
Juho Lauri
Chasing the Rainbow Connection: Hardness, Algorithms,
and Bounds

Julkaisu 1428 • Publication 1428

Tampere 2016

Tampereen teknillinen yliopisto. Julkaisu 1428
Tampere University of Technology. Publication 1428

Juho Lauri

Chasing the Rainbow Connection: Hardness,

Algorithms, and Bounds

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB224,
at Tampere University of Technology, on the 3rd of November 2016, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2016

ISBN 978-952-15-3836-0 (printed)
ISBN 978-952-15-3842-1 (PDF)
ISSN 1459-2045

Abstract

We study rainbow connectivity of graphs from the algorithmic and graph-theoretic points
of view. The study is divided into three parts. First, we study the complexity of deciding
whether a given edge-colored graph is rainbow-connected. That is, we seek to verify
whether the graph has a path on which no color repeats between each pair of its vertices.
We obtain a comprehensive map of the hardness landscape of the problem. While the
problem is NP-complete in general, we identify several structural properties that render the
problem tractable. At the same time, we strengthen the known NP-completeness results
for the problem. We pinpoint various parameters for which the problem is fixed-parameter
tractable, including dichotomy results for popular width parameters, such as treewidth
and pathwidth. The study extends to variants of the problem that consider vertex-colored
graphs and/or rainbow shortest paths. We also consider upper and lower bounds for
exact parameterized algorithms. In particular, we show that when parameterized by the
number of colors k, the existence of a rainbow s-t path can be decided in O∗(2k) time
and polynomial space. For the highly related problem of finding a path on which all the k
colors appear, i.e., a colorful path, we explain the modest progress over the last twenty
years. Namely, we prove that the existence of an algorithm for finding a colorful path in
(2− ε)knO(1) time for some ε > 0 disproves the so-called Set Cover Conjecture.

Second, we focus on the problem of finding a rainbow coloring. The minimum number
of colors for which a graph G is rainbow-connected is known as its rainbow connection
number, denoted by rc(G). Likewise, the minimum number of colors required to establish
a rainbow shortest path between each pair of vertices in G is known as its strong rainbow
connection number, denoted by src(G). We give new hardness results for computing rc(G)
and src(G), including their vertex variants. The hardness results exclude polynomial-time
algorithms for restricted graph classes and also fast exact exponential-time algorithms
(under reasonable complexity assumptions). For positive results, we show that rainbow
coloring is tractable for e.g., graphs of bounded treewidth. In addition, we give positive
parameterized results for certain variants and relaxations of the problems in which the
goal is to save k colors from a trivial upper bound, or to rainbow connect only a certain
number of vertex pairs.

Third, we take a more graph-theoretic view on rainbow coloring. We observe upper bounds
on the rainbow connection numbers in terms of other well-known graph parameters.
Furthermore, despite the interest, there have been few results on the strong rainbow
connection number of a graph. We give improved bounds and determine exactly the
rainbow and strong rainbow connection numbers for some subclasses of chordal graphs.
Finally, we pose open problems and conjectures arising from our work.

i

Preface

Despite the single name on the front cover, this thesis would not have seen the light of
day without the help and support of several people. I am sincerely grateful to both my
supervisor, professor Tapio Elomaa, and my advisor, D.Sc. Henri Hansen. Tapio routinely
handled all the administrative tasks allowing me to concentrate on research. Henri’s
lecturing in as early as 2008 inspired me to get curious about theory. We had many
fruitful discussions already during the time of my Master’s thesis, and our meetings were
no different later on. All the guidance on navigating the academia I received from both
Tapio and Henri was invaluable.
Unknowingly, the work on this thesis began in January 2013 while I was at Michigan
Technological University. At the time, the topic was something that I explored out of
curiosity alongside with my studies. Little did I know that the work would evolve to be a
foundation for my Master’s thesis, and eventually a part of this thesis as well. I wish to
warmly thank professor Melissa Keranen for being an excellent teacher, and for the many
discussions and collaboration.
I quickly found it stimulating, productive, and fun to work on problems not strictly
related to the thesis. The most valuable of such undertakings was a 4-month visit to
Aalto University in the Summer of 2014, prior to the beginning of my doctoral studies. I
want to thank professor Petteri Kaski for the opportunity to work under his guidance.
Our many discussions contributed much to my professional growth.
A crucial part of the process was (and is) networking. This might require pushing the
boundaries of what you feel comfortable with, but I’m glad that I did. First, I want to
thank professor Stefan Szeider for an interesting talk at the 2013 SAT/SMT Summer
School, and for a visit to TU Wien in December 2014. Second, I am happy to have met
professor Mikko Koivisto in June 2015 at the annual meeting for The Finnish Society for
Computer Science in Jyväskylä. I very much enjoyed the later visits, problem solving
sessions, and discussions at the University of Helsinki. Third, I thank professor Łukasz
Kowalik for his openness and positive attitude. I learned a lot in the whiteboard sessions
during my visit to the University of Warsaw in September 2015.
I thank professor Yongtang Shi from Nankai University and professor Jukka Suomela
from Aalto University for kindly agreeing to pre-examine my thesis. Their comments and
careful reading improved this work. Similarly, I thank professor Pinar Heggernes from the
University of Bergen for acting as my opponent. Furthermore, I thank all the anonymous
reviewers of various journals and conferences for helpful comments and suggestions related
to the manuscripts included in this thesis.
I thank all my co-authors involved with the projects outside of this thesis as well that I
got to meet. In no particular order, many thanks Missy, Petteri, Łukasz, Robert, Eduard,

ii

iii

Henri, and Marzio for sharing your expertise. I also thank Pierre Hauweele for plugging
in my code and all the practical help with GraPHedron.

The financial support from the Emil Aaltonen Foundation for funding my research between
2015–2017 is gratefully acknowledged. I also thank the Finnish Foundation for Technology
Promotion (TES) for their support.

The much needed balance for work came in the form of friends and family. I have had the
pleasure of sharing (two separate) offices with Elina, Henri, and Kalle, all of whom have
become more important to me than just co-workers. I also thank other people at the
Department of Mathematics for making me feel at home. In particular, I wish to thank
Tiina Sävilahti and Kari Suomela for helping me (with a smile) with whatever I happened
to need help with. For my many other friends here and around the world: thanks!

Most importantly, I am thankful for my parents for all the love and support throughout
the years. Mikko, thank you for the countless discussions, and for being a brother I could
always look up to. Soffi, thank you for everything.

Tampere, October 2016,

Juho Lauri

To the loving memory of Mari.

Contents

Abstract i

Preface ii

List of publications vii

1 Introduction 1
1.1 Background . 1
1.2 Summary of the main contributions . 5
1.3 Author’s contribution . 5
1.4 The structure of the thesis . 6

2 Preliminaries 7
2.1 Notation . 7
2.2 Structural graph theory . 7
2.3 Rainbow connections in graphs . 10
2.4 Fixed-parameter tractability . 12
2.5 Lower bounds on exact algorithms . 14

3 Hardness of finding rainbow paths 16
3.1 Hardness barriers . 16
3.2 A charting of the FPT landscape . 19
3.3 On fast algorithms for solving rainbow connectivity 21

4 Algorithmic aspects of rainbow coloring graphs 23
4.1 Hardness and lower bounds for rainbow coloring 23
4.2 Graphs with bounded structural parameters 28
4.3 Variants of rainbow coloring through parameterization 30

5 Bounds on the rainbow connection numbers 32
5.1 Upper bounds via colorings and domination 32
5.2 Rainbow coloring block graphs . 33
5.3 Rainbow coloring chordal diametral path graphs 42

6 Conclusions 47
6.1 Conjectures and open problems . 47

Appendices 50

v

Contents vi

Appendix A A compendium of common problems 51
A.1 Rainbow connectivity . 51
A.2 Rainbow coloring . 52
A.3 Other problems . 53

Bibliography 56

List of publications

This thesis consists of the following five publications. They are referred to as [P1] – [P5] in
the text. The publications are presented in an order natural for the discussion to follow.
For each publication, the author ordering is alphabetical.

[P1] Juho Lauri. Further hardness results on rainbow and strong rainbow connectivity.
Discrete Applied Mathematics 201 (2016), pp. 191–200.

[P2] Juho Lauri. Complexity of rainbow vertex connectivity problems for restricted
graph classes. Submitted to Discrete Applied Mathematics.

[P3] Łukasz Kowalik and Juho Lauri. On finding rainbow and colorful paths. Theoretical
Computer Science 628 (2016), pp. 110–114.

[P4] Eduard Eiben, Robert Ganian, and Juho Lauri. On the complexity of rainbow
coloring problems. Accepted to Discrete Applied Mathematics.

[P5] Łukasz Kowalik, Juho Lauri, and Arkadiusz Socała. On the fine-grained complexity
of rainbow coloring. In: Proceedings of the 24th Annual European Symposium on
Algorithms, ESA 2016, Aarhus, Denmark, August 22-24. 2016, 58:1–58:16.

The preliminary version of [P4] appeared as: Eduard Eiben, Robert Ganian, and Juho Lauri. On
the complexity of rainbow coloring problems, In: Proceedings of the 26th International Workshop on
Combinatorial Algorithms, IWOCA 2015, Verona, Italy, October 5–7. 2015, pp. 209–220.

vii

1

Introduction

This introductory chapter gives a gentle introduction to the topic of rainbow coloring
and connectivity problems. Some graph-theoretic and complexity-theoretic background
is useful when moving on to defining the research goals. We refer the reader unfamiliar
with these concepts to Chapter 2. Throughout the rest of the thesis, we may sometimes
refer to computational problems assumed to be common knowledge in the field. For
completeness, we provide the reader with a list such problems in Appendix A.

1.1 Background

Connectivity is a fundamental graph concept. A basic graph-theoretical question is the
following: given a graph, is there a path between two vertices? Often in applications, it is
not sufficient merely to determine the existence of any such a path. Instead, we wish to
determine the existence of a path with particular properties. A classical example in e.g.,
pathfinding and routing is finding a shortest path between two vertices. Another example
is finding a longest path to maximize the coverage of a forward-moving agent maneuvering
through the graph. Solving such pathfinding problems is of significant practical and
theoretical interest.
Applicatons rarely conform to simple theoretical models. For instance, it could be useful
to associate vertices and/or edges with numbers or colors. Such quantities can represent
length, time, or type of a resource. For example, the well-known textbook of Kleinberg
and Tardos [51] describes the following application in monitoring and marketing. A
company has a website that services both subscribers and nonsubscribers. All content
of the website is shown to subscribers, but access for nonsubscribers is limited. More
specifically, nonsubscribers can view any page, but the maximum number of pages viewed
in a single session is limited. The website is modeled by a (directed) graph G = (V,E),
in which the vertices correspond to pages, and edges to hyperlinks between pages. The
website has a front page, which a particular vertex s ∈ V corresponds to. The pages
are divided into zones. For instance, there is a distinct zone for music, politics, sports,
and so on. More formally, the user session is tracked by dividing the vertex set V into
color classes Z1, Z2, . . . , Zk ⊆ V , where each color class Zi corresponds to such a zone. A
navigation path of a nonsubscriber starting from s is restricted to include at most one

1

Chapter 1. Introduction 2

page from each zone Zi. Otherwise, the user’s session is terminated, and an ad is shown
suggesting the user becomes a subscriber. A question the company asks is whether it is
possible for a nonsubscriber to navigate from the front page s to some other page t in a
single session, i.e., whether there is an s-t path that passes through each zone at most
once.

Formally, the colored paths the above problem considers are rainbow. That is, a rainbow
path is a colored path on which no color repeats. Such paths naturally capture the
constraint of avoiding the use of the same type of resource twice. A path in a vertex-
colored graph is vertex rainbow if its internal vertices have distinct colors. Rainbow paths,
in both edge-colored and vertex-colored graphs, are the central to this thesis.

Motivation. The k-RC problem asks whether the edges of a given graph can be colored
in k colors such that each vertex pair is connected by a rainbow path. The smallest
such k is known as the rainbow connection number of the graph, and can be viewed
as yet another measure of graph connectivity. Similarly, the smallest number of colors
needed to establish a rainbow shortest path between each pair of vertices is known as
the strong rainbow connection number of a graph. Both concepts were introduced by
Chartrand, Johns, McKeon, and Zhang [11] in 2008, while also featured in an earlier book
of Chartrand and Zhang [13]. Rainbow coloring has attracted considerable attention with
over 200 papers published on the topic by now (for an overview, see the survey of Li, Shi,
and Sun [58]).

The concept of rainbow connectivity can be seen as a natural, interesting way of strength-
ening the connectivity property. Possible applications have been suggested that fall under
the umbrella term of telecommunications and data transfer. For example, Chakraborty,
Fischer, Matsliah, and Yuster [7] describe the following example in message routing. Given
a network G, we wish to route message between every pair of vertices in a pipeline while
requiring each edge (corresponding to a link) to use a distinct channel. The objective is to
minimize the number of distinct channels used in the network. This number is precisely
the rainbow connection number of G. In addition, Dorbec, Schiermeyer, Sidorowicz, and
Sopena [26] note that rainbow paths generally appear in the context of onion routing,
using layered encryption.

The concept of rainbow paths also appears in the context of broadcast scheduling. In
such problems, we have a network of broadcast transceivers that operate on a shared
medium. The goal is to schedule the use of the medium to ensure communication over the
entire network. Moreover, the objective is to avoid transmission conflicts: simultaneous
transmissions on the same medium conflict, and are thus expected to fail. Such problems
are often modeled as vertex or edge coloring problems. In particular, these coloring
problems often have a distance constraint. For instance, in the distance-2 coloring
problem, the goal is to color the vertices of a graph with a smallest number of colors such
that two vertices at a distance at most 2 receive distinct colors. A broadcast scheduling
problem solved as an instance of distance-2 coloring guarantees every path of length 2 is
rainbow. A relaxation suggested by Joseph and DiPippo [45] only requires one such path
between every pair of vertices.

On the theoretical side, the problems pose several interesting questions. We explore these
questions more in-depth in the following.

Research goals. It seems fair to argue most of the research has focused on the
combinatorial aspects of the problem. In this thesis, we focus on the computational

Chapter 1. Introduction 3

complexity of the problem along with some of its variants. We will also obtain results
that can be seen as purely combinatorial results in the problem domain. In what is to
follow, we highlight particular research questions and problems we study.

Problem 1: What is the complexity of rainbow connectivity?

Recall that in the k-RC problem, we are asked if the edges of an n-vertex graph can be
colored such that there is a rainbow path between each pair of vertices. To prove that
k-RC is NP-complete, we must show that the problem is in NP. Clearly, as there is a
budget of k colors, each rainbow path can be of length at most k. Thus, the certificate for
proving membership in NP is roughly a set of size n2, containing a colored path of length
at most k for each vertex pair. This observation motivates the study of the Rainbow
Connectivity problem, in which we are given an edge-colored graph G, and have to
decide whether G is rainbow-connected. A similar question can be formulated for the
vertex variant, namely Rainbow Vertex Connectivity. In this problem, the input
graph G is vertex-colored, and the question is whether G is rainbow vertex-connected,
i.e., has a path on which no color repeats on its internal vertices between each pair of
vertices. For both problems, we also study their strong variants in which we ask for
the existence of a shortest path — either rainbow or rainbow vertex, depending on the
problem — between each pair of vertices. In general, we refer to these problems as rainbow
connectivity problems.

We further study the problems on restricted graph classes. In particular, we aim to find
the strongest possible restriction of the input under which the problems still remain hard.
Moreover, we seek to determine graph classes for which the complexity of the problems
differ. At the same time, we aim to identify structural parameters whose boundedness
render the problems tractable.

Problem 2: How fast of an algorithm can one have for finding a rainbow
path?

Clearly, an algorithm for determining whether a rainbow path between two vertices exists
can be used for deciding rainbow connectivity problems. Not surprisingly, the problem is
NP-complete, making the existence of a polynomial-time algorithm highly unlikely. But
how fast of an exponential-time algorithm can one hope for?

We approach the question from the viewpoint of parameterized complexity, and take as
the natural parameter the number of colors k. In other words, we push the apparently
unavoidable exponential runtime dependence to the parameter k, and seek to find an
algorithm running in time f(k)nO(1), where f is a computable function depending solely
on k. Questions precisely like this are at the core of the so-called optimality program
in parameterized complexity (see e.g., [64]). For concreteness, we ask: what is the best
possible f(k) in the above runtime? In other words, we seek to systematically understand
the underlying nature of hard computational problems. In particular, we strive to find
lower bounds (under plausible complexity assumptions) together with matching upper
bounds.

Problem 3: Study the computational aspects of finding rainbow colorings

We separate the problem of finding a rainbow coloring from the problem of verifying a
given rainbow coloring. Indeed, rainbow coloring problems such as k-RC stand in contrast

Chapter 1. Introduction 4

to rainbow connectivity problems. In such problems the coloring is given, whereas in
rainbow coloring problems we have a budget of k colors to construct a desired coloring.

We study rainbow coloring problems on restricted graph classes. First, we seek to pinpoint
additional graph classes for which the problem remains hard. Second, we consider
approximability of the problems. That is, even if a problem is hard to compute exactly,
it could be possible we can find an almost optimal solution efficiently. What is the case
for rainbow coloring?

In the spirit of the optimality program, we also study lower bounds (under reasonable
complexity assumptions) for algorithms that find rainbow colorings. In particular, how
much of an improvement could one hope for over the naive brute-force algorithm that
goes through all possible colorings? In addition, we consider natural relaxations of the
problem, in which we only wish to rainbow-connect specific vertex pairs by rainbow paths
or wish to maximize the number of rainbow-connected vertex pairs with a budget of k
colors.

Problem 4: Study the rainbow connection number of subclasses of chordal
graphs

A fair amount of research on exact polynomial-time algorithms and upper bounds on the
rainbow connection number has been concentrated on chordal graphs and their subclasses.
A possible motivation is the following simple observation. It is known that there is an
efficient algorithm to find a clique cover for a chordal graph, i.e., a (smallest) collection C
of cliques that cover all edges of the graph. Color the graph by assigning a distinct color
to each C ∈ C, that is, color every edge of C with the same color. It is easy to prove the
graph is rainbow-connected under the obtained coloring. In fact, this coloring is optimal
for some graphs. When does such a “simple” coloring cease to be optimal?

We continue the investigation of the rainbow connection number of subclasses of chordal
graphs, including block graphs, split graphs, and chordal diametral path graphs. Such
a study brings us closer to the combinatorial nature of the problem. In particular, the
goal is to understand what features or structural properties of graphs make the problem
hard, or conversely, render it tractable. Instead of tools from parameterized complexity,
we approach the problems from the viewpoint of exact polynomial-time algorithms and
combinatorial methods. This is in contrast to e.g., algorithmic metatheorems, that often
abstract the problem quite heavily, and thus might obscure features that enable purely
combinatorial algorithms.

Problem 5: Find improved upper bounds on the rainbow connection
numbers

Finding bounds as tight as possible for a graph parameter is a typical line of research
within graph theory. Indeed, can we bound the rainbow connection number in terms of
some other well-known parameter? In particular, we will focus on the strong rainbow
connection number for which results have been considerable more scarce. A possible
reason for the lack of results lies in the difficulty of studying it. For instance, in [58], the
authors write: “The investigation of strong rainbow connection number is much harder
than that of rainbow connection number.” The reason given is that the strong rainbow
connection number is not a monotone graph property. That is, a property is monotone if
it does not increase under edge addition. Thus, despite the interest, there have been less
results concerning the strong rainbow connection number.

Chapter 1. Introduction 5

1.2 Summary of the main contributions

We summarize below the main contribution of this thesis, and how they answer the
outlined research problems.

1. In [P1] and [P2], we considerably extend the known NP-completeness results for
rainbow connectivity problems. For example, we show the problems remain in-
tractable for bipartite planar graphs, interval graphs, k-regular graphs for every
k ≥ 3, graphs of bounded pathwidth, and graphs of bounded bandwidth. On
the other hand, the problems are fixed-parameter tractable for e.g., tree-depth.
Previously, no graph class was known where the complexity of the two problems
Rainbow Connectivity and Strong Rainbow Connectivity would differ.
We show that for block graphs, which form a subclass of chordal graphs, Rainbow
Connectivity is NP-complete while Strong Rainbow Connectivity is in P.

2. In [P3], we show the existence of a rainbow path between two vertices can be
decided in 2knO(1) time and polynomial space, where k is the number of colors
in the given coloring. Moreover, we show that for any ε > 0, the existence of a
(2− ε)knO(1)-time algorithm for finding a path on which all k colors appear, i.e.,
colorful path, violates the so-called Set Cover Conjecture.

3. In [P4], we prove that for every k ≥ 2, it is NP-complete to decide if the vertices of
a graph can be colored in k colors such that there is a vertex rainbow shortest path
between each pair of vertices. Moreover, the problem cannot be approximated in
polynomial time within a factor of n1/2−ε for any ε > 0, unless P = NP. In fact, the
same is true when restricted to graphs of diameter 3. We give positive results for
rainbow coloring graphs of bounded vertex cover number and bounded treewidth.
Moreover, we give a linear-time algorithm which decides whether it is possible to
obtain a rainbow coloring by saving a fixed number of colors from a trivial upper
bound.

4. The main result of [P5] states that there is no 2o(n3/2)-time algorithm for k-RC,
for any k ≥ 2 unless the Exponential Time Hypothesis (ETH) fails. In Section 4.1,
we show that it is NP-complete to decide whether a split graph with a dominating
vertex can be strongly rainbow-connected in k colors. Furthermore, the strong
rainbow connection number of a an n-vertex split graph cannot be approximated in
polynomial time within a factor of n1/2−ε for any ε > 0, unless P = NP. We give
further positive parameterized results in [P5] for relaxations of rainbow coloring, in
which the goal is to rainbow-connect a maximum number of vertex pairs.

5. In Section 5.2, we determine exactly the strong rainbow connection number of
block graphs. Moreover, we show that the quantity can be computed in linear time.
Furthermore, we provide a polynomial-time characterization of bridgeless block
graphs that have rainbow connection number 1, 2, 3, or 4. Finally, in Section 5.3, we
give a tight upper bound for the rainbow connection number of chordal diametral
path graphs, which form a subclass of chordal graphs.

1.3 Author’s contribution

The main contributions of this work, as detailed in the previous subsection, involve
concepts and results in computational complexity and mathematics. Joint research

Chapter 1. Introduction 6

in these areas is a sharing of skills and ideas that is often impossible to attribute to
individuals separately. It is characteristic of such work that ideas grow from discussions
among all partners, and there are no specified roles for the involved researchers (this can
be in contrast to e.g., laboratory sciences).
Nevertheless, below we give as exact breakdown of the author’s contribution as possible.
We stress that in each publication, the author ordering is alphabetical. As such, the
author ordering does not imply any level of contribution.

[P1] and [P2] The present author is the sole author of both manuscripts.

[P3] The results and the writing of the manuscript are joint work with Łukasz Kowalik.

[P4] The results of Section 3 are due to the present author. The results of Section 4
are joint work with Eduard Eiben and Robert Ganian, as is the writing of the
manuscript. The results of Section 6 are joint work of Eduard Eiben and Robert
Ganian.

[P5] The results of Section 2 are joint work of Łukasz Kowalik and Arkadiusz Socała.
The remaining results are joint work with Łukasz Kowalik.

The results presented in Section 5.1 and Section 5.2 are joint work with Melissa Keranen,
and are based on the manuscripts [48, 49]. In addition, the results given in Section 5.3
are joint work with Henri Riihimäki, and are based on the manuscript [54].

1.4 The structure of the thesis

The thesis is divided into six chapters. In Chapter 2 we review basics of structural
graph theory, and give an introduction to the combinatorial nature of rainbow coloring.
Furthermore, we consider fixed-parameter tractability and techniques for proving lower
bounds on exact and parameterized algorithms. A reader familiar with the concepts may
freely proceed to Chapter 3.
In Chapter 3, we focus on the problem of verifying if a given graph is rainbow-connected
under a given coloring. We obtain a thorough classification of the considered problems
with respect to NP-completeness. These hardness results have negative consequences for
several parameterized algorithms. We show the problems can be solved in O∗(2k) time
and polynomial space parameterized by the number of colors k. We conclude the chapter
by deriving lower bounds on parameterized algorithms solving related problems.
In Chapter 4 we proceed to the problem of finding a rainbow coloring for a given graph.
In particular, we derive additional hardness results for restricted graph classes, implying
results on the hardness of approximating the rainbow connection numbers. In addition,
we obtain lower bounds under the Exponential Time Hypothesis (ETH). Such a result
implies it is very unlikely to obtain an algorithm significantly faster than brute-force for
many rainbow coloring problems. These results are complemented by positive results
through a structural parameterization. In particular, we show several rainbow coloring
problems are tractable parameterized by e.g., treewidth and the vertex cover number.
Finally, we turn our attention to purely combinatorial methods in Chapter 5. In particular,
we will consider polynomial-time algorithms for exact or approximate rainbow coloring
subclasses of chordal graphs. A particular focus will be on the strong rainbow connection
number. Chapter 6 concludes the thesis along with some open problems.

2

Preliminaries

In this chapter, we review some basics of structural graph theory and algorithms.

2.1 Notation

For a positive integer n, we write [n] = {1, 2, . . . , n}.
We use standard asymptotic notation. For a function h : N→ N, we write h(n) = nO(1) to
denote that h is bounded from above by some polynomial. Sometimes it will be convenient
to use a modified big O notation that suppresses all polynomially bounded factors. For
two functions f and g, we write f(n) = O∗(g(n)) if f(n) = O(g(n)poly(n)), where poly(n)
represents some polynomial in n.

2.2 Structural graph theory

In this section, we review the basics of structural graph theory, with an emphasis on some
structured graph classes.

Graphs. A graph is an ordered pair G = (V,E) such that V is a finite set, known as
the vertex set, and E is a finite set of 2-element subsets of V , called the edge set. If
V = E = ∅, the graph G is said to be empty. Typically, one refers to the elements of V
as vertices of the graph G, and the elements of E as the edges of the graph G. Unless
mentioned otherwise, all graphs in this thesis are undirected, that is, the edges of a graph
are unordered pairs. In addition, we will always assume there are no self-loops, that is,
{v, v} /∈ E for all v ∈ V . For a graph G, we denote by V (G) and E(G) its vertex set and
edge set, respectively. To reduce clutter, an edge {u, v} is often denoted as uv.

We say two graphs G and H are isomorphic if there are bijections ΦV : V (G)→ V (H)
and ΦE : E(G) → E(H) such that ΦE(vw) = (ΦV (v),ΦV (w)) for all vw ∈ E(G). If G
and H are isomorphic, we write G ' H.

A vertex v is incident with an edge e if v ∈ e. Two vertices x and y are adjacent (or
neighbors) if xy is an edge of G. Two edges e 6= f are adjacent if they have an end in

7

Chapter 2. Preliminaries 8

common. The line graph of a graph G, denoted by L(G), has a vertex for each edge in
G with an edge between two vertices if the corresponding edges are adjacent in G. The
degree of a vertex v is the number of edges incident to v. The minimum degree of a graph
G is denoted by δ(G); sometimes we shorten this to δ if it is clear from the context what
G is. Similarly, we may denote the maximum degree of a graph G by ∆(G), or just ∆.
Let G = (V,E) and G′ = (V ′, E′) be two graphs. We say G′ is a subgraph of G if V ′ ⊆ V
and E′ ⊆ E, and denote this by G′ ⊆ G. If G′ ⊆ G and G′ contains all the edges xy ∈ E
with x, y ∈ V ′, then G′ is an induced subgraph of G; we say that V ′ induces G′ in G,
and write G′ = G[V ′]. We say a graph G is H-free if G does not contain graph H as
an induced subgraph. When we say G is (H1, H2, . . . ,Hk)-free, we mean G is H-free for
each Hi ∈ {H1, H2, . . . ,Hk}. Let e = uv be an edge of a graph G. By G/e we denote the
graph obtained from G by contracting the edge e into a new vertex ve, which becomes
adjacent to all the former neighbors of u and v. Finally, we say H is a minor of G if H is
obtainable from G by deleting edges and vertices and by contracting edges. In particular,
we say that a graph G is H-minor-free if H is not a minor of G. When we say G is
(H1, H2, . . . ,Hk)-minor-free, we mean G is Hi-minor-free for each Hi ∈ {H1, H2, . . . ,Hk}.
A path is a non-empty graph P = (V,E) of the form V = {x0, x1, . . . , xk}, E =
{x0x1, x1x2, . . . , xk−1xk}, where the xi’s are all distinct. The number of edges of a
path is its length. A path on n vertices is known as a path graph, and denoted by Pn. A
graph is connected if there is a path between each pair of its vertices. Otherwise, the graph
is disconnected. A maximal connected subgraph of G is called a connected component (or
just component) of G. A cut vertex of G is a vertex whose removal increases the number
of number of components of G. A graph G is said to be k-vertex-connected if G remains
connected after the removal of any vertex set of size at most k − 1. In particular, we
may call a 2-vertex-connected graph biconnected. Similarly, a cut edge (or bridge) is an
edge whose removal increases the number of connected components of G. A graph G
is k-edge-connected if G remains connected after the removal of any edge set of size at
most k − 1.
For a more thorough treatment, we refer the reader to [24].

Graph invariants. Let G = (V,E) be an undirected simple graph. A vertex coloring
(or just coloring) is a function c : V → [k] assigning a color from [k] to each vertex. The
coloring is said to be proper if c(u) 6= c(v) for every uv ∈ E. A graph G is said to be
k-colorable if there exists a proper coloring using k colors for it. The minimum k for
which a graph G is k-colorable is known as its chromatic number, denoted by χ(G). A
complete subgraph of G is a clique. The clique number of a graph G, denoted by ω(G), is
the size of a largest clique in G. A vertex cover of G is a set of vertices such that each
edge is incident to at least one vertex in the set. For example, a set of vertices is a vertex
cover precisely when its complement forms an independent set, that is, a set of pairwise
non-adjacent vertices. The vertex cover number of a graph G, denoted by τ(G), is the
size of a smallest vertex cover in G. A subset S of V is called a dominating set if every
vertex in V \ S is adjacent to some vertex in S. The domination number of a graph G,
denoted by γ(G), is the size of a smallest dominating set in G. A dominating set S is
called a connected dominating set if the graph induced by S is connected. The connected
domination number of a graph G, denoted by γc(G), is the size of a smallest connected
dominating set of the graph G. In particular, if G has a dominating set S = {v}, we
might say v is a dominating vertex.

Graph classes. A complete graph on n vertices, denoted by Kn, has all the possible

Chapter 2. Preliminaries 9

(
n
2
)
edges. In particular, we will call K3 a triangle. A 2-colorable graph is bipartite. A

complete bipartite graph consists of two non-empty independent sets X and Y with xy
being an edge whenever x ∈ X and y ∈ Y . A complete bipartite graph is denoted by
Kn,m, and it has n+m = |X|+ |Y | vertices. In particular, we will call K1,3 a claw. We
also denote the graph K1,n as Sn, and call it a star.

A graph is said to be planar if it can be embedded in the plane with no crossing edges.
Equivalently, a graph is planar if it is (K3,3,K5)-minor-free. A graph is outerplanar if it
has a crossing-free embedding in the plane such that all vertices are on the same face.
Clearly, each outerplanar graph is planar. Another superclass of outerplanar graphs is
formed by series-parallel graphs. Series-parallel graphs are exactly the K4-minor-free
graphs [28]. In a cactus graph, every edge is in at most one cycle. Cactus graphs form a
subclass of outerplanar graphs.

A graph is k-regular if every vertex has degree exactly k. In particular, we will call a
3-regular graph cubic. A connected 2-regular graph is a cycle graph. A cycle graph on n
vertices is denoted by Cn. For convenience, if H ' Cn is an induced subgraph of a graph
G for any n ≥ 1, we can say H is an induced cycle (of G).

A chord is an edge joining two non-consecutive vertices in a cycle. A graph is chordal if
every cycle of length 4 or more has a chord. Equivalently, a graph is chordal if it contains
no induced cycle of length 4 or more. Chordal graphs are precisely the class of graphs
admitting a clique tree [37]. A clique tree of a connected chordal graph G is any tree
T whose vertices are the maximal cliques of G such that for every two maximal cliques
Ci, Cj , each clique on the path from Ci to Cj in T contains Ci∩Cj . A subclass of chordal
graphs is formed by interval graphs. A graph is an interval graph if and only if it admits
a clique tree that is a path [38]. In a block graph, every maximal biconnected component,
known as a block, is a clique. In other words, every edge of a block graph G lies in a
unique block, and G is the union of its blocks. It is easy to see that block graphs are also
chordal. A graph whose vertex set can be partitioned into a clique and an independent
set is known as a split graph. It is known that each split graph is chordal. Finally, a
(2K2, C4, P4)-free graph1 is a threshold graph, and they form a subclass of split graphs.

Three vertices of a graph form an asteroidal triple if every two of them are connected by
a path avoiding the neighborhood of the third. A graph is AT-free if it does not contain
an asteroidal triple. In general, AT-free graphs are not chordal.

Width parameters. Roughly speaking, width parameters measure the closeness of
a graph to a particular kind of graph. Such parameters are typically defined through
various decompositions that can be exploited algorithmically. However, we deviate from
this perhaps standard practice as we will not give explicit algorithms leveraging such
decompositions. Instead, we use slightly different but equivalent definitions. A proper
interval graph (also known as a unit interval graph) is a graph that is both interval and
claw-free (see [70]). The bandwidth of a graph G, denoted by bw(G), is one less than the
minimum clique number of any proper interval graph having G as a subgraph [47]. The
pathwidth of a graph G, denoted by pw(G), is one less than the minimum clique number
of any interval graph having G as a subgraph. The treewidth of a graph G, denoted by
tw(G), is one less than the minimum clique number of any chordal graph having G as
a subgraph. Indeed, for a graph G, we have that tw(G) ≤ pw(G) ≤ bw(G) (for a proof,
see [3]). Finally, a (C4, P4)-free graph is trivially perfect. The tree-depth of a graph G,

1By 2K2 we mean the 4-vertex graph whose both components are a K2.

Chapter 2. Preliminaries 10

denoted by td(G), is the minimum clique number of any trivially perfect graph having G
as a subgraph. Here, we have that pw(G) ≤ td(G)− 1 (for a proof, see [4]).

2.3 Rainbow connections in graphs

In this section, we briefly survey some combinatorial properties of rainbow colorings.
These will be useful already for Chapter 3, but especially for Chapters 4 and 5.

The concept of rainbow coloring was introduced by Chartrand, Zhang, Johns, and McKeon
in 2008 [11], while also briefly featured in an earlier book of Chartrand and Zhang [13].
We say a path in an edge-colored graph is rainbow if no color repeats on it. A graph
is rainbow-connected if there is a rainbow path between every pair of its vertices. The
minimum number of colors for which a graph G is rainbow-connected is known as its
rainbow connection number, denoted by rc(G). Similarly, a graph is said to be strongly
rainbow-connected if there is a rainbow shortest path between every pair of its vertices.
Likewise, the minimum number of colors for which a graph G is strongly rainbow-connected
is known as its strong rainbow connection number, denoted by src(G). If a graph G is
(strongly) rainbow-connected under some edge-coloring c : E → N, we might also say G is
(strongly) rainbow colored. Moreover, such a c can be called a (strong) rainbow coloring
(of G). To avoid confusion, we stress that the rainbow connection numbers are properties
of uncolored graphs.

The diameter of a graph G, denoted by diam(G), is the length of a longest shortest
path in G. It is easy to see that to rainbow-connect any connected graph G, at least
diam(G) colors are needed. On the other hand, one can use at most m colors, where m
stands for the number of edges. Finally, as every strongly rainbow-connected graph is
also rainbow-connected, we have that diam(G) ≤ rc(G) ≤ src(G) ≤ m, for any connected
graph G. It is also straightforward to verify that in any (strong) rainbow coloring of G,
every bridge of G must receive a distinct color (for a proof, see [12]).

Chartrand et al. [11] established basic combinatorial properties and determined the exact
rainbow connection number for some structured graph classes. For instance, they showed
the following.

Theorem 2.1 (Chartrand et al. [11]). Let G be a connected graph with n vertices and m
edges.

• rc(G) = src(G) = 1 if and only if G is complete.

• rc(G) = src(G) = m if and only if G is a tree.

• rc(Cn) = src(Cn) = dn/2e, for n ≥ 4.

• rc(G) = 2 if and only if src(G) = 2.

By considering star graphs (that is, K1,n for some n ≥ 1), one can see the difference
between diam(G) and rc(G) can be made arbitrarily large. Here, rc(G) can be replaced
by src(G), as both equal m for a tree.

For complete bipartite graphs, the following results were obtained by Chartrand et al. [11].

Theorem 2.2 (Chartrand et al. [11]). Let Ks,t be a complete bipartite graph for two
integers s, t ≥ 1.

Chapter 2. Preliminaries 11

• rc(Ks,t) = min{d s
√
te, 4}, for 2 ≤ s ≤ t.

• src(Ks,t) = d s
√
te, for 1 ≤ s ≤ t.

Since the work of Chartrand et al. [11], there has been significant interest in the concept
of rainbow coloring, with over 200 papers published by now on the topic.

For the sake of providing more context for the reader, we highlight some results on the
rainbow connection number in the following. It should be noted there are far less results
for the strong rainbow connection number. A possible reason, along with some results,
are presented in Chapter 5.

Theorem 2.3. Let G be a connected graph with n vertices and m edges. Then,

• rc(G) ≤ dn/2e, where G is 2-connected, and this is tight (Ekstein et al. [29]);

• rc(G) ≤ 20n
δ (Krivelevich and Yuster [53]); and

• rc(G) ≤ 3n
δ+1 + 3 (Chandran et al. [8]).

For several combinatorial results not mentioned here, we refer the reader to the survey of
Li, Shi, and Sun [58], or the book of Li and Sun [60].

In addition to edge-colored graph, it is natural to consider rainbow connection in vertex-
colored graphs. Krivelevich and Yuster [53] introduced the vertex variant of the rainbow
connection number in the following way. A path in a vertex-colored graph is vertex
rainbow (or just rainbow, if there is no danger for confusion), if no color repeats on its
internal vertices. That is, a path of length at most two is always vertex rainbow regardless
of the underlying vertex-coloring. A graph is rainbow vertex-connected if there is a vertex
rainbow path between each pair of its vertices. The minimum number of colors for which
a graph G is rainbow vertex-connected is known as its vertex rainbow connection number,
denoted by rvc(G). In a way analogous to the strong rainbow connection number, Li,
Mao, and Shi [57] introduced the strong vertex rainbow connection number of a graph G,
denoted by srvc(G). It can be verified that diam(G)− 1 ≤ rvc(G) ≤ srvc(G) ≤ n− 2 (for
a proof, see [57]).

The reader might wonder about the motivation behind the definition of the rainbow vertex
connection numbers. In particular, why does one restrict the rainbow property to hold
only on the internal vertices of the graph? Suppose we did instead require each vertex on
a path to hold a distinct color. Clearly, both rvc(G) and srvc(G) would then equal n, as
we need a distinct color for each vertex. Thus, the parameters become uninterestingly
high and it appears more sensible to use the definition given in [53]. For the problem
of verifying whether a vertex rainbow path exists between two vertices s and t, the
definitions can be shown to be computationally equivalent.

It is natural to ask for connections between the edge and vertex variants of the rainbow
connection numbers. For instance, is one an upper bound for the other? Are the two
parameters connected through say the line graph of the graph? For the first question,
the answer is no. For the n-vertex star graph G ' Sn, we have rc(G) = src(G) = m.
However, as diam(G) = 2, we have rvc(G) = srvc(G) = 1. To see that rc(H) < rvc(H) is
possible, consider the graph H obtained by attaching a triangle to each vertex of Kn (see
Figure 2.1). Here, H has n cut vertices, and thus rvc(H) = n is easy to prove. On the
other hand, it is not difficult to see that rc(H) ≤ 4. For the vertex variants, it is true

Chapter 2. Preliminaries 12

1 1

1

1

1

1

1

1

1

1

2
3 4

2
3

4

23

4

2 3

4

2
3

4

(a) (b)
Figure 2.1: The graph H formed by attaching a triangle to each vertex of Kn for n = 5. It
holds that (a) rc(H) ≤ 4, but (b) rvc(H) = n.

that srvc(G) ≤ src(G) when diam(G) ≤ 2. In general, it seems unknown whether the
statement is true for graphs of diameter at least 3.

In general, it is unknown what the relationship between say rc(G) and rc(L(G)) is, where
L(G) is the line graph of G. In fact, this is explicitly mentioned as an open problem
in [58]. For some results concerning rc(L(G)), see [59, 61].

2.4 Fixed-parameter tractability

Traditionally, when analyzing algorithms, one assumes a one-dimensional view: the time
taken by an algorithm is measured as a function of the input size. However, it might be
beneficial to analyze an algorithm in terms of other parameters besides input size. Indeed,
virtually every problem is filled with parameters that reflect its structure. Especially for
a graph problem, there are several parameters reflecting the topology or shape of a graph.
Such parameters include, among others, treewidth, clique number, chromatic number,
and several distance parameters.

In parameterized complexity we take a two-dimensional view: how does an algorithm
perform when measured by both input size and some structural parameter that is
independent of the input size? In other words, we seek to understand the contribution of
such parameters to the overall complexity of a problem. In particular, for computationally
difficult problems,2 the aim is to investigate whether the exponential worst-case complexity
of a problem can be isolated into the additional parameter. We will briefly introduce the
central concepts of parameterized complexity. For a comprehensive treatment, we refer
the reader to [22, 27, 68].

In order to perform such two-dimensional analysis, we need to make precise the idea of
measuring not only by input size, but with an additional independent parameter.

Definition 2.4. A parameterized problem is a language L ⊆ Σ∗ × N, where Σ is a fixed,
finite alphabet. For an instance (x, k) ∈ Σ∗ × N, we call k the parameter.

2By no means is the analysis limited to hard problems —such an analysis for a problem in P can also
be fruitful.

Chapter 2. Preliminaries 13

For a graph-theoretic example, consider the problem Chromatic Number parameterized
by solution size k. That is, the goal is to decide whether a given graph G is k-colorable.
An instance (G, k) belongs to the Chromatic Number language precisely when the
string G encodes a valid undirected graph, and G is k-colorable. For optimization
problems, the solution size is the “standard parameter”. One might also parameterize by
some structural parameter, say maximum degree or treewidth. In general, choosing an
interesting parameter is an art.

Traditionally, an algorithm is thought to be efficient if it runs in time polynomial in
the input size. The following gives similar rough intuition for an algorithm solving a
parameterized problem.

Definition 2.5. A parameterized problem L ⊆ Σ∗×N is called fixed-parameter tractable
(FPT) if there exists an algorithm A (called a fixed-parameter algorithm), a computable
nondecreasing function f : N→ N, and a constant c such that, given (x, k) ∈ Σ∗ ×N, the
algorithm A correctly decides whether (x, k) ∈ L in time bounded by f(k) · |x|c. The
complexity class containing all fixed-parameter tractable problems is called FPT.

Of course, precisely like an algorithm running in time n100 is not efficient in practice,
an algorithm solving a parameterized problem in time 1010k

n is not efficient in practice
either. However, it is perhaps fair to say that when a problem is deemed to be FPT,
faster FPT algorithms can be found, e.g., the function f(k) can be improved upon.

Consider then the following problem known as Clique: given an undirected graph G
and an integer k, decide whether G contains a clique on k vertices. It is easy to observe
the problem is solvable in polynomial time for any fixed k. Indeed, using the solution size
k as a parameter, the obvious algorithm tries all the

(
n
k

)
vertex subsets, thus running in

time Θ(nk). The following definition captures such parameterized algorithms.

Definition 2.6. A parameterized problem L ⊆ Σ∗×N is called slice-wise polynomial (XP)
if there exists an algorithm A and two computable nondecreasing functions f, g : N→ N
such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly decides whether (x, k) ∈ L in
time bounded by f(k) · |x|g(k). The complexity class containing all slice-wise polynomial
time problems is called XP.

The brute-force algorithm places Clique in XP. However, there are several problems,
such as Clique, for which we do not know FPT algorithms for. In fact, it is common
belief that there are problems, including Clique, for which no FPT algorithm exists
(under reasonable complexity assumptions). This raises a question: how does one show
Clique or some other parameterized problem is (unlikely) to be FPT? To this end, let
us mention parameterized reductions. A parameterized reduction from a parameterized
decision problem L to a parameterized decision problem L′ is an algorithm that transforms
an instance (I, k) of L into an instance (I ′, g(k)) of L′ in time f(k)|I|O(1) where f and g
are computable functions such that (I, k) is a YES-instance of L if and only if (I ′, g(k))
is a YES-instance of L′. The class of problems reducible to Clique under parameterized
reductions is denoted by W[1]. We define hardness and completeness analogously to
classical complexity, but assume parameterized reductions. A problem is said to be W[1]-
hard if Clique (and thus each problem in W[1]) can be reduced to it by a parameterized
reduction. It is widely believed that FPT 6= W[1], while FPT 6= XP is known to be true
(see [27]). For a more thorough introduction to fixed-parameter intractability, we again
refer the reader to [22].

Chapter 2. Preliminaries 14

Finally, we do not believe every problem would even be in XP for a given parameter.
Let us go back to the problem Chromatic Number. It is well-known the problem is
NP-complete for every k ≥ 3. Thus, it is easy to imagine the consequences of an XP
algorithm for Chromatic Number: if we could solve Chromatic Number in time
f(k) · ng(k) for an n-vertex graph, then P = NP.

2.5 Lower bounds on exact algorithms

Every problem in NP can be solved in time exponential in the input size by a brute-force
algorithm. Indeed, unless P 6= NP, no NP-complete problem has a polynomial-time
algorithm. However, many NP-complete problems have exponential-time algorithms that
are considerable faster than a naive brute-force algorithm. For example, consider the
Subset Sum problem: given a set of n integers U and a target integer t, is there a subset
U ′ ⊆ U such that the sum of the elements in U ′ equals t? The obvious algorithm runs in
O∗(2n) time by trying all of the 2n subsets. However, already in the early 70s Horowitz
and Sahni [41] gave the following algorithm running in O∗(2n/2) time. Let us give the
idea behind their algorithm. First, split the input set U into two parts of size roughly n/2
both. Then, let Q and S contain all possible 2n/2 sums of the first part and the second
part, respectively. Finally, sort S, and for each sum q ∈ Q, perform a binary search for
the integer t − q in S. Correctness of the algorithm is straightforward to establish. A
natural question arises: can one do even better? More generally, assuming P 6= NP, how
fast of an algorithm can one hope to have for a particular problem?

For exponential lower bounds, it seems unavoidable to introduce a conjecture stronger
than P 6= NP. For concreteness, suppose we have an algorithm running in O∗(2n) time
for some NP-complete problem. If we only assume P 6= NP, how could we rule out an
algorithm running in O∗(cn) time, for some c < 2? To this end, let us introduce the
Exponential Time Hypothesis (ETH) of Impagliazzo and Paturi [43].

Conjecture 2.7 (Exponential Time Hypothesis (ETH), [43]). There exists a constant
c > 0, such that there is no algorithm for solving 3-SAT in time O∗(2cn), where n is the
number of variables.

How does introducing ETH help in excluding algorithms that are considerably faster than
the obvious algorithm? First, let us observe the consequences of a linear-size reduction
from 3-SAT to a target problem. That is, such a reduction outputs an instance I ′ of the
target problem whose size is O(n+m), where n denotes the number of variables, and m
the number of clauses. Now, observe that if the target problem could be solved in time
2o(|I′|), we could solve 3-SAT in time 2o(n+m). Let us explain how this contradicts ETH.
It can be seen that a 3-SAT instance can have up to Θ(n3) distinct clauses. Thus, it seems
that any reduction from 3-SAT unavoidably outputs an instance of a target problem
that has size at least cubic in the number of input variables. Fortunately, a sparsification
lemma of Impagliazzo, Paturi, and Zane [44] makes it possible to sparsify a given 3-SAT
formula such that the number of clauses is linear in the number of variables. We skip
many details, but it follows that we can safely assume that when reducing from 3-SAT,
the number of clauses is linear in the number of variables (for details, see e.g., [22]). Thus,
if we could solve 3-SAT in time 2o(n+m), we would break ETH. Finally, let us explain the
general scheme of obtaining hardness results under ETH. That is, suppose a reduction
takes an instance I of 3-SAT and outputs an instance of a target problem of size at most
g(|I|) for some nondecreasing function g. Then, a O∗(2o(f(|I|)))-time algorithm for the

Chapter 2. Preliminaries 15

target problem implies a O∗(2o(f(g(|I|))))-time algorithm for 3-SAT. Such an algorithm is
obtained by composing the reduction with an algorithm for the target problem.

Previously, assuming ETH, it has been shown that there is no 2o(n logn)-time algorithm
for Channel Assignment [71], as well as for many embedding problems including
Subgraph Isomorphism and Graph Minor [21]. For a survey on lower bounds under
ETH, we refer the reader to [62].

Finally, yet another conjecture is based on the following Set Cover problem. In this
problem, we are given an integer f and a family of sets S over the universe U =

⋃S with
n = |U | and m = |S|. The goal is to decide whether there is a subfamily of at most f
sets S1, S2, . . . , Sf ∈ S such that U =

⋃f
i=1 Si.

Conjecture 2.8 (Set Cover Conjecture, [20]). There is no algorithm for the Set Cover
problem that runs in time (2− ε)n(nm)O(1) for any ε > 0.

In fact, a dynamic programming algorithm of Fomin, Kratsch, and Woeginger [32]
(designed to solve the minimum dominating set problem on split graphs) decides Set
Cover in time O∗(2n). An improved algorithm running in time O∗((2− ε)n), for any
ε > 0, has been deemed a major breakthrough after decades of research on the problem.
It turns out that under this assumption, we can establish tight lower bounds for several
well-known parameterized problems. In particular, the following is known.

Theorem 2.9 ([20, 2]). Unless the Set Cover Conjecture fails,

• Steiner Tree cannot be solved in time O∗((2− ε)`) for any ε > 0, where ` is the
target size of the tree;

• Connected Vertex Cover cannot be solved in time O∗((2− ε)k) for any ε > 0,
where k is the target size of the solution;

• Set Partitioning cannot be solved in time O∗((2− ε)n) for any ε > 0, where n is
the size of the universe;

• Subset Sum cannot be solved in time O∗((2− ε)m) for any ε > 0, where m is the
number of bits of the encoding of the target sum t; and

• Graph Motif cannot be solved in time O∗((2− ε)k) for any ε > 0, where k is the
size of the solution.

For each of the above problems, non-trivial algorithms with matching upper bounds
are known (see [20] for the references). All of these algorithms are based on dynamic
programming, except for the one for Graph Motif, which takes an algebraic approach.
For this reason, it is suggested in [20] that Set Cover is the “canonical” dynamic pro-
gramming problem. Informally, it seems the Set Cover Conjecture is a suitable conjecture
for deriving exponential lower bounds for problems admitting natural dynamic program-
ming algorithms. Naturally, it is of considerable interest to find supporting evidence for
Conjecture 2.8 (some evidence is provided in [20]). However, even if Conjecture 2.8 is
false, the lower bounds of Theorem 2.9 are meaningful. That is, instead of trying to
improve upon the fastest known algorithms for the problems of Theorem 2.9, one should
focus on the more basic Set Cover problem.

3

Hardness of finding rainbow paths

Suppose we have a computational problem, and we prove it to be NP-complete. Why is it
interesting to seek further NP-completeness results for the problem on restricted inputs?
From a practical viewpoint, it is worth asking: when will it be the case that the input
has no structure, i.e., is truly general? The answer is almost never. For instance, graphs
modeling road networks, railway systems, electric printed circuits, or chemical molecules
are (typically) planar. Such structural information might enable us to devise a practical
polynomial-time algorithm for a problem that would otherwise be intractable.

Another point is the construction of further hardness results for other problems. Of
course, we can always build a valid reduction from 3-SAT to show NP-hardness of a
target problem. However, depending on the target problem, such a reduction might
be far from obvious, or very tedious to describe. Thus, it is beneficial to have a wide
selection of source problems to reduce from, to make the “easy reduction”. This is perhaps
particularly so when we are trying to show NP-hardness of a problem on some restricted
input.

In this chapter, we focus on the problem of verifying whether a given graph is rainbow-
connected. The aim is to pinpoint as precisely as possible the “hardness barrier”, that is,
the strongest possible restriction of the input for which the problem remains NP-complete.
These hardness results will then be complemented by FPT algorithms. We conclude the
chapter by considering lower bounds for some FPT algorithms, and ask: how fast of an
algorithm can one hope for?

3.1 Hardness barriers

The following four problems are the main focus of this section. We first define the two
problems defined on edge-colored graphs.

16

Chapter 3. Hardness of finding rainbow paths 17

Instance: A connected graph G = (V,E), and an edge-coloring ζ : E → C,
where C is a set of colors.

Problem: Is G rainbow-connected under ζ?

Rainbow Connectivity (RCon)

Instance: A connected graph G = (V,E), and an edge-coloring ζ : E → C,
where C is a set of colors.

Problem: Is G strongly rainbow-connected under ζ?

Strong Rainbow Connectivity (SRCon)

The two vertex variants are then defined analogously.

Instance: A connected graph G = (V,E), and a vertex-coloring ψ : V → C,
where C is a set of colors.

Problem: Is G rainbow vertex-connected under ψ?

Rainbow Vertex Connectivity (RVCon)

Instance: A connected graph G = (V,E), and a vertex-coloring ψ : V → C,
where C is a set of colors.

Problem: Is G strongly rainbow vertex-connected under ψ?

Strong Rainbow Vertex Connectivity (SRVCon)

Clearly, if the number of colors k = |C| is bounded by a constant, each of the four
problems can be solved in polynomial time. Indeed, we get an upper bound on the length
of a rainbow path, and the brute-force algorithm will run in polynomial time.

The Rainbow Connectivity problem was shown to be NP-complete by Chakraborty,
Fischer, Matsliah, and Yuster [7]. For the vertex variant, namely Strong Rainbow
Vertex Connectivity, hardness was established by Chen, Li, and Shi [15]. A more
fine-grained study into the complexity of the problems for restricted graph classes was
performed by Uchizawa, Aoki, Ito, Suzuki, and Zhou [74]. In particular, they gave a
reduction from a variant of 3-SAT, known as 3-Occurrence 3-SAT. In this variant,
we have the additional constraint that each variable appears at most three times in the
given formula. For this problem, it is crucial to let clauses be of size two and three. In
fact, if every clause was of size three, the instance would always be satisfiable as shown
by Tovey [73].

We capitalize on the reduction idea of Uchizawa et al. [74], and obtain an even more
thorough view of the hardness barrier of the problem. Most of our reductions are heavily
inspired by their reduction for Rainbow Connectivity. In addition, our results have
consequences for the (non)existence of FPT algorithms for various structural parameters.

The key idea behind the reductions is the following. Given a 3-Occurrence 3-SAT
formula ϕ, we construct a variable gadget for each variable, and a clause gadget for each
clause. Each gadget is colored so that regardless of the satisfiability of ϕ, each vertex

Chapter 3. Hardness of finding rainbow paths 18

Table 3.1: Summary of known complexity results for rainbow connectivity problems. Results
originating from this thesis are marked with F.

Graph class RCon SRCon RVCon SRVCon
All NPC NPC NPC NPCF
Bipartite planar NPC NPC NPCF NPCF
Cactus P P P PF
Interval NPCF NPCF NPCF NPCF
Interval block NPCF PF PF PF
Interval outerplanar NPCF NPCF P ?
k-regular, k ≥ 3 NPCF NPCF NPCF NPCF
Outerplanar NPC NPC P ?
Series-parallel NPC NPC NPC NPCF
Split ? PF ? PF
Tree P P P P
Unit interval NPCF NPCF ? NPCF

pair in a gadget is rainbow-connected. In fact, each vertex pair will be rainbow-connected
except for a specific vertex pair s and t. Informally, we set up the gadgets in a path-
like manner, and s and t are the respective endpoints of this path-like graph. Then,
the constructed graph is (strongly) rainbow-connected if and only if there is a rainbow
(shortest) path between s and t. This approach establishes the following results.

Theorem 3.1. Both of the problems Rainbow Connectivity and Strong Rainbow
Connectivity are NP-complete for interval outerplanar graphs and k-regular graphs for
k ≥ 3.

Theorem 3.2. Both of the problems Rainbow Vertex Connectivity and Strong
Rainbow Vertex Connectivity are NP-complete for

• bipartite planar graphs of maximum degree 3,

• interval graphs,

• k-regular graphs for k ≥ 3, and

• series-parallel graphs.

Prior to our results, no graph class was known for which the complexity of Rainbow
Connectivity and Strong Rainbow Connectivity would differ (the same is true
for the vertex variants). We show the following.

Theorem 3.3. For block graphs, Rainbow Connectivity is NP-complete while Strong
Rainbow Connectivity is in P. Moreover, Rainbow Connectivity remains NP-
complete for interval block graphs.

The known complexity results along with our new results are summarized in Table 3.1.

Chapter 3. Hardness of finding rainbow paths 19

FPT

NPC with constant parameter values

distance to clique vertex cover cluster editing max leaf number

minimum
clique cover

distance to
co-cluster

distance to cluster
distance to

disjoint paths
treedepth F bandwidth F

independence
number

distance to
cograph

distance to
interval F

feedback vertex
set number

pathwidth F maximum degree

domination
number

distance to chordal
distance to
bipartite

treewidth h-index

diameter F distance to perfect degeneracy

chromatic number

Figure 3.1: The FPT landscape for the strong rainbow connectivity problems. A line between
two parameters means the parameter below can be polynomially upper-bounded in the parameter
above. Thus, positive results propagate upwards, while negative results spread downwards.
Results originating from this thesis are marked with F.

3.2 A charting of the FPT landscape

The reductions of the previous section have negative consequences for parameterized
algorithms. By inspecting the constructions, we observe the following.

Theorem 3.4. Each of the problems Rainbow Connectivity, Strong Rainbow
Connectivity, Rainbow Vertex Connectivity, and Strong Rainbow Vertex
Connectivity is NP-complete for graphs of

• bandwidth b ≥ 3, and

• pathwidth p ≥ 3.

For Rainbow Connectivity and Strong Rainbow Connectivity, the same is true
for b ≥ 2 and p ≥ 2.

Graphs of pathwidth 1 are precisely the (K3,K1,3)-free graphs, i.e., disjoint unions of
paths (for more, we refer the reader to [25]). Moreover, it is well-known graphs of
treewidth 1 are exactly forests. We obtain the following dichotomy result.

Corollary 3.5. The problems Rainbow Connectivity and Strong Rainbow Con-
nectivity are solvable in polynomial time when the input graph has treewidth 1, and are
NP-complete otherwise. The same is true when treewidth is replaced with pathwidth.

We summarize our complexity results for Strong Rainbow Connectivity and Strong
Rainbow Vertex Connectivity in a Hasse diagram in Figure 3.1. In the figure, the
parameters “distance to X” measure the number of vertices to be deleted to obtain a graph
belonging to class X. Similarly, we visualize our results for Rainbow Connectivity
and Rainbow Vertex Connectivity in Figure 3.2.

Chapter 3. Hardness of finding rainbow paths 20

FPT

NPC with constant parameter values

distance to clique vertex cover cluster editing max leaf number

minimum
clique cover

distance to
co-cluster

distance to cluster
distance to

disjoint paths
treedepth F bandwidth F

independence
number

distance to
cograph

distance to
interval F

feedback vertex
set number

pathwidth F maximum degree

domination
number

distance to chordal
distance to
bipartite

treewidth h-index

diameter distance to perfect degeneracy

chromatic number

Figure 3.2: The FPT landscape for the rainbow connectivity problems. A line between two
parameters means the parameter below can be polynomially upper-bounded in the parameter
above. Thus, positive results propagate upwards, while negative results spread downwards.
Results originating from this thesis are marked with F.

It can be observed that all four problems are in XP parameterized by the number of
colors k. Indeed, any rainbow path is of length at most k when there are k colors in the
coloring. It is natural to ask whether the problems are FPT as well. The question was
answered in the affirmative by Uchizawa et al. [74]. In particular, they gave a dynamic
programming algorithm running in O∗(2k) time and exponential space. Let us explain
briefly the idea behind their algorithm. The plan is to compute, for each vertex v ∈ V ,
rainbow walks of length at most k originating from v. In particular, there is a rainbow
walk from v to v′ with length ` if and only if there is a vertex u ∈ N(v′) such that there
is a rainbow walk from v to u of length `− 1 that does not use color assigned to uv′. For
each distance (up to k), the algorithm computes families of at most 2k color sets using
dynamic programming. A rainbow path, if existing, can then be obtained as a sub-walk
of a rainbow walk.
The crucial observation is that the number of colors k gives us an upper bound on the
length of a walk to compute. Moreover, we observe that if certain parameters are bounded,
we similarly get an upper bound on the length of any rainbow walk (and thus, rainbow
path). For instance, it is shown in [67] that the length of a longest path in an (undirected)
graph G is upper bounded by 2 td(G) − 2, where td(G) stands for the treedepth of G.
We arrive at the following observation.

Theorem 3.6. Each of the problems Rainbow Connectivity, Strong Rainbow
Connectivity, Rainbow Vertex Connectivity, and Strong Rainbow Vertex
Connectivity is FPT parameterized by the treedepth of the input graph.

In a similar spirit, bounding the diameter gives us an upper bound of the length of a
longest shortest path. Thus, the following is immediate.

Theorem 3.7. Both problems Strong Rainbow Connectivity and Strong Rain-
bow Vertex Connectivity are FPT parameterized by the diameter of the input
graph.

Chapter 3. Hardness of finding rainbow paths 21

This implies polynomial-time solvability of the strong variants for e.g., split graphs and
P4-free graphs (also known as cographs).

3.3 On fast algorithms for solving rainbow connectivity

Uchizawa et al. [74] gave algorithms running in 2knO(1) time and exponential space
for all of the four problems considered, namely, Rainbow Connectivity, Strong
Rainbow Connectivity, Rainbow Vertex Connectivity, and Strong Rainbow
Vertex Connectivity. However, the major downside of their approach is that it uses
exponential space. Especially for a practical implementation, exponential space usage is
prohibitive. We improve upon their algorithms by showing that Rainbow Connectivity
and Rainbow Vertex Connectivity can be solved within the same time bound and in
polynomial space. In particular, our algorithm will solve the s-t version of the problems,
that is, it will decide whether there is a rainbow path between two vertices s and t. Let
us call this problem Rainbow st-Connectivity. Finally, we will consider the possibility
of obtaining an O∗(ck)-time algorithm for the problem, for any c < 2.

Our algorithm will be based on a polynomial-space algorithm for the following Edge-
Colorful Walk problem: given a k-edge-colored graph G and two vertices s and t,
is there a colorful s-t walk, that is, a walk using each of the k colors exactly once? We
observe the following.

Lemma 3.8. Rainbow st-Connectivity with parameter k reduces in polynomial time
to Edge-Colorful Walk with parameter k, where k is the number of colors.

Using the inclusion-exclusion principle, we then show the following.

Theorem 3.9. Edge-Colorful Walk can be solved in k2km deterministic time and
O(n) space.

Finally, we get the following by combining the previous theorem with Lemma 3.8.

Theorem 3.10. Rainbow st-Connectivity can be solved in k2k(m+k2) deterministic
time and O(n+ k) space.

We employ a similar approach for the vertex variant of Rainbow st-Connectivity,
known as Rainbow Vertex st-Connectivity. In this problem, the input is a vertex-
colored graph G and two vertices s and t. The goal is to verify whether there is a vertex
rainbow path between s and t. We show the problem reduces in polynomial time to
Colorful Path. By an algorithm similar to the one given in Theorem 3.9, we arrive at
the following.

Theorem 3.11. Rainbow Vertex st-Connectivity can be solved in k2k(m + k2)
deterministic time and O(n+ k) space.

Given these positive results, it is natural to ask whether one can have an even faster
algorithm, perhaps regardless of its space complexity. While we are unable to settle
this question, we can at least show that one is unlikely to obtain a faster algorithm by
speeding-up our algorithm for Edge-Colorful Walk. We recall the classical Set
Cover problem. In this problem, we are given an integer f and a family of sets S
over the universe U =

⋃S with n = |U | and m = |S|. The goal is to decide whether

Chapter 3. Hardness of finding rainbow paths 22

there is a subfamily of at most f sets S1, S2, . . . , Sf ∈ S such that U =
⋃f
i=1 Si. To

establish the following result, we construct a polynomial-time reduction from Set Cover
to Edge-Colorful Walk, such that the number of colors k is equal to n+ f +O(1).
Given such a reduction, the result follows from the work of Cygan et al. [20]. Indeed, it
is observed in [2] that although stated differently in [20], it follows that if Set Cover
can be solved in (2 − ε)n+f (nm)O(1) time for some ε > 0, then it can also be solved
in (2 − ε′)n(nm)O(1) time, for some ε′ > 0. In addition, there are many variants of
Edge-Colorful Walk that the following theorem captures as well.

Theorem 3.12. For every ε > 0, Edge-Colorful st-Path does not admit a (2 −
ε)knO(1)-time algorithm, unless Set Cover admits a (2− ε′)n(nm)O(1)-time algorithm,
for some ε′ > 0. The same applies to other variants of the problem Edge-Colorful st-
Path, i.e., for any problem A-Colorful BC, where A ∈ {Edge,Vertex}, B ∈ {st, λ},
and C ∈ {Path,Walk}, where λ denotes the empty string.

4

Algorithmic aspects of
rainbow coloring graphs

For this chapter, we turn our attention to finding colorings, instead of “verifying” them.
We begin by obtaining new negative results for rainbow coloring. In particular, we will
show NP-completeness results for restricted graph classes. As by-products, we also obtain
hardness results for approximating the rainbow connection numbers. Then, we move on
to lower bound results which hold under the Exponential Time Hypothesis (ETH).

Motivated by such strong hardness results, we consider rainbow coloring from a parame-
terized perspective. We show that the problems become tractable when certain structural
parameters of the input graphs are bounded. We will also consider the parameterized
dual problem, i.e., the problem of saving k colors from the trivial upper bound.

Finally, we conclude the chapter by considering problem variants, where we relax the
constraint that all vertex pairs need to be rainbow-connected.

4.1 Hardness and lower bounds for rainbow coloring

In this section, we consider the problem of rainbow coloring graphs. We begin by formally
defining the problems we study. Note that in contrast to rainbow connectivity problems,
the input graphs are uncolored.

Instance: A connected undirected graph G = (V,E).
Problem: Is rc(G) ≤ k?

Rainbow k-Coloring (k-RC)

Instance: A connected undirected graph G = (V,E).
Problem: Is src(G) ≤ k?

Strong Rainbow k-Coloring (k-SRC)

23

Chapter 4. Algorithmic aspects of rainbow coloring graphs 24

The two vertex variants, namely Rainbow Vertex k-Coloring (k-RVC) and Strong
Rainbow Vertex k-Coloring (k-SRVC), are defined analogously for rvc(G) and
srvc(G), respectively. We will also consider generalized versions of these four problems,
where k is given as part of the input.

Instance: A connected undirected graph G = (V,E), and a positive integer k.
Problem: Is rc(G) ≤ k?

Rainbow Coloring (RC)

The three other problems (where k is given as part of the input) — namely SRC, RVC,
and SRVC — are defined analogously.

Caro, Lev, Roditty, Tuza, and Yuster [6] conjectured that k-RC is NP-complete for k = 2.
The conjecture was settled in the affirmative by Chakraborty et al. [7]. In fact, Ananth,
Nasre, and Sarpatwar [1] observed their construction shows hardness for every even k ≥ 2,
and complemented this by showing hardness for odd values of k as well. While the
reduction of [7] requires a few intermediate steps, a more direct proof of hardness for
every k ≥ 2 is provided by Le and Tuza [55].

Through a series of reductions, Chakraborty et al. [7] showed that the following Subset
Rainbow k-Coloring problem is NP-complete: given a graph G = (V,E) and a set of
pairs P ⊆ V (G)× V (G), decide if the edges of G can be colored in 2 colors such that all
pairs (u, v) ∈ P are rainbow-connected. Then, they reduced this problem to k-RC for
k = 2. In particular, a useful idea was the following: for every (u, v) /∈ P , add a new
vertex xuv, and create a path u, xuv, v. The key idea is that this path will not make any
pair in P rainbow-connected, but we can color it in 2 colors to rainbow-connect u and v.
This idea has been applied by different authors for showing hardness results on rainbow
coloring problems.

By a reduction from Chromatic Number, Ananth et al. [1] showed Subset Rainbow
k-Coloring is NP-complete for every k ≥ 3 when G is restricted to be a star. Thus, one
can without loss assume the input graph G of Subset Rainbow k-Coloring is a star.
We combine this strengthening of the problem with the above idea of Chakraborty et
al. [7], and obtain the following.

Theorem 4.1. The problem k-SRC is NP-complete for every k ≥ 3 when restricted to
split graphs with a dominating vertex.

Proof. Let I = (S, P, k) be an instance of the Subset Rainbow k-Coloring problem,
where S = (V,E) is a star, both p and q in each (p, q) ∈ P are leaves of S, and k ≥ 3
is an integer. We construct an instance I ′ = (G′) of k-SRC, where G′ = (V ′, E′) is a
split graph such that I is a YES-instance of Subset Rainbow k-Coloring iff I ′ is a
YES-instance of k-SRC.

Let a be the central vertex of S. For every vertex v ∈ V \ {a}, we add a new vertex xv,
and for every pair of leaves (u, v) ∈ (V × V) \ P , we add a new vertex x(u,v). Formally,
we construct G′ = (V ′, E′) such that

• V ′ = V ∪ {xv | v ∈ V \ {a}} ∪ {x(u,v) | (u, v) ∈ (V × V) \ P},

• E′ = E ∪ E1 ∪ E2 ∪ E3,

Chapter 4. Algorithmic aspects of rainbow coloring graphs 25

a

1 32

x(1,3)

? ? ?

c1 c1 c1

c1 c1 c1

c1 c2

c2

c2

c2

c2

c2

c2 c2

Figure 4.1: A star graph S on the vertex set {a, 1, 2, 3} transformed to a split graph G′ with
P = {(1, 2), (2, 3)}. The white vertices form an independent set while the black vertices form a
clique. The symbol ? marks an edge-coloring χ of S with k colors under which the pairs in P
are connected by a rainbow path.

• E1 = {vxv, axv | v ∈ V \ {a}},

• E2 = {ux(u,v), vx(u,v), ax(u,v) | (u, v) ∈ (V × V) \ P}, and

• E3 = {xx′ | x, x′ ∈ V ′ \ V }.

Let us then verify G′ is a split graph. Observe the leaves of S form an independent set in
G′. The remaining vertices {a} ∪ (V ′ \ V) form a clique, proving G′ is split. Moreover, a
is a dominating vertex. An example illustrating the construction is given in Figure 4.1.

We will now prove G′ is strongly rainbow-colorable with k colors if and only if (S, P)
is k-subset strongly rainbow-connected. First, suppose (S, P) is not k-subset strongly
rainbow-connected; we will show G′ is not strongly rainbow-colorable with k colors.
Observe that for each (p, q) ∈ P , there is a unique shortest path between p and q in S.
Moreover, the same holds for G′. Therefore, any strong rainbow coloring using k colors
must make this path strongly rainbow-connected in G′. But because the pairs in P
cannot be strongly rainbow-connected with k colors in S, the graph G′ cannot be strongly
rainbow-connected with k colors.

Finally, suppose (S, P) is k-subset strongly rainbow-connected under some edge-coloring
χ : E → {c1, . . . , ck}. We will describe an edge-coloring χ′ given to G′ by extending χ.
We retain the original coloring on the edges of S, that is, χ′(e) = χ(e), for every e ∈ E.
The rest of the edges are colored as follows:

• χ′(e) = c1, for all e ∈ E1,

• χ′(e) = c2, for all e ∈ E3, and

• χ′(ux(u,v)) = c1, χ′(vx(u,v)) = c2, and χ′(ax(u,v)) = c2 for all (u, v) /∈ P .

Chapter 4. Algorithmic aspects of rainbow coloring graphs 26

It is straightforward to verify G′ is indeed strongly rainbow-connected under χ′, completing
the proof.

We remark the above problem is also NP-complete for k = 2 when restricted to split
graphs. Indeed, k-RC is NP-complete for k = 2 for split graphs, as shown by Chandran,
Rajendraprasad, and Tesař [10]. As rc(G) = 2 if and only if src(G) = 2, the claim follows.
In Theorem 4.1, we have a chain of reductions from Chromatic Number to Subset
Rainbow k-Coloring, which we finally reduce to k-SRC. The size of the split graph
resulting from the above construction remains quadratic in the size of the input graph of
the Chromatic Number instance. Moreover, it is known that the chromatic number of
an n-vertex graph cannot be approximated within a factor of n1−ε, for any ε > 0, unless
P = NP [76]. The following corollary is then immediate.

Corollary 4.2. The strong rainbow connection number of an n-vertex split graph cannot
be approximated within a factor of n1/2−ε, for any ε > 0, unless P = NP.

We reuse many of the same ideas to show hardness for the strong vertex variant as well.
In particular, a similar approach shows k-SRVC is NP-complete for every k ≥ 3. To show
hardness for k = 2, we take a more direct approach, and reduce directly from k-SRC. It
will be useful to state this is a separate lemma.

Lemma 4.3. There exists a polynomial-time algorithm which, given an instance G =
(V,E) of k-SRC, creates an instance G′ = (V ′, E′) of k-SRVC such that G is a YES-
instance of k-SRC if and only if G′ is a YES-instance of k-SRVC. Moreover, G′ has
size linear in the size of G.

The above lemma combined with another construction establishes the following.

Theorem 4.4. The problem k-SRVC is NP-complete for every k ≥ 2 when restricted to
graphs of diameter 3.

Again, the following corollary is immediate, as we started from Chromatic Number,
and controlled the size of the graph resulting from the construction.

Corollary 4.5. The strong rainbow vertex connection number of an n-vertex graph cannot
be approximated within a factor of n1/2−ε, for any ε > 0, unless P = NP.

In fact, the more direct approach we took in Lemma 4.3 for showing k-SRVC is NP-
complete for k = 2 has useful properties. In particular, the same approach establishes
also a reduction from k-RC to k-RVC, for every k ≥ 2.

Corollary 4.6. There exists a polynomial-time algorithm which, given an instance
G = (V,E) of k-RC, creates an instance G′ = (V ′, E′) of k-RVC such that G is a
YES-instance of k-RC if and only if G′ is a YES-instance of k-RVC. Moreover, G′ has
size linear in the size of G.

Conceptually, this is a considerable simplification over the chain of reductions used
by Chen, Li, and Shi [15] and Chen, Li, and Lian [14] to show k-RVC is hard for
k ≥ 2. Furthermore, it was shown by Chandran and Rajendraprasad [9] that the rainbow
connection number of a graph cannot be approximated within a factor of less than 2
unless P = NP. Again, an easy observation leads us to the following.

Chapter 4. Algorithmic aspects of rainbow coloring graphs 27

Table 4.1: Hardness of approximation results for rainbow coloring assuming P 6= NP. Results
originating from this thesis are marked with F.

Graph invariant Result Graph class Reference
rc(G) No 2-approximation Bipartite [9]
rvc(G) No 2-approximation General [P4] F
src(G) No n1/2−ε for any ε > 0 Bipartite [1]
src(G) No n1/2−ε for any ε > 0 Split [Corollary 4.2] F
srvc(G) No n1/2−ε for any ε > 0 Bounded diameter [P4] F

Corollary 4.7. The rainbow vertex connection number of a graph cannot be approximated
within a factor of less than 2 unless P = NP.

We summarize the known hardness of approximation results for all four variants of the
rainbow coloring problem in Table 4.1.

A natural question arises from the inapproximability results: how fast of an exact algorithm
can we hope for? For concreteness, consider k-RC, which is NP-complete for every k ≥ 2.
The naive algorithm generates all km edge-colorings, and runs the 2knO(1)-time algorithm
of Uchizawa et al. [74] for each. This results in a runtime of km2knO(1), which already
in the simplest variant of just two colors, i.e., k = 2, takes 2O(n2) time for dense graphs.
The question is, is there a considerably faster algorithm?

Recall that ETH (Conjecture 2.7) states that there is no algorithm for deciding 3-SAT in
time 2o(n). Let us first state the following result that holds under ETH, and then discuss
it.

Theorem 4.8. Assuming ETH, there is no algorithm for solving k-RC running in time
2o(n3/2) for any k ≥ 2.

The above result is obtained through a series of reductions using the same intermediate
steps as the work of Chakraborty et al. [7]. There, the authors start from 3-SAT, and
finally output an instance of k-RC with Θ(n4 +m4) vertices and edges, where n and m
denote the number of variables and clauses, respectively. Indeed, in a typical NP-hardness
reduction, there is a polynomial blowup for the size of the resulting instance. In contrast,
in case of Theorem 4.8, we must achieve compression. That is, to exclude an algorithm
running in time 2o(n3/2) for k-RC, our reduction must output instances with O(n2/3)
vertices, where n is the number of variables in the original 3-SAT instance. To see this,
observe that by composing such a reduction with a hypothetical 2o(n3/2)-time algorithm
for k-RC, one immediately obtains a 2o(n)-time algorithm for 3-SAT violating ETH.
Moreover, to the best of our knowledge, this is the first natural NP-complete graph
problem for which the existence of a 2o(n1+ε)-time algorithm is excluded under reasonable
complexity assumptions, for any ε > 0.

Through Corollary 4.6, we also obtain hardness under ETH for the vertex variant of the
problem.

Corollary 4.9. Assuming ETH, there is no algorithm for solving k-RVC running in
time 2o(n3/2) for any k ≥ 2.

Chapter 4. Algorithmic aspects of rainbow coloring graphs 28

Table 4.2: A summary of known complexity results for rainbow coloring. Results originating
from this thesis are marked with F.

Graph class k-RC k-SRC k-RVC k-SRVC
All k ≥ 2:NPC k ≥ 2:NPC k ≥ 2:NPC k ≥ 2:NPC F
AT-free ? ? P F ?
Bipartite k ≥ 3:NPC k ≥ 3:NPC ? ?
Block ? P F P F P F
Chordal k ≥ 2:NPC k ≥ 2:NPC ? ?
Complete P P P P
Complete bipartite P P P P
Interval ? ? P F ?
Planar P F P F P F P F
Split k = 2, 3:NPC k ≥ 2:NPC F P F ?
Threshold P ? P F ?
Tree P P P P

Again, recall that rc(G) = 2 if and only if src(G) = 2. Thus, the result of Theorem 4.8
holds for k-SRC for k = 2. By Lemma 4.3, the same is true for k-SRVC for k = 2. It
seems reasonable to expect that for both strong variants of the problem, the result holds
for every k ≥ 2. Indeed, we conjecture the following.

Conjecture 4.10. Assuming ETH, there is no algorithm for solving either k-SRC or
k-SRVC running in time 2o(n3/2) for any k ≥ 2.

We summarize the known complexity results for all four variants for well-known graph
classes in Table 4.2.

4.2 Graphs with bounded structural parameters

In this section, we consider rainbow coloring graphs with bounded structural parameters.
In particular, we will focus on graphs of small treewidth, and also on graphs of small
vertex cover.

Informally, treewidth is a measure of how close a graph is to being a tree. For instance,
forests are precisely the graphs of treewidth 1, and outerplanar graphs have treewidth at
most 2. Treewidth is not the only possible way of measuring tree-likeness. However, due
to certain algorithmic properties the definition enjoys, it has became increasingly popular
in recent years. For more on treewidth and its algorithmic aspects, we refer the interested
reader to [22].

When working with treewidth, a useful classification tool arises from monadic second
order logic, or MSO2. Let us first define the language of MSO2, and then explain why it
is useful in this context. We have an infinite supply of individual variables, denoted by
lowercase letters x, y, and z, and an infinite supply of set variables, denoted by uppercase
latters X, Y , and Z. A formula of MSO2 is constructed from atomic formulas I(x, y),
x ∈ X, and x = y using the connectives ¬ (negation), ∧ (conjunction), and existential
quantification ∃x over individual variables, as well as existential quantification ∃X over
set variables. Individual variables range over vertices and edges, and set variables range
either over sets of vertices or over sets of edges. The atomic formula I(x, y) expresses

Chapter 4. Algorithmic aspects of rainbow coloring graphs 29

that a vertex x is incident to an edge y, x = y expresses equality, and x ∈ X expresses
membership. The semantics of MSO2 logic is defined in the standard way (see e.g., [22]).

A restricted logic of MSO2, known as MSO1, is defined similarly with the following
distinctions. Individual variables range only over vertices, and set variables only range
over sets of vertices. The atomic formula I(x, y) is replaced by E(x, y), expressing that a
vertex x is adjacent to a vertex y. In MSO1, we are only able to refer to the vertices of a
graph, roughly speaking.

We define free and bound variables of a formula in the usual way. A sentence is a
formula without free variables. It is well-known that MSO2 formulas can be efficiently
checked when the graph has bounded treewidth. Similarly, MSO1 formulas can be checked
efficiently when the graph has bounded cliquewidth. The following theorems capture these
facts.

Theorem 4.11 ([18]). Let φ be a fixed MSO2 sentence and p ∈ N be a constant. Given
an n-vertex graph G of treewidth at most p, it is possible to decide whether G |= φ in time
O(n).

Theorem 4.12 ([19, 36]). Let φ be a fixed MSO1 sentence and p ∈ N be a constant.
Given an n-vertex graph G of clique-width at most p, it is possible to decide whether
G |= φ in time O(n3).

It should be noted that the algorithms arising from the theorems are not practical. In
other words, the constants hidden by the asymptotic notation are huge. However, the
theorems provide us with a useful classification tool. That is, if a problem can be expressed
in MSO2, it is fixed-parameter tractable parameterized by treewidth. Put differently, it is
solvable in polynomial time when the input graph has bounded treewidth.

By giving a suitable MSO2 formula for each of the four rainbow coloring problems, we
arrive at the following.

Theorem 4.13. Let p ∈ N be fixed. Then, the problems k-RC, k-SRC, k-RVC, and k-
SRVC can be solved in time O(n) on n-vertex graphs of treewidth at most p. Furthermore,
k-RVC and k-SRVC can be solved in time O(n3) on n-vertex graphs of cliquewidth at
most p.

The above theorem also has consequences for rainbow coloring planar graphs. In particular,
it was shown by Eppstein [30] that a planar graph of diameter d has treewidth O(d). In
all of the four problems k-RC, k-SRC, k-RVC, and k-SRVC, it can be assumed the
input graph has diameter at most k. If this was not the case, we would be dealing with a
NO-instance as diam(G) ≤ rc(G) ≤ src(G) and diam(G)− 1 ≤ rvc(G) ≤ srvc(G) holds
for every connected graph G. The following is then immediate.

Theorem 4.14. The problems k-RC, k-SRC, k-RVC, and k-SRVC can be solved in
time O(n) on n-vertex planar graphs.

Theorem 4.13 shows that for the combined parameter k + p, where p denotes treewidth,
all four problems are FPT. But what happens when the parameter is k alone? In this
case, we are unable to settle the complexity of the problem. In fact, we conjecture the
following.

Chapter 4. Algorithmic aspects of rainbow coloring graphs 30

Conjecture 4.15. The problems RC, SRC, RVC, and SRVC are W[1]-hard parame-
terized by treewidth.

When a problem turns out to be hard for treewidth, it is natural to consider a parameter
stronger than treewidth. One such popular parameter is the vertex cover number. It
seems fair to say that most problems hard for treewidth become tractable for vertex cover
number (for a study of treewidth versus vertex cover number, see [31]).

For the following result, we use a so-called win-win approach, often used to obtain positive
parameterized results. The general idea is the following: we (efficiently) check to see
if some structural condition holds.1 If it does, we can immediately answer YES/NO,
depending on the problem. If the particular condition does not hold, there is a reason
for it. In particular, this reason manifests itself as a combinatorial obstacle. If we can
show this obstacle can be exploited algorithmically, we can usually obtain the desired
parameterized algorithm.

To illustrate the win-win approach, let G be a graph and let p be its vertex cover number,
i.e., the size of a smallest vertex cover of G. It can be shown G can be rainbow vertex-
connected in 2p colors, proving that rvc(G) ≤ 2p. Consider then the problem RVC
parameterized by p. If k —the queried upper bound on the number of colors —is greater
than 2p, we can immediately output YES. Otherwise, we use Theorem 4.13 combined
with the fact that the vertex cover number is an upper bound on treewidth to compute a
solution in O(n) time. A similar approach establishes the following result for three of the
four coloring problems.

Theorem 4.16. Let p ∈ N be fixed. Then the problems RC, RVC, and SRVC can be
solved in time O(n) on n-vertex graphs of vertex cover number at most p.

4.3 Variants of rainbow coloring through parameterization

In this section, we consider the parameterized dual problem of rainbow coloring, i.e., the
problem of saving k colors from the trivial upper bound. Moreover, it seems natural to
consider a problem variant where we relax the condition that every vertex pair needs to
be rainbow-connected. For instance, perhaps we wish to rainbow-connect only a certain
subset of pairs, or to maximize the number of pairs connected.

Formally, we define the parameterized dual problem of k-RC, called k-SavingRC, as
follows. Given a connected graph G, decide whether rc(G) ≤ m− k. In other words, the
goal is to decide if G can be rainbow-connected with k colors less than the trivial upper
bound. The input of k-SavingRVC is equivalent, but now we ask whether rvc(G) ≤ n−k.
The strong variants are defined analogously. The same problem has been investigated in
the context of Chromatic Number by Chor, Fellows, and Juedes [17]. Here, the authors
showed the problem is FPT parameterized by the number of colors to be saved. In fact,
it has been observed that typically, the parametric dual of a problem has complimentary
parameterized complexity (see e.g., [50] for more discussion).

We confirm such complimentary nature for rainbow coloring. Using a win-win approach,
we show both saving problems are FPT parameterized by k, i.e., the number of colors
saved.

1Often, we might be interested in verifying if treewidth is bounded, but the condition can be something
else as well.

Chapter 4. Algorithmic aspects of rainbow coloring graphs 31

Theorem 4.17. For each k ∈ N, the problems k-SavingRC and k-SavingRVC can be
solved in time O(n).

Our win-win approach depends on a non-trivial MSO2 formulation. It is not clear whether
a similar approach works for the strong variants of the saving problems.

Let us then consider the following relaxation of rainbow coloring. In the Maximum
Subset Rainbow k-Coloring problem we are given a graph G, a set of anti-edges S,
and an integer q. The goal is to decide whether there is a coloring of E(G) with q colors
such that at least q pairs in S are rainbow-connected. The following observation gives
us an approximation algorithm which will be a useful subroutine for other algorithms to
follow. We say a vertex pair (u, v) ∈ S is feasible if the distance between u and v is at
most k.

Proposition 4.18. If all the pairs in S are feasible, then for every k ≥ 2 Maximum
Subset Rainbow k-Coloring admits a deterministic polynomial-time algorithm which
finds a coloring that satisfies at least k!

kk |S| pairs from S. In particular, this is a k!/kk-
approximation algorithm.

For a proof of the above statement, we start with a random k-edge-coloring. That is, we
assign one of the k colors available to an edge with equal and independent probability.
As each pair (u, v) ∈ S is feasible, the pair is rainbow-connected with probability at least
k!/kk. By linearity of expectation, the expected number of rainbow-connected anti-edges
from S is at least k!

kk |S|. Using the standard method of conditional expectation (see
e.g., [75]), the algorithm can be derandomized to run in polynomial time. Clearly, the
same approach works for the vertex variant of the problem.

A closely related variant known as Maximum Rainbow k-Coloring was introduced by
Ananth et al. [1]. In this problem, we are given a graph G = (V,E), an integer q, and
asked whether there is a coloring of E that rainbow-connects at least q non-adjacent pairs
of vertices from V . Observe that any coloring of E satisfies at least m pairs of vertices.
Thus, we parameterize the problem by the number of anti-edges q. It was shown by
Ananth et al. [1] that for k = 2, Maximum Rainbow k-Coloring is FPT parameterized
by q. Using Proposition 4.18 together with other techniques, we extend their result to
hold for every k ≥ 2.

Theorem 4.19. Maximum Rainbow k-Coloring parameterized by the number of
anti-edges q is FPT for every k ≥ 2.

In addition, the problem admits a kernel of linear size, i.e., there is a polynomial-time
algorithm that returns an equivalent instance with O(q) vertices (see [22] for more).

5

Bounds on the rainbow
connection numbers

For this chapter, we leave the realm of fixed-parameter tractability. Instead, we take
a more graph-theoretic view of rainbow coloring. Indeed, a deeper understanding of
the combinatorial nature of the problem is often crucial for the development of faster
algorithms, and additional hardness results as well.

5.1 Upper bounds via colorings and domination

Because rainbow coloring is hard in general, it is natural to consider tractable special
cases, approximation, and FPT algorithms for the problem. Likewise, it is interesting to
ask whether any of the four rainbow connection numbers can be upper bounded in terms
of other parameters.
For an illuminating example, consider Rainbow k-Coloring which is NP-complete
already for k = 2. Thus, it would be interesting to upper bound the rainbow connection
number of a graph of diameter two in terms of some other well-known graph invariant.
Quite similarly to the chromatic number of a graph, we define the chromatic index of
a graph G, denoted by χ′(G), to be the minimum number of colors needed to color the
edges of G in such a way that two adjacent edges receive distinct colors. The following is
an easy observation.

Proposition 5.1. Let G be a graph such that diam(G) = 2. Then, rc(G) ≤ χ′(G).

Proof. Give G a proper edge-coloring c using χ′(G) colors. We claim that any two vertices
u and v are rainbow-connected. It suffices to consider u and v such that d(u, v) = 2. Any
u-v path of length two passes through a vertex w, using the edges uw and wv. Because
c is a proper edge-coloring, every edge incident to w has received a distinct color. In
particular, this implies c(uw) 6= c(wv), so the claim follows.

It is well-known that χ′(G) ≤ ∆(G) + 1. Thus, every graph of diameter two can be
(strongly) rainbow-connected using ∆(G) + 1 colors. Moreover, one can generalize the

32

Chapter 5. Bounds on the rainbow connection numbers 33

idea above for any fixed diameter d. For d = 3, the upper bound would be in terms of
the strong chromatic index (see e.g., [63]), and so on. A similar idea works for the vertex
variants of the problem as well. However, an upper bound rc(G) ≤ χ′(G) is not a strong
one. In fact, it is known that when G is bridgeless and has diameter two, then rc(G) ≤ 5,
and this is tight [56]. However, this should make the idea clear: if we can bound a graph
invariant in terms of another one, maybe we can obtain approximation algorithms, find
tractable special cases, or find improved bounds.

It seems fair to say the edge variants of rainbow coloring have received most of the
attention in the literature. To balance the situation from the viewpoint of restricted graph
classes, let us make the following observation regarding the rainbow vertex connection
number. A graph G is a diametral path graph if it contains a shortest path of length
diam(G) that is also a dominating set. For instance, every AT-free graph, unit interval
graph, and threshold graph is a diametral path graph. It has turned out that domination
is a useful concept when deriving upper bounds on rc(G) (see e.g., [6, 53, 8]). In the
following, we observe this is also the case when dealing with the vertex variants.

Proposition 5.2. Let G be a diametral path graph. Then, rvc(G) = diam(G)− 1.

Proof. For any connected graph G, we have that diam(G)− 1 ≤ rvc(G). To prove our
claim, it suffices to show that rvc(G) ≤ diam(G)− 1. Let P be a dominating diametral
path of G. Color the internal vertices of P in distinct colors. Without introducing
additional colors, color the remaining vertices in V (G) \ V (P) arbitrarily. Each vertex
has been colored, and we have used precisely diam(G)− 1 colors. To see that two vertices
u and v are rainbow vertex-connected, observe that there is a u-v path whose internal
vertices are contained completely in V (P). Thus, the claim follows.

Consequently, we have that k-RVC is in P for diametral path graphs for every fixed k.
We believe the same can be shown to be true for k-SRVC.

It also seems fair to claim that the rainbow connection number is much more heavily
studied than the strong rainbow connection number. In fact, it has been suggested the
investigation of the strong rainbow connection number is harder. In [58], the authors
write: “The investigation of strong rainbow connection number is much harder than that
of rainbow connection number.” The reason given is that the strong rainbow connection
number is not a monotone graph property. Here, a property is monotone if it does not
increase when adding edges. Thus, despite the interest, there have been less results
concerning the strong rainbow connection number. In the following section, we give the
first polynomial-time algorithm for optimally strongly rainbow-connecting any non-trivial
subclass of graphs.

5.2 Rainbow coloring block graphs

In this section, we consider rainbow and strong rainbow coloring subclasses of chordal
graphs, in particular block graphs. Recall a graph is a block graph if each of its maximal
biconnected component is a clique. In fact, chordal graphs have received significant
attention in the context of rainbow coloring. But why would one find rainbow coloring
chordal graphs particularly interesting? The following gives a possible reason.

A family C of cliques of a graph G is a clique covering if every edge of G is in at least one
member of C. The cardinality of a minimum clique covering is called the clique covering

Chapter 5. Bounds on the rainbow connection numbers 34

1

1 1

2 3

4

(a)

3

2 1

1 2

3

(b)
Figure 5.1: A graph rainbow-connected in (a) four colors, and (b) optimally in three colors.

number of G, denoted by cc(G). If G has no edges, an empty set is a clique covering
of G, and thus cc(G) = 0. Clearly, we have that cc(G) ≤ m. In terms of n, a tight upper
bound of cc(G) ≤ n2/4 follows from Mantel’s theorem. For more results on the clique
covering numbers, we refer the reader to [69, 66]. By observing no shortest path between
two vertices u and v uses two edges from a maximal clique, the following is easy to show.

Proposition 5.3. Let G be a connected graph. Then, src(G) ≤ cc(G).

In particular for a chordal graph G, the above suggests a straightforward linear-time
algorithm for rainbow coloring G. That is, compute the maximal cliques1 of G, and
introduce one color per clique. Finally, color the edges of a clique with the color associated
with it. An edge belonging to multiple cliques can be given a color associated with any of
the cliques containing it. It is easy to see such a coloring is optimal for infinitely many
chordal graphs. When does such a coloring cease to be optimal? A small example is
obtained by taking a triangle, and by adding a pendant vertex to each of its vertices (see
Figure 5.1). For such a graph G, it holds that rc(G) = 3, but G has four maximal cliques.
In fact, G has a unique rainbow 3-coloring, up to the permutation of colors. Moreover, G
is a block graph. This motivates the investigation of rainbow coloring block graphs in
particular.

In what is to follow, our goal is to show block graphs can be strongly rainbow-connected
with the optimal number of colors in linear time. Furthermore, we will provide a
polynomial-time characterization of bridgeless block graphs with small rainbow connection
numbers.

Clique trees of chordal graphs. To achieve our goals, let us first apply tools from
the theory of chordal graphs to block graphs. In particular, we derive some structural
properties that hold for a clique tree of a block graph. Here, a clique tree of a (connected)
chordal graph G is any tree T whose vertices are the maximal cliques of G such that for
every two maximal cliques C,C ′, each clique on the path from C to C ′ in T contains C∩C ′.
Chordal graphs are precisely the class of graphs that admit a clique tree representation [37].

The following concept is central to all chordal graphs, and will provide useful for our
algorithms to come. A set S ⊆ V (G) disconnects a vertex a from vertex b in a graph G if

1For a chordal graph, this can be done in O(n + m) time (see e.g., [35]).

Chapter 5. Bounds on the rainbow connection numbers 35

a

b

c d

e

f g

(a)

ab

bef

bce

eg

cde

b

be

ce

e

(b)

ab

bef

bce

eg

cde

b

b

be e

ce

e

e

(c)
Figure 5.2: (a) A chordal graph G, (b) a clique tree of G, and (c) the reduced clique
graph Cr(G).

every path of G between a and b contains a vertex from S. A non-empty set S ⊆ V (G) is
a minimal separator of G if there exists a and b such that S disconnects a from b in G,
and no proper subset of S disconnects a from b in G. If we want to identify the vertices
that S disconnects, we may also refer to S as a minimal a-b separator. Two maximal
cliques Ci and Cj of G form a separating pair if Ci ∩ Cj is non-empty and every path in
G from a vertex of Ci \Cj to a vertex of Cj \Ci contains a vertex of Ci ∩Cj . We denote
this separating pair by Si,j .

The reduced clique graph [39] of a chordal graph G captures all possible clique tree
representations of G. It is obtained by taking the maximal cliques of G as vertices, and
by putting edges between those vertices for which the corresponding cliques intersect in
a minimal separator that separates them. The reduced clique graph of G is denoted by
Cr(G). In other words, the reduced clique graph Cr(G) is the union of all clique trees of
G [39]. An example of a chordal graph, a corresponding clique tree, and the corresponding
reduced clique graph are given in Figure 5.2.

We may label each edge in Cr(G) by the minimal separator that separates its endpoints.
Let C be a vertex in Cr(G). For each edge in Cr(G) incident to C, consider its label.
The labeled degree of the vertex C, denoted by λdeg(C), is the number of edges incident
to C with distinct labels. Notice that the labeled degree of a vertex is different from
the degree of a vertex. Consider the following example illustrated in Figure 5.2. Let
C1 = {b, c, e}, C2 = {e, g} and C3 = {c, d, e} be vertices in Cr(G). Notice that S1,2 = {e},
and so the label on the edge C1C2 is {e}. Also, S1,3 = {c, e}, thus the label on the edge
C1C3 is {c, e}. We have that deg(C1) = 4, and λdeg(C1) = 4. However, deg(C2) = 3, but
λdeg(C2) = 1.

If a graph G has exactly one shortest path between any pair of vertices, G is said to be
geodetic. It was shown by Stemple and Watkins [72] that a connected graph G is geodetic
if and only if every block of G is geodetic. The following observation is later exploited by
our algorithms.

Theorem 5.4. Every block graph is geodetic.

The reduced clique graph Cr(G) is a useful tool in reasoning about a chordal graph G.

Chapter 5. Bounds on the rainbow connection numbers 36

However, it is not a linear representation of G. For instance, the reduced clique graph of
an n-vertex star graph uses Θ(n2) space. Since a chordal graph on n vertices admits at
most n maximal cliques, the size of a clique tree is always bounded from above by n. To
save space and simplify our algorithms, we will show that we do not need to explicitly
compute Cr(G), but instead that any clique tree of G will do. More specifically, we will
show that no matter what clique tree T of Cr(G) we use, the labeled degree of a vertex in
Cr(G) is preserved in T . We first present two results due to Galinier et al. [35].

Lemma 5.5 (Triangle Lemma, [35]). Let {C1, C2, C3} be a triangle in Cr(G) and let
S1,2, S1,3, S2,3 be the associated minimal separators of G. Then 2 of these 3 minimal
separators are equal and included in the third.

Lemma 5.6 (Weak Triangulation Lemma, [35]). Let {C1, . . . , Ck}, k ≥ 4, be a path in
a clique tree T of a chordal graph G. If C1Ck is an edge of Cr(G), then either C2Ck or
C1Ck−1 is an edge of Cr(G).

Recall that in a block graph G, the blocks intersect in at most one vertex, which is a
cut vertex of G. This cut vertex is a minimal separator, so in a block graph, the size of
every minimal separator is 1. We claim that for block graphs, the triangle lemma implies
that S1,2 = S1,3 = S2,3. If this was not the case, for example, if S1,2 = s, S1,3 = t and
s 6= t, then S2,3 would have to be s or t. Without loss we may assume S2,3 = s. Then
the separator s would have to be included in S1,3. In other words, S1,3 = {s, t}, and now
S1,3 has size 2. Thus we have the following lemma.

Lemma 5.7. If {C1, C2, C3} is a triangle in the reduced clique graph of a block graph,
then S1,2 = S1,3 = S2,3.

Theorem 5.8. Let T be a clique tree of a block graph G, let Cr(G) be the corresponding
reduced clique graph, and let C1 be the same vertex in each. If e1, e2, . . . , el are all labeled
edges in Cr(G) incident to C1 with the label s, then at least one of these edges must be
in T .

Proof. Suppose not. Let C1 and Ck be adjacent vertices in Cr(G) with minimal separator
s, so that C1Ck is not an edge in T . Let C2 be another vertex in Cr(G) adjacent to C1,
and suppose C1C2 is an edge of T . Then this edge is not labeled s, so let t denote the
label of this edge. However, because T is a spanning tree, C2 and Ck are connected. Let
{C2, C3, . . . , Ck} be the path in T from C2 to Ck. If this path is simply an edge, then
we have a triangle {C1, C2, Ck} of Cr(G). Thus, S1,2 = S2,k = S1,k. However, S1,2 = t
and S1,k = s, so this is a contradiction to Lemma 5.7. Thus there are at least 3 vertices
on this path. Then the path {C1, C2, . . . , Ck} has at least 4 vertices. Consider this path.
Because C1Ck is an edge of Cr(G), then by Lemma 5.6, either C2Ck or C1Ck−1 is an
edge of Cr(G). We have already shown C2Ck is not an edge, so C1Ck−1 is an edge of
Cr(G). Because {C1, Ck, Ck−1} is a triangle and S1,k = s, we have S1,k−1 = s.

Now consider the path {C1, C2, . . . , Ck−1}. We assume this path has at least 4 vertices,
for if it was a triangle, we would have a contradiction to S1,k−1 = s and S1,2 = t. Because
C1Ck−1 is an edge of Cr(G), then by Lemma 5.6, either C2Ck−1 or C1Ck−2 is an edge
of Cr(G). If C2Ck−1 was an edge, then {C1, C2, Ck−1} would be a triangle with S1,2 = t
and S1,k−1 = s. This contradicts Lemma 5.7, so C2Ck−1 is not an edge. Thus C1Ck−2
is an edge of Cr(G), and we have the triangle {C1, Ck−1, Ck−2}. Because S1,k−1 = s, it
follows that S1,k−2 = s.

Chapter 5. Bounds on the rainbow connection numbers 37

We can continue this process, showing that all of the edges

C1Ck−1, C1Ck−2, C1Ck−3, . . . , C1C3

are in Cr(G) and have label s. But now we have the triangle {C1, C2, C3}, and since
S1,2 = t and S1,3 = s, we have a contradiction to Lemma 5.7. Thus, T has at least one
edge incident to C1 with the label s.

Corollary 5.9. Let G be a block graph. Then any pair of clique trees T1 and T2 of G has
the property that every vertex in Cr(G) has the same labeled degree in T1 as it does in T2.

Proof. Let C be a vertex in Cr(G). Denote the set of edges incident to C with the label
x as Ix. Then if C has l distinct minimal separators, C has the following incident edges:
I1, I2, . . . , Il. By Theorem 5.8, any clique tree of G contains at least one edge from each
of I1, I2, . . . , Il. Thus C has labeled degree l in any clique tree of G.

Strongly rainbow-connecting block graphs in linear time. We are then in a
position to determine exactly the strong rainbow connection number of block graphs. In
particular, we present an exact linear-time algorithm for constructing a strong rainbow
coloring using src(G) colors for a given block graph G.
Let C be a block in a block graph G whose edges are colored by using colors from the
set R = {c1, . . . , cr}. Then we say that C is colored and C is associated with each color
c1, . . . , cr. Furthermore, any color from R can be used as a representative for the color of
C. Thus we may say that C has been colored ci for any i ∈ {1, . . . , r}.
Lemma 5.10. Let G be a block graph, let T be a clique tree of G, let C be a vertex of T
that is associated with the color c, let uv be an edge in G such that u, v /∈ C, and let y
be the minimal a-b separator for any a ∈ C \ {y} and b ∈ {u, v}. If no shortest y-u path
or shortest y-v path contains uv, then by coloring uv with the color c, any shortest path
between u or v and w ∈ C contains at most one edge of color c.

Proof. Any shortest path between u or v and y does not contain the edge uv, and does
not contain any edges in C, so these paths do not have any edges of color c. Any shortest
path between y and w is just an edge of color c.

The algorithm for strongly rainbow-connecting a block graph is presented in Algorithm 5.1.
Given a block graphG, the algorithm first computes a clique tree T ofG. Next, it partitions
the vertices of T into two sets V<3 and V≥3 based on their labeled degree. If the labeled
degree of a vertex is less than 3, it is added to V<3. Otherwise, it is added to V≥3. Then,
for each vertex in V<3, a distinct color is used to color the edges of the block the vertex
corresponds to in G. At the final step the algorithm goes through every vertex Cj ∈ V≥3.
Let Nλ(Cj) denote the set of vertices adjacent to Cj via distinct labels. Fix 3 distinct
vertices C1, C2, and C3 in Nλ(Cj). Observe that in T \ Cj , we would have at least 3
connected components, and C1, C2, and C3 would be in different connected components.
Suppose Cj was removed, and from each connected component C1, C2, and C3 is in, find
a vertex in V<3. The picked three vertices are each associated with a distinct color. These
colors are used to color the edges of the block Cj corresponds to.
The correctness of Algorithm 5.1 is established by an invariant, which says that we always
maintain the property that if the shortest path between two vertices is colored, then it is
rainbow. We refer to this property as the shortest rainbow path property.

Chapter 5. Bounds on the rainbow connection numbers 38

Algorithm 5.1 Algorithm for strongly rainbow-connecting a block graph
Input: A block graph G
Output: A strong rainbow coloring of G
1: T := a clique tree of G
2: V<3 := {U | U ∈ V (T) ∧ λdeg(U) < 3}
3: V≥3 := V (T) \ V<3
4: for all U ∈ V<3 do
5: Color edges in U with a fresh distinct color
6: end for
7: for all Cj ∈ V≥3 do
8: Let C1, C2, C3 be distinct vertices in Nλ(Cj)
9: Let Sj,1 = x1, Sj,2 = x2, Sj,3 = x3 be the corresponding minimal separators
10: Assume Cj is removed
11: From each connected component C1, C2, C3 is in, find a vertex in V<3
12: Let c1, c2, c3 be the respective colors associated with the found vertices
13: Color all edges not incident to x1 with color c1
14: Color all edges incident to x1, except x1x2, with color c2
15: Color the edge x1x2 with color c3
16: end for

Theorem 5.11. At every step, Algorithm 5.1 maintains the shortest rainbow path prop-
erty.

Proof. Before the execution of the first loop, nothing is colored so the claim is trivially
true. Furthermore, the first loop obviously maintains the property. To see this, consider
any shortest path of length l ≥ 1 at any step. The path consists of l edges that are in l
distinct blocks. Since each colored block has received a distinct color, the shortest path is
rainbow. This establishes the base step for the correctness of the second loop.

Assume after iteration i − 1 of the second loop, if the shortest path between any two
vertices is colored, then it is rainbow. We show that this property is maintained after
iteration i of the second loop. Consider any edge uv in Cj not incident to x1, and let
y ∈ C1 be the minimal a-b separator for any a ∈ C1 \ {y} and b ∈ {u, v}. The algorithm
states that uv will be colored with color c1. Because u and v are both at a distance 1 from
x1, it follows that neither shortest path y-u or y-v contains uv. Thus by Lemma 5.10, if
the shortest w-u path, for w ∈ C1 is colored, then it is rainbow-connected. (The same
is true for the shortest w-v path). Therefore, by coloring uv with color c1, the shortest
rainbow path property is maintained.

Consider any edge uv in Cj not incident to x2, and let y ∈ C2 be the minimal a-b separator
for any a ∈ C2 \ {y} and b ∈ {u, v}. By Lemma 5.10, this edge can be colored with c2 to
maintain the shortest rainbow path property. Notice that u and v are both at a distance 1
from x2, so it follows that x1 must be one of these vertices (i.e., either u = x1 or v = x1).
So we conclude that every edge incident to x1, except x1x2, can be colored with c2 to
maintain the shortest rainbow path property.

Now the only uncolored edge in Cj is the edge x1x2. Because x1 and x2 are both at
a distance 1 from x3, Lemma 5.10 assures us that by coloring x1x2 with color c3, the
shortest rainbow path property is maintained.

Chapter 5. Bounds on the rainbow connection numbers 39

We will then consider the complexity of Algorithm 5.1. It is an easy observation that lines
1 to 6 take linear time. Observe that on lines 8 to 11, we essentially perform reachability
queries of the form given a vertex v ∈ V (T), return any vertex of degree less than 3 of T
that is reachable from v with a path including a given edge uv, and no other edges incident
to v. In our context, v is Cj , and u is Ci, where Ci ∈ {C1, C2, C3}. The naive way of
answering such queries is to start a depth-first search (DFS) from each Ci, and halt when
a suitable vertex is found. However, such an implementation uses Θ(d) time, where d is
the diameter of the input graph G. Using elementary techniques, we can preprocess the
clique tree T after line 1 using linear time to answer such queries in O(1) time. Thus, the
total runtime will be linear as the for-loop on line 7 loops O(n) times.

Theorem 5.12. Algorithm 5.1 constructs a strong rainbow coloring in O(n+m) time.

We will now show that the strong rainbow coloring produced by Algorithm 5.1 is optimal.
This is done by first showing that we need at least k colors, where k is the number of
vertices with labeled degree less than 3 in any clique tree T of G. This is then shown
to be sufficient as well by a matching upper bound. Recall from Corollary 5.9 that the
labeled degree of a vertex of Cr(G) is preserved in any clique tree T of G.

Theorem 5.13. Let G be a block graph, and let k be the number of vertices with labeled
degree less than 3 in any clique tree T of G. Then src(G) ≥ k.

Proof. Let A be a set of k edges in G, one from each block with labeled degree less than 3,
selected as follows. For each vertex C ∈ T , if λdeg(C) = 1, pick an edge incident to the
minimal separator. If λdeg(C) = 2, pick the edge connecting the 2 minimal separators.
We claim that if we are to strongly rainbow-connect G, then the edges in A must all
receive distinct colors.

Suppose there are 2 edges in A that are of the same color, say ux ∈ E(Ci) and vy ∈ E(Cj).
Without loss, we may assume that u and v are the minimal separators of Ci and Cj ,
respectively, such that d(u, v) is minimized. Then the shortest x-y path is unique by
Theorem 5.4, and it contains two edges of the same color.

Theorem 5.14. Let G be a block graph, and let k be the number of vertices with labeled
degree less than 3 in any clique tree T of G. Then src(G) = k.

Proof. It is shown in the proof of Theorem 5.11 that any vertex C ∈ V (T) with labeled
degree at least 3 can be colored using the colors associated with vertices of labeled degree
less than 3. Thus we need at most k colors to color G. This establishes a matching upper
bound for Theorem 5.13, so it follows that src(G) = k.

To summarize, Theorems 5.11 and 5.14 show that Algorithm 5.1 is correct, and always
finds an optimal solution.

If an explicit coloring is not required, then it is easy to see that there is a linear-time
algorithm for computing src(G), where G is a block graph. This is obtained by computing
a clique tree T of G, and counting the number of vertices with labeled degree less than 3
in T .

Corollary 5.15. There is an algorithm such that given a block graph G, it computes
src(G) in O(n+m) time.

Chapter 5. Bounds on the rainbow connection numbers 40

Block graphs with small rainbow connection numbers. Let us then consider the
rainbow connection number of block graphs. Using known results, we begin by deriving a
tight linear-time computable upper bound on the rainbow connection number. Finally,
we prove a polynomial-time characterization of bridgeless block graphs with rainbow
connection number at most 4.

Using a technique of [8], we derive an upper bound on the rainbow connection number of
a block graph as follows. Recall the connected domination number of a graph G, denoted
by γc(G), is the size of a smallest connected dominating set in G. The following is known.

Theorem 5.16 ([8]). For every connected graph G, with δ(G) ≥ 2,

rc(G) ≤ γc(G) + 2.

Further, the following has been determined.

Theorem 5.17 ([16]). Let G be a connected block graph, S the set of minimal separators
of G, and l the number of blocks in G. Then

γc(G) =
{

1 for l = 1,
|S| for l ≥ 2.

Combining the two previous theorems, we get the following.

Theorem 5.18. Let G be a connected block graph with at least two blocks and δ(G) ≥ 2.
Then rc(G) ≤ |S|+ 2, where S is the set of minimal separators of G. Moreover, this is
tight.

We remark that the above upper bound can be computed in linear time for a given block
graph.

We will then characterize the bridgeless block graphs having the rainbow connection
number 1, 2, 3, or 4. Before proceeding, we make the following observation that will be
useful later on. Recall the eccentricity of a vertex v is the maximum distance between v
and any other vertex in a graph. A peripheral vertex is a vertex of maximum eccentricity.

Lemma 5.19. Let G be a block graph with at least 3 blocks, and let x and y be two
peripheral vertices in distinct blocks. If G has a minimal separator s adjacent to x and y,
then rc(G) > diam(G).

Proof. Suppose not. That is, assume rc(G) = diam(G). Let Cx and Cy be the two distinct
blocks x and y are in, respectively. Choose a vertex z ∈ Cz such that d(x, z) = diam(G),
where Cz is a block different from Cx and Cy. Rainbow color the shortest x-z path.
Without loss, suppose the edge xs was colored with color c1. Then consider each uncolored
edge incident to s in Cx. Notice we must color each such edge with color c1, for otherwise
G would not be rainbow-connected. Finally, consider the edges incident to s in Cy. Again,
each such edge must receive color c1. But now x and y are not connected by a rainbow
path. Thus, rc(G) > diam(G).

We are then ready to proceed with the claimed characterization.

Chapter 5. Bounds on the rainbow connection numbers 41

Theorem 5.20. Let G be a bridgeless block graph, and let k be a positive integer such
that k ≤ 4. Deciding whether rc(G) = k is in P.

Proof. As k ≤ 4, it is enough to consider bridgeless block graphs with diameter d =
diam(G) ≤ 4. In what follows, we show how such graphs are optimally colored.

• Case d = 1. Trivial.

• Case d = 2. If G has exactly 2 blocks, it is easy to see that rc(G) = 2. Moreover, if
the graph has rc(G) = 2, it must have exactly 2 blocks. Suppose this is was not
the case, i.e. G has at least 3 blocks and rc(G) = 2. By an argument similar to
Lemma 5.19, this leads to a contradiction. Thus, rc(G) = 2 if and only if G has
exactly 2 blocks. When G consists of 3 or more blocks, we will show that rc(G) = 3.
Let K be the set of all blocks of G, and let a be the unique central vertex of G. For
each K ∈ K, color one edge incident to a with the color c1, and every other incident
edge with the color c2. Then color every uncolored edge of G with the color c3. To
see this is a rainbow coloring of G, observe there is a rainbow path from any vertex
to the central vertex a avoiding a particular color in {c1, c2, c3}.

• Case d = 3. The graph G consists of a unique central clique, and at least 2
other blocks. If G has altogether 3 blocks, then rc(G) = src(G) = 3. If G has 4
blocks, there are two cases: either G has a cut vertex adjacent to two peripheral
vertices in distinct blocks (then rc(G) ≥ 4 by Lemma 5.19) or it does not (then
rc(G) = src(G) = 3). Otherwise, G has at least 5 blocks, and by an argument
similar to Lemma 5.19, we have that rc(G) ≥ 4. We will then color every block that
is not the central clique with 3 colors exactly as in the case d = 2, and color every
edge of the central clique with a fresh distinct color c4 proving rc(G) = 4.

• Case d = 4. Let us call the set of blocks which contain the central vertex a the
core of the graph G. The set of blocks not in the core is the outer layer. First,
suppose the core contains exactly 2 blocks, and the outer layer at most 4 blocks.
Furthermore, suppose the condition of Lemma 5.19 does not hold (otherwise we
would have rc(G) > 4 immediately). When the outer layer contains 2 or 3 blocks,
we have that rc(G) = src(G) = 4. Suppose the outer layer contains exactly 4 blocks.
First, consider the case where a core block is adjacent to 3 blocks in the outer layer.
Because the condition of Lemma 5.19 does not hold, it must be the case that at
least one of the core blocks is not a K3. Clearly, every two vertices x and y, such
that d(x, y) = diam(G), have to be connected by a rainbow shortest path. By an
argument similar to Theorem 5.13, we have that rc(G) > 4. Otherwise, when a
core block is not adjacent to 3 blocks in the outer layer, rc(G) = src(G) = 4. Now
suppose the outer layer has at least 5 blocks. As above, by an argument similar
to Theorem 5.13, we have that rc(G) > 4. Finally, suppose the core has 3 or more
blocks. We argue that in this case, rc(G) = 4 if and only if the outer layer contains
exactly 2 blocks. For the sake of contradiction, suppose rc(G) = 4, and that the
outer layer has 3 or more blocks. If the condition of Lemma 5.19 holds, we have an
immediate contradiction. Otherwise, by an argument similar to Lemma 5.19, we
arrive at a contradiction. When the outer layer contains exactly 2 blocks, we will
show rc(G) = 4. Let B1 and B2 be the blocks in the outer layer. We color every
edge of B1 with color c1, and every edge of B2 with color c4. Then color b1a with
c2, and ab2 with c3, where a is the central vertex of G, and b1 and b2 are the cut

Chapter 5. Bounds on the rainbow connection numbers 42

vertices in B1 and B2, respectively. For every block Bi in the core, let Qi denote
the set of edges in Bi incident to a. Color the uncolored edges of Qi with either c2
or c3, such that both colors appear at least once in Qi. Then, color every uncolored
edge of the block that contains both a and b2 with color c1. Every other uncolored
edge of G receives color c4. We can now verify G is indeed rainbow-connected under
the given coloring.

Given that the strong rainbow connection number of a block graph G can be efficiently
computed, it is interesting to ask when rc(G) = src(G), or if the difference between
src(G) and rc(G) would always be small. It is at least easy to observe that the difference
between src(G) and rc(G) can be made arbitrarily large: attach n triangles to a Kn, one
to each vertex of the Kn. As n increases, the rainbow connection number remains 4 by
Theorem 5.20, while the strong rainbow connection number increases by Theorem 5.14.

5.3 Rainbow coloring chordal diametral path graphs

Another subclass of chordal graphs is given by chordal diametral path graphs. That is,
such graphs are chordal, and have a dominating diametral path. At first, such graphs
might feel contrived. However, chordal diametral path graphs generalize well-known
subclasses of chordal graphs, including interval graphs and threshold graphs.

It follows from Theorem 5.16 that for any chordal diametral path graph G we have that
rc(G) ≤ diam(G) + 3, provided that δ(G) ≥ 2. The same holds true for AT-free graphs,
which form a subclass of diametral path graphs. For some graph classes, including AT-free
graphs, no tight examples achieving rc(G) = γc(G) + 2 were found in [8]. In fact, it was
explicitly mentioned a deeper investigation into the rainbow connection number of these
graphs could be interesting.

Using combinatorial methods, we show that a chordal diametral path graph G with δ ≥ 2
has rc(G) ≤ diam(G) + 1. Moreover, we will show this bound is tight. The proof of the
claim is split into two lemmas.

Lemma 5.21. Let G be a chordal diametral path graph such that δ(G) ≥ 2 and diam(G) ≥ 3.
Then, rc(G) ≤ diam(G) + 1.

Proof. Denote d = diam(G). In what follows, we describe an algorithm for constructing
a rainbow d+ 1-coloring c : E → [d+ 1] for G.

1. Diametral path cliques. Choose an arbitrary dominating diametral path D =
{v1, v2, . . . , vd+1} from G, which exists by definition. Define a set D of maximal
cliques as follows. For 2 ≤ i ≤ d− 1, choose a maximal clique containing the edge
vivi+1, and add it to D. For each i, the uncolored edges of the maximal clique are
colored i.

2. Edges incident to inner vertices. We partition the vertices of G into two sets.
Let V (D) denote the set of vertices of elements of D. We say a vertex is an inner
vertex if it is in V (D); otherwise it is an outer vertex. Consider each maximal

Chapter 5. Bounds on the rainbow connection numbers 43

v1 v2 v3 v4 v51 2 3 1

d+ 1

1

d

dd+ 1

1

3 3

d 1

d d+ 12

2

2

2

2

Figure 5.3: A chordal diametral path graph G with δ = 2 and diam(G) = 4 colored by the
algorithm of Lemma 5.21. The black vertices are inner vertices, while D = {v1, . . . , v5}.

clique C /∈ D. As δ ≥ 2, we have |C| ≥ 3, i.e., there are no pendant vertices. Let
C ∩ V (D) = IC . If IC = {x}, color edges xc, where c ∈ C, such that at least one
of the edges is colored 1, and at least one of the edges is colored d. Otherwise,
|IC | ≥ 2. For each c ∈ C, color edges cx, where x ∈ IC , such that at least one of
the edges is colored 1, and at least one the edges is colored d.

3. Outer vertices. Let u and v be outer vertices. Color the edge uv with color d+ 1.

Only remaining uncolored edges (if any) are between two inner vertices x and x′. Such
edges receive an arbitrary color from [d+ 1]. Every edge is now colored. This finishes the
construction. An example is shown in Figure 5.3.

The following key properties are immediate from the construction. (The numbering
corresponds to the numbering of the steps of the algorithm).

(P1) Two inner vertices u and v are rainbow-connected by a path on which colors 1, d,
and d+ 1 do not appear.

(P2) For an edge xu, we have c(xu) = 1 or c(xu) = d, where x is an inner vertex and u
an outer vertex.

(P3) An edge between two outer vertices has color d+ 1.

We claim that two vertices u and v are rainbow-connected under the constructed edge-
coloring c. When both u and v are inner vertices, the claim is true by (P1). When exactly
one of u and v is an inner vertex and the other an outer vertex, the claim is true by
combining (P1) with (P2). Thus, it remains to be shown that two outer vertices u and v
are rainbow-connected. Before proceeding, we introduce three additional claims that will
simplify the proof.

Claim 1. Let u and v be two outer vertices. Either u or v is adjacent to an inner vertex.

Proof. Observe that the claim holds for any outer vertex u that is not adjacent to v1
or vd+1, as u is dominated by some other (inner) vertex in V (D). This is so because

Chapter 5. Bounds on the rainbow connection numbers 44

V (D) is constructed from D by removing only v1 and vd+1, and by adding other vertices.
Therefore, it suffices to consider the claim when both u and v are adjacent to the same
endpoint of D, or adjacent to different endpoints of D. In other words, it is either the
case (without loss) that uv1, vv1 ∈ E, or uv1, vvd+1 ∈ E.

First, suppose uv1, vv1 ∈ E. By the above, we have for every y ∈ D \ {v1, vd+1} that
uy, vy /∈ E. As δ ≥ 2, both u and v have degree at least two. Clearly, we have that
uv /∈ E, for otherwise d(v, vd+1) = d + 1 contradicting the fact that D is a diametral
path (by symmetry, the same is true for u). Because uy, vy /∈ E and δ ≥ 2, it must be
the case that there are vertices u′, v′ ∈ V such that uu′, vv′ ∈ E. So consider u′. As D
is dominating shortest path, u′ is dominated by some y′ ∈ D. Observe that there is no
edge u′vj for any j ≥ 5 as otherwise we get a path shorter than d from v1 to vd+1 (by
symmetry, the same is true for v′). However, as δ ≥ 2, it must be the case that one of the
edges u′v1, u′v2, u′v3, or u′v4 is present in E (by symmetry, the same is true for v′).

First, we claim that u′v4 /∈ E. So suppose this is not the case, i.e., that u′v4 ∈ E. We
have a 6-cycle on the vertices v1, u, u′, v4, v3, and v2. As there is no chord uy where
y ∈ D and no chord v1vj for j ≥ 3, it must be the case that v1u

′ is a chord (for otherwise
there is a chordless cycle of length at least 4, namely, u, u′, v2, v1 or u, u′, v3, v2, v1).
But there is no chord v1u

′ for otherwise we would have a path from v1 to v4 of length
less than three contradicting the fact that D is a shortest path. Thus, u′v4 /∈ E, and by
symmetry, v′v4 /∈ E.

We will then prove that the statement is true in the remaining three cases.

• u′v3 ∈ E: The only possible chords are v1u
′ and v2u

′. In fact, both must be present
for otherwise G would contain a chordless cycle of length 4 (either v1, u, u

′, v2 or
v1, u

′, v3, v2). Now, consider v′. As D is a dominating set, there is a y′ ∈ D that
dominates v′. More precisely, we have that y′ ∈ {v1, v2, v3} as there is no edge v′vj
for j ≥ 4 by the previous case. Symmetrically, v1v

′ must be an edge, for otherwise
we would have a chordless 4-cycle v, v′, v2, v1. Moreover, it must be the case either
v′v2 ∈ E or v′v3 ∈ E (otherwise d(v′, vd+1) = d+ 1 contradicting the fact that D
is a diametral path). If v′v2 ∈ E, then d(v, vd+1) = d+ 1, again, a contradiction.
It follows that both v′v3 and v′v2 must be edges. Now there is a chordless 4-cycle
v′, v3, u

′, v1. Obviously, there is no chord v1v3, so we must have the chord u′v′. In
other words, u′, v′, v2, and v3 form a K4. Thus, by definition, u′ and v′ are inner
vertices, and we have that uu′, vv′ ∈ E, which is what we wanted to show.

• u′v2 ∈ E: There is no chord uv2, so we must have the chord v1u
′. Furthermore,

it must be the case that u′v3 ∈ E, for otherwise d(u, vd+1) = d + 1 leading to a
contradiction. But now we reach the same case as above, and by the same reasoning
conclude that uu′, vv′ ∈ E, which is what we wanted to show.

• u′v1 ∈ E: By the same argument as above, it follows that u′v2 and u′v3 must also
be edges. Again, we conclude that uu′, vv′ ∈ E where u′ and v′ are inner vertices,
which is what we wanted to show.

Finally, suppose uv1, vvd+1 ∈ E. Furthermore, suppose the statement of the claim does
not hold, i.e., that d(u, x) > 1 and d(v, x′) > 1, where x, x′ ∈ V (D) (with possibly x = x′).
Because ux, vx′ /∈ E, we have that d(u, v) = diam(G) + 2 contradicting G[D] being of
length diam(G). Thus, ux ∈ E or vx′ ∈ E, and the claim follows.

Chapter 5. Bounds on the rainbow connection numbers 45

The two following claims are structural, and essentially follow by chordality of G.

Claim 2. Let u be an outer vertex. If u is adjacent to an inner vertex x, then u, x forms
a triangle with a third vertex u′.

Proof. As δ ≥ 2, we have that u is adjacent to u′. For the sake of contradiction, suppose
u′x /∈ E. Thus, u′ is dominated by some other vertex y ∈ D such that y 6= x. As D
is a dominating shortest path, there is an x-y path Pxy of length at least 1 that lies
completely in D. Thus, the concatenation of Pxy, xu, uu′, and u′y is a cycle of length at
least 4. Let y′ ∈ Pxy \ {x}. Because D is a shortest path, there is no chord y′u or y′u′.
Thus, G contains a chordless cycle of length at least 4, a contradiction. So u′x ∈ E, and
thus x, u, u′ is a triangle. �

Claim 3. Let u be an outer vertex. If u is not adjacent to an inner vertex x, then there
are two additional vertices u′, u′′ such that x, u′, u, u′′ form a 4-cycle (containing a chord).

Proof. We proceed with an argument similar to that in Claim 2. Because ux /∈ E, there
is some (outer) vertex u′ such that uu′, u′x ∈ E. Moreover, as δ ≥ 2, there is an (outer)
vertex u′′ 6= u′ such that u′′u ∈ E. We claim that u′′x ∈ E. Suppose this is not the case.
Then u′′ is dominated by some other vertex y ∈ D such that y 6= x. Again, let Pxy be the
shortest x-y path of length at least 1 that lies completely in D. The concatenation of Pxy,
xu′, u′u, uu′′, and u′′y forms a cycle of length at least 5. Let y′ ∈ Pxy \ {x}. Because
Pxy is a shortest path, there is no chord y′u or y′u′. Thus, G contains a chordless cycle
of length at least 4, a contradiction. So xu′ must be an edge. Furthermore, as x, u′, u, u′′
is a 4-cycle, it holds that u′u′′ is a chord. The claim follows. �

We are then ready to proceed with the final step of the proof. We will use all of the three
previous claims in the proof.

Claim 4. Let u and v be outer vertices. Then, u and v are rainbow-connected.

Proof. Suppose there are two inner vertices x and x′ (not necessarily distinct) such that
u is adjacent to x, and v is adjacent to x′. If c(ux) 6= c(x′v), we are done by combining
(P1) with (P2). Otherwise, suppose c(ux) = c(x′v). By Claim 2, there is a vertex u′
adjacent to both x and u. By construction, c(ux) 6= c(u′x). Now, suppose u′ is an outer
vertex. Then, by combining (P3) with (P2), we have that c(uu′) = d + 1 6= c(u′x). As
c(ux) = c(x′v), we have constructed a rainbow u-v path of length d(u, v) + 1. Finally,
suppose u′ is an inner vertex. We have c(ux) = c(vx′) by assumption, so by combining
(P1) with (P2), we have c(uu′) 6= c(ux). In particular, it follows c(uu′) 6= c(vx′), so we
have a rainbow u-v path of length d(u, v) + 1.

Finally, by Claim 1, it suffices to show u and v are rainbow-connected when exactly one
of u and v is adjacent to an inner vertex x. Without loss, suppose ux /∈ E and vx′ ∈ E,
where x′ is an inner vertex (not necessarily distinct from x). By Claim 3, there are two
outer vertices u′, u′′ such that u, u′, x, u′′ is a 4-cycle (with the chord u′u′′). By (P2) and
(P3), there is a path of length 2 from u to x using colors {1, d+ 1}, and also using colors
{d, d+1}. Moreover, by (P2), we have c(vx′) = 1 or c(vx′) = d, where x′ is an inner vertex
(with possibly x = x′). Thus, by (P1) we have that u and v are rainbow-connected. �

All cases are exhausted, so we conclude the proof.

Chapter 5. Bounds on the rainbow connection numbers 46

1

d

1

d

d+ 1

d+ 1

d+ 1 1

d

d 1

Figure 5.4: A chordal diametral path graph G with δ = 2 and diam(G) = 2 colored by the
algorithm of Lemma 5.23. The black vertices form a dominating clique.

In the above, if diam(G) = 2, it would be the case that D is empty. In other words, there
would be no inner vertices. For this reason, we handle the case diam(G) = 2 separately
using the following result of Kratsch, Damaschke, and Lubiw [52].

Theorem 5.22 ([52]). A chordal graph G has a dominating clique if and only if
diam(G) ≤ 3.

Lemma 5.23. Let G be a chordal diametral path graph such that δ(G) ≥ 2 and
diam(G) = 2. Then, rc(G) ≤ diam(G) + 1.

Proof. By Theorem 5.22, G contains a dominating clique D. Color every edge in G[D]
with color d+ 1. Assuming the terminology of Lemma 5.21, a vertex x ∈ D is an inner
vertex, and a vertex u /∈ D is an outer vertex. Execute steps 2 and 3 of the algorithm
given in Lemma 5.21. An example is shown in Figure 5.4. By an argument similar to
Claim 4, we have that G is rainbow-connected.

By combining Lemma 5.21 and Lemma 5.23, we have proven the following.

Theorem 5.24. Let G be a chordal diametral path graph such that δ(G) ≥ 2. Then,
rc(G) ≤ diam(G) + 1.

To see that the above is tight, one can consider a sufficiently large fan, that is, a path with
one universal vertex added (see e.g., [42]). One can also consider the graph G obtained
as the join of K2 and n isolated vertices (see e.g., [8, Example 3]). When n = 4, we have
that rc(G) = 2. But when n ≥ 5, we have rc(G) = 3.

Finally, we remark the algorithm given in Lemma 5.21 can be implemented to run in
polynomial time. The runtime is dominated by that of finding a dominating diametral
path. By the result of [23], this can be done in O(n3m) time. The remaining steps can
be performed within the same time bound.

6

Conclusions

We conclude the thesis by exploring some questions left open by our work. In particular,
we will pose both conjectures and open problems. Conjectures are precise statements,
whereas open problems are more open-ended research directions we find interesting.

6.1 Conjectures and open problems

The presented open questions respect the thematic order of the thesis. That is, we look at
rainbow connectivity first. Next, we proceed to rainbow coloring problems, and conclude
with questions with a flavor of pure mathematics. Naturally, a strict categorization is
challenging. For instance, a polynomial-time algorithm computing the rainbow connection
number of a restricted graph class might establish both the tractability of k-RC, and
give improved bounds for a particular graph class.

Rainbow connectivity. Arguably the most interesting problem left open is the
complexity of finding a rainbow s-t path in a k-edge-colored graph. We proved that under
the Set Cover Conjecture, there is no (2− ε)knO(1)-time algorithm for Edge-Colorful
Path for any ε > 0. Furthermore, we showed a rainbow s-t path can be found in
2knO(1)-time and polynomial space, but is there a matching lower bound? We conjecture
this is true, perhaps similarly under the Set Cover Conjecture.

Conjecture 6.1. For every ε > 0 there is no (2− ε)knO(1)-time algorithm for Rainbow
st-Connectivity under reasonable complexity assumptions.

If the conjecture is true, can it be extended for the strong variants of the problem?

Our results provide a thorough hardness classification of the problems Rainbow Con-
nectivity, Strong Rainbow Connectivity, Rainbow Vertex Connectivity, and
Strong Rainbow Vertex Connectivity. However, some gaps remain (see Table 3.1).
In particular, we find the investigation of Rainbow Connectivity and Rainbow Ver-
tex Connectivity on split graphs interesting. For Rainbow Vertex Connectivity,
it is clear that the problem is easy if the split graph given as input has diameter (at most)
two. But what happens on split graphs of diameter three? We believe techniques from

47

Chapter 6. Conclusions 48

our construction for showing NP-completeness of Rainbow Connectivity for block
graphs can be useful.

Conjecture 6.2. Both Rainbow Connectivity and Rainbow Vertex Connectiv-
ity are NP-complete for split graphs.

We showed that block graphs constitute a graph class for which Rainbow Connectivity
is hard, but Strong Rainbow Connectivity is easy. If the above conjecture is true, it
would provide us with an example of such phenomenon for the vertex variants.

Rainbow coloring. We have several examples of restricted graph classes for which
k-RC, k-SRC, k-RVC, and k-SRVC are hard. But what can be said about the problem
variants in which the number of colors k is given as part of the input? To the best of our
knowledge, no graph class is known for which say k-RC is easy for every fixed k, but RC
is NP-complete. We firmly believe block graphs are a good candidate for such a graph
class. Thus, we conjecture the following.

Conjecture 6.3. The problem RC is NP-complete for block graphs.

We also believe planar graphs are a good candidate for such a problem. By our earlier
observation (Theorem 4.14), all of the four problems are in P for fixed k on planar graphs.
This is in contrast to bridgeless block graphs, for which we know this to be the case only
for k ≤ 4.

Conjecture 6.4. The problem RC is NP-complete for planar graphs.

Recall that it is rather trivial to rainbow-connect trees and complete graphs optimally.
What happens on graphs that are close to being trees, or close to being complete? In this
sense, we find treewidth and cliquewidth the most interesting parameters. In particular,
we believe that when the parameter is treewidth (or cliquewidth) alone, rainbow coloring
is hard.

Conjecture 6.5. The problem RC is W[1]-hard parameterized by treewidth. Moreover,
the same is true when treewidth is replaced with cliquewidth.

We proved k-SRVC is NP-complete for every k ≥ 2. Moreover, this holds for graphs
of bounded diameter. In fact, it seems that there are several examples of graph classes
for which the edge variants are hard, but the vertex variants remain easy. This raises a
natural question: when does say k-SRVC cease to be hard?

Open problem 6.6. Investigate the complexity of rainbow vertex coloring. In particular,
for what restricted graph classes do k-RVC and k-SRVC remain NP-complete?

Our results also show the strong rainbow vertex connection number of an n-vertex split
graph cannot be approximated within a factor of n1/2−ε, for any ε > 0, unless P = NP.
Is there a matching upper bound?

Open problem 6.7. Investigate the approximability of rainbow coloring. In particular,
are there matching upper bounds for the known lower bounds?

Chapter 6. Conclusions 49

Graph-theoretic considerations. From a combinatorial perspective, there are still
several questions to be investigated. To a modest extent, we explored the possibility of
computer-assisted and automated conjecture-making in the context of rainbow coloring.
To this end, we used the system named GraPHedron [65]. On a high-level, GraPHedron
keeps a large database of dozens of interesting graph parameters, computed for all non-
isomorphic graphs of up to n vertices (typically, n is at most 12). The user chooses two
parameters, and the system investigates their relationship. In particular, GraPHedron
is able to automatically suggest conjectures in form of inequalities. For instance, the
following was suggested by GraPHedron. Moreover, it was verified for all graphs with at
most 8 vertices.

Conjecture 6.8 (GraPHedron). A connected graph G with n vertices and chromatic
number χ(G) has src(G) ≤ n+ 1− χ(G).

A weaker version of the above is the statement that src(G) ≤ n+ 1− ω(G), and an even
weaker statement is that src(G) ≤ n− 1. We have made partial progress in settling these
two weaker statements in [49], but their status remains open.

Relating to Open Problem 6.7, let us mention that the edge-splitting lemma of Kamčev,
Krivelevich, and Sudakov [46] might be a useful starting point. In particular, they proved
that if G has two connected spanning subgraphs G1 = (V,E1) and G2 = (V,E2) such
that |E1 ∩ E2| ≤ c, then rc(G) ≤ diam(G1) + diam(G2) + c. Obviously, if c = 0 and
diam(T1) = diam(T2) = diam(G), we have obtained a rainbow coloring using at most
twice the optimal number of colors. In this sense, it could be interesting to consider
spanning subtrees. Specifically, can we characterize the graphs which have two edge-
disjoint diameter-preserving spanning trees? Here, a spanning tree T is said to be
diameter-preserving if diam(T) = diam(G). A more general question is thus the following.

Open problem 6.9. Characterize the graphs which have k edge-disjoint diameter-
preserving spanning trees for k = 2.

It appears the problem is open [33], and we think the answer could be of independent
interest. In addition, “diameter-preserving” could be replaced with “minimum diameter”
as well (for work in this direction, see e.g., [34]). Of course, such a characterization would
also be interesting for graphs whose spanning trees share c = O(1) edges. We remark
that a characterization for k = 1 is provided by Buckley and Lewinter [5]. Moreover, a
diameter-preserving spanning tree can be found in polynomial time [40].

Appendices

50

A

A compendium of common problems

For completeness, we provide the reader with a compact, comprehensive list of the
computational problems considered in this work. Many of the problems listed are often
assumed to be common knowledge in the field. We divide the problems into three categories:
rainbow connectivity problems, rainbow coloring problems, and other problems.

To avoid confusion, we stress that in the rainbow connectivity problems (Section A.1),
the connected input graph is colored. In contrast, in the rainbow coloring problems
(Section A.2), the connected input graph is uncolored.

A.1 Rainbow connectivity

Instance: A connected graph G = (V,E), and an edge-coloring ζ : E → C,
where C is a set of colors.

Problem: Is G rainbow-connected under ζ?

Rainbow Connectivity (RCon)

Instance: A connected graph G = (V,E), and an edge-coloring ζ : E → C,
where C is a set of colors.

Problem: Is G strongly rainbow-connected under ζ?

Strong Rainbow Connectivity (SRCon)

Instance: A connected graph G = (V,E), and a vertex-coloring ψ : V → C,
where C is a set of colors.

Problem: Is G rainbow vertex-connected under ψ?

Rainbow Vertex Connectivity (RVCon)

51

Appendix A. A compendium of common problems 52

Instance: A connected graph G = (V,E), and a vertex-coloring ψ : V → C,
where C is a set of colors.

Problem: Is G strongly rainbow vertex-connected under ψ?

Strong Rainbow Vertex Connectivity (SRVCon)

A.2 Rainbow coloring

Instance: A connected graph G = (V,E).
Problem: Is rc(G) ≤ k?

Rainbow k-Coloring (k-RC)

Instance: A connected graph G = (V,E).
Problem: Is src(G) ≤ k?

Strong Rainbow k-Coloring (k-SRC)

Instance: A connected graph G = (V,E).
Problem: Is rvc(G) ≤ k?

Rainbow Vertex k-Coloring (k-RVC)

Instance: A connected graph G = (V,E).
Problem: Is srvc(G) ≤ k?

Strong Rainbow Vertex k-Coloring (k-SRVC)

Instance: A connected graph G = (V,E), and a positive integer k.
Problem: Is rc(G) ≤ k?

Rainbow Coloring (RC)

Instance: A connected graph G = (V,E), and a positive integer k.
Problem: Is src(G) ≤ k?

Strong Rainbow Coloring (SRC)

Instance: A connected graph G = (V,E), and a positive integer k.
Problem: Is rvc(G) ≤ k?

Rainbow Vertex Coloring (RVC)

Appendix A. A compendium of common problems 53

Instance: A connected graph G = (V,E), and a positive integer k.
Problem: Is srvc(G) ≤ k?

Strong Rainbow Vertex Coloring (SRVC)

Instance: A connected graph G = (V,E), and a positive integer k.
Problem: Is rc(G) ≤ |E| − k?

k-SavingRC

Instance: A connected graph G = (V,E), and a positive integer k.
Problem: Is rvc(G) ≤ |V | − k?

k-SavingRVC

Instance: A graph G = (V,E), a set of anti-edges S, and an integer q.
Problem: Is there an edge-coloring c : E → [q] such that at least q pairs in S

are rainbow-connected?

Maximum Subset Rainbow k-Coloring

Instance: A graph G = (V,E), and an integer q.
Problem: Is there an edge-coloring c : E → [q] such that at least q anti-edges

of G are rainbow-connected?

Maximum Rainbow k-Coloring

A.3 Other problems

Instance: A CNF formula ϕ where each clause is of size at most three, and
each variable appears at most three times in ϕ.

Problem: Is there a satisfying assignment for ϕ, i.e., an assignment of truth
values to the variables of ϕ such that ϕ evaluates to true?

3-Occurrence 3-SAT

Instance: A graph G = (V,E), a weight function w : E → N, and a positive
integer B.

Problem: Is there a function assigning each vertex v a channel φ(x) from [B]
such that |φ(v)− φ(u)| ≥ w(uv) for each edge uv?

Channel Assignment

Appendix A. A compendium of common problems 54

Instance: A graph G = (V,E), and an integer k.
Problem: Is there a function c : V → [k] such that c(u) 6= c(v) for every

uv ∈ E?

Chromatic Number

Instance: A graph G = (V,E), and an integer k.
Problem: Is there a set S ⊆ V of pairwise adjacent vertices such that |S| ≥ k?

Clique

Instance: A graph G = (V,E) and a (possibly non-proper) k-vertex-coloring
c : V → [k].

Problem: Does G contain a path of length k− 1 on which each of the k colors
occur exactly once?

Colorful Path

Instance: A graph G = (V,E) and a (possibly non-proper) k-edge-coloring
c : E → [k].

Problem: Does G contain a path of length k on which each of the k colors
occur exactly once?

Edge-Colorful Path

Instance: A graph G = (V,E), and an integer k.
Problem: Is there a set S ⊆ V such that |S| ≤ k, the induced subgraph G[S]

is connected, and S ∩ e 6= ∅ holds for every edge e ∈ E?

Connected Vertex Cover

Instance: Two graphs G = (V,E), and G′ = (V ′, E′)
Problem: Is G a minor of G′?

Graph Minor

Instance: A vertex-colored graph G = (V,E), and a multiset M of colors.
Problem: Does G contain a connected subgraph whose colors agree with M?

Graph Motif

Appendix A. A compendium of common problems 55

Instance: A universe U = [n], a set system S ⊆ 2U , and an integer f .
Problem: Does S have a set cover of size at most f , i.e., a subset C ⊆ S with

|C| ≤ t such that
⋃
S∈C S = U?

Set Cover

Instance: A universe U = [n], a set system F ⊆ 2U , and an integer t.
Problem: Does F have a set partitioning of size at most t, i.e., a set cover C

such that for every S, S′ ∈ C with S 6= S′, we have S ∩ S′ = ∅?

Set Partitioning

Instance: A graph G = (V,E), an integer k, and a set of terminals S ⊆ V .
Problem: Is there a tree T in G with at most k edges such that S ⊆ V (T)?

Steiner Tree

Instance: Two graphs G = (V,E), and G′ = (V ′, E′)
Problem: Does G have a subgraph homomorphic to G′?

Subgraph Homomorphism

Instance: Two graphs G = (V,E), and G′ = (V ′, E′)
Problem: Does G contain a subgraph isomorphic to G′?

Subgraph Isomorphism

Instance: A set of n integers U , and an integer t.
Problem: Is there a subset U ′ ⊆ U such that the sum of elements in U ′

equals t?

Subset Sum

Bibliography

[1] Prabhanjan Ananth, Meghana Nasre, and Kanthi K. Sarpatwar. Rainbow Con-
nectivity: Hardness and Tractability. In: Proceedings of the 31st IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2011, Mumbai, India, December 12–14. 2011, pp. 241–251.

[2] Andreas Björklund, Petteri Kaski, and Łukasz Kowalik. Probably Optimal Graph
Motifs. In: Proceedings of the 30th International Symposium on Theoretical Aspects
of Computer Science, STACS 2013, Kiel, Germany, February 27–March 2. Vol. 20.
2013, pp. 20–31.

[3] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science 209(1–2) (1998), pp. 1–45.

[4] Hans L. Bodlaender, John R. Gilbert, Hjálmtyr Hafsteinsson, and Ton Kloks.
Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree.
Journal of Algorithms 18(2) (1995), pp. 238–255.

[5] Fred Buckley and Martin Lewinter. A note on graphs with diameter-preserving
spanning trees. Journal of Graph Theory 12(4) (1988), pp. 525–528.

[6] Yair Caro, Arie Lev, Yehuda Roditty, Zsolt Tuza, and Raphael Yuster. On rainbow
connection. Electron. J. Combin 15(1) (2008), R57.

[7] Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Raphael Yuster. Hardness
and algorithms for rainbow connection. Journal of Combinatorial Optimization
21(3) (2009), pp. 330–347.

[8] L. Sunil Chandran, Anita Das, Deepak Rajendraprasad, and Nithin M. Varma.
Rainbow connection number and connected dominating sets. Journal of Graph
Theory 71(2) (2012), pp. 206–218.

[9] L. Sunil Chandran and Deepak Rajendraprasad. Inapproximability of Rainbow
Colouring. In: Proceedings of the 33rd IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2013, Guwahati,
India, December 12–14. 2013, pp. 153–162.

[10] L. Sunil Chandran, Deepak Rajendraprasad, and Marek Tesař. Rainbow colouring
of split graphs. Discrete Applied Mathematics (2015). To appear.

[11] Gary Chartrand, Garry L. Johns, Kathleen A. McKeon, and Ping Zhang. Rainbow
connection in graphs. Mathematica Bohemica 133(1) (2008).

[12] Gary Chartrand, Futaba Okamoto, and Ping Zhang. Rainbow trees in graphs and
generalized connectivity. Networks 55(4) (2010), pp. 360–367.

[13] Gary Chartrand and Ping Zhang. Chromatic graph theory. CRC press, 2008.

56

Bibliography 57

[14] Lily Chen, Xueliang Li, and Huishu Lian. Further hardness results on the rainbow
vertex-connection number of graphs. Theoretical Computer Science 481 (2013),
pp. 18–23.

[15] Lily Chen, Xueliang Li, and Yongtang Shi. The complexity of determining the
rainbow vertex-connection of a graph. Theoretical Computer Science 412(35) (2011),
pp. 4531–4535.

[16] Xue-gang Chen, Liang Sun, and Hua-ming Xing. Characterization of graphs with
equal domination and connected domination numbers. Discrete Mathematics 289(1–
3) (2004), pp. 129–135.

[17] Benny Chor, Mike Fellows, and David Juedes. Linear Kernels in Linear Time, or
How to Save k Colors in O(n2) Steps. In: Proceedings of the 30th International
Workshop in Graph-Theoretic Concepts in Computer Science, WG 2004, Bad
Honnef, Germany, June 21–23. 2005, pp. 257–269.

[18] Bruno Courcelle. The Monadic Second-Order Logic of Graphs I. Recognizable Sets
of Finite Graphs. Information and Computation (1990), pp. 12–75.

[19] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable
optimization problems on graphs of bounded clique-width. Theory of Computing
Systems 33(2) (2000), pp. 125–150.

[20] Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof,
Yoshio Okamoto, Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On
Problems as Hard as CNF-SAT. ACM Transactions on Algorithms 12(3) (2016),
41:1–41:24.

[21] Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan
Mihajlin, Jakub Pachocki, and Arkadiusz Socała. Tight Bounds for Graph Ho-
momorphism and Subgraph Isomorphism. In: Proceedings of the 27th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA,
January 10-12. 2016, pp. 1643–1649.

[22] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015.

[23] Jitender S. Deogun and Dieter Kratsch. Diametral Path Graphs. In: Proceedings of
the 21st International Workshop in Graph-Theoretic Concepts in Computer Science,
WG 1995, Aachen, Germany, June 20–22. 1995, pp. 344–357.

[24] Reinhard Diestel. Graph Theory. Springer-Verlag Heidelberg, 2005.
[25] Guoli Ding and Stan Dziobiak. On 3-Connected Graphs of Path-Width at Most

Three. SIAM Journal on Discrete Mathematics 27(3) (2013), pp. 1514–1526.
[26] Paul Dorbec, Ingo Schiermeyer, Elżbieta Sidorowicz, and Éric Sopena. Rainbow

connection in oriented graphs. Discrete Applied Mathematics 179 (2014), pp. 69–78.
[27] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-

plexity. Springer, 2013.
[28] Richard J. Duffin. Topology of series-parallel networks. Journal of Mathematical

Analysis and Applications 10(2) (1965), pp. 303–318.
[29] Jan Ekstein, Přemysl Holub, Tomáš Kaiser, Maria Koch, Stephan Matos Camacho,

Zdeněk Ryjáček, and Ingo Schiermeyer. The rainbow connection number of 2-
connected graphs. Discrete Mathematics 313(19) (2013), pp. 1884–1892.

Bibliography 58

[30] David Eppstein. Diameter and Treewidth in Minor-Closed Graph Families. Algo-
rithmica 27(3) (2000), pp. 275–291.

[31] Jiří Fiala, Petr A. Golovach, and Jan Kratochvíl. Parameterized complexity of
coloring problems: Treewidth versus vertex cover. Theoretical Computer Science
412(23) (2011), pp. 2513–2523.

[32] Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger. Exact (Exponential)
Algorithms for the Dominating Set Problem. In: Proceedings of the 30th Interna-
tional Workshop in Graph-Theoretic Concepts in Computer Science, WG 2004, Bad
Honnef, Germany, June 21–23. 2005, pp. 245–256.

[33] András Frank. Personal communication. January 14th, 2015.
[34] András Frank and László Szegő. Constructive characterizations for packing and

covering with trees. Discrete Applied Mathematics 131(2) (2003), pp. 347–371.
[35] Philippe Galinier, Michel Habib, and Christophe Paul. Chordal graphs and their

clique graphs. In: Proceedings of the 21st International Workshop in Graph-Theoretic
Concepts in Computer Science, WG 1995, Aachen, Germany, June 20–22. 1995,
pp. 358–371.

[36] Robert Ganian and Petr Hliněný. On parse trees and Myhill-Nerode-type tools
for handling graphs of bounded rank-width. Discrete Applied Mathematics 158(7)
(2010), pp. 851–867.

[37] Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory, Series B 16(1) (1974), pp. 47–56.

[38] Paul C. Gilmore and Alan J. Hoffman. A characterization of comparability graphs
and of interval graphs. Canadian Journal of Mathematics 16(539–548) (1964), p. 4.

[39] Michel Habib and Juraj Stacho. Reduced clique graphs of chordal graphs. European
Journal of Combinatorics 33(5) (2012), pp. 712–735.

[40] Refael Hassin and Arie Tamir. On the minimum diameter spanning tree problem.
Information Processing Letters 53(2) (1995), pp. 109–111.

[41] Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the
knapsack problem. Journal of the ACM (JACM) 21(2) (1974), pp. 277–292.

[42] Xiaolong Huang, Xueliang Li, Yongtang Shi, Jun Yue, and Yan Zhao. Rainbow
connections for outerplanar graphs with diameter 2 and 3. Applied Mathematics
and Computation 242 (2014), pp. 277–280.

[43] Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal
of Computer and System Sciences 62(2) (2001), pp. 367–375.

[44] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have
Strongly Exponential Complexity? Journal of Computer and System Sciences 63(4)
(2001), pp. 512–530.

[45] Shaun N. Joseph and Lisa C. DiPippo. Pseudo-scheduling: A New Approach
to the Broadcast Scheduling Problem. In: Algorithms for Sensor Systems: 8th
International Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc
Networks and Autonomous Mobile Entities, ALGOSENSORS 2012, Ljubljana,
Slovenia, September 13-14. 2013, pp. 93–104.

[46] Nina Kamčev, Michael Krivelevich, and Benny Sudakov. Some Remarks on Rainbow
Connectivity. Journal of Graph Theory (2015). To appear.

Bibliography 59

[47] Haim Kaplan and Ron Shamir. Pathwidth, Bandwidth, and Completion Problems
to Proper Interval Graphs with Small Cliques. SIAM Journal on Computing 25(3)
(1996), pp. 540–561.

[48] Melissa Keranen and Juho Lauri. Computing Minimum Rainbow and Strong
Rainbow Colorings of Block Graphs. Submitted.

[49] Melissa Keranen and Juho Lauri. Upper Bounds on the Strong Rainbow Connection
Number via Covers and Forests. In preparation.

[50] Subhash Khot and Venkatesh Raman. Parameterized complexity of finding sub-
graphs with hereditary properties. Theoretical Computer Science 289(2) (2002),
pp. 997–1008.

[51] Jon Kleinberg and Éva Tardos. Algorithm Design. Pearson Education, 2006.
[52] Dieter Kratsch, Peter Damaschke, and Anna Lubiw. Dominating cliques in chordal

graphs. Discrete Mathematics 128(1) (1994), pp. 269–275.
[53] Michael Krivelevich and Raphael Yuster. The rainbow connection of a graph is (at

most) reciprocal to its minimum degree. Journal of Graph Theory 63(3) (2010),
pp. 185–191.

[54] Juho Lauri and Henri Riihimäki. A tight upper bound on the rainbow connection
number of chordal diametral path graphs. Submitted.

[55] Van Bang Le and Zsolt Tuza. Finding optimal rainbow connection is hard. Tech. rep.
CS-03-09. Universität Rostock, 2009.

[56] Hengzhe Li, Xueliang Li, and Sujuan Liu. Rainbow connection of graphs with
diameter 2. Discrete Mathematics 312(8) (2012), pp. 1453–1457.

[57] Xueliang Li, Yaping Mao, and Yongtang Shi. The strong rainbow vertex-connection
of graphs. Utilitas Mathematica 93 (2014), pp. 213–223.

[58] Xueliang Li, Yongtang Shi, and Yuefang Sun. Rainbow Connections of Graphs: A
Survey. Graphs and Combinatorics 29(1) (2012), pp. 1–38.

[59] Xueliang Li and Yuefang Sun. Rainbow connection numbers of line graphs. Ars
Combinatoria 100 (2011), pp. 449–463.

[60] Xueliang Li and Yuefang Sun. Rainbow connections of graphs. Springer, 2012.
[61] Xueliang Li and Yuefang Sun. Upper Bounds for the Rainbow Connection Numbers

of Line Graphs. Graphs and Combinatorics 28(2) (2011), pp. 251–263.
[62] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the

Exponential Time Hypothesis. Bulletin of the EATCS (105) (2011), pp. 41–72.
[63] Mohammad Mahdian. On the computational complexity of strong edge coloring.

Discrete Applied Mathematics 118(3) (2002), pp. 239–248.
[64] Dániel Marx. What’s Next? Future Directions in Parameterized Complexity. In:

The Multivariate Algorithmic Revolution and Beyond: Essays Dedicated to Michael
R. Fellows on the Occasion of His 60th Birthday. 2012, pp. 469–496.

[65] Hadrien Mélot. Facet defining inequalities among graph invariants: The system
GraPHedron. Discrete Applied Mathematics 156(10) (2008), pp. 1875–1891.

[66] Sylvia D. Monson, Norman J. Pullman, and Rolf Rees. A survey of clique and
biclique coverings and factorizations of (0,1)-matrices. Bulletin of the Institute of
Combinatorial Mathematics and its Applications 14 (1995), pp. 17–86.

Bibliography 60

[67] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with bounded
expansion I. Decompositions. European Journal of Combinatorics 29(3) (2008),
pp. 760–776.

[68] Rolf Niedermeier. Invitation to fixed-parameter algorithms. Oxford University Press
Oxford, 2006.

[69] Fred S. Roberts. Applications of edge coverings by cliques. Discrete Applied Mathe-
matics 10(1) (1985), pp. 93–109.

[70] Fred S. Roberts. Indifference graphs. In: Proof techniques in graph theory. 1969,
pp. 139–146.

[71] Arkadiusz Socała. Tight lower bound for the channel assignment problem. In:
Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6. 2015, pp. 662–675.

[72] Joel G. Stemple and Mark E. Watkins. On planar geodetic graphs. Journal of
Combinatorial Theory 4(2) (1968), pp. 101–117.

[73] Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied
Mathematics 8(1) (1984), pp. 85–89.

[74] Kei Uchizawa, Takanori Aoki, Takehiro Ito, Akira Suzuki, and Xiao Zhou. On the
Rainbow Connectivity of Graphs: Complexity and FPT Algorithms. Algorithmica
67(2) (2013), pp. 161–179.

[75] Vijay V. Vazirani. Approximation algorithms. Springer, 2013.
[76] David Zuckerman. Linear Degree Extractors and the Inapproximability of Max

Clique and Chromatic Number. Theory of Computing 3(6) (2007), pp. 103–128.

1

Paper 1

Juho Lauri.

Further hardness results on rainbow and strong
rainbow connectivity.

c© Elsevier B.V., 2016. Discrete Applied Mathematics
201 (2016), pp. 191–200.

doi:10.1016/j.dam.2015.07.041

Discrete Applied Mathematics 201 (2016) 191–200

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Further hardness results on rainbow and strong rainbow
connectivity
Juho Lauri
Department of Mathematics, Tampere University of Technology, Korkeakoulunkatu 1, 33720 Tampere, Finland

a r t i c l e i n f o

Article history:
Received 28 July 2014
Received in revised form 5 May 2015
Accepted 29 July 2015
Available online 31 August 2015

Keywords:
Rainbow connectivity
Computational complexity

a b s t r a c t

A path in an edge-colored graph is rainbow if no two edges of it are colored the same.
The graph is said to be rainbow connected if there is a rainbow path between every pair
of vertices. If there is a rainbow shortest path between every pair of vertices, the graph
is strong rainbow connected. We consider the complexity of the problem of deciding if a
given edge-colored graph is rainbow or strong rainbow connected. These problems are
called Rainbow connectivity and Strong rainbow connectivity, respectively. We prove
both problems remain NP-complete on interval outerplanar graphs and k-regular graphs
for k ≥ 3. Previously, no graph class was knownwhere the complexity of the two problems
would differ. We show that for block graphs, which form a subclass of chordal graphs,
Rainbow connectivity is NP-complete while Strong rainbow connectivity is in P. We
conclude by considering some tractable special cases, and show for instance that both
problems are in XP when parameterized by tree-depth.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G be an edge-colored undirected graph that is simple and finite. A path in G is rainbow if no two edges of it are colored
the same. The graph G is rainbow connected if there is a rainbow path between every pair of vertices. If there is a rainbow
shortest path between every pair of vertices, G is strong rainbow connected. Clearly, a strong rainbow connected graph is
also rainbow connected. The minimum number of colors needed to make G rainbow connected is known as the rainbow
connection number and is denoted by rc(G). Likewise, the minimum number of colors needed to make G strong rainbow
connected is known as the strong rainbow connection number and is denoted by src(G). The concept of rainbow connectivity
was introduced by Chartrand et al. [4] in 2008, and it has applications in data transfer and networking. The diameter of a
graph, denoted by diam(G), is the largest distance between two vertices of G. Clearly, diam(G) is a lower bound for rc(G).
On the other hand, a trivial upper bound for rc(G) is m, where m is the number of edges in G. Finally, because each strong
rainbow connected graph is also rainbow connected, we have that diam(G) ≤ rc(G) ≤ src(G) ≤ m. For less trivial bounds
and more, we refer the reader to the books [5,18], or the recent survey [17].

A similar concept was introduced for vertex-colored graphs by Krivelevich and Yuster [14]. A vertex-colored graph H
is rainbow vertex-connected if every pair of vertices is connected by a path whose internal vertices have distinct colors.
The minimum number of colors needed to make H rainbow vertex-connected is known as the rainbow vertex-connection
number and is denoted by rvc(H). Li et al. [16] investigated the strong rainbow vertex-connection number as a natural variant.
A vertex-colored graph is strong rainbow vertex-connected if every pair of vertices is connected by a shortest path whose
internal vertices have distinct colors. The minimum number of colors needed to make H strong rainbow vertex-connected

E-mail address: juho.lauri@tut.fi.

http://dx.doi.org/10.1016/j.dam.2015.07.041
0166-218X/© 2015 Elsevier B.V. All rights reserved.

192 J. Lauri / Discrete Applied Mathematics 201 (2016) 191–200

is known as the strong rainbow vertex-connection number and is denoted by srvc(H). For rainbowvertex-connection numbers
or other rainbow connection numbers outside of our scope we refer the reader to [17].

Rainbow connectivity can be motivated by the following example from the domain of networking. Suppose we have a
network of agents represented as a graph. Each vertex in the graph represents an agent, and an edge between two agents
is a link. An agent in the network wishes to communicate with every other agent in the network by sending messages.
A message sent from agent A to agent B is routed through other agents that act as intermediaries. This communication
path uses links between agents, and each link uses a channel. For the message to get through, we require that each link on
the communication path receives a distinct channel. Given a network of agents G, our objective is to ensure each pair of
agents can establish a communication path, while also minimizing the number of channels needed. The minimum number
of channels we need is exactly rc(G).

Chakraborty et al. [2] showed that it isNP-complete to decide if rc(G) ≤ k for k = 2. Ananth et al. [1] proved the problem
remains hard for k ≥ 3 as well. Chandran and Rajendraprasad [3] proved there is no polynomial time algorithm to rainbow
color graphs with less than twice the optimum number of colors, unless P = NP. Computing the strong rainbow connection
number is known to be hard aswell. Chartrand et al. [4] proved rc(G) = 2 if and only if src(G) = 2, so deciding if src(G) ≤ k is
NP-complete for k = 2. Ananth et al. [1] showed the problem remainsNP-complete for k ≥ 3 evenwhen G is bipartite [1]. In
the same paper, they also showed there is no polynomial time algorithm for approximating the strong rainbow connection
number of an n-vertex graph within a factor of n1/2−ϵ , where ϵ > 0 unless NP = ZPP.

Given that it is hard to compute both the rainbow and the strong rainbow connection number, it is natural to ask if it is
easier to verify if a given edge-colored graph is rainbow or strong rainbow connected. In this paper, we are concerned with
the complexity of the following two decision problems:

Rainbow connectivity
Instance: An undirected graph G = (V , E), and an edge-coloring χ : E → C , where C is a set of colors
Question: Is G rainbow connected under χ?

Strong rainbow connectivity
Instance: An undirected graph G = (V , E), and an edge-coloring χ : E → C , where C is a set of colors
Question: Is G strong rainbow connected under χ?

Out of these two problems, Rainbow connectivity has gained considerably more attention in the literature.
Chakraborty et al. [2] observed the problem is easy when the number of colors |C | is bounded from above by a constant.
However, they proved that for an arbitrary coloring, the problem is NP-complete. Building on their result, Li et al. [15]
provedRainbowconnectivity remainsNP-complete for bipartite graphs. Furthermore, the problem isNP-complete even for
bipartite planar graphs as shown by Huang et al. [11]. Recently, Uchizawa et al. [23] complemented these results by showing
Rainbow connectivity is NP-complete for outerplanar graphs, and even for series–parallel graphs. In the same paper, the
authors also gave some positive results. Namely, they showed the problem is in P for cactus graphs, which form a subclass
of outerplanar graphs. Furthermore, they settled the precise complexity of the problem from a viewpoint of graph diameter
by showing the problem is in P for graphs of diameter 1, but NP-complete already for graphs of diameter greater than or
equal to 2. To the best of our knowledge, Uchizawa et al. [23] were the only ones to consider Strong rainbow connectivity.
They showed the problem is in P for cactus graphs, but NP-complete for outerplanar graphs. We shortly mention similar
hardness results are known for deciding if a given vertex-colored is rainbow vertex-connected (see e.g. [6,15,23]).

A fixed-parameter algorithm (FPT) solves a problem with an input instance of size n and a parameter k in f (k) · nO(1)

time for some computable function f depending solely on k. That is, for every fixed parameter value it yields a solution in
polynomial time and the degree of the polynomial is independent from k. Uchizawa et al. [23] gave FPT algorithms for both
problems on general graphs when parameterized by the number of colors k = |C |. These algorithms run in O(k2kmn) time
and O(k2kn) space, where n and m are the number of vertices and edges in the input graph, respectively. These algorithms
imply both Rainbow connectivity and Strong rainbow connectivity are solvable in polynomial time for any n-vertex
graph if |C | = O(log n).

In this paper, we prove both Rainbow connectivity and Strong rainbow connectivity remainNP-complete for interval
outerplanar graphs. We then consider the class of block graphs, which form a subclass of chordal graphs. Interestingly, for
block graphs Rainbow connectivity is NP-complete, while Strong rainbow connectivity is in P. To the best of our knowl-
edge, this is the first graph class known for which the complexity of these two problems differ. Both problems are easy on
2-regular graphs. However, we show that both problems become NP-complete on cubic graphs, and further generalize this
for k-regular graphs, where k > 3. This completely settles the complexity of both problems from the viewpoint of regularity.

2. Preliminaries

All graphs in this paper are simple, finite, and undirected.Webegin by defining the graph classeswe consider in thiswork.
For graph theoretic concepts not defined here, we refer the reader to [8]. For an integer n, we write [n] = {1, 2, . . . , n}.

J. Lauri / Discrete Applied Mathematics 201 (2016) 191–200 193

a b

Fig. 1. (a) A variable gadget Xi for the variable xi , and (b) a clause gadget Cj for the clause cj = (x1 ∨ x2 ∨ ¬x5), where x1 is the first literal of x1 , x2 is the
second literal of x2 , and ¬x5 is the third literal of x5 .

A chord is an edge joining two non-consecutive vertices in a cycle. A graph is chordal if every cycle of length 4 or more
has a chord. Equivalently, a graph is chordal if it contains no induced cycle of length 4 or more. A cut vertex is a vertex whose
removal will disconnect the graph. A biconnected graph is a connected graph having no cut vertices. A block graph is an
undirected graph where every maximal biconnected component, known as a block, is a clique. In a block graph G, different
blocks intersect in at most one vertex, which is a cut vertex of G. In other words, every edge of G lies in a unique block, and
G is the union of its blocks. It is easy to see that a block graph is chordal. Another well-known subclass of chordal graphs is
formed by interval graphs. To define such graphs, wewill first introduce the notion of clique trees. A clique tree of a connected
chordal graph G is any tree T whose vertices are the maximal cliques of G such that for every two maximal cliques Ci, Cj,
each clique on the path from Ci to Cj in T contains Ci ∩Cj. Chordal graphs are precisely the class of graphs that admit a clique
tree representation [9]. As shown by Gilmore and Hoffman [10], a graph is an interval graph if and only if it admits a clique
tree that is a path. A graph is planar if it can be embedded in the plane without crossing edges. A graph is outerplanar if it
has a crossing-free embedding in the plane such that all vertices are on the same face. Finally, the degree of a vertex is the
number of edges incident to it. A graph is k-regular if the degree of each of its vertices is exactly k. Specifically, a 3-regular
graph is known as a cubic graph.

The 3-Occurrence 3-SAT problem is a variant of the 3-SAT problem where every variable occurs at most three times.
TheNP-completeness of Rainbow connectivity and Strong rainbow connectivity for outerplanar graphswere shown by a
reduction from the 3-Occurrence 3-SAT problem by Uchizawa et al. [23]. Often, it does not matter if one refers by 3-SAT to
the variant of 3-SATwhere each clause has exactly 3 literals, or the variantwhere each clause has atmost 3 literals since both
are NP-complete. However, for 3-Occurrence 3-SAT this distinction is crucial. The variant where every clause has exactly 3
literals is in P because every such instance is satisfiable as shown by Tovey [22]. The variant where every clause has at most
3 literals is however NP-complete [19].

This distinction is not explicitly made by Uchizawa et al. [23]. However, it is not hard to modify their clause gadgets
to allow for less than 3 literals. In other words, this does not affect the correctness of their reductions. The clause gadgets
corresponding to clauses of size one and two can be found from the Appendix of this article. Their reductions greatly inspire
ours, and thus we also reduce from the 3-Occurrence 3-SAT problem, where each clause has at most 3 literals. We begin
by describing their construction as our reductions are based on it. We tighten their result slightly by observing the resulting
graph is both bipartite and outerplanar.

Theorem 1 (Uchizawa et al. [23]). Rainbow connectivity is NP-complete when restricted to the class of bipartite outerplanar
graphs.

Construction: We first observe the problem is in NP with the certificate being a set of colored paths, one for each pair
of vertices. It is then simple to decide if a given path is rainbow. Given a 3-Occurrence 3-SAT formula φ =

m
j=1 ci over

variables x1, x2, . . . , xn, we construct a graph Gφ and an edge-coloring χ such that φ is satisfiable if and only if Gφ is rainbow
connected under χ . We first describe the construction of Gφ , and then the edge-coloring χ of Gφ .

For each variable xi, i ∈ [n], we build a variable gadget Xi. A variable gadget Xi is a cycle graph C6 embedded in the plane
on vertices ai, ui, vi, bi, vi, ui in clockwise order. For each clause cj, j ∈ [m], we build a clause gadget Cj. A clause gadget Cj is
built by starting from a cycle graph C10 embedded in the plane on vertices pj, rj,1, rj,2, rj,3, qj, q′

j , r
′

j,3, r
′

j,2, r
′

j,1, p
′

j in clockwise
order, and by adding chords (rj,1, r ′

j,1), (rj,2, r
′

j,2), and (rj,3, r ′

j,3). These chords correspond to the three literals the clause cj
has. Both a variable gadget and a clause gadget are shown in Fig. 1.

We connect Xi with Xi+1 by adding an edge (bi, ai+1) for each 1 ≤ i < n. Then, we connect Cj with Cj+1 by adding an
edge (q′

j, pj+1) for each 1 ≤ j < m. Likewise, we connect the two components together by adding the edge (bn, p1). We then
add one vertex t , and the edge (q′

m, t). Finally, we build a path of lengthm on vertices s1, s2, . . . , sm, and connect it to Gφ by
adding the edge (sm, a1). This completes the construction of Gφ . We can verify Gφ is indeed a bipartite outerplanar graph.

We now describe the edge-coloring χ given to the edges of Gφ . Notice there are exactly two paths between ai and bi in a
variable gadget Xi. Intuitively, taking the path from ai to bi through ui and vi corresponds to setting xi = 1 in the formula φ.

194 J. Lauri / Discrete Applied Mathematics 201 (2016) 191–200

Table 1
Summary of known complexity results for Rainbow connectivity and Strong rainbow
connectivity.

Graph class Rainbow connectivity Strong rainbow connectivity

Bounded diameter ≥2 NP-completea P [Theorem 11]
Series–parallel NP-completea NP-completea

Bipartite planar NP-completeb NP-completea
Bipartite outerplanar NP-completea NP-completea
Interval outerplanar NP-complete [Theorem 4] NP-complete [Corollary 5]
Cactus Pa Pa

k-regular, k ≥ 3 NP-complete [Theorem 9] NP-complete [Corollary 10]
Block NP-complete P [Corollary 13]
Interval block NP-complete [Theorem 6] P
Tree P P
a Stands for [23].
b Stands for [11].

We refer to this path as the positive Xi path. We color the three edges (ai, ui), (ui, vi), and (vi, bi) with colors ci,1, ci,2, and
ci,3, respectively. Taking the path from ai to bi through ui and vi corresponds to setting xi = 0 in the formula φ. We refer to
this path as the negative Xi path. The three edges (ai, ui), (ui, vi) and (vi, bi) receive the colors c i,1, c i,2 and c i,3, respectively.
The coloring of a variable gadget Xi is illustrated in Fig. 1(a).

Recall a variable xi appears at most three times in φ. We refer to the first occurrence of xi as the first literal of xi, the
second occurrence of xi as the second literal of xi, and finally the third occurrence of xi as the third literal of xi. If a clause has
two or three literals of a same variable, the tie is broken arbitrarily. In a clause gadget Cj, we color the edge (pj, p′

j) with the
color c ′

j , and the edge (qj, q′

j) with the color cj. For each k ∈ [3], we denote the kth literal in the jth clause by lj,k. We color
the edge (rj,k, r ′

j,k) as follows:

χ((rj,k, r ′

j,k)) =



c i,1 if lj,k is a positive literal and the first literal of xi
c i,2 if lj,k is a positive literal and the second literal of xi
c i,3 if lj,k is a positive literal and the third literal of xi
ci,1 if lj,k is a negative literal and the first literal of xi
ci,2 if lj,k is a negative literal and the second literal of xi
ci,3 if lj,k is a negative literal and the third literal of xi.

The edge (q′

j, pj+1), for each 1 ≤ j < m, receives the color c ′

j , while the edge (q′
m, t) is colored with c ′

m. The coloring of a
clause gadget Cj is shown in Fig. 1(b).

Finally, we color each edge (sj, sj+1) with the color cj for each 1 ≤ j < m. The edge (sm, a1) is colored with the color cm.
Every other uncolored edge of Gφ receives a fresh new color, that does not appear in Gφ . Formally, these are precisely the
edges in U ∪ W , where U = {(bi, ai+1) | 1 ≤ i < n} ∪ {(bn, p1)} and

W = {(pj, rj,1), (rj,1, rj,2), (rj,2, rj,3), (rj,3, qj) | 1 ≤ j ≤ m} ∪ {(q′

j, r
′

j,3), (r
′

j,3, r
′

j,2), (r
′

j,2, r
′

j,1), (r
′

j,1, p
′

j) | 1 ≤ j ≤ m}.

The edges inW correspond precisely to the edges drawnwith thick lines in Fig. 1(b), for each clause gadget Cj. This completes
the edge-coloring χ of Gφ . The following claim is true for Gφ , and it furthermore proves Theorem 1.

Lemma 2 (Uchizawa et al. [23]). The graph Gφ is rainbow connected under χ if and only if Gφ has a rainbow path between the
vertices s1 and t. Furthermore, there is a rainbow path between s1 and t if and only if the formula φ is satisfiable.

In the previous reduction, by observing every pair of vertices is rainbow connected by a rainbow shortest path given a
satisfiable instance of φ, Uchizawa et al. [23] also got the following.

Theorem 3 (Uchizawa et al. [23]). Strong rainbow connectivity is NP-complete when restricted to the class of bipartite
outerplanar graphs.

3. Hardness results

In this section, we give new hardness results for both Rainbow connectivity and Strong rainbow connectivity. All of
our hardness results will follow by a reduction from the 3-Occurrence 3-SAT problem, and will essentially be based on
Theorem 1. For the sake of brevity, and similarly to Theorem 1, we will present our constructions assuming each clause is
of size three. The clause gadgets corresponding to clauses of size one and two can be found in the Appendix for each graph
class.

We summarize the known complexity results for both problems in Table 1 along with our new results.

J. Lauri / Discrete Applied Mathematics 201 (2016) 191–200 195

3.1. Rainbow and strong rainbow connectivity are NP-complete for interval outerplanar graphs

In this subsection, we prove Rainbow connectivity and Strong rainbow connectivity remainNP-complete for interval
outerplanar graphs.

Theorem 4. Rainbow connectivity is NP-complete when restricted to the class of interval outerplanar graphs.

Proof. We assume the same terminology as in Theorem 1. Given a 3-Occurrence 3-SAT instance φ, we first build a graph
Gφ along with its edge-coloring χ precisely as in Theorem 1. For clarity, we then rename Gφ to GM

φ , and χ to χM .
A variable gadget XM

i is obtained from Xi by adding three chords (ui, ui), (ui, vi), and (vi, vi), and coloring each with a
new color c i. Next, a clause gadget CM

j is obtained from Cj by adding four chords (rj,1, p′

j), (rj,2, r
′

j,1), (rj,3, r
′

j,2), and (qj, r ′

j,3).
Each of these four chords receive the color c ′

j . Finally, we recolor each edge in U = {(bi, ai+1) | 1 ≤ i < n} ∪ {(bn, p1)} with
the color c i. We can now verify that GM

φ is indeed a chordal outerplanar graph. Furthermore, it is easy to see GM
φ admits a

clique tree that is a path. Thus, GM
φ is both interval and outerplanar.

We then show these modifications do not contradict Lemma 2. First, observe the distance between ai and bi for each
1 ≤ i ≤ n remains unchanged. However, we introduce additional paths between ai and bi. But because every edge in U is
a bridge and has the color c i, it still holds that any rainbow path from s1 to t must, in every XM

i , take precisely either the
positive XM

i path or the negative XM
i path.

Similarly, we also establish additional paths between pj and q′

j . However, because each edge in {(q′

j, pj+1) | 1 ≤ j <

m} ∪ {(q′
m, t)} is a bridge and has the color c ′

j , none of the newly added chords can be on a rainbow path from s1 to t . Finally,
observe also the distance between pj and q′

j for each 1 ≤ j ≤ m remains unchanged. This implies any rainbow path from s1
to t must still, in every CM

j , use precisely one of the edges (rj,1, r ′

j,1), (rj,2, r
′

j,2), or (rj,3, r ′

j,3). Thus, Lemma 2 still holds, and
we have the theorem. �

Similarly to Theorem 1, given a satisfiable instance of φ, we can observe there is a rainbow shortest path between every pair
of vertices. Thus we get the following.

Corollary 5. Strong rainbow connectivity is NP-complete when restricted to the class of interval outerplanar graphs.

3.2. Rainbow connectivity is NP-complete for interval block graphs

In this subsection, we prove Rainbow connectivity is NP-complete for interval block graphs, which form a subclass of
chordal graphs, and also generalize trees. It is worth noting that unlike in Theorems 1 and 4, the reductionwe give next does
not show hardness of Strong rainbow connectivity for block graphs.

Theorem 6. Rainbow connectivity is NP-complete when restricted to the class of interval block graphs.

Proof. We assume the same terminology as in Theorem 4. Given a 3-Occurrence 3-SAT instance φ, we first build a graph
GM

φ along with its edge-coloring χM precisely as in Theorem 4. For clarity, we rename GM
φ to GB

φ , and χM to χB.
We obtain an XB

i by adding to XM
i all the possible chords, that is, the edges (ai, vi), (ai, bi), (ai, vi), (ui, bi), (vi, ui), and

(bi, ui). Each of these chords receive the color c i. We also add all possible chords to every CM
j , and thus obtain the clause

gadget CB
j . Formally, we add to GB

φ the edges in

Z = {(pj, rj,2), (pj, rj,3), (pj, qj), (pj, q′

j), (pj, r
′

j,3), (pj, r
′

j,2), (pj, r
′

j,1) | 1 ≤ j ≤ m}

∪ {(rj,1, rj,3), (rj,1, qj), (rj,1, q′

j), (rj,1, r
′

j,3), (rj,1, r
′

j,2) | 1 ≤ j ≤ m}

∪ {(rj,2, qj), (rj,2, q′

j), (rj,2, r
′

j,3), (rj,2, p
′

j) | 1 ≤ j ≤ m}

∪ {(rj,3, q′

j), (rj,3, r
′

j,1), (rj,3, p
′

j) | 1 ≤ j ≤ m}

∪ {(qj, r ′

j,2), (qj, r
′

j,1), (qj, p
′

j) | 1 ≤ j ≤ m}

∪ {(q′

j, r
′

j,2), (q
′

j, r
′

j,1), (q
′

j, p
′

j) | 1 ≤ j ≤ m}

∪ {(r ′

j,3, r
′

j,1), (r
′

j,3, p
′

j) | 1 ≤ j ≤ m}

∪{(r ′

j,2, p
′

j) | 1 ≤ j ≤ m}.

Each edge in Z receives the color c ′

j . This completes the construction of GB
φ . Clearly, G

B
φ is now a block graph, with each block

being a K2, a K6, or a K10. Furthermore, it is easy to see GB
φ admits a clique tree that is path. Thus, GB

φ is both interval and block.
By an argument similar to Theorem 4, none of the newly added chords can be on a rainbow path from s1 to t . Thus,

Lemma 2 still holds, and we have the theorem. �

196 J. Lauri / Discrete Applied Mathematics 201 (2016) 191–200

a b

Fig. 2. (a) A variable gadget X∆
i for the variable xi , and (b) a clause gadget C∆

j for the clause cj = (x1 ∨ x2 ∨ ¬x5), where x1 is the first literal of x1 , x2 is the
second literal of x2 , and ¬x5 is the third literal of x5 .

In the previous construction, the key difference to Theorem 4 is that the distance between any pair of vertices in XB
i is

one, as is the distance between any pair of vertices in CB
j . Therefore, given a positive instance of φ, it is not true that every

pair of vertices in GB
φ would be connected by a rainbow shortest path.

3.3. Rainbow and strong rainbow connectivity are NP-complete for k-regular graphs

In this subsection, we prove both Rainbow connectivity and Strong rainbow connectivity remain NP-complete for
k-regular graphs, for k ≥ 3. We begin by proving hardness for cubic graphs, that is, for k = 3. We use this construction as a
building block for proving hardness for k-regular graphs, where k > 3.

Theorem 7. Rainbow connectivity is NP-complete when restricted to the class of cubic graphs.

Proof. We assume the terminology of Theorem 1. Given a 3-Occurrence 3-SAT instance φ, we first construct a graph G∆
φ ,

and then its edge-coloring χ∆.
We begin very similarly to Theorem 1. A variable gadget X∆

i is built for every variable xi, i ∈ [n], by starting from an
Xi and adding two chords (ui, vi) and (ui, vi). For each clause cj, j ∈ [m], we build a clause gadget C∆

j . A clause gadget C∆
j

is built by starting from a cycle graph C14 embedded in the plane on vertices pj, rj,1, rj,2, rj,3, rj,4, rj,5, qj, q′

j , r
′

j,5, r
′

j,4, r
′

j,3, r
′

j,2,
r ′

j,1, p
′

j in clockwise order, and by adding chords (rj,1, r ′

j,1), (rj,3, r
′

j,3), (rj,5, r
′

j,5), (p
′

j, rj,2), (r
′

j,2, rj,4), and (r ′

j,4, qj). The chords
(rj,1, r ′

j,1), (rj,3, r
′

j,3), and (rj,5, r ′

j,5) correspond to the three literals each clause has. Both a variable gadget and a clause gadget
are shown in Fig. 2.

We then construct a tail gadget, which is done by starting with two path graphs on m − 1 vertices s1, . . . , sm−1 and
s′1, . . . , s

′

m−1, respectively. Then, we add the edges (sj, s′j) for each 3 ≤ j ≤ m − 1, and three edges (s1, s′1), (s
′

1, s2), and
(s1, s′2). Finally, we add a vertex a0, and two edges (sm−1, a0) and (s′m−1, a0). The last gadget we build is a head gadget. A head
gadget is built by starting from a K4 on vertices t1, t2, t3, and t4 with the edge (t1, t2) removed. We then add the vertex t0,
and finally the edges (t0, t1) and (t0, t2). Both a tail gadget and a head gadget are shown in Fig. 3.

We connect X∆
i with X∆

i+1 by adding an edge (bi, ai+1) for each 1 ≤ i < n. Then, we connect C∆
j with C∆

j+1 by adding an
edge (q′

j, pj+1) for each 1 ≤ j < m. These two components are connected by adding the edge (bn, p1). The head gadget is
connected to G∆

φ by adding the edge (t0, q′
m), and the tail gadget by adding the edge (a0, a1). This completes the construction

of G∆
φ . We can now verify that G∆

φ is indeed cubic.
We then describe the edge-coloring χ∆ of G∆

φ . The positive X∆
i path and the negative X∆

i path are colored precisely as
in Theorem 1. The two chords (ui, vi) and (ui, vi) receive the color c i, as does each edge in U = {(bi, ai+1) | 1 ≤ i <
n} ∪ {(bn, p1)}. The coloring of a variable gadget X∆

i is illustrated in Fig. 2(a).
In a clause gadget C∆

j , we color the edge (pj, p′

j) with the color c ′

j , and the edge (qj, q′

j) with the color cj. The three chords
(p′

j, rj,2), (r
′

j,2, rj,4), and (r ′

j,4, qj) are colored with the color c ′

j . For each k ∈ {1, 2, 3}, we color the edge (rj,2k−1, r ′

j,2k−1) as
follows:

χ∆((rj,k, r ′

j,k)) =



c i,1 if lj,k is a positive literal and the first literal of xi
c i,2 if lj,k is a positive literal and the second literal of xi
c i,3 if lj,k is a positive literal and the third literal of xi
ci,1 if lj,k is a negative literal and the first literal of xi
ci,2 if lj,k is a negative literal and the second literal of xi
ci,3 if lj,k is a negative literal and the third literal of xi.

J. Lauri / Discrete Applied Mathematics 201 (2016) 191–200 197

a b

Fig. 3. (a) A tail gadget, and (b) a head gadget.

The edge (q′

j, pj+1), for each 1 ≤ j < m, receives the color c ′

j , while the edge (q′
m, t0) is colored with c ′

m. The coloring of a
clause gadget C∆

j is shown in Fig. 2(b).
For each 1 ≤ j < m − 1, we color the edge (sj, sj+1) with the color cj, and also the edge (s′j, s

′

j+1) with the color cj. The
edges (s1, s′2) and (s2, s′1) both receive the color c1. The edges (sm−1, a0) and (s′m−1, a0) both receive the color cm−1. The bridge
(a0, a1) receives the color cm. The coloring of a tail gadget is shown in Fig. 3(a). Every other uncolored edge of G∆

φ receives a
fresh new color, that does not appear in G∆

φ . Formally, these are precisely the edges in

Q = {(pj, rj,1), (rj,1, rj,2), (rj,2, rj,3), (rj,3, rj,4), (rj,4, rj,5), (rj,5, qj) | 1 ≤ j ≤ m}

∪ {(q′

j, r
′

j,5), (r
′

j,5, r
′

j,4), (r
′

j,4, r
′

j,3), (r
′

j,3, r
′

j,2), (r
′

j,2, r
′

j,1), (r
′

j,1, p
′

j) | 1 ≤ j ≤ m}

∪ {(sj, s′j) | 3 ≤ j ≤ m − 1}

∪ {(s1, s′1)}
∪ {(t0, t1), (t0, t2), (t1, t3), (t1, t4), (t2, t3), (t2, t4), (t3, t4)}.

The edges inQ correspond precisely to the edges drawnwith thick lines in Figs. 2 and 3. This completes the edge-coloring
χ∆ of G∆

φ .
Let us rename t0 as t . By an argument similar to Theorem 4, we can show there is a rainbow path between s1 and t (and

similarly between s′1 and t) if and only if φ is satisfiable. �
Again, in the positive case, every pair of vertices has a rainbow shortest path between them further giving us the following.

Corollary 8. Strong rainbow connectivity is NP-complete when restricted to the class of cubic graphs.

We are now ready to prove the hardness of both problems for k-regular graphs, where k > 3.

Theorem 9. Rainbow connectivity is NP-complete when restricted to the class of k-regular graphs, where k > 3.
Proof. We assume the terminology of Theorem 7. Given a 3-Occurrence 3-SAT instance φ, we construct a graph G∗

φ , and
its edge-coloring χ∗.

We first construct k − 2 copies of the cubic graph G∆
φ . Let us denote these copies as G∆

φ,h, where h ∈ [k − 2]. Each G∆
φ,h

retains its original coloring as defined in Theorem7. That is, eachG∆
φ,h has precisely the same coloring. Let us assign a labeling

1, . . . , |V (G∆
φ)| on the vertices of G∆

φ , and use the same labeling for each G∆
φ,h. By vh,l we denote the vertex in subgraph G∆

φ,h

with the label l, where l ∈ [|V (G∆
φ)|]. We then form a clique between the vertices vh,l for each h and l by adding all possible

k−2
2


edges. These newly added edges are precisely the uncolored edges ofG∗

φ , and all of them receive the fresh newcolor c∗.

Because G∆
φ is cubic, we can verify G∗

φ is now k-regular. This completes the construction of both G∗

φ , and its edge-coloring χ∗.
Wewill then showG∗

φ is rainbow connected if and only ifφ is satisfiable. Recalling the naming of vertices fromTheorem7,
without loss let us rename s1 in G∆

φ,1 as s, and t0 in G∆
φ,1 as t . First suppose φ is satisfiable. Then because there is a rainbow

path between s and each vertex of G∆
φ,1 by Theorem 7, the graph G∗

φ is rainbow connected. Finally, suppose φ is unsatisfiable.
Observe that any rainbow path from s to t must only consist of edges in G∆

φ,1. But since s and t are not rainbow connected,
it follows that G∗

φ is not rainbow connected. Thus, we have the theorem. �
Again, the following is immediate from the previous construction.

Corollary 10. Strong rainbow connectivity is NP-complete when restricted to the class of k-regular graphs, where k > 3.

4. Polynomial time solvable cases

In this section, we consider Strong rainbow connectivity from a structural perspective. We observe some graph classes
for which the problem is easy. We begin by showing bounding the diameter of the input graph makes Strong rainbow
connectivity tractable, while this not so for Rainbow connectivity [23].

198 J. Lauri / Discrete Applied Mathematics 201 (2016) 191–200

Theorem 11. Strong rainbow connectivity is solvable in O(nd+3) time for graphs of bounded diameter d ≥ 1, where n is the
number of vertices in the input graph.

Proof. For d = 1, the problem is trivial. So suppose d ≥ 2, and let n denote the number of vertices in G. Let u and v be two
arbitrary vertices of G, and let P = ut1t2 · · · td−1v be a shortest path from u to v. Because there are less than n choices for
each ti where i ∈ [d−1], it follows that there are at most nd shortest u–v paths of length nomore than d. We can then check
all of these paths of length exactly d(u, v), and verify if at least one such path is rainbow. Clearly, it takes O(d) time to check
one path. Because we have

 n
2


pairs of vertices to check and d is fixed, it follows that Strong rainbow connectivity can be

decided in O(nd+3) time for graphs of bounded diameter. �

If a graph G has exactly one shortest path between any pair of vertices, G is said to be geodetic. A graph is k-geodetic if
there are atmost k shortest paths between any pair of vertices. In fact, it is an easy observation that the brute-force algorithm
that checks every shortest path between a pair of vertices runs in polynomial time for k-geodetic graphs.

Theorem 12. Strong rainbow connectivity is solvable in polynomial time when restricted to the class of k-geodetic graphs,
where k = O(poly(n,m)), and n and m are the number of vertices and edges in the input graph, respectively.

As shownby Stemple andWatkins [21], a connected graphG is geodetic if and only if every block ofG is geodetic. By observing
that a complete graph is geodetic, we get the following corollary.

Corollary 13. Strong rainbow connectivity is solvable in polynomial time when restricted to the class of block graphs.

Finally,wemake someobservations about the reductions built in thiswork, anddescribe consequences for parameterized
complexity. It follows from the work of Uchizawa et al. [23] that both Rainbow connectivity and Strong rainbow
connectivity remain NP-complete when parameterized by treewidth. Informally, treewidth is a measure of how close a
graph is to being a tree. Pathwidth of a graph measures the closeness to a path. Pathwidth of a graph G can be defined to
being one less than the maximum clique size in an interval supergraph of G. The interval outerplanar graph we construct
in Theorem 4 has maximum clique size 3. It follows both Rainbow connectivity and Strong rainbow connectivity are
NP-complete for graphs of pathwidth 2. But we can be slightly more general, and show hardness for graphs of pathwidth
p ≥ 2. To see this, observe we can connect a clique of size at least 3 to the graph constructed in Theorem 4, and color its
edges with a fresh new color. This might break the property of being outerplanar, but the graph definitely remains interval.
Thus, we observe the following.

Corollary 14. Both Rainbow connectivity and Strong rainbow connectivity are NP-complete for graphs of pathwidth p, for
every p ≥ 2.

By the result of Kaplan and Shamir [12], the bandwidth of a graph G is one less than the maximum clique size of any proper
interval supergraph of G, chosen to minimize its clique number. Proper interval graphs are exactly the claw-free interval
graphs [20], where a claw is the complete bipartite graph K1,3. The interval outerplanar graph we construct in Theorem 4
can be observed to be claw-free. Combining this observationwith the argument above,we can again be slightlymore general.

Corollary 15. Both Rainbow connectivity and Strong rainbow connectivity areNP-complete for graphs of bandwidth b, for
every b ≥ 2.

Recall a problem is said to be in XP if it can be solved in O(nf (k)) time, where n is the input size, k a parameter, and f some
computable function. Theorem11 proves Strong rainbowconnectivity is inXPwhen parameterized by the diameter of the
graph. This implies the problem is in XP for several other parameters, such as domination number, independence number,
minimum clique cover, distance to clique, distance to cograph, distance to co-cluster, vertex cover number, distance to
cluster, and cluster editing (see e.g. [13] for a relationship of some parameters). Corollary 14 extends the known hardness
barrier from treewidth to pathwidth. Pathwidth is upper bounded by tree-depth, which is informally a measure of how close
a graph is to being a star (that is, the K1,n). As shown by Nešetřil and Ossona de Mendez [7], the length of a longest path for
every undirected graph G is upper bounded by 2td(G)

− 2, where td(G) denotes the tree-depth of G. Combining this result
with Theorem 11, we obtain the following.

Corollary 16. Both Rainbow connectivity and Strong rainbow connectivity are in XP when parameterized by
tree-depth.

Acknowledgments

The author thanks Henri Hansen, Mikko Lauri, and Keijo Ruohonen for helpful comments, and acknowledges the idea of
Henri Hansen that led to Theorem 9. The author also thanks the referees for their useful comments.

J. Lauri / Discrete Applied Mathematics 201 (2016) 191–200 199

Fig. 4. Clause gadgets corresponding to clauses of size one and two for different graph classes.

Appendix

In Section 2, we presented a reduction from the 3-Occurrence 3-SAT problem to Rainbow connectivity due to Uchizawa
et al. [23]. In this appendix, we give the missing critical details of their proof, as discussed in the beginning of the section.
Namely, we show how clause gadgets corresponding to clauses of size one and two can be built in Theorem 1. For
completeness, we describe similar gadgets for Theorems 4, 6 and 7.

The clause gadgets for four different graph classes are shown in Fig. 4. The first column denotes the graph class. The
second column shows a clause gadget corresponding to a clause containing one literal, while the third column does the
same for a clause having two literals. For clarity, the edges denoted by thin lines having no labels on row three correspond

200 J. Lauri / Discrete Applied Mathematics 201 (2016) 191–200

to chords colored with the color c ′

j (refer to Theorem 6 for details). See the respective theorems for an explanation of other
colors appearing on the edges.

References

[1] P. Ananth, M. Nasre, K.K. Sarpatwar, Rainbow connectivity: Hardness and tractability, in: IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2011, 2011, pp. 241–251.

[2] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connection, J. Comb. Optim. 21 (2009) 330–347.
[3] L.S. Chandran, D. Rajendraprasad, Inapproximability of rainbow colouring, in: IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2013, 2013, pp. 153–162.
[4] G. Chartrand, G. Johns, K. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008).
[5] G. Chartrand, P. Zhang, Chromatic Graph Theory, CRC press, 2008.
[6] L. Chen, X. Li, Y. Shi, The complexity of determining the rainbow vertex-connection of a graph, Theoret. Comput. Sci. 412 (2011) 4531–4535.
[7] J. Nešetřil, P. Ossona de Mendez, Grad and classes with bounded expansion I. Decompositions, European J. Combin. 29 (2008) 760–776.
[8] R. Diestel, Graph Theory, Springer-Verlag, Heidelberg, 2005.
[9] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Comb. Theory B 16 (1974) 47–56.

[10] P.C. Gilmore, A.J. Hoffman, A characterization of comparability graphs and of interval graphs, Canad. J. Math 16 (1964) 4.
[11] X. Huang, X. Li, Y. Shi, Note on the hardness of rainbow connections for planar and line graphs, Bull. Malays. Math. Sci. Soc. (2014) 1–7.
[12] H. Kaplan, R. Shamir, Pathwidth, bandwidth, and completion problems to proper interval graphs with small cliques, SIAM J. Comput. 25 (1996)

540–561.
[13] C. Komusiewicz, R. Niedermeier, New races in parameterized algorithmics, in:Mathematical Foundations of Computer Science 2012, in: Lecture Notes

in Computer Science, vol. 7464, Springer, Berlin, Heidelberg, 2012, pp. 19–30.
[14] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (2010) 185–191.
[15] S. Li, X. Li, Y. Shi, Note on the complexity of deciding the rainbow (vertex-)connectedness for bipartite graphs, Appl. Math. Comput. 258 (2015)

155–161.
[16] X. Li, Y. Mao, Y. Shi, The strong rainbow vertex-connection of graphs, Util. Math. 93 (2014) 213–223.
[17] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: a survey, Graphs Combin. 29 (2012) 1–38.
[18] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer, 2012.
[19] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[20] F.S. Roberts, Indifference graphs, in: Proof Techniques in Graph Theory, Academic Press, New York, 1969, pp. 139–146.
[21] J.G. Stemple, M.E. Watkins, On planar geodetic graphs, J. Combin. Theory 4 (1968) 101–117.
[22] C.A. Tovey, A simplified NP-complete satisfiability problem, Discrete Appl. Math. 8 (1984) 85–89.
[23] K. Uchizawa, T. Aoki, T. Ito, A. Suzuki, X. Zhou, On the rainbow connectivity of graphs: complexity and FPT algorithms, Algorithmica 67 (2013) 161–179.

2

Paper 2

Juho Lauri.

Complexity of rainbow vertex connectivity prob-
lems for restricted graph classes.

c© 2016 the author. Submitted for publication.

Complexity of Rainbow Vertex Connectivity

Problems for Restricted Graph Classes∗

Juho Lauri†

October 10, 2016

Abstract

A path in a vertex-colored graph G is vertex rainbow if all of its internal vertices have a distinct
color. The graph G is said to be rainbow vertex connected if there is a vertex rainbow path between
every pair of its vertices. Similarly, the graph G is strongly rainbow vertex connected if there is a
shortest path which is vertex rainbow between every pair of its vertices. We consider the complexity
of deciding if a given vertex-colored graph is rainbow or strongly rainbow vertex connected. We call
these problems Rainbow Vertex Connectivity and Strong Rainbow Vertex Connectivity,
respectively. We prove both problems remain NP-complete on very restricted graph classes including
bipartite planar graphs of maximum degree 3, interval graphs, and k-regular graphs for k ≥ 3.
We settle precisely the complexity of both problems from the viewpoint of two width parameters:
pathwidth and tree-depth. More precisely, we show both problems remain NP-complete for bounded
pathwidth graphs, while being fixed-parameter tractable parameterized by tree-depth. Moreover,
we show both problems are solvable in polynomial time for block graphs, while Strong Rainbow
Vertex Connectivity is tractable for cactus graphs and split graphs.

Keywords: rainbow connectivity, computational complexity

1 Introduction

Krivelevich and Yuster [1] introduced the concept of rainbow vertex connectivity. A path in a vertex-
colored graph G is said to be vertex rainbow if all of its internal vertices have a distinct color. The
graph G is said to be rainbow vertex connected if there is a vertex rainbow path between every pair of
its vertices. The minimum number of colors needed to make G rainbow vertex connected is known as
the rainbow vertex connection number, and it is denoted by rvc(G). Recall the diameter of a graph G,
denoted by diam(G), is the length of a longest shortest path in G. It is easy to see two vertices u and v
are rainbow vertex connected regardless of the underlying vertex-coloring if their distance d(u, v) is at
most 2. Thus, we have that rvc(G) ≥ diam(G)− 1, with equality if the diameter is 1 or 2. Similarly, an
easy to see upper bound is rvc(G) ≤ n− 2, as long as we disregard the singleton graph. In other words,
complete graphs are precisely the graphs with rainbow vertex connection number 0; for all other graphs
we require at least 1 color.

Li et al. [2] introduced the strong variant of rainbow vertex connectivity. We say the vertex-colored
graph G is strongly rainbow vertex connected if there is, between every pair of vertices, a shortest path
whose internal vertices have a distinct color. The minimum number of colors needed to make G strongly
rainbow vertex connected is known as the strong rainbow vertex connection number, and it is denoted
by srvc(G). As each strong vertex rainbow coloring is also a rainbow vertex coloring, we have that
diam(G)− 1 ≤ rvc(G) ≤ srvc(G) ≤ n− 2.

Prior to the work of Krivelevich and Yuster [1], the concept of rainbow connectivity (for edge-colored
graphs) was introduced by Chartrand et al. [3] as an interesting way to strengthen the connectivity
property. Indeed, the notion has proven to be useful in the domain of networking [4] and anonymous
communication [5]. Rainbow coloring and connectivity problems have been subject to considerable

∗Work partially supported by the Emil Aaltonen Foundation
†Tampere University of Technology, Finland. E-mail: juho.lauri@tut.fi

1

interest and research during the past years. For additional applications, we refer the reader to the
survey [6]. A comprehensive introduction is also provided by the books [7, 8].

It is computationally difficult to determine either rvc(G) or srvc(G) for a given graph G. Indeed,
through the work of Chen et al. [9] and Chen et al. [10] it is known that deciding if rvc(G) ≤ k is
NP-complete for every k ≥ 2. Likewise, Eiben et al. [11] showed deciding if srvc(G) ≤ k is NP-complete
for every k ≥ 3. In the same paper, the authors also proved that the strong rainbow vertex connection
number of an n-vertex graph of bounded diameter cannot be approximated within a factor of n1/2−ε, for
any ε > 0, unless P = NP. Given such strong intractability results, it is interesting to ask whether the
following problem is easier.

Rainbow Vertex Connectivity (Rvc)
Instance: A connected undirected graph G = (V,E), and a vertex-coloring ψ : V → C, where C is
a set of colors
Question: Is G rainbow vertex connected under ψ?

However, Rainbow Vertex Connectivity was shown to be NP-complete by Chen et al. [9]. Later
on, Huang et al. [12] showed the problem remains NP-complete even when the input graph is a line graph.
A more systematic study into the complexity of Rainbow Vertex Connectivity was performed
by Uchizawa et al. [13]. They proved the problem remains NP-complete for both series-parallel graphs,
and graphs of bounded diameter. In contrast, they showed the problem is in P for outerplanar graphs.
Furthermore, they showed the problem is fixed-parameter tractable for the n-vertex m-edge general
graph parameterized by the number of colors in the vertex-coloring. That is, they gave an algorithm
running in time O(k2kmn) such that given a graph vertex-colored with k colors, it decides whether G is
rainbow vertex connected.

We mention two related problems, defined on edge-colored undirected graphs. A path in an edge-
colored graph H is rainbow if no two edges of it are colored the same. The graph H is said to be rainbow
connected if there is a rainbow path between every pair of its vertices. Likewise, the graph H is said
to be strongly rainbow connected if there is a shortest path which is rainbow between every pair of its
vertices. Formally, the two problems are defined as follows.

Rainbow Connectivity (Rc)
Instance: A connected undirected graph H = (V,E), and an edge-coloring ζ : E → C, where C is
a set of colors
Question: Is H rainbow connected under ζ?

Strong Rainbow Connectivity (Src)
Instance: A connected undirected graph H = (V,E), and an edge-coloring ζ : E → C, where C is
a set of colors
Question: Is H strongly rainbow connected under ζ?

It was shown by Chakraborty et al. [4] that Rainbow Connectivity is NP-complete. Later on, the
complexity of both edge variants was studied by Uchizawa et al. [13]. For instance, the authors showed
both problems remain NP-complete for outerplanar graphs, and that Rainbow Connectivity is NP-
complete already on graphs of diameter 2. A further study into the complexity of the edge variant
problems was done in our earlier work [14]. For instance, it was shown that both problems remain NP-
complete on interval outerplanar graphs, k-regular graphs for k ≥ 3, and on graphs of bounded pathwidth.
In addition, block graphs were identified as a class for which the complexity of the two problems Rainbow
Connectivity and Strong Rainbow Connectivity differ. Indeed, it was shown that for block
graphs, Rainbow Connectivity is NP-complete, while Strong Rainbow Connectivity is in P.

In this paper, we introduce as a natural variant of Rainbow Vertex Connectivity the following
problem.

2

Strong Rainbow Vertex Connectivity (Srvc)
Instance: A connected undirected graph G = (V,E), and a vertex-coloring ψ : V → C, where C is
a set of colors
Question: Is G strongly rainbow vertex connected under ψ?

We present several new complexity results for both Rainbow Vertex Connectivity and Strong
Rainbow Vertex Connectivity.

• In Section 3, we focus on negative results. In particular, we prove both problems remain NP-
complete for bipartite planar graphs of maximum degree 3 (Subsection 3.2), interval graphs (Sub-
section 3.3), triangle-free cubic graphs (Subsection 3.4), and k-regular graphs for k ≥ 4 (Subsec-
tion 3.5).

• In Section 4, we show both problems are solvable in polynomial time when restricted to the class of
block graphs. Furthermore, we extend the algorithm of Uchizawa et al. [13] for deciding Rainbow
Vertex Connectivity on cactus graphs to decide Strong Rainbow Vertex Connectivity
for the same graph class.

• In Subsection 4.2, we consider the implications of our constructions of Section 3 for parameterized
complexity. For instance, we remark both problems remain NP-complete on graphs of pathwidth
p, where p ≥ 3, and also on graphs of bandwidth b, where b ≥ 3. For positive results, we show
Strong Rainbow Vertex Connectivity is FPT parameterized by the diameter of the input
graph, implying polynomial-time solvability for the class of split graphs. Moreover, exploiting
known results on tree-depth, we observe all four problems investigated are FPT parameterized by
tree-depth.

2 Preliminaries

All graphs we consider in this work are simple, undirected, and finite. We begin by defining the graph
classes we consider in this work, along with some terminology and graph invariants. For graph-theoretic
concepts not defined here, we refer the reader to [15]. For an integer n, we write [n] = {1, 2, . . . , n}.

A coloring of a graph G is an assignment of colors to the vertices of G such that no two adjacent
vertices receive the same color. A graph G is said to be k-colorable if there exists a coloring using k
colors for it. A 2-colorable graph is bipartite. A complete graph on n vertices, denoted by Kn, has all the
possible

(
n
2

)
edges. In particular, we will call K3 a triangle. A complete bipartite graph consists of two

non-empty independent sets X and Y with (x, y) being an edge whenever x ∈ X and y ∈ Y . A complete
bipartite graph is denoted by Kn,m, and it has n + m = |X| + |Y | vertices. In particular, we will call
K1,3 a claw. A complete subgraph of G is a clique. The clique number of a graph G, denoted by ω(G),
is the size of a largest clique in G.

A graph is said to be planar if it can be embedded in the plane with no crossing edges. Equivalently, a
graph is planar if it is (K3,3,K5)-minor-free. A graph is outerplanar if it has a crossing-free embedding in
the plane such that all vertices are on the same face. Clearly, each outerplanar graph is planar. Another
superclass of outerplanar graphs is formed by series-parallel graphs. Series-parallel graphs are exactly
the K4-minor-free graphs [16]. In a cactus graph, every edge is in at most one cycle. Cactus graphs form
a subclass of outerplanar graphs.

A chord is an edge joining two non-consecutive vertices in a cycle. A graph is chordal if every cycle of
length 4 or more has a chord. Equivalently, a graph is chordal if it contains no induced cycle of length 4
or more. Chordal graphs are precisely the class of graphs admitting a clique tree [17]. A clique tree of a
connected chordal graph G is any tree T whose vertices are the maximal cliques of G such that for every
two maximal cliques Ci, Cj , each clique on the path from Ci to Cj in T contains Ci ∩Cj . A subclass of
chordal graphs is formed by interval graphs. A graph is an interval graph if and only if it admits a clique
tree that is path [18]. A cut vertex is a vertex whose removal will disconnect the graph. A biconnected
graph is a connected graph with no cut vertices. In a block graph, every maximal biconnected component,
known as a block, is a clique. In other words, every edge of a block graph G lies in a unique block, and
G is the union of its blocks. It is easy to see that block graphs are also chordal. An independent set in

3

Table 1: Complexity results for rainbow connectivity problems along with some of our new results marked
by F. The symbol † stands for [13] and the symbol ‡ for [14].

Graph class Rvc Srvc Rc Src

Block P F P F NPC ‡ P ‡
Bounded bandwidth NPC F NPC F NPC ‡ NPC ‡
Bounded diameter NPC † FPT F NPC † FPT F
Bounded pathwidth NPC F NPC F NPC ‡ NPC ‡
Bounded tree-depth FPT F FPT F FPT F FPT F
Cactus P † P F P † P †
Interval NPC F NPC F NPC ‡ NPC ‡
k-regular, k ≥ 3 NPC F NPC F NPC ‡ NPC ‡
Outerplanar P † ? NPC † NPC †
Series-parallel NPC † NPC F NPC † NPC †
Split ? P F ? P F
Tree P P P P

a graph is a set of pairwise non-adjacent vertices. A graph whose vertex set can be partitioned into a
clique and an independent set is known as a split graph. It is easy to see that a split graph is chordal.

The degree of a vertex v is the number of edges incident to v. A graph is k-regular if every vertex
has degree exactly k. In particular, we will call a 3-regular graph cubic. A connected 2-regular graph is
a cycle graph. A cycle graph on n vertices is denoted by Cn.

A proper interval graph is a graph that is both interval and claw-free (see [19]). The bandwidth
of a graph G, denoted by bw(G), is one less than the minimum clique number of any proper interval
graph having G as a subgraph [20]. The pathwidth of a graph G, denoted by pw(G), is one less than
the minimum clique number of any interval graph having G as a subgraph. The treewidth of a graph
G, denoted by tw(G), is one less than the minimum clique number of any chordal graph having G as
a subgraph. Indeed, for a graph G, we have that tw(G) ≤ pw(G) ≤ bw(G) (for a proof, see [21]).
Finally, a (C4, P4)-free graph is trivially perfect. The tree-depth of a graph G, denoted by td(G), is the
minimum clique number of any trivially perfect graph having G as a subgraph. Here, we have that
pw(G) ≤ td(G)− 1 (for a proof, see [22]).

Finally, we say a problem is fixed-parameter tractable (FPT) if it can be solved in time f(k) · nO(1),
where f is some computable function depending solely on some parameter k, and n is the input size.
Similarly, a problem is said to be in XP if it can be solved in nf(k) time. For a more comprehensive
treatment on parameterized complexity, we refer the reader to the books [23, 24].

3 Hardness results

In this section, we will give a number of hardness results for both Rainbow Vertex Connectivity and
Strong Rainbow Vertex Connectivity for very restricted graph classes. It is interesting to compare
the obtained complexity results against those of the edge variants, namely Rainbow Connectivity
and Strong Rainbow Connectivity. Indeed, we summarize the known complexity results for all
four variants in Table 1 along with our new results.

3.1 Overview of the reductions

In this subsection, we give an overview of our reductions. Let us remark that all of the four problems
considered are in NP with the certificate being a set of colored paths, one path for each pair of vertices.
All of our reductions are from the 3-Occurrence 3-SAT problem, which is a variant of the classical
3-SAT problem. In the 3-Occurrence 3-SAT problem, we have a restriction that every variable occurs
at most three times, and each clause has at most 3 literals. The problem is known to be NP-complete [25].

All of our reductions are greatly inspired by those of Uchizawa et al. [13], who gave hardness results for
both Rainbow Connectivity and Rainbow Vertex Connectivity. Let us explain the gist of their
reduction on a high-level. Given a 3-Occurrence 3-SAT formula φ, a variable gadget is constructed

4

ai

ui vi wi

ui vi wi

bi

ci,1 ci,2 ci,3

ci,1 ci,2 ci,3

(a)

pj

h′j

p′j r′j,1 r′j,2 r′j,3

rj,1 rj,2 rj,3 xj

yj

q′j

wj,1 wj,2 wj,3

c′j

cj

c1,1 c2,2 c5,3

(b)

Figure 1: (a) A variable gadget Xi for the variable xi, and (b) a clause gadget Cj for the clause
cj = (x1 ∨x2 ∨¬x5), where x1 is the first literal of x1, x2 is the second literal of x2, and ¬x5 is the third
literal of x5. The vertices receiving fresh distinct colors are drawn as solid circles.

for each variable, and a clause gadget is built for each clause. Moreover, a certain vertex-coloring is
constructed for each gadget. A key idea is that regardless of the satisfiability of φ, every vertex pair in
a gadget is rainbow (vertex) connected. Moreover, regardless of the satisfiability of φ, the whole graph
will be rainbow (vertex) connected except for a specific vertex pair s and t. Informally, the gadgets are
set up in a path-like manner, and the special vertices s and t act as endpoints of this path-like graph.
The idea is illustrated in Figure 2 (the corresponding construction is given in Theorem 1).

Clearly, a strongly rainbow (vertex) connected graph is also rainbow (vertex) connected. Therefore,
it is desirable to construct the gadgets such that each vertex pair is always (regardless of φ) connected
by a rainbow (vertex) shortest path. This allows one to obtain a hardness result for the strong problem
variant as well. Indeed, the first hardness result we present (Theorem 1) will be of this flavor. However,
we are not always able to do this, or doing so will overly complicate the construction in question. We
will always explicitly mark whether or not this is the case, i.e., if a hardness result for the strong variant
follows as well.

Finally, for the sake of presentation, all of our constructions assume the given 3-Occurrence 3-SAT
formula φ only has clauses with exactly 3 literals. However, as shown by Tovey [26], every such instance
is satisfiable. Therefore, we will present clause gadgets corresponding to clauses of size 2 in the appendix
for each graph class (note that clauses of size 1 can be safely removed by unit propagation).

3.2 Bipartite planar graphs

In this subsection, we will prove that both Rainbow Vertex Connectivity and Strong Rainbow
Connectivity remain NP-complete on bipartite planar graphs of maximum degree 3. We remark that
this is a very restricted graph class, generalizing the class of bipartite claw-free graphs. A bipartite claw-
free graph consists of disjoint cycles and paths. It is easy to see both Rainbow Vertex Connectivity
and Strong Rainbow Connectivity are solvable in polynomial time for the class of bipartite claw-free
graphs.

Theorem 1. Rainbow Vertex Connectivity is NP-complete when restricted to the class of bipartite
planar graphs of maximum degree 3.

Construction: Given a 3-Occurrence 3-SAT formula φ =
∧m
j=1 ci over variables x1, x2, . . . , xn, we

construct a graph Gφ and a vertex-coloring ψ such that φ is satisfiable if and only if Gφ is rainbow vertex
connected under ψ. We first describe the construction of Gφ, and then the vertex-coloring ψ of Gφ.

We will construct for each variable xi, where i ∈ [n], a variable gagdet Xi. A variable gadget Xi

is the cycle graph C8 embedded in the plane on the vertices ai, ui, vi, wi, bi, wi, vi, ui in clockwise
order. For each clause cj , where j ∈ [m], we construct a clause gadget Cj . A clause gadget Cj is built

5

s0 s1 s2 a1

c1 c2

c1,1 c1,2 c1,3

c1,1 c1,2 c1,3

a2

d1b1

c2,1 c2,2 c2,3

c2,1 c2,2 c2,3

b2 d2

a3

c3,1 c3,2 c3,3

c3,1 c3,2 c3,3

b3 d3

p1

h′1

p′1 r′1,1 r′1,2 r′1,3

r1,1 r1,2 r1,3 x1

y1

q′1

p2

r2,1 r2,2 x2

h′2

p′2 r′2,1 r′2,2

y2

q′2f1 t′ t

w1,1 w1,2 w1,3

c1,1 c2,1 c3,1

w2,1 w2,2

c2,2 c3,2

c′1

c1

c′1

c′2

c2

c′2

Figure 2: A planar bipartite graph Gφ of maximum degree 3 constructed for the formula φ = (x1 ∨ x2 ∨
¬x3) ∧ (¬x2 ∨ x3). For brevity, some vertex labels are not shown.

by starting from the cycle graph C12 embedded in the plane on the vertices pj , rj,1, rj,2, rj,3, xj , yj , q
′
j ,

r′j,3, r′j,2, r′j,1, p′j , and h′j in clockwise order, and by adding chords (rj,1, r
′
j,1), (rj,2, r

′
j,2), and (rj,3, r

′
j,3).

For ` ∈ [3], the added chord (rj,`, r
′
j,`) is subdivided by a new vertex wj,`. The vertices wj,` correspond

to the three literals the clause cj has. Both a variable gadget and a clause gadget are shown in Figure 1.
For each 1 ≤ i < n, we connect Xi with Xi+1 by adding a new vertex di along with two edges (bi, di)

and (di, ai+1). Similarly, we connect Cj with Cj+1 by adding a new vertex fj along with two edges
(q′j , fj) and (fj , pj+1) for each 1 ≤ j < m. The two components are connected together by adding the
vertex dn with the edges (bn, dn) and (dn, p1). We then add two vertices t′ and t along with the edges
(q′m, t

′) and (t′, t). Finally, we construct a path of length m + 1 on vertices s0, s1, . . . , sm, and connect
it with Gφ by adding the edge (sm, a1). This completes the construction of Gφ. We can verify Gφ is
indeed a bipartite planar graph of maximum degree 3.

We then describe the vertex-coloring ψ given to the vertices of Gφ. Observe that in a variable gadget
Xi, there are precisely two paths between ai and bi. Intuitively, taking the path from ai to bi through ui,
vi, and wi corresponds to setting xi = 1 in the formula φ; we refer to this path as the positive Xi path.
We color the three vertices ui, vi, and wi with colors ci,1, ci,2, and ci,3, respectively. Taking the path
from ai to bi through ui, vi, and wi corresponds to setting xi = 0 in the formula φ; we refer to this path
as the negative Xi path. The three vertices ui, vi, and wi receive colors ci,1, ci,2 and ci,3, respectively.
The coloring of a variable gadget Xi is illustrated in Figure 1 (a).

Recall that a variable xi appears at most three times in φ. We refer to the first occurrence of xi as the
first literal of xi, the second occurrence of xi as the second literal of xi, and finally the third occurrence
of xi as the third literal of xi. If a clause has two or three literals of a same variable, the tie is broken
arbitrarily. In a clause gadget Cj , we color vertex h′j with color c′j , and vertex yj with color cj . For each
k ∈ [3], we denote the kth literal in the jth clause by lj,k. We color vertex wj,` as follows:

ψ(wj,`) =





ci,1 if lj,k is a positive literal and the first literal of xi

ci,2 if lj,k is a positive literal and the second literal of xi

ci,3 if lj,k is a positive literal and the third literal of xi

ci,1 if lj,k is a negative literal and the first literal of xi

ci,2 if lj,k is a negative literal and the second literal of xi

ci,3 if lj,k is a negative literal and the third literal of xi

6

The vertex fj , for each 1 ≤ j < m, receives color c′j , while vertex t′ is colored with c′m. The coloring of
a clause gadget Cj is shown in Figure 1 (b).

Finally, for each 1 ≤ j ≤ m, we color vertex sj with color cj . Every other uncolored vertex of Gφ
receives a fresh new color that does not appear in Gφ. Formally, these are precisely the vertices in

U = {ai, bi, di | 1 ≤ i ≤ n}
∪ {pj , rj,1, rj,2, rj,3, xj , q′j , r′j,3, r′j,2, r′j,1, p′j | 1 ≤ j ≤ m}
∪ {s0, t}.

Vertices in U shown in Figure 1 are drawn as solid circles. This completes the vertex-coloring ψ of Gφ.
An example is shown in Figure 2. The proof of Theorem 1 is obtained via the following two lemmas,
which also make precise the intuition provided in Section 3.1. The arguments essentially follow from [13],
but we describe them for completeness. The reader should observe the two following lemmas prove a
slightly stronger statement than necessary, by talking about strong rainbow vertex connectedness instead
of rainbow vertex connectedness.

Lemma 2. The graph Gφ is strongly rainbow vertex connected under the vertex-coloring ψ if and only
if Gφ has a vertex rainbow shortest path between the vertices s0 and t.

Proof. Trivially, it suffices show that if s0 and t are strongly rainbow vertex connected, then Gφ is
strongly rainbow vertex connected. For convenience, we partition the vertex set V into three groups.
Indeed, let V = S ∪ A ∪ L, where S = {s1, . . . , sm}, A =

⋃n
i=1 V (Xi), and L =

⋃m
j=1 V (Cj). Let u

and v be two distinct vertices in V , and we will show they are strongly rainbow vertex connected. It
is straightforward to verify u and v are strongly rainbow vertex connected when they are in the same
group. So let us consider the three possible cases of u and v being in distinct groups.

• Case 1: u ∈ S and v ∈ A are strongly rainbow vertex connected.

Proof. No two vertices in S and A share colors, so the claim follows. �

• Case 2: u ∈ S and v ∈ L are strongly rainbow vertex connected.

Proof. By our assumption, there is a rainbow shortest path P from s0 and t. Observe that P must
use every color c1, . . . , cm, and also every color c′1, . . . , c

′
m. Therefore, it must be the case that P

uses the vertex wj,` for some ` ∈ [3] for every j ∈ [m]. So suppose the vertex v is contained in a
clause gadget Cj . By the above reasoning, it is clear that pj is reachable from u ∈ S by a rainbow
shortest path P ′, which is a subpath of P . Finally, we can construct a shortest path P ′′ from pj to
v such that yj is not an internal vertex of P ′′. The concatenation of P ′ and P ′′ gives us a rainbow
shortest path between u and v, so the claim follows. �

• Case 3: u ∈ A and v ∈ L are strongly rainbow vertex connected.

Proof. Observe that we can always choose a shortest u-v path P so that none of the vertices wj,`
appear as an internal vertex in P , for any j ∈ [m] and ` ∈ [3]. Thus, the claim follows. �

This completes the proof.

Lemma 3. There is a vertex rainbow shortest path between s0 and t if and only if the formula φ is
satisfiable.

Proof. Suppose there is a vertex rainbow shortest path P between s0 and t, and we will show the formula
φ is satisfiable. It is clear that P must choose from every variable gadget Xi either the positive or the
negative Xi path. Indeed, let us construct a truth assignment α = (α1, . . . , αn) for φ as follows. For
every Xi, if P is using the positive Xi path, we set αi = 1. Otherwise, P is using the negative Xi path
and we let αi = 0. We will then argue α is a satisfying assignment for φ. Consider a clause gadget
Cj , where j ∈ [m]. It is easy to verify the vertex rainbow shortest path P must use exactly one of the
vertices wj,`, where ` ∈ [3], in every Cj . Indeed, if two or more of the vertices wj,` were chosen, the
path P would not be a shortest path. So consider the vertex wj,` chosen by P in some clause gadget Cj .

7

Furthermore, suppose wj,` has received color ci,δ, for some i ∈ [n] and δ ∈ [3] (recall a variable occurs at
most three times in φ). By construction, the literal lj,k corresponding to wj,` is a negative literal of the
variable xi. Moreover, color ci,δ also appears on the positive Xi path. Because P contains wj,` colored
ci,δ, it follows P chooses the Xi negative path. Thus, we have αi = 0, and the literal lj,k is set true by α.
The proof is symmetric for the case wj,` having color ci,δ.

For the other direction, suppose φ is satisfiable under the assignment α = (α1, . . . , αn). We construct
a vertex rainbow shortest path P between s0 and t as the concatenation of two paths PV and PC . To
construct PV , we proceed as follows. For each variable gadget Xi, if αi = 1 we choose the positive Xi

path; otherwise αi = 0 and we choose the Xi negative path. Clearly, PV is a vertex rainbow shortest
path from s0 to bn. We will then show that for every clause gadget Cj , there is a vertex wj,` such that
its color does not appear on PV . It will then be straightforward to construct the path PC . Because α
is a satisfying assignment for φ, each clause has a literal which is made true by α. Let lj,k be such a
literal for a clause gadget Cj . Suppose lj,k is a positive literal of the variable xi, for some i ∈ [n]. By
construction, the vertex wj,l has received color ci,δ, where δ ∈ [3]. Because lj,k is a positive literal of
xi and lj,k is made true by α, we have that αi = 1. Moreover, the path PV has taken the positive Xi

path, meaning it is using color ci,1, ci,2, and ci,3. In other words, color ci,δ does not appear in PV . Thus,
the concatenation of PV and PC indeed gives us a vertex rainbow shortest path between s0 and t. This
completes the proof.

For proving Theorem 1, the two above lemmas are slightly stronger than necessary. That is, given a
positive instance of φ, every pair of vertices in Gφ is not only rainbow vertex connected, but strongly
rainbow vertex connected. In other words, we have also proven the following.

Theorem 4. Strong Rainbow Vertex Connectivity is NP-complete when restricted to the class
of bipartite planar graphs of maximum degree 3.

3.3 Interval graphs

In this subsection, we investigate the complexity of both Rainbow Vertex Connectivity and Strong
Rainbow Vertex Connectivity on chordal graphs. We will show that both problems remain NP-
complete on interval graphs, which form a well-known subclass of chordal graphs. In fact, we will
prove a stronger result for Strong Rainbow Vertex Connectivity by showing it remains NP-
complete for proper interval graphs. A caterpillar is a tree that has a dominating path. One can observe
caterpillars form a subclass of interval graphs. Moreover, both problems are solvable in polynomial time
on caterpillars.

Theorem 5. Rainbow Vertex Connectivity is NP-complete when restricted to the class of interval
graphs.

Proof. We assume the terminology of Theorem 1. Given a 3-Occurrence 3-SAT instance φ =
∧m
j=1 ci

over variables x1, x2, . . . , xn, we follow a strategy similar to Theorem 1. We will first describe how
variable and clause gadgets of a graph GIφ are built along with their vertex-colorings.

A variable gadget XI
i is built by starting from the cycle graph C20 on the vertices vi,` in clockwise

order, where ` ∈ [20]. For convenience (and to match Theorem 1), we rename vi,1 to ai and vi,11 to
bi. We will then describe the altogether 19 chords added to XI

i . First, we add the chords (vi,2, vi,19),
(vi,2, vi,20), (vi,3, vi,18), (vi,3, vi,19), (vi,3, vi,20), (vi,4, vi,18), and (vi,4, vi,19). Then, we add the chords
(vi,5, vi,18), (vi,6, vi,16), (vi,6, vi,17), (vi,6, vi,18), (vi,7, vi,16), (vi,8, vi,14), (vi,8, vi,15), (vi,8, vi,16), (vi,9, vi,14),
(vi,10, vi,14), (vi,10, vi,13), and (vi,10, vi,12). This completes the construction of a variable gadget XI

i . A
variable gadget XI

i is shown in Figure 3. It is straightforward to verify XI
i admits a clique tree that is

a path, and thus XI
i is an interval graph.

We will then describe the vertex-coloring of XI
i . For each XI

i , we introduce 6 new colors ci,a, ci,b,
ci,c, ci,d, ci,e, and ci,f . We color both vertices vi,2 and vi,16 with color ci,a, both vi,3 and vi,14 with color
ci,b, both vi,4 and vi,12 with color ci,c, both vi,20 and vi,6 with color ci,d, both vi,19 and vi,8 with color
ci,e, and both vi,18 and vi,10 with color ci,f . The vertices vi,5, vi,7, and vi,9 receive colors ci,1, ci,2, and
ci,3, respectively. Similarly, the vertices vi,17, vi,15, and vi,13 receive colors ci,1, ci,2, and ci,3, respectively.
Conceptually, these two sets of three vertices correspond to the positive and the negative Xi path of
Theorem 1. The vertex-coloring of a variable gadget XI

i is shown in Figure 3.

8

ai

vi,5 vi,7 vi,9

bi

vi,17 vi,15 vi,13

vi,2

vi,16

vi,3

vi,14

vi,4

vi,12vi,20

vi,6

vi,19

vi,8

vi,18

vi,10

ci,1

ci,1

ci,2

ci,2

ci,3

ci,3

ci,a ci,b ci,c ci,d ci,e ci,f

ci,d ci,e ci,f ci,a ci,b ci,c

Figure 3: A variable gadget XI
i .

A clause gadget CIj is built by starting from a clause gadget Cj , and by adding the altogether 15
chords (rj,1, h

′
j), (rj,1, p

′
j), (rj,2, p

′
j), (rj,2, wj,1), (rj,2, r

′
j,1), (rj,3, r

′
j,1), (rj,3, wj,2), (rj,3, r

′
j,2), (xj , r

′
j,2),

(xj , wj,3), (xj , r
′
j,3), (yj , r

′
j,3), (p′j , wj,1), (r′j,1, wj,2), and (r′j,2, wj,3). This completes the construction of

a clause gadget CIj . A clause gadget CIj is shown in Figure 4. It can be verified CIj admits a clique tree

that is a path, and thus CIj is an interval graph.

We will then describe the vertex-coloring of CIj . We color vertices h′j and yj , and the three vertices

wj,`, for ` ∈ [3], exactly as in Theorem 1. Moreover, for each CIj , we introduce four new colors cj,u, cj,v,
cj,w, and cj,z. We color both vertices rj,1 and p′j with color cj,u, both rj,2 and r′j,1 with color cj,v, both
rj,3 and r′j,2 with color cj,w, and both xj and r′j,3 with color cj,z. The vertex-coloring of a clause gadget

CIj is shown in Figure 4.
The variable and clause gadgets are joined together precisely as in Theorem 1. Furthermore, we also

add vertices s, s1, . . . , sm, t′, and t exactly as in Theorem 1. The remaining uncolored vertices receive a
fresh new color that does not appear in GIφ. Formally, these are precisely the vertices in

U = {ai, bi, di | 1 ≤ i ≤ n}
∪ {pj , q′j | 1 ≤ j ≤ m}
∪ {s0, t}.

Informally, disregarding the vertex-colorings, the graph GIφ differs from the graph Gφ of Theorem 1 only
in the way in which the gadgets are built.

We will then show these modifications do not contradict Lemma 3. Since we only modified the variable
and clause gadgets, it suffices to inspect them. Consider a variable gadget XI

i . We claim that any vertex
rainbow path R from ai to bi must still pass through all the vertices in either P = {vi,5, vi,7, vi,9} or
N = {vi,17, vi,15, vi,13}. Observe that the path R must choose at least one vertex from each set of two
vertices at a distance 1, 2, and 3 from ai. Similarly, by the way in which the vertices are colored, the path
R must choose exactly one vertex from the set of two vertices at a distance 5, 7, and 9 from ai. Thus,
R cannot choose more than three vertices from {vi,`, vi,16+` | 2 ≤ ` ≤ 4}. It is then straightforward to
verify that R must pass through all the vertices in either P or N . In other words, there are exactly two
choices how the path R can traverse from ai to bi.

Finally, consider a clause gadget CIj . The addition of chords establishes additional paths between pj
and q′j . However, as each vertex in {fj | 1 ≤ j < m}∪{t′} is a cut vertex colored with color c′j , no vertex

rainbow path R′ from s0 to t can use vertex h′j . It can be verified that R′ must still, in every CIj , use at
least one of the vertices wj,1, wj,2, or wj,3. Thus, Lemma 3 still holds, and we have the theorem.

We will then prove a stronger result for Strong Rainbow Vertex Connectivity.

Theorem 6. Strong Rainbow Vertex Connectivity is NP-complete when restricted to the class
of proper interval graphs.

9

pj

h′j

p′j r′j,1 r′j,2 r′j,3

rj,1 rj,2 rj,3 xj

yj

q′j

wj,1 wj,2 wj,3c′j

cj

c1,1 c2,2 c5,3

cj,u

cj,u

cj,v

cj,v

cj,w

cj,w

cj,z

cj,z

Figure 4: A clause gadget CIj .

Proof. We assume the terminology of Theorem 5. Given a 3-Occurrence 3-SAT instance φ, we
construct the graph GIφ exactly as in Theorem 5; we will only slightly change the variable gadgets XI

i to
prove our claim. Indeed, we delete the chords (vi,6+2k, vi,18−2k) and add the chords (vi,5+2k, vi,17−2k),
where 0 ≤ k ≤ 2.

First, observe that this modification does not break the property of GIφ being interval. Furthermore,

we can now verify GIφ is also claw-free. Then, consider a vertex rainbow shortest path R from ai to bi
after the deletion and addition of new chords. The distance d(ai, bi) is now 10, so R cannot use any of the
newly added chords (vi,5+2k, vi,17−2k), where 0 ≤ k ≤ 2. By an argument similar to that of Theorem 5,
any R must use either exactly all vertices in N , or all vertices P . Finally, any R must choose from every
CIj exactly one of the vertices wj,1, wj,2, or wj,3. Thus, the theorem follows.

It is worth observing the modification of the variable gadget in the above theorem does not extend for
Rainbow Vertex Connectivity (Theorem 5). Indeed, if the path R from ai to bi is not required to
be a shortest path, it is possible to construct R such that a particular color from {ci,`, ci,` | 1 ≤ ` ≤ 3}
is avoided, possibly breaking Lemma 3.

3.4 Cubic graphs

In this subsection, we turn our attention to regular graphs. It is easy to see that both Rainbow
Vertex Connectivity and Strong Rainbow Vertex Connectivity are solvable in polynomial
time on 2-regular graphs. Therefore, we will consider 3-regular graphs, i.e., cubic graphs. In contrast to
previous constructions, we will need additional gadgets. Strictly speaking, the gadgets we introduce in
the following are not cubic. However, when the gadgets are connected together, the resulting graph will
be cubic.

Indeed, before proceeding, we will describe a parametric gadget that will serve different purposes in
a construction to follow. This parametric gadget Tk, where k ≥ 1, is a cycle graph of length 8k + 2. We
choose two vertices vs and vt such that d(vs, vt) = 4k+1. The two vs-vt paths of length 4k+1 are broken
down into 4k vertices vi,` and v′i,`, respectively, where i ∈ [k] and ` ∈ [4]. The construction is finished
by adding the chords (vk,1, v

′
k,2), (vk,2, v

′
k,1), (vk,3, v

′
k,4), and (vk,4, v

′
k,3), for each k. An example of a Tk

for k = 3 is shown in Figure 5. For each k, we introduce a set of three “blocking” colors {c∗k,1, c∗k,2, c∗k,3}
and color the vertices as follows: both vertices vk,1 and v′k,4 receive color c∗k,1, both vertices vk,3 and
v′k,1 receive color c∗k,2, and both vertices vk,4 and v′k,3 receive color c∗k,3. Both vs and vt receive a fresh
new color that does not appear elsewhere. Exactly 2k vertices are now left uncolored: depending on
the situation, we will color these vertices differently. However, we can still argue the following about a
vertex rainbow path traversing Tk.

Lemma 7. Let R be a vertex rainbow path from vs to vt in a parametric gadget Tk, where k ≥ 1. There
are no v`,i and v′`′,j in R with 1 ≤ i ≤ j ≤ 4 and `, `′ ∈ [k].

10

ai

v1,1 v1,2 v1,3 v1,4 v2,1 v2,2 v2,3 v2,4 v3,1 v3,2 v3,3 v3,4

bi

v′3,4v′3,3v′3,2v′3,1v′2,4v′2,3v′2,2v′2,1v′1,4v′1,3v′1,2v′1,1

ci,1 ci,2 ci,3

ci,1 ci,2 ci,3

c∗1,1 c∗1,2 c∗1,3

c∗1,2 c∗1,3 c∗1,1

c∗2,1 c∗2,2 c∗2,3

c∗2,2 c∗2,3 c∗2,1

c∗3,1 c∗3,2 c∗3,3

c∗3,2 c∗3,3 c∗3,1

Figure 5: A variable gadget X∆
i = T3. The vertex vs has been renamed to ai, and the vertex vt to bi.

The dashed horizontal line divides the gadget conceptually into two segments: no vertex rainbow path
from ai to bi will cross the dashed line by Lemma 7.

Proof. For every k, the path R must choose either vk,1 or v′k,1. Similarly, either vk,4 or v′k,4 must be
chosen. If vk,1 is chosen, then v′k,4 cannot be chosen, as they share the same color c∗k,1 by construction.
Then, if v′k,1 is chosen, v′k,3 must be chosen. But then v′k,3 and vk,4 share the same color c∗k,2 by
construction. It follows that if vk,1 is chosen, vk,4 must be chosen. Symmetrically, if v′k,1 is chosen, v′k,4
must be chosen.

The above lemma is illustrated in Figure 5.
Informally, the color scheme described above allows us to enforce “choose all” type of constraints.

For a clause gadget, we wish to enforce “choose at least one” type of constraints. Indeed, the reader
should be aware that in the following, while a clause gadget is structurally a parametric gadget Tk, its
vertex-coloring will be different.

We will also mention that a parametric gadget Tk with k = 3 will be constructed for each variable.
Here, the reader should note we do not distinguish between say vertex v1,1 in the first variable gadget,
and the vertex v1,1 in the second variable gadget. We feel the danger for confusion is not large enough
to warrant the notational burden. We are then ready to proceed with the following.

Theorem 8. Rainbow Vertex Connectivity is NP-complete when restricted to the class of triangle-
free cubic graphs.

Proof. We assume the terminology of Theorem 1. Given a 3-Occurrence 3-SAT instance φ =
∧m
j=1 ci

over variables x1, x2, . . . , xn, we follow a strategy similar to Theorem 1. We will first describe how
variable and clause gadgets of a graph G∆

φ are built along with their vertex-colorings.

A variable gadget X∆
i is a parametric gadget Tk, where k = 3. To match Theorem 5 we shall rename,

for each i ∈ [n], the vertex vs to ai and the vertex vt to bi in a variable gadget X∆
i . The uncolored

vertices v1,2, v2,2, and v3,2 receive colors ci,1, ci,2, and ci,3, respectively. Similarly, the vertices v′1,2,
v′2,2, and v′3,2 receive colors ci,1, ci,2, and ci,3, respectively. Conceptually, these two sets of three vertices

correspond to the positive and the negative Xi path of Theorem 1. A variable gadget X∆
i along with its

vertex-coloring is shown in Figure 5.
A clause gadget C∆

j is a parametric gadget Tk, where k = 2. To match Theorem 5 we shall rename,

for each j ∈ [m], the vertex vs to pj and the vertex vt to q′j in a clause gadget C∆
j . We will then describe

how each vertex of C∆
j is colored; note that we do not follow the usual coloring scheme of Tk here. For

convenience, let us rename v1,1 to rj,1, v1,2 to rj,2, v1,3 to rj,3, v2,1 to rj,4, and v′2,3 to rj,5. Also, let us
rename v′1,2 to wj,1, v′1,4 to wj,2, and v′2,2 to wj,3. Then, the vertex wj,` for ` ∈ [3] is colored precisely as
in Theorem 1. The vertex v′1,1 receives color c′j , and the vertex v2,4 color cj . We introduce a set of three
“blocking” colors {c∗j,x, c∗j,y, c∗j,z}, and color both vertices v1,4 and v′1,3 with c∗j,x, both v2,2 and v′2,1 with
c∗j,y, and both v2,3 and v′2,4 with c∗j,z. A clause gadget along with its vertex-coloring is shown in Figure 6
(a).

11

pj

rj,1 rj,2 rj,3 v1,4 rj,4 v2,2 v2,3 v2,4

q′j

v′2,4
rj,5wj,3v′2,1

wj,2v′1,3
wj,1v′1,1

c1,1 c2,2 c5,3c′j

cj

c∗j,x

c∗j,x

c∗j,y

c∗j,y

c∗j,z

c∗j,z

(a)

h1

h2

h3

h5

h4

h6

h7

c′m

(b)

Figure 6: (a) A clause gadget C∆
j = T2 with some vertices renamed, and (b) the head gadget.

We will then describe how variable and clause gadgets are connected together, along with some
additional gadgets. After describing the additional gadgets, we will explain how they are vertex-colored.
For each 1 ≤ i < n, we connect X∆

i with X∆
i+1 by adding the edge (bi, ai+1). Similarly, for each

1 ≤ j < m, we connect C∆
i with C∆

i+1 by adding the edge (q′j , pj+1). Let us then subdivide the edge
(q′j , pj+1) by a new vertex fj . For each fj , we introduce the following dummy gadget. A dummy gadget
is constructed by starting from the cycle graph C5 on the vertices hj,q in clockwise order, where q ∈ [5],
and two additional vertices hj,6 and hj,7. The construction of a dummy gadget is finished by adding the
edges (hj,2, hj,6), (hj,3, hj,7), (hj,4, hj,6), (hj,5, hj,7), and (hj,6, hj,7). The vertex fj is made adjacent to
hj,1 by adding the edge (fj , hj,1). Finally, the two components are connected by adding the edge (bn, p1).

We will then construct a tail gadget, which is a parametric gadget Tk with k = m. In addition, we
construct a single dummy gadget, and connect its degree two vertex h1 with G∆

φ by adding the edge
(q′m, h1). For convenience, we will refer to this dummy gadget as the head gadget. The head gadget is
shown in Figure 6 (b).

We will then describe the vertex-coloring of the remaining vertices. In the tail gadget, both vertices
vj,2 and v′j,2 receive color cj , for every j ∈ [m]. Other vertices in a tail gadget follow the coloring scheme
described for a Tk in the beginning of Section 3.4. For each 1 ≤ j < m, we color vertex fj with color c′j .
Then, in the head gadget, the vertex h1 receives color c′m. Every other uncolored vertex of G∆

φ receives
a fresh new color that does not appear elsewhere. Formally, these are exactly the vertices in

Z = {ai, bi | 1 ≤ i ≤ n}
∪ {pj , q′j , rj,1, rj,2, rj,3, rj,4, rj,5 | 1 ≤ j ≤ m}
∪ {hq | 2 ≤ q ≤ 7}
∪ {hj,q | 1 ≤ j < m ∧ 1 ≤ q ≤ 7}.

As each gadget is cubic and triangle-free, the graph G∆
φ is cubic and triangle-free. Consider a clause

gadget C∆
j , and a vertex rainbow path R traversing from pj to q′j in it. It can be observed that because

R cannot choose either v′1,1 or v2,4, it must choose at least one of the vertices wj,`, where ` ∈ [3]. Then,
Lemma 7 together with an argument similar to Lemma 3 gives the theorem.

Furthermore, given a positive instance φ of 3-Occurrence 3-SAT, it can be observed every pair of
vertices is connected by a vertex rainbow shortest path, giving us the following.

Theorem 9. Strong Rainbow Vertex Connectivity is NP-complete when restricted to the class
of triangle-free cubic graphs.

3.5 k-regular graphs

In this subsection, we show both Rainbow Vertex Connectivity and Strong Rainbow Vertex
Connectivity remain NP-complete on k-regular graphs, where k ≥ 4. Our plan is to use the construc-

12

u

v

x1

(a)

a∗i

b∗i

d∗i d∗i

(b)

Figure 7: (a) The degree increment operation applied to {u, v} with d = 1, where u and v have degree 3.
The unlabeled vertices correspond to wx1

1 , . . . , wx1
5 . (b) A detour gadget D4,5 of diameter 5.

tion of Section 3.4, but add dummy vertices in a controlled manner to increase the degree of each vertex.
In particular, we will need two operations detailed next.

Let u and v be two adjacent vertices such that deg(u) = deg(v) = 3. Let d ≥ 1 be a constant, and
consider the following degree increment operation. We introduce a set of vertices X = {x1, . . . , xd} along
with the edges {(u, x), (v, x), (x, x′) | x, x′ ∈ X}. In other words, the vertices {u, v} ∪X form a clique of
size d + 2. For each x ∈ X, we introduce a clique Wx on d + 4 new vertices wx1 , . . . , w

x
d+4 with an edge

removed, say (wx1 , w
x
2) /∈ Wx. Finally, for each x ∈ X, we add the edges (x,wx1) and (x,wx2). We can

then verify both u and v have degree d+ 3. Furthermore, every new vertex we added has degree d+ 3.
The degree increment with d = 1 applied to two vertices u and v is illustrated in Figure 7 (a).

The degree increment operation suffices to show Rainbow Vertex Connectivity is NP-complete
on k-regular graphs for k ≥ 4. However, for Strong Rainbow Vertex Connectivity we need to be
careful not to change certain distances in our construction. For this reason, we will need an additional
detour gadget Dd,l. A building block B of a detour gadget Dd,l is the complete graph Kd−1 with two
universal vertices added. The graph B has d − 1 vertices of degree d, and two vertices of degree d − 1.
By chaining such graphs B together by adding an edge between the vertices of degree d− 1, we obtain
a detour gadget Dd,l for which it holds that the degree of every vertex is d except for two vertices that
have degree d − 1, and the diameter is l = 2 + 3p, for some p ∈ N+. A detour gadget D4,5 is shown in
Figure 7 (b).

We are then ready to proceed with our claim.

Theorem 10. Both Rainbow Vertex Connectivity and Strong Rainbow Vertex Connectiv-
ity are NP-complete when restricted to the class of k-regular graphs, for every k ≥ 4.

Proof. Consider the vertex-colored cubic graph G∆
φ constructed in the proof of Theorem 8. Through

degree increment operations and addition of detour gadgets, we will transform the cubic graph G∆
φ

into a k-regular graph G∗φ, for any k ≥ 4. Consider a variable gadget X∆
i . We divide the vertices

v1,1, v1,2, . . . , v3,4 into six pairs {v1,1, v1,2}, . . . , {v3,3, v3,4}. Similarly, the vertices v′1,1, v
′
1,2, . . . , v

′
3,4 are

divided into six pairs {v′1,1, v′1,2}, . . . , {v′3,3, v′3,4}. For each of the altogether 12 pairs, we apply the degree

increment operator with d = k− 3. We repeat this for each variable gadget in G∆
φ , and color each vertex

arising from the operation with a fresh new color. Finally, consider the vertices ai and bi in a variable
gadget X∆

i . As the distance d(ai, bi) = 13, we introduce a detour gadget Dk,11 whose vertices of degree
k − 1 are named a∗i and b∗i . By adding the edges (ai, a

∗
i) and (bi, b

∗
i) we ensure d(ai, bi) remains equal

to 13. For each detour gadget Dk,11, we introduce a new color d∗i that does not appear anywhere else.
We color both a∗i and b∗i with color d∗i . Every vertex other than a∗i and b∗i receives a fresh distinct color.
This ensures that an argument similar to Lemma 3 holds: no vertex rainbow path can pass through a
detour gadget, as both a∗i and b∗i have the same color. For Lemma 2 to hold, it is enough to observe
no vertex rainbow (shortest) path needs to have both a∗i and b∗i as its internal vertices. Indeed, for the
remainder of the construction, each detour gadget will follow the same coloring scheme.

Let us then consider a clause gadget C∆
j ofG∆

φ . Without loss, we can assume the given 3-Occurrence
3-SAT formula φ only contains clauses of size two and three. Indeed, clauses of size one can be removed
by unit propagation. Consider the vertices pj and q′j in C∆

j . When the corresponding clause is of size
two, d(pj , q

′
j) = 7. Thus, similarly as above with a variable gadget, we add a detour gadget Dk,5, and

13

connect it to pj and q′j . Otherwise, the corresponding clause is of size three, and d(pj , q
′
j) = 9. In the

obvious way, we can extend the length of the clause gadget C∆
j such that d(pj , q

′
j) = 10 by breaking

the triangle-freeness of the gadget. The two vertices added to the clause gadget for this purpose receive
fresh distinct colors. Then, we add a detour gadget Dk,8, and connect it with the clause gadget in the
already described manner.

Consider then a vertex fj connecting two clause gadgets, for j ∈ [m − 1]. We divide fj along with
its dummy gadget into four pairs of vertices, and apply the degree increment operation for each with
d = k − 3. In a similar fashion, we increase the degree of each vertex in the tail gadget, also possibly
extending its length to accommodate for a detour gadget. For simplicity, we replace the head gadget
as follows. We delete the vertices hq for 2 ≤ q ≤ 7, and identify h1 with pj+1 of a new clause gadget
C∆
j+1. Each vertex of C∆

j+1 receives a fresh new color (so h1 still has color c′m). As above, we increase

the degree of each vertex in C∆
j+1.

At this point, for the obtained graph G∗φ, it holds that every vertex has degree k, except for two

vertices vs in the tail gadget, and q′j+1 in the clause gadget C∆
j+1 replacing the head gadget. To finish

the construction, we connect a detour gadget with vs and q′j+1, extending C∆
j+1 in the obvious way if

necessary. This completes the proof.

4 Tractability considerations

In this section, we consider both Rainbow Vertex Connectivity and Strong Rainbow Connec-
tivity from a structural viewpoint. We pinpoint graph classes for which both problems can be solved
in polynomial time. Furthermore, we consider implications of our hardness results for parameterized
algorithms, along with some positive parameterized results.

4.1 Polynomial time solvable cases

A graph is said to be geodetic if there is a unique shortest path between every pair of its vertices. It was
proven by Stemple and Watkins [27] that a connected graph G is geodetic if and only if every block of
G is geodetic. Indeed, we have the following.

Observation 11. A block graph is geodetic.

This immediately leads us to the following result.

Corollary 12. Strong Rainbow Vertex Connectivity is solvable in polynomial time when re-
stricted to the class of block graphs.

More generally, a graph is said to be k-geodetic if there are at most k shortest paths between every pair
of vertices. Quite trivially, Strong Rainbow Vertex Connectivity is solvable in polynomial time
on such graphs. This includes e.g., bigeodetic graphs [28] (that is, k = 2).

It is known that Rainbow Connectivity is NP-complete for the class of block graphs. However,
it turns out this is not the case for Rainbow Vertex Connectivity. Indeed, the following lemma
suggests a straightforward algorithm for the problem.

Lemma 13. Two distinct vertices s and t are rainbow vertex connected in a vertex-colored block graph
if and only if each cut vertex on the unique s-t shortest path has a distinct color.

Proof. The vertices s and t are rainbow vertex connected regardless of the underlying vertex coloring if
d(s, t) ≤ 2. So we can assume d(s, t) ≥ 3. Recall that by Observation 11, the shortest path between s
and t is unique. We will then show that if s and t are rainbow vertex connected, then each cut vertex
on the unique shortest s-t path P has received a different color. Suppose not, i.e., s and t are rainbow
vertex connected, but at least two cut vertices on P share the same color. But because any s-t path uses
every cut vertex on P , we have a contradiction. The other direction is trivial.

In other words, a vertex-colored block graph is rainbow vertex connected if and only if it is strongly
rainbow vertex connected. Thus, the previous lemma establishes the following.

14

Corollary 14. Rainbow Vertex Connectivity is solvable in polynomial time when restricted to the
class of block graphs.

In the st-version of Strong Rainbow Vertex Connectivity, the input has two additional vertices
s and t. The task is to decide whether there is a vertex rainbow shortest path between s and t in the
graph G. Let us refer to this problem as Strong Rainbow Vertex st-Connectivity. We define the
problem Rainbow Vertex st-Connectivity analogously.

Lemma 15. The Strong Rainbow Vertex st-Connectivity problem for cactus graphs reduces to
the Rainbow Vertex st-Connectivity problem for cactus graphs.

Proof. Let I = (G,ψ, s, t) be an instance of Strong Rainbow Vertex st-Connectivity, where
G is a cactus graph, and ψ its vertex-coloring. In polynomial time, we will construct an instance
I ′ = (G′, ψ′, s, t) of Rainbow Vertex st-Connectivity where G′ is a cactus graph such that I is a
YES-instance of Strong Rainbow Vertex st-Connectivity if and only if I ′ is a YES-instance of
Rainbow Vertex st-Connectivity.

To construct I ′, we first let G′ = G and ψ′ = ψ. Then, we delete from G′ every vertex w such
that d(s, w) + d(w, t) 6= d(s, t). This is achieved by running two breadth-first searches; one from s and
one from t, recording the distance to every other vertex. In other words, G′ contains only vertices that
appear on some shortest s-t path. Clearly, the property of being a cactus graph is closed under vertex
deletion. Thus, G′ is a cactus graph. By observing precisely cycles of even length are preserved in G′, it
is straightforward to verify that I is a YES-instance of Strong Rainbow Vertex st-Connectivity
if and only if I ′ is a YES-instance of Rainbow Vertex st-Connectivity.

It is shown by Uchizawa et al. [13] that Rainbow Vertex st-Connectivity can be solved in polynomial
time for outerplanar graphs, which form a superclass of cacti. By applying the above reduction to each
pair of vertices, we obtain the following.

Corollary 16. Strong Rainbow Vertex Connectivity is solvable in polynomial time when re-
stricted to the class of cactus graphs.

4.2 Consequences for parameterized algorithms

It is known that both Rainbow Connectivity and Rainbow Vertex Connectivity remain NP-
complete for graphs of bounded diameter. However, Strong Rainbow Connectivity is in XP param-
eterized by the diameter on the input graph [14]. Indeed, by the same argument as in [14, Theorem 11],
we establish a similar result for the strong vertex variant.

Observation 17. Strong Rainbow Vertex Connectivity is in XP parameterized by the diameter
of the input graph.

This implies Strong Rainbow Vertex Connectivity is in XP for several other structural parame-
ters including domination number, independence number, minimum clique cover, distance to cograph,
distance to cluster, distance to co-cluster, distance to clique, and vertex cover. We refer the reader
to Komusiewicz and Niedermeier [29] for a visualization of the relationships of many graph parameters.
In fact, it can be observed the diameter of any split graph is at most three. Thus, we obtain the following
for both strong variants of the problem.

Corollary 18. Both Strong Rainbow Connectivity and Strong Rainbow Vertex Connec-
tivity are solvable in polynomial time when restricted to the class of split graphs.

It follows from the work of Uchizawa et al. [13] that Rainbow Vertex Connectivity is NP-
complete for graphs of bounded treewidth. The pathwidth of an interval graph G is ω(G)− 1, i.e., one
less than the size of the maximum clique in G. We can observe the maximum clique in the graph GIφ
constructed in Theorem 5 is of size 4. Thus, hardness of both problems for bounded pathwidth graphs
follow. Furthermore, we can connect a clique of size at least 5 to GIφ, and color each of its vertices with
a fresh new color. Thus, we obtain the following.

Theorem 19. Both Rainbow Vertex Connectivity and Strong Rainbow Vertex Connectiv-
ity remain NP-complete when restricted to the class of graphs with pathwidth p, for every p ≥ 3.

15

Recall the bandwidth of a graph G is one less than the maximum clique size of any proper interval
supergraph of G, chosen to minimize its clique number. In Theorem 6, the graph constructed is already
a proper interval graph. Moreover, we can verify its maximum clique size is 4. But we started the
construction from the graph built in Theorem 5. Thus, we can connect a clique of any size colored with
fresh new colors to either one of the graphs, and observe the following.

Theorem 20. Both Rainbow Vertex Connectivity and Strong Rainbow Vertex Connectiv-
ity remain NP-complete when restricted to the class of graphs with bandwidth b, for every b ≥ 3.

Finally, one can observe Theorem 19 also implies hardness for bounded treewidth graphs. Thus, it
is interesting to consider a parameter stronger than pathwidth. Indeed, tree-depth is an upper bound
on the pathwidth of a graph. It was shown by Nešetřil and Ossona de Mendez [30] that the length of a
longest path in an undirected graph G is upper bounded by 2 td(G)− 2. Using this fact in combination
with the argument given in [14, Theorem 11], we have the following.

Observation 21. Both Rainbow Vertex Connectivity and Strong Rainbow Vertex Connec-
tivity are in XP parameterized by the tree-depth of the input graph.

The previous observation raises a natural question: is either problem FPT for tree-depth? Similarly, in
the light of Observation 17, it is interesting to ask whether Strong Rainbow Vertex Connectivity
or Strong Rainbow Connectivity is FPT parameterized by the diameter of the input graph. In the
following, we remark these questions have a positive answer.

Uchizawa et al. [13] gave a dynamic programming algorithm for solving all four problems in 2knO(1)

time and exponential space, where k is the number of colors used in the coloring of the input graph. Their
algorithm decides whether there is a rainbow walk from an arbitrary vertex s to each vertex v ∈ V \ {s}.
The crucial property is that any rainbow s-v walk is of length at most k, for otherwise a color would
have to repeat. We remark that their algorithm is also an FPT algorithm for any parameter that bounds
the longest (shortest) path length. Indeed, if the diameter is bounded, this gives us an upper bound on
the length of a walk to compute in the strong variant. The observation is similar for tree-depth.

Theorem 22. All problems Rainbow Connectivity, Strong Rainbow Connectivity, Rainbow
Vertex Connectivity, and Strong Rainbow Vertex Connectivity are FPT parameterized by
the tree-depth of the input graph.

Theorem 23. Both Strong Rainbow Connectivity and Strong Rainbow Vertex Connectiv-
ity are FPT parameterized by the diameter of the input graph.

5 Concluding remarks

We gave several complexity results for both Rainbow Vertex Connectivity and Strong Rainbow
Vertex Connectivity (see Table 1). The goal was to investigate whether the complexity results for
the edge variants in [14] could be extended for the vertex variants. As the results in Table 1 show, it
is not a priori obvious how complexity is affected when considering the vertex variants for a particular
graph class. This is showcased by e.g., block graphs. In the process, we obtained further negative results
for the edge variants, and positive parameterized results for all four problems.

Previously, it was shown in [13] that Rainbow Vertex Connectivity is NP-complete for series-
parallel graphs. We remark the same is true for Strong Rainbow Vertex Connectivity. Indeed, we
follow precisely the reduction given in [13], but reduce from Strong Rainbow Connectivity instead
of Rainbow Connectivity.

From a parameterized perspective, it seems the strong variants are more tractable. Moreover, Table 1
suggests the vertex variants are never harder than the edge variants. Is there a graph class for which say
Rainbow Vertex Connectivity is hard, but Rainbow Connectivity easy? It is also interesting to
consider the complexity of the weak problem variants for split graphs. In particular, the vertex variant
is trivial for split graphs of diameter 2, but what about split graphs of diameter 3?

16

References

[1] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum
degree, Journal of Graph Theory 63 (2010) 185–191.

[2] X. Li, Y. Mao, Y. Shi, The strong rainbow vertex-connection of graphs, Utilitas Mathematica 93
(2014) 213–223.

[3] G. Chartrand, G. Johns, K. McKeon, P. Zhang, Rainbow connection in graphs, Mathematica
Bohemica 133 (2008).

[4] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connection,
Journal of Combinatorial Optimization 21 (2009) 330–347.

[5] P. Dorbec, I. Schiermeyer, E. Sidorowicz, E. Sopena, Rainbow connection in oriented graphs,
Discrete Applied Mathematics 179 (2014) 69–78.

[6] X. Li, Y. Shi, Y. Sun, Rainbow Connections of Graphs: A Survey, Graphs and Combinatorics 29
(2012) 1–38.

[7] X. Li, Y. Sun, Rainbow connections of graphs, Springer, 2012.

[8] G. Chartrand, P. Zhang, Chromatic graph theory, CRC press, 2008.

[9] L. Chen, X. Li, Y. Shi, The complexity of determining the rainbow vertex-connection of a graph,
Theoretical Computer Science 412 (2011) 4531–4535.

[10] L. Chen, X. Li, H. Lian, Further hardness results on the rainbow vertex-connection number of
graphs, Theoretical Computer Science 481 (2013) 18–23.

[11] E. Eiben, R. Ganian, J. Lauri, On the complexity of rainbow coloring problems, in: Z. Lipták, W. F.
Smyth (Eds.), Combinatorial Algorithms - 26th International Workshop, IWOCA 2015, Verona,
Italy, October 5-7, 2015, Revised Selected Papers, volume 9538 of Lecture Notes in Computer
Science, Springer, 2015, pp. 209–220.

[12] X. Huang, X. Li, Y. Shi, Note on the hardness of rainbow connections for planar and line graphs,
Bulletin of the Malaysian Mathematical Sciences Society (2014) 1–7.

[13] K. Uchizawa, T. Aoki, T. Ito, A. Suzuki, X. Zhou, On the Rainbow Connectivity of Graphs:
Complexity and FPT Algorithms, Algorithmica 67 (2013) 161–179.

[14] J. Lauri, Further hardness results on rainbow and strong rainbow connectivity, Discrete Applied
Mathematics 201 (2016) 191–200.

[15] R. Diestel, Graph Theory, Springer-Verlag Heidelberg, 2005.

[16] R. J. Duffin, Topology of series-parallel networks, Journal of Mathematical Analysis and Applica-
tions 10 (1965) 303–318.

[17] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, Journal of
Combinatorial Theory, Series B 16 (1974) 47–56.

[18] P. C. Gilmore, A. J. Hoffman, A characterization of comparability graphs and of interval graphs,
Canad. J. Math 16 (1964) 4.

[19] F. S. Roberts, Indifference graphs, in: Proof techniques in graph theory, Academic Press, New
York, 1969, pp. 139–146.

[20] H. Kaplan, R. Shamir, Pathwidth, bandwidth, and completion problems to proper interval graphs
with small cliques, SIAM Journal on Computing 25 (1996) 540–561.

[21] H. L. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theoretical Computer
Science 209 (1998) 1–45.

17

[22] H. Bodlaender, J. Gilbert, H. Hafsteinsson, T. Kloks, Approximating treewidth, pathwidth, front-
size, and shortest elimination tree, Journal of Algorithms 18 (1995) 238–255.

[23] R. G. Downey, M. R. Fellows, Fundamentals of Parameterized Complexity, Springer, 2013.

[24] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
S. Saurabh, Parameterized Algorithms, Springer, 2015.

[25] C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.

[26] C. A. Tovey, A simplified NP-complete satisfiability problem, Discrete Applied Mathematics 8
(1984) 85–89.

[27] J. G. Stemple, M. E. Watkins, On planar geodetic graphs, Journal of Combinatorial Theory 4
(1968) 101–117.

[28] N. Srinivasan, J. Opatrny, V. Alagar, Bigeodetic graphs, Graphs and Combinatorics 4 (1988)
379–392.

[29] C. Komusiewicz, R. Niedermeier, New races in parameterized algorithmics, in: Mathematical
Foundations of Computer Science 2012, volume 7464 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2012, pp. 19–30.

[30] J. Nešetřil, P. Ossona de Mendez, Grad and classes with bounded expansion I. Decompositions,
European Journal of Combinatorics 29 (2008) 760–776.

Appendix

As mentioned in Subsection 3.1, all of our reductions from 3-Occurrence 3-SAT assume each clause
of the input formula has exactly three literals. For completeness, we present here clause gadgets corre-
sponding to clauses of size two for each graph class considered.

The clause gadgets for different graph classes are shown in Figure 8. The first column denotes the
graph class. The second column shows a clause gadget corresponding to a clause containing two literals.
See the respective theorems for an explanation of the colors appearing on the vertices.

18

Bipartite planar
pj

h′
j

p′j r′j,1 r′j,2

rj,1 rj,2 xj

yj

q′j

wj,1 wj,2

c′j

cj

c1,1 c2,2

Interval
pj

h′
j

p′j r′j,1 r′j,2

rj,1 rj,2 xj

yj

q′j

wj,1 wj,2c′j

cj

c1,1 c2,2

cj,u

cj,u

cj,v

cj,v cj,w

cj,z

Cubic
pj

rj,1 rj,2 rj,3 v1,4 v2,3 v2,4

q′j

v′2,4
rj,5wj,2v′1,3

wj,1v′1,1

c1,1 c2,2c′j

cj

c∗j,x

c∗j,x

c∗j,y

c∗j,y

Figure 8: Clause gadgets corresponding to clauses of size two for different graph classes.

19

3

Paper 3

 Lukasz Kowalik and Juho Lauri.

On finding rainbow and colorful paths.

c© Elsevier B.V., 2016. Theoretical Computer Science
628 (2016), pp. 110–114.

doi:10.1016/j.tcs.2016.03.017

Theoretical Computer Science 628 (2016) 110–114

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note

On finding rainbow and colorful paths ✩

Łukasz Kowalik a, Juho Lauri b,∗
a University of Warsaw, Poland
b Tampere University of Technology, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 January 2016
Received in revised form 21 February 2016
Accepted 10 March 2016
Available online 21 March 2016
Communicated by F.V. Fomin

Keywords:
Colorful path
Rainbow connectivity
Graph algorithms
Computational complexity

In the Colorful Path problem we are given a graph G = (V , E) and an arbitrary vertex
coloring function c : V → [k]. The goal is to find a colorful path, i.e., a path on k vertices,
that visits each color. This problem has been introduced in the classical work of Alon
et al. (1995) [1], and the authors proposed a dynamic programming algorithm that runs
in time 2knO (1) and uses O (2k) space. Since then the only progress obtained is reducing
the space size to a polynomial at the cost of using randomization. In this work we show
that a progress in time complexity is unlikely: if Colorful Path can be solved in time
(2 − ε)knO (1), then Set Cover admits a (2 − ε′)n(nm)O (1)-time algorithm. The same applies
to other versions of the problem: when edges are colored instead of vertices, or we ask for
a walk instead of a path, or when the requested path/walk has specified endpoints.
We study also a second, very related problem. In Rainbow st-Connectivity, we are given
a k-edge-colored graph and two vertices s and t. The goal is to decide whether there
is a rainbow path between s and t, that is, a path on which no color repeats. In its
vertex variant (Rainbow Vertex st-Connectivity) the input graph is k-vertex-colored, and
a rainbow path is defined analogously. Uchizawa et al. (2011) [14] show that both variants
can be solved in 2knO (1) time and exponential space. We show that the space size can
be reduced to a polynomial, while keeping the same running time. In contrast to the
polynomial space algorithm for Colorful Path, our algorithm for finding rainbow paths
is deterministic.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Finding a path between two vertices is one of the most fundamental graph problems. However, in many applications,
we often seek to find such a path with additional properties. For example, the textbook of Kleinberg and Tardos [10] (Ex-
ercise 8.12) describes the following application in monitoring. A company has a website that has both subscribers and
nonsubscribers. All content is shown to subscribers, but access for nonsubscribers is limited. More specifically, nonsub-
scribers can view any page, but the maximum number of pages viewed in a single session is limited. The website is
modeled by a (directed) graph G = (V , E), in which the vertices correspond to pages, and edges to hyperlinks. The website
has a front page, which a particular vertex s ∈ V corresponds to. To track a user session, the vertex set V is divided into
color classes Z1, Z2, . . . , Zk ⊆ V , where each color class Zi represents a zone. A navigation path of a nonsubscriber starting

✩ Work partially supported by the National Science Centre of Poland, grant number 2013/09/B/ST6/03136 (Ł.K.), and by the Emil Aaltonen Foundation
(J.L.).

* Corresponding author.
E-mail addresses: kowalik@mimuw.edu.pl (Ł. Kowalik), juho.lauri@tut.fi (J. Lauri).

http://dx.doi.org/10.1016/j.tcs.2016.03.017
0304-3975/© 2016 Elsevier B.V. All rights reserved.

Ł. Kowalik, J. Lauri / Theoretical Computer Science 628 (2016) 110–114 111

from s is restricted to include at most one page from each zone Zi . Otherwise, the user’s session is terminated, and an ad is
shown suggesting the user becomes a subscriber. A question the company asks is whether it is possible for a nonsubscriber
to navigate from the front page s to some other page t in a single session, i.e., whether there is an s-t path that passes each
zone at most once.

The problem above is modelled by the Rainbow Vertex st-Connectivity problem. We are given a graph, a coloring
function c : V → [k], and two vertices s and t . The goal is to decide whether there is a rainbow path between s and t , that
is, a path on which no color repeats.1 Somewhat more studied is the edge version, called Rainbow st-Connectivity, where
the edges are colored in k colors and again, a path is rainbow when no color repeats on it. The problems were shown
NP-complete by Chen, Li, and Shi [5] and Chakraborty, Fischer, Matsliah, and Yuster [4], respectively. Moreover, Uchizawa,
Aoki, Ito, Suzuki, and Zhou [14] performed a more fine-grained study into the complexity of the problems for restricted
graph classes; for instance, they show the edge version remains NP-complete on graphs of bounded treewidth, and on
graphs of diameter 2. Building on the results of [14], additional hardness results are given for k-regular graphs for every
k ≥ 3, interval outerplanar graphs, and block graphs among others in [12]. Moreover, Uchizawa et al. [14] showed that both
edge and vertex variant of the problem can be solved by a 2knO (1)-time dynamic programming algorithm that uses O (k2kn)

space.
A colorful path is a special case of a rainbow path, where all the k colors are supposed to show up on the path. In the

Colorful Path problem we are given a graph G = (V , E) and an arbitrary vertex coloring function c : V → [k]. The goal is to
find a colorful path. The problem can be seen to be NP-complete by a simple reduction from k-Path. Colorful Path has been
introduced in the classical work of Alon, Yuster, and Zwick [1], and the authors proposed a dynamic programming algorithm
that runs in time 2knO (1) and uses O (2k) space. Yet another related problem is called Colorful Graph Motif: instead of a
path we ask for a subtree where colors do not repeat. Guillemot and Sikora [9] proposed a 2knO (1)-time and O (kn)-space
Monte-Carlo randomized algorithm for Colorful Graph Motif. It is easy to see that their algorithm can be simplified to
solve Colorful Path within the same time and space bounds (see also Exercise 10.17 in the textbook of Cygan et al. [7]).

Our results A major downside of the algorithm of Uchizawa et al. [14] for Rainbow st-Connectivity is that it uses expo-
nential space. Especially for a practical implementation, exponential space complexity is prohibitive. Our first result is a
deterministic algorithm which solves the decision version of Rainbow st-Connectivity for an n-vertex and m-edge input
graph in time O (k2k(m + k2)) and space O (n + k). The actual path can be found at the cost of additional O (k log n) running
time overhead. The same results apply to the vertex version of the problem.

Our second result explains the modest progress on Colorful Path over the last twenty years. Namely, we show that if
for some ε > 0 problem Colorful Path can be solved in time (2 − ε)knO (1) , then there is ε′ > 0 such that Set Cover admits
a (2 − ε′)n(nm)O (1)-time algorithm that solves any instance with m sets over an universe of size n. The same applies to
other versions of the problem: when edges are colored instead of vertices, or we ask for a walk instead of a path, or when
the requested path/walk has specified endpoints. The existence of a (2 − ε′)n(nm)O (1)-time algorithm for Set Cover would
be a major breakthrough. The Set Cover Conjecture (see [7]) says that for every ε < 1, there is an integer k such that Set
Cover with m sets of size at most k cannot be computed in time 2εn(mk)O (1) . Note that the Set Cover Conjecture implies
that there is no (2 − ε′)n(mn)O (1)-time algorithm for Set Cover, for any ε′ > 0. Under the Set Cover Conjecture Cygan et
al. [6] show exponential lower bounds for Steiner Tree, Connected Vertex Cover, and Subset Sum. We note that even if
the Set Cover Conjecture if false, these lower bounds and the lower bound of the present paper are meaningful: instead of
trying to reduce the time of the best known algorithms for Colorful Path or Steiner Tree, one should rather focus on the
more basic Set Cover.

Notation For standard graph-theoretic notation not defined here, we refer the reader to [8]. All graphs we consider in
this paper are simple and undirected. For a positive integer k, we write [k] to denote the set {1, 2, . . . , k}. If I and J are
instances of decision problems P and R , respectively, then we say that I and J are equivalent, when either both I and J are
YES-instances or both are NO-instances.

2. RAINBOW st-CONNECTIVITY in polynomial space

In this section, we show the problems Rainbow st-Connectivity and Rainbow Vertex st-Connectivity can be solved
in 2knO (1)-time and polynomial space, where k is the number of colors. Although Rainbow st-Connectivity can be easily
reduced to Rainbow Vertex st-Connectivity (basically by replacing the original graph by its line graph), we study these
problems separately in order to avoid unnecessary polynomial overhead in the running time caused by the instance size
blow-up in the reduction.

Our plan is to reduce the problems to Edge-Colorful Walk and Colorful Path, respectively. In Edge-Colorful Walk the
input is a graph G = (V , E), a coloring c : E → [k], and a pair of vertices s, t . The goal is to verify if there is a colorful s-t
walk in G . We give the reductions below.

1 In previous works (see e.g., [11]), the definition of a rainbow path in a vertex-colored graph differs slightly: it is required that the colors do not repeat
only on the internal vertices of the path. However, the decision problems are easily seen to be computationally equivalent (in one direction: remove vertices
colored by c(s) and c(t); in the other: color s and t with two new colors k + 1 and k + 2).

112 Ł. Kowalik, J. Lauri / Theoretical Computer Science 628 (2016) 110–114

Lemma 1. For any instance (G, c) of Rainbow st-Connectivity where G = (V , E) and c : E → [k] we can build in polynomial time
an equivalent instance (G ′ = (V ′, E ′), c′) of Edge-Colorful Walk, where |V ′| = |V | + k, |E ′| = |E| + O (k2), and c′ is a coloring of
E ′ using k colors.

Proof. Let (G, c, s, t) be an instance of Rainbow st-Connectivity. We construct an instance (G ′, c′, s, t) of Edge-Colorful
Walk as follows. Begin with G ′ = G , and c′ = c. Add a clique on k vertices K = {v1, . . . , vk}. For every pair of integers i, j,
where 1 ≤ i < j ≤ k, the edge vi v j is colored with j. For every i = 1, . . . , k, add an edge svi colored with i. Finally, for
every i = 1, . . . , k, and a vertex w ∈ NG(s) add an edge vi w colored with c(sw). This ends the construction. We claim that
(G, c, s, t) is a YES-instance of Rainbow st-Connectivity iff (G ′, c′, s, t) is a YES-instance of Edge-Colorful Walk.

Suppose there is a rainbow path P from s to t in G . We show that there is a colorful st-path P ′ in G ′ . If P is colorful, we
are done. Otherwise, let M = [k] \ c(E(P)) be the set of colors missing in P . Let c1, . . . , c|M| be the colors of M in increasing
order. Let P = s, x1, . . . , x� , where x� = t . Then P ′ = (s, vc1 , . . . , vc|M| , x1, . . . , x�) is a required colorful path.

For the other direction, suppose there is an edge-colorful walk W from s to t in G ′ . Then W goes through at least one
edge between {s} ∪ K and NG (s). Let e = (x, y) be the last such edge visited by W , where x ∈ {s} ∪ K and y ∈ NG(s). Then
W decomposes into W ′eW ′′ , where W ′′ does not visit any vertex in {s} ∪ K . Consider the walk W1 = (s, y, W ′′). Then W1
is a walk in G . Since c(sy) = c′(xy), walk W1 has the same color sequence as walk eW in G ′ , hence W1 is rainbow. By
removing cycles from W1 we obtain a rainbow path in G . �

Now we present an analogous result for the vertex version.

Lemma 2. For any instance (G, c) of Rainbow Vertex st-Connectivity where G = (V , E) and c : E → [k] we can build in polynomial
time an equivalent instance (G ′ = (V ′, E ′), c′) of Colorful Path, where |V ′| = |V | + k − 1, |E ′| = |E| + O (k2), and c′ is a coloring
of E ′ using k colors.

Proof. Let (G, c, s, t) be an instance of Rainbow Vertex st-Connectivity. We construct an instance (G ′, c′, s′, t) of Colorful
Path very similarly as in Lemma 1, as follows. Begin with G ′ = G , and c′ = c. Remove s and add a clique on k vertices
K = {v1, . . . , vk}. For every i = 1, . . . , k color vi with i. Finally, for every pair of vertices v ∈ K and w ∈ NG(s) add an edge
v w . Denote s′ = vc(s) . This ends the construction. Analogously as in Lemma 1 one can show that (G, c, s, t) is a YES-instance
of Rainbow Vertex st-Connectivity iff (G ′, c′, s′, t) is a YES-instance of Colorful Path. �

Now we give efficient algorithms for Edge-Colorful Walk and Colorful Path. We are going to use the intersection
version of the inclusion-exclusion principle (see e.g., [7]), stated below.

Theorem 3 (Inclusion–exclusion principle, intersection version). Let A1, . . . , An ⊆ U , where U is a finite set. Denote
⋂

i∈∅(U \ Ai) = U .
Then

∣∣ ⋂

i∈[n]
Ai

∣∣ =
∑

X⊆[n]
(−1)|X |∣∣⋂

i∈X

(U \ Ai)
∣∣.

Theorem 4. Assume the input graph has n vertices, m edges, and its vertices (or edges) are colored in k colors. Decision problems
Edge-Colorful Walk and Colorful Path can be solved in k2km deterministic time and O (n) space.

Proof. We focus on Colorful Path; the edge-colored version is analogous. Assume the goal is to decide whether there is
a colorful path from s to t . Note that this is equivalent to checking whether there is a colorful walk from s to t . For every
color i ∈ [k], define Ai to be the set of k-vertex walks from s to t that visit a vertex colored by i. Our plan is to compute
| ⋂i∈[k] Ai | and return YES iff its value is positive. By Theorem 3 the claim boils down to showing that there is an algorithm
running in time O (km) which, given a subset X ⊆ [k], finds the number of k-vertex walks from s to t that do not visit any
edge colored by a color from X . However, this is equivalent to finding the number of k-vertex walks from s to t in the
subgraph induced by the colors in [k] \ X . This is a routine task which can be done in time O (km) by a simple dynamic
programming algorithm using only space O (n). �

Note that the theorem above solves only the decision problems (incidentally, also counting problems), but not the finding
version of the problems. However, the actual walks can be found my means of self-reducibility. In particular, observe that
Theorem 4 gives an algorithm that decides whether there is a colorful st-path in a subgraph G ′ of the input graph G induced
by a subset of edges E ′ . Thus we can retrieve the solution walk by removing edges and using the decision algorithm to
test whether the solution still exists. However, this requires O (m) calls to the decision algorithm. Björklund, Kaski, and
Kowalik [3] show that group testing methods can be used to decrease the number of calls to O (k log n).

From Lemmas 1, 2, and Theorem 4 we get the following result.

Corollary 5. Assume the input graph has n vertices, m edges, and its vertices (or edges) are colored in k colors. Then, both Rainbow
st-Connectivity and Rainbow Vertex st-Connectivity can be solved in k2k(m + k2) deterministic time and space O (n + k).

Ł. Kowalik, J. Lauri / Theoretical Computer Science 628 (2016) 110–114 113

Fig. 1. An instance of Edge-Colorful st-Path constructed from an instance (U , S, r) of Set Cover, where U = [5], S = {{1, 4, 5}, {2, 3, 4}}, and r = 2. Black
vertices are portals. To reduce clutter, the edges between two layers are not shown.

3. Finding a colorful path is hard

Recall that in the Set Cover problem we are given an integer r and a family of sets S = {S1, S2, . . . , Sm} over the
universe U = ⋃m

j=1 S j with n = |U |. The task is to decide whether there is a subfamily of r sets Si1 , Si2 , . . . , Sir such that
U = ⋃r

j=1 Si j . In this section, we prove that under reasonable complexity assumptions, it is unlikely that Edge-Colorful
st-Path has an algorithm running in time (2 − ε)r(mn)O (1) , for any ε > 0. The proof boils down to the following lemma.

Lemma 6. There exists a polynomial time algorithm which given an instance I = (S, t) of Set Cover creates an instance I ′ = (G, s, t)
of Edge-Colorful st-Path, where G is edge-colored with n + r + O (1) colors, such that I is a YES-instance of Set Cover iff I ′ is
a YES-instance of Edge-Colorful st-Path. The same applies to other variants of the problem Edge-Colorful st-Path, i.e., for any
problem A-Colorful BC , where A ∈ {Edge, Vertex}, B ∈ {st, ε}, and C ∈ {Path, Walk}.

Proof. Let I = (U , S, r) be an instance of Set Cover. In polynomial time, we create the following instance I ′ = (G, c, s, t)
of Edge-Colorful st-Path, where the coloring c uses n + r + 1 colors from the set U ∪ {α1, . . . , αr+1}. We first describe a
gadget used for a set Si ∈ S , and then the whole graph G = (V , E).

Set gadget We construct the following gadget Xi for each set Si = {e1, e2, . . . , e|Si |} ∈ S . The gadget Xi is a clique with
vertex set {0, . . . , |Si |}. The vertex 0 is called the portal of Xi . For every i, j, such that 0 ≤ i < j ≤ |Si |, the edge i j is colored
with color e j . The following claim is immediate.

Claim 1. For every subset Q ⊆ Si , there is a path P Q in Xi that begins in the portal 0 and uses all the colors from Q , each exactly once.

Construction and correctness The graph G = (V , E) is constructed as follows. The vertex set V is partitioned into r + 2
layers V 0, V 1, . . . , Vr+1. There are two special vertices s and t such that V 0 = {s} and Vr+1 = {t}. The vertex t is called
the portal of Vr+1. For each j ∈ [r], the layer V j has m copies of set gadgets Xi , one for each set Si ∈ S . For every
j ∈ {1, . . . , r + 1} and for every vertex v ∈ V j−1 we put an edge colored α j from v to every portal of V j . An example
illustrating the construction is shown in Fig. 1. Let us then prove I is a YES-instance of Set Cover iff I ′ is a YES-instance of
Edge-Colorful st-Path.

Suppose I is a YES-instance of Set Cover, and let S ′ = {Si1 , . . . , Sir } be some solution, i.e., a subfamily of r sets such that ⋃S ′ = U . For every j = 1, . . . , r define

Z j = Si j \
⋃

�< j

Si� ,

i.e., Z j is the set of new elements covered by Si j , after picking the previous sets. For every j = 1, . . . , r consider the path
P Z j (defined in Claim 1) in the set gadget Xi j of the layer V j . Clearly, the paths {P Z j } j=1,...,r use all the colors from U , each
exactly once. Then we join s, P Z1 , . . . , P Zr , t , in this order, into one path P . The connecting r + 1 edges use the remaining
colors α1, . . . , αr+1. Hence P is colorful.

For the other direction, suppose I ′ is a YES-instance of Edge-Colorful st-Path, and let P be a colorful path in G . Consider
a sequence α = (α j1 , . . . , α jq) of colors from {α1, . . . , αr+1}, that appear on P when going from s to t . Recall that for any

114 Ł. Kowalik, J. Lauri / Theoretical Computer Science 628 (2016) 110–114

j ∈ [r] vertices of layer V j are incident with edges of only two colors from {α1, . . . , αr+1}, namely α j and α j+1. It follows
that for every �, we have | j�+1 − j�| = 1. Since j1 = 1 and P is colorful, we infer that α = (α1, . . . , αr+1). It follows that P
enters each layer V j exactly once. For every j ∈ [r], since within layer V j there are no edges between set gadgets, P visits
exactly one set gadget, say Xi j in V j . We claim that S ′ = {Si1 , . . . , Sir } is a cover of U . Indeed, for every e ∈ U the path P
has an edge f colored with e, and hence f belongs to some set gadget Xi j , which implies that e ∈ Si j , as required.

Now let us consider variants of Edge-Colorful st-Path, i.e., the problem A-Colorful BC , where A ∈ {Edge, Vertex},
B ∈ {st, ε} and C ∈ {Path, Walk}.

In the vertex variant, i.e., when A = Vertex, the construction differs only slightly, in particular we use the same graph G .
The graph G is then colored using n +r+2 colors from the set U ∪{α0, . . . , αr+1}. Vertex s is colored with α0 and t is colored
with αr+1. For every j ∈ [k], for every i ∈ [m] consider the set gadget Xi in V j , corresponding to a set Si = {e1, e2, . . . , e|Si |}.
The portal 0 gets color α j , while for each � = 1, . . . , |Si| the vertex � of Xi gets color e� . The arguments for the equivalence
are essentially the same as before.

We note that in the edge variant all edges colored with α1 are incident with s and all edges colored with αr+1 are
incident with t . Since s is incident only with edges colored α1 and t is incident only with edges colored αr+1, G has a
colorful path iff G has a colorful st-path. By a similar argument, the equivalence holds also in the vertex variant. It follows
that the result generalizes to B = ε.

Finally, both in edge and vertex variant, G contains a colorful st-path iff G contains a colorful st-walk, so the result
generalizes to C = Walk. �

The following result is given in [6].

Theorem 7 (Cygan et al. [6]). If Set Cover can be solved in (2 − ε)n+r(nm)O (1) time for some ε > 0 then it can also be solved in
(2 − ε′)n(nm)O (1) time, for some ε′ > 0.

By combining Lemma 6 with Theorem 7, we have proven the following.

Theorem 8. For every ε > 0, Edge-Colorful st-Path does not admit a (2 − ε)knO (1)-time algorithm, unless Set Cover admits a
(2 − ε′)r(mn)O (1)-time algorithm, for some ε′ > 0. The same applies to other variants of the problem Edge-Colorful st-Path, i.e., for
any problem A-Colorful BC , where A ∈ {Edge, Vertex}, B ∈ {st, ε}, and C ∈ {Path, Walk}.

4. Further research

Our result on Colorful Path motivates a related question on Rainbow st-Connectivity: can one show that Rainbow
st-Connectivity does not admit an algorithm running in time (2 − ε)knO (1) , assuming the Set Cover Conjecture, or some
other well-motivated complexity assumption? We leave this as an interesting open problem.

It would be also interesting to identify more natural problems where the goal is to find some structure in a colored
graph. We remark here that the technique from Theorem 4 can be used for solving the Colorful Graph Motif problem in
2knO (1) time and polynomial space deterministically. It suffices to replace walks by branching walks (see Nederlof [13] or
Björklund et al. [2]).

References

[1] N. Alon, R. Yuster, U. Zwick, Color-coding, J. ACM 42 (4) (1995) 844–856.
[2] A. Björklund, P. Kaski, L. Kowalik, Probably optimal graph motifs, in: 30th International Symposium on Theoretical Aspects of Computer Science, STACS

2013, February 27, March 2, 2013, Kiel, Germany, in: LIPIcs. Leibniz Int. Proc. Inform., vol. 20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2013,
pp. 20–31.

[3] A. Björklund, P. Kaski, L. Kowalik, Fast witness extraction using a decision oracle, in: Algorithms – ESA 2014 – Proceedings of the 22th Annual European
Symposium, Wroclaw, Poland, September 8–10, 2014, in: Lecture Notes in Comput. Sci., Springer, 2014, pp. 149–160.

[4] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connection, J. Comb. Optim. 21 (3) (2009) 330–347.
[5] L. Chen, X. Li, Y. Shi, The complexity of determining the rainbow vertex-connection of a graph, Theoret. Comput. Sci. 412 (35) (2011) 4531–4535.
[6] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saurabh, M. Wahlstrom, On problems as hard as CNF-SAT, in: IEEE 27th

Annual Conference on Computational Complexity, CCC, 2012, pp. 74–84.
[7] M. Cygan, F.V. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.
[8] R. Diestel, Graph Theory, Springer-Verlag, Heidelberg, 2010.
[9] S. Guillemot, F. Sikora, Finding and counting vertex-colored subtrees, Algorithmica 65 (4) (2013) 828–844.

[10] J. Kleinberg, É. Tardos, Algorithm Design, Pearson Education, 2006.
[11] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63 (3) (2010) 185–191.
[12] J. Lauri, Further hardness results on rainbow and strong rainbow connectivity, Discrete Appl. Math. 201 (2016) 191–200.
[13] J. Nederlof, Fast polynomial-space algorithms using inclusion-exclusion, Algorithmica 65 (4) (2013) 868–884.
[14] K. Uchizawa, T. Aoki, T. Ito, A. Suzuki, X. Zhou, On the rainbow connectivity of graphs: complexity and FPT algorithms, Algorithmica 67 (2) (2013)

161–179.

4

Paper 4

Eduard Eiben, Robert Ganian, and Juho Lauri.

On the complexity of rainbow coloring problems.

c© 2016 the authors. To appear in Discrete Applied
Mathematics.

On the Complexity of Rainbow Coloring Problems∗

Eduard Eiben† Robert Ganian‡ Juho Lauri§

August 16, 2016

Abstract

An edge-colored graph G is said to be rainbow connected if between each pair of vertices
there exists a path which uses each color at most once. The rainbow connection number,
denoted by rc(G), is the minimum number of colors needed to make G rainbow connected.
Along with its variants, which consider vertex colorings and/or so-called strong colorings,
the rainbow connection number has been studied from both the algorithmic and graph-
theoretic points of view.

In this paper we present a range of new results on the computational complexity of
computing the four major variants of the rainbow connection number. In particular, we
prove that the Strong Rainbow Vertex Coloring problem is NP-complete even on
graphs of diameter 3, and also when the number of colors is restricted to 2. On the other
hand, we show that if the number of colors is fixed then all of the considered problems
can be solved in linear time on graphs of bounded treewidth. Moreover, we provide a
linear-time algorithm which decides whether it is possible to obtain a rainbow coloring by
saving a fixed number of colors from a trivial upper bound. Finally, we give a linear-time
algorithm for computing the exact rainbow connection numbers for three variants of the
problem on graphs of bounded vertex cover number.

Keywords. Rainbow coloring; Rainbow connection number; Graph algorithms; Treewidth.

1 Introduction

The concept of rainbow connectivity was introduced by Chartrand, Johns, McKeon, and
Zhang in 2008 [8] as an interesting connectivity measure motivated by recent developments in
the area of secure data transfer. Over the past years, this strengthened notion of connectivity
has received a significant amount of attention in the research community. The applications of
rainbow connectivity are discussed in detail for instance in the recent survey [25], and various
bounds are also available in [10,26].

An edge-colored graph G is said to be rainbow connected if between each pair of vertices
a, b there exists an a−b path which uses each color at most once; such a path is called rainbow.
The minimum number of colors needed to make G rainbow connected is called the rainbow
connection number (rc), and the Rainbow Coloring problem asks to decide if the rainbow

∗A shortened version of this paper has appeared in the proceedings of the 26th International Workshop on
Combinatorial Algorithms (IWOCA) [17].
†TU Wien, Vienna, Austria
‡TU Wien, Vienna, Austria
§Tampere University of Technology, Tampere, Finland

1

connection number is upper-bounded by a number specified in the input. Precise definitions
are given in Section 2.

The rainbow connection number and Rainbow Coloring have been studied from both
the algorithmic and graph-theoretic points of view. On one hand, the exact rainbow connec-
tion numbers are known for a variety of simple graph classes, such as wheel graphs [8], com-
plete multipartite graphs [8], unit interval graphs [29], and threshold graphs [6]. On the other
hand, Rainbow Coloring is a notoriously hard problem. It was shown by Chakraborty et
al. [5] that already deciding if rc(G) ≤ 2 is NP-complete, and Ananth et al. [1] showed that
for any k > 2 deciding rc(G) ≤ k is NP-complete. In fact, Chandran and Rajendraprasad [6]
strengthened this result to hold for chordal graphs. In the same paper, the authors gave a lin-
ear time algorithm for rainbow coloring split graphs which form a subclass of chordal graphs
with at most one more color than the optimum. Basavaraju et al. [2] gave an (r + 3)-factor
approximation algorithm to rainbow color a general graph of radius r. Later on, the inap-
proximability of the problem was investigated by Chandran and Rajendraprasad [7]. They
proved that there is no polynomial time algorithm to rainbow color graphs with less than
twice the minimum number of colors, unless P = NP. For chordal graphs, they gave a 5/2-
factor approximation algorithm, and proved that it is impossible to do better than 5/4, unless
P = NP.

Several variants of the notion of rainbow connectivity have also been considered. Indeed,
a similar concept was introduced for vertex-colored graphs by Krivelevich and Yuster [22]. A
vertex-colored graph H is rainbow vertex connected if there is a path whose internal vertices
have distinct colors between every pair of vertices, and this gives rise to the rainbow vertex
connection number (rvc). The strong rainbow connection number (src) was introduced and
investigated also by Chartrand et al. [10]; an edge-colored graph G is said to be strong
rainbow connected if between each pair of vertices a, b there exists a shortest a− b path which
is rainbow. The combination of these two notions, strong rainbow vertex connectivity (srvc),
was studied in a graph theoretic setting by Li et al. [24].

Not surprisingly, the problems arising from the strong and vertex variants of rainbow
connectivity are also hard. Chartrand et al. showed that rc(G) = 2 if and only if src(G) =
2 [8], and hence deciding if src(G) ≤ k is NP-complete for k = 2. The problem remains NP-
complete for k > 2 for bipartite graphs [1], and also for split graphs [21]. Furthermore, the
strong rainbow connection number of an n-vertex bipartite graph cannot be approximated
within a factor of n1/2−ε, where ε > 0 unless NP = ZPP [1], and the same holds for split
graphs [21]. The computational aspects of the rainbow vertex connection numbers have
received less attention in the literature. Through the work of Chen et al. [12] and Chen et
al. [11], it is known that deciding if rvc(G) ≤ k is NP-complete for every k ≥ 2. However,
to the best of our knowledge, the complexity of deciding whether srvc(G) ≤ k (the k-SRVC
problem) has not been previously considered.

In this paper, we present new positive and negative results for all four variants of the
rainbow coloring problems discussed above.

• In Section 3, we prove that k-SRVC is NP-complete for every k ≥ 3 even on graphs of
diameter 3. Our reduction relies on an intermediate step which proves the NP-hardness
of a more general problem, the k-Subset Strong Rainbow Vertex Coloring prob-
lem. We also provide bounds for approximation algorithms (under established complex-
ity assumptions), see Corollary 6, and tighten the hardness result to additionally cover
2-SRVC.

2

• In Section 4, we show that all of the considered problems can be formulated in monadic
second order (MSO) logic. In particular, this implies that for every fixed k, all of the
considered problems can be solved in linear time on graphs of bounded treewidth, and
the vertex variants can be solved in cubic time on graphs of bounded clique-width.

• In Section 5, we investigate the problem from a different perspective: we ask whether,
given an n-vertex graph G and an integer k, it is possible to color G using k colors less
than the known upper bound. Here we employ a win-win approach and show that this
problem can be solved in time O(n) for any fixed k.

• In the final Section 6, we show that in the general case when k is not fixed, three of the
considered problems admit linear-time algorithms on graphs of bounded vertex cover
number. This is also achieved by exploiting a win-win approach, where we show that
either k is bounded by a function of the vertex cover number and hence we can apply
the result of Section 4, or k is sufficiently large which allows us to exploit the structure
of the graph and solve the problem directly.

2 Preliminaries

2.1 Graphs and Rainbow Connectivity

We refer to [15] for standard graph-theoretic notions. We use [i] to denote the set {1, 2, . . . , i}.
All graphs considered in this paper are simple and undirected. The degree of a vertex is the
number of its incident edges, and a vertex is a pendant if it has degree 1. We will often use
the shorthand ab for the edge {a, b}. For a vertex set X, we use G[X] to denote the subgraph
of G induced on X.

A vertex coloring of a graph G = (V,E) is a mapping from V to N, and similarly an edge
coloring of G is a mapping from E to N; in this context, we will often refer to the elements of N
as colors. An a− b path P of length p is a finite sequence of the form (a = v0, e0, v1, e1, . . . b =
vp), where v0, v1, . . . vp are distinct vertices and e0, . . . ep−1 are distinct edges and each edge
ej is incident to vj and vj+1. An a− b path of length p is a shortest path if every a− b path
has length at least p. The diameter of a graph G is the length of its longest shortest path,
denoted by diam(G). Given an edge (vertex) coloring α of G, a color x ∈ N occurs on a path
P if there exists an edge (an internal vertex) z on P such that α(z) = x.

A vertex or edge coloring of G is rainbow if between each pair of vertices a, b there exists
an a − b path P such that each color occurs at most once on P ; in this case we say that G
is rainbow connected or rainbow colored. We denote by rc(G) the minimum i ∈ N such that
there exists a rainbow edge coloring α : E → [i]. Similarly, rvc(G) denotes the minimum
i ∈ N such that there exists a rainbow vertex coloring α : V → [i]. Furthermore, an edge or
vertex coloring of G is a strong rainbow coloring if between each pair of vertices a, b there
exists a shortest a− b path P such that each color occurs at most once on P . We denote by
src(G) (srvc(G)) the minimum i ∈ N such that there exists a strong rainbow edge (vertex)
coloring α : E → [i] (α : V → [i]).

Let G and H be two graphs with n and n′ vertices, respectively. The corona of G and H,
denoted by G ◦H, is the disjoint union of G and n copies of H where the i-th vertex of G is
connected by an edge to every vertex of the i-th copy of H. Clearly, the corona G ◦ H has
n(1 + n′) vertices. Coronas of graphs were first studied by Frucht and Harary [18].

3

2.2 Problem Statements

Here we formally state the problems studied in this work.

Rainbow k-Coloring (k-RC)
Instance: A connected undirected graph G = (V,E).
Question: Is rc(G) ≤ k?

Strong Rainbow k-Coloring (k-SRC), Rainbow Vertex k-Coloring (k-RVC)
and Strong Rainbow Vertex k-Coloring (k-SRVC) are then defined analogously for
src(G), rvc(G), and srvc(G), respectively. We also consider generalized versions of these
problems, where k is given as part of the input.

Rainbow Coloring (RC)
Instance: A connected undirected graph G = (V,E), and a positive integer k.
Question: Is rc(G) ≤ k?

The problems SRC, RVC, and SRVC are also defined analogously. In Section 5 we
consider the “saving” versions of the problem, which ask whether it is possible to improve
upon the trivial upper bound for the number of colors.

Saving k Rainbow Colors (k-SavingRC)
Instance: A connected undirected graph G = (V,E).
Question: Is rc(G) ≤ |E| − k?

Saving k Rainbow Vertex Colors (k-SavingRVC)
Instance: A connected undirected graph G = (V,E).
Question: Is rvc(G) ≤ |V | − k?

2.3 Structural Measures

Several of our results utilize certain structural measures of graphs. We will mostly be con-
cerned with the treewidth and the vertex cover number of the input graph. Section 4 also
mentions certain implications of our results for graphs of bounded clique-width, the definition
of which can be found for instance in [14].

A tree decomposition of G is a pair (T, {Xi : i ∈ I}) where Xi ⊆ V , i ∈ I, and T is a tree
with elements of I as nodes such that:

1. for each edge uv ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and

2. for each vertex v ∈ V , T [{ i ∈ I | v ∈ Xi }] is a (connected) tree with at least one node.

The width of a tree decomposition is maxi∈I |Xi|−1. The treewidth [28] of G is the minimum
width taken over all tree decompositions of G and it is denoted by tw(G).

Fact 1 ([4]). There exists an algorithm which, given a graph G and an integer p, runs in

time 2p
O(1) · (|V (G)|+ |E(G)|), and either outputs a tree decomposition of G of width at most

p or correctly determines that tw(G) > p.

4

A vertex cover of a graph G = (V,E) is a set X ⊆ V such that each edge in G has at least
one endvertex in X. The cardinality of a minimum vertex cover in G is denoted as τ(G).
Given a vertex cover X, a type T is a subset of V \X such that any two vertices in T have
the same neighborhood; observe that any graph contains at most 2|X| many distinct types.

2.4 Monadic Second Order Logic

We assume that we have an infinite supply of individual variables, denoted by lowercase
letters x, y, z, and an infinite supply of set variables, denoted by uppercase letters X,Y, Z.
Formulas of MSO2 logic are constructed from atomic formulas I(x, y), x ∈ X, and x = y
using the connectives ¬ (negation), ∧ (conjunction) and existential quantification ∃x over
individual variables as well as existential quantification ∃X over set variables. Individual
variables range over vertices and edges, and set variables range either over sets of vertices or
over sets of edges. The atomic formula I(x, y) expresses that vertex x is incident to edge y,
x = y expresses equality, and x ∈ X expresses that x is in the set X. From this, we define
the semantics of MSO2 logic in the standard way.

MSO1 logic is defined similarly as MSO2 logic, with the following distinctions. Individual
variables range only over vertices, and set variables only range over sets of vertices. The
atomic formula I(x, y) is replaced by E(x, y), which expresses that vertex x is adjacent to
vertex y.

Free and bound variables of a formula are defined in the usual way. A sentence is a formula
without free variables. It is known that MSO2 formulas can be checked efficiently as long as
the graph has bounded tree-width.

Fact 2 ([13]). Let φ be a fixed MSO2 sentence and p ∈ N be a constant. Given an n-vertex
graph G of treewidth at most p, it is possible to decide whether G |= φ in time O(n).

Similarly, MSO1 formulas can be checked efficiently as long as the graph has bounded
clique-width [14] (or, equivalently, rank-width [19]). In particular, while the formula can
be checked in linear time if a suitable rank- or clique-decomposition is provided, current
algorithms for finding (or approximating) such a decomposition require cubic time.

Fact 3 ([14,19]). Let φ be a fixed MSO1 sentence and p ∈ N be a constant. Given an n-vertex
graph G of clique-width at most p, it is possible to decide whether G |= φ in time O(n3).

3 Hardness of Strong Rainbow Vertex k-Coloring

It is easy to see that srvc(G) = 1 if and only if diam(G) = 2. We will prove that deciding if
srvc(G) ≤ k is NP-complete for every k ≥ 3 already for graphs of diameter 3. This is done by
first showing hardness of an intermediate problem, described below. Later on, we will show
that deciding srvc(G) ≤ 2 is in fact also NP-complete.

In the k-Subset Strong Rainbow Vertex Coloring problem (k-SSRVC) we are
given a graph G which is a corona of a complete graph and K1, and a set P of pairs of
pendants in G. The goal is to decide if the vertices of G can be colored with k colors such
that each pair in P is connected by a vertex rainbow shortest path. We will first show this
intermediate problem is NP-complete by reducing from the classical vertex k-coloring problem:
given a graph G, decide if there is an assignment of k colors to the vertices of G such that
adjacent vertices receive a different color. The smallest k for which this is possible is known as

5

the chromatic number of G. The vertex k-coloring problem is well-known to be NP-complete
for every k ≥ 3.

Lemma 4. The k-SSRVC problem is NP-complete for every k ≥ 3.

Proof. Let G = (V,E) be an instance of the vertex k-coloring problem, where k ≥ 3. We will
construct an instance 〈G′, P 〉 of the k-SSRVC problem such that 〈G′, P 〉 is a YES-instance if
and only if G is vertex k-colorable.

The graph G′ = (V ′, E′) along with the set of pairs P are constructed as follows:

• V ′ = V ∪ {pv | v ∈ V },

• E′ = {uv | u, v ∈ V ∧ u 6= v} ∪ {vpv | v ∈ V }, and

• P = {{pu, pv} | uv ∈ E}.

Clearly, G′ = K|V | ◦K1. This completes the construction of G′.
Suppose G is vertex k-colorable. Let c be the color assigned to vertex v in V . We assign

the color c to both v and pv in G′. Observe that the shortest path between any pair of vertices
in G′ is unique. It is then straightforward to verify that any pair in P is strong rainbow vertex
connected.

For the other direction, suppose there is a vertex coloring of G′ using k colors under
which there is a vertex rainbow shortest path between every pair in P . Since any two vertices
{pu, pv} ∈ P are strong rainbow vertex connected, the two internal vertices on the unique
pu− pv shortest path have distinct colors. Thus by assigning to the vertex v ∈ V the color on
the corresponding vertex v′ ∈ (V ′ \ {pv | v ∈ V }) we get a proper vertex coloring of G. This
completes the proof.

We are now ready to prove the following.

Theorem 5. The k-SRVC problem is NP-complete for every integer k ≥ 3, even when the
input is restricted to graphs of diameter 3.

Proof. Let k ≥ 3 and 〈G = (V,E), P 〉 be an instance of the k-SSRVC problem. We will
construct a graph G′ = (V ′, E′) that is strong rainbow vertex colorable with k colors if and
only if 〈G = (V,E), P 〉 is a YES-instance of k-SSRVC.

Let V1 denote the set of pendant vertices in G. For every vertex v ∈ V1 we introduce a
new vertex xv. For every pair of pendant vertices {u, v} 6∈ P , we add two vertices x1uv and
x2uv. We also add two new vertices s and t. In the following, we denote by kv, where v ∈ V1,
the unique vertex that v is adjacent to in G. In addition, for a set A, we write

(
A
2

)
to denote

the Cartesian product A×A. Formally, we construct a graph G′ = (V ′, E′) such that:

• V ′ = V ∪ {xv | v ∈ V1} ∪ {x1uv, x2uv | {u, v} ∈
(
V1
2

)
\ P} ∪ {s, t},

• E′ = E ∪ E1 ∪ E2 ∪ E3 ∪ E4,

• E1 = {vxv, sxv, txv | v ∈ V1},

• E2 = {ux1uv, x1uvx2uv, x2uvv | {u, v} ∈
(
V1
2

)
\ P},

• E3 = {sx1uv, tx2uv, kux1uv, kvx2uv | {u, v} ∈
(
V1
2

)
\ P}, and

6

1

2

3

5

6

4

x256

x156

t

s

Figure 1: The graph K3 ◦K1 transformed to a graph of diameter 3 with P = {{4, 5}, {4, 6}}.
The color c1 is represented with grey, and the color c2 with black. White vertices represent
an unknown vertex coloring under which the pairs in P are strong rainbow vertex connected.

• E4 = {sy, ty | y ∈ V \ V1}.

This completes the construction of G′. It is straightforward to verify diam(G′) = 3, and this
is realized between any pair of vertices in V1. An example illustrating the reduction is shown
in Figure 1.

First, suppose G′ admits a strong rainbow vertex coloring φ using k colors. Observe that
for each {u, v} ∈ P , the shortest path between u and v in G′ is unique. Therefore ku and kv
must receive distinct colors by φ. Hence the restriction of φ to V witnesses that 〈G,P 〉 is a
YES-instance of k-SSRVC.

On the other hand, suppose 〈G,P 〉 is k-subset strong rainbow vertex connected under
some coloring φ : V → {c1, . . . , ck}. We will describe an extended vertex k-coloring φ′ under
which G′ is strong rainbow vertex connected. We retain the original coloring on the vertices
of G, i.e., φ′(v) = φ(v) for every v ∈ V . The remaining vertices in G′ receive colors as follows:

• φ′(xv) = c1, for every v ∈ V1,

• φ′(x1uv) = c1, φ
′(x2uv) = c2, for every {u, v} ∈

(
V1
2

)
\ P , and

• φ′(s) = c2, and φ′(t) = c2.

Since each pair of vertices {a, b} ∈ V ′ at distance at most 2 are always strong rainbow vertex
connected regardless of the chosen coloring, and each pair of vertices {u, v} ∈

(
V1
2

)
\ P are

connected by the path through x1uv, x
2
uv, it is straightforward to verify that G′ is indeed strong

rainbow vertex connected under φ′.

It can be observed that the size of the above reduction does not depend on k, the number
of colors. In fact, if the instance of the vertex k-coloring problem has n vertices, then the
graph G′ we build in Theorem 5 has no more than O(n2) vertices. Furthermore, a strong
rainbow vertex coloring of G′ gives us a solution to the vertex k-coloring problem. Since the

7

1 2

12

5

4

6

3

43

5 6

6 5

5 1

Figure 2: A 12-vertex graph G after the construction of Lemma 7. The white vertices
correspond to the original 12 vertices of G, and the black vertices to the subdivided edges.
An optimal strong rainbow coloring with 6 colors is shown.

chromatic number of an n-vertex graph cannot be approximated within a factor of n1−ε for
any ε > 0 unless P = NP [31], we obtain the following corollary.

Corollary 6. There is no polynomial time algorithm for approximating the strong rainbow
vertex connection number of an n-vertex graph of bounded diameter within a factor of n1/2−ε

for any ε > 0, unless P = NP.

Each of k-RC, k-SRC, and k-RVC is known to be NP-complete for every k ≥ 2. In this
light, Theorem 5 raises a natural question: is k-SRVC also NP-complete already for k = 2?
Indeed, the following lemma will establish that this is the case. In contrast to Theorem 5, we
employ a more direct reduction from k-SRC.

Lemma 7. There exists a polynomial time algorithm which, given an instance G = (V,E)
of k-SRC, creates an instance G′ = (V ′, E′) of k-SRVC such that G is a YES-instance of
k-SRC if and only if G′ is a YES-instance of k-SRVC.

Proof. Let G = (V,E) be an instance of the k-SRC problem for any k ≥ 2. In polynomial
time, we will construct an instance G′ = (V ′, E′) of the k-SRVC problem such that src(G) = k
if and only if srvc(G′) = k.

The graph G′ is obtained from G by subdividing each edge e ∈ E by a new vertex we.
Then, for every e, f ∈ E such that e 6= f , we make we and wf adjacent in G′ if the edges
e and f were adjacent in G. Formally, we let V ′ = V ∪ W , where W = {we | e ∈ E},
and E′ = {awe, bwe | ab = e ∈ E} ∪ {wewf | e, f are adjacent in G}. This completes the
construction of G′, which is illustrated in Figure 2. Let us then prove that src(G) = k if and
only if srvc(G′) = k.

Suppose src(G) = k, and consider a edge coloring c : E → [k] under which G is strong
rainbow connected. We construct a vertex k-coloring c′ : V ′ → [k] such that c′(wij) = c(ij),
for every ij ∈ E. The remaining vertices receive an arbitrary color, say c′(v) = 1 for every
v ∈ V . We claim that any two vertices u and v are strong rainbow vertex connected under
c′ in G′. There are three cases to consider: both u and v are in V , neither u nor v is in V ,
and exactly one of u and v is in V . We will show this only for the first case, as the remaining
cases follow easily by a similar argument. Without loss of generality, suppose u and v are

8

strong rainbow connected in G via the edges e1, . . . , e`, where ` ≤ k. Then, it is easy to see
the path u,w1, . . . , w`, v is a rainbow vertex shortest path in G′. A strong rainbow coloring
of G transformed into a strong rainbow vertex coloring of G′ is shown in Figure 2.

For the other direction, suppose there is a vertex k-coloring c′ under which G′ is strong
rainbow vertex connected. We construct an edge k-coloring c : E → [k] for G such that
c(ij) = c′(wij), for every ij ∈ E. Observe that for each nonadjacent u, v ∈ V (G′) and each
shortest u-v path Puv, it holds that every internal vertex of Puv is in W . Thus, because c′

is a strong rainbow vertex coloring of G′, we have that c is a strong rainbow coloring of G.
This completes the proof.

By the above, we strengthen Theorem 5 to cover the case k = 2.

Corollary 8. The k-SRVC problem is NP-complete for every integer k ≥ 2.

In fact, we remark that Lemma 7 holds also for the non-strong variants of the problems.
That is, the lemma establishes also a reduction from k-RC to k-RVC. In the literature, the
hardness of k-RVC was established in two stages: Chen et al. [12] first showed 2-RVC is NP-
complete by a chain of reductions originating from 3-SAT. Then, by reducing from 2-RVC,
Chen et al. [11] proved that k-RVC is NP-complete for every k ≥ 2. Conceptually, Lemma 7
is a considerable simplification over this chain of reductions. Moreover, it was shown by
Chandran and Rajendraprasad [7] that the rainbow connection number of a graph cannot be
approximated within a factor of less than 2 unless P = NP. Thus, by combining our remark
on Lemma 7 with an argument similar to Corollary 6, we obtain the following.

Corollary 9. There is no polynomial time algorithm for approximating the rainbow vertex
connection number of a graph within a factor less than 2 unless P = NP.

4 MSO Formulations

This section will present formulations of the k-coloring variants of rainbow connectivity in
MSO logic, along with their algorithmic implications.

Lemma 10. For every k ∈ N there exists a MSO1 formula φk such that for every graph G, it
holds that G |= φk iff G is a YES-instance of k-RVC. Similarly, for every k ∈ N there exists a
MSO2 formula ψk such that for every graph G, it holds that G |= ψk iff G is a YES-instance
of k-RC.

Proof. In the case of k-RC, we wish to partition the edges of the graph G = (V,E) into k
color classes C1, . . . , Ck such that each pair of vertices is connected by a rainbow path. Let
us consider the following MSO2 formula ψk.

ψk := ∃C1, . . . , Ck ⊆ E
(
∀e ∈ E

(
e ∈ C1 ∨ · · · ∨ e ∈ Ck

))

∧
(
∀i, j ∈ [k], i 6= j : (Ci ∩ Cj = ∅)

)

∧
(
∀u, v ∈ V

(
(u 6= v) =⇒

∨

1≤i≤k

(
∃e1, . . . , ei ∈ E

(
Path(u, v, e1, . . . , ei)

∧ Rainbow(e1, . . . , ei)
))))

,

9

where the auxiliary predicates are defined as

Path(u, v, e1, . . . , e`) := ∃v1, . . . , v`−1 ∈ V(
∀i, j ∈ [`− 1], i 6= j : (vi 6= vj)

)

∧ I(e1, u) ∧ I(e`, v)

∧
(
∀i ∈ [`− 1] : (I(ei, vi) ∧ I(ei+1, vi))

)

and

Rainbow(e1, . . . , e`) := ∀i ∈ [`] ∃j ∈ [k] :
(
ei ∈ Cj ∧ (∀p 6= i : ep /∈ Cj)

)
.

Here, Path(u, v, e1, . . . , e`) expresses that the edges e1, . . . , e` form a path between the vertices
u and v. The predicate Rainbow(e1, . . . , e`) expresses that the edges e1, . . . , e` are each in
precisely one color class.

In the case of k-RVC, the MSO1 formula φk is defined analogously, with the following
distinctions:

1. instead of edges, we partition the vertices of G into color classes;

2. the predicate Path speaks of vertices instead of edges and uses the adjacency relation
instead of the incidence relation; and

3. the predicate Rainbow tests the coloring of vertices instead of edges.

Using a similar approach, we obtain an analogous result for the strong variants of these
problems.

Lemma 11. For every k ∈ N there exists a MSO1 formula φk such that for every graph G, it
holds that G |= φk iff G is a YES-instance of k-SRVC. Similarly, for every k ∈ N there exists
a MSO2 formula ψk such that for every graph G, it holds that G |= ψk iff G is a YES-instance
of k-SRC.

Proof. In the case of k-SRC, we wish to partition the edges of the graph G = (V,E) into
k color classes C1, . . . , Ck such that each pair of vertices is connected by a rainbow shortest
path. We will assume the predicates Path(u, v, e1, . . . , e`) and Rainbow(e1, . . . , e`) are defined
precisely as in Lemma 10.

Let us then construct the following MSO2 formula ψk:

ψk := ∃C1, . . . , Ck ⊆ E
(
∀e ∈ E

(
e ∈ C1 ∨ · · · ∨ e ∈ Ck

))

∧
(
∀i, j ∈ [k], i 6= j : (Ci ∩ Cj = ∅)

)

∧
(
∀u, v ∈ V

(
(u 6= v) =⇒

(
∃i ∈ [k] ∃e1, . . . , ei ∈ E

(
Path(u, v, e1, . . . , ei)

∧ Rainbow(e1, . . . , ei)

∧ ∀j ∈ [i− 1] ¬
(
∃w1, . . . , wj ∈ E Path(u, v, w1, . . . , wj)

)))))
.

To capture the property of being a shortest path, we require there to be a u−v path of length
i, and no paths of length less than i. Furthermore, observe that no path of length greater
than k can be rainbow. The construction for k-SRVC then uses the same ideas, with the
same distinctions as those specified in Lemma 10.

10

Theorem 12. Let p ∈ N be fixed. Then the problems k-RC, k-SRC, k-RVC, and k-SRVC
can be solved in time O(n) on n-vertex graphs of treewidth at most p. Furthermore, k-RVC
and k-SRVC can be solved in time O(n3) on n-vertex graphs of clique-width at most p.

Proof. The proof follows from Lemma 10 and Lemma 11 in conjunction with Fact 2 and
Fact 3.

In the language of parameterized complexity [16,27], Theorem 12 implies that these prob-
lems are fixed-parameter tractable (FPT) parameterized by treewidth, and their vertex vari-
ants are FPT parameterized by clique-width.

5 The Complexity of Saving Colors

This section focuses on the saving versions of the rainbow coloring problems introduced in Sub-
section 2.2, and specifically gives linear-time algorithms for k-SavingRC and k-SavingRVC.
Our results make use of the following facts.

Fact 13 ([20]). There is a MSO1 predicate VertexConnects such that on a graph G = (V,E)
VertexConnects(S, u, v) is true iff S ⊆ V is a set of vertices of G such that there is a path
from u to v that lies entirely in S.

The above is easily modified to give us the following.

Fact 14. There is a MSO2 predicate EdgeConnects such that on a graph G = (V,E)
EdgeConnects(X,u, v) is true iff X ⊆ E is a set of edges of G such that there is path from u
to v that lies entirely in X.

Theorem 15. For each k ∈ N, the problem k-SavingRC can be solved in time O(n) on
n-vertex graphs.

Proof. Observe that by coloring each edge of a spanning tree of G with a distinct color we
have that rc(G) ≤ n − 1. Thus, if m ≥ n + k − 1, we have a YES-instance of k-SavingRC.
Otherwise, suppose m < n + k − 1. Then G has a feedback edge set of size at most k − 1,
and hence, G has treewidth at most k. Furthermore, we assume that m > 2k, since otherwise
the instance can be solved by brute force in time independent of n. We construct a MSO2

formula ψk such that it holds that G |= ψk is true iff G is a YES-instance of k-SavingRC.
Using Fact 14, we construct ψk as follows:

ψk := ∃R1, . . . , Rk ⊆ E
(
∀i, j ∈ [k], i 6= j : (Ri ∩Rj = ∅)

)

∧
(
∀i ∈ [k] :

(
∃e ∈ E(e ∈ Ri)

))
∧ |R1 ∪R2 ∪ · · · ∪Rk| ≥ 2k

∧
(
∀u, v ∈ V

(
(u 6= v) =⇒

(
∃X ⊆ E

(
EdgeConnects(X,u, v)

∧ ∀e1, e2 ∈ X
(
∀i ∈ [k] : (e1 ∈ Ri ∧ e2 ∈ Ri) =⇒ (e1 = e2)

)))))
.

In the above, the expression |A| ≥ 2k is shorthand for the existence of 2k pairwise-distinct
edges in A, which can be expressed by a simple but lengthy MSO2 expression. The formula
ψk expresses that there exist k disjoint sets R1, . . . , Rk of edges (each representing a different
color set with at least 1 edge) such that their union contains at least 2k edges, with the

11

following property: there is a path using at most one edge from each set R1, . . . , Rk between
every pair of vertices. Formally, this property is stated as the existence of an edge-set X for
each pair of vertices u, v such that the graph (V,X) contains an u−v path that cannot repeat
edges from any Ri.

Let us argue that G |= ψk is true iff G is a YES-instance of k-SavingRC. Assume G
contains sets R1, . . . , Rk as per ψk; then assigning a unique color to each Ri and a unique
additional color to each edge in E\(R1∪· · ·∪Rk) results in a rainbow coloring of G which uses
at most m− k colors. On the other hand, in any rainbow (m− k)-coloring of G, there must
exist j reappearing colors in G (where 2 ≤ j ≤ k) and the number of edges with these j colors
is at least j + k. Let us consider an assignment of edges to R1, . . . , Rj such that Ri receives
all edges with reappearing color i; for the remaining k − j sets R, we then use arbitrarily
selected edges (i.e., they represent arbitrary non-reappearing colors). Since we started with
a rainbow coloring, rows 3 and 4 of ψk must be satisfied, and since |R1, . . . , Rj | ≥ k + j it
follows that row 2 must also be satisfied.

By the above, it indeed holds that G |= ψk is true iff G is a YES-instance of k-SavingRC.
The proof then follows by Fact 2.

To prove a similar result for k-SavingRVC, we will use the following result.

Fact 16 ([3]). If the treewidth of a connected graph G is at least 2k3, then G has a spanning
tree with at least k vertices with degree 1.

Theorem 17. For each k ∈ N, the problem k-SavingRVC can be solved in time O(n) on
n-vertex graphs.

Proof. Using Fact 1, we will test if the treewidth of G is at least 2k3. If it is, then by Fact 16
the graph G has a spanning tree with at least k vertices of degree 1. Each of these k vertices
can receive the same color, and we conclude we have a YES-instance. Otherwise, suppose the
treewidth of G is less than 2k3, and we construct a MSO1 formula φk such that it holds that
G |= φk is true iff G is a YES-instance of k-SavingRVC. The construction is analogous to
Theorem 15, but instead of EdgeConnects we use VertexConnects from Fact 13. The proof
then follows by Fact 2.

6 Rainbow Coloring Graphs with Small Vertex Covers

In this section we turn our attention to the more general problem of determining whether the
rainbow connection number is below a number specified in the input. Specifically, we show
that RC, RVC, and SRVC admit linear time algorithms on graphs of bounded vertex cover
number. In particular, this implies that RC, RVC, and SRVC are FPT parameterized by
τ(G).

Lemma 18. Let G = (V,E) be a connected graph and p = τ(G). Then rvc(G) ≤ 2p− 1 and

srvc(G) ≤ p2+p
2 .

Proof. Let us fix a vertex cover X of cardinality p. For the first claim, let S be a spanning tree
of G with a minimum number of internal vertices, and observe that the number of internal
vertices in S is at most 2p − 1; indeed, one only needs to add at most p − 1 vertices to the
vertex cover in order to get a connected subgraph. Let Z be the internal vertices of S. Let
α be a vertex coloring which assigns a unique color from [|Z|] to each vertex in Z, and then

12

assigns the color 1 to each vertex in V \ Z. Then α is a rainbow vertex coloring: for any
choice of a and b, there exists an a− b path whose internal vertices are a subset of Z.

For the second claim, consider the set Q constructed as follows: for each distinct a, b ∈ X,
if there exists a vertex v in V \ X adjacent to both a and b, we choose an arbitrary such v

and add it into Q. Let Z = Q ∪X, and observe that |Z| ≤ p + p·(p−1)
2 = p2+p

2 . Once again,
let α be a vertex coloring which assigns a unique color from [|Z|] to each vertex in Z, and
then assigns the color 1 to each vertex in V \ Z. We claim that α is a strong rainbow vertex
coloring. Indeed, consider any a, b ∈ V and let P be an arbitrary shortest a− b path. Then
for every internal vertex vi of P such that vi 6∈ X, it must hold that vi−1 ∈ X and vi+1 ∈ X.
Consider the path P ′ obtained from P by replacing each internal vertex vi 6∈ X by v′i, where
v′i is an element of Q which is adjacent to vi−1 and vi+1. Since P ′ has the same length as P
and P ′ is rainbow colored by α, the claim follows.

The following lemma will be useful in the proof of Lemma 20, a key component of our
approach for dealing with RC on the considered graph classes. A bridge is an edge e such that
deleting e separates the connected component containing e into two connected components.

Lemma 19. Let G = (V,E) be a graph and X ⊆ V be a minimum vertex cover of G. Then
there exist at most 2|X| − 2 bridges which are not incident to a pendant outside of X.

Proof. We prove the lemma by induction on p = |X|. If p = 1, then the graph is a star and
the lemma holds (in a star, every bridge is incident to a pendant).

So, assume the lemma holds for p− 1 and assume G has a vertex cover X of size p. Let S
be the set of all bridges in G which are not incident to a pendant outside of X. If S contains
a bridge e whose both endpoints lie in X, then e separates X into two non-empty subsets X1

and X2 and every other bridge has both endpoints either in X1 or in X2. Let G1 and G2 be
the connected components of G − e containing X1 and X2, respectively. Observe that Xi is
a vertex cover of Gi for i ∈ [2]. Since |X1| < p and |X2| < p, by our inductive assumption
it follows that G1 contains at most 2|X1| − 2 bridges which are not incident to a pendant
outside of X, and similarly G2 contains at most 2|X2| − 2 bridges which are not incident to
a pendant outside of X. Since each bridge in G is either e or a bridge in G1 or G2, it follows
that |S| = 1 + 2|X1| − 2 + 2|X2| − 2 = 1 + 2p− 4 < 2p− 2, and hence in this case the lemma
holds.

On the other hand, assume S contains a bridge e = ax where x ∈ X, a 6∈ X. Since the
connected component of G− e containing a is not a pendant, it follows that a has a neighbor
in G which is different from x, and hence this connected component (say G1) contains at least
one vertex from X. Let X1 = X ∩ V (G1), X2 = X \X1 and G2 be the connected component
of G− e containing X2. This implies that in this case e also separates X into two non-empty
subsets X1 and X2. Furthermore, if there exists another e′ ∈ S which separates X into the
same sets X1 and X2 as e, then e′ must also be incident to a and in particular this other edge
e′ is unique; every other bridge in S has both endpoints either in X1 or in X2. Since |X1| < p
and |X2| < p, by our inductive assumption it follows that G1 contains at most 2|X1|−2 bridges
which are not incident to a pendant outside of X, and similarly G2 contains at most 2|X2|−2
bridges which are not incident to a pendant outside of X. Since each bridge in G is either e or
e′ or a bridge in G1 or G2, it follows that |S| ≤ 2+2|X1|−2+2|X2|−2 = 2+2p−4 ≤ 2p−2,
and hence in this case the lemma also holds.

For ease of presentation, we define the function β as β(p) = 2p− 2 + p · (p2 + 2p · 2p). The
next Lemma 20 will represent one part of our win-win strategy, as it allows us to precisely

13

compute rc(G) when the number of bridges is sufficiently large. We remark that an analogous
claim does not hold for src(G) (regardless of the choice of β).

Lemma 20. Let G = (V,E) be a connected graph and p = τ(G). Let z be the number of
bridges in G. If z ≥ β(p), then rc(G) = z.

Proof. Let us fix a vertex cover X of cardinality p. It is known that the number of bridges is
a lower bound for rc(G) [9], i.e., rc(G) ≥ z. We will show that z is also an upper bound for
rc(G).

Consider the edge z-coloring α constructed as follows. Since X is a vertex cover and, by
Lemma 19 in conjunction with our assumption on z, there are at least p ·(p2+2p ·2p) leaves in
G, it follows that there must exist some x ∈ X adjacent to at least z′ = p2 + 2p · 2p pendants.
Let {e1, . . . , ez′} be the edges incident to both x and a pendant vertex, and let {ez′+1, . . . , ez}
be all the remaining bridges; then for each bridge we set α(ei) = i.

Let f1, . . . , fq be the edges of G[X] which are not bridges; for each such edge we set
α(fi) = z′ − i. Observe that for each such fi we have α(fi) > 2p · 2p.

Consider the set τ = {Ti | Ti is a type in G and |N(Ti)| > 1 }. LetQi = {2pi+1, . . . , 2pi+
2p}. For each Ti ∈ τ , we let Gi be the subgraph of G on Ti ∪N(Ti) which contains exactly
the edges incident to Ti. Then Gi is bipartite, and furthermore can be rainbow colored using
at most 2p colors as follows: we pick an arbitrary y ∈ Ti and uniquely color all edges in Gi
incident to y using colors c1, . . . , cp, and for every other vertex in Ti we color all edges in
Gi incident to y′ using colors c1+p, . . . , c2p. For each type Ti ∈ τ , we let α color the edges
incident to Ti in this manner using the colors from Qi.

We will proceed by arguing that α is a rainbow z-coloring of G, but before that we make
three key observations. First, there are only two cases when α can use the same color for two
distinct edges e, f : either one of e, f is an edge between x and a pendant, or both e, f occur
in some Gi. Second, if |Ti| > 1, then for every u ∈ N(Ti) and every v ∈ V (Gi) and every
color c, there exists a rainbow u − v path in Gi under α which does not use c. Third, each
Gi is rainbow colored by α.

We now make the following case distinction.

1. Let a, b ∈ V be such that neither is a pendant adjacent to x. Consider an arbitrary
a−b path P such that the number of pairs of edges in P assigned the same color by α is
minimized. If P contains two edges e, f such that α(e) = α(f), then both e and f must
occur in some Gi. Let t and u be the first and last vertex in V (Gi) on P , respectively.
Since Gi is rainbow colored by α, there exists a t − u rainbow path P ∗ in Gi. Let P ′

be obtained from P by replacing the path segment between t and u by P ∗; by the key
observation made above, it follows that P ′ has a strictly lower number of pairs of edges
in P which are assigned the same color by α, hence contradicting our choice of P .

2. Let a be a pendant adjacent to x, and b ∈ V . Let c = α(xa). Consider an arbitrary
a − b path P such that the number of pairs of edges in P assigned the same color by
α is minimized. If P contains two edges e, f such that α(e) = α(f) 6= c, then both e
and f must occur in some Gi s.t. |Ti| > 1. Let t and u be the first and last vertex in
V (Gi) on P , respectively. Since t ∈ X∩N(Ti), by our observations above it follows that
there exists a rainbow t− u path P ∗ in Gi which avoids c. Hence the path obtained by
replacing the path segment between t and u by P ∗ once again contradicts our choice of
P . On the other hand, if P contains an edge e such that α(e) = c, then either e is an

14

edge in G[X] or e is incident to some Ti. In the latter case, the same argument can be
used to contradict our choice of P . In the former case it follows by construction of α
that c only occurs on the edge (x, a) and on e, and furthermore e is contained in some
2-edge-connected component D of G. Let d,w be the first and last vertex, respectively,
in D which occurs in P , and let P ′ be the path obtained from P by replacing the path
segment between d and w by an arbitrary rainbow path segment in D which does not
contain e. It is readily verified that the colors which occur in D are only repeated on
edges between x and pendants, and in particular such edges cannot occur on P ′. Hence
P ′ again contradicts our choice of P .

To summarize, for any a, b ∈ V there exists a rainbow a − b path under α, and hence α
witnesses that rc(G) ≤ z. We conclude that rc(G) = z.

Lemma 21. Let G = (V,E) be a graph with a vertex cover X ⊆ V of cardinality p. Let z be
the number of bridges in G. If z < β(p), then rc(G) ≤ β(p) + p2 + 2p · 2p.

Proof. Consider the following edge coloring α which assigns a unique color to each edge in
G[X] and to each edge incident to a pendant. For each nonempty type Ti, we choose an
arbitrary vertex yi and let α assign a unique color for each of the at most p edges incident to
yi. Finally, for each type Ti and each x ∈ X adjacent to (the vertices of) Ti, α uses a single
new color for all edges between x and the vertices in Ti. It is readily verified that α uses no
more than z + p2 + 2p · 2p colors.

We argue that α is rainbow. Let Gi be the subgraph of G on Ti ∪N(Ti) which contains
exactly the edges incident to Ti, and observe that each Gi is rainbow colored by α. Consider
any a, b ∈ V and let P be an a− b path such that the number of pairs of edges in P assigned
the same color by α is minimized. By construction of α, two edges e, f in P may only have
the same color if e, f are both incident to some Ti. Let t and u be the first and last vertex
in V (Gi) on P , respectively. Since Gi is rainbow colored by α, there exists a t − u rainbow
path P ∗ in Gi under α. Let P ′ be obtained from P by replacing the path segment between t
and u by P ∗. Then P ′ has a strictly lower number of pairs of edges in P with the same color,
which contradicts our choice of P .

Theorem 22. Let p ∈ N be fixed. Then the problems RC, RVC, and SRVC can be solved in
time O(n) on n-vertex graphs of vertex cover number at most p.

Proof. For RVC and SRVC, we first observe that if k (the queried upper bound on the number

of colors) is greater than 2p − 1 and p2+p
2 , respectively, then the algorithm can immediately

output YES by Lemma 18. Otherwise we use Theorem 12 and the fact that the vertex cover
number is an upper bound on the treewidth to compute a solution in O(n) time.

For RC, it is well known that the total number of bridges in G, say z, can be computed in
linear time on graphs of bounded treewidth. If z ≥ β(p), then by Lemma 20 we can correctly
output YES when z ≤ k and NO when z > k. On the other hand, if z < β(p), then by
Lemma 21 the value rc(G) is upper-bounded by a function of p. We compare k and this
upper bound on rc(G); if k exceeds the upper bound on rc(G), then we output YES, and
otherwise we can use Theorem 12 along with the fact that the vertex cover number is an
upper bound on the treewidth to compute a solution in O(n) time.

15

7 Concluding Notes

We presented new positive and negative results for the most prominent variants of rainbow
coloring. We believe that the techniques presented above, and in particular the win-win ap-
proaches used in Section 5 and Section 6, can be of use also for other challenging connectivity
problems.

It is worth noting that our results in Section 4 leave open the question of whether Rainbow
Coloring or its variants can be solved in (uniformly) polynomial time on graphs of bounded
treewidth. Hardness results for related problems [23,30] do not imply that finding an optimal
coloring of a bounded-treewidth graph is hard, and it seems that new insights are needed
to determine the complexity of these problems on graphs of bounded treewidth. Finally, the
complexity of the SRC problem still remains open on graphs of bounded vertex cover number.

8 Acknowledgments

The authors would like to thank the reviewers for their useful comments. In addition, the
authors would like to thank Martin Derka for his helpful comments and discussion at the
IWOCA’15 conference that took place in Verona, Italy.

This work was partially supported by the Austrian Science Fund (FWF), projects P26696
and W1255-N23 (E.E., R.G.), and by the Emil Aaltonen Foundation (J.L.). Robert Ganian
is also affiliated with FI MU, Brno, Czech Republic.

References

[1] P. Ananth, M. Nasre, and K. K. Sarpatwar. Rainbow connectivity: Hardness and
tractability. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2011, pages 241–251, 2011.

[2] M. Basavaraju, L. Chandran, D. Rajendraprasad, and A. Ramaswamy. Rainbow con-
nection number and radius. Graphs and Combinatorics, pages 1–11, 2012.

[3] H. Bodlaender. On linear time minor tests with depth-first search. Journal of Algorithms,
14(1):1–23, 1993.

[4] H. L. Bodlaender and T. Kloks. Efficient and constructive algorithms for the pathwidth
and treewidth of graphs. Journal of Algorithms, 21(2):358–402, 1996.

[5] S. Chakraborty, E. Fischer, A. Matsliah, and R. Yuster. Hardness and algorithms for
rainbow connection. Journal of Combinatorial Optimization, 21(3):330–347, 2009.

[6] L. S. Chandran and D. Rajendraprasad. Rainbow Colouring of Split and Threshold
Graphs. Computing and Combinatorics, pages 181–192, 2012.

[7] L. S. Chandran and D. Rajendraprasad. Inapproximability of rainbow colouring. In
IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2013, pages 153–162, 2013.

[8] G. Chartrand, G. Johns, K. McKeon, and P. Zhang. Rainbow connection in graphs.
Mathematica Bohemica, 133(1), 2008.

16

[9] G. Chartrand, F. Okamoto, and P. Zhang. Rainbow trees in graphs and generalized
connectivity. Networks, 55(4):360–367, 2010.

[10] G. Chartrand and P. Zhang. Chromatic graph theory. CRC press, 2008.

[11] L. Chen, X. Li, and H. Lian. Further hardness results on the rainbow vertex-connection
number of graphs. Theoretical Computer Science, 481(0):18–23, 2013.

[12] L. Chen, X. Li, and Y. Shi. The complexity of determining the rainbow vertex-connection
of a graph. Theoretical Computer Science, 412(35):4531–4535, 2011.

[13] B. Courcelle. The Monadic Second-Order Logic of Graphs I. Recognizable Sets of Finite
Graphs. Information and Computation, pages 12–75, 1990.

[14] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable optimization problems
on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150, 2000.

[15] R. Diestel. Graph Theory. Springer-Verlag Heidelberg, 2010.

[16] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer,
2013.

[17] E. Eiben, R. Ganian, and J. Lauri. On the complexity of rainbow coloring problems. In
Proceedings of the 26th International Workshop on Combinatorial Algorithms, IWOCA
2015, Verona, Italy, October 5–7, pages 209–220, 2015.

[18] R. Frucht and F. Harary. On the corona of two graphs. Aequationes Mathematicae,
4(3):322–325, 1970.

[19] R. Ganian and P. Hliněný. On parse trees and Myhill-Nerode-type tools for handling
graphs of bounded rank-width. Discrete Applied Mathematics, 158(7):851–867, 2010.

[20] G. Gottlob and S. T. Lee. A logical approach to multicut problems. Information Pro-
cessing Letters, 103(4):136–141, 2007.

[21] M. Keranen and J. Lauri. Computing minimum rainbow and strong rainbow colorings
of block graphs. arXiv preprint arXiv:1405.6893, 2014.

[22] M. Krivelevich and R. Yuster. The rainbow connection of a graph is (at most) reciprocal
to its minimum degree. Journal of Graph Theory, 63(3):185–191, 2010.

[23] J. Lauri. Further hardness results on rainbow and strong rainbow connectivity. Discrete
Applied Mathematics, 201:191–200, 2016.

[24] X. Li, Y. Mao, and Y. Shi. The strong rainbow vertex-connection of graphs. Utilitas
Mathematica, 93:213–223, 2014.

[25] X. Li, Y. Shi, and Y. Sun. Rainbow Connections of Graphs: A Survey. Graphs and
Combinatorics, 29(1):1–38, 2012.

[26] X. Li and Y. Sun. Rainbow connections of graphs. Springer, 2012.

[27] R. Niedermeier. Invitation to fixed-parameter algorithms. Oxford University Press Ox-
ford, 2006.

17

[28] N. Robertson and P. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
Journal of Algorithms, 7(3):309–322, 1986.

[29] L. Sunil Chandran, A. Das, D. Rajendraprasad, and N. M. Varma. Rainbow connection
number and connected dominating sets. Journal of Graph Theory, 71(2):206–218, 2012.

[30] K. Uchizawa, T. Aoki, T. Ito, A. Suzuki, and X. Zhou. On the Rainbow Connectivity of
Graphs: Complexity and FPT Algorithms. Algorithmica, 67(2):161–179, 2013.

[31] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3(6):103–128, 2007.

18

5

Paper 5

 Lukasz Kowalik, Juho Lauri, and Arkadiusz Soca la.

On the fine-grained complexity of rainbow color-
ing.

c© 2016 the authors (licensed under Creative Commons
License CC-BY). In: Proceedings of the 24th Annual Eu-
ropean Symposium on Algorithms, ESA 2016, Aarhus,
Denmark, August 22-24. 2016, 58:1–58:16.

doi:10.4230/LIPIcs.ESA.2016.58

On the Fine-Grained Complexity of Rainbow
Coloring∗

Łukasz Kowalik1, Juho Lauri2, and Arkadiusz Socała3

1 University of Warsaw, Warsaw, Poland
kowalik@mimuw.edu.pl

2 Tampere University of Technology, Tampere, Finland
juho.lauri@tut.fi

3 University of Warsaw, Warsaw, Poland
a.socala@mimuw.edu.pl

Abstract
The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored
in k colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all
edges of different colors. Our main result states that for any k ≥ 2, there is no algorithm for
Rainbow k-Coloring running in time 2o(n3/2), unless ETH fails. Motivated by this negative
result we consider two parameterized variants of the problem. In the Subset Rainbow k-
Coloring problem, introduced by Chakraborty et al. [STACS 2009, J. Comb. Opt. 2009], we
are additionally given a set S of pairs of vertices and we ask if there is a coloring in which all the
pairs in S are connected by rainbow paths. We show that Subset Rainbow k-Coloring is FPT
when parameterized by |S|. We also study Maximum Rainbow k-Coloring problem, where we
are additionally given an integer q and we ask if there is a coloring in which at least q anti-edges
are connected by rainbow paths. We show that the problem is FPT when parameterized by q
and has a kernel of size O(q) for every k ≥ 2, extending the result of Ananth et al. [FSTTCS
2011]. We believe that our techniques used for the lower bounds may shed some light on the
complexity of the classical Edge Coloring problem, where it is a major open question if a
2O(n)-time algorithm exists.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases graph coloring, computational complexity, lower bounds, exponential
time hypothesis, FPT algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2016.58

1 Introduction

The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored
in k colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all
edges of different colors. A minimum such k, called the rainbow connection number can be
viewed as yet another measure of graph connectivity. The concept of rainbow coloring was
introduced by Chartrand, Johns, McKeon, and Zhang [7] in 2008, while also featured in an
earlier book of Chartrand and Zhang [8]. Chakraborty, Fischer, Matsliah, and Yuster [3]
describe an interesting application of rainbow coloring in telecommunications. The problem

∗ Work partially supported by the National Science Centre of Poland, grant number 2013/09/B/ST6/03136
(Ł.K., A.S.), and by the Emil Aaltonen Foundation (J.L.). This is an extended abstract; for the full
version see the technical report at arxiv [17].

© Łukasz Kowalik, Juho Lauri, and Arkadiusz Socała;
licensed under Creative Commons License CC-BY

24th Annual European Symposium on Algorithms (ESA 2016).
Editors: Piotr Sankowski and Christos Zaroliagis; Article No. 58; pp. 58:1–58:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

58:2 On the Fine-Grained Complexity of Rainbow Coloring

is intensively studied from the combinatorial perspective, with over 100 papers published by
now (see the survey of Li, Shi, and Sun [20] for an overview). However, the computational
complexity of the problem seems less explored. It was conjectured by Caro, Lev, Roditty,
Tuza, and Yuster [2] that the Rainbow k-Coloring problem is NP-complete for k = 2.
This conjecture was confirmed by Chakraborty et al. [3]. Ananth, Nasre, and Sarpatwar [1]
noticed that the proof of Chakraborty et al. in fact proves NP-completeness for every even
k > 1, and complemented this by showing NP-completeness of the odd cases as well. An
alternative hardness proof for every k > 1 was provided by Le and Tuza [19]. For complexity
results on restricted graph classes, see e.g., [4, 5, 6, 12].

For many NP-complete graph problems there are algorithms running in time 2O(n) for
an n-vertex graph. This is obviously the case for problems asking for a set of vertices, like
Clique or Vertex Cover, or more generally, for problems which admit polynomially
(or even subexponentially) checkable O(n)-bit certificates. However, there are 2O(n)-time
algorithms also for some problems for which such certificates are not known, including e.g.,
Hamiltonicity [13] and Vertex Coloring [18]. Unfortunately it seems that the best
known worst-case running time bound for Rainbow k-Coloring is km2knO(1), where m is
the number of edges, which is obtained by checking each of the km colorings by a simple
2knO(1)-time dynamic programming algorithm [23]. Even in the simplest variant of just two
colors, i.e., k = 2, this algorithm takes 2O(n2) time if the input graph is dense. It raises a
natural question: is this problem really much harder than, say, Hamiltonicity, or have
we just not found the right approach yet? Questions of this kind have received considerable
attention recently. For example, the existence of a 2O(n)-time algorithm for Edge Coloring
is a notorious question, appearing in numerous open problem lists. On the other hand, it was
shown that unless the Exponential Time Hypothesis fails, there is no algorithm running in
time 2o(n logn) for Channel Assignment [21], Subgraph Homomorphism, and Subgraph
Isomorphism [9]. Let us recall the precise statement of the Exponential Time Hypothesis
(ETH).

I Hypothesis 1 (Exponential Time Hypothesis [14]). There exists a constant c > 0, such that
there is no deterministic algorithm solving 3-SAT in time O∗(2cn).

Note that some kind of a complexity assumption, like ETH, is hard to avoid when we
prove exponential lower bounds, unless one aims at proving P 6= NP.

Main Result. Our main result is the following theorem.

I Theorem 2. For any k ≥ 2, Rainbow k-Coloring can be solved neither in 2o(n3/2) nor
2o(m/ logm) time where n and m are the number of vertices and edges respectively, unless
ETH fails.

Hence, this is an NP-complete graph problem which does not admit a 2o(n1+ε)-time
algorithm (under reasonable complexity assumptions), for an ε > 0. Such lower bounds
are fairly rare in the literature. The best known algorithm for Rainbow k-Coloring just
verifies all possible colorings and thus it runs in time 2O(m) for any fixed k. Our lower bounds
mean that one cannot hope for substantial improvements in this running time.

Remaining Lower Bounds. We also study a natural generalized problem, called Subset
Rainbow k-Coloring, introduced by Chakraborty et al. [3] as a natural intermediate step
in reductions from 3-SAT to Rainbow k-Coloring. In Subset Rainbow k-Coloring,
we are given a connected graph G, and a set of pairs of vertices S ⊆

(
V (G)

2
)
. Elements of S

Ł. Kowalik, J. Lauri, and A. Socała 58:3

are called requests. For a given coloring of E(G) we say that a request {u, v} is satisfied if u
and v are connected by a rainbow path. The goal in Subset Rainbow k-Coloring is to
determine whether there is a k-coloring of E(G) such that every pair in S is satisfied. Our
main result implies that Subset Rainbow k-Coloring admits no algorithm running in
time 2o(n3/2), under ETH. We show also two more lower bounds, as follows.

I Theorem 3. For any k ≥ 2, Subset Rainbow k-Coloring can be solved neither in
time 2o(n3/2), nor in time 2o(m), nor in time 2o(s) where n is the number of vertices, m is
the number of edges, and s is the number of requests, unless ETH fails.

An interesting feature here is that for k = 2 the 2o(m) and 2o(s) bounds are tight up to
a polynomial factor (a 2mnO(1) algorithm is immediate, and a 2|S|nO(1)-time algorithm is
discussed in the next paragraph).

New Algorithms. In the context of the hardness results mentioned above it is natural to
ask for FPT algorithms for Subset Rainbow k-Coloring. We show that for every fixed k,
Subset Rainbow k-Coloring parameterized by |S| is FPT:

I Theorem 4. For every integer k, Subset Rainbow k-Coloring is FPT and it has an
algorithm running in time |S|O(|S|)nO(1).

For the 2 color case we are able to show a different, faster algorithm running in time
2|S|nO(1), which is tight up to a polynomial factor.

We also study the Maximum Rainbow k-Coloring problem, introduced by Ananth,
Nasre, and Sarpatwar [1]. Intuitively, the idea is to parameterize the problem by the number
of pairs to satisfy. However, all pairs of adjacent vertices are trivially satisfied by any
edge-coloring. Hence, we parameterize by the number of anti-edges to satisfy. More formally,
in Maximum Rainbow k-Coloring we are given a graph G = (V,E), an integer q, and
asked whether there is a coloring of E that satisfies at least q anti-edges. First, we show
that the maximization version of the problem (find maximum such q) admits a constant
factor approximation algorithm for every fixed value of k. Second, we show that Maximum
Rainbow k-Coloring is FPT for every k ≥ 2, which generalizes the result of Ananth et
al. [1] who showed this claim for the k = 2 case. Our algorithm runs in time 2q log qnO(1) for
any k, which is faster than the algorithm of Ananth et al. for 2 colors. For 2 colors we give
an even faster algorithm, running in time 8qnO(1). We also show that the problem admits a
kernel size O(q), i.e., that there is a polynomial-time algorithm that returns an equivalent
instance with O(q) vertices. (For more background on kernelization see e.g., [10].) Before,
this was known only for k = 2 (due to Ananth et al. [1]). Our main results for Maximum
Rainbow k-Coloring are summarized in the following theorem.

I Theorem 5. Maximum Rainbow k-Coloring parameterized by the number of anti-edges
q is FPT for every k ≥ 2. Moreover, it admits a kernel of linear size.

Notation. For standard graph-theoretic notions, we refer the reader to [11]. All graphs we
consider in this paper are simple and undirected. We denote ∆1(G) = max{∆(G), 1}.

By Ē we denote the set of anti-edges, i.e., Ē =
(
V
2
)
\ E. When G = (V,E) is a

graph then Ḡ = (V, Ē) is its complement graph. By xk we denote the falling factorial, i.e.,
xk = x(x− 1) · · · (x− k + 1). For an integer k, we denote [k] = {1, . . . , k}. For a (partial)
function c, by Dom(c) we denote its domain.

If I and J are instances of decision problems P and R, respectively, then we say that I
and J are equivalent, when either both I and J are YES-instances or both are NO-instances.

ESA 2016

58:4 On the Fine-Grained Complexity of Rainbow Coloring

3-SAT

Subset
Rainbow
2-Coloring
Extension

Subset
Rainbow
k-Coloring

Rainbow k-
Coloring

Lemma 8 Lemma 9 Lemma 14

Figure 1 A simplified road map of our reductions.

Organization of the paper. In Section 2 we present our hardness results. The main
difficulties we encountered are sketched at the beginning of that section. Due to space
constraints proofs of the claims marked by F are skipped and can be found in the full
version [17]. Next, in Section 3 we present our algorithms for Subset Rainbow k-Coloring.
Again because of the space limitations, our algorithms for Maximum Rainbow k-Coloring
are skipped in this extended abstract and are available in the full version [17].

2 Hardness of rainbow coloring

2.1 Overview
The main goal of this section is to show that for any k ≥ 2 Rainbow k-Coloring does not
admit an algorithm running in time 2o(n3/2), unless the Exponential Time Hypothesis fails.
Let us give a high-level overview of our proof. A natural idea would be to begin with a 3-SAT
formula φ with n variables and then transform it in time 2o(n) to an equivalent instance
G = (V,E) of Rainbow k-Coloring with O(n2/3) vertices. Then indeed a 2o(|V |3/2)-time
algorithm that solves Rainbow 2-Coloring can be used to decide 3-SAT in time 2o(n).
Note that in a typical NP-hardness reduction, we observe some polynomial blow-up of the
instance size. For example, one can verify that in the reduction of Chakraborty et al. [3],
the initial 3-SAT formula with n variables and m clauses is transformed into a graph with
Θ(n4 + m4) vertices and edges. In our case, instead of a blow-up we aim at compression:
the number of vertices needs to be much smaller than the number of variables in the input
formula φ. As usual in reductions, variables and clauses in φ are going to correspond to
some structures in G, called gadgets. The compression requirement means that our gadgets
need to share vertices. To make our lives slightly easier, we apply the following well-known
Sparsification Lemma, which allows for assuming that the number of clauses is O(n).

I Lemma 6 (Sparsification Lemma [15]). For each ε > 0 there exist a constants cε, such
that any 3-SAT formula ϕ with n variables can be expressed as ϕ = ∨ti=1ψi, where t ≤ 2εn
and each ψi is a 3-SAT formula with the same variable set as ϕ, but contains at most cεn
clauses. Moreover, this disjunction can be computed in time O∗(2εn).

Note that by using the Sparsification Lemma we tweak our general plan a bit: instead of
creating one equivalent instance, we are going to create 2εn instances (for arbitrarily small
ε), each with O(n2/3) vertices. The following lemma further simplifies the instance.

I Lemma 7 ([22]). Given a 3-SAT formula ϕ with m clauses one can transform it in
polynomial time into a formula ϕ′ with O(m) variables and O(m) clauses, such that ϕ′ is
satisfiable iff ϕ′ is satisfiable, and moreover each clause of ϕ′ contains exactly three different
variables and each variable occurs in at most 4 clauses of ϕ′.

Now our goal is to transform a 3-SAT formula φ with n variables such that every variable
occurs in at most 4 clauses, to a graph with O(n2/3) vertices — an equivalent instance of
Rainbow k-Coloring. We do it in three steps (see Fig 1).

Ł. Kowalik, J. Lauri, and A. Socała 58:5

In the first step we transform φ to an instance I = (G,S, c0) of Subset Rainbow
2-Coloring Extension, which is a generalization of Subset Rainbow 2-Coloring,
where c0, called a precoloring, is a partial coloring of the edges of G into two colors and the
goal is to determine if there is an edge-coloring of E(G) which extends c0 and such that all
pairs of S are satisfied. The first step is crucial, because here the compression takes place:
|V (G)| = O(n2/3) and E(G) = O(n). The major challenge in the construction is avoiding
interference between gadgets that share a vertex: to this end we define various conflict graphs
and we show that they can be vertex-colored in a few colors. This reduction is described in
Section 2.2.

In the second step (Lemma 9) we reduce Subset Rainbow 2-Coloring Extension to
Subset Rainbow k-Coloring, for every k ≥ 2. In fact, in the full version this is done in
two sub-steps, via Subset Rainbow k-Coloring Extension. The number of the vertices
in the resulting instance does not increase more than by a constant factor. This step is
rather standard, though some technicalities appear because we need to guarantee additional
properties of the output instance, which are needed by the reduction in the third step.

The last step (Section 2.3), where we reduce an instance (G = (V,E), S) of Subset
Rainbow k-Coloring to an instance G′ of Rainbow k-Coloring, is yet another challenge.
We would like to get rid of the set of requests somehow. For simplicity, let us focus on the
k = 2 case now. Here, the natural idea, used actually by Chakraborty et al. [3] is to create,
for every {u, v} 6∈ S, a path (u, xuv, v) through a new vertex xuv. Such a path cannot help
any of the requests {u′, v′} ∈ S to get satisfied (since if it creates a new path P ′ between u′
and v′, then P ′ has length at least 3), and by coloring it into two different colors we can
satisfy {u, v}. Unfortunately, in our case we cannot afford for creating a new vertex for every
such {u, v}, because that would result in a quadratic blow up in the number of vertices.
However, one can observe that for any biclique (a complete bipartite subgraph) in the graph
(V,
(
V
2
)
\ S) it is sufficient to use just one such vertex x (connected to all the vertices of the

biclique). By applying a result of Jukna [16] we can show that in our specific instance of
Subset Rainbow 2-Coloring which results from a 3-SAT formula, the number of bicliques
needed to cover all the pairs in

(
V
2
)
\ S is small enough. We show a 2|V (G)||V (G)|O(1)-time

algorithm to find such a cover. Although this algorithm does not seem fast, in our case
|V (G)| = O(n2/3), so this complexity is subexponential in the number of variables of the
input formula, which is enough for our goal. The case of k ≥ 3 is similar, i.e., we also use
the biclique cover. However, the details are much more technical because for each biclique
we need to introduce a much more complex gadget.

2.2 From 3-SAT to Subset Rainbow k-Coloring
Let Subset Rainbow k-Coloring Extension be a generalization of Subset Rainbow
k-Coloring, where c0 is a partial k-coloring of the edges of G and the goal is to determine if
there is an edge-coloring of E(G) which extends c0 and such that all pairs of S are satisfied. In
this section we show a reduction (Lemma 8) from 3-SAT to Subset Rainbow 2-Coloring
Extension.

For an instance I = (G,S, c0) of Subset Rainbow k-Coloring Extension (for any
k ≥ 2), let us define a precoloring conflict graph CGI . Its vertex set is the set of colored
edges, i.e., V (CGI) = Dom(c0). Two different colored edges e1 and e2 (treated as vertices of
CGI) are adjacent in CGI when they are incident in G or there is a pair of endpoints u ∈ e1
and v ∈ e2 such that uv ∈ E(G) ∪ S.

In what follows the reduction in Lemma 8 is going to be pipelined with further reductions
going through Subset Rainbow k-Coloring Extension and Subset Rainbow k-

ESA 2016

58:6 On the Fine-Grained Complexity of Rainbow Coloring

Coloring to Rainbow k-Coloring. In these three reductions we need to keep the instance
small. To this end, the instance of Subset Rainbow 2-Coloring Extension resulting
in Lemma 8 has to satisfy some additional properties, which are formulated in the claim of
Lemma 8. Their role will become clearer later on.

I Lemma 8. Given a 3-SAT formula ϕ with n variables such that each clause of ϕ contains
exactly three variables and each variable occurs in at most four clauses, one can construct
in polynomial time an equivalent instance (G,S, c0) of Subset Rainbow 2-Coloring
Extension such that G has O(n2/3) vertices and O(n) edges. Moreover, ∆(G) = O(n1/3),
∆(V (G), S) = O(n1/3), |Dom(c0)| = O(n2/3) and along with the instance I = (G,S, c0) the
algorithm constructs a proper vertex 4-coloring of (V (G), E ∪ S) (so also of (V (G), S)) and
a proper vertex O(n1/3)-coloring of the precoloring conflict graph CGI .

Proof. Let m denote the number of clauses in ϕ. Observe that m ≤ 4
3n. Let Var and Cl

denote the sets of variables and clauses of ϕ. For more clarity, the two colors of the partial
coloring c0 will be called T and F . Let us describe the graph G along with a set of anti-edges
S. Graph G consists of two disjoint vertex subsets: the variable part and the clause part.
The intuition is that in any 2-edge coloring of G that extends c0 and satisfies all pairs in S

edge colors in the variable part represent an assignment of the variables of ϕ,
edge colors in the clause part represent a choice of literals that satisfy all the clauses, and
edge colors between the two parts make the values of the literals from the clause part
consistent with the assignment represented by the variable part.

The variable part. The vertices of the variable part consist of the middle set M and⌈
n1/3⌉ layers L1 ∪ L2 · · · ∪ Ldn1/3e. The middle set M consists of vertices mi for each
i = 1, . . . ,

⌈
n2/3⌉+ 9. For every i = 1, . . . ,

⌈
n1/3⌉ the layer Li consists of two parts: upper

L↑i = {ui,j : j = 1, . . . ,
⌈
n1/3⌉+ 3} and lower L↓i = {li,j : j = 1, . . . ,

⌈
n1/3⌉+ 3}.

We are going to define four functions: mid : Var → M , lay,up, low : Var → [
⌈
n1/3⌉].

Then, for every variable x ∈ Var we add two edges ulay(x),up(x)mid(x) and mid(x)llay(x),low(x).
Moreover, we add the pair px = {ulay(x),up(x), llay(x),low(x)} to S. In other words, x corres-
ponds to the 2-path ulay(x),up(x)mid(x)llay(x),low(x). Now we describe a careful construction
of the four functions, that guarantee several useful properties (for example edge-disjointness
of paths corresponding to different variables).

Let us define the variable conflict graph GV = (Var, EGV), where for two variables
x, y ∈ Var we have xy are adjacent iff they both occur in the same clause. Since every
variable occurs in at most 4 clauses, ∆(GV) ≤ 8. It follows that there is a proper vertex
9-coloring α : V ar → [9] of Gv, and it can be found by a simple linear time algorithm. Next,
each of the 9 color classes α−1(i) is partitioned into

⌈
|α−1(i)|/

⌈
n1/3⌉⌉ disjoint groups, each

of size at most
⌈
n1/3⌉. It follows that the total number ng of groups is at most

⌈
n2/3⌉+ 9.

Let us number the groups arbitrarily from 1 to ng and for every variable x ∈ Var, let g(x) be
the number of the group that contains x. Then we define mid(x) = mg(x). Since any group
contains only vertices of the same color we can state the following property:
(P1) If variables x and y occur in the same clause then mid(x) 6= mid(y).

Now, for every variable x we define its layer, i.e., the value of the function lay(x). Recall
that for every i = 1, . . . ,

⌈
n2/3⌉ + 9 the i-th group mid−1(mi) contains at most

⌈
n1/3⌉

variables. Inside each group, number the variables arbitrarily and let lay(x) be the number
of variable x in its group, lay(x) ∈ [n1/3]. This implies another important property.
(P2) If variables x and y belong to the same layer then mid(x) 6= mid(y).

Ł. Kowalik, J. Lauri, and A. Socała 58:7

Observe that every layer gets assigned at most
⌈
n2/3⌉+ 9 variables. For every layer Li

pick any injective function hi : lay−1(i)→ [
⌈
n1/3⌉+ 3]2. Then, for every variable x ∈ Var we

put (up(x), low(x)) = hlay(x)(x). Note that by (P2) we have the following.
(P3) For every variable x there is exactly one 2-path inG connecting px, namely (ulay(x),up(x),

mid(x), llay(x),low(x)).
(P4) For every pair of variables x, y the two unique paths connecting px and py are edge-

disjoint.

Although we are going to add more edges and vertices to G, none of these edges has any
endpoint in

⋃
i Li, so P3 will stay satisfied.

The clause part. The vertices of the clause part are partitioned into O(m1/3) clusters.
Similarly as in the case of variables, each clause is going to correspond to a pair of vertices
in the same cluster. Again, the assignment of clauses to clusters has to be done carefully. To
this end we introduce the clause conflict graph GC = (Cl, EGC). Two different clauses C1 and
C2 are adjacent in GC if C1 contains a variable x1 and C2 contains a variable x2 such that
mid(x1) = mid(x2). Fix a variable x1. Since |mid−1(mid(x1))| ≤

⌈
n1/3⌉, there are at most⌈

n1/3⌉ variables x2 such that mid(x1) = mid(x2). Since every clause contains 3 variables,
and each of them is in at most 4 clauses, ∆(GC) ≤ 12

⌈
n1/3⌉. It follows that in polynomial

time we can find a proper coloring β of the vertices of GC into at most 12
⌈
n1/3⌉+ 1 colors.

Moreover, if for any color j its color class β−1(j) is larger than
⌈
n2/3⌉ we partition it into⌈

|β−1(j)|/
⌈
n2/3⌉⌉ new colors. Clearly, in total we produce at most 4

3
⌈
n1/3⌉ new colors in

this way because m ≤ 4
3n ≤ 4

3
⌈
n1/3⌉ ·

⌈
n2/3⌉. Hence, in what follows we assume that each

color class of β is of size at most
⌈
n2/3⌉, and the total number of colors s ≤ 14

⌈
n1/3⌉+ 1. In

what follows we construct s clusters Q1, . . . , Qs. Every clause C ∈ Cl is going to correspond
to a pair of vertices in the cluster Qβ(C).

Fix i = 1, . . . , s. Let us describe the subgraph induced by cluster Qi. Define cluster
conflict graph Gi = (β−1(i), EGi). Two different clauses C1, C2 ∈ β−1(i) are adjacent in Gi if
there are three variables x1, x2, and x3 such that (i) C1 contains x1, (ii) C2 contains x2, (iii)
(lay(x1), up(x1)) = (lay(x3), up(x3)) and (iv) mid(x2) = mid(x3). Fix a variable x1 which
appears in a clause C1 ∈ β−1(i). By our construction, there are at most

⌈
n1/3⌉+ 2 other

variables x3 that map to the same pair as x1 by functions lay and up. For each such x3
there are at most

⌈
n1/3⌉ variables x2 such that mid(x2) = mid(x3); however, at most one of

these variables belongs to a clause C2 from the same cluster β−1(i), by the definition of the
coloring β. It follows that ∆(Gi) ≤ 12(

⌈
n1/3⌉+ 2). Hence in polynomial time we can find

a proper coloring γi of the vertices of Gi into at most 12(
⌈
n1/3⌉+ 2) + 1 colors. Similarly

as in the case of the coloring β, we can assume that each of the color classes of γi has at
most

⌈
n1/3⌉ clauses, at the expense of at most

⌈
n1/3⌉ additional colors. It follows that we

can construct in polynomial time a function g : Cl → [
⌈
n1/3⌉] such that for every cluster

i = 1, . . . , s and for every color class S of γi g is injective on S. Let ni ≤ 13
⌈
n1/3⌉ + 25

be the number of colors used by γi. For notational convenience, let us define a function
γ : Cl→ [maxi ni] such that for any clause C we have γ(C) = γβ(C)(C).

We are ready to define the vertices and edges of Qi. It is a union of three disjoint vertex
sets Ai, Bi, and Ci. We have Ai = {ai,j : j = 1, . . . ,

⌈
n1/3⌉}, Bi = {bki,j : j = 1, . . . , ni, k =

1, 2, 3}, and Ci = {ci,j : j = 1, . . . , ni}. For every j = 1, . . . , ni and for every k = 1, 2, 3 we
add edge ci,jbki,j to G, and we color it by c0 to color F . (These are the only edges pre-colored
in the whole graph G.) For every clause C ∈ β−1(i) we do the following. For each k = 1, 2, 3,
add the edge (ai,g(C), b

k
i,γ(C)) to G. Finally, add the pair {ai,g(C), ci,γ(C)} to S. Clearly, the

following holds:

ESA 2016

58:8 On the Fine-Grained Complexity of Rainbow Coloring

Variable Gadget Clause Gadget
(one of O(n1/3) clusters)

O(n1/3) O(n1/3) O(n1/3)

O(n1/3) O(n1/3) O(n1/3) O(n1/3)

O(n1/3)

O(n1/3)O(n2/3)

Figure 2 A simplified view of the obtained instance. Edges (solid lines) and requests (dashed
lines) representing one variable and one clause that contains this variable are presented on the
picture.

(P5) Let C be any clause. Let i = β(C) and let j = g(C). Then there are exactly three
2-paths between aβ(C),g(C) and cβ(C),γ(C), each going through bkβ(C),γ(C) for k = 1, 2, 3.

Connections between the two parts. Consider a clause C = {`1, `2, `3} and its k-th literal
`k for each k = 1, 2, 3. Then for some variable x we have `k = x or `k = x̄. We add the edge
bkβ(C),γ(C)mid(x) and we add the pair {mid(x), aβ(C),g(C)} to S. If `k = x, we also add the
pair {bkβ(C),γ(C), ulay(x),up(x)} to S; otherwise we add the pair {bkβ(C),γ(C), llay(x),low(x)} to S.
We claim the following.
(P6) Every edge between the two parts was added exactly once, i.e., for every edge uv such

that u is in the clause part and v is in the variable part, there is exactly one clause C
and exactly one literal `k ∈ C such that u = bkβ(C),γ(C) and v = mid(x), where x is the
variable in `k.

Indeed, assume for a contradiction that there is a clause C1 with its k1-th literal containing
x1 and a clause C2 with its k2-th literal containing x2 such that bk1

β(C1),γ(C1) = bk2
β(C2),γ(C2)

and mid(x1) = mid(x2). Then C1 6= C2 by (P1). Since mid(x1) = mid(x2), C1 and C2 are
adjacent in the clause conflict graph GC . It follows that β(C1) 6= β(C2), so two different
clusters share a vertex, a contradiction.

This finishes the description of the instance (G,S, c0). (See Fig. 2.)

From an assignment to a coloring. Let ξ : Var→ {T, F} be a satisfying assignment of ϕ.
We claim that there is a coloring c of E(G) which extends c0 and satisfies all pairs in S. We
define c as follows. Denote F = T , T = F and ξ(x) = ξ(x). For every variable x ∈ Var we
put c(ulay(x),up(x)mid(x)) = ξ(x) and c(mid(x)llay(x),low(x)) = ξ(x). By (P3) and (P4) each
edge is colored exactly once. Note that it satisfies all the pairs in S between vertices in the
variable part.

For each clause C and each of its literals `k do the following. Let us color the edge
aβ(C),g(C)b

k
β(C),γ(C) with the color ξ(`k). Since g is injective on color classes of γβ(C), after

processing all the literals in all the clauses, no edge is colored more than once. Recall that
for every clause C we added exactly one pair to S, namely {aβ(C),g(C), cβ(C),γ(C)}. Pick any
of C’s satisfied literals, say `k. Note that the pair {aβ(C),g(C), cβ(C),γ(C)} is then satisfied,

Ł. Kowalik, J. Lauri, and A. Socała 58:9

because edge aβ(C),g(C)b
k
β(C),γ(C) is colored by T and bkβ(C),γ(C)cβ(C),γ(C) is colored by F .

Hence all the pairs in S between vertices in the clause part are satisfied.
Now let us color the edges between the clause part and the variable part. Consider any

such edge uv, i.e., u is in the clause part and v is in the variable part. By (P6), there is
exactly one clause C and exactly one literal `k ∈ C such that u = bkβ(C),γ(C) and v = mid(x),
where x is the variable in `k. Color the edge bkβ(C),γ(C)mid(x) with the color ξ(`k). Then
the pair {mid(x), aβ(C),g(C)} is satisfied by the path (mid(x), bkβ(C),γ(C), aβ(C),g(C)), since
c(bkβ(C),γ(C)aβ(C),g(C)) = ξ(`k). Assume `k = x. Then the pair {bkβ(C),γ(C), ulay(x),up(x)}
is satisfied by the path (bkβ(C),γ(C),mid(x), ulay(x),up(x)), since its first edge is colored by
ξ(`k) = ξ(x) and its second edge is colored by ξ(x). Analogously, when `k = x̄, then the
pair {bkβ(C),γ(C), llay(x),low(x)} is satisfied by the path (bkβ(C),γ(C),mid(x), llay(x),low(x)), since
its first edge is colored by ξ(`k) = ξ(x) and its second edge is colored by ξ(x).

It follows that we colored all the edges and all the pairs in S are satisfied, so (G,S, c0) is
a YES-instance, as required.

From a coloring to an assignment. Let c : E(G)→ {T, F} be a coloring which extends c0
and satisfies all pairs in S. Consider the following variable assignment: for every x ∈ Var,
we put ξ(x) = c(ulay(x),up(x)mid(x)). We claim that ξ satisfies all the clauses of ϕ. Consider
an arbitrary clause C = {`1, `2, `3}.

Since the pair {aβ(C),g(C), cβ(C),γ(C)} is satisfied, there is a 2-color 2-path P between
aβ(C),g(C) and cβ(C),γ(C). Recall that N(cβ(C),γ(C)) = {bkβ(C),γ(C) : k = 1, 2, 3}, so there
is k = 1, 2, 3 such that bkβ(C),γ(C) is the internal vertex on P . Since c extends c0 and
c0(bkβ(C),γ(C)cβ(C),γ(C)) = F , we infer that c(aβ(C),g(C)b

k
β(C),γ(C)) = T . Let x be the variable

in the literal `k.
Since the pair {mid(x), aβ(C),g(C)} is satisfied, there is a 2-color 2-path Q between

mid(x) and aβ(C),g(C). Then the internal vertex of Q is bk′β(C′),γ(C′), for some clause C ′
and integer k′ = 1, 2, 3. Let y be the variable in the k′-th literal of C ′. Since there is an
edge between mid(x) and bk′β(C′),γ(C′), from (P6) we infer that mid(y) = mid(x). If C = C ′

and k′ 6= k, then by (P1) we get that mid(x) 6= mid(y), a contradiction. If C 6= C ′, since
mid(y) = mid(x), the clauses C and C ′ are adjacent in the clause conflict graph GC , so
β(C ′) 6= β(C). However, then the edge bk′β(C′),γ(C′)aβ(C),g(C) of Q goes between two clusters,
a contradiction. Hence C ′ = C and k′ = k, i.e., Q = (mid(x), bkβ(C),γ(C), aβ(C),g(C)). Since
c(bkβ(C),γ(C)aβ(C),g(C)) = T , we get c(mid(x)bkβ(C),γ(C)) = F . Now assume w.l.o.g. that
`k = x, the case `k = x̄ is analogous.

Since the pair {bkβ(C),γ(C), ulay(x),up(x)} is satisfied, there is a 2-color 2-path R between
bkβ(C),γ(C) and ulay(x),up(x). Then the internal vertex z of R belongs to M . By (P6) there is a
literal `k which belongs to a clause C2 and contains a variable x2 such that z = mid(x2) and
bkβ(C),γ(C) = bkβ(C2),γ(C2). In particular, β(C) = β(C2) and γ(C) = γ(C2). Assume C2 6= C.
There is a variable, say x3, corresponding to edge mid(x2)ulay(x),up(x), i.e., mid(x2) = mid(x3)
and ulay(x),up(x) = ulay(x3),up(x3). It follows that C and C2 are adjacent in Gβ(C), which
contradicts the fact that γ(C) = γ(C2). Hence C2 = C, i.e., there is exactly one 2-path
between bkβ(C),γ(C) and ulay(x),up(x), and it goes through mid(x). Since c(mid(x)bkβ(C),γ(C)) =
F and the path is 2-color, we get that c(ulay(x),up(x)mid(x)) = T . Hence ξ(`k) = ξ(x) = T ,
so clause C is satisfied, as required.

It finishes the proof. (The analysis of the size of the resulting instance and its other
properties described in the claim is not immediate; because of the space constraints we skip
them here.) J

ESA 2016

58:10 On the Fine-Grained Complexity of Rainbow Coloring

The proof of the following lemma is non-trivial, but standard (see lemmas 4 and 5 in the
full version [17].)

I Lemma 9 (F). For any fixed k ≥ 2, there is a polynomial time algorithm which given an
instance I = (G = (V,E), S, c0) of Subset Rainbow 2-Coloring Extension constructs
an equivalent instance (G′ = (V ′, E′), S′) of Subset Rainbow k-Coloring such that |V ′| =
O(k|V |k2`), |E′| = |E|+O(k|V |)+|Dom(c0)|+O(k2`), |S′| = |S|+|E|+2|Dom(c0)|+O(k2`).
Let GS = (V, S) and GS′ = (V ′, S′). Then ∆(GS′) = O(∆(GS) + ∆(G) + |Dom(c0)|/`).
Moreover if we are given a proper vertex p-coloring of the graph GS = (V, S) then we can
output also a proper vertex (p+ 3)-coloring of the graph GS′ = (V ′, S′).

2.3 From Subset Rainbow k-Coloring to Rainbow k-Coloring
The basic idea of our reduction from Subset Rainbow k-Coloring to Rainbow k-
Coloring is to modify the graph so that the pairs of vertices from Ē \ S can be somehow
trivially satisfied, without affecting the satisfiability of S. To this end we use a notion of
biclique covering number (called also bipartite dimension). The biclique covering number
bc(G) of a graph G is the smallest number of biclique subgraphs of G that cover all edges of
G. The following proposition is well-known.

I Proposition 10 (Folklore). It holds that bc(Kn) = dlogne, and the corresponding cover
can be constructed in polynomial time.

Proof. Assume V (Kn) = {0, . . . , n−1}. The i-th biclique contains edges between the vertices
that have 0 at the i-th bit and the vertices that have 1 at the i-th bit. J

Let G = (V1, V2, E) be a bipartite graph. Then Ĝ denotes the bipartite complement of G,
i.e, the bipartite graph (V1, V2, {v1v2 : v1 ∈ V1, v2 ∈ V2, and v1v2 6∈ E}). We will use the
following result of Jukna. Recall that we denote ∆1(G) = max{∆(G), 1}.

I Theorem 11 (Jukna [16]). If G is an n-vertex bipartite graph, then bc(Ĝ) = O(∆1(G) logn).

Let us call the cover from Theorem 11 the Jukna cover. In our application we need to be
able to compute the Jukna cover fast.

I Lemma 12. The Jukna cover can be constructed in (i) expected polynomial time, or (ii)
deterministic 2nnO(1) time.

Proof. Denote ∆ = ∆(G). If ∆ = 0 the claim follows from Proposition 10, so in what
follows assume ∆ ≥ 1. Jukna [16] shows a simple worst-case linear time algorithm which
samples a biclique in G. Then it is proved that after sampling t bicliques, the probability
that there is an edge not covered by one of the bicliques is at most n2e−t/(∆e). It follows
that the probability that more than ∆e(2 lnn + 1) samples are needed is at most e−1. If
after ∆e(2 lnn + 1) samples some edges is not covered, we discard all the bicliques found
and repeat the whole algorithm from the scratch. The expected number of such restarts is
1/(1− e−1) = O(1).

Now we proceed to the second part of the claim. Let G = (V1, V2, E). For every subset
A ⊆ V1 we define the biclique BA = (A,B,EA), where B is the set of vertices of V2 adjacent
in Ĝ to all vertices of A. Clearly, BA is a subgraph of Ĝ and for every subset A ⊆ V1 it can
be found in time linear in the size of Ĝ. Our deterministic algorithm works as follows: as
long as not all edges of Ĝ are covered, it picks the biclique BA which maximizes the number
of new covered edges of Ĝ. Since all the bicliques in the set {BA : A ⊆ V1} can be listed

Ł. Kowalik, J. Lauri, and A. Socała 58:11

in time O(2n|E(Ĝ)|), the total running time is t2nnO(1), where t is the size of the returned
cover. It suffices to show that t = O(∆ logn).

Jukna [16] shows that if set A is chosen by picking every vertex of V1 independently with
probability 1

∆ , then for any edge uv ∈ E(Ĝ), Pr[uv ∈ EA] ≥ 1
∆e . Consider any step of our

algorithm and let R ⊆ E(Ĝ) be the set of the edges of Ĝ which are not covered yet. By the
bound on Pr[uv ∈ EA] and the linearity of expectation a set A sampled as described above
covers at least |R|/(∆e) new edges in expectation. In particular, it implies that there exists
a set A ⊆ V1 that covers at least |R|/(∆e) new edges. Let α = (1− 1

∆e)−1. By the Taylor
expansion of log(1−x), it follows that t = O(logα |E(Ĝ)|) = O(logn/ logα) = O(∆ logn). J

I Lemma 13. Let G be an n-vertex graph with a given proper vertex p-coloring. Then the
edges of Ḡ can be covered by O(p2∆1(G) logn) bicliques from Ḡ so that any edge of G and
any biclique have at most one common vertex. This cover can be constructed in (i) expected
polynomial time, or (ii) deterministic 2nnO(1) time.

Proof. The edges of Ḡ between the vertices of any color class form a clique, so by Proposi-
tion 10 we can cover its edges using O(logn) bicliques. If an edge of G has both endpoints in
such a biclique, these endpoints have the same color, contradiction. For two different colors i
and j the edges of G between their color classes form a bipartite graph of maximum degree
at most ∆(G). Hence by Lemma 12 we can cover the edges of its bipartite complement using
O(∆1(G) logn) bicliques. If an edge uv of G has both endpoints in such a biclique, then either
(i) these endpoints have the same color, contradiction, or (ii) these endpoints belong to two
different parts of the biclique, so uv is in the biclique and hence uv ∈ E(Ḡ), a contradiction.
Summing over all color classes and pairs of color classes, we use O(p2∆1(G) logn) bicliques,
as required. J

Now we proceed to the actual reduction.

I Lemma 14. Given an instance (G = (V,E), S) of Subset Rainbow 2-Coloring
together with a proper p-coloring of the graph GS = (V, S), one can construct an equivalent
instance G′ of Rainbow 2-Coloring such that |V (G′)| = O(|V | + kp2∆1(GS) log |V |),
|E(G′)| = O(|E(G)|+(|V |+p2∆1(GS) log |V |)·p2∆1(GS) log |V |). The construction algorithm
can run in (i) expected polynomial time, or (ii) deterministic 2|V ||V |O(1) time.

Proof. Here we focus on the k = 2 case. The k ≥ 3 case is significantly more technical — see
the details in the full version. Let us consider a biclique covering of the complement of the
graph GS with q = O(p2∆1(GS) logn) bicliques (U1, V1;E1), (U2, V2;E2), . . . , (Uq, Vq;Eq)
as in Lemma 13. Let W = {w1, w2, . . . , wq}, T = {t1, t2, t3}, V (G′) = V ∪ W ∪ T and
E(G′) = E(G)∪(W×W)∪(T×T)∪({t2}×W)∪({t3}×(V ∪W))∪

(⋃
1≤i≤q{wi} × (Ui ∪ Vi)

)

(we abuse the notation assuming that × operator returns unordered pairs minus loops).
Because of the space limitation the equivalence proof is deferred to the full version. J

2.4 Putting everything together
By pipelining lemmas 7, 8, and 9 we get the following corollary.

I Corollary 15. Fix k ≥ 2. Given a 3-SAT formula ϕ with m clauses one can construct in
polynomial time an equivalent instance (G = (V,E), S) of Subset Rainbow k-Coloring
such that |V | = O(m2/3), |E| = O(m), ∆((V, S)) = O(m1/3), and the graph GS = (V, S) is
O(1)-colorable.

ESA 2016

58:12 On the Fine-Grained Complexity of Rainbow Coloring

Note that in Corollary 15 we have |S| = |V |∆((V, S)) = O(m). It follows that the
Sparsification Lemma (Lemma 6) and Corollary 15 imply Theorem 3.

Pipelining Corollary 15 and Lemma 14 gives the following corollary.

I Corollary 16. Fix k ≥ 2. Given a 3-SAT formula ϕ with O(m) clauses one can construct an
equivalent instance G of Rainbow k-Coloring with O(m2/3) vertices and O(m logm) edges.
The construction algorithm can run in (i) expected polynomial time, or (ii) deterministic
2O(m2/3) time.

Again, the above and the Sparsification Lemma immediately imply Theorem 2.

3 Algorithms for Subset Rainbow k-Coloring

In this section we study FPT algorithms for Subset Rainbow k-Coloring parameterized
by |S|. We provide two such algorithms, based on different approaches: one for k = 2 case,
and one (slightly slower) for the general case. Consider an instance (G,S) of the Subset
Rainbow k-Coloring problem. Note that we can assume that S ⊆ Ē, since any constraint
{u, v} ∈ E is satisfied in every edge coloring. Moreover, we say that a pair {u, v} is feasible
when the distance between u and v is at most k. The set of all feasible pairs is denoted
by F (G). Clearly, when S contains a request which is not feasible, then (G,S) is a trivial
NO-instance. Hence, throughout this section we assume S ⊆ Ē ∩ F (G).

3.1 The k = 2 case
For any X ⊆ S let PX be the set of all 2-edge paths between the pairs of vertices in X.
Denote E(PX) =

⋃
P∈PX E(P). For two edges e1, e2 ∈ E(G) we say that e1 and e2 are linked

by X, denoted as e1 ∼X e2 when there are two paths P1, P2 ∈ PX (possibly P1 = P2) such
that e1 ∈ E(P1), e2 ∈ E(P2) and E(P1) ∩ E(P2) 6= ∅. Let ≈X be the transitive closure of
∼X . Then ≈X is an equivalence relation. Recall that E(G)/ ≈X denotes the quotient set of
the relation ≈X . The main observation of this section is the following theorem.

I Theorem 17. The number of 2-colorings of E(G) that satisfy all the pairs in S is equal to∑
X⊆S(−1)|X|2|E(G)/≈X |.

In the proof we make use of the well-known inclusion-exclusion principle. Below we state
it in the intersection version (see, e.g., [10])

I Theorem 18 (Inclusion–exclusion principle, intersection version). Let A1, . . . , An ⊆ U , where
U is a finite set. Denote

⋂
i∈∅(U \Ai) = U . Then

∣∣ ⋂

i∈[n]

Ai
∣∣ =

∑

X⊆[n]

(−1)|X|
∣∣ ⋂

i∈X
(U \Ai)

∣∣.

Proof of Theorem 17. Let us define, for every pair {u, v} ∈ S (say, u < v), the set Au,v of
2-edge colorings of G that satisfy {u, v}. Note that the number of rainbow 2-colorings of G
that satisfy all the pairs in S is equal to |⋂{u,v}∈S Au,v|. By Theorem 18 it suffices to show
that, for any subset X ⊆ S, the number #X of 2-colorings such that none of the pairs in X
is satisfied, equals 2|E(G)/≈X |.

Fix any coloring c that does not satisfy any pair from X. Then every path from PX has
both edges of the same color. Hence, for two edges e1, e2 ∈ E(G), if e1 ∼X e2 then e1 and e2
are colored by c with the same color. It follows that for any equivalence class A of ≈X , all
edges of A are have the same color in c. This proves that #X ≤ 2|E(G)/≈X |.

Ł. Kowalik, J. Lauri, and A. Socała 58:13

For every function c0 : (E(G)/ ≈X)→ {1, 2} we can define the coloring c : E(G)→ {1, 2}
by putting c(e) = c0([e]≈X) for every edge e ∈ E(G). (Note that the edges that do not belong
to any path in PX form singleton equivalence classes.) Then, c does not satisfy any pair from
X, because if some pair {u, v} is satisfied then there is a 2-color path uxv; but ux ∼X xv, so
[ux]≈X = [xv]≈X and c(ux) = c(xv), a contradiction. It follows that #X ≥ 2|E(G)/≈X |. J

Since it is a standard exercise to compute the relation X ⊆ S in O(|E|+ |S| · |V |) time
(see the full version), we get the following corollary. (Let us remark here that the algorithm
from Corollary 19 only decides whether the coloring exists, without finding it. However, by a
minor modification of the algorithm it can construct the coloring; see the full version.)

I Corollary 19. For any graph G = (V,E) and a set of requests S the number of 2-colorings
of E that satisfy all the pairs in S can be computed in O(2|S|(|E| + |S| · |V |)) time and
polynomial space. In particular, Subset Rainbow 2-Coloring can be decided within the
same time.

3.2 The general case
In this section we use partial colorings. For convenience, a partial coloring is represented
as a function c : E → [k] ∪ {⊥}, where the value ⊥ corresponds to an uncolored edge. By
Dom(c) we denote the domain of the corresponding partial function, i.e., Dom(c) = c−1([k]).
The partial coloring which does not color anything, i.e., is constantly equal to ⊥ is denoted
by c⊥.

For a graph G = (V,E) consider a partial edge coloring c : E → [k] ∪ {⊥}. A guide
function is any function of the form f : S →

(Dom(c)
≤k

)
, i.e., any function that assigns sets of

at most k colored edges to all requests in S. A constant guide function equal to ∅ for every
request in S is denoted by gS,∅. Pick any pair {u, v} ∈ S. We say that a walk W connecting
u and v is f -guided if every color appears at most once onW , and f({u, v}) ⊆ E(W). We say
that a coloring c is (f, S)-rainbow when for every pair {u, v} ∈ S there is an f -guided walk
between u and v. Note that (G,S) is a YES-instance of Subset Rainbow k-Coloring iff
there is an (gS,∅, S)-rainbow coloring. Indeed, every rainbow walk contains a rainbow path.

The following lemma is going to be useful in our branching algorithm.

I Lemma 20. Let G = (V,E) be a graph, and let S be a set of requests. Let c0 : E → [k]
be a partial edge coloring and let f : S →

(Dom(c0)
≤k

)
be a guide function. Then, given a pair

{u, v} ∈ S in time 2knO(1) one can find an f -guided u-v walk of length at most k, if it exists.

Proof. The algorithm is as follows. We can assume that f({u, v}) does not contain two edges
of the same color, for otherwise the requested walk does not exist. For every e ∈ f({u, v})
we remove all the edges of color c0(e). Next, we put back edges of f({u, v}). Then it
suffices to find in the resulting graph G′ any u-v path of length at most k and with no
repeated colors that visits all the colors of the edges in f({u, v}). This is done using dynamic
programming. For every vertex x ∈ V , subset X ⊆ [k] and integer ` = 0, . . . , k we find the
boolean value T [x,X, `] which is true iff there is a u-x walk of length ` which does not repeat
colors and visits all the colors from X, but not more. We initialize T [u, ∅, 0] = true and
T [x, ∅, 0] = false for every x 6= u. Next we iterate through the remaining triples (x,X, `), in
the nondecreasing order of ` and X’s cardinalities. The value of T [x,X, `] is then computed
using the formula

T [x,X, `] =
∨

yx∈c−1
0 (X∪{⊥})∩E(G′)

T [y,X \ {c0(yx)}, `− 1].

ESA 2016

58:14 On the Fine-Grained Complexity of Rainbow Coloring

Pseudocode 1: FindColoring(S0, c0, f)
1 if S0 = ∅ then
2 return c0

3 if for some r ∈ S0 there are edges e1, e2 ∈ f(r) with c0(e1) = c0(e2) then
4 return null
5 Pick any {u, v} ∈ S0;
6 Find any f -guided u-v walk W of length at most k using Lemma 20;
7 if W does not exist then
8 return null
9 Let c1 be obtained from c0 by coloring the uncolored edges of W to get a rainbow walk;

10 if FindColoring(S0 \ {u, v}, c1, f |S0\{u,v}) 6= null then return the coloring found;
11 for e ∈ E(W) \ Dom(c0) do
12 for α ∈ [k] do
13 for r ∈ S0 \ {{u, v}} do
14 Let ce,α be obtained from c0 by coloring e with α;
15 Let fe,r be obtained from f by putting f(r) := f(r) ∪ {e};
16 if FindColoring(S0, ce,α, fe,r) 6= null then return the coloring found;

17 return null

The requested walk exists iff T [v,X, `] = true for any ` = 0, . . . , k and X such that
c0(f({u, v})) ⊆ X. The walk is retrieved using standard DP methods. J

Now we are ready to describe our branching algorithm. Let (G = (V,E), S) be the input
instance. Our algorithm consists of a recursive procedure FindColoring which gets three
parameters: S0 (a set of requests), c0 : E → [k] ∪ {⊥} (a partial coloring), and a guide
function f : S →

(Dom(c0)
≤k

)
. It is assumed that for every request r ∈ S, every pair of different

edges e1, e2 ∈ f(r) is colored differently by c0. The goal of the procedure FindColoring is
to find an (f, S0)-rainbow coloring c : E → [k] which extends c0. Thus the whole problem is
solved by invoking FindColoring(S, c⊥, gS,∅). A rough description of FindColoring is
as follows. We pick any pair {u, v} ∈ S0 and we find any f -guided u-v walk W of length at
most k using Lemma 20. Let c1 be obtained from c0 by coloring the uncolored edges of W to
get a rainbow walk. If FindColoring(S0 \ {u, v}, c1, f |S0\{u,v}) returns a coloring, we are
done. But if no such coloring exists then we know that we made a wrong decision: coloring
some of the uncolored edges e of W into c1(e) (instead of some color α) makes some other
request r ∈ S0 \ {{u, v}} impossible to satisfy. For every possible triple (e, α, r) we invoke
FindColoring with the same set of requests S0, partial coloring c0 extended by coloring e
with α, and the guide function f extended by putting f(r) := f(r) ∪ {e}.

A precise description of procedure FindColoring can be found in Pseudocode 1. The
following lemma proves its correctness.

I Lemma 21. Procedure FindColoring invoked with parameters (S0, c0, f) finds an (f, S0)-
rainbow coloring c : E → [k] which extends c0, whenever it exists.

Proof. The proof is by induction on the sum of |S0| and the number of uncolored edges. It
is clear that if |S0| = 0 or all the edges are colored then the algorithm behaves correctly. In
the induction step, the only non-trivial thing to check is whether any of the calls in lines 10
or 16 returns a coloring, provided that there is a solution, i.e., an (f, S0)-rainbow coloring
c : E → [k] which extends c0. Assume that no coloring is returned in Line 16. Then for every
edge e ∈ E(W) \Dom(c0), and request r ∈ S0 \ {{u, v}} coloring c is not a (fe,r, S0)-rainbow
coloring, for otherwise the call FindColoring(S0, ce,c(e), fe,r) returns a coloring. If follows
that for every edge e ∈ E(W) \Dom(c0) and request r ∈ S0 \ {{u, v}} the walk that realizes

Ł. Kowalik, J. Lauri, and A. Socała 58:15

the request r in the coloring c does not contain e. Hence, the following coloring

c′(e) =
{
c(e) if e 6∈ E(W),
c1(e) if e ∈ E(W).

is another (f, S0)-rainbow coloring, and it extends c1. It follows that the call in Line 10
returns a coloring, as required. J

I Theorem 22. For every integer k, there is an FPT algorithm for Subset Rainbow k-
Coloring parameterized by |S|. The algorithm runs in time (k2|S|)k|S|2knO(1), in particular
in |S|O(|S|)nO(1) time for every fixed k.

Proof. By Lemma 21 Subset Rainbow k-Coloring is solved by invoking FindColoring(
S, c⊥, gS,∅). Note that whenever we go deeper in the recursion either some request of S0 gets
satisfied, or |f(r)| increases for some r ∈ S0. When |f(r)| increases to k+1, the corresponding
recursive call returns null immediately (because the condition in Line 3 holds). It follows
that the depth of the recursion is at most |S|k. Since in every call of Subset Rainbow
k-Coloring the algorithm uses time 2knO(1) (by Lemma 21) and branches into at most
1 + k2(|S| − 1) ≤ k2|S| recursive calls, the total time is (k2|S|)k|S|2knO(1), as required. J

4 Further Work

We believe that this work only initiates the study of fine-grained complexity of variants
of Rainbow k-Coloring. In particular, many open questions are still unanswered. The
ultimate goal is certainly to get tight bounds. We pose the following two conjectures.

I Conjecture 23. For any integer k ≥ 2, there is no 2o(|E|)nO(1)-time algorithm for Rainbow
k-Coloring, unless ETH fails.

I Conjecture 24. For any integer k ≥ 2, there is no 2o(n2)nO(1)-time algorithm for Rainbow
k-Coloring, unless ETH fails.

Note that in this work we have settled Conjecture 23 for Subset Rainbow k-Coloring,
and for Rainbow k-Coloring we showed a slightly weaker, 2o(|E|/ log |E|)nO(1) bound.
However, avoiding this log |E| factor seems to constitute a considerable technical challenge.

In this paper we gave two algorithms for Subset Rainbow k-Coloring parameterized
by |S|, one working in 2|S|nO(1) time for k = 2 and another, working in time |S|O(|S|)nO(1)

for every fixed k. We conjecture that there exists an algorithm running in time 2O(|S|)nO(1)

for every fixed k.
Finally, we would like to propose yet another parameterization of Rainbow k-Coloring.

Assume we are given a graph G = (V,E) and a subset of vertices S ⊆ V . In the Steiner
Rainbow k-Coloring problem the goal is to determine whether there is a rainbow k-coloring
such that every pair of vertices in S is connected by a rainbow path. By our Theorem 2,
Steiner Rainbow k-Coloring has no algorithm running in time 2o(|S|3/2), under ETH.
On the other hand, our algorithm for Subset Rainbow k-Coloring implies that Steiner
Rainbow k-Coloring parameterized by |S| admits an FPT algorithm with running time
of 2O(|S|2 log |S|)nO(1). It would be interesting make the gap between these bounds smaller.

References
1 Prabhanjan Ananth, Meghana Nasre, and Kanthi K. Sarpatwar. Rainbow connectivity:

Hardness and tractability. In IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS 2011), pages 241–251, 2011.

ESA 2016

58:16 On the Fine-Grained Complexity of Rainbow Coloring

2 Yair Caro, Arie Lev, Yehuda Roditty, Zsolt Tuza, and Raphael Yuster. On rainbow con-
nection. Electron. J. Combin, 15(1):R57, 2008.

3 Sourav Chakraborty, Eldar Fischer, Arie Matsliah, and Raphael Yuster. Hardness and
algorithms for rainbow connection. J. of Combinatorial Optimization, 21(3):330–347, 2009.

4 L. Sunil Chandran and Deepak Rajendraprasad. Rainbow Colouring of Split and Threshold
Graphs. Computing and Combinatorics, pages 181–192, 2012.

5 L. Sunil Chandran and Deepak Rajendraprasad. Inapproximability of rainbow colouring.
In IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2013), pages 153–162, 2013.

6 L. Sunil Chandran, Deepak Rajendraprasad, and Marek Tesař. Rainbow colouring of split
graphs. Discrete Applied Mathematics, 2015. doi:10.1016/j.dam.2015.05.021.

7 Gary Chartrand, Garry L. Johns, Kathleen A. McKeon, and Ping Zhang. Rainbow connec-
tion in graphs. Mathematica Bohemica, 133(1), 2008.

8 Gary Chartrand and Ping Zhang. Chromatic graph theory. CRC press, 2008.
9 Marek Cygan, Fedor V. Fomin, Alexander Golovnev, Alexander S. Kulikov, Ivan Mihajlin,

Jakub Pachocki, and Arkadiusz Socała. Tight bounds for graph homomorphism and sub-
graph isomorphism. In Proc. of the 27th Annual ACM-SIAM Symp. on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1643–1649, 2016.

10 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Dániel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

11 Reinhard Diestel. Graph Theory. Springer-Verlag Heidelberg, 2010.
12 Eduard Eiben, Robert Ganian, and Juho Lauri. On the complexity of rainbow coloring

problems. In Proceedings of the Twenty-Sixth International Workshop on Combinatorial
Algorithms, IWOCA 2015, Verona, Italy, October 5-7, pages 209–220, 2015. URL: http:
//arxiv.org/abs/1510.03614, doi:10.1007/978-3-319-29516-9_18.

13 Michael Held and Richard M. Karp. A dynamic programming approach to sequencing
problems. Journal of SIAM, 10:196–210, 1962.

14 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

15 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

16 Stasys Jukna. On set intersection representations of graphs. Journal of Graph Theory,
61(1):55–75, 2009. doi:10.1002/jgt.20367.

17 Lukasz Kowalik, Juho Lauri, and Arkadiusz Socala. On the fine-grained complexity of rain-
bow coloring. CoRR, abs/1602.05608, 2016. URL: http://arxiv.org/abs/1602.05608.

18 Eugene L. Lawler. A note on the complexity of the chromatic number problem. Information
Processing Letters, 5(3):66–67, 1976.

19 Van Bang Le and Zsolt Tuza. Finding optimal rainbow connection is hard. Technical
Report CS-03-09, Universität Rostock, 2009.

20 Xueliang Li, Yongtang Shi, and Yuefang Sun. Rainbow Connections of Graphs: A Survey.
Graphs and Combinatorics, 29(1):1–38, 2012.

21 Arkadiusz Socała. Tight lower bound for the channel assignment problem. In Proceedings
of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015,
San Diego, CA, USA, January 4-6, 2015, pages 662–675, 2015.

22 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Math-
ematics, 8(1):85–89, 1984. doi:10.1016/0166-218X(84)90081-7.

23 Kei Uchizawa, Takanori Aoki, Takehiro Ito, Akira Suzuki, and Xiao Zhou. On the Rainbow
Connectivity of Graphs: Complexity and FPT Algorithms. Algorithmica, 67(2):161–179,
2013.

ISBN 978-952-15-3836-0
ISSN 1459-2045

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

	1428 Juho Lauri etukansi
	1428lauri
	thesis_library
	Abstract
	Preface
	Contents
	List of publications
	Introduction
	Background
	Summary of the main contributions
	Author's contribution
	The structure of the thesis

	Preliminaries
	Notation
	Structural graph theory
	Rainbow connections in graphs
	Fixed-parameter tractability
	Lower bounds on exact algorithms

	Hardness of finding rainbow paths
	Hardness barriers
	A charting of the FPT landscape
	On fast algorithms for solving rainbow connectivity

	Algorithmic aspects of rainbow coloring graphs
	Hardness and lower bounds for rainbow coloring
	Graphs with bounded structural parameters
	Variants of rainbow coloring through parameterization

	Bounds on the rainbow connection numbers
	Upper bounds via colorings and domination
	Rainbow coloring block graphs
	Rainbow coloring chordal diametral path graphs

	Conclusions
	Conjectures and open problems

	Appendices
	A compendium of common problems
	Rainbow connectivity
	Rainbow coloring
	Other problems

	Bibliography

	1428 Juho Lauri takakansi

