1,100 research outputs found

    An efficient implementation of lattice-ladder multilayer perceptrons in field programmable gate arrays

    Get PDF
    The implementation efficiency of electronic systems is a combination of conflicting requirements, as increasing volumes of computations, accelerating the exchange of data, at the same time increasing energy consumption forcing the researchers not only to optimize the algorithm, but also to quickly implement in a specialized hardware. Therefore in this work, the problem of efficient and straightforward implementation of operating in a real-time electronic intelligent systems on field-programmable gate array (FPGA) is tackled. The object of research is specialized FPGA intellectual property (IP) cores that operate in a real-time. In the thesis the following main aspects of the research object are investigated: implementation criteria and techniques. The aim of the thesis is to optimize the FPGA implementation process of selected class dynamic artificial neural networks. In order to solve stated problem and reach the goal following main tasks of the thesis are formulated: rationalize the selection of a class of Lattice-Ladder Multi-Layer Perceptron (LLMLP) and its electronic intelligent system test-bed – a speaker dependent Lithuanian speech recognizer, to be created and investigated; develop dedicated technique for implementation of LLMLP class on FPGA that is based on specialized efficiency criteria for a circuitry synthesis; develop and experimentally affirm the efficiency of optimized FPGA IP cores used in Lithuanian speech recognizer. The dissertation contains: introduction, four chapters and general conclusions. The first chapter reveals the fundamental knowledge on computer-aideddesign, artificial neural networks and speech recognition implementation on FPGA. In the second chapter the efficiency criteria and technique of LLMLP IP cores implementation are proposed in order to make multi-objective optimization of throughput, LLMLP complexity and resource utilization. The data flow graphs are applied for optimization of LLMLP computations. The optimized neuron processing element is proposed. The IP cores for features extraction and comparison are developed for Lithuanian speech recognizer and analyzed in third chapter. The fourth chapter is devoted for experimental verification of developed numerous LLMLP IP cores. The experiments of isolated word recognition accuracy and speed for different speakers, signal to noise ratios, features extraction and accelerated comparison methods were performed. The main results of the thesis were published in 12 scientific publications: eight of them were printed in peer-reviewed scientific journals, four of them in a Thomson Reuters Web of Science database, four articles – in conference proceedings. The results were presented in 17 scientific conferences

    Rapid Industrial Prototyping and SoC Design of 3G/4G Wireless Systems Using an HLS Methodology

    Get PDF
    Many very-high-complexity signal processing algorithms are required in future wireless systems, giving tremendous challenges to real-time implementations. In this paper, we present our industrial rapid prototyping experiences on 3G/4G wireless systems using advanced signal processing algorithms in MIMO-CDMA and MIMO-OFDM systems. Core system design issues are studied and advanced receiver algorithms suitable for implementation are proposed for synchronization, MIMO equalization, and detection. We then present VLSI-oriented complexity reduction schemes and demonstrate how to interact these high-complexity algorithms with an HLS-based methodology for extensive design space exploration. This is achieved by abstracting the main effort from hardware iterations to the algorithmic C/C++ fixed-point design. We also analyze the advantages and limitations of the methodology. Our industrial design experience demonstrates that it is possible to enable an extensive architectural analysis in a short-time frame using HLS methodology, which significantly shortens the time to market for wireless systems.National Science Foundatio

    Computer Architectures to Close the Loop in Real-time Optimization

    Get PDF
    © 2015 IEEE.Many modern control, automation, signal processing and machine learning applications rely on solving a sequence of optimization problems, which are updated with measurements of a real system that evolves in time. The solutions of each of these optimization problems are then used to make decisions, which may be followed by changing some parameters of the physical system, thereby resulting in a feedback loop between the computing and the physical system. Real-time optimization is not the same as fast optimization, due to the fact that the computation is affected by an uncertain system that evolves in time. The suitability of a design should therefore not be judged from the optimality of a single optimization problem, but based on the evolution of the entire cyber-physical system. The algorithms and hardware used for solving a single optimization problem in the office might therefore be far from ideal when solving a sequence of real-time optimization problems. Instead of there being a single, optimal design, one has to trade-off a number of objectives, including performance, robustness, energy usage, size and cost. We therefore provide here a tutorial introduction to some of the questions and implementation issues that arise in real-time optimization applications. We will concentrate on some of the decisions that have to be made when designing the computing architecture and algorithm and argue that the choice of one informs the other

    Simulated annealing based datapath synthesis

    Get PDF

    Acceleration Techniques for Sparse Recovery Based Plane-wave Decomposition of a Sound Field

    Get PDF
    Plane-wave decomposition by sparse recovery is a reliable and accurate technique for plane-wave decomposition which can be used for source localization, beamforming, etc. In this work, we introduce techniques to accelerate the plane-wave decomposition by sparse recovery. The method consists of two main algorithms which are spherical Fourier transformation (SFT) and sparse recovery. Comparing the two algorithms, the sparse recovery is the most computationally intensive. We implement the SFT on an FPGA and the sparse recovery on a multithreaded computing platform. Then the multithreaded computing platform could be fully utilized for the sparse recovery. On the other hand, implementing the SFT on an FPGA helps to flexibly integrate the microphones and improve the portability of the microphone array. For implementing the SFT on an FPGA, we develop a scalable FPGA design model that enables the quick design of the SFT architecture on FPGAs. The model considers the number of microphones, the number of SFT channels and the cost of the FPGA and provides the design of a resource optimized and cost-effective FPGA architecture as the output. Then we investigate the performance of the sparse recovery algorithm executed on various multithreaded computing platforms (i.e., chip-multiprocessor, multiprocessor, GPU, manycore). Finally, we investigate the influence of modifying the dictionary size on the computational performance and the accuracy of the sparse recovery algorithms. We introduce novel sparse-recovery techniques which use non-uniform dictionaries to improve the performance of the sparse recovery on a parallel architecture

    A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

    Full text link
    Fully-autonomous miniaturized robots (e.g., drones), with artificial intelligence (AI) based visual navigation capabilities are extremely challenging drivers of Internet-of-Things edge intelligence capabilities. Visual navigation based on AI approaches, such as deep neural networks (DNNs) are becoming pervasive for standard-size drones, but are considered out of reach for nanodrones with size of a few cm2{}^\mathrm{2}. In this work, we present the first (to the best of our knowledge) demonstration of a navigation engine for autonomous nano-drones capable of closed-loop end-to-end DNN-based visual navigation. To achieve this goal we developed a complete methodology for parallel execution of complex DNNs directly on-bard of resource-constrained milliwatt-scale nodes. Our system is based on GAP8, a novel parallel ultra-low-power computing platform, and a 27 g commercial, open-source CrazyFlie 2.0 nano-quadrotor. As part of our general methodology we discuss the software mapping techniques that enable the state-of-the-art deep convolutional neural network presented in [1] to be fully executed on-board within a strict 6 fps real-time constraint with no compromise in terms of flight results, while all processing is done with only 64 mW on average. Our navigation engine is flexible and can be used to span a wide performance range: at its peak performance corner it achieves 18 fps while still consuming on average just 3.5% of the power envelope of the deployed nano-aircraft.Comment: 15 pages, 13 figures, 5 tables, 2 listings, accepted for publication in the IEEE Internet of Things Journal (IEEE IOTJ

    Variation-aware high-level DSP circuit design optimisation framework for FPGAs

    Get PDF
    The constant technology shrinking and the increasing demand for systems that operate under different power profiles with the maximum performance, have motivated the work in this thesis. Modern design tools that target FPGA devices take a conservative approach in the estimation of the maximum performance that can be achieved by a design when it is placed on a device, accounting for any variability in the fabrication process of the device. The work presented here takes a new view on the performance improvement of DSP designs by pushing them into the error-prone regime, as defined by the synthesis tools, and by investigating methodologies that reduce the impact of timing errors at the output of the system. In this work two novel error reduction techniques are proposed to address this problem. One is based on reduced-precision redundancy and the other on an error optimisation framework that uses information from a prior characterisation of the device. The first one is a generic architecture that is appended to existing arithmetic operators. The second defines the high-level parameters of the algorithm without using extra resources. Both of these methods allow to achieve graceful degradation whilst variation increases. A comparison of the new methods is laid against the existing methodologies, and conclusions drawn on the tradeoffs between their cost, in terms of resources and errors, and their benefits in terms of throughput. In some cases it is possible to double the performance of the design while still producing valid results.Open Acces

    FPGAs in Industrial Control Applications

    Get PDF
    The aim of this paper is to review the state-of-the-art of Field Programmable Gate Array (FPGA) technologies and their contribution to industrial control applications. Authors start by addressing various research fields which can exploit the advantages of FPGAs. The features of these devices are then presented, followed by their corresponding design tools. To illustrate the benefits of using FPGAs in the case of complex control applications, a sensorless motor controller has been treated. This controller is based on the Extended Kalman Filter. Its development has been made according to a dedicated design methodology, which is also discussed. The use of FPGAs to implement artificial intelligence-based industrial controllers is then briefly reviewed. The final section presents two short case studies of Neural Network control systems designs targeting FPGAs

    Optimization of DSSS Receivers Using Hardware-in-the-Loop Simulations

    Get PDF
    Over the years, there has been significant interest in defining a hardware abstraction layer to facilitate code reuse in software defined radio (SDR) applications. Designers are looking for a way to enable application software to specify a waveform, configure the platform, and control digital signal processing (DSP) functions in a hardware platform in a way that insulates it from the details of realization. This thesis presents a tool-based methodolgy for developing and optimizing a Direct Sequence Spread Spectrum (DSSS) transceiver deployed in custom hardware like Field Programmble Gate Arrays (FPGAs). The system model consists of a tranmitter which employs a quadrature phase shift keying (QPSK) modulation scheme, an additive white Gaussian noise (AWGN) channel, and a receiver whose main parts consist of an analog-to-digital converter (ADC), digital down converter (DDC), image rejection low-pass filter (LPF), carrier phase locked loop (PLL), tracking locked loop, down-sampler, spread spectrum correlators, and rectangular-to-polar converter. The design methodology is based on a new programming model for FPGAs developed in the industry by Xilinx Inc. The Xilinx System Generator for DSP software tool provides design portability and streamlines system development by enabling engineers to create and validate a system model in Xilinx FPGAs. By providing hierarchical modeling and automatic HDL code generation for programmable devices, designs can be easily verified through hardware-in-the-loop (HIL) simulations. HIL provides a significant increase in simulation speed which allows optimization of the receiver design with respect to the datapath size for different functional parts of the receiver. The parameterized datapath points used in the simulation are ADC resolution, DDC datapath size, LPF datapath size, correlator height, correlator datapath size, and rectangular-to-polar datapath size. These parameters are changed in the software enviornment and tested for bit error rate (BER) performance through real-time hardware simualtions. The final result presents a system design with minimum harware area occupancy relative to an acceptable BER degradation

    EPICURE: A partitioning and co-design framework for reconfigurable computing

    Get PDF
    This paper presents a new design methodology able to bridge the gap between an abstract specification and a heterogeneous reconfigurable architecture. The EPICURE contribution is the result of a joint study on abstraction/refinement methods and a smart reconfigurable architecture within the formal Esterel design tools suite. The original points of this work are: (i) a generic HW/SW interface model, (ii) a specification methodology that handles the control, and includes efficient verification and HW/SW synthesis capabilities, (iii) a method for parallelism exploration based on abstract resources/performance estimation expressed in terms of area/delay tradeoffs, (iv) a HW/SW partitioning approach that refines the specification into explicit HW configurations and the associated SW control. The EPICURE framework shows how a cooperation of complementary methodologies and CAD tools associated with a relevant architecture can signficantly improve the designer productivity, especially in the context of reconfigurable architectures
    corecore