research

On the fine-grained complexity of rainbow coloring

Abstract

The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored in kk colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all edges of different colors. Our main result states that for any k2k\ge 2, there is no algorithm for Rainbow k-Coloring running in time 2o(n3/2)2^{o(n^{3/2})}, unless ETH fails. Motivated by this negative result we consider two parameterized variants of the problem. In Subset Rainbow k-Coloring problem, introduced by Chakraborty et al. [STACS 2009, J. Comb. Opt. 2009], we are additionally given a set SS of pairs of vertices and we ask if there is a coloring in which all the pairs in SS are connected by rainbow paths. We show that Subset Rainbow k-Coloring is FPT when parameterized by S|S|. We also study Maximum Rainbow k-Coloring problem, where we are additionally given an integer qq and we ask if there is a coloring in which at least qq anti-edges are connected by rainbow paths. We show that the problem is FPT when parameterized by qq and has a kernel of size O(q)O(q) for every k2k\ge 2 (thus proving that the problem is FPT), extending the result of Ananth et al. [FSTTCS 2011]

    Similar works