ∈ ~x;y〈S〉)

)
⇔ A � π(~x〈T 〉, ~x;y〈S〉) J

I Theorem 3.1. Let ϕ ∈ FO(∼,D), let ~x ⊇ Fr(ϕ) be a tuple of variables, and T be a team
in A with domain Y ⊇ ~x. Then (A, T) � ϕ if and only if A � η~xϕ(~x〈T 〉).

Proof. Note that (A, T) � ϕ ⇔ (A, T �~x) � ϕ by Proposition 2.5, and ~x〈T 〉 = ~x〈T �~x〉. For
this reason, we can assume that T has domain ~x. The proof is now by induction on ϕ.

If ϕ is first-order, clearly (A, T) � ϕ iff A � ϕ(~a) for all ~a ∈ ~x〈T 〉 iff A � η~xϕ(~x〈T 〉).
If ϕ = Ai(~t) and δi ∈ D is a k-ary dependency, then (A, T) � Ai(~t) iff A � δi(~t〈T 〉).
We prove that this is again equivalent to A � ∃S ρ(~x〈T 〉, S) ∧ δi(S), where ρ(R,S) :=
∀~z (S~z ↔ (∃~xR~x ∧~t = ~z)).
It suffices to show that A � ρ(~x〈T 〉, S) if and only if S = ~t〈T 〉. As it is straightforward
that A � ρ(~x〈T 〉,~t〈T 〉) holds, let us focus on the direction from left to right. Recall that
~x ∩ {z1, . . . , zk} = ∅ and that the zi are pairwise distinct. On that account, suppose
A � ρ(~x〈T 〉, S) and ~a = (a1, . . . , ak) ∈ Ak. By definition of the formula, ~a ∈ S iff
A � ∃~xR~x ∧~t = ~a. However, this is the case iff ~t〈s〉 = ~a for some s ∈ T , i.e., ~a ∈ ~t〈T 〉.
The cases ϕ = ∼ψ and ϕ = ψ ∧ θ immediately follow by induction hypothesis.
If ϕ = ψ ∨ θ, then by induction hypothesis, (A, T) � ϕ iff there are S,U ⊆ T such that
T = S ∪ U and A � η~xψ(~x〈S〉) ∧ η~xθ (~x〈U〉). Let R := ~x〈T 〉.
Then due to Proposition A.2, the above is equivalent to the existence of P,Q ⊆ An such
that R = P ∪ Q and A � η~xψ(P) ∧ η~xθ (Q), and consequently to A � ∃S ∃U ∀~x(R~x ↔
(S~x ∨ U~x)) ∧ η~xψ(S) ∧ η~xθ (U).
If ϕ = ∃y ψ, by Proposition A.3, then (A, T) � ϕ iff (A, S) � ψ for some team S with
domain ~x ∪ {y} such that T �X ′ = S�X ′, where X ′ := ~x \ {y}. By Lemma A.4 and by
induction hypothesis, this is the case iff (A, ~x〈T 〉) � ∃S ∀~x((∃yR~x)↔ (∃yS~x; y))∧η~x;y

ψ (S).
The case ϕ = ∀y ψ is proven analogously to ∃. The additional clause (R~x → ∀y S~x;y)
ensures that the supplementing function is constant and f(s) = domA. J

I Theorem 3.5. Let ϕ ∈ FO(∼,D), let ~x ⊇ Fr(ϕ) be a tuple of variables, and T be a team
in A with domain Y ⊇ ~x. If p(n) ≥ |T | · nqr(ϕ) or p(n) ≥ nw(ϕ), then (A, T) � ϕ if and only
if A � ζ~x,pϕ (~x〈T 〉).

Proof for p(n) ≥ |T | · nqr(ϕ). Assume A, T as above, let m := qr(ϕ) and p(n) ≥ nm.
The idea is to show that η~xϕ and ζ~x,pϕ agree on (A,J) for all “sufficiently sparse” J (cf.
Theorem 3.1). Formally, let ` ≤ m and let (A,J) be a second-order interpretation such that

MFCS 2018

27:20 Appendix

|J (R)| ≤ |T | · |A|` for all relations R ∈ domJ . Then we prove for all ϕ ∈ FO(∼,D) with
qr(ϕ) ≤ m− ` and ~x ⊇ Fr(ϕ) that (A,J) � η~xϕ if and only if (A,J) � ζ~x,pϕ . For ` = 0, this
yields the theorem, since |~x〈T 〉| ≤ |T | · |A|0.

The proof is by induction on ϕ. We distinguish the following cases.
If ϕ ∈ FO, then there is nothing to prove, as η~xϕ = ζ~x,pϕ .
If ϕ = ∼ψ or ϕ = ψ ∧ θ, then the inductive step is clear.
If ϕ = Ai~t for some k-ary δi ∈ D, then ζ~x,pϕ (R) = ∃pS ρ(R,S) and η~xϕ(R) = ∃S ρ(R,S),
where

ρ(R,S) = ∀~z (S~z ↔ (∃~xR~x ∧~t = ~z)) ∧ δi(S).

We show that A � η~xϕ(R) implies A � ζ~x,p(R), as the other direction is trivial.
On that account, suppose A � ρ(R,S) for some S ⊆ Ak. We prove that necessarily
|S| ≤ |R| by constructing some injective f : S → R. Then A � ∃pS ρ(R,S), as by
assumption, |S| ≤ |R| ≤ |T | · |A|` ≤ |T | · |A|m ≤ p(|A|).
We define f as follows. For every ~a ∈ S, let f(~a) be some ~b ∈ R such that ~t〈{~x 7→ ~b}〉 = ~a.
By ρ(R,S), such ~b must exist. Clearly, f is injective.
If ϕ = ψ ∨ θ, then ζ~x,pϕ (R) = ∃pS ∃pU ρ and η~xϕ(R) = ∃S ∃U ρ′, where

ρ(R,S, U) = ∀~x(R~x↔ (S~x ∨ U~x)) ∧ ζ~x,pψ (S) ∧ ζ~x,pθ (U),

ρ′(R,S, U) = ∀~x(R~x↔ (S~x ∨ U~x)) ∧ η~xψ(S) ∧ η~xθ (U).

Suppose |R| ≤ |T | · |A|` and qr(ϕ) ≤ m− `. Clearly qr(ψ), qr(θ) ≤ qr(ϕ).
Let A � η~xϕ(R), i.e., A � ρ′(R,S, U) for some S,U ⊆ A|~x|.
It is easy to see that ρ′ forces |S|, |U | ≤ |R|. Since |R| ≤ |T | · |A|` by assumption, we
can apply the induction hypothesis to η~xψ(S) and η~xθ (U) and derive A � ρ(R,S, U) from
A � ρ′(R,S, U). Since in particular |S|, |U | ≤ p(|A|), we conclude A � ζ~x,pϕ (R). The other
direction is trivial due to the inductivion hypothesis, since ρ(R,S) entails ρ′(R,S).
If ϕ = ∃y ψ, then ζ~x,pϕ (R) = ∃pS ρ(R,S) and η~xϕ(R) = ∃S ρ′(R,S), where

ρ(R,S) = ∀~x((∃yR~x)↔ (∃y S~x;y)) ∧ ζ~x;y,p
ψ (S),

ρ′(R,S) = ∀~x((∃yR~x)↔ (∃y S~x;y)) ∧ η~x;y
ψ (S).

Suppose |R| ≤ |T | · |A|` and qr(ϕ) ≤ m− `. We show that A � η~xϕ(R) implies A � ζ~x,pϕ (R).
The other direction is then again similar.
Assuming A � η~xϕ(R), there exists S ⊆ A|~x;y| such that A � ρ′(R,S). As a first step, we
erase unnecessary elements from S. Note that S occurs in ρ′ only in atomic formulas
S~x;y, i.e., with a fixed argument tuple ~x;y. Let (v1, . . . , vr) := ~x;y. If now vi = vj for
some 1 ≤ i < j ≤ r, then every tuple (a1, . . . , ar) with ai 6= aj can be safely deleted from
S. Formally, if S∗ := ~x;y〈V 〉 ∩ S, where V = {s : ~x ∪ {y} → A} is the full team with
domain ~x ∪ {y}, then A � ρ′(R,S) if and only if A � ρ′(R,S∗), which can be shown by
straightforward induction.
Note that qr(ψ) = qr(ϕ)−1 ≤ m−(`+1). Consequently, to apply the induction hypothesis,
we prove |S∗| ≤ |R| · |A| ≤ |T | · |A|`+1 by presenting some injective f : S∗ → R×A.
If y /∈ ~x, let f be the identity, as ρ′ ensures that (~a, b) ∈ S∗ implies ~a ∈ R. However,
if y ∈ ~x, then we define f(~a) as follows. By construction, ~a ∈ S∗ equals ~x〈s〉 for some
s : ~x → A. Again by ρ′, there is ŝ : ~x → A such that ~x〈ŝ〉 ∈ R and s = ŝys(y). Let now
f(~a) := (~x〈ŝ〉, s(y)). Then f is injective.

M. Lück 27:21

Hence, by induction hypothesis, we can replace η~xϕ by ζ~x,pϕ and obtain A � ρ(R,S∗). Since
|S∗| ≤ |A|`+1 ≤ p(|A|), we obtain A � ∃pS ρ(R,S).
The case ϕ = ∀y ψ is proven similarly to ϕ = ∃y ψ. J

Proof for p(n) ≥ nw(ϕ). We can apply the same argument as in the ∃-case of the previous
proof. Suppose S is a second-order variable. Then S appears in η~xϕ only in atomic formulas of
the form S~t for a fixed ~t. Accordingly, it suffices to let ∃S range over subsets of ~t〈V 〉, where
~y := Var(~t) and V := {s : ~y → A}.

(We consider terms ~t instead of only variables to account for the translations of depen-
dencies, where S can have terms as arguments.)

Since ~y contains at most w(ϕ) distinct variables, |V | ≤ |A|w(ϕ) ≤ p(|A|). Consequently,
every second-order quantifier ∃S can be replaced by ∃pS, which implies A � η~xϕ(~x〈T 〉) ⇔
A � ζ~x,pϕ (~x〈T 〉). J

Proof of Lemma 4.1
I Lemma A.5. The following laws hold for FO(∼):

α ∧
n∧
i=1

Eβi ≡
n∨
i=1

(α ∧ Eβi) (2)

n∨
i=1

(αi ∧ Eβi) ≡
(n∨
i=1

αi

)
∧

n∧
i=1

E(αi ∧ βi) (3)

(ϑ1 6 ϑ2) ∨ ϑ3 ≡ (ϑ1 ∨ ϑ3) 6 (ϑ2 ∨ ϑ3) (4)
ϑ1 ∨ (ϑ2 6 ϑ3) ≡ (ϑ1 ∨ ϑ2) 6 (ϑ1 ∨ ϑ3) (5)
∃x (ϑ1 6 ϑ2) ≡ (∃xϑ1) 6 (∃xϑ2) (6)
∃x (ϑ1 ∨ ϑ2) ≡ (∃xϑ1) ∨ (∃xϑ2) (7)
∃x (α ∧ Eβ) ≡ (∃xα) ∧ E ∃x (α ∧ β) (8)
∀x (ϑ1 ∧ ϑ2) ≡ (∀xϑ1) ∧ (∀xϑ2) (9)
∀x∼ϑ ≡ ∼∀xϑ (10)

Proof. For (2), (3) and (7), see Lück [29, Lemma 4.13, 4.14 and D.1], respectively. For (4)–(6),
see Galliani [13, Proposition 5]. For (9)–(10), see Väänänen [38, Chapter 8].

For (8), the direction “�” is clear, as α ∧ Eβ implies both α and E(α ∧ β). For the
converse direction, suppose (A, T) � ∃xα and (A, ŝ) � ∃x(α ∧ β) for some ŝ ∈ T . Then
there are f : T → P(A) \ {∅} and b ∈ A such that (A, T xf) � α and (A, ŝxb) � α ∧ β. Define
g(ŝ) = f(ŝ) ∪ {b} and g(s) = f(s) for s ∈ T \ {ŝ}. Then T xg = T xf ∪ {sxb }. Consequently,
(A, T xg) � α ∧ Eβ, hence (A, T) � ∃x (α ∧ Eβ). J

I Lemma 4.1. Every τ -FOn
k (∼)-formula ϕ is equivalent to a formula of the form

ψ :=
n

6
i=1

αi ∧ mi∧
j=1

Eβi,j

such that {α1, . . . , αn, β1,1, . . . , βn,mn} ⊆ τ -FOn

k and |ψ| ≤ expO(|ϕ|)(1).

In what follows, disjunctive normal form (DNF) refers to formulas in the above form.

Proof. We construct the formula ψ by induction on ϕ. In each inductive step, it grows at
most exponentially.

MFCS 2018

27:22 Appendix

If ϕ is a Boolean combination of FOn
k -formulas (i.e., over ∼ and ∧), then we obtain a

DNF of size ≤ |ϕ| · 2|ϕ| similarly as for ordinary propositional logic.
If ϕ = ϑ1 ∨ ϑ2 for ϑ1, ϑ2 in DNF, then

ϕ =
n

6
i=1

αi ∧ mi∧
j=1

Eβi,j

 ∨ k

6
i=1

γi ∧ `i∧
j=1

Eδi,j

≡

n

6
i=1

mi∨
j=1

(αi ∧ Eβi,j) ∨
k

6
i=1

`i∨
j=1

(γi ∧ Eδi,j) (Lemma A.5, (2))

≡ 6
1≤i1≤n
1≤i2≤k

mi1∨
j=1

(αi1 ∧ Eβi1,j) ∨
`i2∨
j=1

(γi2 ∧ Eδi2,j) (Lemma A.5, (4) and (5))

≡
n·k

6
i=1

oi∨
j=1

(µi,j ∧ Eνi,j) (for some µi,j , νi,j ∈ FOn
k)

≡
n·k

6
i=1

(oi∨
j=1

µi,j

)
∧

oi∧
j=1

E(µi,j ∧ νi,j), (Lemma A.5, (3))

where the final DNF has size polynomial in |ϑ1|+ |ϑ2| ≤ |ϕ|.
If ϕ = ∃xϑ for ϑ in DNF, then

ϕ ≡ ∃x
n

6
i=1

mi∨
j=1

(αi ∧ Eβi,j) (Lemma A.5, (2))

≡
n

6
i=1

mi∨
j=1
∃x (αi ∧ Eβi,j) (Lemma A.5, (6) and (7))

≡
n

6
i=1

mi∨
j=1

(
(∃xαi) ∧ E∃x (αi ∧ βi,j)

)
(Lemma A.5, (8))

≡
n

6
i=1

(mi∨
j=1
∃xαi

)
∧

mi∧
j=1

E∃x (αi ∧ βi,j)), (Lemma A.5, (3))

which is again a DNF of polynomial size.
Finally, the ∀ case is by repeated application of (9) and (10) of Lemma A.5. J

A Tight Analysis of the Parallel Undecided-State
Dynamics with Two Colors
Andrea Clementi
Università Tor Vergata di Roma, Italy
clementi@mat.uniroma2.it

Mohsen Ghaffari
ETH Zürich, Switzerland
ghaffari@inf.ethz.ch

Luciano Gualà
Università Tor Vergata di Roma, Italy
guala@mat.uniroma2.it

Emanuele Natale
Max Planck Institute for Informatics, Germany
enatale@mpi-inf.mpg.de

Francesco Pasquale1

Università Tor Vergata di Roma, Italy
pasquale@mat.uniroma2.it

Giacomo Scornavacca
Università degli Studi dell’Aquila, Italy
giacomo.scornavacca@graduate.univaq.it

Abstract
The Undecided-State Dynamics is a well-known protocol for distributed consensus. We analyze it
in the parallel PULL communication model on the complete graph with n nodes for the binary
case (every node can either support one of two possible colors, or be in the undecided state).

An interesting open question is whether this dynamics is an efficient Self-Stabilizing protocol,
namely, starting from an arbitrary initial configuration, it reaches consensus quickly (i.e., within
a polylogarithmic number of rounds). Previous work in this setting only considers initial color
configurations with no undecided nodes and a large bias (i.e., Θ(n)) towards the majority color.

In this paper we present an unconditional analysis of the Undecided-State Dynamics that
answers to the above question in the affirmative. We prove that, starting from any initial con-
figuration, the process reaches a monochromatic configuration within O(log n) rounds, with high
probability. This bound turns out to be tight. Our analysis also shows that, if the initial con-
figuration has bias Ω(

√
n log n), then the dynamics converges toward the initial majority color,

with high probability.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Distributed Consensus, Self-Stabilization, PULL Model, Markov Chains

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.28

Related Version A full version of the paper is available at [14], https://arxiv.org/abs/1707.
05135v3.

1 Partly supported by the University of “Tor Vergata” under research programme “Mission: Sustainability”
project ISIDE (grant no. E81I18000110005)

© Andrea Clementi, Mohsen Ghaffari, Luciano Gualà, Emanuele Natale, Francesco Pasquale, and
Giacomo Scornavacca;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 28; pp. 28:1–28:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:clementi@mat.uniroma2.it
mailto:ghaffari@inf.ethz.ch
mailto:guala@mat.uniroma2.it
mailto:enatale@mpi-inf.mpg.de
mailto:pasquale@mat.uniroma2.it
mailto:giacomo.scornavacca@graduate.univaq.it
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.28
https://arxiv.org/abs/1707.05135v3
https://arxiv.org/abs/1707.05135v3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors

1 Introduction

Simple local mechanisms for Consensus problems in distributed systems recently received a
lot of attention [2, 1, 18, 19, 28, 31]. In one of the basic versions of the consensus problem
the system consists of anonymous entities (nodes) each one initially supporting a color out
of a finite set of colors Σ. Nodes run elementary operations and interact by exchanging
messages. A Consensus Protocol is a local procedure that makes the system converge to a
monochromatic configuration, where all nodes support the same color. Consensus has to be
valid, i.e., the “winning” color must be one of those initially supported by at least one node.
A crucial property of a consensus protocol is self-stabilization [6, 18, 30]: Informally, if the
system is “perturbed” by some external event and moved to an arbitrary configuration, then
the protocol must bring the system back to a valid consensus and, moreover, once the system
reaches consensus, it must remain in that configuration forever, unless a further external
event takes place2. Self-stabilizing consensus processes are fundamental building-blocks that
play an important role in coordination tasks and self-organizing behavior in population
systems [11, 13, 19, 29].

We study the consensus problem in the PULL communication model [12, 17, 24] where,
at every round, each active node of a communication network contacts one neighbor uniformly
at random to pull information. A natural consensus protocol in this model is the Undecided-
State Dynamics3 (for short, the U-Dynamics) in which the state of a node can be either
a color or the undecided state. When a node is activated, it pulls the state of a random
neighbor and updates its state according to the following updating rule (see Table 1): If a
colored node pulls a different color from its current one, then it becomes undecided, while in
all other cases it keeps its color; moreover, if the node is in the undecided state then it will
take the state of the pulled neighbor.

The U-Dynamics has been previously studied in both sequential [2] and parallel [4] models:
Informally, in the former only one random node is activated at every round and it updates
its state according to the local rule, while in the latter all nodes are activated at every round
and they update their state, synchronously.

As for the sequential model4, [2] provides an unconditional analysis showing (among other
results) that the U-Dynamics is a self-stabilizing protocol for binary consensus (i.e., when
|Σ| = 2) in the complete graph with n nodes. They show the convergence time is O(n log n)
(and, thus, work per node is O(log n)), with high probability5. This result also clarifies the
algorithmic interest for this process. Indeed, the U-Dynamics can be seen as a variant of the
popular Voter Model [9, 23, 26] where every active node simply takes the color it pulls at
every round. On one hand, the Voter Model uses minimal number of node states (i.e. |Σ|)
and takes Θ(n) work per node to reach consensus (see for instance [25]). On the other hand,
the U-Dynamics exponentially improves the work complexity by using one additional state,
only. Further motivations on the U-Dynamics are discussed in Subsection 1.2.

We remark that the stochastic process induced by the parallel dynamics significantly
departs from the one induced by the sequential dynamics. As a simple evidence of such
qualitative differences, observe that, starting from a configuration with no undecided nodes,

2 Notice that, according to previous work [6, 18], we require self-stabilization to hold with high probability.
3 In some previous papers [31] on the binary case (|Σ| = 2), this protocol has been also called the

Third-State Dynamics. We here prefer the term “undecided” since it also holds for the non-binary case
and, moreover, the term well captures the role of this additional state.

4 [2] in fact considers the Population-Protocol model which is, in our specific context, equivalent to the
sequential PULL model.

5 As usual, we say that an event En holds w.h.p. if P (En) > 1− n−Θ(1).

A. Clementi, M. Ghaffari, L. Gualà, E. Natale, F. Pasquale, and G. Scornavacca 28:3

in the parallel case the system might end up in the non-valid, monochromatic configuration
where all nodes are undecided (this would happen if, for example, at the first round every
node pulled a node with the other color). On the other hand, it is easy to see that in
the sequential case the process always ends up in a monochromatic configuration with no
undecided nodes, unless it starts from a configuration with all nodes undecided. The crucial
difference lies in the random number of nodes that may change color at every round: In
the sequential model, this is at most one6, while in the parallel one, all nodes may change
state in one round and, for most phases of the process, the expected number of changes is
indeed linear in n. The above difference is one of the main reasons why no general techniques
are currently available to extend any quantitative analysis for the sequential process to the
corresponding parallel one (and vice versa). In particular, the analysis in [2] strongly uses
the fact that only one node can change state in one round in order to derive a suitable
supermartingale argument to bound the stopping time of the process. It thus fully covers
the case of sequential interaction models, but it is not helpful to understand the evolution of
the U-Dynamics process on any interaction model in which the number of nodes that may
change state in one round is not bounded by some absolute constant.

As for the parallel PULL model, while it is easy to verify that the U-Dynamics achieves
consensus in the complete graph (with high probability), the convergence time of this
dynamics is still an interesting open issue, even in the binary case. Indeed, in [4] the authors
analyze the U-Dynamics in the parallel PULL model on the complete graph for any number
k = o(n1/3) of colors. However, their analysis requires the initial configuration to have a
relatively-large bias s = c1 − c2 between the size c1 of the (unique) initial plurality and the
size c2 of the second-largest color. More in details, in [4] it is assumed that c1 > αc2, for
some absolute constant α > 1 and, thus, this condition for the binary case would result into
requiring a very-large initial bias, i.e., s = Θ(n). This analysis clearly does not show that
the U-Dynamics efficiently solves the binary consensus problem, mainly because it does not
manage balanced initial configurations.

1.1 Our results
We prove that, starting from any color configuration7 on the complete graph, the U-Dynamics
reaches a monochromatic configuration (thus consensus) within O(log n) rounds, with high
probability. This bound is tight since, for some (in fact, a large number of) initial configura-
tions, the process requires Ω(log n) rounds to converge.

Not assuming a large initial bias of the majority color significantly complicates the analysis.
Indeed, the major technical issues arise from the analysis of balanced initial configurations
where the system “needs” to break symmetry without having a strong expected drift towards
any color. Previous analysis of this phase consider either sequential processes of interacting
particles that can be modeled as birth-and-death chains [2] or parallel processes whose local
rule is fully symmetric w.r.t. the states/colors of the nodes (such as majority rules) [6, 18].
The U-Dynamics process falls neither in the former nor in the latter scenario: It works in
parallel rounds and the role of the undecided nodes makes the local rule not symmetric. We
believe this issue has a per-se scientific interest since symmetry-breaking phenomena yielded
by simple and local mechanisms plays a central role in key aspects of population systems
[10] and, more generally, in the emerging field of natural algorithms [13].

6 This number actually becomes 2 if the sequential communication model activates a random edge per
round, rather than one single node [2].

7 Our analysis also considers initial configurations with undecided nodes.

MFCS 2018

28:4 A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors

Informally speaking, in Section 4 we deal with almost-balanced starting configurations.
By devising a coupling to a “simplified” pruned process, we show that the analysis of this
symmetry-breaking phase essentially reduces to the analysis of a specific regime where the
number q of undecided nodes remains a suitable constant fraction of n until the magnitude of
the bias s reaches Ω(

√
n log n): In other words, during this regime, with very high probability

the system never jumps to almost-balanced configurations having either too many or too
few undecided nodes. This fact is crucial for two main reasons: Along this regime, (i) the
variance of the bias s is large (i.e. Θ(n)) and (ii) whenever the bias s is Ω(

√
n), its drift

turns out to be exponential with non-negligible, increasing probability (w.r.t. s itself). Then,
we prove a variant of a general Lemma [18] that provides a logarithmic bound on the hitting
time of Markov chains satisfying Properties (i) and (ii) above.

The symmetry-breaking phase terminates when the U-Process reaches some configuration
having a bias s = Ω(

√
n log n). Then we prove that, starting from any configuration having

that bias, the process reaches consensus within O(log n) rounds, with high probability. Even
though our analysis of this “majority” part of the process is based on standard concentration
arguments, it must cope with some non-monotone behavior of the key random variables
(such as the bias and the number of undecided nodes at the next round): Again, this is
due to the non-symmetric role played by the undecided nodes. A good intuition about this
“non-monotone” process can be gained by looking at the mutually-related formulas giving
the expectation of such key random variables (see Equations (1)-(3)). Our refined analysis
shows that, during this majority phase, the winning color never changes and, thus, the
U-Dynamics also ensures Plurality Consensus in logarithmic time whenever the initial bias
is s = Ω(

√
n log n).

Interestingly enough, we also show that configurations with s = O(
√
n) exist so that the

system may converge toward the minority color with non-negligible probability.

1.2 Further motivation and related work

On the U-Dynamics. The interest in the U-Dynamics arises in fields beyond the borders of
Computer Science and it seems to have a key-role in important biological processes modeled
as so-called chemical reaction networks [11, 19]. For such reasons, the convergence time of
this dynamics has been analyzed on different communication models [2, 3, 4, 27, 31]. As
previously mentioned, the U-Dynamics has been analyzed in the parallel PULL model in [4]
and their results concern the evolution of the process for the multi-color case when there is a
significant initial bias (as a protocol for plurality consensus).

As for the sequential model, the U-Dynamics has been introduced and analyzed in [2]
on the complete graph. They prove that this dynamics, with high probability, converges to
a valid consensus within O(n log n) activations and, moreover, it converges to the majority
whenever the initial bias is ω

(√
n log n

)
.

Still concerning the sequential model, [27] recently analyzes, besides other protocols,
the U-Dynamics in arbitrary graphs where in the initial configuration each node samples
uniformly at random one out of two colors. In this (average-case) setting, they prove that
the system converges to the initial majority color with higher probability than the initial
minority one. They also give results for special classes of graphs where the minority can win
with large probability if the initial configuration is chosen in a suitable way. Their proof for
this result relies on an exponentially-small upper bound on the probability that a certain
minority can win in the complete graph (see [27] for more details). In [3, 7, 20, 31], the same
dynamics for the binary case has been analyzed in other sequential communication models.

A. Clementi, M. Ghaffari, L. Gualà, E. Natale, F. Pasquale, and G. Scornavacca 28:5

On some other consensus dynamics. Recently, further simple consensus protocols have
been deeply analyzed in several papers, thus witnessing the high interest of the scientific
community on such processes [2, 5, 9, 11, 15, 16, 18, 31].

The parallel 3-Majority is a protocol where at every round, each node picks the colors
of three random neighbors and updates its color according to the majority rule (taking
the first one or a random one to break ties). The authors of [5] assume that the bias is
Ω(min{

√
2k, (n/ log n)1/6} ·

√
n log n). Under this assumption, they prove that consensus is

reached with high probability in O(min{k, (n/ log n)1/3} · log n) rounds, and that this is tight
if k 6 (n/ log n)1/4. The first result without bias [6] restricts the number of initial colors to
k = O(n1/3). Under this assumption, they prove that 3-Majority reaches consensus with
high probability in O((k2(log n)1/2 + k log n) · (k + log n)) rounds. Very recently, such result
has been generalized to the whole range of k in [8].

In [18] the authors provide an analysis of the 3-median rule, in which every node updates
its value to the median of its current value and the values of two randomly chosen neighbors.
They show that this dynamics converges to an almost-agreement configuration (which is even
a good approximation of the global median) within O(log k · log log n+ log n) rounds, w.h.p.
It turns out that, in the binary case, the median rule is equivalent to the 2-Choices dynamics,
a variant of 3-Majority, thus their result implies that this is a stabilizing consensus protocol
with O(log n) convergence time. As mentioned earlier, our analysis borrows a hitting-time
bound on general Markov chains from [18].

Very recently, [22] provides an optimal bound Θ(k log n) for the 2-Choices dynamics on
the complete graph even under some dynamic adversary. In [15, 16], the authors consider
the 2-Choices dynamics for plurality consensus in the binary case (i.e. k = 2). For random
d-regular graphs, [15] proves that all nodes agree on the majority color in O(log n) rounds,
provided that the bias is ω(n ·

√
1/d+ d/n). The same holds for arbitrary d-regular graphs

if the bias is Ω(λ2 · n), where λ2 is the second largest eigenvalue of the transition matrix.
In [16], these results are extended to general expander graphs.

1.3 Structure of the paper

In Section 2, we provide some preliminaries and an informal description of the expected
evolution of the U-Process. In Section 3, we formally state the main results of this paper
and describe an outline of the corresponding proofs. Section 4 is devoted to the description
of the tight analysis of the symmetry-breaking phase. The analysis of the “majority” phase
of the process is given in Section 5. Conclusions and some open questions are discussed in
Section 6. Due to lack of space, all the omitted proofs can be found in the full-version of the
paper [14].

2 Preliminaries

We analyze the parallel version of the dynamics called U-Dynamics in the (uniform) PULL
model on the complete graph: Starting from an initial configuration where every node
supports a color, i.e. a value from a set Σ of k possible colors8, at every round, each node
u pulls the color of a randomly-selected neighbor v. If the color of node v differs from its
own color, then node u enters in an undecided state (an extra state with no color). When a

8 W.l.o.g. we can define Σ = [k] where [k] = {1, 2, · · · , k}.

MFCS 2018

28:6 A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors

Table 1 The update rule of the U-Dynamics where i, j ∈ [k] and i 6= j.

u
∖

v undecided color i color j

undecided undecided i j

i i i undecided
j j undecided j

node is in the undecided state and pulls a color, it gets that color. Finally, a node that pulls
either an undecided node or a node with its own color remains in its current state.

In this paper we consider the case in which there are two possible colors (say color Alpha
and color Beta). Let us name C the space of all possible configurations and observe that,
since the graph is complete, a configuration x ∈ C is uniquely determined by fixing the
number of Alpha-colored nodes and the number of Beta-colored ones, say a(x) and b(x),
respectively.

It is convenient to give names also to two other quantities that will appear often in
the analysis: The number q(x) = n − a(x) − b(x) of undecided nodes and the difference
s(x) = a(x)− b(x) called the bias of x. Notice that any two of the quantities a(x), b(x), q(x),
and s(x) uniquely determine the configuration. When it will be clear from the context, we
will omit x and write a, b, q, and s instead of a(x), b(x), q(x), and s(x).

Observe that the U-Dynamics defines a finite-state Markov chain {Xt}t>0 with state
space C and three absorbing states, namely, q = n, a = n, and b = n. We call U-Process the
random process obtained by applying the U-Dynamics starting at a given state. Once we fix
the configuration x at round t of the process, i.e. Xt = x, we use the capital letters A,B,Q,
and S to refer to the random variables a(Xt+1), b(Xt+1), q(Xt+1), s(Xt+1).

From the definition of U-Dynamics it is easy to calculate the following expected values
(see also Section 3 in [4]):

E [A |Xt = x] = a

(
a+ 2q
n

)
, (1)

E [Q |Xt = x] = q2 + 2ab
n

, (2)

E [S |Xt = x] = a(a+ 2q)
n

− b(b+ 2q)
n

= s
(

1 + q

n

)
. (3)

2.1 The expected evolution of the U-Process
Equations (1)-(3) can be used to have a preliminary intuitive idea on the expected evolution
of the U-Process. From (3) it follows that the bias s increases exponentially, in expectation,
as long as the number q of undecided nodes is a constant fraction of n (say, q > δn, for some
positive constant δ). By rewriting (2) in terms of q and s we have that

E [Q |Xt = x] =q2 + 2ab
n

= 2q2 + (n− q)2 − s2

2n >
n

3 −
s2

2n, (4)

where in the inequality we used the fact that the minimum of 2q2 + (n− q)2 is achieved at
q = n

3 and its value is 2
3n

2. From (4) it thus follows that, as long as the magnitude of the
bias is smaller than a constant fraction of n (say s < 2

3n), the expected number of undecided
nodes will be larger than a constant fraction of n at the next round (say, E [Q |Xt = x] > n

9).
When the magnitude of the bias s reaches 2

3n, it is easy to see that the expected number
of nodes with the minority color decreases exponentially. Indeed, suppose w.l.o.g. that Beta

A. Clementi, M. Ghaffari, L. Gualà, E. Natale, F. Pasquale, and G. Scornavacca 28:7

is the minority color and rewrite (1) for B and in terms of b and s. We get

E [B |Xt = x] = b

(
b+ 2q
n

)
= b

(
1− 2s+ 3b− n

n

)
. (5)

Hence, when s > 2
3n we have that E [B |Xt = x] 6 2

3b.
The above sketch of the analysis in expectation would suggest that the process should

end up in a monochromatic configuration within O(log n) rounds. Indeed, in Theorem 2
we prove that this is what happens with high probability (w.h.p., from now on) when the
process starts from a configuration that already has some bias, namely s = Ω(

√
n log n).

When the process starts from a configuration with a smaller bias, the analysis in expec-
tation looses its predictive power. As an extreme example, observe that when a = b = n

3
the system is “in equilibrium” according to (1)-(3). However, the equilibrium is “unstable”
and the symmetry is broken by the variance of the process (as long as s = o(

√
n)) and by

the increasing drift towards majority (as soon as s >
√
n). As mentioned in the Introduc-

tion, the analysis of this symmetry-breaking phase is the key technical contribution of the
paper and it will be described in Section 4. This analysis will show that, starting from any
initial configuration, the system reaches a configuration where the magnitude of the bias is
Ω(
√
n log n) within O(log n) rounds, w.h.p.

3 Main results and the digraph of the U-Process’ phases

As informally discussed in the introduction, we prove the two following results characterizing
the evolution of the U-Dynamics on the synchronous PULL model in the complete graph.

I Theorem 1 (Consensus). Let the U-Process start from any configuration in C. Then the
process converges to a (valid) monochromatic configuration within O(log n) rounds, w.h.p.
Furthermore, if the initial configuration has at least one colored node (i.e. q 6 n− 1), then
the process converges to a configuration such that |s| = n, w.h.p.

I Theorem 2 (Plurality consensus). Let γ be any positive constant. Assume that the U-Process
starts at any biased configuration such that |s| > γ

√
n log n and assume w.l.o.g. the majority

color is Alpha. Then the process converges to the monochromatic configuration with a = n

within O(log n) rounds, w.h.p. Furthermore, the result is almost tight in a twofold sense: (i)
An initial configuration exists, with |s| = Ω(

√
n log n), such that the process requires Ω(log n)

rounds to converge w.h.p. and (ii) there is an initial configuration with |s| = Θ(
√
n) such

that the process converges to the minority color with constant probability.

Outline of the two proofs. The two theorems above are consequences of our refined
analysis9 of the evolution of the U-Process. The analysis is organized into a set of possible
process phases, each of them is defined by specific ranges of parameters q and s. A high-level
description of this structure is shown in Fig. 1 where every rectangular region represents a
subset of configurations with specific ranges of s and q and it is associated to a specific phase.
In details, let γ be any positive constant, then the regions are defined as follows: H1 is the
set of configurations such that s 6 γ

√
n log n and q > 1

2n; H2 is the set of configurations

9 We remark that our analysis focuses on asymptotic bounds and it does not definitely optimize the
corresponding constants: However, using technicalities and loosing readability, all such constants can be
largely improved.

MFCS 2018

28:8 A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors

Figure 1 {H1, . . . , H7} is the considered partitioning of the configuration space C. On the x
axis we represent the bias s, on the y axis the number of undecided nodes q. Missing arrows are
transitions that have negligible probabilities.

such that s 6 γ
√
n log n and 1

18n 6 q 6 1
2n; H3 is the set of configurations such that

s 6 γ
√
n log n and q 6 1

18n. H4 is the set of configurations such that γ
√
n log n 6 s 6 2

3n

and q > 1
18n; H5 is the set of configurations such that γ

√
n log n 6 s 6 2

3n and q 6 1
18n; H7

is the set of configurations such that 2
3n 6 s 6 n− 5

√
n log n and q 6

√
n log n. H6 is the

set of configurations such that s > 2
3n minus H7.

For each region, Fig. 1 specifies our upper bound on the exit time of the corresponding
phase, while black arrows represent the phase transitions which may happen with non-
negligible probability.

Observe that the scheme highlighted in Fig. 1 can be seen as a directed acyclic graph G
having a single sink, H6, that is reachable from any other region. We remark that, starting
from certain configurations, a monochromatic state may be reached via different paths in
G. This departs from previous analysis of consensus processes [4, 5, 18] in which the phase
transition graph is essentially a path.

We now outline the proofs of the two main results of this paper.
Outline of the Proof of Theorem 2. Consider an initial configuration x such that s(x) >

γ
√
n log n, for some positive constant γ, and assume w.l.o.g. that the majority color

in x is Alpha. We first show that, if the initial configuration x is in H4, then the bias
grows exponentially fast and thus the process enters in H6 within O(log n) rounds. Then
we prove that, once in H6, the process ends in the monochromatic configuration where
a = n within O(log n) rounds, w.h.p. All the other cases “reduce” to the above ones in
at most two rounds. Indeed, we show that, starting from any configuration in H5, the
process falls into H4 or H6 in one round and that, starting from any configuration in
H7, the process falls into H4, H5 or H6 in one round. As for the tightness of the result
stated in the second part of the theorem, we have that the lower bound (Claim (i)) on
the convergence time is an immediate consequence of Claim (ii) of Lemma 12, while the
second claim, concerning the lower bound on the initial bias, is proved in the full version
of the paper [14].

Outline of the Proof of Theorem 1. We first observe that the configuration where all nodes
are undecided (i.e. q = n) is an absorbing state of the U-Process and thus, for this initial
configuration, Theorem 1 trivially holds. In Section 4, we will show that, starting from
any balanced configuration, i.e. with s = o(

√
n log n), the U-Process “breaks symmetry”

A. Clementi, M. Ghaffari, L. Gualà, E. Natale, F. Pasquale, and G. Scornavacca 28:9

reaching a configuration y with s(y) = Ω(
√
n log n) within O(log n) rounds, w.h.p. Then,

the thesis easily follows by applying Theorem 2 with initial configuration y. As for
the symmetry-breaking phase, in Lemma 3 we prove that, if the process starts from
a configuration in H1 or H3 (see Figure 1), then after O(log n) rounds either the bias
between the two colors becomes Ω(

√
n log n) or the system reaches some configuration in

H2, w.h.p. In Lemma 8 we then prove that, if the process is in a configuration in H2,
then the bias s will become Ω(

√
n log n) within O(log n) rounds, w.h.p.

4 Symmetry breaking

In this section we show that, starting from any (almost-) balanced configuration, i.e. those
with s = o(

√
n log n), the U-Process “breaks symmetry” reaching a configuration with

s = Ω(
√
n log n) within O(log n) rounds, w.h.p. This part of our analysis is organized as

follows.
In Lemma 3 we prove that, if the process starts at a configuration in H1 or H3 (see

Figure 1), i.e., when the number of undecided nodes is either smaller than n/18 or larger
than n/2, then, after O(log n) rounds, either the bias between the two colors already gets
magnitude Ω(

√
n log n) or the system reaches some configuration in H2 (i.e., a configuration

where the number of undecided nodes is between n/18 and n/2). In Lemma 8 we then prove
that, if the process is in a configuration in H2, then the bias between the two colors will get
magnitude Ω(

√
n log n) within O(log n) rounds, w.h.p.

I Lemma 3 (Phases H1 and H3: Starters).
Starting from any configuration x ∈ H3, the U-Process reaches a configuration X′ ∈
(H1 ∪H2 ∪H4) in one round, w.h.p.
Starting from any configuration x ∈ H1, the U-Process reaches a configuration X′ ∈
(H2 ∪H4) within O(log n) rounds, w.h.p.

If the system lies in a configuration of H2, we need more complex probabilistic arguments
to prove that the bias between the two colors reaches Ω(

√
n log n) within O(log n) rounds

w.h.p. We will make use of the following bound on the hitting time of any Markov chain
having suitable drift properties. This result is a variant of Claim 2.9 in [18] that requires a
new proof.

I Lemma 4. Let {Xt}t∈N be a Markov Chain with finite state space Ω and let f : Ω 7→ [0, n]
be a function that maps states to integer values. Let c3 be any positive constant and let
m = c3

√
n log n be a target value. Assume the following properties hold:

1. For any positive constant h, a positive constant c1 < 1 exists such that, for any x ∈ Ω
with f(x) < m, it holds that

P
(
f(Xt+1) < h

√
n|Xt = x

)
< c1 ,

2. Two positive constants ε, c2 exist such that, for any x ∈ Ω with f(x) < m, it holds that

P (f(Xt+1) < (1 + ε)f(Xt)|Xt = x) < e−c2f(x)2/n .

Then the process reaches a state x such that f(x) > m within O(log n) rounds, w.h.p.

Proof. We first define a set of hitting times T = {τ(i)}i∈N where

τ(i) = inf
t∈N
{t : t > τ(i− 1), f(Xt) > h

√
n}

MFCS 2018

28:10 A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors

setting τ(0) = 0. By Hypothesis (1), for every i ∈ N, the expectation of τ(i) is finite. Then
we define the following stochastic process which is a subsequence of {Xt}t∈N: {Ri}i∈N =
{Xτ(i)}i∈N. Observe that {Ri}i∈N is still a Markov Chain. Indeed, let {x1, . . . , xi−1} a set of
states in Ω:

P (Ri = x|Ri−1 = xi−1 ∧ · · · ∧R1 = x1)
= P

(
Xτ(i) = x|Xτ(i−1) = xi−1 ∧ · · · ∧Xτ(1) = x1

)
=

∑
t(i)∧···∧t(0)∈N

P
(
Xt(i) = x|Xt(i−1) = xi−1 ∧ · · · ∧Xt(1) = x1

)
·P (τ(i) = t(i) ∧ τ(i− 1) = t(i− 1) ∧ · · · ∧ τ(1) = t(1))

=
∑

t(i)∧···∧t(0)∈N

P
(
Xt(i) = x|Xt(i−1) = xi−1

)
·P (τ(i) = t(i) ∧ τ(i− 1) = t(i− 1) ∧ · · · ∧ τ(1) = t(1))

= P
(
Xτ(i) = x|Xτ(i−1) = xi−1

)
= P (Ri = x|Ri−1 = xi−1) .

By definition the state space of R is {x ∈ Ω : f(x) > h
√
n}. Moreover Hypothesis (2) still

holds for this new Markov Chain. Indeed:

P (f(Ri+1) < (1 + ε)f(Ri)|Ri = x))
= 1−P (f(Ri+1) > (1 + ε)f(Ri)|Ri = x))
= 1−P

(
f(Xτ(i+1)) > (1 + ε)f(Xτ(i))|Xτ(i) = x)

)
6 1−P

(
f(Xτ(i+1)) > (1 + ε)f(Xτ(i)) ∧ τ(i+ 1) = τ(i) + 1|Xτ(i) = x)

)
= 1−P

(
f(Xτ(i)+1) > (1 + ε)f(Xτ(i))|Xτ(i) = x)

)
= 1−P (f(Xt+1 > (1 + ε)f(Xt)|Xt = x)) < e−c2f(x)2/n.

These two properties are sufficient to study the number of rounds required by the new
Markov Chain {Ri}i∈N to reach the target value m. Indeed, by defining the random variable
Zi = f(Ri)√

n
and considering the following “potential” function, Yi = exp(m√

n
− Zi) we can

compute its expectation at the next round as follows. Let us fix any state x ∈ Ω such that
h
√
n 6 f(x) < m and define z = f(x)√

n
and y = exp(m√

n
− z). We get:

E [Yi+1|Ri = x] 6 P (f(Ri+1) < (1 + ε)f(x)) em/
√
n

+ P (f(Ri+1) > (1 + ε)f(x)) em/
√
n−(1+ε)z

(from Hypothesis (2)) 6 e−c2z
2
· em/

√
n + 1 · em/

√
n−(1+ε)z (6)

= em/
√
n−c2z

2
+ em/

√
n−z−εz

= em/
√
n−z(ez−c2z

2
+ e−εz) 6 em/

√
n−z(e−2 + e−2) (7)

<
em/
√
n−z

e
<
y

e
,

where in (7) we used that z is always at least h and thanks to Hypothesis (1) we can choose
a sufficiently large h. By applying the Markov inequality and iterating the above bound, we
get:

P (Yi > 1) 6 E [Yi]
1 6

E [Yi−1]
e

6 · · · 6 E [Y0]
eτR

6
em/
√
n

ei
.

A. Clementi, M. Ghaffari, L. Gualà, E. Natale, F. Pasquale, and G. Scornavacca 28:11

We observe that if Yi 6 1 then Ri > m, thus by setting i = m/
√
n+ log n = (c3 + 1) log n,

we get:

P
(
R(c3+1) logn < m

)
= P

(
Y(c3+1) logn > 1

)
<

1
n
. (8)

Our next goal is to give an upper bound on the hitting time τ(c3+1) logn. Note that the event
“τ(c3+1) logn > c4 log n” holds if and only if the number of rounds such that f(Xt) > h

√
n

(before round c4 log n) is less than (c3 + 1) log n. Thanks to Hypothesis (1), at each round t
there is at least probability 1 − c1 that f(Xt) > h

√
n. This implies that, for any positive

constant c4, the probability P
(
τ(c3+1) logn > c4 log n

)
is bounded by the probability that,

within c4 log n independent Bernoulli trials, we get less than (c3 + 1) log n successes, where
the success probability is at least 1− c1. We can thus choose a sufficiently large c4 and apply
the multiplicative form of the Chernoff bound (see e.g. Theorem 1.1 in[21]) and obtain:

P
(
τ(c3+1) logn > c4 log n

)
<

1
n
. (9)

We are now ready to prove the Lemma using (8) and (9), indeed:

P (∃t 6 c4 log n : Xt > m) > P
(
R(c3+1) logn > m ∧ τ(c3+1) logn 6 c4 log n

)
= 1−P

(
R(c3+1) logn < m ∨ τ(c3+1) logn > c4 log n

)
> 1−P

(
R(c3+1) logn < m

)
−P

(
τ(c3+1) logn > c4 log n

)
> 1− 2

n
.

Hence, choosing a suitable big c4, we have shown that in c4 log n rounds the process reaches
the target value m, w.h.p. J

The basic idea would be to apply the above lemma to the U-Process with f(Xt) = |s(Xt)|
in order to get an upper bound on the number of rounds needed to reach a configuration
having bias Ω(

√
n log n). To this aim, we first show that, for any configuration in H2,

Properties 1 and 2 in Lemma 4 are satisfied.

I Claim 5. Let x ∈ C be any configuration such that n
18 6 q(x) 6 n

2 and |s(x)| < c4
√
n log n

for any positive constant c4, then it holds:

1. for any constant h > 0 a constant c1 < 1 exists such that P (|S| < h
√
n |Xt = x) < c1,

2. two positive constants c2, ε exist such that P (|S| > (1 + ε)s |Xt = x) > 1− e−c2s
2/n.

It is important to observe that the above claim ensures Properties 1 and 2 of Lemma 4
whenever 1

18n 6 q 6 1
2n. Unfortunately, Lemma 4 requires such properties to hold for any

(almost-)balanced configuration: If q = n− o(n), Property 1 does not hold, while Property
2 is not satisfied if q = o(n). In order to manage this issue, in Subsection 4.1, we define a
pruned process, a variant of U-Process where it is possible to apply Lemma 4. Then, in
Subsection 4.2 we show a coupling between the U-Process and the pruned one.

4.1 The pruned process
The helpful, key point is that, starting from any configuration x ∈ H2, the probability that
the process goes in one of those “bad” configurations with q < 1

18n or q > 1
2n is negligible

(see Claim 7). Thus, intuitively speaking, all the configurations actually visited by the process

MFCS 2018

28:12 A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors

before leaving H2 do satisfy Lemma 4. In order to make this intuitive argument rigorous, in
what follows, we define a suitably pruned process by removing from H2 all the unwanted
transitions.

Let s̄ ∈ [n] and z(s̄) be the configuration such that s(z(s̄)) = s̄ and q(z(s̄)) = 1
2n.

Let px,y be the probability of a transition from the configuration x to the configuration
y in the U-Process. We define a new stochastic process: The U-Pruned-Process. The
U-Pruned-Process behaves exactly like the original process but every transition from a
configuration x ∈ H2 to a configuration y such that q(y) < 1

18n or q(y) > 1
2n now have

probability p′x,y = 0. Moreover, for any s̄ ∈ [n], starting from any configuration x ∈ H2, the
probability of reaching the configuration z(s̄) is:

p′x,z(s̄) = px,z(s̄) +
∑

y:(q(y)< 1
18n∨q(y)> 1

2n)
∧
s(y)=s̄

px,y.

Finally, all the other transition probabilities remain the same.
Observe that, since the U-Pruned-Process is defined in such a way it has exactly the

same marginal probability of the original process with respect to the random variable s, then
Claim 5 holds for the U-Pruned-Process as well. Thus, we can choose constants h, c1, c2, ε
such that the two properties of Lemma 4 are satisfied.

I Corollary 6. Starting from any configuration x ∈ H2, the U-Pruned-Process reaches a
configuration X′ ∈ H4 within O(log n) rounds, w.h.p.

4.2 Back to the original process
The definition of the U-Pruned-Process suggests a natural coupling between the original
process and the pruned one: If the two processes are in different states then they act
independently, while, if they are in the same configuration x, they move together unless
the U-Process goes in a configuration y such that q(y) < 1

18n or q(y) > 1
2n. In that case

the U-Pruned-Process goes in z(s(y)). Using this coupling, we first show that, if the two
processes are in the same configuration, the probability that they get separated is negligible.

I Claim 7. For every configuration x ∈ H2, the probability that the number of undecided
nodes in the next round of the U-Process is not between n/18 and n/2 is

P
(
q(Xt+1) /∈

[n
18 ,

n

2

]
|Xt = x

)
6 e−Θ(n).

Then, thanks to the above claim, we can show that the H2 exit time of the pruned procedure
stochastically dominates the H2 exit time of the original process. Thus, using Corollary 6,
we get the main result of this section.

I Lemma 8 (Phase H2). Starting from any configuration x ∈ H2, the U-Process reaches a
configuration X′ ∈ H4 within O(log n) rounds, w.h.p.

5 Convergence to the majority

In this section we state the key technical lemmas we use to prove our second main result,
namely Theorem 2, which essentially establishes that, starting from any sufficiently-biased
configuration, the U-Process converges to the monochromatic configuration where all nodes
support the initial majority color within Θ(log n) rounds, w.h.p.

A. Clementi, M. Ghaffari, L. Gualà, E. Natale, F. Pasquale, and G. Scornavacca 28:13

The proofs of the technical lemmas, as well as the almost-tightness result on the minimal
magnitude of the initial bias stated in Theorem 2, can be found in the full version of the
paper [14].

Phases H5 and H7 (Starters II)

We show that if the process is in a configuration where the number of the undecided nodes is
relatively small with respect to the bias, then in the next round the number of the undecided
nodes becomes large while the bias does not decrease too much, w.h.p. This essentially
implies that if the process starts in H5 then in the next round the process moves to a
configuration belonging to H4 or H6 (Lemma 9), while if it starts in H7 then in the next
round it moves to H4 or H5 or H6 (Lemma 10).

I Lemma 9 (Phase H5). Starting from any configuration x ∈ H5 with a > b, the U-Process
reaches a configuration X′ ∈ (H4 ∪H6) with a > b in one round, w.h.p.

I Lemma 10 (Phase H7). Starting from any configuration x ∈ H7 with a > b, the U-Process
reaches a configuration X′ ∈ (H4 ∪H5 ∪H6) with a > b in one round, w.h.p.

Phase H4 (Age of the undecideds)

We first show that, under some parameter ranges including H4 (and hence when the number
of the undecideds are large enough), the growth of the bias is exponential.

I Claim 11. Let γ be any positive constant and x ∈ C be any configuration such that
s > γ

√
n log n and q > 1

18n. Then, it holds that s (1 + 1/36) < S < 2s, w.h.p.

The above result allows us to prove the following bounds on the time the process requires
to reach Phase H6.

I Lemma 12 (Phase H4). Let x ∈ H4 be a configuration with a > b. Then, (i) starting from
x, the U-Process reaches a configuration X′ ∈ H6 with a > b within O(log n) rounds, w.h.p.
Moreover, (ii) an initial configuration y ∈ H4 exists such that the U-Process stays in H4 for
Ω(log n) rounds, w.h.p.

Phase H6 (Majority takeover)

This is the phase in which, due to the large bias, the nodes converge to the majority color
within a logarithmic number of rounds. We first prove that the number of nodes that support
the minority color decreases exponentially fast and that the bias is preserved round by round.
Then, when b 6 2

√
n log n, the number of undecided nodes starts to decrease exponentially

fast as well. At the very end, when there are only few nodes (i.e., O(
√
n log n)) that do

not support the majority color yet, the minority color disappears in few steps and thus the
U-Process converges to majority within O(log n) rounds

I Lemma 13 (Phase H6). Starting from any configuration x ∈ H6 with a > b, the U-Process
ends in the monochromatic configuration where a = n within O(log n) rounds, w.h.p.

6 Conclusions

We provided a full analysis of the U-Dynamics in the parallel PULL model for the binary
case showing it is an efficient self-stabilizing consensus protocol. Besides giving tight bounds
on the convergence time, our set of results well-clarifies the main aspects of the process

MFCS 2018

28:14 A Tight Analysis of the Parallel Undecided-State Dynamics with Two Colors

evolution and the crucial role of the undecided nodes in each phase of this evolution. An
interesting open question is that of considering the same process in the multi-color case and
to derive bounds on the time required to break symmetry from balanced configurations, as
well. Finally, we believe that our analysis can be suitably adapted in order to show that the
U-Dynamics efficiently stabilizes to a valid consensus “regime” 10 even in the presence of a
dynamic adversary that can change the state of a subset of nodes of size o(

√
n) provided

that the initial number of colored nodes is Ω(
√
n).

References
1 Mohammed Amin Abdullah and Moez Draief. Global majority consensus by local majority

polling on graphs of a given degree sequence. Discrete Applied Mathematics, 180:1–10,
2015.

2 Dana Angluin, James Aspnes, and David Eisenstat. A Simple Population Protocol for Fast
Robust Approximate Majority. Distributed Computing, 21(2):87–102, 2008. (Preliminary
version in DISC’07).

3 Arta Babaee and Moez Draief. Distributed Multivalued Consensus. In Computer and
Information Sciences III, pages 271–279. Springer, 2013.

4 Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Riccardo
Silvestri. Plurality Consensus in the Gossip Model. In ACM-SIAM SODA’15, pages 371–
390, 2015.

5 Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, Riccardo Silvestri,
and Luca Trevisan. Simple dynamics for plurality consensus. In ACM SPAA’14, pages 247–
256, 2014.

6 Luca Becchetti, Andrea Clementi, Emanuele Natale, Francesco Pasquale, and Luca Tre-
visan. Stabilizing consensus with many opinions. In ACM-SIAM SODA’16, pages 620–635,
2016.

7 Florence Bénézit, Patrick Thiran, and Martin Vetterli. Interval consensus: from quantized
gossip to voting. In IEEE ICASSP’09, pages 3661–3664, 2009.

8 Petra Berenbrink, Andrea Clementi, Peter Kling, Robert Elsässer, Frederik Mallmann-
Trenn, and Emanuele Natale. Ignore or Comply? On Breaking Symmetry in Consensus.
In ACM PODC’17, pages 335–344, 2017. (Tech. Rep. in arXiv:1702.04921 [cs.DC]).

9 Petra Berenbrink, George Giakkoupis, Anne-Marie Kermarrec, and Frederik Mallmann-
Trenn. Bounds on the Voter Model in Dynamic Networks. In ICALP’16, 2016.

10 Alan A. Berryman and Pavel Kindlmann. Population Systems: A General Introduction.
Springer, 2008.

11 Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch computes approximate ma-
jority. Scientific Reports, Vol. 2, 2012.

12 Keren Censor-Hillel, Bernhard Haeupler, Jonathan Kelner, and Petar Maymounkov. Global
Computation in a Poorly Connected World: Fast Rumor Spreading with No Dependence
on Conductance. In ACM STOC’12, pages 961–970, 2012.

13 Bernard Chazelle. Natural Algorithms and Influence Systems. Commun. ACM, 55(12):101–
110, 2012.

14 Andrea Clementi, Mohsen Ghaffari, Luciano Gualà, Emanuele Natale, Francesco Pasquale,
and Giacomo Scornavacca. A Tight Analysis of the Parallel Undecided-State Dynamics
with Two Colors. CoRR, abs/1707.05135v3, 2018. URL: https://arxiv.org/abs/1707.
05135v3.

10According to the notion of stabilizing almost-consensus protocol given in [2, 6].

https://arxiv.org/abs/1707.05135v3
https://arxiv.org/abs/1707.05135v3

A. Clementi, M. Ghaffari, L. Gualà, E. Natale, F. Pasquale, and G. Scornavacca 28:15

15 Colin Cooper, Robert Elsässer, and Tomasz Radzik. The Power of Two Choices in Dis-
tributed Voting. In ICALP’14, pages 435–446, 2014.

16 Colin Cooper, Robert Elsässer, Tomasz Radzik, Nicolas Rivera, and Takeharu Shiraga. Fast
Consensus for Voting on General Expander Graphs. In DISC’15, pages 248–262, 2015.

17 Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker, Howard
Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for replicated database
maintenance. In ACM PODC’87, pages 1–12, 1987.

18 Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, and Christian
Scheideler. Stabilizing consensus with the power of two choices. In ACM SPAA’11, pages
149–158, 2011.

19 David Doty. Timing in chemical reaction networks. In ACM-SIAM SODA’14, pages 772–
784, 2014.

20 Moez Draief and Milan Vojnović. Convergence speed of binary interval consensus. SIAM
Journal on Control and Optimisation, 50(3):1087–1109, 2012.

21 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis
of randomized algorithms. Cambridge University Press, 2009.

22 Mohsen Ghaffari and Johannes Lengler. Tight analysis for the 3-majority consensus dy-
namics. CoRR, abs/1705.05583, 2017. arXiv:1705.05583.

23 Yehuda Hassin and David Peleg. Distributed probabilistic polling and applications to
proportionate agreement. Information and Computation, 171(2):248–268, 2001.

24 David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In IEEE FOCS’03, pages 482–491, 2003.

25 David Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times.
American Mathematical Society, 2008.

26 Thomas M. Liggett. Stochastic Interacting Systems: Contact, Voter and Exclusion Pro-
cesses. Springer-Verlag, 1999.

27 George B. Mertzios, Sotiris E. Nikoletseas, Christoforos Raptopoulos, and Paul G. Spirakis.
Determining Majority in Networks with Local Interactions and Very Small Local Memory.
In ICALP’14, pages 871–882, 2014.

28 Elchanan Mossel, Joe Neeman, and Omer Tamuz. Majority dynamics and aggregation of
information in social networks. Autonomous Agents and Multi-Agent Systems, 28(3):408–
429, 2014.

29 Saket Navlakha and Ziv Bar-Joseph. Algorithms in nature: the convergence of systems
biology and computational thinking. Mol. Syst. Biol., 7, 2011.

30 Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching agreement in the presence
of faults. Journal of the ACM, 27(2):228–234, 1980.

31 Etienne Perron, Dinkar Vasudevan, and Milan Vojnovic. Using Three States for Binary
Consensus on Complete Graphs. In IEEE INFOCOM’09, pages 2527–1535, 2009.

MFCS 2018

http://arxiv.org/abs/1705.05583

Recovering Sparse Graphs
Jakub Gajarský1

Technical University Berlin, Berlin, Germany
jakub.gajarsky@tu-berlin.de

Daniel Král’2

Mathematics Institute, DIMAP and Department of Computer Science, University of Warwick,
Coventry CV4 7AL, UK
d.kral@warwick.ac.uk

Abstract
We construct a fixed parameter algorithm parameterized by d and k that takes as an input a
graph G′ obtained from a d-degenerate graph G by complementing on at most k arbitrary subsets
of the vertex set of G and outputs a graph H such that G and H agree on all but f(d, k) vertices.

Our work is motivated by the first order model checking in graph classes that are first order
interpretable in classes of sparse graphs. We derive as a corollary that if G is a graph class with
bounded expansion, then the first order model checking is fixed parameter tractable in the class
of all graphs that can obtained from a graph G ∈ G by complementing on at most k arbitrary
subsets of the vertex set of G; this implies an earlier result that the first order model checking
is fixed parameter tractable in graph classes interpretable in classes of graphs with bounded
maximum degree.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Logic, Theory of computation → Finite Model Theory

Keywords and phrases model checking, degenerate graphs, interpretations, bounded expansion

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.29

1 Introduction

The work presented in this paper is motivated by the line of research on algorithmic
metatheorems, general algorithmic results that guarantee the existence of efficient algorithms
for wide classes of problems. The most classical example of such a result is the celebrated
theorem of Courcelle [2] asserting that every monadic second order property can be model
checked in linear time in every class of graphs with bounded tree-width; further results of
this kind can be found in the survey [17]. Specifically, our motivation comes from the first
order model checking in sparse graph classes and attempts to extend these results to classes
of dense graphs with structural properties close to sparse graph classes.

The two very classical algorithms for the first order model checking in sparse graph classes
are the linear time algorithm of Seese [24] for graphs with bounded maximum degree and the
linear time algorithm of Frick and Grohe [10] for planar graphs, which can also be adapted

1 This author’s research was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (ERC Consolidator Grant DISTRUCT, grant
agreement No 648527). This publication reflects only its authors’ view; the European Research Council
Executive Agency is not responsible for any use that may be made of the information it contains.

2 The work of this author was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (ERC Consolidator Grant LADIST, grant
agreement No 648509). This publication reflects only its authors’ view; the European Research Council
Executive Agency is not responsible for any use that may be made of the information it contains.

© Jakub Gajarský and Daniel Král’;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 29; pp. 29:1–29:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jakub.gajarsky@tu-berlin.de
mailto:d.kral@warwick.ac.uk
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.29
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Recovering Sparse Graphs

to an almost linear time algorithm for graphs with locally bounded tree-width. These results
were extended to many other classes of sparse graphs, in particular to graphs locally excluding
a minor by Dawar, Grohe and Kreutzer [5] and to the very general graph classes with bounded
expansion, which were introduced in [18–21], by Dawar and Kreutzer [6] (see [14] for further
details) and, independently, by Dvořák, Král’ and Thomas [7, 8]. This line of research
ultimately culminated with the result of Grohe, Kreutzer and Siebertz [15], who proved that
the first order model checking is fixed-parameter tractable in nowhere-dense classes of graphs
by giving an almost linear time algorithm for this problem when parameterized by the class
and the property.

The results that we have just mentioned concern classes of sparse graphs. While they
cannot be extended to all somewhere-dense classes of graphs, see e.g. [8], it is still possible
to hope for proving tractability results for dense graphs that possess structural properties
making first order model checking feasible. For example, a well-known theorem of Courcelle,
Makowsky and Rotics [4] on monadic second order model checking in classes of graphs
with bounded clique-width implies that first order model checking is tractable for classes of
graphs with bounded clique-width; in relation to the results that we present further, it is
interesting to note that graph classes that can be first order interpreted in classes of graphs
with bounded clique-width also have bounded clique-width [3, Corollary 7.38]). Another
approach is studying graphs defined by geometric means [9,13,16]. The approach that we
are interested in here lies in considering graph classes derived from sparse graph classes by
first order interpretations as in [11,12]; the definition of a first order interpretation can be
found in Section 2.

Specifically, we are motivated by the following very general folklore conjecture.

I Conjecture 1. The first order model checking is fixed parameter tractable in I(G) when
parameterized by a graph class G with bounded expansion, a simple first order graph interpre-
tation scheme I and a first order property to be tested.

The first step towards this conjecture was obtained in [11], where it was shown that Conjec-
ture 1 holds for classes of graphs with bounded maximum degree.

I Theorem 2. The first order model checking is fixed parameter tractable in I(G) when
parameterized by a class G of graphs with bounded maximum degree, a simple first order
graph interpretation scheme I and a first order property to be tested.

A combinatorial characterization of classes of graphs interpretable in graph classes of bounded
expansion was given in [12]. However, the characterization does not come with an efficient
algorithm to compute the corresponding decomposition. So, Conjecture 1 remains open. The
approach taken in this paper can be seen as complementary to the one used in [12] since we
attempt to directly reverse the effect of the first order interpretation.

To motivate our approach, we sketch the proof of Theorem 2 from [11]. The core of the
proof lies in considering first order graph interpretation schemes I where the vertex sets of
G and I(G) are the same and constructing an algorithm that recovers a graph H from I(G)
such that the graphs G and H have the same vertex set and they agree on most of the edges.
We now describe the approach from [11] phrased in the terminology used in this paper.

We start with introducing additional notation. A pattern is a graph R that may contain
loops and it does not contain a pair of adjacent twins that both have loops, or a pair of
non-adjacent twins that neither of them has a loop, i.e., a graph that has no non-trivial
induced endomorphism. To make our exposition more transparent, we will further refer to
vertices of patterns as to nodes and generally denote them by u with different subscripts

J. Gajarský and D. Král’ 29:3

and superscripts; vertices of graphs that are not patterns will generally be denoted by v

with different subscripts and superscripts. Let G be a graph, R a pattern and (Vu)u∈V (R) a
partition of the vertices of G into parts indexed by the nodes of R. The graph GR is the
graph with the same vertex set as G such that if v, v′ ∈ V (G), v ∈ Vu and v′ ∈ Vu′ , then vv′
is an edge in GR if and only if either vv′ is an edge of G and uu′ is not an edge of R or vv′
is not an edge of G or uu′ is an edge of R. Alternatively, we may define the graph GR to be
the graph obtained from G by complementing all edges inside sets Vu for each node u with a
loop and between sets Vu and Vu′ for each edge uu′ of R. Note that the graph GR depends
on the chosen partition of the vertex set of G; this partition will always be clear from the
context.

A very simple example of the introduced notion is a pattern R that consists of a single
node u with a loop. For every graph G, there is only one single class partition of V (G), i.e.,
Vu = V (G), and GR is then the complement of G. Similarly, if R has two vertices u and u′
and the edges uu (loop) and uu′, and the vertex set of a graph G is partitioned into sets Vu

and Vu′ , then GR is obtained from G by complementing all edges inside Vu and all edges
between Vu and Vu′ .

We now continue with the exposition of the proof of Theorem 2 from [11]. Simple first
order graph interpretation schemes of graphs with bounded maximum degree are very closely
linked to patterns as given in the next proposition, which directly follows from Gaifman’s
theorem [11]. The proposition essentially says that for every integer d and interpretation
scheme I, there exist a pattern R and an integer D such that the graph I(G) for any graph
G with maximum degree d is equal to HR for a suitable graph H with maximum degree D;
note that R and D depend on I and d only.

I Proposition 3. Let Gd be the class of graphs of maximum degree d and I a simple first
order graph interpretation scheme. There exists an integer D and a pattern R such that
for every graph I(G) obtained from G ∈ Gd there exists a graph H ∈ GD and a partition
(Vu)u∈V (R) of the vertex set of H such that the graphs I(G) and HR are the same.

This characterization of graphs that can be interpreted in a class of graphs with bounded
maximum degree is then combined with the following “recovery” algorithm, which is implicit
in [11], to get a proof of Theorem 2. Note the algorithm A from Theorem 4 has two
parameters, one controls the complexity of the structure of a graph and the other controls
the complexity of its transformation.

I Theorem 4. There exists an algorithm A that is fixed parameter with respect to an integer
parameter D and a pattern R and has the following property: for all D and R, there exist an
integer D′ and a pattern R′ such that the algorithm A takes as an input a graph GR, where
G is a graph with maximum degree at most D, and outputs a graph H such that GR and
HR′ are the same and the maximum degree of H is at most D′.

One of our main results is an extension of Theorem 4 to classes of d-degenerate graphs. Note
that such graph classes include classes with bounded expansion concerned by Conjecture 1.
This may look like an innocent extension of Theorem 4 at the first sight. However, the proof
of Theorem 4 relies on the fact that the degrees of any two vertices of GR that are contained
in the same part Vu, u ∈ V (R), differ by at most 2d, i.e., it is easy to recognize vertices that
belong to the same part. This is far from being true in the setting of d-degenerate graphs,
which leads to a need for a much finer analysis of the structure of an input graph.

MFCS 2018

29:4 Recovering Sparse Graphs

I Theorem 5. There exists an algorithm A that is fixed parameter with respect to integer
parameters d and K and has the following property: for all d and K, there exists an integer
m such that the algorithm A takes as an input a graph GR and integers d and K, where
G is a d-degenerate graph and R is a K-node pattern (both unknown to A), and outputs a
graph H such that G and H agree on all but at most m vertices. In particular, the graph H
is (d+m)-degenerate.

We next present a corollary of Theorem 5, which we believe to be of independent interest.
First observe that complementing edges between two subsets V and V ′ of the vertex set of G
is equivalent to complementing on the following three subsets of vertex set: V ∪ V ′, V and
V ′. Hence, the graph GR is obtained from G by complementing on at most K +

(
K
2
)
subsets

of vertices of G, where K is the number of nodes of R. In the other direction, if a graph H
is obtained from G by complementing on at most k subsets of vertices, there exists a pattern
R with at most 2k nodes such that H = GR. Hence, Theorem 5 implies the following.

I Corollary 6. There exists an FPT algorithm A with the following property: for every
integer d and an integer k, there exists an integer m such that the algorithm A takes as
an input a graph G′ obtained from a d-degenerate graph G by complementing on at most k
subsets of the vertex set of G and outputs a graph H such that G and H agree on all but at
most m vertices.

In relation to the first order model checking, Corollary 6 yields the following theorem,
which we prove in Section 4.

I Theorem 7. Let G be a graph class with bounded expansion and let Gk be the class
containing all graphs that can obtained from a graph G ∈ G by complementing on at most k
subsets of the vertex set of G. For every k, the first order model checking is fixed parameter
tractable on Gk.

Observe that Proposition 3 implies the following: if G is a class of graphs with bounded
maximum degree and I is a simple first order graph interpretation scheme, then I(G) ⊆ Gk

D

for some integers D and k, where GD is the class of all graphs with maximum degree at
most D. Hence, Theorem 7 gives an alternative proof of Theorem 2. On the other hand,
since Proposition 3 does not hold in the setting of graph classes with bounded expansion,
Theorems 5 and 7 do not yield an analogous result in this more general setting, which is
concerned by Conjecture 1; we discuss further details in Section 5.

2 Preliminaries

In this section, we briefly introduce the notation used throughout the paper, and present the
concepts that we need further.

Graphs considered in this paper are simple, i.e., they do not contain loops or parallel
edges unless stated otherwise. If G is a graph, then V (G) denotes the set of its vertices. The
neighborhood of a vertex v in a graph G, denoted by NG(v), is the set of all vertices adjacent
to v. The degree of a vertex v of a graph G is the size of its neighborhood, and the relative
degree of v with respect to a subset X ⊆ V (G) is the number of the neighbors of v in X. If
G is a graph and W a subset of its vertices, then the subgraph of G induced by W , denoted
by G[W], is the subgraph of G with the vertex set W such that two vertices are adjacent in
G[W] if and only if they are adjacent in G. Finally, a graph G is d-degenerate, if its vertices
can be ordered in such a way that each vertex has at most d of its neighbors preceding it.

J. Gajarský and D. Král’ 29:5

Let G be a graph. Two vertices v and v′ of G are twins if every vertex w different from v

and v′ is adjacent to either both v and v′ or none of them. The binary relation of “being a
twin” on V (G) is an equivalence relation; we will call the equivalence classes of this relation
twin-classes. Note that each twin-class induces either a complete subgraph or an empty
subgraph of G.

A graph G′ is an r-shallow minor of a graph G if it can be obtained from a subgraph of
G by contracting vertex-disjoint subgraphs of radii at most r (and removing arising loops
and parallel edges). We say that a graph class G has bounded expansion if G is monotone, i.e.,
closed under taking subgraphs, and there exists a function f : N→ N such that the average
degree of every r-shallow minor of any graph from G is at most f(r). As we have already
mentioned, examples of classes of graphs with bounded expansion are classes of graphs with
bounded maximum degree and minor-closed classes of graphs. The latter include classes of
graphs with bounded tree-width or graphs embeddable in a fixed surface.

If G is a graph, then a K-apex of G is a graph obtained by at adding at most K vertices
to G and joining them to the remaining vertices and between themselves arbitrarily. The
next proposition easily follows from the basic results on classes of graphs with bounded
expansion; see e.g. [22, Chapter 5] for further details.

I Proposition 8. Let G be a class of graph with bounded expansion, and let K be a positive
integer. The class of graphs formed by K-apices of graphs from G has bounded expansion.

Finally, a simple first order interpretation scheme I consists of a pair of formulas ψV (x)
and ψE(x, y). If G is a graph, then the graph I(G) has vertex set equal to the set {v ∈
V (G) | G |= ψV (x)}, i.e., it is the subset of vertices x of G such that ψV (x) holds, and two
vertices u and v of I(G) are adjacent iff G |= ψE(u, v) ∨ ψE(v, u).

3 Recovering degenerate graphs

This section is devoted to the proof of Theorem 5, one of our two main results. We need to
start with introducing additional notation that will be used in our analysis of complemented
graphs. Let G be a graph. Two subsets X and Y of the vertex set V (G) are k-similar if
their symmetric difference is at most k, i.e., |X4Y | ≤ k. We say that two vertices of G are
k-similar if their neighborhoods are k-similar, and we define the k-similarity graph of G to
be the graph with the vertex set V (G) where two vertices are adjacent if they are k-similar.

Further fix a pattern R and a partition (Vu)u∈V (R) of V (G). If u is a node of R, then the
u-perfect set is the union of the sets Vu′ where the union is taken over all neighbors u′ of u in
R. Note that the u-perfect set includes Vu iff u has a loop. A subset X of the vertex set of
G is (u, k)-perfect if it is k-similar to the u-perfect set, and a vertex of G is (u, k)-perfect if
its neighbors in GR form a (u, k)-perfect set. In particular, when saying that a vertex of G is
(u, k)-perfect, this always concerns its neighborhood in GR or in the induced subgraph of GR.

Our goal is to approximately recover graph G from GR given the size K of R and assuming
that G is d-degenerate. We achieve this by finding a partition of V (GR) that approximates
the partition of (Vu)u∈V (R) of V (G). To find the approximate partition, we use (u, k)-perfect
vertices introduced above: if we identify a (u, k)-perfect vertex for each class Vu of (Vu)u∈V (R),
then the structure of the neighborhoods of these vertices leads to a good approximation of
the partition (Vu)u∈V (R). The structural lemmas presented in the next subsection lead to
a simple condition (Lemma 11) that allows us to find a (u,C)-perfect vertex in the input
graph, where the constant C depends on d and K only. The presented structural results are
then be used to design Algorithm 1, which outputs an approximation of the graph G.

MFCS 2018

29:6 Recovering Sparse Graphs

3.1 Structural results
In this subsection, we present structural results on complemented graphs. These results will
be used in the next subsection to analyze our algorithm. We start with observing that most
vertices of each substantially large part are almost perfect.

I Lemma 9. Let R be a K-node pattern, G a d-degenerate graph with a vertex partition
(Vu)u∈V (R), and M the maximum size of a part Vu, u ∈ V (R). If a part Vu, u ∈ V (R), con-
tains at least M

4K vertices, then it contains at least
(
1− 1

10K

)
|Vu| vertices that are (u, 80dK3)-

perfect.

Proof. Fix a node u such that the size of the part Vu is at least M
4K , and observe that a

vertex v of Vu is (u, 80dK3)-perfect if and only if its degree in G is at most 80dK3. Hence,
we need to show that at least

(
1− 1

10K

)
|Vu| vertices of Vu have degree at most 80dK3.

Suppose that more than 1
10K |Vu| vertices of Vu have degree strictly larger than 80dK3.

This implies that the sum of the degrees of the vertices of Vu is strictly larger than

8dK2|Vu| ≥ 2dKM .

This is impossible since G contains at most dn ≤ dKM edges in total and thus the sum of the
degrees of all vertices of G is at most 2dKM . The statement of the lemma now follows. J

The next lemma shows that almost all vertices with similar neighborhoods must belong
to the same part.

I Lemma 10. Let R be a K-node pattern and G a d-degenerate graph with a vertex partition
(Vu)u∈V (R) such that each Vu contains at least 330dK3 vertices. For every W ⊆ V (G), there
exists a node u ∈ V (R) such that all but at most 330dK4 vertices with their neighborhoods
(160dK3)-similar to W in GR belong to Vu.

Proof. Suppose that the statement is false and fix a set W that violates the statement. This
implies that there are two different nodes u and u′ such that each of the sets Vu and Vu′

contains at least 330dK3 vertices with (160dK3)-similar to W in GR. Indeed, take a node
u ∈ V (R) such that Vu contains the largest number of vertices with their neighborhoods
(160dK3)-similar to W in GR; note that Vu contains at least 330dK3 such vertices (otherwise,
any node u would satisfy the statement of the lemma since there would be at most 330dK4

such vertices in total). Since the set W violates the statement, there are at least 330dK4

vertices with their neighborhoods (160dK3)-similar to W in GR that do not belong to Vu.
This implies that there exists a node u′ ∈ V (R) such that Vu′ also contains at least 330dK3

such vertices.
To simplify our notation, fix n to be 330dK3. Choose an n-vertex subset A of Vu such

that their neighborhoods are (160dK3)-similar to W and an n-vertex subset A′ of Vu′ such
that their neighborhoods are (160dK3)-similar to W . Observe that any two vertices in A∪A′
are (320dK3)-similar.

We next distinguish three cases based on whether the nodes u and u′ have loops in R
and whether they are adjacent in R.

At least one of the two nodes, say u, has a loop, and R does not contain the
edge uu′.
The subgraph G[A ∪ A′] contains at most 2dn edges, which yields that the sum of the
degrees of the vertices of G[A ∪ A′] is at most 4dn. We next compare relative degrees
of the vertices of A ∪A′ with respect to A in GR. Since the neighbors of the vertices of
A′ in A are the same in G[A ∪A′] and in GR[A ∪A′], the sum of the relative degrees of

J. Gajarský and D. Král’ 29:7

the vertices of A′ with respect to A is at most 4dn. On the other hand, the sum of the
relative degrees of the vertices of A in GR[A ∪A′] is at least n(n− 1)− 4dn. Since any
two vertices in A ∪A′ are (320dK3)-similar in GR and thus in GR[A ∪A′], their relative
degrees in GR with respect to A differ by at most 320dK3. Consequently, the sums of the
relative degrees of the vertices of A and those of A′ with respect to A in GR can differ by
at most 320dK3n. However, the difference of these two sums is at least

n(n− 1)− 8dn = n(n− 1− 8d) ≥ n(330dK3 − 1− 8d) ≥ 321dK3n > 320dK3n .

At least one of the two nodes, say u, does not have a loop, and R contains
the edge uu′.
An analogous argument to that used in the first case yields that the sum of the relative
degrees of the vertices of A with respect to A in GR is at most 4dn and the sum of
the relative degrees of the vertices of A′ with respect to A in GR is at least n2 − 4dn.
Consequently, the difference of these two sums is at least n2 − 8dn > 320dK3n while it
cannot exceed 320dK3n.
The nodes u and u′ either both have loops and are adjacent or both do not
have a loop and are non-adjacent in R.
Since R is a pattern, there must exist a node u′′, which is different from u and u′, such
that either uu′′ is not an edge and u′u′′ is an edge, or vice versa. By symmetry, we can
assume the former to be the case. Let A′′ be a set of n vertices contained in Vu′′ . The
number of edges between A and A′′ in G is at most 2dn. Hence, the sum of the relative
degrees of the vertices of A with respect to A′′ is at most 2dn both in G and in GR. On
the other hand, the sum of the relative degrees of the vertices of A′ with respect to A′′ is
at most 2dn in G, and thus at least n2 − 2dn in GR. Since any two vertices of A ∪ A′
are (320dK3)-similar, their relative degrees with respect to A′′ in GR can differ by at
most 320dK3. Consequently, the sums of the relative degrees of the vertices of A and
A′ can differ by at most 320dK3n. However, the difference of the two sums is at least
n2 − 4dn > 320dK3n.

In each of the three cases, we have obtained a contradiction, which concludes the proof of
the lemma. J

To prove the next lemma, we need to introduce some additional notation. Let G be a
graph, R a pattern, (Vu)u∈V (R) a partition of V (G), and U a subset of the nodes of R. The
graph R \U need not be a pattern but there is a unique pattern to that R \U has an induced
homomorphism. This pattern can be obtained as follows. Let R′ be R \ U . As long as R′
contains either two adjacent twins u and u′ that both have loops or two non-adjacent twins
u and u′ that none of them has a loop, identify the nodes u and u′ and merge the parts
Vu and Vu′ . The resulting pattern R0 is called the reduction of R \ U ; the reduction R0 is
uniquely determined by the pattern R and the set U . If W is the union of Vu with u 6∈ U ,
then the new parts Vu indexed by u ∈ V (R0) form a partition of the vertex set G[W]. This
partition is called the reduced partition and it is easy to observe that the graphs GR[W] and
G[W]R0 are the same.

I Lemma 11. Let R be a K-node pattern and G a d-degenerate graph with a vertex partition
(Vu)u∈V (R). If G has at least 1100dK5 vertices, then the vertex of the maximum degree in
the (160dK3)-similarity graph of GR is (u, 570dK4)-perfect for some u ∈ V (R).

Proof. Let uM be the node of R such that VuM
is the largest part of the partition (Vu)u∈V (R)

and let M be its size, i.e., M = |VuM
|. Observe that M ≥ 1100dK4. By Lemma 9, VuM

contains at least
(
1− 1

10K

)
M ≥ 9M

10 vertices that are (uM , 80dK3)-perfect. All these vertices

MFCS 2018

29:8 Recovering Sparse Graphs

are mutually adjacent in the (160dK3)-similarity graph of GR, which implies that the
maximum degree of the (160dK3)-similarity graph of GR is at least 9M/10− 1. Let w be the
vertex of the maximum degree in the (160dK3)-similarity graph of GR, W the neighborhood
of w in GR, and Ws the neighborhood of w in the (160dK3)-similarity graph. Note that
|Ws| ≥ 9M/10− 1 and each vertex of Ws is (160dK3)-similar to w in GR.

Let U ′ be the set of the nodes u ∈ V (R) such that |Vu| ≤ 330dK3, and let V ′ be the
union of the parts Vu with u ∈ U ′. Observe that |V ′| ≤ 330dK4. Let R0 be the reduction of
R \U ′, and let G0 be the graph G \ V ′ with the reduced partition V0,u, u ∈ V (R0). Observe
that GR0

0 = GR \ V ′ and each part V0,u, u ∈ V (R0), has at least 330dK3 vertices. Further,
let W0 = W \ V ′, and note that W0 is the neighborhood of w in GR0

0 and that each vertex of
Ws \ V ′ is (160dK3)-similar to w in GR0

0 .
We now apply Lemma 10 to the graph G0 with the pattern R0 and the setW0. The lemma

implies that there exists a node u0 of R0 such that there are at most 330dK4 vertices outside
V0,u0 with their neighborhood (160dK3)-similar to W0 in GR0

0 . Hence, the set Ws ⊆ V (G)
contains at most 660dK4 vertices that are not contained in V0,u0 : all such vertices are
contained in V ′ or are (160dK3)-similar to w in GR0

0 . It follows that the part V0,u0 contains
at least 9M/10− 1− 660dK4 ≥ 9M/10− 661dK4 ≥M/4 vertices of Ws. In particular, the
part V0,u0 contains at least M/4 vertices in total.

By Lemma 9, the part V0,u0 contains at least
(
1− 1

10K

)
|V0,u0 | vertices that are (u0,

80dK3)-perfect with respect to the graph G0 and the pattern R0, i.e., there are at most
|V0,u0 |

10K ≤M/10 vertices of V0,u0 that are not (u0, 80dK3)-perfect. Hence, there is a vertex v
that is contained in Ws ∩ V0,u0 and that is (u0, 80dK3)-perfect with respect to the graph G0
and the pattern R0.

Since the vertex v is (u0, 80dK3)-perfect with respect to the graph G0 and the pattern
R0, there exists a node u ∈ V (R) such that the vertex v is (u, 80dK3 + |V ′|)-perfect with
respect to the graph G and the pattern R, i.e., v is (u, 80dK3 + 330dK4)-perfect. Since the
vertex v is contained in Ws, i.e., it is a neighbor of w in the (160dK3)-similarity graph, we
get that the vertex w is (u, 240dK3 + 330dK4)-perfect. Since 240dK3 + 330dK4 ≤ 570dK4,
the lemma now follows. J

3.2 Algorithm
We are now ready to present an algorithm that can be used to recover the original d-degenerate
graph G from the graph GR where R is an a priori unknown K-pattern. The algorithm is
given as Algorithm 1. The algorithm takes the graph GR as an input and outputs a graph F
that differs from the perfect blow-up ER of the pattern R only on constantly many vertices,
where E is the graph with the vertex set V (G) and no edges. Algorithm 1 is analyzed in the
next lemma.

I Lemma 12. Let R be a K-node pattern and G a d-degenerate graph with a vertex partition
(Vu)u∈V (R). Suppose that Algorithm 1 is applied for H = GR, d and K, and the algorithm
outputs a graph F . There exists a subset U of at most 4000dK6 vertices of H such that the
graph F \U and ER \U are the same, where E is the empty graph with the vertex set V (H).

Proof. Let Wi be the set W at the point when the set Si is fixed by Algorithm 1, and let k
be the final value of this variables at the end of the algorithm. Further let W0 be the set W at
the end of the algorithm. By Lemma 11, the set Si is (ui, 570dK4)-perfect in H [Wi] for some
ui ∈ V (R). Note that the set Si is (ui, 570dK4)-perfect in H[Wj] for every j = i+ 1, . . . , k,
since this property cannot be affected by deleting vertices. At the point when the set Si

J. Gajarský and D. Král’ 29:9

Algorithm 1: Algorithm producing an approximation of the perfect blow-up of an
unknown K-node pattern.

Input: a graph H, integers d and K
Output: a graph F on the vertex set V (H)
W := V (H);
F :=empty graph on the vertex set V (H);
k := 0;
S := ∅;
while |W | ≥ 1100dK5 do

if ∃ v ∈W s.t. NH[W](v) is (1140dK4)-similar to a set Si ∩W , Si ∈ S then
W := W \ {v};
join v in F to all the vertices of Si ∩W ;

else
v :=max. degree vertex in the (160dK3)-similarity graph of H[W];
k := k + 1;
Sk :=the neighbors of v in H[W];
add Sk to S;

output F .

was fixed, the set Si was not (1140dK4)-similar to any of the sets S1 ∩Wi, . . . , Si−1 ∩Wi. It
follows that the nodes u1, . . . , uk are mutually distinct, which implies k ≤ K.

Let Ti be the set of at most 570dK4 vertices of H[Wi] such that Si is ui-perfect in
H[Wi \ Ti], and let T = T1 ∪ · · · ∪ Tk. Further, for each node u ∈ V (R), let V ′u be the last
1143dK4 vertices of Vu \ T removed by Algorithm 1 from the set W if such vertices exist;
otherwise, let V ′u = Vu \ (T ∪W0). Note that |V ′u| ≤ 1143dK4 in either of the cases.

Consider the point when the algorithm removes a vertex v ∈ Vu from the set W because
the neighborhood of v is (1140dK4)-similar to the set Si ∩W , where W is the value of
the variable at the time of the removal of v. We say that the vertex v is u′-erroneous for
u′ ∈ V (R) if at least one of the vertices of Vu′ \ (V ′u′ ∪ T ∪W0) has not yet been removed
from W and

either uu′ is an edge of R but V ′u′ and Si are disjoint, or
uu′ is not an edge of R but V ′u′ is a subset of Si.

Note that it can be the case that the nodes u and u′ in the above definition coincide, and
a vertex v can be u′-erroneous for several choices of u′. Also note that if v is u′-erroneous,
then Vu′ \ (V ′u′ ∪ T ∪W0) 6= ∅, which implies that |V ′u′ | = 1143dK4. Let Vu,u′ be the set of
vertices of Vu \ (V ′u ∪ T) that are u′-erroneous.

The set U will contain the following vertices:
at most 1100dK5 vertices contained in W0,
at most k · 570dK4 ≤ 570dK5 vertices contained in T ,
at most K · 1143dK4 ≤ 1143dK5 vertices contained in the set V ′u, u ∈ V (R), and
the vertices of all sets Vu,u′ , u, u′ ∈ V (R).

We next show that each of the sets Vu,u′ contains at most 1143dK4 vertices, which would
imply that the size of U does not exceed 4000dK6.

Set n = 1143dK4 to simplify the notation, and suppose that there exists a set Vu,u′

containing more than n vertices for some u, u′ ∈ V (R) (possibly u = u′). Let X be a subset
of Vu,u′ containing exactly n vertices. Note that that if u = u′, the sets X and V ′u′ are disjoint
because all vertices of V ′u′ are removed from W after those of X. We first consider the case

MFCS 2018

29:10 Recovering Sparse Graphs

that uu′ is not an edge of R, which includes the case that u = u′ and u does not have a loop.
Since the vertices of X are u′-erroneous, the set V ′u′ contains n vertices and all vertices of
V ′u′ are removed from W later than the vertices of X, the d-degeneracy of G implies that the
number of edges between X and V ′u′ in G is at most 2dn. When a vertex v ∈ X is removed
from W by Algorithm 1, it is adjacent to at least |V ′u′ | − 1140dK4 ≥ 3dK4 vertices of V ′u′ in
H = GR since the neighborhood of v is (1140dK4)-similar to Si and V ′u′ ⊆ Si. Hence, the
number of edges between X and V ′u′ in H = GR is at least 3dK4n ≥ 3dn. However, the edges
between the vertices of X and those of V ′u′ are the same in G and GR, which is impossible.

The other case that we need to consider is that when uu′ is an edge of R; this case also
includes the case that u = u′ and u has a loop. The arguments are analogous to the first case
but we include them for completeness. We again observe that the number of edges between
X and V ′u′ in G is at most 2dn. When a vertex v ∈ X is removed from W , it is adjacent to
at most 1140dK4 vertices of V ′u′ in H = GR since its neighborhood is (1140dK4)-similar to
Si and the sets Si and V ′u′ are disjoint. It follows that each vertex v ∈ X is adjacent to at
least |V ′u′ | − 1140dK4 ≥ 3dK4 vertices of V ′u′ in G. This implies that the number of edges
between X and V ′u′ in G is at least 3dK4n ≥ 3dn, which is again impossible.

To complete the proof of the lemma, we need to show that the graphs F \ U and ER \ U
are the same. Let v and v′ be two vertices of V (H) \ U such that v ∈ Vu and v′ ∈ Vu′ .
By symmetry, we can assume that v is removed before v′. Suppose that the vertex v was
removed by Algorithm 1 because the neighborhood of v in H[W] was (1140dK4)-similar
to a set Si where W is the value of the set at the time of the removal of v from W . Since
the vertex v′ does not belong to U , it is not contained in V ′u′ ∪W0 ∪ T , which implies that
V ′u′ ⊆ (Vu′ ∩W) \ T . Further, since the set Si is ui-perfect in H[W \ T], the set Si either
contains (Vu′ ∩W) \ T or is disjoint from (Vu′ ∩W) \ T . Since v is not u′-erroneous, the
former happens if and only if uu′ is an edge in R, and the latter happens otherwise. Hence,
the vertices v and v′ are joined by an edge in F if and only if uu′ is an edge of R. J

Lemma 12 yields the proof of Theorem 5 as follows.

Proof of Theorem 5. Fix d and K, and set m = 4000dK6. Let G0 be the input graph, and
suppose that G is the d-degenerate graph and R is the K-node pattern such that G0 = GR.
Note that both G and R are not given to the algorithm A.

The algorithm A applies Algorithm 1 to the graph G0 and integers d and K, and
Algorithm 1 outputs a graph F . By Lemma 12, the graphs ER and F agree on all but at
most m vertices, where E is the empty graph on the same vertex set as G0. The algorithm
A then outputs the graph G04F , i.e., the graph with the same vertex set as G0 and with
the edge set that is the symmetric difference of the edge sets of G0 and F . Observe that the
graph G = GR4ER and the output graph G04F = GR4F differ exactly where the graphs
ER and F differ. It follows that the output graph G04F and the graph G agree on all but
at most m vertices, which implies that the output graph G04F is (d+m)-degenerate. J

4 FO model checking

In this section, we prove Theorem 7, which is our second main result, and also discuss first
order model checking in graphs obtained by complementing parts of degenerate graphs. We
start with proving Theorem 7.

Proof of Theorem 7. Fix a graph class G with bounded expansion and an integer k, and
set K = 2k. Since the graph class G has bounded expansion, there exists an integer d such
that every graph in G is d-degenerate. Set m = 4000dK6 and let H be the graph class that

J. Gajarský and D. Král’ 29:11

contain all m-apices of subgraphs of graphs contained in G. By Proposition 8, the graph
class H has bounded expansion.

Let G′ be a graph obtained from a graph G ∈ G by complementing on at most k subsets
of the vertex set of G, and let V be the common vertex set of G and G′. Note that there
exists a K-node pattern R (which can be chosen independently of G and G′ but this fact is
not needed in our proof) and a partition (Vu)u∈V (R) of the vertex set V such that G′ = GR.
Apply Algorithm 1 to G′, d and K, and let F be the output graph. Since the graphs F and
ER, where E is the empty graph on the vertex set V , coincide on all but at most m vertices
by Lemma 12, there exists a (K +m)-node pattern RF such that F = ERF for a suitable
partition (V ′u)u∈V (RF) of the vertex set V . Moreover, the pattern RF and the partition
(V ′u)u∈V (RF) can be efficiently constructed: the at most K +m twin-classes of the graph F
form the partition (V ′u)u∈V (RF) and the partition into twin-classes uniquely determine the
pattern.

Let H be the graph with the vertex set V and the edge set being the symmetric difference
of the edge sets of G′ and F . Observe that HRF = G′. By Lemma 12, the graphs G and H
agree on all but at most m vertices, which implies that the graph H belongs to the class
H. The application of the pattern RF to H can be simulated by viewing the partition
(V ′u)u∈V (RF) as a vertex (K +m)-coloring and encoding the application of the pattern RF

by a first order formula. In particular, there exists a simple first order graph interpretation
scheme I of (K+m)-vertex colored graphs such that I(H) = G′. Since there are only finitely
many choices of RF (because the number of nodes of RF is bounded) and it is possible
to use disjoint sets of colors to encode applications of different patterns RF , there exists
such an interpretation scheme I that is universal for all patterns RF . The fixed parameter
tractability of the first order model checking in Gk is now implied by the fixed parameter
tractability of the first order model checking in graph classes with bounded expansion that
contain graphs vertex-colored by a bounded number of colors, which directly follows from
the results of [6–8]. J

The first order model checking in d-degenerate graphs is hard from the point of fixed
parameter tractability, however, many parameterized problems that are hard for general
graphs become fixed parameter tractable when restricted to d-degenerate graphs. Two
prominent examples of such problems are the k-clique problem, which asks whether the input
graph contains a complete subgraph with k vertices, and the k-independent set problem,
which asks whether the input graph contains k independent vertices. Both these problems
are fixed parameter tractable when parameterized by d and k.

To explore hopes of extending the fixed parameter tractability results for d-degenerate
graphs to classes of graphs obtained by complementing d-degenerate graphs, we provide a
brief analysis of the fixed parameter tractability of the k-clique problem in graphs obtained
from d-degenerate graphs by applying patterns In the rest of this section, Gd denotes the
class of d-degenerate graphs and GR

d for a pattern R will be the class of all graphs that can
be obtained from a graph G ∈ Gd by applying the pattern R, i.e., the class of all graphs GR

for G ∈ Gd. We start with considering the parameterization by both R and k, where the
problem turns out to be tractable for d = 1 and hard for d ≥ 2 as given in the following two
propositions.

I Proposition 13. The k-clique problem in the class GR
1 is fixed parameter tractable when

parameterized by a pattern R and an integer k.

Proof. The class G1 of 1-degenerate graphs is the class of all forests. Recall that a rank-width
of a graph G is defined as the minimum r such that there exists a tree T with leaves one-to-one

MFCS 2018

29:12 Recovering Sparse Graphs

corresponding to the vertices of G such that each edge e of T determines a vertex cut (A,B)
of G (A and B are the vertices assigned to the leaves of the two components of T \ e) such
that the adjacency matrix of the cut (A,B) has rank at most r. It is not hard to see that
each forest has rank-width at most one. Next observe that if the adjacency matrix of a vertex
cut (A,B) in a graph G has rank r, then the adjacency matrix of the cut (A,B) in GR has
rank at most r + K. Consequently, if G is a graph with rank-width r and R is a K-node
pattern, then the rank-width of GR is at most r+K. We conclude that all graphs contained
in the class GR

1 have bounded rank-width, which implies that all graphs contained in the
class GR

1 have bounded clique-width [23]. Since monadic second order model checking is fixed
parameter tractable in classes of graphs with bounded clique-width [4], the statement of the
proposition follows. J

I Proposition 14. The k-clique problem in the class GR
2 is W [1]-hard when parameterized

by a pattern R and an integer k.

Proof. We present a reduction from the multicolored k-clique problem, which is a well-known
W [1]-hard problem. The multicolored k-clique problem asks whether a given k-partite graph
contains a clique of order k. Let G be an arbitrary k-partite graph, let V1, . . . , Vk be its vertex
parts, and let H be the graph obtained from G by subdividing each edge. Note that H can
be viewed as a

(
k +

(
k
2
))

-partite graph with parts V1, . . . , Vk and parts Vij , 1 ≤ i < j ≤ k,
formed by vertices of degree two associated with edges between the parts Vi and Vj in the
graph G. Let R be a pattern with k +

(
k
2
)
nodes ui, 1 ≤ i ≤ k, and uij , 1 ≤ i < j ≤ k,

such that R has no loops but all pairs of nodes of R are joined edges except for pairs ui

and uij and pairs uj and uij , 1 ≤ i < j ≤ k. Set Vui
= Vi, 1 ≤ i ≤ k, and Vuij

= Vij ,
1 ≤ i < j ≤ k; this yields a vertex partition (Vu)u∈V (R) of the graph H. The graph HR is a(
k +

(
k
2
))

-partite graph. Note that if k ≥ 4, then HR contains a clique with k +
(

k
2
)
vertices

if and only if H contains a subdivision of a clique with k vertices. Consequently, if k ≥ 4,
then G contains a clique with k vertices if and only if HR contains a clique with k +

(
k
2
)

vertices. Since H is a 2-degenerate graph, the proposition now follows. J

Proposition 14 leaves it open whether the k-clique problem is fixed parameter tractable
when d and R are fixed and k is the parameter. We address this affirmatively in the next
proposition.

I Proposition 15. For every integer d and every pattern R, the k-clique problem in the class
GR

d is fixed parameter tractable when parameterized by k.

Proof. We present an algorithm that decides whether a graph H ∈ GR
d contains a complete

subgraph with k vertices. In view of Theorem 5 and Lemma 12, we may assume (at the
expense of considering a larger integer d and a larger pattern R) that the algorithm is given
a graph G ∈ Gd, a pattern R and a vertex partition (Vu)u∈V (R) such that H = GR. If R
contains a node u with a loop such that |Vu| > dk, then H contains a complete subgraph
with k vertices: indeed, since the subgraph G[Vu] is (d + 1)-colorable, G[Vu] contains an
independent set of at least k vertices; this set forms a complete subgraph in H = GR. Hence,
we may assume that the following holds for every node u of R: u has no loop or |Vu| ≤ dk.

We next observe that H [Vu] contains at most max{2dk, 2d|Vu|} (not necessarily inclusion-
wise maximal) complete subgraphs. Indeed, if |Vu| ≤ dk, then there are at most 2dk subsets
of Vu and the claim follows. Otherwise, u has no loop and G[Vu] = H[Vu] and the claim
follows since H[Vu] is d-degenerate. Let Cu be the set of all complete subgraphs of H[Vu]
(including the one with no vertices, i.e., the one induced by the empty set). The algorithm

J. Gajarský and D. Král’ 29:13

now tests all possible combinations of subgraphs from Cu, u ∈ V (R), whether they form a
complete subgraph in H. This identifies all complete subgraphs of H. The running time
of the algorithm is bounded by the product of the sizes of the set Cu, u ∈ V (R), i.e., the
algorithm runs in time O

(
2dkKnK+O(1)), where n is the number of vertices of the input

graph H and K is the number of nodes of the pattern R. J

5 Conclusion

Our results have been motivated by the characterization of graphs that are first interpretable
in graphs with bounded maximum degree as given in Proposition 3. While we were able
to translate Theorem 4 to the setting of Conjecture 1 and even the more general setting of
degenerate graphs, Proposition 3 fails to extend to the setting of Conjecture 1, which we now
outline. Consider a class G of all star forests, one of the simplest classes of sparse graphs with
unbounded maximum degree, and also consider the simple first order graph interpretation
scheme I such that two vertices in I(G) are joined by an edge iff their distance in a graph G
is at most two. The graph class I(G) contains all graphs G such that each component of G is
a complete graph. Let H be a graph class and R a pattern such that I(G) ⊆ HR, where HR

is the class of graphs HR, H ∈ H. Let K be the number of nodes of R and consider a graph
G ∈ G formed by k ·K stars each with k ·K − 1 leaves for an integer k ≥ K + 1. The graph
I(G) consists of k ·K cliques each having k ·K vertices; let C1, . . . , Ck·K be the vertex sets
of the k cliques forming the graph I(G). Suppose that I(G) = HR for a graph H ∈ H and a
vertex partition (Vu)u∈V (R) of H. There exist a node u such that |Vu ∩ Ci| ≥ k for at least
two different indices i; by symmetry we can assume that |Vu ∩ C1| ≥ k and |Vu ∩ C2| ≥ k.
If the node u has a loop in R, then the graph H contains all edges between Vu ∩ C1 and
Vu ∩ C2, i.e., H contains a complete bipartite subgraph with parts of sizes k. If the node
u does not have a loop in R, then H[Vu ∩ C1] is a complete subgraph with k vertices, i.e.,
H contains a complete bipartite subgraph with parts of sizes bk/2c. We conclude that the
graph class H contains graphs with arbitrary large complete bipartite subgraphs; this implies
that the graph class H does not have bounded expansion.

In view of the results presented in Section 4, it is natural to wonder about the fixed
parameter tractability of other important graph problems. One of such problems is the
k-dominating set problem, which asks whether the input graph contains k vertices such
that each vertex of the graph is one of these k vertices or adjacent to at least one of them.
The k-dominating set problem is known to be fixed parameter tractable for d-degenerate
graphs [1] when parameterized by d and k. However, we were not able to resolve the fixed
parameter complexity of the k-dominating set problem in graphs obtained by complementing
vertex subsets of d-degenerate graphs and even the following particular case seems to be
challenging.

I Problem 16. Is the k-dominating set problem in the complements of d-degenerate graphs
fixed parameter tractable when parameterized by d and k?

References
1 Noga Alon and Shai Gutner. Linear time algorithms for finding a dominating set of fixed

size in degenerated graphs. In Computing and Combinatorics, 13th Annual International
Conference, COCOON, Proceedings, volume 4598 of Lecture Notes in Computer Science,
pages 394–405. Springer, 2007. doi:10.1007/978-3-540-73545-8.

2 Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

MFCS 2018

http://dx.doi.org/10.1007/978-3-540-73545-8
http://dx.doi.org/10.1016/0890-5401(90)90043-H

29:14 Recovering Sparse Graphs

3 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic
- A Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its ap-
plications. Cambridge University Press, 2012. URL: http://www.cambridge.org/fr/
knowledge/isbn/item5758776/?site_locale=fr_FR.

4 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.
doi:10.1007/s002249910009.

5 Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally excluding a minor. In
22nd IEEE Symposium on Logic in Computer Science (LICS 2007), Proceedings, pages
270–279. IEEE Computer Society, 2007. URL: http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=4276538.

6 Anuj Dawar and Stephan Kreutzer. Parameterized complexity of first-order logic. Elec-
tronic Colloquium on Computational Complexity (ECCC), 16:131, 2009. URL: http:
//eccc.hpi-web.de/report/2009/131.

7 Zdenek Dvořák, Daniel Král’, and Robin Thomas. Deciding first-order properties for sparse
graphs. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS,
Proceedings, pages 133–142. IEEE Computer Society, 2010. URL: http://ieeexplore.
ieee.org/xpl/mostRecentIssue.jsp?punumber=5669376.

8 Zdenek Dvořák, Daniel Král’, and Robin Thomas. Testing first-order properties for sub-
classes of sparse graphs. J. ACM, 60(5):36:1–36:24, 2013. doi:10.1145/2499483.

9 Kord Eickmeyer and Ken-ichi Kawarabayashi. FO model checking on map graphs. In
Fundamentals of Computation Theory - 21st International Symposium, FCT, Proceedings,
volume 10472 of Lecture Notes in Computer Science, pages 204–216. Springer, 2017. doi:
10.1007/978-3-662-55751-8.

10 Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-
decomposable structures. J. ACM, 48(6):1184–1206, 2001. doi:10.1145/504794.504798.

11 Jakub Gajarský, Petr Hliněný, Jan Obdržálek, Daniel Lokshtanov, and M. S. Ramanujan.
A new perspective on FO model checking of dense graph classes. In Proceedings of the
31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS, pages 176–184.
ACM, 2016. doi:10.1145/2933575.

12 Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetřil, Patrice Ossona de Mendez, Michał
Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-order interpretations of
bounded expansion classes. To appear in proceedings of Automata, Languages, and Pro-
gramming - 40th International Colloquium, ICALP, 2018.

13 Robert Ganian, Petr Hliněný, Daniel Král’, Jan Obdržálek, Jarett Schwartz, and Jakub
Teska. FO model checking of interval graphs. Log. Methods Comp. Science, 11(4), 2015.
doi:10.2168/LMCS-11(4:11)2015.

14 Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. In Model
Theoretic Methods in Finite Combinatorics, Contemporary Mathematics: AMS-ASL Joint
Special Session, volume 558, pages 181–206, 2011.

15 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. In Symposium on Theory of Computing, STOC, proceedings, pages
89–98. ACM, 2014. URL: http://dl.acm.org/citation.cfm?id=2591796.

16 Petr Hliněný, Filip Pokrývka, and Bodhayan Roy. FO model checking of geometric graphs.
In 12th International Symposium on Parameterized and Exact Computation, IPEC 2017,
proceedings, volume 89 of LIPIcs, pages 19:1–19:12. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2017. URL: http://www.dagstuhl.de/dagpub/978-3-95977-051-4.

17 Stephan Kreutzer. Algorithmic meta-theorems. Electronic Colloquium on Computational
Complexity (ECCC), 16:147, 2009. URL: http://eccc.hpi-web.de/report/2009/147.

http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://www.cambridge.org/fr/knowledge/isbn/item5758776/?site_locale=fr_FR
http://dx.doi.org/10.1007/s002249910009
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4276538
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4276538
http://eccc.hpi-web.de/report/2009/131
http://eccc.hpi-web.de/report/2009/131
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5669376
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5669376
http://dx.doi.org/10.1145/2499483
http://dx.doi.org/10.1007/978-3-662-55751-8
http://dx.doi.org/10.1007/978-3-662-55751-8
http://dx.doi.org/10.1145/504794.504798
http://dx.doi.org/10.1145/2933575
http://dx.doi.org/10.2168/LMCS-11(4:11)2015
http://dl.acm.org/citation.cfm?id=2591796
http://www.dagstuhl.de/dagpub/978-3-95977-051-4
http://eccc.hpi-web.de/report/2009/147

J. Gajarský and D. Král’ 29:15

18 Jaroslav Nešetřil and Patrice Ossona de Mendez. Linear time low tree-width partitions and
algorithmic consequences. In Proceedings of the 38th Annual ACM Symposium on Theory
of Computing, STOC, pages 391–400. ACM, 2006.

19 Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion
I. decompositions. Eur. J. Comb., 29(3):760–776, 2008. doi:10.1016/j.ejc.2006.07.013.

20 Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion
II. algorithmic aspects. Eur. J. Comb., 29(3):777–791, 2008. doi:10.1016/j.ejc.2006.
07.014.

21 Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded expansion
III. restricted graph homomorphism dualities. Eur. J. Comb., 29(4):1012–1024, 2008. doi:
10.1016/j.ejc.2007.11.019.

22 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

23 Sang-il Oum and Paul D. Seymour. Approximating clique-width and branch-width. J.
Comb. Theory, Ser. B, 96(4):514–528, 2006. doi:10.1016/j.jctb.2005.10.006.

24 Detlef Seese. Linear time computable problems and logical descriptions. Electr. Notes
Theor. Comput. Sci., 2:246–259, 1995. doi:10.1016/S1571-0661(05)80203-8.

MFCS 2018

http://dx.doi.org/10.1016/j.ejc.2006.07.013
http://dx.doi.org/10.1016/j.ejc.2006.07.014
http://dx.doi.org/10.1016/j.ejc.2006.07.014
http://dx.doi.org/10.1016/j.ejc.2007.11.019
http://dx.doi.org/10.1016/j.ejc.2007.11.019
http://dx.doi.org/10.1007/978-3-642-27875-4
http://dx.doi.org/10.1007/978-3-642-27875-4
http://dx.doi.org/10.1016/j.jctb.2005.10.006
http://dx.doi.org/10.1016/S1571-0661(05)80203-8

Average-Case Polynomial-Time Computability of
Hamiltonian Dynamics
Akitoshi Kawamura
Kyushu University
Fukuoka, Japan
kawamura@inf.kyushu-u.ac.jp

Holger Thies
University of Tokyo
Tokyo, Japan
info@holgerthies.com

Martin Ziegler
KAIST
Daejeon, Republic of Korea
ziegler@cs.kaist.ac.kr

https://orcid.org/0000-0001-6734-7875

Abstract
We apply average-case complexity theory to physical problems modeled by continuous-time dy-
namical systems. The computational complexity when simulating such systems for a bounded
time-frame mainly stems from trajectories coming close to complex singularities of the system.
We show that if for most initial values the trajectories do not come close to singularities the
simulation can be done in polynomial time on average. For Hamiltonian systems we relate this
to the volume of “almost singularities” in phase space and give some general criteria to show that
a Hamiltonian system can be simulated efficiently on average. As an application we show that
the planar circular-restricted three-body problem is average-case polynomial-time computable.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography

Keywords and phrases Computable Analysis, Real computation, Dynamical systems, Average-
case complexity, Computation in physics

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.30

Acknowledgements This work was supported by the Japan Society for the Promotion of Sci-
ence (JSPS), Core-to-Core Program (A. Advanced Research Networks), JSPS KAKENHI Grant
Numbers JP18H03203 and JP18J10407, the Korean Ministry of Science and ICT grant NRF-
2016K1A3A7A03950702. We thank Florian Steinberg for discussions on average-case complexity
in analysis and the anonymous reviewers for many helpful comments.

1 Introduction

Many phenomena in nature can be modeled by continuous-time dynamical systems. Analyzing
such phenomena is usually done by simulating the evolution of a system with digital computers.
It is therefore crucial to better understand the computational properties of dynamical systems.
One of the most basic questions one can ask about such a system is given the state of the
system at some time t0 what will be the state at some time t > t0, i.e., to simulate the
evolution for a finite time-frame.

© Akitoshi Kawamura, Holger Thies, and Martin Ziegler;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 30; pp. 30:1–30:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kawamura@inf.kyushu-u.ac.jp
mailto:info@holgerthies.com
mailto:ziegler@cs.kaist.ac.kr
https://orcid.org/0000-0001-6734-7875
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Average-Case Polynomial-Time Computability of Hamiltonian Dynamics

The extended Church-Turing thesis is the statement that any physical computation device
can be simulated efficiently with a Turing machine. While the thesis might be incompatible
with quantum computation, at least for classical (non-quantum) physical computation the
assumption seems reasonable. Thus, it should be possible to simulate trajectories of dynamical
systems for problems in (classical) physics for a bounded time-frame efficiently as nature
already provides an efficient “computation device”. However, accurate numerical simulation
of dynamical systems can be very hard. For example, Miller pointed out the difficulties
when integrating the famous gravitational N -body problem [16]. The N -body problem is
the problem of predicting the motion of N point masses under their mutual gravitational
attraction. For a moderate number N of point masses, the main difficulty arises because
close encounters of particles cause instabilities. Indeed, two particles colliding leads to a
singularity in the analytic function describing the dynamics. On the other hand, Saari
could show that at least for N ≤ 4 singularities are rare in the sense that the set of initial
values leading to singularities has Lebesgue measure zero [21, 22] (for N > 4 this is an open
problem). Thus, a possible resolution to the inconsistency with the extended Church-Turing
thesis might be that hard instances are extremely rare in nature and therefore it is possible
to do the simulation efficiently on typical inputs. For further discussion on the extended
Church-Turing thesis in classical physics, see e.g. [26].

The theory of real number computation based on a realistic model of approximation
is known as computable analysis. Using this model, computational complexity theory
can be applied to real functions [7, 8]. Simulating a continuous-time dynamical system
corresponds to solving an initial value problem (IVP) for systems of ordinary differential
equations. There are already several results on the computational complexity of solving
IVPs in computable analysis. In particular, if the right-hand side function f of the equation
ẏ = f(y) is polynomial-time computable and Lipschitz-continuous, the unique solution y can
be computed in PSPACE and can be hard for this class [6, 4]. On the other hand, for analytic
right-hand side function the solution is also a polynomial-time computable function [18, 9].
However, this formulation does not really capture the notion of what is usually understood
by simulating a dynamical system, as it is assumed that the solution exists on the whole
time interval and only takes values in a known compact set, and there are several hidden
factors depending on the function and the initial value that heavily influence the efficiency
in practice.

Instead of fixing the initial value, it is therefore more natural to study the complexity of
the function mapping initial values and time to the corresponding solution. This, however,
poses the problem that the worst-case complexity for most interesting systems is unbounded.
Indeed, it is quite obvious that the simulation should take longer the closer a trajectory
approaches a singularity of the system as then higher precision is required. Nonetheless, the
system might behave well for most initial values in the sense that the trajectory does stay
far away from any singularities. We would then expect efficient simulation to be possible on
typical inputs.

In this paper we want to formalize this intuition. In classical complexity theory, the
notion of being efficiently computable on typical inputs is usually captured by average-case
complexity theory, which often provides a more significant measure of the performance of an
algorithm than worst-case complexity when the hard instances are rare. However, finding the
right notion of average-case complexity poses some subtle difficulties. A structural theory
of average-case complexity for discrete problems was introduced by Levin [13]. Schröder,
Steinberg and Ziegler recently extended Levin’s definition of average-case complexity to
problems on real numbers [23].

A. Kawamura, H. Thies, and M. Ziegler 30:3

In this paper we use their definition to show that many physical problems are indeed
efficiently solvable on average. We first give a short introduction to the model of computation
in Section 2 and define the most important notions that we need in the rest of the paper. In
Section 3 we formalize a parameterized result for IVPs with analytic right-hand side. We
show that restricted to a compact domain where the dynamics take place the solution can be
computed in time polynomial in the output precision and a natural parameter depending on
the function and the domain. In Section 4 we use this to show that if the “probability of
trajectories to get close to complex singularities of the system” is small and if the right-hand
side function can be evaluated efficiently on points not close to singularities, the simulation
can be done in polynomial time on average. We then focus on a special case of dynamical
systems that play an important role in classical physics, the Hamiltonian systems, and
show that there is a simple way to bound the above probability in terms of the volume of
singularities in phase-space. Finally, we apply our theorem to show that a special case of the
three-body problem, the planar circular restricted three-body problem, can be simulated in
polynomial time on average.

2 Computability and complexity in analysis

Computable Analysis extends classical computability theory to deal with uncountable quanti-
ties such as real numbers. The theory already dates back to Turing [24] with later important
contributions for example by Grzegorczyk [3] and Lacombe [12]. The rigorous study of
complexity in this model was initiated by Ko and Friedman [8]. In this section we briefly
summarize the most important definitions. For a more detailed overview the reader is referred,
e.g., to Weihrauch’s monograph [25].

2.1 Computing real numbers and functions
Classically, computability is typically defined using Turing machines or an equivalent model
of computation. Turing machines compute functions from finite strings to finite strings, that
is, functions F : Σ∗ → Σ∗ for some fixed finite alphabet Σ. While computations over discrete
objects like natural numbers, rational numbers or graphs can be defined by choosing an
appropriate encoding for these objects as finite strings, the set of reals is uncountable and it
is therefore impossible to find such an encoding. On the other hand, any real number can
be approximated with arbitrarily small error by rational numbers. A real number x can
therefore be encoded by a function that gives arbitrary exact approximations of x. More
formally: A function ϕ : Σ∗ → Σ∗ is called a name for a real number x ∈ R if it maps strings
of length n to the binary encoding of some integer z such that

∣∣x− z
2n
∣∣ ≤ 2−n. Any real

number has infinitely many different names. We say x is computable if it has a computable
name.

Similarly, a function f : R→ R is computable if there is a computable function mapping
names of x to names of f(x), i.e., an algorithm that computes approximations of the output
f(x) with arbitrary precision while having access to arbitrary exact approximations of the
input x. Such computation on names can be formally defined using oracle machines. Oracle
machines can make queries to an oracle, a function ϕ : Σ∗ → Σ∗, during the computation.
When making such a query the string w on a special tape, the so-called oracle tape, is
replaced by the value of ϕ(w) in a single time-step. We denote the oracle machine M with
oracle ϕ by Mϕ. Mϕ again computes a function Σ∗ → Σ∗. A computable real function can
then be defined as follows: A partial function f :⊆ R→ R is computable if there is an oracle
machine M such that whenever ϕ is a name for x ∈ dom f the machine Mϕ computes a name

MFCS 2018

30:4 Average-Case Polynomial-Time Computability of Hamiltonian Dynamics

for f(x). The machine can behave arbitrarily on elements outside the domain of the function.
The definition can be easily generalized to multidimensional functions f :⊆ Rn → Rm by
allowing multiple oracle and output tapes.

The running time TM (ϕ,w) for an oracle machine M with oracle ϕ : Σ∗ → Σ∗ and
input w ∈ Σ∗ is defined as the number of steps the machine makes. If the machine M
computes a real function f : R → R we can thus define the (worst-case) running time
TM (x, n) ∈ N∪{∞} of M for an argument x ∈ R and output precision n ∈ N as an upper
bound of TM (ϕ, 0n) over all names ϕ for x. We further say that a computable function
f : R→ R has (worst-case) time-complexity T : N→ N if TM (x, n) ≤ T (n) for all x ∈ dom f

and that f is polynomial-time computable if T is a polynomial. Thus, the time-complexity
of a real function is given in terms of the number of steps necessary to approximate the
solution up to precision 2−n depending on the output precision n ∈ N.

Most work in real complexity theory restricts dom f to be a fixed compact set as this
makes sure that a (finite) complexity bound exists. A more general theory taking into account
the “size” of an oracle can be found in [5].

In this paper we sometimes use the notation that f is computable on some maximal
domain dom f and uniformly allows some time-bound on a restricted subset of the domain.
By this we mean that there is a single algorithm to compute f on its domain and the running
time of this algorithm can be bounded on this subset.

2.2 Average-case complexity for real functions
Worst-case complexity as defined above has the disadvantage that the cost can be dominated
by a small number of instances. A problem that can be solved efficiently on most inputs
might thus still be hard from the perspective of computational complexity. Average-case
complexity studies the average running time of an algorithm over all inputs and often gives a
more realistic measure for the efficiency of an algorithm. Similarly to the class P in worst-case
complexity we would like to have a class of average-case polynomial-time problems that we
consider as “efficient on average”. This notion should fulfill some basic robustness criteria.
For example, composition of an average-case polynomial-time computable function with a
worst-case polynomial-time computable function should still be computable in polynomial
time on average. However, already in the discrete case this robustness property is not fulfilled
by the most intuitive definitions. A definition that resolves this problem was given by Levin
[13]. Schröder, Steinberg and Ziegler [23] recently extended Levin’s notion to real number
computations:

I Definition 1. Let (X,Σ, µ) denote a probability space and T : X×N→ [0,∞] a measurable
function. We say that T is polynomial-time on average if there is some ε > 0 such that the
function

n 7→ 1
n

∫
X

(T (x, n))ε dµ (1)

is bounded by some constant c > 0.

If an algorithm runs in polynomial-time on average, there is a high probability that it runs in
polynomial-time for a randomly selected input as by Markov’s inequality for any k > 0 it is

Pr[T (x, n) ≥ kn 1
ε] ≤ c

kε
.

In this paper we only consider the case where X ⊆ Rd, Σ is the Borel algebra over Rd and
µ(A) = λ(A)

λ(X) where λ denotes the Lebesgue measure on Rd.

A. Kawamura, H. Thies, and M. Ziegler 30:5

3 Complexity of simulating dynamical systems

Dynamical systems are used to describe the evolution of a system over time. A dynamical
system on the reals can be formally defined as follows:

I Definition 2. A dynamical system is a triple (X,T,Φ) of a non-empty set X ⊂ Rd called
the phase space, a time set T ⊆ R and a (partial) function Φ :⊆ X × T → X called evolution
operator satisfying
1. Φ(x, 0) = x, and
2. Φ(Φ(x, t1), t2) = Φ(x, t1 + t2)
for x ∈ X and all t1, t2 ∈ T such that (x, t1), (Φ(x, t1), t2) ∈ dom Φ.

A point x ∈ X is also called a state of the system and Φ(x0, t) the state at time t (w.r.t. the
initial value x0). For a fixed initial value x0 the function Φ(x0, ·) is called trajectory through
x0. In this paper we only consider continuous-time systems where the time set is some real
interval and the evolution operator is continuously differentiable with respect to time. The
dynamics of such a system can be described by the solution of a system of autonomous
first-order ODEs

ẏ = f(y), y(t0) = y0 (2)

for some function f : D ⊆ Rd → Rd and y0 ∈ Rd.
We call Equation (2) an initial value problem (IVP) with initial value y0. The corre-

sponding solution function y : R → Rd of the IVP gives a trajectory of the system. We
sometimes also write y(t; t0, y0) for the solution function with initial value y(t0) = y0 to make
the dependency on the initial value explicit.

In the following, we use multi-index notation for tuples of non-negative integers β =
(β1, . . . , βd), i.e., for β ∈ Nd and x ∈ Rd it is |β| = β1 + · · · + βd, β! = β1! . . . βd!, xβ =
xβ1

1 . . . xβdd and Dβf = Dβ1
1 . . . Dβd

d f .
A function f : U → R for U ⊆ Rd open is called analytic if for each x0 ∈ U there is an

open neighborhood V ⊆ U of x0 such that for all x ∈ V the power series expansion∑
β∈Nd

aβ(x− x0)β

converges to f(x). A function f : D → R on a (possibly) non-open domain D is called
analytic if it can be extended to an analytic function on some open domain U ⊇ D.

We further say a function f : D → Rm, f(x) = (f1(x), . . . , fm(x)) is analytic if each of
the component functions f1, . . . , fd : D → R are analytic. Any function analytic on some
subset D ⊆ Rd can be extended to a complex analytic function on an open set G ⊆ Cd. In
this paper we only consider IVPs where the right-hand side function f is analytic. By the
Cauchy-Kowalevski theorem the solution function y of such an IVP is again analytic.

3.1 Parameterized complexity for analytic initial value problems
Most results on IVPs in computable analysis assume the initial value to be fixed. In this work,
however, we want to consider the average complexity over all initial values. We therefore first
need to formalize how exactly the complexity of the solution depends on the chosen initial
value. More formally, assume that we allow initial values from some set A ⊆ Rd. We want to
give a complexity bound for the solution function Y :⊆ A× [0, 1]→ Rd, (y0, t) 7→ y(t; 0, y0)
that maps initial values at time 0 and time t ∈ [0, 1] to the solution of the initial value

MFCS 2018

30:6 Average-Case Polynomial-Time Computability of Hamiltonian Dynamics

problem at time t. Note that the restriction that the time is between 0 and 1 is somehow
arbitrary. However, for the average-case analysis in the following chapter it is reasonable to
assume that the time is bounded as there is no natural choice for a distribution on time.

The domain of Y are tuples (y0, t) ∈ A× [0, 1] where the solution with initial value y0
exists up to time t. As this domain is not necessarily compact, we can not expect to find a
simple complexity bound on the whole domain. However, we can subdivide the domain into
subsets depending on some natural parameter of the system and give a complexity not only
in terms of the output precision n but also in terms of an additional integer parameter. That
is, we want to say that there is a uniform algorithm that computes the function on its whole
domain and if we restrict the domain to some subset this algorithm runs in time polynomial
in the output precision n and some parameter depending on the subset. We formalize this in
the following definition.

I Definition 3. Let f : D ⊆ Rd → Re be a computable real function and let D =
⋃
i∈I Di

be some (fixed) partition of its domain with index set I. We say f is C-polynomial-time
computable for a function C : I → N if there is an oracle machine M that
1. computes f on all inputs x ∈ D, and
2. there is a polynomial p : N→ N such that on inputs x ∈ Di the machine outputs a 2−n

approximation of f(x) after at most p(C(i) + n) steps.

We will usually partition the domain in terms of some positive real parameter α and use the
short-hand notation “f is α−1-polynomial-time computable on Dα”. Formally, this means
that f is C-polynomial-time computable w.r.t. the partition of the domain D =

⋃
α>0Dα

and the function C : R+ → N, C(α) = dα−1e.
Assume we are given an initial value problem (2) and the right-hand side function f is

analytic on some compact K ⊆ dom f . Then there is some integer CK such that the bound∣∣Dβf(x)
∣∣ ≤ C |β|+1

K β! (3)

holds for all β ∈ Nd and x ∈ K [10]. On the other hand, if for some y0 ∈ dom f the solution
exists up to time T then y([0, T]) is a compact subset of the domain. Thus, restricting f to
this set suffices to compute the solution.

We usually can not assume that f is polynomial-time computable on its whole domain
since its values can be unbounded. On the other hand on any compact subset K ⊆ dom f

of the domain, CK is an upper bound for the values of f . It is therefore a reasonable
assumption that f is C-polynomial-time computable where C denotes a function that assigns
each compact subset K ⊆ dom f an integer CK as in Equation (3).

For simplicity let us from now assume that T = 1, i.e., we only consider initial values for
which the solution exists up to time 1. The following theorem characterizes the complexity
of the solution in terms of the parameterization given by C.

I Theorem 4. Assume f : D ⊆ Rd → Rd is analytic and computable. Let D0 ⊆ D be
some subset of initial values y0 ∈ D such that the solution y to the IVP (2) with initial
value y0 exists for all t ∈ [0, 1]. For each y0 ∈ D0 let further K(y0) := y([0, 1]; 0, y0) and
D′ :=

⋃
y0∈D0

K(y0). Assume there is a function C : D0 → N such that
f restricted to D′ is C-polynomial-time computable, and
C(y0) is a derivative bound for f on K(y0) as in (3).

Then there exists a C-polynomial-time computable function Z : Rd × [0, 1]× N → Rd such
that Z(y0, t, C(y0)) = Y (y0, t) for all y0 ∈ D0 and t ∈ [0, 1]. That is, Z computes Y when
given C(y0) as additional information.

A. Kawamura, H. Thies, and M. Ziegler 30:7

Note that in general it is not possible to effectively get the parameter C(y0) from the function
[2, 20]. Thus, in the above theorem we have to provide it as an additional input. For most
natural systems, however, it is usually easy to get an upper bound for the parameter. We
therefore assume that we can effectively get the parameter for the rest of the paper.

The main idea of the proof is that a simple power series based approach suffices to compute
a local solution on some small time interval [t0, t0 + δ] in time polynomial in n + C(y0)
(see e.g. [17]). To get a solution on a bigger interval this algorithm can be iterated several
times. To show theorem 4 it therefore suffices to show that polynomially in C(y0) many
iterations suffice and that it suffices to compute the intermediate values in each iteration
with polynomial precision. The proof of the theorem is very similar to the proof of a recent
result by Bournez, Graça and Pouly [1] for polynomial ODEs over unbounded time. We
therefore chose to omit the details here. However, as both the statement and notation of our
theorem are quite different from theirs, we included a proof in the appendix for completeness.

4 Average-case complexity for dynamical systems

While theorem 4 gives a very general characterization for the complexity of simulating initial
value problems, it is usually not very useful as the complexity bound can differ for each
initial value y0. In general there is no way around this as the trajectories for distinct initial
values can be quite different. On the other hand, it might be the case that most trajectories
behave nicely in the sense that they stay far away from singularities of the system. In that
case, we would like to say that the simulation can “usually” be done efficiently. This notion
can be made formal using average-case complexity.

Such an average-case analysis, however, requires that we can get a bound on the probability
for a trajectory to come close to a singularity. Usually, there is no easy way to assign such a
probability. On the other hand, if the system has the special property that the volume of
subsets of phase-space is preserved over time then a small volume of singularities in phase
space indicates that the set of initial values coming close to singularities is also small. A
large class of dynamical systems that have this property are Hamiltonian systems.

A d degree-of-freedom (time-independent) Hamiltonian system is a 2d-dimensional dy-
namical system ẏ = f(y) where the state can be split into two variables y(t) = (q(t), p(t)) for
smooth functions q, p : R→ Rd that satisfy the system of 2d first order ordinary differential
equations

q̇(t) = ∂H(p, q)
∂p

, ṗ(t) = −∂H(p, q)
∂q

(4)

for some smooth, real-valued function H : R2d → R. The functions q and p are called the
position and momentum of the system and H is called the Hamiltonian. We only consider
time-independent systems where the Hamiltonian is constant over time and therefore is
sometimes also called the energy of the system.

4.1 Average-case complexity for Hamiltonian system
In this chapter we define some criteria under which a given Hamiltonian system can be
simulated in polynomial time on average. Here, it is more natural to formalize the results
in terms of distance to complex singularities of a complex analytic extension instead of a
derivative bound. We first (independently of the system being Hamiltonian or not) formalize
the notion of a point being close to a (complex) singularity of an analytic function.

MFCS 2018

30:8 Average-Case Polynomial-Time Computability of Hamiltonian Dynamics

S

y(0)

y(t)

y(t′)

α

N(α)

N(2α)

Figure 1 An α-singularity is a state of the system where the distance to a singularity is at most
α. If the distance at time t = 0 is at least 2α and there is an α-singularity at time t > 0 there has
to be some time t′ when y(t′) is 2α close to the singularity. While the distance is between 2α and α
the velocity is bounded which can be used to bound the minimum time the particle has to spend in
the green region.

I Definition 5. Let f : D ⊆ Rd → Rd analytic. For any α > 0 and A ⊆ D we define the
following sets:
1. G(α) is the set of points x ∈ D such that there is a complex analytic extension f̃ of f

that is analytic on all z ∈ Cd with |x− z| ≤ α,
2. N(α) := D \G(α),
3. RA ⊆ D is the set of points reachable from A in time t ≤ 1, i.e., x ∈ RA if there is y0 ∈ A

and t ∈ [0, 1] such that y(t; 0, y0) = x,
4. GA(α) := G(α) ∩RA and NA(α) := N(α) ∩RA,
5. A(α) := {y0 ∈ A : y(t; 0, y0) ∈ G(α) for all t ∈ [0, 1]},
6. B(α) := A \A(α).
We call a point x ∈ N(α) an α-singularity, x ∈ A(α) an α-good initial value (α-bad for
x ∈ B(α)) and points in RA reachable points.

If we restrict the initial values to be contained in a set A and the volume of B(α) is small
in comparison to A and if the growth of f behaves “nicely” on G(α) then the simulation can
be done in polynomial time on average:

I Theorem 6. Let f : D ⊆ Rd → Rd analytic and computable. Consider the solution
function Y to the IVP (2) restricted to a bounded subset of initial values A ⊆ D. Assume
that there is some polynomial m : N → N such that

∣∣f̃ ∣∣ ≤ m(α−1) holds for any point in
GA(α2) and that f on GA(α) is α−1-polynomial-time computable. Then
1. Y is α−1-polynomial-time computable on initial values in A(α), and
2. If there is additionally some constant γ > 0 such that λ(B(α))

λ(A) ≤ αγ then Y can be
computed in polynomial time on average (w.r.t. the restriction of d-dimensional Lebesgue
measure to A).

Proof. We show how to apply theorem 4 to prove the first part of the theorem. Let us first
show that the polynomial m can be used to get a derivative bound on G(α).

Assume
∣∣f̃(z)

∣∣ ≤M(α) for all z ∈ G(α2) for a function M withM(α) ≥ 2
α . For z0 ∈ G(α),

consider the polydisc D =
∏d
i=1Di with Di := {z ∈ C : |z0,i − z| ≤ α

2 }. Now, f̃ is analytic

A. Kawamura, H. Thies, and M. Ziegler 30:9

on D by the definition of G(α). Furthermore
∣∣f̃ ∣∣ is bounded on D by M(α). By Cauchy’s

integral formula it follows

∣∣Dβf(z0)
∣∣ =

∣∣∣∣ β!
(2πi)d

∫
ξ1∈∂D1

· · ·
∫
ξd∈∂Dd

f(ξ1, . . . , ξd)
(ξ1 − z0,1)β1+1 · · · (ξd − z0,d)βd+1

∣∣∣∣ dξ1 · · · dξd
≤ β!

(2π)d
(

2πα2

)d M(α)
(α2)β+d = β!M(α)

(
2
α

)β
.

Therefore,
∣∣Dβf(z0)

∣∣ ≤ β!M(α)|β|+1 for all z0 ∈ G(α). As we assume that the set of initial
values is bounded and t ∈ [0, 1], it further follows that the absolute value of points in GA(α)
is bounded by a linear function in M(α). Thus we can apply theorem 4 using the partition of
the domain into sets Kα = GA(α) which concludes the proof of the first part of the theorem.

For the second part let µ be the restriction of the Lebesgue measure to A, i.e., µ(B) = λ(B)
λ(A)

for all measurable subsets B ⊆ A. Let further Ai = A(2−(i+1)) \ A(2−i), i.e., Ai contains
the initial values where the minimum distance to a complex singularity for any t ∈ [0, 1] is
between 2−i and 2−(i+1). Since Ai ⊆ B(2−i) it holds λ(Ai) ≤ λ(B(2−i)) and by assumption
µ(Ai) ≤ 2−iγ . On the other hand Ai is contained in A(2−(i+1)) thus by the first part of the
theorem and the assumption on the time bound of f it follows that Y is computable on
initial values in Ai in time u(n+ 2i) for a polynomial u. Since A =

⋃∞
i=0Ai it holds∫

A

1
n
T (x, n)εdµ ≤ 1

n

∞∑
i=0

µ(Ai)T (Ai, n)ε ≤ 1
n

∞∑
i=0

2−iγu(n+ 2i)ε

Let m be the highest coefficient in the polynomial u then for ε ≤ γ
2m the sum converges and

thus
∫
A

1
nT (x, n)εdµ is bounded. J

Theorem 6 holds even if the system is not Hamiltonian, but usually there is no simple way to
get a bound for the measure for the second part of the theorem. For Hamiltonian systems, on
the other hand, we can exploit the fact that they preserve phase-space volume over time (this
is known as Liouville’s theorem). Thus, there is a relation between the volume λ(A(α)) of
initial values leading to almost singularities and the volume λ(NA(α)) of almost singularities
in phase-space.

Saari uses a similar idea to show that for the three-body problem the set of initial
values leading to collisions has measure 0. However, for our application we need a stronger
quantification of how the measure correlates to the distance of the particles. The main
difficulty is that almost singularities can occur at any time t ∈ [0, 1]. Thus, theoretically
we would have to consider infinitely many “copies” of NA(α), one for each possible time.
Saari manages to replace this by only countably infinite many copies which suffices to show
that the set of initial values leading to collisions has measure zero. However, this approach
does does not suffice to give a bound for α-singularities with α > 0. We therefore need a
slightly more complicated idea to show that finitely many copies suffice in our case. Note,
however, that Saari’s result holds for unbounded time while our idea is based on the time
being bounded. In fact, a generalization of our result to unbounded time turns out to be
false [27].

Let us now state our main theorem. As the property of preserving phase-space volume is
in fact the only attribute we use about Hamiltonian systems, we can formulate the theorem in
terms of the bigger class of volume-preserving (sometimes also called conservative) dynamical
systems.

MFCS 2018

30:10 Average-Case Polynomial-Time Computability of Hamiltonian Dynamics

I Theorem 7. Let ẏ = f(y) be a volume-preserving dynamical system with f : D ⊆ Rd → Rd
computable and analytic and let A ⊆ D be a bounded subset of initial values. Assume that

f is α−1-polynomial-time computable on α-good initial values y0 ∈ GA(α),
for all α > 0 the measure of α-bad subsets of phase space is bounded by λ(NA(α)) ≤ αγ
for some γ > 0,∣∣∣f̃ ∣∣∣ is bounded by Mα := M(dα−1e) for a polynomial M : N→ N on N(2α) \N(α).

Then
1. λ(B(α)) ≤

(2Mα

α + 1
)
λ(NA(2α))

2. The solution function Y :⊆ A× [0, 1]→ Rd is polynomial-time computable on average.

Proof. We only prove the first part. The second part then follows by applying theorem 6.
For any t ∈ [0, 1] let Bt(α) ⊆ A be the subset of initial values that lead to an α-singularity
at time t, i.e., y0 ∈ Bt(α) iff y(t; 0, y0) ∈ N(α). As the system is volume-preserving it holds
λ(Bt(α)) ≤ λ(NA(α)) for all t and α. Obviously, B(α) =

⋃
t∈[0,1]Bt(α).

We now show that we can replace the infinite union by a union of finitely many slightly
bigger sets. Let y(0) ∈ Bt(α) for some t ∈ [0, 1], i.e., y(0) is an initial value such that
y(t) ∈ N(α). If y(0) ∈ N(2α) then it holds that y(0) ∈ B0(2α) by definition. Otherwise there
has to be some time t′ > 0 where y(t′) ∈ N(2α) \N(α) for the first time (see Fig. 1). As for
any z ∈ N(2α)\N(α) by assumption

∣∣f̃(z)
∣∣ ≤Mα. It follows that for any s ∈ [t′, t′+ α

Mα
] the

difference of the state at time t′ and the state at time s can be at most α, i.e., y(s) ∈ G(α). In
particular, if y(0) ∈ G(2α) and for some t ∈ [0, 1] it holds that y(t) ∈ N(α) then there is some
non-trivial time interval [t1, t2] of length at least α

Mα
such that y(s) ∈ N(2α) \N(α) for all

s ∈ [t1, t2]. Therefore, [t1, t2] contains some multiple t∗ of α
2Mα

. In particular, y(t∗) ∈ N(2α)
and thus by definition y(0) ∈ Bt∗(2α). This shows that for the finite subset {tk}k ⊂ [0, 1] of
multiples of α

2Mα it holds that B(α) ⊆
⋃
tk
Btk(2α). By applying the fact that the system is

volume-preserving it holds λ(Btk(2α)) ≤ λ(NA(2α)) and thus the statement follows. J

4.2 Average-case complexity for the restricted three-body problem
As an application of theorem 7 we show that the solution of the restricted three-body problem
can be computed in polynomial-time on average. The classical three-body problem is the
problem of predicting the motion of three point masses under their mutual gravitational
attraction. An important special case is that we assume that one particle P3 has much
smaller mass than the other two P1 and P2. In that case P3 does not influence the motion
of P1 and P2 significantly. The problem can therefore be simplified by assuming that P3
is massless. The motion of the heavy particles can then be seen as a two-body problem.
A further simplification can be achieved by assuming that the heavy particles move on a
circular orbit around their common center of mass and P3 only moves in the plane defined
by P1 and P2. This problem is known as the planar circular restricted three-body problem. In
spite of being much simpler than the general problem, the restricted problem shares many of
the properties of the N -body problem that makes it interesting for our analysis. In particular,
the restricted problem is a Hamiltonian dynamical system where the equation of motion is
given by an analytic initial value problem. There is no general closed form solution and the
motion can be chaotic [15]. The restricted three-body problem has been studied extensively
by mathematicians and engineers.

By choosing appropriate units of measurement and a rotating coordinate system, the
system can be brought in a simpler, normalized form only depending on a single parameter
µ ∈ (0, 0.5]. The masses of the particles P1 and P2 in the new units are given by µ and 1−µ,
respectively. The position of the heavy particles in the rotating coordinate system remains

A. Kawamura, H. Thies, and M. Ziegler 30:11

d1 d2

(q1, q2)

µ 1− µ

Figure 2 The planar circular restricted three-body problem in normalized form. P1 and P2 are
fixed at position (−µ, 0) and (1 − µ, 0). They have masses 1 − µ and µ and influence the motion of
the massless particle P3 at position (q1, q2).

fixed at (−µ, 0) and (1− µ, 0). We use q = (q1, q2) to describe the coordinates of P3 relative
to that coordinate system (see Figure 2). A full derivation for the transformations as well as
formulas to translate a solution for the normalized system to a solution for the non-modified
system can e.g. be found in [11].

In Hamiltonian form the IVP can be written in terms of position q ∈ R2 and moment
p ∈ R2 as

H(p, q) = 1
2‖p‖

2 + q2p1 − q1p2 −
µ

d1
− 1− µ

d2
(5)

where d1 :=
√

(q1 + µ)2 + q2
2 and d2 :=

√
(q1 + µ− 1)2 + q2

2 . This defines a dynamical
system with phase space Γ ⊆ R4. We sometimes also consider the velocity of the particle
given by v(t) = (p1(t) + q2(t), p2(t)− q1(t)) instead of the moment.

We assume that we start the simulation with initial values in the set A of points q0, p0
with |q0| ≤ 1 and |p0| ≤ 1. We first make the additional assumption that the energy is
bounded by some constant h > 0, i.e., it holds |H(q0, p0)| ≤ h. We denote the subset of
initial values satisfying this bound by Ah.

In this problem, an α-singularity corresponds to the situation where P3 gets close to either
P1 or P2. Note that the absolute value of the moments tend to infinity when approaching a
singularity. A bound on the volume of α-singularities in phase-space is given by the following
lemma.

I Lemma 8. For any α ∈ [0, 0.5], the Lebesgue measure of NAh(α) is given by λ(NAh(α)) ≤
8π2hα2.

Proof. We show that for the set N1(α) of points coming close to P1 it holds that λ(N1(α)) ≤
π2hα2. Then the claim follows as NAh(α) = N1(α) ∪ N2(α). We first change to a new
coordinate system (x, v) in terms of position and velocity of the particle such that P1 is at
the origin (note that this change preserves volume). The Hamiltonian of the problem in
these coordinates can be written as

E(x, v) = 1
2‖v‖

2 − 1
2‖x‖

2 + x1µ−
µ

‖x‖
− 1− µ

d2
− 0.5µ2

Let Γ ⊆ R4 the phase-space of the problem. Γ can be parameterized in terms of the position

MFCS 2018

30:12 Average-Case Polynomial-Time Computability of Hamiltonian Dynamics

and the energy E by

Φ : (E, r, ϕ, ψ) 7→
(
r cos (ϕ), r sin (ϕ), R(E, r, ϕ) cos (ψ), R(E, r, ϕ) sin (ψ)

)
(6)

with

R(E, r, ϕ) :=
√

2E + µ2 − 2µr cos(ϕ) + 2µ
r

+ 2− 2µ
d2

+ r2 (7)

It is N1(α) ⊆ Φ(G) with G := [−h, h] × [0, α] × [0, 2π) × [0, 2π). Thus the volume can be
bounded by

λ(N1(h, α)) ≤
∫

Φ(G)
dq1 dq2 dv1 dv2 =

∫
G

| det(D Φ)| dr dh dϕ dψ = 4π2 · α2 · h.

The last equality holds since det(D Φ) = r. J

It further holds that a bound on the energy implies that both the position and the velocity of
the particle are bounded as long as the particle does not get close to one of the singularities.

I Lemma 9. For any q, v ∈ G(α) ∩Ah it holds ‖q‖ ≤ 2h+ 10 and ‖v‖ ≤
√

(2h+ 11)2 + 1
α .

Proof. Assume d1 ≥ α and d2 ≥ α. The Hamiltonian in terms of the velocity is given by

H(v, q) = 1
2‖v‖

2 − µ

d1
− 1− µ

d2
− 1

2‖q‖
2.

Thus the bound on the Hamiltonian implies the bound

‖v‖2 ≤ 2h+ |q|2 + 2
α

(8)

on the velocity.
Now assume ‖q‖ ≥ 2 then both d1 ≥ 1 and d2 ≥ 2 and thus ‖v‖2 ≤ 2h+ |q|2 + 2 holds.

Let h′ = max(h, 2) then ‖v‖ ≤ h′ + ‖q‖. Now consider for n ≥ 1 the subsets Un where
n−1 ≤ ‖q‖ ≤ n. For n ≥ 3, (q, v) ∈ Un implies that ‖v‖ ≤ h′+n. In particular the minimum
time to get from Un to Un+1 is tn := 1

h′+n . As for the initial values ‖q‖ ≤ 2 the minimum
time needed to reach a state where ‖q‖ ≥ N is bounded by

TN :=
N∑
i=3

1
h′ + n

= HN+h′+3 −Hh′+3

where HN :=
∑N
k=1

1
k denotes the N -th harmonic number. By the well known bound

γ + log(N) ≤ HN ≤ γ + log(N + 1)

it holds

TN ≥ log
(
N + h′ + 3
h′ + 4

)
.

As the time is bounded by 1 it follows that ‖q‖ ≤ 2h′ + 6 ≤ 2h + 10. Inserting this back
into (8) yields

‖v‖ ≤
√

2h+ (2h+ 10)2 + 2
α

from which the claim follows. J

A. Kawamura, H. Thies, and M. Ziegler 30:13

From this it can be easily followed that the right-hand side function of the ODE system is
computable in time polynomial in dα−1e and h and that a polynomial bound in those terms
holds for complex analytic extensions of the function on N(2α) \N(α).

As for initial values it holds that the magnitude of both position and moment are bounded
by 1, it follows from the Equation for the Hamiltonian (5) that high energy can only be due
to particles being already close at time 0. In particular for α-good initial values the following
bound on the Hamiltonian holds.

I Lemma 10. Assume ‖q‖ ≤ 1, ‖p‖ ≤ 1 and q, p /∈ N(α) then H(p, q) ≤ 3 + 2
α .

Thus the above polynomial bounds can all be stated only in terms of α. In particular all
conditions in theorem 7 are satisfied and thus the problem is polynomial-time computable
on average:

I Theorem 11. Simulating the restricted three-body problem for time t ≤ 1 for initial values
p0, q0 with |p0| ≤ 1, |q0| ≤ 1 is possible in polynomial time on average.

5 Conclusion

We applied a recent definition of average-case complexity in analysis to problems in classical
physics. We gave some general conditions which show that a continuous-time system can be
computed efficiently on average. For the important special case of Hamiltonian systems, we
showed that a simpler approach based on the volume of almost singularities in phase-space
usually suffices. We applied our theory to the planar circular restricted three-body problem
and showed that it indeed can be computed in polynomial time on average. The same can
easily be done for some other simple dynamical systems.

However, our theory does not easily generalize to some other more complicated systems
like the classical N -body problem as bounding the volume of singularities in phase space is
more complicated for these systems. While we think that most systems in nature can indeed
be simulated efficiently and that a similar result holds for, e.g., the general N -body problem
it is unlikely that our approach can be easily adapted to this case as for N > 4 it is not even
known if the set of initial conditions leading to singularities has measure zero.

Nonetheless, we hope that we can at least extend our theory to the general three-body
problem and some other interesting problems in future work.

References
1 Olivier Bournez, Daniel S. Graça, and Amaury Pouly. On the complexity of solving

initial value problems. In ISSAC 2012-Proceedings of the 37th International Sympo-
sium on Symbolic and Algebraic Computation, pages 115–121. ACM, New York, 2012.
doi:10.1145/2442829.2442849.

2 Daniel S Graça, Ning Zhong, and Jorge Buescu. Computability, noncomputability and
undecidability of maximal intervals of IVPs. Transactions of the American Mathematical
Society, 361(6):2913–2927, 2009.

3 A. Grzegorczyk. On the definitions of computable real continuous functions. Fund. Math.,
44:61–71, 1957.

4 Akitoshi Kawamura. Lipschitz Continuous Ordinary Differential Equations are Polynomial-
Space Complete. Computational Complexity, 19(2):305–332, 2010.

5 Akitoshi Kawamura and Stephen Cook. Complexity theory for operators in analysis. ACM
Transactions on Computation Theory, 4(2):Article 5, 2012.

MFCS 2018

http://dx.doi.org/10.1145/2442829.2442849

30:14 Average-Case Polynomial-Time Computability of Hamiltonian Dynamics

6 Ker-I Ko. On the computational complexity of ordinary differential equations. Information
and Control, 58(1-3):157–194, 1983.

7 Ker-I Ko. Complexity theory of real functions. Progress in Theoretical Computer Science.
Birkhäuser Boston Inc., Boston, MA, 1991. doi:10.1007/978-1-4684-6802-1.

8 Ker-I Ko and Harvey Friedman. Computational complexity of real functions. Theoretical
Computer Science, 20(3):323–352, 1982. doi:10.1016/S0304-3975(82)80003-0.

9 Ker-I Ko and Harvey Friedman. Computing power series in polynomial time. Advances in
Applied Mathematics, 9(1):40–50, 1988.

10 Hikosaburo Komatsu. A characterization of real analytic functions. Proceedings of the
Japan Academy, 36(3):90–93, 1960.

11 Wang Sang Koon, Martin W. Lo, Jerrold E. Marsden, and Shane D. Ross. Dynamical
systems, the three-body problem and space mission design. World Scientific, 2000.

12 Daniel Lacombe. Sur les possibilités d’extension de la notion de fonction récursive aux
fonctions d’une ou plusieurs variables réelles. In Le raisonnement en mathématiques et
en sciences expérimentales, Colloques Internationaux du Centre National de la Recherche
Scientifique, LXX, pages 67–75. Editions du Centre National de la Recherche Scientifique,
Paris, 1958.

13 Leonid A. Levin. Average case complete problems. SIAM Journal on Computing, 15(1):285–
286, 1986.

14 X. Mao. Stochastic Differential Equations and Their Applications. Ellis Horwood series in
mathematics and its applications. Horwood Pub., 1997.

15 Andrea Milani. Chaos in the three body problem. In Predictability, stability, and chaos in
N-body dynamical systems, pages 11–33. Springer, 1991.

16 R. H. Miller. Numerical difficulties with the gravitational n-body problem. In Dale G. Bettis,
editor, Proceedings of the Conference on the Numerical Solution of Ordinary Differential
Equations, pages 260–275, Berlin, Heidelberg, 1974. Springer Berlin Heidelberg.

17 Bernd Moiske and Norbert Th. Müller. Solving initial value problems in polynomial time.
In Proc. 22 JAIIO - PANEL ’93, Part 2, pages 283–293, Buenos Aires, 1993. URL: http:
//www.uni-trier.de/mueller.

18 Norbert Th. Müller. Uniform Computational Complexity of Taylor Series. In Proc. 14th
International Colloquium on Automata, Languages, and Programming, volume 267 of LNCS,
pages 435–444. Springer, 1987.

19 Norbert Th. Müller. Polynomial time computation of Taylor series. Proc. 22 JAIIO-
PANEL’93, Part 2, Buenos Aires, 259:281, 1993.

20 Norbert Th. Müller. Constructive Aspects of Analytic Functions. In Proc. Workshop on
Computability and Complexity in Analysis, volume 190 of InformatikBerichte, pages 105–
114. FernUniversität Hagen, 1995.

21 Donald G. Saari. Improbability of Collisions in Newtonian Gravitational Systems. II. Trans-
actions of the American Mathematical Society, 181:351–368, 1973. doi:10.2307/1996638.

22 Donald G. Saari. A global existence theorem for the four-body problem of Newto-
nian mechanics. Journal of Differential Equations, 26(1):80–111, 1977. doi:10.1016/
0022-0396(77)90100-0.

23 Matthias Schröder, Florian Steinberg, and Martin Ziegler. Average-Case Bit-Complexity
Theory of Real Functions. In Mathematical Aspects of Computer and Information Sciences,
pages 505–519. Springer, Cham, 2015. doi:10.1007/978-3-319-32859-1_43.

24 A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 2(1):230–265, 1936. doi:10.1112/plms/
s2-42.1.230.

25 Klaus Weihrauch. Computable Analysis. Springer, Berlin/Heidelberg, 2000.

http://dx.doi.org/10.1007/978-1-4684-6802-1
http://dx.doi.org/10.1016/S0304-3975(82)80003-0
http://www.uni-trier.de/ mueller
http://www.uni-trier.de/ mueller
http://dx.doi.org/10.2307/1996638
http://dx.doi.org/10.1016/0022-0396(77)90100-0
http://dx.doi.org/10.1016/0022-0396(77)90100-0
http://dx.doi.org/10.1007/978-3-319-32859-1_43
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1112/plms/s2-42.1.230

A. Kawamura, H. Thies, and M. Ziegler 30:15

26 Andrew Chi-Chih Yao. Classical physics and the Church–Turing Thesis. Journal of the
ACM (JACM), 50(1):100–105, 2003.

27 Lei Zhao. Quasi-Periodic Almost-Collision Orbits in the Spatial Three-Body Problem.
Communications on Pure and Applied Mathematics, 68(12):2144–2176, 2015.

A Proof of Theorem 4

The proof consists of two parts. We first show that the local solution on some small interval
with length polynomial in C(y0)−2 can be computed in C(y0)-polynomial time. We then
show that iterating the algorithm for the local solution until reaching time t = 1 can still be
done within this complexity bound.

A.1 Computing a local solution
We formulate the complexity result for the local solution as the following Lemma.

I Lemma 12. Let D ⊆ Rd analytic and computable. Then there is an algorithm that given
an initial y0 ∈ Rd, time t ∈ R and an integer C ∈ N such that C is a derivative bound for f
on the closed ball BC(y0) of radius 1

C around y0 returns the solution y(t) to the IVP (2) for
any t with |t− t0| ≤ 1

2(d+1)C2 . Assume f is C-polynomial-time computable on BC(y0) then
so is y for all t that satisfy the above bound.

Proof. Cauchy’s existence theorem guarantees that the solution exists and is analytic on
this time-interval. The polynomial-time result has in principle already been shown, e.g., by
Moiske and Müller [17]. The main idea is to first compute the coefficients of the power series
of f around t0. Müller [19] showed that with the above bounds for any β ∈ Nd the coefficient
aβ is computable in time polynomial in n+C + |β|. Further, if the power series of f around
y0 can be computed in time Tf (n+ |β|) then the k-th coefficient of the power series (bk)k∈N
of any of the d components y1, . . . , yd of solution function y around t0 can be computed from
the power series of f in time O(kdTf (n+ kd)).

For any i = 1, . . . , d, the solution yi(t) for small enough t can then be approximated by
summing up the truncated power series

∑N
i=0 bi(t− t0)i for some N ∈ N. It can be shown

that |bi| ≤ (d + 1)iC2i. Therefore for any t with |t− t0| ≤ 1
2(d+1)C2 it suffices to sum up

O(n) coefficients to make the truncation error less than 2−(n+1). To additionally make the
approximation error less than 2−(n+1) and thereby the total error less than 2−n it suffices to
approximate each bi with error less than 2−(2n+1). J

A.2 Extending to a global solution
We now prove the theorem by iterating the local solution algorithm. Let us first summarize
the assumptions:
1. The right-hand side function f : D ⊆ Rd → Rd is analytic and computable,
2. The solution y(t) := y(t; 0, y0) exists for all time t ∈ [0, 1],
3. Restricted to the set K := y([0, 1]; 0, y0) the integer C is a derivative-bound for f , i.e.,∣∣Dβf(x)

∣∣ ≤ C |β|+1β! for all x ∈ K,
4. The algorithm computing f gives a 2−n approximation of f(x) in time poly(n+ C) on

any x ∈ K.
Note that each x ∈ K is bounded by |x| ≤ C as it is in the image of y.

We want to show that iteratively using the local solution algorithm yields a polynomial-
time algorithm mapping initial values y0 ∈ K and time t ∈ [0, 1] to the solution y(t) at time t.

MFCS 2018

30:16 Average-Case Polynomial-Time Computability of Hamiltonian Dynamics

Algorithm 1 Solving Initial Value Problems.
function solve_ivp(f, y0, t, n, C)

tcurr ← 0
ycurr ← Approx(y0,m)
h← 1

2(d+1)C2

while tcurr + h ≤ t do
ycurr ← LocalSolution(ycurr, h,m,C)
tcurr ← tcurr + h

return LocalSolution(f, ycurr, t− tcurr,m,C)

For this it suffices to show that we can always reach time 1 in polynomially many iterations
and that it suffices to approximate all intermediate values with polynomial precision. For
simplicity we fix the index i of the solution function yi and simply denote it by y. By
lemma 12 we can assume that there is an algorithm LocalSolution that computes for inputs
y0 ∈ K, t ∈ [0, 1] and C, n ∈ N with t ≤ 1

2(d+1)C2 a rational approximation q ∈ Q such
that |y(t; t0, y0)− q| ≤ 2−n. For a suitable choice of the intermediate precision parameter m
Algorithm 1 computes an approximation q to the solution at any time t ∈ [0, 1] such that
|y(t; t0, y0)− q| ≤ 2−n. It remains to show that m can be chosen to be polynomial in n+ C.
The algorithm makes at most 2(d+ 1)C2 steps to reach any time t ∈ [0, 1].

Let us first consider the error when computing the local solution yi+1 from yi. There
are two types of errors. The first one is due to the local solution algorithm only returning
an approximation to the real solution with precision 2−m. The second kind of error arises
because of the accumulated error in yi: Instead of solving the IVP problem with initial value
yi we use an approximation zi of yi as initial value. To bound the second kind of error we
use the following fact:

I Lemma 13. Assume f : Rd → Rd fulfills the conditions above. Then each component
function fi : Rd → R is Lipschitz-continuous on K with Lipschitz-constant L =

√
dC2.

Proof. This simply follows from the fact that all partial derivatives of f are bounded by
C2. J

This can be used to get a bound on the local error.

I Lemma 14. Assume f fulfills the conditions above. Let y0, z0 ∈ K be initial condition
with ‖y0 − z0‖∞ ≤ ε. Then for all t < 1

2(d+1)C2 it is |y(t; y0)− y(t; z0)| ≤ 2ε.

Proof. It holds that y(t; y0) = y0 +
∫ t

0 |f(y(τ))|. Thus

|y(t; y0)− y(t; z0)|

≤ |y0 − z0|∞ +
∫ t

0
|f(y(τ ; y0))− f(y(τ ; z0))| dτ

≤ ε+
∫ t

t0

L |y(τ ; y0)− y(τ ; z0)| dτ

By Grönwall’s Lemma [14, Chapter 1, Theorem 8.1] it follows that

|y(t; y0)− y(t; z0)| ≤ εeLt.

A. Kawamura, H. Thies, and M. Ziegler 30:17

For t ≤ 1
2(d+1)C2 ≤

√
d

2(d+1)L it then holds

|y(t; y0)− y(t; z0)| ≤ εe
√
d

2(d+1) ≤ 2ε. J

It is now easy to compute the total error for the algorithm depending on the parameter m
for the intermediate precision.

I Lemma 15. Assume algorithm 1 needs N iterations to reach the final time t. The total
error E is bounded by E ≤ 2N+1−m.

Proof. Let Ek be the error of ycurr after k iterations of the while-loop in Algorithm 1. It is
E0 ≤ 2−m and Ek+1 ≤ 2Ek + 2−m. It follows by induction that EN ≤ 2N+1−m − 2−m. J

Since the maximum number of iterations is bounded by N = 2(d+ 1)C2 to achieve precision
2−n it suffices to choose m ≥ n+ 2(d+ 1)C2 + 1 which proves the theorem.

MFCS 2018

Generalized Budgeted Submodular Set Function
Maximization

Francesco Cellinese
Gran Sasso Science Institute, L’Aquila, Italy
francesco.cellinese@gssi.it

Gianlorenzo D’Angelo
Gran Sasso Science Institute, L’Aquila, Italy
gianlorenzo.dangelo@gssi.it

Gianpiero Monaco
University of L’Aquila, L’Aquila, Italy
gianpiero.monaco@univaq.it

Yllka Velaj
University of Chieti-Pescara, Pescara, Italy
yllka.velaj@unich.it

Abstract
In this paper we consider a generalization of the well-known budgeted maximum coverage problem.
We are given a ground set of elements and a set of bins. The goal is to find a subset of elements
along with an associated set of bins, such that the overall cost is at most a given budget, and
the profit is maximized. Each bin has its own cost and the cost of each element depends on its
associated bin. The profit is measured by a monotone submodular function over the elements.

We first present an algorithm that guarantees an approximation factor of 1
2
(
1− 1

eα

)
, where

α ≤ 1 is the approximation factor of an algorithm for a sub-problem. We give two polynomial-
time algorithms to solve this sub-problem. The first one gives us α = 1− ε if the costs satisfies a
specific condition, which is fulfilled in several relevant cases, including the unitary costs case and
the problem of maximizing a monotone submodular function under a knapsack constraint. The
second one guarantees α = 1 − 1

e − ε for the general case. The gap between our approximation
guarantees and the known inapproximability bounds is 1

2 .
We extend our algorithm to a bi-criterion approximation algorithm in which we are allowed

to spend an extra budget up to a factor β ≥ 1 to guarantee a 1
2
(
1− 1

eαβ

)
-approximation. If we

set β = 1
α ln

(1
2ε
)
, the algorithm achieves an approximation factor of 1

2 − ε, for any arbitrarily
small ε > 0.

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis,
Theory of computation → Packing and covering problems

Keywords and phrases Submodular set function, Approximation algorithms, Budgeted Max-
imum Coverage

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.31

Related Version A full version of the paper is available at http://arxiv.org/abs/1808.03085.

© Francesco Cellinese, Gianlorenzo D’Angelo, Gianpiero Monaco, and Yllka Velaj;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 31; pp. 31:1–31:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francesco.cellinese@gssi.it
mailto:gianlorenzo.dangelo@gssi.it
mailto:gianpiero.monaco@univaq.it
mailto:yllka.velaj@unich.it
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.31
http://arxiv.org/abs/1808.03085
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Generalized budgeted submodular set function maximization

1 Introduction

The Maximum Coverage (MC) is a fundamental combinatorial optimization problem which
has several applications in job scheduling, facility locations and resource allocations [14, Ch.
3], as well as in influence maximization [17]. In the classical definition we are given a ground
set X, a collection S of subsets of X with unit cost, and a budget k. The goal is selecting
a subset S′ ⊆ S, such that |S′| ≤ k, and the number of elements of X covered by S′ is
maximized. A natural greedy algorithm starts with an empty solution and iteratively adds a
set with maximum number of uncovered elements until k sets are selected. This algorithm
has an approximation of 1− 1

e [20] and such result is tight given the inapproximability result
due to Feige [11]. An interesting special case of the problem where this inapproximability
result does not hold is when the size of the sets in S is small. In the maximum h-coverage, h
denotes the maximum size of each set in S. This problem is APX-hard for any h ≥ 3 [16]
(notice that when h = 2 it is the maximum matching problem), while a simple polynomial
local search heuristic has an approximation ratio very close to 2

h [4]. A polynomial time
algorithm with approximation factor of 5

6 is possible for the case when h = 3 [5]. In the
Budgeted Maximum Coverage (BMC) problem, which is an extension of the maximum
coverage, the cost of the sets in S are arbitrary, and thus a solution is feasible if the overall
cost of the selected subset S′ ⊆ S is at most k. In [18], the authors present a polynomial
time (greedy) algorithm with approximation factor of 1− 1

e . In the Generalized Maximum
Coverage (GMC) problem every set s ∈ S has a cost c(s), and every element x ∈ X has
a different weight and cost that depend on which set covers it. In [7], a polynomial time
(greedy) algorithm with approximation factor of 1− 1

e − ε, for any ε > 0, has been shown.
In all the above problems the profit of a solution is given by the sum of the weights

of the covered elements. An important and studied extension is adopting a nonnegative,
nondecreasing, submodular function f , which assigns a profit to each subset of elements.
In the Submodular set Function subject to a Knapsack Constraint maximization (SFKC)
problem we have a cost c(x) for any element x ∈ X, and the goal is selecting a set X ′ ⊆ X
of elements that maximizes f(X ′), where f is a monotone submodular function subject
to the constraint that the sum of the costs of the selected elements is at most k. This
problem admits a polynomial time algorithm that is

(
1− 1

e

)
-approximation [23]. Since the

MC problem is a special case of SFKC problem, such result is tight. A more general setting
was considered in [15], where the authors consider the following problem called Submodular
Cost Submodular Knapsack (SCSK): given a set of elements V = {1, 2, . . . , n}, two monotone
non-decreasing submodular functions g and f (f, g : 2V → R), and a budget b, the goal
is finding a set of elements X ⊆ V that maximizes the value g(X) under the constraint
that f(X) ≤ b. They show that the problem cannot be approximated within any constant
bound. Moreover, they give a 1/n approximation algorithm and mainly focus on bi-criterion
approximation.

In this paper we consider the Generalized Budgeted submodular set function Maximization
problem (GBSM) that is not captured by any of the above settings. We are given a ground
set of elements X, a set of bins S, and a budget k. The goal is to find a subset of elements
along with an associated set of bins such that the overall costs of both is at most a given
budget and the profit is maximized. Each bin has its own cost, while the cost of each element
depends on its associated bin. Finally, the profit is measured by a monotone submodular
function over the elements.

We emphasize that the problem considered here is not a special case of the GMC problem,
since we consider any monotone submodular functions for the profits. Moreover, it is possible
to show that our cost function is not submodular and hence our problem is not a special

F. Cellinese, G. D’Angelo, G. Monaco, and Y. Velaj 31:3

case of SCSK. Finally, our setting extends the SFKC problem, given that, the cost of an
element is not fixed like in SFKC, but instead depends on the bin used for covering it.

In addition to its theoretical appeal, our setting is motivated by the adaptive seeding
problem, which is an algorithmic challenge motivated by influence maximization in social
networks [1, 22]. In its non-stochastic version, the problem is to select amongst certain
accessible nodes in a network, and then select amongst neighbors of those nodes, in order to
maximize a global objective function. In particular, given a set X and its neighbors N(X)
there is a monotone submodular function defined on N(X), and the goal is to select t ≤ k
elements in X connected to a set of size at most k − t for which the submodular function
has the largest value. Our setting is an extension of it since we consider more general costs.

1.1 Our results
In Section 3 we present an algorithm that guarantees an approximation factor of 1

2
(
1− 1

eα

)
for GBSM. Here, α is the approximation factor of an algorithm used to select a subset of
elements whose ratio between marginal increment in the objective function and marginal
cost is maximum. We give two polynomial-time algorithms to solve this sub-problem. In
particular, in Section 4 we propose an algorithm that gives us α = 1− ε if the costs satisfy a
specific condition. This latter is fulfilled in several relevant cases including the unitary costs
case and the problem of maximizing a monotone submodular function under a knapsack
constraint. In Section 5 we propose an algorithm that guarantees α = 1 − 1

e − ε for the
general case.

The gap between our approximation guarantees and the known inapproximability bounds,
i.e. the 1− 1

e hardness for the MC problem [11] and the 1− 1
e1− 1

e
hardness for the non-stochastic

adaptive seeding problem with knapsack constraint [21], is 1
2 , unless P = NP .

In Section 6, we extend our algorithm to a bi-criterion approximation algorithm in which
we are allowed to spend an extra budget up to a factor β. An algorithm gives a [ρ, β]
bi-criterion approximation for GBSM if it is guaranteed to obtain a solution (S′, X ′) such
that f(X ′) ≥ ρf(X∗) and c(S′, X ′) ≤ βk, where X∗ is the optimal solution. We denote by
β the extra-budget we are allowed to use in order to obtain a better approximation factor.
Our algorithm guarantees a

[1
2
(
1− 1

eαβ

)
, β
]
-approximation. If we set β = 1

α ln
(1

2ε
)
, the

algorithm achieves an approximation factor of 1
2 − ε, for any arbitrarily small ε > 0.

Due to space constraints, some of the proofs have been omitted and will appear in a full
version of the paper.

1.2 Related work
Maximum coverage and submodular set function maximization are important problems. In
the literature, besides the above mentioned ones, there are many other papers dealing with
related issues. For instance, in the maximum coverage with group budgeted constraints,
the set S is partitioned into groups, and the goal is to pick k sets from S to maximize
the cardinality of their union with the restriction that at most one set can be picked from
each group. In [6], the authors propose a 1

2 -approximation algorithms for this problem,
and smaller constant approximation algorithm for the cost version. In the ground-set-cost
budgeted maximum coverage problem, given a budget and a hypergraph, where each vertex
has a non-negative cost and a non-negative profit, we want to select a set of hyperedges
such that the total cost of the covered vertices is at most the budget and the total profit
of all covered vertices is maximized. This problem is strictly harder than budgeted max
coverage. The difference of our problem to the budgeted maximum coverage problem is that

MFCS 2018

31:4 Generalized budgeted submodular set function maximization

the costs are associated with the covered vertices instead of the selected hyperedges. In [24],
the authors obtain a 1

2

(
1− 1√

e

)
-approximation algorithm for graphs (which means having

sets of size 2) and an FPTAS if the incidence graph of the hypergraph is a forest (i.e. the
hypergraph is Berge-acyclic).

Maximizing submodular set function is another important research topic. The general
version of the problem is: given a set of elements and a monotone submodular function,
the goal is to find the subset of elements that gives the maximum value, subjected to some
constraints. The case when the subset of elements must be an independent set of the matroid
over the set of elements has been considered in [3], where the authors show an optimal
randomized

(
1− 1

e

)
-approximation algorithm. A simpler algorithm has been proposed in [13].

The case of multiple k matroid constraints has been considered in [19], where the authors
give a 1

k+ε -approximation. An improved result appeared in [26]. Finally, unconstrained
(resp. constrained) general non-monotone submodular maximization, have been considered
in [2, 12] (resp. [25]).

Another related topic is the adaptive seeding problem in which the aim is to select
amongst a set X of nodes of a network, called the core, and then adaptively selecting
amongst the neighbors N(X) of those nodes as they become accessible in order to maximize a
submodular function of the selected nodes in N(X) [1, 22]. An approximation algorithm with
ratio

(
1− 1

e

)2 has been proposed in [1]. In the adaptive seeding with knapsack constraints
problem, nodes in X and in N(X) are associated with a cost and the aim is to maximize the
objective function while respecting a budget constraint. In this case, an

(
1− 1

e

) (
1− 1

e1− 1
e

)
-

approximation algorithm is known [21]. In the non-stochastic version of these problems,
all the nodes in N(X) become accessible with probability one. Even in this case it is not
possible to approximate an optimal solution within a factor greater than

(
1− 1

e1− 1
e

)
, unless

P = NP . A similar problem in which the core is made of the whole network and the network
can be augmented by adding edges according to a given cost function has been shown to
admit a 0.0878-approximation algorithm [9]. Finally, in [8, 10] the authors consider the
problem where the core is made of a give set of nodes and the network can be augmented by
adding edges incident only to the nodes in the core. In the unit-cost version of the problem
where the cost of adding any edge is constant and equal to 1 the problem is NP -hard to be
approximated within a constant factor greater than 1− (2e)−1. Then they provide a greedy
approximation algorithm that guarantees an approximation factor of 1− 1

e − ε, where ε is
any positive real number. Then, they study the more general problem where the cost of
edges is in [0, 1] and propose an algorithm that achieves an approximation guarantee of 1− 1

e

combining greedy and enumeration technique.

2 Preliminaries

We are given a set X of n elements and a set S of m bins. Let us denote the cost of a bin
s ∈ S by c(s) ∈ R≥0. For each bin s ∈ S and element x ∈ X, we denote by c(s, x) the
cost of associating x to s. Given a budget k ∈ R≥0, and a monotone submodular function
f : 2X → R≥0

1, our goal is to find a subset X ′ of X and a subset S′ 6= ∅ of S such that
c(S′, X ′) =

∑
s∈S′ c(s) +

∑
x∈X′ mins∈S′ c(s, x) ≤ k, and f(X ′) is maximum. We call this

problem the Generalized Budgeted submodular set function Maximization problem (GBSM).

1 For a ground set X, a function f : 2X → R≥0 is submodular if for any pair of sets S ⊆ T ⊆ X and for
any element x ∈ X \ T , f(S ∪ {x})− f(S) ≥ f(T ∪ {x})− f(T).

F. Cellinese, G. D’Angelo, G. Monaco, and Y. Velaj 31:5

Our problem generalizes several well-known problems. Indeed, by setting c(s, x) =∞, we
do not allow the association of element x to bin s, while by setting c(s, x) = 0 we allow to
assign element x to bin s with no additional cost. Moreover, we relax the constraints related to
the association of elements to bins by setting c(s) = 0 for each s ∈ S, and c(s1, x) = c(s2, x),
for each s1, s2 ∈ S and x ∈ X. By suitably combining these conditions we can capture
the following problems: budgeted maximum coverage problem [18]; non-stochastic adaptive
seeding problem [1] (also with knapsack constraints [21]); monotone submodular set function
subject to a knapsack constraint maximization [23].

Let us consider a partial solution (S′, X ′). Given a set T ⊆ X \X ′, we denote by cmin(T)
the minimum cost of associating the elements in T with a single bin in S, considering that
the cost of bins in S′ has been already paid, formally:

cmin(T) = min
s∈S

{
cS′(s) +

∑
x∈T

c(s, x)
}
,

where cS′(s) = c(s) if s 6∈ S′, and cS′(s) = 0 if s ∈ S′. We call cmin(T) the marginal cost of
T with respect to the partial solution (S′, X ′). We define smin(T) as the bin s ∈ S needed to
cover T with cost cmin(T). Moreover, we denote by c̄(T) the cost of associating the elements
in T to smin(T), c̄(T) = cmin(T)− cS′(smin(T)).

The marginal increment of T ⊆ X with respect to the partial solution (S′, X ′) is defined
as f(X ′ ∪ T)− f(X ′). To simplify the notation, we use g(T) = f(X ′ ∪ T)− f(X ′) to denote
the marginal increment.

In the algorithm in the next section, we will look for subsets of X that maximize the ratio
between the marginal increment and the marginal cost with respect to some partial solution.
In the following we define a family of subsets of X containing a set that approximates such
maximal ratio. Given a partial solution (S′, X ′), we denote by F the family of subsets T
of X that can be associated to bins in S′ ∪ {s}, for some single bin s ∈ S, with a cost such
that c(S′ ∪ {smin(T)}, T) ≤ k, formally F =

{
T ∈ 2X\X′ | c(S′ ∪ {smin(T)}, T) ≤ k

}
. A

sub-family of F is an α-list with respect to (S′, X ′) if it contains a subset T whose ratio
between marginal increment and marginal cost is at least α times the optimal such ratio
amongst all the subsets F . Formally, L ⊆ F is an α-list with respect to (S′, X ′) if

max
{

g(T)
cmin(T) | T ∈ L, cmin(T) > 0

}
≥ α ·max

{
g(T)
cmin(T) | T ∈ F , cmin(T) > 0

}
.

Note that the sets that maximize the above formula are not necessarily singletons due to the
bin opening cost. Moreover, the algorithm given in the next section build partial solutions
(S′, X ′) in such a way that cmin(T) > 0, for each T ∈ F .

3 Greedy Algorithm

In this section we give an algorithm that guarantees a 1
2
(
1− 1

eα

)
-approximation to the GBSM

problem, if we assume that we can compute, in polynomial time, an α-list of polynomial size.
In the next sections we will give two algorithms to compute such lists for bounded values of
α.

The pseudo-code is reported in Algorithm 1. In the first step (line 3) we add all zero-cost
bins to the solution. Then, the algorithm finds two candidate solutions. The first one is
found at lines 4–11 with a greedy strategy as follows. The algorithm iteratively constructs a
partial solution (S′, X ′) by adding a subset T̂ to X ′ and a bin smin(T̂) to S′. In particular, at

MFCS 2018

31:6 Generalized budgeted submodular set function maximization

Algorithm 1: General Algorithm.
Input :S,X
Output :S′, X ′

1 S′ := ∅;
2 X ′ := ∅;
3 foreach s ∈ S s.t. c(s) = 0 do S′ := S′ ∪ {s};
4 repeat
5 foreach x ∈ X \X ′ s.t. c(s′, x) = 0 and s′ ∈ S′ do X ′ := X ′ ∪ {x};
6 Build an α-list L w.r.t. (S′, X ′);
7 T̂ := arg maxT∈L f(X′∪T)−f(X′)

cmin(T) ;
8 if c(S′ ∪ {smin(T̂)}, X ′ ∪ T̂) ≤ k then
9 S′ := S′ ∪ {smin(T̂)};

10 X ′ := X ′ ∪ T̂ ;

11 until c(S′ ∪ {smin(T̂)}, X ′ ∪ T̂) > k or X ′ = X;
12 if f(T̂) ≥ f(X ′) then
13 S′ := S′ ∪ {smin(T̂)};
14 X ′ := T̂ ;
15 return (S′, X ′);

each iteration, it first adds all the elements that can be associated to S′ with cost 0 (line 5).
Then, it selects a subset T̂ that maximizes the ratio between the marginal increment and
the marginal cost amongst the elements of an α-list L. Here, we assume that we have an
algorithm to compute an α-list L w.r.t. (S′, X ′) (see line 6). In the next sections, we will
show how to compute L in polynomial time for some bounded α. The algorithm stops when
adding the element with the maximum ratio would exceed the budget k or when X ′ = X.
Without loss of generality, we can assume that at each iteration, the sets in the α-list L do
not contain any element in X ′, since such elements do not increase the value of the marginal
increment and possibly increase the marginal cost. This implies that at each iteration of
the greedy procedure at least a new element in X is added to X ′ and then the number of
iterations is O(n).

Let (SG, XG) be the first candidate solution computed at the end of the greedy procedure.
The second candidate solution (lines 12–14) is computed by using the set T̂ that is discarded
in the last iteration of the greedy procedure because adding {smin(T̂)} and T̂ to (SG, XG)
would exceed the budget. Indeed, the second candidate solution is (SG ∪{smin(T̂)}, T̂). Note
that this solution is feasible because T̂ is contained in the α-list L computed in the last
iteration of the greedy algorithm. Therefore, by definition of α-list, c(SG∪{smin(T̂)}, T̂) ≤ k.

The algorithm returns one of the two candidate solutions that maximizes the objective
function.

The computational complexity of Algorithm 1 is O(n · (|Lmax|+ cl)), where Lmax is the
largest α-list computed and cl is the computational complexity of the algorithm at line 6. In
the next sections we will show that our algorithms construct the α-lists in such a way that
both |Lmax| and cl are polynomially bounded in the input size.

In what follows we analyze the approximation ratio of Algorithm 1. The proof generalizes
known arguments for monotone submodular maximization, see e.g. [7, 18, 23].

We give some additional definitions that will be used in the proof. We denote an optimal
solution by (S∗, X∗). Let us consider the iterations executed by the greedy algorithm. Let
l + 1 be the index of the iteration in which an element in the α-list is not added to X ′

F. Cellinese, G. D’Angelo, G. Monaco, and Y. Velaj 31:7

because it violates the budget constraint2. For i = 1, 2, . . . , l, we define X ′i and S′i as the
sets X ′ and S′ at the end of the i-th iteration of the algorithm, respectively. Moreover, let
X ′l+1 = X ′l ∪ {T̂} and S′l+1 = S′l ∪ {smin(T̂)}, where T̂ is the element selected at line 7 of
iteration l+ 1 (see Algorithm 1). Let ci be the value of cmin(T̂) as computed at iteration i of
the greedy algorithm. The next lemma will be used in the proof of Theorem 2.

I Lemma 1. After each iteration i = 1, 2, . . . , l + 1,

f(X ′i) ≥

1−
i∏

j=1

(
1− αcj

k

) f(X∗).

Armed with Lemma 1, we can prove Theorem 2.

I Theorem 2. Algorithm 1 guarantees an approximation factor of 1
2
(
1− 1

eα

)
for GBSM.

Proof. We observe that since (S′l+1, X
′
l+1) violates the budget, then c(S′l+1, X

′
l+1) > k.

Moreover, for a sequence of numbers a1, a2, . . . , an such that
∑n
`=1 a` = A, the function[

1−
∏n
i=1
(
1− ai·α

A

)]
achieves its minimum when ai = A

n and that
[
1−

∏n
i=1
(
1− ai·α

A

)]
≥

1−
(
1− α

n

)n ≥ 1− e−α. Therefore, by applying Lemma 1 for i = l + 1 and observing that∑l+1
`=1 c` = c(S′l+1, X

′
l+1), we obtain:

f(X ′l+1) ≥
[

1−
l+1∏
`=1

(
1− c` · α

k

)]
f(X∗) (1)

>

[
1−

l+1∏
`=1

(
1− c` · α

c(S′l+1, X
′
l+1)

)]
f(X∗) (2)

≥

[
1−

(
1− α

(l + 1)

)l+1
]
f(X∗) ≥

(
1− 1

eα

)
f(X∗). (3)

Since, by submodularity, f(X ′l+1) ≤ f(X ′l) + f(T̂), where T̂ is the set selected at iteration
l + 1, we get

f(X ′l) + f(T̂) ≥
(

1− 1
eα

)
f(X∗).

Hence, max{f(X ′l), f(T̂)} ≥ 1
2
(
1− 1

eα

)
f(X∗). The theorem follows by observing that T̂ is

the set selected as the second candidate solution at lines 12–14 of Algorithm 1. J

4 Computing an α-list for a particular case

In this section, we give a polynomial time algorithm to find a (1− ε)-list with respect to a
partial solution (S′, X ′) for the particular case in which, for a given parameter ε ∈ (0, 1), the
following condition holds:∑

x∈T
c(s, x) ≥ 1

ε
c(s), (4)

2 We can assume that this iteration exists, as otherwise the algorithm is able to select X ′ = X, which is
the optimum.

MFCS 2018

31:8 Generalized budgeted submodular set function maximization

for each s ∈ S and for each T ⊆ X such that |T | = 1
ε . We observe that this condition is

fulfilled for any ε ∈ (0, 1) in the case in which c(s) = 1 and c(s, x) ≥ 1, for each s ∈ S and for
each x ∈ X, which generalizes the non-stochastic adaptive seeding problem [1]. Indeed, in
this case

∑
x∈T c(s, x) ≥ |T | = 1

ε c(s), for each s ∈ S and for each T ⊆ X, such that |T | = 1
ε .

We give a simple algorithm that returns a (1− ε)-list with respect to a partial solution
(S′, X ′). The algorithm works as follows: build a list which contains all the subsets T of
X \X ′ such that |T | ≤ 1

ε and c(S′ ∪ {smin(T̂)}, T̂) ≤ k.
Plugging this algorithm into line 6 of Algorithm 1, we can guarantee an approximation

factor of 1
2
(
1− 1

e

)
− ε′, where ε′ = 1

2e (eε − 1) for GBSM.
We observe that the case in this section contains the problem of maximizing a submodular

set function under a knapsack constraint as a special case. Indeed, it is enough to set
c(s) = 0, for each s ∈ S, and c(s1, x) = c(s2, x), for each s1, s2 ∈ S and x ∈ X. Note that
in this case Condition 4 is satisfied for any ε ∈ (0, 1). A special case of submodular set
function maximization is the maximum coverage problem, and since this latter is NP -hard
to be approximated within a factor greater than

(
1− 1

e

)
[11], then the gap between the

approximation factor of our algorithm and the best achievable one in polynomial time is 1
2 ,

unless P = NP .
It is easy to see that the computational complexity required by the algorithm in this

section is O(n 1
ε) and that |Lmax| = O(n 1

ε).
In what follows, we assume that any set T ∗ that maximizes the ratio between marginal

increment and marginal cost has size greater than 1
ε , as otherwise the α-list returned by our

algorithm would contain such set. The following two technical lemmata will be used in the
analysis of the algorithm.

I Lemma 3. Given a monotone submodular set function f : 2X → R≥0, then, for any
X ′ ⊆ X, the function g(T) = f(X ′ ∪ T)− f(X ′) is monotone and submodular.

I Lemma 4. Let us consider a monotone submodular set function f : 2X → R≥0 and a cost
function c : 2X → R≥0 such that c(T) =

∑
x∈T c({x}), for each T ⊆ X. For each set T ⊆ X,

if Ty denotes the subset of T such that f(Ty)
c(Ty) is maximum and |Ty| = y, then f(T)

c(T) ≤
f(Ty)
c(Ty) ,

for any y ≤ |T |.

The next theorem shows the approximation ratio of the algorithm. The main idea is to
consider the subset T̂ that maximizes the ratio between the marginal increment and marginal
cost in L and to derive a series of inequalities to lead us state that this value is greater than
the ratio given by the optimal subset T ∗ times the factor (1− ε). We first compare the ratio
computed for T̂ with that for T ∗1

ε
that is a subset of cardinality 1

ε of maximal ratio, then, by
rewriting the marginal cost formula according to its definition and by exploiting Lemmata 3
and 4, and Condition (4) we compare this ratio to that given by the subset T ∗ and this last
inequality concludes the theorem.

I Theorem 5. If for each T ⊆ X such that |T | = 1
ε and for each s ∈ S we have∑

x∈T c(s, x) ≥ 1
ε c(s), then the list L made of all the subsets of X \ X ′ of size at most

1
ε and cost at most k is a (1− ε)-list.

Proof. We recall that g(T) = f(X ′ ∪ T)− f(X ′). Given a subset T of X \X ′, we denote by
Ty a subset of T such that |Ty| = y and f(Ty)

c̄(Ty) is maximum. Let T ∗ be the subset of X \X ′

that maximizes the ratio between the marginal increment and the marginal cost. Let T̂ be

F. Cellinese, G. D’Angelo, G. Monaco, and Y. Velaj 31:9

the element of L that maximizes g(T̂)
cmin(T̂) . Since |T̂ | ≤

1
ε , then

g(T̂)
cmin(T̂)

≥
g
(
T ∗1
ε

)
cmin

(
T ∗1
ε

) =
g
(
T ∗1
ε

)
cS′
(
smin

(
T ∗1
ε

))
+ c̄

(
T ∗1
ε

) .
By the hypothesis of the theorem, c̄

(
T ∗1
ε

)
≥ 1

ε c
(
smin

(
T ∗1
ε

))
, moreover, c

(
smin

(
T ∗1
ε

))
≥

cS′
(
smin

(
T ∗1
ε

))
and then cS′

(
smin

(
T ∗1
ε

))
≤ εc̄

(
T ∗1
ε

)
. Therefore,

g
(
T ∗1
ε

)
cS′
(
smin

(
T ∗1
ε

))
+ c̄

(
T ∗1
ε

) ≥ g
(
T ∗1
ε

)
εc̄
(
T ∗1
ε

)
+ c̄

(
T ∗1
ε

) =
g
(
T ∗1
ε

)
(ε+ 1)c̄

(
T ∗1
ε

) .
Since f is monotone and submodular, then, by Lemma 3, also g

(
T ∗1
ε

)
is submodular. By

Lemma 4 follows that

g
(
T ∗1
ε

)
(ε+ 1)c̄

(
T ∗1
ε

) ≥ g(T ∗)
(ε+ 1)c̄(T ∗) .

We now focus on the denominator, and we obtain that:

1
(ε+ 1)c̄(T ∗) = 1 + ε− ε

(ε+ 1)c̄(T ∗) = 1
c̄(T ∗) −

ε

(ε+ 1)c̄(T ∗) ≥

1
c̄(T ∗) + cS′(smin(T ∗)) −

ε

εc̄(T ∗) + c̄(T ∗) .

By applying the hypothesis c̄(T ∗) ≥ 1
ε c(smin(T ∗)), it follows that:

1
c̄(T ∗) + cS′(smin(T ∗)) −

ε

εc̄(T ∗) + c̄(T ∗) ≥

1
c̄(T ∗) + cS′(smin(T ∗)) −

ε

c(smin(T ∗)) + c̄(T ∗) ≥

1
c̄(T ∗) + cS′(smin(T ∗)) −

ε

c̄(T ∗) + cS′(smin(T ∗)) = 1− ε
cmin(T ∗) .

To conclude:

g(T̂)
cmin(T̂)

≥ (1− ε) g(T ∗)
cmin(T ∗) . J

5 Computing an α-list for the general case

In this section we give a polynomial time algorithm that builds a
(
1− 1

e

)
(1− ε)-list with

respect to a partial solution (S′, X ′), for any ε ∈ (0, 1). Using this algorithm as routine at
line 6 of Algorithm 1, we can guarantee an approximation factor of

1
2

(
1− 1

e(1− 1
e)(1−ε)

)
for GBSM. We observe that this case generalizes the non-stochastic adaptive seeding with
knapsack constraints problem, which cannot be approximated within a factor greater than

MFCS 2018

31:10 Generalized budgeted submodular set function maximization

. . .

0 k

ĉ ĉ(1 + ε) ĉ(1 + ε)iĉ(1 + ε)2 ĉ(1 + ε)3

Figure 1 Growth of the budget Bi in the inner cycle of the algorithm.

(
1− 1

e1− 1
e

)
, unless P = NP [21]. Then, the gap between the approximation factor of our

algorithm and the best achievable one in polynomial time is 1
2 , unless P = NP .

In the algorithm of this section we make use of a procedure called GreedyMaxCover to
maximize the value of a monotone submodular function g : 2X → R≥0, given a certain
budget and costs associated to the elements of X. It is well-known that there exists a
polynomial-time procedure that guarantees a

(
1− 1

e

)
-approximation for this problem [23].

Let us denote by ĉ the minimum possible positive value of functions c(s) and c(s, x),
amongst all elements x and bins s, i.e. ĉ = min{min{c(s) : s ∈ S, c(s) > 0},min{c(s, x) : s ∈
S, x ∈ X, c(s, x) > 0}}.

The main idea is to build an α-list L which contains approximate solutions to the problem
of maximizing a monotone submodular set function subject to a knapsack constraint in which
the budget increases by a factor 1 + ε starting from ĉ, and the cost of the elements are given
by the cost of associating them to a single bin. In particular, we consider q =

⌊
log1+ε

(
k
ĉ

)⌋
+1

different budgets Bi that iteratively increase by a factor 1+ε, i.e. B0 = ĉ and Bi = (1+ε)Bi−1,
for i = 1, . . . , q. Moreover we define Bq+1 = k. For each i = 0, . . . , q + 1 and for each bin
s ∈ S, we apply procedure GreedyMaxCover with ground set X, budget Bi, and the cost
of associating the elements to bin s as cost function. Then, we add the set returned by
GreedyMaxCover to L. In this way we consider a budget that is at most a factor 1 + ε greater
than the cost of an optimal solution and the solution returned by GreedyMaxCover for this
budget has a value that is at most 1− 1

e times smaller than that of the optimal solution.
The pseudo-code of the algorithm is reported in Algorithm 2. The outer cycle at lines 2–11

iteratively selects a bin s in S and finds a list of sets of elements assigned to bin s. The
inner cycle at lines 4–8, at each iteration i, calls procedure GreedyMaxCover which uses
g as function to maximize, ĉ(1 + ε)i − cS′(s) as budget and the cost of associating the
elements to bin s as cost function (to compute this costs, we only pass s as a parameter to
GreedyMaxCover). The budget is increased by a factor (1 + ε) until ĉ(1 + ε)i ≥ k. Finally
the algorithm runs GreedyMaxCover with the full budget k. See Figure 1 for an illustration.

We call q the value of i at the end of the last iteration in the inner cycle of the algorithm.
Let Tj be the set in L that maximizes the ratio between g(Tj) and its assigned budget, that
is:

Tj = arg max
{
g(Ti(s))
Bi

: s ∈ S, i = 0, 1, . . . , q + 1
}
. (5)

In order to bound the approximation ratio, we consider X̄∗ as the set with the optimal
ratio g(X̄∗)

cmin(X̄∗) amongst any possible subset of items. Let Bl be the smallest value of Bi, for
i ∈ {0, 1, . . . , q + 1}, that is greater than or equal to the cost of an optimal solution, that is
the smallest Bl such that Bl ≥ cmin(X̄∗). See figure 2 for an illustration. We call T ∗l the
set in L that has the highest ratio g(Tl)

Bl
amongst those computed by GreedyMaxCover with

budget Bl, i.e. T ∗l = max
{
g(Tl(s))
Bl

: s ∈ S
}
. We also denote the set that maximizes g(X∗l)

with budget Bl by X∗l .
The idea of the approximation analysis is that an optimal solution X̄∗ has a value of

g that is at most g(X∗l) and a cost that is at most 1 + ε times smaller than Bl, while the
number of iterations remains polynomial since the size of the intervals grows exponentially.

F. Cellinese, G. D’Angelo, G. Monaco, and Y. Velaj 31:11

Algorithm 2: Exponential Budget Greedy.
Input :S,X, S′, X ′, k, ε
Output :L

1 L := ∅;
2 foreach s ∈ S do
3 i := 0;
4 while ĉ(1 + ε)i < k do
5 Bi := ĉ(1 + ε)i;
6 Ti(s) := GreedyMaxCover(X, s,Bi − cS′(s));
7 L := L ∪ {Ti(s)};
8 i := i+ 1
9 Bi := k;

10 Ti(s) := GreedyMaxCover(X, s,Bi − cS′(s));
11 L := L ∪ {Ti(s)};
12 return L;

. . .

0 k

B0 Bl−1 Bl
c(X̄∗)

1 + ε

Figure 2 Notation used in Theorem 6.

The next two theorems show the bounds on approximation ratio, computational complexity
and size of L.

I Theorem 6. The list L built by Algorithm 2, is a
(
1− 1

e

)
(1− ε)-list.

Proof. Since, by construction, cmin(Tj) ≤ Bj , and, by Equation 5, g(Tj)
Bj

is maximum, then

g(Tj)
cmin(Tj)

≥ g(Tj)
Bj

≥ g(T ∗l)
Bl

.

Procedure GreedyMaxCover guarantees a
(
1− 1

e

)
-approximation, then

g(T ∗l)
Bl

≥
(

1− 1
e

)
g(X∗l)
Bl

.

Moreover, since function g is monotone and cmin(X̄∗) ≤ Bl, then g(X∗l) ≥ g(X̄∗), and
therefore:(

1− 1
e

)
g(X∗l)
Bl

≥
(

1− 1
e

)
g(X̄∗)
Bl

.

We defined Bl as the smallest value of Bi that is at least cmin(X̄∗), this implies that
Bl−1 ≤ cmin(X̄∗). Moreover the ratio between Bl and Bl−1 is 1 + ε. It follows that
Bl ≤ (1 + ε)cmin(X̄∗), which implies:(

1− 1
e

)
g(X̄∗)
Bl

≥
(

1− 1
e

)(
1

1 + ε

)
g(X̄∗)
cmin(X̄∗)

≥
(

1− 1
e

)
(1− ε) g(X̄∗)

cmin(X̄∗)

MFCS 2018

31:12 Generalized budgeted submodular set function maximization

Algorithm 3: Bi-criterion Algorithm.
Input :S,X
Output :S′, X ′

1 S′ := ∅;
2 X ′ := ∅;
3 foreach s ∈ S s.t. c(s) = 0 do S′ := S′ ∪ {s};
4 repeat
5 foreach x ∈ X \X ′ s.t. c(s′, x) = 0 and s′ ∈ S′ do X ′ := X ′ ∪ {x};
6 Build an α-list L w.r.t. (S′, X ′);
7 T̂ := arg maxT∈L f(X′∪T)−f(X′)

cmin(T) ;
8 if c(S′ ∪ {smin(T̂)}, X ′ ∪ T̂) ≤ βk then
9 S′ := S′ ∪ {smin(T̂)};

10 X ′ := X ′ ∪ T̂ ;

11 until c(S′ ∪ {smin(T̂)}, X ′ ∪ T̂) > βk or X ′ = X;
12 if f(T̂) ≥ f(X ′) then
13 S′ := S′ ∪ {smin(T̂)};
14 X ′ := T̂ ;
15 return (S′, X ′);

The last inequality holds since 1
1+ε = 1− ε

1+ε ≥ 1− ε, for any ε > 0, and this concludes the
proof. J

I Theorem 7. Algorithm 2 requires O
(1
εm · gr(n) · log k

ĉ

)
computational time, where gr(n)

is the computational time of GreedyMaxCover, and |Lmax| = O
(1
εm log k

ĉ

)
.

Proof. The outer for cycle requires m iterations. We now bound the number q of iteration of
the inner cycle of the algorithm. By the exit condition of the cycle, we have: ĉ · (1 + ε)q < k,
which is equivalent to: q < log1+ε

(
k
ĉ

)
. Since for ε < 1, log1+ε

(
k
ĉ

)
= O

(1
ε log k

ĉ

)
, the

statement follows. J

We observe that O(log k
ĉ) is polynomially bounded in the size of the input.

6 Bi-criterion approximation algorithm

In this section we extend the results given in Section 3 providing a bi-criterion approximation
algorithm that guarantees a 1

2
(
1− 1

eαβ

)
-approximation to the GBSM problem, if we allow

an extra budget up to a factor β ≥ 1. We notice that, if β = 1, i.e. we do not increase the
budget, the approximation factor is 1

2
(
1− 1

eα

)
, while if β = 1

α ln
(1

2ε
)
the algorithm achieves

an approximation factor of 1
2 − ε, for any arbitrarily small ε > 0.

The algorithm is slightly different from Algorithm 1 and it is reported in Algorithm 3. In
this algorithm, we allow to exceed the given budget k by a factor β. In particular we modify
lines 8 and 11, admitting a greater budget respect to Algorithm 1.

In the next theorem we show the approximation ratio of this algorithm.

I Theorem 8. There exists an algorithm that guarantees a
[1

2
(
1− 1

eαβ

)
, β
]

bi-criterion
approximation for GBSM, for any β ≥ 1.

F. Cellinese, G. D’Angelo, G. Monaco, and Y. Velaj 31:13

It is possible to prove the theorem by using the same argument as in Theorem 2, by
taking into account the new budget βk. We also exploit the fact that Lemma 1 also holds
when considering the budget βk.

7 Conclusion

In this paper we defined a new challenging problem which leads to many open problems
and new research questions, we referred to it as the generalized budgeted submodular set
function maximization problem.

The main open problem is to close the gap between the known hardness result of 1− 1
eα ,

where α = 1 for the MC problem [11] and α = 1 − 1
e for the non-stochastic adaptive

seeding problem with knapsack constraint problem [21], and our approximation bound of
1
2
(
1− 1

eα

)
. One possibility to get rid of the 1

2 factor could be to use the partial enumeration
technique exploited in specific subproblems (e.g. budgeted maximum coverage problem [18]
and monotone submodular set function subject to a knapsack constraint maximization
problem [23]). However, this requires that each greedy step selects a single element of X,
to be added to a partial solution X ′, while our greedy algorithm selects a subset of X \X ′
that maximizes the ratio between its marginal increment in the objective function and its
marginal cost. Note that this set can contain more than one element in order to ensure that
the ratio is non-increasing at each iteration of the greedy algorithm, which is needed to apply
the analysis in [18] and [23].

Other research directions, that deserve further investigation, include the study of the
GBSM considering different cost functions and also different objective functions where the
profit given by an element x depends on the bin s which it is associated with. It would be
interesting also to analyse GBSM in the case that each bin s ∈ S has its own budget k to
use in order to maximize the objective function.

References
1 Ashwinkumar Badanidiyuru, Christos H. Papadimitriou, Aviad Rubinstein, Lior Seeman,

and Yaron Singer. Locally adaptive optimization: Adaptive seeding for monotone submod-
ular functions. In 27th ACM-SIAM Symp. on Disc. Alg., (SODA), pages 414–429, 2016.

2 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time
(1/2)-approximation for unconstrained submodular maximization. In 53rd IEEE Symp. on
Foundations of Computer Science, FOCS, pages 649–658, 2012.

3 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

4 Ioannis Caragiannis. Wavelength management in WDM rings to maximize the number of
connections. SIAM J. Discrete Math., 23(2):959–978, 2009.

5 Ioannis Caragiannis and Gianpiero Monaco. A 6/5-approximation algorithm for the max-
imum 3-cover problem. J. Comb. Optim., 25(1):60–77, 2013.

6 Chandra Chekuri and Amit Kumar. Maximum coverage problem with group budget con-
straints and applications. In 7th Intl. Work. on Approximation Algorithms for Combinat-
orial Optimization Problems, APPROX, pages 72–83, 2004.

7 Reuven Cohen and Liran Katzir. The generalized maximum coverage problem. Information
Processing Letters, 108(1):15–22, 2008.

8 Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. Influence maximization in the
independent cascade model. In Proceedings of the 17th Italian Conference on Theoretical
Computer Science (ICTCS2016), volume 1720, pages 269–274. CEUR-WS.org, 2016.

MFCS 2018

31:14 Generalized budgeted submodular set function maximization

9 Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. Selecting nodes and buying links
to maximize the information diffusion in a network. In 42st Intl. Symp. on Mathematical
Foundations of Computer Science, MFCS, volume 83 of LIPIcs, pages 75:1–75:14, 2017.

10 Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. Recommending links through
influence maximization. Theoretical Computer Science, 2018. doi:10.1016/j.tcs.2018.
01.017.

11 Uriel Feige. A threshold of ln n for approximating set cover. Journal of ACM, 45(4):634–652,
1998.

12 Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular
functions. In 48th IEEE Symp. on Foundations of Computer Science (FOCS), pages 461–
471, 2007.

13 Yuval Filmus and Justin Ward. Monotone submodular maximization over a matroid via
non-oblivious local search. SIAM J. Comput., 43(2):514–542, 2014.

14 D.S. Hochbaum. Approximation Algorithms for NPHard Problems. PWS Publishing Com-
pany„ Boston, MA, USA, 1997.

15 Rishabh K. Iyer and Jeff A. Bilmes. Submodular optimization with submodular cover
and submodular knapsack constraints. In 27th Annual Conference on Neural Information
Processing Systems (NIPS), pages 2436–2444, 2013.

16 V Kann. Maximum bounded 3-dimensional matching is max snp-comple. Information
Processing Letters, 37:27–35, 1991.

17 David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. Theory of Computing, 11:105–147, 2015.

18 Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted maximum coverage
problem. Information Processing Letters, 70(1):39–45, 1999.

19 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple
matroids via generalized exchange properties. Math. Oper. Res., 35(4):795–806, 2010.

20 G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for maxim-
izing submodular set functions–I. Mathematical Programming, 14(1):265–294, 1978.

21 Aviad Rubinstein, Lior Seeman, and Yaron Singer. Approximability of adaptive seeding
under knapsack constraints. In 16th ACM Conf. on Economics and Computation, pages
797–814. ACM, 2015.

22 Lior Seeman and Yaron Singer. Adaptive seeding in social networks. In IEEE 54th Symp.
on Foundations of Computer Science (FOCS), pages 459–468. IEEE, 2013.

23 Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack
constraint. Operation Research Letters, 32(1):41–43, 2004.

24 Irving van Heuven van Staereling, Bart de Keijzer, and Guido Schäfer. The Ground-
Set-Cost Budgeted Maximum Coverage Problem. In 41st International Symposium on
Mathematical Foundations of Computer Science (MFCS 2016), volume 58 of LIPIcs, pages
50:1–50:13, 2016.

25 Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Submodular function maximization
via the multilinear relaxation and contention resolution schemes. In 43rd ACM Symp. on
Theory of Computing, STOC, pages 783–792, 2011.

26 Justin Ward. A (k+3)/2-approximation algorithm for monotone submodular k-set packing
and general k-exchange systems. In 29th Intl. Symp.on Theoretical Aspects of Computer
Science, STACS, pages 42–53, 2012.

http://dx.doi.org/10.1016/j.tcs.2018.01.017
http://dx.doi.org/10.1016/j.tcs.2018.01.017

Complexity of Preimage Problems for
Deterministic Finite Automata
Mikhail V. Berlinkov1

Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia
berlm@mail.ru

Robert Ferens2

Institute of Computer Science, University of Wrocław, Wrocław, Poland
robert.ferens@interia.pl

Marek Szykuła3

Institute of Computer Science, University of Wrocław, Wrocław, Poland
msz@cs.uni.wroc.pl

Abstract
Given a subset of states S of a deterministic finite automaton and a word w, the preimage is
the subset of all states that are mapped to a state from S by the action of w. We study the
computational complexity of three problems related to the existence of words yielding certain
preimages, which are especially motivated by the theory of synchronizing automata. The first
problem is whether, for a given subset, there exists a word extending the subset (giving a larger
preimage). The second problem is whether there exists a word totally extending the subset
(giving the whole set of states) – it is equivalent to the problem whether there exists an avoiding
word for the complementary subset. The third problem is whether there exists a word resizing
the subset (giving a preimage of a different size). We also consider the variants of the problem
where an upper bound on the length of the word is given in the input. Because in most cases our
problems are computationally hard, we additionally consider parametrized complexity by the size
of the given subset. We focus on the most interesting cases that are the subclasses of strongly
connected, synchronizing, and binary automata.

2012 ACM Subject Classification Theory of computation → Problems, reductions and com-
pleteness

Keywords and phrases avoiding word, extending word, extensible subset, reset word, synchro-
nizing automaton

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.32

Related Version https://arxiv.org/abs/1704.08233

1 Introduction

A deterministic finite complete (semi)automaton A is a triple (Q,Σ, δ), where Q is the set
of states, Σ is the input alphabet, and δ : Q× Σ→ Q is the transition function. We extend δ
to a function Q× Σ∗ → Q in the usual way. Throughout the paper, by n we always denote
the number of states |Q|.

1 Supported by Russian Foundation for Basic Research, grant no. 16-01-00795, and the Competitiveness
Enhancement Program of Ural Federal University.

2 Supported in part by the National Science Centre, Poland under project number 2014/15/B/ST6/00615.
3 Supported in part by the National Science Centre, Poland under project number 2017/25/B/ST6/01920.

© Mikhail V. Berlinkov, Robert Ferens, and Marek Szykuła;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:berlm@mail.ru
mailto:robert.ferens@interia.pl
mailto:msz@cs.uni.wroc.pl
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.32
https://arxiv.org/abs/1704.08233
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Extending Word Problems

1 2

34

b b

b

a

a

a

b a

Figure 1 The Černý automaton with 4 states.

When the context automaton is clear, given a state q ∈ Q and a word w ∈ Σ∗, we write
shortly q · w for δ(q, w). Given a subset S ⊆ Q, the image of S under the action of a word
w ∈ Σ∗ is S · w = δ(S,w) = {q · w | q ∈ S}. The preimage is S · w−1 = δ−1(S,w) = {q ∈ Q |
q · w ∈ S}. If S = {q}, then we usually simply write q · w−1.

We say that a word w compresses a subset S if |S · w| < |S|, avoids S if (Q · w) ∩ S = ∅,
extends S if |S ·w−1| > |S|, and totally extends S if S ·w−1 = Q. A subset S is compressible,
avoidable, extensible, and totally extensible, if there is a word that respectively compresses,
avoids, extends and totally extends it.
I Remark. A word w ∈ Σ∗ is avoiding for S ⊆ Q if and only if w is totally extending for
Q \ S.

Fig. 1 shows an example automaton. For S = {2, 3}, the shortest compressing word is
aab, and we have {2, 3} · aab = {1}, while the shortest extending word is ba, and we have
{2, 3} · (ba)−1 = {1, 2} · b−1 = {1, 2, 4}.

In fact, the preimage of a subset under the action of a word can be smaller than the subset.
In this case, we say that a word shrinks the subset (not to be confused with compressing
when the image is considered). For example, in Fig. 1, subset {1, 4} is shrank by b to subset
{4}.

Note that shrinking a subset is equivalent to extending its complement. Similarly, a word
totally extending a subset also shrinks its complement to the empty set.
I Remark. |S · w−1| > |S| if and only if |(Q \ S) · w−1| < |Q \ S|, and S · w−1 = Q if and
only if (Q \ S) · w−1 = ∅.
Therefore, avoiding a subset is equivalent to shrinking it to the empty set.

The rank of a word w is the cardinality of the image Q · w. A word of rank 1 is called
reset or synchronizing, and an automaton that admits a reset word is called synchronizing.
Also, for a subset S ⊆ Q, we say that a word w ∈ Σ∗ such that |S · w| = 1 synchronizes S.

Synchronizing automata serve as transparent and natural models of various systems
in many applications in different fields, such as coding theory, DNA-computing, robotics,
testing of reactive systems, and theory of information sources. They also reveal interesting
connections with symbolic dynamics, language theory, group theory, and many other parts of
mathematics. For a detailed introduction to the theory of synchronizing automata we refer
the reader to the survey [31], and for a review of relations with coding theory to [16] and [8].

The famous Černý conjecture [11], which was formally stated in 1969 during a conference
([31]), is one of the most longstanding open problems in automata theory, and is the central
problem in the theory of synchronizing automata. It states that a synchronizing automaton
has a reset word of length at most (n−1)2. Besides the conjecture, algorithmic issues are also
important. Unfortunately, the problem of finding a shortest reset word is computationally
hard [12, 21], and also its length approximation remains hard [13]. We also refer to surveys
[24, 31] about algorithmic issues and the Černý conjecture.

M.V. Berlinkov, R. Ferens, and M. Szykuła 32:3

Our general motivation comes from the fact that words compressing and extending
subsets play a crucial role in synchronization automata. In fact, all known algorithms
finding a reset word as intermediate steps use finding words that either compresses or
extends a subset (e.g. [1, 7, 12, 18, 22]). Moreover, probably all proofs of upper bounds
on the length of the shortest reset words use bounding the length of words that compress
(e.g. [2, 7, 9, 12, 14, 27, 29, 32]) or extend (e.g. [3, 4, 7, 17, 26, 27]) some subsets.

In this paper, we study several natural problems related to preimages. Our goal is to
provide a systematic view of their computational complexity and solve several open problems.

1.1 Compressing a Subset
The complexities of problems related to compressing a subset have been well studied.

It is known that given an automaton A and a subset S ⊆ Q, determining whether there
is a word that synchronizes it is PSPACE-complete [23]. The same holds even for strongly
connected binary automata [33].

On the other hand, checking whether the automaton is synchronizing (whether there is a
word that synchronizes Q) can be solved in O(|Σ|n2) time and space [11, 12, 31] and in O(n)
average time and space for the random binary case [6]. To this end, we just verify whether
all pairs of states are compressible. Using the same algorithm, we can determine whether a
given subset is compressible.

Deciding whether there exists a synchronizing word of a given length is NP-complete
[12] (cf. [21] for the complexity of the corresponding functional problems), even if the given
automaton is binary. There exist stronger results, such as NP-completeness of this problem
when the automaton is Eulerian and binary [34], which immediately implies that for the
class of strongly connected automata the complexity is the same.

However, deciding whether there exists a word that only compresses a subset still can
be solved in O(|Σ|n2) time, as for every pair of states we can compute a shortest word that
compresses the pair.

The problems have been also studied in other settings than DFAs. We refer to [20, 23]
for the cases of NFA and PDFA (partial deterministic finite automata), and to [15] for the
partial observability setting. Finally, in [10] the problem of reachability of a given subset in
a DFA has been studied.

1.2 Extending a Subset and Our Contributions
In contrast to the problems related to images (compression), the complexity of the problems
related to preimages has not been well studied. In the paper, we fill this gap. We study
three families of problems. As we noted before, extending is equivalent to shrinking the
complement, hence we deal only with the extending word problems.

Extending words: Our first family of problems is the question whether there exists an
extending word (Problems 1, 7, 9, 13, 16, 22).

This is motivated by the fact that finding such a word is the basic step of the so-called
extension method of finding a reset word that is used in many proofs and also some algorithms.
The extension method of finding a reset word is to start from some singleton S0 = {q}, and
iteratively find extending words w1, . . . , wk such that |S0 · w−1

1 · · ·w
−1
i | > |S0 · w−1

1 · · ·w
−1
i−1|

for 1 ≤ i ≤ k, and where final S0 ·w−1
1 · · ·w

−1
k = Q. For finding a short reset word one needs

to bound the lengths of the extending words. For instance, by showing that in the case of
Eulerian automata there are always extending words of length at most n, which implies the
upper bound (n− 2)(n− 1) + 1 on the length of the shortest reset words for this class [17].
In this case, a polynomial algorithm for finding extending words has been proposed in [7].

MFCS 2018

32:4 Extending Word Problems

Table 1 Computational complexity of decision problems in classes of automata. Given an
automaton A = (Q,Σ, δ) with n states and a subset S ⊆ Q, is there a word w ∈ Σ∗ such that:

Subclass of automata
All Strongly

Synchronizing
Str. con.

automata connected and synch.

|S · w| = 1 PSPACE-c
O(1) O(1)

(reset word) [23, 33]

|S · w| < |S| O(|Σ|n2)
O(1) O(1)

(compressing word) [11, 31]

|S · w−1| > |S| PSPACE-c PSPACE-c
O(1)

(Problem 1) (Thm. 3) (Prop. 5)

S · w−1 = Q PSPACE-c O(|Σ|n)
O(1)

(Problem 2) (Thm. 3) (Thm. 6)

|S · w−1| > |S|, |S| ≤ k O(|Σ|nk) O(|Σ|nk)
O(1)

(Problem 9) (Prop. 10) (Prop. 10)

S · w−1 = Q, |S| ≤ k O(|Σ|(n3 + nk)) O(|Σ|n)
O(1)

(Problem 11) (Prop. 12) (Thm. 6)

|S · w−1| > |S|, |S| ≥ n− k PSPACE-c
Open

PSPACE-c
O(1)

(Problem 16, k ≥ 2) (Thm. 19) (Thm. 19)

S · w−1 = Q, |S| ≥ n− k O(n3 + |Σ|nk) O(|Σ|n)
O(1)

(Problem 17, k ≥ 2) (Thm. 21) (Thm. 6)

S · w−1 = Q, |S| = n− 1 O(|Σ|n2)
O(|Σ|) O(1)

(Problem 18) (Thm. 20)

|S · w−1| 6= |S| O(|Σ|n3)
O(1) O(1)

(Problem 27) (Thm. 29)

Totally extending words and avoiding: We study the problem whether there exists a
totally extending word (Problems 2, 8, 11, 14, 17, 23). The question about the existence of a
totally extending word is equivalent to the question about the existence of an avoiding word
for the complementary subset.

Totally extending words themselves can be viewed as a generalization of reset words: a
word totally extending a singleton to the whole set of states Q is a reset word. If we are not
interested in bringing the automaton into one particular state but want it to be in any of the
states from a specified subset, then it is exactly the question about totally extending word
for our subset. In view of applications of synchronization, this can be particularly useful
when we deal with non-synchronizing automata, where reset words cannot be applied.

Avoiding word problem is a recent concept that is dual to synchronization: instead of
being in some states, we want to not be in them. A quadratic upper bound on the length of
the shortest avoiding words of a single state have been established in [27], where avoiding
words were also used to improve the best known upper bound on the length of the shortest
reset words. The computational complexity of the problems related to avoiding, both a
single state or a subset, have not been established, which is another motivation to study

M.V. Berlinkov, R. Ferens, and M. Szykuła 32:5

Table 2 Computational complexity of decision problems in classes of automata. Given an
automaton A = (Q,Σ, δ) with n states, a subset S ⊆ Q, and an integer ` given in binary form, is
there are a word w ∈ Σ∗ of length ≤ ` such that:

Subclass All Strongly
Synchronizing

Str. con.
of automata automata connected and synch.

|S · w| = 1 PSPACE-c NP-c NP-c
(reset word) [23, 33] [12] [34]

|S · w| < |S| O(|Σ|n2) O(|Σ|n2) O(|Σ|n2)
(compressing word) [12] [12] [12]

|S · w−1| > |S| PSPACE-c PSPACE-c NP-c
(Problem 7) (Subsec. 2.1) (Subsec. 2.1) (Thm. 25)

S · w−1 = Q PSPACE-c NP-c NP-c
(Problem 8) (Subsec. 2.1) (Cor. 26) (Cor. 26)

|S · w−1| > |S|, |S| ≤ k O(|Σ|nk) O(|Σ|nk) O(|Σ|nk)
(Problem 13) (Prop. 10) (Prop. 10) (Prop. 10)

S · w−1 = Q, |S| ≤ k NP-c NP-c NP-c
(Problem 14) (Prop. 15) (Prop. 15) (Prop. 15)

|S · w−1| > |S|, |S| ≥ n− k PSPACE-c
Open

PSPACE-c NP-c
(Problem 22, k ≥ 2) (Thm. 19) (Thm. 19) (Cor. 26)

S · w−1 = Q, |S| ≥ n− k NP-c NP-c NP-c
(Problem 23, k ≥ 2) (Cor. 26) (Cor. 26) (Cor. 26)

S · w−1 = Q, |S| = n− 1 NP-c NP-c NP-c
(Problem 24) (Thm. 25) (Thm. 25) (Thm. 25)

|S · w−1| 6= |S| O(|Σ|n3) O(|Σ|n3) O(|Σ|n3)
(Problem 28) (Thm. 29) (Thm. 29) (Thm. 29)

totally extending words. We give a special attention to the problem of avoiding one state
and a small subset of states (totally extending a large subset), since they seem to be most
important in view of their applications (and as we show, the complexity grows with the size
of the subset to avoid).

Resizing: Shrinking a subset is dual to extending, i.e. shrinking a subset means extending
its complement. Therefore, the complexity immediately transfers from the previous results.
However, in Section 5 we consider the problem of determining whether there is a word whose
inverse action results in a subset having a different size, that is, either extends the subset or
shrinks it (Problems 27, 28).

Interestingly, in contrast with the computationally difficult problems of finding a word
that extends the subset and finding a word that shrinks the subset, for this variant there
exists a polynomial algorithm finding a shortest resizing word in all cases.

We can mention that in some cases extending and shrinking words are related, and it
may be enough to find either one. For instance, this is used in the so-called averaging trick,
which appears in several proofs (e.g. [7, 17, 25]).

MFCS 2018

32:6 Extending Word Problems

Summary: For all the problems we consider the subclasses of strongly connected, synchro-
nizing, and binary automata. Also, we consider the problems where an upper bound on the
length of the word is additionally given in binary form in the input. Since in most cases, the
problems are computationally hard, in Section 3 and Section 4 we consider parameterized
complexity by the size of the given subset.

Table 1 and Table 2 summarize our results together with known results about compressing
words. For the cases where a polynomial algorithm exists, we put the time complexity of the
best one known. All the hardness results hold also in the case of a binary alphabet.

2 Extending a Subset in General

We deal with the following problems:

I Problem 1 (Extensible subset). Given A = (Q,Σ, δ) and a subset S ⊆ Q, is S extensible?

I Problem 2 (Totally extensible subset). Given A = (Q,Σ, δ) and a subset S ⊆ Q, is there
a word w ∈ Σ∗ such that S · w−1 = Q?

I Theorem 3. Problem 1 and Problem 2 are PSPACE-complete even if A is strongly
connected.

Proof idea. To solve both problems in NPSPACE, we just guess the length of a (totally)
extending word and then subsequently its letters, storing only the current subset all the time.

For PSPACE-hardness, we perform a reduction from the problem of determining whether
an intersection of regular languages given as DFAs is non-empty [19]. We create one instance
for both problems that consists of a strongly connected automaton and a subset S extensible if
and only if it is also totally extensible, which is simultaneously equivalent to the non-emptiness
of the intersection of the given regular languages. J

We ensure that both problems remain PSPACE-complete in the case of a binary alphabet,
which follows from the following theorem.

I Theorem 4. Given an automaton A = (Q,Σ, δ) and a subset S ⊆ Q, we can construct in
polynomial time a binary automaton A ′ = (Q′, {a′, b′}, δ′) and a subset S′ ⊆ Q′ such that:
(1) A is strongly connected if and only A ′ is strongly connected;
(2) S′ is extensible in A ′ if and only if S is extensible in A ;
(3) S′ is totally extensible in A ′ if and only if S is totally extensible in A .

Proof idea. Let Σ = {a1, . . . , ak}. We reduce A to a binary automaton A ′ that consists of
k copies of A . The first letter a acts in an i-th copy as the letter ai in A . The second letter
b acts cyclically on these copies. Then we define S′ to contain the states from S in the first
copy and all states from the other copies. J

Now we consider the subclass of synchronizing automata.

I Proposition 5. When the automaton is binary and synchronizing, Problem 1 remains
PSPACE-complete.

Proof idea. We just add a sink state z and a letter which synchronizes A = (Q,Σ, δ) to z.
Additionally, a standard tree-like binarization is suitably used to obtain a binary automaton
that preserves extensibility of the subset. J

I Theorem 6. When the automaton is synchronizing, Problem 2 can be solved in O(|Σ|n)
time and is NL-complete.

M.V. Berlinkov, R. Ferens, and M. Szykuła 32:7

Proof idea. Since A is synchronizing, the problem reduces to checking whether there is a
state q ∈ S reachable from every state: It is well known that a synchronizing automaton has
precisely one strongly connected sink component that is reachable from every state. If S
does not contain a state from the sink component, then every preimage of S also does not
contain these states. The problem can be solved in O(|Σ|n) time, since the states of the sink
component can be determined in linear time by Tarjan’s algorithm [28]. J

Note that in the case of strongly connected synchronizing automaton, both problems
have a trivial solution, since every non-empty proper subset of Q is totally extensible (by a
suitable reset word); thus they can be solved in constant time, assuming that we can check
the size of the given subset and the number of states in constant time.

2.1 Bounded Length of the Word
We turn our attention to the variants in which an upper bound on the length of word w is
also given.

I Problem 7 (Extensible subset by short word). Given A = (Q,Σ, δ), a subset S ⊆ Q, and
an integer ` given in binary form, is S extensible by a word of length at most `?

I Problem 8 (Totally extensible subset by short word). Given A = (Q,Σ, δ), a subset S ⊆ Q,
and an integer ` given in binary form, is there a word w ∈ Σ∗ such that S · w−1 = Q of
length at most `?

Obviously, these problems remain PSPACE-complete (also when the automaton is strongly
connected and binary), as we can set ` = 2n, which bounds the number of different subsets
of Q. In this case, both the problems are reduced respectively to Problem 1 and Problem 2.

When the automaton is synchronizing, Problem 8 is NP-complete, which will be shown in
Corollary 26. Of course, Problem 7 remains PSPACE-complete for a synchronizing automaton
by the same argument as in the general case.

3 Extending Small Subsets

The complexity of extending problems rely on the size of the given subset. Variable subset
size is essential for hardness. In the proof of PSPACE-hardness in Theorem 3 the used
subsets and simultaneously their complements may grow with an instance of the reduced
problem, and it is known that the problem of the emptiness of intersection can be solved
in polynomial time if the number of given DFAs is fixed. Here we study the computational
complexity of the extending problems when the size of the subset is not larger than a fixed k.

I Problem 9 (Extensible small subset). For a fixed k ∈ N, given A = (Q,Σ, δ) and a subset
S ⊆ Q with |S| ≤ k, is there a word extending S?

I Proposition 10. Problem 9 can be solved in O(|Σ|nk) time.

Proof. We build the k-subsets automaton A ≤k = (Q≤k,Σ, δ≤k, S0, F), where Q≤k = {A ⊆
Q : |A| ≤ k} and δ≤k is naturally defined by the image of δ on a subset. Let the set of initial
states be I = {A ∈ Q≤k : |A · a−1| > |S| for some a ∈ Σ}, and the set of final states be the
set of all subsets of S. A final state can be reached from an initial state if and only if S is
extensible in A . We can simply check this condition by a BFS. The size (number of states
and edges) of this automaton is bounded by O(|Σ|nk), so the procedure takes this time. J

MFCS 2018

32:8 Extending Word Problems

I Problem 11 (Totally extensible small subset). For a fixed k ∈ N, given A = (Q,Σ, δ) and
a subset S ⊆ Q with |S| ≤ k, is there a word w ∈ Σ∗ such that S · w−1 = Q?

For k = 1 Problem 2 is equivalent to checking if the automaton is synchronizing to the
given state, thus can be solved in O(|Σ|n2) time. For larger k we have the following:

I Proposition 12. Problem 11 can be solved in O(|Σ|(n3 + nk)) time.

Proof. Let u be a word of the minimal rank in A . We can find such a word and compute
the image Q · u in O(|Σ|n3) time, using e.g. the algorithm from [12].

For each w ∈ Σ∗ we have S ·w−1 = Q if and only if Q ·w ⊆ S. We can meet the required
condition for w if and only if (Q · u) · w ⊆ S. Surely |(Q · u) · w| = |(Q · u)|. The desired
word does not exist if the minimal rank is larger than |S| = k. Otherwise, we can build the
subset automaton A ≤|Q·u| (similarly as in the proof of Proposition 10). The initial subset is
Q · u. If some subset of S is reachable by a word w, then the word uw totally extends S in
A . Otherwise, S is not totally extensible. Reachability can be checked in at most O(|Σ|nk)
time. However, if the rank r of u is less than k, the algorithm takes only O(|Σ|nr) time. J

3.1 Bounded Length of the Word
We also have the two variants of the above problems when an upper bound on the length of
the word is additionally given.

I Problem 13 (Extensible small subset by short word). For a fixed k ∈ N, given A = (Q,Σ, δ),
a subset S ⊆ Q with |S| ≤ k, and an integer ` given in binary form, is there a word extending
S of length at most `?

Problem 13 can be solved by the same algorithm in a Proposition 10, since the procedure
can find a shortest extending word.

I Problem 14 (Totally extensible small subset by short word). For a fixed k ∈ N, given
A = (Q,Σ, δ), a subset S ⊆ Q with |S| ≤ k, and an integer ` given in binary form, is there
a word w ∈ Σ∗ such that S · w−1 = Q of length at most `?

I Proposition 15. For every k, Problem 14 is NP-complete, even if the automaton is
simultaneously strongly connected, synchronizing, and binary.

Proof. The problem is in NP, as the shortest extending words have length at most O(n3 +nk)
(since words of this length can be found by the procedure from Proposition 12).

When we choose S of size 1, the problem is equivalent to finding a reset word that maps
every state to the state in S. In [34] it has been shown that for Eulerian automata that
are simultaneously strongly connected, synchronizing, and binary, deciding whether there
is a reset word of length at most ` is NP-complete. Moreover, in this construction, if there
exists a reset word of this length, then it maps every state to one particular state s2 (see [34,
Lemma 2.4]). Therefore, we can set S = {s2}, and thus Problem 14 is NP-complete. J

4 Extending Large Subsets

We consider here the case when the subset S contains all except at most a fixed number of
states k.

I Problem 16 (Extensible large subset). For a fixed k ∈ N, given A = (Q,Σ, δ) and a subset
S ⊆ Q with |Q \ S| ≤ k, is there a word extending S?

M.V. Berlinkov, R. Ferens, and M. Szykuła 32:9

I Problem 17 (Totally extensible large subset). For a fixed k ∈ N, given A = (Q,Σ, δ) and a
subset S ⊆ Q with |Q \ S| ≤ k, is there a word w ∈ Σ∗ such that S · w−1 = Q?

Problem 17 is equivalent to deciding the existence of an avoiding word for a subset S of
size ≤ k. Note that both problems are equivalent for k = 1, which is the problem of avoiding
a single given state. Their properties will also turn out to be different than in the case of
k ≥ 2. We give a special attention to this problem and study it separately.

I Problem 18 (Avoidable state). Given A = (Q,Σ, δ) and a state q ∈ Q, is there a word
w ∈ Σ∗ such that q /∈ Q · w?

The following result may be a bit surprising, in view of that it is the only case where the
general problem remains equally hard when the subset size is bounded. We state that the
first problem remains PSPACE-complete for all k ≥ 2, although the problem remains open
for strongly connected automata.

I Theorem 19. Problem 16 is PSPACE-hard for every k ≥ 2 and |Σ| ≥ 2 even if the given
automaton is synchronizing.

Proof idea. We show a reduction from PSPACE-complete Problem 2 (Thm. 3). Our obtained
automaton is ternary and synchronizing with a sink state e′.

We reduce the alphabet to two letters by an application of the Theorem 4 to Problem 16.
The reduction in the proof keeps the size of complement set the same, so we can apply
it. Furthermore, we identify all copies of the sink state e′, which ensures that it remains
synchronizing. J

Now, we focus on totally extending words for large subsets, which we study in terms of
avoiding small subsets. First we provide a complete characterization of single states that are
avoidable:

I Theorem 20. Let A = (Q,Σ, δ) be a strongly connected automaton. For every q ∈ Q,
state q is avoidable if and only if there exists p ∈ Q \ {q} and w ∈ Σ∗ such that q · w = p · w.

Proof. Let p and w be the state and the word from the theorem for a given state q. Since
the automaton is strongly connected, there is a word w′ such that such that (p · w) · w′ =
(q · w) · w′ = p. For each subset S ⊆ Q such that p ∈ S we have p ∈ S · ww′. Moreover, if
q ∈ S then |S · ww′| < |S|, because {q, p} · ww′ = {p}. If q is not avoidable, then all subsets
Q · (ww′), Q · (ww′)2, . . . contain q and they form an infinite sequence of subsets of decreasing
cardinality, which is a contradiction.

Now consider the other direction. Suppose for a contradiction that q is avoidable, but
there is no state p ∈ Q \ {q} such that {q, p} can be compressed. Let u be a word of the
minimal rank in A , and v be a word that avoids q. Then w = uv has the same rank and
also avoids q. Let ∼ be the equivalence relation defined by

p1 ∼ p2 ⇐⇒ p1 · w = p2 · w.

The equivalence class [p]∼ for p ∈ Q is (p · w) · w−1. There are |Q/∼| = |Q · w| equivalence
classes and one of them is {q}, since q does not belong to a compressible pair of states.
For every state p ∈ Q, we know that |(Q · w) ∩ [p]∼| ≤ 1, because [p]∼ is compressed by
w to a singleton and Q · w cannot be compressed by any word. Note that every state
r ∈ Q · w belongs to some class [p]∼. From the equality |Q/ ∼ | = |Q · w| we conclude that
for every class [p]∼ there is a state r ∈ (Q ·w) ∩ [p]∼, thus |(Q ·w) ∩ [p]∼| = 1. In particular,
1 = |(Q · w) ∩ [q]∼| = |(Q · w) ∩ {q}|. This contradicts that w avoids q. J

MFCS 2018

32:10 Extending Word Problems

Note that if A is not strongly connected, then every state from a strongly connected
component that is not a sink can be avoided. If a state belongs to a sink component, then
we can consider the sub-automaton of this sink component, and by Theorem 20 we know
that given q ∈ Q, it is sufficient to check whether q belongs to a compressible pair of states.
Hence, Problem 18 can be solved using the well-known algorithm [12] computing the pair
automaton and performing a breadth-first search with inverse edges on the pairs of states. It
works in O(|Σ|n2) time and O(n2 + |Σ|n) space.

We note that in a synchronizing automaton all states are avoidable except a sink state,
which is a state q such that q · a = q for all a ∈ Σ. We can check this condition and hence
verify if a state is avoidable in a synchronizing automaton in O(|Σ|) time.

The above algorithm does not find an avoiding word but checks avoidability indirectly.
For larger subsets than singletons, we construct another algorithm finding a word avoiding
the subset, which also generalizes the idea from Theorem 20. From the following theorem, it
follows that Problem 17 for k ≥ 2 can be solved in polynomial time.

I Theorem 21. Let A = (Q,Σ, δ), let r be the minimum rank in A over all words, and let
S ⊆ Q be a subset of size ≤ k. We can find a word w such that (Q · w) ∩ S = ∅ or verify
that it does not exist in O(n3 + |Σ|(n2 + nmin(r,k))) time and O(n2 + nmin(r,k) + |Σ|n) space.
Moreover the length of w is bounded by O(n3 + nmin(r,k))).

Proof. Similarly to the proof of Theorem 20, let u be a word of the minimal rank r in A

and let ∼ be the equivalence relation on Q defined by

p1 ∼ p2 ⇐⇒ p1 · u = p2 · u.

The equivalence class [p]∼ for p ∈ Q is the set (p · u) · u−1. There are |Q/∼| = |Q · u|
equivalence classes.

Now, we are going to show the following characterization: S is avoidable if and only if
there exist a subset Q′ ⊆ Q ·u of size |S/∼| and a word w′ such that (Q′ ·w′)∩ ([s]∼ \S) 6= ∅
for each s ∈ S.

Suppose that S is avoidable, and let w′ be an avoiding word for S. Then the word
w = uw′ also avoids S. Observe that w has rank r as u has. For every state p ∈ Q, we know
that |(Q ·w) ∩ [p]∼| ≤ 1, because [p]∼ is compressed by u to a singleton and Q ·w cannot be
compressed by any word. Note that every state q ∈ Q · w belongs to some class [p]∼. From
the equality |Q/ ∼ | = |Q · u| = |Q ·w| we conclude that for every class [p]∼ there is a unique
state q[p]∼ ∈ (Q · w) ∩ [p]∼.

Then for every state s ∈ S, we have q[s]∼ ∈ [s]∼ \S, because w avoids S and q[s]∼ ∈ Q ·w.
Notice that [s]∼∩S can contain more than one state, so the set {q[s]∼ | s ∈ S} has size |S/∼|,
which is not always equal to |S|. Therefore, there exists a subset Q′ ⊆ Q · u of size |S/∼|
such that Q′ ·w′ = {q[s]∼ | s ∈ S}. Now, we know that for every s ∈ S we have q[s]∼ ∈ Q′ ·w′
and q[s]∼ ∈ [s]∼ \ S. We conclude that, if S is avoidable, then there exist a subset Q′ ⊆ Q · u
of size |S/∼| and a word w′ such that (Q′ · w′) ∩ ([s]∼ \ S) 6= ∅ for every s ∈ S.

Conversely, suppose that there is a subset Q′ ⊆ Q · u of size |S/∼| and a word w′ such
that (Q′ ·w′)∩ ([s]∼ \ S) 6= ∅ for every s ∈ S. Since in the image Q · uw′ there is exactly one
state in each equivalence class, we have ((Q · u) \Q′) · w′ ⊆ Q \

⋃
s∈S([s]∼) ⊆ Q \ S, and by

the assumption, (Q′ · w′) ∩ S = ∅. Therefore, we get that uw′ is an avoiding word for S.
This characterization gives us Alg. 1 to find w or verify that S cannot be avoided.
Alg. 1 first finds a word u of the minimal rank. This can be done by iterative compressing

the subset as long as possible by the algorithm from [12], which works in O(n3 + |Σ|n2) time
and O(n2 + |Σ|n) space. For every subset Q′ ⊆ Q · u of size z = |S/∼| the algorithm checks

M.V. Berlinkov, R. Ferens, and M. Szykuła 32:11

Algorithm 1 Avoiding a subset.
Require: Automaton A (Q,Σ, δ) and a subset S ⊆ Q.

1: Find a word u of the minimal rank.
2: Compute |S/∼|.
3: for all Q′ ⊆ Q · u of size |S/∼| do
4: if there is a word w′ such that (Q′ · w′) ∩ ([s]∼ \ S) 6= ∅ for each s ∈ S then
5: return uw′.
6: end if
7: end for
8: return “S is unavoidable”.

whether there is a word w′ mapping Q′ to avoid S, but using its ∼-classes. This can be done
by constructing the automaton A z(Qz,Σ, δz), where δz is δ naturally extended to z-tuples
of states, and checking whether there is a path from Q′ to a subset containing a state from
each class [s]∼ but avoiding the states from S. Note that since Q′ cannot be compressed,
every reachable subset from Q′ has also size |Q′|. The number of states in this automaton is(

n
z

)
∈ O(nz). Also, note that we have to visit every z-tuple only once during a run of the

algorithm, and we can store it in O(nz + |Σ|n) space. Therefore, the algorithm works in
O(n3 + |Σ|(n2 + nz)) time and O(n2 + nz + |Σ|n) space.

The length of u is bounded by O(n3), and the length of w′ is at most O(nz). Note that
z = |S/∼| ≤ min(r, |S|), where r is the minimal rank in the automaton. J

4.1 Bounded Length of the Word
We now turn our attention to the variants of the problems where an upper bound on the
length of the word is given.

I Problem 22 (Extensible large subset by short word). For a fixed k ∈ N, given A = (Q,Σ, δ),
a subset S ⊆ Q with |Q \ S| ≤ k, and an integer ` given in binary form, is there a word
extending S of length at most `?

I Problem 23 (Totally extensible large subset by short word). For a fixed k ∈ N, given
A = (Q,Σ, δ), a subset S ⊆ Q with |Q \ S| ≤ k, and an integer ` given in binary form, is
there a word w ∈ Σ∗ such that S · w−1 = Q of length at most `?

As before, both problems for k = 1 are equivalent to the following:

I Problem 24 (Avoidable state by short word). Given A = (Q,Σ, δ), a state q ∈ Q, and an
integer ` given in binary form, is there a word w ∈ Σ∗ such that q /∈ Q · w of length at most
`?

Problem 22 for k ≥ 2 obviously remains PSPACE-complete. By the following theorem, we
show that Problem 24 is NP-complete, which then implies NP-completeness of Problem 23
for every k ≥ 1 (by Corollary 26).

I Theorem 25. Problem 24 is NP-complete, even if the automaton is simultaneously strongly
connected, synchronizing, and binary.

Proof idea. The problem is in NP, because we can non-deterministically guess a word w as
a certificate, and verify q /∈ Q ·w in O(|Σ|n) time. If the state q is avoidable, then the length
of the shortest avoiding words is at most O(n2) [27]. Then we can guess an avoiding word w
of at most quadratic length and compute Q · w in O(n3) time.

MFCS 2018

32:12 Extending Word Problems

To prove NP-hardness, we show a reduction from the problem of determining the reset
threshold in the specific subclass of automata constructed in the Eppstein’s proof of [12,
Theorem 8], which is known to be NP-complete. The reduction has two steps. First, we
construct a strongly connected synchronizing ternary automaton for which deciding about
the length of an avoiding word is equivalent to determining the existence of a reset word in
the original automaton. Then, based on the ideas from [5] we turn the automaton into a
binary one that still has the desired properties. J

As a corollary from Theorem 25 and Theorem 21, we complete the results.

I Corollary 26. Problem 23 is NP-complete, Problem 8 is NP-complete when the automaton
is synchronizing, and Problem 22 is NP-complete when the automaton is strongly connected
and synchronizing. They remain NP-complete when the automaton is simultaneously strongly
connected, synchronizing, and binary.

5 Resizing a Subset

I Problem 27 (Resizable subset). Given an automaton A = (Q,Σ, δ) and a subset S ⊆ Q,
is there a word w ∈ Σ∗ such that |S · w−1| 6= |S|?

I Problem 28 (Resizable subset by short word). Given an automaton A = (Q,Σ, δ), a subset
S ⊆ Q, and an integer ` given in binary form, is there a word w ∈ Σ∗ such that |S ·w−1| 6= |S|
of length at most `?

In contrast to the cases |S · w−1| > |S| and |S · w−1| < |S|, there exists a polynomial
time algorithm for both these problems.

I Theorem 29. Given an automaton A = (Q,Σ, δ), a subset S ⊆ Q, there exists an
algorithm working in O(|Σ|n3) time (assuming constant time arithmetic of integers whose
values are bounded by O(2n)) that computes a shortest word w such that |S · w−1| 6= |S| or
verifies that there is no such word. Moreover, the length of the shortest such words is a at
most n− 1.

Proof idea. We construct a reduction to the problem of multiplicity equivalence of NFAs and
apply the algorithm from [30] with an improvement to achieve the desired complexity4. J

The running time O(|Σ|n3) of the algorithm is quite large (and may require large
arithmetic), and it is an interesting open question whether there is a faster algorithm for
Problems 27 and 28.

We note that Problem 27 becomes trivial when the automaton is synchronizing: A word
resizing the subset exists if and only if S 6= ∅ and S 6= Q, because if w is a reset word and
{q} = Q · w, then S · w−1 is either Q when q ∈ S or ∅ when q /∈ S. This implies that there
exists a faster algorithm in the sense of expected running time when the automaton over an
at least binary alphabet is drawn uniformly at random:
I Remark. The algorithm from [6] checks in expected O(n) time (regardless of the alphabet
size, which is not fixed) whether a random automaton is synchronizing, and it is synchronizing
with probability 1 − Θ(1/n0.5|Σ|) (for |Σ| ≥ 2). Then only if it is not synchronizing we

4 In a previous version of our proof we presented our own algorithm having O(|Σ|n3) time complexity
under the assumption of performing arithmetic computations in constant time. We thank one of the
anonymous reviewers that suggested a shortcut by reducing to multiplicity equivalence of NFAs.

M.V. Berlinkov, R. Ferens, and M. Szykuła 32:13

have to use the algorithm from Theorem 29. Thus, Problem 28 can be solved for a random
automaton in the expected time

O(|Σ|n3) ·Θ(1/n0.5|Σ|) +O(n) = O(|Σ|n3−0.5|Σ|) ≤ O(n2).

Note that the bound is independent on the alphabet size, and this is because a random
automaton with a growing alphabet is more likely to be synchronizing, so less likely we need
to use Theorem 29.

References
1 D. S. Ananichev and V. V. Gusev. Approximation of Reset Thresholds with Greedy Algo-

rithms. Fundamenta Informaticae, 145(3):221–227, 2016.
2 D. S. Ananichev and M. V. Volkov. Synchronizing generalized monotonic automata. The-

oretical Computer Science, 330(1):3–13, 2005.
3 M.-P. Béal, M. Berlinkov, and D. Perrin. A quadratic upper bound on the size of a synchro-

nizing word in one-cluster automata. International Journal of Foundations of Computer
Science, 22(2):277–288, 2011.

4 M. Berlinkov. Synchronizing Quasi-Eulerian and Quasi-one-cluster Automata. Interna-
tional Journal of Foundations of Computer Science, 24(6):729–745, 2013.

5 M. Berlinkov. On Two Algorithmic Problems about Synchronizing Automata. In Develop-
ments in Language Theory, LNCS, pages 61–67. Springer, 2014.

6 M. Berlinkov. On the probability of being synchronizable. In CALDAM, volume 9602 of
LNCS, pages 73–84. Springer, 2016.

7 M. Berlinkov and M. Szykuła. Algebraic synchronization criterion and computing reset
words. Information Sciences, 369:718–730, 2016.

8 J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, 2009.

9 M. T. Biskup and W. Plandowski. Shortest synchronizing strings for Huffman codes. The-
oretical Computer Science, 410(38-40):3925–3941, 2009.

10 E. A. Bondar and M. V. Volkov. Completely reachable automata. In C. Câmpeanu,
F. Manea, and J. Shallit, editors, DCFS, LNCS, pages 1–17. Springer, 2016.

11 J. Černý. Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fyzikálny Časopis Slovenskej Akadémie Vied, 14(3):208–216, 1964. In Slovak.

12 D. Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing,
19:500–510, 1990.

13 P. Gawrychowski and D. Straszak. Strong inapproximability of the shortest reset word.
In Mathematical Foundations of Computer Science, volume 9234 of LNCS, pages 243–255.
Springer, 2015.

14 M. Grech and A. Kisielewicz. The Černý conjecture for automata respecting intervals of
a directed graph. Discrete Mathematics and Theoretical Computer Science, 15(3):61–72,
2013.

15 K. Guldstrand Larsen, S. Laursen, and J. Srba. Synchronizing Strategies under Partial
Observability. In P. Baldan and D. Gorla, editors, CONCUR 2014, pages 188–202. Springer,
2014.

16 H. Jürgensen. Synchronization. Information and Computation, 206(9-10):1033–1044, 2008.
17 J. Kari. Synchronizing finite automata on Eulerian digraphs. Theoretical Computer Science,

295(1-3):223–232, 2003.
18 A. Kisielewicz, J. Kowalski, and M. Szykuła. Computing the shortest reset words of syn-

chronizing automata. Journal of Combinatorial Optimization, 29(1):88–124, 2015.

MFCS 2018

32:14 Extending Word Problems

19 D. Kozen. Lower Bounds for Natural Proof Systems. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, FOCS, pages 254–266, 1977.

20 P. Martyugin. Computational Complexity of Certain Problems Related to Carefully Syn-
chronizing Words for Partial Automata and Directing Words for Nondeterministic Au-
tomata. Theory of Computing Systems, 54(2):293–304, 2014.

21 J. Olschewski and M. Ummels. The complexity of finding reset words in finite automata.
In Mathematical Foundations of Computer Science, volume 6281 of LNCS, pages 568–579.
Springer, 2010.

22 A. Roman and M. Szykuła. Forward and backward synchronizing algorithms. Expert
Systems with Applications, 42(24):9512–9527, 2015.

23 I. K. Rystsov. Polynomial complete problems in automata theory. Information Processing
Letters, 16(3):147–151, 1983.

24 S. Sandberg. Homing and synchronizing sequences. In Model-Based Testing of Reactive
Systems, volume 3472 of LNCS, pages 5–33. Springer, 2005.

25 B. Steinberg. The averaging trick and the Černý conjecture. International Journal of
Foundations of Computer Science, 22(7):1697–1706, 2011.

26 B. Steinberg. The Černý conjecture for one-cluster automata with prime length cycle.
Theoretical Computer Science, 412(39):5487–5491, 2011.

27 M. Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word. In
STACS 2018, LIPIcs, pages 56:1–56:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2018.

28 R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

29 A. N. Trahtman. The C̆erný conjecture for aperiodic automata. Discrete Mathematics and
Theoretical Computer Science, 9(2):3–10, 2007.

30 W.-G. Tzeng. The Equivalence and Learning of Probabilistic Automata. In Proceedings of
the 30th Annual Symposium on Foundations of Computer Science, FOCS, pages 268–273.
IEEE Computer Society, 1989.

31 M. V. Volkov. Synchronizing automata and the C̆erný conjecture. In Language and Au-
tomata Theory and Applications, volume 5196 of LNCS, pages 11–27. Springer, 2008.

32 M. V. Volkov. Synchronizing automata preserving a chain of partial orders. Theoretical
Computer Science, 410(37):3513–3519, 2009.

33 V. Vorel. Subset Synchronization of Transitive Automata. In Proceedings 14th International
Conference on Automata and Formal Languages (AFL 2014), pages 370–381, 2014.

34 V. Vorel. Complexity of a problem concerning reset words for Eulerian binary automata.
Information and Computation, 253(Part 3):497–509, 2017.

The Complexity of Disjunctive Linear Diophantine
Constraints
Manuel Bodirsky1

Institut für Algebra, TU Dresden, Germany
manuel.bodirsky@tu-dresden.de

Barnaby Martin
Department of Computer Science, Durham University, U.K.
barnabymartin@gmail.com

Marcello Mamino2

Dipartimento di Matematica, largo Pontecorvo 5, 56127 Pisa, Italy
marcello.mamino@dm.unipi.it

Antoine Mottet3

Institut für Algebra, TU Dresden, Germany
antoine.mottet@tu-dresden.de

Abstract
We study the Constraint Satisfaction Problem CSP(A), where A is first-order definable in (Z; +, 1)
and contains +. We prove such problems are either in P or NP-complete.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases Constraint Satisfaction, Presburger Arithmetic, Computational Com-
plexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.33

1 Introduction

A constraint satisfaction problem (CSP) is a computational problem where the input consists
of a finite set of variables and a finite set of constraints, and where the question is whether
there exists a mapping from the variables to some fixed domain such that all the constraints
are satisfied. When the domain is finite, and arbitrary constraints are permitted in the
input, the CSP is NP-complete. However, when only constraints for a restricted set of
relations are allowed in the input, it might be possible to solve the CSP in polynomial
time. The set of relations that is allowed to formulate the constraints in the input is often
called the constraint language. The question as to which constraint languages give rise to
polynomial-time solvable CSPs has been the topic of intensive research over the past years.
It was conjectured by Feder and Vardi [14] that CSPs for constraint languages over finite
domains have a complexity dichotomy: they are in P or are NP-complete. This conjecture
has recently been proved [12, 25].

1 Manuel Bodirsky has received funding from the ERC under the European Community’s Seventh
Framework Programme (Grant Agreement no. 681988, CSP-Infinity), and the DFG-funded project
‘Homogene Strukturen, Bedingungserfüllungsprobleme, und topologische Klone’ (Project number 622397)

2 Marcello Mamino has received funding from the ERC under the European Community’s Seventh
Framework Programme (Grant Agreement no. 681988, CSP-Infinity).

3 Supported by the DFG Gratuiertenkolleg 1763 (QuantLA).

© Manuel Bodirsky, Barnaby Martin, Marcello Mamino, and Antoine Mottet;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 33; pp. 33:1–33:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manuel.bodirsky@tu-dresden.de
mailto:barnabymartin@gmail.com
mailto:marcello.mamino@dm.unipi.it
mailto:antoine.mottet@tu-dresden.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 The Complexity of Disjunctive Linear Diophantine Constraints

A famous CSP over an infinite domain is the feasibility question for Integer Programs. It
is of great importance in practice and theory of computing, and NP-complete. In order to
obtain a systematic understanding of polynomial-time solvable restrictions and variations
of this problem, Jonsson and Lööw [15] proposed to study the class of CSPs where the
constraint language A is definable in Presburger arithmetic; that is, consists of relations
that have a first-order definition over (Z;<,+, 1). Equivalently, each relation R(x1, . . . , xn)
in A can be defined by a disjunction of conjunctions of the atomic formulas of the form
p ≤ 0 where p is a linear polynomial with integer coefficients and variables from {x1, . . . , xn}.
The constraint satisfaction problem for A, denoted by CSP(A), is the problem of deciding
whether a given conjunction of formulas of the form R(y1, . . . , yn), for some n-ary R from A,
is satisfiable in A. By appropriately choosing such a constraint language A, a great variety
of problems over the integers can be formulated as CSP(A). Several constraint languages
A over the integers are known where the CSP can be solved in polynomial time. Among
the most famous of these is Linear Diophantine Equations, namely CSP(Z; +, 1). The first
polynomial-time algorithms for the satisfiability of linear Diophantine equation systems have
been discovered by Frumkin and, independently, Sieveking and von zur Gathen. Kannan and
Bachem [17] presented a method based on first computing the Hermite Normal Form of the
matrix given by the linear system (see discussion in the text-book of Schrijver [23]). Further
improvements have been made in [13, 24, 19]. In the present parlance, CSP(Z;<,+, 1) is
Integer Program feasibility itself. However, a complete complexity classification for the CSPs
of Jonsson-Lööw languages appears to be a very ambitious goal.

Among the classes of constraint language that fall into the framework of Jonsson and
Lööw are the distance CSPs of [5, 10] and the temporal CSPs of [8]. Temporal CSPs are
those whose constraint language is first-order definable in (Q;<) and discrete temporal CSPs
are those whose constraint languages is first-order definable in (Z;<). The classification for
discrete temporal CSPs represents the join of the work on temporal CSPs and distance CSPs,
and has only recently been accomplished [4].

Moving away from the discrete and non-dense, (Q;<) is not the only structure for which
constraint languages that are first-order expansions have had their CSPs classified. The
situation for such expansions of the language of linear programming, (Q;<,+, 1) was settled
in [6]. Perhaps, more interesting for us is the simplified situation in which only first-order
expansions of (Q; +) are considered, in [7]. Most recently, the work [16] delivers a classification
for all first-order definitions in (Q;<,+, 1) that contain +, thus properly extending the result
from [6]. In these works, the class of relations quantifier-free definable in Horn CNF plays a
key role. In this context, the atomic relations are inequalities and equalities, and each clause
may have no more than one equality or inequality. That is, additional disjuncts in clauses
must be disequalities. For first-order expansions of (Q; +), the tractable constraint languages
are precisely those that are quantifier-free Horn definable on (Q; +) [7].

However, the integers behave very differently from the rationals or reals and even simple
types of Horn definitions engender intractable constraint languages, as documented in [15].
This article shows, depending on one’s perspective, [un]surprisingly, that the tractability
frontier for first-order definitions of (Z; +, 1), containing +, coincides with that for first-order
expansions of (Q; +). Under a mild technical assumption on A, either all of its relations are
quantifier-free Horn definable, in the expansion of (Z; +, 1) associated with its quantifier
elimination, and CSP(A) is solvable in P; or CSP(A) is NP-complete. From this we obtain
the following dichotomy result.

I Theorem 1. Let A be an expansion of (Z; +) by finitely many relations with a first-order
definition in (Z; +, 1). Then CSP(A) is in P or NP-complete.

M. Bodirsky, B. Martin, M. Mamino, and A. Mottet 33:3

Other related work
This work forms part of a growing body addressing infinite-domain CSPs. One line of that
work concerns ω-categorical and finitely-bounded constraint languages and the other line
considers constraint languages over ordinary structures of arithmetic. The two lines overlap
in the foundational work on temporal CSPs [8]. The outstanding other result in the first line
is [11] and recent progress can be seen in [3, 1]. The importance of the latter line is discussed
in the survey [9].

The CSP for certain finite groups were studied already in the seminal [14]. (Z; +, 0) is a
group par excellence and our work takes inspiration from that paper. One of our hardness
results uses its Theorem 34 and our tractable cases include the situation when all relations
are subgroups, or cosets of subgroups, of powers of Z (cf. [14], Theorem 33). However, not
all first-order expansions of (Z; +, 1) are related to groups, and we have other sources of
tractability too.

2 Preliminaries

We say a relational structure A is first-order definable in (Z; +, 1) (or a first-order reduct
of(Z; +, 1) if it is over domain Z with relations specified by first-order formulas over (Z; +, 1).
An endomorphism of A is a map h : Z → Z such that for every relation R of A and every
tuple (a1, . . . , ak) ∈ Zk, we have a ∈ R⇒ h(a) ∈ R. We say that h is a self-embedding if the
implication is an equivalence.

A formula over a relational signature σ is primitive positive (pp) if it is of the form
∃x1, . . . , xk(ψ1 ∧ · · · ∧ ψm) where each ψi is an atomic relation built from σ. Note that 0 is
pp-definable in (Z; +). A sentence is a formula without free variables.

The constraint satisfaction problem for a structure A with finite relational signature σ,
denoted CSP(A), is the following computational problem.

Input: A primitive positive σ-sentence Φ.
Question: A |= Φ?

All CSPs will be defined over strictly relational signatures, thus in this context + must
be considered a ternary relation and 1 a constant or singleton unary relation, depending on
taste. Since we also use + with its common meaning of binary operation, we concede guilt
for overloading. However, the two uses will never conflict in meaning, so we will not dwell
further on the matter. If A is first-order definable in (Z;<,+, 1) then CSP(A) is in NP (this
is noted e.g. in [15]).

A linear equation is a formula of the form
∑n
i=1 aixi = b with a1, . . . , an, b ∈ Z, whose free

variables are {x1, . . . , xn}. A modular linear equation is a formula of the form
∑n
i=1 aixi =

b mod c with a1, . . . , an, b, c ∈ Z. Let L(Z;+,1) be the infinite relational language containing
a relation symbol for each linear equation and modular linear equation. For convenience,
we consider first-order logic to have native symbols for > (true) and ⊥ (false). It is well-
known that (Z; +, 1) admits quantifier elimination in the language L(Z;+,1) (see [21], or [18,
Corollary 3.1.21] for a more modern treatment). Call an L(Z;+,1)-formula standard if it
does not contain a negated modular linear equation. Every L(Z;+,1)-formula is equivalent
to a standard L(Z;+,1)-formula, since a negated modular linear equation is equivalent to a
disjunction of modular linear equations (i.e., k 6= b mod c⇔

∨
0≤a≤c,a 6=b k = a mod c). We

say that an equation appears in a formula if it is a positive or negative literal in that formula.
Any subgroup G of Zk can be given by a finite set of generators, i.e., k-tuples g1, . . . ,gm,

such that for every g ∈ G, there are λ1, . . . , λm ∈ Z such that g =
∑
i λigi, where we

MFCS 2018

33:4 The Complexity of Disjunctive Linear Diophantine Constraints

write λ · g for (λg1, . . . , λgk). A coset of a subgroup G of Zk is any set of the form
a + G := {a + g | g ∈ G}, where a ∈ Zk. By moving to a standard formula, we are in a
position to deduce the following.

I Proposition 2. Suppose R is a unary relation first-order definable in (Z; +, 1). Then R
has the form (R◦ ∪R+) \R−, where R◦ is a finite union of cosets of nontrivial subgroups of
Z, and R+ and R− are finite disjoint sets of integers.

Proof. Consider a disjunction ϕ of equations (possibly negated and modular equations). If
this disjunction contains a negated equation ax 6= c, then ϕ defines a relation that contains
Z \ {c/a} and is therefore as in the statement. Otherwise, ϕ contains only positive linear
equation and modular equations, and the relation that ϕ defines is clearly of the form R◦∪R+

for some finite set R+ and some union R◦ of nontrivial subgroups of Z.
Consider a quantifier-free formula ϕ in conjunctive normal form defining R. Each conjunct

defines a relation of the right form, per the previous paragraph. It is easily checked that a
conjunction of relations of this form is again a relation of the form (R◦ ∪R+) \R−, so that
we have proved that every quantifier-free formula with one free variables defines a relation of
the right form. The proposition then follows from quantifier-elimination. J

Note that if R+ ∩R◦ = ∅ and R− ⊂ R◦, then R+, R−, and R◦ are unique. We use the
terminology with this convention for all unary relations R that are first-order definable in
(Z; +, 1) throughout the article.

I Definition 3. Let ϕ be an L(Z;+,1)-formula. We say that ϕ is Horn if it is a conjunction
of clauses of the form

n∨
i=1
¬ϕi ∨ ϕ0

where ϕ1, . . . , ϕn are linear equations and ϕ0 is a linear or a modular linear equation.

I Example 4. Singletons, cofinite unary relations, and cosets of subgroups of Zn are examples
of Horn-definable relations.

3 Cores

If A is a first-order expansion of (Z; +), note that its endomorphisms are precisely of the form
x 7→ λx for some λ ∈ Z. Therefore, we view in the following End(A) as a subset of Z, where
the monoid structure on End(A) implies that as a subset of Z, it is closed under multiplication
and contains 1. We say that A is a core if all its endomorphisms are self-embeddings, and
that B is a core of A if A and B are homomorphically equivalent and B is a core.

I Lemma 5. Let A be first-order definable in (Z; +, 1), and suppose that A contains +.
There exists a structure which is a core of A, and which is either a 1-element structure or
first-order definable in (Z; +, 1) and containing +.

Proof. If 0 ∈ End(A) then the lemma is clearly true (A being homomorphically equivalent to
the substructure of A induced by {0}), so let us assume that 0 6∈ End(A). Similarly we can
assume that End(A) 6⊆ {−1, 1}, otherwise A is already a core. For a quantifier-free formula
ψ and an integer λ, define ψ/λ by induction on ψ as follows:

if ψ is
∑
λixi = c and λ divides c, then ψ/λ is

∑
λixi = c/λ,

if ψ is
∑
λixi = c and λ does not divide c, then ψ/λ is ⊥,

M. Bodirsky, B. Martin, M. Mamino, and A. Mottet 33:5

if ψ is
∑
λixi = c mod d and ` := gcd(λ, d) divides c, then ψ/λ is

∑
λixi = ec/` mod d/`

where e is the inverse of λ/` modulo d/`,
if ψ is

∑
λixi = c mod d and ` := gcd(λ, d) does not divide c, then ψ/λ is ⊥,

extend to boolean combinations in the obvious fashion.
Note that for every tuple a, we have that a satisfies ψ/λ iff λ · a satisfies ψ. Indeed, if ψ
is a linear equation then this is clear. Similarly, it is clear if ψ is a modular equation and
` := gcd(λ, d) does not divide c. Suppose that ψ is a modular equation and ` := gcd(λ, d)
divides c. If

∑
λλixi = c mod d then λ/` · (

∑
λixi) = qd/`+ c/` so that eλ/` · (

∑
λixi) =

(eq) · d/` + ec/`, where e is the inverse of λ/` modulo d/` and q ∈ Z. We therefore
obtain

∑
λixi = ec/` mod d/`. Conversely if

∑
λixi = ec/` mod d/` then

∑
λλixi =

(λe)c/`+ (λ` q)d = c mod d.
Let ψ be any quantifier-free L(Z;+,1)-formula and suppose that |λ| > 1. The only cases

where some magnitudes of the integers on the right-hand sides of terms in the formula ψ do
not decrease by forming ψ/λ is when ψ only contains literals either of the form

∑
λixi = 0 or

of the form
∑
λixi = c mod d with λ and d coprime. Therefore, the sequence ψ0, ψ1, ψ2, . . .

where ψ0 is ψ and where ψi+1 is ψi/λ for some λ ∈ End(A) with |λ| > 1 reaches in a finite
number of steps a fixpoint where all the literals are either of the form

∑
λixi = 0 or are

modular equations whose modulus d is such that λ and d are coprime. Let n ≥ 1 be such
that for every ψ defining a relation of A, the formula ψn is a fixpoint. Let B be the structure
whose domain is Z and whose relations are + and the relations defined by ψn for each ψ
defining a relation of A.

We claim that B is homomorphically equivalent to A and is a core. The first claim is
clear, since B is isomorphic to the structure obtained from A by successive applications
of endomorphisms x 7→ λ · x (in particular B embeds into A). Let now x 7→ λ · x be an
endomorphism of B, and suppose that a is a tuple in a relation R of B. Then we have that
λ · a in R since x 7→ λ · x is an endomorphism. Conversely, note that λ is coprime to d or else
we would not have reached a fixed point in the previous stage. Thus, λϕ(d) = 1 mod d, where
ϕ(d) here is the totient of d. It follows then that λϕ(d)a = a mod d. Suppose λa ∈ R, then
by applying ϕ(d)− 1 times an endomorphism, we derive λϕ(d)a ∈ R. It follows that a ∈ R,
for both the cases that atoms are of the form

∑
λixi = 0 or are modular equations whose

modulus d is such that λ and d are coprime. Hence, x 7→ λ · x is an embedding of A. J

We order the standard formulas lexicographically with respect to (in this order)
1. the number of non-Horn clauses,
2. the number of literals in clauses with at least two literals,
3. the number of all literals, and
4. the sum of the absolute values of all numbers appearing in an equation.
This order is used in a number of statements and proofs throughout the text, e.g., in
Proposition 6, Lemma 17, and Theorem 18. A standard formula is minimal if no smaller
formula is equivalent to it.

The following properties follow from the construction of cores in the previous proof.

I Proposition 6. Let A be first-order definable in (Z; +, 1), and suppose that A contains +
and is a core. Let λ ∈ End(A). Let R be a relation of A and let ϕ be a minimal standard
formula defining R.

If
∑
λixi = c is a linear equation appearing in ϕ, then c = 0 or |λ| = 1.

If
∑
λixi = c mod d is a modular linear equation in ϕ, then λ and d are coprime.

Moreover, if End(A) = 1 + dZ for some d ≥ 2, then every relation of A can be expressed with
a minimal formula in which all modular linear equations are modulo a divisor of d.

MFCS 2018

33:6 The Complexity of Disjunctive Linear Diophantine Constraints

Proof. The two items are clear from the proof of Lemma 5. For the last statement, let d′
be a modulus appearing in a minimal definition of a relation of A. By the second item, we
have that d′ and 1 + kd are coprime, for all k ∈ Z. Let ` be such that `d = −1 mod d′

gcd(d,d′) .
If d′ and 1 + `d are coprime, there exist u, v ∈ Z such that ud′ + v(1 + `d) = 1. Taking
this equation modulo d′

gcd(d,d′) we obtain 0 = 1 mod d′

gcd(d,d′) , so that gcd(d, d′) = d′ and d′
divides d. J

4 Hardness

Our sources of hardness come from pp-interpretations, that we define now. A structure B
is said to be one-dimensional pp-interpretable in A if there exists a partial surjective map
h : A → B, called the coordinate map, such that the inverse image of every relation of B
(including the equality relation and the unary relation B) under h has a pp-definition in
A. Formally, we require that for every k-ary relation R of B, there exists a pp-formula
ϕR(x1, . . . , xk) in the language of A such that

A |= ϕR(a1, . . . , ak)⇔ B |= R(h(a1), . . . , h(ak))

holds for all a1, . . . , ak ∈ A. This requirement for the equality relation of B and the unary
relation B implies that the kernel of h and its domain have a pp-definition in A. It is
well-known that if B is pp-interpretable in A, then CSP(B) reduces in polynomial time to
CSP(A).

4.1 The fully modular case
One of the sources of hardness for our problems are expansions of the general subgroup
problem from [14]. The general subgroup problem of a finite abelian group G is the CSP
of (G; +) expanded with a k-ary relation for every coset a +H, where H is a subgroup of
Gk. It is known that this problem is solvable in polynomial time (under some reasonable
encoding of the input); in modern parlance, this follows from the fact that the operation
(x, y, z) 7→ x − y + z is a Maltsev polymorphism of the template. Feder and Vardi [14,
Theorem 34] proved that the problem becomes NP-hard if the template is further expanded
by any other relation.

The general subgroup problem of Z/dZ can be viewed as a CSP of a first-order reduct
of (Z; +, 1) whose relations are defined by quantifier-free formulas only containing modular
linear equations. This motivates the following definition.

I Definition 7. A relation R ⊆ Zk is called fully modular if it is definable by a conjunction
of disjunctions of modular linear equations, in which case we can even assume that all the
modular linear equations involved in such a definition of R have the same modulus d ≥ 1.

I Proposition 8. Let A be a finite-signature core which is first-order definable in (Z; +, 1)
and contains +. Suppose that A has a fully modular relation that is not Horn-definable. Then
CSP(A) is NP-complete.

Proof. Let R be a relation of A that is not Horn-definable and fully modular, and let d ≥ 1
be such that R can be defined with only linear equalities modulo d. Let A/dA be the
structure with domain Z/dZ containing the ternary relation + as well as a relation S′ for
every relation S of arity k of A, defined by

S′ = {(a1, . . . , ak) | ∃q ∈ Z : (qd+ a1, . . . , qd+ ak) ∈ S}.

M. Bodirsky, B. Martin, M. Mamino, and A. Mottet 33:7

Note that A/dA is pp-interpretable in A: the coordinate map is the canonical projection
x 7→ x mod d, whose kernel is pp-definable by the formula ϕ=(x, y) := ∃z(x − y = dz).
As a consequence, CSP(A/dA) reduces in logarithmic space to CSP(A). Moreover, if A
is a core then A/dA is also a core. It follows from general principles [2, Proposition 3.3]
that CSP(A/dA, 1) reduces to CSP(A/dA) and so to CSP(A). Note that every coset of a
subgroup of (Z/dZ)k is pp-definable in (A/dA, 1) and that if R is not Horn-definable then
R′ is not a coset of a subgroup. It follows from Theorem 34 in the bible [14] that CSP(A) is
NP-complete. J

4.2 The unary case
In order to prove Theorem 1, we now focus on the case of parametrised unary relations.

I Definition 9 (Compatibility). Let Λ ⊆ Z \ {0} be a set containing 1. We say that a set
{Sλ}λ∈Λ of subsets of Z that are definable in (Z; +, 1) is compatible if there exist disjoint
finite sets A,B ⊆ Z such that

Sλ = (S◦λ ∪ λ ·A) \ λ ·B for all λ ∈ Λ and
for all d ≥ 1 and c ∈ {0, . . . , d− 1}, we have c+ dZ ⊆ S◦1 ⇔ λc+ dZ ⊆ S◦λ.

I Definition 10 (Uniform pp-definability). Let A be a first-order reduct of (Z; +, 1). We say
that {Sλ}λ∈Λ is uniformly pp-definable in A if there exists a pp-formula θ(x, y) such that
a ∈ Sλ if, and only if, A |= θ(λ, a).

Note that the definition of being uniformly pp-definable implies that Λ has a pp-definition
in A, for ∃y. θ(x, y) is a pp-definition. Let S ⊆ Z2 be a binary relation that is pp-definable
in A. Then the family {Sλ}λ∈Λ where Λ := {a ∈ Z | (a, b) ∈ S for some b ∈ Z} ⊆ Z \ {0}
and Sλ := {a ∈ Z | (λ, a) ∈ S} is uniformly pp-definable in A. But even if S contains a
tuple of the form (1, b) and no tuple of the form (0, b), it might not necessarily satisfy the
compatibility condition, as illustrated in the following example.

I Example 11. Let S = {(a, b) ∈ Z2 | a 6= 0 ∧ (a = b ∨ a = 2b)}. Then Λ = Z \ {0}, and
for λ ∈ Λ we have Sλ = {λ} if λ = 1 mod 2 and Sλ = {λ, λ2 } if λ = 0 mod 2. Therefore, the
compatibility condition is not satisfied by {Sλ}λ∈Λ.

In the following proof, we write 1-in-3-SAT for CSP({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}). It
is well-known that this problem is NP-complete ([22]; for a proof see [20]).

I Lemma 12. Let A be a finite-signature first-order reduct of (Z; +, 1) containing +. If
{Sλ}λ∈Λ is a compatible set of unary relations that is uniformly pp-definable in A and if
1 < |Sλ| <∞ for all λ ∈ Λ, then CSP(A) is NP-hard.

Proof. Since every Sλ is finite, one sees that Sλ = λ ·A for the finite set A coming from the
compatibility condition. Let m1 := min(A) and m2 := min(A \ {m1}). The formula

∃λ(x+ y + z = (m2 −m1)λ ∧ x+m1λ ∈ Sλ ∧ y +m1λ ∈ Sλ ∧ z +m1λ ∈ Sλ ∧ λ ∈ Λ)

defines the ternary relation consisting of (a, b, c) ∈ Z3 such that a, b, c ∈ {0,m2 −m1} and
exactly one of a, b, c is equal to m2 −m1. Note that this formula is in the language of A,
since {Sλ}λ∈Λ is uniformly pp-definable and in particular Λ is pp-definable in A. This gives
an interpretation of 1-in-3-SAT in A, using the map h : {0,m2 −m1} → {0, 1} such that
h(0) = 0 and h(m2 −m1) = 1. Therefore, CSP(A) is NP-hard. J

MFCS 2018

33:8 The Complexity of Disjunctive Linear Diophantine Constraints

I Proposition 13. Let A be a finite-signature first-order reduct of (Z; +, 1) that contains +
and is a core. Let {Sλ}λ∈Λ be a compatible family that is uniformly pp-definable in A such
that for every λ ∈ Λ the set Sλ is not Horn-definable. Then CSP(A) is NP-hard.

Proof. Let A,B ⊂ Z be finite such that Sλ = (S◦λ ∪ λ ·A) \ (λ ·B) for all λ ∈ Λ. Since Sλ
is not Horn-definable, we have |Sλ| > 1 for all λ ∈ Λ. If Sλ is finite for every λ ∈ Λ, then
CSP(A) is NP-hard by Lemma 12. Therefore, we can assume that S◦λ 6= ∅ for some λ ∈ Λ,
and the second compatibility condition implies that S◦λ is infinite for all λ ∈ Λ. Let d ≥ 1
be such that S◦λ is a union of cosets of dZ for all λ ∈ Λ. Write S◦1 =

⋃n
i=1 ci + dZ, with

ci ∈ {0, . . . , d− 1}.
If n ∈ {2, . . . , d− 1}, we claim that we can pp-define a fully modular relation that is not

Horn-definable. Indeed, let θ(x, y) be a formula that defines {Sλ}λ∈Λ. Note that

χ(x, y) := θ(x, y) ∧ θ(x, y + dx) ∧ · · · ∧ θ(x, y + max(A ∪B)dx)

holds precisely on the pairs (λ, a) such that a ∈ S◦λ: since x is forced to be in Λ by θ, a satisfying
assignment gives a nonzero value λ to x. Thus, if all of y, y + dλ, . . . , y + max(A ∪B)dλ are
in Sλ, then they all must be in the modular part S◦λ. The relation T that χ defines is fully
modular and is such that Tλ = S◦λ and in particular T is not Horn-definable. It follows from
Proposition 8 that CSP(A) is NP-hard.

Otherwise, the set S◦λ consists of a single coset of dZ for all λ ∈ Λ, and this coset is λc1+dZ
by the compatibility condition on {Sλ}λ∈Λ. Since S◦λ is assumed to not be Horn-definable,
A must contain an element a. We claim that we can define another family of unary relations
where the unary relations are finite and not singletons. Indeed, consider the formula

ψ(x, y) := ∃z (θ(x, y) ∧ θ(x, z) ∧ y + z = (c1 + a)x)

and let T ⊆ Z2 be the relation that it defines. First, note that ψ(λ, c1) and ψ(λ, a) hold
for all λ ∈ Λ, so that |Tλ| > 1. We claim that Tλ is finite. Since A ∩ S◦1 = ∅, one has
a 6= c1 mod d. Consequently, c1 + a 6= 2c1 mod d and (c1 + a)λ 6= 2c1λ mod d. The equation
y + z = (c1 + a)λ therefore forces that one of y and z is in λ ·A. Since A is finite, there are
only finitely many pairs satisfying this condition, thus showing that 1 < |Tλ| <∞. It follows
from Lemma 12 that CSP(A) is NP-hard. J

As a corollary we obtain a simple-to-state condition implying that CSP(A) is NP-hard
(Corollary 16). The corollary relies on the fact that End(A), being identified with a subset of
Z, can be pp-defined in A. We prove this in the next lemma.

I Lemma 14. Let A be a finite-signature first-order reduct of (Z; +, 1) that contains +.
Then the set End(A) has a pp-definition in A that is additionally quantifier-free.

Proof. Let E be the set of all the formulas R(a1 · x, . . . , ar · x) for R in the language of A
and (a1, . . . , ar) ∈ R. We then have that A |= E(λ) iff λ ∈ End(A). We now show that there
exists a finite subset F ⊆ E that defines the same set of integers.

For each relation R of A, fix a standard definition ϕR in conjunctive normal form of R in
(Z; +, 1). Let M be the largest absolute value of a constant appearing in ϕR. Consider the
finite family F of equations

∑
µixi = m, where

∑
µixi = m′ is some equation appearing in

ϕR and |m| ≤M , together with all the equations
∑
µixi = c mod d where

∑
µixi = c′ mod d

is a modular equation appearing in ϕR and c ∈ {0, . . . , d− 1}. For each subset of F that is
satisfiable by a tuple in R, pick a tuple b ∈ R satisfying the formulas in this subset and add
this tuple to a set S. Repeat this operation for every relation of A, and let S be the finite
set of tuples (of possibly different arities) that we obtain. Finally, let F be the subset of E
where only the formulas associated with tuples from S are kept.

M. Bodirsky, B. Martin, M. Mamino, and A. Mottet 33:9

We claim that F defines End(A). Since F ⊆ E, it suffices to show that every λ satisfying
F is an endomorphism of A. Let λ ∈ Z satisfy F , and let a ∈ R be a tuple in some relation of
A. Let b ∈ S be such that b satisfies exactly the same equations in F as a. By construction,
λb ∈ R so that in each clause of ϕR, some equation is satisfied by λb. We show that λa
satisfies the same equations, so that λa ∈ R. If λ = 0, then λb = λa so that λa ∈ R.
Suppose now that λ 6= 0. Let

∑
µixi = c be a linear equation that is satisfied by λb. Then

necessarily λ divides c, so that b satisfies
∑
µixi = c

λ and | cλ | ≤ |c| ≤M , so that
∑
µixi = c

λ

is an equation in F . Consequently, a also satisfies this equation and λa satisfies
∑
µixi = c.

The proof for modular linear equations is similar. This proves that λ is an endomorphism of
A and concludes the proof. J

I Lemma 15. Let R ⊆ Z be first-order definable over (Z; +, 1) such that (Z; +, R) is a core.
If R+ 6= ∅, then {1} or {1,−1} is pp-definable in (Z; +, R).
If R+ = ∅, then R− = ∅ or R = Z \ {0}.

Proof. Let n be such that R◦ is a union of n cosets of dZ, i.e.,

R◦ =
n⋃
i=1

ci + dZ.

Let us prove the first item. By Lemma 14, it suffices to prove that the only possible
endomorphisms of the structure (Z; +, R) are x 7→ λ · x with λ ∈ {1,−1}. Suppose that
x 7→ λ · x is an endomorphism. Then λ 6= 0 since the structure is a core, so suppose that
|λ| > 1. Let a be the maximal element of R+, and note that in particular a+d 6∈ R (it cannot
be in R+ because of the maximality assumption, and cannot be equal to any ci modulo d).
Then a ∈ R, so λqa ∈ R for all q ∈ N. In particular, if q is such that λq > max(R+ ∪ R−)
we obtain λqa ∈ R◦. This means that λqa = ci mod d for some i ∈ {1, . . . , n}. Finally,
λq(a + d) = λqa + λqd = ci mod d, so that λq(a + d) ∈ R. This implies that x 7→ λq · x is
not an embedding, contradicting the core assumption on (Z; +, R).

Let us now prove the second item. Let b be some element of R−. We must have
b = ci mod d for some i ∈ {1, . . . , n} since R− ⊂ R◦. Note that the map x 7→ (d+ 1)x is an
endomorphism of (Z; +, R), so it has to be an embedding. It follows that (d+ 1)m · b 6∈ R
for any m. Suppose that b is not 0. Choose m so that (d+ 1)m · |b| > maxe∈R− |e| so that
(d + 1)m · b 6∈ R−. But (d + 1)mb = ci mod d, a contradiction. It follows that R− ⊆ {0},
which concludes the proof. J

I Corollary 16. Let A be a finite-signature first-order reduct of (Z; +, 1) which contains
+ and is a core. If End(A) is not Horn-definable, then CSP(A) is NP-hard. Moreover, if
End(A) is Horn-definable, then it is either {1}, Z \ {0}, or 1 + dZ for some d ≥ 2.

Proof. Lemma 14 implies that R := End(A) has a quantifier-free pp-definition in A. We
first prove that (Z; +, R) is a core. Indeed, let λ be an endomorphism of (Z; +, R). Since
1 ∈ R, we obtain that λ ∈ R, so that x 7→ λx is a self-embedding of A by the fact that A
is a core. Since R is has a quantifier-free definition over A, it follows that x 7→ λx is also a
self-embedding of (Z; +, R).

First consider the case that R is not Horn-definable. If R+ 6= ∅ then Lemma 15 implies
that {1} or {1,−1} are pp-definable in (Z; +, R). All endomorphisms of A must preserve
this set, so End(A) = R = {1,−1} or End(A) = R = {1}; since R is no Horn-definable, we
must even have R = {1,−1}. But then the family {Sλ}λ∈{−1,1} with S−1 = S1 = {1,−1}
is uniformly definable and compatible, the conditions being satisfied for A = {−1, 1} and
B = ∅:

MFCS 2018

33:10 The Complexity of Disjunctive Linear Diophantine Constraints

S1 = A = S−1;
S◦1 = S◦−1 = ∅.

Then Proposition 13 applied to Sλ implies that CSP(A) is NP-hard.
If R+ = ∅ then Lemma 15 implies that R− = ∅ or that R = Z \ {0}. In the latter case, R

would be Horn, contrary to the assumptions, so R− = ∅. In this case, R is fully modular,
but not Horn definable, so NP-hardness of CSP(A) follows from Proposition 8. This shows
the first part of the statement.

Finally, consider the case that R is Horn-definable. If R+ = ∅ then Lemma 15 implies
that R = Z \ {0}, and we are done, or R− = ∅, in which case R = 1 + dZ for some d ≥ 2
and we are also done. Otherwise, R+ 6= ∅ and Lemma 15 implies that {1} or {1,−1} is
pp-definable in (Z; +, R). J

4.3 Arbitrary arities
We finally present the hardness proof in the general case where the structure contains a
relation that is not Horn-definable. The strategy is to cut from a non-Horn relation R a
uniformly definable family {Sλ}λ∈Λ of lines for which each Sλ is not Horn-definable. In
a second step, we ensure that we get a family satisfying the compatibility condition, and
we conclude using Proposition 13. Call a formula ϕ in conjunctive normal form reduced if
removing any literal or clause from ϕ yields a formula that is not equivalent to ϕ. Note that
minimal formulas are necessarily reduced.

I Lemma 17. Let A be a finite-signature first-order reduct of (Z; +, 1) which contains + and
is a core. Suppose that A contains a relation R that is not Horn-definable. Then CSP(A)
is NP-hard, or A pp-defines a relation that is not Horn-definable and that has a minimal
definition containing a non-Horn clause ψ such that:

no negated linear equation is in ψ,
at least one linear equation is in ψ.

Proof. Let ϕ be a standard minimal definition of R in conjunctive normal form, and let ψ
be a clause of ϕ that is not Horn. From Corollary 16, we can suppose that End(A) is {1},
Z \ {0}, or 1 + dZ for d ≥ 2. This implies that either {1} is pp-definable or, by Proposition 6,
all the linear equations appearing in ϕ are homogeneous.

We can assume that ψ does not contain any negative literal, per the assumption that ϕ
is minimal: indeed, consider the relation R′ defined by the formula

ϕ′ := ϕ ∧
∑

λixi = c (†)

where
∑
λixi 6= c is in ψ. Either c = 0, in which case the relation R′ defined by (†) is

pp-definable in A, or {1} is pp-definable in A and R′ is pp-definable in A, too. The relation
R′ is not Horn-definable, and when we reduce the definition ϕ′ of R′ we obtain a formula
that has fewer literals in clauses that contain more than one literal, in contradiction to the
minimality of ϕ.

If ψ contains a linear equation then we are done. Otherwise, ψ only contains modular
linear equations. If End(A) = Z \ {0} then by Proposition 6 any modulus of a modular
linear equation appearing in ψ would have to be coprime with every nonzero integer, which
is impossible. Therefore, End(A) is {1} or 1 + dZ for d ≥ 2. In the latter case, we can
assume by Proposition 6 that all the modular linear equations in ψ are modulo a divisor of
d. In the former case, let d be a common multiple of all the moduli appearing in a modular
linear equation in ψ. Consider the structure A/dA defined in Proposition 8. The relation T

M. Bodirsky, B. Martin, M. Mamino, and A. Mottet 33:11

obtained from R in this structure is not a coset of a subgroup H of (Z/dZ)k (where k is the
arity of R): otherwise this coset is definable by a conjunction θ of modular linear equations
modulo a divisor of d. Replacing ψ by θ in ϕ would produce a smaller definition of R, a
contradiction to the minimality of ϕ. Moreover, (A/dA, 1) is pp-interpretable in A: in the
two cases that End(A) = {1} and End(A) = 1 + dZ, the preimage of {1} under the canonical
projection x 7→ x mod d is pp-definable in A. We conclude as in Proposition 8 that CSP(A)
is NP-hard. J

I Theorem 18. Let A be a finite-signature first-order reduct of (Z; +, 1) which contains +
and is a core. Suppose that A contains a relation that is not Horn-definable. Then CSP(A)
is NP-hard.

Proof. From Lemma 17, we can suppose that A pp-defines a relation R that is not Horn-
definable, that has a reduced standard definition ϕ containing a non-Horn clause ψ with at
least one linear equation (L) and no negated linear equation. Since ψ is not Horn, it contains
at least another equation (L′), possibly modular. Let (a1, . . . , an) satisfy ϕ and only (L)
in ψ. Such a tuple exists by the assumption that ϕ is reduced. Similarly, let (b1, . . . , bn)
satisfy ϕ and only (L′) in ψ. Let S be the binary relation such that (λ, t) ∈ S if, and only
if, λ ∈ End(A) and t(a − b) + λb is in R. Note that a and b being fixed, S is pp-definable
over A. Therefore, we obtain a family {Sλ}λ∈Λ that is uniformly definable in A, where
Λ = End(A). Clearly, 1 ∈ Λ, and Λ ⊆ Z \ {0} and 0, λ ∈ Sλ. Moreover, note that

Sλ ∩ λ · Z = λ · S1 (‡)

holds for all λ ∈ End(A). Indeed:

t ∈ S1 ⇔ t(a − b) + b ∈ R
⇔ λt(a − b) + λb ∈ R because A is a core
⇔ λt ∈ Sλ.

We prove that for all λ ∈ End(A) the relation Sλ is not Horn-definable. Since 0, λ ∈ Sλ,
it suffices to prove that Sλ omits infinitely many multiples of λ, and by (‡) it suffices to
prove that ` 6∈ S1 for infinitely many `. Let ` be such that ` = 1 mod d′, for every modulus
d′ appearing in ψ. We claim that `(a − b) + b does not satisfy any modular linear equation
in ψ. Indeed, let

∑
i σixi = c mod d′ be such a modular linear equation. Then we have∑

i

σi(`(ai − bi) + bi) = c mod d′ ⇔
∑
i

σiai = c mod d′,

which is a contradiction to the choice of a since a only satisfies (L) in ψ and (L) is assumed to
be non-modular. Consider now a linear equation

∑
σixi = c in ψ. This equation is satisfied

by `(a − b) + b if, and only if

` ·
∑
i

σi(ai − bi) = c−
∑
i

σibi . (?)

Suppose first that
∑
σi(ai − bi) = 0. Then (?) is satisfied if, and only if, we have

∑
σibi =

c =
∑
σiai. This implies that both a and b satisfy the equation; this is a contradiction to

our choice of the vectors a and b, so that `(a − b) + b does not satisfy (?). Suppose now
that

∑
σi(ai− bi) 6= 0. If ` > |c−

∑
σibi|, it is then clear that (?) is not satisfied. Therefore,

for infinitely many `, the tuple `(a − b) + b does not satisfy any literal in ψ and ` 6∈ S1.

MFCS 2018

33:12 The Complexity of Disjunctive Linear Diophantine Constraints

Let θ(x, y) be a minimal reduced standard definition of S. By inspection of the formula θ,
one finds that S+

λ and S−λ consist of points of the form −aλb , where ax+ by = 0 is an equation
in θ. Note that since a and b are taken coprime by the minimality of θ, if b divides aλ then b
divides λ. Let m := lcm{|b| : ax+ by = 0 is an equation in θ}, and note that mZ ∩ Λ is not
empty by the previous remark. Let T 6= ∅ be the binary relation defined by θ(m · x, y). For
all λ ∈ End(A), the set Tλ is not Horn-definable and of the form (T ◦λ ∪ (λ ·P))\ (λ ·Q), where
P and Q are finite sets that are independent of λ and T ◦λ = S◦mλ. For the family of relations
{Tλ}λ∈End(A) to satisfy the compatibility condition, it remains to prove that c+ dZ ⊆ T ◦1 if,
and only if, λc+ dZ ⊆ T ◦λ , for all d ≥ 1 and c ∈ {0, . . . , d− 1}. Suppose that c+ dZ ⊆ T ◦1 for
some d ≥ 1 and suppose that the cosets of T ◦λ are cosets of d′Z. By Proposition 6, λ and d′
are coprime. Therefore, there exists µ ∈ Z such that λµ = 1 mod d′. We have c+ dµZ ⊆ T ◦1 ,
because d divides dµ. It follows that λc+λdµZ ⊆ T ◦λ . Now, let x ∈ λc+ dZ, say x = λc+ qd.
Then we have x = λc + qλµd mod d′. Note that λc + qλµd ∈ λc + λdµZ ⊆ T ◦λ . Since the
cosets in T ◦λ are cosets of d′Z, we obtain that x ∈ T ◦λ and consequently that λc+ dZ ⊆ T ◦λ .
Conversely, if λc+ dZ ⊆ T ◦λ then λc+ dλZ ⊆ T ◦λ , because d divides dλ. Since A is a core,
x 7→ λ · x is a self-embedding of A, so that c+ dZ ⊆ T ◦1 .

To conclude, the family of compatible relations {Tλ}λ∈End(A) is uniformly pp-definable
in A and consists of non-Horn relations. By Proposition 13, we obtain that CSP(A) is
NP-hard. J

We illustrate our proofs in some examples below.

I Example 19. Consider the binary relation

S = {(λ, t) | (λ = 1 mod 4 ∧ t = 1 mod 4) ∨ (λ = 3 mod 4 ∧ t = 3 mod 4) ∨ t = 0}.

One sees that the set of endomorphisms of A := (Z; +, S) is equal to End(A) := 1 + 2Z.
Moreover, S is not Horn-definable. For every λ ∈ End(A), one has Sλ = {0} ∪ (λ + 4Z).
When λ is fixed, one can define a finite set by ∃y(x ∈ Sλ ∧ y ∈ Sλ ∧ x+ y = λ), which defines
{0, λ}. One then obtains a reduction from 1-in-3-SAT by ∃x, y, z ∈ {0, λ} : x+ y+ z ∈ {0, λ}.
Finally, by existentially quantifying over λ ∈ End(A) we obtain a reduction from 1-in-3-SAT
to CSP(Z; +, S).

I Example 20. Let R := {0}∪ (1+ 3Z)∪ (2+ 3Z) and K = 1 +3Z. Note that Proposition 13
does not apply to CSP(Z; +, R) since (Z; +, R) is not a core (we have 0 ∈ End(Z; +, R)).
Neither does Corollary 16 apply to CSP(Z; +, R,K) since End(Z; +, R,K) = K, which is
clearly Horn-definable in (Z; +, R,K). But one obtains hardness of CSP(Z; +, R,K) by
Theorem 18. Indeed, pick a = 0 (satisfying the linear equation x = 0 in the definition of
R) and b = 1 (satisfying the modular linear equation x = 1 mod 3 in the definition of R),
and define the relation S = {(λ, t) | λ ∈ K ∧ λ− t ∈ S}. Note that for all λ ∈ K, we have
Sλ = {λ}∪3Z∪ (2+3Z). The formula ∃w(w ∈ K ∧S(λ, t)∧S(λ, t+3w)) defines the relation
T = {(λ, t) | λ = 1 mod 3 ∧ (t = 0 mod 3 ∨ t = 2 mod 3)}, which is fully modular and not
Horn-definable. Proposition 8 implies that CSP(Z; +, R, S) is NP-hard.

5 Tractability

In this section we show the following.

I Proposition 21. Let A be a structure with finite relational signature, domain Z, and whose
relations have quantifier-free Horn definitions over (Z; +, 1). Then there is an algorithm that
solves CSP(A) in polynomial time.

M. Bodirsky, B. Martin, M. Mamino, and A. Mottet 33:13

This result follows from the following more general result.

I Theorem 22. Let ϕ be a quantifier-free Horn formula over (Z; +), allowing parameters
from Z represented in binary. Then there exists a polynomial-time algorithm to decide
whether ϕ is satisfiable over (Z; +).

The proof of Theorem 22 can be found at the end of this section. We first show how to
derive Proposition 21.

Proof of Proposition 21. The input of CSP(A) consists of a primitive positive sentence
whose atomic formulas are of the form R(x1, . . . , xk) where R is quantifier-free Horn definable
over L(Z;+,1). Since

∑n
i=1 aixi = b mod c is equivalent to

∑n
i=1 aixi = b + ck, where k is

a new integer variable, we can as well assume that the input to our problem consists of a
set of Horn clauses over (Z; +, 1). This is tacitly the process of quantifier introduction, the
converse of quantifier elimination. Then apply Theorem 22. J

Our algorithm for the proof of Theorem 22 uses two other well-known algorithms:
1. a polynomial-time algorithm for satisfiability of linear diophantine equations, i.e., the

subproblem of the computational problem from Theorem 22 where the input only contains
atomic formulas (see, e.g., [23]).

2. a polynomial-time algorithm to compute the rank of a matrix over Q; this allows us in
particular to decide whether a given linear system of equalities implies another equality
over the rationals (this is standard, using Gaussian elimination; again, see [23] for a
discussion of the complexity).

These two algorithms can be combined to obtain the following.

I Lemma 23. There is a polynomial-time algorithm that decides whether a given system Φ
of linear diophantine equations implies another given diophantine equation ψ over Z.

Proof. First, use the first algorithm above to test whether Φ has a solution over Z. If no,
return yes (false implies everything). If yes, we claim that Φ implies ψ over Q (which can be
tested by the second algorithm above) if and only if Φ implies ψ over the integers. Clearly, if
every rational solution of Φ satisfies ψ, then so does every integer solution. Suppose now
that there exists a rational solution α to Φ which does not satisfy ψ. Also take an integer
solution β to Φ. Then on the line L that goes through α and β there are infinitely many
integer points. If infinitely many points on a line satisfy ψ, then all points of the line must
satisfy ψ. Since α ∈ L does not satisfy ψ it follows that an integer point on L does not
satisfy ψ, i.e., Φ does not imply ψ over the integers. J

Given the two mentioned algorithms, our procedure for the proof of Theorem 22 is
basically an implementation of positive unit clause resolution. It takes the same form as the
algorithm presented in [7] for satisfiability over the rationals.

Proof. We follow the proof of Proposition 3.1 from [7]. We first discuss the correctness of
the algorithm.

When U logically implies ϕ (which can be tested with the algorithm from Lemma 23)
then the negative literal ¬ϕ is never satisfied and can be deleted from all clauses without
affecting the set of solutions. Since this is the only way in which literals can be deleted from
clauses, it is clear that if one clause becomes empty the instance is unsatisfiable.

If the algorithm terminates with satisfiable, then no negation of an inequality is implied
by U . If r is the rank of the linear equation system defined by U , we can use Gaussian

MFCS 2018

33:14 The Complexity of Disjunctive Linear Diophantine Constraints

// Input: a set of Horn-clauses C over (Z; +) with parameters.
// Output: satisfiable if C is satisfiable in (Z; +), unsatisfiable otherwise
Let U be clauses from C that only contain a single positive literal.
If U is unsatisfiable then return unsatisfiable.
Do

For all negative literals ¬ϕ in clauses from C
If U implies ϕ, then delete the negative literal ¬ϕ from all clauses in C.

If C contains an empty clause, then return unsatisfiable.
If C contains a clause with a single positive literal ψ, then add {ψ} to U .

Loop until no literal has been deleted
Return satisfiable.

Figure 1 An algorithm for satisfiability of Horn formulas with parameters over (Z; +).

elimination to eliminate r of the variables from all literals in the remaining clauses. For each
of the remaining inequalities, consider the sum of absolute values of all coefficients. Let S be
one plus the maximum of this sum over all the remaining inequalities. Then setting the i-th
variable to Si satisfies all clauses. To see this, take any inequality, and assume that i is the
highest variable index in this inequality. Order the inequality in such a way that the variable
with highest index is on one side and all other variables on the other side of the 6= sign. The
absolute value on the side with the i-th variable is at least Si. The absolute value on the
other side is less than Si − S, since all variables have absolute value less than Si−1 and the
sum of all coefficients is less than S − 1 in absolute value. Hence, both sides of the inequality
have different absolute value, and the inequality is satisfied. Since all remaining clauses have
at least one inequality, all constraints are satisfied.

Now let us address the complexity of the algorithm. With appropriate data structures,
the time needed for removing negated literals ¬ϕ from all clauses when ϕ is implied by U is
linearly bounded in the input size since each literal can be removed at most once. J

6 Conclusion

We are finally in position to prove the main result.

Proof of Theorem 1. Let A be a finite-signature first-order reduct of (Z; +, 1) that A con-
tains +. By Lemma 5 there exists a core B of A. If B has only one element then CSP(B) and
CSP(A) are trivially in P. Otherwise, B is itself first-order definable in (Z; +, 1) and contains
+ by Lemma 5, and the statement follows from Theorem 18 and Proposition 21. J

References
1 Libor Barto, Michael Kompatscher, Miroslav Olsák, Trung Van Pham, and Michael Pinsker.

The equivalence of two dichotomy conjectures for infinite domain constraint satisfaction
problems. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.
8005128.

2 Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. Israel
Journal of Mathematics, 2017. To appear. Preprint arXiv:1510.04521.

3 Libor Barto and Michael Pinsker. The algebraic dichotomy conjecture for infinite domain
constraint satisfaction problems. In Proceedings of the 31st Annual ACM/IEEE Symposium

http://dx.doi.org/10.1109/LICS.2017.8005128
http://dx.doi.org/10.1109/LICS.2017.8005128

M. Bodirsky, B. Martin, M. Mamino, and A. Mottet 33:15

on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 615–
622, 2016. doi:10.1145/2933575.2934544.

4 M. Bodirsky, B. Martin, and A. Mottet. Discrete temporal constraint satisfaction problems.
Journal of the ACM, 65(2), 2018. preprint available at https://arxiv.org/abs/1503.08572.
doi:10.1145/3154832.

5 Manuel Bodirsky, Víctor Dalmau, Barnaby Martin, Antoine Mottet, and Michael Pinsker.
Distance constraint satisfaction problems. Information and Computation, 247:87–105, 2016.

6 Manuel Bodirsky, Peter Jonsson, and Timo von Oertzen. Essential convexity and com-
plexity of semi-algebraic constraints. Logical Methods in Computer Science, 8(4), 2012.
An extended abstract about a subset of the results has been published under the title
Semilinear Program Feasibility at ICALP’10.

7 Manuel Bodirsky, Peter Jonsson, and Timo von Oertzen. Horn versus full first-order: Com-
plexity dichotomies in algebraic constraint satisfaction. J. Log. Comput., 22(3):643–660,
2012. doi:10.1093/logcom/exr011.

8 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction prob-
lems. J. ACM, 57(2), 2010. doi:10.1145/1667053.1667058.

9 Manuel Bodirsky and Marcello Mamino. Constraint Satisfaction Problems over Numeric
Domains. In Andrei Krokhin and Stanislav Zivny, editors, The Constraint Satisfaction
Problem: Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pages 79–
111. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017. doi:
10.4230/DFU.Vol7.15301.79.

10 Manuel Bodirsky, Barnaby Martin, and Antoine Mottet. Constraint satisfaction problems
over the integers with successor. In Proceedings of ICALP’15, 2015.

11 Manuel Bodirsky and Michael Pinsker. Schaefer’s theorem for graphs. Journal of the ACM,
62(3):Article no. 19, 1–52, 2015. A conference version appeared in the Proceedings of STOC
2011, pages 655–664.

12 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proceedings of FOCS’17,
2017. arXiv:1703.03021.

13 T.-W. J. Chou and G. E. Collins. Algorithms for the solution of systems of linear diophant-
ine equations. SIAM J. Computing, 11:687–708, 1982.

14 T. Feder and M. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: A study through Datalog and group theory. SIAM Journal on
Computing, 28:57–104, 1998.

15 Peter Jonsson and Tomas Lööw. Computational complexity of linear constraints over the
integers. Artificial Intelligence, 195:44–62, 2013. An extended abstract appeared at IJCAI
2011.

16 Peter Jonsson and Johan Thapper. Constraint satisfaction and semilinear expansions of
addition over the rationals and the reals. J. Comput. Syst. Sci., 82(5):912–928, 2016.
doi:10.1016/j.jcss.2016.03.002.

17 Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.

18 David Marker. Model Theory: An Introduction. Springer, 2002.
19 Daniele Micciancio and Bogdan Warinschi. A Linear Space Algorithm for Computing the

Hermite Normal Form, pages 231–236. Association for Computing Machinery (ACM),
United States, 2001.

20 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
21 M. Presburger. über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer

Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Rendus du I
congres de Mathématiciens des Pays Slaves, pages 92–101, 1929.

MFCS 2018

http://dx.doi.org/10.1145/2933575.2934544
http://dx.doi.org/10.1145/3154832
http://dx.doi.org/10.1093/logcom/exr011
http://dx.doi.org/10.1145/1667053.1667058
http://dx.doi.org/10.4230/DFU.Vol7.15301.79
http://dx.doi.org/10.4230/DFU.Vol7.15301.79
http://dx.doi.org/10.1016/j.jcss.2016.03.002

33:16 The Complexity of Disjunctive Linear Diophantine Constraints

22 T. J. Schaefer. The complexity of satisfiability problems. In Proceedings of STOC’78, pages
216–226, 1978.

23 Alexander Schrijver. Theory of Linear and Integer Programming. Wiley - Interscience
Series in Discrete Mathematics and Optimization, 1998.

24 Arne Storjohann. Computing hermite and smith normal forms of triangular integer matrices.
Linear Algebra and its Applications, 282:25–45, 1998.

25 Dmitriy Zhuk. The Proof of CSP Dichotomy Conjecture. In Proceedings of FOCS’17, 2017.
arXiv:1704.01914.

Give Me Some Slack: Efficient Network
Measurements

Ran Ben Basat
Department of Computer Science, Technion
sran@cs.technion.ac.il

Gil Einziger
Nokia Bell Labs
gil.einziger@nokia.com

Roy Friedman
Department of Computer Science, Technion
roy@cs.technion.ac.il

Abstract
Many networking applications require timely access to recent network measurements, which can
be captured using a sliding window model. Maintaining such measurements is a challenging task
due to the fast line speed and scarcity of fast memory in routers. In this work, we study the impact
of allowing slack in the window size on the asymptotic requirements of sliding window problems.
That is, the algorithm can dynamically adjust the window size betweenW andW (1+τ) where τ is
a small positive parameter. We demonstrate this model’s attractiveness by showing that it enables
efficient algorithms to problems such as Maximum and General-Summing that require Ω(W)
bits even for constant factor approximations in the exact sliding window model. Additionally, for
problems that admit sub-linear approximation algorithms such as Basic-Summing and Count-
Distinct, the slack model enables a further asymptotic improvement.

The main focus of the paper is on the widely studied Basic-Summing problem of computing
the sum of the last W integers from {0, 1 . . . , R} in a stream. While it is known that Ω(W logR)
bits are needed in the exact window model, we show that approximate windows allow an expo-
nential space reduction for constant τ .

Specifically, for τ = Θ(1), we present a space lower bound of Ω(log(RW)) bits. Additionally,
we show an Ω(log (W/ε)) lower bound for RWε additive approximations and a Ω(log (W/ε) +
log logR) bits lower bound for (1 + ε) multiplicative approximations. Our work is the first to
study this problem in the exact and additive approximation settings. For all settings, we provide
memory optimal algorithms that operate in worst case constant time. This strictly improves
on the work of [14] for (1 + ε)-multiplicative approximation that requires O(ε−1 log (RW) log
log (RW)) space and performs updates in O(log (RW)) worst case time. Finally, we show asymp-
totic improvements for the Count-Distinct, General-Summing and Maximum problems.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near
linear time algorithms

Keywords and phrases Streaming, Network Measurements, Statistics, Lower Bounds

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.34

Related Version A full version of the paper is avalable at [5], https://arxiv.org/abs/1703.
01166.

© Ran Ben-Basat, Gil Einziger, and Roy Friedman;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 34; pp. 34:1–34:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sran@cs.technion.ac.il
mailto:gil.einziger@nokia.com
mailto:roy@cs.technion.ac.il
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.34
https://arxiv.org/abs/1703.01166
https://arxiv.org/abs/1703.01166
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 Give Me Some Slack: Efficient Network Measurements

Figure 1 We need to answer each query with respect to a τ -slack window that must include the
last W items, but may or may not consider a suffix of the previous Wτ elements.

1 Introduction

Network algorithms in diverse areas such as traffic engineering, load balancing and quality
of service [2, 9, 21, 24, 31] rely on timely link measurements. In such applications recent
data is often more relevant than older data, motivating the notions of aging and sliding
window [6, 11, 15, 25, 27]. For example, a sudden decrease in the average packet size on a
link may indicate a SYN attack [26]. Additionally, a load balancer may benefit from knowing
the current utilization of a link to avoid congestion [2].

While conceptually simple, conveying the necessary information to network algorithms
is a difficult challenge due to current memory technology limitations. Specifically, DRAM
memory is abundant but too slow to cope with the line rate while SRAM memory is fast
enough but has a limited capacity [10, 13, 29]. Online decisions are therefore realized through
space efficient data structures [7, 8, 16, 17, 4, 23, 28, 30] that store measurement statistics
in a concise manner. For example, [16, 28] utilize probabilistic counters that only require
O(log logN) bits to approximately represent numbers up to N . Others conserve space using
variable sized counter encoding [17, 23] and monitoring only the frequent elements [6].

Basic-Summing is one of the most basic textbook examples of such approximated sliding
window stream processing problems [14]. In this problem, one is required to keep track of
the sum of the last W elements, when all elements are non-negative integers in the range
{0, 1, . . . , R}. The work in [14] provides a (1+ε)-multiplicative approximation of this problem
using O

(1
ε ·
(
log2W + logR · (logW + log logR)

))
bits. The amortized time complexity is

O(logR
logW) and the worst case is O(logW + logR). In contrast, we previously showed an

RWε-additive approximation with Θ
(1
ε + logWε

)
bits [3].

Sliding window counters (approximated or accurate) require asymptotically more space
than plain stream counters. Such window counters are prohibitively large for networking
devices which already optimize the space consumption of plain counters.

This paper explores the concept of slack, or approximated sliding window, bridging this
gap. Figure 1 illustrates a “window” in this model. Here, each query may select a τ -slack
window whose size is between W (the green elements) and W (1 + τ) (the green plus yellow
elements). The goal is to compute the sum with respect to this chosen window.

Slack windows were also considered in previous works [14, 27] and we call the problem of
maintaining the sum over a slack window Slack Summing. Datar et al. [14] showed that con-
stant slack reduces the required memory from O(1

ε ·
(
log2W + logR · (logW + log logR)

)
)

to O(ε−1 log(RW) log log(RW)). For τ -slack windows they provide a (1 + ε)-multiplicative
approximation using O(ε−1 log(RW)(log log(RW) + log τ−1)) bits.

R. Ben-Basat, G. Einziger, and R. Friedman 34:3

Table 1 Comparison of Basic-Summing algorithms. Our contributions are in bold. All algorithms
process elements in constant time except for the rightmost column where both update in O(log (RW))
time. We present matching lower bounds to all our algorithms.

Exact Sum Additive Error Multiplicative Error
τ = Θ(1) Θ(log (RW)) Θ(log(W/ε)) Θ(log (W/ε) + loglogR) O(ε−1 log(RW) log log(RW)) [14]

Exact Window Θ(W logR) Θ(ε−1 + logW) [3] O(ε−1 log2(RW)) [22] O(ε−1 logRW log (W logR)) [14]

Our Contributions

This paper studies the space and time complexity reductions that can be attained by allowing
slack – an error in the window size. Our results demonstrate exponentially smaller and
asymptotically faster data structures compared to various problems over exact windows. We
start with deriving lower bounds for three variants of the Basic-Summing problem – when
computing an exact sum over a slack window, or when combined with an additive and a
multiplicative error in the sum. We present algorithms that are based on dividing the stream
into Wτ -sized blocks. Our algorithms sum the elements within each block and represent each
block’s sum in a cyclic array of size τ−1. We use multiple compression techniques during
different stages to drive down the space complexity. The resulting algorithms are space
optimal, substantially simpler than previous work, and reduce update time to O(1).

For exact Slack Summing, we present a lower bound of Ω(τ−1 log(RWτ)) bits. For (1+ε)
multiplicative approximations we prove an Ω

(
log(W/ε) + τ−1 (log (τ/ε) + log log (RW))

)
bits bound when τ = Ω

(
1

logRW

)
. We show that Ω(τ−1 log b1 + τ/εc+ log (W/ε)) bits are

required for RWε additive approximations.
Next, we introduce algorithms for the Slack Summing problem, which asymptotically

reduce the required memory compared to the sliding window model. For the exact and
additive error versions of the problem, we provide memory optimal algorithms. In the
multiplicative error setting, we provide an O

(
τ−1 (log ε−1 + log log (RWτ)

)
+ log(RW)

)
space algorithm. This is asymptotically optimal when τ = Ω(log−1W) and R = poly(W).
It also asymptotically improves [14] when τ−1 = o(ε−1 log (RW)). We further provide an
asymptotically optimal solution for constant τ , even when R = Wω(1). All our algorithms
are deterministic and operate in worst case constant time. In contrast, the algorithm of [14]
works in O(logRW) worst case time.

To exemplify our results, consider monitoring the average bandwidth (in bytes per second)
passed through a router in a 24 hours window, i.e., W , 86400 seconds. Assuming we use a
100GbE fiber transceiver, our stream values are bounded by R ≈ 234 bytes. If we are willing
to withstand an error of ε = 2−20 (i.e., about 16KBps), the work of [3] provides an additive
approximation over the sliding window and requires about 120KB. In contrast, using a 10
minutes slack (τ , 1

144), our algorithm for exact Slack Summing requires only 800 bytes,
99% less than approximate summing over exact sliding window. For the same slack size, the
algorithm of [14] requires more space than our exact algorithm even for a large 3% error.
Further, if we also allow the same additive error (ε = 2−20), we provide an algorithm that
requires only 240 bytes - a reduction of more than 99.8% !

Table 1 compares our results for the important case of constant slack with [14]. As
depicted, our exact algorithm is faster and more space efficient than the multiplicative
approximation of [14]. Comparing our multiplicative approximation algorithm to that of [14],
we present exponential space reductions in the dependencies on ε−1 and R, with an asymptotic
reduction in W as well. We also improve the update time from O(log (RW)) to O(1).

MFCS 2018

34:4 Give Me Some Slack: Efficient Network Measurements

Finally, we apply the slack window approach to multiple streaming problems, including
Maximum, General-Summing, Count-Distinct and Standard-Deviation. We show
that, while some of these problems cannot be approximated on an exact window in sub-linear
space (e.g. maximum and general sum), we can easily do so for slack windows. In the count
distinct problem, a constant slack yields an asymptotic space reduction over [11, 19].

2 Preliminaries

For ` ∈ N, we denote [`] , {0, 1, . . . , `}. We consider a stream of data elements x1, x2, . . . , xt,
where at each step a new element xi ∈ [R] is added to S. A W -sized window contains only
the last W elements: xt−W+1 . . . xt. We say that F is a τ -slack W -sized window if there
exists c ∈ [Wτ − 1] such that F = xt−(W+c)+1 . . . xt. For simplicity, we assume that τ−1 and
Wτ are integers. Unless explicitly specified, the base of all logs is 2.

Algorithms for the Slack Summing problem are required to support two operations:
1. Update(xt) Process a new element xt ∈ [R].
2. Output () Return a pair 〈Ŝ, c〉 such that c ∈ N is the slack size and Ŝ is an estimation

of the last W + c elements sum, i.e., S ,
∑t
k=t−(W+c)+1 xk.

We consider three types of algorithms for Slack Summing:
1. Exact algorithms: an algorithm A solves (W, τ)-Exact Summing if its Output

returns 〈Ŝ, c〉 that satisfies 0 ≤ c < Wτ and Ŝ = S.
2. Additive algorithms: we say that A solves (W, τ, ε)-Additive Summing if its Output

function returns 〈Ŝ, c〉 that satisfies 0 ≤ c < Wτ and |S − Ŝ| < RWε.
3. Multiplicative algorithms: A solves (W, τ, ε)-Multiplicative Summing if its Out-

put returns 〈Ŝ, c〉 satisfying 0 ≤ c < Wτ and S
1+ε < Ŝ ≤ S if S > 0, and Ŝ = 0 otherwise.

3 Lower Bounds

In this section, we analyze the space required for solving the Slack Summing problems.
Intuitively, our bounds are derived by constructing a set of inputs that any algorithm must
distinguish to meet the required guarantees. There are two tricks that we frequently use in
these lower bounds. The first is setting the input such that the slack consists only of zeros,
and thus the algorithm must return the desired approximation of the remaining window. The
next is using a “cycle argument” – consider two inputs x and x · y for x, y ∈ {0, 1, . . . , R}∗.
If both lead to the same memory configuration, so do such xyk for any k ∈ N. Thus, if there
is a k such that no single answer approximates x and xyk well, then x and xy had to lead to
separate memory configurations in the first place.

3.1 (W, τ)-Exact Summing
We start by proving lower bounds on the memory required for exact Slack Summing.

I Lemma 1. Any deterministic algorithm A that solves the (W, τ)-Exact Summing problem
must use at least dlog (RW (W + 1)/2 + 1)e ≥

⌊
log
(
RW 2)⌋ bits.

Proof. Consider the following language

LE1 ,
{

0Wτ+iσRW−i−10j | i, j ∈ [W − 1], i ≥ j, σ ∈ ([R] \ {0})
}
∪ {0W+Wτ}.

That is, LE1 contains a word with W +Wτ consecutive zeros and the rest of the words in
LE1 are composed of these components in this order:

R. Ben-Basat, G. Einziger, and R. Friedman 34:5

Wτ + i zeros for some i ∈ [W − 1].
a non zero symbol σ.
W − i− 1 repetitions of the maximal symbol (R).
j zeros for some j ∈ [i].

Our lower bound stems from the observation that every word in LE1 must lead to a
different state. The language size is: |LE1 | = 1 +

∑W−1
i=0 R(i + 1) = 1 + RW (W + 1)/2.

Therefore, the number of required bits is at least: dlog |LE1 |e >
(
log(RW 2)− 1

)
. Further,

this number is an integer and therefore at least
⌊
log(RW 2)

⌋
bits are required.

First, notice that the word composed of W +Wτ zeros requires a unique configuration as
A must return 0 after processing that word. In contrast, it must not return 0 after processing
any other word as there is at least a single R within the last W elements.

Let w1, w2 ∈ LE1 be two different words that are not all-zeros. We need to show that w1
and w2 require different memory configuration.

By definition of LE1 , w1 = 0Wτ+i1σ1R
W−i1−10j1 and w2 = 0Wτ+i2σ2R

W−i2−10j2 . Ob-
serve that the last W elements of w1, w2 are 0i1−j1σ1R

W−i1−10j1 and 0i2−j2σ1R
W−i2−10j2

respectively and that both are preceded with at least Wτ zeros. If i1 6= i2 or σ1 6= σ2, then
σ1 +R · (W − i1 − 1) 6= σ2 +R · (W − i2 − 1) and thus A cannot return the same count for
both, regardless of the slack, as it is all zeros ib both w1 and w2.

Next, assume that i1 = i2 , σ1 = σ2 and that without loss of generality j1 < j2. This
means that both w1 and w2 have the same count.

Since j1 < j2, w1 is a strict prefix of w2, i.e., w2 = w1·0j2−j1 . Assume by contradiction that
after processing w1, w2 A reaches the same memory configuration. Since A is deterministic,
this means that it must reach the same configuration after seeing w1 · 0z(j2−j1) for any integer
z. By choosing z = W (1 + τ), we get that the algorithm reaches this configuration once
again while the entire window consists of zeros. This is a contradiction since σ1, σ2 6= 0, and
the algorithm cannot answer both w1 and w1 · 0z(j2−j1) correctly. J

We now use Lemma 1 to show the following lower bound on (W, τ)-Exact Summing
algorithms:

I Theorem 2. Any deterministic algorithm A that solves the (W, τ)-Exact Summing
problem must use at least max

{⌊
log
(
RW 2)⌋ , ⌈⌈τ−1/2

⌉
log (RWτ + 1)

⌉}
bits.

Proof. Lemma 1 shows a
⌊
log
(
RW 2)⌋ bound. We proceed with showing a lower bound⌈⌈

τ−1/2
⌉

log (RWτ + 1)
⌉
bits. Consider the following languages:

LE2 ,
{

0Wτ+iσRWτ−i−1 | i ∈ [Wτ − 1], σ ∈ [R]
}
,

LE2 ,
{
w1 · w2 · · ·wdτ−1/2e | ∀i : wi ∈ LE2

}
.

Notice that |LE2 | = (RWτ + 1)dτ
−1/2e since each of the words in LE2 has a distinct sum of

literals, and each number in {0, 1, . . . , RWτ} is the sum of a word. We show that each input in
LE2 must be mapped into a distinct memory configuration. Let S1 , w1,1 ·w2,1 · · ·wdτ−1/2e,1,
S2 , w1,2 · w2,2 · · ·wdτ−1/2e,2 be two distinct inputs in LE2 such that ∀i : wi,1, wi,2 ∈ LE2 .
Denote χ , max

{
i ∈
[⌈
τ−1/2

⌉]
| wi,1 6= wi,2

}
– the last place in which S1 differs from S2;

also, denote wχ,1 , 0Wτa,wχ,2 , 0Wτ b. Consider the sequences S∗1 = S1 · 02Wτ(χ−1/2)

and S∗2 = S2 · 02Wτ(χ−1/2). Notice that the last W elements windows for S∗1 , S∗2 are
a · wχ+1,1 · · ·wdτ−1/2e,1 · 02Wτ(χ−1/2) and b · wχ+1,2 · · ·wdτ−1/2e,2 · 02Wτ(χ−1/2) respectively,
and that the preceding Wτ elements of both are all zeros. An illustration of the setting
appears in Figure 2. By our choice of χ, we have that the sum of the last W elements of S∗1

MFCS 2018

34:6 Give Me Some Slack: Efficient Network Measurements

Figure 2 An illustration of the
⌈
τ−1/2

⌉
log (RWτ + 1) lower bound setting. If we assume

that after seeing w1,1 · w2,1 · · ·wdτ−1/2e,1 we reach the same configuration as after processing
w1,2 · w2,2 · · ·wdτ−1/2e,2, then we provide a wrong answer for at least one of S∗1 , S∗2 .

and S∗2 is different, and since the slack is all zeros, no answer is correct on both. Finally,
note that this implies that S1, S2 had to reach different configurations, as otherwise A would
reach the same configuration after processing the additional 2Wτ(χ− 1/2) zeros. J

3.2 (W, τ, ε)-Additive Summing
Next, Theorem 3 shows a lower bound for additive approximations of Slack Summing.

I Theorem 3. For ε < 1/4, any deterministic algorithm A that solves the (W, τ, ε)-Additive
Summing problem requires max

{
log(W/ε)−O(1),

⌈⌈
τ−1/2

⌉
log bτ/2ε+ 1c

⌉}
bits.

Before we prove Thorem 3, we start with a simpler lower bound.

I Lemma 4. Let ε < 1/4. Any deterministic algorithm that solves the (W, τ, ε)-Additive
Summing problem must use at least log(W/ε)−O(1) bits.

Proof. Denote by rep(x) , (x mod R) ·Rbx/Rc a sequence in {σR∗ | σ ∈ [R]} whose sum
is x. Next, consider the following languages:

LA1 , {rep(k · 2RWε) | k ∈ [b1/4εc] \ {0}} ; LA1 , 0W+Wτ ·LA1 · {0q | q ∈ [bW/2c]} .

First, notice that |LA1 | = b1/4εc and that all words in LA1 have length of at most W/2.
This means that |LA1 | = b1/4εc bW/2 + 1c > bW/8εc.

We now show that every word in LA1 must have a dedicated memory configuration, thereby
implying a dlog bW/8εce bits bound. Let w1 = 0W+Wτ ·x1 · 0q1 and w2 = 0W+Wτ ·x2 · 0q2 be
two distinct words in LA1 such that x1, x2 ∈ LA1 and q1, q2 ∈ bW/2c. If x1 6= x2, then their
most recent W elements differ by more than 2RWε and there is no output that is correct for
both. Note that the slack of both w1 and w2 is all zeros. Hence, w1 and w2 require different
memory configurations.

Assume that x1 = x2 and that by contradiction both w1 and w2 reached the same
memory configuration. Since w1 6= w2 and x1 = x2, then q1 6= q2 and without loss of
generality q1 < q2. This implies that w1 is a prefix of w2 so that w2 = w1 · 0q2−q1 . Thus, A
enters the shared configuration after reading w1 and revisits it after reading 0q2−q1 . A is a
deterministic algorithm and therefore it reaches the same configuration also for the following
word: w1 · 0(W+Wτ)(q2−q1). In that word, the last W +Wτ elements are all zeros while the
sum of the last W elements in w1 is at least 2RWε. Hence, there is no return value that is
correct for both w1 and w1 · 0(W+Wτ)(q2−q1). J

We are now ready to prove Theorem 3. The theorem says that for ε < 1/4, any
deterministic algorithm A that solves the (W, τ, ε)-Additive Summing problem requires
max

{
log(W/ε)−O(1),

⌈⌈
τ−1/2

⌉
log bτ/2ε+ 1c

⌉}
bits.

R. Ben-Basat, G. Einziger, and R. Friedman 34:7

Proof. Lemma 4 shows that A must use at least log(W/ε)−O(1) bits. Given x ∈ [RWτ],
we denote by rep(x) , 02Wτ−bx/Rc−1 · (x mod R) · Rbx/Rc a sequence of the following
form:

{
0Wτ+iσRWτ−i−1 | i ∈ [Wτ − 1], σ ∈ [R]

}
whose sum is x. We consider the following

languages:

LA2 , {rep(k · 2RWε) | k ∈ [bτ/2εc]} ; LA2 ,
{
w1 · w2 · · ·wdτ−1/2e | ∀i : wi ∈ LA2

}
.

Our goal is to show that no two words in LA2 have the same memory configuration.
Let S1, S2 ∈ LA2 so that S1 6= S2. Denote S1 , w1,1 · w2,1 · · ·wbτ−1/2c,1 and S2 , w1,2 ·
w2,2 · · ·wbτ−1/2c,2, while ∀i : wi,1, wi,2 ∈ LA2 . We denote χ , max {i | wi,1 6= wi,2} – the last
place in which S1 differs from S2.

Next, consider the following sequences: S∗1 = S1 · 02Wτ(χ−1/2) and S∗2 = S2 · 02Wτ(χ−1/2).
The last W + Wτ elements in S∗1 are wχ,1 · · ·wdτ−1/2e,1 · 02W (χ−1/2)τ and in S∗2 wχ,2 · · ·
wdτ−1/2e,2 · 02W (χ−1/2)τ . Additionally, the Wτ elements slack in both S∗1 and S∗2 are all
zeros. Now, since the sum of wχ,1 and wχ,2 must differ by at least 2RWε, no number can
approximate both with less than RWε error. J

3.3 (W, τ, ε)-Multiplicative Summing
In this section, we show lower bounds for multiplicative approximations of Slack Summing.
We start with Lemma 5, whose proof appears in the full version of this paper [5].

I Lemma 5. For ε < 1/4, any deterministic algorithm A for the (W, τ, ε)-Multiplicative
Summing problem requires at least log(W/ε) + log log (RWε)−O(1) memory bits.

To extend our multiplicative lower bound, we use the following fact:

I Fact 1. For any x 6= 1, y ∈ R, the sequence {ci}∞i=1, defined as cn ,

{
1 n = 1
x · cn−1 + y otherwise

can be represented using a closed form as cn = xn−1 + y · x
n−1
x−1 .

Next, let k ∈ N and ψ, ε ∈ R, such that ψ ≥ 2, ε > 0, k ≥ 1; consider the integer sequence

an,k ,

1 n = 1⌈
(1 + ε)

(
an−1,k +

∑k−1
i=1 ψ

i
)⌉

otherwise.

Using the fact above, we show the following lemma:

I Lemma 6. For every integer n ≥ 1 we have an,k ≤ 4ε−1(1 + ε)n+1ψk−1.

Proof. To apply Fact 1, we define an upper bounding sequence {bi,k}∞i=1 as follows:

bn,k ,

1 n = 1
(1 + ε)

(
bn−1,k +

∑k−1
i=1 ψ

i
)

+ 1 otherwise.

Thus, we can rewrite the n’th element of the sequence as:

bn,k = (1 + ε)n−1 + (1+ε)n−1
(1+ε)−1

(
(1 + ε)

∑k−1
i=1 ψ

i + 1
)
.

We can now use this representation to derive an upper bound of bn,k:

bn,k= (1 + ε)n−1 +
(

(1 + ε)
∑k−1
i=1 ψ

i + 1
)

(1+ε)n−1
(1+ε)−1

≤ (1 + ε)n−1 +
(
(1 + ε)2ψk−1) (1 + ε)n − 1

ε
≤ 4ε−1(1 + ε)n+1ψk−1.

Finally, since an,k ≤ bn,k for any n, k, we conclude that an,k ≤ 4ε−1(1 + ε)n+1ψk−1. J

MFCS 2018

34:8 Give Me Some Slack: Efficient Network Measurements

We now define the integer set Ik as Ik ,
{
an,k | an,k ≤ ψk

}
, and proceed to bound |Ik|.

I Lemma 7. For any k ≥ 1 we have |Ik| ≥ ε−1 ln (ψε/4)− 1.

Proof. Clearly, the cardinality of Ik is the largest n for which an,k ≤ ψk. According to
Lemma 6, we have that an,k ≤ 4ε−1(1 + ε)n+1ψk−1, and thus:

|Ik| = arg max
{
n | 4ε−1(1 + ε)n+1ψk−1 ≤ ψk

}
≥ log1+ε (ψε/4)− 1 = ln (ψε/4)

ln (1 + ε) − 1 ≥ ε−1 ln (ψε/4)− 1. J

We proceed with a stronger lower bound for non-constant τ values.

I Lemma 8. For 1
2 log(RW)−8 ≤ τ ≤ 1, any deterministic algorithm A that solves (W, τ, ε)-

Multiplicative Summing requires at least Ω
(
τ−1 (log (τ/ε) + log log (RW))

)
bits.

Proof. We use rep(x) , (x mod R) ·Rbx/Rc to denote a sequence in {σR∗ | σ ∈ [R]} that
has a sum of x. For an integer set Ik, we denote rep(Ik) , {rep(x) | x ∈ Ik}. We now choose
the value of ψ to be ψ , dτ−1/2e√RW/8; notice that ψ ≥ 2 as required. Next, consider:

LM,2 , 0W · 0Wτ · rep(Idτ−1/2e) · 0Wτ · rep(Idτ−1/2e−1) · · · 0Wτ · rep(I1)
=
{

0W · w1 · w2 · · ·wdτ−1/2e | ∀i : wi ∈
{

0Wτ · rep(x) | x ∈ Idτ−1/2e+1−i
}}

.

That is, every word in the LM,2 language consists of a concatenation of words w1, . . . , wdτ−1/2e,
such that every wi starts with Wτ zeros followed by a string representing an integer in
Idτ−1/2e+1−i, which is defined above. According to Lemma 7 we have that

log(|LM,2|) ≥ log
((
ε−1 ln (ψε/4)− 1

)dτ−1/2e
)

=
⌈
τ−1/2

⌉ (
log ε−1 + log log (ψε)−O(1)

)
= Ω

(
τ−1

(
log ε−1 + log log

(dτ−1/2e√RW/8 · ε)))
= Ω

(
τ−1

(
log ε−1 + log

(
log (RW/8)
dτ−1/2e + log ε

)))
= Ω

(
τ−1 (log (τ/ε) + log log (RW))

)
.

Next, we show that every two words in LM,2 must reach different memory configurations,
thereby implying a Ω

(
log
(
|LM,2|

))
bits lower bound. Let S1 6= S2 ∈ LM,2 such that

S1 = 0W · w1,1 · · ·wdτ−1/2e,1, S2 = 0W · w1,2 · · ·wdτ−1/2e,2, and ∀i ∈
{

1, . . . ,
⌈
τ−1/2

⌉}
j ∈

{1, 2} : wi,j ∈
{

0Wτ · rep(x) | x ∈ Idτ−1/2e+1−i
}
. We next assume by contradiction that S1

and S2 leads A to the same memory configuration. Let χ ∈
{

1, . . . ,
⌈
τ−1/2

⌉}
such that

wχ,1 6= wχ,2. Since A reaches an identical configuration after reading S1, S2, and as it is
deterministic, A must reach the same configuration when processing S1 · 02Wτ(χ−1/2) and
S2 ·02Wτ(χ−1/2). Next, observe that for every k ∈ {1, . . . ,

⌈
τ−1/2

⌉
}, the representation length

of any of its words is bounded by
⌈
ψk/R

⌉
. Thus, the length of a word in{

w1 · w2 · · ·wdτ−1/2e | ∀i : wi ∈
{

0Wτ · rep(x) | x ∈ Idτ−1/2e+1−i
}}

is at most

R. Ben-Basat, G. Einziger, and R. Friedman 34:9

dτ−1/2e∑
k=1

⌈
Wτ + ψk/R

⌉
≤
⌈
τ−1/2

⌉
(Wτ + 1) + 2ψdτ

−1/2e/R

=
⌈
τ−1/2

⌉
(Wτ + 1) + 2W/8 ≤ 3W/4 +

⌈
τ−1/2

⌉
+Wτ ≤ W +Wτ.

Now, since every word wi,j starts with a sequence of Wτ zeros, the slack size chosen by

the algorithm is irrelevant and the sums the algorithm must estimate are
∑dτ−1/2e
i=χ s(wi,1)

and
∑dτ−1/2e
i=χ s(wi,2), where s(wi,j) is simply the sum of the symbols in wi,j . Note that

s(wχ,1) and s(wχ,2) are integers in Idτ−1/2e+1−χ. We assume without loss of generality that
s(wχ,1) < s(wχ,2) (i.e., s(wχ,1) < s(wχ,2) ∈ Idτ−1/2e+1−χ). Finally, it follows that

dτ−1/2e∑
i=χ

s(wi,1) ≤ s(wχ,1) +
dτ−1/2e∑
i=χ+1

max(Idτ−1/2e+1−i) ≤ s(wχ,1) +
χ−1∑
k=1

ψk ≤ s(wχ,2)
1 + ε

,

where the last inequality follows from the definition of Idτ−1/2e+1−χ. Thus, no Ŝ value is
correct for both S1 · 02Wτ(χ−1/2) and S2 · 02Wτ(χ−1/2). J

Finally, we combine Lemma 5 and Lemma 8 to obtain the following lower bound:

I Theorem 9. For ε < 1/4, 1
2 log(RW)−8 ≤ τ ≤ 1, any deterministic algorithm for the

(W, τ, ε)-Multiplicative Summing problem requires at least

Ω
(

log(W/ε) + τ−1 (log (τ/ε) + log log (RW))
)
bits.

4 Upper Bounds

In this section, we introduce solutions for the Slack Summing problems. In general, all our
algorithms have a structure that consists of a subset of the following, where “rounding” has
a different meaning for the exact, additive and multiplicative variants:

Round the arriving item.
Add the item into a counter y and round the counter.
If a Wτ -sized block ends, store it as a compressed representation of y. Sometimes we
propagate the compression error to the following block; otherwise, we zero y.
Use the block values and y to construct an estimation for the sum.

A key idea in our additive and multiplicative algorithms is to introduce rounding errors
but maintain the accountability trail so that they do not snowball and exceed the desired
guarantees. In the additive algorithm, our double rounding technique asymptotically improves
over running 1/τ separate plain stream (insertion only) algorithm instances.

4.1 (W, τ)-Exact Summing
We divide the stream into Wτ -sized blocks and sum the number of arriving elements in each
block with a dlog (RWτ + 1)e bits counter. We maintain the sum of the current block in
a variable called y, c maintains the number of elements within the current block, and i is
the current block number. The variable b is a cyclic buffer of τ−1 blocks. Every Wτ steps,
we assign the value of y to the oldest block (bi) and increment i. Intuitively, we “forget” bi
when its block is no longer part of the window. To satisfy queries in constant time, we also
maintain the sum of all active counters in a dlog (RW (1 + τ) + 1)e-bits variable named B.
Algorithm 1 provides pseudocode for the described algorithm. We now analyze the memory
consumption of Algorithm 1.

MFCS 2018

34:10 Give Me Some Slack: Efficient Network Measurements

Algorithm 1 (W, τ)-Exact Summing Algorithm.
Initialization: y = 0, b = 0̄, B = 0, i = 0, c = 0.

1: function Update(x)
2: y ← y + x

3: c← (c+ 1) mod Wτ

4: if c = 0 then . End of block
5: B ← B − bi + y

6: bi ← y

7: y ← 0
8: i← (i+ 1) mod τ−1

9: function Output
10: return 〈B + y, c〉

I Theorem 10. Algorithm 1 uses (τ−1 + 1) dlog (RWτ + 1)e+ log
(
RW 2)+O(1) bits.

Proof. y takes dlog (RWτ + 1)e bits; B requires dlog (RW + 1)e; i adds
⌈
log τ−1⌉ bits, while

c needs dlogWτe bits. Finally, b is a τ−1-sized array of counters, each allocated with
dlog (RWτ + 1)e bits. Overall, it uses (τ−1 + 1) dlog (RWτ + 1)e+ log

(
RW 2)+ 4 bits. J

We conclude that Algorithm 1 is asymptotically optimal.

I Theorem 11. Let B , max
{⌊

log
(
RW 2)⌋ , ⌈⌈τ−1/2

⌉
log (RWτ + 1)

⌉}
be the (W, τ)-

Exact Summing lower bound of Theorem 2. Algorithm 1 uses at most B(4 + o(1))
memory bits.

Theorem 11 shows that Algorithm 1 is only x4 larger than the lower bound. In the full
version of this paper [5], we show that in some cases we can get considerably closer to the
lower bound.

Finally, in the full version of this paper [5] we show that Algorithm 1 is correct.

4.2 (W, τ, ε)-Additive Summing
We now show that additional memory savings can be obtained by combining slackness with
an additive error. First, we consider the case where τ ≤ 2ε. In [3], we proposed an algorithm
that sums over (exact) W elements window using the optimal Θ(ε−1 + logW) bits, with an
additive error of RWε. Next, notice that if an algorithm solves (W, τ, ε)-Additive Summing,
it also solves (W, τ, τ/2)-Additive Summing; hence, we can apply Theorem 3 to conclude
that it requires Ω(τ−1 + logW) = Ω(ε−1 + logW). Thus, we can run the algorithm from [3]
and remain asymptotically memory optimal with no slack at all!

Henceforth, we assume that τ > 2ε; we present an algorithm for the problem using a
2-stage rounding technique. When a new item arrives, we scale it by R and then round
the results to O(log ε−1) bits. As in Section 4.1, we break the stream into non-overlapping
blocks of size Wτ and compute the sum of each block separately. However, we now sum
the rounded values rather than the exact input, with a O(log Wτ

ε)-bits counter denoted y.
Once the block is completed, we round its sum such that it is represented with O(log τ

ε)
bits. Note that this second rounding is done for the entire block’s sum while we still have
the “exact” sum of rounded fractions. Thus, we propagate the second rounding error to the
following block. An illustration of our algorithm appears in Figure 3. Here, Roundυ(z) refers
to rounding a fractional number z ∈ [0, 1] into the closest number z̃ such that 2υ · z̃ ∈ N.
Algorithm 2 provides pseudo code for the algorithm, which uses the following variables:

R. Ben-Basat, G. Einziger, and R. Friedman 34:11

Figure 3 An illustration of our 2-stage rounding technique. Arriving elements are rounded to(⌈
log ε−1⌉+ 1

)
bits. We then sum the rounded fractions of each block and round the resulting sum

into
⌈
log τ

ε

⌉
bits. The second rounding error is propagated to the next block.

Algorithm 2 (W, τ, ε)-Additive Summing Algorithm.
Initialization: y = 0, b = 0, B = 0, i = 0, c = 0.

1: function Update(x)
2: x′ ← Roundυ1

(
x
R

)
. Round

(
x
R

)
such that x′ · 2υ1 ∈ N

3: y ← y + x′

4: c← (c+ 1) mod Wτ

5: if c = 0 then . End of block
6: B ← B − bi
7: bi ← Roundυ2 (y

Wτ
) . Replace the value for the block that has left the window.

8: B ← B + bi
9: y ← y −Wτ · bi
10: i← (i+ 1) mod τ−1

11: function Output
12: return 〈R · (Wτ ·B + y) , c〉

1. y - a fixed point variable that uses dlogWτe + 1 bits to store its integral part and
additional υ1 ,

⌈
log ε−1⌉+ 1 bits for storing the fractional part.

2. b - a cyclic array that contains τ−1 elements, each of which takes υ2 ,
⌈
log τ

ε

⌉
bits.

3. B - keeps the sum of elements in b and is represented using log
(
τ−1 ⌈log τ

ε

⌉
+ 1
)
bits.

4. i - the index variable used for tracking the oldest block in b.
5. c - a variable that keeps the offset within the Wτ sized block.

We now analyze the memory consumption of Algorithm 2.

I Theorem 12. Algorithm 2 uses τ−1 log
(
τ
ε

)
(1 + o(1)) + 2 log(W/ε) bits.

Proof. y requires log
(
Wτ
ε

)
+O(1) bits; b requires another τ−1 ⌈log

(
τ
ε

)⌉
; B takes additional

log
(
τ−1 ⌈log τ

ε

⌉
+ 1
)
bits; i adds

⌈
log τ−1⌉ bits, while and c is represented with dlogWτe

bits. Overall, the space requirement is τ−1 ⌈log
(
τ
ε

)⌉
(1 + o(1)) + 2 log(W/ε) bits. J

I Corollary 13. Let B , max
{

log(W/ε)−O(1),
⌈⌈
τ−1/2

⌉
log bτ/2ε+ 1c

⌉}
be the (W, τ, ε)-

Additive Summing space lower bound of Theorem 3, then Algorithm 2 uses B·(4 + o(1)) bits.

Finally, Theorem 14 shows that Algorithm 2 is correct. The proof is deferred to the full
version of this paper [5].

I Theorem 14. Algorithm 2 solves the (W, τ, ε)-Additive Summing problem.

MFCS 2018

34:12 Give Me Some Slack: Efficient Network Measurements

Algorithm 3 (W, τ, ε)-Multiplicative Summing Algorithm.
Initialization: y = 0, b = 0̄, B = 0, i = 0, c = 0.

1: function Update(x)
2: y ← y + x

3: c← (c+ 1) mod Wτ

4: if c = 0 then . End of block
5: ρ←

⌊
log(1+ε/2) y

⌋
. If y = 0 we use ρ = −∞ and (1 + ε/2)ρ = 0

6: B ← B −
(
(1 + ε/2)bi

)
↓

+ ((1 + ε/2)ρ)↓
7: bi ← ρ

8: y ← 0
9: i← (i+ 1) mod τ−1

10: function Output
11: return 〈B + y, c〉

4.3 (W, τ, ε)-Multiplicative Summing
In this section, we present Algorithm 3 that provides a (1 + ε) multiplicative approximation
of the Slack Summing problem. Compared to Algorithm 1, we achieve a space reduction
by representing each sum of Wτ elements using O(log log (RWτ) + log ε−1) bits. Specifically,
when a block ends, if its sum was y, we store ρ =

⌊
log(1+ε/2) y

⌋
(we allow a value of

−∞ for ρ if y = 0). To achieve O(1) Output, we also store an approximate window
sum B, which is now a fixed point fractional variable with O(logRW) bits for its integral
part and additional O(log ε−1) bits for storing a fraction. To update B’s value for a new
ρ, we round down the value of (1 + ε)ρ. Specifically, for a real number x, we denote
(x)↓ , bx · kc /k, for k ,

⌈ 4
ε

⌉
. Our pseudo code appears in Algorithm 3. The algorithm

requires O
(
τ−1 (log log (RWτ) + log ε−1) + logRW

)
bits of space and is memory optimal

when R = WO(1) and τ = Ω
(

1
logRW

)
.

The full analysis of Algorithm 3 is deferred to the full version of this paper [5]. Next, we
present an alternative (W, τ, ε)-Multiplicative Summing algorithm that achieves optimal
space consumption for τ = Θ(1), regardless of the value of R.

Improved (W, τ, ε)-Multiplicative Summing for for τ = Θ(1)

Algorithm 4 is more space efficient than Algorithm 3 but has a query time of O(τ−1). For
τ = Θ(1), Algorithm 4 is memory optimal and supports constant time queries even if
R = Wω(1); for this case, Algorithm 3 requires Ω(logR) bits which is sub optimal.

Intuitively, we shave the Ω (logR) bits from the space requirement of Algorithm 3 using
an approximate representation for our y variable and by not keeping the B variable that
allowed O(1) time queries regardless of the value of τ . To avoid using Ω (logR) bits in y,
we use a fixed point representation in which O(log ε−1 + log log (RWτ)) bits are allocated
for its integral part and another O(logWτ) for the fractional part. The goal of y is still
to approximate the sum of the elements within a block, but now we aim for the sum to
be approximately (1 + ε/3)y. Whenever a block ends, we store only the integral part of y
in our cyclic array b to save space. When queried, we compute an estimate for the sum
using all of the values in b, which makes our query procedure take O(log τ−1) time. To use
the fixed point structure of y, we use the operator (·)⇓ that rounds a real number x into
(x)⇓ , bx ·Wτc /Wτ . We denote log(1+ε/3) (0) = −∞, (−∞)⇓ = −∞, b−∞c = −∞ and
(1 + ε/3)−∞ = 0.

R. Ben-Basat, G. Einziger, and R. Friedman 34:13

Algorithm 4 (W, τ, ε)-Multiplicative Summing Algorithm for τ = Θ(1).
Initialization: y = −∞, b = 0̄, i = 0, c = 0.

1: function Update(x)
2: y ←

(
log(1+ε/3) (x+ (1 + ε/3)y)

)
⇓

3: c← (c+ 1) mod Wτ

4: if c = 0 then . End of block
5: bi ← byc
6: y ← −∞
7: i← (i+ 1) mod τ−1

8: function Output
9: return

〈
(1 + ε/3)y +

∑τ−1−1
i=0 (1 + ε/3)bi , c

〉

In the full version of this paper [5], we prove the following theorem:

I Theorem 15. For τ = Θ(1), Algorithm 4 processes elements and answers queries in O(1)
time, uses O(log(W/ε) + log logR) bits, and is asymptotically optimal.

4.4 The Mean of a Slack Window
For some applications there is value in knowing the mean of a slack window. For example, a
load balancer may be interested in the average transmission throughput. In exact windows,
the sum and the mean can be derived from each other as the window size is constant. In
slack windows, the window size changes but our algorithms also return the current slack
offset 0 ≤ c < Wτ . That is, by dividing Ŝ by W + c we get an estimation of the mean
(we assume that stream size is larger than W). Specifically, Algorithm 1 provides the exact
mean; Algorithm 2 approximates it with Rε additive error, while Algorithm 3 yields a (1 + ε)
multiplicative approximation.

5 Other Measurements over Slack Windows

We now explore the benefits of the slack model for other problems.

Maximum. While maintaining the maximum of a sliding window can be useful for ap-
plications such as anomaly detection [26, 21], tracking it over an exact window is often
infeasible. Specifically, any algorithms for a maximum over an (exact) window must use
Ω (W log (R/W)) bits [14]. The following theorem shows that we can get a much more
efficient algorithm for slack windows. The proof appears in the full version of this paper [5]
Observe the the following bounds match for τ values that are not too small (τ = RΩ(1)−1).

I Theorem 16. Tracking the maximum over a slack window deterministically requires
O
(
τ−1 logR

)
and Ω

(
τ−1 logRτ

)
bits.

Standard-Deviation. Building on the ability of our summing algorithms to provide the size
of the slack window that they approximate, we can compute standard deviations over slack
windows. Intuitively, the standard deviation of the window can be expressed as

σ
W

,

√∑
x∈W

(x−m
W

)2∣∣W ∣∣− 1
=

√∑
x∈W

x2 − 2m
W

∑
x∈W

x+W ·m2
W∣∣W ∣∣− 1

=

√∑
x∈W

x2 −W ·m2
W∣∣W ∣∣− 1
,

MFCS 2018

34:14 Give Me Some Slack: Efficient Network Measurements

there W is the slack window and mW is its mean. We can then use two slack summing
instances to track

∑
x∈W x2 and mW = |W |−1∑

x∈W x. This gives us an algorithm that
computes the exact standard deviation over slack windows using O(τ−1 log (RWτ)) space.
Similarly, by using approximate rather than exact summing solutions we can compute
a (1 + ε) multiplicative approximation for the standard deviation using O

(
τ−1(log ε−1 +

log log (RWτ)
)

+ logW
)
bits, or an Rε-additive approximation using O(τ−1 log

(
τ
ε

)
+ logW)

space. We expand on this further in the full version of this paper [5].

General-Summing. General-Summing is similar to Basic-Summing, except that the
integers can be in the range {−R, . . . , R}. That is, we now allow for negative elements as
well. Datar et al. [14] proved that General Sum requires Ω(W) bits, even for R = 1 and
constant factor approximation. In contrast, our exact summing algorithm from section 4.1
trivially generalizes to General-Summing and allows exact solution over slack windows.

Count-Distinct. Estimating the number of distinct elements in a stream is another useful
metric. In networking, the packet header is used to identify different flows, and it is useful
to know how many distinct of them are currently active. A sudden spike in the number of
active flows is often an indication of a threat to the network. It may indicate the propagation
of a worm or virus, port scans that are used to detect vulnerabilities in the system and even
Distributed Denial of Service (DDoS) attacks [12, 18, 20].

Here, we have studied the memory reduction that can be obtained by following a similar
flow to our summing algorithms – we break the stream into Wτ sized blocks and run the
state of the art approximation algorithm on each block separately. Luckily, count distinct
algorithms are mergable [1]. That is, we can merge the summaries for each block to obtain
an estimation of the number of distinct items in the union of the blocks. In the full version
of this paper [5], we show that this approach yields an algorithm with superior space and
query time compared to the state of the art algorithms for counting distinct elements over
sliding windows [11, 19]. Formally, we prove the following theorem.

I Theorem 17. For τ = Θ(1) and any fixed m > 0, there exists an algorithm that uses
O(m) space, performs updates in constant time and answers queries in time O(m), such that
the result approximates a window whose size is in [W,W (1 + τ)]; the resulting estimation
is asymptotically unbiased and has a standard deviation of σ = O(1√

m
). State of the art

approaches for exact windows [11, 19] require O(m log (W/m)) space and O(m log (W/m))
time per query for a similar standard deviation.

6 Discussion

In this work we have explored the slack window model for multiple streaming problems.
We have shown that it enables asymptotic space and time improvements. Particularly,
introducing slack enables logarithmic space exact algorithms for certain problems such as
Maximum and General-Summing. In contract, these problems do not admit sub-linear
space approximations in the exact window model. Even in problems that do have sub-linear
space approximations such as Standard-Deviation and Count-Distinct, adding slack
asymptotically improves the space requirement and allows for constant time updates.

Much of our work has focused on the classic Basic-Summing problem. Based on our
findings, we argue that allowing a slack in the window size is an attractive approximation axis
as it enables greater space reductions compared to an error in the sum. As an example, for a
fixed ε value, computing a (1 + ε)-multiplicative approximation requires Ω(log (RW) logW)

R. Ben-Basat, G. Einziger, and R. Friedman 34:15

space [14]. Conversely, a (1 + τ) multiplicative error in the window size, for a constant τ ,
allows summing using Θ(log (RW)) bits – same as in summing W elements without sliding
windows! Given that for exact windows randomized algorithms have the same asymptotic
complexity as deterministic ones [3, 14], we expect randomization to have limited benefits
for slack windows as well.

References
1 Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff Phillips, Zhewei Wei, and

Ke Yi. Mergeable summaries. In ACM PODS, 2012.
2 Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan Vaidyanathan, Kevin

Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong Pan, Navindra Yadav, and
George Varghese. Conga: Distributed congestion-aware load balancing for datacenters. In
ACM SIGCOMM 2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014,
ACM SIGCOMM 2014, 2014. doi:10.1145/2619239.2626316.

3 Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Efficient Summing over
Sliding Windows. In SWAT, 2016.

4 Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli, and Erez Waisbard.
Constant time updates in hierarchical heavy hitters. In ACM SIGCOMM, 2017.

5 R. Ben Basat, G. Einziger, and R. Friedman. Give Me Some Slack: Efficient Network
Measurements. ArXiv e-prints, 2018. arXiv:1703.01166.

6 Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Heavy hitters in streams
and sliding windows. In IEEE INFOCOM, 2016.

7 Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Optimal elephant flow
detection. In IEEE INFOCOM, 2017.

8 Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. Randomized admission
policy for efficient top-k and frequency estimation. In IEEE INFOCOM, 2017.

9 Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte: Fine grained
traffic engineering for data centers. In ACM CoNEXT, 2011.

10 Flavio Bonomi, Michael Mitzenmacher, Rina Panigrahy, Sushil Singh, and George Varghese.
An improved construction for counting bloom filters. In ESA, 2006.

11 Y. Chabchoub and G. Hebrail. Sliding hyperloglog: Estimating cardinality in a data stream
over a sliding window. In 2010 IEEE ICDM Workshops, 2010.

12 Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. In
ACM CSUR, 2007.

13 Min Chen and Shigang Chen. Counter tree: A scalable counter architecture for per-flow
traffic measurement. In IEEE ICNP, 2015.

14 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal of Computing, 2002.

15 G. Einziger and R. Friedman. TinyLFU: A highly efficient cache admission policy. In PDP
2014, 2014.

16 Gil Einziger, Benny Fellman, and Yaron Kassner. Independent counter estimation buckets.
In IEEE INFOCOM, 2015.

17 Gil Einziger and Roy Friedman. Counting with TinyTable: Every Bit Counts! In ICDCN
2016, 2016.

18 Cristian Estan, George Varghese, and Mike Fisk. Bitmap algorithms for counting active
flows on high speed links. In ACM IMC, 2003.

19 Éric Fusy and Frécéric Giroire. Estimating the number of active flows in a data stream
over a sliding window. In ANALCO, 2007.

MFCS 2018

http://dx.doi.org/10.1145/2619239.2626316
http://arxiv.org/abs/1703.01166

34:16 Give Me Some Slack: Efficient Network Measurements

20 Sumit Ganguly, Minos Garofalakis, Rajeev Rastogi, and Krishan Sabnani. Streaming al-
gorithms for robust, real-time detection of ddos attacks. In 27th IEEE International Con-
ference on Distributed Computing Systems (ICDCS 2007), June 25-29, 2007, Toronto,
Ontario, Canada, ICDCS, 2007.

21 Pedro Garcia-Teodoro, Jesús E. Díaz-Verdejo, Gabriel Maciá-Fernández, and E. Vázquez.
Anomaly-based network intrusion detection: Techniques, systems and challenges. Com-
puters and Security, 2009.

22 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In SPAA, 2002.

23 Nan Hua, Bill Lin, Jun (Jim) Xu, and Haiquan (Chuck) Zhao. Brick: A novel exact active
statistics counter architecture. In ACM/IEEE ANCS, 2008.

24 Abdul Kabbani, Mohammad Alizadeh, Masato Yasuda, Rong Pan, and Balaji Prabhakar.
Af-qcn: Approximate fairness with quantized congestion notification for multi-tenanted
data centers. In IEEE HOTI, 2010.

25 Yang Liu, Wenji Chen, and Yong Guan. Near-optimal approximate membership query over
time-decaying windows. In IEEE INFOCOM, 2013.

26 B. Mukherjee, L.T. Heberlein, and K.N. Levitt. Network intrusion detection. Network,
IEEE, 1994.

27 Moni Naor and Eylon Yogev. Sliding bloom filters. In ISAAC. Springer, 2013.
28 Erez Tsidon, Iddo Hanniel, and Isaac Keslassy. Estimators also need shared values to grow

together. In IEEE INFOCOM, 2012.
29 Hao Wang, H. Zhao, Bill Lin, and Jun Xu. Dram-based statistics counter array architecture

with performance guarantee. IEEE/ACM Transactions on Networking, 2012.
30 Li Yang, Wu Hao, Pan Tian, Dai Huichen, Lu Jianyuan, and Liu Bin. Case: Cache-assisted

stretchable estimator for high speed per-flow measurement. In IEEE INFOCOM, 2016.
31 L. Ying, R. Srikant, and X. Kang. The power of slightly more than one sample in random-

ized load balancing. In IEEE INFOCOM, 2015.

Spanning-Tree Games
Dan Hefetz1

Department of Computer Science, Ariel University, Israel

Orna Kupferman2

School of Computer Science and Engineering, The Hebrew University, Israel

Amir Lellouche
Department of Computer Science, Weizmann Institute of Science, Israel

Gal Vardi
School of Computer Science and Engineering, The Hebrew University, Israel

Abstract
We introduce and study a game variant of the classical spanning-tree problem. Our spanning-tree
game is played between two players, min and max, who alternate turns in jointly constructing a
spanning tree of a given connected weighted graph G. Starting with the empty graph, in each
turn a player chooses an edge that does not close a cycle in the forest that has been generated so
far and adds it to that forest. The game ends when the chosen edges form a spanning tree in G.
The goal of min is to minimize the weight of the resulting spanning tree and the goal of max is
to maximize it. A strategy for a player is a function that maps each forest in G to an edge that
is not yet in the forest and does not close a cycle.

We show that while in the classical setting a greedy approach is optimal, the game setting is
more complicated: greedy strategies, namely ones that choose in each turn the lightest (min) or
heaviest (max) legal edge, are not necessarily optimal, and calculating their values is NP-hard.
We study the approximation ratio of greedy strategies. We show that while a greedy strategy for
min guarantees nothing, the performance of a greedy strategy for max is satisfactory: it guar-
antees that the weight of the generated spanning tree is at least w(MST (G))

2 , where w(MST (G))
is the weight of a maximum spanning tree in G, and its approximation ratio with respect to an
optimal strategy for max is 1.5 + 1

w(MST (G)) , assuming weights in [0, 1]. We also show that these
bounds are tight. Moreover, in a stochastic setting, where weights for the complete graph Kn

are chosen at random from [0, 1], the expected performance of greedy strategies is asymptotically
optimal. Finally, we study some variants of the game and study an extension of our results to
games on general matroids.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Algorithms, Games, Minimum/maximum spanning tree, Greedy algo-
rithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.35

Related Version A full version of the paper is available at http://www.cs.huji.ac.il/~ornak/
publications/mfcs18a.pdf.

Acknowledgements We thank Yuval Peled for helpful discussions.

1 The research leading to this paper was done when the author was visiting the Hebrew University.
2 The research leading to this paper has received funding from the European Research Council under the

European Union’s Seventh Framework Programme (FP7/2007-2013).

© Dan Hefetz, Orna Kupferman, Amir Lellouche, and Gal Vardi;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 35; pp. 35:1–35:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.35
http://www.cs.huji.ac.il/~ornak/publications/mfcs18a.pdf
http://www.cs.huji.ac.il/~ornak/publications/mfcs18a.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Spanning-Tree Games

(a) (b) (c) (d)

Figure 1 A weighted graph (a), its maximal spanning tree (b), and the outcomes of an optimal
strategy (c) and a greedy one (d).

1 Introduction

The fundamental minimum (respectively, maximum) spanning tree problem receives as an
input a connected edge-weighted undirected graph and searches for a spanning tree, namely
an acyclic subgraph that connects all vertices, with a minimum (respectively, maximum)
weight. The problem can be solved efficiently [19, 26]. It has attracted much attention, has
led to a lot of research on algorithms, and has many applications [28, 10, 14].

We introduce and study a natural game variant of the classical problem. Our spanning-tree
game is played between two players, min and max, who alternate turns in jointly constructing
a spanning tree of a given connected weighted graph G = 〈V,E,w〉. Starting with the empty
graph, in each turn a player chooses an edge that does not close a cycle in the forest that has
been generated so far and adds it to that forest. The game ends when the chosen edges form
a spanning tree in G, that is, after |V | − 1 turns. The goal of min is to minimize the weight
of the resulting spanning tree and the goal of max is to maximize it. A strategy for a player
is a function that maps each forest in G to one of its legal moves, namely, it maps a forest
F ⊆ E to an edge e ∈ E \ F such that F ∪ {e} is also a forest. Given two strategies πmax
and πmin, we define the outcome of πmax and πmin as the spanning tree obtained when max
and min follow πmax and πmin, respectively, in a turn-based game in which max moves first.
The value of a strategy πmax of max is the minimum over all strategies π′min of min of the
weight of the spanning tree that is the outcome of the game in which max follows πmax and
min follows π′min. Then, an optimal strategy for max is a strategy with a maximum value.
Thus, an optimal strategy for max is one that obtains the maximal value against the most
hostile behavior (intuitively, the “most minimizing” strategy) of min. The value of a strategy
for min is defined dually. In particular, an optimal strategy for min is one that obtains the
minimal value against the “most maximizing” strategy for max. In this paper we focus on
values of strategies of max. Indeed, unless we bound the ratio between the weights of the
heaviest and lightest edges in the graph, we cannot bound the “damage” that max can cause
min, namely the ratio between the performance of min strategies and the minimum spanning
tree, making the study of the game setting from the viewpoint of min less interesting.

I Example 1. Consider the weighted graph G appearing in Figure 1 (a). The weight of
G’s (unique, in this example) maximum spanning tree is 33 (see (b)). An optimal strategy
for max chooses in its first two moves the edges with weights 5 and 4, leading, against an
optimal strategy of min, to the spanning tree of weight 31 appearing in (c).

The transition from the classical one-player setting of the spanning-tree problem to a
two-player setting corresponds to a transition from closed systems, which are completely under
our control, to open systems, in which we have to contend with adversarial environments.
Such a transition has been studied in computer science in logic [8, 27], complexity [6], and

D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:3

temporal reasoning [23], and it attracts growing attention now in algorithmic game theory,
cf. [24]. Our work here studies this transition in graph theory. For the basic problem of
reachability, the two-player setting has given rise to alternating graph reachability [8]. We find
it very interesting to study how other basic problems and concepts in graph algorithms evolve
when we shift to a two-player setting [20]. Several graph games of this type were previously
studied. For example, consider the general setting in which max and min alternately claim
edges of a graph G while making sure the graph they build together satisfies some monotone
decreasing property. The Turán numbers and Saturation numbers refer to the number of
edges that can be claimed while the property is maintained [13, 17]. Likewise, researchers
have studied the game chromatic number of G, namely the smallest k for which min has a
strategy to color all vertices in a game in which max and min alternately properly color the
vertices of G using the colors {1, . . . , k} [1]. Finally, a game variant of the maximum-flow
problem, where the algorithm can direct the flow only in a subset of the vertices is studied in
[21].

Before we continue to describe our results, let us survey several games that have been
studied and are based on minimum or maximum spanning trees. In the cooperative minimum
cost spanning tree game [7, 2], the cost allocation between users of a minimum spanning
tree is considered. Different properties of this cooperative game have been studied, such as
the core and the nucleolus [15, 16], the Shapley value [18], and more [11]. The Stackelberg
minimum spanning tree game [4, 5] is a one-round two-player network pricing game. The
game is played on a graph, whose edges are colored either red or blue, with the red edges
having a given fixed cost. The first player chooses an assignment of prices to the blue edges,
and the second player then buys the cheapest possible minimum spanning tree, using any
combination of red and blue edges. The goal of the first player is to maximize the total
price of purchased blue edges. Shannon’s switching game is another related two-player game.
Two players take turns coloring the edges of an arbitrary graph. One player has the goal of
connecting two distinguished vertices by a path of edges of her color. The other player aims
to prevent this by using her color instead (or, equivalently, by erasing edges) [22, 3].

The classical maximum spanning-tree problem can be solved efficiently. Indeed, the
forests embodied in a graph induce a matroid [25], and thus a greedy approach is optimal.
Accordingly, in Kruskal’s algorithm [19] for the maximum spanning-tree problem, the edges
are chosen in a greedy manner, where in each step an edge with a maximum weight that
does not close a cycle is added.

We study greedy strategies in the spanning-tree game. There, max always chooses an
edge with a maximum weight that does not close a cycle. We first show that the game
setting is indeed more complicated. First, greedy strategies are not necessarily optimal. For
example, in the graph from Example 1, a greedy strategy for max chooses in its first three
moves the edges with weight 8, 7, and 6, leading to the spanning tree of weight 27 appearing
in Figure 1 (d). In addition, we show that given a strategy for max, it is NP-complete to
calculate its value, and NP-hardness holds already for greedy strategies. Subsequently, we
turn to study how well greedy strategies for max perform. We evaluate them with respect
to the value of the maximum spanning tree, and with respect to the value of an optimal
strategy for max. We analyze both the general and stochastic settings. We view our findings
in both evaluations as good news. Indeed, greedy strategies for max ensure surprisingly tight
approximations in all cases.

It is not hard to see that the value of any greedy strategy for max is at least half the
weight of a maximum spanning tree. Indeed, the tree generated by such a strategy includes at
least the heavier half of the set of edges that are chosen by a greedy algorithm in the classical

MFCS 2018

35:4 Spanning-Tree Games

setting. Much harder is the study of the approximation ratio of a greedy strategy for max
with respect to an optimal strategy for her. We show that when the weight of the maximum
spanning tree tends to infinity, the approximation ratio tends to 1.5. More formally, assuming
that the weights are normalized to values in [0, 1] (note that such a normalization does not
affect the ratio between the values of different strategies), we show an approximation ratio of
1.5 + 1

w(MST (G)) , where w(MST (G)) is the weight of a maximum spanning tree of G. We
show that our results are tight: for every odd integer n ≥ 1, there exists a weighted graph
G = 〈V,E,w〉 with w(MST (G)) = 2n, such that the value of the greedy strategy for max is
n, whereas the value of an optimal strategy is dn2 e+ n. Thus, the ratio between the maximal
spanning tree and the value of the greedy strategy is 2, and the ratio between the values of
the optimal and the greedy strategies is 1.5 + 1

w(MST (G)) . We also show that, unlike the case
of greedy strategies of max, one cannot bound the approximation ratio of greedy strategies
of min. As we elaborate in Section 7, since the set of forests that are subgraphs of a given
graph form the family of independent sets of a matroid, many of our results go beyond the
spanning-tree problem and apply to matroids in a game setting.

We then study the approximation ratio of greedy strategies for max in a stochastic setting.
Namely, we study the game played on complete graphs whose edge-weights are chosen by a
uniform distribution over [0, 1]. Building on results of [12] regarding the weight of maximum
and minimum spanning trees in such randomly weighted graphs, we are able to show that,
in this setting, the approximation ratio of any greedy max strategy is asymptotically almost
surely (a.a.s., for brevity) 1. Thus, while in the worst case the approximation ratio is 2 with
respect to a maximum spanning tree and it tends to 1.5 with respect to an optimal strategy,
it is a.a.s. 1 when we choose the edge-weights uniformly at random.

Finally, we study two variants of the setting. First, a finer definition of an approximation
ratio, where performance of a strategy for max is examined with respect to all strategies of
min, and second, a two-turn variant of the game, where max first chooses a forest of size k,
for a parameter k of the game, and then min completes the forest to a spanning tree.

2 Preliminaries

2.1 Graphs and Weighted Graphs

An undirected graph is a pair G = 〈V,E〉, where V is a finite set and E is a set of pairs of
elements of V . We refer to the elements of V as vertices and to the elements of E as edges.
A graph may contain parallel edges. A path in G is a sequence of vertices v1, v2, . . . , vk such
that 〈vi, vi+1〉 ∈ E for all 1 ≤ i < k. A cycle in G is a path v1, v2, . . . , vk for which v1 = vk.
A graph G = 〈V,E〉 is connected if for every two vertices v, v′ ∈ V , there is a path between
v and v′ in G. A tree is a connected graph with no cycles. A forest is a graph with no cycles,
namely a collection of trees. A spanning tree of G is a tree 〈V, T 〉, for a subset T ⊆ E. Note
that the size of a spanning tree is n− 1. When the set V of vertices is clear from the context,
we describe trees and forests by their sets of edges only.

A weighted graph G = 〈V,E,w〉 augments a graph with a weight function w : E → R+.
We extend w to subsets of E in the expected way, i.e., w : 2E → R+ is such that for all
A ⊆ E, we have w(A) =

∑
e∈A w(e). In the maximum spanning tree problem, we are given a

weighted graph G and seek a spanning tree for G of a maximum weight. Note that G may
have several maximum spanning trees. By abuse of notation, we use MST (G) to denote any
maximum spanning tree of G.

D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:5

2.2 Matroids

A finite matroid M is a pair 〈E, I〉, where E is a finite set (called the ground set) and I
is a family of subsets of E (called the independent sets) that satisfies the following three
properties: (1) I is not empty, (2) The hereditary property: If X ∈ I and Y ⊆ X, then
Y ∈ I, and (3) The independent set exchange property: If X and Y are in I and |X| > |Y |,
then there is an element x ∈ X \ Y such that Y ∪ {x} is in I.

For a graph G = 〈V,E〉, let FG be the set of forests in G. The pair 〈E,FG〉 is a matroid
and is called the cycle matroid of G (see, e.g., [25]).

2.3 The Spanning-Tree Game

We consider a game variant of the maximum spanning tree problem: there are two players,
max and min, who alternate turns in jointly constructing a spanning tree of a given weighted
graph. Starting with the empty graph, in each turn, a player chooses an edge that does not
close a cycle in the forest that has been generated so far and adds it to that forest. The
game ends when the chosen edges are forming a spanning tree, that is, after n− 1 turns. The
goal of min is to minimize the weight of the resulting spanning tree and the goal of max is
to maximize it. Formally, we have the following.

Let G = 〈V,E,w〉 be a weighted graph, and let FG be the set of all forests F ⊆ E. A
configuration in the spanning-tree game is a forest F ∈ FG. Let M : FG → 2E be a function
that maps a configuration F to the set of all legal moves for a player when the game is in F .
Formally, M(F) = {e ∈ E \ F : the graph 〈V, F ∪ {e}〉 has no cycles}.

A strategy for a player is a function π : FG → E that maps each configuration to one of
its legal moves. Thus, for all F ∈ FG, we have π(F) ∈M(F). If M(F) = ∅ (that is, when F
is already a spanning tree), then π(F) is undefined.3 Given two strategies πmax and πmin, we
define the outcome of πmax and πmin, denoted T (πmax, πmin), as the spanning tree obtained
when max and min follow πmax and πmin, respectively, in a turn-based game in which max
moves first. Formally, T (πmax, πmin) = {e1, . . . , en−1} is such that for all 1 ≤ i ≤ n− 1, the
following holds.

ei =
[
πmax({e1, e2, . . . , ei−1}) if i is odd,
πmin({e1, e2, . . . , ei−1}) if i is even.

We use w(πmax, πmin) to denote the weight of T (πmax, πmin). Thus, w(πmax, πmin) =
w(T (πmax, πmin)).

We refer to a strategy for max as a max strategy and to a strategy for min as a min
strategy. Note that max moves when the current configuration has an even number of edges,
and min moves when the configuration has an odd number of edges. Let FevenG and FoddG

be the subsets of FG that contain forests of even and odd sizes, respectively. Let Πmax

and Πmin be the set of all possible strategies for the max and min players, respectively.
By the above, Πmax contains strategies πmax : FevenG → E and Πmin contains strategies

3 We could have defined π to return a special signal, say ⊥, in this case, but we ignore it and assume that
the game ends after n− 1 rounds, so there is no need to apply a strategy from configurations that are
spanning trees.

MFCS 2018

35:6 Spanning-Tree Games

πmin : FoddG → E.4 We evaluate a max strategy πmax by its performance against a best (that
is, most minimizing) min strategy. Formally, we define the value of a max strategy by

valmax(πmax) = min{w(πmax, πmin) : πmin ∈ Πmin}.

Since the number of strategies is finite, the above expression always has a minimum and is
thus well defined. Dually, we evaluate a min strategy πmin by its performance against a best
(that is, most maximizing) max strategy. Formally, we define the value of a min strategy
by valmin(πmin) = max{w(πmax, πmin) : πmax ∈ Πmax}. Our study here focuses on max
strategies. Essentially, our choice follows from the fact that, unlike the case of max strategies,
one cannot bound the ratio between the outcome of an optimal or a greedy min strategy
and the minimum spanning tree. Intuitively, it follows from the fact that the performance
of strategies is strongly related to our ability to guarantee a favorable outcome even if we
can control only half of the choices. Such a control guarantees that max can add to the
spanning tree at least half of the heaviest edges in a maximum spanning tree. Such a control
also guarantees that min can add to the spanning tree at least half of the lightest edges in
a minimum spanning tree. Without, however, a bound on the ratio between the heaviest
and lightest edge, such a guarantee is not of much help. In the full version, we motivate this
choice further and present some results on min strategies.

The following lemma is an easy useful observation on the amount of control max and
min have on the outcome of the game.

I Lemma 2. Let G = 〈V,E,w〉 be a weighted graph and let F be a forest of G. Then, max
has a strategy to ensure that the outcome includes at least d|F |/2e edges of F , and min has
a strategy to ensure that the outcome includes at least b|F |/2c edges of F .

Proof. We prove our claim for min; the proof for max is analogous. It suffices to show that,
in each of his first b|F |/2c moves, min can claim an edge of F . For every 1 ≤ i ≤ b|F |/2c, let
e1, . . . , e2i−1 denote the edges claimed by both players up until min’s i-th move. In his i-th
move, min claims an arbitrary edge e2i ∈ F \ {e1, . . . , e2i−1} such that {e1, . . . , e2i−1, e2i}
spans a forest. Such an edge e2i exists since |F | > 2i− 1 = |{e1, . . . , e2i−1}| and both F and
{e1, . . . , e2i−1} are forests of G, i.e., independent sets in its cycle matroid. J

2.4 Optimal and Greedy Strategies
We define the following strategies:

An optimal max strategy is a strategy π∗max ∈ Πmax such that for every strategy πmax ∈
Πmax, we have valmax(π∗max) ≥ valmax(πmax). Such a strategy necessarily exists as the
number of max strategies is finite.
Similarly, π∗min ∈ Πmin is an optimal min strategy, if for every strategy πmin ∈ Πmin, we
have valmin(π∗min) ≤ valmin(πmin).
A strategy gmax ∈ Πmax is a greedy strategy for max if for every configuration F ∈ FevenG ,
it holds that gmax(F) is a heaviest edge in M(F). Formally, for every configuration
F ∈ FevenG , we have gmax(F) ∈ {e ∈M(F) : w(e) = max{w(e′) : e′ ∈M(F)}}.

4 Formally, by our definition of a strategy, every strategy for max and every strategy for min should have
a well-defined legal move for every configuration in FG. We have chosen to restrict the definition of
such strategies only to the configurations they might actually encounter during play. For completeness,
one can define them for all the remaining configurations arbitrarily or, again, by using the symbol ⊥.
Also, note that strategies are positional, in the sense they ignore the way in which configurations have
been obtained. It is easy to see that memoryfull strategies are not stronger in the spanning-tree game.

D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:7

I Remark. There may be several optimal and greedy strategies but, from now on, for
each weighted graph G we define π∗min, π∗max, and gmax as one of the strategies that satisfy
the corresponding conditions and, sometimes, write “the optimal min strategy” or “the
greedy max strategy”. Moreover, when evaluating the performance of a greedy strategy,
we consider the worst case. That is, the value of a greedy strategy is min{valmax(gmax) :
gmax is a greedy strategy in Πmax}.

2.5 On the Complexity of Evaluating Strategies for MAX

Recall that the maximum spanning-tree problem can be solved in polynomial time. A
possible way of computing π∗min and π∗max is by solving a Minmax problem, which requires
exponential time. We show here that the game setting is indeed more complex than the
classical one-player setting. In fact, even evaluating the value of a symbolically given max
strategy is co-NP-complete, and the co-NP lower bound holds also for greedy strategies.

I Theorem 3. Let πmax be a max strategy given by a linear ordering e1, . . . , e|E| of the edges
in E, where πmax chooses in each step the edge ej with the minimal index j for which ej is
a legal move. Let k be an integer. Deciding whether valmax(πmax) > k is co-NP-complete.
Furthermore, it is co-NP-hard already when πmax is a worst greedy strategy for max, that is,
a greedy strategy with the lowest value.

Proof. First, if valmax(πmax) ≤ k then there is a polynomial witness that includes the edges
that min chooses in each turn, such that the weight of the outcome is at most k. Hence the
membership in co-NP.

We now show the lower bound. Let G = 〈V,E〉 be a graph, let S ⊆ V , and let k be an
integer. The Steiner-tree problem, namely, deciding whether there is a tree of size at most
k in G that spans S, is NP-hard. We show a reduction from the Steiner tree problem. We
construct a weighted graph G′ = 〈V ′, E′, w′〉 as follows. Let u0 be a vertex in V . The set V ′
is obtained from V by adding k new vertices, namely V ′ = V ∪ {u1, . . . , uk}. The set E′ is
obtained from E by adding the edges {〈ui, ui+1〉 : 0 ≤ i < k} ∪ (S × S), where parallel edges
are allowed. That is, an edge e ∈ S × S is added even if it already appears in E. For every
e ∈ E we define w′(e) = 0, and for every new edge e ∈ E′ \E we define w′(e) = 1. Let πmax
be a max strategy in which max first chooses edges in {〈ui, ui+1〉 : 0 ≤ i < k}, and when it
is not possible anymore she chooses edges in S × S, and when it is not possible anymore she
chooses edges in E. We prove that there is a tree in G that spans S and has size at most k
iff valmax(πmax) ≤ k. Assume that there is a tree in G that spans S and has size at most k.
We denote this tree by T . Then, while max chooses edges in {〈ui, ui+1〉 : 0 ≤ i < k}, min
can choose all the edges of T and thus ensure that max will not be able to choose edges in
S × S later. Since the edges {〈ui, ui+1〉 : 0 ≤ i < k} appear in every spanning tree, the value
of πmax is k.

Assume now that there is no tree in G that spans S and has size at most k. Thus, after
all the edges in {〈ui, ui+1〉 : 0 ≤ i < k} are chosen, there are still edges in S × S that max
can choose, and therefore the value of πmax is strictly larger than k.

Finally, note that the strategy πmax is a worst greedy strategy for max, and hence the
problem is co-NP-hard already for this case. J

MFCS 2018

35:8 Spanning-Tree Games

G1

1 1

0

1

G2

1

1

1

1

0 0

1

· · · Gn

1
1

1
1

1
1

1
1

0 0

0 0

. . .

1

Figure 2 A sequence of weighted graphs G1, G2, . . . such that Gn satisfies n = valmax(gmax) =
valmax(π∗

max) = 1
2 · w(MST (Gn)).

3 The Performance of Optimal and Greedy Strategies w.r.t. the
Maximum Spanning Tree

In the game setting, max has a chance to choose only half of the edges in the spanning
tree. It is thus not surprising that the outcome of an optimal strategy may be only half of
the weight of an MST. Below we formalize this intuition, and show that the half-ratio may
be obtained already by a greedy strategy (Theorem 4) and that this upper bound is tight
(Theorem 5).

I Theorem 4. For every weighted graph G, we have that valmax(gmax) ≥ 1
2 · w(MST (G)).

Proof. Let G = 〈V,E,w〉, and let 〈e1, . . . , en−1〉 be a vector of the edges of some maximum
spanning tree of G, where w(ei) ≥ w(ei+1) for every 1 ≤ i < n− 1. Consider the game on G
in which max plays according to gmax and min plays according to some strategy πmin. For
every 1 ≤ j ≤ d(n− 1)/2e, let xj denote the edge of G that max chooses in her j-th move.
For every 1 ≤ j ≤ b(n− 1)/2c, let yj denote the edge of G that min chooses in his j-th move.
Our goal is to prove that
d(n−1)/2e∑

j=1
w(xj) +

b(n−1)/2c∑
j=1

w(yj) ≥
1
2 ·

n−1∑
j=1

w(ej).

We prove that, in fact, already
∑d(n−1)/2e
j=1 w(xj) ≥ 1

2 ·
∑n−1
j=1 w(ej). Since all edge-weights

are non-negative, this implies our goal.
To see this, consider an integer 0 ≤ k < (n− 1)/2. Note that |{x1, . . . xk, y1, . . . , yk}| =

2k < 2k + 1 = |{e1, . . . , e2k+1}|. Since, moreover, {x1, . . . xk, y1, . . . , yk} and {e1, . . . , e2k+1}
are independent sets of a matroid (namely, the cycle matroid of G), there exists some
edge e ∈ {e1, . . . , e2k+1} ∩M({x1, . . . xk, y1, . . . , yk}). Since max plays according to the
greedy strategy, it must be that w(xk+1) ≥ w(e) ≥ w(e2k+1). Hence,

∑d(n−1)/2e
j=1 w(xj) ≥∑d(n−1)/2e−1

j=0 w(e2j+1) ≥ 1
2 ·
∑n−1
j=1 w(ej), and the statement follows. J

I Theorem 5. For every n ≥ 1, there is a weighted graph Gn such that n = valmax(π∗max) =
1
2 · w(MST (Gn)). In fact, for Gn we also have valmax(gmax) = n.

Proof. See the weighted graphs G1, G2, . . . in Figure 2. Note that MST (Gn) includes all
the edges with weight 1, and that min can ensure that all the edges with weight 0 are chosen.

J

4 The Performance of Greedy Strategies w.r.t. Optimal Ones

In this section we study the performance of the greedy max strategy in comparison to
the optimal max strategy. We first define formally what it means for two strategies to
approximate each other.

D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:9

Figure 3 valmax(gmax) = 1 whereas valmax(π∗
max) = 2.

4.1 Approximating Strategies
Given a weighted graph G = 〈V,E,w〉, consider two max strategies πmax, π′max ∈ Πmax and
a factor α ≥ 1. We say that πmax is an α-max-approximation of π′max if

valmax(πmax) ≥ 1/α · valmax(π′max).

That is, intuitively, π′max is at most α times better than πmax, where, in both cases, we
assume that min follows an optimal min strategy.

The max competitive ratio of a strategy πmax ∈ Πmax is then the smallest factor α such
that πmax is an α-max approximation of π∗max. Namely, valmax(π∗max)

valmax(πmax) .
I Remark (Universal Approximation). We could have defined strategy approximations in
a different way, by stating that πmax is an α-max-approximation of π′max if for every
strategy πmin ∈ Πmin, we have that w(πmax, πmin) ≥ 1

α · w(π′max, πmin). We refer to
such an approximation as α-max universal approximation. Intuitively, while in α-max-
approximation the performance of the two max strategies is examined with respect to optimal
(possibly different from each other) min strategies, in α-max universal approximation the
performance is examined with respect to every min strategy – the same min strategy against
both max strategies. In the full version, we show that α-max universal approximation is
strictly finer than α-max approximation. That is, for all πmax, π′max ∈ Πmax and α ≥ 1, if
πmax is an α-max universal approximation of π′max, then πmax is an α-max approximation
of π′max, yet possibly πmax is an α-max approximation of π′max but it is not an α-max
universal approximation of π′max. Moreover, working with a max universal approximation,
the competitive ratio of the greedy strategy with respect to the optimal strategy is 2, higher
than the ratio we prove in Theorem 7, when working with a max approximation.

4.2 The Competitive Ratio of Greedy Max Strategies
We turn to study the max competitive ratio of the greedy strategy. For convenience, we
assume that the weight function w is normalized so that max{w(e) : e ∈ E} = 1. It is easy
to see that such a normalization is always possible and does not change the ratio of the
weights of any two spanning trees.

I Theorem 6. The max competitive ratio of the greedy strategy is 2.

Proof. We first prove that gmax is a 2-max approximation. By Theorem 4, we have 2 ·
valmax(gmax) ≥ w(MST (G)). In addition, as no max strategy can perform better than
the weight of a maximum spanning tree, we have that w(MST (G)) ≥ valmax(πmax) for all
πmax ∈ Πmax. Hence, valmax(gmax) ≥ 1

2 · valmax(πmax) for all πmax ∈ Πmax, and we are
done.

Next, in order to prove that the factor 2 is tight, consider the graph in Figure 3. It is
easy to see that while an optimal max strategy would choose first the parallel edge with
weight 1, leading to a spanning tree of weight 2, a greedy strategy may choose first the edge
on the right, leading to a spanning tree of weight 1. J

MFCS 2018

35:10 Spanning-Tree Games

4.3 A Tighter Analysis
While showing tightness in the general case, the lower-bound proof in Theorem 6 is based on
a graph with a maximum spanning tree of a very small weight. In this section we show that
gmax approximates π∗max better when w(MST (G)) is large.

I Theorem 7. Let G = 〈V,E,w〉 be a weighted graph, and assume that the weights in
G are normalized such that the maximum weight of an edge in E is 1. Then, gmax is a
1.5 + 1

w(MST (G)) -max-approximation of π∗max.

Proof. We start with a brief description of the main idea of the proof. Let 〈e1, . . . , en−1〉 be
the edges claimed by max and min in this order when max follows a greedy strategy gmax
and min follows a strategy πmin that is optimal against gmax. Using the fact that gmax is a
greedy strategy, we will show that min has a strategy π′min such that, when pitted against an
optimal strategy π∗max of max (in fact, against any max strategy), it ensures that the weight
of the resulting spanning tree is at most (1.5 + 1/w(MST (G))) ·

∑n−1
i=1 w(ei). Note that π′min

might not be an optimal min strategy, but this only makes the proven result stronger. The
heart of the argument is that as long as max can claim high (in comparison to what she
claimed when she followed gmax) weight edges, min can claim quite a few low (in comparison
to what he claimed when he followed πmin) weight edges.

We proceed to the formal proof. Let πmin ∈ Πmin be a min strategy for which
valmax(gmax) = w(gmax, πmin). Let 〈e1, . . . , en−1〉 be a vector of edges of T (gmax, πmin),
where, for every 1 ≤ i ≤ n−1, if i is odd, then ei is chosen by max in her ((i+ 1)/2)-th move,
and if i is even, then ei is chosen by min in his (i/2)-th move. Let Eodd = {e1, e3, . . . , eb},
where b = n− 1− (n mod 2), be the edges chosen by max, and let Eeven = {e2, e4, . . . , ea},
where a = n− 2 + (n mod 2), be the edges chosen by min. Let d1 > . . . > dk be the distinct
weights of the edges in Eodd, and let t1, . . . , tk be positive integers such that Eodd contains
exactly ti edges of weight di for every 1 ≤ i ≤ k. Let t′0 = 0 and, for every 1 ≤ i ≤ k, let
t′i = t′i−1 + 2ti. Thus, t′i =

∑i
j=1 2tj . Note that, for every 1 ≤ i ≤ k, the edges of Eodd

whose weight is di are {et′
i−1+1, et′

i−1+3, . . . , et′
i
−1}. For example, w(e1) = w(e3) = . . . =

w(e2t1−1) = d1, and w(e2t1+1) = w(e2t1+3) = . . . = w(e2t1+2t2−1) = d2. Since the weights in
G are normalized so that the maximum weight of an edge in G is 1 and since gmax is greedy,
we have that d1 = 1.

We argue that min has a strategy π′min with which he can ensure that, by deviating from
the greedy strategy gmax, max does not greatly improve the weight of the tree she builds with
him. We define the strategy π′min as follows. Consider a forest Fm = {e′1, e′2, . . . , e′m} ∈ FoddG ,
where m < bn−1

2 c. Let 0 ≤ i < k be the unique integer for which t′i
2 ≤ m <

t′i+1
2 . Then,

π′min(Fm) is an arbitrary edge in M(Fm) ∩ {e2, e4, . . . , et′
i+1
}; by definition, this is a legal

move. Moreover, by the independent set exchange property of the cycle matroid of G, such an
edge exists. For example, if m < t1, then π′min(Fm) is an arbitrary edge of {e2, e4, . . . , e2t1}
that was not chosen earlier and does not close a cycle with Fm.

Since valmax(π∗max) ≤ w(π∗max, π′min), it suffices to prove that w(π∗max,π
′
min)

valmax(gmax) ≤ 1.5 +
1

w(MST (G)) . For an integer t, let V t1 , . . . , V tst
be the vertex sets of the connected components

induced by the forest {e1, . . . , et}. Let Et denote the set of edges of G that are contained
in some connected component of {e1, . . . , et}, that is, 〈u, v〉 ∈ Et if and only if there exists
some 1 ≤ i ≤ st such that u, v ∈ V ti . Note that every forest in G contains at most∑st

j=1(|V tj | − 1) = t edges of Et.
Let E′ = {e′1, . . . , e′n−1} denote the edge set of T (π∗max, π′min). Note that by the descrip-

tion of the strategy π′min, for every 1 ≤ i < k, the forest {e′1, e′2, . . . , e′t′
i
/2} contains at least

b t
′
i/2
2 c edges from Et

′
i ∩ Eeven. Since E′ ∩ Et′i contains at most t′i edges, it follows that

D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:11

E′ ∩ Et′i contains at most t′i − b
t′i/2

2 c = d1.5 · t
′
i

2 e edges from E \ Eeven. Note that for every
edge e 6∈ Et′i , we have that w(e) ≤ di+1. Indeed, otherwise max would have chosen et′

i
+1

such that w(et′
i
+1) > di+1. Hence, E′ \ Eeven contains at most 1.5 · t

′
i

2 + 0.5 edges from
{e ∈ E : w(e) > di+1}.

We now show that E′ \Eeven contains at most 1.5 · t
′
k

2 + 0.5 edges. Assume first that n− 1
is even and thus t′k = n− 1. The forest {e′1, e′2, . . . , e′t′

k
/2} contains at least

⌊
t′k/2

2

⌋
edges from

Eeven. Since E′ contains t′k edges, it follows that E′ contains at most t′k − b
t′k/2

2 c = d1.5 · t
′
k

2 e
edges from E \ Eeven. Hence, E′ \ Eeven contains at most 1.5 · t

′
k

2 + 0.5 edges. Now, assume
that n− 1 is odd and thus t′k = n. Note that E′ contains at least b b

n−1
2 c
2 c = b 0.5n−1

2 c edges
from Eeven. Therefore, the size of E′ \Eeven is at most n−1−b 0.5n−1

2 c = dn−1− 0.5n−1
2 e =

d 3n
4 − 0.5e ≤ d 3n

4 e = d1.5 · t
′
k

2 e ≤ 1.5 · t
′
k

2 + 0.5.
Since for every 1 ≤ i < k the forest E′ \ Eeven contains at most 1.5 · t

′
i

2 + 0.5 edges from
{e ∈ E : w(e) > di+1}, and since E′\Eeven contains at most 1.5 · t

′
k

2 +0.5 edges, then the total
weight of E′ \Eeven is at most d1(1.5 · t

′
1
2 +0.5)+

∑k
i=2 di · [(1.5 ·

t′i
2 +0.5)− (1.5 · t

′
i−1
2 +0.5)] =

d1(1.5t1 + 0.5) +
∑k
i=2 di · (1.5ti) = 0.5d1 +

∑k
i=1 1.5tidi.

We are now ready to bound w(π∗max,π
′
min)

valmax(gmax) from above.

w(π∗max, π′min)
valmax(gmax) = w(E′)

w(Eeven) +
∑k
i=1 tidi

≤ w(Eeven) + w(E′ \ Eeven)
w(Eeven) +

∑k
i=1 tidi

≤
w(Eeven) + 0.5d1 +

∑k
i=1 1.5tidi

w(Eeven) +
∑k
i=1 tidi

=
w(Eeven) +

∑k
i=1 tidi +

∑k
i=1 0.5tidi + 0.5d1

w(Eeven) +
∑k
i=1 tidi

≤ 1 +
∑k
i=1 0.5tidi + 0.5d1∑k

i=1 tidi
= 1.5 + 0.5d1∑k

i=1 tidi
≤ 1.5 + 0.5

0.5 · w(MST (G))

= 1.5 + 1
w(MST (G)) .

The last inequality follows from the fact
∑k
i=1 tidi ≥ 0.5·w(MST (G)) (see proof of Theorem 4)

and d1 = 1. J

The following theorem asserts that the approximation ratio given in Theorem 7 is tight.

I Theorem 8. Let n ≥ 1 be an odd integer. There exists a weighted graph Gn with
w(MST (Gn)) = 2n and with a maximum edge weight of 1, such that valmax(π∗max)

valmax(gmax) =
1.5 + 1

w(MST (G)) .

Proof. We define Gn = 〈V,E,w〉 as follows. First, let V = V1 ∪ V2, where V1 = {v0, v1, . . . ,

vn} and V2 = {v0, u1, . . . , un}. Note that the vertex v0 appears in both V1 and V2. Then, let
E = E1 ∪ E2 where E1 = {〈vi, vi+1〉 : 0 ≤ i ≤ n− 1} and E2 ⊆ V2 × V2 is the disjoint union
of two spanning trees T0 and T1 on the vertices of V2. It is not hard to see that such two
spanning trees always exist. For n ≤ 2, one needs parallel edges, as in G1, which appears in
Figure 3. For n ≥ 3, the graph Gn appears in Figure 4, where the edges in T1 are solid, and
these in T0 are dashed.

For every edge e ∈ E1 ∪ T1 we have w(e) = 1 and for every edge e ∈ T0 we have w(e) = 0.
The edges in E1 must be contained in every spanning tree of Gn. Therefore, if m edges from
T1 are chosen during the game for some m ≤ n, then the outcome of the game is m + n.

MFCS 2018

35:12 Spanning-Tree Games

Figure 4 The graph Gn with valmax(π∗max)
valmax(gmax) = 1.5 + 1

w(MST (Gn)) .

Thus, an optimal strategy π∗max is to have as many edges from T1 as possible. Hence, by
Lemma 2 we have valmax(π∗max) = dn2 e+ n. In the strategy gmax, max chooses only the n
edges in E1, and hence valmax(gmax) = n.

Since n is odd, we have valmax(π∗max)
valmax(gmax) = dn

2 e+n
n =

n
2 +0.5+n

n = 1.5+ 1
2n = 1.5+ 1

w(MST (Gn)) . J

5 A Stochastic Setting

The weighted graphs {Gn : n ∈ N} depicted in Figure 2 form an infinite family of games in
which gmax is an optimal strategy for max. In this section we prove that gmax is not far
from being optimal in a very natural and general case.

I Theorem 9. Consider the weighted graph G = 〈V,E,w〉, where V = [n], E =
([n]

2
)
, and

{w(e) : e ∈ E} are independent random variables, each having a uniform distribution over
[0, 1]. Then, asymptotically almost surely (a.a.s., for brevity)

lim
n→∞

valmax(gmax)
valmax(π∗max) = 1.

The main ingredient in our proof of Theorem 9 is the following result, which is an
immediate corollary of the main result of [12] (see also [9] and the many references therein).

I Theorem 10. For n ≥ 1, consider the complete graph with n vertices Kn, and let
{Xe : e ∈ E(Kn)} be independent random variables, each having a uniform distribution over
[0, 1]. Let Ym (respectively, YM) denote the weight of a minimum (respectively, maximum)
spanning tree. Then
(a) limn→∞ Pr(Ym ≤ 1.21) = 1.
(b) limn→∞ Pr(YM ≥ n− 2.21) = 1.

Proof of Theorem 9. It readily follows from Theorem 4 and Part (b) of Theorem 10 that
a.a.s. valmax(gmax) ≥ (n− 2.21)/2. Let T be a spanning tree with weight at most 1.21; such
a tree exists a.a.s. by Part (a) of Theorem 10. It follows by Lemma 2 that min has a strategy
to ensure that the tree he builds with max contains at least b|T |/2c = b(n − 1)/2c edges
of T . The weight of the tree they build is thus at most 1.21 + d(n− 1)/2e ≤ (n+ 2.42)/2.
Hence, a.a.s.

lim
n→∞

valmax(gmax)
valmax(π∗max) ≥ lim

n→∞

(n− 2.21)/2
(n+ 2.42)/2 = 1

as claimed. J

D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:13

6 A Two-Turn Variant of the Spanning-Tree Game

In this section we study a variant of the game in which the players alternate turns only once.
Formally, we have the following. A game is a pair 〈G, k〉, where G = 〈V,E,w〉 is a weighted
graph with n vertices and 1 ≤ k ≤ n− 1 is an integer. In a game on 〈G, k〉, first max chooses
a forest F ⊆ E of size k. Then, min complements F to a spanning tree of G by choosing
n− 1− k edges. max wants to maximize the weight of the resulting spanning tree and min
aims to minimize it. Let gmax ⊆ E be a strategy for max in which she chooses a forest of
size k with a maximum weight, that is, max chooses a forest in a greedy manner. Note
that while we still use the notation which was introduced in Subsection 2.4 (e.g., gmax), the
definition of a strategy is different in this setting. A strategy πmax of max is simply the edge
set of some forest of G of size k. Similarly, a strategy πmin for min is a function that, given
a forest F of size k, returns a forest F ′ of size n− 1− k such that F ∪ F ′ is a spanning tree.

I Theorem 11. Let 〈G, k〉 be a game, where G = 〈V,E,w〉 and |V | = n.
Then, valmax(gmax) ≥ k

n−1 · w(MST (G)).

Proof. Let T = {e1, . . . , en−1}, where w(e1) ≥ . . . ≥ w(en−1), be an MST obtained by
complementing gmax in a greedy manner. That is, gmax = {e1, . . . , ek}. Note that for every
k < i ≤ n− 1 we have w(ei) ≤ w(ek). Therefore, w(MST (G)) = w(T) = w({e1, . . . , ek}) +
w({ek+1, . . . , en−1}) ≤ w(gmax) + (n − k − 1) · w(ek). Since w(ek) ≤ 1

k · w(gmax), we have
w(MST (G)) ≤ w(gmax)+(n−k−1) · 1

k ·w(gmax) = n−1
k ·w(gmax) ≤ n−1

k ·valmax(gmax). J

I Theorem 12. Let 〈G, k〉 be a game, where G = 〈V,E,w〉 and |V | = n. Then, gmax is a
2-max-approximation.

Proof. Let πmin be a strategy for which valmax(gmax) = w(gmax, πmin) and let T =
T (gmax, πmin). Let π∗max be an optimal strategy for max. Consider the strategy π′min
of min in which π∗max is complemented to a spanning tree as follows. Since |π∗max| =
k and |T | = n − 1, min can choose n − 1 − k edges from T due to the independent
set exchange property of the cycle matroid of G. For such a strategy π′min, we have
valmax(π∗max) ≤ w(π∗max, π′min) ≤ w(π∗max) + w(T). Since gmax is a forest of maximum
weight among all forests of G with k edges, it follows that w(π∗max) ≤ w(gmax), and thus
valmax(π∗max) ≤ w(gmax) + w(T) ≤ 2 · w(T) = 2 · valmax(gmax). J

The following result is a straightforward consequence of Theorems 11 and 12.

I Corollary 13. Let 〈G, k〉 be a game, where G = 〈V,E,w〉 and |V | = n. Then, gmax is a
min{2, n−1

k }-max-approximation.

In the following theorem we show that the approximation ratio in Corollary 13 is tight.

I Theorem 14. Let n > 1 and 1 ≤ k ≤ n− 1 be integers. There exists a game 〈G, k〉, where
G = 〈V,E,w〉 and |V | = n, such that valmax(π∗max)

valmax(gmax) = min{2, n−1
k }, where π

∗
max is an optimal

strategy for max in G.

Proof. Let V = V1 ∪ V2, where V1 = {v0, v1, . . . , vk} and V2 = {v0, u1, . . . , un−1−k}. Note
that the vertex v0 appears in both V1 and V2. Let E = E1 ∪ E2, where E1 = {〈vi, vi+1〉 :
0 ≤ i ≤ k − 1} and E2 = E(T0) ∪ E(T1), where T0 and T1 are edge-disjoint spanning trees
of G[V2] (we allow parallel edges in E2). For every edge e ∈ E1 ∪ T1 we set w(e) = 1 and
for every edge e ∈ T0 we set w(e) = 0. Note that if max chooses m edges in T1 for some
m ≤ n− 1− k, then min can choose n− 1− k −m edges in T0 due to the independent set

MFCS 2018

35:14 Spanning-Tree Games

exchange property of the cycle matroid of G. The edges of E1 must be contained in every
spanning tree of G. Therefore, if max chooses m edges from T1, then the outcome of the
game is m+ k. Thus, the optimal strategy π∗max contains as many edges from T1 as possible,
namely, min{k, n− 1− k} edges from T1. The strategy gmax contains the k edges in E1, and
therefore valmax(gmax) = k.

If k ≤ n−1
2 then π∗max contains k edges from T1 and hence we have valmax(π∗max)

valmax(gmax) = 2k
k =

2 = min{2, n−1
k }. If k >

n−1
2 then π∗max contains n− 1− k edges from T1 and hence we have

valmax(π∗max)
valmax(gmax) = n−1

k = min{2, n−1
k }. J

7 Discussion

We studied a game variant of the classic maximum spanning-tree problem. Both the classic
problem and our spanning-tree game can be generalized in a straightforward way to all
matroids. In the game setting, given a weighted matroid M = 〈E, I, w〉, max and min
alternate turns in claiming elements of E while ensuring that the set of elements claimed so
far by both players is in I. The game is over as soon as the set of claimed elements is a basis
B of M . max aims to maximize the total weight of B and min aims to minimize it. It is
not hard to show that all of our results (with the exception of Theorem 9, which deals only
with weighted complete graphs) apply in this more general setting. The only non-trivial
generalization is that of one specific point in the proof of Theorem 7, which we explain below.

When defining Et, instead of relying on the connected components of the forest {e1, . . . , et},
one can use the rank function5 r of the matroid. That is, Et = {e ∈ E : r({e}∪{e1, . . . , et}) =
r({e1, . . . , et})}. It then readily follows from the definitions of r and of Et that |B ∩Et| ≤ t
holds for every B ∈ I.

The graph depicted in Figure 3, which is used to show that, in general, the competitive
ratio of greedy strategies is 2, contains parallel edges. One then wonders whether the
competitive ratio of greedy strategies is better than 2 under the assumption that the graph on
which the game is played is simple. At the moment we only know that this ratio is between
5/3 and 2. One can also consider graphs that are not only simple, but have a large girth6.
The intuition behind this is that, in order to prevent max from claiming a certain edge,
min must ensure that claiming it closes a cycle, and this seems harder if all cycles are long.
Moreover, when the girth is 2, i.e., there are parallel edges, we know that the competitive
ratio is 2. On the other hand, when the game is played on a tree, i.e., the girth is infinite,
the competitive ratio is trivially 1. This shows that increasing the girth does decrease (in
some way) the competitive ratio of greedy strategies from 2 to 1.

Finally, our game is a special case of the so-called biased game, in which max claims p
edges per turn and then min claims q edges per turn, where p and q are positive7 integers that
are allowed to grow with n. It would be interesting to study how changing the parameters p
and q would affect our results.

5 The rank function of a matroid M = 〈E, I〉 is a mapping r : 2E → N that maps each subset A of E to
the size of a largest independent set it contains; i.e., r(A) = max{|B| : B ⊆ A,B ∈ I}.

6 The girth of a graph G is the length of a shortest cycle in G. If G is a forest, then its girth is defined to
be ∞.

7 In fact, by allowing p = 0 (respectively, q = 0) we get the original minimum (resp., maximum) spanning
tree problem for which greedy strategies are optimal regardless of the value of q (resp., p).

D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:15

References
1 T. Bartnicki, J. A. Grytczuk, H. A. Kierstead, and X. Zhu. The map coloring game.

American Mathematical Monthly, 114:793–803, 2007.
2 C.G. Bird. On cost allocation for a spanning tree: a game theoretic approach. Networks,

6(4):335–350, 1976.
3 J. Bruno and L. Weinberg. A constructive graph-theoretic solution of the shannon switching

game. IEEE Transactions on Circuit Theory, 17(1):74–81, 1970.
4 J. Cardinal, E.D. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, and O. Wei-

mann. The stackelberg minimum spanning tree game. Algorithmica, 59(2):129–144, 2011.
5 J. Cardinal, E.D. Demaine, S. Fiorini, G. Joret, I. Newman, and O. Weimann. The stack-

elberg minimum spanning tree game on planar and bounded-treewidth graphs. Journal of
combinatorial optimization, 25(1):19–46, 2013.

6 A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association
for Computing Machinery, 28(1):114–133, 1981.

7 A. Claus and D. J. Kleitman. Cost allocation in networks: The bulk supplier problem.
Networks, 4(1):1–17, 1974.

8 S.A. Cook. Path systems and language recognition. In Proc. 2nd ACM Symp. on Theory
of Computing, pages 70–72, 1970.

9 C. Cooper, A. Frieze, N. Ince, S. Janson, and J. Spencer. On the length of a random
minimum spanning tree. Combinatorics, Probability and Computing, 25:89–107, 2016.

10 T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press and
McGraw-Hill, 1990.

11 B. Dutta and A. Kar. Cost monotonicity, consistency and minimum cost spanning tree
games. Games and Economic Behavior, 48(2):223–248, 2004.

12 A. M. Frieze. On the value of a random minimum spanning tree problem. Discrete Applied
Mathematics, 10:47–56, 1985.

13 Z. Füredi, D. Reimer, and A. Seress. Triangle-free game and extremal graph problems.
Congressus Numerantium, 82:123–128, 1991.

14 R.L Graham and P. Hell. On the history of the minimum spanning tree problem. Annals
of the History of Computing, 7(1):43–57, 1985.

15 D. Granot and G. Huberman. Minimum cost spanning tree games. Mathematical program-
ming, 21(1):1–18, 1981.

16 D. Granot and G. Huberman. On the core and nucleolus of minimum cost spanning tree
games. Mathematical programming, 29(3):323–347, 1984.

17 D. Hefetz, M. Krivelevich, A. Naor, and M. Stojaković. On saturation games. European
Journal of Combinatorics, 41:315–335, 2016.

18 A. Kar. Axiomatization of the shapley value on minimum cost spanning tree games. Games
and Economic Behavior, 38(2):265–277, 2002.

19 J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

20 O. Kupferman. Examining classical graph-theory problems from the viewpoint of formal-
verification methods. In Proc. 49th ACM Symp. on Theory of Computing, page 6, 2017.

21 O. Kupferman, G. Vardi, and M.Y. Vardi. Flow games. In Proc. 37th Conf. on Foundations
of Software Technology and Theoretical Computer Science, 2017, to appear.

22 A. Lehman. A solution of the shannon switching game. Journal of the Society for Industrial
and Applied Mathematics, 12(4):687–725, 1964.

23 O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proc. 12th ACM Symp. on Principles of Programming Languages,
pages 97–107, 1985.

MFCS 2018

35:16 Spanning-Tree Games

24 N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani. Algorithmic Game Theory.
Cambridge University Press, 2007.

25 J. Oxley. Matroid Theory, 2nd edition. Oxford University Press, 2011.
26 R.C. Prim. Shortest connection networks and some generalizations. Bell Labs Technical

Journal, 36(6):1389–1401, 1957.
27 L.J. Stockmeyer. On the combinational complexity of certain symmetric boolean functions.

Mathematical Systems Theory, 10:323–336, 1977.
28 R.E. Tarjan. Data structures and network algorithms. SIAM, 1983.

Faster Exploration of Degree-Bounded Temporal
Graphs
Thomas Erlebach
Department of Informatics, University of Leicester, Leicester, England
te17@leicester.ac.uk

https://orcid.org/0000-0002-4470-5868

Jakob T. Spooner
Department of Informatics, University of Leicester, Leicester, England
jts21@leicester.ac.uk

https://orcid.org/0000-0003-3816-6308

Abstract
A temporal graph can be viewed as a sequence of static graphs indexed by discrete time steps. The
vertex set of each graph in the sequence remains the same; however, the edge sets are allowed to
differ. A natural problem on temporal graphs is the Temporal Exploration problem (TEXP):
given, as input, a temporal graph G of order n, we are tasked with computing an exploration
schedule (i.e., a temporal walk that visits all vertices in G), such that the time step at which the
walk arrives at the last unvisited vertex is minimised (we refer to this time step as the arrival
time). It can be easily shown that general temporal graphs admit exploration schedules with
arrival time no greater than O(n2). Moreover, it has been shown previously that there exists
an infinite family of temporal graphs for which any exploration schedule has arrival time Ω(n2),
making these bounds tight for general TEXP instances. We consider restricted instances of
TEXP, in which the temporal graph given as input is, in every time step, of maximum degree d;
we show an O(n2

logn) bound on the arrival time when d is constant, and an O(d log d · n2

logn) bound
when d is given as some function of n.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases temporal graph exploration, algorithmic graph theory, NP-complete
problem

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.36

1 Introduction

A natural generalisation of the static, undirected graph is one by which a notion of time is
introduced to the edge set. Such a generalisation provides a flexible tool for the modelling of
problems/scenarios of a dynamic nature; particularly those which incorporate some temporal
aspect into their structure. Informally, a temporal graph can be viewed as a graph whose
edges are allowed to change over time. Time, herein, refers to an interval comprised of
discrete time steps; the model we consider sees a temporal graph as an ordered sequence of
static graphs indexed by the steps in this time interval (we call the number of steps contained
in the interval the lifetime of the graph). In each graph of the sequence, the edge set may
differ, whilst the vertex set remains constant. Additionally, we require that the edges that
appear in each time step originate from some pre-specified static graph, which we call the
underlying graph. It is this potential for the edges connecting the vertices in the graph to
change over time that allows us to model problems, scenarios and systems in which the
relationships between entities can evolve. Various “dynamic graph” models exist; they, and
the problems defined on them, have been explored in a number of other studies. For an

© Thomas Erlebach and Jakob T. Spooner;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 36; pp. 36:1–36:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:te17@leicester.ac.uk
https://orcid.org/0000-0002-4470-5868
mailto:jts21@leicester.ac.uk
https://orcid.org/0000-0003-3816-6308
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Faster Exploration of Degree-Bounded Temporal Graphs

overview we refer the reader to [9] and [4]. Since the addition of an element of dynamicity
fundamentally makes temporal graphs different from their static predecessors, it is clear that
the development of new techniques for their analysis (and for the analysis of problems defined
upon them) is required. In this paper, we take an algorithmic standpoint, and consider a
restricted case of the problem of computing a walk around a temporal graph that visits all
vertices by the earliest time step possible.

1.1 Contribution
This paper considers the problem of Temporal Exploration, or TEXP (defined originally
in [10] by Michail and Spirakis), which asks that, given a temporal graph G, we compute an
exploration schedule (i.e., a walk visiting each vertex in G at least once) such that the time
step at which the last unvisited vertex is reached is minimal amongst all possible schedules
(we call this time step the arrival time). In [10], Michail and Spirakis gave an O(dn) upper
bound on the arrival time of exploration schedules for arbitrary temporal graphs, where d is
the dynamic diameter of the graph. Erlebach et al. [5] observed that, in general temporal
graphs that are connected in every step, d can be at most n− 1, implying an O(n2) bound on
arrival times in the worst case. Moreover, they provide an explicit construction of an infinite
family of graphs for which any exploration schedule has arrival time Ω(n2), making these
bounds tight for general instances of TEXP. We note that this construction is, as far as we
are aware, the only one that has been shown to require this many steps for exploration; this,
coupled with the fact that all graphs within this family contain a vertex of high degree (n−1)
in each time step, motivates our examination of the problem when restricted to instances in
which the temporal graph is of maximum degree d in every time step. Further, provided in
[5] is a construction of a degree-bounded family of graphs (with planar underlying graphs),
such that each graph in the family is of maximum degree 2 in every time step. They prove
Ω(n log n) arrival times of any exploration schedule for any graph in this family. No better
bound than the general O(n2) bound is known for the arrival time of exploration schedules
for degree-bounded temporal graphs. We make the first step towards narrowing this large
gap by showing that, for any graph contained within the class of degree-bounded temporal
graphs, one can guarantee that there exists an exploration schedule, W , such that the arrival
time of W is O(d log d · n2

logn) when d is given as some function of n, and O(n2

logn) when d is
constant.

1.2 Related work
A number of previous studies have considered how standard results, problems and definitions
are affected when viewed in the context of a variety of dynamic graph models. For example,
it was found by Berman in [1] that the vertex variant of Menger’s theorem does not hold
when applied to a particular model of dynamic graphs (termed scheduled networks), in which
each edge is assigned both an arrival and departure time. On the other hand, Kempe et
al. showed in [7] that, under this same model, there is a class of temporal graphs for which
the vertex variant of Menger’s theorem does hold – they show this by means of a forbidden
minor characterisation.

As well as their previously mentioned results, Kempe et al. [7] showed that it is NP-
complete to decide whether or not there exist two vertex-disjoint, time-respecting paths (i.e.,
each edge in the path is traversed during a time step that is strictly greater than the previous
edge) between a given source and sink. Under a similar model, Bui-Xuan et al. [3] consider
the problems of computing an s-t path in a temporal graph that is shortest (minimal number

T. Erlebach and J. T. Spooner 36:3

of edges), foremost (arrives at t at the earliest possible time step) or fastest (the time spent
between traversing the first and last edges in the path is minimal), showing that there are a
number of natural path parameters one might wish to optimise when considering dynamic
graphs.

In [8], Mertzios et al. consider a temporal graph model in which each edge, e, is labelled
with the set of time steps during which e appears in the graph. They specify a polynomial-
time algorithm for the problem of computing a foremost path between two given vertices,
and, complementing the work in [1] and [7], present a temporal analogue of Menger’s theorem
which holds for general graphs adhering to their model.

Brodén et al. [2] study a temporal analogue of the TSP problem, in which the graph is
a complete graph in every step, and a cost belonging to the set {1, 2} is assigned to each
edge; additionally, these costs can change in each time step. They assume that the costs of
the edges can change at most k times over the course of the graph’s lifetime, and manage to
provide a polynomial-time approximation algorithm with approximation ratio 2 − 2

3k . In
[10], Michail and Spirakis also considered this model, showing the general problem to be
APX -hard, whilst improving on the results of [2] with a (1.7 + ε)-approximation algorithm.

Under the same model as [8], Michail and Spirakis [10] formally introduced the problem
of Temporal Exploration, showing that the general problem of deciding whether a
temporal graph admits any valid exploration schedule is NP-complete if the graph is not
assumed to be connected in each time step. They suggested making the assumption that
the graph is connected in every step. Erlebach et al. [5] further studied the TEXP problem
under this assumption. In addition to their previously mentioned results, they obtained an
O(n1−ε)-inapproximability result, for any ε > 0, ruling out the possibility of any constant-
factor approximation algorithms. Additionally, they considered the problem of TEXP when
the input graph is subject to various structural restrictions: amongst other things, they
proved O(n) arrival times for temporal graphs in which the underlying graph is a cycle;
O(n1.5k2 log n) arrival times for underlying graphs of treewidth k; and O(n log3 n) arrival
times for underlying graphs that are 2× n grids. From a different angle, they also considered
a model in which the edges of the graph are present in each step with a particular probability,
or appear with a certain regularity.

In [6], Fluschnik et al. considered the NP-hard problem of Temporal (s, z)-Separation,
in which we are are asked to separate two vertices, s and z, in a given temporal graph, by
removing from it a minimal number of vertices. Similarly to [5], they showed that there are a
number of restricted graph classes for which Temporal (s, z)-Separation becomes easier,
and a number for which the problem remains hard to solve; for example they showed that
the problem becomes fixed-parameter tractable when parameterised by k + l, where k is the
size of a solution, and l is the longest temporal path in the input graph. Negatively, they
showed that for graphs in which at most one edge is present in every time step, the problem
remains NP-hard.

2 Preliminaries

In this section, we introduce those definitions key to formulating the general problem of
Temporal Exploration.

I Definition 1 (Temporal graph). We represent a temporal graph, G, with underlying graph,
G = (V,E), using an ordered sequence of static graphs: G = 〈G1, G2, ..., Gτ 〉. Further, we let
the set V (G) = V and |V | = n. The subscripts i ∈ {1, 2, ..., τ} indexing the graphs in the

MFCS 2018

36:4 Faster Exploration of Degree-Bounded Temporal Graphs

sequence are the discrete time steps 1 to τ , where τ is known as the lifetime of G. Each Gi
represents the structure of G in time step i. More precisely, Gi = (V,Ei) is a subgraph of G;
in particular, V (Gi) = V (G), Ei ⊆ E, for all 1 ≤ i ≤ τ .

I Definition 2 (Temporal walk). A temporal walk W through a temporal graph G is given
as an alternating sequence of vertices and edge-time pairs,

W = v0, (e0, i0), v1, (e1, i1), v2, ..., vk−1, (ek−1, ik−1), vk,

that starts at vertex v0 and ends at vertex vk. Additionally, we require that i0 < i1 <

... < ik−1, so that an agent following W can traverse at most one edge per time step. Each
edge-time pair, (ej , ij), denotes the traversal of edge ej = {vj , vj+1} at timestep ij . For such
a traversal to be possible, ej must be present in graph Gij , i.e. ej ∈ Eij . We say that a walk,
W , departs at time i0 = δ(W) and arrives at time ik−1 + 1 = α(W), and may refer to the
time steps δ(W) and α(W) as the departure and arrival times of W , respectively. Finally,
let t0 ≤ δ(W) be an arbitrary time step, and assume that an agent waits at vertex v0 for
δ(W)− t0 time steps before traversing edge e0; we refer to the difference, |W | = α(W)− t0,
as the duration of W .

The following result is implied by Lemma 1 in [5]. It provides an upper bound on the
number of time steps it might take to reach one vertex from another in a temporal graph
that is connected in every time step.

I Lemma 3 (Erlebach, Hoffmann and Kammer [5]). Let G be a temporal graph with vertex
set V , and assume G is connected in each step. Then an agent situated at any vertex u ∈ V
at any time t ≤ τ − n can reach any other vertex v ∈ V in at most |V | − 1 = n − 1 steps,
i.e., by time step t+ n− 1.

I Definition 4 (Exploration schedule). We say that a walk, W , is an exploration schedule if,
for all v ∈ V (G), there exists some vi ∈W such that v = vi. Additionally, W is said to be
foremost if it reaches the n-th unique vertex v ∈ V (G) at time α(W), and if there exists no
other temporal walk W ′, such that α(W ′) < α(W).

I Definition 5 (Temporal walk concatenation). We define two temporal walks, W and W ′,
to be compatible under concatenation if the departure time of W ′ is greater than or equal
to the arrival time of W (i.e., δ(W ′) ≥ α(W)), and W ′ departs from the same vertex at
which W arrives. The result of their concatenation is the walk obtained by following W ,
then following W ′ directly after.

I Problem (Temporal Exploration). An instance of the general Temporal Explor-
ation (TEXP) problem is given as a pair (G, s), where G = 〈G1, G2, ..., Gτ 〉 is an arbitrary
temporal graph with lifetime τ ≥ |V (G)|2 = n2 (in order to ensure that there exist feasible
solutions for any instance), and s ∈ V (G) is a start vertex. The problem then asks for a
temporal walk, W , such that W is an exploration schedule, W is foremost, and W departs
from vertex s. We make the additional assumption that the graph is connected in each step;
without this it could happen that there exists no valid exploration schedule.

We note that since (as part of any instance of the TEXP problem) we are given a temporal
graph, G = 〈G1, G2, ..., Gτ 〉, any candidate algorithm for the problem knows, in advance,
the structure of the graph in each step of its lifetime (and therefore knows the dynamic
structure of the temporal graph’s edge set in advance). The following section introduces
those definitions specific to the proof of our main result.

T. Erlebach and J. T. Spooner 36:5

3 Exploring degree-bounded temporal graphs

We now turn our attention to restricted instances of the Temporal Exploration problem,
in which the input graph is of bounded degree in each time step. We proceed by introducing
those definitions central to the proof of our main result.

I Definition 6 (Temporal graph of bounded degree). Let Gd = 〈Gd1, Gd2, ..., Gdτ 〉 be a temporal
graph of order |V (Gd)| = n, and lifetime τ . It is said that the degree of Gd is bounded by
d if, for all i, maxv∈V (Gd

i
) degGd

i
(v) ≤ d. We note that d may be given as a constant, or as

some function of n.

(Note that we do not place any restriction on the underlying graph of Gd.) Consider now a
partitioning of the vertex set, V (Gd), of a degree-bounded temporal graph, Gd, into distinct
parts T and L, such that T ∪L = V (Gd). We refer to the set T as the terminal set, containing
|T | = k terminal vertices u ∈ T , and L as the leftover set, containing the |L| = n− k leftover
vertices v ∈ L. The set T of terminals will contain, initially, the set of all unvisited vertices
in Gd, whilst the set L will contain the specified start vertex, s. Our aim is to form Ω(kd)
disjoint ordered pairs of terminal vertices, (u, u′), such that there is a temporal walk through
Gd that departs from u, arrives at u′, and has duration no longer than O(dnk). In doing
so, we obtain a subset T ′ ⊆ T of terminals which are arrived at by such a walk; by setting
T = T ′, moving all terminals not reachable by such a walk into L, and forming pairs amongst
those u ∈ T again, we obtain a new collection of walks, each of which can be concatenated
with exactly one of the walks obtained from the previous application. Repeated application
of this process will form the basis of our overall exploration approach, eventually enabling us
to explore Θ(logd n) vertices in O(dn) steps. The following definitions will prove useful in
showing this – in each of them we consider an arbitrary temporal graph, G, during a time
period starting at time step t, and ending at time step t′:

I Definition 7 (Reachable set). The reachable set of a vertex, x ∈ V (G), is the set Rx(t, t′) =
{y ∈ V (G) | there exists a walk from x to y starting at time l and ending at time l′, with
t ≤ l ≤ l′ ≤ t′}. If t and t′ are made clear, or are deducible from the context, we simply
write Rx, rather than Rx(t, t′).

I Definition 8 (Reachable pair). We call an ordered pair of terminal vertices, (u, u′) ∈ T ×T ,
a reachable pair if u′ ∈ Ru(t, t′) (with 1 ≤ t ≤ t′ ≤ τ) and u 6= u′. When it is clear from the
context, we may simply refer to a reachable pair as a pair. We also say that a reachable pair
is formed in the step t′ − 1, in which u′ is added to Ru(t, t′).

I Definition 9 (Home set). We define a home set of a leftover vertex, v ∈ L, to be a set
Hv(t, t′) of terminal vertices such that, for any terminal vertex u, the condition u ∈ Hv(t, t′)
implies the following: v ∈ Ru(t, t′), and u does not already belong to a reachable pair. As
such, there exist temporal walks in G departing from all u ∈ Hv(t, t′) and arriving at v.
Again, we write Hv rather than Hv(t, t′) when t and t′ are clear from the context.

Note that Definition 9 does not define home sets in a unique way. It only requires that
u ∈ Hv(t, t′) implies v ∈ Ru(t, t′), but there is no requirement that all vertices u that satisfy
v ∈ Ru(t, t′) are included in the home set. We will specify how to construct home sets in
a certain way, and the home sets resulting from our construction will have the additional
property that they contain at most two vertices. The purpose of home sets and the details of
their construction will become clear in the proof of Lemma 13.

I Definition 10 (Spread of a terminal vertex). We refer to the number of home sets that a
particular terminal vertex u ∈ T belongs to as the spread of u.

MFCS 2018

36:6 Faster Exploration of Degree-Bounded Temporal Graphs

As previously discussed, we first wish to show that in a degree-bounded temporal graph, Gd,
enough disjoint reachable pairs are formed during any period of O(dnk) time steps (here we
take k to be the number of terminals contained in T at the start of the time period we are
considering). To achieve this, we introduce the following potential function, which tracks the
number of terminals that each leftover vertex has contained within its respective home set.
By first showing that we can increase the value of this potential function by a large enough
amount in each of the O(dnk) considered steps, we will be able to prove that Ω(kd) disjoint
reachable pairs can be found during those same steps.
I Definition 11 (Potential function, φ). Consider an arbitrary time step t, and let i be the
current time step (1 ≤ t ≤ i ≤ τ). Further, let L0, L1, L2 be the sets of leftover vertices
v ∈ L, such that |Hv(t, i)| = 0, |Hv(t, i)| = 1, and |Hv(t, i)| = 2, respectively. In other words,
L0, L1 and L2 are the sets of leftover vertices that have 0, 1 and 2 terminals contained in
their home sets at time i. Clearly, L = L0 ∪ L1 ∪ L2 at any time, since the home sets we
consider grow to a size no larger than 2. We denote by P iv the potential value of vertex v at
time i, and define it for all i as follows:

P iv =

1, if v ∈ L0 (at time i)
2, if v ∈ L1 (at time i)
3, if v ∈ L2 (at time i).

Given this, we introduce our potential function, φ, taking as argument a bounded-degree
temporal graph, Gd:

φit(Gd) =
∑
v∈L

P iv,

so that φit(Gd) is the sum of the values, P iv, during time step i (t ≤ i ≤ τ), given that we
began tracking the value of φ at time t. When t is clear from the context, we may refer to
φit(Gd) at arbitrary i (t ≤ i ≤ τ) as φi(Gd) or, if i is clear from the context, as φ(Gd) or φ.
I Observation 12. If we assume that we begin tracking the value of our potential function
from some time t, such that no v ∈ L belongs to the reachable set of any u ∈ T at time
t, then initially, φt(Gd) = |L|. Further to this, P iv ≤ 3 for any v ∈ L, and |L| ≤ |V (Gd)|.
Therefore, φi(Gd) ≤ 3|V (Gd)| = 3n for any t ≤ i ≤ τ .
We note that when a reachable pair (u, u′) is formed, then both u, u′ ∈ T are no longer
considered as candidates for further reachable pairs (since we require our pairs to be disjoint).
Therefore, we remove u and u′ from T and place them into L. As a result, it is possible for
the number of leftover vertices to grow over the course of time, allowing for larger potential
values in future time steps. Moreover, in order to increase our potential in any given step,
we must be able to find terminal vertices that can be added to the home set of a leftover
vertex in that step.

By Definition 9, u ∈ Hv implies that u does not already belong to any reachable pair. It
therefore follows that the forming of a pair in Gd can also cause the potential to drop, since
we are required to remove u and u′ from all home sets that they are contained within. Whilst
some decrease in potential is inevitable, it is important that we ensure that the decrease is
not too large in any single step. If the home sets of many leftover vertices contain the same
terminal, and that terminal goes on to form a pair, then it will be removed from all of these
home sets, possibly generating a large drop in potential. If this type of behaviour occurs too
often, it might happen that we are unable to obtain a large enough amount of potential in
total, and as a result, not be able to form the required amount of reachable pairs. This issue
is fully addressed by Lemma 13 in the following subsection.

T. Erlebach and J. T. Spooner 36:7

3.1 Exploration method
Following the discussion above, all is in place to fully describe our overall approach to
computing exploration schedules (in degree-bounded temporal graphs) that are guaranteed
to have arrival time O(d log d · n2

logn). We begin by showing that it is possible to obtain a
potential increase of k−2p

2d in any given time step, where p is the number of pairs that have
already been formed between vertices in T . For the following, assume that we have fixed a
time step t, and that we consider Gd from time t onwards.

I Lemma 13. Consider a degree-bounded temporal graph, Gd, in an arbitrary timestep i,
whose vertex set has been partitioned into sets T (terminals) and L (leftovers), which initially
contained |T | = k and |L| = n− k vertices, respectively. Additionally, assume that p ≤ k−2

2
reachable pairs of terminal vertices have been formed already (including those pairs formed in
step i). Then, it is possible to obtain a potential increase of at least k−2p

2d in time step i.

Proof. Observe that, since there are already p pairs formed amongst the terminals u ∈ T ,
there are exactly k − 2p terminals that remain in T , i.e. |T | = k − 2p (since any two
terminals forming a pair become leftover vertices once the pair is formed). As p ≤ k−2

2
implies k − 2p ≥ 2, we know that there are still at least 2 terminals. We wish to find at least
k−2p

2d disjoint paths, such that each path has terminals as its endpoints, and that every other
vertex in the path is a leftover vertex (we will refer to such a path as a terminal path). Let
Gdi denote the form of Gd during the i-th time step; we proceed by computing a spanning
tree Si of Gdi , selecting an arbitrary leaf, r, as Si’s root, and forming paths in a bottom-up
fashion via a greedy procedure. More specifically, we consider each vertex, x ∈ Si, in reverse
level order, so that we first examine those vertices that are furthest away from r, followed
by those vertices second furthest away from r, and so on, until every x has been processed.
On examining a vertex x, we consider the subtree of Si rooted at x: if it contains 2 or more
terminals that do not already belong to a path, we arbitrarily select two and take the path
joining them in Si to be one of our terminal paths, discarding the remaining terminals in
that subtree. We claim that in this way, we use exactly 2 terminals for each path we form,
and discard at most d− 2 terminals whenever we form a single path. To see this, observe
that each vertex in Si has at most d− 1 children (since r is a leaf), and consider the situation
in which the vertex we are currently processing, x, is a terminal of degree d. If each of the
subtrees rooted at x’s children contains exactly one terminal, then we will only be able to
form one path, which must have x and one of the other d− 1 terminals (each of which lies
alone in one of the subtrees rooted at x’s children) as its endpoints – the remaining d− 2
terminals will be discarded. This follows from the fact that if more than one terminal lay in
the subtree rooted at any of x’s children, then they must already belong to a path; otherwise
they would have already been discarded, as per our procedure. Therefore, on forming any
path in Si, we “use up” at most d terminals (2 terminals for the path, and at most d − 2
terminals are discarded). Observe now that, on processing r, it may also happen that there
is a single unmatched terminal, y, in the subtree rooted at r; in this case, y will be discarded.
As a result, it follows that we are able to find at least k−2p−1

d disjoint terminal paths in
Si. Moreover, k−2p−1

d ≥ k−2p
2d for d > 0 and p ≤ k−2

2 , which can be easily checked. Since
k − 2p ≥ 2 precisely when p ≤ k−2

2 , it follows that we are able to form at least k−2p
2d disjoint

terminal paths in Si, as required.
Now, given a set of terminal paths obtained by following the aforedescribed method, we

wish to show that, per each path, we can obtain a +1 increase in potential. We require a way
of doing so that ensures that not only are we able to increase the potential by a large enough

MFCS 2018

36:8 Faster Exploration of Degree-Bounded Temporal Graphs

amount in every step, but that we are able to ensure the drop in potential experienced in
any particular time step is limited. Specifically, we require a procedure with the following
properties:
1. We can obtain a potential increase of +1 within any given terminal path.
2. For a single execution of our procedure on a given terminal path, we want the spread of

exactly one of the path’s endpoints to increase by 1, and the spread of the terminal at
the opposite end of the path to remain the same.

Property (1) ensures that we are able to guarantee a potential increase of k−2p
2d in each

time step. Property (2) limits the number of home sets that any terminal vertex u ∈ T
can be added to in any particular step to 1. To this end, we specify now our procedure,
demonstrating that both properties (1) and (2) are satisfied by the actions performed within
each individual case.

I Procedure (Obtain-Potential). Consider an arbitrary time step, t, from which we
began tracking the value of φ(Gd). The input to the procedure is a terminal path, Qi ⊆ Si
(we omit the i from this notation from here onwards), obtained by applying the aforedescribed
greedy procedure to Gd in step i ≥ t (i.e., by applying the greedy procedure to the graph
Gdi). Let u and u′ be the endpoints of Q. We proceed as follows: arbitrarily select one of u
or u′ (for argument’s sake we select u), and begin examining the set Hvj

(t, i) (again, we will
omit the arguments from this notation) for every vj ∈ Q in the order in which they appear
in Q (from u to u′). Let the x-th and last leftover vertex that we examine where Hvj

= {u}
be known as vx; the vertex we examine next will be known as vx+1. We note that since,
by our earlier assumption, all pairs that will form in step i have already been formed, the
existence of such a vx is guaranteed in all but one case. If u is adjacent to the vertex v1 ∈ Q
such that Hv1 ⊇ {u∗} with u∗ 6= u, then clearly a pair is formed; a contradiction, since the
greedy procedure for forming terminal paths does not consider terminals that already belong
to pairs. Similarly, if vx = v|Q|−1, then Hv|Q|−1 = {u} and u and u′ form a pair in that
step; again, a contradiction. Thus, the exceptional case, in which there is no such vx, occurs
when Hv1 = ∅: here, we can instantly obtain our potential increase for Q by adding u to
Hv1 , whilst still satisfying properties (1) and (2). With these exceptions dealt with, we now
distinguish between two main cases:

(i) Case 1: Hvx ∩ Hvx+1 = ∅. We distinguish between two subcases:
(i) Case 1.1: Hvx+1 6= ∅. Select an arbitrary u∗ in Hvx+1 and add u∗ to Hvx ,

giving our +1 potential increase (satisfying property (1)). We note that this is
possible since u∗ ∈ Hvx+1 implies that vx+1 ∈ Ru∗ , in which case an agent could
move from u∗ to vx+1, and from vx+1 to vx. It is therefore valid to select u∗ from
the home set of a vertex adjacent to vx and add it to vx’s home set since, by
definition, vx would be added to Ru∗ in that step regardless.
In the event that u∗ /∈ {u, u′}, remove u∗ from Hvx+1 , and add u to Hvx+1 ;
this ensures that the potential associated with vx+1 does not decrease, whilst
additionally ensuring that the spread of u∗ does not increase with respect to Q
(satisfying property (2)).

(ii) Case 1.2: Hvx+1 = ∅. In this case, we add u to Hvx+1 , giving our +1 potential
increase (property (1)), whilst ensuring that only u is added to the home set of
exactly one leftover vertex in Q (property (2)).

(ii) Case 2: Hvx ∩ Hvx+1 6= ∅. Again, we distinguish between two subcases:
(i) Case 2.1: u′ ∈ Hvx+1 . Since u′ ∈ Hvx+1 , we can simply add u′ to Hvx and we

are done – this gets us our required +1 potential increase (property (1)), whilst

T. Erlebach and J. T. Spooner 36:9

also satisfying property (2), since the only terminal that is added to a home set
within Q is one of Q’s endpoints, u′.

(ii) Case 2.2: u′ /∈ Hvx+1 . Select an arbitrary u∗ ∈ Hvx+1 (with u∗ 6= u, u′), add
u∗ to Hvx , and remove u∗ from Hvx+1 . Now, continue following Q in the same
direction, repeating the above process some y− 1 times, until in the y-th iteration
we examine a vertex vx+y+1, such that u /∈ Hvx+y+1 . More generally, in the j-th
iteration, we check the set Hx+j+1, select from it an arbitrary u∗ 6= u, add u∗ to
Hvx+j , and remove u∗ from Hvx+j+1 . By removing u∗ from Hvx+j+1 , we ensure
that the spread of u∗ does not increase with respect to Q, satisfying property
(2) for all iterations 1 through y − 1 (notice that in each of these iterations, our
potential value stays the same, since whenever we add a terminal to one leftover
vertex’s home set, we remove that terminal from another home set). If it happens
that Hvx+j+1 = {u} (i.e., we cannot select u∗ 6= u), then we do not add any u∗ to
Hvx+j

in that iteration; clearly property (2) is still satisfied in this situation. Once
we begin the y-th iteration, if it happens that the set Hvx+y+1 = ∅, we simply add
u to Hvx+y+1 and we are done – in this case, both properties are trivially satisfied.
Otherwise, select an arbitrary u∗ from Hvx+y+1 , add u∗ to Hvx+y

(increasing
the potential value of vx+y), and remove u∗ from Hvx+y+1 . Finally, add u to
Hvx+y+1 ; this uses the fact that Hvx+y

is guaranteed to contain terminal u, and
so we replace u∗ with u, ensuring that the potential of vertex vx+y+1 does not
decrease, whilst still ensuring that property (2) is satisfied, since only vertex u’s
spread has increased by exactly 1. It is this final step that ensures property (1)
is satisfied, since we increased the potential value of vx+y in this iteration, but
did not decrease the potential value of vx+y+1.

The lemma follows by applying the greedy procedure (for forming k−2p
2d disjoint terminal

paths) in Gdi , and supplying each path as input to the Obtain-Potential procedure. J

I Lemma 14. Let Gd be a degree-bounded temporal graph with a vertex set partitioned into
parts T and L. Let t be the time at which tracking of the potential function began (so that
φt(Gd) = |L|), and let i be the current time step. Then, the forming of a single reachable
pair of terminal vertices, (u, u′), can cause the potential value to drop by at most 2l, where
l = i− t is the number of steps that passed since we began tracking the value of φ(Gd).

Proof. Consider the specification of our Obtain-Potential procedure and note that, during
any time step i (with t ≤ i ≤ τ), each terminal vertex can belong to at most one disjoint
terminal path, and that exactly one of the vertices in {u, u′} (that form the endpoints of
each terminal path) has its spread increase by 1. It is clear that when a reachable pair of
terminal vertices (u, u′) is formed, the worst case scenario is the following: both u and u′
were added to the home set of a single leftover vertex in each of the l steps that have passed
since time t. The lemma follows by observing that this scenario will result in an overall drop
in potential of 2l, since, by Definition 9, u and u′ will be removed from the home set of all
those leftover vertices v ∈ L for which they belong to the set Hv(t, i). J

I Lemma 15. Let Gd be a degree-bounded temporal graph with an underlying graph of order
n, and let V (Gd) be partitioned into parts T and L, with |T | = k and |L| = n− k. Then in
10 · dnk steps, at least k

20d disjoint reachable pairs of terminal vertices are formed.

Proof. Consider Gd from time t onwards and assume that the opposite of our claim is true,
so that less than k

20d reachable pairs are formed in the space of 10 · dnk steps (i.e. less than
k

20d reachable pairs are formed within the time range t to t+ 10 · dnk). Then, by the end of the

MFCS 2018

36:10 Faster Exploration of Degree-Bounded Temporal Graphs

(t+ 10 · dnk)-th step, there are at least k− 2 · k
20d = k− k

10d = 10dk−k
10d = k · (10d−1)

10d ≥ 0.9k (for
all d ≥ 1) terminal vertices that have not yet formed a pair with another terminal vertex. It
follows then, by Lemma 13, that the value of φ(Gd) increases by at least 0.9k

2d ·
10dn
k = 9kdn

2dk =
9n
2 = 4.5n over those 10 · dnk steps. By Lemma 14, over the same period, the potential can
decrease by at most k

20d · 2 ·
10dn
k = k

20d ·
20dn
k = 20dkn

20dk = n, since, by our earlier assumption,
fewer than k

20d pairs are formed. From this, it follows that the potential at the end of those
10 · dnk steps is at least 4.5n− n = 3.5n. But this is a contradiction since, by Observation 12,
φi(Gd) ≤ 3n for any t ≤ i ≤ τ ; the lemma follows. J

I Lemma 16. Consider a degree-bounded temporal graph, Gd, in an arbitrary time step, t,
and let the vertices in V (Gd) be divided into parts T and L, with |T | = k and |L| = n − k
at the beginning of time t. Then, there exists at least one vertex v ∈ T such that an agent
positioned at v at the start of time t can explore Θ(logd k) terminal vertices in O(dn) steps.

Proof. By application of Lemma 15 to part T , we are able to form at least k
20d disjoint

reachable pairs of terminal vertices in the space of 10 · dnk time steps. As a result, we obtain a
set of k

20d temporal walks, each of which has exactly one such reachable pair constituting its
endpoints, with no walk taking any longer than 10 · dnk steps. At the end of these k

20d walks
are exactly k

20d unique (since the pairs are disjoint) terminal vertices. We proceed by taking
this smaller set of terminals as our new T and reapplying Lemma 15 at time t+ 10 · dnk ; as
a result, we obtain k/20d

20d = k/(20d)2 new walks, each of which has endpoints that form a
reachable pair, and each of which takes no longer than 10 · dn

k/20d steps. Notice now that since,
via our second application of Lemma 15, we formed pairs amongst only those terminals that
were reachable via one of the walks obtained from our initial application of Lemma 15, there
are now at least k/(20d)2 walks of length at most 10dn

k + 10dn
k/(20d) , each of which visits three

terminal vertices; in other words, we are able to concatenate some walk obtained by our first
application of Lemma 15, with some walk obtained by our second application, to construct a
walk that visits three terminals. In this fashion, we claim that we are able to construct a
walk that visits Θ(logd k) terminals.

Generally speaking, the i-th application of Lemma 15 produces at least k/(20d)i disjoint
pairs of reachable unvisited vertices, in each of which one vertex can reach the other via a walk
of length at most 10 · (dn)/(k/(20d)i−1). Since each time we reapply Lemma 15, it is applied
only to those terminals that are reachable via a walk computed by the previous application,
it follows that there must be a sequence of i walks, one resulting from each application of
Lemma 15, that can be concatenated (in the order in which they were produced) to form a
walk that visits exactly i+ 1 terminals (two terminals are visited by the first computed walk,
then an additional terminal is explored by the walk obtained by each successive application).
Observe that we are able to repeatedly apply Lemma 15 to T exactly blog20d kc times until
no more pairs can be formed in T . By taking the i-th application of Lemma 15 to be the
blog20d kc-th such application, it is clear that an agent following a walk constructed via the
discussed concatenation method can explore blog20d kc+ 1 = Θ(logd k) terminals. All that
remains to be shown is that the length of any temporal walk, W , constructed in this way is
of duration at most O(dn). By our earlier discussion, a reachable pair of unvisited vertices,
(u, u′), found as a result of the i-th application of Lemma 15, are separated by a walk with
duration no longer than 10 · dn/(k/(20d)i−1). Given that we apply Lemma 15 blog20d kc
times in order to obtain each of the shorter walks that are then concatenated to obtain W ,
we derive the following summation to bound the overall duration of W from above:
blog20d kc∑

i=0

(
10 · dn

k/(20d)i
)

= 10dn
k
·
blog20d kc∑

i=0
(20d)i ≤ 10dn

k
· 2k = O(dn),

as required. J

T. Erlebach and J. T. Spooner 36:11

I Theorem 17. Let Gd be a degree-bounded temporal graph of order |V (Gd)| = n. Then
there exists an exploration schedule, Wexp, starting from a given vertex, s, such that Wexp’s
arrival time, α(Wexp), is O(d log d · n2

logn).

Proof. Let the current time step be t = 1, and let V (Gd) be partitioned into sets T and
L, with |T | = k and |L| = n − k at time t (for k = n − 1, since s is already explored).
Initially, we wish to explore Θ(logd k) vertices during the first O(dn) steps. To achieve this,
we begin by constructing a temporal walk, W1, with departure time δ(W1) = t = 1. Let W1
be the product of concatenating two walks, X1 and Y1, in that order. We note that it is
not guaranteed that s will be at the start of any walk computed via our first application
of Lemma 16: therefore, we set X1 to be of duration n, and apply Lemma 16 to Gd at
time δ(W1) + |X1| = δ(W1) + n, initially setting T = V (Gd) − {s}, and L = {s}, so that
T ∪ L = V (Gd). The walk resulting from that application of Lemma 16 will be known as Y1.
In this way, we ensure, by Lemma 3 (Lemma 1 in [5]), that there is enough time for an agent
to move, via X1, from s to whichever vertex Y1 departs from. Since |X1| = n, |Y1| = O(dn)
(by Lemma 16), and, X1 and Y1 are compatible under walk concatenation, we are able to
obtain the walk, W1, of duration |W1| = n+O(dn) = O(dn), that explores Θ(logd k) unique
vertices.

We wish to apply the above process repeatedly, until only k ≤ n
log20d n

vertices remain to
be explored in Gd. This can be achieved by constructing temporal walks Wi, such that each
Wi is the concatenation of two walks Xi and Yi. Let α(Wi−1) be the arrival time of walk
Wi−1. Each Xi is a walk with duration n and departure time δ(Xi) = α(Wi−1), that departs
from the last vertex of Wi−1, and arrives at the first vertex of Yi. We then define Yi to be
the temporal walk, exploring Θ(logd k) vertices, obtained via the i-th application of Lemma
16. We perform this i-th such application at time δ(Wi−1) + |Xi| = δ(Wi−1) + n, setting

T = V (Gd)− ({s} ∪ V (Y1) ∪ V (Y2) ∪ ... ∪ V (Yi−1)),

L = V (Gd)− T and k = |T |. Taking Wi to be the result of concatenating Xi and Yi (in that
order), it follows that each walk Wi departs from the last vertex of Wi−1, and so we can
continually concatenate each Wi in the order that they are produced. The concatenation of
each Wi explores an additional Θ(logd k) vertices; we continue this process until the number
of unexplored vertices is less than or equal to n

log20d n
.

In order to show now that our overall approach to exploration always produces schedules
with arrival time O(d log d · n2

logn
), we first show that log20d k = Θ(logd n) whenever we apply

Lemma 16. As stated previously, we repeatedly apply the process discussed above until
k ≤ n

log20d n
. This implies that whenever we apply Lemma 16, k > n

log20d n
, giving that

log20d k > log20d(
n

log20d n
) = log20d n− log20d log20d n = Θ(logd n).

From this, we can conclude that the duration of any Wi produced in the aforedescribed
manner visits Θ(logd n) vertices. Since we initially explore at least n − n

log20d n
= O(n)

vertices using this method, it follows that we require the concatenation of O(n)/Θ(logd n)
Wi’s, each of which is of duration |Wi| = O(dn). Let the walk, resulting from the repeated
concatenation of our Wi, be W 1

exp; it follows that W 1
exp explores at least n− n

log20d n
vertices

in at most

O(dn) · O(n)
Θ(logd n) = O(d · n2

logd n
)

time steps. To deal with the remaining n
log20d n

vertices: letWx be the last walk we produce via
an application of Lemma 16, and assume it has arrival time α(Wx); clearly, W 1

exp has arrival

MFCS 2018

36:12 Faster Exploration of Degree-Bounded Temporal Graphs

time α(W 1
exp) = α(Wx) = O(d · n2

logd n
). We apply Lemma 3 (Lemma 1 in [5]), computing a

walk, W 2
exp, which starts at time α(W 1

exp), and spends a total time of O(n) steps visiting
each of the remaining vertices. This gives W 2

exp a total duration of O(n) · n
log20d n

= O(n2

logd n
)

steps. Now, since W 1
exp has respective departure and arrival times δ(W 1

exp) = 1 and α(W 1
exp),

and W 2
exp departs at time α(W 1

exp) from the vertex at which W 1
exp ends, it follows that they

are compatible under walk concatenation. The result of their concatenation is a walk, Wexp,
such that Wexp’s arrival time is:

α(Wexp) = |W 1
exp|+ |W 2

exp| = O(d · n2

logd n
)+O(n2

logd n
) = O

(
d · n

2

logn
log d

)
= O

(
d log d · n

2

log n

)
,

and the theorem follows. J

From the above, it follows that whenever d log d = o(log n), then a degree-bounded
temporal graph Gd admits exploration schedules with arrival time o(n2). Moreover, Theorem
17 implies the following corollary:

I Corollary 18. Let Gd be a temporal graph whose maximum degree in every step is at most
d ≥ 2, and d is constant. Additionally, let s be a specified start vertex. Then there exists an
exploration schedule, Wexp, which starts at vertex s and explores all vertices in Gd, such that
the arrival time of Wexp is O(n2

logn).

We remark that our proof is constructive and implies a polynomial-time algorithm
computing an exploration schedule with arrival time O(d log d · n2

logn), and thus also an
O(d log d · n

logn)-approximation algorithm for the TEXP problem when restricted to temporal
graphs of bounded-degree.

4 Conclusion

Linear arrival times for the exploration of any static, undirected graph can be easily achieved
by means of a depth-first search. The additional layer of complexity in the structure of
temporal graphs, brought about by the potential for time-variance in the edge set, means
that their exploration is not such a simple task: exploration schedules of general temporal
graphs can require Θ(n2) time steps.

Complementing previous results, which suggest that subjecting our input temporal graph
to certain structural restrictions can improve arrival times, we have shown that by requiring
the maximum degree in each time step to be bounded by d, one can guarantee arrival times of
O(d log d · n2

logn). These results directly suggest a number of further questions: we would like
to close the gap between the upper and lower bounds for exploring general degree-bounded
temporal graphs – we suspect that there exists an upper bound lower than the one presented
here, but it may also be the case that the current lower bound of Ω(n log n) can be improved
upon. The study of further restricted temporal graph classes, in order to establish bounds
on the amount of time needed to explore them, remains an interesting question; for example,
one might consider the class of temporal graphs in which only a constant number of edges
are allowed to differ from each time step to the next.

A further question might ask precisely which structural properties a graph must possess in
order for it to admit exploration schedules with arrival time o(n2)? – it would be interesting
to classify the graphs that can be explored in time strictly less than quadratic under these
terms. Establishing how the computational complexity of TEXP changes whilst the problem
is restricted to particular classes of graphs also presents an interesting direction; for which
classes does the problem remain NP-hard to solve optimally, and how well can we approximate
solutions for these restricted cases?

T. Erlebach and J. T. Spooner 36:13

A number of other related questions also remain open. An example of one we find
particularly interesting is as follows: how much quicker can general temporal graphs be
explored if we allow an agent exploring the graph to make a move across two edges per time
step, rather than one? We remark that the construction requiring Θ(n2) steps to explore
(given in [5]) requires only O(n) steps in this two-move model. Establishing bounds for this
model could provide further insight into the exploration of temporal graphs under the model
considered throughout this paper.

References
1 Kenneth A. Berman. Vulnerability of scheduled networks and a generalization of Menger’s

theorem. Networks, 28(3):125–134, 1996. doi:10.1002/(SICI)1097-0037(199610)28:
3<125::AID-NET1>3.0.CO;2-P.

2 Björn Brodén, Mikael Hammar, and Bengt J. Nilsson. Online and offline algorithms for the
time-dependent TSP with time zones. Algorithmica, 39(4):299–319, 2004. doi:10.1007/
s00453-004-1088-z.

3 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. Int. J. Found. Comput. Sci., 14(2):267–285, 2003.
doi:10.1142/S0129054103001728.

4 A. Casteigts, P. Flocchini, Quattrociocchi W., and N. Santoro. Time-varying graphs and
dynamic networks. IJPEDS, 27(5):387–408, 2012.

5 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration.
In 42nd International Colloquium on Automata, Languages, and Programming (ICALP
2015), Part I, volume 9134 of Lecture Notes in Computer Science, pages 444–455. Springer,
2015. doi:10.1007/978-3-662-47672-7_36.

6 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche. Temporal graph
classes: A view through temporal separators. CoRR, abs/1803.00882, 2018. arXiv:1803.
00882.

7 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems
for temporal networks. J. Comput. Syst. Sci., 64(4):820–842, 2002. doi:10.1006/jcss.
2002.1829.

8 George B. Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Tem-
poral network optimization subject to connectivity constraints. In 40th International Col-
loquium on Automata, Languages, and Programming (ICALP 2013), Part II, volume 7966
of Lecture Notes in Comptuer Science, pages 657–668. Springer, 2013. doi:10.1007/
978-3-642-39212-2_57.

9 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Mathematics, 12(4):239–280, 2016. doi:10.1080/15427951.2016.1177801.

10 Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs.
Theor. Comput. Sci., 634:1–23, 2016. doi:10.1016/j.tcs.2016.04.006.

MFCS 2018

http://dx.doi.org/10.1002/(SICI)1097-0037(199610)28:3<125::AID-NET1>3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1097-0037(199610)28:3<125::AID-NET1>3.0.CO;2-P
http://dx.doi.org/10.1007/s00453-004-1088-z
http://dx.doi.org/10.1007/s00453-004-1088-z
http://dx.doi.org/10.1142/S0129054103001728
http://dx.doi.org/10.1007/978-3-662-47672-7_36
http://arxiv.org/abs/1803.00882
http://arxiv.org/abs/1803.00882
http://dx.doi.org/10.1006/jcss.2002.1829
http://dx.doi.org/10.1006/jcss.2002.1829
http://dx.doi.org/10.1007/978-3-642-39212-2_57
http://dx.doi.org/10.1007/978-3-642-39212-2_57
http://dx.doi.org/10.1080/15427951.2016.1177801
http://dx.doi.org/10.1016/j.tcs.2016.04.006

Approximating Dominating Set on Intersection
Graphs of Rectangles and L-frames
Sayan Bandyapadhyay1

Department of Computer Science, University of Iowa, Iowa City, USA
sayan-bandyapadhyay@uiowa.edu

Anil Maheshwari
School of Computer Science, Carleton University, Ottawa, Canada
anil@scs.carleton.ca

Saeed Mehrabi
School of Computer Science, Carleton University, Ottawa, Canada
saeed.mehrabi@carleton.ca

Subhash Suri
Department of Computer Science, UC Santa Barbara, California, USA
suri@cs.ucsb.edu

Abstract
We consider the Minimum Dominating Set (MDS) problem on the intersection graphs of geo-
metric objects. Even for simple and widely-used geometric objects such as rectangles, no sub-
logarithmic approximation is known for the problem and (perhaps surprisingly) the problem is
NP-hard even when all the rectangles are “anchored” at a diagonal line with slope -1 (Pandit,
CCCG 2017). In this paper, we first show that for any ε > 0, there exists a (2+ε)-approximation
algorithm for the MDS problem on “diagonal-anchored” rectangles, providing the first O(1)-
approximation for the problem on a non-trivial subclass of rectangles. It is not hard to see
that the MDS problem on “diagonal-anchored” rectangles is the same as the MDS problem on
“diagonal-anchored” L-frames: the union of a vertical and a horizontal line segment that share
an endpoint. As such, we also obtain a (2 + ε)-approximation for the problem with “diagonal-
anchored” L-frames. On the other hand, we show that the problem is APX-hard in case the input
L-frames intersect the diagonal, or the horizontal segments of the L-frames intersect a vertical
line. However, as we show, the problem is linear-time solvable in case the L-frames intersect a
vertical as well as a horizontal line. Finally, we consider the MDS problem in the so-called “edge
intersection model” and obtain a number of results, answering two questions posed by Mehrabi
(WAOA 2017).

2012 ACM Subject Classification Theory of computation → Algorithm design techniques, The-
ory of computation → Computational geometry

Keywords and phrases Minimum dominating set, Rectangles and L-frames, Approximation
schemes, Local search, APX-hardness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.37

Related Version See [3], https://arxiv.org/abs/1803.06216, for the full version of the paper.

Funding Research of Sayan Bandyapadhyay and Subhash Suri was supported in part by the
NSF grant CCF-1525817. Research of Anil Maheshwari is supported in part by NSERC. Saeed
Mehrabi is supported by a Carleton-Fields postdoctoral fellowship.

1 The work was partially done when the author was visiting University of California, Santa Barbara.
© Sayan Bandyapadhyay, Anil Maheshwari, Saeed Mehrabi, and Subhash Suri;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 37; pp. 37:1–37:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sayan-bandyapadhyay@uiowa.edu
mailto:anil@scs.carleton.ca
mailto:saeed.mehrabi@carleton.ca
mailto:suri@cs.ucsb.edu
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.37
https://arxiv.org/abs/1803.06216
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 Approximating Dominating Set on Rectangles and L-frames

1 Introduction

Minimum Dominating Set (MDS) is an NP-hard problem in graph theory and discrete
optimization. Given a graph G = (V,E), the objective of the MDS problem is to compute a
minimum-size subset V ′ ⊆ V such that every vertex not in V ′ is adjacent to at least one vertex
in V ′. For general graphs, it is known that a greedy algorithm for MDS achieves an O(log |V |)-
factor approximation and within a constant factor this is the best one can hope for, unless
P=NP [28]. As such, the problem has been extensively studied on many subclasses of graphs,
one of which is the intersection graphs of geometric objects in the plane [12, 23, 17, 16, 24, 27].
Here, each vertex of the graph is in one-to-one correspondence with a geometric object in the
plane and two vertices are adjacent if and only if the corresponding objects have a non-empty
intersection.

In this paper, we consider the approximability and hardness of the MDS problem on
the intersection graphs of geometric objects. The MDS problem is known to admit PTASes
on disk graphs [17] and the intersection graphs of non-piercing2 objects [19]. On the other
hand, it is NP-hard to obtain a o(log |V |)-approximation in polynomial time for sufficiently
complicated shapes, e.g. rectilinear polygons [15, 16]. However, even for simple shapes such as
axis-parallel rectangles no sub-logarithmic approximation is known. The only approximation
for rectangles we are aware of is due to Erlebach et al. [16] who gave an O(c3)-approximation
on rectangles with aspect-ratio at most c. In fact, the problem is APX-hard [16] on rectangles,
and (perhaps surprisingly) the problem is shown to be NP-hard even on diagonal-anchored
rectangles [27]; that is, the intersection of every rectangle and a diagonal line with slope -1 is
exactly one corner of the rectangle. See Figure 1(a) for an example. However, to the best of
our knowledge no sub-logarithmic approximation is known even in this case. We note that
optimization problems on “diagonal-intersecting” geometric objects have been studied before
through the lenses of approximation algorithms; e.g. maximum independent set [9, 5, 22]
and minimum hitting set [9, 8, 25].

Our results. In this paper, we first give a (2+ε)-approximation algorithm for the MDS prob-
lem on diagonal-anchored rectangles, providing the first O(1)-approximation for the problem
on a non-trivial subclass of rectangles.

I Theorem 1. For any ε > 0, there exists a (2 + ε)-approximation algorithm for the
MDS problem on diagonal-anchored rectangles.

To prove Theorem 1, we first divide the problem into two subproblems and then give a
PTAS for the subproblems using the local search technique [6, 26]. Each such subproblem
involves diagonal-anchored rectangles that lie on only one side of the diagonal. The key
to obtain our PTAS is in showing a planar drawing of a bipartite graph that is required
for the analysis of the local search algorithm. We note that, even in these simpler cases
the problem remains sufficiently challenging due to the geometry of the rectangles, and the
existing schemes are not useful to obtain a near-optimal solution. For example, the local
search analyses for non-piercing objects in [19] do not hold here, as the diagonal-anchored
rectangles can still “pierce” each other.

It is not hard to see that the MDS problem on “diagonal-anchored” rectangles is the
same as the MDS problem on “diagonal-anchored” L-frames [5]. An L-frame is the union
of a vertical and a horizontal line segment that share an endpoint (corner). Indeed, each

2 Two connected objects A and B are called non-piercing if both A \ B and B \ A are connected.

S. Bandyapadhyay, A. Maheshwari, S. Mehrabi, and S. Suri 37:3

rectangle in the input can be replaced by a diagonal-anchored L-frame without altering the
underlying intersection graph. Thus, a dominating set for the instance with the L-frames is
also a dominating set for the original instance with rectangles, and vice versa. Hence, we
also obtain a (2 + ε)-approximation for the problem with diagonal-anchored L-frames. For
the MDS problem on general L-frames, the only approximation we are aware of is due to
Mehrabi [24] who gave an O(1)-approximation algorithm when every two L-frames intersect in
at most one point. Asinowski et al. [1] proved that every circle graph is an intersection graph
of L-frames. Since MDS is APX-hard on circle graphs [10], the problem is also APX-hard on
L-frames.

Note that, by definition, we can have four different types of L-frames depending on the
two endpoints that define the corner. Considering the problem on L-frames we extend the
APX-hardness result in the general case to two constrained cases. First, we show that the
problem does not admit a (1 + ε)-approximation for any ε > 0 on “diagonal-intersecting”
L-frames (see Figure 1(b) for an example).

I Theorem 2. The MDS problem is APX-hard on L-frames when every L-frame intersects a
diagonal line.

As the construction in proving Theorem 2 shows, the theorem holds even if the input
consists of only one type of L-frames and all intersection points of the L-frames lie on only
one side of the diagonal. This is in contrast to the diagonal-anchored L-frames case where
we obtain a PTAS . We also show that one cannot hope for a (1 + ε)-approximation for any
ε > 0 even when all the L-frames intersect a vertical line; see Figure 1(c) for an example. We
refer to these L-frames as vertical-intersecting L-frames.

I Theorem 3. The MDS problem is APX-hard on vertical-intersecting L-frames even if all
the L-frames intersect the vertical line from one side. Moreover, the problem is NP-hard even
if for each L-frame, the horizontal and vertical segments have the same length.

Moreover, we show that the APX-hardness of Theorem 3 is almost tight in the sense that
the problem admits a polynomial-time algorithm on L-frames, where each L-frame intersects
a vertical line and a horizontal line. See Figure 1(d) for an example. Note that, all the
L-frames in the input are of the same type.

I Theorem 4. The MDS problem is linear-time solvable on L-frames that intersect a vertical
line and a horizontal line.

To prove Theorem 4, we show that this class of graphs are the same as permutation
graphs for which given the permutation of the vertices, the MDS problem can be solved in
linear time [7]. As given a set of L-frames that intersect a vertical line and a horizontal line,
the corresponding permutation can be computed in linear time, the theorem follows.

While the standard notion of intersection dates back to 1970s, Golumbic et al. [18]
introduced the notion of edge intersection of L-frames. In this model, two L-frames are
considered adjacent if and only if they overlap in strictly more than a single point in the
plane. More formally, the L-frames corresponding to the vertices of the graph are drawn on
a grid and two vertices are adjacent in the graph if and only if their corresponding L-frames
share at least one grid edge; see Figure 1(e) for an example. To distinguish between the two
models we will explicitly refer the edge intersection model whenever discussing a result on
this model. Otherwise, we always mean the standard intersection model.

For the edge intersection model, there is a 4-approximation algorithm for MDS on L-
frames [4, 20]. Moreover, the problem was recently shown to be APX-hard by Mehrabi [24],

MFCS 2018

37:4 Approximating Dominating Set on Rectangles and L-frames

(a) (e)

b d

e
a

e

d

c

a

(b) (c) (d)

b

b

c

a

e

d

ea

c d

b
c

e

a

b

d
c

Figure 1 A graph G = ({a, b, c, d, e}, E) with five different representations, where E =
{(a, b), (a, e), (b, c), (c, d), (c, e), (d, e)}.

where two “types” of L-frames are needed for the construction. He left open whether the
problem remains APX-hard when the input consists of only one type of L-frames or when
the L-frames intersect a vertical line. We answer both questions affirmatively.

I Theorem 5. In the edge intersection model, the MDS problem on L-frames of a single type
is hard to approximate within a factor of 1.1377 even if all the L-frames intersect a vertical
line from one side.

Furthermore, we show that even intersecting two lines does not help: the MDS problem
is NP-hard on L-frames in the edge intersection model even if every L-frame intersects a
vertical line and a horizontal line. Observe that this is in contrast to the existence of the
linear-time algorithm of Theorem 4 under the standard intersection model.

Organization. In Section 2, we give some definitions and revisit some necessary background.
We prove Theorems 1 and 2 in Section 3. The proofs of Theorems 3 and 4 are given in
Section 4. Finally, we show the results for the edge intersection model in Section 5 and
conclude the paper in Section 6. Throughout this paper, the proofs of lemmas and theorems
marked with (∗) are given in the full version of the paper due to space constraints.

2 Preliminaries

We denote the x- and y-coordinates of a point p by x(p) and y(p), respectively. For two
points p and q, we denote the Euclidean distance between p and q by dist(p, q). Given a
graph G = (V,E), we denote the L-frame corresponding to a vertex u ∈ V (G) by L(u); we
use u and L(u) interchangeably. We denote the corner of an L-frame l by cor(l).

Local search. Consider an optimization problem in which the objective is to compute a
feasible subset S′ of a ground set S whose cardinality is minimum over all such feasible
subsets of S. Moreover, it is assumed that computing some initial feasible solution and
determining whether a subset S′ ⊆ S is a feasible solution can be done in polynomial time.
The local search algorithm for a minimization problem is as follows. Fix some parameter k,
and let A be some initial feasible solution for the problem. In each iteration, if there are
A′ ⊆ A and M ⊆ S \A such that |A′| ≤ k, |M | < |A′| and (A \A′)∪M is a feasible solution,
then set A := (A \A′) ∪M and re-iterate. The algorithm returns A and terminates when no
such local improvement is possible.

Clearly, the local search algorithm runs in polynomial time. Let B and R be the solution
returned by the algorithm and an optimal solution, respectively. We can assume that
B ∩ R = ∅; otherwise, we can remove the common elements of B and R and analyze the

S. Bandyapadhyay, A. Maheshwari, S. Mehrabi, and S. Suri 37:5

algorithm with the new sets, which guarantees that the approximation factor of the original
instance is upper bounded by that of the new sets. The following result establishes the
connection between local search technique and obtaining a PTAS.

I Theorem 6 ([6, 26]). Consider the solutions B and R for a minimization problem, and
suppose that there exists a planar bipartite graph H = (B ∪ R, E) that satisfies the local
exchange property, which is as follows: for any subset B′ ⊆ B, (B \ B′)∪NH(B′) is a feasible
solution, where NH(B′) denotes the set of neighbours of B′ in H. Then, the local search
algorithm yields a PTAS for the problem.

3 Diagonal-intersecting Rectangles

In this section, we prove Theorems 1 and 2. To prove Theorem 1, we first give a PTAS for
the problem when the rectangles are anchored at the diagonal from only one side and will
then prove the theorem by applying the PTAS twice.

Recall the class of intersection graphs of diagonal-anchored rectangles is same as that of
diagonal-anchored L-frames [5]. As such, to simplify the presentation of the result, we prove
Theorem 1 for L-frames.

3.1 PTAS

Suppose that we are given a set of L-frames each of which is anchored at the diagonal from
above; let G = (V,E) be the corresponding graph. Consider any two L-frames L1 and L2 that
intersect each other. We say that L1 and L2 are coincident if x(cor(L1))=x(cor(L2)). L1 is
said to intersect L2 from left (resp. from below) if x(cor(L1)) ≤ x(cor(L2)) (resp. x(cor(L1))
≥ x(cor(L2))). Notice that L1 intersects L2 from left if and only if L2 intersects L1 from
below.

Consider the MDS problem on G and run the local search algorithm with k := c/ε

for some constant c. Let B be the solution returned by the local search algorithm and R
denote an optimal solution. Consider the bipartite graph H = (B ∪ R, E′) in which the
edge set E′ is defined as follows. For any vertex u ∈ V , consider the set of all L-frames in
{B ∪ R} that intersect L(u) and let (bi, rj), where bi ∈ B and rj ∈ R, be a pair for which
dist(cor(bi), cor(rj)) (i.e., the Euclidean distance between their corners) is minimum over
all such pairs. Then, (bi, rj) ∈ E′. We call u a witness vertex for the pair (bi, rj).

In the following, we show that H is planar (Lemma 7–11) and will then prove that H
satisfies the local exchange property (Lemma 12). Then, by Theorem 6, our local search
algorithm yields a PTAS for the problem on G. To distinguish between the edges of G and
those of H , we refer to the edges of H as arcs. Let bi ∈ B and rj ∈ R such that (bi, rj) ∈ E′.
We say that (bi, rj) is a top arc if there is a witness u for (bi, rj), such that both L(bi) and
L(rj) intersect L(u) from left; choose one such u arbitrarily and denote L(u) by w(bi, rj).
Otherwise, if there is a witness v for (bi, rj), such that both L(bi) and L(rj) intersect L(v)
from below, (bi, rj) is a down arc; choose one such v arbitrarily and denote L(v) by w(bi, rj).
Otherwise, for any witness w of (bi, rj), L(bi) and L(rj) intersect w from different sides; we
call (bi, rj) a mixed arc, and choose one such w arbitrarily and denote L(w) by w(bi, rj).

Drawing of H. To draw H, we map u to cor(u) on the diagonal D for all u ∈ B ∪R. To
draw the arcs of H , the idea is to draw each arc either above or below the diagonal depending
on whether it is a top arc or a down arc, respectively. A mixed arc is drawn in such a way

MFCS 2018

37:6 Approximating Dominating Set on Rectangles and L-frames

bi

rj

w(bi, rj)

O

bi

w(bi, rj)

rj

O

O1

O2

w(bi, rj)

(a) (b) (c)

rj

bi

Figure 2 Drawing of (a) a top arc, (b) a down arc, and (c) a mixed arc.

that some part of the arc is drawn above and some part is drawn below the diagonal (and,
hence crosses the diagonal). We next give the details of each case.

Let bi ∈ B and rj ∈ R such that (bi, rj) ∈ E′ and assume w.l.o.g. that x(cor(bi)) <
x(cor(rj)). Moreover, let

O := (x(cor(bi)) + x(cor(rj))
2 ,

y(cor(bi)) + y(cor(rj))
2),

and consider the circle C centred at O with radius dist(cor(bi), cor(rj))/2. If the arc (bi, rj)
is a top arc (resp., down arc), then we draw it on the half circle of C that lies above the
diagonal D (resp., that lies below the diagonal D) starting from cor(bi) and ending at cor(rj);
see Figure 2(a) – (b) for an illustration. A mixed arc is drawn in a slightly different way.
For a mixed arc (bi, rj), assume w.l.o.g. that L(bi) intersects w(bi, rj) from left while L(rj)
intersects w(bi, rj) from below. Notice that x(cor(bi)) < x(cor(w(bi, rj))) < x(cor(rj)). To
draw (bi, rj), let

O1 := (x(cor(bi)) + x(cor(w(bi, rj)))
2 ,

y(cor(bi)) + y(cor(w(bi, rj)))
2),

O2 := (x(cor(w(bi, rj))) + x(cor(rj))
2 ,

y(cor(w(bi, rj))) + y(cor(rj))
2),

and consider the following two circles: the circle C1 that is centred at O1 and has the
radius dist(cor(bi), cor(w(bi, rj)))/2, and the circle C2 that is centred at O2 with radius
dist(cor(w(bi, rj)), cor(rj))/2. See Figure 2(c). We draw the first part of arc (bi, rj) on the
half circle of C1 that lies above the diagonal starting from cor(bi) and ending at cor(w(bi, rj))
and then the second part on the half circle of C2 that lies below the diagonal starting from
cor(w(bi, rj)) and ending at cor(rj). (The full version of the paper shows a complete example
of graph H.)

Planarity of H. Clearly, no top arc crosses a down arc (except perhaps at their endpoints).
To show the planarity of H, we show that – no top arc crosses another top arc, no down arc
crosses another down arc, and no mixed arc crosses a top, a down or another mixed arc.

I Lemma 7. No two top arcs in H cross each other.

Proof. Suppose for a contradiction that two top arcs (a, b), (c, d) ∈ E′ cross each other, and
w.l.o.g. assume that x(a) < x(c) < x(b) < x(d). Since (a, b) is a top arc, we must have
x(cor(w(a, b))) ≥ x(b); for a similar reason, we must have x(cor(w(c, d))) ≥ x(d). We now
consider two cases. (i) If x(cor(w(a, b))) ≤ x(cor(w(c, d))), then L(c) must intersect w(a, b),
which is a contradiction because in that case we should have added (a, c) or (c, b) to E′

S. Bandyapadhyay, A. Maheshwari, S. Mehrabi, and S. Suri 37:7

a

c

d

b

w(a, b)

w(c, d)

(a)

a

c

b

d

w(c, d)

w(a, b)

(b) (c)

c

a

w(a, b)

d

w(c, d)

b

Figure 3 An illustration in supporting the proof of Lemma 9.

corresponding to w(a, b) instead of (a, b). (ii) If x(cor(w(a, b))) > x(cor(w(c, d))), then L(b)
must intersect w(c, d) – this is also a contradiction because in that case we should have added
(c, b) or (b, d) to E′ corresponding to w(c, d) instead of (c, d). J

I Lemma 8 (∗). No two down arcs in H cross each other.

It remains to show that no mixed arc crosses a top arc, a down arc or another mixed arc.

I Lemma 9. No mixed arc crosses a top arc in H.

Proof. Suppose for a contradiction that a mixed arc (a, b) crosses a top arc (c, d) and
assume w.l.o.g. that x(a) < x(b) and x(c) < x(d). If x(c) < x(a), then we must have
x(a) < x(d) < x(cor(w(a, b))) – otherwise, the two arcs would not cross. First, we know
that x(cor(w(c, d))) ≥ x(d). If x(cor(w(c, d))) < x(cor(w(a, b))), then L(a) intersects w(c, d)
before intersecting w(a, b), which is a contradiction because in that case we should have
added either the top arc (c, a) or the top arc (a, d) to E′ corresponding to w(c, d) instead
of (c, d); see Figure 3(a). If x(cor(w(c, d))) > x(cor(w(a, b))), then L(d) intersects w(a, b)
before intersecting w(c, d), which is again a contradiction as we should have added either
the top arc (a, d) or the mixed arc (d, b) to E′ corresponding to w(a, b) instead of (a, b). See
Figure 3(b).

Now, suppose that x(c) > x(a). Then, we must have x(a) < x(c) < x(cor(w(a, b))) < x(d)
as the two arcs would not intersect otherwise. Since (c, d) is a top arc, we must have
x(cor(w(c, d))) ≥ x(d) and so L(c) would intersect w(a, b) before intersecting w(c, d); see
Figure 3(c). This is a contradiction because we should have added either the top arc (a, c) or
the mixed arc (c, b) to E′ corresponding to w(a, b) instead of (a, b). J

I Lemma 10 (∗). No mixed arc crosses a down arc in H.

I Lemma 11 (∗). No two mixed arcs cross each other in H.

By Lemma 7 – 11, it follows that H is a planar graph. The following lemma along with
the planarity of H gives a PTAS for the problem on G.

I Lemma 12. Graph H = (B ∪R, E) satisfies the local exchange property.

Proof. To prove the lemma, it is sufficient to show that for any vertex u ∈ V , there are
bi ∈ B and rj ∈ R such that both L(bi) and L(rj) intersect L(u) and (bi, rj) ∈ E′. Take any
vertex u ∈ V and let S ⊆ B ∪R be the set of all L-frames that intersect L(u). Notice that
S ∩B 6= ∅ and S ∩R 6= ∅ because each of B and R is a feasible solution to the MDS problem

MFCS 2018

37:8 Approximating Dominating Set on Rectangles and L-frames

on G. Now, consider b ∈ S ∩ B and r ∈ S ∩ R for which dist(cor(b), cor(r)) is minimum
over all such pairs (b, r). We know by definition of H that (b, r) ∈ E′, which proves the
lemma. J

3.2 Proof of Theorem 1
We are now ready to prove Theorem 1. Here, the rectangles are anchored at the diagonal
from both sides; let G = (V,E) denote the corresponding graph.

Proof of Theorem 1. Let {X,Y } be a partition of the vertices of G such that the L-frames
corresponding to vertices in X (resp. Y) are anchored at D from above (resp. below). By
abusing notation, we refer to these two sets of L-frames also as X and Y . For any ε > 0,
set ε′ := ε/2. We apply the PTAS of Section 3.1 with parameter c/ε′ to the L-frames in
X and Y independently, and let SX and SY be the solutions returned by the algorithm,
respectively. We return S := SX ∪ SY as the final solution. Let OPT, OPTX and OPTY
denote an optimal solution for the MDS problem on the L-frames in X ∪ Y (i.e., graph G),
X and Y , respectively.

Consider the solution OPT. Let S ⊆ OPT be a minimum size set of L-frames that
dominates all the L-frames in X. If there is an L-frame P ∈ S that is in Y , then P can only
dominate those L-frames in X that are anchored at the diagonal at the same point as P ,
in which case we can replace P by one of those L-frames from X. As such, there exists a
set S′ ⊆ X of size at most |S| ≤ |OPT| that dominates the L-frames of X. It follows that
|OPTX| ≤ |OPT|. Similarly, one can show that |OPTY| ≤ |OPT|. Now, by using the result
from Section 3.1, we have |SX | ≤ (1 + ε′)|OPTX| and |SY | ≤ (1 + ε′)|OPTY|. Then,

|S| ≤ |SX |+ |SY | ≤ (1 + ε′)|OPTX|+ (1 + ε′)|OPTY| ≤ 2(1 + ε′)|OPT| = (2 + ε)|OPT|,

which completes the proof of the theorem. J

3.3 Proof of Theorem 2
Recall that Theorem 2 claims APX-hardness of the problem on L-frames in the diagonal-
intersecting case. We show a gap-preserving reduction from the MDS problem on circle
graphs, which is known to be APX-hard [10]. Recall that a graph is called a circle graph, if
it is the intersection graph of chords of a circle. Take any circle graph G = (V,E) with n
vertices, and consider a geometric representation of G. By a closer look at the APX-hardness
proof [10], we can assume that no two chords share an endpoint; that is, there are exactly
2n distinct points on the circle determining the endpoints of the chords. Cut the circle at
an arbitrary point p and consider the ordering M := 〈p1, p2, . . . , p2n〉 of the endpoints of
chords visited in counter-clockwise along the circle starting at p. Now, let D be the diagonal
line y = (2n+ 1)− x. Consider each endpoint pi (where 1 ≤ i ≤ 2n) in the order given by
M . Then, we map each point pi to the point ((2n+ 1)− i, i) on D. Let e := (pj , pk) be a
chord of G. Then, the L-frame corresponding to e is the unique L-frame that lies below D

and connects the two points mapped on D corresponding to pj and pk; see Figure 4 for an
example. Let G′ = (V ′, E′) be the graph corresponding to the constructed L-frames. Clearly,
D has slope -1 and the construction can be done in polynomial time. Moreover, since the 2n
endpoints of chords of the input representation are pairwise distinct, the points mapped to
the line D are in general position; that is, no two such points have the same x- or the same
y-coordinates. The following lemma completes the proof of Theorem 2.

S. Bandyapadhyay, A. Maheshwari, S. Mehrabi, and S. Suri 37:9

p

p1

p2

p3

p4p5

p6

p7

p8

(a) (b)

(0, 0)

p1

p2

p3

p4

p5

p6

p7

p8

Figure 4 An illustration supporting the proof of Theorem 2.

I Lemma 13. G has a dominating set of size k if and only if G′ has a dominating set of
size k.

Proof. First, we show that there is a one-to-one correspondence between the vertices of G
and those of G′ such that (i, j) ∈ E if and only if (i, j) ∈ E′. The one-to-one correspondence
between the vertices of these two graphs is clear from the construction. Now, suppose
that (i, j) ∈ E. This means that the endpoints of vertices i and j appear in M as either
〈pi, pj , pi′ , pj′〉 or 〈pj , pi, pj′ , pi′〉, where pi and pi′ with i < i′ (resp., pj and pj′ with j < j′)
correspond to the endpoints of i (resp., j). By the mapping used in the construction, this
ordering is preserved on D (when going from (2n + 1, 0) to (0, 2n + 1) along D) and so
the L-frames L(i) and L(j) intersect each other below D; that is, (i, j) ∈ E′. Conversely,
if (i, j) /∈ E, then their endpoints appear in M as either 〈pi, pj , pj′ , pi′〉 or 〈pj , pi, pi′ , pj′〉,
where pi and pi′ with i < i′ (resp., pj and pj′ with j < j′) correspond to the endpoints of i
(resp., j). Consequently, this ordering is preserved on D by the mapping (when going from
(2n+ 1, 0) to (0, 2n+ 1) along D) and so L(i) and L(j) do not intersect each other inside D;
that is, (i, j) /∈ E′. It is now straightforward to see that G has a dominating set of size k if
and only if G′ has a dominating set of size k, which is clearly a gap-preserving reduction. J

Remark. Using a similar reduction in the other direction one can show that, for every
intersection graph G of a set of diagonal-intersecting L-frames that intersect each other only
below the diagonal, one can find a circle graph G′ such that G has a dominating set of size k
if and only if G′ has a dominating set of size k. As one can obtain a 2 + ε-approximation
for MDS on circle graphs [11], MDS can be approximated within a factor of 2 + ε in this
special case of diagonal-intersecting L-frames. Note that this is the version which we have
just proved to be APX-hard.

4 Vertical-intersecting L-frames

In this section, we prove Theorems 3 and 4. To prove Theorem 3, we first show that the
MDS problem is APX-hard even when each L-frame intersects a vertical line. The proof
is essentially the same as that of Theorem 2, but by a slight modification of replacing the
diagonal D with a quarter of a circle and then extending the horizontal segment of each
L-frame until it hits a vertical line that is placed far to the right. See the full version of the
paper for the complete proof.

To complete the proof of Theorem 3, we show that the MDS problem is NP-hard on
L-frames even if the horizontal and vertical segments of every L-frame have the same length.
The reduction is from a variant of the 3SAT problem. For any 3SAT instance, one can define

MFCS 2018

37:10 Approximating Dominating Set on Rectangles and L-frames

x1 x2 x3 x4 x5

c4 = x̄1 ∨ x̄2 ∨ x̄5

c5 = x̄2 ∨ x̄3 ∨ x̄4

c3 = x1 ∨ x2 ∨ x3

c2 = x1 ∨ x3 ∨ x4

c1 = x1 ∨ x4 ∨ x5

L11

L4

L5

L3

L2

L1

L41
L51

L21

L31

L12 L22

L32 L42

L52

La
1 La

2 La
3 La

4 La
5

Figure 5 A drawing of an instance of Planar Monotone Rectilinear 3SAT (left) and the corres-
ponding instance of the MDS problem before rotation (right). The variable L-frames above (resp.
below) the x-axis are shown in dashed (resp. dotted) style. The clause L-frames and the auxilliary
L-frames are shown in normal style.

a bipartite graph on the clauses and the variables which we refer to as the incidence graph.
For any clause cj , if cj contains a literal corresponding to a variable vi, the edge (vi, cj) is
added to the graph. A drawing of a planar incidence graph is called planar rectilinear if it
has the following properties. Each variable vertex is drawn as a horizontal segment on the
x-axis and the clause vertices are drawn as horizontal segments above and below the x-axis.
For each edge (vi, cj), the horizontal segment corresponding to cj has a vertical connection
to the horizontal segment corresponding to vi. Moreover, this vertical connection does not
intersect any other horizontal segments. See the left figure of Figure 5 for an example. An
instance of the 3SAT problem is called monotone if, for every clause in the instance, the
literals of the clause are either all positive (called a positive clause) or all negative (called
a negative clause). A planar rectilinear drawing of an incidence graph is called monotone
if it corresponds to a monotone 3SAT instance such that all the positive (resp., negative)
clauses are drawn above (resp., below) the x-axis. In the Planar Monotone Rectilinear 3SAT
problem the incidence graph of any instance has a planar rectilinear and monotone drawing.
The problem is known to be NP-hard even when the drawing is given [13]. Given an instance
of the Planar Monotone Rectilinear 3SAT, we construct a set of L-frames such that the
horizontal and vertical segments of each L-frame have the same length and they all intersect
a vertical line.

Let n be the number of variables. Due to the hierarchical structure of the clauses lying
above and below the x-axis, respectively in the given drawing, one can modify the drawing
in a way such that for each clause, the length of the horizontal segment corresponding to it
is the same as the length of the vertical segments corresponding to it (see the left figure of
Figure 5). Let T be the new drawing. We construct the instance I of MDS from T in the
following way. For each clause cj , removing all the vertical connections except the leftmost
one creates an L-frame. We add this L-frame (denoted by Lj) to our instance. For each

S. Bandyapadhyay, A. Maheshwari, S. Mehrabi, and S. Suri 37:11

variable xi, we add two L-frames: one (denoted by Li1) above and the other (denoted by
Li2) below the x-axis. The vertical segments of these two L-frames are the maximum length
vertical connections corresponding to xi lying above and below x-axis, respectively. For
the variable L-frames, their horizontal segments lie on the right of their vertical segment.
Moreover, for any variable L-frame above (resp., below) the x-axis, the corner is the topmost
(resp., bottommost) point of the vertical segment. The two L-frames corresponding to each
variable are shifted accordingly so that they intersect at a point on the x-axis (see Figure
5). Also, for each variable xi, we add an auxiliary L-frame La

i that intersects only the two
L-frames corresponding to it as shown in Figure 5. Note that in the constructed instance,
one endpoint of each L-frame lies on the x-axis. Now it could be the case that, for some
i, j and k ∈ {1, 2}, an Lik intersects Lj though cj does not contain any literal of xi. To get
rid of these intersections, we extend each Lik vertically and then horizontally (to maintain
the symmetry) so that it does not intersect any Lj such that cj does not contain xi. Note
that, as we do not modify the Lj ’s, if cj contains the literal xi (resp. x̄i), Li1 (resp. Li2)
still intersects Lj . Finally, we rotate the created instance clockwise by 90◦ with respect to
the origin. Hence all the L-frames in the constructed instance now intersect the vertical
line x = 0 or the y-axis, and thus together they form an instance of the problem with
vertical-intersecting L-frames. Lemma 15 below completes the proof of the second part of
Theorem 3. We first need the following observation whose proof is immediate from the
construction.

I Observation 14. For all i, j, Li1 (resp., Li2) intersects Lj if and only if the clause cj

contains the literal xi (resp., x̄i).

I Lemma 15. The instance I has a dominating set of size n if and only if the 3SAT instance
is satisfiable.

Proof. Suppose I has a dominating set D of size n. We construct a satisfiable assignment in
the following way. Consider any variable xi. As La

i intersects only Li1 and Li2, one of these
three L-frames must be in the dominating set. The size of D being n, only one of the above
mentioned three L-frames can be in D and no clause L-frame can be in D. If Li1 is in D,
we set xi to be true. Otherwise, we set xi to be false. Now consider any clause cj . Let xi

be a variable such that a L-frame corresponding to xi is in D that intersects Lj . Note that
there exists such an xi. Now if Li1 is the chosen L-frame that dominates Lj , then Li1 is in
D and by Observation 14 cj must be a positive clause. It follows that, we have set xi to be
true and thus cj is satisfied. Similarly, one can show that if Li2 is the chosen L-frame that
dominates Lj , then also cj is satisfied.

Now, suppose that we are given a satisfiable assignment of the 3SAT instance. We
construct a dominating set in the following way. For any variable xi, if xi is set to be true,
then we select Li1. If xi is set to be false, then we select Li2. We claim that the selected
L-frames form a dominating set. It is easy to see that the selected L-frames dominate the
variable and auxiliary L-frames. Now, consider any clause L-frame Lj . There must be a
variable xi that satisfies cj . If cj is positive, the literal xi must be set to true and we select
Li1. By Observation 14, Li1 intersects Lj , and thus Lj is being dominated. If cj is negative,
one can similarly show that Lj is also being dominated. J

We now prove Theorem 4. To this end, we show that the intersection graph of L-frames
that inersect a vertical and a horizontal line is a permutation graph and so MDS is linear-time
solvable on such a graph [7]. Geometrically, a graph G is a permutation graph if there are
two embeddings of its vertices on two parallel lines such that, when connecting a vertex from

MFCS 2018

37:12 Approximating Dominating Set on Rectangles and L-frames

v1

v2

v3

v4

L1

L2

L3

L4

L12

L14

L23

L24
L34

A11

A21

A31

A41

A12

A22

A32

A42

Figure 6 An example graph with 4 vertices (left) and its corresponding instance of the MDS prob-
lem (right).

the first line to the same vertex on the other line using a line segment, the edge set of the
graph is realized exactly by the intersections of those segments. That is, two vertices appear
in different order on the parallel lines (and, so their line segments intersect) whenever they
are adjacent in the graph. By taking the two orderings in which the endpoints of the L-frames
in the input graph intersect the two lines, we can construct the geometric representation of a
permutation graph having the same edges. Hence, Theorem 4 follows.

5 Edge Intersection Model

In this section, we show our results for the edge intersection model [18].

Proof of Theorem 5. We show a reduction from the Vertex Cover problem. In Vertex
Cover, we are given a graph G = (V,E) with n vertices and the goal is to find a subset
V ′ ⊆ V such that for any edge (vi, vj) ∈ E, V ′ ∩ {vi, vj} 6= ∅. Let V C(G) be the size of any
minimum size vertex cover of G. As noted in [2], from the work of Dinur and Safra [14] the
following theorem can be derived.

I Theorem 16 (Dinur and Safra [14]). Let 1/3 < p < pmax = (3−
√

5)/2 and q = 4p3 − 3p4.
For any constant ε > 0, given any unweighted graph G = (V,E) with bounded degrees,
it is NP-hard to distinguish between “Yes”: VC(G) < (1 − p + ε)|V |, and “No”: VC(G)
> (1− q − ε)|V |.

Given the vertex cover graph G = (V,E), we construct an instance I of MDS. In the
instance I, all the L-frames lie on the left of the line x = 0 and intersect the line, and thus
each has the x shape. The construction is as follows. For each vertex vi, we have an L-frame
Li that intersects x = 0 at the point (0, 2i) as shown in Figure 6. Note that these L-frames
do not intersect each other. For each edge (vi, vj) with i < j, we have an L-frame Lij that
intersects x = 0 at (0, 2j), and thus intersects (i.e., has a common horizontal grid edge) with
vj . It also intersects (has a common vertical grid edge) with vi (see Figure 6). Also, for each
vertex vi, we have two auxiliary L-frames Ai1 and Ai2 that intersect x = 0 at (0, 2n + i),
and Ai1 shares a vertical grid edge with Li. Note that the only L-frame Ai2 intersects is
Ai1. Also, all the L-frames intersect the vertical line x = 0. We first need the following
observations.

S. Bandyapadhyay, A. Maheshwari, S. Mehrabi, and S. Suri 37:13

a1

a2

a3

a4

b1

b3

b2 b2

b3

b1

a1a2a3a4
`V

`H

Figure 7 A bipartite graph on 7 vertices (left) and its corresponding representation in the edge
intersection model (right).

I Observation 17. For 1 ≤ i < j ≤ n, the only L-frames that Lij intersects are Li, Lj and
Ltj, where (vt, vj) ∈ E with t < j.

I Observation 18. The only L-frames that get dominated by the L-frames in {Ai1 : 1 ≤ i ≤ n}
are Li and Ai2 for 1 ≤ i ≤ n.

I Observation 19. Any dominating set contains at least one of Ai1 and Ai2 for each
1 ≤ i ≤ n. Also for any dominating set of size k, there is a dominating set D of size at most
k such that D contains Ai1 for all 1 ≤ i ≤ n and does not contain any Ai2 for 1 ≤ i ≤ n.

I Lemma 20. G has a vertex cover of size k if and only if I has a dominating set of size
k + n.

Proof. Suppose G has a vertex cover of size k. We construct a dominating set D of size
k + n in the following way. At first add all the L-frames {Ai1 : 1 ≤ i ≤ n} to D. Then
for each vi in the vertex cover, add Li to D. Clearly |D| = k + n. By Observation 18, D
dominates any Li and Ai2 for 1 ≤ i ≤ n. Now consider any Lij . Note that we have added at
least one of Li and Lj to D, and hence D dominates Lij as well.

Now, suppose we have a dominating set D′ of size k + n. By Observation 19, we can
assume that D′ contains Ai1 for all i and does not contain any Ai2. Thus D′ contains k
L-frames corresponding to the vertices and the edges. Now suppose D′ contains an edge
L-frame Lij . By Observation 17 and 18, the only L-frames that cannot get dominated by D′
by the removal of Lij from D′ are Ltj , where (vt, vj) ∈ E with t < j. Thus if we replace Lij

by Lj in D′, D′ still remains a dominating set. Thus, we can assume w.l.o.g. that D′ does
not contain any Lij . Now we construct a subset V ′ ⊆ V by selecting vertices corresponding
to the vertex L-frames contained in D′. Clearly |V ′| = k. We claim that V ′ is a vertex cover.
Consider any edge (vi, vj). Then by Observation 18, at least one of Li and Lj must be in D′.
It follows that at least one of vi and vj is present in V ′ which finishes the proof. J

By Theorem 16 and Lemma 20, we have the following lemma.

I Lemma 21. Let 1/3 < p < pmax = (3−
√

5)/2 and q = 4p3− 3p4. For any constant ε > 0,
given an input graph (in the edge intersection model) H with O(n) vertices, it is NP-hard to
distinguish between “Yes”: H has a dominating set of size < (2− p+ ε)n, and “No”: The
size of any dominating set of H is > (2− q − ε)n.

Therefore, the gap between the sizes of the minimum dominating set in the “yes” and
the “no” cases approaches (2− 4p3 + 3p4)/(2− p) ≈ 1.1377 for p = pmax. Hence, Theorem 5
follows.

MFCS 2018

37:14 Approximating Dominating Set on Rectangles and L-frames

NP-hardness. We show a reduction from the Edge Dominating Set problem that is known
to be NP-hard, even on planar bipartite graphs [21]. Recall that the objective of the Edge
Dominating Set problem on a graph is to choose a minimum-cardinality set S of edges of the
graph such that every edge not in S shares at least one endpoint with one edge in S. Given
a planar bipartite graph G = (A ∪B,E), we construct an intersection graph G′ of L-frames
in polynomial time such that G has an edge dominating set of size k if and only if G′ has a
dominating set of size k (in the edge intersection model). To this end, let A = {a1, . . . , ar}
and B = {b1, . . . , bs}, and for each vertex ai ∈ A (resp., vertex bj ∈ B), consider the point
(−i, 0) (resp., point (0,−j)) of the Cartesian coordinate system in the plane. Then, for each
edge (ai, bj) ∈ E(G), add to V (G′) the unique L-frame that connects (−i, 0) to (0,−j) and
has the point (−i,−j) as its corner. See Figure 7. Let G′ be the resulting graph. Clearly,
every L-frame in G′ intersects a vertical and a horizontal line and it can be constructed in
polynomial time. Moreover, notice the one-to-one correspondence between the edges of G
and the L-frames in G′. It is now easy to see that G has an edge dominating set of size k if
and only if G′ has a dominating set of size k (in the edge intersection model).

6 Conclusion

In this paper, we considered the MDS problem on the intersection graphs of rectangles
and L-frames. Among several other approximation and hardness results, we gave a (2 + ε)-
approximation algorithm for the problem on diagonal-anchored rectangles, which was based
on a PTAS for when the rectangles are anchored from one side. However, the complexity of
the latter problem remains open. The problem is NP-hard when the rectangles are anchored
from both sides; is the problem APX-hard? Or, does the problem admit a PTAS? Even,
finding an algorithm with approximation factor better than (2 + ε) remains open.

References

1 Andrei Asinowski, Elad Cohen, Martin Charles Golumbic, Vincent Limouzy, Marina Lip-
shteyn, and Michal Stern. Vertex intersection graphs of paths on a grid. J. Graph Algorithms
Appl., 16(2):129–150, 2012.

2 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
hardness of approximation of Euclidean k-means. In SoCG 2015, Netherlands, 754–767,
volume 34 of Leibniz International Proceedings in Informatics (LIPIcs), 2015.

3 Sayan Bandyapadhyay, Anil Maheshwari, Saeed Mehrabi, and Subhash Suri. Approximat-
ing dominating set on intersection graphs of L-frames. CoRR, abs/1803.06216, 2018.

4 Ayelet Butman, Danny Hermelin, Moshe Lewenstein, and Dror Rawitz. Optimization
problems in multiple-interval graphs. ACM Trans. Algorithms, 6(2):40:1–40:18, 2010.

5 Daniele Catanzaro, Steven Chaplick, Stefan Felsner, Bjarni V. Halldórsson, Magnús M.
Halldórsson, Thomas Hixon, and Juraj Stacho. Max point-tolerance graphs. Discrete
Applied Mathematics, 216:84–97, 2017.

6 Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012.

7 H. S. Chao, Fang-Rong Hsu, and Richard C. T. Lee. An optimal algorithm for finding the
minimum cardinality dominating set on permutation graphs. Discrete Applied Mathematics,
102(3):159–173, 2000.

8 Victor Chepoi and Stefan Felsner. Approximating hitting sets of axis-parallel rectangles
intersecting a monotone curve. Comput. Geom., 46(9):1036–1041, 2013.

S. Bandyapadhyay, A. Maheshwari, S. Mehrabi, and S. Suri 37:15

9 José R. Correa, Laurent Feuilloley, Pablo Pérez-Lantero, and José A. Soto. Independent
and hitting sets of rectangles intersecting a diagonal line: Algorithms and complexity. DCG,
53(2):344–365, 2015.

10 Mirela Damian and Sriram V. Pemmaraju. APX-hardness of domination problems in circle
graphs. Inf. Process. Lett., 97(6):231–237, 2006.

11 Mirela Damian-Iordache and Sriram V. Pemmaraju. A (2+epsilon)-approximation scheme
for minimum domination on circle graphs. J. Algorithms, 42(2):255–276, 2002.

12 Minati De and Abhiruk Lahiri. Geometric dominating set and set cover via local search.
CoRR, abs/1605.02499, 2016. arXiv:1605.02499.

13 Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geometry Appl., 22(3):187–206, 2012.

14 Irit Dinur and Samuel Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162(1):439–485, 2005.

15 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Symposium on
Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
624–633, 2014.

16 Thomas Erlebach and Erik Jan van Leeuwen. Domination in geometric intersection graphs.
In LATIN 2008, Búzios, Brazil, April 7-11, 2008, Proceedings, pages 747–758, 2008.

17 Matt Gibson and Imran A. Pirwani. Algorithms for dominating set in disk graphs: Breaking
the logn barrier - (extended abstract). In ESA 2010, UK, pages 243–254, 2010.

18 Martin Charles Golumbic, Marina Lipshteyn, and Michal Stern. Edge intersection graphs
of single bend paths on a grid. Networks, 54(3):130–138, 2009.

19 Sathish Govindarajan, Rajiv Raman, Saurabh Ray, and Aniket Basu Roy. Packing and
covering with non-piercing regions. In 24th Annual European Symposium on Algorithms,
ESA 2016, August 22-24, 2016, Aarhus, Denmark, pages 47:1–47:17, 2016.

20 Daniel Heldt, Kolja B. Knauer, and Torsten Ueckerdt. Edge-intersection graphs of grid
paths: The bend-number. Discrete Applied Mathematics, 167:144–162, 2014.

21 Joseph D. Horton and Kyriakos Kilakos. Minimum edge dominating sets. SIAM J. Discrete
Math., 6(3):375–387, 1993.

22 J. Mark Keil, Joseph S. B. Mitchell, Dinabandhu Pradhan, and Martin Vatshelle. An
algorithm for the maximum weight independent set problem on outerstring graphs. Comput.
Geom., 60:19–25, 2017.

23 Dániel Marx. Parameterized complexity of independence and domination on geometric
graphs. In Parameterized and Exact Computation, Second International Workshop, IWPEC
2006, Zürich, Switzerland, September 13-15, 2006, Proceedings, pages 154–165, 2006.

24 Saeed Mehrabi. Approximating domination on intersection graphs of paths on a grid.
In 15th International Workshop on Approximation and Online Algorithms (WAOA 2017),
Vienna, Austria, pages 76–89, 2017.

25 Apurva Mudgal and Supantha Pandit. Covering, hitting, piercing and packing rectangles
intersecting an inclined line. In COCOA 2015, Houston, TX, USA, pages 126–137, 2015.

26 Nabil H. Mustafa and Saurabh Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010.

27 Supantha Pandit. Dominating set of rectangles intersecting a straight line. In CCCG 2017,
Ottawa, Ontario, Canada, pages 144–149, 2017.

28 Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6,
1997, pages 475–484, 1997.

MFCS 2018

http://arxiv.org/abs/1605.02499

On Efficiently Solvable Cases of Quantum k-SAT

Marco Aldi
Department of Mathematics and Applied Mathematics, Virginia Commonwealth University,
Richmond, VA, USA
maldi2@vcu.edu

Niel de Beaudrap1

Department of Computer Science, University of Oxford, UK
niel.debeaudrap@cs.ox.ac.uk

Sevag Gharibian2

Department of Computer Science, University of Paderborn, Germany, and Virginia
Commonwealth University, USA
sevag.gharibian@uni-paderborn.de

Seyran Saeedi
Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA
saeedis@vcu.edu

Abstract
The constraint satisfaction problems k-SAT and Quantum k-SAT (k-QSAT) are canonical NP-
complete and QMA1-complete problems (for k ≥ 3), respectively, where QMA1 is a quantum
generalization of NP with one-sided error. Whereas k-SAT has been well-studied for special tract-
able cases, as well as from a parameterized complexity perspective, much less is known in similar
settings for k-QSAT. Here, we study the open problem of computing satisfying assignments to
k-QSAT instances which have a “matching” or “dimer covering”; this is an NP problem whose
decision variant is trivial, but whose search complexity remains open.

Our results fall into three directions, all of which relate to the “matching” setting: (1) We
give a polynomial-time classical algorithm for k-QSAT when all qubits occur in at most two
clauses. (2) We give a parameterized algorithm for k-QSAT instances from a certain non-trivial
class, which allows us to obtain exponential speedups over brute force methods in some cases by
reducing the problem to solving for a single root of a single univariate polynomial. (3) We conduct
a structural graph theoretic study of 3-QSAT interaction graphs which have a “matching”. We
remark that the results of (2), in particular, introduce a number of new tools to the study of
Quantum SAT, including graph theoretic concepts such as transfer filtrations and blow-ups from
algebraic geometry; we hope these prove useful elsewhere.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and
exact algorithms, Theory of computation → Quantum complexity theory

Keywords and phrases search complexity, local Hamiltonian, Quantum SAT, algebraic geometry

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.38

Related Version A full version of this paper is available at https://arxiv.org/abs/1712.
09617.

1 NdB acknowledges support from the EPSRC National Quantum Technology Hub in Networked Quantum
Information Processing.

2 SG acknowledges support from NSF grants CCF-1526189 and CCF-1617710.

© Marco Aldi, Niel de Beaudrap, Sevag Gharibian, and Seyran Saeedi;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 38; pp. 38:1–38:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maldi2@vcu.edu
mailto:niel.debeaudrap@cs.ox.ac.uk
mailto:sevag.gharibian@uni-paderborn.de
mailto:saeedis@vcu.edu
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.38
https://arxiv.org/abs/1712.09617
https://arxiv.org/abs/1712.09617
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 On Efficiently Solvable Cases of Quantum k-SAT

Funding This work was partially supported by the EPSRC National Quantum Technology Hub in
Networked Quantum Information Processing, and NSF grants CCF-1526189 and CCF-1617710.

Acknowledgements The first result of this project was partially completed while NdB was
affiliated with the Centrum Wiskunde & Informatica; SG thanks Ronald de Wolf and Centrum
Wiskunde & Informatica for their hospitality. SG thanks Howard Barnum and David Reeb
regarding discussions on algebraic geometry, and David Gosset for discussions on Quantum SAT.

1 Introduction

Constraint satisfaction problems (CSPs) are cornerstones of both classical and quantum
complexity theory. Indeed, CSPs such as 3-SAT and MAX-2-SAT are complete for NP [13],
and their analogues Quantum 3-SAT (3-QSAT) and the 2-local Hamiltonian problem are
QMA1- and QMA-complete, respectively [3, 10, 16, 15]. (QMA is Quantum Merlin-Arthur,
a quantum generalization of Merlin-Arthur, and QMA1 is QMA with perfect completeness.)
As such CSPs are intractable in the worst case, approaches such as approximation algorithms,
heuristics, and exact algorithms are employed. In this paper, we focus on the latter technique,
and ask: Which special cases of k-QSAT can be solved efficiently on a classical computer?

Unfortunately, this problem appears to be markedly more difficult than in the classical
setting. For example, classically, if each clause c of a k-SAT instance can be matched with a
unique variable vc, then clearly the k-SAT instance is satisfiable, and finding a solution is
trivial: Set variable vc to satisfy clause c. (Note that the matching can be found efficiently
via, e.g., the Ford-Fulkerson algorithm [11].) In the quantum setting, it has been known [17]
since 2010 that k-QSAT instances with such “matchings” (also called a “dimer covering” in
physics [17]) are also satisfiable, and moreover the satisfying assignment can be represented
succinctly as a tensor product state. Yet, finding the satisfying assignment efficiently has
proven elusive (indeed, the proof of [17] is non-constructive). In other words, we have a
trivial NP decision problem whose analogous search version is not known to be efficiently
solvable (see, e.g., [2] regarding the longstanding open question of decision versus search
complexity for NP problems). This is the starting point of the present work.

Results and techniques. Our results fall under three directions, all of which are related to
k-QSAT with matchings. For this, we first define Quantum k-SAT (k-QSAT) [3] and the
notion of a system of distinct representatives (SDR). For k-QSAT, the input is a two-tuple
Π = ({Πi = |ψi〉〈ψi|}i, α) of rank 1 projectors or clauses Πi ∈ L(C2)⊗k, each acting non-
trivially on a set of k (out of n) qubits, and non-negative real number α > 1/p(n) for some
fixed polynomial p. The output is to decide whether there exists a satisfying assignment
on n qubits |ψ〉 ∈ (C2)⊗n, i.e. to distinguish between the cases Πi|ψ〉 = 0 for all i (YES
case), or whether 〈ψ|

∑
i Πi|ψ〉 ≥ α (NO case). Note that k-QSAT generalizes k-SAT. As

for a system of distinct representatives (SDR) (see, e.g., [12]), given a set system such as a
hypergraph G = (V,E), an SDR is a set of vertices V ′ ⊆ V such that each edge in e ∈ E is
paired with a distinct vertex ve ∈ V ′ such that ve ∈ e. In previous work on QSAT, an SDR
has been referred to as a “dimer covering” [17].

1. Quantum k-SAT with bounded occurrence of variables. Our first result concerns the natural
restriction of limiting the number of times a variable can appear in a clause. For example,
3-SAT with at most 3 occurrences per variable is NP-hard. We complement this as follows.

I Theorem 1. There exists a polynomial time classical algorithm which, given an instance Π
of k-QSAT in which each variable occurs in at most two clauses, outputs a satisfying product
state if Π is satisfiable, and otherwise rejects. Moreover, the algorithm works for clauses
ranging from 1-local to k-local in size.

M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi 38:3

To show this, our idea is to “partially reduce” the k-QSAT instance to a 2-QSAT instance.
We then use the transfer matrix techniques of [3, 18, 4] (particularly the notion of chain
reactions from [4]), along with a new notion of “fusing” chain reactions, to deal with the
remaining clauses of locality at least 3 in the instance.

Although this setting seems unrelated to the open question of computing solutions to
k-QSAT instances with SDRs, we show the following. Denote the interaction hypergraph
G = (V,E) of a k-QSAT instance as a k-uniform hypergraph (i.e. all edges have size precisely
k), in which the vertices correspond to qubits, and each clause c acting on a set of k qubits
Sc, is represented by a hyperedge of size k containing the vertices corresponding to Sc.

I Theorem 2. Let G = (V,E) be a hypergraph with all hyperedges of size at least 2, and
such that each vertex has degree at most 2. Then, G has an SDR.

Thus, Theorem 1 resolves the open question of [17] for k-QSAT instances with SDRs in
which (1) each variable occurs in at most two clauses and (2) there are no 1-local clauses.
((2) is necessary, as allowing edges of size 1 easily makes Theorem 2 false in general.)

2. On parameterized complexity for Quantum k-SAT. Our next result, and the main con-
tribution of this paper, gives a parameterized algorithm3 for explicitly computing (product
state) solutions for a non-trivial class of k-QSAT instances. As discussed in Section 3, this
algorithm in some cases provides an exponential speedup over brute force diagonalization.

At the core of the algorithm is a new graph theoretic notion of transfer filtration of type
b for a k-uniform hypergraph G = (V,E), for fixed b > 0. Intuitively, one should think of b
as denoting the size of a set of b qubits which form the hard “foundation”’ of any k-QSAT
instance on G. With the notion of transfer filtration in hand, our framework for attacking
k-QSAT can be sketched at a high level as follows.
1. First, given a k-QSAT instance Π on G with transfer filtration of type b, we “blow-up” Π

to a larger, decoupled instance Π+ (Decoupling Lemma, Lemma 9). The decoupled nature
of Π+ makes it “easier” to solve (Transfer Lemma, Lemma 17), in that any assignment
to the b “foundation” qubits can be extended to a solution to all of Π+. This raises the
question – how does one map the solution of Π+ back to a solution of Π?

2. We next give a set of “qualifier” constraints {hs} (Qualifier Lemma, Lemma 19) acting
on only the b foundation qubits, with the following strong property: If a (product state)
assignment v to the b foundation qubits satisfies the constraints {hs}, then not only can
we extend v via the Transfer Lemma to a full solution for Π+ as in Step 1 above, but we
can also map this extended solution back to one for the original k-QSAT instance Π.

Once the framework above is developed, we show that it applies to the non-trivial family of
k-QSAT instances whose k-uniform hypergraph G = (V,E) has a transfer filtration of type
b = |V | − |E|+ 1. This family includes, e.g., the semi-cycle, tiling of the torus, and “fir tree”
(full version). Our main result (Theorem 23) says the following: For any k-QSAT instance Π
on such a G and whose constraints are generic (see Section 3), computing a (product state)
solution to Π reduces to solving for a root of a single univariate (see Remark 25) polynomial
P – any such root (which always exists if the field K is algebraically closed) can then be
extended back to a full solution for Π.

The key advantage of this approach, and what makes it a parameterized algorithm, is the
following – the degree of P , and hence the runtime of the algorithm, scale exponentially only
in b and a “radius” parameter r of the transfer filtration. Thus, given a transfer filtration

3 Roughly, parameterized complexity characterizes the complexity of computational problems with respect
to specific parameters of interest other than just the input size (e.g. the treewidth of the input graph).

MFCS 2018

38:4 On Efficiently Solvable Cases of Quantum k-SAT

where b and r are at most logarithmic, finding a (product state) solution to k-QSAT reduces
to solving for a single root over C for a single univariate polynomial h1 of polynomial degree,
which can be done in polynomial time [25, 24]. Indeed, in Section 3 we give a non-trivial
family of k-uniform hypergraphs, denoted Crash, for which our algorithm runs in polynomial
time, whereas brute force diagonalization would require exponential time.

Conveniently, even when the foundation b and radius r are superlogarithmic, our algorithm
still gives a constructive proof that all k-QSAT instances satisfying the preconditions of
Theorem 23 have a (product state) solution. In particular, in Corollary 27, we observe that
such hypergraphs must have SDRs, and so we constructively reproduce the result of [17] that
any 3-QSAT instance with an SDR is satisfiable (by a product state) (again, assuming the
additional conditions of Theorem 23 are met).

Finally, although this result stems primarily from tools of projective algebraic geometry
(AG), the presentation herein avoids any explicit mention of AG terminology (with the
exception of defining the term “generic” in Section 3.3) to be accessible to readers without
an AG background. A brief overview of the ideas in AG terms is given in the full version.

3. A study of 3-uniform hypergraphs with SDRs. Our final contribution, which we hope guides
future studies on the topic, is to take steps towards understanding the structure of all 3-QSAT
instances with SDRs, particularly when |E| = |V |. Unfortunately, this seems a difficult task
(if not potentially impossible, see “finite characterization” comments below). We first give
various characterizations involving intersecting families (each pair of edges has non-empty
intersection). We then study linear hypergraphs (each pair of edges intersects in at most
one vertex), which are generally more complex. (For example, the set of edge-intersection
graphs of 3-uniform linear hypergraphs is known not to have a “finite” characterization
in terms of a finite list of forbidden induced subgraphs [19].) We study “extreme cases”
of linear hypergraphs with SDRs, such as the Fano plane and “tiling of the torus”, and
in contrast to these two examples, demonstrate a (somewhat involved) linear hypergraph
we call the iCycle which also satisfies the Helly property (which generalizes the notion
of “triangle-free”). A main conclusion of this study is that even with multiple additional
restrictions in place (e.g. linear, Helly), the set of 3-uniform hypergraphs with SDRs remains
non-trivial. To complement these results, we show how to fairly systematically construct
large linear hypergraphs with |E| = |V | without SDRs. We hope this work highlights the
potential complexity involved in dealing with even the “simple” case of 3-QSAT with SDRs.

Discussion, previous work and open questions. Regarding our parameterized algorithm,
our notions of transfer filtrations and blow-ups apply to any instance of k-QSAT (and
thus also4 k-SAT), including QMA1-complete instances. (For example, every k-uniform
hypergraph has a trivial foundation obtained by iteratively removing vertices until the
resulting set contains no edges. A key question is how small the foundation and radius
of the filtration can be chosen for a given hypergraph, as our algorithm’s runtime scales
exponentially in these parameters.) More precisely, our techniques in Section 3, up to and
including the Qualifier Lemma, apply to arbitrary k-QSAT instances. The main question is
when local solutions to the qualifier constraints (which act only on b out of n qubits) can

4 For the special case of k-SAT, note that it is not a priori clear that having a transfer filtration with a
small foundation suffices to solve the system trivially. This is because the genericity assumption on
constraints, which k-SAT constraints do not satisfy, is required to ensure that any assignment to the
foundation propagates to all bits in the instance. Thus, the brute force approach of iterating through
all 2b assignments to the foundation does not obviously succeed.

M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi 38:5

be extended to global solutions to the entire k-QSAT instance. We answer this question
affirmatively for the non-trivial class of k-QSAT instances which satisfy the preconditions
of Theorem 23 (e.g. the semi-cycle, fir tree, crash, and any k-uniform hypergraph with
b = |V |− |E|+1), obtaining polynomial to exponential speedups over brute force in Section 3.

Moving to previous work, Quantum k-SAT was introduced by Bravyi [3], who gave an
efficient (quartic time) algorithm for 2-QSAT, and showed that 4-QSAT is QMA1-complete.
Subsequently, Gosset and Nagaj [10] showed that Quantum 3-SAT is also QMA1-complete,
and independently and concurrently, Arad, Santha, Sundaram, Zhang [1] and de Beaudrap,
Gharibian [4] gave linear time algorithms for 2-QSAT. The original inspiration for this paper
was the work of Laumann, Läuchli, Moessner, Scardicchio and Sondhi [17], which showed
existence of a product state solution for any k-QSAT instance with an SDR. Thus, the decision
version of k-QSAT with SDRs is in NP and trivially efficiently solvable. However, whether
the search version (i.e. compute an explicit satisfying assignment) is also in P remains open.
The question of whether the decision and search complexities of NP problems are the same
is a longstanding open problem in complexity theory; conditional results separating the two
are known (see e.g. Bellare and Goldwasser [2]).

Regarding classical k-SAT, as mentioned above, in contrast to k-QSAT, solutions to k-SAT
instances with an SDR can be trivially computed. As for parameterized complexity, classically
it is a well-established field of study (see, e.g., [5] for an overview). The parameterized
complexity of SAT and #SAT, in particular, has been studied by a number of works, such
as [26, 6, 23, 7, 22, 21, 8], which consider parameterizations including based on tree-width,
modular tree-width, branch-width, clique-width, rank-width, and incidence graphs which
are interval bipartite graphs. Regarding parameterized complexity of Quantum SAT, as far
as we are aware, our work is the first to initiate a “formal” study of the subject; however,
we should be clear that existing works in Quantum Hamiltonian Complexity [20, 9] have
long implicitly used “parameterized” ideas (e.g. in tensor network contraction, the bond
dimension can be viewed as a parameter constraining the complexity of the contraction).

We close with open questions. Which ideas from classical parameterized complexity be
generalized to the quantum setting? We develop a number of tools for studying Quantum
SAT – can these be applied in more general settings, for example beyond the families of
k-QSAT instances considered in Theorem 23? The “parameter” in our results of Section 3
involves the radius of a transfer filtration – whether a transfer filtration (of a fixed type b) of
minimum radius can be computed efficiently, however, is left open for future work. Similarly,
it is not clear that given b ∈ N, the problem of deciding whether a given hypergraph G has a
transfer filtration of type at most b is in P. We conjecture this latter problem is NP-complete.
Finally, the question of whether solutions to arbitrary instances of k-QSAT with SDRs can
be computed efficiently (recall they are guaranteed to exist [17]) remains open.

Organization. Section 2 gives an efficient algorithm for 3-QSAT with bounded occurrence
of variables, and introduces the notion of transfer matrices (which are generalized via
transfer functions in Section 3). Our main result is given in Section 3, and concerns a new
parameterized complexity-type approach for solving k-QSAT. Our structural graph theoretic
study of hypergraphs with SDRs, and any omitted proofs, are deferred to the full version.

Notation and basic definitions. For complex Euclidean space X , L(X) denotes the set of
linear operators mapping X to itself. For unit vector |ψ〉 ∈ C2, the unique orthogonal unit
vector (up to phase) is denoted |ψ⊥〉, i.e. 〈ψ|ψ⊥〉 = 0.

MFCS 2018

38:6 On Efficiently Solvable Cases of Quantum k-SAT

I Definition 3 (Hypergraph). A hypergraph is a pair G = (V,E) of a set V (vertices), and a
family E (edges) of subsets of V . If each vertex has degree d, we say G is d-regular. When
convenient we use V (G) and E(G) to denote the vertex and edge sets of G, respectively. We
say G is k-uniform if all edges have size k.

I Definition 4 (Cycle, Semicycle, Chain [14]). A k-uniform hypergraph G = (V,E) is a cycle
if there exists a sequence S = (v1, v2, ..., vl) ∈ V l for l ≥ n such that (1) v ∈ S for all v ∈ V ,
(2) for all 1 ≤ i ≤ l, ei = {vi, vi+1, ..., vi+k−1} are distinct edges in E, where indices are
understood modularly. The length of the cycle G is m = l. If instead 1 ≤ i ≤ l − k + 1 and
v1 = vl (v1 6= vl), we obtain a semicycle (chain) of length m = l − k + 1.

2 Quantum SAT with bounded occurrence of variables

Transfer matrices, chain reactions, and cycle matrices. To study 3-QSAT with each
qubit occurring in at most two constraints, we first recall transfer matrix tools from the
study of 2-QSAT [3, 18, 4]. For any rank-1 constraint Πi = |ψ〉〈ψ| ∈ L((C2)⊗k), consider
Schmidt decomposition |ψ〉 = α|a0〉|b0〉 + β|a1〉|b1〉, where |ai〉 ∈ (C2)⊗(k−1) lives in the
Hilbert space of the first k− 1 qubits and |bi〉 ∈ C2 the last qubit. Then, the transfer matrix
Tψ : (C2)⊗k−1 7→ C2 is given by Tψ = β|b0〉〈a1| − α|b1〉〈a0|. In words, given any assignment
|φ〉 to the first k − 1 qubits, if Tψ|φ〉 ∈ C2 is non-zero, then it is the unique assignment to
qubit k (given |φ〉 on qubits 1 to k − 1) which satisfies Πi.

In the special case of k = 2, transfer matrices are particularly useful. Consider first a
2-QSAT interaction graph (which is a 2-uniform hypergraph, or just a graph) G = (V,E)
which is a path, i.e. a sequence of edges e1 = (v1, v2), e2 = (v2, v3), . . . , em = (vm−1, vm) for
distinct vi ∈ V , and where edge ei corresponds to constraint |ψi〉. Then, any assignment
|φ〉 ∈ C2 to qubit 1 induces a chain reaction (CR) in G, meaning qubit 2 is assigned Tψ1 |φ〉,
qubit 3 is assigned Tψ2Tψ1 |φ〉, and so forth. If this CR terminates before all qubits labelled
by V receive an assignment, which occurs if Tψi |φ′〉 = 0 for some i, this means that constraint
i (acting on qubits i and i + 1) is satisfied by the assignment |φ′〉 to qubit i alone, and
no residual constraint is imposed on qubit i + 1. Thus, the graph G is reduced to a path
ei+1, . . . , em. In this case, we say the CR is broken. Note that if G is a path, then it is a
satisfiable 2-QSAT instance with a product state solution.

Finally, consider a 2-QSAT instance whose interaction graph G is a cycle C = (v1, . . . ,

vm+1) with m. Then, a CR induced on vertex v1 with any assignment |ψ〉 ∈ C2 will in
general propagate around the cycle and impose a consistency constraint on v1. Formally,
denote TC = Tψm

· · ·Tψ1 ∈ L(C2) as the cycle matrix of C. Then, if the cycle matrix is not
the zero matrix, it be shown that the satisfying assignments for the cycle are precisely the
eigenvectors of TC . (If TC = 0, any assignment on v1 will only propagate partially around
the cycle, thus decoupling the cycle into two paths.) Thus, if G is a cycle, it has a product
state solution.

Here, when we refer to “solving the path or cycle”, we mean applying the transfer matrix
techniques above to efficiently compute a product state solution to the path or cycle.

k-QSAT with bounded occurence of variables. We now prove Theorem 1.

Proof of Theorem 1. We begin by setting terminology. Let Π be an instance of k-QSAT
with k-uniform interaction graph G = (V,E). For any clause c, let Qc denote the set of qubits
acted on c, i.e. Qc is the edge in G representing c. We say c is stacked if Qc is contained in
another clause Qc′ , i.e. if ∃c′ 6= c such that Qc ⊆ Qc′ . For a qubit v, we use shorthand |v〉 to

M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi 38:7

denote the current assignment from C2 to v. For a clause c, |c〉 denotes the bad subspace of
c, i.e. clause c is given by rank-1 projector I − |c〉〈c|. The set of clauses vertex v appears in
is denoted Cv. For any assignment |v〉, let S|v〉 = {〈v|c〉 | c ∈ Cv} ⊆

⋃k−1
i=0 C2i , where recall

c can be a clause on 1, . . . , k qubits, and we assume 〈v| acts as the identity on the qubits
of c which are not v. Thus, S|v〉 is the set of constraints we obtain by taking the clauses in
Cv, and projecting down qubit v in each clause onto assignment |v〉 (i.e. clauses in S|v〉 do
not act on v). Our algorithm will satisfy that the only possible element of C in S|v〉 is 0,
obtained by projecting a constraint |c〉 ∈ C2 onto its orthogonal complement to satisfy it;
thus, assume without loss of generality that S|v〉 ⊆

⋃k−1
i=1 C2i . Finally, two 1-local clauses

|c〉, |c′〉 ∈ C2 conflict if |c〉 and |c′〉 are linearly independent.

Algorithm A. Let Π satisfy the conditions of our claim. We repeatedly “partially reduce”
Π to a 2-QSAT instance, and use the transfer matrix techniques outlined above to solve this
subproblem. Combining this with a new notion of fusing CRs, the technique can be applied
iteratively to reduce k-local constraints to 2-local ones until the entire instance is solved.
Note: If a CR on a path is broken by a transfer matrix Tψ on edge (u, v), i.e. Tψ|u〉 = 0, we
implicitly continue by choosing assignment |0〉 on v to induce a new CR on the path.

1. While there exists a 1-local constraint c acting on some qubit v:
a. If c conflicts with another 1-local clause on v, reject. Else, set |v〉 = |c⊥〉 ∈ C2. Set5

Cv = S|v〉, and remove v from Π.
2. While there exists a qubit v appearing only in clauses of size at least k′ ≥ 3:

a. Set |v〉 = |0〉 and Cv = S|v〉. Remove v from Π.
3. While there exists a 2-local clause:

a. If there exists a stacked 2-local clause c, i.e. c′ 6= c such that Qc ⊆ Qc′ :
i. If Qc = Qc′ , remove the qubits c acts on, and set their values to satisfy c and c′.
ii. Else, Qc ⊂ Qc′ . Thus, c′ is k′-local for 3 ≤ k′ ≤ k. Set the values of the qubits in

Qc so as to satisfy c. This collapses c′ to a (k′ − 2)-local constraint on Qc′ \Qc.
A. If k′ − 2 = 1, then c′ has been collapsed to a 1-local constraint on some vertex

v ∈ Qc′ \Qc, creating a path rooted at v. Set v so as to satisfy c′, and use a CR
to solve the resulting path until either the path ends, or a k′′-local constraint is
hit for 3 ≤ k′′ ≤ k′. In the latter case (Figure 1, Left), the k′′-local constraint is
reduced to a (k′′ − 1)-local constraint and we return to the beginning of Step 3.

b. Else, pick an arbitrary 2-local clause c acting on variables v1 and v2. Then, v1 (v2) is
the start of a path h1 (h2) (e.g., Figure 1, Middle).
i. If the path forms a cycle from v1 to v2, use the cycle matrix to solve the cycle.

Remove the corresponding qubits and clauses from Π.
ii. Else, set v1 and v2 so as to satisfy c. Solve the resulting paths h1 (h2) until a

k′-local (k′′-local) constraint l1 (l2) is hit for 3 ≤ k′ ≤ k (3 ≤ k′′ ≤ k). If both l1
and l2 are found:
A. If l1 = l2 (i.e. k′ = k′′) and k′ − 2 = 1, then fuse the paths h1 and h2 into a

new path beginning at the qubit in l1 which is not in h1 or h2 (Figure 1, Right).
Iteratively solve the resulting path until a k′-local constraint is hit for 3 ≤ k′ ≤ k.

4. If any qubits are unassigned, set their values to |0〉.

In the full version, we prove correctness, run algorithm A on a sample input, and discuss
its general applicability to an entire family of non-trivial 3-QSAT instances. J

5 Note there is one “global copy” of each clause c that is “shared” by all Cv.

MFCS 2018

38:8 On Efficiently Solvable Cases of Quantum k-SAT

v1 v2 v3 v4 v5 v1 v2 v3 v4

v1 v2 v3

v4

v5v6v7

Figure 1 (Left) Solving the path rooted at v1 via CR satisfies clauses (v1, v2) and (v2, v3), and
projects clause (v3, v4, v5) onto a 2-local residual clause on (v4, v5). The CR then stops. (Middle)
Letting c denote the clause on (v2, v3), v2 is the start of path (v2, v1, . . .), and v3 is the start of path
(v3, v4, . . .). (Right) Inducing CRs on v1 and v7, we assign values to v3 and v5. This collapses 3-local
clause (v3, v4, v5) into a 1-local clause on v4 with a unique satisfying assignment, which induces a
new CR starting at v4. Thus, two CR’s are “fused” into one CR.

3 Quantum SAT and parameterized algorithms

We next develop a parameterized algorithm for computing an explicit (product state) solution
to a non-trivial class of k-QSAT instances (Theorem 23). Although the inspiration stems
from algebraic geometry (AG), we generally avoid AG terminology to increase accessibility
(see the full version for an overview in AG terms).

3.1 The transfer type of a hypergraph
I Definition 5. A hypergraph G = (V,E) is of transfer type b if there exists a chain of
subhypergraphs (denoted a transfer filtration of type b) G0 ⊆ G1 ⊆ · · · ⊆ Gm = G and an
ordering of the edges E(G) = {E1, . . . , Em} such that
1. E(Gi) = {E1, . . . , Ei} for each i ∈ {0, . . . ,m},
2. |V (Gi)| ≤ |V (Gi−1)|+ 1 for each i ∈ {1, . . . ,m},
3. if |V (Gi)| = |V (Gi−1)|+ 1, then V (Gi) \ V (Gi−1) ⊆ Ei,
4. |V (G0)| = b, where we call V (G0) the foundation,
5. and each edge of G has at least one vertex not in V (G0).
In other words, a transfer filtration of type b builds up G iteratively by choosing b vertices
as a “foundation”, and in each iteration adding precisely one new edge Ei and at most one
new vertex. If a new vertex is added in iteration i, condition (3) says it must be in edge Ei
added in iteration i.

I Example 6 (Running example). We introduce a hypergraph G to serve as a running
example in this section. Let V (G) = {1, 2, 3, 4} with edges E1 = {1, 2, 3}, E2 = {1, 2, 4},
E3 = {1, 3, 4} and E4 = {2, 3, 4}. By Definition 4, G is a 3-uniform cycle. Consider
hypergraphs G0, G1, G2, G3 such that V (G0) = {1, 2}, V (G1) = {1, 2, 3}, V (G2) = V (G3) =
V (G4) = V (G), E(G0) = ∅ and E(Gj) = {E1, . . . , Ej} for j = 1, 2, 3. Then G0 ⊆ G1 ⊆
G2 ⊆ G3 ⊆ G4 = G is a transfer filtration of type 2, G2 is a chain, and G3 is a semicycle.

I Remark 7. Let G be a hypergraph with transfer filtration G0 ⊆ G1 ⊆ · · · ⊆ Gm = G

of type b. Order the edges of G so that E(Gi) = {E1, . . . , Ei} ∀i ∈ {1, . . . ,m}. Since by
construction each edge contains at least one vertex not in V (G0), there exists a function r :
{1, . . . ,m} → {0, . . . ,m− 1} such that r(i) < i and |Ei \ V (Gr(i))| = 1 for all i ∈ {1, . . . ,m}.

I Example 8 (Running example). Let G be the 3-uniform cycle of Example 6. Then one can
choose r : {1, 2, 3, 4} → {0, 1, 2, 3} with r(1) = r(2) = 0, r(3) = 1 and r(4) = 1.

As the first step in our construction, we show how to map any k-uniform hypergraph G of
transfer type b to a new k-uniform hypergraph G′ of transfer type b whose transfer filtration

M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi 38:9

v1

v2 v3

v4

v1

v2 v3

v4 v5

Figure 2 For the hypergraph on the left, consider the transfer filtration with foundation G0 =
{v1, v2}, and we iteratively add edges {v1, v2, v3}, {v1, v2, v4}, and {v1, v3, v4}. The Decoupling
Lemma maps this hypergraph to the one on the right, decoupling the intersection on vertex v4. The
surjective function p “undoes” the decoupling by mapping v1, v2, v3 to themselves, and v4, v5 to v4.

must add a vertex in each step (this follows directly from the relationship between |V (G)|
and |E(G)| below). This has two effects worth noting: First, G′ is guaranteed to have an
SDR. Second, it decouples certain intersections in the hypergraph, as illustrated in Figure 2.
For clarity, in the lemma below, for a function p acting on vertices, we implicitly extend its
action to edges in the natural way, i.e. if e = (v1, v2, v3) then p(e) = (p(v1), p(v2), p(v3)).

I Lemma 9 (Decoupling lemma). Given a k-uniform hypergraph G of transfer type b, there
exists a k-uniform hypergraph G̃ of transfer type b with |E(G)|+ b vertices and a surjective
function p : V (G̃)→ V (G) such p(Ẽ) ∈ E(G) for every Ẽ ∈ E(G̃).

Proof. (Sketch) Let G0 ⊆ G1 ⊆ · · · ⊆ Gm = G be a transfer filtration such that V (G0) =
{1, . . . , b}, E(Gi) = {E1, . . . , Ei} for every i ≥ 1 and let r : {1, . . . ,m} → {0, . . . ,m− 1} as
in Remark 7. By Remark 7, there is a surjection p : {1, . . . ,m+ b} → {1, . . . , n} such that
p(i) = i for all i ∈ {1, . . . , b} and {p(i)} = Ei−b \V (Gr(i−b)) for all i ∈ {b+1, . . . , b+m}. For
each j ∈ {1, . . . ,m+ b}, let j = min(p−1(p(j))) and Ẽi = {i+ b}∪{j | j ∈ p−1(Ei \p(i+ b))}
for each i ∈ {1, . . . ,m}. Setting V (G̃i) = {1, . . . , b} and E(G̃i) = {Ẽ1, . . . , Ẽi} for each
i = {0, . . . ,m} we obtain a transfer filtration G̃0 ⊆ G̃1 ⊆ · · · ⊆ G̃m = G̃ of type b satisfying
the requirements of the claim. J

I Example 10 (Running example). Let G be the 3-uniform cycle of Example 6. The proof of
Lemma 9 (full version) produces a 3-uniform hypergraph G̃ with vertices {1, 2, 3, 4, 5, 6} and
edges Ẽ1 = {1, 2, 3}, Ẽ2 = {1, 2, 4}, Ẽ3 = {1, 3, 5}, Ẽ4 = {2, 3, 6}, and surjective function p :
{1, 2, 3, 4, 5, 6} → {1, 2, 3, 4} defined by p(1) = 1, p(2) = 2, p(3) = 3, p(4) = p(5) = p(6) = 4.
This choice is not unique: setting Ẽ4 = {2, 4, 6} and p(6) = 3 also satisfies Lemma 9.

One of the “parameters” in our parameterized approach will be the radius of a transfer
filtration, defined next. The concept is reminiscent of radii of graphs, and roughly measures
“how far” an edge is from the foundation of b vertices with respect to the filtration.

I Definition 11 (Radius of transfer filtration). Let G be a hypergraph admitting a transfer
filtration G0 ⊆ · · · ⊆ Gm = G of type b. Consider the function (whose existence is
guaranteed by Remark 7) r : {0, . . . ,m} → {0, . . . ,m− 1} such that r(0) = 0 and r(i) is the
smallest integer such that |Ei \ V (Gr(i))| = 1 ∀i ∈ {1, . . . ,m}. The radius of the transfer
filtration G0 ⊆ · · · ⊆ Gm = G of type b is the smallest integer β such that rβ(i) = 0 for all
i ∈ {1, . . . ,m} (rβ denotes composition of r with itself β times). The type b radius of G is
the minimum value ρ(G, b) of β over the set of all possible transfer filtrations of type b on G.

MFCS 2018

38:10 On Efficiently Solvable Cases of Quantum k-SAT

I Example 12 (Running example). For G the 4-cycle from Example 6, since function r

described in Example 8 is non-constant and r(r(i)) = 0 for all i ∈ {1, 2, 3, 4}, the transfer
filtration of Example 6 has radius β = 2.

3.2 The main construction
Let W be a two dimensional vector space over a field K. To discuss k-local constraints
and product state solutions to k-QSAT instances, we now set up somewhat more general
terminology than is standard in the literature. While this level of generality is natural given
the geometric nature of our construction, for simplicity one may set K = C and identify W
with C2 if desired.

I Definition 13. A function Hi : Wn → K is k-local if there exists a subset Ei =
{i1, . . . , ik} ⊆ {1, . . . , n} and a nonzero functional H∗i : W⊗k → K such that Hi(v1, . . . , vn) =
H∗i (vi1 ⊗ · · · ⊗ vik) for all v1, . . . , vn ∈ W , i.e. Hi acts non-trivially only on a subset of
k indices. A collection H = (H1, . . . ,Hm) of k-local functions H1, . . . ,Hn : Wn → K is
k-local. The corresponding subsets Ei (i.e. on which Hi acts non-trivially) are the edges of a
hypergraph GH with vertices {1, . . . , n}, the interaction graph of H . The product satisfiability
set of k-local collection H is the set SH of all (v1, . . . , vn) ∈ Wn such that vi 6= 0 for all
i ∈ {1, . . . , n} and Hj(v1, . . . , vn) = 0 for all j ∈ {1, . . . ,m}.

I Remark 14. Consider an isomorphism] between W and its dual W∨ that to each v ∈W
assigns a functional v] ∈W∨ such that v](v) = 0. For instance, if a basis {w1, w2} for W is
chosen then we may define] by setting ((a1w1 + a2w2)])(b1w1 + b2w2) = a1b2 − a2b1 for all
a1, a2, b1, b2 ∈ K. Given any v1, v2 ∈W , v]1(v2) = 0 if and only if ∃λ ∈ K such that λv2 = v1.

I Definition 15. For N ∈ Z+, the Fibonacci numbers of order N are the entries of the
sequence (F (N)

r) such that F (N)
r = F

(N)
r−1 + . . .+F

(N)
r−N for all r ≥ N , F (N)

N−1 = 1 and F (N)
r = 0

for all r ≤ N − 2. Note that there exists [27] a monotonically increasing sequence (ψN) with
values in the real interval [1, 2) such that, for each N ≥ 1, F (N)

r ∼ ψrN as r → +∞.

I Definition 16. A function f onW l with values in a K-vector space has degree (d1, . . . , dl) if
f(λ1v1, . . . , λlvl) = λd1

1 · · ·λ
dl

l f(v1, . . . , vl) for every λ1, . . . , λl ∈ K and every v1, . . . , vl ∈W .

Applying the Decoupling Lemma to an input k-uniform hypergraph G with transfer type
b, we obtain a k-uniform hypergraph G̃ of type b with m = n− b, for m and n the number
of edges and vertices, respectively. The next lemma shows that G̃ is “easier to solve”, in that
any global (product) solution to the k-QSAT system can be derived from a set of assignments
to the b foundation vertices, and conversely, any (product) assignment to the latter can be
extended to a global (product) solution.

I Lemma 17 (Transfer Lemma). Let H = (H1, . . . ,Hn−b) be a k-local collection of functions
Hi : Wn → K whose interaction graph is a k-uniform hypergraph of transfer type b. There
exist non-zero (non-constant) functions, “transfer functions” g1, . . . , gn : W b →W , s.t.:
1. (Global to local assignments) If (v1, . . . , vn) ∈ SH (recall vi 6= 0 by definition of SH) there

exist nonzero λ1, . . . , λn ∈ K such that, ∀i ∈ {1, . . . , n}, λivi = gi(v1, . . . , vb).
2. (Local to global assignments) For any nonzero v1, . . . , vb ∈W there exist vb+1, . . . , vn ∈W

such that (v1, . . . , vn) ∈ SH and vi = gi(v1, . . . , vb) for every i such that gi(v1, . . . , vb) 6= 0.
3. (Degree bounds) gi has degree (di1, . . . , dib) such that dij ≤ F (b)

i for all j ∈ {1, . . . , b}.

Proof. (Sketch) We sketch the proof in the case b = 2 and k = 3. Define g1(v1, v2) = v1
and g2(v1, v2) = v2. Assume G0 ⊆ G1 ⊆ · · · ⊆ Gn−2 = GH is a transfer filtration of type
b, V (Gi) = {1, . . . , i + 2} for all i ∈ {1, . . . , n − 2}. Assume E(Gi) = {E1, . . . , Ei} with

M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi 38:11

Ei = {i, i1, i2} for some i1, i2 < i. We construct transfer functions inductively as follows.
First define (g]i (v1, v2))(v) = H∗i−2(gi1(v1, v2) ⊗ gi2(v1, v2) ⊗ v) for all v1, v2, v ∈ W . Then,
given an isomorphism] between W and W∨ as in Remark 14, define gi : W 2 →W such that
(gi(v1, v2))] = g]i (v1, vb) for all v1, v2 ∈W . The properties of transfer functions stated in the
lemma are proved by straightforward induction. We leave the details to the reader. J

I Example 18 (Running example). Let H = (H1, H2, H3, H4) be a 3-local collection of
functions Hi : W 6 → K whose interaction graph is the 3-uniform chain G̃ described in
Example 10 (obtained by plugging the 4-cycle G of Example 6 into the Decoupling Lemma).
For clarity, Hi is defined on hyperedge Ẽi, where the order of vertices in each edge is fixed by
the transfer filtration chosen; in particular, use ordering Ẽ1 = (1, 2, 3), Ẽ2 = (1, 2, 4), Ẽ3 =
(1, 3, 5), Ẽ4 = (2, 4, 6) with foundation {1, 2}. The proof of Lemma 17 constructs transfer
functions g1, . . . , g6 : W 2 →W which give assignments to qubits 1 through 6, respectively,
as follows. Fixing a basis {w1, w2} of W : g1(v1, v2) = v1, g2(v1, v2) = v2, g3(v1, v2) =
H∗1 (v1 ⊗ v2 ⊗w2)w1 −H∗1 (v1 ⊗ v2 ⊗w1)w2, g4(v1, v2) = H∗2 (v1 ⊗ v2 ⊗w2)w1 −H∗2 (v1 ⊗ v2 ⊗
w1)w2, g5(v1, v2) = H∗3 (v1 ⊗ g3(v1, v2) ⊗ w2)w1 − H∗3 (v1 ⊗ g3(v1, v2) ⊗ w1)w2, g6(v1, v2) =
H∗4 (v2 ⊗ g4(v1, v2)⊗ w2)w1 −H∗4 (v2 ⊗ g4(v1, v2)⊗ w1)w2.

Thus far, we have seen how combining the Decoupling and Transfer Lemmas “blows up”
an input k-QSAT system Π to a larger “decoupled” system Π+ which is easier to solve due
to its decoupled property. Now we wish to relate the solutions of Π+ back to Π. This is
accomplished by the next lemma, which introduces a set of “qualifier” constraints {hs} with
the key property: Any solution to {hs} can be extended to one for Π+, and then mapped
back to a solution for Π. Importantly, the qualifier constraints act only on the b foundation
vertices, as opposed to all n vertices!

I Lemma 19 (Qualifier Lemma). Let H = (H1, . . . ,Hm) be a k-local collection of functions
Hi : Wn → K whose interaction graph is a k-uniform hypergraph of transfer type b such
that m > n − b. Then there exist non-zero (non-constant) functions, called qualifiers,
h1, . . . , hm−n+b : W b → K and π : Wn →W b such that
1. hs(π(SH)) = 0 for all s ∈ {1, . . . ,m− n+ b};
2. hs has degree (ds1, . . . , dsb) with dsr ≤ 2F (b)

ρ(G,b)+b+1 ∀s ∈ [m+ b] and ∀r ∈ [b].

Proof. (Sketch) We sketch the proof in the case b = 2. Given a transfer filtration G0 ⊆
· · · ⊆ Gm = GH of type 2 and radius ρ(GH , 2), the Decoupling Lemma yields a hypergraph
G̃H and a surjection p. Note that G̃H is the interaction graph of a k-local collection
H̃ = (H̃1, . . . , H̃m) of functions H̃i : Wm+2 → K such that H̃∗i = H∗i for each i ∈ {1, . . . ,m}.
Let ∆ : Wn → Wm+2 be such that ∆(v1, . . . , vn) = (ṽ1, . . . , ṽm+2), where ṽi = vp(i) for
all i ∈ {1, . . . ,m + 2}. In particular (v1, . . . , vn) ∈ SH if and only if ∆(v1, . . . , vn) ∈ S

H̃
.

Applying the Transfer Lemma to G̃H yields transfer functions g1, . . . , gm+2 : W 2 → W .
Borrowing notation from the proof of Lemma 9, let {i1, . . . , im−n+2} be the subset of all
i ∈ {1, . . . ,m+2} such that i < i. For each s ∈ {1, . . . ,m−n+2}, define qualifier hs : W 2 → K
such that hs(v1, v2) = (g]is(v1, v2))(gis(v1, v2)) for all v1, v2 ∈W . If (v1, . . . , vn) ∈ SH , then
for every s ∈ {1, . . . ,m − n + 2} there exists λis , λis ∈ K such that λisvp(is) = gis(v1, v2)
and λisvp(is) = gis(v1, v2). Therefore hs(v1, v2) = λisλisv

]
p(is)(vp(is)) = 0 for every s ∈

{1, . . . ,m− n+ 2}. Upon defining π as the composition of ∆ with the projection onto the
first two entries, this proves the first statement of the lemma. The second statement follows
from the Transfer Lemma. J

I Remark 20. To recap, the construction in the proof of Lemma 19 implies that to solve
the k-QSAT instance Π, we: (1) Apply the Decoupling Lemma to blow up Π to decoupled
instance Π+. (2) Apply the transfer functions from the Transfer Lemma to v1, . . . , vb to

MFCS 2018

38:12 On Efficiently Solvable Cases of Quantum k-SAT

obtain a solution on all m+ b vertices for Π+. Crucially, the qualifier constraints ensure that
all decoupled copies of a vertex v receive the same assignment. (3) Map this solution back
to one on n vertices for Π by “merging” decoupled copies of vertices.

I Example 21 (Running example). Let H = (H1, H2, H3, H4) be a 3-local collection of
functions Hi : W 4 → K whose interaction graph is the 3-uniform cycle of transfer type
2 from Example 6. If p is chosen as in Example 10, then the two qualifier functions are
h1(v1, v2) = (g]5(v1, v2))(g4(v1, v2)) of degree (3, 2) and h2(v1, v2) = (g]6(v1, v2))(g3(v1, v2)) of
degree (2, 3), where g3, g4, g5, g6 so that dsr ≤ 3 ≤ 10 = 2F (2)

5 for each s, r ∈ {1, 2}.

3.3 Generic constraints
Remark 20 outlined the high-level strategy for computing a (product-state) solution to an
input k-QSAT system Π. For this strategy to work, however, we require an assignment to
the foundation of the transfer filtration which (1) satisfies the qualifier functions from the
Qualifier Lemma, and (2) causes the transfer functions gi from the Transfer Lemma to output
non-zero vectors. When are (1) and (2) possible? We now answer this question affirmatively
for a non-trivial class of k-QSAT instances, assuming constraints are chosen generically.
I Remark 22 (Generic constraints). The set of k-local constraints H on k-uniform interaction
hypergraph G is canonically identified with the projective variety XG(K) = (P2k−1(K))m.
(See also [17].) We say a property holds for the generic constraint with interaction graph
G if it holds for every k-local constraint on a Zariski open set of XG(K). In the important
case K = C, this implies in particular that such a property holds for almost all choices of
constraints (with respect to the natural measure on XG(C) induced by the Fubini-Study
metric).

We now show the main theorem of this section (whose proof requires a few other definitions
and a Surjectivity Lemma; see full version). The theorem applies to k-uniform hypergraphs
of transfer type b = n−m+1, which includes non-trivial instances such as the semi-cycle and
the “fir tree” (full version). In words, the theorem says that for any k-uniform hypergraph of
transfer type b = n−m+1 (i.e. there is one qualifier function h1), if the constraints are chosen
generically, then any zero of h1 is the image under the map π (defined in Qualifier Lemma)
of a satisfying assignment to the corresponding k-QSAT instance. The key advantage to this
approach is simple: To solve the k-QSAT instance, instead of solving a system of equations,
we are reduced to solving for the roots of just one polynomial – h1. Moreover, if both the
foundation size b and the radius of the transfer filtration of G are at most logarithmic in m
and n, then h1 has polynomial degree in m and n.

I Theorem 23. Let K be algebraically closed, and let F denote the set of k-uniform hyper-
graphs with n vertices, m edges, and transfer type b = n−m+ 1. If H is a generic k-local
constraint with interaction graph G ∈ F and h1 and π are as in the Qualifier Lemma (Lemma
19), then (h1 ◦ π)−1(0) ∩ SH is nonempty.

I Example 24 (Running example). We illustrate the proof of Theorem 23 by specializing the
construction to the 3-uniform semicycle G3 from Example 6. Then G̃3 is the hypergraph
with vertices {1, 2, 3, 4, 5} and edges Ẽ1 = {1, 2, 3}, Ẽ2 = {1, 2, 4}, Ẽ3 = {1, 3, 5}. Moreover,
the transfer functions g1, . . . , g5 : W 2 →W can be chosen as in Example 18. Let h1 be as in
Example 21 and suppose v1, v2 ∈W are such that h1(v1, v2) = 0. If none of the gi(v1, v2) are
zero, then a solution of the form (v1, v2, v3, v4) can be found by Remark 20. Else, suppose
(say) g3(v1, v2) = 0 (generically, only one gi(v1, v2) will be zero in this case) so that v3 is not
constrained by v1 and v2. With respect to a fixed basis {w′, w′′} ofW , we need to show that v3

M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi 38:13

can be chosen in such a way that (v1, v2, v3, v4), where (according the Transfer Lemma) v4 =
H∗2 (v1⊗v2⊗w′′)w′−H∗2 (v1⊗v2⊗w′)w′′, is a solution. The idea is to modify G̃3 by removing
the edge Ẽ1 and adding the vertex labeled by 3 to the foundation. With this modification,
the Transfer Lemma yields g5(v1, v2, v3) = H∗3 (v1 ⊗ v3 ⊗ w′′)w′ −H∗3 (v1 ⊗ v3 ⊗ w′)w′′. By
the Qualifier Lemma, we conclude that g5(v1, v2, v3) is a non-zero multiple of v4 if and only
if H∗3 (v1⊗ v3⊗w′)H∗2 (v1⊗ v2⊗w′′)−H∗3 (v1⊗ v3⊗w′′)H∗2 (v1⊗ v2⊗w′) = 0. Introducing a
coordinate v3 = w′+xw′′, this last condition is equivalent to the vanishing of a polynomial in
x. While this particular example the polynomial is linear, it is in general of high degree and
the assumption that K is algebraically closed is required in order to guarantee the existence
of a root.

I Remark 25 (Reduction to univariate polynomials). Theorem 23 reduces us to solving a single
polynomial equation, h1(v1, . . . , vb) = 0, which is multi-variate. In this case, we can reduce it
further to a univariate polynomial by fixing arbitrary vectors w1, . . . , wb ∈W and w′b ∈W
linearly independent from wb. Then P (x) = h1(w1, . . . , wb + xw′b) is a univariate polynomial
in K[x], which has a root x ∈ K since K is algebraically closed.
I Remark 26 (Runtimes, and complexity of solving for roots). By Theorem 23 and Remark 25,
solving k-QSAT instances on hypergraphs in F with generic constraints reduces to solving
for the roots of a single univariate polynomial, P (x) ∈ K[x]. This can be accomplished by
combining Theorem 2.7 of [25] and the algorithm of Schönhage [24] (Section 3.4 therein),
which yields numerical approximations to all the roots of P within additive inverse exponential
error in time exponential only in r and b. More specifically, in the full version, we give an
explicit statement of the algorithm and a formal runtime analysis. We find k-QSAT instances
with generic constraints and b = n−m+1 require total time at most (for radius r, foundation
size b, degree d ≤ 2r+b+2, m the number of constraints, n the number of qubits, k ∈ Θ(1) the
locality of the constraints, and p a fixed polynomial which determines the additive accuracy
2−p(n) to which we solve for roots of polynomials)

O(mn) +O
(

22kb(r+b)
)

+O
(
d3 log d+ d2 log

(
9d2p(n)d

))
+O((r + b)2b(r+b+2)). (1)

Thus, the algorithm is polynomial in m, n, and p, and exponential in k (the locality of the
constraints), r (the radius), and b (foundation size).

Before discussing exponential speedups, we tie Theorem 23 back to SDRs:

I Corollary 27. If G is a k-uniform hypergraph of transfer type b = |V (G)| − |E(G)| + 1,
then G has an SDR.

Thus, Theorem 23 constructively recovers the result of [17] (that any k-QSAT instance
with an SDR has a (product-state) solution) in the case when the additional conditions of
Theorem 23 are met (recall [17] works on all graphs with an SDR, but is not constructive).
More generally, we can prove

I Theorem 28. If G is a k-uniform hypergraph of transfer type b ≤ |V (G)| − |E(G)|+ k− 1,
then G has an SDR.

On exponential speedups via Theorem 23. Recall Theorem 23 applies to k-uniform hy-
pergraphs of transfer type b = n −m + 1, such as the semicycle. From a parameterized
complexity perspective, however, most interesting are hypergraphs for which the foundation
size b and filtration radius r satisfy b, r ∈ o(n+m), for which we might obtain an asymptotic
speedup over brute force diagonalization of the Quantum SAT system (note the semicycle
has b ∈ Θ(k), r ∈ Θ(n)). In the full version, we discuss the triangular tiling of the torus and

MFCS 2018

38:14 On Efficiently Solvable Cases of Quantum k-SAT

222221212211122121112111

22211211

21

(0, 2)(0, 1)

Figure 3 Depiction of 3-uniform crash hypergraph C3,3. Generally, Ct,k has an exponential
separation between the filtration radius and foundation size versus number of vertices and edges.

the fir tree as examples with a quadratic separation b, r ∈ Θ(
√
n+
√
m). (Note that for the

runtime of Equation (1), however, a quadratic separation is unfortunately not enough for
an asymptotic speedup.) Here, however, we give a hypergraph with a stronger, exponential,
separation. Namely, we introduce the hypergraph Crash (Figure 3), with r ∈ Θ(t) and
b ∈ O(k), but n,m ∈ Θ((k − 1)t) for k ≥ 3. On such hypergraphs, our parameterized
algorithm hence runs in polynomial time, whereas brute force diagonalization would require
time exponential in m and n.

We define k-uniform hypergraph family Crash, denoted Ct,k, as follows. For k ≥ 2, let
Σ = {1, 2, . . . , k− 1}. For t ≥ 1, Ct,k has vertices V (Ct,k) =

⋃t
j=0 Vj where V0 = {(0, x) |x ∈

Σ} and Vj = Σt−j+1 for all 1 ≤ j ≤ s. The edge set of Ct,k is the union of all edges of the
following three forms:
1. For every x ∈ V1, Ex = {x} ∪ V0;
2. for every 2 ≤ j ≤ t and every x ∈ Vj , Ex = {x} ∪ {xa |, a ∈ Σ};
3. E0 = {(0, 1)} ∪ Vt.
Then Ct,k has a transfer filtration with foundation V0 obtained by first adding all the
edges Ex with x ∈ V1, then adding all the edges Ex with x ∈ V2, etc, with E0 added last.
This transfer filtration has radius t and type k − 1 = |V (Cn,k)| − |E(Cn,k)| + 1, whereas
|V (Cn,k)| , |E(Cn,k)| ∈ Θ((k − 1)t) (full version).

References

1 Itai Arad, Miklos Santha, Aarthi Sundaram, and Shengyu Zhang. Linear Time Algorithm
for Quantum 2SAT. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani,
and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 15:1–15:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

2 M. Bellare and S. Goldwasser. The complexity of decision versus search. SIAM J. Comput.,
23(1):97–119, 1994.

3 S. Bravyi. Efficient algorithm for a quantum analogue of 2-SAT. Available at arXiv.org
e-Print quant-ph/0602108v1, 2006.

M. Aldi, N. de Beaudrap, S. Gharibian, and S. Saeedi 38:15

4 Niel de Beaudrap and Sevag Gharibian. A Linear Time Algorithm for Quantum 2-SAT. In
Ran Raz, editor, 31st Conference on Computational Complexity (CCC 2016), volume 50
of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1–27:21, Dagstuhl,
Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

5 Rodney G. Downey and M. R. Fellows. Parameterized Complexity. Springer Publishing
Company, Incorporated, 2012.

6 E. Fischer, J.A. Makowsky, and E.V. Ravve. Counting truth assignments of formulas of
bounded tree-width or clique-width. Discrete Applied Mathematics, 156(4):511–529, 2008.
Third Haifa Workshop on Interdisciplinary Applications of Graph Theory, Combinatorics
& Algorithm.

7 Robert Ganian, Petr Hliněný, and Jan Obdržálek. Better algorithms for satisfiability prob-
lems for formulas of bounded rank-width. Fundam. Inf., 123(1):59–76, 2013.

8 Serge Gaspers, Christos H. Papadimitriou, Sigve Hortemo Sæther, and Jan Arne Telle. On
satisfiability problems with a linear structure. In IPEC, 2016.

9 Sevag Gharibian, Yichen Huang, Zeph Landau, and Seung Woo Shin. Quantum Hamilto-
nian complexity. Foundations and Trends® in Theoretical Computer Science, 10(3):159–282,
2014.

10 D. Gosset and D. Nagaj. Quantum 3-SAT is QMA1-complete. In Proceedings of the 54th
IEEE Symposium on Foundations of Computer Science (FOCS 2013), pages 756–765, 2013.

11 L. R. Ford Jr. and D. R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956.

12 S. Jukna. Extremal Combinatorics With Applications in Computer Science. Springer,
second edition, 2011.

13 R. Karp. Reducibility among combinatorial problems. In Complexity of Computer Com-
putations, pages 85–103. New York: Plenum, 1972.

14 Gyula Y. Katona and Péter G.N. Szabó. Bounds on the number of edges in hypertrees.
Discrete Mathematics, 339(7):1884–1891, 2016. 7th Cracow Conference on Graph Theory,
Rytro 2014.

15 J. Kempe, A. Kitaev, and O. Regev. The complexity of the local Hamiltonian problem.
SIAM Journal on Computing, 35(5):1070–1097, 2006.

16 A. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum Computation. American
Mathematical Society, 2002.

17 C. R. Laumann, A. M. Läuchli, R. Moessner, A. Scardicchio, and S. L. Sondhi. Product,
generic, and random generic quantum satisfiability. Physical Review A, 81:062345, 2010.

18 C. R. Laumann, R. Moessner, A. Scardicchio, and S. L. Sondhi. Phase transitions and
random quantum satisfiability. Quantum Information & Computation, 10:1–15, 2010.

19 Ranjan N. Naik, S.B. Rao, S.S. Shrikhande, and N.M. Singhi. Intersection graphs of k-
uniform linear hypergraphs. European Journal of Combinatorics, 3(2):159–172, 1982.

20 T. J. Osborne. Hamiltonian complexity. Reports on Progress in Physics, 75(2):022001,
2012.

21 Daniel Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model counting for cnf formulas
of bounded modular treewidth. Algorithmica, 76(1):168–194, 2016.

22 Sigve Hortemo Sæther, Jan Arne Telle, and Martin Vatshelle. Solving #sat and maxsat by
dynamic programming. J. Artif. Int. Res., 54(1):59–82, sep 2015.

23 Marko Samer and Stefan Szeider. Algorithms for propositional model counting. Journal
of Discrete Algorithms, 8(1):50–64, 2010.

24 A. Schönhage. Equation solving in terms of computational complexity. In Proceedings of
the International Congress of Mathematicians, pages 131–153, 1986.

25 Arnold Schönhage. Quasi-GCD computations. Journal of Complexity, 1(1):118–137, 1985.

MFCS 2018

38:16 On Efficiently Solvable Cases of Quantum k-SAT

26 Stefan Szeider. On Fixed-Parameter Tractable Parameterizations of SAT, pages 188–202.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

27 D. A. Wolfram. Solving generalized fibonacci recurrences. Fibonacci Quart., 36(2):129–145,
1998.

Balanced Connected Partitioning of Unweighted
Grid Graphs
Cedric Berenger
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Peter Niebert
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Kevin Perrot
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Abstract
We consider a partitioning problem for grid graphs with special constraints: a (square) grid graph
as well as a number of colors is given, a solution is a coloring approximatively assigning the same
number of vertices to each color and such that the induced subgraph for each color is connected.
In a “rooted” variant, a vertex to be included in the coloring for each color is specified as well.
This problem has a concrete motivation in multimedia streaming applications.

We show that the general problem is NP-complete. On the other hand, we define a reasonable
easy subclass of grid graphs for which solutions always exist and can be computed by a greedy
algorithm.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity prob-
lems, Hardware → Partitioning and floorplanning

Keywords and phrases grid graphs, connected partitioning, NP-completeness, graph algorithm

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.39

Acknowledgements We would like to thank Jérémy Chalopin and Victor Chepoi for their com-
ments on earlier versions of this work.

1 Introduction

We study a particular partitioning problem of (square) grid graphs. Consider a finite grid (a
rectangle) and a subset of squares present (shown in black on the second leftmost image of
Figure 1). The present squares are vertices of a graph where the edges are implicit by the
neighboring relation (leftmost image).

The problem we study is to color/partition such a graph with a given number of colors
so that the induced subgraph for each color is connected and that the partition is balanced,
i.e. the number of vertices for each color is (almost) the same. In the example of Figure
1, we choose to color with three colors. The third image shows a coloring satisfying both
constraints. In the “rooted variant”, we additionally specify for each color a root node that
has to take that color (fourth image). For this choice, the third image is not a solution, but
the fifth image is. Of course, the fifth image is also a solution of the unrooted problem.

The practical motivation for this particular problem concerns (broadcast) streaming in
physical networks in multimedia applications (where each square is a screen tile and there may
be holes and irregular borders), but also routing problems in NoC [10] (network on a chip)
with horizontal and vertical communication links and dead vertices (due to manufacturing

© Cedric Berenger and Peter Niebert, and Kevin Perrot;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 39; pp. 39:1–39:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Balanced Connected Partitioning of Unweighted Grid Graphs

Figure 1 Grid graph and balanced connected coloring.

Figure 2 A rooted problem with 3 colors stuck in a corridor of width 2.

issues). For these systems, the limited bandwidth of links can be compensated by partitioning
and injecting the data into the network from several “roots”. Each root is thus responsible
for a subset of vertices and the broadcast messages from distinct roots do not cross.

For the general case, we show that finding a balanced connected partition is NP-complete
for both the rooted and the unrooted case (Theorems 1, 2). We achieve the NP-hardness
result by a reduction from the Hamiltonian circuit problem on hexagonal graphs [7].

Intuitively, the connectivity of each colored zone is subject to conflicts when there are
fewer connections than colors that need to pass. In our reduction, we exploit this by binary
conflicts on connections that can only be used by a single color. Beyond binary conflicts,
taking the point of view of our grid as a maze, several parallel and adjacent lines of vertices
form a corridor of a limited capacity for colors to pass. For instance, in the example of Figure
2, the three roots are connected by a corridor of width 2, hence only two colors can connect
to the big zone and obviously, no balanced connected partition exists. In order to define
“easy” subclasses of graphs called q-square connected graphs, we formalize the idea of a maze
with all corridors, whether straight or “diagonal” (zigzaging), large enough to let all colors
pass. The condition of q-square connectedness can be verified on bounded windows of the
graph and thus decided in linear time. It guarantees that a solution exists. Indeed, we give a
greedy polynomial time algorithm for the unrooted case that always finds a solution on such
topologies (Theorem 6). We also claim that this simple greedy algorithm can be extended to
the rooted case and improved to compute solutions in linear time (for any fixed q).

The definition, intuitively similar but not equivalent to the classical definition of k-
connectedness of graphs, is not trivial and is the result of fine-tuning the conditions in order
to obtain a correctness proof. However, it is intuitive and may have an interest in itself.
We have implemented the algorithm for simulation where it proves to be well behaved (it
produces partitions that are “compact” and not unnecessarily intertwined).

Related work. To the best of our knowledge, the hardness of the precise problem studied
here, as well as the easy subclass and the greedy algorithm, are unknown.

The much studied Balanced Connected q-Partition Problem (BCPq), related to our work,
is the problem of partitioning a weighted graph G = (V, E) into q connected subgraphs of
similar size/weight. In this work, we study this problem for unweighted grid graphs.

The unweighted BCPq is shown NP-Hard in [4] for bipartite graphs for q ≥ 2, but the
result does not cover grid graphs. It has been proven in [1] that the BCPq is NP-Hard in
Gm×n grid graphs for any n >= 3, but this result requires weights on the vertices. That work
also gives approximation algorithms considering the relative error under some hypothesis. In

C. Berenger and P. Niebert, and K. Perrot 39:3

[3] it is shown that finding a solution with an absolute error less than |V |1−ε is NP-Hard
even for the unweighted variant of the BCPq, but on general graphs only. Our NP-hardness
proof requires novel ideas and a different construction from previous works.

In [8, 9], polynomial algorithms for BCPq are given for unweighted q-connected graphs.
However grid graphs are 2-connected only. There exist also polynomial approximation results
under certain restrictions. In [3] a 4/3-approximation algorithm is shown to exist for BCP2
without other assumptions. More recently, [11] shows a polynomial time 7/6 approximation
algorithm for BCP2 in grid graphs. In [2], it is shown that there is no approximation
algorithm with ratio smaller than 6/5 for arbitrary graphs. The same article also shows
that BCPq is strongly NP-Hard even on q-connected graphs with weights, as well as an
inapproximability result for (BCP2).

With motivations from VLSI design, a lot of work focuses on minimizing the number of
transversal edges between parts, not necessarily keeping them connected, e.g. [5], [6].

Outline. The remainder of this article is structured as follows: Section 2 formalizes the
model and the problem statement. In Section 3, we recall the Hamiltonian circuit problem
for hexagonal graphs and develop the reduction from this problem to show NP-hardness for
the general case. Essentially the same reduction can be used for the unrooted and for the
rooted case. NP-completeness follows trivially as it is straightforward to verify a solution by
a linear algorithm. In Section 4, we define the subclasses of q-square connected graphs by
two alternative definitions (one intuitive, the other for algorithmic purposes) and show their
equivalence. Then we define a rule based greedy algorithm for the unrooted case for coloring
a graph one color after the other. We prove termination and correctness of the algorithm.
Then we discuss how this algorithm can be extended to deal with the rooted case. In Section
5, we conclude and give an outlook on future work.

2 Model

We now formalize the notions of square grid graph and the partitioning problem. We simplify
the presentation by assuming all square grid graphs embedded in the plane of pairs of integers.

For any finite set of pairs V ⊂ Z2 and the induced set of neighboring edges E = {((x1, y1),
(x2, y2)) ∈ V × V | |x2 − x1|+ |y2 − y1| = 1}, we call GV = (V, E) a square grid graph. By
|GV | := |V | we denote the size of a square grid graph

For simplicity, by grid graphs we will mean square grid graphs in the following (as opposed
to hexagonal grid graphs, for instance).

For a subset of vertices V ′ ⊂ V of a (grid) graph GV = (V, E), the graph (V ′, E′) with
E′ = E ∩ (V ′ × V ′) is the induced subgraph of GV restricted to vertex set V ′. Obviously, for
a grid graph GV = (V, E) and a subset of vertices V ′, the induced subgraph (V ′, E′) equals
the grid graph GV ′ .

A graph (V, E) is connected if for each pair u, v ∈ V there exists a sequence u =
v0, v1, . . . , vl = v for some l ≥ 0 and (vi, vi+1) ∈ E for all 0 ≤ i < l.

We will represent grid graphs and induced subgraphs by colored 2D matrices, see
Figure 1. An obvious data structure to represent grid graphs is a list of vertices. Al-
ternatively, the containing rectangle of a grid graph GV is defined as R(V) = {(x, y) |
∃(x1, y1), (x2, y2), (x3, y3), (x4, y4) ∈ V : x1 − 1 ≤ x ≤ x2 + 1 and y3 − 1 ≤ y ≤ y4 + 1}, a
full matrix containing V and an external border without vertices. The containing rectangle
allows for matrix representations of grid graphs d.

MFCS 2018

39:4 Balanced Connected Partitioning of Unweighted Grid Graphs

A connected part GV ′ of a grid graph GV is an induced subgraph of GV that is connected.
A q-partition P of a grid graph GV is a set of q parts GVi

with 1 ≤ i ≤ q such that :
V =

⋃
GV ′∈P V ′ and for any GVi

, GVj
∈ P we have that i 6= j implies Vi ∩ Vj = ∅. We call a

partition connected if all parts are connected.
For a subset of vertices R = {r1, . . . , rq} ⊆ V of a grid graph VG called roots, an R-rooted

partition of GV is a partition {GVi | ri ∈ Vi}.
A partition P of a grid graph G is perfectly balanced if and only if for all GVi

∈ P , |Vi| = |V |
|P| .

Additionnaly, considering a partition P of a grid graph G, we say a part GVi ∈ P is perfectly
saturated if it fits the requirement for P to be perfectly balanced, i.e. |Vi| = |V |

|P| . If |Vi| is
below/above the saturation threshold |V ||P| , we respectively say that the part is under/over-
saturated.

Perfect balance may often be an undesirably restrictive condition when it comes to
balancing load in networks. In order to relax it, we may specify an error tolerance ratio
0 ≤ r ≤ 1 with perfect balance corresponding to r = 0. For 0 ≤ r ≤ 1 we say that a
q-partition P of a grid graph GV is r-balanced if and only if for each part GVi

∈ P we have
|GV |
q · (1− r) ≤ |GVi

| ≤ |GV |
q · (1 + r). The same way, we say that a part GVi

of a q-partition
P of a grid graph GV is r-saturated if and only if |GV |

q · (1− r) ≤ |GVi
| ≤ |GV |

q · (1 + r). If |Vi|

sits outside of the saturation interval
[
|GV |
q · (1− r), |GV |

q · (1 + r)
]
, we respectively say that

the part is under/over-r-saturated. When the ratio r is clear from the context, we will simply
say that an area is balanced instead of r-balanced, and that a part is (under/over)saturated
instead of (under/over)r-saturated.

The r-balanced connected partitioning problem (rBCP) is the problem of finding, for any
grid graph GV and number q, an r-balanced connected partition with q parts.

The rooted r-balanced connected partitioning problem (RrBCP) is the problem of finding,
for any grid graph GV and set of roots R ⊆ V , an R-rooted r-balanced connected partition.

3 NP-Hardness

In this section we present a polynomial time reduction from the Hamiltonian cycle problem
(HCP) on hexagonal grid graphs to the rooted r-balanced connected partitioning problem
(rRBCP) on square grid graphs, for r ≤ 1

7 . We then argue that the reduction also applies to
r-balanced connected partitioning problem (rBCP).

For any finite set V ⊂ Z2 of vertices, we construct the hexagonal grid graph HV = (V, E)
with the induced set of edges E = {((x1, y1), (x2, y2)) ∈ V ×V | (|x2−x1| = 1 and |y2−y1| =
0) or (x2− x1 = 0 and y2− y1 = 1 and x1 + y1 mod 2 ≡ 0)}. By |HV | := |V | we denote the
size of the hexagonal grid graph. An example is shown on Figure 5 (left).

The Hamiltonian cycle problem (HCP) is the following decision problem: given a graph
G, does there exist a cycle containing exactly once each vertex of G? This problem has been
proven to be NP-complete when restricted to hexagonal grid graphs [7].

Given a hexagonal grid graph for the HCP, we will construct a square grid graph and set
of roots for rRBCP. The section is split in four parts. In the first part we give intuitions
on some simple rRBCP instances. Then we describe the reduction and concepts at stake.
Finally, we demonstrate the correctness of the reduction. The last part explains how to apply
the same idea for a reduction to rBCP.

C. Berenger and P. Niebert, and K. Perrot 39:5

Figure 3 Intuition on the construction: tanks and roots/colors interaction.

3.1 Intuitions on the construction
Let us introduce step by step some straightforward “tricks” used in the reduction.

Consider a large connected region of a square grid graph, uncolored and accessible only
via a single vertex or a single path, then this region will own a single color. This is exemplified
on Figure 3 (left top): any partitioning must assign the same color to each of the three large
outer regions (possibly three different colors, but a single color for each). We call such a
region a “tank”. In contrast, lines of vertices of width 1 are called “paths”.

The basis of the construction will be to connect tanks via paths, and choose sizes of tanks
such that the total number of vertices used in paths is negligible compared to a single tank.

If the tolerance ratio and the size of tanks are tightly chosen, then coloring a given tank
may result in saturating the part corresponding to that color, i.e. a color tied to a tank may
not color other tanks without oversaturating. For example, on Figure 3 (left bottom), the
red root must color the large tank on the left in any partitioning, nearly saturating that
color. Hence, red cannot own any of the two bottom tanks without oversaturating.

Some instances can “trap” parts/colors inside a restricted area. On Figure 3 (middle),
blue is tied to a very large tank and must color it nearly saturating that color (for some
suitable ratio r). But blue cannot reach the outer ring, because otherwise it would have to
cover at least one of the three remaining inner tanks and oversaturate.

A color can prevent another color from creating a fork. In Figure 3 at right, the upper
rectangle of paths has three access points (left, right, bottom). Green has to color the lower
tank, and we suppose that adding any of the three inner tanks would lead to oversaturation.
On the other hand, red requires the three inner tanks to saturate. Suppose that green was
connected to the two exit points left and right by paths. Whichever the choice of paths
taken, red could no longer reach all three inner tanks. In other words, this construction
forces a decision for green between the left and the right exit point. This “gadget” will be
used as a macrocell representing a vertex of the hexagonal grid, and the green color can only
connect two of the three exits of any macrocell in order for the partition to be balanced,
forcing green on a Hamiltonian path.

3.2 Reduction construction up to calculations
For a given hexagonal grid graph (instance of HCP), we build a square grid graph and set
of roots (instance of rRBCP). This instance will admit a solution if and only if the HCP
instance admits a solution: the square grid graph mimics the structure of the hexagonal
grid, and the part of a specific color will be forced to correspond to a Hamiltonian cycle
of the hexagonal grid graph (if one exists, otherwise no r-balanced partioning exists). Our
construction will exclusively be composed of tanks and paths.

MFCS 2018

39:6 Balanced Connected Partitioning of Unweighted Grid Graphs

a root of
the red
family

the green
root

Figure 4 Macrocells with their root vertices for red (left) and green (right) parts.

Root of the red family in a mirrored macrocell

Green root

Root of the red family in a macrocell

Figure 5 An hexagonal grid graph (left), and the corresponding grid graph construction (right).

Consider a macrocell as Figure 4 (left), which recalls the construction in Figure 3 (right)
with an additional tank in the center. As the sizes of the tanks will depend on the hexagonal
grid size and on the tolerance ratio r, it is crucial that we can scale up macrocells. Let T ×T

be the size of a containing rectangle of such macrocells (such that the three entry paths lie
on the center of three sides), let ti, tc be the respective sizes of the three inner tanks and of
the center tank, and let p be the total number of path vertices (not tank) in one macrocell.
It is straightforward to scale up a macrocell so that the number of paths vertices becomes
negligible: p grows linearly with T , whereas ti, tc grow quadratically.

Let us distinguish a vertex of degree two of the hexagonal grid graph, which we call
primary root (there always exists one). By using copies of this macrocell or its mirror for
each vertex distinct from the primary root, we can mimic the layout of the hexagonal grid
graph, as shown on Figure 5 (right). Let m be the number of vertices in the hexagonal grid
graph, and let us call red family the set of m colors used for roots in these macrocells.

For the primary root vertex (of degree two in the hexagonal grid graph), we replace it
with a special macrocell containing (see Figure 4 (right)): on one entry path a tank of size
tg ≈ 3 · 5

6 ti called green tank with a green root tied to it, and on the other entry path a
tank of size tc ≈ ti

6m . The main idea here is that the green root misses approximately 3 · 1
6 ti

vertices to be balanced (compared to the family of red colors each taking three tanks of size
ti), and will have to take the central tanks of size tc in all macrocells (m times tc) in order
to enter the saturation interval and be r-balanced, hence creating a Hamiltonian path.

A complete construction is shown on Figure 5 (right).

C. Berenger and P. Niebert, and K. Perrot 39:7

Figure 6 If another color goes across a macrocell, then the red color enforces it to take exactly
two out of the three entry paths. In any case red takes the three inner tanks. Detailed schematic of
the first possibility on the left, simplified schematics on the right for the eight possibilities.

3.3 Reduction correctness and calculations
Let us recall that r < 1

7 . We now argue about the correctness of a series of facts, leading to
the correctness of the reduction.

Figure 6 shows a full case disjunction regarding the fact that macrocells owned by colors
in the red family prevent green from creating forks (corresponding to degree three vertices).

I Fact 1. If green goes across a macrocell, then it must take exactly two entry paths.

In other words, green part is constrained by the adversary family of red colors to follow a
Hamiltonian cycle.

Now, let us see how to calculate the sizes of tanks and macrocells such that the number of
path vertices is negligible compared to the size of any single tank, and that green must take
exactly all central tanks of size tc in each macrocell (and therefore runs across each one).

We introduce variables to specify the construction precisely:
m: total number of vertices in the hexagonal grid graph,
n: total number of vertices in the square grid graph,
k: scaling factor of macrocells,
ti: size of each of the three inner tank in each macrocell,
tc: size of the central tank in each macrocell (plus one in the primary root macrocell),
tg: size of the tank tied to the green root in the primary root macrocell,
p: number of path vertices (not tank) in one macrocell,
s = n

m : perfect saturation threshold.

By definition, we have the saturation interval ratio Is = [s(1− r), s(1 + r)]. We have two
kinds of roots (the red family and the green), and four kinds of vertices (path and tanks
ti, tc, tg). This gives three groups of inequations to consider. Recall that tg ≈ 3 · 5

6 ti and
tc ≈ ti

6m .

Path vertices. The unitary macrocell shown in Figure 4 (left) permits tanks of maximum
size ct with a minimum of cp path vertices. By multiplying the dimensions of the unitary
macrocell by an integer factor k (except for path wideness), we get a k-scaled macrocell
permitting tanks of maximum size k2 × ct with less than k × cp path vertices (the needed
path length to link tanks together grows linearly with k whereas maximum possible tank
size grows quadraticaly) :

∃k ∈ N : p ≥ k × cp and ti, tc ≤ k2 × ct with cp = 639 and ct = 256 (1)

We want paths to be negligible and dominated by tanks for balance, meaning that
modifying the number of path vertices without modifying the number of tanks in a part has
no impact on its saturation. The total number of path vertices is mp.

MFCS 2018

39:8 Balanced Connected Partitioning of Unweighted Grid Graphs

Red family and inner tanks. We want that each root of the red family reaches the saturation
interval with exactly the three inner tanks of its macrocell, i.e.

2ti + mp < s(1− r) < 3ti and 3ti + mp < s(1 + r) < 4ti. (2)

Red family and green tank. In any partitioning, roots of the red family cannot take the
green tank.

Green and all tanks. Green always owns the green tank, and we want the green root to
reach the saturation interval with exactly the green tank plus all m central tanks, i.e.

tg + (m− 1)tc + mp < s(1− r) ≤ tg + mtc and tg + mtc + mp < s(1 + r) < tg + ti. (3)

Red family and central tanks. As we constrained green to take all central tanks, Reds
can’t take any central tank.

I Fact 2. For any rational ratio r = a
b < 1

7 and any m > 3 ∈ N, if

tg = 5
6 s tc = s(1

6−
a
b)

m ti = ms− (tg + m(tc + p)) = (−1+12m2+12m(−1+ a
b)+6 a

b)s
36(m−1)m

p = tc
2m = s(1

6−
a
b)

2m2 s = 36 · 71 · 106 · b · (m− 1) ·m3 k = p
cp

= s
1
6−

a
b

2·639·m2

then in any r-balanced connected partitioning green must take exactly all m central tanks
(one in each macrocell plus one in the primary root macrocell).

Proof. The statement satisfies Relations (1-3), implying the result (see Appendix A.1). J

From Fact 2 in any r-balanced partitioning the green root must go across every macrocell,
and from Fact 1 it can do so only via a connected “macropath” of degree two among
all m macrocells, which corresponds exactly to a Hamiltonian cycle in the HCP instance.
Conversely, a Hamiltonian cycle gives a solution for the green root to do so. In both cases
each root of the red family will own the three inner tanks of its macrocell.

This reduction can straightforwardly be done in polynomial time (choose a vertex of
degree 2, compute the equations given in Fact 2, and map each vertex of the hexagonal grid
graph to its corresponding macrocell) which gives the result.

I Theorem 1. rRBCP is NP-hard for any rational ratio r < 1
7 .

3.4 r-balanced connected partitioning problem (rBCP)
The previously described construction also applies to rBCP (without fixed roots). Indeed, it
is enough to notice that when roots are removed, then there are no other solutions to the
rBCP instance than those of the rRBCP instance. This is rather straightforward.

The part owning the green tank (previously green, let us now call it yellow) must behave
the same as green and take all central tanks (it verifies Fact 2). Then, given that yellow
must not own any inner tank (Relation (3), these inner tanks must be owned by other parts
(previously the red family, let us now call them the orange family). It is now enough to notice
that each orange part must own three inner tanks belonging to a single macrocell: as green
runs across each macrocell to take all central tanks, there is only one remaining entry path
in each macrocell, therefore the inner tanks of a macrocell cannot be shared between two
parts of the orange family without letting at least one of them under-saturated (Relations
(2)). As a consequence Fact 1 also holds and the result follows.

I Theorem 2. rBCP is NP-hard for any rational ratio r < 1
7 .

C. Berenger and P. Niebert, and K. Perrot 39:9

4 Partitionning q-square Connected Grids

Intuitively, the difficulty of the balanced connected partitioning problem is a consequence of
conflicts: if large areas are acessible from a very limited number of paths, you will have to
carefully choose which part will cover which area to avoid a part blocking a crucial access.

One might consider as solution to remove these conflicts by assuring that there is always
a distinct path for any part to access any area, but the usual graph theoretic notion of
k-connectivity is not well suited for square grids where the degree of vertices is limited to
4 in general and which always include vertices with degree less than 2 (e.g. in the corner).
Moreover, k-connectivity is a global property of a graph and difficult to verify locally. Hence
the need for a new definition.

In the following, we define for each q a subclass of grid graphs called q-square connected,
which is easy to verify and for which connected balanced q-partitions always exist and which
can be efficiently computed. The idea is to make corridors (Figure 2) sufficiently large for all
colors to pass. Then a greedy algorithm can expand a connected part (from a root) until it is
saturated (reaches |GV |

q vertices), in such a way that the remaining uncolored graph remains
(q − 1)-square connected. However, while “width” seems obvious for straight “corridors”, it
is less evident for angles, branching, etc.

4.1 Two definitions of q-square connected graphs
We represent a “square” of a given side length by its lower left corner: for (x, y) ∈ Z2,
q > 0, let sq(x, y, q) = {(x + i, y + j) | 0 ≤ i, j < q} denote the q-square at (x, y). A grid
graph GV is said to contain sq(x, y, q) iff sq(x, y, q) ⊆ V . A grid graph GV is covered by
q-squares if for each (x, y) ∈ V there exist x′, y′ such that sq(x′, y′, q) is contained in GV

and (x, y) ∈ sq(x′, y′, q).
Two q-squares sq(x, y, q), sq(x′, y′, q) are adjacent iff |x − x′| + |y − y′| = 1. For a set

V ⊆ Z2, let Sq(V, q) = (V ′, E′) such that V ′ the set of q-squares in V , E′ the set of adjacent
pairs of q-squares in V , denote the induced graph of q-squares. The distance of two q-squares
sq(x, y, q), sq(x′, y′, q) in Sq(V, q) is denoted by dist((x, y), (x′, y′), V, q).

A grid graph GV covered by q-squares is q-connected if for sq(x, y, q), sq(x′, y′, q) in
Sq(V, q) with max{|x− x′|, |y − y′|} ≤ q and min{|x− x′|, |y − y′|} < q we have
dist((x, y), (x′, y′), V, q) = dist((x, y), (x′, y′),Z2, q) = |x− x′|+ |y − y′|.

The condition for q-connectedness considers square that are overlapping (their intersection
is non-empty) or touching (at least one vertex in one square is adjacent to a vertex in the
other square). For such squares, we require the existence of a path of squares that somehow
zigzags from one square to the other without changing the direction on either axis.

I Lemma 3. Let a connected grid graph GV be covered by q-squares and q-connected with
q > 1. Then GV is also (q − 1)-connected.

The proof is given in the appendix. Now we consider an alternative definition that is
equivalent, less intuitive, but better suited for the description of the algorithm.

A grid graph GV is q-wide iff for all v = (x, y) ∈ V there exist x′, y′ such that 0 ≤ x−x′ < q,
0 ≤ y − y′ < q and for all 0 ≤ i < q we have (x′ + i, y), (x, y′ + i) ∈ V , i.e. every vertex is
part of a horizontal and a vertical segment of q vertices.

A grid graph GV satisfies the q-completion property iff for every (x, y) ∈ V and a, b ∈
{−1, 1} and c ∈ {0, 1} such that (x + i× a, y + j × b) ∈ V with i = 1 and 1 ≤ j ≤ q or j = 1
and 1 ≤ i ≤ q as well as (x + c× a, y + (1− c)b) ∈ V also (x, y + j) ∈ V for all 1 ≤ j ≤ q or
(x + i, y) ∈ V for all 1 ≤ i ≤ q.

MFCS 2018

39:10 Balanced Connected Partitioning of Unweighted Grid Graphs

Figure 7 q-width (top) and q-completion (bottom) constraints, and examples.

The q-width and q-completion properties are depicted in Figure 7 at left (a = b = c = 1).

I Lemma 4. For a connected grid graph GV , the following two conditions are equivalent:
1. GV is q-square covered and q-connected.
2. GV is q-wide and satisfies the q-completion property.

Holes in q-square connected grid graphs require a subtle definition of connectedness : two
vertices u, v /∈ V are close iff their distance in Z2 is at most 2. For instance, two vertices
on diagonal positions are close. A subset H ⊆ Z2\V is close-closed iff for a vertex v ∈ H

and a vertex v′ ∈ Z2\V which is close to v, also v′ ∈ H. The unique maximal close-closed
subset H ⊆ Z2\V that is infinite is called the outside of GV , a finite H is called a hole of
GV . Note, that holes or the outside are not connected in the neighboring sense as is the grid
graph. A grid graph GV for which there exist no non-empty holes is solid.

A segment is a straight line of vertices: for (x, y) ∈ Z2, a ∈ {0, 1} and k > 0 the segment
S((x, y), a, k) denotes the set of vertices S((x, y), a, k) = {(x + ai, y + (1− a)i) | 0 ≤ i < k}.

4.2 An algorithm for the unrooted problem
We now describe an algorithm for the unrooted balanced connected partitioning problem
on q-square connected grid graphs. The algorithm recursively colors a connected zone of m

q

vertices leaving m(q−1)
q vertices forming a (q − 1)-square connected subgraph. Then we pass

to the next color and repeat the process leaving a (q − 2)-square uncolored remainder and
so forth. This process can intuitively be compared to coloring the edges of a graph with
q-wide corridors leaving (q − 1)-wide corridors and thus preserving sufficiently large access
for (q − 1) colors.

For a given q, the coloring phase of the algorithm preserves a complex invariant, q-
compliance: a q-compliant coloring of GV is a subset C ⊂ V such that GC is connected and
GV \C is (q − 1)-covered and (q − 1)-connected and that there exists a vertex v outside GV

with a neighbor in C.
The algorithm is easier to understand on solid grid graphs, as holes introduce an additional

problem. We therefore invite the reader to first try to understand the algorithm in ignoring
holes and then read the text again with regard to the way we treat holes: we cut them.

A hole H of a grid graph GV is cut by coloring C if there exists a vertex v ∈ H with a
neighbor in C. The vertices of a cut hole are considered outside of GV with respect to C.

The coloring phase starts by coloring an external corner (a vertex v ∈ V with two
neighbors outside GV), and then augments q-compliant colorings by three operations:

1. Add a vertex v to C, such that v ∈ V \C and v has a neighbor in C.
2. Add a segment S = S((x, y), a, k) ⊆ V \C such that k < q, (x, y) has a neighbor in C and

a. either all vertices in (x + ai, y + (1− a)i) have a neighbor in C or outside VG and in
particular S is terminated by (x + ak, y + (1− a)k) /∈ V \C,

b. or k = q − 1, and (x + ak, y + (1− a)k) ∈ H for some uncut hole H.

C. Berenger and P. Niebert, and K. Perrot 39:11

Algorithm 1 Simplified partitioning algorithm.
input int q, vertexSet V , such that GV is q-square connected
int part= |V |

q
;

// compute the set of all vertices in uncut holes
vertexSet holeVertices = computeUncutHoles (V)
while(q >0){

vertexSet C={v} where v is an external corner of V
while (|C| < part){

// CLAIM 1, the following extension is always possible :
C=C∪S for some simple extension S with C∪S q- compliant
// remove vertices of holes that are cut
holeVertices = updateUncutHoles (holeVertices ,S)

}
output part C
V=V\C , q=q-1

}

We call an extension S satisfying one of these three conditions a simple extension. Our
algoritm below incrementally computes such colorings for determinig a part. An illustrating
execution trace is given in the appendix.

I Lemma 5 (Extension lemma). In Algorithm 1, CLAIM 1 is always true, i.e. for a q-
compliant coloring C of a graph GV such that |C| < |V |

q there exists simple extension S such
that C ∪ S is q-compliant.

I Theorem 6. For a q-square connected grid graph GV , Algorithm 1 terminates and computes
an (up to q − 2 vertices per part) balanced connected q-partition in time1 O(|R||V |q2), where
R is the smallest rectangle containing V , or in time O(|V |3q2).

Proof. The Extension lemma (proof: appendix) states that the line of CLAIM 1 is always
possible. The invariant ensures that each iteration of the outer loop works on a q-compliant
coloring. The termination condition of the inner loop guarantees that after the loop |V |q ≤
|C| < m

q + q− 1, the maximal deviation of a part. The algorithm is simplified and can, under
bad circumstances, produce a final partition that lacks (q − 1)2 vertices, but it is easy to
improve this to q − 1 by balancing the limit between iterations of the outer loop. Moreover,
a simple improvement of the algorithm could distributed the last segment attributed to a
part in the inner loop between the current part and the next part, limiting the deviation
from |V |

q to at most 1 and in fact to 0, perfect balance, in the case of |V | a multiple of q.
For the complexity considerations, we suppose a matrix representation of the input V as

a subset of a rectangle R. This rectangle can of course be computed in O(|R|) and |R| ≤ |V |2
since V is connected. For practical purposes, the problem can be stated such that |R| itself
is a measure of the input size, but for the question of Algorithm 1 being polynomial or not,
this detail is of no consequence.

The functions computeUncutHoles and updateUncutHoles compute reachable sets, e.g.
by depth first search, in linear time. Moreover, since updateUncutHoles removes vertices
from the set of uncut holes and removes each vertex at most once, the total computation
time for updateUncutHoles is linear in |R|.

1 We neglect non-constant access time to the matrix R, which is of no practical consequence.

MFCS 2018

39:12 Balanced Connected Partitioning of Unweighted Grid Graphs

Since each iteration of the inner loop increments C and each iteration of the outer loop
reduces V by C, the total number of iterations of the inner loop is limited by |V |. In each
iteration of the inner loop, in principle, all vertices of V \C have to be examined for a possible
simple extension. The examination of whether the extension violates the q-compliance
however is local around the extension point and can be done2 in O(q2). Note also that there
is no need to test econnectedness of the uncolored part after an extension: indeed, each path
leading through the extension can be replaced by a path avoiding it: width constraints imply
this for extensions of type (1) and (2a), whereas an uncut hole is surrounded by a cyclic path
that also allows to circumvent the cutting segment. J

5 Perspectives and future work

Algorithm optimization. Above, we stated the complexity of Algorithm 1 as O(|R||V |q2)
or O(|R|2q2). The complexity is quadratic in |R| because of blindly sweeping R at each
iteration in search of the next extension. Several options for improvement exist, for instance,
tracking in parallel C and a doubly linked list of actually possible simple extensions in
connection with R, we can always pick the first extension of the list and update the list in
each iteration in essentially O(q3) since the impact to other extensions is local. Cutting holes
may temporarily require slower updates, but their global impact remains linear in |R|. On
the other hand, prioritizing simple extensions may allow to bound the set of extensions at
any point of the algorithm execution, potentially bringing the complexity to O(|R|q2).

Towards an algorithm for the rooted problem. We conjecture that Algorithm 1 can be
modified to solve the rooted variant of the BCP as follows: In the rooted variant, we start
with a grid graph G an a set of q vertices that are already colored with distinct colors:
∀1 < i ≤ n, Ci = {vi}, where the Ci designate parts we are building. Here, we cannot greadily
extend colors one after the other and keep the q-connection of the remaining uncolored
subgraph G\

⋃
Ci. Indeed, while a part Ci is not saturated, this part must keep at least a

single access to the uncolored part of the graph, i.e ∃(u, v), u ∈ Ci, v ∈ G\
⋃

Ci. This greatly
restricts the possibilities for extensions if we consider a single color at any step.

Instead of extending a single color until the corresponding part is saturated, we can search
possible extensions of any color that keeps unsaturated part connected to the uncolored
graph, i.e, we search for a set S of maximum q−1 vertices v1...vq that we will add to a colored
part Ci, such that G\ ∪ Ci is q − 1-connected and ∀0 < i < q, ∃(u, v), u ∈ Ci, v ∈ G\ ∪ Ci.
When a colored part Ci becomes saturated, we can remove it and recursively consider the
smaller problem on the subgraph G\Ci, with the remaining q − 1 unsaturated parts still
connected to the uncolored subgraph which is (q − 2)-connected.

An important difficulty introduced in the rooted problem is the possible emergence of
access conflicts that will exclude a completion of the partition. If these conflicts are not
avoided, the greedy algorithm can get stuck. As an example of a simple conflict, consider
two unsaturated parts Ci and Cj which both access the uncolored part of the graph by same
single vertex. Obviously, such a coloring cannot be completed (c.f. Figure 8 at left for green
and red). More general cases can involve up to q parts when all the k parts get their unique

2 Whereas extensions by a single vertex can produce a violation of q-width or the q-completion property,
the extensions by a segment S can only produce a violation of the q-width property.

C. Berenger and P. Niebert, and K. Perrot 39:13

Figure 8 Binary (red and green, at left), and 4-nary (red, green, blue, yellow, at right) conflicts.

access to the uncolored subgraph into the same square of size (k − 1)× (k − 1): In Figure
8 (right), extending either red, green, blue, or yellow will recursively create a (q − 1)-ary
conflict between the remaining colors.

We conjecture that the Extension lemma can be modified to take into account such q-ary
conflicts and avoid them, at the price of a limited imbalance when approching the saturation
of all colors. In the future, we will try to extend Algorithm 1 with this reasoning.

References

1 Ronald Becker, Isabella Lari, Mario Lucertini, and Bruno Simeone. Max-min partitioning
of grid graphs into connected components. Networks: An International Journal, 32(2):115–
125, 1998.

2 Frédéric Chataigner, Liliane RB Salgado, and Yoshiko Wakabayashi. Approximation and
inapproximability results on balanced connected partitions of graphs. Discrete Mathematics
and Theoretical Computer Science, 9(1):177–192, 2007.

3 Janka Chlebíková. Approximating the maximally balanced connected partition problem in
graphs. Information Processing Letters, 60(5):225–230, 1996.

4 Martin E Dyer and Alan M Frieze. On the complexity of partitioning graphs into connected
subgraphs. Discrete Applied Mathematics, 10(2):139–153, 1985.

5 Andreas E Feldmann. Balanced partitioning of grids and related graphs. ETH Zurich, 2012.

6 Andreas Emil Feldmann. Fast balanced partitioning is hard even on grids and trees. The-
oretical Computer Science, 485:61–68, 2013.

7 Kamrul Islam, Henk Meijer, Yurai Núñez Rodríguez, David Rappaport, and Henry Xiao.
Hamilton circuits in hexagonal grid graphs. In CCCG, pages 85–88, 2007.

8 László Lovasz. A homology theory for spanning tress of a graph. Acta Mathematica Hun-
garica, 30(3-4):241–251, 1977.

9 Jun Ma and Shaohan Ma. Ano (k 2 n 2) algorithm to find ak-partition in ak-connected
graph. Journal of Computer Science and Technology, 9(1):86–91, 1994.

10 Srinivasan Murali and Giovanni De Micheli. Bandwidth-constrained mapping of cores onto
noc architectures. In Proceedings of the conference on Design, automation and test in
Europe-Volume 2, page 20896. IEEE Computer Society, 2004.

11 Bang Ye Wu. A 7/6-approximation algorithm for the max-min connected bipartition prob-
lem on grid graphs. In Computational Geometry, Graphs and Applications, pages 188–194.
Springer, 2011.

MFCS 2018

39:14 Balanced Connected Partitioning of Unweighted Grid Graphs

A Appendix

A.1 Idea behind the solution given in Fact 2
In Fact 2, we gave a set of dimensions for macrocells to build a square grid instance that
satisfies Relations (1) to (3) for given values of tolerance ratio r and number of macrocells
m. Let us present the reasoning behind these values.

As the cumulated surface of three inner tanks will be chosen close to the saturation
threshold s, we first choose the size of the green tank tg = 5

6 s, so green will be unable to
take inner tanks (Relation (3) right).

Then we choose the size of central tanks so that green exactly enters the saturation
interval by covering the green tank and all the central tanks: tg + mtc = s(1− r) (Relation
(3) left). Now we choose total path length in such a way that it is neglectible in front of
tanks: mp = tc

2 , so collecting all the path vertices in the topology accounts for less that
collecting a single central tank (mp in Relations (2) and (3)). The inner tanks get all the
remaining vertices: mti = ms− tg −m(tc + p) (Relation (2)).

Finally, the last dimension to set is the saturation threshold s. As all previously set
dimensions must be integers and are multiples of s, we choose s to be a multiple of all
denominators. Finally we also take s sufficiently large so that there exists k = p

cp
such as

p ≥ k × cp, i.e. there is enough path vertices to wire all the tanks (Relation (1)).

A.2 Proofs of Lemma 3 and Lemma 4
In order to prove these properties, we first prove auxiliary observations:

I Lemma 7. Let a connected grid graph GV be covered by q-squares and q-connected. Then
the induced graph Sq(V, q) is also connected.

Proof. We show that for any two squares sq(x1, y1, q) and sq(x2, y2, q) in GV there exists
a path in Sq(V, q). The proof uses induction on the least distance d of pairs of vertices
(x′1, y′1) ∈ sq(x1, y1, q) and (x′2, y′2) ∈ sq(x2, y2, q): if this distance is 0 then the squares are
intersecting and the q-connected property implies that there is a path between the two
squares. Otherwise, there is a first vertex (x′3, y′3) on the shortest path from (x′1, y′1) to
(x′2, y′2) that is not in sq(x1, y1, q). Since GV is q-square covered, there exists sq(x3, y3, q) in
VG with (x′3, y′3) ∈ sq(x3, y3, q). Moreover, because of q-connectedness, there exists a path
from sq(x1, y1, q) to (x3, y3, q) in Sq(V, q). On the other hand, the distance of (x′3, y′3) and
(x′2, y′2) is less than d, hence by induction, there exists a path from sq(x3, y3, q) to sq(x2, y2, q)
in Sq(V, q) and the two paths joint connect sq(x1, y1, q) and sq(x2, y2, q) as desired. J

I Lemma 8. Let a connected grid graph GV be covered by q-squares and q-connected with
q > 1. Then each (q − 1)-square in GV is contained in a q-square of GV .

Proof. Sketch: let sq(x, y, q − 1) be a (q − 1)-square. In order to show the existence of a
q-square in GV containing it, we first show that there exists a q-square containing one or
several lines from one side of the (q − 1)-square and from there by induction we show that
there exists a q-square containing all the (q − 1) lines from that side. The proof necessarily
makes use of the q-connected property. J

Proof of Lemma 3. Suppose that two (q − 1)-squares are touching or intersecting. Any two
q-squares containing them also touch or intersect. We consider two q-squares containing
them of minimal distance and consider a path between the two. A path consists of steps

C. Berenger and P. Niebert, and K. Perrot 39:15

“up”, “left”, “right” or “down” and it never contains both “up” and “down” on the one hand
or “left” and “right” on the other. A (q − 1)-square can imitate the same directions and
always be included in the q-square of a path, however, it may end up on the “wrong” among
the 4 (q − 1)-squares in the final q-square and require correction. However, it is easy to see
that this correction can either be achieved by skipping a step of the q-square path (thus
relatively moving in the opposite direction) or by adding a step in the final q-square and we
thus end up with a path of the desired distance. J

Proof of Lemma 4. (1) implies (2): q-width trivially follows from q-square covering. Suppose
a constellation (x, y) and a, b, c concerning the q-completion property. Without loss of
generality we suppose a = b = c = 1, other cases are very similar. Supposing the property
fails to hold for this instance of parameters, then there exist vertices (x + i, y), (x, y + j) /∈ V

with 1 ≤ i, j ≤ q. We suppose i, j minimal, i.e. for all 1 ≤ i′ < i we have (x + i′, y) ∈ V and
(x, y + j′) ∈ V . We show the existence of q-squares in GV that touch or overlap, yet violate
the q-connected property because of the obstacles represented by (x + i, y), (x, y + j). First
assume j = 1, then the only q-square containing (x + 1, y + 1) can be sq(x + 1, y + 1, q). This
q-square touches the q-square containing (x + 1, y) yet a direct path to the letter q-square
starting at sq(x + 1, y + 1, q) would have to start either down or left, but there are no edges
in that direction, a contradiction. So j > 1. Now consider the q-squares containing vertices
(x + i′, y + 1) with 0 ≤ i′ <≤ i, all of which belong to GV . Some of them (e.g. (x, y + 1))
must be below y + j′ − q + 1, others above y + 1 and hence there must exist an i’ such that
(x + i′, y + 1) is in a q-square below y + j′ − q + 1 and (x + i′ + 1, y + 1) in a q-square above
y + 1 and these q-squares touch or intersect, yet there is no direct path between them because
of the two obstacle vertices. Another contradiction. Hence, we cannot at the same time have
both (x + i, y), (x, y + j) /∈ V , hence the constellation satisfies the q-completion property.

(2) implies (1):
First we show that the grid graph is q-square covered. We do this by a construction of

coloring a part of the vertices of the graph incrementally in such a way, that the colored
zone is invariantly a union of q-squares. We show that this process can be continued until
all vertices are colored. The construction starts by choosing a vertex (x, y) with x minimal.
Since the graph is q-wide this gives us q vertices (x, y1)...(x, yq) with y = yi, all with x

minimal. Again because of q-width, it follows that sq(x, y1, q) ⊆ V and this is the first
square we color. Now suppose that there are uncolored vertices left. Since the graph is
connected, at least one such vertex is adjacent to a colored square. Without loss of generality,
let us suppose sq(x, y + 1, q) fully colored and (x + i, y) with 0 ≤ i < q not yet colored.
Because of q-width, there exists x′ such that x′ + k = x + i with 0 ≤ k < q and for all
0 ≤ l < q we have (x′ + l, y) ∈ V . We suppose furthermore x, y, i, x′ chosen with these
conditions such that |x− x′| is minimal. Then either x = x′, but then sq(x, y, q) ⊆ and we
can color (x, y)...(x + q − 1, y) and continue. Or x! = x′ and let us suppose that x′ < x.
Then the preconditions for q-completion are satisfied for (x− 1, y) and a = b = c = 1 and
either completion contradicts the assumption of having chosen x, y, i, x′ such that |x− x′| is
minimal.

Now we want to show that GV is q-connected. Supposing it is not, then there are two q-
squares sq(x, y, q), sq(x′, y′, q) such that max{|x−x′|, |y−y′|} ≤ q and min{|x−x′|, |y−y′|} <

q but their distance in Sq(V, q) is greater than |x− x′|+ |y − y′|. Assume |x− x′|+ |y − y′|
minimal for such a pair of q-squares. Obviously, min{|x − x′|, |y − y′|} > 0 otherwise a
straight path between the two q-squares obviously exists contradicting assumptions. The
non-trivially overlapping or touching squares give rise to a constellation of the q-completion
property which in turn yields a third square at distance 1 from one of the two squares and 1

MFCS 2018

39:16 Balanced Connected Partitioning of Unweighted Grid Graphs

unit closer to the other square. Since we assumed |x− x′|+ |y − y′| minimal, this results in
an intermediate q-square on a path of length |x−x′|+ |y− y′| between the original q-squares,
contradicting assumptions. J

A.3 Proof of the Extension Lemma
The proof of the Extension lemma is based on a (constructive) recursive analysis of a q-
compliant coloring: it is based on the identification of potential extension points, and if the
latter induces a conflict to q-compliance, there is a way to subdivide the area of extension
points until necessarily we reach an area too small to contain a conflict.

In order to formalize the search area, we introduce the notion of coloring border as the
edge between the outside and the colored part of VG on the one hand and the uncolored part
of VG on the other hand: Visually, this border is between vertices and we formalize it as
couples: let (u, v) be a pair of neighboring vertices such that v ∈ V \C and u ∈ C or u ∈ H

for some cut hole of VG or such that u is outside of VG coloring border candidate. If u ∈ C

we call it a colored edge, in the case of u ∈ H we call it an uncolored edge. Coloring border
candidates (u, v), (u′, v′) are connected iff u is a neighbor of u′ and v is a neighbor of v′ or
u = u′ and v = (x, y), v′ = (x′, y′) satisfy |x − x′| + |y − y′| = 2, i.e. they are on diagonal
positions, or conversely v = v′ and u, u′ are on diagonal positions. Graphically, connected
coloring border candidates can be drawn without lifting the pen and share a common point.
An extension point is a coloring border candidate (u, v) with u ∈ C and v the first vertex of
a simple extension S. A coloring border is a connected set of coloring border candidates.

A coloring border B is promising if
it contains colored segments;
for any simple extension S(x, y, a, k) with (x, y) having a colored neighbor on the border
its addition to C either preserves q-compliance or it causes a conflict with an uncut hole
or with a colored edge that is either on the coloring border or directly connected to it;
one of the following cases holds :
1. It contains uncolored segments S(x, y, a, q − 1) such that all vertices are connected to

coloring border candidates and such that (x− a, y − (1− a)), (x + a(q − 1), y + (1−
a)(q − 1)) /∈ V \C.

2. It does not satisfy (1), there exists a vertex v ∈ V \C having one neighbor v1 ∈ C and
another neighbor v2 ∈ Z2\V (a corner with one side colored, the other outside V),
with (v, v1) in the coloring border.

3. It does not satisfy (1) or (2), but it contains edges (v, v′) with v′ ∈ Z2\V .
4. It does not satisfy (1) or (2) or (3), but it contains two “colored corners”, i.e. pairs

of edges (vi, v′i) and (vi, v′′i)such that vi ∈ V \C and v′i, v′′i ∈ C (concave corners with
color on both sides), and such that no convex corner (with color on both sides) exists
between them (such pairs of concave corners naturally contain a segment all along the
edges between the two corners).

Proof of Lemma 5 (Extension lemma). By induction, we claim that a promising coloring
border contains an extension that is q-compliant. Then, since the complete border of the
partially colored graph is trivially promising, the result follows.

Now let B be a promising coloring border. We examine the cases and show that for each
case either a q-compliant simple extension can be identified, or that a smaller promising
coloring border can be identified. Case (1) allows immediate coloring, as such a segment
cannot break (q − 1)-completion and the only way it could break the (q − 1)-width would be
if |V \C| = (q − 1)2, which contradicts the assumptions |C| < |V |

q .

C. Berenger and P. Niebert, and K. Perrot 39:17

Suppose case (2): adding a single vertex in the corner cannot break (q−1)-width, because
this contradicts that (1) is not satisfied. Without loss of generality, let us assume v = (x, y)
such that (x−1, y) ∈ C and (x, y−1) /∈ V (other cases are symmetric). In order to generate a
conflict to (q−1)-completion, we must have (x+q−1, y), (x+q−2, y)...(x+q−2, y+q−1) ∈ V \C
but that (x′, y′) /∈ V \C for an (x′, y′) ∈ {(x+q−1, y+1), ..., (x+q−1, y+q−1)}. Since VG is
q-square connected, it is not difficult to see that {(x+q−1, y+1), ..., (x+q−1, y+q−1)} ⊆ V

hence (x′, y′) ∈ C. With (x′ − 1, y′) ∈ V \C it forms a coloring border candidate and since
the coloring border is promising, it is connected to the corner. Considering the shortest path
between the corner and the conflicting edge, then by removing the edge linking the corner
to the colored vertex, we obtain a new coloring border. We claim that it is promising : it
contains concave corners because of the orientation of the edges at the two vertices, and
moreover, if an extension of any of the types (1)-(4) on this sub-border have conflicts, they
must occur within the sub-border.

For the case (3), let us suppose (other cases are symmetric) that v = (x, y), (x+1, y) ∈ V \C
and moreover (x, y − 1) ∈ C and (x + 1, y − 1) /∈ V . If adding v produces a conflict to
q-compliance, it is either a conflict to (q − 1)-width or to (q − 1)-completion.

Let us first consider the case of an (q − 1)-width conflict. Such a conflict can concern
(x, y + q − 2), (x− k, y) or (x + k, y) for some 1 < k < q − 1. In the first case, since GV is
q-square connected, it is easy to see that (x, y + q − 2) ∈ V , and consequently, it is in C. By
removing the edges (x, y), (x, y−1) and ((x, y + q−2), (x, y + q−3)) from the border coloring
and by keeping a path between these two edges connecting them and containing colored edges,
we obtain a coloring border of reduced size, which we claim to be promising : for example,
the two removed edges are parallel and the connecting path necessarily contains concave
corners (otherwise, we end up with a contradiction to the assumption that (1) does not
hold), and finally, given that the remaining coloring border is “almost closed”, a conflict with
respect to some extension point cannot be situated beyond the two removed edges. In the
second case, we consider the simple extension (x− k + 1, y). It cannot have an (q − 1)-width
conflict (otherwise we would have (1), but we assume that we did not) and because of
(x + 1, y − 1) /∈ V we find that a conflicting vertex with respect to (q − 1)-completion must
be (x− k + q − 1, y + q − 2) ∈ C we apply a similar reasoning as above in order to identify a
sub coloring border. Finally, In the third case (and excluding the second case), the segment
{(x, y), ..., (x+k−1, y)} is a simple extension that cannot introduce a conflict to (q−1)-width
and as before, if there is a conflict to (q − 1)-completion, this conflict is between the edge
below (x, y) and some colored edge and again, we apply a reduction of the coloring border.
In any case, either the extension preserves q-compliance, or the reduced coloring border is
promising and contains by induction an extension preserving q-compliance, that extends
obviously to the complete bordering color.

For the case (4), we suppose (up to symmetry) corners (x, y), (x+k, y) with (x−1, y), (x+
k + 1, y) ∈ C and (x, y− 1), ..., (x + k, y− 1) ∈ C. If adding (x, y) to C causes a conflict, it is
either due to a colored vertex and we proceed by induction as above. If, on the other hand,
there exists a conflicting vertex v′ /∈ V then this vertex cannot be on the coloring border
(assumption of case (4)), hence it must be part of an uncut hole at position (x+q−1, y+q−1).
We claim that in this case, the simple extension S = {(x + q− 1, y), ..., (x + q− 1, y + q− 2)}
preserves q-compliance. First, it cannot introduce a conflict with (q − 1)-completion, but
also, it cannot introduce a conflict with (q − 1)-width. Also observe that the uncut hole
is surrounded by some closed path in V \C, cutting it cannot cause V \(C ∪ S) to become
disconnected. J

MFCS 2018

39:18 Balanced Connected Partitioning of Unweighted Grid Graphs

Figure 9 Promising coloring border and extension search.

The recursive reasoning of the proof is illustrated in Figure 9 for the case q = 4, from left to
right: (a) A partial coloring and a promising coloring border (initially the inner contour) is
given and a possible simple extension (Case 3) is shown in yellow, but it induces a conflict
concerning (q − 1)-width, the edges cut are marked red, we keep the path connecting these
edges at right. A second attempt of Case 3 is shown in the second picture. In the third
picture, there are no more uncolored edges (Case 4) in the coloring border so we try a concave
corner, but there is a conflict with an uncut hole, so we cut it instead, which conclude the
search for the extension. The last picture shows an application of Case 1.

A.4 Example computation of our coloring algorithm
Below, we show a trace of the partitioning by Algorithm 1 for illustration.

Concurrent Games and Semi-Random
Determinacy
Stéphane Le Roux
Darmstadt Technical University, Department of Mathematics, Darmstadt, Germany
leroux@mathematik.tu-darmstadt.de

Abstract
Consider concurrent, infinite duration, two-player win/lose games played on graphs. If the
winning condition satisfies some simple requirement, the existence of Player 1 winning (finite-
memory) strategies is equivalent to the existence of winning (finite-memory) strategies in finitely
many derived one-player games. Several classical winning conditions satisfy this simple require-
ment.

Under an additional requirement on the winning condition, the non-existence of Player 1
winning strategies from all vertices is equivalent to the existence of Player 2 stochastic strategies
almost-sure winning from all vertices. Only few classical winning conditions satisfy this additional
requirement, but a fairness variant of omega-regular languages does.

2012 ACM Subject Classification Theory of computation → Formal languages and automata
theory, Theory of computation → Verification by model checking, Software and its engineering
→ Software verification, Software and its engineering → Model checking

Keywords and phrases Two-player win/lose, graph, infinite duration, abstract winning condition

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.40

Acknowledgements Referees (of several conferences) and Sasha Rubin made helpful comments.
A simplification of the proof of Lemma 11 was triggered by a conversation with Arno Pauly.

1 Introduction

Computer science models systems interacting concurrently with their environment via infinite
duration two-player win/lose games played on graphs: a play starts at a state of the graph,
where the players concurrently choose one action each and thus induce the next state, and
so on for infinitely many rounds. The winning condition is a given subset W of the infinite
sequences of states, and Player 1 wins the play iff the sequence of visited states belongs to
W . A strategy of a player prescribes one action depending on what has been played so far,
and a winning strategy is a strategy ensuring victory regardless of the opponent strategy.

There are games where neither of the players has a winning strategy, but Borel determ-
inacy [25] guarantees the existence of a winning strategy in games where the players play
alternately and the winning condition is a Borel set. Under Borel condition again, Black-
well determinacy [26] guarantees a weaker conclusion when the players play concurrently:
there exists a value v ∈ [0, 1] such that for all ε > 0 the players have stochastic strategies
guaranteeing victory with probability v − ε and 1− v − ε, respectively.

In the special case of concurrent games played on finite graphs with ω-regular winning
conditions, [11] designed algorithms to decide the existence of (stochastic) strategies that
are winning, winning with probability one, and winning with probability 1− ε for all ε > 0.
[11] also mentions a three-state game where only the latter exist, which exemplifies the
complexity of the concurrent ω-regular games on finite graphs. Then [6] studied concurrent

© Stéphane Le Roux;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 40; pp. 40:1–40:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leroux@mathematik.tu-darmstadt.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.40
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Concurrent Games and Semi-Random Determinacy

q0

b1 b2
a1 0, q0 0, q1
a2 1, q0 0, q0

q1

b1 b2
a1 2, q0 1, q0
a2 2, q1 2, q1

q0start q1

0

1

2

Figure 1 To the left, a concurrent game with states q0, q1, colors 0, 1, 2, and two actions per player.
To the right, a one-player game derived by using the delayed response [(0, q0)(0, q0)]; [(1, q0)(2, q1)].

prefix independent winning conditions, which is strictly more general than the ω-regular
conditions, and [13] further improved upon some results. Some of these results were extended
recently to multi-player multi-outcome games, see e.g. [3], [15].

The new games. This article studies slightly different games: when the players concurrently
choose one action each, it also produces a color ; the winning condition is now a given subset
W of the infinite sequences of colors; and Player 1 wins the play iff the produced sequence
of colors belongs to W . There are two differences between the classical games and the new
games. First, the winning condition does not involve the visited states but the transitions
instead; second it does so indirectly, via colors labeling the transitions. E.g. in the game
on the left-hand side of Figure 1, starting at q0, the action sequence (a1, b1)(a1, b2)(a1, b1)
yields the state sequence q0q0q1q0 and the color sequence 002.

There are several reasons why these new games are interesting.
The classical games can be encoded easily into the new ones by using state names as
colors. Variants such as the games with colored states, or the colorless games with winning
condition on the transitions can also be encoded easily into the new games.
The converse encoding may increase the state space (to infinity for games with infinitely
many actions). Note that the transition-versus-state issue was already studied in the
turned-based setting in [10]. Likewise, colorless games are encoded easily in games with
colors without size increase, and colors usually lead to more succinct winning conditions.
Colors are widely used in turn-based games, and for all games they help to study the
winning conditions independently from the game structure, and thus to approximate
or even characterize nice winning conditions for classes of games (usually simple to
check) rather than for single games (usually more accurate but harder to check). This is
exemplified by the difference between Theorems 5 and 7 in [27].
Whereas classical one-state games are trivial, the new one-state games are fairly complex
and constitute a nice intermediate object towards the understanding of the more complex
general games. Likewise, some one-state (aka stateless) objects from the literature are
interesting in their own right: [1] studied one-state multi-objective Markov decision
processes; vector addition systems (VAS, [17]) are still studied despite the vector addition
systems with states (VASS, [16]); the Minkowski games [24] defined with finite sets are a
special case of the one-state games from this article.

The main results.
If W is closed under interleaving and prefix removal, and if states and colors are finitely
many, the existence of a Player 1 winning (finite-memory) strategy is equivalent to the
existence of winning (finite-memory) strategies in finitely many derived one-player games.

S. Le Roux 40:3

If, in addition, W is factor-prefix complete and there are finitely many actions, either
Player 1 has a winning strategy from one state, or every Player 2 constant (stronger than
positional!), positive, stochastic strategy is almost-sure winning from all vertices. This is
semi-random determinacy.
One-state games enjoy a stronger conclusion than in the previous item under somewhat
weaker assumptions: if the winning condition is factor-set complete and closed under
interleaving, if Player 2 has finitely many actions, either Player 1 has a winning strategy,
or every Player 2 constant, positive stochastic strategy is almost-sure winning.

The finitary flavor of the above characterizations yields decidability and memory sufficiency,
in the rough range of double exponentials in the number of states times the number of colors.

In the context of semi-random determinacy, a neutral, random Player 2 is therefore as
bad for Player 1 as a hostile environment. Also, the victory is clear-cut in the above results:
no need for approximate optimal strategies, no need for the notion of value, etc. This is due
to the assumptions, and it is legitimate to wonder how restrictive they are.

Several classical winning conditions from computer science are closed under interleaving,
see Section 5. The Muller condition is not, but the parity condition is, so the first charac-
terization result extends to the concurrent Muller games via the Last Appearance Record
(LAR), as done in [28]. So, closedness under interleaving is not as restrictive as it may seem.

Fewer classical winning conditions are factor-prefix complete (defined in Section 3.2), but
the boundedness condition from [24] and a variant of the ω-regular languages are both closed
under interleaving and factor-prefix complete. The variant is as follows: each produced color
requests some combinations of colors to occur in the future. In winning plays, the number of
currently unsatisfied requests should be uniformly bounded over time. It may be relevant
even as a business model: at every time unit the system can pay penalties for every currently
unsatisfied request, which may be covered by greater, albeit bounded, instantaneous income.

The above variant relates to the notion of fairness, which requires that co-finitely many
requests are eventually satisfied. The finitary fairness [2] additionally requires uniformly
bounded response time. This idea was used in [12] to study temporal logic, and in [9] to
study finitary parity games. Requiring uniformly bounded response time (or variants thereof)
to study games has been further used later, e.g. in [5]. However, these notions of fairness do
not enjoy closedness under interleaving and factor-prefix completeness. (Details in Section 5.)

Related works. The semi-random determinacy implies the bounded limit-one property
from [11] for the new games: if one state has positive value, one state has value one.

Corollary 4 generalizes the nice Theorem 4 from [18]. Note that the convexity of winning
conditions defined in [18] is a essentially the same as the interleaving closedness defined here.

This article also shares similarities with [14]: both use abstract winning conditions, and
both characterize the existence of winning strategies in two-player games by the existence
of winning strategies in finitely many derived one-player games. Several articles adopted a
similar approach: [19] and [20] reduce multi-player multi-outcome Borel games to simpler two-
player win/lose Borel games, and characterize the preferences and structures that guarantee
the existence of Nash equilibrium in infinite tree-games; [21] does the same to characterize
the preferences that guarantee the existence of subgame perfect equilibrium (at low levels
of the Borel hierarchy); [23] and [27] do the same to almost characterize the existence of
finite-memory Nash equilibrium in games on finite graphs; [22] reduces one-shot concurrent
two-player multi-outcome games to simpler one-shot concurrent two-player win/lose games,
with applications to generalized Muller games and generalized “parity” games.

MFCS 2018

40:4 Concurrent Games and Semi-Random Determinacy

One of the benefits of abstraction is that it leads to more general results: e.g. [23] noted
that the lexicographic product of mean-payoff and reachability objectives cannot be encoded
into real-valued payoffs, and [27] proved it.

Structure of the article. Section 2 gives basic definitions. Section 3 presents the main
results and additional definitions. Section 4 discusses the key elements of the proofs. Section 5
presents applications.

2 Definitions

The folklore Observation 1 below will be used extensively to lift properties from finite words
to infinite words. It will be first explicitly invoked, and then only implicitly used.

I Observation 1. Let f : S∗ → T ∗ be such that u v v ⇒ f(u) v f(v), where v is the prefix
relation. Then f can be uniquely extended to S∗ ∪ Sω → T ∗ ∪ Tω such that f(ρ≤n) v f(ρ)
for all n ∈ N and ρ ∈ Sω.

Games. A game (with colors and states) is a tuple 〈A1, A2, Q, q0, δ, C, col,W 〉 such that
A1 and A2 are non-empty sets (of actions for Player 1 and Player 2),
Q is a non-empty set (of states),
q0 ∈ Q (is the initial state),
δ : Q×A1 ×A2 → Q (is the state update function).
C is a non-empty set (of colors),
col : Q×A1 ×A2 → C (is a color trace),
W ⊆ Cω (is the winning condition for Player 1)

Histories. The full histories (full runs) of such a game are the finite (infinite) words over
A1 × A2, the Player 2 histories (Player 2 runs) are the finite (infinite) words over A2, and
the Player 1 histories (Player 1 runs) are the finite (infinite) words over A1.

Strategies. A Player 1 strategy is a function from A∗2 to A1. Informally, it requires Player 1
to remember exactly how Player 2 has played so far, and it tells Player 1 how to play.

Induced histories. The function h is defined inductively below. As arguments it expects a
strategy and a Player 2 history in A∗2, and it returns a full history: the very full history that,
morally, should happen if Player 1 followed the given strategy while Player 2 played the given
Player 2 history. Namely, h(s, ε) := ε and h(s, β · b) := h(s, β) · (s(β), b).

By Observation 1 the function h is extended to expect opponents runs in Aω2 and return
full runs: h(s,β) is the only action run whose prefixes are the h(s,β≤n) for n ∈ N.

Extending the update and trace functions. The state update function δ is extended to
∆ : (A1 × A2)∗ → Q inductively: ∆(ε) := q0 and ∆(ρ · (a, b)) := δ(∆(ρ), a, b). Using
∆, the trace function col is naturally lifted to full histories by induction: col(ε) := ε and
col(ρ · (a, b)) := col(ρ) · col(∆(ρ), a, b). The trace function is further extended to full runs by
Observation 1. When considering several games, indices may be added to the corresponding
∆ and col.

Winning strategies. A Player 1 strategy s is winning if col ◦ h(s,β) ∈W for all β ∈ Aω2 . If
there is a Player 1 winning strategy in a game, one says that Player 1 wins the game.

S. Le Roux 40:5

Memory. A Player 1 strategy s is said be implementable with memory M , or memory size
log2 |M |, if there exist a set M and m0 ∈ M , and two functions σ : Q ×M → A1 and
µ : Q×M ×A2 →M such that s(β) = σ(∆ ◦ h(s, β),m(β)), where m is defined inductively
by m(ε) := m0 and m(βb) := µ(∆◦h(s, β),m(β), b). IfM is finite, s is called a finite-memory
strategy. Note that every Player 1 strategy is implementable with memory Aω2 .

One-player games. Intuitively, a one-player game (with colors and states) amounts to a
game where Player 2 has only one strategy available, i.e. |A2| = 1. Formally, it is a tuple
〈A1, Q, q0, δ, C, col,W 〉 such that A1, Q, and C are non-empty sets, q0 ∈ Q, δ : Q×A1 → Q,
col : Q×A1 → C, and W ⊆ Cω. In this context, the full histories (full runs) of such a game
are the finite (infinite) words over A1, and the Player 2 histories of Player 1 are the natural
numbers (telling how many rounds have been played). There is only one Player 2 run, namely
ω. Then, a Player 1 strategy is a function from N to A1, and the notation for the induced full
histories is overloaded: h(s, 0) := ε and h(s, n+ 1) := h(s, n) · s(n). By Observation 1 the
function h is (again) extended: h(s, ω) is the only action run whose prefixes are the h(s, n)
for n ∈ N. A Player 1 strategy s is winning if col ◦ h(s, ω) ∈W .

Prefix removal. A set of infinite sequences is closed under prefix removal if the tails of the
sequences from the set are again in the set. Formally, W ⊆ Cω is closed under prefix removal
if the following holds: ∀(γ,γ) ∈ C∗ × Cω, γ · γ ∈W ⇒ γ ∈W . Note that closedness under
prefix removal is weaker than the prefix independence assumed in [6], [13], and [18].

Interleaving. Interleaving two infinite sequences consists in enumerating sequentially (pre-
fixes of) the two sequences to produce a new infinite sequence. For example, interleav-
ing (2n)n∈N and (2n + 1)n∈N can produce the sequences (n)n∈N (perfect alternation),
1 · 0 · 3 · 5 · 2 · 7 · 4 · 6 · (n+ 8)n∈N, and (2n)n∈N (by enumerating the first sequence only), but
not the sequences (4n)n∈N or 0 · 1 · 4 · 3

Delayed response. Consider a game g = 〈A1, A2, Q, q0, δ, C, col,W 〉 with finite Q and C.
For every q ∈ Q let Eq1 , . . . , E

q
kq

be the elements of {(col, δ)(q, a,A2) | a ∈ A1}, where
(col, δ)(q, a,A2) := {(col(q, a, b), δ(q, a, b)) | b ∈ A2} for all a ∈ A1. The elements of
⊗q∈Q,i≤kq

Eqi are called the Player 2 delayed responses. Intuitively, a Player 2 delayed response
amounts to a Player 2 positional strategy in (and only in) a sequentialized version of the
game. In every round of this version, Player 1 chooses an action first, then Player 2 chooses an
action (or more precisely some color and state among the pairs he could induce by choosing
an action). E.g. [(0, q0)(0, q0)]; [(1, q0)(2, q1)] is a delayed response for Figure 1. It means
that at state q0, Player 2 selects (0, q0) for both actions of Player 1, and at state q1 it selects
(1, q0) if Player 1 chooses action a1. Note that delayed responses are not Player 2 (positional)
strategies in the concurrent game, e.g. as [(0, q0)(0, q0)] is not achievable in any column.

Derived one-player games. Let t be a Player 2 delayed response. The one-player game
g(t) := 〈A1, Q, q0, δt, C, colt,W 〉 is defined by (colt, δt)(q, a) := tq,(col,δ)(q,a,A2), the projection
of t on the (q, Eqi)-component such that Eqi = (col, δ)(q, a,A2). Intuitively, g(t) is the game
obtained by letting Player 2 fix his strategy (to realize) t in the sequentialized version of g.
For example, the game on the left-hand side of Figure 1 applied to the delayed response
[(0, q0)(0, q0)]; [(1, q0)(2, q1)] yields the game on the right-hand side of Figure 1.

MFCS 2018

40:6 Concurrent Games and Semi-Random Determinacy

3 Main results

Section 3.1 characterizes the existence of Player 1 winning strategies and gives a complexity
result. Section 3.2 defines additional concepts and uses the above characterization to
characterize the existence of Player 2 everywhere-winning stochastic strategies. Section 3.3
studies the special case of one-state games and presents the semi-random determinacy.

3.1 Existence of Player 1 winning strategies
Theorem 2 below characterizes the existence of Player 1 winning strategies in a game via
the existence of winning strategies in finitely many derived one-player games. Theorem 3
afterwards drops the assumption on closedness under prefix removal from Theorem 2, but at
the cost of a universal quantification over the starting state of the game. In Theorems 2 and
3, the finiteness and the closedness assumptions are used only to prove the 2⇒ 1 implications.

I Theorem 2. Consider a game g = 〈A1, A2, Q, q0, δ, C, col,W 〉. If Q and C are finite, and
W is closed under interleaving and prefix removal, the following are equivalent.
1. Player 1 wins g.
2. Player 1 wins g(t) for all delayed responses t.
If A1 is finite and Player 1 wins, she can do it with memory size O(f(|A1|, |Q|, |C|) · (|C ×
Q|)|Q|2|C×Q|), where f(|A1|, |Q|, |C|) is a sufficient memory size to win the one-player games
using A1, Q and C.

I Theorem 3. Consider games gq = 〈A1, A2, Q, q, δ, C, col,W 〉 parametrized by q ∈ Q. If
A1, A2, and Q are finite, if W is factor-prefix complete and closed under interleaving and
prefix removal, the following are equivalent.
1. Player 1 wins gq for all q ∈ Q.
2. Player 1 wins gq(t) for all q ∈ Q and delayed responses t.
If the above holds, Player 1 wins every gq with memory size as in Theorem 2.

In games that are (or encode) turn-based games, the delayed responses are Player 2
positional strategies. So, restricting Theorems 2 and 3 to turn-based games yields Corollaries 4
and 5, respectively. Note that Corollary 4 generalizes Theorem 4 from [18] by only assuming
closedness under prefix removal instead of prefix independence. This is significant since the
safety condition is closed under interleaving and prefix removal, but is not prefix independent.

I Corollary 4. Consider a game g = 〈A1, A2, Q, q0, δ, C, col,W 〉 encoding a turn-based game.
If Q and C are finite, and W is closed under interleaving and prefix removal, either Player 1
has a winning strategy or Player 2 has a positional winning strategy.

I Corollary 5. Consider games gq = 〈A1, A2, Q, q, δ, C, col,W 〉 parametrized by q ∈ Q and
encoding a turn-based games. If Q and C are finite, and W is closed under interleaving,
either Player 1 wins all gq, or Player 2 has a positional winning strategy for some gq.

The characterizations from Theorems 2 and 3 yields decidability results and rough
algorithmic complexity estimates in Corollary 6 below. Note that checking all the possible
strategies using memory size given by Theorems 2 and 3 would be slower than Corollary 6.

I Corollary 6. Let C 6= ∅, let W ⊆ Cω be closed under interleaving and prefix removal (resp.
by interleaving), and let f : N3 → N be such that for all finite C ⊆ C and all one-player
games 〈A1, Q, q0, δ, C, col,W 〉, it takes at most f(|A1|, |Q|, |C|) computation steps to decide

S. Le Roux 40:7

the existence of a (finite-memory) winning strategy in the game. Then for all finite games
gq0 = 〈A1, A2, Q, q0, δ, C, col,W 〉 it takes at most

f(|A1|, |Q|, |C|) · (|C ×Q|)|Q|2
|C×Q|

+ |Q||A1||A2|

computation steps to decide whether Player 1 wins gq0 (with finite memory).
(resp. |Q| · f(|A1|, |Q|, |C|) · (|C ×Q|)|Q|2

|C×Q| + |Q||A1||A2| computation steps to decide
whether Player 1 wins gq (with finite memory) for all q ∈ Q.)

3.2 Existence of Player 2 almost-sure winning random strategies
Consider a game 〈A1, A2, Q, q0, δ, C, col,W 〉.

Probability distribution. A probability distribution on a finite set E is a function f : E →
[0, 1] such that

∑
e∈E f(e) = 1. Let us call D(E) the set of the probability distributions on

E.

Stochastic strategies. A Player 1 (Player 2) stochastic strategy is a function σ : (A1×A2)∗ →
D(A1) (τ : (A1 ×A2)∗ → D(A2)).

Induced stochastic histories. The function H is defined inductively below. As arguments
it expects stochastic strategies σ and τ for Player 1 and a Player 2, respectively, and it
returns a function from (A1 ×A2)∗ to R. Namely, H(σ, τ)(ε) := 1, and H(σ, τ)(ρ · (a, b)) :=
H(σ, τ)(ρ) · σ(ρ)(a) · τ(ρ)(b). It is easy to check that H(σ, τ)(ρ) ≥ 0 for all ρ ∈ (A1 ×A2)∗,
and that

∑
|ρ|=nH(σ, τ)(ρ) = 1 for all n ∈ N.

Induced probability measure. For every pair (σ, τ) ∈ D(A1)(A1×A2)∗ ×D(A2)(A1×A2)∗ one
defines a probability measure λ(σ, τ) on (A1 × A2)ω by setting λ(σ, τ)(ρ · (A1 × A2)ω) :=
H(σ, τ)(ρ) for all ρ ∈ (A1 ×A2)∗. (It is then extended uniquely to measurable sets.)

Almost-sure winning stochastic strategies. A Player 2 stochastic strategy τ is said to
be almost-sure winning if λ(σ, τ)(col−1[W]) = 0 for all σ ∈ D(A1)(A1×A2)∗ . (Recall that
col : (A1 ×A2)ω → Cω is an extension of col : Q×A1 ×A2 → C with notation overload.)

Factor-prefix completeness. Informally, W is factor-prefix complete if the following holds:
if the prefixes of an infinite sequence occur as factors arbitrarily far in the tail of a second
sequence in W , the first sequence is also in W . (A factor, aka substring, is a subsequence of
consecutive elements.) Formally, W ⊆ Cω is factor-prefix complete if the following holds:
∀γ ∈ Cω, (∃γ′ ∈W, ∀n,m ∈ N, ∃k ∈ N,γ≤n = γ′m+k . . .γ

′
m+k+n)⇒ γ ∈W .

In Theorem 7 below, a distribution is said to be positive if it assigns only positive masses.
A (stochastic) strategy is said to be constant if it is a constant function, i.e. it returns always
the same distribution, which is stronger than being Markovian (aka memoryless, positional).

I Theorem 7 (semi-random determinacy). Consider games gq = 〈A1, A2, Q, q, δ, C, col,W 〉
parametrized by q ∈ Q. If A1 and A2 are finite, if W is factor-prefix complete and closed
under interleaving and prefix removal, the following are equivalent.
1. for all q ∈ Q, Player 1 has no winning strategies in gq.
2. for all q ∈ Q, Player 2 has a constant, positive, stochastic strategy almost-sure winning gq.
3. for all q ∈ Q every Player 2 stochastic strategy involving probabilities bounded away from

0 (i.e. with positive infimum) almost-sure wins gq.

MFCS 2018

40:8 Concurrent Games and Semi-Random Determinacy

So in the setting of Theorem 7, either Player 1 has a winning strategy for some gq, or every
constant, positive strategy is almost-sure winning, hence the determinacy. Also note that
semi-random determinacy implies the bounded limit-one property from [11] for the new games:
if one state has positive value, one state has value one.

3.3 The special case of stateless (i.e. one-state) games
Stateless games. Intuitively, a stateless game (with colors) amounts to a game with only
one state, i.e. |Q| = 1. Formally, it is a tuple 〈A1, A2, C, col,W 〉 such that A1, A2, and
C are non-empty sets, col : A1 × A2 → C (as opposed to col : Q × A1 × A2 → C in the
general case), and W ⊆ Cω. Histories, runs, strategies, and induced histories are defined as
in the general case . It is easier to extend the trace function in this context: col(ε) := ε and
col(ρ · (a, b)) = col(ρ) · col(a, b).

Restricting Theorem 3 to stateless games yields a simpler Corollary 8 below. (Note that
restricting Theorem 2 would yield a weaker variant of Corollary 8, i.e. additionally assuming
closedness under prefix removal.) Memory size and algorithmic complexity estimates could
be obtained essentially by replacing |Q| with 1 in Theorem 3 and Corollary 6.

I Corollary 8. Consider a game 〈A1, A2, C, col,W 〉 with finite C and interleaving-closed W .
Let C1, . . . , Ck be the elements of {col(a,A2) | a ∈ A1}. The following are equivalent.
1. Player 1 has a winning strategy (resp. finite-memory winning strategy).
2. ∀(c1, . . . , ck) ∈ C1×· · ·×Ck, W ∩{c1, . . . , ck}ω 6= ∅ (resp. W ∩{c1, . . . , ck}ω ∩ regC 6= ∅),
where regC are the regular infinite sequences over C.

Restricting Theorem 7 to stateless games cancels the universal quantification over states,
but an even stronger version can be obtained: finiteness of A1 and prefix removal closedness
are dropped, and the assumption on factor-prefix completeness is weakened to factor-set
completeness, as below.

Factor-set completeness. A language of infinite sequences is called factor-set complete if
the following holds: if a sequence in the language has factors of unbounded length over
some C0, the language has a sequence over C0. This is formally defined by contraposition:
W ⊆ Cω is factor-set complete if for all C0 ⊆ C and for all ρ ∈W , we have W ∩ Cω0 = ∅ ⇒
∀ρ ∈W, ∃m ∈ N, ∀n ∈ N, ∃i ∈ N, i < m ∧ ρn+i /∈ C0.

I Observation 9. Factor-prefix completeness implies factor-set completeness (finite alpha-
bets).

I Theorem 10 (Stateless semi-random determinacy). Consider a stateless game 〈A1, A2, C,

col,W 〉 with finite C and A2. Let us assume that W is interleaving-closed and factor-set
complete. Then either Player 1 has a winning strategy, or every Player 2 constant, positive,
stochastic strategy is almost-sure winning.

4 The proofs

Theorems 2 and 3 characterize a concurrent game by finitely many one-player games. A
natural idea would be to split their proof into two parts: first, reduce the problem to
turn-based games via the well-known observation that a player has a winning strategy in a
concurrent game iff she has one in the sequential version of the game where she plays first;
second, use similar techniques as in [18]. For this to work, the sequential versions of the

S. Le Roux 40:9

b1 b2
a1 1, 1 2, 1
a2 1,−1 0,−1
a3 −1, 0 −2, 0

1, 1
1,−1
−1, 0

1, 1
1,−1
−2, 0

1, 1
0,−1
−1, 0

1, 1
0,−1
−2, 0

2, 1
1,−1
−1, 0

Figure 2 A concurrent Minkowski game and its derived games.

concurrent games must allow for colorless transitions, or a fresh color should be used for
the transitions where Player 1 plays. This raises three issues: first, true colors should occur
infinitely often in every run in these turn-based games, which would require a more complex
notion of turn-based game (and considering only games with strict player alternation does not
help, as this property is lost during the induction); second, the winning condition should be
rephrased to take the fresh color into account, and so should its closedness properties; third,
it would be much more difficult to obtain stronger results for the one-state concurrent games,
since the one-state property may be hard to track through the translation into turn-based
games. Instead, this article overcomes the concurrency directly thanks to Lemma 11.

I Lemma 11. Let (Xi)i∈I be a family of sets. Then
∀f :

∏
i∈I Xi → I, ∃i ∈ I, ∀x ∈ Xi, ∃y ∈

∏
i∈I Xi, yi = x ∧ f(y) = i.

Proof. Towards a contradiction, let us assume the negation of the claim, i.e. ∃f :
∏
i∈I Xi →

I, ∀i ∈ I, ∃x ∈ Xi, ∀y ∈
∏
i∈I Xi, yi 6= x ∨ f(y) 6= i. By collecting one witness x =: zi for

each i, one constructs z ∈
∏
i∈I Xi such that ∀y ∈

∏
i∈I Xi, yi 6= zi ∨ f(y) 6= i. In particular,

taking y := z yields zi 6= zi ∨ f(z) 6= i for all i, which contradicts the type of f . J

Consider the one-state game g in Figure 2 (to the left), where each cell encloses one
vector of the real plane. Player 1’s objective is that the sum of the outcome vectors remains
bounded, which is closed under interleaving and prefix removal, so g is a concurrent version of
the Minkowski games [24]. There are 23 = 8 delayed responses, and five of the corresponding
one-player games g0, . . . g7 are displayed to the right in Figure 2. Player 1 wins g0, . . . , g7,
since for each i ≤ 7 the vector (0, 0) is in the convex hull of the three vectors defining gj .
The idea is to let Player 1 play g as if she were playing g0, . . . , g7 in parallel, more specifically
in an interleaved way. Then, summing up the eight bounded trajectories yields a bounded
trajectory for g.

The main difficulty to play the g0, . . . , g7 in an interleaved way is that at every stage,
Player 1 should pick an action such that whichever action Player 2 chooses, the resulting
vector is exactly the expected one by the (fixed) winning strategy for some gj . Let f :
{1, 2}3 → {a1, . . . , a3} be the function that tells which action should be played currently in
each of the 23 = 8 one-player games. By Lemma 11 there exists an action ai such that the
following holds: if Player 2 chooses b1, there exists gj expecting the vector in the cell (ai, b1),
and likewise if Player 2 chooses b2, there exists gk expecting the vector in the cell (ai, b2).

Let us now quickly mention semi-random determinacy. The proof of Theorem 7 below
uses similar techniques as, e.g., a proof in [24].

Proof of 1 ⇒ 3 from Theorem 7. Let p ∈]0, 1
|A2|] and let τ be a Player 2 stochastic strategy

that always assigns probability at least p to every action.
For all q ∈ Q, by contraposition of Theorem 2 let tq be a delayed response (in gq) such

that Player 1 loses the one-player game gq(tq). For all n ∈ N, anytime a play reaches the

MFCS 2018

40:10 Concurrent Games and Semi-Random Determinacy

state q, the probability that from then on Player 2 follows tq for n rounds in a row, as if
second-guessing Player 1, is greater than or equal to pn.

Consider a play where Player 2 follows τ . Let q be a state that is visited infinitely often.
(Such a state exists since Q is finite.) Thanks to the argument above, for all n ∈ N, the
probability that, at some point, Player 2 follows tq for n rounds in a row from q on is one.
Since the countable intersection of measure-one sets has also measure one, the probability
that, for all n ∈ N, at some point Player 2 follows tq for n rounds in a row from q on is one.

Let (ρn)n∈N be the corresponding full histories. Since A1 and A2 are finite, the tree
induced by prefix closure of the (ρn)n∈N is finitely branching, so by Koenig’s Lemma it has
an infinite path ρ, which corresponds to Player 2 following tq infinitely many rounds in a
row. So col(ρ) /∈W . By factor-prefix closedness the original play is also losing for Player 1,
i.e. winning for Player 2. J

5 Applications

Abstract assumptions need not only be general, they also need to be practical. Section 5.1
shows that the closedness and completeness axioms enjoy nice algebraic properties: individu-
ally, w.r.t. Boolean combination, as well as collectively via the derived closure or completion
operators. Section 5.2 mentions several classical or recent winning conditions from computer
science and tells which of them satisfy the closedness and completeness axioms. Section 5.3
introduces the notion of bounded residual load as an alternative to the finitary fairness [2],
and uses it to define a finitary variant of the ω-regular languages that satisfies the closedness
and completeness axioms.

5.1 Algebraic properties of the closedness and completeness axioms
Lemma 12 below shows how the axioms behave w.r.t. Boolean combination.

I Lemma 12.
1. The set of the factor-set complete languages is closed under union.
2. The set of the interleaving-closed languages is closed under intersection.
3. The set of the factor-prefix complete languages is closed under intersection and union.

The set of the interleaving-closed languages is not closed under union: {0ω} and {1ω}
are closed under interleaving (and by prefix removal), but {0ω, 1ω} is not. The set of
the interleaving-closed languages is not closed under complementation: the interleaving
of two infinite sequences that are not eventually constant is not eventually constant, but
interleaving the eventually constant sequences 0ω and 1ω may yield (01)ω. The set of the
factor-set complete languages is not closed under intersection: indeed, both two-element
sets {0(12)0(12)20(12)30 . . . , (12)ω} and {0(12)0(12)20 . . . , (112)ω} are factor-set complete,
but their intersection {0(12)0(12)20 . . . } is not. The set of the factor-set (-prefix) complete
languages is not closed under complementation: {1ω} is factor-set (-prefix) complete, but
{0, 1}ω \ {1ω} is not.

The closedness under interleaving and prefix removal, and the factor-prefix completeness
induce closure operators. If a relevant winning condition fails to satisfy an equaly relevant
axiom, such an operator conveniently constructs a (more generous, axiom satisfying) variant
of the winning condition. The closure by prefix removal of a set consists in adding the tails of
the sequences from the set; the closure by interleaving consists in adding sequences obtained
by interleaving the sequences from the set; and the factor-prefix completion consists in adding

S. Le Roux 40:11

the sequences whose prefixes occur arbitrarily far in a sequence from the set. Note that
factor-set completeness does not induce a canonical closure operator due to the existential
quantifier in its definition.

Lemma 13 below shows that the operators behave as expected. This is not for granted
in general, as one may need to perform the addition operation an ordinal number of times.
Here, one step suffices, which is convenient if computation is of concern.

I Lemma 13.
1. Closure by prefix removal yields sets that are closed under prefix removal.
2. Closure by interleaving yields sets that are closed under interleaving
3. Factor-prefix completion yields sets that are factor-prefix complete.

Lemma 14 shows that the operators preserve the existing properties. (Lemma 13 is
invoked as a proof technique.)

I Lemma 14.
1. Closure by prefix removal preserves closedness under interleaving.
2. Closure by prefix removal preserves factor-set and factor-prefix completeness.
3. Closure by interleaving preserves closedness under prefix removal.
4. Closure by interleaving preserves factor-set and factor-prefix completeness.
5. Factor-prefix completion preserves closedness under prefix removal.

5.2 Concrete winning conditions
The non-comprehensive list below displays classical or recent winning conditions from
computer science. It especially shows that new winning conditions obtained by conjunction
of older winning conditions have been recently studied, e.g. in [7] and [4].
Parity C := {0, 1, . . . n} for some n ∈ N. A sequence is winning iff the least number occurring

infinitely many times in the sequence is even.
Muller C := {0, 1, . . . n} for some n ∈ N. LetM ⊆ P(C) be a set of subsets of C. A sequence

is winning iff the numbers occurring infinitely many times in the sequence constitute a
set in M .

Mean-payoff C = R, and a sequence is winning iff the limit superior of the partial sums is
non-negative: (un)n∈N ∈ RN is winning iff lim supn→∞

1
n

∑n
i=0 un ≥ 0. (Variants exist

with limit inferior or positivity instead of non-negativity.)
Energy C = R, and a sequence is winning iff its partial sums are non-negative: (un)n∈N ∈ RN

is winning iff ∀n ∈ N,
∑n
i=0 un ≥ 0.

Boundedness [24] C = Rd, and a sequence is winning iff its partial sums are uniformly
bounded: (un)n∈N ∈ (Rd)N is winning iff ∃b∀n ∈ N, ‖

∑n
i=0 un‖ ≤ b.

Discounted sum C is a bounded subset of R. Let 0 < α < 1 and t ∈ R. A sequence
(un)n∈N ∈ CN is winning iff

∑+∞
n=0 α

nun ≥ t.
Energy-parity [7] C := R × {0, 1, . . . n} for some n ∈ N. The winning condition is the

conjunction of the energy (first component) and the parity (second component) conditions.
Average energy [4] C = R. The objective is to maintain a non-negative energy while

keeping the average level of energy below a threshold t ∈ R: a sequence (un)n∈N ∈ RN is
winning iff (∀n ∈ N,

∑n
i=0 un ≥ 0) ∧ lim supn→+∞

1
n

∑n
i=0

∑i
j=0 uj ≤ t.

I Observation 15.
1. The parity, mean-payoff, energy, boundedness, energy-parity, and average energy condi-

tions are all closed under interleaving. (It uses Lemma 12.2 to deal with energy-parity
and average energy.)

MFCS 2018

40:12 Concurrent Games and Semi-Random Determinacy

2. The Muller and discounted sum conditions are not closed under interleaving.
3. The boundedness condition is factor-prefix complete; the others are not.
4. The energy condition (thus also energy-parity and average energy) and the discounted

sum condition are not closed under prefix removal; the others are.

I Corollary 16. The turn-based safety-mean-payoff-parity games are half-positionally de-
termined. (By Corollary 4 and Section 5.1.)

It may be disappointing that the Muller condition is not even closed under interleaving,
but Proposition 17 below extends Theorem 2 to the concurrent Muller games. Using results
from [11] is likely to yield a better algorithmic complexity, though, but the point here is
mainly that Theorem 2 can be extended.

I Proposition 17. [Similar to [11]] Consider the finite games 〈A1, A2, Q, q0, δ, C, col,W 〉
where W is a Muller condition. Deciding the existence of a Player 1 winning (finite-memory)
strategy can be done in big O of

(|A1||A2||C||C|!)2 · (|Q||C|2|C|!)|Q||C||C|!
(

2|Q||C|
2|C|!

)
computation steps.

5.3 Bounded residual load
Unlike Theorems 2 and 3, Theorems 7 and 10 are not likely to be extended to include
ω-regular languages. Before defining a variant of the ω-regular languages that satisfies the
closedness and completeness properties from this article, let us consider notions of fairness
that can be defined via a predicate S on N× N× Cω. Intuitively S(n, d,γ) is supposed to
mean that the sequence γ has satisfied, with delay at most d, a request that was formulated
in γ at time n.

There are several reasonable ways to express the good behavior of an infinite sequence using
the S(n, d,γ). The classical definition of fairness requires that all problems be eventually
solved (see F below), or cofinitely many problems (see FCI below), for a usual weakening
that ensures prefix independence of the condition. Arguing that this kind of fairness gives
no guarantee about response time, [11] strengthened fairness into finitary fairness, which
requires the existence of a uniform bound on the waiting time (see FF below).

Yet another variant, bounded residual load (BRL), is introduced below. It says that
γ ∈ Cω satisfies S wrt bounded residual load, if the number of problems that have currently
not yet been solved is uniformly bounded over time.
1. F (γ) := ∀n ∈ N, ∃d ∈ N, S(n, d,γ)
2. FCI(γ) := |{n ∈ N | ∀d ∈ N, ¬S(n, d,γ)}| <∞
3. FF (γ) := ∃d ∈ N, ∀n ∈ N, S(n, d,γ)
4. BRL(γ) := ∃b ∈ N, ∀n ∈ N, b ≥ |{k ∈ N | k ≤ n ∧ ¬S(k, n− k,γ)}|

I Observation 18.
1. FF (γ) ⇒ F (γ) ∧ F (γ) ⇒ FCI(γ)
2. FF (γ) ⇒ BRL(γ) ∧ BRL(γ) ⇒ FCI(γ)
3. F and BRL are incomparable in general.

The finitary fairness and the like may be too strict for some applications: gladly accepting
to wait b time units, but categorically refusing to wait b+ 1 time units sounds unusual indeed.
Instead, the system (which is responsible for solving the problems) could pay a penalty for

S. Le Roux 40:13

each problem spending each time unit unsolved. Thanks to the bounded residual load, one
has then the guarantee that the amount of money to be paid per time unit is bounded.

It is possible to combine the two ideas, though: by setting an acceptable response time
and an acceptable uniform bound on the number of missed deadlines. This however, turns
out to be equivalent to the simple BRL, which argues for the robustness of the concept.

I Observation 19. Let BRLD(γ) := ∃b, d ∈ N, ∀n ∈ N, b ≥ |{k ∈ N | k ≤ n − d ∧
¬S(k, n− k,γ)}|, then BRLD(γ) ⇔ BRL(γ).

A second justification for the BRL is that it has nice properties that the other notions
of fairness lack when S(n, d,γ) is defined to minic ω-regular languages, as shown below.
Consider a non-empty set C of colors and a function C : C → P(C∗). A sequence γ ∈ Cω is
said to satisfy C from position n after delay d, denoted SC(n, d,γ), if the following holds.

∃u ∈ C(γn), ∃(k1, . . . , k|u|) ∈ N|u|, n < k1 < · · · < k|u| ≤ n+ d ∧ ∀i ≤ |u|, ui = γki

Intuitively, each color is a problem or a request, and the problem may be solved in several ways,
each way consisting in enumerating suitable colors quickly. (This might very well correspond to
the positive fragment of some bounded-time temporal logic.) To simulate the parity condition,
one can set C := N and C(2n) := {{k} | k ∈ N} and C(2n+ 1) := {{2k} | k ∈ N ∧ k ≤ n} for
all n ∈ N. The corresponding BRLC is the parity condition with bounded residual load.

Lemma 20 below says that however C may be instantiated, all Theorems 2, 3, 7, and 10
can be applied with the BRLC winning condition.

I Lemma 20. For every non-empty set C of colors and every function C : C → P(NC), the
winning condition BRLC is closed under prefix removal and interleaving, and factor-prefix
complete.

Even when C simulates the parity condition as above, none of the corresponding
FC , FCIC , or FFC is both closed under interleaving and factor-set complete. FFC is
not closed under interleaving: FFC((01)ω) and FFC((23)ω), but ¬FFC(γ), where γ :=
(23)01(23)201 . . . 01(23)n01 . . . can be obtained by interleaving (01)ω and (23)ω. FCIC is
not factor set-complete: FCIC(γ), where γ := 1012013 . . . 01n0 . . . , but ¬FCIC(1ω) altough
factors of 1’s occur with arbitrary length in γ. FC is neither: first, FC((10)ω) and FC(2ω), but
¬FC(1 · 2ω), altough 1 · 2ω can be obtained by interleaving (10)ω and 2ω; second, as above for
FCIC . Note that the window-parity condition [8],[5] is not closed under interleaving either,
as again exemplified by (01)ω and (23)ω.

References
1 Rajeev Alur, Marco Faella, Sampath Kannan, and Nimit Singhania. Hedging Bets in

Markov Decision Processes. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL
Annual Conference on Computer Science Logic (CSL 2016), volume 62 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 29:1–29:20, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.CSL.2016.29.

2 Rajeev Alur and Thomas A. Henzinger. Finitary fairness. ACM Trans. Program. Lang.
Syst., 20(6):1171–1194, 1998. doi:10.1145/295656.295659.

3 Patricia Bouyer, Romain Brenguier, Nicolas Markey, and Michael Ummels. Concurrent
games with ordered objectives. In Lars Birkedal, editor, Foundations of Software Science
and Computational Structures, pages 301–315, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

MFCS 2018

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.29
http://dx.doi.org/10.1145/295656.295659

40:14 Concurrent Games and Semi-Random Determinacy

4 Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and Simon Laursen.
Average-energy games. Acta Informatica, Jul 2016. doi:10.1007/s00236-016-0274-1.

5 Véronique Bruyère, Quentin Hautem, and Mickael Randour. Window parity games: an
alternative approach toward parity games with time bounds. In Proceedings of the Seventh
International Symposium on Games, Automata, Logics and Formal Verification, GandALF
2016, Catania, Italy, 14-16 September 2016., pages 135–148, 2016. doi:10.4204/EPTCS.
226.10.

6 Krishnendu Chatterjee. Concurrent games with tail objectives. Theoretical Computer
Science, 388(1):181–198, 2007. doi:10.1016/j.tcs.2007.07.047.

7 Krishnendu Chatterjee and Laurent Doyen. Energy parity games. In Samson Abramsky,
Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spirakis,
editors, Automata, Languages and Programming, pages 599–610, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

8 Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Look-
ing at mean-payoff and total-payoff through windows. Inf. Comput., 242:25–52, 2015.
doi:10.1016/j.ic.2015.03.010.

9 Krishnendu Chatterjee, Thomas A. Henzinger, and Florian Horn. Finitary winning in
Ω-regular games. ACM Trans. Comput. Logic, 11(1):1:1–1:27, nov 2009. doi:10.1145/
1614431.1614432.

10 Thomas Colcombet and Damian Niwiński. On the positional determinacy of edge-labeled
games. Theoretical Computer Science, 352(1):190–196, 2006. doi:10.1016/j.tcs.2005.
10.046.

11 Luca de Alfaro and Thomas A. Henzinger. Concurrent omega-regular games. In 15th
Annual IEEE Symposium on Logic in Computer Science, Santa Barbara, California, USA,
June 26-29, 2000, pages 141–154, 2000. doi:10.1109/LICS.2000.855763.

12 Nachum Dershowitz, D. N. Jayasimha, and Seungjoon Park. Bounded Fairness,
pages 304–317. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. doi:10.1007/
978-3-540-39910-0_14.

13 Hugo Gimbert and Florian Horn. Solving simple stochastic tail games. In Proceedings of
the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’10, pages
847–862, Philadelphia, PA, USA, 2010. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=1873601.1873670.

14 Hugo Gimbert and Wiesław Zielonka. Games where you can play optimally without any
memory. In CONCUR 2005 - Concurrency Theory, volume 3653 of Lecture Notes in Com-
puter Science, pages 428–442. Springer Berlin Heidelberg, 2005.

15 Julian Gutierrez, Aniello Murano, Giuseppe Perelli, Sasha Rubin, and Michael Wooldridge.
Nash equilibria in concurrent games with lexicographic preferences. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017,
Melbourne, Australia, August 19-25, 2017, pages 1067–1073, 2017. doi:10.24963/ijcai.
2017/148.

16 John Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional
vector addition systems. Theoretical Computer Science, 8(2):135–159, 1979. doi:10.1016/
0304-3975(79)90041-0.

17 Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer
and System Sciences, 3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

18 Eryk Kopczyński. Half-positional determinacy of infinite games. In Michele Bugliesi, Bart
Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and Pro-
gramming, pages 336–347, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

http://dx.doi.org/10.1007/s00236-016-0274-1
http://dx.doi.org/10.4204/EPTCS.226.10
http://dx.doi.org/10.4204/EPTCS.226.10
http://dx.doi.org/10.1016/j.tcs.2007.07.047
http://dx.doi.org/10.1016/j.ic.2015.03.010
http://dx.doi.org/10.1145/1614431.1614432
http://dx.doi.org/10.1145/1614431.1614432
http://dx.doi.org/10.1016/j.tcs.2005.10.046
http://dx.doi.org/10.1016/j.tcs.2005.10.046
http://dx.doi.org/10.1109/LICS.2000.855763
http://dx.doi.org/10.1007/978-3-540-39910-0_14
http://dx.doi.org/10.1007/978-3-540-39910-0_14
http://dl.acm.org/citation.cfm?id=1873601.1873670
http://dx.doi.org/10.24963/ijcai.2017/148
http://dx.doi.org/10.24963/ijcai.2017/148
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1016/S0022-0000(69)80011-5

S. Le Roux 40:15

19 Stéphane Le Roux. Infinite sequential Nash equilibrium. Logical Methods in Computer Sci-
ence, 9, 2013. Special Issue for the Conference "Computability and Complexity in Analysis"
(CCA 2011).

20 Stéphane Le Roux. From winning strategy to nash equilibrium. Math. Log. Q., 60(4-5):354–
371, 2014. doi:10.1002/malq.201300034.

21 Stéphane Le Roux. Infinite subgame perfect equilibrium in the hausdorff difference hier-
archy. In Topics in Theoretical Computer Science - The First IFIP WG 1.8 International
Conference, TTCS 2015, Tehran, Iran, August 26-28, 2015, Revised Selected Papers, pages
147–163, 2015. doi:10.1007/978-3-319-28678-5_11.

22 Stéphane Le Roux and Arno Pauly. Infinite sequential games with real-valued payoffs. In
Proceedings of LiCS, 2014.

23 Stéphane Le Roux and Arno Pauly. Extending finite memory determinacy to multiplayer
games. In Proceedings of the 4th International Workshop on Strategic Reasoning, SR 2016,
New York City, USA, 10th July 2016., pages 27–40, 2016. doi:10.4204/EPTCS.218.3.

24 Stéphane Le Roux, Arno Pauly, and Jean-François Raskin. Minkowski games. In 34th
Symposium on Theoretical Aspects of Computer Science, STACS 2017, March 8-11, 2017,
Hannover, Germany, pages 50:1–50:13, 2017. doi:10.4230/LIPIcs.STACS.2017.50.

25 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975. URL:
http://www.jstor.org/stable/1971035.

26 Donald A. Martin. The determinacy of blackwell games. Journal of Symbolic Logic,
63(4):1565–1581, 1998. doi:10.2307/2586667.

27 Stéphane Le Roux and Arno Pauly. Extending finite-memory determinacy to multi-player
games. Information and Computation, pages –, 2018. doi:10.1016/j.ic.2018.02.024.

28 Wolfgang Thomas. Languages, automata, and logic. In Salomaa A. Rozenberg G., editor,
Handbook of Formal Languages. Springer, Berlin, Heidelberg, 1997.

MFCS 2018

http://dx.doi.org/10.1002/malq.201300034
http://dx.doi.org/10.1007/978-3-319-28678-5_11
http://dx.doi.org/10.4204/EPTCS.218.3
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.50
http://www.jstor.org/stable/1971035
http://dx.doi.org/10.2307/2586667
http://dx.doi.org/10.1016/j.ic.2018.02.024

Low Rank Approximation of Binary Matrices:
Column Subset Selection and Generalizations
Chen Dan1

Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
cdan@cs.cmu.edu

Kristoffer Arnsfelt Hansen
Department of Computer Science, Aarhus University, Aarhus, Denmark
arnsfelt@cs.au.dk

https://orcid.org/0000-0002-1155-8072

He Jiang1

University of Southern California, Los Angeles, California, United States
jian567@usc.edu

https://orcid.org/0000-0002-4902-2206

Liwei Wang2

1. Key Laboratory of Machine Perception, MOE, School of EECS, Peking University;
2. Center for Data Science, Peking University, Beijing Institute of Big Data Research;
Beijing, China
wanglw@cis.pku.edu.cn

Yuchen Zhou1

Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin, United States
yuchenzhou@stat.wisc.edu

Abstract
Low rank approximation of matrices is an important tool in machine learning. Given a data mat-
rix, low rank approximation helps to find factors, patterns, and provides concise representations
for the data. Research on low rank approximation usually focuses on real matrices. However,
in many applications data are binary (categorical) rather than continuous. This leads to the
problem of low rank approximation of binary matrices. Here we are given a d× n binary matrix
A and a small integer k < d. The goal is to find two binary matrices U and V of sizes d × k
and k × n respectively, so that the Frobenius norm of A − UV is minimized. There are two
models of this problem, depending on the definition of the dot product of binary vectors: The
GF(2) model and the Boolean semiring model. Unlike low rank approximation of a real matrix
which can be efficiently solved by Singular Value Decomposition, we show that approximation of
a binary matrix is NP-hard, even for k = 1.

In this paper, our main concern is the problem of Column Subset Selection (CSS), in which
the low rank matrix U must be formed by k columns of the data matrix, and we are interested in
the approximation ratio achievable by CSS for binary matrices. For the GF(2) model, we show
that CSS has approximation ratio bounded by k

2 + 1 + k
2(2k−1) and this is asymptotically tight.

For the Boolean model, it turns out that CSS is no longer sufficient to obtain a bound. We then
develop a Generalized CSS (GCSS) procedure in which the columns of U are generated from
Boolean formulas operating bitwise on selected columns of the data matrix. We show that the
approximation ratio achieved by GCSS is bounded by 2k−1 + 1, and argue that an exponential
dependency on k is seems inherent.

1 Work done while at Peking University.
2 Partially supported by National Basic Research Program of China (973 Program) (grant no.
2015CB352502).

© Chen Dan, Kristoffer Arnsfelt Hansen, He Jiang, Liwei Wang, and Yuchen Zhou;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 41; pp. 41:1–41:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cdan@cs.cmu.edu
mailto:arnsfelt@cs.au.dk
https://orcid.org/0000-0002-1155-8072
mailto:jian567@usc.edu
https://orcid.org/0000-0002-4902-2206
mailto:wanglw@cis.pku.edu.cn
mailto:yuchenzhou@stat.wisc.edu
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Low Rank Approximation of Binary Matrices

2012 ACM Subject Classification Theory of computation→ Approximation algorithms analysis,
Theory of computation → Unsupervised learning and clustering, Computing methodologies →
Factorization methods,

Keywords and phrases Approximation Algorithms, Low Rank Approximation, Binary Matrices

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.41

Related Version A full version of the paper is available at [12], http://arxiv.org/abs/1511.
01699.

1 Introduction

Low rank approximation of matrices is a classical problem. Given a matrix A of size d× n,
the goal is to find two low rank matrices U and V, such that UV approximates A. Formally,
the problem is to solve the equation minU,V ‖A −UV‖2

F , where the minimum is over all
matrices U,V of sizes d × k and k × n respectively. The parameter k, typically a small
integer, is the desired rank. The error is measured in terms of the Frobenius norm ‖ · ‖F .

In many applications, A is a data matrix : Each column of A is a d-dimensional data vector,
and each row of A corresponds to an attribute. In the literature, low rank approximation of
A is often called factor analysis or dimensionality reduction: the k columns of the matrix U
are the factors or basis vectors of the low dimensional space, and each column of V contains
the combination coefficients.

If A, U, V are real matrices, low rank approximation can be efficiently solved by Singular
Value Decomposition (SVD). This problem has been studied for more than a century, and is
known as Principal Component Analysis (PCA) [28], Karhunen-Loève Transform [30], to
name a few.

In this paper we consider low rank approximation of binary matrices. The motivation
is that in many applications data are binary (categorical) rather than continuous. Indeed,
nearly half of the data sets in the UCI repository contains categorical features. In the binary
case, we require that the data matrix A as well as the rank-k matrices U,V are binary.
There are two natural formulations of the binary low rank approximation problem, depending
on the definition of vector dot product. One formulation will be referred to as the GF(2)
model, in which the dot product of two binary vectors u,v is defined as uTv := ⊕iuivi.
The other formulation will be referred to as the Boolean model, in which the dot product is
defined as uTv :=

∨
i(ui ∧ vi).

The Boolean model is usually called Boolean Factor Analysis (BFA). It has found numerous
applications in machine learning and data mining including latent variable analysis, topic
models, association rule mining, clustering, and database tiling [3, 33,38,40,44]. The GF(2)
model, while being less studied, has been applied to Independent Component Analysis (ICA)
over string data, attracting attention from the signal processing community [25,35,48].

Despite of various applications and heuristic algorithms [19, 21, 31, 33], little is known
from a theoretical point of view about the binary low rank approximation problem. In
fact, previously the only known result is that for the very special case of k = 1 (where the
GF(2) and the Boolean model are equivalent) there are 2-approximation algorithms (see
Section 1.1).

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.41
http://arxiv.org/abs/1511.01699
http://arxiv.org/abs/1511.01699

C. Dan, K. A. Hansen, H. Jiang, L. Wang, and Y. Zhou 41:3

In this paper, we provide the first theoretical results for the general binary low rank
approximation problem, which is formally stated as follows. Given A ∈ {0, 1}d×n, solve

min
U∈{0,1}d×k,V∈{0,1}k×n

‖A−UV‖2
F . (1)

where the matrix product UV is over GF(2) or the Boolean semiring respectively.
Before stating the results, let us first consider the differences between low rank approxim-

ation of real matrices and our GF(2) and Boolean models. First, the linear space over GF(2)
has a very different structure from the Euclidean space. The dot product over GF(2) is not
an inner product and does not induce a norm: there exists a 6= 0 such that aTa = 0 over
GF(2). An immediate consequence is that for binary matrices of the GF(2) model, there is
no Singular Value Decomposition (SVD), which is the basis for low rank approximation of
real matrices. The Boolean model is even more different: As it is a semiring rather than a
field, we do not even have a linear space (see below for details).

Thus the methodologies from the setting of real matrices do not carry over to the setting
of binary matrices. In fact, we will show that finding the exact solution of (1) is NP-hard even
for k = 1 (see Section 4). This result was obtained independently by Gillis and Vavasis [22].

Another well-studied approach for low rank approximation of matrices is Column Subset
Selection (CSS) [20, 32]. The goal of CSS is to find a subset of k columns of A and form the
low rank basis matrix so that the residual is as small as possible. An advantage of CSS is
that the result is more interpretable than that of SVD. CSS has been extensively studied for
low rank approximation of real matrices [1, 5, 6, 10, 11, 13–16, 24, 36, 43, 46, 47]. Below is a
formal definition of CSS over real matrices.

I Definition 1 (CSS for real matrices). Given a matrix A ∈ Rd×n and a positive integer k,
pick k columns of A forming a matrix PA ∈ Rd×k such that the residual

‖A−PAQ‖ξ

is minimized over all possible
(
n
k

)
choices for the matrix PA. Here Q denotes the optimal

matrix of size k × n given PA, which can be obtained by solving a least squares problem,
and ξ = 2 or F denotes the spectral norm or Frobenius norm.

The central problem in CSS is to determine the best function φ(n, k) of n, k satisfying

‖A−PAQ‖2
ξ ≤ φ(k, n)‖A−Ak‖2

ξ , (2)

where Ak denotes the best rank-k approximation to the matrix A as computed with SVD.
Two classical results [14,24] shows that for real matrices we have

‖A−PAQ‖2
2 ≤ (k(n− k) + 1)‖A−Ak‖2

2 , (3)
‖A−PAQ‖2

F ≤ (k + 1)‖A−Ak‖2
F . (4)

There is extensive work on developing efficient algorithms for CSS with approximation
ratio close to the above bounds, possibly using more than k columns of A. These include
methods such as rank revealing QR [36], adaptive sampling [15], subspace sampling (leverage
scores) [6, 16], efficient volume sampling [13], projection-cost preserving sketches [11] and
greedy CSS [1].

In this work, we study the CSS problem for binary matrices over GF(2) and Boolean
semiring respectively. We consider the central problem expressed by Eq. (2) and aiming to
determine the best φ(k, n). We only consider the Frobenius norm, since the spectral norm
does not exist in the GF(2) and Boolean models.

MFCS 2018

41:4 Low Rank Approximation of Binary Matrices

The difficulty of the CSS problem for GF(2) and Boolean semiring model is that all
methods developed for CSS over real matrices rely on at least one of the following concepts
which are intrinsic to the Euclidean space: SVD, volume of a simplex, Euclidean distance,
orthogonal projection, and QR decomposition. However, none of these concept exists in the
GF(2) or Boolean models.

In this paper, we develop new methods for the CSS problem for GF(2) and Boolean
model respectively. For GF(2) model, we show that by picking the best k columns of A to
form PA, we achieve the bound

‖A−PAQ‖2
F ≤

(
k

2 + 1 + k

2(2k − 1)

)
‖A−Ak‖2

F ,

where Ak = UV is the optimal solution of (1). Moreover, we show that the ratio is
asymptotically tight.

For Boolean model, it turns out that basic CSS is no longer sufficient for obtaining a
bound, simply because the Boolean semiring is not a field. We instead propose a Generalized
CSS (GCSS) procedure. In this GCSS framework, we select a larger number of columns
of A and potential basis matrices PA are generated from these using carefully designed
Boolean formulas operating bitwise on the chosen columns of A. We show that GCSS based
on (2k − 1) columns of A achieves approximation ratio (2k−1 + 1) relative to ‖A−Ak‖2

F .
Moreover, we argue that the exponential dependence in k seems inherent with the Boolean
model (see Section 3 for details).

Our work is a first step towards a good understanding of low rank approximation
of matrices over GF(2) and the Boolean semiring. While our work gives approximation
algorithms for low rank approximation for both the GF(2) and the Boolean model, our work
is should mainly by viewed as existence results for (Generalized) CSS for binary matrices,
parallel to the classical existence theorems [14,24] for CSS of real matrices stated in Eq. (3)
and (4). Moreover, as SVD does not apply to the GF(2) or Boolean model, CSS is so far
the only method that obtains a low rank approximation for binary matrices with theoretical
guarantees and deserves an in-depth study. Finally, it is an important future direction to
develop efficient algorithms to achieve or approximately achieve the ratios obtained in this
paper. We believe this requires new techniques futher exploiting the algebraic structure of
GF(2) and the Boolean semiring.

The rest of this paper is organized as follows. In Section 1.1 we discuss existing results
on low rank approximation of binary matrices. In Section 2 we present the information-
theoretically optimal upper bound for the approximation ratio of CSS over GF(2). In
Section 3 we propose the GCSS procedure and give the upper bound for the Boolean semiring
model. In Section 4 we show that finding the exaction solution of the low rank binary
matrix approximation problem is NP-hard even for k = 1. Finally we give our conclusion in
Section 5.

1.1 Other Related Works
To the best of our knowledge, all known theoretical results on the low rank approximation
problem are about the special case of rank-one, i.e., k = 1. In the rank-one case, one looks
for binary vectors u, v such that ‖A − uvT ‖F is minimized, and the GF(2) and Boolean
models are therefore equivalent.

Shen et al. [39] formulate the rank-one problem as an integer linear program and showed
that solving its linear programming relaxation yields a 2-approximation algorithm. They
also improved the efficiency by reducing the linear program to a max-flow problem using

C. Dan, K. A. Hansen, H. Jiang, L. Wang, and Y. Zhou 41:5

a technique developed in [26]. Jiang et al. [29] observed that for the rank-one case, simply
choosing the best column from A yields a 2-approximation algorithm.

In the GF(2) model, low rank approximation is related to the concept of matrix rigidity
introduced by Valiant [45], as a method of proving lower bounds for linear circuits. For a
matrix A over GF(2), the rigidity RA(k) is the smallest number of entries of A that must
be changed in order to bring its rank down to k. Thus for a d × n matrix A, RA(k) is
precisely the minimum approximation error possible by a product of a d× k matrix U and a
k × n matrix V. By the results of Valiant, an n× n matrix A for which RA(k) ≥ n1+ε, for
k = O(n/ log log n) and for some constant ε > 0 cannot be computed by a linear circuit of size
O(n) and depth O(log n). Such rigid matrices exists in abundance – the challenge is to come
up with an explicit construction of a family of rigid matrices. For the low rank approximation
problem we are however interested in the setting of k � n and we are interested in algorithms
rather than explicit matrices.

2 Column Subset Selection for Binary Matrices Over GF(2)

In this section we characterize the best possible approximation ratio of CSS in the GF(2)
model. As mentioned in Section 1, the best approximation ratio of CSS for real matrices
is k + 1 under the Frobenius norm. This result is proved by the so-called volume sampling
method [14]. Concretely, the volume sampling method randomly samples a set of k columns
of A with probability proportional to the volume of the k-dimensional simplex formed
by the k-columns along with the origin. Volume sampling generates an (expected) k + 1
approximation ratio.

However, the GF(2) model does not have a notion of volume, since the dot product over
GF(2) is not an inner product. Nevertheless, we develop a new approach and show the
following bound.

I Theorem 2. For any binary matrix A ∈ {0, 1}d×n, there exist PA ∈ {0, 1}d×k and
Q ∈ {0, 1}k×n, where the columns of PA are chosen from the columns of A, such that

‖A−PAQ‖2
F ≤

(
k

2 + 1 + k

2(2k − 1)

)
·OPTk,

where OPTk := ‖A−Ak‖2
F , and Ak = UV is the optimal solution of (1). Here all matrix

operations are over GF(2).

Moreover, we show that the approximation ratio
(
k
2 + 1 + k

2(2k−1)

)
is asymptotically tight.

I Theorem 3. In the GF(2) model, for every k ≥ 1 and every ε > 0, there exists A such
that

‖A−PAQ‖2
F >

(
k

2 + 1 + k

2(2k − 1) − ε
)
·OPTk,

for all PA,Q, where PA are formed by k columns of A.

Below, we give a high level description of the proof of the theorems. Our method uses
the structure of GF(2) and is different to the techniques developed for CSS of real matrices.

Consider the problem given by Eq. (1). Throughout this paper, we will call the matrix
U the basis matrix, since its column vectors are the basis of the low dimensional space.
Likewise we call the right matrix V the coefficient matrix, since its columns contain the linear
combination coefficients. Let U and V be an optimal solution of Eq. (1), and let u1, . . . ,uk

MFCS 2018

41:6 Low Rank Approximation of Binary Matrices

be the k columns of U. For each column ui of the optimal basis matrix U, consider its
nearest neighbor among all the columns of A. Let a1, . . . , an be the n columns of A, and
denote by a(ui) the nearest neighbor column of ui in A. Given an optimal basis matrix U,
we thus have a matrix A(U) := (a(u1), . . . , a(uk)), consisting of columns of A. Note that
the optimal solution of Eq.(1) is not unique. In fact, fixing an optimal basis matrix U,
for every matrix B = (b1, . . . ,bk), bi ∈ {0, 1}k, if the rank3 of B is k over GF(2), then
(UB,B−1V) must also be an optimal solution. Each optimal basis matrix UB induces a
nearest neighbor matrix A(UB). We will show that there must exist a rank k matrix B
such that the induced nearest neighbor matrix A(UB), which when used as basis matrix,
achieves an approximation error at most (k2 + 1 + k

2(2k−1)) times that of the optimal solution
(UB,B−1V). Let Err(b1, . . . ,bk) be the approximation error associated with the basis
matrix A(UB) for B = (b1, . . . ,bk). Our goal is to bound the quantity

min
b1,...,bk

Err(b1, . . . ,bk) , (5)

where bi ∈ {0, 1}k for all i ∈ [k].
Directly bounding Eq.(5) is prohibitive. The approach we take is to consider a sequence of

k + 1 error minimization problems. For the r-th (0 ≤ r ≤ k) minimization, we only optimize
r vectors among b1, . . . ,bk and keep the other k − r vectors fixed. Given b1, . . . ,bk, let

Err(0)(b1, . . . ,bk) := Err(b1, . . . ,bk), (6)
Err(r)(b1, . . . ,bk−r) := min

b∈{0,1}k
Err(r−1)(b1, . . . ,bk−r,b). (7)

Note that Err(k)() is exactly the quantity of Eq.(5).
Although the final goal is to bound the ratio between Err(k)() and the error of the optimal

solution of Eq.(1), we instead prove additive bounds for Err(r)(b1, . . . ,bk−r) for all 0 ≤ r ≤ k.
To be more precise, letting OPTk be the error of the optimal solution of Eq.(1), we will show
that Err(r)(b1, . . . ,bk−r) is bounded by OPTk plus a term depending on r and b1, . . . ,bk−r
(Theorem 5). Then when r = k, this additive bound becomes a multiplicative bound with
respect to OPTk and gives the desired ratio. The reason for introducing Err(0), . . . ,Err(k−1)

is that we make use of the relation between Err(r) and Err(r−1) to prove the bound. More
precisely, is the additive bound proved by induction in r.

Although the relation of Err(r) and Err(r−1) is

Err(r)(b1, . . . ,bk−r) = min
b

Err(r−1)(b1, . . . ,bk−r,b),

directly optimizing b seems very difficult. Our approach is to use weighted averaging. Since
for each b ∈ {0, 1}k it holds that,

Err(r)(b1, . . . ,bk−r) ≤ Err(r−1)(b1, . . . ,bk−r,b),

we have that for any set of weights wb such that wb ≥ 0 and
∑

b wb = 1,

Err(r)(b1, . . . ,bk−r) ≤
∑

b

wbErr(r−1)(b1, . . . ,bk−r,b).

We carefully choose the weights wb to get a small upper bound. We perform weighted
averaging in two layers. Consider the quotient space GF(2)k/span(b1, . . . ,bk−r) and the
coset [b] := b + span(b1, . . . ,bk−r). In the first layer, we perform weighted averaging within

3 Throughout this section, matrix inverse and matrix rank are all over GF(2).

C. Dan, K. A. Hansen, H. Jiang, L. Wang, and Y. Zhou 41:7

each coset [b], and obtain a bound for Err(r) depending on the coset. In the second layer
we average over all cosets using another set of weights. We need different rules to set the
weights in the two layers. Within a coset [b], we choose the weights as follows. Let U,V be
the already fixed optimal solution of Eq.(1). For each c ∈ [b], let nc denote the number of
columns of V that are equal to c. The weight we assign to c is proportional to nc. For the
second layer, let

n[b] :=
∑

c∈[b]

nc

be the total number of columns of V that belong to the coset [b]. We assign the weight to a
coset [b] as follows. If

[b] = span(b1, . . . ,bk−r),

then the weight is set to be zero. Otherwise, we assign the weight to [b] proportional to
n[b]∑

[b] n[b] − λn[b]
,

where λ is a constant depending on r. Combining the two layers of averaging we obtain
the additive bound and that implies the desired approximation ratio. This finishes the
description of the proof of Theorem 2.

The lower bound in Theorem 3 is proved by explicit construction. We construct a matrix
which is approximately low rank in the sense that it is the product of two rank-k matrix
plus a very sparse matrix. The key ingredient of the proof is the construction of the two
rank-k matrices, which have special structures so that the approximation ratio of column
subset selection cannot be smaller than k

2 + 1 + k
2(2k−1) significantly.

The additive bounds are stated in Theorem 5, which is technical. Below we first describe
the notions that will appear in Theorem 5. These notions will also be frequently used in the
proof as well. For clarity, we list the notions in two tables.

I Definition 4. For 1 ≤ r ≤ k and linear independent vectors b1, . . . ,br in {0, 1}k:

Table 1 Definitions for vector spans.

Definition Explanation
spanc(b1, . . . , br) := {0, 1}k \ span(b1, . . . , br) Complement of span(b1, . . . , br).
span\i(b1, . . . , br) := span(b1, . . . , bi−1, bi+1, . . . , br) Span of all vectors except the ith.

Let A be the matrix to be approximated and (U,V) be a fixed optimal solution of the
problem in Eq.(1). For u ∈ {0, 1}d, c ∈ {0, 1}k, and X ⊂ {0, 1}k:

Table 2 Definitions for errors and nearest neighbors.

Definition Explanation
a(u) The nearest neighbor of u among the columns of A

(If more than one nearest neighbor, choose one arbitrarily.)
Jc := {j ∈ [n] : Vj = c} The set of columns of V that are equal to vector c.
nc := |Jc| The number of columns of V that are equal to c.
Lc :=

∑
j∈Jc

|aj −Uc| The total approximation error of those columns in Jc.
NX :=

∑
c∈X nc The total number of columns of V that belong to set X .

Mc =
{

Lc
nc

nc > 0
d nc = 0 Upper bound of the average error of the columns in Jc.

MFCS 2018

41:8 Low Rank Approximation of Binary Matrices

Now we can state the additive bounds.

I Theorem 5. Let b1, . . . ,bk be k linear independent vectors in {0, 1}k. Then for each
0 ≤ r ≤ k,

Errr(b1, . . . ,bk−r) ≤ OPTk + λr ·
∑

c∈spanc(b1,...,bk−r)

Lc +
k−r∑
i=1

fi(b1, . . . ,bk−r)Mbi , (8)

where Mbi has been defined in Definition 4, and

λr =
{

0 r = 0
r
2

(
1 + 1

2r−1

)
, 1 ≤ r ≤ k

and

fi(b1, . . . ,bk−r) = NX + 1
2NY , (9)

here X = bi + span\i(b1, . . . ,bk−r), and Y = spanc(b1, . . . ,bk−r).

The formal proof of Theorem 5 is lengthy and can be found in the full version of the
paper [12]. Theorem 2 follows from Theorem 5 immediately.

Proof of Theorem 2. Let r = k in Theorem 5. Then the last term in the RHS of Eq.(8)
vanishes. The second term in the RHS of Eq.(8) becomes λk ·

∑
c∈{0,1}k Lc. Observe that∑

c∈{0,1}k
Lc = OPTk,

and

1 + λk = k

2 + 1 + k

2(2k − 1) ,

the theorem follows. J

3 Generalized CSS Over Boolean Semiring

It is not difficult to see that the method developed for GF(2) model in the previous section
does not apply to the Boolean model, simply because the Boolean semiring does not have
a field structure. It turns out that, somewhat surprisingly, CSS is not sufficient to yield a
bound relative to the optimal low rank solution in the Boolean model.

Here, we propose a Generalized CSS (GCSS) procedure. In GCSS, instead of using the
columns of A directly to form PA, we apply carefully designed Boolean formulas (bitwise)
to a predefined number of columns of A to form PA.

To illustrate the ideas, we first give an informal high level description of GCSS. We
can capture our GCSS by the following framework, which we denote as an oblivious basis
generation scheme with advice. Let f(k) and g(k) be functions of k. An oblivious basis
generation scheme with advice size f(k) and column dependence size g(k) operates as follows.
Given as input an advice string o ∈ {0, 1}f(k) the scheme outputs k Boolean formulas
Φ1, . . . ,Φk each of g(k) bits. Given g(k) columns ai1 , . . . , aig(k) of the matrix A, the k basis
vectors u1, . . . ,uk of PA are constructed as

uj = Φj(ai1 , . . . , aig(k)),

C. Dan, K. A. Hansen, H. Jiang, L. Wang, and Y. Zhou 41:9

where the Boolean function Φj is applied entry-wise. From such a basis generation scheme
we immediately obtain an approximation result by iterating over all possible selections of
g(k) columns of A as well as all possible advice strings o ∈ {0, 1}f(k). We stress that the
amount of information about A that can be supplied to the algorithm using the advice
string is independent of the actual size of A. Our construction of GCSS will have column
dependence size 2k − 1 and advice size O(k2k) in which we encode an ordering of the given
2k − 1 columns. This results in an approximation ratio of 2k−1 + 1.

To give a precise description of GCSS, it is more convenient to use sets instead of vectors
as the representation. For a column ai of A, let

Ai := {j ∈ [d] : (ai)j = 1},

i.e., ai is the characteristic vector of Ai. Similarly, for an optimal solution (U,V) of the
Boolean low rank approximation problem, let

Ui := {j ∈ [d] : (ui)j = 1},

and

Vi := {j ∈ [k] : vij = 1}.

Thus in this section we will always think of a column of A, U or V as a set. Given a set
S ⊂ [k], let

JS := {j ∈ [n] : Vj = S},

and nS := |JS |. Using these notions, the Boolean product of U and a vector which is the
characteristic vector of S will be denoted by US :=

⋃
i∈S Ui. Abusing the notion slightly,

we shall still use Ui instead of U{i} from now on. Like in the previous section, the nearest
neighbor column of US in A is defined by a(US). As we use set representation in this section,
for notational simplicity we let DS ⊂ [d] be the set corresponding to this nearest neighbor
column a(US), i.e.,

DS := {i ∈ [d] : a(US)i = 1}

We are going to construct a rank-k solution B1, . . . ,Bk, where Bi ⊂ [d] is the set
representation of the column of the basis matrix. Once the basis matrix is obtained, the
coefficient matrix can be calculated in the same way as in the previous section. The concrete
GCSS procedure is described in Algorithm 1.

Now we can state the main result of this section.

I Theorem 6. GCSS (as described above) has approximation ratio 2k relative to the optimal
solution of (1) over Boolean semiring.

We now give the very high level idea of the proof. Fix a bijection π that satisfies
nS1 ≤ · · · ≤ nS2k−1. By construction the set DS` is the best approximation to US` given by
a column of A. Ideally the sets B1, . . . ,Bk should be such that

⋃
i∈S` Bi is a comparable

substitute for all `. What we instead will be able to achieve is that for all ` ∈ [2k − 1]

US` 4

(⋃
i∈S`

Bi

)
⊆

⋃
`′≥`

(
US`′ 4DS`′

) (10)

MFCS 2018

41:10 Low Rank Approximation of Binary Matrices

where as seen from the algorithm the sets Bi are Boolean combinations of the sets DS` .
Intuitively, we give more importance to approximating the columns of A from JS` as `
increases. As the sizes nS` of these sets of columns also increase this means that we can
account for the extra cost of possible poor approximation of the sets US` for smaller ` in
terms of the approximation error of the sets DS`′ to US`′ for larger `

′ ≥ `.
Intuitively we should attempt to approximate all the sets DS` simultaneously by

⋃
i∈S` Bi.

But since we work over a semiring we will have to work with under-approximations. So for
every ` we instead approximate the under-approximation

⋃
i∈S` E

`
i of DS` . We do this by

initially letting Bi = E1
i and then for each ` ∈ [2k − 1] adding

(⋃
i∈S` E

`
i

)
\
(⋃

i∈S` E
1
i

)
to⋃

i∈S` Bi. This last step has to be done carefully piece by piece using the ordering of the sets
S1, . . . ,S2k−1. In the algorithm this is done using the sets F`1,`2

i .
The approximation ratio of GCSS over the Boolean semiring is O(2k), and thus much

larger than that of GF(2). However we shall argue that this exponential dependency on k is
not an artifact of proof technique, it seems inherent to the model.

Let k be even and let n = 2k/2. We define the n×n matrix A = (aα,β) indexed by strings
α, β ∈ {0, 1}k/2 by aα,β = 1 if and only if α 6= β. Thus A is just the negation of the n× n
identity matrix. It is well-known that the Boolean rank of A is equal to k. In particular,
we can write A as the Boolean product of U and V, where the columns of U and the rows
of V are indexed by pairs (i, b) where i ∈ [k/2] and b ∈ {0, 1} and entry (α, (i, b)) of U is 1
if and only if αi = b and entry ((i, b), β) of V is 1 if and only if βi 6= b. We note that the
columns of U can be written as Boolean formulas applied entry-wise to (all of) the columns
of A. Since we consider approximation algorithms with multiplicative error, when supplied
with input A and k our algorithm is required to compute an exact factorization of A into
n× k and k × n matrices U and V. If the underlying basis generation algorithm receives,
say, only half of the columns of A it does not seem possible to compute such a factorization.
It therefore seems that column dependence size at least 2k/2−1 is necessary, which is about
the square-root of the column dependence size of our algorithm.
I Remark. Using the technique of weighted averaging developed for the GF(2) model, we
can actually improve the approximation ratio to 2k−1 + 1. We omit the details of the proof.
The proof of Theorem 6 can be found in the full version of the paper [12].

4 Hardness of Low Rank Approximation of Binary Matrices

Prior to our work, the computational complexity of the low rank approximation problem was
not fully understood. For the rank-1 case, Tan showed that the equivalent problem Maximum
Edge Weight Biclique for {−1, 1}-matrices is NP-hard under randomized reductions [42].
In the case when the rank k is unrestricted (i.e. part of the input) deciding whether there exist
U and V such that A = UV in the Boolean semiring model is precisely the NP-complete
Minimal Set Basis problem [41], and that immediately implies that the approximation
problem is NP-hard to approximate within any factor, as noted by Miettinen et al. [34]. On
the other hand, this does not imply hardness when k � d, n. Indeed, the Minimal Set
Basis problem is fixed-parameter tractable with parameter k, by a simple kernelization
algorithm [17]. Note also that in the GF(2) model, deciding the existence of U and V such
that A = UV is efficiently solvable using Gaussian elimination, regardless of the rank k

being unrestricted.
In this section we show the rank-1 Binary Matrix Approximation problem is NP-hard

under normal polynomial time reduction. We first define two related problems. Let H be a
complete bipartite graph with edge weight, and let W = (wij) be the d× n matrix consisting

C. Dan, K. A. Hansen, H. Jiang, L. Wang, and Y. Zhou 41:11

Algorithm 1 Generalized Column Subset Selection.
1: for all selection of 2k − 1 column vectors Aj1 ,Aj2 , . . . ,Aj2k−1

in A do
2: for all bijections π : [2k − 1]→ (2[k] \ {∅}) do
3: Let S` = π(`) for ` ∈ [2k − 1]
4: for i ∈ [k] and ` ∈ [2k − 1] do
5: Compute

E`i :=
⋂
`′≥`:
i∈S`′

DSl

where DS = Ajπ−1(S)
for ∅ 6= S ⊆ [k].

6: end for
7: for 1 ≤ `1 < `2 ≤ 2k − 1 such that i ∈ S`1 ∩ Sl2 do
8: Compute

F`1,`2
i := E`1+1

i \

 ⋃
i′∈S`2

E`1
i′

 .
9: end for

10: for i ∈ [k] do
11: Compute solution vector {B1,B2, . . . ,Bk}by

Bi := E1
i ∪

 ⋃
`1<`2:

i∈S`1∩S`2

F`1,`2
i

 .

12: end for
13: end for
14: Compute the approximation error using the solution vector.
15: if the approximation error is optimal then
16: Save {B1,B2, . . . ,Bk} as the output.
17: end if
18: end for

of these edge weights. The Maximum Edge Weight Biclique problem is to find a biclique
subgraph of H with maximizing total edge weight. As an optimization problem: maximize
xTWy, where x ∈ {0, 1}d and y ∈ {0, 1}n. The Bipartite Max-Cut problem is to find
a cut of the vertices of H maximum the total weight of the edges cut. As an optimization
problem: maximize xTWy, where x ∈ {−1, 1}d and y ∈ {−1, 1}n. Note that these two
problems differ only in the domain from which x and y are chosen.

Shen, Ji, and Ye [39] observed that the rank-1 Binary Matrix Approximation problem
is equivalent to Maximum Edge Weight Biclique when all edge weights are chosen from
{−1, 1}. Namely, if A is a d× n Boolean matrix, u ∈ {0, 1}d, and v ∈ {0, 1}n, and let Jd,n

MFCS 2018

41:12 Low Rank Approximation of Binary Matrices

denote the d× n all-1 matrix, we have

‖A− uvT‖2
F = ‖A‖2

F − 2uTAv + ‖uvT‖2
F

= ‖A‖2
F − uT(2A− Jd,n)v.

Therefore, minimizing ‖A−uvT‖2
F is equivalent of maximizing uT(2A−Jd,n)v. Also note that

(2A− Jd,n) is a {−1, 1}-matrix. Thus NP-hardness of Maximum Edge Weight Biclique
with {−1, 1} edge weights implies NP-hardness of rank-1 Binary Matrix Approximation.
To show the NP-hardness of Maximum Edge Weight Biclique, we consider reduction
from the Bipartite Max-Cut problem.

Roth and Viswanathan showed that Bipartite Max-Cut is NP-hard even when all weights
are chosen from the set {−1, 1} [37]. This is done by first showing NP-hardness when the
weights are chosen from {−1, 0, 1} and then reducing to the case of weights from {−1, 1}.

Tan showed that Maximum Edge Weight Biclique is NP-hard [42] when weights are
chosen from {−1, 0, 1}, and shows NP-hardness under randomized reductions when weights
are chosen from {−1, 1}. He leaves it as an open problem to obtain NP-hardness under
normal polynomial time reductions. The complexity of this problem was also stated as an
open problem by Amit [2]

The reduction from weights chosen from {−1, 0, 1} to {−1, 1} by Roth and Viswanathan
and by Tan is similar. The idea is to transform the n× n {−1, 0, 1}-weight matrix W into a
new nm×nm {−1, 1}-weight matrix W′, where W′ consists of m×m blocks corresponding to
each entry of W. A (−1)-entry is transformed into the all-(−1) m×m matrix, and similarly
is a 1-entry transformed into the all 1 m×m matrix. But where Tan transforms a 0-entry to
a random m×m {−1, 1}-matrix, Roth and Viswanathan instead transforms a 0-entry into a
m×m Hadamard matrix. We will show that this transformation into Hadamard matrix also
work in the setting of the Maximum Edge Weight Biclique problem, thereby properly
establishing its NP-hardness.

I Theorem 7. The rank-1 Binary Matrix Approximation problem is NP-hard.

We give a polynomial time many-one reduction from Maximum Edge Weight Biclique
with weights from {−1, 0, 1} to Maximum Edge Weight Biclique with weights from
{0, 1}, thereby showing the theorem. The proof is based on the following three lemmas.

The lemma below is an adaptation of [37, Lemma 4.2] from the {−1, 1} case to the {0, 1}
case.

I Lemma 8. Let W be an n× n matrix and let m ≥ 1, and define W′ = W⊗ Jm, where
Jm := Jm,m. Then

max
u,v

uTW′v = m2 ·max
x,y

xTWy ,

where u,v ∈ {0, 1}mn and x,y ∈ {0, 1}n, respectively. Furthermore, if x and y maximize
xTWy, then u = x⊗ 1m and v = y⊗ 1m maximize uTW′v.

Proof. Consider first u = x⊗ 1d and v = y⊗ 1m. Then

uT(W⊗ Jm)v = (x⊗ 1m)T(W⊗ Jm)(y⊗ 1m)
= (xTWy)⊗ (1T

mJm1m) = m2 · (xTWy) .

Next, take u and v maximizing uTW′v. We show that u and v can be brought to the form
u = x ⊗ 1m and v = y ⊗ 1m without decreasing the value of uTW′v. We first fix v and
bring u to the desired form, and then similarly bring v to the desired form.

C. Dan, K. A. Hansen, H. Jiang, L. Wang, and Y. Zhou 41:13

So fix v, and let z = W′v. Note that u maximizing uTz must satisfy ui = 1 when
zi > 0 and ui = 0 when zi < 0. Since W′ = W ⊗ Jm we have that zjm+1 = zjm+2 =
· · · = z(j+1)m for all j = 0, 1, . . . , n − 1. Hence we can choose a maximizing u satisfying
ujm+1 = ujm+2 = · · · = u(j+1)m for all j = 0, 1, . . . , n− 1 as well, meaning u = x⊗ 1m for
suitable x ∈ {0, 1}n. We can now fix u and in a similar way bring v to the form v = y⊗ 1m
for suitable y ∈ {0, 1}n. J

The following lemma, which is the {0, 1} analogue of [37, Lemma 4.3], is a direct
consequence of Lindsey’s Lemma. We state the proof for completeness.

I Lemma 9. Let H be a m×m Hadamard matrix. For every x,y ∈ {0, 1}m, |xTHy| ≤ m3/2.

Proof. First note

‖Hy‖2 = yT(HTH)y = yT(mI)y = m · ‖y‖2 .

We can then complete the proof by the Cauchy-Schwartz inequality,

|xTHy| ≤ ‖xT‖ · ‖Hy‖ =
√
m · ‖x‖ · ‖y‖ ≤ m3/2 . J

I Lemma 10. Let W = (wij) be a n×n {−1, 0, 1}-matrix and let H be a m×m Hadamard
matrix. Define the (mn)× (mn) {−1, 1}-block matrix W̃ = (W̃ij), where block W̃ij is given
by

W̃ij =
{
wijJm if wij 6= 0
H if wij = 0

.

Let W′ = W⊗ Jm. Then for all u,v ∈ {0, 1}mn,
∣∣∣uTW̃v− uTW′v

∣∣∣ ≤ n2 ·m3/2.

Proof. This is by simple estimation.∣∣∣uTW̃v− uTW′v
∣∣∣ =

∣∣∣uT(W̃−W′)v
∣∣∣

≤ n2 · max
x,y∈{0,1}m

∣∣xTHy
∣∣

≤ n2 ·m3/2 ,

where the last inequality follows from Lemma 9. J

Proof. of Theorem 7 Suppose now that W is an n× n {−1, 0, 1}-matrix. Let m = 2` be
the smallest power of 2 that is greater than 4n4, and let H be the m×m Sylvester Hadamard
matrix. We then define W̃ and W′ as in Lemma 10. Then∣∣∣∣ max

u,v∈{0,1}mn
uTW̃v−m2 · max

x,y∈{0,1}n
xTWy

∣∣∣∣
=
∣∣∣∣ max
u,v∈{0,1}mn

uTW̃v− max
u,v∈{0,1}mn

uTW′v
∣∣∣∣

≤n2 ·m3/2 ≤ m1/2

2 ·m3/2 = m2

2 ,

where the first equality is by Lemma 8 and the first inequality is by Lemma 10.
Since the expression m2 ·maxx,y∈{0,1}n xTWy is an integer multiple of m2, the value
maxu,v∈{0,1}mn uTW̃v uniquely determines the value maxx,y∈{0,1}n xTWy. This then gives
the desired reduction. J

MFCS 2018

41:14 Low Rank Approximation of Binary Matrices

5 Conclusion

We have studied Column Subset Section (CSS) for low rank binary matrix approximation.
CSS is often used as an alternative approach of SVD for low rank approximation of real
matrices, where the advantage of CSS is the interpretability of its results. For binary matrices,
CSS is so far the only approach yielding theoretical guarantees, as solving the low rank
problem exactly is NP-hard. We provide an upper bound on the approximation ratio of
CSS for the GF(2) model and show the bound is tight. This is a complete characterization
from an information-theoretic point of view. For the Boolean semiring model, we propose a
Generalized CSS (GCSS) method, since CSS is not strong enough to yield a bound in this
scenario. We also show an upper bound for GCSS.

CSS has been actively studied for nearly three decades and the first work can at least
date back to [23], where it was called rank revealing QR in the numerical linear algebra
community. The progress on CSS exhibits an interesting trajectory. Early results either gave
bounds exponential in k or the running time of the algorithm is O(nk) [4, 7–9,18, 27]. After
efforts of many researches, there are now polynomial time algorithms that have polynomial
bounds for the approximation ratio.

Our understanding of CSS for binary matrices is at the very beginning stage. It is an
important problem for future work to develop efficient CSS algorithms that achieves or
approximately achieves the bounds of this paper.

References
1 Jason Altschuler, Aditya Bhaskara, Gang Fu, Vahab Mirrokni, Afshin Rostamizadeh, and

Morteza Zadimoghaddam. Greedy column subset selection: New bounds and distributed
algorithms. Proceedings of the 33rd International Conference on MachineLearning, 2016.

2 Noga Amit. The bicluster graph editing problem. M.sc. thesis, Tel Aviv University, 2004.
3 Radim Belohlavek and Vilem Vychodil. Discovery of optimal factors in binary data via a

novel method of matrix decomposition. Journal of Computer and System Sciences, 76(1):3–
20, 2010.

4 Christian H Bischof and Gregorio Quintana-Ortí. Computing rank-revealing qr factoriza-
tions of dense matrices. ACM Transactions on Mathematical Software (TOMS), 24(2):226–
253, 1998.

5 Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal column-based
matrix reconstruction. SIAM Journal on Computing, 43(2):687–717, 2014.

6 Christos Boutsidis, Michael W Mahoney, and Petros Drineas. An improved approximation
algorithm for the column subset selection problem. In Proceedings of the twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 968–977. Society for Industrial and
Applied Mathematics, 2009.

7 Tony F Chan. Rank revealing qr factorizations. Linear algebra and its applications, 88:67–
82, 1987.

8 Tony F Chan and Per Christian Hansen. Low-rank revealing qr factorizations. Numerical
Linear Algebra with Applications, 1(1):33–44, 1994.

9 Shivkumar Chandrasekaran and Ilse CF Ipsen. On rank-revealing factorisations. SIAM
Journal on Matrix Analysis and Applications, 15(2):592–622, 1994.

10 Ali Civril and Malik Magdon-Ismail. Column subset selection via sparse approximation of
svd. Theoretical Computer Science, 421:1–14, 2012.

11 Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceed-

C. Dan, K. A. Hansen, H. Jiang, L. Wang, and Y. Zhou 41:15

ings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages
163–172. ACM, 2015.

12 Chen Dan, Kristoffer Arnsfelt Hansen, He Jiang, Liwei Wang, and Yuchen Zhou. On low
rank approximation of binary matrices. CoRR, abs/1511.01699, 2015.

13 Amit Deshpande and Luis Rademacher. Efficient volume sampling for row/column subset
selection. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Sym-
posium on, pages 329–338. IEEE, 2010.

14 Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang. Matrix approx-
imation and projective clustering via volume sampling. In Proceedings of the seventeenth
annual ACM-SIAM symposium on Discrete algorithm, pages 1117–1126. Society for Indus-
trial and Applied Mathematics, 2006.

15 Amit Deshpande and Santosh Vempala. Adaptive sampling and fast low-rank matrix
approximation. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, pages 292–303. Springer, 2006.

16 Petros Drineas, Michael W Mahoney, and S Muthukrishnan. Relative-error cur matrix
decompositions. SIAM Journal on Matrix Analysis and Applications, 30(2):844–881, 2008.

17 Herbert Fleischner, Egbert Mujuni, Daniël Paulusma, and Stefan Szeider. Covering graphs
with few complete bipartite subgraphs. Theor. Comput. Sci, 410(21-23):2045–2053, 2009.

18 Leslie V Foster. Rank and null space calculations using matrix decomposition without
column interchanges. Linear Algebra and its Applications, 74:47–71, 1986.

19 Mario Frank, Andreas P Streich, David Basin, and Joachim M Buhmann. Multi-assignment
clustering for boolean data. The Journal of Machine Learning Research, 13(1):459–489,
2012.

20 Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast monte-carlo algorithms for finding
low-rank approximations. Journal of the ACM (JACM), 51(6):1025–1041, 2004.

21 Alexander A Frolov, Dusan Husek, Igor P Muraviev, and P Yu Polyakov. Boolean factor
analysis by attractor neural network. Neural Networks, IEEE Transactions on, 18(3):698–
707, 2007.

22 Nicolas Gillis and Stephen A. Vavasis. On the complexity of robust PCA and `1-norm
low-rank matrix approximation. CoRR, abs/1509.09236, 2015.

23 Gene Golub. Numerical methods for solving linear least squares problems. Numerische
Mathematik, 7(3):206–216, 1965.

24 Ming Gu and Stanley C Eisenstat. Efficient algorithms for computing a strong rank-
revealing QR factorization. SIAM Journal on Scientific Computing, 17(4):848–869, 1996.

25 Harold W Gutch, Peter Gruber, Arie Yeredor, and Fabian J Theis. Ica over finite fields:
separability and algorithms. Signal Processing, 92(8):1796–1808, 2012.

26 Dorit S Hochbaum and Anu Pathria. Forest harvesting and minimum cuts: a new approach
to handling spatial constraints. Forest Science, 43(4):544–554, 1997.

27 Yoo Pyo Hong and C-T Pan. Rank-revealing QR factorizations and the singular value
decomposition. Mathematics of Computation, 58(197):213–232, 1992.

28 Harold Hotelling. Analysis of a complex of statistical variables into principal components.
Journal of educational psychology, 24(6):417, 1933.

29 Peng Jiang, Jiming Peng, Michael Heath, and Rui Yang. A clustering approach to con-
strained binary matrix factorization. In Data Mining and Knowledge Discovery for Big
Data, pages 281–303. Springer, 2014.

30 Kari K. Karhunen. über lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad.
Sci. Fennicae. Ser. A. I. Math.-Phys., 37:1–79, 1947.

31 Claudio Lucchese, Salvatore Orlando, and Raffaele Perego. Mining top-k patterns from
binary datasets in presence of noise. In SDM, volume 10, pages 165–176, 2010.

MFCS 2018

41:16 Low Rank Approximation of Binary Matrices

32 Michael W Mahoney et al. Randomized algorithms for matrices and data. Foundations
and Trends® in Machine Learning, 3(2):123–224, 2011.

33 Pauli Miettinen, Taneli Mielikainen, Aristides Gionis, Gautam Das, and Heikki Mannila.
The discrete basis problem. Knowledge and Data Engineering, IEEE Transactions on,
20(10):1348–1362, 2008.

34 Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and Heikki Mannila.
The discrete basis problem. IEEE Trans. Knowl. Data Eng, 20(10):1348–1362, 2008.

35 Amichai Painsky, Saharon Rosset, and Meir Feder. Generalized independent component
analysis over finite alphabets. Information Theory, IEEE Transactions on, 2015.

36 C-T Pan. On the existence and computation of rank-revealing lu factorizations. Linear
Algebra and its Applications, 316(1-3):199–222, 2000.

37 Ron M. Roth and Krishnamurthy Viswanathan. On the hardness of decoding the gale-
berlekamp code. IEEE Transactions on Information Theory, 54(3):1050–1060, 2008.

38 Jouni K Seppänen, Ella Bingham, and Heikki Mannila. A simple algorithm for topic
identification in 0–1 data. In Knowledge Discovery in Databases: PKDD 2003, pages 423–
434. Springer, 2003.

39 Bao-Hong Shen, Shuiwang Ji, and Jieping Ye. Mining discrete patterns via binary mat-
rix factorization. In John F. Elder IV, Françoise Fogelman-Soulié, Peter A. Flach, and
Mohammed Javeed Zaki, editors, Proceedings of the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 757–766. ACM, 2009.

40 Tomáš Šingliar and Miloš Hauskrecht. Noisy-or component analysis and its application to
link analysis. The Journal of Machine Learning Research, 7:2189–2213, 2006.

41 Larry Stockmeyer. The minimal set basis problem is NP-complete. IBM Research Report
RC-5431, IBM Thomas J. Watson Research Center, 1975.

42 Jinsong Tan. Inapproximability of maximum weighted edge biclique and its applications.
In Manindra Agrawal, Ding-Zhu Du, Zhenhua Duan, and Angsheng Li, editors, TAMC
2008, volume 4978 of LNCS, pages 282–293. Springer, 2008.

43 Joel A Tropp. Column subset selection, matrix factorization, and eigenvalue optimization.
In Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 978–986. Society for Industrial and Applied Mathematics, 2009.

44 Jaideep Vaidya, Vijayalakshmi Atluri, and Qi Guo. The role mining problem: finding a
minimal descriptive set of roles. In Proceedings of the 12th ACM symposium on Access
control models and technologies, pages 175–184. ACM, 2007.

45 Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Jozef Gruska,
editor, 6th Symposium on Mathematical Foundations of Computer Science, MFCS 1977,
volume 53 of Lecture Notes in Computer Science, pages 162–176. Springer, 1977.

46 Yining Wang and Aarti Singh. Column subset selection with missing data via active
sampling. In AISTATS, pages 1033–1041, 2015.

47 Tianbao Yang, Lijun Zhang, Rong Jin, and Shenghuo Zhu. An explicit sampling dependent
spectral error bound for column subset selection. In Proceedings of The 32nd International
Conference on Machine Learning, pages 135–143, 2015.

48 Arie Yeredor. Independent component analysis over galois fields of prime order. Information
Theory, IEEE Transactions on, 57(8):5342–5359, 2011.

Optimal Strategies in Pushdown Reachability
Games
Arnaud Carayol1

Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM, France
arnaud.carayol@u-pem.fr

Matthew Hague2

Royal Holloway, University of London, UK
matthew.hague@rhul.ac.uk

https://orcid.org/0000-0003-4913-3800

Abstract
An algorithm for computing optimal strategies in pushdown reachability games was given by
Cachat. We show that the information tracked by this algorithm is too coarse and the strategies
constructed are not necessarily optimal. We then show that the algorithm can be refined to
recover optimality. Through a further non-trivial argument the refined algorithm can be run in
2EXPTIME by bounding the play-lengths tracked to those that are at most doubly exponential.
This is optimal in the sense that there exists a game for which the optimal strategy requires a
doubly exponential number of moves to reach a target configuration.

2012 ACM Subject Classification Theory of computation → Automata over infinite objects

Keywords and phrases Pushdown Systems, Reachability Games, Optimal Strategies, Formal
Methods, Context Free

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.42

Acknowledgements We would like to thank the anonymous reviewers for their comments.

1 Introduction

Pushdown systems are popular models for program verification. They are equipped with an
unbounded stack that can model the call stack of a procedural program. That is, the control
flow of first-order recursive programs (such as C and Java programs) can be accurately
modelled [10].

In a pushdown game, configurations of a pushdown system belong to one of two players
(Elvis and the Anarchist). The player who owns a configuration chooses which configuration
the game moves to next. In a reachability game, Elvis wins if he is able to force the play
into a target configuration, while the Anarchist must prevent this from happening.

One may consider a reachability game to be a competition between a program (Elvis)
and its environment (the Anarchist). The program is required to reach a good terminating
configuration under all conditions presented by the (uncontrollable) environment. In this
situation it is interesting to be able to determine the configurations from which Elvis is able
to always win the game, and, moreover, the strategy he should employ. That is, how should

1 Supported by the French National Research Agency (ANR), through the excellence program Bézout
(ANR-10-LABX-58).

2 Supported by EPSRC [EP/K009907/1].

© A. Carayol and M. Hague;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 42; pp. 42:1–42:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arnaud.carayol@u-pem.fr
mailto:matthew.hague@rhul.ac.uk
https://orcid.org/0000-0003-4913-3800
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2 Optimal Strategies in Pushdown Reachability Games

the program behave in order to respond to the given inputs to ensure a correct execution.
The problem of constructing a winning strategy for Elvis corresponds to synthesising a
complete, correct program from a given program skeleton.

It is known that the players have positional winning strategies in a pushdown reachability
game. That is a winning strategy needs only to have access to the current state of the
game (as opposed to the entire history of play) [16]. A variety of methods are known for
constructing winning strategies in pushdown reachability games [15, 4, 14, 12, 11, 8, 5]. One
such method introduced by Cachat computes the optimal strategy [3]. That is, the strategy
that will reach a target configuration in the fewest number of steps. Such a strategy has
obvious applications in the synthesis of efficient programs.

Cachat’s algorithm is based on the saturation technique. Saturation is a technique that,
beginning from a finite automaton representing a set of configurations, repeatedly adds
new transitions to the automaton. The goal is to expand the representation to include all
configurations either reachable from, or that can reach, the initial set.

It was shown by Büchi that the set of configurations reachable from the initial configuration
of a pushdown system form a regular language and hence can be represented by a finite state
automaton [2]. While Büchi’s procedure is exponential, Caucal showed that this problem
can be solved in polynomial time [6]. The improved algorithm is a saturation process where
transitions are incrementally added to a finite automaton. This technique was simplified
and adapted to the model-checking setting by Bouajjani et al. in [1] and independently by
Finkel et al. in [7]. In particular, it was shown that the set of predecessors of a regular set of
target configurations is also regular. In the same work, the saturation method was shown
to work for pushdown reachability games, though the complexity increases to EXPTIME,
for which the problem is complete. Cachat builds on this algorithm by annotating each
transition added to the finite automaton with a corresponding move in the pushdown game,
as well as a weight indicating its “distance” from the target set.

Unfortunately, Cachat’s algorithm contains a non-trivial error. In short, by keeping only a
single weight per transition, Cachat loses important information about the cost of the different
paths of execution through which the Anarchist may force play. This leads to the algorithm
computing non-optimal weights for some choices of Elvis, meaning the recommended moves
may no longer be optimal. In this work we present the following contributions:

A counter-example showing how Cachat’s algorithm may compute non-optimal strategies.

A corrected saturation-based algorithm using weights that are fine-grained enough to
compute optimal strategies precisely.
Termination of this algorithm relies on well-quasi orders and we do not have an elementary
bound on its runtime.

A non-trivial proof that the above algorithm can be restricted to only include weights
that are doubly exponential in size (whilst still computing optimal strategies). With such
a restriction optimal strategies can be computed in 2EXPTIME.

A matching lower bound giving a game in which Elvis’s optimal strategy requires a doubly
exponential number of moves to reach a target configuration.

We give preliminaries in Section 2 and the basic saturation algorithm in Section 3. Cachat’s
algorithm for optimal strategies appears in Section 4 along with our counter-example. We
correct the algorithm in Section 5 with the complexity results in Section 6.

A. Carayol and M. Hague 42:3

2 Preliminaries

2.1 Alternating Finite Automata
To analyse two player games we will make use of alternating finite automata to represent sets
of configurations of a pushdown system. For convenience, we will often refer to alternating
finite automata simply as automata.

I Definition 2.1 (Alternating Automata). An alternating automaton is a tuple A = (S,Σ,F , δ)
where S is a finite set of states, Σ is a finite alphabet, F ⊆ S is the set of accepting states,
and δ ⊆ S× Σ× 2S is a transition relation.

We write s A−→ S for a transition (s,A, S) in δ. To simplify the presentation, we will assume
that S is always non-empty. A run of an alternating automaton over w = A1 . . . A` ∈ Γ∗ is an
unordered unranked tree of depth ` with nodes labelled by states in S and edges labelled by
transitions in δ such that for each node η at depth 0 ≤ i ≤ `−1 labelled s there is a transition
τ = s

Ai+1−−−→ {s1, . . . , sm} and η has children η1, . . . , ηm labelled s1, . . . , sm respectively and
each edge (η, ηj) for all 1 ≤ j ≤ m is labelled by τ .

If the root of the run is labelled by s and the set of states appearing at the leaves of the
run is S, we say that the run starts with s and ends in S. The run is accepting if S ⊆ F . For
a state s, the set Ls(A) contains all words over which there is an accepting run of A from s.

A branch in a run is a sequence of nodes η0 · · · η` with η0 the root of the run, η` a leaf
and for each 1 ≤ i ≤ `, we have ηi is a child of ηi−1.

For a word w ∈ Σ∗, a state s and a set of states S, we write
[
s
w=⇒
A
S
]
for the set of all

runs of A starting from s and ending precisely with S and s w=⇒
A
S to denote the existence of

a run of A over w starting from s and ending precisely in S.

2.2 Pushdown Reachability Games
A pushdown reachability game is played between two players on the configuration graph of
a pushdown system. The owner of a configuration is indicated by its state and the set of
target configurations is accepted by an alternating finite automaton.

I Definition 2.2 (Pushdown Reachability Games). A two-player pushdown reachability game
is a tuple G = (Q,Γ,∆,A) such that Q is a finite set of control states partitioned Q =
QE] QA into Elvis and the Anarchist states respectively, Γ is the finite stack alphabet,
∆ ⊆ (Q× Γ)×

(
Q× Γ≤2) is the set of transitions, and A is an alternating finite automaton

(S,Γ,F , δ) with Q ⊆ S.

We write (q, A) → (p, w) for the transition ((q, A) , (p, w)) in ∆. A configuration is a
tuple (q, w) where q is a state in Q and w is a stack content in Γ∗. Let CG be the set
of configurations of G. In the configuration (q, Aw), it is possible to apply a transition
(q, A)→ (p, u) to go to the configuration (p, uw). A configuration (q, w) is final if the stack
content w is accepted by A from the state q (i.e. w ∈ Lq(A)).

A play of a pushdown game is a (possibly infinite) sequence (q0, w0) , (q1, w1) , . . . where
(q0, w0) is some starting configuration and (qi+1, wi+1) (if defined) is obtained from (qi, wi)
via some transition (qi, A) → (qi+1, w) ∈ ∆. In the case where qi ∈ QE , it is Elvis who
chooses the transition to apply, otherwise the Anarchist chooses the transition.

Elvis wins the game if there is some i such that (qi, wi) is final or if qi belongs to the
Anarchist and (qi, wi) does not have any successors. Otherwise, the Anarchist wins the play.

MFCS 2018

42:4 Optimal Strategies in Pushdown Reachability Games

A strategy for Elvis is a partial function σ : C∗G → ∆ which may assign to each play
(q0, w0) , . . . , (q`, w`) with q` ∈ QE a transition in ∆ applicable to the configuration (q`, w`).
A given play (q0, w0) , (q1, w1) , . . . is played according to σ if for all i such that qi ∈ QE
and (qi, wi) has a successor in the play, we have σ((q0, w0) , . . . , (qi, wi)) = r and (qi, wi)→
(qi+1, wi+1) via transition r. A strategy is winning for Elvis from a configuration (q0, w0) if
all maximal plays starting from (q0, w0) and according to σ are winning for Elvis. A strategy
is called positional if its value only depends on the last configuration of the play. Hence a
positional strategy is fully described by a mapping from the set of configurations belonging
to Elvis to ∆. Winning strategies for the Anarchist are defined analogously.

The winning region W of a pushdown reachability game is the set of all configurations
from which Elvis has a winning strategy.

It is well-known (see [9]) that W = Pre∗G(A) defined as Pre∗G(A) =
⋃
i<ω

PreiG(A) where

Pre0
G(A) = {(q, w) | w ∈ Lq(A)}

Prei+1
G (A) = PreiG(A) ∪{

(q, w) | q ∈ QE ∧ ∃ (q, w)→ (q′, w′) . (q′, w′) ∈ PreiG(A)
}
∪{

(q, w) | q ∈ QA ∧ ∀ (q, w)→ (q′, w′) . (q′, w′) ∈ PreiG(A)
}
.

The rank rank(p, w) of a configuration (p, w) in W is the smallest i such that (p, w) ∈
PreiG(A). Intuitively the rank captures the distance for Elvis to a final configuration.

I Definition 2.3 (Optimal Strategies). A strategy for Elvis is optimal if, for plays ending
in (p, w) in the winning region of Elvis, with p ∈ QE , it prescribes a move to (p′, w′) that
minimises rank(p′, w′) amongst all possible moves.

Optimal strategies are positional and winning from all configurations in W .

3 The Saturation Algorithm

In [1], Bouajjani et al. present an algorithm that given a pushdown reachability game
(Q,Γ,∆,A) with an automaton A = (S,Γ,F , δ), constructs a new automaton B accepting
Pre∗G(A). The requirements3 on A are that no transition in δ goes back to a state in Q. This
is required to ensure that the invariants maintained by the algorithm hold initially.

The algorithm proceeds by adding transitions to A until no new transition can be added.
The resulting automaton B accepts Pre∗G(A). That is w ∈ Lq(B) iff (q, w) ∈ Pre∗G(A).

The intuition of the algorithm can be seen as follows. Suppose q is a state of Elvis, there
is a rule (q, A)→ (p, w) ∈ ∆, and the configuration (p, ww′) is accepted by the automaton
by a run beginning with p w=⇒ S. The configuration (q, Aw′) should also be accepted since an
application of the rule reaches (p, ww′) from which a target configuration can be reached.
Thus, a transition q A−→ S is added, meaning (q, Aw′) can now be accepted using the run
we know exists over w′ from S. For a move of the Anarchist we use alternation to gather
together runs from all possible next configurations.

The algorithm constructs a finite sequence (Ai)i∈[0,N] of automata. The automaton A0 is
A. Each Ai is of the form (S,F , δi), meaning that they only differ by their set of transitions.
The construction guarantees that for all i ∈ [0, N − 1] we have δi ⊆ δi+1. It terminates when
δi+1 = δi. This occurs since the set of possible transitions is finite.

The set δi+1 is obtained from δi as the smallest set of transitions such that

3 This requirement is easily met by adding a copy of each state in Q if necessary.

A. Carayol and M. Hague 42:5

1. δi ⊆ δi+1, and
2. for each q ∈ QE , if (q, A)→ (p, w) ∈ ∆ and p w=⇒

Ai

S, then q A−→ S ∈ δi+1, and
3. for each q ∈ QA and A ∈ Γ let

(q, A)→ (p1, u1) , . . . , (q,A)→ (pn, un)

be all rules from (q, A) in ∆. For all sets S1, . . . , Sn of states such that:

p1
u1=⇒
Ai

S1, . . . , pn
un=⇒
Ai

Sn we have q
A−→
⋃
j

Sj ∈ δi+1 .

One can prove that (p, w) ∈ Pre∗G(A) iff w ∈ Lp(B) to obtain regularity of the winning region.
Since an alternating automaton has at most exponentially many transitions in the number of
states (and we do not add any new states), we have that B is constructible in EXPTIME.

4 Cachat’s Algorithm

In Section 4.1, we describe Cachat’s min-rank algorithm [3, 4]. This algorithm constructs a
weighted alternating automaton which is used to associate to every accepted configuration
a weight. We will see in Section 4.2 that this weight is an upper-bound on the rank of the
configuration. In Section 4.3, we will show that contrary to Cachat’s claim, it is not equal to
the rank of the configuration and hence the associated strategy is not an optimal strategy.

4.1 Saturation Algorithm with Weights
Cachat’s algorithm proceeds by annotating new transitions of the saturated automaton with
two pieces of information: a weight in N and a rule of the pushdown system. Intuitively
if a transition q A−→ S is introduced by the saturation algorithm this means that, for every
configuration (q, Aw), Elvis has a strategy to win without ever popping the A or to ensure
that the A is popped and that the resulting state belongs to S. The weight of the transition
is meant to capture the length of the longest play under an optimal strategy for Elvis. We
will see that it is only an upper-bound on this length. The rule in the annotation is the one
responsible for the introduction of the transition in the saturation algorithm.

Before presenting the algorithm, we need to define the weight of a run and of a set of runs
when the transitions of the automaton are given weights by a function W. The weight of a
run ρ, denoted by W∗(ρ) is the maximum weight of a branch in the run where the weight of
a branch is simply the sum of the weights of the transitions appearing in this branch. By
convention, a run of depth 0 has weight 0.

For a word w ∈ Σ∗, a state s and a set of states S such that s w=⇒
A
S, we take:

W∗(s w=⇒
A
S) = min

{
W∗(ρ) | ρ ∈

[
s
w=⇒
A
S
]}

The saturation function is updated to assign weights to new transitions based on the
maximum weights of the runs it is based on. Formally a function α is defined which associates
to each transition of the saturated automaton a tuple consisting of a weight and a rule of the
pushdown system. For convenience, we use # to indicate the absence of an associated rule
(for transitions of the initial automaton and moves of the Anarchist). Moreover, we denote
by W the projection of α on the weight component.

Given some initial reachability target set represented by an automaton A0 = A =
(S,Γ, δ0,F), we initially define α(τ) = (0,#) for all τ ∈ δ0.

MFCS 2018

42:6 Optimal Strategies in Pushdown Reachability Games

The annotation function α is updated as new transitions are added. At each iteration,
we define Ai+1 = (S,Γ, δi+1,F) where δi+1 is the smallest set of transitions such that
1. δi ⊆ δi+1, and
2. for each q ∈ QE , if r = (q, A) → (p, w) ∈ ∆ and p w=⇒

Ai

S then τ = q
A−→ S ∈ δi+1 and

furthermore, we assign

α(τ) =
(

1 +W∗
(
p

w=⇒
Ai

S

)
, r

)
.

3. for each q ∈ QA and A ∈ Γ let (q, A)→ (p1, u1) , . . . , (q,A)→ (pm, um) be all rules from
(q, A) in ∆. For each set of runs p1

u1=⇒
Ai

S1, . . . , pn
um==⇒
Ai

Sm we have τ = q
A−→
⋃
j

Sj ∈ δi+1

and furthermore, we assign

α(τ) =
(

1 + max
1≤j≤m

(
W∗
(
pj

uj=⇒
Ai

Sj

))
,#
)

Cachat writes that the algorithm terminates when “no new transitions can be added”.
The formulation of the algorithm seems to indicate that the weights are final and that the
algorithm terminates when all transitions have been added. It is possible to construct an
example in which the weight of a transition would decrease from its initial value. It would
be easy to adapt the algorithm to allow the weight of the transitions to decrease after their
initial introduction but this would not fix the deeper problem pointed out in Section 4.3.
In the case where there is only one player (i.e. all states belong to Elvis), it is possible to
ensure the weight of transitions are final by adding transitions one by one: at each round the
transition with the smallest possible weight is created [13, p. 63]. In the following, we will
consider that the algorithms stops when the transition structure is stable (i.e. δi+1 = δi)
and that a transition τ is added to δi+1 only if does not belong to δi.

4.2 Min-Rank Strategy
We now assume that B is the saturated automaton produced by the previous algorithm and
that α is the corresponding annotation function. Recall W is the projection of α on the
weight component.

First we remark that as the saturated automaton B is identical to the one obtained in
the original saturation algorithm, B accepts the winning region of Elvis. Hence the weight
of a configuration (q, w) in the winning region can be defined as the minimal weight for an
accepting run for this configuration:

W∗(q, w) = min
(
W∗
(
q
w=⇒
B
S
)
| S ⊆ F and q w=⇒

B
S
)
.

Cachat defines what he calls the min-rank positional strategy for Elvis. In this strategy
Elvis plays, at a configuration (q, w) ∈ W (which he owns), the move corresponding to
the rule annotating the first transition in any accepting run of B on w starting with p of
minimal weight W∗(q, w). If the rule annotating the top-most transition is undefined then
the configuration is final and no moves needs to be played.

As stated by Cachat, the move outputted by the strategy can be computed in time linear
in the length of the input configuration and exponential in the size of the pushdown game
(with an exponential precomputation in the size of the game). The algorithm consists in
reading w from right to left while maintaining for each state q the weight of the minimal run

A. Carayol and M. Hague 42:7

accepting the stack content from q. This information can be updated in O(|B|) upon reading
a new stack symbol.

From the definition of the algorithm, it can be shown that for all configurations (q, w) ∈W :
if (q, w) is owned by the Anarchist, then for all configurations (q′, w′) with (q, w)→ (q′, w′),
we have W∗(q, w) >W∗(q′, w′).
if (q, w) is owned by Elvis, then for a configuration (q′, w′) prescribed by the min-rank
positional strategy (if it exists) then W∗(q, w) >W∗(q′, w′) .

These properties allow the following properties of the min-rank strategy to be proved.

I Theorem 4.1 ([3]). The min-rank strategy is positional and winning from all configurations
in Elvis’s winning region.

In [3], Cachat in addition claims that the min-rank strategy is optimal, which is not the
case. The mistake lies in [3, Proposition 6] where Cachat’s claims in that the weight of a
configuration (q, w) ∈W is equal to the rank of this configuration. However, this turns out
not to be true as we will see in the next section. Cachat’s proof [4, p. 34] in fact shows that
W∗(p, w) is an upper bound on rank(p, w), but not the converse inequality.

I Proposition 4.2 ([3]). For any configuration (q, w) ∈ Pre∗G(A) we have rank(q, w) ≤
W∗(q, w).

From this, we can obtain the following corollary which we will need in the sequel.

I Corollary 4.3 (Upper Bound). Take a pushdown game G = (Q,Γ,∆,A) with an alternating
automaton A = (S,Γ,F , δ) and let B be the result of Cachat’s saturation algorithm. For
C = 2|Q|·|Γ|·2|S| , we have:

for all transitions q A−→ S in B, its weight is bounded by C, and
for any configuration (p, w) ∈ Pre∗G(A) we have rank(p, w) ≤ C · |w|.

Proof. At each iteration of the saturation, the weight of a new transition is at most 1 + 2k
where k is the maximum weight appearing on a transition in the previous iteration. A direct
induction shows that for all i ≥ 0, the maximum weight of a transition in δi is at most 2i− 1.
As there are at most as many iterations as there are possible transitions of the saturated
automaton, after at most |Q| · |Γ| · 2|S| iterations, no new transitions will be added. It follows
that the weight of a transition in the saturated automaton is at most 2|Q|·|Γ|·2|S| which is the
announced constant.

Now consider a configuration (q, w) ∈ Pre∗G(A). From Proposition 4.2, we know that
rank(q, w) is bounded by the weight of any accepting run of B on w starting from q. The
cost of such a run is a most C · |w| which concludes. J

4.3 Non-optimality of the Min-Rank Strategy
We give a counter-example in which the weight of configurations are strictly greater than
their rank. Then we adapt this counter-example into a game where the min-rank strategy
is not optimal. The goal of our counter example is to introduce a transition q

A−→ {r, s}
corresponding to a situation in the game where

the cost of a play to r is low, but the play from r to a target configuration is long, and
the cost of a play to s is high, but the play from s to a target configuration is short.

Our game has one control state p belonging to the Anarchist and all other states q, q′, r, r′, s,
and f belong to Elvis. The goal is to reach a configuration (f,⊥). We give the moves below,

MFCS 2018

42:8 Optimal Strategies in Pushdown Reachability Games

(p,AA⊥)

(r,A⊥) (r,AA⊥) (r′, A⊥)

(f,⊥)

(q, AAA⊥) (q′, AA⊥) (s,A⊥)

Figure 1 A game showing a counter example to the algorithm of Cachat.

p

q q′ s

f

r′r

qf

A

(1, r3)
A

(1, r4)

A

(1,
r 5

)

A

(1, r7)

A
(3, r6)

A(1, r8) ⊥
(0,#)

A

(3,#)

Figure 2 The saturated automaton.

p

s

r f

f

qf

qf
A

(1, r5)

A

(3, r7)
⊥

(0,#)

⊥
(0,#)

A

(3,#)

Figure 3 The accepting run of (p, aa⊥).

p

s

r f

f

qf

qf
A

(1, r5)

A

(3, r7)
⊥

(0,#)

⊥
(0,#)

A (1,
#)

(3,#)

Figure 4 A run of (p, aa⊥) with fine-grained weights.

A. Carayol and M. Hague 42:9

and show in Figure 1 the game graph from (p,AA⊥). No matter how the Anarchist plays, it
will take four steps to reach (f,⊥).

The moves available to the Anarchist are

r1 = (p,A)→ (r, ε) and r2 = (p,A)→ (q,AA)

and the remaining moves are available to Elvis and consist of

r3 = (q, A)→ (q′, ε) r4 = (q′, A)→ (s, ε) r5 = (s,A)→ (f, ε)
r6 = (r,A)→ (r,AA) r7 = (r,A)→ (r′, ε) r8 = (r′, A)→ (f, ε) .

We start with A0 containing only the transition f ⊥−−−→
(0,#)

qf where qf is the only accepting

state, and (0,#) is the annotation.
We then begin saturation. The pop rules r3, r4, r5, r7, and r8 from states belonging to

Elvis immediately lead to the introduction of new transitions. These can be seen in Figure 2
where the annotations show which rule lead to each new transition. The transitions from p

and r are described below.
First, we can deal with the push at control state r using r6. This leads to the introduction

of a transition r
A−−−→

(3,r6)
f because of the run r

A−−−→
(1,r7)

r′
A−−−→

(1,r8)
f . Next, both rules from

p need to be considered simultaneously. That is we introduce a transition p
A−−−→

(3,#)
{r, s}

because of the rule r1 which is a pop rule from p to r and r2 and the run q A−−−→
(1,r3)

q′
A−−−→

(1,r4)
s.

No more transitions can be added. The result is shown in Figure 2. The alternating transition
is shown with a split arrow.

Given this automaton, we consider the accepting run of (p,AA⊥) shown in Figure 3.
Note that the weight of this run is 6, but the longest run that the Anarchist can enforce is 4.

One can extend this to a full counter example to the optimality of Cachat’s algorithm
as follows. From an initial configuration (p0, AAA⊥) we give Elvis the choice of moving to
(p,AA⊥) via a pop, or to another configuration (p1, AA⊥) from which 5 steps are required to
reach (f,⊥). Since the rank of (p,AA⊥) is estimated to be 6 rather than 4, the strategy will
choose to move to (p1, AA⊥) rather than (p,AA⊥), leading to a play that is not optimal.

To be more explicit, in the full counter example, the game has one control state p

belonging to the Anarchist and all other states q, q′, r, r′, s, and f as well as p0, p1, p2, p3, p4,
and p5 belong to Elvis. The goal is to reach a configuration (f,⊥). The moves available to
the Anarchist are as before

r1 = (p,A)→ (r, ε) and r2 = (p,A)→ (q,AA)

and the remaining moves are available to Elvis and consist of the previous rules

r3 = (q, A)→ (q′, ε) r4 = (q′, A)→ (s, ε) r5 = (s,A)→ (f, ε)
r6 = (r,A)→ (r,AA) r7 = (r,A)→ (r′, ε) r8 = (r′, A)→ (f, ε) .

as well as

r9 = (p0, A)→ (p, ε) r10 = (p0, A)→ (p1, ε) r11 = (p1, A)→ (p2, A)
r12 = (p2, A)→ (p3, A) r13 = (p3, A)→ (p4, A) r14 = (p4, A)→ (p5, ε)
r15 = (p5, A)→ (f, ε) .

At (p0, AAA⊥) Elvis has two possible moves. The first is to (p,AA⊥) which, as shown above,
has a calculated rank of 6. The second is to (p1, AA⊥) which one can easily verify has a
rank of 5. Thus, Cachat’s strategy is to move to (p1, AA⊥) which is not optimal.

MFCS 2018

42:10 Optimal Strategies in Pushdown Reachability Games

This overapproximation occurs because the information stored on the transition from p is
too coarse. The weight of 3 comes from the weight of the run to s. The weight of the run to
r is 1. Thus, if we were to store a weight for each control state we would obtain two weights
on the transition from p. This would allow us to identify that the true cost of the run is 4.
This can be seen in Figure 4 and is the basis of our corrected algorithm.

5 Computing Optimal Strategies

We refine Cachat’s algorithm to compute optimal strategies in pushdown reachability games.
The key idea is to replace simple annotations α

(
s
A−→ S

)
= (d, r) with a more fine-grained

version, which assigns a separate weight to each state in S. For this, we include annotations
in the definition of a transition. That is, a transition is a tuple (s,A, S,D, r) where s is a
state in S, A is a character in Γ, S ⊆ S, D : S 7→ N is a weight function, and r is a rule of G.
We write such transitions as s A−−→

D,r
S. As before, we calculate the weights of runs.

5.1 Profile of a run
In an automaton run ρ with annotated transitions, we define the weight of a branch inductively

W∗(η0) = 0 and W∗(η0 · · · η`) = D(s1) +W∗(η1 · · · η`)

where D is the weight function the transition labeling (η0, η1) and s1 is the state labeling η1.
We define a run profile.

I Definition 5.1 (Profiles). Given a run ρ over a word w, the profile of ρ is given by
P(ρ) = (S,D) where S is the set of states in S labelling leaves of ρ and D : S → N is the
function such that, for all s ∈ S, we have that D(s) is the maximum weight of a branch from
the root node to a leaf labelled s. Moreover, we define

(1 +D)(s) = 1 +D(s) and max(D1, . . . , Dm)(s) = max
1≤j≤m

(Dj(s)) .

Finally, given (S,D) and (S,D′), we write D ≤ D′ when for all s ∈ S we have D(s) ≤ D(s′).
By Dickson’s Lemma, ≤ is a well-quasi-ordering on the weights.

5.2 Saturation
We use the saturation algorithm with run profiles rather than Cachat’s annotations. At each
iteration, we set Ai+1 = (S,Γ, δi+1,F) where δi+1 is the smallest set of transitions with
1. δi ⊆ δi+1, and
2. for each q ∈ QE , if r = (q, A) → (p, w) ∈ ∆ and ρ is a run of Ai over w from p with

profile P(ρ) = (S,D) then

τ = q
A−−−−→

1+D,r
S ∈ δi+1 .

3. for each q ∈ QA and A ∈ Γ let (q, A)→ (p1, u1) , . . . , (q,A)→ (pm, um) be all rules from
(q, A) in ∆. For each set ρ1, . . . , ρm of runs of Ai such that for each 1 ≤ j ≤ m the run
ρj is a run over uj with root note labelled sj and profile (Sj , Dj), we have

τ = q
A−−−→

D′,#

⋃
j

Sj ∈ δi+1

where D′ = 1 + max(D1, . . . , Dm).

A. Carayol and M. Hague 42:11

The algorithm terminates at the first i such that for all s A−−→
D,r

S ∈ δi+1 there exists

s
A−−−→

D′,r′
S ∈ δi with D′ ≤ D. Equivalently, the algorithm terminates when the set of

transitions with a minimal weights stabilizes.

I Lemma 5.2. The saturation algorithm terminates and computes Pre∗G(A).

Proof. We have Pre∗G(A) from saturation without weights. We terminate as the set of possible
transitions (without weight) is finite and ≤ is a well-quasi-ordering on the weights. J

5.3 Defined Strategy
We define our optimal strategy σO as follows. Let A′ be the saturated automaton and let
AccRuns(q, w) be the set of accepting runs of A′ over w from q. We define

W∗(q, w) = min
ρ∈AccRuns(q,w)

 max
P(ρ)=(S,D),

s∈S

(D(s))

 .

From each configuration (q, w) in the winning region of Elvis, if it is the move of Elvis, he
plays the move which leads to the configuration (q′, w′) that minimises the value ofW∗(q′, w′).
In particular, let q A−−→

D,r
S′ be the first transition on a run with weight W∗(q, w). If it is

Elvis’s move, he should play the rule r. If r = #, then either Elvis has already reached a
target configuration or it is the Anarchist’s move. Note, this strategy is non-deterministic
since there may be multiple choices of minimal run. In order to define a strategy that is a
function, we can fix an ordering on the moves of the game, and always choose the smallest.
Note, moreover, that σO is positional.

I Lemma 5.3. The strategy σO is an optimal winning strategy.

6 Optimal Computation of Optimal Strategies

We show how to reduce the complexity to 2EXPTIME as well as give a lower bound example
showing that a doubly exponential number of moves is optimal. For this we will first show
that we can bound the value of the weights appearing in minimal transitions by a constant
K which is doubly exponential in the size of the pushdown game. Then we will restrict the
saturation to only consider transitions with weights at most K. Finally we will give a lower
bound showing that the constant K needs to be doubly exponential.

6.1 Bounding Play Lengths
We show that there exists a constant K such that any point-wise minimal transitions has all
its weights below K. For this we need a stronger result below.

I Lemma 6.1. Let K = 2|Q|·|S|·|Γ|·2|S|+|S|. For all transitions q A−−→
D,r

S such that for some

s ∈ S we have D(s) > K then there exists a transition q
A−−−→

D′,r′
S such that D′ ≤ D and

D′(s) ≤ K for all s ∈ S.

The proof of Lemma 6.1 is non-trivial. To give the idea of the proof, we consider the
case of a pushdown game whose target is the empty stack. Intuitively we proceed as follows.

MFCS 2018

42:12 Optimal Strategies in Pushdown Reachability Games

Let C be the bound obtained in Corollary 4.3. Fix a transition q A−−→
D,r

S of the saturated
automaton. We consider the reduced game, which broadly corresponds to the game starting
with (q, A) and where Elvis aims to empty the stack whilst reaching one of the control states
in S. Let σ be a strategy for Elvis associated with the transition in the sense that it ensures
that any play following σ and ending in s ∈ S has length at most D(s).

The simplest case is when D(s) ≥ C for all s ∈ S. Then we can find a transition by
Cachat that improves on all points. Otherwise, there is at least one D(s) < C. We make a
new strategy which plays according to σ for D(s) moves. If we have not reached s in this
time, we know that playing by σ will never reach s. In particular, there exists a strategy to
reach S \ {s}. Moreover, we have increased the stack height by at most C. Thus, we know
from Cachat that we can empty the stack and reach any state in S \ {s} in C ·C moves (that
is at most C moves per stack character that needs to be removed). We repeat the above
argument but this time remove some state s′ with D(s′) < C2. We play until we are sure not
to reach s′, increasing the stack height by at most C2. This means we can reach S \ {s, s′}
in C · (C +C2) moves and so on. The existence of the strategy in turns implies the existence
of a transition in the saturated automaton. In this way, we obtain the bound K = 2|S| · C |S|.

I Remark. We know from Corollary 4.3 (Upper Bound) that there is a doubly exponential
bound C on the weight of individual transitions. It is therefore tempting to consider this
bound as a proof of the sufficiency of the saturation algorithm with shortcuts described in
Section 6.2. However, the bound obtained from Cachat does not guarantee a priori that
for every transition outside of the bound, there is a transition within the bound that is a
pointwise improvement. For example, it is conceivable that Elvis may have two strategies
for reaching either the state q1 or q2 from q whilst removing A from the stack. The first,
corresponding to Cachat’s bound, may give a play length of 2 whether the Anarchist forces
play to q1 or q2. The second, which may violate Cachat’s bound, may give a play length of
1 if the Anarchist forces play to q1, but an extremely large play length (violating Cachat’s
bound) if the Anarchist forces play to q2. Let’s say this large play length is 100.

Now, consider a configuration (q, Aw). Suppose (q1, w) requires 100 steps to reach a
target configuration, and (q2, w) is a target configuration. The strategy corresponding to the
within-bounds transition has rank 102, whilst the strategy corresponding to the out-of-bounds
transition has rank 101. Thus, we have not dismissed the need for out-of-bounds transitions.

6.2 Shortcutting Saturation

We adjust the saturation algorithm by insisting that a transition s A−−→
D,r

S only appears in

δi+1 if for all s ∈ S we have D(s) ≤ K. Lemma 6.1 guarantees that the set of point-wise
minimal transitions is not affected by this restriction.

With this restriction, the worst case running time of saturation becomes doubly expo-
nential. The number of possible weight functions is K |S| and hence the number of possible
transitions is doubly exponential. Since at least one transition must be added during each
step of the saturation, the algorithm must terminate in 2EXPTIME.

Like Cachat using a backward algorithm, the move for this strategy on (q, w) can be
computed in time linear in the length of w and doubly exponential in the size of the pushdown
game (assuming that the saturated automaton has been computed). We read w from right
to left maintaining for each state s the value W∗(s, u) (if it exists) where u is the word read
so far. This information can be updated in O(|B|) upon reading a new letter and allows the
first transition of an accepting run of minimal weight to be found.

A. Carayol and M. Hague 42:13

6.3 Lower Bound
We give an example game where the shortest run to the target set is doubly exponential,
hence showing that the bound K needs to be doubly exponential. The intuition is simple.
First, suppose we wanted to force an exponential-length run. In this case we could store a
binary number of n digits on the stack, with the least significant bit at the top. E.g. the
number 3 would be encoded in a configuration (q0, 11000) when n = 5. To increment the
number, we pop 1 characters from the stack until we find the first 0. We record in the control
state how many pops are needed. In this case we need two pops and reach (q2, 000). Then,
we replace the topmost 0 with a 1 and push 0s onto the stack until the height is n again. In
our example, we reach (q0, 00100). The goal is to reach a stack with only 1 character, from a
stack with only 0. This requires 2n steps and can be done even in a single-player game.

To generate a doubly exponential run, we follow the same outline, but require the binary
encoding to be exponentially long. We cannot use only the control states to enforce this
length since it would require an exponential number of them. However, when rebuilding
the stack during the increment, we can build a game which forces Elvis to construct a stack
of at least exponential height. To do this, after changing the first 0 to 1 Elvis must push
any number of 0 characters. Once he is done the Anarchist may accept that the stack is
large enough, or challenge the height. To challenge the height we use the fact that the least
common divisor of the first n prime numbers is exponential in n. Hence, the Anarchist can
pick any of the first n primes, say p, and start a subgame with control states q0, . . . , qp−1.
From each of these control states qi the only move is a pop to q(i+1 mod p). This sub-game is
won only if q0 is reached when the bottom of the stack is reached. Consequently, Elvis must
have built the stack up to a multiple of the least common divisor of the first n primes. Note,
Elvis may build a stack that is taller than the least common divisor, but this only makes
reaching the target state harder.

7 Conclusion

We have studied optimal strategy construction for pushdown reachability games. Initial results
due to Cachat [3] unfortunately were too coarse in their analysis and the claimed optimality
is in fact an over-approximation. We showed that a refinement of Cachat’s algorithm can
be made to compute the optimal strategy accurately; however, the additional information
required makes it difficult to obtain good complexity results. We gave a non-trivial argument
that the algorithm can be refined further to obtain a 2EXPTIME algorithm. Moreover, the
doubly exponential weights computed by the algorithm are optimal as demonstrated by a
game where the winning strategy requires a doubly exponential number of moves to reach a
target configuration.

References
1 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model-checking. In CONCUR, pages 135–150, 1997.
2 R. J Büchi. Regular canonical systems. Archive for Mathematical Logic, 6(3):91–111, 1964.

doi:10.1007/BF01969548.
3 T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In ICALP, pages

704–715, 2002. doi:10.1007/3-540-45465-9_60.
4 T. Cachat. Games on Pushdown Graphs and Extensions. PhD thesis, RWTH Aachen,

2003. URL: http://darwin.bth.rwth-aachen.de/opus3/volltexte/2004/957/pdf/
Cachat_Thierry.pdf.

MFCS 2018

http://dx.doi.org/10.1007/BF01969548
http://dx.doi.org/10.1007/3-540-45465-9_60
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2004/957/pdf/Cachat_Thierry.pdf
http://darwin.bth.rwth-aachen.de/opus3/volltexte/2004/957/pdf/Cachat_Thierry.pdf

42:14 Optimal Strategies in Pushdown Reachability Games

5 Arnaud Carayol and Matthew Hague. Regular strategies in pushdown reachability games.
In Reachability Problems - 8th International Workshop, RP 2014, Oxford, UK, September
22-24, 2014. Proceedings, pages 58–71, 2014. doi:10.1007/978-3-319-11439-2_5.

6 D. Caucal. Récritures suffixes de mots. Research Report RR-0871, INRIA, 1988.
7 A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking

pushdown systems. In INFINITY, volume 9, pages 27–37, 1997.
8 Wladimir Fridman. Formats of winning strategies for six types of pushdown games.

In Proceedings First Symposium on Games, Automata, Logic, and Formal Verification,
GANDALF 2010, Minori (Amalfi Coast), Italy, 17-18th June 2010., pages 132–145, 2010.
doi:10.4204/EPTCS.25.14.

9 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February
2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/
3-540-36387-4.

10 N. D. Jones and S. S. Muchnick. Even simple programs are hard to analyze. J. ACM,
24:338–350, April 1977. doi:10.1145/322003.322016.

11 O. Kupferman, N. Piterman, and M. Y. Vardi. An automata-theoretic approach to infinite-
state systems. In Essays in Memory of Amir Pnueli, pages 202–259, 2010. doi:10.1007/
978-3-642-13754-9_11.

12 N. Piterman and M. Y. Vardi. Global model-checking of infinite-state systems. In CAV,
pages 387–400, 2004.

13 S. Schwoon. Model-checking Pushdown Systems. PhD thesis, Technical University of Mu-
nich, 2002.

14 O. Serre. Contribution à l’étude des jeux sur des graphes de processus à pile. PhD
thesis, Université Paris 7 – Denis Diderot, UFR d’informatique, 2004. URL: http:
//tel.archives-ouvertes.fr/tel-00011326.

15 I. Walukiewicz. Pushdown processes: Games and model-checking. Inf. Comput., 164(2):234–
263, 2001. doi:10.1006/inco.2000.2894.

16 W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on
infinite trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/S0304-3975(98)
00009-7.

http://dx.doi.org/10.1007/978-3-319-11439-2_5
http://dx.doi.org/10.4204/EPTCS.25.14
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1145/322003.322016
http://dx.doi.org/10.1007/978-3-642-13754-9_11
http://dx.doi.org/10.1007/978-3-642-13754-9_11
http://tel.archives-ouvertes.fr/tel-00011326
http://tel.archives-ouvertes.fr/tel-00011326
http://dx.doi.org/10.1006/inco.2000.2894
http://dx.doi.org/10.1016/S0304-3975(98)00009-7
http://dx.doi.org/10.1016/S0304-3975(98)00009-7

Why are CSPs Based on Partition Schemes
Computationally Hard?
Peter Jonsson
Department of Computer and Information Science, Linköping University, Linköping, Sweden
peter.jonsson@liu.se

Victor Lagerkvist
Department of Computer and Information Science, Linköping University, Linköping, Sweden
victor.lagerkvist@liu.se

Abstract
Many computational problems arising in, for instance, artificial intelligence can be realized as
infinite-domain constraint satisfaction problems (CSPs) based on partition schemes: a set of
pairwise disjoint binary relations (containing the equality relation) whose union spans the un-
derlying domain and which is closed under converse. We first consider partition schemes that
contain a strict partial order and where the constraint language contains all unions of the basic
relations; such CSPs are frequently occurring in e.g. temporal and spatial reasoning. We identify
three properties of such orders which, when combined, are sufficient to establish NP-hardness
of the CSP. This result explains, in a uniform way, many existing hardness results from the
literature. More importantly, this result enables us to prove that CSPs of this kind are not
solvable in subexponential time unless the exponential-time hypothesis (ETH) fails. We continue
by studying constraint languages based on partition schemes but where relations are built using
disjunctions instead of unions; such CSPs appear naturally when analysing first-order definable
constraint languages. We prove that such CSPs are NP-hard even in very restricted settings and
that they are not solvable in subexponential time under the randomised ETH. In certain cases,
we can additionally show that they cannot be solved in O(cn) time for any c ≥ 0.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography

Keywords and phrases Constraint satisfaction problems, infinite domains, partition schemes,
lower bounds

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.43

Acknowledgements We thank the anonymous reviewers for several helpful comments. The au-
thors are partially supported by the Swedish Research Council (VR) under grant 2017-04112.
In addition, the second author has received funding from the DFG-funded project “Homogene
Strukturen, Bedingungserfüllungsprobleme, und topologische Klone” (Project number 622397),
and the European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 681988, CSP-Infinity).

1 Introduction

The constraint satisfaction problem over a constraint language Γ (CSP(Γ)) is the decision
problem of verifying whether a set of constraints based on the relations in Γ admits a
satisfying assignment. For finite domains the complexity of CSP(Γ) is well understood due
to the recent dichotomy theorem separating tractable from NP-complete problems [6, 30],
but for infinite domains the situation differs markedly. This class of problems includes both
undecidable problems and NP-intermediate problems, and it is therefore common to impose

© Peter Jonsson and Victor Lagerkvist;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 43; pp. 43:1–43:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peter.jonsson@liu.se
mailto:victor.lagerkvist@liu.se
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.43
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

43:2 Why are CSPs Based on Partition Schemes Computationally Hard?

additional assumptions on the allowed constraints. The predominant method has been to fix
a constraint language Γ, usually satisfying certain model-theoretic properties, and analyse
the complexity of CSPs over first-order reducts of Γ. Traditionally, this has also been the case
for CSPs arising from artificial intelligence, e.g. temporal and spatial reasoning problems,
albeit usually with weaker closure conditions.

Motivated by problems of this form, we study the complexity of infinite-domain CSPs
over partition schemes. A partition scheme [20] is a set of pairwise disjoint binary relations
B over a domain D such that

⋃
R∈B R = D2 and which for every relation contains its

converse. Partition schemes are the de facto standard for CSPs in the artificial intelligence
community [8], due to their capability of modelling many different kinds of reasoning problems.
Given a partition scheme, the predominant way of forming new relations is to allow unions of
the relations in B, and we let B∨= denote this set. We will also study languages where each
relation can be defined as a disjunction of constraints from B of arity at most k ≥ 1, and let
B∨k denote this set. Note that B∨= ⊆ B∨k for sufficiently large k but that B∨k ⊆ B∨= does
not necessarily hold for any k > 1. Languages of the form B∨k occur naturally in theoretical
CSP research since such classification projects typically aim to understand the complexity of
all first-order reducts of a base set B of relations.

Famous AI examples of formalisms based on partition schemes include Allen’s interval
algebra, the region connection calculus, and the rectangle algebra. For more examples, see
e.g. the survey by Dylla et al. [9]. CSP(B∨=) problems have been proven to be NP-hard for
many choices of B. The proofs have utilised various reductions from various problems, but
there has not been a clear explanation why the majority of them are NP-hard. We will try
to obtain such an explanation in the sequel. Our first step (in Section 3) is to note that
the majority of practically relevant partition schemes contain strict partial orders satisfying
certain properties, which we in this paper refer to as infinite height, in-forks, and out-forks.
In Section 4 we prove that these properties are sufficient to guarantee that CSP(B∨=) is
NP-hard. It might be interesting to observe that we do not need any strong model-theoretic
properties, e.g. ω-categoricity, which is otherwise common for infinite-domain CSPs. This
result is also interesting to compare to the procedure by Renz and Li [25] which takes a
partition scheme as input and tries to prove NP-hardness. One important distinction is that
our result provides a concrete source of NP-hardness while the algorithm in Renz and Li
gives no such insight. Moreover, this procedure is not complete, and is due to computational
constraints not applicable to e.g. the rectangle algebra, while it is a straightforward task to
prove that this algebra falls within the scope of our result. Hence, our study offers a more
theoretical explanation of why so many naturally occurring CSPs over partition schemes are
computationally hard.

Having identified a natural class of NP-hard CSPs based on partition schemes, we turn,
in Section 4.2 and Section 5, to the problem of showing lower bounds for problems of this
form. Traditionally, it is fair to say that such investigations have largely been neglected
by both the artificial intelligence community and the CSP community. There are a few
reasons for this. First, significant efforts have been made to solve hard reasoning problems
with efficient heuristics [24], which are typically difficult to analyse rigorously even if they
work well for certain real-world instances. Second, existing lower bounds are typically
based on size-preserving reductions from SAT-like problems where one needs the ability
to express disjunctive clauses, which is difficult to express with partition schemes. In fact,
to the best of our knowledge, the only concrete lower bounds for a CSP over a partition
scheme is the bound by Jonsson and Lagerkvist [16] which relates the complexity of Allen’s
interval algebra to the complexity of the Chromatic Number problem. We show that a

P. Jonsson and V. Lagerkvist 43:3

size-preserving reduction from a SAT-like problem, perhaps contrary to intuition, is possible
for certain CSPs over partition schemes, using ideas from Opatrny [23]. More precisely we
prove that CSP(B∨=) cannot be solved in subexponential time unless the exponential-time
hypothesis is false. One way of interpreting this result is that CSP(B∨=) is far from being
polynomial-time solvable: there is a constant c > 1 such that the problem cannot be solved
in O(cn) time. An immediate consquence of lower bounds of this form is that we can
immediately rule out certain kinds of algorithms for CSP(B∨=), e.g. algorithms based on
graph-decomposition and k-consistency, which typically run in subexponential or polynomial
time. It is of course tempting to strengthen our lower bound even further since the current
best known algorithm for CSP(B∨=) for an arbitrary partition scheme B runs in 2O(n2) time,
if CSP(B) is polynomial-time solvable [16, 27]. While we do not succeed in doing this, we
can provide stronger lower bounds for CSP(B∨k): we prove that CSP({≺}∨4), where ≺ is a
strict partial order of infinite height, is not solvable in O(cn) time for any c ≥ 0 assuming
the complexity theoretical assumption known as the randomised exponential-time hypothesis
(r-ETH). We also show that CSP(B∨2) cannot be solved in subexponential time if we assume
the r-ETH and that a non-empty relation R ⊆ {(x, y, z) ∈ D3 | x 6= y, x 6= z, y 6= z} can be
defined in B∨2. Note that we do not require B to contain any partial orders in this case.
We conclude the paper with some discussion in Section 6, where we point out some future
research directions concerning both lower and upper bounds.

2 Preliminaries

In this section we introduce the necessary prerequisites concerning constraint satisfaction
problem, disjunctive relations, and partition schemes. We begin by defining the CSP problem
when it is parameterized by a set of relations.

I Definition 1. Let Γ be a set of finitary relations over some set D of values. The constraint
satisfaction problem over Γ (CSP(Γ)) is defined as follows:
Instance: A set V of variables and a set C of constraints of the form R(v1, . . . , vk), where k
is the arity of R, v1, . . . , vk ∈ V and R ∈ Γ.
Question: Is there a function f : V → D such that (f(v1), . . . , f(vk)) ∈ R for every
R(v1, . . . , vk) ∈ C?

The set Γ is called a constraint language. Given an instance I of CSP(Γ) we write ||I||
for the number of bits required to represent I. We will occasionally encounter bounded-degree
CSP instances. Let (V,C) denote an instance of CSP(Γ). If a variable x occurs in B

constraints in C, then we say that the degree of x is B. We let CSP(Γ)-B denote the CSP(Γ)
problem where each variable in the input is restricted to have degree at most B. Note that if
(V,C) is a CSP(Γ)-B instance, then |C| ≤ B · |V |, implying that the number of constraints
is linearly bounded with respect to the number of variables.

We continue by describing how to use disjunctions for combining relations.

I Definition 2. Let D be a set of values and let B = {B1, . . . , Bm} denote a finite set of
relations over D, i.e. Bi ⊆ Dj for some j ≥ 1.
1. A disjunctive formula over B is of the form B1(x1) ∨ · · · ∨ Bt(xt) where x1, . . . ,xt are

sequences of variables from {x1, . . . , xp} such that the length of xj equals the arity of Bj ,
and B1, . . . , Bt ∈ B. The arity of a disjunctive formula B1(x1) ∨ · · · ∨Bt(xt) is t.

2. B∨k = {R | R is definable by a disjunctive formula over B of arity l ≤ k}.

For simplicity we represent relations in B∨k by their defining disjunctive formulas. Two
syntactially distinct disjunctive formulas may now denote the same relation, implying that

MFCS 2018

43:4 Why are CSPs Based on Partition Schemes Computationally Hard?

Table 1 The thirteen basic relations in Allen’s interval algebra. The endpoint relations xs < xe

and ys < ye that are valid for all relations have been omitted.

Basic relation Example Endpoints

x precedes y p xxx I+ < J−

y preceded by x p−1
yyy

x meets y m xxxx I+ = J−

y met-by x m−1
yyyy

x overlaps y o xxxx I− < J− < I+,
y overl.-by x o−1

yyyy I+ < J+

x during y d xxx I− > J−,
y includes x d−1

yyyyyyy I+ < J+

x starts y s xxx I− = J−,
y started by x s−1

yyyyyyy I+ < J+

x finishes y f xxx I+ = J+,
y finished by x f−1 yyyyyyy I− > J−

x equals y ≡ xxxx I− = J−,
yyyy I+ = J+

this representation is not unique. To avoid tedious technicalities we ignore this issue and
whenever convenient view constraint languages as multisets.

We are now ready to introduce partition schemes [20]. Let B = {B1, . . . , Bm} be a set of
binary relations over a domain D. We say that B is jointly exhaustive if

⋃
B = D2 and that

B is pairwise disjoint if Bi ∩Bj = ∅ whenever i 6= j. We say that B is a partition scheme if
(1) B is jointy exhaustive and pairwise disjoint, (2) eqD = {(x, x) | x ∈ D} ∈ B, and (3) for
every Bi ∈ B, the converse relation B^

i (i.e. B^
i = {(y, x) | (x, y) ∈ Bi}) is in B. We define

B∨= to be the set of all unions of relations from B. Equivalently, each relation in B∨= can
be viewed as a disjunction B1(x, y) ∨ B2(x, y) ∨ · · · ∨ Bk(x, y) for some {B1, . . . , Bk} ⊆ B.
We sometimes abuse notation and write (B1, . . . , Bk) to denote the relation B1 ∪ · · · ∪Bk.
The set B∨= and the problem CSP(Γ) where Γ ⊆ B∨= are typical objects that are studied in
artificial intelligence literature. For example, it has been common to use a relation algebra
A as a starting point and then define a network satisfaction problem over A, which in our
notation is nothing else than the CSP over a set of binary relations. Note that if CSP(B) is
polynomial-time solvable, then both CSP(B∨k) and CSP(B∨=) are members of NP.

I Example 3. Allen’s interval algebra [2] is a well-known formalism for temporal reasoning
where one considers relations between intervals of the form I = [I+, I−], where I+, I− ∈ R
is the start and end point, respectively. In Allen’s algebra one can for instance describe
that one interval begins before another interval, and one express such relations in terms
of a partition scheme consisting of 13 basic relations (see Table 1), and then form more
complicated relations by taking the union of the basic relations. If we let A denote the set
of 13 basic relations in Allen’s algebra, then CSP(A∨=) is an alternative formulation of the
network consistency problem over Allen’s algebra.

An extension of the interval algebra is the so-called rectangle algebra [13, 22]. Here, one
considers relations between rectangles in the plane by extending the basic relations in the
interval algebra to the projections of a rectangle onto the x- and y-axis, respectively. In
other words, given r, s ∈ A and two rectangles represented by the intervals Ix, Iy, Jx, Jy we
may define the relation r ⊕ s in the rectangle algebra holding if Ix(r)Jx and Iy(s)Jy.

P. Jonsson and V. Lagerkvist 43:5

3 Partial Orders

CSPs based on partition schemes are very often used for qualitative reasoning. We acknowledge
that it is not obvious how to define “qualitative reasoning” rigorously, but the concept seems
to have an informal meaning that is generally accepted. Renz and Nebel [27, p. 161] write

Qualitative reasoning is an approach for dealing with commonsense knowledge without
using numerical computation. Instead, one tries to represent knowledge using a limited
vocabulary such as qualitative relationships between entities or qualitative categories
of numerical values, ...

Abstraction is the defining feature of qualitative reasoning: qualitative reasoning is about
disregarding unnecessary and uninteresting details. With this in mind, it is clear that an
important kind of qualitative relationships between objects are “part-of” relations. One may
argue that such relations are strict partial orders that satisfy certain additional properties.
We will now define three properties of strict partial orders, infinite height, in-fork, and
out-fork, that appear to be relevant in the pursuit of classifying the complexity of CSP(B∨=).
A typical example of such a relation is the NTPP relation in RCC-8 – this can be viewed as
an archetypical example of a “part-of” relation. Many other relations that are not “part-of”
relations satisfy these properties, too: one example is the precedes relation p in Allen’s algebra.
In fact, relations of this kind appear very frequently in CSPs for qualitative reasoning.

Let ≺ ⊆ D2 denote a binary relation let � denote its converse ≺^. We say that ≺ is
a strict partial order if there is no d ∈ D such that d ≺ d (irreflexivity) and for arbitrary
d, d′, d′′ ∈ D: d ≺ d′ and d′ ≺ d′′ imply d ≺ d′′ (transitivity). Note that these two properties
also ensure that ≺ is antisymmetric, i.e. if d ≺ d′, then d′ ≺ d does not hold.

We will now define three additional properties of strict partial orders. First define
u = D2 \

⋃
{≺,�, eqD}, and note that x u y holds if and only if x and y are incomparable

with respect to ≺.

I Definition 4. Let ≺ ⊆ D2 be a strict partial order over a domain D. We define the
following properties.
C1. (infinite height) for every k ≥ 1, there exists a sequence of elements d1, d2, . . . , dk in D

such that d1 ≺ d2 ≺ · · · ≺ dk,
C2. (in-fork) if a, b, c ∈ D and a ≺ b ≺ c, then there exists d1 ∈ D such that d1 u a, d1 u b,

and d1 ≺ c, and
C3. (out-fork) if a, b, c ∈ D and a ≺ b ≺ c, then there exists d2 ∈ D such that d2 � a, d2 u b,

and d2 u c.

Partial orders satisfying these three properties are abundant in the artificial intelligence
literature, but has to the best of our knowledge not been explicitly formalized before. The
conditions in-fork and out-fork are illustrated in Figure 1. Given a binary relation ≺ it is
typically easy to check if it is a strict partial order of infinite height, but checking if it also
satisfies in-fork and out-fork may need additional work. Consider Allen’s algebra and the
relation p, i.e. the relation stating that one interval appears strictly before another interval.
In this case, u is the relation that holds if and only if two distinct intervals have at least one
point in common. Pick three intervals Ij = [I−j , I

+
j], 1 ≤ j ≤ 3, such that I1(p)I2(p)I3. For

in-fork, we choose I4 = [I−1 , I
+
2] so that I4 u I1, I4 u I2, and I4 ≺ I3. For out-fork, one may

choose I5 = [I−2 , I
+
3].

Let us consider another example where the domain contains the closed disks in R2 and the
relation ≺ is the strict subset relation. Pick three disks d1, d2, d3 ∈ D such that d1 ≺ d2 ≺ d3.
How to choose suitable disks for verifying in-fork and out-fork is illustrated in Figure 2. This

MFCS 2018

43:6 Why are CSPs Based on Partition Schemes Computationally Hard?

a b c

d1

a b c

d2

Figure 1 Illustration of in-fork (left) and out-fork (right). Arrows denote the ≺ relation and
dotted lines the u relation.

Figure 2 The dashed circles show possible choices of disks for in-fork (left) and out-fork (right).

example can easily be adapted to relations such as (PP) in RCC-5 and (NTPP) in RCC-8,
and the relation d⊕d in the rectangle algebra. Many additional examples can be found in the
survey by Dylla et al. [9], e.g. Goyal & Egenhofer’s Cardinal Direction Calculus and Ragni
& Scivos’ Dependency Calculus. Last, let us remark that there are examples of strict partial
orders that do not have in- or out-forks. Well-known examples are the less-than relation
< in the (1-dimensional) point algebra and in the branching time algebra. Interestingly,
CSP(B∨=) is polynomial-time solvable in these two cases and we will come back to this
observation at the end of Section 4.1.

4 Lower Bounds for CSP(B∨=)

We will now study the computational complexity of CSP(B∨=) when B contains a strict
partial order of infinite height with in- and out-forks. In Section 4.1, we prove that CSP(B∨=)
is NP-hard and we use this result in Section 4.2 for proving that CSP(B∨=) cannot be solved
in subexponential time (given that the ETH holds).

4.1 NP-hardness
NP-hardness of CSP(B∨=) for specific partition schemes B containing a strict partial order of
infinite height with in- and out-forks has been proven many times in the literature. Examples
where this connection is quite pronounced can be found in, for instance, Grigni et al. [12],
Renz and Nebel [26], Moratz et al. [21], and Krokhin et al. [18] The basis for our reduction
is the NP-complete problem Betweenness.
Instance: A finite set A and a collection T of ordered triples (a, b, c) of distinct elements
from A.
Question: Is there a total ordering < on A such that for each (a, b, c) ∈ T , we have either
a < b < c or c < b < a?

Our hardness result requires two steps that are presented in Lemma 5 and Theorem 6.

I Lemma 5. Let B be a set of binary relations over a domain D containing a strict partial
order ≺ of infinite height. Let G(a, b, c, x1, . . . , xm) be an instance (V,C) of CSP(B∨=),
where V = {a, b, c, x1, . . . , xk}, and having the following properties.

P. Jonsson and V. Lagerkvist 43:7

G1. For arbitrary elements da, db, dc ∈ D such that da ≺ db and db ≺ dc, there exist
elements d1, . . . , dm ∈ D such that the function s : V → {da, db, dc, d1, . . . , dm} defined
by s(a) = da, s(b) = db, s(c) = dc, and s(xi) = di, 1 ≤ i ≤ m, is a solution to the
instance (V,C ∪ {a ≺ b, b ≺ c}).

G2. For arbitrary elements da, db, dc ∈ D such that dc ≺ db and db ≺ da, there exist
elements d1, . . . , dm ∈ D such that the function s : V → {da, db, dc, d1, . . . , dm} defined
by s(a) = dc, s(b) = db, s(c) = da, and s(xi) = di, 1 ≤ i ≤ m, is a solution to the
instance (V,C ∪ {c ≺ b, b ≺ a}).

G3. (V,C ∪ {b ≺ a, b ≺ c, a(≺,�)c}) is not satisfiable.
G4. (V,C ∪ {a ≺ b, c ≺ b, a(≺,�)c}) is not satisfiable.

Let Γ be the set of relations that appear in G. Then, CSP(Γ ∪ {≺,�}) is NP-hard.

Proof. Let Γ′ = Γ ∪ {(≺,�)}. We present a polynomial-time reduction from Betweenness
to CSP(Γ′). Arbitrarily choose an instance (A, T) of Betweenness and construct an
instance I of CSP(Γ′) as follows:
1. for each pair of distinct elements a, b ∈ A, add the constraint a(≺,�)b to I, and
2. for each triple (a, b, c) ∈ T , introduce m fresh variables x1, . . . , xm and add G(a, b, c, x1,

. . . , xm) to I.

We refer to the variables in I that correspond to the set A as basic variables and
the other variables as auxiliary variables. We first assume that s is a solution to I. Let
S = {s(a) | a ∈ A}. The constraints introduced in step (1) implies that the |S| = |A|
and the relation ≺ induces a total order on the set S. Assume to the contrary that there,
for example, exists a triple (a, b, c) ∈ T such that s(b) ≺ s(a) ≺ s(c). Then, the instance
(V,C ∪ {b(≺)a, b(≺)c, a(≺,�)c}) introduced in step (2) is satisfiable and this contradicts
our assumptions. Analogously, we can rule out all orderings except s(a) ≺ s(b) ≺ s(c) and
s(c) ≺ s(b) ≺ s(a). We conclude that there is a solution to the instance (A, T): for all
a, b ∈ A, set a < b if and only if s(a) ≺ s(b).

Assume now that there exists a solution < to (A, T). We show how to construct a
solution to the instance I. We rename the members of A such that A = {a1, . . . , an} and
a1 < a2 < · · · < an. Arbitrarily choose elements d1, . . . , dn ∈ D such that d1 ≺ d2 ≺ · · · ≺ dn.
Such elements exist since ≺ is a strict partial order of infinite height. Let s(ai) = di, 1 ≤ i ≤ n,
and note that s satisfies all constraints introduced in step 1.

Arbitrarily choose a triple (a, b, c) ∈ T and consider the gadget G(a, b, c, x1, . . . , xk) that
is introduced in step 2. If a < b < c, then s(a) ≺ s(b) ≺ s(c) and x1, . . . , xk can be assigned
values that satisfy the gadget by condition (1). If c < b < a, then s(c) ≺ s(b) ≺ s(a) and
x1, . . . , xk can be assigned values that satisfy the gadget by condition (2). Thus, for every
triple (a, b, c) ∈ T , we can find values for the auxiliary variables that satisfy all G-gadgets.
Note that two distinct G-gadgets do not have any auxiliary variables in common. We conclude
that I is satisfiable. J

I Theorem 6. Let B be a partition scheme with domain D containing a strict partial order
≺ of infinite height with in- and out-forks. Then CSP(B∨=) is NP-hard.

Proof. First observe that the relation u = D2 \
⋃
{≺,�, eqD} is a member of B∨= since

B is a partition scheme. We will now define the following gadget: G(a, b, c, x1, x2) =
({a, b, c, x1, x2}, {x1 u a, x1 u b, x1(≺,�)c, x2(≺,�)a, x2 u b, x2 u c}). We demonstrate that
G satisfies the preconditions of Lemma 5. We first consider the following condition:

C4. if a ≺ b ≺ c, then there does not exist d3 ∈ D such that d3 u a, d3(≺,�)b, and d3 u c.

MFCS 2018

43:8 Why are CSPs Based on Partition Schemes Computationally Hard?

We verify that C4 always holds under the assumptions stated in the theorem. Assume to
the contrary that a ≺ b ≺ c and d3 ∈ D satisfies d3ua, d3(≺,�)b, and d3u c. The relation ≺
is a strict partial order so it is transitive. If d3 ≺ b, then d3 ≺ c and d3 u c cannot hold since
the relations ≺ and u are disjoint. Similarly, if d3 � b, then a ≺ d3 and d3 u a cannot hold.

Next, we consider conditions G1 and G2 and show that they are satisfied: we see that
proper assignments to variables x1 and x2 exist due to in-fork and out-fork. Assume to the
contrary that G3 does not hold, i.e. {x1ua, x1ub, x1(≺,�)c, x2(≺,�)a, x2ub, x2uc}∪{b(≺
)a, b(≺)c, a(≺,�)c} is satisfiable. Under these constraints, two orderings of a, b, c are possible:
b ≺ a ≺ c and b ≺ c ≺ a. We consider the case b ≺ a ≺ c; the other case is analogous. Note
now that x2 u b, x2(≺,�)a, and x2 u c. These constraints do not have a solution due to C4,
and we conclude that G3 holds. That G4 holds can be shown analogously. The result then
follows from Lemma 5. J

Hence, the properties in Definition 4 are sufficient for establishing NP-hardness of
CSP(B∨=), and it is thus natural to ask to which extent they are also necessary. Although a
complete answer seems difficult to obtain, we may at least observe that if ≺ ∈ B is a strict
partial order of finite height, then CSP(B∨=) is NP-hard, regardless of whether ≺ have in- and
out-forks or not. This can be seen via a polynomial-time reduction from k-Colourability to
CSP(B∨=) for some constant k ≥ 1. Let (V,E) be an arbitrary undirected graph. Introduce
variables c1, . . . , ck for each colour, and constrain them as c1(≺)c2(≺) . . . (≺)ck. For each
vertex v ∈ V , introduce a variable w and the constraints w(≺,�, eqD)ci, 1 ≤ i ≤ k, and
observe that �, eqD ∈ B since B is a partition scheme. Note that these constraints imply
that w equals exactly one colour variable in any satisfying assignment. Finally, introduce
the constraint w(≺,�)w′ for each edge (v, v′) in E. It is easy to verify that the resulting
CSP(B∨=) instance has a solution if and only if (V,E) is k-colourable. It is also easy to
verify that the reduction can be computed in polynomial time since k is a constant that
only depends on the choice of B. Since k-Colourability is NP-hard whenever k ≥ 3,
NP-hardness of CSP(B∨=) follows.

Similarly, it is natural to ask what happens if ≺ is a strict partial order of infinite
height which does not have in- and/or out-forks. We have seen that this sometimes leads
to tractability, as in the case of e.g. the point algebra and the branching time algebra, but
this is not always the case. For a simple counter example, let D = {(0, i), (1, i), (2, i) | i ∈ N}
and define ≺ ⊆ D2 such that (a, b) ≺ (c, d) if and only if a = c and b < d. It is easy to
verify that ≺ is a strict partial order of infinite height and that it does not have in- or
out-forks. Let B = {≺,�,u, eqD} where u = D2 \

⋃
{≺,�, eqD}, and observe that B is a

partition scheme. We show that CSP(B∨=) is an NP-hard problem via a polynomial-time
reduction from 3-Colourability. Let (V,E) be an arbitrary undirected graph. For each
vertex v ∈ V , introduce a variable w, and for each edge (w,w′) ∈ E, introduce the constraint
w u w′. Note that ((a, b), (c, d)) ∈ u if and only if a 6= c and that a and c are restricted to
the three-element set {0, 1, 2}. Given this, it is easy to verify that the resulting CSP(B∨=)
instance has a solution if and only if (V,E) is 3-colourable.

4.2 ETH-based Lower Bound
Based on the results presented in the previous section, we will now show that CSP(B∨=)
cannot be solved in subexponential time if B contains a strict partial order of infinite height
with in- and out-forks, unless the exponential-time hypothesis (ETH) does not hold. If CSP(Γ)
is solvable in O(cn) time by a deterministic algorithm for every c > 1 (where n denotes
the number of variables) then CSP(Γ) is said to be subexponential. The exponential-time
hypothesis is the conjecture that 3-SAT is not solvable in subexponential time [15].

P. Jonsson and V. Lagerkvist 43:9

The NP-hardness proof of Betweenness by Opatrny [23] is based on a reduction from
the Rank-3 hypergraph 2-colourability problem. A hypergraph is a pair H = (V, E)
such that V is a non-empty finite set and E is a non-empty finite set of subsets of V . The
elements of V are called the nodes of H and the elements of E are the edges of H. The
rank of H is max{|e| | e ∈ E}, and the Rank-k hypergraph 2-colourability problem is
defined as follows.
Instance: A rank-k hypergraph H = (V, E).
Question: Do there exist sets V0, V1 ⊆ V such that V0 ∩ V1 = ∅ and V0 ∩ e 6= ∅, V1 ∩ e 6= ∅
for every e ∈ E?

Define relations R1 = {(0, 1), (1, 0)} and R2 = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)} and note that
CSP({R1, R2}) is an obvious reformulation of the Rank-3 hypergraph 2-colourability
problem. Lemma 2 in Opatrny [23] immediately implies the following result.

I Lemma 7. Let I = (V,C) denote an arbitrary instance of CSP({R1, R2}). It is possible
to construct an instance (A, T) of the Betweenness problem in polynomial time with the
following properties.
1. I has a solution if and only if (A, T) has a solution,
2. |A| ≤ |V |+ 1 + |C|, and
3. |T | ≤ 2|C|.

I Theorem 8. Assume the ETH holds. If B is a partition scheme such that ≺∈ B and ≺ is
a strict partial order of infinite height with in- and out-forks, then CSP(B∨=) is not solvable
in subexponential time.

Proof. Results by Jonsson et al. [17] imply that CSP({R1, R2})-B cannot be solved in
subexponential time for some B ≥ 1. Let I = (V,C) denote an arbitrary instance of
CSP({R1, R2})-B. Recall that |C| ≤ B · |V | since each variable can occur in at most B
constraints. Lemma 7 shows that we can (in polynomial time) construct an instance (A, T)
of Betweenness such that
1. I has a solution if and only if (A, T) has a solution,
2. |A| ≤ K · |V |, and
3. |T | ≤ L · |C| ≤ L ·B · |V |.

for some universal constants K,L. Lemma 5 combined with the standard gadget shows
that we can (in polynomial time) construct an instance I ′ = (V ′, C ′) of CSP(B∨=) such that
1. I ′ has a solution if and only if (A, T) has a solution and
2. |V ′| ≤ |A|+ 2|T |.

Note that |V ′| ≤ |A| + 2|T | ≤ K|V | + 2L|C| ≤ K|V | + 2LB|V | = (K + 2LB)|V |. If
CSP(B∨=) is solvable in subexponential time, then CSP({R1, R2})-B is solvable in subexpo-
nential time, too, and this leads to a contradiction. J

In summary, we may rule out subexponential time algorithms for CSP(B∨=) for partition
schemes B containing a strict partial order of infinite height with in- and out-forks. However,
the best general algorithm for CSP(B∨=) runs in O(2O(n2)) time (if CSP(B) is tractable) [16,
27]. Hence, there is a large discrepancy between the upper and lower bound for this problem,
suggesting that (at least) one of these bounds can be strengthened.

MFCS 2018

43:10 Why are CSPs Based on Partition Schemes Computationally Hard?

5 Lower Bounds for CSP(B∨k)

In this section, we will make use of the randomised version of ETH, and need a few additional
definitions. First, let Γd,k, d, k ≥ 1, denote the set of relations with arity at most k over
the domain {1, . . . , d}. A CSP algorithm A is said to be a 2c·n-randomised algorithm if its
running time is bounded by 2c·n · poly(||I||) (where n is the number of variables) and its error
probability is at most 1/3. Let cd,k = inf{c | ∃ 2c·n-randomised algorithm for CSP(Γd,k)}.
The variant of the ETH that we will use in the forthcoming lower bound states that c2,3 > 0,
i.e., 3-SAT cannot be solved in subexponential time even if we are allowed to use randomised
algorithms. We let r-ETH denote this hypothesis. Traxler [29] has shown the following result.

I Theorem 9. If r-ETH holds, then there exists a universal constant α > 0 such that for all
d ≥ 3, α · log(d) ≤ cd,2.

We begin by proving a result for B∨2 that is analogous to Theorems 6 and 8. Let B be a
partition scheme over a domain D. Assume that B admits a gadget that forces three variables
to be assigned distinct values, i.e., it is possible to define a non-empty ternary relation R such
that R ⊆ {(x, y, z) ∈ D3 | x 6= y, x 6= z, y 6= z}. This gadget can be defined for all examples
considered in this paper, and in particular it can be defined by any strict partial order relating
at least three elements (via R(x, y, z) ≡ x ≺ y ≺ z). Let S(x, y, z) ≡ eqD(x, y) ∨ eqD(x, z).
Note that the relation S is a member of B∨2 since B is a partition scheme.

I Theorem 10. Assume that B is a partition scheme admitting a gadget as described above.
Then, CSP(B∨2) is NP-hard, and if the r-ETH holds, there is no 2

c3,2
5 ·n-randomised algorithm

for CSP(B∨2).

Proof. We present a polynomial-time reduction from CSP(Γ3,2) to CSP(B∨2). If the given
CSP(Γ3,2) instance contains n variables, then the CSP(B∨2) instance will contain at most
5n+K variables where K is a constant. By Theorem 9, CSP(Γ3,2) cannot be solved in 2c3,2n

time, so CSP(B∨2) cannot be solved in 2
c3,2

5 n time.
Let (V,C) be an arbitrary instance of CSP(Γ3,2) where V = {x1, . . . , xn}. To construct

our CSP(B∨2) instance, we perform the following steps.
1. Introduce three variables d1, d2, d3 and the gadget that makes them distinct. These

variables will be used to denote the three domain elements.
2. For each variable xi, 1 ≤ i ≤ n, we introduce the variable x′i.
3. For each variable xi, 1 ≤ i ≤ n, introduce the variable yi together with the constraints

S(yi, d2, d3) and S(xi, d1, yi). These constraints imply that xi is equal to d1, d2, or d3.
4. For each variable xi, 1 ≤ i ≤ n, introduce variables x 6=1

i , x 6=2
i , x 6=3

i together with the
constraints S(x 6=1

i , d2, d3), S(x 6=2
i , d1, d3), and S(x 6=3

i , d1, d2). These variables are used for
“simulating” inequalities in step 5.

5. For each constraint R(xi, xj) ∈ C and each tuple (a, b) ∈ {1, 2, 3}2 that is not in R,
introduce the constraint eqD(xi, x

6=a
i) ∨ eqD(xj , x

6=b
j).

The resulting CSP(B∨2) instance (V ′, C ′) can obviously be constructed in polynomial
time. It contains 5n variables plus the constant number of variables needed for the gadget.
We claim that (V ′, C ′) has a solution if and only if (V,C) has a solution. Assume that
f : V → {1, 2, 3} is a solution to (V,C). Let c1, c2, c3 ∈ D be three distinct values that are
permitted by the gadget. Let U denote the set of other values used by the gadget. Define
f ′ : V ′ → U ∪ {c1, c2, c3} as follows.

P. Jonsson and V. Lagerkvist 43:11

f ′ assigns suitable values from U to the gadget,
f ′(di) = ci, 1 ≤ i ≤ 3,
f ′(yi) = c2 if f(xi) = 2 and f ′(yi) = c3 otherwise,
f ′(x′i) = cf(xi)

f ′(x 6=1
i) = cf(xi) if f(xi) 6= 1 and f ′(x 6=1

i) = c2, otherwise,
f ′(x 6=2

i) = cf(xi) if f(xi) 6= 2 and f ′(x 6=2
i) = c1, otherwise,

f ′(x 6=3
i) = cf(xi) if f(xi) 6= 3 and f ′(x 6=3

i) = c2, otherwise.

The function f ′ can easily be seen to satisfy the constraints introduced in steps 1, 3 and
4. We consider the constraints introduced in step 5. Pick a constraint R(xi, xj) ∈ C and a
tuple (a, b) ∈ {1, 2, 3}2 that is not in R. We assume without loss of generality that a = 1
and b = 2. The corresponding constraint in C ′ is now eqD(x′i, x

6=1
i)∨ eqD(x′j , x

6=2
j). We know

that f(xi) 6= 1 or f(xj) 6= 2. Assume, for example, that f(xi) = 2 and f(xj) = 2. We see
that f ′(x 6=1

i) = c2 and f ′(x 6=2
j) = c2 so f ′ satisfies this constraint. The other cases can be

verified analogously.
Assume that f ′ : V ′ → U ∪ {c1, c2, c3} is a solution to (V ′, C ′) where ci, 1 ≤ i ≤ 3, is the

value assigned to variable di. Define f : V → {1, 2, 3} such that f(xi) = p when f(x′i) = cp.
Arbitrarily choose a constraint R(xi, xj) ∈ C and assume to the contrary that (f(xi), f(xj)) =
(a, b) 6∈ R. This implies that f ′ satisfies the constraint eqD(x′i, x

6=a
i) ∨ eq(x′j , x

6=b
j) that was

introduced in step 5. In order to do so, either f ′(x′i) = f ′(x 6=a
i) and f ′(x′i) 6= ca or

f ′(x′j) = f ′(x 6=b
j) and f ′(x′j) 6= cb. In both cases, (f(xi), f(xj)) 6= (a, b) and this leads to a

contradiction. J

If we consider B∨k with larger k and require that certain relations are members of B,
then stronger lower bounds can be obtained.

I Theorem 11. Let ≺⊆ D2 be a strict partial order of infinite height over a domain D. If
the r-ETH holds, then there is no 2c·n-randomised algorithm for CSP({≺}∨4) for any c ≥ 0.

Proof. Assume there exists a 2c·n-randomised algorithm for CSP({≺}∨4). Arbitrarily choose
d ≥ 3 such that cd,2 > c. We show how to polynomial-time reduce CSP(Γd,2) to CSP({≺}∨4)
in a way such that only a constant number of new variables are introduced. This implies that
CSP(Γd,2) can be solved by a 2c·n-randomised algorithm where c < cd,2 which contradicts
the r-ETH due to Traxler’s result.

Let I = (V,C) be an arbitrary instance of CSP(Γd,2). We assume (without loss of
generality) that the variable domain is {1, . . . , d}. Introduce d + 1 fresh variables V1 =
{a1, . . . , ad+1} and define C1 = {a1(≺)a2, a2(≺)a3, . . . , ad(≺)ad+1}. Since ≺ is a strict partial
order of infinite height, we know that I1 = (V1, C1) is satisfiable. In every solution s, it holds
that s(ai) ≺ s(aj) when 1 ≤ i < j ≤ d+ 1 by the transitivity of ≺. We then constrain each
x ∈ V as follows: a1(≺)x, x(≺)ai ∨ ai(≺)x for 2 ≤ i ≤ d, and x(≺)ad+1. Let C2 denote the
corresponding set of constraints and let I2 = (V ∪ V1, C1 ∪ C2). It is easy to verify that
in every solution s to I2, each variable x ∈ V satisfies s(ai) ≺ s(x) ≺ s(ai+1) for exactly
one 1 ≤ i ≤ d. For each constraint S(x, y) in C, we finally introduce the following set of
constraints {x(≺)ae ∨ ae+1(≺)x ∨ y(≺)ae′ ∨ ae′+1(≺)y | (e, e′) 6∈ S}.

Let C3 denote the resulting set of constraints and let I3 = (V ∪ V1, C1 ∪ C2 ∪ C3). We
claim that I3 is satisfiable if and only if I is satisfiable. Assume that I3 has the solution s3.
We know that every variable v in V satisfies s(ai) ≺ s(v) ≺ s(ai+1) for exactly one 1 ≤ i ≤ d.
The constraints in C3 assure that s3 assigns values to the variables in V that are consistent
with the constraints in (V,C). Thus, the function s : V → D defined by s(v) = i where
v ∈ V and s3(ai) ≺ s3(v) ≺ s3(ai+1) is a solution to I.

MFCS 2018

43:12 Why are CSPs Based on Partition Schemes Computationally Hard?

Assume that I has the solution s. We construct a solution s3 to I3 as follows. Arbitrarily
choose e1, . . . , ed+1, e

′
1, . . . , e

′
d in D such that ei ≺ e′i ≺ ei+1, 1 ≤ i ≤ d; such elements

exists since ≺ has infinite height. Let s3(ai) = ei, 1 ≤ i ≤ d + 1. This choice satisfies
all constraints in C1. Let s3(v) = e′i, v ∈ V , when s(v) = i. It follows from the choice
of e1, . . . , ed+1, e

′
1, . . . , e

′
d that all constraints in C2 are satisfied. Finally, s3 satisfies the

constraints in C3: this is an immediate consequence of s being a solution to the instance I
combined with the restrictions imposed by the constraints in C1 ∪ C2.

Last, we verify that I3 can be computed in polynomial time. The constraints in C1 and
C2 can be computed in constant time since d is fixed, and each constraint in C gives rise
to at most d2 new constraints in C3, so this set can trivially be computed in polynomial
time. J

The bound in Theorem 11 is substantially stronger than the bounds that we have been
able to prove for CSP(B∨=). We may also observe that CSP({≺}∨k), k ≥ 1, is solvable
in O(|V |! · poly(||I||)) = 2O(|V | log |V |) · poly(||I||) time, implying that the lower bound in
Theorem 11 does not admit large improvements (unless r-ETH fails).

I Theorem 12. Let ≺⊆ D2 be a strict partial order of infinite height over a domain D, and
let k ≥ 1. Then CSP({≺}∨k) is solvable in O(|V |! · poly(||I||)) time.

Proof. Let (V,C) be an instance of CSP({≺}∨k). For each total order < over V , we answer
yes if there for every disjunctive clause in C exists a disjunct x ≺ y such that x < y. The
time complexity of this algorithm is clear, and we now turn to correctness. Assume first that
f is a satisfying assignment to (V,C). Let C ′ denote the set of all disjuncts satisfied by f .
This set induces a strict partial order which can be extended into a total order by topological
sorting. For the other direction, assume that < satisfies at least one disjunct in every clause.
Let i1, . . . , i|V | ⊆ {1, . . . , |V |} be indices such that xi1 < . . . < xi|V | and |{i1, . . . , i|V |}| = |V |.
Since ≺ is of infinite height there then exists d1, . . . , d|V | ∈ D such that d1 ≺ . . . ≺ d|V |, and
we can form a satisfying assignment f by letting f(xij) = dj for every ij ∈ {i1, . . . , i|V |}. J

6 Discussion

Our main focus has been to study the complexity of CSPs over partition schemes B, with a
particular emphasis on CSP(B∨=) when B contains a strict partial order. We have identified
three properties resulting in NP-hardness, which explains the NP-hardness for many different
CSP problems. Towards a better understanding of the time complexity of these problems we
have also proven lower bounds under complexity-theoretic assumptions. We have studied
lower bounds for CSP(B∨k), too, and obtained general bounds for this kind of problems. At
this stage it is worth to yet again point out that none of our results require model-theoretic
assumptions such as ω-categoricity, i.e., that the first-order theory of B admits only one model
up to isomorphism. A large amount of research on infinite-domain CSPs has concentrated
on ω-categorical constraint languages. However, there are interesting problems that are not
amenable using this approach.

I Example 13. Bodirsky and Jonsson [5, Sec. 4.2] present a partition scheme B with domain
R3 that demonstrate how to integrate arithmetics into partition schemes. They show that
B is not ω-categorical and there does not exist any ω-categorical constraint language Γ
such that CSP(Γ) and CSP(B) is the same computational problem. We will not define B
explicitly, but remark that the relation Less = {((a, b, p), (c, d, q)) ⊆ (R3)2 | a < c ∧ p 6= q}
is a member of B∨=. Obviously, the constraints Less(d1, d2) and Less(d2, d3) force d1, d2, d3

P. Jonsson and V. Lagerkvist 43:13

to be assigned distinct values. By definition, there exists relations B1, . . . , Bk ∈ B such
that Less = B1 ∪ · · · ∪ Bk so there exist (not necessarily distinct) 1 ≤ i, j ≤ k such that
the constraints B1(d1, d2) and B2(d2, d3) force d1, d2, d3 to be assigned distinct values, too.
We know that eqD ∈ B since B is a partition scheme. We conclude (by Theorem 10) that
CSP(B∨2) cannot be solved in O(2

c3,2
5 n) time.

One important consequence of lower bound results is that they can be used to rule out
certain types of algorithms. First of all, k-consistency algorithms are not applicable since they
run in polynomial time for arbitrary fixed k. The powerful generalisation of k-consistency,
the Datalog framework [11, 4], is not applicable either since every Datalog program runs in
polynomial time, too. Another example is provided by graph-decomposition algorithms for
CSPs (for instance, algorithms that exploit treewidth). Such algorithms have been highly
influential in the CSP context [1, 3, 7], but they typically result in polynomial-time or
subexponential algorithms and are therefore unlikely to be usable for CSP(B∨=) problems.
Even more can be said if we take a detour via degree-bounded problems.

I Lemma 14. Let B be a constraint language such that CSP(B) is solvable in polynomial
time. For arbitrary constants B and k, CSP(B∨k)-B can be solved in 2B·log k·|V | · poly(||I||)
time and CSP(B∨=)-B can be solved in 2B·log(|B|−1)·|V | · poly(||I||) time.

Proof. Let I = (V,C) be an arbitrary instance of CSP(B∨k)-B. Pick one disjunct out of
each constraint in C, put the disjuncts into the set S, and check whether S is satisfiable or
not. This check can be performed in polynomial time. There are at most kB·|V | different sets
S since each constraint contains at most k disjuncts and there are at most B · |V | constraints
in C. Furthermore, (V,C) is satisfiable if and only if at least one of them is satisfiable. We
conclude that (V,C) can be solved in kB·|V | · poly(||I||) time. The proof for CSP(B∨=)-B is
essentially identical, with the difference that we never need to consider a relation containing
all relations in B, explaining |B| − 1 in the exponent. J

Thus, both CSP(B∨k)-B and CSP(B∨=)-B can be solved in 2O(n) time. We know (from
Theorem 11) that there is no 2cn-randomised algorithm for the CSP({≺}∨4) problem. This
shows that techniques used for transforming CSP instances into sparse instances, e.g. linear
kernelisations [19], are unlikely to be applicable to CSP(B∨k). We cannot rule out linear
kernelisations for CSP(B∨=), though, since we do not have a sufficiently strong lower bound
in this case.

Naturally, there are approaches that are not directly ruled out by our lower bounds.
Jonsson and Lagerkvist [16] have presented general results for obtaining algorithms based
on enumeration of domain values. These algorithms are sometimes much faster than the
branching algorithms that are typically used for infinite-domain CSPs: the branching
algorithm for CSP(A∨=) runs in 2O(n2) time while the enumeration-based algorithm runs in
2O(n log n) time. The range of applicability for enumeration-based algorithms is unfortunately
not well understood, and more work is needed to clarify this. Another viable approach
is to use methods that have been successful in solving finite-domain CSPs. Einarson [10]
demonstrates how the finite-domain version of the PPSZ algorithm [14] can be applied to
infinite-domain CSPs. His results are inconclusive: the algorithm is faster than previously
known algorithms for certain CSP(B∨k) problems but it is, for instance, not competetive for
Allen’s interval algebra CSP(A∨=).

These examples suggest that it may be worthwhile to strengthen the subexponential lower
bound for CSP(B∨=) even further – if possible. One possible way of doing this is to exploit
the strong exponential-time hypothesis, i.e. the conjecture that SAT is not solvable in O∗(cn)

MFCS 2018

43:14 Why are CSPs Based on Partition Schemes Computationally Hard?

time for any c < 2, The challenge here is that the SETH intrinsically requires reductions
where one can “simulate” clauses of arbitrary high arity with a very small overhead. This
seems difficult for CSP(B∨=) and in Theorem 8 we could only produce a reduction from
a SAT problem with a linear number of constraints. This assumption cannot be made for
SAT since sparsification, the process of reducing an instance to a subexponential number of
instances with a linear number of constraints, is not possible for SAT [28]. Another possibility
is to use bounds based on the Chromatic Number problem: Jonsson and Lagerkvist [16,
Th. 21] have related the time complexity of Allen’s interval algebra with the time complexity
of the Chromatic Number problem and obtained concrete lower bounds of the form O∗(cn)
for a constant c > 1 depending on the complexity of Chromatic Number. Thus, we ask the
following: should stronger lower bounds for CSP(B∨=) be pursued in the setting of CNF-SAT
and the SETH, or are problems of this kind fundamentally closer to e.g. colouring problems?

References
1 J. Alber, H. Fernau, and R. Niedermeier. Parameterized complexity: exponential speed-up

for planar graph problems. J. Algorithms, 52(1):26–56, 2004.
2 J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26(11):832–

843, 1983.
3 S. Arora, B. Barak, and D. Steurer. Subexponential algorithms for unique games and

related problems. J. ACM, 62(5):42:1–42:25, 2015.
4 M. Bodirsky and V. Dalmau. Datalog and constraint satisfaction with infinite templates.

J. Comput. Syst. Sci., 79(1):79–100, 2013.
5 M. Bodirsky and P. Jonsson. A model-theoretic view on qualitative constraint reasoning.

J. Artif. Intell. Res. (JAIR), 58:339–385, 2017.
6 A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Proc. 58th IEEE Annual

Symposium on Foundations of Computer Science (FOCS-2017), pages 319–330, 2017.
7 R. de Haan, I. A. Kanj, and S. Szeider. On the subexponential-time complexity of CSP. J.

Artif. Intell. Res., 52:203–234, 2015.
8 I. Düntsch. Relation algebras and their application in temporal and spatial reasoning. Artif.

Intell. Rev, 23(4):315–357, Jun 2005.
9 F. Dylla, J. H. Lee, T. Mossakowski, T. Schneider, A. van Delden, J. van de Ven, and

D. Wolter. A survey of qualitative spatial and temporal calculi: Algebraic and computa-
tional properties. ACM Comput. Surv., 50(1):7:1–7:39, 2017.

10 C. Einarson. An extension of the PPSZ algorithm to infinite-domain constraint satisfac-
tion problems. Master’s thesis report, Department of Computer and Information Science,
Linköpings Universitet, 2017.

11 T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP and
constraint satisfaction: a study through datalog and group theory. SIAM J. Comput.,
28(1):57–104, 1998.

12 M. Grigni, D. Papadias, and C. H. Papadimitriou. Topological inference. In Proc. 14th In-
ternational Joint Conference on Artificial Intelligence (IJCAI-1995), pages 901–907, 1995.

13 H. Güsgen. Spatial reasoning based on Allen’s temporal logic. Technical report ICSI
TR89-049, International Computer Science Institute, 1993.

14 T. Hertli, I. Hurbain, S. Millius, R. A. Moser, D. Scheder, and M. Szedlák. The PPSZ
algorithm for constraint satisfaction problems on more than two colors. In Proc. 22nd
International Conference on Principles and Practice of Constraint Programming (CP-2016),
pages 421–437, 2016.

15 R. Impagliazzo and R. Paturi. On the complexity of k-sat. J. Comput. Syst. Sci., 62(2):367–
375, 2001.

P. Jonsson and V. Lagerkvist 43:15

16 P. Jonsson and V. Lagerkvist. An initial study of time complexity in infinite-domain
constraint satisfaction. Artif. Intell., 245:115–133, 2017.

17 P. Jonsson, V. Lagerkvist, G. Nordh, and B. Zanuttini. Strong partial clones and the time
complexity of SAT problems. J. Comput. Syst. Sci., 84:52–78, 2017.

18 A. Krokhin, P. Jeavons, and P. Jonsson. Reasoning about temporal relations: The tractable
subclasses of Allen’s interval algebra. J. ACM, 50(5):591–640, 2003.

19 V. Lagerkvist and M. Wahlström. Kernelization of constraint satisfaction problems: A
study through universal algebra. In Proc. 23rd International Conference on Principles and
Practice of Constraint Programming (CP-2017), pages 157–171, 2017.

20 G. Ligozat and J. Renz. What is a qualitative calculus? A general framework. In Proc.
8th Pacific Rim International Conference on Artificial Intelligence (PRICAI-2004), pages
53–64, 2004.

21 R. Moratz, J. Renz, and D. Wolter. Qualitative spatial reasoning about line segments.
In Proc. 14th European Conference on Artificial Intelligence (ECAI-2000), pages 234–238,
2000.

22 A. Mukerjee and G. Joe. A qualitative model for space. In Proc. 8th National Conference
on Artificial Intelligence (AAAI-1990), pages 721–727, 1990.

23 J. Opatrny. Total ordering problem. SIAM J. Comput., 8(1):111–114, 1979.
24 J. Renz. Qualitative spatial and temporal reasoning: Efficient algorithms for everyone.

In Proc. 20th International Joint Conference on Artifical Intelligence (IJCAI-2007), pages
526–531, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.

25 J. Renz and J. J. Li. Automated complexity proofs for qualitative spatial and temporal
calculi. In Proc. Principles of Knowledge Representation and Reasoning (KR-2008), pages
715–723, 2008.

26 J. Renz and B. Nebel. On the complexity of qualitative spatial reasoning: A maximal
tractable fragment of the region connection calculus. Artif. Intell., 108(1–2):69–123, 1999.

27 J. Renz and B. Nebel. Qualitative spatial reasoning using constraint calculi. In Marco
Aiello, Ian Pratt-Hartmann, and Johan van Benthem, editors, Handbook of Spatial Logics,
pages 161–215. Springer, 2007.

28 R. Santhanam and S. Srinivasan. On the limits of sparsification. In Proc. 39th International
Colloquium on Automata, Languages, and Programming (ICALP-2012), pages 774–785,
2012.

29 P. Traxler. The time complexity of constraint satisfaction. In Proc. 3rd International
Workshop on Parameterized and Exact Computation (IWPEC-2008), pages 190–201, 2008.

30 D. Zhuk. A proof of CSP dichotomy conjecture. In Proc. 58th IEEE Annual Symposium
on Foundations of Computer Science (FOCS-2017), pages 331–342, 2017.

MFCS 2018

Directed Graph Minors and Serial-Parallel Width

Argyrios Deligkas
Leverhulme Research Centre, University of Liverpool, UK
argyrios.deligkas@liverpool.ac.uk

Reshef Meir
Faculty of Industrial Engineering and Management, Technion, Israel
reshefm@ie.technion.ac.il

Abstract
Graph minors are a primary tool in understanding the structure of undirected graphs, with many
conceptual and algorithmic implications. We propose new variants of directed graph minors
and directed graph embeddings, by modifying familiar definitions. For the class of 2-terminal
directed acyclic graphs (TDAGs) our two definitions coincide, and the class is closed under both
operations. The usefulness of our directed minor operations is demonstrated by characterizing
all TDAGs with serial-parallel width at most k; a class of networks known to guarantee bounded
negative externality in nonatomic routing games. Our characterization implies that a TDAG has
serial-parallel width of 1 if and only if it is a directed series-parallel graph. We also study the
computational complexity of finding a directed minor and computing the serial-parallel width.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis, Math-
ematics of computing → Graph theory

Keywords and phrases directed minors, pathwidth

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.44

Related Version A full version of the paper is available at https://tinyurl.com/y9hcukyz.

1 Introduction

Graph theory has been one of the fundamental tools in computer science since its inception
and in many computational problems the inputs are in a form of a graph, e.g., analysis of
electric circuits and communication networks, and training of neural nets. More important
still, numerous problems from various domains are often solved by reducing them to some
algorithmic problem on a graph. Some prominent examples include search and path-
finding [31]; planning graphs [3]; constraint satisfaction [26]; AND-OR graph [4]; and
inference in Bayesian networks [7].

The structure of these graphs is often crucial to the modeling of the problem. For instance,
the last two examples above use directed acyclic graphs (DAGs), which are also used to
represent belief structures, influence relations and decision diagrams [15]. Restrictions on
the degree, maximum length, or other properties of the underlying graph, can be exploited:
problems that are not guaranteed to have a solution in general may behave better on some
classes of graphs, and many algorithms are guaranteed to have a lower runtime subject to
structural assumptions.

© Argyrios Deligkas and Reshef Meir;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 44; pp. 44:1–44:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:argyrios.deligkas@liverpool.ac.uk
mailto:reshefm@ie.technion.ac.il
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.44
https://tinyurl.com/y9hcukyz
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 Directed Graph Minors and Serial-Parallel Width

Graph minors
When considering undirected graphs, some of the primary tools of structural analysis use
graph embeddings and graph minors. These are substructures whose exclusion from a graph
indicates certain “simplicity” properties. Some famous results are the characterization of
planar graphs [23], and of graphs with bounded treewidth [32] by excluded minors. In fact,
for undirected graphs there is by now a sound theory of graph minors with many applications;
see, e.g., [25] for a survey, and [8] for algorithmic implications. The culmination of this theory
is the Graph Minor Theorem [40, 33], which states that any class of undirected graphs that
is closed under the minor operation, can be characterized by a finite set of excluded minors.

Perhaps the most important application of graph minor theory to computer science
is its use for developing efficient algorithms on graphs with bounded treewidth and/or
other properties [13, 6, 34]. Graph minors were also recently used to characterize classes
of graphs induced by planning problems to identify potential effects of time-inconsistent
planning [21, 38].

Although the graphs encountered in many theoretical and realistic problems are directed,
there is no single theory of directed graph minors, and results are far more scarce than in the
undirected case. Several papers suggested various definitions of directed minors, embeddings,
and subdivisions, and provided various characterization results [17, 20, 14, 18, 19, 22].
However, each such definition uses different graph operations, some of which we explain
in detail later on. Certain notions of directed minors are only applicable for subclasses of
directed graphs. For example, the definitions in [22] apply only to minors with a certain
structure called “crown”.

In this paper, we will be interested mainly in directed graphs that are acyclic (DAG), or
2-terminal, or both (TDAG). 2-terminal graphs occur in routing [1], circuit analysis [36] and
in many planning problems [21]. Thus understanding the structure of graphs in these classes
is an important challenge.

Paper structure and contribution. In the first part of the paper (Section 3) we define new
notions of graph embedding and graph minor for general directed graphs.1 We show that for
the class of 2-terminal directed acyclic graphs (TDAGs) these two operations exactly reverse
one another. Thus, a TDAG G′ is a directed minor of G if and only if it is embedded in G.
Also, the class of TDAG is closed under directed minor and directed embedding operations.
We thus argue that our definitions provide a sound basis for a theory of directed graph
minors, at least for the class of TDAGs.

To demonstrate the usefulness of our directed minor theory, we apply it in Section 4
to characterize TDAGs with bounded parallel width and serial-parallel width. The parallel
width of a graph corresponds to the maximal cut separating the source from the target.
Serial-parallel width of a graph is a parameter recently introduced in the context of routing
games [28], and it is useful for bounding negative externalities. We describe a finite set of
graphs (generalized variants of the Braess/Wheatstone network) whose exclusion as directed
minors of a TDAG G is necessary and sufficient to determine that G has serial-parallel width
lower than k, for any k.

In Section 5 we settle several computational questions arising from our definitions. Some
proofs are omitted due to space constraints and are available in the full version of this paper
which is attached at the end of the file.

1 To avoid confusion, we should note that the term graph embedding is used in the machine learning
literature to describe embedding of graphs in various topological or metric spaces (e.g., [41]), which is a
very different problem.

A. Deligkas and R. Meir 44:3

2 Preliminaries

For convenience, we will use the letter H for undirected graphs, and the letter G for directed
graphs. We denote a path in graph 〈V, E〉 by (v1, v2, . . . , vm), where for every i ≤ m − 1,
(vi, vi+1) ∈ E. We use dash to abbreviate the path, e.g. a − b − c is an abbreviation to a
path (a, . . . , b, . . . , c); if more than one such path exists, we refer to one of them arbitrarily,
unless stated otherwise.

If nodes x, y are on some path p, then pxy denotes the open subpath of p between nodes
x and y, and [pxy] = x− pxy − y the closed subpath that includes the extreme vertices.

I Definition 1 (2-terminal graph [29, 14]). A 2-terminal [directed] graph G = 〈V, E, s, t〉 is a
[directed] multigraph with no self-loops and two distinguished vertices s, t ∈ V , such that
every vertex and edge belong to at least one [directed] simple s− t path.

A forward-subtree of a directed 2-terminal graph G is a subset of edges that form a
directed tree with a single source. Similarly, a backward-subtree of G is a subset of edges
that form a directed tree with a single target.

A directed 2-terminal graph with no cycles is referred to as TDAG (2-Terminal Directed
Acyclic Graph). The vertices of a TDAG can always be sorted in increasing order, called
topological order, so that all edges, and thus all directed paths, are from vi to vj for some
j > i. In particular, s and t are the first and last vertices, respectively.

I Lemma 2. A DAG is a TDAG if and only if it has a unique source and a unique sink.

3 Directed Graph Minors and Embeddings

In undirected graphs, a graph H ′ is called a minor of H if H ′ can be obtained from H by a
sequence of edge deletions and contractions. As an example of a simple characterization via
exclusion of minors, observe that any graph H (not a multigraph) is acyclic if and only if it
excludes a triangle as a minor.

3.1 Directed minors.
There are several extensions of the notion of a minor to directed graphs. One that is closest
to our needs is the butterfly minor [17], see Def. 3 without the underlined part. However,
neither the class of 2-terminal graphs nor the class of TDAGs is closed under the butterfly
minor operation, since, for example, it may leave an isolated node. We thus modify it by
restricting which edges may be deleted (underlined).

I Definition 3 (Directed minor). A graph G′ is a directed minor (or simply a d-minor)
of a directed graph G, if G′ can be obtained from G by a sequence of the following local
operations:
Deletion. Deleting an edge (a, b) where a has outdegree at least 2, and b has indegree at

least 2.
Backward contraction. Contracting an edge (a, b) where b has indegree 1.
Forward contraction. Contracting an edge (a, b) where a has outdegree 1.

For example, the edge (a, b) in Fig. 1c may not be contracted, but can be backward-
contracted after the edge (s, b) is deleted.

I Lemma 4. The class of directed acyclic graphs is closed under d-minor operations.

MFCS 2018

44:4 Directed Graph Minors and Serial-Parallel Width

s

a

t

b

x

y

(a)

s

u

t

s

u

v

t

(b)

s

a b

t

(c) The Braess graph.

Figure 1 The graph in Fig. 1a is a directed 2-terminal graph (solid edges only). Adding the
dashed edge (x, y), regardless of its direction, results in a non-2-terminal graph. Fig. 1b: The graph
G′ on the left is d-embedded in G on the right, as we can forward-split u into (u, v) (u retains all
incoming edges, and v retains at least one outgoing edge). However, there is no edge we can add or
subdivide to get G from G′ so G′ is not h-embedded in G. The Braess graph GB is on Fig. 1c.
Examples.

3.2 Graph Embeddings
There are various definitions of graph embeddings and subdivisions [12, 29, 14], which can
be summarised together as follows.

I Definition 5 (Homeomorphic embedding). A [directed] graph G′ is h-embedded in (or a
topological minor of) G, if G (or a graph isomorphic to G) can be derived from G′ by a
sequence of the following operations:
Addition. The addition of a new edge joining two existing vertices.
Subdivision. Replacement of an edge (a, b) by two edges (a, x) and (x, b).
Terminal extension. (only for 2-terminal graphs) Addition of a new edge e joining s or t

with a new vertex, which becomes the new source or target.

For an undirected graph H ′, every h-embedding operation maintains various properties
like being a 2-terminal graph. However, for a 2-terminal directed graph G′, an h-embedding
operation may not maintain this property (see Fig. 1a). Also, this set of operations is not
rich enough for our needs. Thus, we propose a new definition for directed embeddings.

I Definition 6 (Directed embedding). A directed graph G′ is d-embedded in a directed graph
G if G′ is isomorphic to G or to a graph derived from G by a sequence of the following
operations:
Addition. Addition of a new edge (a, b), such that there is no path b− a.
Forward split. Replacement of node a 6= t with outdegree greater than zero, by two nodes

a1 and a2 and an edge (a1, a2), where a1 retains all incoming edges, and a2 retains at
least one outgoing edge.

Backward split. Replacement of node a 6= s with indegree greater than zero, by two nodes
a1 and a2 and an edge (a1, a2), where a2 retains all outgoing edges, and a1 retains at
least one incoming edge.

It is not hard to see that a subdivision of an edge (directed or undirected) can be replicated
by splitting one of its end nodes, and a terminal extension can be replicated by splitting the
terminal (backward split of s or forward split of t). We thus allow the operations of edge
subdivision and terminal extension as valid d-embedding operations as well.

I Lemma 7. The classes of 2-terminal directed graphs and directed acyclic graphs are closed
under d-embedding.

A. Deligkas and R. Meir 44:5

In particular, if G′ is a TDAG and G′ is d-embedded in G, then G is a TDAG.
For a 2-terminal directed graph G, the graph G′ is a valid subgraph of G if it is a subgraph

of G and is also 2-terminal. While the next lemma may seem trivial, note that it does not
hold for general 2-terminal directed graphs, since a single edge is not d-embedded in any
cyclic graph.

I Lemma 8. Let G be a TDAG. If G′ is a valid subgraph of G, then G′ is d-embedded in G.

We will need the following lemma later on, but it is useful to know regardless. An
immediate corollary is that embedding steps only add paths and increase the connectivity of
a graph.

I Lemma 9. If G, G′ differ by a single split step of vertex a into (a, b), then there is a one
to one mapping between paths in G′ and paths in G.

3.3 Relations among graph operations
The way we defined them, d-minors are more restrictive than butterfly minors, whereas
d-embeddings are more permissive than h-embeddings when restricting attention to acyclic
graphs; see Fig. 1b. However, d-embeddings are not infinitely richer than h-embeddings. A
vertex is called a hub if it has both an indegree and an outdegree larger than one.

I Proposition 10. Let G′ = 〈V ′, E′〉 and let J ⊆ V ′ be the hubs of G′. There is a set G
of at most 2|J|×|V ′|2 graphs, such that for any G = 〈V, E〉, graph G′ is d-embedded in G if
and only if some graph in G is h-embedded in G. Each such graph has at most |V |(1 + |J |)
vertices.

For the class of TDAGs, the concepts of directed-minor and directed-embedding turn out
to be equivalent.

I Theorem 11. Let G and G′ be TDAGs. G′ is d-embedded in G if and only if G′ is a
d-minor of G.

Intuitively, addition and deletion operations cancel one another, as do split and contraction
operations. This equivalence does not hold for general directed graphs, as added edges may
not qualify for deletion (e.g. if we add an edge (a, b) where a has only incoming edges), and
vice versa (if we remove an edge that is part of a cycle).

Proof. By induction, it is sufficient to show this for G′, G that differ by a single d-embedding
or d-minor operation. “⇒” There are 3 cases, depending on the embedding operation:
1. The addition of edge (a, b) to G′ can be reversed by deleting the same edge from G. Note

that b 6= s as otherwise there is a path in G′ from b = s to a, and similarly a 6= t. Thus,
a has outdegree at least 1 in G′ and at least 2 in G. Similarly, b has indegree at least 2
in G, and thus deleting the edge (a, b) is a valid d-minor step.

2. Suppose that a vertex a in G′ is split to {a, b} with a forward split. Then, since a retains
all incoming edges, b has a single incoming edge (a, b) in G. Thus, we can contract the
edge (a, b) in G using backward contraction.

3. Similarly, a backward split can be reversed with a forward contraction.

“⇐” There are 3 cases, depending on the d-minor operation:
1. If the edge (a, b) is deleted from G, then since G is acyclic there is no path b− a. Thus

adding (a, b) to G′ is a valid d-embedding step.

MFCS 2018

44:6 Directed Graph Minors and Serial-Parallel Width

2. Suppose that the edge (a, b) in G is backward-contracted to some vertex x in G′. This
means that b has a single incoming edge. Thus all edges incoming to the pair {a, b} are
leading to a. Let R(a) and R(b) be the out-neighbors of a and b in G, respectively. Then
by forward-splitting node x in G′ and split the outgoing edges of x according to R(a) and
R(b), we get the graph Gi.

3. Similarly, forward contraction can be reversed with backward split. J

4 Serial-Parallel Width

A cut in a 2-terminal graph G = 〈V, E, s, t〉 is a set of edges C ⊆ E such that there is no
s− t path in E \ C. C is minimal if there is no cut C ′ (C.

A set of edges S ⊆ E is parallel if there is some C ⊆ E s.t. S ⊆ C, and C is a minimal
cut;S is serial if there is a simple directed s− t path p that contains S.

I Definition 12 (Parallel Width). The parallel width of a directed 2-terminal graph, PW (G),
is the size of the largest parallel set S ⊆ E.

I Definition 13 (Serial-Parallel Width [28]). The serial-parallel width of a directed 2-terminal
graph, SPW (G), is the size of the largest set S ⊆ E that is both serial and parallel.

Intuitively, the parallel width is the size of a maximum s−t cut. For example, the width of an
electric circuit coincides with the parallel width of its underlying TDAG [5]. A serial-parallel
width of k means that there are at least k source-target paths, and some additional path that
edge-intersects all of them. It was shown in [28] that in nonatomic routing games with diverse
players, the negative externality is bounded by the serial-parallel width of the underlying
network.

I Example 14. Consider the Braess graph in Fig. 1c. The minimal s − t cuts are:
{sa, sb}, {at, bt}, {sa, bt}, and {sb, ab, at}. The set {sa, bt} is both parallel and serial, which
means SPW (GB) ≥ 2. The set {sa, at} is serial but not parallel; and {sa, sb, ab} is neither.
In fact, the only parallel set of size greater than 2 is {sb, ab, at}, which is not serial, thus
SPW (GB) < 3. We conclude that the serial-parallel width of the Braess graph is 2.

In contrast, both graphs in Fig. 1b have PW (G) = 2 and SPW (G) = 1.
For any 2-terminal graph G, we have 1 ≤ SPW (G) ≤ |V | − 1. The lower bound is since

any single edge is both parallel and serial, and the upper bound since there is no simple path
of length |V | or more.

I Definition 15. For any k ≥ 2, we define the k-serial-parallel graph GSP (k) as follows. G =
〈V, E, s, t〉, where V = {s, t, a2, . . . , ak, b1, . . . , bk−1}, and E =

⋃k−1
i=2 {(s, ai), (ai, bi), (bi, t),

(bi, ai+1)} ∪ {(s, b1), (ak, t)} (see Fig.2). Furthermore, GP (k) is a TDAG that contains k

internally disjoint s− t paths.

I Definition 16. A graph G is a variant of GSP (k) if we replace the edges {(s, ai)}k
i=2 with

an arbitrary forward-subtree that respects the lexicographic order s, a2, . . . , ak, and replace
the edges {(bi, t)}k−1

i=1 with an arbitrary backward-subtree that respects the lexicographic
order b1, . . . , bk−1, t.

The serial-parallel width of GSP (k) is exactly k, where
{(s, b1), (a2, b2), . . . , (ak−1, bk−1), (ak, t)} are the serial-parallel edges.

The graph GSP (k) was used under different names in [2, 30, 28], usually to derive examples
of games with high equilibrium costs.

A. Deligkas and R. Meir 44:7

b1

a2

b2

a3

b3

a4

b4

a5

s = a1

t = b5

b1

a2

b2

a3

b3

a4

b4

a5

s = a1

t = b5

Figure 2 The left figure is the graph GSP (5), and the right figure is a variant of it. For convenience,
the long path in each graph appears in double lines, and the forward- and backward-trees in thin
lines.

I Lemma 17. If S is a set of parallel [serial] edges in a 2-terminal graph G′, then after any
sequence of d-embedding steps on G′, the set S is still parallel [resp., serial]. In particular, if
G′ is d-embedded in G then PW (G) ≥ PW (G′) and SPW (G) ≥ SPW (G′).

Proof sketch. For serial sets the statement is obvious.
Consider a sequence of J d-embedding operations on G0 = G′ that ends in GJ = G.

Suppose that S is parallel. Let C0 be a minimal cut in G0 = G′ containing S. We show by
induction that after every step j ≤ J there is a minimal cut Cj in Gj , such that Cj−1 ⊆ Cj .

Assume by induction that Cj−1 is a minimal cut in Gj−1. The graph Gj differs from
Gj−1 either by a single added edge, or by a single split vertex. By Lemma 9 split steps do
not change the set of paths, and thus Cj = Cj−1 is still a minimal cut. Thus suppose Gj

differs by an addition step of an edge e = (a, b). Either Cj−1 is still a cut in Gj , or e connects
a node a reachable from s to a node b with a path to t. In the latter case, Cj = Cj−1 ∪ {e}
is a cut. To see that Cj is minimal suppose we remove an edge e′ 6= e. If C ′ = Cj \ {e′} is a
cut in Gj , then C ′ \ {e} = Cj−1 \ {e′} is a cut in Gj−1, in contradiction to the induction
hypothesis that Cj−1 is minimal. In either case, S is still contained in a minimal cut Cj

after every operation, and in particular contained in a minimal cut CJ of GJ = G. J

4.1 Characterization of graphs with bounded serial-parallel width
Before we get to our main theorem we start with a characterization of parallel sets.

I Proposition 18 (Parallel sets characterization). Let G = 〈V, E, s, t〉 be a TDAG, and a
set of k edges S ⊆ E, where for each ei ∈ S, ei = (ai, bi). The following conditions are
equivalent: (1) S is parallel; (2) there is a forward-subtree Ts in G with root s and leafs
{ai}i≤k, and a backward-subtree Tt in G with leaf t and roots {bi}i≤k; (3) there is a sequence
of d-minor operations that deletes or contracts all edges except S.

Proof. “1 ⇒ 2”: Suppose that S is parallel, then it is contained in a minimal cut C. Let
GC be graph G without the edges of C. Let Ts be all vertices reachable from s in GC , and
Tt all vertices from which t is reachable and let G(X) be the subgraph of G induced by
X ⊆ V . Ts ∩ Tt = ∅ as otherwise there is a path from s to t in GC . Also, ai ∈ Ts for all i, as
otherwise the edge ei can be removed from C and C \ {ei} is still a cut. Likewise for bi ∈ Tt.
Since G is a TDAG, and G(Ts) contains a path from s to every ai, then G(Ts) is w.l.o.g. a
forward-tree. Similarly for Tt.

“2⇒ 3”: The union of G(Ts), G(S), and G(Tt) is a valid subgraph G′ of G of which S is
a minimal cut: for any ei there is a path s− ai − bi − t. Since G′ is a valid subgraph of G,
then by Lemma 8 it is d-embedded and thus a d-minor of G. Then, since all nodes in Ts

MFCS 2018

44:8 Directed Graph Minors and Serial-Parallel Width

have indegree at most 1, we can backward-contract all of Ts to a single node s. Similarly, we
forward-contract all of Tt to the node t, and we are left with a graph that has two nodes
whose only edges are S.

“3⇒ 1”: By Theorem 11 we can consider the reverse sequence of d-embedding operations
from G0 = GP (k) to GJ = G. By Lemma 17, the set S is still parallel after every operation
and in particular in G. J

We get a characterization of graphs with bounded parallel width as a simple corollary.

I Theorem 19. For any TDAG G and k ≥ 2, PW (G) ≥ k if and only if GP (k) is a d-minor
of G.

Proof. “⇒”: Consider some parallel set S of size k. By Prop. 18 there is a sequence of
d-minor operations that ends with a graph whose only edges are S. This graph is GP (k).
“⇐”: Follows directly from Lemma 17 and Thm. 11, since PW (GP (k)) = k. J

I Theorem 20 (Main Theorem). For any TDAG G and k ≥ 2, SPW (G) ≥ k if and only if
some variant of GSP (k) is a d-minor of G.

Proof. “⇒”: Consider the graph G. Suppose that SPW (G) ≥ k, then there is a set
S = {e1, . . . , ek} that is part of a minimal cut C between s and t. Denote ei = (ai, bi).

By Prop. 18, G has a forward-subtree Ts with root s and leafs {ai}i≤k, and a backward-
subtree Tt in G with leaf t and roots {bi}i≤k. Also, by definition of the parallel width, there
is a simple s− t path p′ containing S, w.l.o.g. in lexicographic order.

We now describe a series of d-minor steps on G that will result in a variant of GSP (k).
Delete all edges and vertices that are not part of p′, Ts or Tt. This leaves us with a graph G′

that is a valid subgraph of G and thus, by Lemma 8 and Thm. 11, is also a d-minor of G.
p′ is composed of a sequence of subpaths between vertices s, y1, x2, y2 . . . , xk−1, yk−1, xk, t,

where each xi is the first intersection of [p′bi−1ai
] with Ts. Thus xi is an ancestor of (or

coincides with)ai in Ts. Similarly, {yi}k−1
i=1 are on the backward-subtree Tt, where yi is the

last intersection of [p′biai+1
] and Tt. Denote by Ai ⊆ {a2, . . . , ak} all leafs of the subtree of

Ts rooted at xi, and by Bi ⊆ {b1, . . . , bk−1} all roots of the subtree of Tt whose leaf is yi. In
particular, ai ∈ Ai, and aj /∈ Ai for j < i, as otherwise there is a cycle xi − aj − bj − yj − xi.
Likewise, bi ∈ Bi and bj /∈ Bi for j > i.

Note that the indegree of all nodes in Ts is 1, except for {xi}k
i=2 whose indegree is 2 (one

edge from the parent in Ts, and one from the predecessor node on p′), and s whose indegree
is 0. We thus backward-contract all edges in Ts that do not point to some xi. We get a
forward-subtree T̂s:

The root of T̂s is s = x1, and its nodes are {xi}k
i=2;

Each path xi − ai in G′ becomes a single node xi = ai in Ĝ;
The subtree rooted by xi in Ts becomes a subtree in T̂s over nodes Ai maintaining their
order, i.e., children have higher index than their parent. For example, in Fig. 2 on the
right, A4 = {a4, a5} and a4 is a parent of a5.

We similarly contract Tt to T̂t on nodes {yi}.
The last step is to contract every subpath [p′yixi+1

] to a single edge (yi, xi+1). Denote the
union of these edges by F̂ , so that S ∪ F̂ is the path we get after contracting p′.

We get that the contracted graph Ĝ′ = S ∪ F̂ ∪ T̂s ∪ T̂t is isomorphic to a variant of
GSP (k). More specifically, s and t are mapped to themselves, each xi for i = 2, . . . , k in Ĝ is
mapped to ai in GSP (k), and each yi for i = 1, . . . , k− 1 in Ĝ′ is mapped to bi in GSP (k). For
each i = 2, . . . , k, let j be the maximal index such that xj is an ancestor of xi in Ts. If such

A. Deligkas and R. Meir 44:9

j exists, then the parent of ai in Ĝ′ is aj , and otherwise its parent is s = a1. The parent of
ai in GSP (k) is the closest ancestor xj of the node xi in Ts (and similarly for the child of bi).

“⇐”: Follows directly from Lemma 17 and Thm. 11, since SPW for any variant of GSP (k)
is k. J

Since GSP (k) has 2k vertices, we get that SPW (G) ≤ |V |
2 . Another corollary of The-

orem 20 is a generalization of the lower bounds on negative externality from [2, 28]. These
papers show how instances with high externality (depending on k) can be constructed from
any variant of GSP (k). By Theorem 20 this is true for any graph G with SPW (G) ≥ k.

4.2 Series-parallel graphs
Series-parallel 2-terminal graphs have been long studied in contexts such as electric circuits [9],
complexity of graph algorithms [37], and also routing games [29, 11].

I Definition 21 (Series-parallel graph [10, 16]). A [directed] series-parallel graph is a 2-
terminal graph 〈V, E, s, t〉, and is either a single edge (s, t), or is composed recursively by
one of the two following steps:
Serial composition. Combine two [directed] 2-terminal graphs 〈V1, E1, s1, t1〉 , 〈V2, E2, s2, t2〉

serially by merging t1 with s2.
Parallel composition. Combine two [directed] 2-terminal graphs 〈V1, E1, s1, t1〉 ,
〈V2, E2, s2, t2〉 in parallel by merging s1 with s2, and t1 with t2.

Our last result in this section is showing that directed series-parallel graphs (DSP)
characterize exactly the 2-terminal graphs with serial-parallel width of 1.

I Proposition 22 ([14]). Let G be a 2-terminal directed graph. Then G is a DSP if and only
if the directed Braess graph GB is not h-embedded in G.

Proposition 22 and the relation between h-embeddings and d-embeddings yield the
following.

I Theorem 23. Let G be a TDAG, and let k ≥ 2. The following conditions coincide. (1) G

is a directed series-parallel graph. (2) The directed Braess graph GB is not d-embedded in G.
(3) SPW (G) = 1.

Proof. Note that GB has no hubs, as all vertices have at most 3 neighbors. Thus by Prop. 10,
GB is d-embedded in G if and only if it is h-embedded (as |J | = 0, G contains only GB itself).
Thus we get (1)⇐⇒ (2).

(2)⇐⇒(3) follows as a special case from Thm. 20. J

5 Computational Problems

We first ask whether we can efficiently decide when a directed graph is 2-terminal.

I Proposition 24. It is NP-complete to decide if a directed graph is 2-terminal, but in P if
the graph is acyclic.

The next two natural computational questions accept as input 2-terminal graphs G and
G′.
IsDMinor: Is G′ a d-minor of G?
IsDEmbedded: Is G′ d-embedded in G?
The complexity may depend on whether the graphs are TDAGs (in which case the questions
coincide), and also on whether G′ is a fixed graph of size k. We write down some of our
results explicitly, and summarize all of them in Table 1.

MFCS 2018

44:10 Directed Graph Minors and Serial-Parallel Width

Table 1 The computational complexity of problems we study. Results without references either
follow from other results in the table or from known results.
* - IsDEmbedded is easy if the minor G′ is acyclic.

2-terminal graph TDAG
any k fixed k any k fixed k

IsSerial N P-c N P-c [P. 25] P P
IsParallel ? ? ? P [P. 26]
IsSerialParallel N P-c N P-c [P. 25] ? P [P. 26]
MaxSerial N P-c P P P
MaxParallel N P-c ? N P-c [P. 27] P [C. 28]
MaxSerialParallel ? ? ? P [C. 28]
IsDMinor N P-c ? N P-c P
IsDEmbedded N P-c P * N P-c P

5.1 Testing properties of edge sets
We are interested in the following questions on a given 2-terminal graph G = 〈V, E, s, t〉 and
a set S = {(ai, bi)}i≤k of k edges:
IsSerial: Is there an s− t path containing S?
IsParallel: Is S parallel?
IsSerialParallel: Is S both serial and parallel?
Note that since all of these properties are phrased in terms of existence, containment in NP
is trivial.

Our main tool in many of the results, both positive and negative, will be the m-
VertexDisjointPaths problem: given a directed graph G = 〈V, E〉 and m pairs of vertices
{(xi, yi)}i≤m, find whether there are vertex-disjoint paths xi − yi in G for all i ≤ m. This
problem is equivalent to that of checking if a graph G′ is h-embedded in G [12], yet using it
for our problems requires some modifications. The problem is NP-complete even when G is
a DAG [39], and NP-complete for m = 2 in general directed graphs [12]. In contrast, it is in
P when G is a DAG and m is fixed [12].

I Proposition 25. IsSerial and IsSerialParallel are NP-complete even for k = 3.

For k = 1 every instance is a ‘yes’ instance, as any single edge is part of a simple path and
part of a minimal cut.

The most tricky part is the complexity of identifying a parallel set. Using some of the
structural results obtained in the previous sections, we can show the following.

I Proposition 26. IsParallel is inP for TDAGs and fixed k.

Proof. Denote ei = (ai, bi) for any ei ∈ S. Denote A = {a1, . . . , ak} and B = {b1, . . . , bk}.
By Prop. 18, it suffices to decide if G contains a forward-subtree Ts to all of A, and a
backward-subtree Tt from all of B to t. Note that Ts contains at most k − 1 “junctions”,
i.e., nodes with outdegree greater than one (including s). Suppose first that we guess what
these vertices are and what is their hierarchy, and denote them by X = {s = x1, . . . , xk′}
and relations TX . We similarly guess a set Y of junctions in Tt and the relations among
them TY . Our algorithm works as follows:

For every xj with degree dj in TX , split xj into dj + 1 nodes such that one of them x0
j

retains all incoming edges (entry port), and each of the other x
vj

j (exit port) retains all
outgoing edges. vj is the first node from X ∪A downward from xj on Ts.

A. Deligkas and R. Meir 44:11

Connect x0
j to all of x

vj

j .
Similarly split each yj ∈ Y to multiple entry ports and a single exit port.
Find vertex-disjoint paths from each exit port to the entry port of one child in TX or TY ,
respectively. E.g. from x

vj

j to ai if vj = ai for some i ≤ k, or to x0
j′ if vj = xj′ for some

j′ ≤ k′.
Consider the algorithm above. The total number of edges in each tree TX , TY is at most 2k,
so the total number of paths we seek in each iteration is less than 4k. Such paths, if exist,
can be found in time |V |O(k2) due to the result of [12].

If such vertex-disjoint paths exist, then merging back all copies of each junction will
provide us with a disjoint forward-subtree Ts and backward-tree Tt. In the other direction, if
such trees exist and use junctions X and Y respectively, then the paths between every two
junctions are vertex-disjoint except in the junctions themselves. Since we split each junction,
these paths will be fully vertex disjoint. Thus the algorithm will always find trees Ts, Tt

using junctions X, Y , if such exist.
The total number of iterations is the number of ways to select 2k vertices out of |V |,

times the number of trees we can try on each set of size 2k (less than (2k)(2k) by Cayley’s
formula), so in total no more than |V |O(k2) iterations.

The total runtime is |V |O(k2) which is polynomial for fixed k.

In the full version of the paper we have shown a polynomial time algorithm to determine if
S is serial(even polynomial in k for TDAGs). Hence, we can check whether S is serial-parallel
by checking each property separately. J

5.2 Testing width properties of graphs
Given 2-terminal graph G and an integer k we study:
MaxSerial: Is there a serial set S of size ≥ k?
MaxParallel: Is PW (G) ≥ k?
MaxSerialParallel: Is SPW (G) ≥ k?

I Proposition 27. MaxParallel is NP-complete even on TDAGs.

Proof. MaxParallel problem is in NP . Given any 2-terminal directed graph G = 〈V, E〉
and a set S of edges in E we can easily check whether S is an s− t cut; if S is indeed an
s− t cut, then by deleting the edges in S there is no directed path from s to t and this can
be easily verified via Dijkstra algorithm .

To show completeness we reduce from MaxDiCut on DAGs [24]. In an instance of
MaxDiCut problem we are given a directed acyclic graph G = 〈V, E〉 and an integer k, and
we are asked if there is a partition of V into two sets V1 and V2 so that the cardinality of
the edge set C = {(u, v) ∈ E|u ∈ V1, v ∈ V2} is at least k. We construct a 2-terminal DAG
G′ as follows. We add the vertex s and we connect it with every vertex v ∈ V via an edge
directed from s to v. Furthermore, we add the vertex t and we connect it with every vertex
v ∈ V via an edge directed from v to t. Clearly, G′ is a 2-terminal graph. Furthermore, it
is not hard to see that no directed cycles were created. Thus, G′ is a 2-terminal DAG. We
will prove that there exists a directed cut of size k in G if and only if there exists an s− t

directed cut of size |V |+ k in G′.
Firstly, assume that in G there exists a partition of V into V1 and V2 such that the size

of C, i.e., the number of directed edges from V1 to V2, is k. Then, the set S that contains C,
the edges from the vertices of V1 to t and the edges from s to vertices of V2, is a minimal
s− t cut. Observe, |S| = |C|+ |V1|+ |V2| = k + |V |. To see why S is an s− t cut, observe

MFCS 2018

44:12 Directed Graph Minors and Serial-Parallel Width

that there is no path of the form s− v − t with v ∈ V , because one of the edges (s, v) and
(v, t) is missing. The only other way to reach t from s is to go from s to some vertex of V1,
move to V2, and then reach t. But every edge from V1 to V2 is in C, hence there is no such
s− t path. Furthermore, S is minimal since for any edge (u, v) in C there is clearly a path
s−u− v− t in G′ that does not contain any other edge in S, and for any other edge in S \C

there is an s− t path of length three that does not use any other in S.
For the other direction now, consider a minimal s− t cut S in G′ of size |V |+ k. Denote

by A all the vertices accessible from s in E \ S, and by B all other vertices of G. The cut S

contains every edge from A to B, every edge from s to B, and every edge from A to t, so in
particular we get that the size of the cut defined by the partition of V to A and B in G is
exactly |S| − (|A|+ |B|) = |V |+ k − |V | = k. Finally, observe that the partition defined by
A and B is a directed cut for G, because otherwise there would be a directed s− t path and
thus S would not be an s− t cut. J

As an immediate corollary we get that IsDMinor and IsDEmbedded are NP-complete
even on a TDAG. When G′ = 〈V ′, E′〉 is fixed, both problems are in P : we use the algorithm
of [12] for h-embedding as a subroutine on at most 2|V ′|3 graphs due to Proposition 10.

Since by Theorems 19 and 20 finding the parallel (or serial-parallel) width is equivalent
to check for excluded minors whose size is a function of k, we get the following.

I Corollary 28. MaxParallel and MaxSerialParallel are in P for TDAGs and fixed k.

6 Discussion

Many different variations of operations can be used to obtain “simple” graphs that capture
the essential forbidden properties of large classes of graphs: minors, embeddings, subdivisions,
etc. These operations should be rich enough to allow for a small set of forbidden graphs, but
restricted enough to only capture the intended class.

We believe that d-embeddings and d-minors will turn out to be useful, beyond the
applications demonstrated in the paper. For example, in [21] bad graphs for planning are
identified by undirected minors, which mislabels many graphs due to ignoring edge directions.
A tighter characterization could be obtained by d-minors.

It is interesting whether d-embeddings or d-minors can be used to characterize other
classes of directed graphs, such as graphs with bounded triangular width [27] or D-width [35].
Finally, there is the question of whether a directed graph version of the Graph Minor Theorem
holds for d-minors or d-embeddings [19].

References
1 I. Ashlagi, D. Monderer, and M. Tennenholtz. Two-terminal routing games with unknown

active players. Artificial Intelligence, 173(15):1441–1455, 2009.
2 M. Babaioff, R. Kleinberg, and C. Papadimitriou. Congestion games with malicious players.

In EC, pages 103–112. ACM, 2007.
3 A. Blum and M. Furst. Fast planning through planning graph analysis. Artificial intelli-

gence, 90(1-2):281–300, 1997.
4 C. Chang and J. Slagle. An admissible and optimal algorithm for searching AND/OR

graphs. Artificial Intelligence, 2(2):117–128, 1971.
5 B. Codenotti and M. Leoncini. Parallel Complexity of Linear System Solution. World

Scientific, 1991.

A. Deligkas and R. Meir 44:13

6 D. Cohen, M. Cooper, P. Jeavons, and S. Zivny. Tractable classes of binary csps defined
by excluded topological minors. In IJCAI, pages 1945–1951, 2015.

7 G. Cooper. The computational complexity of probabilistic inference using bayesian belief
networks. Artificial intelligence, 42(2-3):393–405, 1990.

8 E. Demaine, M. Hajiaghayi, and K. Kawarabayashi. Algorithmic graph minor theory:
Decomposition, approximation, and coloring. In FOCS, pages 637–646. IEEE, 2005.

9 R.J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and
Applications, 10(2):303–318, 1965.

10 D. Eppstein. Parallel recognition of series-parallel graphs. Inf. and Comp., 98(1):41–55,
1992.

11 A. Epstein, M. Feldman, and Y. Mansour. Efficient graph topologies in network routing
games. Games and Economic Behavior, 66(1):115–125, 2009.

12 Fortune, Hopcroft, and Wyllie. The directed subgraph homeomorphism problem. TCS:
Theoretical Computer Science, 10, 1980.

13 V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In UAI, pages
201–208, 2004.

14 R. Holzman and N. Law-Yone. Network structure and strong equilibrium in route selection
games. Mathematical Social Sciences, 46(2):193–205, 2003.

15 E. Horvitz, J. Breese, and M. Henrion. Decision theory in expert systems and artificial
intelligence. International journal of approximate reasoning, 2(3):247–302, 1988.

16 A. Jakoby, M. Liśkiewicz, and R. Reischuk. Space efficient algorithms for directed series–
parallel graphs. Journal of Algorithms, 60(2):85–114, 2006.

17 T. Johnson, N. Robertson, P. Seymour, and R. Thomas. Directed tree-width. Journal of
Combinatorial Theory, Series B, 82(1):138–154, 2001.

18 T. Johnson, N. Robertson, P. Seymour, and R. Thomas. Excluding a grid minor in planar
digraphs. arXiv:1510.00473, 2015.

19 K. Kawarabayashi and S. Kreutzer. Towards the graph minor theorems for directed graphs.
In ICALP, pages 3–10. Springer, 2015.

20 S. Kintali and Q. Zhang. Forbidden directed minors and kelly-width. arXiv:1308.5170,
2013.

21 J. Kleinberg and S. Oren. Time-inconsistent planning: a computational problem in beha-
vioral economics. In EC, pages 547–564. ACM, 2014.

22 S. Kreutzer. Nowhere crownful classes of directed graphs. In Encyclopedia of Algorithms,
pages 1416–1419. Springer, 2016.

23 Casimir Kuratowski. Sur le probleme des courbes gauches en topologie. Fundamenta
mathematicae, 15(1):271–283, 1930.

24 Michael Lampis, Georgia Kaouri, and Valia Mitsou. On the algorithmic effectiveness of
digraph decompositions and complexity measures. Discrete Optimization, 8(1):129–138,
2011. Parameterized Complexity of Discrete Optimization. doi:10.1016/j.disopt.2010.
03.010.

25 László Lovász. Graph minor theory. Bulletin of the American Mathematical Society,
43(1):75–86, 2006.

26 A. Mackworth. Consistency in networks of relations. In Readings in AI, pages 69–78. Tioga
Publ. Col., 1981.

27 K. Meer. An extended tree-width notion for directed graphs related to the computation of
permanents. Computer Science–Theory and Applications, pages 247–260, 2011.

28 R. Meir and D. Parkes. Playing the wrong game: Bounding negative externalities in diverse
populations of agents. In AAMAS’18, 2018. To appear.

29 I. Milchtaich. Network topology and the efficiency of equilibrium. GEB, 57:321–346, 2006.

MFCS 2018

http://dx.doi.org/10.1016/j.disopt.2010.03.010
http://dx.doi.org/10.1016/j.disopt.2010.03.010

44:14 Directed Graph Minors and Serial-Parallel Width

30 E. Nikolova and N. Stier-Moses. The burden of risk aversion in mean-risk selfish routing.
In EC, pages 489–506, 2015.

31 Ira Pohl. Heuristic search viewed as path finding in a graph. Artificial intelligence, 1(3-
4):193–204, 1970.

32 N. Robertson and P. Seymour. Graph minors. II. algorithmic aspects of tree-width. Journal
of algorithms, 7(3):309–322, 1986.

33 N. Robertson and P. Seymour. Graph minors. xx. wagner’s conjecture. Journal of Com-
binatorial Theory, Series B, 92(2):325–357, 2004.

34 M. Rowland, A. Pacchiano, and A. Weller. Conditions beyond treewidth for tightness of
higher-order lp relaxations. In AI and Statistics, pages 10–18, 2017.

35 M. Safari. D-width: A more natural measure for directed tree width. In MFCS, pages
745–756. Springer, 2005.

36 C. Shannon. The synthesis of two-terminal switching circuits. Bell Labs Technical Journal,
28(1):59–98, 1949.

37 K. Takamizawa, T. Nishizeki, and N. Saito. Linear-time computability of combinatorial
problems on series-parallel graphs. JACM, 29(3):623–641, 1982.

38 P. Tang, Y. Teng, Z. Wang, S. Xiao, and Y. Xu. Computational issues in time-inconsistent
planning. In AAAI, pages 3665–3671, 2017.

39 J. Vygen. NP-completeness of some edge-disjoint paths problems. Discrete Applied Math-
ematics, 61(1):83–90, 1995.

40 K. Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen,
114(1):570–590, 1937.

41 Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding by translating on
hyperplanes. In AAAI, pages 1112–1119, 2014.

The Complexity of Finding Small Separators in
Temporal Graphs
Philipp Zschoche
Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
zschoche@tu-berlin.de

Till Fluschnik1

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
till.fluschnik@tu-berlin.de

Hendrik Molter2

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
h.molter@tu-berlin.de

Rolf Niedermeier
Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
rolf.niedermeier@tu-berlin.de

Abstract
Temporal graphs are graphs with time-stamped edges. We study the problem of finding a small
vertex set (the separator) with respect to two designated terminal vertices such that the removal of
the set eliminates all temporal paths connecting one terminal to the other. Herein, we consider
two models of temporal paths: paths that pass through arbitrarily many edges per time step
(non-strict) and paths that pass through at most one edge per time step (strict). Regarding the
number of time steps of a temporal graph, we show a complexity dichotomy (NP-hardness versus
polynomial-time solvability) for both problem variants. Moreover we prove both problem variants
to be NP-complete even on temporal graphs whose underlying graph is planar. We further show
that, on temporal graphs with planar underlying graph, if additionally the number of time steps
is constant, then the problem variant for strict paths is solvable in quasi-linear time. Finally, we
introduce and motivate the notion of a temporal core (vertices whose incident edges change over
time). We prove that the non-strict variant is fixed-parameter tractable when parameterized by
the size of the temporal core, while the strict variant remains NP-complete, even for constant-size
temporal cores.

2012 ACM Subject Classification Mathematics of computing → Paths and connectivity prob-
lems, Theory of computation → Fixed parameter tractability, Theory of computation → Prob-
lems, reductions and completeness

Keywords and phrases (non-)strict temporal paths, temporal core, single-source shortest paths,
node multiway cut, length-bounded cuts, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.45

Related Version A full version of the paper is available at https://arxiv.org/abs/1711.
00963.

Acknowledgements We thank anonymous reviewers for their constructive feedback which helped
us to improve the presentation of this work.

1 Supported by the DFG, project DAMM (NI 369/13) and project TORE (NI 369/18).
2 Partially supported by the DFG, project MATE (NI 369/17).

© Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 45; pp. 45:1–45:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zschoche@tu-berlin.de
mailto:till.fluschnik@tu-berlin.de
mailto:h.molter@tu-berlin.de
mailto:rolf.niedermeier@tu-berlin.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.45
https://arxiv.org/abs/1711.00963
https://arxiv.org/abs/1711.00963
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 The Complexity of Finding Small Separators in Temporal Graphs

s z
2,4

1,2
1,2

1

1,3

3

4

2 2

1

(a) A temporal graph G.

G1: G2: G3: G4:

(b) Layers of G.

Figure 1 Subfigure (a) shows a temporal graph G and subfigure (b) shows its four lay-
ers G1, . . . , G4. The gray squared vertex forms a strict temporal (s, z)-separator, but no tem-
poral (s, z)-separator. The two squared vertices form a temporal (s, z)-separator.

1 Introduction

In complex network analysis, it is nowadays very common to have access to and process
graph data where the interactions among the vertices are time-stamped. When using static
graphs as a mathematical model, the dynamics of interactions are not reflected and important
information of the data might not be captured. Temporal graphs address this issue. A
temporal graph is, informally speaking, a graph where the edge set may change over a
discrete time interval, while the vertex set remains unchanged. Having the dynamics of
interactions represented in the model, it is essential to adapt definitions such as connectivity
and paths to respect temporal features. This directly affects the notion of separators in the
temporal setting. Vertex separators are a fundamental primitive in static network analysis
and it is well-known that they can be computed in polynomial time (see, e.g., proof of [1,
Theorem 6.8]). In contrast to the static case, Kempe et al. [25] showed that in temporal
graphs it is NP-hard to compute minimum separators.

Temporal graphs are well-established in the literature and are also referred to as time-
varying [27] and evolving [15] graphs, temporal networks [24, 25, 30], multidimensional
networks [8], link streams [26, 36], and edge-scheduled networks [7]. In this work, we use the
well-established model in which each edge has a time stamp [8, 24, 3, 22, 25, 30]. Assuming
discrete time steps, this is equivalent to a sequence of static graphs over a fixed set of
vertices [31]. Formally, we define a temporal graph as follows.

I Definition 1.1 (Temporal Graph). An (undirected) temporal graph G = (V,E, τ) is an
ordered triple consisting of a set V of vertices, a set E ⊆

(
V
2
)
× {1, . . . , τ} of time-edges, and

a maximal time label τ ∈ N.

See Figure 1 for an example with τ = 4, that is, a temporal graph with four time steps, also
referred to as layers. The static graph obtained from a temporal graph G by removing the
time stamps from all time-edges we call the underlying graph of G.

Many real-world applications have temporal graphs as underlying mathematical model.
For instance, it is natural to model connections in public transportation networks with
temporal graphs. Other examples include information spreading in social networks, commu-
nication in social networks, biological pathways, or spread of diseases [24].

A fundamental question in temporal graphs, addressing issues such as connectivity [5, 30],
survivability [27], and robustness [34], is whether there is a “time-respecting” path from a

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:3

distinguished start vertex s to a distinguished target vertex z.3 We provide a thorough study
of the computational complexity of separating s from z in a given temporal graph.

Moreover, we study two natural restrictions of temporal graphs:
(i) planar temporal graphs and
(ii) temporal graphs with a bounded number of vertices incident to edges that are not

permanently existing – these vertices form the so-called temporal core.
Both restrictions are naturally motivated by settings e.g. occurring in (hierarchical) traffic
networks. We also consider two very similar but still significantly differing temporal path
models (both used in the literature), leading to two corresponding models of temporal
separation.

Two path models. We start with the introduction of the “non-strict” path model [25]. Given
a temporal graph G = (V,E, τ) with two distinct vertices s, z ∈ V , a temporal (s, z)-path
of length ` in G is a sequence P = (({s = v0, v1}, t1), ({v1, v2}, t2), . . . , ({v`−1, v` = z}, t`))
of time-edges in E, where vi 6= vj for all i, j ∈ {0, . . . , `} with i 6= j and ti ≤ ti+1 for
all i ∈ {1, . . . , ` − 1}. A vertex set S with S ∩ {s, z} = ∅ is a temporal (s, z)-separator if
there is no temporal (s, z)-path in G− S := (V \ S, {({v, w}, t) ∈ E | v, w ∈ V \ S}, τ). We
are ready to state the central problem of our paper.

Temporal (s, z)-Separation
Input: A temporal graph G = (V,E, τ), two distinct vertices s, z ∈ V , and k ∈ N.
Question: Does G admit a temporal (s, z)-separator of size at most k?

Our second path model is the “strict” variant. A temporal (s, z)-path P is called strict if
ti < ti+1 for all i ∈ {1, . . . , ` − 1}. In the literature, strict temporal paths are also known
as journeys [3, 2, 31, 30].4 A vertex set S is a strict temporal (s, z)-separator if there is no
strict temporal (s, z)-path in G− S. Thus, our second main problem, Strict Temporal
(s, z)-Separation, is defined in complete analogy to Temporal (s, z)-Separation, just
replacing (non-strict) temporal separators by strict ones.

While the strict version of temporal separation immediately appears as natural, the non-
strict variant can be viewed as a more conservative version of the problem. For instance, in a
disease-spreading scenario the spreading speed might be unclear. To ensure containment of the
spreading by separating patient zero (s) from a certain target (z), a temporal (s, z)-separator
might be the safer choice.

Main results. Table 1 provides an overview on our results.5
A central contribution is to prove that both Temporal (s, z)-Separation and Strict

Temporal (s, z)-Separation are NP-complete for all τ ≥ 2 and τ ≥ 5, respectively,
strengthening a result by Kempe et al. [25] (they show NP-hardness of both variants for
all τ ≥ 12). For Temporal (s, z)-Separation, our hardness result is already tight.6 For
the strict variant, we identify a dichotomy in the computational complexity by proving

3 In the literature the sink is usually denoted by t. To be consistent with Michail [31] we use z instead as
we reserve t to refer to points in time.

4 We also refer to Himmel [21] for a thorough discussion and comparison of temporal path concepts.
5 Due to the space constraints, several details and proofs (marked with ?) are deferred to a long version

of this paper, see e.g. https://arxiv.org/abs/1711.00963.
6 Temporal (s, z)-Separation with τ = 1 is equivalent to (s, z)-Separation on static graphs.

MFCS 2018

https://arxiv.org/abs/1711.00963

45:4 The Complexity of Finding Small Separators in Temporal Graphs

Table 1 Overview on our results. Herein, NP-c. abbreviates NP-complete, n and m denote
the number of vertices and time-edges, respectively, G↓ refers to the underlying graph of an input
temporal graph. a (Thm. 3.1; W[1]-hard wrt. k) b (Thm. 3.2) c (Cor. 4.3) d (Prop. 4.4) e (Thm. 5.2)

General Planar G↓ Temporal core
(Section 3) (Section 4) (Section 5)

(s, z)-Separation 2 ≤ τ ≤ 4 5 ≤ τ τ unbounded τ constant constant size

Temporal NP-completea NP-c.c open nO(1) +O(m log m) e

Strict Temporal O(k ·m) b NP-c.a NP-c.c O(m log m) d NP-completea

polynomial-time solvability of Strict Temporal (s, z)-Separation for τ ≤ 4. Moreover,
we prove that both problems remain NP-complete on temporal graphs that have an underlying
graph that is planar.

We introduce the notion of temporal cores in temporal graphs. Informally, the temporal
core of a temporal graph is the set of vertices whose edge-incidences change over time.
We prove that Temporal (s, z)-Separation is fixed-parameter tractable (FPT) when
parameterized by the size of the temporal core, while Strict Temporal (s, z)-Separation
remains NP-complete even if the temporal core is empty.

A particular aspect of our results is that they demonstrate that the choice of the model
(strict versus non-strict) for a problem can have a crucial impact on the computational
complexity of said problem. This contrasts with wide parts of the literature where both
models were used without discussing the subtle but crucial differences in computational
complexity.

Technical contributions. To show the polynomial-time solvability of Strict Temporal
(s, z)-Separation for τ ≤ 4, we prove that a classic separator result of Lovász et al. [28]
translates to the strict temporal setting. This is surprising since many other results about
separators in the static case do not apply in the temporal case. In this context, we also
develop a linear-time algorithm for Single-Source Shortest Strict Temporal Paths,
improving the running time of the best known algorithm due to Wu et al. [37] by a logarithmic
factor.

We settle the complexity of Length-Bounded (s, z)-Separation on planar graphs by
showing its NP-hardness, which was left unanswered by Fluschnik et al. [17] and promises to
be a valuable intermediate problem for proving hardness results. In the hardness reduction
for Length-Bounded (s, z)-Separation we introduce a grid-like, planarity-preserving
vertex gadget that is generally useful to replace “twin” vertices which in many cases are not
planarity-preserving and which are often used to model weights.

While showing that Temporal (s, z)-Separation is fixed-parameter tractable when
parameterized by the size of the temporal core, we employ a case distinction on the size of
the temporal core, and show that in the non-trivial case we can reduce the problem to Node
Multiway Cut. We identify an “above lower bound parameter” for Node Multiway Cut
that is suitable to lower-bound the size of the temporal core, thereby making it possible to
exploit a fixed-parameter tractability result due to Cygan et al. [12].

Related work. Our most important reference is the work of Kempe et al. [25] who proved
that Temporal (s, z)-Separation is NP-hard. In contrast, Berman [7] proved that
computing temporal (s, z)-cuts (edge deletion instead of vertex deletion) is polynomial-time

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:5

solvable. In the context of survivability of temporal graphs, Liang and Modiano [27] studied
cuts where an edge deletion only lasts for δ consecutive time stamps. Moreover, they studied
a temporal maximum flow defined as the maximum number of sets of journeys where each
two journeys in a set do not use a temporal edge within some δ time steps. A different notion
of temporal flows on temporal graphs was introduced by Akrida et al. [2]. They showed how
to compute in polynomial time the maximum amount of flow passing from a source vertex s
to a sink vertex z until a given point in time.

The vertex-variant of Menger’s Theorem [29] states that the maximum number of vertex-
disjoint paths from s to z equals the size of a minimum-cardinality (s, z)-separator. In static
graphs, Menger’s Theorem allows for finding a minimum-cardinality (s, z)-separator via
maximum flow computations. However, Berman [7] proved that the vertex-variant of an
analogue to Menger’s Theorem for temporal graphs, asking for the maximum number of
(strict) temporal paths instead, does not hold. Kempe et al. [25] proved that the vertex-
variant of the former analogue to Menger’s Theorem holds true if the underlying graph
excludes a fixed minor. Mertzios et al. [30] proved another analogue of Menger’s Theorem:
the maximum number of strict temporal (s, z)-path which never leave the same vertex at the
same time equals the minimum number of node departure times needed to separate s from z,
where a node departure time (v, t) is the vertex v at time point t.

Michail and Spirakis [32] introduced the time-analogue of the famous Traveling Sales-
person problem and studied the problem on temporal graphs of dynamic diameter d ∈ N,
that is, informally speaking, on temporal graphs where every two vertices can reach each
other in at most d time steps at any time. Erlebach et al. [14] studied the same problem on
temporal graphs where the underlying graph has bounded degree, bounded treewidth, or
is planar. Additionally, they introduced a class of temporal graphs with regularly present
edges, that is, temporal graphs where each edge is associated with two integers upper- and
lower-bounding consecutive time steps of edge absence. Axiotis and Fotakis [5] studied the
problem of finding the smallest temporal subgraph of a temporal graph such that single-
source temporal connectivity is preserved on temporal graphs where the underlying graph has
bounded treewidth. In companion work, we recently studied the computational complexity
of (non-strict) temporal separation on several other restricted temporal graphs [18].

2 Preliminaries

Let N denote the natural numbers without zero. For n ∈ N, we use [n] := [1, n] = {1, . . . , n}.

Static graphs. We use basic notations from (static) graph theory [13]. Let G = (V,E)
be an undirected, simple graph. We use V (G) and E(G) to denote the set of vertices
and set of edges of G, respectively. We denote by G − V ′ := (V \ V ′, {{v, w} ∈ E |
v, w ∈ V \ V ′}) the graph G without the vertices in V ′ ⊆ V . For V ′ ⊆ V , G[V ′] :=
G − (V \ V ′) denotes the induced subgraph of G by V ′. A path of length ` is sequence of
edges P = ({v1, v2}, {v2, v3}, . . . , {v`, v`+1}) where vi 6= vj for all i, j ∈ [` + 1] with i 6= j.
We set V (P) = {v1, v2, . . . , v`+1}. Path P is an (s, z)-path if s = v1 and z = v`+1. A
set S ⊆ V \ {s, z} of vertices is an (s, z)-separator if there is no (s, z)-path in G− S.

Temporal graphs. Let G = (V,E, τ) be a temporal graph. The graph Gi(G) = (V,Ei(G))
is called layer i of the temporal graph G = (V,E, τ) where {v, w} ∈ Ei(G)⇔ ({v, w}, i) ∈ E.
The underlying graph G↓(G) of a temporal graph G = (V,E, τ) is defined as G↓(G) :=
(V,E↓(G)), where E↓(G) = {e | (e, t) ∈ E}. (We write Gi, Ei, G↓, and E↓ for short

MFCS 2018

45:6 The Complexity of Finding Small Separators in Temporal Graphs

if G is clear from the context.) For X ⊆ V we define the induced temporal subgraph of X
by G[X] := (X, {({v, w}, t) ∈ E | v, w ∈ X}, τ). We say that G is connected if its underlying
graph G↓ is connected. For surveys concerning temporal graphs we refer to [9, 31, 24, 26, 23].

Strict and non-strict temporal separators. Throughout the paper we assume that the
underlying graph of the temporal input graph G is connected and that there is no time-edge
between s and z. Furthermore, in accordance with Wu et al. [37] we assume that the
time-edge set E is ordered by ascending time stamps. Moreover, we can assume that the
number of layers is at most the number of time-edges:

I Lemma 2.1 (?). Let I = (G = (V,E, τ), s, z, k) be an instance of (Strict) Temporal
(s, z)-Separation. There is an algorithm which computes in O(|E|) time an instance I ′ =
(G′ = (V,E′, τ ′), s, z, k) of (Strict) Temporal (s, z)-Separation which is equivalent
to I, where τ ′ ≤ |E′|.

Regarding our two models, we have the following connection:

I Lemma 2.2 (?). There is a linear-time computable many-one reduction from Strict
Temporal (s, z)-Separation to Temporal (s, z)-Separation that maps any instance
(G = (V,E, τ), s, z, k) to an instance (G′ = (V ′,E′, τ ′), s, z, k′) with k′ = k and τ ′ = 2 · τ .

3 Hardness Dichotomy Regarding the Number of Layers

In this section we settle the complexity dichotomy of both Temporal (s, z)-Separation and
Strict Temporal (s, z)-Separation regarding the number τ of time steps. We observe
that both problems are strongly related to the following NP-complete [10, 35] problem:

Length-Bounded (s, z)-Separation (LBS)
Input: An undirected graph G = (V,E), distinct vertices s, z ∈ V , and k, ` ∈ N.
Question: Is there a subset S ⊆ V \ {s, z} such that |S| ≤ k and there is no (s, z)-path

in G− S of length at most `?

Length-Bounded (s, z)-Separation is NP-complete even if the lower bound ` for the
path length is five [6] and W[1]-hard with respect to the postulated separator size [20]. We
obtain the following, improving a result by Kempe et al. [25] who showed NP-completeness of
Temporal (s, z)-Separation and Strict Temporal (s, z)-Separation for all τ ≥ 12.

I Theorem 3.1 (?). Temporal (s, z)-Separation is NP-complete for every maximum
label τ ≥ 2 and Strict Temporal (s, z)-Separation is NP-complete for every τ ≥ 5.
Moreover, both problems are W[1]-hard when parameterized by the solution size k.

We only present the construction of the NP-hardness reduction for Temporal (s, z)-Sepa-
ration, which is inspired by Baier et al. [6], and postpone the rest to the long version.

Proof (Construction). To show NP-completeness of Temporal (s, z)-Separation for
τ = 2 we present a reduction from the Vertex Cover problem where, given a graph
G = (V,E) and an integer k, the task is to determine whether there exists a set V ′ ⊆ V of
size at most k such that G−V ′ does not contain any edge. Let (G = (V,E), k) be an instance
of Vertex Cover. We say that V ′ ⊆ V is a vertex cover in G of size k if |V ′| = k and V ′
is a solution to (G = (V,E), k). We refine the gadget of Baier et al. [6, Theorem 3.9] and
reduce from Vertex Cover to Temporal (s, z)-Separation. Let I := (G = (V,E), k)
be a Vertex Cover instance and n := |V |. We construct a Temporal (s, z)-Separation

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:7

v

w

x

s z

sv

v

zv1

1 2

2

2 1

sw

w

zw
1

1 2

2

2 1

sx

x

zx

1

1 2

2

2 1

1

1

Figure 2 The Vertex Cover instance (G, 1) (left) and the corresponding Temporal (s, z)-
Separation instance from the reduction of Theorem 3.1 (right). The edge-edges are dashed (red),
the vertex-edges are solid (green), and the vertex gadgets are in dotted boxes.

instance I ′ := (G′ = (V ′,E′, 2), s, z, n+ k), where V ′ := V ∪ {sv, tv | v ∈ V } ∪ {s, z} are the
vertices and the time-edges are defined as

E′ :=
vertex-edges︷ ︸︸ ︷

{({s, sv}, 1), ({sv, v}, 1), ({v, zv}, 2), ({zv, z}, 2), ({s, v}, 2), ({v, z}, 1) | v ∈ V } ∪
{({sv, zw}, 1), ({sw, zv}, 1) | {v, w} ∈ E}︸ ︷︷ ︸

edge-edges

.

Note that |V ′| = 3 ·n+ 2, |E′| = 6 · |V ′|+ 2 · |E|, and I ′ can be computed in polynomial time.
For each vertex v ∈ V there is a vertex gadget which consists of three vertices sv, v, zv and
six vertex-edges. In addition, for each edge {v, w} ∈ E there is an edge gadget which consists
of two edge-edges {sv, zw} and {zv, sw}. See Figure 2 for an example. J

In the remainder of this section we prove that the bound on τ is tight in the strict case
(for the non-strict case the tightness is obvious). This is the first case where we can observe a
significant difference between the strict and the non-strict variant of our separation problem.

I Theorem 3.2. Strict Temporal (s, z)-Separation for maximum label τ ≤ 4 can be
solved in O(k · |E|) time, where k is the solution size.

As a subroutine hidden in several of our algorithms, we need to solve the Single-Source
Shortest Strict Temporal Paths problem on temporal graphs: find shortest strict
paths from a source vertex s to all other vertices in the temporal graph. Herein, we say that a
strict temporal (s, z)-path is shortest if there is no strict temporal (s, z)-path of length `′ < `.
Indeed, we provide a linear-time algorithm for this. We believe this to be of independent
interest; it improves (with few adaptations to the model; for details we refer to the long
version) previous results by Wu et al. [37], but in contrast to the algorithm of Wu et al. [37]
our subroutine cannot be adjusted to the non-strict case.

I Proposition 3.3 (?). Single-Source Shortest Strict Temporal Paths is solvable
in Θ(|E|) time.

Our algorithm behind Theorem 3.2 executes the following steps:
1. As a preprocessing step, remove unnecessary time-edges and vertices from the graph.
2. Compute an auxiliary graph called directed path cover graph of the temporal graph.
3. Compute a separator for the directed path cover graph.

MFCS 2018

45:8 The Complexity of Finding Small Separators in Temporal Graphs

s z

2 2

2 1

t

s

V(1,3) V(2,2) V(3,1)

z

V(1,2) V(2,1)

Figure 3 The left side depicts an excerpt of a reduced temporal graph with maximum time-edge
label τ = 4. Dashed arcs labeled with a number x indicate a shortest strict temporal path of
length x. The right side depicts the directed path cover graph D from s to z of the reduced temporal
graph. A gray arc from vertex set V(i,j) to vertex set V(i′,j′) denotes that for two vertices v ∈ V(i,j)
and w ∈ V(i′,j′) there can be an arc from v to w in D. Take as an example the square-shaped vertex
in V(2,2) and the diamond-shaped vertex in V(2,1).

In the following, we explain each of the steps in more detail.
The preprocessing reduces the temporal graph such that it has the following properties.

A temporal graph G = (V,E, τ) with two distinct vertices s, z ∈ V is reduced if
(i) the underlying graph G↓ is connected,
(ii) for each time-edge e ∈ E there is a strict temporal (s, z)-path which contains e, and
(iii) there is no strict temporal (s, z)-path of length at most two in G.
This preprocessing step can be performed in polynomial time:

I Lemma 3.4 (?). Let I = (G = (V,E, τ), s, z, k) be an instance of Strict Temporal
(s, z)-Separation. In O(k · |E|) time, one can either decide I or construct an instance I ′ =
(G′ = (V ′,E′, τ), s, z, k′) of Strict Temporal (s, z)-Separation such that I ′ is equivalent
to I, G′ is reduced, |V ′| ≤ |V |, |E′| ≤ |E|, and k′ ≤ k.

Lovász et al. [28] showed that the minimum size of an (s, z)-separator for paths of length
at most four in a graph is equal to the number of vertex-disjoint (s, z)-paths of length at
most four in a graph. We adjust their idea to strict temporal paths on temporal graphs.
The proof of Lovász et al. [28] implicitly relies on the transitivity of connectivity in static
graphs. This does not hold for temporal graphs; hence, we have to extend their result to the
temporal case. To this end, we define a directed auxiliary graph.

I Definition 3.5 (Directed Path Cover Graph). Let G = (V,E, τ = 4) be a reduced temporal
graph with s, z ∈ V . The directed path cover graph from s to z of G is a directed graph D =
(V, ~E) such that (v, w) ∈ ~E if and only if
(i) v, w ∈ V ,
(ii) ({v, w}, t) ∈ E for some t ∈ [τ], and
(iii) v ∈ V(i,j) and w ∈ V(i′,j′) such that i < i′, v ∈ V(2,2) and w ∈ V(2,1), v = s

and w ∈ V(1,j), or w = z and v ∈ V(i,1) for some i, j ∈ {2, 3}.
Herein, a vertex x ∈ V is in the set V(i,j) if the shortest strict temporal (s, x)-path is of
length i and the shortest strict temporal (x, z)-path is of length j.

Figure 3 depicts a generic directed path cover graph of a reduced temporal graph with τ = 4.
Note that due to the definition of reduced temporal graphs, one can prove that the set V(1,1)
is always empty, and hence not depicted in Figure 3. This is a crucial property that allows
us to prove the following.

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:9

s

x

v

V(1,1) y

z

1 2

33

4 5

Figure 4 A reduced temporal graph with maximum label τ = 5 where the vertex set V(1,1) of the
directed path cover graph is not empty. The solid (red) and dashed (green) edges are strict temporal
paths and show that edges ({s, v}, 3) and ({v, z}, 3) are not removed when the graph is reduced.
Furthermore, v is not removed since (({s, v}, 3), ({v, z}, 3)) is not a strict temporal path.

I Lemma 3.6 (?). Let G = (V,E, τ = 4) be a reduced temporal graph with s, z ∈ V . Then the
directed path cover graph D from s to z of G can be computed in O(|E|) time and S ⊆ V \{s, z}
is a strict temporal (s, z)-separator in G if and only if S is an (s, z)-separator in D.

Figure 4 shows that if τ = 5, then we can construct a reduced temporal graph where the set
V(1,1) is not empty. This indicates why our algorithm fails for τ = 5.

Finally, with Lemmata 3.4 and 3.6 we can prove Theorem 3.2.

Proof of Theorem 3.2. Let I := (G = (V,E, τ = 4), s, z, k) be an instance of Strict
Temporal (s, z)-Separation. First, apply Lemma 3.4 in O(k · |E|) time to either decide I
or to obtain an instance I ′ = (G′ = (V ′,E′, τ), s, z, k′) of Strict Temporal (s, z)-Sepa-
ration. In the second case, compute the directed path cover graph D of G′ from s to z
in O(|E′|) time (by Lemma 3.6). Next, check whether D has an (s, z)-separator of size at
most k′ in O(k′ · |E′|) time by a folklore result [19]. By Lemma 3.6, D has an (s, z)-separator
of size k′ if and only if G′ has a strict temporal (s, z)-separator of size k′. Since by Lemma 3.4
we have that G′ is reduced, |V ′| ≤ |V |, |E′| ≤ |E|, and k′ ≤ k, the overall running time
is O(k · |E|). J

4 On Temporal Graphs with Planar Underlying Graph

In this section, we study our problems on planar temporal graphs, that is, temporal graphs
that have a planar underlying graph. We show that both Temporal (s, z)-Separation
and Strict Temporal (s, z)-Separation remain NP-complete on planar temporal graphs.
On the positive side, we show that on planar temporal graphs with a constant number of
layers, Strict Temporal (s, z)-Separation can be solved in O(|E| · log |E|) time.

In order to prove our hardness results, we first prove NP-hardness for Length-Bounded
(s, z)-Separation on planar graphs – a result which we consider to be of independent
interest; note that NP-completeness on planar graphs was only known for the edge-deletion
variant of Length-Bounded (s, z)-Separation on undirected graphs [17] and weighted
directed graphs [33].

I Theorem 4.1. Length-Bounded (s, z)-Separation on planar graphs is NP-hard.

Proof. We give a many-one reduction from the NP-complete [17] edge-weighted variant of
Length-Bounded (s, z)-Cut, referred to as Planar Length-Bounded (s, z)-Cut, where
the input graph G = (V,E) is planar, has edge costs c : E → {1, k + 1}, has maximum
degree ∆ = 6, the degree of s and z is three, and s and z are incident to the outer face. Since
the maximum degree is constant, one can replace a vertex with a planar grid-like gadget.

MFCS 2018

45:10 The Complexity of Finding Small Separators in Temporal Graphs

s v z

1 k + 1

C4
s C3

s

· · · · · ·

C6
s C1

s

· · · · · ·

Gs

. . .
. . .

. . .
. . .

C5
s

...

...

...

C2
s

...

...

...

us
1,1

· · · · · ·

C1
v

· · · · · ·

Gv

. . .
. . .

. . .
. . .

...

...

...

C2
v

...

...

...

· · · · · ·

C1
z

· · · · · ·

Gz

. . .
. . .

. . .
. . .

...

...

...

...

...

...

Figure 5 A simple planar graph G (left) with edge costs (above edges) and the obtained graph G′

in the reduction from Theorem 4.1. The connector sets are highlighted in gray. The edge-gadgets
are indicated by dash-dotted lines.

Let I := (G = (V,E, c), s, z, `, k) be an instance of Planar Length-Bounded (s, z)-
Cut, and we assume k to be even7. We construct an instance I ′ := (G′, s′, z′, `′, k) of
Length-Bounded (s, z)-Separation as follows (refer to Figure 5 for an illustration).
Construction. For each vertex v ∈ V , we introduce a vertex-gadget Gv which is a grid of
size (2k + 2) × (2k + 2), that is, a graph with vertex set {uvi,j | i, j ∈ [2k + 2]} and edge
set {{uvi,j , uvi′,j′} | |i− i′|+ |j− j′| = 1}. There are six pairwise disjoint subsets C1

v , . . . , C
6
v ⊆

V (Gv) of size k + 1 that we refer to as connector sets. As we fix an orientation of Gv
such that uv1,1 is in the top-left, there are two connector sets on the top of Gv, two on
the bottom of Gv, one on the left of Gv, and one on the right of Gv. Formally, C1

v =
{uv1,k+2, . . . , u

v
1,2k+2}, C2

v = {uvk/2,2k+2, . . . , u
v
3k/2,2k+2}, C3

v = {uv2k+2,k+2, . . . , u
v
2k+2,2k+2},

C4
v = {uv2k+2,1, . . . , u

v
2k+2,k+1}, C5

v = {uvk/2,1, . . . , u
v
3k/2,1}, and C6

v = {uv1,1, . . . , uv1,k+1}.
Note that all (x, y)-paths are of length at most k′ := (2k + 2)2 − 1, for all x, y ∈ V (Gv),

because there are only (2k + 2)2 vertices in V (Gv).
Let φ(G) be a plane embedding of G. We say that an edge e incident with vertex v ∈ V

is at position i on v if e is the ith edge incident with v when counted clockwise with respect
to φ(G).

For each edge e = {v, w}, we introduce an edge-gadget Ge that differs on the weight of e,
as follows. Let e be at position i ∈ {1, . . . , 6} on v and at position j ∈ {1, . . . , 6} on w.

If c(e) = 1, then Ge is constructed as follows. Add a path consisting of (` + 1) · k′ − 1
vertices and connect one endpoint with each vertex in Civ by an edge and connect the other
endpoint with each vertex in Cjw by an edge.

If c(e) = k + 1, then Ge is constructed as follows. We introduce a planar matching
between the vertices in Civ and Cjw. That is, for instance, we connect vertex uv1,k+2+p with
vertex uw1,2k+2−p for each p ∈ {0, . . . , k}, if i = j = 1, or we connect vertex uv1,1+p with
vertex uw2k+2,3k/2−p for each p ∈ {0, . . . , k}, if i = 6 and j = 2 (we omit the remaining cases).
Then, replace each edge by a path of length at least (`+ 1) · k′ + 1 where its endpoints are
identified with the endpoints of the replaced edge. Hence, a path between two vertex-gadgets
has length at least (`+ 1) · k′ + 1.

Next, we choose connector sets Ci′s and Cj′

z such that no vertex v ∈ Ci′s ∪ Cj
′

z is adjacent
to a vertex from an edge-gadget. Such i′ and j′ always exist because the degrees of s and z
are both three. Now, we add two special vertices s′ and z′ and edges between s′ and each
vertex in Ci′s , as well as between z′ and each vertex in Cj′

z .

7 If k is odd, since s and z are incident to the outer face, then we can add a path of length `− 1 with
endpoints s and z and set the budget for edge deletions to k + 1.

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:11

Finally, we set `′ := 2 + (`+ 1) · k′ + ` ((`+ 1) · k′ + 1) . Note that G′ can be computed
in polynomial time. Moreover, one can observe that G′ is planar by obtaining an embedding
from φ. This concludes the description of the construction.
Correctness. We claim that I is a yes-instance if and only if I ′ is a yes-instance.
⇒: Let I be a yes-instance. Thus, there is a solution C ⊂ E with c(C) ≤ k such that there is
no (s, z)-path of length at most ` in G− C. We construct a set S ⊂ V (G′) of size at most k
by taking for each {v, w} ∈ C one arbitrary vertex from the edge-gadget G{v,w} into S. Note
that since c(C) ≤ k, each edge in C is of cost one.

Assume towards a contradiction that there is a shortest (s′, z′)-path P ′ of length at
most `′ in G′−S. Since a path between two vertex-gadgets has length at least (`+ 1) · k′+ 1,
we know that P ′ goes through at most ` edge-gadgets. Otherwise P ′ would be of length at
least 2 + (`+ 1) · [(`+ 1) · k′ + 1] = 2 + (`+ 1) · k′ + ` · [(`+ 1) · k′ + 1] + 1 = `′ + 1. Now, we
reconstruct an (s, z)-path P in G corresponding to P ′ by taking an edge e ∈ E into P if P ′
goes through the edge-gadget Ge. Hence, the length of P is at most `. This contradicts that
there is no (s, z)-path of length at most ` in G−C. Consequently, there is no (s′, z′)-path of
length at most `′ in G′ − S and I ′ is a yes-instance.
⇐: Let I ′ be a yes-instance. Thus, there is a solution S ⊆ V (G′) of minimum size (at most k)
such that there is no (s′, z′)-path of length at most `′ in G′ − S. Since S is of minimum size,
it follows from the following claim that V (Gv) ∩ S = ∅ for all v ∈ V .

I Claim 4.2. Let Gv be a vertex-gadget and i, j ∈ {1, . . . , 6} with i 6= j. Then, for each
vertex set S ⊆ V (Gv) of size at most k it holds that there are v1 ∈ Civ \ S and v2 ∈ Cjv \ S
such that there is a (v1, v2)-path of length at most k′ in Gv − S.

Proof of Claim 4.2. Let Civ, Cjv two connector sets of a vertex-gadget Gv, where i, j ∈
{1, . . . , 6} and i 6= j. We add vertices a and b and edges {a, a′} and {b, b′} toGv, where a′ ∈ Civ
and b′ ∈ Cjv . There are

(6
2
)
different cases in which i 6= j. It is not difficult to see that in

each case there are k + 1 vertex-disjoint (a, b)-paths. The claim then follows by Menger’s
Theorem [29]. J

Note that by minimality of S, it holds that V (Ge)∩S = ∅ for all e ∈ E with c(e) = k+ 1.
We construct an edge set C ⊆ E of cost at most k by taking {v, w} ∈ E into C if there is
a y ∈ V (G{v,w}) ∩ S.

Assume towards a contradiction that there is a shortest (s, z)-path P of length at most `
in G − C. We reconstruct an (s′, z′)-path P ′ in G′ which corresponds to P as follows.
First, we take an edge {s′, v} ∈ E(G′) such that v ∈ Ci

′

s \ S. Such a v always exists,
because |Ci′s | = k + 1 and |S| ≤ k. Let {s, w} ∈ E be the first edge of P and at position i
on w. Then we add a (v, v′)-path Ps in Gs − S, such that v′ ∈ Cis \ S. Due to Claim 4.2,
such a (v, v′)-path Ps always exists in Gs − S and is of length at most k′.

We take an edge-gadget Ge into P ′ if e is in P . Recall, that an edge-gadget is a path of
length (`+ 1) ·k′+ 1. Due to Claim 4.2, we can connect the edge-gadgets G{v1,v2}, G{v2,v3} of
two consecutive edges {v1, v2}, {v2, v3} in P by a path of length at most k′ in Gv2 . Let {vp, z}
be the last edge in P , be at position j on z, v ∈ Cjz , and v′ ∈ Cj

′

z . We add a (v, v′)-path of
length k′ in Gz − S (Claim 4.2). Note that P ′ visits at most `+ 1 vertex-gadgets and ` edge-
gadgets. The length of P ′ is at most 2 + (`+ 1) · k′ + ` [(`+ 1) · k′ + 1] = `. This contradicts
that S forms a solution for I ′.

It follows that there is no (s, z)-path of length at most ` inG−C and I is a yes-instance. J

From the proofs of Theorem 3.1 and Lemma 2.2 (planarity-preserving reductions for the
underlying graph), together with Theorem 4.1 we get the following:

MFCS 2018

45:12 The Complexity of Finding Small Separators in Temporal Graphs

I Corollary 4.3. Both Temporal (s, z)-Separation and Strict Temporal (s, z)-Sepa-
ration on planar temporal graphs are NP-complete.

In contrast to the case of general temporal graphs, Strict Temporal (s, z)-Separation
on planar temporal graphs is efficiently solvable if the maximum label τ is any constant. To
this end, we employ the optimization variant of Courcelle’s Theorem [4, 11].

I Proposition 4.4 (?). Strict Temporal (s, z)-Separation on planar temporal graphs
can be solved in O(|E| · log |E|) time, if the maximum label τ is constant.

Due to space constrains, we only sketch how one can develop MSO formulas over temporal
graphs and postpone the full proof to the long version.

Proof (Sketch). Let I = (G = (V,E, τ), s, z, k) be an instance of Strict Temporal
(s, z)-Separation, where the underlying graph G↓ of G is planar. We define the edge-
labeled graph L(G) to be G↓ with the edge-labeling ω : E(G↓)→ [2τ − 1] with ω({v, w}) =∑τ
i=1 1{v,w}∈Ei · 2i−1, where 1{v,w}∈Ei = 1 if and only if ({v, w}, i) ∈ E, and 0 otherwise.

Observe that in binary representation, the i-th bit of ω({v, w}) is 1 if and only if {v, w}
exists at time point i.

We define the optimization variant of Strict Temporal (s, z)-Separation in MSO
on L(G). First, the MSO formula layer(e, t) :=

∨τ
i=1
∨
j∈σ(i,2τ−1)

(
t = i ∧ ω(e) = j

)
checks

whether an edge e is present in the layer t, where σ(i, j) := {x ∈ [j] | i-th bit of x is 1}.
Second, we can write an MSO formula tempadj(v, w, t) := ∃e∈E

(
inc(e, v) ∧ inc(e, w) ∧

layer(e, t)
)
to determine whether two vertices v and w are adjacent at time point t. Third,

there is an MSO formula

path(S) := ∃x1,...,xτ+1∈V \S

(
x1 = s ∧ xτ+1 = z ∧

∧τ
i=1
(
xi = xi+1 ∨ tempadj(xi, xi+1, i)

))
to check whether there is a strict temporal (s, z)-path which does not visit any vertex in S.
Note that the length of layer(e, t), and hence the length of path(S), is upper-bounded by
some function in 2O(τ). The facts that the length of a strict temporal (s, z)-path is at most τ
and the treewidth of a planar graph can be bounded in its diameter (see Flum and Grohe
[16]), together with an application of Courcelle’s Theorem (optimization variant, see long
version) on the MSO formula φ(S) := S ⊆ (V \ {s, z}) ∧ ¬path(S) complete the proof. J

5 On Temporal Graphs with Small Temporal Cores

In this section, we investigate the complexity of deciding (Strict) Temporal (s, z)-Sepa-
ration on temporal graphs where the number of vertices whose incident edges change over
time is small. We call the set of such vertices the temporal core of the temporal graph.

I Definition 5.1 (Temporal core). For a temporal graph G = (V,E, τ), the vertex set W =
{v ∈ V | ∃{v, w} ∈ (

⋃τ
i=1 Ei) \ (

⋂τ
i=1 Ei)} ⊆ V is called the temporal core.

A temporal graph is often composed of a public transport system and an ordinary street
network. Here, the temporal core consists of vertices involved in the public transport system.

For Strict Temporal (s, z)-Separation, we can observe that the hardness reduction
described in the proof of Theorem 3.1 produces an instance with an empty temporal core. In
stark contrast, we show that Temporal (s, z)-Separation is fixed-parameter tractable
when parameterized by the size of the temporal core8. We reduce an instance to Node

8 Note that we can compute the temporal core in O(|E| log |E|) time.

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:13

W2

W1
s

W1

W3

zW3

W2

S

w2

w1

w3

SW

Figure 6 Illustration of the idea behind the proof of Theorem 5.2. Left-hand side: Sketch of
a temporal graph G (enclosed by the ellipse) with temporal (s, z) separator S (red hatched) and
induced partition {SW ,W1,W2,W3} of the temporal core W , where SW = W ∩ S. The outer rings
of W1,W2,W3 contain the open neighborhood of the sets. Right-hand side: Sketch of the constructed
graph G′ (enclosed by the ellipse). The partition {SW ,W1,W2,W3} is guessed in steps (1) and (2).
The vertices w1, w2, w3 with edges to the neighborhood of W1,W2,W3, respectively, are created in
step (3).

Multiway Cut (NWC) in such a way that we can use an above lower bound FPT-algorithm
due to Cygan et al. [12] for NWC as a subprocedure in our algorithm for Temporal
(s, z)-Separation. Note that the above lower bound parameterization is crucial to obtain
the desired FPT-running time bound. Recall the definition of NWC:

Node Multiway Cut (NWC)
Input: An undirected graph G = (V,E), a set of terminals T ⊆ V , and an integer k.
Question: Is there a set S ⊆ (V \ T) of size at most k such there is no (t1, t2)-path for

every distinct t1, t2 ∈ T?

We remark that Cygan et al.’s algorithm can be modified to obtain a solution S. Formally,
we show the following.

I Theorem 5.2. Temporal (s, z)-Separation can be solved in 2|W |·(log |W |+2) · |V |O(1) +
O(|E| log |E|) time, where W denotes the temporal core of the input graph.

Proof. Let instance I = (G = (V,E, τ), s, z, k) of Temporal (s, z)-Separation with
temporal core W ⊆ V be given. Without loss of generality, we can assume that s, z ∈W , as
otherwise we add two vertices one being incident only with s and the other being incident
only with z, both only in layer one. Furthermore, we need the notion of a maximal static
subgraph Ĝ of a temporal graph G = (V,E): It contains all edges that appear in every layer,
more specifically Ĝ = (V, Ê) with Ê =

⋂
i∈[τ] Ei. Our algorithm works as follows.

(1) Guess a set SW ⊆ (W \ {s, z}) of size at most k.
(2) Guess a number r and a partition {W1, . . . ,Wr} of W \ SW such that s and z are not in

the same Wi, for some i ∈ [r].
(3) Construct the graph G′ by copying Ĝ −W and adding a vertex wi for each part Wi.

Add edge sets {{v, wi} | v ∈ NĜ(Wi) \W} for all i ∈ [r] and for all i, j ∈ [r] add an
edge {wi, wj} if NĜ(Wi) ∩Wj 6= ∅.

(4) Solve the NWC instance I ′ = (G′, {w1, . . . , wr}, k − |SW |).
(5) If a solution S′ is found for I ′ and S′ ∪ SW is a solution for I, then output yes.
(6) If all possible guesses in (1) and (2) are considered without finding a solution for I, then

output no.
See Figure 6 for a visualization of the constructed graph G′. Since we do a sanity check in
step (5) it suffices to show that if G has a temporal (s, z)-separator of size at most k, then
there is a partition {SW ,W1, . . . ,Wr} of W where s and z are in different parts such that

MFCS 2018

45:14 The Complexity of Finding Small Separators in Temporal Graphs

(i) the NWC instance I ′ has a solution of size at most k − |SW |, and
(ii) if S′ is a solution to I ′, then SW ∪ S′ is a temporal (s, z)-separator in G.

Let S be a temporal (s, z)-separator of size at most k in G. First, we set SW = S ∩W .
Let C1, . . . , Cr be the connected components of Ĝ− S with Ci ∩W 6= ∅ for all i ∈ [r]. Now
we construct a partition {SW ,W1, . . . ,Wr} of W such that Wi = W ∩Ci for all i ∈ [r]. It is
easy to see that s and z are in different parts of this partition. Observe that for i, j ∈ [r]
with i 6= j the vertices v ∈Wi and u ∈Wj are in different connected components of Ĝ− S.
Hence, w1, . . . , wr are in different connected components of G′ − (S \ SW). Thus S \ SW is
a solution of size at most k − |SW | of the NWC instance I ′ = (G′, {w1, . . . , wr}, k − |SW |),
proving (i).

For the correctness, it remains to prove (ii). Let S′ be a solution of size at most k−|SW | of
the NWC instance I ′. We need to prove that S′∪SW forms a temporal (s, z)-separator in G.
Clearly, if S′ = S \ SW , we are done by the arguments before. Thus, assume S′ 6= S \ SW .
Since S′ is a solution to I ′, we know that w1, . . . , wr are in different connected components
of G′ − S′. Hence, for i, j ∈ [r] with i 6= j the vertices v ∈ Wi, u ∈ Wj are in different
connected components of Ĝ− (S′ ∪ SW).

Now assume towards a contradiction that there is a temporal (s, z)-path P in G−(S′∪SW).
Observe that {s, z} ⊆ V (P) ∩W . Hence, we have two different vertices u1, u2 ∈ V (P) ∩W
such that there is no temporal (u1, u2)-path in G − S and all vertices that are visited by
P between u1 and u2 are contained in V \W : Take the furthest vertex in P that is also
contained in W and is reachable by a temporal path from s in G−S as u1, and take the next
vertex (after u1) in P that is also contained in W as u2. Note that u1 and u2 are disconnected
in Ĝ− S, and hence there are i, j ∈ [r] with i 6= j such that u1 ∈Wi and u2 ∈Wj . Since P
does not visit any vertices in (S′ ∪ SW) we can conclude that u1 and u2 are connected
in Ĝ− (S′ ∪ SW), and hence wi and wj are connected in G′ − S′. This contradicts the fact
that S′ is a solution for I ′.
Running time: It remains to show that the our algorithm runs in the proposed time. For
the guess in step (1) there are at most 2|W | many possibilities. For the guess in step (2)
there are at most B|W | ≤ 2|W |·log(|W |) many possibilities, where Bn is the n-th Bell number.
Step (3) and the sanity check in step (5) can clearly be done in polynomial time.

Let L be a minimum (s, z)-separator in Ĝ − (W \ {s, z}). If k ≥ |W \ {s, z}| + |L|,
then (W \ {s, z}) ∪ L is a temporal (s, z)-separator of size at most k for G. Otherwise, we
have that k− |L| < |W |. Cygan et al. [12] showed that NWC can be solved in 2k−b · |V |O(1)

time , where b := maxx∈T min{|S| | S ⊆ V is an (x, T \ {x})-separator}. Since s and z are
not in the same Wi for any i ∈ [r], we know that |L| ≤ b. Hence, k − b ≤ k − |L| < |W |
and step (4) can be done in 2|W | · |V |O(1) time. Thus we have an overall running time
of 2|W |·(log |W |+2) · |V |O(1) +O(|E| log |E|). J

We conclude that the strict and the non-strict variant of Temporal (s, z)-Separation
behave very differently on temporal graphs with a constant-size temporal core. While the
strict version stays NP-complete, the non-strict version becomes polynomial-time solvable.

6 Conclusion

The temporal path model strongly matters when assessing the computational complexity of
finding small separators in temporal graphs. This phenomenon has so far been neglected
in the literature. We settled the complexity dichotomy of Temporal (s, z)-Separation
and Strict Temporal (s, z)-Separation by proving NP-hardness on temporal graphs

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:15

with τ ≥ 2 and τ ≥ 5, respectively, and polynomial-time solvability if the number of layers is
below the respective constant. The mentioned hardness results also imply that both problem
variants are W[1]-hard when parameterized by the solution size k. When considering the
parameter combination k+ τ , it is easy to see that Strict Temporal (s, z)-Separation is
fixed-parameter tractable [38]: There is a straightforward search-tree algorithm that branches
on all vertices of a strict temporal (s, z)-path which has length at most τ . Whether the
non-strict variant is fixed-parameter tractable regarding the same parameter combination
remains open.

We showed that (Strict) Temporal (s, z)-Separation on temporal graphs with planar
underlying graphs remains NP-complete. However, for the planar case we proved that if
additionally the number τ of layers is a constant, then Strict Temporal (s, z)-Separation
is solvable in O(|E| · log |E|) time. We leave open whether Temporal (s, z)-Separation
admits a similar result. Finally, we introduced the notion of a temporal core as a temporal
graph parameter. We proved that on temporal graphs with constant-size temporal core, while
Strict Temporal (s, z)-Separation remains NP-hard, Temporal (s, z)-Separation is
solvable in polynomial time.

References

1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms and Applications. Prentice Hall, 1993.

2 Eleni C Akrida, Jurek Czyzowicz, Leszek Gąsieniec, Łukasz Kuszner, and Paul G Spirakis.
Temporal flows in temporal networks. In Proceedings of the 10th International Conference
on Algorithms and Complexity (CIAC ’17), pages 43–54. Springer, 2017.

3 Eleni C Akrida, Leszek Gąsieniec, George B Mertzios, and Paul G Spirakis. On temporally
connected graphs of small cost. In Proceedings of the 13th International Workshop on
Approximation and Online Algorithms (WAOA ’15), pages 84–96. Springer, 2015.

4 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12(2):308–340, 1991.

5 Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum
temporally connected subgraphs. In Proceedings of the 43rd International Colloquium on
Automata, Languages, and Programming (ICALP ’16), pages 149:1–149:14. Schloss Dag-
stuhl - Leibniz-Zentrum fuer Informatik, 2016.

6 Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Köhler, Petr Kolman, Ondřej
Pangrác, Heiko Schilling, and Martin Skutella. Length-bounded cuts and flows. ACM
Transactions on Algorithms, 7(1):4:1–4:27, 2010.

7 Kenneth A Berman. Vulnerability of scheduled networks and a generalization of Menger’s
Theorem. Networks, 28(3):125–134, 1996.

8 Stefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesús Gómez-
Gardenes, Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and Massimiliano Zanin.
The structure and dynamics of multilayer networks. Physics Reports, 544(1):1–122, 2014.

9 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-
varying graphs and dynamic networks. International Journal of Parallel, Emergent and
Distributed Systems, 27(5):387–408, 2012.

10 H.W Corley and David Y Sha. Most vital links and nodes in weighted networks. Operations
Research Letters, 1(4):157–160, 1982.

11 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-order Logic:
a Language-theoretic Approach. Cambridge University Press, 2012.

MFCS 2018

45:16 The Complexity of Finding Small Separators in Temporal Graphs

12 Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, and Jakub Onufry Wojtaszczyk. On
multiway cut parameterized above lower bounds. ACM Transactions on Computation The-
ory, 5(1):3:1–3:11, 2013.

13 Reinhard Diestel. Graph Theory, 5th Edition, volume 173 of Graduate Texts in Mathematics.
Springer, 2016.

14 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph explora-
tion. In Proceedings of the 42nd International Colloquium on Automata, Languages, and
Programming (ICALP ’15), pages 444–455. Springer, 2015.

15 Afonso Ferreira. Building a reference combinatorial model for MANETs. IEEE Network,
18(5):24–29, 2004.

16 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer-Verlag, Berlin,
2006.

17 Till Fluschnik, Danny Hermelin, André Nichterlein, and Rolf Niedermeier. Fractals for
kernelization lower bounds. SIAM Journal on Discrete Mathematics, 32(1):656–681, 2018.

18 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, and Philipp Zschoche. Temporal graph
classes: A view through temporal separators. arXiv preprint arXiv:1803.00882, 2018. To
appear in Proceedings 44th International Workshop on Graph-Theoretic Concepts in Com-
puter Science (WG ’18).

19 Lester R Ford and Delbert R Fulkerson. Maximal flow through a network. Canadian
Journal of Mathematics, 8(3):399–404, 1956.

20 Petr A. Golovach and Dimitrios M. Thilikos. Paths of bounded length and their cuts:
Parameterized complexity and algorithms. Discrete Optimization, 8(1):72–86, 2011.

21 Anne-Sophie Himmel. Algorithmic investigations into temporal paths. Masterthesis,
TU Berlin, April 2018. URL: http://fpt.akt.tu-berlin.de/publications/theses/
MA-anne-sophie-himmel.pdf.

22 Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Adapting
the Bron-Kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social
Network Analysis and Mining, 7(1):35:1–35:16, 2017.

23 Petter Holme. Modern temporal network theory: a colloquium. European Physical Journal
B, 88(9):234, 2015.

24 Petter Holme and Jari Saramäki. Temporal networks. Physics Reports, 519(3):97–125,
2012.

25 David Kempe, Jon Kleinberg, and Amit Kumar. Connectivity and inference problems for
temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.

26 Matthieu Latapy, Tiphaine Viard, and Clémence Magnien. Stream graphs and link streams
for the modeling of interactions over time. arXiv preprint arXiv:1710.04073, 2017.

27 Qingkai Liang and Eytan Modiano. Survivability in time-varying networks. IEEE Trans-
actions on Mobile Computing, 16(9):2668–2681, 2017.

28 László Lovász, Víctor Neumann-Lara, and Michael Plummer. Mengerian theorems for
paths of bounded length. Periodica Mathematica Hungarica, 9(4):269–276, 1978.

29 Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10(1):96–115,
1927.

30 George B Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G Spirakis. Tem-
poral network optimization subject to connectivity constraints. In Proceedings of the 40th
International Colloquium on Automata, Languages, and Programming (ICALP ’13), pages
657–668. Springer, 2013.

31 Othon Michail. An introduction to temporal graphs: An algorithmic perspective. Internet
Mathematics, 12(4):239–280, 2016.

32 Othon Michail and Paul G. Spirakis. Traveling salesman problems in temporal graphs.
Theoretical Computer Science, 634:1–23, 2016.

http://fpt.akt.tu-berlin.de/publications/theses/MA-anne- sophie-himmel.pdf
http://fpt.akt.tu-berlin.de/publications/theses/MA-anne- sophie-himmel.pdf

P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier 45:17

33 Feng Pan and Aaron Schild. Interdiction problems on planar graphs. Discrete Applied
Mathematics, 198:215–231, 2016.

34 Salvatore Scellato, Ilias Leontiadis, Cecilia Mascolo, Prithwish Basu, and Murtaza Zafer.
Evaluating temporal robustness of mobile networks. IEEE Transactions on Mobile Com-
puting, 12(1):105–117, 2013.

35 Baruch Schieber, Amotz Bar-Noy, and Samir Khuller. The complexity of finding most vital
arcs and nodes. Technical report, University of Maryland at College Park, College Park,
MD, USA, 1995.

36 Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in
link streams. Theoretical Computer Science, 609:245–252, 2016.

37 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu.
Efficient algorithms for temporal path computation. IEEE Transactions on Knowledge and
Data Engineering, 28(11):2927–2942, 2016.

38 Philipp Zschoche. On finding separators in temporal graphs. Masterthesis, TU
Berlin, August 2017. URL: http://fpt.akt.tu-berlin.de/publications/theses/
MA-philipp-zschoche.pdf.

MFCS 2018

http://fpt.akt.tu-berlin.de/publications/theses/MA-philipp- zschoche.pdf
http://fpt.akt.tu-berlin.de/publications/theses/MA-philipp- zschoche.pdf

The Complexity of Transducer Synthesis from
Multi-Sequential Specifications

Léo Exibard1

Aix-Marseille Université, Marseille, France
Université libre de Bruxelles, Brussels, Belgium
leo.exibard@ulb.ac.be

Emmanuel Filiot2

Université libre de Bruxelles, Brussels, Belgium
efiliot@ulb.ac.be

Ismaël Jecker3

Université libre de Bruxelles, Brussels, Belgium
ismael.jecker@ulb.ac.be

Abstract
The transducer synthesis problem on finite words asks, given a specification S ⊆ I × O, where
I and O are sets of finite words, whether there exists an implementation f : I → O which (1)
fulfils the specification, i.e., (i, f(i)) ∈ S for all i ∈ I, and (2) can be defined by some input-
deterministic (aka sequential) transducer Tf . If such an implementation f exists, the procedure
should also output Tf . The realisability problem is the corresponding decision problem.

For specifications given by synchronous transducers (which read and write alternately one
symbol), this is the finite variant of the classical synthesis problem on ω-words, solved by Büchi
and Landweber in 1969, and the realisability problem is known to be ExpTime-c in both finite
and ω-word settings. For specifications given by asynchronous transducers (which can write a
batch of symbols, or none, in a single step), the realisability problem is known to be undecidable.

We consider here the class of multi-sequential specifications, defined as finite unions of sequen-
tial transducers over possibly incomparable domains. We provide optimal decision procedures
for the realisability problem in both the synchronous and asynchronous setting, showing that it
is PSpace-c. Moreover, whenever the specification is realisable, we expose the construction of a
sequential transducer that realises it and has a size that is doubly exponential, which we prove
to be optimal.

2012 ACM Subject Classification Theory of computation → Logic and verification, Theory of
computation → Transducers

Keywords and phrases Transducers, Multi-Sequentiality, Synthesis

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.46

Acknowledgements We warmly thank the anonymous reviewers for their helpful comments and
Christof Löding for pointing us to some related references.

1 L. Exibard is a PhD student funded by a FRIA fellowship from the F.R.S.-FNRS.
2 E. Filiot is a research associate of F.R.S.- FNRS. He is supported by the ARC Project Transform

Fédération Wallonie-Bruxelles and the FNRS CDR project J013116F.
3 I. Jecker is an “aspirant FNRS” PhD student, funded by the F.R.S.-FNRS.

© Léo Exibard, Emmanuel Filiot, and Ismaël Jecker;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 46; pp. 46:1–46:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:leo.exibard@ulb.ac.be
mailto:efiliot@ulb.ac.be
mailto:ismael.jecker@ulb.ac.be
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2 Transducer Synthesis from Multi-Sequential Specifications

1 Introduction

The realisability and synthesis problem. In general, the realisability problem is given by
some input and output data domains Di, Do, a specification S ⊆ Di × Do defining for
every d ∈ Di the set of allowed outputs {d′ ∈ Do | (d, d′) ∈ S} (assumed to be non-empty)
and a class of target implementations I consisting of (total) functions Di → Do. It asks
whether there exists f ∈ I such that for all d ∈ Di, (d, f(d)) ∈ S, i.e., the implementation f
satisfies the specification. The synthesis problem asks to generate (a representation of) f .
So, instead of designing f and verifying its correctness a posteriori, a synthesis algorithm
automatically generates f from it, making it correct by construction. The underlying idea
behind synthesis is that the specification may be written in a high-level language, e.g. a
logic, and an implementation is a low-level computational model e.g. an automaton. It is
based on the assumption that it is less error-prone to design a specification, i.e. to describe
what a system has to do, than designing the system itself, i.e. describing how it must do it.

Synchronous transducer synthesis. In the original setting defined by Church [7, 29], Di, Do

are sets of ω-words over two alphabets Σi,Σo respectively, and the specification S is given
by an ω-language L ⊆ (Σi×Σo)ω as follows: S = {(π1(w), π2(w)) | w ∈ L}, where πi is the
projection on the ith component. The language L is represented by an MSO-sentence or,
equivalently, an automaton. Such automata are also called (non-deterministic) synchronous
transducers, as they can be seen as machines alternately reading one input symbol and
synchronously producing one output symbol. In Church’s setting, the target implementations
are synchronous sequential transducers (also called input-deterministic): they alternately read
one input symbol and deterministically produce a symbol to output. Determinism is required
because implementations are required to use only finite-memory. The Church’s instance of
the realisability problem is decidable if the specification is given in MSO and ExpTime-c
if it is given by a synchronous transducer [21]. For LTL specifications, it is 2ExpTime-c
[27]. Motivated by reactive systems, the synthesis problem from LTL specifications has been
revisited recently with efficient symbolic methods [20, 28, 14, 10, 18]. The synthesis problem
in general has also motivated an active research on infinite games [1, 9, 5].

Asynchronous transducer synthesis. In the asynchronous setting, specifications may not
strictly alternate between input and output symbols, hence they can no longer be seen as
languages over Σi × Σo. Similarly, the target implementations may not be synchronous: the
system can delay its production of outputs, or produce several symbols at once. Transducers,
in contrast to synchronous transducers, are by definition asynchronous: their transitions are
labelled by pairs (i, w) where i ∈ Σi is a symbol and w ∈ Σ∗

o
a word, possibly empty. Since they

are generally non-deterministic, to a single input word may correspond several output words,
and thus transducers define subsets of Σ∗

i
× Σ∗

o
. Therefore, they are well-suited to represent

(asynchronous) specifications, and in their sequential version, asynchronous implementations.
Any asynchronous specification is realisable by some unambiguous (functional) asynchronous
transducer [24, 11, 3]. However, evaluating unambiguous transducers on arbitrarily long or
even infinite input words may require arbitrarily large memory. Therefore, just as in Church’s
setting, a sequentiality requirement can be put on implementations for efficient memory
usage. However, the realisability of asynchronous specifications by (asynchronous) sequential
transducers, which is called the sequential uniformisation problem in transducer-theoretic
terms, is undecidable for finite words [4, 12]. If the specification is finite-valued (i.e. any
input word has a constant number of output words), the problem is in 3ExpTime [12]. The

L. Exibard, E. Filiot, and I. Jecker 46:3

proof of [12] is based on Ramsey’s theorem and word combinatorics arguments, and it is not
clear how to reduce the complexity. This raises the question of whether there are natural
and non-trivial subclasses of asynchronous specifications with better complexity.

Multi-sequential specifications. In this paper, we consider a class of specifications S on
finite words, i.e. S ⊆ Σ∗

i
× Σ∗

o
, which strictly restricts the class of finite-valued specifications

to so-called multi-sequential specifications. Such class is obtained by closure under finite
unions of graphs of sequential functions. Precisely, S =

⋃n
i=1 Si where Si is the graph

of a (partial) function fi : Σ∗
i
→ Σ∗

o
defined by a sequential transducer. Likewise, a

transducer is multi-sequential if it is a union of state-disjoint sequential transducers. For
instance, consider the specification S consisting of the pairs (w,w′) such that w′ is a
subword of w of fixed length k. This specification is multi-sequential: S =

⋃
w′∈Σk

i

Sw′

where Sw′ = {(w,w′) | w′ subword of w}. Clearly, Sw′ can be represented by a sequential
transducer, because w′ is fixed: once the first symbol of w′ is met in w, output it, and proceed
to the second symbol of w′, etc., until the last symbol of w′ is produced, reject otherwise.
The notion of multi-sequentiality has been introduced for functions in [6] and studied for
relations in [19]. An important property of the class of multi-sequential specifications is
its decidability in PTime: Given a transducer, it is decidable in PTime whether it defines
a multi-sequential specification [19]. This fact and their natural definition as closure of
sequential functions under union make multi-sequential specifications a good candidate for a
class of specifications with better complexity than the known results of the literature.

Contributions. We investigate the complexity of sequential transducer synthesis from
specifications defined by multi-sequential transducers on finite words. We show that both in
the synchronous and asynchronous settings, the realisability problem is PSpace-complete. To
the best of our knowledge, it is the first non-trivial class of specifications which admits a
realisability test below ExpTime. If the specification is realisable, we show how to extract an
implementation as a winning strategy in a two-player game called the synthesis game. It is
parameterised by a value k ∈ N which bounds the maximal number of output symbols which
can be queued before being outputted, allowing for an incremental synthesis algorithm. To
keep track of such output symbols, we use the notion of delay [2].

Difficulties and examples. Let us briefly explain what are the main difficulties to overcome.
Consider S =

⋃
i Si a multi-sequential specification. If all of the Si have disjoint domains,

then S is a function, which is realisable by a sequential transducer iff it is sequential. The
latter can be tested in PTime [2]. The problem becomes more interesting and challenging
when the Si have domains which are not necessarily disjoint. Consider for example the
2-sequential transducer D1 ∪ D2 of Fig. 1. The transducer D1 accepts the words containing
at least two a’s, and replaces b’s with a’s, and D2 accepts the words containing at least one b,
and replaces a’s with b’s. This specification can be realised by a sequential transducer which
waits two steps before outputting something, since it then knows whether the input contains
at least one b or two a’s. It then behaves as D1 in the first case, and as D2 in the second.

This example shows that a sequential realiser may have to wait before reacting, keeping
in memory what remains to be output in the future. Take on the contrary the 2-sequential
transducer D′1 ∪ D′2 of Fig. 1, which is the same as D1 ∪ D2 except that it can additionally
read and copy c’s at any moment. In that case, a sequential realiser would have to store
arbitrary long sequences of c’s before outputting them, for instance when processing words
in ac∗{a, b, c}∗. In particular, this specification is not sequentially realisable.

MFCS 2018

46:4 Transducer Synthesis from Multi-Sequential Specifications

1D1 : 2 3
a|a a|a

b|a b|a a|a, b|a

4D2 : 5
b|b

a|b a|b, b|b

1D′1 : 2 3
a|a a|a

b|a, c|c b|a, c|c a|a, b|a, c|c

4D′2 : 5
b|b

a|b, c|c a|b, b|b, c|c

Figure 1 Four synchronous sequential transducers.

Structure of the paper. After a formal definition of transducer synthesis (Section 2), we
solve the synchronous case and provide a characterisation of realisable synchronous multi-
sequential specifications, decidable in PSpace (Section 3). Then, we present the notion of
synthesis game (Section 4), which is a useful tool for the proofs and also to get a synthesis
procedure. For the asynchronous setting, we define a recursive characterisation of realisable
multi-sequential specifications and show that it can be decided in PSpace (Section 5).

Related work. Games with delays have been used in [4, 15]. Perhaps the closest formulation
to ours is that of [4]. However, it is tailored to automatic relation. Our game structure is
more general, as it is defined for uniformising any transducer (defining a rational relation).
In particular, our game structure is exponentially larger that the one of [4].

We would also like to mention an interesting related line of works on ω-words, where
the specification is synchronous, but the implementation may be asynchronous [15, 17, 22,
23, 30, 31, 32]. Unlike the setting where the specification and implementations are both
asynchronous, the realisability problem is decidable here, for ω-regular specifications (i.e.,
regular ω-languages over Σi × Σo), and ExpTime-c if the specification is given by a parity
automaton [22]. In this setting, the authors often consider a notion of delay games. In these
games, the delay is a quantitative notion, corresponding to the waiting time before outputting
a symbol, while for us, a delay is a word that still remains to be output (this is a standard
terminology in transducer theory). It is known in particular that constant “waiting time”
(depending on the specification) is always sufficient to win, for ω-regular specifications. This
is different to our setting: for instance, the function f mapping any word of the form anσ,
for n > 0 and σ ∈ {a, b}, to σ is realisable by a sequential transducer, but the production of
a and b might have to be delayed for an unbounded amount of time.

2 Transducer synthesis problem

Words. For an alphabet Σ, we denote by Σ∗ the set of finite words over it, and by ε the
empty word. The length |w| of a word w is its number of symbols. For k ∈ N, we denote by
Σk (resp. Σ≤k) the set of words of length k (resp. at most k). For u, v ∈ Σ∗, we write u � v
if u is a prefix of v, and denote by u−1v the word such that u(u−1v) = v. For L ⊆ Σ∗, the
residual language u−1L is u−1L = {u′ | uu′ ∈ L}. Given S ⊆ Σ∗×Γ∗, and (u, v) ∈ Σ∗×Γ∗,
the residual relation (u, v)−1S is defined by (u, v)−1S = {(u′, v′) | (uu′, vv′) ∈ S}.

Automata. In this paper, finite (non-deterministic) automata over an alphabet Σ are
denoted as tuples A = (Σ, Q, I, F,∆) where Σ is the alphabet, Q the set of states, among
which I (resp. F) denotes the initial (resp. final or accepting) states, and ∆ ⊆ Q× Σ×Q
is the transition relation. A is deterministic if there is only one initial state and for all
(q, σ) ∈ Q× Σ, there exists at most one q′ ∈ Q such that (q, σ, q′) ∈ ∆.

L. Exibard, E. Filiot, and I. Jecker 46:5

A run of A on a word w = σ1 . . . σn consists in either a single state q ∈ Q if n = 0,
or a sequence r ∈ ∆∗ of n transitions t1 . . . tn such that the target state of ti equals the
source state of ti+1 for all 1 ≤ i < n. It is said to be initial if the source state of t1 is initial,
and accepting if the target state of tn is accepting. If p is the source state of t1 and q the
target state of tn, we may write p w−−→A q to mean that there exists a run from p to q on
w. The language accepted by an automaton A, denoted L(A), is the set of words admitting
an accepting run. A state q ∈ Q is reachable (resp. co-reachable) if there is a run from
an initial state (resp. to a final state) for some u ∈ Σ∗. A state is said to be useful if it
is both reachable and co-reachable, and A is said to be trim if all its states are useful. It
is well-known that any automaton can be transformed into an equivalent trim automaton
in PTime. Given two automata A1 = (Σ, Q1, I1, F1,∆1) and A2 = (Σ, Q2, I2, F2,∆2), their
disjoint union A1] A2 is the automaton (Σ, Q1]Q2, I1] I2, F1] F2,∆1]∆2).

Transducers. A transducer4 over two alphabets Σ,Γ is a tuple T = (A, ρ, τ) such that
A = (Σ, Q, I, F,∆) is an automaton over Σ, called the input automaton, ρ : ∆ → Γ∗ is a
mapping, called the output function, associating with every transition an output word, and
τ : F → Γ∗ is a terminal function associating with every accepting state an output word.
Given a run r of A on a word w, its output out(r) ∈ Γ∗ is defined by ε if w = ε, and by
ρ(t1) . . . ρ(tn) if r = t1 . . . tn for some n ≥ 1. We write p u|v−−−→T q whenever there exists a
run r of A on u from p to q, such that v = out(r), and say that r produces v. The relation
defined by T is the set JT K of pairs (u, vτ(q)) ∈ Σ∗ × Γ∗ such that p u|v−−−→T q for p ∈ I and
q ∈ F . We define dom(T) by dom(T) = dom(JT K) = L(A).

A transducer is trim if its input automaton is trim. It is called sequential if its input
automaton is deterministic, and functional if JT K is a function, i.e. for all u ∈ dom(T), there
exists at most one pair (u, v) ∈ JT K. In that case we let T (u) = v. Note that any sequential
transducer is functional. A transducer T = (A, ρ, τ) is called synchronous (or sometimes
letter-to-letter in the literature) if, whenever it reads an input symbol, it produces exactly one
output symbol, i.e. for all transition t, |ρ(t)| = 1, and τ(q) = ε for all accepting state q. For
example, consider the transducer D1 on Fig. 1 (the terminal function is assumed to output ε
and is not depicted). It is sequential and synchronous. Its domain is L = b∗ab∗a(a+ b)∗.

Two transducers are said to be equivalent if they define the same relation. Finally, the
disjoint union of transducers is naturally defined as the disjoint union of their input automata
and the disjoint union of their output functions (seen as graphs). For all transducers T1, T2,
we have JT1] T2K = JT1K ∪ JT2K.

Transducer Synthesis Problem. Let Σi,Σo be two alphabets of input and output symbols
respectively. They may not necessarily be disjoint. A specification is a subset of Σ∗

i
×Σ∗

o
, and

an implementation is a function, possibly partial, from Σ∗
i
to Σ∗

o
. The transducer realisability

problem asks, given a specification S defined by a transducer T , i.e. S = JT K, whether there
exists a sequential transducer I such that (1) dom(I) = dom(T) and (2) for all u ∈ dom(T),
(u, I(u)) ∈ JT K. In that case, we say that I realises S (or T), and that S is realisable
by a sequential transducer, or sequentially realisable. We also say that I is a realiser of
S. The synthesis problem asks to output I. The realisability problem is undecidable in
general [4, 12], but decidable, in 3ExpTime, if T is finite-valued, i.e. there exists k ∈ N such
that for all u ∈ dom(T), |{v | (u, v) ∈ JT K}| ≤ k [12].

4 Our definition is sometimes called real-time transducer in the literature, in contrast to transducers with
ε-input transitions. For the purpose of this paper, this does not make a difference.

MFCS 2018

46:6 Transducer Synthesis from Multi-Sequential Specifications

Multi-sequential specifications. A transducer T is called k-sequential if it is the disjoint
union of k sequential transducers. It is called multi-sequential if it is k-sequential for some k.
Observe that when the k sequential transducers have pairwise disjoint domains, then T is
functional, but it may not be the case in general. Deciding whether given a transducer T , there
exists an equivalent multi-sequential transducer T ′, can be done in PTime; however, T ′ may
be exponentially larger than T [19]. Minimising the number of sequential transducers of the
disjoint union is also doable: deciding whether T is equivalent to some k-sequential transducer
for k given in unary is decidable in PSpace [8]. In this paper, we consider multi-sequential
specification, i.e. relations S ⊆ Σ∗

i
× Σ∗

o
defined by multi-sequential transducers.

PSpace-hardness. In both the synchronous and asynchronous case, the realisability problem
of multi-sequential specifications by (a)synchronous sequential transducers is PSpace-hard.

We build a reduction from the emptiness problem of the intersection of n DFA A1, . . . ,An
on some alphabet Σ, proven PSpace-c in [25]. We define a specification S over Σ ∪ {#, a, b}
by S =

⋃n
i=1(Si ∪ Ni) where Si = {(w#mσ,wσ#m) | σ ∈ {a, b},m ≥ 0, w ∈ L(Ai)} and

Ni = {(w#mσ,w#mσ) | σ ∈ {a, b},m ≥ 0, w /∈ L(Ai)}. If there exists w ∈
⋂n
i=1 L(Ai),

then on the domain w#∗{a, b}, the specification is a function which is not definable by any
sequential transducer, thus not sequentially realisable, since it would imply counting the #s
(in the synchronous setting, it suffices to take m = 1 since a synchronous transducer would
be forced to guess the future). Conversely, if

⋂n
i=1 L(Ai) = ∅, then the identity function

(trivially definable by a synchronous sequential transducer) realises the specification.
It is readily seen that each Si (resp. Ni) is definable by a 2-(resp. 1-)sequential transducer,

hence S is multi-sequential, concluding the proof.

3 The synchronous setting

In this section, we consider first the synchronous setting, where the specification is given as
a disjoint union of synchronous sequential transducers, and the target implementations are
synchronous sequential transducers. Not only is this setting interesting in itself, but it helps
to understand the asynchronous setting. First, we characterise the realisable specifications
through a property called the residual property, then we show it is decidable in PSpace.

Residual property. Let T =
⊎n
i=1Di be an n-sequential transducer on Σi,Σo. Intuitively,

the residual property says that if on some input prefix u, two sequential transducers of the
union disagree on their outputs, i.e. produce different outputs, then a synchronous realiser
of JT K must “drop” one of the two transducers. However, it must do so while preserving the
residual domain u−1dom(T), i.e., the realiser must still accept any word of u−1dom(T). For
example, consider again Fig. 1 and the specification defined by D1] D2. On input a, the
two transducers disagree, hence, since we want a synchronous realiser, a choice has to be
made and therefore one of the two transducers must be dropped. However, by doing so, the
residual domain will not be fully covered by the remaining transducer. For example, if a
realiser chooses to output a when reading a, the residual language b∗ is not covered anymore.
As a matter of fact, D1] D2 is not realisable by any sequential and synchronous transducer.

Formally, let u ∈ Σ∗
i
and let ri, rj be runs of some Di,Dj respectively, on u. We say that

ri and rj agree on their output if out(ri) = out(rj). Now, u is called smooth if every Di
admits an initial run on input u, and all these runs agree on the corresponding output. The
word u is called critical if it is not smooth.

L. Exibard, E. Filiot, and I. Jecker 46:7

We say that T satisfies the residual property if for every critical prefix u ∈ Σ∗
i
of a word

of dom(T), there exists a subset P ({1, . . . , n} satisfying:
1. All the transducers Di, i ∈ P , produce the same output φ(u) on u;
2. u−1dom(T) =

⋃
i∈P u

−1dom(Di);
3.

⊎
i∈P (u, φ(u))−1JDiK is realisable by a synchronous and sequential transducer.

I Theorem 1. A specification S defined by a synchronous multi-sequential transducer T is
realisable by a synchronous sequential transducer iff T satisfies the residual property.

Sketch. If JT K is realised by a synchronous sequential transducer U , for every critical prefix
u, let P be the set of i such that Di and U map the same output to u. Property 1 is satisfied
by definition, and the other two follow from the fact that U is sequential and realises JT K.

Conversely, if the residual property is satisfied, we can construct a synchronous and
sequential realiser. The idea is to make a synchronised product of all the transducers Di,
and, whenever on some input symbol σ at least two of them disagree on the output, we know
by the residual property that there exists a subset P of them having the good properties
1, 2, 3. Then, the realiser just goes on simulating all the transducers Di corresponding to P
in parallel.

It also shows that if the property is satisfied, then we can synthesise a realiser, which
might however be exponentially larger than T . J

I Theorem 2. The realisability problem of synchronous multi-sequential specifications by
synchronous sequential transducers is PSpace-complete.

Sketch. The PSpace-hardness is obtained by reducing the problem from the emptiness
problem of the intersection of n DFAs (cf Section 2 p. 6).

To show membership to PSpace, given a transducer T =
⊎n
i=1Di, we show that the

residual property can be tested by a non-deterministic algorithm running in polynomial space.
First, we bound the size of witnesses of the negation of the property: roughly, if there is such
witness, namely a critical prefix u, then there exists a critical prefix v of exponential length
(in T) such that for any subset P ({1, . . . , n}, one of the conditions 1, 2, 3 is falsified. Then,
the algorithm guesses the prefix v on the fly, simulating all transducers Di in parallel and
keeping their states in memory (it also needs a counter for the length of v). As soon as the
transducers disagree on an output symbol, for each subset P ({1, . . . , n} (they can obviously
be enumerated using only polynomial space), the algorithm checks whether property 1, 2
or 3 is falsified. Checking property 1 is easy: it suffices to look at the symbols produced
when reading the last input symbol. Checking property 2 can be done using the current
set of states reached by the transducers on input v, and by using any PSpace algorithm for
automata inclusion. Finally, to check property 3, it suffices to recursively apply the PSpace
algorithm described so far on a smaller set of transducers. The stack of recursive calls is
linear in n, hence the memory used by the whole procedure remains polynomial. J

4 The synthesis game

We now define a 2-player safety game from a transducer T such that if Eve wins the game
then T is realisable by a sequential transducer. This game notion will prove useful to show the
correctness of the characterisation of Theorem 5, and may also be used as a practical way to
synthesise implementations, as winning strategies of this game. In the asynchronous setting,
two different runs of a transducer on the same input word may not only produce different
outputs, but also the same output at different rates (i.e. one run is ahead, output-wise, of
the other for some time). This leads us to the notion of delays, a classical tool to compare
outputs in transducer theory. Let us define this notion formally.

MFCS 2018

46:8 Transducer Synthesis from Multi-Sequential Specifications

Delays. Given two words u1, u2 ∈ Σ∗, their longest common prefix ` is denoted by u1 ∧ u2.
The delay between u1 and u2 is an element of Σ∗×Σ∗ defined by del(u1, u2) = (`−1u1, `

−1u2).
Intuitively, if a transducer produces u1 and another one produces u2, then u1 ∧ u2 is
what can safely be output by the two transducers and del(u1, u2) what remains to be
produced by each of them respectively. This notion is naturally extended to tuples of words:
del(u1, . . . , un) = (`−1u1, . . . , `

−1un) where ` =
∧n
i=1 ui.

We now introduce notations that are useful when comparing the outputs of different
runs on the same input of a transducer T = (A, ρ, τ) over Σi,Σo with A = (Σi, Q, I, F,∆).
Given a pair (q, w) ∈ Q × Σ∗

o
, where w is intended to be some delay associated with

state q, given a transition t = (q, σ, q′) ∈ ∆ and some output word u prefix of wρ(t), we
denote by next((q, w), t, u) the “next” pair (state,delay), assuming that u is output, i.e.
next((q, w), t, u) = (q′, u−1wρ(t)). More generally, given a (total) function D : Q → 2Σ∗

o

associating each state with a set of delays, we let live(D) = {q ∈ Q | D(q) 6= ∅}. For
σ ∈ Σi, next(D,σ) maps every state which can be reached from dom(D) by reading σ to the
corresponding delays obtained by outputting the longest common prefix of the words that
can be formed from the previous delays and the output on these transitions. Formally, we
call safe output of D for σ the word ` =

∧
{wρ(t) | q ∈ live(D), w ∈ D(q), t = (q, σ, q′) ∈ ∆}.

Then next(D,σ) = {next((q, w), t, `) | q ∈ live(D), w ∈ D(q), t = (q, σ, q′) ∈ ∆}.

The synthesis game. In the synchronous setting, synthesis problems are classically solved
by reduction to two-player games in which the players alternately choose one input symbol
(the adversary, whom we call Adam) and one output symbol (the protagonist, called Eve).
Their interaction induces a pair of input and output words by concatenating their respective
symbols, and the protagonist wins if such pair satisfies the specification, or if the input word
is out of the domain. Then, a finite-memory winning strategy in the game corresponds to an
implementation of the specification.

In the asynchronous setting, the protagonist may choose arbitrary output words at each
round instead of a single symbol, and one needs to introduce output delays in the game in
order to define the winning condition in a regular manner. The game we now present follows
this idea. Given a transducer T = (A, ρ, τ) with A = (Σi, Q, I, F,∆), ρ : ∆ → Σ∗

o
and

τ : F → Σ∗
o
, we build a two-player safety game GT = (V∀, V∃, A∀, A∃, T∀, T∃, Safe), called the

synthesis game, whose vertices keep track of the runs in T and the associated delays. More
precisely, it consists of two disjoint sets of vertices V∀ = 2Q × (Q→ 2Σ∗

o) and V∃ = V∀ × Σi,
respectively controlled by Adam and Eve. The initial vertex is v0 = (I,D0) ∈ V∀ where
D0(q) = ∅ if q 6∈ I, and D0(q) = {ε} otherwise.

Eve’s vertices are Adam’s vertices extended with the last input symbol picked by Adam.
Suppose now that the game has been played for some rounds and is currently in some vertex
(C,D) of Adam. Along these rounds, Adam has chosen a sequence u of input symbols, and
Eve has chosen a set of runs over u from the initial states. C is the set of states in which
these runs end. Each run induces some delays compared to the longest common prefix of
all the outputs they can produce. D maps each state to the delays of the runs ending in it.
Eve’s actions consist in selecting some of these runs to prevent some delays to grow too high,
i.e., she can drop from any set D(q) some of its elements. By restricting the set of possible
runs, Eve can be in a situation where some state q of C is accepting while none of the states
of live(D) is, in which case she loses, as none of the runs she has selected accepts the input
word chosen by Adam. Such vertices constitute the set of unsafe vertices she needs to avoid.

More precisely, the set of Adam’s transitions T∀ and Eve’s transitions T∃ are defined as
follows. From any game position (C,D), Adam can pick a symbol σ ∈ Σi and the game
evolves to the position (C,D, σ). From (C,D, σ), Eve’s actions is a subset α ⊆ next(D,σ)

L. Exibard, E. Filiot, and I. Jecker 46:9

(she can “drop” some pairs of next(D,σ)), and the game evolves to (C ′, Dα) where C ′ is the
set of states reached from C by reading σ, and Dα maps any q ∈ Q to the set {w | (q, w) ∈ α}.

Given K ∈ N, we define the K-synthesis game as the restriction of GT to delays of length
at most K: GT ,K = (V K∀ , V K∃ , vK0 , AK∀ , AK∃ , TK∀ , TK∃ , SafeK), where V K∀ = 2Q× (Q→ 2Σ≤K

o),
A∃ ⊆ Q× Σ≤K

o
, etc. There is no deadlock in GT ,K because Eve can always play ∅, at the

risk of going to an unsafe position.

Example. First, note that by definition of the game, any reachable vertex (C,D) or (C,D, σ)
satisfies live(D) ⊆ C. Figure 2 represents the 1-synthesis game for D1 ∪ D2 (cf Figure 1).
The states depicted in a vertex correspond to C, together with their values by D (thanks to
the previous remark, there is no need to represent the values D assigns for the states outside
C). The circle vertices are Eve’s positions, whose labels are not depicted, as they are just the
label of their predecessor vertex extended with Adam’s action. Bold nodes correspond to the
unsafe states. Let us now explain how the game proceeds in more detail. First, since both
D1 and D2 are complete and sequential, for each state (C,D) of Adam, C contains exactly
one state of D1 and one state of D2. Eve’s actions in the synthesis game, which consist in
dropping a subset of pairs (state,delay), actually correspond here to “dropping” one of the
two sequential transducers: at any moment, she can choose to drop D2, which leads her into
the red part of the game, or to drop D1, which leads her into the blue part of the game. Note
that once she has dropped one of the transducers, she is stuck in the corresponding part.

The initial vertex, owned by Adam, corresponds to being in the initial states of both D1
and D2, with no delays. If Adam chooses to play a as the first input letter, Eve has four
choices. Either she keeps both transducers, with a delay of length 1, or she drops one of
them, or both (not depicted). If Eve chooses to drop D2, respectively D1, Adam can then
play a b, respectively an a, which leads her into an unsafe state. Note that this proves that
Eve cannot win the 0-synthesis game corresponding to D1 ∪ D2. If Eve keeps both, she has
to drop one of them once Adam plays a second letter, since otherwise the delay would grow
larger than 1. However, in both cases she has a move which ensures her a win: if Adam plays
a second a, Eve can safely drop D2 since the accepting state of D1 has been reached, and if
Adam plays b, Eve can safely drop D1 since the accepting state of D2 has been reached. If
Adam chooses to play a b in the first place, Eve can immediately drop D1 and win. Hence,
Eve wins the 1-synthesis game associated to D1 ∪ D2. The described strategy then directly
induces a sequential transducer realising the specification.

I Proposition 3. Let S be a specification defined by some transducer T . If Eve wins the
K-synthesis game GT ,K for some K, then S is realisable by a sequential transducer.

Sketch. If Eve wins the K-synthesis game, then, since it is a safety game, she can win with
a positional strategy. Thus, her actions only depend on the last visited vertex. This allows
to reconstruct a realiser for S, whose states are the possible vertices of Adam visited by the
strategy. Then, when Adam chooses an input symbol σ in a vertex (C,D) and Eve decides
to go to some vertex (E,F) from (C,D, σ), then in the realiser, we add a transition from
(C,D) to (E,F) on σ, outputting the safe output of D for σ. J

Synthesis algorithm. It is worth noting that the synthesis game allows for a synthesis
procedure: for ascending values of K, test whether Eve wins the K-synthesis game (this
can be done in PTime in the size of the game). If it is the case, then by Proposition 3 the
specification is realisable, and we can even extract an implementation corresponding to a
winning strategy of Eve. If it is not the case, then increment K and try again, until K

MFCS 2018

46:10 Transducer Synthesis from Multi-Sequential Specifications

a

b
b

a a
b

b b

a

a

1 : ε
4 : ε

2 : a
4 : b

1 : a
5 : b

1 : ε
4 : ε

2 : a
4 : b

1 : a
5 : b

a a

b
b

a

b

2 : ∅
4 : ε

3 : ∅
4 : ε

1 : ∅
5 : ε

2 : ∅
5 : ε

3 : ∅
5 : ε

2 : ε
4 : ∅

3 : ε
4 : ∅

1 : ε
5 : ∅

2 : ε
5 : ∅

3 : ε
5 : ∅

a

b b

a a

b b b

a

a

Figure 2 The 1-synthesis game corresponding to the union of D1 and D2 (cf Figure 1).

reaches some given upper bound B. The K-synthesis game is exponentially large in general
(in the transducer defining the specification, and in K). Solving this game efficiently, using
for instance symbolic methods, as done for LTL synthesis in the synchronous case [10, 13], is
beyond the scope of this paper, but is an interesting research direction.

This algorithm is not complete in general: it is shown for instance in [12] that some
specifications defined by transducers are realisable by sequential transducers while Eve
has no winning strategy in GT ,K for any K. Still, the converse of Proposition 3 holds for
some subclasses of specifications JT K. For example, in the synchronous setting, where we
want to synthesise a synchronous sequential transducer, it suffices to take K = 0. This
gives an ExpTime procedure to check the realisability of JT K by a synchronous sequential
transducer. If T is finite-valued, then by taking K large enough (triply exponential in T),
we get completeness [12]. Finally, if T is functional, then Eve wins GT ,K for some K iff T is
equivalent to a sequential transducer, and a polynomial K (in T) suffices [2].

In this paper, we obtain completeness for multi-sequential specifications by taking K
exponential in T (Proposition 6). While this allows us to decide realisability using the
game approach, the time complexity will not be optimal (2ExpTime). We indeed devise, in
Section 5, a PSpace realisability-checking procedure based on an effective characterisation
of realisable multi-sequential specifications. If the PSpace procedure concludes that the
specification is realisable, one can run the former game-solving procedure to synthesise a
realiser, for ascending values of K. This way, one may hope to synthesise a “small” realiser.

5 The asynchronous setting

We first characterise recursively the multi-sequential specifications which are sequentially
realisable (Theorem 5). Then, we provide an equivalent characterisation, non-recursive and
easier to check algorithmically, but more technical.

Similarly to the synchronous case, we define a notion of critical situation to which a
realiser must react. In the synchronous case, it was just a prefix on which at least two
sequential transducers were producing different outputs. In the asynchronous case, two
sequential transducers may produce different outputs on the same prefix, but this may not
be problematic in the case where one is ahead of the other, i.e., the output of one run is

L. Exibard, E. Filiot, and I. Jecker 46:11

a prefix of the output of the other. A critical situation is rather a prefix where the delays
between all the outputs of the sequential transducers are too large. Since no bound is known
a priori to define “too large”, we formalise a critical situation as a prefix of the form uv, such
that at least two sequential transducers loop on v, and have a different delay before and after
the loop. By iterating this loop, i.e. by taking a prefix uvn, the delay between these two
transducers will grow unboundedly when n increases. For such loops, the situation will get
critical if a realiser does not react.

I Definition 4 (critical loop). Let T =
⊎n
i=1Di be an n-sequential transducer. A critical

loop for T is a triple (u, v,X) ∈ Σ∗
i
× Σ∗

i
× 2{1,...,n} such that

1. for all i ∈ X , there exists an initial run pi
u|αi−−−→ qi

v|βi−−→ qi of Di on uv;
2. for all i ∈ {1, . . . , n} \ X , there is no run of Di on u;
3. There exists i, j ∈ X such that del(αi, αj) 6= del(αiβi, αjβj).

Our characterisation echoes the one of the synchronous setting. It says that whenever
there is a critical situation (a critical loop), a realiser must be able to drop some of the
sequential transducers, in order to prevent the delays to grow unboundedly, while preserving
the residual domain. Formally:

I Theorem 5 (recursive characterisation). Let T =
⊎n
i=1Di be a multi-sequential transducer

over Σi,Σo. Then JT K is realisable by a sequential transducer, iff, for all critical loops
(u, v,X), there exists Y (X such that
1. ∀i, j ∈ Y, del(αi, αj) = del(αiβi, αjβj) (following the notations of Definition 4),
2. u−1dom(T) =

⋃
i∈Y u

−1dom(Di),
3.

⋃
i∈Y(u, `)−1JDiK is realisable by a sequential transducer, where ` =

∧
i∈X αi.

Sketch. ⇒ Let U be a sequential transducer realising JT K. For every critical loop (u, v,X)
of T , the corresponding set Y is obtained by getting rid of all the transducers that stray
arbitrarily far from U on the input words of the form uv∗. Then, the first property is
immediate, and the other two follow from the fact that U is sequential and realises JT K.
⇐ Conversely, assuming that whenever a critical loop is met there exists a set Y satisfying

the three conditions, we prove by induction on the degree n of sequentiality of JT K that
Eve has a winning strategy in the KT -synthesis game for T , for some well-chosen value KT
depending on T . By Proposition 3, this entails the existence of a sequential realiser.

Note that in the synthesis game, since T is a union of sequential transducers, for each
accessible vertex (C,D) of Adam, and for every i ∈ {1, . . . , n}, there is at most one state qi
of Di occurring in live(D), and if there exists such a state, |D(qi)| = 1. As a consequence,
Eve’s actions in the synthesis game, which consist in dropping a subset of pairs (state,delay),
actually correspond here to “dropping” a subset of sequential transducers.

If n = 1, then T is sequential, and the strategy of Eve that consists in never dropping
T is winning. Now, suppose that n > 1. In order to demonstrate that Eve has a winning
strategy, we show that for every input word chosen by Adam, either Eve can keep track of
all the transducers in the KT -synthesis game, which ensures her a win, or she can drop some
transducers on the way, while reaching a state from which she has a winning strategy.

Let u ∈ Σ∗
i
, and let (C0, D0) be the state reached by Eve on input u if she drops nothing.

If (C0, D0) is not part of the KT -synthesis game, i.e., for some q ∈ C0, D0(q) = {w} with
|w| > KT , this implies the existence of a decomposition u1u2u3 of u such that (u1, u2,X) is a
critical loop for some X ⊆ {1, . . . , n}. Then, by hypothesis, there exists a subset Y (X which
satisfies the three conditions of the theorem, hence T ′ =

⊎
i∈Y(u1, `)−1JDiK is realisable by a

sequential transducer. In particular, T ′ satisfies the conditions on critical loops (implication

MFCS 2018

46:12 Transducer Synthesis from Multi-Sequential Specifications

⇒ shown before), and, by the induction hypothesis (since T ′ is |Y|-sequential and |Y| < n),
Eve has a winning strategy in the KT ′ -synthesis game for T ′ from the initial vertex. Lifting
this strategy to the KT -synthesis game for T yields a winning strategy for Eve from the
state (C,D′), where (C,D) is the state reached by Eve on input u1u2 if she drops nothing,
and D′ is obtained from D by dropping all the transducers that are not part of Y. J

The proof of Theorem 5 shows that if a multi-sequential specification is realisable, Eve
wins theK-synthesis game for K computable from the specification, as stated in Proposition 6.
As explained in Section 4, solving the k-synthesis game for ascending values of k then provides
a practical way to synthesise a realiser, but the complexity is not optimal.

I Proposition 6 (bounded delay). Let S be a specification defined by an n-sequential transducer
T . Then S is realisable by some sequential transducer iff Eve wins the K-synthesis game for
K = L(6M)n2 , where L is the longest output occurring on a transition of T , and M is the
maximal number of states of a sequential transducer of T .

I Theorem 7. A realisable specification S defined by a multi-sequential transducer T with
m states admits a realiser of size doubly exponential in m. Moreover, there exists a family
(Sn)n∈N of realisable specifications such that for every n ∈ N, Sn is definable by a multi-
sequential transducer of size polynomial in n, and every sequential transducer realising Sn
has a size that is doubly exponential in n.

Proof. Let S ⊂ Σ∗ × Γ∗ be a realisable specification defined by an n-sequential transducer
T with a set of states Q of size m. Note that n ≤ m, hence, by Proposition 6, Eve wins the
K-synthesis game for some K exponential in m. Then, the construction presented in the
proof of Proposition 3 exposes a realiser whose set of states Q′ consists of Adam’s vertices
that are reachable in the K-synthesis game. For every such vertex (C,D) ∈ 2Q × (Q→ 2Γ∗),
since T is n-sequential, there is at most n sates q ∈ Q satisfying D(q) 6= ∅. Moreover, for
every such state we have D(q) = {w} for some w ∈ Γ∗ satisfying |w| ≤ K. Therefore, the
size of Q′ is bounded by 2m(m(|Γ|K+1))n, which is doubly exponential in m.

In order to expose the family (Sn)n∈N, we use the notion of j-pairs, presented in [22].
For every n ∈ N, let us consider the alphabet In = {1, . . . , n}. A bad j-pair of a word
u = i1 . . . im ∈ I∗n is a pair of positions 1 ≤ k < k′ ≤ m such that ik = ik′ = j, and for all
k < ` < k′, i` ≤ j. Then every u ∈ I∗n satisfying |u| ≥ 2n admits a bad j-pair for some
1 ≤ j ≤ n, and there exists a word, denoted by ψn, that has size 2n − 1, and contains no
j-pair (see [22]). We now consider the finite alphabet Σ = {a, b}. For every n ∈ N, let Σn

denote the alphabet In×Σ. We denote by π1 : Σ∗n → I∗n and π2 : Σ∗n → Σ∗ the projections on
the first, respectively second component. Let f : Σ∗n → Σ∗ be the function mapping w ∈ Σ∗n
to the word obtained by taking the last letter of π2(w) and putting it at the beginning, i.e.,
f(w) = σv where σ ∈ Σ and v ∈ Σ∗ satisfy π2(w) = vσ. We consider the specification

Sn = {(w, f(w))|w ∈ Σ∗n} ∪ {(w, ε)|w ∈ Σ∗n contains a bad j-pair for some 1 ≤ j ≤ n}.

Then Sn is definable by an (n + 2)-sequential transducers with 3(n + 2) states, since the
function f is definable by the union of 2 sequential transducers of size 3, and for every
1 ≤ j ≤ n, the set of words w ∈ I∗n containing a bad j-pair is recognisable by a deterministic
automaton of size 3. Moreover, since every word u ∈ I∗n of size greater than 2n admits a bad
j-pair for some j, Sn is realised by the sequential transducer mapping every word w ∈ Σ∗n
satisfying |w| < 2n to f(w), and every w ∈ Σ∗n satisfying |w| ≥ 2n to ε.

We now show that every sequential transducer D realising Sn has at least 22n−1 states.
Let D = ((Σ, Q, I, F,∆), ρ, τ) be a sequential transducer realising Sn. For every v ∈ Σ∗ such
that |v| = 2n − 1, let ψv ∈ Σ∗n denote the word satisfying π1(ψv) = ψn and π2(ψv) = v. We

L. Exibard, E. Filiot, and I. Jecker 46:13

now show that for every pair of distinct words v1, v2 ∈ Σ∗ of size 2n−1, the states reached by
D on input ψv1 and ψv2 are distinct. This allows us to conclude the proof, since Σ∗ contains
22n−1 such words. Given v ∈ Σ∗ satisfying |v| = 2n − 1, let ρv : p0

ψv|v′−−−−→ pv denote the
accepting run of D on input ψv. Then v′ = ε, since if the first letter of v′ was an a, D would
not be able to produce an acceptable output on input ψv · (1, b), and a similar contradiction
would be reached if the first letter of v′ was a b. Therefore, the output associated to ψv is
produced by the terminal function of D, i.e., τ(pv) = f(ψv). Since f is injective, for every
pair of distinct words v1, v2 ∈ Σ∗ of size 2n − 1, pv1 6= pv2 . J

We are now ready to show how to decide the realisability of multi-sequential specifications
in PSpace. Consider the characterisation given in Theorem 5. We rely on the notion of witness
for the non-satisfaction of this characterisation, and we show how to decide the existence of
a witness, using a reduction to the emptiness of reversal-bounded counter machines.

The notion of witness intuitively consists in the following ingredients: (1) an unfolding
(modeled as a tree) of the recursive characterisation of Theorem 5 and (2) an explicit
formulation of delay differences using simple properties of words. Formally, given an n-
sequential transducer T =

⊎n
i=1Di, where each Di is sequential, a witness for T is a finite

tree t whose nodes are labelled in Σ∗
i
×Σ∗

i
× (2{1,...,n} \ {∅}). For any node x of t, we denote

by (ux, vx, Sx) its label. For all nodes x, y, z of t, it is required that:
1. (maximality) if x is the root, Sx = {1, . . . , n};
2. (consistency) Sx can be split into two disjoint sets Nx, Lx such that for all i ∈ Nx there

is no run of Di on ux, and for all i ∈ Lx there is a run of Di on uxvx from its initial state
qi0, of the form qi0

ux|αx,i−−−−−−→ px,i
vx|βx,i−−−−−−→ px,i;

3. (monotonicity) if y is a child of x, then Sy (Lx and ux is a prefix of uy;
4. (partition) if Y is the set of children of x, then {Sy | y ∈ Y } partitions Lx;
5. (delays) if y and z are different children of x, for all i ∈ Sy and j ∈ Sz, either |βx,i| 6= |βx,j |

or, βx,iβx,j 6= ε and, αx,i and αx,j mismatch5;
6. (leaves) if x is a leaf, then there is w ∈ Σ∗

i
such that uxw ∈ dom(T) and uxw 6∈ dom(Di)

for all i ∈ Sx.
Intuitively, conditions 2 and 5 require that the words ux, vx are critical loops. The delay
difference required in the definition of critical loops is not explicit here, but rather replaced
by simple properties of words (condition 5), which are easier to check algorithmically. These
properties are not strictly equivalent to delay difference, but up to iterating the loop on vx
a sufficient number of times, they are. Conditions 1, 3, 4 correspond to properties of the
subsets met when unfolding the recursive characterisation of Theorem 5. They also allow
us to bound linearly the number of nodes of a witness. As announced, all these conditions
characterise the unrealisable multi-sequential specifications:

I Lemma 8. A multi-sequential specification defined by a trim transducer T is not realisable
by a sequential transducer if and only if there exists a witness for T .

I Theorem 9. The realisability problem by some sequential transducer of a specification
defined by a multi-sequential transducer is PSpace-c.

Sketch. PSpace-hardness has been shown in Section 2. To show PSpace-easyness, we reduce
the problem to deciding the emptiness of the language of a counter machine, whose counters
make at most 1 reversal (i.e. move from increasing to decreasing mode). This is known to

5 Two words u, v mismatch if there is a position i such that i ≤ |u|, |v| and the ith letter of u differs from
the ith letter of v.

MFCS 2018

46:14 Transducer Synthesis from Multi-Sequential Specifications

be in NLogSpace [16]. Our machine is exponentially large (in the transducer defining the
specification), but can be constructed on the fly, hence we get PSpace.

A bit more precisely, we first define the notion of skeleton s, which is a witness without the
words ux, vx, hence there are finitely many skeletons, each one of polynomial size. Given an
enumeration x1 . . . xn in depth-first order of the nodes of s, we construct a counter machine
Ms which recognises sequences of the form x1wx1#vx1 . . . xnwxn#vxn such that if we extend
any label of a node x in s with the pair of words (wy1 . . . wyk

, vx), where y1 . . . yk is the path
from the root to x, we get a witness. Hence, there exists a witness iff there exists a skeleton
s such that L(Ms) is non-empty. Our algorithm non-deterministically guesses a skeleton and
runs a procedure to check in PSpace the emptiness of Ms.

Let us intuitively explain how Ms works. Conditions 1, 3, 4 and 6 are regular, so no
counter is needed there. Counters are only necessary to check Condition 5, for instance to
compute the length of the words βx,i, and to check the existence of a mismatch between a
word αx,i and a word αx,j . First, a mismatch position m is guessed, by incrementing for
some time two counters ci,x and cj,x in parallel. Then, they are decremented according to the
length of outputs produced by simulating the transitions of Di and Dj respectively. When
one of them reaches 0, say ci,x, we store the mth symbol of the output of Di on ux in memory.
We do the same for cj,x and later on check that the two stored symbols are different. J

6 Conclusion

We have identified a class of specifications (whose membership is decidable in PTime),
for which the sequential realisability problem is PSpace-c, both in the asynchronous and
synchronous settings. This is in contrast to the general case, which is ExpTime-c for
synchronous specifications, and undecidable in the asynchronous case. Our procedure allows
to synthesise a sequential transducer whenever the specification is realisable, and allows for
incremental testing, via the solvability of a two-player game parameterised by the longest
output allowed to be queued by a realiser before being output.

While the class of multi-sequential specifications is natural, as the closure of graphs of
sequential functions under finite unions, we believe that it may also be interesting for practical
applications. In particular, Vardi and Lustig have defined the concept of synthesis from
component libraries [26], in the synchronous setting, over infinite words. In this setting, given
a set of components (synchronous sequential transducers over finite words), a specification
S over infinite words, the question is whether the components can be arranged in such a
way which realises the specification (by linking the final states of the components to the
initial state of another component). This problem was shown to be decidable. We would
like to investigate another way of reusing existing components, which is tightly related
to multi-sequential specifications: given components C1, . . . , Cn represented as sequential
transducers and a specification S, decide whether there exists a sequential function f such
that f and S have the same domain, f ⊆

⋃
i Ci and f satisfies S. This is beyond the scope

of this paper but we plan to investigate further this question in the near future.

References
1 Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic.

Journal of the ACM, 49(5):672–713, 2002. doi:10.1145/585265.585270.
2 Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch. Squaring

transducers: an efficient procedure for deciding functionality and sequentiality. Theoretical
Computer Science, 292(1):45–63, 2003.

http://dx.doi.org/10.1145/585265.585270

L. Exibard, E. Filiot, and I. Jecker 46:15

3 Jean Berstel and Luc Boasson. Transductions and context-free languages. Ed. Teubner,
pages 1–278, 1979.

4 Arnaud Carayol and Christof Löding. Uniformization in Automata Theory. In Proceedings
of the 14th Congress of Logic, Methodology and Philosophy of Science Nancy, July 19-26,
2011, pages 153–178, London, 2014. College Publications.

5 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic. Inform-
ation and Computation, 208(6):677–693, 2010. doi:10.1016/j.ic.2009.07.004.

6 Christian Choffrut and Marcel Paul Schützenberger. Décomposition de fonctions ration-
nelles. In 2nd Annual Symposium on Theoretical Aspects of Computer Science, STACS,
pages 213–226, 1986.

7 Church, Alonzo. Logic, arithmetic and automata. In International Congress of Mathemat-
ics, pages 23–35, Stockholm, 1962.

8 Laure Daviaud, Ismaël Jecker, Pierre-Alain Reynier, and Didier Villevalois. Degree of
sequentiality of weighted automata. In Javier Esparza and Andrzej S. Murawski, editors,
Proceedings of the 20th International Conference on Foundations of Software Science and
Computation Structures, FOSSACS 2017, Uppsala, Sweden, April 22-29, pages 215–230.
Springer Berlin Heidelberg, 2017. doi:10.1007/978-3-662-54458-7_13.

9 Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Symbolic algorithms for
infinite-state games. In Proceedings of the 12th International Conference in Concurrency
Theory, CONCUR 2001, Aalborg, Denmark, August 20-25, pages 536–550, 2001. doi:
10.1007/3-540-44685-0_36.

10 Rüdiger Ehlers. Symbolic bounded synthesis. In Proceedings of the 22nd International
Conference on Computer Aided Verification, CAV 2010, Edinburgh, UK, July 15-19, volume
6174 of Lecture Notes in Computer Science, pages 365–379. Springer, 2010.

11 Samuel Eilenberg. Automata, Languages, and Machines. Academic Press, 1974.
12 Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter. On equivalence and

uniformisation problems for finite transducers. In 43rd International Colloquium on Auto-
mata, Languages, and Programming, ICALP 2016, July 11-15, Rome, Italy, pages 125:1–
125:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.125.

13 Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Exploiting structure in LTL
synthesis. International Journal on Software Tools for Technology Transfer, 2011.

14 Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. Antichains and compositional
algorithms for LTL synthesis. Formal Methods in System Design, 39(3):261–296, 2011.

15 Wladimir Fridman, Christof Löding, and Martin Zimmermann. Degrees of lookahead in
context-free infinite games. In Computer Science Logic, 25th International Workshop / 20th
Annual Conference of the EACSL, CSL 2011, September 12-15, 2011, Bergen, Norway,
Proceedings, pages 264–276, 2011. doi:10.4230/LIPIcs.CSL.2011.264.

16 Eitan M. Gurari and Oscar H. Ibarra. The complexity of decision problems for finite-turn
multicounter machines. Journal of Computer and System Science, 22(2):220–229, 1981.
doi:10.1016/0022-0000(81)90028-3.

17 Michael Holtmann, Lukasz Kaiser, and Wolfgang Thomas. Degrees of lookahead in regular
infinite games. In C.-H. Luke Ong, editor, Proceedings of the 13th International Confer-
ence on Foundations of Software Science and Computational Structures, FOSSACS 2010,
Paphos, Cyprus, March 20-28, volume 6014 of Lecture Notes in Computer Science, pages
252–266. Springer, 2010.

18 Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timotheus Hell, Robert
Könighofer, Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk, Ocan Sankur, Mar-
tina Seidl, Leander Tentrup, and Adam Walker. The first reactive synthesis competition
(SYNTCOMP 2014). STTT, 19(3):367–390, 2017. doi:10.1007/s10009-016-0416-3.

MFCS 2018

http://dx.doi.org/10.1016/j.ic.2009.07.004
http://dx.doi.org/10.1007/978-3-662-54458-7_13
http://dx.doi.org/10.1007/3-540-44685-0_36
http://dx.doi.org/10.1007/3-540-44685-0_36
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.125
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.264
http://dx.doi.org/10.1016/0022-0000(81)90028-3
http://dx.doi.org/10.1007/s10009-016-0416-3

46:16 Transducer Synthesis from Multi-Sequential Specifications

19 Ismaël Jecker and Emmanuel Filiot. Multi-sequential word relations. In Proceedings of the
19th International Conference on Developments in Language Theory, DLT 2015, Liverpool,
UK, July 27-30, pages 288–299, 2015. doi:10.1007/978-3-319-21500-6_23.

20 B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool for property synthesis.
In Computer Aided Verification, CAV, pages 258–262, 2007.

21 J.R. Büchi and L.H. Landweber. Solving sequential conditions finite-state strategies. Trans-
actions of the American Mathematical Society, 138:295–311, 1969.

22 Felix Klein and Martin Zimmermann. How much lookahead is needed to win infinite games?
Logical Methods in Computer Science, 12(3), 2016. doi:10.2168/LMCS-12(3:4)2016.

23 Felix Klein and Martin Zimmermann. Prompt delay. In 36th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2016,
December 13-15, Chennai, India, pages 43:1–43:14, 2016. doi:10.4230/LIPIcs.FSTTCS.
2016.43.

24 Kojiro Kobayashi. Classification of formal languages by functional binary transductions.
Information and Control, 15(1):95–109, 1969.

25 Dexter Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–266.
IEEE Computer Society, 1977. URL: http://dblp.uni-trier.de/db/conf/focs/focs77.
html#Kozen77.

26 Yoad Lustig and Moshe Y. Vardi. Synthesis from component libraries. STTT, 15(5-6):603–
618, 2013.

27 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In ACM Symposium on
Principles of Programming Languages, POPL. ACM, 1989.

28 Sven Schewe and Bernd Finkbeiner. Bounded synthesis. In Automated Technology for
Verification and Analysis, volume 4762 of Lecture Notes in Computer Science, pages 474–
488. Springer Berlin Heidelberg, 2007.

29 Wolfgang Thomas. Church’s problem and a tour through automata theory. In Pillars of
Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His
85th Birthday, volume 4800 of Lecture Notes in Computer Science, pages 635–655. Springer,
2008.

30 Martin Zimmermann. Delay games with WMSO+U winning conditions. RAIRO - Theor-
etical Informatics and Applications, 50(2):145–165, 2016. doi:10.1051/ita/2016018.

31 Martin Zimmermann. Finite-state strategies in delay games. In Proceedings 8th Interna-
tional Symposium on Games, Automata, Logics and Formal Verification, GandALF 2017,
Roma, Italy, 20-22 September, pages 151–165, 2017. doi:10.4204/EPTCS.256.11.

32 Martin Zimmermann. Games with costs and delays. In 32nd Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, pages
1–12, 2017. doi:10.1109/LICS.2017.8005125.

http://dx.doi.org/10.1007/978-3-319-21500-6_23
http://dx.doi.org/10.2168/LMCS-12(3:4)2016
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.43
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.43
http://dblp.uni-trier.de/db/conf/focs/focs77.html#Kozen77
http://dblp.uni-trier.de/db/conf/focs/focs77.html#Kozen77
http://dx.doi.org/10.1051/ita/2016018
http://dx.doi.org/10.4204/EPTCS.256.11
http://dx.doi.org/10.1109/LICS.2017.8005125

Pricing Problems with Buyer Preselection
Vittorio Bilò
Univ. of Salento, Lecce, Italy
vittorio.bilo@unisalento.it

Michele Flammini
GSSI Institute, L’Aquila, Italy & Univ. of L’Aquila, L’Aquila, Italy
michele.flammini@univaq.it

Gianpiero Monaco
Univ. of L’Aquila, L’Aquila Italy
gianpiero.monaco@univaq.it

Luca Moscardelli
Univ. of Chieti-Pescara, Pescara, Italy
luca.moscardelli@unich.it

Abstract
We investigate the problem of preselecting a subset of buyers participating in a market so as
to optimize the performance of stable outcomes. We consider four scenarios arising from the
combination of two stability notions, item and bundle envy-freeness, with the two classical ob-
jective functions, i.e., the social welfare and the seller’s revenue. When adopting the notion of
item envy-freeness, we prove that, for both the two objective functions, the problem cannot be
approximated within n1−ε for any ε > 0, and provide tight or nearly tight approximation al-
gorithms. We also prove that maximizing the seller’s revenue is NP-hard even for a single buyer,
thus closing an open question. Under bundle envy-freeness, instead, we show how to transform
in polynomial time any stable outcome for a market involving only a subset of buyers to a stable
one for the whole market without worsening its performance, both for the social welfare and the
seller’s revenue. Finally, we consider multi-unit markets, where all items are of the same type
and are assigned the same price. For this specific case, we show that buyer preselection can
improve the performance of stable outcomes in all of the four considered scenarios, and we design
corresponding approximation algorithms.

2012 ACM Subject Classification Theory of computation → Computational pricing and auc-
tions

Keywords and phrases Pricing problems, Envy-freeness, Revenue maximization, Social Welfare
maximization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.47

Related Version A two-page extended abstract [8] of a preliminary version of this paper appeared
in the proceedings of AAMAS 2018.

1 Introduction

Determining an efficient pricing strategy is a fundamental problem in many business activities,
as it affects both the seller’s revenue and the customers’ or buyers’ satisfaction. Usually,
optimal prices are the result of a challenging counterbalancing process: selecting low prices,
for instance, may be profitable for the seller when it attracts considerably more customers,
but, at the same time, in case of limited supply, it may leave some buyers unsatisfied, thus

© Vittorio Bilò, Michele Flammini, Gianpiero Monaco, and Luca Moscardelli;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 47; pp. 47:1–47:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vittorio.bilo@unisalento.it
mailto:michele.flammini@univaq.it
mailto:gianpiero.monaco@univaq.it
mailto:luca.moscardelli@unich.it
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2 Pricing Problems with Buyer Preselection

generating discontent. In particular, this happens when a customer is negated the right to buy
her preferred set of items, or even any item at all, despite the fact that she is willing to pay
for the posted prices. In this case she is often called loser, as opposed to a customer receiving
items, called winner. For such a reason, pricing problems are traditionally considered under
the hypothesis of envy-freeness [25, 32], which prescribes that, once a pricing strategy has
been established, items have to be allocated to buyers in such a way that no one would prefer
a different set of items.

However, if from the one hand safeguarding the losers’ interests shelters the seller from
possible future losses due to their dissatisfaction, on the other hand, a result by [7] shows that,
in certain markets, an intrinsic and unavoidable hurdle to the construction of a good quality
envy-free solution may come from the presence of a set of “disturbing” customers, that is, a
set of buyers such that at least one of them gets envious in any assignment of sufficiently
high revenue. This observation naturally leads to the following intriguing question: “What
happens if envy-freeness is restricted to apply only to the set of winners? Can the seller
raise enough more revenue (with certainty) today to compensate the (uncertain) future loss
of potential customers?”. Such a relaxed form of envy-freeness models indeed the situation
in which the seller is allowed the freedom to discard any subset of buyers from the given
instance, so as to get rid of envious losers in the assignment she would like to propose. In
addition, one might consider such buyers “preselection” as a situation in which the seller
advertises about the existence of the market only targeted buyers that, once involved, will
all consider the allocation fair; the excluded ones then are simply unaware and won’t feel
any unfairness.

1.1 Our Contribution
Motivated by the above discussion, we introduce and investigate the buyer preselection
problem in which, given a pricing problem P with n buyers and m items, we are interested
in computing the best possible envy-free solution that can be achieved by removing any
arbitrary subset of buyers from P . We consider four scenarios arising from the combination
of two stability notions, called item and bundle envy-freeness, respectively, with the two
classical objective functions, namely, the social welfare and the seller’s revenue.

In an item envy-free allocation, given a pricing of the items, each buyer gets the subset
maximizing her utility among all possible subsets that can be created from the set of available
items; in a bundle envy-free allocation, no buyer gets a better utility by receiving the bundle
allocated to any winner. Observe that these allocations are always guaranteed to exist, as it
suffices to assign all items an arbitrarily high price, so that no winner is possible.

For item envy-free allocations and both objective functions, we show that the buyer
preselection problem cannot be approximated within n1−ε for every ε > 0, unless P = ZPP.
On the positive side, under the objective of social welfare, we design an n-approximation
algorithm, while, for the case of revenue maximization, we give an O(n logm)-approximation.
In particular, these results are obtained as follows: all but one buyer are discarded from the
given instance, so that we are left with a pricing problem with a single buyer. While such
a problem is solvable in polynomial time under the objective of social welfare, for revenue
maximization, it already exhibits challenging combinatorial structures and, to the best of our
knowledge, has been considered before only in [5]. In this paper an O(logm)-approximation
is provided, but no lower bounds on the problem complexity are given. We show that the
problem is NP-hard, thus solving the corresponding longstanding open problem raised by the
authors.

V. Bilò, M. Flammini, G. Monaco, and L. Moscardelli 47:3

We stress that efficient preselection can be profitable under two orthogonal directions:
from the one hand, the removal of a subset of pathological envious buyers may increase the
value of the optimal solution; from the other hand, even when this does not happen or it
has only a modest impact, simplifying the combinatorial structure defined by the valuation
functions of the winners may lead to the design of better approximation algorithms. In
fact, for the two preselection problems obtained by considering bundle envy-free allocations,
we show how to transform in polynomial time any allocation which is bundle envy-free
only for the subset of the winners to a bundle envy-free allocation for all buyers without
worsening its performance. Hence, although this transformation implies that, in this case,
buyer preselection cannot improve the performance of stable outcomes, it can be used to
map any bundle envy-free allocation for a subset of winners obtained through preselection
back to a bundle envy-free allocation involving all buyers. Therefore, it can be used as an
algorithmic tool for computing good stable outcomes when preselection is not allowed. In
fact, it can be first exploited to simplify the combinatorics of the problem, and then for
mapping back the computed solution to one encompassing all the buyers.

To this respect, consider for instance the case in which buyers can be partitioned in two
(or more) sets A and B (each of which, for instance, containing only unit-demand buyers or
only single minded ones or only multi-demand buyers with additive valuations), and such
that (i) valuations of players in A and B, if considered separately, allow to compute an
rA-approximate (resp. rB-approximate) solution of the problem restricted to set A (resp. B)
by exploiting known or new simpler algorithms/techniques and (ii) considering the whole
instance would make difficult the direct application of such algorithms/technique for solving
P. By performing preselection we can easily obtain an r = 2 max(rA, rB)-approximation for
BP(P) (selecting the best solution among the one only for A and the one only for B), and
thus, by the transformation, also for the initial problem P.

Finally, we consider the multi-unit case, where all items are of the same type and are
assigned the same price. We show how preselection can improve the revenue and the
social welfare of both item and bundle envy-free solutions. In particular, for item envy-free
allocations, we show a tight multiplicative factor of m for both objective functions. For
bundle envy-free allocations, we show a lower multiplicative bound of 2 for both the revenue
and the social welfare, and prove that it is tight for the objective of revenue maximization.
We also provide tight results on the complexity of computing optimal solutions for the buyer
preselection problem under envy-freeness.

Due to space limitations, some proofs are only sketched or omitted.

1.2 Related Work
The literature on envy-free pricing is so vast that it cannot be exhaustively covered here. For
such a reason, we simply refer to the achievements which are mostly related to the model of
[28] we consider in this paper.

For the social welfare maximization, the VCG mechanism [33, 19, 26] provides an optimal
solution to the envy-free pricing problem. However, while this mechanism is efficiently
computable in markets with unit-demand buyers, yet for single-minded ones its computation
becomes NP-hard. Approximate solutions are still possible in this case thanks to the results
of [4]. Also Walrasian Equilibria [34] provide an optimal solution to the problem [6]; however,
they are guaranteed to exist only under very stringent hypothesis on the buyers’ valuation
functions [27].

For the revenue maximization, [28, 29, 18, 5, 10] design logarithmic approximation
algorithms for various special cases of the problem. Relative hardness results have been given
by [9, 11, 13, 12, 20]. Further variants have been considered by [14, 16, 22, 3, 7, 15].

MFCS 2018

47:4 Pricing Problems with Buyer Preselection

[23] propose an interesting relaxation of the notion of Walrasian Equilibrium, called
Combinatorial Walrasian Equilibrium (CWE), obtained by grouping items into bundles so as
to induce a “reduced market” to which, then, applying the notion of Walrasian Equilibrium.
They show the existence of a CWE yielding a 2-approximation of the optimal social welfare
and that of a CWE yielding a logarithmic approximation of the optimal revenue.

Furthermore, [31] study the case of revenue maximization in markets with multi-unit
items under both item and bundle envy-freeness when allowing both item and bundle pricing.
Such setting has been extended in [24] where the authors consider a social graph of the
buyers and envies can arise only between neighbors.

In our model, by preselecting buyers, we basically require that all the winners are envy-free.
Settings in which, in a similar way, envy-freeness is not guaranteed for all buyers, but only
for the winners, are studied in [1, 2, 17]. In particular, [17] considers “weak” Walrasian
equilibirum, a relaxed version of Walrasian equilibirum in which the goal is that of maximizing
the number of envy-free buyers, with the condition that all the winners must be envy-free.
[1, 2] consider a relaxed version of envy-freeness: in their model, identical items have to be
sold to buyers, with every buyer constituting a node of a given unweighted graph; adjacent
winning buyers have to pay similar prices for the received item, while the losers cannot envy.
This feature is exploited to achieve higher revenue with respect to the classical case in which
there cannot be losers, even if it makes the computational problem harder.

2 Model and Definitions

2.1 Markets
A market is a tuple Γ = (N,M, (vi)i∈N), where N is a set of n buyers, M is a set of m items,
and for every buyer i ∈ N , vi : 2M → R≥0 is a valuation function expressing, given a set of
items X ⊆ M , the amount of money that buyer i is willing to pay for X; we assume that
vi(∅) = 0 for every buyer i ∈ N .

Depending on the definition of the valuation functions, different types of markets can be
modeled. In the most general case, called market with combinatorial valuations, function vi is
completely arbitrary for every buyer i ∈ N . In a market with unit-demand buyers, vi(X) = 0
for every i ∈ N and X ⊆M with |X| > 1, that is, every buyer is only interested in singleton
sets. In a market with single-minded buyers, for every i ∈ N , there exists a unique set of
items X ⊆M such that vi(X) 6= 0, that is, every buyer is only interested in a particular set
of items. In a market with additive valuations, vi(X) =

∑
j∈X vi({j}) for every i ∈ N and

X ⊆M . We stress that, while the representation of a market with combinatorial valuations
may require Ω(n2m) bits, Θ(nm) bits suffice to represent the last three types of markets.
Finally, in a market with multi-unit items, all the m items are of the same type and so, for
every i ∈ N , the valuation function becomes of the form vi : {0, 1, . . . ,m} → R≥0, since it is
only required to specify how much a buyer evaluates a set of k items, for every k ∈ {1, . . . ,m}
(clearly, vi(0) = 0); thus, also in this case, the market can be represented with Θ(nm) bits.

2.2 Stable Outcomes
Fix a market Γ. A price vector is an m-tuple p = (p1, . . . , pm) such that, for every j ∈M ,
pj ≥ 0 is the price of item j.1 We denote by 0m the price vector assigning price 0 to all
items. Given a price vector p and a set of items X ⊆ M , ui(X,p) = vi(X) −

∑
j∈X pj is

1 For the case of markets with multi-unit items, it is only required to fix the price of a single item so that
vector p collapses to a real number p ≥ 0.

V. Bilò, M. Flammini, G. Monaco, and L. Moscardelli 47:5

the utility of buyer i when buying X. The demand set of buyer i for the price vector p is
the set Di(p) = argmaxX⊆Mui(X,p) of subsets of items maximizing i’s utility according to
the prices specified by p. An allocation vector is an n-tuple X = (X1, . . . , Xn) such that
Xi ⊆M is the set of items sold to buyer i. The allocation vector X = (X1, . . . , Xn) is feasible
if Xi ∩ Xi′ = ∅ for each i 6= i′ ∈ N . An outcome is a pair (X,p) such that X is feasible.
Denote with OUT(Γ) the set of outcomes of Γ. An outcome (X,p) is individually-rational if
ui ≥ 0 for every i ∈ N .

Denote as M(X) =
⋃
i∈N Xi the set of items sold to some buyer according to a feasible

allocation vector X. Buyer i is a winner if Xi 6= ∅ and W (X) denotes the set of all winners
in X. For an item j ∈ M(X), denote with bX(j) the buyer i ∈ W (X) such that j ∈ Xi.
When the allocation vector is clear from the context, we simply write b(j).

The following concepts define two types of stable outcomes for Γ.

I Definition 1. An individually-rational outcome (X,p) is item envy-free if ui(Xi,p) ≥
ui(T,p) for every buyer i ∈ N and T ⊆M , that is, Xi ∈ Di(p) for every i ∈ N .

I Definition 2. An individually-rational outcome (X,p) is bundle envy-free if ui(Xi,p) ≥
ui(Xj ,p) for every two buyers i, j ∈ N .

Denote with IEF(Γ) and BEF(Γ), the sets of item envy-free and bundle envy-free outcomes
for Γ, respectively. Notice that IEF(Γ) ⊆ BEF(Γ) and IEF(Γ) 6= ∅ (and so also BEF(Γ) 6= ∅),
since the outcome (X,p) such that Xi = ∅ for every i ∈ N and pj =∞ for every j ∈M is
individually-rational and item envy-free.

2.3 Pricing Problems
Fix an outcome (X,p) for a market Γ. The revenue raised by (X,p) is REV(X,p) =∑
j∈M(X) pj . The social welfare generated by (X,p) is SW(X,p) =

∑
i∈N ui(Xi)+∑

j∈M(X) pj =
∑
i∈W (X) vi(Xi). Note that the social welfare does not depend on the

price vector p and that SW(X,p) ≥ REV(X,p).
Given a market Γ, let sol(Γ) ⊆ OUT(Γ) denote any subset of outcomes for Γ and

obj : OUT(Γ) → R≥0 denote an objective function associating a non-negative value to
every outcome for Γ. Let opt(Γ, sol, obj) := argmax(X,p)∈sol(Γ){obj(X,p)} denote the set of
outcomes in sol(Γ) maximizing the objective function obj.

I Definition 3. The pricing problem P = (Γ, sol, obj) is an optimization problem which ,
given a market Γ, a set of outcomes sol(Γ) and an objective function obj, asks for an outcome
o∗(P) ∈ opt(P).

In this paper, we consider the cases in which sol(Γ) ∈ {IEF(Γ),BEF(Γ)} and obj ∈
{REV, SW}.

Oracles. Fix a pricing problem P = (Γ, sol, obj). As we have seen, when Γ is a market with
combinatorial valuations, any algorithm for P needs to deal with an input of exponential
size. In order to circumvent this problem and remain within the realm of polynomial time
algorithms, it is usually assumed that functions vis are not given as an input of the problem
and are replaced by a polynomial time (with respect to n and m) oracle providing information
about a buyer’s valuation function. An oracle is usually assumed to answer two types of
questions: a value query which, given a buyer i ∈ N and a set of items X, returns the
valuation vi(X), and a demand query which, given a price vector p and a buyer i ∈ N ,
returns any set in Di(p).

MFCS 2018

47:6 Pricing Problems with Buyer Preselection

We remark that all algorithms of this paper exploiting oracle calls are polynomial also in
the sense that they call the oracle a polynomial number of times. Therefore, when also the
oracle is polynomially computable, the algorithm computation is fully polynomial.

2.4 The Buyer Preselection Problem
Given a market Γ = (N,M, (vi)i∈N) and a subset of buyers N ′ ⊆ N , the submarket of Γ
induced by N ′ is the market Γ(N ′) = (N ′,M, (vi)i∈N ′).

I Definition 4. The buyer preselection problem is an optimization problem BP(P)
which, given a pricing problem P = (Γ, sol, obj) with Γ = (N,M, (vi)i∈N), asks for a
pair (N∗(BP(P)), o∗(BP(P))) such that N∗(BP(P)) ∈ argmaxN ′⊆N{opt(Γ(N ′), sol, obj)}
and o∗(BP(P)) ∈ opt(Γ(N∗(BP(P))), sol, obj), that is, o∗(BP(P)) is the best outcome which
can be realized in all possible submarkets of Γ.

Clearly, by definition, for every pricing problem P , obj(o∗(P)) ≤ obj(o∗(BP(P))), that is,
buyer preselection can only improve the quality of the optimal solution.

3 Results for Item Envy-Free Outcomes

In this section, we consider the buyer preselection problem BP(Γ, IEF, obj) with obj ∈
{REV, SW}. We start by providing a lower bound on its approximability attained by exploiting
an approximation-preserving reduction from the maximum independent set problem.

I Theorem 5. Let P = (Γ, IEF, obj) be a pricing problem with obj ∈ {REV, SW}. For every
ε > 0, the buyer preselection problem BP(P) cannot be approximated within n1−ε, unless
P = ZPP, even when Γ is a market with single-minded buyers.

Proof. We prove the claim through an approximation-preserving reduction from the max-
imum independent set problem, in which, given an undirected graph, it is asked for a subset
of nodes, no two of which are adjacent, of maximum cardinality. To this aim, consider an
instance of the maximum independent set problem defined by a graph G = (V,E) and denote
with δi(G) the set of edges incident to node i. We create a market Γ = (N,M, (vi)i∈N) with
single-minded buyers as follows: we set N = V , M = E and, for every i ∈ N , we define the
valuation function vi in such a way that, for every X ⊆M ,

vi(X) =
{

1 if X = δi(G)
0 otherwise.

Fix any subset of buyers N ′ ⊆ N . Given an individually-rational outcome o = (X,p) ∈
OUT(Γ(N ′)), define VREV(o) := {i ∈ V :

∑
j∈Xi

pj > 0} and VSW(o) := {i ∈ V : vi(Xi) > 0}.
By construction of the valuation functions, both VREV(o) and VSW(o) have to be independent
sets for G. Let obj ∈ {REV, SW}. Since

∑
j∈Xi

pj ≤ 1 and vi(Xi) ≤ 1 for every i ∈ N ′, it
follows that

obj(o) ≤ |Vobj(o)|. (1)

Let V ∗ ⊆ V be a maximum independent set for G. It is easy to see that the outcome (X∗,p∗)
such that X∗i = δi(G) for every i ∈ V ∗ and

p∗j =
{

1/δi(G) if j ∈ δi(G)
0 otherwise.

V. Bilò, M. Flammini, G. Monaco, and L. Moscardelli 47:7

is an item envy-free outcome (actually it is also a Walrasian equilibrium because the market
clears, i.e, every unsold item is assigned price zero) for market Γ(N ′). This implies

obj(o∗(BP(P))) ≥ obj(X∗,p∗) = |V ∗|. (2)

Assume, for the sake of contradiction, that there exists an approximation algorithm for
BP(P) returning an outcome o such that n1−εobj(o) ≥ obj(o∗(BP(P))) for some ε > 0. Using
(2), we get n1−εobj(o) ≥ |V ∗| which combined with (1) implies that n1−ε|Vobj(o)| ≥ |V ∗|: a
contradiction to the inapproximability result for the maximum independent set problem. J

As a positive result, we show that, by building upon (approximation) algorithms for pricing
problems defined on markets with a unique buyer, it is possible to obtain approximation
algorithms for the buyer preselection problem. In particular, the following theorem can be
proved by considering the buyer providing, when being alone in the market, the best possible
outcome with respect to the considered objective function.

I Lemma 6. Given a buyer preselection problem BP(P), where P = (Γ, IEF, obj) with
obj ∈ {REV, SW}, if there exists a polynomial time algorithm A returning an outcome for the
pricing problem defined on markets with a unique buyer whose objective value is at least an
α fraction of the optimal social welfare, then BP(P) admits an αn-approximation algorithm.

Proof. Assume that o∗(BP(P)) := (X∗,p∗). For every i ∈ N∗(BP(P)), define

obji(o∗(BP(P))) =
{ ∑

j∈X∗
i
p∗j if obj = REV,

vi(X∗i) if obj = SW.
(3)

Consider the preselection algorithm which, given Γ, returns a buyer i∗ ∈ N such that
i∗ ∈ argmaxi∈N {maxX⊆M{vi(X)}}. Let o ∈ IEF(Γ({i∗})) be the outcome returned by A
when executed on the pricing problem P ′ = (Γ({i∗}), IEF, obj). We have

obj(o∗(BP(P))) =
∑

i∈N∗(BP(P))

obji(o∗(BP(P)))

≤
∑

i∈N∗(BP(P))

vi(X∗i)

≤ nvi∗(X∗i∗)
≤ αnobj(o),

where the first inequality comes from (3) and the fact that
∑
j∈X∗

i
pj ≤ vi(X∗i) because of

individual rationality, the second inequality follows from the definition of i∗, and the third
inequality comes from the hypothesis on algorithm A. J

As a consequence of Theorem 5 and Lemma 6, we have that the buyer preselection problem
BP(Γ, IEF, obj), with obj ∈ {REV, SW}, admits a polynomial time algorithm providing the
best possible approximation guarantee, whenever the pricing problem defined on markets
with a unique buyer can be solved in polynomial time with respect to the social welfare
objective function. For such a reason, in the following subsection, we focus on the solution of
the latter problem.

MFCS 2018

47:8 Pricing Problems with Buyer Preselection

3.1 Pricing Problems Defined on Markets with a Unique Buyer
Throughout this subsection, since there is only one buyer in the market, for the sake of
simplicity we remove the pedis 1 from the notation.

As a warmup, we start by considering the simpler case in which obj = SW.

I Claim 7. Let Γ be a market with a single buyer and combinatorial valuations. The pricing
problem (Γ, IEF, SW) can be solved in polynomial time.

In fact, observe that an outcome (X∗,0m) such that X∗ ∈ argmaxX⊆Mv(X) verifies
(X∗,0m) ∈ opt(P), and a set X∗ ∈ argmaxX⊆Mv(X) can be obtained in polynomial time by
using the price vector 0m as the input of an oracle demand query.

We show in the next theorem that the case of obj = REV yields an NP-hard problem,
thus solving a longstanding open problem left by [5] (where in Lemma 7 an approximation
algorithm with no hardness result is provided). Theorem 8 can be proved by exploiting a
polynomial reduction from 3SAT, in which a given boolean formula φ is transformed into a
market with a unique buyer, whose items are the literals of φ.

I Theorem 8. Let Γ be a market with a single buyer and combinatorial valuations. The
pricing problem (Γ, IEF,REV) is NP-hard.

Proof. We prove the claim through a reduction from 3SAT. To this aim, given a boolean
formula φ, let V(φ) denote the set of its variables and L(φ) the set of all possible literals on
variables in V(φ); moreover, denote ν = |V(φ)|. Throughout this proof, we assume ν ≥ 4.
An assignment for φ is a function f : V(φ)→ {0, 1} assigning to each variable of φ a boolean
value. Denote with F (φ) the set of all possible assignments for φ and with φ(f) the boolean
value obtained by evaluating all literals occurring in φ according to f . φ is satisfiable if
there exists an assignment f ∈ F (φ) such that φ(f) = 1 and it is unsatisfiable if, for every
assignment f ∈ F (φ), φ(f) = 0. Given a set of literals X ⊆ L(φ), with a little abuse of
notation, we write X ∈ F (φ) whenever there exists an assignment f ∈ F (φ) such that
X contains all and only those literals which are evaluated 0 according to f . A formula
φ is an instance of 3SAT if φ is expressed in Conjunctive Normal Form and each clause
is the disjunction of 3 literals, so that φ can be completely expressed by listing the set
C = {c1, . . . , ck} of its clauses, where each clause ci (i = 1, . . . , k) is a set of three literals.

Given an instance of 3SAT φ := C, we construct a market Γ = ({1},M, v) with a unique
buyer such that M = L(φ) and the valuation function v is defined as follows:

v(X) =

1 if |X| = 1,
3 + ε if X ∈ C,
ν if X ∈ F (φ),
0 otherwise,

where ε > 0 is arbitrarily small.
Clearly Γ can be constructed in polynomial time with respect to the representation of

φ. However, in order to complete the reduction, we have to construct an oracle which can
answer both demand and value queries in polynomial time. To this aim, observe that, given
a set of literals X, checking whether X is a singleton set, or X ∈ C, or X ∈ F (φ) can be
performed in polynomial time, so that value queries can be efficiently answered. In order
to provide an efficient answer to a demand query, we first observe that the cardinalities of
sets L(φ) and C are polynomial in the representation of φ, and therefore, given a pricing
vector, a set of items in L(φ) and C yielding the highest utility can be efficiently computed
by enumeration. Then, in order to compute a set X ∈ F (φ) of maximum utility, note that all

V. Bilò, M. Flammini, G. Monaco, and L. Moscardelli 47:9

the candidate sets have the same valuation so that, in order to return one with the highest
utility, we simply need to choose, for each variable in V(φ), the related literal having the
lowest price. Hence, market Γ can be generated and managed in polynomial time.

Now, in order to complete the proof, we show that there exists an outcome o ∈ OUT(Γ)
such that REV(o) = ν if and only if φ is satisfiable.

Assume first that φ is satisfiable and let f be a satisfying assignment for φ. Let X be
the set of literals which are evaluated 0 in f and let p be the pricing vector such that all
literals in X are priced 1, while all literals in L(φ) \X are priced ∞. By definition, we have
u(X,p) = 0, so that (X,p) is individually-rational. Moreover, (X,p) ∈ D(p). In fact, for
every X ′ 6= X such that X ′ ∈ F (φ), u(X ′,p) < 0 since X ′ has to contain at least one item
priced ∞; for every X ′ ∈ C, u(X ′,p) < 0 since, as we have φ(f) = 1, X ′ has to contain
at least one item priced ∞; for every X ′ ∈ L(φ), u(X ′,p) ≤ 0 by construction. Hence,
(X,p) ∈ IEF(Γ) and REV(X,p) = ν.

Secondly, assume that there exists an outcome (X,p) ∈ IEF(Γ) such that REV(X,p) = ν.
By construction of the valuation function, this is possible only if X ∈ F (φ) and

∑
j∈X pj = ν,

so that u(X,p) = 0. However, since v({`}) = 1 for every ` ∈ L(φ), (X,p) ∈ IEF(Γ) implies
that it must also be pj ≥ 1 for each j ∈ X. Hence, we can conclude that pj = 1 for each
j ∈ X. Assume, for the sake of contradiction, that φ is unsatisfiable. This implies that
the assignment induced by all literals in L(φ) \X cannot satisfy φ, that is, there exists a
clause cj ∈ C such that cj ⊆ X. This implies u(cj ,p) = 3 + ε− 3 = ε > 0 thus contradicting
(X,p) ∈ IEF(Γ). Hence, φ has to be satisfiable. J

On the positive side, [5] derive an O(logm)-approximation algorithm for this problem.
An interesting feature of this algorithm is that its performance guarantee holds also with
respect to the maximum social welfare which is an upper bound to the maximum revenue,
thus allowing the application of Lemma 6.

Hence, by combining Lemma 6 with Claim 7 and the result of [5], we obtain the following
upper bounds.

I Theorem 9. Let P = (Γ, IEF, obj) be a pricing problem with obj ∈ {REV, SW}. The
buyer preselection problem BP(P) admits an n-approximation when obj = SW, and an
O(n logm)-approximation when obj = REV.

It is worth noticing that, given the proof of Lemma 6, the preselection claimed in Theorem 9
is someway “oblivious”, i.e., it can be obtained by exploiting the minimum possible number
of oracle queries, that is only a single oracle (demand) query for each buyer.

In light of the lower bound given in Theorem 5, the upper bounds given in Theorem
9 are asymptotically tight both for obj = SW (unless P = ZPP) and for obj = REV when
m = o(n) (unless P = ZPP).

4 Results for Bundle Envy-Free Outcomes

In this section, we consider the buyer preselection problem BP(Γ,BEF, obj) with obj ∈
{REV, SW}. Since we deal with bundle envy-free outcomes, we suppose that the price of
any unsold item is infinite. Formally, given an outcome (N, o), where o = (X,p), for the
buyer preselection problem BP(Γ,BEF, obj) with Γ = (N,M, (vi)i∈N), we have that, for any
j ∈M \M(X), pj =∞.

We start by considering the buyer preselection problem BP(Γ,BEF,REV).
The following theorem shows how it is possible to transform a bundle envy-free solution

(N̄ , ō) with preselection into anther one (without preselection) having a non-smaller revenue.

MFCS 2018

47:10 Pricing Problems with Buyer Preselection

I Theorem 10. Given any solution (N̄ , ō) for the buyer preselection problem BP(Γ,BEF,
REV), with Γ = (N,M, (vi)i∈N), it is possible to compute in polynomial time an outcome
o ∈ BEF(Γ) for problem P such that REV(o) ≥ REV(ō).

Theorem 10 can be proved by exploiting the notion and properties of maximal solutions, i.e,
solutions in which no item price can be increased without changing the allocation (notice
that an optimal solution is maximal), and by providing a constructive algorithm working on
maximal solutions and allocating bundle of items to the players in N \ N̄ that envy other
winners. In particular, we first show that in a maximal solution (N̄ , ō) with preselection
(i) for any buyer with positive utility, there exists another sold bundle providing her the
same utility and (ii) there always exists a winner buyer having utility equal to 0. Given
these properties, it is possible to exchange among the buyers the assigned bundles so that an
excluded envious buyer can be assigned her preferred sold bundle X̄j and can be therefore
added to the solution without generating envy. Buyer j, getting bundle X̄j in (N̄ , ō), gets
another one providing her the same utility (by property (i) such a bundle always exists).
This process can be iterated until a winner buyer with utility equal to 0 is reached and
removed from the set of winners (it is possible to show that in this process a buyer is never
considered twice and therefore by property (ii) it always terminates).

We now consider the buyer preselection problem BP(Γ,BEF, SW). Analogously to The-
orem 10 holding for the revenue maximization case, next theorem shows that a bundle
envy-free outcome for the buyer preselection problem can be efficiently transformed in a
bundle envy-free outcome, for the corresponding pricing problem (without preselection),
having at least the same social welfare.

I Theorem 11. Given any solution (N̄ , ō) for the buyer preselection problem BP(Γ,BEF, SW),
with Γ = (N,M, (vi)i∈N), it is possible to compute in polynomial time an outcome o ∈ BEF(Γ)
for problem P such that SW(o) ≥ SW(ō).

Theorem 11 can be proved by considering a new market Γ′ with unit-demand buyers, in which
the set of buyers is N and there is an item for every bundle sold in (N̄ , ō). In fact, given
that markets with unit-demand buyers always admit a Walrasian Equilibrium computable in
polynomial time and that, by the well known First Welfare Theorem, Walrasian equilibria
maximize social welfare over all possible outcomes, it can be easily obtained, by suitably
setting the price of the items in Γ as a function of those in Γ′, a bundle envy-free solution
for Γ with no excluded buyer and having the same social welfare of ō.

As a consequence of Theorems 10 and 11, we obtain the following corollary.

I Corollary 12. For obj ∈ {REV, SW}, given an α-approximate solution (N, o) (with α ≥ 1,
notice that when α = 1 the corollary holds for optimal solutions) for the buyer preselection
problem BP(P) with P = (Γ,BEF, obj) and Γ = (N,M, (vi)i∈N), it is possible to compute
in polynomial time an outcome o′ ∈ BEF(Γ) approximating the optimal solution of P by a
factor equal to α.

On the one hand, Corollary 12 tells us that, for obj ∈ {REV, SW}, any inapproximability
result holding for a pricing problem P = (Γ,BEF, obj) directly extends to the buyer preselec-
tion problem BP(P); on the other hand, it tells us that any α-approximation algorithm for
BP(P) is also an α-approximation algorithm for P . Thus, as discussed in the Our Contri-
bution subsection, preselection can be exploited as an algorithmic framework for designing
approximation algorithms for the normal market scenario (without preselection).

V. Bilò, M. Flammini, G. Monaco, and L. Moscardelli 47:11

5 The multi-unit case

In this section we study the multi-unit case, in which all the m items are of the same type.
Recall that, for every i ∈ N , the valuation function becomes of the form vi : {1, . . . ,m} → R≥0
and that the market can be represented with Θ(nm) bits. Furthermore, in this case an
allocation vector X can be specified by the number of items assigned to each buyer, i.e.
X = (x1, . . . , xn), with xi ∈ {0, . . . ,m} for any i = 1, . . . , n, and

∑n
i=1 xi ≤ m. Finally, we

set the item pricing to p (i.e., all the multi-items have the same price) and the total price for
selling x items is px.

A particular situation of multi-unit market, moreover, arises when one assumes single-
minded buyers; in this case, since, for every player i = 1, . . . , n, valuation function vi can be
completely defined by specifying how much every player valuates the set containing ki items
(being the only set she is interested in), Θ(n logm) bits suffice to represent the market.

We first focus on the case of item envy-free solutions. Next claim shows that preselection
can improve both the revenue and the social welfare of a market with multi-unit items, even
in the case of single-minded buyers.

I Claim 13. For any ε > 0, there exists a market Γ with single-minded buyers and multi-
unit items, and a pricing problem P = (Γ, IEF(Γ), obj) with obj ∈ {REV, SW}, such that
obj(o∗(BP(P))) ≥ (m− ε)obj(o∗(P)).

In fact, consider a market with only two single-minded buyers. Buyer 1 valuates 1 + ε′, for a
small ε′ > 0, for receiving any (one) item. Buyer 2 valuates m for receiving all the m items.
Notice that, in any item envy-free outcome for the setting without preselection, buyer 2
receives no item. In fact, if buyer 2 receives m items, the item pricing p must be at most
1. Thus, buyer 1 would be envious since she would get no item (i.e., there are no enough
items). Therefore, for the market without preselection, the only feasible solutions are selling
one item to buyer 1 at price at least 1 and at most 1 + ε′. Thus the optimal revenue and the
optimal social welfare are at most 1 + ε′. However, if we consider the submarket with only
buyer 2, i.e., we exclude buyer 1, we can sell m items at item pricing 1, thus obtaining a
revenue and social welfare of m.

We notice that the above bound is tight. It is easy to see that preselection cannot improve
the revenue and social welfare of envy-free solutions by a factor greater than m. In fact, it is
sufficient to sell items to the buyer i such that (i, j) = argmaxi=1,...,n;j=1,...,m

vi(j)
j .

Now we focus on the computation of optimal or approximate solution for the preselection
problem in the case of item envy-free outcomes, both for the social welfare and the revenue
objective functions.

I Theorem 14. Given a pricing problem P = (Γ, IEF(Γ), obj), where Γ = (N,M, (vi)i∈N) is
a market with multi-unit items and obj ∈ {REV, SW}, the buyer preselection problem BP(P)
can be optimally solved in polynomial time.

Proof. Recall that solving the buyer preselection problem BP(P) corresponds to find a subset
N∗ of players to admit to the market and an optimal outcome o∗ = (X∗, p∗), in which in the
considered case of multi-unit items p∗ is just the price of a single item.

In order to prove the claim, we first show that it is possible to compute in polynomial
time a set P containing the optimal price p∗ for problem BP(P).

Consider the set P defined as follows:

P = {y|vi(k)− yk = vi(k′)− yk′, i ∈ N,
k, k′ ∈ {0, 1, . . . ,m}, k 6= k′}.

MFCS 2018

47:12 Pricing Problems with Buyer Preselection

Roughly speaking, for all buyers i ∈ N and for all couples (k, k′) of integers belonging to
{0, 1, . . . ,m} such that k 6= k′, P contains the solution y of equality vi(k)− yk = vi(k′)− yk′.
Clearly, P can be computed in O(nm2) time, i.e., in polynomial time in the size of the
instance. Now, assume by contradiction that the optimal solution (N∗, o∗) for BP(P) with
the highest possible item price assign to an item price p∗ 6∈ P, and let p′ ∈ P the smallest
element of P such that p′ > p∗. Notice that this element p′ ∈ P has to exist, because p∗ must
verify, for any i = 1, . . . , n, vi(x̄i)−p∗x̄i ≥ 0 and y verifying equality vi(x̄i)−yx̄i = 0 belongs
to P . Since p∗ induces an envy-free solution, it has to verify, for every i = 1, . . . , n, constraint
vi(x̄i) − p∗x̄i ≥ vi(j) − p∗j for any j = 0, . . . ,m; since, p∗ 6∈ P, given how P is defined, it
follows that all above constraints are not verified in a strict manner, i.e. it is verified that,
for every i = 1, . . . , n, vi(x̄i) − p∗x̄i > vi(j) − p∗j for any j = 0, . . . ,m. Therefore, p′ still
continues to verify all envy-free constraints (with some constraints possibly become strict).
It follows that we have found a new envy-free outcome o′ such that SW(o′) = SW(o∗) and
REV(o′) > REV(o∗): a contradiction to the fact that o∗ was the optimal outcome with the
highest possible item price.

Therefore, since the number of values that can be assigned to p∗ in order to obtain an
optimal outcome is polynomial in the size of the instance, it remains to show that, given a
fixed price p∗, it is possible to optimally compute in polynomial time a subset N∗ of players
to admit to the market and an allocation X∗. In fact, the optimal solution of BP(P) is given
by the best solution among the ones obtained for all the candidate prices belonging to P.

The 0-1 Multiple-Choice Knapsack Problem (0-1 MCKP) is a generalization of the classical
Knapsack problem introduced in [30]. In this problem, we are given α classes C1, C2, . . . , Cα
of elements to pack in some knapsack of capacity c. For every i = 1, . . . , n, each element
e ∈ Ci (let class(e) = i be the index of the class to which e belongs) has a profit βe and a
volume γe, and the problem is to choose a set E containing at most one element from each
class such that the profit sum is maximized without the volume sum exceeding capacity c. In
[21] it is shown that it can be optimally solved in pseudo-polynomial time, i.e., in time O(c).

We now provide a polynomial reduction from our problem to 0-1 MCKP. Given an
instance I of BP(P) and fixed a price p∗, we construct an instance I ′ of 0-1 MCKP as follows:
We have α = n classes (one class for each buyer) and the capacity c = m. Consider, for
every buyer i = 1, . . . , n, the number of items providing her with the highest possible utility:
let Ūi = arg maxk=1,...,m vi(k)− kp∗ be the set containing these values. It is easy to check
that, in every item envy-free solution, allocation X must satisfy xi ∈ Ūi for every player
i = 1, . . . , n. For every i = 1, . . . , n, consider set Ūi: we add to class Ci an element e for
every k ∈ Ūi such that γe = k and

βe = k if obj = REV;
βe = vi(k) if obj = SW.

Given a solution for I ′ with total profit β =
∑
e∈E βe, it is possible to obtain a solution for

I with fixed price p∗, i.e., a subset N̄ of players to admit to the market and an allocation
X̄, as follows: N̄ contains the players associated to classes containing an element belonging
to E, i.e., N̄ = {i|Ci ∩ E 6= ∅}, and the allocation vector X̄ = (x̄1, . . . , x̄n) is such that, for
every i = 1, . . . , n, xi = γe if there exists an element e ∈ Ci ∩ E. Clearly, obj((X̄, p∗)) = β.
Furthermore, by the way Ūi is defined, outcome (X̄, p∗) is item envy-free.

Conversely, given a subset N̄ of preselected players and an outcome o = (X, p∗) for I, it
is possible to obtain a solution for I ′ as follows: for every i ∈ N̄ , add to E element e ∈ Ci
such that γe = xi (by recalling the definition of Ūi, it holds that this element e belongs to Ci
because outcome o is item envy-free). Clearly, the total profit β =

∑
e∈E βe = obj((X, p∗)).

The claim follows by noticing that, since c = m, the pseudo-polynomial algorithm of [21]
is in fact polynomial with respect to the size of the instance of problem BP(P). J

V. Bilò, M. Flammini, G. Monaco, and L. Moscardelli 47:13

For the special case of single-minded buyers in which an instance of the buyer preselection
problem can be represented by Θ(n logm) bits, by exploiting the same ideas used for proving
Theorem 14, the following theorem provides an FPTAS.

I Theorem 15. Given a pricing problem P = (Γ, IEF(Γ), obj), where Γ = (N,M, (vi)i∈N) is
a market with single-minded buyers and multi-unit items, for obj ∈ {REV, SW}, the buyer
preselection problem BP(P) admits a fully polynomial approximation scheme.

We complement the result of Theorem 15 by showing a tight lower bound to the problem
of computing the maximum revenue to the case of item envy-free with single-minded buyers
and multi-unit items. The following claim can be proved by exploiting a reduction from the
Subset Sum problem.

I Claim 16. Given a pricing problem P = (Γ, IEF(Γ),REV), where Γ = (N,M, (vi)i∈N) is a
market with single-minded buyers and multi-unit items, the buyer preselection problem BP(P)
is NP-Hard.

Proof. We use a reduction from the Subset Sum problem, that is defined as follows: given a
set of integers and an integer s, does any non-empty subset sum to s? Let n be the number of
elements {a1, a2, . . . , an} in the given instance of the Subset sum problem, and let s be the
required sum. We assume that

∑n
i=1 ai > s, as otherwise the problem is trivial. For all ai in

the input of the Subset sum problem, we create a corresponding buyer i with the following
valuation. Buyer i has valuation ai for receiving ai items, and zero otherwise. Moreover,
we set the number of items m = s. In such case, if there is a solution for the Subset sum
problem, then by setting the item pricing p = 1 and selling to corresponding buyers gives us
a feasible and envy-free outcome in which the revenue equals to m. It is easy to see that
m is an upper bound to the maximum revenue. On the other hand, if the revenue of the
optimal outcome to the buyer preselection problem is equal to m, we can obtain the solution
to the subset sum problem. Notice that we can obtain a revenue of m only if we sell exactly
m items at item pricing p = 1. In fact, at item pricing p > 1, we sell no item, and at item
pricing p < 1, we do not get an optimal solution. J

We now focus on the case of bundle envy-free solutions. We first notice that the results
of Section 4 claiming that bundle envy-free solutions do not improve the quality of outcomes
(with respect neither to social welfare nor to revenue maximization) do not hold for the
multi-unit case, because in this case it is not possible to change the price of some item
without influencing the other ones. We start by showing that preselection can improve both
the revenue and the social welfare of a market with multi-unit items, even in the case of
single-minded buyers.

I Claim 17. For any ε > 0, there exists a market Γ with single-minded buyers and multi-
unit items, and a pricing problem P = (Γ,BEF(Γ), obj) with obj ∈ {REV, SW}, such that
obj(o∗(BP(P))) ≥ (2− ε)obj(o∗(P)).

In fact, consider a market with x+ 1 single-minded buyers. Buyer 1 valuates x for receiving
x items. Buyer i, for any i = 2, 3, . . . , x+ 1, valuates 1 + ε′, for a small ε′ > 0, for receiving
any (one) item. Finally, the number of items is 2x− 1. Notice that, in any bundle envy-free
outcome for the setting without preselection, if buyers 1 receives x items, it implies that the
item pricing p must be at most 1. It further implies that, in such outcome, no buyer i, for
any i = 2, 3, . . . , x+ 1, can get items. The reason is that such buyers have positive utility for
receiving one item, but the number of items is not sufficient to satisfy all of them. Therefore,
the only chance is selling no bundle of one item. Thus, on one hand, without preselection,

MFCS 2018

47:14 Pricing Problems with Buyer Preselection

the best revenue and social welfare is x(1 + ε′). It can be obtained by selling one item to
buyers i, for any i = 2, 3, . . . , x+ 1, at price 1 + ε′. On the other hand, if we consider the
submarket with only buyers 1, 2, . . . , x (i.e., we exclude one buyer that valuates 1 + ε′ for
receiving any (one) item), we can sell 2x− 1 items at item pricing 1, that is x items to buyer
1, and one item to buyers i, for any i = 2, . . . , x, thus obtaining a revenue and social welfare
of 2x− 1.

We now show that, for the market with multi-unit items and general valuations, preselec-
tion can improve the revenue by a multiplicative factor of at most 2, thus closing in a tight
way the previous bound.

I Theorem 18. Given a solution (N̄ , ō) for the buyer preselection problem BP(Γ,BEF,REV),
with Γ = (N,M, (vi)i∈N) being a market with multi-unit items, it is possible to compute in
polynomial time an outcome o ∈ BEF(Γ) for problem P such that REV(ō) ≤ 2REV(o).

Proof. Let ō = (X̄, p̄). In the following we will show how to compute in polynomial time
an outcome o ∈ BEF(Γ) with o = (X, p) such that (i) p ≥ p̄ and (ii) |M(X)| ≥ |M(X̄)|

2 , i.e.,
outcome o sells at least one half of the items sold by outcome ō at a price at least equal to p̄.
Clearly, this directly implies that REV(o) ≥ REV(ō)

2 .
For every j ∈ {1, . . . ,m}, let aj be the number of items that could be sold to some buyers

in bundles of cardinality j at price p̄ (we require that these buyers obtain a non-negative utility
for a bundle of j items). More formally, for every j = 1, . . . ,m, let Bj(X̄) = {i|vi(j)−jp̄ ≥ 0}
be the subset of players obtaining a non-negative utility for a bundle with j items; then,
aj = j|Bj(X̄)|.

We divide the proof in two disjoint cases.
If there exists j ∈ {1, . . . ,m} such that aj ≥ |M(X̄)|

2 , outcome o = (X, p) is such that
xk = j for every k ∈ Bj(X̄), and xk = 0 otherwise. By setting p = p̄, by the definition of
aj , we know that aj items could be sold without generating envy.
If aj ≤ m, we are done.
If j ≥ |M(X̄)|

2 , we can increase the price p so that only buyer i, with i such that
vi(j) = maxnk=1 vk(j), is assigned the bundle (notice that in this way no other buyer is
envious).
It remains to deal with the subcase in which aj > m and j < |M(X̄)|

2 : We increment price
p until the number of buyers x with positive utility is such that xj ≤ m. We then assign
bundles of j items to all buyers with positive utility and to as many buyers with zero
utility as possible. Notice that (i) since j < |M(X̄)|

2 implies that m − j > |M(X̄)|
2 , this

process leads to obtain at least |M(X̄)|
2 assigned items and (ii) again no buyer is envious.

If for all j ∈ {1, . . . ,m} it holds that aj < |M(X̄)|
2 , outcome o = (X, p̄) (with the same

price of outcome ō) is computed as follows.
For any i = 1, . . . , n and k = 1, . . . ,m, let u∗ki = maxkt=1 vi(t)−tp̄ be the maximum possible
utility of buyer i for bundles of at most k items and b∗ki = min{j|vi(j)− jp̄ = u∗ki } the
minimum size of a bundle of maximum utility for buyer i. Moreover, for any k = 1, . . . ,m
and j = 1, . . . , k, let Bk,j = {i|b∗ki = j} be the set of buyers having j items as their best
bundle of maximum utility, among all bundles made up to k items, and resolving ties by
selecting the bundle of minimum size.
Clearly, Bk,j can be computed in time O(poly(n,m)). For k = 1, . . . ,m, consider
allocation Xk = (xk1 , . . . , xkn) such that, for every i = 1, . . . , n, xji = j if i ∈ Bk,j
and xji = 0 otherwise. By the definition of Bk,j it follows that allocation Xk is envy-
free. Moreover, it can be easily verified that |M(X1)| = a1 and, for any j = 2, . . . ,m,
|M(Xj)| − |M(Xj−1)| ≤ aj .

V. Bilò, M. Flammini, G. Monaco, and L. Moscardelli 47:15

If |M(Xm)| ≤ m, the claim trivially follows by setting X = Xm because we are allocating
at least all items allocated in ō.
Otherwise, let k′ be the minimum value of k = 2, . . . ,m such that |M(Xk′)| > m: the
claim follows by setting X = Xk′−1. In fact, since |M(Xk′)|−|M(Xk′−1)| ≤ ak′ ≤ |M(X̄)|

2 ,
it follows that |M(Xk′−1)| ≥ m− |M(X̄)|

2 ≥ |M(X̄)|
2 . J

It is worth noticing that, on the one hand, preselection can be exploited as an algorithmic
framework for designing good approximation algorithms (loosing only a moltiplicative factor
of 2) for the normal market scenario without preselection; on the other hand, since the
optimal revenue with preselection is at most twice the one without, an α-approximation
algorithm for the normal market without preselection, is a 2α-approximation one for market
with preselection.

6 Final remarks and Future work

Many results holding for the item envy-free outcomes and social welfare objective function
extend to the notion of Walrasian equilibria, that are item envy-free outcomes with the
additional requirement that the market clears, i.e., every unsold item is assigned price zero.
In particular, the inapproximability result of Theorem 5 and the n-approximation algorithm
for the buyer preselection problem of Theorem 9 directly extend to Walrasian equilibria.
Notice also that for the remaining uncovered cases, that is when the goal is that of optimizing
the seller’s revenue, there is no reason for requiring market clearance, a condition clearly
limiting the power of setting prices so as to maximize the revenue.

The main left open problems are: for markets with a unique buyer, closing the gap between
the NP-hardness and the logarithmic approximation for the case of revenue maximization and
item envy-free solutions; for the multi-unit case with bundle envy-free outcomes, determining
an upper bound to the social welfare improvement achievable by preselection and setting the
complexity of computing optimal solutions, for both the revenue and the social welfare cases.

References
1 Noga Alon, Yishay Mansour, and Moshe Tennenholtz. Differential pricing with inequity

aversion in social networks. In Proc. of EC, pages 9–24, 2013.
2 Georgios Amanatidis, Evangelos Markakis, and Krzysztof Sornat. Inequity aversion pricing

over social networks: Approximation algorithms and hardness results. In Proc. of MFCS,
pages 9:1–9:13, 2016.

3 E. Anshelevich, K. Kar, and S. Sekar. Envy-free pricing in large markets: Approximating
revenue and welfare. In Proc. of ICALP, pages 52–64. Springer, 2015.

4 A. Archer, C. H. Papadimitriou, K. Talwar, and É. Tardos. An approximate truthful
mechanism for combinatorial auctions with single parameter agents. Internet Mathematics,
1(2):129–150, 2003.

5 M. F. Balcan, A. Blum, and Y. Mansour. Item pricing for revenue maximization. In Proc.
of EC, pages 50–59, 2008.

6 S. Bikhchandani and J. W. Mamer. Competitive equilibrium in an exchange economy with
indivisibilities. Journal of Economic Theory, 74(2):386–413, 1997.

7 V. Bilò, M. Flammini, and G. Monaco. Approximating the revenue maximization problem
with sharp demands. Theoretical Computer Science, 662:9–30, 2017.

8 V. Bilò, M. Flammini, G. Monaco, and L. Moscardelli. On the impact of buyers preselection
in pricing problems. In Proc. of AAMAS, 2018.

MFCS 2018

47:16 Pricing Problems with Buyer Preselection

9 P. Briest. Uniform budgets and the envy-free pricing problem. In Proc. of ICALP, pages
808–819. Springer, 2008.

10 P. Briest and P. Krysta. Single-minded unlimited supply pricing on sparse instances. In
Proc. of SODA, pages 1093–1102. ACM Press, 2006.

11 P. Chalermsook, J. Chuzhoy, S. Kannan, and S. Khanna. Improved hardness results for
profit maximization pricing problems with unlimited supply. In Proc. of APPROX, pages
73–84. Springer, 2012.

12 P. Chalermsook, B. Laekhanukit, and D. Nanongkai. Graph products revisited: Tight
approximation hardness of induced matching, poset dimension and more. In Proc. of
SODA, pages 1557–1576. ACM Press, 2013.

13 P. Chalermsook, B. Laekhanukit, and D. Nanongkai. Independent set, induced matching,
and pricing: Connections and tight (subexponential time) approximation hardnesses. In
Proc. of FOCS, pages 370–379. IEEE Computer Society, 2013.

14 N. Chen and X. Deng. Envy-free pricing in multi-item markets. In Proc. of ICALP, pages
418–429. Springer, 2010.

15 N. Chen, X. Deng, P. W. Goldberg, and J. Zhang. On revenue maximization with sharp
multi-unit demands. Journal of Combinatorial Optimization, 31(3):1174–1205, 2016.

16 N. Chen, A. Ghosh, and S. Vassilvitskii. Optimal envy-free pricing with metric substitut-
ability. SIAM Journal on Computing, 40(3):623–645, 2011.

17 Ning Chen and Atri Rudra. Walrasian equilibrium: Hardness, approximations and tractable
instances. Algorithmica, 52(1):44–64, 2008.

18 M. Cheung and C. Swamy. Approximation algorithms for single-minded envy-free profit-
maximization problems with limited supply. In Proc. of FOCS, pages 35–44. IEEE Com-
puter Society, 2008.

19 E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, 1971.
20 E. D. Demaine, U. Feige, M. Hajiaghayi, and M. R. Salavatipour. Combination can be

hard: Approximability of the unique coverage problem. SIAM Journal on Computing,
38(4):1464–1483, 2008.

21 K. Dudzinski and S. Walukiewicz. Exact methods for the knapsack problem and its gener-
alizations. European Journal of Operational Research, 28(1):3–21, 1987.

22 M. Feldman, A. Fiat, S. Leonardi, and P. Sankowski. Revenue maximizing envy-free multi-
unit auctions with budgets. In Proc. of EC, pages 532–549. ACM Press, 2012.

23 M. Feldman, N. Gravin, and B. Lucier. Combinatorial walrasian equilibrium. SIAM Journal
on Computing, 45(1):29–48, 2016.

24 M. Flammini, M. Mauro, and M. Tonelli. On social envy-freeness in multi-unit markets.
In Proc. of AAAI, 2018.

25 D. Foley. Resource allocation and the public sector. Yale Economic Essays, 7:45–98, 1967.
26 T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.
27 F. Gul and E. Stacchetti. Walrasian equilibrium with gross substitutes. Journal of Eco-

nomic Theory, 87:95–124, 1999.
28 V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On

profit-maximizing envy-free pricing. In Proc. of SODA, pages 1164–1173. ACM Press, 2005.
29 J. Hartline and Q. Yan. Envy, truth, and profit. In Proc. of EC, pages 243–252. ACM

Press, 2011.
30 E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of

Operations Research, 44(4):339–356, 1979.
31 G. Monaco, P. Sankowski, and Q. Zhang. Revenue maximization envy-free pricing for

homogeneous resources. In Proc. of IJCAI, pages 90–96, 2015.
32 H. R. Varian. Equity, envy, and efficiency. Journal of Economic Theory, 9:63–91, 1974.
33 W. Vickrey. Counterspeculation, auctions, and competitive sealed tenders. Journal of

Finance, 16:8–37, 1961.
34 L. Walras. Elements of Pure Economics. Allen and Unwin, 1954.

On Randomized Generation of Slowly
Synchronizing Automata
Costanza Catalano
Gran Sasso Science Institute
Viale Francesco Crispi 7, L’Aquila, Italy
costanza.catalano@gssi.it

Raphaël M. Jungers1

ICTEAM Institute, UCLouvain
Avenue Georges Lemaîtres 4-6, Louvain-la-Neuve, Belgium
raphael.jungers@uclouvain.be

Abstract
Motivated by the randomized generation of slowly synchronizing automata, we study automata
made of permutation letters and a merging letter of rank n− 1. We present a constructive
randomized procedure to generate synchronizing automata of that kind with (potentially) large
alphabet size based on recent results on primitive sets of matrices. We report numerical results
showing that our algorithm finds automata with much larger reset threshold than a mere uniform
random generation and we present new families of automata with reset threshold of Ω(n2/4). We
finally report theoretical results on randomized generation of primitive sets of matrices: a set of
permutation matrices with a 0 entry changed into a 1 is primitive and has exponent of O(n log n)
with high probability in case of uniform random distribution and the same holds for a random
set of binary matrices where each entry is set, independently, equal to 1 with probability p and
equal to 0 with probability 1− p, when np− log n→∞ as n→∞.

2012 ACM Subject Classification Mathematics of computing → Combinatorics, Mathematics
of computing→ Random graphs, Theory of computation → Randomness, geometry and discrete
structures

Keywords and phrases Synchronizing automata, random automata, Černý conjecture, automata
with simple idempotents, primitive sets of matrices

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.48

Acknowledgements The authors thank François Gonze and Vladimir Gusev for significant sug-
gestions and fruitful discussions on the topic.

1 Introduction

A (complete deterministic finite) automaton A on n states can be defined as a set of m binary
row-stochastic2 matrices {A1, . . . , Am} that are called the letters of the automaton. We say
that A is synchronizing if there exists a product of its letters, with repetitions allowed, that
has an all-ones column3 and the length of the shortest of these products is called the reset

1 R. M. Jungers is a FNRS Research Associate. He is supported by the French Community of Belgium,
the Walloon Region and the Innoviris Foundation.

2 A binary matrix is a matrix with entries in {0, 1}. A row-stochastic matrix is a matrix with nonnegative
entries where the entries of each row sum up to 1. Therefore a matrix is binary and row-stochastic if
each row has exactly one 1.

3 A column whose entries are all equal to 1.

© Costanza Catalano and Raphaël M. Jungers;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 48; pp. 48:1–48:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:costanza.catalano@gssi.it
mailto:raphael.jungers@uclouvain.be
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.48
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

48:2 On Randomized Generation of Slowly Synchronizing Automata

Table 1 Table on upper bounds on the reset threshold for some classes of automata and examples
of automata with large reset threshold belonging to these classes, up to date.

Classes Upper b. on rt Families with quadratic rt

Eulerian automata n2 − 3n + 3 (n2 − 3)/2
Kari [16] Szykuła and Vorel [27] (4 letters)

Automata with full 2n2 − 6n + 5 n(n− 1)/2
transition monoid Gonze et. al. [14] Gonze et. al. [14] (n letters)

One cluster automata n2 − 7n + 7 (n− 1)2

Béal et al. [4] Černý [28] (2 letters)

Strongly connected weakly bn(n + 1)/6c ?
monotone automata Volkov [29]

Automata with 2(n− 1)2 (n− 1)2 Černý [28] (2 letters)
simple idempotents Rystov [25] ≥ (n2 + 3n− 6)/4 for n = 4k + 3

[Conjectured (n2 − 1)/2]
≥ (n2 + 3n− 8)/4 for n = 4k + 1
[Conjectured (n2 − 1)/2]
≥ (n2 + 2n− 4)/4 for n = 4k

[Conjectured (n2 − 2)/2]
≥ (n2 + 2n− 12)/4 for n = 4k + 2
[Conjectured (n2 − 10)/2]
Our contribution (3 letters)

threshold (rt(A)) of the automaton. In other words, an automaton is synchronizing if there
exists a word that brings the automaton into a particular state, regardless of the initial one.
Synchronizing automata appear in different research fields; for example they are often used as
models of error-resistant systems [10, 7] and in symbolic dynamics [18]. For a brief account
on synchronizing automata and their other applications we refer the reader to [30]. The
importance of synchronizing automata also arises from one of the most longstanding open
problems in this field, the Černý conjecture, which affirms that any synchronizing automaton
on n states has reset threshold at most (n− 1)2. If it is true, the bound is sharp due to the
existence of a family of 2-letter automata attaining this value, family discovered by Černý
in [28]. Despite great effort, the best upper bound for the reset threshold known so far is
(15617n3 + 7500n2 + 9375n− 31250)/93750, recently obtained by Szykuła in [26] and thereby
beating the 30 years-standing upper bound of (n3−n)/6 found by Pin and Frankl in [11, 22].
Better upper bounds have been obtained for certain families of automata and the search for
automata attaining quadratic reset threshold within these families have been the subject of
several contributions in recent years. These results are (partly) summarized in Table 1.
Exhaustive search confirmed the conjecture for small values of n (see [3, 9]). The hunt for
a possible counterexample to the conjecture turned out not to be an easy task as well; the
search space is wide and calculating the reset threshold is computationally hard (see [10, 21]).
Automata with reset thresholds close to (n− 1)2, called extremal or slowly synchronizing
automata, are also hard to detect and not so many families are known; Bondt et. al. [9] make
a thorough analysis of automata with small number of states and we recall, among others,
the families found by Ananichev et al. [3], by Gusev and Pribavkina [15], by Kisielewicz
and Szykuła [17] and by Dzyga et. al. [19]. These last two examples are, in particular, some

C. Catalano and R.M. Jungers 48:3

of the few examples of slowly synchronizing automata with more than two letters that can
be found in the literature. Almost all the families of slowly synchronizing automata listed
above are closely related to the Černý automaton C(n) = {a, b}, where a is the cycle over
n vertices and b the letter that fixes all the vertices but one, which is mapped to the same
vertex as done by a; indeed all these families present a letter that is a cycle over n vertices
and the other letters have an action similar to the one of letter b. As these examples seem to
have a quite regular structure, it is natural to wonder whether a randomized procedure to
generate automata could obtain less structured automata with possibly larger reset thresholds.
This probabilistic approach can be rooted back to the work of Erdős in the 60’s, where he
developed the so-called Probabilistic Method, a tool that permits to prove the existence of a
structure with certain desired properties by defining a suitable probabilistic space in which
to embed the problem; for an account on the probabilistic method we refer the reader to [1].
The simplest way to randomly generate an automaton of m letters is to uniformly and
independently sample m binary row-stochastic matrices: unfortunately, Berlinkov first
proved in [5] that two uniformly sampled random binary row-stochastic matrices synchronize
with high probability (i.e. the probability that they form a synchronizing automaton tends
to 1 as the matrix dimension tends to infinity), then Nicaud showed in [20] that they also
have reset threshold of order O(n log3 n) with high probability. We say that an automaton is
minimally synchronizing if any proper subset of its letters is not synchronizing; what just
presented before implies that a uniformly sampled random automaton of m letters has low
reset threshold and is not minimally synchronizing with high probability. Summarizing:

slowly synchronizing automata cannot be generated by a mere uniform randomized
procedure;
minimally synchronizing automata with more than 2 letters are especially of interest as
they are hard to find and they do not appear often in the literature, so the behaviour of
their reset threshold is still unclear.

With this motivation in place, our paper tackles the following questions:
Q1 Is there a way to randomly generate (minimally) slowly synchronizing automata (with

more than two letters)?
Q2 Can we find some automata families with more than two letters, quadratic reset threshold

and that do not resemble the Černý family?

Our Contribution. In this paper we give positive answers to both questions Q1 and Q2.
For the first one, we rely on the concept of primitive set of matrices, introduced by Protasov
and Voynov in [24]: a finite set of matrices with nonnegative entries is said to be primitive if
there exists a product of these matrices, with repetitions allowed, with all positive entries. A
product of this kind is called positive and the length of the shortest positive product of a
primitive setM is called the exponent (exp(M)) of the set. Although the Protasov-Voynov
primitivity has gained a lot of attention in different fields as in stochastic switching systems
[23] and consensus for discrete-time multi-agent systems [8], we are interested in its connection
with automata theory. In the following, we say that a matrix is NZ if it has neither zero-rows
nor zero-columns4; a matrix set is said to be NZ if all its matrices are NZ.

I Definition 1. Let M = {M1, . . . ,Mm} be a binary NZ-matrix set. The automaton
associated to the set M is the automaton A(M) whose letters are all the binary row-
stochastic matrices that are entrywise not greater than at least one matrix in M.

4 Thus a NZ-matrix must have a positive entry in every row and in every column.

MFCS 2018

48:4 On Randomized Generation of Slowly Synchronizing Automata

A(M)

1

23

b

aa

a b,c
b,c

c

A(MT)

1

23

b,c’

aa

a b,c’
b

c’

Figure 1 The automata A(M) and A(MT) of Example 2.

I Example 2. We here provide an example of a primitive set M = {M1,M2} and the
associated automata A(M) and A(MT) in both their matrix and graph representations
(Figure 1), whereMT = {MT

1 ,M
T
2 }.

M=
{(0 1 0

1 0 0
0 0 1

)
,
(1 0 1

0 0 1
0 1 0

)}
, A(M)=

{(0 1 0
1 0 0
0 0 1

)
,
(1 0 0

0 0 1
0 1 0

)
,
(0 0 1

0 0 1
0 1 0

)}
={a, b, c},

A(MT)=
{(0 1 0

1 0 0
0 0 1

)
,
(1 0 0

0 0 1
0 1 0

)
,
(1 0 0

0 0 1
1 0 0

)}
={a, b, c′}.

The following theorem summarizes two results proved by Blondel et. al. ([6], Theorems 16-17)
and a result proved by Gerencsér et al. ([12], Theorem 8). Note that we state it for sets of
binary NZ-matrices but it more generally holds for any set of NZ-matrices with nonnegative
entries; this relies on the fact that in the notion of primitivity what counts is the position of
the nonnegative entries within the matrices of the set and not their the actual values. In this
case we should add to Definition 1 the request of setting to 1 all the positive entries of the
matrices ofM before building A(M).

I Theorem 3. Let M = {M1, . . . ,Mm} a set of binary NZ-matrices of size n × n and
MT = {MT

1 , . . . ,M
T
m}. It holds that M is primitive if and only if A(M) (equiv. A(MT))

is synchronizing. If M is primitive, then it also holds that:

max
{
rt
(
A(M)

)
, rt
(
A(MT)

)}
≤ exp(M) ≤ rt

(
A(M)

)
+ rt

(
A(MT)

)
+ n− 1. (1)

I Example 4. For the matrix set M defined in Example 2, it holds that exp(M) = 8,
rt
(
A(M)

)
= 4 and rt

(
A(MT)

)
= 2.

Theorem 3 will be extensively used throughout the paper. It shows that primitive sets can
be used for generating synchronizing automata and Equation (1) tells us that the presence
of a primitive set with large exponent implies the existence of an automaton with large reset
threshold; in particular the discovery of a primitive setM with exp(M) ≥ 2(n− 1)2 − n+ 1
would disprove the Černý conjecture. On the other hand, the upper bounds on the automata
reset threshold mentioned before imply that exp(M)=O(n3).
One advantage of using primitive sets is the Protasov-Voynov characterization theorem (see
Theorem 6 in Section 2) that describes a combinatorial property that a NZ-matrix set must
have in order not to be primitive: by constructing a primitive set such that each of its proper
subsets has this property, we can make it minimally primitive5.
We decided to focus our attention on what we call perturbed permutation sets, i.e. sets made
of permutation matrices (binary matrices having exactly one 1 in every row and in every
column) where a 0-entry of one of these matrices is changed into a 1. These sets have many
interesting properties:

5 Thus a minimally primitive set is a primitive set that does not contain any proper primitive subset.

C. Catalano and R.M. Jungers 48:5

they have the least number of positive entries that a NZ-primitive set can have, which
intuitively should lead to sets with large exponent;
the associated automatonA(M) of a perturbed permutation setM can be easily computed.
It is made of permutation letters and a letter of rank n−1 and its alphabet size is just
one unit more than the cardinality ofM;
if the matrix setM is minimally primitive, the automaton A(M) is minimally synchron-
izing (or it can be made minimally synchronizing by removing one known letter, as shown
in Proposition 9);
primitivity is easily checked by the Protasov-Voynov algorithm ([24], Proposition 2), and
primitivity ofM assures that A(M) is synchronizing (Theorem 3).

The characterization theorem for primitive sets and the above properties are the main
ingredients of our randomized algorithm that finds minimally synchronizing automata of 3
and 4 letters (and can eventually be generalized to m letters); to the best of our knowledge,
this is the first time where a constructive procedure for finding minimally synchronizing
automata is presented. This is described in Section 3 where numerical results are reported.
The random construction let us also find new families of 3-letters automata, presented in
Section 4, with reset threshold Ω(n2/4) and that do not resemble the Černý automaton, thus
answering question Q2. Finally, in Section 5 we extend a result on perturbed permutation
sets obtained by Gonze et al. in [13]: we show that a random perturbed permutation set
is primitive with high probability for any matrix size n (and not just when n is a prime
number as in [13]) and that its exponent is of order O(n log n) still with high probability. A
further generalization is then presented for sets of random binary matrices: if each entry
of each matrix is set to 1 with probability p and to 0 with probability 1− p, independently
from each other, then the set is primitive and has exponent of order O(n log n) with high
probability for any p such that np− log n→∞ as n→∞.
The proofs of the results presented in this paper have been omitted due to length restrictions.

2 Definitions and notation

In this section we briefly go through some definitions and results that will be needed in the
rest of the paper.
We indicate with [n] the set {1, . . . , n} and with Sk the set of permutations over k elements;
with a slight abuse of notation Sk will also denote the set of the k× k permutation matrices.
An n-state automaton A= {A1, . . . , Am} can be represented by a labelled digraph on n

vertices with a directed edge from vertex i to vertex j labelled by Ak if Ak(i, j) = 1; in this
case we also use the notation iAk = j. We remind that a matrix M is irreducible if there does
not exist a permutation matrix P such that PMPT is block-triangular; a set {M1, . . . ,Mm}
is said to be irreducible iff the matrix

∑m
i=1 Mi is irreducible. The directed graph associated

to an n×n matrix M is the digraph DM on n vertices with a directed edge from i to j if
M(i, j) > 0. A matrix M is irreducible if and only if DM is strongly connected, i.e. if and
only if there exists a directed path between any two given vertices. A primitive setM is
a set of m matrices {M1, . . . ,Mm} with nonnegative entries where there exists a product
Mi1 · · ·Mil > 0 entrywise, for i1, . . . , il ∈ [m]. The length of the shortest of these products
is called the exponent (exp(M)) of the set. Irreducibility is a necessary (but not sufficient)
condition for a matrix set to be primitive (see [24], Section 1). Primitive sets of NZ-matrices
can be characterized as follows:

MFCS 2018

48:6 On Randomized Generation of Slowly Synchronizing Automata

I Definition 5. Let Ω =
⋃̇k
l=1Ωl be a partition of [n] with k ≥ 2. We say that an n × n

matrix M has a block-permutation structure on the partition Ω if there exists a permutation
σ∈Sk such that ∀ l=1, . . . , k and ∀ i∈Ωl, if M(i, j) > 0 then j ∈ Ωσ(l). We say that a set
of matrices has a block-permutation structure if there exists a partition on which all the
matrices of the set have a block-permutation structure.

I Theorem 6 ([24], Theorem 1). An irreducible set of NZ matrices of size n × n is not
primitive if and only if the set has a block-permutation structure.

We end this section with the last definition and our first observation (Proposition 8).

I Definition 7. A matrix A dominates a matrix B if A(i, j) ≥ B(i, j), ∀ i, j.

I Proposition 8. Consider an irreducible set {M1, . . . ,Mm} in which every matrix dominates
a permutation matrix. If the set has a block-permutation structure, then all the blocks of the
partition must have the same size.

3 Minimally primitive sets and minimally synchronizing automata

In this section we focus on perturbed permutation sets, i.e. matrix sets made of permutation
matrices where a 0-entry of one matrix is changed into a 1. We represent a set of this kind as
M = {P1, . . . , Pm−1, Pm + Ii,j}, where P1, . . . , Pm are permutation matrices, Ii,j is a matrix
whose (i, j)-th entry is equal to 1 and all the others entries are equal to 0 and Pm(i, j′) = 1
for a j′ 6= j. The first result states that we can easily generate minimally synchronizing
automata starting from minimally primitive perturbed permutation sets:

I Proposition 9. Let M = {P1, . . . , Pm−1, Pm + Ii,j} be a minimally primitive perturbed
permutation set and let j′ 6= j be the integer such that Pm(i, j′) = 1. The automaton A(M)
(see Definition 1) can be written as A(M) = {P1, . . . , Pm−1, Pm,M} withM = Pm+Ii,j−Ii,j′ .
If A(M) is not minimally sychronizing, then Ā = {P1, . . . , Pm−1,M} is.

3.1 A randomized algorithm for constructing minimally primitive sets
If we want to find minimally synchronizing automata, Proposition 9 tells us that we just need
to generate minimally primitive perturbed permutation sets; in this section we implement a
randomized procedure to build them.
Theorem 6 says that a matrix set is not primitive if all the matrices share the same block-
permutation structure, therefore a set of m matrices is minimally primitive iff every subset
of cardinality m − 1 has a block-permutation structure on a certain partition; this is the
condition we will enforce. As we are dealing with perturbed permutation sets, Proposition 8
tells us that we just need to consider partitions with blocks of the same size; if the blocks of
the partition have size n/q, we call it a q-partition and we say that the set has a q-permutation
structure. Given R,C ⊂ [n] and a matrix M , we indicate with M(R,C) the submatrix of
M with rows indexed by R and columns indexed by C. The algorithm first generates a set
of permutation matrices satisfying the requested block-permutation structures and then a
0-entry of one of the obtained matrices is changed into a 1; while doing this last step, we will
make sure that such change will preserve all the block-permutation structures of the matrix.
We underline that our algorithm finds perturbed permutation sets that, if are primitive,
are minimally primitive. Indeed, the construction itself only ensures minimality and not
primitivity: this latter property has to be verified at the end.

C. Catalano and R.M. Jungers 48:7

3.1.1 The algorithm
For generating a set of m matrices M = {M1, . . . ,Mm} we choose m prime numbers
q1 ≥ · · · ≥ qm ≥ 2 and we set n =

∏m
i=1 qi. For j = 1, . . . ,m, we require the set

{M1, . . . ,Mj−1,Mj+1, . . . ,Mm} (the set obtained fromM by erasing matrix Mj) to have a
qj-permutation structure; this construction will ensure the minimality of the set. More in
detail, for all j=1, . . . ,m we will enforce the existence of a qj-partition Ωqj =

⋃̇qj

i=1Ωji of [n]
on which, for all k 6= j, the matrix Mk has to have a block-permutation structure. As stated
by Definition 5, this request means that for every k = 1, . . . ,m and for every j 6= k there
must exist a permutation σkj ∈ Sqj

such that for all i=1, . . . , qj and l 6= σkj (i), Mk(Ωji ,Ω
j
l) is

a zero matrix.
The main idea of the algorithm is to initialize every entry of each matrix to 1 and then,
step by step, to set to 0 the entries that are not compatible with the conditions that we
are requiring. As our final goal is to have a set of permutation matrices, at every step we
need to make sure that each matrix dominates at least one permutation matrix, despite the
increasing number of zeros among its entries.

IDefinition 10. Given a matrixM and a q-partition Ωq=
⋃̇q
i=1Ωqi , we say that a permutation

σ ∈ Sq is compatible with M and Ωq if for all i = 1, . . . , q, there exists a permutation matrix
Qi such that

M
(
Ωqi ,Ω

q
σ(i)
)
≥ Qi. (2)

The algorithm itself is formally presented in Listing 1; we here describe in words how it
operates. Each entry of each matrix is initialized to 1. The algorithm has two for-loops: the
outer one on j = 1, . . . ,m, where a qj-partition Ωqj =

⋃̇qj

i=1Ωji of [n] is uniformly randomly
sampled and then the inner one on k = 1, . . . ,m with k 6= j where we verify whether there
exists a permutation σkj ∈ Sqj that is compatible with Mk and Ωqj . If it does exist, then
we choose one among all the compatible permutations and the algorithm moves to the next
step k + 1. If such permutation does not exist, then the algorithm exits the inner for-loop
and it randomly selects another qj-partition Ω′qj

of [n]; it then repeats the inner loop for
k = 1, . . . ,m with k 6= j with this new partition. If after T1 steps it is choosing a different
qj-partition Ω′qj

the existence, for each k 6= j, of a permutation σ′kj ∈ Sqj that is compatible
withMk and Ω′qj

is not established, we stop the algorithm and we say that it did not converge.
If the inner for-loop is completed, then for each k 6= j the algorithm modifies the matrix Mk

by keeping unchanged each block Mk

(
Ωji ,Ω

j

σk
j

(i)
)
for i = 1, . . . , qj and by setting to zero all

the other entries of Mk, where σkj is the selected compatible permutation; the matrix Mk

has now a block-permutation structure over the sampled partition Ωqj
. The algorithm then

moves to the next step j + 1. If it manages to finish the outer for-loop, we have a set of
binary matrices with the desired block-permutation structures. We then just need to select a
permutation matrix Pk ≤Mk for every k = 1, . . . ,m and then to randomly change a 0-entry
into a 1 in one of the matrices without modifying its block-permutation structures: this is
always possible as the blocks of the partitions are non trivial and a permutation matrix has
just n positive entries. We finally check whether the set is primitive.
Here below we present the procedures that the algorithm uses:
(a) [p, P] = Extractperm(M,met)

This is the key function of the algorithm. It returns p=1 if the matrix M dominates a
permutation matrix, it returns p= 0 and P =M otherwise. In the former case it also
returns a permutation matrix P selected among the ones dominated by M according
to met; if met = 2 the matrix P is sampled uniformly at random, while if met = 3 we

MFCS 2018

48:8 On Randomized Generation of Slowly Synchronizing Automata

make the choice of P deterministic. More in detail, the procedure works as follows: we
first count the numbers of 1s in each column and in each row of the matrix M . We then
consider the row or the column with the least number of 1s; if this number is zero we
stop the procedure and we set p = 0, as in this case M does not dominate a permutation
matrix. If this number is strictly greater than zero, we choose one of the 1-entries of
the row or the column attaining this minimum: if met = 2 (method 2) the entry is
chosen uniformly at random while if met = 3 (method 3) we take the first 1-entry in
the lexicographic order. Suppose that such 1-entry is in position (i, j): we set to zero all
the other entries in row i and column j and we iterate the procedure on the submatrix
obtained from M by erasing row i and column j. We can prove that this procedure is
well-defined and in at most n steps it produces the desired output: p = 0 if and only if
M does not dominate a permutation matrix and, in case p = 1, method 2 indeed sample
uniformly one of the permutations dominated by M , while method 3 is deterministic
and the permutation obtained usually has its 1s distributed around the main diagonal.
Method 3 will play an important role in our numerical experiments in Section 3.2 and in
the discovery of new families of automata with quadratic reset threshold in Section 4.

(b) [a,A] = DomPerm(M,Ω,met)
It returns a= 1 if there exists a permutation compatible with the matrix M and the
partition Ω =

⋃̇q
i=1Ωq

i , it returns a= 0 and A=M otherwise. In the former case it
chooses one of the compatible permutations, say σ, according to met and returns the
matrix A equal to M but the entries not in the blocks defined by (2) that are set to zero;
A has then a block-permutation structure on Ω. More precisely, DomPerm acts in two
steps: it first defines a q × q matrix B such that, for all i, k = 1, . . . , q,

B(i, k) =
{

1 if M(Ωqi ,Ω
q
k) dominates a permutation matrix

0 otherwise
;

this can be done by calling ExtractPerm with input M(Ωq
i ,Ω

q
k) and met for all i, k =

1, . . . , q. At this point, asking if there exists a permutation compatible with M and Ω is
equivalent of asking if B dominates a permutation matrix. Therefore, the second step is
to call again [p, P] = ExtractPerm(B,met): if p = 0 we set a = 0 and A = M , while if
p = 1 we set a = 1 and A as described before with σ = P (i.e. σ(i) = j iff P (i, j) = 1);
indeed the permutation P is one of the permutations compatible with M and Ω.

(c) Mset = Addone(P1, ..., Pm)
It changes a 0-entry of one of the matrices P1, ..., Pm into a 1 preserving all its block-
permutation structures. The matrix and the entry are chosen uniformly at random and
the procedure iterates the choice till it finds a compatible entry (which always exists); it
then returns the final perturbed permutation set Mset.

(d) pr = Primitive(Mset)
It returns pr=1 if the matrix setMset={M1, . . . ,Mm} is primitive and pr = 0 otherwise.
It first verifies if the set is irreducible by checking the strong connectivity of the digraph
DN where N =

∑k
i=1 Mi (see Section 2) via breadth-first search on every node, then

if the set is irreducible, primitivity is checked by the Protasov-Voynov algorithm ([24],
Section 4).

All the above routines have polynomial time complexity in n, apart from routine Primitive
that has time complexity O(mn2).

I Remark.
1. In all our numerical experiments the algorithm always converged, i.e. it always ended

before reaching the stopping value T1, for T1 large enough. This is probably due to
the fact that the matrix dimension n grows exponentially as the number of matrices m
increases, which produces enough degrees of freedom. We leave the proof of this fact for
future work.

C. Catalano and R.M. Jungers 48:9

2. A recent work of Alpin and Alpina [2] generalizes Theorem 6 for the characterization
of primitive sets to sets that are allowed to be reducible and the matrices to have zero
columns but not zero rows. Clearly, automata fall within this category. Without going
into many details (for which we refer the reader to [2], Theorem 3), Alpin and Alpina
show that an n-state automaton is not synchronizing if and only if there exist a partition⋃̇s
j=1Ωj of [n] such that it has a block-permutation structure on a subset of that partition.

This characterization is clearly less restrictive: it just suffices to find a subset I ⊂ [s] such
that for each letter A of the automaton there exists a permutation σ ∈ SI such that for
all i ∈ I, if A(i, j) = 1 then j ∈ Ωσ(i). Our algorithm could leverage this recent result
in order to directly construct minimal synchronizing automata. We also leave this for
future work.

Listing 1 Algorithm for finding minimally primitive sets.
Input: q_1 ,... ,q_m ,T1 ,met
Initialize M_1 ,... , M_m as all -ones matrices
for j:=1 to m do

t1=0
while t1 <T1 do

t1=t1+1
choose a q_j - partition Omega_j
for k=1 to m and k!=j do

[a,A_k]= DomPerm (M_k ,Omega_j ,met)
if a==0

exit inner for -loop
end

end
if a==1

exit while -loop
end

end
if t1==T1

display ’does not converge ’, exit procedure
else

set M_k=A_k for all k=1 ,... ,m and k!=j
end

end
for i:=1 to m do

[p_i ,P_i]= Extractperm (M_i ,met)
end
Mset= Addone (P_1 ,... , P_m)
pr= Primitive (Mset)
return Mset , pr

3.2 Numerical results
We have seen that once we have a minimally primitive perturbed permutation set, it is easy
to generate a minimally synchronizing automaton from it, as stated by Proposition 12. Our
goal is to generate automata with large research threshold, but checking this property on
many randomly generated instances is prohibitive. Indeed, we recall that computing the
reset threshold of an automaton is in general NP-hard [10]. Instead, as a proxy for the reset
threshold, we compute the diameter of the square graph, which we now introduce:

MFCS 2018

48:10 On Randomized Generation of Slowly Synchronizing Automata

I Definition 11. The square graph S(A) of an n-state automaton A is the labelled directed
graph with vertex set V ={(i, j) : 1 ≤ i ≤ j ≤ n} and edge set E such that e={(i, j), (i′, j′)}∈
E if there exists a letter A∈A such that A(i, i′) > 0 and A(j, j′) > 0, or A(i, j′) > 0 and
A(j, i′) > 0. In this case, we label the directed edge e by A (multiple labels are allowed). A
vertex of type (i, i) is called a singleton.

A well-known result ([30], Proposition 1) states that an automaton is synchronizing if and
only if in its square graph there exists a path from any non-singleton vertex to a singleton
one; the proof of this fact also implies that

diam
(
S(A)

)
≤ rt(A) ≤ n · diam

(
S(A)

)
, (3)

where diam
(
S(A)

)
denotes the diameter of S(A) i.e. the maximum length of the shortest

path between any two given vertices, taken over all the pairs of vertices. The diameter
can be computed in polynomial time, namely O(mn2) with m the number of letters of the
automaton.

We now report our numerical results based on the diameter of the square graph. We
compare three methods of generating automata: we call method 1 the uniform random
generation of 2-letter automata made of one permutation matrix and a matrix of rank n− 1,
while method 2 and method 3, already introduced in the previous paragraph, refer to
the different ways of extracting a permutation matrix from a binary one in our randomized
construction. We set T1 = 1000 and for each method and each choice of n we run the
algorithm it(n) = 50n2 times, thus producing each time 50n2 sets. This choice for it(n) has
been made by taking into account two facts: on one hand, it is desirable to keep constant the
rate it(n)/km(n) between the number of sampled sets it(n) and the cardinality km(n) of the
set of the perturbed permutation sets made of m matrices. Unfortunately, km(n+ 1)/km(n)
grows approximately as nm and so km(n) explodes very fast. On the other hand, we have
to deal with the limited computational speed of our computers. The choice of it(n) = 50n2

comes as a compromise between these two issues, at least when n ≤ 70.
Among the it(n) generated sets, we select the primitive ones and we generate their associated
automata (Definition 1); we then check which ones are not minimally synchronizing and
we make them minimally synchronizing by using Proposition 9. Finally, we compute the
square graph diameter of all the minimally synchronizing automata obtained. Figure 2
reports on the y axis the maximal square graph diameter found for each method and for
each matrix dimension n when n is the product of three prime numbers (left picture) and
when it is a product of four prime numbers (right picture). We can see that our randomized
construction manages to reach higher values of the square graph diameter than the mere
random generation; in particular, method 3 reaches quadratic diameters in case of three
matrices.

We also report in Figure 3 (left) the behavior of the average diameter of the minimally
synchronizing automata generated on 50n2 iterations when n is the product of three prime
numbers: we can see that in this case method 2 does not perform better than method 1,
while method 3 performs just slightly better. This behavior could have been expected since
our primary goal was to randomly generate at least one slowly synchronizing automata; this
is indeed what happens with method 3, that manages to reach quadratic reset thresholds
most of the times.
A remark can be done on the percentage of the generated sets that are not primitive; this is
reported in Figure 3 (right), where we divide nonprimitive sets into two categories: reducible
sets and imprimitive sets, i.e. irreducible sets that are not primitive. We can see that the
percentage of nonprimitive sets generated by method 1 goes to 0 as n increases, behavior

C. Catalano and R.M. Jungers 48:11

Figure 2 Comparison of our methods (met 2 and 3) with the naive method (met 1) with respect
to the maximal diameter found on 50n2 iterations. Left: n is the product of three prime numbers;
the y axis is in logarithmic scale. Right: n is the product of four prime numbers.

Figure 3 Left: Average diameter found by methods 1, 2 and 3 when n is the product of three
prime numbers. Right: Percentage of nonprimitive sets (divided into reducible and imprimitive sets)
generated by methods 1, 2 and 3 (indicated above each bar) when n is the product of three prime
numbers. For instance, on sets of dimension n = 20, method 1 generates 0.35% of nonprimitive sets
(0.35% reducible, 0% imprimitive), method 2 generates 6.15% of nonprimitive sets (5.18% reducible,
0.97% imprimitive) and method 3 generates 84.5% of nonprimitive sets (77.9% reducible, 6.6%
imprimitive).

that we expected (see Section 5, Theorem 18), while method 2 seems to always produce a not
negligible percentage of nonprimitive sets, although quite small. The behavior is reversed
for method 3: most of the generated sets are not primitive. This can be interpreted as a
good sign. Indeed, nonprimitive sets can be seen as sets with infinite exponent; as we are
generating a lot of them with method 3, we intuitively should expect that, when a primitive
set is generated, it has high chances to have large diameter.
The slowly synchronizing automata found by our randomized construction are presented in
the following section. We believe that some parameters of our construction, as the way a
permutation matrix is extracted from a binary one or the way the partitions of [n] are selected,
could be further tuned or changed in order to generate new families of slowly synchronizing
automata; for example, we could think about selecting the ones in the procedure Extractperm
according to a given distribution. We leave this for future work.

4 New families of automata with quadratic reset threshold

We present here four new families of (minimally synchronizing) 3-letter automata with square
graph diameter of order Ω(n2/4), which represents a lower bound for their reset threshold.
These families are all made of two symmetric permutation matrices and a matrix of rank
n− 1 that merges two states and fixes all the others (a perturbed identity matrix): they thus

MFCS 2018

48:12 On Randomized Generation of Slowly Synchronizing Automata

lie within the class of automata with simple idempotents, class introduced by Rystsov in [25]
in which every letter A of the automaton is requested either to be a permutation or to satisfy
A2 = A. These families have been found via the randomized algorithm described in Section
3.1 using the deterministic procedure to extract a permutation matrix from a binary one
(method 3). The following proposition shows that primitive sets made of a perturbed identity
matrix and two symmetric permutations must have a very specific shape; we then present our
families, prove closed formulas for their square graph diameter and finally state a conjecture
on their reset thresholds. With a slight abuse of notation we identify a permutation matrix
Q with its underlying permutation, that is we say that Q(i) = j if and only if Q(i, j) = 1;
the identity matrix is denoted by I. Note that a permutation matrix is symmetric if and
only if its cycle decomposition is made of fixed points and cycles of length 2.

I Proposition 12. Let Mij = {Īij , Q1, Q2} be a matrix set of n× n matrices where Īij =
I + Iij , j 6= i, is a perturbed identity and Q1 and Q2 are two symmetric permutations. If M
is irreducible then, up to a relabelling of the vertices, Q1 and Q2 have the following form:

if n is even

Q1(i) =

1 if i = 1
i + 1 if i even, 2 ≤ i ≤ n− 2
i− 1 if i odd, 3 ≤ i ≤ n− 1
n if i = n

, Q2(i) =

{
i− 1 if i even
i + 1 if i odd

(4)

or

Q1(i) =

n if i = 1
i + 1 if i even, 2 ≤ i ≤ n− 2
i− 1 if i odd, 3 ≤ i ≤ n− 1
1 if i = n

, Q2(i) =

{
i− 1 if i even
i + 1 if i odd

(5)

if n is odd

Q1(i) =

1 if i = 1
i + 1 if i even
i− 1 if i odd, 3 ≤ i ≤ n

, Q2(i) =

i− 1 if i even
i + 1 if i odd, 1 ≤ i ≤ n−2
n if i = n

. (6)

I Proposition 13. A matrix set Mij = {Īij , Q1, Q2} of type (5) is never primitive.

I Definition 14. We define Aij = {Iij , Q1, Q2} to be the associated automaton A(Mij) of
Mij (see Definition 1), where Iij = I + Iij − Iii.

It is clear that Aij is with simple idempotents. Figure 4 represents A1,6 with n = 8.
We set now En = A1,n−2 for n = 4k and k ≥ 2, E ′n = A1,n−4 for n= 4k + 2 and k ≥ 2,
On = An−1

2 ,n+1
2

for n = 4k + 1 and k ≥ 1, O′n = An−1
2 ,n+1

2
for n = 4k + 3 and k ≥ 1. The

following theorem holds:

I Theorem 15. The automaton En has square graph diameter (SGD) of (n2 + 2n− 4)/4,
E ′n has SGD of (n2 + 2n − 12)/4, On has SGD of (n2 + 3n − 8)/4 and O′n has SGD of
(n2 +3n−6)/4. Therefore all the families En, E ′n, On and O′n have reset threshold of Ω(n2/4).

Figure 5 represents the square graph of the automaton E8, where its diameter is colored
in red. All the singletons but the one that belongs to the diameter have been omitted.

C. Catalano and R.M. Jungers 48:13

1 2 3 4 5 6 7 8

Figure 4 The automata A1,6 with n = 8; rt(A1,6)=31. Dashed arrows refer to matrix Q2, normal
arrows to matrix Q1 and bold arrows to matrix I1,6 where its selfloops have been omitted.

4,5

3,6

2,7

1,8 7,8

6,8

5,7

4,6

3,5

2,4

1,3

1,2

2,3

1,4

1,5

2,6

3,7

4,8

5,8

6,7

3,4

2,5

1,6

1,7

2,8

3,8

4,7

5,6

6,6

Figure 5 Square graph of automaton E8, diam
(
S(E8)

)
= 19. Normal arrows refer to matrix Q1,

dotted arrows to matrix Q2 and bold arrows to matrix I1,6, where its selfloops have been omitted.
The red path is the diameter.

I Conjecture 16. The automaton En has reset threshold of (n2−2)/2, E ′n has reset threshold
of (n2−10)/2 and On and O′n have reset threshold of (n2−1)/2. Furthermore, they represent
the automata with the largest possible reset threshold among the family Aij for respectively
n = 4k, n = 4k + 2, n = 4k + 1 and n = 4k + 3.

We end this section by remarking that, despite the fact that the randomized construction
for minimally primitive sets presented in Section 3 works just when the matrix size n is the
product of at least three prime numbers, here we found an extremal automaton of quadratic
reset threshold for any value of n.

5 Primitivity with high probability

We call random perturbed permutation set a perturbed permutation set of m≥2 matrices
constructed with the following randomized procedure:

I Procedure 17.
1. We sample m permutation matrices {P1, . . . , Pm} independently and uniformly at random

from the set Sn of all the permutations over n elements;
2. A matrix Pi is uniformly randomly chosen from the set {P1, . . . , Pm}. Then, one of

its 0-entry is uniformly randomly selected among its 0-entries and changed into a 1. It
becomes then a perturbed permutation matrix P̄i;

3. The final random perturbed permutation set is the set {P1, . . . , Pi−1, P̄i, Pi+1, . . . , Pm}.

MFCS 2018

48:14 On Randomized Generation of Slowly Synchronizing Automata

This procedure is also equivalent to choosing independently and uniformly at random
m− 1 permutation matrices from Sn and one perturbed permutation matrix from S̄n with
S̄n = {P̄ : P̄ =P + Ii,j , P ∈Sn, P (i, j′) = 1, j 6= j′}. We say that a property X holds for a
random matrix set with high probability if the probability that property X holds tends to 1
as the matrix dimension n tends to infinity.

I Theorem 18. A random perturbed permutation set constructed via Procedure 17 is primitive
and has exponent of order O(n log n) with high probability.

Theorem 18 can be extended to random sets of binary matrices. It is clear that focusing
just on binary matrices is not restrictive as in the definition of primitivity what counts is just
the position of the positive entries within the matrices and not their actual values. Let B(p)
denote a random binary matrix where each entry is independently set to 1 with probability
p and to 0 with probability (1− p) and let Bm(p) denote a set of m ≥ 2 matrices obtained
independently in this way. Under some mild assumptions over p, we still have primitivity
with high probability:

I Theorem 19. For any fixed integer m ≥ 2, if np− log n −→∞ as n→∞, then Bm(p) is
primitive and exp

(
Bm(p)

)
= O(n log n) with high probability.

It is interesting to compare this result with the one obtained by Gerencsér et al. in
[12]: they prove that, if exp(n) is the maximal value of the exponent among all the binary
primitive sets of n× n matrices, then limn→∞(log exp(n))/n = (log 3)/3. This implies that,
for n big enough, there must exist some primitive sets whose exponent is close to 3n/3, but
these sets must be very few as Theorem 19 states that they are almost impossible to be
detected by a mere random generation. We conclude with a result on when a set of two
random binary matrices is not primitive with high probability:

I Proposition 20. For any fixed integer m ≥ 2, if 2np − log n −→ −∞ as n → ∞, then
Bm(p) is reducible with high probability. This implies that Bm(p) is not primitive with high
probability.

6 Conclusion

In this paper we have proposed a randomized construction for generating slowly minimally
synchronizing automata. Our strategy relies on a recent characterization of primitive sets
(Theorem 6), together with a construction (Definition 1 and Theorem 3) allowing to build
(slowly minimally) synchronizing automata from (slowly minimally) primitive sets. We have
obtained four new families of automata with simple idempotents with reset threshold of order
Ω(n2/4). The primitive sets approach to synchronizing automata seems promising and we
believe that out randomized construction could be further refined and tweaked in order to
produce other interesting automata with large reset threshold, for example by changing the
way a permutation matrix is extracted by a binary one. As mentioned at the end of Section
3.1, it would be also of interest to apply the minimal construction directly to automata by
leveraging the recent result of Alpin and Alpina ([2], Theorem 3).

References
1 N. Alon and J. H. Spencer. The Probabilistic Method. Wiley Publishing, 4th edition, 2016.
2 Yu. Alpin and V. Alpina. Combinatorial properties of entire semigroups of nonnegative

matrices. Journal of Mathematical Sciences, 207(5):674–685, 2015.

C. Catalano and R.M. Jungers 48:15

3 D. S. Ananichev, M. V. Volkov, and V. V. Gusev. Primitive digraphs with large exponents
and slowly synchronizing automata. Journal of Mathematical Sciences, 192(3):263–278,
2013.

4 M.-P. Béal, M. V. Berlinkov, and D. Perrin. A quadratic upper bound on the size of a
synchronizing word in one-cluster automata. In International Journal of Foundations of
Computer Science, pages 277–288, 2011.

5 M.V. Berlinkov. On the Probability of Being Synchronizable, pages 73–84. Springer Inter-
national Publishing, 2016.

6 V.D. Blondel, R.M. Jungers, and A. Olshevsky. On primitivity of sets of matrices. Auto-
matica, 61:80–88, 2015.

7 Y.-B. Chen and D. J. Ierardi. The complexity of oblivious plans for orienting and distin-
guishing polygonal parts. Algorithmica, 14(5):367–397, 1995.

8 P.-Y. Chevalier, J.M. Hendrickx, and R.M. Jungers. Reachability of consensus and syn-
chronizing automata. In 4th IEEE Conference on Decision and Control, pages 4139–4144,
2015.

9 M. de Bondt, H. Don, and H. Zantema. Dfas and pfas with long shortest synchronizing
word length. In Developments in Language Theory, pages 122–133, 2017.

10 D. Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing,
19(3):500–510, 1990.

11 P. Frankl. An extremal problem for two families of sets. European Journal of Combinatorics,
3:125–127, 1982.

12 B. Gerencsér, V. V. Gusev, and R. M. Jungers. Primitive sets of nonnegative matrices and
synchronizing automata. Siam Journal on Matrix Analysis and Applications, 39(1):83–98,
2018.

13 F. Gonze, B. Gerencsér, and R.M. Jungers. Synchronization approached through the lenses
of primitivity. In 35th Benelux Meeting on Systems and Control, 2016.

14 F. Gonze, V.V. Gusev, B. Gerencsér, R.M. Jungers, and M.V. Volkov. On the Interplay
Between Babai and Černý’s Conjectures, pages 185–197. Springer International Publishing,
2017.

15 V. V. Gusev and E. V. Pribavkina. Reset thresholds of automata with two cycle lengths.
In Implementation and Application of Automata, pages 200–210, 2014.

16 J. Kari. Synchronizing finite automata on eulerian digraphs. Theoretical Computer Science,
295(1):223–232, 2003.

17 A. Kisielewicz and M. Szykuła. Synchronizing automata with extremal properties. In
Mathematical Foundations of Computer Science 2015, pages 331–343, 2015.

18 A. Mateescu and A. Salomaa. Many-valued truth functions, Černý’s conjecture and road
coloring. In EATCS Bull., page 134–150, 1999.

19 M. Michalina Dzyga, R. Ferens, V.V. Gusev, and M. Szykuła. Attainable values of reset
thresholds. In 42nd International Symposium on Mathematical Foundations of Computer
Science, volume 83, pages 40:1–40:14, 2017.

20 C. Nicaud. Fast synchronization of random automata. In Approximation, Randomiza-
tion, and Combinatorial Optimization, volume 60 of Leibniz International Proceedings in
Informatics, pages 43:1–43:12, 2016.

21 J. Olschewski and M. Ummels. The Complexity of Finding Reset Words in Finite Automata,
pages 568–579. Springer Berlin Heidelberg, 2010.

22 J.-E. Pin. On two combinatorial problems arising from automata theory. In Proceedings
of the International Colloquium on Graph Theory and Combinatorics, volume 75, pages
535–548, 1983.

23 V.Yu. Protasov and R.M. Jungers. Lower and upper bounds for the largest lyapunov
exponent of matrices. Linear Algebra and its Applications, 438:4448–4468, 2013.

MFCS 2018

48:16 On Randomized Generation of Slowly Synchronizing Automata

24 V.Yu. Protasov and A.S. Voynov. Sets of nonnegative matrices without positive products.
Linear Algebra and its Applications, 437:749–765, 2012.

25 I. K. Rystsov. Estimation of the length of reset words for automata with simple idempotents.
Cybernetics and Systems Analysis, 36(3):339–344, 2000.

26 M. Szykuła. Improving the upper bound the length of the shortest reset words. In STACS,
2018.

27 M. Szykuła and V. Vorel. An extremal series of eulerian synchronizing automata. In
Developments in Language Theory, pages 380–392, 2016.

28 J. Černý. Poznámka k homogénnym eksperimentom s konečnými automatami.
Matematicko-fysikalny Casopis SAV, 14:208–216, 1964.

29 M. V. Volkov. Synchronizing automata preserving a chain of partial orders. In Implement-
ation and Application of Automata, pages 27–37, 2007.

30 M.V. Volkov. Synchronizing automata and the Černý conjecture, volume 5196, pages 11–27.
Springer, 2008.

Counting Homomorphisms to Trees
Modulo a Prime
Andreas Göbel
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

J. A. Gregor Lagodzinski
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Karen Seidel
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany

Abstract
Many important graph theoretic notions can be encoded as counting graph homomorphism prob-
lems, such as partition functions in statistical physics, in particular independent sets and col-
ourings. In this article we study the complexity of #pHomsToH, the problem of counting
graph homomorphisms from an input graph to a graph H modulo a prime number p. Dyer and
Greenhill proved a dichotomy stating that the tractability of non-modular counting graph homo-
morphisms depends on the structure of the target graph. Many intractable cases in non-modular
counting become tractable in modular counting due to the common phenomenon of cancellation.
In subsequent studies on counting modulo 2, however, the influence of the structure of H on the
tractability was shown to persist, which yields similar dichotomies.

Our main result states that for every tree H and every prime p the problem #pHomsToH is
either polynomial time computable or #pP-complete. This relates to the conjecture of Faben and
Jerrum stating that this dichotomy holds for every graph H when counting modulo 2. In contrast
to previous results on modular counting, the tractable cases of #pHomsToH are essentially the
same for all values of the modulo when H is a tree. To prove this result, we study the structural
properties of a homomorphism. As an important interim result, our study yields a dichotomy for
the problem of counting weighted independent sets in a bipartite graph modulo some prime p.
These results are the first suggesting that such dichotomies hold not only for the one-bit functions
of the modulo 2 case but also for the modular counting functions of all primes p.

2012 ACM Subject Classification Theory of computation→ Problems, reductions and complete-
ness, Mathematics of computing → Graph theory, Mathematics of computing → Combinatorics

Keywords and phrases Algorithms, Theory, Graph Homomorphisms, Counting Modulo a Prime,
Complexity Dichotomy

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.49

Related Version A full version of the paper is available at https://arxiv.org/abs/1802.
06103.

Acknowledgements The first author would like to thank Leslie Ann Goldberg and David Rich-
erby for fruitful discussions during the early stages of this work.

1 Introduction

Edge preserving functions between the vertices of two graphs, known as graph homomorphisms,
generate a powerful language expressing important notions; examples include constraint
satisfaction problems and partition functions in statistical physics. As such, the computational

© Andreas Göbel, J. A.Gregor Lagodzinski, and Karen Seidel;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 49; pp. 49:1–49:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.49
https://arxiv.org/abs/1802.06103
https://arxiv.org/abs/1802.06103
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

49:2 Counting Homomorphisms to Trees Modulo a Prime

xL xR

v1

v2 u3

u2

u1

Figure 1 The graph H will be our recurring example and the labelling of the vertices is justified
later in the introduction.

complexity of graph homomorphism problems has been studied extensively from a wide
range of views. Early results include that of Hell and Nešetřil [14], who study the complexity
of HomsToH, the problem of deciding if there exists a homomorphism from an input graph
G to a fixed graph H. They show the following dichotomy: if H is bipartite or has a loop,
the problem is in P and in every other case HomsToH is NP-complete. In particular, this
is of interest since a result of Ladner [15] shows that if P 6= NP, then there exist problems
that are neither in P nor NP-hard.

Dyer and Greenhill [5] show a dichotomy for the problem #HomsToH, the problem
of counting the homomorphisms from an input graph G to H. Their theorem states that
#HomsToH is tractable if H is a complete bipartite graph or a complete graph with loops
on all vertices; otherwise #HomsToH is # P-complete. This dichotomy was progressively
extended to weighted sums of homomorphisms with integer weights, by Bulatov and Gohe [1];
with real weights, by Goldberg et al. [11]; finally, with complex weights, by Cai, Chen and
Lu [2].

We study the complexity of counting homomorphisms modulo a prime p. The set of homo-
morphisms from the input graph G to the target graph H is denoted by Hom (G→ H). For
each pair of fixed parameters p and H, we study the computational problem #pHomsToH,
that is the problem of computing |Hom (G→ H) | modulo p. The value of p and the structure
of the target graph H influence the complexity of #pHomsToH. Consider the graph H

in Figure 1. Our results show that #pHomsToH is computable in polynomial time when
p = 2, 3 while it is hard for any other prime p.

Our main goal is to fully characterise the complexity of #pHomsToH in a dichotomy
theorem. In this manner we aim to determine for which pair of parameters (H, p) the problem
is tractable and show that for every other pair of parameters the problem is hard. As the
theorem of Ladner [15] extends to the modular counting problems, it is not obvious that
there are no instances of #pHomsToH with an intermediate complexity.

The first study of graph homomorphisms under the setting of modular counting has been
conducted by Faben and Jerrum [7]. Their work is briefly described in the following and
we assume the reader to be familiar with the notion of an automorphism and its order. We
provide the formal introduction in the full version. Given a graph H and an automorphism %

of H, H% denotes the subgraph of H induced by the fixpoints of %. We write H ⇒k H
′ if

there is an automorphism % of order k of H such that H% = H ′ and we write H ⇒∗k H ′ if
either H is isomorphic to H ′ (written H ∼= H ′) or, for some positive integer t, there are
graphs H1, . . . ,Ht such that H ∼= H1, H1 ⇒k · · · ⇒k Ht, and Ht

∼= H ′.
Faben and Jerrum showed [7, Lemma 3.3] that if the order of % is a prime p, then

|Hom (G→ H) | is equivalent to |Hom (G→ H%) | modulo p. Furthermore, they showed [7,
Theorem 3.7] that there is (up to isomorphism) exactly one graph H∗p without automorphisms
of order p, such that H ⇒∗p H∗p. This graph H∗p is called the order p reduced form of H
(see Figure 4 of the full version). If H∗p falls into the polynomial computable cases of the
theorem of Dyer and Greenhill, then #pHomsToH is computable in polynomial time as

A. Göbel, J. A. G. Lagodzinski, and K. Seidel 49:3

well. For p = 2, Faben and Jerrum conjectured that these are the only instances computable
in polynomial time and that in every other case #2HomsToH is #2 P-complete, where #k P
is the “canonical” hardness class for modular counting problems (see Section 1.1).

I Conjecture 1.1 (Faben and Jerrum [7]). Let H be a graph. If its order 2 reduced form H∗2

has at most one vertex, then #2HomsToH is in FP; otherwise, #2HomsToH is #2 P-
complete.

Faben and Jerrum [7, Theorem 3.8] underlined their conjecture by proving it for the case
in which H is a tree. In subsequent works this proof was extended to cactus graphs in [9]
and to square-free graphs in [10], by Göbel, Goldberg and Richerby.

The present work follows a direction orthogonal to the aforementioned. Instead of proving
the conjecture for richer classes of graphs, we show a dichotomy for all primes, starting again
by studying trees.

I Theorem 1.2. Let p be a prime and let H be a graph, such that its order p reduced
form H∗p is a tree. If H∗p is a star, then #pHomsToH is computable in polynomial time;
otherwise, #pHomsToH is #p P-complete.

Our results are the first to suggest that the conjecture of Faben and Jerrum might apply
to counting graph homomorphisms modulo every prime p instead of counting modulo 2.
This suggestion, however, remains hypothetical. Borrowing the words of Dyer, Frieze and
Jerrum [4]: “One might even rashly conjecture” it “(though we shall not do so)”.

To justify our title we give the following corollary, stating a dichotomy for all trees H.

I Corollary 1.3. Let p be a prime and let H be a tree. If the order p reduced form H∗p of
H is a star, then #pHomsToH is computable in polynomial time; otherwise, #pHomsToH
is #p P-complete.

We illustrate Theorem 1.2 using the following discussion on Figure 1. The order 2 and
the order 3 reduced form of H both are the graph with one vertex, whereas for any other
prime the graph stays as such.

The polynomial computable cases follow directly from the results of Faben and Jerrum.
Thus, to prove Theorem 1.2 it suffices to show that #pHomsToH is #p P-complete for every
tree H that is not a star and has no automorphism of order p. The reductions in [7, 9, 10] show
hard instances of #2HomsToH by starting from #2IS, the problem of computing |I(G)|
(mod 2), where I(G) is the set of independent sets of G. #2IS was shown to be #2 P
complete by Valiant [18]. Later on, Faben [6] extended this result by proving #kIS to be
#k P-complete for all integers k. For reasons to be explained in Section 1.3 we do not use
this problem as a starting point for our reductions.

We turn our attention to #pBIS, the problem of counting the independent sets of a
bipartite graph modulo p. In the same work Faben [6] includes a construction to show
hardness for #pBIS. We employ the weighted version #pBISλ`,λr as a starting point for
our reduction extending the research on #BIS.

I Problem 1.4. #pBISλ`,λr

Parameter. p prime and λ`, λr ∈ Zp.
Input. Bipartite graph G = (VL, VR, E).
Output. Zλ`,λr (G) =

∑
I∈I(G) λ

|VL∩I|
` λ

|VR∩I|
r (mod p).

In fact, we obtain the following dichotomy.

MFCS 2018

49:4 Counting Homomorphisms to Trees Modulo a Prime

I Theorem 1.5. Let p be a prime and let λ`, λr ∈ Zp. If λ` ≡ 0 (mod p) or λr ≡ 0 (mod p),
then #pBISλ`,λr is computable in polynomial time. Otherwise, #pBISλ`,λr is #p P-complete.

In order to prove hardness for #pHomsToH we employ a reduction in three phases: (i)
we reduce the “canonical” #p P-complete problem #pSAT to #pBISλ`,λr ; (ii) we reduce
#pBISλ`,λr to #pPartLabHomsToH, a restricted version of #pHomsToH which we
define in Section 1.3; (iii) we reduce #pPartLabHomsToH to #pHomsToH.

Section 1.1 provides background knowledge on modular counting. In Section 1.2 we will
discuss some related work. A high level proof of our three way reduction is provided in
Section 1.3. There we also explain the technical obstacles arising from values of the modulo p >
2 and how we overcome them by generalising the techniques used for the case p = 2. First,
we explain step (i), the reduction from #pSAT to #pBISλ`,λr . Afterwards, we describe
step (iii), the reduction from #pPartLabHomsToH to #pHomsToH establishing the
required notation for the subsequent illustration of step (ii), the reduction from #pBISλ`,λr
to #pPartLabHomsToH. In Section 1.4 we discuss the limits of our techniques, which do
not yield a dichotomy modulo any integer k.

1.1 Modular counting
Modular counting was originally studied from the decision problem’s point of view. Here, the
objective is to determine if the number of solutions is non-zero modulo k. The complexity
class ⊕P was first studied by Papadimitriou and Zachos [16] and by Goldschlager and
Parberry [12]. ⊕P consists of all problems of the form “is f(x) odd or even?”, where f(x) is
a function in # P. A result of Toda [17] states that every problem in the polynomial time
hierarchy reduces in polynomial time to some problem in ⊕P. This result suggests that
⊕P-completeness represents strong evidence for intractability.

For an integer k the complexity class #k P consists of all problems of the form “compute
f(x) modulo k”, where f(x) is a function in # P. In the special case of k = 2, #2 P = ⊕P,
as the instances of #2 P require a one bit answer. Throughout this paper though, instead of
the more traditional notation ⊕P, we will use #2 P to emphasise our interest in computing
functions.

If a counting problem can be solved in polynomial time, the corresponding decision and
modular counting problems can also be solved in polynomial time. The converse, though,
does not necessarily hold. The reason is that efficient counting algorithms rely usually
on an exponential number of cancellations that occur in the problem, e.g. compute the
determinant of a non-negative matrix. The modulo operator introduces a natural setting for
such cancellations to occur.

For instance, consider the # P-complete problem of counting proper 3-colourings of a
graph G in the modulo 3 (or even modulo 6) setting. 3-colourings of a graph assigning all
three colours can be grouped in sets of size 6, since there are 3! = 6 permutations of the
colours. Thus, the answer to these instances is always a multiple of 6, and therefore “cancels
out”. It remains to compute the number of 3-colourings assigning less than 3 colours. For
the case of using exactly 2 colours we distinguish the following two cases: G is not bipartite
and there are no such colourings; G is bipartite and the number of 3-colourings of G that
use exactly 2 colours is 3(2c), where c is the number of components of G. Finally, computing
the number of proper 3-colourings of G that use exactly one colour is an easy task. Either G
has an edge and there are no such colourings, or G has no edges and for every vertex there
are 3 colours to choose from.

A. Göbel, J. A. G. Lagodzinski, and K. Seidel 49:5

Valiant [18] observed a surprising phenomenon in the tractability of modular counting
problems. He showed that for a restricted version of 3-SAT computing the number of solutions
modulo 7 is in FP, but computing this number modulo 2 is #2 P-complete. This mysterious
number 7 was later explained by Cai and Lu [3], who showed that the k-SAT version of
Valiant’s problem is tractable modulo any prime factor of 2k − 1.

1.2 Related work
We have already mentioned earlier work on counting graph homomorphisms. In this section
we highlight the work of Faben [6] and the work of Guo et al. [13] on the complexity of the
modular counting variant of the constraint satisfaction problem.

I Problem 1.6. #kCSP(F)

Parameter. k ∈ Z>0 and a set of functions F = {f1, . . . , fm}, where for each j ∈ [m],
fj : {0, 1}rj → Zp and rj ∈ Z>0.

Input. Finite set of constraints over Boolean variables x1, . . . , xn of the form
fjl(xil,1 , xil,2 , . . . , xil,rjl).

Output.
∑

x1,...,xn∈{0,1}

∏
l
fjl(xil,1 , xil,2 , . . . , xil,rjl) (mod k).

Faben showed a dichotomy theorem [6, Theorem 4.11] when the functions in F have
Boolean domain and Boolean range, i.e. f : {0, 1} → {0, 1}. Guo et al. extended this
dichotomy [13, Theorem 4.1] to #kCSP, when the functions in F have Boolean domain
{0, 1} but range in Zk.

Constraint satisfaction problems generalise graph homomorphism problems, when the
domain of the constraint functions is arbitrarily large. In order to illustrate that #kCSP is a
generalisation of #kHomsToH , let G be an input for #kHomsToH , for which we describe an
equivalent #kCSP instance. The domain of the constraint satisfaction problem is D = V (H)
and F contains a single binary relation RH , with RH(u, v) = 1 whenever (u, v) ∈ E(H) and
RH(u, v) = 0 otherwise. Thus, #kHomsToH is an instance of #kCSP({RH}). The input of
#kCSP({RH}) contains a variable xv for every vertex v ∈ V (G) and a constraint RH(xu, xv)
for every edge (u, v) ∈ E(G). As can be observed from the construction, every valid
homomorphism σ : V (G)→ V (H) corresponds to an assignment of the variables {xv}v∈V (G)
satisfying every constraint in the CSP.

These results of Faben and of Guo et al. are incomparable to ours. We consider prime
values of the modulo and a single binary relation, however the domain of our relations
is arbitrarily large. Furthermore, the results of Faben [6, Theorem 4.11] show that the
constraint language F for which #2CSP is tractable is richer than the constraint language
for which #kCSP is tractable, where k > 2. In contrast, our results show that the dichotomy
criterion of #pHomsToH remains the same for all primes p, when H is a tree.

1.3 Beyond one-bit functions
Weighted bipartite independent sets

To explain how we prove Theorem 1.5, consider a bipartite graph G = (VL, VR, E) and let
λ` = 0 (the case λr = 0 is symmetric). We observe that every independent set I which
contributes a non-zero summand to Zλ`,λr(G) can only contain vertices in VR (Zλ`,λr(G)
is defined in Problem 1.4). This yields the closed form Zλ`,λr(G) = (λr + 1)|VR|, which

MFCS 2018

49:6 Counting Homomorphisms to Trees Modulo a Prime

is computable in polynomial time. Regarding the case λ`, λr 6≡ 0 (mod p), we employ a
generalisation of a reduction used by Faben. In [6, Theorem 3.7] Faben reduces #pSAT
to #pBIS1,1, the problem of counting independent sets of a bipartite graph.

We have to generalise this reduction for the weighted setting, in particular allowing different
vertex weights for the vertices of each partition. Furthermore, during the construction we
have to keep track of the assignment of vertices to their corresponding part, VL or VR. For
this purpose we need to show the existence of bipartite graphs B, where Zλ`,λr(B) takes
specific values. These graphs are then used as gadgets in our reduction. In the unweighted
setting #pBIS1,1 the graphs B are complete bipartite graphs. However, in the weighted
setting #pBISλ`,λr complete bipartite graphs are not sufficient. Therefore, we prove the
existence of the necessary bipartite gadgets B constructively. Key results appear in Section 2
and the technical proofs appear in Section 3 of the full version.

Pinning

Similar to the existing hardness proofs on modular counting graph homomorphisms we deploy
a “pinning” technique. A partial function from a set X to a set Y is a function f : X ′ → Y

for some X ′ ⊆ X. For any graph H, a partially H-labelled graph J = (G, τ) consists of an
underlying graph G and a pinning function τ , which is a partial function from V (G) to V (H).
A homomorphism from a partially labelled graph J = (G, τ) to H is a homomorphism
σ : G → H such that, for all vertices v ∈ dom(τ), σ(v) = τ(v). The resulting problem
is denoted by #pPartLabHomsToH, that is, given a prime p and graph H, compute
|Hom (J → H) | (mod p). In Section 3, we show that #pPartLabHomsToH reduces to
#pHomsToH. This allows us to establish hardness for #pHomsToH, by proving hardness
for #pPartLabHomsToH. The reduction generalises the pinning reduction of Göbel,
Goldberg and Richerby [10] from #2PartLabHomsToH to #2HomsToH.

We explain how to prove pinning when we restrict the value of the modulo to 2 and
the pinning function τ(J) = {u 7→ v} to “pin” a single vertex. Given two graphs with
distinguished vertices (G, u) and (H, v), let Hom ((G, u)→ (H, v)) be the set of homo-
morphisms from G to H mapping u to v. Given a graph with a distinguished vertex
(G, u) and a graph H, we define wH(G) to be the {0, 1}-vector containing the entries
|Hom ((G, u)→ (H, v)) | (mod 2) for each vertex v ∈ V (H). Observe that for two vertices
v1, v2 ∈ V (H), such that (H, v1) ∼= (H, v2), and any graph G the relevant entries in wG(H)
will always be equal. Therefore, we can contract all such entries to obtain the orbit vectors
vH(G). Suppose that there exists a graph with a distinguished vertex (Θ, uΘ), such that
vH(Θ) = 0 . . . 010 . . . 0, where the 1-entry corresponds to the vertex v of H. Given our
input J for #2PartLabHomsToH we can now define an input G for #2HomsToH, such
that |Hom (J → H) | ≡ |Hom ((G(J), u)→ (H, v)) | ≡ |Hom (G→ H) | (mod 2). G contains
a disjoint copy of G(J) and Θ, where the vertices u and uΘ are identified (recall that u is
the vertex of J mapped by τ(J)). Due to the value of vH(Θ) and the structure of G there is
an even number of homomorphisms mapping u to any vertex v′ 6= v, which establishes the
claim.

Such a graph Θ, however, is not guaranteed to exist. Instead, we can define a set
of operations on the vectors vH corresponding to graph operations and show that for
any vector in {0, 1}|V (H)| there exist a sequence of graphs with distinguished vertices
(Θ1, u1), . . . , (Θt, ut) that “generate” this vector. Thus, there exists a set of graphs that
“generate” v = 0 . . . 010 . . . 0, which yields the desired reduction. This technique of [10]
exploits the value of the modulo to be 2. Applying this technique to counting modulo any
prime p directly, one can establish pinning for asymmetric graphs, that is graphs whose
automorphism group contains only the identity. A dichotomy for #pHomsToH, when H is
an asymmetric tree appears in the first author’s doctoral thesis [8].

A. Göbel, J. A. G. Lagodzinski, and K. Seidel 49:7

In order to go beyond asymmetric graphs, one has to observe that information redundant
only in the modulo 2 case is lost from the contraction of the vectors wH to the vectors vH .
This works on asymmetric graphs, since then these two vectors are identical. For general
graphs we are able to restore pinning for counting homomorphisms modulo any prime p by
utilising the non-contracted vectors wH .

I Theorem 1.7. Let p be a prime and let H be a graph. Then #pPartLabHomsToH
reduces to #pHomsToH via polynomial time Turing reduction.

To obtain hardness for #pHomsToH we only need to pin two vertices when H is a tree,
i.e. the domain of the pinning function τ has size two. For a study of a more general class of
target graphs H (see [10]), the size of the domain has to be larger. As our pinning theorem
applies to all primes p, all graphs H and pinning functions of arbitrary domain size, it can
potentially be used to show hardness for #pHomsToH for all primes and any class of target
graphs H. The key lemmas are presented in Section 3 and the formal proofs in Section 5 of
the full version.

Gadgets

Gadgets are structures appearing in the target graph H that allow to reduce #2IS to
#2PartLabHomsToH (the hardness of #2HomsToH is then immediate from Theorem 1.7).
For illustrative purposes we simplify the definitions appearing in [10]. #2HomsToH–gadgets
consist of two partially labelled graphs with distinguished vertices (J1, y), (J2, y, z) along with
two “special” vertices i, o ∈ V (H). Given the input G for #2IS, we construct an input G′ for
#2PartLabHomsToH as follows. We attach a copy of J1 to every vertex u of G (identifying
u with y) and replace every edge (u, v) of G with a copy of J2 (identifying u with y and v
with z). The properties of J1 ensure that there is an odd number of homomorphisms from
G′ to H where the original vertices of G are mapped to i or o, while the number of the
remaining homomorphisms cancels out. The properties of J2 ensure that there is an even
number of homomorphisms from G′ to H when two adjacent vertices of G are both mapped
to i, and an odd number of homomorphisms in every other case. We can now observe that
|I(G)| ≡ |Hom (G′ → H) | (mod 2), as the set of homomorphisms that does not cancel out
must map every vertex of G to i or o and no pair of adjacent vertices both to i. Every vertex
of G that is in an independent set must be mapped to i, and every vertex that is out of the
independent set must be mapped to o.

Generalising the described approach to modulo any prime p > 2 one would end up
reducing from a restricted #pCSP instance, containing a binary relation and a unary weight
that must be applied to every variable of the instance (this is known as external field in
statistical physics). Similar to the modulo 2 case the edge interaction is captured by the
binary relation and size of the set of “special” vertices by the unary weights. Since for primes
p > 2 there are more non-zero values than 1 (odd) a study of the external field is no longer
trivial in this case. Instead we choose a different approach and reduce from #pBISλ`,λr . This
seems to capture the structure that produces hardness in #pHomsToH in a more natural
way.

We formally present our reduction in Section 4. In the following we sketch our proof
method and focus our attention on the example graph H in Figure 1. Let G = (VL, VR, E)
be a bipartite graph. Homomorphisms from G to H must respect the partition of G, i.e.
the vertices in VL can only be mapped to the vertices in {xL, u1, u2, u3} and the vertices in
VR can only be mapped to the vertices in {xR, v1, v2}, or vice versa. Any homomorphism σ

from G to H, which maps the vertex w ∈ V (G) to any vertex in {u1, u2, u3}, must map

MFCS 2018

49:8 Counting Homomorphisms to Trees Modulo a Prime

every neighbour of w to xR. Similarly, any homomorphism σ from G to H, which maps
the vertex w ∈ V (G) to any vertex in {v1, v2}, must map every neighbour of w to xL.
Thus, homomorphisms from G to H express independent sets of G: {u1, u2, u3} represent
the vertices of VL in the independent set and {v1, v2} represent the vertices of VR in the
independent set, or vice versa. We construct a partially labelled graph J from G to fix
the choice of VL and VR in the set of homomorphisms from G to H. G(J) contains a copy
of G, where every vertex in VL is attached to the new vertex û and every vertex in VR is
attached to the new vertex v̂. In addition, τ(J) = {û 7→ xR, v̂ 7→ xL} is the pinning function.
We observe that the vertices in VL can only be mapped to vertices in {xL, u1, u2, u3} and
vertices in VR can only be mapped to vertices in {xR, v1, v2}. This observation yields that
the number of homomorphisms from J to H is equivalent to

∑
I∈I(G) 3|VL∩I|2|VR∩I| (mod p).

Furthermore, the cardinality of the sets {u1, u2, u3} and {v1, v2} introduces weights in a
natural way.

For the reduction above we need the following property easily observable in H: there
exist two adjacent vertices of degree a = λ` + 1 6≡ 1 (mod p) and b = λr + 1 6≡ 1 (mod p).
Recall that in order to obtain hardness for #pBISλ`,λr Theorem 1.5 requires λ`, λr 6≡ 0
(mod p). In fact, as we will show in Section 4, these vertices need not be adjacent. During
the construction of J we can replace the edges of G with paths of appropriate length. We
call such a structure in H an (a, b, p)-path. In Lemma 4.4 we formally prove that if H has
an (a, b, p)-path, then #pHomsToH is #p P-hard. In particular, observe that stars cannot
contain (a, b, p)-paths. Finally, we show that every non-star tree H contains an (a, b, p)-path,
which yields our main result on #pHomsToH (Lemma 4.2).

1.4 Composites

We outline the obstacles occurring when extending the dichotomy for #kHomsToH to
any integer k. Let H be a graph and let k =

∏m
i=1 ki, where ki = prii is an integer with

its prime factorisation. Assuming #kHomsToH can be solved in polynomial time, then
for each i ∈ [m], #kiHomsToH can also be solved in polynomial time. The reason is
that ki is a factor of k and we can apply the modulo ki operator to the answer for the
#kHomsToH instance. The Chinese remainder theorem shows that the converse is also
true: if for each i ∈ [m] we can solve #kiHomsToH in polynomial time, then we can also
solve #kHomsToH in polynomial time. By the previous observations we can now focus on
powers of primes k = pr. Assuming #kHomsToH is computable in polynomial time yields
again that #pHomsToH is also computable in polynomial time. However, the converse is
not always true.

Guo et al. [13] were able to obtain this reverse implication for the constraint satisfaction
problem. They showed [13, Lemma 4.1 and Lemma 4.3] that when p is a prime #prCSP
is computable in polynomial time if #pCSP is computable in polynomial time. In the full
version we show that their technique cannot be transferred to the #kHomsToH setting. We
show that there is a graph (P4) such that #2HomsToP4 is computable in polynomial time,
while #4HomsToP4 is #2 P-hard.

2 Weighted bipartite independent set

We study the complexity of Problem 1.4, the problem of computing the weighted sum over
independent sets in a bipartite graph. We begin by identifying the tractable instances.

A. Göbel, J. A. G. Lagodzinski, and K. Seidel 49:9

I Proposition 2.1. If λ` ≡ 0 (mod p) or λr ≡ 0 (mod p) then #pBISλ`,λr is computable in
polynomial time.

To prove the hardness of the remaining cases, we reduce from #pSAT. Our reduction
starts with a Boolean formula ϕ and constructs, in two stages, a graph Gϕ, such that
Zλ`,λr (Gϕ) ≡ K| sat(ϕ)| (mod p), where sat(ϕ) denotes the set of satisfying assignments of
ϕ and K is a constant depending on the values of the weights λ` and λr. In the first stage
we define the graph G′ϕ. For every variable xi in ϕ, G′ϕ contains three vertices ui, ūi and
wi to the left vertex set VL(G′ϕ) as well as three vertices vi, v̄i and zi to the right vertex
set VR(G′ϕ). For every clause cj of ϕ, G′ϕ further contains a vertex yj in the right vertex
set VR(G′ϕ). We further introduce the edges forming the cycle uiviwiv̄iūiziui to E(G′ϕ) for
every variable xi in ϕ. Additionally for all i ∈ [n], if xi appears as a literal in clause cj of ϕ,
we introduce the edge (ui, yj) in G′ϕ and if x̄i appears as a literal in clause cj , we introduce
the edge (ūi, yj) in G′ϕ. The left part of Figure 2 illustrates an example of this construction.

The second stage uses copies of a bipartite graph B, which is obtained by the following
key lemma.

I Lemma 2.2. Let p be a prime and λ`, λr ∈ Z∗p. There exists a bipartite graph B =
(VL, VR, E) with distinguished vertices uL ∈ VL and vR ∈ VR, that satisfies
1. Zλ`,λr (B) ≡ 0 (mod p),
2. Zλ`,λr (B − uL) 6≡ 0 (mod p),
3. Zλ`,λr (B − vR) 6≡ 0 (mod p).

In the second and final stage, we construct the graph Gϕ. Let (B, uL, vR) be the graph
obtained from Lemma 2.2. Gϕ is a copy of G′ϕ together with two copies of B for every
variable of ϕ and one copy of B for every clause. The first n copies B1, . . . , Bn are connected
to G′ϕ by identifying the distinguished vertex uiL in the left component with wi ∈ VL(G′ϕ)
for all i ∈ [n]. The second n copies Bn+1, . . . , B2n are connected to G′ϕ by identifying
the distinguished vertex vn+i

R in their right components with zi ∈ VR(G′ϕ) for all i ∈ [n].
The remaining m copies B2n+1, . . . , B2n+m of B are connected to G′ϕ by identifying the
distinguished vertex v2n+j

R in their right components with yj ∈ VR(G′ϕ) for all j ∈ [m]. For
an example see the right part of Figure 2.

From this construction we obtain the desired result.

I Theorem 1.5. Let p be a prime and let λ`, λr ∈ Zp. If λ` ≡ 0 (mod p) or λr ≡ 0 (mod p)
then #pBISλ`,λr is computable in polynomial time. Otherwise, #pBISλ`,λr is #p P-complete.

3 Homomorphisms of partially labelled graphs

We study the following problem.

I Problem 3.1. #pPartLabHomsToH.

Parameter. Graph H and prime p.
Input. Partially H-labelled graph J = (G, τ).
Output. | Hom(J → H)| (mod p).

We observe the following theorem for all primes p.

MFCS 2018

49:10 Counting Homomorphisms to Trees Modulo a Prime

B8

B7

B4B1

B5B2

B6B3

u1 v1

u1 v1

w1 z1

u2 v2

u2 v2

w2 z2

u3 v3

u3 v3

w3 z3

y1

y2

u1 v1

u1 v1

u1
L = w1 z1 = v4R

u2 v2

u2 v2

u2
L = w2 z2 = v5R

u3 v3

u3 v3

u3
L = w3 z3 = v6R

y1 = v7R

y2 = v8R

Figure 2 The graphs G′
ϕ and Gϕ for ϕ = (x1 ∨ x2) ∧ (x̄1 ∨ x2 ∨ x3).

I Lemma 3.2 (Göbel, Goldberg and Richerby [10]). Let p be a prime and let (H, v̄) and
(H ′, v̄′) be graphs having no automorphism of order p, each with r distinguished vertices.
Then (H, v̄) ∼= (H ′, v̄′) if and only if, for all (not necessarily connected) graphs (G, ū) with
r distinguished vertices,

|Hom ((G, ū)→ (H, v̄)) | ≡ |Hom ((G, ū)→ (H ′, v̄′)) | (mod p) .

Instead of orbit vectors, which are used in the pinning proof of [10], we employ tuple
vectors. The tuple vectors include the sizes of the orbits OrbH(v̄), for all v ∈ V (H)r, and
this information is vital for the proof of our pinning theorem.

I Definition 3.3. Let H be a graph with no automorphism of order p, r ∈ Z>0 and let
w̄1, . . . , w̄ν be an enumeration of (V (H))r, i.e., ν = |V (H)|r. Let (G, ū) be a graph with
r distinguished vertices. We define the tuple vector wH(G, ū) ∈ (Zp)ν where, for each j ∈ [ν],
the j-th component of wH(G, ū) is given by(

wH(G, ū)
)
j
≡ |Hom ((G, ū)→ (H, w̄j)) | (mod p) .

We say that (G, ū) implements this vector.

Not all tuple vectors in (Zp)ν are implementable. We only require the following set to be
implementable.

I Definition 3.4. Let H be a graph with no automorphism of order p, r ∈ Z>0 and let
w̄1, . . . , w̄ν be an enumeration of (V (H))r, i.e., ν = |V (H)|r. Denote by F (H, r) ⊆ (Zp)ν the
set of vectors w, such that, for all i, j ∈ [ν] with (H, w̄i) ∼= (H, w̄j), we have (w)i = (w)j .

A. Göbel, J. A. G. Lagodzinski, and K. Seidel 49:11

H :
x0 x1 x2

G :

u2

u1

v1

e

f

J : x0

û

u2 = zf0

u1 = ze0

xk

v̂zf2 = v1

ze2 = v1
ze1

zf1

Figure 3 An instance for p = 5 of #pBIS3,1 reducing to #pPartLabHomsToH. H contains
the (4, 2, 5)-path x0x1x2. G is transformed to the partially labelled graph J , where the mappings of
τ(J) are shown as vertices encircling the target of the mapping.

I Lemma 3.5. Let H be a graph with no automorphism of order p, r ∈ Z>0 and w̄1, . . . , w̄ν
an enumeration of (V (H))r, i.e., ν = |V (H)|r. Then every w ∈ F (H, r) is H-implementable.

Using the above in the full version we prove the following theorem.

I Theorem 1.7. Let p be a prime and let H be a graph. Then #pPartLabHomsToH
reduces to #pHomsToH via polynomial-time Turing reduction.

4 Hardness for trees

The structure in H that yields hardness for #pHomsToH is formally defined as follows.

I Definition 4.1. Let H be a graph, p be a prime and a, b ∈ Zp \ {1}. Assume H contains
a path P = x0 . . . xk for k > 0, such that the following hold
1. P is the unique path between x0 and xk in H.
2. degH(x0) ≡ a (mod p) and degH(xk) ≡ b (mod p).
3. For all 0 < i < k, degH(xi) ≡ 1 (mod p).
Then, we will call P an (a, b, p)-path in H and denote it QH .

I Lemma 4.2. Let H be a tree that has no automorphism of order p. Then, either H is a
star or there are a, b ∈ Zp \ {1} such that H contains an (a, b, p)-path.

In order to show that #pHomsToH is #p P-hard we are going to establish a reduction
from #pBISλ`,λr to #pPartLabHomsToH. Let p be a prime and let H be a tree, target
graph in #pPartLabHomsToH. Given a graph G = (VL, VR, E) input for #pBISλ`,λr ,
we construct a partially labelled graph J , input for #pPartLabHomsToH, such that
Zλ`,λr(G) ≡ |Hom (J → H) | (mod p). Assume H contains an (a, b, p)-path Q = x0 . . . xk
and let Pk = z0 . . . zk be the k-path of length k. For every edge e ∈ E, we take a copy of Pk
denoted P ek = ze0 . . . z

e
k. Then, J is constructed starting with G by adding two vertices û and

v̂ and connecting them to every vertex in VL and VR, respectively. Subsequently, every edge
e ∈ E is substituted with a the path P ek . Finally, the pinning function of J maps û to x0 as
well as v̂ to xk. See Figure 3 for an example.

The following lemma gives the key properties of J , which establish the reduction.

I Lemma 4.3. Let p be a prime, G = (VL, VR, E) a bipartite graph and H be a tree. Assume
there are a, b ∈ Zp \ {1} such that H contains an (a, b, p)-path QH = x0 . . . xk. We denote the
diminished neighbourhoods of x0 and xk by WL = ΓH(x0)− x1 and WR = ΓH(xk)− xk−1,

MFCS 2018

49:12 Counting Homomorphisms to Trees Modulo a Prime

respectively. Additionally, let J be the partially labelled graph described above. Then, for
every homomorphism σ from J to H the following hold.
1. Let u ∈ VL and v ∈ VR, then σ(u) ∈ ΓH(x0) and σ(v) ∈ ΓH(xk), respectively;
2. Let Oσ = {u ∈ VL | σ(u) = x1} ∪ {v ∈ VR | σ(v) = xk−1} and Iσ = (VL ∪ VR) \ Oσ.

Given another homomorphism σ′ from J to H, the relation σ ∼I σ
′ if Iσ = Iσ′ is an

equivalence relation with equivalence class denoted [[·]]I;
3. Let σ1, . . . , σµ be representatives from each ∼I-equivalence class. Then, the set I(G) of

independent sets of G is exactly the set { Iσi | i ∈ [µ] }.
4. For the diminished neighbourhoods holds |[[σ]]I| ≡ |WL||Iσ∩VL||WR||Iσ∩VR| (mod p).

I Lemma 4.4. Let p be a prime and let H be a graph with no automorphism of order p. If
there are a, b ∈ Zp\{1} such that H has an (a, b, p)-path QH then #pHomsToH is #p P-hard
under Turing reductions.

5 Dichotomy theorems

The results of Faben and Jerrum [7] combined with Lemma 4.4 give the following dichotomy
theorem.

I Theorem 1.2. Let p be a prime and let H be a graph, such that its order p reduced
form H∗p is a tree. If H∗p is a star, then #pHomsToH is computable in polynomial time;
otherwise, #pHomsToH is #p P-complete.

To justify our title, we use the following proposition showing that our dichotomy theorem
holds for all trees. In [7, Section 5.3] this was stated as an obvious fact, however for the sake
of completeness we provide a formal proof.

I Proposition 5.1. Let H be a tree and % an automorphism of H. Then the subgraph H% of
H induced by the fixed points of % is also a tree.

The claim implies that if H is a tree, then its order p reduced form H∗p is also a tree.
This yields the following corollary.

I Corollary 1.3. Let p be a prime and let H be a tree. If the order p reduced form H∗p of
H is a star, then #pHomsToH is computable in polynomial time; otherwise, #pHomsToH
is #p P-complete.

To deal with disconnected graphs, Faben and Jerrum [7, Theorem 6.1] show the following
theorem.

I Theorem 5.2 (Faben and Jerrum). Let H be a graph that has no automorphism of order 2.
If H ′ is a connected component of H and #2HomsToH ′ is #2 P-hard, then #2HomsToH
is #2 P-hard.

The only part where the value 2 of the modulo is required, is the application of their
pinning theorem [7, Theorem 4.7]. Since we have already shown the more general Theorem 1.7,
we conclude that the theorem holds in the following form.

I Theorem 5.3. Let p be a prime and let H be a graph that has no automorphism of order p.
If H1 is a connected component of H and #pHomsToH1 #p P-hard, then #pHomsToH is
#p P-hard.

The latter strengthens Theorem 1.2 to the following version.

A. Göbel, J. A. G. Lagodzinski, and K. Seidel 49:13

I Theorem 5.4. Let H be a graph whose order p reduced form H∗p is a forest. If every
component of H∗p is a star, #pHomsToH is computable in polynomial time, otherwise
#pHomsToH is #p P-complete.

A discussion of our results was already conducted in the introduction. Again we refer the
curious reader to the full version of the paper, available at https://arxiv.org/abs/1802.
06103.

References
1 A. A. Bulatov and M. Grohe. The complexity of partition functions. Theoretical Computer

Science, 348(2-3):148–186, 2005. doi:10.1016/j.tcs.2005.09.011.
2 J.-Y. Cai, X. Chen, and P. Lu. Graph homomorphisms with complex values: A dichotomy

theorem. SIAM Journal on Computing, 42(3):924–1029, 2013. doi:10.1137/110840194.
3 J.-Y. Cai and P. Lu. Holographic algorithms: From art to science. Journal of Computer

and System Sciences, 77(1):41–61, 2011.
4 M. E. Dyer, A. M. Frieze, and M. Jerrum. On counting independent sets in sparse graphs.

SIAM Journal on Computing, 31(5):1527–1541, 2002. doi:10.1137/S0097539701383844.
5 M. E. Dyer and C. S. Greenhill. The complexity of counting graph homomorphisms. Ran-

dom Structures and Algorithms, 17(3-4):260–289, 2000.
6 J. Faben. The complexity of counting solutions to generalised satisfiability problems modulo

k. arXiv, abs/0809.1836, 2008.
7 J. Faben and M. Jerrum. The complexity of parity graph homomorphism: an initial

investigation. Theory of Computing, 11:35–57, 2015.
8 A. Göbel (A. Gkompel-Magkakis). Counting, Modular Counting and Graph Homomorph-

isms. PhD thesis, University of Oxford, 2016.
9 A. Göbel, L. A. Goldberg, and D. Richerby. The complexity of counting homomorphisms

to cactus graphs modulo 2. ACM Transactions on Computation Theory, 6(4):17:1–17:29,
2014.

10 A. Göbel, L. A. Goldberg, and D. Richerby. Counting homomorphisms to square-free
graphs, modulo 2. ACM Transactions on Computation Theory,, 8(3):12:1–12:29, 2016.

11 L. A. Goldberg, M. Grohe, M. Jerrum, and M. Thurley. A complexity dichotomy for
partition functions with mixed signs. SIAM Journal on Computing, 39(7):3336–3402, 2010.

12 L. M. Goldschlager and I. Parberry. On the construction of parallel computers from various
bases of Boolean functions. Theoretical Computer Science, 43:43–58, 1986.

13 H. Guo, S. Huang, P. Lu, and M. Xia. The complexity of weighted boolean #CSP modulo
k. In Symposium on Theoretical Aspects of Computer Science (STACS), pages 249–260,
2011.

14 P. Hell and J. Nešetřil. On the complexity of H-coloring. Journal of Combinatorial Theory,
Series B, 48(1):92–110, 1990.

15 R. E. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,
22(1):155–171, 1975.

16 C. H. Papadimitriou and S. Zachos. Two remarks on the power of counting. In Proceedings
of the GI-Conference on Theoretical Computer Science, pages 269–276, 1982.

17 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing,
20(5):865–877, 1991.

18 L. G. Valiant. Accidental algorthims. In Proceedings of the IEEE Symposium on Founda-
tions of Computer Science, pages 509–517, 2006.

MFCS 2018

https://arxiv.org/abs/1802.06103
https://arxiv.org/abs/1802.06103
http://dx.doi.org/10.1016/j.tcs.2005.09.011
http://dx.doi.org/10.1137/110840194
http://dx.doi.org/10.1137/S0097539701383844

Car-Sharing between Two Locations: Online
Scheduling with Two Servers
Kelin Luo1

School of Management, Xi’an Jiaotong University
Xianning West Road, Xi’an, China
luokelin@xjtu.edu.cn

https://orcid.org/0000-0003-2006-0601

Thomas Erlebach
Department of Informatics, University of Leicester
Leicester, United Kingdom
te17@leicester.ac.uk

https://orcid.org/0000-0002-4470-5868

Yinfeng Xu
School of Management, Xi’an Jiaotong University
Xianning West Road, Xi’an, China
yfxu@xjtu.edu.cn

Abstract
In this paper, we consider an on-line scheduling problem that is motivated by applications such
as car sharing, in which users submit ride requests, and the scheduler aims to accept requests of
maximum total profit using two servers (cars). Each ride request specifies the pick-up time and
the pick-up location (among two locations, with the other location being the destination). The
length of the time interval between the submission of a request (booking time) and the pick-up
time is fixed. The scheduler has to decide whether or not to accept a request immediately at the
time when the request is submitted. We present lower bounds on the competitive ratio for this
problem and propose a smart greedy algorithm that achieves the best possible competitive ratio.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Car-sharing system, Competitive analysis, On-line scheduling

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.50

1 Introduction

In a car-sharing system, a company offers cars to customers for a period of time. Customers
can pick up a car in one location, drive it to another location, and return it there. Car
booking requests arrive on-line, and the goal is to maximize the profit obtained from satisfied
requests. We consider a setting where all driving routes go between two fixed locations,
but can be in either direction. For example, the two locations could be a residential area
and a nearby shopping mall or central business district. Other applications that provide
motivation for the problems we study include car rental, taxi dispatching and boat rental for
river crossings.

1 This work was partially supported by the China Postdoctoral Science Foundation (Grant No.
2016M592811), and the China Scholarship Council (Grant No. 201706280058).

© Kelin Luo, Thomas Erlebach, and Yinfeng Xu;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 50; pp. 50:1–50:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luokelin@xjtu.edu.cn
https://orcid.org/0000-0003-2006-0601
mailto:te17@leicester.ac.uk
https://orcid.org/0000-0002-4470-5868
mailto:yfxu@xjtu.edu.cn
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.50
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

50:2 Car-Sharing between Two Locations: Online Scheduling with Two Servers

In a real setting, customer requests for car bookings arrive over time, and the decision
about each request must be made immediately, without knowledge of future requests. This
gives rise to an on-line problem that bears some resemblance to interval scheduling, but in
which additionally the pick-up and drop-off locations play an important role: The server that
serves a request must be at the pick-up location at the start time of the request and will
be located at the drop-off location at the end time of the request. A server can serve two
consecutive requests only if the drop-off location of the first request is the same as the pick-up
location of the second request, or if there is enough time to travel between the two locations
otherwise. We allow ‘empty movements’ that allow a server to be moved from one location to
another while not serving a request. Such empty movements could be implemented by having
company staff drive a car from one location to another, or in the future by self-driving cars.

We assume that every request is associated with a profit r > 0 that is obtained if the
request is accepted. When a server moves while not serving a request, a certain cost c,
0 ≤ c ≤ r, is incurred. The goal is to maximize the total profit, which is the sum of the
profits of the accepted requests minus the costs incurred for moving servers while not serving
a request. We refer to this problem as the car-sharing problem. The time interval between the
submission of a request (booking time) and the pick-up time is called the booking interval. In
this paper, we focus on the special case of two servers and assume that the booking interval
for each request is a fixed value a that is the same for all requests. We assume that a ≥ t,
where t is the time to move a server from one location to the other.

In [8], the authors studied the car-sharing problem for the special case of a single server,
considering both the case of fixed booking intervals and the case of flexible booking intervals,
and presented tight results for the competitive ratio. The optimal competitive ratio was
shown to be 2r/(r − c) for fixed booking intervals and (3r − c)/(r − c) for flexible booking
intervals if 0 ≤ c < r, and 1 for fixed booking intervals and proportional to the length of
the booking horizon (the range of allowed booking intervals) for flexible booking intervals if
c = r.

The car-sharing problem belongs to the class of dynamic pickup and delivery problems
surveyed by Berbeglia et al. [2]. The problem that is closest to our setting is the on-line
dial-a-ride problem (OLDARP) that has been widely studied in the literature. In OLDARP,
transportation requests between locations in a metric space arrive over time, but typically it
is assumed that requests want to be served ‘as soon as possible’ rather than at a specific time
as in our problem. Known results for OLDARP include on-line algorithms for minimizing
the makespan [1, 3] or the maximum flow time [7]. Work on versions of OLDARP where
not all requests can be served includes competitive algorithms for requests with deadlines
where each request must be served before its deadline or rejected [9], and for settings with a
given time limit where the goal is to maximize the revenue from requests served before the
time limit [6]. In contrast to existing work on OLDARP, in this paper we consider requests
that need to be served at a specific time that is specified by the request when it is released.
Another related problem is the k-server problem [5, Ch. 10], but in that problem all requests
must be served and requests are served at a specific location.

Off-line versions of car-sharing problems are studied by Böhmová et al. [4]. They show that
if all customer requests for car bookings are known in advance, the problem of maximizing
the number of accepted requests can be solved in polynomial time using a minimum-cost
network flow algorithm. Furthermore, they consider the problem variant with two locations
where each customer requests two rides (in opposite directions) and the scheduler must accept
either both or neither of the two. They prove that this variant is NP-hard and APX-hard.
In contrast to their work, we consider the on-line version of the problem with two servers.

K. Luo, T. Erlebach, and Y. Xu 50:3

In Section 2, we define the problem, introduce terminology, and present lower bounds
on the competitive ratio. If 0 ≤ c < r, the lower bound is 2, and if c ≥ r, the lower bound
is 1. In Section 3, we propose a smart greedy algorithm that achieves the best possible
competitive ratio. Section 4 concludes the paper.

2 Problem Formulation and Preliminary Results

2.1 Definitions and Problem Formulation

We consider a setting with only two locations (denoted by 0 and 1) and two servers (denoted
by s1 and s2). The travel time from 0 to 1 is the same as the travel time from 1 to 0 and
is denoted by t. Let R denote a sequence of requests that are released over time. The i-th
request is denoted by ri = (t̃ri , tri , pri) and is specified by the booking time or release time
t̃ri , the start time (or pick-up time) tri , and the pick-up location pri ∈ {0, 1}. We assume
that the booking interval tri − t̃ri is equal to a fixed value a for all requests ri ∈ R, and
we assume that a ≥ t so that an available server always has enough time to travel to the
pick-location of a request. If ri is accepted, the server must pick up the customer at pri
at time tri and drop off the customer at location ṗri = 1− pri , the drop-off location of the
request, at time ṫri = tri + t, the end time (or drop-off time) of the request. We say that
the request ri starts at time tri . For an interval [b, d), we say that ri starts in the interval if
tri ∈ [b, d).

Each server can only serve one request at a time. Serving a request yields profit r > 0.
The two servers are initially located at location 0. If the pick-up location pri of a request ri
is different from the current location of a server and if at least t time units remain before the
start time of ri, the server can move from its current location to pri . We refer to such moves
(which do not serve a request) as empty moves. An empty move takes time t and incurs a
cost of c, 0 ≤ c ≤ r, and we say that ri is accepted with cost in this case. If the server is
already located at pri , we say that ri is accepted without cost. If two requests are such that
they cannot both be served by one server, we say that the requests are in conflict. We do
not require that the algorithm assigns an accepted request to a server immediately, provided
that it ensures that one of the two servers will serve the request. In our setting with fixed
booking intervals, however, it is not necessary for an algorithm to use this flexibility.

We denote the requests accepted by an algorithm by R′, and the i-th request in R′,
in order of request start times, is denoted by r′i. The l-th request which is assigned to sj
(j ∈ {1, 2}) in R′, in order of request start times, is denoted by r′l,j . Suppose r′l,j (j ∈ {1, 2})
is r′i. We say that request r′i is accepted without cost if l = 1 and pr′

l,j
= 0 or if l > 1 and

pr′
l,j

= ṗr′
l−1,j

. Otherwise, r′i is accepted with cost. We denote the profit of serving the
requests in R′ by PR′ . If R′c denotes the subset of R′ consisting of the requests that are
accepted with cost, we have PR′ = r · |R′| − c · |R′c|. The goal of the car-sharing problem is
to accept a set of requests R′ that maximizes the profit PR′ . The problem for two servers
and two locations is called the 2S2L problem.

2.2 Online Optimization and Competitive Analysis

From an online perspective, the requests in R and the number of requests in R are unknown,
and request ri only becomes known at time t̃ri . For any request sequence R, let PRA denote
the objective value produced by an on-line algorithm A, and PR∗ that obtained by an optimal
scheduler OPT that has full information about the request sequence in advance.

MFCS 2018

50:4 Car-Sharing between Two Locations: Online Scheduling with Two Servers

The performance of an online algorithm for 2S2L is measured using competitive analysis
(see [5]). The competitive ratio of A is defined as ρA = supR

PR∗
PRA

. We say that A is
ρ-competitive if PR∗ ≤ ρ · PRA for all request sequences R. Let ON be the set of all on-line
algorithms for a problem. A value β is a lower bound on the best possible competitive ratio
if ρA ≥ β for all A in ON . We say that an algorithm A is optimal if there is a lower bound
β with ρA = β.

2.3 Lower Bounds

In this subsection, we present the lower bounds for the 2S2L problem. We use ALG to denote
any on-line algorithm and OPT to denote an optimal scheduler. We refer to the servers of
ALG as s′1 and s′2, and the servers of OPT as s∗1 and s∗2, respectively. The set of requests
accepted by ALG is referred to as R′, and the set of requests accepted by OPT as R∗. For
the case c ≥ r, a lower bound of 1 on the competitive ratio of any algorithm holds trivially.

I Theorem 1. For 0 ≤ c < r, no deterministic on-line algorithm for 2S2L can achieve
competitive ratio smaller than 2.

Proof. Initially, the adversary releases r1 and r2 with r1 = r2 = (t, t+ a, 1). We distinguish
three cases.
Case 1: ALG accepts r1 and r2 (with cost). Note that r1 and r2 are assigned to different

servers as they are in conflict. The adversary releases requests r3 and r4 with r3 = r4 =
(ε+ t, a+ ε+ t, 0) and r5 and r6 with r5 = r6 = (ε+ 2t, a+ ε+ 2t, 1), where 0 < ε < t.
OPT accepts r3, r4, r5 and r6 without cost, but ALG cannot accept any of these requests
as they are in conflict with r1 and r2. We have PR∗ = 4r and PR′ ≤ 2(r − c), and hence
PR∗/PR′ ≥ 2.

Case 2: ALG accepts either r1 or r2. The adversary accepts r1 and r2. We have PR∗ = 2(r−c)
and PR′ ≤ r − c, and hence PR∗/PR′ ≥ 2.

Case 3: ALG does not accept request r1 and r2. In this case, OPT accepts r1 and r2 and
we have PR∗ = 2(r − c) and PR′ = 0, and hence PR∗/PR′ =∞. J

3 Upper Bound

In this section, we propose a Smart Greedy Algorithm (SG) for the 2S2L problem, shown in
Algorithm 1. Intuitively, if a request is acceptable, the algorithm always accepts it if this
increases the profit by r, and it accepts the request only if it starts at least t time units later
than the end time of the latest previously accepted request if the profit increase is positive
but less than r. The algorithm uses the following notation:

R′i is the set of requests accepted by SG before ri is released, together with the server to
which each request is assigned. R′i ∪ {ri,s′j} denotes the union of R′i and {ri,s′j}, where
ri,s′

j
represents the request ri assigned to server s′j , j ∈ {1, 2}, without conflict.

rni,j denotes the latest request which was assigned to s′j , j ∈ {1, 2}, before ri is released.
(If there is no such request, take rni,j to be a dummy request with drop-off location 0 and
drop-off time 0.)
ri is acceptable if and only if ∃j ∈ {1, 2} : tri − ṫrni,j ≥ t if pri = prn

i,j
, and tri − ṫrni,j ≥ 0 if

pri 6= prn
i,j
.

rni is the latest request that was accepted before ri is released. Note that rni = rni,j with
j = arg max{trn

i,j
| j = 1, 2}. Note that ṫrn1 = 0.

K. Luo, T. Erlebach, and Y. Xu 50:5

Algorithm 1 Smart Greedy Algorithm (SG).
Input: two servers, requests arrive over time with fixed booking interval a.
Step: When request ri arrives, accept ri and assign it to the most economical server s′j if ri is
acceptable and PR′

i
∪{ri,s′

j
}−PR′i = r (j ∈ {1, 2}), or if ri is acceptable, PR′

i
∪{ri,s′

j
}−PR′i > 0

(j ∈ {1, 2}) and tri − ṫrni ≥ t;

If an accepted request is acceptable by both servers, it is assigned to the most economical
server, which is the server s′j with j = arg max{PR′

i
∪{ri,s′

j
} | j = 1, 2}. If PR′

i
∪{ri,s′1

} =
PR′

i
∪{ri,s′2

}, s′j is chosen as the server which has accepted rni (or arbitrarily in case rni
does not exist).

We use OPT to denote an optimal scheduler. We refer to the servers of SG as s′1 and
s′2, and the servers of OPT as s∗1 and s∗2, respectively. For an arbitrary request sequence
R = (r1, r2, r3, . . . , rn), note that we have tri ≤ tri+1 for 1 ≤ i < n because tri − t̃ri = a

is fixed. Denote the requests accepted by OPT by R∗ = {r∗1 , r∗2 , . . . , r∗k∗} and the requests
accepted by SG by R′ = {r′1, r′2, ...r′k}, indexed in order of non-decreasing start times. Denote
the requests accepted by SG which start at location 0 by R′0 = {r′01 , r′02 , ...r′0k0

} and the
requests accepted by SG which start at location 1 by R′1 = {r′11 , r′12 , ...r′1k1

}. Denote the
requests accepted by OPT which start at location 0 by R∗0 = {r∗01 , r∗02 , ...r∗0k∗0

} and the
requests accepted by OPT which start at location 1 by R∗1 = {r∗11 , r∗12 , ...r∗1k∗1

}. Note that
R′0

⋃
R′1 = R′ and R∗0

⋃
R∗1 = R∗.

I Theorem 2. Algorithm SG is 1-competitive for 2S2L if c = r.

Proof. If c = r, accepting a request with cost yields profit r − c = 0. Without loss of
generality, we can therefore assume that both SG and OPT only accept requests without
cost. Observe that this means that both the SG servers (s′1 and s′2) and the OPT servers
(s∗1 and s∗2) accept requests with alternating pick-up location, starting with a request with
pick-up location 0. Therefore each server can accept at most one more request which starts
at location 0 over the requests which start at location 1. That means when OPT accepts w
requests which start at location 1, OPT at least accepts w requests which start at location
0, and accepts at most w + 2 requests which start at location 0 (k∗1 ≤ k∗0 ≤ k∗1 + 2).

Considering the condition that requests r∗0j and r∗1j are both assigned to the same
server for j < i and r∗0i and r∗1i are assigned to different servers (without loss of gener-
ality, suppose r∗0i is assigned to s∗1 and r∗1i is assigned to s∗2), we reassign r∗1i to server
s∗1, reassign all requests in R∗\({r∗01 , r∗02 , ..., r∗0i+1}

⋃
{r∗11 , r∗12 , ..., r∗1i }) that are assigned

to s∗1 (denote the set of these requests by <1) to server s∗2, and reassign all requests in
R∗\({r∗01 , r∗02 , ..., r∗0i+1}

⋃
{r∗11 , r∗12 , ..., r∗1i }) that are assigned to s∗2 (denote them by <2) to

server s∗1. As each server accepts requests with alternating pick-up location, starting with a
request with pick-up location 0, we have ṫr′0

i
≤ tr′1

i
(for all i ≤ k′1) and ṫr∗0

i
≤ tr∗1

i
(for all

i ≤ k∗1). That means for i ≤ k∗1 , r∗0i and r∗1i are not in conflict, and hence reassigning r∗1i to
server s∗1 is valid. Observe that s∗2 must serve a request which has pick-up location 0 and
starts during interval [tr∗0

i
, tr∗1

i
− t] and that request is r∗0i+1. Because tr∗0

i+1
≤ tr∗1

i
− t and the

first request in <1, denoted by ro, has pick-up location 1 and starts after tr∗1
i
, ro and r∗0i+1

are not in conflict. As any two consecutive requests in <1 are not in conflict, reassigning
all requests of <1 to server s∗2 is valid. Note that tr∗0

i+2
≥ ṫr∗1

i
as OPT accepts at most two

requests which start during interval [tr∗0
i
, tr∗1

i
] (during interval [0, tr∗1

i
] if i = 1) and have

pick-up location 0. Because the first request (rl) in <2 starts at 0 and starts after ṫr∗1
i
, rl and

MFCS 2018

50:6 Car-Sharing between Two Locations: Online Scheduling with Two Servers

r∗1i are not in conflict. As any two consecutive requests in <2 are not in conflict, reassigning
all requests of <2 to server s∗1 is valid. From this it follows that R∗ is still a valid solution
with the same profit after the reassignment. For simplification of the analysis, we reassign
the requests in R∗ and R′ based on the above process until both request r∗0i and r∗1i are
assigned to the same server for i ≤ k∗1 , and r′0i and r′1i are assigned to the same server for
i ≤ k′1. Note that this reassignment does not affect the validity of R∗ and R′, and PR∗ and
PR′ do not change.

We claim that R∗ can be transformed into R′ without reducing its profit, thus showing
that PR∗ = PR′ . As SG accepts the request rγ which is the first acceptable request that
starts at location 0 and the request rδ which is the first acceptable request that starts at
location 1 (rδ is the first request in R that starts at location 1 and starts after ṫrγ), it is
clear that tr′01

≤ tr∗0
1

and tr′11
≤ tr∗1

1
. If r′01 6= r∗01 , we can replace r∗01 by r′01 in R∗0, and if

r′11 6= r∗11 , we can replace r∗11 by r′11 in R∗1.
Now assume, that R′ and R∗ are identical with respect to 2i requests (i requests in R∗0

and i requests R′0, and i requests in R∗1 and i requests in R′1, where 1 ≤ i ≤ k∗1), and both
requests r∗0j and r∗1j are assigned to the same server for 1 ≤ j ≤ i.

Without loss of generality, suppose r′1i is assigned to s∗1 by OPT and r′1i is assigned to s′1
by SG. Observe that s∗1 and s′1 are at location 0 at time ṫr′1

i
. We claim that s∗2 (resp. s′2)

is at location 0 at time ṫr′1
i−1

and ṫr′1
i−1
≤ tr∗0

i+1
. If r′1i−1 is assigned to s∗2 (resp. s′2), s∗2 (resp.

s′2) is at location 0 at time ṫr′1
i−1

and ṫr′1
i−1

= min{ṫr′1
i−1
, ṫr′1

i
} ≤ tr∗0

i+1
. If r′1i−1 is assigned to

s∗1 (resp. s′1), we have ṫr′1
i−1
≤ tr′0

i
≤ tr∗0

i+1
. Observe that OPT does not accept any request

which starts in period (tr′1
i−1
, ṫr′1

i−1
). As both SG servers, s′1 and s′2, and OPT servers, s∗1

and s∗2, accept requests with alternating pick-up location and starting with a request with
pick-up location 0, either the pick-up location of the request ro (where ro is the last request
which starts at or before tr′1

i−1
and is assigned to s∗2 (resp. s′2)) is 1, or s∗2 (resp. s′2) does not

accept any request which starts before tr′1
i−1

. Hence s∗2 (resp. s′2) is at location 0 at time ṫro
(≤ ṫr′1

i−1
), or at time 0 if ro does not exist, and stays at that location until time ṫr′1

i−1
.

If there are two requests r∗0i+1 and r∗1i+1, as s′2 is at location 0 at ṫr′1
i−1

and ṫr′1
i−1
≤ tr∗0

i+1
,

there must also be two requests r′0i+1 and r′1i+1 with tr′0
i+1
≤ tr∗0

i+1
and tr′1

i+1
≤ tr∗1

i+1
, as SG

could accept r∗0i+1 and r∗1i+1 by s′2. We can replace r∗0i+1 and r∗1i+1 by r′0i+1 and r′1i+1 in R∗0 and
R∗1. If k∗0 = k∗1 , the claim thus follows by induction.

If k∗0 6= k∗1 (k∗0 − k∗1 = 1 or k∗0 − k∗1 = 2), then R∗1 is already identical to R′1, and the first
k∗1 requests of R∗0 are already identical to the first k∗1 requests of R′0 by the argument above.
If k∗0 − k∗1 = 1, there is a request r∗0k∗1 +1. As s′2 is at location 0 at ṫr′1

k∗1−1
and ṫr′1

k∗1−1
≤ tr∗0

k∗1 +1
,

there must also be one request r′0k∗1 +1 with tr′0
k∗1 +1

≤ tr∗0
k∗1 +1

, as SG could accept r∗0k∗1 +1 by s′2.

We can replace r∗0k∗1 +1 by r′0k∗1 +1 in R∗0, making R∗0 identical to R′0. If k∗0 − k∗1 = 2, there
are two requests r∗0k∗1 +1 and r∗0k∗1 +2. Note that r∗0k∗1 +1 and r∗0k∗1 +2 must be assigned to different
servers by OPT as k∗0 − k∗1 = 2. Recall that s∗1 is at location 0 at ṫr′1

k∗1
, and s∗2 is at location

0 at ṫr′1
k∗1−1

. Hence tr∗0
k∗1 +1

≥ ṫr′1
k∗1−1

and tr∗0
k∗1 +2

≥ ṫr′1
k∗1
. As s′1 is at location 0 at ṫr′1

k∗1
and s′2 is

at location 0 at ṫr′1
k∗1−1

, there must also be two requests r′0k∗1 +1 and r′0k∗1 +2 with tr′0
k∗1 +1

≤ tr∗0
k∗1 +1

and tr′0
k∗1 +2

≤ tr∗0
k∗1 +2

, as SG could accept r∗0k∗1 +1 by s′2, and accept r∗0k∗1 +2 by s′1. We can replace

r∗0k∗1 +1 and r∗0k∗1 +2 by r′0k∗1 +1 and r′0k∗1 +2 in R∗0, making R∗0 identical to R′0. As R∗1 is already
identical to R′1, R∗ is identical to R′ because R∗ = R∗0

⋃
R∗1 and R′ = R′0

⋃
R′1. J

I Theorem 3. Algorithm SG is 2-competitive for 2S2L if c = 0.

K. Luo, T. Erlebach, and Y. Xu 50:7

Figure 1 c = 0, |R′| = k > 1, 1 ≤ i ≤ k.

Proof. We partition the time horizon [0,∞) into intervals (periods) that can be analyzed
independently. Period i, for 1 < i < k, is the interval [max{ṫr′

i−1
, tr′

i
}, max{ṫr′

i
, tr′

i+1
}).

Period 1 is [0,max{ṫr′1 , tr′2}), and period k is [max{ṫr′
k−1

, tr′
k
},∞). (If k = 1, there is only

a single period [0,∞).) Set tr′
k+1

= ∞ and ṫr′0 = 0. Let R∗i denote the set of requests
accepted by OPT that start in period i, for 1 ≤ i ≤ k. For all 1 ≤ i ≤ k, if max{ṫr′

i−1
, tr′

i
} ≥

max{ṫr′
i
, tr′

i+1
}, R∗i = ∅, and hence PR∗

i
= 0. Denote R′i = {r′i} for 1 ≤ i ≤ k.

For 1 < i ≤ k, r′i starts at time tr′
i
and the first request of R∗i starts during the interval

[max{ṫr′
i−1
, tr′

i
},max{ṫr′

i
, tr′

i+1
}) (or the interval [max{ṫr′

k−1
, tr′

k
},∞) if i = k). Furthermore,

r′1 is the first acceptable request in R, and so the first request of R∗1 cannot start before tr′1 .
Hence, for all 1 ≤ i ≤ k, the first request in R∗i cannot start before tr′

i
.

We bound the competitive ratio of SG by analyzing each period independently. As
R′ =

⋃
iR
′
i and R∗ =

⋃
iR
∗
i , it is clear that PR∗/PR′ ≤ α follows if we can show that

PR∗
i
/PR′

i
≤ α for all i, 1 ≤ i ≤ k. For 1 ≤ i ≤ k we distinguish the following cases in order

to bound PR∗
i
/PR′

i
. As R′i = {ri}, PR′

i
= r (because c = 0). We need to show PR∗

i
≤ 2r.

Case 1: k = 1. Without loss of generality, suppose r′1 is assigned to s′1. We claim R∗ contains
at most one request (r′1). Assume that R∗ contains at least two requests and the second
request is ro. As s′2 is at location 0 at time 0, ro would be acceptable to SG by s′2. Hence,
there cannot be such a request ro that starts in period [0,∞). As we have shown that
OPT can accept at most one request (r′1), we get that PR∗

PR′
≤ r

r < 2.
Case 2: k > 1. For all 1 ≤ i ≤ k, we claim that R∗i contains at most two requests (each

server accepts at most one request). Assume that s∗q (q ∈ {1, 2}) accepts at least two
requests. Let ro be the second request (in order of start time) which is assigned to s∗q in
R∗i . We distinguish three sub-cases. Without loss of generality, suppose r′i is assigned to
s′1.

Case 2.1: ṫr′
i
> tr′

i+1
(Fig. 1.a shows an example). If i > 1, the period i, which is the period

[max{ṫr′
i−1
, tr′

i
}, max{ṫr′

i
, tr′

i+1
}) = [max{ṫr′

i−1
, tr′

i
}, ṫr′

i
), has length less than t. If i = 1,

note that the period [tr′1 ,max{ṫr′1 , tr′2}) = [tr′1 , ṫr′1) has length less than t and no request
of R∗1 can start before tr′1 during period 1, [0,max{ṫr′1 , tr′2}). Therefore, each server can
accept at most one request that starts during period i, and hence R∗i contains at most
two requests.

Case 2.2: ṫr′
i
≤ tr′

i+1
and ṫr′

i−1
> tr′

i
(Fig. 1.b shows an example). Observe that s′1 is at pr′

i

at tr′
i
. As the drop-off time of r′i−1 is later than the pick-up time of r′i, r′i−1 must be

assigned to s′2 and we have that s′2 is at ṗr′
i−1

at ṫr′
i−1

. As the first request in R∗i does
not start before ṫr′

i−1
, we have tro ≥ ṫr′i−1

+ t. This means that ro would be acceptable
to s′2. Therefore, SG accepts either ro or another request starting before tro , and that
request becomes r′i+1. Hence, there cannot be such a request ro that starts in period i.

Case 2.3: ṫr′
i
≤ tr′

i+1
and ṫr′

i−1
≤ tr′

i
(Fig. 1.c shows an example). As the drop-off time of

r′i−1 is earlier than the pick-up time of r′i, s′2 is at the drop-off location of the request
rl (where rl denotes the latest request that starts at or before tr′

i
and is assigned to s′2;

MFCS 2018

50:8 Car-Sharing between Two Locations: Online Scheduling with Two Servers

if there is no such request, let rl be a dummy request with ṫrl = 0 and ṗrl = 0) at ṫrl
and ṫrl ≤ ṫr′i−1

≤ tr′
i
. Observe that s′2 does not accept any request which starts during

period [tr′
i
, ṫr′

i
), s′2 does not start to move before tr′

i
for serving the next request, and

hence s′2 is at ṗrl (0 or 1) at tr′
i
. As the first request in R∗i does not start before tr′

i
, we

have tro ≥ tr′i + t. This means that ro would be acceptable to s′2. Therefore, SG accepts
either ro or another request starting before tro , and that request becomes r′i+1. Hence,
there cannot be such a request ro that starts in period i.

As we have shown that R∗i contains at most two requests, we get that PR∗
i
≤ 2r. Since

PR′
i

= r, we have PR∗
i
/PR′

i
≤ 2r/r = 2. The theorem follows. J

I Lemma 4. When 0 < c < r, for all 1 < i ≤ k, one server of SG is at pr′
i
at tr′

i
and the

other server of SG is at 0 or 1 at max{ṫr′
i−1
, tr′

i
}.

Proof. For 1 < i ≤ k, without loss of generality, suppose r′i is assigned to s′1. Observe that
s′1 is at pr′

i
at tr′

i
.

If ṫr′
i−1

> tr′
i
, then r′i−1 must be assigned to s′2, and hence s′2 is at ṗr′

i−1
(0 or 1) at ṫr′

i−1

(= max{ṫr′
i−1
, tr′

i
}).

If ṫr′
i−1
≤ tr′

i
, then s′2 is at 0 or 1 at the drop-off time t′ (t′ ≤ ṫr′

i−1
) of the latest request

which is assigned to s′2 and starts at or before tr′
i
. (If no such request exists, s′2 is at 0 at

t′ = 0.) Suppose rf is the first request that starts at or after tr′
i
and is served by s′2. If rf does

not exist, then s′2 does not move after ṫr′
i−1

, and s′2 is at 0 or 1 at max{ṫr′
i−1
, tr′

i
} (ṫr′

i−1
≤ tr′

i
).

If rf exists and rf is accepted with cost, then trf − ṫr′i ≥ t (ṫr′i ≤ ṫrnf) because SG accepts a
request rj with cost only if the condition trj − ṫrnj ≥ t is satisfied. That means s′2 starts an
empty move at or after ṫr′

i
. If rf exists and rf is accepted without cost, then s′2 starts to

move at or after tr′
i
(trf ≥ tr′i). Therefore s

′
2 is at 0 or 1 at tr′

i
(= max{ṫr′

i−1
, tr′

i
}). J

I Lemma 5. When 0 < c < r, for all 1 ≤ i ≤ k, if r′i is accepted with cost, then one server
of SG is at pr′

i
at tr′

i
and the other server of SG is at ṗr′

i
at tr′

i
.

Proof. For 1 ≤ i ≤ k, without loss of generality, suppose r′i is assigned to s′1. Observe that
s′1 is at pr′

i
at tr′

i
.

If i = 1, then pr′1 = 1 and s′2 is at ṗr′1 (location 0) at time 0. Suppose ro is the first
request which is assigned to s′2. If pro = 0, then s′2 starts to move at tro (≥ tr′1), and hence
s′2 is at 0 at tr′

i
. If pro = 1, then tro ≥ ṫr′1 + t because by definition SG accepts a request rj

with cost only if the condition trj − ṫrnj ≥ t is satisfied. Observe that s′2 starts to move at
tro − t (≥ ṫr′1), and hence s′2 is at 0 at tr′

i
.

If 1 < i ≤ k, s′2 is at 0 or 1 at max{ṫr′
i−1
, tr′

i
} according to Lemma 4. As r′i is accepted with

cost, tr′
i
− ṫr′

i−1
≥ t because SG accepts a request rj with cost only if the condition trj− ṫrnj ≥ t

is satisfied, and hence max{ṫr′
i−1
, tr′

i
} = tr′

i
. We prove this lemma by contradiction. Assume

that s′2 is at pr′
i
at tr′

i
. Note that r′i is acceptable to SG by s′2 without cost, and hence SG

assigns r′i to s′2 because SG always assigns a request to the most economical server (Recall
Algorithm 1). This contradicts our initial assumption that r′i is assigned to s′1. J

I Lemma 6. When 0 < c < r, for all 1 < i < k, if r′i is accepted without cost and r′i+1 is
accepted with cost, then one server of SG is at pr′

i
at tr′

i
, and the other server of SG is at ṗr′

i

at max{ṫr′
i−1
, tr′

i
}.

Proof. For 1 < i < k, without loss of generality, suppose r′i is assigned to s′1. Observe that
s′1 is at pr′

i
at tr′

i
. According to Lemma 4, s′2 is at 0 or 1 at max{ṫr′

i−1
, tr′

i
}. As r′i+1 is

accepted with cost, tr′
i+1
− ṫr′

i
≥ t because SG accepts a request rj with cost only if the

K. Luo, T. Erlebach, and Y. Xu 50:9

condition trj − ṫrnj ≥ t is satisfied. Note that pr′
i+1

= pr′
i
, otherwise r′i+1 is acceptable to SG

by s′1 without cost.
We prove this lemma by contradiction. Assume that s′2 is at pr′

i
at max{ṫr′

i−1
, tr′

i
}.

Suppose rf = r′i+1. Observe that pr′
f

= pr′
i
and tr′

f
≥ ṫr′

i
+ t ≥ max{ṫr′

i−1
, tr′

i
}. From this

it follows that r′f is acceptable to SG by s′2 without cost, and hence SG assigns r′f to s′2
because SG always assigns a request to the most economical server (Recall Algorithm 1).
This contradicts the statement that r′i+1 is accepted with cost. J

I Lemma 7. When 0 < c < r, for all 1 < i < k, if r′i is accepted without cost and r′i+1 is
accepted with cost, then r′i−1 must be accepted without cost.

Proof. For 1 < i < k, without loss of generality, suppose r′i−1 is assigned to s′1. Observe
that s′1 is at pr′

i−1
at tr′

i−1
(and is at ṗr′

i−1
at ṫr′

i−1
). We prove this lemma by contradiction.

Assume r′i−1 is accepted with cost. According to Lemma 5, s′2 is at ṗr′
i−1

at tr′
i−1

. As r′i is
accepted without cost, the pick-up location of r′i is ṗr′i−1

. Suppose rf = r′i+1. Observe that
trf ≥ ṫr′i + t (because rf is accepted with cost) and prf = pr′

i
= ṗr′

i−1
(otherwise, the server

that has served r′i could accept rf without cost).
If r′i is assigned to s′1, then s′2 does not accept any request which starts in period

[max{ṫr′
i−2
, tr′

i−1
}, trf), and hence s′2 is at ṗr′

i−1
in period [max{ṫr′

i−2
, tr′

i−1
}, trf − t). If r′i is

assigned to s′2, then s′1 does not accept any request which starts in period [ṫr′
i−1
, trf), and

hence s′1 is at ṗr′
i−1

in period [ṫr′
i−1
, trf − t). As rf is released and t̃rf = trf − a ≤ trf − t,

server s′q (for a q ∈ {1, 2}) is at ṗr′
i−1

and does not plan to move, hence rf is acceptable to
SG by s′q without cost. From this it follows that rf will be accepted by SG without cost
because SG always assigns a request to the most economical server. This contradicts the
statement that r′i+1 is accepted with cost. J

For simplification of the analysis, we suppose that the OPT servers make an empty
movement only if they do so in order to serve a request ri such that the pick-up location of
ri is the pick-up location of the previous request which is assigned to the same server, or
the pick-up location is 1 if ri is the first request which is assigned to a server s∗q (q ∈ {1, 2}),
and we suppose that for all such requests ri (ri ∈ R∗), the OPT server serving ri makes an
empty movement between tri − t and tri . This simplification does not affect the validity of
R∗, and does not decrease PR∗ .

I Theorem 8. Algorithm SG is 2-competitive for 2S2L if 0 < c < r.

Proof. Assume that SG accepts k (k = |R′|) requests. We partition the time horizon [0,∞)
into k′ (1 ≤ k′ ≤ k) intervals (periods) that can be analyzed independently. We partition
the time horizon based on Algorithm 2, in such a way that all requests in the first period
are accepted with cost (if r′1 is accepted with cost), and exactly one request of each period
(except the first period if r′1 is accepted with cost), the first request of each period, is accepted
without cost. Denote the request number in R′ (in order of starting time) of the first request
of period j (1 ≤ j ≤ k′) by lj . For 1 < j < k′, SG j period is [tr′

lj
, tr′

lj+1
). SG 1 period is

[0, tr′
l2

) and SG k′ period is [tr′
l
k′
,∞) (If k′ = 1, there is only a single period [0,∞)). We

set lk′+1 = k + 1, tr′0 = 0 and tr′
k+1

= ∞. Let R′j (1 ≤ j ≤ k′) denote the set of requests
accepted by SG that start in SG j period. For 1 < j ≤ k′, if tr′

lj−1
= tr′

lj
, let R′j−1 = {r′lj−1

}
and R′j = {r′lj , r

′
lj+1..., r

′
lj+1−1}. Note that there are exactly lj+1− lj (lj+1− lj ≥ 1) requests

in R′j (1 ≤ j ≤ k′), and R′j = {r′lj , r
′
lj+1..., r

′
lj+1−1}.

For all 1 < j ≤ k′, we have the following property: if |R′j | = 1, then r′lj is accepted
without cost; if |R′j | > 1, then r′lj is accepted without cost, the remaining requests in R′j

MFCS 2018

50:10 Car-Sharing between Two Locations: Online Scheduling with Two Servers

Algorithm 2 Partition Rule (PR).
Initialization: k = |R′|, k′ = 1, j = 1, lj = j for all 1 ≤ j ≤ k.

For i = 2 to k
if r′i is accepted without cost then
j = j + 1, lj = i;

k′ = j, lk′+1 = k + 1.

Figure 2 An example of tj .

are accepted with cost. For j = 1, if r′1(= r′l1) is accepted with cost, all requests in R′1
are accepted with cost; if r′1 is accepted without cost, then except r′1 all requests in R′1 are
accepted with cost.

I Definition 9. For 1 < j ≤ k′, tj is defined as follows: tj = tr′
lj

if r′lj−1 is accepted with
cost, r′lj is accepted without cost, ṫr′

lj−1
> tr′

lj
and ṗr′

lj−1
= pr′

lj
(Fig. 2 shows an example).

Otherwise, tj = max{ṫr′
lj−1

, tr′
lj
}. tk′+1 = tr′

k+1
=∞.

For 1 < j ≤ k′, tj+1 = tr′
lj+1

or tj+1 = max{ṫr′
lj+1−1

, tr′
lj+1
}, and tj = tr′

lj
or tj =

max{ṫr′
lj−1

, tr′
lj
}. Because tr′

lj
≤ tr′

lj+1
and ṫr′

lj−1
≤ tr′

lj+1
(if r′lj−1 and r′lj are assigned to

the same server, then ṫr′
lj−1
≤ tr′

lj
; and if r′lj−1 and r′lj are assigned to different servers, then

ṫr′
lj−1
≤ tr′

lj+1
), tj ≤ tj+1 if tj = max{ṫr′

lj−1
, tr′

lj
} and tj+1 = tr′

lj+1
. As tj ≤ max{ṫr′

lj−1
, tr′

lj
}

and tj+1 ≥ tr′
lj+1

, we have that tj ≤ tj+1 always holds. For 1 < j ≤ k′, OPT period j is
defined as [tj , tj+1). OPT period 1 is defined as [0, t2) (If k′ = 1, there is only a single period
[0,∞)). Let R∗j denote the set of requests accepted by OPT that start in OPT period j,
and R∗i = ∅ if tj = tj+1.

For all 1 < j ≤ k′, r′lj starts at time tr′
lj

and the first request of R∗j starts during
the interval [tj , tj+1) where tj = tr′

lj
or tj = max{ṫr′

lj−1
, tr′

lj
} (recall the definition of tj).

Furthermore, r′1 is the first acceptable request in R, and so the first request of R∗1 cannot
start before r′1. Hence, for all 1 ≤ j ≤ k′, the first request in R∗j cannot start before tr′

lj
.

We bound the competitive ratio of SG by analyzing each period independently. As
R′ =

⋃k′

j=1 R
′
j and R∗ =

⋃k′

j=1 R
∗
j , it is clear that PR∗/PR′ ≤ α follows if we can show that

PR∗
j
/PR′

j
≤ α for all 1 ≤ j ≤ k′. For 1 ≤ j ≤ k′, if tj = tj+1, then R∗i = ∅ and hence PR∗

i
= 0.

Otherwise, for 1 ≤ j ≤ k′ we distinguish the following cases in order to bound PR∗
j
/PR′

j
.

Case 1: j = 1. The first request of SG period 1 is r′1. Without loss of generality, suppose r′1
is assigned to s′1.

Case 1.1: r′1 is accepted with cost. Note that all requests in R′j are accepted with cost and
PR′1 = (l2 − l1)(r − c) (if k′ = 1, then PR′ = k(r − c)). Observe that pr′

i
= 1 (1 ≤ i < l2)

and all requests in R′1 are assigned to s′1 by the definition of Algorithm 1. As r′l2−1 is
accepted with cost, one server is at pr′

l2−1
at tr′

l2−1
(and this server is at ṗr′

l2−1
at ṫr′

l2
−1),

K. Luo, T. Erlebach, and Y. Xu 50:11

and the other server is at ṗr′
l2−1

at tr′
l2−1

(by Lemma 5). As r′l2 is accepted without cost,
we have ṗr′

l2−1
= pr′

l2
. If k′ = 1, t2 =∞. If k′ > 1, then t2 = tr′

l2
: if ṫr′

l2−1
> tr′

l2
, t2 = tr′

l2
because pr′

l2
= ṗr′

l2−1
, r′l2−1 is accepted with cost and r′l2 is accepted without cost; if

ṫr′
l2−1
≤ tr′

l2
, t2 = max{ṫr′

l2−1
, tr′

l2
} = tr′

l2
. As s′2 does not accept any request which starts

before tr′
l2

and s′2 would not accept any request with cost which starts in period [tr′
l2
, ṫr′

l2
)

(Recall that Algorithm 1 accepts a request rj with cost only if trj − ṫrnj ≥ t is satisfied.),
s′2 is at 0 in period [0, tr′

l2
]. We claim that R∗j only contains requests which start at 1.

Otherwise, the request is acceptable to SG by s′2 without cost. Assume that R∗j contains
a request ro which start at location 0. As tro ≤ t2 = tr′

l2
, ro is acceptable to SG by s′2

without cost. Therefore, SG accepts either ro or another request starting before tro , and
that request becomes r′l2 . Hence, there cannot be such a request ro in R∗j .
Note that each server of OPT does not accept any request which starts in period [0, tr′1).
For all l1 ≤ i ≤ l2 − 2, we claim that each server of OPT can accept at most one request
which starts during period [tr′

i
, tr′

i+1
) (l1 ≤ i ≤ l2 − 2), or period [tr′

l2−1
, t∗) (if k′ > 1,

t∗ = tr′
l2
; if k′ = 1, t∗ = tr′

k
+ 2t). Assume that s∗q (q ∈ {1, 2}) accepts at least two

requests in one of those periods. Let ro be the second request (in order of start time)
which is assigned to s∗q and starts during period [tr′

i
, tr′

i+1
) (l1 ≤ i ≤ l2 − 2) or period

[tr′
l2−1

, t∗). As the request does not start before tr′
i
(l1 ≤ i ≤ l2−1), we have tro ≥ tr′i +2t.

ro is acceptable to SG with cost. Therefore, SG accepts either ro or another request
starting before tro , and that request becomes r′i+1 (l1 ≤ i < l2). Hence, there cannot be
such a request ro that starts during period [tr′

i
, tr′

i+1
) (l1 ≤ i ≤ l2−2) or period [tr′

l2−1
, t∗).

Therefore OPT can accept at most 2(l2− l1) (= 2(l2− 2− l1 + 1 + 1)) requests that start
during period [tr′1 , t

∗).
When k′ = 1, we claim that OPT does not accept any request which starts in period
[t∗,∞). Without loss of generality we assume that OPT accepts at least one request.
Let ro be the request in R∗1 that starts during period [t∗,∞). As tro ≥ tr′

k
+ 2t. ro is

acceptable to SG. Therefore, SG accepts either ro or another request starting before tro ,
and that request becomes r′k+1. Hence, there cannot be such a request ro that starts in
period [t∗,∞).
As we have shown that R∗j contains at most 2(l2 − l1) requests and the pick-up locations
of them are the same (location 1), we get that PR∗

j
≤ 2(l2 − l1)(r − c). Since PR′

j
=

(l2 − l1)(r − c), we have PR∗
j
/PR′

j
≤ 2(l2 − l1)(r − c)/((l2 − l1)(r − c)) = 2.

Case 1.2: r′1 is accepted without cost. If k = 1, then k′ = 1, s′2 is at 0 in period [0,∞). If
k > 1, we claim that r′2 is also accepted without cost. Assume that r′2 is accepted with
cost, we have tr′2 − ṫr′1 > t because Algorithm 1 accepts a request rj with cost only if
trj − ṫrnj ≥ t is satisfied. If pr′2 = 0, r′2 is acceptable to SG by s′2 without cost; if pr′2 = 1,
r′2 is acceptable to SG by s′1 without cost. Therefore s′2 must be accepted by SG without
cost because by definition (see Algorithm 1) SG always assigns a request to the most
economical server. This contradicts the assumption that r′2 is accepted with cost. Observe
that t2 = max{ṫr′1 , tr′2} (Recall from the definition of t2 that t2 = tr′2 only if r′1 is accepted
with cost), |R′1| = 1 and hence PR′1 = r. As s′2 does not accept any request which starts
before tr′2 and s′2 would not accept any request with cost which starts in period [tr′2 , ṫr′2)
(Recall that Algorithm 1 accepts a request rj with cost only if trj − ṫrnj ≥ t is satisfied.),
s′2 is at 0 in period [0, tr′2].
We claim that R∗1 contains at most two requests (each server serves at most one request).
Assume that s∗q (q ∈ {1, 2}) accepts at least two requests. Let ro be the second request
(in order of start time) which is assigned to s∗q in R∗1. As the first request in R∗1 does not

MFCS 2018

50:12 Car-Sharing between Two Locations: Online Scheduling with Two Servers

start before tr′1 , we have tro ≥ tr′1 + t. If pro = ṗr1 , ro is acceptable to SG by s′1 without
cost; if pro = pr1 , ro is acceptable to SG by s′2 without cost. Hence, there cannot be such
a request in R∗1. Since PR′1 = r, we have PR∗1 ≤ 2r, and hence PR∗1/PR′1 ≤ 2r/r = 2.

Case 2: j > 1 (1 < j ≤ k′). The first request of SG period j is r′lj .Without loss of generality,
suppose r′lj is assigned to s′1. We distinguish the following cases based on |R′j |.

Case 2.1: |R′j | = 1. Note that r′lj is accepted without cost. We distinguish two sub-cases.
(1) ṫr′

lj
> tr′

lj+1
. Because r′lj (= r′lj+1−1) is accepted without cost, tj+1 = max{ṫr′

lj
, tr′

lj+1
} =

ṫr′
lj

(Recall that tj+1 = tr′
lj+1

only if r′lj+1−1 is accepted with cost by the definition
of tj+1). As OPT period j [tj , tj+1) has length less than t (tj = max{ṫr′

lj−1
, tr′

lj
} or

tj = tr′
lj
), each server of OPT can accept at most one request in R∗j , and hence R∗j

contains at most two requests.
(2) ṫr′

lj
≤ tr′

lj+1
(tr′

lj+1
=∞ if j = k′). Note that tj+1 = tr′

lj+1
. There are two sub-cases

based on the position of s′2 at max{ṫr′
lj−1

, tr′
lj
} (recall that by Lemma 4, s′2 is at pr′

lj

or ṗr′
lj

at time max{ṫr′
lj−1

, tr′
lj
}).

The first sub-case is that s′2 is at pr′
lj

at max{ṫr′
lj−1

, tr′
lj
}. We claim that R∗j contains at

most two requests (each server serves at most one request). Assume that s∗q (q ∈ {1, 2})
accepts at least two requests. Let ro be the second request (in order of start time) which is
assigned to s∗q in R∗j . As the requests in R∗j do not start before tr′

lj
, we have tro ≥ tr′lj + t.

If pro = ṗr′
lj
, ro is acceptable to SG by s′1 without cost; if pro = pr′

lj
, ro is acceptable to

SG by s′2 without cost. Therefore, SG accepts either ro or another request starting before
tro , and that request becomes r′lj+1. Hence, there cannot be such a request ro that starts
in OPT period j.
The second sub-case is that s′2 is at ṗr′

lj
at max{ṫr′

lj−1
, tr′

lj
}. Note that tj = max{ṫr′

lj−1
, tr′

lj
}

(Recall from the definition of tj that tj = tr′
lj

only if ṫr′
lj−1

> tr′
lj

and ṗr′
lj−1

= pr′
lj

are
satisfied. From this it follows that r′lj−1 must be assigned to s′2, that means s′2 is at ṗr′

lj−1

(= pr′
lj
) at ṫr′

lj−1
(= max{ṫr′

lj−1
, tr′

lj
}). This contradicts the initial assumption that s′2

is at ṗr′
lj

at max{ṫr′
lj−1

, tr′
lj
}.). We claim that R∗j contains at most two requests (each

server serves at most one request) and the pick-up locations of these two requests are
pr′
lj
. Assume that R∗j contains a request ri which starts at ṗr′

lj
. As the requests in R∗j

cannot start before tj (tj = max{ṫr′
lj−1

, tr′
lj
}), ri is acceptable to s′2 (without cost) as

s′2 is at ṗr′
lj

at max{ṫr′
lj−1

, tr′
lj
}. Hence, there cannot be such a request ri that starts in

OPT period j. Next assume that s∗q (q ∈ {1, 2}) accepts at least two requests. Let ri
and ro be the first and second request (in order of start time) which is assigned to s∗q in
R∗j . As the requests in R∗j do not start before tr′

lj
and the pick-up location of ri and ro

both are pr′
lj
, we have tro ≥ tr′lj + 2t. If pro = ṗr′

lj
, ro is acceptable to SG by s′1 without

cost; if pro = pr′
lj
, ro is acceptable to SG by s′2 with cost. Therefore, SG accepts either

ro or another request starting before tro , and that request becomes r′lj+1
(if it is accepted

without cost) or gets added to R′j (if it is accepted with cost). Hence, there cannot be
such a request ro that starts in OPT period j.
As we have shown that R∗j contains at most two requests, we get that PR∗

j
≤ 2r. Since

PR′
j

= r, we have PR∗
j
/PR′

j
≤ 2r/r = 2.

Case 2.2: |R′j | > 1. Note that r′lj is accepted without cost and r′lj+1 is accepted with cost. We
have that s′2 is at ṗr′

lj
at max{ṫr′

lj−1
, tr′

lj
} by Lemma 6, and that r′lj−1 is accepted without

K. Luo, T. Erlebach, and Y. Xu 50:13

cost by Lemma 7. Hence, tj = max{ṫr′
lj−1

, tr′
lj
} (recall from the definition of tj that

tj = tr′
lj

only if r′lj−1 is accepted with cost). As r′lj+1−1 is accepted with cost, one server
is at pr′

lj+1−1
at tlj+1−1 (and this server is at ṗr′

lj+1−1
at ṫr′

lj+1−1
), and the other server

is at ṗr′
lj+1−1

at tr′
lj+1−1

(Recall Lemma 5). As r′lj+1
is accepted without cost, we have

ṗr′
lj+1−1

= pr′
lj+1

. If ṫr′
lj+1−1

> tr′
lj+1

(1 ≤ j < k′), tj+1 = tr′
lj+1

according to the definition
of ts (1 ≤ s ≤ k′). If ṫr′

lj+1−1
≤ tr′

lj+1
(1 ≤ j < k′), tj+1 = max{ṫr′

lj+1−1
, tr′

lj+1
} = tr′

lj+1
.

Hence, tj+1 = tr′
lj+1

(1 ≤ j < k′). Observe that if j = k′, tj+1 = tr′
lj+1

=∞.
We claim that R∗j only contains requests which start at pr′

lj
. Assume that R∗j contains a

request ri which starts at ṗr′
lj
. As the first request in R∗j cannot start before tj , we have

tri ≥ tj = max{ṫr′
lj−1

, tr′
lj
}. As s′2 is at ṗr′

lj
at max{ṫr′

lj−1
, tr′

lj
} and s′2 does not accept

any request which starts in period [max{ṫr′
lj−1

, tr′
lj
}, tri), and hence ri is acceptable to

SG by s′2 without cost. This contradicts the property of R′j that except r′lj all requests
in R′j are accepted with cost. Hence, there cannot be such a request ri that starts in
OPT period j.
We claim that each server of OPT can accept at most one request which starts in period
[tj , tr′

lj+1
), or period [tr′

i
, tr′

i+1
) (lj+1 ≤ i ≤ lj+1−2), or period [tr′

lj+1−1
, t∗) (if 1 ≤ j < k′,

t∗ = tr′
lj+1

; if j = k′, t∗ = tr′
k

+ 2t). Assume that s∗q (q ∈ {1, 2}) accepts at least two
requests in one of these periods. Let ro be the second request (in order of start time)
which is assigned to s∗q and starts in one of these periods. As the requests in R∗j that
start in one of these periods do not start before the corresponding tr′

i
(lj ≤ i ≤ lj+1 − 1)

and have the same pick-up location pr′
lj
, we have tro ≥ tr′lj + 2t. ro is acceptable to SG

with cost. Therefore, SG accepts either ro or another request starting before tro , that
request becomes r′i+1 (lj ≤ i ≤ lj+1 − 2), or we get a contradiction to r′lj+1−1 being the
last request that is accepted with cost and starts in period [tr′

lj+1−1
, t∗) (i = lj+1 − 1).

Hence, there cannot be such a request ro that starts in period [tj , tr′
lj+1

), or period
[tr′

i
, tr′

i+1
) (lj + 1 ≤ i ≤ lj+1 − 1). Therefore OPT can accept at most 2(lj+1 − lj)

(= 2(lj+1 − 2− (lj + 1) + 1 + 2)) requests that start in period [tr′
lj+1

, t∗).
When j = k′, we claim that OPT does not accept any request which starts in period
[t∗,∞). Without loss of generality we assume that OPT accepts at least one request.
Let ro be the request in R∗j which starts during period [t∗,∞). As tro ≥ tr′

k
+ 2t, ro is

acceptable to SG with cost. Therefore, SG accepts either ro or another request starting
before tro , and that request becomes r′k+1. Hence, there cannot be such a request ro that
starts in period [t∗,∞).
As we have shown that R∗j contains at most 2(lj+1− lj) requests and the pick-up locations
of them are the same (pr′

lj
), we get that PR∗

j
≤ 2r + 2(lj+1 − lj − 1)(r − c). Since

PR′
j

= r + (lj+1 − lj − 1)(r − c), we have PR∗
j
/PR′

j
≤ (2r + 2(lj+1 − lj − 1)(r − c))/(r +

(lj+1 − lj − 1)(r − c)) = 2.
Because PR∗

j
/PR′

j
≤ 2 holds for all 1 ≤ j ≤ k′, we have PR∗/PR′ ≤ 2. This proves the

theorem. J

4 Conclusion

We have studied an on-line problem with two servers and two locations that is motivated
by applications such as car sharing and taxi dispatching. The upper bounds for the 2S2L
problem are all achieved by the smart greedy algorithm. A number of directions for future

MFCS 2018

50:14 Car-Sharing between Two Locations: Online Scheduling with Two Servers

work arise from this work. If there are k servers, does a kind of greedy algorithm still work
well? Furthermore, it would be interesting to extend our results to the case of more than
two locations. It would be interesting to determine how the constraints on the servers affect
the competitive ratio for the general car-sharing problem with k servers and m locations.

References
1 Norbert Ascheuer, Sven Oliver Krumke, and Jörg Rambau. Online dial-a-ride problems:

Minimizing the completion time. In Horst Reichel and Sophie Tison, editors, STACS
2000, 17th Annual Symposium on Theoretical Aspects of Computer Science, Lille, France,
February 2000, Proceedings, volume 1770 of LNCS, pages 639–650. Springer, 2000. doi:
10.1007/3-540-46541-3_53.

2 Gerardo Berbeglia, Jean-François Cordeau, and Gilbert Laporte. Dynamic pickup and
delivery problems. European Journal of Operational Research, 202(1):8–15, 2010. doi:
10.1016/j.ejor.2009.04.024.

3 Antje Bjelde, Yann Disser, Jan Hackfeld, Christoph Hansknecht, Maarten Lipmann, Julie
Meißner, Kevin Schewior, Miriam Schlöter, and Leen Stougie. Tight bounds for online TSP
on the line. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 994–1005. SIAM, 2017. doi:10.1137/1.9781611974782.63.

4 Katerina Böhmová, Yann Disser, Matús Mihalák, and Rastislav Srámek. Scheduling trans-
fers of resources over time: Towards car-sharing with flexible drop-offs. In Evangelos
Kranakis, Gonzalo Navarro, and Edgar Chávez, editors, 12th Latin American Symposium
on Theoretical Informatics (LATIN 2016), volume 9644 of LNCS, pages 220–234. Springer,
2016. doi:10.1007/978-3-662-49529-2_17.

5 Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. Cambridge
University Press, 1998.

6 Ananya Christman, William Forcier, and Aayam Poudel. From theory to practice: max-
imizing revenues for on-line dial-a-ride. J. Comb. Optim., 35(2):512–529, 2018. doi:
10.1007/s10878-017-0188-z.

7 Sven Oliver Krumke, Willem de Paepe, Diana Poensgen, Maarten Lipmann, Alberto
Marchetti-Spaccamela, and Leen Stougie. On minimizing the maximum flow time in the
online dial-a-ride problem. In Thomas Erlebach and Giuseppe Persiano, editors, Approx-
imation and Online Algorithms, Third International Workshop, WAOA 2005, Palma de
Mallorca, Spain, October 6-7, 2005, Revised Papers, volume 3879 of LNCS, pages 258–269.
Springer, 2006. doi:10.1007/11671411_20.

8 Kelin Luo, Thomas Erlebach, and Yinfeng Xu. Car-sharing between two locations: On-
line scheduling with flexible advance bookings. In Proceedings of the 24th International
Computing and Combinatorics Conference, COCOON 2018, LNCS. Springer, 2018. To
appear.

9 Fanglei Yi and Lei Tian. On the online dial-a-ride problem with time-windows. In Nimrod
Megiddo, Yinfeng Xu, and Binhai Zhu, editors, Algorithmic Applications in Management,
First International Conference, AAIM 2005, Xian, China, June 22-25, 2005, Proceedings,
volume 3521 of LNCS, pages 85–94. Springer, 2005. doi:10.1007/11496199_11.

http://dx.doi.org/10.1007/3-540-46541-3_53
http://dx.doi.org/10.1007/3-540-46541-3_53
http://dx.doi.org/10.1016/j.ejor.2009.04.024
http://dx.doi.org/10.1016/j.ejor.2009.04.024
http://dx.doi.org/10.1137/1.9781611974782.63
http://dx.doi.org/10.1007/978-3-662-49529-2_17
http://dx.doi.org/10.1007/s10878-017-0188-z
http://dx.doi.org/10.1007/s10878-017-0188-z
http://dx.doi.org/10.1007/11671411_20
http://dx.doi.org/10.1007/11496199_11

The Robustness of LWPP and WPP, with an
Application to Graph Reconstruction
Edith Hemaspaandra
Rochester Institute of Technology, Rochester, NY, USA

Lane A. Hemaspaandra
University of Rochester, Rochester, NY, USA

Holger Spakowski
University of Cape Town, Rondebosch, South Africa

Osamu Watanabe
Tokyo Institute of Technology, Tokyo, Japan

Abstract
We show that the counting class LWPP [8] remains unchanged even if one allows a polynomial
number of gap values rather than one. On the other hand, we show that it is impossible to
improve this from polynomially many gap values to a superpolynomial number of gap values by
relativizable proof techniques.

The first of these results implies that the Legitimate Deck Problem (from the study of graph
reconstruction) is in LWPP (and thus low for PP, i.e., PPLegitimate Deck = PP) if the weakened
version of the Reconstruction Conjecture holds in which the number of nonisomorphic preimages
is assumed merely to be polynomially bounded. This strengthens the 1992 result of Köbler,
Schöning, and Torán [15] that the Legitimate Deck Problem is in LWPP if the Reconstruction
Conjecture holds, and provides strengthened evidence that the Legitimate Deck Problem is not
NP-hard.

We additionally show on the one hand that our main LWPP robustness result also holds
for WPP, and also holds even when one allows both the rejection- and acceptance- gap-value
targets to simultaneously be polynomial-sized lists; yet on the other hand, we show that for the
#P-based analog of LWPP the behavior much differs in that, in some relativized worlds, even
two target values already yield a richer class than one value does.

2012 ACM Subject Classification Theory of computation → Complexity classes

Keywords and phrases structural complexity theory, robustness of counting classes, the legiti-
mate deck problem, PP-lowness, the Reconstruction Conjecture

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.51

Related Version A full version of the paper can be found at [12], https://arxiv.org/abs/
1711.01250v2.

1 Introduction

Nothing is more natural than wanting to better understand an object by knowing what
it can and cannot do. Whether wondering how fast a (rental?) car can go in reverse or
wondering if NPNP can without loss of generality be assumed to ask at most one question per
nondeterministic path (as it indeed can, as is implicit in the quantifier characterization [27, 30]
of NPNP), we both in life and as theoreticians want to find how robust things are.

© Edith Hemaspaandra, Lane A. Hemaspaandra, Holger Spakowski, and Osamu Watanabe;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 51; pp. 51:1–51:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.51
https://arxiv.org/abs/1711.01250v2
https://arxiv.org/abs/1711.01250v2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

51:2 Robustness of LWPP and WPP

We are often particularly happy when a class proves to be quite robust under definitional
perturbations. Such robustness on one hand suggests that perhaps there is something broadly
natural about the class, and on the other hand such robustness often makes it easier to put
the class to use.

This paper shows that the counting classes LWPP and WPP, defined in 1994 in the
seminal work of Fenner, Fortnow, and Kurtz [8] on gap-based counting classes, are quite
robust. Even though their definitions are in terms of having the gap function (the difference
between the number of accepting and rejecting paths of a machine) hit a single target value,
we prove (in Section 3) that one can allow a list of up to polynomially many target values
without altering the descriptive richness of the class, i.e., without changing the class.

We then apply this to the question of whether the Legitimate Deck Problem is in LWPP.
The Legitimate Deck Problem (a formal definition will be given in Section 4) is the decision

problem of determining whether, given a multiset of (unlabeled) graphs, there exists a graph
G such that that multiset is precisely (give or take isomorphisms) the multiset of one-node-
deleted subgraphs of G (a.k.a. the deck of G) [17]. The Reconstruction Conjecture [13, 28]
– which in the wake of the resolution of the Four-Color Conjecture was declared by the
editorial board of the Journal of Graph Theory to be the foremost open problem in graph
theory [7] – states that every graph with three or more nodes is uniquely determined
(give or take isomorphisms) by its multiset of one-node-deleted subgraphs. The Legitimate
Deck Problem was defined in 1978 by Nash-Williams [22], in his paper that framed the
algorithmic/complexity issues related to reconstructing graphs – such as telling whether a
given deck is legitimate (i.e., is the deck of some graph).

Our application of our LWPP robustness result to the question of whether the Legitimate
Deck Problem is in LWPP is the following. The strongest previous evidence of the simplicity
of the Legitimate Deck Problem is the 1992 result of Köbler, Schöning, and Torán [15] that
the Legitimate Deck Problem is in LWPP (and thus is PP-low, i.e., PPLegitimate Deck = PP)
if the Reconstruction Conjecture (i.e., that each deck whose elements all have at least two
nodes has at most one preimage, give or take isomorphisms) holds. Using this paper’s main
robustness result as a tool, Section 4 proves that the Legitimate Deck Problem is in LWPP
(and thus is PP-low) if a weakened version of the Reconstruction Conjecture holds, namely,
that each deck has at most a polynomial number of nonisomorphic preimages.

This weakened version is not known to be equivalent to the Reconstruction Conjecture
itself. And so our result for the first time gives a path to proving that the Legitimate Deck
Problem is PP-low that does not require one to, on the way, resolve the foremost open
problem in graph theory [7].

We started this section by noting that it is natural to want to know both flexibilities
and limitations of classes. Our main result is about flexibility: going from one target
gap to instead a polynomial number. But are we leaving money on the table? Could we
extend our result to slightly superpolynomial numbers of target gaps, or even to exponential
numbers of target gaps? In Section 5 we note that if the robustness of LWPP were to
hold up to exponentially many target gaps, then NP would be in LWPP and so would be
PP-low (i.e., PPNP = NP); yet NP is widely suspected not to be PP-low. We also, by
encoding nondeterministic oracle Turing machines by low-degree multivariate polynomials
so as to capture the gap functions of those machines, show an oracle relative to which
robustness fails for all superpolynomial numbers of target gaps; thus, no extension beyond
this paper’s polynomial-number-of-target-gaps robustness result for LWPP can be proven by
a relativizable proof. And for the #P-based analogue of LWPP, in Section 6 we show that
even allowing two target values yields, in some relativized worlds, a richer class than one

E. Hemaspaandra, L. A. Hemaspaandra, H. Spakowski, and O. Watanabe 51:3

target value. We also (in the final part of Section 3) extend our main result to show that
the simultaneous expansion to polynomial-sized lists of both the acceptance and rejection
target-gap lists still, for LWPP and WPP, yields the classes LWPP and WPP.

To summarize: In this paper, we prove that LWPP and WPP are robust enough that they
remain unchanged when their single target gap is allowed to be expanded to a polynomial-sized
list; we apply this new robustness of LWPP to show that the PP-lowness of the Legitimate
Deck Problem follows from a weaker hypothesis than was previously known; we show that
our polynomial robustness of LWPP is optimal with respect to relativizable proofs; and we
prove a number of related results on limitations and extensions.

2 Preliminaries

We first present the definitions of many of the counting classes that we will be speaking of,
taking the definitions from the seminal paper of Fenner, Fortnow, and Kurtz [8].

I Definition 2.1 ([8]).
1. For each nondeterministic polynomial-time Turing machine N , the function accN : Σ∗ → N

is defined such that for every x ∈ Σ∗, accN (x) equals the number of accepting computation
paths of N on input x.

2. For each nondeterministic polynomial-time Turing machine N , the function rejN : Σ∗ → N
is defined such that for every x ∈ Σ∗, rejN (x) equals the number of rejecting computation
paths of N on input x.

3. For each nondeterministic polynomial-time Turing machine N , the function gapN : Σ∗ →
Z is defined such that for every x ∈ Σ∗,

gapN (x) = accN (x)− rejN (x).

I Definition 2.2 ([8]).

GapP = {gapN | N is a polynomial-time nondeterministic Turing machine}.

I Definition 2.3 ([23, 8]). SPP is the class of all sets A such that there exists a GapP
function g such that for all x ∈ Σ∗,

x ∈ A =⇒ g(x) = 1
x /∈ A =⇒ g(x) = 0.

The following class, WPP, is potentially larger than SPP. Instead of the “target value” 1
for the case x ∈ A, we allow a target value f(x), where f may be any polynomial-time
computable function whose image does not contain 0. FP denotes the class of polynomial-time
computable functions.

I Definition 2.4 ([8]). WPP is the class of all sets A such that there exists a GapP function
g and a function f ∈ FP that maps from Σ∗ to Z− {0} such that for all x ∈ Σ∗,

x ∈ A =⇒ g(x) = f(x)
x /∈ A =⇒ g(x) = 0.

The class LWPP is the same as WPP except that the “target function” f may depend
on only the length of the input.

MFCS 2018

51:4 Robustness of LWPP and WPP

I Definition 2.5 ([8]). LWPP is the class of all sets A such that there exists a GapP function
g and a function f ∈ FP that maps from 0∗ to Z− {0} such that for all x ∈ Σ∗,

x ∈ A =⇒ g(x) = f(0|x|)
x /∈ A =⇒ g(x) = 0.

Here, as usual, for any x ∈ Σ∗, |x| denotes the length of x, and for any n ∈ N, 0n is the
string consisting of exactly n zeroes.

We now generalize the definition of LWPP to the case of having the target of the GapP
function be, for members of the set, not a single value but a collection of values.

One might expect us to formalize this by simply having the polynomial-time computable
“what is the target” function output a list of the nonzero-integer targets. That would work
fine and be equivalent to what we are about to do, as long as we are dealing with lists having
at most a polynomial number of elements. However, to be able to speak of even longer lists
– as will be important in our negative results offsetting our main result – we use an indexing
approach, as follows.

I Definition 2.6. Let r be any function mapping from N to N. Then the class r-LWPP is
the class of all sets A such that there exists a GapP function g and a function f ∈ FP that
maps to Z− {0} such that for each x ∈ Σ∗,

x ∈ A =⇒ there exists i ∈ {1, 2, . . . , r(|x|)} such that g(x) = f(〈0|x|, i〉)
x /∈ A =⇒ g(x) = 0.

The following class, Poly-LWPP, will be central to this paper: Our main result is that
this class in fact equals LWPP. The “+ c” in Definition 2.7 may seem strange at first. But
without it we would have a boundary-case pathology at n = 0, namely, the class could not
contain any set that contains the empty string.1

I Definition 2.7.

Poly-LWPP =
⋃
c∈N+

(nc + c)-LWPP.

It is easy to see that 1-LWPP = LWPP, and that, of course, more flexibility as to targets
never removes sets from the class, i.e., speaking loosely for the moment as to notation (and the
log case will not be defined or used again in this paper, but it is clear from context here what we
mean by it; the exponential case’s definition can be found in the full version of the paper [12]),
1-LWPP ⊆ 2-LWPP ⊆ 3-LWPP ⊆ · · · ⊆ Log-LWPP ⊆ Poly-LWPP ⊆ Exp-LWPP. As
mentioned above, in this paper we will prove that the first five of these “⊆”s are in fact all
equalities. We will also prove that the sixth “⊆” cannot be an equality unless NP is PP-low.

We now show that for every function r, r-LWPP is contained in the co-class of the
well-known counting class C=P.

1 The “+ c” in Definition 2.7 also, on its surface, would seem to make a difference at length 1, by allowing
lists of size greater than one; however, one could work around that issue. In contrast, the exclusion of
the empty string would not be avoidable if our class of polynomials were to be a class – such as nc – such
that all of its members evaluate to 0 at n = 0. In any case, our use of nc + c avoids any special worries
at lengths 0 and 1. And since for every polynomial p there is a c such that (∀n ∈ N)[p(n) ≤ nc + c],
using polynomials just of the form nc + c is in fact not a restriction.

E. Hemaspaandra, L. A. Hemaspaandra, H. Spakowski, and O. Watanabe 51:5

I Definition 2.8 ([25, 29]). C=P is the class of all sets A such that there is a nondeterministic
polynomial-time Turing machine N and a function f ∈ FP such that for each x ∈ Σ∗,

x ∈ A⇐⇒ accN (x) = f(x).

More convenient for us is the following characterization of C=P using GapP functions.

I Theorem 2.9 ([8]). For each A ⊆ Σ∗, A ∈ C=P if and only if there exists a function
g ∈ GapP such that for all x ∈ Σ∗,

x ∈ A⇐⇒ g(x) = 0.

We thus certainly have the following, which holds simply by taking the GapP function g
required in Theorem 2.9 to be the same as the function g in Definition 2.6.

I Theorem 2.10. For each function r : N→ N, r-LWPP ⊆ coC=P.

3 Main Result: LWPP Stays the Same If for Accepted Inputs We
Allow Polynomially Many Gap Values Instead of One

We now state our main result: LWPP altered to allow even a polynomial number of target
gap values is still LWPP (i.e., with just one target gap value).

I Theorem 3.1. Poly-LWPP = LWPP.

For the proof, we need the following closure properties shown by Fenner, Fortnow, and
Kurtz [8].2 For function classes F1 and F2, F1 ◦ F2 = {f1 ◦ f2 | f1 ∈ F1 ∧ f2 ∈ F2}, where ◦
denotes composition.

I Closure Property 3.2 ([8]). GapP ◦ FP = GapP and FP ⊆ GapP.

I Closure Property 3.3 ([8]). If g ∈ GapP then −g ∈ GapP.

I Closure Property 3.4 ([8]). If g ∈ GapP and q is a polynomial, then the function

h(x) =
∏

0≤i≤q(|x|)

g(〈x, i〉)

is in GapP.

I Closure Property 3.5 ([8]). GapP is closed under addition, subtraction, and multiplication.

Proof of Theorem 3.1. As mentioned previously, it is easy to see that LWPP ⊆ Poly-LWPP.
To show Poly-LWPP ⊆ LWPP, let A be a set in Poly-LWPP defined by g ∈ GapP,

f ∈ FP, and polynomial r(n) = nc + c according to Definitions 2.6 and 2.7.
Let h1 be a function such that for all x ∈ Σ∗ and i ∈ N+,

h1(〈x, i〉) = f(〈0|x|, i〉)− g(x).

2 We mention in passing that, regarding Closure Property 3.4, if the polynomial q were allowed to have
coefficients that are uncomputable – or that are extremely expensive to compute prefixes of the values
of – real numbers, that claimed closure property might fail; we here are, as is typical in such settings,
tacitly assuming that the polynomials have rational coefficients.

MFCS 2018

51:6 Robustness of LWPP and WPP

We have h1 ∈ GapP since f ∈ FP ⊆ GapP, g ∈ GapP, and GapP is closed under subtrac-
tion [8]. We define h2 such that for all x ∈ Σ∗,

h2(x) =
∏

1≤i≤r(|x|)

h1(〈x, i〉).

By Closure Property 3.4, h2 ∈ GapP. Note that for all x ∈ Σ∗,

h2(x) =
∏

1≤i≤r(|x|)

(
f(〈0|x|, i〉)− g(x)

)
.

It follows that for every x ∈ Σ∗,

h2(x) =

0 if there exists i ∈ {1, 2, . . . , r(|x|)}

such that g(x) = f(〈0|x|, i〉)∏
1≤i≤r(|x|) f(〈0|x|, i〉) if g(x) = 0.

(1)

Now we define the function ĝ such that for all x ∈ Σ∗,

ĝ(x) = h2(x)−
∏

1≤i≤r(|x|)

f(〈0|x|, i〉).

Using the closure properties, it is easy to see that ĝ ∈ GapP.
Note that by Eqn. (1), we have that for all x ∈ Σ∗,

ĝ(x) =

−
∏

1≤i≤r(|x|) f(〈0|x|, i〉) if there exists i ∈ {1, 2, . . . , r(|x|)}
such that g(x) = f(〈0|x|, i〉)

0 if g(x) = 0.
(2)

Let f̂ be a function such that for all ` ∈ N,

f̂(0`) = −
∏

1≤i≤r(`)

f(〈0`, i〉).

It is easy to see that f̂ ∈ FP. Keeping in mind Eqn. (2), it follows from the above that for
every x ∈ Σ∗,

ĝ(x) =
{
f̂(0|x|) if x ∈ A
0 otherwise.

Since ĝ ∈ GapP and f̂ ∈ FP, this implies that A ∈ LWPP. J

A theorem analogous to Theorem 3.1 also holds for the corresponding class that allows
the target values to depend on the actual input instead on only the length of the input.

I Definition 3.6.

Poly-WPP =
⋃
c∈N+

(nc + c)-WPP.

I Theorem 3.7. Poly-WPP = WPP.

E. Hemaspaandra, L. A. Hemaspaandra, H. Spakowski, and O. Watanabe 51:7

The proof is almost exactly the same as the proof of Theorem 3.1, simply taking into account
the fact that for WPP the “gap” function can vary even among inputs of the same length.

We remark that the robustness results stated in Theorems 3.1 and 3.7 do not seem to in
any obvious way follow as corollaries to the closure of LWPP under polynomial-time Turing
reductions [8] or of WPP under polynomial-time truth-table reductions [26].

Let us now see whether we can extend Theorems 3.1 and 3.7. Suppose we not only allow
the target-gap set for acceptance to have polynomially many values, but in addition allow the
target-gap set for rejection to have polynomially many values. (In contrast, both LWPP and
r-LWPP allow rejection only when the gap’s value is 0). Is LWPP so robust that even that
class is no larger than LWPP? We will now build on our main result to give the answer “yes”
to that question, thus extending our main result to this more symmetric case for LWPP and
for WPP.

To this end, let us define (rA, rR)-LWPP as follows. (One of course can in the clear,
analogous way define a similarly loosened version of WPP, (rA, rR)-WPP.)

IDefinition 3.8. Let rA and rR be any functions mapping from N to N. Then (rA, rR)-LWPP
is the class of all sets B such that there exists a GapP function g and functions – each
mapping to Z – fA ∈ FP and fR ∈ FP such that both of the following hold:
1. For each j ∈ N, Aj ∩Rj = ∅, where

Aj = {n | (∃i ∈ {1, 2, . . . , rA(j)})[fA(〈0j , i〉) = n]}

and

Rj = {n | (∃i ∈ {1, 2, . . . , rR(j)})[fR(〈0j , i〉) = n]}.

2. For each x ∈ Σ∗,

x ∈ B =⇒ g(x) ∈ A|x|
x 6∈ B =⇒ g(x) ∈ R|x|.

It is not hard to see, via shifting gaps with dummy paths, that the class (r, 1)-LWPP equals
r-LWPP. However, what can be shown more generally about the classes (rA, rR)-LWPP? For
example, for which functions r1,A, r1,R, r2,A, and r2,A does it hold that (r1,A, r1,R)-LWPP ⊆
(r2,A, r2,R)-LWPP? (There are some literature notions that, in different ways, have at least
a somewhat similar flavor to our notion, namely, defining classes by being more flexible
regarding acceptance types. In particular, the counting classes CPS of Cai et al. [4] and
the “C-class” framework of Bovet, Crescenzi, and Silvestri [3] have such a flavor. But in
contrast with those, our classes here are ones whose definitions are centered on the notion
of gaps.) We do not here undertake that general study, but instead resolve what seems the
most compelling question, namely, we prove that (Poly,Poly)-LWPP = LWPP.

I Definition 3.9. (Poly,Poly)-LWPP =
⋃
c∈N+ (nc + c, nc + c)-LWPP.

I Theorem 3.10. (Poly,Poly)-LWPP = Poly-LWPP.

The proof of Theorem 3.10 can be found in the full version of the paper [12]. Together with
Theorem 3.1, we get the following corollary.

I Corollary 3.11. (Poly,Poly)-LWPP = LWPP.

An analogous statement can also be shown for the analogously defined class (Poly,Poly)-
WPP:

I Theorem 3.12. (Poly,Poly)-WPP = WPP.

MFCS 2018

51:8 Robustness of LWPP and WPP

4 Applying the Main Result to Graph Reconstruction

I Definition 4.1. Let 〈G1, G2, . . . , Gn〉 be a sequence of graphs and G = (V,E) a graph
with V = {1, 2, . . . , n}. Suppose that there is a permutation π ∈ Sn such that for each
k ∈ {1, 2, . . . , n}, the graph Gπ(k) is isomorphic to the graph (V − {k}, E − {{k, `} : ` ∈ V })
obtained by deleting vertex k from G. Then 〈G1, G2, . . . , Gn〉 is called a deck of G and G is
called a preimage of the sequence 〈G1, G2, . . . , Gn〉.

A sequence of graphs 〈G1, G2, . . . , Gn〉 is called a legitimate deck if there exists a graph
G that is a preimage of 〈G1, G2, . . . , Gn〉.

The Reconstruction Conjecture (see, e.g., the surveys [2, 21, 1] and the book [18]) says
that each legitimate deck consisting of graphs with at least two vertices has exactly one
preimage up to isomorphism. This conjecture is a very prominent conjecture in graph theory
– as mentioned in Section 1 it is perhaps the most important conjecture in that area – and
has been studied for many decades.

Nash-Williams [22], Mansfield [20], Kratsch and Hemachandra [17], and Hemaspaandra
et al. [11] introduced various decision problems related to the Reconstruction Conjecture, as
part of a stream of work studying the algorithmic and complexity issues of reconstruction.
We here are interested mainly in the Legitimate Deck Problem, which is defined as the
following decision problem.

Legitimate Deck (a.k.a. the Legitimate Deck Problem) [20]: Given a sequence of graphs
〈G1, G2, . . . , Gn〉, is 〈G1, G2, . . . , Gn〉 a legitimate deck?

Mansfield [20] showed that the Graph Isomorphism Problem, GI (given two graphs G1
and G2, are they isomorphic?), is polynomial-time many-one reducible to the Legitimate
Deck Problem. However, to this day it remains open whether there is a polynomial-time
many-one reduction from the Legitimate Deck Problem to GI.

So how hard is the Legitimate Deck Problem? It is easy to see that the Legitimate
Deck Problem is in NP. In the following, we will see that there is some evidence that the
Legitimate Deck Problem is not NP-hard, and we will improve that evidence.

Let us define the following function problem.

Preimage Counting [16, 17]: Given a sequence of graphs 〈G1, G2, . . . , Gn〉, compute
the number PCount(〈G1, G2, . . . , Gn〉) of all nonisomorphic preimages for the sequence
〈G1, G2, . . . , Gn〉.

Köbler, Schöning, and Torán [15] showed the following theorem.

I Theorem 4.2 ([15]). There is a function h : 0∗ → N− {0} in FP such that the function
that maps every sequence 〈G1, G2, . . . , Gn〉 to h(0n) times the number of nonisomorphic
preimages, i.e.,

〈G1, G2, . . . , Gn〉 7→ h(0n) · PCount(〈G1, G2, . . . , Gn〉)

is in GapP.

Theorem 4.2 has the following corollary.

I Corollary 4.3 ([15]). If the Reconstruction Conjecture holds, then the Legitimate Deck
Problem is in LWPP.

E. Hemaspaandra, L. A. Hemaspaandra, H. Spakowski, and O. Watanabe 51:9

Since all LWPP sets are PP-low, that immediately gives some evidence that the Legitimate
Deck Problem is not NP-hard.

I Corollary 4.4. If the Reconstruction Conjecture holds, then the Legitimate Deck Problem
is not NP-hard (or even NP-Turing-hard) unless NP is PP-low.

Unfortunately, we do not know whether the Reconstruction Conjecture holds. However,
perhaps we can prove the membership of the Legitimate Deck Problem in LWPP under a
weaker assumption than the Reconstruction Conjecture, for instance, what if the number of
nonisomorphic preimages is not always 0 or 1 (as holds under the Reconstruction Conjecture),
but rather is merely relatively small, e.g., some constant or some polynomial in the number
of vertices (as must hold for each graph class having bounded minimum degree)? We will
now use the results of the previous section to prove that this indeed is the case.

I Conjecture 4.5 (q-Reconstruction Conjecture). For each legitimate deck there exist at most
q(n) nonisomorphic preimages, where n is the number of graphs in the deck.

For any function r, we now define a complexity class r-L̂WPP. This class may not seem
very natural, but we will see that it is very-well suited to helping us classify the problem
Legitimate Deck. In some sense, it is a tool that we will use in our proof, and then will
discard by noting that it in fact turns out to be a disguised version of r-LWPP.

I Definition 4.6. Let r be any function mapping from N to N. Then the class r-L̂WPP is
the class of all sets A such that there exists a GapP function g, and a function f ∈ FP that
maps from 0∗ to Z− {0}, such that for each x ∈ Σ∗,

x ∈ A =⇒ there exists i ∈ {1, 2, . . . , r(|x|)} such that g(x) = i · f(0|x|)
x /∈ A =⇒ g(x) = 0.

I Theorem 4.7. Let q be any nondecreasing function from N to N. Then the following holds.
If the q-Reconstruction Conjecture holds, then the Legitimate Deck Problem is in q-L̂WPP.

Proof. Suppose that the q-Reconstruction Conjecture holds. Let 〈G1, G2, . . . , Gn〉 be an
input to the Legitimate Deck Problem. By our assumption, we have that

〈G1, G2, . . . , Gn〉 ∈ Legitimate Deck =⇒ PCount(〈G1, G2, . . . , Gn〉) ∈ {1, 2, . . . , q(n)},
and

〈G1, G2, . . . , Gn〉 /∈ Legitimate Deck =⇒ PCount(〈G1, G2, . . . , Gn〉) = 0.

Let h ∈ FP be the function discussed in Theorem 4.2. Then the function g defined such that
for every sequence 〈G1, G2, . . . , Gn〉,

g(〈G1, G2, . . . , Gn〉) = h(0n) · PCount(〈G1, G2, . . . , Gn〉)

is in GapP. It follows that

〈G1, G2, . . . , Gn〉 ∈ Legitimate Deck =⇒ g(〈G1, G2, . . . , Gn〉) = h(0n) · i for some
i ∈ {1, 2, . . . , q(n)}, and

〈G1, G2, . . . , Gn〉 /∈ Legitimate Deck =⇒ g(〈G1, G2, . . . , Gn〉) = 0.

This almost directly implies that Legitimate Deck ∈ q-L̂WPP. However, note that to satisfy
Definition 4.6, function h must be a function that depends only on the length of the input

MFCS 2018

51:10 Robustness of LWPP and WPP

〈G1, G2, . . . , Gn〉. The problem here is that (depending on how exactly we decide to encode
the graphs G1, G2, . . . , Gn in the input 〈G1, G2, . . . , Gn〉) even the value n (the number of
graphs in the deck) may depend on the actual input 〈G1, G2, . . . , Gn〉 and not only on the
length of the input 〈G1, G2, . . . , Gn〉.

Fortunately, there is a way to get around this problem. From the length of the input, we
get at least an upper bound for n since we can certainly assume that n ≤ |〈G1, G2, . . . , Gn〉|.
Define a function ĥ such that for each m ∈ N, ĥ(0m) is the product of all “h-values” up to
length m. That is, define function ĥ such that for all m ∈ N,

ĥ(0m) =
∏

0≤i≤m
h(0i).

Define function h′ such that for all inputs 〈G1, G2, . . . , Gn〉,

h′(〈G1, G2, . . . , Gn〉) =
∏

0≤i≤|〈G1,G2,...,Gn〉| ∧ i6=n

h(0i).

Now we can see that for all inputs 〈G1, G2, . . . , Gn〉,

g(〈G1, G2, . . . , Gn〉) · h′(〈G1, G2, . . . , Gn〉)

=

0 if 〈G1, G2, . . . , Gn〉 /∈

Legitimate Deck

i · ĥ(0|〈G1,G2,...,Gn〉|) for some i ∈ {1, 2, . . . , q(n)} if 〈G1, G2, . . . , Gn〉 ∈
Legitimate Deck.

(3)

Note that ĥ, h′ ∈ FP and g ∈ GapP. By Closure Properties 3.2 and 3.5, the function x 7→
g(x) ·h′(x) is in GapP. Finally, note that since q is nondecreasing and n ≤ |〈G1, G2, . . . , Gn〉|,
we have that q(n) ≤ q(|〈G1, G2, . . . , Gn〉|) in Eqn. (3). Thus by Definition 4.6 – with the
GapP function g there being our g(x) · h′(x) and the function f there being our ĥ – we have
that Legitimate Deck ∈ q-L̂WPP. J

We want to show that if there exists a polynomial q such that the q-Reconstruction
Conjecture holds, then Legitimate Deck is in LWPP. To this end, we need the following
inclusion.

I Theorem 4.8. For each function r : N→ N, r-L̂WPP ⊆ r-LWPP.

Proof. Let A be a set in r-L̂WPP via f1 ∈ FP and g ∈ GapP. Let f2 ∈ FP be the function
defined such that for every n, i ∈ N+, f2(〈0n, i〉) = i · f1(0n). Then A is in r-LWPP via
f2 ∈ FP and g ∈ GapP. J

I Corollary 4.9. If the q-Reconstruction Conjecture holds for some polynomial q, then the
Legitimate Deck Problem is in LWPP.

Proof. Suppose the q-Reconstruction Conjecture holds for nondecreasing polynomial q. (If
q is not nondecreasing but the q-Reconstruction Conjecture holds, then obviously we can
replace q with a nondecreasing polynomial q′ that on each input n is greater than or equal
to q(n) and the q′-Reconstruction Conjecture will hold. So we may w.l.o.g. take it that q
is nondecreasing.) By Theorems 4.7 and 4.8, Legitimate Deck ∈ q-L̂WPP ⊆ q-LWPP and
hence Legitimate Deck ∈ Poly-LWPP. With Theorem 3.1, it follows that Legitimate Deck ∈
LWPP. J

E. Hemaspaandra, L. A. Hemaspaandra, H. Spakowski, and O. Watanabe 51:11

This gives us our new, more flexible – though still conditional – evidence that the
Legitimate Deck Problem is not NP-hard.

I Corollary 4.10. If the q-Reconstruction Conjecture holds for some polynomial q, then the
Legitimate Deck Problem is not NP-hard (or even NP-Turing-hard) unless NP is PP-low.

I Definition 4.11 ([17]). Let H be any class of graphs. Then the Legitimate Deck Problem
restricted to H consists of all sequences of graphs 〈G1, G2, . . . , Gn〉 such that 〈G1, G2, . . . , Gn〉
is a legitimate deck and for each i ∈ {1, 2, . . . , n}, Gi is in H.

Note that the above definition is so flexible that it allows even the case where the preimage(s)
may not be in H.

I Theorem 4.12. Let H be any P-recognizable class of graphs such that decks consisting
only of graphs in H have a number of nonisomorphic preimages that is bounded polynomially
in the number of graphs in the deck. Then the Legitimate Deck Problem restricted to H is in
LWPP.

Proof. Let H be any P-recognizable class of graphs and q a nondecreasing polynomial such
that decks consisting only of graphs in H have a number of nonisomorphic preimages that is
bounded by q(n), where n is the number of graphs in the deck.

First, we show that the Legitimate Deck Problem restricted to H is in q-L̂WPP. Let
〈G1, G2, . . . , Gn〉 be an input to the Legitimate Deck Problem. Check if for every i ∈
{1, 2, . . . , n}, Gi is in H. If this is not the case then reject in the sense of q-L̂WPP, i.e.,
produce a gap of zero. Otherwise, the deck 〈G1, G2, . . . , Gn〉 has at most q(n) preimages,
i.e., PCount(〈G1, G2, . . . , Gn〉 ≤ q(n). Proceed as in the proof of Theorem 4.7.

Since by Theorems 4.8 and 3.1, q-L̂WPP ⊆ q-LWPP ⊆ LWPP, it follows that the
Legitimate Deck Problem restricted to H is in LWPP. J

As usual, for each graph G, δ(G) denotes the degree of a minimum-degree vertex of G.

I Theorem 4.13. For each k ∈ N+, let

Hk = {G |G is a graph such that δ(G) ≤ k}.

Then the Legitimate Deck Problem restricted to Hk is in LWPP.

Proof. In the proof of their Theorem 6.1, Kratsch and Hemaspaandra [17] showed that for
each class of graphs with bounded minimum degree, the number of nonisomorphic preimages
is polynomially bounded. Now the theorem follows from Theorem 4.12. J

It is interesting to note that for each of the Hk classes GIHk
≡pm GI trivially holds (for

example, via adding to each of the two graphs being tested for isomorphism an isolated node),
notwithstanding the fact that intersection with Hk pulls the Legitimate Deck Problem’s
complexity into LWPP.

In two of this section’s corollaries we used the fact that all LWPP sets are PP-low.
We mention that since all LWPP set are also C=P-low [15, 8], the altered versions of
Corollaries 4.4 and 4.10 in which the conclusion is changed from “unless NP is PP-low” to
“unless NP is C=P-low” both hold, respectively due to Köbler, Schöning, and Torán [15] and
the present paper.

MFCS 2018

51:12 Robustness of LWPP and WPP

5 Optimality of the Main Result (Brief Version)

It is easy to see that the proof of Theorem 3.1 breaks down if Poly-LWPP is replaced by the
analogous class where the size of the set of allowed gap values can be larger than polynomial
in the input length. This does not necessarily imply that the corresponding theorem does
not hold. However, in this section, we establish that relativizable proof techniques are not
sufficient to improve Theorem 3.1 from Poly-LWPP to r-LWPP for any function r that is
not polynomially bounded. That is, we show that our main result is optimal with respect to
what can be proven by relativizable proof techniques.

I Theorem 5.1. Let r be any function from N to N such that for every c ∈ N, r /∈ O(nc).
Then there exists an oracle O such that r-LWPPO 6⊆ LWPPO.

To prove Theorem 5.1, we will encode nondeterministic oracle Turing machines by low-
degree multivariate polynomials. This technique is apparently folklore and has been used,
for example, by de Graaf and Valiant [6] to construct a relativized world where the quantum
complexity class EQP is not contained in the modularity-based complexity class MODpkP.
The general technique of replacing oracle machines by simpler combinatorial objects such
as circuits, decision trees, or polynomials and then using properties of such combinatorial
objects to show the existence of a desired oracle dates to the seminal work of Furst, Saxe,
and Sipser [9], who made the connection between circuit lower bounds and the relativization
of the polynomial hierarchy – a connection that has led to the resolution of many previously
long-open relativized questions, such as the achievement of an oracle making the polynomial
hierarchy infinite [31, 10] and of oracles making the polynomial hierarchy extend exactly k
levels [14].

Note: Please see [12] for a complete version of this section, which includes the proof of
Theorem 5.1 and additional results showing that LWPP with an exponential number of target
gap values cannot equal LWPP without causing highly unlikely structural consequences such
as PPNP = PP.

6 LWPP+ (Brief Version)

Theorem 3.1 of Section 3 established a robustness property of LWPP, namely, that Poly-
LWPP= LWPP. That is, having one target value for acceptance and having a list of target
values for acceptance yield the same class of languages, in the content of LWPP, which, recall,
is defined in terms of the values of GapP functions. That robustness result is itself robust in
the sense that it holds both in the real world and, it is easy to see, in every relativized world.

On the other hand, this equivalence for LWPP, in terms of descriptive richness, between
one target value and a polynomial number of values, may not hold even for quite similar
counting-class situations. In particular, in this section we prove that in some relativized
worlds, for the analog (which we will call LWPP+) of LWPP defined in terms of #P rather
than GapP functions (following Cox and Pay [5], who recently introduced the #P-based
analogue of WPP), having even two target values for acceptance (the class Two-LWPP+)
yields a richer class of languages than having one value. So it is not the case that single targets
and lists of targets inherently function identically as to descriptive richness for counting
classes.

I Theorem 6.1. There exists an oracle O such that (LWPP+)O ((Two-LWPP+)O.

Note: Please see [12] for a complete version of this section, which includes definitions
and the proof of our relativized result (Theorem 6.1) showing that, for the #P-based analogue

E. Hemaspaandra, L. A. Hemaspaandra, H. Spakowski, and O. Watanabe 51:13

of LWPP, even two target values may yield a larger class of languages than does one target
value, in contrast to what holds for the LWPP case.

7 Conclusions and Open Questions

In this paper, we proved that LWPP and WPP are robust enough that they remain unchanged
when their single target gap is allowed to be expanded to polynomial-sized lists. We then
applied this new robustness of LWPP to show that the PP-lowness of the Legitimate Deck
Problem follows from a weaker hypothesis than was previously known. In doing so, we
provided enhanced evidence that the Legitimate Deck Problem is not NP-hard or even NP-
Turing-hard. We also showed: that the polynomial-target robustness of LWPP that we have
established is optimal (i.e., cannot be extended to any superpolynomial number of targets)
with respect to relativizable proofs; that for the #P-based analogue of the (GapP-based)
class LWPP, in some relativized worlds even two targets give more languages than one
target; that our robustness of LWPP holds even when one simultaneously expands both the
acceptance target-gap set and the rejection target-gap set to be polynomial-sized lists; and
that our main results also hold for WPP.

Regarding the Reconstruction Conjecture, we proved as a consequence of our results that
if there exists a polynomial q such that the q-Reconstruction Conjecture holds, then the
Legitimate Deck Problem is both PP-low and C=P-low. Since NP is widely believed not to be
PP-low or C=P-low, this provides strengthened evidence that the Legitimate Deck Problem
is not NP-hard or even NP-Turing hard (since otherwise even the “Poly”-Reconstruction
Conjecture must fail, yet even the far stronger Reconstruction Conjecture is generally believed
to hold).

A natural open problem is whether the Legitimate Deck Problem is Σpk-low [24] for some
k, i.e., whether for some k it holds that (Σp

k)Legitimate Deck = Σp
k. Proving that that holds

– though we mention that this has been a known open issue for more than two decades
(see [17]) – would imply that the Legitimate Deck Problem cannot be NP-complete (even with
respect to more flexible reductions such as Turing reductions and strong nondeterministic
reductions [19]) unless the polynomial hierarchy collapses.

References
1 J. Bondy. A graph reconstructor’s manual. In Surveys in Combinatorics, London Mathe-

matical Society Lecture Notes Series 66, pages 221–252. Cambridge University Press, 1991.
2 J. Bondy and R. Hemminger. Graph reconstruction—a survey. Journal of Graph Theory,

1:227–268, 1977.
3 D. Bovet, P. Crescenzi, and R. Silvestri. A uniform approach to define complexity classes.

Theoretical Computer Science, 104(2):263–283, 1992.
4 J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and

G. Wechsung. The boolean hierarchy II: Applications. SIAM Journal on Computing,
18(1):95–111, 1989.

5 J. Cox and T. Pay. An overview of some semantic and syntactic complexity classes. Tech-
nical Report arXiv:1806.03501 [cs.CC], ArXiv.org, June 2018.

6 M. de Graaf and P. Valiant. Comparing EQP and MODpkP using polynomial degree lower
bounds. Technical Report quant-ph/0211179, Quantum Physics, 2002.

7 The Editors (of the Journal of Graph Theory). Editorial note. Journal of Graph Theory,
1(3), 1977.

8 S. Fenner, L. Fortnow, and S. Kurtz. Gap-definable counting classes. Journal of Computer
and System Sciences, 48(1):116–148, 1994.

MFCS 2018

51:14 Robustness of LWPP and WPP

9 M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.
Mathematical Systems Theory, 17:13–27, 1984.

10 J. Håstad. Computational Limitations of Small-Depth Circuits. MIT Press, 1987.
11 E. Hemaspaandra, L. Hemaspaandra, S. Radziszowski, and R. Tripathi. Complexity results

in graph reconstruction. Discrete Applied Mathematics, 155(2):103–118, 2007.
12 E. Hemaspaandra, L. Hemaspaandra, H. Spakowski, and O. Watanabe. The robustness

of LWPP and WPP, with an application to graph reconstruction. Technical Report
arXiv:1711.01250v2 [cs.CC], ArXiv.org, November 2017. Revised, April 2018.

13 P. Kelly. On Isometric Transformations. PhD thesis, University of Wisconsin, USA, 1942.
14 K. Ko. Relativized polynomial-time hierarchies having exactly k levels. SIAM Journal on

Computing, 18(2):392–408, 1989.
15 J. Köbler, U. Schöning, and J. Torán. Graph isomorphism is low for PP. Computational

Complexity, 2:301–330, 1992.
16 D. Kratsch and L. Hemachandra. On the complexity of graph reconstruction. In Proceedings

of the 8th Conference on Fundamentals of Computation Theory, pages 318–328. Springer-
Verlag Lecture Notes in Computer Science #529, 1991.

17 D. Kratsch and L. Hemaspaandra. On the complexity of graph reconstruction. Mathemat-
ical Systems Theory, 27(3):257–273, 1994.

18 J. Lauri and R. Scapellato. Topics in Graph Automorphisms and Reconstruction. Cam-
bridge University Press, 2003.

19 T. Long. Strong nondeterministic polynomial-time reducibilities. Theoretical Computer
Science, 21:1–25, 1982.

20 A. Mansfield. The relationship between the computational complexities of the legitimate
deck and isomorphism problems. Quart. J. Math. Ser., 33(2):345–347, 1982.

21 B. Manvel. Reconstruction of graphs: Progress and prospects. Congressus Numerantium,
63:177–187, 1988.

22 C. St. J. A. Nash-Williams. The reconstruction problem. In L. Beineke and R. Wilson,
editors, Selected Topics in Graph Theory, pages 205–236. Academic Press, 1978.

23 M. Ogiwara and L. Hemachandra. A complexity theory for feasible closure properties.
Journal of Computer and System Sciences, 46(3):295–325, 1993.

24 U. Schöning. A low and a high hierarchy within NP. Journal of Computer and System
Sciences, 27:14–28, 1983.

25 J. Simon. On Some Central Problems in Computational Complexity. PhD thesis, Cornell
University, Ithaca, N.Y., 1975. Available as Cornell Department of Computer Science
Technical Report TR75-224.

26 H. Spakowski, M. Thakur, and R. Tripathi. Quantum and classical complexity classes:
Separations, collapses, and closure properties. Information and Computation, 200(1):1–34,
2005.

27 L. Stockmeyer and A. Meyer. Word problems requiring exponential time. In Proceedings
of the 5th ACM Symposium on Theory of Computing, pages 1–9. ACM Press, 1973.

28 S. Ulam. A Collection of Mathematical Problems. Interscience Publishers, New York, 1960.
29 K. Wagner. The complexity of combinatorial problems with succinct input representations.

Acta Informatica, 23(3):325–356, 1986.
30 C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer

Science, 3:23–33, 1977.
31 A. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the 26th

IEEE Symposium on Foundations of Computer Science, pages 1–10, 1985.

Shape Recognition by a Finite Automaton Robot
Robert Gmyr
Paderborn University, Germany
gmyr@mail.upb.de

Kristian Hinnenthal
Paderborn University, Germany
krijan@mail.upb.de

Irina Kostitsyna
TU Eindhoven, the Netherlands
i.kostitsyna@tue.nl

Fabian Kuhn
University of Freiburg, Germany
kuhn@cs.uni-freiburg.de

Dorian Rudolph
Paderborn University, Germany
dorian@mail.upb.de

Christian Scheideler
Paderborn University, Germany
scheideler@upb.de

Abstract
Motivated by the problem of shape recognition by nanoscale computing agents, we investigate
the problem of detecting the geometric shape of a structure composed of hexagonal tiles by a
finite-state automaton robot. In particular, in this paper we consider the question of recognizing
whether the tiles are assembled into a parallelogram whose longer side has length ` = f(h), for
a given function f(·), where h is the length of the shorter side. To determine the computational
power of the finite-state automaton robot, we identify functions that can or cannot be decided
when the robot is given a certain number of pebbles. We show that the robot can decide whether
` = ah+ b for constant integers a and b without any pebbles, but cannot detect whether ` = f(h)
for any function f(x) = ω(x). For a robot with a single pebble, we present an algorithm to
decide whether ` = p(h) for a given polynomial p(·) of constant degree. We contrast this result
by showing that, for any constant k, any function f(x) = ω(x6k+2) cannot be decided by a robot
with k states and a single pebble. We further present exponential functions that can be decided
using two pebbles. Finally, we present a family of functions fn(·) such that the robot needs more
than n pebbles to decide whether ` = fn(h).

2012 ACM Subject Classification Theory of computation → Models of computation, Theory of
computation → Design and analysis of algorithms

Keywords and phrases finite automata, shape recognition, computational geometry

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.52

Funding This work is partly supported by DFG grant SCHE 1592/3-1. Fabian Kuhn is supported
by ERC Grant 336495 (ACDC).

Acknowledgements This work was begun at the Dagstuhl Seminar on Algorithmic Foundations
of Programmable Matter, July 3–8, 2016. Preliminary results were presented at EuroCG 2018.

© Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Fabian Kuhn, Dorian Rudolph, and
Christian Scheideler;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 52; pp. 52:1–52:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gmyr@mail.upb.de
mailto:krijan@mail.upb.de
mailto:i.kostitsyna@tue.nl
mailto:kuhn@cs.uni-freiburg.de
mailto:dorian@mail.upb.de
mailto:scheideler@upb.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.52
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

52:2 Shape Recognition by a Finite Automaton Robot

N

S
SW

NW NE

SE

Figure 1 An exemplary tile configuration.
The top right part of the figure shows the com-
pass directions we use to describe the move-
ment of a robot.

Figure 2 A N -NE-parallelogram with height 4
and length 10 = 2 ·4+2. The black arrows indicate
the zig-zag movement of a robot as described in
the proof of Theorem 2. The red arrow shows the
final NE movement.

1 Introduction

The DNA-based self-assembly approach [20], in which large structures have to be assembled
from DNA tiles in a self-organized fashion, is still quite error prone. Numerous techniques
have been studied to reduce the error rates (e.g., [6]), but the research typically focuses on
designing DNA tiles or assembly processes that reduce the error of incorrect attachments.
Given the progress on designing so-called DNA walkers (see, e.g., [22,24,25]), it is foreseeable
that also simple molecular robots could be used in order to make the assemblies more reliable.
For example, such robots may be used to repair structures that did not self-assemble correctly.
In order to be able to repair a given structure, it first has to be possible to detect whether a
structure is not in a correct shape, which motivates the problem of shape recognition. Besides
verifying self-assembled DNA structures, shape recognition could also be useful for minimal
invasive surgery applications, such as looking for harmful substances or cells in a human
body.

Naturally, molecular robots may have very limited capabilities, which is why we are
focusing on robots with the computational power of a finite-state automaton. More precisely,
we build upon the model introduced in [10] where finite-state automaton robots move on a
structure composed of hexagonal tiles, represented as a subgraph of the infinite triangular
lattice, and rearrange the tiles into a certain shape. Although shape formation with
computationally restricted agents, as considered in [10], has been extensively studied in
many other models (see, e.g., [5, 13, 17, 26]), to the best of our knowledge, the closely related
problem of shape detection has never been explicitly studied in our setting.

1.1 Model

We assume that a single robot is placed on a finite set of hexagonal tiles. Each tile occupies
exactly one node of the infinite triangular lattice G = (V,E) (refer to Figure 1). We assume
that the subgraph of G induced by all nodes occupied by tiles is connected. Every node
u ∈ V is adjacent to six neighbors, and, as indicated in the figure, we describe the relative
positions of adjacent nodes by six compass directions.

R. Gmyr et al. 52:3

Table 1 This table summarizes the results for recognizing whether a given parallelogram has
height h and length ` = f(h) given a certain number of pebbles.

Pebbles Possible Impossible Remarks Refer to

0 f(x) = ax + b f(x) = ω(x) a, b constant Section 3.1

1 f(x) = anxn + . . . + a0 f(x) = ω(x6k+2)
n, ai constant for all i,

k is the number of
the robot’s states

Section 3.2

2 f(x) = 22
...2x

︸ ︷︷ ︸
s+1

— s constant Section 3.3

n fn(x) fn+1(x) — Section 3.4

The robot is initially placed on a tile. It can move on the tile structure and carry a
(possibly empty) set of pebbles, which can be placed on tiles in order to mark them. A tile
can be marked by at most one pebble.

More specifically, the robot acts as a deterministic finite automaton and operates in
look-compute-move cycles. In the look phase the robot can observe the node it occupies
and the six neighbors of that node. For each of these nodes it can determine whether it is
occupied by a tile and whether a pebble is placed on that tile. In the compute phase the
robot potentially changes its state and determines its next move according to the observed
information and the number of carried pebbles. In the move phase the robot can either take
a pebble from its current node (if its tile is marked by a pebble), place a pebble it is carrying
at that node (if its tile is not already marked and the robot carries at least one pebble), or
move to an adjacent occupied node.

Note that even though we describe the algorithms as if the robot knew a global orientation,
we do not actually require the robot to have a compass. For the algorithms presented in this
paper, it is enough for the robot to be able to maintain its orientation with respect to its
initial orientation.

1.2 Related Work

To the best of our knowledge, shape recognition has never been investigated in our model.
However, solving problems by traversing a tile structure with simple agents has been studied
in many different areas. For instance, [23] considers the problem of deciding whether a
structure is simply-connected. Other problems include Gathering and Rendezvous (e.g., [21]),
Intruder Caption and Graph Searching (e.g., [2, 8]), or Black Hole Search (e.g., [16]).

For many of the above problems it has also been investigated whether pebbles can be
helpful. This question is particularly well-studied for the classical Network Exploration
Problem (see, e.g., [4]). For example, it is known that a finite automaton robot can neither
explore all planar graphs [9] nor find its way out of a planar labyrinth [3] without any pebbles.
For the Labyrinth Exploration Problem (see [14,15] for a comprehensive survey), it is known
that having a single pebble does not help the robot [11]. However, a robot with two pebbles
can solve the problem [1].

MFCS 2018

52:4 Shape Recognition by a Finite Automaton Robot

1.3 Our Contributions
In this paper we investigate the problem of shape recognition by a single robot. Specifically,
we begin with testing whether a given tile formation is of a certain simple shape, in particular,
a parallelogram. Then, we consider the problem of deciding for a given function f(·) whether
the longer side of a parallelogram has length f(h), where h is the shorter side’s length. We
particularly investigate this problem under the assumption that the robot is given a set of
pebbles that can be used to mark certain positions on the tile structure. An overview of
our results is given in Table 1, in which we give concrete functions f(·) the robot is able
or not able to decide given a certain set of pebbles. Our ultimate goal is to investigate
the computational capabilities of a simple robot concerning shape recognition, and to what
extent the robot can benefit from employing pebbles.

As we do not make any assumptions on the length of the shorter side h of the parallelogram,
we cannot assume that a robot with only a constant number of possible states is able to count
up to h, even less so evaluate the function f(h). Thus, if the robot does not have pebbles at
its disposal, its only option is to make use of the environment’s geometry. For example, the
robot can ‘measure’ h tiles along the longer side of the parallelogram by starting in a corner
and moving diagonally until reaching the opposite boundary. Furthermore, the robot can
measure 2h, 3h, or even ah tiles, for any constant a, along the longer side.

In Section 3.1 we develop this intuition further, and show that the robot can decide
whether the longest side of the parallelogram is ` = ah+ b, where a and b are constants. On
the other hand, we show that the robot without pebbles is not able to recognize a superlinear
function. In Sections 3.2 and 3.3 we show that we can tremendously increase the robot’s
computational power by giving it a single pebble or two pebbles, respectively. Having the
ability to mark any tile with a single pebble allows the robot to recognize any polynomial
function of constant degree; and being equipped with two pebbles gives the robot the ability
to recognize power tower functions, where the height of the power tower is constant or even
linear in h. Finally, in Section 3.4 we show that for any number of pebbles there exists a
function that requires that many pebbles to be decided by the robot.

2 Recognizing Simple Shapes

First, observe that a single robot can easily detect whether the initial structure is a line, a
triangle, a hexagon, or a parallelogram.

Line. For example, to test if a given tile shape is a line, the robot first chooses a direction
in which there is a tile (say, w.l.o.g., N), walks in that direction as far as possible (i.e., until
there is no tile in that direction anymore), and then traverses the structure into the opposite
direction until no longer possible. If it ever encounters a tile to the left or right of any
traversed tile, the structure is not a line.

Parallelogram. To test if a given tile shape is a (filled) parallelogram axis-aligned along
the directions N and NE (see Figure 2), first, the robot moves to a locally southernmost tile
of the structure by moving S and SW as long as there is a tile in any of these directions. It
then traverses the shape column by column in a snake-like fashion by repeating the following
movements: First, the robot moves N as far as possible; it then moves one step NE ; then it
moves S as far as possible, and it finally moves one step NE. The above procedure is repeated
until a NE movement is impossible. By performing local checks alongside the movements
described above the robot can verify whether the tile shape is a parallelogram.

R. Gmyr et al. 52:5

The other simple shapes can be easily tested in a similar fashion.

I Observation 1. A robot without any pebble can detect whether the initial tile configuration
is a line, a triangle, a hexagon, or a parallelogram.

3 Recognizing Parallelograms with Specific Side Ratio

As noted in Observation 1, a single robot without pebbles can verify whether a given shape
is a parallelogram. To investigate the computational power of a finite automaton, in this
section we consider the problem of deciding whether a parallelogram has a given side ratio.
Additionally, we examine how pebbles can be helpful to decide more complex side ratios.

We assume w.l.o.g. that the robot needs to detect whether the given tile configuration is
a parallelogram that is axis-aligned along the north and north-east direction, as indicated in
Figure 2. We denote a maximal sequence of consecutive tiles from N to S as a column and a
maximal sequence of consecutive tiles from SW to NE as a row. Let h be the size of each
column, i.e., the parallelogram’s height, ` be the size of each row, i.e., the parallelogram’s
length, and let h ≤ `. We number the columns of the parallelogram from 0 to `− 1 growing
in the north-eastern direction.

3.1 A Robot without any Pebble
First, we point out that a single robot can detect whether the structure is a parallelogram in
which its length ` is a linear function of its height h.

I Theorem 2. A single robot can detect whether the tile configuration is a parallelogram
with ` = ah+ b for any constants a, b ∈ N.

Proof. First, the robot verifies whether the structure is a parallelogram. If so, the robot
moves to the northernmost tile of column 0. It then traverses the tile structure in two stages
to verify the ratio of the sides. In the first stage, the robot “measures” the distance ah along
the length of the parallelogram moving in a zig-zag fashion as depicted in Figure 2. In the
second stage the robot measures the second term b. More specifically, in the first stage, the
robot repeats the following movements in a loop: (1) move SE as far as possible, (2) move N
as far as possible, and (3) make one step NE. After having performed the complete sequence
of SE movements a times, the robot moves on to the second stage, in which it makes an
additional b NE steps.

If the robot reaches the easternmost column before completing the above procedure, or
finally halts on a tile with a neighboring tile at NE, it terminates with a negative result.
Otherwise, it terminates with a positive result. It is easy to see that ` = ah+ b if and only if
the robot terminates with a positive result. J

I Remark. The algorithm in the previous theorem can be adapted for b ∈ Z, i.e., b can also
be a negative integer. To achieve that, we halt the execution of the first stage once the robot
has performed |b| SE steps, then move SW as far as possible, and continue the first stage
from there. Then, ` = ah+ b if and only if the robot eventually reaches the southernmost
tile of column `− 1.

I Remark. The algorithm can be further extended to apply in the case of a rational a. Let
a = p/q be an irreducible fraction. Instead of moving in a zig-zag fashion in the first stage,
the robot alternates between moving p steps NE and q steps S. To exactly end up at the
southernmost tile of column `− 1, the robot needs to skip the very first NE and S step.

MFCS 2018

52:6 Shape Recognition by a Finite Automaton Robot

We have shown that a single robot can determine whether the length of a parallelogram
is given by a certain linear function of its height. However, that is as much as one robot can
hope for. Indeed, a single robot is not able to decide whether the length of the parallelogram
is given by a superlinear function of its height, as the following theorem states.

I Theorem 3. A single robot without any pebbles cannot decide whether the tile configuration
is a parallelogram with ` = f(h), where f(x) = ω(x).

Proof. Suppose there is an algorithm that lets the robot decide whether the tiles are arranged
into a parallelogram with ` = f(h) for some superlinear function f(x) = ω(x). Let k be the
total number of states used by the robot in the algorithm. Choose h large enough such that
b f(h)−2

h c > k, which can be done since f(h) = ω(h).
Consider the execution of the algorithm on a parallelogram P with height h and length

` = f(h). We will show that there exists another parallelogram with height h and length
greater than f(h) on which the robot will eventually terminate in exactly the same state as
on P , which contradicts the assumption that the algorithm is correct.

We first place the robot on the northernmost tile of column 0. First, observe that if the
robot does not visit column `− 1 during the execution of the algorithm, it cannot correctly
detect the length of the parallelogram. Thus, the robot visits this column at least once.

Consider the execution of the algorithm as a sequence (p1, p2, . . .) of tuples of nodes and
states pi = (ui, qi). Denote as π1, . . . , πm the subsequences of the execution of the algorithm,
where each subsequence starts whenever the robot leaves a node of column 0 or `− 1, and
ends when it enters a node of one of those columns. More specifically, the first and last node
of each πi is a node adjacent to column 0 or ` − 1 and the node immediately before and
after each πi is a node of 0 or `− 1. Note that in each πi the robot exclusively moves in the
columns between column 0 and `− 1.

First, consider a subsequence πi at the beginning of which the robot leaves, and at the
end of which, enters the same column 0 (or ` − 1). Let pi = (si, qi) be the node-state
tuple right before the robot enters the subsequence πi when executing the algorithm on
the parallelogram P . Then, the robot would execute exactly the same subsequence πi on a
parallelogram P ′ with a larger length than the one of P , if it were placed on a node of P ′
corresponding to si with the same state qi.

Next, consider a subsequence πj at the beginning of which the robot leaves, w.l.o.g.,
column 0, and at the end of which it enters `− 1. Since the robot completely traverses the
tile structure from column 0 to `− 1, there must be a row Rj in which the robot steps on
no less than b f(h)−2

h c > k tiles. Therefore, there will be two nodes uj and vj in the row Rj
in which the robot appears in the same state. Let cu, cv be the column indices of uj and
vj , respectively, and define dj = |cv − cu|. Let (sj , qj) be the node-state tuple of the robot
immediately before it enters the subsequence πj and (s′j , q′j) be the node-state tuple of the
robot immediately after the subsequence πj is finished. Then, consider a parallelogram Q

with height h and length f(h) + cdj , where c ∈ N0. If the robot starts in the same state
qj on the node corresponding to sj (i.e., the node in column 0 and the row of sj) in the
parallelogram Q, it will move entirely between the westernmost and easternmost column of
Q until it reaches the node corresponding to s′j (i.e., the node of column f(h) + cdj and the
row of s′j) in Q in state q′j .

Now consider the execution of the algorithm on a parallelogram P ′ with height h and
length f(h) +

∏
j dj for each subsequence πj where the robot completely traverses the

parallelogram between column 0 and ` − 1. By the above argument, the robot will enter
and leave those columns on the same tile and in the same state as in the execution of the
algorithm on P . Thus, executing the same algorithm on the parallelogram P ′ the robot will
ultimately terminate in the same state as if it were on the parallelogram P . Therefore, the
robot cannot decide whether the initial tile configuration is a parallelogram with ` = f(h)
for any superlinear function f(x) = ω(x). J

R. Gmyr et al. 52:7

3.2 A Robot with a Single Pebble
In the following, we demonstrate that, in contrast to the negative result of Theorem 3, a
single robot can decide any polynomial of constant degree.

I Theorem 4. A single robot with a pebble can decide whether the tile configuration is a
parallelogram of height h and length ` = p(h) for any given polynomial p(·) of constant degree
n.

Proof. Define the falling factorial of x as (x)i := x(x − 1) · · · (x − i + 1), and transform
the input polynomial into the form p(x) = an · (x)n + an−1 · (x)n−1 + . . . + a0. We will
show that the robot can move the pebble in phases, by |ai · (h)i| steps in each phase
i. Let lcmi(x) := lcm(x, . . . , x − i + 1), where lcm is the least common multiple, and
gi(x) := (x)i/lcmi(x). From [12] it follows that lcmi(x) | (x)i, and that gi(x) is periodic with
period lcm(1, . . . , i− 1), i.e., gi(x) = gi(x+ lcm(1, . . . , i− 1)). Let pi(x) be the sum of the
first n− i summands of p(x), i.e., pi(x) = an · (x)n + an−1 · (x)n−1 + . . .+ an−i+1 · (x)n−i+1.

Initially, the pebble is located on the northernmost tile of column 0. To test whether
` = p(h), the robot will move the pebble along the northernmost row in phases, until it is
eventually shifted p(h)− 1 steps to the NE from its original position. If upon termination
the pebble is located at the northernmost tile of column `− 1, then p(h) = `.

The algorithm proceeds in phases n, . . . , 0. We maintain the invariant that after phase
i for all i > 0, the pebble is located at the northernmost tile of column pi(h). That is, in
phase i, the robot moves the pebble |ai · (h)i| steps NE, if ai is positive, and SW, otherwise.
In the final phase i = 0, the robot moves the pebble by |a0 − 1| steps NE, if a0 ≥ 1, and SW,
otherwise. For now, assume that each movement can be carried out without moving the
pebble outside of the parallelogram. We will later describe how to lift this restriction.

We now describe how the pebble is moved by |ai · (h)i| steps. First, note that ai · (h)i =
ai ·gi(h) · lcmi(h). The first factor ai is a constant. The second factor gi(h) can be determined
as follows. We encode all possible values of gi(·) for all i ∈ {0, . . . , n} into the robot’s memory,
which can be done since n is constant and gi(·) has a constant period. Before the main
algorithm’s execution, the robot can compute gi(h) for all i by moving through column 0
from north to south: Starting with gi(1), in every step to the south the robot computes the
subsequent function value until the period of gi(·) is reached, in which case it restarts with
gi(1). When it reaches the southernmost tile of the column, it knows gi(h) for all i.

We next show how the robot moves the pebble by lcmi(h) steps, which, by repeating
the movement |ai · gi(h)| times, concludes how the complete movement by |ai · (h)i| steps is
performed. Assume the pebble is in some column c and lcmi(h) | c (which we will prove by
induction shortly). The robot alternates between the following two operations: (1) move
the pebble into column c′ by moving it one step NE, if ai > 0, or SE, otherwise; (2) verify
whether lcmi(h) | c′ as follows. The robot first performs the zig-zag movement from the proof
of Theorem 2 to verify whether h | c′, i.e., whether a NE movement moves the robot onto a
tile occupied by the pebble. It continues to analogously verify whether h− 1 | c′, h− 2 | c′,
. . . , h− i+ 1 | c′ by performing a modified zig-zag movement an additional i− 1 times. Here,
the zig-zags of the j-th verification are adjusted accordingly by moving j steps to the south
prior to each sequence of SE movements. The robot stops alternating between the two above
operations once the pebble has been moved to a column c′ such that lcmi(h) | c′ for the first
time. Then, the pebble must have been moved by lcmi(h) steps.

It remains to prove that when the robot wants to move the pebble, currently occupying a
node of column c, by lcmi(h) steps for some i, then lcmi(h) | c. The invariant holds initially
for c = 0. Now assume it holds immediately after having moved the pebble by lcmi(h) steps

MFCS 2018

52:8 Shape Recognition by a Finite Automaton Robot

into column c ± lcmi(h). By induction hypothesis, lcmi(h) | c. Afterwards, the robot can
move the pebble by either lcmi(h) steps again, in which case lcmi(h) | c± lcmi(h) holds, or
it moves it by lcmi−1(h) steps, and lcmi−1(h) | c± lcmi(h) holds since lcmi−1(h) | lcmi(h).

Finally, we show how the robot can resolve overflows, i.e., situations in which the above
algorithm would move the pebble outside of the parallelogram. First, note that the execution
of the algorithm after an overflow can, in principle, be continued by the robot by “mirroring”
all movements beyond the westernmost or easternmost column, carrying them out into
reverse direction. Assume that h is sufficiently large such that |ai · (h)i + . . .+ a0| ≤ p(h) for
all i. For all small h = O(maxi(|ai|)) we can encode the constantly many possible function
values into the robot’s state and test them prior to the algorithm’s execution by traversing
the two sides of the parallelogram once. If throughout the execution of the algorithm the
robot ever attempts to move the pebble into a column west of column 0 or east of “virtual”
column 2` (while performing the mirroring method from above), it would subsequently not
be able to ever move the pebble back into column ` (following from the assumption that
h is sufficiently large), and consequently ` 6= p(h). Therefore, the robot can prematurely
terminate with a negative result whenever it encounters such a situation. J

The next theorem gives a lower bound on the amount of states needed to decide whether
` = ha, a ∈ N, thereby proving that no robot with one pebble can decide whether ` = f(h)
for f(x) = ω(xa) ∀a ∈ N.

I Theorem 5. A robot with k states and a single pebble cannot decide whether the tile
configuration is a parallelogram of height h and length ` = f(h), f(x) = ω(x6k+2).

Proof. First, we give a brief outline of the following proof. Assuming such a robot exists, we
place the robot with its pebble on the northernmost tile of column 0 of a parallelogram P with
height h and length ` = f(h). We begin by subdividing P horizontally into parallelograms of
height h which we will refer to as blocks. We define the westernmost and easternmost blocks
as the outer blocks O` and Or, respectively, and denote all other blocks as inner blocks. We
choose the length b of all inner blocks such that when the robot moves through a sequence of
inner blocks (from NW to SE or SE to NW), while either carrying the pebble the entire time
or not visiting it at all, its row and state repeat every b columns. The outer blocks will have
length at least b.

As in the proof of Theorem 3, we consider the execution of the algorithm as a sequence
of tuples of nodes and states, and divide it into subsequences π1, . . . , πm. Subsequence πi
starts with the robot carrying the pebble into some outer block, and ends when it reaches
the opposite outer block while carrying the pebble. The robot terminates in πm, and, as this
is the final subsequence, before entering the opposite block while carrying the pebble. We
define rπi

and qπi
to be the robot’s row and state at the beginning of πi. By considering

where the robot places and picks up the pebble, we identify a value d such that rπi
and

qπi
remain the same if the robot is executed on a parallelogram P ′ of height h and length

f(h) + db, and therefore falsely terminates with a positive result.
We begin the proof by identifying a value b. Consider the robot’s execution without the

pebble on a parallelogram of height h and infinite length in both directions, starting in row
r and state q. If the robot moves by at most kh columns in NW or SE direction, we define
dr,q := 1. Otherwise, by the pigeonhole principle, there are two columns that are visited on
a node of the same row and in the same state. In this case, we define dr,q to be the distance
between these two columns. Note that the robot moves arbitrarily far in this case, its row and
state repeating every dr,q columns. Let D := {dr,q}. Analogously, we consider the execution

R. Gmyr et al. 52:9

of the robot if it initially carries the pebble, and define d∗r,q := 1, if it ever drops the pebble
or moves by at most kh columns in NW or SE direction. Otherwise, there is a repetition
every d∗r,q columns, and the robot carries the pebble indefinitely far. Let D∗ := {d∗r,q}.

We now show that |D| ≤ 3k. If the robot ever is in row r in state q, or row r′ in state q′,
and visits the northernmost (or southernmost) row in the same state q∗ in both executions,
the executions will be identical afterwards, and therefore, dr,q = dr′,q′ . Hence, there can only
be k combinations of rows and states with distinct executions in which the robot visits the
northern- or southernmost row, and these executions contribute at most 2k distinct distances
to D. Now, let q, r, r′ such that the robot does not visit the northern- and southernmost row
when started in state q in row r or r′. Clearly, the robot performs the exact same actions in
both executions. Therefore, dr,q = dr′,q, and these executions contribute at most k additional
distances. Therefore, |D| ≤ 3k. Analogously, we have |D∗| ≤ 3k.

We set b :=
∏
δ∈D∪D∗ δ. If b ≤ kh, redefine b := (kh+ 1)b. It holds that b = O(h6k). We

subdivide P into a maximum number of blocks such that inner blocks have length b and
outer blocks have length greater than b.

We now identify a value d. Consider the subsequence πi, i < m. W.l.o.g., assume the
robot moves the pebble from O` to Or. Let (rj , cj , qj), j = 1, . . . , l be the row, column and
state in which the pebble is dropped during πi. We distinguish two cases: In the first case,
the robot moves by more than kh columns while carrying the pebble. In this case, it will
move until reaching the easternmost column Cr due to having a repetition in its state and
row. Therefore, cj+1 − cj ≤ kh for j < l. In this case, set di = 1.

In the second case, the robot does never move by more than kh columns to the east while
carrying the pebble during πi. Thus, the pebble is dropped within the first (i.e., western)
kh columns of each inner block. P contains Ω(f(h)/b) = ω(h2) > (kh)2 inner blocks, for
sufficiently large h. For some column c, we denote its index inside its block as c̃. Hence, for
each inner block, there exists a j such that cj is in that block and c̃j < kh. There are at
most h · kh · k = (kh)2 possibilities for (rj , c̃j , qj). By the pigeonhole principle, there exist
s < t such that cs < ct and (rs, c̃s, qs) = (rt, c̃t, qt). We set di := (ct − cs)/b, i.e., the number
of inner blocks between cs and ct, and d :=

∏m
i=1 di.

Let P ′ be the parallelogram of height h and length f(h) + db. Now we show that
(rπi+1 , qπi+1) is the same in the execution on P and P ′ for all i < m and that the robot
terminates with the same result during πm. To that end, we will again look at a subsequence
πi, i < m where, w.l.o.g, the pebble is carried from O` to Or and compare the executions on
P and P ′. Let (rj , cj , qj), j = 1, . . . , l as above. The first l times the pebble is dropped on P ′
are identical to those on P , since the only difference in the execution between dropping the
pebble at a column cj , j ≤ l and picking it back up again can be when the robot moves to
column `− 1. As argued above, moving to column `− 1 on P and P ′ cannot be distinguished
by the robot due to a repetition in row and state and by our choice of b. Thus, the pebble is
picked up in the same state again.

Next, we need to look at what happens on P ′ after the pebble has been picked up for
the l-th time. Here, we distinguish between the two cases from above. In the first case, the
robot carries the pebble by more than kh columns to the east on P before entering Or and,
consequently, continues until reaching column `− 1. The same behavior occurs on P ′, only
that the robot traverses an additional d blocks and, by our choice of b, enters Or in the same
row and state as on P .

In the second case, it never carries the pebble by more than kh columns to the east during
πi. We identified s, t such that (rs, c̃s, qs) = (rt, c̃t, qt), i.e. the pebble is picked up in the
same row, block-column, and state. Note that whenever the robot drops the pebble in some

MFCS 2018

52:10 Shape Recognition by a Finite Automaton Robot

column c̃ of two different inner blocks, it will pick the pebble up again in the same state:
This is clearly true if the robot does not visit column 0 and ` − 1 between dropping and
placing the pebble. Otherwise, the robot traverses more than kh columns without seeing the
pebble, i.e. its row and state repeat every δ columns for some δ ∈ D. Consequently, by our
choice of b, after both drops the robot will return to the pebble (and pick it up) in the same
state. Therefore, in both the executions on P and P ′ the robot will repeatedly drop and
pick up the pebble, each repetition occurring di blocks to the east from the previous one.
As di | d, the robot enters Or in the same row on P and P ′ and we thus also have identical
(rπi+1 , qπi+1).

It only remains to show that the robot terminates with the same result during πm. W.l.o.g,
let πm begin in Ol on P , and recall that the pebble does not reach Or before the robot
terminates. As argued before, the executions on P and P ′ can only differ when the robot
drops the pebble and moves to the easternmost column of the respective parallelogram. Due
to a repetition in state and row, and by our choice of b, the robot again enters the respective
easternmost columns in the same state and row, and afterwards picks up the pebble in
the same state on both P and P ′. Therefore, the robot ultimately terminates in the same
state. J

3.3 A Robot With Two Pebbles
Next, we show that having two pebbles enables the robot to decide certain exponential
functions. Note that by Theorem 5, the following result is optimal in the number of pebbles
used.

I Theorem 6. A robot with two pebbles can decide whether a given tile configuration is a
parallelogram with height h > 1 and length

` = 22
...2h

, where the power tower is of constant height.

Proof. Let s + 1 be the height of the power tower (i.e., there are s twos in the function)
and denote the two pebbles as a and b. Pebble a always resides in the northernmost row
of the parallelogram. We use a’s column index as a register on which we perform basic
arithmetic operations using b as a helper. Note that although the easternmost column of
the parallelogram has index `− 1, we describe the algorithm as if there was an additional
column `. A movement from or to column ` can easily be simulated by the robot.

The algorithm is divided into three stages. The purpose of the first stage is to verify that
` is a power of 2. In the second stage, we move a from column ` to column log(s−1)(`), where
log(s−1)(·) denotes the application of the logarithm s− 1 times. In the third stage, we verify
that a is in column 2h after the second stage. If in any of the three stages the robot detects
a violation of any assumption, i.e., if according to the algorithm a would have to be moved
beyond column 0 or `, or should be in column 0 or `, but is not, the robot terminates with a
negative result.

Before we describe the three stages in more detail, we describe how a’s column index
can be multiplied or divided by any constant c ≥ 1, provided that the result is integer and
between 0 and `. We first place b at a tile south of a, and then move a into column 0. In
case of a multiplication, we then alternatingly move a NE by c steps, and b SE by one step,
until b reaches column 0. In case of a division, we correspondingly move b by c steps and a
by one step.

In the first stage, the robot does the following. It first places a at the northernmost tile
of column 1. It then repeatedly multiplies by 2 (i.e., multiplies a’s column index by 2) using

R. Gmyr et al. 52:11

the above-mentioned strategy. If b reaches column 0 immediately after a has reached column
`, ` is a power of 2.

At the beginning of the second stage, a is placed at the northernmost tile of column `.
The stage is divided into s − 1 phases, where in each phase a is moved from column i to
column log(i). Note that since s is a constant, the robot can count the number of phases.
Furthermore, after the first phase ` is verified to be a power of 2, and, as we will show later,
if a’s column index is 2x at the beginning of a phase, but x is not a power of 2, then the
phase fails. Therefore, a’s column index is ensured to be a power of 2 at the beginning of
each phase.

In each phase, a is moved from some column 2x to column x in a step-wise fashion. More
precisely, in the j-th step it is moved from column 5j−1 · 2x/2j−1 to column 5j · 2x/2j . This
is continued until the resulting column index is not divisible by 4 anymore, i.e., when it
becomes 5log x · 2. The general idea is to use the exponent of 5 as a counter on the number of
times x needs to be divided by 2 until it becomes 1, which yields its logarithm. This idea is
based on [7, Section 14].

It remains to show how a single step can be performed. First, the robot moves a from
column 5j−1 · 2x/2j−1 into column 5j−1 · 3x/2j by alternatingly dividing by 4 and multiplying
by 3. After each repetition, the robot verifies whether a’s column index is divisible by 2.
This is done by traversing the northernmost row from west to east until a is reached, and
counting the number of steps modulo 2. Note that if x/2j−1 is even, which is the case if x is
a power of 2, then the division by 4 is always possible. Otherwise, the division by 4 will fail
at latest when x/2j−1 becomes 1. Once a’s column index is not divisible by 2 anymore, a is
in column 5j−1 · 3x/2j .

Analogously, by alternatingly dividing a’s column index by 3 and multiplying by 2 as long
as the column index is divisible by 3, the robot afterwards moves a into column 5j−1 · 2x/2j .
By multiplying with 5, a is finally moved into column 5j · 2x/2j .

After each step, the robot verifies whether a’s column index is divisible by 4. If so, it
continues with the next step. Otherwise, j = log x, and thus a must be in column 5log x · 2.
From there, a can easily be moved into column x by first dividing by 2, and afterwards
alternatingly dividing by 5 and multiplying by 2 until the column index is not divisible by 5
anymore.

Note that if a’s column index is 2x at the beginning of some phase, but x is not a power
of 2, then at some step x/2j−1 will be odd, and, as described above, the algorithm will fail.
Further note that for h ≥ 8, which can be verified beforehand, moving a from column 2x
(where, consequently, x must be at least 8) to 5log x · 2 can only decrease a’s column index.
Therefore, although a might be moved NE in the final steps of a phase, it can easily be seen
it will be moved sufficiently far SW within the first steps such that it is never moved beyond
column `. If that happens nonetheless, the robot terminates with a negative result.

Finally, in the third stage, the robot verifies that a is in column 2h by diving by 2 for
h times. To count up to h, b initially resides in row 2 and is moved one step S after each
division. When b reaches a southernmost tile, a must lie in column 4, which can easily be
verified by the robot. J

I Remark. The algorithm of the previous theorem can be adapted for any power towers
whose height is a linear function αh + β for constants α and β. To count the number of
phases in the second stage, we move a south after each phase. The highest exponent of the
power tower may also be a function linear in h, which can be handled correspondingly in the
third stage.

MFCS 2018

52:12 Shape Recognition by a Finite Automaton Robot

I Remark. The algorithm can further be adapted for any other base β. Note that if β is a
composite number, we need to apply the operations to its prime factors separately, taking
into account their powers. Since it is well-known that for n ≥ 25 there is always a prime
between n and (1 + 1/5)n [19], we can use the two smallest primes that are no prime factors
of β instead of 3 and 5 in the second stage of the algorithm.
I Remark. In contrast to the negative results of the previous sections, it can be shown that
for every computable function f there exists a computable function f ′(x) = ω(f(x)) that
can be decided using two pebbles. The main idea used in the proof is to simulate a Turing
machine to decide f(x) = y for some x and y by simulating a program machine [18] as
described in the following section. f ′(x) is then chosen as a product of prime factors, where
the exponent of one prime factor is f(x), and the exponents of the additional factors are
chosen to provide exactly the space required for the simulation. Throughout the algorithm’s
execution, the values of the program machine’s registers are represented as the additional
prime factor’s exponents. If the Turing machine terminates with a positive result, and the
given space exactly matches the required space for the simulation, the robot terminates with
a positive result.

3.4 A Family of Functions Requiring an Increasing Amount of Pebbles
The discussion from the previous sections naturally brings up the question whether there is
a function family whose detection requires an increasing amount of pebbles. In this section,
we answer that question positively. As the proofs are fairly straightforward, we mostly state
the general ideas, leaving out some details.

In order to simplify analysis, we consider a robot with pebbles operating on a line segment
instead of a parallelogram. We also assume that pebbles are distinguishable and can be
placed onto the same tile. Note that it is easy to simulate colors of a finite amount of pebbles
on a line segment by keeping track of the pebbles’ order. Furthermore, the robot can simulate
placing two pebbles onto each other by placing the second pebble within constant distance
instead and save the offset from its intended position.

First, we introduce the notion of program machines as defined in [18, Section 11].

I Definition 7. A program machine consists of a finite set of registers, holding arbitrary
numbers from N0, and a finite program of numbered instructions from the following instruction
set.

zero(r): Set register r := 0.
increment(r): Set register r := r + 1.
decrementOrJump(r, n): If r = 0, jump to instruction n. Otherwise set r := r − 1.
halt: Stop the execution.

I Remark. Using the instructions from Definition 7, it is possible to simulate instructions to
copy the value of register r1 to r2, and to jump if (or if not) r1 = r2 [18].

I Lemma 8. A 3 register program machine can simulate a deterministic Turing machine
with Γ = Σ = {0, 1}.

Proof. It is well known that a Turing machine can be simulated using two stacks containing
the tape’s bits behind and in front of the head, respectively. These stacks can be viewed as
the binary encoding of natural numbers. They will be stored in registers one and two.

Using the third register as a scratch pad, doubling and halving a register is simple. To
pop a bit from the stack, we divide by two and look at the remainder. To push a bit
onto the stack, we multiply by two and add the bit. For more details, we refer the reader
to [18, Section 11]. J

R. Gmyr et al. 52:13

Since we are interested in a robot moving on a finite space, we now define bounded program
machines.

I Definition 9. A bounded program machine is a program machine whose first register is
initialized to the input x. The other registers are initialized to 0. No register may exceed x.

The following observation follows from the fact that a robot can easily simulate a bounded
program machine using pebbles, and vice versa.

I Observation 10. The computational power of a robot with n pebbles on a line of length
x ≥ n is between that of an n and an n+ 1 register bounded program machine with input x.

The next two lemmas show that deterministic linear bounded automata are essentially
equivalent in their computational capabilities to bounded program machines and that the
number of registers relates to the number of tape symbols needed. This enables us to
apply well-known results from complexity theory to our model. We use the definition of
deterministic linear bounded automata from [7] as Turing machines that never leave the cells
in which their input was placed. Inputs are restricted to {0, 1}∗.

I Lemma 11. A deterministic linear bounded automaton with |Γ| = n and Σ = {0, 1} with
input x ∈ Σ∗ can be simulated using a 1 + 2dlog ne register bounded program machine with
input x′ := (1x)2.

Proof. The construction from Lemma 8 ensures that no register will be increased beyond x′
when simulating the linear bounded automaton. The two stacks will now contain elements in
Γ. We encode the symbols in binary and store their representation using 2dlog ne registers. J

I Lemma 12. An n register bounded program machine with input (1x)2, x ∈ {0, 1}∗ can be
simulated by a deterministic linear bounded automaton with 2n tape symbols and input x.

Proof. The tape stores the binary representation of the registers’ values, each symbol
representing one bit of n registers. Operations from Definition 7 are now trivial to perform. J

Finally, it can be shown that there exists a family of languages requiring deterministic
linear bounded automata with an increasing amount of tape symbols. These will directly
translate to sets of accepted line lengths.

I Lemma 13. There exists a family of context sensitive languages Sn ⊆ {0, 1}∗ not accepted
by any deterministic linear bounded automaton with fewer than n symbols [7, Corollary 2].

Together with Observation 10, the previous lemmas imply the following theorem.

I Theorem 14. There exists a family Ln ⊆ N such that a robot exists that can detect whether
a line has length ` ∈ Ln using a finite number of pebbles but none using less than n pebbles.

To construct a family of functions for deciding side ratios of a parallelogram, we can set

fn(h) =
{

1, h ∈ Ln
2, h /∈ Ln

.

I Remark. The resulting parallelogram differs from the previous examples in that its length
is only 1 or 2. Note that the robot can perform the simulation of the bounded program
machine using the parallelograms height, and a length of 2 does not give it too much power.
Furthermore, we can modify the function family such that ` ≥ h while still requiring n
pebbles to decide fn(h).

MFCS 2018

52:14 Shape Recognition by a Finite Automaton Robot

4 Future Work

In this paper we have identified some simple functions that can or cannot be decided with a
given set of pebbles. Beyond our study in Section 3.4, we are interested to find functions,
such as superexponentials, that require more than only two pebbles. Furthermore, it is an
interesting question whether, instead or in addition to using pebbles, multiple robots can
help in shape recognition problems. For example, it is still an open question whether two
robots, which are activated in an arbitrary order, are more powerful than a single robot with
a pebble. Apart from that, there are many different model assumptions under which our
problems can be investigated.

In this work we primarily focused on detecting parallelograms of certain side ratios. As
our ultimate goal is to investigate shape recognition in general, we are very interested to
examine whether our results and algorithms are applicable to other shapes as well. For
example, it may be possible to recognize more complex structures such as irregular hexagons
with certain side ratios, or to even come up with a more generic procedure to recognize larger
families of shapes. Furthermore, rasterized disks or ellipses might be interesting shapes to
consider. Other intriguing problems related to shape recognition include testing symmetry
or simply-connectedness of a tile structure.

References

1 M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier to search
than graphs). In Proc. 19th Annual Symposium on Foundations of Computer Science
(FOCS), pages 132–142, 1978.

2 A. Bonato and R. J. Nowakowski. The Game of Cops and Robbers on Graphs. AMS, 2011.
3 L. Budach. Automata and labyrinths. Mathematische Nachrichten, 86(1):195–282, 1978.
4 S. Das. Mobile agents in distributed computing: Network exploration. Bulletin of the

European Association for Theoretical Computer Science, 109:54–69, 2013.
5 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim

Strothmann. Universal shape formation for programmable matter. In Proc. 28th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 289–299, 2016.

6 Constantine Evans and Erik Winfree. DNA sticky end design and assignment for robust
algorithmic self-assembly. In Proc. of DNA Computing and Molecular Computing (DNA),
pages 61–75, 2013.

7 Eliot D. Feldman and James C. Owings. A class of universal linear bounded automata.
Information Sciences, 6(Supplement C):187–190, 1973. doi:10.1016/0020-0255(73)
90036-4.

8 F. V. Fomin and D. M. Thilikos. An annotated bibliography on guaranteed graph searching.
Theoretical Computer Science, 399(3):236–245, jun 2008.

9 P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by a finite
automaton. Theoretical Computer Science, 345(2-3):331–344, 2005.

10 R. Gmyr, I. Kostitsyna, F. Kuhn, C. Scheideler, and T. Strothmann. Forming tile shapes
with a single robot. In Abstr. European Workshop on Computational Geometry (EuroCG),
pages 9–12, 2017.

11 F. Hoffmann. One pebble does not suffice to search plane labyrinths. In Proc. International
Fundamentals of Computation Theory Conference (FCT), pages 433–444, 1981.

12 S. Hong and Y. Yang. On the periodicity of an arithmetical function. Comptes Rendus
Mathematique, 346(13):717–721, 2008.

http://dx.doi.org/10.1016/0020-0255(73)90036-4
http://dx.doi.org/10.1016/0020-0255(73)90036-4

R. Gmyr et al. 52:15

13 Ferran Hurtado, Enrique Molina, Suneeta Ramaswami, and Vera Sacristán. Distributed re-
configuraiton of 2D lattice-based modular robotic systems. Autonomous Robots, 38(4):383–
413, 2015.

14 G. Kilibarda, V. B. Kudryavtsev, and Š. Ušćumlić. Collectives of automata in labyrinths.
Discrete Mathematics and Applications, 13(5):429–466, 2003.

15 G. Kilibarda, V. B. Kudryavtsev, and Š. Ušćumlić. Independent systems of automata in
labyrinths. Discrete Mathematics and Applications, 13(3):221–225, 2003.

16 E. Markou. Identifying hostile nodes in networks using mobile agents. Bulletin of the
European Association for Theoretical Computer Science, 108:93–129, 2012.

17 Othon Michail and Paul G. Spirakis. Simple and efficient local codes for distributed stable
network construction. Distributed Computing, 29(3):207–237, 2016.

18 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
19 Jitsuro Nagura. On the interval containing at least one prime number. Proc. of the Japan

Academy, 28(4):177–181, 1952. doi:10.3792/pja/1195570997.
20 Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent

results. Natural Computing, 13(2):195–224, 2014.
21 A. Pelc. Deterministic rendezvous in networks: A comprehensive survey. Networks,

59(3):331–347, 2012.
22 John H. Reif and Sudheer Sahu. Autonomous programmable DNA nanorobotic devices

using dnazymes. Theoretical Computer Science, 410:1428–1439, 2009.
23 A. N. Shah. Pebble automata on arrays. Computer Graphics and Image Processing,

3(3):236–246, 1974.
24 A.J. Thubagere, W. Li, R.F. Johnson, Z. Chen, S. Doroudi, Y.L. Lee, G. Izatt, S. Wittman,

N. Srinivas, D. Woods, E. Winfree, and L. Qian. A cargo-sorting DNA robot. Science,
357(6356), 2017.

25 S.F.J. Wickham, J. Bath, Y. Katsuda, M. Endo, K. Hidaka, H. Sugiyama, and A.J. Turber-
field. A DNA-based molecular motor that can navigate a network of tracks. Nature Nan-
otechnology, 7(3):169–173, 2012.

26 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng
Yin. Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In
Proc. 4th Conference of Innovations in Theoretical Computer Science (ITCS), pages 353–
354, 2013.

MFCS 2018

http://dx.doi.org/10.3792/pja/1195570997

Conflict Free Feedback Vertex Set:
A Parameterized Dichotomy
Akanksha Agrawal
Institute of Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI),
Budapest, Hungary
agrawal.akanksha@mta.sztaki.hu

Pallavi Jain
Institute of Mathematical Sciences, HBNI, Chennai, India
pallavij@imsc.res.in

Lawqueen Kanesh
Institute of Mathematical Sciences, HBNI, Chennai, India
lawqueen@imsc.res.in

Daniel Lokshtanov
Department of Informatics, University of Bergen, Bergen, Norway
daniello@ii.uib.no

Saket Saurabh
Department of Informatics, University of Bergen, Bergen, Norway
Institute of Mathematical Sciences, HBNI, Chennai, India
UMI ReLax
saket@imsc.res.in

Abstract
In this paper we study recently introduced conflict version of the classical Feedback Vertex
Set (FVS) problem. For a family of graphs F , we consider the problem F -CF-Feedback
Vertex Set (F -CF-FVS, for short). The F -CF-FVS problem takes as an input a graph G, a
graph H ∈ F (where V (G) = V (H)), and an integer k, and the objective is to decide if there
is a set S ⊆ V (G) of size at most k such that G − S is a forest and S is an independent set in
H. Observe that if we instantiate F to be the family of edgeless graphs then we get the classical
FVS problem. Jain, Kanesh, and Misra [CSR 2018] showed that in contrast to FVS, F -CF-FVS
is W[1]-hard on general graphs and admits an FPT algorithm if F is the family of d-degenerate
graphs. In this paper, we relate F -CF-FVS to the Independent Set problem on special
classes of graphs, and obtain a complete dichotomy result on the Parameterized Complexity of
the problem F -CF-FVS, when F is a hereditary graph family. In particular, we show that
F -CF-FVS is FPT parameterized by the solution size if and only if F+Cluster IS is FPT
parameterized by the solution size. Here, F+Cluster IS is the Independent Set problem
in the (edge) union of a graph G ∈ F and a cluster graph H (G and H are explicitly given).
Next, we exploit this characterization to obtain new FPT results as well as intractability results
for F -CF-FVS. In particular, we give an FPT algorithm for F+Cluster IS when F is the
family of Ki,j-free graphs. We show that for the family of bipartite graph B, B-CF-FVS is
W[1]-hard, when parameterized by the solution size. Finally, we consider, for each 0 < ε < 1, the
family of graphs Fε, which comprise of graphs G such that |E(G)| ≤ |V (G)|2−ε, and show that
Fε-CF-FVS is W[1]-hard, when parameterized by the solution size, for every 0 < ε < 1.

2012 ACM Subject Classification Theory of computation→ Graph algorithms analysis, Theory
of computation → Fixed parameter tractability, Theory of computation → W hierarchy

Keywords and phrases Conflict-free, Feedback Vertex Set, FPT algorithm, W[1]-hardness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.53
© Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, Daniel Lokshtanov, and Saket Saurabh;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 53; pp. 53:1–53:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:agrawal.akanksha@mta.sztaki.hu
mailto:pallavij@imsc.res.in
mailto:lawqueen@imsc.res.in
mailto:daniello@ii.uib.no
mailto:saket@imsc.res.in
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.53
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

53:2 Conflict Free Feedback Vertex Set: A Parameterized Dichotomy

Funding This research has received funding from the European Research Council under ERC
grant no. 306992 PARAPPROX, ERC grant no. 715744 PaPaALG, ERC grant no. 725978
SYSTEMATICGRAPH, and DST, India for SERB-NPDF fellowship [PDF/2016/003508].

1 Introduction

Feedback Vertex Set (FVS) is one of the classical NP-hard problems that has been
subjected to intensive study in algorithmic paradigms that are meant for coping with NP-hard
problems, and particularly in the realm of Parameterized Complexity. In this problem, given
a graph G and an integer k, the objective is to decide if there is S ⊆ V (G) of size at most k
such that G−S is a forest. FVS has received a lot of attention in the realm of Parameterized
Complexity. This problem is known to be in FPT, and the best known algorithm for it runs
in time O(3.618knO(1)) [8, 13]. Several variant and generalizations of Feedback Vertex
Set such as Weighted Feedback Vertex Set [2, 7], Independent Feedback Vertex
Set [1, 14], Connected Feedback Vertex Set [15], and Simultaneous Feedback
Vertex Set [3, 6] have been studied from the viewpoint of Parameterized Complexity.

Recently, Jain et al. [12] defined an interesting generalization of well-studied vertex
deletion problems – in particular for FVS. The CF-Feedback Vertex Set (CF-FVS, for
short) problem takes as input graphs G and H, and an integer k, and the objective is to
decide if there is a set S ⊆ V (G) of size at most k such that G− S is a forest and S is an
independent set in H . The graph H is also called a conflict graph. Observe that the CF-FVS
problem generalizes classical graph problems, Feedback Vertex Set and Independent
Feedback Vertex Set. A natural way of defining CF-FVS will be by fixing a family F
from which the conflict graph H is allowed to belong. Thus, for every fixed F we get a new
CF-FVS problem. In particular we get the following problem.

F-CF-Feedback Vertex Set (F-CF-FVS) Parameter: k

Input: A graph G, a graph H ∈ F (where V (G) = V (H)), and an integer k.
Question: Is there a set S ⊆ V (G) of size at most k, such that G− S is a forest and S
is an independent set in H?

Jain et al. [12] showed that F -CF-FVS is W[1]-hard when F is a family of all graphs and
admits FPT algorithm when the input graph H is from the family of d-degenerate graphs
and the family of nowhere dense graphs. The most natural question that arises here is the
following.

Question 1: For which graph families F , F-CF-FVS is FPT?

Our Results. Starting point of our research is Question 1. We obtain a complete dichotomy
result on the Parameterized Complexity of the problem F-CF-FVS (for hereditary F) in
terms of another well-studied problem, namely, the Independent Set problem – the wall
of intractability. Towards stating our results, we start by defining the problem F+Cluster
IS, which is of independent interest. A cluster graph is a graph formed from the disjoint
union of complete graphs (or cliques).

F+Cluster Independent Set (F+Cluster IS) Parameter: k

Input: A graph G ∈ F , a cluster graph H (where V (G) = V (H)), and an integer k,
such that H has exactly k connected components.
Question: Is there a set S ⊆ V (G) of size k, such that S is an independent set in both
G and in H?

A. Agrawal, P. Jain, L. Kanesh, D. Lokshtanov, and S. Saurabh 53:3

We note that F+Cluster IS is the Independent Set problem on the edge union of
two graphs, where one of the graphs is from the family of graphs F and the other one is a
cluster graph. Here, additionally we know the partition of edges into two sets, E1 and E2
such that the graph induced on E1 is in F and the graph induced on E2 is a cluster graph.
We note that F+Cluster IS has been studied in the literature for F being the family
of interval graphs (with no restriction on the number of clusters) [18]. They showed the
problem to be FPT. Recently, Bentert et al. [4] generalized the result from interval graphs to
chordal graphs. This problem arises naturally in the study of scheduling problems. We refer
the readers to [18, 4] for more details on the application of F+Cluster IS.

We are now ready to state our results. We show that F -CF-FVS is in FPT if and only if
F+Cluster IS is in FPT, where F is a family of hereditary graphs. We obtain a complete
characterization of when the F -CF-FVS problem is in FPT, for hereditary graph families. To
prove the forward direction, i.e., showing that F+Cluster IS is in FPT implies F -CF-FVS
is in FPT, we design a branching based algorithm, which at the base case generates instances
of F+Cluster IS, which is solved using the assumed FPT algorithm for F+Cluster IS.
Thus, we give “fpt-turing-reduction” from F-CF-FVS to F+Cluster IS. It is worth to
note that there are very few known reductions of this nature. To show that F-CF-FVS
is in FPT implies that F+Cluster IS is in FPT, we give an appropriate reduction from
F+Cluster IS to F-CF-FVS, which proves the statement. We note that our result that
F -CF-FVS is in FPT implies F+Cluster IS is in FPT, holds for all families of graphs.

Next, we consider two families of graphs. We first design FPT algorithm for the corres-
ponding F+Cluster IS problem. For the second class we give a hardness result. First, we
consider the problem Ki,j-free+Cluster IS, which is the F+Cluster IS problem for the
family of Ki,j-free graphs. We design an FPT algorithm for Ki,j-free+Cluster IS based on
branching together with solving the base cases using a greedy approach. This adds another
family of graphs, apart from interval and chordal graphs, such that F+Cluster IS is FPT.

We note that Ki,j-free graphs have at most n2−ε edges, where n is the number of vertices
in the input graph and ε = ε(i, j) > 0 [17, 11]. We complement our FPT result on Ki,j-
free+Cluster IS with the W[1]-hardness result of the F+Cluster IS problem when
F is the family of graphs with at most n2−ε edges. This result is obtained by giving an
appropriate reduction from the problem Multicolored Biclique, which is known to be
W[1]-hard [8, 10]. We also show that the F+Cluster IS problem is W[1]-hard when F is the
family of bipartite graphs. Again, this result is obtained via a reduction from Multicolored
Biclique.

2 Preliminaries

In this section, we state some basic definitions and terminologies from Graph Theory that
are used in this paper. For the graph related terminologies which are not explicitly defined
here, we refer the reader to the book of Diestel [9].

Graphs. Consider a graph G. By V (G) and E(G) we denote the set of vertices and edges
in G, respectively. When the graph is clear from the context, we use n and m to denote the
number of vertices and edges in the graph, respectively. For X ⊆ V (G), by G[X] we denote
the subgraph of G with vertex set X and edge set {uv ∈ E(G) | u, v ∈ X}. Moreover, by
G−X we denote graph G[V (G) \X]. For v ∈ V (G), NG(v) denotes the set {u | uv ∈ E(G)},
and NG[v] denotes the set NG(v) ∪ {v}. By degG(v) we denote the size of NG(v). A path
P = (v1, . . . , vn) is an ordered collection of vertices, with endpoints v1 and vn, such that
there is an edge between every pair of consecutive vertices in P . A cycle C = (v1, . . . , vn) is

MFCS 2018

53:4 Conflict Free Feedback Vertex Set: A Parameterized Dichotomy

a path with the edge v1vn. Consider graphs G and H. We say that G is an H-free graph if
no subgraph of G is isomorphic to H. For u, v ∈ V (G) ∩ V (H), we say that u and v are in
conflict in G with respect to H if uv ∈ E(H).

3 W-hardness of F-CF-FVS Problems

This section is devoted to showing W-hardness results for F-CF-FVS problems for certain
graph classes, F . In Section 3.1, we show one direction of our dichotomy result. That is, if
for a family of graphs F , F+Cluster IS is not in FPT when parameterized by the size of
solution then F -CF-FVS is also not in FPT when parameterized by the size of solution. This
result is obtained by giving a parameterized reduction from F+Cluster IS to F -CF-FVS.
Next, we show that the problem F-CF-FVS is W[1]-hard, when parameterized by the size
of solution, where F is the family of bipartite graphs (Section 3.2) or the family of graphs
with sub-quadratic number of edges (Section 3.3). These results are obtained by giving an
appropriate reduction from the problem Multicolored Biclique, which is known to be
W[1]-hard [8, 10].

3.1 F+Cluster IS to F-CF-FVS

In this section, we show that, for a family of graphs F , if F+Cluster IS is not in FPT,
then F -CF-FVS is also not in FPT (where the parameters are the solution sizes). To prove
this result, we give a parameterized reduction from F+Cluster IS to F -CF-FVS.

Let (G,H, k) be an instance of F+Cluster IS. We construct an instance (G′, H ′, k′)
of F-CF-FVS as follows. We have H ′ = G, k′ = k, and V (G′) = V (H). Let C be the set
of connected components in H. Recall that we have |C| = k. For each C ∈ C, we add a
cycle (in an arbitrarily chosen order) induced on vertices in V (C) in G′. This completes the
description of the reduction. Next, we show the equivalence between the instance (G,H, k)
of F+Cluster IS and the instance (G′, H ′, k′) of F -CF-FVS.

I Lemma 1. (G,H, k) is a yes instance of F+Cluster IS if and only if (G′, H ′, k′) is a
yes instance of F-CF-FVS.

Proof. In the forward direction, let (G,H, k) be a yes instance of F+Cluster IS, and S
be one of its solution. Since H ′ = G, therefore, S is an independent set in H ′. Let C be the
set of connected components in H. As S is a solution, it must contain exactly one vertex
from each C ∈ C. Moreover, G′ comprises of vertex disjoint cycles for each C ∈ C. Thus S
intersects every cycle in G′. Therefore, S is a solution to F -CF-FVS in (G′, H ′, k′).

In the reverse direction, let (G′, H ′, k′) be a yes instance of F -CF-FVS, and S be one of
its solution. Recall that G′ comprises of k vertex disjoint cycles, each corresponding to a
connected component C ∈ C, where C is the set of connected components in H. Therefore,
S contains exactly one vertex from each C ∈ C. Also, H ′ = G, and therefore, S is an
independent set in G. This implies that S is a solution to F+Cluster IS in (G,H, k). J

Now we are ready to state the main theorem of this section.

I Theorem 2. For a family of graphs F , if F+Cluster IS is not in FPT when parameterized
by the solution size, then F-CF-FVS is also not in FPT when parameterized by the solution
size.

A. Agrawal, P. Jain, L. Kanesh, D. Lokshtanov, and S. Saurabh 53:5

3.2 W[1]-hardness on Bipartite Graphs
In this section, we show that for the family of bipartite graphs, B, the B-CF-FVS problem is
W[1]-hard, when parameterized by the solution size. Throughout this section, B will denote
the family of bipartite graphs. To prove our result, we give a parameterized reduction from
the problem Multicolored Biclique to B-CF-FVS. In the following, we formally define
the problem Multicolored Biclique.

Multicolored Biclique (MBC) Parameter: k

Input: A bipartite graph G, a partition of A into k sets A1, A2, · · · , Ak, and a partition
of B into k sets B1, B2, · · · , Bk, where A and B are a vertex bipartition of G.
Question: Is there a set S ⊆ V (G) such that for each i ∈ [k] we have |S ∩Ai| = 1 and
|S ∩Bi| = 1, and G[S] is isomorphic to Kk,k?

Let (G,A1, · · · , Ak, B1, · · · , Bk) be an instance of Multicolored Biclique. We con-
struct an instance (G′, H ′, k′) of B-CF-FVS as follows. We have V (G′) = V (H ′) = V (G),
and E(H ′) = {uv | u ∈ ∪i∈[k]Ai, v ∈ ∪i∈[k]Bi, and uv /∈ E(G)}. Next, for each i ∈ [k], we
add a cycle (in an arbitrary order) induced on vertices in Ai in G′. Similarly, we add for
each i ∈ [k], a cycle induced on vertices in Bi in G′. Notice that G′ comprises of 2k vertex
disjoint cycles, and H ′ is a bipartite graph. Finally, we set k′ = 2k. This completes the
description of the reduction.

I Lemma 3. (G,A1, · · · , Ak, B1, · · · , Bk) is a yes instance of Multicolored Biclique if
and only if (G′, H ′, k′) is a yes instance of B-CF-FVS.

Now we are ready to sate the main theorem of this section.

I Theorem 4. B-CF-FVS parameterized by the solution size is W[1]-hard, where B is the
family of bipartite graphs.

3.3 W[1]-hardness on Graphs with Sub-quadratic Edges
In this section, we show that F -CF-FVS is W[1]-hard, when parameterized by the solution
size, where F is the family of graphs with sub-quadratic edges. To formalize the family of
graphs with subquadratic edges, we define the following. For 0 < ε < 1, we define Fε to
be the family comprising of graphs G, such that |E(G)| ≤ |V (G)|2−ε. We show that for
every 0 < ε < 1, the Fε-CF-FVS problem is W[1]-hard, when parameterized by the solution
size. Towards this, for each (fixed) 0 < ε < 1, we give a parameterized reduction from
Multicolored Biclique to Fε-CF-FVS.

Let (G,A1, · · · , Ak, B1, · · · , Bk) be an instance of Multicolored Biclique. We con-
struct an instance (G′, H ′, k′) of Fε-CF-FVS as follows. Let n = |V (G)|, m = |E(G)|, and
X be a set comprising of n

2
2−ε − n (new) vertices. The vertex set of G′ and H ′ is X ∪ V (G).

For each i ∈ [k], we add a cycle (in arbitrary order) induced on vertices in Ai in G′. Similarly,
we add for each i ∈ [k], a cycle induced on vertices in Bi in G′. Also, we add a cycle induced
on vertices in X to G′. We have E(H ′) = {uv | u ∈ ∪i∈[k]Ai, v ∈ ∪i∈[k]Bi, and uv /∈ E(G)}.
Finally, we set k′ = 2k + 1. Notice that since |V (H ′)| = n

2
2−ε , and |E(H ′)| < n2, therefore,

H ∈ Fε.

I Lemma 5. (G,A1, · · · , Ak, B1, · · · , Bk) is a yes instance of Multicolored Biclique if
and only if (G′, H ′, k′) is a yes instance of Fε-CF-FVS.

Now we are ready to state the main theorem of this section.

I Theorem 6. For 0 < ε < 1, Fε-CF-FVS parameterized by the solution size is W[1]-hard.

MFCS 2018

53:6 Conflict Free Feedback Vertex Set: A Parameterized Dichotomy

4 FPT algorithms for F-CF-FVS for Restricted Conflict Graphs

For a hereditary (closed under taking induced subgraphs) family of graphs F , we show that
if F+Cluster IS is FPT, then F-CF-FVS is FPT. Throughout this section, whenever
we refer to a family of graphs, it will refer to a hereditary family of graphs. To prove our
result, for a family of graphs F , for which F+Cluster IS is FPT, we will design an FPT
algorithm for F -CF-FVS, using the (assumed) FPT algorithm for F+Cluster IS. We note
that this gives us a Turing parameterized reduction from F-CF-FVS to F+Cluster IS.
Our algorithm will use the technique of compression together with branching. We note that
the method of iterative compression was first introduced by Reed, Smith, and Vetta [16],
and in our algorithm, we (roughly) use only the compression procedure from it.

In the following, we let F to be a (fixed hereditary) family of graphs, for which
F+Cluster IS is in FPT. Towards designing an algorithm for F-CF-FVS, we define
another problem, which we call F -Disjoint Conflict Free Feedback Vertex Set (to
be defined shortly). Firstly, we design an FPT algorithm for F -CF-FVS using an assumed
FPT algorithm for F-Disjoint Conflict Free Feedback Vertex Set. Secondly, we
give an FPT algorithm for F -Disjoint Conflict Free Feedback Vertex Set using the
assumed algorithm for F+Cluster IS. In the following, we formally define the problem
F -Disjoint Conflict Free Feedback Vertex Set (F -DCF-FVS, for short)

F-Disjoint Conflict Free Feedback Vertex Set (F-DCF-FVS) Parameter: k

Input: A graph G, a graph H ∈ F , an integer k, a set W ⊆ V (G), a set R ⊆ V (H) \W ,
and a set C, such that the following conditions are satisfied: 1) V (G) ⊆ V (H), 2) G−W
is a forest, 3) the number of connected components in G[W] is at most k, and 4) C is a
set of vertex disjoint subsets of V (H).
Question: Is there a set S ⊆ V (H) \ (W ∪ R) of size at most k, such that G− S is a
forest, S is an independent set in H, and for each C ∈ C, we have |S ∩ C| 6= ∅?

We note that in the definition of F-DCF-FVS, there are three additional inputs (i.e.
W,R and C). The purpose and need for these sets will become clear when we describe the
algorithm for F -DCF-FVS. In Section 4.1, we will prove the following theorem.

I Theorem 7. Let F be a hereditary family of graphs for which there is an FPT algorithm for
F+Cluster IS running in time f(k)nO(1), where n is the number of vertices in the input
graph. Then, there is an FPT algorithm for F-DCF-FVS running in time 16kf(k)nO(1),
where n is the (total) number of vertices in the input graphs.

In the rest of the section, we show how we can use the FPT algorithm for F -DCF-FVS
to obtain an FPT algorithm for F -CF-FVS.

An Algorithm for F-CF-FVS using the algorithm for F-DCF-FVS. Let I = (G,H, k) be
an instance of F -CF-FVS. We start by checking whether or not G has a feedback vertex set
of size at most k, i.e. a set Z of size at most k, such that G−Z is a forest. For this we employ
the algorithm for Feedback Vertex Set running in time O(3.619knO(1)) of Kociumaka
and Pilipczuk [13]. Here, n is the number of vertices in the input graph. Notice that if G does
not have a feedback vertex set of size at most k, then (G,H, k) is a no instance of F -CF-FVS,
and we can output a trivial no instance of F-DCF-FVS. Therefore, we assume that (G, k)
is a yes instance of Feedback Vertex Set, and let Z be one of its solution. We note that
such a set Z can be computed using the algorithm presented in [13]. We generate an instance
IY of F-DCF-FVS, for each Y ⊆ Z, where Y is the guessed (exact) intersection of the set
Z with an assumed (hypothetical) solution to F-CF-FVS in I. We now formally describe
the construction of IY . Consider a set Y ⊆ Z, such that Y is an independent set in H. Let

A. Agrawal, P. Jain, L. Kanesh, D. Lokshtanov, and S. Saurabh 53:7

GY = G − Y , HY = H − Y , kY = k − |Y |, WY = Z \ Y , RY = (NH(Y) \WY) ∩ V (HY),
and CY = ∅. Furthermore, let IY = (GY , HY , kY ,WY , RY , CY), and notice that IY is a
(valid) instance of F -DCF-FVS. Now we resolve IY using the (assumed) FPT algorithm for
F-DCF-FVS, for each Y ⊆ Z, where Y is an independent set in H. It is easy to see that
I is a yes instance of F-CF-FVS if and only if there is an independent set Y ⊆ Z in H,
such that IY is a yes instance of F-DCF-FVS. From the above discussions, we obtain the
following lemma.

I Lemma 8. Let F be a family of graphs for which F-DCF-FVS admits an FPT algorithm
running in time f(k)cknO(1), where n is the (total) number of vertices in the input graph.
Then F-CF-FVS admits an FPT algorithm running in time f(k)(1 + c)knO(1), where n is
the number of vertices in the input graphs.

Using Theorem 7 and Lemma 8, we obtain the main theorem of this section.

I Theorem 9. Let F be a hereditary family of graphs for which there is an FPT algorithm
for F+Cluster IS running in time f(k)nO(1), where n is the number of vertices in the
input graph. Then, there is an FPT algorithm for F-CF-FVS running in time 17kf(k)nO(1),
where n is the number of vertices in the input graphs of F-CF-FVS.

4.1 FPT Algorithm for F-DCF-FVS
The goal of this section is to prove Theorem 7. Let F be a (fixed) hereditary family of
graphs, for which F+Cluster IS admits an FPT algorithm. We design a branching based
FPT algorithm for F -DCF-FVS, using the (assumed) FPT algorithm for F+Cluster IS.

Let I = (G,H, k,W,R, C) be an instance of F-DCF-FVS. In the following we describe
some reduction rules, which the algorithm applies exhaustively, in the order in which they
are stated.

I Reduction Rule 1. Return that (G,H, k,W,R, C) is a no instance of F-DCF-FVS if one
of the following conditions are satisfied:
1. if k < 0,
2. if k = 0 and G has a cycle,
3. k = 0 and C 6= ∅,
4. G[W] has a cycle,
5. if |C| > k, or
6. there is C ∈ C, such that C ⊆ R.

I Reduction Rule 2. If k = 0, G is acyclic, and C = ∅, then return that (G,H, k,W,R, C)
is a yes instance of F-DCF-FVS.

In the following, we state a lemma, which is useful in resolving those instances where the
graph G has no vertices.

I Lemma 10. Let (G,H, k,W,R, C) be an instance of F-DCF-FVS, where Reduction Rules 1
is not applicable and G −W has no vertices. Then, in polynomial time, we can generate
an instance (G′, H ′, k′) of F+Cluster IS, such that (G,H, k,W,R, C) is a yes instance of
F-DCF-FVS if and only if (G′, H ′, k′) is a yes instance of F+Cluster IS.

Lemma 10 leads us to the following reduction rule.

I Reduction Rule 3. If G −W has no vertices, then return the output of algorithm for
F+Cluster IS with the instance generated by Lemma 10.

MFCS 2018

53:8 Conflict Free Feedback Vertex Set: A Parameterized Dichotomy

I Reduction Rule 4. If there is a vertex v ∈ V (G) of degree at most one in G, then return
(G− {v}, H, k,W \ {v}, R, C).

The safeness of Reduction Rule 4 follows from the fact that a vertex of degree at most one
does not participate in any cycle.

I Reduction Rule 5. Let uv ∈ E(G) be an edge of multiplicity greater than 2 in G, and
G′ be the graph obtained from G by reducing the multiplicity of uv in G to 2. Then, return
(G′, H, k,W,R, C).

The safeness of Reduction Rule 5 follows from the fact that for an edge, multiplicity of 2 is
enough to capture multiplicities of size larger than 2.

I Reduction Rule 6. Let v ∈ R be a degree 2 vertex in G with u and w being its neighbors
in G. Furthermore, let G′ be the graph obtained from G by deleting v and adding the (multi)
edge uw. Then, return (G′, H − {v}, k,W,R \ {v}, C).

The safeness of Reduction Rule 6 follows from the fact that a vertex in R cannot be part of
any solution and any cycle (in G) containing v must contain both u and w.

I Reduction Rule 7. If there is v ∈ (V (G) ∩R), such that v has at least two neighbors in
the same connected component of W , then return that (G,H, k,W,R, C) is a no instance of
F-DCF-FVS.

I Reduction Rule 8. If there is v ∈ V (G)\(W ∪R), such that v has at least two neighbors in
the same connected component of W , then return (G−{v}, H −{v}, k− 1,W,R∪NH(v), C).

I Reduction Rule 9. Let v ∈ V (G)∩R, such that NG(v)∩W 6= ∅. Then, return (G,H, k,W∪
{v}, R \ {v}, C).

Let η be the number of connected components in G[W]. In the following, we define the
measure we use to compute the running time of our algorithm.

µ(I) = µ((G,H, k,W,R, C)) = k + η − |C|

Observe that none of the reduction rules that we described increases the measure, and a
reduction rule can be applied only polynomially many time. When none of the reduction
rules are applicable, the degree of each vertex in G is at least two, multiplicity of each edge
in G is at most two, degree two vertices in G do not belong to the set R, and G[W] and
G−W are forests. Furthermore, for each v ∈ V (G) \W , v has at most 1 neighbor (in G) in
a connected component of G[W].

In the following, we state the branching rules used by the algorithm. We assume that
none of the reduction rules are applicable, and the branching rules are applied in the order
in which they are stated. The algorithm will branch on vertices in V (G) \W .

I Branching Rule 1. If there is v ∈ V (G) \W that has at least two neighbors (in G), say
w1, w2 ∈W . Since Reduction Rule 7 and 8 are not applicable, w1 and w2 belong to different
connected components of G[W]. Also, since Reduction Rule 9 is not applicable, we have
v /∈ R. In this case, we branch as follows.
(i) v belongs to the solution. In this branch, we return (G− {v}, H − {v}, k − 1,W,R ∪

NH(v), C).
(ii) v does not belongs to the solution. In this branch, we return (G,H, k,W ∪ {v}, R, C).

A. Agrawal, P. Jain, L. Kanesh, D. Lokshtanov, and S. Saurabh 53:9

In one branch when v belongs to the solution, k decreases by 1, and η and |C| do not change.
Hence, µ decreases by 1. In other branch when v is moved to W , number of components in η
decreases by at least one, and k and |C| do not change. Therefore, µ decreases by at least 1.
The resulting branching vector for the above branching rule is (1, 1).

If Branching Rule 1 is not applicable, then each v ∈ V (G) \W has at most one neighbor
(in G) in the set W . Moreover, since Reduction Rule 4 is not applicable, each leaf in G−W
has a neighbor in W .

In the following, we introduce some notations, which will be used in the description of
our branching rules. Recall that G−W is a forest. Consider a connected component T in
G−W . A path Puv from a vertex u to a vertex v in T is nice if u and v are of degree at
least 2 in G, all internal vertices (if they exist) of Puv are of degree exactly 2 in G, and v is a
leaf in T . In the following, we state an easy proposition, which will be used in the branching
rules that we design.

I Proposition 1. Let (G,H, k,W,R, C) be an instance of F-DCF-FVS, where none of
Reduction Rule 1 to 9 or Branching Rule 1 apply. Then there are vertices u, v ∈ V (G) \W ,
such that the unique path Puv in G−W is a nice path.

Consider u, v ∈ V (G)\W , for which there is a nice path Puv in T , where T is a connected
component of G−W . Since Reduction Rule 4 is not applicable, either u has a neighbor in
W , or u has degree at least 2 in T . From the above discussions, together with Proposition 1,
we design the remaining branching rules used by the algorithm. We note that the branching
rules that we describe next is similar to the one given in [3].

I Branching Rule 2. Let v ∈ V (G) \W be a leaf in G−W for which the following holds.
There is u ∈ V (G) \W , such that NG(u) ∩W 6= ∅ and there is a nice path Puv from u to
v in G −W . Let C = V (Puv) \ {u}, u′ and v′ be the neighbors (in G) of u and v in W ,
respectively. Observe that since Reduction Rule 9 is not applicable, we have u, v /∈ R. We
further consider the following cases, based on whether or not u′ and v′ are in the same
connected component of G[W].
Case 2.A. u′ and v′ are in the same connected component of G[W]. In this case, G[V (Puv)∪

W] contains exactly one cycle, and this cycle contains all vertices of V (Puv) (consecut-
ively). Since vertices in W cannot be part of any solution, either u belongs to the solution
or a vertex from C belongs to the solution. Moreover, any cycle in G containing v must
contain all vertices in V (Puv), consecutively. This leads to the following branching rule.
(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u}, k − 1,W,R ∪

NH(u), C).
(ii) u does not belong to the solution. In this branch, we return (G−C,H, k,W,R, C∪{C}).
In the first branch k decreases by one, and η and |C| do not change. Therefore, µ decreases
by 1. On the second branch |C| increases by 1, and k and η do not change, and therefore,
µ decreases by 1. The resulting branching vector for the above branching rule is (1, 1).

Case 2.B. u′ and v′ are in different connected component of G[W]. In this case, we branch
as follows.
(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u},W, k − 1, R ∪

NH(u), C).
(ii) A vertex from C is in the solution. In this branch, we return (G−C,H, k,W,R, C∪{C}).
(iii) No vertex in {u} ∪ C is in the solution. In this branch, we add all vertices in {u} ∪ C

to W . That is, we return (G,H, k,W ∪ ({u} ∪ C), R \ ({u} ∪ C), C).

MFCS 2018

53:10 Conflict Free Feedback Vertex Set: A Parameterized Dichotomy

v

v′ u′

u v

v′ u′

u

W T

V (G) \W

WT1 T2

V (G) \W

(a) (b)

Figure 1 The cases handled by Branching Rule 2, (a) T is a connected component in G[W],
similarly in (b) T1, T2 are connected components in G[W].

In the first branch k decreases by one, and η and |C| do not change. Therefore, µ decreases
by 1. On the second branch |C| increases by 1, and k and η do not change, and therefore,
µ decreases by 1. In the third branch, η decreases by one, and k and |C| do not change.
The resulting branching vector for the above branching rule is (1, 1, 1).

I Branching Rule 3. There is u ∈ V (G) \W which has (at least) two nice paths, say Puv1

and Puv2 to leaves v1 and v2 (in G−W). Let C1 = V (Puv1) \ {u} and C2 = V (Puv2) \ {u}.
We further consider the following cases depending on whether or not v1 and v2 have neighbors
(in G) in the same connected component of G[W] and u ∈ R.
Case 3.A. v1 and v2 have neighbors (in G) in the same connected component of G[W] and

u ∈ R. In this case, G[W ∪ {u} ∪ C1 ∪ C2] contains (at least) one cycle, and u cannot
belong to any solution. Therefore, we branch as follows.
(i) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R,

C ∪ {C1}).
(ii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R,

C ∪ {C2}).
Notice that in both the branches µ decreases by 1, and therefore, the resulting branching
vector is (1, 1).

Case 3.B. v1 and v2 have neighbors (in G) in the same connected component of G[W] and
u /∈ R. In this case, G[W ∪ {u} ∪ C1 ∪ C2] contains (at least) one cycle. We branch as
follows.
(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u}, k − 1,W,R ∪

NH(u), C).
(ii) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R,

C ∪ {C1}).
(iii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R,

C ∪ {C2}).
Notice that in all the three branches µ decreases by 1, and therefore, the resulting branching
vector is (1, 1, 1).

Case 3.C. If v1 and v2 have neighbors in different connected components of G[W] and u ∈ R.
In this case, we branch as follows.
(i) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R,

C ∪ {C1}).

A. Agrawal, P. Jain, L. Kanesh, D. Lokshtanov, and S. Saurabh 53:11

v1

w′ w

v2

u

v1

w′ w

v2

u

W T

V (G) \W

WT1 T2

V (G) \W

(a) (b)

Figure 2 The cases handled by Branching Rule 3, In (a) T is a connected component in G[W],
similarly in (b) T1, T2 are connected components in G[W].

(ii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R,

C ∪ {C2}).
(iii) No vertex from C1 ∪ C2 belongs to the solution. In this case, we add all vertices in

{u}∪C1∪C2 to W . That is, the resulting instance is (G,H, k,W ∪ ({u}∪C1∪C2), R\
({u} ∪ C1 ∪ C2), C).

Notice that in all the three branches µ decreases by 1, and therefore, the resulting branching
vector is (1, 1, 1).

Case 3.D. If v1 and v2 have neighbors in different connected components of G[W] and u /∈ R.
In this case, we branch as follows.
(i) u belongs to the solution. In this branch, we return (G− {u}, H − {u}, k − 1,W,R ∪

NH(u), C).
(ii) A vertex from C1 belongs to the solution. In this branch, we return (G−C1, H, k,W,R,

C ∪ {C1}).
(iii) A vertex from C2 belongs to the solution. In this branch, we return (G−C2, H, k,W,R,

C ∪ {C2}).
(iv) No vertex from {u} ∪ C1 ∪ C2 belongs to the solution. In this case, we add all vertices

in {u} ∪ C1 ∪ C2 to W . That is, the resulting instance is (G,H, k,W ∪ ({u} ∪ C1 ∪
C2), R \ ({u} ∪ C1 ∪ C2), C).

Notice that in all the four branches µ decreases by 1, and therefore, the resulting branching
vector is (1, 1, 1, 1).

This completes the description of the algorithm. By showing the correctness of the
presented algorithm, together with computation of the running time of the algorithm
appropriately, we obtain the proof of Theorem 7.

5 FPT Algorithm for Ki,j-free+Cluster IS

In this section, we give an FPT algorithm forKi,j-free+Cluster IS, which is the F+Cluster
IS where F is family of Ki,j-free graphs. Here, i, j ∈ N, 1 ≤ i ≤ j. In the following we
consider a (fixed) family of Ki,j-free graphs. To design an FPT algorithm for F+Cluster
IS, we define another problem called Large Ki,j-free+Cluster IS. The problem Large
Ki,j-free+Cluster IS is formally defined below.

MFCS 2018

53:12 Conflict Free Feedback Vertex Set: A Parameterized Dichotomy

Large Ki,j-free+Cluster IS Parameter: k

Input: A Ki,j-free graph G, a cluster graph H (G and H are on the same vertex set),
and an integer k, such that the following conditions are satisfied: 1) H has exactly k
connected components, and 2) each connected component of H has at least kk vertices.
Question: Is there a set S ⊆ V (G) of size k such that S is an independent set in both
G and in H?

In Section 5.1, we design a polynomial time algorithm for the problem Large Ki,j-
free+Cluster IS. In the rest of this section, we show how to use the polynomial time al-
gorithm for LargeKi,j-free+Cluster IS to obtain an FPT algorithm forKi,j-free+Cluster
IS.

I Theorem 11. Ki,j-free+Cluster IS admits an FPT algorithm running in time O(kk2

nO(1)), where n is the number of vertices in the input graph.

Proof. Let (G,H, k) be an instance of Ki,j-free+Cluster IS, and let C = {C1, C2, · · · , Ck}
be the set of connected components in H. If k ≤ 0, we can correctly resolve the instance
in polynomial time (by appropriately outputting yes or no answer). Therefore, we assume
k ≥ 1. If for each C ∈ C, we have |V (C)| ≥ kk, then (G,H, k) is also an instance of Large
Ki,j-free+Cluster IS, and therefore we resolve it in polynomial time using the algorithm
for Large Ki,j-free+Cluster IS (Section 5.1). Otherwise, there is C ∈ C, such that
|V (C)| < kk. Any solution to Ki,j-free+Cluster IS in (G,H, k) must contain exactly one
vertex from C. Moreover, if a vertex v ∈ V (C) is in the solution, then none of its neighbors
in G and in H can belong to the solution. Therefore, we branch on vertices in C as follows.
For each v ∈ V (C), create an instance Iv(G− (NH(v)∪NG(v)), H − (NH(v)∪NG(v)), k− 1)
of Ki,j-free+Cluster IS. If number of connected components in H − N [C] is less than
k − 1, then we call such an instance Iv as invalid instance, otherwise the instance is a valid
instance. Notice that for v ∈ V (C), if Iv is an invalid instance, then v cannot belong to any
solution. Thus, we branch on valid instances of Iv, for v ∈ V (C). Observe that (G,H, k)
is a yes instance of Ki,j-free+Cluster IS if and only if there is a valid instance Iv, for
v ∈ V (C), which is a yes instance of Ki,j-free+Cluster IS. Therefore, we output the OR
of results obtained by resolving valid instances Iv, for v ∈ V (C).

In the above we have designed a recursive algorithm for the problem Ki,j-free+Cluster
IS. In the following, we prove the correctness and claimed running time bound of the
algorithm. We show this by induction on the measure µ = k. For µ ≤ 0, the algorithm
correctly resolve the instance in polynomial time. This forms the base case of our induction
hypothesis. We assume that the algorithm correctly resolve the instance for each µ ≤ δ,
for some δ ∈ N. Next, we show that the correctness of the algorithm for µ = δ + 1. We
assume that k > 0, otherwise, the algorithm correctly outputs the answer. The algorithm
either correctly resolves the instance in polynomial time using the algorithm for Large
Ki,j-free+Cluster IS, or applies the branching step. When the algorithm resolves the
instance in polynomial time using the algorithm for Large Ki,j-free+Cluster IS, then
the correctness of the algorithm follows from the correctness of the algorithm for Large
Ki,j-free+Cluster IS. Otherwise, the algorithm applies the branching step. The branching
is exhaustive, and the measure strictly decreases in each of the branches. Therefore, the
correctness of the algorithm follows form the induction hypothesis. This completes the proof
of correctness of the algorithm.

For the proof of claimed running time notice that the the worst case branching vector is
is given by the kk vector of all 1s, and at the leaves we resolve the instances in polynomial
time. Thus, the claimed bound on the running time of the algorithm follows. J

A. Agrawal, P. Jain, L. Kanesh, D. Lokshtanov, and S. Saurabh 53:13

5.1 Polynomial Time Algorithm for Large Ki,j-free+Cluster IS
Consider a (fixed) family of Ki,j-free graphs, where 1 ≤ i ≤ j. The goal of this section is to
design a polynomial time algorithm for Large Ki,j-free+Cluster IS. Let (G,H, k) be an
instance of Large Ki,j-free+Cluster IS, where G is a Ki,j-free graph and H is a cluster
graph with k connected components. We assume that k > i+ j + 2, as otherwise, we can
resolve the instance in polynomial time (using brute-force). Let C = {C1, C2, · · · , Ck} be the
set of connected components in H, such that |V (C1)| ≥ |V (C2)| ≥ · · · ≥ |V (Ck)|.

We start by stating/proving some lemmata, which will be helpful in designing the
algorithm.

I Lemma 12. [5] The number of edges in a Ki,j-free graph are bounded by n2−ε, where
ε = ε(i, j) ∈ (0, 1].

I Lemma 13. Let (G,H, k) be an instance of Large Ki,j-free+Cluster IS. There exists
v ∈ V (C1), such that for each C ∈ C \ {C1}, we have |NG(v) ∩ C| ≤ 2j|C|

k .

Proof. Consider a connected component C ∈ C \ {C1}, and let x = |C1| and y = |C|.
Furthermore, let E(C1, C) = {uv ∈ E(G) | u ∈ C1, v ∈ V (C)}. In the following, we prove
some claims which will be used to obtain the proof of the lemma.

I Claim 14. |E(C1, C)| ≤ jyi + jx.

Proof. Consider the partition of V (C1) in two parts, namely, C1
h and C1

` , where C1
h = {v ∈

V (C1) | |NG(v) ∩ V (C)| ≥ i} and C1
` = V (C1) \ C1

h.

|E(C1, C)| =
∑
v∈C1

|NG(v) ∩ V (C)| =
∑
v∈C1

h

|NG(v) ∩ V (C)|+
∑
v∈C1

l

|NG(v) ∩ V (C)|.

By construction of C1
` , we have

∑
v∈C1

`
|NG(v) ∩ V (C)| < ix. In the following, we bound∑

v∈C1
h
|NG(v) ∩ V (C)|. Since G is a Ki,j-free graph, therefore, any set of i vertices in

V (C) can have at most j − 1 common neighbors (in G) from V (C1), and in particular
from C1

h. Moreover, every v ∈ C1
h has at least i neighbors in NG(v) ∩ V (C). Therefore,∑

v∈C1
h
|NG(v)∩V (C)| ≤ i(j−1)

(
y
i

)
. Hence, |E(C1, C)| ≤ i(j−1)

(
y
i

)
+ ix ≤ i(j−1)y

i

i! + ix ≤
jyi + jx. J

Let Adeg(C1, C) denote average degree of vertices in set C1 in G[E(C1, C)]. That is,
Adeg(C1, C) = |E(C1,C)|

|C1| . In the following claim, we give a bound on Adeg(C1, C).

I Claim 15. Adeg(C1, C) ≤ 2jy
k2 .

Proof. From Claim 14, we have |E(C1, C)| ≤ jyi + jx. Therefore, Adeg(C1, C) ≤ j + jyi

x .
Using Lemma 12, we have Adeg(C1, C) ≤ (x+y)2−ε

x ≤ 4x1−ε. To prove the claim, us consider
the following cases:
Case 1. x ≥ k2yi−1. In this case, using the inequality Adeg(C1, C) ≤ j + jyi

x , we have
Adeg(C1, C) ≤ j + jy

k2 . Since y > k2 (and k > 5), we have Adeg(C1, C) ≤ 2jy
k2 .

Case 2. x < k2yi−1. In this case, we use the inequality Adeg(C1, C) ≤ 4x1−ε, to obtain
Adeg(C1, C) < 4k2(1−ε)y(i−1)(1−ε) < 4k2y

y(2−i)+ε(i−1) . Since y ≥ kk, we have y(2−i)+ε(i−1) >
2k4

j . Therefore, we have Adeg(C1, C) < 2jy
k2 . J

MFCS 2018

53:14 Conflict Free Feedback Vertex Set: A Parameterized Dichotomy

Algorithm 1 (G,H, k): Greedy algorithm for Large Ki,j-free+Cluster IS.
1: t = k and S = ∅;
2: while t > 2j do
3: Let C1, · · · , Ct be the connected components of H , sorted in decreasing order of their

sizes;
4: Let v ∈ V (C1) be a vertex which satisfies the condition of Lemma 13;
5: Add v to S;
6: Decrease t by 1;
7: G = G− (NG(v) ∪NH [v]) and H = H − (NG(v) ∪NH [v]);
8: end while
9: Solve (G,H, t) by a brute force algorithm, as t ≤ 2j;

In the following, we will give a probabilistic argument on the existence of a vertex with
the desired properties in the lemma statement. For v ∈ V (C1), let deg(v, C) denote the size
of |NG(v) ∩ V (C)|. From Claim 15, we have Adeg(C1, C) ≤ 2jy

k2 . Using Markov’s inequality,
the upper bound on the probability that deg(v, C) ≥ 2jy

k is P (deg(v, C) ≥ 2jy
k) ≤ 1

k . Using
Boole’s inequality (the union bound), the probability that deg(v, C) is greater than or equal
to 2j|C|

k for at least one C ∈ C \ {C1} is bounded by P (∪C∈C\{C1}deg(v, C) ≥ 2j|C|
k) ≤

1
k .(k − 1) < 1. This implies that probability that deg(v, C) ≤ 2j|C|

k , for each C ∈ C \ {C1} is
greater than 0. This completes the proof. J

We are now ready to describe our algorithm, which is given in Algorithm 1.

I Lemma 16. Algorithm 1 for Large Ki,j-free+Cluster IS is correct and runs in poly-
nomial time.

Proof. We first prove the correctness of the algorithm using induction on, t. The base case
is when 1 ≤ t ≤ 2j. The algorithm correctly resolve the instance using brute force. For
the induction hypothesis, we assume that the algorithm is correct for each t ≤ d− 1. Next,
we show that the algorithm is correct for t = d. Let C1, · · · , Cd be the set of connected
components in H, sorted in decreasing order of their sizes. By Lemma 13, there is v ∈ C1,
such that for each C ∈ C \ {C1}, we have deg(v, C) ≤ 2j|C|

d .
We delete all vertices in NH [v] ∪ NG(v) from G and H. Observe that from each C ∈

C \ {C1}, we have deleted at most 2j|C|
d vertices, which are neighbors of v in G. Let

C ′ = C \ (NH [v] ∪NG(v)) = C \NG(v). It is enough to show that |C ′| ≥ (d− 1)(d−1). Note
that |C ′| ≥ |C| − 2j|C|

d . As base case is not applicable, we can assume that d > 2j. Hence,
|C ′| ≥ |C|(1− 2j

d) ≥ dd(1− 2j
d) ≥ dd−1(d− 2j) ≥ (d− 1)(d−1).

This concludes the proof of correctness of the algorithm. At each step we either sort the
components on the basis of their size or find a vertex of lower degree which can be carried
out in polynomial time, or solve the instance using brute force approach, where the solution
size we are seeking for is bounded by a constant (at most 2j). Moreover, the algorithm
terminates after at most k iterations. Thus, the running time of the algorithm is bounded by
a polynomial in the size of the input. J

Using Lemma 16, we obtain the following theorem.

I Theorem 17. The problem Large Ki,j-free+Cluster IS admits a polynomial time
algorithm.

A. Agrawal, P. Jain, L. Kanesh, D. Lokshtanov, and S. Saurabh 53:15

References
1 Akanksha Agrawal, Sushmita Gupta, Saket Saurabh, and Roohani Sharma. Improved

algorithms and combinatorial bounds for independent feedback vertex set. In IPEC,
volume 63 of LIPIcs, pages 2:1–2:14, 2016.

2 Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov, and Saket Saurabh. A faster FPT
algorithm and a smaller kernel for block graph vertex deletion. In LATIN, volume 9644 of
LNCS, pages 1–13, 2016.

3 Akanksha Agrawal, Daniel Lokshtanov, Amer E. Mouawad, and Saket Saurabh. Simultan-
eous feedback vertex set: A parameterized perspective. In STACS, pages 7:1–7:15, 2016.

4 Matthias Bentert, René van Bevern, and Rolf Niedermeier. (wireless) scheduling, graph
classes, and c-colorable subgraphs. CoRR, abs/1712.06481, 2017. URL: http://arxiv.
org/abs/1712.06481.

5 Béla Bollobás. Extremal graph theory. Courier Corporation, 2004.
6 Leizhen Cai and Junjie Ye. Dual connectedness of edge-bicolored graphs and beyond. In

MFCS, volume 8635, pages 141–152, 2014.
7 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved

algorithms for feedback vertex set problems. Journal of Computer and System Sciences,
74(7):1188–1198, 2008.

8 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

9 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

10 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theoretical computer
science, 410(1):53–61, 2009.

11 Zoltán Füredi. On the number of edges of quadrilateral-free graphs. Journal of Combinat-
orial Theory, Series B, 68(1):1–6, 1996.

12 Pallavi Jain, Lawqueen Kanesh, and Pranabendu Misra. Conflict free version of covering
problems on graphs: Classical and parameterized. In CSR, pages 194–206, 2018.

13 Tomasz Kociumaka and Marcin Pilipczuk. Faster deterministic feedback vertex set. In-
formation Processing Letters, 114(10):556–560, 2014.

14 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. On paramet-
erized independent feedback vertex set. Theoretical Computer Science, 461:65–75, 2012.

15 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, Saket Saurabh, and Somnath
Sikdar. FPT algorithms for connected feedback vertex set. Journal of Combinatorial
Optimization, 24(2):131–146, 2012.

16 Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Opera-
tions Research Letters, 32(4):299–301, 2004.

17 Jan Arne Telle and Yngve Villanger. FPT algorithms for domination in biclique-free graphs.
In ESA, pages 802–812, 2012.

18 René van Bevern, Matthias Mnich, Rolf Niedermeier, and Mathias Weller. Interval schedul-
ing and colorful independent sets. Journal of Scheduling, 18(5):449–469, 2015.

MFCS 2018

http://arxiv.org/abs/1712.06481
http://arxiv.org/abs/1712.06481

Largest Weight Common Subtree Embeddings
with Distance Penalties

Andre Droschinsky
Department of Computer Science, TU Dortmund University
Otto-Hahn-Str. 14, 44221 Dortmund, Germany
andre.droschinsky@tu-dortmund.de

https://orcid.org/0000-0002-7983-3739

Nils M. Kriege
Department of Computer Science, TU Dortmund University
Otto-Hahn-Str. 14, 44221 Dortmund, Germany
nils.kriege@tu-dortmund.de

https://orcid.org/0000-0003-2645-947X

Petra Mutzel
Department of Computer Science, TU Dortmund University
Otto-Hahn-Str. 14, 44221 Dortmund, Germany
petra.mutzel@tu-dortmund.de

https://orcid.org/0000-0001-7621-971X

Abstract
The largest common embeddable subtree problem asks for the largest possible tree embeddable
into two input trees and generalizes the classical maximum common subtree problem. Several
variants of the problem in labeled and unlabeled rooted trees have been studied, e.g., for the
comparison of evolutionary trees. We consider a generalization, where the sought embedding
is maximal with regard to a weight function on pairs of labels. We support rooted and un-
rooted trees with vertex and edge labels as well as distance penalties for skipping vertices. This
variant is important for many applications such as the comparison of chemical structures and
evolutionary trees. Our algorithm computes the solution from a series of bipartite matching
instances, which are solved efficiently by exploiting their structural relation and imbalance. Our
analysis shows that our approach improves or matches the running time of the formally best
algorithms for several problem variants. Specifically, we obtain a running time of O(|T | |T ′|∆)
for two rooted or unrooted trees T and T ′, where ∆ = min{∆(T),∆(T ′)} with ∆(X) the max-
imum degree of X. If the weights are integral and at most C, we obtain a running time of
O(|T | |T ′|

√
∆ log(C min{|T |, |T ′|})) for rooted trees.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases maximum common subtree, largest embeddable subtree, topological em-
bedding, maximum weight matching, subtree homeomorphism

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.54

Funding This work was supported by the German Research Foundation (DFG), priority pro-
gramme “Algorithms for Big Data” (SPP 1736).

© Andre Droschinsky, Nils M. Kriege, and Petra Mutzel;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 54; pp. 54:1–54:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andre.droschinsky@tu-dortmund.de
https://orcid.org/0000-0002-7983-3739
mailto:nils.kriege@tu-dortmund.de
https://orcid.org/0000-0003-2645-947X
mailto:petra.mutzel@tu-dortmund.de
https://orcid.org/0000-0001-7621-971X
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.54
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

54:2 Largest Weight Common Subtree Embeddings

1 Introduction

The maximum common subgraph problem asks for a graph with a maximum number
of vertices that is isomorphic to induced subgraphs of two input graphs. This problem
arises in many domains, where it is important to find the common parts of objects which
can be represented as graphs. An example of this are chemical structures, which can be
interpreted directly as labeled graphs. Therefore, the problem has been studied extensively
in cheminformatics [5, 16, 17]. Although elaborated backtracking algorithms have been
developed [16, 2], solving large instances in practice is a great challenge. The maximum
common subgraph problem is NP-hard and remains so even when the input graphs are
restricted to trees [6]. However, in trees it becomes polynomial-time solvable when the
common subgraph is required to be connected, i.e., it must be a tree itself. This problem is
then referred to as maximum common subtree problem and the first algorithm solving it in
polynomial-time is attributed to J. Edmonds [12]. Also requiring that the common subgraph
must be connected (or even partially biconnected) several extensions to tree-like graphs
have been proposed, primarily for applications in cheminformatics [19, 17, 3]. Some of these
approaches are not suitable for practical applications due to high constants hidden in the
polynomial running time. Other algorithms are efficient in practice, but restrict the search
space to specific common subgraphs. Instead of developing maximum common subgraph
algorithms for more general graph classes, which has proven difficult, a different approach
is to represent molecules simplified as trees [15]. Then, vertices typically represent groups
of atoms and their comparison requires to score the similarity of two vertices by a weight
function. This, however, is often not supported by algorithms for tree comparison. Moreover,
it maybe desirable to map a path in one tree to a single edge in the other tree, skipping the
inner vertices. Formally, this is achieved by graph homeomorphism instead of isomorphism.

Various variants for comparing trees have been proposed and investigated [18]. Most of
them assume rooted trees, which may be ordered or unordered. Algorithms tailored to the
comparison of evolutionary trees typically assume only the leaves to be labeled, while others
support labels on all vertices or do not consider labels at all. The well-known agreement
subtree problem, for example, considers the case, where only the leaf nodes are labeled, with
no label appearing more than once per tree [11]. We discuss the approaches most relevant
for our work. Gupta and Nishimura [8] investigated the largest common embeddable subtree
problem in unlabeled rooted trees. Their definition is based on topological embedding (or
homeomorphism) and allows to map edges of the common subtree to vertex-disjoint paths
in the input trees. The algorithm uses the classical idea to decompose the problem into
subproblems for smaller trees, which are solved via bipartite matching. A solution for two
trees with at most n vertices is computed in time O(n2.5 log n) using a dynamic programming
approach. Fig. 1a illustrates the difference between maximum common subgraph and largest
common embeddable subtree. Lozano and Valiente [10] investigated the maximum common
embedded subtree problem, which is based on edge contraction. In both cases the input graphs
are rooted unlabeled trees. Note, the definition of their problems is not equivalent. The first
is polynomial time solvable, while the second is NP-hard for unordered trees, but polynomial
time solvable for ordered trees. Many algorithms do not support trees, where leaves and the
inner vertices both have labels. A notable exception is the approach by Kao et al. [9], where
only vertices with the same label may be mapped. This algorithm generalizes the approach
by Gupta/Nishimura and improves its running time to O(

√
dD log 2n

d), where D denotes the
number of vertex pairs with the same label and d the maximum degree of all vertices.

We consider the problem of finding a largest weight common subtree embedding (LaWeCSE),
where matching vertices are not required to have the same label, but their degree of agreement
is determined by a weight function. We build on the basic ideas of Gupta and Nishimura [8].

A. Droschinsky, N. Kriege, and P. Mutzel 54:3

To prevent arbitrarily long paths which are mapped to a common edge we study a linear
distance penalty for paths of length greater than 1. Note that, by choosing a high distance
penalty, we solve the maximum common subtree (MCS) problem as a special case. By
choosing weight 1 for equal labels and sufficiently small negative weights otherwise, we solve
a problem equivalent to the one studied by Kao et al. [9].

Our contribution. We propose and analyze algorithms for finding largest weight common
subtree embeddings. Our method requires to solve a series of bipartite matching instances
as subproblem, which dominates the total running time. We build on recent results by
Ramshow and Tarjan [13, 14] for unbalanced matchings. Let T and T ′ be labeled rooted
trees with k := |T | and l := |T ′| vertices, respectively, and ∆ := min{∆(T),∆(T ′)} the
smaller degree of the two input trees. For real-valued weight functions we prove a time
bound of O(kl∆). For integral weights bounded by a constant C we prove a running time
of O(kl

√
∆ log(min{k, l}C)). This is an improvement over the algorithm by Kao et al. [9]

if there are only few labels and the maximum degree of one tree is much smaller than the
maximum degree of the other. In addition, we support weights and a linear penalty for
skipped vertices.

Moreover, the algorithm by Kao et al. [9] is designed for rooted trees only. A straight
forward approach to solve the problem for unrooted trees is to try out all pairs of possible
roots, which results in an additional O(kl) factor. However, our algorithm exploits the fact
that there are many similar matching instances using techniques related to [1, 4]. This
includes computing additional matchings of cardinality two. For unrooted trees and real-
valued weight functions we prove the same O(kl∆) time bound as for rooted trees. This
leads to an improvement over the formally best algorithm for solving the maximum common
subtree problem, for which a time bound of O(kl (∆ + log d)) has been proven [4].

2 Preliminaries

We consider finite simple undirected graphs unless stated otherwise. Let G = (V,E) be a
graph, we refer to the set of vertices V by V (G) or VG and to the set of edges by E(G)
or EG. An edge connecting two vertices u, v ∈ V is denoted by uv or vu. The order
|G| of a graph G is its number of vertices. The neighbors of a vertex v are defined as
N(v) := {u ∈ VG | vu ∈ EG}. The degree of a vertex v ∈ VG is δ(v) := |N(v)|, the degree
∆(G) of a graph G is the maximum degree of its vertices. In case of a directed graph (digraph)
we call its edges arcs, denoted by (u, v), i.e., an edge from u to v.

A path P is a sequence of pairwise disjoint vertices connected through edges (or arcs) and
denoted as P = (v0, e1, v1, . . . , el, vl), where ei = vi−1vi (or ei = (vi−1, vi)), i ∈ {1, . . . , l}.
We alternatively specify the vertices (v0, . . . , vl) or edges (e1, . . . , el) only. The length of a
path is its number of edges. A connected graph with a unique path between any two vertices
is a tree. A tree T with an explicit root vertex r ∈ V (T) is called rooted tree, denoted by T r.
In a rooted tree T r we denote the set of children of a vertex v by C(v) and its parent by
p(v), where p(r) = r. For any tree T and two vertices u, v ∈ V (T) the rooted subtree Tu

v is
induced by the vertex v and its descendants related to the tree Tu. If the root r is clear from
the context, we may abbreviate Tv := T r

v . We refer to the root of a rooted tree T by r(T).
If the vertices of a graph G can be separated into exactly two disjoint sets V, U such

that E(G) ⊆ V × U , then the graph is called bipartite. In many cases the disjoint sets are
already given as part of the input. In this case we write G = (V t U,E), where E ⊆ V × U .

MFCS 2018

54:4 Largest Weight Common Subtree Embeddings

For a graph G = (V,E) a matching M ⊆ E is a set of edges, such that no two edges share
a vertex. An edge e ∈M is denoted matched. A vertex incident to an edge e ∈M is denoted
matched; otherwise it’s free. For an edge uv ∈M , the vertex u is the partner of v and vice
versa. The cardinality of a matching M is its number of edges |M |. A weighted graph is
a graph endowed with a function w : E → R. The weight of a matching M in a weighted
graph is W (M) :=

∑
e∈M w(e). We call a matching M of a weighted graph G a maximum

weight matching (MWM) if there is no other matching M ′ of G with W (M ′) > W (M). A
matching M in G is a MWM of cardinality k (MWMk) if there is no other matching M ′ of
cardinality k in G with W (M ′) > W (M).

For convenience we define the maximum of an empty set as −∞.

3 Gupta and Nishimura’s algorithm

In this section we formally define a Largest Common Subtree Embedding (LaCSE) and present
a brief overview of Gupta and Nishimura’s algorithm to compute such an embedding. The
following two definitions are based on [8].

I Definition 1 (Topological Embedding). A rooted tree T is topologically embeddable in a
rooted tree T ′ if there is an injective function ψ : V (T)→ V (T ′), such that ∀a, b, c ∈ V (T)
i) If b is a child of a, then ψ(b) is a descendant of ψ(a).
ii) For distinct children b, c of a, the paths from ψ(a) to ψ(b) and from ψ(a) to ψ(c) have

exactly ψ(a) in common.
T is root-to-root topologically embeddable in T ′, if ψ(r(T)) = r(T ′).

I Definition 2 ((Largest) Common Subtree Embedding; (La)CSE). Let T and T ′ be rooted
trees and S be topologically embeddable in both T and T ′. For such a S let ψ : V (S)→ V (T)
and ψ′ : V (S)→ V (T ′) be topological embeddings.

Then ϕ := ψ′ ◦ ψ−1 : ψ(VS)→ ψ′(VS) is a Common Subtree Embedding.
If there is no other tree S′ topologically embeddable in both T and T ′ with |S′| > |S|,
then S is a Largest Common Embeddable Subtree and ϕ is a Largest Common Subtree
Embedding.
An CSE with ϕ(r(T)) = r(T ′) is a root-to-root CSE.
A root-to-root CSE is largest, if it is of largest weight among all root-to-root common
subtree embeddings.

Algorithm from Gupta and Nishimura. Gupta and Nishimura [8] presented an algorithm
to compute the size of a largest common embeddable subtree based on dynamic programming,
which is similar to the computation of a largest common subtree, described in, e.g., [12, 4].
Let T and T ′ be rooted trees and L be a table of size |T ||T ′|. For each pair of vertices
u ∈ T, v ∈ T ′ the value L(u, v) stores the size of a LaCSE between the rooted subtrees Tu

and T ′v. Gupta and Nishimura proved, that an entry L(u, v) is determined by the maximum
of the following three quantities.

M1 = max{L(u, c) | c ∈ C(v)}
M2 = max{L(b, v) | b ∈ C(u)}
M3 = W (M)+1, whereM is a MWM of the complete bipartite graph (C(u)tC(v), C(u)×
C(v)) with edge weight w(bc) = L(b, c) for each pair (b, c) ∈ C(u)× C(v).

Here, M1 represents the case, where the vertex v is not mapped. To satisfy ii) from Def. 1,
we may map at most one child c ∈ C(v). M2 represents the case, where u is not mapped
and at most one child b ∈ C(u) is allowed. M3 represents the case ϕ(u) = v. To maximize

A. Droschinsky, N. Kriege, and P. Mutzel 54:5

the number of mapped descendants we compute a maximum weight matching, where the
children of u and v are the vertex sets C(u) and C(v), respectively, of a bipartite graph.
The edge weights are determined by the previously computed solutions, i.e., the LaCSEs
between the children of u and v and their descendants, namely between Tb and T ′c for each
pair of children (b, c). The algorithm proceeds from the leaves to the roots. From the above
recursive formula, we get L(u, v) = 1 if u or v is a leaf, which was separately defined in [8].

A maximum value in the table yields the size of a LaCSE. We obtain the size of a
root-to-root LaCSE from M3 of the root vertices r(T), r(T ′). Note, with storing O(|L|)
additional data, it is easy to obtain a (root-to-root) LaCSE ϕ.

I Theorem 3 (Gupta, Nishimura, [8]). Computing a LaCSE between two rooted trees of order
at most n is possible in time O(n2.5 log n).

4 Largest Weight Common Subtree Embeddings

First, we introduce weighted common subtree embeddings between labeled trees. Part of the
input is an integral or real weight function on all pairs of the labels. Next, we consider a
linear distance penalty for skipped vertices in the input trees. After formalizing the problem
and presenting an algorithm, we prove new upper time bounds.

Vertex Labels. In many application domains the vertices of the trees need to be distin-
guished. A common representation of a vertex labeled tree T is (T, l), where l : V (T)→ Σ
with Σ as a finite set of labels. Let ω : Σ× Σ→ R ∪ {−∞} assign a weight to each pair of
labels. Instead of maximizing the number of mapped vertices, we want to maximize the sum
of the weights ω(l(u), l(ϕ(u))) of all vertices u mapped by a common subtree embedding ϕ.
For simplicity, we will omit l and l′ for the rest of this paper and define ω(u, v) := ω(l(u), l′(v))
for any two vertices (u, v) ∈ V (T)× V (T ′).

Edge Labels. Although not as common as vertex labels, edge labels are useful to represent
different bonds between atoms or relationship between individuals. In a common subtree
embedding we do not map edges to edges but paths to paths. Since in an embedding inner
vertices on mapped paths do not contribute to the weight, we do the same with edges. I.e.,
both paths need to have length 1 for their edge labels to be considered. Here again, we
want to maximize the weight ω(e, e′) := ω(l(e), l′(e′)) of these edges mapped to each other
(additional to the weight of the mapped vertices).

Distance Penalties. Depending on the application purpose it might be desirable that paths
do not have an arbitrary length. Here, we introduce a linear distance penalty for paths of
length greater than 1. I.e., each inner vertex on a path corresponding to an edge of the
common embeddable subtree lowers the weight by a given penalty p. By assigning p the value
∞ we effectively compute a maximum common subtree. The following definition formalizes
a LaCSE under a weight function ω and a distance penalty p.

I Definition 4 (Largest Weight Common Subtree Embedding; LaWeCSE). Let (T, l) and
(T ′, l′) be rooted vertex and/or edge labeled trees. Let ϕ be a common subtree embedding
between T and T ′. Let ω : Σ× Σ→ R ∪ {−∞} assign a weight to each pair of labels. Let
p ∈ R≥0 ∪ {∞} be a distance penalty. We refer to a path P = (u0, e1, u1, . . . , uk) in the tree
T corresponding to a single edge in the common embeddable subtree as topological path. Let
ϕ(P) be the corresponding path (v0, e

′
1, v1, . . . , vl) in T ′. Then

MFCS 2018

54:6 Largest Weight Common Subtree Embeddings

T1 T T2

(a) Labeled MCS (green dashed lines) and LaCSE
(black dotted lines) between T and Ti, i ∈ {1, 2}.

ω(,) = 1
ω(|, |) = 3
ω(|, |) = −1
p = 0.3

T u1

u2

T ′v1

v2

v3

(b) The black embedding has weight 1.7, since the
vertex v2 is skipped and therefore the penalty p is
applied; the weight between the edges is not added.
The green embedding has weight 5; 2 from the ver-
tices, 3 from the topological path (u1, u2) mapped
to (v1, v2).

Figure 1 a) Although ’intuitively’ T is more similar to T1 than to T2, both MCSs have size 3.
However, the LaCSE between T and T1 has 6 mapped vertices. b) Two weighted embeddings; one
with a skipped vertex, the other where the edge labels contribute to the weight.

ωp(P,ϕ(P)) = ω(e1, e
′
1) := ω(l(e1), l′(e′1)), if l = k = 1, or

ωp(P,ϕ(P)) = −p · (l + k − 2), otherwise.
The weight W(ϕ) is the sum of the weights ω(u, ϕ(u)) of all vertices u mapped by ϕ plus
the weights ωp(P,ϕ(P)) of all topological paths P .
If ϕ is of largest weight among all common subtree embeddings, then ϕ is a Largest
Weight Common Subtree Embedding (LaWeCSE).

The definition of root-to-root LaWeCSE is analogue to Def. 2. A closer look at the
definition of ωp reveals that each inner vertex (the skipped vertices) on a topological path or
its mapped path subtracts p from the embedding’s weight. Fig. 1b illustrates two weighted
common subtree embeddings.

The dynamic programming approach. To compute a LaWeCSE, we need to store some
additional data during the computation. In Gupta and Nishimura’s algorithm there is a
table L of size |T ||T ′| to store the weight of LaCSEs between subtrees of the input trees. In
our algorithm we need a table L of size 2|T ||T ′|. An entry L(u, v, t) stores the weight of a
LaWeCSE between the rooted subtrees Tu and T ′v of type t ∈ {f, �}. Type f represents a
root-to-root embedding between Tu and T ′v; � an embedding, where u or v is skipped. Skipped
in the sense, that at least one of u, v will be an inner vertex when mapping some additional
ancestor nodes of u or v during the dynamic programming. For type � we subtract the
penalty p from the weight for the skipped vertices before storing it in our table. We obtain
the weight of a LaWeCSE and a root-to-root LaWeCSE, respectively, from the maximum
value of type f and from L(r(T), r(T ′),f), respectively. The following lemma specifies the
recursive computation of an entry L(u, v, t).

I Lemma 5. Let u ∈ V (T) and v ∈ V (T ′). For t ∈ {f, �} let MT
t = max{L(b, v, t) | b ∈

C(u)} and MT ′

t = max{L(u, c, t) | c ∈ C(v)}. Then
L(u, v, �) = max{MT

� ,M
T
f ,M

T ′

� ,M
T ′

f } − p
Let G = (C(u) t C(v), C(u) × C(v)) be a bipartite graph with edge weights w(bc) =
max{L(b, c, �),L(b, c,f) + ω(ub, vc)} for each pair (b, c) ∈ C(u)× C(v). Then
L(u, v,f) = ω(u, v) +W (M), where M is a MWM on G.

Proof. Since we defined the maximum of an empty set as −∞, this covers the base case, where
one vertex is a leaf, e.g., if u is a leaf, then max{MT

� ,M
T
f ,M

T ′

� ,M
T ′

f } = max{MT ′

� ,M
T ′

f }.
Further, W (M) = 0, if G has no positive weight edges. Then L(u, v,f) = ω(u, v).

A. Droschinsky, N. Kriege, and P. Mutzel 54:7

The type � represents the case of an embedding between Tu and T ′v which is not root-
to-root. From the definition of MT

t the vertex u is skipped and from the definition of MT ′

t

the vertex v is skipped, so it is indeed not root-to-root. Since either u or v was skipped,
we subtract the penalty p. This ensures we have taken inner vertices of later steps of the
dynamic programming into account.

The type f implies that u is mapped to v. Each edge in G represents the weight of
a LaWeCSE from one child of u to one child of v. A maximum matching yields the best
combination which satisfies Def. 1. If a child b of u is mapped to a child c of v, the paths bu
and cv have length one. Then from Def. 4 we have to add the weight ω(bu, cv). Otherwise at
least one path has length greater than one and we have to subtract the distance penalty p
for each inner vertex. We already did that while computing L(b, c, �). J

Time and space complexity. We next analyze upper time and space bounds. Thereby
we distinguish between real- and integer-valued weight functions ω. If we use dynamic
programming starting from the leaves to the roots, we need to compute each value L(u, v, t)
only once.

I Theorem 6. Let T and T ′ be rooted vertex and/or edge labeled trees. Let ω be a weight
function, ∆ = min{∆(T),∆(T ′)}, and p be a distance penalty.

A LaWeCSE between T and T ′ can be computed in time O(|T | |T ′|∆} and space O(|T | |T ′|).
If the weights are integral and bounded by a constant C, a LaWeCSE can be computed in
time O(|T | |T ′|

√
∆ log(C min{|T |, |T ′|})).

We first need to provide two results regarding maximum weight matchings.

I Lemma 7 ([14]). Let G be a weighted bipartite graph containing m edges and vertex sets
of sizes s and t. W.l.o.g. s ≤ t. We can compute a MWM on G in time O(ms + s2 log s)
and space O(m). If G is complete bipartite, we may simplify the time bound to O(s2t).

If the weights are integral and bounded by a constant, the following result for a minimum
weight matching was shown in [7]. We solve MWM by multiplying the weights by -1.

I Lemma 8. Let G as in Lemma 7 and the weights be integral and bounded by a constant C.
We can compute a MWM on G in time O(m

√
s logC). If G is complete bipartite, we may

simplify the time bound to O(s1.5t logC).

Unfortunately, there is no space bound given in [7]. However, since their algorithm is based
on flows, the space bound is probably O(m). If we assume this to be correct, the space
bound in Theorem 6 applies to integral weights too.

Proof of Theorem 6. We observe that the entries of type f in the table L dominate the
computation time. We assume the bipartite graphs on which we compute the MWMs to be
complete. We further observe that each edge bc representing the weight of the LaWeCSE
between the subtrees Tb and T ′c is contained in exactly one of the matching graphs.

Let us assume real weights first. L requires O(|T | |T ′|) space. We may also compute each
MWM within the same space bound. This proves the total space bound. From Lemma 7 the

MFCS 2018

54:8 Largest Weight Common Subtree Embeddings

ω(,) = 1
ω(,) = −5
ω(,) = 2
ω(|, |) = 0
p = 0.2

T r

u

u2

u3

u0

T ′ v

v0

v1

Figure 2 The weight of a LaWeCSE between T r and T ′v is 2.8 (black dotted lines), since we
have one skipped vertex u for penalty 0.2. The weight of a LaWeCSE between T u0 and T ′v0 is 3.6
(green dashed lines) for two skipped vertices. The latter one is also a LaWeCSEu.

time to compute all the MWMs is bounded by

O

 ∑
v∈VT ′

∑
u∈VT

|C(u)| |C(v)|min{|C(u)|, |C(v)|}

⊆ O

 ∑
v∈VT ′

|C(v)|
∑

u∈VT

|C(u)|∆

 = O(|T | |T ′|∆).

Let us assume ω to be integral and bounded by a constant C next. This implies a
weight of each single matching edge of at most C̄ := 2C ·min{|T |, |T ′|}, since no more than
2 min{|T |, |T ′|} edges and vertices in total may contribute to the weight. Negative weight
edges never contribute to a MWM and may safely be omitted. From Lemma 8 the time
bound is

O

 ∑
v∈VT ′

∑
u∈VT

|C(u)| |C(v)|
√

min{|C(u)|, |C(v)|} log C̄

⊆ O

 ∑
v∈VT ′

|C(v)|
∑

u∈VT

|C(u)|
√

∆ log C̄

 = O
(
|T | |T ′|

√
∆ log(C min{|T |, |T ′|})

)
. J

5 Largest Weight Common Subtree Embeddings for Unrooted Trees

In this section we consider a LaWeCSE between unrooted trees. I.e., we want to find two
root vertices r ∈ V (T), s ∈ V (T ′) and a common subtree embedding ϕ between T r and
T ′s such that there is no embedding ϕ′ between T r′ and T ′s′ , r′ ∈ V (T), s′ ∈ V (T ′), with
W(ϕ′) >W(ϕ). We abbreviate this as LaWeCSEu. In Sect. 5.1 we present a basic algorithm
and a first improvement by fixing the root of T . In Sect. 5.2 we speed up the computation by
exploiting similarities between the different chosen roots of T ′. In each section we prove the
correctness and upper time bounds of our algorithms.

5.1 Basic algorithm and fixing one root
The basic idea is to compute for each pair of vertices (u, v) ∈ V (T) × V (T ′) a (rooted)
LaWeCSE from Tu to T ′v and output a maximum solution. This is obviously correct and
the time bound is O(|T |2 |T ′|2∆).

In our previous work [4] we showed how to compute a maximum common subtree between
unrooted trees by arbitrarily choosing one root vertex r of T and then computing MCSs
between T r and T ′s for all s ∈ V (T ′). The key idea in the proof is that for any maximum

A. Droschinsky, N. Kriege, and P. Mutzel 54:9

common subtree isomorphism ϕ between T and T ′, either r is mapped by ϕ, or there is a
unique vertex u ∈ V (T) with shortest distance to r, such that all vertices mapped by ϕ are
contained in Tu. The dynamic programming approach for LaWeCSE already considers the
maximum solutions between the rooted subtrees of T r and T ′s. However, Fig. 2 shows that
this strategy alone sometimes fails, if we want to find a LaWeCSEu between the input trees.
A LaWeCSE between T r and T ′ rooted at any vertex results in a weight of at most 2.8. In
contrast, rooting T at u0 results in a LaWeCSE of weight 3.6.

In a maximum common subtree between trees T and T ′, let r ∈ V (T) be an arbitrarily
chosen root of T . If any two children u1, u2 of their parent node u ∈ V (T) are mapped to
vertices of T ′, then u is also mapped. This statement is independent from the chosen root
r ∈ V (T), since a common subtree is connected. If we want to compute a (rooted) LaWeCSE,
the statement is also true (for the given root). This follows from Def. 1 ii). However, if we
choose u1 as root in a LaWeCSEu, we may skip u and map u2, forming the topological path
(u1, u, u2). Whatever we do, if we skip vertex u as an inner vertex of a topological path, this
is the only path containing u; otherwise we violate Def. 1. We record this as a lemma.

I Lemma 9. Let T and T ′ be unrooted trees. Let ϕ be a LaWeCSEu from T to T ′ and
u ∈ V (T) be an inner vertex of a topological path with its neighbors N(u) = {u1, u2, . . . , uk}.
Then ϕ maps vertices from exactly two of the rooted subtrees Tu

u1
, . . . , T u

uk
to T ′.

To compute a LaWeCSEu ϕ, additionally to the strategy from [4], we need to cover the
case, that there is no single vertex u mapped by ϕ, such that all vertices mapped by ϕ are
contained in T r

u , cf. Fig. 2 with r as chosen root. In this case let u be the unique inner vertex
of a topological path P , such that all vertices mapped by ϕ are contained in T r

u . An example
is the yellow vertex u in Fig. 2. Further, let P1 = (u0, . . . , ui−1, ui = u, ui+1, . . . , uk) be the
topological path containing u and ϕ(P1) = P2 = (v0, . . . , vl) with ϕ(u0) = v0 and ϕ(uk) = vl.

Then there is a LaWeCSE φ1 between the rooted subtrees T r
ui−1

and T ′v1
v0

containing u0
and all its descendants mapped by ϕ. There is another LaWeCSE φ2 between the rooted
subtrees T r

ui+1
and T ′v0

v1
containing uk and all its descendants mapped by ϕ. Note, choosing

T
′vj+1
vj and T ′vj

vj+1 for any j ∈ {0, . . . , l + 1} as rooted subtrees yields the same LaWeCSEs φ1
and φ2, i.e., it does not matter where we split the path P2.

For any vertex v ∈ V (T ′) let Lv refer to the table L corresponding to T r and T ′v. Then
L1 := max{Lv1(ui−1, v0, t) | t ∈ {f, �}} is the weight of the LaWeCSE φ1 minus the penalty
for the inner vertices u1, . . . , ui−1; the penalty is 0, if i = 1. L2 := max{Lv0(ui+1, v1, t) |
t ∈ {f, �}} is the weight of the LaWeCSE φ2 minus the penalty for the inner vertices
ui+1, . . . , uk−1 and v1, . . . , vl−1. I.e., the penalty p for each inner vertex on the paths
excluding u is included in L1 +L2. Therefore W(ϕ) = L1 +L2 − p. Before summarizing this
strategy in the following Lemma 10, we exemplify it on Fig. 2.

The LaWeCSEu ϕ is depicted by green dashed lines with mapping u0 7→ v0 and u3 7→ v1.
The yellow inner vertex u fulfills the condition that T r

u contains all vertices mapped by ϕ.
We have paths P1 = (u0, u, u2, u3) and ϕ(P1) = P2 = (v0, v1). Then L1 = Lv1(u0, v0,f) = 2
for the mapping u0 7→ v0. Further L2 = Lv0(u2, v1, �) = 1.8 for the mapping u3 7→ v1 and
the skipped vertex u2. We obtain W(ϕ) = L1 + L2 − p = 2 + 1.8− 0.2 = 3.6.

I Lemma 10. Let T and T ′ be trees. Let r ∈ V (T) be arbitrarily chosen. Let W(r, v) be the
weight of a LaWeCSE from T r to T ′v and T (u, v, w) = max{Lw(u, v, t) | t ∈ {f, �}}. Then
the weight of a LaWeCSEu is the maximum of the following two quantities.

M1 = max{W(r, v) | v ∈ V (T ′)}
M2 = maxu∈V (T), vw∈E(T ′){T (u1, v, w) + T (u2, w, v) | u1 6= u2 ∈ C(u)} − p

MFCS 2018

54:10 Largest Weight Common Subtree Embeddings

I Lemma 11. Let the preconditions be as in Lemma 10. Then M1 can be computed in time
O(|T | |T ′|2∆) and M2 in time O(|T | |T ′|); both can be computed in space O(|T | |T ′|).

Proof. For any vertices s, v ∈ V (T ′) consider the rooted subtree T ′sv . Let p(v) be the parent
vertex of v with p(s) = s. Then T ′sv = T

′p(v)
v = T ′wv for each vertex w ∈ V (T ′) \ V (T ′sv),

i.e., w is a vertex of T ′, which is not contained in the rooted subtree T ′sv . Therefore we can
identify each table entry Ls(u, v, t) by Lp(v)(u, v, t). In other words, all the table entries
needed to compute M1 are determined first by a node u ∈ V (T), and second by either an
edge wv ∈ E(T ′) or the root vertex s. Therefore, the space needed to store all the table
entries and thus compute M1 is O(|T | |T ′|). We will use these values to retrieve T (u, v, w)
in constant time.

From Theorem 6 for each v ∈ V (T ′) we can compute W(r, v) in time O(|T | |T ′|∆). Thus,
the time for M1 is bounded by O(|T | |T ′|2∆). For any edge vw ∈ E(T ′) we observe that the
only rooted subtrees from T ′ to consider are T ′vw and T ′wv . Let L(b, v) and L(b, w), b ∈ C(u)
be the weight of a LaWeCSE from T r

b to T ′wv and T ′vw , respectively. Let G be a bipartite graph
with vertices C(u) t {v, w} and edges between these vertices with weights defined by L(b, v)
and L(b, w), respectively. Let M be a MWM2 on G. Then W (M) = max{T (u1, v, w) +
T (u2, w, v) | u1 6= u2 ∈ C(u)}. This follows from the construction of G. Note, a MWM2
contains exactly 2 edges. Let C(u) = {b1, . . . , bk} such that L(bi, v) ≥ L(bi+1, v) for any
i < k. I.e., the vertices bi are ordered, such that L(b1, v) and L(b2, v) have weight at least
L(bi, v) for all i > 2. We remove all edges incident to v except b1v and b2v. Analog we
remove all but the two edges of greatest weight incident to w. Let G′ be the graph with
those edges removed and M ′ be a MWM2 on G′. We next prove W (M ′) = W (M). Let M
be a matching on G. Assume the partner of v is bi, i > 2. Then let b = b1 if b1 is not the
partner of w, and b = b2 otherwise. Replacing vbi ∈M by vb results in a matching M ′ such
that W (M ′) ≥W (M). We may argue analog for w.

Since G′ contains at most 4 edges we may compute M ′ in constant time. The time to
remove the edges from G to G′ is O(k). Therefore the time to compute max{T (u1, v, w) +
T (u2, w, v) | u1 6= u2 ∈ C(u)} for given u and vw is O(|C(u)|). The time to compute M2 is
O(
∑

u∈VT ,vw∈ET ′
|C(u)|) = O(|T | |T ′|).

We may computeM2 from L and additional space O(|T |), which is O(|T | |T ′|) in total. J

5.2 Exploiting similarities
In this section we improve the running time from O(|T | |T ′|2∆) to O(|T | |T ′|∆). To this
end, we need to speed up the computation in Lemma 5. Specifically, we exploit similarities
between the graphs on which we compute the maximum weight matchings. We further
need to speed up the computation of MT ′

t related to the root vertices from T ′. We have to
take special care of the sequence, in which we compute the table entries, to avoid circular
dependencies.

Speeding up the dynamic programming approach. In Lemma 5 the recursion computes
maximum values among certain table entries. We first include the current root s ∈ V (T ′)
into the notation. We use the definition of Ls from Sect. 5.1 refering to the table where
s is the root of V (T ′). Let u ∈ V (T) and v ∈ V (T ′) be the vertices in the current
recursion of Lemma 5. For all t ∈ {f, �} let MT,s

t = max{Ls(b, v, t) | b ∈ C(u)} and
MT ′,s

t = max{Ls(u, c, t) | c ∈ C(v)}. From the proof of Lemma 11 we know that T ′sv = T ′wv

A. Droschinsky, N. Kriege, and P. Mutzel 54:11

for each vertex w ∈ V (T ′) \ V (T ′sv). This implies MT,s
t = MT,w

t and MT ′,s
t = MT ′,w

t for
all w as before. I.e., it is sufficient to distinguish all the MT,s

t and MT ′,s
t first by a node

u ∈ V (T), and second by either an edge wv ∈ E(T ′) or a single vertex s ∈ V (T ′).
This observation allows us to upper bound the time to compute all the MT,s

t by

O

 ∑
u∈VT ,wv∈ET ′

|C(u)|+
∑

u∈VT ,s∈VT ′

|C(u)|

 = O

 ∑
wv∈ET ′

|T |+
∑

s∈VT ′

|T |

 = O (|T | |T ′|) .

Let N(v) = {c1, c2, . . . cl} and Ci := {c1, . . . , ci−1, ci+1, . . . , cl} for 1 ≤ i ≤ l, i.e, Ci

contains all the vertices from N(v) except ci. We observeMT ′,v
t = max{Lv(u, c, t) | c ∈ N(v)}

and MT ′,ci

t = max{Lci(u, c, t) | c ∈ Ci} = max{Lv(u, c, t) | c ∈ Ci} for each i ∈ {1, . . . , l}.
Let j be an index, such thatMT ′,v

t = Lv(u, cj , t). Then for each i 6= j we haveMT ′,ci

t = MT ′,v
t .

Therefore, we may compute MT ′,v
t and MT ′,ci

t for all i ∈ {1, . . . , l} in time O(δ(v)). Hence,
the time to compute all the MT ′,s

t is bounded by O
(∑

u∈VT ,v∈VT ′
δ(v)

)
= O

(∑
u∈VT

|T ′|
)

=
O(|T | |T ′|).

I Lemma 12. Assume there is a sequence of all pairs (u, v) such that all necessary values are
available to compute MT,s

t and MT ′,s
t for s ∈ N(v) ∪ {v}; then the total time is O(|T | |T ′|).

Exploiting similarities between the matching graphs. In Lemma 5 we need to compute
a MWM for each (u, v) ∈ V (T) × V (T ′). When considering all roots s ∈ V (T ′), we have
one matching graph G with vertices C(u) t N(v), N(v) = {c1, . . . , cl} as well as l graphs
Gci

, 1 ≤ i ≤ l. This follows analog to the observation regarding MT ′,v
t from the previous

paragraph. A graph Gc, c ∈ N(v), is the same as G except that the vertex c and incident
edges are removed. Let s := min{δ(u), δ(v)} and t := max{δ(u), δ(v)}. We now prove a total
time bound of O(s2t) for computing a MWM on G as well as on Gc for all c ∈ N(v). We
distinguish two cases.

i) s ≥ log t. In our previous work we presented an algorithm to compute a maximum
common subtree of maximum weight, a special case of LaWeCSEu [4]. A subproblem is to
compute MWMs on graphs structurally identical to G and Gci

, 1 ≤ i ≤ l. We showed that
we can compute all those MWMs in time O(st(s+ log t)). Under the premise s ≥ log t the
time bound is O(s2t).

ii) s < log t. Then one vertex set is much smaller than the other. From Lemma 14 we can
compute all those MWMs in time O(s4 + s2t). Under the premise s < log t that is O(s2t).

I Lemma 13. Assume there is a sequence of all pairs (u, v) such that all necessary values
are available to compute the MWMs; then the total time is O(|T | |T ′|∆).

Proof. The time to compute all the MWMs is

O

∑
u∈VT

∑
v∈VT ′

δ(u)δ(v) min{δ(u), δ(v)}

 ⊆ O
∑

u∈VT

∑
v∈VT ′

δ(u)δ(v)∆

 = O(|T | |T ′|∆).J

I Lemma 14. Let G be a weighted bipartite graph with vertex sets U and V , s := |U | ≤
|V | =: t. Let either C = U or C = V . We can compute a MWM on G and a MWM on each
graph Gc, c ∈ C, in total time O(s4 + s2t).

Proof. From Lemma 7 we know there is an algorithm which computes a MWM on G in time
O(s2t). This algorithm first copies the s vertices of U and then adds an edge of weight 0

MFCS 2018

54:12 Largest Weight Common Subtree Embeddings

u1

u2

u3

v1

v2

v3

v4

0

0

0

1

3

22
2

4

3

(a) G′ and a MWM M ′ (red).

u1

u2

u3

a

-2

1 0 -1

0

0

(b) G′
v4 and a shortest path

P from v4’s partner u3 to a
(green, dashed lines).

u1

u2

u3

v1

v2

v3

0

0

0

1

3

22
2

4

(c) A MWM (red) on G′
v4 ob-

tained from a single augmenting
path (dashed lines).

Figure 3 (a) A MWMs, s = |U | = 3, on G′, which is also a MWM. (b) The graph G′
v4 , on

which we compute a shortest path from u3 to a. Such a path corresponds to a augmenting path of
maximal weight in G′

v4 . (c) Applying the path yields a MWM3 on G′
v4 , which is also a MWM.

between each vertex of U and its copy. We denote this graph by G′. The algorithm computes
a MWMs M

′ on G′ (M ′ is also a MWM), which corresponds to a MWM on G. An example
is depicted in Figure 3a.

The graph G′ with one vertex c ∈ C removed is denoted by G′c. If c is not matched, we
are done. If c is matched, let u (in case c ∈ V) respectively v (in case c ∈ U) be the partner
of c. Let M ′c := M ′ \ {cu} or M ′c := M ′ \ {cv}, respectively. We observe |M ′c| = s− 1.

First, assume c ∈ V . In a MWMs of G′c each vertex of U including u must be matched.
An odd length M ′c-augmenting path P of maximal weight (the path’s weight refers to the
difference in the matching’s weight after augmentation) incident to u yields a MWMs on G′c
and thus a MWM on Gc. This follows from the fact, that any M ′c-alternating cycle or path on
G′c not incident to u has nonpositive weight; otherwise M ′ was no MWM. We can find such a
path using the Bellman-Ford algorithm in time O(st+ s3) as follows. Let G′c = (U ∪ {a}, A)
be the digraph, where A is the union of the following two sets of directed arcs.
1. For each alternating path ūvu′ in G′c, where ū, u′ ∈ U, v ∈ V , and vu′ is matched, we add

the arc (ū, u′) with weight w(vu′)− w(ūv).
2. For each vertex ū ∈ U let v be a free vertex adjacent to u, such that the edge uv has

maximum weight among all such edges. We add an arc (u, a) of weight −w(uv).
The time to construct the graph is bounded by O(st). Since G′c has O(s) vertices and O(s2)
edges, we may compute a shortest path P from c’s partner u to a in time O(s3). We obtain
a MWM on G′c by augmenting M ′c with the edges that correspond to P in G′c. Figure 3b
depicts an example for G′c, as well as a shortest path P . Figure 3c depicts the resulting
MWM. Since at most s vertices of V are matched by M , the total time to compute a MWM
on each of the graphs Gc, c ∈ V , is O(s4 + s2t).

Second, assume c ∈ U . Each vertex in U is matched. Therefore the cardinality of M ′c is
s− 1. This time we need to find an alternating path of even length (we removed a vertex
from U) and of maximal weight incident to c’s partner v. Any alternating cycle or path not
incident to v cannot augment M ′c to greater weight; otherwise M ′ was no MWM. This path
may have length 0, e.g., if M ′c is a MWM of M ′. The total time to compute such a path is
O(s3) as follows. Let G′c = (U ∪ {v, a}, A), where A is the union of the following four sets of
directed arcs.

A. Droschinsky, N. Kriege, and P. Mutzel 54:13

u2

u3

v2

a

0-2

-2

2

3

(a) G′
u1 and a shortest path

P from u1’s partner v2 to a
(green, dashed).

u2

u3

v2

v3

v4

0

0

2
2

4

3

(b) A MWM (red) on G′
u1 (isolated ver-

tices removed) obtained from a single
augmenting path (dashed lines).

Figure 4 (a) The graph G′
u1 , on which we compute a shortest path from v2 to a. Such a path

corresponds to an augmenting path of maximal weight in G′
u1 . (b) Applying the path yields a

MWM2 on G′
u1 , which is also a MWM.

1. For each edge vu ∈ E(G′c), u ∈ U , we add the arc (v, u) with weight −w(vu).
2. For each alternating path uv′u′ in G′c, where u, u′ ∈ U, v′ ∈ V , and uv′ is matched, we

add the arc (u, u′) with weight w(uv′)− w(v′u′).
3. For each matching edge uv′, where u ∈ U, v′ ∈ V , we add the arc (u, a) with weight

w(uv′).
4. We add the arc (v, a) with weight 0.
The time to construct the graph is bounded by O(s2). An example is depicted in Figure 4a.
Figure 4b depicts the resulting MWM. Since G′c has O(s) vertices and O(s2) edges, we
may compute a shortest path P from c’s partner v to a in time O(s3). Again, P yields the
augmenting path in G′c. Since all the s vertices of U are matched by M , the total time to
compute a MWM on each of the graphs Gc, c ∈ U , is O(s4). J

Sequence of computation. For given vertices (u, v) ∈ V (T)×V (T ′) we denote the matching
graph G without removed vertices as main instance and the matching graphs Gc as its
sub instances. Analog for t ∈ {f, �} we define MT ′,v

t as main instance and MT ′,c
t for each

c ∈ N(v) as its sub instances.
Let u ∈ V (T) and vw ∈ E(T ′). We observe, for type t ∈ {f, �} the following values

depend circularly on each other. To compute MT ′,w
t recursively for the vertices u,w we need

Lw(u, v, t). Computing Lw(u, v, t) requires MT ′,v
t computed recursively for the vertices u, v.

The latter one requires Lv(u,w, t). Finally Lv(u,w, t) requires MT ′,w
t computed recursively

for the vertices u,w, which was the start of the circular dependency.
We further observe, the MWMs depend on table entries of both types. We may break

the dependencies by solving at most one sub instance before solving the main instance, as
shown next.

We iterate over all roots s ∈ V (T ′) and compute a rooted LaWeCSE between T r and T ′s
as in Lemma 5. During the recursion on vertices (u, v) the following cases may happen.
1. The first instance to compute on (u, v) is a main instance. Then we instantly compute

all its sub instances from it.
2. The first instance to compute on (u, v) is a sub instance. Then we compute only the sub

instance without deriving it from the main instance.
a. If the second instance is a main instance, we instantly compute its sub instances.
b. Otherwise let c1 ∈ N(v) and c2 ∈ N(v) be the vertices corresponding to the first

and second sub instance, respectively. Let us consider table entries first. When

MFCS 2018

54:14 Largest Weight Common Subtree Embeddings

we computed the sub instance corresponding to c1, all necessary table entries for
MT ′,v

t except Lv(u, c1, t) were available. For the second sub instance Lv(u, c1, t) is
also available. Thus we may instantly compute the main instance and all other sub
instances including the one corresponding to c2. We may argue analog for the MWMs.

I Theorem 15. Let T and T ′ be (unrooted) vertex and/or edge labeled trees. Let ω be a
weight function, ∆ = min{∆(T),∆(T ′)}, and p be a distance penalty. A LaWeCSEu between
T and T ′ can be computed in time O(|T | |T ′|∆) and space O(|T | |T ′|).

6 Conclusions

We presented an algorithm which solves the largest weight common subtree embedding
problem in time O(|T | |T ′|∆). For rooted trees of integral weights bounded by a constant
we proved a bound of O(|T | |T ′|

√
∆ log(C min{|T |, |T ′|})). Our approach generalizes the

maximum common subtree problem [4] and the largest common subtree embedding problem,
both unlabeled [8] and labeled [9], by supporting weights between labels and a distance
penalty for skipped vertices.

A remaining open problem is whether the time bound for unrooted trees can be improved
when the weights are integral and bounded by a constant. Since weight scaling algorithms for
matchings do not work incrementally [13], there is no obvious way to exploit the similarities
in the given matching graphs.

References

1 Moon Jung Chung. O(n2.5) time algorithms for the subgraph homeomorphism problem on
trees. Journal of Algorithms, 8(1):106–112, 1987. doi:10.1016/0196-6774(87)90030-7.

2 James Trimble Ciaran McCreesh, Patrick Prosser. A partitioning algorithm for maximum
common subgraph problems. In Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI-17, pages 712–719, 2017. doi:10.24963/ijcai.
2017/99.

3 Andre Droschinsky, Nils Kriege, and Petra Mutzel. Finding Largest Common Substructures
of Molecules in Quadratic Time, pages 309–321. Springer International Publishing, Cham,
2017. doi:10.1007/978-3-319-51963-0_24.

4 Andre Droschinsky, Nils M. Kriege, and Petra Mutzel. Faster Algorithms for the Maximum
Common Subtree Isomorphism Problem. In Piotr Faliszewski, Anca Muscholl, and Rolf
Niedermeier, editors, 41st International Symposium on Mathematical Foundations of Com-
puter Science (MFCS 2016), volume 58 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 33:1–33:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.MFCS.2016.33.

5 Hans-Christian Ehrlich and Matthias Rarey. Maximum common subgraph isomorphism
algorithms and their applications in molecular science: a review. Wiley Interdisciplinary
Reviews: Computational Molecular Science, 1(1):68–79, 2011. doi:10.1002/wcms.5.

6 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

7 Andrew V. Goldberg, Sagi Hed, Haim Kaplan, and Robert E. Tarjan. Minimum-cost
flows in unit-capacity networks. Theory of Computing Systems, 61(4):987–1010, Nov 2017.
doi:10.1007/s00224-017-9776-7.

8 Arvind Gupta and Naomi Nishimura. Finding largest subtrees and smallest supertrees.
Algorithmica, 21:183–210, 1998. doi:10.1007/PL00009212.

http://dx.doi.org/10.1016/0196-6774(87)90030-7
http://dx.doi.org/10.24963/ijcai.2017/99
http://dx.doi.org/10.24963/ijcai.2017/99
http://dx.doi.org/10.1007/978-3-319-51963-0_24
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.33
http://dx.doi.org/10.1002/wcms.5
http://dx.doi.org/10.1007/s00224-017-9776-7
http://dx.doi.org/10.1007/PL00009212

A. Droschinsky, N. Kriege, and P. Mutzel 54:15

9 Ming-Yang Kao, Tak-Wah Lam, Wing-Kin Sung, and Hing-Fung Ting. An even faster and
more unifying algorithm for comparing trees via unbalanced bipartite matchings. Journal
of Algorithms, 40(2):212–233, 2001. doi:10.1006/jagm.2001.1163.

10 Antoni Lozano and Gabriel Valiente. On the maximum common embedded subtree problem
for ordered trees. In In C. Iliopoulos and T Lecroq, editors, String Algorithmics, chapter 7.
King’s College London Publications, 2004.

11 Daniel M. Martin and Bhalchandra D. Thatte. The maximum agreement subtree problem.
Discrete Applied Mathematics, 161(13-14):1805–1817, 2013. doi:10.1016/j.dam.2013.02.
037.

12 David W. Matula. Subtree isomorphism in O(n5/2). In P. Hell B. Alspach and D.J. Miller,
editors, Algorithmic Aspects of Combinatorics, volume 2 of Annals of Discrete Mathematics,
pages 91–106. Elsevier, 1978. doi:10.1016/S0167-5060(08)70324-8.

13 L. Ramshaw and R. E. Tarjan. A weight-scaling algorithm for min-cost imperfect matchings
in bipartite graphs. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, pages 581–590, Oct 2012. doi:10.1109/FOCS.2012.9.

14 Lyle Ramshaw and Robert Tarjan. On minimum-cost assignments in unbalanced bipart-
ite graphs, 04 2012. URL: http://www.hpl.hp.com/techreports/2012/HPL-2012-40R1.
html.

15 Matthias Rarey and J. Scott Dixon. Feature trees: A new molecular similarity measure
based on tree matching. Journal of Computer-Aided Molecular Design, 12:471–490, 1998.
doi:10.1023/A:1008068904628.

16 John W. Raymond and Peter Willett. Maximum common subgraph isomorphism al-
gorithms for the matching of chemical structures. Journal of Computer-Aided Molecu-
lar Design, 16(7):521–533, 2002. URL: http://ipsapp008.lwwonline.com/content/
getfile/4830/45/6/abstract.htm.

17 Leander Schietgat, Jan Ramon, and Maurice Bruynooghe. A polynomial-time maximum
common subgraph algorithm for outerplanar graphs and its application to chemoinform-
atics. Annals of Mathematics and Artificial Intelligence, 69(4):343–376, 2013. doi:
10.1007/s10472-013-9335-0.

18 Gabriel Valiente. Algorithms on Trees and Graphs. Springer-Verlag, Berlin, 2002.
19 Atsuko Yamaguchi, Kiyoko F. Aoki, and Hiroshi Mamitsuka. Finding the maximum com-

mon subgraph of a partial k-tree and a graph with a polynomially bounded number of
spanning trees. Inf. Process. Lett., 92(2):57–63, 2004. doi:10.1016/j.ipl.2004.06.019.

MFCS 2018

http://dx.doi.org/10.1006/jagm.2001.1163
http://dx.doi.org/10.1016/j.dam.2013.02.037
http://dx.doi.org/10.1016/j.dam.2013.02.037
http://dx.doi.org/10.1016/S0167-5060(08)70324-8
http://dx.doi.org/10.1109/FOCS.2012.9
http://www.hpl.hp.com/techreports/2012/HPL-2012-40R1.html
http://www.hpl.hp.com/techreports/2012/HPL-2012-40R1.html
http://dx.doi.org/10.1023/A:1008068904628
http://ipsapp008.lwwonline.com/content/getfile/4830/45/6/abstract.htm
http://ipsapp008.lwwonline.com/content/getfile/4830/45/6/abstract.htm
http://dx.doi.org/10.1007/s10472-013-9335-0
http://dx.doi.org/10.1007/s10472-013-9335-0
http://dx.doi.org/10.1016/j.ipl.2004.06.019

Enumerating Minimal Transversals of
Hypergraphs without Small Holes
Mamadou M. Kanté
Université Clermont Auvergne, LIMOS, CNRS
Aubiére, France
mamadou.kante@uca.fr

Kaveh Khoshkhah1

Institute of Computer Science, University of Tartu
Tartu, Estonia
khoshkhah@theory.cs.ut.ee

Mozhgan Pourmoradnasseri
Université Clermont Auvergne, LIMOS, CNRS
Aubiére, France
mozhgan.pourmoradnasseri@isima.fr

Abstract
We give a polynomial delay algorithm for enumerating the minimal transversals of hypergraphs
without induced cycles of length 3 and 4. As a corollary, we can enumerate, with polynomial
delay, the vertices of any polyhedron P(A, 1

¯
) = {x ∈ Rn | Ax ≥ 1

¯
, x ≥ 0

¯
}, when A is a balanced

matrix that does not contain as a submatrix the incidence matrix of a cycle of length 4. Other
consequences are a polynomial delay algorithm for enumerating the minimal dominating sets of
graphs of girth at least 9 and an incremental delay algorithm for enumerating all the minimal
dominating sets of a bipartite graph without induced 6 and 8-cycles.

2012 ACM Subject Classification Mathematics of computing → Graph enumeration, Mathe-
matics of computing → Graph algorithms, Theory of computation → Graph algorithms analysis

Keywords and phrases Triangle-free Hypergraph, Minimal Transversal, Balanced Matrix, Mini-
mal Dominating Set

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.55

Funding M.M. Kanté and M. Pourmoradnasseri are supported by the French Agency for Re-
search under the GraphEN project ANR-15-CE40-0009.

1 Introduction

The task of an enumeration algorithm is generating all the feasible solutions of a given
property, such as enumerating all the maximal cliques of a graph or all the triangulations
of a given set of points in a d-dimensional space. In enumeration algorithms the size of
the output is often exponential in the size of the input, therefore, to define the tractability
of enumeration problems, the complexity is measured based on the needed total time of
the algorithm depending on the size of the input and the size of the output. If the total
running time of the algorithm is bounded by a polynomial on the size of the input and the
output, the algorithm is called output-polynomial. For a good survey of various combinatorial

1 Kaveh Khoshkhah was supported by the Estonian Research Council, ETAG (Eesti Teadusagentuur),
through PUT Exploratory Grant #620.

© Mamadou M. Kanté, Kaveh Khoshkhah, and Mozhgan Pourmoradnasseri;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 55; pp. 55:1–55:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mamadou.kante@uca.fr
mailto:khoshkhah@theory.cs.ut.ee
mailto:mozhgan.pourmoradnasseri@isima.fr
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.55
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

55:2 Enumerating Minimal Transversals of Hypergraphs Without Small Holes

enumeration problems and their known time complexities see [32]. It is worth noticing that,
unless P=NP, there are enumeration problems where no output polynomial enumeration
algorithm exist [22, 23].

In the area of enumeration algorithms, enumerating all the inclusion-wise minimal
transversals of a hypergraph2, known as Hypergraph Dualisation, is a long-standing open
problem which arises in different areas of computer science such as data mining [3], game
theory [29, 19], artificial intelligence [12, 31], databases [8, 18], learning theory [1] and integer
programming [5, 13]. Despite all the attempts, the complexity of the problem is not settled
yet. The best-known algorithm for solving Hypergraph Dualisation in the general case
is by Fredman and Khachiyan [14] (see also [24]) which solves the equivalent problem of
monotone Boolean duality in quasi-polynomial time. Nevertheless, for several well-structured
hypergraph classes, output-polynomial algorithms for Hypergraph Dualisation is known,
e.g., [11, 25, 22] to cite a few. It was also proved in [20] that the Hypergraph Dualisation is
equivalent to the enumeration of minimal dominating sets in graphs, allowing to tackle this old
problem in the realm of graph theory (see for instance [20, 16]). In this paper, we investigate
the Hypergraph Dualisation problem in the class of hypergraphs without induced small
cycles. A k-cycle in a hypergraph H is a sequence (x0, E0, x1, E1, x2, · · · , xk−1, Ek−1, x0)
where the xi’s belong to V (H), the Ei’s are in H, x0 ∈ Ek−1 ∩ E0 and, for 1 ≤ i ≤ k − 1,
xi ∈ Ei ∩ Ei−1. A chord in a k-cycles is a pair (xi, Ej) where j /∈ {i, (i − 1) mod k}. An
enumeration algorithm is said to be of polynomial delay if the time between two outputs is
bounded a polynomial on the input. Our main theorem is the following.

I Theorem 1. Let H be a hypergraph without chordless 3 and 4-cycles. Then, one can
enumerate with polynomial delay the minimal transversals of H.

The first consequence of our main theorem is a polynomial delay algorithm for listing the
minimal dominating sets of graphs with girth at least 9, answering a question from [17]. The
girth of a graph in G is the shortest chordless cycle3 in G. Notice that the recent paper [26],
proposes an enumeration algorithm, with a constant time delay, which enumerates all the
(not necessarily minimal) dominating sets of a given graph of girth at least 9.

I Corollary 2.
a. There is a polynomial delay algorithm that enumerates all the minimal dominating sets of

a given input graph G of girth at least 9. More precisely, the result holds if G does not
contain induced (4, 5, 6, 7, 8)-cycles.

b. There is an incremental delay algorithm that enumerates all the minimal dominating sets
of a given bipartite graph without chordless 6 and 8-cycles.

Enumeration algorithms also appear in computational geometry. The famous Minkowski-
Weyl theorem states that every convex polyhedron can be represented as the intersection
of finitely many affine half spaces, known as H-representation, and by the Minkowski sum
of a polytope and a finitely generated cone, known as V-representation, while the two
representations are equivalent. There are various open enumeration problems in this area,
such as facet enumeration and convex hull problem. We refer to [15] for more study. One of the
important enumeration problems in computational geometry is vertex enumeration problem

2 A hypergraph H is a collection of subsets of a ground set V (H) and a transversal of H is a subset T of
V (H) that intersects all sets in H.

3 A k-cycle in a graph G is a sequence (v1, v2, . . . , vk) where vi and vi+1 are adjacent in G and v1 is
adjacent with vk. A k-cycle (v1, . . . , vk) is chordless if there are no other edges between the vi’s.

M.M. Kanté, K. Khoshkhah, and M. Pourmoradnasseri 55:3

which asks for generating all the vertices of a polyhedron given by its H-representation.
Khachiyan et al. [23] proved that enumerating all the vertices of a rational polyhedron,
given as an intersection of finitely many half spaces is an NP-hard enumeration problem.
It’s worth mentioning that the complexity of the problem in the case of polytopes (bounded
polyhedrons), yet remains open. The hardness of enumerating the vertices of a polyhedron is
more interesting when it comes true even for 0/1 polyhedrons (polyhedrons with vertices
in {0, 1}n) [6] which is in contrast with the fact that all the vertices of a 0/1 polytope are
enumerable in polynomial delay [9]. Regardless of the hardness of vertex enumeration for
general polyhedrons, it is interesting to ask for which classes of polyhedrons the problem is
tractable.

As a consequence of our main theorem, we also obtain a polynomial delay algorithm for
enumerating the vertices of a large subclass of 0/1 polyhedrons given by balanced matrices. For
doing so we use the known equivalent characterisation in terms of a Hypergraph Dualisation
problem. Let us define the problem formally. Let A ∈ {0, 1}m×n and 1

¯
and 0

¯
be respectively

all ones and all zeros vectors with appropriate size and P(A, 1
¯
) = {x ∈ Rn | Ax ≥ 1

¯
, x ≥ 0

¯
}

be a polyhedron with only integral vertices. In other words, P(A, 1
¯
) is the set covering

polyhedron with the 0/1 ideal matrix A. It is well-known and not hard to see that the
vertices of P(A, 1

¯
) are in bijection with the minimal transversals of the hypergraph H[A],

where the columns of A correspond to vertices of H[A] and the rows of A are incident vectors
of the hyperedges of H[A] [27]. This gives an equivalence between the vertex enumeration
problem for P(A, 1

¯
) and the Hypergraph Dualisation problem for such hypergraphs H[A].

The existence of the quasi-polynomial algorithm for enumerating the minimal transversals of
a hypergraph [14] suggests that the complexity of vertex enumeration for P(A, 1

¯
) is unlikely

to be in NP.
In the Recent paper [13], Elbassioni and Makino have given an incremental polynomial time

algorithm for enumerating the vertices of P(A, 1
¯
) when A is a 0/1 totally unimodular matrix.

Totally unimodular matrices are an important class of matrices for integer programming
with the property that every square submatrix of it has determinant 0 or 1. The generating
method in [13] is based on enumerating the transversals of the associated hypergraph and
Seymour’s fundamental decomposition theorem for totally unimodular matrices [30]. As
an interesting open problem, one may ask about the existence of an output polynomial
algorithm for enumerating the vertices of P(A, 1

¯
) when A is a balanced matrix [13]. A 0/1

matrix is balanced if it does not contain a submatrix that is the incidence matrix of a cycle
of odd length (see [30, Chapter 21] or [10]). Totally unimodular matrices are a proper subset
of balanced matrices. A consequence of our main theorem is the following.

I Theorem 3. There is a polynomial delay algorithm for listing the vertices of any given
0/1 polyhedron P(A, 1

¯
) whenever A is a balanced matrix without any submatrix that is the

incident matrix of a 4-cycle.

As the algorithm needs some technical definitions, we postpone the details of the algorithm
to Section 2. The main technical part of the paper is in Section 3 where we prove the main
theorem.

2 Definitions and Preliminaries

The power set of a set V is denoted by 2V , and for two sets A and B, we let A \B denote
the set {x ∈ A | x /∈ B}.

A hypergraph H is a collection of subsets of a finite ground set. The elements of H are
called the hyperedges of H and the vertex set of H is V (H) :=

⋃
E∈HE. Given S ⊆ V (H),

MFCS 2018

55:4 Enumerating Minimal Transversals of Hypergraphs Without Small Holes

we denote by H[S] the hypergraph induced by S, that is, H[S] := {E ∩ S | E ∈ H}. Any
subset H′ of H is called a sub-hypergraph of H. Notice that if there exists E ∈ H such that
E ⊆ V (H) \ S, then ∅ ∈ H[S].

Given a hypergraph H and a subset S ⊆ V (H) of its vertex set, we denote by H(S) the
sub-hypergraph {E ∈ H | S ∩ E 6= ∅}; and for v ∈ V (H), we write H(v) instead of H({v}).
Notice that H(v) is the set of hyperedges containing v.

We assume that each hypergraph is given with an ordering ≤ of its set of vertices.
A k-hole in a hypergraph is a chordless cycle of length k.
A transversal (or hitting set) of a hypergraph H is a set T ⊆ V (H) that has a nonempty

intersection with every hyperedge E ∈ H. A transversal T is said minimal if no proper subset
of T is a transversal. For T ⊆ V (H) and x ∈ T , we let PT (x) := {E ∈ H | E ∩ T = {x}},
and call it the set of privates of x with respect to T (we may drop the “with respect to
T” when T is clear from the context). We say that B ⊆ V (H) breaks x ∈ T , if for every
E ∈ PT (x), E ∩B 6= ∅ and if B = {b}, we say that b breaks x, for short.

We call T ⊆ V (H) irredundant if PT (x) 6= ∅ for all x ∈ T . It is well-known that T is a
minimal transversal if and only if T is a transversal and is irredundant. We denote by tr(H)
the set of minimal transversals of H. Observe that if all hyperedges of H are non-empty,
then tr(H) 6= ∅. For more definitions and details on hypergraphs, we refer to [4].

I Definition 4. For ` ∈ V (H) and E ∈ H such that ` ∈ E, we let S(`, E), called a double
star, be the sub-hypergraph H(`)[E]. A double star is called valid if (H \H(`))[V (H) \ E]
does not contain the empty set.

The notion of double star is defined and used in [10] for the decomposition of balanced
matrices. We rephrase it in terms of hypergraphs. Observe also that if a hypergraph is Sperner
(no hyperedge contains another hyperedge), then every double star is valid. Even though
for the Hypergraph Dualisation problem, it is enough to consider Sperner hypergraphs,
we prefer giving the definition above for general hypergraphs for a better readability of our
algorithms as we manipulate induced sub-hypergraphs. We often use the notation S for the
double star S(`, E) in customary whenever ` and E are clear from the context.

I Fact 5. If ∅ /∈ H, then H has a valid double star and it can be found in polynomial time

Proof. Let T ∈ tr(H), which exists because ∅ /∈ H. Let ` ∈ T and E ∈ PT (`). Since T is a
transversal and E ∩ T = {`}, then each hyperedge in H \H(`) has a nonempty intersection
with T \ {`}. Now, since T \ {`} ⊆ V (H) \ E because E ∩ T = {`}, we can conclude that
(H \H(`))[V (H) \ E] does not contain the ∅ as a hyperedge. J

The algorithm for enumerating minimal transversals uses the standard technique which
consists, for a hypergraph H, in choosing a vertex ` and enumerate the minimal transversals
that do not contain `, denoted by Inc(H, `), and those that do contain `, denoted by
Exc(H, `). For enumerating the minimal transversals that do not contain `, it suffices to
make a recursive call to H[V (H) \ {`}], once we ensure that one exists (which can be checked
in polynomial time). But, enumerating the minimal transversals containing ` is a tough task
and is exactly what makes the enumeration of tr(H) difficult because such a strategy causes
to ask at each step the following NP-complete problem [7]: Given X ⊆ V (H), does there
exist a minimal transversal including X? In order to avoid this NP-complete problem, we
use the following strategy, which depends heavily on the fact that 3-holes and 4-holes are
forbidden:

M.M. Kanté, K. Khoshkhah, and M. Pourmoradnasseri 55:5

1. We always choose ` to be in a valid double star S(`, E).
2. We secondly show that, for any minimal transversal T of H\S(`, E), T ∪{`} is a minimal

transversal of H. Such minimal transversals are called basic.
3. We then show that any minimal transversal containing ` is either basic or can be obtained

from a basic one by successively applying a flipping method. The flipping method yields
a parent-child relation between the minimal transversals containing `.

4. We finally use this parent-child relation to enumerate (with polynomial delay) the minimal
transversals containing `.

LetH be a hypergraph with n := |V (H)|+
∑

F∈H |F |. An enumeration algorithm for tr(H)
is an algorithm that lists all the minimal transversals without repetitions. An enumeration
algorithm A for tr(H) which terminates in time p(n, |tr(H)|) for some polynomial p(x, y) is
called output-polynomial and it is called polynomial space if it uses a space bounded by a
polynomial in n. Assume now that T1, . . . , Tm are the elements of tr(H) enumerated in the
order in which they are generated by A. Let us denote by T (A, i) the time A requires until it
outputs Ti, also T (A, m+1) is the time required by A until it stops. Let delay(A, 1) = T (A, 1)
and delay(A, i) = T (A, i) − T (A, i − 1). The delay of A is max{delay(A, i)}. Algorithm A
is a polynomial delay algorithm if there is a polynomial p(x) such that the delay of A is at
most p(n).

The remainder of this paper is as follows. In Section 3 we define the flipping method,
the basic minimal transversals and the resulting parent-child relation. We also prove that if
S(`, E) is a valid double star, then any minimal transversal containing ` can be obtained
from a basic minimal transversal by following the parent-child relation. The algorithm for
enumerating the children of a minimal transversal containing ` is given in Section 3.2.

3 Enumeration of minimal transversals including ` from a valid
double star S(`, E)

3.1 Basic transversals, flipping operation and parent-child relation
In this section, we introduce the family of minimal transversals B, called basic transversals,
which will be used as a base for generating all the minimal transversals T containing the
vertex `. In the first step, a valid double star S(`, E) is fixed for H.

I Fact 6. For every minimal transversal T of (H \H(`))[V (H) \ E], T ∪ {`} is a minimal
transversal of H.

Proof. Since T is a minimal transversal of (H \H(`))[V (H) \ E], T ⊆ V (H) \ E and each
vertex of T has a private in H\H(`). As {`} is a minimal transversal of H(`) and E ∩T = ∅,
we can conclude that T ∪ {`} is a minimal transversal of H. J

We denote by B(`, E) the set {T ∪ {`} | T ∈ tr((H \H(`))[V (H) \E])} and call it the set
of basic transversals of H. We will show that one can generate all the minimal transversals
of H that contain ` by doing flipping operations, starting from B(`, E).

Recall that S(`, E) is a fixed double star of a fixed hypergraph H. The objective is
to define a way to generate the set of all minimal transversals containing the vertex `,
starting with the basic transversals. We first define a parent-child relation based on a flipping
operation which results in removing one vertex, from E, at a time. As a consequence, each
minimal transversal containing ` will be reachable, by following the parent-child relation,

MFCS 2018

55:6 Enumerating Minimal Transversals of Hypergraphs Without Small Holes

Algorithm 1: GreedyPair.
Input: T ⊆ V and the largest succedent vertex x in T

Output: (Y, (Zy)y∈Y)
1 Function GreedyPair(H, T, x)
2 Y := ∅;
3 while PT (x) is not empty do
4 Choose the smallest y ∈ V (PT (x)) \ E such that ∃ F ∈ PT (x),

F \ E ⊆ {v ∈ V (H) | v ≤ y};
5 Y := Y ∪ {y};
6 Zy := {z ∈ T | PT (z) ⊆ H(y)};
7 T := (T ∪ {y}) \ Zy;

from a basic transversal. In a second step, we explain how to generate the children of any
minimal transversal containing `. Let’s denote by Inc(H, `, E) the set of minimal transversals
of H containing ` where S(`, E) is a valid double star of H.

I Definition 7. Let T be an irredundant set of H. A vertex x in T is called a succedent
vertex if x ∈ E \ {`}.

Observe that a minimal transversal is basic if and only if it does not contain any succedent
vertex. Also, if x is a succedent vertex of T ∈ Inc(H, `, E), then PT (x) ⊆ H \H(`) because
` ∈ T .

I Definition 8. Let T be an irredundant set containing succedent vertices and let x ∈ T

be the largest succedent vertex of T with respect to the ordering ≤. We call (Y, (Zy)y∈Y) a
greedy pair of PT (x) if
1. Y ⊆ V (PT (x)) \ E and Zy ⊆ T for each y ∈ Y ,
2. Y is a minimal transversal of PT (x),
3. for each y ∈ Y , there is a hyperedge F ∈ PTy (x) such that y ∈ F and F \ E ⊆ {v ∈

V (H) | v ≤ y}, where Ty := (T ∪ {y′ ∈ Y | y′ < y}) \ (∪y′<yZy′) for each y ∈ Y ,
4. for each y ∈ Y , Zy := {z ∈ T | PTy (z) ⊆ H(y)} with Ty as defined above.

I Fact 9. The greedy pair of PT (x) is unique and is computed in polynomial time by the
function GreedyPair depicted in Algorithm 1.

Proof. It is easy to see that the function GreedyPair in algorithm 1 runs in polynomial time
and its output, (Y, (Zy)y∈Y), is a greedy pair. Assume that there is another greedy pair
(Y ′, (Z ′y)y∈Y ′). It is enough to show that Y = Y ′ since (Zy)y∈Y and (Z ′y)y∈Y ′ are determined
completely by Y and Y ′, respectively. Let us enumerate Y and Y ′ as y1 < y2 < · · · < yk

and y′i1
< y′ip

< · · · < y′ip
, respectively. Let j the smallest such that y′ij

6= yj . If y′ij
does not

exist, then Y ′ cannot be a transversal of PT (x) and similarly if yj does not exist. So, let us
assume that such a j exists. If y′ij

< yj , then there is an edge Fij
∈ PT (x) which does not

intersect Y because Fij
does not intersect {y1, . . . , yj−1} and Fij

\E ⊆ {w ∈ V (H) | w < yij
}

(Condition (3) of Definition 8). Similarly, if yj < yij , there is an edge Fj ∈ PT (x) which does
not intersect Y ′ as Fj does not intersect {y1, . . . , yj−1} and Fj \E ⊆ {w ∈ V (H) | w < yj}.
In both cases, we contradict the fact that Y or Y ′ is a transversal of PT (x). J

If (Y, (Zy)y∈Y) is the greedy pair of PT (x), for a minimal transversal T , then Y is intended
to replace x in T , but even though (T \{x})∪Y is a transversal, it is not necessarily minimal.

M.M. Kanté, K. Khoshkhah, and M. Pourmoradnasseri 55:7

The set ∪y∈Y Zy is the set to remove to obtain a minimal transversal. The next lemma allows
to prove that (T ∪ Y) \ ((∪y∈Y Zy) ∪ {x}) is a minimal transversal.

I Lemma 10. Let T be an irredundant set of H containing succedent vertices and let x

be the largest succedent vertex of T . Let (Y, (Zy)y∈Y) be the greedy pair of PT (x) and let
Z := ∪y∈Y Zy. Then, the following properties hold:
a. For each vertex x′ of T ∩E different from x, and each F ′ ∈ PT (x′), we have F ′ ∩ Y = ∅.
b. For each hyperedge F ∈ H \ H(x), we have |F ∩ Y | ≤ 1.
c. For each z ∈ Z, there is exactly one y ∈ Y such that H(y) ∩ PT (z) 6= ∅.
d. If there are zi, zj ∈ Z and y ∈ Y such that H(y) ∩ PT (zi) 6= ∅ and H(y) ∩ PT (zj) 6= ∅,

then there is no hyperedge in H \H(y) which includes both zi and zj.
e. If there are z ∈ Z and y ∈ Y such that H(y)∩PT (z) 6= ∅, then H(x)∩H(z) ⊆ H(x)∩H(y).

Proof. All the proofs are by contradicting the fact that H is (3, 4)-hole free.
a. Let x′ 6= x be a vertex of T ∩ E and F ′ ∈ PT (x′) and y ∈ Y ∩ F ′. Also, assume that

F ∈ PT (x), containing y. By the definition of the double star S(`, E), the hyperedge E

contains all the succedent vertices and therefore, (y, F, x, E, x′, F ′, y) is a 3-hole in H.
b. Let F ∈ H \ H(x) be a hyperedge containing two vertices yi ≤ yj , both from Y . Let

Fi ∈ PY (yi) ∩ H(x) and Fj ∈ PY (yj) ∩ H(x), which exist by the definition of a greedy
pair. Then (yi, F, yj , Fj , x, Fi, yi) constitutes a 3-hole in H.

c. Let Ni ∈ H(yi) ∩ PT (z) and Nj ∈ H(yj) ∩ PT (z) for two distinct vertices yi and yj of Y .
Notice that Ni 6= Nj by (b). Let Fi ∈ PT (x) ∩ PY (yi) and Fj ∈ PT (x) ∩ PY (yj). Then
(z, Ni, yi, Fi, x, Fj , yj , Nj , z) gives a 4-hole in H.

d. Let zi, zj ∈ Z such that there is a vertex y ∈ Y , and Fi ∈ H(y) ∩ PT (zi) and Fj ∈
H(y) ∩ PT (zj). Suppose that there is a hyperedge F ∈ H \ H(y) that contains both zi

and zj . Then, (zj , F, zi, Fi, y, Fj , zj) induces a 3-hole in H.
e. Let Fz ∈ H(y) ∩ PT (z) and Nz ∈ H(x) ∩H(z) such that y /∈ Nz. Let Ny ∈ H(x) ∩H(y).

Then, (x, Nz, z, Fz, y, Ny, x) is a 3-hole in H. J

From Lemma 10, we can deduce the following.

I Proposition 11. Let T ∈ Inc(H, `, E) be a non-basic minimal transversal and let x be
the largest succedent vertex of T . Let (Y, (Zy)y∈Y) be the greedy pair of PT (x). Then,
T ∗ := (T ∪ Y) \ ((∪y∈Y Zy) ∪ {x}) belongs to Inc(H, `, E). Moreover, T ∗ has one less
succedent vertices than T .

Proof. Let Z := ∪y∈Y Zy. By definition of T ∗, it is clear that ` ∈ T ∗ and it has less succedent
vertices than T since x is removed from T . By the definition of the greedy pair, each vertex
y ∈ Y has a private with respect to T ∗, and by Lemma 10(a), each vertex of (T ∩ E) \ {x}
has a private with respect to T ∗. Also, by the definition of the greedy pair, each vertex z of
T \ (E ∪ Z) has a private with respect to T ∗. It remains to show that T ∗ is a transversal. If
there is F ∈ H such that F ∩ T ∗ = ∅, then by the definition of Z and by Lemma 10(e), F is
not the private of any vertex z ∈ Z and then, there are at least two distinct vertices z and
z′ both contained in F ∩ Z. By Lemma 10(d), z ∈ Zyi and z′ ∈ Zyj for two distinct yi and
yj in Y . Let yj be the largest such that there is z′ ∈ Zyj

and z′ ∈ F . Then, F necessarily
belongs to the private of z′ with respect to (T ∪ {y′ ∈ Y | y′ < yj}) \ (∪y′<yj Zy′), which
contradicts the fact that z′ ∈ Zyj

. This concludes the proof. J

We are now ready to define the parent-child relation.

MFCS 2018

55:8 Enumerating Minimal Transversals of Hypergraphs Without Small Holes

Algorithm 2: Enum(H,≤).
Input: A (3, 4)-hole free hypergraph H and a linear ordering ≤ of V (H).

8 begin
9 Let S(`, E) be a valid double star of H

10 foreach T ∈ Enum ((H \H(`))[V (H) \ E],≤ do
11 output (T ∪ {`})
12 Enum-Children (T ∪ {`})
13 Enum (H[V (H) \ {`}],≤)

I Definition 12. Let T be a non-basic minimal transversal T in Inc(H, `, E). Let x be the
largest succedent vertex of T and let (Y, (Zy)y∈Y) be the greedy pair of PT (x). We call
T ∗ := (T ∪ Y) \ ((∪y∈Y Zy) ∪ {x}) the parent of T , and call T the child of T ∗ with respect
to (x, Y, (Zy)y∈Y).

The following will be used to characterise the children of any minimal transversal in
Inc(H, `, E).

I Fact 13. If T is a child of T ∗ with respect to (x, Y, (Zy)y∈Y) then for every y ∈ Y ,
PT (x) ∩ PT∗(y) 6= ∅ and for all z ∈ Zmin(Y), PT (z) ⊆ PT∗(min(Y)).

I Lemma 14. Let T be a child of T ∗ with respect to (x, Y, (Zy)y∈Y) and let y1 := min(Y \Y0)
where Y0 := {y ∈ Y | PT∗(y) ⊆ H(x)}. Let Z ′ := ∪y∈Y \{y1}Zy and Cy1 := V (H) \ (T ∗ ∪
E ∪ {w ∈ V (H) | ∃t ∈ T \ Zy1 s.t. PT\Zy1

(t) ⊆ H(w)}). Then, Zy1 ∪ {x} is a minimal
transversal of P(T∗∪Z′)\(Y \{y1})(y1)[Cy1 ∪ {x}].

Proof. Notice first that by Fact 13, for each z ∈ Zy1 , PT (z) ⊆ PT∗(y1) and since T \ Zy1 =
(T ∗ \ Y) ∪ (Z ′ ∪ {x}) and T is a minimal transversal, we can conclude that Zy1 ∪ {x} is
an irredundant set of P(T∗∪Z′)\(Y \{y1})(y1) by Lemma 10(c). Now, because T is a minimal
transversal of H, no z ∈ Zy1 breaks the private of some t ∈ T \ Zy1 . So, Zy1 ⊆ Cy1 .
Assume that there is F ∈ P(T∗∪Z′)\(Y \{y1})(y1) such that F ∩ (Zy1 ∪ {x}) = ∅. Because
T = (T ∗ ∪ Z ′ ∪ Zy1 ∪ {x}) \ Y , we would have T ∩ F = ∅, contradicting the fact that T is a
minimal transversal. J

The proofs of the following are trivial from the definitions.

I Lemma 15. For every non-basic minimal transversal T in Inc(H, `, E), the parent of T

can be computed in polynomial time.

I Proposition 16. The directed graph with vertex set Inc(H, `, E) and arc set the pairs
(T ∗, T) such that T ∗ is the parent of T is acyclic.

The algorithm consists now in doing a DFS traversal of the directed graph of Proposition
16. The description is given in Algorithm 2. In order to prove that it runs with polynomial
delay, it remains to show that for each non-basic minimal transversal, its children can be
enumerated with polynomial delay.

We will now prove in the next section that the children of any T ∈ Inc(H, `, E) can be
enumerated with polynomial delay and polynomial space.

M.M. Kanté, K. Khoshkhah, and M. Pourmoradnasseri 55:9

3.2 Enumerating the children of T ∈ Inc(H, `, E)
Remember that H is given with an ordering ≤ of V (H). Also, S(`, E) is a valid double star
of H. For a minimal transversal T ∗ ∈ Inc(H, `, E), let Cov(T ∗) := {x ∈ E \ T ∗ | for each
x′ ∈ T ∗ ∩ E, x′ ≤ x and PT∗∪{x}(x′) 6= ∅}. The set Cov(T ∗) is the set of vertices in E

that can be added to T ∗ without breaking the privates of any x′ ∈ E ∩ T ∗ and are therefore
candidates for generating the children of T ∗.

Let x ∈ Cov(T ∗) and let Y0 := {y ∈ T ∗ \ E | PT∗(y) ⊆ H(x)}.

I Lemma 17. If Y0 6= ∅, then T0 := (T ∗ \ Y0) ∪ {x} is a minimal transversal of H.

Proof. By the definition of Y0 and of T0, we can conclude that T0 is an irredundant set.
If there is N ∈ H not intersected by T0, then N ∈ H(y) ∩ H(y′) for two distinct vertices
in Y0. Let F ∈ PT∗(y) and F ′ ∈ PT∗(y′). Then, (x, F, y, N, y′, F ′, x) is a 3-hole in H, a
contradiction. J

I Lemma 18. If T is a child of T ∗ with respect to (x, Y, (Zy)y∈Y , then Y0 ⊆ Y .

Proof. Let T be a child of T ∗ with respect to (x, Y, (Zy)y∈Y). We first claim that Y0∩T = ∅.
Suppose that there is y0 ∈ T ∩ Y0. Since T is a child of T ∗, then T ∗ = (T ∪ Y) \ (Z ∪ {x})
for some greedy pair (Y, (Zy)y∈Y with Z := ∪y∈Y Zy. Therefore, y0 /∈ Y and thus y0 ∈
T \ (Z ∪ {x}). Now, because PT∗(y0) ⊆ H(x), we can conclude that there is y ∈ Y and
F ∈ H(y) ∩ H(y0) with F ∈ PT (y0). Because y ∈ Y , then there is F ′ ∈ PT (x) such that
F ′ ∈ PT∗(y1). Therefore, (x, F0, y0, F, y1, F ′, x) is a 3-hole, contradicting that H is (3, 4)-hole
free, for some F0 ∈ PT∗(y0).

If T is a child of T ∗, then by the previous claim, we know that Y0 ∩ T = ∅. Because
T ∗ = (T ∪ Y) \ ({x} ∪ Z), we can conclude that Y0 is necessarily a subset of Y , otherwise it
would not be a subset of T ∗. J

Level-0-child. If Y0 6= ∅ and T0 := (T ∗ \ Y0)∪ {x} is a child of T ∗ with respect to (x, Y0, ∅),
we call T0 the level-0 child of T ∗.

Note. If Y0 = ∅, we “symbolically” call T ∗ ∪ {x} the level-0 child of T ∗ with respect to
(x, ∅, ∅). Also, we say that (∅, ∅) is the greedy pair of PT∗∪{x}(x). Notice that T ∗ ∪ {x} is
not a minimal transversal.

We will now characterise the other children of T ∗. Before, let us first prove the following
which is the base of the characterisation.

I Lemma 19. Let T be an irredundant set containing succedent vertices and let x be the largest
succedent vertex of T . Let y1 ∈ Y be the smallest such that Zy1 6= ∅. Then, (Y, (Zy)y∈Y) is
the greedy pair of PT (x) if and only if (Y, (Z ′y)y∈Y) is the greedy pair of PT\Zy1

(x) where

Z ′y :=
{

Zy if y 6= y1,

∅ otherwise.

Proof. Let (Y ′, (Wy)y∈Y ′) be the greedy pair of PT\Zmin(Y)(x). Because (Wy)y∈Y ′ is de-
termined by Y ′, it is enough to prove that Y = Y ′. Let us enumerate Y as yt1 < yt2 <

· · · < ytp
< y1 < y2 < · · · < yk with Zytj

= ∅ for all 1 ≤ j ≤ p. Then, Y ′ is the sequence
yt1 < yt2 < · · · < ytp

< y′i1
< y′i2

< · · · < y′it
. Let j be the smallest such that y′ij

6= yj .
Let Fij ∈ PT\Zy1

(x) such that Fij \ E ⊆ {v ∈ V (H) | v ≤ y′ij
} and let Fj ∈ PT (x) such

that Fj \ E ⊆ {v ∈ V (H) | v ≤ yj}. Observe that because PT (x) ⊆ PT\Zy1
(x), then

MFCS 2018

55:10 Enumerating Minimal Transversals of Hypergraphs Without Small Holes

Fj ∈ PT\Zy1
(x). If yj < y′ij

, then yj should necessarily belong to Y ′, contradicting the choice
of j. So y′ij

< yj . Assuming that Fij
∈ PT (x) ⊆ PT\Zy1

(x) contradicts the fact that y′ij
/∈ Y .

So, Fij
/∈ PT (x), i.e., there is z1 ∈ Zy1 such that z1 ∈ Fij

. Let F1 ∈ PT (z1). Because
z1 ∈ Zy1 , we have that F1 ∈ H(y1). Then, (z1, F1, y1, Fj , x, Fij , z1) is a 3-hole in H. J

Level-i children. Let R := {y ∈ T ∗ \ (E ∪Y0) | PT∗(y)∩H(x) 6= ∅}. The high-level idea for
generating the children of T ∗ with respect to x consists in, recursively, deleting a correct set
of vertices Y0 ⊆ Y ⊆ R from T ∗ and assigning the privates of vertices in Y to x. The choice
of Y is determined by checking whether there is a Z ∈ tr(∪y∈Y PT∗(y) \ H(x)) containing x

such that T := (T ∗ \ Y) ∪ Z is a minimal transversal and child of T ∗, which can be checked.
As we will see, this step is independent of the choice of Z. In a second step, we will enumerate
the set of suitable minimal transversals Z of ∪y∈Y PT∗(y) \ H(x).

A collection I of subsets of a ground set V is an accessible system if for each I ∈ I, there
is an i ∈ I such that I \ {i} ∈ I. The two following lemmas show that the set of children of
T ∗ is like an accessible system following the Y -parts of the greedy pairs.

I Lemma 20. Suppose that Y0 = ∅. Let T be a child of T ∗ with respect to (x, Y, (Zy)y∈Y),
with Y ⊆ R. Then, T ′ := (T ∪ {min(Y)}) \ Zmin(Y) is a child of T ∗ with respect to
(x, Y \ {min(Y)}, (Zy)y∈Y \{min(Y)}).

Proof. If |Y | = 1, then T ′ = T ∗ ∪ {x}. That is a symbolic level-0 child of T ∗ with respect
to (x, ∅, ∅). If |Y | ≥ 2, let y1 := min(Y). By Fact 13, PT (z) ⊆ PT∗(y1). Then using Lemma
10(d) and by definition, T ′ is a transversal of H. In order to prove that it is minimal, we
must show T ′ is irredundant. By the construction of Z1, if y1 breaks t ∈ T then t ∈ Z1. Also,
since |Y | ≥ 2, by Fact 13, PT (x) ∩ PT∗(y) 6= ∅, when y ∈ Y \ {y1} and by the minimality of
T ∗, H(y1) ∩ PT∗(y) = ∅. Therefore PT∪{y}(x) 6= ∅ and T ′ is irredundant.

Now, by the GreedyPair Algorithm and uniqueness of the greedy pair, we can easily check
that the greedy pair of PT ′(x) is exactly (Y \ {min(Y)}, (Zy)y∈Y \{min(Y)}) and T ′ ∪ (Y \
{min(Y)}) \ ((Zy)y∈Y \{min(Y)}) = T ∗ is the parent of T ′. J

I Lemma 21. Suppose that Y0 6= ∅. Let T be a child of T ∗ with respect to (x, Y, (Zy)y∈Y),
with Y ⊆ R ∪ Y0 and |Y \ Y0| ≥ 1. Then, T ′ := (T ∪ {min(Y \ Y0)}) \ Zmin(Y \Y0) is a child
of T ∗ with respect to (x, Y \ {min(Y \ Y0)}, (Zy)y∈Y \{min(Y \Y0)}).

Proof. Recall by Lemma 18 that Y0 (Y . By the similar argument as in Lemma 20, we can
conclude that T ′ is a minimal transversal of H as in addition PT (x) \ (∪y∈Y \Y0PT∗(y)) 6= ∅.
Again, GreedyPair Algorithm shows that T ′ is a child of T ∗ with respect to (x, Y \ {min(Y \
Y0)}, (Zy)y∈Y \{min(Y \Y0)}). J

In the following, we want to characterise the other children of T ∗. For 1 ≤ i ≤ |R|, we
call T a level-i child of T ∗ if T is a child with respect to (x, Y, (Zy)y∈Y) with |Y \ Y0| = i.
We have seen by Lemmas 20 and 21 that if T is a level-i child of T ∗ with respect to
(x, Y, (Zy)y∈Y), then (T \ Zmin(Y \Y0)) ∪ {min(Y \ y0)} is a level-(i − 1) child of T ∗ with
respect to (x, Y \{min(Y \Y0)}, (Zy)y∈Y \{min(Y \Y0)}). We have already seen how to generate
the level-0 child. It remains now to explain how to generate the level-i children from the
level-(i− 1) children.

Let T be a level-(i− 1) child of T ∗ with respect to (x, Y, (Zy)y∈Y). Let Correct(Y) :=
{y ∈ R \ Y | y < min(Y \ Y0)}. Recall that Correct(Y) ⊆ T . For y ∈ Correct(Y), we let
Cy := V (PT\{x}(y)) \ (T ∗ ∪E ∪ {w ∈ V (H) | ∃t ∈ T \ {y} s.t. PT\{y}(t) ⊆ H(w)}). The set
Cy is the set of vertices that are candidates, other than x, for computing minimal transversals

M.M. Kanté, K. Khoshkhah, and M. Pourmoradnasseri 55:11

of PT∗(y), and such that they do not break the privates of any other vertices in T ∗, except
those of y. The following characterises the level-i children from level-(i− 1) children.

I Proposition 22. Let i ≥ 1. T is a level-i child of T ∗ if and only if there is T ′ a level-(i−1)
child of T ∗ with respect to (x, Y, (Zy)y∈Y) and y1 ∈ Correct(Y) such that (Y ∪{y1}, (Zy)y∈Y)
is the greedy pair of PT ′\{y1}(x) and T := (T ′\{y1})∪Zy1 with Zy1∪{x} a minimal transversal
of PT ′\{x}(y1)[Cy1 ∪ {x}].

Proof. Let T be a level-i child of T ∗ with respect to (x, Y, (Zy)y∈Y) and let y1 := min(Y \Y0).
By Lemma 21, T ′ := (T ∪{y1})\Zy1 is a child of T ∗ with respect to (x, Y \{y1}, (Zy)y∈Y \{y1})
and by Lemma 19, (Y, (Z ′y)y∈Y) is the greedy pair of PT ′\{y1}(x) where

Z ′y :=
{

Zy if y 6= y1,

∅ otherwise.

By Lemma 14, Zy1 ∪ {x} is a minimal transversal of PT ′\{x}(y)[Cy1 ∪ {x}].
Let T ′ be a level-(i−1) child of T ∗ with respect to (x, Y, (Zy)y∈Y) and let y1 ∈ Correct(Y)

be such that (Y ∪ {y1}, (Zy)y∈Y) is the greedy pair of PT ′\{y1}(x). Let Zy1 ⊆ Cy1 such that
Zy1 ∪ {x} is a minimal transversal of PT ′\{x}(y1). Let T := (T ′ \ {y1}) ∪ Zy1 , which by
definition is a transversal of H. By definition of Cy1 , no z ∈ Zy1 breaks the privates, with
respect to T ′ \ {y1}, of some vertex t ∈ T ′ \ {y} and since Zy1 ∪ {x} is a minimal transversal
of PT ′\{x}(y1), each vertex in Zy1 ∪ {x} has a private with respect to T . Now, if there are
z, z′ ∈ Zy1 ∪{x} that break the privates, with respect to T , of some t ∈ T ′ \ ({x}∪Zy1), then
by definition of Cy1 , there are F1, F2 ∈ PT ′\{y1}(t), F ∈ PZy1∪{x}(z), F ′ ∈ PZy1∪{x}(z

′),
both belonging to PT ′\{x}(y). But, then (z, F1, t, F2, z′, F ′, y, F, z) is a 4-hole in H. So, T is
a minimal transversal of H. By Lemma 19, (Y ∪ {y1}, (Z ′y)y∈Y ∪{y1}) is the greedy pair of
PT (x) where

Z ′y :=
{

Zy if y 6= y1,

Zy1 otherwise.

Therefore, T is a level-i child of T ∗. J

Combining Lemma 21 and Proposition 22, we are now ready to prove that the algorithm
Enum given in Algorithm 2 runs with polynomial delay.

Proof of Theorem 1. We claim that the algorithm Enum depicted in Algorithm 2 and
combined with the algorithm Enum-Children enumerates the minimal transversals of a (3, 4)-
hole free hypergraph with polynomial delay.

For any minimal transversal T ∈ tr(H), either T ∈ Inc(H, `, E) or T belongs to
tr(H[V (H) \ {`}]). Since we enumerate both in Lines 3-6, we can conclude that the al-
gorithm enumerates all the minimal transversals of H because of Proposition 16 and also,
each non-basic minimal transversal has a parent. It remains to show that we enumerate all
the children of each minimal transversal in Inc(H, `, E).

Now, the function given in Algorithm 3 first outputs the level-0-child if it exists, otherwise
it stops. Then, it calls Algorithm 4, which does a DFS on the tree where you have an
arc (T ′, T) if T ′ is a level-(i − 1) child and T is a level-i child obtained from T ′ as stated
in Proposition 22. One can, therefore, conclude that the algorithm correctly outputs all
the children of a minimal transversal in Inc(H, `, E). We can, therefore, conclude that by
combining Algorithms 2, 3 and 4 we output exactly the set of minimal transversals.

MFCS 2018

55:12 Enumerating Minimal Transversals of Hypergraphs Without Small Holes

Algorithm 3: Enum-Children(H,≤, `, E, T).
Input: A (3, 4)-hole free hypergraph H, a linear ordering ≤ of V (H), a valid double

star S(`, E) and T ∈ Inc(H, `, E).
14 begin
15 foreach x ∈ Cov(T) do
16 Let Y0 := {y ∈ T | PT (y) ⊆ H(x)} and T0 := ((T \ Y0) ∪ {x})
17 if (Y0, ∅) is the greedy pair of PT\Y0(x) then
18 if Y0 6= ∅ then
19 output T0

20 Let R := {y ∈ T \ (E ∪ Y0) | PT (y) ∩H(x) 6= ∅}
21 Enum-ChildrenAux (H,≤, `, E, T0, x, R, Y0)

Algorithm 4: Enum-ChildrenAux(H,≤, `, E, T, x, R, Y).
Input: A (3, 4)-hole free hypergraph H, a linear ordering ≤ of V (H), a valid double

star S(`, E), T a transversal of H, a succedent x ∈ T , R the set of candidates
and Y the already chosen candidates.

22 begin
23 foreach y ∈ Correct(Y) do
24 if Y ∪ {y} is the Y -part of the greedy pair of PT\{y}(x) then
25 foreach Zy containing x in Enum (PT\{x}(x)[Cy ∪ {x}],≤) do
26 output ((T ∪ Zy) \ {y})
27 Enum-ChildrenAux (H,≤, `, E, (T ∪ Zy) \ {y}), x, R, Y ∪ {y})

Let us now analyse its time complexity. Let n := |V (H)|+
∑

E∈H |E|. We first notice
that one can combine both algorithms Enum and Enum-ChildrenAux into a single one which
will do a DFS traversal of the tree of recursive calls (see for instance [2, 21]). Second,
each call of Enum or of Enum-ChildrenAux, after a pre-processing polynomial in n, either
outputs a new minimal transversal or exits. Therefore, the tree of combined recursive calls of
both algorithms has size bounded by O(nc) · |tr(H)|, for some universal constant c, i.e., the
amortised time complexity of the algorithm is O(nc). By using the same technique as in [28],
which consists in outputting a solution at the beginning when the depth of the recursive call
is odd, and at the end when the depth is even, one obtains the desired delay per solution. J

4 Related results and Conclusion

Enumerating all the minimal dominating sets of a graph is another interesting task in the
area of enumeration algorithms with numerous applications (see for instance [20]). Our
algorithm readily can enumerate the minimal dominating sets of graphs of girth at least 9.
We refer to [26] and [17] for related works. The result of this paper also, gives an incremental
delay algorithm for enumerating all the minimal dominating sets in a bipartite graph without
induced cycles of length 6 and 8.

M.M. Kanté, K. Khoshkhah, and M. Pourmoradnasseri 55:13

I Corollary 2.
a. There is a polynomial delay algorithm that enumerates all the minimal dominating sets of

a given input graph G of girth at least 9. More precisely, the result holds if G does not
contain induced (4, 5, 6, 7, 8)-cycles.

b. There is an incremental delay algorithm that enumerates all the minimal dominating sets
of a given bipartite graph without chordless 6 and 8-cycles.

Proof of Corollary 2.
a. Let G be a graph of girth at least 9. Let N [G] be the hypergraph {N [x] | x ∈ V (G)}

where N [x] is the set {x} ∪ {y ∈ V (G) | y a neighbour of x}. It is well-known that D is a
minimal dominating set of G if and only if D is a minimal transversal of N [G]. One can
easily check that if G does not contain a chordless cycle of length strictly smaller than 9
and greater than 3, then N [G] cannot contain a chordless 3 or 4-cycle, because a cycle of
length 3 in N [G] can only be obtained by an induced cycle of length at most 6 in G and
a cycle of length 4 in N [G] by an induced cycle of length at most 8 in G. By Theorem 1,
one can enumerate with polynomial delay all the minimal transversals of N [G].

b. Let G := (R, B, E) be a bipartite graph without chordless 6 and 8-cycles. By Theorem 1
one can enumerate all the minimal sets D ⊆ R such that D dominates B (called red-blue
dominating sets in [16]). By using the flipping method in [17], one reduces the existence
of an incremental delay enumeration algorithm for the minimal dominating sets of G

to the existence of a polynomial delay enumeration algorithm for the minimal red-blue
dominating sets in induced subgraphs of G. This concludes the proof. J

As we have already discussed in the introduction, the vertices of the polyhedron P(A, 1
¯
) =

{x ∈ Rn | Ax ≥ 1
¯
, x ≥ 0

¯
} are in bijection with the minimal transversals of the corresponding

hypergraph H[A], where the columns of A correspond to the vertices of H[A] and the rows
of A are incident vectors of the hyperedges of H[A] [27]. If the coefficient matrix A in the
polyhedron is balanced, then the corresponding hypergraph does not contain any odd-hole.

I Theorem 3. There is a polynomial delay algorithm for listing the vertices of any given
0/1 polyhedron P(A, 1

¯
) whenever A is a balanced matrix without any submatrix that is the

incident matrix of a 4-cycle.

Proof of Theorem 3. Let A be a balanced matrix without any 4-cycle submatrix. Then,
H[A], the hypergraph corresponding to the matrix A as explained above, does not contain
chordless cycles of length 3 or 4. By Theorem 1 one can enumerate with polynomial delay
the minimal transversals of H[A], which by [27] correspond to the vertices of P(A, 1

¯
). J

We conclude the paper by observing that even though our algorithm in Theorem 1 is a
polynomial delay one, it uses exponential space and it should be interesting to know whether
one can modify it in order to use polynomial space. However, there are more challenging
questions, and in particular, it is still open whether there is an output-polynomial time
algorithm for enumerating the vertices of a polyhedron P(A, 1

¯
) when A is balanced. We

just notice that one needs another technique to deal with balanced hypergraphs as our
technique cannot avoid the requirement of the hypergraph to be without chordless 4-cycles.
A more challenging question in this area asks for the existence of an output-polynomial time
algorithm for the vertices of bounded polyhedron [13].

In many enumeration algorithms, like ours in this paper or [2, 17], the enumeration is
reduced to traverse a graph with vertex set the set of solutions, and the difficulty is usually
how to generate the neighbors of a given solution. In our paper, we solve this problem by a
rather technical, but nice parent-child relation based on the structure of the hypergraphs.

MFCS 2018

55:14 Enumerating Minimal Transversals of Hypergraphs Without Small Holes

However, the used techniques in almost all such papers are ad-hoc (despite the nice attempts
in [2]) and the area still lacks a general theory on identifying a large family of combinatorial
enumeration problems on which such a technique works finely.

References
1 MHG Anthony and Norman Biggs. Computational learning theory, volume 30. Cambridge

University Press, 1997.
2 David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Appl. Math.,

65(1-3):21–46, 1996. First International Colloquium on Graphs and Optimization (GOI),
1992 (Grimentz). doi:10.1016/0166-218X(95)00026-N.

3 James Bailey, Thomas Manoukian, and Kotagiri Ramamohanarao. A fast algorithm for
computing hypergraph transversals and its application in mining emerging patterns. In
Data Mining, 2003. ICDM 2003. Third IEEE International Conference on, pages 485–488.
IEEE, 2003.

4 Claude Berge. Hypergraphs: combinatorics of finite sets, volume 45. Elsevier, 1984.
5 Endre Boros, Khaled Elbassioni, Vladimir Gurvich, Leonid Khachiyan, and Kazuhisa

Makino. Dual-bounded generating problems: All minimal integer solutions for a mono-
tone system of linear inequalities. SIAM Journal on Computing, 31(5):1624–1643, 2002.

6 Endre Boros, Khaled Elbassioni, Vladimir Gurvich, and Hans Raj Tiwary. The negative cy-
cles polyhedron and hardness of checking some polyhedral properties. Annals of Operations
Research, 188(1):63–76, 2011.

7 Endre Boros, Vladimir Gurvich, and Peter L. Hammer. Dual subimplicants of positive
Boolean functions. Optim. Methods Softw., 10(2):147–156, 1998. Dedicated to Professor
Masao Iri on the occasion of his 65th birthday. doi:10.1080/10556789808805708.

8 Endre Boros, Vladimir Gurvich, Leonid Khachiyan, and Kazuhisa Makino. On the com-
plexity of generating maximal frequent and minimal infrequent sets. In Annual Symposium
on Theoretical Aspects of Computer Science, pages 133–141. Springer, 2002.

9 Michael R Bussieck and Marco E Lübbecke. The vertex set of a 0/1-polytope is strongly
p-enumerable. Computational Geometry, 11(2):103–109, 1998.

10 Michele Conforti, Gérard Cornuéjols, and MR Rao. Decomposition of balanced matrices.
Journal of Combinatorial Theory, Series B, 77(2):292–406, 1999.

11 T. Eiter, G. Gottlob, and K. Makino. New results on monotone dualization and gener-
ating hypergraph transversals. SIAM J. Comput., 32(2):514–537, 2003. doi:10.1137/
S009753970240639X.

12 Thomas Eiter and Georg Gottlob. Identifying the minimal transversals of a hypergraph
and related problems. SIAM Journal on Computing, 24(6):1278–1304, 1995.

13 Khaled Elbassioni and Kazuhisa Makino. Enumerating Vertices of 0/1-Polyhedra associated
with 0/1-Totally Unimodular Matrices. In David Eppstein, editor, 16th Scandinavian Sym-
posium and Workshops on Algorithm Theory (SWAT 2018), volume 101 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 18:1–18:14, Dagstuhl, Germany, 2018.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.SWAT.2018.18.

14 Michael L Fredman and Leonid Khachiyan. On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms, 21(3):618–628, 1996.

15 Komei Fukuda. Lecture: polyhedral computation. Technical report, Research Report,
Department of Mathematics, and Institute of Theoretical Computer Science ETH Zurich,
available online, 2004.

16 Petr A. Golovach, Pinar Heggernes, Mamadou Moustapha Kanté, Dieter Kratsch,
Sigve Hortemo Sæther, and Yngve Villanger. Output-polynomial enumeration on graphs
of bounded (local) linear mim-width. Algorithmica, 80(2):714–741, 2018. doi:10.1007/
s00453-017-0289-1.

http://dx.doi.org/10.1016/0166-218X(95)00026-N
http://dx.doi.org/10.1080/10556789808805708
http://dx.doi.org/10.1137/S009753970240639X
http://dx.doi.org/10.1137/S009753970240639X
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.18
http://dx.doi.org/10.1007/s00453-017-0289-1
http://dx.doi.org/10.1007/s00453-017-0289-1

M.M. Kanté, K. Khoshkhah, and M. Pourmoradnasseri 55:15

17 Petr A Golovach, Pinar Heggernes, Dieter Kratsch, and Yngve Villanger. An incremental
polynomial time algorithm to enumerate all minimal edge dominating sets. Algorithmica,
72(3):836–859, 2015.

18 Dimitrios Gunopulos, Heikki Mannila, Roni Khardon, and Hannu Toivonen. Data min-
ing, hypergraph transversals, and machine learning. In Proceedings of the sixteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages 209–216.
ACM, 1997.

19 VA Gurvich. On theory of multistep games. USSR Computational Mathematics and Math-
ematical Physics, 13(6):143–161, 1973.

20 M. M. Kanté, V. Limouzy, A. Mary, and L. Nourine. On the enumeration of minimal
dominating sets and related notions. SIAM J. Discrete Math., 28(4):1916–1929, 2014.
doi:10.1137/120862612.

21 Dimitris J. Kavvadias and Elias C. Stavropoulos. An efficient algorithm for the transversal
hypergraph generation. J. Graph Algorithms Appl., 9(2):239–264 (electronic), 2005. doi:
10.7155/jgaa.00107.

22 L. Khachiyan, E. Boros, K. Borys, K. M. Elbassioni, V. Gurvich, and K. Makino. Gener-
ating cut conjunctions in graphs and related problems. Algorithmica, 51(3):239–263, 2008.
doi:10.1007/s00453-007-9111-9.

23 Leonid Khachiyan, Endre Boros, Konrad Borys, Vladimir Gurvich, and Khaled Elbassioni.
Generating all vertices of a polyhedron is hard. In Twentieth Anniversary Volume:, pages
1–17. Springer, 2009.

24 Leonid Khachiyan, Endre Boros, Khaled Elbassioni, and Vladimir Gurvich. An efficient
implementation of a quasi-polynomial algorithm for generating hypergraph transversals
and its application in joint generation. Discrete Applied Mathematics, 154(16):2350–2372,
2006.

25 Leonid Khachiyan, Endre Boros, Khaled M. Elbassioni, and Vladimir Gurvich. On the
dualization of hypergraphs with bounded edge-intersections and other related classes of
hypergraphs. Theor. Comput. Sci., 382(2):139–150, 2007. doi:10.1016/j.tcs.2007.03.
005.

26 Kazuhiro Kurita, Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno. Efficient enumeration
of dominating sets for sparse graphs. arXiv preprint arXiv:1802.07863, 2018.

27 Alfred Lehman. On the width-length inequality. Mathematical Programming, 16(1):245–
259, 1979.

28 Kazuhisa Makino and Takeaki Uno. New algorithms for enumerating all maximal cliques.
In Torben Hagerup and Jyrki Katajainen, editors, Algorithm Theory - SWAT 2004, 9th
Scandinavian Workshop on Algorithm Theory, Humlebaek, Denmark, July 8-10, 2004, Pro-
ceedings, volume 3111 of Lecture Notes in Computer Science, pages 260–272. Springer, 2004.
doi:10.1007/978-3-540-27810-8_23.

29 Ronald C Read. Every one a winner or how to avoid isomorphism search when cataloguing
combinatorial configurations. In Annals of Discrete Mathematics, volume 2, pages 107–120.
Elsevier, 1978.

30 Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.
31 Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borg-

wardt. Efficient graphlet kernels for large graph comparison. In Artificial Intelligence and
Statistics, pages 488–495, 2009.

32 Kunihiro Wasa. Enumeration of enumeration algorithms. arXiv preprint arXiv:1605.05102,
2016.

MFCS 2018

http://dx.doi.org/10.1137/120862612
http://dx.doi.org/10.7155/jgaa.00107
http://dx.doi.org/10.7155/jgaa.00107
http://dx.doi.org/10.1007/s00453-007-9111-9
http://dx.doi.org/10.1016/j.tcs.2007.03.005
http://dx.doi.org/10.1016/j.tcs.2007.03.005
http://dx.doi.org/10.1007/978-3-540-27810-8_23

Collective Fast Delivery by Energy-Efficient
Agents
Andreas Bärtschi
Department of Computer Science, ETH Zürich, Switzerland
andreas.baertschi@inf.ethz.ch

Daniel Graf
Department of Computer Science, ETH Zürich, Switzerland
daniel.graf@inf.ethz.ch

Matúš Mihalák
Department of Data Science and Knowledge Engineering, Maastricht University, Netherlands
matus.mihalak@maastrichtuniversity.nl

Abstract
We consider k mobile agents initially located at distinct nodes of an undirected graph (on n

nodes, with edge lengths). The agents have to deliver a single item from a given source node s
to a given target node t. The agents can move along the edges of the graph, starting at time
0, with respect to the following: Each agent i has a weight ωi that defines the rate of energy
consumption while travelling a distance in the graph, and a velocity υi with which it can move.

We are interested in schedules (operating the k agents) that result in a small delivery time T
(time when the item arrives at t), and small total energy consumption E . Concretely, we ask for
a schedule that: either (i) Minimizes T , (ii) Minimizes lexicographically (T , E) (prioritizing fast
delivery), or (iii) Minimizes ε · T + (1− ε) · E , for a given ε ∈ (0, 1).

We show that (i) is solvable in polynomial time, and show that (ii) is polynomial-time solvable
for uniform velocities and solvable in time O(n+ k log k) for arbitrary velocities on paths, but in
general is NP-hard even on planar graphs. As a corollary of our hardness result, (iii) is NP-hard,
too. We show that there is a 2-approximation algorithm for (iii) using a single agent.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases delivery, mobile agents, time/energy optimization, complexity, algo-
rithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.56

Funding This work was partially supported by the SNF (project 200021L_156620, Algorithm
Design for Microrobots with Energy Constraints).

1 Introduction

Technological development has allowed for low-cost mass production of small and simple
mobile robots. Autonomous vacuum cleaners, mowers, or drones are some of the best known
examples. There are attempts to deploy such autonomous agents to deliver physical goods
– packages [24, 26]. In the future, for delivering over longer distances, a swarm of such
autonomous agents is a likely option to be adapted, since the energy supply of the agents is
limited, or the agents are simply required to operate locally, or simply because the usage of
some agents is more costly than others. A careful cooperation and planning of the agents is
thus necessary to provide energy, time, and cost efficient delivery. This leads to plentiful
optimization problems regarding the operation of the agents.

© Andreas Bärtschi, Daniel Graf, and Matúš Mihalák;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 56; pp. 56:1–56:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andreas.baertschi@inf.ethz.ch
mailto:daniel.graf@inf.ethz.ch
mailto:matus.mihalak@maastrichtuniversity.nl
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.56
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

56:2 Collective Fast Delivery by Energy-Efficient Agents

Here we consider the problem of delivering a single package as quickly as possible from a
source node s to a target node t in a graph G = (V,E) with edge lengths by a team of k
agents. The agents have individual velocities, with which they can move along the edges of
the graph, and also an energy-consumption rate for a travelled unit distance. The goal is
to design centralized algorithms to coordinate the agents such that the package is delivered
from s to t in an efficient way. In the literature, delivery problems focusing solely on energy
efficiency have been studied. One research direction considers every agent to have an initial
amount of energy (battery) that restricts the agents’ movements [1, 11]. The decision problem
of whether the agents can deliver the package has been shown to be strongly NP-hard on
planar graphs [6, 7] and weakly NP-hard on paths [12], and it remains NP-hard on general
graphs even if the agents can exchange energy [13]. The second research direction considers
every agent to have unlimited energy supply, and an individual energy-consumption rate per
travelled distance [8, 9]. The problem of delivering the package and minimizing the total
energy consumption can be solved in time O(k + n3) [8].

In this paper, we primarily focus on delivering the package in a quickest possible way, and
only secondarily on the total energy that is consumed by the agents. This has not been, to
the best of our knowledge, studied before. Specifically, we consider the algorithmic problem
of finding a delivery schedule that: (i) minimizes the delivery time, (ii) minimizes the delivery
time using the least amount of energy, and (iii) minimizes a linear combination of delivery
time and energy consumption.

Our model. We are given an undirected graph G = (V,E) on n = |V | nodes. Each edge
e ∈ E has a positive length le. The length of a path is the sum of the lengths of its edges.
We consider every edge e = {u, v} to consist of infinitely many points, where every point
is uniquely characterized by its distance from u, which is between 0 and le. We consider
every such point to subdivide the edge {u, v} into two edges of lengths proportional to the
position of the point on the edge. The distance dG(p, q) between two points p and q (nodes
or points inside edges) of the graph is the length of a shortest path from p to q in G. There
are k mobile agents initially placed on nodes p1, . . . , pk of G. Every agent i = 1, . . . , k has a
weight 0 ≤ ωi <∞ and a velocity 0 < υi ≤ ∞. Agents can traverse the edges of the graph.
To traverse an edge e (in either direction), agent i needs time le/υi and ωi · le units of energy.

Furthermore there is a single package, initially (at time 0) placed on a source node s,
which has to be delivered to a given target node t. Each agent can walk from its current
location to the current location of the package (along a path in the graph), pick the package
up, carry it to another location (a point of the graph), and drop it there. From this moment,
another agent can pick up the package again. Only the moving in the graph takes time –
picking up the package and dropping it off is done instantaneously. (The time spent by the
package being dropped at a point until picked up again is, however, taken into account.)

We call a schedule that operates the agents such that the package is delivered a solution.
In such a schedule S, we denote by di(S) the total distance travelled by agent i, and by d∗i (S)
the distance travelled by agent i while carrying the package. The total energy consumption
of the solution is thus E(S) =

∑k
i=1 ωi · di(S) and the time needed to deliver the package

is given by T (S) =
∑k
i=1 d

∗
i (S)/υi + (the overall time the package is not carried). Fast and

energy-efficient Delivery is the optimization problem of finding a solution that has small
delivery time T as well as total energy consumption E . In particular, we study the following
three objectives (see Figure 1 for illustration):
(i) Minimize the delivery time T .
(ii) Lexicographically minimize the tuple (T , E), i.e. among all solutions with minimum T ,

find a solution that has minimum energy consumption E .

A. Bärtschi, D. Graf, and M. Mihalák 56:3

(v4, w4)=(3, 2)

s t4.5 1.5

12

12

(v3, w3)=(2, 1)
(v1, w1)=(1, 2)

(v2, w2)=(2, 4)

Figure 1 Example for optima of variants of fast and energy-efficient Delivery:
(ii) Using agents 2 and 4, we get (T , E) = (max {6/2, 12/3}+ 12/3, 4 · 6 + 2 · 12 + 2 · 12) = (8, 72).
(iii) For ε = 4

5 , using agents 1 and 4, we get 4
5T = 4

5 (max {4.5/1, (12 + 1.5)/3}+ (1.5 + 12)/3) and
1
5E = 1

5 (4.5·2+(12+1.5)·2+(1.5+12)·2) for a combined total of 4
5 (4.5 + 4.5)+ 1

5 (9+27+27) = 19.8.
(iv) Using agents 1 and 3, we get (E , T) = (2 · 6 + 1 · 12 + 1 · 12, max {6/1, 12/2}+ 12/2) = (36, 12).

(iii) Minimize a convex combination ε · T + (1− ε) · E , for some given value ε ∈ (0, 1).
Recent parallel work studied the following complementary – energy focused – variants:
(iv) Lexicographically minimize the tuple (E , T), i.e. prioritize the minimization of E [10].
(v) Minimize the energy consumption E [8, 9].
In all variants it is natural to (without loss of generality) only consider simple paths as the
trajectory of the package, i.e., if at times t1, t2 (0 ≤ t1 ≤ t2 ≤ T) the package is at the same
position p, then it remains at position p for the time in-between (∀t ∈ [t1, t2]). We will make
this assumption throughout this paper.

Our contribution. First, in Section 2, we prove for the first time that optimum solutions
exist for all mentioned variants of Delivery (while previous work on (iv) and (v) implicitly
assumed this). Then, in Section 3, we investigate the problem of minimizing the delivery time
T only. We call this optimization problem FastDelivery and show that there is a polynomial-
time dynamic program of time complexity O(k2|E|+ k|V |2 + APSP) ⊆ O(k2n2 + n3), where
O(APSP) is the running time of an all-pair shortest path algorithm for undirected graphs.

In Section 4, we study FastEfficientDelivery, prioritizing the delivery time T over
the energy consumption E . We first show that the problem can be solved in polynomial time
for uniform velocities. However, we prove the problem to be NP-hard for general velocities
even on planar graphs. We therefore consider the restricted graph class of paths, in which
we can decompose the problem into uniform velocity instances. For each such instance, we
establish a characterization of handover points. Using geometric point-line duality [18] and
dynamic planar convex hull techniques [4], we give an O(n+ k log k) algorithm for paths.

In Section 5, we show that for arbitrary given weights ε ∈ (0, 1), the minimum convex
combination ε · T + (1− ε) · E can be 2-approximated by a single agent, while NP-hardness
follows from an adaptation of the hardness proof in the preceding section. We call the task
of minimizing the convex combination CombinedDelivery. Finally, in Section 6 we discuss
several extended models to which our approach can be generalized. Due to the limited space,
some proofs are omitted, but are provided in a thesis on several variants of Delivery [5].

Comparison to related work. Among the earliest problems related to Delivery are the
Chinese Postman Problem [19] and the Traveling Salesman Problem [2], in which a single
agent has to visit multiple destinations located in edges or nodes of the graph, respectively.
The latter has given rise to a class of problems known as Vehicle Routing Problems [25],
which are concerned with the distribution of goods by a fleet of (homogeneous) vehicles
under additional hard constraints such as time windows. Minimizing the total or the
maximum travel distance of a group of agents for several tasks such as the formation of
configurations [17] or the visit of designated arcs [20] have been studied for identical agents

MFCS 2018

56:4 Collective Fast Delivery by Energy-Efficient Agents

as well. Energy-efficient Delivery (without optimization of delivery time) has been recently
introduced [8] for an arbitrary number of packages, with handovers restricted to take place
at nodes of the graph only. This setting turns out to be NP-hard, but can be solved in
polynomial-time for a single package, in which case the restriction of handovers to nodes
becomes irrelevant (there is always an optimal solution which does not use any in-edge
handovers). To the best of our knowledge, this present paper and a parallel work [10] on
variant (iv) are the only ones studying the Delivery problem with agents which have
different velocities. Similar to our approach, the latter studies a uniform weight setting first.
The uniform weight result is then used as a subroutine in a dynamic program for general
weights. Our hardness result shows that such an approach (combination of uniform velocities)
is not possible for FastEfficientDelivery, even on planar graphs. Finally, mobile agents
with distinct maximal velocities have been getting attention in areas such as searching [3],
walking [14] and patrolling [15].

2 Preliminaries

We first formally establish that optimum solutions for all variants of efficient Delivery exist.
To this end, each solution which operates agents i1, i2, . . . , i` in this order can be represented
by the drop-off locations of these agents only (note that for two consecutive agents i, j, the
drop-off location of agent i, denoted by q−i , corresponds to the pick-up location of agent
j, denoted by q+

j). Since we allow in-edge handovers, there are infinitely many solutions –
however, these can be divided into finitely many topologically compact sets. As E , T act as
continuous functions on these sets, we have in each set a minimum solution.

I Theorem 1 (Existence of optimum solutions). There exists an optimum solution minimizing
the delivery time T (the energy consumption E , or ε·T +(1−ε)·E , (T , E), (E , T), respectively).

3 Optimizing delivery time only

Throughout this section, we assume that all agents have weight ωi = 0. Hence in all three
variants of fast energy-efficient Delivery, E = 0 and we are after a solution for delivery with
earliest-possible delivery time. We show that FastDelivery is polynomial-time solvable,
due to the following characterization of optimum solutions (which exist by Theorem 1):

I Lemma 2. For every instance of FastDelivery, there is an optimum solution in which
(i) the velocities of the involved agents are strictly increasing, (ii) no involved agent arrives
at its pick-up location earlier than the package (carried by the preceding agent), and (iii) if
more than one agent is involved in transporting the package over an edge {u, v} in direction
from u to v, then only the first involved agent will ever visit u.

Proof. All three properties can be shown by exchange arguments. Taking any optimum
solution, we turn it into an optimum solution that adheres to the three properties as follows:

(i) Label the agents 1, 2, . . . , i, . . . in the order in which they transport the package. Let
i be the first agent such that υi ≥ υi+1. Now we can simply replace agent i+ 1 by letting
agent i travel on the same trajectory on which i+ 1 transported the package; and by doing
so, we don’t increase the delivery time.

(ii) Let i be the first agent that has to wait at its pick-up location for the package to
arrive. Instead of waiting, we let i proceed on the original trajectory of the package towards
s until it meets the preceding agent i− 1. Handing over the package at this new spot cannot

A. Bärtschi, D. Graf, and M. Mihalák 56:5

u v∗

i-4

T [i-1, v∗] ≤ dG(pi, v
∗)/vi T [i-1, v∗] > dG(pi, v

∗)/vi

i u v∗

i-4

i

i-3

p[i-3, (u, v∗)]
p[i, (u, v∗)]

Figure 2 Examples for cases a) and b): (left) Agent i picks up the package at node v∗.
(right) Agent i picks up the package inside the edge (u, v∗) at the earliest possible time.

increase the delivery time T , as υi−1 < υi (we only increase velocities along the trajectory).
However, T might remain constant if this increase in velocity is countered by a longer waiting
time of the package at the handover to agent i+ 1.

(iii) Assume that multiple agents bring the package from u to v over the edge {u, v}, by
visiting u first. By assumption (i) the last such agent i has the highest velocity and thus
agent i can just as well pick up the package at u without the help of the other agents. J

I Corollary 3. After a preprocessing step of time O(k + |V |) – in which we remove in each
node all but the agent with maximum velocity υi – we may assume that k ≤ |V |.

Towards a dynamic program. Making use of characterization (i) of Lemma 2, we relabel
the agents such that υ1 ≤ υ2 ≤ . . . ≤ υk. We can then look at subproblems where we only
use the first i− 1 among all k agents. Assume node v∗ is the first node that the new agent i
(starting at pi) passes while actually carrying the package. According to characterizations (ii)
and (iii), when defining the recursion, we have to take care of these two cases, see Figure 2:
a) Agent i might arrive at node v∗ ‘late’, the package has already been dropped off there

before by one of the agents 1, 2, . . . , i− 1 and had been waiting.
b) Agent i might arrive at node v∗ ‘early’, in which case it should walk towards the package

to receive it earlier and bring it back to v∗ faster (having larger velocity than the currently
carrying agent, after all). In this case, agent i picks up the package at a point p which is
strictly in the interior of the edge {u, v∗} and which is as close to node v∗ as possible,
i.e., p must be reachable by both agent i and the package – carried by only the first i− 1
agents – at the earliest possible time: (d(pi, v∗) + d(v∗, p))/υi.

Dynamic Program. First we are interested in the distance between any two nodes in the
graph, which we can find with an all-pair-shortest-paths algorithm APSP. We denote the
time needed for this precomputation by O(APSP). Then, given the agents in ascending
order of their velocities υi, for each prefix 1, 2, . . . i of the agent order and each node v we
define the following subproblem:

S [i, v] = A fastest schedule to bring the package to node v using agents {1, . . . , i}.
T [i, v] = The time needed in S [i, v] to deliver the package to v.
A [i, v] = Index of the last agent to carry the package in S [i, v].

p [i, (u, v)] = The pick-up point p strictly inside edge {u, v} and closest to v, reachable
by both the package (coming from u, delivered by agents 1, . . . , i− 1)
and agent i (coming via v) in time (d(pi, v) + d(v, p))/υi (if applicable).

Note that although our graph only has undirected edges, p[i, (u, v)] considers an ordered
tuple of nodes (u, v), denoting that the package is transported from u to v. Thus p[i, (v, u)]

MFCS 2018

56:6 Collective Fast Delivery by Energy-Efficient Agents

has the analogous meaning of the package crossing edge {u, v} from v towards u. Both
p[i, (u, v)] and p[i, (v, u)] might be undefined, as can be seen below.

We compute the optimum delivery times T [i, v] (together with A[i, v]) without explicitly
maintaining the schedules S[i, v]. A concrete final schedule S can then be retraced from A[,],
see Theorem 4. For computing T [i, v] and A[i, v] we ‘guess’ the first node v∗ of cases a) and
b) above by trying each node v as a candidate. We then can compute T [i, v] and A[i, v] for
all other nodes using the pre-computed distances between all pair of nodes:
1. Initialization: For all nodes v, we initialize S[i, v] := S[i− 1, v], A[i, v] := A[i− 1, v] and
T [i, v] := T [i− 1, v]. This automatically takes care of case a), where the package arrives
at v before agent i can reach v.

2. In-edge pick-ups: We go over all node pairs (u, v) such that {u, v} ∈ E and check whether
agent i can pick up the package inside {u, v} to advance it to node v faster than in
schedule S[i − 1, v]. We do so by checking whether we have d(pi, v)/υi < T [i − 1, v]
and d(pi, u)/υi > T [i− 1, u]. In this case, agent i receives the package from a previous
agent j that brought it from u or from p[j, (u, v)]. Thus we get a set P of candidates for
p[i, (u, v)] := arg minp∈P {d(p, v)}. The candidate set P consists of all points p strictly
inside the edge {u, v} such that there exists an agent of index j, A[i− 1, u] ≤ j < i, for
which we have

max
{
T [i− 1, u], d(pj , u)

υj

}
+ d(u, p)

υj
= d(pi, v) + d(v, p)

υi

if j is coming from u, or – if p[j, (u, v)] is defined –

d(pj , v) + d(v, p[j, (u, v)]) + d(p[j, (u, v)], p)
υj

= d(pi, v) + d(v, p)
υi

.

Having computed p[i, (u, v)] as the point in P closest to v, we update node v accordingly:
Set T [i, v] := min

{
T [i, v], d(pi,v)+2d(p[i,(u,v)],v)

υi

}
, where using ‘min’ takes care of cases in

which we have multiple incident edges to v that all potentially have in-edge pick-ups by i,
and set A[i, v] = i (valid since we consider the case where d(pi, v) < T [i− 1, v]).

3. Updates: So far we have computed the subproblems S[i, v] correctly, if node v corresponds
to the first node v∗ of cases a) and b) (in particular we checked whether the faster agent i
can help to advance the package over only one edge). Now we also consider all cases where
agent i transports the package over arbitrary distances, by updating all other schedules
S[i, u] accordingly: For each node v, for each node u, if T [i, u] > max {T [i, v], d(pi, v)/υi}+
d(v, u)/υi we set A[i, u] := i and T [i, u] := max {T [i, v], d(pi, v)/υi}+ d(v, u)/υi.

I Theorem 4. An optimum schedule for FastDelivery of a single package can be computed
in time O(k2|E|+ k|V |2 + APSP) ⊆ O(k2n2 + n3).

Proof. For each i from 1 to k we can compute all values A[i, v], T [i, v] in time O(|V |) for
the initialization, O(|E|k) to check for in-edge pick-ups and O(|V |2) for the updates (for
which we need precomputed all-pair shortest paths). Overall we get a running time of
O(APSP + k2|E| + k|V |2). The delivery time is then given in T [k, t]. Correctness of the
algorithm follows from the definition of the subproblems and the case distinction stemming
from Lemma 2. Since we did not explicitly maintain the schedules S[i, v], we retrace the
concrete schedule S from A[,] by backtracking: Let i denote the last used agent A[k, t]. We
can find i’s ‘first node’ v∗ in time O(|V |) by searching for the smallest value T [i, u] such that

max {T [i, u], d(pi, u)/υi} = T [k, t]− d(u, t)/υi.

A. Bärtschi, D. Graf, and M. Mihalák 56:7

If A[i, v∗] 6= i, we recurse, otherwise we find the correct adjacent node and all in-edge
handovers by looking – for each of the O(deg(v∗)) many neighbors u of v∗ – at the overall
O(k deg(v∗)) many values p[j, (u, v∗)] (where j ≤ i) and T [j, u] (where j < i). J

4 Prioritizing delivery time over energy consumption

In this Section, we want to find the most efficient among all fastest delivery schedules. We call
this problem FastEfficientDelivery and will first show that it can be solved in polynomial
time for uniform velocities (∀i, j : υi = υj), due to a characterization of optimum schedules.
In contrast, we prove NP-hardness for arbitrary speeds, even on planar graphs. However, for
paths we show how one can subdivide general instances into phases of concecutive agents
having the same velocity, and achieve an efficient O(n+ k log k)-time algorithm.

4.1 A polynomial-time algorithm for uniform velocities
I Lemma 5. Consider FastEfficientDelivery on instances with uniform agent velocities
and let δ denote the offset of the closest agent’s starting position to s. Then there exists an
optimum schedule such that the pick-up position q+

i of each involved agent i satisfies:
d(s, q+

i) + d(q+
i , t) = d(s, t), i.e., q+

i lies on a shortest s-t-path, and
d(pi, q+

i) ≤ δ + d(s, q+
i), with equality if q+

i lies strictly inside an edge.

Proof. Since all agents have the same velocity υ, any fastest delivery of the package must
follow a shortest path from s to t. Furthermore, since the closest agent could deliver the
package on its own in time (δ + d(s, t))/υ, each involved agent i has to arrive at q+

i no later
than the package itself, giving d(pi, q+

i) ≤ δ+d(s, q+
i). It remains to show that we can modify

every optimum solution into an optimum solution in which we have d(pi, q+
i) = δ + d(s, q+

i)
whenever q+

i lies strictly inside an edge e = {u, v}. Denote by i the first agent for which
this is not the case and by i − 1 its preceding agent. Assume that the package enters
e via u (i.e. d(s, u) < d(s, v)). Note that i must have entered e via v, since otherwise
the energy consumption could be improved by letting i pick up the package already at u
(without increasing the delivery time), contradicting the optimality of our solution. Now
we distinguish two cases relating the weights ωi and ωi−1, yielding either a decrease of the
energy consumption, or a possibility to move q+

i to a position satisfying the characterization.
2ωi > ωi−1: Moving q+

i by ε > 0 towards v decreases E by an amount of (2ωi−ωi−1)·ε > 0.
2ωi ≤ ωi−1: We move q+

i towards u (without increasing neither delivery time nor
energy consumption) until we reach q+

i = u, or q+
i inside the edge {u, v} such that

d(pi, q+
i) = δ + d(s, q+

i), or q+
i = q+

i−1. In the last case, discarding agent i− 1 from our
solution results in an energy consumption decrease of at least ωi−1 · d(pi−1, q

+
i−1) > 0. J

Polynomial-time algorithm. We use the characterization in Lemma 5 to find an optimum
solution for FastEfficientDelivery of delivery time T = (δ + d(s, t))/υ: For each agent i,
we compute the set Qi of all potential pick-up locations, i.e., the set of points qi that satisfy
Lemma 5. The number of potential locations is |Qi| ∈ O(|V | + |E|) ⊆ O(n2). Then we
build an auxiliary directed acyclic multi-graph H on a node set V (H) =

⋃k
i=1 Qi, of size

|V (H)| ∈ O(|V |+ k|E|) ⊆ O(kn2). Each directed edge in E(H) describes how agent i can
contribute to the delivery by bringing the package from its starting position qi to another
agent’s starting position qj along a shortest s-t-path: For each pair of nodes qi ∈ Qi and
qj ∈ V (H) such that qi 6= qj and d(s, qi)+d(qi, qj)+d(qj , t) = d(s, t), we add an arc (qi, qj) of

MFCS 2018

56:8 Collective Fast Delivery by Energy-Efficient Agents

u1 ∨ u2 u2 ∨ u3 ∨ u4

u1 ∨ u2 ∨ u4 u2 ∨ u3 ∨ u4

u1 u2 u3

u4

u4
s

t

P1,true

P1,false

u1 u2 u3 u4

F G(F)

P2,true

P3,true

P3,false

P4,true

P4,false

P2,false

pa

q+a

Figure 3 (left) A planar 3CNF formula F , satisfiable by (u1, u2, u3, u4) = (true, false, false, true).
(right) Its transformation into a corresponding delivery graph G(F). The satisfiable assignment of F
corresponds to a low-cost delivery in G(F) via paths P1,true, P2,false, P3,false, P4,true, and vice versa.
We have slow agents for clauses (�), fast agents for variables/literals (+) and a very fast agent (×).

weight ωi·(d(pi, qi)+d(qi, qj)) to E(H). Overall, we have at most |E(H)| ∈ O(k·n2·kn2) many
arcs. By construction of H, running Dijkstra’s shortest path algorithm on the multi-graph
H finds a shortest path from s to t corresponding to an optimal solution.

I Theorem 6. An optimum solution for FastEfficientDelivery can be found in time
O(k2n4), assuming all agents have the same velocity.

4.2 NP-hardness on planar graphs
Contrary to FastDelivery (where we had non-decreasing velocities υi), when prioritizing
delivery time but still regarding energy consumption, we can’t characterize the order of the
agents by their coefficients (υi, ωi): Consider an instance in which both the starting position
pa of the absolutely fastest agent a as well as the package destination t are separated from
the rest of the graph by two very long edges q+

a —pa, q+
a —t. Then in every fastest solution,

agent a (with υa large, e.g. 8) must deliver the package from q+
a to t, see Figure 3 (right).

In FastEfficientDelivery, the task is thus to balance slow but efficient agents (with,
e.g., υ = 1, ω = 0) and fast inefficient agents (with, e.g., υ = 2, ω = 1) to collectively
deliver the package to a’s pick-up location q+

a just-in-time – i.e., in time d(pa, q+
a)/υa –

without using too much energy. We can construct suitable instances by a reduction from
Planar3SAT [23] (Sketch): Starting from a planar formula F in three-conjunctive normal
form, as in Figure 3 (left), we build a delivery graph G(F). This can be done such that the
instance is guaranteed to have schedules with minimum delivery time, i.e. with T = d(pa, t)/υa.
However, there should only be such a minimum-time schedule which simultaneously has low
energy consumption E if and only if the formula F has a satisfiable variable assignment.

To this end, we place the fast agents on nodes corresponding to variables and literals.
Intuitively, these agents decide on the routing of the package, thus setting the assignment of
each variable. The slow agents, on the other hand, are placed on clause nodes, each clause
receiving just one agent short of the number of its literals. Intuitively, for a just-in-time
delivery to q+

a with small energy consumption, each clause has to spend one of its agents for
each of its unsatisfied literals. By construction, this is only possible if each clause is satisfied:

I Theorem 7. FastEfficientDelivery is NP-hard, even on planar graphs.

4.3 An efficient algorithm for paths
The preceding hardness result raises the question for which restricted graph classes we can
expect an efficient algorithm for arbitrary velocity instances. To contribute to this question
it is natural to study paths – on paths, the V-shaped pa—qa—t component attached to the

A. Bärtschi, D. Graf, and M. Mihalák 56:9

s t

time x
s=0

pos y
t

1
2 3 4

5
6

6

5

4

12

v3 < v2 < v4 < v1 = v5 < v6

Fastest solutions:

(, , ,), (, ,), (,)2 4 5 6 5 6 61 1

p1 p6�

p4

6?

Figure 4 (left) Possible optima: If agent 4 is involved, it must take over the package from agent
2, since agent 3 is too slow. Using agents 2 and 4 to bring the package to agent 5’s pick-up position
takes the same time as using agent 1 on its own. Agents 1 and 5 have the same velocity, so in terms
of delivery time we could use either or even both of them, but agent 1 only if agents 2 and 4 are
both not used (otherwise they all consume energy). (right) Fastest solutions correspond to at most 1
agent with pi < s and a number of agents corresponding to a suffix of the upper envelope.

rest of the graph, as used in the hardness proof, ‘collapses’ to a line. We show that this
allows us to decompose the problem into linearly many uniform velocity instances in time
O(n + k log k). Theorem 6 then implies that FastEfficientDelivery can be solved in
polynomial-time. Improving on this by a careful analysis of paths, we show how to solve
each uniform velocity instance in time O(n+ k log k) as well, and that these instances can
be combined in time O(k), giving an overall O(n+ k log k)-time algorithm.

Decomposition into uniform velocity instances

In the following, we look at the path graph G as the real line, and assume (after performing a
depth-first search from s and ordering the starting positions in time O(n+ k log k)) without
loss of generality that s = 0 < t, that p1 ≤ p2 ≤ . . . ≤ pk and that n = k + 2, as the only
relevant nodes on the line are s, t and the starting positions pi. Note that in an optimum
solution of FastEfficientDelivery, no agent i will ever take over the package from another
agent j which i overtakes from the left. In particular, this means that we will need at most
one agent with starting position pi < s, and that after the package is picked up at s, it will
never have to wait between a drop-off by an agent j and a pick-up by the next agent i, since
j could continue carrying the package towards i, thus decreasing the overall delivery time.
Hence in an optimum schedule we also have for consecutive agents i, j with s < pj < pi, that
υj ≤ υi (otherwise we can discard i, by this decreasing the delivery time).

Decomposition. Assume that agent i is the agent that delivers the package to t. We
represent the trajectory of the package while being carried by i as a ray giving the position
y on the real line as a function fi(x) of the time x passed so far, see Figure 4 (right). We
now inductively compute a set containing all functions f0, f1, . . . , fk, where f0(x) = s = 0.

If we have pi < 0, then by the reasoning above, i is the only involved agent, and the
function is simply fi : y = υi · x+ pi. For pi > s, the slope υi of the ray is set, but not its
pick-up position. In order to minimize the earliest possible delivery time x (i.e. fi(x) = t),
by the non-decreasing velocity property i must pick up the package as early as possible –
e.g. in Figure 4 (left), the fastest agent 6 would not get the package from agent 4, but from
agent 5 who is able to speed up the transport between agents 4 and 6, thus advancing the
last handover position and allowing agent 6 to pick up the package earlier.

Formally, the pick-up position is given by the time-wise first (or in other words leftmost)
intersection of a query line y = pi − υi · x (modelling the agent moving towards s) with
any preceding ray f0, . . . , fi−1. Let qi := (xi, yi) denote the intersection point of the query

MFCS 2018

56:10 Collective Fast Delivery by Energy-Efficient Agents

line with the upper envelope of the preceding rays, and denote by fj a ray of steepest slope
υj among all rays f0, . . . , fi−1 that contain qi – e.g. the query line “6?” in Figure 4 (right)
intersects both f1 and f5 on the upper envelope, and since both have the same slope, we can
consider either.

In case υj > υi, agent i will not be used in an optimal schedule and we set fi = 0. If,
however, υj ≤ υi, then fi is given by the line equality fi : y = υi · x + (yi − υi · xi). After
completion, an optimum schedule corresponds to a path along the rays of our diagram from
(0, 0) to the ray reaching y = t at the earliest possible time.

Fast computation and recombination. To quickly compute the equation of each ray fi,
we need to find the intersection of a query line with the upper envelope of O(k) many rays.
Precomputing this envelope as an ordered list of its segments would allow us to speed up
the intersection queries from a linear to a binary search (convex hull trick for dynamic
programming [21]). However, the set of functions that we query here is not known up front.
Instead, we apply the classic geometric point-line duality [18]. In this dual setting, the task
of finding the leftmost intersection point of a query line with a set of lines turns into finding
a right tangent from a query point (the dual of the query line) onto the convex hull of a
point set (the dual of the rays fi). The dynamic planar convex hull data structure by Brodal
and Jacob [4, 22] allows point insertions and tangent queries all in O(log k) amortized time,
giving an overall running time of O(k log k). Assuming that we know the optimum schedule
for each of the uniform velocity intervals, it remains to recombine these subschedules:

I Lemma 8. Arbitrary velocity instances of FastEfficientDelivery on paths can be
decomposed into and recombined from uniform velocity instances in time O(n+ k log k).

A fast algorithm for uniform velocity instances on the line

We are left to solve the case where all agents have the same uniform velocity υ. As before,
we denote by δ the offset of the closest agent’s starting position to s, and let a denote the
corresponding agent. No agent i with pi < s other than maybe agent a is involved in an
optimum schedule (all others would only slow down delivery). Also note that if pa < s, the
setting is equivalent to one where a starts at s+ (s− pa), so we can assume (after relabelling
the agents) a = 1, δ = p1. This also implies T = (δ + (t− s))/υ and we can ignore agents i
that are dominated by earlier, cheaper agents j with pj < pi and ωj < ωi.

Towards a dynamic program. We define the point qi as the leftmost point on the line
where agent i can pick up the package without causing a delay, i.e., we have qi := pi+s−δ

2
since pi − qi = δ + (qi − s). Note that q1 = s and qj < qi for j < i. Similarly as – but more
specific than – in the characterization of uniform instances on general graphs (Lemma 5) we
get a limited set of possible pick-up locations:

I Lemma 9. There is an optimum solution where each agent i that is involved in advancing
the package picks it up at q+

i = qi or at q+
i = pi.

A. Bärtschi, D. Graf, and M. Mihalák 56:11

pi
pj

pis
pj

pi

pj
pi

Case 1. Case 2.a) Case 2.b) Case 2.c)

qi qi

Figure 5 Case distinction in the dynamic program for FastEfficientDelivery on the line.
Either agent i is not involved at all, does all on its own or is subsequent to some agent j, where we
distinguish between pj ≤ qi and pj > qi.

Dynamic program. Lemma 9 suggests that in an inductive approach from left to right it
suffices to consider only finitely many handover options. We define the following subproblems:

S [i] = An energy-optimal schedule to deliver the package to pi
in time (δ + (pi − s))/υ, using only the agents {1, 2, . . . , i}.

E [i] = Energy consumption of S [i].
A [i] = Index of the last package-carrying agent in S [i].
A′ [i] = Index of the second to last carrying agent in S [i] (if any).

We will argue how to compute the optimum energy costs E [i] (and with it A[i] and A′[i])
without explicitly maintaining the schedules S[i] (S[i] can later be retraced from A[i] and
A′[i]). For computing E [i], A[i] and A′[i], we distinguish four cases (also shown in Figure 5):
1. Agent i is not involved in S[i].
2. Agent i is involved in S[i]. Hence by Lemma 9, agent i has pick-up location q+

i = qi; and
we get the following three variations:
a. i = 1 and agent 1 picks up the package at s itself.
b. Agent i picks up the package from some other agent j with pj ≤ qi.
c. Agent i picks up the package from some other agent j with pj > qi.

In cases 1, 2b) and 2c), we can determine E [i] in constant time using a single prior entry of
the dynamic programming table:

Case 1. If i is not involved in S[i], the best choice for the agent who transports the package
to pi is agent i− 1, as it is the cheapest one on the last segment [pi−1, pi] and we have
E [i− 1] ≤ E [j] + (pi−1 − pj) · ωj for all j < i− 1 by induction. Hence we can optimize in
constant time:

E [i] = min
j<i
{E [j] + (pi − pj) · ωj} = E [i− 1] + (pi − pi−1) · ωi−1,

A[i] = i− 1 and A′[i] = A[i− 1].

Case 2.a) This is the base case where the first agent is on its own:

E [1] = 2 · |p1 − s| · ω1 = 2 · δ · ω1, A[1] = none, A′[1] = none.

Case 2.b) If agent i is involved in S[i] and takes over at qi from an agent j with pj ≤ qi,
we want j to minimize E [j] + (qi − pj) · ωj , the cost of bringing the package to qi. Now
let i′ = max{j | pj ≤ qi} be the agent starting closest to the left of qi. As in Case 1, we
argue that i′ is the optimum choice for j, as it minimizes the cost on [pi′ , qi] and does
not constrain the schedule up to pi′ further. Hence, we again get in amortized constant
time, i.e., we update i′ by incrementing it lazily when going from i to i+ 1:

E [i] = E [i′] + (qi − pi′) · ωi′ + 2 · (pi − qi) · ωi, A[i] = i, A′[i] = i′.

MFCS 2018

56:12 Collective Fast Delivery by Energy-Efficient Agents

The most interesting case is the remaining case (2.c), where the agent j handing over to i
starts in between qi and pi. Where can we look up the energy consumption c of an optimum
schedule that ends with j bringing the package qi – the dynamic program being only defined
for points pj? For some j, we might have A[j] = j, so S[j] ends by j walking to qj and back.
In that case, we can exploit qj < qi and use E [j]− (pj − qi) · ωj as a candidate for the energy
consumption c. But what if A[j] 6= j? As we saw, this implies A[j] = j − 1, but in that case
we cannot just subtract (pj − qi)ωj : We do not know how S[j] looks like between qi and pj .
We argue that we do not need to consider these agents j as candidates at all!

I Lemma 10. If in some optimal schedule S[i] the agent j preceding i is of type 2.c), then
in the schedule S[j] we have A[j] = j.

Proof. Under the assumption of Case 2.c), the cost of agent i is fixed to 2 · (pi − qi) · ωi.
Agents 1 to i− 1 will collaborate in the most efficient way to bring the package up to qi. By
definition of j, j is the last agent bringing the package to qi. From the decreasing weight
property, we know that none of the agents j + 1 to i− 1 were involved in S[i]. So if we take
the partial schedule of S[i] up to qi and extend it by letting j bring the package to pj , we
obtain a feasible candidate schedule S′ for S[j] as none of the agents j + 1 to i are involved.
We now argue that S′ is an optimum schedule for S[j]. The segment [qi, pj] is covered with
the minimum possible energy, as j is the unique most efficient agent available for S[j]. The
segment [s, qi] is also covered cheapest possible as its part of S[i] was optimized over all
agents 1 to i, so a superset of the agents available for S[j]. Moreover, the uniqueness implies
that all optimum schedules for S[j] need to end with agent j on [qi, pj], hence A[j] = j. J

Case 2.c) Lemma 10 leaves us with only those agents j whose schedules S[j] we understand
sufficiently to modify them into candidates for S[i] under Case 2.c):

E [i] = min
j
{E [j]− (pj − qi)ωj | qi < pj < pi ∧A[j] = j}+ 2(pi − qi)ωi,

A[i] = i, A′[i] = arg min
j
{E [j]− (pj − qi)ωj | qi < pj < pi ∧A[j] = j}.

We can now take E [i] as the minimum over the four cases 1–2.c) and compute all schedules
S[i] by proceeding over all subproblems in increasing order, giving us the energy-optimal
schedules for delivering the package to the points pi in time (δ + (pi − s))/υ. How can we
use the solutions to the subproblems E [i] to find the energy E of an energy-optimal schedule
delivering the package to the target t in optimum time (δ + (t− s))/υ? Let k′ be the closest
agent on the left of t, i.e., k′ := arg maxi pi ≤ t. Clearly, if in an optimum schedule the
package is delivered to t by an agent starting to the left of t, then by the decreasing weight
property this agent must be agent k′, giving us E = E [k′] + (t− pk′) · ωk.

Delivery to t and agents with pi > t. It remains to take care of agents with starting
positions pi > t: As illustrated in Figure 6, multiple agents with pi > t might be involved
in the most efficient delivery. Note that our dynamic programming problem E [i] is defined
independent of t and so we can also easily compute E [i] for pi > t. Agents i with qi > t are
not useful, however, for a delivery to t, as they arrive in [s, t] only after the package has been
delivered. Similar to Lemma 10, we claim that among the remaining agents i only those with
A[i] = i need to be considered:

I Lemma 11. If an agent i with pi > t is the last agent in any optimal schedule S from s to
t, then A[i] = i.

A. Bärtschi, D. Graf, and M. Mihalák 56:13

s p1 p2 p3t

0 1 2 3 4 5 7

ω3=0
ω2=1

ω1=5

q2 q3

υ = 1

Figure 6 An example, where the only optimum schedule uses both agents on the right of t.
The optimum schedule has delivery time T = (p1 + t − s)/υ = 5/1 = 5 and energy consumption
E = p1 · ω1 + (p2 − q2 + q3 − q2) · ω2 + (p3 − q3 + t− q3) · ω3 = 3 · 5 + 4 · 1 + 5 · 0 = 19.

Proof. We have qi < t < pi. By the decreasing weight property, no agent j > i will be
used in S. We extend S to a schedule S′ by letting agent i walk from t to pi. Then S′ is a
candidate for S[i]. Similar to Lemma 10, S′ consists of an optimal solution for [s, t] and the
strictly cheapest agent on [t, pi] and hence S′ is optimal for S[i] and all optimum schedules
for S[i] have A[i] = i. The optimum s-t-delivery is thus given by:

E = min
j
{E [j]− (pj − t)ωj | (qj < t < pj and A[j] = j) or j = k′} ,

which takes linear time once at the very end. J

Details of the dynamic program. The computational bottleneck of our dynamic program
is (for each subproblem E [i]) the minimization over the set of options in Case 2.c). Each
option evaluates a linear function fj(qi) := ωj · qi + (E [j] − pj · ωj) at position qi, which
can be seen as a lower envelope intersection query. Similarly to before, we use point-line
duality and a dynamic convex hull data structure to avoid considering all agents explicitly as
predecessors and instead quickly search the best one.

I Lemma 12. An optimum schedule for FastEfficientDelivery with uniform velocity υ
on the line can be computed in O(n+ k log k) time.

Combining this with Lemma 8 gives the full solution on paths. Note that strictly speaking,
in the uniform velocity instances, the package is not available at s at time zero, but is brought
there by agents of preceding instances at exactly the time when the first agent can reach it.

I Theorem 13. An optimum solution for FastEfficientDelivery on paths can be com-
puted in O(n+ k log k) time.

5 Optimizing convex combinations of objectives

In this section, we look at a convex combination of the two objectives: minimizing both the
delivery time T and the energy consumption E by minimizing the term ε · T + (1− ε) · E ,
for a given value ε, 0 < ε < 1. We call the problem of minimizing this combined objective
CombinedDelivery. As an application of the NP-hardness proof for FastEfficient-
Delivery, we get NP-hardness of CombinedDelivery as well: The main idea is to counter
small values of ε by scaling the weights of the agents by a small factor δ(ε), thus decreasing
the importance of E alongside T as well.

I Theorem 14. CombinedDelivery is NP-hard for all ε ∈ (0, 1), even on planar graphs.

MFCS 2018

56:14 Collective Fast Delivery by Energy-Efficient Agents

A 2-approximation for CombinedDelivery using a single agent

Recall that for FastDelivery, the agents involved in an optimum delivery were characterized
by increasing velocities υi, while for FastEfficientDelivery on path graphs, the agents of
an optimum solution were characterized by decreasing tuples (υ−1

i , ωi).
Although it is not possible to characterize the order of the agents in an optimum

CombinedDelivery schedule by their velocities and weights alone, we can at least charac-
terize the position of a minimal agent, leading to a 2-approximation using a single agent:

I Lemma 15. Let without loss of generality 1, 2, . . . , i denote the indices of all involved
agents appearing in that order in an optimum CombinedDelivery schedule. Then the last
agent i is minimal in the following sense: i ∈ arg minj

{
ε · υ−1

j + (1− ε) · ωj
}
.

Proof. Recall that we denote by dj the total distance travelled by agent j and by d∗j the
distance travelled by agent j while carrying the package. Thus agent j contributes at least
ε · d∗j · υ

−1
j + (1− ε) · (dj · ωj) ≥ d∗j ·

(
ευ−1
j + (1− ε)ωj

)
towards εT + (1− ε)E . Assume for

the sake of contradiction that the minimum value ευ−1
j + (1− ε)ωj is not obtained by agent

i but by an agent m < i. Then we can replace the agents m+ 1, . . . , i by agent m, resulting
in a decrease in the objective function of at least

i∑
j=m

εd∗jυ
−1
j + (1− ε)djωj −

i∑
j=m

d∗j
(
ευ−1
m + (1− ε)ωm

)
≥

i∑
j=m

d∗j
(
ευ−1
j + (1− ε)ωj

)
−

i∑
j=m

d∗j
(
ευ−1
m + (1− ε)ωm

)
≥ d∗i

(
ευ−1
i + (1− ε)ωi

)
− d∗i

(
ευ−1
m + (1− ε)ωm

)
> 0,

contradicting the minimality of the optimum CombinedDelivery schedule. J

I Theorem 16. There is a 2-approximation for CombinedDelivery which uses only a
single agent (and thus can be found in polynomial time).

Proof. Note that agent i contributes at most εdiυ−1
i + (1 − ε)diωi towards εT + (1 − ε)E .

Starting from an optimum CombinedDelivery schedule we can replace all agents 1, . . . , i−1
along their trajectories by the minimal agent i. This prolongs the travel distance of agent i
by 2 ·

∑i−1
j=1 d

∗
j . Overall, we increase the objective function by at most

2
i−1∑
j=1

d∗j
(
ευ−1
i + (1− ε)ωi

)
−

i−1∑
j=1

d∗j
(
ευ−1
j + (1− ε)ωj

)
≤

i−1∑
j=1

d∗j
(
ευ−1
i + (1− ε)ωi

)
≤

i−1∑
j=1

d∗j
(
ευ−1
j + (1− ε)ωj

)
<

i∑
j=1

d∗j
(
ευ−1
j + (1− ε)ωj

)
≤ εT + (1− ε)E .

Hence only using agent i to deliver the package is a 2-approximation for CombinedDelivery.
We get a polynomial-time approximation algorithm with approximation ratio 2 by choosing
among all k agents the one with minimum value

(
ευ−1
j + (1− ε)ωj

)
· (d(pj , s) + d(s, t)). J

6 Discussion

Our techniques and results extend to a variety of delivery problems and model generalizations.
A key ingredient here is that the order of our dynamic programming subproblems depends
only on the parameters the agent has while carrying the package. Hence it is possible to, e.g.,

A. Bärtschi, D. Graf, and M. Mihalák 56:15

incorporate 2-speed agent models (modeling different speeds [16] with/without carrying the
package) or topographical features (modeling edge traversals in uphill/downhill direction).

Furthermore, the 2-approximation given for CombinedDelivery is applicable to Fast-
Delivery as well, and a relaxation of FastEfficientDelivery, in which one allows the
optimum delivery time to be achieved with a constant-factor approximation of the energy
consumption, stays NP-hard. It is unclear whether FastEfficientDelivery can be solved
efficiently on trees or whether CombinedDelivery allows a PTAS. We consider these two
problems the major open questions raised by this work.

References
1 Julian Anaya, Jérémie Chalopin, Jurek Czyzowicz, Arnaud Labourel, Andrzej Pelc, and

Yann Vaxès. Convergecast and Broadcast by Power-Aware Mobile Agents. Algorithmica,
74(1):117–155, 2016. See also DISC’12. doi:10.1007/s00453-014-9939-8.

2 David L. Applegate, Robert E. Bixby, Vasek Chvatal, and William J. Cook. The Traveling
Salesman Problem: A Computational Study. Princeton University Press, Princeton, NJ,
USA, 2007. ISBN: 978-0-691-12993-8.

3 Evangelos Bampas, Jurek Czyzowicz, Leszek Gasieniec, David Ilcinkas, Ralf Klasing, To-
masz Kociumaka, and Dominik Pająk. Linear Search by a Pair of Distinct-Speed Robots. In
23rd International Colloquium on Structural Information and Communication Complexity
SIROCCO’16, pages 195–211, 2016. doi:10.1007/978-3-319-48314-6_13.

4 Gerth Stølting Brodal and Riko Jacob. Dynamic Planar Convex Hull. In 43rd Symposium
on Foundations of Computer Science FOCS’02, pages 617–626, 2002. doi:10.1109/SFCS.
2002.1181985.

5 Andreas Bärtschi. Efficient Delivery with Mobile Agents. PhD thesis, ETH Zürich, 2017.
doi:10.3929/ethz-b-000232464.

6 Andreas Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Barbara Geissmann,
Daniel Graf, Arnaud Labourel, and Matúš Mihalák. Collaborative Delivery with Energy-
Constrained Mobile Robots. In 23rd International Colloquium on Structural Informa-
tion and Communication Complexity SIROCCO’16, pages 258–274, 2016. doi:10.1007/
978-3-319-48314-6_17.

7 Andreas Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Barbara Geissmann,
Daniel Graf, Arnaud Labourel, and Matúš Mihalák. Collaborative delivery with energy-
constrained mobile robots. Theoretical Computer Science, 2017. To appear. See also SI-
ROCCO’16. doi:10.1016/j.tcs.2017.04.018.

8 Andreas Bärtschi, Jérémie Chalopin, Shantanu Das, Yann Disser, Daniel Graf, Jan Hack-
feld, and Paolo Penna. Energy-efficient Delivery by Heterogeneous Mobile Agents. In 34th
International Symposium on Theoretical Aspects of Computer Science STACS’17, pages
10:1–10:14, 2017. doi:10.4230/LIPIcs.STACS.2017.10.

9 Andreas Bärtschi, Daniel Graf, and Paolo Penna. Truthful Mechanisms for Delivery with
Agents. In 17th Workshop on Algorithmic Approaches for Transportation Modelling, Op-
timization, and Systems ATMOS’17, pages 2:1–2:17, 2017. doi:10.4230/OASIcs.ATMOS.
2017.2.

10 Andreas Bärtschi and Thomas Tschager. Energy-Efficient Fast Delivery by Mobile Agents.
In 21st International Symposium on Fundamentals of Computation Theory FCT’2017,
pages 82–95, 2017. doi:10.1007/978-3-662-55751-8_8.

11 Jérémie Chalopin, Shantanu Das, Matús Mihalák, Paolo Penna, and Peter Widmayer. Data
Delivery by Energy-Constrained Mobile Agents. In 9th International Symposium on Al-
gorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics
ALGOSENSORS’13, pages 111–122, 2013. doi:10.1007/978-3-642-45346-5_9.

MFCS 2018

http://dx.doi.org/10.1007/s00453-014-9939-8
http://dx.doi.org/10.1007/978-3-319-48314-6_13
http://dx.doi.org/10.1109/SFCS.2002.1181985
http://dx.doi.org/10.1109/SFCS.2002.1181985
http://dx.doi.org/10.3929/ethz-b-000232464
http://dx.doi.org/10.1007/978-3-319-48314-6_17
http://dx.doi.org/10.1007/978-3-319-48314-6_17
http://dx.doi.org/10.1016/j.tcs.2017.04.018
http://dx.doi.org/10.4230/LIPIcs.STACS.2017.10
http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.2
http://dx.doi.org/10.4230/OASIcs.ATMOS.2017.2
http://dx.doi.org/10.1007/978-3-662-55751-8_8
http://dx.doi.org/10.1007/978-3-642-45346-5_9

56:16 Collective Fast Delivery by Energy-Efficient Agents

12 Jérémie Chalopin, Riko Jacob, Matús Mihalák, and Peter Widmayer. Data Delivery
by Energy-Constrained Mobile Agents on a Line. In 41st International Colloquium on
Automata, Languages, and Programming ICALP’14, pages 423–434, 2014. doi:10.1007/
978-3-662-43951-7_36.

13 Jurek Czyzowicz, Krzysztof Diks, Jean Moussi, and Wojciech Rytter. Communication
Problems for Mobile Agents Exchanging Energy. In 23rd International Colloquium on
Structural Information and Communication Complexity SIROCCO’16, 2016. doi:10.1007/
978-3-319-48314-6_18.

14 Jurek Czyzowicz, Leszek Gasieniec, Konstantinos Georgiou, Evangelos Kranakis, and Fraser
MacQuarrie. The Beachcombers’ Problem: Walking and searching with mobile robots.
Theoretical Computer Science, 608:201–218, 2015. doi:10.1016/j.tcs.2015.09.011.

15 Jurek Czyzowicz, Leszek Gasieniec, Adrian Kosowski, and Evangelos Kranakis. Boundary
Patrolling by Mobile Agents with Distinct Maximal Speeds. In 19th European Symposium
on Algorithms ESA’11, pages 701–712, 2011. doi:10.1007/978-3-642-23719-5_59.

16 Jurek Czyzowicz, Konstantinos Georgiou, Evangelos Kranakis, Fraser MacQuarrie, and
Dominik Pająk. Fence patrolling with two-speed robots. In 5th International Conference
on Operations Research and Enterprise Systems ICORES’16, pages 229–241, 2016. doi:
10.5220/0005687102290241.

17 Erik D. Demaine, Mohammadtaghi Hajiaghayi, Hamid Mahini, Amin S. Sayedi-Roshkhar,
Shayan Oveisgharan, and Morteza Zadimoghaddam. Minimizing movement. ACM Transac-
tions on Algorithms, 5(3):1–30, 2009. See also SODA’07. doi:10.1145/1541885.1541891.

18 Herbert Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS
Monographs on Theoretical Computer Science. Springer, Heidelberg, Germany, 1987.
doi:10.1007/978-3-642-61568-9.

19 Jack Edmonds and Ellis L. Johnson. Matching, euler tours and the chinese postman.
Mathematical Programming, 5(1):88–124, 1973. doi:10.1007/BF01580113.

20 Greg N. Frederickson, Matthew S. Hecht, and Chul E. Kim. Approximation Algorithms
for Some Routing Problems. SIAM Journal on Computing, 7(2):178–193, 1978. See also
FOCS’76. doi:10.1137/0207017.

21 Woburn Collegiate Institute’s Programming Enrichment Group. Convex hull trick. PEG-
Wiki, September 2016. URL: http://wcipeg.com/wiki/Convex_hull_trick.

22 Riko Jacob. Dynamic planar convex hull. PhD thesis, Department of Computer Science,
University of Aarhus, Denmark, 2002. BRICS Dissertation Series DS-02-3. URL: http:
//www.brics.dk/DS/Ref/BRICS-DS-Ref/BRICS-DS-Ref.html#BRICS-DS-02-3.

23 David Lichtenstein. Planar Formulae and Their Uses. SIAM Journal on Computing,
11(2):329–343, 1982. doi:10.1137/0211025.

24 Swiss Post. Swiss Post delivery robots in use by Jelmoli. Press release, August 2017.
URL: https://www.post.ch/en/about-us/company/media/press-releases/2017/
swiss-post-delivery-robots-in-use-by-jelmoli.

25 Paolo Toth and Daniele Vigo, editors. The Vehicle Routing Problem. SIAM Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001. ISBN: 0-89871-498-2.

26 Elizabeth Weise. Amazon delivered its first customer package by drone. USA Today,
December 2016. URL: http://usat.ly/2hNgf0y.

http://dx.doi.org/10.1007/978-3-662-43951-7_36
http://dx.doi.org/10.1007/978-3-662-43951-7_36
http://dx.doi.org/10.1007/978-3-319-48314-6_18
http://dx.doi.org/10.1007/978-3-319-48314-6_18
http://dx.doi.org/10.1016/j.tcs.2015.09.011
http://dx.doi.org/10.1007/978-3-642-23719-5_59
http://dx.doi.org/10.5220/0005687102290241
http://dx.doi.org/10.5220/0005687102290241
http://dx.doi.org/10.1145/1541885.1541891
http://dx.doi.org/10.1007/978-3-642-61568-9
http://dx.doi.org/10.1007/BF01580113
http://dx.doi.org/10.1137/0207017
http://wcipeg.com/wiki/Convex_hull_trick
http://www.brics.dk/DS/Ref/BRICS-DS-Ref/BRICS-DS-Ref.html#BRICS-DS-02-3
http://www.brics.dk/DS/Ref/BRICS-DS-Ref/BRICS-DS-Ref.html#BRICS-DS-02-3
http://dx.doi.org/10.1137/0211025
https://www.post.ch/en/about-us/company/media/press-releases/2017/swiss-post-delivery-robots-in-use-by-jelmoli
https://www.post.ch/en/about-us/company/media/press-releases/2017/swiss-post-delivery-robots-in-use-by-jelmoli
http://usat.ly/2hNgf0y

Parity to Safety in Polynomial Time for Pushdown
and Collapsible Pushdown Systems

Matthew Hague1

Royal Holloway, University of London, UK
matthew.hague@rhul.ac.uk

https://orcid.org/0000-0003-4913-3800

Roland Meyer
TU Braunschweig, Germany
roland.meyer@tu-braunschweig.de

Sebastian Muskalla
TU Braunschweig, Germany
s.muskalla@tu-braunschweig.de

https://orcid.org/0000-0001-9195-7323

Martin Zimmermann2

Universität des Saarlandes, Saarbrücken, Germany
zimmermann@react.uni-saarland.de

Abstract
We give a direct polynomial-time reduction from parity games played over the configuration
graphs of collapsible pushdown systems to safety games played over the same class of graphs.
That a polynomial-time reduction would exist was known since both problems are complete for
the same complexity class. Coming up with a direct reduction, however, has been an open
problem. Our solution to the puzzle brings together a number of techniques for pushdown
games and adds three new ones. This work contributes to a recent trend of liveness to safety
reductions which allow the advanced state-of-the-art in safety checking to be used for more
expressive specifications.

2012 ACM Subject Classification Theory of computation → Logic and verification, Theory of
computation → Modal and temporal logics, Theory of computation → Verification by model
checking, Theory of computation → Grammars and context-free languages

Keywords and phrases Parity Games, Safety Games, Pushdown Systems, Collapsible Pushdown
Systems, Higher-Order Recursion Schemes, Model Checking

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.57

Related Version The full version is available as technical report [16], https://arxiv.org/abs/
1805.02963.

Acknowledgements We thank the anonymous reviewers for their comments.

1 Supported by the EPSRC under grant [EP/K009907/1].
2 Supported by the DFG under grant [ZI 1516/1-1].

© Matthew Hague, Roland Meyer, Sebastian Muskalla, and Martin Zimmermann;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 57; pp. 57:1–57:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matthew.hague@rhul.ac.uk
https://orcid.org/0000-0003-4913-3800
mailto:roland.meyer@tu-braunschweig.de
mailto:s.muskalla@tu-braunschweig.de
https://orcid.org/0000-0001-9195-7323
mailto:zimmermann@react.uni-saarland.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.57
https://arxiv.org/abs/1805.02963
https://arxiv.org/abs/1805.02963
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

57:2 Parity to Safety in Polynomial Time

1 Introduction

Model-checking games ask whether there is a strategy (or implementation) of a system that
can satisfy required properties against an adversary (or environment). They give a natural
method for reasoning about systems wrt. popular specification logics such as LTL, CTL, and
the µ-calculus. The simplest specifications are reachability or safety properties, where the
system either needs to reach a given good state or avoid a bad state (such as a null-pointer
dereference). The most expressive logic typically studied is the µ-calculus, which subsumes
LTL, CTL, and CTL∗ [22]. One can reduce µ-calculus model checking in polynomial time to
the analysis of parity games (op cit.) via a quite natural product of system and formula.

In the finite-state setting, while reachability and safety games can be solved in linear
time and space, the best known algorithms for parity games are quasi-polynomial time [8]
or quasi-linear space [18, 13]. For infinite-state games described by pushdown systems, or
more generally, collapsible pushdown systems, the complexities match: EXPTIME-complete
for solving reachability, safety [5, 32], and parity games [32] over pushdown systems, and
n-EXPTIME-complete for order-n collapsible pushdown systems [11, 7, 24, 17].

Pushdown systems are an operational model for programs with (recursive) function calls.
In such systems, a configuration has a control state from a finite set and a stack of characters
from a finite alphabet (modeling the call stack). Collapsible pushdown systems [17] are
an operational model for higher-order recursion as found in most languages (incl. Haskell,
JavaScript, Python, C++, Java, . . .). They have a nested stack-of-stacks (e.g. an order-2
stack is a stack of stacks) and collapse links which provide access to calling contexts.

Given that safety and parity games over collapsible pushdown systems are complete
for the same complexity classes, the problems must be inter-reducible in polynomial-time.
However, a direct (without a detour via Turing machines) polynomial-time reduction from
parity to safety has been an open problem [14]. To see why the reduction is difficult to find,
note that a safety game is lost based on a finite prefix of a play while determining the winner
of a parity game requires access to the infinitely many elements of a play. Complexity theory
tells us that this gap can be bridged by access to the stack, with only polynomial overhead.

Our contribution is such a polynomial-time reduction from parity to safety. From
a theoretical standpoint, it explains the matching complexities despite the difference in
expressible properties. From a practical standpoint, it may help building model-checking tools
for µ-calculus specifications. Indeed, competitive and highly optimized tools exist for analysing
reachability and safety properties of higher-order recursion schemes (HorSat [6, 31, 20] and
Preface [28] being the current state-of-the-art), but implementing efficient tools for parity
games remains a problem [15, 23]. Having the reduction at hand can allow the use of safety
tools for checking parity conditions, suggest the transfer of techniques and optimizations from
safety to parity, and inspire new algorithms for parity games. Still, a complexity-theoretic
result should only be considered a first step towards practical developments.

Reductions from parity to safety have been explored for the finite-state case by Ber-
net et al. [1], and for pushdown systems by Fridman and Zimmermann [14]. We will refer
to them as counter reductions, as they use counters to track the occurrences of odd ranks.
These existing reductions are not polynomial. Berwanger and Doyen [2] showed that counter
reductions can be made polynomial in the case of finite-state imperfect-information games.

Our solution to the puzzle brings together a number of techniques for pushdown games and
contributes three new ones. We first show how to lift the existing counter reductions [1, 14]
from first order to higher orders. For this we exploit a rank-awareness property of collapsible
pushdown systems [17]. Secondly, we prove the correctness of this lifting by showing that it

M. Hague, R. Meyer, S. Muskalla, and M. Zimmermann 57:3

commutes with a reduction from order-n to order-(n−1) games [32, 17]. The polynomial-time
reduction is then a compact encoding of the lifted counter reduction. It uses the ability of
higher-order stacks to encode large numbers [7] and the insight that rank counters have a
stack-like behavior, even in their compact encoding.

Much recent work verifies liveness properties via reductions to safety [25, 10, 26, 27, 12]
or reachability [21, 4] with promising results. For finite-state generalized parity games, Sohail
and Somenzi show that pre-processing via a safety property can reduce the state space that
a full parity algorithm needs to explore, giving competitive synthesis results for LTL [30]. In
the case of infinite-state systems (including pushdowns), reductions from liveness (but not
parity games) have been explored by Biere et al. [3] and Schuppan and Biere [29].

2 Preliminaries

We define games over collapsible pushdown systems (CPDS). For a full introduction see [17].
CPDS are an operational model of functional programs that is equivalent to higher-order
recursion schemes (HORS) [17]. Without collapse, they correspond to safe HORS [19].

In the following, let N be the set of natural numbers (including 0) and [i, j] denote the
set {i, i+ 1, . . . , j}.

2.1 Higher-Order Collapsible Stacks
Higher-order stacks are a nested stack-of-stacks structure whose stack characters are annotated
by collapse links that point to a position in the stack. Intuitively, this position is the context
in which the character was created. We describe the purpose of collapse links after some
basic definitions.

I Definition 2.1 (Order-n Collapsible Stacks). For n ≥ 1, let Σ be a finite set of stack
characters Σ together with a partition function3 λ : Σ→ [1, n]. An order-0 stack with up-to
order-n collapse links is an annotated character ai ∈ Σ× N. An order-k stack with up-to
order-n collapse links is a non-empty sequence w = [w1 . . . w`]k (with ` > 0) such that each
wi is an order-(k − 1) stack with up-to order-n collapse links. By Stacksn we denote the set
of order-n stacks with up-to order-n links.

In the sequel, we will refer to stacks in Stacksn as order-n stacks. By order-k stack we will
mean an order-k stack with up-to order-n links, where n will be clear from the context.

Given an order-k stack with up-to order-n links w = [w1 . . . w`]k, we define below the
operation topk′ to return the topmost element of the topmost order-k′ stack. Note that this
element is of order-(k′− 1). The top of a stack appears leftmost. The operation botik removes
all but the last i elements from the topmost order-k stack. It does not change the order of
the stack and requires i ∈ [1, `].

topk(w) = w1 botik(w) = [w`−i+1 . . . w`]k
topk′(w) = topk′(w1) (k′ < k) botik′(w) = [botik′(w1)w2 . . . w`]k (k′ < k).

For technical convenience, we will also define

topn+1(w) = w

which, we note, does not extend to topn+2 or beyond.

3 Readers familiar with CPDS may expect links to be pairs (k, i) and the alphabet Σ not to be partitioned
by link order. The partition assumption is oft-used. It is always possible to tag each character with its
link order using Σ× [1, n]. Such a partition becomes crucial in Section 4.

MFCS 2018

57:4 Parity to Safety in Polynomial Time

The destination of a collapse link i on a with λ(a) = k in a stack w is botik(w), when
defined. When i = 0, the link is considered null. We often omit irrelevant collapse links from
characters to improve readability.

When u is a (k − 1)-stack and v = [v1 . . . v`]n is an n-stack with k ∈ [1, n], we define
u :k v as the stack obtained by adding u on top of the topmost k-stack of v. Formally,

u :k v = [uv1 . . . v`]n (k = n) and u :k v = [(u :k v1)v2 . . . v`]n (k < n).

I Example 2.2. When λ(a) = 3 and λ(b) = 2 let w = [[[a1b1]1[b1]1]2[[b0]1]2]3 be an order-3
collapsible stack. The destination of the topmost link is bot13(w) = [[[b0]1]2]3. Furthermore,
bot12(w) = [[[b1]1]2[[b0]1]2]3 and top2(w) = [a1b1]1. Here, top2(w) :2 bot12(w) = w.

Operations on Order-n Collapsible Stacks

CPDS are programs with a finite control acting on collapsible stacks via the operations:

On = {push2, . . . , pushn} ∪ {pusha, rewa | a ∈ Σ} ∪ {pop1, . . . , popn} ∪ {collapse} .

Operations pushk of order k > 1 copy the topmost element of the topmost order-k stack.
Order-1 push operations pusha push a onto the topmost order-1 stack and annotate it with
an order-λ(a) collapse link. When executed on a stack w, the link destination is popλ(a)(w).
A popk removes the topmost element from the topmost order-k stack. The rewrite rewa
modifies the topmost stack character while maintaining the link (rewrite must respect the
link order). Collapse, when executed on ai with λ(a) = k, pops the topmost order-k stack
down to the last i elements, captured by botik. Formally, for an order-n stack w:

1. pushk(w) = topk(w) :k w.
2. pusha(w) = a`−1 :1 w when topk+1(w) = [w1 . . . w`]k, where k = λ(a) is the link order,
3. popk(w) = v when w = u :k v,
4. collapse(w) = botik(w) when top1(w) = ai and λ(a) = k, and
5. rewb(w) = bi :1 v when w = ai :1 v and λ(a) = λ(b).
Note that since our definition of stacks does not permit empty stacks, popk is undefined if v
is empty and collapse is undefined when i = 0. Thus, the empty stack cannot be reached
using CPDS operations; instead, the offending operation will simply be unavailable. Likewise
if a rewrite operation would change the order of the link.

I Example 2.3. Recall Example 2.2 and that w = [[[a1b1]1[b1]1]2[[b0]1]2]3. Given the order-3
link 1 of the topmost stack character a, a collapse operation yields u = [[[b0]1]2]3. Now
push3(u) = [[[b0]1]2[[b0]1]2]3. A pusha on this stack results in v = [[[a1b0]1]2[[b0]1]2]3. We
have pop3(v) = u = collapse(v).

There is a subtlety in the interplay of collapse links and higher-order pushes. For a pushk,
links pointing outside of u = topk(w) have the same destination in both copies of u, while
links pointing within u point to different sub-stacks.

I Remark (nop). For convenience we use an operation nop which has no effect on the stack.
We can simulate it by rewa where a is the topmost character (by the format of rules, below,
we will always know the topmost character when applying an operation). Hence, it is not a
proof case.

M. Hague, R. Meyer, S. Muskalla, and M. Zimmermann 57:5

2.2 Collapsible Pushdown Systems and Games
I Definition 2.4 (CPDS). An order-n collapsible pushdown system is a tuple C given by
(P,Σ, λ,R, pI , aI , ρ) with P a finite set of control states with initial control state pI , Σ a finite
stack alphabet with initial stack character aI and order function λ, ρ : P → N a function
assigning ranks to P, and R ⊆ (P × Σ×On × P) a set of rules. The size is |C| = |P|+ |Σ|.
The remaining entries polynomially depend on P and Σ (note that n is fixed).

We attach ranks to CPDS instead of games as we later need the notion of rank-aware CPDS.
A configuration of a CPDS is a pair c = 〈p, w〉 with p ∈ P and a stack w ∈ Stacksn.

We have a transition 〈p, w〉 −→ 〈p′, w′〉 if there is a rule (p, a, o, p′) ∈ R with top1(w) = a

and w′ = o(w). The initial configuration is 〈pI , wI〉 where wI = [. . . [a0
I]1 . . .]n. To begin

from another configuration, one can adjust the CPDS rules to build the required stack from
the initial configuration. A computation is a sequence of configurations c0, c1, . . . where
c0 = 〈pI , wI〉 and ci −→ ci+1 for all i ∈ N. Recall, transitions cannot empty a stack or
rewrite the order of a link.

I Definition 2.5 (Games over CPDS). A game over a CPDS is a tuple G = (C,O,W), where
C is a CPDS, O : P → {A,E} is a division of the control states of C by owner Elvis (E) or
Agnetha (A), and W ⊆ Nω is a winning condition. The size of the game is |G| = |C|.

We call G a safety game if ρ(p) ∈ {1, 2} for all p ∈ P and W = 2ω. It is a parity game if
W is the set of all sequences such that the smallest infinitely occurring rank is even.

We refer to computations as plays and require them to be infinite. This means every
configuration 〈p, w〉 has some successor 〈p′, w′〉. This does not lose generality as we can add to
the CPDS transitions to a losing (as defined next) sink state (with self-loop) for O(p) from any
configuration 〈p, w〉. A play 〈p0, w0〉 , 〈p1, w1〉 , 〈p2, w2〉 , . . . is won by Elvis, if its sequence of
ranks satisfies the winning condition, i.e. ρ(p0)ρ(p1)ρ(p2) . . . ∈ W . Otherwise, Agnetha wins.
When a play reaches (p, w), then the owner of p chooses the rule to apply. A strategy for player
Υ ∈ {E,A} is a function σ : (P × Stacksn)∗ → R that returns an appropriate rule based on
the prefix of the play seen so far. A play 〈p0, w0〉 , 〈p1, w1〉 , 〈p2, w2〉 , . . . is according to σ if
for all i with O(pi) = Υ we have 〈pi, wi〉 −→ 〈pi+1, wi+1〉 via rule σ(〈p0, w0〉 , . . . , 〈pi, wi〉).
The strategy is winning if all plays according to σ are won by Υ. We say a player wins a
game if they have a winning strategy from the initial configuration.

2.3 Rank-Aware Collapsible Pushdown Systems
We will often need to access the smallest rank that was seen in a play since some stack was
created. Rank-aware CPDS record precisely this information [17]. We first define k-ancestors
which, intuitively, give the position in the play where the top order-(k− 1) stack was pushed.
Note, in the definition below, the integer j is unrelated to the collapse links.

I Definition 2.6 (k-Ancestor). Let k ∈ [2, n] (resp. k = 1). Given a play c0, c1, . . . we attach
an integer j to every order-(k−1) stack as follows. In c0 all order-(k−1) stacks are annotated
by 0. Suppose ci+1 was obtained from ci using operation pushk (resp. pusha). Then the new
topmost order-(k− 1) stack in ci+1 is annotated with i. If ci+1 is obtained via a pushk′′ with
k′′ > k, then all annotations on the order-(k − 1) stacks in the copied stack are also copied.

The k-ancestor with k ∈ [1, n] of ci is the configuration cj where j is the annotation of
the topmost order-(k − 1) stack in ci. Let top1(ci) = a` and λ(a) = k′. The link ancestor of
ci is the k′-ancestor of the 1-ancestor of ci.

MFCS 2018

57:6 Parity to Safety in Polynomial Time

Applying a popk operation will expose (a copy of) the topmost (k−1)-stack of the k-ancestor.
To understand the notion of a link ancestor, remember that collapse executed on a stack
whose topmost order-0 stack is a` with λ(a) = k′ has the effect of executing popk′ several
times. The newly exposed topmost (k′ − 1)-stack is the same that would be exposed if popk′
were applied at the moment the a character was pushed. This exposed stack is the same stack
as is topmost on the k′-ancestor of the 1-ancestor of a. We illustrate this with an example.

I Example 2.7. Assume some c0. Now take some c1 containing the stack w1 = [[[b0]1]2]3.
Apply a push3 operation to obtain c2 with stack w2 = [[[b0]1]2[[b0]1]2]3. Note, the topmost
[[b0]1]2 has 3-ancestor c1.

Now, let λ(a) = 3 and obtain c3 with pusha, which thus contains the stack w3 =
[[[a1b0]1]2[[b0]1]2]3 where the a1 has the 1-ancestor c2.

We can now apply push3 again to reach c4 with stack w4 = [[[a1b0]1]2[[a1b0]1]2[[b0]1]2]3.
Note that both copies of a1 have the 1-ancestor c2. Moreover, the link ancestor of both is
c1. That is, the 3-ancestor of the topmost stack of c2. In particular, applying collapse at c4
results in a configuration with stack [[[b0]1]2]3, which is the same stack contained in c1.

In the below, intuitively, the level-k rank is the smallest rank seen since the topmost
(k − 1) stack was created. Similarly for the link-level rank. Our rank-awareness definition is
from [17] but includes level-k ranks as well.

I Definition 2.8 (Level Rank). For a given play c0, c1, . . . the level-k rank with k ∈ [1, n]
(resp. link-level rank) at a configuration ci is the smallest rank of a control state in the
sequence cj+1, . . . , ci where j is the k-ancestor (link ancestor) of ci.

In the following definition, ` is a special symbol to be read as link.

I Definition 2.9 (Rank-Aware). A rank-aware CPDS is a CPDS C over stack characters
(a,Rk), where a is taken from a finite set and function Rk has type Rk : [1, n] ∪· {`} → [0,m]
(with m the highest rank of a state in C). The requirement is that in all computations
c0, c1, . . . of the CPDS all configurations ci = (p, w) with top-of-stack character (a,Rk) satisfy

Rk(k) = the level-k rank at ci, k ∈ [1, n], and Rk(`) = the link-level rank at ci.

Below, we slightly generalize a lemma from [17] to include safety games and level-k ranks.
Intuitively, we can obtain rank-awareness by keeping track of the required information in the
stack characters and control states.

I Lemma 2.10 (Rank-Aware). Given a parity (resp. safety) game over CPDS C of order-n,
one can construct in polynomial time a rank-aware CPDS C′ of the same order and a parity
(resp. safety) game over C′ such that Elvis wins the game over C iff he wins the game over C′.

Note, the number of functions Rk is exponential in n. However, since n is fixed the
construction is polynomial. In the sequel, we will assume that all CPDS are rank-aware.

3 Main Result and Proof Outline

In the following sections, we define a reduction Poly which takes a parity game G over a
CPDS and returns a safety game Poly(G) of the same order. The main result follows.

I Theorem 3.1 (From Parity to Safety, Efficient). Given a parity game G, Elvis wins G iff
he wins Poly(G). Poly(G) is polynomially large and computable in time polynomial in the
size of G.

M. Hague, R. Meyer, S. Muskalla, and M. Zimmermann 57:7

We outline how to define Poly and prove it correct. First, we give a function CounterB
reducing an order-n parity game to an equivalent order-n safety game. It extends Fridman
and Zimmermann’s reduction [14] from first order to higher orders. In the finite-state setting,
a related reduction appeared already in [1]. The idea is to count in the stack characters the
occurrences of odd ranks. Elvis has to keep the counter values below B, a threshold that is a
parameter of the reduction. For completeness, this threshold has to be n-fold exponential in
the size of G. Let Exp0(f) = f and Expn(f) = 2Expn−1(f). We have the following lemma.

I Lemma 3.2 (From Parity to Safety, Inefficient). Given a parity game G played over an
order-n CPDS, there is a bound B(G) = Expn(f(|G|)) for some polynomial f so that for all
B ≥ B(G) Elvis wins G iff he wins the safety game CounterB(G).

The size of CounterB(G) is not polynomial, even for constant B. The next step is to give an
efficient reduction PolyB producing a safety game equivalent to CounterB(G). In particular
PolyB(G)(G) can be computed in time polynomial only in the size of G, not in B(G). Thus,
we can define Poly from the main theorem to be Poly(G) = PolyB(G)(G).

Technically, Poly relies on the insight that counter increments as performed by CounterB
follow a stack discipline. Incrementing the rth counter resets all counters for r′ > r to zero.
The upper bound combines this with the fact that collapsible pushdown systems can encode
large counters [7]. The second step is summarized as follows.

I Lemma 3.3 (From Inefficient to Efficient). Elvis wins CounterB(G) iff he wins PolyB(G).
Moreover, Poly(G) = PolyB(G)(G) is polynomial-time computable.

It should be clear that the above lemmas, once proven, yield the main theorem. For
the equivalence stated there, note that Poly(G) = PolyB(G)(G) is equivalent to the game
CounterB(G)(G) by Lemma 3.3. This game, in turn, is equivalent to G by Lemma 3.2.

The proof of Lemma 3.3 will be direct and is given in Section 7. We explain the proof of
Lemma 3.2 here, which relies on a third reduction. We define a function called Order that
takes an order-n parity or safety game and produces an equivalent order-(n− 1) parity or
safety game. The reduction already appears in [17], and generalizes the one from [32]. Let

GO = Order(G), GCB
= CounterB(G),

GO,CB
= CounterB(Order(G)), GCB ,O = Order(CounterB(G)) .

The proof of Lemma 3.2 chases the diagram below. We rely on the observation that the games
CounterB(Order(G)) and Order(CounterB(G)) are equivalent, as stated in Lemma 3.4. The
proof of Lemma 3.4 needs the reductions and can be found in Section 6. The commutativity
argument yields the following proof, almost in category-theoretic style.

G GCB

GO GO,CB
GCB ,O

CounterB

Order

CounterB

Order

I Lemma 3.4 (GO,CB
vs. GCB ,O). Given B ∈ N and a parity game G over an order-n CPDS,

Elvis wins CounterB(Order(G)) iff Elvis wins Order(CounterB(G)).

Proof of Lemma 3.2. We induct on the order. At order-1, the result is due to Fridman and
Zimmerman [14]. For the induction, without the bound, at order-n, take a winning strategy
for Elvis in G. By [17], he has a winning strategy in GO. By induction, Elvis has a winning

MFCS 2018

57:8 Parity to Safety in Polynomial Time

strategy in GO,CB
and by Lemma 3.4 also in GCB ,O when B is suitably large. Finally, again

by [17], Elvis can win GCB
. I.e., we chase the diagram above from G to GO to GO,CB

to GCB ,O

and then up to GCB
. To prove the opposite direction, simply follow the path in reverse.

To obtain the required bound, we argue as follows: Intuitively, we have an exponential
bound at order-1 by Fridman and Zimmerman. Thus, assume by induction we have a
(n − 1)-fold exponential bound for order-(n − 1). From an order-n system we obtain an
exponentially large order-(n− 1) system for which an n-fold exponential bound is therefore
needed. J

In Sections 4 and 5, we define Order and CounterB , and show Lemma 3.4 in Section 6. The
reduction Poly is defined in Section 7, which also sketches the proof of Lemma 3.3.

4 Order Reduction

We recall the reduction of [17] from order-n to order-(n− 1) parity games. This reduction
also works for safety games. It is a natural extension of Carayol et al. [9] for higher-order
pushdown systems without collapse, which extended Walukiewicz’s reduction of pushdown
parity games to finite-state parity games [32]. Due to space constraints, we only give the
intuition here. It is useful when explaining the motivation behind the constructions in our
parity to safety reduction.

Given an order-n CPDS C and a game G = (C,O,W) we define an order-(n− 1) game
Order(G) over a CPDS C′. The order-(n − 1) CPDS C′ simulates C. The key operations
are pushn, popn, pusha with λ(a) = n, and collapse when the link is order-n. We say these
operations are order-n. The remaining operations are simulated directly on the stack of C′.

There is no pushn on an order-(n− 1) stack. Instead, observe that if the stack is w before
the pushn operation, it will return to w after the corresponding popn (should it occur). Thus,
we simulate pushn by splitting the play into two branches. The first simulates the play
between the pushn and corresponding popn. The second simulates the play after the popn.

Instead of applying a pushn operation, Elvis makes a claim about the control states the
play may pop to. Also necessary is information about the smallest rank seen in the play to
the pop. This claim is recorded as a vector of sets of control states ~P = (P0, . . . , Pm) which
is held in the current control state. Each p ∈ Pr is a potential future of the play, meaning
that the pushed stack may be popped to p and the minimum rank seen since the push could
be r. Because Elvis does not have full control of the game, he cannot give a single control
state and rank: Agnetha may force him to any of a number of situations.

Once this guess has been made, Agnetha chooses whether to simulate the first play
(between the push and the pop) or the second (after the pop). In the first case, ~P is stored
in the control state. Then, when the pop occurs, Elvis wins if the destination control state is
in Pr where r is the minimum rank seen (his claim was correct). In the second case, Agnetha
picks a rank r and moves the play directly to some control state in Pr. This move has rank r
(as the minimum rank seen needs to contribute to the parity/safety condition). In both cases,
the topmost order-(n− 1) stack does not change (as it would be the same in both plays).

To simulate a pusha with λ(a) = n and a corresponding collapse we observe that the
stack reached after the collapse is the same as that after a popn applied directly. Thus, the
simulation is similar. To simulate the play up to the collapse, the current target set ~P is
stored with the new stack character a. Then Elvis wins if a move performs a collapse to a
control state p ∈ Pr, where r is the smallest rank seen since the order-(n − 1) stack, that
was topmost at the moment of the original pusha, was pushed. To simulate the play after
the collapse, we can simulate a popn as above.

M. Hague, R. Meyer, S. Muskalla, and M. Zimmermann 57:9

5 Counter Reduction

We reduce parity to safety games, generalizing Fridman and Zimmermann [14] which extended
Bernet et al. [1]. This reduction is not polynomial and we show in Section 7 how to achieve
the desired complexity. Correctness is Lemma 3.2 (From Parity to Safety, Inefficient) .

We give the intuition here. The reduction maintains a counter for each odd rank, which
can take any value between 0 and B. We also detail the counters below as they are needed
in Section 7.

The insight of Bernet et al. is that, in a finite-state parity game of ` states, if Agnetha
can force the play to pass through some odd rank r for `+ 1 times without visiting a state
of lower rank in between, then some state p of rank r is visited twice. Since parity games
permit positional winning strategies, Agnetha can repeat the play from p ad infinitum. Thus,
the smallest infinitely occurring rank must be r, and Agnetha wins the game.

Thus, Elvis plays a safety game: he must avoid visiting an odd rank too many times
without a smaller rank being seen. In the safety game, counters

~α = (α1, α3, . . . , αm)

are added to the states, one for each odd rank. When a rank r is seen, then, if it is odd, αr
is incremented. Moreover, whether r is odd or even, all counters αr′ for r′ > r are reset to 0.

As the number of configurations is infinite, Bernet’s insight does not immediately gen-
eralize to pushdown games. However, Fridman and Zimmermann observed that, from
Walukiewicz [32], a pushdown parity game can be reduced to a finite-state parity game (of
exponential size) as described in the previous section. This finite-state parity game can be
further reduced to a safety game with the addition of counters. Their contribution is then to
transfer back the counters to the pushdown game, with the following reasoning.

Recall, a push move at (p, [aw]1) is translated into a branch from a corresponding state
(p, a, ~P) in the finite-state game. There are several moves from (p, a, ~P), some of them
simulate the push, the remaining moves simulate the play after the corresponding pop. When
augmented with counters the states take the form (p, a, ~P , ~α). We see that, when simulating
the pop in the finite-state game, the counter values are the same as in the moment when the
push is simulated. That is, if we lift the counter construction to the pushdown game, after
each pop move we need to reset the counters to their values at the corresponding push. Thus
we store the counter values on the stack. For example, for a configuration (p, [(a, ~α)(b, ~α′)]1)
where the current top of stack is a and the current counter values are ~α, the counter values
at the moment when a was first pushed are stored on the stack as ~α′.

This reasoning generalizes to any order n. We store the counter values on the stack so that,
when a popk operation occurs, we can retrieve the counter values at the corresponding pushk,
and similarly for collapse. Note also that, when reducing from order-n to order-(n− 1), any
branch corresponding to a play after a pop passes through a rank r which is the smallest
rank seen between the push and pop. Thus, in the safety game, after each pop or collapse
we need to update the counter values using r. Hence we require a rank-aware CPDS.

Let m be the maximum rank, and, for convenience, assume it is odd. We maintain a
vector of counters ~α = (α1, α3, . . . , αm), one for each odd rank, stored in the stack alphabet
as described above. We update these counters with operations ⊕r that exist for all r ∈ [0,m]
(including the even ranks). Operation ⊕r resets the counters αr′ with r′ > r to zero. If r
is odd, it moreover increments αr. If the bound is exceeded, an overflow occurs. Formally,
⊕r(~α) = NaN if r is odd and αr + 1 > B. Otherwise, ⊕r(~α) = ~α′ where for each r̃

α′r̃ = αr̃ (if r̃ < r), α′r̃ = αr + 1 (if r̃ = r), and α′r̃ = 0 (if r̃ > r).

MFCS 2018

57:10 Parity to Safety in Polynomial Time

6 Equivalence Result

We need equivalence of GO,CB
= CounterB(Order(G)) and GCB ,O = Order(CounterB(G)) for

Lemma 3.4. The argument is that the two CPDS only differ in order of the components
of their control states and stack characters. A subtlety is that when CounterB is applied
first, the contents of ~P are not control states of G, but control states of GCB

. However, the
additional information in the control states after CounterB has to be consistent with ~P ,
which means we can directly translate between guesses over states in the original CPDS, and
those over states of the CPDS after the counter reduction.

7 Polynomial Reduction

For a game G over an order-n CPDS, the counters in the game CounterB(G)(G) blow up G by
an n-fold exponential factor. To avoid this we use the stack-like behaviour of the counters
and a result due to Cachat and Walukiewicz [7], showing how to encode large counter values
into the stack of a CPDS with only polynomial overhead (in fact, collapse is not needed).

7.1 Counter Encoding

Cachat and Walukiewicz propose a binary encoding that is nested in the sense that a bit is
augmented by its position, and the position is (recursively) encoded in the same way. For
example, number 5 stored with 16 bits is represented by (0, 1).(1, 0).(2, 1).(3, 0).(4, 0) . . . (15, 0).
Since four bits are required to index 16 bits, we encode position 4 as (0, 0′).(1, 0′).(2, 1′).(3, 0′).
Finally, position 2 of this encoding stored as (0, 0′′).(1, 1′′). The players compete to (dis)prove
that the indexing is done properly.

Formally we introduce distinct alphabets to encode counters for all odd ranks r:

Γr = Γ̂r ∪ {0r, 1r} .

Here, Γ̂r is a polynomially-large set of characters for the indexing. The set {0r, 1r} are the
bits to encode numbers. Let Γ be the union of all Γr.

The values of the counters are stored on the order-1 stack, with the least-significant bit
topmost. The indices appear before each bit character. E.g., value 16 for counter r stored
with five bits yields a sequence from Γ̂∗r . 0r . Γ̂∗r . 0r . Γ̂∗r . 0r . Γ̂∗r . 0r . Γ̂∗r . 1r. Actually,
the encoding will always use all bits, which means its length will be (n− 1)-fold exponential.

Cachat and Walukiewicz provide game constructions to assert properties of the counter
encodings. For this, play moves to a dedicated control state, from which Elvis wins iff
the counters have the specified property. In [7], Elvis plays a reachability game from the
dedicated state. We need the dual, with inverted state ownership and a safety winning
condition, where the target state of the (former) reachability game has rank 1. Elvis’s goal
will be to prove the encoding wrong (it violates a property) by means of safety, Agnetha tries
to build up the counters correctly and, if asked, demonstrate correctness using reachability.

For all properties, the counter to be checked must appear directly on the top of the stack
(topmost on the topmost order-1 stack). If any character outside Γr is found, Agnetha loses.
When two counters are compared, the first counter must appear directly at the top of the
stack, while the second may be separated from the first by any sequence of characters from
outside Γr (these can be popped away). The first character found from Γr begins the next
encoding. Agnetha loses the game if none is found. The required properties are listed below.

M. Hague, R. Meyer, S. Muskalla, and M. Zimmermann 57:11

Encoding Check (encodingr): For each rank r, we have a control state encodingr. Agnetha
can win the safety game from 〈encodingr, w〉 only if the topmost sequence of characters
from Γr is a correct encoding of a counter, in that all indices are present and correct.
Equals Check (equalr): For each r, we have a control state equalr, from which Agnetha
can win only if the topmost sequence of characters from Γr is identical to the next topmost
sequence of Γr-characters. I.e., the two topmost rth counter encodings are equal.
Counter Increment: Cachat and Walukiewicz do not define increment but it can be done
via the basic rules of binary addition. We force Agnetha to increment the counter by first
using pop1 to remove characters from Γ̂r ∪ {1r} until 0r is found. Then, Agnetha must
rewrite the 0r to 1r. Agnetha then performs as many pusha operations as she wishes,
where a ∈ Γ̂r ∪ {0r}. Next, Elvis can accept this rewriting by continuing with the game,
or challenge it by moving to encodingr. This ensures that Agnetha has put enough 0r
characters on the stack (with correct indexing) to restore the number to its full length.

In this encoding one can only increment the topmost counter on the stack. That is, to
increment a counter, all counters above it must be erased. Fortunately, ⊕r resets to zero all
counters for ranks r′ > r, meaning the counter updates follow a stack-like discipline. This
enables the encoding to work. To store a character with counter values from the counter
reduction (a, ~α) with ~α = α1, . . . , αm we store the character a on top and beneath we encode
αm, then αm−2 and so on down to α1.

7.2 The Simulation
The following definition is completed in the following sections. Correctness is stated in
Lemma 3.3 (From Inefficient to Efficient) .

I Definition 7.1 (PolyB). Given a parity game G = (C,O,W) over the order-n CPDS
C = (P,Σ, λ,R, pI , aI , ρ) and a bound B n-fold exponential in the size of the game, we define
the safety game PolyB(G) = (C′,O′, 2ω) where C′ = (Q,Σ′, λ′,R′, p′I , a′I , ρ′). The missing
components are defined below.

We aim to simulate CounterB(G) compactly. This simulation is move-by-move, as follows.
A push(a,~α) of a character with counter values (a, ~α) with ~α = α1, . . . , αm (where the

max-rank is m) is simulated by first pushing a special character `k to save the link (with
push`k

). Then, since the counter values are a copy of the preceding counter values on the
stack, Agnetha pushes an encoding for α1 using Γ1 after which Elvis can accept the encoding,
check that it is a proper encoding using encoding1, or check that it is a faithful copy of the
preceding value of α1 using equal1. We do this for all odd ranks through to m. Then the
only move is to push a with pusha.

Each pushk and popk, with k ∈ [2, n], is simulated directly by the same operation. For a
pop1 we (deterministically) remove all topmost characters (using pop1) up to and including
the first `k′ (for some k′). We simulate collapse like pop1, but we apply collapse to `k′ .

A rew(a,~α) that does not change the counters can be simulated by rewriting the topmost
character. If ⊕r is applied, we force Agnetha to play as follows. If r is even, Agnetha removes
the counters for r′ > r. She replaces them with zero values by pushing characters from
Γ̂r′ ∪ {0r′}. After each counter is rewritten, Elvis can accept the encoding, or challenge it
with encodingr′ . Finally, a is pushed onto the stack. If r is odd, the counters for r′ are
removed as before. Then we do an increment as described above, with Elvis losing if the
increment fails. Note, it fails only if there is no 0r in the encoding, which means the counter
is at its maximum value and there is an overflow (indicating Elvis loses the parity game). If
it succeeds, zero values for the counters r′ > r and a are pushed to the stack as before.

MFCS 2018

57:12 Parity to Safety in Polynomial Time

Control States and Alphabet
We define the control states Q with O′ and ρ′ as well as the alphabet. First,

Q = P ∪ (P × [0,m]) ∪ {#, $} ∪ PCW ∪ POP .

where m is the maximum rank. The set PCW is the control states of the Cachat-Walukiewicz
games implementing encodingr and equalr. The size is polynomial in G. We have POP ={

(inc, r, p), (copy, r, a, p), (zero, r, a, p), (pop1, Υ, r, p),
(inc, r, a, p), (cchk, r, a, p), (zchk, r, a, p), (collapse, Υ, r, p)

∣∣∣∣ r ∈ [0, m] ∧ a ∈ Σ ∧
p ∈ P ∧Υ ∈ {A, E}

}
to control the simulation of the operations as sketched above. We describe the states below.

The states in PCW have the same rank and owner as in the Cachat-Walukiewicz games
(more precisely the dual, see above). All other states have rank 2 except # which has rank 1.
It (resp. $) is the losing sink for Elvis (resp. Agnetha). The states in P ∪ (P × [0,m]) ∪ {#}
are used as in CounterB(G) to directly simulate G. The owners are as in G.

A state (inc, r, p) begins an application of ⊕r. The top-of-stack character is saved by
moving to (inc, r, a, p). The owner of these states does not matter, we give them to Agnetha.
In (inc, r, a, p), the stack is popped down to the counter for r. If r is odd, the least significant
zero is set to one. Then, control moves to (zero, r, a, p). In (zero, r, a, p), zero counters for
ranks r and above are pushed to the stack, followed by a push of a and a return to control
state p. The state is owned by Agnetha. The state (zchk, r, a, p) is used by Elvis to accept
or challenge that the encoding has been re-established completely. It is owned by Elvis.

The controls (copy, r, a, p) copy the counters for ranks r and above (the current values)
and push the copies to the stack, followed by a push of a and a return to control state p. The
state is owned by Agnetha. After this phase, the play moves to (cchk, r, a, p) where Elvis
can accept or test whether the copy has been done correctly. This state is owned by Elvis.

The controls (pop1,Υ, r, p) and (collapse,Υ, r, p) where Υ ∈ {A,E} are used to execute a
pop1 or collapse. For the latter, we pop to the next `k character, perform the collapse and
record that the rth counter needs to be incremented. In case the collapse is not possible
(because it would empty the stack) play may also move to a sink state that is losing for the
player Υ who instigated the collapse. The case of pop1 pops `k. The owner in each case is Υ
as they will avoid moving to their (losing) sink state if the pop1 or collapse is possible.

The alphabet and initial control state and stack character are

Σ′ = Σ ∪ Γ ∪∆ and p′I = (zero, 1, aI , pI) and a′I = `k where λ(aI) = k .

The alphabet is extended by the characters required for the counter and link encodings.
Recall that Γ is the union of the counter alphabets, which are of polynomial size. We use
∆ = {`1, . . . , `m} for the link characters. We assign λ′(`k) = k and λ′(a) = 1 for all other a.

The task of the initial state and initial stack character is to establish the encoding of
(aI , (0, . . . , 0)) in CounterB(G) and then move to the initial state of G. With the above
description, (zero, 1, aI , pI) will establish zeros in all counters (from 1 to m), push the initial
character aI of the given game, and move to state pI . The initial character `k is the correct
bottom element for the encoding of (aI , (0, . . . , 0)).

Rules
The rules of C′ follow C and maintain the counters. R′ contains (only) the following rules.
First, we haveRCW which are the (dual of the) rules of Cachat and Walukiewicz implementing
encodingr and equalr. The rules simulating the operations appear below. Note, pop and
collapse use rank-awareness. We give the increment and copy rules after the basic operations.

M. Hague, R. Meyer, S. Muskalla, and M. Zimmermann 57:13

Order-k push: (p, a, pushk, (inc, ρ(p′), p′)) when (p, a, pushk, p′) ∈ R.
Character push: (p, a, push`k

, (copy, 1, b, p′)) when (p, a, pushb, p′) ∈ R and λ(b) = k.
Rewrite: (p, a, rewb, (inc, ρ(p′), p′)) when (p, a, rewb, p′) ∈ R.
Pop (> 1): (p, a, popk, (inc, r, p′)) when (p, a, popk, p′) ∈ R and r = min(ρ(p′),Rk(k)).
Pop (= 1) and Collapse: (p, a, pop1, (o,Υ, r, p′)) when (p, a, o, p′) ∈ R with O(p) = Υ,
operation o being pop1 or collapse, and r = min(ρ(p′), r′). Here, if o = pop1 then
r′ = Rk(1). Otherwise, if o = collapse then r′ = Rk(`).
Then, we have all rules ((o,Υ, r, p′), a′, pop1, (o,Υ, r, p′)) for a′ ∈ Γ. We perform the
operation with ((o,Υ, r, p′), `k′ , o, (inc, r, p′)). To allow for the case where the pop or
collapse cannot be performed (because the stack would empty), we also have the rules
((o,A, r, p′), `k′ ,nop, $) and ((o,E, r, p′), `k′ ,nop,#).
Sink states: ($, a,nop, $) and (#, a,nop,#).

To copy counters, for each odd r and b ∈ Γr we have ((copy, r, a, p), ∗, pushb, (copy, r, a, p)).
We use ∗ to indicate that the transition exists for all stack symbols. When a counter has
been pushed, like in the case of pushing zeros, Agnetha hands over the control to Elvis
to check the result: ((copy, r, a, p), ∗,nop, (cchk, r, a, p)). Elvis can challenge the copied
counter or accept it was copied correctly. To challenge, we use ((cchk, r, a, p), ∗,nop, equalr).
To accept, the behavior depends on r. If r < m, we move to copying the next counter
((cchk, r, a, p), ∗,nop, (copy, r + 2, a, p)). When r = m, we finish copying and move to incre-
menting with rules of the form ((cchk, r, a, p), ∗,nop, (inc, ρ(p), a, p)).

To increment a counter, we first pop and store the topmost stack character with the rule
((inc, r, p), a, pop1, (inc, r, a, p)). Agnetha then removes all counters for ranks higher than the
given r with the following rules, where b ∈ Γr′ with r′ > r: ((inc, r, a, p), b, pop1, (inc, r, a, p)).

When r is even we add back 0 counters once enough have been removed using (with
b ∈ Γr−1 if r > 1 else b ∈ ∆) the rules ((inc, r, a, p), b,nop, (zero, r + 1, a, p)). If r is odd, we
start incrementing the rth counter with ((inc, r, a, p), b, pop1, (inc, r, a, p)) for all b ∈ Γ̂r∪{1r}.

When 0r is found, we use ((inc, r, a, p), 0r, rew1r , (zero, r, a, p)). If no zero bit is found,
we have an overflow and move to the sink state with ((inc, r, a, p), b,nop,#) for b ∈ Γr−2
if r > 2 and b ∈ ∆ otherwise. With ((zero, r, a, p), ∗, pushb, (zero, r, a, p)) for b ∈ Γ̂r ∪ {0r}
we add back zeros to the incremented counter and reset all erased counters. To finish
the phase that adds zeros for the rth counter, Agnetha hands over the control to Elvis,
((zero, r, a, p), ∗,nop, (zchk, r, a, p)).

Elvis can now check if all bits of the counter are present or accept the result. To challenge
the encoding, he uses ((zchk, r, a, p), ∗,nop, encodingr). When accepting it, if r < m, more
counters need to be reset. We move to the next using ((zchk, r, a, p), ∗,nop, (zero, r + 2, a, p)).
If r = m, there are no more counters to handle and with the rule ((zchk, r, a, p), ∗, pusha, p)
Elvis re-establishes the control state and stack character.

8 Conclusion

We gave a polynomial-time reduction from parity games played over order-n CPDS to safety
games over order-n CPDS. Such a reduction has been an open problem [14] (related are also
[1, 2]). It builds counters into the stack to count occurrences of odd ranks at the current
stack level (without seeing a smaller rank). If this number grows large then Elvis would lose
the parity game (if play continued). To obtain a polynomial reduction we use the insight
that the counters follow a stack discipline. For correctness, we use a commutativity argument
for the rank counter and order reductions. As a theoretical interest, the result explains the
matching complexities of parity and safety games over CPDS. From a practical standpoint,
the reduction may inspire the use of advanced safety checking tools for, and the transfer of
technology from safety to, the empirically harder problem of parity game analysis.

MFCS 2018

57:14 Parity to Safety in Polynomial Time

References
1 J. Bernet, D. Janin, and I. Walukiewicz. Permissive strategies: from parity games to safety

games. ITA, 2002.
2 D. Berwanger and L. Doyen. On the Power of Imperfect Information. In FSTTCS, 2008.
3 A. Biere, C. Artho, and V. Schuppan. Liveness checking as safety checking. Electr. Notes

Theor. Comput. Sci., 2002.
4 R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder. Decid-

ability in parameterized verification. SIGACT News, 47(2), 2016.
5 A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata:

Application to model-checking. In CONCUR, 1997.
6 C. H. Broadbent and N. Kobayashi. Saturation-based model checking of higher-order re-

cursion schemes. In CSL, 2013.
7 T. Cachat and I. Walukiewicz. The complexity of games on higher order pushdown au-

tomata. CoRR, abs/0705.0262, 2007.
8 C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding parity games in

quasipolynomial time. In STOC, 2017.
9 A. Carayol, M. Hague, A. Meyer, C.-H. L. Ong, and O. Serre. Winning Regions of Higher-

Order Pushdown Games. In LICS, 2008.
10 J. Daniel, A. Cimatti, A. Griggio, S. Tonetta, and S. Mover. Infinite-state liveness-to-safety

via implicit abstraction and well-founded relations. In CAV, 2016.
11 J. Engelfriet. Iterated stack automata and complexity classes. Inf. Comput., 95(1):21–75,

1991.
12 A. Farzan, Z. Kincaid, and A. Podelski. Proving liveness of parameterized programs. In

LICS, 2016.
13 J. Fearnley, S. Jain, S. Schewe, F. Stephan, and D. Wojtczak. An ordered approach to

solving parity games in quasi polynomial time and quasi linear space. In SPIN, 2017.
14 W. Fridman and M. Zimmermann. Playing pushdown parity games in a hurry. In GandALF,

2012.
15 K. Fujima, S. Ito, and N. Kobayashi. Practical alternating parity tree automata model

checking of higher-order recursion schemes. In APLAS, 2013.
16 M. Hague, R. Meyer, S. Muskalla, and M. Zimmermann. Parity to safety in polynomial

time for pushdown and collapsible pushdown systems. CoRR, abs/1805.02963, 2018. arXiv:
1805.02963.

17 M. Hague, A. S. Murawski, C.-H. Luke Ong, and O. Serre. Collapsible pushdown automata
and recursion schemes. In LICS, 2008.

18 M. Jurdzinski and R. Lazic. Succinct progress measures for solving parity games. In LICS,
pages 1–9, 2017.

19 T. Knapik, D. Niwinski, and P. Urzyczyn. Higher-order pushdown trees are easy. In
FoSSaCS ’02: Proceedings of the 5th International Conference on Foundations of Software
Science and Computation Structures, pages 205–222, London, UK, 2002. Springer-Verlag.

20 N. Kobayashi. HorSat2: A model checker for HORS based on SATuration. A tool available
at http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2/.

21 I. V. Konnov, M. Lazic, H. Veith, and J. Widder. A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In POPL, 2017.

22 G. Lenzi. The modal µ-calculus: a survey. Task quarterly, 9(3):293–316, 2005.
23 R. P. Neatherway and C.-H. L. Ong. Travmc2: higher-order model checking for alternating

parity tree automata. In SPIN, 2014.
24 C.-H. L. Ong. On model-checking trees generated by higher-order recursion schemes. In

LICS, 2006.

http://arxiv.org/abs/1805.02963
http://arxiv.org/abs/1805.02963
http://www-kb.is.s.u-tokyo.ac.jp/~koba/horsat2/

M. Hague, R. Meyer, S. Muskalla, and M. Zimmermann 57:15

25 O. Padon, J. Hoenicke, G. Losa, A. Podelski, M. Sagiv, and S. Shoham. Reducing liveness
to safety in first-order logic. PACMPL, 2017.

26 A. Podelski and A. Rybalchenko. Transition invariants. In LICS, 2004.
27 A. Podelski and A. Rybalchenko. Transition invariants and transition predicate abstraction

for program termination. In TACAS, 2011.
28 S. J. Ramsay, R. P. Neatherway, and C.-H. L. Ong. A type-directed abstraction refinement

approach to higher-order model checking. In POPL, 2014.
29 V. Schuppan and A. Biere. Liveness checking as safety checking for infinite state spaces.

Electr. Notes Theor. Comput. Sci., 2005.
30 S. Sohail and F. Somenzi. Safety first: A two-stage algorithm for ltl games. In FMCAD,

2009.
31 T. Terao and N. Kobayashi. A zdd-based efficient higher-order model checking algorithm.

In APLAS, 2014.
32 I. Walukiewicz. Pushdown processes: Games and model checking. In CAV, 1996.

MFCS 2018

Quantum Generalizations of the Polynomial
Hierarchy with Applications to QMA(2)
Sevag Gharibian
University of Paderborn, Paderborn, North Rhine-Westphalia, Germany, and Virginia
Commonwealth University, Richmond, Virginia, USA

Miklos Santha
CNRS, IRIF, Université Paris Diderot, Paris, France and Centre for Quantum Technologies,
National University of Singapore, Singapore

Jamie Sikora
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

Aarthi Sundaram
Joint Center for Quantum Information and Computer Science, University of Maryland, College
Park, Maryland, USA

Justin Yirka
Virginia Commonwealth University, Richmond, Virginia, USA

Abstract
The polynomial-time hierarchy (PH) has proven to be a powerful tool for providing separations
in computational complexity theory (modulo standard conjectures such as PH does not collapse).
Here, we study whether two quantum generalizations of PH can similarly prove separations in
the quantum setting. The first generalization, QCPH, uses classical proofs, and the second,
QPH, uses quantum proofs. For the former, we show quantum variants of the Karp-Lipton
theorem and Toda’s theorem. For the latter, we place its third level, QΣ3, into NEXP using
the Ellipsoid Method for efficiently solving semidefinite programs. These results yield two im-
plications for QMA(2), the variant of Quantum Merlin-Arthur (QMA) with two unentangled
proofs, a complexity class whose characterization has proven difficult. First, if QCPH = QPH
(i.e., alternating quantifiers are sufficiently powerful so as to make classical and quantum proofs
“equivalent”), then QMA(2) is in the Counting Hierarchy (specifically, in PPPPP

). Second, unless
QMA(2) = QΣ3 (i.e., alternating quantifiers do not help in the presence of “unentanglement”),
QMA(2) is strictly contained in NEXP.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory, The-
ory of computation → Complexity classes, Theory of computation → Semidefinite programming

Keywords and phrases Complexity Theory, Quantum Computing, Polynomial Hierarchy, Semi-
definite Programming, QMA(2), Quantum Complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.58

Related Version A full version of this work is available at https://arxiv.org/abs/1805.11139.

Acknowledgements SG and AS thank the Center for Quantum Technologies at the National
University of Singapore for their support and hospitality, where part of this research was carried
out. SG acknowledges support from NSF grants CCF-1526189 and CCF-1617710. AS is suppor-
ted by the Department of Defense. Research at the Centre for Quantum Technologies is partially
funded by the Singapore Ministry of Education and the National Research Foundation under
grant R-710-000-012-135. This research was supported in part by the QuantERA ERA-NET

© Sevag Gharibian, Miklos Santha, Jamie Sikora, Aarthi Sundaram, and Justin Yirka;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 58; pp. 58:1–58:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.58
https://arxiv.org/abs/1805.11139
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

58:2 Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)

Cofund project QuantAlgo. Research at Perimeter Institute is supported by the Government of
Canada through the Department of Innovation, Science and Economic Development Canada and
by the Province of Ontario through the Ministry of Research, Innovation and Science.

1 Introduction

The polynomial time hierarchy (PH) [28] is a staple of computational complexity theory, and
generalizes P, NP and co-NP with the use of alternating existential (∃) and universal (∀)
operators. Roughly, a language L ⊆ { 0, 1 }∗ is in Σp

i , the ith level of PH, if there exists a
polynomial-time deterministic Turing machine M that acts as a verifier and accepts i proofs
y1, . . . , yi polynomially bounded in size such that:

x ∈ L ⇒ ∃y1∀y2∃y3 · · ·Qiyi such that M accepts (x, y1, . . . , yi),
x 6∈ L ⇒ ∀y1∃y2∀y3 · · ·Qiyi such that M rejects (x, y1, . . . , yi),

where Qi = ∃ if i is odd and Qi = ∀ if i is even, and Q denotes the complement of Q. Then,
PH is defined as the union over all Σpi for all i ∈ N. The study of PH has proven remarkably
fruitful in the classical setting, from celebrated results such as Toda’s Theorem [30], which
shows that PH is contained in P#P, to the Karp-Lipton Theorem [21], which says that unless
PH collapses to its second level, NP does not have polynomial size non-uniform circuits.

As PH has played a role in separating complexity classes (assuming standard conjectures
like “PH does not collapse”), it is natural to ask whether quantum generalizations of PH can
be used to separate quantum complexity classes. Here, there is some flexibility in defining
“quantum PH”, as there is more than one well-defined notion of “quantum NP”: The first,
Quantum-Classical Merlin Arthur (QCMA) [6], is a quantum analogue of Merlin-Arthur
(MA) with a classical proof but quantum verifier. The second, Quantum Merlin Arthur
(QMA) [22], is QCMA except with a quantum proof. Generalizing each of these definitions
leads to (at least) two possible definitions for “quantum PH”, the first using classical proofs
(denoted QCPH), and the second using quantum proofs (denoted QPH).

With these definitions in hand, our aim is to separate quantum classes whose complexity
characterization has generally been difficult to pin down. A prime example is QMA(2), the
variant of QMA with two “unentangled” quantum provers. While the classical analogue of
QMA(2) (i.e. an MA proof system with two provers) trivially equals MA, in the quantum
regime multiple unentangled provers are conjectured to yield a more powerful proof system
(e.g. there exist problems in QMA(2) not known to be in QMA) [24, 10, 9, 1]. For this
reason, QMA(2) has received much attention, despite which the strongest bounds known on
QMA(2) remain the trivial ones: QMA ⊆ QMA(2) ⊆ NEXP. (Note: QMA ⊆ PP [23, 27].)
In this work, we show that, indeed, results about the structure of QCPH or QPH yield
implications about the power of QMA(2).

1.1 Results, techniques, and discussion
We begin by informally defining the two quantum generalizations of PH to be studied.

How to define a “quantum PH”? The first definition, QCPH, has its ith level QCΣi

defined analogously to Σpi , except we replace the Turing machine M with a polynomial-size
uniformly generated quantum circuit V such that:

x ∈ Ayes ⇒ ∃y1∀y2∃y3 · · ·Qiyi s.t. V accepts (x, y1, . . . , yi) with probability ≥ 2/3, (1)
x ∈ Ano ⇒ ∀y1∃y2∀y3 · · ·Qiyi s.t. V accepts (x, y1, . . . , yi) with probability ≤ 1/3, (2)

S. Gharibian, M. Santha, J. Sikora, A. Sundaram, and J. Yirka 58:3

where the use of a language L has been replaced with a promise problem1 A = (Ayes, Ano)
(since QCΣi uses a bounded error verifier). The values 2/3 and 1/3 are respectively the
completeness and soundness parameters for A and the interval (1/3, 2/3) where no acceptance
probabilities are present is termed the promise gap for A. Notice that QCPH defined as⋃
i∈N QCΣi, is a generalization of QCMA in that QCΣ1 = QCMA.
We next define QPH using quantum proofs. Here, however, there are various possible

definitions one might consider. Can the quantum proofs be entangled between alternating
quantifiers? (If not, we are enforcing “unentanglement” as in QMA(2). Allowing entangle-
ment, on the other hand, might yield classes similar to QIP; however, note that QIP = QIP(3)
(i.e. QIP collapses to a 3-message proof system) [23, 27], and so it is not clear that allowing
entanglement leads to an “interesting” hierarchy.) Assuming proofs are unentangled, should
the proofs be pure or mixed quantum states? (For QMA and QMA(2), standard convexity ar-
guments show both classes of proofs are equivalent, but such arguments fail when alternating
quantifiers are allowed.)

Here, we define QPH to have its ith level, QΣi, defined similarly to QCΣi, except each
classical proof yj is replaced with a mixed quantum state ρj on polynomially many qubits.
We say a promise problem A = (Ayes, Ano) is in QΣi if it satisfies the following conditions:

x ∈ Ayes ⇒ ∃ρ1∀ρ2∃ρ3 · · ·Qiρi such that V accepts (x, ρ1, . . . , ρi) with probability ≥ 2/3,
x ∈ Ano ⇒ ∀ρ1∃ρ2∀ρ3 · · ·Qiρi such that V accepts (x, ρ1, . . . , ρi) with probability ≤ 1/3.

Note that QPH :=
⋃
i∈N QΣi, QΣ1 = QMA and QMA(2) ⊆ QΣ3 (simply ignore the second

proof); where the latter two hold because a lack of alternating quantifiers allows convexity
arguments to yield that all proofs can be assumed to be pure. Our results are now stated as
follows under three headings.

An analogue of Toda’s theorem for QCPH. As previously mentioned, PH is one way to
generalize NP using alternations. Another approach is to count the number of solutions for
an NP-complete problem such as SAT, as captured by #P. Surprisingly, these two notions
are related, as shown by the following celebrated theorem of Toda.

I Theorem 1 (Toda’s Theorem [30]). PH ⊆ P#P.

In the quantum setting, for QCPH, it can be shown using standard arguments involving
enumeration over classical proofs that QCPH ⊆ PSPACE. However, we are able to provide
the following stronger result.

I Theorem 2 (A quantum-classical analogue of Toda’s theorem). QCPH ⊆ PPPPP
.

Thus, we “almost” recover the original bound of Toda’s theorem2, except we require an
oracle for the second level of the Counting Hierarchy (CH). CH can be defined with its first
level as Cp

1 = PP and its kth level for k ≥ 1 as Cp
k+1 = PPCp

k .
Why did we move up to the next level of CH? There are two difficulties in dealing

with QCPH (see Section 2 for a detailed discussion). The first can be sketched as follows.
Classically, many results involving PH, from basic ones implying the collapse of PH to more

1 Recall that unlike a decision problem, for a promise problem A = (Ayes, Ano), it is not necessarily true
that for all inputs x ∈ Σ∗, either x ∈ Ayes or x ∈ Ano. In the case of proof systems such as QCPH,
when x 6∈ Ayes ∪Ano, V can output an arbitrary answer.

2 PP is the set of languages decidable in probabilistic polynomial time with unbounded error. Note
PPP = P#P.

MFCS 2018

58:4 Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)

advanced statements such as Toda’s theorem, use the following recursive idea (demonstrated
with Σ2 for simplicity): By fixing the existentially quantified proof of Σ2 the remnant
reduces to a co-NP problem, i.e. we can recurse to a lower level of PH. In the quantum
setting, however, this does not hold – fixing the existentially quantified proof for QCΣ2
does not necessarily yield a co-QCMA problem as some acceptance probabilities may fall
in the (1/3, 2/3) promise gap which cannot happen for a problem in co-QCMA! (This
is due to the same phenomenon that has been an obstacle to resolving whether ∃ · BPP
equals MA (see Remark 17).) Thus, we cannot directly generalize recursive arguments from
the classical setting to the quantum setting. The second difficulty is trickier to explain
briefly (see Section 2.2 for details). Roughly, Toda’s proof that PH ⊆ PPP crucially uses
the Valiant-Vazirani (VV) theorem [31], which has one-sided error (i.e. VV may map YES
instances of SAT to NO instances of UNIQUE-SAT, but NO instances of SAT are always
mapped to NO instances of UNIQUE-SAT). The VV theorem for QCMA [5] also has this
property, but in addition it can output instances which are “invalid”. Essentially, they violate
the promise of the problem that the QCMA-VV theorem maps to. Combining such invalid
instances with alternating quantifiers, poses problems in extending the parity arguments
used in Toda’s proof to the QCPH setting.

To circumvent these difficulties, we exploit a high-level idea from [15] where an oracle
for SPECTRAL GAP3 was used to detect “invalid” QMA instances4. In our setting, the
“correct” choice of oracle turns out to be a Precise-BQP oracle, where Precise-BQP is roughly
BQP with an exponentially small promise gap. Using this, we are able to essentially “remove”
the promise gap of QCPH altogether, thus recovering a “decision problem” which does not
pose the difficulties above. Specifically, this mapping is achieved by Lemma 18 (Cleaning
Lemma), which shows that ∀i ∈ N, QCΣi ⊆ ∃ · ∀ · · · · ·Qi · PPP.

Notice that although we use a Precise-BQP oracle above, the Cleaning Lemma shows
containment using a PP oracle. This is because, Precise-BQP ⊆ PP as shown in Lemma 14
and Corollary 15. One may ask whether our proof technique would also work with an oracle
weaker than PP. We show, in Theorem 27, that this is unlikely as the problem of detecting
proofs in promise gaps of quantum verifiers is PP-complete.

Finally, an immediate corollary of Theorem 2 and the fact that QMA(2) ⊆ QPH is:

I Corollary 3. If QCPH = QPH, then QMA(2) ⊆ PPPPP
.

In other words, if alternating quantifiers are so powerful so as to make classical and quantum
proofs equivalent in power, then it can be shown that QMA(2) is contained in CH (and thus
in PSPACE). For comparison, QMA ⊆ PQMA[log] ⊆ PP [23, 33, 27, 15].

QPH versus NEXP. We next turn to the study of quantum proofs, i.e. QPH. As mentioned
above, the best known upper bound on QMA(2) is NEXP – a non-deterministic verifier can
simply guess an exponential-size description of the proof. When alternating quantifiers are
present, however, this strategy seemingly no longer works. In other words, it is not even clear
that QPH ⊆ NEXP! This is in stark contrast to the explicit PPP upper bound for PH [30].
In this section, our goal is to use semidefinite programming to give bounds on some levels
of QPH. As we will see, this will yield the existence of a complexity class lying “between”
QMA(2) and NEXP.

3 This problem determines whether the spectral gap of a given local Hamiltonian is “small” or “large”.
4 This was used, in turn, to show in conjunction with [8] that SPECTRAL GAP is PUnique-QMA[log]-hard.

S. Gharibian, M. Santha, J. Sikora, A. Sundaram, and J. Yirka 58:5

I Theorem 4 (Informal Statement). It holds that QΣ2 ⊆ EXP and QΠ2 ⊆ EXP, even when
the completeness-soundness gap is inverse doubly-exponentially small.

The proof idea is to map alternating quantifiers to an optimization problem with alternating
minimizations and maximizations. Namely, to decide if x ∈ Ayes or x ∈ Ano for a QΣi

promise problem A = (Ayes, Ano), where i is even, we can solve for α defined as the optimal
value of the optimization problem:

α := max
ρ1

min
ρ2

max
ρ3
· · ·min

ρi

〈C, ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρi〉 (3)

where C is the POVM operator5 corresponding to the ACCEPT state of the verifier. This is
a non-convex problem, and as such is hard to solve in general. Our approach is to cast the
case of i = 2 as a semidefinite program (SDP), allowing us to efficiently approximate α.

The next natural question is whether a similar SDP reformulation might be used to
show whether QΣ3 or QΠ3 is contained in EXP. Unfortunately, this is likely to be difficult –
indeed, if there existed a “nice” SDP for the optimal success probability of QΣ3 protocols,
then it would imply QMA(2) ⊆ EXP, resolving the longstanding open problem of separating
QMA(2) from NEXP (recall QMA(2) ⊆ QΣ3). Likewise, a “nice” SDP for QΠ3 would place
co-QMA(2) ⊆ EXP.

To overcome this, we resort to non-determinism by stepping up to NEXP. Namely, one
can non-deterministically guess the first proof of a QΣ3 protocol, then approximately solve
the SDP for the resulting QΠ2-flavoured computation. Hence, we have the following as a
corollary of Theorem 28.

I Theorem 5 (Informal Statement). It holds true that QMA(2) ⊆ QΣ3 ⊆ NEXP and
co-QMA(2) ⊆ QΠ3 ⊆ co-NEXP, even when the completeness-soundness gap is inverse doubly-
exponentially small. All the containments hold with equality in the inverse exponentially
small completeness-soundness gap setting as QMA(2) = NEXP in this case [29].

Three remarks are in order. First, note that our results in this section are independent of
the gate set. Second, in principle, it remains plausible that the fourth level of QPH already
exceeds NEXP in power. Finally, we have the following implication for QMA(2). Assuming
PH does not collapse, alternating quantifiers strictly add power to NP proof systems. If
alternating quantifiers similarly add power in the quantum setting, then it would separate
QMA(2) from NEXP via the following immediate corollary of Theorem 31.

I Corollary 6. If QMA(2) 6= QΣ3, i.e. if the second universally quantified proof of QΣ3 adds
proving power, then QMA(2) 6= NEXP. Similarly, if co-QMA(2) 6= QΠ3, then co-QMA(2) 6=
co-NEXP.

A quantum generalization of the Karp-Lipton Theorem. Finally, our last result studies a
topic which is unrelated to QMA(2) – the well-known Karp-Lipton Theorem [21]. The latter
shows that if NP-complete problems can be solved by polynomial-size non-uniform Boolean
circuits, then Σ2 = Π2, which in turn implies that PH collapses to its second level. Here, a
“non-uniform” circuit family means that the generation of a circuit for an input depends on
the length of the input. The class of decision problems solved by such circuits is P/poly.

I Theorem 7 (Karp-Lipton [21]). If NP ⊆ P/poly then Π2 = Σ2.

5 A POVM is a set of Hermitian positive semi-definite operators that sums to the identity. In this case,
the POVM has two operators – corresponding to the ACCEPT and REJECT states of the verifier.

MFCS 2018

58:6 Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)

In this work, we ask: Does QCMA ⊆ BQP/mpoly imply QCΠ2 = QCΣ2? Here, BQP/mpoly
is the bounded-error analogue of P/poly with polynomial-size non-uniform quantum circuits
(see Section 4 for formal definition). Unfortunately, generalizing the proof of the Karp-Lipton
theorem is problematic for the same “∃ · BPP versus MA phenomenon” encountered earlier
in extending Toda’s result. Namely, the proof of Karp-Lipton proceeds by fixing the outer,
universally quantified, proof of a Πp

2 machine, and applying the NP ⊆ P/poly hypothesis to
the resulting NP computation. However, for QCΠ2, it is not clear that fixing the outer,
universally quantified, proof yields a QCMA computation; thus, it is not obvious how to use
the hypothesis QCMA ⊆ BQP/mpoly.

To sidestep this, our approach is to strengthen the hypothesis. Specifically, using
the results of [20] on perfect completeness for QCMA, fixing the outer proof of a QCΠ2
computation can be seen to yield a Precise-QCMA “decision problem”, where by “decision
problem”, we mean no proofs for the Precise-QCMA verifier are accepted within the promise
gap. Here, Precise-QCMA is QCMA with exponentially small promise gap. We hence obtain:

I Theorem 8 (A quantum-classical Karp-Lipton theorem). If Precise-QCMA ⊆ BQP/mpoly,
then QCΠ2 = QCΣ2.

To give this result context, we also show that Precise-QCMA ⊆ NPPP (Lemma 38). However,
whether QCΠ2 = QCΣ2 collapses QCPH remains open due to the same “∃ · BPP versus MA
phenomenon”.

1.2 Related work
The first work we are aware of which considered a quantum version of PH is that of
Yamakami [36], which differs from our setting in that it considers quantum Turing machines
(we use quantum circuits) and quantum inputs (we use classical inputs, just like QMA).
Gharibian and Kempe [14] next introduced and studied cq-Σ2, defined as our QCΣ2 except
with a quantum universally quantified proof. [14] showed completeness and hardness of
approximation results for cq-Σ2 for (roughly) the following problem: What is the smallest
number of terms required in a given local Hamiltonian for it to have a frustrated ground
space? More recently, Lockhart and González-Guillén [25] considered a hierarchy (denoted
QCPH′ here) which a priori appears identical to our QCPH, but is apparently not so due to
the “∃ · BPP versus MA phenomenon”, which we discuss below.

In this work, the “∃ · BPP versus MA phenomenon”, refers to the following discrepancy
(see Remark 17 for details) – unlike with MA, all proofs in an ∃·BPP system must be accepted
with probability at least 2/3 or at most 1/3 (i.e. no proof is accepted with probability in
the gap (1/3, 2/3)). The quantum analogue of this phenomenon yields the open question: Is
∃ · BQP = NPBQP equal to QCMA? For this reason, it is not clear whether QCPH equals
QCPH′. The latter is defined as QCΣ′1 = ∃ · BQP, QCΠ′1 = ∀ · BQP, and

∀m ≥ 1,QCΣ′m = ∃ · QCΠ′m−1; QCΠ′m = ∀ · QCΣ′m−1.

Clearly, for us QCΣ1 = QCMA but in [25] QCΣ′1 = ∃ · BQP. The benefit from the latter
definition is that one avoids the recursion problems discussed earlier – e.g., fixing the first
existential proof in QCΣ′2 does reduce the problem to a co-QCMA computation, unlike the
case with QCΣ2. Hence, recursive arguments from the context of PH can be easily extended
to show that, for instance, QCPH′ collapses to QCΣ′2 when QCΣ′2 = QCΠ′2. On the other
hand, the advantage of our definition of QCPH is that it generalizes a natural quantum
complexity class like QCMA.

S. Gharibian, M. Santha, J. Sikora, A. Sundaram, and J. Yirka 58:7

Let us also remark on Toda’s theorem in the context of QCPH′ (for clarity, Toda’s
theorem is not studied in [25]). The recursive definition of QCPH′ allows one to obtain
Toda’s PPP upper bound for QCPH′ with a simple argument:

∀i, QCΣ′i = NPNP. . .
BQP

= ΣBQP
i =⇒ ∀i,QCΣ′i ⊆ (PPP)BQP = PPP,

where the first equality expressly holds due to the recursive definition of QCΣ′i but is not
known to hold for our QCΣi; the implication arises by relativizing Toda’s theorem; and
the last equality holds as BQP is low for PP [13]. In contrast, our Theorem 2 yields
QCPH ⊆ PPPPP

, raising the question: is QCPH′ = QCPH? A positive answer may help
shed light on whether ∃ · BQP equals QCMA; we leave this for future work.

Finally, a quantum version of the Karp-Lipton theorem was covered by Aaronson and
Drucker in [3] and further improved by Aaronson, Cojocaru, Gheorghiu, and Kashefi [2],
where the consequences of NP-complete problems being solved by small quantum circuits
with polynomial sized quantum advice were considered. Their results differ from ours in
that different hierarchies are studied, and in their use of quantum advice as opposed to our
use of classical advice. Other Karp-Lipton style results for PH involving classes beyond NP
show a collapse of PH to MA (usually) if either PP [26, 32], P#P or PSPACE [21] has P/poly
circuits.

1.3 Open questions
As the study of quantum generalizations of alternating quantifiers is in its infancy, many
open questions exist. For example, due to the “∃ · BPP versus MA phenomenon”, we are not
able to show “simple” collapse statements such as the following:

I Conjecture 9. For i ≥ 1, if QCΣi = QCΠi for any i, then QCPH collapses to the ith
level. Moreover, if QCMA = BQP, then QCPH = BQP.

Next, can a non-trivial bound on QPH be shown? Here, we have shown that QΣ3 ⊆ NEXP;
can the complexity of higher levels be bounded? Along these lines, our Theorem 4 shows
QΣ2 ⊆ EXP; by applying alternative methods for approximating semidefinite programs
arising in quantum complexity theory (see, e.g., [19]), we might also conjecture:

I Conjecture 10. QΣ2 ⊆ PSPACE.

Determining where in the complexity zoo QMA(2) lies remains an important open question;
assuming alternating quantifiers do add proving power to QPH (the analogous assumption
for PH is widely believed), our work shows QMA(2) is strictly contained in NEXP. Can this
statement be strengthened?

Finally, we remark on defining a hierarchy similar to QCPH, termed MA-PH, where the
first level is MA instead of QCMA and the verifier in equations (1) and (2) will be a BPP
circuit. Due to the promise nature of the BPP verifier, we conjecture that the same issues
faced with QCPH will translate to MA-PH too. Also, as Precise-BPP is equivalent to PP,
we can obtain a similar Cleaning Lemma for MA-PH too. Hence, we conjecture that

I Conjecture 11. PH ⊆ MA-PH ⊆ QCPH ⊆ PPPPP
.

Using other techniques that may harness the fact that BPP and MA are contained in PH to
obtain a better bound for MA-PH is an interesting open question.

MFCS 2018

58:8 Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)

Organization. We begin in Section 2 by showing a quantum-classical analogue of Toda’s
theorem. Section 3 gives upper bounds on levels of QPH, and Section 4 shows a Karp-Lipton-
type theorem. Formal definitions and many proofs are omitted from this version of the paper
owing to space constraints.

2 A quantum-classical analogue of Toda’s theorem

2.1 Precise-BQP
Our proof of a “quantum-classical Toda’s theorem” requires us to define the Precise-BQP
class, which we do now. Below, a promise problem is a pair A = (Ayes, Ano) such that
Ayes, Ano ⊆ { 0, 1 }∗, Ayes ∪Ano ⊂ { 0, 1 }∗ and Ayes ∩Ano = ∅.

I Definition 12 (Precise-BQP(c, s)). A promise problem A = (Ayes, Ano) is contained in
Precise-BQP(c, s) for polynomial-time computable functions c, s : N 7→ [0, 1] if there exists
a polynomially bounded function p : N 7→ N such that ∀` ∈ N, c(`) − s(`) ≥ 2−p(`) and a
polynomial-time uniform family of quantum circuits {Vn}n∈N whose input is the all zeroes
state and output is a single qubit. Furthermore, for an n-bit input x:

Completeness: If x ∈ Ayes, then Vn accepts with probability at least c.
Soundness: If x ∈ Ano, then Vn accepts with probability at most s.

In contrast, BQP is defined such that the completeness and soundness parameters are 2/3
and 1/3, respectively (alternatively, the gap is least an inverse polynomial in n).

I Observation 13 (Rational acceptance probabilities). By fixing an appropriate universal gate
set (e.g. Hadamard and Toffoli [4]) for the description of Vn in Definition 12, we assume
henceforth, without loss of generality, that the acceptance probability of Vn is a rational
number that can be represented using at most poly(n) bits (this observation was used in the
proof that QCMA has perfect completeness i.e., c = 1 [20].).

The following help to characterize the complexity of Precise-BQP.

I Lemma 14. For all c, s ∈ [0, 1] and every n-bit input such that c − s ∈ Ω(1/ exp(n)),
Precise-BQP(c, s) ⊆ PP.

I Corollary 15. Let P denote the set of all polynomials p : N 7→ N. Then,⋃
p∈P

Precise-BQP
(

1
2 + 1

2p(n) ,
1
2

)
= PP.

2.2 Bounding the power of QCPH
Classically, PH can be defined in terms of the existential and universal operators; while it
is not clear that one can also define QCPH using these operators, they nevertheless prove
useful in bounding the power of QCPH.

I Definition 16 (Existential and universal quantifiers [35, 7]). For C a class of languages, ∃ · C
is defined as the set of languages L such that there is a polynomial p and set A ∈ C such
that for input x, x ∈ L⇔ [∃y (|y | ≤ p(|x|)) and 〈x, y〉 ∈ A] . The set ∀ · C is defined similarly
with ∃ replaced with ∀.

I Remark 17 (Languages versus promise problems). Directly extending Definition 16 to
promise problems, gives rise to subtle issues. To demonstrate, recall that ∃ · P = NP. Then,

S. Gharibian, M. Santha, J. Sikora, A. Sundaram, and J. Yirka 58:9

let (L,A) for L ∈ ∃ ·P = NP and A ∈ P be as in Definition 16, such that TA is a polynomial-
time Turing machine deciding A. If x ∈ L, there exists a bounded length witness y∗ such
that TA accepts 〈x, y∗〉 and, for all y′ 6= y∗, TA by definition either accepts or rejects 〈x, y′〉.
Now consider instead ∃ · BPP, which a priori seems equal to Merlin-Arthur (MA). Applying
the same definition of ∃, we should obtain a BPP machine TA such that if x ∈ L, then for
all y′ 6= y∗, TA either accepts or rejects 〈x, y′〉. But this means, by definition of BPP, that
〈x, y′〉 is either accepted or rejected with probability at least 2/3, respectively. (Equivalently,
for any fixed y, the machine TA,y must be a BPP machine, or more generally a machine
with the resources available to class C.) Unfortunately, the definition of MA makes no such
promise – any y′ 6= y∗ can be accepted with arbitrary probability when x is a YES instance.
Indeed, whether ∃ · BPP = MA remains an open question [11].

The following lemma is the main contribution of this section. To set context, adapting
the ideas from Toda’s proof of PH ⊆ PPP to QCPH is problematic for at least two reasons:
1. Remark 17 says that it is not necessarily true that by fixing a proof y to an MA (resp.

QCMA) machine, the resulting machine is a BPP (resp. BQP) machine. This prevents
the direct extension of recursive arguments, say from [30] to this regime.

2. The “Quantum Valiant Vazirani (QVV)” theorem for QCMA (and MA) [5] is not a many-
one reduction, but a Turing reduction. Specifically, it produces a set of quantum circuits
{Qi }, at least one of which is guaranteed to be a YES instance of some Unique-QCMA
promise problem Γ if the input Π to the reduction was a YES instance. Unfortunately,
some of the Qi may violate the promise gap of Γ, which implies that when such Qi are
substituted into the Unique-QCMA oracle O, O returns an arbitrary answer. This does
not pose a problem in [5], as one-sided error suffices for that reduction – so long as O
accepts at least one Qi, one safely concludes Π was a YES instance. In the setting of
Toda’s theorem, however, the use of alternating quantifiers turns this one-sided error into
two-sided error; this renders the output of O useless, as one can no longer determine
whether Π was a YES or NO instance.

To sidestep these issues, we adapt a high-level idea from [15]: With the help of an appropriate
oracle, one can sometimes detect “invalid proofs” (i.e. proofs in promise gaps of bounded error
verifiers) and “remove” them. Indeed, we show that using a PP oracle, one can eliminate
the promise-gap of QCPH altogether, thus overcoming the limitations given above. This is
accomplished by the following “Cleaning Lemma”.

I Lemma 18 (Cleaning Lemma). For all i ≥ 0, QCΣi ⊆ ∃ · ∀ · · · · · Qi · PPrecise-BQP ⊆
∃ · ∀ · · · · ·Qi · PPP, where Qi = ∃ (Qi = ∀) if i is odd (even). An analogous statement holds
for QCΠi.

Proof. Let C be a QCΣi verification circuit for a promise problem Π. Let Cy∗
1 ,...,y

∗
i
denote

the quantum circuit obtained from C by fixing values y∗1 , . . . , y∗i of the i classical proofs. In
general, nothing can be said about the acceptance probability py∗

1 ,...,y
∗
i
of Cy∗

1 ,...,y
∗
i
, except

that, by Observation 13, py∗
1 ,...,y

∗
i
is a rational number representable using p(n) bits for some

fixed polynomial p. Let S denote the set of all rational numbers in [0, 1] representable using
p(n) bits of precision. (Note |S | ∈ Θ(2p(n)).) Then, for any a, b ∈ S with a > b, the triple
(Cy∗

1 ,...,y
∗
i
, a, b) is a valid QCIRCUIT(a, b) instance, i.e. Cy∗

1 ,...,y
∗
i
accepts with probability at

least a or at most b for a− b an inverse exponential. It follows that using binary search (by
varying the values a, b ∈ S with a > b) in conjunction with poly(n) calls to a QCIRCUIT(a, b)
oracle, we may exactly and deterministically compute py∗

1 ,...,y
∗
i
. Moreover, since for all such

a > b, QCIRCUIT(a, b) ∈ Precise-BQP(a, b), Lemma 14 implies a QCIRCUIT(a, b) oracle
call can be simulated with a PP oracle. Denote the binary search subroutine using the PP
oracle as B.

MFCS 2018

58:10 Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)

Using C and B, we now construct an oracle Turing machine C ′ as follows. Given any
proofs y∗1 , . . . , y∗i as input, C ′ uses B to compute py∗

1 ,...,y
∗
i
for Cy∗

1 ,...,y
∗
i
. If py∗

1 ,...,y
∗
i
≥ c, C ′

accepts with certainty, and if py∗
1 ,...,y

∗
i
< c, C ′ rejects with certainty. Suppose that the circuits

C and C ′ return 1 when they accept and 0 when they reject. Two observations: (1) Since by
construction, for any fixed y∗1 , . . . , y∗i , B makes only makes “valid” QCIRCUIT(a, b) queries
(i.e. satisfying the promise of QCIRCUIT(a, b)), C ′ is a PPP machine (cf. Observation 20).
(2) Since C ′y∗

1 ,...,y
∗
i
accepts if Cy∗

1 ,...,y
∗
i
accepts with probability at least c, and since C ′y∗

1 ,...,y
∗
i

rejects if Cy∗
1 ,...,y

∗
i
accepts with probability at most s, we conclude that

∃y1∀y2 · · ·Qiyi Prob[C(y1, . . . , yi) = 1] ≥ c ⇔ ∃y1∀y2 · · ·Qiyi C ′(y1, . . . , yi) = 1 (4)
∀y1∃y2 · · ·Qiyi Prob[C(y1, . . . , yi) = 1] ≤ s ⇔ ∀y1∃y2 · · ·Qiyi C ′(y1, . . . , yi) = 0. (5)

(4) and (5) imply that we can simulate Π with a ∃ · ∀ · · · · ·Qi · PPP computation. The proof
for QCΠi is analogous. J

I Remark 19 (Possibility of a stronger containment). A key question is whether one may
replace the Precise-BQP oracle in the proof of Lemma 18 with a weaker BQP oracle. For
example, consider the following alternate definition for oracle Turing machine C ′: Given
proofs y∗1 , . . . , y∗i , C ′ plugs Cy∗

1 ,...,y
∗
i
into a BQP oracle and returns the oracle’s answers. It

is easy to see that in this case, Equations (4) and (5) hold. However, C ′ is not necessarily
a PBQP machine, since for some settings of y∗1 , . . . , y∗i , its input to the BQP oracle may
violate the BQP promise, hence making the output of C ′ ill-defined. To further illustrate
this subtle point, consider Observation 20. Moreover, in Section 2.3 we show that the task
the Precise-BQP oracle is used for in Lemma 18 is in fact PP-complete; thus, it is highly
unlikely that one can substitute a weaker oracle into the proof above.

I Observation 20 (When a P machine querying a BQP oracle is not a PBQP machine). The
proof of the Cleaning Lemma uses a PPrecise-BQP machine. Let us highlight a subtle reason
why using a weaker BQP oracle instead might be difficult (indeed, in Section 2.3 we show
that the task we use the Precise-BQP oracle for is PP-complete). Let M denote the trivially
BQP-complete problem of determining whether a given polynomial-sized quantum circuit Q
accepts with probability at least 2/3, or accepts with probability at most 1/3, with the promise
that one of the two is the case. Now consider the following polynomial time computation, Π,
which is given access to an oracle OM for M : Π inputs the Hadamard gate H into OM and
outputs OM ’s answer. Does it hold that Π ∈ PBQP? No. Since H violates the promise of
BQP, i.e. measuring the output of H yields 0 or 1 with equal probability, the oracle OM can
answer 0 or 1 arbitrarily, and so the output of Π is not well-defined. Having a well-defined
output, however, is required for a POK computation, where K is any promise class [16].

I Lemma 21. For all i ≥ 0, the following holds true: ∃ · ∀ · · · · · Qi · PPP ⊆ ΣPP
i and

∀ · ∃ · · · · ·Qi · PPP ⊆ ΠPP
i where Qi = ∃ (resp. Qi = ∀) when i is odd (resp. even) in the

first containment and vica-versa for the second containment.

We can now show the main theorem of this section.

I Theorem 22. QCPH ⊆ PPPPP
.

Proof. The claim follows by combining the Cleaning Lemma (Lemma 18), Lemma 21, and
Toda’s theorem (PH ⊆ PPP), whose proof relativizes (see, e.g., page 4 of [12])). J

S. Gharibian, M. Santha, J. Sikora, A. Sundaram, and J. Yirka 58:11

2.3 Detecting non-empty promise gaps is PP-complete
The technique behind the Cleaning Lemma (Lemma 18) can essentially be viewed as using a
PP oracle to determine whether a given quantum circuit accepts some input with probability
within the promise gap (s, c), where c − s is an inverse polynomial. One can ask whether
this rather powerful PP oracle can be replaced with a weaker oracle (see Remark 19)? We
answer this in the negative unless one deviates from our specific proof approach; specifically,
we show that the problem of detecting non-empty promise gaps is PP-complete, even if the
gap is constant in size.

To begin, we define QCIRCUIT(c, s), which is trivially Precise-BQP(c, s)-complete when
c − s is an inverse exponential. (Take note that when the c − s gap is larger, say inverse
polynomial, QCIRCUIT(c, s) is still contained in Precise-BQP(c, s).)

I Definition 23 (QCIRCUIT(c, s)). Parameters c, s : N 7→ [0, 1] are polynomial-time comput-
able functions such that c > s.

(Input) A classical description of quantum circuit Vn (acting on n qubits, consisting of
poly(n) 1 and 2-qubit gates), taking in the all-zeroes state, and outputting a single qubit.
(Output) Decide if Pr[Vn accepts] ≥ c or ≤ s, assuming one of the two is the case.

I Definition 24 (NON-EMPTY GAP(c, s)). Let Vn be an input for QCIRCUIT(c, s). Then,
output YES if Prob[Vn accepts] ∈ (s, c), and NO otherwise.

We now show that NON-EMPTY GAP is PP-complete.

I Lemma 25. For all c, s with the c − s gap at least an inverse exponential in input size,
NON-EMPTY GAP(c, s) ∈ PP.

I Lemma 26. There exist c, s ∈ Θ(1) such that NON-EMPTY GAP(c, s) is PP-hard.

I Theorem 27. There exist c, s ∈ Θ(1) such that NON-EMPTY GAP(c, s) is PP-complete.

3 Bounding the power of QΣ2 and QΣ3

Let QΣ2(c, s) (resp., QΠ2(c, s)) be defined as QΣ2 (resp., QΠ2) with completeness and
soundness parameters c and s, respectively. We begin by restating Theorem 4 as follows.

I Theorem 28. For any polynomial r, if c − s ≥ 1/22r(n) , then QΣ2(c, s) ⊆ EXP and
QΠ2(c, s) ⊆ EXP when c and s are computable in exponential time in the size of the input.

The two containments in Theorem 28 are proven separately in the following two lemmas.

I Lemma 29. Let α be the maximum acceptance probability of a QΣ2 protocol (where the
optimization is over the first proof ρ1). Then one can compute γ such that |γ − α| ≤ 1/22r ,
for any polynomial r, in exponential time.

I Lemma 30. Let α be the minimum acceptance probability of a QΠ2 protocol (where
the optimization is again over the first proof ρ1). Then one can compute γ such that
|γ − α| ≤ 1/22r , for any polynomial r, in exponential time.

We now sketch the exponential time protocol that calculates γ in Lemma 29 (we refer the
reader to [17] for standard background in convex optimization). The proof of Lemma 30 is
similar.

MFCS 2018

58:12 Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)

Proof Sketch. Recall from (3) that the maximum acceptance probability of a QCΣ2 protocol
can be expressed as α := maxρ1 minρ2〈C, ρ1 ⊗ ρ2〉, where C is the POVM that corresponds
to the quantum verification circuit in the QΣ2 protocol accepting. We wish to decide in
exponential time whether α ≥ c or α ≤ s. Since the promise gap satisfies c− s ≥ 1/22r(n) ,
it suffices to approximate α within additive error (say) 1

4 (c − s) by computing γ ∈ R, in
exponential time, such that |γ − α| ≤ 1/(4 · 22r(n)).

We begin by constructing C ′ as a numerical approximation to C such that each entry
in C ′ is correct up to exponentially many bits. This can be done independent of the gate
set used to describe the verification circuit, Vn, used for the QΣ2 instance6. Then, for some
polynomial r, |α− α′| ≤ 1

2 · 2
−2r(n)/2 for

α′ := max
ρ1

min
ρ2
{〈C ′, ρ1 ⊗ ρ2〉 : Tr(ρ1) = Tr(ρ2) = 1, ρ1, ρ2 � 0}. (6)

Suppose we fix a feasible ρ1 and solve the inner optimization problem in (6). Then:

α′(ρ1) := min
ρ2
{〈C ′, ρ1 ⊗ ρ2〉 : Tr(ρ2) = 1, ρ2 � 0}.

We can rewrite 〈C ′, ρ1 ⊗ ρ2〉 as 〈Tr1[(ρ1 ⊗ I)C ′], ρ2〉 where Tr1 is the partial trace over the
register that ρ1 acts on. Additionally, as Tr1[(ρ1 ⊗ I)C ′] = Tr1[(ρ1/2

1 ⊗ I)C(ρ1/2
1 ⊗ I)], this

term is Hermitian and positive semidefinite. This implies that the best choice for ρ2 is
a rank-1 projector onto the eigenspace corresponding to least eigenvalue. In other words,
α′(ρ1) = λmin(Tr1[(ρ1 ⊗ I)C ′]) where λmin(X) denotes the least eigenvalue of a Hermitian
operator X. For fixed ρ1, this minimum eigenvalue calculation can be rephrased via the dual
optimization program for α′(ρ1),

α′(ρ1) = max
t
{t : tI � Tr1[(ρ1 ⊗ I)C ′]}.

Re-introducing the maximization over ρ1, we hence obtain

α′ = max
ρ1,t
{t : tI � Tr1[(ρ1 ⊗ I)C ′], Tr(ρ1) = 1, ρ1 � 0}, (7)

which is a semidefinite program. By using the ellpsoid method, we can hence solve this
semidefinite program (see [17] for details) to obtain estimate γ of α′. Using an analysis
similar to [34], we find a γ such that |γ − α′| ≤ ε with ε = 2−2r(n) . J

Using the power of non-determinism, we can also bound the power of QΣ3 and QΠ3.

I Theorem 31. For any polynomial r and input size n, if c− s ≥ 1/r(n), then

QMA(2) ⊆ QΣ3 ⊆ NEXP and co-QMA(2) ⊆ QΠ3 ⊆ co-NEXP, (8)

where all classes have completeness and soundness c and s, respectively. Moreover, if we
allow smaller gaps (in principle, gaps which are at most inverse singly exponential in n

suffice for the first claim below), such as c− s ≥ 1/22r(n) , then

QMA(2)(c, s) = QΣ3(c, s) = NEXP and co-QMA(2)(c, s) = QΠ3(c, s) = co-NEXP. (9)

Here, we assume c and s are computable in exponential time in the size of the input.

6 This can be accomplished in exponential time as follows: Replace gate set G with G′ by approximating
each entry of each gate in G using 2s(n) bits of precision, for some sufficiently large, fixed polynomial
s. Define C′ as C, except each use of a gate U ∈ G is replaced with its approximation U ′ ∈ G′.
Then, via the well-known bound ‖Um · · ·U1 − Vm · · ·V1‖∞ ≤

∑m

i=1 ‖Ui − Vi‖∞ (for unitary Ui, Vi),
it follows that

∥∥C′ − C∥∥
∞
∈ O(poly(n)/(22s(n)

)), since Vn contains poly(n) gates. Here, ‖A‖∞ =
max|ψ〉 ‖A |ψ〉‖2 for unit vectors |ψ〉 denotes the spectral or operator norm. Finally, apply the fact that
maxi,j |A(i, j)| ≤ ‖A‖∞ (p. 314 of [18]).

S. Gharibian, M. Santha, J. Sikora, A. Sundaram, and J. Yirka 58:13

4 Karp-Lipton type theorems

The Karp-Lipton [21] theorem showed that if NP ⊆ P/poly (i.e. if NP can be solved by
polynomial-size non-uniform circuits), then Σ2 = Π2 (which in turn collapses PH collapses to
its second level). Then, building on the conjecture that the polynomial hierarchy is infinite,
this result implies that NP 6⊂ P/poly (a stronger claim than P 6= NP as P ⊆ P/poly). Some
attempts to separate NP from P use this as a basis to try and prove the stronger claim
instead. For instance, this has lead to the approach of proving super-polynomial circuit lower
bounds for circuits of NP-complete problems. Here, we show that the proof technique of
Karp and Lipton carries over easily to the quantum setting, provided one uses the stronger
hypothesis Precise-QCMA ⊆ BQP/mpoly (as opposed to QCMA ⊆ BQP/mpoly). Whether
this causes QCPH to collapse to its second level, however, remains open (see Remark 37
below). We begin by formally defining the classes BQP/mpoly and Precise-QCMA.

I Definition 32 (BQP/mpoly). A promise problem Π = (Ayes, Ano) is in BQP/mpoly if there
exists a polynomial-sized family of quantum circuits {Cn}n∈N and a collection of binary
advice strings {an}n∈N with |an| = poly(n), such that for all n and all strings x where
|x| = n, Pr[Cn(|x〉 , |an〉) = 1] ≥ 2/3 if x ∈ Ayes and Pr[Cn(|x〉 , |an〉) = 1] ≤ 1/3 if x ∈ Ano.

Equivalently, BQP/mpoly is the set of promise problems solvable by a non-uniform family
of polynomial-sized bounded error quantum circuits. It is used as a quantum analogue for
P/poly in this scenario. Here, we remark on the use of mpoly instead of poly in Definition 32.
Note that BQP/poly accepts Karp-Lipton style advice i.e. it is a BQP circuit that accepts
a poly-sized advice string to provide some answer with probability at least 2/3 even if the
“advice is bad”. On the other hand, BQP/mpoly accepts Merlin style advice i.e. it is a BQP
circuit accepting poly-sized classical advice such that the output is correct with probability
at least 2/3 if the “advice is good”. Note BQP/poly versus BQP/mpoly is analogous to the
“∃ ·BPP versus MA” phenomenon. Moreover, as we are concerned with variations of QCMA,
and not ∃ · BQP, BQP/mpoly is the right candidate for us.

I Definition 33 (Precise-QCMA). A promise problem A = (Ayes, Ano) is said to be in
Precise-QCMA(c, s) for polynomial-time computable functions c, s : N 7→ [0, 1] if there exists
polynomially bounded functions p, q : N 7→ N such that ∀` ∈ N, c(`) − s(`) ≥ 2−q(`), and
there exists a polynomial-time uniform family of quantum circuits {Vn}n∈N that takes a
classical proof y ∈ { 0, 1 }p(n) and outputs a single qubit. Moreover, for an n-bit input x:

Completeness: If x ∈ Ayes, then ∃ y such that Vn accepts y with probability at least c.
Soundness: If x ∈ Ano, then ∀ y, Vx accepts y with probability at most s.

Define Precise-QCMA =
⋃
c,s Precise-QCMA(c, s).

As an aside, note that QCMA is defined with c−s ∈ Ω(1/poly(n)). Recall from the discussion
in Section 1.1 that the main obstacle to the recursive arguments that work well for NP
in [21] is the “promise problem” nature of QCΠ2 and QCMA. However, exploiting the perfect
completeness of Precise-QCMA7 and the fact that ∀c < s′ ≤ s, Precise-QCMA(c, s) ⊆
Precise-QCMA(c, s′), we “recover” the notion of a decision problem in a rigorous sense by
working with Precise-QCMA as demonstrated below.

7 The perfect completeness proof for QCMA also works in the inverse exponentially small gap setting [20].

MFCS 2018

58:14 Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)

I Claim 34. For every promise problem Π′ = (Ayes, Ano) ∈ Precise-QCMA(c, s) with verifier
V ′, there exists a verifier V (a poly-time uniform quantum circuit family), a polynomial q
and a decision problem Π = (Ayes, { 0, 1 }∗ \Ayes) such that Π ∈ Precise-QCMA(1, 1−2−q(n))
with verifier V . Moreover, for all proofs y, V accepts y with probability either 1 or at most
1− 2−q(n).

Building on this “decision problem” flavour of Precise-QCMA, we first show:

I Lemma 35. Suppose Precise-QCMA ⊆ BQP/mpoly. Then, for every promise problem
Π = (Ayes, Ano) in Precise-QCMA and every n-bit input x, there exists a polynomially
bounded function p : N 7→ N and a bounded error polynomial time non-uniform quantum
circuit family {Cn }n∈N such that:

if x ∈ Ayes, then Cn outputs valid proof y ∈ { 0, 1 }p(n) such that (x, y) is accepted by the
corresponding Precise-QCMA verifier with probability 1;
if x ∈ Ano, then Cn outputs a symbol ⊥ with probability exponentially close to 1 signi-
fying that there is no y ∈ { 0, 1 }p(n), such that (x, y) is accepted by the corresponding
Precise-QCMA verifier with probability 1.

We next give a quantum-classical analogue of the Karp-Lipton theorem, whose proof is in
the appendix.

I Theorem 36 (A Quantum-Classical Karp-Lipton Theorem). If Precise-QCMA ⊆ BQP/mpoly
then QCΠ2 = QCΣ2.

I Remark 37 (Collapse of QCPH?). An appeal of the classical Karp-Lipton theorem is that
it implies that if NP ⊆ P/poly, then PH collapses to its second level; this is because if
Πp

2 = Σp
2, then PH collapses to Σp

2. Does an analogous statement hold for QCPH as a
result of Theorem 8? Unfortunately, the answer is not clear. The problem is similar to that
outlined in Remark 17. Namely, classically Πp

2 = Σp2 collapses PH since for any Πp
3 decision

problem, fixing the first (universally) quantified proof yields a Σp2 computation. But this can be
replaced with a Πp

2 computation by assumption, yielding a computation with quantifiers ∀∀∃,
which trivially collapses to ∀∃, i.e. Πp

3 ⊆ Πp
2. In contrast, for (say) QCΠ3, similar to the

phenomenon in Remark 17, fixing the first (universally) quantified proof does not necessarily
yield a QCΣp2 computation. Thus, a recursive application of the assumption QCΣp2 = QCΠp

2
cannot straightforwardly be applied.

Since Precise-QCMA plays an important role in Theorem 8, we close with an upper
bound on Precise-QCMA.

I Lemma 38. Precise-QCMA ⊆ NPPP.

Proof. Let V be a Precise-QCMA verifier. Using Claim 34, we may assume that for
any proof y, V either accepts y with probability 1 or rejects with probability at most
1 − 2−q(n). Thus, for any fixed y, the resulting computation Vy is a Precise-BQP com-
putation. This implies Precise-QCMA ⊆ ∃ · Precise-BQP (see also Remark 17). But by
Definition 16, ∃ · Precise-BQP ⊆ NPPrecise-BQP. Combining this with Lemma 14, which says
that Precise-BQP ⊆ PP, yields the claim. J

S. Gharibian, M. Santha, J. Sikora, A. Sundaram, and J. Yirka 58:15

References

1 S. Aaronson, S. Beigi, A. Drucker, B. Fefferman, and P. Shor. The power of unentanglement.
Theory of Computing, 5:1–42, 2009. doi:10.4086/toc.2009.v005a001.

2 S. Aaronson, A. Cojocaru, A. Gheorghiu, and E. Kashefi. On the implausibility of classical
client blind quantum computing. Available at arXiv.org e-Print quant-ph/1704.08482, 2017.

3 S. Aaronson and A. Drucker. A full characterization of quantum advice. SIAM Journal on
Computing, 43(3):1131–1183, 2014.

4 D. Aharonov. A simple proof that Toffoli and Hadamard are quantum universal. Available
at arXiv.org e-Print quant-ph/0301040, jan 2003. arXiv:quant-ph/0301040.

5 D. Aharonov, M. Ben-Or, F. Brandão, and O. Sattath. The pursuit for uniqueness: Ex-
tending Valiant-Vazirani theorem to the probabilistic and quantum settings. Available at
arXiv.org e-Print quant-ph/0810.4840v1, 2008.

6 D. Aharonov and T. Naveh. Quantum NP - A survey. Available at arXiv.org e-Print
quant-ph/0210077v1, 2002.

7 E. W. Allender and K. W. Wagner. Counting hierarchies: Polynomial time and constant
depth circuits, pages 469–483. World Scientific, 1993. doi:10.1142/9789812794499_0035.

8 A. Ambainis. On physical problems that are slightly more difficult than QMA. In Pro-
ceedings of 29th IEEE Conference on Computational Complexity (CCC 2014), pages 32–43,
2014.

9 S. Beigi. NP vs QMAlog(2). Quantum Information and Computation, 10:0141–0151, 2010.
10 H. Blier and A. Tapp. All languages in NP have very short quantum proofs. In Proceedings

of the 3rd International Conference on Quantum, Nano and Micro Technologies, pages
34–37, 2009.

11 S. Fenner, L. Fortnow, S. A. Kurtz, and L. Li. An oracle builder’s toolkit. Information and
Computation, 182(2):95–136, 2003. doi:10.1016/S0890-5401(03)00018-X.

12 L. Fortnow. The role of relativization in complexity theory. Bulletin of the European
Association for Theoretical Computer Science, 52:52–229, 1994.

13 L. Fortnow and J. Rogers. Complexity limitations on quantum computation. Journal of
Computer and System Sciences, 59(2):240–252, 1999.

14 S. Gharibian and J. Kempe. Hardness of approximation for quantum problems. In Proceed-
ings of 39th International Colloquium on Automata, Languages and Programming (ICALP
2012), pages 387–398, 2012.

15 S. Gharibian and J. Yirka. The complexity of simulating local measurements on quantum
systems. In Mark M. Wilde, editor, 12th Conference on the Theory of Quantum Compu-
tation, Communication and Cryptography (TQC 2017), volume 73 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 2:1–2:17, Dagstuhl, Germany, 2018. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.TQC.2017.2.

16 O. Goldreich. On promise problems: A survey. Theoretical Computer Science, 3895:254–
290, 2006.

17 M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Op-
timization. Springer-Verlag, 1993.

18 R. A. Horn and C. H. Johnson. Matrix Analysis. Cambridge University Press, 1990.
19 R. Jain, Z. Ji, S. Upadhyay, and J. Watrous. QIP = PSPACE. In Proceedings of the 42nd

Annual ACM Symposium on Theory of Computing, pages 573–581, 2010.
20 S. P. Jordan, H. Kobayashi, D. Nagaj, and H. Nishimura. Achieving perfect complete-

ness in classical-witness quantum Merlin-Arthur proof systems. Quantum Information &
Computation, 12(5 & 6):461–471, 2012.

MFCS 2018

http://dx.doi.org/10.4086/toc.2009.v005a001
http://arxiv.org/abs/quant-ph/0301040
http://dx.doi.org/10.1142/9789812794499_0035
http://dx.doi.org/10.1016/S0890-5401(03)00018-X
http://dx.doi.org/10.4230/LIPIcs.TQC.2017.2

58:16 Quantum Generalizations of the Polynomial Hierarchy with Applications to QMA(2)

21 R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the Twelfth Annual ACM Symposium on The-
ory of Computing, STOC ’80, pages 302–309, New York, NY, USA, 1980. ACM. doi:
10.1145/800141.804678.

22 A. Kitaev, A. Shen, and M. Vyalyi. Classical and Quantum Computation. American
Mathematical Society, 2002.

23 A. Kitaev and J. Watrous. Parallelization, amplification, and exponential time simulation
of quantum interactive proof systems. In Proceedings of the 32nd ACM Symposium on
Theory of Computing (STOC 2000), pages 608–617, 2000.

24 Y.-K. Liu, M. Christandl, and F. Verstraete. Quantum computational complexity of the
N-representability problem: QMA complete. Physical Review Letters, 98:110503, 2007.

25 J. Lockhart and C. E. González-Guillén. Quantum state isomorphism. arXiv preprint
arXiv:1709.09622, 2017.

26 C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. Journal of the ACM, 39(4):859–868, 1992. doi:10.1145/146585.146605.

27 C. Marriott and J. Watrous. Quantum Arthur-Merlin games. Computational Complexity,
14(2):122–152, 2005.

28 A. Meyer and L. Stockmeyer. The equivalence problem for regular expressions with squar-
ing requires exponential time. In Proceedings of the 13th Symposium on Foundations of
Computer Science, pages 125–129, 1972.

29 A. Pereszlényi. Multi-prover quantum Merlin-Arthur proof systems with small gap. Avail-
able at arXiv.org e-Print quant-ph/1205.2761, 2012.

30 S. Toda. PP is as hard as the Polynomial-Time Hierarchy. SIAM Journal on Computing,
20:865–877, 1991.

31 L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theoretical
Computer Science, 47:85–93, 1986.

32 N. V. Vinodchandran. A note on the circuit complexity of pp. TCS, 347(1-2):415–418,
2005. doi:10.1016/j.tcs.2005.07.032.

33 M. Vyalyi. QMA=PP implies that PP contains PH. Electronic Colloquium on Computa-
tional Complexity, 2003.

34 J. Watrous. Semidefinite programs for completely bounded norms. Theory of Computing,
5:217–238, 2009.

35 C. Wrathall. Complete sets and the Polynomial-Time Hierarchy. Theoretical Computer
Science, 3(1):23–33, 1976. doi:10.1016/0304-3975(76)90062-1.

36 T. Yamakami. Quantum NP and a quantum hierarchy. In Proceedings of the 2nd IFIP In-
ternational Conference on Theoretical Computer Science, pages 323–336. Kluwer Academic
Publishers, 2002.

http://dx.doi.org/10.1145/800141.804678
http://dx.doi.org/10.1145/800141.804678
http://dx.doi.org/10.1145/146585.146605
http://dx.doi.org/10.1016/j.tcs.2005.07.032
http://dx.doi.org/10.1016/0304-3975(76)90062-1

A Subquadratic Algorithm for 3XOR

Martin Dietzfelbinger
Technische Universität Ilmenau, Germany
martin.dietzfelbinger@tu-ilmenau.de

https://orcid.org/0000-0001-5484-3474

Philipp Schlag
Technische Universität Ilmenau, Germany
philipp.schlag@tu-ilmenau.de

https://orcid.org/0000-0001-5052-9330

Stefan Walzer
Technische Universität Ilmenau, Germany
stefan.walzer@tu-ilmenau.de

https://orcid.org/0000-0002-6477-0106

Abstract
Given a set X of n binary words of equal length w, the 3XOR problem asks for three elements
a, b, c ∈ X such that a⊕ b = c, where ⊕ denotes the bitwise XOR operation. The problem can be
easily solved on a word RAM with word length w in time O(n2 log n). Using Han’s fast integer
sorting algorithm (STOC/J. Algorithms, 2002/2004) this can be reduced to O(n2 log log n). With
randomization or a sophisticated deterministic dictionary construction, creating a hash table for
X with constant lookup time leads to an algorithm with (expected) running time O(n2). At
present, seemingly no faster algorithms are known.

We present a surprisingly simple deterministic, quadratic time algorithm for 3XOR. Its core
is a version of the PATRICIA tree for X, which makes it possible to traverse the set a⊕X in
ascending order for arbitrary a ∈ {0, 1}w in linear time. Furthermore, we describe a randomized
algorithm for 3XOR with expected running time O(n2 ·min{ log3 w

w , (log logn)2

log2 n
}). The algorithm

transfers techniques to our setting that were used by Baran, Demaine, and Pătraşcu (WADS/Al-
gorithmica, 2005/2008) for solving the related int3SUM problem (the same problem with integer
addition in place of binary XOR) in expected time o(n2). As suggested by Jafargholi and Viola
(Algorithmica, 2016), linear hash functions are employed.

The latter authors also showed that assuming 3XOR needs expected running time n2−o(1) one
can prove conditional lower bounds for triangle enumeration just as with 3SUM. We demonstrate
that 3XOR can be reduced to other problems as well, treating the examples offline SetDisjointness
and offline SetIntersection, which were studied for 3SUM by Kopelowitz, Pettie, and Porat (SODA,
2016).

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases 3SUM, 3XOR, Randomized Algorithms, Reductions, Conditional Lower
Time Bounds

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.59

Related Version A full version of the paper is available at [11], http://arxiv.org/abs/1804.
11086.

© Martin Dietzfelbinger, Philipp Schlag, and Stefan Walzer;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 59; pp. 59:1–59:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martin.dietzfelbinger@tu-ilmenau.de
https://orcid.org/0000-0001-5484-3474
mailto:philipp.schlag@tu-ilmenau.de
https://orcid.org/0000-0001-5052-9330
mailto:stefan.walzer@tu-ilmenau.de
https://orcid.org/0000-0002-6477-0106
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.59
http://arxiv.org/abs/1804.11086
http://arxiv.org/abs/1804.11086
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

59:2 A Subquadratic Algorithm for 3XOR

1 Introduction

The 3XOR problem [19] is the following: Given a set X of n binary strings of equal length w,
are there elements a, b, c ∈ X such that a⊕ b = c, where ⊕ is bitwise XOR? We work with
the word RAM (Random Access Machine) [13] model with word length w = Ω(log n), and we
assume as usual that one input string fits into one word. Then, using sorting, the problem
can easily be solved in time O(n2 log n). Using Han’s fast integer sorting algorithm [18] the
time can be reduced to O(n2 log log n). In order to achieve quadratic running time, one could
utilize a randomized dictionary for X with expected linear construction time and constant
lookup time (like in [12]) or (weakly non-uniform, quite complicated) deterministic static
dictionaries with construction time O(n log n) and constant lookup time as provided in [17].
Once such a dictionary is available, one just has to check whether a⊕ b ∈ X, for all pairs
a, b ∈ X. No subquadratic algorithms seem to be known.

It is natural to compare the situation with that for the 3SUM problem, which is as follows:1
Given a set X of n real numbers, are there a, b, c ∈ X such that a+ b = c? There is a very
simple quadratic time algorithm for this problem (see Section 3 below). After a randomized
subquadratic algorithm was suggested by Grønlund Jørgensen and Pettie [20], improvements
ensued [14, 16], and recently Chan [8] gave the fastest deterministic algorithm known, with a
running time of n2(log log n)O(1)/ log2 n. The restricted version where the input consists of
integers whose bit length does not exceed the word length w is called int3SUM. The currently
best randomized algorithm for int3SUM was given by Baran, Demaine, and Pǎtraşcu [2, 3];
it runs in expected time O(n2 · min{ log2 w

w , (log logn)2

log2 n
}) for w = O(n log n). The 3SUM

problem has received a lot of attention in recent years, because it can be used as a basis for
conditional lower time bounds for problems, for instance, from computational geometry and
data structures [15, 22, 26]. Because of this property, 3SUM is in the center of attention of
papers dealing with low-level complexity. Chan and Lewenstein [9] give upper bounds for
inputs with a certain structure. Kane, Lovett, and Moran [21] prove near-optimal upper
bounds for linear decision trees. Wang [28] considers randomized algorithms for subset
sum, trying to minimize the space, and Lincoln et al. [23] investigate time-space tradeoffs
in deterministic algorithms for k-SUM. Barba et al. [4] examine a generalization of 3SUM
in which the sum function is replaced by a constant-degree polynomial in three variables.
Chan [7] shows how to adapt the ideas of the subquadratic int3SUM algorithm to the general
position problem.

In contrast, 3XOR received relatively little attention, before Jafargholi and Viola [19]
studied 3XOR and described techniques for reducing this problem to triangle enumeration.
In this way they obtained conditional lower bounds in a way similar to the conditional lower
bounds based on int3SUM.

The main results of this paper are the following: (1) We present a surprisingly simple
deterministic algorithm for 3XOR that runs in time O(n2) (Theorem 5). When X is given
in sorted order, it constructs in linear time a version of the PATRICIA tree [25] for X, using
only word operations and not looking at single bits at all. This tree then makes it possible
to traverse the set a⊕X in ascending order in linear time, for arbitrary a ∈ {0, 1}w. This is
sufficient for achieving running time O(n2). (2) The second result is a randomized algorithm
for 3XOR that runs in time O(n2 ·min{ log3 w

w , (log logn)2

log2 n
}) for w = O(n log n) (Theorem 7),

1 There are many different, but equivalent versions of 3SUM and 3XOR, differing in the way the input
elements are grouped. Often one sees the demand that the three elements a, b, and c with a⊕ b = c or
a+ b = c, resp., come from different sets.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:3

which is almost the same bound as that of [2] for int3SUM. Finding a deterministic algorithm
for 3XOR with subquadratic running time remains an open problem. (3) Finally, we reduce
3XOR to offline SetDisjointness (Theorem 10) and offline SetIntersection (Theorem 11),
establishing the conditional lower bound n2−o(1) (as in [22] conditioned on the int3SUM
conjecture).

Unfortunately, no (non-trivial) relation between the required (expected) time for 3SUM
and 3XOR is known. In particular, we cannot exclude the case that one of these problems can
be solved in (expected) time O(n2−ε) for some constant ε > 0 whereas the other one requires
(expected) time n2−o(1). Actually, this possibility is the background of some conditional
statements on the cost of listing triangles in graphs in [19, Cor. 2]. However, due to the
similarity of 3XOR to 3SUM, the question arises whether the recent results on 3SUM can be
transferred to 3XOR.

In Section 2, we review the word RAM model and examine 1-universal classes of linear
hash functions. In particular, we determine the evaluation cost of such hash functions
and we restate a hashing lemma [2] on the expected number of elements in “overfull”
buckets. Furthermore, we state how fast one can solve the set intersection problem on
word-packed arrays. In Section 3, we construct a special enhanced binary search tree TX to
represent a set X of binary strings of fixed length. This representation makes it possible
to traverse the set a⊕X in ascending order for any a ∈ {0, 1}w in linear time, which
leads to a simple deterministic algorithm for 3XOR that runs in time O(n2). Then, we
turn to randomized algorithms and show how to solve 3XOR in subquadratic expected
time in Section 4: O(n2 · min{ log3 w

w , (log logn)2

log2 n
}) for w = O(n log n), and O(n log2 n) for

n log n ≤ w = O(2n logn). Our approach uses the ideas of the subquadratic expected
time algorithm for int3SUM presented in [2], i. e., computing buckets and fingerprints, word
packing, exploiting word-level parallelism, and using lookup tables to solve the set intersection
problem on word-packed arrays. Altogether, we get the same expected running time for
w = O(log2 n) and a word-length-dependent upper bound on the expected running time for
w = ω(log2 n) that is worse by a logw factor in comparison to the int3SUM setting. Based
on these results and the similarity of 3XOR to int3SUM, it seems natural to conjecture
that 3XOR requires expected time n2−o(1), too, and so 3XOR is a candidate for reductions
to other computational problems just as 3SUM. In Section 5, we describe how to reduce
3XOR to offline SetDisjointness and offline SetIntersection, transferring the results of [22] from
int3SUM to 3XOR.

Recently, Bouillaguet et al. [6] studied algorithms “for the 3XOR problem”. This is
related to our setting, but not identical. These authors study a variant of the “generalized
birthday problem”, well known in cryptography as a problem to which some attacks on
cryptosystems can be reduced, see [6]. Translated into our notation, their question is: Given
a random set X ⊆ {0, 1}w of size 3 · 2w/3, find, if possible, three different strings a, b, c ∈ X
such that a⊕ b = c. Adapting the algorithm from [2], these authors achieve a running time of
O(22w/3(log2 w)/w2), which corresponds to the running time of our algorithm for n = 3 ·2w/3.
The difference to our situation is that their input is random. This means that the issue of
1-universal families of linear hash functions disappears (a projection of the elements in X on
some bit positions does the job) and that complications from weak randomness are absent
(e. g., one can use projection into relatively small buckets and use Chernoff bounds to prove
that the load is very even with high probability). This means that the algorithm described
in [6] does not solve our version of the 3XOR problem.

MFCS 2018

59:4 A Subquadratic Algorithm for 3XOR

2 Preliminaries

2.1 The Word RAM Model
As is common in the context of fast algorithms for the int3SUM problem [2], we base our
discussion on the word RAM model [13]. This is characterized by a word length w. Each
memory cell can store w bits, interpreted as a bit string or an integer or a packed sequence of
subwords, as is convenient. The word length w is assumed to be at least log n and at least the
bit length of a component of the input. It is assumed that the operations of the multiplicative
instruction set, i. e., arithmetic operations (addition, subtraction, multiplication), word
operations (left shift, right shift), bitwise Boolean operations (and, or, not, xor), and
random memory accesses can be executed in constant time. We will write ⊕ to denote the
bitwise xor operation. A randomized word RAM also provides an operation that in constant
time generates a uniformly random value in {0, 1, . . . , v − 1} for any given v ≤ 2w.

2.2 Linear Hash Functions
We consider hash functions h : U → M , where the domain (“universe”) U is {0, 1}` and
the range M is {0, 1}µ with µ ≤ `. Both universe and range are vector spaces over Z2.
In [2] and in successor papers on int3SUM “almost linear” hash functions based on integer
multiplication and truncation were used, as can be found in [10]. As noted in [19], in
the 3XOR setting the situation is much simpler. We may use Hlin

`,µ, the set of all Z2-linear
functions from U to M . A function hA from this family is described by a µ× ` matrix A, and
given by hA(x) = A ·x, where x = (x0, . . . , x`−1)T ∈ U and hA(x) ∈M are written as column
vectors. For all hash functions h ∈ Hlin

`,µ and all x, y ∈ U we have h(x⊕ y) = h(x)⊕h(y),
by the very definition of linearity. Further, this family is 1-universal, indeed, we have
PrA∈{0,1}µ×` [hA(x) = hA(y)] = PrA∈{0,1}µ×` [hA(x⊕ y) = 0] = 2−µ = 1/|M |, for all pairs
x, y of different keys in U . We remark that the convolution class described in [24], a subfamily
of Hlin

`,µ, can be used as well, as it is also 1-universal, and needs only `+ µ− 1 random bits.
The universe we consider here is {0, 1}w. The time for evaluating a hash function h ∈ Hlin

w,µ

on one or on several inputs depends on the instruction set and on the way h = hA is stored.
In contrast to the int3SUM setting [2], we are not able to calculate hash values in constant
time.

I Lemma 1. For h ∈ Hlin
w,µ and inputs from {0, 1}w we have:

(a) h(x) can be calculated in time O(µ), if Parity of w-bit words is a constant time operation.
(b) h(x) can always be calculated in time O(µ+ logw).
(c) h(x1), . . . , h(xn) can be evaluated in time O(nµ+ logw).

Proof. (Sketch.) Assume h = hA. For (a) we store the rows of A as w-bit strings, and obtain
each bit of the hash value by a bitwise ∧ operation followed by Parity . For (b) we assume
the w columns of A are stored as µ-bit blocks, in O(µ) words. An evaluation is effected by
selecting the columns indicated by the 1-bits of x and calculating the ⊕ of these vectors in
a word-parallel fashion. In logw rounds, these vectors are added, halving the number of
vectors in each round. For (c), we first pack the columns selected for the n input strings into
O(nµ) words and then carry out the calculation indicated in (b), but simultaneously for all
xi and within as few words as possible. This makes it possible to further exploit word-level
parallelism, if µ should be much smaller than w. J

We shall use linear, 1-universal hashing for splitting the input set into buckets and for
replacing keys by fingerprints in Section 4.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:5

I Remark. In the following, we will apply Lemma 1(c) to map n binary strings of length w
to hash values of length µ = O(log n) in time O(n log n+ logw). Since logw will dominate
the running time only for huge word lengths, we assume in the rest of the paper that
w = 2O(n logn) and that all hash values can be calculated in time O(n log n).

I Remark. When randomization is allowed, we will assume that we have constructed in
expected O(n) time a standard hash table for input set X with constant lookup time [12].
(Arbitrary 1-universal classes can be used for this.)

2.3 A Hashing Lemma for 1-Universal Families
A hash family H of functions from U to M is called 1-universal if Prh∈H[h(x) = h(y)] ≤
1/|M | for all x, y ∈ U , x 6= y. We map a set S ⊆ U with |S| = n into M with |M | = m by
a random element h ∈ H. In [2, Lemma 4] it was noted that for 1-universal families the
expected number of keys that collide with more than 3n/m other keys is bounded by O(m).
We state a slightly stronger version of that lemma. (The strengthening is not essential for
the application in the present paper.)

I Lemma 2 (slight strengthening of Lemma 4 in [2]). Let H be a 1-universal class of hash
functions from U to M , with m = |M |, and let S ⊆ U with |S| = n. Choose h ∈ H uniformly
at random. For i ∈M define Bi = {y ∈ S | h(y) = i}. Then for 2 nm < t ≤ n we have:

Eh∈H[|{x ∈ S | |Bh(x)| ≥ t}|] <
n

t− 2 nm

(The bound in [2] was about twice as large. The proof is given in the full version [11].)
In our algorithm, we will be interested in the number of elements in buckets with size

at least three times the expectation. Choosing t = 3 n
m in Lemma 2, we conclude that the

expected number of such elements is smaller than the number of buckets.

I Corollary 3. In the setting of Lemma 2 we have Eh∈H[|{x ∈ S | |Bh(x)| ≥ 3n/m }|] < m.

2.4 Set Intersection on Unsorted Word-Packed Arrays
We consider the problem “set intersection on unsorted word-packed arrays”: Assume k
and ` are such that k(` + log k) ≤ w, and that two words a and b are given that both
contain k many `-bit strings: a contains a0, . . . , ak−1 and b contains b0, . . . , bk−1. We wish
to determine whether {a0, . . . , ak−1} ∩ {b0, . . . , bk−1} is empty or not and find an element in
the intersection if it is nonempty.

In [3, proof of Lemma 3] a similar problem is considered: It is assumed that a is sorted
and b is bitonic, meaning that it is a cyclic rotation of a sequence that first grows and then
falls. In this case one sorts the second sequence by a word-parallel version of bitonic merge
(time O(log k)), and then merges the two sequences into one sorted sequence (again in time
O(log k)). Identical elements now stand next to each other, and it is not hard to identify them.
We can use a slightly slower modification of the approach of [3]: We sort both sequences
by word-packed bitonic sort [1] (simulating Batcher’s bitonic sort sorting network [5] on a
word-packed array), which takes time O(log2 k), and then proceed as before.2 We obtain the
following result.

2 It is this slower version of packed intersection that causes our randomized 3XOR algorithm to be a little
slower than the int3SUM algorithm for w = ω(log2 n).

MFCS 2018

59:6 A Subquadratic Algorithm for 3XOR

Algorithm 1: A simple quadra-
tic 3SUM algorithm.

1 Algorithm 3SUM(X):
2 sort X as x1 < · · · < xn
3 for a ∈ X do
4 (i, j)← (1, 1)
5 while i ≤ nand j ≤ n do
6 if a+ xi < xj then
7 i← i+ 1
8 else if a+ xi > xj

then
9 j ← j + 1

10 else return (a, xi, xj)

11 return no solution

Algorithm 2: A quadratic 3XOR algo-
rithm.

1 Algorithm 3XOR(X):
2 sort X as x1 < · · · < xn
3 TX ← makeTree(X)
4 for a ∈ X do
5 (i, j)← (1, 1)
6 (yi)1≤i≤n ← traverse(TX , a)
7 while i ≤ nand j ≤ n do
8 if yi < xj then
9 i← i+ 1

10 else if yi > xj then
11 j ← j + 1
12 else return (a, yi⊕ a, xj)

13 return no solution

I Lemma 4. Assume k(`+ log k) = O(w), and assume that two sequences of `-bit strings,
each of length k, are given. Then the t entries that occur in both sequences can be listed in
time O(log2 k + t).

A more detailed description is given in the full version [11].

3 A Deterministic 3XOR Algorithm in Quadratic Time

A well known deterministic algorithm for solving the 3SUM problem in time O(n2) is
reproduced in Algorithm 1. After sorting the input X as x1 < · · · < xn in time O(n log n),
we consider each a ∈ X separately and look for triples of the form a+ b = c. Such triples
correspond to elements of the intersection of a + X = {a + x1, . . . , a + xn} and X. Since
X is sorted, we can iterate over both X and a + X in ascending order and compute the
intersection with an interleaved linear scan.

Unfortunately, the ⊕-operation is not order preserving, indeed, x < y does not imply
a⊕x < a⊕ y for the lexicographic ordering on bitstrings – or, indeed, any total ordering
on bitstrings. We may sort X and each set a⊕X = {a⊕x | x ∈ X}, for a ∈ X, separately
to obtain an algorithm with running time O(n2 log n). Using fast deterministic integer
sorting [18] reduces this to time O(n2 log log n). In order to achieve quadratic running time,
one may utilize a randomized dictionary for X with expected linear construction time and
constant lookup time (like in [12]) or (weakly non-uniform, rather complex) deterministic
static dictionaries with construction time O(n log n) and constant lookup time as provided
in [17]. Once such a dictionary is available, one just has to check whether a⊕ b ∈ X, for all
a, b ∈ X.

Here we describe a rather simple deterministic algorithm with quadratic running time.
For this, we utilize a special binary search tree3 TX that allows, for arbitrary a ∈ {0, 1}w, to
traverse the set a⊕X = {a⊕x | x ∈ X} in lexicographically ascending order, in linear time.
For X 6= ∅, the tree TX is recursively defined as follows.

3 The structure of the tree is that of the PATRICIA tree [25] for X.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:7

1001

0011

0001x1 0001

0010x2 0011x3

0101

1010x4 1111x5

Figure 1 The tree TX for X = {x1 = 0001, x2 = 0010, x3 = 0011, x4 = 1010, x5 = 1111}. The
first 1-bit of the label of an inner node indicates the most significant bit that is not constant among
the x-values managed by that subtree (the bits after the first 1-bit are irrelevant). According to the
value of this bit, elements are found in the left or right subtree. Apart from the labels of the inner
nodes, TX is essentially the PATRICIA tree [25] for X.

If X = {x}, then TX is LeafNode(x), a tree consisting of a single leaf with label x.
If |X| ≥ 2, let lcp(X) denote the longest common prefix of the elements of X when
viewed as bitstrings. That is, all elements of X coincide on the first k = |lcp(X)| bits,
the elements of some nonempty set X0 (X start with lcp(X)0 and the elements of
X1 = X −X0 start with lcp(X)1. We define TX = InnerNode(TX0 , 0k1b, TX1) for some
b ∈ {0, 1}w−k−1, meaning that TX consists of a root vertex with label ` = 0k1b, a left
subtree TX0 and a right subtree TX1 . The choice of b is irrelevant, but it is convenient to
define the label more concretely as ` = (maxX0)⊕(minX1).

Note that along paths of inner nodes down from the root the labels when regarded as integers
are strictly decreasing. We give an example in Figure 1 and provide a O(n log n) time
construction of TX from X in Algorithm 4.

In the context of TX = InnerNode(TX0 , ` = 0k1b, TX1) as described above, the (k+1)st bit
is the most significant bit where elements of X differ. Crucially, this is also true for the set
a⊕X for any a ∈ {0, 1}w. Since the elements of X are partitioned into X0 and X1 according
to their (k+1)st bit, either all elements of a⊕X0 are less than all elements of a⊕X1, or vice
versa, depending on whether the (k+1)st bit of a is 0 or 1. Using that the (k+1)st bit of a is
1 iff a⊕ ` < a, this suggests a simple recursive algorithm to produce a⊕X in sorted order,
given as Algorithm 3.

With the data structure TX in place, the strategy from 3SUM carries over to 3XOR as
seen in Algorithm 2. Summing up, we have obtained the following result:

I Theorem 5. A deterministic word RAM can solve the 3XOR problem in time O(n2). J

In Algorithm 4 we provide a linear time construction of TX from a stream containing the
sorted array X interleaved with the labels `i = xi⊕xi+1 (due to sorting the total runtime is
O(n log n)). Despite its brevity, the recursive build function is somewhat subtle.

I Claim 6 (Correctness of Algorithm 4). If build() is called while the stream contains
the elements (`i, xi+1, . . . , xn, `n = ∞), the call consumes a prefix of the stream until
top(stream) = `j where j = min{j > i | `j ≥ `i}. It returns TX where X = {xi+1, . . . , xj}.

Once this is established, the correctness of makeTree immediately follows as for the outer
call we have i = 0 and j = n (with the understanding that ∞ ≥∞).

Proof of Claim 6. By the `-call we mean the (recursive) call to build() with top(stream) = `.
In particular the `-call consumes ` from the stream and our claim concerns the `i-call. It
is clear from the algorithm that an `-call can only invoke an `′-call if `′ < `. Therefore the

MFCS 2018

59:8 A Subquadratic Algorithm for 3XOR

Algorithm 3: Given a tree T =
TX and a ∈ {0, 1}w, the algorithm
yields the elements of a⊕X =
{a⊕x | x ∈ X} in sorted order.

1 Algorithm traverse(T , a):
2 if T = LeafNode(x) then
3 yield a⊕x
4 else
5 let T = InnerNode(T0, `, T1)
6 if a⊕ ` > a then
7 traverse(T0, a)
8 traverse(T1, a)
9 else

10 traverse(T1, a)
11 traverse(T0, a)

Algorithm 4: O(n log n)-time algo-
rithm to construct TX from X.

1 Algorithm makeTree(X):
2 sort X as x1 < · · · < xn
3 let `i = xi⊕xi+1, 1 ≤ i < n

4 stream←
(∞, x1, `1, . . . , `n−1, xn,∞)

5 return build() where
6 subroutine build():
7 `← pop(stream)
8 x← pop(stream)
9 T ← LeafNode(x)

10 while top(stream) < ` do
11 `′ ← top(stream)
12 T ← InnerNode(T, `′, build())

13 return T

`i-call cannot directly or indirectly cause the `j-call since `j ≥ `i. At the same time, the
`i-call can only terminate when top(stream) ≥ `i. This establishes that `j = top(stream)
when the `i-call ends – the first part of our claim.

Next, note that since X is sorted, there is some m such that we have X0 = {xi+1, . . . , xm}
and X1 = {xm+1, . . . , xj} where X = X0 ∪ X1 is the partition from the definition of TX .
Moreover, `m is the largest label among `i+1, . . . , `j−1. This implies that the `m-call is
directly invoked from the `i-call. Just before the `m-call is made, the `i-call played out just
as though the stream had been (`i, xi+1, . . . , xm, `

′
m =∞), which would have produced TX0

by induction4. However, due to `m = top(stream) < ` = `i, instead of returning T = TX0 ,
the while loop is entered (again) and produces InnerNode(T = TX0 , ` = `m, build()). The
stream for the `m-call is (`m, . . . , xn, `n) and `j is the first label not smaller than `m. So,
again by induction, the `m-call produces TX1 and ends with top(stream) = `j . Given this, it
is clear that afterwards the loop condition in the `i-call is not satisfied (since `j ≥ `i) and
the new T = TX is returned immediately, establishing the second part of the claim. J

4 A Subquadratic Randomized Algorithm

In this section we present a subquadratic expected time algorithm for the 3XOR problem. Its
basic structure is the same as in the corresponding algorithm for int3SUM presented in [2].
We use 1-universal families of linear hash functions to split the elements into buckets and
to compute short fingerprints. Due to linearity, the bucket of an element c with c = a⊕ b
is uniquely determined when knowing the buckets of a and b. Furthermore, if a⊕ b = c,
then this equation is also true when looking at the fingerprints of these elements. Therefore,
packing the fingerprints of all elements of a (not too full) bucket into one word (a word-packed
array) allows us to evaluate the latter equation for a lot of triples “in parallel”. For this

4 Formally the induction is on the value of j − i. The case of j − i = 1 is trivial.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:9

purpose, we exploit word-level parallelism and use lookup tables to solve the set intersection
problem on unsorted word-packed arrays. Algorithm 5 illustrates this strategy for large word
lengths w = Ω((log2 n) log log n).

Changes (in comparison to the int3SUM algorithm) are made where necessary to deal
with the different setting. This makes it a little more difficult in some parts of the algorithm
(mainly because xor-ing a sorted sequence with some a will destroy the order) and easier in
other parts (in particular where linearity of hash functions is concerned). Altogether, we get
an expected running time that is the same as in [2] for w = O(log2 n) and slightly worse for
larger w. Recall we assume w = 2O(n logn) throughout.

I Theorem 7. A randomized word RAM with word length w can solve the 3XOR problem
in expected time

O

(
n2 ·min

{
log3 w

w
,

(log log n)2

log2 n

})
for w = O(n log n),

and O(n log2 n), otherwise.

The crossover point between the w and the log n factor is w = (log2 n) log log n. The only
difference to the running time of [2] is in an extra factor logw in the word-length-dependent
part.

Proof. We describe the main ideas of the algorithm. For full details, see [11]. If w =
ω(n log n), we proceed as for w = Θ(n log n). We use two levels of hashing.

Good and Bad Buckets. We split X into R = 2r = o(n) buckets Xu = {x ∈ X |
h1(x) = u }, u ∈ {0, 1}r, using a randomly chosen hash function h1 ∈ Hlin

w,r. The hash
values are calculated once and for all and stored for further use. By linearity, for every
solution a⊕ b = c we also have h1(a)⊕h1(b) = h1(c). Given a ∈ Xu and b ∈ Xv, we only
have to inspect bucket Xu⊕ v when looking for a c ∈ X such that a⊕ b = c.

For a ∈ X, the expected size of bucket Xh1(a) is n/R. A bucket of size larger than 3n/R
is called bad, as are elements of bad buckets. All other buckets and elements are called good.
By Corollary 3, the expected number of bad elements is smaller than R. We can even assume
that the total number of bad elements is smaller than 2R. (By Markov’s inequality, we
simply have to repeat the choice of h1 expected O(1) times until this condition is satisfied.)

Fingerprints and Word-Packed Arrays. Furthermore, we use another hash function h2 ∈
Hlin
w,p for some appropriately chosen p to calculate p-bit fingerprints for all elements in X. If

(3n/R) ·p ≤ w, we can pack all fingerprints of elements of a good bucket Xu into one word X∗u.
This packed representation is called word-packed array. Again by linearity, for every solution
a⊕ b = c we have h2(a)⊕h2(b) = h2(c). On the other hand, the expected number of colliding
triples, i. e., triples with a⊕ b 6= c but h1(a)⊕h1(b) = h1(c) and h2(a)⊕h2(b) = h2(c), is at
most 2n3/(R · 2p). (Since the hash families that we use are 1-universal, the probability that
a triple with a⊕ b 6= c is colliding is at most 2/(R · 2p). The additional factor 2 is due to the
repeated choice of h1 until there are fewer than 2R bad elements.)

The total time for all the hashing steps described so far is O(n · (r + p)), see Section 2.2.
We consider two choices of R = 2r and p, cf. [2, proof of Lemma 3] and [2, proof of Thm.
2]. The first one is better for larger words of length w = Ω((log2 n) log log n) whereas the
second one yields better results for smaller words. In both cases, we search for triples with a
fixed number of bad elements separately. The strategies for finding triples of good elements

MFCS 2018

59:10 A Subquadratic Algorithm for 3XOR

correspond to the approach for int3SUM in [2]. However, for triples with at least one bad
element we have to rely on a more fine-grained examination than in [2]. For this, we will use
hash tables and another lookup table.

Long Words: Exploiting Word-Level Parallelism. If the word length is large enough, i. e.,
w = Ω((log2 n) log log n), we choose R ≈ d6 · n · (logw)/we as a power of 2 and p = b2 · logwc
to be able to pack all fingerprints of elements of a good bucket into one word. We examine
triples with at most one and at least two bad elements separately, as seen in Algorithm 5.

When looking for triples with at most one bad element, we do the following for every
(good or bad) a ∈ X and u ∈ {0, 1}r where Xu and the corresponding bucket Xh1(a)⊕u are
good (as in [2, proof of Lemma 3] when examining triples of three good elements): We xor
every fingerprint of the word-packed array X∗u with h2(a). Then, in time O(log2 (n/R) + t) =
O(log2 w + t), we construct a list of t common pairs in this modified word-packed array and
X∗h1(a)⊕u, which is possible by Lemma 4. For each such pair, we only have to check whether
it derives from a non-colliding triple. Since we can stop when we find a non-colliding triple
and since the expected total number of colliding triples is O(n2/(w logw)), we are done in
expected time O(n ·R · log2 w + n2/(w logw)) = O(n2(log3 w)/w).

In order to examine all triples with at least two bad elements, we provide a hash table
for X with expected construction time O(n) and constant lookup time [12]. Now, for each of
the at most 4R2 = O(n2(log2 w)/w2) pairs (a, b) of bad elements we can check if a⊕ b ∈ X
in constant time.5

The total expected running time for this parameter choice is O(n2(log3 w)/w).

Short Words: Using Lookup Tables. For word lengths w = O((log2 n) log log n), we choose
R ≈ d55 · n · (log log n)/ log ne as a power of 2 and p = b6 · log log nc to pack all fingerprints
of elements of a good bucket into (1

3 − ε) log n bits, for some ε > 0.
We start by looking for triples with no bad element. For this, we consider all ≤ R2

triples of corresponding good buckets (as in [2, proof of Thm. 2]). We use a lookup
table of size n1−Ω(1) to check whether such a triple of buckets yields a triple of fin-
gerprints (in the word-packed arrays) with h2(a)⊕h2(b) = h2(c) in constant time. If
this is the case, we search for a corresponding triple a⊕ b = c in the buckets of size
O((log n)/ log log n) in time O((log3 n)/(log log n)3). Since one table entry can be computed
in time O((log3 n)/(log log n)3), setting up the lookup table takes time n1−Ω(1). Furthermore,
the expected O(n2/((log log n) log5 n)) colliding triples cause additional expected running
time O(n2/((log log n)4 log2 n)). Since we can stop when we find a non-colliding triple, the
total expected time is O(R2) = O(n2(log log n)2/ log2 n).

Searching for triples with exactly one bad element can be done in a similar way. For
each bad element a ∈ X and each good bucket Xu, u ∈ {0, 1}r, we xor all fingerprints in
the word-packed array X∗u with h2(a) and use a lookup table to check whether it has some
fingerprints in common with the word-packed array X∗h1(a)⊕u of the corresponding good
bucket. If this lookup yields a positive result, we check all pairs in the corresponding buckets
in time O((log2 n)/(log log n)2). As before, the expected running time is O(R2), including
the expected time O(n2/((log log n)3 log3 n)) due to colliding triples.

Examining all triples with at least two bad elements can be done using a hash table as
mentioned above in expected time O(n+R2).

The total expected running time for this parameter choice is O(n2(log log n)2/ log2 n). J

5 Note that it would not be possible to derive expected time O(R2) for checking all pairs of bad elements
if we did not start all over if the number of keys in bad buckets is at least 2R.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:11

Algorithm 5: The randomized subquadratic 3XOR algorithm for the case w =
Ω((log2 n) log log n). For w = o((log2 n) log log n) using lookup tables to search for
solutions involving at most one bad element yields a faster algorithm.

1 Algorithm 3XOR(X):
2 repeat

// partition X into buckets using h1:
3 pick linear, 1-universal h1 : {0, 1}w → {0, 1}r with 2r = R ≈ d6n(logw)/we
4 Xu ← {x ∈ X | h1(x) = u} for u ∈ {0, 1}r
5 B ← {x ∈ X | |Xh(x)| > 3 nR} // bad elements in overfull buckets
6 until |B| < 2R

// search for solution involving at least two bad elements:
7 for a, b ∈ B do // < 4R2 choices
8 if a⊕ b ∈ X then // O(1) using appropriate hash table for X
9 return (a, b, a⊕ b)

// search for solution involving at most one bad element:
10 Xu ← ∅ for u ∈ {0, 1}r with |Xu| > 3 nR // empty the bad buckets
11 pick linear, 1-universal h2 : {0, 1}w → {0, 1}p with p = b2 logwc
12 for u ∈ {0, 1}r do

// pack fingerprints of elements of Xu into one word X∗u
13 X∗u ← h2(Xu) := concatenate {h2(x) | x ∈ Xu}
14 for a ∈ X and u ∈ {0, 1}r do // n ·R iterations
15 X∗,au ← X∗u⊕h2(a) // h2(a) added to each fingerprint in X∗u
16 for v ∈ X∗,au ∩X∗h1(a)⊕u do
17 identify responsible b, c, in particular with

v = h2(a)⊕h2(b) = h2(c), h1(b) = u

18 if a⊕ b = c then
19 return (a, b, c)
20

21 return no solution

needs time
O(log2(n/R))
plus size of in-
tersection

// X ⊆ {0, 1}w, |X| = n

5 Conditional Lower Bounds from the 3XOR Conjecture

As already mentioned in Section 1, the best word RAM algorithm for int3SUM currently
known [2] can solve this problem in expected time O(n2 ·min{ log2 w

w , (log logn)2

log2 n
}) for w =

O(n log n). The best deterministic algorithm [8] takes time n2(log log n)O(1)/ log2 n. It is
a popular conjecture that every algorithm for 3SUM (deterministic or randomized) needs
(expected) time n2−o(1). Therefore, this conjectured lower bound can be used as a basis for
conditional lower bounds for a wide range of other problems [15, 19, 22, 26].

Similarly, it seems natural to conjecture that every algorithm for the related 3XOR
problem (deterministic or randomized) needs (expected) time n2−o(1). (In Theorem 7, the
upper bound for short word lengths is n2 (log logn)2

log2 n
= n2−(2 log logn−2 log log logn)/ logn where

(2 log log n− 2 log log log n)/ log n = o(1).) Therefore, it is a valid candidate for reductions to
other computational problems [19, 27].

The general strategy of the subquadratic int3SUM algorithm [2], already employed in
Section 4, is quite similar to the reductions in [22]. Therefore, we are able to reduce 3XOR
to offline SetDisjointness and offline SetIntersection, too. Hence, the conditional lower bounds

MFCS 2018

59:12 A Subquadratic Algorithm for 3XOR

for the problems mentioned in [22] (and bounds for dynamic problems from [26]) also hold
with respect to the 3XOR conjecture. A detailed discussion can be found in [27]. Below, we
will outline the general proof strategy.

5.1 Offline SetDisjointness and Offline SetIntersection
We reduce 3XOR to the following two problems.

I Problem 8 (Offline SetDisjointness). Input: Finite set C, finite families A and B of
subsets of C, q ∈ N pairs of subsets (S, S′) ∈ A×B.
Task: Find all of the q pairs (S, S′) with S ∩ S′ 6= ∅.

I Problem 9 (Offline SetIntersection). Input: Finite set C, finite families A and B of
subsets of C, q ∈ N pairs of subsets (S, S′) ∈ A×B.
Task: List all elements of the intersections S ∩ S′ of the q pairs (S, S′).

5.2 Reductions from 3XOR
By giving an expected time ≤ n2−Ω(1) reduction from 3XOR to offline SetDisjointness and
offline SetIntersection, we can prove lower bounds for the latter two problems, conditioned on
the 3XOR conjecture.

I Theorem 10. Assume 3XOR requires expected time Ω(n2/f(n)) for f(n) = no(1) on a
word RAM. Then for 0 < γ < 1 every algorithm for offline SetDisjointness that works on
instances with |C| = Θ(n2−2γ), |A| = |B| = Θ(n log n), |S| = O(n1−γ) for all S ∈ A∪B and
q = Θ(n1+γ log n) requires expected time Ω(n2/f(n)).

I Theorem 11. Assume 3XOR requires expected time Ω(n2/f(n)) for f(n) = no(1) on a
word RAM. Then for 0 ≤ γ < 1 and δ > 0, every algorithm for offline SetIntersection which
works on instances with |C| = Θ(n1+δ−γ), |A| = |B| = Θ(

√
n1+δ+γ), |S| = O(n1−γ) for all

S ∈ A∪B, q = Θ(n1+γ) and expected output size O(n2−δ) requires expected time Ω(n2/f(n)).

Proof. (For more details, see [27, ch. 6]. Algorithm 6 reduces 3XOR to offline SetDisjointness.
The pseudocode implementation for offline SetIntersection is given in [11].) Let X ⊆ {0, 1}w
be the given 3XOR instance. As in Section 4, we use two levels of hashing.

At first, we hash the elements of X with a randomly chosen hash function h1 ∈ Hlin
w,r

into R = 2r = Θ(nγ) buckets in time O(n log n). Then, we apply Corollary 3: There are
expected O(R) = O(nγ) elements in buckets with more than three times their expected
size. For each such bad element, we can naively check in time O(n log n) whether it is part
of a triple (a, b, c) with a⊕ b = c or not. Since γ < 1, all bad elements can be checked in
expected time ≤ n2−Ω(1). Therefore, we can assume that every bucket Xu, u ∈ {0, 1}r, has
at most 3 nR = O(n1−γ) elements.

The second level of hashing uses two independently and randomly chosen hash functions
h21, h22 ∈ Hlin

w,p where P = 22p = (5n/R)2 = O(n2−2γ) for offline SetDisjointness and
P = 22p = n1+δ/R = O(n1+δ−γ) for offline SetIntersection. (The function h2 with h2(x) =
h21(x) ◦ h22(x), where ◦ denotes the concatenation of bitstrings, is randomly chosen from a
linear and 1-universal class H of hash functions {0, 1}w → {0, 1}2p.) The hash values can
be calculated in time O(n log2 n). (The additional log n factor is only necessary for offline
SetDisjointness, since we need to use Θ(log n) choices of hash functions h2 to get an error
probability that is small enough.) For each u ∈ {0, 1}r and v ∈ {0, 1}p, we create “shifted”
buckets X↑u,v = {h2(x)⊕(v ◦ 0p) | x ∈ Xu } and X↓u,v = {h2(x)⊕(0p ◦ v) | x ∈ Xu }. One

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:13

such set can be computed in time O(n1−γ). Therefore, all sets can be computed in time
O(R
√
P log n · n1−γ) = O(n2−γ log n) for offline SetDisjointness and O(R

√
P · n1−γ) =

O(n(3+δ−γ)/2) for offline SetIntersection.
We can show that for all u ∈ {0, 1}r and c ∈ X, if there are a, b ∈ X such that

a⊕ b = c and a ∈ Xu, then X↑u,h21(c) ∩ X
↓
u⊕h1(c),h22(c) 6= ∅. Therefore, we create the

following offline SetDisjointness (offline SetIntersection) instance: C := {0, 1}2p, A :=
{X↑u,v | u ∈ {0, 1}r, v ∈ {0, 1}p }, B := {X↓u,v | u ∈ {0, 1}r, v ∈ {0, 1}p } and q queries
(X↑u,h21(c), X

↓
u⊕h1(c),h22(c)) for all u ∈ {0, 1}r and c ∈ X in time ≤ n2−Ω(1). (These are

R · n = Θ(n1+γ) queries for offline SetIntersection. For offline SetDisjointness, we create R · n
queries for each of the Θ(log n) choices of h2.)

After the offline SetDisjointness or offline SetIntersection instance has been solved, we can
use this answer to compute the answer for X in expected time ≤ n2−Ω(1). We only have to
check if a positive answer from offline SetDisjointness (a pair with non-empty intersection) or
offline SetIntersection (an element of an intersection) yields a solution triple of X or not.

For offline SetDisjointness, we can show that the probability for a triple to yield a false
positive can be made polynomially small if we consider K = Θ(log n) choices of h2 and only
examine (Xu⊕ c) ∩Xh1(c)⊕u if this is suggested by all K corresponding queries. For offline
SetIntersection, the expected number of colliding triples is O(n2−δ). By trying to guess a
good triple Θ(n log n) times before creating the offline SetIntersection instance we can avoid
a problem for the expected running time if a 3XOR instance yields an offline SetIntersection
instance with output size ω(n2−δ).

For all relevant values of γ and δ, the total running time is ≤ n2−Ω(1) in addition to the
time needed to solve the offline SetDisjointness or offline SetIntersection instance. J

6 Conclusions and Remarks

We have presented a simple deterministic algorithm with running time O(n2). Its core is a
version of the PATRICIA tree for X ⊆ {0, 1}w, which makes it possible to traverse the set
a⊕X in ascending order for arbitrary a ∈ {0, 1}w in linear time. Furthermore, our random-
ized algorithm solves the 3XOR problem in expected time O(n2 ·min{ log3 w

w , (log logn)2

log2 n
}) for

w = O(n log n), and O(n log2 n) for n log n ≤ w = O(2n logn). The crossover point between
the w and the log n factor is w = (log2 n) log log n. The only difference to the running time
of [2] is in an extra factor logw in the word-length-dependent part. This is due to the
necessity to re-sort a word-packed array of size O(w/ logw) in time O(log2 w) after we have
xor-ed each of its elements with a (common) element. Finally, we have reduced 3XOR to
offline SetDisjointness and offline SetIntersection, establishing conditional lower bounds (as
in [22] conditioned on the int3SUM conjecture).

A simple, but important observation, which is used in apparently all deterministic
subquadratic time algorithms for 3SUM, is Fredman’s trick:

a+ b < c+ d ⇐⇒ a− d < c− b for all a, b, c, d ∈ Z .

Unfortunately, such a relation does not exist in our setting, since there is no linear order
≺ on {0, 1}w such that a⊕ b ≺ c⊕ d ⇐⇒ a⊕ d ≺ c⊕ b holds for all a, b, c, d ∈ {0, 1}w.
Since all elements are self-inverse, for a = b = c = 0w and any d ∈ {0, 1}w, we would get
0w ≺ d ⇐⇒ d ≺ 0w. Is there another, “trivial-looking” trick for 3XOR, that establishes a
basic approach to solve 3XOR in deterministic subquadratic time?

MFCS 2018

59:14 A Subquadratic Algorithm for 3XOR

Algorithm 6: Algorithm reducing 3XOR to offline SetDisjointness, establishing a
conditional lower bound on the runtime of offline SetDisjointness.

1 Reduction 3XOR-to-offlineSetDisjointness(X, γ):
// partition X into buckets using h1:

2 pick linear, 1-universal h1 : {0, 1}w → {0, 1}r with 2r = R ≈ dnγe
3 Xu ← {x ∈ X | h1(x) = u} for u ∈ {0, 1}r
4 B ← {x ∈ X | |Xh(x)| > 3 nR} // bad elements in overfull buckets
5 for b ∈ B do // expected O(R) elements
6 X⊕ b ← sort{a⊕ b | a ∈ X}
7 if ∃c ∈ X⊕ b ∩X then
8 return (c⊕ b, b, c)

// create shifted buckets using hi
21, hi

22:
9 pick linear, 1-universal hi21, h

i
22 : {0, 1}w → {0, 1}p with

22p = P ≈
⌈
(5n/R)2⌉

= O(n2−2γ) and 0 ≤ i < dlog ne
10 for u ∈ {0, 1}r, v ∈ {0, 1}p and 0 ≤ i < dlog ne do
11 X↑,iu,v ← {(hi21(a)⊕ v, hi22(a)) | a ∈ Xu}
12 X↓,iu,v ← {(hi21(a), hi22(a)⊕ v) | a ∈ Xu}

// apply algorithm for offline SetDisjointness:
13 (A,B,C,Q)← ((X↑,iu,v)u,v,i, (X↓,iu,v)u,v,i, {0, 1}2p, ∅)
14 for c ∈ X, u ∈ {0, 1}r and 0 ≤ i < dlog ne do
15 q ← (X↑,i

u,hi21(c), X
↓,i
u⊕h1(c),hi22(c)), identified by (c, u, i)

16 Q← Q ∪ {q}
17 Q′ ← offlineSetDisjointness(A,B,C,Q) // Q′ ⊆ Q

// calculate solution for the 3XOR instance:
18 for c ∈ X and u ∈ {0, 1}r do
19 if (c, u, i) ∈ Q′ for all 0 ≤ i < dlog ne then
20 X⊕ cu ← sort{a⊕ c | a ∈ Xu}
21 if ∃b ∈ X⊕ cu ∩Xh1(c)⊕u then
22 return (b⊕ c, b, c)

23 return no solution

// X ⊆ {0, 1}w, |X| = n, 0 < γ < 1

Another open question is how the optimal running times for 3SUM and 3XOR are related.
At first sight, the two problems seem to be very similar, but the details make the difference.
The observations mentioned above (especially the problem of re-sorting slightly modified
word-packed arrays and the possible absence of a relation like Fredman’s trick) hint at a
larger gap than expected. On the other hand, the fact that both problems can be reduced
to a wide variety of computational problems in a similar way (e. g. listing triangles in a
graph, offline SetDisjointness and offline SetIntersection) increases hope for a more concrete
dependance.

References
1 Susanne Albers and Torben Hagerup. Improved Parallel Integer Sorting without Concurrent

Writing. Inf. Comput., 136(1):25–51, 1997.
2 Ilya Baran, Erik D. Demaine, and Mihai Pătraşcu. Subquadratic Algorithms for 3SUM.

Algorithmica, 50(4):584–596, 2008.
3 Ilya Baran, Erik D. Demaine, and Mihai Pǎtraşcu. Subquadratic Algorithms for 3SUM. In

WADS, pages 409–421, 2005.

M. Dietzfelbinger, P. Schlag, and S. Walzer 59:15

4 Luis Barba, Jean Cardinal, John Iacono, Stefan Langerman, Aurélien Ooms, and Noam
Solomon. Subquadratic Algorithms for Algebraic Generalizations of 3SUM. In SoCG,
volume 77 of LIPIcs, pages 13:1–13:15, 2017.

5 K. E. Batcher. Sorting Networks and Their Applications. In SJCC, AFIPS (Spring), pages
307–314, 1968.

6 Charles Bouillaguet, Claire Delaplace, and Pierre-Alain Fouque. Revisiting and Improving
Algorithms for the 3XOR Problem. IACR ToSC, 2018(1):254–276, 2018.

7 Timothy M. Chan. The Art of Shaving Logs. WADS (Invited Talk), 2013.
8 Timothy M. Chan. More Logarithmic-Factor Speedups for 3SUM, (median, +)-Convolution,

and Some Geometric 3SUM-Hard Problems. In SODA, pages 881–897, 2018.
9 Timothy M. Chan and Moshe Lewenstein. Clustered Integer 3SUM via Additive Combina-

torics. In STOC, pages 31–40, 2015.
10 Martin Dietzfelbinger. Universal hashing and k-wise independent random variables via

integer arithmetic without primes. In STACS, pages 569–580, 1996.
11 Martin Dietzfelbinger, Philipp Schlag, and Stefan Walzer. A Subquadratic Algorithm for

3XOR. CoRR, abs/1804.11086, 2018. arXiv:1804.11086.
12 Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a Sparse Table with

O(1) Worst Case Access Time. J. ACM, 31(3):538–544, 1984.
13 Michael L. Fredman and Dan E. Willard. Surpassing the Information Theoretic Bound

with Fusion Trees. J. Comput. Syst. Sci., 47(3):424–436, 1993.
14 Ari Freund. Improved Subquadratic 3SUM. Algorithmica, 77(2):440–458, Feb 2017.
15 Anka Gajentaan and Mark H. Overmars. On a Class of O(n2) Problems in Computational

Geometry. Comput. Geom., 5(3):165–185, 1995.
16 Omer Gold and Micha Sharir. Improved Bounds for 3SUM, k-SUM, and Linear Degeneracy.

CoRR, abs/1512.05279, 2015.
17 Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic Dictionaries. J.

Algorithms, 41(1):69–85, 2001. doi:10.1006/jagm.2001.1171.
18 Yijie Han. Deterministic sorting in O(n log log n) time and linear space. J. Algorithms,

50(1):96–105, 2004.
19 Zahra Jafargholi and Emanuele Viola. 3SUM, 3XOR, Triangles. Algorithmica, 74(1):326–

343, 2016.
20 Allan Grønlund Jørgensen and Seth Pettie. Threesomes, Degenerates, and Love Triangles.

In FOCS, pages 621–630, 2014.
21 Daniel M. Kane, Shachar Lovett, and Shay Moran. Near-optimal Linear Decision Trees for

k-SUM and Related Problems. In STOC, pages 554–563, 2018.
22 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjec-

ture. In SODA, pages 1272–1287, 2016.
23 Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams.

Deterministic Time-Space Tradeoffs for k-SUM. CoRR, abs/1605.07285, 2016.
24 Y. Mansour, N. Nisan, and P. Tiwari. The Computational Complexity of Universal Hashing.

Theor. Comput. Sci., 107(1):121–133, 1993.
25 Donald R. Morrison. PATRICIA - Practical Algorithm To Retrieve Information Coded in

Alphanumeric. J. ACM, 15(4):514–534, 1968. doi:10.1145/321479.321481.
26 Mihai Pătraşcu. Towards Polynomial Lower Bounds for Dynamic Problems. In STOC,

pages 603–610, 2010.
27 Philipp Schlag. Untere Schranken für Berechnungsprobleme auf der Basis der 3SUM-

Vermutung. Master’s thesis, TU Ilmenau, Germany, 2016.
28 Joshua R. Wang. Space-Efficient Randomized Algorithms for K-SUM. In ESA, pages

810–829, 2014.

MFCS 2018

http://arxiv.org/abs/1804.11086
http://dx.doi.org/10.1006/jagm.2001.1171
http://dx.doi.org/10.1145/321479.321481

Treewidth-Two Graphs as a Free Algebra
Christian Doczkal
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France
christian.doczkal@ens-lyon.fr

Damien Pous
Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, France
damien.pous@ens-lyon.fr

Abstract
We give a new and elementary proof that the graphs of treewidth at most two can be seen as a free
algebra. This result was originally established through an elaborate analysis of the structure of K4-
free graphs, ultimately reproving the well-known fact that the graphs of treewidth at most two are
precisely those excluding K4 as a minor. Our new proof is based on a confluent and terminating
rewriting system for term-labeled graphs and does not involve graph minors anymore. The new
strategy is simpler and robust in the sense that it can be adapted to subclasses of treewidth-two
graphs, e.g., graphs without self-loops.

2012 ACM Subject Classification Mathematics of computing → Graph theory, Theory of com-
putation→ Rewrite systems, Computing methodologies→ Symbolic and algebraic manipulation

Keywords and phrases Treewidth, Universal Algebra, Rewriting

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.60

Related Version A long version is available at [11], https://hal.archives-ouvertes.fr/
hal-01780844.

Funding This work has been funded by the European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 programme (CoVeCe, grant agreement No 678157). This work
was supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National
Research Agency (ANR).

1 Introduction

The notion of treewidth [9] is a cornerstone of algorithmic graph theory and parameterised
complexity: treewidth measures how close a graph is to a forest, and many problems that
can be solved in polynomial time on forests but are NP-complete on arbitrary graphs remain
polynomial on classes of graphs of bounded treewidth. This is the case for instance for the
graph homomorphism problem (and thus k-coloring) [13, 5, 14].

Similar to trees, graphs of bounded treewidth can be described by a variety of syntaxes [8].
Among the open problems, there is the question, for graphs of a given treewidth, of finding a
syntax making it possible to get a finite and equational axiomatisation of graph isomorphism [8,
page 118]. This question was recently answered positively for directed multigraphs of treewidth
at most two [7].

The syntax used in [7] is comprised of two binary operations: series and parallel compo-
sition [12], their neutral elements, and a unary converse operation. In this syntax, several
terms may denote the same graph (up-to isomorphism); the key result of [7] is that the cor-

© Christian Doczkal and Damien Pous;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 60; pp. 60:1–60:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christian.doczkal@ens-lyon.fr
mailto:damien.pous@ens-lyon.fr
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.60
https://hal.archives-ouvertes.fr/hal-01780844
https://hal.archives-ouvertes.fr/hal-01780844
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

60:2 Treewidth-Two Graphs as a Free Algebra

responding equational theory is characterized by twelve equational axioms, defining so-called
2p-algebras.

To get this result, the authors define a function t from graphs to terms and establish that
t is a isomorphism of 2p-algebras. The function t is defined using an elaborate analysis of the
structure of treewidth-two graphs, which requires complicated graph-theoretical arguments
that are not directly related to the proposed axiom system. For instance they ultimately
reprove the well-known fact that the graphs of treewidth at most two are precisely those
graphs excluding K4 (the complete graph with four vertices) as a minor [12]. The authors also
make t as canonical as possible in order to facilitate the proof that on isomorphic graphs, t
returns terms that are congruent modulo the axioms. This comes at the price of complicating
the proofs that t is a homomorphism of 2p-algebras.

In the present paper, we reprove the result from [7] using a completely different approach
inspired by [2]: instead of using an elaborate top-down analysis, we design a graph rewriting
system on term-labeled graphs and use it to reduce graphs, in a bottom-up fashion, to a
shape where a term can be read off. This process is highly nondeterministic but can be
shown confluent modulo the axioms. This results in big simplifications: tree decompositions
are only used to show that all treewidth-two graphs can be reduced to the point where a
term can be read off, and minors are not used at all in this new approach.

Another important feature of this new proof is that it makes it possible to discover the
required axioms almost automatically, mainly during the confluence proof. It is also more
robust: it allows us to solve two problems left open in [7], characterizing connected graphs
as a free-algebra, and characterizing self-loop free graphs as a free-algebra, in both cases for
graphs of treewidth at most two.

The first problem was solved recently [16] using a purely model-theoretic argument:
2p-algebras form a conservative extension of 2pdom-algebras, the counterpart of 2p-algebras
for connected graphs. Our strategy makes it possible to proceed the other way around: we
prove the main result for connected graphs and 2pdom-algebras (Sections 3 to 5), before
extending it to potentially disconnected graphs and 2p-algebras using a simple and mainly
algebraic argument (Section 6).

The second problem was still open. We solve it using a slight variation of the presented
proof, which actually leads us to the discovery of the required axioms (Section 7).

2 Preliminaries: 2p- and 2pdom-algebras

We recall the definitions of 2p- and 2pdom-algebras [7, 16]. We let a, b . . . range over the
letters of a fixed alphabet A. We consider labeled directed graphs with two designated
vertices. We just call them graphs in the sequel.

I Definition 1. A graph is a tuple G = 〈V,E, s, t, l, ι, o〉, where V is a finite set of vertices,
E is a finite set of edges, s, t : E → V are maps indicating the source and target of each edge,
l : E → A is a map indicating the label of each edge, and ι, o ∈ V are the designated vertices,
respectively called input and output.

Note that we allow multiple edges between two vertices, as well as self-loops.

I Definition 2. A homomorphism from G = 〈V,E, s, t, l, ι, o〉 to G′ = 〈V ′, E′, s′, t′, l′, ι′, o′〉
is a pair h = 〈f, g〉 of functions f : V → V ′ and g : E → E′ that respect the various
components: s′ ◦ g = f ◦ s, t′ ◦ g = f ◦ t, l = l′ ◦ g, ι′ = f(ι), and o′ = f(o).

A (graph) isomorphism is a homomorphism whose two components are bijective functions.
We write G ' G′ when there exists an isomorphism between graphs G and G′.

C. Doczkal and D. Pous 60:3

1 , G ·H , G H G◦ , G

> , G ‖H ,
G

H
dom(G) , G

a ,
a

Figure 1 Graph operations.

u ‖ (v ‖w) = (u ‖ v) ‖w (A1)
u ‖ v = v ‖u (A2)

u·(v·w) = (u·v)·w (A4)
u·1 = u (A5)
u◦◦ = u (A6)

(u ‖ v)◦ = u◦ ‖ v◦ (A7)
(u·v)◦ = v◦·u◦ (A8)

1 ‖ 1 = 1 (A9)
dom(u ‖ v) = 1 ‖u·v◦ (A10)

u ‖> = u (A3)
u·> = dom(u)·> (A11)

(1 ‖u)·v = (1 ‖u)·> ‖ v (A12)

dom(u·v) = dom(u·dom(v)) (A13)
dom(u)·(v ‖w) = dom(u)·v ‖w (A14)

Figure 2 Axioms of 2p-algebras (A1-A12) and 2pdom-algebras (A1,A2,A4-A10,A13,A14).

We consider the following signatures for terms and algebras:

Σ = {·2, ‖ 2,_
◦
1, 10} Σ> = Σ ∪ {>0} Σdom = Σ ∪ {dom1}

We usually omit the · symbol and we assign priorities so that the term (a · (b◦)) ‖ c can
be written just as ab◦ ‖ c.

Graphs form algebras for those signatures by considering the operations depicted in
Figure 1, where input and outputs are represented by unlabelled ingoing and outgoing arrows.
The binary operations (·) and (‖) respectively correspond to series and parallel composition,
converse (_◦) just exchanges input and output, and domain (dom(_)) relocates the output
to the input.

A graph is called a test if its input and output coincide. The parallel composition of a
graph with a test merges the input and output of the former graph. For instance, the graph
a ‖ 1 consists of a single vertex with a self-loop labeled with a. Also note that the graph
dom(G) is isomorphic to the graph G·> ‖ 1. For Σ>-terms, we will therefore consider dom(u)
to be an abbreviation for u>‖ 1.

I Definition 3. A 2p-algebra is a Σ>-algebra satisfying axioms A1-A12 from Figure 2. A
2pdom-algebra is a Σdom-algebra satisfying axioms A1,A2,A4-A10,A13,A14 from Figure 2.

I Lemma 4. Every 2p-algebra is a 2pdom-algebra (with dom(u) , u>‖ 1).

Proof. This easy result is implicitly proved in [16]; Coq proofs scripts are available [10]. J

I Proposition 5. Graphs (up to isomorphism) form a 2p-algebra.

I Proposition 6. Connected graphs form a subalgebra of the Σdom-algebra of graphs.

MFCS 2018

60:4 Treewidth-Two Graphs as a Free Algebra

Given Σ>-terms u, v with variables in A, we write 2p ` u = v when the equation is
derivable from the axioms of 2p-algebra (equivalently, when the equation universally holds in
all 2p-algebras). Similarly for Σdom-terms and 2pdom-algebras.

By interpreting a letter a ∈ A as the graph a in Figure 1, we can associate a graph g(u) to
every term over the considered signatures. By Proposition 5, 2p ` u = v entails g(u) ' g(v)
for all Σ>-terms u, v and similarly for Σdom-terms and 2pdom-algebras (using Lemma 4).

I Definition 7. A Σ>-term u is called a test if 2p ` u ‖ 1 = u. A Σdom-term u is called a
test if 2pdom ` u ‖ 1 = u. We write T for the set of tests and N for the set of non-tests. We
let α, β, and γ range over terms that are tests.

Thanks to converse being an involution, there is a notion of duality in 2p-algebras: a valid law
remains so when swapping the arguments of products and replacing dom(u) with dom(u◦).

I Lemma 8. The following laws hold in all 2pdom-algebras.
1. dom(u) ‖ 1 = dom(u) (dom(u) is a test)
2. α◦ = α

3. αβ = α ‖β = βα

4. (u ‖ v)α = u ‖ vα

Proof. See long version [11]. J

I Lemma 9 ([7, Proposition 1]). The following laws hold in all 2p-algebras
1. u>v ‖>w> = u>w>v
2. uv ‖>w> = (u ‖>w>)v

3. >u◦> = >u>
4. α>β ‖u = αuβ

I Lemma 10. A Σdom- or Σ>-term u is a test iff g(u) is a test.

Proof. The direction from left to right follows with Proposition 5. The converse direction
follows by induction on u using the lemmas above. J

One useful consequence of the lemma above is that uv is a test iff both u and v are tests and
u ‖ v is test if either u or v is a test. Further, A ⊆ N , i.e., letters are non-tests.

We conclude this preliminary section by defining the subalgebra of treewidth-two graphs.

I Definition 11. A simple graph is a pair 〈V,R〉 consisting of a finite set V of vertices and
an irreflexive and symmetric binary relation R on V . The skeleton of a graph G is the simple
graph obtained from G by forgetting input, output, labeling, self loops, and edge directions
and multiplicities. The strong skeleton of a graph is the skeleton of G with an additional
edge connecting ι and o.

I Definition 12 ([9]). Let G be a simple graph. A tree decomposition of G is a tree T where
each node t ∈ T is labeled with a set of vertices Bt such that:
1. For every vertex x of G, the set of nodes t such that x ∈ Bt is nonempty and connected

in T (i.e., forms a subtree)
2. For every xy-edge, there exists some t such that {x, y} ⊆ Bt.
The width of a tree decomposition is the size of its largest set Bt minus one, and the treewidth
of a graph is the minimal width of a tree decomposition for this graph. The simple graphs
of treewidth at most one are the forests. We write TW2 for the collection of graphs whose
strong skeleton has treewidth at most two.

I Proposition 13 ([7]). TW2 forms a subalgebra of the Σ>-algebra of graphs.

I Corollary 14. For every term u, g(u) ∈ TW2.

The main results about 2p- and 2pdom-algebras, which we reprove in this paper, are
that TW2 (up to isomorphism) forms the free 2p-algebra (over A) [7] and that the connected
graphs in TW2 form the free 2pdom-algebra [16]. As explained in the introduction, we start
with the connected case, which we then extend to deal with disconnected graphs.

C. Doczkal and D. Pous 60:5

3 A Confluent Rewriting System for Term-labeled Graphs

The rewriting system we define to extract terms from graphs works on a generalised form of
graphs, whose edges are labeled by terms rather than just letters, and whose vertices are
labeled by tests.

We work exclusively with Σdom-terms and connected graphs in Sections 3 to 5; for these
sections we thus abbreviate 2pdom ` u = v as u ≡ v.

I Definition 15. A term-labeled graph is a tuple G = 〈V,E, s, t, l, ι, o〉 that is a graph except
that l is a function from V] E to Σdom-terms (we assume V and E to always be disjoint)
such that l(x) ∈ T for vertices x and l(e) ∈ N for edges e. We write exp(G) for the expansion
of G obtained by replacing every edge e with g(l(e)) and every vertex x with g(l(x)).

Restricting edge labels to non-tests ensures that replacing edges by the graphs described by
their labels does not collapse source and target of the edge. Similarly, replacing vertices by
graphs is only meaningful if the replacement is a test.

We will compare term-labeled graphs using a notion of isomorphism where labels are
compared modulo 2pdom-axioms. A subtlety here is that we should consider as equivalent
two graphs where one is obtained from the other by reversing a u-labeled edge and labeling
it with u◦ (this operation preserves the expansion). The following predicate, which we use in
the definitions below, captures this idea in a formal way: L(x, y, e, u) means that e can be
seen as a u-labeled xy-edge, up to ≡.

L(x, y, e, u) , (s(e) = x ∧ t(e) = y ∧ l(e) ≡ u) ∨ (s(e) = y ∧ t(e) = x ∧ l(e) ≡ u◦)

I Definition 16. Two term-labeled graphs G = 〈V,E, s, t, l, ι, o〉 and H = 〈V ′, E′, s′, t′, l′, ι′, o′〉
are weakly isomorphic, written G ∼= H , if there is a pair of bijective functions 〈f, g〉 satisfying
1. f(ι) = ι′ and f(o) = o′.
2. For all vertices x ∈ V , l(x) ≡ l′(f(x)).
3. For all edges e ∈ E and e′ ∈ E′ such that g(e) = e′, L(s′(e′), t′(e′), e′, l(e)).

I Example 17. Weakly isomorphic graphs always have isomorphic expansions. However,
the converse is not true: all three graphs below have isomorphic expansions, but only the
first two are weakly isomorphic.

a b◦

c

1 1
1 ‖ d

∼=
a b

c

1 1
d ‖ 1

6∼=

a(d ‖ 1)b

c

1 1

We now define the rewriting system on term-labeled graphs, as depicted in Figure 3.

I Definition 18. Let G = 〈V,E, s, t, l, ι, o〉 be a term-labeled graph. We write G 7→ G′ if G′
can be obtained from G by applying one of the following rules.
1. If l(x) = α, L(x1, x, e1, u) and L(x, x2, e2, v) where x /∈ {ι, o, x1, x2} and e1 and e2 are

the only incident edges of x, then replace e1 and e2 with an uαv-labeled edge from x1
to x2 and remove x.

2. If l(x) = α, l(y) = β and L(x, y, e, u) where y /∈ {ι, o} and e is the only edge incident to
y, then change the label of x to α·dom(u·β) and remove y and e.

3. If L(x, y, e1, u) and L(x, y, e2, v) then replace e1 and e2 with a (u ‖ v)-labeled xy-edge.
4. If s(e) = t(e) = x, l(x) = α and l(e) = u, then assign label α(u ‖ 1) to x and remove e.
It is straightforward to verify that 7→ preserves the requirements on edge and vertex labels
from Definition 15. We write for the reflexive transitive closure of 7→ up to ∼= (i.e., G H

iff either G ∼= H or there exists a sequence G ∼= G1 7→ G2 ∼= G3 7→ . . . 7→ Gn ∼= H).

MFCS 2018

60:6 Treewidth-Two Graphs as a Free Algebra

(1) u vα
7→ uαv

(2) uα β
7→

α·dom(u·β)

(3)
u

v
7→

u ‖ v

(4)
u

α
7→

α(u ‖ 1)

Figure 3 Rewriting system for term-labeled graphs. The square vertices may have additional
incident edges. The circular vertices (i.e., those that are removed) must be distinct from input and
output and may not have other incident edges.

I Lemma 19. The relation 7→ is terminating.

I Lemma 20. If G 7→ G′, then exp(G) ' exp(G′).

I Lemma 21. If G ∼= H and G 7→ G′, then there exists H ′ such that H 7→ H ′ and G′ ∼= H ′.

We now show that the relation 7→ is locally confluent up to weak isomorphism. The proof
is fundamental: while closing the various critical pairs, we rediscover most of the axioms of
2pdom-algebras. Note that for rules (1) and (3) we do not assume that the square vertices
are distinct. This introduces some critical pairs (e.g, between rules 3 and 4), but ensures
that reductions are preserved in contexts that collapse input and output (Lemma 29 below).

I Lemma 22 (Local Confluence). If G1 ←[G 7→ G2, then there exist G′1 and G′2 such that
G1 7→ G′1, G2 7→ G′2 and G′1 ∼= G′2.

Proof. If the redexes do not overlap, we can reduce G1 and G2 to the same graph in one
step. It remains to analyze the critical pairs. The nontrivial interactions are as follows:

Rules 1 and 2 can interact as follows:

uαvγ β
←[u vγ α β

7→ uγ αdom(vβ)

After applying rule 2 on both sides, it suffices to show dom(uαvβ) ≡ dom(uαdom(vβ)),
which is an instance of (A13).
Rules 1 and 3 can interact as follows:

uαv◦

γ
←[

u

v

γ α
7→

u ‖ vγ α

After applying rule 4 on the left and rule 2 on the right, it suffices to show that we
have uαv◦ ‖ 1 ≡ dom((u ‖ v)α). We prove it as follows using Lemma 8(4) and (A10):
dom((u ‖ v)α) ≡ dom(u ‖ vα) ≡ 1 ‖u(vα)◦ ≡ uαv◦ ‖ 1.
Rules 3 and 4 can interact as follows:

u ‖ v

γ
←[

u v

γ
7→

v

γ(u ‖ 1)
After applying rule 4 on both sides, it suffices to show u ‖ v ‖ 1 ≡ (u ‖ 1)(v ‖ 1). Since v ‖ 1
is a test, this follows with Lemma 8(4) and (A5).

There are a number of other critical pairs that can easily be resolved using (A1)-(A8) (e.g.,
two overlapping instances of rule 1 that differ in the direction the edges are matched, or
overlapping instances of rule 3). Similarly, overlapping instances of rules 2 and 4 remain
instances after the first rule has been applied and the resulting graphs only differ in the order
of the tests being generated; thus they are weakly isomorphic by Lemma 8(3). J

I Proposition 23 (Confluence). If G1 G G2, then there exists H such that G1 H G2.

C. Doczkal and D. Pous 60:7

uα β uα β α

Figure 4 Atomic Graphs.

f(u◦) = match f(u) with f(1) = (1)
(αu, u′, βu)⇒ (βu, u′

◦
, αu)

(γ)⇒ (γ)
f(u ‖ v) = match f(u), f(v) with f(a) = (1, a, 1)

(αu, u′, βu), (αv, v′, βv)⇒ (αuαv, u′ ‖ v′, βuβv)
(αu, u′, βu), (γ)⇒ (αuu′βu ‖ γ)
(γ), (αv, v′, βv)⇒ (γ ‖αvv′βv)
(γ1), (γ2)⇒ (γ1γ2)

f(u·v) = match f(u), f(v) with f(dom(u)) = (dom(u))
(αu, u′, βu), (αv, v′, βv)⇒ (αu, u′βuαvv′, βv)
(αu, u′, βu), (γ)⇒ (αu, u′, βuγ)
(γ), (αv, v′, βv)⇒ (γαv, v′, βv)
(γ1), (γ2)⇒ (γ1γ2)

Figure 5 Test analysis for Σdom-terms.

I Definition 24. We call a term-labeled graph atomic if it consists of either a single vertex
and no edges or two vertices connected by a single edge as depicted in Figure 4. If A is
atomic, we write A for the term that can extracted from A, i.e., αuβ, αu◦β, or α for the
atoms in Figure 4, from left to right.

I Lemma 25. If A G B for some atomic graphs A,B, then A ≡ B.

Proof. We have A ∼= B by Proposition 23, since atomic graphs are irreducible. The claim
then follows by case analysis on A and B. J

4 Reducibility of Term-Graphs

We now show that the rewriting system from the previous section can be used to reduce
graphs of the shape g(u) to atomic graphs. As a consequence, we obtain that u ≡ v iff
g(u) ' g(v) and, hence, that equivalence of Σdom-terms is decidable.

To show that g(u) reduces to an atomic graph, we define a function computing for every
u an equivalent term that can be obtained as A for some atomic graph A. In particular, if u
is not a test, it computes “maximal” tests α and β and a non-test v such that u ≡ αvβ.

I Definition 26. We define a function f from Σdom-terms to T ∪ T ×N × T as depicted in
Figure 5, as well as functions d_e and b_c interpreting elements of T ∪ T ×N ×T as atomic
graphs and terms, respectively: d(α, u, β)e is the graph on the left in Figure 4 and d(α)e is
the graph on the right, b(α, u, β)c , αuβ, and b(γ)c , γ. Note that d(α, u, β)e = b(α, u, β)c.

A summary of the functions defined so far is given in Figure 6.

MFCS 2018

60:8 Treewidth-Two Graphs as a Free Algebra

T ∪ T ×N × T

Σdom-terms graphs

term-labeled graphs

g

fb_c
d_e

exp(_)

Figure 6 Summary of functions between terms and graphs.

I Lemma 27. u ≡ bf(u)c.

Proof. By induction on u. The cases for a, 1, and dom(u) are trivial. The case for u◦
follows with Lemma 8(2). We show the case for f(u ‖ v) where f(u) = (αu, u′, βu) and
f(v) = (αv, v′, βv).

bf(u ‖ v)c = αuαv(u′ ‖ v′)βuβv
≡ (αuu′βu) ‖ (αvv′βv) Lemma 8(4) and commutativity of ‖
≡ bf(u)c ‖ bf(v)c
≡ u ‖ v induction hypothesis

The remaining cases are straightforward. J

We now show that g(u) (seen as a term-labeled graph) reduces to df(u)e. To do so, we first
extend the graph operations to term-labeled graphs and prove the context lemma below.

I Definition 28. If a graph G occurs as a term-labeled graph, it is to be read as the graph
where every vertex is labeled with 1 (and every edge is labeled with a single letter as before).
We extend the operations ·, ‖ and dom(_) to term-labeled graphs. If two vertices x and y
are identified by an operation, we label the resulting vertex with l(x)·l(y).

I Lemma 29 (Context Lemma). If G G′, then G ‖H G′ ‖H, G·H G′·H, H·G
H·G′, and dom(G) dom(G′).

Proof. By induction on G G′. First, all operations preserve weak isomorphisms. Second,
a redex in G is still a redex in G·H, H·G, and dom(G) since G remains unchanged except
that one of its nodes may cease to be input or output. Similarly, a redex in G is also a redex
in G ‖H (even if H is a test: we do not require the square vertices in rules 1 and 3 to be
distinct so that redexes are preserved under collapsing input and output). J

Note that the converse of Lemma 29 does not hold. For instance, dom(a) (cf. Figure 1) reduces
by rule 2 to a graph G with a single node labeled 1dom(a1). Hence, dom(a) dom(G) since
G ∼= dom(G), but a is an atom and thus irreducible.

I Proposition 30 (Reducibility). g(u) df(u)e

Proof. By induction on u. The base cases are trivial. For the inductive cases, we use
Lemma 29 and the induction hypothesis to reduce the respective subgraphs to atomic graphs.
The resulting graphs always reduce to atomic graphs in a single step (cf. [11]). J

We can finally characterise the equational theory of 2pdom-algebras:

I Theorem 31. 2pdom ` u = v iff g(u) ' g(v).

Proof. The direction from left to right follows with Proposition 5. For the converse direction,
assume g(u) ' g(v). Then g(u) ∼= g(v) and therefore df(u)e ≡ df(v)e by Proposition 30 and
Lemma 25. Hence, u ≡ bf(u)c = df(u)e ≡ df(v)e = bf(v)c ≡ v using Lemma 27 twice. J

C. Doczkal and D. Pous 60:9

As explained in the introduction we did not use minors to obtain this result. Actually, we did
not use tree decompositions either: those arise only in the following section, where we need to
characterize the image of the function g. This sharply contrasts with the approach from [7],
where both tree decompositions and minors are used to obtain the above characterization.

5 The free 2pdom-algebra

In order to show that the connected graphs in TW2 form the free 2p-algebra, it remains to
obtain an inverse to g (up to ≡), i.e., we need to extract terms from such graphs. We again
make use of the rewriting system.

In a slight abuse of notation, we also write G ∈ TW2 to denote that (the strong skeleton
of) a term-labeled graph G has treewidth at most two.

I Lemma 32 (Preservation). If G ∈ TW2 is a connected term-labeled graph and G 7→ G′,
then G′ ∈ TW2 and G′ is connected.

I Lemma 33 (Progress). If G ∈ TW2 is a connected term-labeled graph, then either there
exists some G′ such that G 7→ G′ or G is atomic.

Proof. W.l.o.g., we can assume that rules 3 and 4 do not apply. Thus, it suffices to show
that either ι and o are the only vertices of G or that there is some vertex distinct from input
and output that has at most two neighbors. Let T be a tree decomposition of the strong
skeleton of G of width at most two, and remove leafs of T that are included in their unique
neighbor (T remains a tree-decomposition). If T has only one node (say t) then {ι, o} ⊆ Bt.
Hence, if there is another vertex, it has degree at most two. Otherwise, let t be a leaf and
let z be a vertex appearing only in Bt. Without loss of generality, we can assume z /∈ {ι, o}.
(If z = ι then o ∈ Bt, due to the ιo-edge in the strong skeleton; hence, for any other leaf,
neither ι nor o can be the vertex unique to that leaf.) Since z appears only on Bt it has at
most two neighbors. J

I Definition 34. We define a function t′ from connected term-labeled graphs of treewidth
at most two to terms as follows: t′(G) , A for some atomic graph such that G 7→∗ A. A
suitable atomic graph A can be computed by blindly applying the rules (Lemmas 32 and 33):
all choices lead to equivalent terms (Lemma 25). For connected (standard) graphs G, we
write t(G) for t′(G′) where G′ is G seen as a term-labeled graph.

I Lemma 35. If G ∈ TW2 is a term-labeled graph and G H, then t′(G) ≡ t′(H).

Proof. Follows with Lemma 25. J

As an immediate consequence of the lemma above we also have:

I Proposition 36. If G,H ∈ TW2 are are connected and G ' H, then t(G) ≡ t(H).

We now show that t and g are inverses up to term equivalence and isomorphism respectively.

I Proposition 37. For all Σdom-terms u, t(g(u)) ≡ u.

Proof. We have t(g(u)) ≡ df(u)e = bf(u)c by Proposition 30 and Lemma 35. The claim then
follows with Lemma 27. J

I Proposition 38. If G ∈ TW2 is connected, then g(t(G)) ' G.

MFCS 2018

60:10 Treewidth-Two Graphs as a Free Algebra

Proof. We have t(G) = A for some A such that G 7→∗ A. Hence, exp(A) ' G (Lemma 20).
The claim follows since g(A) ' exp(A) for all atoms A. J

The function g is a Σdom-homomorphism by definition. By the above results, this is actually
an isomorphism between the 2pdom-algebra of connected graphs in TW2 and the (canonically)
free 2pdom-algebra of Σdom-terms quotiented by ≡:

I Theorem 39 ([16]). The connected graphs in TW2 (with labels in A) form the free 2pdom-
algebra (over A).

6 The free 2p-algebra

We now extend the results from the previous section to disconnected graphs. That is, we
show that the class of all graphs in TW2 forms the free 2p-algebra [7]. We use for that the
previous function t to extract terms from the various connected components of a graph.

In this section, we take u ≡ v to mean 2p ` u = v. Recall that 2p ` u = v whenever
2pdom ` u = v (Lemma 4). Hence, all the lemmas from the previous section still apply.

I Definition 40. Let G be a graph. For vertices x, y of G, we write G[x, y] for the graph G
with input set to x and output set to y. We abbreviate G[x, x] as G[x]. Further, we write
Gx for the connected component of x (as a subgraph of G, with input and output set to x).

I Definition 41. Let C(G) be the collection of components Gx obtained by choosing some
vertex x for every connected component of G containing neither ι nor o. We define a function
t> extracting terms from (possibly disconnected) graphs as follows:

cG ,
n

H∈C(G)

>·t(H)·> t>(G) ,
{

t(Gι)·>·t(Go) ‖ cG ι and o disconnected
t(Gι[ι, o]) ‖ cG ι and o connected

Note that the function t> needs to choose shared input/outputs vertices for all disconnected
components. For isomorphic arguments, these choices can differ. We begin by showing that
this choice does not matter up to term equivalence.

I Lemma 42. Let G ∈ TW2 be a connected test and let x be a neighbor of ι in G. We have
t(G)·> ≡ t(G[ι, x])·>.

Proof. Since G ∈ TW2, so is G[ι, x]. Hence, G[ι, x] d(α, u, β)e for some terms α,β,
and u. Since G = dom(G[ι, x]), we also have G dom(d(α, u, β)e) by Lemma 29. Moreover,
dom(d(α, u, β)e) d(α·dom(uβ))e by rule 2. Using Lemma 35 and (A11), we have: t(G)·>
≡ t′(d(α·dom(uβ))e)·> = (α·dom(uβ))·> ≡ αuβ·> = t′(d(α, u, β)e)·> ≡ t(G[ι, x])·> J

I Lemma 43. Let G ∈ TW2 be a connected graph and let x, y be vertices of G. We have
>·t(G[x])·> ≡ >·t(G[y])·>

Lemma 43 follows by repeatedly applying Lemma 42 along some xy-path. Both lemmas also
appear in [7]. We remark that the proof of Lemma 42 given here, which depends on the
definition of t, is considerably simpler than the one in [7]. The proof of Lemma 43 remains
essentially unchanged.

I Proposition 44. Let G,H ∈ TW2. If G ' H, then t>(G) ≡ t>(H).

Proof. Follows with Proposition 36 and Lemma 43. J

C. Doczkal and D. Pous 60:11

I Proposition 45. g(t>(G)) ' G.

I Lemma 46. t> is a homomorphism of 2p-algebras.

Proof. We already showed that that t> respects graph isomorphisms. It remains to show
that t> commutes with all operations.

We show t>(G·H) ≡ t>(G)·t>(H). Let F , G·H. We distinguish four cases based on
whether ι and o are connected in G and H respectively.
ι and o disconnected in both G and H: In that case, Go and Hι are merged into one

component of F that is connected neither to the input nor to the output of F . By
Lemma 43 and Proposition 36 we therefore have: cF ≡ (>t(Go·Hι)>) ‖ cG ‖ cH . We
reason as follows:

t>(F) ≡ t(Fι)·>·t(Fo) ‖ cF ι and o disconnected in F
≡ t(Gι)·>·t(Ho) ‖>·t(Go·Hι)·> ‖ cG ‖ cH Fι ' Gι, Fo ' Go
≡ t(Gι)·>·t(Go·Hι)·>·t(Ho) ‖ cG ‖ cH Lemma 9(1)
≡ t(Gι)·>·t(Go)·t(Hι)·>·t(Ho) ‖ cG ‖ cH t is a homomorphim
≡ t>(G)·t>(H) Lemma 9(2) and its dual

ι and o connected in G but not in H: We have cF ≡ cG ‖ cH by Prop. 36 and Lemma 43.

t>(F) ≡ t(Fι)·>·t(Fo) ‖ cF
≡ t(dom(Gι[ι, o]·Hι))·>·t(Ho) ‖ cF Fι ' dom(Gι[ι, o] ·Hι), Fo ' Ho

≡ t(Gι[ι, o])·t(Hι)·>·t(Ho) ‖ cF (A11), t is a homomorphism
≡ t(Gι[ι, o])·t(Hι)·>·t(Ho) ‖ cG ‖ cH
≡ t>(G)·t>(H) Lemma 9(2) and its dual

The case where input and output are connected only in H is symmetric and the case
where they are connected in both graphs follows from t being a homomorphism.

Proving that t> commutes with the other operations is done in a similar manner. J

I Proposition 47. For all Σ>-terms u, t>(g(u)) ≡ u.

Proof. By induction on u, using Lemma 46. J

I Theorem 48 ([7]). The graphs in TW2 (with labels in A) form the free 2p-algebra (over A).

7 1-free 2p-algebras

We now show that the techniques from the previous sections can be adapted to the setting
where 1 (and hence dom(_)) are removed from the signature. We define algebras over the
signature Σ−1

> , Σ> \ {1}, which we call 1-free 2p-algebras, and show that the graphs of
treewidth at most two without self-loops and with distinct input and output form the free
1-free 2p-algebra (over A).

The axioms for 1-free 2p-algebras are A1-A4,A6-A8 plus the following three axioms:

(u·v ‖w)·> = (u ‖w·v◦)·> (A15)
u·(v·> ‖w) = (u ‖>·v◦)·w (A16)
u·v ‖>·w = u·(v ‖>·w) (A17)

MFCS 2018

60:12 Treewidth-Two Graphs as a Free Algebra

The main complication in adapting our techniques to the 1-free case is that the syntax
of 1-free 2p-algebras cannot express tests, even though the algebra of graphs still exhibits
tests-like structures. For instance, if G is a test without self-loops, then G·> is a graph of
the proposed free 1-free 2p-algebra. To account for this, we distinguish between the type of
Σ−1
> -terms, written Tm, and a type of (syntactic) tests defined as follows:

α ∈ Tst ::= 1 | [u] (u ∈ Tm)

Tests, which are not terms, allow us to describe graphs that are tests. We let α,β,. . . range over
tests, and we extend the definition of g to tests by setting g(1) = 1 and g([u]) = dom(g(u)).
Intuitively, in a test [u], the output of the term u does not matter: u will always be used
in contexts where this information disappears, e.g., as in u>; this allows us to treat [u]
essentially like dom(u). It also motivates the following notion of equivalence for tests: 1 ≡ 1,
and [u] ≡ [v] if u·> ≡ v·>.

I Lemma 49. If α ≡ β then g(α) ' g(β).

We extend the sequential composition to take one or two tests as arguments in a manner
that 1 is the neutral element on both sides:

1·v , v u·1 , u 1·α , α
[u]·v , u>‖ v u·[v] , u ‖>v◦ [u]·1 , [u]

[u]·[v] , [u>‖ v]

Note that α·β is a test whereas all other variants are terms. The three operations above
appropriately preserve test equivalence (e.g., if α ≡ β, then uα ≡ uβ, αu ≡ βu, γα ≡ γβ,
αγ ≡ βγ for all terms u and tests γ.

The definitions above essentially yield a 2-sorted extension of 1-free 2p-algebras. We
prove various laws, including all axioms of 2pdom-algebras that can still be expressed in the
2-sorted setting (using [_] instead of dom(_)). Examples of laws that cannot be expressed
in the 2-sorted setting are dom(α) ≡ α, and dom(u ‖ v) ≡ 1 ‖uv◦.

I Lemma 50. We have the following equivalences:
1. u> ≡ [u]> and >u ≡ >[u◦].
2. (αu)◦ ≡ u◦α, (uα)◦ ≡ αu◦.
3. (xy)z ≡ x(yz)

(for all x, y, z either test or term).

4. [uv] ≡ [u[v]]
5. αβ ≡ βα
6. α(v ‖w) ≡ αv ‖w.
7. [uv ‖w] ≡ [u ‖wv◦].

Proof. For all statements involving tests α of unknown shape, we distinguish the cases α = 1
(usually trivial) and α = [w] for some w. Claims (1) and (2) are straightforward. By (2) and
the laws for converse, we only need to consider 5 of the 8 cases of (3). (uα)v ≡ u(αv) follows
with (A16) and (uv)α ≡ u(αv) follows with (A17). For (αβ)γ ≡ α(βγ) we repeatedly use
(A15) with v = >. The remaining cases for associativity are straightforward. Claims (4) and
(5) follow with associativity. Claim (6) follows with (A1). Claim (7) follows with (A15). J

Having recovered most of the laws of 2pdom-algebras, we adapt the rewriting system for
2pdom-algebras (Figure 3) to the 1-free case. We define term-labeled graphs as for 2pdom,
with the difference that now vertices are labeled with syntactic tests and edges are labeled
with Σ−1

> -terms (whose graphs are never tests). The rewriting system on term-labeled graphs
(Figure 3) is adapted by replacing dom(u) with [u], removing rule 4, and restricting rules 1

C. Doczkal and D. Pous 60:13

and 3 such that the two outer vertices must be distinct. For rule 1, this is necessary to avoid
introducing self loops.

Local confluence adapts, although for one of the pairs we now need two reduction steps
to join the two alternatives.

I Lemma 51 (Local Confluence). If G1 ←[G 7→ G2, then there exist G′1 and G′2 such that
G1 G′1, G2 G′2 and G′1 ∼= G′2.

Proof. The only interesting (new) critical pair is that of overlapping instances of rule 1,
where the outer nodes are the same. Due to the restriction that the outer nodes of rule 1
must be distinct, this pair can no longer be joined by applying rule 1. Instead we use rules 3
and 2 as follows:

uαv ‖wγ β
←[

uαv

w

γ β
←[

v

u w

α β

γ

7→
u

wβv◦

γ α
7→

u ‖wβv◦γ α

After applying rule 2 on both sides, it suffices to show [(uαv ‖w)β] ≡ [(u ‖wβv◦)α]. This
follows with Lemma 50(6+7). J

In order to adapt Proposition 30, we need to restrict to terms u such that g(u) is
connected. We write Tm′ and Tst′ for the set of terms and tests respectively, where tests and
the extended sequential composition are treated as primitive and > does not occur. We then
employ a function f : Tm′ → Tst′ × Tm′ × Tst′ that can be seen as a type directed variant of
the function in Figure 5.

f(a) = (1, a, 1)
f(u◦) = let (αu, u′, βu) := f(u) in (βu, u′

◦
, αu)

f(u ‖ v) = let (αu, u′, βu), (αv, v′, βv) := f(u), f(v) in (αuαv, u′ ‖ v′, βuβv)
f(u·v) = let (αu, u′, βu), (αv, v′, βv) := f(u), f(v) in (αu, u′βuαvv′, βv)
f(γ·u) = let (αu, u′, βu) := f(u) in (γαu, u′, βu)
f(u·γ) = let (αu, u′, βu) := f(u) in (αu, u′, βuγ)

I Lemma 52. If u ∈ Tm′ and α ∈ Tst′, then g(u) dfue and g(α) d(α)e.

Proof. We have a context lemma similar to Lemma 29. The proof then proceeds by mutual
induction on u and α. The cases correspond to those of Proposition 30. J

We define two extraction functions t1 and t2, where t1 extracts syntactic tests (in Tst′)
from graphs that are tests and t2 extracts terms (in Tm′) from non-tests. Both functions
are defined just like t (Definition 34), exploiting the fact that the rewriting system does not
merge or delete input and output. Propositions 37 and 38 then adapt without conceptual
changes.

I Proposition 53.
1. t1(g(α)) ≡ α for all α ∈ Tst′ and t2(g(u)) ≡ u for all u ∈ Tm′.
2. If G ∈ TW2 is a connected test without self loops, then g(t1(G)) ' G.
3. If G ∈ TW2 is a connected non-test without self loops, then g(t2(G)) ' G.

Using t1 and t2, we define a variant of t> extracting Σ−1
> -terms from non-tests without

self-loops.

MFCS 2018

60:14 Treewidth-Two Graphs as a Free Algebra

I Definition 54. Let C(G) as in Definition 41. We define

cG ,
n

H∈C(G)

>·t1(H)·> t>(G) ,
{

t1(Gι)·>·t1(Go) ‖ cG ι and o disconnected
t2(Gι[ι, o]) ‖ cG ι and o connected

That t> respects graph isomorphisms is immediate with Proposition 53. To show t> is a
homomorphism of 1-free 2p-algebras, we require a 2-sorted analog to Lemma 9.

I Lemma 55. We have the following equivalences:
1. >u◦> ≡ >u>.
2. αv ≡ α>‖ v.
3. α>β ≡ α>‖>β

4. uv ‖>α> ≡ (u ‖>α>)v
5. α>β ‖>γ> ≡ α>γ>β

Note that, due to Lemma 50(1), any equivalence where a test α appears either only as α>
or only as >α (i.e., in α in Lemma 55(4)), also holds if α is replaced by a term.

The remaining proofs of Section 6 adapt to the 1-free setting by carefully distinguishing
between terms and tests, but without any conceptual changes. For instance, we have
t1(G)> ≡ t2(G[ι, x])> for neighbors x of ι.

I Theorem 56. The graphs (with labels in A) of treewidth at most two, with distinct input
and output, and without self-loops form the free 1-free 2p-algebra (over A).

The axioms we listed for 1-free 2p-algebras are precisely those needed to prove the 2-sorted
2pdom- and 2p-laws. The proofs of Lemmas 50 and 55 have been verified in the Coq proof
assistant [6]. We also used the model generator Mace4 [15] to verify that the axioms of 1-free
2p-algebras are independent. The corresponding scripts can be downloaded from [10].

8 Conclusion and directions for future work

We have proved that graphs in TW2, connected graphs in TW2, and self-loop free graphs
in TW2 with distinct input and output respectively form the free 2p-algebra, the free
2pdom-algebra, and the free 1-free 2p-algebra.

To do so, we used a graph rewriting system that makes it possible to extract terms from
connected graphs in TW2, in a bottom-up fashion. This technique is much easier than the
one used in [7] in that it is more local and does not require us to study the precise structure
of graphs in TW2 (i.e., through excluded minors).

As explained in the introduction, the result about connected graphs can be reduced to the
one about arbitrary graphs by model-theoretic means: one can easily embed a 2pdom-algebra
into a 2p-algebra [16], so that 2p-algebras form a conservative extension of 2pdom-algebras.
As a corollary of Theorem 56, we get that 2p-algebras also form a conservative extension of
1-free 2p-algebras. It is however unclear how to prove this result directly, by model-theoretic
means: terms which are missing in 1-free 2p-algebras (self-loops) can occur deep inside terms
of 2p-algebras, unlike terms which are missing in 2pdom-algebras (disconnected components).

As a natural follow-up to this work, we would like to study whether one can characterize
the classes of graphs of higher treewidth as free algebras. The present approach seems
promising for treewidth at most three: a reasonable rewriting system is known for recognising
such graphs [3]. In contrast, trying to exploit the four excluded minors known to characterize
treewidth three [4, 3] seems extremely difficult. For larger treewidth, rewriting systems
recognizing graphs of a given treewidth can be shown to exist [1]. However, the result is
nonconstructive in the same way as the existence of a finite set of excluded minors for each
treewidth [17]).

C. Doczkal and D. Pous 60:15

References
1 S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph

reduction. Journal of the ACM, 40(5):1134–1164, 1993. doi:10.1145/174147.169807.
2 S. Arnborg and A. Proskurowski. Canonical representations of partial 2- and 3-trees.

In SAWT, pages 310–319. Springer, 1990. URL: http://dl.acm.org/citation.cfm?id=
88723.88787.

3 Stefan Arnborg and Andrzej Proskurowski. Characterization and recognition of partial
3-trees. SIAM J. Algebraic Discrete Methods, 7(2):305–314, 1986. doi:10.1137/0607033.

4 Stefan Arnborg, Andrzej Proskurowski, and Derek G. Corneil. Forbidden minors char-
acterization of partial 3-trees. Discrete Mathematics, 80(1):1–19, 1990. doi:10.1016/
0012-365X(90)90292-P.

5 Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. Theo-
retical Computer Science, 239(2):211–229, 2000. doi:10.1016/S0304-3975(99)00220-0.

6 Coq team. The Coq proof assistant. URL: https://coq.inria.fr/.
7 Enric Cosme-Llópez and Damien Pous. K4-free graphs as a free algebra. In MFCS, vol-

ume 83 of LIPIcs. Schloss Dagstuhl, 2017. doi:10.4230/LIPIcs.MFCS.2017.76.
8 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic - A

Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applica-
tions. Cambridge Univ. Press, 2012.

9 R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 2005.
10 Christian Doczkal and Damien Pous. Supplementary material accompanying this paper.

URL: https://perso.ens-lyon.fr/damien.pous/covece/tw2rw.
11 Christian Doczkal and Damien Pous. Treewidth-two graphs as a free algebra. Full version

of this extended abstract, with all proofs, 2018. URL: https://hal.archives-ouvertes.
fr/hal-01780844.

12 R.J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and
Applications, 10(2):303–318, 1965. doi:10.1016/0022-247X(65)90125-3.

13 Eugene C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In
NCAI, pages 4–9. AAAI Press / The MIT Press, 1990. URL: http://www.aaai.org/
Library/AAAI/1990/aaai90-001.php.

14 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM, 54(1):1:1–1:24, 2007. doi:10.1145/1206035.
1206036.

15 W. McCune. Prover9 and Mace4, 2005–2010. URL: http://www.cs.unm.edu/~mccune/
prover9/.

16 Damien Pous and Valeria Vignudelli. Allegories: decidability and graph homomorphisms,
2018. to appear in Proc. LiCS 2018. URL: https://hal.archives-ouvertes.fr/
hal-01703906/.

17 Neil Robertson and P.D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.

MFCS 2018

http://dx.doi.org/10.1145/174147.169807
http://dl.acm.org/citation.cfm?id=88723.88787
http://dl.acm.org/citation.cfm?id=88723.88787
http://dx.doi.org/10.1137/0607033
http://dx.doi.org/10.1016/0012-365X(90)90292-P
http://dx.doi.org/10.1016/0012-365X(90)90292-P
http://dx.doi.org/10.1016/S0304-3975(99)00220-0
https://coq.inria.fr/
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.76
https://perso.ens-lyon.fr/damien.pous/covece/tw2rw
https://hal.archives-ouvertes.fr/hal-01780844
https://hal.archives-ouvertes.fr/hal-01780844
http://dx.doi.org/10.1016/0022-247X(65)90125-3
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/1206035.1206036
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
https://hal.archives-ouvertes.fr/hal-01703906/
https://hal.archives-ouvertes.fr/hal-01703906/
http://dx.doi.org/10.1016/j.jctb.2004.08.001

On Pseudodeterministic Approximation
Algorithms
Peter Dixon1

Iowa State University, Ames, USA
tooplark@iastate.edu

A. Pavan2

Iowa State University, Ames, USA
pavan@cs.iastate.edu

N. V. Vinodchandran3

University of Nebraska, Lincoln, USA
vinod@cse.unl.edu

Abstract
We investigate the notion of pseudodeterminstic approximation algorithms. A randomized ap-
proximation algorithm A for a function f is pseudodeterministic if for every input x there is a
unique value v so that A(x) outputs v with high probability, and v is a good approximation of
f(x). We show that designing a pseudodeterministic version of Stockmeyer’s well known approxi-
mation algorithm for the NP-membership counting problem will yield a new circuit lower bound:
if such an approximation algorithm exists, then for every k, there is a language in the complexity
class ZPPNP

tt that does not have nk-size circuits. While we do not know how to design such an
algorithm for the NP-membership counting problem, we show a general result that any random-
ized approximation algorithm for a counting problem can be transformed to an approximation
algorithm that has a constant number of influential random bits. That is, for most settings of
these influential bits, the approximation algorithm will be pseudodeterministic.

2012 ACM Subject Classification Theory of computation→ Probabilistic computation, Theory
of computation → Circuit complexity

Keywords and phrases Approximation Algorithms, Circuit lower bounds, Pseudodeterminism

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.61

1 Introduction

Consider the computational problem: Given an input 1n, generate an n-bit prime. Is there a
deterministic polynomial-time algorithm for this problem? Even though primality testing
can be done in deterministic polynomial time, we do not know whether a deterministic
polynomial-time algorithm exists for this problem. However, a straightforward probabilistic
algorithm exists for this task: Randomly pick an n-bit integer and output it if it is a prime.
The density of primes implies that this algorithm succeeds with inverse polynomial probability.
Hence by repeating this procedure polynomially many times, we can output an n-bit prime
number with very high probability. A drawback of this algorithm is that the output of the
algorithm depends on the random choices it makes. In particular, on two different random
choices the algorithm may output two different prime numbers. A natural question to ask is:

1 Research Supported in part by NSF grant 1421163.
2 Research Supported in part by NSF grant 1421163.
3 Research Supported in part by NSF grant 1422668.

© Peter Dixon, A. Pavan, and N.V. Vinodchandran;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 61; pp. 61:1–61:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tooplark@iastate.edu
mailto:pavan@cs.iastate.edu
mailto:vinod@cse.unl.edu
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.61
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

61:2 Pseudodeterministic Algorithms

is there a randomized, polynomial-time algorithm that on input 1n outputs a unique n-bit
prime number on most random choices. Such an algorithm is called a pseudodeterministic
algorithm. This notion of pseudodeterminism was formulated by Gat and Goldwasser [7],
motivated by its applications in distributed computing and cryptography.

Let f be a multi-valued function (i.e. f(x) is a non-empty set). We say that a probabilistic
algorithm A computes f if A(x) outputs a value in the set f(x) with high probability. A
probabilistic algorithm A for f is pseudodeterministic if for every x, there exists a unique
u ∈ f(x) such that A(x) outputs u with high probability [7]. The problem of designing
pseudodeterministic algorithms is interesting in scenarios where we know of a probabilistic
polynomial time algorithm that computes f , but no deterministic algorithm for f is known.

Related Work
Since the work of Gat and Goldwasser, the notion of pseudodeterministic algorithms has
received moderate attention [7, 8, 9, 10, 11, 16]. Now we know of pseudodeterministic
algorithms for certain algebraic problems such as finding non-residues of Zp, and finding
non-roots of multivariate polynomials [7]. The work of Oliveria and Santhanam gives a
pseudodeterministic, sub-exponential time algorithm for generating primes (that works
at infinitely many input lengths) [16]. Recently Goldwasser and Grossman obtained a
pseudodeterministic NC algorithm that computes perfect matchings in bipartite graphs [9].
The work of Goldreich, Goldwasser and Ron investigates the power and limitations of
pseudodeterministic algorithms in the context of general probabilistic algorithms and sub-
linear time algorithms [8]. The notion of pseudodeterminism has been studied earlier in
the literature in the context of approximation algorithms [6], where the authors relate the
existence of such algorithms for approximation problems to communication complexity of
certain key-agreement problems. They used the term monic selection to capture the notion
of pseudodeterminism. To the best of our knowledge, pseudodeterminism in the context of
computing approximations of function has not been studied further.

Our Contribution
In this paper, we investigate pseudodeterministic approximation algorithms. Given a function
f whose range is the integers, we say that a probabilistic algorithm A is a pseudodeterministic
approximation algorithm for f if, for every input x, there is a value v such that A(x) outputs
v with high probability and v is a “good approximation” of f(x), (for a formal definition,
please see the next section). We consider the following counting problem which we call
NP-membership counting problem: Given a language L in NP, compute the number of strings
in L at a given length. The well-known result due to Stockmeyer [19, 20, 3] shows that
NP-membership counting problem can be approximated in BPPNP

tt , where BPPNP
tt denotes

the class of problems solvable in probabilistic polynomial-time with nonadaptive queries
to SAT4. However, Stockmeyer’s algorithm is not pseudodeterministic: the algorithm can
output different good approximations on different probabilistic paths. A natural question is:
Is there a pseudodeterministic BPPNP

tt approximation algorithm for NP-membership counting
problem? We relate this question to establishing new circuit lower bounds.

Proving circuit lowerbounds is one of the most significant research directions in complexity
theory. While it is widely believed that there are languages in NP that cannot be solved
by subexponential-size Boolean circuits, we do not even know how to prove that NP does

4 Even though BPPNP
tt denotes a class of languages, here we slightly abuse the notation and view it as a

function class.

P. Dixon, A. Pavan, and N. V. Vinodchandran 61:3

not have linear-size circuits. This leads to investigating the question: “What is the smallest
complexity class that provably cannot be solved by a linear-size circuit?” The first result
in this direction is due to Kannan [13], who showed that there are languages in the second
level of the Polynomial-time Hierarchy (ΣP

2), that do not have linear-size circuits. This result
has been improved to show that there are languages in ZPPNP that do not have linear-size
circuits [4, 15]. Subsequently, Sengupta [5] showed that the complexity class SP

2 does not
have linear-size circuits. This together with Cai’s result [5] that SP

2 ⊆ ZPPNP, improved
the upper bound to SP

2 . It is also known that the complexity class PP has languages that
do not have linear-size circuits [21]. Currently a significant open question is to show that
the class MA does not have linear-size circuits. A step in this direction is a result due
to Santhanam [18] who showed that MA//1 does not have linear-size circuits (MA//1 is a
“promise version” of MA: see the next section for a formal definition). We note that in all
these circuit lower bound results, “linear-size” can be replaced by “nk-size circuits” (for a
fixed k ≥ 0).

We ask the following question: Can we show that ZPPNP
tt has languages that do not have

linear-size circuits? Note that MA ⊆ ZPPNP
tt ⊆ ZPPNP and hence it is a natural question.

In this work, we show that this goal can be achieved if we can design a psedodeterminstic
version of Stockmeyer’s approximate counting algorithm for the NP-membership counting
problem.

Theorem. If there is a pseudodeterministic BPPNP
tt approximation algorithm for the NP-

membership counting problem, then for every k there is a language Lk in ZPPNP
tt that does

not have nk-size circuits.
We note that there are oracles with respect to which ZPPNP

tt has linear-size circuits [1].
Hence a pseudodeterministic algorithm for the NP-membership counting problem will lead
to non-relativizable circuit lower bounds.

Can we design a pseudodeterministic BPPNP
tt approximation algorithm for the NP-

membership counting problem? While we are unable to answer this question, we show a very
general result: every randomized approximate counting algorithm can be transformed to an
approximation algorithm that has a constant number of influential random bits in the sense
defined recently by Grossman and Liu [12]. Grossman and Liu [12] generalized the notion of
pseudodeterministic algorithms to influential bit algorithms. They defined this new notion in
the context of logspace computation and applied it to certain search problems in randomized
logspace. This notion can be adapted to polynomial-time bounded settings. Informally, a
probabilistic algorithm A is a k(n)-bit influential algorithm, if A (on an input x of length n),
uses k(n) + r(n) random bits, and for most choices of the first k(n)-random bits, A behaves
in a pseudodeterministic manner. That is, for most p ∈ Σk(n), there exists a v such that
A(x, pr) outputs v with high probability (where r is randomly chosen from Σr(n)). For two
different strings p1 and p2, the outputs of A(x, p1r) and A(x, p2r) could differ. However, if
we fix a “good” k(n)-bit string p, then A(x, pr1) is the same as A(x, pr2) for most choices of
r1 and r2. Note that an algorithm is pseudodeterministic if and only if it is a 0-influential
bit algorithm. We show that any randomized relative-error approximate counting algorithm
can be made to have a constant number of influential bits. This implies that

Theorem. There is a O(1)-bit influential, BPPNP
tt approximation algorithm for the NP-

membership counting problem.

MFCS 2018

61:4 Pseudodeterministic Algorithms

2 Preliminaries

We assume familiarity with standard notation and definitions from complexity theory [2].

I Definition 1. Let f be a function whose range is the integers. We say that a probabilistic
algorithm A is an (ε, δ)-approximation algorithm for f if for every x, the random variable
A(x) has the following property: Pr[(1 − ε)f(x) ≤ A(x) ≤ (1 + ε)f(x)] ≥ (1 − δ). We say
that A is an (ε, δ) pseudodeterministic approximation algorithm for f if for every x there
exists an integer v such that

(1− ε)f(x) ≤ v ≤ (1 + ε)f(x) and Pr[A(x) = v] ≥ 1− δ.

In general an approximation algorithm can output different good approximations on
different random choices. For an approximation algorithm A to be pseudodeterministic, A
has to usually output a unique approximation v which is independent of the random string,
for every input.

I Definition 2. Let f be a function whose range is the integers. We say that f has an (ε, δ)-
BPPNP

tt pseudodeterministic approximation algorithm if there exists an (ε, δ), polynomial-time,
pseudodeterministic approximation algorithm for f , that makes nonadaptive queries to SAT.

Let R ⊆ Σ∗ × Σ∗ be a binary-relation that is decidable in NP. Let fR(x) be the
number of strings y such that 〈x, y〉 ∈ R. The class]NP is defined as]NP = {fR |
R is a relation that is decidable in NP}. The following well-known theorem due to Stock-
meyer gives a BPPNP

tt approximation algorithm for problems in]NP.

I Theorem 3 ([19]). Every problem in]NP has a (1/n, 1/2n)-BPPNP
tt approximation algo-

rithm.

Stockmeyer’s algorithm is not pseudodeterministic: it may produce different, correct
approximations on different random choices.

Recently, Grossman and Liu defined the notion of influential bits as a generalization of
pseudodeterminism [12]. They defined it in the logspace regime and applied it to search
problems in RL. We adapt it to the context of approximation algorithms.

I Definition 4. Let f be a function whose range is the integers. For a function k : N→ N,
we say that a randomized (ε, δ)-approximation algorithm A for f is k(n)-bit influential if
for every x, the following holds: A takes random string r = st where |s| ≤ k(n) and for
more than 2

3 of strings s, there exists an integer vs such that Prt[A(x, st) = vs] ≥ 1− δ and
(1− ε)f(x) ≤ vs ≤ (1 + ε)f(x).

Note that an algorithm is pseudodeterministic if and only if it is 0-bit influential. Next
we define a variant of the complexity class AM.

I Definition 5. A language L is in AM//1 if there exists a polynomial-time machine V , a
polynomial p, and a sequence of bits b1, b2, · · · such that

x ∈ L⇒ Pr
r∈Σp(n)

[∃y ∈ Σp(n), V (xbn, r, y) = 1] ≥ 2/3,

x /∈ L⇒ Pr
r∈Σp(n)

[∃y ∈ Σp(n), V (xbn, r, y) = 1] ≤ 1/3,

where n is the length of x.

P. Dixon, A. Pavan, and N. V. Vinodchandran 61:5

Santhanam showed that for every k there is a language in AM//1 that does not have
nk-size circuits [18] (Santhanam showed the lower bound for MA//1, but we will only need
the AM//1 bound for establishing our result).

I Theorem 6 ([18]). For every k, there is a language Lk ∈ AM//1 so that Lk cannot be
computed by nk-size Boolean circuits.

3 Pseudodeterminism for]NP and circuit lower bounds

In this section we show that the existence of a pseudodeterministic version of Stockmeyer’s
approximate counting algorithm for]NP implies new circuit lower bounds.

I Theorem 7. If for every function f in]NP there exists an (1
10 ,

1
10)-BPPNP

tt pseudodeter-
ministic approximation algorithm for f , then for every k > 0, there is a language Lk in
ZPPNP

tt such that Lk cannot be computed by nk-size Boolean circuits.

Proof of this theorem follows from Lemma 8, and Theorem 9 stated below. Theorem 9
could be of independent interest.

I Lemma 8. If for every function f in]NP there exists an (1
10 ,

1
10)-BPPNP

tt pseudodetermin-
istic approximation algorithm for f , then for every k > 0, there is a language Lk in BPPNP

tt

such that Lk cannot be computed by nk-size Boolean circuits.

I Theorem 9. If NP has polynomial-size circuits, then BPPNP
tt = ZPPNP

tt .

Assuming Lemma 8 and Theorem 9, Theorem 7 follows from the type of argument due
to Kannan [13]. If NP does not have polynomial-size circuits, trivially ZPPNP

tt does not have
nk-size circuits. Assume that NP has polynomial-size circuits. By Lemma 8 we have BPPNP

tt

does not have nk-size circuits, and by Theorem 9 BPPNP
tt is the same as ZPPNP

tt . Hence
ZPPNP

tt does not have nk-size circuits.

Proof of Lemma 8. Fix a k > 0 and let L be a language in AM//1 that does not have
nk-size circuits [18]. Thus there exists a sequence of bits b1, b2, · · · , a polynomial p and a
polynomial-time machine V such that

x ∈ L ⇒ Pr
r∈Σp(n)

[∃y ∈ Σp(n), V (xbn, r, y) = 1] ≥ 2/3, and

x /∈ L ⇒ Pr
r∈Σp(n)

[∃y ∈ Σp(n), V (xbn, r, y) = 1] ≤ 1/3

Consider the following NP relation:

R = {〈xb, r〉 | r ∈ Σp(|x|), b ∈ {0, 1}, ∃y ∈ Σp(n)V (xb, r, y) = 1}

The corresponding]NP problem is fR(xb) = |{r | 〈xb, r〉 ∈ R}|. By our hypothesis, there is
a (1

10 ,
1
10)-BPPNP

tt pseudodeterministic approximation algorithm M for fR. Let Sxb denote
the set {r | 〈xb, r〉 ∈ R}. Consider the following BPPNP

tt algorithm.

Input: x and a bit b.
Run M on xb. Let v be the output.
If v ≥ 2p(n)−1 then accept, else reject.

MFCS 2018

61:6 Pseudodeterministic Algorithms

We will first show that on every input 〈x, b〉, the above algorithm either accepts with
high probability or rejects with high probability. Let 〈x, b〉 be an input. Since M is a
pseudodeterministic algorithm, there is an integer v such that M outputs v with probability
at least 9

10 . If v is at least 2p(n)−1, then the above algorithm accepts, else it rejects. Thus
on every input 〈x, b〉, the above algorithm either accepts with probability 9

10 or rejects with
probability at least 9

10 . Let L′ be the language accepted by the above algorithm. Clearly
L′ ∈ BPPNP

tt .

I Claim 9.1. L′ cannot be computed by nk-size Boolean circuits.

Assume that L′ is accepted by a circuit family of size nk. We will show that there is an
nk-size circuit family for L, which gives us a contradiction. Fix an input length n and let
Cn be a circuit that accepts L′ at length n+ 1. The definition of advice guarantees that for
each input length, there is some advice string (in our case, a single bit) for which the circuit
correctly decides the language. Let bn be the correct advice bit for strings of length n for
the language L. Consider the following circuit Dn: Dn(x) is same as Cn(x, bn). I.e., with bn
hardwired in Cn. Thus Dn on input x (of length n) evaluates Cn on input 〈x, bn〉. Clearly
the size of Dn is nk. We now show that the circuit family Dn accepts the language L.

Consider the case that x is in L. Note that fR(xbn) is at least 2
32p(n). Thus on input

〈x, bn〉 M outputs a number v with probability at least 2/3 such that v ≥ 9
10fR(xbn). Since

fR(xbn) is at least 2
32p(n), we have that v is bigger than 2p(n)−1. Thus M accepts 〈x, bn〉

with probability at least 9
10 . Thus 〈x, bn〉 ∈ L

′, and the circuit Cn accepts 〈x, bn〉. Thus Dn

accepts x. A similar argument shows that if x is not in L, then Dn rejects x. Since the size
of Dn is nk, we have that L is accepted by nk-size circuits, which is a contradiction. J

Next, we complete the proof of Theorem 9.

Proof of Theorem 9. The argument goes in two steps: (1) under the assumption that NP
has polynomial-size circuits, it can be shown that a Boolean function has S(n)-size SAT
oracle circuits if and only if it has S′(n)-size Boolean circuits, where S′(n) and S(n) are
polynomially related. (2) A ZPP machine can randomly pick a truth-table t of a Boolean
function on O(log n)-bits and verify using the NP oracle that t does not have 2εn-size circuits.
Use this hard function to construct a pseudorandom generator. Use this PRG to derandomize
a BPPNP

tt computation to ZPPNP
tt . We provide more details.

Since NP has polynomial-size circuits, there is a constant ` > 0 such that SAT has n`-size
circuits. Suppose that a Boolean function g has 2γn-size SAT-oracle circuit family {Dn}.
Consider Dn. We can convert this into a circuit that does not make oracle calls to SAT.
This circuit can generate queries (to SAT) of size at most 2γn. Since SAT has n`-size circuits,
each query can be answered by a circuit of size 2`γn. Thus if we replace each oracle call
in Dn by a circuit of size at most 2`γn, we obtain Boolean circuit of size 2δn for g where
δ = 2lγ. This circuit does not make any queries to SAT.

We will use the following derandomization result due to Klivans and Melkebeek [14]

I Theorem 10. Let M be a BPPNP
tt machine that uses t(n) random bits on inputs of length

n. For every γ > 0, there exists b, c and a polynomial-time computable family of functions
{Fn} such that Fn : Σnc ×Σb logn → Σt(n), and if u is the truth-table of a c log n-bit Boolean
function with SAT-oracle circuit complexity Ω(2γn), then for every x of length n∣∣∣∣ Pr

r∈Σt(n)
[M(x, r) = 1]− Pr

r∈Σb log n
[M(x, Fn(u, r) = 1]

∣∣∣∣ ≤ 0.1

P. Dixon, A. Pavan, and N. V. Vinodchandran 61:7

Let L be a language in BPPNP
tt and M be a BPPNP

tt machine that accepts L and runs
in t(n) time. Using Theorem 10, the following is a ZPPNP

tt machine that simulates M :
Randomly pick u of size nc – truth table of a function over c log n bits. By making a query
to the NP oracle, check if u has circuit complexity at least 2εn. If not, then output “I do not
know”. Else, we can conclude that u has SAT-oracle circuit complexity at least 2γn for some
γ > 0. Now simulate M using Fn(u, r) as random bits for every r ∈ Σb logn and accept if
the majority of simulations accept. Since with very high probability a randomly chosen u
has circuit complexity at least 2εn, by Theorem 10 the simulation is correct. Thus L is in
ZPPNP

tt . J

We can extend Theorem 7 to a subclass of ZPPNP
tt .

I Theorem 11. If for every function f in]NP there exists an (1
10 ,

1
10)-BPPNP

tt pseudodeter-
ministic approximation algorithm, then for every k > 0, there is a language Lk in ZPPNP

tt ∩SP
2

such that Lk cannot be computed by nk-size Boolean circuits.

Proof. If NP does not have polynomial-size circuits, then the statement of the theorem triv-
ially holds. If NP has polynomial-size circuits, then by Sengupta’s result [5], the Polynomial-
time Hierarchy collapses to SP

2 . Thus BPPNP
tt is in SP

2 . Thus by Theorem 9, if NP has
polynomial-size circuits, then BPPNP

tt is a subset of ZPPNP
tt ∩ SP

2 . By Lemma 8, under the
hypothesis, BPPNP

tt does not have nk-size circuits. The theorem follows. J

4 Constant-bit Influential algorithm for approximate counting

In this section we show that every probabilistic algorithm that computes an (ε, δ)-approxima-
tion to a function f can be transformed into a O(1)-bit influential algorithm.

I Theorem 12. Let ε ∈ o(1), and δ ≤ 1/3. Let f be a function whose range is the integers
that admits an (ε, δ)-approximation algorithm. Then there is a O(1) influential-bit, (O(ε), δ)-
approximation algorithm for f .

Implicit in the work of Saks and Zhou [17] is a O(log n)-bit influential, absolute error
approximation algorithm for matrix powering. The main technical tool they use is that of
randomized rounding. In the relative error setting that we are interested in, their rounding
scheme does not work. We use an adaptive randomized rounding scheme that can handle
relative errors and use this to design a constant-bit influential algorithm. Before we present
our proof, we provide a high level overview of Saks and Zhou’s proof adapted to our setting,
and explain why it is not straight forward to apply in the relative error setting.

Let f be a function from Σ∗ to integers such that n-bit integers are mapped to the range
[0, · · · , 2n]. We say that an algorithm A computes (ε, δ), absolute approximation for f , if for
every x, the value of A(x) lies between f(x)− ε2n and f(x) + ε2n with probability at least
1− δ. Let s be an integer such that ε2n is close to 2n−s, thus the approximation error is close
to 2n−s. Saks and Zhou consider the following rounding operator Rb,s(x), where b is a 4-bit
integer. Subtract 2n−s × b from x and replace the last n− s− 4 bits of the resulting number
with zeros. Saks and Zhou show that if z1 and z2 are any two good approximations of f(x)
(I.e, both z1 and z2 lie between f(x)− ε2n and f(x) + ε2n), then for a random choice of b,
Rb,s(z1) = Rb,s(z2), and Rb,s(z1) is still a good approximation of f(x) with high probability.
From this it follows that any absolute error approximation algorithm can be made 4-bit
influential. In the case of matrix powering, the rounding has to be applied for polynomially
many entries, which will lead to an O(log n)-bit influential algorithm for matrix powering.

MFCS 2018

61:8 Pseudodeterministic Algorithms

For the above rounding scheme to work, it is critical that we know the value of s which
depends on the value of approximation error which is at most ε2n. However, in the relative
error setting we do not a priori know the value of the approximation error, as it depends on
f(x). We could infer the of value of εf(x) by looking at an output, and try to estimate s.
However, since the approximation algorithm can produce multiple outputs, it is not possible
to uniquely infer a value for s. We get around these problems by using additional (constant
bits) randomness, and an adaptive rounding scheme. We now present a proof of Theorem 12.

Proof. Let f be a function from Σ∗ to integers and let A be a (ε, δ)-approximation algorithm
for f . For ease of presentation, we assume that f(x) ≤ 2n, where n = |x|. Consider the
following algorithm. In this algorithm we set ` to 8 and p to 8 − log(1/ε). Note that p is
negative. Given a number y in binary, and an integer z, we use ycz to denote the value
obtained by replacing the last z bits of y with zeros. We use % for the modulo operator:
x%y is the unique integer z in {0 . . . y − 1} satisfying yr + z = x for some integer r. We say
x ≡ y%z if x%y = z%y.

1. Input x of length n.
2. Choose m uniformly at random from {0 . . . 4}.
3. Choose r uniformly at random from {1 . . . 2`}.
4. Run A(x) and let y be the output.
5. Choose ky so that 2ky ≤ y < 2ky+1.
6. Set zy = ky + p+ {2, 1, 0,−1,−2} so that zy ≡ m % 5.
7. Set rzy

= r · 2(zy−`).
8. Output (y − rzy)czy .

We prove that this is a O(1)-bit influential algorithm for f , where the influential bits
describe m and r. Fix an input x. The probability that A outputs a value in the range
[(1− ε)f(x), (1 + ε)f(x)] is at least 1− δ. From now we assume that this event has happened.
Let {y1, y2, · · · , yN} be all possible outputs of A(x) such that every yi ∈ (1 ± ε)f(x). Let
ymin and ymax be the smallest and the largest of these values respectively. Since ε ≤ 1/2,
there exists a k ≥ 0 such that for every yi, 2k ≤ yi < 2k+2. Note that once the input x is
fixed, k is also fixed.

We say m ∈ {0, · · · , 4} is good if all zyi
(1 ≤ i ≤ N) are the same (defined in Line 6). We

will establish the following claim.

I Claim 12.1. If we choose m randomly from {0, 1, 2, 3, 4}, m is good with probability 4/5.

Proof. Consider yi and yj , i 6= j. If both yi and yj lie between 2k and 2k+1, then clearly
zyi

equals zyj
. Suppose that yi lies between 2k and 2k+1 and yj lies between 2k+1 and 2k+2.

Thus zyi
∈ {k+ p− 2, k+ p+ 1, k+ p, k+ p+ 1, k+ p+ 2} and zyj

∈ {k+ p− 1, k+ p, k+ p+
1, k+p+2, k+p+3}. Note that both zyi

and zyj
are equal m modulo 5. If (k+p−2) ≡ m%5,

then the value of zyi
equals k + p− 2 and zyj

equals k + p+ 3 and they differ. In all other
cases, zyi equals zyj . The probability that randomly chosen m ≡ (k + p− 2)%5 is exactly
1/5. Thus m is good with probability 4/5. J

From now on we will assume that the event “m is good” has happened. Thus zy1 = zy2 =
· · · = zyN

. For notational simplicity, we will denote this value by z. Note that rz is formed
by randomly picking r ∈ {1, · · · 2`} and multiplying with 2(z−`). We will prove the following
claim that will be used later.

P. Dixon, A. Pavan, and N. V. Vinodchandran 61:9

I Claim 12.2. For every X ∈ [0 . . . 2z],
1. X

2z − 1
2` ≤ Pr[rz ≤ X] ≤ X

2z

2. 1− X
2z ≤ Pr[rz > X] ≤ 1− (X2z − 1

2`)

Proof. Note that rz is uniformly distributed in { 2z

2` , 2 · 2z

2` , 3 · 2z

2` , . . . n
2 · 2z

2` }.
Thus, if i 2z

2` ≤ X < (i+ 1) 2z

2` , there are i values of rz that are at most X. We can write i as
bX·n

`

2z c ≤ X·2`

2z , giving us Pr[rz ≤ X] = i
2` ≤ X·2`

2`·2z = X
2z and Pr[rz > X] = 1− i

2` ≥ 1− X
2z

Similarly, i ≥ X·2`

2z − 1, so Pr[rz ≤ X] = i
2` ≥ X

2z − 1
2` and Pr[rz > X] = 1 − i

2` ≤
1− (X2z − 1

2`) J

I Lemma 13. For every good m, if we randomly choose r ∈ {1, · · · , 2`}, then for at least
223/256 of the possible r, the following holds: For every i 6= j (1 ≤ i, j ≤ r) (yi − rz)cz =
(yj − rz)cz.

Proof. The cz operation can be viewed as dividing the interval [0, 2n] into subintervals
[0, 2z − 1], [2z, 2 · 2z − 1], [2 · 2z, 3 · 2z − 1] . . . [2n − 2z, 2n], and mapping the contents of each
interval to its left endpoint. Note that ymax − ymin is at most 2f(x)ε. Since f(x) ≤ 2k+2

and 2z ≥ 2k+p−2, ymax− ymin is at most 2k+3ε, which is at most 2z/8. Since the size of each
interval is 2z and the difference between ymax and ymin is less than the size of the interval,
either both ymin and ymax lie in the same interval or lie in two contiguous intervals. We
consider both cases.
Case 1. Both ymax and ymin are in the same interval, say [i · 2z, (i+ 1) · 2z] for some i. If

subtracting rz causes them to be in different intervals, rz must be large enough to move
ymin to a new interval, but not so large that ymax moves too. That is, rz > (ymin− i · 2z)
and rz ≤ (ymax − i · 2z). They are in the same interval when rz ≤ (ymin − i · 2z) or
rz > (ymax − i · 2z).
So, the probability that ymin and ymax are in the same interval is

Pr[rz > (ymax − i · 2z)] + Pr[rz ≤ (ymin − i · 2z)]

≥ 1− ymax − i · 2z

2z + ymin − i · 2z

2z − 1
2`

= 1− ymax − ymin
2z − 1

2l
≥ 223/256

The first inequality follows from Claim 12.2. The second follows from the conclusion that
ymax − ymin is at most 2z/8. The last inequality follows because ` = 8.

Case 2. Now consider the other case, where ymin is in the interval [i · 2z, (i + 1) · 2z] and
ymax is in [(i+1) ·2z, (i+2) ·2z]. If subtracting rz causes ymax and ymin to be in different
intervals, either rz is not large enough to move ymax into the same interval as ymin, or rz
is so large that it moves ymin into a new interval as well. In this case, the condition is
rz > (ymin − i · 2z) or rz ≤ (ymax − (i + 1) · 2z). Then, the probability that ymin and
ymax end up in different intervals is

Pr[rz > (ymin − i · 2z)] + Pr[rz ≤ (ymax − (i+ 1) · 2z)]

≤ 1− (ymin − i · 2
z

2z − 1
2`) + ymax − (i+ 1) · 2z

2z

= 1− ymin
2z + i+ 1

2` + ymax
2z − i− 1

= ymax − ymin
2z + 1

2`
≤ 33/256

The first inequality follows from Claim 12.2. The second follows from the conclusion that
ymax − ymin is at most 2z/8. J

MFCS 2018

61:10 Pseudodeterministic Algorithms

Our next claim shows that the operation cz preserves the approximation (up to a constant
factor).

I Claim 13.1. If y ∈ f(x)(1± ε), then (y − rz)cz ∈ f(x)(1±O(ε)).

Proof. Subtracting rz and taking the cz only decrease, so this is at most y, which is at most
f(x)(1 + ε). For a given y, the minimum value of (y − rz)cz occurs when r is as large as
possible and cz changes the last z bits from 1 to 0. rz is at most 2z. cz can decrease the input
by at most 2z. Thus, (y − rz)cz is at least y − 2z − 2z. Consider the following inequalities.

2z+1 ≤ 2k+2+p+2

= 2k+13−log 1/ε

≤ f(x)(213ε)(as f(x) ≥ 2k)

Since (y−rz)cz ≥ y−2z+1, and y ≥ f(x)(1−ε), we obtain that (y−rz)cz ≥ f(x)(1−214ε). J

Now we can finish the proof of Theorem 12. The influential bits of the algorithm are
m and r. Note that the number of influential bits is constant. Let us call the set of r for
which the consequence of Lemma 13 holds as good. Note that for every fixing of good m and
r, the output of the algorithm is unique and is a good approximation, with probability at
least 1− δ, by Lemma 13 and Claim 13.1. Finally the fraction of bad m and r is at most
1/5 + 33/256 which is at most 1/3. Thus the algorithm is a constant-bit influential algorithm.

The statement of Theorem 12 assumed that ε ∈ o(1). However, the proof goes through
for any sufficiently small ε. We have the following as a corollary of Theorem 12. J

I Theorem 14. For every problem in]NP, there is a O(1)-bit influential, (1/n, 1/2n)-
approximation algorithm.

References
1 S. Aaronson. Oracles are subtle but not malicious. In IEEE Conference on Computational

Complexity, pages 340–354, 2006.
2 S. Arora and B. Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009.
3 M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of np-witnesses using an

np-oracle. Inf. Comput., 163(2):510–526, 2000.
4 N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries that

are sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421–433, 1996.
5 J-Y. Cai. Sp2 subseteq zppnp. In 42nd Annual Symposium on Foundations of Computer

Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 620–629, 2001.
6 J. Y. Cai, R. Lipton, L. Longpré, M. Ogihara, K. Regan, and D. Sivakumar. Communication

complexity of key agreement on small ranges. In STACS, pages 38–49, 1995.
7 E. Gat and S. Goldwasser. Probabilistic search algorithms with unique answers and their

cryptographic applications. Electronic Colloquium on Computational Complexity (ECCC),
18:136, 2011.

8 O. Goldreich, S. Goldwasser, and D. Ron. On the possibilities and limitations of pseu-
dodeterministic algorithms. In Innovations in Theoretical Computer Science, ITCS ’13,
Berkeley, CA, USA, January 9-12, 2013, pages 127–138, 2013.

9 S. Goldwasser and O. Grossman. Bipartite perfect matching in pseudo-deterministic NC. In
44th International Colloquium on Automata, Languages, and Programming, ICALP 2017,
July 10-14, 2017, Warsaw, Poland, pages 87:1–87:13, 2017.

P. Dixon, A. Pavan, and N. V. Vinodchandran 61:11

10 S. Goldwasser, O. Grossman, and D. Holden. Pseudo-deterministic proofs. CoRR,
abs/1706.04641, 2017.

11 O. Grossman. Finding primitive roots pseudo-deterministically. Electronic Colloquium on
Computational Complexity (ECCC), 22:207, 2015.

12 O. Grossman and Y. Liu. Reproducibility and pseudo-determinism in log-space. Electronic
Colloquium on Computational Complexity (ECCC), 25:48, 2018.

13 R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55(1-3):40–56, 1982.

14 A. Klivans and D. Melkebeek. Graph nonisomorphism has subexponential size proofs unless
the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526, 2002.

15 J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. SIAM
J. Comput., 28(1):311–324, 1998.

16 I. Oliveira and R. Santhanam. Pseudodeterministic constructions in subexponential time.
In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 665–677, 2017.

17 M. Saks and S. Zhou. BP hspace(s) subseteq dspace(s3/2). J. Comput. Syst. Sci., 58(2):376–
403, 1999.

18 R. Santhanam. Circuit lower bounds for merlin–arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009.

19 L. Stockmeyer. The complexity of approximate counting (preliminary version). In Pro-
ceedings of the 15th Annual ACM Symposium on Theory of Computing, 25-27 April, 1983,
Boston, Massachusetts, USA, pages 118–126, 1983.

20 L. Stockmeyer. On approximation algorithms for #p. SIAM J. Comput., 14(4):849–861,
1985.

21 N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci.,
347(1-2):415–418, 2005.

MFCS 2018

Testing Simon’s congruence
Lukas Fleischer1

FMI, University of Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany
fleischer@fmi.uni-stuttgart.de

Manfred Kufleitner
Department of Computer Science, Loughborough University
Epinal Way, Loughborough LE11 3TU, United Kingdom
m.kufleitner@lboro.ac.uk

Abstract
Piecewise testable languages are a subclass of the regular languages. There are many equivalent
ways of defining them; Simon’s congruence ∼k is one of the most classical approaches. Two
words are ∼k-equivalent if they have the same set of (scattered) subwords of length at most k.
A language L is piecewise testable if there exists some k such that L is a union of ∼k-classes.

For each equivalence class of ∼k, one can define a canonical representative in shortlex normal
form, that is, the minimal word with respect to the lexicographic order among the shortest words
in ∼k. We present an algorithm for computing the canonical representative of the ∼k-class of a
given word w ∈ A∗ of length n. The running time of our algorithm is in O(|A|n) even if k ≤ n is
part of the input. This is surprising since the number of possible subwords grows exponentially
in k. The case k > n is not interesting since then, the equivalence class of w is a singleton. If
the alphabet is fixed, the running time of our algorithm is linear in the size of the input word.
Moreover, for fixed alphabet, we show that the computation of shortlex normal forms for ∼k is
possible in deterministic logarithmic space.

One of the consequences of our algorithm is that one can check with the same complexity
whether two words are ∼k-equivalent (with k being part of the input).

2012 ACM Subject Classification Mathematics of computing → Combinatorics on words, The-
ory of computation → Formal languages and automata theory

Keywords and phrases regular language, scattered subword, piecewise testability, string algo-
rithm

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.62

Acknowledgements We would like to thank the anonymous reviewers for their helpful comments.
Their suggestions significantly improved the presentation of this paper.

1 Introduction

We write u 4 v if the word u is a (scattered) subword of v, that is, if there exist factorizations
u = u1 · · ·un and v = v0u1v1 · · ·unvn. In the literature, subwords are sometimes called
piecewise subwords to distinguish them from factors. Higman showed that, over finite
alphabets, the relation 4 is a well-quasi-ordering [3]. This means that every language
contains only finitely many minimal words with respect to the subword ordering. This led
to the consideration of piecewise testable languages. A language L is piecewise testable if
there exists a finite set of words T such that v ∈ L only depends on {u ∈ T | u 4 v}; in

1 Supported by the German Research Foundation (DFG) under grant DI 435/5–2.

© Lukas Fleischer and Manfred Kufleitner;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 62; pp. 62:1–62:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fleischer@fmi.uni-stuttgart.de
mailto:m.kufleitner@lboro.ac.uk
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.62
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

62:2 Testing Simon’s congruence

other words, the occurrence and non-occurrence of subwords in T determines membership in
L. Equivalently, a language L is piecewise testable if it is a finite Boolean combination of
languages of the form A∗a1A

∗ · · · anA
∗ with ai ∈ A (using the above notation, the sequences

a1 · · · an in this combination give the words in T). The piecewise testable languages are a
subclass of the regular languages and they play a prominent role in many different areas. For
instance, they correspond to the languages definable in alternation-free first-order logic [20]
which plays an important role in database queries. They also occur in learning theory [10, 15]
and computational linguistics [2, 14].

In the early 1970s, Simon proved his famous theorem on piecewise testable languages: A
language is piecewise testable if and only if its syntactic monoid is finite and J -trivial [18].
An immediate consequence of Simon’s Theorem is that it is decidable whether or not a given
regular language L is piecewise testable. Already in his PhD thesis [17], Simon considered
the complexity of this problem when L is given as a deterministic finite automaton (DFA).
His algorithm can be implemented to have a running time of O(2|A|n2) for an n-state DFA
over the alphabet A. This result was successively improved over the years [1, 9, 19, 21] with
the latest algorithm having a running time of O(|A|2 n); see [8]. If the input is a DFA, then
the problem is NL-complete [1]; and if the input is a nondeterministic finite automaton, the
problem is PSPACE-complete [4]. Restricting the length of the relevant subwords T to some
constant k leads to the notion of k-piecewise testable languages. At first sight, it is surprising
that, for every fixed k ≥ 4, deciding whether a given DFA accepts a k-piecewise testable
language is coNP-complete [8]; see also [11].

One of the main tools in the original proof of Simon’s Theorem is the congruence ∼k for
k ∈ N. By definition, two words u and v satisfy u ∼k v if u and v have the same subwords of
length at most k. Naturally, the relation ∼k is nowadays known as Simon’s congruence. It is
easy to see that a language L is piecewise testable if and only if there exists k such that L is
a union of ∼k-classes. Understanding the combinatorial properties of ∼k is one of the main
tools in the study of piecewise testable languages. For example, in the proof of his theorem,
Simon already used that (uv)k ∼k (uv)ku for all words u, v. Upper and lower bounds on the
index of ∼k were given by Kátai-Urbán et al. [7] and Karandikar et al. [6].

There are two natural approaches for testing whether or not u ∼k v holds. The first
approach constructs a DFA Ak,u for the language {w 4 u | k ≥ |w|} of the subwords of u of
length at most k and a similar DFA Ak,v for v. Then u ∼k v if and only if Ak,u and Ak,v

accept the same language. This can be tested with Hopcroft’s algorithm in time almost linear
in the size of the automata [5]. Here, almost linear in n means O(n · a(n)) where a(n) is the
inverse Ackermann function. It is possible to construct the automata such that Ak,u has at
most k |u|+ 2 states, see the remark at the end of Section 2 below. Hence, the resulting test
is almost linear in |A| k |uv| if the alphabet is A.

The second approach to testing u ∼k v is the computation of normal forms. A normal
form is a unique representative of a ∼k-class. In particular, we have u ∼k v if and only
if u and v have the same normal form. By computing the normal forms for both words
and then checking whether they are identical, the complexity of this test of u ∼k v is the
same as the computation of the normal forms. We should mention that the computation
of normal forms is also interesting in its own right since it can provide some insight into
the combinatorial properties of ∼k. Normal forms for k = 2 and k = 3 were considered by
Kátai-Urbán et al. [7] and normal forms for k = 4 were given by Pach [12]. An algorithm for
computing normal forms for arbitrary k was found only recently by Pach [13]. Its running
time is O(|A|k (n+ |A|)) for inputs of length n over the alphabet A, that is, polynomial for
fixed k and exponential otherwise.

L. Fleischer and M. Kufleitner 62:3

We significantly improve this result by providing an algorithm with a running time in
O(|A|n) even if k is part of the input. For every fixed alphabet, the running time is linear,
which is optimal. Moreover, the algorithm can easily be adapted to run in deterministic
logarithmic space, thereby addressing an open problem from [7]. As a consequence we
can check with the same running time (or the same complexity) whether two given words
are ∼k-equivalent even if k is part of the input, thereby considerably improving on the above
automaton approach.

Our algorithm actually does not compute just some normal form but the shortlex normal
form of the input word u, i.e., a shortest, and among all shortest the lexicographically
smallest, word v such that u ∼k v. Our main tools are so-called rankers [16, 22]. For each
position i in the input word, the algorithm computes the lengths of the shortest X-rankers
and Y-rankers reaching i. One can then derive the shortlex normal form by deleting and
sorting certain letters based on these attributes. A more detailed outline of the paper is
given in Section 3.

2 Preliminaries

Let A be a finite alphabet. The elements in A are called letters and a sequence of letters
u = a1 · · · a` is a word of length |u| = `. The set of all words over the alphabet A is A∗.
Throughout this paper, a, b and c are used to denote letters. For a word a1 · · · a`, the
numbers {1, . . . , `} are called positions of the word, and i is a c-position if ai = c. The letter
ai is the label of position i. Two positions i and j with i < j are consecutive c-positions
if ai = aj = c and a` 6= c for all ` ∈ {i+ 1, . . . , j − 1}. A word a1 · · · a` is a subword of a
word v ∈ A∗ if v can be written as v = v0a1 · · · v`−1a`v` for words vi ∈ A∗. We write u 4 v

if u is a subword of v. A congruence on A∗ is an equivalence relation ∼ such that u ∼ v

implies puq ∼ pvq for all u, v, p, q ∈ A∗. For k ∈ N, Simon’s congruence ∼k on A∗ is defined
by u ∼k v if and only if u and v contain the same subwords of length at most k.

We assume that the letters of the alphabet are totally ordered. A word u is lexicographically
smaller than v if, for some common p ∈ A∗, there exists a prefix pa of u and a prefix pb
of v such that a < b. (We apply the lexicographic order only for words of the same length;
in particular, we do not care about the case when u is a proper prefix of v.) Given a
congruence ∼ on A∗, we define the shortlex normal form of a word u to be the shortest
word v such that u ∼ v and such that no other word w ∈ A∗ with w ∼ v and |w| = |v|
is lexicographically smaller than v. In other words, we first pick the shortest words in
the ∼-class of u and among those, we choose the lexicographically smallest one.

Our main tools are so-called rankers [16, 22]. An X-ranker is a nonempty word over the
alphabet {Xa | a ∈ A} and a Y-ranker is a nonempty word over {Ya | a ∈ A}. The length of
a ranker is its length as a word. The modality Xa means neXt-a and is interpreted as an
instruction of the form “go to the next a-position”; similarly, Ya is a shorthand for Yesterday-
a and means “go to the previous a-position”. More formally, we let Xa(u) = i if i is the
smallest a-position of u, and we let rXa(u) = i for a ranker r if i is the smallest a-position
greater than r(u). Symmetrically, we let Ya(u) = i if i is the greatest a-position of u and
we let rYa(u) = i if i is the greatest a-position smaller than r(u). In particular, rankers
are processed from left to right. Note that the position r(u) for a ranker r and a word u
can be undefined. If r(u) is defined, then we say that r reaches the position r(u). Similarly,
r visits a position i if s(u) = i for some prefix s of r. A word b1 · · · b` defines an X-ranker
Xb1 · · ·Xb`

and a Y-ranker Yb`
· · ·Yb1 . We have u 4 v if and only if r(v) is defined for the

MFCS 2018

62:4 Testing Simon’s congruence

X-ranker (resp. Y-ranker) r defined by u. Similarly, if r is the X-ranker defined by u and s
is the Y-ranker defined by v, then uv 4 w if and only if r(w) < s(w). The correspondence
between X-rankers and subwords leads to the following automaton construction.
I Remark. Let u be a word of length n. We construct a DFA Ak,u for the language
{w 4 u | |w| ≤ k}. The set of states is {(0, 0)} ∪ {1, . . . , k}× {1, . . . , n} plus some sink state
which collects all missing transitions. The initial state is (0, 0) and all states except for
the sink state are final. We have a transition (`, i) a (` + 1, j) if ` < k and j is the
smallest a-position greater than i. The idea is that the first component counts the number
of instructions and the second component gives the current position.

3 Attributes and outline of the paper

To every position i ∈ {1, . . . , n} of a word a1 · · · an ∈ An, we assign an attribute (xi, yi) where
xi is the length of a shortest X-ranker reaching i and yi is the length of a shortest Y-ranker
reaching i. We call xi the x-coordinate and yi the y-coordinate of position i.

I Example 1. We will use the word u = bacbaabada as a running example throughout this
paper. The attributes of the positions in u are as follows:

1 2
b

1 2
a

1 1
c

2 2
b

2 3
a

3 2
a

3 1
b

4 2
a

1 1
d

2 1
a

The letter a at position 5 can be reached by the Y-ranker YbYaYa and the a at position 6 can
be reached by the X-ranker XcXaXa. Both rankers visit both positions 5 and 6. No X-ranker
visiting position 6 can avoid position 5 and no Y-ranker visiting position 5 can avoid position
6. Deleting either position 5 or 6 reduces the attributes of the other position to (2, 2).

We propose a two-phase algorithm for computing the shortlex normal form of a word u
within its ∼k-class. The first phase deletes letters and results in a word of minimal length
within the ∼k-class of u. The second phase sorts blocks of letters to get the minimal word
with respect to the lexicographic ordering. Both phases depend on the attributes. The
computation of the attributes and the first phase are combined as follows.

Phase 1a: Compute all x-coordinates from left to right.
Phase 1b: Compute all y-coordinates from right to left while dynamically deleting a position

whenever the sum of its coordinates would be bigger than k + 1.
Phase 2: Swap consecutive letters b and a (with b > a) whenever they have the same

attributes and the sum of the x- and the y-coordinate equals k + 1.
As we will show, a crucial property of Phase 1b is that the dynamic process does not mess
up the x-coordinates of the remaining positions that were previously computed in Phase 1a.

The outline of the paper is as follows. In Section 4, we prove that successively deleting all
letters where the sum of the attributes is bigger than k+ 1 eventually yields a length-minimal
word within the ∼k-class of the input. This statement has two parts. The easier part is to
show that we can delete such a position without changing the ∼k-class. The more difficult
part is to show that if no such deletions are possible, the word is length-minimal within its
∼k-class. In particular, no other types of deletions are required. Also note that deleting
letters can change the attributes of the remaining letters.

Section 5 has two components. First, we show that commuting consecutive letters does
not change the ∼k-class if (a) the two letters have the same attribute and (b) the sum of
the x- and the y-coordinate equals k + 1. Moreover, such a commutation does not change

L. Fleischer and M. Kufleitner 62:5

any attributes. Then, we prove that no other types of commutation are possible within
the ∼k-class. This is quite technical to formalize since, a priori, we could temporarily leave
the ∼k-class only to re-enter it again with an even smaller word.

Finally, in Section 6, we present an easy and efficient algorithm for computing shortlex
normal forms for ∼k. First, we show how to efficiently compute the attributes. Then we
combine this computation with a single-pass deletion procedure; in particular, we do not
have to successively re-compute the attributes after every single deletion. Finally, an easy
observation shows that we only have to sort disjoint factors where the length of each factor
is bounded by the size of the alphabet. Altogether, this yields an O(|A|n) algorithm for
computing the shortlex normal form of an input word of length n over the alphabet A.
Surprisingly, this bound also holds if k is part of the input.

4 Length reduction

In order to reduce words to shortlex normal form, we want to identify positions in the
word which can be deleted without changing its ∼k-class. The following proposition gives a
sufficient condition for such deletions.

I Proposition 2. Consider a word uav with a ∈ A and |ua| = i. If the attribute (xi, yi) at
position i satisfies xi + yi > k + 1, then uav ∼k uv.

Proof. Let w 4 uav with |w| ≤ k. Assume that w 64 uv. Let w = paq such that p 4 u and
q 4 v. Note that pa 64 u and aq 64 v. If |p| ≥ xi − 1 and |q| ≥ yi − 1, then

k ≥ |w| = |p|+ 1 + |q| ≥ (xi − 1) + 1 + (yi − 1) = xi + yi − 1 > k,

a contradiction. Therefore, we have either |p| < xi−1 or |q| < yi−1. By left-right symmetry,
it suffices to consider |p| < xi − 1. The word pa defines an X-ranker of length less than xi

which reaches position i. This is not possible by definition of xi. Hence, w 4 uv. Conversely,
if w 4 uv for a word w, then obviously we have w 4 uav. This shows uav ∼k uv. J

I Example 3. Let u = bacbaabada as in Example 1 and let k = 3. Note that the attributes
(xi, yi) at positions i ∈ {5, 6} satisfy the condition xi + yi > k+ 1. By Proposition 2, deleting
any of these positions yields a ∼k-equivalent word. However, deleting both positions yields
the word bacbbada 6∼k u since cab 4 u and cab 64 bacbbada.

Consider a position i with attribute (xi, yi) in a word u. Let

Ru
i = {r | r is an X-ranker with r(u) = i and |r| = xi} .

We have Ru
i 6= ∅ by definition of xi. We define a canonical X-ranker ru

i ∈ Ru
i by minimizing

the reached positions, and the minimization procedure goes from right to left: Let Sxi
= Ru

i

and, inductively, we define Sj as a nonempty subset of Sj+1 as follows. Let pj be the minimal
position in u visited by the prefixes s of length j of the rankers in Sj+1; then Sj contains all
rankers in Sj+1 such that their prefixes of length j visit the position pj . Since the minimal
positions (and their labels) in this process are unique, we end up with |S1| = 1. Now, the
ranker ru

i is given by S1 = {ru
i }. By abuse of notation, we will continue to use the symbol r

for arbitrary rankers while ru
i denotes canonical rankers. The following example shows that

minimizing from right to left (and not the other way round) is crucial.

I Example 4. Let u = abcabcdaefccabc. The attributes of the letters are as follows:
1 3
a
1

1 3
b
2

1 3
c
3

2 2
a
4

2 2
b
5

2 2
c
6

1 1
d
7

2 2
a
8

1 1
e
9

1 1
f
10

2 3
c
11

3 2
c
12

2 1
a
13

2 1
b
14

3 1
c
15

MFCS 2018

62:6 Testing Simon’s congruence

The last c is at position 15 and its attribute is (3, 1). It is easy to verify that XeXaXc is an
X-ranker of length 3 visiting position 15 and that there is no X-ranker of length 2 reaching
this position. The unique Y-ranker of length 1 reaching position 15 is Yc. We have

Ru
15 = {XdXbXc,XeXaXc,XeXbXc,Xf XaXc,Xf XbXc} .

Using the above notation, it is easy to see that S3 = Ru
15, S2 = {XeXaXc,Xf XaXc}, and

S1 = {XeXaXc}. All prefixes of length 2 of rankers in S2 reach position p2 = 13; the prefix
of length 1 of the ranker in S1 reaches position p1 = 9. The ranker visiting positions 9, 13
and 15 (and no other positions) is ru

15 = XeXaXc, the unique ranker in S1.
Also note that the minimal positions mj visited by prefixes of length j of the rankers

in Ru
15 are m1 = 7, m2 = 13, and m3 = 15; but there is no single ranker of length 3 visiting

positions 7, 13, and 15.

While ru
i is defined in some right-to-left manner, it still has an important left-to-right

property when positions of the same label are considered.

I Lemma 5. Let i < j be two consecutive c-positions in a word u with attributes (xi, yi) and
(xj , yj), respectively. If xj > xi, then ru

j = ru
i Xc.

Proof. Since no position ` with i < ` < j is labelled by c, we have ru
i Xc(u) = j. In particular,

xj ≤ xi + 1 and, hence, xj = xi + 1 by assumption. This shows Ru
i Xc ⊆ Ru

j . Let ru
j = rXc.

We have r(u) ≥ ru
i (u), since otherwise rXc(u) ≤ i < j, a contradiction. The minimization

in the definition of ru
j now yields r(u) = ru

i (u). The remaining minimization steps in the
definition of ru

i and ru
j consider the same rankers and thus the same positions. Hence,

r = ru
i . J

We now want to prove that the condition introduced in Proposition 2 always results in a
shortest word within the corresponding ∼k-class. To this end, we first need the following
technical lemma and then prove the main theorem of this section.

I Lemma 6. Let u = a1 · · · an be a word and let i < j be consecutive c-positions. Moreover,
let the parameters (xi, yi) and (xj , yj) satisfy xi + yi ≤ k + 1 and xj ≤ k, respectively. For
every word v with u ∼k v, we have ru

i (v) < ru
j (v).

Proof. We have xi ≤ k and xj ≤ k. Therefore, both ru
i (v) and ru

j (v) are defined because
this only depends on subwords of length at most k which are identical for u and v. Since
j = ru

i Xc(u), we have xj ≤ xi + 1. If xj = xi + 1, then ru
j = ru

i Xc by Lemma 5 and hence
ru

i (v) < ru
j (v). Therefore, we can assume xj ≤ xi. Suppose that ru

i (v) ≥ ru
j (v). Let qYc be

a Y-ranker with qYc(u) = i and |qYc| = yi. Let wi be the word which defines ru
i , let wj be

the word which defines ru
j , and let z be the word which defines q. We have:

wiz 4 u since ru
i (u) = i < q(u)

⇒ wiz 4 v since |wiz| = xi + yi − 1 ≤ k and u ∼k v

⇒ wjz 4 v since ru
i (v) ≥ ru

j (v)
⇒ wjz 4 u since |wjz| = xj + yi − 1 ≤ xi + yi − 1 ≤ k
⇒ q(u) > j

⇒ qYc(u) ≥ j > i.

This contradicts qYc(u) = i. Therefore, we have ru
i (v) < ru

j (v). J

L. Fleischer and M. Kufleitner 62:7

I Theorem 7. If u is a word such that the attribute (xi, yi) of every position i satisfies
xi + yi ≤ k + 1, then u has minimal length within its ∼k-class.

Proof. Let v be any word satisfying u ∼k v. Let ρ map the position j of u to the position
ru

j (v) of v. Consider some letter c occurring in u. Then, by Lemma 6, the function ρ is
order-preserving on the set of c-positions in u. In particular, the word v has at least as many
occurrences of c as u. This holds for all letters c in u. Hence, |u| ≤ |v|. J

I Example 8. Consider u = bacbaabada from Example 1 and let k = 3. As explained in
Example 3, we must not delete both position 5 and position 6. However, we can delete
positions 5 and 8 to obtain a ∼k-equivalent word with the following attributes:

1 2
b

1 2
a

1 1
c

2 2
b

2 2
a

3 1
b

1 1
d

2 1
a

By Theorem 7, there is no shorter word in the same ∼k-class.

5 Commutation

In the previous section, we described how to successively delete letters of a word in order to
obtain a length-minimal ∼k-equivalent word. It remains to show how to further transform a
word of minimal length into shortlex normal form. In the first two statements, we give a
sufficient condition which allows us to swap letters b and a while preserving the ∼k-class.

I Lemma 9. Consider two words ubav and uabv with a, b ∈ A. Let (x`, y`) denote the
attribute of position ` in ubav, and let (x′`, y′`) denote the attribute of position ` in uabv.
Suppose that |ub| = i and that the attributes (xi, yi) and (xi+1, yi+1) satisfy xi = xi+1. Then
all positions ` satisfy x′` = x`.

Proof. Throughout this proof, we frequently rely on the following simple observation: If rs
is a ranker of minimal length reaching position ` in a word w, then r is also of minimal
length reaching position r(w).

We can assume that a 6= b. It suffices to show that no ranker in Rubav
i+1 visits position i in

ubav and no ranker in Ruabv
i+1 visits position i in uabv. This implies that for all ` ∈ {1, . . . , n},

no ranker in Rubav
` or in Ruabv

` visits both i and i+ 1 in the corresponding words and thus,
we have Rubav

i = Ruabv
i+1 and Rubav

i+1 = Ruabv
i as well as Rubav

` = Ruabv
` for ` 6∈ {i, i+ 1}. Note

that all rankers in Rubav
i and in Rubav

i+1 have length xi = xi+1.
Suppose, for the sake of contradiction, that a ranker r ∈ Rubav

i+1 visits position i in ubav.
Then, we can write r = sXbXa with sXb(ubav) = i. Note that |sXb| ≥ xi by the definition
of xi. Since xi+1 = xi ≤ |sXb|, there exists a ranker of length at most |sXb| < |r| reaching
position i+ 1 in ubav, contradicting the choice of r.

Suppose that a ranker r ∈ Ruabv
i+1 visits position i in uabv. Let r = sXaXb with sXa(uabv) =

i. Note that sXa(ubav) = i + 1 and, since xi+1 = xi, there exists a ranker ŝ of length at
most |sXa| such that ŝ(ubav) = i. Now, ŝ is a ranker of length |ŝ| ≤ |sXa| < |r| with
ŝ(uabv) = i+ 1, a contradiction to r ∈ Ruabv

i+1 . J

I Proposition 10. Let ubav be a word with |ub| = i and attributes (xi, yi) = (xi+1, yi+1)
satisfying xi + yi = k + 1. Then ubav ∼k uabv.

Proof. Suppose that there exists a word w with |w| ≤ k such that w 4 ubav but w 64 uav

and w 64 ubv. Then we can write w = w1baw2 such that w1b 4 ub, w1b 64 u, aw2 4 av, and
aw2 64 v. Thus, the word w1b defines an X-ranker r with r(ubav) = i and, similarly, aw2

MFCS 2018

62:8 Testing Simon’s congruence

defines a Y-ranker s with s(ubav) = i+1. We see that |r|+ |s| = |w| ≤ k, but this contradicts
|r|+ |s| ≥ xi + yi+1 = k + 1. Therefore, every subword of ubav of length at most k is also a
subword of uabv.

By Lemma 9 and its left-right dual, the attributes of the positions i and i+ 1 in uabv are
both identical to (xi, yi). Therefore, the same reasoning as above shows that every subword
of uabv of length at most k is also a subword of ubav. This shows ubav ∼k uabv. J

I Example 11. Let us reconsider the length-minimal word u = bacbabda from Example 8
and let again k = 3. The attributes are as follows:

1 2
b

1 2
a

1 1
c

2 2
b

2 2
a

3 1
b

1 1
d

2 1
a

The attributes (x4, y4) and (x5, y5) at positions 4 and 5 satisfy x4 = x5, y4 = y5 and
x4 + y4 = k + 1. By Proposition 10, we obtain bacabbda ∼k u. Note that the attributes
(x1, y1) and (x2, y2) at the first two positions satisfy x1 = x2, y1 = y2 but x1 + x2 < k + 1.
And, in fact, abcbabda 6∼k u since abc 4 abcbabda but abc 64 u.

It remains to show that repeated application of the commutation rule described in
Proposition 10 actually suffices to obtain the lexicographically smallest representative of a
∼k-class. The next lemma shows, using canonical rankers, that indeed all length-minimal
representatives of a ∼k-class can be transformed into one another using this commutation
rule.

I Lemma 12. Let u ∼k v such that both words u and v have minimal length in their ∼k-class.
Let (x`, y`) denote the attribute of position ` of u. Consider two positions i < j of u. If
either (xi, yi) 6= (xj , yj) or xi + yi < k + 1, then ru

i (v) < ru
j (v).

Proof. If i and j have the same label, then the claim follows from Lemma 6. In the remainder
of this proof, let their labels be different. In particular, we cannot have ru

i (v) = ru
j (v). Suppose

(xi, yi) 6= (xj , yj) or xi + yi < k + 1. If xi + yj ≥ k + 1 and xj + yi ≥ k + 1, then, by
minimality and Proposition 2, we have xi + yi = k + 1 and xj + yj = k + 1. This yields
xi + yj = k + 1 and xj + yi = k + 1. Thus, xi = xi + xj + yj − k − 1 = xj and, similarly,
yi = yi + xj + yj − k − 1 = yj ; this shows (xi, yi) = (xj , yj), a contradiction. Therefore, we
have either xi + yj ≤ k or xj + yi ≤ k.

Let pi and pj be the words defining the rankers ru
i and ru

j , respectively. Symmetrically to
the definition of the canonical X-ranker, we could also define canonical Y-rankers su

i and su
j

such that su
i (u) = i, |su

i | = yi, su
j (u) = j, and

∣∣su
j

∣∣ = yj . If the label c of u at position i is the
`-th occurrence of the letter c in u, then, by Lemma 6, both ru

i and su
i end up at the position

with the `-th occurrence of the letter c in v. This shows ru
i (v) = su

i (v). Similarly, we see
that ru

j (v) = su
j (v). Let qi and qj be the words defining the rankers su

i and su
j , respectively.

First, let xi +yj ≤ k. Then piqj 4 u yields piqj 4 v since u ∼k v and |piqj | = xi +yj ≤ k.
This shows ru

i (v) < su
j (v) = ru

j (v), as desired. Let now xj +yi ≤ k and assume ru
i (v) > ru

j (v).
Then pjqi 4 v yields pjqi 4 u and, thus, j = ru

j (u) < su
i (u) = i. This is a contradiction;

hence, ru
i (v) < ru

j (v). J

Using the previous lemma, we can finally show that iterating the commutation procedure
from Lemma 9 and Proposition 10 yields the desired shortlex normal form.

I Theorem 13. Let u = a1 · · · an with ai ∈ A be a length-minimal word within its ∼k-class.
Suppose that the attributes (xi, yi) for all positions i < n satisfy the following implication:

If (xi, yi) = (xi+1, yi+1) and xi + yi = k + 1, then ai ≤ ai+1. (1)

Then u is the shortlex normal form of its ∼k-class.

L. Fleischer and M. Kufleitner 62:9

Proof. Let v be the shortlex normal form of the ∼k-class of u. We want to show that u = v.
Let ρ map position i of u to position ru

i (v) of v. As we have seen in the proof of Theorem 7,
the function ρ is bijective. It remains to show that ρ is order-preserving. By contradiction,
assume that there are positions i and j of u with i < j such that ρ(i) > ρ(j); let i be minimal
with this property and let i = ρ(j), i.e., we choose j to be the preimage of position i in v.
We already know that ρ(i) < ρ(j) in all of the following cases:

ai = aj (by Lemma 6),
(xi, yi) 6= (xj , yj) (by Lemma 12),
xi + yi < k + 1 (again by Lemma 12).

Therefore, the only remaining case is ai 6= aj , (xi, yi) = (xj , yj) and xi + yi = k + 1. First,
suppose that (xi, yi) = (x`, y`) for all ` ∈ {i, . . . , j}. Then, by the implication in Equation (1),
we have ai ≤ · · · ≤ aj . Since ai 6= aj , we have ai < aj . Now, u has the prefix a1 · · · ai and
v has the prefix a1 · · · ai−1aj . In particular, u is lexicographically smaller than v; this is a
contradiction. Next, suppose that there exists a position ` ∈ {i, . . . , j} with (xi, yi) 6= (x`, y`).
Note that i < ` < j. By Lemma 12, we have ρ(i) < ρ(`) and ρ(`) < ρ(j). In particular, we
have ρ(i) < ρ(j) in contradiction to our assumption. Altogether, this shows that i < j and
ρ(i) > ρ(j) is not possible, i.e., ρ is order-preserving. Hence, u = v. J

We summarize our knowledge on shortest elements of a ∼k-class as follows. A word u has
minimal length within its ∼k-class if and only if all attributes (xi, yi) satisfy xi + yi ≤ k + 1.
The canonical rankers define a bijective mapping between any two shortest words u and v of
a common ∼k-class. This map preserves the labels and the attributes. It is almost order
preserving, with the sole exception that i < j could lead to ru

i (v) > ru
j (v) whenever the

attributes in u satisfy both xi + yi = k + 1 and (xi, yi) = (x`, y`) for all ` ∈ {i, . . . , j}.

6 Computing shortlex normal forms

The results from the previous sections immediately lead to the following algorithm for
computing shortlex normal forms. First, we successively delete single letters of the input
word until the length is minimal. Let a1 · · · an be the resulting word. In the second step, we
lexicographically sort maximal factors ai · · · aj with attributes (xi, yi) = · · · = (xj , yj) and
xi + yi = k + 1. We now improve the first step of this algorithm.

Algorithm 1 Computing the x-coordinates of a1 · · · an.
1: for all a ∈ A do na ← 1
2: for i← 1, . . . , n do
3: suppose ai = c

4: xi ← nc

5: nc ← nc + 1
6: for all a ∈ A do na ← min(na, nc)

The following lemma proves the correctness of Algorithm 1. Its running time is in O(|A|n)
since there are n iterations of the main loop, and each iteration updates |A| counters.

I Lemma 14. Algorithm 1 computes the correct x-coordinates of the attributes of a1 · · · an.

Proof. The algorithm reads the input word from left to right, letter by letter. In each step it
updates some of its counters na. The semantics of the counters na is as follows: if the next
letter ai is c, then xi is nc. This invariant is true after the initialization in the first line.

MFCS 2018

62:10 Testing Simon’s congruence

Algorithm 2 Computing the y-coordinates of a1 · · · an plus deletion.
1: for all a ∈ A do na ← 1
2: for i← n, . . . , 1 do
3: suppose ai = c

4: if xi + nc ≤ k + 1 then
5: yi ← nc

6: nc ← nc + 1
7: for all a ∈ A do na ← min(na, nc)
8: else
9: position i is marked for deletion

Suppose that we start an iteration of the loop at letter ai = c. Then the invariant tells
us that xi = nc. If ai+1 were c, then one more step Xc would be needed for a ranker to reach
position i+ 1, hence nc ← nc + 1. If ai+1 were some letter a 6= c, then we could either use
the ranker corresponding to the old value na or we could use the ranker going to position i
and from there do an Xa-modality; the latter would yield a ranker whose length is the new
value of nc. We choose the shorter of these two options. Since all counter values were correct
before reading position i, there is no other counter na which needs to be updated before
proceeding with position i+ 1. J

With Algorithm 2, we give a procedure for computing the y-coordinates of a1 · · · an

similar to Algorithm 1, but with the modification that we mark some letters for deletion.
The positions marked for deletion depend on the number k in Simon’s congruence ∼k. The
computed y-coordinates are those where all marked letters are actually deleted. We assume
that the x-coordinates of the input word are already known.

The algorithm correctly computes the y-coordinates of the word where all marked letters
are deleted. This follows from the left-right dual of Lemma 14 and the fact that the counters
remain unchanged if a position is marked for deletion.

I Lemma 15. Let u be the input for Algorithm 2 and let v be the word with all marked
letters removed. Then u ∼k v.

Proof. Whenever a position i with label c is marked for deletion, the value xi is correct
since no letter to the left of position i is marked for deletion. The counter nc would be the
correct y-coordinate for position i if we deleted all positions which have been marked so far.
By Proposition 2 we know that each deletion preserves the ∼k-class. J

It remains to show that the x-coordinates are still correct for the resulting word in which
all marked letters are deleted.

I Lemma 16. Consider a word u = a1 · · · an with x-coordinate x` at position `. Let i be
the maximal position of u such that xi + yi > k + 1 and let v = a1 · · · ai−1ai+1 · · · an. The
x-coordinate of position ` of v is denoted by x′`. Then, for all j ∈ {i+ 1, . . . , n}, we have
x′j−1 = xj.

Proof. It suffices to prove the statement x′j−1 = xj for all positions j of u reachable by a
ranker of the form rXc with r(u) = i and c ∈ A. By contradiction, suppose that there exists
some position j = rXc(u) with x′j−1 6= xj where r(u) = i and c ∈ A; we choose c ∈ A such
that j is minimal with this property. Let b = ai. We have to distinguish two cases.

L. Fleischer and M. Kufleitner 62:11

First suppose that there is no b-position f with i < f < j in u. The ranker ru
j has to

visit position i in u; otherwise ru
j (v) = j − 1 and rv

j−1(u) = j, a contradiction to x′j−1 6= xj .
This implies xi < xj . Moreover, position i is reachable from j in u with a single Yb-modality,
and hence, we have xi + yi ≤ (xj − 1) + (yj + 1) ≤ k + 1. This contradicts the choice of i.

Next, let f be the minimal b-position with i < f < j. In particular, we have b 6= c because
j 6= f is the smallest c-position of u greater than i. Let rXc be an X-ranker of length xj

such that rXc(u) = j. If r(u) = i, then r(v) = f − 1 and hence rXc(v) = j − 1. If r(u) < i,
then the ranker rXc does not visit the position i in u and we have rXc(v) = j − 1. Finally, if
r(u) > i, then (by choice of c) the position r(u) < j keeps its x-coordinate. In other words,
there exists an X-ranker r′ with |r| = |r′| and r′(v) = r(u)−1. It follows that r′Xc(v) = j−1.
Therefore, in any case, there exists a ranker s of length at most xj such that s(v) = j − 1.
This shows x′j−1 ≤ xj , and together with x′j−1 6= xj we obtain x′j−1 < xj .

Consider an X-ranker sXc of length x′j−1 < xj with sXc(v) = j − 1. We are still in the
situation that there exists a b-position f in u with i < f < j. We cannot have s(v) < i

since otherwise s(u) = s(v) and, thus, sXc(u) = j; the latter uses the fact that b 6= c. Let
now s(v) ≥ i and write s = tXd. We have t(v) < i since otherwise tXc would be a shorter
X-ranker with tXc(v) = j − 1. We have d = b: if d 6= b, then s(v) = s(u)− 1 and sXc(u) = j;
this would show x′j−1 ≥ xj , thereby contradicting x′j−1 < xj . It follows that s(u) = i and
sXc(u) = j. As before, this is a contradiction. This completes the proof that x′j−1 = xj . J

I Example 17. Let u = bacbaabada be the word from Example 1 and let k = 3. Suppose
that the alphabet A = {a, b, c, d} is ordered by a < b < c < d. The attributes of u are as
follows:

1 2
b

1 2
a

1 1
c

2 2
b

2 3
a

3 2
a

3 1
b

4 2
a

1 1
d

2 1
a

Note that each of the attributes (xi, yi) at positions i ∈ {5, 6, 8} satisfies the condition
xi + yi > k + 1. As seen in Example 3 we must not delete all these positions. The algorithm
only marks positions 6 and 8 for deletion and takes these deletions into account when
computing the y-coordinates of the remaining letters:

1 2
b

1 2
a

1 1
c

2 2
b

2 2
a

3
a

3 1
b

4
a

1 1
d

2 1
a

The letters are now sorted as in Example 11 and the resulting normal form is bacabbda.

The following lemma allows us to improve the estimated time for the sorting step of the
main algorithm by showing that any sequence of letters which needs to be sorted contains
every letter at most once.

I Lemma 18. Consider a word uaav with a ∈ A and |ua| = i. Then xi 6= xi+1 and yi 6= yi+1.

Proof. Suppose xi = xi+1. Let ri and ri+1 be X-rankers with ri(uaav) = i, |ri| = xi,
ri+1(uaav) = i + 1, and |ri+1| = xi+1 = xi. Let ri+1 = sXa. If s(uaav) < i, then
i+ 1 = ri+1(uaav) = sXa(uaav) ≤ i. If s(uaav) = i, then |s| = xi− 1 < xi = |ri| contradicts
the definition of xi. Therefore, we cannot have xi = xi+1. Symmetrically, we cannot have
yi = yi+1. J

We are now able to state our main result.

MFCS 2018

62:12 Testing Simon’s congruence

I Theorem 19. One can compute the shortlex normal form of a word w of length n, including
all attributes of the normal form, with O(|A|n) arithmetic operations and with bit complexity
O(|A|n log n). Alternatively, the computation can be done in deterministic space O(|A| log n).

Proof. The attributes of the normal form can be computed as described in Algorithms 1 and 2.
The normal form itself is obtained by filtering out all positions i where the corresponding
attribute (xi, yi) satisfies xi + yi ≤ k + 1 and by sorting blocks of letters with the same
attributes satisfying xi + yi = k + 1. By Lemma 18, the sorting step can be performed
by reading each such block of letters, storing all letters appearing in the block and only
outputting all these letters in sorted order once the next block is reached.

If we assume that the comparison of two letters and the modification of the counters
is possible in constant time, then running Algorithm 2 on the output of Algorithm 1 takes
O(|A|n) steps for input words of length n over alphabet A: for each position of the input
word, we need to update |A| counters. Over a fixed alphabet, the resulting algorithm runs in
linear time – even if k is part of the input. We could bound all arithmetic operations by
k + 2, i.e., by replacing the usual addition by n⊕m = min(k + 2, n+m). This way, each
counter and all results of arithmetic operations would require only O(log k) ⊆ O(log n) bits.
Similarly, O(log |A|) ⊆ O(log n) bits are sufficient to encode the letters. This leads to a bit
complexity of O(|A|n log n). Note that if k > n, then the ∼k-class of the input is a singleton
and we can immediately output the input without any further computations. If |A| > n,
then we could replace A by the letters which occur in the input word.

For the O(|A| log n) space algorithm, one can again use Algorithms 1 and 2 to compute
the attributes of each position. To compute the shortlex normal form, we do not store all
the attributes but use the standard recomputation technique to decide whether a letter gets
deleted. The sorting step can be implemented by repeatedly scanning each block of positions
with common attributes (x, y) satisfying x + y = k + 1. A single scan checks, for a fixed
letter a ∈ A, whether a occurs in the block. This is repeated for every a ∈ A in ascending
order. The attributes of the currently investigated block and the current letter a can be
stored in space O(log n). J

7 Summary and Outlook

We considered Simon’s congruence ∼k for piecewise testable languages. The main contribution
of this paper is an O(|A|n) algorithm for computing the shortlex normal form of a word of
length n within its ∼k-class; surprisingly, this bound also holds if k is part of the input. The
algorithm can be adapted to work in deterministic logarithmic space over a fixed alphabet.
As a consequence, on input u, v, k, one can test in time O(|A| |uv|) whether u ∼k v holds.
The main tool are the minimal lengths of X-rankers and Y-rankers reaching any position of a
word. The key ingredient in the proofs are the so-called canonical rankers.

It would be interesting to see whether the space complexity for an arbitrary alphabet can
be further improved from O(|A| log n) to nondeterministic log-space or even deterministic
log-space if the alphabet A is part of the input. In addition, we still lack corresponding lower
bounds for the computation of shortlex normal forms and for the test of whether u ∼k v

holds.

L. Fleischer and M. Kufleitner 62:13

References
1 Sung Cho and Dung T. Huynh. Finite automaton aperiodicity is PSPACE-complete. The-

oretical Computer Science, 88:96–116, 1991.
2 Jie Fu, Jeffrey Heinz, and Herbert G. Tanner. An algebraic characterization of strictly

piecewise languages. In Mitsunori Ogihara and Jun Tarui, editors, Theory and Applications
of Models of Computation, volume 6648 of LNCS, pages 252–263, Berlin, Heidelberg, 2011.
Springer.

3 Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society. Third Series, 2:326–336, 1952.

4 Stepan Holub, Tomás Masopust, and Michaël Thomazo. Alternating towers and piecewise
testable separators. CoRR, abs/1409.3943, 2014.

5 J. E. Hopcroft and R. Karp. A linear algorithm for testing equivalence of finite automata.
Technical Report 71-114, Dept. of Computer Science, Cornell U, December 1971.

6 P. Karandikar, M. Kufleitner, and Ph. Schnoebelen. On the index of Simon’s congruence
for piecewise testability. Information Processing Letters, 115(4):515–519, 2015.

7 Kamilla Kátai-Urbán, Péter Pál Pach, Gabriella Pluhár, András Pongrácz, and Csaba
Szabó. On the word problem for syntactic monoids of piecewise testable languages. In
Semigroup Forum, volume 84, pages 323–332. Springer, 2012.

8 O. Klíma, M. Kunc, and L. Polák. Deciding k-piecewise testability, submitted.
9 Ondřej Klíma and Libor Polák. Alternative automata characterization of piecewise testable

languages. In Marie-Pierre Béal and Olivier Carton, editors, DLT 2013, Proceedings, volume
7907 of Lecture Notes in Computer Science, pages 289–300. Springer, 2013.

10 Leonid Aryeh Kontorovich, Corinna Cortes, and Mehryar Mohri. Kernel methods for learn-
ing languages. Theoretical Computer Science, 405(3):223–236, 2008.

11 Tomás Masopust and Michaël Thomazo. On the complexity of k-piecewise testability and
the depth of automata. In DLT 2015, Proceedings, volume 9168 of Lecture Notes in Com-
puter Science, pages 364–376. Springer, 2015.

12 Péter Pál Pach. Solving equations under Simon’s congruence. In JHSDM 2015, Proceedings,
pages 201–206, 2015.

13 Péter Pál Pach. Normal forms under Simon’s congruence. Semigroup Forum, Dec 2017.
14 James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome,

and Sean Wibel. On languages piecewise testable in the strict sense. In Christian Ebert,
Gerhard Jäger, and Jens Michaelis, editors, The Mathematics of Language, pages 255–265,
Berlin, Heidelberg, 2010. Springer.

15 José Ruiz and Pedro García. Learning k-piecewise testable languages from positive data.
In Laurent Miclet and Colin de la Higuera, editors, Grammatical Interference: Learning
Syntax from Sentences, pages 203–210, Berlin, Heidelberg, 1996. Springer.

16 Thomas Schwentick, Denis Thérien, and Heribert Vollmer. Partially-ordered two-way au-
tomata: A new characterization of DA. In DLT 2001, Proceedings, volume 2295 of LNCS,
pages 239–250. Springer, 2002.

17 Imre Simon. Hierarchies of events with dot-depth one. PhD thesis, University of Waterloo,
1972.

18 Imre Simon. Piecewise testable events. In Autom. Theor. Form. Lang., 2nd GI Conf.,
volume 33 of LNCS, pages 214–222. Springer, 1975.

19 Jacques Stern. Characterization of some classes of regular events. Theor. Comput. Sci.,
35:17–42, 1985.

20 Wolfgang Thomas. Classifying regular events in symbolic logic. J. Comput. Syst. Sci.,
25:360–376, 1982.

21 A. N. Trahtman. Piecewise and local threshold testability of DFA. In Rusins Freivalds,
editor, FCT 2001, Proceedings, volume 2138 of LNCS, pages 347–358. Springer, 2001.

22 Philipp Weis and Neil Immerman. Structure theorem and strict alternation hierarchy for
FO2 on words. Log. Methods Comput. Sci., 5(3):1–23, 2009.

MFCS 2018

On the Price of Independence for Vertex Cover,
Feedback Vertex Set and Odd Cycle Transversal
Konrad K. Dabrowski1

Department of Computer Science, Durham University, UK
konrad.dabrowski@durham.ac.uk

https://orcid.org/0000-0001-9515-6945

Matthew Johnson2

Department of Computer Science, Durham University, UK
matthew.johnson2@durham.ac.uk

https://orcid.org/0000-0002-7295-2663

Giacomo Paesani
Department of Computer Science, Durham University, UK
giacomo.paesani@durham.ac.uk

https://orcid.org/0000-0002-2383-1339

Daniël Paulusma3

Department of Computer Science, Durham University, UK
daniel.paulusma@durham.ac.uk

https://orcid.org/0000-0001-5945-9287

Viktor Zamaraev4

Department of Computer Science, Durham University, UK
viktor.zamaraev@durham.ac.uk

https://orcid.org/0000-0001-5755-4141

Abstract
Let vc(G), fvs(G) and oct(G) denote, respectively, the size of a minimum vertex cover, minimum
feedback vertex set and minimum odd cycle transversal in a graph G. One can ask, when looking
for these sets in a graph, how much bigger might they be if we require that they are independent;
that is, what is the price of independence? If G has a vertex cover, feedback vertex set or odd
cycle transversal that is an independent set, then we let, respectively, ivc(G), ifvs(G) or ioct(G)
denote the minimum size of such a set. We investigate for which graphs H the values of ivc(G),
ifvs(G) and ioct(G) are bounded in terms of vc(G), fvs(G) and oct(G), respectively, when the
graph G belongs to the class of H-free graphs. We find complete classifications for vertex cover
and feedback vertex set and an almost complete classification for odd cycle transversal (subject
to three non-equivalent open cases).

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases vertex cover, feedback vertex set, odd cycle transversal, price of inde-
pendence

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.63

1 Supported by EPSRC (EP/K025090/1) and the Leverhulme Trust (RPG-2016-258).
2 Supported by the Leverhulme Trust (RPG-2016-258).
3 Supported by EPSRC (EP/K025090/1) and the Leverhulme Trust (RPG-2016-258).
4 Supported by EPSRC (EP/P020372/1).

© Konrad K. Dabrowski, Matthew Johnson, Giacomo Paesani, Daniël Paulusma, and Viktor
Zamaraev;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 63; pp. 63:1–63:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:konrad.dabrowski@durham.ac.uk
https://orcid.org/0000-0001-9515-6945
mailto:matthew.johnson2@durham.ac.uk
https://orcid.org/0000-0002-7295-2663
mailto:giacomo.paesani@durham.ac.uk
https://orcid.org/0000-0002-2383-1339
mailto:daniel.paulusma@durham.ac.uk
https://orcid.org/0000-0001-5945-9287
mailto:viktor.zamaraev@durham.ac.uk
https://orcid.org/0000-0001-5755-4141
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.63
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

63:2 On the Price of Independence

1 Introduction

We define a number of transversals of the vertex set of a graph G. A set S ⊆ V (G) is a
vertex cover if for every edge uv ∈ E(G), at least one of u and v is in S, or, equivalently, if
the graph G− S contains no edges. A set S ⊆ V (G) is a feedback vertex set if for every cycle
in G, at least one vertex of the cycle is in S, or, equivalently, if the graph G− S is a forest.
A set S ⊆ V (G) is an odd cycle transversal if for every cycle in G containing an odd number
of vertices, at least one vertex of the cycle is in S, or, equivalently, if the graph G − S is
bipartite. For each of these transversals, one usually wishes to investigate how small they
can be and there is a vast research literature on this topic.

One can add an additional constraint: require the transversal to be an independent set,
that is, a set of vertices that are pairwise non-adjacent. It might be possible that no such
transversal exists under this constraint. For example, a graph G has an independent vertex
cover if and only if G is bipartite. We are interested in the following research question:

How is the minimum size of a transversal in a graph affected by adding the requirement
that the transversal is independent?

Of course, this question can be interpreted in many ways; for example, one might ask about
the computational complexity of finding the transversals. In this paper, we focus on the
following: for the three transversals introduced above, is the size of a smallest possible
independent transversal (assuming one exists) bounded in terms of the minimum size of a
transversal? That is, one might say, what is the price of independence?

To the best of our knowledge, the term price of independence was first used by Camby [4]
in a recent unpublished manuscript. She considered dominating sets of graphs (sets of vertices
such that every vertex outside the set has a neighbour in the set). As she acknowledged,
though first to coin the term, she was building on past work. In fact, Camby and her
co-author Plein had given a forbidden induced subgraph characterization of those graphs G

for which, for every induced subgraph of G, there are minimum size dominating sets that are
already independent [6], and there are a number of further papers on the topic of the price
of independence for dominating sets (see the discussion in [4]).

We observe that this incipient work on the price of independence is a natural companion
to recent work on the price of connectivity, investigating the relationship between minimum
size transversals and minimum size connected transversals (which, in contrast to independent
transversals, will always exist for the transversals we consider, assuming the input graph is
connected). This work began with the work of Cardinal and Levy in their 2010 paper [8]
and has since been taken in several directions; see, for example, [1, 5, 7, 9, 11, 12].

In this paper, as we broaden the study of the price of independence by investigating the
three further transversals defined above, we will concentrate on classes of graphs defined by
a single forbidden induced subgraph H, just as was done for the price of connectivity [1, 12].
That is, for a graph H , we ask what, for a given type of transversal, is the price of independence
in the class of H-free graphs? The ultimate aim in each case is to find a dichotomy that
allows us to say, given H , whether or not the size of a minimum size independent transversal
can be bounded in terms of the size of a minimum transversal. We briefly give some necessary
definitions and notation before presenting our results.

A colouring of a graph G is an assignment of positive integers (called colours) to the
vertices of G such that if two vertices are adjacent, then they are assigned different colours.
A graph is k-colourable if there is a colouring that only uses colours from the set {1, . . . , k}.
Equivalently, a graph is k-colourable if we can partition its vertex set into k (possibly empty)

K.K. Dabrowski, M. Johnson, G. Paesani, D. Paulusma, and V. Zamaraev 63:3

independent sets (called colour classes or partition classes). For s, t ≥ 0, let Ks,t denote the
complete bipartite graph with partition classes of size s and t, respectively (note that Ks,t is
edgeless if s = 0 or t = 0). For r ≥ 0, the graph K1,r is also called the (r + 1)-vertex star ; if
r ≥ 2 we say that the vertex in the partition class of size 1 is the central vertex of this star.
For n ≥ 1, let Pn and Kn denote the path and complete graph on n vertices, respectively.
For n ≥ 3, let Cn denote the cycle on n vertices. For r ≥ 1, let K+

1,r denote the graph
obtained from K1,r by subdividing one edge. The disjoint union G + H of two vertex-disjoint
graphs G and H is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). We
denote the disjoint union of r copies of a graph G by rG.

The Price of Independence for Vertex Cover. As mentioned above, a graph has an
independent vertex cover if and only if it is bipartite. For a bipartite graph G, let vc(G)
denote the size of a minimum vertex cover, and let ivc(G) denote the size of a minimum
independent vertex cover. Given a class X of bipartite graphs, we say that X is ivc-bounded
if there is a function f : Z≥0 → Z≥0 such that ivc(G) ≤ f(vc(G)) for every G ∈ X and we
say that X is ivc-unbounded if no such function exists, that is, if there is a k such that for
every s ≥ 0 there is a graph G in X with vc(G) ≤ k, but ivc(G) ≥ s.

In our first main result, proven in Section 2, we determine for every graph H , whether or
not the class of H-free bipartite graphs is ivc-bounded.

I Theorem 1. Let H be a graph. The class of H-free bipartite graphs is ivc-bounded if and
only if H is an induced subgraph of K1,r + rP1 or K+

1,r for some r ≥ 1.

The Price of Independence for Feedback Vertex Set. A graph has an independent feed-
back vertex set if and only if its vertex set can be partitioned into an independent set
and a set of vertices that induces a forest; graphs that have such a partition are said to
be near-bipartite. In fact, minimum size independent feedback vertex sets have been the
subject of much research from a computational perspective: to find such a set is, in general,
NP-hard, but there are fixed-parameter tractable algorithms and polynomial-time algorithms
for certain graph classes; we refer to [2] for further details. For a near-bipartite graph G,
let fvs(G) denote the size of a minimum feedback vertex set, and let ifvs(G) denote the size
of a minimum independent feedback vertex set. Given a class X of near-bipartite graphs, we
say that X is ifvs-bounded if there is a function f : Z≥0 → Z≥0 such that ifvs(G) ≤ f(fvs(G))
for every G ∈ X and ifvs-unbounded otherwise.

In our second main result, proven in Section 3, we determine for every graph H, whether
or not the class of H-free near-bipartite graphs is ifvs-bounded.

I Theorem 2. Let H be a graph. The class of H-free near-bipartite graphs is ifvs-bounded
if and only if H is isomorphic to P1 + P2, a star or an edgeless graph.

The Price of Independence for Odd Cycle Transversal. A graph has an independent odd
cycle transversal S if and only if it has a 3-colouring, since, by definition, we are requesting
that S is an independent set of G such that G − S has a 2-colouring. For a 3-colourable
graph G, let oct(G) denote the size of a minimum odd cycle transversal, and let ioct(G)
denote the size of a minimum independent odd cycle transversal. Given a class X of 3-
colourable graphs, we say that X is ioct-bounded if there is a function f : Z≥0 → Z≥0 such
that ioct(G) ≤ f(oct(G)) for every G ∈ X and ioct-unbounded otherwise.

In our third main result, proven in Section 4, we address the question of whether or not,
for a graph H , the class of H-free 3-colourable graphs is ifvs-bounded. Here, we do not have
a complete dichotomy due to three missing cases, as we will discuss at the end of Section 4.

MFCS 2018

63:4 On the Price of Independence

I Theorem 3. Let H be a graph. The class of H-free 3-colourable graphs is ioct-bounded:
if H is an induced subgraph of P4 or K1,3 + sP1 for some s ≥ 0 and
only if H is an induced subgraph of K+

1,4 or K1,4 + sP1 for some s ≥ 0.

Further Notation. Let G be a graph. For x ∈ V (G), the (open) neighbourhood N(v) of v is
the set of vertices adjacent to v; the closed neighbourhood N [v] = N(v)∪ {v}. For x ∈ V (G),
let deg(v) = |N(v)| denote the degree of v. If S ⊆ V (G), then N(S) = {v ∈ V (G) \ S | ∃u ∈
S, uv ∈ E(G)} and N [S] = N(S) ∪ S. For two vertices x, y ∈ V (G), let dist(x, y) denote
the length of a shortest path from x to y (let dist(x, y) = ∞ if x and y are in different
connected components of G). For S ⊆ V (G), let G[S] be the induced subgraph of G on S,
that is, the graph with vertex set S, where two vertices in S are adjacent if and only if they
are adjacent in G. For S ⊆ V (G), let G − S denote G[V (G) \ S]. A vertex y ∈ V (G) is
complete (resp. anti-complete) to a set X ⊆ V (G) if y is adjacent (resp. not adjacent) to
every vertex in X. A set Y ⊆ V (G) is complete (resp. anti-complete) to a set X ⊆ V (G) if
every vertex of Y is complete (resp. anti-complete) to X. A vertex v ∈ V (G) is dominating
if it is complete to V (G) \ {v}. The complement G of a graph G has the same vertex set
as G and an edge between two distinct vertices if and only if these vertices are not adjacent
in G. A graph is complete multi-partite if its vertex set can be partitioned into independent
sets that are complete to each other. For a set of graphs {H1, . . . , Hs}, a graph is said to be
(H1, . . . , Hs)-free if it contains no induced subgraph isomorphic to a graph in the set.

2 Vertex Cover

We start with a useful lemma.

I Lemma 4. Let r, s ≥ 1. If G is a (K1,r + sP1)-free bipartite graph with bipartition (X, Y)
such that |X|, |Y | ≥ rs + r − 1, then either:

every vertex of G has degree less than r or
fewer than s vertices of X have more than s− 1 non-neighbours in Y and fewer than s

vertices of Y have more than s− 1 non-neighbours in X.

Proof. Let G be a (K1,r + sP1)-free bipartite graph with bipartition (X, Y) such that
|X|, |Y | ≥ rs + r− 1. No vertex in X can have both r neighbours and s non-neighbours in Y ,
otherwise G would contain an induced K1,r + sP1. Therefore every vertex in X has degree
either at most r− 1 or at least |Y | − (s− 1) ≥ rs + r− s. By symmetry, we may assume that
there is a vertex x ∈ X of degree at least r. Suppose, for contradiction, that there is a set
X ′ ⊆ X of s vertices, each of which has more than s− 1 non-neighbours in Y . Then every
vertex of X ′ has degree at most r− 1. Since deg(x) ≥ rs + r− s = s(r− 1) + r, there must be
a set Y ′ ⊆ N(x) of r neighbours of x that have no neighbours in X ′. Then G[{x} ∪ Y ′ ∪X ′]
is a K1,r + sP1, a contradiction. It follows that fewer than s vertices in X have more than
s− 1 non-neighbours in Y . Since |X| ≥ r + (s− 1), there is a set X ′′ (X of r vertices, each
of which have at most s − 1 non-neighbours in Y . Since |Y | > r(s − 1), there must be a
vertex y ∈ Y that is complete to X ′′, and therefore has deg(y) ≥ r. Repeating the above
argument, it follows that fewer than s vertices of Y have more than s− 1 non-neighbours
in X. This completes the proof. J

Recall that a graph has an independent vertex cover if and only if it is bipartite.

I Lemma 5. Let r, s ≥ 1. If G is a (K1,r + sP1)-free bipartite graph, then ivc(G) ≤
vc(G)r + rs.

K.K. Dabrowski, M. Johnson, G. Paesani, D. Paulusma, and V. Zamaraev 63:5

Proof. Let G be a (K1,r + sP1)-free bipartite graph. Fix a bipartition (X, Y) of G. Let S

be a minimum vertex cover of G, so |S| = vc(G). We may assume that vc(G) ≥ 2, otherwise
ivc(G) = vc(G), in which case we are done. We may also assume that |X|, |Y | > vc(G)r+rs >

rs + r − 1, otherwise X or Y is an independent vertex cover of the required size, and we are
done. If every vertex of G has degree at most r − 1, then S′ = (S ∩ Y) ∪ (N(S ∩X)) is an
independent vertex cover in G of size at most vc(G)(r − 1), and we are done. By Lemma 4,
we may therefore assume that fewer than s vertices of X have more than s−1 non-neighbours
in Y . We will show that this leads to a contradiction. Since |X|, |Y | ≥ vc(G) + s, there must
be a set S′ of vc(G) + 1 vertices in X that have at least vc(G) + 1 neighbours in Y . If a
vertex x ∈ V (G) has degree at least vc(G) + 1, then |N(x)| > |S|, so x ∈ S. Therefore every
vertex of S′ must be in S, contradicting the fact that |S′| = vc(G) + 1 > vc(G) = |S|. J

I Lemma 6. Let r ≥ 2. If G is a K+
1,r-free bipartite graph, then ivc(G) ≤ (vc(G))2(r − 1).

Proof. Clearly it is sufficient to prove the lemma for connected graphs G. Let G be a
connected K+

1,r-free bipartite graph. Fix a bipartition (X, Y) of G. Let S be a minimum
vertex cover of G, so |S| = vc(G). We may assume that vc(G) ≥ 2, otherwise ivc(G) = vc(G)
and we are done. We may also assume that |X|, |Y | > (vc(G))2(r − 1), otherwise X or Y is
an independent vertex cover of the required size.

If there are two vertices x, y ∈ X with dist(x, y) = 2 and deg(x) ≥ deg(y) + (r − 1),
then x, y, a common neighbour of x and y, and r − 1 vertices from N(x) \ N(y) would
induce a K+

1,r in G, a contradiction. Therefore, if x, y ∈ X with dist(x, y) = 2, then
| deg(x)− deg(y)| ≤ r− 2, so | deg(x)− deg(y)| ≤ (r−2

2) dist(x, y). By the triangle inequality
and induction, it follows that if x, y ∈ X, then | deg(x)− deg(y)| ≤ (r−2

2) dist(x, y). Observe
that vc(P2 vc(G)+2) = vc(G) + 1, so G must be P2 vc(G)+2-free. Since G is connected, it
follows that if x, y ∈ V (G), then dist(x, y) < 2 vc(G) + 1. We conclude that if x, y ∈ X,
then | deg(x)− deg(y)| ≤ vc(G)(r − 2). Note that if a vertex x ∈ V (G) has degree at least
vc(G) + 1, then |N(x)| > |S| and so x ∈ S.

Since |X| > (vc(G))2(r − 1) > vc(G) = |S|, there must be a vertex y ∈ X \ S. Since
y ∈ X \ S, it follows that deg(y) ≤ vc(G). It follows that deg(x) ≤ deg(y) + vc(G)(r − 2) ≤
vc(G)(r − 1) for all x ∈ X. We conclude that S′ = (S ∩ Y) ∪ (N(S ∩X)) is an independent
vertex cover in G of size at most (vc(G))2(r − 1). This completes the proof. J

We are now ready to prove the main result of this section.

I Theorem 1 (restated). Let H be a graph. The class of H-free bipartite graphs is
ivc-bounded if and only if H is an induced subgraph of K1,r + rP1 or K+

1,r for some r ≥ 1.

Proof. If H is an induced subgraph of K1,r + rP1 or K+
1,r for some r, then Lemma 5 or 6,

respectively, implies that the class of H-free bipartite graphs is ivc-bounded.
Now let H be a graph and suppose that there is a function f : Z≥0 → Z≥0 such that

ivc(G) ≤ f(vc(G)) for all H-free bipartite graphs G. We will show that H is an induced
subgraph of K1,r + rP1 or K+

1,r for some r.
For r ≥ 1, s ≥ 2, let Dr

s denote the graph formed from 2K1,s and P2r by identifying the
two end-vertices of the P2r with the central vertices of the respective K1,s’s (see also Figure 1;
a graph of the form D1

s is said to be a double-star). It is easy to verify that vc(Dr
s) = r + 1

and ivc(Dr
s) = r + s. Therefore, for every r ≥ 1, Dr

f(r+1) cannot be H-free by definition of f .
Note that for r, s, t ≥ 1, if s ≤ t then Dr

s is an induced subgraph of Dr
t . Therefore, for each

r ≥ 1, there must be an s such that Dr
s is not H-free. In other words, for each r ≥ 1, H

must be an induced subgraph of Dr
s for some s.

MFCS 2018

63:6 On the Price of Independence

Figure 1 The graphs D1
3 and D2

2 . The black vertices form a minimum independent vertex cover.

In particular, this means that we may assume that H is an induced subgraph of D1
t for

some t ≥ 1. If H contains at most one of the central vertices of the stars that form the D1
t ,

then H is an induced subgraph of K1,t + tP1 and we are done, so we may assume H contains
both central vertices. If one of these central vertices has at most one neighbour that is
not a central vertex, then H is an induced subgraph of K+

1,t+1, and we are done. We may
therefore assume that H contains an induced D1

2. However, for every s ≥ 1, D2
s is D1

2-free
and therefore H-free. This contradiction completes the proof. J

3 Feedback Vertex Set

Recall that a graph has an independent feedback vertex set if and only if it is near-bipartite.

I Lemma 7. If G is a (P1 + P2)-free near-bipartite graph, then ifvs(G) = fvs(G).

Proof. Let G be a (P1 + P2)-free near-bipartite graph. Note that G is a P3-free graph, so G

is a disjoint union of cliques. It follows that G is a complete multi-partite graph, say with a
partition of its vertex sets into k non-empty independent sets V1, . . . , Vk. We may assume
that k ≥ 2, otherwise G is an edgeless graph, in which case ifvs(G) = fvs(G) = 0 and we are
done. Since G is near-bipartite, it contains an independent set I such that G− I is a forest.
Note that I ⊆ Vi for some i ∈ {1, . . . , k}. Since near-bipartite graphs are 3-colourable, it
follows that k ≤ 3. Furthermore, if k = 3, then |Vj | = 1 for some j ∈ {1, 2, 3} \ {i}, otherwise
G− I would contain an induced C4, a contradiction. In other words G is either a complete
bipartite graph or the graph formed from a complete bipartite graph by adding a dominating
vertex.

First suppose that k = 2, so G is a complete bipartite graph. Without loss of generality
assume that |V1| ≥ |V2| ≥ 1. Let S be a feedback vertex set of G. If there are two vertices
in V1 \ S and two vertices in V2 \ S, then these vertices would induce a C4 in G − S, a
contradiction. Therefore S must contain all but at most one vertex of V1 or all but at most
one vertex of V2, so fvs(G) ≥ min(|V1| − 1, |V2| − 1) = |V2| − 1. Let I be a set consisting of
|V2| − 1 vertices of V2. Then I is independent and G− I is a star, so I is an independent
feedback vertex set. It follows that ifvs(G) ≤ |V2| − 1. Since fvs(G) ≤ ifvs(G), we conclude
that ifvs(G) = fvs(G) in this case.

Now suppose that k = 3, so G is obtained from a complete bipartite graph by adding
a dominating vertex. Without loss of generality assume that |V1| ≥ |V2| ≥ |V3| = 1. Let S

be a feedback vertex set of G. By the same argument as in the k = 2 case, S must contain
all but at most one vertex of V1 or all but at most one vertex of V2. If there is a vertex
in Vi \ S for all i ∈ {1, 2, 3}, then these three vertices would induce a C3 in G − S, a
contradiction. Therefore S must contain every vertex in Vi for some i ∈ {1, 2, 3}. Since
|V1| ≥ |V2| ≥ |V3| = 1, it follows that |S| ≥ min(|V2| − 1 + |V3|, |V2|) = |V2|. Therefore
fvs(G) ≥ |V2|. Now V2 is an independent set and G− V2 is a star, so V2 is an independent
feedback vertex set. It follows that ifvs(G) ≤ |V2|. Since fvs(G) ≤ ifvs(G), we conclude that
ifvs(G) = fvs(G). J

K.K. Dabrowski, M. Johnson, G. Paesani, D. Paulusma, and V. Zamaraev 63:7

u v

U1 U2 U3 V 1 V 2 V 3

Figure 2 The graph S3
3 .

I Lemma 8. If r ≥ 1 and G is a K1,r-free near-bipartite graph, then ifvs(G) ≤ (2r2 − 5r +
3) fvs(G).

Proof. Fix integers k ≥ 0 and r ≥ 1. Suppose G is a K1,r-free near-bipartite graph with a
feedback vertex set S such that |S| = k. Since G is near-bipartite, V (G) can be partitioned
into an independent set V1 and a set V (G) \ V1 that induces a forest in G. Since forests are
bipartite, we can partition V (G) \ V1 into two independent sets V2 and V3.

Suppose x ∈ Vi for some i ∈ {1, 2, 3}. Then x has no neighbours in Vi since Vi is an
independent set. For j ∈ {1, 2, 3} \ {i}, the vertex x can have at most r − 1 neighbours
in Vj , otherwise G would contain an induced K1,r. It follows that deg(x) ≤ 2(r − 1) for all
x ∈ V (G).

Let S′ = S. Let F ′ = V (G) \ S′, so G[F ′] is a forest. To prove the lemma, we will
iteratively modify S′ until we obtain an independent feedback vertex set S′ of G with
|S′| ≤ (2r2 − 5r + 3)|S|. Every vertex u ∈ S′ has at most 2r − 2 neighbours in F ′. Consider
two neighbours v, w of u in F ′. As F ′ is a forest, there is at most one induced path in F ′

from v to w, so there is at most one induced cycle in G[F ′ ∪ {u}] that contains all of u, v

and w. Therefore G[F ′ ∪{u}] contains at most
(2r−2

2
)

= 1
2 (2r− 2)(2r− 2− 1) = 2r2− 5r + 3

induced cycles. Note that every cycle in G contains at least one vertex of V1. Therefore, if
s ∈ S′∩(V2∪V3), then we can find a set X of at most 2r2−5r+3 vertices in V1\S′ such that if
we replace s in S′ by the vertices of X, then we again obtain a feedback vertex set. Repeating
this process iteratively, for each vertex we remove from S′∩(V2∪V3), we add at most 2r2−5r+3
vertices to S′ ∩V1. We stop the procedure once S′ ∩ (V2 ∪V3) becomes empty, at which point
we have produced a feedback vertex set S′ with |S′| ≤ (2r2 − 5r + 3)|S|. Furthermore, at
this point S′ ⊆ V1, so S′ is independent. It follows that ifvs(G) ≤ (2r2 − 5r + 3) fvs(G). J

Note that all near-bipartite graphs are 3-colourable (use one colour for the independent
set and the two other colours for the forest). We prove the following lemma.

I Lemma 9. Let k ≥ 3. The class of Ck-free near-bipartite graphs is ifvs-unbounded and
ioct-unbounded.

Proof. For r, s ≥ 2, let Sr
s denote the graph constructed as follows (see also Figure 2).

Start with the graph that is the disjoint union of 2s copies of P2r, and label these copies
U1, . . . , U s, V 1, . . . , V s. Add a vertex u adjacent to both endpoints of every U i and a vertex v

adjacent to both endpoints of every V i. Finally, add an edge between u and v.
Every induced cycle in Sr

s is isomorphic to C2r+1, which is an odd cycle. Thus a set
S ⊆ V (Sr

s) is a feedback vertex set for Sr
s if and only if it is an odd cycle transversal for Sr

s .
It follows that fvs(Sr

s) = oct(Sr
s) and ifvs(Sr

s) = ioct(Sr
s).

Now {u, v} is a minimum feedback vertex set of Sr
s , so fvs(Sr

s) = oct(Sr
s) = 2. However,

any independent feedback vertex set S contains at most one vertex of u and v; say it
does not contain u. Then it must contain at least one vertex of each U i. It follows that
ifvs(Sr

s) = ioct(Sr
s) ≥ s + 1. Since for every s ≥ 2, k ≥ 3, the graph Sk

s is Ck-free. This
completes the proof. J

MFCS 2018

63:8 On the Price of Independence

x4x3x2x1

Figure 3 The graphs T5 and T ′
5. The edge x2x3 is present in T5, but not in T ′

5.

I Theorem 2 (restated). Let H be a graph. The class of H-free near-bipartite graphs is
ifvs-bounded if and only if H is isomorphic to P1 + P2, a star or an edgeless graph.

Proof. If H = P1 + P2, then the theorem holds by Lemma 7. If H is isomorphic to a star or
an edgeless graph, then H is an induced subgraph of K1,r for some r ≥ 1. In this case the
theorem holds by Lemma 8.

Now suppose that the class of H-free near-bipartite graphs is ifvs-bounded. By Lemma 9,
H must be a forest. We will show that H is isomorphic to P1 + P2, a star or an edgeless
graph.

We start by showing that H must be (P1+P3, 2P1+P2, 2P2)-free. Let vertices x1, x2, x3, x4,
in that order, form a path on four vertices. For s ≥ 3, let Ts be the graph obtained from this
path by adding an independent set I on s vertices (see also Figure 3) that is complete to
the path and note that Ts is near-bipartite. Then {x1, x2, x3} is a minimum feedback vertex
set in Ts. However, if S is an independent feedback vertex set, then S contains at most
two vertices in {x1, . . . , x4}. Therefore S must contain at least s− 1 vertices of I, otherwise
Ts−S would contain an induced C3 or C4. Therefore fvs(Ts) = 3 and ifvs(Ts) ≥ s− 1. Note
that Ts is (P1 + P3, 2P1 + P2, 2P2)-free (this is easy to see by casting to the complement and
observing that Ts is the disjoint union of a P4 and a complete graph). Therefore H cannot
contain P1 + P3, 2P1 + P2 or 2P2 as an induced subgraph, otherwise Ts would be H-free, a
contradiction.

Next, we show that H must be P4-free. For s ≥ 3 let T ′s be the graph obtained from Ts

by removing the edge x2x3 (see also Figure 3). Then {x1, x2, x3} is a minimum feedback
vertex set in T ′s, so fvs(T ′s) = 3. By the same argument as for Ts, we find that ifvs(T ′s) ≥ s−1
Now the complement T ′s is the disjoint union of a C4 and a complete graph, so T ′s is P4-free.
Therefore H cannot contain P4 as an induced subgraph.

We may now assume that H is a (P1 +P3, 2P1 +P2, 2P2, P4)-free forest. If H is connected,
then it is a P4-free tree, so it is a star, in which case we are done. We may therefore assume
that H is disconnected. We may also assume that H contains at least one edge, otherwise
we are done. Since H is (2P1 + P2)-free, it cannot have more than two components. Since H

is 2P2-free, one of its two components must be isomorphic to P1. Since H is a (P1 + P3)-free
forest, its other component must be isomorphic to P2. Hence H is isomorphic to P1 + P2.
This completes the proof. J

4 Odd Cycle Transversal

Recall that a graph has an independent odd cycle transversal if and only if it is 3-colourable.
We show the following two lemmas.

I Lemma 10. If G is a P4-free 3-colourable graph, then ioct(G) = oct(G).

Proof. Let G be a P4-free 3-colourable graph. It suffices to prove the lemma component-wise,
so we may assume that G is connected. Note that G cannot contain any induced odd cycles
on more than three vertices, as it is P4-free. Let (V1, V2, V3) be a partition of V (G) into

K.K. Dabrowski, M. Johnson, G. Paesani, D. Paulusma, and V. Zamaraev 63:9

independent sets. We may assume that G is not bipartite, otherwise ioct(G) = oct(G) = 0,
in which case we are done. As G is connected, P4-free and contains more than one vertex,
its complement G must be disconnected. Therefore we can partition the vertex set of G

into two parts X1 and X2 such that X1 is complete to X2. No independent set Vi can have
vertices in both X1 and X2, so without loss of generality we may assume that X1 = V1 and
X2 = V2 ∪ V3. Since G[X2] is a P4-free bipartite graph, it is readily seen that it is a disjoint
union of complete bipartite graphs.

Note that G−X1 is a bipartite graph, so X1 is an odd cycle transversal of G. Furthermore,
X1 is independent. Now let S be a minimum vertex cover of G[X2]. Observe that G− S is
bipartite, so S is an odd cycle transversal of G. Since G[X2] is the disjoint union of complete
bipartite graphs, for every component C of G[X2], S must contain one part of the bipartition
of C, or the other; by minimality of S, it only contains vertices from one of the parts. It
follows that S is independent.

We now claim that every minimum odd cycle transversal S of G contains either X1
or a minimum vertex cover of G[X2], both of which we have shown are independent odd
cycle transversals; by the minimality of S, this will imply that S is equal to one of them.
Indeed, suppose for contradiction that there is a vertex x ∈ X1 \ S and two adjacent vertices
y, z ∈ X2 \S. Then G[{x, y, z}] is a C3 in G−S. This contradiction completes the proof. J

I Lemma 11. If G is a K1,3-free 3-colourable graph, then ioct(G) ≤ 3 oct(G).

Proof. Fix an integer k ≥ 0. Let G be a K1,3-free 3-colourable graph with an odd cycle
transversal S such that |S| = k. Fix a partition of V (G) into three independent sets V1, V2, V3.
Without loss of generality assume that |S ∩ V1| ≥ |S ∩ V2|, |S ∩ V3|, so |S ∩ (V2 ∪ V3)| ≤ 2k

3 .
Let S′ = S and note that G − S′ is bipartite by definition of odd cycle transversal. To
prove the lemma, we will iteratively modify S′ until we obtain an independent odd cycle
transversal S′ of G with |S′| ≤ 3k.

Suppose x ∈ Vi for some i ∈ {1, 2, 3}. Then x has no neighbours in Vi since Vi is an
independent set. For j ∈ {1, 2, 3} \ {i}, the vertex x can have at most two neighbours in Vj ,
otherwise G would contain an induced K1,3. It follows that deg(x) ≤ 4 for all x ∈ V (G).

As G− S′ is a bipartite K1,3-free graph, it is a disjoint union of paths and even cycles.
Every vertex u ∈ S′ has at most four neighbours in V (G) \ S′. An induced odd cycle
in G − (S′ \ {u}) consists of the vertex u and an induced path P in G − S′ between two
neighbours v, w of u such that P ∩N(u) does not contain any vertices apart from v and w.
If u has q neighbours in some component C of G − S′, then there can be at most q such
paths P that lie in this component. It follows that there are at most four induced odd cycles
in G− (S′ \ {u}). Note that every induced odd cycle in G contains at least one vertex in
each Vi. Therefore, if s ∈ S′ ∩ (V2 ∪ V3), then we can find a set X of at most four vertices
in V1 \ S′ such that if we replace s in S′ by the vertices of X, then we again obtain an
odd cycle transversal. Repeating this process iteratively, for each vertex we remove from
S′ ∩ (V2 ∪ V3), we add at most four vertices to S′ ∩ V1, so |S′| increases by at most 3. We
stop the procedure once S′ ∩ (V2 ∪ V3) becomes empty, at which point we have produced an
odd cycle transversal S′ with |S′| ≤ |S|+ 3|S ∩ (V2 ∪ V3)| ≤ k + 2× 2k

3 = 3k. Furthermore,
at this point S′ ⊆ V1, so S′ is independent. It follows that ioct(G) ≤ 3 oct(G). J

I Lemma 12. Let r, s ≥ 1. Suppose there is a function f : Z≥0 → Z≥0 such that ioct(G) ≤
f(oct(G)) for every K1,r-free 3-colourable graph G. Then ioct(G) ≤ max(oct(G)r + r2 +
3rs− 2r, f(oct(G))) for every (K1,r + sP1)-free 3-colourable graph G.

MFCS 2018

63:10 On the Price of Independence

Proof. Fix r, s ≥ 1 and k ≥ 0. Let G be a (K1,r + sP1)-free 3-colourable graph with a
minimum odd-cycle transversal T on k vertices. Fix a partition of V (G) into three independent
sets V1, V2, V3. We may assume that oct(G) ≥ 2, otherwise ioct(G) = oct(G) and we are
done. If |Vi| ≤ max(oct(G)r +r2 +3rs−2r, f(oct(G))) for some i ∈ {1, 2, 3}, then deleting Vi

from G yields a bipartite graph, so ioct(G) ≤ max(oct(G)r + r2 + 3rs− 2r, f(oct(G))) and
we are done. We may therefore assume that |Vi| > max(oct(G)r + r2 + 3rs− 2r, f(oct(G)))
for all i ∈ {1, 2, 3}. If G is K1,r-free, then ioct(G) ≤ f(oct(G)), so suppose that G contains
an induced K1,r, say with vertex set X. Note that |X| = r + 1, and each Vi can contain at
most r vertices of X, since every Vi is an independent set.

For every i ∈ {1, 2, 3}, there cannot be a set of s vertices in Vi \ X that are anti-
complete to X, otherwise G would contain an induced K1,r + sP1, a contradiction. For
every i ∈ {1, 2, 3}, since |Vi| > oct(G)r + r2 + 3rs− 2r ≥ r2 + 3rs, it follows that |Vi \X| ≥
|Vi| − r > (s− 1) + (r + 1)(r − 1) = (s− 1) + |X|(r − 1). Hence for every i ∈ {1, 2, 3}, there
must be a vertex x ∈ X that has at least r neighbours in Vi. Applying this for each i in turn,
we find that at least two of the graphs in {G[V1 ∪V2], G[V1 ∪V3], G[V2 ∪V3]} contain a vertex
of degree at least r; without loss of generality assume that this is the case for G[V1 ∪ V2] and
G[V1 ∪ V3]. Let V ′2 and V ′3 denote the set of vertices in V2 and V3, respectively, that have
more than s− 1 non-neighbours in V1. By Lemma 4, |V ′2 |, |V ′3 | ≤ s− 1.

Suppose a vertex x ∈ V2\V ′2 is adjacent to a vertex y ∈ V3\V ′3 . By definition of V ′2 and V ′3 ,
the vertices x and y each have at most s− 1 non-neighbours in V1. Since |V1| − 2(s− 1) ≥
oct(G)+1, it follows that |N(x)∩N(y)∩V1| ≥ oct(G)+1 so N(x)∩N(y)∩V1 6⊆ T . We conclude
that at least one of x or y must be in T . In other words, T∩((V2\V ′2)∪(V3\V ′3)) is a vertex cover
of G[(V2\V ′2)∪(V3\V ′3)], of size at most oct(G). Therefore (T∩((V2\V ′2)∪(V3\V ′3)))∪V ′2∪V ′3 is a
vertex cover of G[V2∪V3] of size at most oct(G)+2(s−1). By Lemma 5, there is an independent
vertex cover T ′ of G[V2∪V3] of size at most (oct(G)+2(s−1))r+rs = oct(G)r+3rs−2r. Note
that by definition of vertex cover, (V2∪V3)\T ′ is an independent set, and so G−T ′ is bipartite.
Therefore T ′ is an independent odd cycle transversal for G of size at most oct(G)r + 3rs− 2r.
This completes the proof. J

The following result follows immediately from combining Lemmas 11 and 12.

I Corollary 13. For s ≥ 1, ioct(G) ≤ 3 oct(G)+9s+3 for every (K1,3 +sP1)-free 3-colourable
graph G.

I Lemma 14. The class of (P1 + P4, 2P2)-free 3-colourable graphs is ioct-unbounded.

Proof. Let s ≥ 2. We construct the graph Qs as follows (see also Figure 4). First, let A, B

and C be disjoint independent sets of s vertices. Choose vertices a ∈ A, b ∈ B and c ∈ C.
Add edges so that a is complete to B ∪C, b is complete to A∪C and c is complete to A∪B.
Let Qs be the resulting graph and note that it is 3-colourable with colour classes A, B and C.

Note that {a, b} is a minimum odd cycle transversal of Qs, so oct(Qs) = 2.
Let S be a minimum independent odd cycle transversal. Then S contains at most one

vertex in {a, b, c}, say S contains neither b nor c. If a vertex x ∈ A is not in S, then
Qs[{x, b, c}] is a C3 in Qs − S, a contradiction. Hence every vertex of A is in S, and so
ioct(Qs) ≥ s.

It remains to show that Qs is (P1 + P4, 2P2)-free. Consider a vertex x ∈ A. Then
Qs −N [x] is an edgeless graph if x = a and Qs −N [x] is the disjoint union of a star and an
edgeless graph otherwise. It follows that Qs −N [x] is P4-free. By symmetry, we conclude
that Qs is (P1 +P4)-free. Now consider a vertex y ∈ N(a)∩B. Then Qs−N [{a, y}] is empty
if b = y and Qs −N [{a, y}] is an edgeless graph otherwise. It follows that Qs −N [{a, y}] is
P2-free. By symmetry, we conclude that Qs is 2P2-free. This completes the proof. J

K.K. Dabrowski, M. Johnson, G. Paesani, D. Paulusma, and V. Zamaraev 63:11

A \ {a}

B \ {b} C \ {c}

a

bc

Figure 4 The graph Q4.

a b

U1 U2 U3 U4

Figure 5 The graph Z4.

I Lemma 15. Let H be a graph with more than one vertex of degree at least 3. Then the
class of H-free 3-colourable graphs is ioct-unbounded.

Proof. Let s ≥ 1. We construct the graph Zs as follows (see also Figure 5). Start with the
disjoint union of s copies of P4 and label these copies U1, . . . , U s. Add an edge ab and make a

and b adjacent to the endpoints of every U i. Let Zs be the resulting graph and note that Zs

is 3-colourable (colour a and b with Colours 1 and 2, respectively, colour the endpoints of
the U is with Colour 3 and colour the remaining vertices of the U is with Colours 1 and 2).

Note that Zs − {a, b} is bipartite, so {a, b} is a minimum odd cycle transversal and
oct(Zs) = 2. However, any independent odd cycle transversal S contains at most one vertex
of a and b; say it does not contain a. For every i ∈ {1, . . . , s}, the graph Zs[U i ∪ {a}] is a C5.
Therefore S must contain at least one vertex from each U i. It follows that ioct(Zs) ≥ s.

Let H be a graph with more than one vertex of degree at least 3. By Lemma 9, we may
assume that H is a forest. It remains to show that Zs is H-free. Suppose, for contradiction,
that Zs contains H as an induced subgraph and let x and y be two vertices that have degree
at least 3 in H. Since H is a forest, x and y must each have three pairwise non-adjacent
neighbours in Zs. The endpoints of each U i have exactly three neighbours, but two of them
(a and b) are adjacent. Without loss of generality we may therefore assume that x = a

and y = b. Since x has degree at least 3 in H, the vertex x must have a neighbour z 6= y

in H and so z must be the endpoint of a U i. Therefore x, y and z are pairwise adjacent, so
H[{x, y, z}] is a C3, contradicting the fact that H is a forest. It follows that Zs is H-free.
This completes the proof. J

MFCS 2018

63:12 On the Price of Independence

x
y

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

c1 c2 c3 c4 c5 c6

d1 d2 d3 d4 d5 d6

Figure 6 The graph Y2. Different shapes show the unique 3-colouring of Y2. Different colours
show the 2-colouring of Y2 − {x, y}.

I Lemma 16. The class of K1,5-free 3-colourable graphs is ioct-unbounded.

Proof. Let s ≥ 1. We construct the graph Ys as follows (see also Figure 6).
1. Start with the disjoint union of four copies of P3s and label the vertices of these paths

a1, . . . , a3s, b1, . . . , b3s, c1, . . . , c3s and d1, . . . , d3s in order, respectively.
2. For each i ∈ {1, . . . , 3s} add the edges aibi and cidi.
3. For each i ∈ {1, . . . , 3s− 1} add the edges aici+1 and dibi+1.
4. Finally, add an edge xy and make x adjacent to a1 and d1 and y adjacent to a1, b1, c1

and d1.
Let Ys be the resulting graph.

First note that Ys is K1,5-free. The vertices y, a1 and d1 all have degree 5, but their
neighbourhood is not independent, so they cannot be the central vertex of an induced K1,5.
All the other vertices have degree at most 4, so they cannot be the central vertex of an
induced K1,5 either. Therefore no vertex in Ys is the central vertex of an induced K1,5, so Ys

is K1,5-free.
The graph Ys − {x, y} is bipartite with bipartition classes:

1. {ai, ci | 1 ≤ i ≤ 3s, i ≡ 1 mod 2} ∪ {bi, di | 1 ≤ i ≤ 3s, i ≡ 0 mod 2} and
2. {ai, ci | 1 ≤ i ≤ 3s, i ≡ 0 mod 2} ∪ {bi, di | 1 ≤ i ≤ 3s, i ≡ 1 mod 2}.
It follows that oct(Ys) = 2.

Furthermore, Ys is 3-colourable with colour classes:
1. {x} ∪ {ai, di | 1 ≤ i ≤ 3s, i ≡ 2 mod 3} ∪ {bi, ci | 1 ≤ i ≤ 3s, i ≡ 1 mod 3}
2. {y} ∪ {ai, di | 1 ≤ i ≤ 3s, i ≡ 0 mod 3} ∪ {bi, ci | 1 ≤ i ≤ 3s, i ≡ 2 mod 3}
3. {ai, di | 1 ≤ i ≤ 3s, i ≡ 1 mod 3} ∪ {bi, ci | 1 ≤ i ≤ 3s, i ≡ 0 mod 3}
In fact, we will show that this 3-colouring is unique (up to permuting the colours). To see
this, suppose that c : V (Ys) → {1, 2, 3} is a 3-colouring of Ys. Since x and y are adjacent
we may assume without loss of generality that c(x) = 1 and c(y) = 2. Since a1 and d1 are
adjacent to both x and y, it follows that c(a1) = c(d1) = 3. Since b1 is adjacent to y and a1,
it follows that c(b1) = 1. By symmetry c(c1) = 1.

We prove by induction on i that for every i ∈ {1, . . . , 3s}, c(ai) = c(di) ≡ i + 2 mod 3
and c(bi) = c(ci) ≡ i mod 3. We have shown that this is true for i = 1. Suppose that the
claim holds for i− 1 for some i ∈ {2, . . . , 3s}. Then c(ai−1) = c(di−1) ≡ (i− 1) + 2 mod 3
and c(bi−1) = c(ci−1) ≡ i − 1 mod 3. Since bi is adjacent to bi−1 and di−1, it follows
that c(bi) ≡ i mod 3. Since ai is adjacent to bi and ai−1, it follows that c(ai) ≡ i + 2 mod 3.

K.K. Dabrowski, M. Johnson, G. Paesani, D. Paulusma, and V. Zamaraev 63:13

By symmetry c(ci) ≡ i mod 3 and c(di) ≡ i + 2 mod 3. Therefore the claim holds for i. By
induction, this completes the proof of the claim and therefore shows that the 3-colouring
of Ys is indeed unique.

Furthermore, note that the colour classes in this colouring have sizes 4s + 1, 4s + 1 and 4s,
respectively. A set S is an independent odd cycle transversal of a graph if and only if it is a
colour class in some 3-colouring of this graph. It follows that ioct(Ys) = 4s. This completes
the proof. J

We summarise the results of this section in the following theorem.

I Theorem 3 (restated). Let H be a graph. The class of H-free 3-colourable graphs is
ioct-bounded:

if H is an induced subgraph of P4 or K1,3 + sP1 for some s ≥ 0 and
only if H is an induced subgraph of K+

1,4 or K1,4 + sP1 for some s ≥ 0.

Proof. If H is an induced subgraph of P4 or K1,3 + sP1 for some s ≥ 0, then the class of
H-free 3-colourable graphs is ioct-bounded by Lemma 10 or Corollary 13, respectively.

Now suppose that the class of H-free 3-colourable graphs is ioct-bounded. By Lemma 9,
H must be a forest. By Lemma 16, H must be K1,5-free. Since H is a K1,5-free forest, it
has maximum degree at most 4. By Lemma 14, H must be (P1 + P4, 2P2)-free.

First suppose that H is P4-free, so every component of H is a P4-free tree. Hence every
component of H is a star. In fact, as H has maximum degree at most 4, every component
of H is an induced subgraph of K1,4. As H is 2P2-free, at most one component of H contains
an edge. Therefore H is an induced subgraph of K1,4 + sP1 for some s ≥ 0 and we are done.

Now suppose that H contains an induced P4, say on vertices x1, x2, x3, x4 in that order
and let X = {x1, . . . , x4}. Since H is a forest, every vertex v ∈ V (H) \X has at most one
neighbour in X. A vertex v ∈ V (H) \X cannot be adjacent to x1 or x4, since H is 2P2-free.
By Lemma 15, the vertices x2 and x3 cannot both have neighbours outside X; without loss
of generality assume that x3 has no neighbours in V (H) \X. Since H is (P1 + P4)-free, every
vertex v ∈ V (H) \X must have at least one neighbour in X, so it must be adjacent to x2.
As H has maximum degree at most 4, it follows that H is an induced subgraph of K+

1,4. This
completes the proof. J

By Lemma 12, for r, s ≥ 1 the class of K1,r-free 3-colourable graphs is ioct-bounded if
and only if the class of (K1,r + sP1)-free 3-colourable graphs is ioct-bounded. Therefore,
Theorem 3 leaves three open cases, as follows:

I Open Problem 17. Is the class of H-free 3-colourable graphs ioct-bounded when H is:
1. K1,4 (or equivalently K1,4 + sP1 for any s ≥ 1).
2. K+

1,3 or
3. K+

1,4.

5 Conclusions

To develop an insight into the price of independence for classical concepts, we have investigated
whether or not the size of a minimum independent vertex cover, feedback vertex set or
odd cycle transversal is bounded in terms of the minimum size of the not-necessarily-
independent variant of each of these transversals for H-free graphs (that have such independent
transversals). We have determined the answer for every graph H except for the three missing
cases for odd cycle transversal listed in Open Problem 17. While we note that the bounds

MFCS 2018

63:14 On the Price of Independence

we give in some of our results (Lemmas 7 and 10) are tight, in this paper we were mainly
concerned with obtaining the dichotomy results on whether there is a bound, rather than
trying to find exact bounds.

As results for the price of connectivity implied algorithmic consequences [9, 13], it is
natural to ask if our results for the price of independence have similar consequences. The
problems Independent Vertex Cover, Independent Feedback Vertex Set and
Independent Odd Cycle Transversal ask to determine the minimum size of the
corresponding independent transversal. The first problem is readily seen to be polynomial-
time solvable. The other two problems are NP-hard for H-free graphs whenever H is not a
linear forest [3], just like their classical counterparts Feedback Vertex Set [16, 17] and
Odd Cycle Transversal [10] (see also [14, 15]). The complexity of these four problems
restricted to H-free graphs is still poorly understood when H is a linear forest. Our results
suggest that it is unlikely that we can obtain polynomial algorithms for the independent
variants based on results for the original variants, as the difference between ifvs(G) and fvs(G)
and between ioct(G) and oct(G) can become unbounded quickly.

References
1 Rémy Belmonte, Pim van ’t Hof, Marcin Kamiński, and Daniël Paulusma. The price of

connectivity for feedback vertex set. Discrete Applied Mathematics, 217(Part 2):132–143,
2017.

2 Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël
Paulusma. Recognizing graphs close to bipartite graphs. Proc. MFCS 2017, LIPIcs, 83:70:1–
70:14, 2017.

3 Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël
Paulusma. Independent feedback vertex set for P5-free graphs. Algorithmica, to appear.

4 Eglantine Camby. Price of independence for the dominating set problem. Manuscript, 2017.
5 Eglantine Camby, Jean Cardinal, Samuel Fiorini, and Oliver Schaudt. The price of con-

nectivity for vertex cover. Discrete Mathematics & Theoretical Computer Science, 16:207–
224, 2014.

6 Eglantine Camby and Fränk Plein. A note on an induced subgraph characterization of
domination perfect graphs. Discrete Applied Mathematics, 217(Part 3):711–717, 2017.

7 Eglantine Camby and Oliver Schaudt. The price of connectivity for dominating set: Upper
bounds and complexity. Discrete Applied Mathematics, 177:53–59, 2014.

8 Jean Cardinal and Eythan Levy. Connected vertex covers in dense graphs. Theoretical
Computer Science, 411(26–28):2581–2590, 2010.

9 Nina Chiarelli, Tatiana R. Hartinger, Matthew Johnson, Martin Milanič, and Daniël
Paulusma. Minimum connected transversals in graphs: New hardness results and tract-
able cases using the price of connectivity. Theoretical Computer Science, 705:75–83, 2018.

10 Thomas Emden-Weinert, Stefan Hougardy, and Bernd Kreuter. Uniquely colourable graphs
and the hardness of colouring graphs of large girth. Combinatorics, Probability and Com-
puting, 7(04):375–386, 1998.

11 Alexander Grigoriev and René Sitters. Connected feedback vertex set in planar graphs.
Proc. WG 2009, LNCS, 5911:143–153, 2010.

12 Tatiana R. Hartinger, Matthew Johnson, Martin Milanič, and Daniël Paulusma. The price
of connectivity for cycle transversals. European Journal of Combinatorics, 58:203–224,
2016.

13 Matthew Johnson, Giacomo Paesani, and Daniël Paulusma. Connected vertex cover for
(sP1 + P5)-free graphs. Proc. WG 2018, LNCS, to appear.

K.K. Dabrowski, M. Johnson, G. Paesani, D. Paulusma, and V. Zamaraev 63:15

14 Daniel Král’, Jan Kratochvíl, Zsolt Tuza, and Gerhard J. Woeginger. Complexity of coloring
graphs without forbidden induced subgraphs. Proc. WG 2001, LNCS, 2204:254–262, 2001.

15 Vadim V. Lozin and Marcin Kamiński. Coloring edges and vertices of graphs without short
or long cycles. Contributions to Discrete Mathematics, 2(1), 2007.

16 Neeldhara Misra, Geevarghese Philip, Venkatesh Raman, and Saket Saurabh. On paramet-
erized independent feedback vertex set. Theoretical Computer Science, 461:65–75, 2012.

17 Andrea Munaro. On line graphs of subcubic triangle-free graphs. Discrete Mathematics,
340(6):1210–1226, 2017.

MFCS 2018

Probabilistic Secret Sharing

Paolo D’Arco
Dipartimento di Informatica, Università of Salerno, Italy
pdarco@unisa.it

https://orcid.org/0000-0002-9271-4240

Roberto De Prisco
Dipartimento di Informatica, Università of Salerno, Italy
robdep@unisa.it

https://orcid.org/0000-0003-0559-6897

Alfredo De Santis
Dipartimento di Informatica, Università of Salerno, Italy
ads@unisa.it

https://orcid.org/0000-0001-8962-1919

Angel Pérez del Pozo
Departamento de Matemática Aplicada, Ciencia e Ingeniería de los Materiales y Tecnología
Electrónica, Universidad Rey Juan Carlos, Madrid, Spain
angel.perez@urjc.es

https://orcid.org/0000-0002-8135-9642

Ugo Vaccaro
Dipartimento di Informatica, Università of Salerno, Italy
uvaccaro@unisa.it

https://orcid.org/0000-0003-4085-7300

Abstract
In classical secret sharing schemes a dealer shares a secret among a set of participants in such
a way that qualified subsets can reconstruct the secret, while forbidden ones do not get any
kind of information about it. The basic parameter to optimize is the size of the shares, that
is, the amount of secret information that the dealer has to give to participants. In this paper
we formalize a notion of probabilistic secret sharing schemes, in which qualified subsets can
reconstruct the secret but only with a certain controlled probability. We show that, by allowing
a bounded error in the reconstruction of the secret, it is possible to drastically reduce the size
of the shares the participants get (with respect to classical secret sharing schemes). We provide
efficient constructions both for threshold access structures on a finite set of participants and for
evolving threshold access structures, where the set of participants is potentially infinite. Some of
our constructions yield shares of constant size (i.e., not depending on the number of participants)
and an error probability of successfully reconstructing the secret which can be made as close to 1
as desired.

2012 ACM Subject Classification Security and privacy → Mathematical foundations of crypto-
graphy

Keywords and phrases Secret sharing, probabilistic secret sharing, evolving secret sharing

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.64

Acknowledgements The first and fourth authors are partially supported by research project
MTM2016-77213-R funded by the Spanish MINECO.

© Paolo D’Arco, Roberto De Prisco, Alfredo De Santis, Angel Pérez del Pozo, and Ugo Vaccaro;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 64; pp. 64:1–64:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pdarco@unisa.it
https://orcid.org/0000-0002-9271-4240
mailto:robdep@unisa.it
https://orcid.org/0000-0003-0559-6897
mailto:ads@unisa.it
https://orcid.org/0000-0001-8962-1919
mailto:angel.perez@urjc.es
https://orcid.org/0000-0002-8135-9642
mailto:uvaccaro@unisa.it
https://orcid.org/0000-0003-4085-7300
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.64
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

64:2 Probabilistic Secret Sharing

1 Introduction

Secret sharing. A secret sharing scheme is a method through which a dealer shares a piece
of information (a secret) among a set of participants, according to a specific privacy policy.
Specifically, each participant, during the sharing phase, receives and securely stores a piece
of information, called share. Then, in the reconstruction phase, prescribed subsets, called
qualified subsets, by pooling together their shares or by sending them to a trusted combiner,
can recover the secret through the computation of an appropriate reconstruction function.
All the other remaining subsets of participants, called forbidden subsets, analyzing the shares
they have, and applying any computation on them, do not get any information whatsoever
about the secret. The collection of qualified subsets forms the access structure to the secret.

The notion of secret sharing and the first constructions were introduced in 1979, independ-
ently by Shamir [34] and Blakley [6]. Both of them considered threshold access structures,
usually referred to as (k, n)-threshold schemes, where the set of participants has size n, any
subset of size greater than or equal to k is qualified, and any subset of size less than k is
forbidden. General access structures were later considered in [22, 23, 23, 4, 35, 25].

Secret sharing schemes have been widely used in cryptographic protocol design and have
been extended in many ways in order to exhibit additional properties. For a detailed overview
of the field and of the open problems the reader is referred to [2] and to [14].

Visual cryptography (visual secret sharing). Visual cryptography, introduced independ-
ently and in different forms in [31, 24], is a sharing technique in which the secret is an image,
the shares are images printed on transparencies and the reconstruction is performed by the
human visual system by looking at the superposed shares. Notice that, while the image can
be seen as a sequence of black and white pixels and thus can encode arbitrary sequences
of bits, the reconstruction function is fixed to be the or of the shares. Hence, any visual
cryptography scheme can be used as a regular secret sharing scheme, i.e., as a scheme that
uses the or function to reconstruct the secret; on the other hand, the converse is not true,
unless the scheme uses the or function on the corresponding bits of the shares to reconstruct
the secret. In the context of visual cryptography, the notion of probabilistic reconstruction
has been widely studied, e.g., [36, 13, 19], since the erroneous reconstruction of a limited
number of pixels does not significantly affect the recognizability of the reconstructed secret
image.

Evolving access structures. An interesting new variant of secret sharing schemes has been
introduced recently in [26, 27]. The authors have considered a setting in which the set of
participants is infinite and the access structure is defined through a collection of access
structures, not known at the beginning. More precisely, at any time t, a new participant
arrives and new qualified subsets – if any – are added to the existing access structure At−1,
obtaining the new one At. The authors of [26, 27] design secret sharing schemes in such a
new scenario for threshold access structures, denoted as (k,∞)-threshold schemes, and for
general access structures. The authors of [26, 27] have also shown a nice equivalence between
(2,∞)-threshold schemes and prefix-free codes for the integers. Further results have been
provided in [32, 28].

Motivations of the present work. Since their introduction, secret sharing schemes have
represented a relevant research area in Cryptography. Secret sharing schemes are an important
tool by themselves, as well as a building block both in the general solutions for multi-party

P. D’Arco, R. De Prisco, A. De Santis, A. Pérez del Pozo, and U. Vaccaro 64:3

computation and in the design of ad-hoc protocols. A central issue in the area has been to
provide constructive results and non-existential results towards the possibility of obtaining
secret sharing schemes that provide to the users shares short in size. For threshold access
structures and ramp schemes tight bounds have been provided in [11] and in [9].

Unfortunately, for general access structures what can be done is still an open problem:
for many access structures the known constructions deliver to the users shares of exponential
size in the number n of participants [5] (see also [30] for recent important improvements).
The best lower bound on the size of the shares is instead sublinear as it was proved in [8, 15]
using the information theoretic approach introduced in [10]. For the subclass of linear general
secret sharing schemes recent results of [33] provide exponential lower bounds.

Several papers have considered secret sharing schemes in which the privacy condition has
been relaxed, both in a statistical sense, i.e., the privacy is not information-theoretic but
there is a probability of information leakage, and in a computational sense, i.e., the privacy is
only guaranteed with respect to computationally bounded adversaries, e.g., [29]. In [16, 20]
secret sharing schemes are seen as joint probability distributions of the shares and the secret.
This particular view is introduced to study the case of infinite participants and to deal with
infinite domains for the shares. The approach leads to a probabilistic notion of security
allowing information leakage. So, it is quite different from the approach pursued in this
paper. To our knowledge, although the relaxation of the property that qualified subsets can
correctly recover the secret has been mentioned in a few papers, no study has focused on the
analysis and the design of secret sharing schemes in which the secret can be reconstructed
only with a prescribed high probability. Exceptions consist for the specific case of visual
cryptography [17] and, notably, the secret sharing scheme of [21]. We remark that the model
used in [21], that allows public information, is different from the one considered in this paper.

Hence, it seems natural to ask the following question:

Can we reduce the size of the shares held by the participants if we allow a small
probability of error in the reconstruction phase?

In this paper we show that it is possible to give an answer to the above question by
providing, among other results, a quantitative trade-off between the probability of a correct
reconstruction and the size of the shares.

Our contribution. We proceed as follows: in Section 2, we introduce a formal definition of
probabilistic secret sharing schemes that intends to capture the intuition given above. We
consider both access structures on a finite set of participants and evolving access structures
defined over an infinite set of participants. Then, in Section 3, we discuss probabilistic
constructions for the finite case and, in Section 4, we propose a probabilistic construction
for a (2,∞)-threshold secret sharing scheme. In Section 5, we describe and analyze some
methods to build more general schemes from simpler ones. Our techniques are of general
interest since they apply to both deterministic and probabilistic secret sharing schemes. Then,
in Section 6, we describe and analyze a direct construction for probabilistic secret sharing
schemes, which gives to participants shares of constant size, with respect to the number of
participants, and enables the dealer to set the probability of reconstruction as high as he
needs. Finally, in Section 7, we provide conclusions and briefly discuss some open problems.

Overview of results and techniques. We define and provide constructions for α-probabilistic
secret sharing schemes for threshold access structures, where α denotes the probability of
a correct reconstruction, both for the finite and the infinite cases, by using a variety of

MFCS 2018

64:4 Probabilistic Secret Sharing

techniques. Throughout the paper, unless otherwise stated, we assume that the secret is a
single bit.

Focusing on the finite case, where the set of participants is fixed and has size n, we
leverage on a nice connection in visual secret sharing schemes between deterministic and
probabilistic schemes. We show how a probabilistic visual secret sharing scheme can be
turned easily into an α-probabilistic secret sharing scheme for the same access structure.
To deal with evolving access structures, we design a (2,∞)-threshold 1+p

2 -probabilistic
secret sharing scheme, where (p, 1− p) is the probability distribution of the secret bit.
Our construction is inspired by the (2,∞)-threshold visual cryptography scheme provided
in [12], which seems to be the first paper that has considered the problem of constructing
a visual secret sharing scheme for an infinite set of participants. It is simple and allows
to share a 1-bit secret with shares of 1-bit.
Successively, in order to construct more general schemes from simpler ones, using a
recursive approach, we present two algorithms: the first builds a (k + 1,∞)-threshold α-
probabilistic secret sharing scheme from a (k,∞)-threshold β-probabilistic secret sharing
scheme. The second builds a (k + 1,∞)-threshold α-probabilistic secret sharing scheme
from k schemes, i.e., by using, for j = 2, . . . , k, a (j,∞)-threshold αj-probabilistic
secret sharing scheme. We point out that the algorithms can be used to construct
both probabilistic schemes and deterministic schemes for evolving access structures. In
particular, for both of our methods, if we use the most efficient deterministic (2,∞)-
threshold secret sharing scheme provided in [26, 27] and apply to the scheme resulting
from the algorithms, the same domain reduction technique which is used in [26, 27], we get
deterministic schemes for evolving access structures which achieve the same asymptotic
share size of the ones obtained in [26, 27]. Hence, the new schemes can be seen as an
alternative way for constructing deterministic schemes. On the other hand, for both
of our algorithms, starting from our (2,∞)-threshold 1+p

2 -probabilistic secret sharing
scheme, we obtain (k,∞)-threshold α-probabilistic secret sharing schemes which achieve
asymptotically the same share size of the deterministic schemes.
Finally, through a direct construction, which uses the shares of Shamir’s scheme, we
provide a (k,∞)-threshold α-probabilistic secret sharing scheme which enables to share a
1-bit secret with shares of constant size. Moreover, the scheme exhibits a nice trade-off
between the probability α of successfully reconstructing the secret and the size of the
underlying field: indeed, α can approach 1 as much as desired by properly choosing the
size of Fq. For the case in which k is equal to 2, we explain the differences between this
construction and the (2,∞)-threshold 1+p

2 -probabilistic secret sharing scheme presented
in Section 4. Finally, we emphasize that our construction also applies to the case of a
finite number of participants, and we describe advantages and disadvantages associated
with it.

Hence, the probabilistic approach we suggest enables to beat the lower bounds on the size of
the shares the deterministic threshold schemes are subject to, both for the case of a finite set
of participants and for the infinite one.

Related work. Other models for secret sharing schemes have been introduced in the past
years in order to reduce the size of the shares held by the participants. More precisely, secret
sharing schemes in which the correctness property holds with no error, and the privacy
property holds with identical probability distributions on the shares held by the participants
of a forbidden subset, are called perfect. Non-perfect secret sharing schemes are less restrictive.
For example, in a (d, t, n)-ramp scheme [7], the first and most relevant case of non-perfect

P. D’Arco, R. De Prisco, A. De Santis, A. Pérez del Pozo, and U. Vaccaro 64:5

secret sharing schemes, forbidden subsets of size less than d do not get any information
about the secret, qualified subsets of size greater than or equal to t reconstruct the secret,
while subsets whose sizes are “in between” get some information about the secret. Note
that ramp schemes are a close but different class of non-perfect schemes, compared to the
probabilistic ones we introduce here. Similarly, computational secret sharing schemes [29]
are another class of non-perfect secret sharing schemes; in such schemes the privacy property
requires computationally indistinguishable probability distributions on the shares held by
the participants of a forbidden subset. In both cases, it is possible to design schemes with
shorter share size compared to the size of the shares in perfect secret sharing schemes.

2 The Models

In this section we introduce the models we work with. We essentially follow and extend the
treatment of [2, 26, 27].

Let Pn = {p1, . . . , pn} be a finite set of n participants, and let 2Pn be the set of all the
subsets of Pn. A collection of subsets A ⊆ 2Pn is monotone if, for each subsets B,C ∈ Pn

such that B ⊆ C, the condition B ∈ A implies C ∈ A.
An access structure is defined as follows:

I Definition 1. An access structure A on the set Pn = {p1, . . . , pn} is a monotone collection
of subsets of Pn, i.e., A ⊆ 2Pn . Subsets in A are called qualified. Subsets not in A are called
forbidden.

To avoid overburdening the notation, when it is clear from the context, we use the
letter which denotes a subset of participants also to denote the subset of the indices of the
participants. We define a probabilistic secret sharing scheme as follows.

I Definition 2. Let S be a set of secrets such that |S| ≥ 2, and let α be a positive real value
such that 0 < α ≤ 1. An α-probabilistic secret sharing scheme Π for an access structure A on
the set of participants Pn and set of secrets S consists of a pair of probabilistic polynomial
time algorithms (Share,Recon) where

Share gets as input a secret s ∈ S and outputs n shares sh1, . . . , shn

Recon gets as input the shares of a subset A ⊆ Pn, denoted by {shi}i∈A, and outputs a
string

such that the following two requirements are satisfied:
1. α-correctness: for every s ∈ S and every qualified subset A ∈ A, it holds that

Prob[Recon({shi}i∈A) = s] ≥ α.

2. perfect privacy: for every forbidden subset B /∈ A and for every two secrets s1, s2 ∈ S,
it holds that the probability distributions {sh1

i }i∈B and {sh2
i }i∈B, associated to the

corresponding secrets, are the same.

I Remark. Notice that, when the parameter α is equal to 1, we get the traditional notion
of perfect secret sharing scheme, in which the secret is always reconstructed by qualified
subsets of participants.
I Remark. As pointed out in [2], the above definition can be easily relaxed to consider
less stringent privacy notions, in which the probability distributions on the set of shares of
forbidden subsets are not required to be identical but only statistically close or computationally
indistinguishable.

MFCS 2018

64:6 Probabilistic Secret Sharing

The share size of the scheme is the maximum number of bits each participant holds in
the worst case, over all participants and all secrets.

In order to introduce evolving schemes, we need to modify the setting and extend some of
the previous notions. Basically, we define a sequence of access structures but require that the
access structures be monotone: parties are only added and qualified subsets remain qualified
in the future.
Let P = {p1, p2, . . . , } be an infinite set of participants.

I Definition 3. [26, 27] Let A be an access structure on Pn and let m be an integer such that
0 < m < n. We denote by A|m the restriction of A to Pm, i.e., to the first m participants.

The following result holds:

I Claim 4. [26, 27] If A is an access structure on Pn, then A|m is an access structure on
Pm.

I Definition 5. [26, 27] Let N be the set of the natural numbers. A (possibly infinite)
sequence of access structures {At}t∈N is called evolving if, for every t ∈ N, the following
conditions hold:
At is an access structure over Pt

At|t−1 is equal to At−1.

At this point, we can extend the definition of a probabilistic secret sharing scheme to
evolving access structures:

I Definition 6. Let S be a set of secrets such that |S| ≥ 2, and let α be a positive real
value such that 0 < α ≤ 1. An α-probabilistic secret sharing scheme Π for an evolving access
structure {At}t∈N on the infinite set of participants P and set of secrets S consists of a pair
of probabilistic polynomial time algorithms (Share,Recon) where

Share gets as input a secret s ∈ S and the shares sh1, . . . , sht−1, generated for participants
p1, . . . , pt−1, and outputs the share sht for the t-th participant
Recon gets as input the shares of a subset A ⊆ P, denoted by {shi}i∈A, and outputs a
string

such that the following two requirements are satisfied:
1. α-correctness: for every s ∈ S, for every t ∈ N, and for every qualified subset A ∈ At,

it holds that

Prob[Recon({shi}i∈A) = s] ≥ α.

2. perfect privacy: for every t ∈ N, for every forbidden subset B /∈ At and for every two
secrets s1, s2 ∈ S, it holds that the probability distributions {sh1

i }i∈B and {sh2
i }i∈B,

associated to the corresponding secrets, are the same.

The share size of the scheme is the maximum number of bits the t-th participant holds
in the worst case, over all secrets and previous share assignments.
I Remark. When the parameter α is equal to 1, we get the notion of perfect evolving
secret sharing scheme, in which the secret is always reconstructed by qualified subsets of
participants, given in [26, 27]. Notice also that the above definition, when P is finite and
A is fixed and known at the beginning, i.e., P = Pn for a certain n and {At}t∈N = A, it
formally does not coincide with Definition 2. Indeed, the former generates the shares in
one-shot, while the latter generates the shares sequentially. However, it is easy to see they
are equivalent. Moreover, the considerations we have done on relaxing the privacy notion
apply also here.

P. D’Arco, R. De Prisco, A. De Santis, A. Pérez del Pozo, and U. Vaccaro 64:7

Notice that in [3] a unified framework for secret sharing schemes has been introduced.
It enables to model together perfect, statistically a computationally secure secret sharing
schemes. It also models the notion of robustness, i.e., the possibility of reconstructing a secret
even if some shares are missing or corrupted, assuming an honest dealer. We point out that
the 36 notions the authors have provided do not consider any relaxation of the correctness
condition. Moreover, we have preferred to follow [2, 26, 27] in modeling the notion instead of
extending [3] because it is easy to work with [2, 26, 27] and, perhaps, results in an abstract
easier to read.

3 Probabilistic schemes for the threshold finite case

Visual cryptography schemes are a special type of secret sharing schemes for which, roughly
speaking, the Recon algorithm is the or function1. Several models of visual cryptography
have been studied: Kafri and Keren [24] introduced the so-called random grid model, Naor
and Shamir [31] coined the term “visual cryptography” providing a deterministic model,
Yang [36] introduced the probabilistic model, which actually is equivalent to the model of
Kafri and Keren, and Cimato et al. [13] generalized the probabilistic model. Finally, De
Prisco and De Santis [19] proved that all these models are related to each other and, thus,
they can be seen simply as different ways of looking at the same object. The interested reader
is referred to [17] for a recent survey on models, issues, applications and new directions in
visual cryptography and to the references therein quoted.

The particular “view” that is of interest in the context of this paper is the probabilistic
one: in that model we already have the notion of a probabilistic reconstruction, where a
secret pixel is correctly reconstructed only with a given probability. Nevertheless, notice that
in the context of visual cryptography the error is less critical than in the context of general
secret sharing: indeed, the whole secret which is visually reconstructed consists of many
pixels, often thousands, and, even if some of them are incorrectly reconstructed, the only
tangible effect is that the secret is reconstructed on a different, usually darker, background.

Anyway, being visual cryptography a special type of secret sharing, we can use visual
cryptography schemes as secret sharing schemes. Since there is basically no research on
probabilistic secret sharing, it is useful to start by taking probabilistic visual secret sharing
scheme and “translating” them into probabilistic secret sharing schemes. We said “translating”
instead of “using” because an obvious improvement that can be made is that of using a
different Recon function, since in regular secret sharing we are not constrained to using the
or performed by the human visual system in the reconstruction process.

In [19] it has been proved that any deterministic visual cryptography scheme can be
transformed into a probabilistic visual cryptography scheme. By using this result we can
transform any deterministic visual cryptography scheme into a probabilistic secret sharing
scheme. We explain the technique using an example.

1 In visual cryptography schemes, the bits of the shares are pixels printed on transparencies and the
reconstruction consists in superposing the transparencies; the human visual system performs the or
operation on the “bits” in the corresponding positions.

MFCS 2018

64:8 Probabilistic Secret Sharing

Consider a (3, 4)-threshold scheme. The following deterministic scheme has been presented
in [1]. The scheme is described by two base matrices, B0 and B1:

B0 =

000111
001011
001101
001110

 B1 =

000111
100110
010110
001110

The two base matrices define the collections C0 and C1, where Cb, b = 0, 1, contains all

the matrices that can be obtained by permuting in all possible ways the columns of Bb. In
order to share the secret the dealer (randomly) chooses a specific permutation and gives to
each participant a row of the corresponding matrix of the collection Cb, where b is the secret
bit. More specifically, participant i gets the ith row of the selected matrix (permutation).

For example, considering, for simplicity, the identity permutation, if the secret pixel is
b = 0, that is a white pixel, then participant 1 gets a share where the first three subpixels are
white and the last three are black, described with the binary string 000111, while participant
2 gets a share described by 001011, that is, the subpixels are white-white-black-white-black-
black; etc. Superposing three shares for the reconstruction, it is guaranteed that, if the secret
pixel is white, then the reconstructed version has 4 black subpixels out of 6; while, if the
secret pixel is black, then the reconstructed version has 5 black subpixels out of 6. The fact
that all permutations are considered ensures security.

A probabilistic visual cryptography scheme can be easily derived from the above determ-
inistic scheme (see [19] for more details). In such a scheme, the secret pixel (bit) is shared by
giving to each participant a white (0) or black (1) pixel (bit) according to the following sets2:

C0 =

0
0
0
0

 ,

0
0
0
0

 ,

0
1
1
1

 ,

1
0
1
1

 ,

1
1
0
1

 ,

1
1
1
0

 ,

C1 =

0
1
0
0

 ,

0
0
1
0

 ,

0
0
0
1

 ,

1
1
1
1

 ,

1
1
1
1

 ,

1
0
0
0

 .

More precisely, if the secret pixel is b, with b ∈ {0, 1}, the 4 participants are given shares
according to one of the vectors in the set Cb, where the specific vector is chosen uniformly at
random in the set. The reconstruction function is the or of 4 bits. Looking at this scheme
as a visual cryptography scheme, we have that a secret white (0) pixel is reconstructed
correctly 1/3 of the times, while a secret black (1) pixel is reconstructed correctly 5/6 of the
times. Assuming a uniform distribution of the secret pixel, the reconstruction is correct with
probability 7/12.

On the other hand, using the xor function as Recon we have that in both cases the secret
pixel is reconstructed correctly 5/6 of the times. This provides a 5/6-probabilistic scheme
for sharing one bit, regardless of the distribution of the secret bit.

2 Notice that these sets are easily constructed from the base matrices since each member of the set
corresponds to a column of the base matrix.

P. D’Arco, R. De Prisco, A. De Santis, A. Pérez del Pozo, and U. Vaccaro 64:9

The above “transform” of a visual cryptography scheme into a probabilistic secret sharing
scheme can be applied to any visual cryptography scheme. In particular, it is possible
to construct schemes for threshold and general access structures defined on a finite set of
participants.Unfortunately, the constructions do not extend to the evolving case. So, we
would like to find schemes that allow to manage an evolving set of participants.

As a side note, we point out an interesting fact: in the recent years, it has been shown that
visual cryptography schemes can be used for secure computation in non standard settings, in
which it is desirable to reduce the trust in digital devices [19, 18]. Here, we are going the
other way around: we are using visual cryptography schemes for building probabilistic secret
sharing schemes which can be used in standard digital computation.

4 A probabilistic (2,∞)-threshold construction

In this section we present a construction of a probabilistic threshold scheme for the case
of k = 2. The construction works both for a finite set of participants and for an infinite
set of participants; the sharing phase is similar to the one described in Algorithm 2 of [12].
We present it as a (2,∞)-threshold scheme, although the same construction works for a
(2, n)-threshold scheme, when n is fixed in advance.

Let s be a secret bit. Let pi be the i-th participant, with i potentially growing to ∞ (or
up to a fixed n).

I Construction 7. The construction works as follows.
The Share algorithm takes as input the index i and produces a share for pi as follows:
for the first participant, that is for i = 1, the share is a random bit b1; for the other
participants, that is, for i > 1, if the secret is s = 0 then the share is b1, the same bit
given to p1, whereas if the secret is s = 1 the share is a new random bit bi. In other
words, if the secret is s = 0, then only one random bit is produced and all participants get
that random bit as their share, while if the secret is 1 then each participant gets a new
random bit.
The Recon algorithm takes in input two shares, that is two bits bi and bj and outputs 0 if
bi = bj (the two shares are equal), and 1 if bi 6= bj (the two shares are different).

I Theorem 8. Construction 7 builds a 1+p
2 -probabilistic (2,∞)-threshold scheme, where

(p, 1− p) is the distribution of the secret bit.

Proof. We start by proving that the scheme is secure, that is any forbidden set does not
have information about the secret bit. Indeed, let B = {pi} be a forbidden set, a set with
a single participant, and let s1, s2 ∈ S be two secret bits. The probability distribution of
the share that pi gets for s1 is the same as the one that pi gets for s2. Indeed the share is
always a random bit, so in both cases the probability distribution is (0.5, 0.5) over the two
possible values.

Next we prove that a qualified subset can reconstruct the secret with (1+p)/2-correctness.
Let A be a qualified subset. In order to compute Prob[Recon({shi}i∈A) = s], consider the
two possible cases, s = 0 and s = 1. The first one occurs with probability p and the second
one with probability (1− p). Thus, we have that:

Prob[Recon({shi}i∈A) = s] = p · Prob[Recon({shi}i∈A) = 0|s = 0]+
(1− p) · Prob[Recon({shi}i∈A) = 1|s = 1].

When s = 0, all the shares are equal, thus Recon gives 0 as output and the reconstruction
is always correct. Hence, Prob[Recon({shi}i∈A) = 0|s = 0] = 1. On the other hand, when

MFCS 2018

64:10 Probabilistic Secret Sharing

s = 1, all the shares are independent random bits, thus Recon gives in output 1 only half of
the times, which means that Prob[Recon({shi}i∈A) = 1|s = 1] = 1/2.

Therefore, we have that:

Prob[Recon({shi}i∈A) = s] = p · 1 + (1− p) · 1
2 = 1 + p

2 . J

For p = 0.5, we get a scheme with 3
4 -correctness. Notice also that, when p 6= 0.5, since

we can easily swap 0 and 1, we can always change p to be 1− p to get a better correctness
probability.
Finally, it is also easy to see that the above protocol can be strengthened, by using shares of 2
or more bits, constructed along the same line of the former, in order to make the probability
of error as low as desired. Precisely, for sharing 0, the dealer chooses c bits uniformly at
random and gives them to all participants. On the other hand, for sharing 1, to each new
participant are provided c bits, chosen uniformly at random each time.

5 Transforms for general schemes from simpler ones

Once we have provided a probabilistic (2,∞)-threshold construction it is a natural problem
to extend it to the probabilistic (k,∞)-threshold case. In this section we provide two different
constructions for the general threshold case. The first one builds on an auxiliary probabilistic
(k,∞)-threshold construction which is used in a black-box way to build a probabilistic
(k + 1,∞)-threshold scheme. The probability α of correct reconstruction is preserved. For
the second construction we use a family of probabilistic (j,∞)-threshold schemes, for j ≤ k,
to obtain a probabilistic (k+ 1,∞)-threshold scheme. The new scheme correctly reconstructs
with probability at least the worse reconstruction probability of the schemes from the family.

The interesting aspect of the second construction lies in the fact that parties are grouped
in generations of increasing size. The sizes of these generations are left as parameters of
the construction and choosing them carefully leads to improvements in the share size with
respect to the first construction.

Note that, if all auxiliary schemes provide 1-correctness, then the compiled constructions
are also 1-correct; therefore, we are providing alternative constructions for the deterministic
evolving (k,∞)-threshold schemes presented in [26, 27]. In addition, if we apply to our
constructions the same domain reduction technique which is used in [26, 27] to reduce the
size of the shares, we get deterministic schemes for evolving access structures which achieve
the same asymptotic share size of the ones obtained in [26, 27].

We denote by [n] the set {1, . . . , n} and, for consistency of some formulas, [0] denotes the
empty set.

5.1 From (k,∞)-threshold to (k + 1,∞)-threshold
Let s ∈ {0, 1} be the secret. The idea behind this construction is that at the arrival of party
t, he receives the value s⊕ r, where r is a freshly and uniformly random generated bit. The
bit r is then shared by using the (k,∞) scheme with every party arriving after that moment.

More precisely, let Π denote the auxiliary (k,∞)-threshold scheme and let Λ be the
(k + 1,∞)-threshold we are about to construct. At the time of arrival of party t, the share
sht for the new scheme Λ is constructed in the following way:

P. D’Arco, R. De Prisco, A. De Santis, A. Pérez del Pozo, and U. Vaccaro 64:11

1. A bit rt ∈ {0, 1} is chosen uniformly at random.
2. For every j ∈ [t− 1] a new share wt,j of rj is computed with Π.
3. The share of party t for the scheme Λ is the following (ordered) set of values:

sht = {s⊕ rt} ∪ {wt,j}j∈[t−1]

For the Recon algorithm of Λ, assume that k + 1 parties Pt0 , Pt1 , . . . , Ptk
, which are

chronologically ordered, want to reconstruct. Then, the last k parties run the Recon algorithm
of Π with inputs (wt1,t0 , wt2,t0 , . . . , wtk,t0) in order to recover the value rt0 . Once rt0 is
recovered it is xored with the value s⊕ rt0 , held by Pt0 , to recover s.

I Theorem 9. If Π is an α-probabilistic scheme for the (k,∞)-threshold access structure
then Λ is an α-probabilistic scheme for the (k + 1,∞)-threshold access structure.

Proof. First we prove the security of Λ. Let F = {Pt1 , . . . , Ptl
} be a set of l ≤ k parties

which is chronologically ordered. The only value that party Ptj
holds which is related to the

secret is s⊕ rtj . But then, as rtj has only been shared with players arriving later than Ptj

and there are at most k− 1 of them, the value rtj
is a uniformly distributed random bit from

the perspective of F due to the perfect privacy of Π. Therefore, the value s⊕ rtj
is also a

uniformly distributed random bit for the set F . Thus, we have shown perfect privacy for Λ.
Next, for α-correctness, notice that the reconstruction algorithm of Π is used precisely

once when reconstructing with Λ. If the value rt0 is correctly reconstructed so it is the secret
s. Therefore, if rt0 is correctly reconstructed with probability at least α, then the same holds
for s. Our result for α-correctness follows from this fact. J

I Remark. Note that for α = 1 we get a transform for regular (i.e. non probabilistic) evolving
schemes.

Share size. Let sizeΠ(sht) denote the bitlength of the t-th share of the scheme Π. For the
scheme Λ the size of the t-th share verifies

sizeΛ(sht) = 1 +
t−1∑
j=1

sizeΠ(shj) ≤ 1 + (t− 1) · sizeΠ(sht−1)

where the last inequality holds if we assume that the shares are increasing in size, which is
usually the case.

5.2 From {(j,∞)-threshold}j=2,...,k to (k + 1,∞)-threshold
Let k ≥ 2 be an integer number. Assume that, for any j ∈ {2, . . . , k}, Πj is an auxiliary
(j,∞)-threshold scheme, and let Λ be the (k + 1,∞)-threshold scheme we are about to
construct. For consistency of notation, assume that Π1 is a scheme that provides the secret
to every participant. Let s ∈ {0, 1} be the secret. In this construction parties are grouped
together in generations. For every integer i ≥ 1, generation Gi is a set consisting of gi

consecutive participants. G1 starts with P1 while each subsequent generation starts with the
participant following the last participant of the previous generation. For generation sizes we
only require that they are an increasing sequence and all greater or equal than the target
threshold, that is, k < g1 ≤ g2 ≤ g3 ≤

When a generation Gm starts, the following values are computed:

MFCS 2018

64:12 Probabilistic Secret Sharing

1. k random bits r(m)
1 , . . . , r

(m)
k are chosen.

2. For every j ∈ [k], the value s⊕ r(m)
j is shared by using a regular (j, gm)-threshold scheme,

e.g., Shamir’s scheme. Let u(m)
j,l denote the l-th share.

3. The secret s is shared by using a (k+ 1, gm)-threshold scheme. Let u(m)
k+1,l denote the l-th

share.

When the player Pt, which is the l-th player of generation Gm, arrives, the following
values are computed:
4. For each i ∈ [m− 1] and j ∈ [k] a new share for the random bit r(i)

j is computed by using
the (k + 1− j,∞)-threshold scheme Πk+1−j . Note that it takes as inputs all the shares
of r(i)

j previously computed. Let v(i)
j,l denote this share.

5. The share of party t is the following (ordered) set of values:

Λ(s)
t = {u(m)

j,l }j∈[k+1] ∪ {v
(i)
j,l }j∈[k],i∈[m−1]

For the Recon algorithm of Λ, assume that a set F consisting of k + 1 parties want to
reconstruct. Moreover, assume that m is the first index such that a party from Gm is in F .
Let split F in two parts, F0 = F ∩Gm and F1 = F \ F0, that is, F0 consists of the parties
from F which are in generation Gm and F1 consists of parties from subsequent generations.
Let k0 > 0 be the cardinal of F0 and k1 ≥ 0 the cardinal of F1. Note that k0 + k1 = k + 1.
Now there are two different cases:
1. If k1 = 0, that is, all players are in generation Gm, they use their {u(m)

k+1,l}l shares from
the (k + 1, gm)-threshold scheme to recover s.

2. If k1 > 0, then the players in F0 use their {u(m)
k0,l}l shares from the (k0, gm)-threshold

scheme to recover s⊕ r(m)
k0

. On the other hand, the players in F1 use their {v(m)
k1,l}l shares

from the (k1,∞)-threshold scheme Πk1 to recover r(m)
k0

. Then, the two values s⊕ r(m)
k0

and r(m)
k0

are xored together and the secret is recovered.

I Theorem 10. If, for every j ∈ {2, . . . , k}, Πj is an αj-probabilistic scheme for the (j,∞)-
threshold access structure, then Λ is an α-probabilistic scheme for the (k + 1,∞)-threshold
access structure, where α = minj=2,...,k{αj}.

Proof. The result follows from a similar analysis than the one for the proof of Theorem 9.
For α-correctness note that at most one of the schemes Πj is used for reconstruction, while
the other steps provide 1-correctness. J

Share size. The share of party t, which is the l-th participant from generation m includes
k + 1 different shares {u(m)

j,l }l∈[k+1] for a (j, gm)-threshold scheme. If instantiated with
Shamir’s scheme each of them is of size blog2(gm)c. Therefore we have:

sizeΛ(sht) = (k + 1)blog2(gm)c+
m−1∑
i=1

k∑
j=1

sizeΠj (v(i)
j,l)

6 A probabilistic (k,∞)-threshold construction with constant share
size

It is possible to construct probabilistic (k,∞)-threshold schemes starting from our construc-
tion provided in Section 4. In order to do so, we need to first apply iteratively the transforms
from Section 5, and then apply the same domain reduction technique of [26, 27]. However, the

P. D’Arco, R. De Prisco, A. De Santis, A. Pérez del Pozo, and U. Vaccaro 64:13

probabilistic (k,∞)-threshold constructions obtained in this way have the same asymptotic
share size as the ones in [26, 27]. Thus, it might seem that there is no gain in moving from
the deterministic to the probabilistic scenario. However, in the following, we show how to
construct schemes with better share size.

More precisely, we propose a probabilistic (k,∞)-threshold construction with constant
size shares, which is known to be impossible in the deterministic scenario, due to the lower
bound presented in [26, 27]. Moreover, by choosing the parameters appropriately, the scheme
can be made α-correct, with α as closer to 1 as desired, at the expenses of an increase in the
size of the underlying field.

Let q > k be a prime power and let Fq be a finite field with q elements. The idea behind
this construction is giving each player an independently chosen at random Shamir share for a
(k, q)-threshold scheme. In this case the secret s is an arbitrary element of Fq, that is, s ∈ Fq.

The scheme works as follows: at the beginning of the execution, a k−1 degree polynomial
p(x) ∈ Fq is chosen as in Shamir’s scheme, that is, such that p(0) = s. Upon arrival of
participant t, a value rt is chosen uniformly at random from Fq \{0}. The share of participant
t is the pair (rt, p(rt)).

For reconstruction, a group of m participants checks if they hold at least k different values
from Fq as the first component of their shares. If this is the case they recover polynomial
p(x) by interpolation and output p(0). Otherwise, they output a random value in Fq.

I Theorem 11. The previous construction is an α-probabilistic scheme for the (k,∞)-
threshold access structure, where

α = 1
(q − 1)k

k∏
i=1

(q − i)

Proof. For security, take into account that m < k participants hold m shares for the Shamir’s
(k, q) threshold scheme and perfect privacy trivially follows.

For α-correctness, the probability of k different participants getting k different shares
and thus being able to correctly reconstruct the secret equals the probability of getting k
different items when choosing k times, independently and uniformly at random, from q − 1
different items, which equals

k∏
i=1

q − i
q − 1 = 1

(q − 1)k

k∏
i=1

(q − i)

Note also that if m ≥ k participants are present upon reconstruction, the probability of
getting k different values only increases. The value of α follows from these facts. J

Share size. A single share is a pair of two elements of Fq, thus its size equals 2(blog qc+ 1).
I Remark. For a fixed value of k, the probability of correct reconstruction α approaches to
1 when q → ∞. Therefore, it is possible to get a scheme with α as closer to 1 as desired
by appropriately choosing the value of q. Of course, increasing the value of q produces an
increase in the share size.
I Remark. As pointed out in the proof, the participation of more than k parties in the
reconstruction phase makes the probability of correctly reconstructing the secret to increase.

Comparison with the scheme from Section 4. Next we provide a brief comparative analysis
between our constructions from Sections 4 and 6, when both are used to share secrets of the
same size for the (2,∞)-threshold access structure. Assume that s ∈ {0, 1}l is a bitstring of

MFCS 2018

64:14 Probabilistic Secret Sharing

length l. When using the construction from Section 4 in a direct way, l independent instances
are needed in order to share s. Thus, the share size equals l and the probability of perfect
reconstruction, for example, assuming the uniform distribution on the secret space, equals
(3/4)l. On the other hand, when using the construction from this section with k = 2, we can
choose q as the smaller prime power such that q > 2l. Then, the share size equals blog qc
which will be equal or very close to l. And the probability of correct reconstruction equals

q − 1
q − 1 ·

q − 2
q − 1 = q − 2

q − 1

Note that both constructions have almost the same share size, but the probability α of
correct reconstruction for the former scheme tends to 0, while for the latter scheme tends to
1 as l grows. We can conclude, looking at concrete numbers, that our construction from this
section performs much better than the one from Section 4, even for small values of l.

7 Conclusions and open problems

We have introduced the notion of α-probabilistic secret sharing schemes and provided two
efficient constructions for threshold access structures and for evolving threshold access
structures with shares of constant size, with respect to the number of participants, and
probability of reconstruction as close to 1 as desired.

Many questions arise from the above study. We point out just two main challenging
problems: the first one is how to design efficient probabilistic secret sharing schemes for
general access structures for an infinite set of participants and which gain (if any) we can
get, compared to perfect secret sharing schemes, in terms of share size. The second one is
related to the power of probabilistic secret sharing schemes. Indeed, in [2] (Section 6), results,
attributed to Rudich, show that it is unlikely to obtain efficient secret sharing schemes for
certain access structures unless NP = co-NP . The proof uses the perfect correctness of the
secret sharing schemes. The question is whether or not we can overcome the impossibility
results by Rudich with probabilistic secret sharing schemes.

References
1 G. Ateniese, C. Blundo, A. De Santis, and D. R. Stinson. Visual cryptography for general

access structures. Inf. Comput., 129(2):86–106, 1996. doi:10.1006/inco.1996.0076.
2 A. Beimel. Secret-sharing schemes: A survey. In Proceedings of the Third International

Conference on Coding and Cryptology, LNCS 6639, pages 11–46, Berlin, Heidelberg, 2011.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=2017916.2017918.

3 M. Bellare and P. Rogaway. Robust computational secret sharing and a unified account
of classical secret-sharing goals. In Proceedings of the 14th ACM Conference on Computer
and Communications Security, CCS ’07, pages 172–184, New York, NY, USA, 2007. ACM.
doi:10.1145/1315245.1315268.

4 J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In Pro-
ceedings on Advances in Cryptology, LNCS 403, pages 27–35, Berlin, Heidelberg, 1990.
Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=88314.88328.

5 J. Benaloh and J. Leichter. Generalized secret sharing and monotone functions. In Proceed-
ings on Advances in Cryptology (CRYPTO ’88), LNCS 403, pages 27–35, Berlin, Heidelberg,
1990. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=88314.88328.

6 G. R. Blakley. Safeguarding cryptographic keys. In Proceedings of the 1979 AFIPS National
Computer Conference, pages 313–317. AFIPS Press, 1979.

http://dx.doi.org/10.1006/inco.1996.0076
http://dl.acm.org/citation.cfm?id=2017916.2017918
http://dx.doi.org/10.1145/1315245.1315268
http://dl.acm.org/citation.cfm?id=88314.88328
http://dl.acm.org/citation.cfm?id=88314.88328

P. D’Arco, R. De Prisco, A. De Santis, A. Pérez del Pozo, and U. Vaccaro 64:15

7 G. R. Blakley and C. Meadows. Security of ramp schemes. In Proceedings of CRYPTO
84 on Advances in Cryptology, pages 242–268, New York, NY, USA, 1985. Springer-Verlag
New York, Inc. URL: http://dl.acm.org/citation.cfm?id=19478.19498.

8 C. Blundo, A. De Santis, R. De Simone, and U. Vaccaro. Tight bounds on the information
rate of secret sharing schemes. Designs, Codes and Cryptography, 11(2):107–110, May 1997.
doi:10.1023/A:1008216403325.

9 A. Bogdanov, S. Guo, and I. Komargodski. Threshold secret sharing requires a linear
size alphabet. In Proceedings, Part II, of the 14th International Conference on Theory
of Cryptography, LNCS 9986, pages 471–484, Berlin, Heidelberg, 2016. Springer-Verlag.
doi:10.1007/978-3-662-53644-5_18.

10 R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro. On the size of shares for secret
sharing schemes. J. Cryptol., 6(3):157–167, 1993. doi:10.1007/BF00198463.

11 I. Cascudo, R. Cramer, and C. Xing. Bounds on the threshold gap in secret sharing and
its applications. Information Theory, IEEE Transactions on, 59:5600–5612, 09 2013.

12 S.-K. Chen and S.-J. Lin. Optimal (2, n) and (2,∞) visual secret sharing by generalized
random grids. J. Vis. Commun. Image R., 23:677–684, 2012.

13 S. Cimato, R. De Prisco, and A. De Santis. Probabilistic visual cryptography schemes.
Comput. J., 49(1):97–107, 2006. doi:10.1093/comjnl/bxh152.

14 R. Cramer, I. Damgard, and J. B. Nielsen. Secure Multiparty Computation and Secret
Sharing. Cambridge University Press, New York, NY, USA, 1st edition, 2015.

15 L. Csirmaz. The size of a share must be large. Journal of Cryptology, 10(4):223–231, Sep
1997. doi:10.1007/s001459900029.

16 László Csirmaz. Probabilistic infinite secret sharing. IACR Cryptology ePrint Archive,
2012:412, 2012.

17 P. D’Arco and R. De Prisco. Visual cryptography - models, issues, applications and new dir-
ections. In Innovative Security Solutions for Information Technology and Communications
- 9th International Conference, SECITC 2016, Bucharest, Romania, June 9-10, 2016, Re-
vised Selected Papers, LNCS 10006, pages 20–39, 2016. doi:10.1007/978-3-319-47238-6\
_2.

18 P. D’Arco, R. De Prisco, and Y. Desmedt. Private visual share-homomorphic computation
and randomness reduction in visual cryptography. In Information Theoretic Security - 9th
International Conference, ICITS 2016, Tacoma, WA, USA, August 9-12, 2016, Revised
Selected Papers, LNCS 10015, pages 95–113, 2016. doi:10.1007/978-3-319-49175-2_5.

19 R. De Prisco and A. De Santis. On the relation of random grid and deterministic visual
cryptography. IEEE Trans. Information Forensics and Security, 9(4):653–665, 2014. doi:
10.1109/TIFS.2014.2305574.

20 A. Dibert and L. Csirmaz. Infinite secret sharing - examples. J. Mathematical Cryptology,
8(2):141–168, 2014.

21 Y. Ishai, H. K. Maji, A. Sahai, and J. Wullschleger. Single-use ot combiners with near-
optimal resilience. In 2014 IEEE International Symposium on Information Theory, pages
1544–1548, June 2014. doi:10.1109/ISIT.2014.6875092.

22 M. Ito, A. Saio, and T. Nishizeki. Secret sharing schemes realizing general access structure.
In Proc. of the IEEE Global Telecommunication Conf., Globecom ’87, pages 99–102. IEEE,
1987.

23 M. Ito, A. Saio, and T. Nishizeki. Multiple assignment scheme for sharing secret. J.
Cryptology, 6(1):15–20, 1993. doi:10.1007/BF02620229.

24 O. Kafri and E. Keren. Encryption of pictures and shapes by random grids. Optics letters,
12:377–379, 1987.

25 M. Karchmer and A. Wigderson. On span programs. In Proc. of the 8th IEEE Structure
in Complexity Theory, pages 102–111, 1993. doi:10.1109/SCT.1993.336536.

MFCS 2018

http://dl.acm.org/citation.cfm?id=19478.19498
http://dx.doi.org/10.1023/A:1008216403325
http://dx.doi.org/10.1007/978-3-662-53644-5_18
http://dx.doi.org/10.1007/BF00198463
http://dx.doi.org/10.1093/comjnl/bxh152
http://dx.doi.org/10.1007/s001459900029
http://dx.doi.org/10.1007/978-3-319-47238-6_2
http://dx.doi.org/10.1007/978-3-319-47238-6_2
http://dx.doi.org/10.1007/978-3-319-49175-2_5
http://dx.doi.org/10.1109/TIFS.2014.2305574
http://dx.doi.org/10.1109/TIFS.2014.2305574
http://dx.doi.org/10.1109/ISIT.2014.6875092
http://dx.doi.org/10.1007/BF02620229
http://dx.doi.org/10.1109/SCT.1993.336536

64:16 Probabilistic Secret Sharing

26 I. Komargodski, M. Naor, and E. Yogev. How to share a secret, infinitely. In Procc. of
TCC 2016, LNCS 9986, pages 485–514. Springer, 2016.

27 I. Komargodski, M. Naor, and E. Yogev. How to share a secret, infinitely. IEEE Trans-
actions on Information Theory, 64(6):4179–4190, June 2018. doi:10.1109/TIT.2017.
2779121.

28 I. Komargodski and A. Paskin-Cherniavsky. Evolving secret sharing: Dynamic thresholds
and robustness. In Theory of Cryptography - 15th International Conference, TCC 2017,
Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part II, LNCS 10678, pages
379–393, 2017. doi:10.1007/978-3-319-70503-3_12.

29 H. Krawczyk. Secret sharing made short. In Proceedings of the 13th Annual International
Cryptology Conference on Advances in Cryptology (CRYPTO ’93), LNCS 773, pages 136–
146, Berlin, Heidelberg, 1994. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?
id=646758.705700.

30 T. Liu and V. Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. Crypto-
logy ePrint Archive, Report 2018/333, 2018. URL: https://eprint.iacr.org/2018/333.

31 M. Naor and A. Shamir. Visual cryptography. In Advances in Cryptology - EUROCRYPT
’94, Workshop on the Theory and Application of Cryptographic Techniques, Perugia, Italy,
May 9-12, 1994, Proceedings, LNCS 950, pages 1–12, 1994. doi:10.1007/BFb0053419.

32 A. Paskin-Cherniavsky. How to infinitely share a secret more efficiently. IACR Cryptology
ePrint Archive, 2016:1088, 2016.

33 R. Robere, T. Pitassi, Rossman B., and S. A. Cook. Exponential lower bounds for monotone
span programs. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 406–415, Oct 2016. doi:10.1109/FOCS.2016.51.

34 A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
35 J. G. Simmons, W. Jackson, and K. Martin. The geometry of shared secret schemes.

Bulletin of the Institute of Combinatorics and its Applications, 1, 01 1991.
36 C.-N. Yang. New visual secret sharing schemes using probabilistic method. Pattern Recogn.

Lett., 25(4):481–494, mar 2004. doi:10.1016/j.patrec.2003.12.011.

http://dx.doi.org/10.1109/TIT.2017.2779121
http://dx.doi.org/10.1109/TIT.2017.2779121
http://dx.doi.org/10.1007/978-3-319-70503-3_12
http://dl.acm.org/citation.cfm?id=646758.705700
http://dl.acm.org/citation.cfm?id=646758.705700
https://eprint.iacr.org/2018/333
http://dx.doi.org/10.1007/BFb0053419
http://dx.doi.org/10.1109/FOCS.2016.51
http://dx.doi.org/10.1016/j.patrec.2003.12.011

Extra Space during Initialization of Succinct Data
Structures and Dynamical Initializable Arrays
Frank Kammer
THM, University of Applied Sciences Mittelhessen, Germany
frank.kammer@mni.thm.de

Andrej Sajenko1

THM, University of Applied Sciences Mittelhessen, Germany
andrej.sajenko@mni.thm.de

Abstract
Many succinct data structures on the word RAM require precomputed tables to start operating.
Usually, the tables can be constructed in sublinear time. In this time, most of a data structure is
not initialized, i.e., there is plenty of unused space allocated for the data structure. We present
a general framework to store temporarily extra buffers between the user defined data so that
the data can be processed immediately, stored first in the buffers, and then moved into the
data structure after finishing the tables. As an application, we apply our framework to Dodis,
Pǎtraşcu, and Thorup’s data structure (STOC 2010) that emulates c-ary memory and to Farzan
and Munro’s succinct encoding of arbitrary graphs (TCS 2013). We also use our framework to
present an in-place dynamical initializable array.

2012 ACM Subject Classification Theory of computation→ Data structures design and analysis

Keywords and phrases space efficiency, succinct c-ary memory, dynamic graph representation

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.65

1 Introduction

Small mobile devices, embedded systems, and big data draw the attention to space- and
time-efficient algorithms, e.g., for sorting [4, 23], geometry [1, 3, 10] or graph algorithms
[2, 6, 7, 9, 12, 14, 15, 16]. Moreover, there has been also an increased interest in succinct
(encoding) data structures [8, 11, 12, 20, 18, 24, 22].

On a word RAM, succinct data structures often require precomputed tables to start
operating, e.g., Dodis, Pǎtraşcu, and Thorup’s data structure [8]. It emulates c-ary memory,
for an arbitrary c ≥ 2, on standard binary memory almost without losing space. Before we
can store any information in the data structure, suitable lookup tables have to be computed.
Hagerup and Kammer [12, Theorem 6.5] showed a solution that allows us to store the
incoming information in an extra buffer and read and write values immediately. However,
their solution scrambles the data so that extra mapping tables have to be built and used
forever to access the data, even after the lookup tables are built. Moreover, Farzan and
Munro [11] described a succinct encoding of arbitrary graphs. To store a dense graph, an
adjacency matrix is stored in a compact form by decomposing the matrix in tiny submatrices.
Each submatrix is represented by an index and the mapping is done via a lookup table.
Assume that the tables are not ready, but the information of the graph already arrives in a

1 Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 379157101.

© Frank Kammer and Andrej Sajenko;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 65; pp. 65:1–65:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:frank.kammer@mni.thm.de
mailto:andrej.sajenko@mni.thm.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.65
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

65:2 Extra Space during Initialization of Succinct DS and Dynamical Initializable Arrays

stream. One then can use an extra buffer and store the small matrices in a non-compact
way and operate on these matrices until the tables are ready. At the end, the non-compact
matrices can be moved from the buffers to the data structure that stores the encoded graph.

Usually, the tables can be constructed in sublinear time. In this time, most of the
data structure is not initialized, leaving plenty of allocated space unused. We present a
general framework to store a temporarily extra buffer within the initial memory. Even if
the initialized space changes, the content in the extra buffers do not change for the user.
Intuitively, we describe a way how to use the uninitialized space to store a usual array with
random access. In particular, if the buffer is not needed any more and thus is removed, our
implementation ”leaves” the data structure as if the extra buffer has never existed.

As another application of our framework, we show that in-place initializable arrays can be
made dynamic and with every increase of the array size, the new space is always initialized.
Our model of computation is the word RAM model with a word length w that allows us to
access all input words in O(1) time. Thus, to operate on a dynamic initializable array of
maximum size nmax we require that the word size w = Ω(log nmax).

To obtain a dynamic initializable array, we additionally assume that we can expand and
shrink an already allocated memory. The memory can come from an operating system or
can be user controlled, i.e., the user can shrink an initializable array temporarily, use the
space for some other purpose, and can increase it again if it is needed later.

1.1 Previous Array Implementation
The folklore algorithm [5, 19], which uses two arrays with pointers pointing to each other
and one array storing the data, uses O(nw) bits of extra space. Navarro [21] showed an
implementation that requires n+ o(n) bits of extra space. Recently, Hagerup and Kammer
[13] showed that d(n(t/(2w))t)e extra bits for an arbitrary t suffice if one wants to support
access to the array in O(t) time. In particular, by choosing t = O(log n), the extra space is
only one bit. Very recently, Katoh and Goto [17] showed that also constant access time is
possible with one extra bit. All these array implementations are designed for static array
sizes.

1.2 Our Contributions
First, we present our framework to extend a data structure by an extra buffer. We then apply
the framework to two known algorithms [8, 11]. Finally, we make Katoh and Goto’s in-place
initializable arrays dynamic. For this purpose, we identify problems that happen by a simple
increase of the memory used for the array and stepwise improve the implementation to make
our array dynamic. Our best solution supports operations read, write, and increase in
constant time and an operation shrink in amortized constant time.

Why do we support the shrink operation only in amortized time? The rest of this
paragraph is not a precise proof, but gives some intuition what the problems are if the goal is
to support constant non-amortized time for initialization, writing and shrinking. To support
constant-time initialization of an array we must have knowledge of the regions that are
completely written by the user and these regions must store the information which words
are written. If we now allow arbitrary shrink operations, then we do not have the space
to keep all information. Instead, we must clean the information, but keep this information
of the written words that still belong to the dynamic array. If we want to run the shrink
operation in non-amortized constant time, the information must be sorted in such a way that
the cleaning can be done by simply cutting away a last part of the information. This means

F. Kammer and A. Sajenko 65:3

the writing operation must take care that the information is stored “almost sorted”. Since
we can not sort a stream of elements in O(1) time per element in general, it seems plausible
that the writing operation takes ω(1) time.

The remainder of this paper is structured as follows. We begin with summarizing the
important parts of Katoh and Goto’s algorithm in Section 2. In Section 3 we present our
framework to implement the extra buffer stored inside the unused space of a data structure
without using extra space. In Section 4, we extend our framework to dynamic arrays. As
an application, we show in Section 5.1 how to increase the array size in constant time. In
Sections 5.2 and 5.3, we present the final implementation that also allows us to decrease the
array size.

2 In-Place Initializable Array

Katoh and Goto [17] introduced the data structure below and gave an implementation that
uses nw + 1 bits and supports all operations in constant time.

I Definition 1. An initializable array D is a data structure that stores n ∈ IN elements of
the universe Z ⊆ IN and provides the following operations:

read(i) (i ∈ IN): Returns the i-th element of D.
write(i, x) (i ∈ IN, x ∈ Z): Sets the i-th element of D to x.
init(x) (x ∈ Z): Sets all elements of D to initv := x.

Let D[0, . . . , n] be an array storing D. D[0] is used only to store one bit to check if the
array D is fully initialized. If D[0] = 1, D is a normal array, otherwise the following rules
apply.

The idea is to split a standard array into blocks of b = 2 words and group the blocks into
two areas: The blocks before some threshold t ∈ IN are in the written area, the remaining
in the unwritten area. Moreover, they call two blocks chained if the values of their first
words point at each others position and if they belong to different areas. In the following, we
denote by d(B) the block chained with a block B. Note that d(d(B)) = B.

In our paper, we also use chains. Therefore, we shortly describe the meaning of a
(un)chained block B in [17]. Compare the following description with Figure 1. If B is in the
written area and chained, then B is used to store a value of another initialized block and is
therefore defined as uninitialized. If B is in the unwritten area and chained, B contains user
written values and the words of B are divided among B and d(B). In this case d(B) was not
written by the user. In detail, the second word of B is stored in this word of B, but the first
word is stored in the second word of d(B) since the first word is used to store a pointer. If B
is in the written area and unchained, B contains user written (or initial) values. If B is in
the unwritten area and unchained, B has never been written by the user. Every time the
user writes into a block for the first time, i.e., into a word of an (un)chained block in the
(un)written area, the written area increases by moving the first block of the unwritten area
into the written area and by possibly building or correcting chains.

3 Extra Space during Initialization of Succinct Data Structures

We now consider an arbitrary data structure D∗. The only assumption that we make is that
D∗ accesses the memory via a data structure D realizing an n-word array. For the time
being, assume D is the data structure as described in Section 2 with D[0, . . . , n] being an
array storing D. We define |U | as the number of blocks of the unwritten area. As long as

MFCS 2018

65:4 Extra Space during Initialization of Succinct DS and Dynamical Initializable Arrays

γ δ

γ δ

· · · j α

initv initv

i i+ 1

· · ·

t

i β

α β

j j + 1

· · ·

initv initv

i i+ 1

D[]

D[]

written area unwritten area

Figure 1 The different states of blocks inside the written and unwritten area. D represents
the users view on the data with initv being the initial value, α, β, γ and δ as user written values.
D represents the internal view with i and j as indices of D.

· · · j

i

α β · · ·

t

E[|U |−1] · · · j E[] γ

α β γ

i

· · · E[0]D[]

D[]

written area unwritten area

Figure 2 The block size b = 3 allows us to move α and β to the chained block such that each
block of the unwritten area has one unused word to store the extra data of E.

D is not fully initialized, i.e, not all array locations have been written since the last init
operation, and only m ∈ IN with m < n words are written in D, Theorem 2 shows that the
unused storage allocated for D allows us to store information of an extra array E inside D
by increasing the block size to b > 2 (Figure 2). The size of E depends on |U | and thus on
the current grade of initialization of D. In contrast to D, E is an uninitialized array. Clearly,
we can build an initialized array on top of E.

The array size n is not always a multiple of the block size b. By decreasing n and handling
less than b words of D separately, we assume in this paper that n is a multiple of b.

I Theorem 2. We can store an extra array E of (n/b−m)(b− 2) ≤ |U |(b− 2) words inside
the unused space of an initializable array D of size n, split into blocks of size b where m is
the number of writing operations since the last init operation. E dynamically shrinks from
the end whenever the number of user defined values m increases.

Proof. Let us consider a block B inside the unwritten area. B and d(B) together provide
space for 2b words, but the chain between them exists only because the user wrote inside
one block (block B, but not in d(B)), and thus we need to store b words of user data.
Furthermore, B and d(B) each needs one word to store a pointer that represents the chain.
By storing as much user data as possible of B in d(B), we have b− 2 unused words in B –
say, words 2 to b− 1 are unused. Note that, if a block B is unchained, then it contains no
user values at all and we have even b unused words. If the user wrote m different words in
D, then the threshold t of D (t is the number of blocks in the written area) is expanded
at most m-times. The written area consists of at most m blocks of a total of n/b blocks.
Consequently, the unwritten area has (n/b−m) ≤ |U | blocks with each having (b−2) unused
words. If we start storing E[0], E[1], ... in the unwritten area strictly behind t, the indices of
E will shift every time the unwritten area shrinks. Therefore, we store E in reverse and E
loses with every shrink the last b− 2 words, but get static indices. J

Note that values like the threshold t and the initial value can be easily stored at the
beginning of E. However, we require the size of D to determine the beginning of E. To store
the size we therefore move D[1] also into E and store the size of the array in D[1]. During

F. Kammer and A. Sajenko 65:5

the usage of D we have to take this into account, but for simplicity we ignore this fact. If
the array is fully initialized and thus D[0] = 1, we can not store the size anymore, but in
this case we do not need to know it.

3.1 Application: c-ary Memory
To use Dodis et al.’s dictionary [8] on n elements, a lookup table Y with O(log n) entries
consisting of O(log n) bits each must be constructed, which can be done in O(log n) time.
Using tables of the same kind to store powers of c, we can assume that c = Ω(n) by combining
consecutive elements of the input into one element.

Hagerup and Kammer extended Dodis et al.’s dictionary to support constant-time initial-
ization by storing the k = Θ(log n) elements that are added first to the dictionary in a trie
DT of constant depth d ≥ 4 and out degree n1/d using O(nε+1/d + log n log c) bits for any
ε > 0. Interleaved with the first k operations on the dictionary, first the table Y is built and
afterwards, the elements in DT are moved to the dictionary.

Since DT is required only temporarily, it is stored within the memory allocated for the
dictionary – say in the last part of the memory. The problem that arises is that the last part
of the memory can not be used as long as it is still used by DT. This problem is solved by
partitioning the memory allocated for the dictionary into sectors and using a complicated
mapping function that scrambles the elements to avoid the usage of the last part of the
memory. Unfortunately, even after computing the table Y and moving all elements from DT

over to the dictionary, the data is still scrambled and each access to the dictionary has to
start evaluating the mapping function.

With Theorem 2 as an underlying data structure it is easily possible to implement the
dictionary with constant initialization time. Use the extra array E to store temporarily the
table DT. Even if we use block size b = 3, E has enough space (at least (n(log c)−k log n)/3 ≥
(n − k)(log n)/3 bits at the end of the construction of Y) to store DT. The mapping
function becomes superfluous because the data is not scrambled by the usage of Theorem 2.
Furthermore, working on a copied and slightly modified algorithm after the full initialization
of D, we can avoid checking the extra bit in D[0].

3.2 Application: Succinct Encoding of Dense Graphs
Farzan and Munro [11] showed a succinct encoding of an n× n-matrix that represents an
arbitrary graph with n vertices and m edges. Knowing the number of edges they distinguish
between five cases: An almost full case, where the matrix consists of almost only one entries,
an extremely dense case, a dense case, a moderate case and an extremely sparse case. For each
case, they present a succinct encoding that supports the query operations for adjacency and
degree in constant time and iteration over neighbors of a vertex in constant time per neighbor.

We consider only the dense case where table lookup is used. Dense means that ∃δ > 0 :
n2/ log1−δ n ≤ m ≤ n2(1 − 1/(log1−δ n). As shown in [11], a representation in that case
requires log

(
n2

m

)
+ O(n2(log1−δ n)) = log

(
n2

m

)
+ o(log

(
n2

m

)
) bits of memory. To encode the

matrix of a graph Farzan and Munro first divide the matrix into small submatrices of size
log1−δ n × log1−δ n for a constant 0 < δ ≤ 1. For each row and column of these smaller
submatrices they calculate a summary bit that is 1 if the row and column, respectively, of the
submatrix contains at least one 1. The summary bits of a row and column, respectively, of
the whole matrix are used to create a summary vector. On top of each summary vector they
build a rank-select data structure [24] that supports queries on 0’s and 1’s in constant time.
They also build a lookup table to map between possible submatrices and indices as well as to

MFCS 2018

65:6 Extra Space during Initialization of Succinct DS and Dynamical Initializable Arrays

answer all queries of interest in the submatrix in O(1) time. In a further step, they replace
each submatrix by its index. By guaranteeing that the number of possible submatrices is
o(log n), the construction of the lookup table can be done in O(n) time. To simply guarantee
this, we restrict δ to be larger than 1/2. We generalize the result to dynamic graphs by
replacing the rank-select data structures with choice dictionaries [12, Theorem 7.6] as follows.
We assume that the graph has initially no edges and that there is a stream that consists
of edge updates and query operations. With each edge update, the index of the submatrix
with the edge changes. To realize the index transition we use a translation table that maps
both, the current index of the submatrix and the edge update made, to the new index. We
store for each summary vector an edge counter, i.e., the number of 1’s that was used to
calculate each summary bit of it. Whenever an edge is created between two nodes we set
the corresponding bit of the row and column, respectively, inside the summary vector to 1
and increment the edge counter. If an edge is removed we decrement the edge counter and
determine, using a lookup table, if the submatrix containing this edge has still 1’s in the
updated row and column, respectively. If it does not, we set the corresponding summary bit
inside the summary vector to 0.

If the lookup tables for the submatrices are computed, we can easily answer queries to
the current graph similar to [11] since we still use the summary vectors. We can ask for
membership to answer adjacency queries. To iterate over the neighbors of a vertex (i.e., over
the 1’s in the summary vector), we can use the iterator function of the choice dictionary
instead of using the select function of the rank-select data structure. The degree query is
answered by returning the edge counter.

In the rest of this subsection, the goal is to extend the data structure such that it supports
the queries without a delay for the construction of the lookup tables. The idea is to store a
submatrix with a 1 entry in the usual, non-compact way in the extra buffer and to add a
pointer from the submatrix to a place in the buffer where it is stored. To reduce the space
used for the pointers, we group logδ n submatrices together to get a group matrix of size
log1−δ n× log n. Moreover, we use an array A in which we store a pointer of O(log n) bits for
each group. With the first writing operation to one submatrix in a group, the group matrix
is stored in the usual, non-compact way in an initialized array, which is stored in the extra
buffer (Theorem 2). In the array A, we update the pointer for the group. In addition, we
build a choice dictionary on top of each non-empty column and each non-empty row of the
group matrix. With each choice dictionary, we also count the number of 1 entries.

Using the counts we can update the summary vectors and the non-compact submatrix
allows us to answer adjacency queries. Both can be done in constant time without using
lookup tables. To support the neighborhood query, we use choice dictionaries on top of
the group matrices. In detail, whenever updating an edge, update the summary vector,
add or follow the pointer to the non-compact representation, update it including the choice
dictionary and the degree counter.

After O(n) operations the lookup table is computed and, in the same time, the entries in
the non-compact matrices are moved to the compact submatrices.

The array A requires n2(log n)/((log1−δ n)(log n)) = O(n2/ log1−δ n) bits, which is negli-
gible. Moreover, a group matrix with the choice dictionaries requires O(log2 n) bits to be
stored. Thus, after O(n) operations, the total extra space usage is O(n log2 n) bits, which
easily fits in the extra buffers of size Ω(log

(
n2

m

)
− n log n) = Ω(n2/ log1−δ n − n log n) bits

after O(n) operations.

F. Kammer and A. Sajenko 65:7

I Theorem 3. A graph with n vertices can be stored with log2
(
n
m

)
+ O(n2/ log1−δ n) bits

supporting edge updates as well as adjacency and degree queries in constant time and iteration
over neighbors of a vertex in constant time per neighbor where m = n2/ log1−δ

2 n and δ > 1/2.
A startup time for constructing tables is not necessary.

Note that, if the whole memory of a graph representation must be allocated in the
beginning, i.e., if we do not allow a change of the space bound during the edge updates, then
our representation of the dynamical graph (with possibly n2/ log1−δ

2 n edges) is also succinct.

4 Extra Space for Dynamic Arrays

We now extend our framework to dynamic arrays. The data structure D (Definition 1) of
Katoh and Goto is not dynamic, but assume it is. Then the unwritten area of D may become
larger and smaller and with it the size of the array extra array E (Theorem 2).

Since we start indexing the words belonging to E from the end of D, changing the size of
D will change the index of the words in E. If we start indexing E from the beginning of the
unwritten area, all indices change every time the unwritten area shrinks.

To realize an indexed array we introduce a fixed-length array F . To handle the shrink
operation, we store F strictly behind the written area so that there is nothing to do if we
shrink or expand the size of D. Recall that b is the size of a block words and m is the number
of write operations. If the written area grows, we lose b− 2 unused words of the unwritten
area and therefore b− 2 used words in F . As long as there are unused words in the unwritten
area behind F we move the b− 2 words that we would lose to the first unused words behind
F . This will rotate F inside the unwritten area of D.

I Lemma 4. We can store a fixed-length array F consisting of ` words in the unused space
of D as long as ` ≤ (n/b−m− 1)(b− 2) ≤ (|U | − 1)(b− 2). If the condition is violated, then
F is destroyed.

Proof. Let the size of F be smaller than the unused space of D. Whenever the user writes
an additional word in D, m increases and the number of the unused words becomes less.
Therefore, before extending the written area by one block, we move the b− 2 words in that
block to the unused space of D behind F . We use the last block in the unwritten area to store
the size and a counter to calculate the rotation. Thus, we have one block less in contrast to
Theorem 2. F can be of size ` ≤ (n/b−m− 1)(b− 2) ≤ (|U | − 1)(b− 2). J

For some applications it is interesting to have a dynamic extra storage even if D is dynamic.
We introduce a dynamic set in Lemma 5 that can be stored inside the unwritten area of D
and supports the operations add, remove, and iterate. The last operation returns a list
of all elements in the data structure. The size of dynamic extra storage is dynamically upper
bounded by |U |.

I Lemma 5. We can store a dynamic (multi-)set of maximal ` ≤ (|U | − 1)(b− 2) elements
in the unused space of D. If the condition is violated by write operations of D, elements of
the set are removed until the condition holds again.

Proof. We store a dynamic list strictly behind the written area and shift it cyclically as in
the proof of Lemma 4. The difference here is that we have no fixed order so that we can
store new elements simply at the beginning of the unused words of D and increase the size `.
The removal of an element may create a gap that can be filled by moving an element and
decreasing `. J

MFCS 2018

65:8 Extra Space during Initialization of Succinct DS and Dynamical Initializable Arrays

· · · · · · · · · · · · · · · · · ·

I[1] I[2] I[3] I[4] I[5] I[6] I[7]

S1[1]
S2[1]

S1[2]
S2[2]

S3[1]

S1[3]

S3[2]

I[1]:
I[2]:
I[3]:

Figure 3 The figure shows a dynamic family consisting of three dynamic sets. The first element
of each set can be found in section to which I[1], I[2] and I[3], respectively, points.

For our implementation described in Section 5 we require a (multi-)set with direct access
to the elements. We can use the position in D as an address for direct access, but this
requires that the user implements a notification function, which is called by our data structure
whenever an element in the list changes its position to inform the user.

I Fact 6. Having two chained blocks B and d(B) and a suitable block size b, we can rearrange
the user data in the two blocks such that we can store O(1) extra words (information as, e.g.,
pointers) in both B and in d(B).

We next show that an algorithm can use several extra data structures in parallel.

I Lemma 7. For a b ≥ 2, D can have k ∈ IN extra data structures in parallel where each is
of size at most |U |b(b− 2)/kc.

Proof. Every block of the unwritten area has b− 2 unused words and every unused word
can be used for another data structure. J

As we see later, it is useful to have several dynamic sets of elements that are all the same
size. The sets can also be (multi-)sets.

I Corollary 8. For b > 2, D can store a dynamic family F consisting of dynamic sets where
the sets have in total at most b(|U | − 3)(b− 2)/(s+ 3)− 1c elements each of size s.

Proof. We use the unused words in the unwritten area of D and partition it into sections
of s+ 3 words. Every first word of a section is used for an array I, then s words are used
to store an element of a set, and the last two words store pointers of a doubly linked list
that connect the element in a doubly-linked list with all other elements in the set. I[i] points
to the an element of the ith set. The element is stored in one section. Using the pointers
at the end of each section, we can find the next element of the set. The realization is also
sketched in Figure 3. The unused words in the last 3 blocks (possibly, fewer blocks suffice) of
the unwritten area are used to store some constants: the size t of the written area, the initial
value of D, some parameter p ∈ IN , the number of sets in S, and the total number q of items
over all sets. Using q we can simply find the section of a new element.

If the written area of D increases, we have to start moving the first section to a new
unused section. We store the position of the new section in p. By knowing t we know how
much of the first section has been already moved and where to find the information of the
first section. J

F. Kammer and A. Sajenko 65:9

5 Dynamical Initializable Array

In the next three subsections, we provide implementations to make the in-place initializable
array dynamic. Therefore, we extend the initializable array D by the following two functions
to change the current size of the array.

increase(nold, nnew, initv) (nold, nnew ∈ IN): Sets the size of D from nold to nnew. All
the elements behind the noldth element in D are initialized with initv, the initial value of
D defined by the last call of init.
shrink(nold, nnew) (nold, nnew ∈ IN): Sets the size of D from nold to nnew.

In our implementation we handle the array D differently, according to its size. Recall that
w is the word size. As long as D consists of n′ = O(w) elements, we use a bit vector stored
in O(1) words to know which words are initialized. On the word RAM we can manipulate it
in constant time. To have immediate access to the bit vector we store it in the beginning of
the array and move the data located there to the first unused words. If we increase the size
of D to more than ω(w) elements, we keep the bit vector in some unused words until the
first n′ words of D are completely initialized. Having such a bit vector we assume that this
is taken into account whenever there is a reading or writing operation, but do not mention it
explicitly in the rest of the paper.

If the array D consists of at least ω(w) elements, we can not use the solution with the bit
vector. Instead, we use chains so that we can distinguish between initialized and uninitialized
blocks, even after several shrink and increase operations. We assume in the following that D
consists of ω(w) elements.

5.1 Increasing the size of D
An increase of the size of D means allocating additional memory that gives us several new
blocks inside the unwritten area. These blocks may contain arbitrary values and these values
can point at each other such that they create a so-called unintended chain between a block
Bw (written area) and a block Bu (unwritten area). Katoh and Goto break such unintended
chains by creating a self-chain (pointer at its own position) with Bu whenever they write a
value to a block of the written area. Because the increase of D may be arbitrary, we can not
destroy such chains in constant time.

To support large increases of D, we eliminate the possibility of unintended chains by
introducing another kind of chain, called verification chain. To distinguish the two kinds of
chains we name the chain introduced in Section 2 a data chain. We define a chain between
two blocks Bw and Bu as intended exactly if Bw has also a verification chain, otherwise as
unintended.

To use the verification chain, we first distribute the user data among two chained blocks
such that each block of the written area has an unused word (Fact 6). Let L be a dynamic
list with direct access stored in D (Lemma 5). Whenever the block B in the written area has
a data chain with a block d(B), we additionally require that it also must have a verification
chain with an element of the list L (Figure 4). We denote by v(B) a pointer to the element
in L chained with B and use an unused word of B to store v(B). Recall that, whenever
the unwritten area shrinks, some elements in L change their position in D. To ensure the
validity of the verification chains, we use the notification function of L to update the pointer
k ∈ IN in the effected blocks. The verification pointers in L, stored behind the written area,
are not affected by increasing the size of D.

Finally, note that L has enough space to store all verification pointers since only one
verification chain is required for each block in the unwritten area, i.e, L is of size O(|U |).

MFCS 2018

65:10 Extra Space during Initialization of Succinct DS and Dynamical Initializable Arrays

D[]

D[]

j α k β

initv initv initv initv

· · · · · · i γ δ

α β γ δ

· · ·

L[] j

address k

· · ·

Figure 4 The block Bw (left) has a verification chain with an element of a dynamic list L to
verify that the data chain between block Bw and Bu (right) is intended.

5.2 Shrinking the Size of D at most O(w) Times
Shrinking the size of D means to free some memory that may be used to store information.
We distinguish between two cases. In the first case we shrink the size of D so much that L is
destroyed. In this case we make a full initialization of D as follows.

Since we lose the ability to check for unintended data chains, we first destroy them by
iterating over the verification list L, following its pointer to a block Bw, checking if the block
Bu = d(Bw) is behind the new size of D. If it is, we initialize Bw with the initial value.
Writing the initial value into Bw may created an unintended data chain, which we break.
Now the verification list is superfluous and we can iterate over the unwritten area and check
for a data chain. If there is one, we move the user values from d(B) into B and initialize
d(B), otherwise we initialize B. After the iteration, we set D[0] = 1.

Since L will be destroyed by the shrinking operation, the size |U | of the unwritten area
behind the shrinking is bounded by |L|. Thus, by using the potential function ψ = (c · length
of L) for some constant c ≥ 2, the amortized cost of the write operation increases by at
most c = O(1) and we can easily pay for the full initialization.

In the second case, we reduce the size of D such that the verification list L is still
completely present in D. In this case, all blocks of the written area remain and they still
have a verification chain. However, the data chain can point outside of D. If we subsequently
re-increase D, some blocks may still have a data chain and also a verification chain. This
violates our definition of the increase operation.

To resolve this problem we invalidate the data chains of all blocks outside D as follows.
As long as there is no shrinking operation, we store the same version number v ∈ IN to all
data chains. More exactly, let B be a block in the unwritten area chained with a block d(B)
in the written area. Then we store the version inside an unused word of d(B) using Fact 6.

Before we execute a shrink operation, we set nv to the current size of D and remember it
as the size for the current version v. With the shrink operation, we increment the version
number by one. Let v′ be the version of the chain between B and d(B). We call the chain
valid if B is before the boundary n∗v′ = min{nv|v ≥ v′}. Note that n∗v′ is the minimal
boundary that D ever had after introducing version number v′.

We obtain the boundaries n∗v from a data structure M that provides an operation to add
the new size of D after a shrink operation and another operation minbound to check if a
chain is valid, i.e., if one endpoint of the chain is or was outside of D. For later usage, M
also supports an operation remove.

add(n) (n ∈ IN): Increments an internal version counter v by one and set the boundary
n∗v = n. All boundaries n∗i (i ∈ {1 . . . v − 1}) larger than n are overwritten by n.
remove(j) (0 ≤ j ≤ v): Decrements v by j and removes the boundaries of the largest j
versions.
minbound(v) (0 ≤ v < w): Returns n∗v, the minimal boundary for v.

F. Kammer and A. Sajenko 65:11

I Lemma 9. M can be implemented such that it uses O(w) words, add runs in amortized
constant time, and minbound and remove run in constant time as long as there are only
O(w) versions.

Proof. We have a version counter v∗ and a table T where we store the initial boundary
for each version. Moreover, we use a stack S that additionally allows us to access the
elements of the stack directly and the data structure R from Pǎtraşcu and Thorup [25].
All three data structures can be implemented using a fixed size array and stored in extra
buffers (Lemmas 4 and 7). R consists of all versions v with nv = n∗v. The stack S store
the boundaries of the versions in R in ascending order from the bottom to the top. For a
technical reason, S stores also the version with each boundary.

To answer the minbound operation for a version v, we first determine the successor v′ of
v in R and then return n∗v = T [v′].

Assume that a new boundary nv = n is added to M for a next version v. Set T [v] = n.
Before adding a new boundary nv to S we remove all boundaries from S as long as the top
of S is larger than nv. Whenever removing such a boundary, we remove the corresponding
version from R. Finally, we add the new boundary to S and to R. By doing this, we remove
all boundaries that are larger than nv. Now all the versions of these boundaries get nv as
their new boundary.

Finally, it remains to check the running time. We use the potential function φ = |S|
with |S| ≤ w being the current size of S. Determining the boundary for a specific version
requires looking into R and to check one word in S and T . This does not change φ and runs
in O(1) time. If the running time for adding or removing versions is not constant, then in all
except a last iteration, we remove an element from the stack. Thus, the decrease of φ pays
for this. J

I Corollary 10. For every data chain, we can check in constant time if it is valid or not.

Proof. A chain between some blocks B and d(B) is valid exactly if d(B) ≤ minbound(v) is
true, where v is the version of the chain and d(B) is the position of the block that belongs to
the unwritten area. J

Whenever a block in the unwritten area has an invalid chain (caused by shrinking and
re-increasing D; determined by minbound), we return the initial value for all words of the
block. We want to remark that the structure M can maintain only O(w) versions since it
uses a dictionary from Pǎtraşcu and Thorup [25]. The dictionary is dynamic and supports
modification and access in constant time, but only for O(w) entries.

We have to make sure that we have only O(|U |) chains (counting both valid and invalid
chains) so that we are able to store them. The problem is that a shrink can invalidate many
chains. Therefore, we have to clean-up our data structure D as follows: Whenever we add a
chain, we check the validness of three old chains, i.e., chains with an old version number that
are stored at the beginning of the unwritten area in L. Invalid chains are removed whereas
valid chains are assigned to the current version. To have the time for the clean-up, we also
modify the shrink operation such that, after each shrink operation, we make sure that we
store at most |U |/2 chains. If this is not the case, we run a full initialization. By assuming
that every insert into D pays a coin, this can be done in amortized constant time since the
number of chains that we have is bounded by the number of insert operations.

MFCS 2018

65:12 Extra Space during Initialization of Succinct DS and Dynamical Initializable Arrays

B1 d(B1) B2 d(B2) · · · v

w chains for blocks B1, B2, . . . version P&T data s. prev next

Figure 5 A subgroup that is embedded as an element of the dynamic doubly linked list containing
several block positions of a version v that are indexed with a dictionary.

5.3 The General Case
The goal in this section is to limit the number of versions to O(w) such that the data
structure M from Lemma 9 can be always used. We achieve this goal by purifying the chain
information, i.e., for some old version v′, we iterate through the chains with a version larger
than v′, remove invalid data chains and store the remaining chains under v′. Finally, we take
v′ as the current version. We so remove all versions larger than v′, which now can be reused.

Since we have no data structure to find invalid chains out of a large amount of all chains,
we partition the chains of each version into small subgroups and use also here the dictionary
from Pǎtraşcu and Thorup [25] to index the block positions B and d(B) that represent the
chain. The dictionary from the subgroup with a version v allows us to find a block that lies
behind a boundary n∗v in constant time as long as such a block exists.

In detail, a subgroup always has space for Θ(w) chains (block positions), the version v,
and a data structure from Pǎtraşcu and Thorup [25] (Figure 5). To organize the subgroups
we use a dynamic family S from Corollary 8. For each version v, we create a dynamic set in
S. Each set consists of all subgroups of the same version. Instead of having a verification
chain with a list L, each chained block in the written area has now a pointer to its subgroup.
If the block is indexed in the subgroup, then its chain is verified.

As in the previous section we use the data structure M to store and check the boundaries.
Additionally, we store the version v and a table T . The table is used to store, for each version,
the number of chains that are currently used. The updates of T are not described below
explicitly. Based on the information in T we determine how many versions we can purify.
The details of the purify operation are described on the next page.

Note that M and T are of O(w) words and the size of S is linear in the size of the
number of chains and thus bounded by O(|U |). Choosing the block size b large enough,
but still b = O(1), we can guarantee that all data structures fit into |U | unless |U | = O(w).
By running the clean-up of the last section, M and T can be removed if to many writing
operations shrink the unwritten area of D so much that |U | = O(w).

initialize(n, initv) Allocate nw + 1 bits. Partition the array into blocks of size b = 6. If
n is not a multiple of b, initialize less than b words and treat them separately. Use the
last block(s) to store the threshold t = 0, initv, and v = 1 in the unused words. Initialize
the data structure M and S, store their internally required single words also in the last
block(s) and their sets and lists in parallel (Lemma 7).
read(i): If D[0] = 1, return D[i]. Else, check to which area B = bi/bc belongs. If B is
inside the written area, check if B is verified. If it is, return initv, otherwise D[i].
If B is inside the unwritten area, check if B is chained with a block d(B). If it is not,
return initv, otherwise proceed with checking if d(B) is verified. If it is not, return initv,

F. Kammer and A. Sajenko 65:13

otherwise follow the verification pointer and read the version v out of the subgroup. Call
M.minbound(v) and return initv if it returned a boundary that is larger than the block
position B, otherwise return the right word out of B and d(B).
write(i, x): If D[0] = 1, write at D[i]. Otherwise, clean-up three chains as described
in the last subsection. Then check to which area B = bi/bc belongs. If B is inside the
written area, check if B is verified. If it is not, write at D[i] directly. Otherwise, the block
may have a data chain with a block d(B). If so, unchain it (like in [17]) by expanding
the written area that gives us a new unused block that we use to relocate all values and
chains from B. Correct also the chains in the subgroups. If not, just remove B and d(B)
from its subgroup. In both cases, B becomes an unused block afterwards. We initialize it
and write at D[i] directly. If B is inside the unwritten area, check if B is chained with a
block d(B). If it is, check if d(B) is verified and if its chain belonging to a version v is
valid (test M.minbound(v) ≥ B). If all is true, then write x at the right position of B
and d(B). If the chain is invalid, delete it from its subgroup and move it into the latest
subgroup of the current version. Finally, initialize B and write x as described above.
But if B is not chained, expand the written area and chain it with the new block.
Write both blocks inside the latest subgroup of the current version. Set a verification
pointer to the subgroup where the chain is stored. As before, initialize B and write
x as described above.
In all cases, whenever the unwritten area disappears, set D[0] = 1.
increase(nold, nnew, initv): If D[0] = 0, then copy the words of the last block(s) into
the new last block(s). Otherwise, initialize the required data structures as described in
initialize, but set the initial values for the threshold t to t = bnold/bc. If |U | = O(w),
use the bit vector solution described in the beginning of Section 5.
purify(nnew): Iterate from the current version v = dwe in S down and add up the
number of chains stored under a version. Stop at the first version v′ that has fewer chains
as twice the total number of chains of all versions visited before. Consider versions v′ + 1
to v and iterate over all subgroups with that version. In each subgroup, check for an
invalid chain (B, d(B)) by using M , remove it from the subgroup, from the index of the
subgroup, and initialize B with initv and repeat this on the subgroup until it has no
invalid chains. In the special case where the subgroup has less than w chains, clear the
subgroup by moving all chains into the latest subgroup of the version v′.
Then, change the version number of this subgroup to v′, unlink it from its old set and
link it into the set of v′. When finished, set the current version number v to v′.
shrink(nold, nnew): If the new size of D either cuts the space used to store the data
structures S or M or leaves less than Θ(w) unused words in the unwritten area, run the
full initialization.
If we do not fully initialize D, we proceed as follows: If we have dwe versions, call purify.
Otherwise, create a new set inside S and increment the current version number v by one
and check if the last used subgroup has less than w entries. If so, we reuse this subgroup
by removing all invalid chains. (In purify we already described the removal.)

Who pays for the purification? The idea is to give a gold coin to each previous set in S,
whenever we insert an element. Whenever a set of size x has at least x/2 coins, we clean
up the set and all sets with a larger version number. Algorithmically we can not check fast
enough if a set already has enough coins. Therefore, we wait with the purification until we
have dwe versions and check then the condition for every version from the largest version to
the smallest until we found the first version with enough coins.

MFCS 2018

65:14 Extra Space during Initialization of Succinct DS and Dynamical Initializable Arrays

I Theorem 11. There is a dynamic array that works in-place and supports the operations
initialize, read, write as well as increase in constant time and shrink in amortized
constant time.

Proof. It remains to show the running times of the operations. Take ψ as the total number
of verification chains similar to Subsection 5.2, ci as the number of chains with the version
i ∈ {0, . . . , v − 1} and g =

∑v−1
i=0

6i·ci

w . Moreover, choose τ as the total number of missing
elements such that all subgroups are full and f = (1−D[0]) max{0, 2w − |U |}. We use the
following potential function φ = ψ + v + g + τ + f . Note that g corresponds to the usage of
the gold coins and f is non-zero only if there are very few blocks in the unwritten area U ,
but D is not completely initialized.

initialize: We have to set the threshold t and the current version in O(1) time. Thus,
φ = v = 1 – note that f = 0 by using the bit-vector solution if necessary.

read: Checking chains, reading the version number and calling the minbound function
of M can be done in constant time and φ does not change.

write: We possibly have to check if a block is chained, verified and valid. We also may
create a chain, a verification and insert it into S. All these operations require O(1) time.
In total, the number of chains may increase by one ∆ψ = O(1), ∆g = 6v

w with v being
the current version. Thus, ∆φ = O(1).

increase: Copying a few blocks runs in O(1)) time and ∆φ = 0 since ∆f = 0.

purify: Whenever we run purify we remove the last v − i versions for the largest
i with vi/2 ≤ y :=

∑v−1
i+1 ci is valid. Thus, we first have to search for version i, i.e,

we consider v − i versions. Moreover, we then have to iterate over 3y chains in 6y/w
subgroups – a subgroup is always at least half full. In each subgroup we spend 1 + d

time, where d is the number of deleted chains in each subgroup. This can be done in at
most (v − i) + 6y/w + d∗ time units where d∗ is the total number of deleted chains. In
addition, we may have deleted half empty subgroups and moved their chains to the latest
subgroup. This can be done in O(m) time if m is the number of moved chains.
We can pay for the running time since the value of the potential function decreases as
follows. By deleting versions larger than i, ∆v = −(v− i). Since we change the version of
all subgroups with a version larger than i to i, i.e., we shrink the version of y chains by
at least one, ∆g = −6y/w. In addition, ∆(ψ + τ) ≤ −2d∗ + (d∗ −m) = −d∗ −m where
the −m comes from the fact that half empty subgroups disappear, i.e, are not taken into
account in τ . To sum up, the amortized running time is O(1).

shrink: In Subsection 5.2, we already analyzed the case that D is fully initialized – the
only change is that we have further parts in the potential function, but their change is
either zero or negative. Otherwise, we have to delete invalid chains in the latest subgroup
and update it to the new version, which can be done in O(1) amortized time since ∆ψ
drops linear in the number of deleted chains. Moreover, we have to add a new version
to M and possibly delete several older versions. All this can be done in O(1) amortized
time. And finally, we may run a purify; again in O(1) amortized time.

We thus have shown all running times as promised in the theorem. J

F. Kammer and A. Sajenko 65:15

References

1 Tetsuo Asano, Kevin Buchin, Maike Buchin, Matias Korman, Wolfgang Mulzer, Günter
Rote, and André Schulz. Reprint of: Memory-constrained algorithms for simple polygons.
Comput. Geom. Theory Appl., 47(3, Part B):469–479, 2014. doi:10.1016/j.comgeo.2013.
11.004.

2 Tetsuo Asano, Taisuke Izumi, Masashi Kiyomi, Matsuo Konagaya, Hirotaka Ono, Yota
Otachi, Pascal Schweitzer, Jun Tarui, and Ryuhei Uehara. Depth-first search using
O(n) bits. In Proc. 25th International Symposium on Algorithms and Computation
(ISAAC 2014), volume 8889 of LNCS, pages 553–564. Springer, 2014. doi:10.1007/
978-3-319-13075-0_44.

3 Luis Barba, Matias Korman, Stefan Langerman, Rodrigo I. Silveira, and Kunihiko
Sadakane. Space-time trade-offs for stack-based algorithms. In Proc. 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of
LIPIcs, pages 281–292. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013. doi:
10.4230/LIPIcs.STACS.2013.281.

4 Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM
J. Comput., 20(2):270–277, 1991. doi:10.1137/0220017.

5 Jon Bentley. Programming Pearls. ACM, New York, NY, USA, 1986.
6 Sankardeep Chakraborty, Anish Mukherjee, Venkatesh Raman, and Srinivasa Rao Satti.

Frameworks for designing in-place graph algorithms. CoRR, abs/1711.09859, 2017. arXiv:
1711.09859.

7 Samir Datta, Raghav Kulkarni, and Anish Mukherjee. Space-Efficient Approximation
Scheme for Maximum Matching in Sparse Graphs. In Proc. 41st International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2016), volume 58
of LIPIcs, pages 28:1–28:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.MFCS.2016.28.

8 Yevgeniy Dodis, Mihai Pǎtraşcu, and Mikkel Thorup. Changing base without losing space.
In Proc. 42nd ACM Symposium on Theory of Computing (STOC 2010), pages 593–602.
ACM, 2010. doi:10.1145/1806689.1806770.

9 Amr Elmasry, Torben Hagerup, and Frank Kammer. Space-efficient basic graph algo-
rithms. In Proc. 32nd International Symposium on Theoretical Aspects of Computer Science
(STACS 2015), volume 30 of LIPIcs, pages 288–301. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.288.

10 Amr Elmasry and Frank Kammer. Space-efficient plane-sweep algorithms. In Proc. 27th
International Symposium on Algorithms and Computation (ISAAC 2016), volume 64 of
LIPIcs, pages 30:1–30:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPIcs.ISAAC.2016.30.

11 Arash Farzan and J. Ian Munro. Succinct encoding of arbitrary graphs. Theor. Comput.
Sci., 513:38–52, 2013. doi:10.1016/j.tcs.2013.09.031.

12 Torben Hagerup and Frank Kammer. Succinct choice dictionaries. Computing Research
Repository (CoRR), arXiv:1604.06058 [cs.DS], 2016. arXiv:1604.06058.

13 Torben Hagerup and Frank Kammer. On-the-fly array initialization in less space. In Proc.
28th International Symposium on Algorithms and Computation (ISAAC 2017), volume 92
of LIPIcs, pages 44:1–44:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017.
doi:10.4230/LIPIcs.ISAAC.2017.44.

14 Torben Hagerup, Frank Kammer, and Moritz Laudahn. Space-efficient Euler partition and
bipartite edge coloring. Theor. Comput. Sci., to appear, 2018. doi:10.1016/j.tcs.2018.
01.008.

MFCS 2018

http://dx.doi.org/10.1016/j.comgeo.2013.11.004
http://dx.doi.org/10.1016/j.comgeo.2013.11.004
http://dx.doi.org/10.1007/978-3-319-13075-0_44
http://dx.doi.org/10.1007/978-3-319-13075-0_44
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.281
http://dx.doi.org/10.4230/LIPIcs.STACS.2013.281
http://dx.doi.org/10.1137/0220017
http://arxiv.org/abs/1711.09859
http://arxiv.org/abs/1711.09859
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.28
http://dx.doi.org/10.1145/1806689.1806770
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.288
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.30
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.30
http://dx.doi.org/10.1016/j.tcs.2013.09.031
http://arxiv.org/abs/1604.06058
http://dx.doi.org/10.4230/LIPIcs.ISAAC.2017.44
http://dx.doi.org/10.1016/j.tcs.2018.01.008
http://dx.doi.org/10.1016/j.tcs.2018.01.008

65:16 Extra Space during Initialization of Succinct DS and Dynamical Initializable Arrays

15 Frank Kammer, Dieter Kratsch, and Moritz Laudahn. Space-Efficient Biconnected Com-
ponents and Recognition of Outerplanar Graphs. In Proc. 41st International Sym-
posium on Mathematical Foundations of Computer Science (MFCS 2016), volume 58
of LIPIcs, pages 56:1–56:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016.
doi:10.4230/LIPIcs.MFCS.2016.56.

16 Frank Kammer and Andrej Sajenko. Linear-time in-place DFS and BFS in the restore
model. Computing Research Repository (CoRR), arXiv:1803.04282 [cs.DS], 2018. arXiv:
1803.04282.

17 Takashi Katoh and Keisuke Goto. In-place initializable arrays. Computing Research Repos-
itory (CoRR), arXiv:1709.08900 [cs.DS], 2017. arXiv:1709.08900.

18 Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and full-text
indexes. ACM Trans. Algorithms, 4(3), 2008. doi:10.1145/1367064.1367072.

19 Kurt Mehlhorn. Data structures and algorithms 1: Sorting and searching. In EATCS
Monographs Theor. Comput. Sci., 1984.

20 J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct repre-
sentations of permutations and functions. Theor. Comput. Sci., 438:74–88, 2012. doi:
10.1016/j.tcs.2012.03.005.

21 Gonzalo Navarro. Spaces, trees, and colors: The algorithmic landscape of document re-
trieval on sequences. ACM Comput. Surv., 46(4):52:1–52:47, 2014. doi:10.1145/2535933.

22 Rasmus Pagh. Low redundancy in static dictionaries with constant query time. SIAM J.
Comput., 31(2):353–363, 2001. doi:10.1137/S0097539700369909.

23 Jakob Pagter and Theis Rauhe. Optimal time-space trade-offs for sorting. In Proc. 39th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pages 264–
268. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743455.

24 Mihai Pǎtraşcu. Succincter. In Proc. 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2008), pages 305–313. IEEE Computer Society, 2008. doi:10.
1109/FOCS.2008.83.

25 Mihai Pǎtraşcu and Mikkel Thorup. Dynamic integer sets with optimal rank, select, and
predecessor search. In Proc. 55th IEEE Annual Symposium on Foundations of Computer
Science, (FOCS 2014), pages 166–175. IEEE Computer Society, 2014. doi:10.1109/FOCS.
2014.26.

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.56
http://arxiv.org/abs/1803.04282
http://arxiv.org/abs/1803.04282
http://arxiv.org/abs/1709.08900
http://dx.doi.org/10.1145/1367064.1367072
http://dx.doi.org/10.1016/j.tcs.2012.03.005
http://dx.doi.org/10.1016/j.tcs.2012.03.005
http://dx.doi.org/10.1145/2535933
http://dx.doi.org/10.1137/S0097539700369909
http://dx.doi.org/10.1109/SFCS.1998.743455
http://dx.doi.org/10.1109/FOCS.2008.83
http://dx.doi.org/10.1109/FOCS.2008.83
http://dx.doi.org/10.1109/FOCS.2014.26
http://dx.doi.org/10.1109/FOCS.2014.26

Fast Entropy-Bounded String Dictionary Look-Up
with Mismatches
Paweł Gawrychowski
University of Wrocław, Wrocław, 50-137, Poland
gawry@cs.uni.wroc.pl

Gad M. Landau
University of Haifa, Haifa, 3498838, Israel
landau@cs.haifa.ac.il

Tatiana Starikovskaya
DIENS, École normale supérieure, PSL Research University, Paris, 75005, France
tat.starikovskaya@gmail.com

Abstract
We revisit the fundamental problem of dictionary look-up with mismatches. Given a set (diction-
ary) of d strings of length m and an integer k, we must preprocess it into a data structure to
answer the following queries: Given a query string Q of length m, find all strings in the dictionary
that are at Hamming distance at most k from Q. Chan and Lewenstein (CPM 2015) showed a
data structure for k = 1 with optimal query time O(m/w+occ), where w is the size of a machine
word and occ is the size of the output. The data structure occupies O(wd log1+ε d) extra bits of
space (beyond the entropy-bounded space required to store the dictionary strings). In this work
we give a solution with similar bounds for a much wider range of values k. Namely, we give a
data structure that has O(m/w + logk d + occ) query time and uses O(wd logk d) extra bits of
space.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Dictionary look-up, Hamming distance, compact data structures

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.66

Related Version A full version of the paper is available at https://arxiv.org/abs/1806.
09646.

1 Introduction

The problem of dictionary look-up was introduced by Minsky and Papert in 1968 and is a
fundamental task in many areas such as bioinformatics, information retrieval, and web search.
Informally, the task is to store a set of strings referred to as dictionary in small space to
maintain the following queries efficiently: Given a query string, return all dictionary strings
that are close to it under some measure of distance. In this work we focus on Hamming
distance and exact solutions to the problem. Formally, the problem is stated as follows.

Dictionary look-up with k mismatches. We are given a dictionary that is a set of d strings
of length m and an integer k > 0. The task is to preprocess the dictionary into a data
structure that maintains the following queries: Given a string P of length m, return all the
strings in the dictionary such that the distance between each of them and P is at most k.

As a natural first step, much effort has been concentrated on the case k = 1 [3, 22, 4, 7,
8, 31, 11]. We note that the structure of the problem in this case is very special. Namely, if

© Paweł Gawrychowski, Gad M. Landau, and Tatiana Starikovskaya;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 66; pp. 66:1–66:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gawry@cs.uni.wroc.pl
mailto:landau@cs.haifa.ac.il
mailto:tat.starikovskaya@gmail.com
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.66
https://arxiv.org/abs/1806.09646
https://arxiv.org/abs/1806.09646
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

66:2 Fast String Dictionary Look-Up with Mismatches

two strings have Hamming distance at most one, then there is an integer i such that their
prefixes of length i are equal and their suffixes of length m− i− 1 are equal. Many existing
solutions rely heavily on this property and cannot be extended to the case of arbitrary k.
The first non-trivial solution for k > 1 was given in the seminal paper of Cole, Gottlieb,
and Lewenstein [13], who introduced a data structure called k-errata tree. The k-errata tree
requires w ·O(md+d logk d) bits of space and has query time O(m+ logk d+occ), where w is
the size of a machine word and occ is the size of the output. The subsequent work [10, 9, 25]
mainly focused on improving the space complexity of the data structure.

Two works are of particular interest to us. For any q = o(logmd) Belazzougui and
Venturini [4] showed a data structure for k = 1 with query time O(m + occ) that uses
2mdHq + o(md) + 2d log d bits of space, where Hq is the q-th empirical entropy of the
concatenation of all strings in the dictionary. It was followed by the work of Chan and
Lewenstein [11], who improved the query time to O(m/w + occ), while using approximately
the same amount of bits, 2mdHq + o(md) + O(wd log1+ε d). In the model of Chan and
Lewenstein the size σ of the alphabet is constant, the query string arrives in a packed form,
meaning that each w/ log σ letters are stored in one machine word, under the standard
assumption w = Θ(logmd). The interest in this kind of bounds is explained by the fact that
the value mdHq is a lower bound to the output size of any compressor that encodes each
letter of the dictionary strings with a code that only depends on the letter itself and on the
q immediately preceding letters [26].

1.1 Our contribution and techniques
We investigate further this line of research and give a new data structure with similar
bounds for a much wider range of values k. We adopt the model of Chan and Lewenstein
and show a data structure for dictionary look-up with k mismatches that has query time
O(m/w + logk d+ occ) and uses 2mdHq + o(md) +O(wd logk d) bits of space for all d > 2
(Theorem 18). If in addition k ≤ log(m/w)/ log log d, the query time becomes O(m/w+ occ),
matching the query time of Chan and Lewenstein.

The basis of our data structure is the k-errata tree of Cole, Gottlieb, and Lewenstein [13].
We first introduce a small but important modification to this data structure that will allow
us to reduce the time requirements for non-constant k. At a high level, the k-errata tree
is a collection of compact tries, where each trie contains suffixes of a subset of strings in
the dictionary. The query algorithm runs O(logk d) prefix search queries in the tries. In
Section 4.1 we show that the prefix search queries can be implemented in O(m/w) shared
plus O(log d) time per query using O(md) space beyond the space required by the k-errata
tree. Next, in Section 4.2 we show how to improve the space complexity to entropy-bounded.
Our main contribution at this step is a new reduction from prefix search queries in the tries
of the k-errata trees to prefix search queries on a compact trie containing only a subset
of all suffixes of the dictionary strings. Finally, in Section 5 we improve the O(log d) time
that we spend per each query to O(1) (amortised) time by a clever use of Karp-Rabin
fingerprints, which gives the final result, Theorem 18. We emphasize that we derandomize
the query algorithm and that our data structure is deterministic, regardless the fact that we
use Karp-Rabin fingerprints.

1.2 Related work
Many of the works we cited above consider not only the Hamming distance, but also the edit
distance. This is in particular true for k = 1, when the edit distance and Hamming distance are
equivalent. Another interesting direction is heuristic methods for the Hamming and the edit

P. Gawrychowski, G.M. Landau, and T. Starikovskaya 66:3

distances which have worse theoretical guarantees but perform well in practice [12, 6, 23, 27].
Finally, we note that the solutions discussed in this work are beneficial for low-distance
regime, i.e. when k = o(log d). If k = ω(log d), one should turn to approximate approaches,
such as locality-sensitive hashing (see [2] and references therein).

Several works have studied the question of developing efficient data structures for string
processing when the query arrives in a packed form. In particular, Takuya et al. suggested
a data structure called packed compact tries [29] to maintain efficient exact dictionary
look-ups, and Bille, Gørtz, and Skjoldjensen used similar technique to develop an efficient
text index [5].

2 Preliminaries

We assume a constant-size integer alphabet {1, 2, . . . , σ}. A string is a sequence of letters of
the alphabet. For a string S = s1s2 . . . sm we denote its length m by |S| and its substring
sisi+1 . . . sj , where 1 ≤ i < j ≤ m, by S[i, j]. If i = 1, the substring S[1, j] is referred to as
prefix of S. If j = m, S[i,m] is called a suffix of S. We say that S is given in a packed form
if each w/ log σ letters of S are stored in one machine word, i.e. S occupies O(m/w) machine
words in total. Given a string S in packed form, we can access (a packed representation) of
any O(w)-length substring of S in constant time using the shift operation.

A trie is a basic data structure for storing a set of strings. A trie is a tree which has the
following three properties:
1. Each edge is labelled by a letter of the alphabet;
2. Each two edges outgoing from the same node are labelled with different letters, and the

edges are ordered by the letters;
3. Let the label of a node u be equal to the concatenation of the labels of the edges in the

root-to-u path. For each string S in the set there is a node of the trie such that its label
is equal to S, and the label of each node is equal to a prefix of some string in the set.

At each node we store the set of ids of the strings that are equal to the node’s label. The
number of nodes in a trie can be proportional to the total length of the strings. To improve
the space requirements, we replace each path of nodes with degree one and with no string
ids assigned to them with an edge labelled by the concatenation of the letters on the edges
in the path. The result is called a compact trie. Each node of the trie is represented in the
compact trie as well, some as nodes, and some as positions in the edges. We refer to the set
of all nodes and the positions in the edges of the compact trie as positions.

I Fact 1. A compact trie containing x strings has O(x) nodes.

3 The k-errata tree: Reminder and fix

Our definition of the k-errata tree follows closely that of Cole, Gottlieb, and Lewenstein [13],
but as explained below we introduce an important fix to the original definition. We try to be
as concise as possible, but we feel obliged to provide all the details both because we modify
the original definition and because the details are important for our final result.

Intuition. Let us explain the main idea first. Denote the given dictionary of strings by D.
The k-errata tree for D is built recursively. We start with the compact trie T containing all
the strings in D and decompose it into heavy paths.

MFCS 2018

66:4 Fast String Dictionary Look-Up with Mismatches

I Definition 2 ([21]). The heavy path of T is the path that starts at the root of T and
at each node v on the path branches to the child with the largest number of leaves in its
subtree (heavy child), with ties broken arbitrarily. The heavy path decomposition is defined
recursively, namely it is defined to be a union of the heavy path of T and the heavy path
decompositions of the subtrees of T that hang off the heavy path. The first node in a heavy
path is referred to as its head.

Recall that our task is to find all strings in D such that the Hamming distance between
them and the query string P is at most k. As a first step, we find the longest path that
starts at the root of T and is labelled with a prefix of P . Let this path trace heavy paths
H1, H2, . . . ,Hj , leaving the heavy path Hi at a position ui of T , 1 ≤ i ≤ j. We can partition
all the strings in D into three categories:
1. Strings diverging off a heavy path Hi at some node u, where u is located above ui;
2. Strings in the subtrees of ui’s children that diverge from the heavy path Hi+1, for

1 ≤ i < j;
3. Strings in the subtree rooted at uj .

Consider the set of strings in D that diverge from a heavy path Hi at a node u. They
necessarily have their first mismatch with P there. The first idea is that we can fix that
mismatch in each of the strings (decreasing the Hamming distance between them and P

by one), and then run a dictionary look-up with (k − 1) mismatches on the resulting set of
strings. The second idea is that running an independent dictionary look-up query for each
node in each heavy path is expensive, so we introduce a grouping on the nodes that reduces
the number of queries to logarithmic.

Data structure. We assign each string in D a credit of k mismatches and start building
the k-errata tree in a recursive manner. First, we build the compact trie T for the dictionary
D. For each leaf of T we store the ids of the dictionary strings equal to the leaf’s label
ordered by the mismatch credits. Second, we decompose T into heavy paths. For each node
of T we store a pointer to the heavy path it belongs to, and for each heavy path we store a
pointer to its head. We will now make use of weight-balanced trees, defined in analogy with
weight-balanced search trees.

I Definition 3. A weight-balanced tree with leaves of weights w1, w2, . . . , wh (in left-to-right
order) is a ternary tree. We build it recursively top-to-down. Let µ be the smallest index
such that w1 + · · ·+wµ > (w1 + · · ·+wh)/2. Then the left subtree hanging from the root is a
weight-balanced tree with leaves of weight w1, w2, . . . , wµ−1, the middle contains one leaf of
weight wµ, and the right subtree is a weight-balanced tree with leaves of weight wµ+1, . . . , wh.

We build two sets of (k− 1)-errata trees for each heavy path H of T . We call the trees in
the first set vertical, and in the second set horizontal, according to the way we construct
them.

We first explain how we build the vertical (k − 1)-errata trees. Suppose that H contains
nodes v1, v2, . . . , vh, and the weight wi of a node vi is the number of strings that diverge
from H at vi. As a preliminary step, we build a weight-balanced tree WBT (H) on the nodes
in H. Consider a node of WBT (H) containing vi, vi+1, . . . , vj in its subtree. Let δ be the
length of the string S written on the path from the head of H to vj , and a be the first letter
on the edge from vj to vj+1. We build a new set of strings as follows: For each node v`,
i ≤ ` ≤ j, we take each string that diverges from the path H at v`, cut off its prefix of length
δ + 1, and decrease the credit of the string by the number of mismatches between the cut-off

P. Gawrychowski, G.M. Landau, and T. Starikovskaya 66:5

prefix and S ◦ a (the string S appended with the letter a). If the credit of a string becomes
negative, we delete it. Finally, we build the (k − 1)-errata tree for each of the newly created
sets of strings.

We now explain how we build the horizontal (k− 1)-errata trees. We repeat the following
for each node vj ∈ H. Let δ be the length of the label of vj . Consider the set of all children
of vj except for the node vj+1 (the child of vj that belongs to H). For each child v in this
set, we build a new set of strings as follows: We take each string that ends below v, cut off
its prefix of length δ + 1, and decrease the credit of the string by 1. Similar to above, if the
credit of a string becomes negative, we delete it. We define the weight of each child as the
number of strings in the corresponding set. Next, we build the weight-balanced tree on the
set of the children, and for each node of the tree consider a set of strings that is a union of
the sets of strings below it. Finally, we build the (k − 1)-errata tree for each of these sets of
strings.

I Remark. Our modification to the original definition is that we truncate the strings and
store the mismatch credits. Because of that, all the strings we work with are suffixes of the
dictionary strings, which allows us to process them efficiently.

Queries. A dictionary look-up with k mismatches for a string P is performed in a recursive
way as well. For the purposes of recursion, we introduce an extra parameter, µ, and allow to
run dictionary look-ups with mismatches from any position u of a trie of the k-errata tree.
We will make use of a procedure called PrefixSearch: Given a string and a position u of a
trie, PrefixSearch returns the longest path starting at u that is labelled by a prefix of the
query string.

Suppose we must answer a dictionary look-up with k mismatches for a string P that
starts at a position u. We initialize µ = 0. If k = 0, we run a PrefixSearch to find a path in T
labelled by P . If such a path exists, we output all the dictionary strings assigned to the end
of this path such that their mismatch credit ≥ µ. Assume now k > 0. If |P | = 0, the look-up
terminates and we output all the dictionary strings assigned to the current position such
that their mismatch credit ≥ µ. Otherwise, we run a PrefixSearch to find the longest path π
starting at u that is labelled by a prefix of P . Suppose that π passes through heavy paths
H1, H2, . . . ,Hj , leaving Hi at a position ui, 1 ≤ i ≤ j. Note that for i < j, ui is necessarily
a node of T , and for i = j it can be a position on an edge.

Recall that for each node of T we store the heavy path it belongs to, and for each heavy
path we store its head. The position uj is the ending node of π. To find uj−1, consider the
heavy path Hj containing uj , by definition, uj−1 is the parent of the head of Hj . We find all
the nodes ui, 1 ≤ i ≤ j, analogously. Recall that we partitioned the dictionary strings into
three types.

Strings of Type 1. We process each path Hi in turn. We select a set of nodes of the
weight-balanced tree WBT (Hi) covering the part of Hi from the beginning and up to (but
not including) ui. To do this, we follow the path from the root of WBT (Hi) to ui and take
the nodes that hang off to the left of the path. Consider one of the selected nodes v and its
(k − 1)-errata tree. All the strings in this tree have equal lengths δ. To finish the recursive
step, we run a dictionary look-up with (k − 1) mismatches for the suffix of P of length δ in
this tree.

Strings of Type 2. We take the weight-balanced tree for ui and select a set of nodes
that covers all its leaves except for the head of Hi+1. To select this set, we find the path
from the root of the weight-balanced tree for ui to the head of Hi+1, and take the nodes that
hang off this path. For each of the selected nodes, we run a dictionary look-up with (k − 1)

MFCS 2018

66:6 Fast String Dictionary Look-Up with Mismatches

mismatches analogously to above. We also run a dictionary look-up with (k− 1) mismatches
with µ = µ+ 1 starting from the position in Hi that is one letter below ui.

Strings of Type 3. If uj is a position on an edge, we run a dictionary look-up query
with (k − 1) mismatches from the next position on the edge with µ = µ+ 1. If uj is a node,
we run two dictionary look-up queries with (k − 1) mismatches. First query is run in the
horizontal (k− 1)-errata tree corresponding to the set of all children of uj that are not in Hj .
The second query is run from a position in Hj that is one letter below uj with µ = µ+ 1.

Correctness of the algorithm follows from the following observation: first, we account
for all dictionary strings. Second, in the case of (k − 1)-errata trees, we account for the
mismatches between the portion of the strings that we truncate and the query string via the
mismatch credits. Finally, when we continue the search in the same tree, there is just one
mismatch and we account for it by increasing µ.

Analysis. The bounds on the space and the time complexities are summarised below. The
proofs of the lemmas, which we provide in the full version of the paper for completeness,
follow closely the proofs given by Cole, Gottlieb, and Lewenstein [13].

I Lemma 4. The tries of the k-errata tree contain O(d logk d) strings in total.

I Lemma 5. A dictionary look-up with k mismatches for a query string P requires O(logk d)
operations PrefixSearch. Apart from the time required for these operations, the algorithm
spends O(logk d+ occ) time.

In the next section we give an efficient implementation of PrefixSearch under an assumption
that P arrives in a packed form. We will use, in particular, the following simple observation.

I Fact 6. Each trie of the k-errata tree is built on a set of equal-length suffixes of the
dictionary strings. If we run a PrefixSearch for a suffix S of the query string P from a
position u of a trie τ of the k-errata tree, then the strings in the subtree of u have length |S|.

4 Prefix search for packed strings

We first remind several well-known data structure results that we use throughout the section.
A priority queue is a data structure like a regular queue, where each element has an integer
(“priority”) associated with it. In a priority queue, an element with high priority is served
before an element with low priority. A priority queue can be implemented as a heap, that
for a set of x elements occupies O(wx) bits of space and has query time O(log x).

A predecessor data structure on a set of integers supports the following queries: Given an
integer z, return the largest integer in the set that is at most z. For a set of x integer keys,
the predecessor data structure can be implemented as a binary search tree in O(wx) bits of
space to support the predecessor queries in time O(log x). (We do not use solutions such
as [17, 30] to avoid dependency on m, which will be important for our final result.)

A dictionary data structure stores a set of integers. A dictionary look-up receives an
integer z and outputs “yes” if z belongs to the set.

I Lemma 7 ([28]). Let S be any given set of x integers. There is a dictionary over S that
occupies O(wx) bits of space, and has query time O(1).

We will also need lowest common ancestor queries on tries. Given two nodes u, v of a
trie, their lowest common ancestor is a node of maximal depth that contains both u and v in
its subtree.

P. Gawrychowski, G.M. Landau, and T. Starikovskaya 66:7

I Lemma 8 ([18]). A trie of size x can be preprocessed in O(wx) bits of space to maintain
lowest common ancestor queries in O(1) time.

Finally, we need weighted level ancestor queries on tries. A weighted level ancestor query
receives a node u and an integer `, and must output the deepest ancestor u′ of u such that
the length of the label of u′ is at most `. We will use the weighted level ancestor queries on
tries for fast navigation: Suppose that we know a leaf labelled by a string S, then to find a
position labelled by a prefix S′ of S we can use one weighted level ancestor query instead of
performing a PrefixSearch for S′. To avoid dependency on m, we use the following simple
folklore solution instead of [20, 1, 14].

I Lemma 9. A trie of size x can be preprocessed in O(wx) bits of space to maintain weighted
level ancestor queries in O(log x) time.

Proof. We consider the heavy path decomposition of the trie. For each node we store a
pointer to the head of the heavy path containing it, and for each path we build a binary
search tree containing the length of the labels of the nodes in it. Suppose we are to answer a
weighted level ancestor query for a node u and an integer `. The path from the root of the
trie to u (which contains all the ancestors of u) traverses a subset of heavy paths. The size
of this subset is O(log x), because each time we switch paths the weight of the current node
decreases by at least a factor of two. We iterate over this set of paths to find the path that
contains the answer u′, and then use the binary search tree to find the location of u′ in the
path. Both steps take O(log x) time. J

4.1 Linear space
As a warm-up we show a linear-space implementation of PrefixSearch that improves the
runtime of dictionary look-up queries to O(m/w + logk+1 d+ occ). Formally, we will show
the following result.

I Theorem 10. Assume a constant-size alphabet. For a dictionary D of d > 2 strings of
length m, there is a data structure for dictionary look-up with k mismatches that occupies
O(wmd + wd logk d) bits of space and has query time O(m/w + logk+1 d + occ), where
w = Θ(logmd) is the size of a machine word.

Let Suf be the set of all suffixes of the strings in D. We build a compact trie T (Suf) on
Suf. (In the literature, T (Suf) is referred to as the suffix tree of D.) As the total length of
the strings in D is md, the size of Suf is O(md), and therefore it occupies O(wmd) bits of
space. We can reduce PrefixSearch queries on the tries of the k-errata tree to PrefixSearch
queries on T (Suf). We distinguish between PrefixSearch queries that start at the root of some
trie of the k-errata tree (rooted queries), and those that start at some inner node or even
a position on an edge of a trie of the k-errata tree (unrooted queries). Note that unrooted
queries are used in the case k ≥ 1 only.

I Lemma 11. After O(wmd+wd logk d) bits of space preprocessing, we can answer a rooted
PrefixSearch query for a string Q and any trie of the k-errata tree in O(log d) time given the
answer to a rooted PrefixSearch for Q in T (Suf).

I Lemma 12. Assume k ≥ 1. After O(wmd+wd logk d) bits of space preprocessing, we can
reduce an unrooted PrefixSearch query for Q that starts at a position u of a trie τ of the
k-errata tree to a rooted PrefixSearch for some suffix Q′ of Q in a trie τ ′ of a (k − 1)-errata
tree in O(log d) time given the answer to a rooted PrefixSearch query for Q in T (Suf).

MFCS 2018

66:8 Fast String Dictionary Look-Up with Mismatches

Lemmas 11 and 12 were proved in [13]. For completeness, we give their proofs in the full
version of the paper. Suppose we are to answer a dictionary look-up with k mismatches for
a string P . Our algorithm traverses the k-errata tree and generates rooted and unrooted
PrefixSearch queries. We maintain a priority queue. Each time we need an answer to a
PrefixSearch for a string S in T (Suf), we add S to the priority queue. At each step of the
algorithm we extract the longest string from the queue and answer the PrefixSearch query for
it. Notice that all strings in the queue are suffixes of P and that the maximal length of strings
in the queue cannot increase. We can therefore assume that we must answer PrefixSearch
queries for the suffixes of P starting at positions 1 = i1 ≤ i2 ≤ · · · ≤ iz, where z = O(logk d).

Bille, Gørtz, and Skjoldjensen [5] showed that we can preprocess T (Suf) in linear space
to answer PrefixSearch queries for a single query string of length m in O(m/w + log logmd)
time. As an immediate corollary we obtain that we can answer z PrefixSearch queries in
z · O(m/w + log logmd) time, but this is too slow for our purposes. Below we develop their
ideas to give a more efficient approach.

I Lemma 13. T (Suf) can be preprocessed in O(wmd) bits of space to answer PrefixSearch
for the suffixes of P starting at positions 1 = i1 ≤ i2 ≤ · · · ≤ iz in O(m/w + z log d) time.

Proof. We assume that the strings in the dictionary are stored in the packed form. By
construction, each edge of a trie of the k-errata is labelled by a substring of a dictionary
string. It means that we can store each label as three integers: the id of the string, and the
starting and the ending positions of the substring. Next, we preprocess T (Suf) for weighted
level ancestor queries (Lemma 9). A node or a position in the trie is called boundary if the
length of its label is a multiple of w/ log σ, where w is the size of a machine word and σ is
the size of the alphabet. Boundary nodes cut the tree into micro-trees. We only consider the
micro-trees containing more than two nodes. We define the label of a leaf of a micro-tree
as a machine word that contains a packed representation of the string written on the path
from the root of the micro-tree to the leaf. The labels can be treated as integers; for each
micro-tree we create a dictionary (Lemma 7) and a predecessor data structure on the labels
of its leaves. We also preprocess each micro-tree for lowest common ancestors. Note that the
total size of the micro-trees is O(md), as each edge of T (Suf) contains at most two nodes of
the micro-trees. Therefore, the preprocessing requires O(wmd) bits of space.

We now explain how to answer the PrefixSearch queries for the suffixes of P starting at
the positions 1 = i1 ≤ i2 ≤ · · · ≤ iz. For i1, we start at the root of T (Suf). For ij , j > 1, we
use the information obtained at the previous step. Namely, suppose that the PrefixSearch
for P [ij−1,m] terminated at a position labelled by P [ij−1, `j−1]. We take any leaf below
this position, let it be labelled by a string S ∈ Suf. Let P [ij , `′j−1] be the longest prefix of
P [ij , `j−1] such that its length is a multiple of w/ log σ. We then start the PrefixSearch from
a position u labelled by P [ij , `′j−1]. To find the position u, we first find the leaf labelled by
S[ij − ij−1 + 1, |S|] ∈ Suf, and then use a weighted level ancestor query to jump to u in
O(log d) time. Notice that u is boundary. If u is not a root of a micro-tree, it has a single
outgoing edge of length at least w/ log σ. We compare the first w/ log σ letters of the label
of this edge and P [`′j−1 + 1, `′j−1 + w/ log σ] in O(1) time by comparing the corresponding
machine words. If they are equal, we continue from the next boundary node on the edge in
a similar manner. Otherwise, we find the first mismatch between the two strings in O(1)
time as follows: First, compute a bitwise XOR of the two strings, and then locate the most
significant bit using the technique of [19].

If u is the root of a micro-tree τ , we search for P [`′j−1 +1, `′j−1 +w/ log σ] in the dictionary
of τ . If it is in the dictionary and corresponds to a leaf v, we continue to v. Otherwise,
we find its predecessor pred and successor succ using the predecessor data structure. The

P. Gawrychowski, G.M. Landau, and T. Starikovskaya 66:9

PrefixSearch must terminate either on the path from u to the leaf of the micro-tree labelled
by pred, or on the path from u to the leaf of the micro-tree labelled by succ. We compute the
longest common prefix of P [`′j−1 + 1, `′j−1 +w/ log σ] with pred and with succ using bitvector
operations in O(1) time as explained above, take the longest of the two, and find the position
labelled by it in O(log d) time using a weighted level ancestor query.

The running time of each prefix search query is proportional to the number of (w/ log σ)-
length blocks of P that we compare with the labels of the edges of T (Suf). Notice that
each two different PrefixSearch queries share at most one block of letters. Therefore, as
the size of the alphabet σ is constant, the total running time of z PrefixSearch queries is
O(m/w + z log d). J

Lemmas 4, 5, 11, 12, and 13 give Theorem 10.

4.2 Entropy-bounded space
In this section we improve the space requirements of our implementation of PrefixSearch and
show the following theorem.

I Theorem 14. Assume a constant-size alphabet. For a dictionary of d > 2 strings of lengths
m and any q = o(logmd), let Hq be the q-th empirical entropy of the concatenation of all the
dictionary strings. There is a data structure for dictionary look-ups with k mismatches that
uses mdHq +o(md)+O(wd logk d) bits of space and has query time O(m/w+logk+1 d+occ),
where w = Θ(logmd) is the size of a machine word.

There are two bottlenecks: First, we need to store the dictionary strings, and second, the
tree structure of T (Suf) requires Ω(md) space. To overcome the first bottleneck, we replace
the packed representation of the dictionary strings by the Ferragina-Venturini representation:

I Lemma 15 ([16]). Under the assumption of an alphabet of constant size σ, for any
q = o(logmd) there exists a data structure that uses mdHq +o(md) bits of space and supports
constant-time access to any w/ log σ = Θ(logmd)-length substring of a dictionary string.

If d > 2 is a constant, if suffices to store the Ferragina-Manzini representation of the
dictionary strings to obtain the bounds of Theorem 14. Indeed, when a query string P

arrives, we can decide if the Hamming distance between P and a dictionary string is at
most k in O(m/w + k) = O(m/w + logk d) time, using comparison by machine words and
bitvector operations. As d is constant, we obtain the desired time bound. Below we assume
that d = Ω(1).

We now deal with the second bottleneck. We will consider a smaller trie T (Suf ′) on a
subset Suf ′ of Suf, and will show that PrefixSearch queries on tries of the k-errata tree can
be reduced to PrefixSearch queries on this trie. Suf ′ is defined to be the set of all suffixes of
the dictionary strings that start at positions w log d/ log σ, 2w log d/ log σ, and so on. We
call such suffixes sampled. Below we show that we can reduce PrefixSearch queries in the
tries of the k-errata tree to PrefixSearch queries in T (Suf ′).

I Lemma 16. After O(md/ log d+ wd logk d) bits of space preprocessing, we can answer a
rooted PrefixSearch query for a string Q = P [`,m] in O(log d) time given the answer to a
rooted PrefixSearch query for a string P [`′,m] in T (Suf ′), where `′ ≥ ` is the smallest multiple
of w log d/ log σ.

Proof. At the preprocessing step, we traverse T (Suf ′) and remember the leftmost and the
rightmost leaves in each of its subtrees. We also remember the neighbours of each leaf in the
left-to-right order, and finally we preprocess the trie for lowest common ancestor queries. As

MFCS 2018

66:10 Fast String Dictionary Look-Up with Mismatches

a second step we preprocess each trie of the k-errata tree for lowest common ancestor and
weighted level ancestor queries. We also build the following data structure for each trie of
the k-errata tree. For each string S in the trie, let S = pS′, where S′ is the longest sampled
suffix of S. We call p a head of S, and define the rank of S to be the rank of S′ in Suf ′. We
build a compact trie Theads containing the heads of all the strings, and preprocess it as in
Lemma 13. If Theads contains x strings, we use O(wx) bits of space for the preprocessing,
i.e. O(wd logk d) bits of space in total. We also associate a predecessor data structure with
each of its leaves. The predecessor data structure of a leaf labelled by p contains the ranks
of all the strings such that their head is equal to p. The predecessor data structures occupy
O(wd logk d) bits of space in total as well.

Suppose we are to answer a rooted PrefixSearch query for a string Q = P [`,m] and a trie
τ of the k-errata tree. Let Theads be the compact trie containing the heads of the strings
in τ . By Fact 6, the length of the heads is (`′ − `). We first read P [`, `′ − 1] in blocks of
w/ log σ letters in O(log d) time, and run a PrefixSearch for it in Theads in O(log d) time. If
the PrefixSearch terminates in a position u of Theads that is not in a leaf, it remains to find
the position corresponding to u in τ , which we can do with one weighted level ancestor query.

Assume now that the PrefixSearch terminates in a leaf of Theads. By the condition of the
lemma, we know the answer to the rooted PrefixSearch for P [`′,m] in T (Suf ′). We also store
the leftmost and the rightmost leaves in each subtree of T (Suf ′), and therefore can find the
predecessor of P [`′,m] in Suf ′ in O(1) time. We use the predecessor data structure associated
with the leaf to find the predecessor pred and successor succ of P [`′,m] in O(log d) time. To
find the position where the PrefixSearch for P terminates, we compute the lengths `p, `s of
the longest common prefix of P [`′,m] and pred and of P [`′,m] and succ. We can compute
the longest common prefix of P [`′,m] and pred (which is a sampled suffix of a dictionary
string) in O(1) time via a lowest common ancestor query on T (Suf ′). We then compute `s
in a similar way. If `p = `s, we return the lowest common ancestor of pred and succ as the
answer. If `p > `s, then the answer is the ancestor of P [`, `′ − 1] ◦ pred such that the length
of its label is (`′ − `) + `p, and we can find it by one weighted level ancestor query. The case
`s > `p is analogous. J

I Lemma 17. Assume k ≥ 1. After O(md/ log d + wd logk d) bits of space preprocessing,
we can answer an unrooted PrefixSearch query for a string Q = P [`,m] by reducing it to a
rooted PrefixSearch query in O(log d) time given the answer to a rooted PrefixSearch query
for a string P [`′,m] in T (Suf ′), where `′ ≥ ` is the smallest multiple of w log d/ log σ.

Proof. During the preprocessing step, we preprocess T (Suf ′) for lowest common ancestor
queries and each trie of the k-errata tree for weighted level ancestor queries. Let u be the
position in a trie τ where we start the PrefixSearch for P [`,m]. The search path for P [`,m]
traverses a number of heavy paths. The first path is the path containing u. Let S be the
label of the part of the path starting from u. We consider two cases. Suppose first that `′ = `.
In this case, S is a suffix of one of the dictionary strings starting at a position `′, i.e. it is
sampled. Therefore, we can find the longest common prefix of P [`′,m] and S using one lowest
common ancestor query on T (Suf ′). We can then find the node in the path corresponding to
this longest common prefix using one weighted level ancestor query. From there, we can find
the starting node of the second heavy path traversed by P [`,m] in O(1) time. It remains to
answer a rooted PrefixSearch query in the subtree rooted at this node, which is a trie of a
(k − 1)-errata tree by construction. When we know the answer for this PrefixSearch, we can
go back to τ using one weighted level ancestor query. In the second case `′ > `. We start
by comparing P [`+ 1,m] and S by blocks of w/ log σ letters until we reach the start of a
sampled suffix, and then proceed as above. J

P. Gawrychowski, G.M. Landau, and T. Starikovskaya 66:11

Suppose that we are to answer a dictionary look-up with k mismatches for a string P .
Our algorithm traverses the k-errata tree and generates rooted PrefixSearch queries for the
suffixes of P in T (Suf ′). We maintain a priority queue. Each time we need an answer to a
rooted PrefixSearch for a suffix Q = P [i,m] in T (Suf ′), we add Q to the priority queue. At
each step we extract the longest string from the queue and answer the PrefixSearch query for
it. Since the maximal length of suffixes in the queue cannot increase, we can assume that we
must answer PrefixSearch queries for the suffixes of P starting at positions i1 ≤ i2 ≤ · · · ≤ iz,
where z = O(logk d). Moreover, for each j the position ij is a multiple of w log d/ log σ. We
preprocess T (Suf ′) as in Lemma 13, which requires O(md/ log d) = o(md) bits of space. We
first run PrefixSearch for P [i1,m] in O(m/w) time. Suppose it follows the path labelled by
P [i1, `1]. Let S ∈ Suf ′ be an arbitrary string that ends below the end of this path. We then
find the leaf corresponding to S[i2−i1, |S|]. By construction of T (Suf ′) and because i2−i1 is a
multiple of w log d/ log σ, such a leaf must exist. We then use a weighted level ancestor query
to find the end of the path labelled by P [i2, `′1], where P [i2, `′1] is the longest suffix of P [i2, `1]
such that its length is a multiple of w/ log σ, and continue the PrefixSearch for P [i2,m] from
there, and so on. The total running time is O(m/w + z log d) = O(m/w + logk+1 d).

If d = Ω(1) as we assumed earlier, lemmas 15, 16, 17, and the discussion above give
Theorem 14.

5 Removing extra logarithm from the time complexity

In this section we improve the query time to O(m/w+ logk d+ occ) and show our final result.

I Theorem 18. Assume a constant-size alphabet. For a dictionary of d > 2 strings of lengths
m and for any q = o(logmd), let Hq be the q-th empirical entropy of the concatenation
of all strings in the dictionary. There exists a data structure for dictionary look-ups with
k mismatches that uses 2mdHq + o(md) + O(wd logk d) bits of space and has query time
O(m/w + logk d+ occ), where w = Θ(logmd) is the size of a machine word.

As explained in Theorem 14, we can assume d = Ω(1). Recall that the dictionary look-up
with k mismatches is run recursively. The first (k − 2) levels of recursion require O(logk−2 d)
PrefixSearch queries and can be implemented in O(m/w + logk−1 d) time. Therefore, it
suffices to improve the runtime of the two last levels of the recursion, where we must perform
a batch O(logk−1 d) dictionary look-up queries with one mismatch. To achieve the desired
complexity we use the fact that the queries are related, as explained below.

Preprocessing. For a string S = s1s2 . . . sm we define its reverse SR = sm . . . s2s1. First,
we build a compact trie on the reverses of all the dictionary strings and preprocess it as
described in Lemma 13, which takes O(wd) bits of space. We store the reverses using the
Ferragina-Venturini representation (Lemma 15) in H ′qmd+ o(md) bits of space, where H ′q
is the q-th empirical entropy of the reverse of the concatenation of all the strings in the
dictionary. By [15, Theorem A.3], H ′qmd+ o(md) = Hqmd+ o(md). For the second step, we
need Karp-Rabin fingerprints. We modify the standard definition as we work with packed
strings.

I Definition 19 (Karp-Rabin fingerprints [24]). Consider a string S and its packed repres-
entation w1w2 . . . wz, where each wi is a machine word. (If |S| is not a multiple of w/ log σ,
we append an appropriate number of zeros.) The Karp–Rabin fingerprint of S is defined
as ϕ =

∑z
i=1 wi · rz−i mod p, where p is a fixed prime number and r is a randomly chosen

integer in [0, p− 1].

MFCS 2018

66:12 Fast String Dictionary Look-Up with Mismatches

From the definition it follows that if the strings are equal, their fingerprints are equal.
Furthermore, it is well-known that for any c > 3 and p > (max{m/w, d logk d})c, the
probability of two distinct strings of length zw ≤ max{m,wd logk d} having the same
fingerprint (collision probability) is less than 1/(max{m/w, d logk d})c−1. Consider a trie τ
of the k-errata tree. By definition, the lengths of the leaf labels in τ is at most m. From the
bound on the collision probability it follows that we can choose p and r so that the fingerprints
of the reverses of these labels are distinct. For each leaf of τ , we compute the Karp-Rabin
fingerprint of the reverse of its label and add it to a dictionary (Lemma 7) associated with τ .
Also, using the same p and r, we compute Karp-Rabin fingerprints corresponding to inner
nodes of the tries of the k-errata tree. Namely, consider one of such nodes, and let S be its
label and δ be the length of the strings in the trie. We take the reverse of S, prepend it with
(δ − |S|) mod w/ log σ zeros, and compute the Karp-Rabin fingerprint of the resulting string.

Queries. We must run O(logk−1 d) dictionary look-up queries with one mismatch. Consider
one of these queries, let it be a query for a string Q (which must be a suffix of P) in a trie τ
and recall the algorithm of Section 3. First, we run a PrefixSearch to find the longest path
π that is labelled by a prefix of Q. For this step we can use T (Suf ′), as the total number
of such queries is O(logk−1 d) and therefore we can spend O(log d) time per each of them.
Suppose that π traverses the heavy paths H1, H2, . . . ,Hj and leaves the heavy path Hi at a
position ui. We can find the positions uj in O(log d) time once we have found the end of π.
The rest of the algorithm can be described as follows. First, we must perform dictionary
look-ups with 0 mismatches (i.e., PrefixSearch) in O(log d) vertical and O(log d) horizontal
0-errata trees (that are tries of the k-errata tree by definition). Second, for each 1 ≤ i < j,
we must perform a dictionary look-up with 0 mismatches (PrefixSearch) from a position
u′i that follows ui in the heavy path Hi. Importantly, each ui is a node. Finally, we must
perform a a dictionary look-up with 0 mismatches (PrefixSearch) from a position u′j that
follows uj in the heavy path Hj .

We note that to perform the PrefixSearch from the position u′j we can use T (Suf ′), as
before, because the total number of such PrefixSearch operations is O(logk−1 d). We now
explain how we perform the PrefixSearch operations in vertical and horizontal 0-errata trees,
as well as the PrefixSearch operations from nodes u′i, 1 ≤ i < j. In total, we must perform
O(logk d) such operations, and for each of them the query string is a suffix of P . Let
P [i1,m], P [i2,m], . . . , P [iz,m], z = O(logk d) be the suffixes of P for which we are to run
a PrefixSearch. We create a bitvector of length m = o(md) where each ithj bit is set. We
then compute the Karp-Rabin fingerprints of the reverses of P [i1,m], P [i2,m], . . . , P [iz,m]
in O(m/w + z) time using the following fact.

I Fact 20. Given the Karp-Rabin fingerprints of X and Y , where the length of X is a
multiple of w/ log σ, we can compute the Karp-Rabin fingerprint of their concatenation, XY
in O(1) time.

We iterate over all blocks of the bitvector starting from the last one and maintain the
Karp-Rabin fingerprint of the reverse of the suffix of P that starts at the current position.
When we start a new block, we update the Karp-Rabin fingerprint. If a block contains
set bits (which we can decide in constant time), we extract the positions of all set bits in
O(1) time per bit using the technique of [19], and compute the corresponding Karp-Rabin
fingerprints. Also, as a preliminary step, we run a PrefixSearch for PR in the compact trie on
the reverses of the dictionary strings in O(m/w + log d) time. Let u be the position where
this PrefixSearch terminates.

P. Gawrychowski, G.M. Landau, and T. Starikovskaya 66:13

PrefixSearch in vertical and horizontal 0-errata trees. Assume we must answer a Prefix-
Search for P [ij ,m] on a tree τ . We search the fingerprint of the reverse of P [ij ,m] in the
dictionary associated with τ . The search will return at most one leaf of the tree. We know
that its label is equal to P [ij ,m] with high probability, but we need a deterministic answer.
We test the leaf as follows. Let S be one of the dictionary strings such that its id is stored at
the leaf. We find the leaf v of the compact tree on the reverses of the dictionary strings that
corresponds to the reverse SR of S. Now, we can compute the length of the longest common
prefix of PR and SR in constant time via a lowest common ancestor query for u and v and
check if it is indeed equal or larger than |P [ij ,m]|.

PrefixSearch from u′i, 1 ≤ i < j. This step is equivalent to the following: Find all the
strings in the trie that start with a label of u′i and end with a given suffix of P . We can
compute the Karp-Rabin fingerprints of the reverses of the strings that we are looking for
as follows. Positions ui are necessarily nodes and we store the Karp-Rabin fingerprints of
the reverses of their labels. Recall that if Si was the label of ui, we prepended the reverse
SRi of Si with (δ − |S|) mod w/ log σ zeros, where δ is the length of the strings in the trie
containing ui. It follows that we can compute the fingerprint ϕi of the reverse of the label
of u′i prepended with (δ − |Si| − 1) mod w/ log σ zeros in O(1) time. Knowing ϕi and the
fingerprint of the reverse of the suffix of P , we can compute the fingerprint of the strings we
are searching for in constant time. We note that prepending with zeros is necessary in order
to align the borders of the blocks in the reverse of the label of u′i and the reverse of the label
of the suffix of P . We finish the computation as above, that is we find a leaf such that the
fingerprint of the reverse of its label is equal to the fingerprint of the strings we are looking
for, and test it using the trie on the reverses of the dictionary strings.

References

1 Amihood Amir, Gad M. Landau, Moshe Lewenstein, and Dina Sokol. Dynamic text and
static pattern matching. ACM Trans. Algorithms, 3(2), 2007.

2 Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approximate
near neighbors. In Proc. of the Forty-seventh Annual ACM Symposium on Theory of
Computing, STOC’15, pages 793–801, 2015.

3 Djamal Belazzougui. Faster and space-optimal edit distance “1” dictionary. In Proc. of the
Annual Symposium on Combinatorial Pattern Matching, CPM’09, pages 154–167, 2009.

4 Djamal Belazzougui and Rossano Venturini. Compressed string dictionary look-up with
edit distance one. In Proc. of the Annual Symposium on Combinatorial Pattern Matching,
CPM’12, pages 280–292, 2012.

5 Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen. Deterministic indexing for
packed strings. In Proc. of the Annual Symposium on Combinatorial Pattern Matching,
CPM’17, pages 6:1–6:11, 2017.

6 Thomas Bocek, Ela Hunt, Burkhard Stiller, and Fabio Hecht. Fast similarity search in
large dictionaries. Technical Report ifi-2007.02, Department of Informatics, University of
Zurich, 2007.

7 Gerth Stølting Brodal and Leszek Gasieniec. Approximate dictionary queries. In Proc. of
the Annual Symposium on Combinatorial Pattern Matching, CPM’96, pages 65–74, 1996.

8 Gerth Stølting Brodal and Srinivasan Venkatesh. Improved bounds for dictionary look-up
with one error. Inf. Process. Lett., 75:57–59, 2000.

9 Ho-Leung Chan, Tak Wah Lam, Wing-Kin Sung, Siu-Lung Tam, and Swee-Seong Wong.
Compressed indexes for approximate string matching. J. Algorithmica, 58:263–281, 2006.

MFCS 2018

66:14 Fast String Dictionary Look-Up with Mismatches

10 Ho-Leung Chan, Tak Wah Lam, Wing-Kin Sung, Siu-Lung Tam, and Swee-Seong Wong.
A linear size index for approximate pattern matching. In Proc. of the Annual Symposium
on Combinatorial Pattern Matching, CPM’06, pages 45–59, 2006.

11 Timothy Chan and Moshe Lewenstein. Fast string dictionary lookup with one error. In
Proc. of the Annual Symposium on Combinatorial Pattern Matching, CPM’15, pages 114–
123, 2015.

12 Aleksander Cisłak and Szymon Grabowski. A practical index for approximate dictionary
matching with few mismatches. Computing & Informatics, 36(5):1088–1106, 2017.

13 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In Proc. of the 36th Annual ACM Symposium on Theory of
Computing, STOC’04, pages 91–100, 2004.

14 Martin Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and al-
gorithms. In Proc. of the Annual Symposium on Combinatorial Pattern Matching, CPM’96,
pages 130–140, 1996.

15 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005.

16 Paolo Ferragina and Rossano Venturini. A simple storage scheme for strings achieving
entropy bounds. Theoretical Computer Science, 372(1):115–121, 2007.

17 Johannes Fischer and Pawel Gawrychowski. Alphabet-dependent string searching with
wexponential search trees. In Proc. of the Annual Symposium on Combinatorial Pattern
Matching, CPM’15, pages 160–171, 2015.

18 Johannes Fischer and Volker Heun. Theoretical and practical improvements on the RMQ-
problem, with applications to LCA and LCE. In Proc. of the Annual Conference on Com-
binatorial Pattern Matching, CPM’06, pages 36–48, 2006.

19 Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound with
fusion trees. J. Comput. Syst. Sci., 47(3):424–436, dec 1993.

20 Pawel Gawrychowski, Moshe Lewenstein, and Patrick K. Nicholson. Weighted ancestors
in suffix trees. In Proc. of the Annual European Symposium on Algorithms, ESA’14, pages
455–466, 2014.

21 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338–355, 1984.

22 Wing-Kai Hon, Tsung-Han Ku, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott
Vitter. Compressed dictionary matching with one error. In Proc. of the Data Compression
Conference, DCC’11, pages 113–122, 2011.

23 Daniel Karch, Dennis Luxen, and Peter Sanders. Improved fast similarity search in dic-
tionaries. In Proc. of the International Symposium on String Processing and Information
Retrieval, SPIRE’10, pages 173–178, 2010.

24 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM J. Res. Dev., 31(2):249–260, 1987.

25 Tak Wah Lam, Wing-Kin Sung, and Swee-Seong Wong. Improved approximate string
matching using compressed suffix data structures. J. Algorithmica, 51:298–314, 2005.

26 Giovanni Manzini. An analysis of the Burrows -Wheeler transform. J. ACM, 48(3):407–430,
may 2001.

27 Moshe Mor and Aviezri S. Fraenkel. A hash code method for detecting and correcting
spelling errors. Commun. ACM, 25(12):935–938, 1982.

28 Milan Ružić. Uniform deterministic dictionaries. ACM Trans. Algorithms, 4(1):1:1–1:23,
mar 2008.

29 Takuya Takagi, Shunsuke Inenaga, Kunihiko Sadakane, and Hiroki Arimura. Packed com-
pact tries: A fast and efficient data structure for online string processing. In Proc. of

P. Gawrychowski, G.M. Landau, and T. Starikovskaya 66:15

the 27th International Workshop on Combinatorial Algorithms, volume 9843 of IWOCA’16,
pages 213–225. Springer, 2016.

30 Dan E. Willard. Log-logarithmic worst-case range queries are possible in space o(n). In-
formation Processing Letters, 17(2):81–84, 1983.

31 Andrew Chi-Chih Yao and Foong Frances Yao. Dictionary look-up with one error. J.
Algorithms, 25:194–202, 1997.

MFCS 2018

New Results on Directed Edge Dominating Set

Rémy Belmonte
University of Electro-Communications, Chofu, Tokyo, 182-8585, Japan

Tesshu Hanaka
Department of Information and System Engineering, Chuo University, Tokyo, Japan

Ioannis Katsikarelis
Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243
LAMSADE, 75016, Paris, France

Eun Jung Kim1

Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243
LAMSADE, 75016, Paris, France

Michael Lampis2

Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243
LAMSADE, 75016, Paris, France

Abstract
We study a family of generalizations of Edge Dominating Set on directed graphs called Dir-
ected (p, q)-Edge Dominating Set. In this problem an arc (u, v) is said to dominate itself,
as well as all arcs which are at distance at most q from v, or at distance at most p to u.

First, we give significantly improved FPT algorithms for the two most important cases of the
problem, (0, 1)-dEDS and (1, 1)-dEDS (that correspond to versions of Dominating Set on line
graphs), as well as polynomial kernels. We also improve the best-known approximation for these
cases from logarithmic to constant. In addition, we show that (p, q)-dEDS is FPT parameterized
by p+ q+ tw, but W-hard parameterized just by tw, where tw is the treewidth of the underlying
graph of the input.

We then go on to focus on the complexity of the problem on tournaments. Here, we provide
a complete classification for every possible fixed value of p, q, which shows that the problem
exhibits a surprising behavior, including cases which are in P; cases which are solvable in quasi-
polynomial time but not in P; and a single case (p = q = 1) which is NP-hard (under randomized
reductions) and cannot be solved in sub-exponential time, under standard assumptions.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and
exact algorithms

Keywords and phrases Edge Dominating Set, Tournaments, Treewidth

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.67

Funding Partially supported by JSPS and MAEDI under the Japan-France Integrated Action
Program (SAKURA), Project GRAPA 38593YJ.

1 The author was partially supported by the ANR grant “ESIGMA” (ANR-17-CE40-0028).
2 The author was partially supported by the ANR grant “ESIGMA” (ANR-17-CE40-0028).

© Rémy Belmonte, Tesshu Hanaka, Ioannis Katsikarelis, Eun Jung Kim, and Michael Lampis;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 67; pp. 67:1–67:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.67
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

67:2 New Results on Directed Edge Dominating Set

Table 1 Complexity status for various values of p and q: on general digraphs.

Param. p, q FPT / W-hard Kernel Approximability

k
p + q ≤ 1 2O(k)

[22] → 2k
[Thm.3] O(k) vertices [Thm.8] 3-apprx [Thm.4]

p = q = 1 2O(k)
[22] → 9k

[Thm.2] O(k2) vertices [Thm.7] 8-apprx [Thm.5]

max{p, q} ≥ 2 W[2]-hard [22] - no o(ln k)-approx [22]

tw any p, q W[1]-hard [Thm.11] - -
tw+p+q any p, q FPT [Thm.12] unknown -

1 Introduction

Edge Dominating Set (EDS) is a classical graph problem, equivalent to Minimum
Dominating Set on line graphs. Despite the problem’s prominence, EDS has until recently
received very little attention in the context of directed graphs. In this paper we investigate
the complexity of a family of natural generalizations of this classical problem to digraphs,
building upon recent work [22].

One of the reasons that EDS has not so far been well studied in digraphs is that there
are several natural ways in which the undirected version can be generalized. For example,
seeing as EDS is exactly Dominating Set in line graphs, one could define Directed EDS
as (Directed) Dominating Set in line digraphs [23]. In this formulation, an arc (u, v)
dominates all arcs (v, w); however (v, w) does not dominate (u, v). Another natural way to
define the problem would be to consider Dominating Set on the underlying graph of the
line digraph, so as to maximize the symmetry of the problem, while still taking into account
the directions of arcs. In this formulation, (u, v) dominates arcs coming out of v and arcs
coming into u, but not other arcs incident on u, v.

A unifying framework for studying such formulations was recently given in [22], which
defined (p, q)-dEDS for any two non-negative integers p, q. In this setting, an arc (u, v)
dominates every other arc which lies in a directed path of length at most q that begins
at v, or lies in a directed path of length at most p that ends at u. In other words, (u, v)
dominates arcs in the forward direction up to distance q, and in the backward direction up
to distance p. The interest in defining the problem in such a general manner is that it allows
us to capture at the same time Directed Dominating Set on line digraphs ((0, 1)-dEDS),
Dominating Set on the underlying graph of the line digraph ((1, 1)-dEDS), as well as
versions corresponding to r-Dominating Set in the line digraph. We thus obtain a family of
optimization problems on digraphs, with varying degrees of symmetry, all of which crucially
depend on the directions of arcs in the input digraph.

Our contribution. In this paper we advance the state of the art on the complexity of
Directed (p, q)-Edge Dominating Set on two fronts.3

First, we study the complexity and approximability of the problem in general. The
problem is NP-hard for all values of p, q (except p = q = 0), even for planar bounded-degree
DAGs [22], so it makes sense to study its parameterized complexity and approximability. We
show that its two most natural cases, (1, 1)-dEDS and (0, 1)-dEDS, admit FPT algorithms
with running times 9k and 2k respectively, where k is the size of the optimal solution. These
algorithms significantly improve upon the FPT algorithms given in [22], which uses the fact

3 We note that in the remainder we always assume that p ≤ q, as in the case where p > q we can reverse
the direction of all arcs and solve (q, p)-dEDS.

R. Belmonte, T. Hanaka, I. Katsikarelis, E. J. Kim, and M. Lampis 67:3

Table 2 Complexity status for various values of p and q: on tournaments.

Range of p, q Complexity

p = q = 1 NP-hard [Thm. 13], FPT [Thm. 2], polynomial kernel [Thm. 7]

p = 2 or q = 2 Quasi-P-time [Thm. 25], W[2]-hard [Thm 24]

remaining cases P-time [Thm. 26 and 27]

that the treewidth (of the underlying graph of the input) is at most 2k and runs dynamic
programming over a tree-decomposition of width at most 10k, obtained by the algorithm
of [5]. The resulting running-time estimate for the algorithm of [22] is thus around 2510k.
Though both of our algorithms rely on standard branching techniques, we make use of several
non-trivial ideas to obtain reasonable bases in their running times. We also show that both
of these problems admit polynomial kernels. These are the only cases of the problem which
may admit such kernels, since the problem is W-hard for all other values of p, q [22].

Furthermore, we give an 8-approximation for (1, 1)-dEDS and a 3-approximation for
(0, 1)-dEDS. We recall that [22] showed an O(log n)-approximation for general values of p, q,
and a matching logarithmic lower bound for the case max{p, q} ≥ 2. Therefore our result
completes the picture on the approximability of the problem by showing that the only two
currently unclassified cases belong in APX.

Finally, we consider the problem’s complexity parameterized by the treewidth of the
underlying graph and show that, even though the problem is FPT when all of p, q, tw are
parameters, it is in fact W[1]-hard if parameterized only by tw. (See Table 1).

Our second, and perhaps main contribution in this paper is an analysis of the complexity
of the problem on tournaments, which are one of the most well-studied classes of digraphs (see
Table 2). One of the reasons for focusing on this class is that the complexity of Dominating
Set has a peculiar status on tournaments, as it is solvable in quasi-polynomial time, W[2]-
hard, but neither in P nor NP-complete (under standard assumptions). Here we provide a
complete classification of the problem which paints an even more surprising picture. We show
that (p, q)-dEDS goes from being in P for p + q ≤ 1; to being APX-hard and unsolvable
in 2n1−ε under the (randomized) ETH for p = q = 1; to being equivalent to Dominating
Set on tournaments, hence NP-intermediate, quasi-polynomial-time solvable, and W[2]-
hard, when one of p and q equals 2; and finally to being polynomial-time solvable again if
max{p, q} ≥ 3 and neither p nor q equals 2. We find these results surprising, because few
problems demonstrate such erratic complexity behavior when manipulating their parameters
and because, even though in many cases the problem does seem to behave like Dominating
Set, the fact that (1, 1)-dEDS becomes significantly harder shows that the problem has
interesting complexity aspects of its own. The most technical part of this classification
is the reduction that establishes the hardness of (1, 1)-dEDS, which makes use of several
randomized tournament constructions, which we show satisfy certain desirable properties
with high probability; as a result our reduction itself is randomized.

Due to space restrictions, some of our proofs are omitted here.

Related Work. On undirected graphs Edge Dominating Set, also known as Maximum
Minimal Matching, is NP-complete even on bipartite, planar, bounded degree graphs
as well as other special cases [34, 24]. It can be approximated within a factor of 2 [19] (or
better in some special cases [8, 29, 2]), but not a factor better than 7/6 [9] unless P=NP. The
problem has been the subject of intense study in the parameterized and exact algorithms
community [32], producing a series of improved FPT algorithms [17, 3, 18, 30]; the current
best is given in [25]. A kernel with O(k2) vertices and O(k3) edges is also known [21].

MFCS 2018

67:4 New Results on Directed Edge Dominating Set

For (p, q)-dEDS, [22] shows the problem to be NP-complete on planar DAGs, in P on trees,
and W[2]-hard and c ln k-inapproximable on DAGs if max{p, q} > 1. The same paper gives
FPT algorithms for max{p, q} ≤ 1. Their algorithm performs DP on a tree-decomposition
of width w in O(25w), and uses the fact that w ≤ 2k, and the algorithm of [5] to obtain a
decomposition of width 10k.

Dominating Set is known not to admit an o(log n)-approximation [12, 27], and to be
W[2]-hard and unsolvable in time no(k) under the ETH [13, 10]. The problem is significantly
easier on tournaments, as the optimal is always at most log n, hence there is a trivial nO(logn)

(quasi-polynomial)-time algorithm. It remains, however, W[2]-hard [14]. The problem thus
finds itself in an intermediate space between P and NP, as it cannot have a polynomial-time
algorithm unless FPT=W[2], and it cannot be NP-complete under the ETH (as it admits a
quasi-polynomial time algorithm). The generalization of Dominating Set where vertices
dominate their r-neighborhood has also been well-studied in general [7, 11, 15, 26]. This
problem is much easier on tournaments for r ≥ 2, as the size of the solution is always a
constant [4].

2 Definitions and Preliminaries

Graphs and domination. We use standard graph-theoretic notation. If G = (V,E) is a
graph, S ⊆ V a subset of vertices and A ⊆ E a subset of edges, then G[S] denotes the
subgraph of G induced by S, while G[A] denotes the subgraph of G that includes A and
all its endpoints. We let V = A∪̇B denote the disjoint set union of A and B. For a
vertex v ∈ V , the set of neighbors of v in G is denoted by NG(v), or simply N(v), and
NG(S) := (

⋃
v∈S N(v)) \ S will be written as N(S). We define N [v] := N(v) ∪ {v} and

N [S] := N(S) ∪ S. Depending on the context, we use (u, v) for u, v ∈ V to denote either
an undirected edge connecting two vertices u, v, or an arc (a directed edge) with tail u and
head v. An incoming (resp. outgoing) arc for vertex v is an arc whose head (resp. tail) is v.

In a directed graph G = (V,E), the set of out-neighbors (resp.in-neighbors) of a vertex
v is defined as {u ∈ V : (v, u) ∈ E} (resp. {u ∈ V : (u, v) ∈ E}) and denoted as N+

G (v)
(resp. N−G (v)). Similarly as for undirected graphs, N+(S) and N−(S) respectively stand
for the sets (

⋃
v∈S N

+(v)) \ S and (
⋃
v∈S N

−(v)) \ S. For a subdigraph H of G and subsets
S, T ⊆ V , we let δH(S, T) denote the set of arcs in H whose tails are in S and heads are in
T . We use δ−H(S) (resp. δ+

H(S)) to denote the set δH(V \ S, S) (resp. the set δH(S, V \ S)).
If S is a singleton consisting of a vertex v, we write δ+

H(v) (resp. δ−H(v)) instead of δ+
H({v})

(resp. δ−H({v})). The in-degree d−H(v) (respectively out-degree d+
H(v)) of a vertex v is defined

as |δ−H(v)| (resp. |δ+
H(v)|)), and we write dH(v) to denote d+

H(v) + d−H(v). We omit H if it
is clear from the context. If H is G[A] for some vertex or arc set of G, then we write A in
place of G[A]. A source (resp. sink) is a vertex that has no incoming (resp. outgoing) arcs.

For integers p, q ≥ 0, an arc e = (u, v) is said to (p, q)-dominate itself, and all arcs that
are on a directed path of length at most p to u or on a directed path of length at most
q from v. The central problem in this paper is Directed (p, q)-Edge Dominating Set
((p, q)-dEDS): given a directed graph G = (V,E), a positive integer k and two non-negative
integers p, q, we are asked to determine whether an arc subset K ⊆ E of size at most k exists,
such that every arc is (p, q)-dominated by K (a (p, q)-edge dominating set of G).

Complexity background. We assume that the reader is familiar with the basic definitions
of parameterized complexity, such as the classes FPT and W[1], as well as the Exponential
Time Hypothesis (ETH, see [10]). For a problem P , we let OPTP denote the value of its
optimal solution. We also make use of standard graph width measures, such as vertex cover
number vc, treewidth tw and pathwidth pw [10].

R. Belmonte, T. Hanaka, I. Katsikarelis, E. J. Kim, and M. Lampis 67:5

Tournaments. A tournament is a directed graph in which every pair of distinct vertices
is connected by a single arc. Given a tournament T , we denote by T rev the tournament
obtained from T by reversing the direction of every arc. Every tournament has a king
(sometimes also called a 2-king), i.e. a vertex from which every other vertex can be reached
by a path of length at most 2. One such king is the vertex of maximum out-degree (see e.g.
[4]). It is folklore that any tournament contains a Hamiltonian path, i.e. a directed path
that uses every vertex. The Dominating Set problem can be solved by brute force in time
nO(logn) on tournaments, by the following lemma:

I Lemma 1 ([10]). Every tournament on n vertices has a dominating set of size ≤ log n+ 1.

3 Tractability

3.1 FPT algorithms
In this section, we present FPT branching algorithms for (0, 1)-dEDS and (1, 1)-dEDS. Both
algorithms operate along similar lines, taking into consideration the particular ways available
for domination of each arc.

I Theorem 2. The (1, 1)-dEDS problem parameterized by solution size k can be solved in
time O∗(9k).

Proof. We present an algorithm that works in two phases. In the first phase we perform
a branching procedure which aims to locate vertices with positive out-degree or in-degree
in the solution. The general approach of this procedure is standard (as long as there is an
uncovered arc, we consider all ways in which it may be covered), and uses the fact that at
most 2k vertices have positive in- or out-degree in the solution. However, in order to speed
up the algorithm, we use a more sophisticated branching procedure which picks an endpoint
of the current arc (u, v) and completely guesses its behavior in the solution. This ensures
that this vertex will never be branched on again in the future. Once all arcs of the graph
are covered, we perform a second phase, which runs in polynomial time, and by using a
maximum matching algorithm finds the best solution corresponding to the current branch.

Let us now describe the branching phase of our algorithm. We construct three sets
of vertices V +, V −, V +−. The meaning of these sets is that when we place a vertex u in
V +, V −, or V +− we guess that u has (i) positive out-degree and zero in-degree in the optimal
solution; (ii) positive in-degree and zero out-degree in the optimal solution; (iii) positive
in-degree and positive out-degree in the optimal solution, respectively. Initially all three sets
are empty. When the algorithm places a vertex in one of these sets we say that the vertex
has been marked.

Our algorithm now proceeds as follows: given a graph G(V,E) and three disjoint sets
V +, V −, V +− we do the following:
1. If |V +|+ |V −|+ 2|V +−| > 2k, reject.
2. While there exists an arc (u, v) with both endpoints unmarked do the following and

return the best solution:
a. Call the algorithm with V + := V + ∪ {v} and other sets unchanged.
b. Call the algorithm with V +− := V +− ∪ {v} and other sets unchanged.
c. Call the algorithm with V − := V − ∪ {u} and other sets unchanged.
d. Call the algorithm with V +− := V +− ∪ {u} and other sets unchanged.
e. Call the algorithm with V + := V + ∪ {u}, V − := V − ∪ {v}, and V +− unchanged.

MFCS 2018

67:6 New Results on Directed Edge Dominating Set

It is not hard to see that Step 1 is correct as as |V +|+ |V −|+ 2|V +−| is a lower bound
on the sum of the degrees of all vertices in the optimal and therefore cannot surpass 2k.

Branching Step 2 is also correct: in order to cover (u, v) the optimal solution must either
take an arc coming out of v (2a,2b), or an arc coming into u (2c,2d), or, if none of the
previous cases apply, it must take the arc itself (2e).

Once we have applied the above procedure exhaustively, all arcs of the graph have at least
one marked endpoint. We say that an arc (u, v) with u ∈ V − ∪ V +−, or with v ∈ V + ∪ V +−

is covered. We now check if the graph contains an uncovered arc (u, v) with exactly one
marked endpoint. We then branch by considering all possibilities for its other endpoint.
More precisely, if u ∈ V + and v is unmarked, we branch into three cases, where v is placed in
V +, or V −, or V +− (and similarly if v is the marked endpoint). This branching step is also
correct, since the degree specification for the currently marked endpoint does not dominate
the arc (u, v), hence any feasible solution must take an arc incident on the other endpoint.

Once the above procedure is also applied exhaustively we have a graph where all arcs
either have both endpoints marked, or have one endpoint marked but in a way that if we
respect the degree specifications the arc is guaranteed to be covered. What remains is to
find the best solution that agrees with the specifications of the sets V +, V −, V +−.

We first add to our solution S all arcs δ(V +, V −), i.e. all arcs (u, v) such that u ∈ V + and
v ∈ V −, since there is no other way to dominate these arcs. We then define a bipartite graph
H = (V + ∪ V +−, V − ∪ V +−, δ(V + ∪ V +−, V − ∪ V +−)). That is, H contains all vertices in
V + along with a copy of V +− on one side, all vertices of V − and a copy of V +− on the other
side and all arcs in E with tails in V + ∪ V +− and heads in V − ∪ V +−. We now compute a
minimum edge cover of this graph, that is, a minimum set of edges that touches every vertex.
This can be done in polynomial time by finding a maximum matching and then adding an
arbitrary incident edge for each unmatched vertex. It is not hard to see that a minimum
edge cover of this graph corresponds exactly to the smallest (1, 1) edge dominating set that
satisfies the specifications of the sets V +, V −, V +−.

To see that the running time of our algorithm is O∗(9k) we observe that there are two
branching steps: either we have an arc (u, v) with both endpoints unmarked; or we have
an arc with exactly one unmarked endpoint. In both cases we measure the decrease of
the quantity ` := 2k − (|V +|+ |V −|+ |V +−|). The first case produces two instances with
`′ := `− 1 (2a,2c), and three instances with `′ := `− 2. We therefore have the recurrence
T (`) ≤ 2T (` − 1) + 3T (` − 2) which gives T (`) ≤ 3`. For the second case, we have three
branches, all of which decrease `, therefore we also have T (`) ≤ 3` in this case. Taking into
account that, initially ` = 2k we get a running time of at most O∗(9k). J

I Theorem 3. The (0, 1)-dEDS problem parameterized by solution size k can be solved in
time O∗(2k).

3.2 Approximation algorithms
We present here constant-factor approximation algorithms for (0, 1)-dEDS, and (1, 1)-dEDS.
Both algorithms appropriately utilize a maximal matching.

I Theorem 4. There are polynomial-time 3-approximation algorithms for (0, 1)-dEDS.

I Theorem 5. There is a polynomial-time 8-approximation algorithm for (1, 1)-dEDS.

Proof. Let G = (V,E) be an input directed graph. We partition V into (S,R, T) so that S
and T are the sets of sources and sinks respectively, and R = V \ S \ T . We construct an
(1, 1)-edge dominating set K as follows.

R. Belmonte, T. Hanaka, I. Katsikarelis, E. J. Kim, and M. Lampis 67:7

1. Add the arc set δ(S, T) to K.
2. For each vertex of v ∈ R ∩N+(S), choose precisely one arc from δ+(v) and add it to K.
3. For each vertex of v ∈ R ∩N−(T), choose precisely one arc from δ−(v) and add it to K.
4. Let G′ = (R,E′) be the subdigraph of G whose arc set consists of those arcs not (1, 1)-

dominated by K thus far constructed. Let M be a maximal matching in (the underlying
graph of) G′. Let M− and M+ be respectively the tails and heads of the arcs in M . To
K, we add all arcs of M , an arc of δ−G(v) for every v ∈M−, and also an arc of δ+

G(v) for
every v ∈M+.

Clearly, the algorithm runs in polynomial time. In particular, for any vertex v considered at
Step 2-4, both δ+(v) and δ−(v) are non-empty and choosing an arc from a designated set is
always possible. We show that K is indeed an (1, 1)-edge dominating set. Suppose that an
arc (u, v) is not (1, 1)-dominated by K. As the first, second and third step of the construction
ensures that any arc incident with S ∪T is (1, 1)-dominated, we know that (u, v) is contained
in the subdigraph G′ constructed at step 4. For (u, v) /∈M andM being a maximal matching,
one of the vertices u, v must be incident with M . Without loss of generality, we assume v is
incident with M (and the other cases are symmetric). If v ∈M−, then clearly the arc e ∈M
whose tail coincides with v would (1, 0)-dominate (u, v), a contradiction. If v ∈M+, then
the outgoing arc of v added to K at step 4 would (1, 0)-dominate (u, v), again reaching a
contradiction. Therefore, the constructed set K is a solution to (1, 1)-dEDS.

To prove the claimed approximation ratio, we first note that δ(S, T) is contained in any
(optimal) solution because any arc of δ(S, T) can be (1, 1)-dominated only by itself. Note
that these arcs do not (1, 1)-dominate any other arcs of G. Further, we have |R ∩N+(S)| ≤
OPT(1,1)dEDS − |δ(S, T)| because in order to (1, 1)-dominate any arc of the form (s, r) with
s ∈ S and r ∈ R, one must take at least one arc from {(s, r)} ∪ δ+(r). Since the collection
of sets {(s, r) : s ∈ S} ∪ δ+(r) are disjoint over all r ∈ R ∩ N+(S), the inequality holds.
Likewise, it holds that |R ∩N−(T)| ≤ OPT(1,1)dEDS − |δ(S, T)|. In order to (1, 1)-dominate
the entire arc set M , one needs to take at least |M |/2 arcs. This is because an arc e can
(1, 1)-dominate at most two arcs of M . That is, we have |M |/2 ≤ OPT(1,1)dEDS − |δ(S, T)|
Therefore, it is |K| ≤ |δ(S, T)|+ |R ∩N+(S)|+ |R ∩N−(T)|+ 3|M | ≤ 8OPT(1,1)dEDS . J

3.3 Polynomial kernels
We give polynomial kernels for (1, 1)-dEDS and (0, 1)-dEDS. We first introduce a relation
between the vertex cover number and the size of a minimum (1, 1)-edge dominating set,
shown in [22] and then proceed to show a quadratic-vertex/cubic-edge kernel for (1, 1)-dEDS.

I Lemma 6 ([22]). Given a directed graph G, let G∗ be the undirected underlying graph of
G, vc(G∗) be the vertex cover number of G∗, and K be a minimum (1, 1)-edge dominating
set in G. Then vc(G∗) ≤ 2|K|.

I Theorem 7. There exists an O(k2)-vertex/O(k3)-edge kernel for (1, 1)-dEDS.

Proof. Given a directed graph G, we denote the underlying undirected graph of G by G∗.
Let K be a minimum (1, 1)-edge dominating set and vc(G∗) be the size of a minimum vertex
cover in G∗. First, we find a maximal matching M in G∗. If |M | > 2k, we conclude this is a
no-instance by Lemma 6 and the well-known fact that |M | ≤ vc(G∗) [20]. Otherwise, let S
be the set of endpoints of edges in M . Then S is a vertex cover of size at most 4k for the
underlying undirected graph of G and V \ S is an independent set.

We next explain the reduction step. For each v ∈ S, we arbitrarily mark the first k+1 tail
vertices of incoming arcs of v with “in” (or all, if the in-degree of v is ≤ k) and also arbitrarily
the first k + 1 head vertices of outgoing arcs of v with “out” (or all, if the out-degree of v is

MFCS 2018

67:8 New Results on Directed Edge Dominating Set

≤ k). After this marking, if there exists a vertex u ∈ V \S without marks “in”, “out”, we can
delete it. We next show correctness. First, we can observe that if some v ∈ S has more than
k+ 1 incoming arcs, they must be dominated by an outgoing arc of v. Similarly, if v ∈ S has
more than k+ 1 outgoing arcs, they must be dominated by an incoming arc of v. This means
that every arc incident on an unmarked vertex u must be dominated because each vertex v
in S adjacent to u has at least (k + 1) incoming arcs other than (u, v), or (k + 1) outgoing
arcs other than (v, u), due to the fact that u is unmarked. Moreover, for an incoming (resp.
outgoing) arc of u, there exists an outgoing (resp. incoming) arc of v ∈ S that dominates
all arcs dominated by the incoming (resp. outgoing) arc of u except for arcs incident on u.
Thus we need not include any arc incident on u in the solution. By the reduction step, we
obtain the reduced graph.

From the above, the size of an independent set, being the subset of V \ S, is bounded
by 4k · 2(k + 1) = 8k2 + 8k, following the reduction step. Thus, the number of vertices in
the reduced graph is at most 4k + 8k2 + 8k = 8k2 + 12k. Moreover, there exist at most
4k · (8k2 + 12k) = 32k3 + 48k2 arcs between the sets of the vertex cover and the independent
set. Therefore, the number of arcs in the reduced graph is at most

(4k
2
)

+ 32k3 + 48k2 =
32k3 + 56k2 − 2k. J

Using a more strict relation between vc and the size of a minimum (0, 1)-edge dominating
set, we obtain a linear-vertex/quadratic-edge kernel for (0, 1)-dEDS.

I Theorem 8. There exists an O(k)-vertex/O(k2)-edge kernel for (0, 1)-dEDS.

4 W[1]-hardness by treewidth

In this section we characterize the complexity of (p, q)-dEDS parameterized by treewidth.
Our main result is that, even though the problem is FPT when parameterized by p+q+tw, it
becomes W[1]-hard if parameterized only by tw. The algorithm is based on standard dynamic
programming techniques, while for hardness we reduce from the k-Multicolored Clique
problem, which is defined as follows: given a graph G = (V,E), with V partitioned into k
independent sets V = V1] · · ·] Vk, |Vi| = n, ∀i ∈ [1, k], we are asked to find a subset S ⊆ V ,
such that G[S] forms a clique with |S ∩ Vi| = 1, ∀i ∈ [1, k]. The problem k-Multicolored
Clique is well-known to be W[1]-complete [16].

Construction. Given an instance [G = (V,E), k] of k-Multicolored Clique, with V =⋃
∀i∈[1,k] Vi and Vi = {vi0, . . . , vin−1} we will construct an instance [G′ = (V ′, E′), tw(G′)]

of (p, q)-dEDS parameterized by the treewidth of the underlying undirected graph, with
p = q = 2n, as follows. We first make k main cycles on n vertices V ′i = {ui0, . . . , uin−1},
∀i ∈ [1, k], each corresponding to a set Vi ⊆ V and we associate each vertex vil ∈ Vi with the
arc (uil, uil+1) from cycle V ′i (its corresponding arc). Let Ē be the set of non-edges between
vertices from different sets from G, i.e. the set of all pairs (vil , vjo) /∈ E.

For each (vil , vjo) ∈ Ē with i < j, we will create the following cross-gadget Ĉi,jl,o : we first
make five new vertices ai,jl,o, b

i,j
l,o, c

i,j
l,o, d

i,j
l,o and ei,jl,o and then add arcs from ai,jl,o and ci,jl,o to ei,jl,o

and from ei,jl,o to bi,jl,o and di,jl,o. We let set Qi,jl,o contain all four of these arcs and refer to them
as the cross-arcs. We also add both arcs between ai,jl,o and ci,jl,o, as well as both arcs between
bi,jl,o and di,jl,o. These are referred to as the flip-arcs. Finally, we add a path of length 4n− 2
from bi,jl,o to ai,jl,o and a path of length 4n− 2 from di,jl,o to ci,jl,o (on 4n− 3 new vertices each).
We call these the long paths.

R. Belmonte, T. Hanaka, I. Katsikarelis, E. J. Kim, and M. Lampis 67:9

ui
0

ui
1

ui
n/2

ui
n−1

ui
2

uj
0

uj
1

uj
n/2

uj
n−1

uj
2

ei,jx,y

di,jx,y

ci,jx,yai,jx,y

bi,jx,y

ei,jx′,y′

di,jx′,y′

ci,jx′,y′ai,jx′,y′

bi,jx′,y′

3n+ 1 3n+ 1

2n− x

n+ x+ 1

n+ y + 1

2n− y

n+ x′ + 1

2n− x′

n+ y′ + 1

2n− y′

4n− 2

Figure 1 An example of our construction (even n). Dotted lines show the length of each path.

To connect each gadget to the main cycles, we then add a path of length n+ l + 1 (with
n+ l new vertices) from ui0 to ai,jl,o and a path of length 2n− l (with 2n− l− 1 new vertices)
from bi,jl,o to ui0. We also add a path of length n+ o+ 1 from uj0 to ci,jl,o and a path of length
2n− o from di,jl,o to uj0.

Finally, in order to ensure any (2n, 2n)-edge dominating set will select at least one arc
from each of the k main cycles, we will attach a guard cycle to each middle vertex of each V ′i :
the middle vertex of V ′i is uin/2 and we attach a cycle of length 3n+ 1 to it.4 This concludes
our construction and Figure 1 provides an illustration. Clearly, the construction requires
polynomial time.

I Lemma 9. If G has a k-multicolored clique of size k, then G′ has a (2n, 2n)-edge dominating
set of size |Ē|+ k.

I Lemma 10. If G′ has a (2n, 2n)-edge dominating set of size |Ē| + k, then G has a
k-multicolored clique of size k.

I Theorem 11. The (p, q)-dEDS problem is W[1]-hard parameterized by the treewidth of
the input graph.

I Theorem 12. The (p, q)-dEDS problem can be solved in time O∗((p+ q)O(tw)) on graphs
of treewidth at most tw.

Proof (Sketch). The proof relies on standard techniques (Dynamic Programming over tree
decompositions), so we only sketch the details here. Our algorithm maintains a table for each
node of the given tree decomposition, indexed by a set of state-assignments to all vertices in

4 We assume, without loss of generality, that n is even as we can always add a dummy vertex to each
subset Vi.

MFCS 2018

67:10 New Results on Directed Edge Dominating Set

the bag, each entry of which contains the minimum number of selected arcs from the node’s
terminal subgraph for the state of each vertex to be justified, i.e. for the partial solution
described by this set of states to be valid. The state of each vertex in the bag describes its
distance to the closest endpoint of a selected arc, i.e. it either has a path of length at most
p to the tail of a selected arc, or the head of a selected arc has a path of length at most q
to the vertex in question. We also use “promise” states signifying that the partial solution
has not yet selected the arc that will be closest to some vertex, by doubling the amount of
states we use. It is not hard to see that using such a state representation, we can compute
the values of all partial solutions for the problem over the nodes of the tree decomposition
in time polynomial on the table’s size: the states of introduced vertices must match the
distances in the node’s subgraph, all partial solutions involving a forgotten vertex must be
compared over all its states to retain the minimum, while for join nodes, the state of a vertex
must match the “promise” state for the same vertex in the other branch of the join for the
partial solutions to be accurately extended. In this way we can check the values of potential
global solutions in the table of the root node of the tree decomposition. J

5 On Tournaments

A complete complexity classification for the problems (p, q)-dEDS is presented in this section.
For p = q = 1, the problem is NP-hard under a randomized reduction while being amenable
to an FPT algorithm and polynomial kernelization due to the results of Sections 3.1 and 3.3.
The hardness reduction is given in Subsection 5.1. When p = 2 or q = 2, the complexity
status of (p, q)-dEDS is equivalent to Dominating Set on tournaments and is discussed in
Subsection 5.2. In the remaining cases, when p+ q ≤ 1, or max{p, q} ≥ 3 while neither of
them equals 2, the problems turn out to be in P (Subsection 5.3).

5.1 Hard: when p = q = 1
We present a randomized reduction from Independent Set to (1, 1)-dEDS. Our reduction
preserves the size of the instance up to polylogarithmic factors; as a result it shows that
(1, 1)-dEDS does not admit a 2n1−ε algorithm, under the randomized ETH. Furthermore,
our reduction preserves the optimal value, up to a factor (1− o(1)); as a result, it shows that
(1, 1)-dEDS is APX-hard under randomized reductions.

Before moving on, let us give a high-level overview of our reduction. The first step is to
reduce Independent Set to Almost Induced Matching, the problem of finding the
maximum set of vertices that induce a graph of maximum degree 1. Our reduction produces
an instance of Almost Induced Matching that has several special properties, notably
producing a bipartite graph G = (A,B,E). The basic strategy will be then to construct a
tournament T = (V ′, E′), where V ′ = A ∪B ∪C, where C is a set of new vertices. All edges
of E will be directed from A to B, non-edges of E will be directed from B to A, and all other
edges will be set randomly. This intuitively encodes the structure of G in T . The idea is now
that a solution S in G (that is, a set of vertices of G that induces a graph with maximum
degree 1) will correspond to an edge dominating set in T where all vertices except those of S
will have total degree 2, and the vertices of S will have total degree 1. In particular, vertices
of S ∩A will have out-degree 1 and in-degree 0, and vertices of S ∩B will have in-degree 1
and out-degree 0.

The random structure of the remaining arcs of the tournament T is useful in two respects:
in one direction, given the solution S for G, it is easy to deal with vertices that have degree 1
in G[S]: we select the corresponding arc from A to B in T . For vertices of degree 0 however,

R. Belmonte, T. Hanaka, I. Katsikarelis, E. J. Kim, and M. Lampis 67:11

we are forced to look for edge-disjoint paths that will allow us to achieve our degree goals.
Such paths are guaranteed to exist if C is random and large enough. In the other direction,
given a good solution in T , we would like to guarantee that, because the internal structure
of A, B, and C is chaotic, the only way to obtain a large number of vertices with low degree
is to place those with in-degree 0 in A, and those with out-degree 0 in B.

I Theorem 13. (1, 1)-dEDS on tournaments cannot be solved in polynomial time, unless
NP ⊆ BPP. Furthermore, (1, 1)-dEDS is APX-hard under randomized reductions, and does
not admit an algorithm running in time 2n1−ε for any ε, unless the randomized ETH is false.

We first reduce the Independent Set problem on cubic graphs to the following in-
termediate problem called Almost Induced Matching, commonly known as Maximum
Dissociation Number in the literature [33, 31]. A subgraph of G induced on a vertex set
S ⊆ V is called an almost induced matching, if every vertex v ∈ S has degree ≤ 1 in G[S].

I Definition 14. The problem Almost Induced Matching (AIM) takes as input an
undirected graph G = (V,E). The goal is to find an almost induced matching having the
maximum number of vertices.

I Theorem 15. [1, 10] Independent Set is APX-hard on cubic graphs. Furthermore,
Independent Set cannot be solved in time 2o(n) unless the ETH is false.

Almost Induced Matching is known to be NP-complete on bipartite graphs of
maximum degree 3 and on C4-free bipartite graphs [6]. It is also NP-hard to approximate on
arbitrary graphs within a factor of n1/2−ε for any ε > 0 [28]. The next lemma supplements
the known hardness results on bipartite graphs and might be of independent interest.

I Lemma 16. Almost Induced Matching is APX-hard and cannot be solved in time 2o(n)

under the ETH, even on bipartite graphs of degree at most 4. Furthermore, this hardness
still holds if we are promised that OPTAIM > 0.6n and that there is an optimal solution S
that includes at least n/20 vertices with degree 0 in G[S].

As we use a random construction, the following property of a uniform random tournament
is useful. Intuitively, the property established in Lemma 17 states that it is impossible in a
large random tournament to have two large sets of vertices X,Y such that all vertices of
X have in-degree 0 and out-degree 1 in a (1, 1)-edge dominating set, while all vertices of Y
have in-degree 1 and out-degree 0.

I Lemma 17. Let T = (V,E) be a random tournament on the vertex set {1, 2, . . . , n}, in
which (i, j) is an arc of T with probability 1/2. Then the following event happens with high
probability: for any two disjoint sets X,Y ⊆ V with |X| > (log n)2 and |Y | > (log n)2, there
exists a vertex x ∈ X with at least two outgoing arcs to Y .

I Lemma 18. Let G = (V = A∪̇B∪̇C,E) be a random directed graph with |A| = |B| = n and
|C| = 4n such that for any pair (x, y) with {x, y} ∩ C 6= ∅ we have exactly one arc, oriented
from x to y, or from y to x with probability 1/2. Let ` ≥ n/20 be a positive integer. Then
with high probability, we have: for any two disjoint sets X ⊆ A,Y ⊆ B with |X| = |Y | = `,
there exist ` vertex-disjoint directed paths from X to Y .

I Theorem 19. There is a probabilistic polynomial-time algorithm computing, given an
instance G of Almost Induced Matching, an instance T of (1, 1)-dEDS such that with
high probability:
(i) if OPTAIM (G) ≥ L1, then OPT(1,1)dEDS(T) ≤ |V (T)| − L1/2 + 1,
(ii) if OPTAIM (G) < L2 − 5(logL2)2, then OPT(1,1)dEDS(T) > |V (T)| − L2/2 + 1.

MFCS 2018

67:12 New Results on Directed Edge Dominating Set

Proof of Theorem 13. Let G be an instance of Independent Set on cubic graphs and
let G′ be the instance of Almost Induced Matching obtained by the construction of
Lemma 16. We set ` as in the reduction and observe that OPTIS(G) ≥ k if and only if
OPTAIM (G′) ≥ `.

Let G∗ be a disjoint union of 10(log `)2 copies of G′. Then G∗ is a gap instance, whose
optimal solution is either at least 10`(log `)2, or at most 10`(log `)2−10(log `)2 ≤ L−5(logL)2,
where L := 10`(log `)2. Now Theorem 19 implies that using a probabilistic polynomial-time
algorithm for (1, 1)-dEDS with two-sided bounded errors, one can correctly decide an instance
of Independent Set on cubic graphs with bounded errors. We observe that the size of the
instance has only increased by a poly-logarithmic factor, hence an algorithm solving the new
instance in time 2n1−ε would give a randomized sub-exponential time algorithm for 3-SAT.

Finally, for APX-hardness, we observe that we may assume we start our reduction from
an Independent Set instance where either OPTIS ≥ k or OPTIS < rk, for some constant
r < 1, and for k = Θ(n). Lemma 16 then gives an instance of Almost Induced Matching
where either OPTAIM ≥ L1 or OPTAIM ≤ r′L1 = L2, for some (other) constant r′ < 1. We
now use Theorem 19 to create a gap-instance of (1, 1)-dEDS. J

5.2 Equivalent to Dominating Set on tournaments: p = 2 or q = 2
I Lemma 20. On tournaments without a source, we have OPT(0,2)dEDS ≤ OPTDS.

Proof. Let T = (V,E) be a tournament with no source and D ⊆ V be a dominating set of
T . Then let K ⊆ E be a set containing one arbitrary incoming arc of every vertex in D. We
claim K (0, 2)-dominates all arcs in E: since D is a dominating set, for any vertex u /∈ D
there must be an arc (v, u) from some v ∈ D. Thus all outgoing arcs (u,w) from such u /∈ D
are (0, 2)-dominated by K, as are all arcs (v, u) from v ∈ D. J

I Lemma 21. Let T = (V,E) be a tournament and let s be a source of T . Then δ+(s) is an
optimal (p, q)-edge dominating set of T for any p ≤ 1 and q ≥ 1.

Proof. Since s has no incoming arcs, any (p, q)-edge dominating set must select at least one
arc from {(s, v)} ∪ δ+(v) for every v ∈ V \ {s} in order to (p, q)-dominate (s, v). Because the
arc sets {(s, v)}∪ δ+(v) are mutually disjoint over all v ∈ V \ {s}, any (p, q)-edge dominating
set has size at least |δ+(s)|. Now, observe that δ+(s) (0, 1)-dominates every arc of T . J

I Lemma 22. On tournaments on n vertices, for any p ≥ 2 we have: OPT(p,2)dEDS ≤
OPT(2,2)dEDS ≤ 2 logn+ 3.

Proof. The first inequality trivially holds, so we prove the second inequality. Let T = (V,E)
be a tournament on n vertices. If T has no source, then OPT(2,2)dEDS ≤ OPT(0,2)dEDS ≤
OPTDS ≤ log n + 1, where the second and the last inequality follow from Lemma 20 and
Lemma 1, respectively. If T rev contains no source, observe that a (0, 2)-edge dominating set
of T rev is a (2, 0)-edge dominating set of T and the statement holds.

Therefore, we may assume that T has a source s and a sink t. Let S1 ⊆ V \ {s} be a
dominating set of T − s of size at most log n+ 1. Clearly, every arc (u, v) of T − s lies on a
directed path of length at most two from some vertex of S1. Let D1 ⊆ E be a minimal arc
set such that D1∩ δ−(v) 6= ∅ for every v ∈ S1. Since every v ∈ S1 has positive in-degree, such
a set D1 exists and we have |D1| ≤ |S1|. Observe that D1 (0,2)-dominates every arc of T − s.
Applying a symmetric argument to T rev − t, we know that there exists an arc set D2 of size
at most log n+ 1 which (2, 0)-dominates every arc of T − t. Now D1 ∪D2 (2,2)-dominates
every arc incident with V \ {s, t}. Therefore, D1 ∪D2 ∪ {(s, t)} is a (2, 2)-dEDS. J

R. Belmonte, T. Hanaka, I. Katsikarelis, E. J. Kim, and M. Lampis 67:13

I Lemma 23. There is an FPT reduction from Dominating Set on tournaments para-
meterized by solution size to (p, q)-EDS parameterized by solution size, when p = 2 or
q = 2.

Proof. Without loss of generality we assume that q = 2. Let T = (V,E) be an input
tournament to Dominating Set, and let k be the solution size. It can be assumed that
T has no source. We construct a tournament T ′ on vertex set V ∪ {t}, in which t is a sink.
Given a dominating set D of T , we select an arbitrary arc set K of T ′ so that δ−K(v) = 1 for
each v ∈ D. It is easy to see that K (0, 2)-dominates every arc of T ′: any arc (u, v) with
u ∈ D is clearly dominated by K. For any arc (u, v) with u /∈ D, there is w ∈ D such that
(w, u) ∈ E and thus K (0, 2)-dominates (u, v).

Conversely, suppose that K is a (p, 2)-edge dominating set of size at most k and let
K+ be the set of heads of K found in V . Let K− be the set of vertices u ∈ V such that
(u, t) ∈ K. We have |K+ ∪K−| ≤ k, because each arc of K either contributes an element
in K+ or in K−. We claim that K+ ∪K− is a dominating set of T . Suppose the contrary,
therefore there exists u ∈ V \ (K+ ∪K−) that is not dominated by K+ ∪K−. However, the
arc (u, t) is dominated by K. We have (u, t) 6∈ K, as u 6∈ K−. Therefore, since t is a sink,
(u, t) is (0, 2)-dominated by an arc (v, w) ∈ K. This means that either w = u, or the arc
(w, u) exists. However, w ∈ K+, which means that u is dominated. J

I Theorem 24. On tournaments, the problems (p, 2)-dEDS are W[2]-hard for each fixed p.

Proof. For all problems, we use the reduction from Set Cover to Dominating set on
Tournaments given in Theorem 13.14 of [10] and our results follow from the W[2]-hardness
of that problem (see also Theorem 13.28 therein) and Lemma 23. J

I Theorem 25. On tournaments, the problems (0, 2)-dEDS, (1, 2)-dEDS and (2, 2)-dEDS
can be solved in time nO(logn).

Proof. For (0, 2)-dEDS and (1, 2)-dEDS, the case when a given tournament contains a
source can be solved in polynomial time by Lemma 21. If the input tournament contains
no source, then by Lemma 20 we have OPT(1,2)dEDS ≤ OPT(0,2)dEDS ≤ OPTDS , which
is bounded by log n + 1 by Lemma 1. Lemma 22 states that OPT(p,2)dEDS ≤ 2 log n + 3.
Exhaustive search over vertex subsets of size O(log n) performs in the claimed runtime. J

5.3 P-time solvable: p + q ≤ 1 or, 2 /∈ {p, q} and max{p, q} ≥ 3
I Theorem 26. (0, 1)-dEDS can be solved in polynomial time on tournaments.

Proof. We will show that OPT(0,1)dEDS = n − 1 and give a polynomial-time algorithm
for finding such an optimal solution. First, given a tournament T = (V,E), to see why
OPT(0,1)dEDS ≥ n− 1 consider any optimal solution K ⊆ E: if there exists a pair of vertices
u, v ∈ V with d−K(u) = d−K(v) = 0, i.e. a pair of vertices, neither of which has an arc of K as
an incoming arc, then the arc between them (without loss of generality let its direction be
(v, u)) is not dominated: as d−K(u) = 0, the arc itself does not belong in K and as d−K(v) = 0,
there is no arc preceding it that is in K. This leaves (v, u) undominated. Therefore, there
cannot be two vertices with no incoming arcs in any optimal solution, implying any solution
must include at least n− 1 arcs.

To see OPT(0,1)dEDS ≤ n−1, consider a partition of T into strongly connected components
C1, . . . , Cl, where we can assume these are given according to their topological ordering, i.e.
for 1 ≤ i < j ≤ l, all arcs between Ci and Cj are directed towards Cj . Let S be the set

MFCS 2018

67:14 New Results on Directed Edge Dominating Set

of arcs traversed in breadth-first-search (BFS) from some vertex s ∈ C1 until all vertices
of C1 are spanned. Also let S′ be the set of arcs (s, u), ∀u ∈ Ci, ∀i ∈ [2, l], i.e. all outgoing
arcs from s to every vertex of C2, . . . , Cl. Note that set S′ must contain an arc from s to
every vertex that is not in C1: T being a tournament means every pair of vertices has an
arc between them and C1 being the first component in the topological ordering means all
arcs between its vertices and those of subsequent components are oriented away from C1.
Then K := S ∪ S′ is a directed (0, 1)-edge dominating set of size n− 1 in T : observe that
d−K(u) = 1, ∀u 6= s ∈ T , i.e. every vertex in T has positive in-degree within K except s. Thus
all outgoing arcs from all such vertices u are (0, 1)-dominated by K, while all outgoing arcs
from s are in K, due to the BFS selection for S and the definition of S′.

Since such an optimal solution K can be computed in polynomial time (partition into
strongly connected components, BFS), the claim follows. J

I Theorem 27. For any p, q with max{p, q} ≥ 3, p 6= 2 and q 6= 2, (p, q)-dEDS can be
solved in polynomial time on tournaments.

Proof. Suppose without loss of generality that q ≥ 3, as otherwise we can solve (q, p)-dEDS
on T rev, the tournament obtained by reversing the orientation of every arc. In any tournament
T , there always exists a king vertex, that is, a vertex with a path of length at most 2 to any
other vertex in the graph. One such vertex is the vertex of maximum out-degree v. If v is
not a source, it suffices to select one of its incoming arcs: since there is a path of length at
most 2 from v to any other vertex u in the graph, any outgoing arc from any such u will be
(0, 3)-dominated by this selection. This is clearly optimal.

Suppose now that s is a source. We consider two cases: if p ≤ 1, then Lemma 21 implies
that δ+(s) is optimal. Finally, suppose s is a source and p ≥ 3. If T does not have a sink,
then a king of T rev has an incoming arc, which (0, 3)-dominates T rev as observed above, and
thus T has a (0, 3)-edge dominating set of size 1.

Therefore, we may assume that T has both a source s and a sink t. Let s′ and t′ be vertices
of V \ {s, t} with maximum out- and in-degree, respectively. Now {(s, t), (s, s′), (t′, t)} is a
(3, 3)-edge dominating set. This is because s′ is a king of T − s and thus every arc (u, v) with
u 6= s is (0, 3)-dominated by (s, s′). Similarly, every arc (u, v) with v 6= t is (3, 0)-dominated
by (t′, t). The only arc not (3, 3)-dominated by these two arcs is (s, t), which is dominated
by itself. Examining all vertex subsets of size up to 3, we can compute an optimal (3, 3)-edge
dominating set in polynomial time. J

References
1 Paola Alimonti and Viggo Kann. Some apx-completeness results for cubic graphs. Theor.

Comput. Sci., 237(1-2):123–134, 2000.
2 Brenda S. Baker. Approximation Algorithms for NP-Complete Problems on Planar Graphs.

J. ACM, 41(1):153–180, 1994.
3 Daniel Binkele-Raible and Henning Fernau. Enumerate and measure: Improving parameter

budget management. In IPEC, volume 6478 of Lecture Notes in Computer Science, pages
38–49. Springer, 2010.

4 Arindam Biswas, Varunkumar Jayapaul, Venkatesh Raman, and Srinivasa Rao Satti. The
Complexity of Finding (Approximate Sized) Distance-d Dominating Set in Tournaments.
In Frontiers in Algorithmics, pages 22–33, 2017.

5 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lok-
shtanov, and Michal Pilipczuk. A ck n 5-approximation algorithm for treewidth. SIAM J.
Comput., 45(2):317–378, 2016.

R. Belmonte, T. Hanaka, I. Katsikarelis, E. J. Kim, and M. Lampis 67:15

6 Rodica Boliac, Kathie Cameron, and Vadim V. Lozin. On computing the dissociation
number and the induced matching number of bipartite graphs. Ars Comb., 72, 2004.

7 Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems
over tree decompositions. In IPEC, volume 63 of LIPIcs, pages 8:1–8:23. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016.

8 Jean Cardinal, Stefan Langerman, and Eythan Levy. Improved approximation bounds for
edge dominating set in dense graphs. Theor. Comput. Sci., 410(8-10):949–957, 2009.

9 Miroslav Chlebík and Janka Chlebíková. Approximation hardness of edge dominating set
problems. Journal of Combinatorial Optimization, 11(3):279–290, 2006.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

11 Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M.
Thilikos. Fixed-parameter algorithms for (k, r)-center in planar graphs and map graphs.
ACM Trans. Algorithms, 1(1):33–47, 2005.

12 Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, pages
624–633. ACM, 2014.

13 Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness
i: Basic results. SIAM J. Comput., 24(4):873–921, 1995.

14 Rodney G. Downey and Michael R. Fellows. Parameterized Computational Feasibility. In
Feasible Mathematics II, pages 219–244, 1995.

15 David Eisenstat, Philip N. Klein, and Claire Mathieu. Approximating k-center in planar
graphs. In SODA, pages 617–627. SIAM, 2014.

16 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On
the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.,
410(1):53–61, 2009.

17 Henning Fernau. edge dominating set: Efficient Enumeration-Based Exact Algorithms. In
Parameterized and Exact Computation, pages 142–153. Springer Berlin Heidelberg, 2006.

18 Fedor V. Fomin, Serge Gaspers, Saket Saurabh, and Alexey A. Stepanov. On two techniques
of combining branching and treewidth. Algorithmica, 54(2):181–207, 2009.

19 Toshihiro Fujito and Hiroshi Nagamochi. A 2-approximation algorithm for the minimum
weight edge dominating set problem. Discrete Applied Mathematics, 118(3):199–207, 2002.

20 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., 1979.

21 Torben Hagerup. Kernels for edge dominating set: Simpler or smaller. In MFCS, volume
7464 of Lecture Notes in Computer Science, pages 491–502. Springer, 2012.

22 Tesshu Hanaka, Naomi Nishimura, and Hirotaka Ono. On directed covering and domination
problems. In ISAAC, volume 92 of LIPIcs, pages 45:1–45:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017.

23 Frank Harary and Robert Z Norman. Some properties of line digraphs. Rendiconti del
Circolo Matematico di Palermo, 9(2):161–168, 1960.

24 Joseph D. Horton and Kyriakos Kilakos. Minimum edge dominating sets. SIAM J. Discret.
Math., 6(3):375–387, 1993.

25 Ken Iwaide and Hiroshi Nagamochi. An improved algorithm for parameterized edge dom-
inating set problem. J. Graph Algorithms Appl., 20(1):23–58, 2016.

26 Stephan Kreutzer and Siamak Tazari. Directed nowhere dense classes of graphs. In SODA
’12, pages 1552–1562, 2012.

27 Dana Moshkovitz. The projection games conjecture and the np-hardness of ln n-
approximating set-cover. Theory of Computing, 11:221–235, 2015.

MFCS 2018

67:16 New Results on Directed Edge Dominating Set

28 Yury L. Orlovich, Alexandre Dolgui, Gerd Finke, Valery S. Gordon, and Frank Werner.
The complexity of dissociation set problems in graphs. Discrete Applied Mathematics,
159(13):1352–1366, 2011.

29 Richard Schmied and Claus Viehmann. Approximating edge dominating set in dense graphs.
Theor. Comput. Sci., 414(1):92–99, 2012.

30 Mingyu Xiao, Ton Kloks, and Sheung-Hung Poon. New parameterized algorithms for the
edge dominating set problem. Theor. Comput. Sci., 511:147–158, 2013.

31 Mingyu Xiao and Shaowei Kou. Exact algorithms for the maximum dissociation set and
minimum 3-path vertex cover problems. Theor. Comput. Sci., 657:86–97, 2017.

32 Mingyu Xiao and Hiroshi Nagamochi. A refined exact algorithm for edge dominating set.
Theor. Comput. Sci., 560:207–216, 2014.

33 Mihalis Yannakakis. Node-deletion problems on bipartite graphs. SIAM J. Comput.,
10(2):310–327, 1981.

34 Mihalis Yannakakis and Fanica Gavril. Edge dominating sets in graphs. SIAM Journ. on
Applied Mathematics, 38(3):364–372, 1980.

Interval-Like Graphs and Digraphs

Pavol Hell1
School of Computing Science, Simon Fraser University
Burnaby, B.C., Canada V5A 1S6
pavol@sfu.ca

Jing Huang
Mathematics and Statistics, University of Victoria
Victoria, B.C., Canada V8W 2Y2
huangj@uvic.ca

Ross M. McConnell
Computer Science Department, Colorado State University
Fort Collins, CO 80523-1873
rmm@cs.colostate.edu

Arash Rafiey
Mathematics and Computer Science, Indiana State University
Terre Haute, IN 47809
arash.rafiey@indstate.edu

Abstract
We unify several seemingly different graph and digraph classes under one umbrella. These classes
are all, broadly speaking, different generalizations of interval graphs, and include, in addition to
interval graphs, adjusted interval digraphs, threshold graphs, complements of threshold tolerance
graphs (known as ‘co-TT’ graphs), bipartite interval containment graphs, bipartite co-circular
arc graphs, and two-directional orthogonal ray graphs. (The last three classes coincide, but have
been investigated in different contexts.) This common view is made possible by introducing
reflexive relationships (loops) into the analysis. We also show that all the above classes are
united by a common ordering characterization, the existence of a min ordering. We propose a
common generalization of all these graph and digraph classes, namely signed-interval digraphs,
and show that they are precisely the digraphs that are characterized by the existence of a min
ordering. We also offer an alternative geometric characterization of these digraphs. For most of
the above graph and digraph classes, we show that they are exactly those signed-interval digraphs
that satisfy a suitable natural restriction on the digraph, like having a loop on every vertex, or
having a symmetric edge-set, or being bipartite. For instance, co-TT graphs are precisely those
signed-interval digraphs that have each edge symmetric. We also offer some discussion of future
work on recognition algorithms and characterizations.

2012 ACM Subject Classification Mathematics of computing→ Combinatoric problems, Math-
ematics of computing → Graph theory

Keywords and phrases graph theory, interval graphs, interval bigraphs, min ordering, co-TT
graph

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.68

1 The author was supported by an NSERC (Canada) Discovery Grant

© Pavol Hell, Jing Huang, Ross M. McConnell, and Arash Rafiey;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 68; pp. 68:1–68:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pavol@sfu.ca
mailto:huangj@uvic.ca
mailto:rmm@cs.colostate.edu
mailto:arash.rafiey@indstate.edu
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.68
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

68:2 Interval-Like Graphs and Digraphs

01

a

a’

0 1

1

a

a’

0 1

1

b’ b b’ b

Figure 1 A min ordering of a digraph is an ordering of the vertices such that neither of the
depicted submatrices occurs in the corresponding adjacency matrix.

a

b c

d e

f g

a

b c d gf

e

Figure 2 An interval graph and corresponding interval model. There is an implicit loop at each
vertex.

1 Introduction

A digraph H is reflexive if each vv ∈ E(H), v ∈ V (H) (H has all loops); irreflexive if no
vv ∈ E(H) (H has no loops); and symmetric if ab ∈ E(H) implies ba ∈ E(H). In this paper,
we shall treat both graphs and digraphs; for simplicity we view graphs as symmetric digraphs.
(Thus, graphs can have loops, and irreflexive graphs are loopless.) Loops play an important
role in this paper, and this is not common in the literature on graph classes that we consider.
They allow us to view several seemingly unrelated graph classes through a common lens.

A min ordering of a digraph H is a linear ordering < of the vertices of H, so that
ab ∈ E(H), a′b′ ∈ E(H) and a < a′, b′ < b implies that ab′ ∈ E(H). In other words, a min
ordering is an ordering of the vertices such that when the rows and columns of the adjacency
matrix are ordered in this way, neither the matrix whose rows are 01 and 11 nor the matrix
whose rows are 01 and 10 appears as a submatrix. (See Figure 1.) Note that the presence or
absence of loops (1’s on the diagonal of the adjacency matrix) can affect whether the graph
has a min ordering.

Our goal in this paper is to promote a class of digraphs (or 0,1-matrices) that is a broad
generalization of interval graphs and that retains some of the desirable structural properties
of interval graphs. A graph H is an interval graph if it is the intersection graph of a family
of intervals on the real line, i.e., if there exists a family of intervals {[xv, yv]|v ∈ V (H)} such
that uv ∈ E(H) if and only if [xu, yu] ∩ [xv, yv] 6= ∅. The family of intervals is an interval
model of H. (See Figure 2.) We note that the definition implies that an interval graph is
reflexive. A related concept for bipartite graphs is as follows. A bipartite graph H with parts
A,B is an interval bigraph if there are intervals {[xa, ya], a ∈ A}, and {[xb, yb], b ∈ B}, such
that for a ∈ A and b ∈ B, ab ∈ E(H) if and only if [xa, ya] ∩ [xb, yb] 6= ∅.

P. Hell, J. Huang, R.M. McConnell, and A. Rafiey 68:3

a

b c

d
a

b
c

d

Figure 3 An adjusted interval digraph and a corresponding adjusted interval model. The source
interval for each vertex is the upper one.

Interval graphs are important in graph theory and in applications, and are distinguished by
several elegant characterizations and efficient recognition algorithms [3, 8, 11, 13, 16, 24, 31].
For this reason, there have been attempts to extend the concept to digraphs [29], with mixed
success. (Many of the desirable structural properties are absent.) More recently a more
restricted class of digraphs has been found to offer a nicer generalization of interval graphs;
these are the adjusted interval digraphs [10]. A digraph H is an adjusted interval digraph if
there are two families of real intervals, the source intervals {[xv, yv]|v ∈ V (H)} and the sink
intervals and {[xv, zv]|v ∈ V (H)} such that uv ∈ E(H) if and only if the source interval for
u intersects the sink interval for v. (See Figure 3.) This differs from the class in [29] in that
the left endpoint, xv, must be shared by the two intervals [xv, yv] and [xv, zv] assigned to
v; they are “adjusted.” The interval graphs are the special case where [xv, yv] = [xv, zv] for
each v ∈ V (H). An adjusted interval model of H is a set of source and sink intervals that
represent H in this way.

Adjacency on a set of intervals can also be defined by interval containment. A graph is a
containment graph of intervals [31] if there is a family of intervals {[xv, yv]|v ∈ V (H)} on the
real line such that uv ∈ E(H) if and only if one of [xu, yu] and [xv, yv] contains the other.
A graph is a containment graph of intervals if and only if it and its complement are both
transitively orientable, thus if and only if it is a permutation graph [31].

For this paper, a more relevant class is a bipartite version of this concept. A bipartite
graph H with parts A,B is an interval containment bigraph [31] if there are sets of intervals
{Ia|a ∈ A}, and {Jb|b ∈ B}, such that ab ∈ E(H) if and only if Jb ⊆ Ia. These graphs have
been studied, from the point of view of another geometric representation, as two-directional
orthogonal ray graphs [30]. A bipartite graph H with parts A and B is called a two-directional
orthogonal ray graph if there exists a set {Ua, a ∈ A} of upwards vertical rays, and a set
{Rb, b ∈ B} of horizontal rays to the right such that ab ∈ E(H) if and only if Ua ∩Rb 6= ∅.
It is known that a bipartite graph is an interval containment graph if and only if it is a
two-directional orthogonal ray graph [22], and if and only if its complement is a circular arc
graph [9].

It is sometimes convenient to view bipartite graphs as digraphs, with all edges oriented
from part A to part B; thus we speak of a bipartite interval containment digraph, a bipartite
interval digraph, or a two-directional orthogonal ray digraph. In general, a bipartite digraph is
a bipartite graph with parts A and B and all arcs being oriented from A to B.

There is an interesting intermediate concept that uses both intersection and containment
of intervals to define adjacency. An interval model of an interval graph G can be viewed
as two mappings {v → xv|v ∈ V (H)} and {v → yv|v ∈ V (H)} such that xv ≤ yv for each
v ∈ V (H), and such that uv ∈ E(H) if and only if yv ≤ xu and yu ≤ xv. The constraint
xv ≤ yv comes from the need for [xv, yv] to be an interval. The proposition that two intervals
intersect is the same as xv ≤ yu and xu ≤ yv, since this means that neither interval lies
entirely to the right of the other.

MFCS 2018

68:4 Interval-Like Graphs and Digraphs

d: [7,2]

e: [9,4]

f: [11,6]

a: [1,8]

b: [3,10]

c: [5,12]

a

b

e

d f

Positive Negative

1 2 3 4 5 6 7 8 9 10 1211

a
b

c
d

e
f

c

Figure 4 A co-TT graph and a corresponding co-TT model; ab is an edge since 1 ≤ 10 and 3 ≤ 8,
ad is an edge since 1 ≤ 2 and 7 ≤ 8. However, bd is not an edge: although 7 ≤ 10, 3 is not less
than or equal to 2. The example of this figure is one of the well-known minimal graphs that are not
interval graphs, illustrating that the interval graphs are a proper subclass of the co-TT graphs.

A generalization of interval models is obtained by dropping the constraint xv ≤ yv in this
formulation. To develop the motivation for this, we start with the complements of threshold
tolerance graphs. A graph H is a threshold tolerance graph [27] if its vertices v can be
assigned weights wv and tolerances tv so that ab is an edge of H if and only if wa + wb > ta
or wa +wb > tb. (When all tv are equal, this defines a better known class of threshold graphs
[5].) Co-threshold tolerance (‘co-TT’) graphs are complements of threshold tolerance graphs.
Equivalently, a graph H is a co-TT graph, if there exist real numbers xv, yv, v ∈ V (H), such
that ab ∈ E(H) if and only if xa ≤ yb and xb ≤ ya [14]. This differs from the definition of
interval graphs in that it is no longer required that xv ≤ yv, illustrating the motivation for
dropping the constraint in this case. (See Figure 4.) That these are precisely the co-TT
graphs is easily seen by letting xv = wv and yv = tv − wv. The two mappings v → xv and
v → yv, are called the co-TT model of H.

One view of a co-TT model is that there are now intervals whose ‘beginning’ xv may
come after their ‘end’ yv. In other words, we may have ‘intervals’ [xv, yv] with yv < xv. We
may view a co-TT model as consisting of intervals [xv, yv], v ∈ V (H), some of which go in
the positive direction (have xv ≤ yv) and others go in the negative direction (have xv > yv).
We speak of positive or negative intervals, and positive or negative vertices that correspond
to them. (In the literature [14, 12, 17, 27], the direction is denoted by colors of the intervals:
positive intervals, and vertices, are colored blue, and negative intervals, and vertices, are
colored red.) The above definition of adjacency has interesting consequences. Two positive
vertices are adjacent if and only if they intersect; in particular, each positive vertex has a
loop. Two negative vertices are never adjacent; in particular negative vertices have no loops.
Finally, a positive vertex u corresponding to a positive interval [a, b] and a negative vertex
v corresponding to a negative interval [c, d] are adjacent if and only if [d, c] is contained in
[a, b] (i.e., a ≤ d ≤ c ≤ b). We also use the following signed shorthand, which will be useful
later: a positive vertex or interval will be called a +-vertex or +-interval respectively, and a
negative vertex or interval will be called a −-vertex or −-interval respectively. It follows
from the above discussion that in a co-TT graph, the +-vertices induce a reflexive interval
graph, the −-vertices form an independent set, and the edges between the +-vertices and
the −-vertices form a bipartite interval containment graph.

P. Hell, J. Huang, R.M. McConnell, and A. Rafiey 68:5

a

b

c

d

a b c d

Figure 5 A signed interval digraph and a corresponding signed interval model. The source
interval for each vertex is the upper one. There is a loop at a because its positive source interval
intersects its positive sink interval. There is an edge from a to b because a’s positive source interval
contains b’s negative sink interval, an edge from b to c because b’s positive source interval intersects
c’s positive sink interval, and an edge from d to c because d’s negative source interval is contained
in c’s positive sink interval.

Note that co-TT graphs are a generalization of interval graphs; the interval graphs are
those co-TT graphs where all vertices are positive. In other words, they are the reflexive
co-TT graphs.

2 Signed Interval Digraphs

We have now seen extensions of interval graphs in two different directions. First, by taking
two (adjusted) intervals instead of just one interval, we were able to extend the definition
from reflexive graphs to reflexive digraphs. Second, by admitting intervals [a, b] that go in the
negative direction (have b < a), we were able to extend the definition from reflexive graphs
to graphs that have some vertices with loops and others without. Both these generalizations
have proved very fruitful [10, 8, 10, 21, 14, 12, 17, 27].

We now define a new class of digraphs that unifies these extensions. A digraph H is a
signed-interval digraph if there exist three mappings from V (H) to the real line, v → xv, v →
yv, and v → zv, such that uv ∈ E(H) if and only if xu ≤ zv and xv ≤ yu. We call the three
mappings v → xv, v → yv, and x→ zv a signed-interval model of H. Alternatively, a signed
interval model is obtained in by assigning, for each v ∈ V (H) a source interval [xv, yv] and a
sink interval [xv, zv], such that uv ∈ E(H) if and only if xu ≤ zv and xv ≤ yu. (See figure 5.)
Since it is possible that xv > yv and/or xv > zv, each of [xv, yv] and [xv, zv] can be negative
or positive. Since the source interval and sink interval for v share the endpoint xv, we retain
the property that the intervals are adjusted.

Signed-interval digraphs with all intervals positive, are reflexive, and are adjusted interval
digraphs. Signed-interval digraphs with yv = zv, for all v ∈ V (H), are symmetric, and
are co-TT graphs. Signed-interval digraphs that satisfy both conditions, i.e., with all
xv ≤ yv = zv, v ∈ V (H), are interval graphs. Furthermore, we show below that there are no
reflexive signed-interval digraphs other than adjusted interval digraphs, no symmetric signed-
interval digraphs other than co-TT graphs, and no reflexive and symmetric signed-interval
digraphs other than interval graphs.

The structure of signed-interval digraphs can be described in a language similar to what
was used for co-TT graphs. Let H be a signed-interval digraph and consider a signed-
interval model of H given by the ordered pairs (Iv, Jv) of intervals where Iv = [xv, yv] and
Jv = [xv, zv]. For α, β ∈ {+,−}, we say a vertex v is of type (α, β) if Iv is an α-interval

MFCS 2018

68:6 Interval-Like Graphs and Digraphs

and Jv is a β-interval. The subdigraph of H induced by (+,+)-vertices is an adjusted
interval digraph. The (−,−)-vertices of H form an independent set. The arcs between the
(+,−)- and (−,−)-vertices form a bipartite interval containment digraph. The arcs between
the (−,+)- and (−,−)-vertices also form a bipartite interval containment digraph. Similar
properties hold for the other parts and their connections.

We emphasize that our definition of co-TT graphs differs from the standard definition
[12, 14, 27]. In the standard definition, the condition ab ∈ E(H) ⇐⇒ xa ≤ yb and xb ≤ ya

is applied only for a 6= b, and so the graphs have no loops. Thus a graph under the standard
interpretation is co-TT if and only if with a suitable addition of loops it is co-TT under our
definition above. This difference is not important as it was shown in [13] that if a graph H
is co-TT (in the standard sense), then it has a co-TT model with negative intervals for all
simplicial vertices without true twins and all other intervals positive. Thus there is an easy
translation between the co-TT graphs as defined here and the standard irreflexive co-TT
graphs: namely, loops are to be placed on all vertices other than simplicial vertices without
true twins.

3 Min Orderings

Interval graphs, adjusted interval digraphs, co-TT graphs, and two-directional orthogonal
ray digraphs all have min orderings when care is taken to specify which vertices have loops
and which do not. [8, 10, 18, 30].

Min orderings are a useful tool for graph homomorphism problems. A homomorphism
of a digraph G to a digraph H is a mapping f : V (G)→ V (H) such that f(u)f(v) ∈ E(H)
whenever uv ∈ E(G). If a digraph H has a min ordering, there is a simple polynomial-time
algorithm to decide if a given input graph G admits a homomorphism to a fixed digraph H
[15, 20]. In fact, the algorithm is well known in the AI community as the arc-consistency
algorithm [20]; it is easy to see that it also solves list homomorphism problems, where we
seek a homomorphism of input G to fixed H taking each vertex of G to one of a ‘list’ of
allowed images. In fact, many (but not all) homomorphism and list homomorphism problems
that can be solved in polynomial time can be solved using arc-consistency with respect to a
min ordering.

Graph and digraph homomorphism problems are special cases of constraint satisfaction
problems. A general tool for solving polynomial time solvable constraint satisfaction problems
are the so-called polymorphisms [4]. Without going into the technical details, we mention
that min-orderings are equivalent to conservative semilattice polymorphisms [10].

We prove below that a digraph has a min ordering if and only if it is a signed-interval
digraph. We also give another geometric characterization of signed-interval digraphs, as
bi-arc digraphs. We show that a reflexive signed-interval digraphs are precisely adjusted
interval digraphs, that symmetric signed-interval digraphs are precisely co-TT graphs, that
reflexive and symmetric signed-interval digraphs are precisely interval graphs, and that
bipartite signed-interval digraphs are precisely two-directional ray graphs.

The main result of this section is the following.

I Theorem 1. A digraph admits a min ordering if and only if it is a signed-interval digraph.

Before embarking on the proof we offer an alternate definition of a min ordering. Consider
any linear ordering < of V (H). To this ordering, we prepend an intial element α, which is a
place holder and not a vertex. Thus, α < x for each vertex x. We denote by O(a) the last

P. Hell, J. Huang, R.M. McConnell, and A. Rafiey 68:7

vertex b (in the order <), such that b is an out-neighbor of a (i.e., such that ab ∈ E(H)), or
α if a has no out-neighbor. Similarly, for each vertex b, we denote by I(b) the last vertex a
such that a is an in-neighbor of b (i.e., such that ab ∈ E(H)), or α if a has no in-neighbor.

I Proposition 2. A linear ordering < of V (H) is a min ordering of a digraph H if and only
if the following property holds:

ab ∈ E(H) if and only if a ≤ I(b) and b ≤ O(a).

Proof. Suppose first that < is a min ordering of H with α prepended. If ab ∈ E(H), then by
the definition of O(a), I(b) we have a ≤ I(b) and b ≤ O(a). On the other hand, let a ≤ I(b)
and b ≤ O(a). Note that if a = I(b) or b = O(a) we have ab ∈ E(H) also by definition.
Therefore it remains to consider vertices a, b such that a < c = I(b) and b < d = O(a).
Then ad, cb ∈ E(H) and the min ordering property implies that ab ∈ E(H). This proves the
property.

Conversely, assume that < is a linear ordering of V (H) with α prepended and that
the property holds for <. We claim it is a min ordering of H. Otherwise some ab ∈
E(H), a′b′ ∈ E(H), a < a′, b′ < b would have ab′ 6∈ E(H). This is a contradiction, since we
have a < a′ ≤ I(b′) and b′ < b ≤ O(a). J

We proceed to prove the theorem.

Proof. Suppose < is a min ordering of a digraph H with α prepended. We represent
each vertex v ∈ V (H) by the mappings v → v, v → O(v), v → I(v). In other words, v is
represented by the two intervals [v,O(v)] and [v, I(v)]. It follows from Proposition 2 that
ab ∈ E(H) if and only if a ≤ I(b) and b ≤ O(a). Thus H is a signed-interval digraph.

Conversely, suppose we have the three mappings v → xv, v → yv, v → zv from V (H)
to the real line, such that ab ∈ E(H) if and only if xa ≤ zb and xb ≤ ya. Without loss of
generality we may assume the points {xv|v ∈ V (H)} are all distinct. Then we claim that
the left to right ordering of the points xv yields a min ordering < of H. (Specifically, we
define a < b if and only if xa precedes xb.) Consider now ab ∈ E(H), a′b′ ∈ E(H), with
a < a′, b′ < b. This means that xa < xa′ ≤ zb′ and xb′ < xb ≤ ya, whence we must have
ab′ ∈ E(H). J

4 An alternate geometric representation

Digraphs that admit a min ordering have another geometric representation. Let C be a circle
with two distinguished points (the poles) N and S, and let H be a digraph. Let Iv, v ∈ V (H)
and Jv, v ∈ V (H) be two families of arcs on C such that each Iv contains N but not S, and
each Jv contains S but not N . We say that the families Iv and Jv are consistent if they have
the same clockwise order of their clockwise ends, i.e., the clockwise end of Ia precedes in the
clockwise order the clockwise end of Ib if and only if the clockwise end of Ja precedes in the
clockwise order the clockwise end of Jb. Suppose two families Iv, Jv are consistent; we define
an ordering < on V (H) where a < b if and only if the clockwise end of Ia precedes in the
clockwise order the clockwise end of Ib; we call < the ordering generated by the consistent
families Iv, Jv.

A bi-arc model of a digraph H is a consistent pair of families of circular arcs, Iv, Jv, v ∈
V (H), such that ab ∈ E(H) if and only if Ia and Jb are disjoint. A digraph H is called a
bi-arc digraph if it has a bi-arc model.

I Theorem 3. A digraph H admits a min ordering if and only if it is a bi-arc digraph.

MFCS 2018

68:8 Interval-Like Graphs and Digraphs

a’

N

S

I
I

J

J

...
...

...
...

b

b’

a

Figure 6 Illustration for the proof of Theorem 3.

Proof. Suppose Iv, Jv form a bi-arc model of H. We claim that the ordering < generated
by Iv, Jv is a min ordering of H. Indeed, suppose a < a′ and b′ < b have ab, a′b′ ∈ E(H).
Then Ia′ spans the area of the circle between N and the clockwise end of Ia, and Jb spans
the area of the circle between S and the clockwise end of Jb′ . (See Figure 1.) This implies
that Ia and Jb′ are disjoint: indeed, the counterclockwise end of Ia is blocked from reaching
Jb′ by Jb (since ab ∈ E(H)), and the counterclockwise end of Jb′ is blocked from reaching Ia

by Ia′ (since a′b′ ∈ E(H)). (The clockwise ends are fixed by the ordering <.)
Conversely, suppose < is a min ordering of H. We construct families of arcs Iv and Jv,

with v ∈ V (H), as follows. The intervals Iv will contain N but not S, the intervals Jv will
contain S but not N . The clockwise ends of Iv are arranged in clockwise order according to
<, as are the clockwise ends of Jv. The counterclockwise ends will now be organized so that
Iv, Jv, v ∈ V (H), becomes a bi-arc model of H. For each vertex v ∈ V (H), we define O(v)
and I(v) as in the proof of Theorem 1. Then we assign the counterclockwise endpoint of Iv to
be N if v has no out-neighbors, or else extend Iv counterclockwise as far as possible without
intersecting JO(v), and assign the the counterclockwise endpoint of each Jv to be S if v has
no in-neighbors, or else extend Jv counterclockwise as far as possible without intersecting
II(v). We claim this is a bi-arc model of H . Clearly, if b > O(a), then Ia intersects Jb by the
construction, and similarly for a > I(b) we have Jb intersecting Ia. This leaves disjoint all
pairs Ia, Jb such that a ≤ I(b) and b ≤ O(a); since aO(a), I(b)b ∈ E(H), the definition of
min ordering implies that ab ∈ E(H), as required. J

I Corollary 4. The following statements are equivalent for a digraph H.
H has a min ordering
H is a signed-interval digraph
H is a bi-arc digraph.

5 0,1-Matrices and bipartite graphs

Irreflexive graphs with at least one edge do not admit a min ordering, since the vertices that
are not reflexive form an independent set. However, in the special case of bipartite graphs,
a version of min ordering has been studied, and has yielded interesting examples. We will
describe that version below, but we first want to explain how to view that definition as a
special case of min ordering as defined here.

A useful perspective on min orderings is obtained by considering 0,1-matrices. Square
0,1-matrices naturally correspond to adjacency matrices of digraphs. Let a simultaneous
permutation of rows and columns of a matrix be one where the permutation of the rows is the

P. Hell, J. Huang, R.M. McConnell, and A. Rafiey 68:9

same as the permutation of the columns. An independent permutation of rows and columns
allows the permutation of the rows to be different from the permutation of the columns.

Let L be the two by two matrix with rows 01 and 11, and let K be the two by two
matrix with rows 01 and 10. (These have been given other names in the literature, up to a
simultaneous permutation of rows and columns they are the gamma matrix, and the identity
matrix.) A matrix M is called K,L-free if it does not contain K or L as a submatrix. If M
is the adjacency matrix of a digraph H , and if the rows and columns of H are in the order <,
then M is K,L-free if and only if < is a min ordering. We call a M a min-orderable matrix
if its rows and columns can be simultaneously permuted to produce a K,L-free matrix. A
digraph has a min ordering if and only if its adjacency matrix is min-orderable.

Therefore, we can say much about matrices that are min-orderable.

I Theorem 5. A square 0,1-matrix is min-orderable if and only if it is the adjacency matrix
of a signed-interval digraph.

Another natural interpretation of a 0,1-matrix is that it represents adjacencies in a
bipartite graph, with rows corresponding to one part and columns to the other part. The
bi-adjacency matrix of a bipartite graph H with marts A,B has its i, j-th entry is 1 if and only
if the i-th vertex in A is adjacent to the j-th vertex in B. Note that for this interpretation
it is not required that the matrix be square. For matrices that are not necessarily square,
we can still ask for independent permutations of rows and columns, to produce a K,L-free
matrix. This suggests a definition of min ordering for bipartite graphs as follows. A min
ordering of a bipartite graph H with parts A and B is a linear ordering <A of A and a linear
ordering <B of B so that for any a, a′ ∈ A, b, b′ ∈ B such that ab ∈ E(H), a′b′ ∈ E(H) and
a < a′, b′ < b we have ab′ ∈ E(H). This is the definition that has been used in the literature;
it is clear how it avoids the problems of the general definition.

There is a simple transformation that connects the two interpretations of 0,1-matrices.
For a matrix M with k rows and ` columns, we define the (k + `) by (k + `) square matrix
M+ to contain the matrix M in the first k rows and the last ` columns, with 0 everywhere
else. Then a simultaneous row/column permutation of M+ corresponds to independent row
and column permutations of M . Note that the square matrix M+ is an adjacency matrix
of the digraph obtained from H by directing all edges from H from the first part to the
second part. Thus to view the special definition of a min ordering for bipartite graphs as a
particular case of the general definition, it suffices to view bipartite graphs as digraphs with
all edges oriented from the first part to the second part. We shall say that H is a bipartite
digraph if it is obtained from a bipartite graph in this way.

A robust class of bipartite graphs is relevant for our discussion. A bipartite graph H with
parts A and B is called a two-directional orthogonal ray graph if there exists a set Ua, a ∈ A,
of upwards vertical rays, and a set Rb, b ∈ B, of horizontal rays to the right such that
ab ∈ E(H) if and only if Ua ∩Rb 6= ∅. Note that we may, if needed, view a two-directional
orthogonal ray graph as a bipartite digraph, with all edges oriented from (say) vertical rays
to horizontal rays.

The following theorem is obtained by a combination of results from [9, 22, 30].

I Theorem 6. The following statements are equivalent for a bipartite graph H.
H is a two-directional orthogonal ray graph
the complement of H is a circular arc graph
H is an interval containment graph.

Matrices that can be permuted to avoid small submatrices have been of much interest
[1, 23, 25]. This of course corresponds to characterizations of digraphs by forbidden ordered
subgraphs [7, 19]. Our focus was on K,L-free matrices. Let the matrix Γ be obtained from

MFCS 2018

68:10 Interval-Like Graphs and Digraphs

L by simultaneously exchanging the rows and columns; i.e., Γ has rows 11, 10. Let I be the
two by two identity matrix. It is easy to see that considering I,Γ-free matrices is equivalent
to considering K,L-free matrices, as the permutation that simultaneously reverses rows and
columns of matrix M transforms a I,Γ-free matrix to a K,L-free matrix and vice versa.
Matrices that are Γ-free have been intensively studied [1, 25], cf. [31]. A bipartite graph
H is chordal bipartite if it contains no induced cycle other than C4. A reflexive graph is
strongly chordal if it contains no induced cycle or induced trampoline. (A trampoline is a
complete graph on v0, v1, v2, . . . , vk−1, k > 2 with vertices ui, i = 0, 1, . . . , k − 1, each only
adjacent to vi, vi+1, subscripts computed modulo k.) The adjacency matrix of a reflexive
graph H can be made Γ-free by simultaneous row / column permutations if and only if H
is strongly chordal; the bi-adjacency matrix of a bipartite graph H can be made Γ-free by
independent permutations of rows and columns if and only if H is chordal bipartite [1]. These
results amount to forbidden structure characterizations of matrices that are permutable (by
simultaneous or independent row and column permutations) to a Γ-free format. Algorithms
to recognize such matrices efficiently have been given in [25, 28]. For L-free matrices, or
equivalently, for I-free matrices a forbidden structure characterization is given in [17]. An
O(n2) recognition algorithm is claimed in [2], cf. [31].

6 Special cases

We now explore what min orderings look like in the special cases we have discussed, namely
reflexive graphs, reflexive digraphs, undirected graphs, and bipartite graphs. The results are
all corollaries of Theorem 1 and Proposition 2.

I Corollary 7. A reflexive graph H is a signed-interval digraph if and only if it is an interval
graph.

I Corollary 8. A reflexive digraph H is a signed-interval digraph if and only if it is an
adjusted interval digraph.

Next we focus on symmetric digraphs, i.e., graphs.

I Corollary 9. A graph H is a signed-interval digraph, i.e., has a min ordering, if and only
if it is a co-TT graph.

Proof. Consider a co-TT model of H, given by the mappings v → xv, v → yv, setting the
third mapping v → zv with each zv = yv, yields a signed-interval digraph model of H.
Conversely, assume H is a graph, i.e., a symmetric digraph, that is a signed-interval digraph.
Let < be a min ordering of H; we again have O(v) = I(v) for all vertices v. We claim that
the mappings v → xv = v, v → yv = O(v) define a co-TT model. Indeed, from Proposition 2
we have ab ∈ E(H) if and only if a ≤ O(b) = yb and b ≤ O(a) = ya, as required. J

Finally, for bipartite graphs we have the following result, stated for convenience in the
language of bipartite digraphs. Note that this has only one consequence, that is, when we
consider an edge ab ∈ E(H) we always assume a ∈ A and b ∈ B.

I Corollary 10. A bipartite digraph H is a signed-interval digraph, i.e., has a min ordering,
if and only if it is a two-directional orthogonal ray graph.

Note that two-directional orthogonal ray graphs themselves have two other equivalent
characterizations in Theorem 6. The characterization of two-directional orthogonal ray graph
by the existence of a min ordering is also observed in [18, 30].

P. Hell, J. Huang, R.M. McConnell, and A. Rafiey 68:11

Proof. Suppose H has a signed-interval model given by the three mappings v → xv, v →
yv, v → zv such that ab ∈ E(H) if and only if xa ≤ zb and xb ≤ ya. We construct a
two-directional ray model for H as follows. For each a ∈ A, we take an upwards vertical ray
starting in the point Pa with x-coordinate equal to ya and with y-coordinate equal to xa. For
each b ∈ B, we take a horizontal ray to the right, starting in the point Qb with x-coordinate
xb and y-coordinate zb. Now Pa intersects Qb if and only if xb ≤ ya and xa ≤ zb, i.e., if and
only if ab ∈ E(H) as required.

Now suppose that H has a two-directional model, i.e., upwards vertical rays Ua, a ∈ A,
and horizontal rays to the right Rb, b ∈ B, such that ab ∈ E(H) if and only if Ua ∩Rb 6= ∅.
We will prove that H has a min ordering, whence it is a signed-interval digraph by Theorem
1. We will define the orders < on A and on B as follows. Assume the starting point of the
vertical ray Ua has the (x, y)-coordinates (ua, va), and the starting point of the horizontal
ray Rb has the (x, y)-coordinates (rb, sb), for a ∈ A, and b ∈ B. It is easy to see that we
may assume, without loss of generality, that all ua, a ∈ A, and rb, b ∈ B are distinct, and
similarly for va, a ∈ A and sb, b ∈ B. We define a < a′ in A if and only if va < v′a, and define
b < b′ in B if and only if rb < rb′ . We show that this is a min ordering of the bipartite
digraph H. Otherwise, some ab ∈ E(H), a′b′ ∈ E(H), a < a′, b′ < b have ab′ 6∈ E(H). There
are two possibilities for ab′ 6∈ E(H); either ua < rb′ or ua > rb′ , va > sb′ . In the former case,
Ua ∩Rb = ∅, in the latter case Ua′ ∩Rb′ = ∅, contradicting the assumptions. J

7 Algorithms and characterizations

Interval graphs are known to have elegant characterization theorems [11, 24], cf. [13, 31] and
efficient recognition algorithms [3, 6, 16]. Thus one might hope to be able to obtain similar
results for their generalizations and digraph analogues. This is true for all the generalizations
described in this paper, at least to some degree. In this section we summarize what is known.

The prototypical characterization of interval graphs is the theorem of Lekkerkerker and
Boland [24]. In our language, it states that a reflexive graph H is an interval graph if and
only if it contains no asteroidal triple and no induced C4 or C5. An asteroidal triple consists
of three non-adjacent vertices such that any two are joined by a path not containing any
neighbors of the third vertex. An equivalent characterization by the absence of a slightly
less concise obstruction is given in [10]. A reflexive graph H is an interval graph if and only
if it contains no invertible pair. An invertible pair is a pair of vertices u, v such that there
exist two walks of equal length, P from u to v, and Q from v to u, where the i-th vertex
of P is non-adjacent to the (i+ 1)-st vertex of Q (for each i), and also two walks of equal
length R,S from v to u and u to v respectively, where the i-th vertex of R is non-adjacent
to the (i+ 1)-st vertex of S (for each i). It is not difficult to see that an asteroidal triple is a
special case of an invertible pair. A number of variants of the definition of an invertible pair
have arisen [10, 12, 17, 18], and they have proved useful to give characterization theorems
for various classes. It is proved in [10] that a reflexive digraph is an adjusted interval digraph
if and only if it contains no directed invertible pair. A directed version of an invertible
pair is defined in [10] in a manner similar to the above definition of an invertible pair.
With yet another labeled version of an invertible pair, we have the following obstruction
characterization of co-TT graphs: a graph is a co-TT graph if and only if it contains no
labeled invertible pair, which follows from the characterization in [12] in terms of an interval
ordering from [26]. For bipartite graphs, an analogous bipartite version of an invertible pair
yields the following result. A bipartite graph is a two-directional orthogonal ray graph if
and only if it contains no bipartite invertible pair, [18]. In fact, in [9] a stronger version is

MFCS 2018

68:12 Interval-Like Graphs and Digraphs

shown: there is a bipartite analogue of an asteroidal triple, called an edge-asteroid, and a
bipartite graph is a two-directional orthogonal ray graph if and only if it contains no induced
6-cycle and no edge-asteroid. Finally, in [21], there is an obstruction characterization for
signed-interval digraphs, which is a little more technical than just an invertible pair, [21].

There is a long history of efficient algorithms for the recognition of interval graphs, many
of them linear time, starting from [3] and culminating in [6]. A polynomial time algorithm for
the recognition of adjusted interval digraphs is given in [10]. It is not known how to obtain
a linear time, or even near-linear time algorithm. An O(n2) algorithm for the recognition
of two-directional orthogonal ray graphs follows from Theorem 6 and [26]. A more efficient
algorithm in this case is also not known. On the other hand, an O(n2) algorithm for the
recognition of co-TT graphs has been given in [12]. In [21], a polynomial-time algorithm
for the recognition of a signed-interval digraph is proposed. (A new version of [21] will be
posted on arXiv soon.)

References

1 R. P. Anstee and M. Farber. Characterizations of totally balanced matrices. J. Algorithms,
5:215–230, 1984.

2 V. L. Beresnev and A. I. Davydov. On matrices with connectedness properties. Upravlyae-
mye Sistemy, 19:3–13, 1979.

3 K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval graphs,
and graph planarity using PQ-tree algorithms. J. Computer and System Sci., 13:335–379,
1976.

4 A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using
finite algebras. SIAM J. Computing, 34:720–742, 2005.

5 V. Chvátal and P. L. Hammer. Set-packing and threshold graphs. Technical report, Univ.
Waterloo Res. Report, 1973.

6 D. G. Corneil, S. Olariu, and L. Stewart. The LBFS structure and recognition of interval
graphs. SIAM J. Discrete Math., 23:1905–1953, 2009.

7 P. Damaschke. Forbidden ordered subgraphs. In R. Bodendiek and R. Henn, editors, Topics
in Combinatorics and Graph Theory, pages 219–229. Physika-Verlag HD, 1990.

8 T. Feder and P. Hell. List homomorphisms to reflexive graphs. J. Combinatorial Theory
B, 72:236–250, 1998.

9 T. Feder, P. Hell, and J. Huang. List homomorphisms and circular arc graphs. Combina-
torica, 19:487–505, 1999.

10 T. Feder, P. Hell, J. Huang, and A. Rafiey. Interval graphs, adjusted interval digraphs, and
reflexive list homomorphisms. Discrete Applied Mathematics, 160:697–707, 2012.

11 D. R. Fulkerson and O. A. Gross. Incidence matrices and interval graphs. Pacific J. Math.,
15:835–855, 1965.

12 P. Golovach, P. Heggerness, R. M. McConnell, V. F. dos Santos, J. P. Spinrad, and J. L.
Szwarcfiter. On recognition of threshold tolerance graphs and their complements. Discrete
Applied Mathematics, 216:171–180, 2017.

13 M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New
York, 1980.

14 M. C. Golumbic, N. L. Weingarten, and V. Limouzy. Co-TT graphs and a characterization
of split co-TT graphs. Discrete Applied Mathematics, 165:168–174, 2014.

15 W. Gutjahr, E. Welzl, , and G. J. Woeginger. Polynomial graph-colourings. Discrete
Applied Mathematics, 35:29–45, 1992.

P. Hell, J. Huang, R.M. McConnell, and A. Rafiey 68:13

16 M. Habib, R. McConnell, C. Paul, , and L. Viennot. Lex-BFS and partition refinement,
with applications to transitive orientation, interval graph recognition and consecutive ones
testing. Theoretical Computer Science, 234:59–84, 2000.

17 P. Hell, J. Huang, R. M. McConnell, and J. Lin. Comparability graphs coverable by two
cliques, and cocomparability bigraphs. Manuscript, 2018.

18 P. Hell, M. Mastrolilli, M. M. Nevisi, and A. Rafiey. Approximation of minimum cost
homomorphisms. In Algorithms - ESA 2012, volume 7501 of Lecture Notes in Computer
Science, pages 587–598. Springer, 2012.

19 P. Hell, B. Mohar, and A. Rafiey. Orderings without forbidden patterns. In A. S. Schulz
and D. Wagner, editors, Algorithms - ESA 2014, volume 8737 of Lecture Notes in Computer
Science. Springer, 2014.

20 P. Hell and J. Nešetřil. Graph Homomorphisms. Wiley, 2004.
21 P. Hell and A. Rafiey. Bi-arc digraphs and conservative polymorphisms, 2016. arXiv:

arXiv:1608.03368.
22 J. Huang. Representation characterizations of chordal bipartite graphs. J. Combinatorial

Theory B, 96:673–683, 2006.
23 B. Klintz, R. Rudolf, and G. J. Woeginger. Permuting matrices to avoid forbidden subma-

trices. Discrete Applied Mathematics, 60:223–248, 1995.
24 C. G. Lekkerkerker and J. C. Boland. Representation of a finite graph by a set of intervals

on the real line. Fundamenta Math., 51:45–64, 1962.
25 A. Lubiw. Doubly lexical orderings of matrices. SIAM J. Comput., 16:854–879, 1987.
26 R. M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica, 37:93–147,

2003.
27 C. L. Monma, B. Reed, and W. T. Trotter. Threshold tolerance graphs. J. Graph Theory,

12:343–362, 1988.
28 R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM J. Comput.,

16:973–989, 1987.
29 M. Sen, S. Das, A. B. Roy, and D. B. West. Interval digraphs: an analogue of interval

graphs. J. Graph Theory, 13:581–592, 1989.
30 A. M. Shresta, S. Tayu, and S. Ueno. On two-directional orthogonal ray graphs. In

Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pages 1807–
1810, 2010.

31 J. Spinrad. Efficient Graph Representations. Fields Institute Monographs, AMS, 2003.

MFCS 2018

http://arxiv.org/abs/arXiv:1608.03368
http://arxiv.org/abs/arXiv:1608.03368

Double Threshold Digraphs
Peter Hamburger
Department of Mathematics, Indiana-Purdue University
Fort Wayne, IN 46805, USA
hamburge@ipfw.edu

Ross M. McConnell
Department of Computer Science, Colorado State University
Fort Collins, CO 80523, USA
rmm@cs.colostate.edu

Attila Pór
Department of Mathematics, Western Kentucky University
Bowling Green, KY 42101
attila.por@wku.edu

Jeremy P. Spinrad
Department of Computer Science, Vanderbilt University
Nashville, TN 37235, USA
Jeremy.P.Spinrad@vanderbilt.edu

Zhisheng Xu
Department of Computer Science, Colorado State University
Fort Collins, CO 80523, USA
xuzs9298@cs.colostate.edu

Abstract
A semiorder is a model of preference relations where each element x is associated with a utility
value α(x), and there is a threshold t such that y is preferred to x iff α(y) − α(x) > t. These
are motivated by the notion that there is some uncertainty in the utility values we assign an
object or that a subject may be unable to distinguish a preference between objects whose values
are close. However, they fail to model the well-known phenomenon that preferences are not
always transitive. Also, if we are uncertain of the utility values, it is not logical that preference
is determined absolutely by a comparison of them with an exact threshold. We propose a new
model in which there are two thresholds, t1 and t2; if the difference α(y) − α(x) is less than
t1, then y is not preferred to x; if the difference is greater than t2 then y is preferred to x; if
it is between t1 and t2, then y may or may not be preferred to x. We call such a relation a
(t1, t2) double-threshold semiorder, and the corresponding directed graph G = (V,E) a (t1, t2)
double-threshold digraph. Every directed acyclic graph is a double-threshold digraph; increasing
bounds on t2/t1 give a nested hierarchy of subclasses of the directed acyclic graphs. In this
paper we characterize the subclasses in terms of forbidden subgraphs, and give algorithms for
finding an assignment of utility values that explains the relation in terms of a given (t1, t2) or
else produces a forbidden subgraph, and finding the minimum value λ of t2/t1 that is satisfiable
for a given directed acyclic graph. We show that λ gives a useful measure of the complexity
of a directed acyclic graph with respect to several optimization problems that are NP-hard on
arbitrary directed acyclic graphs.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases posets, preference relations, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.69

Related Version A full version of the paper is available at [6], https://arxiv.org/abs/1702.
06614.

© Peter Hamburger, Ross M. McConnell, Attila Pór, Jeremy P. Spinrad, and Zhisheng Xu;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 69; pp. 69:1–69:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hamburge@ipfw.edu
mailto:rmm@cs.colostate.edu
mailto:attila.por@wku.edu
mailto:Jeremy.P.Spinrad@vanderbilt.edu
mailto:xuzs9298@cs.colostate.edu
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.69
https://arxiv.org/abs/1702.06614
https://arxiv.org/abs/1702.06614
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

69:2 Double Threshold Digraphs

1 Introduction

A poset P can be identified with a transitive digraph on its elements. The poset P = P (V,<)
is a semiorder [10] if for some utility function α : V → R we have u <P v if and only if
α(v)−α(u) > 1. Semiorders were introduced as a possible mathematical model for preference
in the social sciences. A first possible model for preference is the weak orders, in which each
element is assigned a utility value, such that u is preferred to v iff the value of u is greater
than the value of v. This was viewed as too restrictive; many preference relationships cannot
be modeled by a weak order. Semi-orders were designed to model imprecision in the valuation
function; we may be indifferent between elements not only if they have exactly the same
values, but also if the difference between the values is smaller than some threshold. There is
a great deal of literature on the subject of semiorders and preference; see the books [2, 11].

Our original motivation for defining double-threshold digraphs comes from an attempt
to deal with an issue in mathematical psychology. Intuitively, it is natural to think that
preference is transitive; if one prefers a to b and b to c, then one “should” prefer a to c.
However, a variety of evidence exists showing that preferences are not always transitive.
This has led to a great deal of discussion; for a summary of this issue, see [3]. Viewpoints
range from the idea that the intuitive notion that preference is transitive are simply wrong
and must be thrown away entirely to questioning whether what was being measured in the
non-transitive findings was really a preference relation. Between these two views, there has
been work on finding mathematical models that explain non-transitive preference; Fishburn
[3] gives some possible models.

One approach to mathematical modeling is to try to give a reasonable model of extremely
non-transitive preference; the famous cyclic voter’s paradoxes can be viewed as a model of
preference which can allow not just non-transitivity, but also cycles.

Unlike these approaches, we generalize semi-orders to allow non-transitivity, but we
require that the given set of preferences continue to be acyclic. In other words, we consider
any preference relation represented by a directed acyclic graph (a dag). As in the case of
semiorders, we assume that reported preferences are influenced by an underlying hidden
utility function, which may be approximate, imperfectly known by a subject, or otherwise
fail to capture all factors influencing a report of a preference.

One of our objectives is to obtain a measure of the departure of a given arbitrary acyclic
set of pairwise preferences from a model where preferences are driven exclusively by an
underlying hidden utility function, as well as derive an assignment of utility values that has
the most explanatory power, in a sense that we define within a new model that we propose.

We propose a generalization of a semiorder, a double-threshold semiorder. We loosen the
definition of a semiorder to a broader class of relations that are acyclic but not necessarily
transitive, by allowing two thresholds t1 and t2 such that t1 ≤ t2, and finding a valuation
α(x) for each element x. For two elements x and y, (x, y) is not reported as a preference if
α(y)−α(x) < t1, (x, y) can freely be reported as a preference or not if t1 ≤ α(y)−α(x) ≤ t2,
and (x, y) is reported as a preference if α(y) − α(x) > t2. Let a satisfying utility function
or a satisfying assignment of α values for (t1, t2) be a utility function α that meets these
constraints. This accommodates within the model the well-known phenomenon in the
literature on perception that there can be a range of differences between the minimum
difference that is sometimes perceived and the minimum difference that is perceived reliably.

When the relation of the double-threshold semiorder is modeled by a dag, it is called a
double-threshold digraph. If a dag can be represented with thresholds (t1, t2), then it can be
represented with any pair (t′1, t′2) of thresholds such that t′2/t′1 = t2/t1, since a solution α

P. Hamburger, R.M. McConnell, A. Pór, J. P. Spinrad, and Z. Xu 69:3

for (t1, t2) can be turned into a solution for (t′1, t′2) by rescaling all α values by the factor
t′1/t1 = t′2/t2. Therefore, for any pair (t1, t2) of thresholds, the question of whether a
particular dag can be represented with them depends on the ratio r = t2/t1; larger ratios
allow representations of more dags.

Henceforth, given a digraph G, let n(G) denote the number of vertices and m(G) the
number of edges. When G is understood, we may denote these as n and m. For a dag G,
let λ(G) denote the minimum ratio of t2/t1 such that G has a satisfying utility function for
(t1, t2). When G models a weak order, t1 = 1 and t2 = ε for any ε > 0 has a satisfying utility
function. For this trivial special case, which is easily recognized in linear time, we define
λ(G) to be 0, the lower bound on the satisfiable ratios t2/t1, and call such a dag a degenerate
dag. All other dags are nondegenerate.

When G or the preference relation it models is understood, we denote λ(G) simply by
λ. For a dag that models a nondegenerate semiorder, λ = 1; higher values of λ provide a
measure of the degree to which a given set of preferences depart from a semiorder. An acyclic
preference relation is a (t1, t2)-semiorder if it has a satisfying utility function for (t1, t2), that
is, if t2/t1 ≥ λ. When such a preference relation is modeled as a digraph, we say the digraph
is a (t1, t2) double-threshold digraph. We show that for any nondegenerate dag G, λ(G) can
be expressed as a ratio j/i where i and j are integers such that 1 ≤ i ≤ j < i + j ≤ n

(Theorem 4), allowing t1, t2, and the utility function to have small integer values. Also, for
any dag, t1 = 1 and t2 = n− 1 is always satisfiable, so λ ≤ n− 1. An example of when the
bound is tight is when G is a directed path.

Thus, the classes of dags with λ bounded by different values give a nested hierarchy of
dags, starting with weak orders and semiorders. For each class in the hierarchy, we give a
characterization of the class in terms of a set of forbidden subgraphs for the class.

When G has no satisfying utility function for t1, t2, we show how to return a forbidden
subgraph as a certificate of this in O(nm/r) time, where r = t2/t1, and an O(nm/λ) time
bound for finding λ (Theorem 18). The algorithm combines elements of the Bellman-Ford
single-source shortest paths algorithm [1], Karp’s minimum mean cycle algorithm [8], and
dynamic programming techniques based on a topological sort of a dag. For t2/t1 = λ, a
satisfying assignment, together with a forbidden subgraph for a smaller ratio, give a certificate
that λ = t2/t1, and these take O(nm/λ) time to produce.

If λ is less than 2, G must be transitive. The converse is not true: it is easy to show
that the class of posets does not have bounded λ. Consider a chain (v1, v2, . . . , vn−1) in a
poset and a vertex vn that is incomparable to the others; t2 ≥ t1(n − 2)/2. Even though
they are transitive, some posets are not good models of a preference relation that is based
on an underlying utility function.

Although we show that bounding λ can make some NP-complete problems tractable,
bounded-ratio double-threshold digraphs are in one sense enormously larger than semiorders.
Semiorders correspond to digraphs that can be represented with ratio 1. These classes of
digraphs both have implicit representations [12], implying that there are 2O(n logn) such
digraphs on a set of n labeled vertices. By contrast, every height 1 digraph can be represented
with ratio 1: for each vertex x, assign α(x) = 0 if is it a source or α(x) = 1 if it is a sink and
make the thresholds t1 = t2 = 1. The number of such digraphs on n labeled vertices, hence
the number with ratio λ for any λ greater than or equal to 1, is 2Θ(n2).

The underlying undirected graph of a dag is the symmetric closure, that is, the undirected
graph obtained by ignoring the orientations of the edges. In this paper, we say that a dag is
connected if its underlying undirected graph is connected. Similarly, by a clique, coloring,

MFCS 2018

69:4 Double Threshold Digraphs

independent set, or clique cover of a dag, we mean a clique, coloring, independent set or
clique cover of the underlying undirected graph. Hardness results about these problems
on undirected graphs also apply to dags, since every undirected graph G is the underlying
undirected graph of the dag obtained by assigning an acyclic orientation to G’s edges.

Finding a maximum independent set or clique in a dag takes polynomial time if the
dag is transitive (a poset), hence if it is a semiorder, but for arbitrary dags, there is no
polynomial-time approximation algorithm for finding a independent set or clique whose size
is within a factor of n1−ε of the largest unless P = NP [7]. However, for a connected dag G,
we give an O(λmbλ+1c/2) algorithm for finding a maximum clique (Corollary 10), and an
approximation algorithm that finds a clique whose size is within a desired factor of i of that
of a maximum clique in O(nm/λ+mbλ/i+1c/2) time (Corollary 11).

We show that finding a maximum independent set is still NP-hard when λ ≥ 2, but we
give a polynomial-time approximation algorithm that produces an independent set whose
size is within a factor of bλ + 1c of the optimum (Theorem 12). We give approximation
bounds of bλ+ 1c for minimum coloring and minimum clique cover (Theorems 13 and 14),
which also have no polynomial algorithms for finding an n1−ε approximation for arbitrary
dags unless P = NP.

Thus, restricting attention to dags such that λ is bounded by a constant makes some
otherwise NP-hard problems easy and gives rise to polynomial-time approximation algorithms
that cannot exist in general unless P = NP. In each case, the time bound or the approximation
bound is an increasing function of λ. This supports the view of λ as a measure of complexity
of a dag. By contrast, for most similar attempts to measure complexity of a graph or digraph,
the measurement is NP-hard to compute; examples include dimension of a poset, interval
number, boxicity, and many others; see [12].

A concept similar to λ was given previously by Gimbel and Trenk in [5]. They developed
a generalization of weak orders to partial orders that corresponds to the special case of
a (1, k) transitive dag. Not assuming transitivity requires us to use different algorithmic
methods, but our bounds improve their bounds for their special case from O(n4k) and O(n6)
to O(mn/k). Most of their structural results are disjoint from ours because they are relevant
to partial orders and their underlying undirected graphs, the comparability graphs.

2 Satisfying utility functions and forbidden subgraphs

We give the following formal definition:

I Definition 1. A dag is a (t1, t2) double-threshold digraph if there exists an assignment of
a real value α(v) to each vertex v such that whenever (u, v) is an edge, α(v)− α(u) ≥ t1 and
whenever (u, v) is not an edge, α(v)− α(u) ≤ t2.

Whether the constraints can be satisfied can be formulated as the problem of finding a
feasible solution to a linear program:

α(v)− α(u) ≥ t1 for each (u, v) such that (u, v) is an edge;
α(v)− α(u) ≤ t2 for each (u, v) such that neither (u, v) nor (v, u) is an edge;
α(v) ≤ 0 for all v ∈ V (G).

The last constraint is added as a convenience; for any satisfying assignment, an arbitrary
constant can be subtracted from all of the α values to obtain a new satisfying assignment, so
the constraint cannot affect the existence of a feasible solution.

This is a special case of a linear program, a system of difference constraints, where each
constraint is an upper bound on the difference of two variables. This reduces to the problem
of finding the weight of a least-weight path ending at each vertex in a digraph derived from

P. Hamburger, R.M. McConnell, A. Pór, J. P. Spinrad, and Z. Xu 69:5

t2
t2

G
d

−t
1

−t
1

G

Figure 1 Reduction of finding a satisfying utility function to the single-source least-weight paths
problem. Edges of weight t1 in Gd are acyclic.

the constraints, as described in [1], where there is a satisfying assignment if and only if the
digraph of the reduction has no negative-weight cycle. Applying the reduction to the problem
of determining whether there is a satisfying utility function on G yields a digraph Gd, where
V (Gd) = V (G) (see Figure 1). Gd has an edge (y, x) of weight −t1 for each edge (x, y) of
G, and edges (u, v) and (v, u) of weight t2 for each pair {u, v} such that neither of (u, v)
and (v, u) is an edge of G. A negative cycle in Gd proves that the system is not satisfiable;
otherwise, for each x ∈ V , assigning α(x) to be the minimum weight of any path ending at x
gives a satisfying assignment for (t1, t2).

The single-source least-weight paths problem where some weights are negative can be
solved in O(nm) time, but Gd has Θ(n2) edges, so a direct application of this approach takes
Θ(n3) time to find a satisfying assignment or produce a negative-weight cycle in Gd. We
derive tighter bounds below.

In terms of G, a negative cycle of Gd translates to a forbidden subgraph characterization
of (t1, t2) double-threshold digraphs:

I Definition 2. Let (u, v) be a hop in G if neither (u, v) nor (v, u) is an edge of G. Let a
forcing cycle be a simple cycle (v1, v2, ..., vk) such that such that for each consecutive pair
(vi, vi+1) (indices mod k), the pair is either a directed edge of G or a hop. Let the ratio of
the forcing cycle be the ratio of the number of edges to the number of hops.

I Theorem 3. For a nondegenerate dag G, the minimum satisfiable ratio λ is equal to the
maximum ratio of a forcing cycle in G.

One consequence of the theorem is that when G is a nondegenerate dag, a satisfying
assignment of α values for thresholds (t1, t2), together with a forcing cycle with ratio equal
to t2/t1 gives a certificate that λ(G) = t2/t1, as illustrated in Figure 2.

I Theorem 4. For every nondegenerate dag G, λ(G) can be expressed as a ratio i/j of
integers such that 1 ≤ i ≤ j < i+ j ≤ n.

Proof. This follows from the fact that λ ≥ 1 and is the ratio of the number j of edges to the
number i of hops on a forcing cycle. J

Aside from showing that optimum values of t1 and t2 can be expressed as small integers,
the theorem gives an immediate O(n3 log n) bound for finding λ. This is because it implies
that the number of possible values j/i that λ can take on is O(n2), and that these can be
generated and sorted in O(n2 log n) time. A binary search on this list, spending O(n3) time
at each probe j/i to determine whether G is an (i, j) double-threshold digraph, as described
above, can then be used to find λ. Once λ is known, a satisfying assignment of utility values

MFCS 2018

69:6 Double Threshold Digraphs

a(2)

b(5)

t 2 = 5t
1 = 3

f(1)

g(4)

h(7)

c(0)

e(6)

d(3)

Figure 2 A dag such that λ = 5/3. The number next to each vertex is the value of the utility
function, conforming to t1 = 3 and t2 = 5. The cycle (a, b, c, d, e, f, g, h) is a cycle of directed edges
and hops in which the ratio of edges to hops is 5/3. Since λ < 2, the dag is transitive.

for t2/t1 = λ, together with a forcing cycle with forcing ratio equal to λ gives a certificate
that the claimed value of λ is correct. We improve these bounds to O(nm/λ) in section 5.

3 k-clique extendable orderings

In the book [12], Spinrad introduced the class of k-clique extendable orderings of the vertices of
graphs, which we explain below. Finding whether a graph has a 2-clique extendable ordering
takes polynomial time, but no polynomial time bounds are known for k ≥ 3. However, we
show in the next section that a topological sort of a nondegenerate dag G is a k-clique
extendable ordering for k = bλ(G)c+ 1, and develop several applications of this result to
optimization problems. In this section, we give the details and analysis of the time bound of
an algorithm suggested in [12] for finding a maximum clique, given a k-clique extendable
ordering.

Two sets overlap if they intersect and neither is a subset of the other. Let σ = (v1, v2, . . . ,

vn) be an ordering of the vertices of a graph, G = (V,E). For U ⊆ W ⊆ V let us say that
W ends with U if the elements of U are the last elements of W in σ, that is, if no element of
W \U occurs after an element of U . W begins with U if W ends with U in (vn, vn−1, . . . , v1).

I Definition 5. An ordering σ = (v1, v2, . . . , vn) of vertices of a graph G = (V,E) is k-
clique extendable ordering of G if, whenever X and Y are two overlapping cliques of size k,
|X ∩ Y | = k − 1, and X ∪ Y begins with X \ Y = {a} and ends with Y \X = {b} in σ, then
a and b are adjacent and X ∪ Y is a clique.

This is a generalization of transitivity, since a dag is transitive if and only if its topological
sorts are two-clique extendable orderings, hence a graph is a comparability graph if and only
if it has a two-clique extendable orderings. In [12], it is shown that three-clique extendable
orderings arise naturally in connection with visibility graphs, and that it takes polynomial
time to find a maximum clique in a graph, given a three-clique extendable ordering. A
polynomial-time generalization for k-clique extendable orderings is implied; we give details
and a time bound next.

I Lemma 6. If σ = (v1, v2, . . . , vn) is a k-clique extendable ordering of a graph G and X
and Y are overlapping cliques of any size greater than or equal to k, such that |X ∩Y | ≥ k−1
and X ∪ Y begins with X \ Y and ends with Y \X in σ, then X ∪ Y is a clique.

P. Hamburger, R.M. McConnell, A. Pór, J. P. Spinrad, and Z. Xu 69:7

Proof. It suffices to show that every element of X \ Y is adjacent to every element of Y \X.
Let x be an arbitrary element of X \ Y , y be an arbitrary element of Y \X, and Z be any
k − 1 elements of X ∩ Y . Then {x} ∪ Z and Z ∪ {y} are two k-cliques and, by the definition
of a k-clique extendable ordering, their union is a clique, and x and y are adjacent. J

I Corollary 7. If σ = (v1, v2, . . . , vn) is a k-clique extendable ordering of a graph G, X is a
k-clique ending with {v} and Z is a largest clique of G ending with the (k− 1)-clique X \ {v},
then Z ∪ {v} is a largest clique of G ending with X.

Proof. For any clique Y ending with X, Y \ {v} is a clique ending with X \ {v}. Z ∪ {v} =
Z ∪X, which is a clique by Lemma 6. J

Corollary 7 is the basis of the recurrence for a dynamic programming algorithm for finding
a maximum clique of G, given a k-clique extendable ordering. We enumerate all k-cliques
and then label each k-clique K with the maximum size hK of a clique that ends with K. If
(u1, u3, . . . , uk) is the left-to-right ordering of a k-clique in the ordering, then its label is one
plus the maximum of the labels of cliques of the form (x, u1, u2, . . . , uk−1). The size of the
maximum clique of G is the maximum of the labels. Details and the proof of the following
resulting time bound appear in the ArXiv version [6].

I Theorem 8. Given a k-clique extendable ordering of a graph G, a maximum clique can be
found in O(kmk/2) time.

It is easy to see that when the vertices of G have positive weights, the problem of finding
a maximum weighted clique can be solved in the same time bound, using a trivial variant of
Corollary 7.

4 Optimization problems on dags with bounded λ values

We now show that restricting attention to dags such that λ is bounded by a constant
makes some otherwise NP-hard problems easy or gives rise to polynomial-time approximation
algorithms that cannot exist for the class of all dags unless P = NP. The NP-hard problems we
consider can be trivially solved in linear time on degenerate dags, so we focus on nondegenerate
dags.

I Theorem 9. Let G be a nondegenerate dag and k = bλ(G)c+ 1. A topological sort of G is
a k-clique extendable ordering.

Proof. Let (v1, v2, . . . , vn) be a topological sort, and let α be a satisfying utility function
for (t1, t2) such that t2/t1 = λ. Let (w1, w2, . . . , wk) and (w2, w3, . . . , wk, wk+1) be the
left-to-right orderings of two k-cliques K ′ and K. Then (w1, w2, . . . , wk+1) is a directed path
in G, hence α(wk+1)− α(w1) ≥ kt1 > t2, (w1, wk+1) is an edge and K ∪K ′ is a clique. J

I Corollary 10. It takes O(λmbλ+1c/2) time to find a maximum clique in a connected
nondegenerate dag G.

Proof. To avoid an additive O(nm/λ) term, run the dynamic programming algorithm on
a topological sort under the assumption that it is a 2-clique extendable ordering in O(m)
time by Theorem 8, and return the result if it is a clique. Otherwise, do the same under
the assumption that it is a 3-clique extendable ordering, in O(m3/2) time. If a max clique
has not yet been returned, then λ ≥ 3 by Theorem 9, so compute λ in O(nm/λ) = O(m2)
time, which is now subsumed by the bound we want to show. A topological sort is a bλc+ 1
extendable ordering by Theorem 9, so it takes O(λmbλ+1c/2) time to find a maximum clique
by Theorem 8. J

MFCS 2018

69:8 Double Threshold Digraphs

Even if λ is bounded by a moderately large constant, this bound could be prohibitive in
practice, but it also gives an approximation algorithm that allows a tradeoff between time
and approximation factor:

I Corollary 11. Given a connected nondegenerate dag G and integer i such that 1 ≤ i ≤ λ,
a clique whose size is within a factor of i of the size of a maximum clique can be found in
O((λ/i)m(bλ/ic+1)/2) time.

Proof. Let G′ be the result of removing the edges {(u, v)|(u, v) ∈ E(G) and α(v)−α(u) < i}.
A satisfying function α for G and thresholds (1, λ(G)) is also a satisfying function for G′ and
thresholds (i, λ(G)), so λ(G′) ≤ λ(G)/i. Applying Theorems 8 and 9, we get a maximum
clique of G′ in O((λ/i)m(bλ/ic+1)/2) time. A maximum clique of G induces a directed path
(v0, v1, ..., vk) in G, and {v0, vi, v2i, . . . , vbk/ic} is a clique of G′, so the size of a maximum
clique in G′ is within a factor of i of the size of a maximum clique in G. J

If λ(G) < 2, a maximum independent set in G can be obtained in polynomial time, since
G is transitive [4]. However, even when λ(G) = 2, the problem of determining whether G
has an independent set of size k is NP-complete. This is seen as follows. It is NP-complete
to decide whether a 3-colorable graph has an independent set of a given size k, even when
the 3-coloring is given [9]. Given such a graph G′, k, and three-coloring, let C1, C2, and C3
be the three color classes. Every edge e has endpoints in two of the classes; orient e from
the endpoint in the class with the smaller subscript to the endpoint in the class with the
larger subscript. Doing this for all edges results in a dag G such that λ(G) = 2, since, for
each vertex x, if x ∈ Ci, assigning α(x) = i gives a satisfying assignment of utility values for
t2 = 2 and t1 = 1. There is an independent set of size k in G if and only if there is one in G′.

I Theorem 12. For G in the class of dags where bλ(G)c + 1 ≤ k, there is a polynomial
k-approximation algorithm for the problem of finding a maximum independent set in G.

Proof. Find a satisfying assignment of utility values for (t1, t2) such that t2/t1 = λ(G), then
find an interval of the form [x, x+ t1) such that the size of the set Y whose α values are in
the interval is maximized. Y is an independent set, since no pair of them has α values that
differ by t1. Return these vertices as an independent set.

For the approximation bound, let X be a maximum independent set. The α values of
X lie in an interval of the form [y, y + t2], which is a subset of the union [y, y + kt1), of k
intervals of the form [x, x+ t1), hence |X| ≤ k|Y |. J

Proofs of the following make similar use of the availability of satisfying α values and are
given in the ArXiv version [6].

I Theorem 13. For G in the class of dags where bλ(G)c + 1 ≤ k, there is a polynomial
k-approximation algorithm for the problem of finding a minimum coloring of G.

I Theorem 14. For G in the class of dags where bλ(G)c + 1 = k, there is a polynomial
k-approximation algorithm for the problem of finding a minimum clique cover of G.

5 O(nm/λ) bounds for finding satisfying utility functions, λ, and
certificates

In this section, we first show how to find a satisfying assignment of utility values for given
thresholds (t1, t2), in O(nm/r) time, where r = t2/t1. We then show how to find λ in
O(nm/λ) time. By solving the second problem to find λ, then selecting (t1, t2) such that

P. Hamburger, R.M. McConnell, A. Pór, J. P. Spinrad, and Z. Xu 69:9

t2/t1 = λ and solving the first, we get the certificates for λ, that is, a satisfying assignment
and a cycle such that the ratio of edges to hops is λ, which comes from a zero-weight cycle
in Gd.

For both of these problems, we use the following. When G is an arbitrary digraph where
each vertex x has a weight w(x) and each edge (y, z) has a weight w(y, z), it takes O(m)
time to find w′(v) = min({∞} ∪ {w(u) + w(u, v)|(u, v) is an edge of G} for each vertex v of
G. Let us call this the general relaxation procedure. In the special case where G is a dag, it
takes O(m) time to find w′(v) = minu({w(u) + wuv)}), where wuv is the minimum weight
of any path from u to v and wvv = 0. This can be used to solve the single-source shortest
paths problem on a connected dag in O(m) time [1]. Let us call this the dag variant of the
relaxation procedure.

In a digraph with edge weights, let the length of a walk be the number of occurrences
of edges on the walk and its weight be the sum of weights of occurrences of edges. If an
edge occurs k times on the walk, it contributes k to the length, and if its weight is w, it
contributes kw to the weight and kw to the number of (occurrences of) edges of weight w on
the walk.

5.1 Finding a satisfying utility function or a forbidden subgraph for
(t1, t2)

The Bellman-Ford algorithm is a dynamic programming algorithm that works as follows on a
connected digraph G where a vertex s has been added that has an edge of weight zero to all
other vertices. Let D(i, v) be the minimum weight of any walk from s to v that has at most
i+ 1 edges. D(i, v) is just the minimum weight of any walk of length at most i in G ending at
v; henceforth we omit s from the discussion. D(0, v) = 0 for all v ∈ V . During the “ith pass”
the algorithm computes D(i, v) as min({(D(i− 1, u) + w(u, v)|(u, v) ∈ E}). This is just an
instance of the general relaxation procedure where w(v) = D(i− 1, v) and the loop (v, v) is
considered to be an edge of weight 0 for each v ∈ V . If there is no negative cycle, there is
always a path ending at v that is a minimum-weight walk ending at v, so D(n− 1, v) gives
the minimum weight of any path ending at v. If there is a negative cycle, this is detected
when D(n, v) < D(n− 1, v) for some v, indicating a walk of length n of smaller weight of
any path, which must have a negative cycle on it. By annotating the dynamic programming
entries with suitable pointers, it is possible to find such a cycle within the same bound. The
n passes to compute D(n, v) for all v each take O(m) time, for a total of O(nm) time.

To exploit the structure of Gd to improve the running time, we let B(i, v) denote the
minimum weight of any path that has at most i edges of weight t2, rather than at most i edges
in total. We use the elements B(i, v), rather than the elements of D(i, v), as the elements
of the dynamic programming table. Let us call this reindexing the dynamic programming
table. We obtain B(0, v) by assigning w(v) = 0 and running the dag variant of the relaxation
procedure on the edges of weight −t1, since they are acyclic. For pass i such that i > 0, any
improvements obtained by allowing an ith edge of weight t2 are computed with the general
relaxation procedure, where loops are considered to be edges of weight 0, and, after this, any
additional improvements obtained by appending additional edges of weight −t1 are computed
by the dag variant of the relaxation procedure.

Because every vertex has a walk of length and weight 0 ending at it, B(i, v) ≤ 0 for
i ≥ 0. Therefore, for i > 0, if B(i, v) < B(i − 1, v), the ratio of edges of weight −t1 to
edges of weight t2 is greater than r = t2/t1. Any such walk must have more than ir edges
of weight −t1, hence length greater than i(r + 1). Therefore, if there is no negative cycle
in Gd, for i = b(n − 1)/(r + 1)c + 1, B(i, v) = D(n − 1, v), and a negative cycle occurs if
B(i+ 1, v) < B(i, v) for this i and some v. A negative cycle can be found by the standard

MFCS 2018

69:10 Double Threshold Digraphs

technique of annotating the results of the relaxation operations with pointers to earlier
results. The advantage of reindexing the table is that the algorithm now takes O(n/r) passes
instead of n of them.

To get the O(nm/r) bound, it remains to show how to perform each pass in O(m) time.
The bottleneck is evaluating w′(v) = min{{w(v)} ∪ {w(u) + t2|(u, v) is an edge of weight
t2} for the general relaxation step. Since all of the edges have the same weight, we rewrite
this as w′(v) = min{w(v), w(x) + t2} where x minimizes w(u) = B(i− 1, u) for all u such
that w(u, v) = t2. To evaluate this, we just have to find x. At the beginning of the pass, we
radix sort the vertices in ascending order of B(i− 1, ∗), giving list L. To compute B′(i, v),
we mark the vertices that have an edge to v, then traverse L until we find x as the first
unmarked vertex we encounter, then unmark the vertices that have edges to v. This takes
time proportional to the in-degree of v, hence O(m) time for all vertices in the pass.

5.2 Finding λ
To find λ(G), we use the fact that that if t2/t1 = λ, the corresponding weighting of Gd will
give it a zero-weight cycle in Gd, which gives a forcing cycle of ratio λ in G as a certificate.

For arbitrary (t1, t2), let the mean weight of a directed cycle or path of length at least one
in Gd be the weight of the cycle divided by the number of edges. The minimum mean weight
of a cycle is the minimum cycle mean. Subtracting a constant c from the weight of all edges
in Gd subtracts c from the mean weight of every cycle and path of length at least one. For
arbitrary t1 and t2, weighting Gd in accordance with (t1 + c, t2 − c) in place of (t1, t2) has
the same effect of subtracting c from the weights of all edges. Thus, for arbitrary (t1, t2), if c
is the minimum cycle mean of the corresponding weighting of Gd, then λ = (t2 − c)/(t1 + c).
Finding λ reduces to finding the minimum cycle mean in the weighting of Gd obtained from
an arbitrarily assigned (t1, t2).

In a digraph G with edge weights, let F (i, v) be the minimum weight of any walk of
length exactly i ending at v. In [8], Karp showed the following:

I Theorem 15. The minimum cycle mean of a digraph with edge weights is
minv∈V max0≤i<n[(F (n, v)− F (i, v))/(n− i)].

Karp actually shows this when an arbitrary vertex s is selected and F (i, v) is defined
to be the minimum weight of all walks of length i from s to v, but if it is true for walks
beginning at an arbitrary vertex s, then it is true when s is allowed to vary over all vertices of
V . Omitting s from consideration in this way in his proof gives a direct proof of this variant
of his theorem. He reduces the problem to the special case where G is strongly connected by
working on each strongly-connected component separately, but the only purpose of this in
his proof is to ensure that there is a path from s to all other vertices, and this is unnecessary
when s is allowed to vary over all vertices.

F (i, v) can be computed by a variant of Bellman-Ford, by using the recurrence F (i, v) =
min({∞}∪{F (i−1, u)+w(u, v)|(u, v) ∈ E}) in place of D(i, v) = min({D(i−1, v)}∪{D(i−
1, u) + w(u, v)|(u, v) ∈ E}). The only difference from the algorithm of Section 5.1 is that
loops of the form (v, v) are not considered to be edges. Computing F (n, v) for all v ∈ V
takes n passes, each of which applies the general relaxation operation, for a total of O(nm)
time.

An obstacle to an O(nm/λ) bound that we did not have in Section 5.1 is that in
Theorem 15, computing [(F (n, v)−F (i, v))/(n−i)] for 0 ≤ i < n requires Θ(n2) computations,
which is not O(nm/λ).

P. Hamburger, R.M. McConnell, A. Pór, J. P. Spinrad, and Z. Xu 69:11

We again reindex the dynamic programming table (Section 5.1), letting H(i, v) denote the
minimum-weight walk ending at v in Gd that has exactly i edges of weight t2. We compute
the values in passes, computing H(i, v) for each v ∈ V during pass i. As in Section 5.1, each
pass takes takes O(m) time; the only change is that in the general relaxation step, loops
are not considered to be edges. We claim that O(n/λ) passes suffice, but a new difficulty is
knowing when to stop, since, unlike r of the Section 5.1, λ is not known in advance.

A walk with i edges of weight t2 and weight H(i, v) has i edges of weight t2, so it must have
(it2 − F (i, v))/t1 edges of weight −t1. Its length, l(i, v), can be computed as i+ it2 − F (i, v)
in O(1) time.

Let a term H(i, v) be term of interest if l(i, v) = n, that is, if it corresponds to a walk
of interest of length n. We use the following reindexed variant of Karp’s theorem, which
says that it suffices to compute an inner maximum over a smaller set, and only for terms
of interest. The proof is the one Karp gives, reindexed, and omitting reference to a start
vertex s by allowing the start vertex to vary over all vertices. For completeness, we give the
modified proof in the ArXiv version [6].

I Theorem 16. In Gd, the minimum mean weight of a cycle is equal to
min{(i,v)|l(i,v)=n}max0≤j<i(H(i, v)−H(j, v))/(n− l(j, v))

The solution is given as Algorithm 1. During the ith pass, the algorithm computes H(i, v)
for all v ∈ V . Before proceeding to the next pass, it updates a partial computation of the
expression of Theorem 16, computing max0≤j<i(H(i, v)−H(j, v))/(l(i, v)− l(j, v)) for each
the terms of interest H(i, v) that has been computed during the pass, and keeping track of
the minimum of these computations so far. Let a term of interest H(i, v) be critical if the
minimum cycle mean is equal to max0≤j<i(H(i, v)−H(j, v))/(l(i, v)− l(j, v)). The strategy
of the algorithm is to return the minimum it has found so far once it detects that a critical
term has been evaluated.

Let a critical walk be a walk of length n giving rise to a critical term.

I Lemma 17. In Gd, the mean weight of a critical walk is less than or equal to the minimum
cycle mean.

The proof is given in the ArXiv version [6].

I Theorem 18. Given a nondegenerate dag G, it takes O(nm/λ) time to find λ(G).

Proof. The basis of this is Algorithm 1. For a term of interest, H(i, v), the mean weight
of the corresponding walk is (it2 − (n− i)t1)/n, which is an increasing function of i. Thus,
once this exceeds the minimum value, min, found so far a critical term has been found and
is already reflected in the value of min. Thus, Algorithm 1 returns the minimum cycle mean.

The minimum cycle mean is the ratio of edges of weight −t1 to edges of weight t2 on a
cycle of minimum mean. This must also be true for a critical walk, by Lemma 17. This ratio
for the walks of interest in pass i is (n− i)/i, so the algorithm halts before the first pass i′
such that (n− i′)/i′ > λ, and i′ = O(n/λ). Thus, Algorithm 1 halts after O(n/λ) passes.

Using the approach of Section 5.1, the operations in a pass take O(m) time except for
evaluating max0≤j<i(H(i, v) −H(j, v))/(n − l(j, v)) for terms H(i, v) of interest. For any
vertex v, H(i, v) is a term of interest for at most one value of i. Therefore, the cost of
evaluating max0≤j<i(H(i, v) − H(j, v))/(n − l(j, v)) for terms of interests is bounded by
the total number of dynamic programming table entries H(j, w) for 0 ≤ j ≤ i and w ∈ V
computed by the algorithm, which is the number n of them computed in each pass times
O(n/λ) passes. This is O(n2/λ). J

MFCS 2018

69:12 Double Threshold Digraphs

Algorithm 1: Find the minimum cycle mean of Gd.
Data: Gd, (t1, t2)
Result: The minimum cycle mean λ of Gd

1 min :=∞ ;
2 H(0, v) := 0 for all v ∈ V ;
3 for i := 1 to ∞ do
4 if min < (it2 − (n− i)t1)/n then
5 return min
6 Compute H(i, v) for all v ∈ V from H(i− 1, v) for all v ∈ V ;
7 for each term H(i, v) such that l(i, v) = n do
8 k := max0≤j<i(H(i, v)−H(j, v))/(n− l(j, v)) ;
9 if k < min then

10 min = k

References
1 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms. MIT, 2009.
2 Peter C. Fishburn. Interval Orders and Interval Graphs: Study of Partially Ordered Sets.

Wiley, 1985.
3 Peter C. Fishburn. Nontransitive preferences in decision theory. Journal of Risk and

Uncertainty, 4:113–134, 1991.
4 Fanica Gavril. Maximum weight independent sets and cliques in intersection graphs of

filaments. Information Processing Letters, 11:181–188, 2000.
5 John G. Gimbel and Ann N. Trenk. On the weakness of an ordered set. SIAM J. Discrete

Math, 11:655–663, 1998.
6 Peter Hamburger, Ross M. McConnell, Attila Pór, and Jeremy P. Spinrad. Double threshold

digraphs, 2018. arXiv:arXiv:1702.06614.
7 Johan Hastad. Clique is hard to approximate within n1−ε. Acta Math., 182:105–142, 1999.
8 Richard Karp. A characterization of the minimum cycle mean in a digraph. Discrete

Mathematics, 23:309–311, 1978.
9 Jan Kratochvil and Jaroslav Nešetřil. Independent set and clique problems in intersection-

defined classes of graphs. Comment.Math.Univ.Carolinae, 31:85–93, 1990.
10 Duncan R. Luce. Semiorders and a theory of utility discrimination. Econometrica, 24:178–

191, 1956.
11 Marc Pirlot and Ph Vincke. Semiorders: Properties, Representations, Applications, vol-

ume 36 of Theory and Decision Library. Series B: Mathematical and Statistical Methods.
Kluwer, 1997.

12 Jeremy P. Spinrad. Efficient Graph Representations, volume 19 of Fields Institute Mono-
graphs. American Mathematical Society, 1991.

http://arxiv.org/abs/arXiv:1702.06614

Tree Tribes and Lower Bounds for Switching
Lemmas

Jenish C. Mehta
California Institute of Technology, Pasadena, CA 91125, USA
jenishc@gmail.com

Abstract
Let f be a Boolean function on n variables, ρ a random p-restriction that independently keeps
each variable unset (or free) with probability p and otherwise uniformly sets it to 0 or 1, and
DTdepth(f) denote the depth of the smallest depth decision tree for f . Let Rd(f |ρ) be the
resilience of f to ρ for depth d, defined as

Rd(f |ρ) = Pr
ρ←ρ

[DTdepth(f |ρ) ≥ d].

If d� pn, all functions have resilience close to 0 since less than d variables would remain unset
with high probability. For d� pn, most functions f on n variables have resilience close to 1, and
some functions, like AND and OR, have resilience close to 0. Håstad’s Switching Lemma states
that for t-DNFs, the resilience Rd(f |ρ) is upper bounded by (5pt)d, and from known upper bounds
on the size of constant depth circuits computing the parity function, it follows that there exist
t-DNFs whose resilience is close to the bound obtained by Håstad. However, the exact bounds
for such maximally resilient DNFs or their structure is unclear, and moreover, the argument is
non-constructive.

In this work, we give an explicit construction of functions called Tree Tribes parameterized
by an integer t and denoted Ξt (on n variables), such that

Rd(Ξt|ρ) ≤ (4p2t)d,

and more importantly, the resilience is also lower bounded by the same quantity up to constants,

Rd(Ξt|ρ) ≥ (c0p2t)d,

for 0 ≤ p ≤ cp2−t and 0 ≤ d ≤ cd
logn

2tt log t (where c0, cp, cd are universal constants). As a result,
for sufficiently large n and small d, this gives a hierarchy of functions with strictly increasing
resilience, and covers the entire region between the two extremes where functions have resilience
(close to) 0 or 1.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography, Theory of computation → Oracles and decision trees

Keywords and phrases Tree Tribes, Resilience, Switching lemmas, lower bounds, decision tree

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.70

Related Version A full version of the paper is available at [5], https://arxiv.org/abs/1703.
00043.

Funding Supported by NSF CAREER Grant CCF-1553477 and NSF Grant 1618795

© Jenish C. Mehta;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 70; pp. 70:1–70:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jenishc@gmail.com
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.70
https://arxiv.org/abs/1703.00043
https://arxiv.org/abs/1703.00043
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

70:2 Tree Tribes and Lower Bounds for Switching Lemmas

1 Introduction

One useful and powerful idea to separate a Boolean function g from some set F of Boolean
functions over {0, 1}n is to use restrictions. By showing that restricted to some subset of
{0, 1}n, the functions in F become simple, but the function g does not become simple, it can
be concluded that g 6∈ F . The extent to which functions in F become simple is captured by
Restriction Lemmas, which informally try to answer the following question: Given a family
F of Boolean functions characterized by some parameter t, and a family S of distributions
over subsets of {0, 1}n characterized by some parameter p, how complex does a function
f ∈ F remain after it is restricted to a subset S chosen according to some distribution σ ∈ S?
Defining the measure of complexity of a function and the sets F and S gives a Restriction
Lemma of a particular type.

To make more concrete statements, let f be a Boolean function on n variables, σ a
distribution over subsets of {0, 1}n, and let f |σ denote the partial function obtained by
restricting f to a subset σ chosen according to σ. In general, we will use the boldface symbol
σ to denote both the distribution over subsets and a subset chosen according to σ, and the
interpretation will be clear from context. Let M : {0, 1}2n → [0, 1] be some function such
that M(f) measures the complexity of a (total) Boolean function f . For a partial function g,
M(g) is defined naturally to be the minimum value of M(f) for any total function f that is
an extension of g. Given these definitions, we define the resilience of a Boolean function f to
σ for the measure M and threshold γ ∈ [0, 1] as follows:

RMγ (f |σ) = Pr
σ←σ

[M(f |σ) ≥ γ] = Pr[M(f |σ) ≥ γ].

It is possible to study the variation in the resilience of functions restricted to various
different distributions σ under measures of complexity M , and in this work, we study it
for a particular choice of M and σ. We will let M(f) be the depth of the smallest depth
decision tree for f , and since M(f) ∈ [n] = {0, 1, ..., n}, denoting the threshold specifically
as d instead of γ, we will also modify the range of the threshold d and let d ∈ [n]. The
restriction ρ is defined as follows: independently for every variable xi, leave xi unset with
probability p and otherwise uniformly set it to 0 or 1. Note that ρ← ρ chooses a p-biased
subset of {0, 1}n. Under the measure M and ρ defined thus, the resilience can be written as:

Rd(f |ρ) = Pr
ρ←ρ

[DTdepth(f |ρ) ≥ d] = Pr[M(f |ρ) ≥ γ]

where the measure M is understood to be DTdepth when omitted from the superscript.
Note that since every variable is independently left unset with probability p, there are

≈ pn variables that are left unset with high probability, and so if d � pn, then for any
function f , Rd(f |ρ) ≈ 0. Thus, to understand the resilience of different functions, the
interesting range is d � pn, and in general, it will be worthwhile for us to intuitively
understand d to be tiny, or about O(log log n), since even the statements we make for d = 1
will be interesting in themselves. For one extreme, let f be the AND (or OR) function on n
bits, and note that DTdepth(f) = n. However, since setting any bit or f to 0 (or 1) reduces it
to a constant function, DTdepth(f |ρ) > 0 with probability (1+p

2)n ≈ e−n ≈ 0 (since p� 1
2),

and thus Rd(f |ρ) ≈ 0 for all d ≥ 1. On the other extreme, if f is the parity function, it is
still the case that DTdepth(f) = n, but under the action of ρ, there will be ≥ 1

2pn variables
that are unset with high probability, and f |ρ will be the parity function on the subset of
variables, and if d < 1

2pn, then Rd(f |ρ) ≈ 1. In fact, since most functions require a circuit of

Jenish C. Mehta 70:3

large size to decide them, it turns out that for most functions f on n variables, Rd(f |ρ) ≈ 1.
As a consequence of this, the property of not being reduced to a constant function when
restricted to ρ satisfies the largeness condition of natural proofs [8].

This motivates the question about the type of Boolean functions f that have resilience
between the two extremes of 0 and 1, and our main interest in this paper would be to
understand the structure of such functions in the intermediate region. Upper bounds on
Rd(f |ρ) are traditionally called Restriction or Switching Lemmas, which originated with
the works of [2] and [1], and were proved in their strongest form by Håstad [3], who showed
that if f is a DNF where each term has width t, then Rd(f |ρ) is upper bounded by (5pt)d.
Further, this bound can be used to prove tight lower bounds on the size of constant depth
circuits deciding the parity function, and since there exist matching upper bounds, it implies
that there exist t-DNFs whose resilience is close to (5pt)d (else it would be possible to get
a better lower bound for the size of constant depth circuits deciding parity leading to a
contradiction). However, the exact bounds achieved in terms of p, t and d are not known, and
even the structure of such maximally resilient t-DNFs is unclear. Moreover, the argument is
non-constructive.

Our result
Our main result is an explicit construction of functions for which we can prove tight lower
and upper bounds on the resilience. The functions that we construct are called Tree Tribes,
since they are similar to the Tribes function but on a tree-like structure, and are denoted by
Ξt where t is an integer parameter. Our main theorem is the following.

I Theorem 1. For every integer t ≥ 1, for every n, there is an explicit function Ξt on n

variables, such that for all p, t, and d,

Rd(Ξt|ρ) ≤ (4p2t)d,

and for 0 ≤ p ≤ cp2−t and 0 ≤ d ≤ cd
(

logn
2tt log t

)
,

Rd(Ξt|ρ) ≥ (c0p2t)d,

where cp, cd and c0 are universal constants.

We would like to remark that the lower bound holds for d at most ∼ 2−t log n, which is
meaningful for t ∈ O(log log n). However, the non-trivial part of the lower bound is that d is
upper bounded by a function not only of t (which in general would be small), but of both t
and n. Henceforth, when we consider the resilience of different functions, n will be assumed
to be very large, and t and d will assumed to be small (about O(log log n)) compared to n.

An immediate corollary of Theorem 1 is the following:

I Corollary 2. Let d and n be fixed. Let i1, . . . , ir be a sequence of integers such that
ct0 < i1 < . . . < ir < ct1(log log n − log d) and 0 ≤ p ≤ cp2−ir . Then the sequence of
functions {Ξij}rj=1 (each on n variables) has strictly increasing resilience, i.e.

Rd(Ξij |ρ) < Rd(Ξij+1 |ρ),

where ct0, ct1, cp are universal constants.

And similarly, we can get a resilience heirarchy in the following sense:

MFCS 2018

70:4 Tree Tribes and Lower Bounds for Switching Lemmas

I Corollary 3. Let d, n and r be fixed. Let t be an integer variable such that ct0 ≤ t ≤
ct1(log log n − log d)/r and p a variable that is some function of t, i.e. p = p(t) and
0 ≤ p ≤ cp2−rt. Then the sequence of functions {Ξit}ri=1 (each on n variables) has strictly
increasing resilience, i.e.

Rd(Ξit|ρ) ∈ o(Rd(Ξ(i+1)t|ρ),

where ct0, ct1, cp are universal constants.

The proof of the resilience upper bound in Theorem 1 uses a method of conditioning
on variables, and thus avoids the complex conditioning in [3, 4], and also the combinatorial
reasoning in [7, 6], and as a consequence, is simpler than both methods. The proof of the
resilience lower bound is recursive, and proceeds by analyzing the coefficients of polynomials
that arise in the analysis of Tree Tribes. Note that in Theorem 1, since we want to lower
bound the probability of the event DTdepth(Ξt|ρ) ≥ d, we require that the decision tree with
the least depth (and thus every decision tree) for Ξt|ρ must have depth greater than d with
sufficient probability. To achieve this, our proof proceeds as follows: If T is the decision tree
for Ξt, we lower bound the probability of finding “paths with a split” in T |ρ. A “path with a
split” is a subtree of T |ρ, which consists of a path of distinct variables y1, . . . , yd (where y1
is closest to the root in T |ρ), such that yd is connected to two leaves with different values
(more specifically, yd has a path to a leaf labelled 0 and a leaf labelled 1). Any decision tree
for such a subtree of T |ρ must have depth at least d (at least if the variables y1, . . . , yd do
not appear elsewhere in the tree), since the OR function is embedded in T |ρ and all the
variables of T would be distinct in our construction. However, we need a sufficient number
of vertices in the tree before we get sufficient probability mass for the event of finding such a
path with a split, and this is the reason we get an upper bound on the depth d for which
Theorem 1 holds.

We state the Preliminaries in Section 2, the construction of Tree Tribes in Section 3,
prove the resilience upper bound in Theorem 1 in Section 4, and the resilience lower bound
in Section 5. Due to space constraints, the proofs are relegated to the full version [5].

2 Preliminaries

The extended preliminaries, including the standard definitions of decision trees and random
p-restrictions are given in the full version [5], and we state only the non-standard definitions
here.

I Definition 4 (Resilience). Let f be a Boolean function on n variables, and ρ a random
p-restriction. For d ∈ [n], we let Rd(f |ρ) be the resilience of f to ρ at depth d, defined as

Rd(f |ρ) = Pr[DTdepth(f |ρ) ≥ d].

If T is some decision tree for some function f , we alternately write Rd(T |ρ) to mean
Rd(f |ρ).

I Definition 5 (Clipped decision trees, [6]). A decision tree T is t-clipped, if any vertex of T
is at a distance of at most t from some leaf.

I Definition 6 (Operators on polynomials). For a univariate polynomial Q in the variable p,
denoted as Q =

∑
i≥0 cip

i with a finite number of non-zero coefficients, define the operator
[pi] as [pi]Q = ci and the operator [↑ pi] as

[↑ pi]Q =
∑
j≥i

(
[pj]Q

)
pj−i.

Jenish C. Mehta 70:5

I Definition 7 (Absolute maximizer). Given a closed set D ⊆ [0, 1] and some polyno-
mial Q in R[p], we define the absolute maximizer of [↑ pi]Q by functions Gi as Gi(Q) =
maxp∈D

∣∣[↑ pi]Q∣∣ .
3 Tree Tribes

We now formally define Tree Tribes and their variants. A specific variant, t-clipped xor Tree
Tribe, will be the function that will help us achieve the bounds in Theorem 1.

I Definition 8 (Tree Tribe). A Boolean function f is called a Tree Tribe, denoted by Ξ, if
there is a decision tree T deciding f , such that all the variables at all the vertices of T are
distinct, and from every vertex of T , there is a path to a leaf labeled 0 and a path to a leaf
labeled 1.

An example for a Tree Tribe is the OR function. Given the above definition, it is possible
to derive a variety of different Tree Tribes by imposing additional structure, and we define
the specific structure that we’ll need.

I Definition 9 (Complete clipped decision trees). Denote a complete t-clipped decision tree
T on r levels by Wt(r), and define it recursively as follows: Wt(0) is a leaf. Wt(r) consists
of vertices {v1, ..., vt}, a leaf denoted by vt+1, and edges ei,0 and ei,1 for i ∈ {1, ..., t}. The
vertices v1 to vt will be said to belong to layer or level 1. Each edge ei,0 is labelled 0 and it
will be called a 0-edge, and it connects vi and vi+1. Each edge ei,1 is labelled 1 and it will
be called a 1-edge, and it connects vi to the root of a copy of Wt(r − 1) on distinct variables.

I Definition 10 (Clipped xor Tree Tribe). A Boolean function f is called a t-clipped xor Tree
Tribe, denoted by Ξt(r) for an integer t, if T (f) is a Tree Tribe, and can be expressed as a
complete t-clipped decision tree, in which the leaves are labeled by the parity of the edges on
the path from the root to the leaf.

Note that we define the level of some variable x in Ξt(r) by the recursive step at which
it was added to Ξt(r). The variables at level 1 are x1 to xt, each of which is connected
to a copy of ¬Ξt(r − 1) on distinct variables. The first t variables in each of the t copies
of¬Ξt(r − 1), a total of t2 variables, are at level 2, and each of them is connected to a copy
of Ξt(r − 2), and so on. An examples for Ξ2(3) is shown in the figure below.

Since our aim was to understand the structure of functions that are resilient towards
random restrictions, we show that the functions Ξt(r) exhibit many nice properties (given in
the full version [5]). For instance, the Fourier coefficient of a subset S ⊆ {0, 1}n depends
only on the parameters (level in the tree and distance from root) of the variable in S that
represents the vertex farthest from the root in S. These and other properties can be found in
[5] along with some remarks on why they turn out to be resilient towards random restrictions.

We now proceed to show that these functions achieve the bounds stated in Theorem 1.

4 Resilience upper bound

We start by by showing the resilience upper bound in Theorem 1. Our bound will hold in
general for any function f that has a t-clipped decision tree. It was shown in [6] that for any
Boolean function f that has a t clipped decision tree, Rd(f |ρ) ≤ O(pt2t)d, and we improve
the bound to Rd(f |ρ) ≤ (4p2t)d, an improvement that is necessary for us since it matches the
resilience lower bound. As stated earlier, our proof uses a method of conditioning on variables
that is different and simpler from the complex conditioning in [3, 4], and the combinatorial

MFCS 2018

70:6 Tree Tribes and Lower Bounds for Switching Lemmas

0

0

0
0

0

0
0

0

0

0
0

0

0
0

1

1

1
11

1
1

1

1

1
11

1
1

0

0

0

0

0

1

1
1

1
1

1
1

1
1

1

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

Figure 1 A 2-clipped xor tree tribe on 3 levels, or Ξ2(3). The variables at each of the vertices
are distinct, and the leaves are labelled by the parity of the edges along the root to leaf path. Note
that there are 2 vertices at level 1, 4 vertices at level 2, and 8 vertices at level 3.

reasoning in [7, 6], and is also amenable to extension to more general restrictions. The proofs
of the lemmas in this section are given in the full version [5].

Let f be a Boolean function that has a t-clipped decision tree T .

I Definition 11. A decision tree T is (t0, t)-clipped for t0 ≤ t, if the root has distance at
most t0 from some leaf, and every other vertex has distance at most t to some leaf.

I Definition 12. For positive integers t0, t, n, d, define the probabilities γd,n(t0, t) as follows:

γd,n(t0, t) = max
(t0,t)-clipped trees T that

decide any function on n variables

Rd(T |ρ)

It is simple to see that γ is monotone in n.

I Lemma 13. If n′ ≤ n, then γd,n′(t0, t) ≤ γd,n(t0, t).

4.1 Recurrence for γ
We proceed by writing a recurrence for γd,n(t0, t).

Let T be the (t0, t)-clipped decision tree for which γd,n(t0, t) has maximum value. Let
x1 be the root, and let T0 and T1 be subtrees out of the 0 and 1 edges of x1. Under the
action of a random p-restriction ρ← ρ, if x1 is assigned 0 by ρ, we get a (t0 − 1, t) clipped
decision tree T0 on n0 variables where n0 < n. By the definition of decision trees, since x1
appears as the root of T , it cannot appear again as a variable in T0, and thus T0 is indeed a
(t0 − 1, t)-clipped tree. If x1 is assigned 1 by ρ, similarly, we get a (t, t) clipped decision tree
T1 on n1 variables where n1 < n.

Let the event ET,d be defined as follows:

ET,d ≡ DTdepth(T |ρ) ≥ d.

Jenish C. Mehta 70:7

I Lemma 14. In case x1 is assigned ∗ by a random p-restriction ρ← ρ,

ET,d = ET0,d−1
⋃
ET1,d−1.

Let ρ = ρx1ρ
′ where ρ′ is a random restriction on variables different from x1, and

q = (1− p)/2. Thus, we can write the following,

Pr
ρ←ρ

[ET,d] = Pr
ρ←ρ

[ET,d|ρ(x1) = 0] Pr
ρ←ρ

[ρ(x1) = 0] + Pr
ρ←ρ

[ET,d|ρ(x1) = 1] Pr
ρ←ρ

[ρ(x1) = 1]

+ Pr
ρ←ρ

[ET,d|ρ(x1) = ∗] Pr
ρ←ρ

[ρ(x1) = ∗]

= Pr
ρ′←ρ′

[ET0,d]q + Pr
ρ′←ρ′

[ET1,d]q + Pr
ρ′←ρ′

[ET0,d−1
⋃
ET1,d−1]p

≤ Pr
ρ′←ρ′

[ET0,d]q + Pr
ρ′←ρ′

[ET1,d]q + Pr
ρ′←ρ′

[ET0,d−1]p+ Pr
ρ′←ρ′

[ET1,d−1]p (1)

where the second line follows from Lemma 14 and the fact that the subtrees at x1 do not
contain x1, and the last line follows from the union bound. Further, rewriting the above
inequality in terms of γd,n(t0, t) and using Lemma 13, we can write,

γd,n(t0, t) ≤ qγd,n0(t0 − 1, t) + qγd,n1(t, t) + pγd−1,n0(t0 − 1, t) + pγd−1,n1(t, t)
≤ qγd,n(t0 − 1, t) + qγd,n(t, t) + pγd−1,n(t0 − 1, t) + pγd−1,n(t, t).

The parameters n and t above are implicit, and we can rewrite the recurrence succinctly as

γd(t0) ≤ qγd(t0 − 1) + qγd(t) + pγd−1(t0 − 1) + pγd−1(t) (2)

and for every integer d, we set

γd(0) = 0. (3)

We get the following recurrence for γ.

I Lemma 15. After m iterations, the recurrence is,

γd(t0) ≤
m∑
i=0

(
m

i

)
qm−ipiγd−i(t0 −m) +

m∑
i=1

qiγd(t) +
m∑
j=1

pjγd−j(t)
(
m−j∑
i=0

(
j + i

i

)
qi

)
(4)

4.2 Upper bound on γ
Setting t0 = t and m = t in equation 4 and using 3, we get,

1− 2q + qt+1

1− q γd(t) ≤
t∑

j=1
pjγd−j(t)

(
t−j∑
i=0

(
j + i

i

)
qi

)
.

Using the induction hypothesis, for µ = κ2t, we have that γd−c(t) ≤ (µp)d−c for all p, c, d, t
where p ≤ 1

µ . Note that γ is a probability and since p ≤ 1
µ , it is also valid when c > d. 1

Then we have,

1− 2q + qt+1

1− q γd(t) ≤ (µp)d
 t∑
j=1

t−j∑
i=0

(
1
µ

)j (
j + i

i

)
qi

 . (5)

The next lemma is important, but the proof is relegated to the full version [5].

1 In fact, whenever d < t, we can indeed get much fewer terms in the summation, and get a better bound,
although asymptotically it does not make a difference.

MFCS 2018

70:8 Tree Tribes and Lower Bounds for Switching Lemmas

I Lemma 16. For µ = 4.2t, t∑
j=1

t−j∑
i=0

(
1
µ

)j (
j + i

i

)
qi

(1− q
1− 2q + qt+1

)
≤ 1.

Using Lemma 16 in equation 5, we get that γd(t) ≤ (4p2t)d, which concludes the proof of
the resilience upper bound in Theorem 1.

5 Resilience lower bound

We now prove the lower bound on resilience in Theorem 1 which is the main contribution of
this work. We prove the bound for t-clipped xor Tree Tribes or Ξt(r), by induction on d.
However, we cannot use d = 0 as the base case, and we discuss this when we do the inductive
step. The base case will be d = 1, which we solve next. The proofs from this section are
given in the full version [5].

5.1 The case for d = 1
This base case will turn out the most interesting. Here, we want to show the following.

R1(Ξt(r)|ρ) ≥ c0p2t.

If r is small, i.e., if the function has fewer than ∼ 2t variables, then the number of variables
assigned ∗ by ρ← ρ will be low on average, and the event DTdepth(Ξt(r)|ρ) ≥ 1 would be
extremely unlikely. Thus, we would like to show the following.

I Lemma 17. For some universal constants c0 and cp, for r ∈ Ω(t2t) and 0 ≤ p ≤ cp2−t, if
ρ is a random p-restriction, then

R1(Ξt(r)|ρ) ≥ c0p2t.

Note that in Lemma 17, we require that the decision tree with the smallest depth that
can compute Ξt(r)|ρ has depth greater than 1 with good probability, which means that we
require that any decision tree representing Ξt(r)|ρ must query at least one variable. This
will be made possible by a simple observation.

I Lemma 18. DTdepth(Ξt(r)|ρ) ≥ 1 if and only if there is a path in Ξt(r)|ρ from the root
to a leaf that evaluates to 0 and to a leaf that evaluates to 1.

I Definition 19. Let Ξt(r) be a t-clipped xor tribe on r levels and ρ a random p-restriction.
Letting the parameters p and t be implicit, let P0(r), P1(r) and P∗(r) be defined as follows.

P0(r) = Pr
ρ

[Ξt(r)|ρ ≡ 0],

P1(r) = Pr
ρ

[Ξ(r)|ρ ≡ 1],

P∗(r) = R1(Ξt(r)|ρ)
= 1− P0(r)− P1(r). (6)

Given Lemma 18, the proof for Lemma 17 proceeds as follows:

Step 1. We write the exact expressions for P0(r) and P1(r) as a polynomial in p by using
counting arguments and recursion.

Jenish C. Mehta 70:9

Step 2. In the next step, we reason about the constant coefficients of P0(r) and P1(r). We
derive the expressions for [1]P0(r) and [1]P1(r), using which we show:

[1]P0(r) + [1]P (r) = 1.

Step 3. In the third step, we first compute the recursive expressions for [p]P0(r) and [p]P1(r)
and show the the following two claims.

I Lemma 20. For every r ≥ 1, −2.2t ≤ [p]P0(r) ≤ 0 and −2.2t ≤ [p]P1(r) ≤ 0.

I Lemma 21. For r ∈ Ω(t2t), [p](P0(r) + P1(r)) ≤ −c12t where c1 = 1
3 .

The proofs of all the above lemmas are given in the full version [5]. Lemma 21 stated
above is an important one, and it states there there is sufficient mass, ∼ 2t in the coefficient
of p in P0(r) + P1(r). Combining lemma 20 and 21, we get that

−4.2t ≤ [p](P0(r) + P1(r)) ≤ −c12t.

Step 4. In the equation at the end of step 3 above, we almost have sufficient information
to conclude Lemma 17, however, we need to reason that higher powers of p in P0(r) + P1(r)
cannot substantially affect the coefficient of p. We do so by showing that the absolute value
of [↑ p2] (P0(r) + P1(r)) is bounded by O(22t). Here we will use the fact that p ≤ cp2−t
where cp is some universal constant. This lemma is also important, and its proof is given in
the full version [5].

I Lemma 22. For every r ≥ 1, for 0 ≤ p ≤ pmax = 1
200.2t ,

G2(P0(r) + P1(r)) ≤ 30.22t.

Step 5. Finally we prove Lemma 17.

Proof of Lemma 17. The probability that the decision tree with r levels has depth more
than or equal to 1, i.e. it does not become constantly 0 or 1 after being hit by a random
restriction is given by

P∗(r) = 1− P0(r)− P1(r).

For r ∈ Ω(t2t), we can write

P∗(r) = 1− [1] (P0(r) + P1(r))− ([p]P0(r) + [p]P1(r)) p−
(
[↑ p2] (P0(r) + P1(r))

)
p2

= − ([p]P0(r) + [p]P1(r)) p−
(
[↑ p2] (P0(r) + P1(r))

)
p2

≥ c12tp− pmax2.30.22tp

= p2t
(

1
3 −

60
200

)
≥ 1

30p2
t

where in the second line we used the fact that [1]P0(r) + [1]P (r) = 1, and in the third line
we used Lemmas 21 and 22. Note that we get c0 = 1

30 . J

MFCS 2018

70:10 Tree Tribes and Lower Bounds for Switching Lemmas

5.2 Inductive step
We remark that d = 0 cannot be taken as the base case for induction. In a decision tree T
with x1 as the root and having subtrees T0 and T1 out of the 0 and 1 edges respectively, if
ρ← ρ assigns ∗ to x1, then T0|ρ or T1|ρ having depth greater than 0 does not imply that T
has depth greater than 1. If both T0|ρ and T1|ρ are constant functions, we would additionally
require that they evaluate to different values. Thus we cannot use d = 0 as the base case.

Doing the inductive step recursively is tricky. This is because we already need about
∼ t2t levels in the tree for the base case to work. Thus, any induction must take care of the
fact that once the number of levels are too few, the base case would not hold.

Let us write the recurrence first. Let γd(r) be the probability that Ξt(r) has depth greater
than or equal to d under the action of a random restriction.

I Lemma 23. Let µ = 1− γd−1(r − 1). Then,

γd(r) ≥
t−1∑
k=1

q
k∑
i=1

(
k

i

)
qk−ipi(1− µi+1) +

t∑
i=0

(
t

i

)
qt−ipi(1− µi) +

t−1∑
k=0

qk+1γd(r − 1). (7)

Note that we would use the above recurrence for m steps, since we need to pick up
sufficient probability mass from each step. As such, we would want the inductive hypothesis
to hold for all the m steps. The inductive steps will be different for the cases t ≥ 2 and
t = 1, shown in the following lemma.

I Lemma 24. For r ∈ Ω(dt2t), γd(r) ≥ (c0p2t)d.

In the proof of Lemma 24, we use O(2t) steps to take the induction from d to d− 1 levels,
and the final d = 1 case can be carried out with O(t2t) levels. Thus, the maximum depth for
which our conclusions hold is

dt2t ≤ O(r) ≤ cd
log n
log t

or

d ≤ cd
(

log n
2tt log t

)
.

This concludes the proof of Theorem 1.
I Remark. If we unroll the induction and see how it worked, for depth d, we find some vertex
that is unset by ρ and is connected to a tree that has depth d− 1 under the action of ρ. For
depth d− 1, we again find an unset variable connected to a tree of depth d− 2. This carries
on until the last step, where we want to find a vertex that has depth greater than or equal
to 1, i.e., has a path to both a 0-leaf and a 1-leaf. Thus, as described in the introduction,
the whole proof essentially finds a “path with a split”.

References
1 Miklos Ajtai. Sigma 1-formulae on finite structures. Annals of pure and applied logic,

24(1):1–48, 1983.
2 Merrick Furst, James B Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time

hierarchy. Theory of Computing Systems, 17(1):13–27, 1984.
3 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the

eighteenth annual ACM symposium on Theory of computing, pages 6–20. ACM, 1986.

Jenish C. Mehta 70:11

4 Johan Håstad. On the correlation of parity and small-depth circuits. SIAM Journal on
Computing, 43(5):1699–1708, 2014.

5 Jenish C. Mehta. Tree tribes and lower bounds for switching lemmas. CoRR, 2017. URL:
https://arxiv.org/abs/1703.00043.

6 Toniann Pitassi, Benjamin Rossman, Rocco A Servedio, and Li-Yang Tan. Poly-logarithmic
frege depth lower bounds via an expander switching lemma. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, pages 644–657. ACM, 2016.

7 Alexander A Razborov. An equivalence between second order bounded domain bounded
arithmetic and first order bounded arithmetic, 1993.

8 Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, 1997.

MFCS 2018

https://arxiv.org/abs/1703.00043

Projection Theorems Using Effective Dimension
Neil Lutz
Department of Computer and Information Science,
University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104, USA
nlutz@cis.upenn.edu

Donald M. Stull1

Inria Nancy-Grand Est, 615 rue du jardin botanique, 54600 Villers-les-Nancy, France
donald.stull@inria.fr

Abstract
In this paper we use the theory of computing to study fractal dimensions of projections in
Euclidean spaces. A fundamental result in fractal geometry is Marstrand’s projection theorem,
which shows that for every analytic set E, for almost every line L, the Hausdorff dimension of
the orthogonal projection of E onto L is maximal.

We use Kolmogorov complexity to give two new results on the Hausdorff and packing dimen-
sions of orthogonal projections onto lines. The first shows that the conclusion of Marstrand’s
theorem holds whenever the Hausdorff and packing dimensions agree on the set E, even if E is
not analytic. Our second result gives a lower bound on the packing dimension of projections of
arbitrary sets. Finally, we give a new proof of Marstrand’s theorem using the theory of computing.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases algorithmic randomness, geometric measure theory, Hausdorff dimension,
Kolmogorov complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.71

1 Introduction

The field of fractal geometry studies the fine-grained structure of irregular sets. Of particular
importance are fractal dimensions, especially the Hausdorff dimension, dimH(E), and packing
dimension, dimP (E), of sets E ⊆ Rn. Intuitively, these dimensions are alternative notions of
size that allow us to quantitatively classify sets of measure zero. The books of Falconer [8]
and Mattila [23] provide an excellent introduction to this field.

A fundamental problem in fractal geometry is determining how projection mappings
affect dimension [9, 24]. Here we study orthogonal projections of sets onto lines. Let e be a
point on the unit (n− 1)-sphere Sn−1, and let Le be the line through the origin and e. The
projection of E onto Le is the set

projeE = {e · x : x ∈ E} ,

where e · x is the usual dot product,
∑n
i=1 eixi, for e = (e1, . . . , en) and x = (x1, . . . , xn).

We restrict our attention to lines through the origin because translating the line Le will not
affect the Hausdorff or packing dimension of the projection.

Notice that projeE ⊆ R, so the Hausdorff dimension of projeE is at most 1. It is also
simple to show that dimH(projeE) cannot exceed dimH(E) [8]. Given these bounds, it
is natural to ask whether dimH(projeE) = min{dimH(E), 1}. Choosing E to be a line

1 Research supported in part by National Science Foundation Grants 1247051 and 1545028.

© Neil Lutz and Donald Stull;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 71; pp. 71:1–71:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nlutz@cis.upenn.edu
mailto:donald.stull@inria.fr
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.71
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

71:2 Projection Theorems Using Effective Dimension

orthogonal to Le shows that this equality does not hold in general. However, a fundamental
theorem due to Marstrand [21] states that, if E ⊆ R2 is analytic, then for almost all e ∈ S1,
the Hausdorff dimension of projeE is maximal. Subsequently, Mattila [22] showed that the
conclusion of Marstrand’s theorem also holds in higher-dimensional Euclidean spaces.

I Theorem 1 ([21, 22]). Let E ⊆ Rn be an analytic set with dimH(E) = s. Then for almost
every e ∈ Sn−1,

dimH(projeE) = min{s, 1} .

In recent decades, the study of projections has become increasingly central to fractal
geometry [9]. The most prominent technique has been the potential theoretic approach
of Kaufman [14]. While this is a very powerful tool in studying the dimension of a set, it
requires that the set be analytic. We will show that techniques from theoretical computer
science can circumvent this requirement in some cases.

Our approach to this problem is rooted in the effectivizations of Hausdorff dimension [16]
by J. Lutz and of packing dimension by Athreya et al. [1]. The original purpose of these
effective dimension concepts was to quantify the size of complexity classes, but they also
yield geometrically meaningful definitions of dimension for individual points in Rn [18]. More
recently, J. Lutz and N. Lutz established a bridge from effective dimensions back to classical
fractal geometry by showing that the Hausdorff and packing dimensions of a set E ⊆ Rn are
characterized by the corresponding effective dimensions of the individual points in E, taken
relative to an appropriate oracle [17].

This result, a point-to-set principle (Theorem 7 below), allows researchers to use tools from
algorithmic information theory to study problems in classical fractal geometry. Although this
connection has only recently been established, there have been several results demonstrating
the usefulness of the point-to-set principle: J. Lutz and N. Lutz [17] applied it to give a new
proof of Davies’ theorem [4] on the Hausdorff dimension of Kakeya sets in the plane; N. Lutz
and Stull [20] applied it to the dimensions of points on lines in R2 to give improved bounds
on generalized Furstenberg sets; and N. Lutz [19] used it to show that a fundamental bound
on the Hausdorff dimension of intersecting fractals holds for arbitrary sets.

In this paper, we use algorithmic information theory, via the point-to-set principle, to
study the Hausdorff and packing dimensions of orthogonal projections onto lines. Given the
statement of Theorem 1, it is natural to ask whether the requirement that E is analytic
can be removed. Without further conditions, it cannot; Davies [5] showed that, assuming
the continuum hypothesis, there are non-analytic sets for which Theorem 1 fails. Indeed,
Davies constructed a set E∗ ⊆ R2 such that dimH(E∗) = 1 but dimH(projeE∗) = 0 for
every e ∈ S1.

Our first main theorem shows that if the Hausdorff and packing dimensions of E agree,
then we can remove the requirement that E is analytic.

I Theorem 2. Let E ⊆ Rn be any set with dimH(E) = dimP (E) = s. Then for almost
every e ∈ Sn−1,

dimH(projeE) = min{s, 1} .

Our second main theorem applies to projections of arbitrary sets. Davies’ construction
precludes any non-trivial lower bound on the Hausdorff dimension of projections of arbitrary
sets, but we are able to give a lower bound on the packing dimension.

I Theorem 3. Let E ⊆ Rn be any set with dimH(E) = s. Then for almost every e ∈ Sn−1,

dimP (projeE) ≥ min{s, 1} .

N. Lutz and D.M. Stull 71:3

Lower bounds on the packing dimension of projections have been extensively studied for
restricted classes sets such as Borel and analytic [6, 7, 10, 12, 26]. To the best of our
knowledge, our result is the first non-trivial lower bound of this type for arbitrary sets. It is
known that the analogue of Marstrand’s theorem for packing dimension does not hold [13].

Our other contribution is a new proof of Marstrand’s projection theorem (Theorem 1). In
addition to showing the power of theoretical computer science in geometric measure theory,
this proof introduces a new technique for further research in this area. We show that the
assumption that E is analytic allows us to use an earlier, restricted point-to-set principle
due to J. Lutz [16] and Hitchcock [11]. While less general than that of J. Lutz and N. Lutz,
it is sufficient for this application and involves a simpler oracle. Informally, this allows us to
reverse the order of quantifiers in the statement of Theorem 1. This will be both beneficial
for further research, as well as clarifying the role of the analytic assumption of E.

2 Preliminaries

We begin with a brief description of algorithmic information quantities and their relationships
to Hausdorff and packing dimensions.

2.1 Kolmogorov Complexity in Discrete and Continuous Domains
The conditional Kolmogorov complexity of a binary string σ ∈ {0, 1}∗ given a binary string
τ ∈ {0, 1}∗ is the length of the shortest program π that will output σ given τ as input.
Formally, the conditional Kolmogorov complexity of σ given τ is

K(σ | τ) = min
π∈{0,1}∗

{`(π) : U(π, τ) = σ} ,

where U is a fixed universal prefix-free Turing machine and `(π) is the length of π. Any
π that achieves this minimum is said to testify to, or be a witness to, the value K(σ | τ).
The Kolmogorov complexity of a binary string σ is K(σ) = K(σ | λ), where λ is the empty
string. These definitions extend naturally to other finite data objects, e.g., vectors in Qn,
via standard binary encodings; see [15] for details.

One of the most useful properties of Kolmogorov complexity is that it obeys the symmetry
of information. That is, for every σ, τ ∈ {0, 1}∗,

K(σ, τ) = K(σ) +K(τ | σ,K(σ)) +O(1) .

Kolmogorov complexity can be naturally extended to points in Euclidean space, as we
now describe. The Kolmogorov complexity of a point x ∈ Rm at precision r ∈ N is the length
of the shortest program π that outputs a precision-r rational estimate for x. Formally, this is

Kr(x) = min {K(p) : p ∈ B2−r (x) ∩Qm} ,

where Bε(x) denotes the open ball of radius ε centered on x. The conditional Kolmogorov
complexity of x at precision r given y ∈ Rn at precision s ∈ Rn is

Kr,s(x | y) = max
{

min{Kr(p | q) : p ∈ B2−r (x) ∩Qm} : q ∈ B2−s(y) ∩Qn
}
.

When the precisions r and s are equal, we abbreviate Kr,r(x | y) by Kr(x | y). Given any
positive real as a precision parameter, we round up to the next integer; for example, Kr(x)
denotes Kdre(x) whenever r ∈ (0,∞).

We will need the following technical lemmas which show that versions of the symmetry
of information hold for Kolmogorov complexity in Rn. The first Lemma 4 was proved in our
previous work [20].

MFCS 2018

71:4 Projection Theorems Using Effective Dimension

I Lemma 4 ([20]). For every m,n ∈ N, x ∈ Rm, y ∈ Rn, and r, s ∈ N with r ≥ s,
i. |Kr(x | y) +Kr(y)−Kr(x, y)

∣∣ ≤ O(log r) +O(log log ‖y‖) .
ii. |Kr,s(x | x) +Ks(x)−Kr(x)| ≤ O(log r) +O(log log ‖x‖) .

I Lemma 5. Let m,n ∈ N, x ∈ Rm, z ∈ Rn, ε > 0 and r ∈ N. If Kx
r (z) ≥ Kr(z)− εr, then

the following hold for all s ≤ r.
i. |Kx

s (z)−Ks(z)| ≤ εr −O(log r) .
ii. |Ks,r(x | z)−Ks(x)| ≤ εr −O(log r) .

Proof. We first prove item (i). By Lemma 4(ii),

εr ≥ Kr(z)−Kx
r (z)

≥ Ks(z) +Kr,s(z | z)− (Kx
s (z) +Kx

r,s(z | z))−O(log r)
≥ Ks(z)−Kx

s (z) +Kr,s(z | z)−Kx
r,s(z | z)−O(log r) .

Rearranging, this implies that

Ks(z)−Kx
s (z) ≤ εr +Kx

r,s(z | z)−Kr,s(z | z) +O(log r)
≤ εr +O(log r) ,

and the proof of item (i) is complete.
To prove item (ii), by Lemma 4(i) we have

εr ≥ Kr(z)−Kr(z | x)
≥ Kr(z)− (Kr(z, x)−Kr(x))−O(log r)
≥ Kr(z)− (Kr(z) +Kr(x | z)−Kr(x))−O(log r)
= Kr(x)−Kr(x | z)−O(log r) .

Therefore, by Lemma 4(ii),

Ks(x)−Ks,r(x | z) = Kr(x)−Kr,s(x | x)− (Kr(x | z)−Kr,s,r(x | x, z))
≤ εr +O(log r) +Kr,s,r(x | x, z)−Kr,s(x | x)
≤ εr +O(log r) ,

and the proof is complete. J

2.2 Effective Hausdorff and Packing Dimensions
J. Lutz [16] initiated the study of effective dimensions by effectivizing Hausdorff dimension
using betting strategies called gales, which generalize martingales. Subsequently, Athreya et
al. defined effective packing dimension, also using gales [1]. Mayordomo showed that effective
Hausdorff dimension can be characterized using Kolmogorov complexity [25], and Mayordomo
and J. Lutz [18] showed that effective packing dimension can also be characterized in this
way. In this paper, we use these characterizations as definitions. The effective Hausdorff
dimension and effective packing dimension of a point x ∈ Rn are

dim(x) = lim inf
r→∞

Kr(x)
r

and Dim(x) = lim sup
r→∞

Kr(x)
r

.

Intuitively, these dimensions measure the density of algorithmic information in the point
x. J. Lutz and N. Lutz [17] generalized these definitions by defining the lower and upper
conditional dimension of x ∈ Rm given y ∈ Rn as

dim(x | y) = lim inf
r→∞

Kr(x | y)
r

and Dim(x | y) = lim sup
r→∞

Kr(x | y)
r

.

N. Lutz and D.M. Stull 71:5

2.3 The Point-to-Set Principle
By letting the underlying fixed prefix-free Turing machine U be a universal oracle machine,
we may relativize the definitions in this section to an arbitrary oracle set A ⊆ N. The
definitions of KA(σ|τ), KA(σ), KA

r (x), KA
r (x | y), dimA(x), DimA(x) dimA(x | y), and

DimA(x | y) are then all identical to their unrelativized versions, except that U is given
oracle access to A. We will frequently consider the complexity of a point x ∈ Rn relative to
a point y ∈ Rm, i.e., relative to an oracle set Ay that encodes the binary expansion of y is a
standard way. We then write Ky

r (x) for KAy
r (x).

The following point-to-set principles show that the classical notions of Hausdorff and
packing dimension of a set can be characterized by the effective dimension of its individual
points. The first point-to-set principle we use here, which applies to a restricted class of sets,
was implicitly proven by J. Lutz [16] and Hitchcock [11].

A set E ⊆ Rn is a Σ0
2 set if it is a countable union of closed sets. The computable

analogue of Σ0
2 is the class Σ0

2, consisting of sets E ⊆ Rn such that there is a uniformly
computable sequence {Ci}i∈N satisfying

E =
∞⋃
i=0

Ci ,

and each set Ci is computably closed, meaning that its complement is the union of a computably
enumerable set of open balls with rational radii and centers. We will use the fact that every
Σ0

2 set is Σ0
2 relative to some oracle.

I Theorem 6 ([16, 11]). Let E ⊆ Rn and A ⊆ N be such that E is a Σ0
2 set relative to A.

Then

dimH(E) = sup
x∈E

dimA(x) .

J. Lutz and N. Lutz [17] showed that the Hausdorff and packing dimension of any set
E ⊆ Rn is characterized by the corresponding effective dimensions of individual points,
relativized to an oracle that is optimal for the set E.

I Theorem 7 (Point-to-set principle [17]). Let n ∈ N and E ⊆ Rn. Then

dimH(E) = min
A⊆N

sup
x∈E

dimA(x), and

dimP (E) = min
A⊆N

sup
x∈E

DimA(x) .

It is worth noting that the point-to-set principle is taking the minimum over all oracles, not
simply the infimum.

3 Bounding the Complexity of Projections

In this section, we will focus on bounding the Kolmogorov complexity of a projected point at
a given precision. In Section 4, we will use these results in conjunction with the point-to-set
principle to prove our main theorems.

We begin by giving intuition of the main idea behind this lower bound. We will show
that under certain conditions, given an approximation of e · z and e, we can compute an
approximation of the original point z. Informally, these conditions are the following.
1. The complexity Kr(z) of the original point is small.
2. If e · w = e · z, then either Kr(w) is large, or w is close to z.

MFCS 2018

71:6 Projection Theorems Using Effective Dimension

Assuming that both conditions are satisfied, we can recover z from e · z by enumerating over
all points u of low complexity such that e · u = e · z. By our assumption, any such point u
must be a good approximation of z. We now formally state and prove this lemma.

I Lemma 8. Suppose that z ∈ Rn e ∈ Sn−1, r ∈ N, δ ∈ R+, and ε, η ∈ Q+ satisfy
r ≥ log(2‖z‖+ 5) + 1 and the following conditions.
i. Kr(z) ≤ (η + ε) r.
ii. For every w ∈ B1(z) such that e · w = e · z,

Kr(w) ≥ (η − ε) r + (r − t)δ ,

whenever t = − log ‖z − w‖ ∈ (0, r].
Then for every oracle set A ⊆ N,

KA,e
r (e · z) ≥ KA,e

r (z)− nε

δ
r −K(ε)−K(η)−Oz(log r) .

Proof. Suppose z, e, r, δ, ε, η, and A satisfy the hypothesis.
Define an oracle Turing machine M that does the following given oracle (A, e) and

input π = π1π2π3π4π5 such that UA(π1) = q ∈ Q, U(π2) = h ∈ Qn, U(π3) = s ∈ N,
U(π4) = ζ ∈ Q, and U(π5) = ι ∈ Q.

For every program σ ∈ {0, 1}∗ with `(σ) ≤ (ι + ζ)s, in parallel, M simulates U(σ). If
one of the simulations halts with some output p = (p1, . . . , pn) ∈ Qn ∩ B2−1(h) such that
|e · p− q| < 2−s, then MA,e halts with output p. Let cM be a constant for the description of
M .

Let π1, π2, π3, π4, and π5 testify to KA,e
r (e ·z), K1(z), K(r), K(ε), and K(η), respectively,

and let π = π1π2π3π4π5. Let σ be a program of length at most (η+ε)r such that ‖p−z‖ ≤ 2−r,
where U(σ) = p. Note that such a program must exist by condition (i) of our hypothesis.
Then it is easily verified that

|e · z − e · p| ≤ 2−r .

Therefore MA,e is guaranteed to halt on π.
Let MA,e(π) = p = (p1, . . . , pn) ∈ Qn. Another routine calculation shows that there is

some

w ∈ B2γ−r (p) ⊆ B2−1(p) ⊆ B20(z)

such that e · w = e · z, where γ is a constant depending only on z and e. Then,

KAe
r (w) ≤ |π|+ cM

≤ KA,e
r (e · z) +K1(z) +K(r) +K(ε) +K(η) + cM

= KA,e
r (e · z) +K(ε) +K(η) +O(log r) .

Rearranging this yields

KA,e
r (e · z) ≥ KA,e

r (w)−K(ε)−K(η)−O(log r) . (1)

Let t = − log ‖z−w‖. If t ≥ r, then the proof is complete. If t < r, then B2−r (p) ⊆ B21−t(z),
which implies that KA,e

r (w) ≥ KA,e
t−1(z). Therefore,

KA,e
r (w) ≥ KA,e

r (z)− n(r − t)−O(log r) . (2)

N. Lutz and D.M. Stull 71:7

We now bound r − t. By our construction of M ,

(η + ε)r ≥ K(p)
≥ Kr(w)−O(log r) .

By condition (ii) of our hypothesis, then,

(η + ε)r ≥ (η − ε)r + δ(r − t) ,

which implies that

r − t ≤ 2nε
δ
r +O(log r) .

Combining this with inequalities (1) and (2) concludes the proof. J

With the above lemma in mind, we wish to give a lower bound on the complexity of
points w such that e · w = e · z. Our next lemma gives a bound based on the complexity,
relative to z, of the direction e ∈ Sn−1. This is based on the observation that we can solve
for e = (e1, . . . , en) given w, z and e3, . . . , en. This follows from solving the system of two
equations

e · (z − w) = 0
e2

1 + . . .+ e2
n = 1 .

This suggests that

Kz,e3,...,en
r (e) ≤ Kz,e3,...,en

r (w) .

However, for our purposes, we must be able to recover (an approximation of) e given
approximations of w and z. Intuitively, the following lemma shows that we can algorithmically
compute an approximation of e whose error is linearly correlated with the distance between w
and z. We can then bound the complexity of w using a symmetry of information argument.

I Lemma 9. Let z ∈ Rn, e ∈ Sn−1, and r ∈ N. Let w ∈ Rn such that e · z = e · w. Then
there are numbers i, j ∈ {1, . . . , n} such that

Kr(w) ≥ Kt(z) +K
e−{ei,ej}
r−t,r (e | z) +O(log r) ,

where t = − log ‖z − w‖.

Proof. Let z, w, e, and r be as in the statement of the lemma. We first choose i so that
|zi − wi| is maximal. We then choose j so that

sgn((zi − wi)ei) 6= sgn((zj − wj)ej), and
|zj − wj | > 0 ,

where sgn denotes the sign. Note that such a j must exist since (z −w) · e = 0. For the sake
of removing notational clutter, we will assume, without loss of generality, that i = 1 and
j = 2.

We first show that

Ke3,...,en
r−t,r (e2 | z) ≤ Kr(w | z) +O(1) . (3)

As mentioned in the informal discussion preceding this lemma, note that

e2 = −b+ (−1)h
√
b2 − 4ac

2a , (4)

where

MFCS 2018

71:8 Projection Theorems Using Effective Dimension

h ∈ {0, 1},
a = (z1 − w1)2 + (w2 − z2)2,
b = 2(w2 − z2)

∑n
i=3(wi − zi)ei, and

c = (
∑n
i=3(wi − zi)ei)2 + (z1 − w1)2∑n

i=3 e
2
i − 1.

With this in mind, let M be the Turing machine such that, whenever q = (q1, . . . , qn) ∈ Qn
and U(π, q) = p = (p1, . . . , pn) ∈ Q2 with p1 6= q1,

Me3,...,en(π, q, j) = −b
′ + (−1)h

√
b′,2 − 4a′c′

2a′ ,

where
h ∈ {0, 1},
a′ = (q1 − p1)2 + (p2 − q2)2,
b′ = 2(p2 − q2)

∑n
i=3(pi − qi)di, and

c′ = (
∑n
i=3(pi − qi)di)2 + (q1 − p1)2∑n

i=3 d
2
i − 1, and

d = (d3, . . . , dn) ∈ Qn−2 is an nr-approximation of (e3, . . . , en).
Let q ∈ B2−r (z)∩Qn, and πq testify to K̂r(w | q). It tedious but straightforward (Lemma 10)
to verify that

|Me3,...,en(πq, q, h)− e2| ≤ 2α+t−r ,

where α is a constant depending only on e. Hence, inequality (3) holds. Since

Ke3,...,en
s (e2) = Ke3,...,en

s (e) +O(1)

holds for every s, we see that

Ke3,...,en
r−t,r (e | z) ≤ Kr(w | z) +O(1) . (5)

To complete the proof, we note that

Kr(w | z) ≤ Kr,t(w | z) +O(log r)
= Kr,t(w | w) +O(log r)
= Kr(w)−Kt(w) +O(log r)
= Kr(w)−Kt(z) +O(log r) .

The lemma follows from rearranging the above inequality, and combining inequality (5). J

The previous lemma uses the following technical lemma, whose proof is omitted due to
space considerations.

I Lemma 10. Let z, w ∈ Rn, e ∈ Sn−1, and r ∈ N such that e · z = e · w. Let q =
(q1, . . . , qn) ∈ Qn and p = (p1, . . . , pn) ∈ Qn be r-approximations of z and w, respectively.
Then∣∣∣∣∣−b+

√
b2 − 4ac

2a − −b
′ +
√
b′,2 − 4a′c′
2a′

∣∣∣∣∣ ≤ 2−r+t+α ,

where a, b, c, a′, b′ and c′ are as defined in Lemma 9, t = − log ‖z − w‖ and α is a constant
depending only on e.

Finally, to satisfy the condition that Kr(z) is small, we will use an oracle to “artificially"
decrease the complexity of z at precision r. We will achieve this by applying the following
lemma due to N. Lutz and Stull.

N. Lutz and D.M. Stull 71:9

I Lemma 11 ([20]). Let n, r ∈ N, z ∈ Rn, and η ∈ Q ∩ [0, dim(z)]. Then there is an oracle
D = D(n, r, z, η) and a constant k ∈ N depending only on n, z and η satisfying
i. For every t ≤ r,

KD
t (z) = min{ηr,Kt(z)}+ k log r .

ii. For every m, t ∈ N and y ∈ Rm,

KD
t,r(y | z) = Kt,r(y | z) + k log r ,

and

Kz,D
t (y) = Kz

t (y) + k log r .

4 Projection Theorems

The main results of the previous section gave us sufficient conditions for strong lower bounds
on the complexity of e · z at a given precision, and methods to ensure that the conditions are
satisfied. The following theorem encapsulates these results so that we may apply them in
the proof of our main theorems.

I Theorem 12. Let z ∈ Rn, e ∈ Sn−1, A ⊆ N, η′ ∈ Q ∩ (0, 1) ∩ (0, dim(z)), ε′ > 0, and
r ∈ N. Assume the following are satisfied.
1. For every s ≤ r, and i, j ∈ {1, . . . , n}, Ke−{ei,ej}

s (e) ≥ s− log(s).
2. KA,e

r (z) ≥ Kr(z)− ε′r.
Then,

KA,e
r (e · z) ≥ η′r − ε′r − 2nε′

1− η′ r −K(2ε′)−K(η′)−Oz(log r) .

Proof. Assume the hypothesis, and let η = η′, ε = 2ε′ and δ = 1− η′. Let Dr = D(n, r, z, η′)
be the oracle as defined in Lemma 11.

First assume that the conditions of Lemma 8, relative to Dr, hold for z, e, r, η, ε and δ.
Then we may apply Lemma 8, which, when combined item (2) and Lemma 11, yields

KA,Dr,e
r (e · z) ≥ KA,Dr,e

r (z)− nε

δ
r −K(ε)−K(η)−Oz(log r)

≥ KDr
r (z)− ε′r − nε

δ
r −K(ε)−K(η)−Oz(log r)

= η′r − ε′r − 2nε′

1− η′ r −K(ε′)−K(η′)−Oz(log r) .

Therefore, to complete the proof, it suffices to show that the conditions of Lemma 8, relative
to Dr, hold.

Item (i) of Lemma 8 holds by our construction of Dr. To see that condition (ii) holds, let
w ∈ B1(z) such that e · w = e · z. By Lemma 9, for some i, j ∈ {1, . . . , n},

KDr
r (w) ≥ KDr

t (z) +K
Dr,e−{ei,ej}
r−t,r (e | z) +O(log r) ,

where t = − log ‖z − w‖. Therefore, by condition (2) of the hypothesis and Lemma 5,

KDr
r (w) ≥ KDr

t (z) +K
Dr,e−{ei,ej}
r−t,r (e)− ε′r −O(log r) .

MFCS 2018

71:10 Projection Theorems Using Effective Dimension

By combining this with condition (1) of the present lemma and Lemma 11,

KDr
r (w) ≥ KDr

t (z) +K
Dr,e−{ei,ej}
r−t,r (e)− ε′r −O(log r)

≥ η′t+ r − t− ε′r −O(log r)
= t(η′ − 1) + r(1− ε′)−O(log r)
≥ (η − ε)r + δ(r − t) .

Hence, the conditions of Lemma 8 are satisfied and the proof is complete. J

4.1 Projection Theorems For Non-Analytic Sets
Our first main theorem shows that if the Hausdorff and packing dimensions of E are equal, the
conclusion of Marstrand’s theorem holds. Essentially this assumption guarantees, for every
oracle A and direction e, the existence of a point z ∈ E such that dimA,e(z) ≥ dimH(E)− ε.
This allows us to use Theorem 12 at all sufficiently large precisions r.

I Theorem 2. Let E ⊆ Rn be any set with dimH(E) = dimP (E) = s. Then for almost
every e ∈ Sn−1,

dimH(projeE) ≥ min{s, 1} .

Proof. Let E ⊆ Rn be any set with dimH(E) = dimP (E) = s. By the point-to-set principle,
there is an oracle B ⊆ N testifying to dimH(E) and dimP (E). Let e ∈ Sn−1 be any point
which is random relative to B. That is, let e be any point such that

KB,e−{ei,ej}
r (e) ≥ r − log r ,

for every i, j ∈ {1, . . . , n}. Note that almost every point satisfies this requirement. Let A ⊆ N
be the oracle testifying to dimH(projeE). Then, by the point-to-set principle, it suffices to
show that for every ε > 0 there is a z ∈ E such that

dimA(e · z) ≥ min{s, 1} − ε .

To that end, let η′ ∈ Q ∩ (0, 1) ∩ (0, s) and ε′ > 0. By the point-to-set principle, there is
a zε′ ∈ E such that

s− ε′

4 ≤ dimA,B,e(zε′)

≤ dimB(zε′)
≤ DimB(zε′)
≤ s . (6)

We now show that the conditions of Theorem 12 are satisfied, relative to B, for all
sufficiently large r ∈ N. We first note that, by inequality (6) and the definition of effective
dimension,

sr − ε′

4 r −
ε′

4 r ≤ K
A,B,e
r (zε′)

≤ KB
r (zε′) +O(1)

≤ sr + ε′

2 r ,

N. Lutz and D.M. Stull 71:11

for all sufficiently large r. Hence, for all such r,

KA,B,e
r (zε′) ≥ KB

r (zε′)− ε′r . (7)

Thus the conditions of Theorem 12, relative to B, are satisfied.
We may therefore apply Theorem 12, resulting in

KA,B,e
r (e · zε′) ≥ η′r − ε′r −

2nε′

1− η′ r −K(ε′)−K(η′)−Ozε′ (log r) .

Hence,

dimA(e · zε′) ≥ dimA,B,e(e · zε′)

= lim inf
r→∞

KA,B,e
r (e · zε′)

r

≥ lim inf
r→∞

η′r − ε′r − 2nε′
1−η′ r −K(ε′)−K(η′)−Ozε′ (log r)

r

= η′ − ε′ − 2nε′

1− η′ .

Since η′ was chosen arbitrarily,

dimA(e · z) ≥ min{s, 1} − ε′

4 .

As ε′ was chosen arbitrarily, by the point-to-set principle,

dimH(projeE) ≥ sup
z∈E

dimA(e · z)

≥ sup
ε>0

dimA(e · zε′)

= min{s, 1} ,

and the proof is complete. J

Our second main theorem gives a lower bound for the packing dimension of a projection
for general sets. The proof of this theorem again relies on the ability to choose, for every
(A, e), a point z whose complexity is unaffected relative to (A, e). This cannot be assumed
to hold for every precision r. However, by the point-to-set principle, we can show that this
can be done for infinitely many precision parameters r.

I Theorem 3. Let E ⊆ Rn be any set with dimH(E) = s. Then for almost every e ∈ Sn−1,

dimP (projeE) ≥ min{s, 1} .

Proof. Let E ⊆ Rn be any set with dimH(E) = s. By the point-to-set principle, there is
an oracle B ⊆ N testifying to dimH(E) and dimP (E). Let e ∈ Sn−1 be any point which is
random relative to B. Note that almost every point satisfies this requirement. Let A ⊆ N
be the oracle testifying to dimP (projeE). Then, by the point-to-set principle, it suffices to
show that for every ε > 0 there is a z ∈ E such that

DimA(e · z) ≥ min{s, 1} − ε .

To that end, let η′ ∈ Q ∩ (0, 1) ∩ (0, s) and ε′ > 0. By the point-to-set principle, there is
a zε′ ∈ E such that

s− ε′

4 ≤ dimA,B,e(zε′) ≤ dimB(zε′) ≤ s . (8)

MFCS 2018

71:12 Projection Theorems Using Effective Dimension

We now show that the conditions of Theorem 12 are satisfied, relative to B, for infinitely
many r ∈ N. We first note that, by equation (8),

sr − ε′

4 r −
ε′

4 r ≤ K
A,B,e
r (zε′)

≤ KB
r (zε′) +O(1)

≤ sr + ε′

2 r ,

for infinitely many r. Hence, for all such r,

KA,B,e(zε′) ≥ KB(zε′)− εr . (9)

Thus the conditions of Theorem 12, relative to B, are satisfied for infinitely many r ∈ N.
We may therefore apply Theorem 12, resulting in

KA,B,e
r (e · zε′) ≥ η′r − ε′r −

2nε′

1− η′ r −K(ε′)−K(η′)−Ozε′ (log r) ,

for infinitely many r ∈ N. Hence,

DimA(e · zε′) ≥ DimA,B,e(e · zε′)

= lim sup
r→∞

KA,B,e
r (e · zε′)

r

≥ lim sup
r→∞

η′r − ε′r − 2nε′
1−η′ r −K(ε′)−K(η′)−Ozε′ (log r)

r

= η′ − ε′ − 2nε′

1− η′ .

Since η′ was chosen arbitrarily

DimA(e · z) ≥ min{s, 1} − ε′

4 .

As ε′ was chosen arbitrarily, by the point-to-set principle

dimP (projeE) ≥ sup
z∈E

DimA(e · z)

≥ sup
ε>0

DimA(e · zε′)

= min{s, 1} ,

and the proof is complete. J

4.2 Marstrand’s Projection Theorem
We now give a new, algorithmic information theoretic proof of Marstrand’s projection theorem.
Recall that

I Theorem 1. Let E ⊆ Rn be analytic with dimH(E) = s. Then for almost every e ∈ Sn−1,

dimH(projeE) = min{s, 1} .

N. Lutz and D.M. Stull 71:13

Note the order of the quantifiers. To use the point-to-set principle, we must first choose
a direction e ∈ Sn−1. We then must show that for every oracle A and ε > 0, there is some
z ∈ E such that

dimA(e · z) ≥ dimH(E)− ε .

In order to apply Theorem 12, we must guarantee that (A, e) does not significantly change
the complexity of z. To ensure this, we will use the point-to-set principle of J. Lutz and
Hitchcock (Theorem 6). While this result is less general than the principle of J. Lutz and N.
Lutz, the oracle characterizing the dimension of a Σ0

2 set is easier to work with.
To take advantage of this, we use the following lemma.

I Lemma 13. Let E ⊆ Rn be analytic with dimH(E) = s. Then there is a Σ0
2 set F ⊆ E

such that dimH(F) = s.

Proof. It is well known that if E ⊆ Rn is analytic, then for every ε ∈ (0, s], there is a
compact subset Eε ⊆ E such that dimH(Eε) = s− ε (see e.g. Bishop and Peres [2]). Thus,
the set

F =
∞⋃

i=d1/se

E1/i

is a Σ0
2 set with dimH(F) = s. J

We will also use the following observation, which is a consequence of the well-known fact
from descriptive set theory that Σ classes are closed under computable projections.

I Observation 14. Let E ⊆ Rn and A ⊆ N be such that E is a Σ0
2 set relative to A. Then

for every e ∈ Sn−1, projeE is a Σ0
2 set relative to (A, e).

Finally, we must ensure that e does not significantly change the complexity of z. For
this, we will use the following definition and theorem due to Calude and Zimand [3]. We
rephrase their work in terms of points in Euclidean space. Let n ∈ N, z ∈ Rn and e ∈ Sn−1.
We say that z and e are independent if, for every r ∈ N, Ke

r (z) ≥ Kr(z) − O(log r) and
Kz
r (e) ≥ Kr(e)−O(log r).

I Theorem 15 ([3]). For every z ∈ Rn, for almost every e ∈ Sn−1, z and e are independent.

With these ingredients we can give a new proof Marstrand’s projection theorem using
algorithmic information theory.

Proof of Theorem 1. Let E ⊆ Rn be analytic with dimH(E) = s. By Lemma 13, there is a
Σ0

2 set F ⊆ E such that dimH(F) = s. Let A ⊆ N be an oracle such that F is Σ0
2 relative to

A. Using Theorem 6, for every k ∈ N we may choose a point zk ∈ F such that

dimA(zk) ≥ s− 1/k .

Let e ∈ Sn−1 be a point such that, for every k ∈ N, the following hold.
For every r and t < r, KA,zk,e3...,en

t (e) ≥ t−O(1).
For every r, KA,e

r (zk) ≥ KA
r (zk)−O(log r).

MFCS 2018

71:14 Projection Theorems Using Effective Dimension

A basic fact of algorithmic randomness states that almost every e satisfies the first item.
By Theorem 15, almost every e satisfies the second item. So almost every e satisfies these
requirements.

Fix k ∈ N. Let η′ ∈ Q ∩ (0, 1) ∩ (0, dimA(zk)) and ε′ > 0. It is clear, by our choices of e
and zk, that the conditions of Theorem 12 are satisfied for all sufficiently large r. We may
therefore apply Theorem 12, resulting in

KA,e
r (e · zk) ≥ η′r − ε′r − 2nε′

1− η′ r −K(2ε′)−K(η′)−Oz(log r) .

Hence,

dimA,e(e · zk) = lim inf
r→∞

KA,e
r (e · zk)

r

≥ lim inf
r→∞

η′r − ε′r − 2nε′
1−η′ r −K(2ε′)−K(η′)−Oz(log r)

r

= η′ − ε′ − 2nε′

1− η′ .

Since both η′ and ε′ were chosen independently and arbitrarily, we see that

dimA,e(e · zk) ≥ dimA,e(zk)
≥ min{s, 1} − 1/k .

As k was chosen arbitrarily, Observation 14 and Theorem 6 give

dimH(projeE) ≥ dimH(proje F)
= sup
z∈F

dimA,e(e · z)

≥ sup
k∈N

dimA,e(e · zk)

= min{s, 1} ,

and the proof is complete. J

References
1 Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, and Elvira Mayordomo. Effect-

ive strong dimension in algorithmic information and computational complexity. SIAM J.
Comput., 37(3):671–705, 2007.

2 Christopher J. Bishop and Yuval Peres. Fractals in probability and analysis, volume 162
of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
2017.

3 Cristian S. Calude and Marius Zimand. Algorithmically independent sequences. Inf. Com-
put., 208(3):292–308, 2010.

4 Roy O. Davies. Some remarks on the Kakeya problem. Proc. Cambridge Phil. Soc., 69:417–
421, 1971.

5 Roy O. Davies. Two counterexamples concerning Hausdorff dimensions of projections. Col-
loq. Math., 42:53–58, 1979.

6 K. J. Falconer and J. D. Howroyd. Projection theorems for box and packing dimensions.
Math. Proc. Cambridge Philos. Soc., 119(2):287–295, 1996.

7 K. J. Falconer and J. D. Howroyd. Packing dimensions of projections and dimension profiles.
Math. Proc. Cambridge Philos. Soc., 121(2):269–286, 1997.

N. Lutz and D.M. Stull 71:15

8 Kenneth Falconer. Fractal Geometry: Mathematical Foundations and Applications. Wiley,
third edition, 2014.

9 Kenneth Falconer, Jonathan Fraser, and Xiong Jin. Sixty years of fractal projections. In
Fractal geometry and stochastics V, volume 70 of Progr. Probab., pages 3–25. Birkhäuser-
/Springer, Cham, 2015.

10 Kenneth J. Falconer and Pertti Mattila. The packing dimension of projections and sections
of measures. Math. Proc. Cambridge Philos. Soc., 119(4):695–713, 1996.

11 John M. Hitchcock. Correspondence principles for effective dimensions. Theory of Com-
puting Systems, 38(5):559–571, 2005.

12 J. D. Howroyd. Box and packing dimensions of projections and dimension profiles. Math.
Proc. Cambridge Philos. Soc., 130(1):135–160, 2001.

13 Maarit Järvenpää. On the upper Minkowski dimension, the packing dimension, and ortho-
gonal projections. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, page 34, 1994.

14 Robert Kaufman. On Hausdorff dimension of projections. Mathematika, 15:153–155, 1968.
15 Ming Li and Paul M.B. Vitányi. An Introduction to Kolmogorov Complexity and Its Ap-

plications. Springer, third edition, 2008.
16 Jack H. Lutz. Dimension in complexity classes. SIAM J. Comput., 32(5):1236–1259, 2003.
17 Jack H. Lutz and Neil Lutz. Algorithmic information, plane Kakeya sets, and conditional

dimension. ACM Transactions on Computation Theory, 10(2):7:1–7:22, 2018.
18 Jack H. Lutz and Elvira Mayordomo. Dimensions of points in self-similar fractals. SIAM

J. Comput., 38(3):1080–1112, 2008.
19 Neil Lutz. Fractal intersections and products via algorithmic dimension. In 42nd Interna-

tional Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August
21-25, 2017 - Aalborg, Denmark, pages 58:1–58:12, 2017.

20 Neil Lutz and Donald M. Stull. Bounding the dimension of points on a line. In Theory
and Applications of Models of Computation - 14th Annual Conference, TAMC 2017, Bern,
Switzerland, April 20-22, 2017, Proceedings, pages 425–439, 2017.

21 J. M. Marstrand. Some fundamental geometrical properties of plane sets of fractional
dimensions. Proc. London Math. Soc. (3), 4:257–302, 1954.

22 Pertti Mattila. Hausdorff dimension, orthogonal projections and intersections with planes.
Ann. Acad. Sci. Fenn. Ser. A I Math., 1(2):227–244, 1975.

23 Pertti Mattila. Geometry of sets and measures in Euclidean spaces: fractals and rectifiab-
ility. Cambridge University Press, 1999.

24 Pertti Mattila. Recent progress on dimensions of projections. In Geometry and analysis
of fractals, volume 88 of Springer Proc. Math. Stat., pages 283–301. Springer, Heidelberg,
2014.

25 Elvira Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff
dimension. Inf. Process. Lett., 84(1):1–3, 2002.

26 Tuomas Orponen. On the packing dimension and category of exceptional sets of orthogonal
projections. Ann. Mat. Pura Appl. (4), 194(3):843–880, 2015.

MFCS 2018

Polynomial-Time Equivalence Testing for
Deterministic Fresh-Register Automata
Andrzej S. Murawski
University of Oxford, UK

Steven J. Ramsay
University of Bristol, UK

Nikos Tzevelekos
Queen Mary University of London, UK

Abstract
Register automata are one of the most studied automata models over infinite alphabets. The
complexity of language equivalence for register automata is quite subtle. In general, the problem
is undecidable but, in the deterministic case, it is known to be decidable and in NP. Here we
propose a polynomial-time algorithm building upon automata- and group-theoretic techniques.
The algorithm is applicable to standard register automata with a fixed number of registers as
well as their variants with a variable number of registers and ability to generate fresh data
values (fresh-register automata). To complement our findings, we also investigate the associated
inclusion problem and show that it is PSPACE-complete.

2012 ACM Subject Classification Theory of computation → Formal languages and automata
theory

Keywords and phrases automata over infinite alphabets, language equivalence, bisimilarity, com-
putational group theory

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.72

Funding Supported by EPSRC grants EP/J019577, EP/P004172.

1 Introduction

Register automata [9, 15] are one of the simplest models of computation over infinite alphabets.
They operate on an infinite domain of data by storing data values in a finite number of
registers, where the values are available for future comparisons or updates. The automata
can also recognise when a data value does not appear in any of the registers. Fresh-register
automata [20] are an extension of register automata that can, in addition, generate data
values not seen so far.

In recent years, register-based automata have appeared in a variety of contexts, ranging
from database query languages [18] and programming language semantics [14] to run-time
verification [7]. Since the very beginning, there has been great interest in extending learning
algorithms to register automata [16, 4, 1, 5, 12], driven by applications in verification [11]
and system modelling [21].

Register automata are closely related to nominal automata [3], which constitute a nominal
counterpart of finite-state machines. Their closure properties and associated decision problems
have first been studied in [9, 15]. One of the most fundamental and applicable decision
problems is that of language equivalence, not least due to connections with query equivalence,

© Andrzej S. Murawski, Steven J. Ramsay, and Nikos Tzevelekos;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 72; pp. 72:1–72:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.72
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

72:2 Polynomial-Time Equivalence Testing

program equivalence and learning. Unfortunately, it turns out that the equivalence problem
for register automata is in general undecidable [15]. Fortunately, it is decidable in the
deterministic case (by reduction to emptiness using closure properties [9]).

Our paper presents the first polynomial-time algorithm for the problem. The algorithm
is actually applicable to a wider class of automata, namely fresh-register automata with a
variable number of registers.

To begin with, we exploit the observation that in the deterministic setting, language
equivalence and bisimilarity are closely related. Secondly, because in our setting only different
values can be stored in different registers [9], we take advantage of symbolic representations
of bisimulation relations based on partial permutations. The proposed algorithm attempts
to build such a bisimulation relation incrementally. To avoid potential exponential blow-ups,
the candidate relations are stored in a concise fashion through generators of symmetric
groups. Thanks to the fact that group membership testing works in polynomial-time [6] and
subgroup chains can only have linear length [2], we can prove that the process of refining the
candidate will terminate in polynomial time. Consequently, the equivalence problem for our
variant of fresh-register automata is in P, which improves upon the best upper bound known
so far, namely, NP [13].

A natural question is whether the polynomial-time bound could have been obtained via
the associated inclusion problem. We give a negative answer to this question by showing
that the inclusion problem in our setting is PSPACE-complete.

2 Automata

Let D be an infinite set (alphabet). Its elements will be called data values (in process algebra,
the term names is used instead). We shall work with a deterministic model of register
automata over D. As in [9], we require that different registers contain different data values.
To allow for more flexible use of registers, the number of available registers will be allowed
to vary according to the current state. Register content can be both erased and created.
Creation can be local (new element is guaranteed not to occur in any register) or global (new
element is guaranteed not to have been encountered in the whole run). We give the formal
definition below. In Remark 5 we discuss the motivation behind various restrictions and
their relevance to polynomial-time complexity.

I Definition 1. Given a natural number r, we write [1, r] for the set {i ∈ N | 1 ≤ i ≤ r}. An
r-register assignment is an injective function from a subset of [1, r] to D. An r-deterministic
fresh-register automaton (r-DFRA) is a tuple A = 〈Σ, Q, q0, µ, δ, F 〉, where:

Σ is a finite alphabet of tags;
Q is a finite set of states, q0 ∈ Q is initial and F ⊆ Q contains final states;
µ : Q→ P([1, r]) is the availability function indicating which registers are filled at each
state, we require µ(q0) = ∅;
δ = δold + δfresh is the transition function, where δold : Q× Σ× [1, r] ⇀ Q controls the
use of existing register values and δfresh : Q × Σ ⇀ Q × [1, r] × {•,~} indicates when
fresh values are created and how fresh they are.

To preserve the meaning of µ, we insist that δold(q, t, i) = q′ implies i ∈ µ(q) and µ(q) ⊇ µ(q′)
and δfresh(q, t) = (q′, i, x) implies µ(q) ∪ {i} ⊇ µ(q′). Note the use of ⊇ instead of =. This
allows for register erasures during computation. We shall write q t,i−→ q′ for δold(q, t, i) = q′

and q t,ix−−→ q′ for δfresh(q, t) = (q′, i, x).

Next we formalise how to obtain a labelled transition system for a given r-DFRA.

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:3

I Definition 2. A labelled transition system (LTS) over Act is a tuple S = (Act,C,→),
where C is a set of configurations, Act is a set of action labels, and →⊆ C×Act × C. We
write κ `−→ κ′ for (κ, `, κ′) ∈→. S is deterministic if κ `−→ κ1 and κ `−→ κ2 imply κ1 = κ2.

An r-DFRA induces a deterministic LTS as follows.

I Definition 3. Given an r-DFRA A = 〈Σ, Q, q0, µ, δ, F 〉, we define its set of configurations:

CA = {(q, ρ,H) | q ∈ Q, ρ : µ(q)→ D is injective, rng(ρ) ⊆ H ⊆fin D}

We refer to H as history. Let S(A) be the LTS 〈Σ × D,CA, →A〉, where →A is defined
in the following way: a configuration (q1, ρ1, H1) can make a transition to a configuration
(q2, ρ2, H2) reading input (t, d), written (q1, ρ1, H1) (t,d)−−−→ (q2, ρ2, H2), if one of the conditions
listed below is satisfied (the last two cases never overlap, because δfresh is a partial function).

d = ρ1(i), δold(q1, t, i) = q2, ρ2 = (ρ1 � µ(q2)) and H2 = H1
d 6∈ rng(ρ1), δfresh(q1, t) = (q2, i, •), ρ2 = (ρ1[i 7→ d] � µ(q2)) and H2 = H1 ∪ {d}
d 6∈ H1, δfresh(q1, t) = (q2, i,~), ρ2 = (ρ1[i 7→ d] � µ(q2)) and H2 = H1 ∪ {d}

Note that S(A) does not depend on the initial and final parameters q0 and F .

I Definition 4. The configuration κinit
A = (q0, ∅, ∅) will be called initial. A sequence of

configurations κ0, · · · , κn such that κ0 = κinit
A and κi

ti,di−−−→ κi+1 (i = 0, · · · , n− 1) is called
a run on the data word (t0, d0) · · · (tn−1, dn−1). A run is accepting if κn = (qn, ρn, Hn) and
qn ∈ F . We write L(A) for the set of words from (Σ×D)∗ with accepting runs, and call it
the language of A.

I Remark 5. Our definition allows for a variable number of available registers, i.e. it is more
permissive than that in [15, 19]. This flexible register regime makes it possible to express
certain common computational scenarios more directly: in particular, data values can be
discarded (“forgotten”) as soon as they are no longer needed (cf. garbage collection). Our
result shows that poly-time equivalence testing is still possible with this added flexibility. At
the same time, the flexible number of registers simplifies the technical development: one can
combine an r1-DFRA and a r2-DFRA into a single max(r1, r2)-DFRA (see Remark 7) by
taking the disjoint union of states and transitions.

We rely on injective register assignments, as in the original definition of Francez and
Kaminski [9]. This restriction is important for poly-time complexity, as the presence of
multiple copies of the same value in registers could be used to model binary memory
content (e.g. 1 is represented by the same value in two registers and 0 by different values).
Consequently, this would imply a PSPACE lower bound. The appeal of injectivity lies in
the fact no expressivity is lost but the transition function has a particularly simple shape
and one can define the deterministic variant without introducing any additional comparisons
between registers. While the injective discipline may seem restrictive, it has proved a good
match for several prominent formalisms that arise in programming language semantics, and
does not limit expressivity (e.g. [1]). For example, one can show that the automata support
elegant translations from the pi-calculus [19]. They are also a natural target when it comes
to investigating the semantics of programs with unbounded data – this is one of the original
motivations mentioned in [9], which was also exploited in our work on the ML programming
language [14].

The explicit availability function µ guarantees that whenever a transition refers to existing
register content, the relevant value will be available. Allowing for transitions that may block
on unavailable values is known to lead to NP-hardness [17], already for emptiness in the

MFCS 2018

72:4 Polynomial-Time Equivalence Testing

deterministic case. Our variant of automata makes it possible for the automaton to drop
multiple data values from registers. Conversely, values can also be created but only one at a
time. Of course, such single value creations can be combined to create multiple new values.
However, the new values must also occur in labels. One can imagine adding a facility for
spontaneous value creation, where locally or globally fresh values would be added to the
registers without being present in labels. However, the resultant non-determinism could then
be used to prove universality undecidable in the same way as for nondeterministic automata,
e.g. the argument from [15] could be repeated by employing spontaneous value creation to
guess the location of errors. Like in [1, 12], we assume that the registers are not filled at the
beginning and are initialised through transitions.

I Definition 6. A relation R ⊆ C × C is called a simulation if, for all (κ1, κ2) ∈ R, if
κ1

t,a−−→ κ′1 then there is κ2
t,a−−→ κ′2 such that (κ′1, κ′2) ∈ R. R is called a bisimulation if both

R and R−1 are simulations. The union of all bisimulations is denoted ∼. Two configurations
κ1, κ2 are bisimilar just if κ1 ∼ κ2, i.e. there is some bisimulation R containing them.

In this paper we are concerned with the language equivalence problem for DFRA, i.e.
the question whether, given r1-DFRA A1 and r2-DFRA A2, we have L(A1) = L(A2). Our
approach to the problem is bisimulation-oriented: language equivalence testing of A1 and A2
can be viewed as a bisimilarity problem for a single r-DFRA with r = max(r1, r2).
I Remark 7. We explain this reduction in a little more detail. First we transform Ai into A′i
as follows:

remove all transitions leading to states from which it is impossible to reach a final state,
add a new state fi and designate it as the only final state,
add transitions from former final states to the new final state on a new tag t$.

Suppose S(A′i) = 〈Σ × D,CA′
i
, →A′

i
〉 (i = 1, 2) and consider the LTS SA1,A2 = 〈Σ ×

D,CA′1 +CA′2 ,→A′1 +→A′2〉. Now language equivalence of the original automata is equivalent
to checking whether κinit

A1
and κinit

A2
are bisimilar in SA1,A2 . If A′i = 〈Σ, Qi, qi0, µi, δi, {fi}〉,

then let SA1,A2 = SA′ , where A′ is the max(r1, r2)-DFRA defined by 〈Σ, Q1 +Q2, q
′, µ1 +

µ2, δ1 + δ2, F
′〉 for any q′ ∈ Q1 +Q2 and F ′ ⊆ Q1 +Q2. Note, the components q′, F ′ can be

chosen arbitrarily, because they do not contribute to the definition of bisimilarity over (the
configuration graph of) SA′ .

3 Symbolic bisimulations

In this section we introduce symbolic representations of bisimulation relations, for configura-
tion pairs with common history,1 based on partial permutations. A partial permutation over
[1, n] is a bijection between two (possibly different) subsets of [1, n]. Let ISn stand for the
set of partial permutations over [1, n] and SX for the group of permutations over X. Let us
consider the kind of possible scenarios that may arise in simulating transitions of a DFRA.

A transition on a value already stored in a register can be matched by a transition on a
stored value or a locally fresh transition, but never a globally fresh one.
A globally fresh transition can be matched by a globally fresh transition or a locally fresh
one, but never a transition on a stored value.
A locally fresh transition can be matched by a transition on a stored value, a locally fresh
transition or a globally fresh one.

1 By Remark 7, it suffices to consider configuration pairs with common history.

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:5

The use of partial bijections will help us specify which cases may occur. Although we work
with automata over r registers, we shall use partial permutations over [1, n], where n = 2r.
They will be used to express not only a matching between data values occurring in two sets
of r registers (corresponding to two configurations that we examine for bisimilarity) but also
to indicate which values forgotten by one set are still remembered by the other.

The number 2r may be surprising but it is needed to provide an accurate account of
scenarios in which local freshness can be simulated by global freshness. Note that this is
possible if the registers of the second configuration contain all the data values that have been
forgotten by the first one (i.e. do not appear in its registers any more). Once the size of
the history exceeds 2r, this is no longer possible: because the first configuration has only r
registers it will have forgotten more than r data values and, because the second configuration
has only r registers, it cannot remember them all. Consequently, we only need to track
matches between forgotten values and register content of the other configuration as long as
the size of the history does not exceed 2r. To keep track of such scenarios, it is convenient to
imagine that there are 2r registers available and use partial permutations to match values in
registers with values that were possibly forgotten until the size of the history is at most 2r.
Once that is exceeded, matchings between the real r registers suffice.

Given σ ∈ ISr and q1, q2 ∈ Q, we write σ � (q1, q2) for σ ∩ (µ(q1)×µ(q2)). Next, in
accordance with the use of 2r registers discussed above, we introduce notions that will allow
us to represent configurations in which only a subset S ⊆ [1, 2r] of the registers is available
along with certain values that are not stored any longer. The data values occurring in
registers S will occupy the same positions (as specified by S), for other values we impose the
convention that they should reside in the leftmost register positions that are unoccupied.

I Definition 8 (Notation). Given S ⊆ T ⊆ [1, 2r], let S / T ∈ S2r be the permutation that
shifts all elements in T \ S to the left (inside the interval [1, 2r]) without interfering with S.
Formally, if T \ S is ordered as [i1, · · · , ik] then:

S / T = (i1 i′1); · · · ; (ik i′k), where i′j is the jth smallest element in [1, 2r] \ S.

Each (i i′) denotes a transposition and ; is the composition of permutations. For example,
taking S = {3, 6} and T = {1, 3, 4, 6, 7}, the permutation would be S / T = (1 1); (4 2); (7 4)
and, therefore, (S / T)(T) = {1, 2, 3, 4, 6}.
Given S ⊆ [1, 2r] and h ≤ 2r with |S| ≤ h, we define S/h to be the unique T satisfying
S ⊆ T ⊆ [1, 2r], |T | = h and T = (S/T)(T). In other words, S/h is obtained by adding h−|S|
smallest numbers from [1, 2r] \ S to S. For instance, for S = {3, 6}: S/2 = S, S/3 = {1, 3, 6},
S/4 = {1, 2, 3, 6}, etc. Finally, given σ ∈ IS2r and S1 ⊆ dom(σ), S2 ⊆ rng(σ):

we write: σ(S1,S2)/ = (S1 / dom(σ))−1;σ; (S2 / rng(σ)),
and extend the notation to q1, q2 ∈ Q by: σ(q1,q2)/ = σ(µ(q1),µ(q2))/.

Next we shall introduce a symbolic notion of simulation. Pairs of configurations will be
represented by elements of U0 = Q×IS2r×Q× ([0, 2r]∪{∞}): each pair is represented by
the states it contains and a partial permutation representing the two register assignments (a
matching between their common data values). In order to handle the interaction between
the two kinds of fresh transitions we also introduce an additional element storing the size
of the common history (∞ stands for “bigger than 2r”). Below we define a subset U of U0
that characterises the elements compatible with availability information. Moreover, once the
history becomes larger than 2r, we reduce the matchings to r registers only (see above).

MFCS 2018

72:6 Polynomial-Time Equivalence Testing

I Definition 9. Let U0 = Q×IS2r×Q× ([0, 2r]∪{∞}) and:

U = { (q1, σ, q2, h) ∈ U0 | h ≤ 2r =⇒ (dom(σ) = µ(q1)/h ∧ rng(σ) = µ(q2)/h)
∧ h =∞ =⇒ (σ ∈ ISr ∧ σ ⊆ µ(q1)×µ(q2)) }

Given configurations κ1, κ2, with κi = (qi, ρi, H) for some common H, we define the set of
symbolic representations of (κ1, κ2) by:

symb(κ1, κ2) =
{
{(q1, ρ1; ρ−1

2 , q2,∞)} |H| > 2r
{(q1, (ρ̂1; ρ̂−1

2)/(q1,q2), q2, |H|) | ρi ⊆ ρ̂i ∧ rng(ρ̂i) = H} |H| ≤ 2r

The essence of the above representation is the abstracting away from the register assign-
ments ρ1, ρ2 to a partial permutation σ ∈ IS2r. If the history is large, then σ is simply a
matching between the common values of ρ1 and ρ2. If, on the other hand, H contains at
most 2r elements then σ is obtained by extending each ρi to some ρ̂i that stores the full
history H , and these pairs (ρ̂1, ρ̂2) are then represented by recording their indices containing
matching values.

We proceed with defining symbolic bisimulations. The clauses (a)-(f) in the definition
below cover all possible kinds of simulation scenarios. Partial bijections help to capture the
conditions under which simulation is possible.

I Definition 10. Let A = 〈Σ, Q, q0, µ, δ, F 〉 be an r-DFRA. A symbolic simulation on
A is a relation R ⊆ U , with elements (q1, σ, q2, h) ∈ R written q1 R

h
σ q2, such that all

(q1, σ, q2, h) ∈ R satisfy the (FSyS) conditions in R. We say that a tuple (q1, σ, q2, h) satisfies
the fresh symbolic simulation conditions (FSyS) in R if the following conditions hold, where
(a-c) apply to h ≤ 2r, and (d-e) to h =∞:
(a) for all q1

t,i−→ q′1,

1. if σ(i) ∈ µ(q2) then there is some q2
t,σ(i)−−−→ q′2 with q′1 Rhσ′ q′2 and σ′ = σ(q′1,q

′
2)/,

2. if σ(i) = j′ ∈ [1, 2r] \ µ(q2) then there is some q2
t,j•−−→ q′2 with q′1 R

h
σ′ q
′
2 and σ′ =

(σ; (j j′))(q′1,q
′
2)/;

(b) for all q1
t,i•−−→ q′1 and i′ ∈ dom(σ) \ µ(q1),

1. if σ(i′) ∈ µ(q2) then there is some q2
t,σ(i′)−−−−→ q′2 with q′1 Rhσ′ q′2 and σ′ = ((i i′);σ)(q′1,q

′
2)/,

2. if σ(i′) = j′ ∈ [1, 2r] \ µ(q2) then there is some q2
t,j•−−→ q′2 with q′1 R

h
σ′ q
′
2 and

σ′ = ((i i′);σ; (j j′))(q′1,q
′
2)/;

(c) for all q1
t,`i−−→ q′1 with `i ∈ {i•, i~} there is some q2

t,`j−−→ q′2 with `j ∈ {j•, j~} and,
1. if h < 2r then q′1 Rh+1

σ′ q′2 with σ′ = ((i 2r);σ[2r 7→ 2r]; (j 2r))(q′1,q
′
2)/,

2. if h = 2r then q′1 R∞σ′ q′2 with σ′ = σ[i 7→ j] � (q′1, q′2);
(d) for all q1

t,i−→ q′1,

1. if σ(i) ∈ µ(q2) then there is some q2
t,σ(i)−−−→ q′2 with q′1 R∞σ′ q′2 and σ′ = σ � (q′1, q′2),

2. if i ∈ µ(q1) \ dom(σ) then there is some q2
t,j•−−→ q′2 with q′1 R∞σ′ q′2 and σ′ = σ[i 7→ j] �

(q′1, q′2);

(e) for all q1
t,i•−−→ q′1 and j ∈ µ(q2) \ rng(σ), there exists q2

t,j−→ q′2 with q1 R
∞
σ′ q
′
2 and

σ′ = σ[i 7→ j] � (q′1, q′2);
(f) for all q1

t,`i−−→ q′1 with `i ∈ {i•, i~} there is some q2
t,`j−−→ q′2 with `j ∈ {j•, j~}, q′1 R∞σ′ q′2

and σ′ = σ[i 7→ j] � (q′1, q′2), and `i = i• =⇒ `j = j•.

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:7

Define now the inverse of R by R−1 = { (q2, σ
−1, q1, h) | (q1, σ, q2, h) ∈ R } and call R a

symbolic bisimulation if both R and R−1 are symbolic simulations. We let s-bisimilarity,
denoted s∼, be the union of all symbolic bisimulations.

In the rest of the paper, given R ⊆ U and h ∈ [1, 2r] ∪ {∞}, we shall write Rh for the
projection of R on h: Rh = {(q, σ, q′) | (q, σ, q′, h) ∈ R}.
I Remark 11. To gain some further intuition about the definition above, let us consider
the 2-DFRA configurations κi = (qi, ρi, H), i = 1, 2, where: µ(q1) = µ(q2) = {1, 2},
ρ1 = {(1, a), (2, b)}, ρ2 = {(1, a), (2, c)} and H = {a, b, c}.
The pair (κ1, κ2) can be represented symbolically by (q1, σ, q2, 3) ∈ symb(κ1, κ2) ⊆ U , where
σ = {(1, 1), (2, 3), (3, 2)}. This represents the fact that ρ1, ρ2 share the data value a in their
first register and each have a private value in their second register.2 The (FSyS) conditions
express symbolically what it takes for κ2 to simulate κ1, i.e. what is needed for (q1, σ, q2, 3)
to belong to a (symbolic) simulation R. Let us look at two sample cases.

Suppose q1
t,1−−→ q′1. Then, κ1

(t,a)−−−→ κ′1 and, in order for κ2 to match this, it must be the
case that q2

t,1−−→ q′2. This is imposed by Condition (a)1 of (FSyS).
If q1

t,2−−→ q′1 then κ1
(t,b)−−−→ κ′1. Then, κ2 can only match a transition on b using a

locally fresh transition (Condition (a)2), so we must have e.g. q2
t,1•−−→ q′2, yielding some

κ2
(t,b)−−−→ κ′2.

In each of the cases above, the (FSyS) conditions also stipulate that the resulting repres-
entation of (κ′1, κ′2) must also be in R. In the second case, assuming κ′i = (q′i, ρ′i, H) and
µ(q′i) = {1, 2}, we have that ρ′1 = {(1, a), (2, b)} and ρ′2 = {(1, b), (2, c)}, and the pair (κ′1, κ′2)
is represented by (q′1, σ′, q′2, 3) with σ′ = {(1, 3), (2, 1), (3, 2)}. Because σ′ = σ; (3 1) =
(σ; (3 1))(q′1,q

′
2)/, the (FSyS) conditions require (q′1, σ′, q′2, 3) ∈ R.

The importance of symbolic bisimulations lies in that they precisely represent actual
bisimulations in a finite way. Below, we first show that the symbolic representations of pairs
of configurations are well defined (the choice of extensions ρ̂i for the case of |H| ≤ 2r does
not matter for s∼), and then prove the representation property.

I Lemma 12. For any κ1, κ2 with κi = (qi, ρi, H) and |H| ≤ 2r, either symb(κ1, κ2) ⊆ s∼
or symb(κ1, κ2) ∩ s∼ = ∅.

I Proposition 13. For any κ1, κ2 with common history, κ1 ∼ κ2 iff symb(κ1, κ2) ⊆ s∼.
Although finite, symbolic bisimulations are of exponential size in the worst case (with

respect to the automaton size) because of including the partial bijections σ. Our equivalence-
testing algorithm for r-DFRA will rely on representations of candidate symbolic bisimulations
in a succinct way. In order to spell out in what sense these representations will capture
subsets of U we need to introduce the following closure operations.

I Definition 14. Let R ⊆ U . Then Cl(R) is defined to be the smallest subset X of U such
that R ⊆ X and X is closed under the following rules.

S = µ(q)/h h ≤ 2r
(q, idS , q) ∈ Xh (q, idµ(q), q) ∈ X∞

(q1, σ, q2) ∈ Xh

(q2, σ−1, q1) ∈ Xh

(q1, σ, q2) ∈ X∞ σ ⊆ σ′

(q1, σ′, q2) ∈ X∞
(q1, σ1, q2) ∈ Xh (q2, σ2, q3) ∈ Xh

(q1, σ1;σ2, q3) ∈ Xh

2 E.g. the value b is in register 2 of ρ1 but is not present in ρ2. Seeing ρ̂2 as an expansion of ρ2 to 3
registers (with register 3 containing forgotten values), we set ρ̂2(3) = b and therefore σ(2) = 3.

MFCS 2018

72:8 Polynomial-Time Equivalence Testing

The next lemma provides a handle on proving that closures Cl(R) satisfy (FSyS) conditions.

I Lemma 15. Let R,P ⊆ U with R = R−1. If all g ∈ R satisfy the (FSyS) conditions in
P then all g′ ∈ Cl(R) satisfy the (FSyS) conditions in Cl(P).

I Corollary 16. Cl(s∼) = s∼.

Proof. It suffices to show the left-to-right inclusion. All elements in s∼ satisfy the (FSyS)
conditions in s∼. Hence, by the previous lemma, all elements of Cl(s∼) satisfy the (FSyS)
conditions in Cl(s∼). This implies that Cl(s∼) is a symbolic bisimulation. Thus, Cl(s∼) ⊆ s∼. J

I Remark 17. One may wonder to what extent our techniques apply to simulation rather
than bisimulation. Although symbolic simulation can be related to simulation, our methods
crucially exploit the fact that bisimilarity is symmetric. This is reflected in the top right
rule of Definition 14, which introduces inverses, and enables us to develop a group-theoretic
representation scheme in the next section.

4 Representation

Our algorithm for DFRA equivalence will rely on manipulating sets H ⊆ U that, for positive
instances, will ultimately converge to a symbolic bisimulation relation. We shall handle
them through succinct representations based on group theory, whose shape is inspired by the
structure of bisimulation relations [13]. The backbone of a generating system, to be defined
next, is an equivalence relation �h on states. As explained in Definition 19, the relation
specifies which pairs of states may actually feature in tuples of the represented subset of U .

I Definition 18. A generating system R consists of a set {Rh |h ∈ [0, 2r] ∪ {∞}}, where
each Rh = 〈�h, {(qhC , Xh

C , G
h
C) | C ∈ Q/�h}, {σhq | q ∈ Q}〉 satisfies the following constraints.

�h ⊆ Q×Q is an equivalence relation.
For any �h-equivalence class C:
qhC is a state from C (class representative);
Xh
C = µ(qhC)/h for h ∈ [0, 2r] and X∞C ⊆ µ(q∞C);
∅ 6= GhC ⊆ SXh

C
.

For any q ∈ Q, C = [q]�h and h ∈ [0, 2r], we have σhq ∈ IS2r with dom(σhq) = µ(qhC)/h
and rng(σhq) = µ(q)/h. Moreover, σ∞q ∈ ISr and dom(σ∞q) = X∞C . Finally, σh

qh
C

= idXh
C
.

Thus, at each level h, a generating system partitions the set of states into equivalence classes
according to �h and each class has a representative qhC , which is “connected” to each element
of the class via σhq . Each representative qhC is also equipped with a subset Xh

C ⊆ [0, 2r] and a
set GhC of permutations (generators) from SXh

C
.

I Definition 19. Let R be a generating system. The subset of U represented by R, written
Gen(R), is defined to be Cl(HR), where HR =

⋃2r
h=0HhR∪H∞R and, for any h ∈ [0, 2r]∪{∞},

we take HhR = { (qhC , ghC , qhC , h) | C ∈ Q/�h, ghC ∈ GhC } ∪ { (qhC , σhq , q, h) | q ∈ Q,C = [q]�h }.

I Example 20. The representation system Rinit is defined by the following components.
�h = {(q, q) | q ∈ Q}. Note that [q]�h = {q}.
For any equivalence class C = {q} we have: qhC = q, Xh

C = µ(q)/h (h ∈ [0, 2r]), X∞C = µ(q),
GhC = {idXh

C
}.

For any q, σhq = idXh
C
.

Note that Gen(Rinit) = Cl(∅).

Next we examine how generating systems can be employed in algorithms. We are particularly
interested in membership testing and a special kind of updates.

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:9

4.1 Membership
The next lemma reduces testing for membership in Gen(R) to the classic problem of group
membership testing [6]. Given G ⊆ SX , we let Sub(G) be the subgroup of SX spanned by G.

I Lemma 21. Let R be a generating system, u = (q1, σ, q2, h) ∈ U and σ = σhq1
;σ; (σhq2

)−1.
Then u ∈ Gen(R) if and only if q1 �h q2 and σ ∈ Sub(GhC), where C = [q1]�h = [q2]�h .

4.2 Update
Suppose Gen(R) = Cl(H). We explain how, given u = (q1, σ, q2, h) ∈ U , one can update
R to R′ so that Gen(R′) = Cl(H ∪ {u}). Of course, if u ∈ Gen(R) then it suffices to take
R′ = R. Thus, let us assume u 6∈ Gen(R). By Lemma 21, this corresponds to the following
cases, where σ = σhq1

;σ; (σhq2
)−1.

1. q1 �h q2 and either (a) or (b) holds, where C = [q1]�h = [q2]�h :
(a) σ ∈ SXh

C
\ Sub(GhC),

(b) σ 6∈ SXh
C
, i.e. dom(σ) (Xh

C .
2. q1 �h q2 does not hold.

Observe that 1.(b) will never arise for h 6=∞ due to the definitions of U and R. Note also
that, for h 6=∞, Xh

C is uniquely determined by qhC . However, this is not the case for X∞C .
Before we explain how to tackle each case, we introduce several technical lemmas that

examine how partial permutations interact. They will inform the performance of updates
based on modifying X∞C .

I Lemma 22. Given I ⊆ ISr, let χI = {σ |σ = σε1
1 ; · · · ;σεk

k , k > 0, σi ∈ I, εi ∈ {1,−1}}
and DI = {dom(σ) |σ ∈ χI}. Then χI is closed under composition and inversion, and DI is
closed under intersection.

I Lemma 23. Given I ⊆ ISr, let BI =
⋂
X∈DI

X be called the base of I. Then we have:
1. BI ∈ DI and idBI

∈ χI .
2. Given σ ∈ ISr and X ⊆ [1, r], let us write σ � X for idX ;σ. Then, for any σ ∈ I,

σ � BI ∈ χI and σ � BI is a permutation of BI .
Next we show that, given I, the base BI can be calculated via graph reachability.

I Lemma 24. Let I ⊆ ISr. Consider the undirected graph GI = (V,E) with V = [1, r],
where {j1, j2} ∈ E iff there exists σ ∈ I such that σ(j1) = j2 or σ(j2) = j1. We shall call
v ∈ [1, r] endangered if there exists σ ∈ I such that v 6∈ dom(σ) or v 6∈ rng(σ). For any
i ∈ [1, r], i ∈ BI if and only if no endangered vertex is reachable from i in GI .

4.3 Update implementation
Finally, we are ready to return to the main issue of representation update. We discuss the three
cases (1.(a), 1.(b) and 2.) in turn. Recall that u = (q1, σ, q2, h) ∈ U and σ = σhq1

;σ; (σhq2
)−1.

1. (a) Here we have σ ∈ SXh
C
\ Sub(GhC). To update the system in order to represent σ, it

suffices to add σ to GhC without changing anything else.
1. (b) Here we have dom(σ) (Xh

C and h =∞. In order to capture σ, we replace X∞C with
BI , where I = G∞C ∪ {σ}, and set G∞C = {σ � BI |σ ∈ I}. Note that, by Lemma 23,
all the elements are permutations, as required. Similarly to G∞C , we replace σ∞q with
σ∞q � BI for each q ∈ C. Other elements of the system remain the same.

MFCS 2018

72:10 Polynomial-Time Equivalence Testing

1 i=0; R0 = Rinit; ∆ = {u0}; ∆0 = ∅;
2 while (∆ is not empty) do {
3 u = ∆.get();
4 if u 6∈ Gen(Ri) {
5 if one-step test fails for u return NO;
6 ∆.add(succ-set(u));
7 ∆i+1 = ∆i.add({u});
8 Ri+1 = Ri updated with u;
9 i=i+1;

10 }
11 }
12 return YES

Figure 1 Bisimilarity checking algorithm.

2. This case is the hardest as we need to merge two different equivalence classes, namely,
C1 = [q1]�h and C2 = [q2]�h into a single one C = C1 ∪ C2 (formally, this is a change to
�h). For the new class C, we take qhC = qhC1

.
Next we discuss Xh

qC
. Given τ ∈ GhqC2

, let τ̂ = σ; τ ; (σ)−1 and consider I = GhqC1
∪{τ̂ | τ ∈

GhqC2
}. We shall set Xh

qC
to BI . Note that, if h 6=∞, all elements of I will have the same

domains, so in this case Xh
qC

will not change. As before, we set GhC = {σ � BI |σ ∈ I}.
We also modify σhq , but only for q ∈ C1 ∪ C2. If q ∈ C1, we take σhq � BI instead of
σhq . For q ∈ C2, we need to take the change of representative into account and take
(σ;σhq) � BI instead of σhq .
(For this to be a correct choice, we need to show that dom(σ;σhq) ⊇ BI . This is indeed
so, because dom(σ;σhq) = dom(σ; idXh

qC2
), by dom(σhq) = Xh

qC2
, and dom(σ; idXh

qC2
) =

dom(σ; τ) ⊇ dom(σ; τ ;σ−1) = dom(τ̂) ⊇ BI for any τ ∈ GhqC2
.)

Recall that we work under the assumption that Gen(R) = Cl(H) and let us write R′ for
the updated representation system. In each of the above cases, the modifications contribute
to HR′ only elements from Cl(H ∪ {u}). This is completely clear for 1.(a). For 1.(b) and 2.,
we need to appeal to Lemma 23 (σ � BI ∈ χI) and the use of composition/inversion during
construction. Consequently, Gen(R′) ⊆ Cl(H ∪ {u}).

Conversely, Cl(H ∪ {u}) ⊆ Gen(R′), because all elements of R as well as u have been
integrated into R′, either directly or through composition and reductions to X∞C . Thanks to
the defining rules for Cl (notably, closure under composition and inclusion), such changes
preserve representability.

5 Algorithm

Finally, we present the algorithm for deciding whether two configurations κi = (qi, ρi, H) are
bisimilar. Let u0 = (q1, σ, q2, h) be an arbitrary element of symb(κ1, κ2). By Lemma 12 and
Proposition 13, bisimilarity of κ1, κ2 amounts to checking whether u0 belongs to a symbolic
bisimulation. Our algorithm will determine whether or not this is the case.

The algorithm is presented in Figure 1. It is similar in flavour to the classic Hopcroft-Karp
algorithm for DFA [8], which maintains sets of pairs of states. In contrast, we work with sets
of elements from the set U , i.e. four-tuples (q1, σ, q2, h). As subsets of U may have exponential
size, we do not store them explicitly. Instead we take advantage of the representation systems
developed in the previous section.

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:11

Starting from u0, the algorithm maintains generating systems Ri, beginning with Rinit .
We assume the availability of a data structure ∆ for storing multisets of elements of U (e.g.
a queue), equipped with emptiness testing, a get method that removes an occurrence of an
element u from ∆ and returns it as a result, and an add method that extends ∆ with the
elements listed as its argument .
I Remark 25. Each of the conditions for (FSyS) relies on finding a matching transition
satisfying an extra constraint spelt out in terms of Rh. If (FSyS) fails for u or u−1 because
no potential transition exists, we shall say that the one-step test fails for u ∈ U . Note that
we are not concerned whether the extra constraint is satisfied – we only check if a transition
with the specified source and label exists.
Because we work with deterministic automata, the availability of a transition implies unique-
ness. Consequently, if u passes the one-step test, the (FSyS) rules for u and u−1 deliver a
unique set of conditions that need to be checked in order for (FSyS) to be satisfied (for u and
u−1). Formally, these conditions can be captured as a subset of U and we shall call them the
successor set of u, written succ-set(u). In the code above the membership test (u 6∈ Gen(Ri))
is performed as specified in Section 4.1, while the extension of Ri with u follows Section 4.2.
The correctness arguments rely on the following invariants.

I Lemma 26. The loop satisfies the following invariants.
(a) For any i ≥ 0, Gen(Ri) = Cl(∆i) and, for all v ∈ ∆i, v, v−1 satisfy the (FSyS)

conditions in Cl(∆i ∪∆).
(b) For any symbolic bisimulation relation R, if u0 ∈ R then ∆ ⊆ R.

I Theorem 27 (Partial Correctness). When the Algorithm returns YES, there exists a symbolic
bisimulation containing u0. When the Algorithm returns NO, no symbolic bisimulation can
contain u0.

Proof. When the Algorithm returns YES, ∆ is empty. Consequently, Lemma 26 (a) implies
that each element of ∆i ∪∆−1

i satisfies the (FSyS) conditions in Cl(∆i), so Cl(∆i) is a
symbolic bisimulation relation by Lemma 15.

If u0 6∈ Gen(Rinit) then i > 0 and u0 ∈ ∆0 ⊆ ∆i. Thus, u0 ∈ Cl(∆i).
If u0 ∈ Gen(Rinit) then the Theorem is also true, because Gen(Rinit) is a symbolic
bisimulation.

Thus, in each case, there exists a symbolic bisimulation containing u0. The NO case follows
immediately from Lemma 26 (b). J

Next we argue why the algorithm terminates and its complexity is polynomial. To that end,
it will be useful to introduce the following measure on representation systems.

I Definition 28. Given R, let mR : ([0, 2r]∪{∞})×Q→ N×P(IS2r) be defined as follows.

mR(h, q) = (|Q/ �h |+ |X[q]�h
|, Sub(Gh[q]�h

))

Given (n1, H1), (n2, H2) ∈ N × P(IS2r), let (n1, H1) ≤ (n2, H2) stand for n1 < n2 or
(n1 = n2 and H1 ⊇ H2). For R1,R2, we then write mR1 ≤ mR2 iff for all (h, q), mR1(h, q) ≤
mR2(h, q).

I Lemma 29. Given a representation system R and u ∈ U , let R′ be its extension by u
constructed in Section 4.2. Then mR′ � mR.

I Theorem 30. The Algorithm terminates.

MFCS 2018

72:12 Polynomial-Time Equivalence Testing

Proof. We argue by contradiction. Observe that, if the Algorithm does not terminate, there
can be no bound on the number of times that elements are added to the queue. This will
generate an infinite sequence of generating systems R0,R1, · · · ,Ri,Ri+1, · · · , where each
Ri+1 extends Ri according to Section 4.2. By Lemma 29, mR0 mR1 · · · mRi · · · .
Given that the first components (numbers) in mRi(h, q) are bounded by |Q|+ 2r, for this to
happen, we would need to have an infinite chain of subgroups of SX for some X ⊆ [1, 2r].
This contradicts the bound from [2]. J

Following a similar pattern of reasoning, we can establish a bound on the number of
generating systems that can be produced by the Algorithm, which happens to correspond
to the value of i. We have already observed that the integers in the first component of
mRi(h, q) are bounded by |Q|+ 2r. Consequently, that particular component can decrease
|Q| + 2r times for h ∈ [0, 2r] and |Q| times for h = ∞ (the sets Xh

C are not modified in
this case). As for the second component, the bound on the number of times it can change
is 2r + O(1) [2]. Because the decreases may occur for any q, h, the overall bound on i is
|Q|(2r + 1)(|Q|+ 2r)2r︸ ︷︷ ︸

h∈[0,2r]

+ |Q||Q|2r︸ ︷︷ ︸
h=∞

= O(|Q|2r2 + |Q|r3) + O(|Q|2r). Each increase of i is

accompanied by the addition of one-step successors to the queue. There are O(r) such
successors and their generation can take O(r) steps due to rearrangements on permutations.
Consequently, the handling of each element of u may require O(r2) steps (O(r) steps for
h = ∞). This does not take group membership tests into account, for which there exist
polynomial-time algorithms [6]. Thus, the complexity can be conservatively bounded by
O(|Q|2r5p(r)) steps, where p(r) refers to the complexity of membership testing for S2r
(which bounds those for SX , where X ⊆ [1, 2r]). Note that for h = ∞, the complexity is
O(|Q|2r2p(r)). Knuth [10] reports on an algorithm for which p(r) = O(r5 +mr2), where m
is the number of membership queries, adding that it runs considerably faster in practice.

I Theorem 31. The language equivalence problem for r-DFRA is in PTIME.

A natural question for further study is whether the problem is PTIME-complete. It is
certainly NL-hard, by reduction from DFA.

Implementation

An implementation of our algorithm is available from http://github.com/stersay/deq.
Although we leave a full analysis of our empirical results to a future publication, it is worth
mentioning that initial case studies indicate that the high-degree of r in the worst case is not a
hindrance in practice. For example, in comparing two encodings of automata simulating finite
stack machines (considered previously by [12]), bisimulations for automata with r ≤ 1500
can be computed in less than one minute.

6 Inclusion

Equivalence can often be attacked by reduction to the associated inclusion problem. As we
explain next, for DFRA this route would not yield a PTIME bound.

I Theorem 32. The inclusion problem for r-DFRA is in PSPACE-complete.

Proof. For membership in PSPACE, we first note that inclusion can be reduced to simulation.
Now observe that if there is a winning strategy for Attacker over the infinite alphabet then
there will be one if 2r + 1 letters are used. This is because 2r + 1 letters are sufficient to

http://github.com/stersay/deq

A. S. Murawski, S. J. Ramsay, and N. Tzevelekos 72:13

simulate the effect of attacks that rely on global freshness: with 2r + 1 letters available it is
always possible to choose a letter that is not stored in either set of the r-registers and, thus,
attacks based on global freshness can be simulated. Consequently, failures of inclusion can
be detected by guessing the relevant word using 2r + 1 letters on the understanding that for
globally fresh transitions we need to choose a letter not occurring in any of the 2r registers.
To this end, polynomial space is needed to keep track of the current content of both sets of
registers.

We can show PSPACE-hardness already for DFRA without global freshness, which
we refer to as DRA. Because DRA can be complemented easily, we actually show that
the equivalent problem of DRA intersection emptiness is PSPACE-hard. This is done by
reduction from non-emptiness of deterministic linear-bounded Turing machines. The main
difficulty in the argument is to represent the tape through registers. This seems impossible
at first given that a register assignment must contain different data values. We overcome this
by constructing two (n+ 1)-DRA A1, A2 such that whenever they synchronise on a data
word, their register assignments ρ1, ρ2 represent the content of n tape cells as follows: 0 in
the ith cell is represented by ρ1(i) = ρ2(i), and 1 by ρ1(i) 6∈ rng(ρ2). The (n+ 1)th register
plays a technical role that helps us to maintain the representation. The position of the head
and state of the machine are maintained in the state of the automata. J

References
1 F. Aarts, P. Fiterau-Brostean, H. Kuppens, and F. W. Vaandrager. Learning register

automata with fresh value generation. In Proceedings of ICTAC, volume 9399 of Lecture
Notes in Computer Science, pages 165–183. Springer, 2015.

2 L. Babai. On the length of subgroup chains in the symmetric group. Communications in
Algebra, 14(9):1729–1736, 1986.

3 M. Bojańczyk, B. Klin, and S. Lasota. Automata theory in nominal sets. LMCS, 10(3),
2014.

4 B. Bollig, P. Habermehl, M. Leucker, and B. Monmege. A robust class of data languages
and an application to learning. Logical Methods in Computer Science, 10(4), 2014.

5 S. Cassel, F. Howar, B. Jonsson, and B. Steffen. Active learning for extended finite state
machines. Formal Asp. Comput., 28(2):233–263, 2016.

6 M. L. Furst, J. E. Hopcroft, and E. M. Luks. Polynomial-time algorithms for permutation
groups. In Proceedings of FOCS, pages 36–41. IEEE Computer Society, 1980.

7 R. Grigore, D. Distefano, R. L. Petersen, and N. Tzevelekos. Runtime verification based
on register automata. In Proceedings of TACAS, LNCS. Springer, 2013.

8 J. E. Hopcroft and R. M. Karp. A linear algorithm for testing equivalence of finite automata.
Technical Report 114, Cornell University, 1971.

9 M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci., 134(2):329–
363, 1994.

10 D. E. Knuth. Efficient representation of perm groups. Combinatorica, 11(1):33–43, 1991.
11 M. Leucker. Learning meets verification. In Proceedings of FMCO, volume 4709 of Lecture

Notes in Computer Science, pages 127–151, 2007.
12 J. Moerman, M. Sammartino, A. Silva, B. Klin, and M. Szynwelski. Learning nominal

automata. In Proceedings of POPL, pages 613–625. ACM, 2017.
13 A. S. Murawski, S. J. Ramsay, and N. Tzevelekos. Bisimilarity in fresh-register automata.

In Proceedings of LICS, pages 156–167, 2015.
14 A. S. Murawski and N. Tzevelekos. Algorithmic nominal game semantics. In Proceedings of

ESOP, volume 6602 of Lecture Notes in Computer Science, pages 419–438. Springer-Verlag,
2011.

MFCS 2018

72:14 Polynomial-Time Equivalence Testing

15 F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

16 H. Sakamoto. Studies on the Learnability of Formal Languages via Queries. PhD thesis,
Kyushu University, 1998.

17 H. Sakamoto and D. Ikeda. Intractability of decision problems for finite-memory automata.
Theor. Comput. Sci., 231(2):297–308, 2000.

18 T. Schwentick. Automata for XML - A survey. J. Comput. Syst. Sci., 73(3):289–315, 2007.
19 N. Tzevelekos. Full abstraction for nominal general references. Logical Methods in Computer

Science, 5(3), 2009.
20 N. Tzevelekos. Fresh-register automata. In Proceedings of POPL, pages 295–306. ACM

Press, 2011.
21 F. W. Vaandrager. Model learning. Commun. ACM, 60(2):86–95, 2017.

On W[1]-Hardness as Evidence for Intractability
Ralph Christian Bottesch
University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
ralph.bottesch@uibk.ac.at

Abstract
The central conjecture of parameterized complexity states that FPT 6= W[1], and is generally
regarded as the parameterized counterpart to P 6= NP. We revisit the issue of the plausibility of
FPT 6= W[1], focusing on two aspects: the difficulty of proving the conjecture (assuming it holds),
and how the relation between the two classes might differ from the one between P and NP.

Regarding the first aspect, we give new evidence that separating FPT from W[1] would be
considerably harder than doing the same for P and NP. Our main result regarding the relation
between FPT and W[1] states that the closure of W[1] under relativization with FPT-oracles
is precisely the class W[P], implying that either FPT is not low for W[1], or the W-Hierarchy
collapses. This theorem also has consequences for the A-Hierarchy (a parameterized version of
the Polynomial Hierarchy), namely that unless W[P] is a subset of some level A[t], there are
structural differences between the A-Hierarchy and the Polynomial Hierarchy. We also prove
that under the unlikely assumption that W[P] collapses to W[1] in a specific way, the collapse
of any two consecutive levels of the A-Hierarchy implies the collapse of the entire hierarchy to a
finite level; this extends a result of Chen, Flum, and Grohe (2005).

Finally, we give weak (oracle-based) evidence that the inclusion W[t] ⊆ A[t] is strict for t > 1,
and that the W-Hierarchy is proper. The latter result answers a question of Downey and Fellows
(1993).

2012 ACM Subject Classification Theory of computation → Complexity classes

Keywords and phrases Parameterized complexity, Relativization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.73

Related Version A full version of the paper is available at https://arxiv.org/abs/1712.
05766.

Funding This work was supported by the ERC Consolidator Grant QPROGRESS 615307 for
the majority of its duration, and by the Austrian Science Fund (FWF) project Y757 at the time
of publication.

Acknowledgements I thank Harry Buhrman, Sándor Kisfaludi-Bak, and Ronald de Wolf for
helpful discussions. I am especially grateful to Ronald de Wolf and Leen Torenvliet for helpful
comments on drafts of the paper.

1 Introduction

The central conjecture of parameterized complexity theory states that FPT 6= W[1]. The
complexity class FPT is a generalization of P, and it also contains this class in the sense
that regardless of which parameter we associate with the instances of a problem in P, the
resulting parameterized problem is in FPT. This inclusion is strict, as FPT also contains
parameterized versions of problems that are provably not in P. The class W[1] can be
regarded as a parameterized counterpart to NP. It can be defined in different ways, all

© Ralph C. Bottesch;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 73; pp. 73:1–73:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ralph.bottesch@uibk.ac.at
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.73
https://arxiv.org/abs/1712.05766
https://arxiv.org/abs/1712.05766
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

73:2 On W[1]-Hardness as Evidence for Intractability

of them quite technical, but the most common definition is in terms of a parameterized
version of a particular NP-complete problem (much like NP can be defined in terms of a
Boolean circuit satisfiability problem). However, W[1] is not known or believed to contain
all parameterized versions of problems in NP, and by defining complexity classes in terms
of parameterizations of other NP-complete problems, one actually obtains a large set of
seemingly distinct parameterized analogues of NP, some of which we list here:

A[1] = W[1] ⊆W[2] ⊆W[3] ⊆ . . . W[t] . . . ⊆W[P] ⊆ para-NP.

Among these, the most interesting classes are W[1] (a.k.a. A[1]) and W[P], due to having
many natural complete problems.

The basic intuition for why W[1] (and hence all classes in the above sequence) should
differ from FPT is the same as for P 6= NP, namely that we do not know of any way to
efficiently simulate nondeterministic computations deterministically. This intuition is often
used to justify considering the W[1]-hardness of a problem as evidence for its intractability.
But because FPT is strictly larger than P, while W[1] does not appear to capture all of the
complexity of NP, it seems that proving the central conjecture of parameterized complexity
theory may be harder than separating P and NP. We investigate qualitative differences
between the two conjectures, as well as the more general question of whether FPT occupies
the same place within W[1] as P does within NP. We start by giving a brief summary of
some relevant prior results.

That the central parameterized conjecture is at least as strong as its classical counterpart is
easy to prove: If NP = P, then, as noted above, every parameterized version of every problem
in NP(= P) must be in FPT, hence W[1] = FPT (and, in fact, para-NP = W[P] = . . . = FPT).
Thus we have that FPT 6= W[1]⇒ P 6= NP. The converse of this implication is not known to
hold, but Downey and Fellows [9] were the first to observe that a collapse of W[1] to FPT
would at least imply the existence algorithms with sub-exponential running time for the
NP-complete problem 3Sat. This would contradict the Exponential Time Hypothesis (ETH),
first introduced by Imagliazzo, Paturi, and Zane [13], which states that for some constant
c > 0, 3Sat can not be solved in time O∗(2cn) by deterministic Turing machines (TMs).
This conjecture has enjoyed much popularity recently, because, assuming ETH, for many
problems it is possible to prove a complexity lower bound that matches that of the best
known algorithm up to lower-order factors (see [14] for a survey of such results). Nevertheless,
one should keep in mind that ETH is a much stronger statement than P 6= NP, since it rules
out not only the existence of polynomial-time algorithms for 3Sat, but also of those that
run in up to exponential-time (for some bases). Putting all of these facts together, we have:

ETH =⇒ FPT 6= W[1] =⇒ . . . =⇒ FPT 6= W[P] =⇒ FPT 6= para-NP =⇒ P 6= NP.

The above sequence relates parameterized complexity conjectures to two classical ones, but
it does not say which of them are closer in strength to ETH and which are closer to P 6= NP.
The only known fact here is that FPT 6= para-NP⇔ P 6= NP (see [11, Corollary 2.13]), but
there is strong evidence suggesting that all of the other parameterized conjectures listed above
are considerably stronger than P 6= NP (although possibly still weaker than ETH1). First,
Downey and Fellows [8] construct an oracle relative to which P and NP differ while W[P]

1 There is, in fact, a subclass of W[1], called M[1], of which it is known that FPT 6= M[1] is equivalent to
ETH (see [10]). The similarities between M[1] and W[1] can be seen as a further indication that the
conjecture FPT 6= W[1] is nearly as strong as ETH, but, evidently, both FPT 6= M[1] and M[1] 6= W[1]
are wide open conjectures.

R. C. Bottesch 73:3

collapses to FPT, so we know that any proof of the implication P 6= NP⇒ FPT 6= W[P] can
not be as simple as the proof of the converse implication sketched above. More importantly,
FPT 6= W[P] can be related much more precisely to other classical complexity conjectures.

How strong the assumption FPT 6= W[P] is, can be elegantly expressed in terms of limited
nondeterminism. If f is a poly-time-computable function, denote by NP[f(n)] the class of
problems that can be solved by a nondeterministic TM in polynomial-time by using at most
O(f(n)) bits of nondeterminism (n denotes the size of the input). Note that NP[log n] = P,
since a deterministic TM can cycle through all possible certificates of length O(log n) in
polynomial-time. A remarkable theorem of Cai, Chen, Downey, and Fellows [6] states that
FPT 6= W[P] holds if and only if for every poly-time-computable non-decreasing unbounded
function h, we have that P 6= NP[h(n) log n] (see [11, Theorem 3.29] for a proof of the theorem
in this form). The class of functions referred to in this theorem contains functions with
very slow growth, such as the iterated logarithm function, log∗. In fact, there is no poly-
time-computable non-decreasing unbounded function that has the slowest growth, because if
some function h satisfies these conditions, then so does log∗ h. It is not even intuitively clear
whether P is different from NP when the amount of allowed nondeterminism is arbitrarily
close to trivial. At the very least, the fact that an infinite number of increasingly strong
separations must hold in order for W[P] to not collapse to FPT, suggests that separating
these two classes is much farther out of our reach than a separation of P and NP.

The evidence we have seen so far indicates that proving a separation of W[1] and FPT may
be harder than proving P 6= NP. But assuming that both conjectures hold, it is meaningful
to ask whether the internal structure of W[1] resembles that of NP, and there is indeed some
positive evidence in this direction. For example, a parameterized version of Cook’s Theorem
connects Boolean circuit satisfiability to W[1]-completeness (see [9]), a parameterized version
of Ladner’s Theorem states that if FPT 6= W[1], then there is an infinite hierarchy of problems
with different complexities within W[1] (see [9]), and the machine-based characterizations
of this class, due to Chen, Flum, and Grohe [7], establish that W[1] can indeed be defined
in terms of nondeterministic computing machines. Nevertheless, there are also previously
unexplored ways in which W[1] may not behave the same way as NP.

Our main goal in this work is to provide further evidence that the classes FPT and W[1]
are close not only in the sense of being difficult to separate, but also in the sense that the
relationship between the two differs from that of P and NP, in a way that indicates that FPT
is larger within W[1] than P is within NP (assuming the latter pair does not collapse). These
results contrast with those in [4], where we showed how certain theorems about FPT and the
levels of the A-Hierarchy can be proved in the same way as for their classical counterparts.

1.1 Summary of our results
The difficulty of separating W[P] from FPT. Assuming that we could prove a separation
of the form P 6= NP[h(n) log n] for a particular, slow-growing function h, how much progress
would we have made towards proving the separation where h(n) is replaced by log h(n)?
Intuitively, the difficulty of proving non-equality should increase when a function with a
slower growth is chosen. On the other hand, if FPT 6= W[P] holds, then all such classical
separations hold as well (by the above-mentioned theorem of Cai et al. [6]), and therefore
any one of them implies the others. It is not clear, however, whether a proof of FPT 6= W[P]
with P 6= NP[h(n) log n] as a hypothesis would be significantly simpler than a proof from
scratch. We show that this is unlikely to be the case, by proving (Theorem 9) that for any
poly-time-computable non-decreasing unbounded function h, there exists a computable oracle
Oh such that:

POh 6= NP[h(n) log n]Oh , but W[P]Oh = FPTOh .

MFCS 2018

73:4 On W[1]-Hardness as Evidence for Intractability

Theorem 9 is an improvement over the above-mentioned oracle construction of Downey
and Fellows [8]2. It is weak as a barrier result, since the relativization barrier has been
repeatedly overcome in the last three decades, but nevertheless the theorem succinctly
expresses how much harder the conjecture FPT 6= W[P] is compared to classical questions
regarding nondeterministic vs. deterministic computation: No matter how small the amount
of nondeterminism that provably yields a class strictly containing P, we will always be a
non-trivial proof step away from separating W[P] (or W[1]) from FPT.

The structure of W[1] and its relation to FPT. The class A[1](=W[1])3 can be character-
ized in terms of random access machines that perform tail-nondeterministic computations
[7]. Such computations consist of two phases: 1. a (deterministic) FPT-computation; 2.
a short nondeterministic computation that can use any data computed in phase 1. Tail-
nondeterministic machines that perform only the second phase of the computation (without
a longer deterministic computation preceding it), can not solve every problem in FPT, but,
paradoxically, they can solve many problems that are complete for A[1] (we give an example
in Section 4). As we will see, this simple observation has important consequences for the
structure of this class.

A first consequence is that giving an A[1]-machine very restricted oracle access to even
a tractable (FPT) problem, may increase its computational power, because then the use
of nondeterminism can be combined with the ability to solve instances of an FPT-problem
via the oracle. Thus, FPT-computations appear to constitute a non-trivial computational
resource for A[1] (unlike P-computations for NP). Somewhat suprisingly, we can actually
identify the complexity class resulting from endowing A[1] with FPT-oracles, if a suitable,
highly restricted type of oracle access is used. We have (Theorem 12, Corollary 13) that:

A[1]FPT = W[P] and ∀t ≥ 1 : W[t]FPT = W[P],

where we used the common notation CC2
1 :=

⋃
Q∈C2

CQ
1 . This means that either W[P] = W[1],

in which case W[P] is smaller than generally believed, or FPT is larger within W[1] than P is
within NP.

Putting the known and new facts together, Theorem 9 and the result of Cai et. al. [6]
mentioned in the introduction indicate that W[P] is likely to be closer to FPT than any
class NP[h(n) log n] is to P (see Figure 1). The case for this figure being accurate is further
strengthened by Theorem 12 and Corollary 13, which exhibit another way in which at least
two of the classes FPT, W[1], and W[P] are close.

Theorem 12 and the observation preceding it also have consequences for the A-Hierarchy,
which is a parameterized analogue of PH. Although they share some essential properties
[7, 4], a corollary of Theorem 12 is that, unless some unlikely inclusions between complexity
classes occur, the two hierarchies have structural differences that indicate that consecutive
levels of the A-Hierarchy are closer to each other than the corresponding levels of PH (see

2 Actually, Downey and Fellows [8] use a different computational model to define and relativize W[P], so
the two results, although in the same spirit, may not be directly comparable at a technical level.

3 W[1] and A[1] coincide as complexity classes, but in [7], Chen, Flum, and Grohe give two machine-based
characterizations, one which can be generalized to get the levels of the W-Hierarchy, and one which
generalizes to the levels of the A-Hierarchy. The machine model for A[1] is easier to handle when working
with oracles, so we typically use this model when relativizing this class, and write “A[1]” to emphasize
this fact. However, oracle W[1]-machines can also be defined so that our theorems hold for this model
as well (see Section 3).

R. C. Bottesch 73:5

P

NP[(log n)2]

NP

FPT

para-NP

FPT

W[P]

...

W[1]
W[2]

Figure 1 The mutual closeness of the parameterized complexity classes, compared to that of
their classical analogues, as suggested by [6, 8], Theorems 9 and 12, and Corollary 13. Regardless of
which class NP[h(n) log n] we choose to represent between P and NP on the left side (whether it is
NP[(log n)2] as in the picture, NP[log∗ n log n], or something even smaller), it will be much larger
compared to P than W[P] is compared to FPT.

Section 4). Conversely, using a similar idea as in the proof of Theorem 12, we can show
(Theorem 15) that if W[P] were to collapse to W[1] in a specific way, we would get a downward
separation theorem for the A-Hierarchy (i.e., that if two levels collapse, the entire hierarchy
collapses to the smaller of the two). Proving such a theorem for the A-Hierarchy has been a
long-standing open problem in parameterized complexity theory, and although our theorem
falls short of this goal (since it requires an unlikely collapse to occur), it marks the first
progress on this front in over a decade (since [7]).

Level-by-level relativized separations of the W- and the A-Hierarchy. We also give some
evidence that certain collapses do not occur. The only relations that are known to hold
between the classes W[t] and A[t] are that W[1] = A[1] and that W[t] ⊆ A[t] for t ≥ 2.
We show that in a relativized setting, the known inclusions can be made strict and some
unexpected inclusions can be ruled out.

Separations of complexity classes relative to oracles count only as very weak evidence
that the unrelativized versions of the classes are distinct, due to the fact that such oracles
can in some cases be constructed even when two classes coincide (the most famous example
being IP = PSPACE [16] – see [12] for an oracle separating the two). Nevertheless, there are
a few reasons why level-by-level relativized separations for the W- and the A-Hierarchy are
interesting: First, since it is generally assumed that these hierarchies are proper and distinct,
we should expect to have at least this weak form of evidence supporting the assumption.

MFCS 2018

73:6 On W[1]-Hardness as Evidence for Intractability

Second, we have seen a number of results which suggest that the levels of these hierarchies are
in various ways close to each other, so proving even relativized separations between them may
be non-trivial. Finally, relativization in the parameterized setting is still mostly unexplored,
and although the proofs of the following theorems rely on standard diagonalization arguments,
the details of the machine models and how they are allowed to access oracles require special
care in order to make the arguments work.

In Section 5 we show (Theorem 16, Corollary 17) that there exists a computable parame-
terized oracle O such that

∀t ≥ 2 : A[t]O 6⊂W[t]O.

Note that this is a single oracle relative to which all inclusions are simultaneously made strict.
Also note that, although we use machine-based characterizations of classes A[t] and W[t]
which result in distinct characterizations of the class A[1] = W[1], fortunately, this oracle
does not appear to separate A[1] from W[1]. Such a separation would have suggested that
the strict inclusions are mere artifacts of the machine models used.

Finally, we give evidence which suggests that the W-Hierarchy is not contained within
any finite level of the A-Hierarchy (Theorem 18): For all t ≥ 1, there exists a computable
parameterized oracle Ot such that

W[t + 1]Ot 6⊂ A[t]Ot .

Since it holds that W[t]Ot ⊆ A[t]Ot , each oracle Ot separates two consecutive levels of the
W-Hierarchy. This answers a question of Downey and Fellows [8], although we do not have a
single oracle that simultaneously separates the entire hierarchy.

2 Preliminaries

We assume familiarity with standard facts and notations from both classical and parameterized
complexity theory, and refer to [2] and to [11] for the necessary background in the respective
branches. Since the characterizations of various parameterized complexity classes in terms of
computing machines [7] are less well known, we give a brief overview of the main definitions.

Many parameterized complexity classes can only be naturally characterized in terms of
random access machines (RAMs), which can store entire integers in each of their registers,
perform the operations addition, subtraction, and division by 2 on integers in unit time, and
can access any part of their memory in constant time (see [15] or the introduction of [7]).
The input of a RAM can be a sequence of non-negative integers, and we allow the instances
of problems to be encoded in this way whenever we are working only with RAMs (as opposed
to TMs). Since the size of a sequence of non-negative integers is calculated as the sum of the
length of the binary representations of the individual numbers, RAMs have no significant
computational advantage over TMs [15, Theorem 2.5]. However, this encoding does make a
difference when considering oracle RAMs, because the query instances will also be encoded
in this fashion.

We give two examples of definitions of complexity classes in terms of RAMs. It is not
difficult to see that these are equivalent to the standard (TM-based) definitions (see [11]).
Note that we use the Downey-Fellows definition of parameterized problems [9], where the
parameter value, encoded in unary, is given together with the input.

R. C. Bottesch 73:7

I Definition 1. Let Q be a parameterized problem. We say that Q ∈ FPT if and only if
there exists a RAM M , a computable function f , and a constant c ≥ 0, such that for every
input (x, k) with x ∈ N∗ and k ≥ 0, M runs in time f(k)(|x|+ k)c and accepts if (x, k) ∈ Q,
otherwise it rejects. The class para-NP is defined similarly, except with RAMs which can
nondeterministically guess, in unit time, positive integers of size upper-bounded by the
f(k)(|x|+ k)c (the bound on the running time).

We also collect several useful definitions and notations in the following:

I Definition 2. Let C1, C2 be complexity classes, where C1 is defined in terms of computing
machines that can be given access to an oracle, and let P0, P1 ⊆ {0, 1}∗ be classical languages.
We define: CC2

1 :=
⋃

P∈C2
CP

1 and P0 ⊕ P1 := {0x | x ∈ P0} ∪ {1x | x ∈ P1}. We say that P0

is low for C1 if CP0
1 = C1, and we say that C2 is low for C1 if CC2

1 = C1.

2.1 The A-Hierarchy and the W-Hierarchy
The following classes are defined in terms of alternating random access machines (ARAMs),
which are RAMs that can nondeterministically guess, in unit time, integers of size bounded
by the running time of the machine on a given input, either in the existential or the universal
mode (see [7]).

I Definition 3 ([7]). For each t ≥ 1, let A[t] be the class of parameterized problems that are
solved by some ARAM A which, for some computable functions f and h, and a constant
c ≥ 0, satisfies the following conditions on every input (x, k):
1. A runs in time at most f(k)(|x|+ k)c;
2. throughout the computation, the values in A’s registers do not exceed f(k)(|x|+ k)c;
3. all nondeterministic guesses are made during the last h(k) steps of the computation;
4. the first nondeterministic guess is existential and the machine alternates at most t− 1

times between existential and universal guesses.
The class co-A[1] is defined in terms of ARAMs which satisfy conditions 1–3, but only make
universal nondeterministic guesses (one can verify, just as in the classical setting, that a
problem is in co-A[1] if and only if it is the complement of a problem in A[1]). ARAMs
satisfying conditions 1 and 2 are called parameter-bounded in [4], those satisfying conditions
3 and 4 are called, respectively, tail-nondeterministic and t-alternating [7].

The classes W[t] (t ≥ 1) can be defined in terms of A[t]-machines (parameter-bounded
tail-nondeterministic t-alternating ARAMs) that are further restricted so that: 1. Every
block of nondeterministic guess instructions of the same kind, except the first one, is made
up of at most c′ guess instructions, where c′ is a constant that is independent of the input.
2. All nondeterministically guessed integers are placed in a special set of guess registers,
which can not be read from directly, and can only be accessed via special instructions that
use the guessed values as indices for accessing standard registers. We will not need further
details regarding these machines, and therefore refer the reader to [7] or [5] for more complete
definitions. We will, however, define oracle W[t]-machines (Definition 10).

I Definition 4 ([4]). An oracle (A)RAM is a machine with an additional set of registers
called oracle registers, instructions that allow the machine to copy values from its standard
registers to the oracle registers, as well as a QUERY instruction, the execution of which
results in one of the values 1 or 0 being placed into the first standard register of the machine,
depending on whether the instance encoded in the oracle registers at that time constitute a
‘yes’- or a ’no’-instance of a problem for which the machine is said to have an oracle.

MFCS 2018

73:8 On W[1]-Hardness as Evidence for Intractability

An oracle (A)RAM has balanced oracle access to a parameterized oracle, if there is a
computable function g such that on every input (x, k), the machine queries the oracle only
with instances whose parameter value is ≤ g(k) (in other words, the parameter values of the
instances for which the oracle is called should be upper-bounded by some function of k, but
may not depend on n, even though the machine may have time to construct such a query
instance). An oracle (A)RAM has tail-restricted oracle access, if its access to the oracle is
balanced and, furthermore, there is a computable function h such that the machine makes
oracle queries only within the last h(k) steps of the computation on input (x, k). Note that
tail-restricted access is also balanced.

For a parameterized complexity class C that is defined in terms of (A)RAMs, we write C(O)
if C has unrestricted access to the oracle O, C(O)bal if it has balanced access, and C(O)tail

if it has tail-restricted access. If C is defined in terms of tail-nondeterministic ARAMs, we
also write CO instead of C(O)tail (so A[1]O means A[1] with tail-restricted access to O). Note
that for C(O), the oracle can be either classical or parameterized, but for balanced or more
restricted oracle access, it must be parameterized.

2.2 W[P] and the W[P]-Hierarchy

We define W[P] both in terms of TMs and in terms of RAMs, and use both definitions at
different points in the paper.

I Definition 5 ([7]). Let Q be a parameterized problem. We say that Q ∈W[P] if and only if
there exists a nondeterministic TM M , computable functions f and h, and a constant c ≥ 0,
such that for any input (x, k) with x ∈ {0, 1, #}∗ and k ≥ 0, M runs in time f(k)(|x|+ k)c,
uses at most h(k)dlog(|x|+ k)e nondeterministic bits, and accepts if and only if (x, k) ∈ Q.

The following problem is complete for W[P] under fpt-reductions.

p-WSatCircuit
Input: A Boolean circuit C with n input bits, k ∈ N.

Parameter: k

Problem: Decide whether C has a satisfying assignment of weight k.

The class W[P] can also be defined in terms of RAMs [7]. One can also define a hierarchy
that is similar to PH, except in terms of alternating nondeterminism that matches the
nondeterminism of W[P].

I Definition 6 ([4]). For each t ≥ 1, let Σ[P]
t be the class of parameterized problems that

are solved by some ARAM A which, for some computable functions f and h, and a constant
c ≥ 0, satisfies, on every input (x, k), conditions 1, 2, and 4 from Definition 3, as well as:
3’. A nondeterministically guesses at most h(k) numbers throughout the computation.
We denote the class

⋃∞
t=1 Σ[P]

t by W[P]H, the W[P]-Hierarchy.

It is not difficult to see that W[P] = Σ[P]
1 . Note that we will use the term “W[P]-machine”

to designate both the TMs from Definition 5 as well as the Σ[P]
1 -machines from Definition 6

(which are RAMs), but it should be clear from the context which type of machine is meant.
For each t ≥ 1, the following generalizations of the problem p-WSatCircuit can easily

be seen to be, respectively, complete problems for Σ[P]
t .

R. C. Bottesch 73:9

p-AWSatCircuitt

Input: A Boolean circuit C with n input bits, k ∈ N, and a partition of
the input variables of C into t sets I1, . . . , It.

Parameter: k

Problem: Decide whether there exists a set J1 ⊆ I1 of size k such that for
all subsets J2 ⊆ I2 of size k there exists ... such that setting
precisely the variables in J1∪. . .∪Jt to ‘true’ results in a satisfying
assignment of C.

As in the case of the Polynomial Hierarchy, and unlike the case of the A-Hierarchy, it is
known that the collapse of levels of the W[P]-Hierarchy would propagate upward:

I Fact 7 (Corollary 17 of [4]). If for any t ≥ 1, Σ[P]
t+1 = Σ[P]

t , then W[P]H = Σ[P]
t .

I Definition 8 ([4]). An oracle ARAM has parameter-bounded oracle access to a parameter-
ized oracle, if its access to the oracle is balanced and, furthermore, there is a computable
function g such that on every input (x, k), the machine makes at most g(k) oracle queries.

If C is a class that is defined in terms of ARAMs, we write C(O)para to denote that C has
parameter-bounded access to the oracle O. If C = Σ[P]

t , for some t ≥ 1, we may also write
CO to mean C(O)para (so W[P]O = W[P](O)para).

3 The difficulty of separating W[P] from FPT

In this section we show that there is likely no shortcut to proving FPT 6= W[P] via any finite
number of separations of the form P 6= NP[h(n) log n]. Due to space restrictions, the proofs
of the theorems in this section can be found in the full version of the paper.

To prove the theorem, we need to construct an oracle relative to which two conditions
hold simultaneously: the collapse of one pair of complexity classes and the separation of
another. One approach to achieving this is to construct the oracle in stages, and to work
towards one goal in the odd-numbered stages and towards the other in the even-numbered
ones, while ensuring that the two constructions do not interfere with each other (see [3,
Theorem 5.1] for one example of an application of this technique). However, this approach
does not always work, and in this case it fails because one pair of classes is parameterized
(specifically, it is not possible to computably list all FPT- or W[P]-machines, but this appears
to be necessary in this type of staged construction). To overcome this obstacle, we use an
idea of Allender [1], who constructs an oracle with two parts: the first part is designed so as
to ensure that one pair of classes collapses regardless of what the second part of the oracle
is; the second part can then be freely used in a diagonalization argument to separate the
remaining pair of classes.

I Theorem 9. For every polynomial-time-computable non-decreasing unbounded function h,
there exists a computable oracle B such that

PB 6= NP[h(n) log n]B, but W[P](B) = FPT(B).

For this result we have used unrestricted oracle access to relativize the parameterized
complexity classes, rather than the parameter-bounded type that we argued is natural for
W[P] [4]. This is because restricting the oracle access to being balanced (or more) makes
it possible to collapse even para-NP to FPT, with the classical separation unchanged. Thus
we would get an oracle relative to which NP and P differ while para-NP and FPT coincide,
which is clearly an artifact of the restrictions placed on the oracle access, since we know that,
unrelativized, a collapse of para-NP to FPT is equivalent to a collapse of NP to P (see [11]).

MFCS 2018

73:10 On W[1]-Hardness as Evidence for Intractability

It seems reasonable to expect that if W[P] collapses to FPT relative to some oracle, then so
should any class W[t]. But to show that this is indeed the case, we first need to define oracle
W[t]-machines. Recall that a W[t]-machine is similar to an A[t]-machine, but the numbers it
guesses nondeterministically are placed in a special set of guess registers, to which the machine
has only limited access [7] (see also [5]). Naturally, an oracle W[t]-machine should then have
three sets of registers: the standard registers, guess registers (which the machine can not read
from directly), and oracle registers. For such machines, the usual way to read from or write to
the oracle registers is very limiting, because the machines’ nondeterminism would only weakly
be able to influence the query instances. For example, nondeterministically guessed numbers
could not be written to the oracle registers. The interaction between the nondeterminism
of such machines and their ability to form query instances can be strengthened without
allowing the W[t]-specific restrictions to be circumvented. We achieve this by making the
oracle registers write-only, and adding instructions that allow the machine to copy values
from the guess registers to the oracle registers and to use numbers from the guess registers
to address oracle registers. In this way, the machine can still not read the guessed numbers
directly or use them in arithmetic computations, but can nevertheless use them for oracle
queries. In many cases, this allows oracle W[t]-machines to match A[t]-machines in the way
the oracle is used.

I Definition 10. An oracle W[t]-machine is a W[t]-machine that, in addition to the standard
registers r0, r1, . . ., and guess registers g0, g1, . . . (to which the machine has only restricted
access), also possesses a set of oracle registers o0, o1, The contents of oracle registers are
never read from and are only affected by the following new instructions:

SO_MOVE - copy the contents of standard register r0 to oracle register or1 ;
GO_MOVE - copy the contents of guess register gr0 to oracle register or1 ;
ADDR_GO_MOVE - copy the contents of register r0 to ogr1

;
OO_MOVE - copy the contents of or0 to or1 .

Additionally, the machine has a QUERY instruction that places either the value 0 or 1 into
r0, depending on whether the contents of the oracle registers at the time when the instruction
is executed represent a ‘no’- or a ’yes’-instance of the problem to which the machine has
oracle access.

Note that for such machines, it again makes sense to speak of unrestricted, balanced,
parameter-bounded, or tail-restricted oracle access. With the above definition in mind, we
can now prove Corollary 11, where oracle access is unrestricted.

I Corollary 11. For any function h as in Theorem 9, and the corresponding oracle B, we
have that FPT(B) = W[1](B) = A[1](B) = W[2](B) = A[2](B) = . . . = W[P](B).

4 The structure of W[1] and its relation to FPT

Under the assumption that P 6= NP, it is meaningful to ask whether the relation between the
two classes is the same as the one between FPT and W[1]. So far, we have seen evidence that
the two parameterized classes are closer to each other in the sense that proving a separation
between them is more difficult than proving P 6= NP. In this section we look at other ways
in which W[1] is closer to FPT than NP is to P.

In this section, the definitions of classes in terms of RAMs are used, instances of problems
and oracles query instances are encoded as integer sequences, and oracles are parameterized.

Is FPT low for W[1]?

R. C. Bottesch 73:11

Given that FPT is the class of tractable problems in parameterized complexity, and
that P-oracles add no computational power to NP (or to any class NP[h(n) log n]), one
might expect FPT to also be low for W[1]. It turns out, however, that allowing tail-
nondeterministic machines to make even tail-restricted queries to an FPT-oracle can increase
their computational strength to that of W[P]. We prove this for A[1] first, since this machine
model is more easily relativizable.

I Theorem 12. A[1]FPT = W[P]. Therefore, FPT is low for A[1] if and only if W[P] = A[1]
and the W-Hierarchy collapses to its first level.

Proof. We have that A[1]FPT ⊆ A[1](FPT)bal ⊆W[P](FPT)bal = W[P], with the final equality
holding because a W[P]-machine can replace balanced oracle calls to FPT-problems by
fpt-length computations.

To show that W[P] ⊆ A[1]FPT, we define the following problem:

p-WSatCircuit-with-assignment
Input: A circuit C with n inputs, k ∈ N, and vector v ∈ {0, 1}n of

weight k.
Parameter: k.
Problem: Decide whether v is a satisfying assignment for C.

Since the output of a circuit can be computed in time polynomial in its size, the above
problem is obviously in FPT4. Any problem Q ∈W[P] can be solved by some A[1]-machine
A with tail-restricted access to p-WSatCircuit-with-assignment as an oracle: First, A

reduces in fpt-time the input instance (x, k) to an instance (y, k′) of p-WSatCircuit, where
k′ depends computably only on k. Let m be the number of input bits of the circuit encoded
in y. If m < k′, A rejects, otherwise it writes y, 0m, and 1k′ to its oracle registers, thus
forming a valid instance of p-WSatCircuit-with-assignment, except that the assignment
vector has weight 0. Now A enters the nondeterministic phase of its computation by guessing
k′ pairwise distinct integers i1, . . . , ik′ ∈ [m]. It then modifies the assignment vector in the
oracle registers by changing the zeroes at positions i1, . . . , ik′ of the vector 0m to 1, queries
the oracle, and accepts if the answer is ‘yes’, otherwise it rejects.

It is easy to see that what this machine actually does is nondeterministically guess
a satisfying assignment of the p-WSatCircuit-instance, if one exists, and delegate the
verification to the oracle. The trick here is that the all-zero assignment vector must be
written to the oracle registers deterministically, because during the nondeterministic phase at
the end of the computation there may not be enough time to do so. Then the machine only
needs to change the vector at k′ positions to obtain an assignment with the right weight,
which takes only O(k′) steps with random access memory. J

Note that the proof that a W[P]-machine can simulate A[1]-machines with FPT-oracles only
works if the oracle access of the A[1]-machines is tail-restricted or at least parameter-restricted.
On the other hand, the proof that A[1]FPT ⊃W[P] only requires tail-restricted oracle access.
We regard this as further evidence (in addition to the results from [4]) that tail-restricted
oracle access is the natural type to consider for the class A[1].

4 In fact, this problem is clearly in P, meaning that we can actually prove the stronger statement
W[P] ⊆ A[1]P. However, we choose FPT instead of P because the instance with which the oracle is
queried will be fpt-sized, and because it is more natural to have A[1]-machines query a parameterized
oracle, rather than a classical one.

MFCS 2018

73:12 On W[1]-Hardness as Evidence for Intractability

Since A[1] ⊆ W[t] ⊆ W[P] holds for all t ≥ 1, and by Theorem 12 we have that
A[1]FPT = W[P] = W[P](FPT)tail, it seems reasonable to expect that W[t]FPT = W[P] holds
for all t as well. In order to prove that this is indeed the case, we need to use oracle
W[t]-machines (Definition 10), with tail-restricted access to the oracle. Then the proof is
based on a combination of ideas from the proofs of Corollary 11 and Theorem 12.

I Corollary 13. For every t ≥ 1 it holds that W[t]FPT = W[P].

In [4] we showed that for every t ≥ 1 the class A[t + 1] can be obtained as A[1]Ot , where
Ot is a specific A[t]-complete oracle, but we also observed that A[1]FPT does not appear to
be a subset of A[t] for any t. Theorem 12 provides support for this intuition by identifying
A[1]FPT as a class which is not known or believed to be a subset of any class A[t].

I Corollary 14. For every t ≥ 1 we have that if A[t + 1] = A[1]A[t], then W[P] ⊂ A[t + 1]. In
particular, if W[P] 6⊂ A[2], we have that A[1]A[1] 6= A[2].

Corollary 14 shows that the above-mentioned oracle characterization of the A-Hierarchy from
[4] can probably not be improved significantly: Although it may be possible to obtain A[t + 1]
by providing A[1] with other A[t]-complete oracles, it is unlikely that Ot can be replaced by
the entire class A[t], for the somewhat counter-intuitive reason that A[t] contains all tractable
problems. More importantly, Corollary 14 implies, assuming W[P] 6⊂ A[t + 1] and that PH is
proper, that each class A[t + 1] is closer to the class A[t] than ΣP

t+1 is to ΣP
t , in the precise

sense that A[t + 1] (A[1]A[t], whereas ΣP
t+1 = NPΣP

t . The use of a highly restricted type of
oracle access for the parameterized classes can only make this conclusion more legitimate.

A weak downward separation theorem for the A-Hierarchy.

It is a long-standing open problem whether the collapse of any class A[t + 1] to A[t] would
cause all higher levels of the A-Hierarchy to coincide with A[t] (or, equivalently, whether a
separation of two classes A[t + 1] and A[t] would imply that all levels below A[t] are distinct,
whence the name “downward separation”). Given the similarities with PH, one might expect
such a theorem to hold for the A-Hierarchy as well. Nevertheless, the proof of the downward
separation theorem for the Polynomial Hierarchy does not appear to carry over directly to the
parameterized setting. So far, the best result in this direction has been a theorem of Chen et
al. [7], who showed that W[P] = FPT implies FPT = A[1] = A[2] = This result is already
non-trivial, since A[t] is not known to be a subset of W[P] for t > 1, and can be viewed as a
parameterized version of P = NP⇒ PH = P, except that the stronger collapse W[P] = FPT
is required instead of A[1] = FPT (in fact, the proof of the parameterized theorem in [7] is
adapted from the proof of the corresponding classical theorem). Previously it was not known
whether assuming a weaker collapse, for example W[P] = A[1], might also suffice to prove
that ∀t ≥ 1 : A[t] = A[t + 1]⇒ A-Hierarchy = A[t]. In what follows we prove such a theorem.

Let A[1]c be the class of parameterized problems Q such that there exists an A[1]-machine
that solves any instance (x, k) of Q in a number of steps depending only on k. This subclass
of A[1] contains the problems that can be solved by A[1]-machines without the need for a
precomputation that runs in fpt-time. It is provably not closed under fpt-reductions, but
contains many important W[1]-complete problems, provided that the input is given in an
appropriate format. For example, p-IndependentSet ∈ A[1]c, if the input graph is given in
the form of an adjacency matrix, because then an A[1]-machine can first guess k vertices
(recall that a nondeterministic RAM can guess an integer between 1 and n in a single step;
see Section 2.1) and use its random access memory to verify in O(k2) steps that none of
the edges between two guessed vertices are in the graph. One can similarly show that
p-ShortTMAcceptance and other W[1]-complete problems are in A[1]c.

R. C. Bottesch 73:13

If W[P] were to collapse to A[1], then the W[P]-complete problem p-WSatCircuit
would also be A[1]-complete, and therefore it would seem reasonable to expect that it is
also in A[1]c, given an appropriate, efficiently computable encoding of the input. Thus,
p-WSatCircuit ∈ A[1]c seems only slightly less likely than W[P] = A[1] (although, strictly
speaking, both p-WSatCircuit ∈ A[1]c and p-WSatCircuit ∈ FPT (used by Chen et al.
[7]) are strictly stronger assumptions than p-WSatCircuit ∈ A[1], and probably mutually
incomparable). Under this assumption, we can prove the following:

I Theorem 15. Assume that p-WSatCircuit ∈ A[1]c, meaning that there exists an A[1]-
machine which solves any instance (x, k) of p-WSatCircuit in a number of steps depending
computably on k alone. Then ∀t ≥ 1 we have that A[t] = A[t + 1]⇒ (∀u ≥ 1 : A[t] = A[t + u]).

Proof. We show that under the first assumption in the theorem statement, we have for every
t ≥ 1 that A[t + 1] = Σ[P]

t+1. Since we already have a downward separation theorem for W[P]H
(Fact 7), it follows that the desired conclusion holds for the A-Hierarchy.

First, we have for every t ≥ 1 that Σ[P]
t+1 ⊆ A[t]p-WSatCircuit, by a similar proof as

that of Theorem 12: To solve a problem Q ∈ Σ[P]
t+1, an A[t]p-WSatCircuit-machine will first

compute a reduction to the canonical Σ[P]
t+1-complete problem p-AWSatCircuitt+1, and, if

t is odd, modify the resulting circuit so that its output is flipped. The machine then uses
its t-alternating nondeterminism to guess the variables to set to 1 in the first t sets of the
partition of the circuit’s inputs, and hardwires this partial assignment into the circuit. The
result is an instance of p-WSatCircuit, which can be solved with a single query to the
oracle, and the oracle A[t]-machine now outputs the oracle’s answer if t is odd, otherwise it
outputs the opposite answer. It is easy to verify that this solves the problem Q.

Finally, we outline the proof that A[t]p-WSatCircuit ⊆ A[t + 1], under the assumption
that the algorithm for p-WSatCircuit mentioned in the theorem statement exists. This
inclusion is proved in the same manner as A[1]p-MC(Σt[3]) ⊆ A[t + 1] [4, Theorem 13], which
is itself a parameterized version of the proof of the well-known fact that NPΣtSAT ⊆ ΣP

t+1
(see [2, Section 5.5]). An A[t + 1]-machine can first perform the deterministic part of the
oracle A[t]-machine’s computation, and then use its (t + 1)-alternating nondeterminism to
guess the answers to the subsequent oracle queries of the simulated machine (existentially),
all of its t-alternating nondeterministic guesses, as well as (suitably quantified) witnesses
for the query instances. Oracle queries are then replaced by computations in which the
guessed witnesses are used instead of nondeterministic guesses. The fact that evaluations of
p-WSatCircuit-queries can be performed in this manner, is due to the assumption that
this problem has a nondeterministic algorithm running in time dependent on k alone.

Since A[t + 1] ⊆ Σ[P]
t+1 holds unconditionally, we conclude that the two classes are equal,

which completes the proof. J

5 Level-by-level relativized separations of the W- and the
A-Hierarchy

In this section we give oracle-based evidence that the main parameterized hierarchies do
not collapse in unforeseen ways. We start by constructing a single oracle relative to which
the inclusion of every W[t] in A[t] is strict, except for the first level. In fact, we accomplish
this by proving the strongest possible relativized separation between co-nondeterminism and
(existential) nondeterminism in the parameterized setting: the weakest co-nondeterministic
class with tail-restricted oracle access, against the strongest nondeterministic class with
unrestricted oracle access.

MFCS 2018

73:14 On W[1]-Hardness as Evidence for Intractability

The proofs of the theorems in this section are based on standard diagonalization arguments
that have been adapted to the parameterized setting, and can be found in the full version of
the paper.

I Theorem 16. There exists a computable oracle O such that co-A[1]O 6⊂ para-NP(O).

Since co-A[1]O ⊆ A[t] for all t ≥ 2, and W[t]O ⊆ para-NP(O) for all t ≥ 1, we immediately
get the next corollary. Note, however, that the oracle constructed here does not appear
to separate A[1] from W[1], since the separating problem in co-A[1]O \ para-NP(O) is not
in A[1]O. Had a separation of two coinciding classes occured, this would have made the
conclusion of Theorem 16 much less convincing.

I Corollary 17. There exists a computable oracle O such that for every t ≥ 2, W[t]O (A[t]O.

Finally, we show that the W-Hierarchy is not likely to be contained in any finite level of the
A-Hierarchy.

I Theorem 18. There exists for each t ≥ 1 a computable oracle Ot such that W[t + 1]Ot 6⊂
A[t]Ot , where both machines have tail-restricted access to Ot, but the W[t]-machine has the
stronger type of oracle access mentioned in Section 3.

As mentioned in the introduction, each oracle Ot also separates the classes W[t] and
W[t + 1] in the relativized setting, since W[t]Ot ⊆ A[t]Ot but W[t + 1]Ot 6⊂ A[t]Ot .

6 Conclusions

Our results, together with the previously known theorems mentioned in the introduction,
strongly indicate that if the central conjecture of parameterized complexity theory holds at
all, proving it may be hard even under the additional assumption of a separation between
arbitrarily-weakly-nondeterministic polynomial-time and P (and, in particular, that P 6= NP).
Of course, the same also applies to the nowadays “standard” conjecture ETH. Additionally,
we have seen that W[1] and FPT are in some ways unexpectedly close, unless much of
what is generally assumed in parameterized complexity theory (such as the W-Hierarchy
not collapsing) is false. All of this suggests that the hardness of a problem for up to W[P]
should not be treated as strong evidence of intractability, at least not with a similar level of
confidence as when NP-hardness is considered evidence of computational intractability.

References
1 E. Allender. Limitations of the upward separation technique. Mathematical Systems Theory,

24(1):53–67, 1991.
2 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge, 2009.
3 R.V. Book, C.B. Wilson, and M. Xu. Relativizing time, space, and time-space. SIAM J.

Comput., 11(3):571–581, 1982.
4 R.C. Bottesch. Relativization and Interactive Proof Systems in Parameterized Complex-

ity Theory. In 12th International Symposium on Parameterized and Exact Computation
(IPEC 2017), volume 89, pages 9:1–9:12, 2018. URL: http://drops.dagstuhl.de/opus/
volltexte/2018/8571.

5 J.F. Buss and T. Islam. Simplifying the Weft hierarchy. Theoretical Computer Science,
351(3):303–313, 2006.

6 L. Cai, J. Chen, R.G. Downey, and M.R. Fellows. On the structure of parameterized
problems in NP. Information and Computation, 123:38–49, 1995.

http://drops.dagstuhl.de/opus/volltexte/2018/8571
http://drops.dagstuhl.de/opus/volltexte/2018/8571

R. C. Bottesch 73:15

7 Y. Chen, J. Flum, and M. Grohe. Machine-based methods in parameterized complexity
theory. Theoretical Computer Science, 339:167–199, 2005.

8 R.G. Downey and M.R. Fellows. Fixed-parameter tractability and completeness III - Some
structural aspects of the W hierarchy. In K. Ambos-Spies, S. Homer, and U. Schoning,
editors, Complexity Theory, pages 166–191. Cambridge University Press, 1993.

9 R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, Berlin, 1999.
10 R.G. Downey and M.R. Fellows. Fundamentals of Parameterized Complexity. Springer,

2013.
11 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, Berlin, 2006.
12 L. Fortnow and M. Sipser. Are there interactive protocols for co-NP languages? Information

Processing Letters, 28(5):249–251, 1988.
13 R. Imagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential com-

plexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
14 D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the exponential time

hypothesis. Bulletin of the EATCS, 105:41–71, 2011.
15 C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
16 A. Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992.

MFCS 2018

A Simple Augmentation Method for Matchings
with Applications to Streaming Algorithms
Christian Konrad
Department of Computer Science, University of Bristol
Merchant Venturers Building, Woodland Road, BS8 1UB, United Kingdom
christian.konrad@bristol.ac.uk

Abstract
Given a graph G, it is well known that any maximal matching M in G is at least half the size of
a maximum matchingM∗. In this paper, we show that if G is bipartite, then running the Greedy
matching algorithm on a sampled subgraph of G produces enough additional edges that can be
used to augmentM such that the resulting matching is of size at least (2−

√
2)|M∗| ≈ 0.5857|M∗|

(ignoring lower order terms) with high probability.
The main applications of our method lie in the area of data streaming algorithms, where an

algorithm performs few passes over the edges of an n-vertex graph while maintaining a memory
of size O(n polylog n). Our method immediately yields a very simple two-pass algorithm for
Maximum Bipartite Matching (MBM) with approximation factor 0.5857, which only runs
the Greedy matching algorithm in each pass. This slightly improves on the much more involved
0.583-approximation algorithm of Esfandiari et al. [ICDMW 2016]. To obtain our main result, we
combine our method with a residual sparsity property of the random order Greedy algorithm and
give a one-pass random order streaming algorithm for MBM with approximation factor 0.5395.
This substantially improves upon the one-pass random order 0.505-approximation algorithm of
Konrad et al. [APPROX 2012].

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near
linear time algorithms, Theory of computation → Graph algorithms analysis

Keywords and phrases Matchings, augmenting paths, streaming algorithms, random order

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.74

1 Introduction

Computing Large Matchings. Given a bipartite graph G = (A,B,E), a matching M ⊆ E
in G is a subset of non-adjacent edges. In this paper, we address the Maximum Bipartite
Matching (MBM) problem, which consists of finding a matching of maximum size. Many
classic algorithms for MBM, such as the Hopcroft-Karp algorithm [20] or Edmonds’ algorithm
[11], as well as many more recent algorithms, first compute an arbitrary matching and then
iteratively improve it by finding augmenting paths until it is of maximum size. A good
starting point is a maximal matching, i.e., a matching that cannot be enlarged by adding an
edge outside the matching to it, which is known to be of size at least 1/2 times the size of a
maximum matching, i.e., one of maximum size. A maximal matching is for example produced
by the Greedy matching algorithm, which processes the edges of a graph in arbitrary order
and adds the current edge to an initially empty matching if the resulting set is still a matching.
For an integer k ≥ 1, a (2k + 1)-augmenting path P = e1, e2, e3, . . . , e2k+1 with respect to
a matching M is a path of odd length that alternates between edges outside M and edges
contained in M such that both e1 and e2k+1 are incident to vertices that are not matched in
M . Since P contains k + 1 edges outside M and k edges of M , removing the matched edges

© Christian Konrad;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 74; pp. 74:1–74:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christian.konrad@bristol.ac.uk
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.74
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

74:2 A Simple Augmentation Method for Matchings with Applications to Streaming

in P from M and inserting the unmatched edges in P into M thus increases the size of M
by 1. It is known that a non-maximum matching always admits an augmenting path, and,
thus, repeatedly finding one and augmenting eventually yields a maximum matching.

To decrease the number of improvement steps required, one common approach is to com-
pute a large set of disjoint augmenting paths and augment along each of them simultaneously.
This approach is particularly beneficial when designing algorithms in restricted computational
models such as the data streaming model (see below) or various distributed computational
models, since typically the number of passes (streaming) or rounds (distributed algorithms)
grows linearly with the number of augmentation rounds.

Our Results. In this paper, we give a new method that allows us to find a large fraction of
disjoint 3-augmenting paths such that, when augmenting along those paths, the resulting
matching is of size at least (2 −

√
2)|M∗| − o(|M∗|) ≈ 0.5857|M∗| − o(|M∗|) with high

probability, where M∗ is a maximum matching (Theorem 8). The strength of our method
lies both in its simplicity and effectiveness: It only requires running the Greedy matching
algorithm on a random subgraph to produce the necessary edges. Despite its simplicity, it
outperforms other more complicated methods and yields improvements over the state-of-the-
art one- and two-pass data streaming algorithms for matchings (see below). Our method can
also be applied repeatedly and for example yields a 3-pass streaming algorithm that also
outperforms the currently best 3-pass streaming algorithm known.

Applications to Data Streaming Algorithms. While our method can be applied in essen-
tially all computational models that allow an implementation of the Greedy matching
algorithm, it has been designed with the data streaming model in mind. Given an n-vertex
graph G = (V,E), a p-pass, s-space data streaming algorithm processing G performs p
passes over the edges E of G (the edges may arrive in arbitrary, potentially adversarial
order) while maintaining a memory of size s. Since many graph problems require space
Ω(n log n) (observe that storing a large matching already requires this amount of space) [32],
research has focussed on the semi-streaming model [16], where a graph streaming algorithm
is allowed to use space O(n polylog n). Concerning the MBM problem, Feigenbaum et al.
[16] observed that the Greedy matching algorithm constitutes a one-pass 1

2 -approximation
semi-streaming algorithm for MBM. Interestingly, despite intense research efforts, no better
one-pass streaming algorithms are known, even if space O(n2−δ) is granted, for any δ > 0,
while lower bounds only rule out the existence of semi-streaming algorithms with approxima-
tion ratio larger than 1−1/e ≈ 0.6321 [22, 18]. Konrad et al. [26] studied minimal extensions
to the one-pass semi-streaming model that allow us to improve on Greedy. They showed
that approximation ratios strictly larger than 1

2 can be obtained if either the edges of the
input graph arrive in uniform random order, or a second pass is granted. More specifically,
they gave a symbolic improvement showing that a (1

2 + 0.005)-approximation can be obtained
if edges arrive in random order, and a (1

2 + 0.02)-approximation can be achieved if two passes
are allowed. Their two-pass result has since been improved by Kale and Tirodkar [21] to
1
2 + 1

16 = 1
2 + 0.0625 and independently by Esfandiari et al. to 1

2 + 0.083 [14].
Our method for finding augmenting paths immediately yields a two-pass semi-streaming

algorithm with approximation factor 0.5857 (Theorem 9), thus slightly improving over the
algorithm of Esfandiari et al. [14]. Our algorithm has constant update time (i.e., the running
time between two read operations from the stream) and does not need a post-processing step,
while the algorithm of Esfandiari et al. requires the computation of a maximum matching
in the post-processing step. Our main result is a one-pass random order semi-streaming

C. Konrad 74:3

B A B A

GL M GR

M ′

Figure 1 Left: Bipartite graph G = (A, B, E) with maximal matching M . The dotted edges
show a perfect matching in G. Matched vertices are grey, free vertices are white. Center: Subset
M ′ ⊆ M is highlighted in red. The blue edges are produced by the runs of Greedy on G′

L and G′
R.

Observe that one 3-augmenting path is found. Right: M after the augmentation.

algorithm with approximation factor 0.5395 (Theorem 16), showing that more substantial
improvements over 1

2 than the symbolic improvement given by Konrad et al. [26] are possible
in the random order scenario. This algorithm is obtained by combining our method for
finding augmenting paths with a residual sparsity property of the random order Greedy
matching algorithm (e.g. [25]) that has recently been exploited in various contexts [25, 1, 17].

Techniques. For illustration purposes, consider a bipartite graph G = (A,B,E) that
contains a perfect matching M∗, i.e., a matching that matches all vertices, and a maximal
matching M with |M | = 1

2 |M
∗|. It can be seen that M ⊕M∗ := (M \M∗)∪ (M∗ \M) forms

a set of 1
2 |M

∗| disjoint 3-augmenting paths. In other words, there exists a matching of size
1
2 |M

∗| in graph GL := G[A(M) ∪B(M)], where A(M) is the set of matched A-vertices, and
B(M) := B \B(M), and also one of size 1

2 |M
∗| in GR = G[A(M) ∪B(M)], see Figure 1.

We now sample a random subset of edges M ′ ⊆M such that every edge e ∈M is included
in M ′ with probability p. Using an argument by Konrad et al. [26], it follows that when
running the Greedy matching algorithm on the subgraph G′L := G[A(M ′) ∪B(M)] ⊆ GL,
then in expectation a 1

1+p fraction of the vertices A(M ′) is matched. Observe that if we
chose p = 1, then half of the vertices get matched, which is what we expect from the
Greedy matching algorithm. However, if we chose p substantially smaller than 1, then a
large fraction of vertices of A(M ′) is matched. We also apply this argument to subgraph
G′R := G[B(M ′) ∪ A(M)] ⊆ GR, which thus allows us to find large matchings in both
subgraphs G′L and G′R and in turn extract many 3-augmenting paths. Observe that this
method directly yields a two-pass semi-streaming algorithm, by computing a maximal
matching in the first pass, and augmenting it using the described method in the second pass.

The main shortcoming of this method is that the result by Konrad et al. [26] only
holds in expectation, which would imply that our result also only holds in expectation. We
therefore strengthen their result and prove that a similar version holds with high probability.
Our proof models the execution of the algorithm with a Doob martingale and applies
Azuma’s inequality to obtain a concentration result. We then use our result and additional
combinatorial arguments to bound the number of 3-augmenting paths found.

Our one-pass random order streaming algorithm combines our method for finding 3-
augmenting paths with a residual sparsity property of the random order Greedy algorithm.
We run Greedy on the first 1

logn fraction of edges in the stream to produce a matching M .
The residual sparsity property states that the residual graph H = G[V \ V (M)] contains
O(n polylog n) edges with high probability, which we then collect while processing the
remaining edges in the stream. Our main argument is as follows: If |M | is relatively small,
then the residual graph H contains a sufficiently large matching. On the other hand, if |M |
is relatively large (close to a 1

2 -approximation), then we can use the remainder of the stream
to find 3-augmenting paths using the method described above.

MFCS 2018

74:4 A Simple Augmentation Method for Matchings with Applications to Streaming

Comparison to Esfandiari et al. [14] and Kale and Tirodkar [21]. The two-pass streaming
algorithms of Esfandiari et al. and Kale and Tirodkar proceed similarly in that they compute
a maximal matching M in the first pass and then find additional edges in the second pass
that are used to augment M . Their algorithms are in fact almost identical and only differ in
the post-processing stage. With GL = G[A(M) ∪B(M)] and GR = G[B(M) ∪A(M)] being
as above, they compute incomplete semi-matchings SL in GL and SR in GR, i.e., subsets of
edges such that every vertex in A(M) (B(M)) is matched at most once in SL (resp. SR)
and every vertex B(M) (resp. A(M)) is matched at most k times, for some integer k. Using
a Greedy algorithm for computing SL and SR, it can be seen that a large fraction of vertices
A(M) (resp. B(M)) are matched in SL (resp. SR). This allows the extraction of multiple
3-augmenting paths. In Kale and Tirodkar, the extraction step is done greedily, which is
efficient but leads to a worse approximation factor than in Esfandiari et al. Esfandiari et
al. solve an optimization problem in a post-processing phase that allows the extraction of
more 3-augmenting paths, which in turn leads to an improved approximation guarantee. Our
method is much simpler in this regard, since our additional edges form matchings and it is
thus straightforward to extract 3-augmenting paths.

Comparison to Konrad et al. [26]. The one-pass random order algorithm by Konrad et
al. proceeds as follows: First, run Greedy on roughly the first third of the edges in the
input stream and obtain a matching M . Konrad et al. prove that if Greedy on the entire
input stream produces a matching that is close to a 1

2 -approximation, then the matching is
built early on, i.e., |M | is relatively large. They then use the remaining part of the stream
for finding 3-augmenting paths. To this end, they compute a matching in GL on roughly
the next third of the edges, and then use the last third to compute a matching in GR to
complete the 3-augmenting paths. Their method only yields a marginal improvement over
1/2 and their result only holds in expectation.

Observe that we also argue that the matching M is large, which we achieve by exploiting
the residual sparsity property of Greedy. While Konrad et al. have already processed a
third of the edges at this stage, we have only processed a 1

log(n) fraction, and there are thus
more remaining edges to our disposal for finding 3-augmenting paths. Further, our method
produces more 3-augmenting paths than the method proposed by Konrad et al.

Further Related Work. Matching problems are the most studied graph problems in the
data streaming model. Besides the already mentioned works, algorithms have been designed
for weighted matchings (e.g. [16, 29, 33, 9, 31]), multiple passes (e.g. [29, 12, 2]), inser-
tion/deletion streams (e.g. [10, 6, 24, 7, 4, 30]), sparse graphs (e.g. [13, 8]), and other
variants of the matching problem [27]. Regarding random order streams, Kapralov et al. [23]
showed that the size of a maximum matching can be estimated within a poly-log factor using
poly-log space, and a (2/3− ε)-approximation can be computed using Õ(n3/2) space [3].

Outline. We proceed as follows. We first give notation and definitions in Section 2. We
then present our method for finding a large set of disjoint 3-augmenting paths in Section 3.
Implementation details when implementing our method in the adversarial order streaming
model are then discussed in Section 4. In Section 5, we give our one-pass random order
algorithm. Finally, we conclude in Section 6 with open problems.

C. Konrad 74:5

2 Preliminaries

Notation. Let G = (A,B,E) be a bipartite graph. We generally use n to denote the number
of vertices, i.e., n = |A|+ |B|, and m = |E| to denote the number of edges. For a subset of
vertices U ⊆ A ∪ B and a subset of edges F ⊆ E, we denote the vertex induced subgraph
of G by vertices U by G[U], and the edge induced subgraph of G by edges F by G[F]. Let
M be a matching in G. We denote by A(M) (B(M)) the vertices of A (resp. B) that are
matched by M , and we write V (M) = A(M)∪B(M). Similarly, for an edge e ∈ E, we write
A(e) to denote its incident A-vertex, B(e) to denote its B vertex, and V (e) = {A(e), B(e)}.
The complement of a subset A′ ⊆ A (B′ ⊆ B) is denoted by A′ = A \A′ (resp. B′ = B \B′).

The matching number of a graph G, i.e., the size of a maximum matching in G, is denoted
µ(G). We write opt(G) to denote an arbitrary but fixed maximum matching in G. For two
sets X,Y , we write X ⊕ Y := (X \ Y) ∪ (Y \X) to denote their symmetric difference. For a
graph G, ∆(G) denotes the maximum degree.

Concentration Bounds. In this paper, we will use two concentration bounds. The first one
is Azuma’s inequality for martingales (we refer the reader to [28] for the an introduction to
martingales and Azuma’s inequality), and the second is a Chernoff-type bound for weakly
dependent random variables.

I Theorem 1 (Azuma’s Inequality ([5, 28])). Suppose that X0, X1, X2, . . . is a martingale
and let |Xi −Xi−1| ≤ ci for suitable constants ci. Then:

P [|Xn −X0| ≥ t] ≤ 2 exp
(

−t2

2
∑n
i=1 c

2
i

)
.

I Theorem 2 (Chernoff Bound for Weakly Dependent Variables, e.g. [15]). Let X1, X2, . . . , Xn

be 0/1 random variables for which there is a p ∈ [0, 1] such that for all k ∈ [n] the inequality

P [Xk = 1 |X1, X2, . . . , Xk−1] ≤ p

holds (i.e., the probability of Xk = 1 conditioned on any possible outcome of X1, . . . , Xk−1 is
at most p). Let further µ ≥ p · n. Then, for every δ > 0:

P

[
n∑
i=1

Xi ≥ (1 + δ)µ
]
≤
(

eδ

(1 + δ)1+δ

)µ
.

We will say that an event occurs with high probability in variable x, if the the probability of
the event occurring is at least 1− x−C , for some C ≥ 1. If we do not mention x explicitly,
then the high probability statement is in n, the number of vertices of the input graph.

We say that an algorithm is a C-approximation algorithm for MBM if it computes a
matching M of size at least C · µ(G)− o(µ(G)).

3 Finding a Large Set of Disjoint 3-augmenting Paths

We now present an algorithm that, given a maximal matching M in a bipartite graph
G = (A,B,E), finds a set of disjoint 3-augmenting paths P by running the Greedy
matching algorithm on a random subgraph of G. The set P is such that, when augmenting M
along the paths P , a matching of size at least (2−

√
2)µ(G)−o(µ(G)) ≈ 0.5857µ(G)−o(µ(G))

is obtained.

MFCS 2018

74:6 A Simple Augmentation Method for Matchings with Applications to Streaming

Algorithm 1 Finding a large set of 3-augmenting paths.
Input: Bipartite graph G = (A,B,E), maximal matching M , parameter 0 < p < 1

1. Sample each edge e ∈M with probability p; let M ′ be the resulting sample
2. ML ← Greedy(G[A(M ′) ∪B(M)]); MR ← Greedy(G[A(M) ∪B(M ′)])
3. P ← {paths b′a, ab, ba′ | b′a ∈ML, ab ∈M, ba′ ∈MR}
4. return P

Our algorithm is illustrated in Algorithm 1. For the sake of a clear presentation, the
algorithm employs two invocations of Greedy on two disjoint subgraphs. This is equivalent
to invoking Greedy only once on their union. Our algorithm is parametrized by a sampling
probability p. To obtain the claimed bound stated above, we will later optimize p.

To obtain a better understanding of our algorithm, we first discuss structural properties
that help us locate 3-augmenting paths in G with respect to the matching M .

Let M∗ be a maximum matching in G and let ε be such that |M | = (1
2 + ε)|M∗|. Observe

first that M ⊕M∗ contains a collection of (1
2 − ε)|M

∗| disjoint augmenting paths. Further,
observe that the endpoints of each augmenting path are a free vertex in A (i.e., a vertex
in A(M)) and a free vertex in B. Hence, the subgraphs GL := G[A(M) ∪ B(M)] and
GR := G[A(M) ∪B(M)] each contain a matching of size (1

2 − ε)|M
∗|. We summarize this in

Observation 3:

I Observation 3. Let ε be such that |M | = (1
2 + ε)µ(G). Then:

min{µ(GL), µ(GR)} ≥ (1
2 − ε)µ(G) .

Suppose now that ε is small. Further, suppose that we could compute maximum matchings
M∗L in GL and M∗R in GR. Then for almost every edge e ∈M there are edges el ∈ML and
er ∈MR such that eleer forms a 3-augmenting path. We will call el a left wing for edge e
and er a right wing for edge e.

Our augmentation method should of course not be based on computing maximum
matchings themselves. We therefore proceed differently. First, observe that if we computed
maximal matchings, i.e., 1

2 -approximations, in GL and GR, then we may not find any 3-
augmenting path at all, since it may happen that we find left wings for half of the edges of
M , and right wings for the other half. Our strategy therefore is as follows: We first sample a
subset of edges M ′ ⊆M , where each edge of M is included in M ′ with probability p, and we
attempt to augment only the edges in M ′ by computing Greedy matchings in the subgraphs
G′L := G[A(M ′) ∪B(M)] and G′R := G[A(M) ∪B(M ′)]. Konrad et al. [26] proved that, in
expectation, the resulting matchings are essentially 1

1+p ≥
1
2 -approximations, albeit for a

slightly different notion of approximation, which is nevertheless suitable for our purposes:

I Theorem 4 (Konrad et al. [26]). Let G = (U, V,E) be a bipartite graph, and let U ′ ⊆ U be
such that every vertex u ∈ U is included in U ′ with probability p (p ∈ [0, 1]). Then, for any
arbitrary but fixed order in which Greedy processes the edges, the following holds:

EU ′ |Greedy(G[U ′ ∪ V])| ≥ p

1 + p
µ(G) .

Hence, if ε is close to 0, and p is substantially smaller than 1, then it follows from the
previous theorem that a large fraction of the vertices A(M ′) will be matched by Greedy in
G′L, and a large fraction of the vertices of B(M ′) will be matched by Greedy in G′R. This

C. Konrad 74:7

in turn implies that a substantial amount of edges of M ′ both have left and a right wings
and are thus included in 3-augmenting paths.

Before we make this intuition formal, we point out one shortcoming of applying the
previous theorem by Konrad et al. directly. They prove that the resulting matching is large
only in expectation, which in turn would imply that our result only holds in expectation.
We therefore first strengthen their result and prove that a similar version holds with high
probability. To this end, we first prove a technical lemma that is employed in the proof of
our strengthened theorem.

I Lemma 5. Let G = (U, V,E) be a bipartite graph and let u ∈ U, v ∈ V be arbitrary vertices.
Let U ′ ⊆ U be such that every vertex u ∈ U is included in U ′ with probability p. Then, for
any arbitrary but fixed order in which Greedy processes the edges, the following holds:

0 ≤ EU ′ |Greedy(G[U ′ ∪ V])| − EU ′ |Greedy(G[(U ′ ∪ V) \ {u, v}])| ≤ 2 .

Proof. First, observe that

EU ′ |Greedy(G[U ′ ∪ V])| − EU ′ |Greedy(G[(U ′ ∪ V) \ {u, v}])| =
EU ′ (|Greedy(G[U ′ ∪ V])| − |Greedy(G[(U ′ ∪ V) \ {u, v}])|) .

We will prove next that 0 ≤ Greedy(G[U ′ ∪ V]) − Greedy(G[U ′ ∪ V − {u, v}]) ≤ 2
holds for any U ′ ⊆ U , which then proves the lemma. We will in fact argue the stronger
statement that for any graph G = (V,E) and any vertex v ∈ V , the inequality 0 ≤
Greedy(G) − Greedy(G \ {v}) ≤ 1 holds. The result then follows by applying this
statement twice.

Consider thus an arbitrary graph G = (V,E) and a vertex v ∈ V . First observe that
if Greedy(G) leaves v unmatched, then Greedy(G) = Greedy(G \ {v}). If Greedy(G)
matches v, then it is not hard to see that Greedy(G)⊕Greedy(G \ {v}) consists of one
alternating path whose one endpoint is v. This further implies that Greedy(G \ {v}) ≤
Greedy(G) ≤ Greedy(G \ {v}) + 1, which completes the proof. J

We now give our strengthened version of Theorem 4.

I Theorem 6. Let G = (U, V,E) be a bipartite graph, and let U ′ ⊆ U be such that every
vertex u ∈ U is included in U ′ with probability p (p ∈ [0, 1]). Then, for any arbitrary but
fixed order in which Greedy processes the edges, the following holds with probability at least
1− (µ(G))−12:

|Greedy(G[U ′ ∪ V])| ≥ p

1 + p
µ(G)− o(µ(G)) .

Proof. Let X := |Greedy(G[U ′ ∪ V])|. By Theorem 4 we have EX ≥ p
1+pµ(G).

For 1 ≤ i ≤ n, let Zi be the ith edge selected by Greedy, and let Zi = ⊥ if i > X. Let
Yi be the Doob martingale induced by the first i choices of the algorithm, i.e.,

Yi := EZi+1,Zi+2,...,Zn
(X |Z1, . . . , Zi) .

Observe that the expectation in the previous expression is in itself a random variable,
since the expectation is only taken over Zi+1, . . . , Zn, while Z1, . . . , Zi are random variables.
It is not hard to check that the sequence (Yi)i always forms a martingale, independently of
the underlying sequence Zi. Observe next that Y0 = EX and Yn = X. We thus need to show
that |Yn − Y0| is small with high probability. To this end, we will apply Azuma’s inequality,
which requires bounding the differences |Yi+1 − Yi|, for every i, first.

MFCS 2018

74:8 A Simple Augmentation Method for Matchings with Applications to Streaming

First, observe that |Yi+1 − Yi| = 0 for every i ≥ X. Next, we claim that |Yi+1 − Yi| ≤ 1,
for every i < X. Indeed, observe that Yi is the expected size of the computed matching
conditioned on the first i choices of the algorithm. We can thus rewrite Yi as:

Yi = i+ EU ′ |Greedy(Hi)| ,

where Hi := G[(U ′ ∪ V) \ ∪j≤iV (Zj)] is the residual graph obtained when removing the
vertices incident to the first i selected edges. We thus obtain:

Yi+1 − Yi = 1 + EU ′ |Greedy(Hi+1)| − EU ′ |Greedy(Hi)|
= 1 + EU ′ |Greedy(Hi \ V (Zi+1))| − EU ′ |Greedy(Hi)| ∈ {−1, 0, 1} ,

where we applied Lemma 5.
Next, since X ≤ µ(G[U ′ ∪ V]) ≤ µ(G), we have |Yi+1 − Yi| ≤ 1 for every i ≤ µ(G), and

|Yi+1 − Yi| = 0 for every i > µ(G). Applying Azuma’s Inequality (Theorem 1), we obtain:

P
[
|Yn − Y0| ≥ 5

√
µ(G) ln(µ(G))

]
≤ µ(G)−12 . J

Equipped with Theorem 6, we now show that our algorithm finds many disjoint 3-
augmenting paths, provided that M is close to a 1

2 -approximation.

I Lemma 7. Consider Algorithm 1 and suppose that |M | = (1
2 + ε)µ(G). Then, with

probability at least 1− µ(G)−10,

|P| ≥ µ(G)p
(

1− 2ε
1 + p

− 1
2 − ε

)
− o(µ(G)) .

Proof. First, by an application of a Chernoff bound, we obtain |M ′| = p|M |±
O(
√
|M | ln(|M |)), with probability at least 1 − |M |−C , for an arbitrarily large constant

C. Next, by Theorem 6 and Observation 3, with probability at least 1− 2(µ(G))−12, we have
|ML| ≥ p

1+p (1
2−ε)µ(G)−o(µ(G)) and |MR| ≥ p

1+p (1
2−ε)µ(G)−o(µ(G)). Observe that at most

|M ′|− |ML| edges of M ′ do not have a left wing, and at most |M ′|− |MR| edges of M ′ do not
have a right wing. Hence, at least |M ′|− (|M ′|− |ML|)− (|M ′|− |MR|) = |ML|+ |MR|− |M ′|
edges have both left and right wings and therefore form 3 augmenting paths. We thus obtain:

|P| ≥ |ML|+ |MR| − |M ′|

≥ 2 · p

1 + p
(1
2 − ε)µ(G)− o(µ(G))− p|M | −O(

√
|M | ln(|M |))

≥ 2 · p

1 + p
(1
2 − ε)µ(G)− p(1

2 + ε)µ(G)− o(µ(G))

= µ(G)p
(

1− 2ε
1 + p

− 1
2 − ε

)
− o(µ(G)) .

By the union bound, the error is bounded by |M |−C + 2(µ(G))−12 ≤ (µ(G))−10. J

We are now ready to prove our main theorem:

I Theorem 8. Let M be a maximal matching. Then, setting p =
√

2 − 1 in Algorithm 1
guarantees that M augmented by P gives a matching of size at least (2−

√
2)µ(G)−o(µ(G)) ≈

(1
2 + 0.0857)µ(G)− o(µ(G)) with high probability in µ(G).

C. Konrad 74:9

Proof. Observe that the final matching is of size |M | + |P|. Let ε be such that |M | =
(1

2 + ε)µ(G). By Lemma 7, we have

|M |+ |P| ≥ (1
2 + ε)µ(G) + µ(G)p

(
1− 2ε
1 + p

− 1
2 − ε

)
− o(µ(G)) . (1)

It can be seen that for any value of p, the right side of Inequality 1 is minimized for ε = 0.
On the other hand, for any value of ε, the value p(ε) =

√
1−2ε
1
2 +ε − 1 maximizes Inequality 1.

Using ε = 0 and p(0) =
√

2−1 in Inequality 1 gives |M |+ |P| ≥ (2−
√

2)µ(G)−o(µ(G)). J

Multiple augmentation rounds with decreasing values of p allow further improvements. For
example, a second round with p =

√
2−
√

2√
2−1 − 1 ≈ 0.1892 guarantees that the resulting

matching is of size at least 0.6067µ(G)− o(µ(G)). As we will discuss in the next section, this
can give a 3-pass streaming algorithm for MBM with approximation factor 0.6067, which
slightly improves the 3-pass 0.605-approximation algorithm by Esfandiari et al. [14].

4 Adversarial Order Streams

Our method for finding augmenting paths given in Section 3 can directly be implemented in
the streaming model. In the first pass, we compute a maximal matching M . If the current
edge is added to M , then with probability p we add the edge to M ′ as well. In the second
pass, we run Greedy on the subgraphs G′L and G′R and as soon as a 3-augmenting path is
completed, we augment M . This can be done with constant update times.

Since we would like our streaming algorithm to succeed with high probability in n, the
number of vertices, we need to address the fact that our method as stated in Theorem 8 only
succeeds with high probability in µ(G), the size of a maximum matching in G. If µ(G) is of
size at least, say, Ω(n 1

4), our method can also gives a high probability result with respect
to n. To deal with the case µ(G) = o(n 1

4) we run the 1-pass algorithm of Chitnis et al. [7]
in parallel to our algorithm, which computes a subset of edges E′ ⊆ E of size O(n 1

2) that
contains a maximum matching provided that µ(G) = O(n 1

4). Observe that after the first
pass, we know in which of the two cases we are. We then run the Hopcroft-Karp maximum
matching algorithm [20] in time O(

√
n ·
√
n) = O(n) on the set of collected edges. To obtain

a streaming algorithm with constant update time, we amortize the previous computation
during the processing of the second pass, which is possible under the natural assumption
that m = Ω(n). This gives the following theorem:

I Theorem 9. There is a two-pass streaming algorithm for MBM with approximation factor
2−
√

2 ≈ 1
2 + 0.0857 that succeeds with high probability (in n). Using one additional pass, a

0.6067-approximation algorithm can be obtained.

5 1-pass Random Order Streaming Algorithm

In this section, we assume that µ(G) = Ω(n 1
4). To deal with the case µ(G) = o(n 1

4) we
run the algorithm of Chitnis et al. [7] as outlined in Section 4 in parallel and compute and
output a maximum matching after processing the stream. We also assume that the input
graph has at least C1 · n logC2 n edges, for suitably large constants C1, C2. If this is not the
case then we could simply store all edges within the semi-streaming space constraint and
compute and output a maximum matching.

MFCS 2018

74:10 A Simple Augmentation Method for Matchings with Applications to Streaming

Algorithm 2 One-pass random order matching algorithm.
Input: Bipartite graph G = (A,B,E) with m edges, parameter 0 < p < 1

Let π = π[1], π[2], . . . π[m] be the edges of G in uniform random order
1. M ← Greedy(π[1, m

logn])
2. Let M ′ ⊆M be such that every edge of M is included in M ′ with probability p
3. while processing π(m

logn ,m] do in parallel:
a. Compute set EM of edges ab ∈ π(m

logn ,m] with a, b /∈ V (M); if |EM | ≥ C · n log2 n,
for some appropriate large constant C, then abort

b. ML ← Greedy(GrL), where GrL is the subgraph of G induced by all edges π(m
logn ,m]

between A(M ′) and B(M)
c. MR ← Greedy(GrR), where GrR is the subgraph of G induced by all edges π(m

logn ,m]
between A(M) and B(M ′)

4. P ← {paths b′a, ab, ba′ | b′a ∈ML, ab ∈M, ba′ ∈MR}
5. if |P| ≥ µ(G[EM]) then return M augmented by P

else return M ∪ opt(G[EM])

Our 1-pass random order streaming algorithm combines our method for finding augmenting
paths with a residual sparsity property of the random order Greedy matching algorithm:

I Theorem 10 (Residual Sparsity of Greedy). Suppose that Greedy processes the edges
E of a graph G = (V,E) with m = |E| in uniform random order. Let Mi be the matching
produced by Greedy after having processed the ith edge. Then:

∆(G [V \ V (Mi)]) = O(m log n
i

)

with probability 1− n−12 (over the uniform random ordering of the edges).

This theorem is implied by a similar theorem concerning the random order Greedy algorithm
for independent sets as given in [25]. Observe that the Greedy algorithm for matchings on a
randomly ordered sequence of the edges of a graph G can be seen as the Greedy algorithm
for independent sets on a randomly ordered sequence of the vertices of the line graph L(G).

Our one-pass random order algorithm is parametrized by a probability p, and is illustrated
in Algorithm 2. In this listing, we write π = π[1], π[2], . . . , π[m] to be a uniform random
ordering of the edges E. For a < b we also write π[a, b] to denote edges π[a], π[a+ 1], . . . , π[b],
and π(a, b] to denote edges π[a+ 1], π[a+ 2], . . . , π[b].

We run Greedy on the first m
logn edges to compute a matching M . Theorem 10 implies

that the maximum degree in the residual graph H := G[V \ V (M)] is O(log2 n). This allows
us to collect the entire residual graph (i.e., set EM) within the semi-streaming space bound,
since it has O(n log2 n) edges with high probability. We abort if |EM | becomes too large.

In the next stage, we proceed as in our two-pass algorithm: We sample a subset of edges
M ′ ⊆M and we try to find 3-augmenting paths for M ′ by computing matchings ML and
MR in the subgraphs GrL and GrR. Ideally we would like to search for left and right wings
in the subgraphs GL := G[A(M) ∪B(M)] and GR := G[A(M) ∪B(M)]. Since however the
first 1

logn fraction of edges in the stream has already been processed, we can only search for
augmenting paths in GrL and GrR. Concentration bounds however allow us to prove that not
many important edges have arrived among the first 1

logn fraction of edges (Lemma 14).

C. Konrad 74:11

Our analysis is build on the following important observation. Suppose first that the
matching M is small, i.e., |M | = α|M∗|, for a small value of α. Then we will argue in the
next lemma that a maximum matching in the residual graph is large:

I Lemma 11. Let α be such that |M | = α|M∗|, and let H := G[EM] (= G[V \ V (M)]) be
the residual graph. Then:

µ(H) ≥ (1− 2α)|M∗| .

Proof. Let M∗ be a maximum matching in G. Let M∗1 ⊆ M∗ be those edges of M∗ that
share at least one endpoint with an edge in M , and let M∗2 = M∗ \M∗1 . Then |M∗1 | ≤ 2|M |,
since each edge of M can only be incident to at most two edges of M∗. Observe further that
M∗2 ⊆ EM . Hence: µ(H) ≥ |M∗2 | = |M∗| − |M∗1 | ≥ |M∗| − 2|M | = (1− 2α)|M∗| . J

By combining M with a maximum matching in H we obtain the following corollary:

I Corollary 12. Algorithm 2 finds a matching of size at least (1−α)|M∗| with high probability.

The previous corollary shows that either the matching M ∪ opt(H) is large (if α is small),
or the matching M itself is already reasonably large (if α is large). This is an important
property since we next attempt to augment M , which necessitates that M is already close to
a 1

2 -approximation. For this to succeed, we need to show that µ(GrL) and µ(GrR) are large.
To this end, let δ be such that |M |+ µ(G[EM]) = (1

2 + δ)µ(G). We will first bound µ(GL)
and µ(GR) and then prove a similar bound for µ(GrL) and µ(GrR).

I Lemma 13. Suppose that |M |+ µ(G[EM]) = (1
2 + δ)µ(G). Then:

min{µ(GL), µ(GR)} ≥ (1
2 − δ)µ(G) .

Proof. LetM∗ be a maximum matching in G and letM∗H be an arbitrary maximum matching
in H(= G[EM]). First, it is not hard to see that M ∪M∗H is a maximal matching. Next,
consider the set of edges M∗ ⊕ (M ∪ M∗H). Since |M | + |M∗H | = (1

2 + δ)µ(G), the set
M∗ ⊕ (M ∪ opt(H)) contains (1

2 − δ)µ(G) augmenting paths.
Observe that none of these augmenting paths only contain edges of M∗ and M∗H , since

this would imply that M∗H is not maximum in H. Consider now one such augmenting path
P and remove all edges of M∗H from P . Then P contains at least one augmenting path that
only contains edges from M and M∗. Applying this argument to all augmenting paths, this
proves that there are matchings in GL and GR of sizes (1

2 − δ)µ(G). J

I Lemma 14. Suppose that |M |+ µ(G[EM]) = (1
2 + δ)µ(G). Then, with high probability,

min{µ(GrL), µ(GrR)} ≥ (1− 4
log n) · (1

2 − δ)µ(G) .

Proof. We only give the argument for GrL, the argument for GrR is identical. Let M∗L =
opt(GL). We will show that most edges ofM∗L are included in π(m

logn ,m] with high probability.
By Lemma 13, we have |M∗L| ≥ (1

2 − δ)µ(G). Let ei be the i-th edge of M∗L, let ti be its
position in the stream, and let Yi be the indicator variable of the event “ti ≤ m

logn”. Our
aim is to bound the probabilities P[Yi = 1 |Y1, . . . , Yi−1] and then apply the Chernoff bound
stated in Theorem 2.

In the following, all our arguments are conditioned on the event “|E(G[V \ V (M)])| =
O(n log2 n)” (without explicitly mentioning it), which we denote by E1. This implies that

MFCS 2018

74:12 A Simple Augmentation Method for Matchings with Applications to Streaming

the algorithm does not abort in Line 3a. By the residual sparsity property as stated in
Theorem 10, E1 occurs with probability at least 1− n−12.

We will argue now that

P
[
π[m

log n + 1] ∪M is not a matching ∧ π[m

log n + 1] /∈M∗L |Y1, . . . , Yi−1

]
≥ 1− 1

log5 n
. (2)

Since E1 happens, observe that the second part of the stream consists of m(1− 1
logn)−

O(n log2 n) edges that cannot be added to matching M , at most n/2 edges of M∗L (depending
on the outcome of variables Y1, . . . , Yi−1), and at most O(n log2 n) edges that could extend
M . Further, the arrival order of the edges π(m

logn ,m] in the second part of the stream is
uniform random, since the computed matching M is not affected by their order. Hence,

P
[
π[m

log n + 1] ∪M is not a matching ∧ π[m

log n + 1] /∈M∗L |Y1, . . . , Yi−1

]
≥
m(1− 1

logn)−O(n log2 n)
m(1− 1

logn)
≥ 1− 1

log5 n
,

using the assumption that the graph has at least C · n log10 n edges, for a large enough C.
The key part of our argument is as follows: Let Π be the set of permutations that fulfill

the event in Inequality 2. Given Π, we generate a set of permutations Π′ with Π′ ⊇ Π,
which thus implies that the respective event is more likely to happen than the event in
Inequality 2. Let π ∈ Π be any permutation. Consider edge ei and let ji be such that
π[ji] ∈ M is the edge incident to ei. Since ei ∈ M∗L, we know that ti > ji. Construct
now new permutations such that ei is removed from its position ti and is inserted at every
position {ti + 1, ti + 2, . . . ,m} and add the resulting permutations to Π′. Observe that for
any permutation π′ created this way, the exact same matching M is computed, which uses
the fact that π[m

logn + 1] cannot be added to M , which is important if ei is inserted at a
position larger than m

logn + 1. Observe further that the conditionings Yj stay the same, which
uses the fact that π[m

logn + 1] /∈M∗L. Observe that Π′ and Π are not identical, since we do
not necessarily have that π′[m

logn + 1] ∪M is not a matching for π′ ∈ Π′. By construction,
at least a (1− 1

logn)-fraction of the permutations in Π′ imply Yi = 0. We thus obtain:

P [Yi = 0 |Y1, . . . , Yi−1] ≥

(1− 1
log n) · P

[
π[m

log n + 1] ∪M is not a matching ∧ π[m

log n + 1] /∈M∗L |Y1, . . . , Yi−1

]
≥ (1− 1

log n)(1− 1
log5 n

) ≥ 1− 2
log n .

We now use the Chernoff bound for dependent variables stated in Theorem 2. Using
k = (1

2 − δ)µ(G), we obtain (using µ = 2k/ log n, and δ = 1 in Theorem 2):

P

[
k∑
i=1

Yi ≥ 2 2k
log n

]
≤
(e

4

) 2k
log n ≤ n−10 ,

using the assumption µ(G) = Ω(n 1
4). The result follows. J

In the remaining analysis, with the help of the previous lemma we bound the number of
augmenting paths found in Lemma 15. We then conclude with our main theorem, where we
show that one of the two computed matchings returned by the algorithm is necessarily large.

C. Konrad 74:13

I Lemma 15. Let p = Ω(1), suppose that |M |+ µ(H) = (1
2 + δ)µ(G), and let |M | = αµ(G).

Then, with high probability,

|P| ≥ pµ(G)
(

1− 2δ
1 + p

− α
)
− o(µ(G)) .

Proof. We follow the structure of the proof of Lemma 7. By an application of a Chernoff
bound, we obtain |M ′| = p|M | ±O(

√
|M | ln(|M |)), with probability at least 1− |M |−C , for

an arbitrarily large constant C. Next, by Theorem 6 and Lemma 14, with high probability
in µ(G) we have

min{|ML|, |MR|} ≥
p

1 + p
(1
2 − δ)µ(G)− o(µ(G)) .

Since we assumed that µ(G) = Ω(n 1
4), this event also holds with high probability in n. As

argued in the proof of Lemma 7, the quantity |ML|+ |MR| − |M ′| bounds the number of
3-augmenting paths found, which then completes the proof:

|P| ≥ |ML|+ |MR| − |M ′| ≥
2p

1 + p
(1
2 − δ)µ(G)− p|M | − o(µ(G))

= pµ(G)
(

2
1 + p

(1
2 − δ)− α

)
− o(µ(G)) = pµ(G)

(
1− 2δ
1 + p

− α
)
− o(µ(G)) . J

I Theorem 16. Setting p =
√

2 − 1 in Algorithm 2 gives a one-pass random order semi-
streaming algorithm for MBM with approximation ratio 1

2 + 2
√

2−3
4
√

2−10 ≥ 0.5390 that succeeds
with high probability.

Proof. Suppose that |M | = αµ(G) and |M |+ µ(H) = (1
2 + δ)µ(G). By Lemma 11, we have

µ(H) ≥ (1− 2α)µ(G). Hence, (1− α)µ(G) ≤ (1
2 + δ)µ(G), which in turn implies α ≥ 1

2 − δ.
Plugging this into the bound given in Lemma 15, we obtain (ignoring the o(µ(G)) term):

|M |+ |P| ≥ αµ(G) + pµ(G)
(

1− 2δ
1 + p

− α
)

= µ(G)
(
α(1− p) + p

(
1− 2δ
1 + p

))
≥ µ(G)

(
(1
2 − δ)(1− p) + p

(
1− 2δ
1 + p

))
.

The quantity |M |+ max{|P|, µ(H)}, i.e., the size of the resulting matching, is minimizes if
|P| = µ(H). Hence, setting the right side of the previous inequality equal to (1

2 + δ)µ(G),
we obtain δ = p(p−1)

2p2−6p−4 , which is maximized for p =
√

2− 1 (observe that this is the same
value as in the proof of Theorem 8). In this case, we obtain δ = 2

√
2−3

4
√

2−10 ≈ 0.03950, which
completes the proof. J

6 Conclusion

In this paper, we gave a new method for finding a set of disjoint 3-augmenting paths that
allows the augmentation of a maximal matching such that the resulting matching is of size at
least

√
2− 2 times the size of a maximum matching. Our method is simple and only requires

running the Greedy matching algorithm on a random subgraph. We applied this method
in the data streaming setting and improved over the state-of-the-art one-pass random order
algorithm and the state-of-the-art two- and three-pass adversarial order algorithms.

How large a matching can we compute in a single pass in the random order setting? All
relevant known lower bounds for matchings [18, 22, 19] are highly sensitive to the arrival
order of the edges and do not translate to the random order setting. Can we compute a

MFCS 2018

74:14 A Simple Augmentation Method for Matchings with Applications to Streaming

2/3-approximation in a single pass in the random order semi-streaming setting? In the
adversarial order setting, it is known how to obtain a 2/3− δ approximation in O(1

δ) passes.
How many passes are required to obtain a 2/3-approximation?

References
1 Kook Jin Ahn, Graham Cormode, Sudipto Guha, Andrew McGregor, and Anthony Wirth.

Correlation clustering in data streams. In Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 2237–2246, 2015.
URL: http://jmlr.org/proceedings/papers/v37/ahn15.html.

2 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with
application to the maximum matching problem. Inf. Comput., 222:59–79, 2013. doi:
10.1016/j.ic.2012.10.006.

3 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab S. Mirrokni, and Cliff
Stein. Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs.
CoRR, abs/1711.03076, 2017. arXiv:1711.03076.

4 Sepelir Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings
in dynamic graph streams and the simultaneous communication model. In Proceedings of the
Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’16, pages
1345–1364, Philadelphia, PA, USA, 2016. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=2884435.2884528.

5 Kazuoki Azuma. Weighted sums of certain dependent random variables. Tohoku Math. J.
(2), 19(3):357–367, 1967. doi:10.2748/tmj/1178243286.

6 Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in
dynamic data streams. In Algorithms - ESA 2015 - 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings, pages 263–274, 2015. doi:10.1007/
978-3-662-48350-3_23.

7 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, An-
drew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling
with applications to finding matchings and related problems in dynamic graph streams. In
Proceedings of the Twenty-seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’16, pages 1326–1344, Philadelphia, PA, USA, 2016. Society for Industrial and Ap-
plied Mathematics. URL: http://dl.acm.org/citation.cfm?id=2884435.2884527.

8 Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The
Sparse Awakens: Streaming Algorithms for Matching Size Estimation in Sparse Graphs. In
Kirk Pruhs and Christian Sohler, editors, 25th Annual European Symposium on Algorithms
(ESA 2017), volume 87 of Leibniz International Proceedings in Informatics (LIPIcs), pages
29:1–29:15, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ESA.2017.29.

9 Michael Crouch and Daniel M. Stubbs. Improved Streaming Algorithms for Weighted
Matching, via Unweighted Matching. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur,
and Cristopher Moore, editors, Approximation, Randomization, and Combinatorial Optim-
ization. Algorithms and Techniques (APPROX/RANDOM 2014), volume 28 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), pages 96–104, Dagstuhl, Germany, 2014.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.
2014.96.

10 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-
window model. In Hans L. Bodlaender and Giuseppe F. Italiano, editors, Algorithms – ESA
2013, pages 337–348, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

11 Jack Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, pages 449–467,
1965.

http://jmlr.org/proceedings/papers/v37/ahn15.html
http://dx.doi.org/10.1016/j.ic.2012.10.006
http://dx.doi.org/10.1016/j.ic.2012.10.006
http://arxiv.org/abs/1711.03076
http://dl.acm.org/citation.cfm?id=2884435.2884528
http://dx.doi.org/10.2748/tmj/1178243286
http://dx.doi.org/10.1007/978-3-662-48350-3_23
http://dx.doi.org/10.1007/978-3-662-48350-3_23
http://dl.acm.org/citation.cfm?id=2884435.2884527
http://dx.doi.org/10.4230/LIPIcs.ESA.2017.29
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96

C. Konrad 74:15

12 Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite
matching in the semi-streaming model. Algorithmica, 63(1):490–508, Jun 2012. doi:10.
1007/s00453-011-9556-8.

13 Hossein Esfandiari, Mohammad T. Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs
and beyond. In Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’15, pages 1217–1233, Philadelphia, PA, USA, 2015. Society for Indus-
trial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=2722129.
2722210.

14 Hossein Esfandiari, MohammadTaghi Hajiaghayi, and Morteza Monemizadeh. Finding
large matchings in semi-streaming. In IEEE International Conference on Data Mining
Workshops, ICDM Workshops 2016, December 12-15, 2016, Barcelona, Spain., pages 608–
614, 2016. doi:10.1109/ICDMW.2016.0092.

15 Alexander Fanghänel, Thomas Kesselheim, and Berthold Vöcking. Improved algorithms
for latency minimization in wireless networks. Theor. Comput. Sci., 412(24):2657–2667,
2011. doi:10.1016/j.tcs.2010.05.004.

16 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

17 Mohsen Ghaffari, Themis Gouleakis, Slobodan Mitrovic, and Ronitt Rubinfeld. Improved
massively parallel computation algorithms for mis, matching, and vertex cover. CoRR,
abs/1802.08237, 2018. arXiv:1802.08237.

18 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and stream-
ing complexity of maximum bipartite matching. In Proceedings of the Twenty-Third An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, Janu-
ary 17-19, 2012, pages 468–485, 2012. URL: http://portal.acm.org/citation.cfm?id=
2095157&CFID=63838676&CFTOKEN=79617016.

19 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. Algorithmica, 76(3):654–683, 2016. doi:10.1007/s00453-016-0138-7.

20 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi:10.1137/0202019.

21 Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more passes
over graph streams. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA,
USA, pages 15:1–15:21, 2017. doi:10.4230/LIPIcs.APPROX-RANDOM.2017.15.

22 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings
of the Twenty-fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’13,
pages 1679–1697, Philadelphia, PA, USA, 2013. Society for Industrial and Applied Math-
ematics. URL: http://dl.acm.org/citation.cfm?id=2627817.2627938.

23 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size
from random streams. In Proceedings of the Twenty-fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’14, pages 734–751, Philadelphia, PA, USA, 2014. Society
for Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=
2634074.2634129.

24 Christian Konrad. Maximum matching in turnstile streams. In Nikhil Bansal and Irene
Finocchi, editors, Algorithms - ESA 2015, pages 840–852, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

25 Christian Konrad. MIS in the congested clique model in O(log log ∆) rounds. CoRR,
abs/1802.07647, 2018. arXiv:1802.07647.

MFCS 2018

http://dx.doi.org/10.1007/s00453-011-9556-8
http://dx.doi.org/10.1007/s00453-011-9556-8
http://dl.acm.org/citation.cfm?id=2722129.2722210
http://dl.acm.org/citation.cfm?id=2722129.2722210
http://dx.doi.org/10.1109/ICDMW.2016.0092
http://dx.doi.org/10.1016/j.tcs.2010.05.004
http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://arxiv.org/abs/1802.08237
http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016
http://dx.doi.org/10.1007/s00453-016-0138-7
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.15
http://dl.acm.org/citation.cfm?id=2627817.2627938
http://dl.acm.org/citation.cfm?id=2634074.2634129
http://dl.acm.org/citation.cfm?id=2634074.2634129
http://arxiv.org/abs/1802.07647

74:16 A Simple Augmentation Method for Matchings with Applications to Streaming

26 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Optim-
ization. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and
16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012.
Proceedings, pages 231–242, 2012. doi:10.1007/978-3-642-32512-0_20.

27 Christian Konrad and Adi Rosén. Approximating semi-matchings in streaming and in
two-party communication. ACM Trans. Algorithms, 12(3):32:1–32:21, 2016. doi:10.1145/
2898960.

28 Colin McDiarmid. On the method of bounded differences. In Surveys in Combinatorics
1989. Cambridge University Press, Cambridge, 1989.

29 Andrew McGregor. Finding graph matchings in data streams. In Chandra Chekuri, Klaus
Jansen, José D. P. Rolim, and Luca Trevisan, editors, Approximation, Randomization and
Combinatorial Optimization. Algorithms and Techniques, pages 170–181, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

30 Andrew McGregor and Sofya Vorotnikova. A Simple, Space-Efficient, Streaming Algorithm
for Matchings in Low Arboricity Graphs. In Raimund Seidel, editor, 1st Symposium on
Simplicity in Algorithms (SOSA 2018), volume 61 of OpenAccess Series in Informatics
(OASIcs), pages 14:1–14:4, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. doi:10.4230/OASIcs.SOSA.2018.14.

31 Ami Paz and Gregory Schwartzman. A 2 + ε-approximation for maximum weight matching
in the semi-streaming model. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January
16-19, pages 2153–2161, 2017. doi:10.1137/1.9781611974782.140.

32 Xiaoming Sun and David P. Woodruff. Tight Bounds for Graph Problems in Insertion
Streams. In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors, Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2015), volume 40 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 435–448, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.435.

33 Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1):1–20,
Feb 2012. doi:10.1007/s00453-010-9438-5.

http://dx.doi.org/10.1007/978-3-642-32512-0_20
http://dx.doi.org/10.1145/2898960
http://dx.doi.org/10.1145/2898960
http://dx.doi.org/10.4230/OASIcs.SOSA.2018.14
http://dx.doi.org/10.1137/1.9781611974782.140
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.435
http://dx.doi.org/10.1007/s00453-010-9438-5

Reconfiguration of Graph Minors
Benjamin Moore
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada
brmoore@uwaterloo.ca

Naomi Nishimura
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
nishi@uwaterloo.ca

Vijay Subramanya
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada
v7subram@uwaterloo.ca

Abstract
Under the reconfiguration framework, we consider the various ways that a target graph H is a
minor of a host graph G, where a subgraph of G can be transformed into H by means of edge
contraction (replacement of both endpoints of an edge by a new vertex adjacent to any vertex
adjacent to either endpoint). Equivalently, an H-model of G is a labeling of the vertices of G
with the vertices of H, where the contraction of all edges between identically-labeled vertices
results in a graph containing representations of all edges in H.

We explore the properties of G and H that result in a connected reconfiguration graph, in
which nodes represent H-models and two nodes are adjacent if their corresponding H-models
differ by the label of a single vertex of G. Various operations on G or H are shown to preserve
connectivity. In addition, we demonstrate properties of graphs G that result in connectivity
for the target graphs K2, K3, and K4, including a full characterization of graphs G that result
in connectivity for K2-models, as well as the relationship between connectivity of G and other
H-models.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases reconfiguration, graph minors, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.75

Related Version A full version of the paper is available at https://arxiv.org/pdf/1804.09240.
pdf.

Funding Supported by the Natural Sciences and Engineering Research Council of Canada

Acknowledgements We wish to thank Tesshu Hanaka, Venkatesh Raman,
Krishna Vaidyanathan, and Marcin Wrochna for helpful discussions.

1 Introduction

Graph minors have been studied extensively as a means for categorizing graphs and exploiting
their properties. A graph H is a minor of a graph G if H can be formed from a subgraph
of G by a series of edge contractions, where the contraction of the edge uv results in the
replacement of both u and v by a new vertex w that is adjacent to any vertex that was
adjacent to u or v (or both). Much of the research in the area has focused on classes of
graphs that are closed under the taking of minors, and on exploiting properties of graphs
known not to contain certain graphs as minors. For example, it is known that for every minor

© Benjamin Moore, Naomi Nishimura, and Vijay Subramanya;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 75; pp. 75:1–75:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brmoore@uwaterloo.ca
mailto:nishi@uwaterloo.ca
mailto:v7subram@uwaterloo.ca
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.75
https://arxiv.org/pdf/1804.09240.pdf
https://arxiv.org/pdf/1804.09240.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

75:2 Reconfiguration of Graph Minors

closed class, that class is characterized by a finite set of forbidden minors [12]. Additionally,
it has been shown that for any fixed graph H, every H-minor-free graph of treewidth w has
an Ω(w)× Ω(w) grid as a minor [2].

In our work, we instead focus on the solution space of H-models of a graph G using
the reconfiguration framework [6, 11, 14], where an H-model is a mapping that labels the
vertices of G with the vertices of H. A reconfiguration graph for an instance of a problem
consists of a node for each possible feasible solution and an edge between any two nodes
representing solutions that are adjacent. The definition of adjacency may be presented as a
reconfiguration step used to transform a solution into a neighbouring solution. Structural
properties of the reconfiguration graph, including its diameter and whether it is connected,
are of interest both in their own right and as keys to solving algorithmic problems, such as
determining whether there is a path (or reconfiguration sequence) in the graph between two
given vertices and, if so, finding the shortest such path.

The reconfiguration framework has been used to explore the relationships among solutions
to instances of many graph problems, such as Independent Set, Shortest Path, and
k-Colouring. Practical uses of such work include determining whether and how it is
possible to make incremental changes to form one solution from another, ensuring that at
each step along the way, the intermediate configuration is also a solution. The study of
minor reconfiguration is a natural extension of work that determines conditions under which
reconfiguration graphs are guaranteed to be connected, as well as recent work on mappings
between graphs, in which each node in the reconfiguration graph represents a subgraph in a
specified class [5, 10]. In addition, our results widen the scope of work in which configurations
are represented as labelings, which previously had been limited to problems entailing moving
labels from a source to a target configuration using the minimum number of exchanges of
labels on adjacent vertices (detailed in a survey of reconfiguration [11]), and the use of labeled
edges in the reconfiguring of triangulations [8].

In this paper, we consider how the connectivity of the reconfiguration graph depends on the
choices of the host G and target H. We consider an instance of Minor Reconfiguration
to consist of a host graph G and target graph H such that H is a minor of G. Each node in
the reconfiguration graph consists of a labeling of the vertices of G with the vertices of H
(or, more simply, integers in {1, . . . , |V (H)|}) such that the contraction of each edge with
identically-labeled endpoints results in a graph that, upon deletion of zero or more edges,
yields H. We consider two H-models to be adjacent if they differ by a single label.

We begin by establishing properties of k-connected graphs and minors in Section 2, based
on which we form a toolkit of techniques used in reconfiguration (Section 3). We consider
various properties of G and H that determine whether or not the reconfiguration graph is
connected. For a target graph H, we define host(H) to be the set of host graphs G such
that the reconfiguration graph for G and H is connected (Definition 8). We then focus on
characterizing host(K2) (Section 4), host(K3) (Section 5), and host(K4) (Section 6). Finally,
in Section 7, we summarize the results and present directions for future work.

2 Preliminaries

We define key terms used in the description of graphs; for common terms not defined in this
paper, the reader is referred to a resource on graph theory [3]. We will frequently focus on
subsets of the vertices; for a subgraph V ⊆ V (G), the induced subgraph G[V] is the subgraph
with vertex set V and edge set {uv ∈ V (G) | u, v ∈ V }. As shorthand, for G a graph and S
a set of vertices, we use G \ S to denote G[V (G) \ S]. In order to avoid confusion with the
vertices in graphs G and H, we refer to the nodes of a reconfiguration graph.

B. Moore, N. Nishimura, and V. Subramanya 75:3

2.1 Properties of k-connected graphs
We focus on various ways of connecting vertices in the graph. A cut set S of G is a set of
vertices such that G \ S consists of at least two components; the member of a cut set of size
one is also called a cut vertex. A bridge is an edge whose deletion disconnects the graph. A
graph is k-connected if there is no cut set of size k. Equivalently, in a k-connected graph
there exist k vertex-disjoint paths between any pair of vertices in the graph. At times we
will focus on how highly connected a specific vertex might be. A universal vertex is adjacent
to all other vertices in the graph. In a complete graph on j vertices, denoted Kj , all vertices
are universal vertices.

To characterize the behaviour of various host and target graphs, we make use of charac-
terizations of graphs in terms of a base graph class and a series of operations. Adding an
edge consists of adding an edge between two vertices in V (G). To split a vertex v is to first
delete v from G, and then add two vertices v1 and v2 to G such that v1v2 ∈ E(G), each
neighbour of v in G is a neighbour of exactly one of v1 or v2, and deg(vi) ≥ 3 for i ∈ {1, 2}.

We make use of Tutte’s characterization of 3-connected graphs and Ding and Qin’s
characterization of a subset of the 4-connected graphs, given below. The base case for Tutte’s
characterization is a wheel, defined as follows.

I Definition 1. A k-wheel Wk is a graph on k + 1 vertices, the rim vertices r1, . . . , rk and
the hub vertex h, where there is a cycle induced on the rim vertices and an edge between h
and each rim vertex.

I Theorem 2. [13] A graph is 3-connected if and only if it is obtained from a wheel by
repeatedly adding edges and splitting vertices.

To state Ding and Qin’s result, we need a few additional definitions. The line graph L(G)
of a graph G has a vertex corresponding to each edge of G and two vertices are adjacent if
their corresponding edges share an endpoint in G. A graph is cubic if each vertex has degree
three. Furthermore, a cubic graph with at least six vertices is internally 4-connected if its
line graph is 4-connected. One of the base classes for their characterization is a square of a
cycle, as defined below.

I Definition 3. The square of a cycle C2
k is formed from the cycle Ck by adding an edge

between any pair of vertices joined by a path of length two.

Finally, we say a sequence of 4-connected graphs G1, . . . , Gn form a (G1, Gn)-chain if for
all i ∈ {1, . . . , n− 1}, there exists an edge e such that Gi+1 is formed from Gi by removal of
the edge e. Theorem 4 is a generalization of a well-known theorem of Martinov [9].

I Theorem 4. [4] Let C = {C2
k : k ≥ 5} and L = {H : H is the line graph of an internally

4-connected cubic graph}. Let G be a 4-connected graph not in C ∪ L. Then if G is planar,
there is a (G,C2

6)-chain. Otherwise, there is a (G,K5)-chain.

2.2 Branch sets, H-models, host(H), and block trees
For the purposes of reconfiguration, we make use of an equivalent definition of a minor as a
mapping of each vertex of host graph G to a vertex of target graph H. For convenience, we
sometimes represent the vertices of H as integer labels.

I Definition 5. For graphs G and H and mapping f : V (G)→ V (H), we refer to f(v) as
the label of v and define the branch set G(f, i) to be the subgraph of G induced on the set of
vertices with label i.

MFCS 2018

75:4 Reconfiguration of Graph Minors

For ease, we will make use of |G(f, i)| to denote |V (G(f, i))|. Given a mapping between
V (G) and V (H), an edge of G is a connecting edge if its endpoints are members of two
different branch sets, and we say that it connects those two branch sets. A mapping is
equivalent to a minor when two additional properties hold, as indicated in Definition 6.

I Definition 6. For graphs G and H and mapping f : V (G)→ V (H), we say that H is a
minor of G and that f is an H-model of G if the following conditions hold:
1. for each i ∈ V (H), each branch set G(f, i) is nonempty and connected, and
2. for each edge ij ∈ E(H), there exists an edge in E(G) connecting G(f, i) and G(f, j).

I Definition 7. For any graphs G and H such that H is a minor of G, the branch set
reconfiguration graph of G and H consists of a node for each H-model of G and, for each
pair of H-models f and g, an edge between the nodes corresponding to f and g if and only
if there exists a v ∈ V (G) such that f(v) 6= g(v) and for all u 6= v, f(u) = g(u).

I Definition 8. For any graphs G and H such that H is a minor of G, G ∈ host(H) if and
only if the branch set reconfiguration graph of G and H is connected.

We will often find it convenient to view each branch set in terms of the tree structure of
its 2-connected components. A block of a connected graph is either a maximal 2-connected
subgraph or one of the endpoints of a bridge. The block tree of a connected graph consists of
a node for each block B; there is an edge between the nodes corresponding to blocks B and
B′ if there exists a cut vertex v of G such that V (B) ∩ V (B′) = {v}. Given a graph G, an
H-model f , and a label a, we use T (G, f, a) to denote the block tree for G(f, a). In addition,
for a subgraph A of G, we use T (G, f, a,A) to denote the subtree of T (G, f, a) induced by
the blocks containing vertices in V (G(f, a)) ∩ V (A). For convenience, we sometimes use
“block of G(f, a)” to refer to a block of T (G, f, a).

To make use of the tree structure, our algorithms typically process a block tree starting
with blocks that are leaves of their block trees, or leaf blocks; a branch set that is 2-connected
can be viewed as having a block tree consisting of a single leaf block. For ease of description,
we will refer to the cut vertices of G that appear in multiple blocks as joining vertices and
all other vertices as interior vertices.

2.3 Essential edges, crucial vertices, weak connections, and lynchpins
When considering how labelings can be reconfigured, we need to ensure that we retain the
connecting edges as required in Definition 6. In doing so, we need to pay particular attention
to vertices and edges whose relabeling will cause problems.

When there exists only a single edge that connects a pair of branch sets with labels a
and b, ab ∈ E(H), we call such an edge an essential edge, and denote it as ess(a, b). If all
the edges between branch sets with labels a and b have the same endpoint in a, we call that
vertex an essential vertex for b; clearly every endpoint of an essential edge is an essential
vertex, but not every essential vertex is the endpoint of an essential edge.

The presence of essential vertices will be important in determining when it is easy to
relabel vertices. For any two labels, if the branch set with label a contains an essential vertex
for b or if the branch set with label b contains an essential vertex for a, we will say that the
branch sets with labels a and b are weakly connected, or form a weak connection.

Our results rely on the interplay between the presence of weak connections and the
connectivity of a graph. For each weak connection, we identify a vertex as the lynchpin
for the connection. When the branch sets with labels a and b are weakly connected by an
essential edge, then either of the endpoints of the essential edge can be designated as the

B. Moore, N. Nishimura, and V. Subramanya 75:5

lynchpin. Otherwise, the (single) essential vertex giving rise to the weak connection is the
lynchpin for that connection. We will use lynchpins to form cut sets between non-lynchpins
and other branch sets.

A vertex v with label a is a crucial vertex if it is an essential vertex for b and an essential
vertex for c, for b 6= c, and a non-crucial vertex otherwise. If for some distinct labels a, b,
and c, a vertex v ∈ G(f, a) is essential for c and also has at least one neighbour in G(f, b),
then v is a b-crucial vertex. Clearly, a vertex in G(f, a) that is essential for b and c is crucial,
b-crucial, and c-crucial.

2.4 Properties of H-models of k-connected graphs
When G is k-connected, we are able to establish properties of connecting edges of branch sets,
as shown in Lemma 9 and Lemma 10, as well as the structure of weak edges (Lemma 11).
The results make use of the fact that in a k-connected graph there cannot be a cut set of size
less than k separating any two vertices; cut sets are typically formed from the joining vertices
of leaf blocks and lynchpins, and vertices separated by cut sets are typically non-lynchpins.
Proofs of results marked with (*) have been omitted due to space limitations.

I Lemma 9 (*). Given a k-connected graph G and an H-model f of G for some graph H,
for any branch set G(f, a), each leaf block has k − 1 interior vertices that are endpoints of
connecting edges.

I Lemma 10. Given a k-connected graph G and an H-model f of G, where |V (H)| = k,
suppose there exist branch sets G(f, `) and G(f,m) such that `m ∈ E(H) and there are weak
connections between G(f, `) and each branch set other than G(f,m) (where a weak connection
between G(f, `) and G(f,m) is possible but not required). Then, the following hold:
1. Each leaf block in G(f, `) must contain an interior vertex that is the endpoint of a

connecting edge to G(f,m).
2. If it is possible to designate lynchpins of the weak connections such that G(f, `) contains

a non-lynchpin, then each leaf block in G(f,m) must contain an interior vertex that is
the endpoint of a connecting edge to G(f, `).

Proof. To see why the first point holds, suppose instead that no such interior vertex existed
in a leaf block of G(f, `). Then, each path between an interior vertex u in the leaf block in
G(f, `) and any vertex v in G(f,m) must pass through either the joining vertex of the leaf
block or one of the lynchpins for the weak connections. However, u and v are thus separated
by a cut set of size at most k − 1, contradicting the k-connectivity of G.

The argument for the second point is similar; we can show that the joining vertex of the
leaf block in G(f,m) and the lynchpins of the weak connections form a cut set of size at most
k − 1 separating any interior vertex in the leaf block and the non-lynchpin in G(f, `). J

I Lemma 11 (*). Given a k-connected graph G and a Kk-model f of G such that there is a
branch set B with weak connections to all other branch sets, it is not possible to designate
lynchpins such that B contains at least one vertex x that is not a lynchpin for any of the
weak connections, and at least one other branch set contains a vertex y that is not a lynchpin
for any of the weak connections.

3 Toolkit for reconfiguration of minors

In this section, we introduce techniques and properties that are exploited in the results found
in the rest of the paper. In particular, we focus on the types of steps used in reconfiguration
and the properties that need to be satisfied for each type of transformation. In Lemmas 12

MFCS 2018

75:6 Reconfiguration of Graph Minors

and 13 we determine conditions under which a vertex can be relabeled in a single step. In
the remainder of the section, we present results that can be used to handle more complex
situations in which one or more of the conditions do not hold.

Lemma 12 delineates the conditions necessary for a vertex to be able to be relabeled from
a to b in a single reconfiguration step: it cannot be the only vertex with label a, it cannot be
a cut vertex in its branch set, it must be connected to a vertex with label b, and it is not
incident with every edge between the branch sets for labels a and c, where c 6= b.

I Lemma 12 (*). Given a graph G and an H-model f of G, a vertex v can be relabeled from
a to b in a single reconfiguration step if and only if the following conditions hold:
1. |G(f, a)| > 1;
2. v is not a cut vertex in G(f, a);
3. v has at least one neighbour in G(f, b); and
4. v is not a b-crucial vertex.

Because several of the conditions hold automatically for a universal vertex, the following
lemma lists a smaller number of conditions:

I Lemma 13 (*). Given a graph G and an H-model f of G, a vertex v can be relabeled from
a to b in a single reconfiguration step if the following conditions hold:
1. G(f, a) contains a universal vertex u such that u 6= v; and
2. v has at least one neighbour in G(f, b).

When neither Lemma 12 nor Lemma 13 applies, the relabeling of a vertex requires a
series of reconfiguration steps. When the vertex to be relabeled is the only member of its
branch set or a crucial vertex, we first need to fill its branch set with new vertices that can
provide the necessary connecting edges to other branch sets. When the vertex to be relabeled
is a cut vertex, we will need to siphon away vertices from its branch set so that it is no longer
a cut vertex among the remaining vertices with its label.

When a branch set is a block tree, both filling and siphoning entail the relabeling of
vertices in a branch set block by block, starting at the leaf blocks. If we are able to relabel
all the interior vertices of a leaf block, we can simplify the block tree by removing the leaf
block. We will show in Lemma 20 that such relabeling is possible as long as we can avoid
certain bad situations involving leaf-crucial models and leaf-`-crucial models, as outlined in
Definitions 14, 15, and 16.

I Definition 14. Given a graph G and an H-model f of G, we say that a vertex v is a
leaf-crucial vertex if v is a crucial vertex that is an interior vertex in a leaf block in its branch
set. An H-model that contains a leaf-crucial vertex is a leaf-crucial model.

I Definition 15. Given a graph G and an H-model f of G, we say that a vertex v is a
leaf-`-crucial vertex if v is an `-crucial vertex that is an interior vertex in a leaf block in its
branch set. An H-model that contains a leaf-`-crucial vertex is a leaf-`-crucial model.

I Definition 16. Given a graph G, an H-model f of G, a label a, and a subgraph A of
G(f, a), we say that f hits a leaf-crucial model on relabeling A if any relabeling of f that
changes only the vertices of A can be extended by relabeling only the vertices of A to reach
a leaf-crucial model, and that f hits a leaf-`-crucial model on relabeling A if any relabeling
of f that changes only the vertices in A can be extended by relabeling only the vertices of A
to reach a leaf-`-crucial model.

B. Moore, N. Nishimura, and V. Subramanya 75:7

I Observation 17. Given a graph G, an H-model f of G, a label a, and a subgraph A

of G(f, a), if f does not hit a leaf-`-crucial model on relabeling A, then for each model g
reachable from f by relabeling only the vertices of A, no interior vertex in a leaf block of
T (G, g, a) is `-crucial.

In Lemma 18, we show that each time we relabel an interior vertex in a leaf block, if the
leaf block still has interior vertices, one will be a neighbour of the relabeled vertex. We use
the result in Lemma 19 to show that if we can avoid leaf-crucial models, then it is possible
to relabel all the interior vertices in a leaf block (and hence remove it from the branch set).
By repeatedly relabeling leaf blocks, an entire connected component can be siphoned away,
as shown in Lemma 20.

I Lemma 18. Given a graph G and an H-model f of G, suppose there exist labels a and b
and a vertex v such that |G(f, a)| ≥ 2, v is in a leaf block L of T (G, f, a), and relabeling v to
b (and no other vertices) results in another H-model g. Then v has a neighbour in G(g, a),
and if |V (L) \ {v}| ≥ 2, then v has a neighbour u in G(g, a) such that u ∈ V (L) and u is an
interior vertex in a leaf block of T (G, g, a).

Proof. We observe that since Lemma 12 holds for the relabeling of v from a to b, |G(f, a)| ≥ 2,
and since each branch set is connected, v must then have a neighbour in G(g, a).

We now suppose that |V (L) \ {v}| ≥ 2. At least one neighbour u ∈ V (L) of v is in a leaf
block Lg of T (G, g, a), as v is not a cut vertex of G(f, a) (by Lemma 12, condition 2) and L
is a 2-connected leaf block of T (G, f, a). If u is an interior vertex in G(g, a), we are done.
If instead u is a joining vertex and there exists no interior vertex in Lg that is a neighbour
of v, then for each interior vertex w ∈ V (Lg), u lies on every path from v to w in L, which
contradicts the fact that L is 2-connected. Hence, v is adjacent to an interior vertex in
G(g, a). J

I Lemma 19 (*). Given a graph G, an H-model f of G, a label a, and a leaf block L of
T (G, f, a), suppose that |V (G(f, a)) \ V (L)| ≥ 1, L contains at least one interior vertex that
is the endpoint of a connecting edge, and f does not hit a leaf-crucial model on relabeling L.
Then we can reconfigure f to a model g such that g(v) 6= f(v) for each v ∈ V (L) that is an
interior vertex of G(f, a) and g(u) = f(u) for all other vertices u.

I Lemma 20. Given a 2-connected graph G and an H-model f of G, suppose there exist
ab ∈ E(H), a cut vertex x of G(f, a), and a connected component C of G(f, a) \ {x} that
contains at least one vertex with a neighbour in G(f, b) such that f does not hit a leaf-crucial
model or a leaf-b-crucial model on relabeling C. Then we can reconfigure f to a model g such
that g(v) 6= f(v) for each v ∈ V (C), g(u) = f(u) for all u /∈ V (C), and x has a neighbour in
G(g, b).

Proof. We use B to denote the block of T (G, f, a, C) containing x, and view T (G, f, a, C) as
rooted at B. We observe that any leaf block of T (G, f, a, C) is also a leaf block of T (G, f, a).

To reconfigure f to g, we work up the tree T (G, f, a, C) from leaf blocks up to B, at each
step relabeling all the vertices in the current block with labels different from a. Specifically,
if a leaf block does not have an interior vertex with a neighbour labeled b, then in Case 1
below, we can relabel the vertices in the block; such a relabeling removes the block from the
branch set for label a. If instead a leaf block does have an interior vertex with a neighbour
labeled b, then in Case 2 below, we can relabel the block with b. Such a relabeling not only
removes the block from the branch set for label a, but also ensures that the joining vertex
of the block has a neighbour with label b. Repeated applications of the two cases suffice

MFCS 2018

75:8 Reconfiguration of Graph Minors

to ensure that we eventually reach a point in the process at which B is a leaf block and
contains an interior vertex with a neighbour labeled b; using Case 2, we can then satisfy the
statement of the lemma by ensuring that every vertex in B except x receives label b.

Case 1: A leaf block L of T (G, f, a, C) does not contain an interior vertex with a neighbour
in G(f, b).

Since G is 2-connected, by Lemma 9, L has at least one interior vertex that is an endpoint
of a connecting edge. Because f does not hit a leaf-crucial model and |V (G(f, a))\V (L)| ≥ 1,
by Lemma 19, we can relabel the interior vertices of L.

Case 2: A leaf block L of T (G, f, a, C) contains an interior vertex v with a neighbour in
G(f, b).

We first observe that we can relabel v to b: since f does not hit a leaf-b-crucial model on
relabeling C, v is not b-crucial (Observation 17), and hence all the conditions of Lemma 12
hold. We can then repeat the same argument on the resulting model h, as follows. For Lh

the leaf block of T (G, h, a, C) such that V (Lh) = V (L) \ {v}, if one exists, by Lemma 18,
Lh contains an interior vertex u that is a neighbour of v. We can then use the fact that f
does not hit a leaf-b-crucial model on relabeling C to again apply Observation 17 to conclude
that u is not b-crucial and that Lemma 12 is satisfied for the labeling of u to b. Further
repetitions of the argument result in the relabeling of all interior vertices of L to b. J

4 Characterizing host(K2)

Theorem 21 fully characterizes host(K2); as a consequence, we can use membership in
host(K2) as an alternate definition of 2-connectivity. The reconfiguration of a 2-connected
graph G is achieved by defining a canonical model (one in which one vertex has one label and
all other vertices have the other label) and then showing it is possible both to reconfigure any
K2-model to a canonical model and to reconfigure between canonical models. In contrast,
when G is not 2-connected, the presence of a cut vertex prevents reconfiguration, as no
ordering of relabeling steps can prevent a branch set from being disconnected.

I Theorem 21 (*). G ∈ host(K2) if and only if G is 2-connected.

5 Characterizing host(K3)

To show that every 3-connected graph is in host(K3), we make use of Tutte’s characterization
in Theorem 2. In order to prove Theorem 22, it suffices to show that wheels are in host(K3)
(Corollary 24) and that connectivity is preserved under the splitting of vertices (Lemma 27)
and adding of edges (Lemma 30).

I Theorem 22 (*). Every 3-connected graph is in host(K3).

The result for wheels (Corollary 24) follows from a result on a generalization of wheels by al-
lowing multiple hub vertices, each of which is a universal vertex, and replacing each rim vertex
by a connected graph. To obtain a more general result, we use W (G1, G2, . . . , Gm, n, `,m)
to denote a generalized wheel, for each Gi a connected graph on n vertices, V (Gi) =
{v(i,1) . . . v(i,n)}, and ` and m both positive integers. The graph W (G1, G2, . . . , Gm, n, `,m)
consists of ` hub vertices, VH = {h1, . . . , h`}, and mn subgraph vertices, VS = {si,j | 1 ≤
i ≤ m, 1 ≤ j ≤ n}, where si,j corresponds to v(i,j). The edge set consists of the hub edges,

B. Moore, N. Nishimura, and V. Subramanya 75:9

EH = {hihj | 1 ≤ i ≤ `, 1 ≤ j ≤ `, i 6= j}, the subgraph edges, Es = {si,jsi,k | v(i,j)v(i,k) ∈
E(Gi), 1 ≤ i ≤ m}, the rim edges, ER = {s(i,j)s(k,j) | k ≡ i + 1 mod m, 1 ≤ j ≤ n}, and
the connecting edges, EC = {hks(i,j) | 1 ≤ k ≤ `, 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Observe that
W (G1, G2, . . . , Gm, n, l,m) has a Kl+2-minor when m ≥ 3.

I Lemma 23 (*). For any graphs Gi, W (G1, G2, . . . , Gm, n, `,m) is in host(K`+2) for any
m ≥ 3.

I Corollary 24. Wn is in host(K3).

We consider the splitting of vertices in two steps. In Lemma 25, which applies more
generally to Kk for any k > 2, we show that we can reconfigure between models in which
the vertices resulting from the split have the same label. Then, in Lemma 27, which uses
Lemma 26, we consider cases in which the vertices can have different labels.

I Lemma 25. Let G be a 2-connected graph and G′ be formed from G by splitting a vertex
v into vertices x and y. For any k > 2, let f and g be Kk-models of G and f ′ and g′ be Kk

models of G′ such that f(v) = f ′(x) = f ′(y), g(v) = g′(x) = g′(y) and for all u ∈ V (G) \ {v},
f(u) = f ′(u) and g(u) = g′(u). If f and g are reconfigurable, then f ′ and g′ are reconfigurable.

Proof. Since f and g are reconfigurable, there is a reconfiguration sequence σ = f =
f1, . . . , f` = g for some value of `. Using σ, we wish to form a reconfiguration sequence σ′

from f ′ to g′ in the reconfiguration graph for G′. In forming the sequence, we observe that if
there is a prefix τ of σ such that v is not relabeled in any of the steps, then we can form a
prefix τ ′ of σ′ by executing the same sequence of steps.

We now consider the first relabeling of v in σ, say from fj to fj+1; we wish to show that
in σ′, we can relabel both x and y in the same way. Without loss of generality, we assume
that fj(v) = f ′

j(x) = f ′
j(y) = a and that fj+1(v) = b.

We can use the fact that Lemma 12 holds for the labeling of v by b to establish useful
properties of x and y. Because v is not in a branch set of size one (condition 1), x and y
are not the only two vertices in G′(f ′

j , a). Since v is a not a cut vertex of its branch set
(condition 2), x and y together cannot form a cut set. As v has a neighbour with label b
(condition 3), either x or y (or both) must have a neighbour with label b under f ′

j . Finally,
because v is not a b-crucial vertex (condition 4), there must exist some vertex other than x
or y in G′(f ′

j , a) that has a neighbour with label b.
Without loss of generality, we assume that x has a neighbour with label b, and consider

two cases, depending on whether or not x is a joining vertex in the block tree of G′(f ′
j , a).

Case 1: x is a not a joining vertex of the block tree of G′(f ′
j , a)

By our observations above, all conditions of Lemma 12 hold for the relabeling of x to b.
As a consequence of the relabeling, y now has a neighbour with label b. Because v was not a
cut vertex in G(fj , a), the removal of both x and y cannot disconnect G′(f ′

j , a), and hence
condition 2 holds for y. As the remaining conditions of Lemma 12 were established in the
argument above, we can now relabel y to b, as needed.

Case 2: x is a joining vertex in the block tree of G′(f ′
j , a)

We first show that the component C of G′(f ′
j , a) containing y consists solely of the vertex

y. If instead there existed another vertex in C, then the removal of both x and y would
separate the vertex from the other components of G′(f ′

j , a) \ {x}, and consequently v would
be a cut vertex in G(fj , a), which contradicts Lemma 12 for the relabeling of v to b.

MFCS 2018

75:10 Reconfiguration of Graph Minors

By the definition of the split operation, deg(y) ≥ 3; because x is y’s only neighbour with
label a, y must have at least one neighbour with label b or c, for some c /∈ {a, b}. If y has
a neighbour with label b, we can use Case 1 to complete the relabeling of y and then x.
Otherwise, we will show that we can first relabel y to c, relabel x to b, and finally relabel y
to b. In each case, we show that we can use Lemma 12.

To see that we can relabel y to c, it suffices to observe that y is not c-crucial, as x has a
neighbour in b, and if y were essential for some d /∈ {b, c}, then v would be essential for d in
fj , and hence b-crucial in fj , which is a contradiction. Now, since x is now no longer a cut
vertex, we can relabel x to b. Finally, since y now has a neighbour with label b (that is, x),
we can relabel y with b, as needed. J

I Lemma 26. Given a 3-connected graph G and a K3-model f of G, suppose there exists a
cut vertex x of G(f, a) with a neighbour in G(f, b) such that x is not essential for c. Then
there exists a component D of G(f, a) \ {x} such that we can reconfigure f to a model g in
which g(v) = f(v) for each v ∈ V (D), g(x) = b, and g(u) 6= f(u) for all other vertices of
G(f, a).

Proof. We form model g by first siphoning all components of G(f, a) \ {x} except D out of
G(f, a) and then by relabeling x to b.

Because x is not essential for c, there must exist at least one component of G(f, a) \ {x}
that contains a vertex with a neighbour in G(f, c); we choose D to be one such component.

By Lemma 9, each other component C must have a neighbour in either G(f, b) or G(f, c).
Since x has a neighbour in G(f, b) and D has a neighbour in G(f, c), f does not hit a
leaf-crucial model, a leaf-b-crucial model, or a leaf-c-crucial model on relabeling C, and hence
we can use Lemma 20 to relabel all vertices of C with either b or c.

After the vertices of every component except D have been relabeled, all the conditions for
Lemma 12 now hold for the relabeling of x to b: the branch set for label a has at least one
vertex other than x, x is no longer a cut vertex, x has a neighbour labeled b, and a vertex in
D has a neighbour labeled c. J

I Lemma 27. Suppose G is a 3-connected graph such that G ∈ host(K3) and G′ is a graph
formed from G by splitting a vertex v into vertices x and y. Then G′ is in host(K3).

Proof. We show that for any source and target K3-models of G′, we can find a reconfiguration
sequence from the source to the target. We know from Lemma 25 that we can reconfigure
between any two K3-models in which x and y have the same labels. Here, we show that we
can reconfigure any K3-model to a K3-model in which x and y have the same labels. This
suffices to demonstrate the existence of a reconfiguration sequence between the source and
target K3-models, as we reconfigure from the source K3-model to a K3-model in which x and
y have the same labels, then to another K3-model in which x and y have the same labels,
and finally to the target K3-model.

Without loss of generality, we assume that the labels are a, b, and c, and that in the
starting K3-model, f ′(x) = a and f ′(y) = b. If Lemma 12 holds for either relabeling x to b
or relabeling y to a, then we can accomplish the reconfiguration in a single step. Similarly,
the reconfiguration can be accomplished using Lemma 26 if either x or y is a cut vertex that
is not essential for c.

Thus, it suffices to consider the cases in which either condition 1 or 4 of Lemma 12 must
be violated for both relabeling x to b and relabeling y to a. In any case, both x and y will be
essential for c. By Lemma 11, it is not possible for both x and y to be essential for c unless
|G′(f ′, a)| = |G′(f ′, b)| = 1. Thus, it suffices to consider the case |G′(f ′, a)| = |G′(f ′, b)| = 1.

B. Moore, N. Nishimura, and V. Subramanya 75:11

Due to the 3-connectivity of G, x and y will each have at least two neighbours in G′(f ′, c).
We will show that one of y’s neighbours w can be relabeled b, after which y can be relabeled
a.

If Lemma 12 does not apply for the relabeling of w to b, then because w is not b-crucial,
the only possible condition of Lemma 12 that can be violated is condition 2. Suppose that
every neighbour of y in G′(f ′, c) is a cut vertex. Since by Lemma 9, each leaf block in
G′(f ′, c) has two interior vertices that are endpoints of connecting edges, each of these edges
must connect to x. By 3-connectivity, there must be three vertex-disjoint paths to y from
an interior vertex in a leaf block in G(f ′, c). As only one can pass through x and only one
can pass through the joining vertex of the leaf block, there can only be two paths at most,
forming a contradiction. Because all conditions of Lemma 12 must hold, we can relabel w to
b.

To see that we can now relabel y to a, we observe that since G′(f ′, c) was connected, z
has a neighbour with label c. This implies that y is not essential for c, as needed to satisfy
all conditions of Lemma 12. J

Finally, in Lemma 30, we show that for G′ the graph formed by adding an edge xy to a
3-connected graph G ∈ host(K3), G′ is also in host(K3). We achieve the result by showing
that we can handle situations in which xy plays a role not played by any other edge, either as
an essential edge or as a bridge within a branch set. The proof relies on the following results:

I Lemma 28 (*). Given a 2-connected graph G and a K3-model f of G, any branch set
containing at least two vertices has no crucial vertex.

I Lemma 29. Given a 3-connected graph G and a K3-model f of G, suppose that x ∈ G(f, a),
y ∈ G(f, b), and xy is an essential edge. Then we can reconfigure f to a K3-model g such
that g(v) 6= f(v) for each v ∈ G(f, c), c /∈ {a, b}, g(u) = f(u) for all other vertices u, and xy
is not an essential edge in g.

Proof. We consider two cases, depending on whether or not G(f, c) is 2-connected.

Case 1: G(f, c) is not 2-connected.

By Lemma 9, each leaf block L in G(f, c) has at least two interior vertices that are
endpoints of connecting edges. Due to 3-connectivity, we can further show that each leaf
block in G(f, c) has edges to both G(f, a) and G(f, b), as otherwise the joining vertex of the
leaf block and either x or y would form a cut set of size two separating internal vertices of
the leaf block at one of the branch sets.

The fact that all other leaf blocks connect to both G(f, a) and G(f, b) ensure that f does
not hit a leaf-crucial model on relabeling L. We can then use Lemma 19 to relabel all interior
vertices of L. Due to the connectivity of L and the fact that it contained neighbours in both
G(f, a) and G(f, b), it follows that xy is not an essential edge in the resulting model g.

Case 2: G(f, c) is 2-connected.

We first use 3-connectivity to show that |G(f, c)| > 1 and that G(f, c) contains vertices u
and v such that u has a neighbour in G(f, a) and v has a neighbour in G(f, b). If |G(f, c)| = 1,
then the vertex in G(f, c) and either x or y form a cut set of size two separating the branch
sets G(f, a) and G(f, b). Similarly, if G(f, c) contained only a single endpoint of a connecting
edge, then the endpoint and either x or y would also form a cut set of size two.

We can choose u and v such that P is a (u, v)-path in G(f, c) such that no vertex in P
other than u or v has a neighbour in G(f, a) or G(f, b). We let u = v1, . . . , vt = v be the

MFCS 2018

75:12 Reconfiguration of Graph Minors

vertices of P with edges vivi+1, i ∈ {1, . . . , t}. Since G is 3-connected and xy is an essential
edge, G(f, c) must contain vertices w /∈ {u, v} and z /∈ {u, v} such that w has an edge to
G(f, a) and z has an edge to G(f, b).

We will attempt to relabel all of P to label a. As G(f, c) is 2-connected, we can relabel v1
to a. If the resulting branch set is 2-connected, then we attempt relabel v2,v3, . . . , vt in that
order until we relabel the entire path. If this succeeds, then we are done. Otherwise, at some
step relabeling along the path we obtain a K3 model g such that G(g, c) is not 2-connected.
Now we apply Case 1 to g to complete the claim. J

I Lemma 30. Suppose G is a 3-connected graph such that G ∈ host(K3) and G′ is formed
from G adding an edge xy. Then G′ ∈ host(K3).

Proof. We first observe that any K3-model of G is also K3-model of G′. Consequently, to
show that we can reconfigure between any K3-models of G′, it suffices to show that we can
reconfigure between any K3-model of G′ and a K3-model of G, as the fact that G ∈ host(K3)
ensures that we can reconfigure between any two K3-models of G.

There are only two cases in which a K3-model f of G′ is not a K3-model of G, namely
cases in which the role xy plays in the K3-model is not played by any other edge. In both
cases we can assume that G′ 6= G, and consequently that |V (G′)| > 3.

Case 1: xy is the essential edge connecting G′(f, f(x)) and G′(f, f(y))

Without loss of generality, we assume f(x) = a and f(y) = b. By Lemma 29, we can
reconfigure f to a K3-model f ′ by relabeling only vertices in G(f, c) such that xy is not an
essential edge in f ′, which means f ′ is also a K3-model of G.

Case 2: f(x) = f(y) and xy is a bridge in G′(f, f(x))

We show that we can reconfigure to a model in which x and y have different labels so
that xy is a connecting edge. Depending on whether xy is then an essential edge, we have
either completed the reconfiguration or we have reduced the situation to Case 1.

Without loss of generality, we assume that f(x) = f(y) = a, and observe that the removal
of xy separates G′(f, a) into two components C1 (containing x) and C2 (containing y), each
of which contains at least one leaf block.

By Lemma 9, each of the leaf blocks has two vertices with neighbours in G′(f, b) or
G′(f, c). We will show that we can reconfigure to a K3-model in which either C1 or C2 has
no vertex with label a, so that xy is no longer a bridge.

Case 2a: One component has edges to both G′(f, b) and G′(f, c).

Without loss of generality, let C1 have connecting edges to both G′(f, b) and G′(f, c).
Then f does not hit a leaf-b-crucial model or a leaf-c-crucial model on relabeling C2 because
there are necessary connecting edges from C1. Also, f does not hit a leaf-crucial model
on relabeling C2 because there are at least two vertices labeled a in each model in the
reconfiguration sequence, and so by Lemma 28, there never exists a crucial vertex labeled a.
Now by Lemma 20, since x is a cut vertex of G′(f, a), we can relabel all the vertices of C2,
which ensures xy is a connecting edge.

Case 2b: One component has two edges to G′(f, b) and one component has two edges to
G′(f, c).

B. Moore, N. Nishimura, and V. Subramanya 75:13

Without loss of generality, let C1 have connecting edges to G′(f, b) and C2 have connecting
edges to G′(f, c). Then f does not hit a leaf-c-crucial model on relabeling C2 because C1
has edges to G′(f, b). Also, it follows from Lemma 28 that f does not hit a leaf-crucial
model on relabeling C2 because there are at least two vertices labeled a in each model in the
reconfiguration sequence. Hence, by Lemma 20, since x is a cut vertex of G′(f, a), we can
relabel all the vertices of C2, which ensures xy is a connecting edge. J

6 Characterizing host(K4)

In order to use Ding and Qin’s characterization in Theorem 4, we show that C2
6 ∈ host(K4)

(Lemma 32) and K5 ∈ host(K4) (a special case of Lemma 33) and present analogues of
Lemmas 27 and 30 (Lemmas 37 and 38), showing that host(K4) is closed under the splitting
of vertices or adding of edges for 4-connected graphs. The four results are sufficient to prove
the following theorem:

I Theorem 31 (*). Every 4-connected graph is in host(K4), provided it is not in L, where
L = {H : H is the line graph of an internally 4-connected cubic graph}.

The results establishing the base cases of the characterization are relatively straightforward.
Lemma 32 makes use of various properties of the structure of C2

6 , most notably the fact that
for each vertex v, there is a unique vertex s(v) such that there is no edge between v and
s(v). As an immediate consequence, any four vertices form a 4-cycle, which permits the
use of Theorem 21 for reconfiguration of part of the graph. Lemma 33, a generalization of
K5 ∈ host(K4), follows easily from the high connectivity of cliques.

I Lemma 32 (*). C2
6 is in host(K4).

I Lemma 33 (*). For any m > `, Km ∈ host(K`).

As essential edges can result from either the splitting of vertices or the adding of edges,
Lemma 36 plays a crucial role in the proofs of both Lemma 37 and Lemma 38. The proof of
Lemma 36 makes extensive use of Lemmas 11, 34, and 35 in covering all possible cases of
weak connections among branch sets, where branch sets of size one are handled separately.

I Lemma 34 (*). Given a 4-connected graph G and a K4-model f of G such that for labels
a, b, c, d there exist weak connections between branch sets with labels a and b, b and c, c and
d, and d and a, then it is not possible to designate lynchpins such that the branch set with
label a contains at loeast one vertex x that is not a lynchpin and the branch set with label d
contains at least one vertex y that is not a lynchpin.

I Lemma 35. Given a 3-connected graph G and an K4-model f of G, suppose xy is an
essential edge and there exists an essential edge e from G(f, f(y)) to G(f, f(z)), z 6= x, such
that y is not the endpoint of e. Then it is possible to reconfigure f to a model g in which
g(x) = g(y) = f(x), and for all a 6= f(y), for v ∈ G(f, a), g(v) = f(v).

Proof. Without loss of generality, we let f(x) = a, f(y) = b, and f(z) = c, so that there is
an essential edge ess(b, c). We consider two cases, depending on whether or not y is a cut
vertex.

When y is not a cut vertex, we verify that all conditions of Lemma 12 hold for relabeling y
to a: condition 1 follows as G(f, b) contains at least y and an endpoint v of ess(b, c), condition 2
follows by assumption, condition 3 follows from the existence of xy, and condition 4 follows

MFCS 2018

75:14 Reconfiguration of Graph Minors

from the observation that if y is an a-crucial vertex, then it must be essential for d, which
implies {y, z} is a 2-cut in G, contradicting the fact that G is 3-connected.

If instead y is a cut vertex, by removing y we can break T (G, f, b) into components such
that one of the components C contains the endpoint of ess(b, c). By Lemma 9, each leaf
block of C must contain at least two vertices with neighbours in other branch sets, and hence
C must contain an edge with a neighbour in G(f, d). As C has all necessary connecting
edges, we can apply Lemma 20 to siphon away the vertices in every other component C ′ 6= C.
Consequently, y will no longer be a cut vertex, we can then relabel y to a, as needed. J

I Lemma 36 (*). Suppose G is a 4-connected graph such that G ∈ host(K4), |V (G)| ≥ 5,
and xy is an essential edge under the K4-model f . Then it is possible to reconfigure G to a
K4-model in which x and y have the same label.

Lemma 37 follows the structure of the proof of Lemma 27, relying on Lemma 25 for the
reconfiguring between K4-models in which x and y have the same label and on Lemma 36
for the case in which xy is an essential edge. The two possible cases for Lemma 38 are xy
being an essential edge (handled by Lemma 36) and xy being a bridge in a branch set.

I Lemma 37 (*). Suppose G is a 4-connected graph such that G ∈ host(K4) and G′ is a
4-connected graph formed from G by splitting a vertex v into vertices x and y. Then G′ is in
host(K4).

I Lemma 38 (*). Suppose G is a 4-connected graph such that G ∈ host(K4) and G′ is
formed from G adding an edge xy. Then G′ ∈ host(K4).

7 Conclusions and open questions

We have developed a toolkit for the reconfiguration of minors, and specific results for H-
models of small cliques H . Our results imply an alternate definition of 2-connectivity, whereby
a graph is 2-connected if and only if it is in host(K2). Furthermore, we have shown that
every 3-connected graph is in host(K3) and that every 4-connected graph is in host(K4),
provided that it is not in L, where L = {H : H is the line graph of an internally 4-connected
cubic graph}.

It remains to be shown whether similar results can be obtained for larger cliques, or for
other graphs H . As our results rely on characterizations of k-connected graphs, further work
is likely to depend on further progress on such results.

As there are alternate ways of defining adjacency relations, further work is needed to
determine which definitions are equivalent and for those that are not, what results can be
obtained. In our work, we can view each label as a token; based on this viewpoint, the
adjacency relation we have considered can be viewed as Token relabeling (TR), changing the
label of one vertex in G. Two other possibilities worthy of consideration are Token sliding
(TS), swapping the labels of two adjacent vertices in G, and Token jumping (TJ), swapping
the labels of any two vertices in G. Both TS [6] and TJ [7] are well-studied for other types
of reconfiguration problems, many of which have unlabeled or distinctly labeled tokens. The
use of TS instead of TR is instrumental in handling degree-one vertices in G, which otherwise
can rarely be relabeled.

Moreover, it is worth considering an alternate formulation in which solutions are considered
to be adjacent if one can be formed from another by reassigning labels to vertices according
to some permutation on the labels.

Future directions for research include considering other ways of assessing the reconfigura-
tion graph, such as determining its diameter or, in cases in which the reconfiguration graph

B. Moore, N. Nishimura, and V. Subramanya 75:15

is connected, to form algorithms that determine whether there is a path between an input
pair of solutions. It remains open how to characterize isolated vertices in the reconfiguration
graph, known as frozen configurations [1].

Throughout the paper, we required every vertex of G to be a member of a branch set in
an H-model. If instead we considered a subgraph of G, a solution might entail the labeling
of a subset of the vertices of G. We observe that when the number of labels is equal to
the number of vertices in H, the problem is reduced subgraph isomorphism [5]. Alternative
mappings can be considered as well, such as topological embedding of one graph in another.

References
1 Richard C. Brewster, Jae-Baek Lee, Benjamin Moore, Jonathan A. Noel, and Mark Siggers.

Graph homomorphism reconfiguration and frozen h-colourings. CoRR, arXiv:1712.00200,
2017.

2 Erik D. Demaine and MohammadTaghi Hajiaghayi. Graphs excluding a fixed minor have
grids as large as treewidth, with combinatorial and algorithmic applications through bidi-
mensionality. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 682–689. Society for Industrial and Applied Mathematics, 2005.

3 Reinhard Diestel. Graph theory. Springer-Verlag, Electronic Edition, 2005.
4 Guoli Ding and Chengfu Qin. Generating 4-connected graphs, 2015. URL: https://www.

math.lsu.edu/~ding/chain4.pdf.
5 Tesshu Hanaka, Takehiro Ito, Haruka Mizuta, Benjamin Moore, Naomi Nishimura, Vijay

Subramanya, Akira Suzuki, and Krishna Vaidyanathan. Reconfiguring spanning and in-
duced subgraphs. In Proceedings of the 24th International Computing and Combinatorics
Conference, 2018.

6 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems.
Theoretical Computer Science, 412(12-14):1054–1065, 2011.

7 Marcin Kamiński, Paul Medvedev, and Martin Milanič. Complexity of independent set
reconfigurability problems. Theoretical Computer Science, 439:9–15, 2012.

8 Anna Lubiw, Zuzana Masárová, and Uli Wagner. Proof of the orbit conjecture for flip-
ping edge-labelled triangulations. In Proceedings of the 33rd International Symposium on
Computational Geometry, 2017.

9 Nicola Martinov. Uncontractable 4-connected graphs. Journal of Graph Theory, 6(3):343–
344, 1982.

10 Moritz Mühlenthaler. Degree-contrained subgraph reconfiguration is in P. In 40th Inter-
national Symposium on Mathematical Foundations of Computer Science, pages 505–516,
2015.

11 N. Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018.
12 Neil Robertson and P.D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of

Combinatorial Theory, Series B, 92(2):325–357, 2004. Special Issue Dedicated to Professor
W.T. Tutte.

13 W.T. Tutte. A theory of 3-connected graphs. Indagationes Mathematicae (Proceedings),
64:441–455, 1961.

14 Jan van den Heuvel. The complexity of change. Surveys in Combinatorics 2013, 409:127–
160, 2013.

MFCS 2018

https://www.math.lsu.edu/~ding/chain4.pdf
https://www.math.lsu.edu/~ding/chain4.pdf

A Feferman-Vaught Decomposition Theorem for
Weighted MSO Logic
Manfred Droste
Institute of Computer Science, Leipzig University, 04109 Leipzig, Germany
droste@informatik.uni-leipzig.de

Erik Paul
Institute of Computer Science, Leipzig University, 04109 Leipzig, Germany
epaul@informatik.uni-leipzig.de

Abstract
We prove a weighted Feferman-Vaught decomposition theorem for disjoint unions and products of
finite structures. The classical Feferman-Vaught Theorem describes how the evaluation of a first
order sentence in a generalized product of relational structures can be reduced to the evaluation
of sentences in the contributing structures and the index structure. The logic we employ for
our weighted extension is based on the weighted MSO logic introduced by Droste and Gastin to
obtain a Büchi-type result for weighted automata. We show that for disjoint unions and products
of structures, the evaluation of formulas from two respective fragments of the logic can be reduced
to the evaluation of formulas in the contributing structures. We also prove that the respective
restrictions are necessary. Surprisingly, for the case of disjoint unions, the fragment is the same
as the one used in the Büchi-type result of weighted automata. In fact, even the formulas used
to show that the respective restrictions are necessary are the same in both cases. However, here
proving that they do not allow for a Feferman-Vaught-like decomposition is more complex and
employs Ramsey’s Theorem. We also show how translation schemes can be applied to go beyond
disjoint unions and products.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Quantitative Logic, Quantitative Model Theory, Feferman-Vaught The-
orem, Translation Scheme, Transduction

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.76

Funding This work was supported by Deutsche Forschungsgemeinschaft (DFG), Graduierten-
kolleg 1763 (QuantLA).

Acknowledgements We are thankful to Vitaly Perevoshchikov for a discussion of the results of
this paper.

1 Introduction

The Feferman-Vaught Theorem [6] is one of the fundamental theorems in model theory. The
theorem describes how the computation of the truth value of a first order sentence in a
generalized product of relational structures can be reduced to the computation of truth values
of first order sentences in the contributing structures and the evaluation of a monadic second
order sentence in the index structure. The theorem itself has a long-standing history. It builds
upon work of Mostowski [17], and was later shown to hold true for monadic second order
logic (MSO logic) as well [5, 8, 9, 12, 21]. For a survey and more background information,
see [13].

© Manfred Droste and Erik Paul;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 76; pp. 76:1–76:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:droste@informatik.uni-leipzig.de
mailto:epaul@informatik.uni-leipzig.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.76
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

76:2 A Feferman-Vaught Decomposition Theorem for Weighted MSO Logic

In this paper, we show that under appropriate assumptions, the Feferman-Vaught Theorem
also holds true for a weighted MSO logic with arbitrary commutative semirings as weight
structure. The logic we employ is based on the weighted logic by Droste and Gastin [3].
In this logic, formulas can take values which convey a quantitative meaning. The logic’s
connectives and quantifiers hence also adopt quantitative roles. The disjunction becomes a
sum, the conjunction a product. The existential quantifier, instead of only checking whether
some element with a certain property exists, now takes the truth value of this property for
every element in the universe and sums over these values. Under appropriate assumptions,
the result of this summation can for instance be the exact number of elements that satisfy
the given property. One example of a property which can be expressed using this logic is
the number of cliques of a given size in an undirected graph. In [3], the authors prove a
Büchi-like result for a specific fragment of the MSO logic, showing that for finite and infinite
words, this fragment is expressively equivalent to semiring-weighted automata [20]. The
study of a weighted Feferman-Vaught Theorem for disjoint unions, employing the same logic
as we do, was initiated by Ravve et al. in [19], where the authors also point out several
algorithmic uses and possible applications of a weighted Feferman-Vaught Theorem.

The classical Feferman-Vaught Theorem considers finite and infinite structures without
any need for distinction between them. This results from the fact that, in the Boolean
setting, infinite joins and meets are well-defined. In particular, existential and universal
quantification, which are essentially joins and meets ranging over the whole universe of a
structure, are well-defined for finite and infinite structures alike. However, for arbitrary
semirings, infinite sums and products are usually not defined. For lack of space, here we
consider only finite structures and finite disjoint unions and products of these structures. We
note that an extension to infinite structures is possible by employing bicomplete semirings.
Bicomplete semirings are equipped with infinite sum and product operations that naturally
extend their respective finite operations. Our main results are the following.

We provide a Feferman-Vaught Theorem for disjoint unions of structures with our weighted
MSO logic, where the first order product quantifier is restricted to quantify only over
formulas which do not contain any sum or product quantifier themselves. Surprisingly,
this restriction and the resulting fragment are the same as the one working for the
Büchi-like result of [3].
We show that no similar theorem can hold for disjoint unions if the first order product
quantifier is not restricted. The formulas we employ for this in fact also occurred in [3]
and [4] as examples of weighted formulas whose semantics could not be described by
weighted automata. While in these papers, it was elementary to show that the formulas
given define weighted languages not recognizable by weighted automata, here proving
that they do not allow for a Feferman-Vaught-like decomposition is more complex and
employs a weak version of Ramsey’s Theorem [18].
We show that a Feferman-Vaught Theorem also holds for products of structures for the
product-quantifier-free first order fragment of our logic.
We show that no similar theorem can hold for products if we include the first order
product quantifier.
We show that our theorems are also true for more general disjoint unions and products
defined by translation schemes [13, 22, 2].

With respect to our proofs, here we just note that in comparison to the universal quantifier of
the Boolean setting, the product quantifier requires a separate and new consideration. While
universal quantification can simply be expressed using negation and existential quantification,
it is in general not possible to express multiplication by addition.

Manfred Droste and Erik Paul 76:3

Translation schemes are a model theoretic tool to “translate” structures over one logical
signature into structures over another signature in a well behaved fashion, namely in an
MSO-defined fashion. They can be applied, for example, to translate between texts and
trees [11], and between nested words, alternating texts, and hedges [16]. These particular
translations were employed in [15, 14, 16] to prove that weighted automata over texts,
hedges, and nested words are expressively equivalent to weighted logics over these structures.
Translation schemes are a rather natural concept and therefore they have been frequently
rediscovered and named differently [13, 22, 2]. Our notion of a translation scheme is mostly
due to [13].

Related work. A concept related to weighted logics is that of many-valued logics. In both
models the evaluation of a formula on a structure produces a quantitative piece of information.
In many approaches to many-valued logics, values are taken in the interval [0, 1], cf. [10, 7].
In contrast to this, weights in weighted logics are taken from a semiring and may occur as
atomic formulas which enables the modeling of quantitative properties.

2 Preliminaries

Let N = {1, 2, . . .} and N0 = N ∪ {0}. A signature σ is a pair (Relσ, arσ) where Relσ is a set
of relation symbols and arσ : Relσ → N the arity function. A σ-structure A is a pair (UA, IA)
where UA is a set, called the universe of A, and IA is an interpretation, which maps every
R ∈ Relσ to a set RA ⊆ Uarσ(R)

A . A structure is called finite if its universe is a finite set. By
Str(σ) we denote the class of all σ-structures.

For two σ-structures A = (A, IA) and B = (B, IB), we define the product A×B ∈ Str(σ)
of A and B and the disjoint union A t B ∈ Str(σ) of A and B as follows. For the
product we let A×B = (A×B, IA×B) with RA×B = {((a1, b1), . . . , (ak, bk)) | (a1, . . . , ak) ∈
RA and (b1, . . . , bk) ∈ RB}. For the disjoint union, let AtB be the disjoint union (i.e., the set
theoretic coproduct) of A and B with inclusions ιA and ιB . Then AtB = (AtB, IAtB) with
RAtB = {(ιA(a1), . . . , ιA(ak)) | (a1, . . . , ak) ∈ RA} ∪ {(ιB(b1), . . . , ιA(bk)) | (b1, . . . , bk) ∈
RB}. Throughout the paper, we identify a ∈ A with ιA(a) ∈ A t B and b ∈ B with
ιB(b) ∈ A tB.

A commutative semiring is a tuple (S,+, ·, 0, 1), abbreviated by S, with operations sum
+ and product · and constants 0 and 1 such that (S,+, 0) and (S, ·, 1) are commutative
monoids, multiplication distributes over addition, and s · 0 = 0 for every s ∈ S.

The following definitions are due to [3] in the form of [1]. We provide a countable set V
of first and second order variables, where lower case letters like x and y denote first order
variables and capital letters like X and Y denote second order variables. We define monadic
second order formulas β over σ and weighted monadic second order formulas ϕ over σ and S
through

β ::= false | R(x1, . . . , xn) | x ∈ X | ¬β | β ∨ β | ∃x.β | ∃X.β
ϕ ::= β | s | ϕ⊕ ϕ | ϕ⊗ ϕ |

⊕
x.ϕ |

⊗
x.ϕ |

⊕
X.ϕ |

⊗
X.ϕ,

with R ∈ Relσ, n = arσ(R), x, x1, . . . , xn ∈ V first order variables, X ∈ V a second order
variable and s ∈ S. We also allow the usual abbreviations ∧, ∀, →, ←→ and true. By
MSO(σ) and wMSO(σ, S) we denote the sets of all monadic second order formulas over σ
and all weighted monadic second order formulas over σ and S, respectively. The sets of
first order formulas FO(σ) and weighted first order formulas wFO(σ, S) are defined as the
sets of all formulas from MSO(σ) and wMSO(σ, S), respectively, which do not contain any
subformulas of the form x ∈ X, ∃X.β,

⊕
X.ϕ and

⊗
X.ϕ.

MFCS 2018

76:4 A Feferman-Vaught Decomposition Theorem for Weighted MSO Logic

The notion of free variables is defined as usual, i.e., the operators ∃, ∀,
⊕

and
⊗

bind
variables. We let Free(ϕ) be the set of all free variables of ϕ. A formula ϕ with Free(ϕ) = ∅
is called a sentence. For a vector ϕ̄ = (ϕ1, . . . , ϕn) ∈ wMSO(σ, S)n, we define the set of free
variables of ϕ̄ as Free(ϕ̄) =

⋃n
i=1 Free(ϕi).

We now define the semantics of MSO and wMSO. Let σ be a signature, A = (A, IA)
a σ-structure and V a set of first and second order variables. A (V,A)-assignment ρ is a
partial function ρ : V 9 A ∪ P(A) such that, whenever x ∈ V is a first order variable and
ρ(x) is defined, we have ρ(x) ∈ A, and whenever X ∈ V is a second order variable and
ρ(X) is defined, we have ρ(X) ⊆ A. The reason we consider partial functions is that in
our Feferman-Vaught theorems for the disjoint union of structures we want to be able to
restrict the range of a variable assignment to a subset of the universe. For a first order
variable, this restriction may cause the variable to become undefined. Let dom(ρ) be the
domain of ρ. For a first order variable x ∈ V and an element a ∈ A, the update ρ[x→ a] is
defined through dom(ρ[x→ a]) = dom(ρ)∪{x}, ρ[x→ a](X) = ρ(X) for all X ∈ V \{x} and
ρ[x→ a](x) = a. For a second order variable X ∈ V and a set I ⊆ A, the update ρ[X → I]
is defined in a similar fashion. By AV we denote the set of all (V,A)-assignments.

For ρ ∈ AV and a formula β ∈ MSO(σ) the relation “(A, ρ) satisfies β”, denoted by
(A, ρ) |= β, is defined as usual, with the minor addition that (A, ρ) can satisfy x ∈ X and
R(x1, . . . , xn) only if all of the occurring variables are in dom(ρ). In the following, for all sums
and products to be well-defined, we assume that A is finite. For a formula ϕ ∈ wMSO(σ, S)
and a structure A ∈ Str(σ), the (weighted) semantics of ϕ is a mapping JϕK(A, ·) : AV → S

inductively defined as

JβK(A, ρ) =
{

1 if (A, ρ) |= β

0 otherwise
JsK(A, ρ) = s

Jϕ1 ⊕ ϕ2K(A, ρ) = Jϕ1K(A, ρ) + Jϕ2K(A, ρ)
Jϕ1 ⊗ ϕ2K(A, ρ) = Jϕ1K(A, ρ) · Jϕ2K(A, ρ)

J
⊕
x.ϕK(A, ρ) =

∑
a∈AJϕK(A, ρ[x→ a])

J
⊗
x.ϕK(A, ρ) =

∏
a∈AJϕK(A, ρ[x→ a])

J
⊕
X.ϕK(A, ρ) =

∑
I⊆AJϕK(A, ρ[X → I])

J
⊗
X.ϕK(A, ρ) =

∏
I⊆AJϕK(A, ρ[X → I]).

We will usually identify a pair (A, ∅) with A. For a vector of formulas ϕ̄ ∈ wMSO(σ, S)n, we
define Jϕ̄K(A, ρ) = (Jϕ1K(A, ρ), . . . , JϕnK(A, ρ)) ∈ Sn.

We give some examples of how weighted formulas can be interpreted. For more examples,
see also [19].

I Example 1. If S = B is the Boolean semiring, we obtain the classical Boolean logic.

I Example 2. Assume that S = (Q,+, ·, 0, 1) is the field of rational numbers and that σ is
the signature of an (undirected) graph, i.e., Relσ = {edge} with edge binary. Then for every
fixed n ∈ N, we can count the number of n-cliques of a graph with no loops G ∈ Str(σ) using
the formula ϕ = 1

n! ⊗
⊕
x1 . . .

⊕
xn.
∧
i6=j(edge(xi, xj) ∨ edge(xj , xi)).

I Example 3. We consider the minimum cut of directed acyclic graphs. For this, we interpret
these graphs as flow networks in the following way. Every vertex which does not have a
predecessor is considered a source, every vertex without successors is considered a drain,
and every edge is assumed to have a capacity of 1. Let G = (V,E) be a directed acyclic
graph where V is the set of vertices and E ⊆ V × V the set of edges. A cut (S,D) of G is
a partition of V , i.e., S ∪D = V and S ∩D = ∅, such that all sources of G are in S, and
all drains of G are in D. The minimum cut of G is the smallest number |E ∩ (S ×D)| such
that (S,D) is a cut of G.

Manfred Droste and Erik Paul 76:5

We can express the minimum cut of directed acyclic graphs by a weighted formula as
follows. We let σ be the signature from the previous example and this time interpret it
as the signature of a directed graph. For our semiring, we choose the tropical semiring
Trop = (R≥0 ∪ {∞},min,+,∞, 0). Then using the abbreviation

cut(X,Y) = ∀x.
(

(x ∈ X ↔ ¬(x ∈ Y)) ∧ (∃y.edge(y, x) ∨ x ∈ X) ∧ (∃y.edge(x, y) ∨ x ∈ Y)
)

we can express the minimum cut of a directed acyclic graph G ∈ Str(σ) using the formula

ϕ =
⊕
X.
⊕
Y.
(

cut(X,Y)⊗
⊗
x.
⊗
y.(1⊕ ¬(x ∈ X ∧ y ∈ Y ∧ edge(x, y)))

)
.

For ϕ ∈ wMSO(σ, S) and a first order variable x which does not appear in ϕ as a bound
variable, we define ϕ−x as the formula obtained from ϕ by replacing all atomic subformulas
containing x, i.e., all subformulas of the form x ∈ X and R(. . . , x, . . .) for R ∈ Relσ, by
false. It is easy to show by induction that for all σ-structures A = (A, IA) and (V,A)-
assignments ρ with x /∈ dom(ρ) we have JϕK(A, ρ) = Jϕ−xK(A, ρ). As in the sequel we will
deal with disjoint unions and products of structures, we need to define the restrictions of a
variable assignment to the contributing structures of the disjoint union or product. Fix two
structures A,B ∈ Str(σ) with universes A and B. For a (V,A tB)-assignment ρ, we define
the restriction ρ|A : V 9 A as

ρ|A(X) =

ρ(X) ∩A if X is a second order variable
ρ(X) if X is a first order variable and ρ(X) ∈ A
undefined if X is a first order variable and ρ(X) /∈ A.

The restriction ρ|B is defined similarly.
For a (V,A×B)-assignment ρ, we define the restrictions ρ|A and ρ|B by projection on

the corresponding entries. That is, we let πA be the projection on the first and πB be the
projection on the second entry of A×B and let ρ|A = πA ◦ ρ and ρ|B = πB ◦ ρ.

The union of two assignments ρ and ς with dom(ρ) ∩ dom(ς) = ∅, denoted by ρ ∪ ς,
is defined by dom(ρ ∪ ς) = dom(ρ) ∪ dom(ς), (ρ ∪ ς)(X) = ρ(X) for X ∈ dom(ρ) and
(ρ ∪ ς)(X) = ς(X) for X ∈ dom(ς).

Fix two disjoint sets of variables (xi)i∈N and (yi)i∈N. For n ∈ N we define the set of
expressions Expn(S) over a semiring S by the grammar

E ::= xi | yi | E ⊕ E | E ⊗ E,

where i ∈ {1, . . . , n}. The (weighted) semantics of an expression E ∈ Expn(S) is a mapping
〈〈E〉〉 : Sn × Sn → S defined for s̄, t̄ ∈ Sn inductively by

〈〈xi〉〉(s̄, t̄) = si

〈〈yi〉〉(s̄, t̄) = ti

〈〈E1 ⊕ E2〉〉(s̄, t̄) = 〈〈E1〉〉(s̄, t̄) + 〈〈E2〉〉(s̄, t̄)
〈〈E1 ⊗ E2〉〉(s̄, t̄) = 〈〈E1〉〉(s̄, t̄) · 〈〈E2〉〉(s̄, t̄).

For expressions over the Boolean semiring B = ({false, true},∨,∧, false, true) we will
usually write ∨ instead of ⊕ and ∧ instead of ⊗.

I Construction 4. We call an expression E ∈ Expn(S) a pure product if

E = x1 ⊗ . . .⊗ xl ⊗ y1 ⊗ . . .⊗ ym

MFCS 2018

76:6 A Feferman-Vaught Decomposition Theorem for Weighted MSO Logic

with xi ∈ {x1, . . . , xn} for i ∈ {1, . . . , l} and yj ∈ {y1, . . . , yn} for j ∈ {1, . . . ,m}. We define
a substitution procedure as follows. Let ϕ̄1, ϕ̄2 ∈ wMSO(σ, S)n be given. Let i ∈ {1, . . . , l}
and assume xi = xk for some k, then we define ξi = ϕ1

k. Likewise, for j ∈ {1, . . . ,m} and
yj = yk, we define θj = ϕ2

k. We let ξ = ξ1 ⊗ . . . ⊗ ξl and θ = θ1 ⊗ . . . ⊗ θm. Then for
A,B ∈ Str(σ), every (V,A)-assignment ρ and every (V,B)-assignment ς we have

〈〈E〉〉(Jϕ̄1K(A, ρ), Jϕ̄2K(B, ς)) = JξK(A, ρ) · JθK(B, ς).

We define PRD1(E, ϕ̄1, ϕ̄2) = ξ and PRD2(E, ϕ̄1, ϕ̄2) = θ.
Pure products B ∈ Expn(B) are also called pure conjunctions. For a pure conjunction

B ∈ Expn(B), formulas ϕ̄1, ϕ̄2 ∈ MSO(σ) and ξi, θj as above, we define the MSO(σ)-formulas
CON1(B, ϕ̄1, ϕ̄2) = ξ = ξ1 ∧ . . .∧ ξl and CON2(B, ϕ̄1, ϕ̄2) = θ = θ1 ∧ . . .∧ θm. We then have

〈〈B〉〉(Jϕ̄1K(A, ρ), Jϕ̄2K(B, ς)) = true iff (A, ρ) |= ξ and (B, ς) |= θ. ♦

We say that an expression E ∈ Expn(S) is in normal form if E = E1 ⊕ . . .⊕ Em for some
m ≥ 1 and pure products Ei. By applying the laws of distributivity of the semiring S, every
expression E ∈ Expn(S) can be transformed into normal form. More precisely, we have the
following lemma.

I Lemma 5. For every E ∈ Expn(S) there exists an expression E′ ∈ Expn(S) in normal
form with the same semantics as E.

3 The classical Feferman-Vaught Theorem

For convenience, we recall the Feferman-Vaught Theorem for disjoint unions and products of
two structures. Let σ be a signature.

I Theorem 6 ([6]). Let V be a set of first and second order variables and β ∈ MSO(σ) with
variables from V. Then there exist n ≥ 1, vectors of formulas β̄1, β̄2 ∈ MSO(σ)n and an
expression Bβ ∈ Expn(B) such that Free(β̄1) ∪ Free(β̄2) ⊆ Free(β) and for all structures
A,B ∈ Str(σ) and all (V,A tB)-assignments ρ:

(A tB, ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, ρ|A), Jβ̄2K(B, ρ|B)) = true.

I Theorem 7 ([6]). Let V be a set of first and second order variables and β ∈ FO(σ) with
variables from V. Then there exist n ≥ 1, vectors of formulas β̄1, β̄2 ∈ FO(σ)n and an
expression Bβ ∈ Expn(B) such that Free(β̄1) ∪ Free(β̄2) ⊆ Free(β) and for all structures
A,B ∈ Str(σ) and all (V,A×B)-assignments ρ:

(A×B, ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, ρ|A), Jβ̄2K(B, ρ|B)) = true.

4 Translation schemes

Theorems 6 and 7 consider disjoint unions and products only. So far, there is no interaction
between the two constituting structures. Translation schemes allow us to create such interac-
tions in an MSO-defined manner. More precisely, translation schemes “translate” structures
over one signature into structures over another signature. Applying this to disjoint unions
and products, we can extend Theorems 6 and 7 to more complex constructs. The usefulness
of such extensions by translation schemes was discussed in [13], which we follow here.

Manfred Droste and Erik Paul 76:7

Let σ and τ be two signatures, Z = {z, z1, z2, . . .} be a set of distinguished first order
variables and W be a set of first and second order variables with W ∩ Z = ∅. A σ-τ -
translation scheme Φ over W and Z is a pair (φU , (φT)T∈Relτ) where φU , φT ∈ MSO(σ), φU
has variables from W ∪ {z} and φT has variables from W ∪ {z1, . . . , zarτ (T)}. The variables
from Z may not be used for quantification, i.e., all variables from Z must be free. We set
Free(Φ) = Free(φU) ∪

⋃
T∈Relτ Free(φT). The formulas φU and (φT)T∈Relτ depend on Z

in the following way. For a first order variable x not occurring in φU , the formula φU (x)
is obtained from φU by replacing all occurrences of z by x. Similarly, for T ∈ Relτ and
first order variables x1, . . . , xarτ (T) not occurring in φT , the formula φT (x1, . . . , xarτ (T)) is
obtained from φT by replacing all occurrences of zi by xi for i ∈ {1, . . . , arτ (T)}.

For a σ-structure A = (A, IA) and a (W,A)-assignment ς, we define the Φ-induced τ -
structure of A and ς, denoted by Φ?(A, ς), as a τ -structure with universe UC and interpretation
IC as follows.

UC = {a ∈ A | (A, ς[z → a]) |= φU} IC(T) = {c̄ ∈ Uarτ (T)
C | (A, ς[z̄ → c̄]) |= φT }

I Example 8. A translation scheme can be used to cut a subtree from a given tree at a
specified node in the tree. For this let σ = τ = ({edge}, edge 7→ 2) be the signature of a
directed graph. For a σ-structure G = (V, edge 7→ E) let E′ be the transitive closure of the
relation E ⊆ V × V . We say that G is a directed rooted tree with root r ∈ V if (1) E′ is
irreflexive, (2) (r, v) ∈ E′ for all v ∈ V \ {r} and (3) for all v ∈ V \ {r} there is exactly one
v′ ∈ V with (v′, v) ∈ E. We define the following abbreviation which describes the reflexive
transitive closure of E.

(x ≤ y) = ∀X (x ∈ X ∧ (∀z.(∃z′.z′ ∈ X ∧ edge(z′, z))→ z ∈ X))→ y ∈ X

We define a σ-σ-translation scheme Φ = (φU , φedge) through φU = (x ≤ z) and φedge =
edge(z1, z2). Then with G as above and v ∈ V , the structure C = Φ∗(G, x 7→ v) is the subtree
of G at the node v, i.e.,

UC = {v} ∪ {v′ ∈ V | (v, v′) ∈ E′} IC = E ∩ (UC × UC).

We have the following fundamental property of translation schemes [13].

I Lemma 9 ([13]). Let Φ = (φU , (φT)T∈Relτ) be a σ-τ -translation scheme over W and Z,
V be a set of first and second order variables such that V, W, and Z are pairwise disjoint,
and β ∈ MSO(τ) with variables from V. Then there exists a formula α ∈ MSO(σ) such that
Free(α) ⊆ Free(β)∪Free(Φ) and for all structures A ∈ Str(σ), all (W,A)-assignments ς and
all (V,Φ?(A, ς))-assignments ρ:

(Φ?(A, ς), ρ) |= β iff (A, ς ∪ ρ) |= α.

Together with Theorems 6 and 7, this gives us the following Feferman-Vaught decomposi-
tion theorems for disjoint unions and products with translations schemes.

I Theorem 10 ([13]). Let Φ = (φU , (φT)T∈Relτ) be a σ-τ -translation scheme over W and Z,
V be a set of first and second order variables such that V, W, and Z are pairwise disjoint,
and β ∈ MSO(τ) with variables from V. Then there exist n ≥ 1, vectors of formulas β̄1, β̄2 ∈
MSO(σ)n and an expression Bβ ∈ Expn(B) such that Free(β̄1)∪Free(β̄2) ⊆ Free(β)∪Free(Φ)
and for all structures A,B ∈ Str(σ), all (W,AtB)-assignments ς and all (V,Φ?(AtB, ς))-
assignments ρ:

(Φ?(A tB, ς), ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, (ς ∪ ρ)|A), Jβ̄2K(B, (ς ∪ ρ)|B)) = true.

MFCS 2018

76:8 A Feferman-Vaught Decomposition Theorem for Weighted MSO Logic

I Theorem 11 ([13]). Let Φ = (φU , (φT)T∈Relτ) be a σ-τ -translation scheme over W and Z,
V be a set of first and second order variables such that V, W, and Z are pairwise disjoint,
and β ∈ FO(τ) with variables from V. Then there exist n ≥ 1, vectors of formulas β̄1, β̄2 ∈
FO(σ)n and an expression Bβ ∈ Expn(B) such that Free(β̄1) ∪ Free(β̄2) ⊆ Free(β) ∪ Free(Φ)
and for all structures A,B ∈ Str(σ), all (W,AtB)-assignments ς and all (V,Φ?(A×B, ς))-
assignments ρ:

(Φ?(A×B, ς), ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, (ς ∪ ρ)|A), Jβ̄2K(B, (ς ∪ ρ)|B)) = true.

We give a short example to illustrate Theorem 10.

I Example 12. We consider the signature σ of a labeled graph, i.e., Relσ = {edge, laba, labb}
where edge has arity 2 and laba, labb both have arity 1. Given two directed rooted labeled
trees G1,G2 in this signature (see Example 8), we can use a translation scheme to add
edges between all leaves of G1 and the root of G2 in G1 t G2. For this scenario we have
to distinguish between the vertices from the first and the second graph, so the use of an
intermediate signature is necessary. We define the signature σ′ to be σ extended by the
relation symbols G1 and G2 of arity 1. Then for i ∈ {1, 2} we define a σ-σ′-translation
scheme Φi = (φU , φ′edge, φlaba , φlabb , φ

i
G1
, φiG2

) by

φU = true

φ′edge = edge(z1, z2)
φlaba = laba(z1)
φlabb = labb(z1)

φiGj =
{

true if i = j

false otherwise.

With the abbreviations root(x) = ¬∃y.edge(y, x) and leaf(x) = ¬∃y.edge(x, y) we then define
the σ′-σ-translation scheme Φ = (φU , φedge, φlaba , φlabb) through

φedge = edge(z1, z2) ∨ (G1(z1) ∧G2(z2) ∧ leaf(z1) ∧ root(z2)).

Then G = Φ∗(Φ∗1(G1) t Φ∗2(G2)) is exactly G1 tG2 with the leaves of G1 connected to the
root of G2. We now consider the formula

β = ∃x.∃y.(edge(x, y) ∧ laba(x) ∧ labb(y))

which asks whether there is some edge between an a-labeled and a b-labeled vertex. We can
apply Lemma 9 and Theorem 10 to obtain the following decomposition of β. Let

β̄1 = (β, ∃x.laba(x) ∧ leaf(x))
β̄2 = (β, ∃y.labb(y) ∧ root(y))

Bβ = x1 ∨ y1 ∨ (x2 ∧ y2).

Then we have G |= β iff 〈〈Bβ〉〉(Jβ̄1K(G1), Jβ̄2K(G2)) = true.

5 Weighted Feferman-Vaught Decomposition Theorems

Our goal is to prove weighted versions of Theorems 10 and 11. That is, we would like to
replace FO by wFO and MSO by wMSO in those theorems. This, however, is not possible as
we will see in Sections 5.2 and 5.3. For disjoint unions, we have to restrict the use of the first
order product quantifier and entirely remove the second order product quantifier in wMSO.
For products, it is not possible to include the first order product quantifier at all.

Manfred Droste and Erik Paul 76:9

5.1 Formulation of the theorems
Let σ be a signature and S a commutative semiring. We define two fragments of our logic
and formulate our weighted versions of Theorems 10 and 11 for these fragments.

I Definition 13 (Product-free weighted first order logic). We define the product-free first
order fragment wFO

⊗
-free(σ, S) of our logic as the set of all formulas from wFO(σ, S) which

do not contain any first order product quantifier. Using this fragment, we will formulate a
weighted Feferman-Vaught decomposition theorem for products of structures.

I Definition 14 (Product-restricted weighted monadic second order logic). In order to define
the product-restricted fragment of our weighted monadic second order logic, we first define
the fragment of so-called almost-Boolean formulas through the grammar

ψ ::= β | s | ψ ⊕ ψ | ψ ⊗ ψ.

This fragment, which we denote by wMSOa-bool(σ, S), already appeared in [3] in the form of
recognizable step functions. To obtain the main theorem of [3], the product quantifier was
restricted to quantify only over recognizable step functions. We employ the same restriction
and define the product-restricted fragment of our logic through the grammar

ϕ ::= β | s | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕
x.ϕ |

⊗
x.ψ |

⊕
X.ϕ,

where β ∈ MSO(σ) is a monadic second order formula, s ∈ S, x is a first order variable,
X is a second order variable and ψ ∈ wMSOa-bool(σ, S) is an almost-Boolean formula. By
wMSO

⊗
-res(σ, S) we denote the set of all such formulas. The set wMSO

⊗
-res(σ, S) contains

all formulas from wMSO(σ, S) which do not contain any second order quantifier and where
for every subformula of the form

⊗
x.ψ we have that ψ is an almost-Boolean formula. Our

weighted Feferman-Vaught decomposition theorem for disjoint unions of structures will be
formulated for this fragment. In [3] it was shown that for finite and infinite words, this
fragment is expressively equivalent to weighted finite automata.

We note that the restrictions we impose on the product quantifier are necessary as we
will show in Sections 5.2 and 5.3. We formulate the weighted versions of Theorems 10 and 11
as follows.1 Let τ , W and Z be as in Section 4.

I Theorem 15. Let S be a commutative semiring. Let Φ = (φU , (φT)T∈Relτ) be a σ-τ -
translation scheme over W and Z, V be a set of first and second order variables such that
V, W, and Z are pairwise disjoint, and ϕ ∈ wMSO

⊗
-res(τ, S) with variables from V. Then

there exist n ≥ 1, vectors of formulas ϕ̄1, ϕ̄2 ∈ wMSO
⊗

-res(σ, S)n with Free(ϕ̄1)∪Free(ϕ̄2) ⊆
Free(ϕ)∪Free(Φ) and an expression Eϕ ∈ Expn(S) such that the following holds. For all finite
structures A,B ∈ Str(σ), all (W,AtB)-assignments ς and all (V,Φ?(AtB, ς))-assignments
ρ we have

JϕK(Φ?(A tB, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)|A), Jϕ̄2K(B, (ς ∪ ρ)|B)).

1 In [19] a weighted version of Theorem 10 similar to ours is stated (without proof) to hold without any
restriction on the first order product quantifier. However, in Subsection 5.2 we show that a restriction
on the product quantifier is necessary.

MFCS 2018

76:10 A Feferman-Vaught Decomposition Theorem for Weighted MSO Logic

I Theorem 16. Let S be a commutative semiring. Let Φ = (φU , (φT)T∈Relτ) be a σ-τ -
translation scheme over W and Z, V be a set of first and second order variables such that
V, W, and Z are pairwise disjoint, and ϕ ∈ wFO

⊗
-free(τ, S) with variables from V. Then

there exist n ≥ 1, vectors of formulas ϕ̄1, ϕ̄2 ∈ wFO
⊗

-free(σ, S)n with Free(ϕ̄1)∪Free(ϕ̄2) ⊆
Free(ϕ)∪Free(Φ) and an expression Eϕ ∈ Expn(S) such that the following holds. For all finite
structures A,B ∈ Str(σ), all (W,A×B)-assignments ς and all (V,Φ?(A×B, ς))-assignments
ρ we have

JϕK(Φ?(A×B, ς), ρ) = 〈〈Eϕ〉〉(Jϕ̄1K(A, (ς ∪ ρ)|A), Jϕ̄2K(B, (ς ∪ ρ)|B)).

The proofs of both theorems are deferred to Section 5.4. For formulas without free
variables and a trivial translation scheme, i.e., φU = true and φT = T (z1, . . . , zarτ (T)) for all
T ∈ Relτ , the theorems reduce to the following, simplified versions.

I Theorem 17. Let S be a commutative semiring and ϕ ∈ wMSO
⊗

-res(σ, S) be a sentence.
Then there exist n ≥ 1, vectors of sentences ϕ̄1, ϕ̄2 ∈ wMSO

⊗
-res(σ, S)n and an expression

Eϕ ∈ Expn(S) such that the following holds. For all finite structures A,B ∈ Str(σ) we have

JϕK(A tB) = 〈〈Eϕ〉〉(Jϕ̄1K(A), Jϕ̄2K(B)).

I Theorem 18. Let S be a commutative semiring and ϕ ∈ wFO
⊗

-free(σ, S) be a sentence.
Then there exist n ≥ 1, vectors of sentences ϕ̄1, ϕ̄2 ∈ wFO

⊗
-free(σ, S)n and an expression

Eϕ ∈ Expn(S) such that the following holds. For all finite structures A,B ∈ Str(σ) we have

JϕK(A×B) = 〈〈Eϕ〉〉(Jϕ̄1K(A), Jϕ̄2K(B)).

I Example 19. To illustrate Theorem 17 we consider the semiring of natural numbers
N0 = (N0,+, ·, 0, 1) and the signature σ of a labeled graph, i.e., Relσ = {edge, laba, labb}
with edge binary and laba, labb both unary. Consider the following formula which multiplies
the number of vertices labeled a with the number of edges between two vertices labeled b.(⊕

x.laba(x)︸ ︷︷ ︸
=ϕa

)
⊗
(⊕

x.
⊕
y.edge(x, y) ∧ labb(x) ∧ labb(y)︸ ︷︷ ︸

=ϕb

)
The formula can be decomposed as follows. Let ϕ̄1 = ϕ̄2 = (ϕa, ϕb) and Eϕ = (x1⊕y1)⊗(x2⊕
y2). Then for all σ-structures G1,G2 we have JϕK(G1 tG2) = 〈〈Eϕ〉〉(Jϕ̄1K(G1), Jϕ̄2K(G2)).

I Example 20. In [19], it is discussed how translation schemes can be applied for Feferman-
Vaught-like decompositions of weighted properties. Theorems 15 and 16 show that this is
possible for all properties which can be expressed by formulas in our weighted logic fragments.

5.2 Necessity of restricting the logic for disjoint unions
In this section, we show that the restrictions we impose on the product quantifiers are
indeed necessary. For disjoint unions, we will prove that already Theorem 17 does not hold
over the tropical semiring Trop = (R≥0 ∪ {∞},min,+,∞, 0) and over the arctic semiring
Arct = (R≥0 ∪ {−∞},max,+,−∞, 0) for the formulas

⊗
x.
⊗
y.1 and

⊗
X.1. Here, R≥0

denotes the set of non-negative real numbers. To prove this, we employ Ramsey’s Theorem.
Then we show that for the formula

⊗
x.
⊕
y.1, Theorem 17 does not hold over the semiring

N0 = (N0,+, ·, 0, 1). We note that these types of formulas also occurred in [3] and [4] as
examples of weighted formulas whose semantics could not be described by weighted automata.

We will employ the following version of Ramsey’s Theorem. For a set X, we denote by[
X
2
]
the set of all subsets of X of size 2.

Manfred Droste and Erik Paul 76:11

I Theorem 21 ([18]). Let f :
[N

2
]
→ {1, . . . , k} be a function. Then there exists an infinite

subset E ⊆ N such that f |[E2] ≡ i for some i ∈ {1, . . . , k}.

I Theorem 22. Let S ∈ {Trop,Arct}, σ = (∅, ∅) be the empty signature and for l ∈ N
consider the σ-structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
x.
⊗
y.1 there do not exist

n ∈ N, ϕ̄1, ϕ̄2 ∈ (wMSO(σ, S))n and Eϕ ∈ Expn(S) such that for all l,m ∈ N we have

JϕK(Sl tSm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)). (5.1)

Proof (Sketch). First, consider S = Trop. For contradiction, suppose that n, ϕ̄1, ϕ̄2 and Eϕ
as above satisfying (5.1) exist. We may assume that Eϕ = E1 ⊕ . . .⊕ Ek is in normal form
with all Ei pure products. For l ≥ 1 and i ∈ {1, . . . , k} we let ali = JPRD1(Ei, ϕ̄1, ϕ̄2)K(Sl)
and bli = JPRD2(Ei, ϕ̄1, ϕ̄2)K(Sl). Then by assumption we have

(l +m)2 = JϕK(Sl tSm) =
k

min
i=1

(ali + bmi). (5.2)

Given l ≥ 1 and m ≥ 1, for at least one index j ∈ {1, . . . , k} we have (l +m)2 = alj + bmj .
We define jlm as the smallest such index. Then we define a function f :

[N
2
]
→ {1, . . . , k} by

f({l,m}) = jlm for l < m. Now take E ⊆ N according to Ramsey’s Theorem. As E is infinite,
there are l, λ,m, µ ∈ E with l < λ < m < µ. With j = jlm, we thus have (l+m)2 = alj+bmj ,
(λ+m)2 = aλj + bmj , (l+ µ)2 = alj + bµj , and (λ+ µ)2 = aλj + bµj . Using the first three of
these equalities, an elementary calculation shows that we have aλj + bµj < (λ+ µ)2. This is
clearly a contradiction to the fourth equality. Therefore, n, ϕ̄1, ϕ̄2 and Eϕ as chosen cannot
exist. To prove the theorem for the arctic semiring, it suffices to replace min by max in
equation (5.2). J

With similar methods, we can show the following.

I Theorem 23. Let S ∈ {Trop,Arct}, σ = (∅, ∅) be the empty signature and for l ∈ N
consider the σ-structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
X.1 there do not exist n ∈ N,

ϕ̄1, ϕ̄2 ∈ (wMSO(σ, S))n and Eϕ ∈ Expn(S) such that for all l,m ∈ N we have

JϕK(Sl tSm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)).

The nesting of a first order sum quantifier into the first order product quantifier also leads
to formulas which do not allow for a Feferman-Vaught-like decomposition as the following
theorem shows.

I Theorem 24. Let S = (N0,+, ·, 0, 1), σ = (∅, ∅) be the empty signature and for l ∈ N
consider the σ-structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
x.
⊕
y.1 there do not exist

n ∈ N, ϕ̄1, ϕ̄2 ∈ (wMSO(σ,N0))n and Eϕ ∈ Expn(N0) such that for all l,m ∈ N we have

JϕK(Sl tSm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)). (5.3)

Proof (Sketch). We proceed by contradiction and assume n, ϕ̄1, ϕ̄2 and Eϕ as above sat-
isfying (5.3) exist. We may assume that Eϕ = E1 ⊕ . . . ⊕ Ek is in normal form with all
Ei pure products. For l ≥ 1 and i ∈ {1, . . . , k} we let ali = JPRD1(Ei, ϕ̄1, ϕ̄2)K(Sl) and
bli = JPRD2(Ei, ϕ̄1, ϕ̄2)K(Sl). Then by assumption we have

(l +m)(l+m) = JϕK(Sl tSm) =
∑k
i=1(ali · bmi). (5.4)

MFCS 2018

76:12 A Feferman-Vaught Decomposition Theorem for Weighted MSO Logic

For every j ∈ {1, . . . , k} we choose Lj ≥ 1 such that aLjj 6= 0, or let Lj = 0 if for all l ≥ 1
we have alj = 0. Assume m ≥ 1 and j ∈ {1, . . . , k} with Lj 6= 0, then aLjj ≥ 1, hence

(Lj +m)(Lj+m) =
∑k
i=1(aLji · bmi) ≥ (aLjj · bmj) ≥ bmj .

In particular, with L = max{Li | i ∈ {1, . . . , k}}, we have that for every j ∈ {1, . . . , k} either
(i) bmj ≤ (L+m)(L+m) for all m ≥ 1 or (ii) alj = 0 for all l ≥ 1. Note that from equation
(5.4) it follows that L = 0 is impossible. In the same fashion, we can find M ≥ 1 such that
for every l ≥ 1 and every j ∈ {1, . . . , k} either (i) alj ≤ (l + M)(l+M) for all l ≥ 1 or (ii)
bmj = 0 for all m ≥ 1.

Now consider (5.4) for l = m. If j ∈ {1, . . . , k} such that either alj = 0 for all l ≥ 1 or
bmj = 0 for all m ≥ 1, then clearly also (alj · blj) = 0 for all l. If j is not like this, we have

(alj · blj) ≤ (l +M)(l+M) · (L+ l)(L+l) ≤ (l + C)2(l+C)

for C = max{L,M}. It follows that (2l)2l ≤ k(l + C)2(l+C) for every l ≥ 1. Elementary
calculus can be used to show that this is not true. J

5.3 Necessity of restricting the logic for products
The proof of Theorem 22 can also be used to show that no Feferman-Vaught-like theorem
holds for products if the first order product quantifier is included in the weighted logic. More
precisely, already Theorem 18 does not hold over the tropical and arctic semirings for the
formula ϕ =

⊗
x.1 even if ϕ̄1 and ϕ̄2 are allowed to be from wMSO(σ, S).

I Theorem 25. Let S ∈ {Trop,Arct}, σ = (∅, ∅) be the empty signature and for l ∈ N
consider the σ-structures Sl = ({1, . . . , l}, ∅). Then for ϕ =

⊗
x.1 there do not exist n ∈ N,

ϕ̄1, ϕ̄2 ∈ (wMSO(σ, S))n and Eϕ ∈ Expn(S) such that for all l,m ∈ N we have

JϕK(Sl ×Sm) = 〈〈Eϕ〉〉(Jϕ̄1K(Sl), Jϕ̄2K(Sm)).

5.4 Proofs of Theorems 15 and 16
We now come to the proof of Theorems 15 and 16. By the following result, we can reduce
the proofs to the case where the translation scheme is the identity.

I Lemma 26. Let Φ = (φU , (φT)T∈Relτ) be a σ-τ -translation scheme over W and Z, V
be a set of first and second order variables such that V, W, and Z are pairwise disjoint,
and ϕ ∈ wMSO(τ, S) with variables from V. Then there exists a formula ψ ∈ wMSO(σ, S)
with Free(ψ) ⊆ Free(ϕ) ∪ Free(Φ) such that the following holds. For all finite structures
A ∈ Str(σ), all (W,A)-assignments ς and all (V,Φ?(A, ς))-assignments ρ we have

JϕK(Φ?(A, ς), ρ) = JψK(A, ς ∪ ρ).

If ϕ is from wMSO
⊗

-res(τ, S) or wFO
⊗

-free(τ, S), then ψ can also be chosen as a formula
from wMSO

⊗
-res(σ, S) or wFO

⊗
-free(σ, S), respectively.

Lemma 26 can be proved by induction on the structure of formulas.

Proof of Theorem 15 (Sketch). We proceed by induction. By Lemma 26 it suffices to prove
the case τ = σ and Φ?(A tB, ς) = A tB.

Manfred Droste and Erik Paul 76:13

Assume ϕ = β for some β ∈ MSO(σ). We apply Theorem 6 to the formula β and obtain
l ≥ 1, vectors of formulas β̄1, β̄2 ∈ MSO(σ)l and an expression Bβ ∈ Expl(B) such that

(A tB, ρ) |= β iff 〈〈Bβ〉〉(Jβ̄1K(A, ρ|A), Jβ̄2K(B, ρ|B)) = true.

We may assume that Bβ = B1 ∨ . . . ∨ Bm is in normal form with all Bi pure conjunc-
tions. We let γi = CON1(Bi, β̄1, β̄2) and δi = CON2(Bi, β̄1, β̄2) for i ∈ {1, . . . ,m} (see
Construction 4). We set n = 2m and define

ϕ̄1 = (γ1, . . . , γm,¬γ1, . . . ,¬γm) ϕ̄2 = (δ1, . . . , δm,¬δ1, . . . ,¬δm).

Intuitively, we would now define the expression Eϕ as x1 ⊗ y1 ⊕ . . .⊕ xm ⊗ ym, but this
expression is not necessarily evaluated to 1 in S if γi ∧ δi is true for more than one
index i. Instead, we define expressions Ek ∈ Expn(S) for k ∈ {1, . . . ,m} inductively by
E1 = x1 ⊗ y1 and

Ek = (Ek−1 ⊗ ((xk+m ⊗ yk)⊕ yk+m))⊕ (xk ⊗ yk)

and set Eϕ = Em. In a sense, Ek is evaluated to 1 if γk ∧ δk is true, and otherwise, if
either γk or δk does not hold, it is evaluated to Ek−1.
Assume ϕ = s for some s ∈ S. We let n = 1, ϕ1

1 = ϕ2
1 = s and Eϕ = x1.

For ϕ = ζ ⊕ η, we assume the theorem is true for ζ with ζ̄1, ζ̄2 ∈ wMSO
⊗

-res(σ, S)l and
Eζ ∈ Expl(S), and for η with η̄1, η̄2 ∈ wMSO

⊗
-res(σ, S)m and Eη ∈ Expm(S). We set

ϕ̄1 = (ζ1
1 , . . . , ζ

1
l , η

1
1 , . . . , η

1
m), ϕ̄2 = (ζ2

1 , . . . , ζ
2
l , η

2
1 , . . . , η

2
m) and Eϕ = Eζ ⊕E′η, where E′η

is obtained from Eη by replacing every variable xi by xi+l and every variable yi by yi+l.
For ϕ = ζ ⊗ η, the proof is the same as for the previous case, only that here we define
Eϕ = Eζ ⊗ E′η.
For ϕ =

⊕
x.ζ, we assume the theorem is true for ζ with ζ̄1, ζ̄2 ∈ wMSO

⊗
-res(σ, S)l

and Eζ ∈ Expl(S). We may assume that Eζ = E1 ⊕ . . .⊕ Em is in normal form with all
Ei pure products and that x does no occur as a bound variable in any of the ζ1

i or ζ2
i .

We let ξi = PRD1(Ei, ζ̄1, ζ̄2) and θi = PRD2(Ei, ζ̄1, ζ̄2). We set n = 2m and define

ϕ1 = (
⊕
x.ξ1, . . . ,

⊕
x.ξm, ξ

−x
1 , . . . , ξ−xm)

ϕ2 = (
⊕
x.θ1, . . . ,

⊕
x.θm, θ

−x
1 , . . . , θ−xm)

Eϕ =
⊕m

i=1((xi ⊗ ym+i)⊕ (xm+i ⊗ yi)).

For ϕ =
⊕
X.ζ, we assume that the theorem is true for ζ with ζ̄1, ζ̄2 ∈ wMSO

⊗
-res(σ, S)l

and Eζ ∈ Expl(S) = Eζ = E1 ⊕ . . .⊕ Em in normal form with all Ei pure products. We
let ξi = PRD1(Ei, ζ̄1, ζ̄2) and θi = PRD2(Ei, ζ̄1, ζ̄2). We set n = m and define

ϕ1
j = (

⊕
X.ξ1, . . . ,

⊕
X.ξm)

ϕ2
j = (

⊕
X.θ1, . . . ,

⊕
X.θm)

Eϕ =
⊕m

i=1(xi ⊗ yi).

Assume ϕ =
⊗
x.ζ with ζ ∈ wMSOa-bool(σ, S) almost boolean. Using the laws of

distributivity in S and the fact that for two boolean formulas α, β ∈ MSO(σ) we have
JαK · JβK ≡ Jα⊗ βK, we may assume that ζ = (s1 ⊗ β1)⊕ . . .⊕ (sl ⊗ βl) for some l ≥ 1,
si ∈ S and βi ∈ MSO(σ). Applying a simple construction, we may even assume that
β1, . . . , βl form a partition, i.e., that for all (V,AtB)-assignments ρ′ there is exactly one
i ∈ {1, . . . , l} with (A tB, ρ′) |= βi. Let X1, . . . , Xl ∈ V be second order variables not
occurring in ζ. We define the abbreviation

(x ∈ Xi)B si = ((x ∈ Xi)⊗ si)⊕ ¬(x ∈ Xi).

MFCS 2018

76:14 A Feferman-Vaught Decomposition Theorem for Weighted MSO Logic

One can check elementarily that

JϕK ≡ J
⊕
X1. . . .

⊕
Xl.
(∧l

i=1 ∀x.(x ∈ Xi ↔ βi)
)
⊗
⊗l

i=1
⊗
x.((x ∈ Xi)B si)K.

Therefore, it suffices to show this case for formulas of the form

ϕ =
⊗
x.((x ∈ X)B s).

For this, we let n = 1 and define ϕ1 = ϕ2 = (
⊗
x.((x ∈ X)B s)) and Eϕ = x1 ⊗ y1. J

Proof of Theorem 16 (Sketch). Again we proceed by induction and assume that τ = σ

and Φ?(A×B, ς) = A×B. The proofs for the cases ϕ = β, ϕ = s, ϕ = ζ ⊕ η and ϕ = ζ ⊗ η
are identical to the ones used in the proof of Theorem 15 for the corresponding cases. For
the case ϕ =

⊕
x.ζ we proceed as for the case ϕ =

⊕
X.ζ in the proof of Theorem 15. J

6 Conclusion

We have derived a weighted version of the Feferman-Vaught Theorem for disjoint unions
and products of finite structures. We just mention here three possible extensions that were
left out due to lack of space. First, Theorems 15 and 16 also hold for infinite structures
if the commutative semiring S is bicomplete, i.e., if it is equipped with infinite sum and
product operations that naturally extend its finite sum and product operations. Second, in
the particular case that the semiring S is a De Morgan algebra, both theorems hold without
any need for restrictions on the product quantifiers; that is, Theorem 15 holds for the full
weighted MSO logic, and Theorem 16 holds for the full weighted FO logic. Third, both
theorems may be extended to employ transductions as defined by Courcelle [2] in place of
the present translation schemes.

References
1 Benedikt Bollig, Paul Gastin, and Benjamin Monmege. Weighted specifications over nested

words. In Frank Pfenning, editor, Proc. FoSSaCS, volume 7794 of LNCS, pages 385–400.
Springer, 2013.

2 Bruno Courcelle. Monadic second-order definable graph transductions: a survey. Theor.
Comput. Sci., 126(1):53–75, 1994.

3 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. Theor. Comput.
Sci., 380(1-2):69–86, 2007.

4 Manfred Droste and George Rahonis. Weighted automata and weighted logics with discount-
ing. Theor. Comput. Sci., 410(37):3481–3494, 2009. doi:10.1016/j.tcs.2009.03.029.

5 Andrzej Ehrenfeucht. An application of games to the completeness problem for formalized
theories. Fund. Math., 49(2):129–141, 1961.

6 Solomon Feferman and Robert L. Vaught. The first order properties of products of algebraic
systems. Fund. Math., 47:57–103, 1959.

7 Siegfried Gottwald. A Treatise on Many-Valued Logics, volume 9 of Studies in Logic and
Computation. Research Studies Press, 2001.

8 Yuri Gurevich. Modest theory of short chains. I. J. Symbolic Logic, 44(4):481–490, 12 1979.
9 Yuri Gurevich. Chapter XIII: Monadic second-order theories. In Jon Barwise and Solomon

Feferman, editors, Model-Theoretic Logics, volume 8 of Perspect. Math. Logic, pages 479–
506. Springer, 1985.

10 Petr Hájek. Metamathematics of Fuzzy Logic, volume 4 of Trends in Logic. Kluwer, 1998.

http://dx.doi.org/10.1016/j.tcs.2009.03.029

Manfred Droste and Erik Paul 76:15

11 Hendrik Jan Hoogeboom and Paulien ten Pas. Monadic second-order definable text lan-
guages. Theory Comput. Syst., 30(4):335–354, 1997. doi:10.1007/s002240000055.

12 Hans Läuchli and John Leonard. On the elementary theory of linear order. Fund. Math.,
59(1):109–116, 1966.

13 Johann A. Makowsky. Algorithmic uses of the Feferman–Vaught theorem. Ann. Pure Appl.
Logic, 126(1):159–213, 2004.

14 Christian Mathissen. Definable transductions and weighted logics for texts. In Tero Harju,
Juhani Karhumäki, and Arto Lepistö, editors, Proc. DLT, pages 324–336. Springer, 2007.

15 Christian Mathissen. Weighted logics for nested words and algebraic formal power series.
In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólf-
sdóttir, and Igor Walukiewicz, editors, Proc. ICALP, volume 5126 of LNCS, pages 221–232.
Springer, 2008.

16 Christian Mathissen. Weighted Automata and Weighted Logics over Tree-like Structures.
PhD thesis, Leipzig University, Germany, 2009. URL: http://www.dr.hut-verlag.de/
978-3-86853-180-0.html.

17 Andrzej Mostowski. On direct products of theories. J. Symbolic Logic, 17(1):1–31, 1952.
18 Frank P. Ramsey. On a problem of formal logic. Proc. London Math. Soc., 30(1):264–286,

1930.
19 Elena V. Ravve, Zeev Volkovich, and Gerhard-Wilhelm Weber. Effective optimization with

weighted automata on decomposable trees. Optimization, 63(1):109–127, 2014.
20 Marcel-Paul Schützenberger. On the definition of a family of automata. Inform. Control,

4(2–3):245–270, 1961.
21 Saharon Shelah. The monadic theory of order. Ann. Math., 102(3):379–419, 1975.
22 Alan S. Stern, Jan Mycielski, and Pavel Pudlák. A Lattice of Chapters of Mathematics:

Interpretations between Theorems, volume 426 of Mem. Amer. Math. Soc. American Math.
Soc., 1990.

MFCS 2018

http://dx.doi.org/10.1007/s002240000055
http://www.dr.hut-verlag.de/978-3-86853-180-0.html
http://www.dr.hut-verlag.de/978-3-86853-180-0.html

Maximum Area Axis-Aligned Square Packings
Hugo A. Akitaya
Tufts University, Medford, MA, USA
hugo.alves_akitaya@tufts.edu

https://orcid.org/0000-0002-6827-2200

Matthew D. Jones
Tufts University, Medford, MA, USA
matthew.jones@tufts.edu

David Stalfa
Northeastern University, Boston, MA, USA
stalfa@ccis.neu.edu

https://orcid.org/0000-0003-2101-8675

Csaba D. Tóth
California State University Northridge, Los Angeles, CA, USA
csaba.toth@csun.edu

https://orcid.org/0000-0002-8769-3190

Abstract
Given a point set S = {s1, . . . , sn} in the unit square U = [0, 1]2, an anchored square packing is
a set of n interior-disjoint empty squares in U such that si is a corner of the ith square. The
reach R(S) of S is the set of points that may be covered by such a packing, that is, the union of
all empty squares anchored at points in S.

It is shown that area(R(S)) ≥ 1
2 for every finite set S ⊂ U , and this bound is the best possible.

The region R(S) can be computed in O(n log n) time. Finally, we prove that finding a maximum
area anchored square packing is NP-complete. This is the first hardness proof for a geometric
packing problem where the size of geometric objects in the packing is unrestricted.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization,
Theory of computation → Computational geometry

Keywords and phrases square packing, geometric optimization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.77

Related Version A full version of this paper is available at https://arxiv.org/abs/1806.
09562.

Funding Research supported in part by the NSF awards CCF-1422311 and CCF-1423615. The
first author was supported by the Science Without Borders program.

1 Introduction

Let S = {s1, . . . , sn} be a set of n points in the unit square U = [0, 1]2. We say that a
square q is empty if no point in S lies in the interior of q, and q is anchored at a point s if
one of its four corners is s. An anchored square packing for S is a set Q = {q1, . . . , qn} of
interior-disjoint axis-aligned empty squares that lie in U such that qi is anchored at si for
i = 1, . . . , n. A lower-left anchored square packing is an anchored square packing in which si

is the lower-left corner of qi, for i = 1, . . . , n [2]. No polynomial-time algorithm is known for
© Hugo A. Akitaya, Matthew D. Jones, David Stalfa, and Csaba D. Tóth;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 77; pp. 77:1–77:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hugo.alves_akitaya@tufts.edu
https://orcid.org/0000-0002-6827-2200
mailto:matthew.jones@tufts.edu
mailto:stalfa@ccis.neu.edu
 https://orcid.org/0000-0003-2101-8675
mailto:csaba.toth@csun.edu
https://orcid.org/0000-0002-8769-3190
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.77
https://arxiv.org/abs/1806.09562
https://arxiv.org/abs/1806.09562
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

77:2 Maximum Area Axis-Aligned Square Packings

(a) (b)
1/14 3/14 (c)

Figure 1 (a) The reach R(S) for a set S of three points. (b) The area of R(S) is 1
2 for S = {(1

2 , 0)}.
(c) The reach R(S) touches all four sides of U , and its area is 4

7 .

computing the maximum area of an anchored square packing for a given point set S; the
problem admits a PTAS using a reduction to the maximum weight independent set problem
(MWIS) [1]. The empty squares anchored at S do not always cover U entirely (Fig. 1(a)).
For finding a maximum anchored square packing for S, it suffices to consider the subset of
U that can be reached by anchored empty squares. Specifically, we define the reach of S,
denoted R(S), as the union of all axis-aligned empty squares contained in U and anchored
at some point in S.

For computing the reach R(S), we can take the union of all maximal empty squares
anchored at the points in S, as follows. For i = 1, . . . , n, let q1

i be the maximal axis-aligned
empty square in U whose lower-left corner is si, and similarly define q2

i , q3
i , and q4

i where si

is the upper-left, upper-right, and lower-right corner, respectively. We say that a point s ∈ S

blocks a square q1
i if s is incident to the top or right edge of q1

i . Similarly, s blocks qj
i if j = 2

(resp., 3, 4) and s is incident to the bottom or right edges of qj
i (resp., bottom or left edges,

or top or left edges of qj
i). It is now clear that R(S) =

⋃n
i=1
⋃4

j=1 qj
i .

Summary of Results. We prove that for every finite set S ⊂ U , the area of R(S) is at
least 1

2 , and this bound is the best possible (Section 2). This settles in the affirmative a
conjecture by Balas et al. [1]. We show how to compute R(S) in O(n log n) time where
n = |S| (Section 3). We also show that finding the maximum area anchored square packing
for a given point set S is NP-complete (Section 4). This is the first NP-hardness result
for a geometric packing problem, where the size of the geometric objects in the packing is
unrestricted. We conclude with related open problems (Section 5).

Motivation and Related Previous Work. Geometric packing and covering problems have
a long and revered history, going back to Kepler’s problem about the densest packing of
congruent balls in Euclidean space. In a classical packing problem, we are given a container
region C, and a set O of geometric objects, and we wish to find a maximum subset O′ ⊆ O

such that congruent copies (or translates) of the objects in O′ fit in C without overlap.
Anchored variants, where each geometric object needs to contain a given point (anchor)

initially emerged in VLSI design, where the anchors represent the endpoints of wires. Allen
Freedman [15] conjectured that for every finite set S ⊂ [0, 1]2, which contains the origin (i.e.,
0 ∈ S), there is a lower-left anchored rectangle packing of area at least 1

2 . This lower bound
would match an easy upper bound construction, where n points are equally distributed on
the diagonal. The current best lower bound is 0.091 [6].

H.A. Akitaya, M.D. Jones, D. Stalfa, and Cs. D. Tóth 77:3

More recently, a broad family of anchored packing problems were proposed in the context
of map labelling, where the anchors represent cities in a map, and axis-aligned rectangles
represent labels [7, 8, 9, 10, 12, 13, 16]. Variants of the problem require the anchor to be
at a corner, at a side, or anywhere in the rectangle, and the objective is to maximize the
number of labels that can be packed in the map. Many of these problems are known to be
NP-complete. However, in all previous reductions, the label boxes have a finite number of
possible sizes [7, 12, 16] or bounded size [8].

In this paper, we consider the variant of Freedman’s problem: We need to place an
axis-aligned square at each anchor, and the sizes of the squares are not given in advance.
Our objective is to maximize the total area of an anchored square packing. Balas et al. [1]
showed that a greedy strategy finds an 5

32 -approximation, and a reduction to MWIS yields a
PTAS that achieves an (1− ε)-approximation in time nO(1/ε). It is known that the number
of maximum-area square anchored packings may be exponential in n [2].

2 The Minimum Area of the Reach

In this section, we prove area(R(S)) ≥ 1
2 for every set S of n points in U = [0, 1]2 (Theorem 12).

Note that this bound is the best possible for all n ∈ N. Indeed, if S is the one-element set
S = {(1

2 , 0)}, then area(R(S)) = 1
2 ; see Fig. 1(b). By placing n points in an ε-neighborhood

of (1
2 , 0) in U , we see that for every ε > 0 and every n ∈ N, there exists a set S of n points

in U such that area(R(S)) < 1
2 + ε. Note that in this construction all maximal anchored

squares are disjoint from the top side of U . Under this constraint, the upper bound 1
2 is

always attained.
We call a point set S trivial if R(S) is disjoint from one of the sides of U . The following

lemma shows that area(R(S)) ≥ 1
2 for trivial instances.

I Lemma 1. If R(S) does not touch one of the sides of U , then area(R(S)) ≥ 1
2 .

Proof. Without loss of generality, R(S) does not touch the top side of U . Let s = (x, y)
be a point in S with maximum y-coordinate. Consider the maximal empty squares whose
lower-left and lower-right corners are at s. Since these squares do not touch the top side of
U , and s has maximum y-coordinate, they touch the left and right side of U , respectively.
Consequently, their combined area is x2 + (1−x)2 ≥ (1

2)2 + (1
2)2 = 1

2 . Hence area(R(S)) ≥ 1
2 ,

as claimed. J

I Remark. We do not know of any nontrivial point set S that attains the lower bound
area(R(S)) ≥ 1

2 . Our best lower bound construction for nontrivial instances yields 4
7 ; see

Fig. 1(c).

Outline. In the remainder of Section 2, we consider nontrivial instances S ⊂ U . A gap is a
connected component of U \R(S), i.e., of the complement of the reach. Section 2.1 presents
basic properties of R(S) and its gaps, Section 2.2 classifies the possible gaps into five types,
and Section 2.3 presents a charging scheme in which we define for every gap C a region
RC ⊂ R(S) such that area(C) ≤ area(RC), and the regions RC are pairwise interior-disjoint.
Summation over all gaps yields area(U \R(S)) ≤

∑
C area(RC) ≤ area(R(S)), consequently

area(R(S)) ≥ 1
2 area(U) = 1

2 .

MFCS 2018

77:4 Maximum Area Axis-Aligned Square Packings

(b) (c)

p p

s

Q

r

Q

U

x

s

Q′

(a)

U

c0

s

s′

Qs

Figure 2 (a) A point s ∈ S where the anchored square Qs does not contain c0. (b) If s ∈ ∂Q,
x(p) ≤ x(s), and y(p) ≤ y(s), then the lower-left square anchored at s contains p. (c) ∂Q intersects
the bottom side of U , and r lies below p.

2.1 Properties of the Reach and its Gaps
I Lemma 2. For every finite set S ⊂ U , the reach R(S) is connected.

Proof. Let S ⊂ U be a finite set, and let c0 = (1
2 , 1

2) denote the center of U . We show
that for each s ∈ S, there is an empty square Qs anchored at s that contains c0 or whose
boundary contains an anchor s′ ∈ S such that ‖s′ − c0‖∞ < ‖s− c0‖∞ (i.e., s′ is closer to c0
in L∞ norm than s). This implies that Qs (hence R(S)) contains a line segment from s to
c0 or to s′. Consequently, R(S) contains a polyline from every s ∈ S to c0. By the definition
of R(S), this further implies that R(S) contains a polyline between any two points in R(S).

It remains to prove the claim. Let s ∈ S. We may assume without loss of generality that
x(s) ≤ y(s) ≤ 1

2 , hence ‖s− c0‖∞ = 1
2 − x(s). Let Qs be the maximal empty square whose

lower-left corner is s. Refer to Fig. 2(a). If c0 ∈ Qs, then our proof is complete. Otherwise,
the side length of Qs is as < 1

2 − x(s), and there is a point s′ in the right or the top side of
Qs. The anchor s′ lies in the interior of the L∞-ball of radius 1

2 − x(s) centered at c0, hence
‖s′ − c0‖∞ < ‖s− c0‖∞, as claimed. J

I Lemma 3. For every point p ∈ U \ R(S), there exists a point r ∈ ∂U such that the line
segment pr is horizontal or vertical; and pr ⊂ U \R(S).

Proof. Let p ∈ U \R(S), and let Q be the maximal empty axis-aligned square centered at p.
Refer to Fig. 2(b). The boundary of this square, ∂Q, intersects S or ∂U , otherwise Q would
not be maximal.

First assume that ∂Q contains a point s ∈ S. Without loss of generality, we may assume
that x(p) ≤ x(s) and y(p) ≤ y(s). Since Q is empty, the maximal anchored square with
upper-right corner at s contains p, hence p ∈ R(S), contradicting our assumption that
p /∈ R(S).

We can now assume that ∂Q intersects ∂U . Without loss of generality, ∂Q ∩ ∂U lies
in the bottom side of both Q and U . Let r ∈ ∂Q ∩ ∂U be a point vertically below p (see
Fig. 2(c) for an example). Suppose that segment pr intersects R(S). Then some point x ∈ pr

lies in a square Q′ anchored at a point s ∈ S. Since Q is empty, the anchor s lies outside of Q,
and so the side length of Q′ is at least half of that of Q, i.e., the side length of Q′ is at least
|pr|. However, then y(s) ≥ |pr|, and the square Q′ contains the segment px, contradicting
our assumption that p /∈ R(S). Therefore there is no such point x ∈ pr, and pr ⊂ U \R(S),
as claimed. J

H.A. Akitaya, M.D. Jones, D. Stalfa, and Cs. D. Tóth 77:5

(a) (c)

U

s1 = (b, c)

b

c

U

s1 = (b, c)

b

d− a

b+ c b+ c
s2 = (a, d)

b− c b− c

d

(b)

U

s1 = (b, c)

b

d− a

b+ c s2 = (a, d)

b− c

d

(d)

U

s1 = (b, c)

b

d− a

b+ c
s2 = (a, d)

b− c

d

d− a

Figure 3 (a) A corner gap of type 1. (b–d) Corner gaps of type 2.

I Corollary 4. The reach is simply connected.

Proof. By Lemma 2, R(S) is connected. Suppose that R(S) is not simply connected. Then
there is a gap C ⊂ U \R(S) such that ∂C ⊂ R(S). Let p ∈ int(C) be an arbitrary point in the
interior of C. By Lemma 3, there is a point r ∈ ∂U such that pr ⊂ U \R(S), which implies
r ∈ ∂C, contradicting our assumption ∂C ⊂ R(S). Therefore R(S) is simply connected, as
required. J

2.2 Classification of Gaps
In this section we classify the possible shapes of the gaps in U \R(S) for nontrivial instances.
To simplify our analysis, we assume that S ⊂ int(U) and no two points in S have the same
x- or y-coordinates. This assumption is justified by the following lemma.

I Lemma 5. If area(R(S)) ≥ 1
2 for every finite point set S ⊂ U such that S ⊂ int(U) and

no two points in S have the same x- or y-coordinates, then area(R(S)) ≥ 1
2 for every finite

point set S ⊂ U .

Proof. Let S ⊂ U be a finite point set that contains a point in ∂U or two points with
the same x- or y-coordinate. Let ε0 be minimum positive difference between x- and y-
coordinates of points in S. For every ε ∈ (0, ε0/2), translate each point in S by a random
vector of length at most ε into int(U). The resulting point set Sε lies in int(U) and
have distinct x- and y-coordinates with probability 1; the side length of each maximal
anchored square may increase by at most 2ε, but could decrease substantially. Consequently,
area(R(Sε)) ≤ area(R(S)) + 4nε, hence limε→0 area(R(Sε)) ≤ area(R(S)). J

We distinguish a corner gap, which is incident to a corner of U ; and a side gap, which is
adjacent to exactly one side of U . We show that every gap is bounded by ∂U and by squares
anchored at up to three points in S. We define five types of gaps (two types of corner gaps
and three types of side gaps). Each type is defined together with an empty rectangle B ⊂ U

and 1–3 anchors on the boundary of B. In each case, the gap is determined by the maximal
empty squares that lie entirely in B and are anchored at points in S ∩B.

We describe each type modulo the symmetry group of U (i.e., the dyhedral group D4).
Specifically, we restrict ourselves to corner gaps incident to the lower-left corner of U , and
side gaps adjacent to the bottom side of U . Reflection in the line x = y (resp., x = 1

2)
maintains corner gaps incident to the origin (resp., side gaps along the bottom side of U);
and we describe only one variant modulo reflection.

1. Let 0 < c < b < 1. If B = [0, b]× [0, b + c] is empty and s1 = (b, c) ∈ S, then the squares
anchored at s1 form a corner gap [0, b− c]× [0, c]. See Fig. 3(a).

MFCS 2018

77:6 Maximum Area Axis-Aligned Square Packings

(a) (c)

U
s1 = (a, c)

ba + ca

s2 = (b, d)

b − d

Us1 = (a, c)

a a+ c

s2 = (b, d)

b+ d

(b)

b

U

s1 = (a, c)

a a + c

s2 = (b, d)

b

s3 = (a′, c′)

a′a′ − c′

Figure 4 (a–c) Side gaps of type 3, 4, and 5, respectively.

2. Let 0 < a < b < 1 and 0 < c < d < 1 such that c < b and d < b + c. If B = [0, b]× [0, d]
is empty and s1 = (b, c), s2 = (a, d) ∈ S, then the squares anchored at s1 and s2 form a
corner gap [0, b− c]× [0, min(c, d− a, d− b + a)] ∪ [0, min(a, b− c, b− d + c)]× [0, d− a].
See Fig. 3(b–d).

3. Let 0 < a < b < 1 and 0 < c, d < 1 with max(c, d) < b− a. If B = [a, b]× [0, min(c, d) +
(b− a)] is empty and s1 = (a, c), s2 = (b, d) ∈ S, then the squares anchored at s1 and s2
form a side gap [a + c, b− d]× [0, min(c, d)]. See Fig. 4(a).

4. Let 0 < a < b < 1 and 0 < c < d < 1 with b− a < d. If B = [a, b + d]× [0, d] is empty
and s1 = (a, c), s2 = (b, d) ∈ S, then the squares anchored at s1 and s2 form a side gap
[a + c, b]× [0, min(c, d− b + a)]. See Fig. 4(b).

5. Let 0 < a < b < a′ < 1 and 0 < c < c′ < d < 1 with b − a < d and a′ − b < d. If
B = [a, a′]× [0, d] is empty and s1 = (a, c), s2 = (b, d), s3 = (a′, c′) ∈ S, then the squares
anchored at s1, s2, and s3 form a side gap [a + c, min(b, a′ − d + c′)]× [0, min(c, d− b +
a)] ∪ [min(b, a′ − d + c′), a′ − c′]× [0, min(c′, d− a′ − b)]. See Fig. 4(c) for an example.

I Lemma 6. Every gap C of type 1–5 is disjoint from all empty squares that are anchored
at points in S and lie in the exterior of the defining box B of C. Consequently, C is bounded
by ∂U and some empty squares anchored at points in S ∩B.

Proof. In each of the five cases, ∂B ∩ int(U) is covered by empty squares anchored at the
points in S that define C. More precisely, each point in ∂B ∩ int(U) lies in an empty square
anchored at a point in S ∩ ∂B blocked by some point in S ∩ ∂B or ∂U ∩ ∂B. For si ∈ S

lying in the exterior of B, let Qi be a square anchored at si. If Qi intersects B, then its
interior intersects ∂B ∩ int(U), hence it intersects a square Qj anchored at some sj ∈ ∂B

and blocked by some point pj ∈ S ∩ ∂B or ∂U ∩ ∂B. Since int(Qi) contains neither sj nor
pj , we have Qi ∩B ⊂ Qj , and so Qi is disjoint from the gap C, as claimed. J

We prove the following classification result for the gaps in the full paper.

I Lemma 7. Every gap of a nontrivial instance is of one of the five types defined above.

It is now easy to check that the following properties hold for all five types of gaps.

I Corollary 8.
(i) Each gap is either a rectangle incident to a side of U , or the union of two rectangles

incident to the same side of U (which we call an L-shaped gap).
(ii) Every edge uv of a gap is contained in either ∂U or a maximal anchored rectangle.

Consequently, the square built on the side uv outside of the gap lies either outside of U

or in R(S).

We say that a point p ∈ ∂U is a lead if it is a vertex of a maximal anchored square qj
i ,

and psi is a diagonal of qj
i . We observe that one or two vertices of a gap along ∂U is a lead.

H.A. Akitaya, M.D. Jones, D. Stalfa, and Cs. D. Tóth 77:7

C ⇒ C1 C2

Figure 5 An L-shaped side gap C is subdivided into two rectangles C1, C2 ∈ C∗.

I Corollary 9.
If C is a rectangular gap, then at least one endpoint of C ∩ ∂U is a lead,
otherwise both endpoints of C ∩ ∂U are leads.

2.3 Charging Scheme
For every gap C, we define a region RC ⊂ R(S); and then we show that area(RC) ≥ area(C)
and the regions RC are pairwise interior-disjoint.

For ease of exposition, we subdivide every L-shaped side gap C into two rectangles
C = C1 ∪ C2, then define interior-disjoint regions RC1 and RC2 , and let RC := RC1 ∪RC2 .
Specifically, let C∗ be a set of regions that contains: (1) all corner gaps, (2) all rectangular
side gaps, and (3) for each L-shaped side gap C, the two interior-disjoint rectangles C1 and
C2, such that C = C1 ∪C2 and both C1 and C2 have a common side with ∂U (see Fig. 5 for
an example). By Corollary 9, at least one vertex of every rectangle in C∗ is a lead, and two
vertices of every L-shaped corner gap in C∗ are leads.

We are now ready to define a region RC for each region C ∈ C∗.
Let C = (a, b, c, d) be a rectangle in C∗. Assume w.l.o.g. that bc is contained in the
bottom side of U , and c is a lead (a symmetric construction applies if bc is contained in
another side of U or b is the only lead). Refer to Fig. 6(a). Let `1 and `2 be lines of slope
1 passing through a and c, respectively. Let p1 be the intersection of `1 with the vertical
line through cd, and let p2 be the intersection of `2 with the horizontal line through
da. Let z1 (resp., z2) be the intersection point of `2 (resp., `1) with the line of slope −1
passing through p1 (resp., p2). Then RC is the smaller pentagon out of (a, d, c, z1, p1)
and (a, d, c, p2, z2).
Let C = (a, b, c, d, e, f) be a L-shaped corner gap in C∗. Assume w.l.o.g. that b is the
lower-left corner of U . By Corollary 9, both a and c are leads. Refer to Fig. 6(b). Let
`1 and `2 be lines of slope 1 passing through a and c, respectively. Let p1, p2 ∈ S be
the anchors on `1 and `2, respectively (which exist since both a and c are leads). Let z1
(resp., z2) be the intersection point of line `2 (resp., `1) with the line of slope −1 passing
through p1 (resp., p2). Then RC is the smaller heptagon out of (a, f, e, d, c, z1, p1) and
(a, f, e, d, c, p2, z2).

I Lemma 10. For every C ∈ C∗, we have:
(P1) RC ⊆ R(S),
(P2) int(RC) does not contain any anchors, and
(P3) area(C) ≤ area(RC).

Proof. The region C ∈ C∗ is either a gap or a rectangle within an L-shaped side gap; Fig. 6(b).
Let C∗ be the gap that contains C, and B the box defining the gap C∗. For all five types of
gaps, int(B) does not contain any anchor, and B \ C∗ ⊂ R(S). By Corollaries 8(ii) and 9,
the points p1 and p2 lie in B. Consequently, RC ⊂ B, hence RC ⊂ B \ C∗. This confirms
(P1) and (P2).

To prove (P3), we distinguish two cases. First assume that C is an x× y rectangle. Let
T be an isosceles right triangle whose hypotenuse has length x + y. It is easy to check that
area(C) ≤ area(T). Indeed, area(T) =

(1
2 (x + y)

)2 = 1
2

(
x2

2 + xy + y2

2

)
≥ xy = area(C).

MFCS 2018

77:8 Maximum Area Axis-Aligned Square Packings

p2

p1

d

b

p2

(a) (b)

a

c

p1

b c

C

C
RC RC

`1

`2

`′1

`1

`2

d

e

f

`′2

`′2
z1

z2

z1

z2

a

`′1

Figure 6 Region RC . (a) C ∈ C∗ is a rectangle. (b) C ∈ C∗ is an L-shaped corner gap.

By definition, RC contains a triangle congruent to T , consequently area(C) ≤ area(T) ≤
area(RC), as claimed.

Next assume that C ∈ C∗ is an L-shaped corner gap; Fig. 6(b). Assume that C is formed
by three interior-disjoint axis-aligned rectangles defined by diagonals ae, be, and ce. Let
their dimensions respectively be x× y, x× z, and w × z. Let T1 and T2 be isosceles right
triangles whose hypotenuses are of length x + y and w + z, respectively. Let T3 and T4 be
isosceles right triangles whose legs are of length x and z, respectively. By definition, RC

contains interior-disjoint triangles congruent to T1, T2, T3, and T4: the hypotenuses of the
respective triangles are in the same supporting lines as ef , ed, ap1, and cp2 respectively.
Using the same argument as in the previous case, we can show that area(T1) and area(T2)
are, respectively, greater or equal than the areas of the x× y and w× z rectangles. It remains
to show that area(T3) + area(T4) is greater or equal than the area of the x× z rectangle. By
definition, we have area(T3) + area(T4) =

(
x2

2 + z2

2

)
≥ xz for all x, z > 0. J

We prove that the regions RC , C ∈ C∗, are pairwise interior-disjoint in the full paper.

I Lemma 11. For every two regions C, C ′ ∈ C∗, C 6= C ′, we have int(RC) ∩ int(RC′) = ∅.

I Theorem 12. For every finite set S ⊂ U , we have area(R(S)) ≥ 1
2 , and this bound is the

best possible.

Proof. By Lemma 5, it suffices to prove the lower bound when S ⊂ int(U) and no two
points in S have the same x- or y-coordinate. For all gaps C ⊂ U \ R(S)), we have
defined interior-disjoint regions RC ⊂ R(S) such that area(C) ≤ area(RC). Consequently,∑

C area(C) ≤
∑

C area(RC) ≤ area(R(S)), which immediately yields area(R(S)) = 1 −∑
C area(C) ≥ 1− area(R(S)), and area(R(S)) ≥ 1/2, as claimed. This bound is the best

possible: the point set S = {(1
2 , 0)} attains area(R(S)) = 1

2 . J

3 Algorithm for Computing the Reach

In this section, we show how to compute efficiently the reach of a given point set.

I Theorem 13. For a set S ⊂ U of n points, R(S) can be computed in O(n log n) time.

H.A. Akitaya, M.D. Jones, D. Stalfa, and Cs. D. Tóth 77:9

s2 s2 s2

q12
r2

WR
2

W T
2

t2

(a) (b) (c)

Figure 7 A set S of 6 anchors in U = [0, 1]2. (a) The maximal empty anchored square q1
2 ; (b)

wedge W R
2 ; and (c) wedge W T

2 .

Recall that, for a set S = {s1, . . . , sn}, the reach is defined as a union of 4n squares,
R(S) =

⋃n
i=1
⋃4

j=1 qj
i , where q1

i is the maximal axis-aligned empty square in U whose lower-
left corner is si, and q2

i , q3
i , and q4

i are defined similarly where si is the upper-left, upper-right,
and lower-right corner, respectively. Since any two squares cross in at most two points,
the 4n squares qj

i (i = 1, . . . , n and j = 1, . . . , 4) form a pseudo-circle arrangement. It is
well known that the union of O(n) pseudo-circles has O(n) vertices [11]. The union of 4n

axis-aligned squares can be computed by a sweep-line algorithm in O(n log n) time [3].
We note that Bentley’s sweep-line algorithm can compute the area of the union of n

axis-aligned rectangles in O(n log n) time (without computing the union itself, which may
have Θ(n2) complexity). Computing the volume of the union of axis-aligned hyper-rectangles
in Rd is known as Klee’s measure problem, and the current best algorithms [4] for d ≥ 3 run
in O(nd/2) time in general, and in O(n(d+1)/3 polylog(n)) time for hypercubes (see also [17]).

It remains to compute the 4n anchored maximal empty squares qj
i . We focus on the

n lower-left anchored squares q1
i (i = 1, . . . , n), the other three types can be computed

analogously. For every i = 1, . . . , n, the lower-left corner of q1
i is si, and its left or top side

contains another anchor or a point in ∂U ; we say that this point is the blocker of q1
i . For

each i, we find a first point that may block the square q1
i on the left and on the top side,

independently. The blocker of q1
i is the points closest to si in L∞ norm. We continue with the

details. We define two wedges with apex at the origin: Let W L = {(x, y) ∈ R2 : 0 < y < x}
and W T = {(x, y) ∈ R2 : 0 < x < y}; see Fig. 7(b–c). The Minkowski sums W L

i := si + WL

and W T
i := si + W T are the translates of these wedges with apex at si. Let ri be a point of

minimum x-coordinate in W L
i ∩ (S ∪ ∂U); and let ti be a point of minimum y-coordinate

in W T
i ∩ (S ∪ ∂U). Then the blocker of q1

i is either ri or ti, whichever is closer to si in L∞
norm.

For every i = 1, . . . , n, we find points ri and ti, independently. Consider the points
ri ∈ W R

i , for i = 1, . . . , n (the case of the points ti ∈ W T
t is analogous). We use a data

structure originally developed for computing Θ-graphs in the context of geometric spanners
by Narasimhan and Smid [14, Section 4.1.2]. They developed the following dynamic data
structure for n points in the plane:

I Lemma 14 ([14], Lemma 4.1.9). Let H be a nonvertical line through the origin. There is
a data structure that maintains a set P of n points in the plane and supports the following
queries: (i) MinBelow(p): Given a query point p ∈ P , compute a point with the minimum
x-coordinate among all points in P that are below p + H; (ii) insert a point into P ; (iii)
delete a point from P . The data structure has O(n) space, O(n log n) preprocessing time, and
O(log n) query time.

MFCS 2018

77:10 Maximum Area Axis-Aligned Square Packings

I Corollary 15. Given a point set S = {si : i = 1 . . . , n} ⊂ U , the points ri and ti

(i = 1, . . . , n) can be computed in O(n log n) time. Consequently, the squares q1
i can also be

computed in O(n log n) time.

Proof. Assume that S is sorted in decreasing order by their y-coordinates. We use the data
structure in Lemma 14 with the line H : y = x as follows. Initially P = ∅. For i = 1, . . . , n,
we insert si into P . If MinBelow(si) returns a point in P , then let this be ri, otherwise let
ri be the point in the right side of U that has the same y-coordinate as si. Since P contains
all points in S whose y-coordinates are greater or equal to that of si, if wedge W R

i contains
any anchor, then MinBelow(si) returns one with the minimum x-coordinate. This shows
that ri is computed correctly for all i = 1, . . . , n.

The points ti (i = 1, . . . , n) can be computed analogously in O(n log n) time. In O(1)
additional time for each i = 1, . . . , n, we can compare ri and ti, find the blocker of q1

i , and
determine the maximal anchored square q1

i . J

Proof of Theorem 13. By a repeated application of Corollary 15, we can compute all 4n

anchored squares qj
i (i = 1, . . . , n; j = 1, . . . , 4). As noted above, a sweep-line algorithm can

compute the union R(S) =
⋃n

i=1
⋃4

j=1 qj
i in O(n log n) time. This completes the proof. J

4 NP-Hardness of Maximum-Area Anchored Square Packings

We now prove that the maximum-area anchored square packing problem is NP-complete. We
define the decision version of the problem as follows. Instead of the unit square [0, 1]2, we
use the square U = [0, W]2, for some integer W > 0. For a finite set S ⊂ [0, W]2 of anchors
with integer coordinates, we ask whether there is an anchored square packing of area W 2.

We prove NP-hardness by a reduction from Planar-Monotone-3SAT (described below).
For every instance of Planar-Monotone-3SAT, we construct an instance S ⊂ [0, W]2.
We say that an anchored empty square is forced if every packing of area W 2 contains it. An
anchor in S is forced if it is the anchor of a forced square; otherwise it is free. A forced
square A and its anchor s ∈ S form a forced pair (A, s). We construct an instance in which
most of the anchors are forced, and a small number of anchors encode the truth value of the
variables in a 3SAT instance.

To prove that the two instances are equivalent, we shall argue that a set of squares and
anchors are forced. In an intermediate step, we assume that F = {(Ai, si) : i = 1 . . . , f} is a
set of forced square-anchor pairs, and we would like to show that another square-anchor pair
(A, s) is also forced. Let P = U \

⋃f
i=1 Ai be the complement of the forced squares in F . By

construction, P is an orthogonal polygon (possibly with holes). An anchor s is undecided if
there is no forced pair (A, s) anchored at s in F (i.e., s is either free or its forced pair is not
in F).

We show (Lemma 16) that the following two properties each imply that the pair (A, s) is
forced (given that all pairs in F are forced). We define both properties for the orientations
shown in Fig. 8, but they generalize to all other orientations obtained through the symmetry
group of U . Let s ∈ S, and let A be a maximal empty square anchored at s such that
int(A) ⊂ P . Without loss of generality, assume that s is the upper-right corner of A.

1. The lower-left corner of A is a convex vertex of P and there is no undecided anchor in
the closure of the bottom and left edges of A.

H.A. Akitaya, M.D. Jones, D. Stalfa, and Cs. D. Tóth 77:11

Figure 8 Identifying forced points. (a) Property 1. (b) Property 2.

2. The lower-left corner of A is a convex vertex of P , the side length of A is greater than
1, and the bottom edge of A is contained in ∂P . There is a unique undecided anchor
s′ ∈ ∂A located one unit above the lower-left corner of A. There is no undecided anchor
one unit to the right of s or to the right of the lower-right corner of A.

I Lemma 16. Given a set of forced pairs F = {(Ai, si) : i = 1 . . . , f}, if a pair (A, s) has
properties 1 or 2, then (A, s) is a forced pair.

Proof. Suppose, to the contrary, that there is a anchored square packing Q of area W 2

that does not use the square A anchored at s. Let B ⊆ A be the unit square incident to
the lower-left corner of A. Since all anchors have integer coordinates, every empty square
containing B is also contained in A. If a pair (A, s) has property 1, apart from A, no such
empty square has a corner at an undecided anchor and, hence, B cannot be covered. If a pair
(A, s) has property 2, B must be covered by a square anchored at its upper-left corner, which
is undecided by hypothesis. Hence, B ∈ Q. Let B′ be a unit square with integer coordinates
to the right of B. Then the maximal empty square in P \B containing B′ satisfies property 1,
but that there is no point at its upper-right corner. In this case, B′ is not covered. J

I Theorem 17. It is NP-hard to compute the maximum area anchored square packing of a
given set S of n anchors with integer coordinates in a square U = [0, W]2.

Proof. We reduce from Planar-Monotone-3SAT which is NP-complete [5]. An instance
of such problem consists of a boolean formula Φ in 3CNF with n variables {x1, . . . , xn} and
m clauses, and a planar rectilinear drawing of the a bipartite graph of Φ. The drawing given
by an Planar-Monotone-3SAT instance represents variables and clauses by rectangles,
and edges by vertical line segments. It has the additional property that the rectangles of
variables (and only variables) intersect the line y = 0 and the rectangles of clauses lies in
the upper (resp., lower) half-plane contain only positive (resp., negative) literals. A literal is
called negative if it is the negation of a variable, and positive otherwise. We need to decide
whether we can satisfy all m clauses, each of which is a disjunction of three literals.

For a given instance of Planar-Monotone-3SAT, we construct an instance S ⊂ [0, W]2
of the maximal area anchored square packing problem, and then show that the two instances
are equivalent. We first modify the rectilinear graph of the Planar-Monotone-3SAT
instance in the following way. Replace each rectangle by a cycle along its boundary and
denote by G the resulting geometric graph. Delete the left, right, and the top (resp., bottom)
edges of the rectangles representing positive (resp., negative) clauses. Each clause is now
represented by a horizontal segment (a path of length 2 in G). We designate the middle
vertex of this path, which has degree 3, as a clause vertex. For each cycle in G that represents
a variable, delete the right vertical edges, and designate the left vertical edge as a variable
edge. All remaining edges in G called wires and all remaining vertices of degree 3 are called
split vertices. We orient the wires such that they form directed paths from the variable edges
to clause vertices. Assume that the feature size of the resulting rectilinear graph is 1 and the

MFCS 2018

77:12 Maximum Area Axis-Aligned Square Packings

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 9 Gadgets. (a) is a filler gadget, (b–c) are wire gadgets, (d–g) are turn gadgets, (h) is a
split gadget, and (i) is a clause gadget. The rhombus in (h) represents 2 anchors placed at the same
position.

Figure 10 Square packing for the split gadget connected to negative wires.

side length of a minimum enclosing axis-aligned square is k. We set W = 48k + 48 and let
U = [0, W]2. Scale up the drawing by a factor of 48 and place it in U so that every vertex is
at distance at least 24 from ∂U .

We tile U with orthogonal polygons. Every tile is congruent to one of the tiles shown in
Fig. 9. We call these tiles gadgets: (a) is a filler gadget, (b–c) are wire gadgets, (d–g) are
turn gadgets, (h) is a split gadget, and (i) is a clause gadget. The filer gadget is a 12× 12
square, all other tiles are constructed from a 12× 12 square by possibly adding or deleting
1× 2 rectangular features in two or three side of the squares. In a tiling of [0, W]2, each such
feature matches a feature of an adjacent tile. Choose a tile for each variable that contains
part of the variable edge and add the anchors shown in Fig. 9(b) (only the star contained
in the 12× 12 square is added). Do the same for split and clauses using the tiles shown in
Fig. 9(h) and (i), respectively. Connect the gadgets as they are connected in the original
drawing using wires and turns. The directions of the wires attached to split and clause
gadgets are indicated by blue arrows in Fig. 9. For all remaining tiles, we use filler gadgets
with one anchor. This completes the description of the instance S ⊂ [0, W]2.

We now prove that a Planar-Monotone-3SAT instance admits a positive solution if
and only if the corresponding point set S ⊂ [0, W]2 admits an anchored square packing of
area W 2.

H.A. Akitaya, M.D. Jones, D. Stalfa, and Cs. D. Tóth 77:13

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 11 Forced squares and anchors.

Assume that the Planar-Monotone-3SAT instance admits a positive solution. We
show that the corresponding instance S ⊂ [0, W]2 admits an anchored square packing of area
W 2. Choose every orange square in each gadget assigning its anchor as the origin of the arrow
contained in it (as shown in Fig. 9). For each of the n wire gadgets placed on variable edges,
if the corresponding variable is assigned true (resp., false) add all blue squares assigning
its anchor as the only point on its bottom (resp., top) edge. Every connected component
formed by blue squares represents a path of wires. We say that a wire is positive if it is in
the upper half of U and its corresponding variable is assigned true, or if it is in the lower
half of U and its corresponding variable is assigned false. A wire is negative otherwise. If a
wire is positive (resp., negative), assign the corner that is behind (resp., ahead of) the blue
square as its anchor, considering the direction of the wire. For split gadgets connected to
positive wires assign the top-left corner of the red square as its anchor. For negative wires,
the red square is reached by four equal squares as shown in Fig. 10. Since there exists at
least one positive wire connected to a clause vertex, there will be at least one point in a
corner of the red square in the clause gadget that has not yet been assigned a square. We
complete the square packing by adding such a square with a corresponding anchor. Since
the anchored squares cover all gadgets, the overall area of the square packing is W 2.

Assume that the anchored square packing instance S ⊂ [0, W]2 admits a positive solution
(of area W 2). Recall that [0, W]2 is tiled with gadgets. Sort them in lexicographic order by
the coordinates of their lower-left corners (i.e., the first gadget is incident to the origin). We
use Lemma 16 to prove the following property for each gadget:

Property (i). If the left and bottom boundaries are part of the perimeter of a forced
polygon P and contain no free anchor relative to P except for the points shown by a
star, then (i.a) every orange and blue square shown in Fig. 9 in the corresponding
gadget is forced; and (i.b) if P ′ is the union of P and the orange and blue squares
inside the gadget, then there is no free anchor relative to P ′ on the boundary of the
gadget except for points shown by a star.

Initially, in every gadget, we can determine at least one pair of a forced square and a
corresponding forced anchor using Lemma 16. Fig. 11 shows the result of recursively adding
a forced square into the forced polygon, and applying Lemma 16 to another pair until there

MFCS 2018

77:14 Maximum Area Axis-Aligned Square Packings

are no more forced pairs in the gadget. We now show that all blue squares are forced. In each
case, we can take the lower-left blue square and conclude that if the square packing covers
it entirely, then it is covered by a square anchored at one of its corners. After we add this
square to the forced polygon P , the same argument holds for every lower-left blue square not
in P . Consequently, all blue squares are forced. The remaining orange squares are forced by
recursively applying Lemma 16. Then, if property (i) is satisfied, every gadget satisfies (i.a)
and (i.b). Property (i) is trivially satisfied for the lower-left gadget and inductively satisfied
by assuming that all gadgets to the left and below satisfy (i.a) and (i.b).

We now show how to convert a square packing of area W 2 into a solution of the Planar-
Monotone-3SAT instance. Wire gadgets have two points indicates by a star: one that is
ahead and one behind using the direction of the wire (recall that the direction points from
the variable edge to the clause). A wire gadget that does not use the star that is ahead in its
direction as an anchor for one of the squares contained in it is called positive. A wire gadget
is called negative otherwise. For all wire gadgets satisfying (i.a) and (i.b), if a star is not used
as an anchor for a square in the gadget, then the other point marked by a star must be used
as anchor in this gadget. This implies that, for a pair of adjacent wire gadgets, if the one
ahead in the wire direction is positive, so is the other gadget. Now assume that one of the
outputs of the split gadget satisfying (i.a) and (i.b) is connected to a positive gadget. A point
in the middle of an edge of the red square in Fig. 11(h) must be used as an anchor of a blue
square. Then, the only way to cover all the red area is to use a single square anchored at its
upper-left corner. Therefore, the wire connected to the input of the split gadget must also be
positive. Finally, assume that the red square in a clause gadget that satisfies (i.a) and (i.b)
(see Fig. 11(i)) is covered. Then, it must be anchored at one of its corners. If it is anchored
at the upper-left (resp., bottom-left, bottom-right) corner, then the star at the top (resp.,
left, bottom) of the gadget is used as an anchor of a blue square in this gadget. Therefore,
it must be adjacent to a positive wire. Combining all arguments, we set a variable true if
its first wire gadget (that was placed on the variable edge) is positive and false otherwise,
and then this assignment will satisfy the boolean formula of the Planar-Monotone-3SAT
instance. J

5 Open Problems

We have shown that at least half of the area of the unit square U = [0, 1]2 can be reached by
empty squares anchored at S for any finite set S ⊂ U , and this bound is the best possible. We
have also given the first NP-hardness proof for a packing problem over geometric objects of
arbitrary sizes. Our results raise several intriguing open problems. Does our result generalize
to higher dimensions, that is, is there a lower bound for the maximal volume covered by
empty hypercubes anchored at a finite set of points in [0, 1]d for d > 2? Axis-aligned squares
are balls in L∞-norm: Over all finite sets S of anchors in a unit-diameter ball U in Lp-norm,
p ≥ 1, what is the maximum area of a packing of Lp-balls that each contain an anchor?
Is there a polynomial-time algorithm for computing the minimum area lower-left anchored
square packing for a given set S of n points in the unit square [0, 1]2? Is it NP-hard to
compute the maximum area anchored rectangle packing of a given set S ⊂ [0, 1]2? For the
last two problems, simple greedy strategies achieve constant-factor approximations [6], and a
QPTAS is available for rectangles and a PTAS for squares [1].

H.A. Akitaya, M.D. Jones, D. Stalfa, and Cs. D. Tóth 77:15

References
1 Kevin Balas, Adrian Dumitrescu, and Csaba D. Tóth. Anchored rectangle and square

packings. Discrete Optimization, 26:131–162, 2017. doi:10.1016/j.disopt.2017.08.003.
2 Kevin Balas and Csaba D. Tóth. On the number of anchored rectangle packings for a planar

point set. Theor. Comput. Sci., 654:143–154, 2016. doi:10.1016/j.tcs.2016.03.007.
3 Jon L. Bentley. Solutions to Klee’s rectangle problems. unpublished manuscript, 1977.
4 Timothy M. Chan. Klee’s measure problem made easy. In Proc. 54th Annual IEEE Sympo-

sium on Foundations of Computer Science, pages 410–419, 2013. doi:10.1109/FOCS.2013.
51.

5 Mark de Berg and Amirali Khosravi. Optimal binary space partitions for segments in
the plane. Int. J. Comput. Geometry Appl., 22(3):187–206, 2012. URL: http://www.
worldscinet.com/doi/abs/10.1142/S0218195912500045.

6 Adrian Dumitrescu and Csaba D. Tóth. Packing anchored rectangles. Combinatorica,
35(1):39–61, 2015. doi:10.1007/s00493-015-3006-1.

7 Michael Formann and Frank Wagner. A packing problem with applications to lettering of
maps. In Robert L. Scot Drysdale, editor, Proc. 7th Annual Symposium on Computational
Geometry, pages 281–288. ACM, 1991. doi:10.1145/109648.109680.

8 Claudia Iturriaga and Anna Lubiw. Elastic labels around the perimeter of a map. J.
Algorithms, 47(1):14–39, 2003. doi:10.1016/S0196-6774(03)00004-X.

9 Joo-Won Jung and Kyung-Yong Chwa. Labeling points with given rectangles. Inf. Process.
Lett., 89(3):115–121, 2004. doi:10.1016/j.ipl.2003.09.017.

10 Konstantinos G. Kakoulis and Ioannis G. Tollis. Labeling algorithms. In
Roberto Tamassia, editor, Handbook on Graph Drawing and Visualization., pages
489–515. Chapman and Hall/CRC, 2013. URL: https://www.crcpress.com/
Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125.

11 Klara Kedem, Ron Livne, János Pach, and Micha Sharir. On the union of Jordan regions
and collision-free translational motion amidst polygonal obstacles. Discrete & Computa-
tional Geometry, 1:59–70, 1986. doi:10.1007/BF02187683.

12 Donald E. Knuth and Arvind Raghunathan. The problem of compatible representatives.
SIAM J. Discrete Math., 5(3):422–427, 1992. doi:10.1137/0405033.

13 Atsushi Koike, Shin-Ichi Nakano, Takao Nishizeki, Takeshi Tokuyama, and Shuhei Watan-
abe. Labeling points with rectangles of various shapes. Int. J. Comput. Geometry Appl.,
12(6):511–528, 2002. doi:10.1142/S0218195902001018.

14 Giri Narasimhan and Michiel H. M. Smid. Geometric Spanner Networks. Cambridge
University Press, 2007.

15 William T. Tutte, editor. Recent Progress in Combinatorics, New York, 1969. Academic
Press. Proceedings of the 3rd Waterloo Conference on Combinatorics, May, 1968.

16 Marc J. van Kreveld, Tycho Strijk, and Alexander Wolff. Point labeling with sliding labels.
Comput. Geom., 13(1):21–47, 1999. doi:10.1016/S0925-7721(99)00005-X.

17 Hakan Yildiz and Subhash Suri. Computing Klee’s measure of grounded boxes. Algorith-
mica, 71(2):307–329, 2015. doi:10.1007/s00453-013-9797-9.

MFCS 2018

http://dx.doi.org/10.1016/j.disopt.2017.08.003
http://dx.doi.org/10.1016/j.tcs.2016.03.007
http://dx.doi.org/10.1109/FOCS.2013.51
http://dx.doi.org/10.1109/FOCS.2013.51
http://www.worldscinet.com/doi/abs/10.1142/S0218195912500045
http://www.worldscinet.com/doi/abs/10.1142/S0218195912500045
http://dx.doi.org/10.1007/s00493-015-3006-1
http://dx.doi.org/10.1145/109648.109680
http://dx.doi.org/10.1016/S0196-6774(03)00004-X
http://dx.doi.org/10.1016/j.ipl.2003.09.017
https://www.crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
https://www.crcpress.com/Handbook-of-Graph-Drawing-and-Visualization/Tamassia/9781584884125
http://dx.doi.org/10.1007/BF02187683
http://dx.doi.org/10.1137/0405033
http://dx.doi.org/10.1142/S0218195902001018
http://dx.doi.org/10.1016/S0925-7721(99)00005-X
http://dx.doi.org/10.1007/s00453-013-9797-9

Deterministically Counting Satisfying Assignments
for Constant-Depth Circuits with Parity Gates,
with Implications for Lower Bounds
Ninad Rajgopal1

Department of Computer Science, University of Oxford, Oxford, United Kingdom
ninad.rajgopal@cs.ox.ac.uk

Rahul Santhanam2

Department of Computer Science, University of Oxford, Oxford, United Kingdom
rahul.santhanam@cs.ox.ac.uk

Srikanth Srinivasan
Department of Mathematics, IIT Bombay, Mumbai, India
srikanth@math.iitb.ac.in

Abstract
We give a deterministic algorithm for counting the number of satisfying assignments of any
AC0[⊕] circuit C of size s and depth d over n variables in time 2n−f(n,s,d), where f(n, s, d) =
n/O(log(s))d−1, whenever s = 2o(n1/d). As a consequence, we get that for each d, there is a
language in ENP that does not have AC0[⊕] circuits of size 2o(n1/(d+1)). This is the first lower
bound in ENP against AC0[⊕] circuits that beats the lower bound of 2Ω(n1/2(d−1)) due to Razborov
and Smolensky for large d. Both our algorithm and our lower bounds extend to AC0[p] circuits
for any prime p.

2012 ACM Subject Classification Theory of computation → Computational complexity and
cryptography

Keywords and phrases circuit satisfiability, circuit lower bounds, polynomial method, deran-
domization

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.78

1 Introduction

In circuit complexity, we are interested in understanding the power and weaknesses of various
circuit models. This understanding can take various forms for any given circuit class C.
One indication of a deeper understanding is to be able to show lower bounds against C,
i.e., prove that some “explicit” function cannot be computed by small circuits in C. Other
indications come from efficient or at least non-trivial solutions for various meta-algorithmic
tasks involving C, such as satisfiability algorithms for C, learning algorithms for C or pseudo-
random generators useful against C. There are some formal connections between lower
bounds and efficient solvability of meta-algorithmic tasks for classes C satisfying some natural
closure properties, for example, an equivalence between pseudo-random generators against C

and average-case lower bounds in linear exponential time against C [18], an implication from

1 This work was supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2014)/ERC Grant Agreement No. 615075.

2 This work was supported by the European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2014)/ERC Grant Agreement No. 615075.

© Ninad Rajgopal, Rahul Santhanam, and Srikanth Srinivasan;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 78; pp. 78:1–78:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ninad.rajgopal@cs.ox.ac.uk
mailto:rahul.santhanam@cs.ox.ac.uk
mailto:srikanth@math.iitb.ac.in
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.78
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

78:2 Deterministially counting satisfying assignments for AC0[⊕] circuits

non-trivial satisfiability algorithms for C to lower bounds in non-deterministic exponential
time against C [26], and an implication from non-trivial learning algorithms for C to lower
bounds in probabilistic exponential time against C [20].

For the class of Boolean circuits in general, our understanding is very limited in these
terms. We have no super-linear lower bounds against general Boolean circuits for any explicit
function, nor do we have non-trivial solutions for any of the meta-algorithmic tasks mentioned.
The situation is far better for more restricted classes of circuits, especially circuits of constant
depth where the gates have unbounded fan-in, both with respect to lower bounds and to
meta-algorithmic questions.

In this paper, we focus on constant-depth circuits with AND, OR and PARITY gates (or
more generally, AND, OR and MODp gates for some prime p). This is a class that has been
intensively studied. Razborov [21] and Smolensky [23] showed super-polynomial size lower
bounds against this class for very simple functions such as the MAJORITY function and the
MODq function where q is a prime different from 2. As we discuss in Section 2, non-trivial
randomized algorithms for deciding satisfiability of circuits from this class are implicit in
[27, 16]. Recently, [5] gave quasi-polynomial time algorithms for learning AC0[⊕] circuits in
the membership query model.

However, there are still several gaps in our understanding of these AC0[⊕] circuits. With
regard to lower bounds, we still do not have tight lower bounds for functions like Majority
or MODq. The Razborov-Smolensky approximation method yields size lower bounds of the
form 2Ω(n1/2(d−1)) for Majority against AC0[⊕] circuits of depth d over n variables. The best
known upper bound is 2Õ(n1/(d−1)) using a standard divide-and-conquer strategy. Closing
this quadratic gap in the exponent between upper and lower bounds has been a long-standing
open question in the complexity theory of constant-depth circuits. Note that, in contrast,
tight bounds are known up to constant factors in the exponent when only AND and OR
gates are allowed - Parity is known to have complexity 2Θ(n1/(d−1)) in this simpler model
[1, 9, 29, 11].

With regard to meta-algorithmic tasks, despite the learning breakthrough of [5] mentioned
previously, the situation for pseudo-random generators (PRGs) and satisfiability algorithms
is still unclear. While we have super-polynomial worst-case lower bounds against AC0[⊕]
circuits, we do not have good average-case lower bounds, and as a consequence, do not
have good PRGs. In the case of satisfiability algorithms, randomized algorithms improving
non-trivially over brute force search are implicit in previous work, but good deterministic
algorithms were unknown prior to this work.

Deterministic satisfiability algorithms are important for a couple of reasons. First, they
indicate an improved structural understanding of the circuit class in question, often requiring
new techniques to design. Second, they imply circuit lower bounds via the connection of
Williams [26] - such an implication is not known from randomized algorithms.3

Note that even under standard derandomization assumptions, it is unclear how to get a
non-trivial deterministic satisfiability algorithm from a non-trivial randomized satisfiability
algorithm. The reason is that derandomization inherently incurs a quadratic slowdown.
The deterministic simulation of a randomized algorithm running in time T will take time
at least T 2 when a PRG is used to do the derandomization, as the range of the PRG will
have size at least T . This quadratic slowdown is unaffordable in the parametric regime

3 One-sided error randomized algorithms, and more generally, co-non-deterministic algorithms for satis-
fiability for the circuit class also imply lower bounds via the result of Williams [26]. However, it is easy
to check that the previous randomized algorithms for AC0[⊕] were two-sided error algorithms.

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:3

under consideration here - we are interested in algorithms running in time 2n−g(n) , for some
g(n) = o(n). Hence the determinization procedure cannot be black-box, but must rather use
refined structural information about the circuit class in question.

The main result of this paper is a deterministic algorithm for counting satisfying assign-
ments to AC0[⊕] circuits that improves non-trivially over brute force search.

I Theorem 1 (Main theorem). The following holds for some absolute constant ε0 > 0. There
is a deterministic algorithm that given an AC0[⊕] circuit C over n variables such that C has
depth at most d and size s ≤ 2(ε0n)1/d

, counts the number of satisfying assignments to C in
time 2n−t where t = t(n, s, d) = n/O(log s)d−1.

I Remark. It is easy to generalize our results to work with AC0[Modp] circuits for any fixed
prime p.

In terms of parameters, the savings over brute force search matches the savings in the
randomized algorithm of [14] for AC0 circuits when the circuit size is n1+Ω(1). Thus any
further improvement in savings in our result would give a corresponding improvement for AC0

algorithms, and moreover via the connection of Williams [26] to circuit lower bounds, a strong
improvement would give super-polynomial formula size lower bounds for non-deterministic
exponential time.

A minor caveat is that we require the circuit size to be 2O(n1/d) in Theorem 1, for technical
reasons. One would expect that the analysis can be extended to circuit size up to 2n1/(d−1) .

We use Theorem 1 to get better lower bounds against AC0[⊕] circuits than known before
by using the connection of Williams [26]. In fact, we need a refinement of the connection
due to [4]. Our lower bound holds for a language in ENP. An intriguing open question is to
use the more refined structural information about AC0[⊕] circuits exploited in the proof of
Theorem 1 to prove a similar lower bound for more explicit problems or even for MAJORITY.

I Theorem 2. For any positive integer d, there is a language in ENP which does not have
AC0[⊕] circuits of depth d and size 2o(n1/(d+1)).

2 Proof Outline for the Main Theorem

Our starting point is a randomized algorithm for the problem of checking satisfiability of an
AC0[⊕] circuit C that runs in time 2n−m where m = n/O(log s)d−1, and s, d represent the
size, depth of C respectively (we also assume that s is suitably upper bounded, but we ignore
it in this section). This algorithm is essentially due to Williams [27] and Lokshtanov, Paturi,
Tamaki, Williams and Yu [16], though it does not appear explicitly in either of these papers.

The idea is to use a result of Razborov [21] that essentially says that small AC0[⊕]
circuits C can be “approximated” by polynomials of small degree. More formally, there is
a randomized algorithm that, when given a circuit C of size s over n variables, produces a
(random) polynomial P ∈ F2[x1, . . . , xn] of degree O(log s)d−1 that agrees with the value of
a circuit C on any given input with good probability (say 0.9). Along with a fast polynomial
evaluation algorithm [25], this immediately yields an enumeration algorithm for C (i.e. an
algorithm to output the truth table of C) that runs in time poly(n)2n + poly(s), which beats
(for large enough s) the trivial algorithm that simply evaluates C on each input and hence
takes time s · 2n. Repeating the algorithm poly(n) times and taking the majority vote on
each input, we get an enumeration algorithm that works with high probability.

To obtain a randomized satisfiability algorithm that runs in better-than-brute-force time,
we use the above idea along with the “blowup-trick” [28, 6, 16]. For any a ∈ {0, 1}m, let Ca
be the circuit obtained by setting the last m variables of C to a. Note that the satisfiability

MFCS 2018

78:4 Deterministially counting satisfying assignments for AC0[⊕] circuits

of C can be computed by checking the satisfiability of C ′ =
∨
a∈{0,1}m Ca, and C ′ is a

circuit of larger size (s · 2m) but fewer variables (n − m). We now run the enumeration
algorithm above on C ′ to check if it is satisfiable. Since the circuit is larger, the polynomial
produced has larger degree: a careful analysis reveals the degree to be m · O(log s)d−1.

Setting m = n/Θ(log s)d−1, we obtain a polynomial of degree � n, which can be computed
in better-than-brute-force time. Running the enumeration algorithm as above gives the
required satisfiability algorithm for C, which now runs in time 2n−n/Θ(log s)d−1

.

The above algorithm can further be modified to count satisfying assignments, by instead
defining C ′ =

∑
a Ca (a sum over Z) instead of using an OR. Now, an additional idea

is required since the polynomials Pa approximating each Ca are F2-polynomials whereas
the sum is over the integers (in the satisfiability case above, the OR gate can further be
approximated by a constant-degree polynomial using an idea of Razborov [21], but this idea
is not available here). What comes to our rescue is an idea of Toda [24] and its subsequent
quantitative refinement due to Beigel and Tarui [3] which tells us that we can simulate a sum
(over Z) of K many F2-polynomials of degree at most D as a polynomial (over Z) of degree at
most D logK. Using this idea, we are able to obtain a polynomial of degree m2 ·O(log s)d−1.

Overall, this yields an algorithm with slightly worse running time 2n−
√
n/Θ(log s)d−1

.

A partial derandomization of these algorithms was obtained by Chan and Williams [6] in
the case that the AC0[⊕] circuits are k-CNFs and generalized by Lokshtanov et al. [16] to
the case of ANDs of degree-k polynomials.4 Chan and Williams [6] observed that Razborov’s
random construction of polynomials could be suitably derandomized using ε-biased spaces [17].
Using this idea (and more work), it was shown that the number of satisfying assignments
to a set of degree k-polynomials in n variables could be computed in time 2n−n/Θ(k), which
meets the running time of the satisfiability algorithm mentioned above in this special case.

However, it is unclear how to extend the ideas to the setting of general AC0[⊕] circuits
since these results used a very special property of the randomized polynomial construction
for a single OR gate (and, dually, a single AND gate): namely, that there is a constant-degree
polynomial whose bias perfectly predicts whether the input to an OR-gate is a 1 input or a 0
input.5 Unfortunately, such a strong property is not known for general AC0[⊕] circuits: the
best we can hope for is to construct a polynomial that with high probability, say 1− ε, equals
the output of the circuit on any given input, but then we have to pay for this precision in
terms of the degree of the polynomial constructed. Further, it is not clear how to derandomize
this general inductive construction.

We start by derandomizing the higher-depth random polynomial construction. Once
again, ε-biased spaces play a crucial role, and we need to further use derandomized sampling
using expanders for a near-optimal derandomization. Using this along with the idea of Beigel
and Tarui [3] would yield a deterministic algorithm for counting satisfying assignments in
time 2n−

√
n/Θ(log s)d−1 .

However, we further improve the running time to 2n−n/Θ(log s)d−1 , matching the running
time of the randomized algorithm for checking satisfiability. The principal idea here is to
observe (by looking inside the Razborov construction) that the polynomials Pa computed for
approximating the individual circuits Ca mentioned above have a very special form: each Pa

4 Note that any k-clause is in particular a degree-k polynomial and hence the latter result generalizes the
former.

5 Briefly, the Razborov polynomial for the OR function on input bits x1, . . . , xs is as follows. Choose
a1, . . . , as ∈ F2 independently and uniformly at random and compute `(x) =

∑
i
aixi. Now, note that

if OR(x1, . . . , xs) = 1, then `(x) computes a uniformly random element of F2 and otherwise, `(x) = 0
with probability 1.

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:5

is a majority of ` = O(m) many polynomials Pa,1, . . . ,Pa,` of degree O(log s)d−1 each. We
use this and some basic Fourier analysis of Boolean functions to write Pa as a real-valued
sum of polynomials of degree at most O(log s)d−1; this idea is inspired by a recent result
of Chen and Papakonstantinou [7], who use it to give an improved depth-reduction result
for constant-depth circuits with Modq gates for composite q. The advantage of doing this is
that the degree blow-up in the randomized #SAT algorithm outline above is restricted to
applying the idea of Beigel and Tarui, which means that the degree drops to m ·O(log s)d−1.
Setting m suitably, we now obtain a deterministic algorithm running in time 2n−n/O(log s)d−1

.

3 Preliminaries

We will consider polynomials over the fields R and F2. We identify F2 with {0, 1} in the
natural way. We use

(
n
≤k
)
to denote

∑k
i=0
(
n
i

)
. All algorithms will be implemented in the

standard Turing machine with RAM model.
We recall that any function f : {0, 1}n → R for any commutative ring R has a unique

representation as a multilinear polynomial. Given two such polynomials representing possibly
different functions f1 and f2, we can compute the multilinear polynomial corresponding to
their product by multiplying the polynomials f1 and f2 and “multilinearizing” by replacing
each copy of x2

i by xi. In particular, this idea yields the following easy algorithm.

I Fact 3. Let R be either F2 or Z. There is a deterministic algorithm which, when given
as input multilinear polynomials f1, . . . , ft ∈ R[x1, . . . , xn] (as a sum of monomials) of
degree d1, . . . , dt such that

∑
i di ≤ D, computes the multilinear polynomial corresponding

to the product f = f1 · · · ft. The algorithm runs in time poly(
(
n
≤D
)
) when R = F2 and time

poly(
(
n
≤D
)
, B) where B is the bit-complexity of the coefficients of f1, . . . , ft when R = Z.

3.1 Polynomials over F2 and Probabilistic polynomials
I Definition 4 (Probabilistic Polynomials). We recall [21, 23] that a Probabilistic polynomial
from F2[x1, . . . , xn] is a random multilinear polynomial P (chosen according to some distri-
bution) from F2[x1, . . . , xn]. We say that P has degree at most D if the distribution of P is
supported on polynomials of degree at most D (or equivalently PrP[deg(P) ≤ D] = 1).

We say that P is an ε-error probabilistic polynomial for a function f : {0, 1}n → {0, 1} if
for each a ∈ {0, 1}n, we have PrP[P(a) 6= f(a)] ≤ ε.

3.2 Polynomials over R and Modulus-amplification
We recall the following basic facts about writing Boolean functions as multilinear polynomials
over the the reals. See, e.g. O’Donnell [19] for proofs.

I Fact 5. Let f : {0, 1}` → {0, 1} be any Boolean function.
1. f can written as a unique real-valued linear combination

f(x) =
∑
S⊆[`]

αSχS(x)

where χS(x) =
⊕

i∈S xi (note that we interpret χS(x) ∈ {0, 1} as a real number and the
sum above is taken over R).

2. For each S, αS ∈ [−1, 1] and is moreover an integral multiple of 2−(`+1).

3. There is a deterministic algorithm C which, given as input f (via its truth table), computes
all the above αS’s in time 2O(`).

MFCS 2018

78:6 Deterministially counting satisfying assignments for AC0[⊕] circuits

We also define the Fourier l1 norm of f as ‖f‖1 =
∑
S |αS |.

The following is a useful Modulus-amplification lemma due to Beigel and Tarui [3]. This
particular version is from the work of Chan and Williams [6].

I Lemma 6 (Beigel-Tarui [3]). For every positive integer t, the degree 2t − 1 polynomial
Ft(y) ∈ Z[y] defined by

Ft(y) = 1− (1− y)t
t−1∑
j=0

(
t+ j − 1

j

)
yj

has the property that for all b ∈ Z,
if b ≡ 0 (mod 2), then Ft(b) ≡ 0 (mod 2t), and
if b ≡ 1 (mod 2), then Ft(b) ≡ 1 (mod 2t).

Many satisfiability algorithms for circuits are based on evaluating multivariate polynomials
efficiently over grids. The following lemma can be found in, e.g., [25].

I Lemma 7 (Fast Polynomial Evaluation). There is a deterministic algorithm FPE, which
given as input a multilinear polynomial P ∈ Z[x1, . . . , xn] as a sum of monomials, computes
the values (P (a))a∈{0,1}n in time poly(n,B) · 2n where B is an upper bound on the bit
complexity of the coefficients of P .

3.3 Small-biased sets
We need the notion of ε-biased sets [17, 2], which are a standard tool in the derandomization
literature.

I Definition 8 (ε-biased sets [17]). For ε ∈
(
0, 1

2
)
, a set S ⊆ {0, 1}n of n-dimensional vectors

is ε-biased if for all non-zero v ∈ {0, 1}n,

Pr
w∈S
{〈v, w〉 = 0 (mod 2)} ∈

(
1
2 − ε,

1
2 + ε

)
There are many explicit constructions for ε-biased sets. We use the following construction:

I Theorem 9 ([2]). There is a deterministic algorithm that, given as input n and ε ∈ (0, 1/2),
produces an ε-biased set S ⊆ {0, 1}n of size O(n2/ε2). The algorithm runs in time poly(n/ε).

For any subspace W of {0, 1}n, define the indicator function 1W : {0, 1}n → {0, 1} as
1W (z) = 1 if and only if the vector z ∈W . From an Observation in O’Donnell’s book [19],
we see that

I Observation 10 (Proposition 3.11 of [19]). Let W be a subspace of {0, 1}n and W⊥ be its
orthogonal complement such that dim(W⊥) = k. Then, the constant term in the Fourier
expansion of the indicator function 1W is 1

2k . Moreover, ‖1W ‖1 = 1.

Essentially, the proof for Observation 10 is based on the fact that a vector z ∈W if and only
if the dot product of z with every basis vector of W⊥ is 0.

De, Etesami, Trevisan and Tulsiani [8] observed that ε-biased spaces also fool functions
with small Fourier l1-norm.

I Lemma 11 (Lemma 2.5 of [8]). Let S be an ε-biased set. For every function f : {0, 1}n → R
we have,∣∣∣∣ E

y∈S
[f(y)]− E

x∼Un

[f(x)]
∣∣∣∣ ≤ ε‖f‖1

where y is picked uniformly at random from S and Un is the uniform distribution over {0, 1}n.

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:7

From Observation 10 and Lemma 11, we state the following useful corollary.

I Corollary 12. Let W be a subspace of {0, 1}n, such that the co-dimension of W is k and
let S be an ε-biased set. Then

Pr
x∈S
{x ∈W} ∈

(
1
2k − ε,

1
2k + ε

)
where x is picked uniformly at random from S.

Intuitively speaking, Corollary 12 states that an ε-biased set also “fools” conjunctions of
parities.

3.4 Expanders
Proofs of the following well-known facts may be found in the monograph of Hoory, Linial
and Wigderson [13].

Given an undirected ∆-regular multigraph G, we denote by A(G) its adjacency matrix
and Ã(G) = (1/∆)A(G) its normalized adjacency matrix. Then, we have the following.

The all-1s vector v ∈ Rn is an eigenvector of Ã(G) with eigenvalue 1.
G is connected if and only if v is the only such eigenvector (up to scalar multiplication).

I Definition 13 (Expanders [13]). An undirected multigraph G is an (N,∆, λ) expander if it
is a ∆-regular connected graph on N vertices (which we will identify with [N]), and all the
eigenvalues (counted with multiplicity) of Ã(G) other than 1 are bounded by λ in absolute
value.

Let (Gn)n≥1 be a sequence of expander graphs with Gn being an (f(n),∆, λ)-expander
for some increasing function f : N → N and constants ∆ and λ. We say that (Gn)n≥1 is
explicit if there is a deterministic algorithm that, when given as input n, produces the graph
Gn in time poly(n, f(n)).

We use Reingold, Vadhan and Wigderson’s [22] explicit construction for an expander
graph.

I Theorem 14 ([22]). For every fixed λ > 0 there exists a constant ∆ > 0 and an explicit
sequence of expander graphs (Gn)n≥1, where Gn is a (2n,∆, λ) expander graph, for some
large enough constant ∆. Further, we can assume that ∆ is a power of 2.

We will need the following expander-based Chernoff bound due to Gillman [10]. The
version below is due to Healy [12].

I Theorem 15 ([10, 12]). Let G be an (N,D, λ)-graph and let S ⊆ [N] be a subset of the
vertices of G such that |S| = βN. Consider the natural `-step random walk on G defined by
choosing a uniformly random vertex u1 ∈ [N] and repeatedly choosing random neighbours
`− 1 times to obtain a (random) sequence (u1, . . . , u`) of vertices of G. Let XS denote the
number of i ∈ [`] such that ui ∈ S. For any fixed ρ ∈ (0, 1), we have

Pr
u1,...,u`

[|XS − β`| ≥ ρ`] ≤ 2 exp
(
−1

4ρ
2(1− λ)`

)
.

4 The #SAT algorithm

In this section we prove Theorem 1. We start with a deterministic algorithmic version of a
lemma of Razborov [21] regarding approximating AC0[⊕] circuits by low-degree polynomials.
Using this version, we then state formally the #SAT algorithm and analyze it.

MFCS 2018

78:8 Deterministially counting satisfying assignments for AC0[⊕] circuits

4.1 Derandomized construction of probabilistic polynomials for AC0[⊕]
The following lemma is an algorithmic version of a result of Razborov [21] (see also Kopparty-
Srinivasan [15] for the dependence on ε). It can be viewed as a derandomization of a
randomized algorithm due to Williams [27].

I Lemma 16. For any ε > 0, an AC0[⊕] circuit C over n variables of depth d and
size at most s has an ε-error probabilistic polynomial P from F2[x1, . . . , xn] of degree at
most D = (O(log s)d−1 · log(1/ε)). Moreover P = Maj(P1, . . . ,P`), where P1, . . . ,P` are
probabilistic polynomials of degree D1 = O(log s)d−1 and ` = O(log(1/ε)).

Moreover, there is a deterministic procedure S, which when given as input the circuit C,
the parameter ε, and a uniformly random Boolean string σ of length r = O(log(s/ε)), produces
a random sample of the polynomials P1, . . . ,P` as sums of monomials. The procedure S
runs in time poly

(
`, s,

(
n
≤D1

))
.

Before we go into the proof of Lemma 16, we prove a weaker version that will be useful
in the proof of Lemma 16. This result is a higher-depth analogue of a result of Chan and
Williams [6] which itself may be viewed as a derandomization of the construction of Razborov
[21] for depth-1 circuits.

I Lemma 17. For every AC0[⊕] circuit C over n variables of depth d and size s, there exists
a probabilistic polynomial P′ with error at most 1

4 with degree at most D1 = O(log s)d−1.
Further, there is a deterministic algorithm S1 that produces a random sample of P′ as a sum
of monomials given as input s, C and O(log s) random bits. The algorithm S1 runs in time
poly

(
s,
(
n
≤D1

))
.

Proof. Let C be the circuit input to the sampling algorithm. Let m = s log(40s), ε = 1/(20s)
and S ⊆ {0, 1}m be an ε-biased set of size poly(s) given by Theorem 9. Fix an input
a ∈ {0, 1}n.

Fix some enumeration g1, . . . , gs of all the gates of C. Let h ∈ {g1, . . . , gs} be the output
gate of C and let C1, . . . , Cr (r ≤ s) be the depth-(d− 1) sub-circuits of C feeding into h.
First we construct a probabilistic polynomial of degree O(log s) for each gate g 6= h in the
circuit, following which we construct a constant degree probabilistic polynomial for the gate
h. Composing these polynomials together gives the probabilistic polynomial for the circuit
C of degree O(log s)d−1.

Fix any gate g 6= h in C. If g is a NOT gate or a ⊕ gate, we can easily get a polynomial
Pg of degree 1 which always agrees with the function computed by g and needs no random
bits. Therefore, let g be an OR gate in C (a dual construction works for AND gates).
Let gi1 , . . . , gik be the gates that are inputs to g and vg ∈ {0, 1}s such that vg[i] = 1 iff
i ∈ {i1, . . . , ik} and gi = 1 (on the fixed input a). Observe that g outputs 1 iff vg is not the
zero vector.

Let t = log(40s). Construct the vectors u1, . . . , ut ∈ {0, 1}m, such that for each up,
1 ≤ p ≤ t, we divide up into t blocks, such that the pth block contains vg and all the other
bits of up are set to 0. The dimension of the vector space V ⊆ Fm2 spanned by {u1, . . . , ut}
is equal to t if vg is a non-zero vector. Let y ∈ S be picked uniformly at random from
S. We split y into t blocks y1, . . . ,yt of size s each. W.l.o.g. consider the vector u1. The
inner product 〈u1,y〉 which is exactly equal to the inner product 〈vg,y1〉, can be calculated
by hardwiring into a MOD2 gate all the input gates of g for which the corresponding bit
in y equals 1. In other words, the inner product 〈u1,y〉 is represented by the polynomial
q1 =

∑
j∈{i1,...,ik} gj · (y1)j in the inputs gi1 , . . . , gik . Repeating this construction for all t

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:9

vectors u1, . . . , ut, we get polynomials qy1 , . . . , q
y
t . Finally, we compute the disjunction of

these t terms using the polynomial Pyg = 1−
∏t
p=1(1− qyp), which is of degree t = O (log s)

in the input variables of g.
We now analyze the behaviour of Pyg on a fixed input to the gate g. If the gate g outputs

0, then for any y ∈ S, we get 〈up, y〉 = 0 for every 1 ≤ p ≤ t. In particular, Pyg outputs 0
with probability 1. On the other hand, if g outputs 1, we see that Pyg errs on this input iff
for each 1 ≤ p ≤ t, qyp = 0. Let V⊥ be the orthogonal complement to V = span({u1, . . . , ut}).
Note that the codimension of the vector space V⊥ is t. We now use Corollary 12 to see that,
if g outputs 1, a uniformly random element y from S belongs to V⊥, or in other words, yields
〈up,y〉 = 0 for every 1 ≤ p ≤ t, with probability at most 1

2t + ε. Thus, Pyg disagrees with
the output of g on any fixed input with probability at most 1

2t + ε = 1
40s + 1

20s = 3
40s .

We pick a single y uniformly at random from S and then use it (for each OR and
AND gate) to get the probabilistic polynomial Pyg for each gate g 6= h in C. For each
j ∈ [r], composing the polynomials representing the gates in Cj , we obtain a probabilistic
polynomial Qj of degree at most O(log s)d−1. Following this, we use the first t1 = 3 blocks
of y in a similar fashion to get a probabilistic polynomial Ph of degree O(1) for the function
computed by the output gate h with error at most 1

2t1 + ε. Now, for any input a ∈ {0, 1}n,
P′ = Ph(Q1, . . . ,Qr) satisfies

Pr
P′

[C(a) 6= P′(a)] ≤ Pr
Q1,...,Qr

[∃j ∈ [r] : Cj(a) 6= Qj(a)]

+ Pr
Ph

[h(C1(a), . . . , Cr(a)) 6= Ph(C1(a), . . . , Cr(a))]

≤ s · 3
40s + 1

2t1 + ε

≤ 3
40 + 1

8 + 1
20s ≤

1
4

where the second inequality uses a union bound over the (at most s) gates g in C.
This gives us a probabilistic polynomial P′ of degree O(log s)d−1 for the circuit C, with

error at most 1
4 and we need O(log |S|) = O(log s) random bits to get this sample. This

polynomial is multilinear and by expanding the monomials at each step we can ensure
multilinearity of the intermediate polynomials. Using Fact 3 we see that the running time of
the sampling algorithm is given by poly

(
s,
(
n
≤D1

))
. J

Proof of Lemma 16. Let k = O(log s) be the number of random bits needed by the algorithm
S1 from Lemma 17. Consider an explicit (2k,∆, λ) expander graph G on V = {0, 1}k given
by Theorem 14, where ∆ is a large enough constant given by the construction and λ = 1

2 .
The graph G can be constructed in time poly(2k) = poly(s).

Let ` = 200 log
(2
ε

)
. We define the algorithm S to be the following deterministic procedure

which takes as input the circuit C, the parameter ε and a random string σ of length
r = k + (` − 1) · log ∆ and produces a random sample of the probabilistic polynomials
P1, . . . ,P`, where each of the Pi is an instantation of the probabilistic polynomial constructed
in Lemma 17.

1. Perform a length ` random walk inG using the bits of σ to obtain u1, . . . ,u` ∈ V = {0, 1}k.
I.e. first choose u1 uniformly at random from V and for each i ∈ {2, . . . , `}, let ui be a
random neighbour of ui−1 in the graph G.

2. For each 1 ≤ i ≤ `, use ui as the input string of random bits to algorithm S1 from Lemma
17 to obtain a random sample Pi of the 1/4-error probabilistic polynomial P′ for C.

MFCS 2018

78:10 Deterministially counting satisfying assignments for AC0[⊕] circuits

The number of random bits used by S to obtain a random sample of P1, . . . ,P` is
r = O(k + `) = O(log s + log

(1
ε

)
) = O (log(s/ε)). At each step of the random walk we

spend poly
(
s,
(
n
≤D1

))
time to get a sample and thus, the overall running time of S is

poly
(
`, s,

(
n
≤D1

))
.

Now, define the probabilistic polynomial P = Maj(P1, . . . ,P`). Since, the majority of `
bits is a polynomial of degree at most `, the degree of P is O(log s)d−1 · log(1/ε).

To show that P is a probabilistic polynomial with error ε for the circuit C, fix an input
a ∈ {0, 1}n. For any u ∈ V , let Pu be the polynomial sampled by the algorithm S1 when
given u as input. Let B be the set of vertices u ∈ V such that Pu(a) 6= C(a). Note that as
S1 samples a 1/4-error probabilistic polynomial for C, we must have |B| ≤ |V |/4. Now, we
have P(a) 6= C(a) iff a majority of the vertices on the random walk sampled by S belong to
B. Using Theorem 15 we show that this event happens with a probability at most ε.

Let XB be the random variable which denotes the number of i ∈ [`] such that i ∈ B.
Using Theorem 15 with the settings β = |B|

|V | ≤
1
4 , λ = 1

2 , ρ = 1
4 and ` = 200 log(2/ε), we see

that

Pr
u1,...,u`

{∣∣XB − `/4
∣∣ > `/4

}
≤ 2 exp

(
−1

4ρ
2(1− λ) · 200 log

(
2
ε

))
< 2 · 2− log(2

ε) < ε J

4.2 The algorithm and its analysis
We begin by describing the #SAT algorithm A.

Algorithm A.

The algorithm A has the following desired input-output behaviour.
Input: An AC0[⊕] circuit C over n variables of size at most s and depth at most d. Recall

that s ≤ 2(ε0n)1/d for some absolute constant ε0 > 0 (to be chosen below). We assume
s ≥ n.

Desired Output: The number of satisfying assignments of C.

Notation. Let m = γn/(log s)d−1 for a suitable absolute constant γ > 0 that will be fixed
below. Let ε = 1/210m. For s and ε as defined above, choose r = O(log(s/ε)) suitably so
that the sampling algorithm S from Lemma 16 works as stated.

For each σ ∈ {0, 1}r, let (Pσ1 , . . . , P σ`) be the output of the algorithm S on string σ (note
that the probabilistic polynomials (P1, . . . ,P`) from Lemma 16 are exactly the polynomials
(Pσ1 , . . . , Pσ`) for a uniformly random σ and hence P = Maj(Pσ1 , . . . , Pσ`)).

For fixed σ ∈ {0, 1}r and c ∈ {0, 1}m, let Pσ,ci ∈ F2[x1, . . . , xn−m] be defined by Pσ,ci =
Pσi (x1, . . . , xn−m, c1, . . . , cm) (i.e. the last m variables of Pσi are fixed to bits of c). Let
Pσ,c = Maj(Pσ,c1 , . . . , P σ,c`).

For S ⊆ [`], let Pσ,cS =
⊕

i∈S P
σ,c
i . Let Qσ,cS be the polynomial with integer coefficients

obtained by treating the F2-coefficients of Pσ,cS as integers. Note that for each b ∈ {0, 1}n−m,
Pσ,cS (b) ≡ Qσ,cS (b) (mod 2).

1. Using the algorithm C from Fact 5, compute6 integers kS ∈ {2−(`+1), . . . , 2(`+1)} for each
S ⊆ [`] such that Maj(z1, . . . , z`) = 1

2`+1

∑
S⊆[`] kS

⊕
i∈S zi.

6 There is actually an explicit description of the integers kS (see, e.g., O’Donnell [19]) using which each kS

can each be computed in time poly(`) as opposed to the 2O(`) time taken by the algorithm C. However,
the algorithm we give here doesn’t need this and works for any Boolean function in place of Maj.

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:11

2. For each c ∈ {0, 1}m, σ ∈ {0, 1}r and S ⊆ [`], construct (as a sum of monomials) the
polynomial Qσ,cS (x1, . . . , xn−m) using the algorithm S from Lemma 16.

3. Construct as a sum of monomials (Fact 3) the multilinear polynomial R ∈ Z[x1, . . . , xn−m]
defined by

R(x1, . . . , xn−m) =
∑

c∈{0,1}m

∑
σ∈{0,1}r

∑
S⊆[`]

kS · Ft(Qσ,cS (x1, . . . , xn−m))

where Ft is the modulus amplifying polynomial given by Lemma 6 and t = A log(s/ε) for
a large absolute constant A > 0 chosen below.

4. Evaluate R(b) for each b ∈ {0, 1}n−m using the algorithm FPE from Lemma 7.
5. Let Rt(b) = R(b) (mod 2t) ∈ {0, . . . , 2t − 1}. Output

∑
b∈{0,1}n−m [Rt(b)/2`+1+r] where

[x] denotes the integer closest to x (if x is a half-integer, [x] is defined arbitrarily).

Theorem 1 follows directly from Lemmas 18 and 19 below.

I Lemma 18 (Running time). For any constant A > 0, there exist constants γ > 0 and
ε0 > 0 such that the algorithm A, on an input circuit C of depth at most d and size at most
s ≤ 2(ε0n)1/d , has running time poly(s) · 2n/10 + poly(n) · 2n−m.

Proof. We analyse the running time of A by looking at the running times for each of its
individual steps. From Fact 5, we see that Step 1 of the algorithm takes 2O(`) running
time. Since ` = O(log(1/ε)) = O(m) = O(n/(log s)d−1) = o(n), this step takes at most
2o(n) < 2n/10 time to run.

For Step 2, we see that the running time is 2`+m+r · poly
(
`, s,

(
n
≤D1

))
, as we construct

2`+m+r many polynomials using the algorithm S, each of which takes poly(`, s,
(
n
≤D1

)
) time to

construct, as seen in Lemma 16. For the parameters we pick, we see that 2`+m+r = 2o(n) and(
n
≤D1

)
≤ nD1 = nO(log s)d−1 = 2O(n(d−1)/d logn). Thus, Step 2 takes at most 2n/10 · poly(n, s)

time.
Step 3 takes time 2`+m+r · poly

(
`,
(

n
≤2tD1

))
, as the modulus amplifying polynomial Ft

blows the degree of the polynomial up by a factor of (2t− 1) and the number of monomials in
the multilinear expansion of the polynomial R(x1, . . . , xn−m) is poly

(
`,
(

n
≤2tD1

))
. To upper

bound this running time, let c′ > 0 be a constant such that the degree parameter D1 from
Lemma 16 is at most c′ · (log s)d−1. Then the degree of the polynomial R is at most

2tD1 ≤ 2t · c′(log s)d−1

= 2A log(s/ε) · c′(log s)d−1

= 2Ac′(log s)d + 20Amc′(log s)d−1

= 2Ac′(log s)d + 20Aγc′n

where we have used log(1/ε) = 10m and m = γn/(log s)d−1.

Fix the constants ε0 =
(1

400Ac′
)
and γ = 1

4000Ac′ . This ensures that the 2tD1 ≤ 0.01n.

From this we see that,
(

n
≤2tD1

)
is at most

(
ne

2tD1

)2tD1
≤
(

ne
0.01n

)0.01n
< 20.09n and we see

that step 3 takes at most 2n/10 time.
Note that each kS computed in Step 1 is an (`+1)-bit integer and hence, the bit complexity

of the coefficients of R is at most O(`+m+ r) ≤ n. From Lemma 7, we see that Step 4 takes
2n−m poly(n) time and Step 5 runs in the same time trivially. Thus, the algorithm A takes
a total of poly(n, s) · 2n/10 + poly(n) · (2n−m) to run. J

MFCS 2018

78:12 Deterministially counting satisfying assignments for AC0[⊕] circuits

I Lemma 19 (Correctness). Assume that A > 0 is chosen large enough so that t > m+ r +
`+ 10. Then the algorithm A above outputs the number of satisfying assignments of C.

Proof. We need to show that the algorithm A computes correctly the number of satisfying
assignments of C. To this end, define the function C ′ on n−m input bits by

C ′(x1, . . . , xn−m) =
∑

c∈{0,1}m

C(x1, . . . , xn−m, c1, . . . , cm)

where the sum is over Z. It suffices to show that, for every b ∈ {0, 1}n−m, [Rt(b)/2`+1+r] is
a correct estimate of C ′(b) since this implies that the number of satisfying assignments of C,
which is equal to

∑
b∈{0,1}n−m C ′(b), is computed correctly.

From the definition of Rt(b), we see that for any b ∈ {0, 1}n−m

Rt(b) = R(b) (mod 2t)

=

 ∑
c∈{0,1}m

∑
σ∈{0,1}r

∑
S⊆[`]

kS · Ft(Qσ,cS (b))

 (mod 2t)

=

 ∑
c∈{0,1}m

∑
σ∈{0,1}r

∑
S⊆[`]

kS ·
(
Ft(Qσ,cS (b)) (mod 2t)

) (mod 2t)

For every σ ∈ {0, 1}r, c ∈ {0, 1}m, S ⊆ [`] and b ∈ {0, 1}n−m, we use the property of the
modulus amplifying polynomial Ft from Lemma 6, to observe that Ft(Qσ,cS (b)) (mod 2t) =
Pσ,cS (b) = ⊕i∈SPσ,ci (b). This observation, along with Step 1 of the algorithm A implies that
the sum

∑
S⊆[`] kS · (Ft(Q

σ,c
S (b)) (mod 2t)) is the same as 2`+1Maj(Pσ,c1 (b), . . . , P σ,c` (b)) =

2`+1Pσ,c(b). In other words,

Rt(b) =

2`+1
∑

c∈{0,1}m

∑
σ∈{0,1}r

Pσ,c(b)

 (mod 2t) = 2`+1
∑

c∈{0,1}m

∑
σ∈{0,1}r

Pσ,c(b)

where the last equality follows from the fact that t > m+ `+ r + 10.
Now, for every b ∈ {0, 1}n−m and c ∈ {0, 1}m, we have∑
σ∈{0,1}r

Pσ,c(b)
{
≥ 2r(1− ε) if C(b, c) = 1
≤ 2rε if C(b, c) = 0

where ε = 2−10m. Since C ′(b) =
∑
c∈{0,1}m C(b, c), we now have that for every b ∈ {0, 1}n−m,

Rt(b) ≥ 2`+1 · 2r(1− ε)C ′(b), and
Rt(b) ≤ 2`+1 · (2r(1− ε)C ′(b) + ε(2m − C ′(b)) · 2r)

≤ 2`+1 · (2r(1− ε)C ′(b) + ε2m · 2r) .

In particular, since ε = 2−10m, for every b ∈ {0, 1}n−m, we see that the estimate returned by
the algorithm, which is [Rt(b)/2`+1+r], is equal to C ′(b). J

4.3 A Consequence for Lower Bounds
Our #SAT algorithm can be used to obtain improved lower bounds against AC0[⊕] circuits
(and more generally, against AC0[p] circuits for prime p), using Williams’ connection between
algorithms and lower bounds. These lower bounds are, however, not very explicit - they hold
for a language in ENP.

We first remind the reader of the best explicit lower bounds that are known against
AC0[⊕] circuits.

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:13

I Theorem 20. [21, 23] For each positive integer d, there is a language computable in
polynomial time that requires depth-d AC0[⊕] circuits of size 2Ω(n1/2(d−1)).

In fact, there is a fixed explicit language in polynomial time, namely Majority, for which
the lower bounds of Theorem 20 hold for all d.

In terms of parameters, the bound in Theorem 20 is weaker than the best known bound
for AC0 circuits as a function of d. Parity is known to require depth-d circuits of size
2Ω(n1/(d−1)). The exponent in the bound of Theorem 20 is quadratically smaller. It has been
a longstanding open problem to improve the bound in Theorem 20 to match the known
bounds for constant-depth circuits without prime modulus circuits. Using the algorithmic
method of Williams and its refinements, we are able to use our #SAT algorithm to make
progress on this problem.

The following lemma can be shown using the proof technique of Theorem 1.5 in [4].

I Lemma 21. [26, 4] Let s be a size function and d a positive integer such that satisfiability
can be solved deterministically in time 2n/nω(1) on AC0[⊕]-circuits of size O(s(n)) and depth
at most d on n variables. Then there is a language in ENP which does not have AC0[⊕]
circuits of depth d− 1 and size o(s(n)).

We now apply the lemma to get better lower bounds than Theorem 20 in terms of size
against AC0[⊕] circuits when the depth is at least 3. A similar lower bound against AC0[p]
circuits can be shown for prime p using the analogue of Theorem 1 for AC0[p] circuits. The
following result is simply a re-statement of Theorem 2.

I Theorem 22. For any positive integer d, there is a language in ENP which does not have
AC0[⊕] circuits of depth d and size 2o(n1/(d+1)).

Proof. Pick ε < ε0, where ε0 is the constant in Theorem 1. By Theorem 1, for any size
s ≤ 2(εn)1/(d+1) , there is a deterministic algorithm solving satisfiability of AC0[⊕] circuits of
size at most s and depth at most d+ 1 in time 2n/nω(1). Now using Lemma 21, we have that
there is a language in ENP which does not have AC0[⊕] circuits of depth d and size o(s(n)),
which establishes our claim. J

References

1 Miklos Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–

48, 1983.
2 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple construction of

almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304,
1992.

3 Richard Beigel and Jun Tarui. On ACC. Computational Complexity, 4:350–366, 1994.
4 Eli Ben-Sasson and Emanuele Viola. Short PCPs with projection queries. In Automata,

Languages, and Programming - 41st International Colloquium, ICALP 2014, Copenhagen,
Denmark, July 8-11, 2014, Proceedings, Part I, pages 163–173, 2014.

5 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In 31st Conference on Computational Complexity,
CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages 10:1–10:24, 2016.

6 Timothy M. Chan and Ryan Williams. Deterministic APSP, orthogonal vectors, and more:
Quickly derandomizing Razborov-Smolensky. In Proceedings of the Twenty-Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12, 2016, pages 1246–1255, 2016.

MFCS 2018

78:14 Deterministially counting satisfying assignments for AC0[⊕] circuits

7 Shiteng Chen and Periklis A. Papakonstantinou. Depth-reduction for composites. In
Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science,
FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 99–108. IEEE Computer Society, 2016. URL: http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=7781469, doi:10.1109/FOCS.2016.20.

8 Anindya De, Omid Etesami, Luca Trevisan, and Madhur Tulsiani. Improved pseudorandom
generators for depth 2 circuits. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 504–517. Springer, 2010.

9 Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

10 David Gillman. A Chernoff bound for random walks on expander graphs. SIAM Journal
on Computing, 27(4):1203–1220, 1998.

11 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Symposium on
Theory of Computing (STOC), pages 6–20, 1986.

12 Alexander D Healy. Randomness-efficient sampling within NC. Computational Complexity,
17(1):3–37, 2008.

13 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their ap-
plications. Bull. Amer. Math. Soc. (N.S.), 43(4):439–561, 2006. doi:10.1090/
S0273-0979-06-01126-8.

14 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 961–972, 2012.

15 Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for AC0[⊕] circuits,
with applications. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, In-
dia, pages 36–47, 2012.

16 Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams, and Huacheng
Yu. Beating brute force for systems of polynomial equations over finite fields. In Philip N.
Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2190–
2202. SIAM, 2017. doi:10.1137/1.9781611974782.143.

17 Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and
applications. SIAM J. Comput., 22(4):838–856, 1993.

18 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–
167, 1994.

19 Ryan O’Donnell. Analysis of Boolean functions. Cambridge University Press, 2014.
20 Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms, cir-

cuit lower bounds, and pseudorandomness. In 32nd Computational Complexity Conference,
CCC 2017, July 6-9, 2017, Riga, Latvia, pages 18:1–18:49, 2017.

21 Alexander A Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

22 Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders and extractors. Annals of Mathematics,
155(1):157–187, 2002.

23 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of com-
puting, pages 77–82. ACM, 1987.

24 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.,
20(5):865–877, 1991. doi:10.1137/0220053.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7781469
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7781469
http://dx.doi.org/10.1109/FOCS.2016.20
http://dx.doi.org/10.1090/S0273-0979-06-01126-8
http://dx.doi.org/10.1090/S0273-0979-06-01126-8
http://dx.doi.org/10.1137/1.9781611974782.143
http://dx.doi.org/10.1137/0220053

N. Rajgopal, R. Santhanam, and S. Srinivasan 78:15

25 Ryan Williams. Guest column: a casual tour around a circuit complexity bound. SIGACT
News, 42(3):54–76, 2011. doi:10.1145/2034575.2034591.

26 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
J. Comput., 42(3):1218–1244, 2013.

27 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June
03, 2014, pages 194–202, 2014.

28 Ryan Williams. Nonuniform ACC circuit lower bounds. Journal of the ACM (JACM),
61(1):2, 2014.

29 Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In Symposium on Foundations of Computer Science (FOCS), pages 1–10, 1985.

MFCS 2018

http://dx.doi.org/10.1145/2034575.2034591

Results on the Dimension Spectra of Planar Lines
Donald M. Stull
Inria Nancy-Grand Est, 615 rue du jardin botanique, 54600 Villers-les-Nancy, France
donald.stull@inria.fr

Abstract
In this paper we investigate the (effective) dimension spectra of lines in the Euclidean plane. The
dimension spectrum of a line La,b, sp(L), with slope a and intercept b is the set of all effective
dimensions of the points (x, ax + b) on L. It has been recently shown that, for every a and b

with effective dimension less than 1, the dimension spectrum of La,b contains an interval. Our
first main theorem shows that this holds for every line. Moreover, when the effective dimension
of a and b is at least 1, sp(L) contains a unit interval.

Our second main theorem gives lower bounds on the dimension spectra of lines. In particular,
we show that for every α ∈ [0, 1], with the exception of a set of Hausdorff dimension at most α,
the effective dimension of (x, ax + b) is at least α + dim(a,b)

2 . As a consequence of this theorem,
using a recent characterization of Hausdorff dimension using effective dimension, we give a new
proof of a result by Molter and Rela on the Hausdorff dimension of Furstenberg sets.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic

Keywords and phrases algorithmic randomness, geometric measure theory, Hausdorff dimension,
Kolmogorov complexity

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.79

1 Introduction

This paper is concerned with the algorithmic dimension of points on a given line in the
Euclidean plane. The most well-studied algorithmic dimensions for a point x ∈ Rn are
the effective Hausdorff dimension, dim(x), and its dual, the effective packing dimension,
Dim(x) [3, 1]. Given the pointwise nature of effective dimension, it is natural to consider the
dimension spectrum, sp(A), of a set A ⊆ Rn, which is defined to be the set of dim(x) for all
x ∈ A.

In this paper, we study the behavior of sp(La,b), where La,b is the line with slope a and
intercept b. Turetsky [13] gave the first result on the dimension spectra of lines, showing
that, for every n ≥ 2, the set of all points in Rn with effective Hausdorff 1 is connected,
implying that 1 ∈ sp(La,b). It was then asked by J. Lutz, with the expectation of a negative
answer, if there were lines in the plane whose dimension spectrum was the singleton {1}. N.
Lutz and Stull [9] showed that this cannot happen by proving the following theorem.

I Theorem 1 (N. Lutz and Stull [9]). For all a, b, x ∈ R,

dim(x, ax+ b) ≥ dima,b(x) + min{dim(a, b), dima,b(x)} .

Theorem 1 implies that, when dim(a, b) < 1, the dimension spectrum of La,b contains the
interval [2 dim(a, b), dim(a, b) + 1]. With this result, it is natural to conjecture that the
dimension spectrum of every line La,b contains an interval. Indeed, in a recent survey on
effective dimension, N. Lutz [7] proposed the question of whether every line La,b has a
dimension spectrum containing a unit interval. Building upon the techniques of [9], N. Lutz
and Stull [10] showed that this is the case for a restricted class of lines.

© Donald M. Stull;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 79; pp. 79:1–79:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:donald.stull@inria.fr
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.79
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

79:2 Results on the Dimension Spectra of Planar Lines

Table 1 Previously known results about the dimension spectra of lines.

∀a, b 1 ∈ sp(La,b)
[13]

dim(a, b) = 2 sp(La,b) = [1, 2]
dim(a, b) ≥ 1 sp(La,b) infinite

[10]
dim(a, b) = d < 1 [2d, 1 + d] ⊆ sp(La,b)

[9]
dim(a, b) = 0 sp(La,b) = [0, 1]

dim(a, b) = Dim(a, b) = d [min{1, d}, 1 + min{1, d}] ⊆ sp(La,b)
[10]

I Theorem 2 (N. Lutz and Stull [10]).
1. If dim(a, b) = Dim(a, b), then sp(La,b) contains a unit interval.
2. If dim(a, b) ≥ 1, then sp(La,b) is infinite.
The second item, combined with Theorem 1, shows that for every line La,b, the dimension
spectrum of La,b is infinite. Table 1 gives a summary of these results.

The question of whether the dimension spectrum of every line contains an interval has
remained open. Our first main theorem settles this question.

I Theorem 3. Let (a, b) ∈ R2 such that dim(a, b) ≥ 1. Then, for every real number d ∈ [0, 1],
there is a point x such that

dim(x, ax+ b) = 1 + d.

Our second main theorem deals with providing lower bounds on the dimension spectrum of a
given line in the plane. The previously discussed theorems have all focused on results proving
that the spectrum of a given line contains certain values. However, very little is known about
the lower bound of sp(La,b) for arbitrary lines La,b. Our second main theorem gives a lower
bound of the spectrum of arbitrary lines, disregarding a set of small Hausdorff dimension.

I Theorem 4. For every a, b ∈ R and α ∈ (0, 1), the set

A = {x | dim(x, ax+ b) ≤ α+ dim(a, b)
2 }

has Hausdorff dimension at most α.

Apart from being intrinsically interesting, the study of the effective dimension of points
on a line has strong connections to important problems in the field of Fractal Geometry.
This connection is mediated by the following theorem relating the two notions of the effective
dimension of points with the Hausdorff and packing dimension of sets.

I Theorem 5 (Point-to-set principle [4]). Let n ∈ N and E ⊆ Rn. Then

dimH(E) = min
A⊆N

sup
x∈E

dimA(x), and

dimP (E) = min
A⊆N

sup
x∈E

DimA(x) .

Recent work has used effective dimension and the point-to-set principle to prove new results
in Fractal Geometry [6, 8]. In particular, the point-to-set principle combined with Theorem
1 gives improved lower bounds on the Hausdorff dimension of a certain class of Furstenberg
sets [9], an important open problem in Fractal Geometry (see Section 5 for definitions). As
our final result, we show that our second main theorem, Theorem 4, gives a new proof of a
result by Molter and Rela [12] on the dimension of Furstenberg sets.

D.M. Stull 79:3

2 Preliminaries

2.1 Kolmogorov Complexity in Discrete Domains
The conditional Kolmogorov complexity of σ ∈ {0, 1}∗ given τ ∈ {0, 1}∗ is

K(σ|τ) = min
π∈{0,1}∗

{`(π) : U(π, τ) = σ} ,

where U is a fixed universal prefix-free Turing machine and `(π) is the length of π. Any π
that achieves this minimum is said to testify to the value K(σ|τ). The Kolmogorov complexity
of σ is K(σ) = K(σ|λ), where λ is the empty string. An important property, due to Levin,
of Kolmogorov complexity is the symmetry of information:

K(σ|τ,K(τ)) +K(τ) = K(τ |σ,K(σ)) +K(σ) +O(1) .

Kolmogorov complexity extends naturally to other discrete domains (e.g., integers, rationals,
etc.) via standard binary encodings.

We will also frequently use relativized Kolmogorov complexity. Letting U be a universal
oracle machine, we may relativize the definition in this section to an arbitrary oracle set
A ⊆ N. The definitions of KA(σ|τ) and KA(σ) are then identical to those above, except
that U is given oracle access to A.

2.2 Kolmogorov Complexity in Euclidean Spaces
In this section we show how to lift the definition of Kolmogorogov complexity to Euclideans
spaces by introducing precision parameters [5, 4]. Let x ∈ Rm, and let r, s ∈ N.1

The Kolmogorov complexity of x at precision r is

Kr(x) = min {K(p) : p ∈ B2−r (x) ∩Qm} .

The conditional Kolmogorov complexity of x at precision r given q ∈ Qm is

K̂r(x|q) = min {K(p|q) : p ∈ B2−r (x) ∩Qm} .

The conditional Kolmogorov complexity of x at precision r given y ∈ Rn at precision s is

Kr,s(x|y) = max
{
K̂r(x|q) : q ∈ B2−r (y) ∩Qn

}
.

We abbreviate Kr,r(x|y) by Kr(x|y).
We will frequently use the following lemma, which shows that increasing an estimate of a

point is at most linearly correlated with the number of extra bits.

I Lemma 6 (Case and J. Lutz [2]). There is a constant c ∈ N such that for all n, r, s ∈ N
and x ∈ Rn,

Kr(x) ≤ Kr+s(x) ≤ Kr(x) +K(r) + ns+ as + c ,

where as = K(s) + 2 log(d 1
2 log ne+ s+ 3) + (d 1

2 log ne+ 3)n+K(n) + 2 log n.

In Euclidean spaces, we have a weaker version of symmetry of information.

1 If we are given a nonintegral positive real as a precision parameter, we will always round up to the next
integer. For example, Kr(x) denotes Kdre(x) whenever r ∈ (0,∞).

MFCS 2018

79:4 Results on the Dimension Spectra of Planar Lines

I Lemma 7 (J. Lutz and N. Lutz [4], N. Lutz and Stull [9]). Let x ∈ Rm and y ∈ Rn. For all
r, s ∈ N with r ≥ s,
1. Kr(x, y) = Kr(x|y) +Kr(y) +O(log r).
2. Kr(x) = Kr,s(x|x) +Ks(x) +O(log r).

As in the case of Kolmogorov complexity in discrete domains, we can relativize the
definitions of this section. We define KA

r (x) and KA
r (x|y) as before, except we replace the

unrelativized complexity K with KA.

2.3 Effective Dimensions
Although effective Hausdorff dimension was initially developed by J. Lutz using generalized
martingales [3], it was later shown by Mayordomo [11] that it may be equivalently defined
using the Kolmogorov complexity of Euclidean points of the previous section. We will be
using this Kolmogorov characterization here as a definition.

The effective Hausdorff dimension and effective packing dimension of a point x ∈ Rn are

dim(x) = lim inf
r→∞

Kr(x)
r

and Dim(x) = lim sup
r→∞

Kr(x)
r

.

Intuitively, these dimensions measure the density of algorithmic information in the point x.
Recently, J. Lutz and N. Lutz [4], developed the lower and upper conditional dimension of
points x ∈ Rm given y ∈ Rn, defined by

dim(x|y) = lim inf
r→∞

Kr(x|y)
r

and Dim(x|y) = lim sup
r→∞

Kr(x|y)
r

.

Again, we can relativize the definitions of this section. We define dimA(x), DimA(x)
dimA(x|y), and DimA(x|y) as before, except we replace the unrelativized complexity Kr

with KA
r .

Of particular importance in this paper is the complexity of a point x relative to another
point y, written Ky

r (x). This is achieved by encoding the binary expansion of y into an oracle
Ay ⊆ N in the standard fashion. We then write Ky

r (x) for KAy
r (x). J. Lutz and N. Lutz

showed that Ky
r (x) ≤ Kr,t(x|y) +K(t) +O(1) [4].

3 Dimension Spectra of Lines of High Dimension

3.1 Approach and Previous Work
In this section we state the technical lemmas that underlie the proof of our first main theorem
(Theorem 3). These lemmas were first stated and proved by N. Lutz and Stull [9, 10]2.

I Lemma 8. Let a, b, x ∈ R, k ∈ N. Suppose that r1, . . . , rk ∈ N, δ ∈ R+, and ε, η1, . . . , ηk ∈
Q+ satisfy the following conditions for every 1 ≤ i ≤ k.
1. ri ≥ log(2|a|+ |x|+ 6) + ri−1.
2. Kri(a, b) ≤ (ηi + ε) ri.
3. For every (u, v) ∈ R2 such that t = − log ‖(a, b)− (u, v)‖ ∈ (ri−1, ri] and ux+ v = ax+ b,

Kri
(u, v) ≥ (ηi − ε) ri + δ · (ri − t).

2 Lemma 8 is stated here in a slightly stronger form than the version of [10]. The proof, however, is nearly
identical. For completeness we give a proof in the Technical Appendix.

D.M. Stull 79:5

Then for every oracle set A ⊆ N,

KA
rk

(a, b, x |x, ax+ b) ≤ 2k
(
K(η1, . . . , ηk) +K(ε) + 4ε

δ
rk +O(log rk)

)
.

We will briefly describe the intuition behind Lemma 8. For k = 1, Lemma 8 roughly states
that, if x and (a, b) satisfy the following properties, then we can compute an approximation
of (a, b) given an approximation of (x, ax+ b).
1. Kr(a, b) is small.
2. For every (u, v) such that ux+ v = ax+ b either

Kr(u, v) is large, or
(u, v) is close to (a, b)

This follows outputting a (u, v) of low complexity such that ux + v = ax + b. Under the
above assumptions, any such pair must be close to (a, b), and so we can recover (a, b) with a
small amount of extra information. Roughly, when k > 1, we do this procedure iteratively.
That is, we begin by computing (a, b) to precision r1 in the manner described above. Having
done so, we do the same procedure, except that we restrict to finding a pair (u, v) within
2−r1 of (a, b), and so on. This is useful when we can only guarantee that Kr(u, v) is large
when (u, v) is somewhat close to (a, b), which is the case in the proof of Theorem 3.

The next two lemmas will ensure that item (1) and (2) hold for a given pair (a, b).

I Lemma 9 (N. Lutz and Stull [9]). Let a, b, x ∈ R. For all (u, v) ∈ R2 such that ux+v = ax+b
and t = − log ‖(a, b)− (u, v)‖ ∈ (0, r],

Kr(u, v) ≥ Kt(a, b) +Ka,b
r−t(x)−O(log r) .

I Lemma 10 (N. Lutz and Stull [10]). Let z ∈ Rn, η ∈ Q ∩ [0, dim(z)], and k ∈ N. For all
r1, . . . , rk ∈ N, there is an oracle D = D(r1, . . . , rk, z, η) such that
1. For every t ≤ r1, KD

t (z) = min{ηr1,Kt(z)}+O(log rk)
2. For every 1 ≤ i ≤ k,

KD
ri

(z) = ηr1 +
i∑

j=2
min{η(rj − rj−1),Krj ,rj−1(z | z)}+O(log rk) .

3. For every t ∈ N and x ∈ R, Kz,D
t (x) = Kz

t (x) +O(log rk).

3.2 First Main Theorem
In this section we prove our first main theorem, Theorem 3. To do so, we will break the
proof into two cases. In the first we assume that, for arbitrarily long intervals, Kr(a, b) is
arbitrarily close to 1. In this case, it is “locally” as if dim(a, b) = Dim(a, b), and we can use
a similar proof to that of Theorem 2 in [10]. This case is formalized in the following lemma,
whose proof if deferred to the appendix.

I Lemma 11. Let (a, b) ∈ R2 such that dim(a, b) ≥ 1. Assume that, for every τ > 0 and
every M ∈ N there are infinitely many R ∈ N such that

Ks(a, b) ≤ (1 + τ)s,

for every natural number s ∈ [R,MR]. Then, for every real number d ∈ (0, 1], there is a
point x such that dim(x, ax+ b) = 1 + d.

MFCS 2018

79:6 Results on the Dimension Spectra of Planar Lines

Proof. Let d ∈ (0, 1]. For every n ∈ N, let τn = 1
n and Mn = 2n

d . Let R1, R2, . . . be a
sequence of natural numbers such that the following hold.
1. 2Rn < Rn+1.
2. For every n, Rn satisfies the hypothesis for the choices of τn and Mn.

We now define a real number x such that

dim(x, ax+ b) = 1 + d. (1)

Let y ∈ R be a real number that is random relative to (a, b). That is, for every r ∈ N,

Ka,b
r (y) ≥ r − log r.

For every n ∈ N, define hn = (Mn−1)Rn

2 . For every r ∈ N, let

x[r] =
{

0 if r
hn
∈ (d, 1] for some n ∈ N

y[r] otherwise

where x[r] is the rth bit of x. Define x ∈ R to be the real number with this binary expansion.
We first claim that the dimension of (x, ax+ b) is at most 1 + d. For every n ∈ N, by our

construction of x and choice of y,

Khn
(x) = Kdhn

(x) +O(log hn)
= Kdhn

(y) +O(log hn)
≤ dhn +O(log hn).

Therefore, by the above bound and Lemma 7,

dim(x, ax+ b) = lim inf
r→∞

Kr(x, ax+ b)
r

= lim inf
r→∞

Kr(x) +Kr(ax+ b |x) +O(log r)
r

≤ lim inf
r→∞

Kr(x) + r +O(log r)
r

≤ lim inf
n→∞

Khn
(x) + hn +O(log hn)

hn

= d+ 1.

To complete the proof, it suffices to show that, for every η ∈ Q ∩ (0, 1) and ε ∈ Q+,

dim(x, ax+ b) ≥ η + d− ε. (2)

To that end, let η ∈ Q ∩ (0, 1) and ε ∈ Q+. To prove inequality (2), we will partition N into
intervals, and focus on the complexity of (x, ax + b) at each precision r in these intervals.
For every n ∈ N, let In = (dhn, dhn+1].

Fix n ∈ N, and let m = 1−d
1−η . We will first consider r ∈ (dhn,mhn]. Let k = r

dhn
, and

define ri = idhn for every 1 ≤ i ≤ k. It is important to note that k is bounded by a constant
depending only on η and d. In particular, this implies that o(rk) is sublinear for all ri. Let
Dr = D(r1, . . . , rk, a, b, η) be the oracle defined in Lemma 10. We first note that, by our
assumption of (a, b) on the interval [Rn,MRn] and Lemma 7,

Kri,ri−1(a, b | a, b) = Kri
(a, b)−Kri−1(a, b)−O(log ri)

≥ ri − o(ri)− (1 + 1
n

)ri−1 −O(log ri)

= ri − ri−1 −
ri−1

n
− o(ri),

D.M. Stull 79:7

for all sufficiently large r. Since k is bounded by a constant, for all sufficiently large n, we
have

Kri,ri−1(a, b | a, b) > η(ri − ri−1)− o(ri).

Hence, by Lemma 10,

|KDr
ri

(a, b)− ηri| < o(rk), (3)

for all 1 ≤ i ≤ k.
We now show that the conditions of Lemma 8 are satisfied relative to Dr. Item 1 of

Lemma 8 holds for all sufficiently large r. For item 2, by the construction of Dr, for every
1 ≤ i ≤ k,

KDr
ri

(a, b) = ηr1 +
i∑

j=2
min{η(rj − rj−1),Krj ,rj−1(z | z)}+O(log rk)

≤ ηr1 +
i∑

j=2
η(rj − rj−1 +O(log rk)

≤ ηri +O(log rk)
≤ (η + ε)ri,

for all sufficiently large r.
Let δ = 1− η. To see that item 3 of Lemma 8 is satisfied for i = 1, let (u, v) ∈ B1(a, b)

such that ux+ v = ax+ b and t = − log ‖(a, b)− (u, v)‖ ≤ r1. Then, by Lemmas 9 and 10,
and our construction of x,

KDr
r1

(u, v) ≥ KDr
t (a, b) +KDr

r1−t,r1
(x|a, b)−O(log r1)

≥ min{ηr1,Kt(a, b)}+Kr1−t(x)− o(rk)
≥ min{ηr1, t− o(t)}+ (η + δ)(r1 − t)− o(rk)
≥ min{ηr1, ηt− o(t)}+ (η + δ)(r1 − t)− o(rk)
≥ ηt− o(t) + (η + δ)(r1 − t)− o(rk) ,

We conclude that KDr
r1

(u, v) ≥ (η − ε)r1 + δ(r1 − t), for all sufficiently large r. To see that
that item 3 is satisfied for 1 < i ≤ k, let (u, v) ∈ B2−ri−1 (a, b) such that ux+ v = ax+ b and
t = − log ‖(a, b)− (u, v)‖ ≤ ri. Since (u, v) ∈ B2−ri−1 (a, b),

ri − t ≤ ri − ri−1 = idhj − (i− 1)dhj ≤ dhj + 1 ≤ r1 + 1 .

Therefore, by Lemma 9, inequality (3), and our construction of x,

KDr
ri

(u, v) ≥ KDr
t (a, b) +KDr

ri−t,ri
(x|a, b)−O(log ri)

≥ min{ηri,Kt(a, b)}+Kri−t(x)− o(ri)
≥ min{ηri, t− o(t)}+ (η + δ)(ri − t)− o(ri)
≥ min{ηri, ηt− o(t)}+ (η + δ)(ri − t)− o(ri)
≥ ηt− o(t) + (η + δ)(ri − t)− o(ri) .

We conclude that KDr
ri

(u, v) ≥ (η − ε)ri + δ(ri − t), for all sufficiently large r. Hence the
conditions of Lemma 8 are satisfied. Therefore, by applying Lemma 8 and appealing to

MFCS 2018

79:8 Results on the Dimension Spectra of Planar Lines

inequality (3),

Kr(x, ax+ b) ≥KDr
r (x, ax+ b)

≥Kr(a, b, x)− 2k
(
K(ε) +K(η) + 4ε

1− η rk +O(log rk)
)

=Kr(a, b) +Kr(x | a, b)

− 2k
(
K(ε) +K(η) + 4ε

1− η rk +O(log rk)
)

≥dr + ηr − 2k
(
K(ε) +K(η) + 4ε

1− η rk +O(log rk)
)
.

To complete the proof, we give lower bounds of Kr(x, ax+ b) for every r ∈ [mhn, dhn+1).
By Lemma 7 and our construction of x,

Kr(x) = Kr,hn
(x |x) +Khn

(x)− o(r)
= r − hn + dhn − o(r)
≥ ηr − o(r) .

The proof of Theorem 1 gives

Kr(x, ax+ b) ≥ Kr(x) + dim(x)r − o(r)
≥ ηr + dr − o(r)
≥ r(d+ η)− εr.

Putting together the lower bounds of Kr(x, ax + b) on the intervals (dhn,mhn) and
[mhn, dhn+1] shows that

dim(x, ax+ b) ≥ 1 + d,

and the proof is complete. J

If (a, b) is not of the first case, then there is a bound (1+τ) > 1 so that Kr(a, b) ≥ r(1+τ)
for some r in every sufficiently large interval. This implies that, for almost every precision r,
the conditional complexity Ks,r(a, b | a, b) > s− r, for some s at most a constant multiple of
r. This fact allows us to use the procedure outlined in Section 3.1 at precision s. We will
now formalize this intuition.

I Theorem 3. Let (a, b) ∈ R2 such that dim(a, b) ≥ 1. Then, for every real number d ∈ [0, 1],
there is a point x such that

dim(x, ax+ b) = 1 + d.

Proof. Let (a, b) ∈ R2 such that dim(a, b) ≥ 1. For d = 1, we may choose an x ∈ R that
is random relative to (a, b). That is, there is some constant c ∈ N such that for all r ∈ N,
Ka,b
r (x) ≥ r − c. By Theorem 1,

dim(x, ax+ b) ≥ dima,b(x) + min{dim(a, b), 1}

= lim inf
r→∞

Kr(x)
r

+ 1

= 2,

D.M. Stull 79:9

and the conclusion holds. For d = 0, the conclusion follows from Turetsky’s theorem [13].
We therefore assume that d ∈ (0, 1).

If (a, b) satisfy the conditions of Lemma 11, then the conclusion is immediate. So assume
that the conditions of Lemma 11 do not hold. Let τ > 0 and M > 0 be constants such that,
for almost every R ∈ N,

Ks(a, b) > (1 + τ)s,

for some s ∈ [R,MR].
Let y ∈ R be random relative to (a, b). Define the sequence of natural numbers {hn}n∈N

inductively as follows. Define h0 = 1. For every n > 0, let

hn = min
{
h ≥ 2hn−1 : Kh(a, b) ≥

(
Dim(a, b)− 1

n

)
h

}
.

Note that hn always exists. For every r ∈ N, let

x[r] =
{

0 if r
hn
∈ (d, 1] for some n ∈ N

y[r] otherwise

where x[r] is the rth bit of x. Define x ∈ R to be the real number with this binary expansion.
Then Kdhn

(x) = dhn +O(log dhn).
Claim 1: dim(x, ax+ b) ≤ 1 + d.
Let η ∈ Q ∩ (0, 1), ε ∈ Q, n ∈ N, and let m = 1−d

1−η . We first give lower bounds of the
complexity of Kr(x, ax + b) on the interval (dhn,mhn). To begin, consider r = hn. Let
k = r

dhn
= 1

d , and define ri = idhn for every 1 ≤ i ≤ k. As in the proof of Lemma 11, is
important to note that k is bounded by a constant depending only on η and d.

Claim 2: Khn
(x, ax+ b) ≥ dhn + ηhn − 2k

(
K(ε) + kK(η) + 4ε

1−ηhn +O(log hn)
)
.

With this bound on the complexity of (x, ax+ b) at precision hn, we will use a symmetry
of information argument to give a lower bound on the complexity at precision r ∈ (dhn, hn).
We defer the proof of this claim to the appendix.

Claim 3: For all r ∈ [dhn, hn),

Kr(x, ax+ b) ≥ r(d+ η)− 2k
(
K(ε) +K(η) + 4ε

1− ηhn +O(log hn)
)
.

Note that this lower bound is useful for r ∈ (dhn, hn), since hn is a fixed constant multiple
of r.

We now turn to proving lower bounds for the complexity of (x, ax+ b) on the interval
(hn,mhn). To do so, we will make use of our assumption that the complexity of Ks(a, b) is
at least (1 + τ)s. In particular, this assumption implies that there is a fixed constant c such
that Kchn,hn

(a, b | a, b) ≥ η(chn − hn). Moreover, this constant is independent of η and ε.
To see this, let s > hn be a precision such that Ks(a, b) ≥ (1 + τ)s. By Lemma 7 and our
assumption of a, b,

Ks,hn(a, b | a, b) ≥ Ks(a, b)−Khn(a, b)−O(log s)
≥ (1 + τ)s−Dim(a, b)hn −O(log s)
≥ (1 + τ)s− 2hn −O(log s).

Thus,

Ks,hn
(a, b | a, b) ≥ η(s− hn),

MFCS 2018

79:10 Results on the Dimension Spectra of Planar Lines

for any such s > chn, for some fixed constant c depending only on τ . With this fact we are
able to show the following, whose proof is deferred to the appendix.

Claim 4: There is a precision hn < j ≤ chn such that

Kj(x, ax+ b) ≥ j − (hn − dhn) + ηj − 2k
(
K(ε) + kK(η) + 4ε

1− η j +O(log j)
)
.

With this bound, we will again prove lower bounds at precisions r ∈ (hn, j) using symmetry
of information arguments. While this is similar in spirit to the proof of Claim 3, there is an
important difference. At precisions greater than hn, the complexity of x begins increasing
again. In particular, the construction of x and Lemma 6 implies the following.

Kj(x, ax+ b) ≤ Kr(x, ax+ b) + 2(j − r).

We are still, however, able to achieve the required lower bounds on the complexity of (x, ax+b)
for all r ∈ (hn, j). The proof of this claim is deferred to the appendix.

Claim 5: For every r ∈ (hn, j),

Kr(x, ax+ b) ≥ r(d+ η)− cr(1− η)− 2k
(
K(ε) +K(η) + 4ε

1− η cr +O(log cr)
)
.

This lower bound is useful since j ≤ chn, and c is a constant depending only on τ . In
particular, this allows us to make cr(1−η)

r arbitrarily small by having η go to 1.
To complete the proof for the interval (dhn,mhn), we will apply the same method as in

Claims 4 and 5, except that we use j instead of hn. Specifically, we choose the first j2 > j

such that

Kj2,j(a, b | a, b) ≥ η(j2 − j),

and note that j2 ≤ cj. We then apply the proof of Claim 4 to Kj2(x, ax+ b), and the proof
of Claim 5 to the interval (j, j2). We then repeat this argument until we have given the
appropriate lower bound for all r ∈ (hn,mhn).

Finally, taking Claims 1, 2, 3, 4 and 5 together yields the following. For every r ∈
(dhn,mn),

Kr(x, ax+ b) ≥ r(d+ η)− cr(1− η)− 2k
(
K(ε) +K(η) + 4ε

1− η cr +O(log cr)
)
. (4)

To complete the proof, we bound Kr(x, ax+ b) for every r ∈ [mhn, dhn+1). By Lemma 7
and our construction of x,

Kr(x) = Kr,hn
(x |x) +Khn

(x) + o(r)
= r − hn + nhn + o(r)
≥ ηr + o(r) .

The proof of Theorem 1 gives Kr(x, ax+b) ≥ Kr(x)+dim(x)r−o(r), and so Kr(x, ax+b) ≥
r(d+ η)− εr. Combined with inequality (4), for every r ∈ (dhn, dhn+1),

Kr(x, ax+ b)
r

≥ r(d+ η)− cr(1− η)− 2k
(
K(ε) +K(η) + 4ε

1− η cr +O(log cr)
)

= d+ η − 2k
(
K(ε)
r

+ K(η)
r

+ 4ε
1− η c+ O(log cr)

r

)
≥ d+ η − 2 m

d

(
K(ε)
r

+ K(η)
r

+ 4ε
1− η c+ O(log cr)

r

)

D.M. Stull 79:11

for all sufficiently large n. Since η and ε were chosen arbitrarily and independently,

dim(x, ax+ b) ≥ d+ 1,

and the proof is complete. J

4 Lower Bounding the Dimension Spectrum of a Line

In this section we give the first nontrivial lower bounds of the dimension spectrum of an
arbitrary line. For intuition behind the proof, first note the following simple observation.

I Observation 12. For every x, y, a, b ∈ R,

Kr(x, y, a, b) ≤ Kr(x, ax+ b) +Kr(y, ay + b) + 2t,

where t = − log ‖x− y‖.

Essentially, this is true since any two points identify a line, and this can be done in a
computable way. The 2t extra information is due to the fact the precision which we can
compute (a, b) to is linearly correlated to the distance between x and y. This immediately
suggests an approach to give the lower bound

dim(x) + dim(a, b)
2 ≥ dim(a, b).

While this observation is at the core of the proof of our second main theorem, it alone does
not suffice. The principle issue is that the values of Kr(x, ax+ b), Kr(y, ay + b) might be
“out of phase”; that is, Kr(x, ax+ b) is small when Kr(y, ay+ b) is large, and vice versa. Our
main theorem will show that the set of these points has low Hausdorff dimension.

Our first lemma builds upon Observation 12. In particular, it shows that, if Kr(x, ax+ b)
is small, then every other y such that Kr(y, ay + b) is small must satisfy certain properties.

I Lemma 13. Let α ∈ (0, 1), x, a, b ∈ R, and n, r ∈ N such that 2r− 1
2 < 1

n . Assume
that Kr(x, ax + b) < αr + Kr(a,b)

2 − r
n , and Ka,b

r (x) ≥ αr. Then, for every y ∈ R, if
Kr(y, ay + b) < αr + Kr(a,b)

2 , at least one of the following holds.
1. t := − log ‖x− y‖ ≤ r 1

2 .
2. Kr(y | a, b, x) < αr.

Proof. Assume the hypothesis, but assume that neither condition is satisfied for some y.
Then,

Kr(a, b, x, y) ≤ Kr(x, ax+ b) +Kr(y, ay + b) + 2t

< 2αr +Kr(a, b)−
r

n
+ 2t.

However, by our hypothesis and Lemma 7 we have

Kr(a, b, x, y) ≥ Kr(a, b) +Kr(x | a, b) +Kr(y | a, b, x)− log r
≥ Kr(a, b) + 2αr − log r.

Since condition (1) was assumed to not hold, we see that

1
n
< 2r− 1

2 ,

a contradiction. J

MFCS 2018

79:12 Results on the Dimension Spectra of Planar Lines

For every a, b ∈ R and α ∈ (0, 1), define the set

A(α, a, b) = {x | dim(x, ax+ b) < α+ dim(a, b)
2 }.

I Theorem 4. For every a, b ∈ R and α ∈ (0, 1), dimH(A(α, a, b)) ≤ α.

Proof. Our goal is to show that dimH(A(α, a, b) ≤ α. We will actually prove a stronger
theorem. For every n, define

An(α, a, b) = {x | (∃∞r)Kr(x, ax+ b) < αr + Kr(a, b)
2 − r

n
}.

Note that to prove dimH(A(α, a, b) ≤ α, it suffices to show that dimH(An(α, a, b)) ≤ α for
every n. To see that A(α, a, b) ⊆ ∪nAn(α, a, b), let x ∈ A. Then there is an ε > 0 such that,
for infinitely many r,

Kr(x, ax+ b) < αr + dim(a, b)
2 r − εr

< αr + Kr(a, b) + g(r)
2 − εr,

where g is a sublinear function. Therefore, for sufficiently large n and r, x ∈ An(α, a, b). Since
the Hausdorff dimension of a countable union of sets ∪nAn is the supremum of dimH(An),
it suffices to show that, for every n, dimH(An(α, a, b)) ≤ α.

Define the set

U = {x | (∃∞r)Ka,b
r (x) ≤ αr}.

It is immediate that dima,b(x) ≤ α, for all x ∈ U .
For every r ∈ N, choose xr such that

Ka,b
r (x) ≥ αr

Kr(x, ax+ b) < αr + Kr(a, b)
2 − r

n
,

if such an xr exists. To reduce the notational burden we will, without loss of generality,
always assume that such an xr does exist. We then define

V = {y | (∃∞r) y ∈ (xr − 2−r
1
2 , xr + 2−r

1
2)}.

Define oracle R ⊆ N which encodes the sequence x1, x2, . . . in the standard manner. Let
y ∈ V , and let r ∈ N such that y ∈ (xr − 2−r

1
2 , xr + 2−r

1
2). Then,

KR

r
1
2

(y) ≤ O(log r)

= O(log r 1
2).

Thus

dimR(y) = 0.

Let x1, x2, . . . be the sequence chosen above. Define

W = {y | (∃∞r)Kr(y | a, b, xr) < αr}.

D.M. Stull 79:13

Let y ∈W , and let r ∈ N such that Kr(y | a, b, xr) < αr. Then we have

KR,a,b
r (y) ≤ Kr(y | a, b, xr) +O(log r)

< αr +O(log r).

Thus

dimR,a,b(y) ≤ α.

We now show that An(α, a, b) ⊆ U ∪ V ∪ W . Let y ∈ An(α, a, b), and assume that
y /∈ U ∪ V . So then y has the following properties.
1. For infinitely many r, Kr(y, ay + b) < αr + Kr(a,b)

2 − r
n

2. For almost every r, Ka,b
r (y) > αr.

3. For almost every r, y /∈ (xr − 2−r
1
2 , xr + 2−r

1
2).

Let r ∈ N be a sufficiently large integer such that item (1) holds. Then by Lemma 13, we
must have that

Kr(y | a, b, xr) < αr.

Therefore, y ∈ W , and An(α, a, b) ⊆ U ∪ V ∪W . Hence dimR,a,b(y) ≤ α, and the proof is
complete. J

5 Applications to Furstenberg Sets

In this section we will use the point-to-set principle, Theorem 5, in conjunction with the
theorem of the previous section to give a new proof of a result by Molter and Rela on
Furstenberg sets. Let α ∈ [0, 1]. A set of Furstenberg type with parameter α is a set E ⊆ R2

such that, for every e ∈ S1, there is a line `e in the direction e satisfying dimH(E ∩ `e) ≥ α.
It is an important open problem in Fractal Geometry to find the minimum possible dimension
of a set of Furstenberg type with paramater α.

Molter and Rela [12] have recently introduced a generalization of Furstenberg sets, by
removing the restriction that every direction must intersect the set. A set E ⊆ R2 is in the
class Fαβ if there is some set J ⊆ S1 such that
1. dimH(J) ≥ β, and
2. for every e ∈ J , there is a line `e in the direction e satisfying dimH(E ∩ `e) ≥ α.
They proved the following lower bound on the dimension of such sets.

I Theorem 14. (Molter and Rela [12]) For all α, β ∈ (0, 1] and every set E ∈ Fαβ,

dimH(E) ≥ α+ β

2 .

We will now give a new proof of this theorem, using the theorems of the previous section.

Proof of Theorem 14. Let α, β ∈ (0, 1], ε > 0, and E ∈ Fαβ . Let A ⊆ N be an oracle
testifying to the Hausdorff dimension of E; i.e.,

dimH(E) = sup
z∈E

dimA(z).

Let e ∈ S1 satisfy dimA(e) > β − ε. Note that such a direction exists by the point-to-set
principle. Let le be a line in direction e such that dimH(le ∩ E) ≥ α. Let a, b ∈ R be the
reals such that La,b = le. Note that dimA(a, b) = dimA(e) because the mapping e 7→ a is

MFCS 2018

79:14 Results on the Dimension Spectra of Planar Lines

Table 2 Updated table of the dimension spectra of lines.

∀a, b 1 ∈ sp(La,b)
dim(a, b) = 2 sp(La,b) = [1, 2]
dim(a, b) ≥ 1 [1, 2] ⊆ sp(La,b) sp(La,b) ⊆ [1, 2]

Except for a set of dimension at
most 1

2

dim(a, b) = d < 1 [2d, 1 + d] ⊆ sp(La,b), sp(La,b) ⊆ [d, 1 + d]
Except a set of dimension at most
d
2

dim(a, b) = 0 sp(La,b) = [0, 1]
dim(a, b) = Dim(a, b) [d, 1 + d}] ⊆ sp(La,b),

d = min{1, dim(a, b)}

computable and bi-Lipschitz in a neighborhood of e. Let S = {x | (x, ax+ b) ∈ E ∩ le}. Note
that this implies that dimH(S) ≥ α. We then have that

dimH(E) ≥ sup
x∈S

dimA(x, ax+ b).

Therefore, to complete the proof, it suffices to show that there exists a point x ∈ S such that

dimA(x, ax+ b) ≥ α+ β

2 − ε. (5)

By Theorem 4, relativized to A, the set of all x such that dimA(x, ax + b) ≤ α + β
2 has

Hausdorff dimension at most α− ε. Since dimH(S) ≥ α, this implies that there is a point
x ∈ S which satisfies (5), and the proof is complete. J

6 Conclusion and Future Directions

In this paper, we have given two new results on the dimension spectra of lines in the plane,
summarized in Table 2.

The first gives a partial answer to the question posed by Lutz, asking whether, for every
line La,b, sp(La,b) contains a unit interval. We showed that if dim(a, b) ≥ 1, then this is true.
Together with a previous result of N. Lutz and Stull, this implies the following.

I Corollary 15. For every a, b ∈ R, sp(La,b) contains an interval.

However we still do not have complete answer to Lutz’s question. This is an important open
problem, and one that seems to require new techniques to solve.

We have also given the first nontrivial lower bound on the dimension spectrum of a given
line. An important open problem is to improve the bounds given here. This would be not
only an intrinsically interesting result, but would likely give improved bounds on Furstenberg
sets. Another interesting direction for future research is to construct lines with “many” points
of small dimension. In particular, for a given α > 0, is there a line La,b such that

dimH(A(α, a, b)) = α?

D.M. Stull 79:15

References
1 Krishna B. Athreya, John M. Hitchcock, Jack H. Lutz, and Elvira Mayordomo. Effect-

ive strong dimension in algorithmic information and computational complexity. SIAM J.
Comput., 37(3):671–705, 2007.

2 Adam Case and Jack H. Lutz. Mutual dimension. ACM Transactions on Computation
Theory, 7(3):12, 2015.

3 Jack H. Lutz. The dimensions of individual strings and sequences. Inf. Comput., 187(1):49–
79, 2003.

4 Jack H. Lutz and Neil Lutz. Algorithmic information, plane Kakeya sets, and conditional
dimension. ACM Transactions on Computation Theory, to appear.

5 Jack H. Lutz and Elvira Mayordomo. Dimensions of points in self-similar fractals. SIAM
J. Comput., 38(3):1080–1112, 2008.

6 Neil Lutz. Fractal intersections and products via algorithmic dimension. In 42nd Interna-
tional Symposium on Mathematical Foundations of Computer Science, MFCS 2017, August
21-25, 2017 - Aalborg, Denmark, pages 58:1–58:12, 2017.

7 Neil Lutz. Some open problems in algorithmic fractal geometry. Open Problem Column,
SIGACT News, 48(4), 2017.

8 Neil Lutz and DM Stull. Projection theorems using effective dimension. arXiv preprint
arXiv:1711.02124, 2017.

9 Neil Lutz and Donald M. Stull. Bounding the dimension of points on a line. In Theory
and Applications of Models of Computation - 14th Annual Conference, TAMC 2017, Bern,
Switzerland, April 20-22, 2017, Proceedings, pages 425–439, 2017.

10 Neil Lutz and Donald M. Stull. Dimension spectra of lines. In Unveiling Dynamics and
Complexity - 13th Conference on Computability in Europe, CiE 2017, Turku, Finland, June
12-16, 2017, Proceedings, pages 304–314, 2017.

11 Elvira Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff
dimension. Inf. Process. Lett., 84(1):1–3, 2002.

12 Ursula Molter and Ezequiel Rela. Furstenberg sets for a fractal set of directions. Proc.
Amer. Math. Soc., 140:2753–2765, 2012.

13 Daniel Turetsky. Connectedness properties of dimension level sets. Theor. Comput. Sci.,
412(29):3598–3603, 2011.

MFCS 2018

Tight Bounds for Deterministic h-Shot Broadcast
in Ad-Hoc Directed Radio Networks
Aris Pagourtzis1

School of ECE, National Technical University of Athens, Athens, Greece
pagour@cs.ntua.gr

https://orcid.org/0000-0002-6220-3722

Tomasz Radzik2

Department of Informatics, King’s College London, London, the United Kingdom
tomasz.radzik@kcl.ac.uk

https://orcid.org/0000-0002-7776-5461

Abstract
We consider the classical broadcast problem in ad-hoc (that is, unknown topology) directed
radio networks with no collision detection, under the additional assumption that at most h
transmissions (shots) are available per node. We focus on adaptive deterministic protocols for
small values of h. We provide asymptotically matching lower and upper bounds for the cases
h = 2 and h = 3. While for h = 2 our bound is quadratic, similar to the bound obtained for
oblivious protocols, for h = 3 we prove a sub-quadratic bound of Θ(n2 log log n/ log n), where
n is the number of nodes in the network. The latter is the first result showing an adaptive
algorithm which is asymptotically faster than oblivious h-shot broadcast protocols, for which a
tight quadratic bound is known for every constant h. Our upper bound for h = 3 is constructive,
making use of constructions of graphs with large girth. We also show an improved upper bound
of O(n1+α/

√
h) for h ≥ 4, where α is an absolute constant independent of h. Our upper bound

for h ≥ 4 is non-constructive.

2012 ACM Subject Classification Theory of computation → Distributed algorithms, Mathem-
atics of computing → Extremal graph theory

Keywords and phrases Ad-hoc radio networks, wireless networks, deterministic broadcast, ad-
aptive protocols, limited transmissions

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.80

1 Introduction

1.1 Model of broadcast with limited transmissions per node
In this paper a transmission network is a directed graph G = (V,E) with the set of nodes
V = {0, 1, . . . , n− 1}, where node 0 is the source node, denoted also by s, and all other nodes
are reachable from this node. Initially each node knows only its identifier and the size n of
the network. The source node knows also the message, which is to be broadcast to all other
nodes. Let G ≡ G(n) denote the family of all transmission networks of size n.

We consider the following model of h-shot broadcast. Nodes of the network transmit in
globally synchronized steps (counted from 1), with each node transmitting in at most h steps.
If a node v transmits in a given step, then each node w such that (v, w) ∈ E receives the

1 Research mainly conducted while this author was visiting the Department of Informatics, King’s College
London, on sabbatical leave from the National Technical University of Athens.

2 Research supported by EPSRC grant EP/M005038/1.

© Aris Pagourtzis and Tomasz Radzik;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 80; pp. 80:1–80:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pagour@cs.ntua.gr
https://orcid.org/0000-0002-6220-3722
mailto:tomasz.radzik@kcl.ac.uk
https://orcid.org/0000-0002-7776-5461
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.80
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

80:2 Deterministic h-Shot Broadcast

transmitted message, unless a collision occurs at node w, that is, unless there is another
edge (v′, w), v′ 6= v, with node v′ transmitting in the same step. We assume that there is
no collision detection: a node w cannot distinguish between no transmission from any of
the neighbouring nodes and simultaneous transmissions by two or more neighbouring nodes.
The only node transmitting in step 1 is the source node 0 and a node can transmit in the
current step t ≥ 2 only if it has already received the message in previous steps.

Most of the research on communication protocols for various models of radio networks
has been concerned with minimizing the number of steps, without putting constraints on
the number of transmissions by individual nodes or the total number of transmissions by all
nodes. Limiting the maximum number of transmissions per node has received somewhat less
attention, especially in the context of ad-hoc (that is, unknown) networks. This objective,
however, may be important in practice, since it may mean limiting the maximum energy
usage per node to keep all nodes alive for as long as possible.

An h-shot broadcast protocol can be viewed as a function Π ≡ Πn which for any node v,
a time step t ≥ 1, and the knowledge κ gathered by node v in steps 1, 2, . . . , t− 1, tells node
v whether it transmits in step t. The protocol has to ensure that, within all constraints of the
model, for each transmission network G ∈ G, all nodes eventually receive the message, that
is, broadcast is always eventually completed. The design objective is to keep the worst-case
completion time as small as possible.

An oblivious h-shot protocol is defined by a sequence of transmission sets S1 = {0}, S2,

S3, . . . , which are subsets of the node set V . Once a node v receives the message in step t,
it wakes up and transmits in the first h steps τi ≥ t+ 1, 1 ≤ i ≤ h, such that v ∈ Sτi . The
source node 0 is considered awake at time 0 and transmitting at step 1. (We remark that
slightly different definitions of obliviousness may be used in other variants of radio network
models.)

In a general (adaptive) h-shot protocol, nodes can take into account information which
they have received in earlier steps when they decide whether to transmit in the current step.
We do not put any limits on how much information can be transmitted in one step or stored
in one node. In fact, for our lower bounds we assume that during a successful transmission
from a node v to a node w, all knowledge accumulated so far by node v is transmitted to
node w and is added to w’s knowledge. We remark though that the (adaptive) protocols
for our upper bounds include in the transmissions only the source message and the current
count of step. They achieve a speed-up over oblivious protocols by using the current count
of steps in a more subtle way.

1.2 Our results
We study adaptive deterministic protocols for h-shot broadcast (note that the term ‘k-shot
broadcasting’ has been used in some literature for the same notion). We focus on small
values of h and provide asymptotically matching lower and upper bounds on the (worst-case)
number of steps for the cases h = 2 and h = 3, as well as improved upper bounds for larger
values of h.

In particular, for h = 2 we provide a quadratic lower bound of n2/8−O(n), showing that
adaptive 2-shot broadcast protocols are not (asymptotically) faster than oblivious 2-shot pro-
tocols. On the other hand, for h = 3 we prove a sub-quadratic bound of Θ(n2 log log n/ log n).
To the best of our knowledge this is the first result showing an adaptive h-shot protocol
which is asymptotically faster than oblivious h-shot protocols. For oblivious protocols a
tight quadratic bound has been shown in [14] for every constant h. Our proof of exist-
ence of a O(n2 log log n/ log n)-step 3-shot broadcast protocol is constructive, making use of
constructions of graphs with large girth. The girth of a graph is the length of a shortest
cycle.

A. Pagourtzis and T. Radzik 80:3

Our improved upper bounds for h ≥ 4 include a bound of O(n1+α/
√
h), where h is constant

or grows (slowly) with n and α is an absolute constant independent of h. Our upper bounds
for h ≥ 4 are non-constructive and are based on hyper-graphs without small 2-covers. We
give the precise definition of 2-covers in hyper-graphs in Section 4, noting here only that this
notion can be viewed as a generalization of the notion of cycles in graphs.

1.3 Related previous work

Radio broadcasting with unlimited number of shots was first introduced by Chlamtac and
Kutten [5] and has been extensively studied ever since. The first protocol, given by Bar-
Yehuda, Goldreich and Itai [1], was randomized and worked in O(D log n+ log2 n) expected
time, where D is the diameter of the graph and n the number of nodes. Improved randomized
protocols were later proposed in [10, 15] yielding a tight upper bound of O(D log(n/D)+log2 n)
steps.

Deterministic radio broadcasting attracted much attention in the last two decades. Brusci
and Del Pinto [4] proved a lower bound of Ω(D log n) for undirected networks, which was
subsequently improved for directed networks to Ω(n logD) by Clementi et al. [9] and for
undirected networks to Ω((n log n)/ log(n/D)) by Kowalski and Pelc [15]. The round-robin
protocol, in which node i is the only node transmitting in steps i+ 1 + qn, for each q ≥ 1,
gives a trivial O(n2) upper bound on deterministic broadcast. Chlebus et al. [6] presented
the first sub-quadratic protocol of O(n11/6) time complexity. The upper bound was then
improved to O(n5/3 log3 n) by De Marco and Pelc [17] and further by Chlebus et al. [7], who
showed an O(n3/2)-time algorithm. Chrobak, Ga̧sieniec and Rytter [8] gave an O(n log2 n)
non-constructive protocol and De Marco [11] proved the best currently known upper bound
of O(n log n log log n), again in a non-constructive manner.

Better upper bounds are known for undirected networks. Chlebus et al. [6] proposed
a deterministic O(n)-time broadcasting algorithm, assuming spontaneous wake-up (that is,
allowing the nodes to transmit before receiving the source message, learning that way the
topology of the network). An optimal O(n log n)-time broadcasting algorithm for undirected
networks with non-spontaneous wake-up was given by Kowalski and Pelc [15].

Broadcasting with a limited number of shots (“h-shot broadcasting”) in known-topology
undirected networks was first studied by Ga̧sieniec et al. [12], who showed a lower bound
of D + Ω((n−D)1/(2h)) and a randomized protocol which works in D +O(hn1/(h−2) log2 n)
steps and has high probability of completing the broadcast. These lower and upper bounds
were improved for the same setting (undirected known networks) by Kantor and Peleg [13]
to D + Ω(h · (n−D)1/2h) and D +O(hn1/2h) log2+1/h n), respectively. They also presented
the first randomized h-shot broadcasting protocols for unknown undirected networks, which
work in O((D + min{Dh, log n})n1/(h−1) log n) steps for h ≥ 2 and in O(Dn2 log n) steps
for h = 1. Still in the same setting, Berenbrink et al. [2] proposed, among other results, a
randomized algorithm with optimal broadcasting time O(D log(n/D) + log2 n) that uses an
expected number of O(log2 n/ log(n/D) transmissions per node.

The first work to address deterministic h-shot broadcasting in directed ad hoc radio
networks is due to Karmakar et al. [14], who proved a lower bound of Ω(n2/h) for oblivious
protocols and a matching upper bound of O(n2/h) for each h ≤

√
n, as well as an upper

bound of O(n3/2) for h >
√
n. They also presented a lower bound of Ω

(
n1+1/h) for adaptive

broadcasting protocols, leaving open the question whether there are upper bounds for adaptive
h-shot broadcast which are better than the O(n2/h) bound achieved by oblivious protocols.

MFCS 2018

80:4 Deterministic h-Shot Broadcast

2 Lower bounds

2.1 Layered networks

We show lower bounds using the following layered networks. We assume n ≥ 4, and in
addition to the source node s = 0, we also distinguish the node d = n− 1 as the “target” of
the broadcast. Node d will be the last node of a layered network to receive the message. We
derive lower bounds on the number of steps needed by a broadcast protocol to deliver the
message from node s to node d in the worst case.

Consider a partition L0, L1, . . . , Lk of the set of nodes V into k ≥ 2 sets called layers,
such that L0 = {0}, Lk = {n− 1} and Li 6= ∅ for 0 ≤ i ≤ k. These layers define the following
acyclic broadcast network G ≡ G(L0, L1, . . . Lk). For each 0 ≤ i ≤ k − 1, the consecutive
layers Li and Li+1 are fully connected, that is, there is a directed edge from each node of Li
to each node of Li+1, and there are no any other edges.

For any pairwise disjoint non-empty subsets L0, L1, . . . , Lj of V \ {n− 1}, where j ≥ 1
and L0 = {0}, we denote by Gj ≡ Gj(L0, L1, . . . Lj) the family of all layered networks
G(L0, L1, . . . Lj , Lj+1 . . . Lk), where k > j, Lk = {n− 1} and Lj+1 . . . Lk−1 are non-empty
sets partitioning V \

(
{n− 1} ∪

⋃j
i=0 Li

)
. In other words, Gj is the family of all layered

networks which have the same fixed initial layers L0, L1, . . . , Lj . In particular, G0 is the
family of all layered networks.

We use layered networks in order to show that for any given protocol, there is an assignment
of nodes to layers which makes the progress of broadcast slow because of relatively long
delays at each layer.

2.2 Conditional transmission sets

Let Π be any h-shot broadcast protocol for n-node networks and let Tmax denote the maximum
broadcast time of Π over all n-node networks. We define below conditional transmission sets
for families of layered graphs described above.

Let i ≥ 1 and consider the family of networks Gi−1(L0, L1, . . . , Li−1) for some arbitrary
layer sets L0 = {0}, L1, L2, . . . , Li−1, such that |

⋃i−1
j=0 Lj | ≤ n− 3. This bound implies that

the target node and at least two other nodes are still outside of the fixed layers. Protocol
Π behaves in exactly the same way on any network G ∈ Gi−1(L0, L1, . . . , Li−1) until (and
including) the step Ti−1 when the source message leaves layer i − 1 for the first time.
That is, Ti−1 is the first step when a unique node in Li−1 transmits, sending the message
simultaneously to all nodes in the next layer. Note that T0 = 1 and step Ti−1 is uniquely
determined by the sets L0, L1, . . . , Li−1. We select the next layer Li from the set

Ui = V \

{n− 1} ∪
i−1⋃
j=0

Lj

 ,

trying to maximize the weighted delay (Ti − Ti−1)/|Li| at this layer.
For t ≥ 1, the conditional transmission set St ⊆ Ui contains a node v ∈ Ui, if and only if,

node v transmits at step Ti−1 + t, if v is included in the layer Li. Set St is well defined since
for each network G ∈ Gi−1(L0, L1, . . . , Li−1) with v ∈ Li, node v transmits in exactly the
same steps, irrespectively of how the other nodes in Ui \ {v} are distributed among the layers
Lj , j ≥ i. This follows from the fact that a node in one layer gets information, directly or
indirectly, only from nodes in previous layers.

A. Pagourtzis and T. Radzik 80:5

Since we consider h-shot protocols, each node v ∈ Ui belongs to at most h conditional
transmission sets St. We assume w.l.o.g. that v transmits in exactly h steps Ti−1 + t, so it
belongs to exactly h conditional transmission sets. (If v belongs to k < h conditional sets,
then add v to h − k sets Sτ for τ = Tmax − Ti−1 + 1, . . . , Tmax − Ti−1 + h − k. This may
create new transmission collisions, but only after step Tmax, that is, after the completion of
broadcast.) For convenience, if it is clear from the context that we are discussing the selection
of nodes for the layer Li, then we will refer to the (global) transmission step Ti−1 + t as
simply the transmission step t (the t-th step after step Ti−1). Also, “conditional transmission
sets” will be abbreviated to “transmission sets’.’

At least one of the transmission sets St must be a singleton, or otherwise the message
would never reach the target node in the network G(L0, L1, . . . , Li−1, Ui, {n− 1}), that is,
when layer i contains all remaining nodes (other than the target node n− 1). Let τ1 ≥ 1 be
the smallest index of a singleton transmission set. Let Sτ1 = {v1} and we also use t0(v1) and
S0(v1) to denote τ1 and Sτ1 , respectively.

Applying the same argument to sets S′t = St \ {v1}, we observe that there must be a
singleton also among these sets. Indeed, if each non-empty set S′t, t ≥ 1, had size at least 2,
then the message would never reach the target node in the network G(L0, L1, . . . , Li−1, Ui \
{v1}, {v1}, {n− 1}). Let S′τ2

= {v2} be the first singleton among sets S′t, and let t0(v2) and
S0(v2) denote τ2 and Sτ2 , respectively. We note that S0(v2) is equal to either {v2} or {v1, v2}
and step t0(v2) can be before or after step t0(v1).

Continuing this way, we put all nodes of Ui in a sequence v1, v2, . . . , vu, where u = |Ui| ≥ 2,
and associate with them distinct transmission steps t0(vj) and transmission sets S(vj) such
that:

S0(v1) = {v1} and S0(vj) \ {v1, v2, . . . , vj−1} = {vj}, for 2 ≤ j ≤ u.

Note that for each 1 ≤ j ≤ u, we have
⋃j
l=1 S0(vl) = {v1, v2, . . . , vj}.

By construction, for any two distinct nodes v and w in Ui, the steps t0(v) and t0(w) are
also distinct. Thus for at least du/2e nodes in Ui, we have t0(v) > bu/2c. We denote the set
of these nodes by U ′i , that is,

U ′i = {v ∈ Ui : t(v) > bu/2c},

and let u′ = |U ′i | ≥ du/2e.
For each node v ∈ U ′i , we have designated one of the v’s (conditional) transmission steps

as the step t0(v) ≥ |Ui|/2 and we have denoted the corresponding transmission set by S0(v).
We now further denote by t1(v) < t2(v) < · · · < th−1(v) and by S1(v), S2(v), . . . , Sh−1(v) the
other h− 1 steps when node v transmits (if in Li) and the transmission sets at those steps.
While for any two distinct nodes v′ and v′′ in U ′i , t0(v′) 6= t0(v′′), we may have tq(v′) = tr(v′′)
for some 1 ≤ q, r ≤ h− 1.

The general idea for forcing a large weighted delay at layer i is to try to select for this
layer a relatively small number of nodes x1, x2, . . . , xk from U ′i which have transmission
conflicts at all transmission steps tl(xj), for 1 ≤ j ≤ k and 1 ≤ l ≤ h− 1. That is, for each
1 ≤ j ≤ k and 1 ≤ l ≤ h − 1, there is 1 ≤ a ≤ k, a 6= j such that {xj , xa} ⊆ Sl(xj). If
we manage to select such a layer, then the progress of broadcast from this layer will have
to rely on one of the steps t0(x1), t0(x2), . . . , t0(xk), so the weighted delay will be at least
min{t0(x1), t0(x2), . . . , t0(xk)}/k ≥ |Ui|/(2k). This will be the basic case in our lower-bound
analysis.

MFCS 2018

80:6 Deterministic h-Shot Broadcast

2.3 Lower bound for 2-shot broadcast
We consider now the case when each node has only two transmissions, with a node v ∈ U ′i
transmitting in steps t0(v) and t1(v). Recall that u′ = |U ′i | ≥ du/2e and consider two cases:
either there is a node v ∈ U ′i with t1(v) ≥ du/2e or, by the pigeonhole principle, there are
two distinct nodes v and w in U ′i such that t1(v) = t1(w) < du/2e. We set Li = {v} in the
former case, to get Ti = Ti−1 + min{t0(v), t1(v)} ≥ Ti−1 + du/2e, and Li = {v, w} in the
latter case, to get Ti = Ti−1 + min{t0(v), t0(w)} ≥ Ti−1 + du/2e. Thus we can force the
delay at layer i of at least du/2e by putting one or two nodes into this layer, so we have the
following lemma.

I Lemma 1. For each 2-shot broadcast protocol Π for n-node networks and a family
of networks G(L0, L1, . . . , Li−1), where |

⋃i−1
j=0 Lj | ≤ n − 3, there exists Li ⊆ Ui = V \(

{n− 1} ∪
⋃i−1
j=0 Lj

)
such that 1 ≤ |Li| ≤ 2 and for each network in G(L0, L1, . . . , Li−1, Li),

the message does not leave layer i (that is, is not delivered to the next layer i+ 1) before the
step Ti−1 + d|Ui|/2e.

Using this lemma iteratively, we prove the following lower bound on the worst-case time
of 2-shot broadcast protocols.

I Theorem 2. For each 2-shot broadcast protocol Π for n-node networks, there exists a
network in G0 on which Π needs at least n2/8−O(n) steps to complete broadcast.

Proof. Starting from L0 = {0}, we apply Lemma 1 iteratively for i = 1, 2, . . . to obtained a
network G(L0 = {0}, L1, L2, . . . , Lk−1, Lk = {n − 1}) such that k ≥ n/2, 1 ≤ |Li| ≤ 2, for
each 1 ≤ i ≤ k−1, and Ti ≥ Ti−1+|Ui|/2. We have |U1| = n−2 and |Ui| ≥ |Ui−1|−2 ≥ n−2i,
for 2 ≤ i ≤ k − 1, so the worst-case number of steps needed by protocol Π to complete the
broadcast is at least

1 +
∑

1≤i≤k−1
|Ui|/2 ≥

∑
1≤i≤(n/2)−1

(n− 2i)/2 = n2/8−O(n). J

2.4 Lower bound for 3-shot broadcast
We consider now a 3-shot broadcast protocol Π and, as before, the family of networks
Gi−1(L0, L1, . . . , Li−1) for some arbitrary layer sets L0 = {0}, L1, L2, . . . , Li−1. The message
leaves layer i− 1 at time step Ti−1 and we want to select nodes for the next layer i to force
a relatively large weigthed delay (Ti − Ti−1)/|Li|. We refer to the notation of (conditional)
transmission sets and the related terminology introduced in Sections 2.1 and 2.2. A node
v in the set U ′ = U ′i transmits in the step t0(v) ≥ u/2 and in steps t1(v) < t2(v), where
u = n− 1−

∣∣∣⋃i−1
j=0 Lj

∣∣∣ and |U ′| ≥ u/2.
For an integer parameter 1 ≤ p ≤ u/2, which will be set later, we put each node v ∈ U ′

into one of the sets V0, V1 and V2, depending on when the v’s transmission steps t1(v) and
t2(v) are in relation to step p:

V0 = {v ∈ U ′ : p < t1(v) < t2(v)},
V1 = {v ∈ U ′ : t1(v) ≤ p and t2(v) > p},
V2 = {v ∈ U ′ : t1(v) < t2(v) ≤ p}.

For the set V2, we construct an undirected (multi-)graph H2 with vertices tl(v), where v ∈ V2
and l = 1, 2, and edges {t1(v), t2(v)} for all v ∈ V2. More precisely, the vertex set and the

A. Pagourtzis and T. Radzik 80:7

edge (multi-)set of graph H2 are

V (H2) = {t : t = tl(v) for some v ∈ V2 and 1 ≤ l ≤ 2},
E(H2) = {{t′, t′′} : t′ = t1(v) and t′′ = t2(v) for some v ∈ V2}.

Thus graph H2 has at most p vertices and exactly |V2| ≤ u′ edges. There may be parallel edges
in H2 because there may be two nodes v′, v′′ in V2 with {t1(v′), t2(v′)} = {t1(v′′), t2(v′′)}.
To avoid confusion, nodes are in the transmission network, while vertices are in the auxiliary
graph H2 (and in other similar auxiliary graphs constructed later). The vertices of graph H2
correspond to (some) steps of the protocol and the edges of H2 correspond to (some) nodes
in the transmission network.

The underlying idea in our lower-bound argument is that if the number of edges in graph
H2 is relatively large in relation to p, that is, if H2 is sufficiently dense, then it must contain
a short cycle Γ = (τ0, τ1, . . . , τk−1, τk = τ0). Let vi ∈ V2 be the node in the transmission
network which corresponds to the edge {τi, τi+1} in this cycle, for i = 0, 1, . . . , k − 1.
(Two parallel edges in H2 would form a cycle of length k = 2.) If we set the next layer
Li = {v0, v1, . . . , vk−1}, then these nodes transmit in steps τ0, τ1, . . . , τk−1, but in each of
these steps exactly two nodes in Li transmit, resulting in a collision. This means that the
progress of broadcast has to rely on one of the steps t0(v0), t0(v1), . . . , t0(vk−1), but each of
these steps is at least u/2, so the weighted delay at layer i is at least u/(2k). Therefore we
have the following lemma.

I Lemma 3. If graph H2 has a cycle Γ of length k, then taking for the layer Li the set of
transmission nodes which correspond to the edges of Γ gives the weighted delay at layer i at
least u/(2k).

To proceed with our analysis, we need an upper bound on the girth of a graph, that is,
on the length of a shortest cycle. The asymptotic bounds given below in Lemma 4 and in its
corollary are widely known and sufficient for us, but we note that more precise bounds are
available in the literature, for example, in [3].

I Lemma 4. Every graph with p vertices and the minimum degree d = d(p) ≥ 3 contains a
cycle of length O(log p/ log d).

Proof. Consider any graph H with p vertices and the minimum degree d ≥ 3. Let v be any
vertex in H , k ≥ 1 and H(v, k) the subgraph of G induced by the vertices within distance at
most k from v. If H does not have a cycle of length 2k or less, then H(v, k) is a tree and
has more than (d− 1)k vertices. This means that for k = dlog n/ log(d− 1)e, H(v, k) is not
a tree and contains a cycle of length at most 2k = O(log n/ log d). J

I Corollary 5. Every graph of average degree d with p vertices contains a cycle of length
O(log p/ log d).

Proof. Any graph G of average degree d must contain a nonempty subgraph G′ of minimum
degree at least d/2. To see this, repeatedly remove from G all vertices of degree strictly less
than d/2. Not all vertices can be removed in this process because otherwise G would contain
fewer than pd/2 edges altogether, a contradiction. By applying Lemma 4 to G′ the claim
follows. J

I Lemma 6. Let Π be any 3-shot broadcast protocol Π for n-node networks and con-
sider any family of networks G(L0, L1, . . . , Li−1), where |

⋃i−1
j=0 Lj | ≤ n/2. There exists

the next i-th layer Li ⊆ Ui = V \
(⋃i−1

j=0 Lj ∪ {n− 1}
)

such that for each network in
G(L0, L1, . . . , Li−1, Li), the weighted delay at layer i is Ω(n log log n/ log n).

MFCS 2018

80:8 Deterministic h-Shot Broadcast

Proof. We set p = n log log n/ log n and consider sets V0, V1 and V2. If V0 is not empty, then
we take Li = {v} where v is an arbitrary node in V0. All three steps t0(v), t1(v) and t2(v)
when node v transmits are at least p, so the weighted delay at layer i is at least p.

If |V1| > p, then there must be two nodes v′ and v′′ in V1 such that t1(v′) = t1(v′′) ≤ p,
but all other steps t0(v′), t2(v′), t0(v′′) and t2(v′′) when v′ or v′′ transmits are at least p.
Taking Li = {v′, v′′} gives the weighted delay at layer i at least p/2.

If V0 is empty and V1 has fewer than p nodes, then V2 has more than u′ − p nodes, so
graph H2 has |V2| > u′− p ≥ |Ui|/2− p ≥ n/5 edges but at most p vertices. This means that
the average degree in H2 is greater than (2/5)n/p, so, from Corollary 5, H2 has a cycle Γ of
length O(log p/ log(n/p)) = O(log n/ log log n). Thus Lemma 3 implies that taking for the
layer Li the set of transmission nodes which correspond to the edges of Γ gives the weighted
delay at layer i at least Ω(n log log n/ log n). J

We are now ready to prove the lower bound for the 3-shot case.

I Theorem 7. For each 3-shot broadcast protocol Π for n-node networks, there exists a
network in G0 on which Π needs Ω(n2 log log n/ log n) steps to complete broadcast.

Proof. Starting from L0 = {0}, we use Lemma 6 iteratively, obtaining layers L1, L2, . . . , Lm
and stopping when

⋃
0≤i≤m |Li| > n/2. From Lemma 6, there is a constant c > 0 such that

for each layer i = 1, 2, . . . ,m, the weighted delay (Ti−Ti−1)/|Li| is at least cn log log n/ log n.
Therefore,

Tmax ≥ Tm = 1 +
∑

1≤i≤m
(Ti − Ti−1) ≥

∑
1≤i≤m

(|Li|cn log log n/ log n)

≥ (c/2)n2log log n/log n. J

3 Upper bounds for h-shot broadcast for h ≤ 3

For the 2-shot case a trivial upper bound which matches asymptotically the Ω(n2) lower
bound of Section 2.3 is given by the oblivious Round Robin (which is actually a 1-shot
broadcast protocol).

We provide in this section an upper bound of O(n2 log log n/ log n) for 3-shot broadcast,
which matches our lower bound and shows that in contrast to the 2-shot case, the fastest
adaptive 3-shot protocols are faster than the best oblivious protocols by a factor ω(1).3 We
base our approach on graph-theoretic results [16] showing that it is possible to construct
relatively dense graphs of high girth. We use such graphs to specify appropriate transmission
sets as detailed below.

To define the sequence of transmission sets in our protocol, we use a graph H = H(n, p, g)
with n edges, p vertices and girth g. Any graph H(n, p, g) would do for the correctness of our
protocol, but to achieve fast (worst case) broadcast, we need a graph with relatively small
number of nodes p and high girth g. More precisely, to have asymptotically fastest broadcast,
we need a graph H(n, p, g) with p = Θ(n log log n/ log n) and g = Θ(log n/ log log n).

We identify the edge set E(H) of graph H with the node set V (G) of the transmission
network G, and we number the vertices in H from 1 to p (in an arbitrary way). Let Hi

denote the set of edges in H which are incident to vertex i. The sets H1, H2, . . . ,Hp are
(some of) the transmission sets of our protocol. Clearly, for any node v of G, v belongs to two

3 Recall that the oblivious bound is Θ(n2/k) for k-shot protocols and k ≤
√

n.

A. Pagourtzis and T. Radzik 80:9

sets Hi and Hj , where {i, j} ∈ E(H) is the edge identified with node v. Node v transmits
in two steps with transmissions sets Hi and Hj , while the third transmission is within one
Round-Robin sequence.

Formally, our protocol Π(H) is defined by the repeated Round-Robin sequence 〈R〉 =
({0}, {1}, . . . , {n− 1}) interleaved with the repeated sequence 〈H〉 = (H1, H2, . . . ,Hp). Let’s
say that we use the odd steps of the protocol for repeating the Round-Robin sequence and
the even steps for repeating the sequence 〈H〉. If a node v receives the message in step t,
then it transmits in its step of the first Round-Robin sequence which starts after step t, and
in the steps Hi and Hj of the first copy of the sequence 〈H〉 which starts after step t, where
{i, j} ∈ E(H) is the edge identified with node v.

We now proceed with the analysis of protocol Π(H). Consider any n-node transmission
network G with source s and an arbitrary node v 6= s. Let k ≥ 1 denote the distance from s

to v. In order to upper-bound the time needed for the message to go from source node s to
node v, we consider the partitioning Lv(G) of the nodes within distance k to v into layers.
These are breadth-first-search layers constructed from node v following the edges of G in
reverse direction. For 0 ≤ i ≤ k, the layer Li is the set of all nodes in G with distance k − i
to v. Thus Lk = {v}, Lk−1 is the set of all nodes with edges to v, and so on. The source
node s belongs to layer L0.

Note that for each 1 ≤ i ≤ k, each node u ∈ Li and each edge (x, u), x ∈ Lj for some
j ≥ i− 1. Thus the message reaches layer Li (any node in layer Li) for the first time during
a transmission by a node from layer Li−1. We use Ti to denote the time step at which the
message first reaches layer Li. We have T1 = 1 (layer L1 must have at least one out-neighbour
of the source) and the following lemma gives an upper bound on the delays at layers of
relatively small cardinality.

I Lemma 8. Consider an n-node transmission network G with source s, an arbitrary node
v, the layers L0, L1, . . . , Lk corresponding to this node and the protocol Π(H) defined by a
graph H = H(n, p, g). During the execution of this protocol, if |Li| < g, then the time needed
to transmit the message from Li to Li+1, that is, Ti+1 − Ti, is at most 4p.

Proof. Let L′i ⊆ Li be the set of nodes in Li that have received the message by time Ti + t,
where t is the smallest integer such that (Ti + t) mod (2p) = 0. Only nodes in L′i will be
transmitting at even steps between Ti + t+ 1 and Ti + t+ 2p.

Since |L′i| ≤ |Li| < g, the edges corresponding to nodes of L′i form an acyclic subgraph T
of H , so for each vertex wj in H with degree 1 in T (there must be at least two such vertices)
the transmission set Hj contains exactly one node from L′i. During each such step, the
message is transmitted from layer Li to layer Li+1. Hence Ti+1 ≤ Ti + t+ 2j ≤ Ti + 4p. J

I Theorem 9. Protocol Π(H) defined by a graph H = H(n, p, g) completes broadcast in an
arbitrary n-node transmission network G within O(n2/g + np) steps.

Proof. We take an arbitrary node v 6= s and consider its layers L0, L1, . . . , Lk. There can
be at most n/g layers of size at least g. For each such layer Li, when a message arrives at
this layer, then it will reach the next layer Li+1 by the time the next full Round Robin is
completed. That is, in this case Ti+1 ≤ Ti + 4n. Combining this with Lemma 8 gives the
claimed bound on the number of steps, since the number of layers of size smaller than g is at
most n− 1. J

To minimize the upper bound O(n2/g+np) = O(n2/min{g, dave}), where dave is the aver-
age degree in graph H(n, p, g), we have to find a graph with n edges and min{g, dave} as large
as possible. Corollary 5 implies that for all graphs, min{g, dave} = O(min{log n/ log dave,

MFCS 2018

80:10 Deterministic h-Shot Broadcast

dave}) = O(log n/ log log n). It turns out that there are explicitly constructed graphs with n
edges for which min{g, dave} = Θ(log n/ log log n). We use the construction given in [16].

I Theorem 10 ([16]). For each positive odd integer k ≥ 3 and a power of a prime q, there
is an explicit construction of a q-regular bipartite graph H(q, k) with 2qk vertices and girth
at least k + 5.

I Corollary 11. There exists an explicit construction of a graph H with n edges, p =
Θ(n log log n/ log n) vertices and girth g = Θ(log n/ log log n).

Proof. For a given sufficiently large n, let q ≥ 4 be the largest power of 2 not greater than
log n/ log log n and let k = q−1 ≥ 3. Let H(q, k) be the graph from Theorem 10. This graph
has 2qq−1 vertices, qq ≤ n edges and girth at least q + 4.

Let H be a graph with exactly n edges obtained by taking copies of graph H(q, k) as
connected components. We remove (arbitrarily) some edges from the last copy of H(q, k) so
that the total number of edges is exactly n. We need dn/qqe copies of H(q, k), so the number
of vertices in graph H is at most 2qq−1(n/qq + 1) ≤ 4n/q ≤ 8n log log n/ log n. Graph H has
the same girth as H(q, k), so at least q + 4 ≥ (1/2) log n/ log log n. J

Using in protocol Π(H) the graph H from Corollary 11, Theorem 9 gives us the following
result.

I Corollary 12. There exists a constructive 3-shot broadcast protocol which completes broad-
cast on any graph G with n nodes in time O(n2 log log n/log n).

4 Upper bounds for h-shot broadcast for h ≥ 4

It was shown in [14] that for any h ≥ 1, an h-shot broadcast protocol requires Ω
(
n1+1/h)

steps. In previous sections, we improved this lower bound and provided matching upper
bounds for the cases when h is equal to 2 and 3. In this section, we show upper bounds for
h ≥ 4. In particular, if h is a sufficiently large constant or is slowly growing with n, then
we prove that there exist h-shot broadcast protocols with O(n1+α/

√
h) steps, where α is an

absolute constant independent of h.
The general idea for h-shot broadcast protocols for h ≥ 4 is similar to the idea of using a

large girth graph to construct a 3-shot protocol. Now, however, we need to define r = h−1 ≥ 3
transmission slots for each node (in addition to the transmissions defined by Round-Robin),
so we use r-uniform hyper-graphs instead of graphs H(n, p, g). Let Hr = Hr(n, p, k) be an
r-uniform hyper-graph (each edge is a set of r vertices) with n (hyper-)edges, p vertices,
and no 2-cover of size k or smaller. A 2-cover of a hyper-graph is a non-empty subset A of
edges such that each node which belongs to an edge in A belongs to at least two edges in A.
The notion of 2-covers in hyper-graphs generalizes the notion of cycles in graphs: minimal
2-covers in graphs are (simple) cycles.

Similarly as in the previous subsection, we identify the edge set E(Hr) of the hyper-graph
Hr with the node set V (G) of the transmission network G. We number the vertices in
Hr from 1 to p in an arbitrary order and denote by H(i)

r the set of edges in Hr which are
incident to vertex i. If we use the sequence 〈Hr〉 = 〈H(1)

r , H
(2)
r , . . . ,H

(p)
r 〉 as a sequence

of transmission sets, then for each nonempty subset W of at most k nodes in G, one of
these transmission sets has exactly one node from W – otherwise the set of edges in Hr

corresponding to the nodes in W would form a 2-cover in Hr of size at most k.
The following simple counting argument shows how large k can be in an Hr(n, p, k)

hyper-graph.

A. Pagourtzis and T. Radzik 80:11

I Lemma 13. There is a constant C such that for each n ≥ 1 and for each p ≥ r ≥ 3, there
exists a hyper-graph Hr = Hr(n, p, k) with k = bp/(Crn2/r)c.

Proof. We consider a random r-uniform hyper-graph H with p vertices and n edges (inde-
pendently and uniformly selected from the family of sets of r vertices) and show that for k
defined in the lemma (where constant C will come out from the calculations) and for a fixed
2 ≤ q ≤ k, the probability that H has a 2-cover of size q is at most 1/2q. By summing up over
all 2 ≤ q ≤ k, we get the conclusion that there must exist a hyper-graph Hr = Hr(n, p, k).

A 2-cover A of size q covers at most qr/2 vertices, or otherwise there would be a vertex
belonging to exactly one edge in A. Thus the probability that H has a 2-cover of size q is at
most the probability that there exists in H a set A of q edges and a set X of qr/2 vertices
such that each edge in A is a subset of X. Using the union bound over all possible A and X,
the probability of the latter event is at most

(
n

q

)(
p

qr/2

)(qr/2
r

)q
(
p

r

)q ≤
(
en

q

)q (2ep
qr

)qr/2 (eqr/2)qr/rqr

pqr/rqr
≤ 1
qq

(
Cqrn2/r

p

)qr/2

≤ 1
2q ,

where the second inequality holds for C = (2e)2 and the last one holds for any 2 ≤ q ≤

p/(Crn2/r). For the first inequality, we use
(a
b

)b
≤
(
a

b

)
≤
(ea
b

)b
. J

For a hyper-graph Hr = Hr(n, p, k), the protocol Π(Hr) which interleaves repeated copies
of 〈Hr〉 with copies of a Round-Robin sequence 〈R〉 is an h-shot broadcast protocol with
O(n2/k+np) steps. This can be shown in an analogous way as in the proof of Theorem 9, by
considering separately the layers with sizes at most k and the layers with sizes greater than
k. If we consider hyper-graphs Hr = Hr(n, p, k) with k = bp/(Crn2/r)c, whose existence is
guaranteed by Lemma 13, and take p = r1/2n1/2+1/r to minimize O(n2/k + np), then we
obtain an h-shot broadcast protocol with O(h1/2n3/2+1/(h−1)) steps. This gives, for example,
upper bounds O(n11/6) and O(n7/4) for 4-shot and 5-shot broadcast, respectively, but no
better bound than O(n3/2) even if h grows to infinity.

To obtain upper bounds with the exponent at n decreasing to 1 for increasing values of h,
we combine hyper-graphs Hr(n, p, k) for a number of different values of k. More specifically,
for h = ρ2/2+1, where ρ is an even integer at least 4, let Hρ,j = Hρ(n,Cρn2j/ρ, n2(j−1)/ρ), for
j = 1, 2, . . . , J = ρ/2, where C is the constant from Lemma 13. Our h-shot broadcast protocol
Πh is defined by the sequence of transmission sets obtained by interleaving ρ+ 1 sequences
(〈Hρ,1〉, 〈Hρ,1〉, . . .), (〈Hρ,2〉, 〈Hρ,2〉, . . .), . . . , (〈Hρ,J 〉, 〈Hρ,J 〉, . . .), and (〈R〉, 〈R〉, . . .), and by
the following transmission schedule. For a node v in the transmission network G, if v receives
the message for the first time in step t, then let 〈Hρ,j〉, for j = 1, 2, . . . , J , and 〈R〉 be, re-
spectively, the first copies of 〈Hρ,1〉, 〈Hρ,2〉, . . . , 〈Hρ,J 〉 and 〈R〉 which start after step t. Node
v transmits in the steps corresponding to the transmission sets in 〈Hρ,1〉, 〈Hρ,2〉, . . . , 〈Hρ,J 〉
and 〈R〉 which include v. Thus v transmits in ρ · (ρ/2) + 1 = h steps.

I Theorem 14. For h = ρ2/2+1, where ρ is an even integer at least 4, the (non-constructive)
protocol Πh is an h-shot broadcast protocol with O(hn1+

√
8/(h−1)) steps.

Proof. By the definition of protocol Π, no node transmits more then h times. We show now
the claimed bound on the number of steps.

Similarly to the analysis of the 3-shot protocol in Section 3, we consider an arbitrary
node v and its in-neighbourhood layers L0, L1, . . . , Lk, where s ∈ L0 and v ∈ Lk. The delay

MFCS 2018

80:12 Deterministic h-Shot Broadcast

at layer Li, that is, the number of steps between the time when the first node in Li receives
the message and the time when the first node in Li+1 receives the message (from one of
the nodes in Li), depends on the size of this layer. If n2(j−2)/ρ < |Li| ≤ n2(j−1)/ρ, for some
1 ≤ j ≤ J , then the message is delivered from (one of the nodes of) layer Li to (one of the
nodes of) the next layer by the next copy of 〈Hρ,j〉, so within Cρ2n2j/ρ steps. (Recall that
the transmission sets of each 〈Hρ,i〉 are scheduled every ρ/2 + 1 steps, hence the additional
factor of ρ).

For a layer Li such that n2(J−1)/ρ < |Li|, the message is delivered to the next layer by
the next copy of Round-Robin, so within ρn steps. Thus the delay at each layer Li is at most
Cρ2n4/ρ|Li| steps, so node v receives the message within O(ρ2n1+4/ρ) = O(hn1+

√
8/(h−1))

steps. J

We defined protocols Πh only for values h = ρ2/2 + 1, where ρ is an even integer at
least 4. Since the h-shot broadcast protocol Πh is also an h′-shot broadcast protocol for any
h′ ≥ h, then Theorem 14 implies the following corollary.

I Corollary 15. There is a constant α such that for any 1 ≤ h = O(log n), there exists an
h-shot broadcast protocol with O(min{n2, n1+α/

√
h}) steps.

Proof. It is enough to consider h ≥ 9, since the case when h < 9 can be covered by taking
sufficiently large α. For h ≥ 9, take ρ = b

√
2(h− 1)c, h̃ = ρ2/2 + 1 ≤ h and the protocol

Πh̃, which is an h-shot broadcast protocol. Theorem 14 implies that protocol Πh̃ works in
O(ρ2n1+4/ρ) steps, which is O(n1+5/

√
h) for 9 ≤ h = O(log n). J

For the cases h = 2 and h = 3, we have obtained asymptotically matching lower and
upper bounds on the number of steps in h-shot broadcast protocols. For h ≥ 4, however, we
still have a gap between the lower bound of Ω

(
n1+1/h) shown by Karmakar et al. [14] and

our upper bounds.

References
1 Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the time-complexity of broadcast

in radio networks: An exponential gap between determinism and randomization. In PODC
’87, pages 98–108, 1987.

2 Petra Berenbrink, Colin Cooper, and Zengjian Hu. Energy efficient randomised communic-
ation in unknown adhoc networks. Theoretical Computer Science, 410(27-29):2549–2561,
2009. doi:10.1016/j.tcs.2009.02.002.

3 Norman Biggs. Algebraic Graph Theory. Cambridge University Press, Cambridge, 2nd
edition, 1993.

4 Danilo Brusci and Massimiliano Del Pinto. Lower bounds for the broadcast problem in
mobile radio networks. Distributed Computing, 10(3):129–135, 1997.

5 Imrich Chlamtac and Shay Kutten. On broadcasting in radio networks-problem analysis
and protocol design. IEEE Transactions on Communications 33, pages 1240–1246, 1985.

6 Bogdan S. Chlebus, Leszek Ga̧sieniec, Alan Gibbons, Andrzej Pelc, and Wojciech Rytter.
Deterministic broadcasting in unknown radio networks. In Proc. 11th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’00), pages 861–870. ACM/SIAM, 2000.

7 Bogdan S. Chlebus, Leszek Ga̧sieniec, Anna Östlin, and John Michael Robson. Determin-
istic radio broadcasting. In Proc. 27th International Colloquium on Automata, Languages
and Programming (ICALP’00), volume 1853 of Lecture Notes in Computer Science, pages
717–728. Springer Verlag, 2000.

http://dx.doi.org/10.1016/j.tcs.2009.02.002

A. Pagourtzis and T. Radzik 80:13

8 Marek Chrobak, Leszek Ga̧sieniec, and Wojciech Rytter. Fast broadcasting and gossiping
in radio networks. Journal of Algorithms, 43(2):177–189, 2002.

9 Andrea E. F. Clementi, Angelo Monti, and Riccardo Silvestri. Distributed broadcast in
radio networks of unknown topology. Theoretical Computer Science, 302(1-3):337–364, 2003.
doi:10.1016/S0304-3975(02)00851-4.

10 Artur Czumaj and Wojciech Rytter. Broadcasting algorithms in radio networks with un-
known topology. In Proc. 44th Symposium on Foundations of Computer Science (FOCS’03),
pages 492–501. IEEE Computer Society, 2003.

11 Gianluca De Marco. Distributed broadcast in unknown radio networks. SIAM Journal on
Computing, 39(6):2162–2175, March 2010.

12 Leszek Ga̧sieniec, Erez Kantor, Dariusz R. Kowalski, David Peleg, and Chang Su. Time
efficient k-shot broadcasting in known topology radio networks. Distributed Computing,
21(2):117–127, 2008. doi:10.1007/s00446-008-0058-0.

13 Erez Kantor and David Peleg. Efficient k-shot broadcasting in radio networks. Discrete
Applied Mathematics, 202:79–94, 2016.

14 Sushanta Karmakar, Paraschos Koutris, Aris Pagourtzis, and Dimitris Sakavalas. Energy-
efficient broadcasting in ad hoc wireless networks. Journal of Discrete Algorithms, 42:2–13,
2017. doi:10.1016/j.jda.2016.11.004.

15 Dariusz R. Kowalski and Andrzej Pelc. Broadcasting in undirected ad hoc radio networks.
Distributed Computing, 18(1):43–57, 2005. doi:10.1007/s00446-005-0126-7.

16 Felix Lazebnik and Vasiliy A. Ustimenko. Explicit construction of graphs with an arbitrary
large girth and of large size. Discrete Applied Mathematics, 60(1-3):275–284, 1995. doi:
10.1016/0166-218X(94)00058-L.

17 Gianluca De Marco and Andrzej Pelc. Faster broadcasting in unknown radio networks. Inf.
Process. Lett., 79(2):53–56, 2001. doi:10.1016/S0020-0190(00)00178-2.

MFCS 2018

http://dx.doi.org/10.1016/S0304-3975(02)00851-4
http://dx.doi.org/10.1007/s00446-008-0058-0
http://dx.doi.org/10.1016/j.jda.2016.11.004
http://dx.doi.org/10.1007/s00446-005-0126-7
http://dx.doi.org/10.1016/0166-218X(94)00058-L
http://dx.doi.org/10.1016/0166-218X(94)00058-L
http://dx.doi.org/10.1016/S0020-0190(00)00178-2

Depth Two Majority Circuits for Majority and List
Expanders
Kazuyuki Amano1

Department of Computer Science, Gunma University,
1-5-1 Tenjin, Kiryu, Gunma 376-8515, Japan
amano@gunma-u.ac.jp

Abstract
Let MAJn denote the Boolean majority function of n input variables. In this paper, we study
the construction of depth two circuits computing MAJn where each gate in a circuit computes
MAJm for m < n.

We first give an explicit construction of depth two MAJbn/2c+2 ◦MAJ≤n−2 circuits computing
MAJn for every n ≥ 7 such that n ≡ 3 (mod 4) where MAJm and MAJ≤m denote the majority
gates that take m and at most m distinct inputs, respectively. A graph theoretic argument
developed by Kulikov and Podolskii (STACS ’17, Article No. 49) shows that there is no MAJ≤n−2◦
MAJn−2 circuit computing MAJn. Hence, our construction reveals that the use of a smaller fan-
in gates at the bottom level is essential for the existence of such a circuit. Some computational
results are also provided.

We then show that the construction of depth two MAJm ◦MAJm circuits computing MAJn
for m < n can be translated into the construction of a newly introduced version of bipartite
expander graphs which we call a list expander. Intuitively, a list expander is a c-leftregular
bipartite graph such that for a given d < c, every d-leftregular subgraph of the original graph has
a certain expansion property. We formalize this connection and verify that, with high probability,
a random bipartite graph is a list expander of certain parameters. However, the parameters
obtained are not sufficient to give us a MAJn−c ◦ MAJn−c circuit computing MAJn for a large
constant c.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Boolean function, majority function, constant depth circuit, expander
graph

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.81

Acknowledgements The author would like to thank anonymous reviewers for their careful read-
ing and many constructive suggestions.

1 Introduction

Let MAJn denote the Boolean majority function of n variables, i.e.,

MAJn(x1, . . . , xn) = 1[
n∑
i=1

xi ≥ n/2],

here 1[·] denotes 1 if the condition in the bracket is satisfied, and 0 otherwise.
The problem of finding an efficient construction of circuits (or formulas) computing the

majority function has attracted many researchers for a long time (e.g., [2, 10, 13]). The

1 A part of this work was supported by JSPS Kakenhi 15K00006, 18K11152 and 18H04090.

© Kazuyuki Amano;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 81; pp. 81:1–81:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amano@gunma-u.ac.jp
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.81
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

81:2 Majority Circuits and Expanders

famous AKS sorting network [1] can be viewed as an O(log n) depth circuit computing MAJn
if we pick the middle bit of all the outputs. A probabilistic construction of ∼ 5.3 log n-depth
Boolean formula by Valiant [13] is another beautiful result on this problem. Here we mention
that both of these constructions are monotone, i.e., they do not use negation gates. For more
backgrounds and results, see e.g., the introduction of [4] or [7].

Recently, Kulikov and Podolskii [7] initiated the study on the “down scale” version of
this problem. Specifically, they studied the construction of a small depth circuit for MAJn
consisting of gates computing MAJm such that m < n.

In this paper, we restrict our attention to the case of depth two. Namely, we consider
the following type of problems: What is the minimum value of m such that MAJn can be
computed by a depth two circuits consisting of MAJ≤m gates? How to compute MAJn by a
depth two circuit consisting of MAJ≤m gates for m < n?

In spite of the simplicity of the problem statement, its solution might be highly non-trivial
even for small values of n. For example, constructing a depth two circuit consisting of the
5-bit majority gates that computes the 7-bit majority function is already not trivial.

Formally, we consider depth two circuits of the form M2 ◦M1 for M1,M2 ∈ {MAJm,
MAJ≤m} where MAJm and MAJ≤m denote the majority gates that take m and at most
m inputs, respectively. Here M2 denotes the top gate and M1 denotes the bottom gates.
In addition, we impose the restriction that each MAJm (or MAJ≤m) gate on the bottom
level takes m (or at most m) distinct input variables. Note that this restriction affects the
difficulties for computing MAJn. Kulikov and Podolskii [7, Lemma 11] showed that there is
no MAJn−2 ◦MAJn−2 circuit computing MAJn for every odd n under this restriction. On the
other hand, the author of this paper and Yoshida [3] showed that such circuits do exist for
every odd n ≥ 7 if some of the bottom gates are allowed to read an input variable multiple
times. For example, the following circuit (which was presented by Kulikov and Podolskii [7,
Introduction]) computes MAJ7.

MAJ7(x1, . . . , x7)
= MAJ5(MAJ5(x1, x2, x3, x4, x5),MAJ5(x1, x2, x5, x6, x7),MAJ5(x1, x3, x4, x6, x6),

MAJ5(x2, x3, x3, x5, x6),MAJ5(x2, x4, x5, x7, x7)).

One of the most interesting problems in this line of research is to find the minimum value
of m such that MAJn can be computed by a MAJ≤m ◦MAJ≤m circuit. Kulikov and Podolskii
[7] proved a lower bound of m ≥ n13/19+o(1). This was then improved to m = Ω(n0.8) by
Engels, Garg, Makino and Rao [4]. For the upper bound, the construction of such a circuit
for (n,m) = (7, 5), (9, 7) and (11, 9) is provided by Kulikov and Podolskii [7]. This was then
generalized to (n,m) = (n, n− 2) for all odd n ≥ 7 by the author of this paper and Yoshida
[3]. However, in all of these constructions some of the gates at the bottom level read an
input variable multiple times. In our restricted setting, i.e., every bottom gate can read each
variable only once, no non-trivial upper bounds were previously known.

Note that, throughout the paper, we only use the gates computing the standard majority,
i.e., the majority gates with the threshold value m/2 where m denotes its fan-in. In [11],
Posobin gave the construction of a depth two circuit for MAJn consisting of gates with fan-in
m = (2/3)n+ 4 where the threshold value of the bottom gates is not restricted to m/2.

Contributions
The contribution of this paper is twofolds. First, we present an explicit construction of
MAJbn/2c+2 ◦MAJ≤n−2 circuits computing MAJn for every n ≥ 7 such that n ≡ 3 (mod 4).
The construction is quite simple, but as far as we know, this is the first non-trivial depth

K. Amano 81:3

two circuits for MAJn consisting of the standard majority gates of fan-in strictly less than n
and without multiple weights. Since a graph theoretic argument developed by Kulikov and
Podolskii [7] can show that there is no MAJ≤n−2 ◦MAJn−2 circuit computing MAJn, our
construction reveals that the use of a smaller fan-in is essential for the existence of such a
circuit. Some computational results are also provided in the paper.

During this work, we feel that constructing such a circuit for (n,m) with m� n or even
m = n− 4 may be a hard problem. This motivates us to give an explanation or evidence on
this hardness, which leads to the second contribution of this paper.

In the second part of the paper, we show that the construction of depth two MAJm◦MAJm
circuits computing MAJn for m < n can be translated into the construction of a newly
introduced version of bipartite expander graphs which we call a list expander. Intuitively,
a list expander is a c-leftregular bipartite graph such that for a given d < c, every d-
leftregular subgraph of the original graph has a certain expansion property. We formalize
this connection, and verify that, with high probability, a random bipartite graph is a list
expander of certain parameters. However, the parameters obtained are not sufficient to give
us a MAJn−c ◦MAJn−c circuit computing MAJn for a large constant c.

Organization of the Paper
The organization of the paper is as follows. In Section 2, we give an explicit construction of
MAJbn/2c+2 ◦MAJ≤n−2 circuits computing MAJn for n ≡ 3 (mod 4). The results of some
computational experiments on the total fan-in of the bottom gates of a MAJ≤n−1 ◦MAJ≤n−1
circuit are also provided. In Section 3, we discuss the connection between the construction
of depth two MAJm ◦MAJm circuits and the construction of a newly introduced notion of
bipartite expander graphs, which we call a list expander. Then, in Section 4, we give an
analysis on the expansion property of a random bipartite graph. We close the paper by
giving the conclusions in Section 5.

2 Depth Two Majority Circuits for Majority

For an integer n, [n] denotes the set {1, 2, . . . , n}. For a set S, |S| denotes the cardinality of
S. For an n-bit string x ∈ {0, 1}n, xi denotes the i-th bit of x and |x| denotes the number
of 1’s in x, i.e., |x| = |{i ∈ [n] : xi = 1}|.

In this section, we first give a simple construction of depth two majority circuits for
MAJn.

I Theorem 1. For every n ≥ 7 such that n ≡ 3 (mod 4), there is a MAJbn/2c+2 ◦MAJ≤n−2
circuit computing MAJn.

We should note that in Theorem 1 the use of gates with fan-in less than n−2 at the bottom
level is necessary since Kulikov and Podolskii [7, Lemma 11] proved that, for every odd n,
there is no depth two MAJn−2 ◦MAJn−2 circuit computing MAJn, and a simple generalization
of their proof can be extended to establish the non-existence of MAJ≤n−2 ◦MAJn−2 circuits
for MAJn.

Proof. The proof is by construction.
Let n = 4k+3 for some k ≥ 1. We will construct a MAJ2k+3◦MAJ≤4k+1 circuit computing

MAJn. For 1 ≤ i ≤ 2k + 1, let Si := [n]\{2i − 1, 2i}. Let S2k+2 := {1, 3, ..., 4k + 1} and
S2k+3 := {2, 4, ..., 4k+ 2}. For 1 ≤ i ≤ 2k+ 3, the i-th bottom gate gi computes the majority

MFCS 2018

81:4 Majority Circuits and Expanders

of all the xj ’s such that j ∈ Si. The top gate C computes the majority of all the gi’s,
i.e., C(x) := 1[

∑
i gi(x) ≥ k + 2]. For ease of understanding, we show below a 0/1-matrix

representing our circuit (for n = 11). The (i, j)-th entry is 1 iff the gate gi reads the variable
xj .

0 0 1 1 1 1 1 1 1 1 1
1 1 0 0 1 1 1 1 1 1 1
1 1 1 1 0 0 1 1 1 1 1
1 1 1 1 1 1 0 0 1 1 1
1 1 1 1 1 1 1 1 0 0 1
1 0 1 0 1 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0 1 0

Below we verify that this circuit correctly computes MAJn. We first observe that it is
sufficient to verify C(x) = 0 only for every input x with |x| = 2k + 1. The correctness
for x with |x| = n − (2k + 1) = 2k + 2 will follow from the fact that every majority gate
in our circuit has an odd number of inputs and hence computes a self-dual function. This
implies that C(x1, . . . , xn) = 1 − C(x1, . . . , xn). Then, all other cases will follow from the
monotonicity of our circuit.

It is convenient to consider a hypergraph G over the vertex set V = {1, 2, . . . , n} consisting
of edges E1, . . . , E2k+3 where Ei = [n]\Si for 1 ≤ i ≤ 2k + 3. Note that G contains 2k + 1
edges of size two and two edges of size 2k + 2. We call the former small edges, and the
latter large edges. For a set of vertices S ⊆ V and an edge E, we say that S covers E if
|E ∩ S| ≥ |E|/2.

For x ∈ {0, 1}n, let Vx := {i ∈ [n] | xi = 1}. It is easy to observe that gi(x) = 0 iff Vx

covers Ei for |x| = 2k + 1. Therefore, it is sufficient to verify that the number of edges that
are covered by Vx is at least d 2k+3

2 e = k + 2 for every x ∈ {0, 1}n with |x| = 2k + 1.
We divide the proof into two cases.

Case 1 4k + 3 6∈ Vx.

Observe that Vx covers at least k + 1 small edges. If Vx covers k + 2 or more small
edges, then we are done. Therefore, we can assume that Vx covers exactly k + 1 small edges.
However, in this case, Vx must cover one of two large edges, and hence Vx covers k+ 2 edges
in total. This completes the proof.

Case 2 4k + 3 ∈ Vx.

We view that small edges form a bipartite matching between 2k + 1 left vertices (odd
numbers up to 4k+ 1) and 2k+ 1 right vertices (even numbers up to 4k+ 2). If Vx covers at
least k + 1 left vertices of small edges or at least k + 1 right vertices of small edges, then at
least k+ 2 edges are covered in total since Vx also covers one of two large edges. If Vx covers
exactly k left vertices and k right vertices of small edges, then it also covers both large edges
and hence Vx covers at least k + 2 edges in total. This completes the proof. J

Remark that it is quite plausible that there are many other constructions of MAJ≤n−2 ◦
MAJ≤n−2 circuit for MAJn. For example, for every n ≥ 9 with n ≡ 3 (mod 6), it seems
likely that the MAJ 3

2n+1 ◦MAJ≤n−2 circuit given below also computes MAJn. Let n = 3k
and suppose that k is odd. For i ∈ [k], S2i−1 = [n]\{3i− 2, 3i} and S2i = [n]\{3i− 1, 3i}. In

K. Amano 81:5

addition, we let S2k+1 := {3, 6, . . . , 3k}. For i ∈ [2k + 1], the i-th bottom gate gi is defined
to be

gi(x) = 1
[∑
i∈Si

xi ≥
|Si|
2

]
,

and the top gate computes the majority of all the gi’s. We have computationally verified the
correctness of this circuit up to n = 27, and it may be a good exercise to give a formal proof.

Sum of Bottom Fan-ins

Let F (n) denote the smallest number of the total fan-ins of all the bottom gates of a depth
two MAJ≤n−1 ◦MAJ≤n−1 circuit that computes MAJn. It would be interesting to find the
value of F (n). The circuit constructed in the proof of Theorem 1 gives the upper bound of
F (n) ≤ (n− 2)bn2 c+ bn2 c · 2 = nbn2 c ∼ n

2/2.
We show below some computational results on F (n) for small values of n. We obtain these

results by using an IP solver [6]. More specifically, if we fix the fan-in of the top gate to m2,
then the optimal value of the following IP problem gives F (n). Intuitively, for each S ⊆ [n],
GS represents the number of wires connecting from the bottom gates 1[

∑
i∈S xi ≥

|S|
2] to

the top gate. The number of variables is ∼ 2n, and the number of constraints is ∼ 2
(

n
bn/2c

)
as we only need to check for x with |x| ∈ {dn/2e, bn/2c} by monotonicity.

Minimize:
∑

∅6=S([n]

|S|GS

Subject to:
∑

∅6=S([n]

GS = m2,∑
S:|S∩Vx|≥ |S|2

GS ≥
m2

2 , (∀x ∈ {0, 1}n s.t. MAJn(x) = 1),

∑
S:|S∩Vx|≥ |S|2

GS <
m2

2 , (∀x ∈ {0, 1}n s.t. MAJn(x) = 0).

GS ≥ 0 : integer (∀S).

Here Vx denotes {i ∈ [n] : xi = 1} as in the proof of Theorem 1.
Note that F (n) is undefined for n ≤ 5 since a simple exhaustive search shows that there

is no MAJ≤n−1 ◦MAJ≤n−1 circuit computing MAJn for n ≤ 5. The result of our experiments
is as follows.

F (6) = 18.
F (7) = 21. This is identical to the value given by the circuit in the proof of Theorem 1.
F (8) = 31.
F (9) = 37.
F (10) = 50.
F (11) = 55. This is identical to the value given by the circuit in the proof of Theorem 1.

We show an example of circuits that attain F (n) for n = 6, 8, 9 and 10 in Table 1. Given
these data, we conjecture that F (n) is of the order of n2.

I Conjecture 2. F (n) = Θ(n2). More ambitiously, F (n) ∼ n2

2 .

MFCS 2018

81:6 Majority Circuits and Expanders

Table 1 The matrix representation of an example of a MAJ≤n−1 ◦ MAJ≤n−1 circuit for MAJn of
a smallest total fan-ins for n = 6, 8, 9 and 10. Here the (i, j)-entry of each matrix represents whether
the i-th bottom gate reads the variable xj .

0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 1 1 0 1 0
1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 1 0 0
1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1
0 1 0 1 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 1 1 0 0 1 0 1 0 0 1
1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 1 1 1 1 0 1 0 0 0 1

1 1 0 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0
1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1

1 0 1 0 1 1 1 1 1 1

3 Connection between Circuits and List Expanders

For a MAJm2 ◦MAJm1 circuit on n input variables, we naturally associate a bipartite graph
over m2 left vertices and n right vertices as follows.

I Definition 3. Let C be a MAJm2 ◦MAJm1 circuit on n input variables where the bottom
gates are labeled by g1, . . . , gm2 . We define a bipartite graph GC = (L∪R,E) associated to C
as follows: Let L = {g1, . . . , gm2} and R = {x1, . . . , xn}, i.e., each left vertex is corresponding
to a bottom gate and each right vertex is corresponding to an input variable. For gi ∈ L and
xj ∈ R, (gi, xj) ∈ E iff the gate gi does not read xj as an input in C.

Let G = (V,E) be a graph. For a vertex v ∈ V , NG(v) denotes the neighbors of v, and
for a set of vertices S ⊆ V , NG(S) denotes the neighbors of S, i.e., NG(S) := {u : ∃v ∈
S s.t. (v, u) ∈ E}.

By Definition 3, a bipartite graph GC associated to a MAJm2 ◦ MAJn−`1 circuit C is
`1-leftregular, which means that every left vertex has exactly `1 neighbors, i.e., |NGC (v)| = `1
for every v ∈ L.

The following is the main theorem in this section, which translates the construction of
depth two circuits computing MAJn into the construction a bipartite graph with a certain
expansion property.

I Theorem 4. Suppose that n is an odd integer. For every even numbers `1, `2 > 0, the
following are equivalent.
(i) A depth two MAJn−`2 ◦MAJn−`1 circuit C computes MAJn.
(ii) Let GC = (L∪R,E) be a `1-leftregular bipartite graph associated to C. Then, for every

(`1/2 + 1)-leftregular subgraph G′ ⊆ GC over the same set of vertices of GC ,

|NG′(S)| ≥
⌈
|R|
2

⌉
+ 1 for every S ⊆ L with |S| =

⌈
|L|
2

⌉
.

Proof. By using an argument similar to the one used in the proof of Theorem 1, we see that
the statement (i) is equivalent to the statement that for every x ∈ {0, 1}n with |x| = dn/2e,
C(x) = 1, which we refer to as (i’). Here we use the assumption that n is odd as well as the
fan-in of each gate is also odd.
(i’) → (ii) Assume for contradiction that there exists an (`1/2 + 1)-leftregular subgraph G′
of GC such that |NG′(S)| ≤ d|R|/2e for some S ⊆ L with |S| = d|L|/2e. Fix an arbitrary
such S. Let X1 ⊆ R be an arbitrary superset of NG′(S) with |X1| = d|R|/2e = dn/2e. Define

K. Amano 81:7

x = (x1, . . . , xn) ∈ {0, 1}n so that xj = 1 iff xj ∈ X1 for j ∈ [n]. For every gi ∈ S, we
have gi(x) = 0 and hence C(x) = 0 since |S| = d|L|/2e. This contradicts the statement (i’),
completing the proof.
(ii) → (i’) Assume for contradiction that there exists an input x = (x1, . . . , xn) ∈ {0, 1}n
such that |x| = dn/2e and C(x) = 0. Fix an arbitrary such x. Define X1 ⊆ R as
X1 := {xj : xj = 1}, and for 1 ≤ i ≤ |L|, let Vi ⊆ R be the set of variables xj such that gi
reads xj . By the construction of the graph GC , we have∣∣∣∣{gi ∈ L : |Vi ∩X1| ≤

⌊
n− `1

2

⌋}∣∣∣∣ ≥ ⌈ |L|2
⌉
.

Since |X1| = dn/2e, this is equivalent to∣∣∣∣{gi ∈ L : |Vi ∩X1| ≥
`1

2 + 1
}∣∣∣∣ ≥ ⌈ |L|2

⌉
,

where Vi denotes the set R\Vi.
Let S be an arbitrary d|L|/2e-element subset of

{
gi ∈ L : |Vi ∩X1| ≥ `1

2 + 1
}
. Then we

can pick an (`1/2 + 1)-leftregular subgraph G′ of GC such that NG′(gi) ⊆ X1 for every
gi ⊆ S. For this graph G′, NG′(S) ⊆ X1, and hence |NG′(S)| ≤ |X1| = dn/2e, contradicting
the statement (ii). J

We see that the statement (ii) in Theorem 4 has a similar spirit to bipartite expander
graphs. This leads us to the following definition.

I Definition 5. Let d1 ≥ d2 > 0 be two integers. A d1-leftregular bipartite graph G =
(L ∪R,E) with |L| = m and |R| = n is said to be an ((m,n), (d1, d2),K,A) list expander if
for every d2-leftregular subgraph G′ of G over the same set of vertices of G, it holds that

|NG′(S)| ≥ A for every S ⊆ L with |S| = K.

When d1 = d2 we simply call it an expander. Formally, a d1-leftregular bipartite graph
G = (L ∪R,E) with |L| = m and |R| = n is said to be an ((m,n), d1,K,A) expander if

|NG(S)| ≥ A for every S ⊆ L with |S| = K.

Note that our definition of an expander is different from the usual definition in a sense
that the expansion property is only required for the sets of size equal to K.

The existence of a MAJn−4◦MAJn−4 circuit computing MAJn is equivalent to the existence
of an ((n− 4, n), (4, 3),

⌈
n−4

2
⌉
,
⌈
n
2
⌉

+ 1) list expander. Moreover, an explicit construction of
such a circuit implies an explicit construction of such an expander, and vice versa. Currently,
we do not know whether such an expander can be built from known constructions of expanders
in the usual sense.

A similar argument to the proof of Theorem 4 can show that a list expander of the form
“d1 choose d2” for d2 > d1/2 + 1 captures a promise version of the problem for constructing
majority circuits. The proof of Theorem 6 is very similar to the proof of Theorem 4 and
omitted in this version.

I Theorem 6. Let n be an odd integer, and c ≥ 2 be an even integer. Let C be a MAJn−c ◦
MAJn−c circuit over {x1, . . . , xn} and let GC be a c-leftregular bipartite graph associated to
C. Suppose that d is an integer such that d ≥ c

2 + 1. Then, the following are equivalent.
(i) C(x) = 1 for every |x| = bn2 c −

c
2 + d and C(x) = 0 for every |x| = dn2 e+ c

2 − d.
(ii) GC is an ((n− c, n), (c, d), dn−c2 e, b

n
2 c −

c
2 + d) list expander.

MFCS 2018

81:8 Majority Circuits and Expanders

Algorithm 1 Construct an witness for refuting an expansion property.
1: procedure Convert(G)
2: S̃ := S and T̃ := NG(S)
3: d := d1
4: while d > d2 do
5: S′ := S̃ and T ′ := T̃

6: repeat
7: Let v∗ be a vertex v ∈ T ′ minimizing |NG(v) ∩ S′|. Ties are broken arbitrary.
8: Put Sv∗ := NG(v∗) ∩ S′
9: Remove all edges connecting v∗ and a vertex in S′ from G

10: T̃ := T̃\{v∗}
11: S′ := S′\Sv∗
12: T ′ := T ′\(NG(Sv∗) ∩ T ′)
13: until |T̃ | <

(
1 + d−d2

5d2
1

)
A

14: d := d− 1
15: end while
16: end procedure

3.1 List Expanders imply Expanders
In this subsection, we give a result roughly stating that a list expander implies an expander
of a certain expansion factor, and observe that converse of it is not true.

I Theorem 7. Let d1 > d2 > 0 be two integers. Suppose that a bipartite graph G = (L∪R,E)
is an ((m,n), (d1, d2),K,A) list expander for A ≥ K. Then, G is an ((m,n), d1,K, (1 + ε)A)
expander for ε = (d1 − d2)/(5d2

1).

Note that we did not optimize the constant ε in Theorem 7.

Proof. The proof is by contrapositive. Put ε = (d1−d2)/(5d2
1). Assume that a d1-leftregular

bipartite graph G = (L ∪R,E) is not an ((m,n), d1,K, (1 + ε)A) expander for A ≥ K. This
means that there exists a set of vertices S ⊆ L with |S| = K such that |NG(S)| < (1 + ε)A.
We will see that for this case, G is not an ((m,n), (d1, d2),K,A) list expander. In order to
show this, it is sufficient to show that there exists a d2-leftregular subgraph G′ of G such
that for some S̃ ⊆ L with |S̃| = K and for some T̃ ⊆ R with |T̃ | < A, |NG′(S̃)| ⊆ T̃ holds.

We set S̃ := S. We will find a subgraph G′ and a set T̃ ⊆ T by using Algorithm 1 shown
above.

First we observe that whenever |T ′| ≥ A, there are at least A/2 v’s in T ′ such that
|NG(v) ∩ S̃| ≤ 2d1 since if otherwise, we have

∑
v∈T ′ |NG(v) ∩ S̃| > Ad1 ≥ Kd1, which

contradicts the assumption that G is d1-leftregular. Suppose that a vertex v∗ chosen in Line
7 satisfies |Sv∗ | ≤ 2d1. We refer to this condition as (*). Then, in Line 12, |T ′| decreases at
most 2d2

1. For every fixed d, the number of iterations of Lines 6 to 13 is at least 1
5d2

1
A. Since

2d2
1

1
5d2

1
A < 1

2A, the condition (*) is always satisfied.
A crucial observation is that after each execution of the While loop in the algorithm, G

satisfies that |NG(v)| ≥ d for every v ∈ S̃ and NG(S̃) ⊆ T̃ . Hence, after the execution of the
entire algorithm, we have a graph G such that |NG(v)| ≥ d2 for every v ∈ S̃ and NG(S̃) ⊆ T̃
with |T̃ | < A. Then, an arbitrary d2-leftregular subgraph of G is not an expander for the
parameter given in the statement of the theorem. J

K. Amano 81:9

We remark that an argument below suggests that the converse of Theorem 7 is not true.
Let G = (L ∪R,E) be a bipartite graph with L = R = Zp and edge set {(x, x+ 1), (x, x−
1), (x, x−1)}x∈Zp where all arithmetic is modulo p and define 0−1 to be 0. It was shown that
this 3-leftregular bipartite graph has an expansion property with some constant expansion
factor. (This was stated implicitly in [8]. See e.g., [12, Construction 4.26] for the statement
in this form.) If we add the edges {(x, x)}x∈Zp to G (and make a slight rearrangement for
x = 0 to avoid parallel edges (0, 0)), then it becomes a 4-leftregular expander. However,
a 3-leftregular subgraph consisting of the edges {(x, x+ 1), (x, x), (x, x− 1)}x∈Zp is not an
expander anymore.

4 Probabilistic Constructions

In this section, we show a statement roughly saying that a random c-leftregular bipartite
graph is a list expander of the form “c choose d” for d ∼ 2

3c with a non-negligible probability.
Note that this is not sufficient for obtaining a non-trivial depth two circuit computing the
majority function, for which we need d ∼ 1

2c.
We first show a fact that will be used in our analysis.

I Fact 8. Suppose that a, b, p are positive integers satisfying a− p > b− p > 0. Then,

aa−p

bb−p
≥ (a− p)a−p

(b− p)b−p .

Proof. The fact can be verified by the following series of inequalities.

aa−p(b− p)b−p − (a− p)a−pbb−p

= (a− p+ a)a−p(b− p)b−p − (a− p)a−p(b− p+ b)b−p

=
a−p∑
i=0

(
a− p
i

)
(a− p)a−p−iai(b− p)b−p −

b−p∑
i=0

(
b− p
i

)
(b− p)b−p−ibi(a− p)a−p

≥
b−p∑
i=0

(a− p)a−p−i(b− p)b−p−i
{(

a− p
i

)
(b− p)i −

(
b− p
i

)
(a− p)i

}
(1)

≥ 0.

Here the last inequality follows from the fact that the value inside the bracket in Eq. (1) is
non-negative for every fixed i. J

The following is the main theorem in this section.

I Theorem 9. Let ε > 0 be an arbitrary small positive constant. Suppose that c is a
constant such that εc ≥ 3, and let m = n− c. Then for every sufficiently large n, there is an
((m,n), (c, d), dm2 e, b

n
2 c −

c
2 + d) list expander, where d = d(2

3 + ε)ce.

By Theorem 6 and Theorem 9, we can see that for every sufficiently large n, there exists
a MAJn−c ◦MAJn−c circuit C such that C(x) = MAJn(x) for every x ∈ {0, 1}n such that
|x| . n

2 −
c
6 or |x| & n

2 + c
6 .

The rest of this section is devoted to prove Theorem 9. The proof relies on relatively
basic but a bit lengthy calculations.

Proof. Consider a bipartite graph over the vertex set L ∪ R with |L| = m(= n − c) and
|R| = n. We view a c-leftregular bipartite graph as a union of c bipartite matchings. For
i ∈ [c], let Mi be a bipartite matching over L ∪R in which the left vertices are saturated. A
c-leftregular bipartite graph G = (L ∪R,E) is specified by a sequence of c such matchings

MFCS 2018

81:10 Majority Circuits and Expanders

E = (M1, . . . ,Mc), which we denoted by GE . Let E denote the set of all possible E’s and
thus |E| = (n!

c!)c. Notice that at this moment, a graph obtained in this way may have a
multiedge. We will take into account this issue later.

Roughly speaking, a c-leftregular bipartite graph is a list expander if every d-leftregular
subgraph of it is an expander. For d ≤ c, a d-leftregular subgraph of G is specified by
a sequence of m sets Di ⊆ [c] (1 ≤ i ≤ m) of size d. Given a sequence of c matchings
E = (M1, . . . ,Mc) and a sequence of m sets D = (D1, . . . , Dm), let GE,D denote a d-
leftregular bipartite graph such that for every i ∈ [m], the set of edges connecting to the i-th
left vertex consists of an edge in Mj for j ∈ Di. Let D denote the set of all possible D’s and
thus |D| =

(
c
d

)m.
We define E ′ ⊆ E as the set of all E’s in E such that GE is a c-leftregular bipartite graph

where GE does not contain a multiedge. The following lemma says that the cardinality of E ′
is not too small compared to the cardinality of E . Here e denotes the base of the natural
logarithm. The proof of the lemma is postponed to the end of this section.

I Lemma 10. For all sufficiently large n, the cardinality of E ′ ⊆ E satisfies

|E ′| ≥ (n!)c

e(
c
2)nc2

.

Given a set S ⊆ L and a set T ⊆ R and a sequence D ∈ D, we count the number of
E ∈ E such that GE,D satisfies NGE,D(S) ⊆ T , which we refer to as the property PS,T .

For j ∈ [c], let aj := |{i ∈ S : j 6∈ Di}|. Define an auxiliary function f as

f((m,n), (`, r), a) = r!(n− (`− a))!
(r − (`− a))!(n−m)! .

This represents the number of left saturated bipartite matchings in the (m + n)-vertex
complete bipartite graph such that the neighbors of some specified l − a left vertices are
contained in some specified r right vertices. Then, the number of E ∈ E such that GE,D
satisfies PS,T is given by

∏
j∈[c]

f((m,n), (|S|, |T |), aj). (2)

We say that the aj ’s are equally distributed if, for every i, j ∈ [c], |ai − aj | ≤ 1. The
following lemma is useful for our calculation.

I Lemma 11. Eq. (2) is maximized when the aj’s are equally distributed.

Proof. Let bj = `− aj , i.e. bj is the number of edges in Mj connecting to a vertex in S in
the graph GE,D. Suppose that ai = aj + α for some i, j ∈ [n] and for some α ≥ 2. In order
to prove the lemma, it is sufficient to show that

g(ai)g(aj) ≤ g(ai − 1)g(aj + 1),

K. Amano 81:11

where g(a) stands for f((m,n), (`, r), a). This is verified by the following.

g(ai − 1)g(aj + 1)− g(ai)g(aj)

=
(

r!
(n−m)!

)2((n− (bi + 1))!
(r − (bi + 1))!

(n− (bi + α− 1))!
(r − (bi + α− 1))! −

(n− bi)!
(r − bi)!

(n− (bi + α))!
(r − (bi + α))!

)
=

(
r!

(n−m)!

)2((n− (bi + 1))!
(r − (bi + 1))!

(n− (bi + α))!
(r − (bi + α))!

)(
n− (bi + α− 1)
r − (bi + α− 1) −

n− bi
r − bi

)
=

(
r!

(n−m)!

)2((n− (bi + 1))!
(r − (bi + 1))!

(n− (bi + α))!
(r − (bi + α))!

)(
(n− r)(α− 1)

(r − (bi + α− 1))(r − bi)

)
≥ 0.

J

We go back to the proof of Theorem 9.
Put d = (2

3 + ε)c, and put |S| = dn−c2 e and |T | = b
n
2 c −

c
2 + d. Then, Eq. (2) is equal to∏

i∈[c]

(
bn2 c+ c

6 + cε
)
! ·
(
n− (dn2 e −

c
2 − aj)

)
!(

bn2 c+ c
6 + cε− (dn2 e −

c
2 − aj)

)
! · c!

=
∏
i∈[c]

(
bn2 c+ c

6 + cε
)
! ·
(
bn2 c+ c

2 + aj
)
!(2

3c+ cε− 1 + aj
)
! · c!

.

By Lemma 11, this is upper bounded by((
bn2 c+ c

6 + cε
)
! ·
(
bn2 c+ c

2 + a
)
!(2

3c+ cε− 1 + a
)
! · c!

)c
,

where a = (1
3 − ε)(d

n
2 e −

c
2). By substituting the RHS for a, the inside of the outer bracket

of the above formula is upper bounded by(
dn2 e+ c

6 + cε
)
! ·
(2

3n−
εn
2 + c

3 + cε
2
)
! · nC0(

n
6 −

εn
2 + c

2 + 3cε
2
)
! · c!

(3)

for some small positive constant C0. Since c and ε are constants, there are large enough
constants C1 and C2, Eq. (3) is upper bounded by(

n
2
)
! ·
(2

3n−
εn
2
)
! · nC1(

n
6 −

εn
2
)
!

≤
(
n
2
)n

2 ·
(2

3n−
εn
2
)(2

3n−
εn
2)
nC2(

n
6 −

εn
2
)(n6− εn2)

en

≤
(
n
2
)n

2 ·
(2

3n
)(2

3n−
εn
2)
nC2(

n
6
)(n6− εn2)

en

= nC2 · n
n

en
·
(

21/3

31/2

)n
·
(

1
2

)εn
. (4)

Here the first inequality is by the Stirling formula, and the second inequality is by Lemma 8.
The number of E ∈ E such that
∃S ⊆ L ∃T ⊆ R ∃D ∈ D GE,D has the property PS,T (5)

is at most

2n−c · 2n · (Eq.(4))c · |D|(
c
d

)bm2 c = 2n−c · 2n · (Eq.(4))c ·
(
c

d

)dm2 e
. (6)

By using the upper bound on the binomial coefficients (see e.g., [9, Lemma 9.2])(
c

αc

)
≤ 2cH(α),

MFCS 2018

81:12 Majority Circuits and Expanders

where H(p) = −p log2(p)− (1− p) log2(1− p) is the binary entropy function, we have(
c

d

)dm2 e
≤ 2H(1

3−ε)d
m
2 e < 2H(1

3)n2 =
(

31/2

21/3

)n
.

Therefore, we have

(Eq. (6)) < 22nnC2c · n
cn

ecn
·
(

1
2

)εcn
. (7)

Recall that E ′ ⊆ E is the set of all E’s in E such that GE is a c-leftregular bipartite
graph where GE does not contain a multiedge. The proof of Theorem 9 will be completed
if we verify that Eq. (7) is smaller than the cardinality of E ′ since it implies the existence
of a c-leftregular bipartite graph GE not satisfying the condition Eq. (5), i.e., GE is a list
expander of the desired parameter.

By Lemma 10, we have

|E ′| ≥ (n!)c

e(
c
2)nc2

≥ ncn

ecn
1
nC3

,

for a sufficiently large constant C3. We can see that when n goes to infinity the last term in
the above is larger than Eq. (7) by recalling that εc ≥ 3. J

Proof of Lemma 10. We use the result on counting the number of Latin rectangles. A c× n
Latin rectangle is a c × n matrix L with symbols from [n] such that each row and each
column contains only distinct symbols. Let Lc,n denote the number of c× n Latin rectangles.
It was shown by Erdős and Kaplansky [5] that, for c = O((logn)3/2−ε),

Lc,n ∼
(n!)c

e(
c
2)
.

It is easy to observe that a c-leftregular bipartite graph with n − c left vertices and n
right vertices can be naturally represented by a c × (n − c) matrix obtained from a c × n
Latin rectangle by discarding the last c columns. Since we shall discard c2 entries with
symbols from [n], the number of variations of such c× (n− c) matrices is at least Lc,n/(nc

2),
completing the proof of the lemma. J

5 Conclusions

In this paper, we introduce a new notion of expander graphs and give the translation result
from the construction of depth two circuits computing the majority function. Currently,
the existence of a MAJn−c ◦MAJn−c circuit computing MAJn is open even for c = 4. We
hope that our translation result leads us to a better understanding on this problem with the
help of a rich theory on expander graphs. In addition, it would be interesting to find other
applications of list expanders.

References
1 Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in c log n parallel steps. Com-

binatorica, 3(1):1–19, 1983.
2 Kazuyuki Amano. Bounds on the size of small depth circuits for approximating majority.

In Automata, Languages and Programming, 36th International Colloquium, ICALP 2009,
Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, pages 59–70, 2009.

3 Kazuyuki Amano and Masafumi Yoshida. Depth two (n−2)-majority circuit for n-majority.
to appear in IEICE Trans. Fundamentals, E101-A(9), 2018.

K. Amano 81:13

4 Christian Engels, Mohit Garg, Kazuhisa Makino, and Anup Rao. On expressing majority
as a majority of majorities. Electronic Colloquium on Computational Complexity (ECCC),
24:174, 2017.

5 Paul Erdős and Irving Kaplansky. The asymptotic number of latin rectangles. Amer. J.
Math, 68:230–236, 1946.

6 LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018. URL: http://www.
gurobi.com.

7 Alexander S. Kulikov and Vladimir V. Podolskii. Computing majority by constant depth
majority circuits with low fan-in gates. In 34th Symposium on Theoretical Aspects of
Computer Science, STACS 2017, March 8-11, 2017, Hannover, Germany, pages 49:1–49:14,
2017.

8 Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combinatorica,
8(3):261–277, 1988.

9 Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

10 Ryan O’Donnell and Karl Wimmer. Approximation by DNF: examples and counter-
examples. In Automata, Languages and Programming, 34th International Colloquium, IC-
ALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, pages 195–206, 2007.

11 Gleb Posobin. Computing majority with low-fan-in majority queries. CoRR,
abs/1711.10176, 2017. arXiv:1711.10176.

12 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer
Science, 7(1-3):1–336, 2012.

13 Leslie G. Valiant. Short monotone formulae for the majority function. J. Algorithms,
5(3):363–366, 1984.

MFCS 2018

http://www.gurobi.com
http://www.gurobi.com
http://arxiv.org/abs/1711.10176

Optimization over the Boolean Hypercube via
Sums of Nonnegative Circuit Polynomials
Mareike Dressler
Goethe-Universität, FB 12 – Institut für Mathematik,
Robert-Mayer-Str. 6-10, 60054 Frankfurt am Main, Germany
dressler@math.uni-frankfurt.de

Adam Kurpisz1

ETH Zürich, Department of Mathematics,
Rämistrasse 101, 8092 Zürich, Switzerland
adam.kurpisz@ifor.math.ethz.ch

Timo de Wolff2

Technische Universität Berlin, Institut für Mathematik,
Straße des 17. Juni 136, 10623 Berlin, Germany
dewolff@math.tu-berlin.de

Abstract
Various key problems from theoretical computer science can be expressed as polynomial optimiz-
ation problems over the boolean hypercube. One particularly successful way to prove complexity
bounds for these types of problems are based on sums of squares (SOS) as nonnegativity certific-
ates. In this article, we initiate optimization over the boolean hypercube via a recent, alternative
certificate called sums of nonnegative circuit polynomials (SONC). We show that key results for
SOS based certificates remain valid: First, there exists a SONC certificate of degree at most
n + d for polynomials which are nonnegative over the n-variate boolean hypercube with con-
straints of degree d. Second, if there exists a degree d SONC certificate for nonnegativity of
a polynomial over the boolean hypercube, then there also exists a short degree d SONC certi-
ficate, that includes at most nO(d) nonnegative circuit polynomials. Finally, we show certain
differences between SOS and SONC cones: we prove that, in contrast to SOS, the SONC cone
is not closed under taking affine transformation of variables and that for SONC there does not
exist an equivalent to Putinar’s Positivestellensatz. We discuss these results both from algebraic
and optimization perspective.

2012 ACM Subject Classification Mathematics of computing → Convex optimization

Keywords and phrases nonnegativity certificate, hypercube optimization, sums of nonnegative
circuit polynomials, relative entropy programming, sums of squares

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.82

1 Introduction

An optimization problem over a boolean hypercube is an n-variate (constrained) polynomial
optimization problem where the feasibility set is restricted to some vertices of an n-dimensional
hypercube. This class of optimization problems belongs to the core of theoretical computer

1 Swiss National Science Foundation project PZ00P2_174117 “Theory and Applications of Linear and
Semidefinite Relaxations for Combinatorial Optimization Problems”

2 DFG grant WO 2206/1-1

© Mareike Dressler, Adam Kurpisz, and Timo de Wolff;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 82; pp. 82:1–82:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dressler@math.uni-frankfurt.de
mailto:adam.kurpisz@ifor.math.ethz.ch
mailto:dewolff@math.tu-berlin.de
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.82
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

82:2 Optimization over the Boolean Hypercube via SONCs

science. However, it is known that solving them is NP-hard in general, since one can easily
cast, e.g., the Independent Set problem in this framework.

One of the most promising approaches in constructing theoretically efficient algorithms
is the sum of squares (SOS) hierarchy [23, 45, 48, 55], also known as Lasserre relaxation
[34]. The method is based on a Positivstellensatz result [50] saying that the polynomial f ,
which is nonnegative over the feasibility set, can be expressed as a sum of squares times
the constraints defining the set. Bounding a maximum degree of a polynomial used in a
representation of f provides a family of algorithms parametrized by an integer d. Finding a
degree d SOS certificate for nonnegativity of f can be performed by solving a semidefinite
programming (SDP) formulation of size nO(d). Finally, for every (feasible) n-variate hypercube
optimization problem, with constraints of degree at most d, there exists a degree 2(n+ dd/2e)
SOS certificate.

The SOS algorithm is a frontier method in algorithm design. It provides the best available
algorithms used for a wide variety of optimization problems. The degree 2 SOS for the
Independent Set problem implies the Lovász θ-function [40] and gives the Goemans-
Williamson relaxation [20] for the Max Cut problem. The Goemans-Linial relaxation for
the Sparsest Cut problem (analyzed in [2]) can be captured by the SOS of degree 6.
Finally, the subexponential time algorithm for Unique Games [1] is implied by a SOS of
sublinear degree [4, 24]. Moreover, it has been shown that SOS is equivalent in power to
any SDP extended formulation of comparable size in approximating maximum constraint
satisfaction problems (CSP) [39]. Recently SOS has been also applied to problems in
dictionary learning [6, 54], tensor completion and decomposition [7, 26, 49], and
robust estimation [28]. Other applications of the SOS method can be found in [4, 8, 12,
13, 16, 17, 24, 41, 42, 51], see also the surveys [14, 35, 37].

On the other hand it is known that the SOS algorithm admits certain weaknesses. For
example, Grigoriev shows in [21] that a Ω(n) degree SOS certificate is needed to detect a
simple integrality argument for the Knapsack problem, see also [22, 31, 36]. Other SOS
degree lower bounds for Knapsack problems appeared in [11, 32]. Some lower bounds on
the effectiveness of SOS has been shown for CSP problems [29, 56] and for planted clique
problem [3, 43]. Finally degree Ω(

√
n) SOS was proved to have problems scheduling unit

size jobs on a single machine to minimize the number of late jobs [33]. The problem is
solvable in polynomial time using the Moore-Hodgson algorithm. Finally, SOS has hard time
proving global nonnegativity, as first proved by Hilbert [25]. Later an explicit example was
given by Motzkin [44]. Moreover, as shown by Blekherman [9], there are significantly more
nonnegative polynomials than SOS polynomials. The above arguments motivate the search
of new nonnegativity certificates for solving optimization problems efficiently.

In this article, we initiate an analysis of hypercube optimization problems via sums of
nonnegative circuit polynomials (SONC). SONCs are a nonnegativity certificate introduced
in [27], which are independent of sums of squares; see Definition 1 and Theorem 5 for further
details. This means particularly that certain polynomials like the Motzkin polynomial,
which have no SOS certificate for global nonnegativity, can be certified as nonnegative via
SONCs. Moreover, SONCs generalize polynomials which are certified to be nonnegative
via the arithmetic-geometric mean inequality [52]. Similarly as Lasserre relaxation for
SOS, a Schmüdgen-like Positivstellensatz yields a converging hierarchy of lower bounds for
polynomial optimization problems with compact constraint set; see [19, Theorem 4.8] and
Theorem 6. These bounds can be computed via a convex optimization program called relative
entropy programming [19, Theorem 5.3]. Our main question in this article is:

M. Dressler, A. Kurpisz, and T. de Wolff 82:3

Can SONC certificates be an alternative for SOS methods for optimization problems
over the hypercube?

We answer this question affirmatively in the sense that we prove SONC complexity bounds
for boolean hypercube optimization analogous to the SOS bounds mentioned above. More
specifically, we show:
1. For every polynomial which is nonnegative over an n-variate hypercube with constraints

of degree at most d there exists a SONC certificate of nonnegativity of degree at most
n+ d; see Theorem 16 and Corollary 17.

2. If a polynomial f admits a degree d SONC certificate of nonnegativity over an n-variate
hypercube, then the polynomial f admits also a short degree d SONC certificate that
includes at most nO(d) nonnegative circuit polynomials; see Theorem 18.

Furthermore, we show some structural properties of SONCs:
1. We give a simple, constructive example showing that the SONC cone is not closed under

multiplication. Subsequently we use this construction to show that the SONC cone is
neither closed under taking affine transformations of variables, see Lemma 8 and Corollary
9 and the discussion afterwards.

2. We address an open problem raised in [19] asking whether the Schmüdgen-like Posit-
ivstellensatz for SONCs (Theorem 6) can be improved to an equivalent of Putinar’s
Positivstellensatz [50]. We answer this question negatively by showing an explicit hyper-
cube optimization example, which provably does not admit a Putinar representation for
SONCs; see Theorem 19 and the discussion afterwards.

Our article is organized as follows: In Section 2 we introduce the necessary background
from theoretical computer sciences and about SONCs. In Section 3 we show that the
SONC cone is closed neither under multiplication nor under affine transformations. In
Section 4 we provide our two main results regarding the degree bounds for SONC certificates
over the hypercube. In Section 5 we prove the non-existence of an equivalent of Putinar’s
Positivstellensatz for SONCs and discuss this result.

2 Preliminaries

In this section we collect basic notions and statements on sums of nonnegative circuit
polynomials (SONC).
Throughout the paper, we use bold letters for vectors, e.g., x = (x1, . . . , xn) ∈ Rn. Let
N∗ = N \ {0} and R≥0 (R>0) be the set of nonnegative (positive) real numbers. Furthermore
let R[x] = R[x1, . . . , xn] be the ring of real n-variate polynomials and the set of all n-variate
polynomials of degree less than or equal to 2d is denoted by R[x]n,2d. We denote by [n] the
set {1, . . . , n} and the sum of binomial coefficients

∑d
k=0

(
n
k

)
is abbreviated by

(
n
≤d
)
. Let

e1, . . . , en denote the canonical basis vectors in Rn.

2.1 Sums of Nonnegative Circuit Polynomials
Let A ⊂ Nn be a finite set. In what follows, we consider polynomials f ∈ R[x] supported on
A. Thus, f is of the form f(x) =

∑
α∈A fαxα with fα ∈ R and xα = xα1

1 · · ·xαn
n . A lattice

point is called even if it is in (2N)n and a term fαxα is called a monomial square if fα > 0
and α even. We denote by New(f) = conv{α ∈ Nn : fα 6= 0} the Newton polytope of f .

Initially, we introduce the foundation of SONC polynomials, namely circuit polynomials;
see also [27]:

MFCS 2018

82:4 Optimization over the Boolean Hypercube via SONCs

I Definition 1. A polynomial f ∈ R[x] is called a circuit polynomial if it is of the form

f(x) := fβxβ +
r∑
j=0

fα(j)xα(j), (2.1)

with r ≤ n, exponents α(j), β ∈ A, and coefficients fα(j) ∈ R>0, fβ ∈ R, such that the
following conditions hold:

(C1) New(f) is a simplex with all even vertices α(0),α(1), . . . ,α(r) ∈ Zn.
(C2) The exponent β is in the strict interior of New(f). Hence, there exist unique barycentric

coordinates λj relative to the vertices α(j) with j = 0, . . . , r satisfying

β =
r∑
j=0

λjα(j) with λj > 0 and
r∑
j=0

λj = 1.

We call the terms fα(0)xα(0), . . . , fα(r)xα(r) the outer terms and fβxβ the inner term of f .
For every circuit polynomial we define the corresponding circuit number as

Θf :=
r∏
j=0

(
fα(j)

λj

)λj

. (2.2)

Note that the name of these polynomials is motivated by the fact that their support set
forms a circuit, i.e. a minimal affine dependent set, see e.g. [47]. The first fundamental
statement about circuit polynomials is that its nonnegativity is determined by its circuit
number Θf and fβ entirely:

I Theorem 2 ([27], Theorem 3.8). Let f be a circuit polynomial with inner term fβxβ and
let Θf be the corresponding circuit number, as defined in (2.2). Then the following statements
are equivalent:
1. f is nonnegative.
2. |fβ| ≤ Θf and β 6∈ (2N)n or fβ ≥ −Θf and β ∈ (2N)n.

We illustrate the previous definition and theorem by an example:

I Example 3. The Motzkin polynomial [44] is given by

M(x1, x2) := x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 + 1.

It is a circuit polynomial since New(f) = {(4, 2), (2, 4), (0, 0)}, and β = (2, 2) with λ0, λ1, λ2 =

1/3. We have |fβ| = 3 and compute Θf = 3

√(
1

1/3

)3
= 3. Hence, we can conclude that

M(x1, x2) is nonnegative by Theorem 2.

I Definition 4. We define for every n, d ∈ N∗ the set of sums of nonnegative circuit
polynomials (SONC) in n variables of degree 2d as

Cn,2d :=
{
f ∈ R[x]n,2d : f =

k∑
i=1

pi, pi is a nonnegative circuit polynomial, k ∈ N∗
}

Note that the degree is attained at the outer terms and hence it is even.

We denote by SONC both the set of SONC polynomials and the property of a polynomial
to be a sum of nonnegative circuit polynomials.

In what follows let Pn,2d be the cone of nonnegative n-variate polynomials of degree at
most 2d and Σn,2d be the corresponding cone of sums of squares respectively. An important
observation is, that SONC polynomials form a convex cone independent of the SOS cone:

M. Dressler, A. Kurpisz, and T. de Wolff 82:5

I Theorem 5 ([27], Proposition 7.2). Cn,2d is a convex cone satisfying:
1. Cn,2d ⊆ Pn,2d for all n, d ∈ N∗,
2. Cn,2d ⊆ Σn,2d if and only if (n, 2d) ∈ {(1, 2d), (n, 2), (2, 4)},
3. Σn,2d 6⊆ Cn,2d for all (n, 2d) with 2d ≥ 6.

For further details about the SONC cone see [18, 19, 27].

2.2 SONC certificates over a Constrained Set
In [19, Theorem 4.8], Iliman, the first, and the third author showed that for an arbitrary real
polynomial which is strictly positive on a compact, basic closed semialgebraic set K there
exists a SONC certificate of nonnegativity. Hereinafter we recall this result.

We assume that K is given by polynomial inequalities gi(x) ≥ 0 for i = 1, . . . , s and is
compact. For technical reason we add 2n redundant box constraints lj(x) := N ± xj ≥ 0 for
some sufficiently large N ∈ N, which always exists due to our assumption of compactness of
K; see [19] for further details. Hence, we have

K := {x ∈ Rn : gi(x) ≥ 0 for i ∈ [s] and lj(x) ≥ 0 for j ∈ [2n]}. (2.3)

In what follows we consider polynomials H(q)(x) defined as products of at most q ∈ N∗ of
the polynomials gi, lj and 1, i.e.,

H(q)(x) :=
q∏

k=1
hk(x), (2.4)

where hk ∈ {1, g1, . . . , gs, l1, . . . , l2n}. Now we can state:

I Theorem 6 ([19], Theorem 4.8). Let f, g1, . . . , gs ∈ R[x] be real polynomials and K be a
compact, basic closed semialgebraic set as in (2.3). If f > 0 on K then there exist d, q ∈ N∗
such that we have an explicit representation of f of the form:

f(x) =
∑
finite

s(x)H(q)(x),

where the s(x) are contained in Cn,2d and every H(q)(x) is a product as in (2.4).

The central object of interest is the smallest value of d and q that allows f a decomposition
as in Theorem 6. This motivates the following definition of a degree d SONC certificate.

I Definition 7. Let f ∈ R[x] such that f is positive on the set K given in (2.3). Then f
has a degree d SONC certificate if it admits for some q ∈ N∗ the following decomposition:

f(x) =
∑
finite

s(x)H(q)(x),

for s(x) SONCs, the H(q)(x) products as in (2.4), and deg
(∑

s(x)H(q)(x)
)
≤ d.

For a given set A ⊆ Nn, searching through the space of degree d certificates can be
computed via a relative entropy program (REP) [19] of size nO(d). REPs are convex optimiz-
ation programs which are slightly more general than geometric programs but still efficiently
solvable with interior point methods; see e.g. [10, 46] for more details.

MFCS 2018

82:6 Optimization over the Boolean Hypercube via SONCs

Figure 1 The Newton polytope and the support set of r(x1, xk) with the supports of p1 and p2

in blue ovals.

3 Properties of the SONC cone

In this section we show that the SONC cone is neither closed under multiplication nor under
affine transformations. First, we give a constructive proof for the fact that the SONC cone is
not closed under multiplication, which is simpler than the initial proof of this fact in [19,
Lemma 4.1]. Second, we use our construction to show that the SONC cone is not closed
under affine transformation of variables.

I Lemma 8. For every d ≥ 2, n ∈ N∗ the SONC cone Cn,d is not closed under multiplication
in the following sense: if p1, p2 ∈ Cn,d, then p1 · p2 6∈ Cn,2d in general.

Proof. For every d = 2n, n ∈ N∗ we construct two SONC polynomials p1, p2 ∈ Cn,d such
that the product p1p2 is an n variate, degree 2d polynomial that is not inside Cn,2d.

Let n = 2. We construct the following two polynomials p1, p2 ∈ R[x1, x2]:

p1(x1, x2) := (1− x1)2, p2(x1, x2) := (1− x2)2.

First, observe that p1, p2 are nonnegative circuit polynomials, since, in both cases, λ1 = λ2 =
1/2, fα(1) = fα(2) = 1, and fβ = −2, thus 2 = Θf ≥ |fβ|.

Now consider the polynomial r(x1, x2) = ((1− x1)(1− x2))2. We show that this poly-
nomial, even though it is nonnegative, is not a SONC polynomial. Note that r(x1, x2) =
1 − 2x1 − 2x2 + 4x1x2 + x2

1 + x2
2 − 2x2

1x2 − 2x1x
2
2 + x2

1x
2
2; the support of r is shown in

Figure 1. Assume that r ∈ C2,4, i.e., r has a SONC decomposition. This implies that the
term −2x1 has to be an inner term of some nonnegative circuit polynomial r1 in this repres-
entation. Such a circuit polynomial necessarily has the terms 1 and x2

1 as outer terms, that is,
r1(x1) = p1(x1, x2) = 1 + x2

1 − 2x1. Since Θr1 = 2 the polynomial r1 is indeed nonnegative
and, in addition, we cannot choose a smaller constant term and preserve nonnegativity
without simultaneously increasing the coefficient x2

1. Next, also the term −2x2 has to be an
inner term of SONC r2. Since this term again is on the boundary of New(r) the only option
for such an r2 is: r2(x2) = p2(x1, x2) = 1 + x2

2 − 2x2. However, the term 1 has been already
used in r1, which leads to a contradiction, i.e., r /∈ C2,4. Since Cn,2d ⊆ Cn+1,2d, the general
statement follows. J

Hereinafter we show another operation, which behaves differently for SONC than it does
for SOS: Similarly as for multiplications, affine transformations also do not preserve the SONC
structure. This observation is important for possible degree bounds on SONC certificates,
when considering optimization problems over distinct descriptions of the hypercube.

I Corollary 9. For every d ≥ 4, n ∈ N∗ the SONC cone Cn,d is not closed under affine
transformation of variables.

M. Dressler, A. Kurpisz, and T. de Wolff 82:7

Proof. Consider the polynomial f(x1, x2) = x2
1x

2
2. Clearly, the polynomial f is a nonnegative

circuit polynomial since it is a monomial square, hence u ∈ Cn,d. Now consider the following
affine transformation of the variables x1 and x2: x1 → 1− x1, x2 → 1− x2. After applying
the transformation the polynomial f equals the polynomial p1p2 from the proof of Lemma 8
and thus is not inside Cn,d. J

Corollary 9, from optimization perspective, implies that problem formulations obtained
by applying affine transformations of variables can lead to problems of different tractability
when using the SONC method. This means, on the one hand, that a choice of representation
has to be done carefully, which makes the process of algorithm design more demanding. On
the other hand, even a small change of representation might allow to find a SONC certificate
or simplify an existing one. Note that whatever affine transformation of variables is applied
to the Motzkin polynomial it never has a SOS certificate over reals, as the SOS cone is closed
under affine transformations. The affine closure of the SONC cone, however, strictly contains
the SONC cone and still yields a certificate of nonnegativity. In this sense, Corollary 9
motivates the following future research question:

Find an efficient algorithm to determine whether an affine transformation of a given
polynomial f admits a SONC representation.

4 An Upper Bound on the Degree of SONC Certificates over the
Hypercube

In this section we prove that every n-variate polynomial which is nonnegative over the boolean
hypercube has a degree n SONC certificate. Moreover, if the hypercube is additionally
constrained with some polynomials of degree at most d, then the nonnegative polynomial
over such a set has degree n+ d SONC certificate. Motivated by the Corollary 9 and the
discussion afterwards, we show this fact for all affine transformations of the 0/1 hypercube,
that is for hypercubes {ai, bi}n.

Formally, we consider the following setting: We investigate real multivariate polynomials
in R[x]. For j ∈ [n], and aj , bj ∈ R, such that aj < bj let

gj(x) := (xj − aj)(xj − bj)

be a quadratic polynomial with two distinct real roots. Let H ⊂ Rn denote the n-dimensional
hypercube given by

∏n
j=1{aj , bj}. Moreover, let

P := {p1, . . . , pm : pi ∈ R[x], i ∈ [m]}

be a set of polynomials, which we consider as constraints pi(x) ≥ 0 with deg(pi(x)) ≤ d for
all i ∈ [n] as follows. We define

HP := {x ∈ Rn : gj(x) = 0, j ∈ [n], p(x) ≥ 0, p ∈ P}

as the n-dimensional hypercube H constrained by polynomial inequalities given by P . Through-
out the paper we assume that |P| = poly(n), i.e. the size of the constraint set P is polynomial
in n. This is usually the case, since otherwise the problem gets less tractable from the optim-
ization point of view.

As a first step, we introduce a Kronecker delta function:

I Definition 10. For every v ∈ H the function

δv(x) :=
∏

j∈[n]: vj=aj

(
−xj + bj
bj − aj

)
·

∏
j∈[n]: vj=bj

(
xj − aj
bj − aj

)
(4.1)

is called the Kronecker delta (function) of the vector v.

MFCS 2018

82:8 Optimization over the Boolean Hypercube via SONCs

Next we justify the term “Kronecker delta”, we show that for every v ∈ H the function
δv(x) takes the value zero for all x ∈ H except for x = v where it takes the value one.

I Lemma 11. For every v ∈ H it holds that:

δv(x) =
{

0, for every x ∈ H \ {v},
1, for x = v.

Proof. On the one hand, if x ∈ H \ {v}, then there exists an index k such that xk 6= vk.
This implies that there exists at least one multiplicative factor in δv which attains the value
zero due to (4.1). On the other hand if x = v then we have

δv(x) =
∏

j∈[n]: vj=aj

(
−aj + bj
bj − aj

) ∏
j∈[n]: vj=bj

(
bj − aj
bj − aj

)
= 1. J

The main result of this section is the following theorem.
I Theorem 12. Let f(x) ∈ R[x]n,n. Then f(x) ≥ 0 for every x ∈ HP if and only if f has
the following representation:

f(x) =
∑

v∈HP

cvδv(x) +
∑

v∈H\HP

cvδv(x)pv(x) +
n∑

j=1

sj(x)gj(x) +
n∑

j=1

sn+j(x)(−gj(x)),(4.2)

where s1, . . . , s2n ∈ Cn,n−2, cv ∈ R≥0 and pv ∈ P.

Since we are interested in optimization on the boolean hypercube H, we assume without
loss of generality that the polynomial f considered in Theorem 12 has degree at most n.
Otherwise, one can efficiently reduce the degree of f by applying iteratively the polynomial
division with respect to polynomials gj with j ∈ [n]. The remainder of the division process
is a polynomial with degree at most n that agrees with f on all the vertices of H.

We begin with proving the easy direction of the equivalence stated in Theorem 12.

I Lemma 13. If f admits a decomposition (4.2), then f(x) is nonnegative for all x ∈ HP .

Proof. The coefficients cv are nonnegative, all sj(x) are SONC and hence nonnegative on
Rn. We have ±gj(x) ≥ 0 for all x ∈ H, and for all choices of v ∈ H we have pv(x) ≥ 0 for
all x ∈ HP , and δv(x) ∈ {0, 1} for all x ∈ H. Thus, the right hand side of (4.2) is a sum of
positive terms for all x ∈ HP . J

We postpone the rest of the proof of Theorem 12 to the end of the section. Now, we state
a result about the presentation of the Kronecker delta function δv. In what follows let K be
the basic closed semialgebraic set defined by g1, . . . , gn and l1, . . . , l2n as in (2.3).

I Lemma 14. For every v ∈ H the Kronecker delta function can be written as

δv =
2n∑
j=1

sjH
(n)
j ,

for s1, . . . , s2n ∈ R≥0 and every H(n)
j given as in (2.4) with q = n.

Proof. First note that the function δv can be rewritten as

δv(x) =
2n∏
j=1

1
bj − aj

∏
j∈[n]: vj=aj

(−xj + bj)
∏

j∈[n]: vj=bj

(xj − aj) ,

where
∏n
j=1

1
bj−aj

∈ R≥0. Now, the proof follows just by noting that for every j ∈ [n] both
inequalities −xj + bj ≥ 0 and xj − aj ≥ 0 are in K. J

M. Dressler, A. Kurpisz, and T. de Wolff 82:9

The following statement is well-known in similar variations; see e.g. [5, Lemma 2.2 and
its proof]. For clarity, we provide an own proof in the appendix.

I Proposition 15. Let f ∈ R[x]n,2d be a polynomial vanishing on H. Then f =
∑n
j=1 pjgj

for some polynomials pj ∈ R[x]n,2d−2.

Proof. Let J := 〈g1, . . . , gn〉 be the ideal generated by the gj ’s. Let V(J) denote the affine
variety corresponding to J , I(V(J)) denote its radical ideal, and let I(H) denote the ideal
of H. It follows from

∏n
j=1 gj ∈ J that V(J) ⊆ H and hence I(H) ⊆ I(V(J)) = J . The

last equality holds since J itself is a radical ideal. This results from Seidenberg’s Lemma;
see [30, Proposition 3.7.15] by means of the following observations. The affine variety V(J)
consists exactly of the points defining H, therefore we know that J is a zero-dimensional ideal.
Furthermore, for every j ∈ [n] the polynomials gj satisfy gj ∈ J ∩K[xj] and gcd(gj , g′j) = 1.
Thus, every f ∈ I(H) is of the form f =

∑n
j=1 pjgj .

Moreover G := {g1, . . . , gn} is a Gröbner basis for J with respect to the graded lex-
icographic order ≺glex. This follows from Buchberger’s Criterion, which says that G is a
Gröbner basis for J if and only if for all pairs i 6= j the remainder on the division of the
S-polynomials S(gi, gj) by G with respect to ≺glex is zero. Consider an arbitrary pair gi, gj
with i > j. Then the corresponding S-polynomial is given by

S(gi, gj) = (aj + bj)x2
ixj − (ai + bi)xix2

j − ajbjx2
i + aibix

2
j .

Applying polynomial division with respect to ≺glex yields the remainder 0 and hence G is a
Gröbner basis for J with respect to ≺glex. Therefore, we conclude that if f ∈ R[x]n,2d, then
deg(pj) ≤ 2d− 2. J

For an introduction to Gröbner bases see for example [15].

I Theorem 16. Let d ∈ N and f ∈ R[x]n,2d+2 such that f vanishes on H. Then there exist
s1, . . . , s2n ∈ Cn,2d such that f =

∑n
j=1 sjgj +

∑n
j=1 sn+j(−gj).

Proof. By Proposition 15 we know that f =
∑n
j=1 pjgj for some polynomials pj of degree

≤ 2d. Hence, it is sufficient to show that every single term pjgj is of the form
∑n
j=1 sjgj −∑n

j=1 sn+jgj for some s1, . . . , s2n ∈ Cn,2d. Let pj =
∑`
i=1 ajimji where every aji ∈ R and

every mji is a single monomial. We show that pjgj has the desired form by investigating an
arbitrary individual term ajimjigj .
Case 1: Assume the exponent of mji is contained in (2N)n. If ajimji is a monomial square,

then ajimji is a circuit polynomial. If aji < 0, then −ajimji is a monomial square. In
both cases we obtain a representation sji(±gji), where sji ∈ Cn,2d.

Case 2: Assume the the exponent β of mji contains odd numbers. Without loss of generality,
assume that β = (β1, . . . , βk, βk+1, . . . , βn) such that the first k entries are odd and the
remaining n− k entries are even. We construct a SONC polynomial sji = aα(1)xα(1) +
aα(2)xα(2) + ajixβ such that

α(1) = β +
dk/2e∑
j=1

ej −
k∑

j=dk/2e+1

ej , α(2) = β −
dk/2e∑
j=1

ej +
k∑

j=dk/2e+1

ej , (4.3)

|aji| ≤
√

2aα(1)aα(2). (4.4)
By the construction (4.3) α(1),α(2) ∈ (2N)n and β = 1/2(α(1) +α(2)). Thus, sji is a
circuit polynomial and by (4.4) the coefficients aα(1), aα(2) are chosen large enough such
that |aji| is bound by the circuit number

√
2aα(1)aα(2) corresponding to sji. Thus, sji is

nonnegative by [27, Theorem 1.1]. Thus, we obtain

ajimjigj = sjigj + (aα(1)xα(1) + aα(2)xα(2))(−gj),

where sji, aα(1)xα(1), and aα(2)xα(2) are nonnegative circuit polynomials.

MFCS 2018

82:10 Optimization over the Boolean Hypercube via SONCs

Degree: All involved nonnegative circuit polynomials are of degree at most 2d. In Case
1 this follows by construction. In Case 2 we have for the circuit polynomial sji that
deg(α(1)), deg(α(2)) = deg(β) if k is even, and deg(α(1)) = deg(β) + 1, deg(α(2)) =
deg(β) if k is odd. Since β is an exponent of the polynomial f , we know that deg(β) ≤ 2d.
If k is odd, however, then

deg(β) =
k∑
j=1

βj︸︷︷︸
odd number

+
n∑

j=k+1
βj︸︷︷︸

even number

,

i.e., deg(β) is a sum of k many odd numbers, with k being odd, plus a sum of even
numbers. Thus, deg(β) has to be an odd number and hence deg(β) < 2d. Therefore, all
degrees of terms in sji are bounded by 2d and thus sji ∈ Cn,2d.

Conclusion: We have that

f =
n∑
j=1

pjgj =
n∑
j=1

`j∑
i=1

ajimjigj =
n∑
j=1

`j∑
i=1

sjigj .

By Cases 1 and 2 and the degree argument, we have sji ∈ Cn,2d for every i, j and by
defining sj =

∑`j

i=1 sji ∈ Cn,2d we obtain the desired representation of f . J

4.1 Proof of Theorem 12
In this section we combine the results of this section and finish the proof of Theorem 12.

Due to Lemma 13, it remains to show that f(x) admits a decomposition of the form (4.2)
with HP = H if f(x) ≥ 0 for every x ∈ H.

Hence, when restricted to the hypercube H, the polynomial f can be represented as:

f(x) = f(x)
∑

v∈HP

δv(x) + f(x)
∑

v∈H\HP

δv(x) for all x ∈ H

=
∑

v∈HP

δv(x)f(v) +
∑

v∈H\HP

δv(x)f(v) for all x ∈ H,

where the last equality follows by Lemma 11 .
Note that there might exist a vector v ∈ H \ HP such that f attains a negative value at

v. If f(v) < 0, then let pv ∈ P be one of the polynomials among the constraints satisfying
pv(v) < 0. Otherwise, let pv = 1. Since by Lemma 11 we have δv(x)pv(x) = δv(x)pv(v) for
every v,x ∈ H, we can now write:

f(x) =
∑

v∈HP

δv(x)f(v) +
∑

v∈H\HP

δv(x)pv(x) f(v)
pv(v) for all x ∈ H.

Thus, the polynomial f(x)−
∑

v∈HP δv(x)f(v)−
∑

v∈H\HP δv(x)pv(x) f(v)
pv(v) has degree

at most n+ d and vanishes on H. By Theorem 16 we finally get

f(x) =
n∑
j=1

sj(x)gj(x)+
n∑
j=1

sn+j(x)(−gj(x))+
∑

v∈HP

δv(x)f(v)+
∑

v∈H\HP

δv(x)pv(x) f(v)
pv(v) ,

for some s1, . . . , s2n ∈ Cn,n−2 and pv ∈ P . This finishes proof together with Lemma 14. J

M. Dressler, A. Kurpisz, and T. de Wolff 82:11

I Corollary 17. For every polynomial f , nonnegative over the boolean hypercube, constrained
with polynomial inequalities of degree at most d, there exists a degree n+ d SONC certificate.

Proof. The argument follows directly from Theorem 12 by noting that the right hand side
of (4.2) is a SONC certificate of degree n+ d (see the Definition 7). J

4.2 Degree d SONC Certificates
In this section we show that if a polynomial f admits a degree d SONC certificate, then f
also admits a short degree d certificate that involves at most nO(d) terms.

I Theorem 18. Let f be an n-variate polynomial, nonnegative on the constrained hypercube
HP with |P| = poly(n). Assume that there exists a degree d SONC certificate for f , then
there exists a degree d SONC certificate for f involving at most nO(d) many nonnegative
circuit polynomials.

Proof. Since there exists a degree d SONC proof of the nonnegativity of f on HP we know
that f(x) =

∑
j sjH

(q)
j , where the summation is finite, sj ’s are SONCs, and H

(q)
j ’s are

product as defined in (2.4).
Step 1: We analyze the terms sj . Since every sj is a SONC, there exists a representation

sj = κj ·
kj∑
i=1

µij · qij

such that κj , µ1j , . . . , µkjj ∈ R>0,
∑kj

i=1 µij = 1, and the qij are nonnegative circuit
polynomials. Since sj is of degree at most d, we know that Qj := {q1j , . . . , qkjj} is
contained in Rn,d[x], which is a real vector space of dimension

(
n+d
d

)
. Since sj/κj is

a convex combination of the qij , i.e. in the convex hull of Qj , and dim(Qj) ≤
(
n+d
d

)
,

applying Carathéodory’s Theorem, see e.g. [57], yields that sj/κj can be written as a
convex combination of at most

(
n+d
d

)
+ 1 many of the qij .

Step 2: We analyze the terms H(q)
j . By definition of the HP and the terms H(q)

j we
have H(q)

j = gj1 · · · gjs
· lr1 · · · lrt

· p`1 · p`v
with j1, . . . , js ∈ [n], r1, . . . , rt ∈ [2n], and

`1, . . . , `v ∈ [m]. Since the maximal degree of H(q)
j is d, the number of different H(q)

j ’s is
bounded from above by

(
n+2n+m

d

)
.

Conclusion: In summary, we obtain a representation:

f(x) =
(n+2n+m

d)∑
i=1

H
(q)
j sj =

(n+2n+m
d)∑
i=1

H
(q)
j κj

(n+d
d)+1∑
j=1

µijcij

Since we assume that m can bounded by poly(n) the total number of summands is
poly(n)O(d) = nO(d), and we found a desired representation with at most nO(d) nonnegat-
ive circuit polynomials of degree at most d. J

The Theorem 18 states that when searching for a degree d SONC certificate it is enough
to restrict to certificates containing at most nO(d) nonnegative circuit polynomials. Moreover,
as proved in [19, Theorem 3.2] for a given set A ⊆ Nn, searching through the space of degree
d SONC certificates supported on a set A can be computed via a relative entropy program
(REP) of size nO(d), see e.g. [19] for more information about REP. However, the above
arguments do not necessarily imply that the search through the space of degree d SONC
certificates can be performed in time nO(d). The difficulty is that one needs to restrict the

MFCS 2018

82:12 Optimization over the Boolean Hypercube via SONCs

configuration space of n-variate degree d SONCs to a subset of order nO(d) to be able to
formulate the corresponding REP in time nO(d). Since the current proof of Theorem 18 just
guarantees the existence of a short SONC certificate, it is currently not clear, how to search
for a short certificate efficiently. We leave this as an open problem.

5 There Exists No Equivalent to Putinar’s Positivstellensatz for
SONCs

In this section we address the open problem raised in [19] asking whether the Theorem 6
can be strengthened by requiring q = 1. Such a strengthening, for a positive polynomial
over some basic closed semialgebraic set, would provide a SONC decomposition equivalent
to Putinar’s Positivstellensatz for SOS. The advantage of Putinar’s Positivstellensatz over
Schmüdgen’s Positivstellensatz is that for every fixed degree d the cardinality of possible
degree d certificates is smaller; for background see e.g., [38, 50] however, asymptotically still
in both cases it is nO(d).

We answer this question in a negative way. More precisely, we provide a polynomial f
which is strictly positive over the hypercube {±1}n such that there does not exist a SONC
decomposition of f for q = 1. Moreover, we prove it not only for the most natural choice of
the box constraints that is li = 1± xi, but for a generic type of box constraints of the form
`i = 1 + ci ± xi, for ci ∈ R≥0. We close the section with a short discussion.

Let H = {±1}n and consider the following family of polynomials parametrized by a
natural number a:

fa(x) := (a− 1)
n∏
i=1

(
xi + 1

2

)
+ 1.

These functions take the value a for a vector e =
∑n
i=1 ei and the value 1 for every other

x ∈ H \ {e}. We define for every d ∈ N

Sd :=
{∑

finite
s · h : s ∈ Cn,2d, h ∈

{
1,±(x2

i − 1), 1 + ci ± xi : i ∈ [n], ci ∈ R≥0
}}

be the set of polynomials admitting a SONC decomposition over H given by Theorem 6
for q = 1. The main result of this section is the following theorem.

I Theorem 19. For every a > 2n−1
2n−2−1 we have fa /∈ Sd for all d ∈ N.

Before we prove this theorem, we show the following structural results. Note that similar
observations were already made for AGIforms by Reznick in [52] using a different notation.

I Lemma 20. Every s(x) ∈ Cn,2d attains at most two different values on H = {±1}n.
Moreover, if s(x) attains two different values, then each value is attained for exactly the half
of the hypercube vertices.

Proof. By Definition 1 every nonnegative circuit polynomial is of the form:

s(x) =
r∑
j=0

fα(j)xα(j) + fβxβ.

Note that for j = 0, . . . , r, we have α(j) ∈ (2N)n. Hence when evaluated over the hypercube
x ∈ H = {±1}n, s(x) can take only one of at most two different values

∑r
j=0 fα(j) ± fβ.

M. Dressler, A. Kurpisz, and T. de Wolff 82:13

If s(x) attains two different values over H, then there has to exist a non empty subset
of variables that have an odd entry in β. Let I ⊆ [n] be this subset. Then s(x) =∑r
j=0 fα(j)(x)− fβ(x), for x ∈ H if and only if x has an odd number of −1 entries in the

set I. The number of such vectors is equal to

2n−|I|
|I|∑
i=0,
i odd

2i = 2n−|I|2|I|−1 = 2n−1. J

I Lemma 21. Every polynomial s(x)`i(x), with s ∈ Cn,2d and `i = 1 + ci ± xi being a box
constraint, attains at most four different values on H = {±1}n. Moreover, each value is
attained for at least one forth of the hypercube vertices.

Proof. By Lemma 20, s(x) attains at most the two values
(∑r

j=0 fα(j) ± fβ
)
onH. Similarly,

`i(x) attains at most the two values 1 + ci± xi over H. Thus, a polynomial s(x)`i(x) attains
at most the four different values

(∑r
j=0 fα(j) ± fβ

)
(1 + ci ± xi) on H.

Let I be as in the proof of Lemma 20, i.e., the subset of variables that have an odd entry
in β. If I = ∅, then the first term

∑r
j=0 fα(j) + fβ is constant over the hypercube H, thus

s(x)`i(x) takes two different values depending on the i-th entry of the vector. Each value is
attained for exactly half of the vectors.

If I 6= ∅ and i /∈ I the claim holds since the value of the first term depends only on
the entries in I and the value of the second term depends on the i-th entry. Hence, the
polynomial s(x)`i(x) attains four values each on exactly one fourth of H vectors.

Finally, let I 6= ∅ and i ∈ I. Partition the hypercube vertices into two sets depending on
the i-th entry. Each set has cardinality 2n−1. Consider the set with xi = 1. For the vectors
in this set the second term takes a constant value 2 + c. Over this set the polynomial s
takes one of the values

∑r
j=0 fα(j)(x)± fβ(x), depending on whether x has an odd or even

number of −1 entries in the set I \ {−1}. In both cases the number of such vectors is equal
to

2n−|I|
|I|−1∑
i=0,
i odd

2i = 2n−|I|2|I|−2 = 2n−2.

The analysis for the case xi = −1 is analogous. J

Now we can provide the proof of Theorem 19.

Proof of Theorem 19. Assume fa ∈ Sd for some a ∈ N and d ∈ N. We prove that a has to
be smaller or equal than 2n−1

2n−2−1 . Since fa ∈ Sd we know that

fa(x) = s0(x) +
n∑
i=1

si(x)`i(x) +
n∑
j=1

s̃j(x)(x2
j − 1) + s̃j+n(x)(1− x2

j)

with s0, . . . , sn, s̃1, . . . , s̃2n ∈ Cn,2d. Since ±(x2
j − 1) for j ∈ [n] vanishes over the hypercube

H, for some s0, si ∈ Cn,2d we can conclude

fa(x) = s0(x) +
n∑
i=1

si(x)`i(x) for all x ∈ H (5.1)

MFCS 2018

82:14 Optimization over the Boolean Hypercube via SONCs

Let s0,k, and si,j be some nonnegative circuit polynomials such that s0 =
∑
k s0,k, and

si =
∑
j si,j . Thus, we get

∑
x∈H

(
s0(x) +

∑
i

si(x)`i(x)
)

=
∑
k

∑
x∈H

s0,k(x) +
∑
i

∑
j

∑
x∈H

si,j(x)`i,j(x)

≥
∑
k

2n−1s0,k(e) +
∑
i

∑
j

2n−2si,j(e)`i,j(e)

≥ 2n−2

(
s0(e) +

∑
i

si(e)`i(e)
)

= 2n−2a,

where the first inequality comes from Lemma 20 and 21 and the last equality from the fact
that fa(e) = a. On the other hand, by the properties of fa and the equality (5.1), we know
that

∑
x∈H

(
s0(x) +

∑
i

si(x)`i(x)
)

= 2n − 1 + a,

which makes the subsequent inequality a necessary requirement for fa ∈ Sd:

a ≤ 2n − 1
2n−2 − 1 . J

Note that an easier example of polynomial nonnegative over the set H exists, that does not
attain a SONC decomposition for q = 1. Consider a polynomial δv(x) defined in Definition 10
for x ∈ Rn, for n ≥ 3. The analysis for this example is easier since the polynomial is zero on
all vertices of H but one, thus by Lemma 21 it is impossible to fit a SONC certificate that
matches those values. However, an important fact is that, by Theorem 6 a polynomial to
admit a SONC certificate has to necessarily be strictly positive over the given set, which is
not the case for δv(x) and the set H.

Speaking from a broader perspective, we interpret Theorem 19 as an indication that the
real algebraic structures, which we use to handle sums of squares, do not apply in the same
generality to SONCs. We find this not at all surprising from the point of view that in the
19th century Hilbert initially used SOS as a certificate for nonnegativity and many of the
algebraic structures in question where developed afterwards with Hilbert’s results in mind;
see [53] for a historic overview. Our previous work shows that SONCs, in contrast, can,
e.g., very well be analyzed with combinatorial methods. We thus see Theorem 19 as further
evidence about the very different behavior of SONCs and SOS and as an encouragement
to take methods beside the traditional real algebraic ones into account for the successful
application of SONCs in the future.

References
1 S. Arora, B. Barak, and D. Steurer. Subexponential algorithms for unique games and

related problems. In FOCS, pages 563–572, 2010.
2 S. Arora, S. Rao, and U. V. Vazirani. Expander flows, geometric embeddings and graph

partitioning. J. ACM, 56(2):5:1–5:37, 2009. doi:10.1145/1502793.1502794.
3 B. Barak, S. B. Hopkins, J. A. Kelner, P. Kothari, A. Moitra, and A. Potechin. A nearly

tight sum-of-squares lower bound for the planted clique problem. In IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt
Regency, New Brunswick, New Jersey, USA, pages 428–437, 2016.

http://dx.doi.org/10.1145/1502793.1502794

M. Dressler, A. Kurpisz, and T. de Wolff 82:15

4 B. Barak, P. Raghavendra, and D. Steurer. Rounding semidefinite programming hierarchies
via global correlation. In FOCS, pages 472–481, 2011.

5 B. Barak and D. Steurer. Sum-of-squares proofs and the quest toward optimal algorithms.
Electronic Colloquium on Computational Complexity (ECCC), 21:59, 2014.

6 Boaz Barak, Jonathan A. Kelner, and David Steurer. Dictionary learning and tensor
decomposition via the sum-of-squares method. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 143–151, 2015.

7 Boaz Barak and Ankur Moitra. Noisy tensor completion via the sum-of-squares hierarchy.
In Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York, USA,
June 23-26, 2016, pages 417–445, 2016.

8 M. H. Bateni, M. Charikar, and V. Guruswami. Maxmin allocation via degree lower-
bounded arborescences. In STOC, pages 543–552, 2009. doi:10.1145/1536414.1536488.

9 Grigoriy Blekherman. There are significantly more nonegative polynomials than sums of
squares. Israel Journal of Mathematics, 153(1):355–380, Dec 2006.

10 V. Chandrasekaran and P. Shah. Relative entropy optimization and its applications. Math.
Program., 161(1-2):1–32, 2017.

11 K. K. H. Cheung. Computation of the Lasserre ranks of some polytopes. Math. Oper. Res.,
32(1):88–94, 2007.

12 E. Chlamtac. Approximation algorithms using hierarchies of semidefinite programming
relaxations. In FOCS, pages 691–701, 2007.

13 E. Chlamtac and G. Singh. Improved approximation guarantees through higher levels of
SDP hierarchies. In APPROX-RANDOM, pages 49–62, 2008.

14 E. Chlamtac and M. Tulsiani. Convex relaxations and integrality gaps. In to appear in
Handbook on semidefinite, conic and polynomial optimization. Springer, 2012.

15 D.A. Cox and J. Little D. O’Shea. Ideals, varieties, and algorithms. Undergraduate Texts
in Mathematics. Springer, Cham, fourth edition, 2015. An introduction to computational
algebraic geometry and commutative algebra.

16 M. Cygan, F. Grandoni, and M. Mastrolilli. How to sell hyperedges: The hypermatching
assignment problem. In SODA, pages 342–351, 2013.

17 W. F. de la Vega and C. Kenyon-Mathieu. Linear programming relaxations of maxcut. In
SODA, pages 53–61, 2007.

18 T. de Wolff. Amoebas, nonnegative polynomials and sums of squares supported on circuits.
Oberwolfach Rep., 23:53–56, 2015.

19 M. Dressler, S. Iliman, and T. de Wolff. A Positivstellensatz for Sums of Nonnegative
Circuit Polynomials. SIAM J. Appl. Algebra Geom., 1(1):536–555, 2017.

20 M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach.,
42(6):1115–1145, 1995.

21 D. Grigoriev. Complexity of positivstellensatz proofs for the knapsack. Comput. Complexity,
10(2):139–154, 2001.

22 D. Grigoriev, E. A. Hirsch, and D. V. Pasechnik. Complexity of semi-algebraic proofs. In
STACS, pages 419–430, 2002.

23 D. Grigoriev and N. Vorobjov. Complexity of null-and positivstellensatz proofs. Ann. Pure
App. Logic, 113(1-3):153–160, 2001.

24 V. Guruswami and A. K. Sinop. Lasserre hierarchy, higher eigenvalues, and approximation
schemes for graph partitioning and quadratic integer programming with psd objectives. In
FOCS, pages 482–491, 2011.

25 D. Hilbert. Uber die darstellung definiter formen als summe von formen-quadraten. Annals
of Mathematics, 32:342–350, 1888.

MFCS 2018

http://dx.doi.org/10.1145/1536414.1536488

82:16 Optimization over the Boolean Hypercube via SONCs

26 Samuel B. Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spectral al-
gorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors. In
Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, Cambridge, MA, USA, June 18-21, 2016, pages 178–191, 2016.

27 S. Iliman and T. de Wolff. Amoebas, nonnegative polynomials and sums of squares sup-
ported on circuits. Res. Math. Sci., 3:3:9, 2016.

28 Pravesh Kothari, Jacob Steinhardt, and David Steurer. Robust moment estimation and
improved clustering via sum of squares. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, 2018.

29 Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares
lower bounds for refuting any CSP. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23,
2017, pages 132–145, 2017.

30 M. Kreuzer and L. Robbiano. Computational commutative algebra. 1. Springer-Verlag,
Berlin, 2000.

31 A. Kurpisz, S. Leppänen, and M. Mastrolilli. Sum-of-squares hierarchy lower bounds for
symmetric formulations. In Integer Programming and Combinatorial Optimization - 18th
International Conference, IPCO 2016, Liège, Belgium, June 1-3, 2016, Proceedings, pages
362–374, 2016.

32 A. Kurpisz, S. Leppänen, and M. Mastrolilli. On the hardest problem formulations for the
0/1 lasserre hierarchy. Math. Oper. Res., 42(1):135–143, 2017.

33 A. Kurpisz, S. Leppänen, and M. Mastrolilli. An unbounded sum-of-squares hierarchy
integrality gap for a polynomially solvable problem. Math. Program., 166(1-2):1–17, 2017.

34 J.B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
J. Optim., 11(3):796–817, 2000/01.

35 M. Laurent. A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations
for 0-1 programming. Math. Oper. Res., 28(3):470–496, 2003.

36 M. Laurent. Lower bound for the number of iterations in semidefinite hierarchies for the
cut polytope. Math. Oper. Res., 28(4):871–883, 2003.

37 M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In
Emerging applications of algebraic geometry, volume 149 of IMA Vol. Math. Appl., pages
157–270. Springer, New York, 2009.

38 M. Laurent. Sums of squares, moment matrices and optimization over polynomials. In
Emerging applications of algebraic geometry, volume 149 of IMA Vol. Math. Appl., pages
157–270. Springer, New York, 2009.

39 J. R. Lee, P. Raghavendra, and D. Steurer. Lower bounds on the size of semidefinite
programming relaxations. In STOC, pages 567–576, 2015.

40 L. Lovász. On the shannon capacity of a graph. IEEE Trans. Inform. Theory, 25:1–7, 1979.
41 A. Magen and M. Moharrami. Robust algorithms for on minor-free graphs based on the

Sherali-Adams hierarchy. In APPROX-RANDOM, pages 258–271, 2009.
42 M. Mastrolilli. High degree sum of squares proofs, bienstock-zuckerberg hierarchy and

CG cuts. In Integer Programming and Combinatorial Optimization - 19th International
Conference, IPCO 2017, Waterloo, ON, Canada, June 26-28, 2017, Proceedings, pages
405–416, 2017.

43 R. Meka, A. Potechin, and A. Wigderson. Sum-of-squares lower bounds for planted clique.
In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 87–96, 2015.

44 T.S. Motzkin. The arithmetic-geometric inequality. Symposium on Inequalities, pages 205–
224, 1967. cited By 1.

M. Dressler, A. Kurpisz, and T. de Wolff 82:17

45 Y. Nesterov. Global quadratic optimization via conic relaxation, pages 363–384. Kluwer
Academic Publishers, 2000.

46 Y. Nesterov and A. Nemirovskii. Interior Point Polynomial Algorithms in Convex Program-
ming. Studies in Applied Mathematics. Society for Industrial and Applied Mathematics,
1994.

47 J. Oxley. Matroid theory, volume 2 of Oxford Graduate Texts in Mathematics. Oxford
University Press, 2011.

48 P. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in Ro-
bustness and Optimization. PhD thesis, California Institute of Technology, 2000.

49 Aaron Potechin and David Steurer. Exact tensor completion with sum-of-squares. In
Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The
Netherlands, 7-10 July 2017, pages 1619–1673, 2017.

50 M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J.,
42(3):969–984, 1993.

51 P. Raghavendra and N. Tan. Approximating csps with global cardinality constraints using
sdp hierarchies. In SODA, pages 373–387, 2012.

52 B. Reznick. Forms derived from the arithmetic-geometric inequality. Math. Ann.,
283(3):431–464, 1989.

53 B. Reznick. Some concrete aspects of Hilbert’s 17th Problem. In Real algebraic geometry
and ordered structures (Baton Rouge, LA, 1996), volume 253 of Contemp. Math., pages
251–272. Amer. Math. Soc., Providence, RI, 2000.

54 Tselil Schramm and David Steurer. Fast and robust tensor decomposition with applications
to dictionary learning. In Proceedings of the 30th Conference on Learning Theory, COLT
2017, Amsterdam, The Netherlands, 7-10 July 2017, pages 1760–1793, 2017.

55 N. Shor. Class of global minimum bounds of polynomial functions. Cybernetics, 23(6):731–
734, 1987.

56 Johan Thapper and Stanislav Zivny. The limits of SDP relaxations for general-valued
csps. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 20-23, 2017, pages 1–12, 2017.

57 G.M. Ziegler. Lectures on Polytopes. Springer Verlag, 2007.

MFCS 2018

Rainbow Vertex Coloring Bipartite Graphs and
Chordal Graphs
Pinar Heggernes
Department of Informatics, University of Bergen, Norway
pinar.heggernes@uib.no

Davis Issac
Max Planck Institute for Informatics, Saarland Informatics Campus, Germany
dissac@mpi-inf.mpg.de

Juho Lauri
Nokia Bell Labs, Dublin, Ireland
juho.lauri@nokia-bell-labs.com

Paloma T. Lima
Department of Informatics, University of Bergen, Norway
paloma.lima@uib.no

Erik Jan van Leeuwen
Department of Information and Computing Sciences, Utrecht University, The Netherlands
e.j.vanleeuwen@uu.nl

Abstract
Given a graph with colors on its vertices, a path is called a rainbow vertex path if all its internal
vertices have distinct colors. We say that the graph is rainbow vertex-connected if there is
a rainbow vertex path between every pair of its vertices. We study the problem of deciding
whether the vertices of a given graph can be colored with at most k colors so that the graph
becomes rainbow vertex-connected. Although edge-colorings have been studied extensively under
similar constraints, there are significantly fewer results on the vertex variant that we consider. In
particular, its complexity on structured graph classes was explicitly posed as an open question.

We show that the problem remains NP-complete even on bipartite apex graphs and on split
graphs. The former can be seen as a first step in the direction of studying the complexity of
rainbow coloring on sparse graphs, an open problem which has attracted attention but limited
progress. We also give hardness of approximation results for both bipartite and split graphs. To
complement the negative results, we show that bipartite permutation graphs, interval graphs,
and block graphs can be rainbow vertex-connected optimally in polynomial time.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases Rainbow coloring, graph classes, polynomial-time algorithms, approxim-
ation algorithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.83

1 Introduction

Graph coloring and graph connectivity are two of the most famous topics in graph algorithms.
Many different types of colorings and connectivity measures have been considered throughout
time. The concept of rainbow coloring brings these two extensively studied topics together,
and it was first defined a decade ago by Chartrand et al. [8] using edge-colorings. Let G be a
connected, edge-colored graph. A rainbow path in G is a path all of whose edges are colored

© Pinar Heggernes, Davis Issac, Juho Lauri, Paloma T. Lima, and Erik Jan van Leeuwen;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 83; pp. 83:1–83:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pinar.heggernes@uib.no
mailto:dissac@mpi-inf.mpg.de
mailto:juho.lauri@nokia-bell-labs.com
mailto:paloma.lima@uib.no
mailto:e.j.vanleeuwen@uu.nl
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.83
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

83:2 Rainbow Vertex Coloring Bipartite Graphs and Chordal Graphs

with distinct colors, and G is rainbow-connected if there is a rainbow path between every pair
of its vertices. The resulting computational problem Rainbow Coloring (RC) takes as
input a connected (uncolored) graph G and an integer k, and the task is to decide whether the
edges of G can be colored with at most k colors so that G is rainbow-connected. This problem
has various applications in telecommunications, data transfer, and encryption [25, 4, 11]
and has been studied rather thoroughly from both graph-theoretic and complexity-theoretic
viewpoints (see related work below and the surveys [19, 25]).

The intense interest in Rainbow Coloring led Krivelevich and Yuster [18] to define
a natural variant on vertex-colored graphs. Here, a path in a vertex-colored graph H is a
rainbow vertex path if all its internal vertices have distinct colors. We say that H is rainbow
vertex-connected if there is a rainbow vertex path between every pair of its vertices. Similarly
to the edge variant, Rainbow Vertex Coloring (RVC) is the decision problem in which
we are given a connected (uncolored) graph H and an integer k, and the task is to decide
whether the vertices of H can be colored with at most k colors such that H is rainbow
vertex-connected. The rainbow vertex connection number of G, denoted by rvc(G), is the
minimum k such that G has a rainbow vertex coloring with k colors. RVC is NP-complete
for every k ≥ 2 [10, 9], and remains NP-complete for k = 3 for bipartite graphs [23]. In
addition, it is NP-hard to approximate rvc(G) within a factor of 2− ε unless P 6= NP, for
any ε > 0 [13]. It is also known that RVC is linear-time solvable on planar graphs for every
fixed k [19]. Finally, assuming the Exponential Time Hypothesis, there is no algorithm for
solving RVC in time 2o(n3/2) for any k ≥ 2 [19].

A stronger variant of rainbow vertex-colorings was introduced by Li et al. [24]. A vertex-
colored graph H is strongly rainbow vertex-connected if between every pair of vertices of
H, there is a shortest path that is also a rainbow vertex path. The Strong Rainbow
Vertex Coloring (SRVC) problem takes as input a connected (uncolored) graph H and
an integer k, and the task is to decide whether the vertices of H can be colored such that H
is strongly rainbow vertex-connected. This definition is the vertex variant of the Strong
Rainbow Coloring problem, which was also broadly studied (see related work below
and the surveys [19, 25]). The strong rainbow vertex connection number of G, denoted by
srvc(G), is the minimum k such that G has a strong rainbow vertex coloring with k colors.
SRVC is NP-complete for every k ≥ 2 [12] and linear-time solvable on planar graphs for
every fixed k [19]. In addition, it is NP-hard to approximate srvc(G) within a factor of
n1/2−ε unless P 6= NP, for any ε > 0 [13].

While RC has been widely studied in more than 300 published papers, we are unaware
of any further complexity results on RVC and SRVC than those mentioned previously. In
particular, the complexity of RVC and SRVC on structured graph classes is mostly open.
This led Lauri [19, Open problem 6.6] to explicitly ask the following:

For what restricted graph classes do RVC and SRVC remain NP-complete?

Our Results. In this paper, we make significant progress towards addressing this open
problem. In particular, we study bipartite graphs and chordal graphs, and some of their
subclasses, and give hardness results and polynomial-time algorithms for RVC and SRVC.
Our main result is a hardness result for bipartite apex graphs:

I Theorem 1. Let G be a bipartite apex graph of diameter 4. It is NP-complete to decide
both whether rvc(G) ≤ 4 and whether srvc(G) ≤ 4. Moreover, it is NP-hard to approximate
rvc(G) and srvc(G) within a factor of 5/4− ε, for every ε > 0.

P. Heggernes, D. Issac, J. Lauri, P. T. Lima, and E. J. van Leeuwen 83:3

This result is particularly interesting since no hardness result was known on a sparse graph
class (like apex graphs) for any of the variants of rainbow coloring. Moreover, this result
can be considered tight in conjunction with the known result that RVC and SRVC are
linear-time solvable on planar graphs for every fixed number of colors k [19]. Finally, we
observe (like Li et al. [23]) that rvc(G) and srvc(G) can be computed in linear time if G is
a bipartite graph of diameter 3, providing further evidence that this result is tight.

For general bipartite graphs and for split graphs (a well-known subclass of chordal graphs),
we exhibit stronger hardness results:

I Theorem 2. Let G be a bipartite graph of diameter 4. It is NP-complete to decide both
whether rvc(G) ≤ k and whether srvc(G) ≤ k, for every k ≥ 3. Moreover, it is NP-hard to
approximate both rvc(G) and srvc(G) within a factor of n1/3−ε, for every ε > 0.

We remark that, previously, it was only known that deciding whether rvc(G) ≤ 3 for bipartite
graphs G is NP-complete by the result of [23]. Our construction, however, is conceptually
simpler, gives hardness for every k ≥ 3, and is easily extended to the strong variant. Moreover,
for RVC on general graphs, this result implies a considerable improvement over the previous
result of Eiben et al. [13] which only excluded a polynomial-time approximation with a factor
of less than 2 assuming P 6= NP.

I Theorem 3. Let G be a split graph of diameter 3. It is NP-complete to decide both
whether rvc(G) ≤ k and whether srvc(G) ≤ k, for every k ≥ 2. Moreover, it is NP-hard to
approximate both rvc(G) and srvc(G) within a factor of n1/3−ε, for every ε > 0.

To the best of our knowledge, our results for split graphs give the first non-trivial graph class
besides diameter-two graphs for which the complexity of the edge and the vertex variant
differ (see e.g, [19, Table 4.2] but note that it contains a typo erroneously claiming that
RVC can be solved in polynomial-time for split graphs). In particular, RC can be solved in
polynomial time on split graphs when k ≥ 4 [5, 7]. Moreover, we observe that rvc(G) and
srvc(G) can be computed in linear time if G is a graph of diameter 2, providing evidence
that this result is tight.

To contrast our hardness results, we show that both problems can be solved in polynomial
time on several other subclasses of bipartite graphs and chordal graphs.

I Theorem 4. If G is a bipartite permutation graph, a block graph, or a unit interval graph,
then rvc(G) and srvc(G) can be computed in linear time. If G is an interval graph, then
rvc(G) can be computed in linear time.

Combined, these results paint a much clearer picture of the complexity landscape of RVC
and SRVC than was possible previously.

Related Work. We briefly survey the known work for the edge variants of rainbow coloring;
we refer to [19, 25] for more detailed surveys. RC is NP-complete for every k ≥ 2 [4, 2, 22],
even on chordal graphs [5]. On split graphs, RC is NP-complete when k ∈ {2, 3}, but solvable
in polynomial time otherwise [5, 7]. It is also solvable in polynomial time on threshold
graphs [5]. On bridgeless chordal graphs, there is a linear-time (3/2)-approximation algorithm
for RC, however the problem cannot be approximated with a factor less than 5/4 on this
graph class, unless P = NP [6]. Some lower bounds on algorithms for solving RC are given
by Kowalik et al. [17] and Agrawal [1] under the Exponential Time Hypothesis.

For the strong edge variant, an edge-colored graph is said to be strongly rainbow-connected
if there is a rainbow shortest path between every pair of its vertices. The problem of deciding
whether the edges of a given graph G can be colored in k colors to make G strongly rainbow-
connected is referred to as SRC. For k = 2, it is not difficult to verify that RC is equivalent

MFCS 2018

83:4 Rainbow Vertex Coloring Bipartite Graphs and Chordal Graphs

to SRC. Not surprisingly, SRC is also NP-complete for k ≥ 2 [2]. In contrast to RC, SRC
remains hard on split graphs for every k ≥ 2 [19, Theorem 4.1]. Moreover, on n-vertex split
graphs, it is NP-hard to approximate SRC within a factor of n1/2−ε for any ε > 0, while
RC admits an additive-1 approximation [5]. The former statement also holds for n-vertex
bipartite graphs instead of split graphs [2]. For block graphs, computing SRC can be done in
linear time [16], while RC on block graphs is conjectured to be hard (see [19, Conjecture 6.3]
or [16]). In general, it appears that despite the interest, there are fewer complexity-theoretic
results on SRC. In fact, the same is true when considering combinatorial results (see [25] for
a broader discussion).

2 Preliminaries

In this paper, we work on undirected simple graphs. Such a graph is denoted by G = (V,E),
where V is the vertex set of G, and E is the edge set. We let n denote the number of vertices
of G. For a vertex x ∈ V , N(x) is the set of its neighbors, and deg(x) = |N(x)| is its degree.
For a S ⊆ V , the subgraph of G induced by S is denoted by G[S]. A cut vertex of G is a
vertex whose removal increases the number of connected components of G.

Given a path P = x1, x2, . . . , xp−1, xp in G, the vertices from x2 to xp−1 are called the
internal vertices of P . The distance between two vertices u and v in G, denoted by dist(u, v),
is the length of a shortest path between u and v. The diameter of G, denoted by diam(G),
is the maximum distance between any pair of vertices of G.

A k-coloring of G is a function c : V → {1, 2, . . . , k}. (From now on, we will denote a set
of consecutive integers from 1 to k as [k].) A coloring is simply a k-coloring for some k ≤ n.
A coloring c is proper if c(u) 6= c(v) for every edge uv ∈ E. The chromatic number of G,
denoted by χ(G), is the smallest k such that G has a proper k-coloring. A d-distance coloring
of G is a coloring c of G such that c(u) 6= c(v) whenever dist(u, v) ≤ d. The minimum
number of colors needed for a d-distance coloring of G is known as the d-distance chromatic
number of G, and it is denoted by χd(G). Note that χd(G) is equivalent to χ(Gd), i.e., the
chromatic number of the dth power of G.

Since, in this paper, we will only be working on the vertex variant of the rainbow coloring
and rainbow connectivity, we might sometimes omit the word “vertex” when there is no
confusion. The parameter srvc(G) was defined by Li et al. [24], and they also verified that
diam(G)−1 ≤ rvc(G) ≤ srvc(G) ≤ n−2. The following upper bound was mentioned in [19]
(see the same reference for further discussion and examples).

I Proposition 5 ([19]). Let G be a connected graph with diam(G) = d ≥ 3. Then

d− 1 ≤ rvc(G) ≤ srvc(G) ≤ χd−2(G).

Proof. There are at least two vertices in G connected by a shortest path of length d. Clearly,
every coloring must use at least d− 1 colors to rainbow-connect this pair. On the other hand,
between every pair of vertices u and v, there is a path of length at most d, meaning that
it contains at most d− 1 internal vertices. As every (d− 2)-distance coloring colors these
internal vertices distinctly, the statement follows. J

A dominating set of G is a set D ⊆ V such that every vertex in V \ D is adjacent
to at least one vertex in D. If G[D] is connected, then D is a connected dominating set.
The minimum size of a connected dominating set in G, denoted by γc(G), is known as the
connected domination number of G. This parameter provides an upper bound on the rainbow

P. Heggernes, D. Issac, J. Lauri, P. T. Lima, and E. J. van Leeuwen 83:5

vertex connection number of a connected graph, since G becomes rainbow vertex-connected
by simply coloring all vertices of the connected dominating set distinctly, and the remaining
vertices with any of the already used colors. This observation can be derived from [18].

I Proposition 6 ([18]). If G is a connected graph, then rvc(G) ≤ γc(G).

2.1 Graph classes

As we will be studying the mentioned problems on some graph classes, let us give a brief
definition of these classes here. More definitions and properties will be added as needed
when we handle these graphs. A detailed background on these graph classes can be found,
for example, in the book by Brandstädt, Le, and Spinrad [3].

A graph is an apex graph if it contains a vertex (called an apex) whose removal results in
a planar graph. A graph is chordal if all of its induced simple cycles are of length 3. Some
well-known subclasses of chordal graphs are interval graphs, split graphs, and block graphs.
A graph is an interval graph if it is chordal and it contains no triple of non-adjacent vertices,
such that there is a path between every two of them that does not contain a neighbor of
the third. A graph is a split graph if its vertex set can be partitioned into an independent
set and a clique. A graph is a block graph if every biconnected component (block) of G is a
complete graph.

Let σ be a permutation of the integers between 1 and n. We can make a graph Gσ
on vertex set [n] in the following way. Vertices i and j are adjacent in Gσ if and only if
they appear in σ in the opposite order of their natural order. A graph on n vertices is a
permutation graph if it is isomorphic to Gσ for some permutation σ of the integers between
1 and n. A graph is a bipartite permutation graph if it is both a bipartite graph and a
permutation graph.

2.2 Hypergraph coloring

For our hardness reductions we will use a well-known NP-complete problem called Hyper-
graph Coloring. A hypergraph H = (N, E) with vertex set N and hyperedge set E is a
generalization of a graph, in which edges can contain more than two vertices. Thus E consists
of subsets of N of arbitrary size. The definition of a (vertex) coloring of a hypergraph is ex-
actly that same as that of a graph. In a colored hypergraph, an edge is called monochromatic
if all of its vertices received the same color. A proper coloring of a hypergraph generalizes a
proper coloring of a graph in a natural way: we require that no hyperedge is monochromatic.
To avoid trivial cases, we can assume from now on that every hyperedge contains at least
two vertices. Thus a proper coloring must always use at least two colors.

The Hypergraph Coloring problem takes as input a hypergraph H and an integer
k and asks whether there is a proper coloring of H with at most k colors. The problem is
well-known to be NP-complete for every k ≥ 2 [26]. The Graph Coloring problem takes
as input an undirected graph G and asks to determine the smallest k such that G has a
proper k-coloring. This problem is NP-hard to approximate within a factor of n1−ε for any
ε > 0, where n is the number of vertices [30]. Finally, the Planar 3-Coloring problem
takes as input a planar graph G and asks whether G has a proper 3-coloring. This problem
is NP-complete [14].

MFCS 2018

83:6 Rainbow Vertex Coloring Bipartite Graphs and Chordal Graphs

a

u1

z1 v1

w1

. . .

u5

z5 v5

w5

x1
e1 x1

e2 x5
e1x5

e2

N ′
1 N ′

5

I ′1 I ′5

u

z v

w
e1

e2

H = (N, E)

Figure 1 A hypergraph H = (N, E) (left) transformed into a bipartite graph G (right) as described
in the proof of Lemma 8. The dashed rectangle with rounded corners contains the sets in N ′.

3 Bipartite graphs and their subclasses

In this section, we show that RVC and SRVC are hard on bipartite graphs for k ≥ 3. We
complement these results by showing that both problems can be solved in linear time on
bipartite permutation graphs. We first observe that computing rvc(G) or srvc(G) is easy
on bipartite graphs of diameter 3. The same observation was made by Li et al. [23].

I Proposition 7 ([23]). If G is a bipartite graph with diam(G) = 3, then rvc(G) = srvc(G) =
2. Moreover, such a coloring can be found in linear time.

Proof. The statement follows from Proposition 5 and the fact that every bipartite graph
has a proper 2-coloring that can be found in linear time. J

It turns out that if diam(G) ≥ 4, then rvc(G) and srvc(G) of a bipartite graph G

become much harder to compute, as claimed in Theorem 2. We prove the following general
construction.

I Lemma 8. Let H be a hypergraph on n vertices. Then in polynomial time we can construct
a bipartite graph G of diameter 4 and with O(n3) vertices such that for any k ∈ [n], H has a
proper k-coloring if and only if G has a (k + 1)-coloring under which G is (strongly) rainbow
vertex-connected. Moreover, if H is a planar graph, then G is an apex graph.

Proof. Let H = (N, E) be an arbitrary hypergraph and let n = |N |. We construct a
bipartite graph G = ({a} ∪N ′ ∪ I ′, E) where N ′ = N ′1 ∪ · · · ∪ N ′n+1, I ′ = I ′1 ∪ · · · ∪ I ′n+1,
N ′i := {vi | v ∈ N}, I ′i := {xie | e ∈ E} and E := {avi | v ∈ N, i ∈ [n+1]} ∪ {vixie | v ∈ N, e ∈
E , i ∈ [n+ 1], v ∈ e}. Let V = {a} ∪N ′ ∪ I ′. A bipartition of G is given by ({a} ∪ I ′, N ′).
Observe that diam(G) = 4 and that G has O(n3) vertices. Moreover, if H is a planar graph,
then G consists of vertex a plus n+ 1 copies of the graph obtained from H by subdividing
each edge of H, and thus G is an apex graph. For an illustration of the construction, see
Figure 1.

P. Heggernes, D. Issac, J. Lauri, P. T. Lima, and E. J. van Leeuwen 83:7

Consider any proper k-coloring h : N → [k] ofH , i.e., no hyperedge of H is monochromatic
under h. We construct a coloring c : V → [k+ 1] in the following way. First, for every v ∈ N ,
we give the vertices v1, v2, . . . , vn of G the same color as v, i.e., c(vi) = h(v) for all v ∈ N and
i ∈ [n+1]. We give vertex a the color k+1, i.e., c(a) = k+1. The vertices in I all receive the
same color, which is any arbitrary color in [k + 1]. Now we prove that G is strongly rainbow
vertex-connected under c by showing that there is a rainbow vertex shortest path between
every pair of vertices. The only non-trivial case is when both vertices of the pair are in I.
Consider two distinct vertices xie, x

j
f ∈ I (it is possible that e = f or i = j but not both).

Since e and f are not monochromatic under h, we can pick two distinct vertices u ∈ e and
v ∈ f such that h(u) 6= h(v). It is clear that the path xieuavx

j
f is a shortest path between xie

and xjf and that it is a rainbow vertex path. Hence, G is strongly rainbow vertex-connected
under c.

Conversely, let c be a (k + 1)-coloring of G under which G is (strongly) rainbow vertex-
connected. For each i ∈ [n+1], define hi to be the vertex coloring of H such that hi(v) = c(vi)
for all v ∈ N . Let Mi be the set of vertices v ∈ N such that hi(v) 6= c(a). Let h′i(v) = hi(v)
if v ∈ Mi and h′i(v) = 1 otherwise. We claim that there exists an i ∈ [n + 1] such that h′i
is a proper k-coloring of H. For the sake of contradiction, suppose that h′i is not a proper
k-coloring of H for every i ∈ [n + 1]. For each i ∈ [n + 1], let ei ∈ E be a monochromatic
edge under h′i. Suppose that, for some i ∈ [n+ 1], all vertices in ei are colored c(a) under
c. Then any path from xiei

to xjei
for some j 6= i uses two vertices having color c(a) under

c. Hence, c would not be a rainbow vertex coloring, a contradiction. Therefore, for each
i ∈ [n + 1], there is a vertex vi ∈ ei for which c(vi) 6= c(a). Suppose now that for every
i ∈ [n + 1], all vertices in ei are colored either c(vi) or c(a) under c. If c(vi) = c(vj) for
i 6= j, then any path from xiei

to xjej
uses either two vertices having color c(a) or two vertices

having color c(vi) = c(vj) under c. This would contradict the assumption that G is rainbow
vertex-connected under c. Hence, c(vi) 6= c(vj) for all distinct i, j ∈ [n+ 1]. This implies that
c uses at least n+ 2 colors, a contradiction to the assumptions that c is a (k + 1)-coloring
of G and that k ∈ [n]. Therefore, for some i ∈ [n + 1], there is a vertex v′i ∈ ei for which
c(v′i) 6= c(a) and c(v′i) 6= c(vi). The latter implies that ei is not monochromatic under h′i, a
contradiction. The claim follows, and thus H has a proper k-coloring. J

Proof of Theorem 2. For membership in NP, a certificate that rvc(G) ≤ k (srvc(G) ≤ k)
consists of a k-coloring and a list of (shortest) paths, one for every pair of non-adjacent vertices,
that are rainbow vertex connected. For NP-hardness, we observe that the transformation
of Lemma 8 implies a straightforward reduction from Hypergraph Coloring. Since
Hypergraph Coloring is NP-complete for each k ≥ 2, this proves the first part of the
theorem.

For the second part of the theorem, we consider an instance of Graph Coloring that
consists of a graph on ` vertices and apply Lemma 8. Note that the total number of vertices
in G is n = O(`3). From the hardness of approximation of Graph Coloring, we know that
for all ε > 0, it is NP-hard to distinguish between the case when H is properly colorable with
`ε colors and the case when H is not properly colorable with fewer than `1−ε colors [30]. By
Lemma 8, this implies that it is NP-hard to distinguish between the case when G is (strong)
rainbow vertex colorable with `ε + 1 ≤ nε + 1 colors and the case when G is not (strong)
rainbow vertex colorable with fewer than `1−ε + 1 = Ω(n1/3−ε) colors. The second statement
of the theorem follows. J

We then proceed to give a proof of Theorem 1. This result can be considered as a first
step to understand rainbow coloring on sparse graphs classes.

MFCS 2018

83:8 Rainbow Vertex Coloring Bipartite Graphs and Chordal Graphs

Proof of Theorem 1. The proof follows along the same lines as the proof of the first part
of Theorem 2. Instead of Hypergraph Coloring, however, we reduce from Planar
3-Coloring, the problem of deciding whether a planar graph has a proper 3-coloring. This
problem is NP-complete. The statement follows from Lemma 8, because the graph resulting
from the construction is a bipartite apex graph of diameter 4.

For the hardness of approximation, we recall that any planar graph has a proper 4-coloring,
and thus the graph G constructed in Lemma 8 has a 5-coloring under which G is rainbow
vertex-connected. Hence, Lemma 8 combined with the NP-hardness of Planar 3-Coloring
makes it NP-hard to decide whether G has a 5-coloring or a 4-coloring under which G is
rainbow vertex-connected. J

We now complement the above hardness results with a positive result in the case when a
bipartite graph is also a permutation graph, as claimed in Theorem 4. Bipartite permutation
graphs have a desirable property, related to breadth-first search (BFS), that we will use
heavily in our next result. Let us first define a chain graph. A bipartite graph is a chain graph
if the vertices of the two independent sets A and B can be ordered as {a1, a2, . . . , ak} and
{b1, b2, . . . , b`}, such that N(a1) ⊆ N(a2) ⊆ · · · ⊆ N(Ak), equivalently, N(b`) ⊆ N(b`−1) ⊆
· · · ⊆ N(b1).

In every bipartite permutation graph G it is possible to find a vertex v such that the levels
L0, L1, L2, . . . of the tree resulting from a BFS starting from v have the following properties.
For all i, L0 = {v}, Li is an independent set and G[Li ∪Li+1] is a chain graph. Moreover, for
each level i, there exists a special vertex ai ∈ Li such that Li+1 ⊂ N(ai). The vertex v can
be picked as the first vertex of a strong ordering. It has been shown by Spinrad et al. [27]
that a bipartite graph is a permutation graph if and only if it has a strong ordering, and
such an ordering can be computed in linear time. The properties of the BFS tree above are
well-known and easy to deduce from a strong ordering [29].

I Theorem 9. If G is a bipartite permutation graph, then rvc(G) = srvc(G) = diam(G)−1,
and the corresponding (strong) rainbow vertex coloring can be found in time that is linear in
the size of G.

Proof. Let G = (V,E) be a bipartite permutation graph. Let v be a first vertex in a strong
ordering for G. We start by doing a BFS on G with v as the root. Let k be the number of
levels in the BFS tree in addition to level 0. Hence, Li is the set of vertices in level i of the
BFS tree, 0 ≤ i ≤ k, with L0 = {v}. Since dist(v, y) = k for every y ∈ Lk, we conclude that
diam(G) ≥ k. Furthermore, if dist(x, y) > k − 1 for some x ∈ L1 and some y ∈ Lk, then we
can conclude that dist(x, y) = k+ 1, where x, v, a1, a2, . . . , ak−1, y is a shortest path between
x and y. In this case, diam(G) = k + 1. We distinguish between these two cases:

Case 1. diam(G) = k.

We construct a strong rainbow vertex coloring c : V → [k − 1] for G in the following way.
If x ∈ Li, we define c(x) = i, for 1 ≤ i ≤ k− 1. We define c(v) = k− 1, and we give arbitrary
colors between 1 and k − 1 to the vertices of Lk. To see that G is indeed rainbow-connected
under c, consider any pair x, y ∈ V . If xy ∈ E or if they are in the same level of the BFS
tree, there is nothing to prove, since dist(x, y) ≤ 2. Otherwise, we have exactly the following
cases:
1. x = v and y ∈ Lj : Then the path v, a1, . . . , aj−1, y is shortest and it is rainbow.
2. x ∈ L1 and y ∈ Lk: In this case, dist(x, y) = k − 1. Otherwise, since each Li is an

independent set, we would have dist(x, y) ≥ k+ 1, which contradicts our assumption that

P. Heggernes, D. Issac, J. Lauri, P. T. Lima, and E. J. van Leeuwen 83:9

diam(G) = k. Since dist(x, y) = k − 1, every shortest path between x and y is rainbow,
as every vertex of such a shortest path has to be in a distinct level of the BFS tree.

3. x ∈ L1 and y ∈ Lj with 2 ≤ j ≤ k − 1: If dist(x, y) = j − 1, then again by the same
argument used above, every shortest path between x and y is rainbow. If dist(x, y) > j−1,
then dist(x, y) = j + 1, and the shortest path x, v, a1, . . . , aj−1, y has distinct colors on
all its internal vertices. (Note that y might have the same color as v if j = k− 1, but this
is fine since y is the end of the path.)

4. x ∈ Li and y ∈ Lj with 2 ≤ i < j ≤ k: If dist(x, y) = j − i, then every shortest path
is rainbow. If dist(x, y) > j − i, then the path x, ai−1, ai, . . . , aj−1, y is rainbow and has
length j − i+ 1, and it is therefore shortest.

Case 2. diam(G) = k + 1.

We construct a strong rainbow vertex coloring c : V → [k] for G in the following way. If
x ∈ Li, we define c(x) = i, for 1 ≤ i ≤ k − 1. We define c(v) = k, and we give arbitrary
colors between 1 and k to the vertices of Lk. To see that G is indeed rainbow-connected
under c, consider any pair x, y ∈ V . Again, if xy ∈ E or if they are in the same level of the
BFS, there is nothing to prove, since dist(x, y) ≤ 2. Otherwise, there is only one remaining
case:

x ∈ Li and y ∈ Lj , with 0 ≤ i < j ≤ k: If dist(x, y) = j − i then every shortest path
between x and y is rainbow. Otherwise, the path x, ai−1, ai, . . . , aj−1, y is rainbow and
has length j − i+ 2, therefore being shortest.

In both cases, c is a strong rainbow vertex coloring for G with diam(G)− 1 colors. By
Proposition 5 we can conclude that rvc(G) = srvc(G) = diam(G)− 1. J

4 Chordal graphs and their subclasses

In this section, we investigate the complexity of RVC and SRVC on chordal graphs and
some subclasses of chordal graphs. We start by proving that both problems are NP-complete
when the input graph is a split graph, implying that they are also NP-complete on chordal
graphs. On the positive side, we show that RVC is polynomial-time solvable on interval
graphs, and both RVC and SRVC are polynomial-time solvable on block graphs and on unit
interval graphs.

We start by observing that computing rvc(G) or srvc(G) is easy on graphs of diameter 2.

I Proposition 10 ([18]). If G is a graph with diam(G) = 2, then rvc(G) = srvc(G) = 1.
Moreover, such a coloring can be found in linear time.

Proof. Color each vertex of G with the same color. Since each shortest path between two
vertices contains at most one internal vertex, G is strongly rainbow vertex-connected under
this coloring. J

If G is a split graph of diam(G) = 3 (note that split graphs have diameter at most 3),
then rvc(G) and srvc(G) become much harder to compute, as claimed in Theorem 3. We
prove the following general construction, which closely mimics the construction of Lemma 8.

I Lemma 11. Let H be a hypergraph on n vertices. Then in polynomial time we can
construct a split graph G of diameter 3 and with O(n3) vertices such that for any k ∈ [n], H
has a proper k-coloring if and only if G has a k-coloring under which G is (strongly) rainbow
vertex-connected.

MFCS 2018

83:10 Rainbow Vertex Coloring Bipartite Graphs and Chordal Graphs

Proof. Let H = (N, E) be an arbitrary hypergraph and let n = |N |. We construct a split
graph G = (N ′∪ I ′, E) where N ′ = N ′1∪ · · ·∪N ′n+1, I ′ = I ′1∪ · · ·∪ I ′n+1, N ′i := {vi | v ∈ N},
I ′i := {xie | e ∈ E} and E := {uivj | u, v ∈ N, i, j ∈ [n + 1]} ∪ {vixie | v ∈ N, e ∈ E , i ∈
[n+ 1], v ∈ e}. Let V = N ′ ∪ I ′. The constructed graph G is a split graph since G[I ′] is an
independent set and G[N ′] is a clique. Observe that diam(G) = 3 and that G has O(n3)
vertices. The construction is illustrated in Figure 1: note that since G[N ′] is a clique, all
possible edges now appear between the vertices inside the rectangle with rounded corners.

Consider any proper k-coloring h : N → [k] ofH , i.e., no hyperedge of H is monochromatic
under h. We construct a coloring c : V → [k] in the following way. First, for every v ∈ N ,
we give the vertices v1, v2, . . . , vn of G the same color as v, i.e., c(vi) = h(v) for all v ∈ N
and i ∈ [n+ 1]. The vertices in I all receive the same color, which is any arbitrary color in
[k]. Now, we prove that G is strongly rainbow vertex-connected under c by showing that
there is a rainbow vertex shortest path between every pair of vertices. The only non-trivial
case is when both vertices of the pair are in I. Consider two distinct vertices xie, x

j
f ∈ I (it is

possible that e = f or i = j but not both). Since e and f are not monochromatic under h,
we can pick two distinct vertices u ∈ e and v ∈ f such that h(u) 6= h(v). It is clear that the
path xieuvx

j
f is a shortest path between xie and xjf and that it is rainbow vertex path.

Conversely, let c be a k-coloring of G under which G is (strongly) rainbow vertex-connected.
For each i ∈ [n + 1], define hi to be the vertex coloring of H such that hi(v) = c(vi) for
all v ∈ N . We claim that there exists an i ∈ [n+ 1] such that h′i is a proper k-coloring of
H. For the sake of contradiction, suppose that h′i is not a proper k-coloring of H for every
i ∈ [n+ 1]. For each i ∈ [n+ 1], let ei ∈ E be a monochromatic edge under h′i. Let vi be an
arbitrary vertex in ei. Suppose now that for every i ∈ [n+ 1], all vertices in ei are colored
c(vi) under c. If c(vi) = c(vj) for i 6= j, then any path from xiei

to xjej
uses two vertices

having color c(vi) = c(vj) under c. This would contradict the assumption that G is rainbow
vertex-connected under c. Hence, c(vi) 6= c(vj) for all distinct i, j ∈ [n + 1]. This implies
that c uses at least n+ 1 colors, a contradiction to the assumptions that c is a k-coloring of
G and k ∈ [n]. Therefore, for some i ∈ [n+ 1], there is a vertex v′i ∈ ei for which c(v′i) 6= c(a)
and c(v′i) 6= c(vi). The latter implies that ei is not monochromatic under h′i, a contradiction.
The claim follows, and thus H has a proper H-coloring. J

Proof of Theorem 3. The proof follows in exactly the same way as Theorem 2, except that
we apply Lemma 11 instead of Lemma 8. J

We now move on to the positive results. As a consequence of the following theorems, we
complete the proof of Theorem 4.

I Theorem 12. Let G be a block graph, and let ` be the number of cut vertices in G. Then
rvc(G) = srvc(G) = `. The corresponding (strong) rainbow vertex coloring can be found in
time that is linear in the size of G.

Proof. Let G = (V,E) be a block graph and {a1, a2, . . . , a`} be the set of cut vertices of
G. We construct a strong rainbow vertex coloring c : V → [`] for G by defining c(ai) = i

for i ∈ [`] and giving the other vertices arbitrary colors between 1 and `. An important
property of block graphs is that there is a unique shortest path between every pair of vertices.
Moreover, each internal vertex of such a path is a cut vertex. Since all the cut vertices
received distinct colors, these shortest paths are all rainbow. The proof follows by observing
that rvc(G) ≥ srvc(G) ≥ ` as well. J

P. Heggernes, D. Issac, J. Lauri, P. T. Lima, and E. J. van Leeuwen 83:11

For our next result, we need to mention that every interval graph has a representation
called an interval model. Let I be a set of n intervals of the real line. Then we can define
a graph GI with a vertex for each interval, such that two vertices are adjacent if and only
if their corresponding intervals overlap. A graph G is an interval graph if and only if G is
isomorphic to GI for some set I of intervals. In this case I is called an interval model of G.

I Theorem 13. If G is an interval graph, then rvc(G) = diam(G)−1, and the corresponding
rainbow vertex coloring can be found in time that is linear in the size of G.

Proof. Let G = (V,E) be an interval graph and I be an interval model for G. The interval
corresponding to vertex v is denoted by Iv. For each interval I ∈ I, we let r(I) be its right
endpoint and `(I) its right endpoint. Let Iu ∈ I be such that r(Iu) ≤ r(I) for all I ∈ I.
Let Iv ∈ I be such that `(Iv) ≥ `(I) for all I ∈ I. Let P = u, x1, x2, . . . , xk, v be a shortest
path between u and v in G. Observe that P is a connected dominating set. Furthermore,
since P is a shortest path, k ≤ diam(G) − 1. By the way we defined u and v, we have
that N(u) ⊆ N(x1) and N(v) ⊆ N(xk). This implies that the set {x1, x2, . . . , xk} is also a
connected dominating set. By Proposition 6, G has a rainbow vertex coloring c : V → [k]
with c(xi) = i, and we can give all the other vertices arbitrary colors. J

An interval graph is a unit interval graph if it has an interval model in which every interval
has the same length (or no interval properly contains another interval). Unit interval graphs
have the same BFS tree structure as that of bipartite permutation graphs, with the single
difference that every level of the BFS tree is a clique instead of an independent set [15].

I Theorem 14. If G is a unit interval graph, then rvc(G) = srvc(G) = diam(G)− 1, and
the corresponding (strong) rainbow vertex coloring can be found in time that is linear in the
size of G.

Proof. Let G = (V,E) be a unit interval graph. Let v be the vertex corresponding to a
first interval in an ordering of the intervals in the unit interval model of G by their right
endpoints. Do a BFS on G with v as the root. Let Li be the set of vertices in level i of the
BFS tree, 0 ≤ i ≤ k, with L0 = {v}. Recall that, for 0 ≤ i ≤ k − 1, there exists a special
vertex ai ∈ Li such that Li+1 ⊂ N(ai).

Consider a vertex u ∈ Lk. A shortest path between v and u has k − 1 internal vertices,
which implies that diam(G) ≥ k. To construct a strong rainbow coloring c : V → [k − 1], we
assign, for 1 ≤ i ≤ k− 1, c(x) = i if x ∈ Li and we give arbitrary colors to the vertices of Lk.

To see that G is strongly rainbow vertex-connected under c, consider x, y ∈ V . If both x
and y are in the same level of the BFS tree, then they are adjacent. So let us consider the
case when x ∈ Li and y ∈ Lj , with 1 ≤ i < j ≤ k. If there is a shortest path between x and
y each of whose vertices is in a distinct level of the BFS tree, then this path is rainbow. If
this is not the case, we consider the path x, ai, ai+1, . . . , aj−1, y. In this case, this path is a
shortest path between x and y, and its internal vertices have distinct colors, since only x
and ai belong to the same level of the BFS. This proves that c is indeed a strong rainbow
coloring for G with diam(G)− 1 colors. J

5 Concluding remarks and related problems

It should be mentioned that other variants of rainbow problems have been studied as well.
When a coloring of the edges or the vertices of a graph is already given as input, we can
ask whether the graph is rainbow-connected or rainbow vertex-connected. Both of these
problems are known to be NP-complete even on highly restricted graphs, like interval graphs,

MFCS 2018

83:12 Rainbow Vertex Coloring Bipartite Graphs and Chordal Graphs

series-parallel graphs, and k-regular graphs for every k ≥ 3 [21, 20, 28]. However, we stress
that these problems are strictly different from RC and RVC. That is, complexity results on
one problem are not transferable to the other.

Finally, we end our paper with the following open question.1 A diametral path of a graph
G is a shortest path whose length is equal to diam(G). A graph is a diametral path if every
connected induced subgraph has a dominating diametral path.

I Conjecture 15. Let G be a diametral path graph. Then rvc(G) = diam(G)− 1.

References
1 Akanksha Agrawal. Fine-grained complexity of rainbow coloring and its variants. In Pro-

ceedings of the 42nd International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 60:1–60:14, 2017.

2 Prabhanjan Ananth, Meghana Nasre, and Kanthi K. Sarpatwar. Rainbow connectivity:
Hardness and tractability. In IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS), pages 241–251, 2011.

3 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey.
SIAM Monographs in Discrete Mathematics and Applications, 1999.

4 Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Raphael Yuster. Hardness and
algorithms for rainbow connection. Journal of Combinatorial Optimization, 21(3):330–347,
2011.

5 L. Sunil Chandran and Deepak Rajendraprasad. Rainbow Colouring of Split and Threshold
Graphs. In Proceedings of the 18th Annual International Computing and Combinatorics
Conference (COCOON), volume 7434 of Lecture Notes in Computer Science, pages 181–192.
Springer, 2012.

6 L. Sunil Chandran and Deepak Rajendraprasad. Inapproximability of rainbow colouring.
In IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), pages 153–162, 2013.

7 L. Sunil Chandran, Deepak Rajendraprasad, and Marek Tesař. Rainbow colouring of split
graphs. Discrete Applied Mathematics, 216:98–113, 2017.

8 Gary Chartrand, Garry L Johns, Kathleen A McKeon, and Ping Zhang. Rainbow connec-
tion in graphs. Mathematica Bohemica, 133(1):85–98, 2008.

9 Lily Chen, Xueliang Li, and Huishu Lian. Further hardness results on the rainbow vertex-
connection number of graphs. Theoretical Computer Science, 481:18–23, 2013.

10 Lily Chen, Xueliang Li, and Yongtang Shi. The complexity of determining the rainbow
vertex-connection of a graph. Theoretical Computer Science, 412(35):4531–4535, 2011.

11 Paul Dorbec, Ingo Schiermeyer, Elżbieta Sidorowicz, and Éric Sopena. Rainbow connection
in oriented graphs. Discrete Applied Mathematics, 179:69–78, 2014.

12 Eduard Eiben, Robert Ganian, and Juho Lauri. On the complexity of rainbow coloring
problems. In Proceedings of the 26th International Workshop on Combinatorial Algorithms
(IWOCA), volume 9538 of Lecture Notes in Computer Science, pages 209–220. Springer,
2015.

13 Eduard Eiben, Robert Ganian, and Juho Lauri. On the complexity of rainbow coloring
problems. Discrete Applied Mathematics, 246:38–48, 2018.

14 M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some Simplified NP-Complete
Graph Problems. Theoretical Compututer Science, 1(3):237–267, 1976.

1 The statement is claimed in [19, Proposition 5.2] but its proof contains an error. Essentially, only an
upper bound of diam(G) + 1 is known by Proposition 6.

P. Heggernes, D. Issac, J. Lauri, P. T. Lima, and E. J. van Leeuwen 83:13

15 Pavol Hell and Jing Huang. Certifying LexBFS Recognition Algorithms for Proper Interval
Graphs and Proper Interval Bigraphs. SIAM Journal on Discrete Mathematics, 18(3):554–
570, 2004.

16 Melissa Keranen and Juho Lauri. Computing minimum rainbow and strong rainbow color-
ings of block graphs. arXiv preprint arXiv:1405.6893, 2014.

17 Łukasz Kowalik, Juho Lauri, and Arkadiusz Socała. On the fine-grained complexity of
rainbow coloring. In Proceedings of the 24th Annual European Symposium on Algorithms
(ESA), pages 58:1–58:16, 2016.

18 Michael Krivelevich and Raphael Yuster. The rainbow connection of a graph is (at most)
reciprocal to its minimum degree. Journal of Graph Theory, 63(3):185–191, 2010.

19 Juho Lauri. Chasing the Rainbow Connection: Hardness, Algorithms, and Bounds. PhD
thesis, Tampere University of Technology, 2016.

20 Juho Lauri. Further hardness results on rainbow and strong rainbow connectivity. Discrete
Applied Mathematics, 201:191–200, 2016.

21 Juho Lauri. Complexity of rainbow vertex connectivity problems for restricted graph classes.
Discrete Applied Mathematics, 219:132–146, 2017.

22 Van Bang Le and Zsolt Tuza. Finding optimal rainbow connection is hard. Technical
Report CS-03-09, Universität Rostock, 2009.

23 Shasha Li, Xueliang Li, and Yongtang Shi. Note on the complexity of deciding the rain-
bow (vertex-)connectedness for bipartite graphs. Applied Mathematics and Computation,
258:155–161, 2015.

24 Xueliang Li, Yaping Mao, and Yongtang Shi. The strong rainbow vertex-connection of
graphs. Utilitas Mathematica, 93:213–223, 2014.

25 Xueliang Li, Yongtang Shi, and Yuefang Sun. Rainbow connections of graphs: A survey.
Graphs and Combinatorics, 29(1):1–38, 2013.

26 László Lovász. Coverings and colorings of hypergraphs. In Proceedings of the 4th South-
eastern Conference on Combinatorics, Graph Theory, and Computing, pages 3–12, 1973.

27 Jeremy Spinrad, Andreas Brandstädt, and Lorna Stewart. Bipartite permutation graphs.
Discrete Applied Mathematics, 18(3):279–292, 1987.

28 Kei Uchizawa, Takanori Aoki, Takehiro Ito, Akira Suzuki, and Xiao Zhou. On the Rainbow
Connectivity of Graphs: Complexity and FPT Algorithms. Algorithmica, 67(2):161–179,
2013.

29 Ryuhei Uehara and Gabriel Valiente. Linear structure of bipartite permutation graphs and
the longest path problem. Information Processing Letters, 103(2):71–77, 2007.

30 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC), pages 681–690. ACM, 2006.

MFCS 2018

Listing Subgraphs by Cartesian Decomposition
Alessio Conte
National Institute of Informatics, Tokyo, Japan
conte@nii.ac.jp

Roberto Grossi
Dipartimento di Informatica, Università di Pisa, Pisa, Italy
grossi@di.unipi.it

Andrea Marino
Dipartimento di Informatica, Università di Pisa, Pisa, Italy
marino@di.unipi.it

Romeo Rizzi
Dipartimento di Informatica, Università di Verona, Verona, Italy
romeo.rizzi@univr.it

Luca Versari
Dipartimento di Informatica, Università di Pisa, Pisa, Italy
luca.versari@di.unipi.it

Abstract
We investigate a decomposition technique for listing problems in graphs and set systems. It is
based on the Cartesian product of some iterators, which list the solutions of simpler problems.
Our ideas applies to several problems, and we illustrate one of them in depth, namely, listing
all minimum spanning trees of a weighted graph G. Here iterators over the spanning trees for
unweighted graphs can be obtained by a suitable modification of the listing algorithm by [Shioura
et al., SICOMP 1997], and the decomposition of G is obtained by suitably partitioning its edges
according to their weights. By combining these iterators in a Cartesian product scheme that
employs Gray coding, we give the first algorithm which lists all minimum spanning trees of G in
constant delay, where the delay is the time elapsed between any two consecutive outputs. Our
solution requires polynomial preprocessing time and uses polynomial space.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Graph algorithms, listing, minimum spanning trees, constant delay

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.84

Funding This work has been partially supported by MIUR (Italian Ministry of University and
Research) and JST CREST, Grant Number JPMJCR1401, Japan

1 Introduction

Listing problems in set systems have solutions corresponding to sets of elements from a ground
set U . Set systems formalize, among others, most subgraph listing problems as subgraphs are
usually modeled as sets of vertices or edges (e.g. independent sets where U is the vertex set,
or matchings where U is the edge set). A listing problem can be thus identified with the set
P ⊆ 2U of its solutions to be listed, where typically each solution satisfies certain properties
(e.g. maximality under inclusion).

© Alessio Conte, Roberto Grossi, Andrea Marino, Romeo Rizzi, Luca Versari;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 84; pp. 84:1–84:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:conte@nii.ac.jp
mailto:grossi@di.unipi.it
mailto:marino@di.unipi.it
mailto:romeo.rizzi@univr.it
mailto:luca.versari@di.unipi.it
http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.84
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

84:2 Listing Subgraphs by Cartesian Decomposition

In this paper we consider decomposable listing problems, where a problem P is decompos-
able if it can be modeled as the Cartesian product P = S1 × · · · × Sh, with S1, . . . , Sh ⊆ 2U .
We call this a Cartesian decomposition.

Many graph listing problems offer natural Cartesian decompositions. A trivial example
is given by the (maximal or not) independent sets of a graph G, which can be decomposed
using the connected components of G: indeed, any independent set of G corresponds to
choosing an independent set from each of its connected components; hence letting Si be all
the independent sets in the i-th connected component in G, all those in G are obtained by
combining them as P = S1×· · ·×Sh, where X×Y returns all the unions of their vertex sets,
{x ∪ y : x ∈ X, y ∈ Y }. This same decomposition applies also to other types of subgraphs
such as matchings and the edge sets.

This already can give improvements in the general case: even a simple reduction, such
as reducing Steiner trees in a graph to combinations of Steiner trees in its biconnected
components (see Section 4), already makes listing Steiner trees easier on graphs with small
biconnected components. On the other hand, we will see in this paper that there are less
trivial Cartesian decompositions, which allow us to reduce some problems to simpler ones,
and design more efficient listing algorithms.

For a Cartesian decomposition P = S1 × · · · × Sh, we observe that each set Si is the
output of some listing algorithm Ai, for 1 ≤ i ≤ h. Thus Si is not explicitly given, and
may even have exponential size. As using polynomial space is one of the goals of this paper,
among others, we consider Ai as a procedure that outputs all solutions of Si in some order
in polynomial space1. There are several definitions of efficiency for listing algorithms [15]: we
consider the delay, that is, a worst-case measure representing the maximum time elapsed
between any two consecutive outputs of Ai. If Ai has bounded delay (e.g. polynomial in the
size of G for listing subgraphs of G), it is also called output-sensitive, as the total running
time is proportional to the size |Si|.

Given h listing algorithms A1, . . . , Ah, we model them as iterators over the sets S1, . . . , Sh,
thus avoiding to store explicitly the latter ones. We thus consider the problem of listing
implicitly the solutions of the Cartesian product S1 × · · · × Sh, which amounts to listing
all the solutions of P. This allow us to design the resulting listing algorithm that handle a
complex counter with h digits with constant delay,2 where the i-th digit goes through |Si|
values and each configuration is a solution of P . While intuitively a good representation, this
is not the whole picture of the algorithmic challenge. For example, (re)setting digit i to “0”
may be expensive, as we should pay for this solution the preprocessing cost of Ai; even if the
latter is just O(1) time, it does not guarantee a good delay as we may need to reset many
counters at once, and this gives us a delay of Ω(h), and possibly worse; if opting for Gray
codes, as we do, we should have some control on the order in which solutions of Si are listed,
which requires to modify Ai.

In this paper we propose a technique for iterating over the Cartesian product which allows
us, under suitable conditions, to list the solutions of P, with polynomial preprocessing cost
and space usage, and with delay bounded by the worst case delay on any Ai. This exploits a
form of Gray coding and common properties of state-of-the-art listing algorithms.

After describing how to list solutions using Cartesian decomposition in Section 2, we
give some concrete examples of the wide class of problems which can be decomposed in
Section 1.1 (or more in detail in Section 4), and study the case of minimum spanning trees

1 Otherwise, if Ai takes exponential space, we can just use Si directly, and our listing problem becomes
of little interest.

2 Constant amortized cost is easier to obtain, as shown in [10, Chapter 17].

A. Conte, R. Grossi, A. Marino, R. Rizzi, and L. Versari 84:3

(msts hereafter) in Section 3 to show how to iron all the details in a complete example. We
will propose a decomposition which reduces the msts of a graph G to the Cartesian product
among the spanning trees of a set of unweighted graphs G1, . . . , Gh. Furthermore, we will
show that, by combining this decomposition with a modified version of the state of the art
algorithm for listing spanning trees [29], we can obtain the first listing algorithm for msts
with constant delay, using O(mn) space.

1.1 Related Work

Solving complex problems by decomposing them into simpler problems is the main principle
in algorithm design, and many techniques follow that principle: divide-and-conquer, dynamic
programming, and so on. For enumeration and listing, some papers addressed this issue:
backtracking algorithms [5, 27], and binary partition algorithms [4] in particular, can be seen
as an implicit form of decomposition. Other forms of decompositions for listing include [24],
which lists all arborescences in a digraph by modelling the solution space as a polynomial,
and decomposing this into prime factors, [13] which deletes vertices and edges to generate
formulas for counting subgraphs such as spanning trees and acyclic subgraphs, [25] which
uses the treewidth decomposition for enumerating purposes, and [31] which shows how to
decompose some problems into quasi-independent subproblems using clique separators.

In the case of fixed parameter algorithms, a form of decomposition has been explicited in
the so-called kernelization which is a technique which preprocesses the input to get a smaller
input, called kernel. The result of solving the problem on the kernel should either be the
same as on the original input, or it should be easy to transform the output on the kernel
to the desired output for the original problem [11]. As for listing algorithms for graphs, in
many cases the instance of the problem can be partitioned in several kernels, so that the
listing algorithm can be solved in each of them, and the result of the original problem can be
obtained by the result of a Cartesian product among these set of solutions. Some examples
are given next, and a more detailed discussion can be found in Section 4.

Application examples. Decomposition, for instance considering connected or biconnected
components separately, applies to several listing problems including st-paths [4], unweighted
spanning trees, Steiner trees, maximal independent sets [7], maximal induced matching [2],
maximal k-degenerate subgraphs [8], minimal feedback vertex/arc sets [28], bipartite sub-
graphs [33], bounded girth subgraphs [9], dominating sets [19], and acyclic orientations [6]
(see Section 4 for more details).3 One of the goals of this paper is explicitly defining this
Cartesian decomposition in a general way, so as to be used as a black box in future works.

msts, which we consider as case study for this technique, have a less trivial but powerful
decomposition. Spanning trees (in short sts) and msts have a rich and long history which
has been pointed out in several surveys [3, 26, 20, 14]. Due to this interest, several listing
algorithms for sts and msts have been proposed over the years. One of the most popular
listing algorithms for undirected unweighted graphs is the one by [16] which lists all the sts in
optimal time, i.e. O(α+n+m) and space O(nm), where α is the number of solutions. On the
other hand, using reverse search, the algorithm in [22] has linear space with O(m+ n+ αn)
time. The one in [29] is optimal time and has also linear memory. The algorithm in [30] lists
all the sts in increasing order of weights with cost O(αm logm+ n2) total time and O(αm)
space.

3 Moreover, it has been implicitly adopted in other graph enumeration papers, like [4].

MFCS 2018

84:4 Listing Subgraphs by Cartesian Decomposition

Concerning more specifically weighted graphs, the algorithm in [23] works also for msts,
as also one of the algorithms in [16] allows to list msts in a similar time bound, i.e. O(αn).
Other algorithms have been proposed: the algorithm in [35] has cost per solution equal to
O(m log n) and O(m) space. A generalization of the Kruskal Algorithm for listing purposes
has been done in [34]. The reduction in [12] allows us to reduce the enumeration of msts to
sts in a different graph through edge sliding operations, which, using [16] as a subroutine,
lists all msts in constant amortized time, but not constant delay. This reduction may be
combined with the techniques proposed in this paper to obtain an alternative, equivalent,
algorithm for listing msts with the same delay. To this end, our approach based on Cartesian
decomposition is general and can be applied to a vast range of other graphs problems, as
long as their set of solutions can be decomposed in some way.

1.2 Preliminaries

We consider an undirected, edge weighted, graph G = (V (G), E(G)). NG(v) represents the
neighborhood of v in G. For simplicity, in the following we call |V (G)| = n and |E(G)| = m.
Whenever G is clear from the context, we may drop subscripts and use simplified notation
like V , E, N(v) instead of V (G),E(G), NG(v).

Let W = {w1, . . . , wk}, with w1 < · · · < wk, be the distinct edge weights of G, where
1 ≤ k ≤ m. For a weight wi, let E<wi

(G), Ewi
(G), and E>wi

(G) be the sets of all edges in
E(G) which have weight respectively smaller than wi, equal to wi, and larger than wi.

For a given edge e = {x, y}, we call contracting e in G the operation of deleting x and y
from G, as well as all edges incident to them, and replacing them with a new node z such
that N(z) = N(x) ∪̇ N(y), observing that N(z) can be a multiset (and thus we obtain a
multigraph). We refer to the (multi)graph obtained by contracting e in G as G/e. We also
implicitly maintain a correspondence between the new edges in G/e and those in G to make
the operation reversible. Note that this is not a one-to-one correspondence as two edges
{v, x} and {v, y} will correspond to the same edge {v, z} in G/e. Instead, G\e represents the
graph obtained by simply deleting e from G (but not its extremes). The operations G/X and
G \X are similarly defined for a set of edges X ⊆ E(G), where edges (or their corresponding
ones) are respectively contracted or deleted one by one in any order.

Given a set of edges E′ ⊆ E(G), V [E′] is the set of nodes incident to at least one edge
in E′. The subgraph of G induced by E′ is the graph G[E′] = (V [E′], E′). A spanning tree
of a connected graph G is a subgraph T = G[ET], for some ET such that T is connected,
acyclic, and contains all nodes of G, i.e., V [ET] = V (G). One can also define a spanning
tree as a maximal set of edges ET such that the corresponding subgraph G[ET] is acyclic.
Yet another equivalent definition of spanning tree is a minimal set of of edges ET which
guarantees connectivity between all pairs of nodes, since any edge that partakes in a cycle
may be deleted without affecting the connectivity of the graph [10]. We denote by T (G) the
set of all spanning trees ti of G.

When G is not connected, let C(G) = {C1, . . . , Cj} be the set of connected components
of G; for simplicity, we define a spanning tree of the non connected graph G as the union
of a spanning tree of each connected component. In this case, we can easily see how T (G)
corresponds to the Cartesian product among the sets of trees of its connected components,
i.e., T (C1)× . . .× T (Cj).

A. Conte, R. Grossi, A. Marino, R. Rizzi, and L. Versari 84:5

2 Finding Solutions of the Cartesian Product via Gray Coding

In the previous section we have seen that the problem of listing patterns in several cases
reduces to combining solutions from other listing subproblems in all the possible ways. This
corresponds to our notion of decomposable problem and our goal here is to achieve efficient
enumeration of the original problem knowing how to efficiently solve each of the subproblems,
as summarized next.

Main Problem. Given h subproblems, whose solutions are sets S1, . . . , Sh, the solutions
of our problem can be seen conceptually as tuples 〈s1, . . . , sh〉 ∈ P = S1,× . . . × Sh. Now
suppose that we have a listing algorithm which is able to iterate over the solutions of Si for
each i with polynomial setup time O(P), delay time O(D) and polynomial space, modeled
as an iterator Ai which can yield the solutions of Si one by one after an initial setup.4 We
say that the iterator Ai is reversible if there exists an iterator A−1

i which scans the solutions
of Ai in the opposite order with the same time and space costs. We will show that, having
reversible iterators Ai, it is possible to build an iterator for P , whose delay is the same of Ai.

I Theorem 1. Given a reversible iterator Ai for each set of solutions Si, 1 ≤ i ≤ h, running
with delay O(D), setup time O(P), and polynomial space, it is possible to list all the solutions
in P = S1,× · · · × Sh with delay O(D), setup O(h · P) and polynomial space.

While the polynomial space of an iterator can increase by a factor h in the statement of
Theorem 1, we observe that the delay does not depend on h nor includes the setup times. This
is non-trivial as we could trivially start running the algorithm A1 to get S1, and each time
a solution sj ∈ S1 is found, recursively start the iterator A2 to scan all the solutions in S2.
This is not satisfactory as it requires, in the worst case, a delay which can be O(h · (P +D)),
so that for each solution sj ∈ Si (1 ≤ i < h) we have to setup the iterator Si+1. To meet the
result in Theorem 1, we need to erase the setup cost from the delay, meaning that for each
sj ∈ Si, the iterator for Si+1 is ready to use without calling a setup function, e.g. init()
for Ai+1. On the other hand, we need to erase also the dependency from h. To overcome
this we start from the well known Gray coding technique, in a generalized form given by
Knuth, in “The Art of Computer Programming” Volume 4 Fascicle 2A [17]. This requires to
design forward and backward iterators, i.e. meaning that for each iterator Ai that scans all
the solutions of Si (with 1 ≤ i ≤ h) in a certain order we need to design a corresponding
iterator, which we call A−1

i , that scans the same solutions in the reversed order.

2.1 Setup costs
Given an iterator Ai, with O(D) delay and a given setup cost of O(P) time (corresponding
to the cost of init()), the main objective of this section is showing that it is possible to
scan the set of solutions Si an arbitrary number of times, paying the setup cost O(P) only
once (the first time Ai is started), and without affecting the delay O(D).

To this aim, first consider the trivial case in which the total execution time of Ai, after
the setup is done, is equal or less than the setup cost O(P). This implies that the output is
bounded in size by O(P). In this case, we can simply run Ai, and store the complete whole
output: this takes O(P) time and space, and clearly allows us to iterate on the solutions of
Ai (i.e., the output) any number of times with an equal (or better) delay.5

4 This can be realized for instance providing the well-known init() and getNext() methods of Java
iterators, to respectively initialize and give the next solution for a given iterator.

5 To recognize this case, we simply run Ai for O(P) steps after the setup, without affecting its cost.

MFCS 2018

84:6 Listing Subgraphs by Cartesian Decomposition

Otherwise, let M be the total amount of data generated by the setup of Ai. This can be
anything, such as initialized data structures, pre-processed information on the input, buffered
solutions, or other data. Once M is given, then Ai can start without further ado, so our goal
is achieved by guaranteeing that an unaltered copy of M is ready at any time to start again.

To obtain this, we keep two copies of M , namely Ma and Mb. Initially these need O(P)
time to be computed, and clearly we can restore any of them at any time in O(P) time by
executing the setup again. Our strategy works as follows. The first time that Ai is executed
it will use the data in Ma. After its execution, Ma may have been altered and may not be
usable, but Mb is intact. For the second execution, we will run Ai using Mb, and restore
Ma while running the algorithm: we perform alternatively one step of Ai and one step of
restoring Ma. The next time Ai is run, it can use the data in Ma, and restore Mb while
running in the same way. Hence, even executions of the iterator Ai use Ma and restore Mb,
while odd ones use Mb while restoring Ma. Note that, since the execution of Ai takes Ω(P)
time (we covered the other case above), Ma (or Mb) will have been fully restored before Ai

terminates. As a result, we can start the iterator Ai any number of times, but the setup cost
is only paid once in the beginning. Furthermore, this slows down Ai by just a factor of two,
so the asymptotic complexity is unchanged.

2.2 Gray Coding via Forward and Backward Iterators
The idea of Gray coding is producing tuples one after the other such that any two consecutive
tuples differ by just one entry, i.e. after the output of 〈s1, . . . , sj−1, sj , sj+1 . . . , sh〉 we output
〈s1, . . . , sj−1, s

′
j , sj+1, . . . , sh〉 for some j. A result in [17] was given for explicit sets, but in

the following we show how to generalize it for implicit sets, i.e. sets which are results of an
iterator. Clearly, to do so, we take into account the delay between the output of sj and s′j
in Aj , namely O(D) in Theorem 1. The adaptation is not trivial as [17] assumes a certain
ability of moving inside the objects in Sj , while a listing algorithm produces solutions in one
fixed order.

Among the several variations of Gray coding, we consider loopless reflected mixed-radix
Gray generation (Algorithm H in [17]), which we refer to as lrmg. This algorithm visits
all the tuples changing only one coordinate ±1 at each step. It maintains an array of focus
pointers which says which iterator we have to call at each step, and an array of directions,
which for each j (with 1 ≤ j ≤ h) says whether we are iterating on Sj from the first solution
to the last one or vice versa. Without loss of generality, we can assume |Si| > 1 for each i, as
if |Si| = 1 then the only element in Si is present in all solutions and needs to be output just
once at the beginning.

The approach of lrmg can be generalized to deal with the tuples of P = S1 × . . .× Sh,
when the elements of each Si are implicit, i.e. the result of an iterator. This generalization
can be done if the following holds: for each i, on top of the iterator Ai that scans the solutions
of Si in a certain order π, with delay O(D), we can obtain another iterator, called A−1

i ,
that scans the same solutions in the opposite order of π, still with delay O(D). The logic
behind this is that the “direction” variable of each iterator is changed only at the end of
each iteration, thus we only need to perform complete iteration on Si in one order and its
opposite.

An important remark is that whenever switching from using a certain Ai to the corres-
ponding A−1

i , we should not consider as output the first solution found by A−1
i , since it is

the same as the last one output by Ai. The same applies when switching from A−1
i back to

Ai. In both cases the delay and preprocessing cost remain the same.

A. Conte, R. Grossi, A. Marino, R. Rizzi, and L. Versari 84:7

If this is given, we can prove Theorem 1. Indeed, we can plug the suitable iterators Ai

and A−1
i into lrmg, and uses the setup cost factorization described in Section 2.1, obtaining

an algorithm for iterating the solutions of P having as delay and setup time cost respectively
the sum of the delay and setup time costs of Ai and A−1

i , which asymptotically is the same.

Getting the backward iterator. We now show how to obtain A−1
i given Ai, under suitable

conditions which are met by most state-of-the-art listing algorithms. In particular, we assume
Ai to be a recursive algorithm with a recursion tree in which each node outputs at most one
solution, and generates children as nested recursive calls. Moreover, we assume to be able to
generate children of a given recursive call in the opposite order as in Ai, which is generally
true for binary partition [5, 4] or reverse search [1, 21] algorithms, where the i-th child call is
not influenced by the computation of the subtrees of the previous i− 1 children.

Let T be the tree induced by the recursive calls. Note that in reverse search algorithms
each node in T outputs a solution, while in other backtracking algorithms output may be
done in just some nodes, or some of the leaves of T . Consider the following two traversals of
T , called forward (resp. backward), starting from a node u, where d is the depth of the
current recursion node in T .
1. If d is even (resp. odd) output u.
2. For each child i of u in increasing (resp. descending) order call forward (u) (resp.

backward (u)).
3. If d is odd (resp. even) output u.

The following observation clearly holds.

I Observation 2. For any tree T , let π be the visiting order of the nodes of T obtained by
forward. Then backward scans the nodes of T in the opposite order with respect to π.

The above traversal is similar to the so-called alternative output in [32], which is usually
done to reduce the delay of listing algorithms, but we use this variation to get forward and
backward iterators Ai and A−1

i at the same time. In particular, we define Ai and A−1
i as the

iterators respectively induced by forward and backward visit algorithms on T .
Applying Observation 2, we observe that in order to design Ai and A−1

i , we only need
a method to scan all the children in each internal node of T in one direction and in the
opposite one with the same cost. As a result, both Ai have the same delay O(D).

3 Case Study: Minimum Spanning Trees

In this section we describe how to use our technique to list all the msts of a graph, improving
the state of the art to get constant delay for sts and applying the technique in Section 2 to
get constant delay also for msts.

Overview. We will firstly reduce the problem of listing msts to the one of listing sts.
To this aim, we order the weights of the graph as in the well-known Kruskal Algorithm,
w1 < · · · < wk, and we solve a sts listing problem for each different wi, that is finding all
the sts in a series of h graphs C1, . . . , Ch (with h ≥ k). For the latter task, on each Ci we
run our improvement of the algorithm by [29], which achieves O(1) delay to list sts and is
presented in Section 3.2.1. We then need to compose the solutions, so that each combination
of solutions for C1, . . . , Ch corresponds to a different msts. As we have delay O(1) on each
Ci (with setup time O(m2) and space O(mn)), our main goal is to preserve these bounds
when combining the solutions of C1, . . . , Ch. Indeed, the usual algorithm would setup an

MFCS 2018

84:8 Listing Subgraphs by Cartesian Decomposition

iterator for C1, and for each solution of C1 would setup the iterator for the solutions of C2
and so on. In this way, the delay can be up to O(hm2). Our goal is to reduce this delay to
O(1), which is the delay of a single iterator, maintaining polynomial space.

We hence apply the techniques in Section 2, adapting listing algorithms to use the Gray
coding strategy, basically showing how to build backward iterators from forward iterators,
how to factorize setup time costs and use and rebuild auxiliary data structures without
afflicting the time complexity.

This problem is related to the more general problem of listing all the tuples of a Cartesian
product which is usually solved using Gray coding. However, as in the scenario presented
in Section 2, in our case the elements of the tuples are not explicitly given but they are
generated through iterators which give solutions in a linear way (it is not possible to jump
from one solution to an arbitrary one) and require setup time costs. In this section, we adapt
our general solution to deal with the specific case of msts. In particular:

we show how to reduce the problem of listing msts to the listing the solutions of a
Cartesian product among h sets of solutions, each one corresponding to a set of sts in a
graph.
we show how to list sts with constant delay, as the state of the art algorithm [29] for sts
runs in constant amortized time per solution but linear delay.
we show how to use output queue technique to get rid of setup times and pay them just
once at the beginning.
we design ad hoc forward and backward iterators for sts, both with constant delay, which
help us to successfully applying Gray coding to msts, so that the difference between two
consecutive listed solutions is constant and can be computed in constant time.

3.1 From Minimum Spanning Trees to Spanning Trees
A well known way to compute a minimum spanning tree is using the greedy algorithm by
Kruskal [18], which consists of the following steps:
1. Scan the edges of G according to an increasing weight order.
2. Add an edge to the solution T if it does not create a cycle in T , and discard it otherwise.
3. When all edges have been considered, T is a minimum spanning tree of G.

It is immediately evident how if all edges have different weights they will always be
scanned in the same order, thus the algorithm will return the same result. However, if several
edges have the same weight, the algorithm may scan them in different orders and produce
different trees. Actually, it turns out that any minimum spanning tree of G may be found by
Kruskal’s algorithm, if that the adequate order of the edges is provided. More formally

I Lemma 3. Let T be any mst of G, and e1, . . . , em an ordering of E(G) in increasing
weight, such that any edge ei ∈ T appears in the order before any edge not in T which has
the same weight as ei. Running Kruskal’s algorithm according to this order yields exactly T .

By shifting our point of view, we can rephrase the algorithm in a more convenient way
for our goal, considering the weights w1 < · · · < wk of G. The algorithm is essentially saying
that we should greedily add as many edges of Ew1 as possible, without creating a cycle,
before considering those of Ew2 . In other words, we are selecting a maximal acyclic subgraph
of the graph G[Ew1], that is, a spanning tree T of G[Ew1]. Once such a tree (or combination
of trees, if G[Ew1] is not connected) has been found, all edges joining two vertices in the same
connected component of T may be discarded, as they will create a cycle and not improve

A. Conte, R. Grossi, A. Marino, R. Rizzi, and L. Versari 84:9

the connectivity. Furthermore, adding to T any edge from a node x to any node in some
connected component C of T is equivalent in terms of connectivity.

This means that we can contract each C into a single node to obtain a new graph G′, and
continue to execute Kruskal’s algorithm, i.e., considering edges in Ew2 , without affecting the
outcome. Greedily adding edges of Ew2 to T without creating cycles corresponds to selecting
a maximal acyclic subgraph (i.e., spanning tree) of G′[Ew2]. Again, once the edges of this
spanning tree are selected and added to T , we can contract the connected components and
connect as many nodes as possible using the edges of Ew3 .

A crucial point is that any spanning tree of G[Ew1] will contain exactly the same connected
components as any other, corresponding to the connected components of G[Ew1]. In other
words, G′[Ew2] is always the same, regardless of which spanning tree of G[Ew1] was previously
selected. This means that we can abstract the analysis of each weight wi from all others:
indeed, when considering wi, we can consider as a single node all the nodes connected by
edges of weights smaller than wi, and we must create as many new connections as possible
using edges of Ewi

without creating cycles. This corresponds to selecting a spanning tree in
the graph obtained by contracting all edges of weight smaller than wi, i.e., E<wi

, and then
deleting all those of weight greater than wi; we call this graph Gi, whose formal definition is
Gi = (G/E<wi

) \ E>wi
. We can thus give a recursive definition to the set of all minimum

spanning trees of G, i.e. msts(G), as:

msts(G) =
∏

wi∈W

(T (Gi)) (1)

Where we recall that T (Gi) is the set of all spanning trees of Gi,
∏

corresponds to the
Cartesian product between the given sets and, if Gi is not connected, we defined its spanning
trees as combinations of a spanning tree of each connected components, as follows:

T (Gi) =
∏

Cj∈C(Gi)

T (Cj). (2)

From what we said above, as all (and only) the minimum spanning trees of G are obtained
by combining a minimum spanning tree of each Gi, for all 1 ≤ i ≤ k, we get the following.

I Lemma 4. Equation 1 gives all (and only) the minimum spanning trees of G.

Furthermore, note that all edges in a single Gi have the same weight, so all spanning trees
have the same weight as well, and listing minimum spanning trees correspond to just listing
all spanning trees. As finding solutions for each Gi is relatively quick, modifying the constant
amortized time provided by [29] in constant delay, combining these solutions maintaining the
constant delay the same space bound is not trivial. In the following section, we will see that
this corresponds to a more general problem, which is finding tuples of a Cartesian product
among k sets, with time per solution independent from k and neglecting setup costs, where
the elements of these sets are given implicitly, as result of an iterator.

3.2 MWST Gray Coding
In Section 3.1 we showed that we can solve the mst enumeration problem by listing (non
weighted) sts in a series of multigraphs. In particular, we have seen that the problem
of listing msts can be reduced to that of listing sts in several graphs and combining
them in all the possible ways. Indeed, each mst in G corresponds to a tuple 〈t1, . . . , tk〉 ∈
T (G[w1])× . . .×T (G[wk]), where k = |W | and ti ∈ T (Gi) is one of the possible combination

MFCS 2018

84:10 Listing Subgraphs by Cartesian Decomposition

of sts of the connected components of Gi according to Equation 2. Let C1, . . . , Ch be a
sequence containing the connected components of G[w1], followed by the ones of G[w2], and
so on until those of G[wk]. By combining Equations 1 and 2, we get that a mst is a tuple
〈s1, . . . , sh〉 where si is any spanning tree of Ci, i.e. si ∈ T (Ci), for 1 ≤ i ≤ h. Our goal is to
list all the elements in T (C1)× . . .× T (Ch) in an efficient way, given that we know how to
list all the solutions in T (Ci) for each i. In this section, we show how to adapt the state of
the art algorithm for listing sts to run in constant delay, and how to combine this resulting
algorithm with the techniques in Section 2 to obtain a constant delay algorithm for listing
msts.

3.2.1 Enumerating Spanning Trees in Constant Time Delay
In the following, we show how to improve the state of the art algorithm for listing sts to get
constant delay per solution, proving the following result.

I Lemma 5. There exists an algorithm st-cdel that lists spanning trees with constant delay,
O(m2n) preprocessing time, and O(mn) space.

The state of the art algorithm by Shoioura et al. [29], denoted as st-cat in the following,
lists sts in constant amortized time per solution (CAT) in multigraphs,6 but its delay is not
constant. We will explain in the following how to modify st-cat properly to prove Lemma 5.

As each spanning tree has size O(n), it is clearly impossible to output each solution
entirely, so st-cat outputs just the first solution, and then the differences between one
solution and the previous one. Combining all these differences, starting from the first solution
output by the algorithm until the last differences output, will yield the “current solution”
that the algorithm is considering.7 In particular, using the notation in [29], this is done in
the form of output(“−ek, +g, tree,”), meaning that the edge ek must be deleted and edge g
must be added with respect to the previously output solution, and “tree” means that a new
solution has been reached, i.e., performing all the addition/deletion instructions output so
far yields a new solution. However, st-cat has two features which cause its delay to be more
than constant, namely output size and update costs. Both of these can be overcome by with
proper use of deamortization techniques. We address them separately in the following.

Output size. Each time a recursive call is closed by st-cat, the changes done to the output
are restored. Namely, each recursive call of the algorithm prints a first output(“−ek, +g,
tree,”), then generates some children recursive calls, then prints a second output(“−g, +ek,”)
to undo these changes. When backtracking, several recursive calls may be terminated at once:
in the worst case, up to the depth of the recursion tree, which is O(n) for st-cat.

This causes the cumulative changes to be up to Ω(n), before the next output is performed
by printing a “tree” token. Even if the computation time in reaching this output could be
ignored, printing this number of changes clearly cannot be done in constant time.

An important property of this structure is that combining the output streams of all
algorithms Ai will yield an output stream which iterates over the solutions of G: indeed, a
solution of the main problem is a combination of solutions of the subproblems, and each output

6 For reference, its pseudo code can be found in [29] at page 690.
7 Reconstructing and outputting the whole solution from the stream would take more than constant time,

but since all solutions have size Θ(n), a constant-delay algorithm for the problem would be impossible
with this requirement.

A. Conte, R. Grossi, A. Marino, R. Rizzi, and L. Versari 84:11

of each Ai changes the solution of exactly one subproblem, we have that the combination of
sub-solutions (i.e., the solution of G) will be a new one.

Furthermore, every recursive node X of Ai first alters the current solution with the first
output, and then undoes these changes with the second output. Since the same is valid for
children nodes of X, it follows that the “current solution” which can be read on the output
stream just before the second output is equal to the one which can be read just after the
first one.

In other words, we can chose to make the node X output a solution at the end of its
execution (i.e., after its children nodes have terminated), rather than at the beginning, by
simply printing the “tree” token at the beginning of the second output instruction instead of
the end of the first. More formally, recursive calls which are tweaked to output the solution
at the end will perform the first output call in the form output(“−ek, +g,”), and the second
one in the form output(“tree, −g, +ek,”), instead of how described above.

With this property, we can apply the alternative output technique from [32]: for each
recursive node X in the recursion tree T , we output its solution at the beginning of X if its
depth is even, and at the end if it is odd.

This means that each output is performed after just a constant number of recursive calls
has been either generated or closed by the algorithm. Since the changes performed by a
single call are constant in size, it follows that the difference between one solution and the
previously output one is always of constant size.

Finally, note that the differences between one solution and the next one are the same
in the reversed order, thus this applies to the reversed iterator A−1 as well, which can be
obtained as described in Section 2.2.

Update costs. Each recursive node of st-cat has to update some data structure. While
the update cost is cleverly amortized to be just O(1) per node, one update can be O(m) in
the worst case. We solve this issue using the technique from [32], called output queue. The
general idea is to accumulate the output in memory, so that it is suitably delayed in a way
that the time between the output of two “tree” tokens is constant.

Given the recursion tree T of st-cat, let T ∗ be an upper bound on the cumulative cost
of nodes in a root-to-leaf path of T . As reported in [29], the depth of T is O(n) and the
maximum cost of a single recursive call is O(m). Thus T ∗ = O(mn). Furthermore, let T̄ be
the maximum, among all subtrees T ′ of T , of the total cost of T ′ divided by the number
of nodes of T ′ corresponding to a solution. It can be seen that the amortization scheme
in [29] that allows st-cat to have constant amortized time can be equivalently applied to
any subtree, as it only considers the descendants of a recursive node. Thus we have that this
ratio is constant for any subtree, and that T̄ = O(1).

The output queue Q technique requires us to fill a queue containing 2 ·T ∗/T̄ + 1 = O(mn)
solutions, i.e. all the output required before printing O(mn) “tree” tokens. By Theorem 2
in [32], the time required to initially fill the queue is bounded by O(T ∗ + T̄) = O(mn). As
for the space, the first solution is output completely, but for all the others we just output
the difference with respect to the previous solution, which as constant size, thus the size of
the queue is always bounded by O(mn).

As soon as the queue is full, dequeue the top solution (i.e. the set of changes before a
“tree” token appear in the queue) and output it. Repeat this step every O(T̄) = O(1) time
while the algorithm is executed. Finally, during the execution of the algorithm, each time an
output is required, the request is enqueued in Q instead of being output. The output queue
guarantees that Q is never empty until the end of the execution, and thus that the algorithm
will have in this case O(1) delay after the preprocessing time.

MFCS 2018

84:12 Listing Subgraphs by Cartesian Decomposition

By combining what said so far in this section, we obtain an iterator A, which after a one
time preprocessing cost of O(mn), can iterate over all the spanning trees of a given graph
with n vertices and m edges, not just once but any number of times without paying for the
preprocessing cost again. Due to the memory requirements of the output queue, the space is
O(mn).

3.2.2 Forward and Backward Iterators for Spanning Trees
Given the iterator A, we need to show that is possible to obtain the backward iterator A−1,
which is the iterator processing the solutions in opposite order with respect to A, still ensuring
constant delay. This follows by combining the techniques used above and in Section 2.2.
Indeed, consider the design of A for spanning trees given above: if we do not consider the use
of the output queue technique, this is a recursive algorithm which performs alternative-output
and outputs at most one solution per recursion node. Indeed, we can invert the order in which
the solutions are output precisely as described in Section 2.2, obtaining an A−1 algorithm.
Furthermore, it’s easy to see that the algorithm so obtained still maintains the same T ∗ and
T̄ , as well as the same recursive structure, thus we can apply the output queue technique for
A−1 as well, obtaining the following lemma.

I Lemma 6. There exist forward and backward iterators for listing spanning trees with
constant delay, O(mn) preprocessing time, and O(mn) space.

3.2.3 Constant delay algorithm for MSTs
Finally, we present how to use the techniques presented in Sections 3.1, 2 and 3.2 to get a
constant delay algorithm for the msts listing problem.

Preprocessing. Computing each Gi can clearly be done in O(m) time by performing a BFS
to identify the components connected by edges of E<wi

, and then adding those of Ewi
. Note

that, as every edge appears in at most one Gi, the total space for storing these graphs is
O(m) and the total computation time is O(m2).

Furthermore, as a spanning tree has n− 1 edges, and all minimum spanning trees have
the same number of edges of a given weight, there are at most n− 1 distinct edge weights
which can appear in any mst, thus at most n graphs Gi will be non-empty.

For each of these graphs, we must run the preprocessing phase of the st-cdel algorithm
shown in Section 3.2.1, which takes O(mn) time and uses O(mn) space. Note that this
is done twice for each Gi, as we need to start both the forward iterator Ai for the sts
of Gi and the corresponding backward iterator A−1

i . The preprocessing phase will thus
take O(m2 +

∑
i=1,...,h |V (Gi)| · |E(Gi)|) time. The space required to keep track of all the

information is O(
∑

i=1,...,h |V (Gi)| · |E(Gi)|). While these are both trivially bounded by
O(mn2), we can refine this bound: indeed, any edge of G appears in at most one Gi, we have∑

i=1,...,h |E(Gi)| = O(|E(G)|) = O(m), and while this is not true for the vertices, we have
|V (Gi)| ≤ |V (G)| = n, meaning that

∑
i=1,...,h |V (Gi)| · |E(Gi)| = n ·

∑
i=1,...,h |E(Gi)| =

O(mn). We thus have that the preprocessing time is O(m2 +mn) = O(m2) and the space
usage is O(mn).

Algorithm. Once all Ai and A−1
i algorithms are ready, we can use them as iterators on

their respective space of solutions, and run the Gray coding algorithm described in Section 2.
The Gray coding algorithm alternatively uses Ai and A−1

i depending on the direction set,

A. Conte, R. Grossi, A. Marino, R. Rizzi, and L. Versari 84:13

which for each i says whether we are iterating from the first solution to the last one or vice
versa. The resulting algorithm has constant delay, as we have seen that both when we are
using Ai or A−1

i we get a new output with constant delay. Indeed, recall that both Ai and
A−1

i dequeue from their corresponding output queue until a “tree” token is found, and the
number of dequeues is O(1).

An important remark for Ai, the differences with respect to the previous st output by
Ai turns out to be differences with respect to the previous msts of G.

Indeed each output of Ai consists in a difference which turns one st t′i of Gi into the next
one t′′i (which differ for a constant number of changes). The corresponding solutions for msts
are tuples 〈t1, . . . , t′i, . . . , th〉 and 〈t1, . . . , t′′i , . . . th〉 which still differ for a constant number of
changes, as tj corresponds to the same spanning tree for each Gj with j 6= i. Similarly, the
same applies in the case of A−1

i .
Finally, note that whenever switching from using Ai to A−1

i , we must not output the first
solution found by A−1

i , as it corresponds to the last one output by Ai; the same applies when
switching from A−1

i to Ai. Clearly, this does not affect the complexity of the algorithm.
As a result, we have proved the following.

I Theorem 7. There exists an algorithm which lists all the msts of a weighted graph with
constant delay, O(m2) preprocessing time, and O(mn) space.

4 Applications

In this section, we consider several listing problems on graphs which turn out to be suitable
for Cartesian decomposition. Some of them can be decomposed by looking at the biconnected
components B1, . . . Bh of the input graph. Applying Theorem 1, assuming to use forward
and backward iterators for each Bi, we get that the delay of iterating over all the solutions
of the graph is the maximum delay among the iterators for generating S1, . . . , Sh, where Si

is the set of solutions associated to Bi.

st-Paths. Listing all the st-paths given two nodes s and t in a graph can be done looking
at the bead string of biconnected components B1, . . . , Bh for some h, with s ∈ B1 and
t ∈ Bh. In particular, let b1, . . . , bh−1 be the corresponding sequence of articulation points,
i.e. bi is the articulation point between Bi and Bi+1 (1 ≤ i < h). Then all the st-paths are
all the tuples in S1× . . .×Sh where S1 is the set of sb1-paths, Si is the set of bi−1bi-paths
(with 2 ≤ i ≤ h− 1), Sh is the set of bh−1t-paths.
Unweighted Spanning Trees. Given a connected graph G and its biconnected com-
ponents B1, . . . , Bh, it is easy to show that all the sts of G correspond to all the tuples
in S1 × . . .× Sh, where Si is the set of sts of Bi.
Steiner Trees. Given a connected graph, all the Steiner trees with set of terminals W
can be obtained looking at the biconnected components of G. For each Bi, Si corresponds
to the set of Steiner trees of the graph induced by Bi, fixing as set of terminals the nodes
in W ∩Bi and the articulation points x of G such that x ∈ Bi and x can reach in G some
node in W without passing through nodes in Bi.

Other problems on graphs turn out to be decomposable looking at the connected com-
ponents. Given a graph G, let Z1, . . . , Zh be its connected components. Then the following
patterns in G correspond to all the tuples in S1 × . . .× Sh, where Si is the set of the same
kind of patterns just for the graph Zi. For instance, the following patterns, whose formal
definition is given in the corresponding reference, belong to this category.

MFCS 2018

84:14 Listing Subgraphs by Cartesian Decomposition

Maximal Independent Sets (see [7]) Bipartite Subgraphs (see [33])
Maximal Induced Matching (see [2]) Bounded Girth Subgraphs (see [9])
Maximal k-Degenerate Subgraph (see [8]) Dominating Sets (see [19])
Minimal Feedback Vertex/Arc Sets (see [28]) Acyclic Orientations (see [6])

Once again, designing forward and backward iterators as discussed in the previous section
for the above problems, and running each of them for each Zi, we get that the delay of the
iterator over the solutions of G has delay equal to the maximum among the delays of the
iterators over the solutions of Z1, . . . , Zh.

Some other problems are decomposable in a more complex way which clearly is linked to
their nature. This is the case of minimum spanning trees, which is object of the case study
in Section 3.

5 Conclusions

In this paper we have studied a natural decomposition technique which consists in reducing
an enumeration problem to the Cartesian product of the result of several easier sub-problems.
We proposed an efficient way to implement this decomposition using a form of Gray coding
and forward/backward iterators on the solutions of the sub-problems. In some cases, the sub-
problems correspond to smaller instances of the input problem, while in others the problem
itself may be a simpler one (e.g., for Minimum Weight Spanning Trees the sub-problem
is listing spanning trees of an unweighted graph). We showed an in-depth analysis for the
listing of Minimum Weight Spanning Trees, reducing with this technique the known bounds
from Constant Amortized Time to Constant Delay. We also gave examples of several other
problem which can benefit from this decomposition.

References
1 David Avis and Komei Fukuda. Reverse search for enumeration. Discrete Applied Mathem-

atics, 65(1-3):21–46, 1996.
2 Manu Basavaraju, Pinar Heggernes, Pim van ’t Hof, Reza Saei, and Yngve Villanger. Max-

imal induced matchings in triangle-free graphs. Journal of Graph Theory, 83(3):231–250,
2016. doi:10.1002/jgt.21994.

3 Cüneyt F Bazlamaçcı and Khalil S Hindi. Minimum-weight spanning tree algorithms a
survey and empirical study. Computers & Operations Research, 28(8):767–785, 2001.

4 Etienne Birmelé, Rui Ferreira, Roberto Grossi, Andrea Marino, Nadia Pisanti, Romeo Rizzi,
and Gustavo Sacomoto. Optimal listing of cycles and st-paths in undirected graphs. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1884–1896. SIAM, 2013.

5 Coenraad Bron and Joep Kerbosch. Finding all cliques of an undirected graph (algorithm
457). Communications of the ACM, 16(9):575–576, 1973.

6 Alessio Conte, Roberto Grossi, Andrea Marino, and Romeo Rizzi. Listing acyclic orienta-
tions of graphs with single and multiple sources. In LATIN 2016: Theoretical Informatics -
12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings, pages
319–333, 2016. doi:10.1007/978-3-662-49529-2_24.

7 Alessio Conte, Roberto Grossi, Andrea Marino, Takeaki Uno, and Luca Versari. List-
ing maximal independent sets with minimal space and bounded delay. In String
Processing and Information Retrieval - 24th International Symposium, SPIRE 2017,
Palermo, Italy, September 26-29, 2017, Proceedings, pages 144–160, 2017. doi:10.1007/
978-3-319-67428-5_13.

http://dx.doi.org/10.1002/jgt.21994
http://dx.doi.org/10.1007/978-3-662-49529-2_24
http://dx.doi.org/10.1007/978-3-319-67428-5_13
http://dx.doi.org/10.1007/978-3-319-67428-5_13

A. Conte, R. Grossi, A. Marino, R. Rizzi, and L. Versari 84:15

8 Alessio Conte, Mamadou Moustapha Kanté, Yota Otachi, Takeaki Uno, and Kunihiro Wasa.
Efficient enumeration of maximal k-degenerate subgraphs in a chordal graph. In Yixin
Cao and Jianer Chen, editors, Computing and Combinatorics, pages 150–161, Cham, 2017.
Springer International Publishing.

9 Alessio Conte, Kazuhiro Kurita, Kunihiro Wasa, and Takeaki Uno. Listing acyclic
subgraphs and subgraphs of bounded girth in directed graphs. In Combinatorial Op-
timization and Applications - 11th International Conference, COCOA 2017, Shanghai,
China, December 16-18, 2017, Proceedings, Part II, pages 169–181, 2017. doi:10.1007/
978-3-319-71147-8_12.

10 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to algorithms, third edition, 2009.

11 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

12 David Eppstein. Representing all minimum spanning trees with applications to counting
and generation. Information and Computer Science, University of California, Irvine, 1995.

13 Ira M. Gessel. Enumerative applications of a decomposition for graphs and digraphs. Dis-
crete Mathematics, 139(1):257–271, 1995. doi:10.1016/0012-365X(94)00135-6.

14 Ronald L Graham and Pavol Hell. On the history of the minimum spanning tree problem.
Annals of the History of Computing, 7(1):43–57, 1985.

15 David S Johnson, Mihalis Yannakakis, and Christos H Papadimitriou. On generating all
maximal independent sets. Information Processing Letters, 27(3):119–123, 1988.

16 Sanjiv Kapoor and Hariharan Ramesh. Algorithms for enumerating all spanning trees of
undirected and weighted graphs. SIAM Journal on Computing, 24(2):247–265, 1995.

17 Donald E Knuth. The art of computer programming, volume 4, fascicle 2: Generating all
tuples and permutations, 2005.

18 Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956. URL: http:
//www.jstor.org/stable/2033241.

19 Kazuhiro Kurita, Kunihiro Wasa, Hiroki Arimura, and Takeaki Uno. Efficient enumeration
of dominating sets for sparse graphs. CoRR, abs/1802.07863, 2018. arXiv:1802.07863.

20 F. Maffioli. Complexity of optimum undirected tree problems: a survey of recent results. In
Analysis and design of algorithms in combinatorial optimization, pages 107–128. Springer,
1981.

21 Kazuhisa Makino and Takeaki Uno. New algorithms for enumerating all maximal cliques. In
Algorithm Theory - SWAT 2004, pages 260–272, Berlin, Heidelberg, 2004. Springer Berlin
Heidelberg.

22 Tomomi Matsui. An algorithm for finding all the spanning trees in undirected graphs.
METR93-08, Department of Mathematical Engineering and Information Physics, Faculty
of Engineering, University of Tokyo, 16:237–252, 1993.

23 Tomomi Matsui. A flexible algorithm for generating all the spanning trees in undirected
graphs. Algorithmica, 18(4):530–543, 1997.

24 Matúš Mihalák, Przemysław Uznański, and Pencho Yordanov. Prime factorization of the
kirchhoff polynomial: Compact enumeration of arborescences. In 2016 Proceedings of the
Thirteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pages 93–
105. SIAM, 2016.

25 Reinhard Pichler, Stefan Rümmele, and Stefan Woltran. Counting and enumeration prob-
lems with bounded treewidth. In International Conference on Logic for Programming
Artificial Intelligence and Reasoning, pages 387–404. Springer, 2010.

MFCS 2018

http://dx.doi.org/10.1007/978-3-319-71147-8_12
http://dx.doi.org/10.1007/978-3-319-71147-8_12
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1016/0012-365X(94)00135-6
http://www.jstor.org/stable/2033241
http://www.jstor.org/stable/2033241
http://arxiv.org/abs/1802.07863

84:16 Listing Subgraphs by Cartesian Decomposition

26 A. R. Pierce. Bibliography on algorithms for shortest path, shortest spanning tree, and
related circuit routing problems (1956–1974). Networks, 5(2):129–149, 1975.

27 Ronald C Read and Robert E Tarjan. Bounds on backtrack algorithms for listing cycles,
paths, and spanning trees. Networks, 5(3):237–252, 1975.

28 Benno Schwikowski and Ewald Speckenmeyer. On enumerating all minimal solutions of
feedback problems. Discrete Applied Mathematics, 117(1-3):253–265, 2002. doi:10.1016/
S0166-218X(00)00339-5.

29 Akiyoshi Shioura, Akihisa Tamura, and Takeaki Uno. An optimal algorithm for scanning
all spanning trees of undirected graphs. SIAM Journal on Computing, 26(3):678–692, 1997.

30 Kenneth Sörensen and Gerrit K Janssens. An algorithm to generate all spanning trees of
a graph in order of increasing cost. Pesquisa Operacional, 25(2):219–229, 2005.

31 Robert E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55(2):221–
232, 1985. doi:10.1016/0012-365X(85)90051-2.

32 Takeaki Uno. Two general methods to reduce delay and change of enumeration algorithms,
2003. NII Technical Report NII-2003-004E, Tokyo, Japan.

33 Kunihiro Wasa and Takeaki Uno. Efficient enumeration of bipartite subgraphs in graphs.
CoRR, abs/1803.03839, 2018. arXiv:1803.03839.

34 Perrin Wright. Counting and constructing minimal spanning trees. Bulletin of the Institute
of Combinatorics and its Applications, 21:65–76, 1997.

35 Takeo Yamada, Seiji Kataoka, and Kohtaro Watanabe. Listing all the minimum spanning
trees in an undirected graph. International Journal of Computer Mathematics, 87(14):3175–
3185, 2010.

http://dx.doi.org/10.1016/S0166-218X(00)00339-5
http://dx.doi.org/10.1016/S0166-218X(00)00339-5
http://dx.doi.org/10.1016/0012-365X(85)90051-2
http://arxiv.org/abs/1803.03839

	p000-frontmatter
	Preface
	Program Committee
	Additional Reviewers
	Steering Committee

	p001-Bulteau
	Introduction
	Closest String and Closest String-wo
	(r, s)-Closest String-wo
	The (r)- and (s)-Variants of Closest String-wo

	Closest Substring
	Kernelisation
	Conclusions

	p002-Andreev
	Introduction: stopping time complexity
	Equivalent definitions
	Machines and prefix-free sets
	Monotone-conditional complexity
	Quantitative characterization
	Oracles and the stopping time complexity

	Non-equivalence results
	Prefix-stable or prefix-free functions?
	Quantitative characterization of C(y|x*) works only up to factor 2

	Questions

	p003-Abasi
	Introduction
	Optimality for r=2 (or any constant r)
	Algorithm idea overview

	Definitions and Preliminary Results
	Monotone Boolean Functions
	 alpha-Error Tolerant Learning from Noisy Membership Queries
	Dense Perfect Hash Function, Cover Free Family and Dense Cover Free Family

	Explicit Dense Cover Free Family Constructions
	Explicit Construction
	First Construction
	Second Construction
	Third Construction

	Direct Usage of DCFF: alpha-Error Tolerant Algorithm
	alpha-Error Tolerant Reduction
	 Efficient alpha-Error Tolerant Algorithm

	p004-Kozachinskiy
	Introduction
	Our results
	Organization of the paper

	Preliminaries
	Sets notations
	Communication and query complexity
	Hitting distributions
	SQR-gadget
	Expanders
	k-wise independent hash functions
	Some useful facts

	Transforming Expanders into Gadgets
	SQR ^q Gadget
	Unimprovability of Thickness Lemma
	Expanders Similar to AP_q
	Proof of Proposition 6

	p005-Dose
	Introduction
	Preliminaries
	Set Difference and Multiplication Lead to Undecidability
	Smaller Sets of Operations Lead to Problems in NP
	The Complexity of the Problem Solely Admitting Multiplication
	The Complexity of the Problems Not Admitting Multiplication

	Conclusion and Open Questions

	p006-Dando
	Introduction
	Rational series and weighted automata
	Hadamard series
	Hadamard operations
	Validity and equivalence
	Extension to real and complex numbers

	Weighted rotating automata
	From two-way to rotating automata
	Weighted two-way automata
	Inductive computation of a determinant of a tridiagonal block matrix
	The transformation automaton

	Conclusion

	p007-Klenin
	Communication complexity of GHD
	Prior work
	Two-sided error upper bounds
	One-sided error public coin communication protocols
	GHD and the lower bounds in data streams and property testing

	This work
	The upper bound
	Lower bounds
	The summary

	Preliminaries
	Communication Complexity
	Hamming Space
	Probability Theory

	The upper bound
	The Triangle Inequality Protocol
	The protocol of [Gavinski et al., 2004
	The simplified version of the Triangle Inequality Protocol
	The final protocol for Theorem 2

	The lower bound

	p008-Angelopoulos
	Introduction
	Preliminaries

	The edge arrival model
	The algorithm AMP
	The algorithm Greedy
	The algorithm L-Greedy
	Analysis of L-Greedy

	Lower bound for deterministic algorithms
	Comparing the algorithms L-Greedy and AMP

	The edge arrival/departure model

	p009-Burel
	Introduction
	Focusing with Polarized Occurrences of Atoms
	Resolution with Input Selection
	LKF is a Conservative Extension of Resolution with Input Selection
	Complete Instances
	Ordinary Focusing and Semantic Hyperresolution
	Deduction Modulo Theory
	Beyond Deduction Modulo Theory

	p010-Krebs
	Introduction
	Preliminaries
	Basic Properties
	Classification of Decision Problems Under Synchronous Semantics
	Extensions
	LTL under Team Semantics vs. HyperLTL
	Conclusion

	p011-Madelaine
	Introduction
	Preliminaries
	An algorithm for consistency
	Sentences with three variables
	Data structure
	Binary Predicates Only
	The Algorithm: path consistency for counting quantifiers (PCCQ)
	Properties of the PCCQ algoritm
	Expanding polymorphisms are necessary

	Applications of our result
	Endo-triviality

	Final remarks

	p012-Kakimura
	Introduction
	Preliminaries
	Multi-phase greedy algorithm
	Algorithm description
	Optimality of the algorithm and totally dual integral system
	Existence of a b-branching with prescribed indegree

	Packing disjoint b-branchings
	Characterizing theorem for disjoint b-branchings
	Algorithm for finding disjoint b-branchings
	Integer decomposition property of the b-branching polytope

	Matroid-restricted b-branchings
	Concluding remarks

	p013-Dorfman
	Introduction
	Analysis of the forward variant of pairing heaps
	Arbitrary pairing and linking
	The main result

	p014-Hamoudi
	Introduction
	Number On the Forehead and Simultaneous models
	The log n barrier problem and ACC0 lower bounds
	Composed Functions
	Summary of Results and Comparison to Previous Protocols

	Polynomial Representations for Symmetric Functions
	Simultaneous Protocol for SYM o SYM^{->}_{Z_d}
	The Equation Solving part
	The Polynomial Representation part

	Conclusion and Open Problems
	Lemma for the Equation Solving part

	p015-Ganardi
	Introduction
	Preliminaries
	Automata and streaming algorithms
	Sliding window streaming models

	Sliding windows over context-free languages: below logspace
	Proof of Theorem 3
	Proof of Theorem 4

	Sliding windows over context-free languages: above logspace
	Sliding windows over deterministic one-counter languages
	Open problems

	p016-SeelbachBenkner
	Introduction
	Preliminaries
	Trees and DAGs
	Leaf-centric binary tree sources

	Average size of the minimal DAG
	Average size of the minimal DAG for bounded sigma-functions
	Upper bound on the average DAG size
	Lower bound on the average DAG size

	Average size of the minimal DAG for weakly balanced tree sources

	Open Problems

	p017-Idziak
	Introduction
	Background material
	The structure of 2-nilpotent algebras
	Equivalence
	Satisfiability
	Algebras with infinitely many operations

	p018-Madhusudan
	Introduction
	Search for appropriate lemmas and proving the theorem
	Notation

	A classical approach
	The automaton approach: the main lemma
	Proof of Lemma 5
	Odd-length inputs
	Even-length inputs
	Ensuring correctness

	Optimality
	Other results
	Further work

	p019-Fichtenberger
	Introduction
	Our Results
	Related Work
	Overview

	Preliminaries
	Distributed Computing
	Distributed property testing

	Testing Using Random Walks
	Algorithm
	Completeness and Soundness
	Unknown Size of the Graph

	Lower Bound
	Proof of the Lower Bound

	Open Problems

	p020-Grohe
	Introduction
	Preliminaries
	Hardness Results
	The QVP Problem
	QVP, definition
	MSim reduces to QVP
	Linearization of Convex Functions
	Optimal Solution Structure for QVP

	Proof of Theorem 1
	Algorithm for QVP, restricted version

	Conclusion

	p021-Ryzhikov
	Introduction
	Main Definitions and Related Results
	The Construction of Gawrychowski and Straszak
	Acyclic Automata
	Huffman Decoders
	Partial Huffman Decoders
	Literal Huffman Decoders
	Mortal and Avoiding Words
	Concluding Remarks

	p022-Fefferman
	Introduction
	Subset-Verifying Oracle Problems
	Technical Contributions
	Impact and Directions for Future Research
	Organization

	Definitions and Notation
	Permutation Maps
	Permutations as Oracles: In-Place Permutation vs. Standard Permutation
	An Adversary Bound for In-Place Permutation Oracles
	Permutations with Randomness

	Pre-Image Checking
	Strategy for Proving Subset-Based Oracle Languages are not in QCMA
	Subset Size Checking
	Oracle Separation of QMA and QCMA
	An Adversary Bound for Permutation Oracles
	Proofs of Lemmas 10 and 11
	Proof of Lemma 14
	Proofs of Lemmas 16 and 17

	p023-Avni
	Introduction
	Preliminaries
	Resource allocation games and network games
	Timed networks and timed network games
	Stability and efficiency

	The Best-Response and the Social-Optimum Problems
	From TNGs to priced timed automata
	The best-response problem
	The social-optimum problem

	Existence of a Nash Equilibrium
	Equilibrium Inefficiency
	Time Bounds
	Discussion and Future Work

	p024-Filos-Ratsikas
	Introduction
	Our results
	Related work

	Preliminaries
	Generalized Circuits

	Consensus-Halving with n+k cuts is is PPAD-hard
	Consensus-Halving with n-1 cuts is NP-hard
	Consensus-Halving with n cuts is in PPA
	Conclusion and Future Work

	p025-Lamprou
	Introduction
	Preliminaries
	Split Graphs
	Hardness
	Approximation

	General Graphs
	Interval Graphs
	Conclusion & Further Work

	p026-LeGall
	Introduction
	Preliminaries
	2-Message Protocol with Known Prime Factors
	Preliminaries
	The protocol
	Analysis of the protocol

	General 3-Message Protocol
	The protocol
	Analysis of the protocol

	p027-Luck
	Introduction
	Preliminaries
	From FO(~) to SO: Upper bounds for model checking
	From FO^2(~) to FO^2: Upper bounds for satisfiability
	From MTL to FO^2(~): A team-semantical standard translation
	Lower bounds
	Conclusion
	Appendix

	p028-Clementi
	Introduction
	Our results
	Further motivation and related work
	Structure of the paper

	Preliminaries
	The expected evolution of the U-Process

	Main results and the digraph of the U-Process' phases
	Symmetry breaking
	The pruned process
	Back to the original process

	Convergence to the majority
	Conclusions

	p029-Gajarsky
	Introduction
	Preliminaries
	Recovering degenerate graphs
	Structural results
	Algorithm

	FO model checking
	Conclusion

	p030-Kawamura
	Introduction
	Computability and complexity in analysis
	Computing real numbers and functions
	Average-case complexity for real functions

	Complexity of simulating dynamical systems
	Parameterized complexity for analytic initial value problems

	Average-case complexity for dynamical systems
	Average-case complexity for Hamiltonian system
	Average-case complexity for the restricted three-body problem

	Conclusion
	Proof of Theorem 4
	Computing a local solution
	Extending to a global solution

	p031-Cellinese
	Introduction
	Our results
	Related work

	Preliminaries
	Greedy Algorithm
	Computing an alpha-list for a particular case
	Computing an alpha-list for the general case
	Bi-criterion approximation algorithm
	Conclusion

	p032-Berlinkov
	Introduction
	Compressing a Subset
	Extending a Subset and Our Contributions

	Extending a Subset in General
	Bounded Length of the Word

	Extending Small Subsets
	Bounded Length of the Word

	Extending Large Subsets
	Bounded Length of the Word

	Resizing a Subset

	p033-Bodirsky
	Introduction
	Preliminaries
	Cores
	Hardness
	The fully modular case
	The unary case
	Arbitrary arities

	Tractability
	Conclusion

	p034-BenBasat
	Introduction
	Preliminaries
	Lower Bounds
	(W, tau)-Exact Summing
	(W, tau,epsilon)-Additive Summing
	(W, tau, epsilon)-Multiplicative Summing

	Upper Bounds
	(W, tau)-Exact Summing
	(W, tau,epsilon)-Additive Summing
	(W, tau, epsilon)-Multiplicative Summing
	The Mean of a Slack Window

	Other Measurements over Slack Windows
	Discussion

	p035-Hefetz
	Introduction
	Preliminaries
	Graphs and Weighted Graphs
	Matroids
	The Spanning-Tree Game
	Optimal and Greedy Strategies
	On the Complexity of Evaluating Strategies for MAX

	The Performance of Optimal and Greedy Strategies w.r.t. the Maximum Spanning Tree
	The Performance of Greedy Strategies w.r.t. Optimal Ones
	Approximating Strategies
	The Competitive Ratio of Greedy Max Strategies
	A Tighter Analysis

	A Stochastic Setting
	A Two-Turn Variant of the Spanning-Tree Game
	Discussion

	p036-Erlebach
	Introduction
	Contribution
	Related work

	Preliminaries
	Exploring degree-bounded temporal graphs
	Exploration method

	Conclusion

	p037-Bandyapadhyay
	Introduction
	Preliminaries
	Diagonal-intersecting Rectangles
	PTAS
	Proof of Theorem 1
	Proof of Theorem 2

	Vertical-intersecting L-frames
	Edge Intersection Model
	Conclusion

	p038-Aldi
	Introduction
	Quantum SAT with bounded occurrence of variables
	Quantum SAT and parameterized algorithms
	The transfer type of a hypergraph
	The main construction
	Generic constraints

	p039-Berenger
	Introduction
	Model
	NP-Hardness
	Intuitions on the construction
	Reduction construction up to calculations
	Reduction correctness and calculations
	r-balanced connected partitioning problem (rBCP)

	Partitionning q-square Connected Grids
	Two definitions of q-square connected graphs
	An algorithm for the unrooted problem

	Perspectives and future work
	Appendix
	Idea behind the solution given in Fact 2
	Proofs of Lemma 3 and Lemma 4
	Proof of the Extension Lemma
	Example computation of our coloring algorithm

	p040-LeRoux
	Introduction
	Definitions
	Main results
	Existence of Player 1 winning strategies
	Existence of Player 2 almost-sure winning random strategies
	The special case of stateless (i.e. one-state) games

	The proofs
	Applications
	Algebraic properties of the closedness and completeness axioms
	Concrete winning conditions
	Bounded residual load

	p041-Dan
	Introduction
	Other Related Works

	Column Subset Selection for Binary Matrices Over GF(2)
	Generalized CSS Over Boolean Semiring
	Hardness of Low Rank Approximation of Binary Matrices
	Conclusion

	p042-Carayol
	Introduction
	Preliminaries
	Alternating Finite Automata
	Pushdown Reachability Games

	The Saturation Algorithm
	Cachat's Algorithm
	Saturation Algorithm with Weights
	Min-Rank Strategy
	Non-optimality of the Min-Rank Strategy

	Computing Optimal Strategies
	Profile of a run
	Saturation
	Defined Strategy

	Optimal Computation of Optimal Strategies
	Bounding Play Lengths
	Shortcutting Saturation
	Lower Bound

	Conclusion

	p043-Jonsson
	Introduction
	Preliminaries
	Partial Orders
	Lower Bounds for CSP(B^{vee =})
	NP-hardness
	ETH-based Lower Bound

	Lower Bounds for CSP(B^{vee k})
	Discussion

	p044-Deligkas
	Introduction
	Preliminaries
	Directed Graph Minors and Embeddings
	Directed minors.
	Graph Embeddings
	Relations among graph operations

	Serial-Parallel Width
	Characterization of graphs with bounded serial-parallel width
	Series-parallel graphs

	Computational Problems
	Testing properties of edge sets
	Testing width properties of graphs

	Discussion

	p045-Zschoche
	Introduction
	Preliminaries
	Hardness Dichotomy Regarding the Number of Layers
	On Temporal Graphs with Planar Underlying Graph
	On Temporal Graphs with Small Temporal Cores
	Conclusion

	p046-Exibard
	Introduction
	Transducer synthesis problem
	The synchronous setting
	The synthesis game
	The asynchronous setting
	Conclusion

	p047-Bilo
	Introduction
	Our Contribution
	Related Work

	Model and Definitions
	Markets
	Stable Outcomes
	Pricing Problems
	The Buyer Preselection Problem

	Results for Item Envy-Free Outcomes
	Pricing Problems Defined on Markets with a Unique Buyer

	Results for Bundle Envy-Free Outcomes
	The multi-unit case
	Final remarks and Future work

	p048-Catalano
	Introduction
	Definitions and notation
	Minimally primitive sets and minimally synchronizing automata
	A randomized algorithm for constructing minimally primitive sets
	The algorithm

	Numerical results

	New families of automata with quadratic reset threshold
	Primitivity with high probability
	Conclusion

	p049-Gobel
	Introduction
	Modular counting
	Related work
	Beyond one-bit functions
	Composites

	Weighted bipartite independent set
	Homomorphisms of partially labelled graphs
	Hardness for trees
	Dichotomy theorems

	p050-Luo
	Introduction
	Problem Formulation and Preliminary Results
	Definitions and Problem Formulation
	Online Optimization and Competitive Analysis
	Lower Bounds

	Upper Bound
	Conclusion

	p051-Hemaspaandra
	Introduction
	Preliminaries
	Main Result: LWPP Stays the Same If for Accepted Inputs We Allow Polynomially Many Gap Values Instead of One
	Applying the Main Result to Graph Reconstruction
	Optimality of the Main Result (Brief Version)
	LWPP^+ (Brief Version)
	Conclusions and Open Questions

	p052-Gmyr
	Introduction
	Model
	Related Work
	Our Contributions

	Recognizing Simple Shapes
	Recognizing Parallelograms with Specific Side Ratio
	A Robot without any Pebble
	A Robot with a Single Pebble
	A Robot With Two Pebbles
	A Family of Functions Requiring an Increasing Amount of Pebbles

	Future Work

	p053-Agrawal
	Introduction
	Preliminaries
	W-hardness of F-CF-FVS Problems
	F+Cluster IS to F-CF-FVS
	W[1]-hardness on Bipartite Graphs
	W[1]-hardness on Graphs with Sub-quadratic Edges

	FPT algorithms for {F}-CF-FVS for Restricted Conflict Graphs
	FPT Algorithm for {F}-DCF-FVS

	FPT Algorithm for K_{i,j}-free+Cluster IS
	Polynomial Time Algorithm for Large K_{i,j}-free+Cluster IS

	p054-Droschinsky
	Introduction
	Preliminaries
	Gupta and Nishimura's algorithm
	Largest Weight Common Subtree Embeddings
	Largest Weight Common Subtree Embeddings for Unrooted Trees
	Basic algorithm and fixing one root
	Exploiting similarities

	Conclusions

	p055-Kante
	Introduction
	Definitions and Preliminaries
	Enumeration of minimal transversals including l from a valid double star S(l,E)
	Basic transversals, flipping operation and parent-child relation
	Enumerating the children of T in Inc(H,l,E)

	Related results and Conclusion

	p056-Bartschi
	Introduction
	Preliminaries
	Optimizing delivery time only
	Prioritizing delivery time over energy consumption
	A polynomial-time algorithm for uniform velocities
	NP-hardness on planar graphs
	An efficient algorithm for paths

	Optimizing convex combinations of objectives
	Discussion

	p057-Hague
	Introduction
	Preliminaries
	Higher-Order Collapsible Stacks
	Collapsible Pushdown Systems and Games
	Rank-Aware Collapsible Pushdown Systems

	Main Result and Proof Outline
	Order Reduction
	Counter Reduction
	Equivalence Result
	Polynomial Reduction
	Counter Encoding
	The Simulation

	Conclusion

	p058-Gharibian
	Introduction
	Results, techniques, and discussion
	Related work
	Open questions

	A quantum-classical analogue of Toda's theorem
	Precise-BQP
	Bounding the power of QCPH
	Detecting non-empty promise gaps is PP-complete

	Bounding the power of levels in the quantum hierarchy
	Karp-Lipton type theorems

	p059-Dietzfelbinger
	Introduction
	Preliminaries
	The Word RAM Model
	Linear Hash Functions
	A Hashing Lemma for 1-Universal Families
	Set Intersection on Unsorted Word-Packed Arrays

	A Deterministic 3XOR Algorithm in Quadratic Time
	A Subquadratic Randomized Algorithm
	Conditional Lower Bounds from the 3XOR Conjecture
	Offline SetDisjointness and Offline SetIntersection
	Reductions from 3XOR

	Conclusions and Remarks

	p060-Doczkal
	Introduction
	Preliminaries: 2p- and 2pdom-algebras
	A Confluent Rewriting System for Term-labeled Graphs
	Reducibility of Term-Graphs
	The free 2pdom-algebra
	The free 2p-algebra
	1-free 2p-algebras
	Conclusion and directions for future work

	p061-Dixon
	Introduction
	Preliminaries
	Pseudodeterminism for # NP and circuit lower bounds
	Constant-bit Influential algorithm for approximate counting

	p062-Fleischer
	Introduction
	Preliminaries
	Attributes and outline of the paper
	Length reduction
	Commutation
	Computing shortlex normal forms
	Summary and Outlook

	p063-Dabrowski
	Introduction
	Vertex Cover
	Feedback Vertex Set
	Odd Cycle Transversal
	Conclusions

	p064-DArco
	Introduction
	The Models
	Probabilistic schemes for the threshold finite case
	A probabilistic (2,infty)-threshold construction
	Transforms for general schemes from simpler ones
	From (k,infty)-threshold to (k+1,infty)-threshold
	From {(j,infty)-threshold}_{j=2,...,k} to (k+1,infty)-threshold

	A probabilistic (k,infty)-threshold construction with constant share size
	Conclusions and open problems

	p065-Kammer
	Introduction
	Previous Array Implementation
	Our Contributions

	In-Place Initializable Array
	Extra Space during Initialization of Succinct Data Structures
	Application: c-ary Memory
	Application: Succinct Encoding of Dense Graphs

	Extra Space for Dynamic Arrays
	Dynamical Initializable Array
	Increasing the size of D
	Shrinking the Size of D at most O(w) Times
	The General Case

	p066-Gawrychowski
	Introduction
	Our contribution and techniques
	Related work

	Preliminaries
	The k-errata tree: Reminder and fix
	Prefix search for packed strings
	Linear space
	Entropy-bounded space

	Removing extra logarithm from the time complexity

	p067-Belmonte
	Introduction
	Definitions and Preliminaries
	Tractability
	FPT algorithms
	Approximation algorithms
	Polynomial kernels

	W[1]-hardness by treewidth
	On Tournaments
	Hard: when p=q=1
	Equivalent to Dominating Set on tournaments: p=2 or q=2
	P-time solvable: p+q <= 1 or, 2 not in {p,q} and max {p,q}>= 3

	p068-Hell
	Introduction
	Signed Interval Digraphs
	Min Orderings
	An alternate geometric representation
	0,1-Matrices and bipartite graphs
	Special cases
	Algorithms and characterizations

	p069-Hamburger
	Introduction
	Satisfying utility functions and forbidden subgraphs
	k-clique extendable orderings
	Optimization problems on dags with bounded lambda values
	O(nm/lambda) bounds for finding satisfying utility functions, lambda, and certificates
	Finding a satisfying utility function or a forbidden subgraph for (t_{1},t_{2}
	Finding lambda

	p070-Mehta
	Introduction
	Preliminaries
	Tree Tribes
	Resilience upper bound
	Recurrence for gamma
	Upper bound on gamma

	Resilience lower bound
	The case for d=1
	Inductive step

	p071-Lutz
	Introduction
	Preliminaries
	Kolmogorov Complexity in Discrete and Continuous Domains
	Effective Hausdorff and Packing Dimensions
	The Point-to-Set Principle

	Bounding the Complexity of Projections
	Projection Theorems
	Projection Theorems For Non-Analytic Sets
	Marstrand's Projection Theorem

	p072-Murawski
	Introduction
	Automata
	Symbolic bisimulations
	Representation
	Membership
	Update
	Update implementation

	Algorithm
	Inclusion

	p073-Bottesch
	Introduction
	Summary of our results

	Preliminaries
	The A-Hierarchy and the W-Hierarchy
	W[P] and the W[P]-Hierarchy

	The difficulty of separating W[P] from FPT
	The structure of W[1] and its relation to FPT
	Level-by-level relativized separations of the W- and the A-Hierarchy
	Conclusions

	p074-Konrad
	Introduction
	Preliminaries
	Finding a Large Set of Disjoint 3-augmenting Paths
	Adversarial Order Streams
	1-pass Random Order Streaming Algorithm
	Conclusion

	p075-Moore
	Introduction
	Preliminaries
	Properties of k-connected graphs
	Branch sets, H-models, host(H), and block trees
	Essential edges, crucial vertices, weak connections, and lynchpins
	Properties of H-models of k-connected graphs

	Toolkit for reconfiguration of minors
	Characterizing host(K_2)
	Characterizing host(K_3)
	Characterizing host(K_4)
	Conclusions and open questions

	p076-Droste
	Introduction
	Preliminaries
	The classical Feferman-Vaught Theorem
	Translation schemes
	Weighted Feferman-Vaught Decomposition Theorems
	Formulation of the theorems
	Necessity of restricting the logic for disjoint unions
	Necessity of restricting the logic for products
	Proofs of Theorems 15 and 16

	Conclusion

	p077-Akitaya
	Introduction
	The Minimum Area of the Reach
	Properties of the Reach and its Gaps
	Classification of Gaps
	Charging Scheme

	Algorithm for Computing the Reach
	NP-Hardness of Maximum-Area Anchored Square Packings
	Open Problems

	p078-Rajgopal
	Introduction
	Proof Outline for the Main Theorem
	Preliminaries
	Polynomials over {F}_2 and Probabilistic polynomials
	Polynomials over R and Modulus-amplification
	Small-biased sets
	Expanders

	The #SAT algorithm
	Derandomized construction of probabilistic polynomials for AC^0[oplus]
	The algorithm and its analysis
	A Consequence for Lower Bounds

	p079-Stull
	Introduction
	Preliminaries
	Kolmogorov Complexity in Discrete Domains
	Kolmogorov Complexity in Euclidean Spaces
	Effective Dimensions

	Dimension Spectra of Lines of High Dimension
	Approach and Previous Work
	First Main Theorem

	Lower Bounding the Dimension Spectrum of a Line
	Applications to Furstenberg Sets
	Conclusion and Future Directions

	p080-Pagourtzis
	Introduction
	Model of broadcast with limited transmissions per node
	Our results
	Related previous work

	Lower bounds
	Layered networks
	Conditional transmission sets
	Lower bound for 2-shot broadcast
	Lower bound for 3-shot broadcast

	Upper bounds for h-shot broadcast for h <=3
	Upper bounds for h-shot broadcast for h >= 4

	p081-Amano
	Introduction
	Depth Two Majority Circuits for Majority
	Connection between Circuits and List Expanders
	List Expanders imply Expanders

	Probabilistic Constructions
	Conclusions

	p082-Dressler
	Introduction
	Preliminaries
	Sums of Nonnegative Circuit Polynomials
	SONC certificates over a Constrained Set

	Properties of the SONC cone
	An Upper Bound on the Degree of SONC Certificates over the Hypercube
	Proof of Theorem 12
	Degree d SONC Certificates

	There Exists No Equivalent to Putinar's Positivstellensatz for SONCs

	p083-Heggernes
	Introduction
	Preliminaries
	Graph classes
	Hypergraph coloring

	Bipartite graphs and their subclasses
	Chordal graphs and their subclasses
	Concluding remarks and related problems

	p084-Conte
	Introduction
	Related Work
	Preliminaries

	Finding Solutions of the Cartesian Product via Gray Coding
	Setup costs
	Gray Coding via Forward and Backward Iterators

	Case Study: Minimum Spanning Trees
	From Minimum Spanning Trees to Spanning Trees
	MWST Gray Coding
	Enumerating Spanning Trees in Constant Time Delay
	Forward and Backward Iterators for Spanning Trees
	Constant delay algorithm for MSTs

	Applications
	Conclusions

