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Abstract 

The behavioural synthesis procedure aims to produce optimised register-transfer level 

datapath descriptions from an algorithmic problem definition, normally expressed in a 

high-level programming language. The procedure can be partitioned into a number of 

subtasks linked by a serial synthesis flow. Graph theoretic algorithms can be used to 

provide solutions to these subtasks. Many of these techniques, however, belong to a 

class of algorithm for which there is no exact solution computable in polynomial time. 

To overcome this problem, heuristics are used to constrain the solution space. The 

introduction of heuristics can cause the algorithm to terminate in a local cost 

minimum. 

This thesis supports a global formulation of the behavioural synthesis problem. An 

algorithm which can avoid local minima, simulated annealing, forms the basis of the 

synthesis system reported. 

A modular software system is presented in support of this approach. A novel data 

structure enables multiple degrees of optimisation freedom within the datapath 

solution space. Synthesis primitives, tightly coupled to a solution costing mechanism 

directed towards the prevalent datapath implementation technologies, form the core of 

the system. The software is exercised over small and large-scale synthesis 

benchmarks. The synthesis paradigm is extended by the provision of optimisation 

routines capable of supporting the generation of functional pipelines. 
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Introduction 

1 Introduction 

The last decade has seen enormous leaps in the complexity of Integrated Circuits 

(ICs). Correspondingly, the design process associated with these circuits has grown 

lengthy and expensive. 

Whereas the first ICs had typical complexities ranging from a few tens to a few 

hundreds of discrete logic structures, current devices have complexities ranging from 

many thousands to, in the case of dynamic Random Access Memory (RAM) designs, 

millions of logic structures. This increased complexity has arisen through advances in 

process technology and shrinking mask geometries. Moore's law [Moore79] states that 

the number of discrete components that can be placed on a single substrate will double 

every eighteen months. This affords engineers greater opportunities to increase the 

levels of integration within their designs, towards the level of total system integration 

on a single substrate. 
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Introduction 

A good example of this effort is the evolution of a single-chip fingerprint recognition 

system [Anderson9l] developed at the University of Edinburgh. In its original 

conception, the system was composed of two Application Specific Integrated Circuits 

(ASICs) executing the recognition algorithm, an imaging subsystem, and two printed 

circuit boards containing interface and support logic. Subsequently, the recognition 

algorithms together with the imaging array were successfully integrated onto a -single 

substrate [Anderson93]. 

While advances in process technology will ultimately be limited by fundamental 

physical constraints, the potential increase in functionality offered by shrinking mask 

geometries will act as a significant incentive to systems engineers to realise their 

designs in silicon for some time to come. 

1.1 ASIC Design Domains 
An ASIC may be specified in four separate domains: 

Behavioural. Here the specification captures the functionality of the final 

circuit at a high level, but contains no details of the circuit 

implementation. The ideal behavioural specification is a number of 

sentences describing function of the circuit, but most behavioural 

specifications are captured using a high level programming language, 

such as VHDL, Verilog, C, or ADA. 

Macroarchitecture. This specification describes the circuit in terms of 

the functional blocks required to implement the circuit behaviour 

(communally known as a datapath), their interconnection, and the 

sequencing of the target algorithm on the datapath. This specification 

level is known as the Register-Transfer Level (RTL). 

2 



Introduction 

Microarchitecture. The circuit microarchitecture models the diversity of 

implementation of the macroarchitecture at a gate level. For example, an 

adder block can be implemented in a number of different forms, e.g. 

ripple, carry lookahead, carry propagate, Manchester chain, and so on. 

Physical. The physical specification of the circuit takes place at the 

transistor level. The gate level description of the design is translated to a 

transistor level netlist containing sizing and connectivity information. 

These domains suggest an ordering of the ASIC design process, with the functionality 

of a device captured first, followed by datapath macro- and microarchitectural 

development, prior to any physical implementation. Historically, however, successive 

generations of Computer Aided Design (CAD) tools have operated first in the physical 

domain, followed by the datapath microarchitectural level, and finally at the datapath 

macroarchitectural level. Current research efforts are focused on the development of 

CAD tools operating in the behavioural domain. Automatic translation between the 

design domains is termed synthesis. 

1.2 Synthesis Tool Evolution 

The first synthesis tools were targeted at the physical domain. During the designcycle 

of early ICs, each mask layer was specified separately, with engineers undertaking all 

the layout effort. 

The advent of regular layout technologies such as standard cell logic and gate array 

structures, together with the development of physical design tools for block placement 

and routing, have enabled circuit engineers to concentrate on the development of a 

small number of primitive cells. These primitives can then be instanced many times to 

form the logic structures required. In the case of cell-based designs, logic gates are 
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Introduction 

defined in terms of fundamental building blocks (or standard cells). For gate array-

based designs, logic structures are defined as the metalisation layers required to 

connect pre-instantiated gates. 

Translation between the microarchitectural level and the physical domain exploits 

these regular layout technologies and the software tools supporting them. Logic gates 

can be specified in terms of Boolean equations [Brayton84] or entered in a schematic 

form and optimised prior to compilation into layout. 

Translation between the macroarchitectural level and the physical level yielded the 

first software tools to be called Silicon Compilers [Johan78]. Typically, a functional 

circuit description was mapped into a template datapath architecture. The FIRST 

silicon compiler [Denyer82} was targeted towards bit-serial architectures. Similarly, 

research efforts at IMEC and Leuven University yielded the CATHEDRAL series of 

silicon compilers. The range of architectural templates included bit-serial 

(CATHEDRAL-I [Clae86]), communicating multiprocessor (CATHEDRAL-il 

[DeMan88]) and bit-sliced datapath (CATHEDRAL-rn [Note88]). The quality of 

solution achieved in these systems is dependent on the mapping between the input 

algorithm and the architectural template. 

1.3 Behavioural Synthesis Tools 

Current CAD research is directed towards achieving a successful translation between 

the behavioural and macroarchitectural domains. Interest in high-level synthesis is 

motivated by the advantages of such an approach: 

(i) Specification of an ASIC at a high level allows rapid functional 

verification. This should be contrasted with the gate-level verification 

required when a design is captured at the ASIC microarchitecture level. 
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Introduction 

A high-level approach allows engineers to rapidly evaluate design 

alternatives at an early stage in the ASIC project cycle. Indeed Broderson 

[Broder89] argues that the true gains of realising a system in silicon arise 

through the selection of appropriate silicon architectures. 

High-level tools are correct by construction. The use of behavioural and 

logic synthesis to realise a design removes the possibility of errors 

introduced during manual translation between the design domains 

outlined above. 

High-level synthesis tools represent an enabling technology. By 

abstracting the design process away from the physical domain, the need 

for detailed circuit implementation knowledge is removed. Thus, ASIC 

technology becomes more accessible to system-level engineers. 

The advantages offered by the use of behavioural synthesis tools address the problems 

imposed by market pressures described previously. 

McFarland [McFarl88] defines the behavioural synthesis procedure: 

"The synthesis task is to take a specification of the behaviour required of a 

system and a set of constraints and goals to be satisfied, and to find a 

(datapath) structure that implements the behaviour while satisfying the goals 

and constraints." 

A typical behavioural specification is given in figure 1.1. A datapath optimised to offer 

a minimum area solution is shown in figure 1.2. 
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procedure DIFFEQ (X, U, Y : in out INTEGER; A : in INTEGER) is 

Xl,Yl,Ul : INTEGER; 
DX,C3 : CONSTANT; 

begin 

while (X < A) loop 
Xl :=X+DX; 
Ui := U - (3*x*U*Dx) - (3*Y*DX); 
Yl := Y + (U*DX); 
X := Xi; U := Ui; Y := Yl; 

end loop; 

end DIFFEQ; 

Figure 1.1 Behavioural specification. 

II

11~Key 	

Functional unit 	FR  07 Read Only Memory 	 Wire 

Multiplexer 	 Register 	 Input/Output Port 

Figure 1.2 Datapath synthesisedfrorn specification shown in figure 1.1. 

The behavioural synthesis procedure may be partitioned into the following subtasks: 

(i) Translation of the behavioural description into some suitable 
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Introduction 

intermediate format. This data representation must retain all the 

characteristics of the original description, whilst presenting the data in a 

suitable and recognisable form. It is at this stage that compiler-like 

optimisations take place, such as loop unrolling (partial or complete) and 

dead code elimination [Aho86]. 

Operator scheduling. This corresponds to the assignment of a control step 

value to each operation. A control step (c-step) corresponds to a single state 

of a finite state machine. 

Processor allocation. This step assigns individual operations to execute on 

particular hardware resources. These resources may be specialised (e.g. 

adders, multipliers and subtractors) or generic ALU-type structures. 

Memory allocation. An appropriate set of memory components must be 

synthesised to store intermediate results and input/output values. 

Interconnect optimisation. A communications infrastructure is 

synthesised which connects all modules allocated in steps (iii) and (iv), and 

completes the datapath topology. 

Controller synthesis. This final phase generates a controller capable of 

sequencing all the operations and data transfers as defined in stages (ii) - (v). 

The research presented in this thesis is concerned with datapath synthesis techniques 

(i.e. tasks (ii) - (iv)). 

1.4 Summary of Research 

The partitioning of the behavioural synthesis procedure presented above, and the serial 

synthesis flow it suggests, has allowed optimisation techniques drawn from 

algorithmic graph theory [Gibbons87] to be used to solve the subtasks. In many cases, 

however, the solution algorithm belongs to a class of algorithms for which there is no 
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exact solution computable in polynomial time [Garey79]. The introduction of 

heuristics overcomes this problem by constraining the solution search space. The use 

of heuristics can, however, lead to the algorithm terminating in a local cost minimum, 

thus degrading the quality of the solution. 

A global formulation of the behavioural synthesis procedure which avoids local 

minima is proposed in this thesis. A solution algorithm, simulated annealing, drawn 

from the field of statistical physics is used to control the search through the datapath 

solution space. 

A suite of software tools is presented in support of this approach. Innovative features 

include: 

A multiple-plane data model which provides support for global optimisation 

of tasks (ii) - (v) above. 

A solution quality assessment procedure targeted towards the production of 

datapaths amenable to implementation in standard cell and gate array 

technologies. 

• A cost multiplier mechanism which allows the engineer to influence the 

overall datapath architecture without direct synthesis intervention. 

The application of external system constraints is enabled through the use of 

synthesis directives orpragmas1 . 

Further, a general purpose algorithm for the generation of functional pipelines, which 

is suited to a simulated annealing-based implementation is presented. 

1. This term was first introduced in [C1ae86]. 
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1.5 Thesis Structure 

Chapter 2 develops two related models, pre-requisite to any discussion of the 

behavioural synthesis procedure or its subtasks. Following a comparison of two 

differing models of behaviour, the semantics and syntax of a suitable representation 

are described. Similarly, a structural notation for datapaths is also presented. A review 

of controller and timing issues concludes the chapter. 

The solution techniques for the synthesis subtasks described in section 1.3 above are 

considered in chapter 3. The scheduling strategies reviewed are split into three 

categories: iterative, state transformational and integer linear programming (ILP). The 

merits and demerits of each are discussed. Allocation techniques for the solution of 

subtasks (iii) - (v) in the synthesis flow above are then reviewed. Graph theoretic 

algorithms form the core material presented in this section, which concludes with a 

brief discussion of expert system-based approaches to allocation. 

Chapter 4 proposes a global approach to the behavioural synthesis problem and 

suggests a formulation of the synthesis task as a combinatorial optimisation problem. 

Local and global search techniques are presented, and the termination of local search 

algorithms in a non-optimum state is demonstrated. The simulated annealing 

algorithm is introduced as a global technique capable of escaping from local minima. 

The cooling schedule techniques associated with the simulated annealing algorithm 

are then reviewed. A brief survey of NP-complete algorithms used as solution 

techniques for the synthesis subtasks concludes this section. This is followed by a 

review of a simulated annealing-based high-level synthesis system developed at the 

University of California at Berkeley. 

Chapter 5 introduces a set of software tools (the SAVAGE system) capable of 
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transforming a behavioural description into an optimised RTL datapath structure. 

Central to the method presented is a multi-dimensional data structure capable of 

supporting simulated annealing-based optimisation in each plane. A review of the core 

synthesis routines precedes the presentation of the optimisation primitives used to 

generate the datapath solution states. A solution quality assessment procedure is 

developed, and a novel system allowing the engineer to assign cost multipliers - to the 

individual cost function components is presented. The synthesis tools are then 

exercised on a small-scale benchmark. 

Two large-scale comparative studies are presented in chapter 6. The first, a Fast 

Discrete Cosine Transform kernel, permits a comparison between the synthesis 

method reported in this thesis and an interactive synthesis tool developed at the 

University of Edinburgh. The second benchmark, a Wave Digital Filter, allows 

comparisons to be drawn between the simulated annealing-based approach and a 

greater number of behavioural synthesis tools. 

A general-purpose algorithm for the generation of functional pipelines, and its 

integration into the synthesis system reported herein, forms the core of chapter 7. 

Structural and functional pipelining techniques are reviewed and metrics for the 

assessment of pipeline performance defined prior to the introduction of the pipelining 

algorithm. Extensions to the SAVAGE system are described, and datapaths from the 

large-scale benchmarks of chapter 7 are re-synthesised to demonstrate the approach. 

Finally, chapter 8 summarises the work presented in this thesis, and suggests 

extensions to the research. 

10 
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2 Behavioural and Structural Models 
for Synthesis 

This Chapter describes two related models germane to the behavioural synthesis task. 

In the first instance, a suitable behavioural representation must be developed. This 

representation must accurately capture the functionality of the source text, while its 

internal form should remain amenable to manipulation by the various synthesis 

procedures. 

A notation that describes datapath structure must also be developed. To remain 

technology independent, the notation should not contain any physical attributes, but 

should at the same time contain enough meaningful information to allow the synthesis 

tools to optimise the datapath topology. This implies a level of abstraction between the 

RTh notation and the compiled gate-level description of the datapath. For example, 

rather than measure delay through an adder in terms of nanoseconds, the delay can be 

abstracted into multiples of the system clock (or control steps). Similarly, area 
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measurement does not take place in square microns, rather in notional gate 

equivalents. By building this level of abstraction into the structural model, it can be 

ensured that the output RTL descriptions are technology independent. 

Following a brief discussion on two alternative representations of behaviour, the data 

flow semantics and syntax used throughout the work described in this thesis are 

presented. Closely linked to that is the development of a structural notation which 

supports the abstraction described above. 

As a brief interlude, a naive mapping (or binding) between behavioural and structural 

domains based on a rudimentary set of axioms is considered. This binding contains no 

sequencing or control information. The synthesis of a suitable controller lies outside 

the scope of the work described in this thesis, but a simple control and timing model is 

developed and presented. 

2.1 Two Alternative Behavioural Representations 

Consider the addition of two integer variables, a and b. This addition can be 

represented by the following equation: 

x = a + b 

where x is the integer variable containing the result of the addition. The lexical 

convention observed here is known as infix notation. Here, the operands (a and b) are 

separated by the operator (+), thus: 

x <op> (a <op> b) 

12 
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The equality symbol in the equation represents the assignment operator. (The brackets 

noted above indicate the operator precedence). 

Similarly, the addition of a and b could be represented in prefix notation. Here, the 

operator precedes both operands (in the case of non-commutative operations, the 

ordering of operands becomes important): Thus: 

= x + a b 

Both notations are valid and functionally equivalent. The difference between infix and 

prefix notation hints at the alternative representations of behaviour. 

Consider the following, more complex, expression' in infix notation. 

ul = u - 3xudx - 3ydx 

A graphical representation can be created by parsing through the expression left to 

right, observing operator precedence and replacing operators with vertex tokens whose 

input arcs correspond to the operands associated with the operator. The graphical 

representation for the infix expression is shown in figure 2.1 below. 

Consider the same expression in prefix notation: 

= ul - u - 3xudr 3ydx 

Here the graphical representation is derived by parsing left to right through the 

1. This expression forms the basis of Paulin's seminal differential equation example 
[Paulin89b], and is used as an illustration throughout this thesis. 

13 
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expression creating a tree-like structure whose vertices are the operators, with the 

operands represented by leaf nodes. This is shown in figure 2.2. 

u 	dx 	3 	x 	3 

X 	 x 	X 

dx 

X 	 x 

U 

ul 

(3xxxuxdx) - (3xyxdx) 

Figure 2.1 Infix-based graphical representation. 

ul 

dXAdX 

= ul - u - 3xudx 3ydx 

Figure 2.2 Prefix-based graphical representation. 

14 



Behavioural and Structural Models for Sypthesis 

In both representations, the assignment operator has been removed, as assignment is 

implicit. 

These two representations are functionally equivalent. It is the axiom used to construct 

each that differentiates between the two. The first axiom is the more intuitive (as a 

result of infix notation predominating in mathematics teaching), while the second 

forms the basis of expression evaluation within many programming language 

compilers. 

The first graphical representation is a data flow graph, with the second known as a 

parse tree. 

2.1.1 Discussion 

At an intuitive level, a flow graph provides the most straightforward engineering 

representation. Indeed, Broderson [Broder89] argues that most electronic engineers 

begin the design process with a basic data flow representation. For an in-depth 

discussion of the flow graph, readers are directed to [Orail86]. From an automated 

standpoint, however, it can be argued that parse trees generated directly from the input 

expressions are also a suitable representation of behaviour. 

For many synthesis tool designers, the choice of behavioural representation is decided 

by the availability of compilers for the input language. Bearing this in mind, language 

issues are now discussed. 

Language Issues 

In selecting a high level language for behavioural input, a tool designer has to choose 

between using a standard procedural language or a specialised language which uses a 

more explicit data flow representation. Probably the single most important difference 
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between the two types is the use of multiple assignment of a single variable. Consider 

the descriptions of the filter shown in figures 2.3 and 2.4. 

function SINGLE—ASSIGNMENT—FILTER (COEFF : in INTEGER[1:8]) is 
ACCUM[0:8] : integer; 
COUNT : integer; 

begin 
ACCUM[O] := 0; 
for (COUNT=1; COUNT<=8; COUNT++) 

ACCUM[COUNT] := ACCUM[COUNT-1] + COEFF[COUNT]; 
return ACCUM[8]; 

end SINGLE—ASSIGNMENT—FILTER; 

COEFF(1] 	COEFFF2I 	COEFF(31 	 COEFFL81 

ACCUM[O] 	ACCUM[11 	ACCUM[2]eACCUM[31 	 ACCUM(81 

Figure 2.3 Single variable assignment. 

The description shown in figure 2.3 permits single assignment of variables only. That 

is, each intermediate result is specified explicitly in the loop body (hence the 

requirement for an array of result variables). This description is an accurate 

representation of true data flow. Probably the best known of all data flow languages, 

SILAGE [Hilfin84], has been tailored specifically for Digital Signal Processing (DSP) 

applications. Bit delays, decimation and interpolation constructs are present in the 

language syntax. 
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function MULTIPLE ASSIGNMENT FILTER (COEFF 	in INTEGER[1:8])  is 
ACCUM : integer; 
COUNT 	integer; 

begin 
ACCUM 	0; 
for (COUNT=1;COUNT<=8;COUNT++) 

ACCUM := ACCUM + COEFF [COUNT]; 
return ACCUM; 

end MULTIPLE—ASSIGNMENT—FILTER; 

COEFFLi] 

UM 

Figure 2.4 Multiple variable assignment. 

Against the 'naturalness' of the signal flow description, procedural languages such as 

PASCAL, C and ADA enjoy a well-established user base. Advances in compiler 

technology, specifically loop unrolling, have enabled multiple assignment, as shown in 

figure 2.4, to be detected and replaced with single assignment constructs, preserving 

the natural data flow within the intermediate representation. The use of multiple vs. 

single assignment then becomes a matter of designer preference when using a 

procedural language. As a caveat, however, it should be noted that this detection and 

replacement strategy is only valid for loop structures with finite limits. 
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The intuitive nature of the data flow description, together with the availability of a data 

flow based compiler (SLANG [Sey89]) during the course of the work described in this 

thesis ultimately prompted the adoption of a data flow model. The semantics and 

syntax of the model are now formalised. 

2.2 Data Flow Semantics 

A data flow graph is defined as a tuple, D=(V,E), where V={Vj,V2,..,V,,J is a finite set 

of vertices and E = {E11; if = 1,2,..,n] is a set of edges connecting elements of V E is a 

set of directed arcs; data cannot be consumed before it is produced. Thus, E contains 

both precedence constraints and connectivity information. The vertices within V can 

be partitioned into two main types: 

Transformational: This vertex type performs a transformation on the input data. It is 

most readily associated with the arithmetic and logical operators found within the 

instruction set of a typical microprocessor. Further, associated with each vertex is a 

tuple, P=(I,O) where I = {I1 ,..JJ is a set of input ports and ={Oi'•'O,'J is a set of 

output ports. These port sets provide a mechanism whereby the commutative law can 

be exercised during optimisation. 

Boundary: This class of vertex is a synchronisation mechanism allowing external 

data to be input to and output from the data flow graph. 

This partial definition allows the specification of straight line code segments, as shown 

in figure 2.5. 

18 



Behavioural and Structural Models for Synthesis 

u 	dx 	3 	x 	3 	y 

X 	 x 	X 

dx 

X 	 x 

U 

ul 

Data Flow Fragment 

ul= u- (3xxxuxdx) - (3xyxdx) 

Code Segment 

Figure 2.5 Straight line code representation. 

It can be seen, however, that if the high level behavioural constructs, including 

conditions (If <cond> then <tbody> else <ebody>) and looping (while <cond> loop 

<body>) are to be accommodated, then further refinement of this definition is 

required. 

Two further vertex types, fork n  and join,1  are specified. They perform one-to-many and 

many-to-one edge mappings respectively, according to the value of a control edge, Ec . 

Loop and conditional statements may then be represented as shown in figure 2.6. 
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<cond>_1—i 

E 	
join 

fork 	

<body> 	<cond> 
<tbody>'I [dy>I 	 I 	I 

	EC 

L fork 

It <cond> then 
<tbody> 

else 	 while <cond> 
<ebody> 	 loop 

<body> 

Figure 2.6 Representing conditional and loop structures. 

The definition of these types leads to an important classification issue within data flow 

representation. 

If the fork and join nodes are associated with the vertex set, V, and the control edges, 

Ec , are incorporated into the data edge set, E, then the resulting data/control flow 

graph is said to be combined. The EASY system [Stok88] models both control and 

data flow in a single graph. A similar representation is the 'value trace' concept 

[Thomas87], developed for the CMU-DA system. Value trace groups combine control 

and data flow nodes to form 'vtbodies'; a direct analogue of the software subroutine. 

If, however, the new vertices and edges form a graph, C(V,E c), then the resulting 

graph pair, G=(CD) represent separate control and data flow graphs. Camposano 

[Campos89] uses such a representation to synthesise datapaths from behavioural 

VHDL descriptions. 

This graph-pair notation can be extended to permit the definition of a procedural 
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hierarchy within the behavioural specification. If, instead of a single data flow graph, a 

multiplicity of data flow graphs is defined, one for each segment of straight line code, 

then each data flow graph is said to represent a basic block. These basic blocks are 

inserted as nodes within the control flow graph, much as the <body> instances are 

shown in figure 2.6. Thus, a procedure call may be represented as a multiple instance 

of a basic block corresponding to the procedure body within the control flow graph. 

This representation is used in [Lis88]. The code fragment from figure 2.4 is shown in a 

basic block structure illustrated in figure 2.7. 

accum 0 

Block A 

condition a 

accum coeff[count] count 	I 

count < 8 

condition b 	 Block B 

count8 

return (accum) 	Block C 

function MULTIPLE—ASSIGNMENT—FILTER (COEFF : in INTEGER[1:8]) is 
ACCUM : integer; 
COUNT : integer; 

begin 
ACCUM := 0; 
for (COUNT=l; COUNT<=8; COUNT++) 

ACCUM := ACCUM + COEFF[COUNT]; 
return ACCUM; 

end MULTIPLE—ASSIGNMENT—FILTER; 

Figure 2.7 A basic block structure. 
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2.3 Data Flow Syntax 

A textual representation2  for the data flow semantics described above is now 

developed. A data flow graph is encapsulated as a network. A network contains all 

data flow information associated with the compiled source code. This is restricted to a 

single basic block in keeping with the definition above. Correspondingly, a network 

contains no control information. 

The textual representation for a network is given below: 

network <identifier> 
-- vertex and edge definitions 
end <identifier> 

Each vertex in the data flow graph is represented as an operation: 

operation <identifier> <type> <A> <B> <Z> end 

The operation.type field indicates the type of transformation carried out by the data 

flow vertex. Typically these are: add, subtract and multiply. Further types are 

permissible provided that they constitute dyadic operations and that they are supported 

in the library of hardware functions available to the synthesis tools. The operation.A 

and operation.B fields correspond to the input data edges. For commutative 

operations, the ordering of input data on the data edges is unimportant, but for non-

commutative operations, ordering is important if the operation is to remain 

functionally correct. For non-commutative operations, the ordering is A <op> B (e.g. 

A-B, A/B etc.). The operation.Z field is the output edge. 

2. The syntax used here is a subset of the BABBLE language [Ryder89] used as input to the 
SARI Architecture Generator (SAGE) [Denyer89]. 
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Edges within the data flow graph are represented as signals: 

signal <identifier> <type> end 

The signal.type field is defined as one of input, output, constant or 

local. Input and Output types correspond to signals whose source or sink is a 

boundary vertex within the flow graph. The local type is used to classify signals 

whose source and sink vertices are internal to the current network definition. Finally, 

the constant type is used to represent signals having a single pre-computed value 

which may be replicated throughout the network definition. 

As an analogy, the signal types may be best thought of as parameters passed to a 

software procedure, and local variables declared within that procedure. 

Figure 2.8 shows a portion of the network description of Paulin's differential equation 

example. 

2.4 A Structural Notation 

The most basic notion of structure in the context of the work described in this thesis is 

that of the datapath. A datapath can contain four types of component, namely: 

processors, memories, communication structures (hereafter referred to as nets) and I/O 

ports. 

The syntax specifying a single datapath is given below: 

datapath <identifier> begin 
-- processor, memory, net and I/O instances. 

end datapath <identifier>; 
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(work DIFFEQ 

signal u 	input 	end 
signal x 	input 	end 
signal ul 	output 	end 	 mul_i 

signal dx 	constant end 
signal c3 	constant end 	 si 
signal sl 	local 	end 
signal s2 	local 	end 

( X) 
signal s3 	local 	end 	 mul -3  
signal s4 	local 	end 
signal s5 	local 	end 	 U 

signal s6 	local 	end 

operation mull mul u dx sl end 
sub-5 

operation mul2 mul c5 x s2 end 
operation mul3 mul sl s2 s3 end 
operation mul4 mul c3 y s4 end 
operation sub _5 sub u s3 s5 end 	 sub -7 
operation mul6 mul dx s4 s6 end 	 - 
operation sub-7 sub s5 s6 ul end 

end DIFFEQ 

muL6 

s6 

Ui 

Figure 2.8 Differential equation flow graph and network description. 

2.4.1 A Processor Model 
The processors defined here are combinational units capable of performing simple 

arithmetic and logical operations. They are restricted to two input ports and a single 

output port (the Z port). In order to preserve non-commutivity, the input ports are 

labelled A and B. The most commonly used non-commutative operation, subtraction, 

is restricted to A-B. 

The syntax for a processor is given below: 

processor <identifier> begin 
attributes <attribute_list>; 
type <operation type list>; 
commutative <boolean>; 
ports 	A source <net>; 

B source <net>; 
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Z sink <net>; 
end processor <identifier>; 

The processor.attribute field contains processor specific information, such as layout 

area, processor latency and reuse time. The processor.type field contains a list of valid 

operation types that may be executed on this processor. In most cases, this will be a 

single type, but this type specification allows for the definition of generic ALU 

structures. The processor.commutative field is a flag for the synthesis tools to 

determine whether a port swap is a valid optimisation move. 

2.4.2 A Memory Model 

The structural description supports three types of memory, namely ROM (Read Only 

Memory), single registers and multiple registers grouped together in a register file. 

Associated with each register file there is decoding logic for register selection. The 

extra complexity associated with register files is accounted for in the datapath quality 

assessment (see Section 5.3). 

The syntax for a memory component is given below: 

memory <identifier> begin 
attributes <attribute_list>; 
type <ROM I  register  I  file>; 

case 3  type of 
ROM I  file => locations <integer>; 

end case; 
ports 
case type of 

register I  file => A source <net>; 
end case; 

Z sink <net>; 
case type of 

3. In this notation, the case statement affords the opportunity to conditionally instance 
component fields. For example, a ROM will have no A port connection, only a Z port 
connection. 
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register I file => signals <signal_list>; 
end case; 

end memory <identifier>; 

The memory.attributes field holds memory specific information such as layout area. 

This is used during the synthesis procedure. The memory.locations field gives an 

indication of the cardinality of the instanced component. This corresponds to the 

number of registers contained in a single file or the number of values held in a ROM. 

The data stored in the memory component is appended to the memory.signals field. 

2.43 A Communications Model 

The structural model fully supports point-to-point (wire), multiplexer and bus based 

communications strategies. All of these components are classed as nets. Table 2.1 

summarises the port connection options associated with each communications 

component. 

Component Source Sink 

Wire Single Single 

Mux Multiple Single 

Bus Multiple Multiple 

Table 2.1 Net source and sink options. 

The syntax for a net is given below: 

net <identifier> begin 
type <wire I mux I bus>; 
case type of 

mux I  bus => cardinality <integer>; 
end case; 
source <port_list>; 
sink <port_list>; 

end net <identifier>; 
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2.4.4 Input and Output Ports 

The input and output ports provide a means of external communication with the 

datapath. The syntax for an I/O port is given below: 

I/O <identifier> begin 
type <in I out I bid>; 
case type of 

in => A sink <port_list>; 
out => 	Z source <port_list>; 
bid => A sink <port_list>; 

Z source <port list>; 
end case; 

end I/O <identifier>; 

The case statement is used here to instance I/O connections relevant to the port type. 

2.5 Interlude - A Naive Mapping 

Having developed both behavioural and structural models, a naive mapping between 

the two domains is offered, based on the following axioms: 

Operations should be mapped onto processors capable of executing the 

operation type. 

Where a signal traverses a c-step boundary, a memory element will be 

instanced to preserve the signal state between control steps. 

(iii)Each signal should be mapped to a wire or bus connecting the source and 

sink modules. 

(iv)Instance I/O ports of the appropriate type where the signal.type field is 

either input or output 

(v) Instance a ROM where the signal.type field is constant. 
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Thus, the code fragment of figure 2.1 can now be mapped to a simple datapath 

structure as shown in figure 2.9. (The datapath description is presented in Appendix 

A). 

U X y 
- ROM ROM ROM 

X x x 

ROM 

X x 

U 

Ui 

Figure 2.9 Naive differential equation datapath. 

This solution offers particularly poor resource utilisation (the RTL description of this 

datapath produced using the structural notation is presented in Appendix A). The 

axioms yield a low-quality datapath with replicated hardware components. Possibly 

the only benefit of such a solution is that it entails zero control overhead, and produces 

a solution after three cycles of the system clock. The synthesis techniques in the 

following chapter, together with the tools presented in chapter 5, describe methods of 

optimising the datapath topology. 

2.6 A Control Model 

Consider the execution of a typical data flow operation. The data is retrieved from 

memory or the input ports of the datapath, operated on by the datapath element, then 

placed back in memory or made available externally via the datapath output ports. 
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The combination of processor and memory elements is a synchronous sequential 

machine corresponding to the Mealy model [Mealy54], as shown in figure 2.10. 

Figure 2.10 Synchronous sequential machine (with potential race) 

The composition of the memory elements holding the current state, M, is critical. In 

order to avoid race hazards [Seitz80] latches and edge triggered flip-flops must be 

avoided. The transparent mode of the latch prevents any state being retained, and the 

model shown above becomes an unpredictable asynchronous system. Edge-triggered 

flip-flops are also unsatisfactory because it can not be guaranteed that all elements of 

M will latch their input data simultaneously. Some memory elements may latch 

marginally early; changes on the outputs of M could then loop round through the 

combinatorial datapath to the input and produce an unwanted race condition. 

To avoid the race problem, M should be based upon a master-slave latch structure, as 

shown in figure 2.11. When the master clock is high, the outputs of the combinatorial 

datapath network are stored in the master latches. During this time, the slave latch 
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maintains consistent data at the inputs to the datapath network. When the slave clock is 

high, data is transferred from the master to the slave latch, and thus the input data to 

the datapath network is changed safely. To ensure correct operation, the master clock 

(Ii) and the slave clock (2)  are defined so as to be non-overlapping (an overlap 

between and 2  would cause both latches to go into transparent mode, again 

causing the critical race problem). 	 - 

Inputs 	 Datapath 	outputs 
Elements 

Memo Elements 

JHMasmr 	 I  

T T 
Figure 2.11 Synchronous sequential machine with master-slave memory structure. 

Relating this timing model to the execution of the dataflow operation, the read phase 

of a control step (i.e. the fetching of datapath input data from memory or the datapath 

input ports) can be specified as the time interval between 42 and I, and the write 

phase of a control step (i.e. the placing of datapath output data in memory or at the 

datapath output ports) as the time interval between (D I  and ct 2 . This is shown in figure 

2.12. 
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Real 	Write 

-1____ ____ 

4 I  

Figure 2.12 Read and Write phase timing. 

2.7 Summary 

Following a review of behavioural representation, this Chapter has developed 

behavioural and structural models suitable for high-level synthesis. Subsequently, a 

naive binding between the behavioural and structural domains based on greedy 

heuristics was produced. This binding yielded a particularly low quality solution. The 

next Chapter considers techniques designed to optimise the binding quality. 
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3 Datapath Synthesis Techniques 

The previous chapter introduced behavioural and structural models capable of 

supporting the synthesis operations described in section 1.3. This chapter reviews the 

algorithmic techniques currently used to produce an optimised register-transfer 

description of a datapath from this intermediate representation. 

Techniques for solving the scheduling subtask are considered separately from those 

techniques applicable to the processor, register and interconnect allocation subtasks. 

The complex inter-relationship between the various synthesis subtasks, and an 

indication of the drawbacks of a serial synthesis flow is exemplified by considering 

the essential dichotomy that exists between the scheduling and processor allocation 

subtasks. 

The Scheduling and Allocation Dichotomy 

The scheduling subtask aims to assign execution times to all nodes in a data flow 

graph. Without knowledge of the number of processors available during scheduling, 
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however, an optimal solution is impossible to derive. 

Similarly, the number of processors needed to execute all data flow graph nodes is 

dependent on the amount of parallelism within the graph at any particular control step. 

This information is generated by the scheduler. Thus, there is a cyclic relationship. 

From this basic observation, it may be deduced that any synthesis flow where the 

scheduling and allocation operations are disjoint (regardless of the order in which the 

subtasks are performed) may ultimately compromise the quality of the datapath 

solution. 

3.1 Scheduling Techniques 

The three major classes of scheduling strategy are discussed in this section. The first, 

and largest class of scheduling algorithm is known as iterative scheduling. This class 

operates on a node-by-node basis, and is characterised by the order in which the nodes 

are visited. An important subclass is the distribution-based scheduler, which is 

examined in some detail. The second major class uses serialising and parallelising 

transformations on unary and fully serial schedules. Finally, a small class of synthesis 

systems formulate the scheduling as an integer programming problem. 

3.1.1 Iterative Scheduling Schemes 
The first class of iterative scheduling scheme constitutes the base scheduling 

strategies, where no hardware bound is placed on the resource set available to the 

scheduler. In effect, this class of scheduler operates independently of any allocation 

system. The most common base schedules are: AS-SOON-AS-POSSIBLE (ASAP) 

and AS-LATE-AS-POSSIBLE (ALAP). More unusual variations, such as AS-FAST-

AS-POSSIBLE (AFAP [Campos90]) do exist, but are not in common use. 
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In ASAP schedulers, nodes are scheduled to occur as soon as their input data are 

available. Similarly, in ALAP schedules, nodes are scheduled to occur in the control 

step preceding the earliest consumption of their output data. The effects of ASAP and 

ALAP schedules are shown in figures 3.1 and 3.2. 

C-Steps 

X 	 x 	x 	x 	+ 
1 

X 	 x 	+ 
2 

3 

4 

Figure 3.1 As Soon As Possible (ASAP) Scheduling Strategy. 

These strategies, while producing high speed solutions can be wasteful in terms of the 

excess hardware required to realise the data flow graph. As can be seen from figure 

3. 1, the ASAP schedule requires 4 multipliers executing concurrently, while the ALAP 

schedule (figure 3.2) requires only 2, at no overall execution time penalty. 

Consequently, these base schedules are not generally employed on their own within 

synthesis systems. 

While the base schedules simply correspond to an ordering of the input data flow 

graph subject only to the data flow constraints themselves, constraining the number of 

available processors a priori necessitates the maintenance of a 'ready list'. This list 
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contains details of all operations capable of being scheduled at a particular control 

step. 

C-Steps 

2 

Figure 3.2 As Late As Possible (ALAP) Scheduling Strategy. 

The scheduler processes the data flow graph a control step at a time, removing 

operations from the ready list and scheduling them according to a prioritising function. 

This prioritising function resolves resource conflicts when the amount of operational 

parallelism present in the flow graph exceeds the processor parallelism. The most 

common form of prioritising function assigns a weight to each data flow graph node. 

This weight is then used as a selection criterion which determines the node or nodes to 

be scheduled next, or identifies suitable candidate nodes for deferment. 

The simplest prioritising scheme schedules nodes on the critical path of the data flow 

graph to execute first. In the scheme described above, this may be viewed as a binary 

weighting. The ATOMICS [Goosse87] scheduler in the CATHEDRAL-il system is 
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based around this strategy. Parker [Parker86] refines this by determining the freedom 

for all remaining operations once the operations present on the critical path have been 

scheduled. The operation freedom is defined as the difference between the ASAP and 

ALAP schedules for that operation, less the propagation delay of the processor 

executing that operation. For operations executing on the critical path, the node 

freedom is zero. This approach emphasises the interrelation of the scheduling and 

allocation subtasks. The effects of critical path and operator freedom based scheduling 

are illustrated in figures 3.3 and 3.4. 

C-Steps 

x 	x 	x 	x 	+ 
1 

x 	 x 	+ 
2 

3 

Figure 3.3 Critical Path Analysis (Shown in gray). 

Girczyc [Girczyc85] uses node urgency as a selection criterion. Node urgency 

corresponds to the minimum number of control steps required to execute all operations 

between the current operation and the nearest timing boundary (e.g. system output, or 

basic block boundary.) Nodes with the greatest urgency function are given the highest 

priority during scheduling. This is shown in figure 3.5. 
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C-Steps 

X 	X 	X 	X2 	+2 

X 0 	 X I 	+2 	<2 
2 

-0 
3 

4 
	 -o 

Figure 3.4 Operator Freedom Analysis 

Splicer [Pangrle87, Pangrle88] uses node freedom (called node mobility) as a primary 

selection mechanism. Where resource conflicts occur, and node mobility values do not 

differentiate between schedulable operations, a secondary selection mechanism 

operates. Here, the node to be scheduled is selected based upon the length of path 

remaining to the nearest timing boundary. The node with the longest path is selected. 

The SEHWA system [Park88] uses two urgency based schedulers. The first, which 

orders the data flow graph without hardware constraints establishes the maximal 

schedule. A second urgency scheduler is executed on a hardware constrained system 

to produce the feasible schedule. If the maximal schedule is better than the feasible 

schedule, then a third, exhaustive, scheduler is applied to produce a shorter feasible 

schedule. If the converse is the case, then the original feasible schedule is used. 
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C-Steps 

X4 	X4 	x3 	X2 	+2 
1 

X3 	 X2 	+1 	<1 
2 

-2 
3 

_j 

1 

Figure 3.5 Node Urgency Analysis 

Balancing operator concurrency : force-directed scheduling 

Paulin [Paulin89b] developed an important class of scheduler which aims to balance 

the operational concurrency within a data flow graph on a control-step to control-step 

basis. This class of scheduler is referred to as force-directed scheduling. The 

algorithm is partitioned into three main stages: 

Determination of Time Frames. During this step, ASAP and ALAP schedules 

are generated for an individual node. This determines the feasible schedule range, 

and is similar in form to the notion of operator freedom, as introduced by Parker 

[Parker86]. 

Creation of Distribution Graphs. For each control step, a summation of the 

probabilities that individual operations of a similar class will execute in that 
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control step is formed. The resulting distribution graph (DG) represents an 

indication of the concurrency of similar classes of operation for a particular 

control step, and is defined: 

DG(i) = 	P(Op,i) 	 [3.1] 

Op - class 

where i is the current control step under consideration, and P(Op,i) is the 

probability of the selected operation occurring during that control step. 

Calculate Forces. Here, the force associated with assigning an operation to a 

particular control step is determined, and is defined as the difference between the 

Distribution Graph value associated with the trial assignment and the average DG 

values over the time frame of the operations. Thus: 

t2  

r 	-1 
F(j) = DG(j) - 	L 

DG(i)  
(t2-ti+1)i 	

[3.2] 

= t I  

where F(j) is the force associated with assigning the selected operation to control 

step j, and the time frame of the operation runs from time t1 to time t2. 

Further, indirect force is defined as the force associated with the implicit assignment of 

control step values to nodes which have direct data dependencies on the initial trial 

node, j. Once the calculation of direct and indirect forces is completed for an 

operation, the control-step assignment is selected yielding the lowest total force. By 

definition, this balances the concurrency most effectively for a particular operation. 

This force-directed scheduling technique produces datapaths capable of satisfying 

fixed timing constraints, but does not address the problem of scheduling under 

resource constraints. 
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Figures 3.6-3.8 illustrate the use of the force-directed technique for the differential 

equation example. 

	

P(Op,i)=1 	P(Op,i)=0.5 P(Opi)=0.3 P(Op,i)=0.3 

1 
	

IH 

3 

4 

Figure 3.6 Initial time frames for differential equation example (after [Paulin89b]). 
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Figure 3.7 Initial distribution graphs for multiply (left) and add, subtract and compare. 
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P(Op,i)=1 	P(Op,i)=1 P(Op,i)=1 P(Op,i)=1 

1 	H 	 + 
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4 	 - 	 + 

Figure 3.8 Final time frames for differential equation example. 
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Figure 3.9 Final distribution graphs for multiply (left) and add, subtract and compare. 

Force-Directed List Scheduling 

In common with other list scheduling approaches, the FDLS algorithm sorts the data- 

flow graph nodes according to data and control dependency. Those operations put onto 
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the 'ready list' are capable of being assigned to the first control step. In the case when 

operational parallelism exceeds the amount of parallel hardware available during a 

particular control step, then one or more of the 'ready' operations must be deferred to 

subsequent control steps. As detailed above, operations are selected according to a 

prioritising function. The FDLS algorithm selects the operation from the ready list 

which has the lowest total force value associated with it, i.e the operation - to control 

step assignment producing the lowest global increase in concurrency. 

3.1.2 State Transformation Scheduling 

This class of scheduler operates under a resource-constrained regime. State 

transformations on the initial schedule are governed by two factors: data dependency 

and resource availability. 

State Merging Transformations 

In this case, a fully serial schedule is transformed by merging those operations in 

adjacent control steps, subject to data dependency and resource availability. Pseudo 

code for the algorithm is given in figure 3.10. 

State Splitting Transformations 

This algorithm begins with a unary schedule (i.e. a schedule where all operations 

occur in a single control step, thereby violating data dependency constraints). Once 

again, subject to data dependency and resource availability, extra control steps are 

added, and operations assigned to them until no further constraints are violated. This 

process is illustrated in figure 3.11. Both the Yorktown Silicon Compiler (YSC) 

[Brayton88] and the Linkoping CAMAD [Peng86, Peng871 systems use this approach. 
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function STATE- MERGE (g : graph); 
begin 
for (all nodes in g) 

assign node to differing csteps; 
repeat 

select (cstep) 
if (merge-possible) then 

merge (adjacent csteps); 
until no merges possible; 

end STATE MERGE; 

Figure 3.10 State Merging Transformations. 

function STATE_SPLIT (g : graph); 
begin 
for (all nodes in g) 

assign node to single cstep; 
repeat 

select (cstep); 
if (split-possible) then 

split (cstep) 
until no splits needed; 

end STATE—SPLIT; 

Figure 3.11 State Splitting Transformations. 

3.1.3 Integer Linear Program Scheduling (ILP) 

Lee [Lee89] formulates the scheduling problem as an integer linear programming 

problem. Consider a data flow graph containing n operations. Each operator, O,  has 

pre-computed ASAP and ALAP schedules, S i  and L, respectively. If a resource 

constraint is added stating that there are m types of processor of type t, each having a 

cost C1 , then Mtj  denotes the number of processors of type t, required. The decision 

variables, xij  are set to 1 if Oi  is scheduled in control step j, and zero otherwise. 

The scheduling problem is formulated thus: 
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M 

min 	CM, 1 	 [3.3] 

i=1 

Equation 3.3 states that the object is the minimisation of the total processor cost. This 

is subject to the following constraints: 

n 

l:!~ j:gn 	1:9k:!~ m 	 [3.4] 

1=1 

This ensures that the resulting schedule has no more than Mtk functional units of type t 

in any one control step. 

L. 

 i:9n 
	

[3.5] 

j = Si  

This constraint ensures that 0, is scheduled between the precomputed ASAP and 

ALAP schedules. Finally, for the data flow dependencies to be satisfied, equation 3.6 

must be applied. 

L 	L k  

Y. iX ii 	JXkJ:5-1 	 [3.6] 

j = Si 	J=Sk  

for all nodes 0, and °k  constrained by data flow dependencies. 

For the differential equation example, with a multiplier cost of 5 (Ctmuit  = 5) and an 

ALU cost of 1 (Ctu  = 1) (values taken from Lee [Lee89]),  the problem formulation 

and resulting schedule are shown in figures 3.12 and 3.13. 

3.1.4 Discussion 

Most of the scheduling schemes described above operate on a flattened segment of the 

data flow graph, consistent with the basic block representation described in Section 

2.2. For datapath dominated designs (i.e. designs where the amount of data flow 
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contained in individual basic blocks is significant compared to the amount of control 

flow), the deferral-based scheduling schemes are appropriate. 

minimise (5 X Mmuit x  M) subject to 
X1 , 1 + X21 + X61 + X8.1 - Mmuu <= 0; 
X3,2 + X6 ,2 + X7, 2 + X8,2 - Mmuit <= 0; 

X7 ,3 + X8,3 - M mu ft <= 0; 

X10,1 - Matu  <= 0; 

X92 + X102 + X112 - Maiu  <= 0; 

+ X9,3  + X103 + X113 - Ma iu  <= 0; 

X1,1 = 1; x2 , 1  = 1; x3 ,2  = 1; 

X4.3 = 1; x5 , 4  = 1; 

x6 , 1  + x6 ,2  = 1; x7,2 + x7 ,3  = 1; 

X8,1 + x8 ,2  + x8 ,3  = 1; x9 , 2  + x9 ,3  + x9 ,4  = 1; 
x10,1  + x102  + x 10,3  = 1; 

x11 ,2+x11,3 +x11,4 = 1; 

X6,1 + 2x6,2  - 2x7 ,2  - 3x7 ,3  < = - 1; 
x5,1  + 2x8 , + 3x8 ,3  - 2x92  - 3x9 ,3  - 4x9 ,4  <= -1; 
x10 , 1  + 2x 0, + 3x 10 ,3  - 2x11 , - 3x11 , 3  - 4x114  <= -1; 

Figure 3.12 ILP formulation of differential equation example. 

Conversely, for control dominated designs, those scheduling schemes may yield sub-

optimal results. Potkonjak [Pot89] describes a hierarchical scheduling scheme which 

relates more closely to the behavioural synthesis paradigm (i.e. the ability to describe 

an algorithm in a high level programming language). This hierarchical method does 

require extensive traversal of the synthesis hierarchy and backtracking. 

In terms of individual scheduling techniques, the iterative schemes are capable of 

producing optimised results when operating in conjunction with an appropriate 

allocation algorithm. Force-directed list scheduling produces marginally better quality 

results than the other list based scheduling approaches at a negligible increase in 

computational complexity. 
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C-Steps 

Figure 3.13 JLP Scheduling solution. 

The transformational schemes benefit from the fact that both algorithms are easily 

implemented. In both cases, however, the order in which nodes are merged into control 

steps, or split into new ones is arbitrary, and in many cases, this scheme produces low 

quality solutions [Fin92]. 

ILP techniques have only successfully been applied on problem instances of no 

practical significance [Lee89]. The solution of the decision matrix requires large 

amounts of compute time, even for modestly sized problems, and the formulation of 

the problem may prove unwieldy. Attempts have been made to partition the overall 

ILP scheduling problem on a control-step by control-step basis. These are reported in 

Huang [Huang9Oa] 

In most cases, the scheduling techniques described can be modified to include 

multicycing (i.e. operators requiring more than one control step to execute), operator 
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chaining (i.e. combinatorial operators occurring within a single control step), and 

functional pipelining, as illustrated in figure 3.14. 

C-step 	 C-step 

t-1 

t 

t 

	

t+1 

t+1 

(a) Operator Chaining 	(b) Multicycling 

Figure 3.14 Operator chaining and multi cycling. 

3.2 Allocation Techniques 

Data path allocation corresponds to stages (iii) - (v) in the behavioural synthesis 

design flow outlined in Section 1.3. These subtasks are grouped together in this case to 

emphasise the inter-relationship between the subtasks, and to establish an informal 

taxonomy of algorithms suitable for their solution. 

The discussion of the scheduling and allocation dichotomy revealed the relationship 

between the operator schedule and processor allocation. To reiterate, for effective 

processor allocation, the degree of parallelism within the data flow graph must be 

known for every control step. Compounding this problem, the need to use generic alu 

structures may cause allocation clashes in individual control steps. 

Further, only once the schedule has been fixed can the register allocation subtask be 

completed. Completing the operator scheduling specifies a set of tuples, L, 
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comprising of the signal value and its corresponding life time. A signal life time is 

defined as the length of time between the production of a value, and its latest 

consumption time. Resource clashes can also occur on registers where data is written 

to a particular unit before the previous value has been read. Correspondingly, a further 

component of the register allocation subtask is the grouping of registers. 

Again, this grouping affects the final allocation subtask: interconnect allocation. The 

ultimate aim is to provide a set of data transfer tuples, D, comprised of source and 

destination modules (either registers or processors) and the value transferred. From 

this tuple set, a suitable communications infrastructure can be synthesised. 

Unlike the algorithms developed to solve the scheduling subtask, allocation algorithms 

are of a more diverse nature. (In the survey of scheduling algorithms, it was shown 

that most scheduling schemes are constructed from two elements: a base scheduling 

strategy, and a conditional deferment, or prioritising, function.) Broadly, however, 

algorithms solving the allocation subtask can be partitioned into two main types. The 

first is based on algorithms designed to solve graph theoretic problems, and rely on the 

formulation of the problem as a simple, undirected graph. The second type uses expert 

system and greedy iterative techniques. The former category benefits from the fact that 

all three subproblems, as outlined above, can be formulated in a similar way for 

solution, while the latter allows incremental construction of a solution datapath. 

3.2.1 Graph Theoretic Algorithms for Allocation 
These algorithms formulate the allocation procedure as an undirected graph. Johnson 

[Johns76] defines a clique as a "maximal, completely connected sub graph of a simple 

undirected graph". This is illustrated in figure 3.15. Johnson develops a family of 

programs capable of generating all the cliques of a graph. This family of programs is 

used throughout the survey of clique based algorithms. 
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Figure 3.15 Cliques of a graph (after [Johns761). 

Clique Partitioning 
Processor Allocation: A graph is defined G(Oi,Me), where the vertex set, O, 

represents all the operations present in the schedule. The edge set, Me , contains all 

those edges that represent mutually exclusive operations of the same type (i.e. 

operations which do not execute concurrently therefore they can share the same 

processor). Thus adjacent vertices can execute on the same processor. Introducing a 

clique coverage maximally groups operations to processors. This operation is repeated 

for all operation classes, and is shown in figure 3.16. 

Register Allocation: A graph is defined G(VI ,Me) where the vertex set, V represents 

all values that require storage. The edge set, Me , contains all those edges between 

vertices that represent mutually exclusive values (i.e. the two values do not overlap in 

the schedule therefore they can be stored in the same register). Thus, adjacent vertices 

can be stored in the same register. By introducing a clique coverage, values can be 

maximally grouped into registers. This process is shown in figure 3.17. 

Interconnect Allocation: A graph is defined G(Dt,Me), where the vertex set, D, 

represents all data transfers present throughout the schedule. The edge set, Me , 
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contains all those edges that represent mutually exclusive transfers (i.e. the transfers 

take place at different times in the schedule therefore the transfers can use the same 

interconnect). 

C-Step 

i :::j: 	LSUB1SUB1 

Reqnred Processors 	 G(OM) 	 Clique Cover 

Figure 3.16 Processor allocation by clique coverage. 

Thus adjacent vertices can use the same interconnect. Introducing a clique coverage 

maximally groups data transfers to interconnect. This process is shown in figure 3.18. 

C-Step 

1 

Tb 	
b 	 [acefl 

Required Registers 	 G(VI Me) 	 Clique Cover 

Figure 3.17 Register allocation by clique coverage. 

Selecting Appropriate Clique Coverage 

In many cases, there is no definitive clique cover. Rather, a group of cliques is 

produced. Introducing a heuristic selection technique [Tseng86] can eliminate non- 
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optimal cliques. In the case of the register allocation, Tseng uses a heuristic which 

selects the maximal clique, thus maximising the register utilisation. 
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Required Data Transfers 	 G(DM0) 	 Clique Cover 

Figure 3.18 Interconnect allocation by clique coverage 

A more common approach is to use weighted clique coverage. Tseng advocates this 

approach during processor allocation an interconnect allocation in the FACET toolset. 

In both instances, a hierarchical weighting scheme is adopted. For processor 

allocation, a four level weight is introduced according to the degree of similarity in the 

source and destination units for each vertex (a high weighting is assigned to inputs and 

outputs with the same source and destination; correspondingly, a low weighting is 

given to dissimilar sources and destinations). This scheme is also used in the 

interconnect allocation for data transfer source and destinations. The HAL system 

[Paulin89c] uses weighted clique partitioning to perform register allocation. Paulin 

computes the weighting values as a function of the saved interconnect area after 

register merging. This is shown in figure 3.19. 

A general clique coverage technique has been examined which can be applied to all 

datapath allocation stages. It is important to note, however, that in Tseng's original 

treatise, the order in which the various allocation subtasks are completed is specified: 

register allocation, processor allocation, and finally interconnect allocation. This 
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ordering allows the heuristic weighting scheme to operate as the weights are derived 

directly from the register allocation. 

S1 	 S2 

1R1 I 	IR1 I 1R2 I 	JR1 	R2 	 Ri 	1R2 
  

_ 	 II 	bb 1R2 	 ______ 

Si 

 

Si 

IRiI 	Ri  
PP 

O 	1R1 I fllWeight 4 	Weight 3 	 Weight 2 	 Weigh 

Figure 3.19 Register merging, before (a), and after (b). (after [Paulin89c]) 

3.2.2 The Left Edge Algorithm. 

Kurdabi and Parker [Kurdahi87] have shown that the register allocation problem can 

be modelled as channel routing. In this representation, the goal is to assign values 

(wires) to registers (tracks) using the minimum number of registers. This is a well 

understood problem, and is documented in Hasimoto [Hasimoto7 1]. The left edge 

algorithm will always produce the minimum number of registers required, but does not 

guarantee optimal value grouping within those registers. Its operation is shown in 

figure 3.20. 
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C-Step 	 C-Step 

cTb 
2 	 2:4ii' 

Ro 	R I 	R2  

Required Registers 	 Signals grouped into registers R0 . A 1  and A2  

Figure 3.20 Left-Edge register allocation. 

Values are allocated to register on a "first available basis" as shown. The lifetime 

analysis which this graph provides has been incorporated in a further graph theoretic 

algorithm for register allocation. 

3.2.3 Bipartite Matching 

A graph is defined G(1'R,Me) whose vertex sets V and R represent the values to be 

stored and the available registers, respectively. R is determined via a lifetime analysis 

derived from the left edge algorithm outlined above. Edges are added between values 

and register if and only if there are no lifetime conflicts on that register, as shown in 

figure 3.21. In effect, this matching enumerates all value-register combinations as 

opposed to the first available matching given by the left edge algorithm. 

Once again, however, heuristics must be employed to select the most appropriate 

allocation. In Huang [Huang90b], the heuristics estimate the number of similar 

interconnects for source and destination pairs. 
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C-Step 

A0 	A1 	A2  

Signals grouped into registers R 0, A1  and R2 	 G(V,R,M) 

Figure 3.21 Bipartite register allocation. 

3.2.4 Edge Colouring 

Stok [Stok9Oa, Stok9l] defines a data path allocation scheme which deals explicitly 

with the register grouping problem. 

A graph is defined S(C,WR t), where the vertex set, C, represents all control steps 

present in the schedule. The edge set, WR, contains edges which represent the read 

and write times for storage values. Vizing's theorem [Vizing64] for general graph 

colouring 1  problems states that for a graph of degree A (maximum number of edges 

incident to a node) and multiplicity M, (maximum number of edges joining any two 

vertices), then: 

L!9'(G) :!~ +M 
	

[3.7] 

where 'I'e(G)  is the number of colours required to colour the graph edges 2. Therefore, 

in the register grouping problem, equation 3.7 states that the variables may be grouped 

into, at most, A+ 1 register files. This is shown in figure 3.22. 

The graph colouring problem is concerned with finding a partition of the set of vertices into 
a minimum number of independant sets. Such a partition is called a colouring. 
In this application of Vizing's theorem, there is no meaningful interpretation where M >1. 
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C-Step Tb 1  

Required Registers 	 G(C5, wF), i=3, M=1 

Figure 3.22 The edge-colouring algorithm for register grouping. 

Introducing a two phase clocking scheme produces a bipartite graph, Vizing's theorem 

can be reduced to: 

= 	 [3.8] 

This is shown in figure 3.23. 

C-Step 

	

Write 	Read 

o 	 0 
aTb

22 
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33 

Required Registers 	 G(V,R,M0) 

Figure 3.23 Bipartite edge colouring. 

3.2.5 Expert System/Greedy Allocation Schemes 

The expert system approach to the allocation problem applies rules generated by an 
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expert designer on an initial allocation of processors, register and interconnect. After 

applying a decision criterion, the inference engine of the expert system will apply 

further predicates aimed at minimising the overall objective function. 

JACK-THE-MAPPER [Goosse88] is a three level expert system embedded within the 

CATHEDRAL II system. The outer level is a standard expert system shell interface, 

with the intermediate level containing predefined predicates capable of performing 

specific algorithmic tasks, such as bus merging. The rule base itself contains over 100 

transformation rules. These transformations allow the modelling of multiplication as 

shift and add operations, and the generation of counters for loop structures, for 

example. 

As with all expert system approaches, significant user interaction is required, with the 

design engineer producing the processor allocation manually. Registers and 

interconnect are allocated initially, one per value and data transfer, respectively. 

JACK-THE-MAPPER then performs the optimisation transformations. The designer 

can influence these translation steps by writing architectural pragmas in the input 

SILAGE description. The allocation is completed during the scheduling phase with the 

Atomics tool. 

Greedy allocation algorithms select operations from the data flow graph. Processors, 

register and interconnect are all allocated when needed. In most cases, the algorithm 

aims to locally optimise the cost of introducing operations into the existing datapath. 

The node selection order and the local costing criteria characterise greedy allocation 

schemes. Nodes may be selected at random, via some prioritising function (e.g. critical 

path analysis), or in the order determined by the schedule. The MABAL system 

[Kucukc89] selects operations using the latter technique. A more global analysis may 
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be adopted, with all data flow nodes considered, regardless of scheduled order. This 

approach is typified by EMUCS [Thomas88], part of the System Architect's 

Workbench. The EMUCS cost function selects the functional unit with the lowest 

binding cost (i.e. the cost of adding operations) per operation. Similarly, the MABAL 

system determines local cost via an analysis of the partial architecture already 

generated. The MABAL system improves the accuracy of the cost function by 

formulating the register and functional unit allocations problems together. 

3.2.6 Other Techniques 

Branch and bound allocation schemes have been developed and implemented 

[Pangrle88, Marwed861. They search through datapath components already instanced 

to provide an allocation solution. The search depth of branch and bound is generally 

controlled by passing the scheduled data flow graph on a control step by control step 

basis. 

ILP techniques have been applied to the various allocation subtasks [Hafer83], but are 

restricted to impractical problem instances. 

3.2.7 Discussion 

The graph theoretic algorithms presented provide the most elegant solution to the 

allocation subtasks. Based on well established theory, a number of efficient algorithms 

have been developed for their solution. In the case of clique coverage and bipartite 

matching, however, the introduction of heuristics will degrade the performance of the 

algorithms in a restricted subset of applications. 

Viewing the allocation task as a series of separated problems produces solution 

schemes where one component of the allocation task dominates. Indeed, interconnect 
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and memory based optimisation approaches have been developed [Stok9 1, Park89, 

Grant 90a].  The EASY system [Stok88] uses correlated clique coverage to try and 

account for the effects of the other allocation phases. 

The rule based and greedy allocation approaches allow incremental datapath 

construction. Expert system based allocation Is slow, and requires a large rule base. 

Without efficient backtracking, this approach is more likely to produce solutions based 

on local minima. The experience of JACK-THE-MAPPER, and Kowalski's DAA 

[Kowal85] indicate that for a restricted application area, this approach is applicable. 

Greedy allocation is strongly dependent on the order in which the optimisation takes 

place, and yields poor quality results. 

Finally, the branch and bound and ILP formulations have proved too computationally 

expensive to implement for practical problem instances. 
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4 Combinatorial Optimisation and 
Simulated Annealing 

The techniques surveyed in chapter 3 provide methods for optimising the binding 

between behaviour and structure. The partitioning of the synthesis procedure into a 

number of well understood tasks enables standard algorithmic techniques to be 

brought to bear on these subproblems. The introduction of heuristics in the solution of 

the subproblems, in particular in the selection of appropriate clique coverage tends, 

however, to introduce local minima into the solution. (The definition of a local 

minimum in the context of this thesis is presented in section 4.1). 

This thesis advocates a global approach to the behavioural synthesis problem. This 

chapter lays the foundations for the formulation of the behavioural synthesis 

procedure as a combinatorial optimisation problem, and reviews local and global 

solution techniques for this problem class. A candidate technique, known as simulated 

annealing, is introduced and evaluated. A simulated annealing based behavioural 
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synthesis system, developed at the University of California at Berkeley is then 

presented. 

Some basic nomenclature is introduced as a precursor to the formulation of a 

combinatorial representation of the behavioural synthesis procedure. 

4.1 Nomenclature and Definitions 

Two types of optimisation problems exist. The first type, whose solution is selected 

from a set of real numbers or functions is known as a continuous optimisation 

problem. The second may be thought of as a "one of many selection"; selection of an 

object from a finite set of discrete candidate objects, and is known as a combinatorial 

optimisation problem [Papadim82]. 

Definition 4.1 	The solution domain of a combinatorial optimisation problem, 

P. is defined as a set of tuples (D,c) where D represents a set of 

discrete solution instances, and c is the cost function, such that 

c : D —*R" 

where R'1  represents n dimensional real vector space. 

From this definition of the solution space, a criterion may be stipulated which leads to 

the global optimum: 

Definition 4.2 	The solution selected from P satisfies .• 

c(s) :!~.c(y) for all y€ D, 5€ D 

s is called the globally optimal solution. 

The solution space may be subdivided into manageable sections by introducing the 

concept of a locality. 

Definition 4.3 	A locality, L, within an optimisation problem, P, with tuples 

(D,c) is defined as a mapping: 

L : D—.2' for each D. 
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The locality concept is used in discriminating between local and global optima. Global 

optima satisfy definition 4.2, while local optima are defined: 

Definition 4.4 	Within a locality, L, and given a tuple (D,c), a solution is called 

locally optimal with respect to L if 

c(d) :-~ c(g) for all g€ L(d) 

Papadimitriou [Papadim82] provides a suitable example of global and local optima in 

the context of a 1-dimensional Euclidean optimisation problem. 

Example 4.1 	Let the problem tuple (D,c) be defined 

D = [0,1] R' and c be defined as shown in figure 4.1 

Figure 4.1 Local and Global Optima. 

In this instance, let the locality be defined as a distance, s, from the test points, A, B 

and C. Thus, if s is small, then A, B and C are local optima, with B the global 

optimum. 
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4.2 Searching The Solution Space 

Two potential search strategies of the combinatorial solution space are now described. 

For the sake of brevity, they are labelled local and global search. Both algorithms are 

based upon a basic state generation mechanism which provides a random perturbation 

to the current state, and is followed by an assessment of the cost, or goodness, of the 

newly generated state. A decision criterion is then applied to determine whether the 

new state is accepted. It is at this decision criterion where the two techniques become 

divergent. 

A simple example is presented to illustrate the difference. Figure 4.2 shows the state 

graph representing all 1-change permutations of the set { a,b,c }, excluding the empty 

set. The directed arcs point to the lower cost next states. The cost hierarchy in this 

example is defined to be: c(1) < c(5) <c(3) < c(6) <c(2) < c(4). 

If LOCAL—SEARCH is defined as shown in figure 4.3, with a cost assessment 

criterion which accepts lower cost solutions only, then given an initial state of S(6), the 

next acceptable state transformation will result in either S( 1) or S (5). If S(5) is the state 

selected, then there will be no acceptable lower cost state transformations available to 

the algorithm, which will then terminate in a local minimum. Thus, it may be seen that 

the success of this greedy heuristic search strategy is strongly dependent on the initial 

solution state. Also, the upper bound on the computation time is unknown for many 

problems. (The worst case time complexity of UN—LOCAL—SEARCH [Lin65] 

remains uncomputed. This procedure a search strategy for the travelling salesman 

problem (TSP [Dantzig54]).) 

For a global search strategy to succeed where LOCAL—SEARCH terminates in a local 

minimum, some acceptance of lower quality solutions (i.e. solutions with a higher cost 
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function) must be attained. 

1 

Figure 4.2 1-change state graph for [a,b,cJ. 

function LOCAL—STATE (i o  : in STATE); 

i, j : STATE; 

begin 

i := i 0 ; 

repeat 
GENERATE (i, j); 
if cost (j) < cost(i) then i := 

until cost (j) >= cost (1) for all possible state GENERATIONS; 

end LOCAL SEARCH; 

Figure 4.3 LOCAL SEARCH functi on. 

In the case of the example, if all potential higher cost moves are marked in (figure 

4.4.), it may be seen that independent of the initial placement within the solution 
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space, a global minimum can be attained. It is this hill climbing property of global 

search algorithms which makes their use in combinatorial optimisation problems 

attractive 

1 

Figure 4.4 1-change state graph for Ia,b,ç) with hill climbing moves. 

4.3 The Simulated Annealing Algorithm 

The simulated annealing algorithm belongs to the class of algorithms known as 

probabilistic hill climbing algorithms, which display the desirable qualities described 

in the previous section. The simulated annealing algorithm is based upon the 

Metropolis Monte Carlo Method [Met53, Bin78], a technique which first found 

prominence in the field of statistical mechanics. 

The Monte Carlo method is a computational technique used to simulate the attainment 

of thermal equilibrium in a cooling solid. For a given solid with state i, and internal 

energy E,, the Monte Carlo method generates a candidate state, j, by introducing a 
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random perturbation to the current state. This newly generated state has internal 

energy E. If AE, where is less than or equal to zero, then the newly 

generated state is accepted unconditionally. If i.\E is greater than zero, then the state 

transition from i to j is accepted according to the following criterion, known as the 

Metropolis Criterion: 

(

SE 

kT) 
state (i) -* state (j) if e 

B 
 ,when AE >0. 	[4.1] 

where T is the temperature of the current state, and kB  is the Boltzmann constant. 

If the temperature is lowered slowly enough, then thermal equilibrium can be attained 

for each temperature. The Monte Carlo Method models this by generating a 

sufficiently large number of random state transitions for each value of T. 

Kirkpatrick, Gelatt and Vecclii [Kirk83] adapted the Monte Carlo Method for the 

simulation of the physical annealing process, described above, as a solution technique 

for general combinatorial optimisation problems. Returning to the nomenclature of 

Section 4. 1, definition 4.1 states that the solution domain of a combinatorial 

optimisation problem is defined as a set of tuples, (D,c), with D representing a set of 

discrete solution instances, and c a domain cost function. A control parameter, k, is the 

analogue of temperature. The underlying equivalence suggested here is that a physical 

particle based system can be modelled as a combinatorial solution domain, and that the 

associated cost function is an analogue of internal system energy. 

The basic simulated annealing algorithm is given in pseudo-code format in figure 4.5. 

The acceptance function, ACCEPTQ, generates a random number between 0 and 1 

using a uniform distribution. 
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( 
AE)  

If the number generated is less than the value of e 	, then the state transition is 

accepted; if the random number is greater, then the state transition is rejected. The 

pseudo-code for this function is given in figure 4.6. 

procedure SIM ANNEAL (S0 	in STATE; K0 	in CONTROL) is 

S 	: STATE; 	 -- The state variable 
TEMP 	STATE; 	 -- The temporary generated state 
K 	: CONTROL; 	-- Temperature analogy 

begin 

K := K 0 ; 

-- While loop looks for global optimum 

while (not (STOPPING _CRITERIA)) loop 
for COUNT in 1 .. M loop 

-- Generate a new state 
TEMP := GENERATEQ; 
-- Compute cost difference 
COMPUTE-DELTA-E; 
-- Lower cost state; always accept. 

if (AK < 0) then S := TEMP; 

-- Higher cost state; may generate a hill climbing move 
else 

if (accept) then S := TEMP; end if; 
end if; 

end loop; 
-- Update control parameter 
UPDATE (K); 

end loop; 
end SIM ANNEAL; 

Figure 4.5 The Simulated Annealing Algorithm. 

From these definitions, it may be seen that the rate of convergence of the algorithm is 

dependent upon the selection of the following: M, the inner loop criterion (i.e. the 

number of states generated to simulated the attainment of thermal equilibrium); the 

function UPDATEQ, which decrements the value of k, the control parameter; k0 , the 

initial value of k; and the selection of an appropriate stopping criterion for the 

algorithm. Communally these items are known as a cooling schedule. 
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function ACCEPT() return BOOLEAN is 

R REAL; 

begin 
R = RANDQM(l); 

if (R < e_/k) then 
RETURN true; 

else 
RETURN false; 

end if; 

end ACCEPT; 

Figure 4.6 Pseudo-code state acceptance function. 

While this thesis is primarily concerned with the pragmatic application of the 

simulated annealing algorithm to the behavioural synthesis problem, a brief review of 

current cooling schedule techniques is presented. 

4.3.1 Cooling Schedule Techniques 

Reaching Thermal Equilibrium 

Two major approaches are well-documented for the determination of M, the number of 

states generated at each value of the control parameter necessary to simulate thermal 

equilibrium. 

The first uses fixed-length Markov chain modelling [Aar85] to determine when 

equilibrium has been reached. That is, a fixed number of state generation trials are 

attempted at each control parameter value. Aarts [Aar85] states that a quasi-

equilibrium is achieved if, for a Markov chain (k), of length Lk,  and cost parameter ck: 

a(lk,ck ) — q(c) [4.2] 

where a(Lk,ck) is the probability distribution of the solutions after Lk trials of the kth 

Markov chain, and q(c) is the stationary distribution of the Markov chain at ck. 
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The equilibrium condition determined by Huang [Huang86] is based on the following 

observation: When equilibrium is established, the ratio of the number of new states 

generated whose cost is within a range, ö, from the average cost (C) to the total 

number of newly accepted state transformations will reach a stable value, X. For high 

values of k, the cost distribution is observed to be close to a normal distribution. A 

range of state generations whose cost lies within the range (—C-8,T+6), known as the 

within count, is established. The ratio of this range, X, to the number of newly accepted 

state transformations is given by: 

( 

= erf - ö [4.3] 

where erf() is the error function [Fe170]. In this system, the development of the 

equilibrium condition is based upon the selection of the within count, and the 

application of a maximum count value. Equilibrium is attained if the within count is 

reached before the maximum count is exceeded. If the maximum count is exceeded, 

then both counters are reset, and the process repeats. The value of ö is set to be such 

that the final state at any value of k is close to the average cost (ö < a). 

Updating the Control Parameter 

The simplest technique for the UPDATE() procedure which decrements the control 

parameter is to implement an exponential function such as 

kn  = ka(k), with O<a(k) <1 	 [4.4] 

where k is the new value of the control parameter, and k is the current value. This 

technique is proposed in Kirkpatrick [Kirk83]. Sechen [Sechen88] reports that the 

most effective cooling schedules are generated when a lies between 0.8 and 0.99. This 

method is inefficient for high values of k, however, where the current state is generally 

many transitions away from the final, minimum cost solution. An alternative is to use 
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an adaptive technique. 

Huang [Huang86] uses the relationship between average cost of the current system 

configuration (C) against the logarithm of the value of the control parameter for that 

configuration. Plotting this annealing curve allows the control parameter to be set such 

that decreases in a uniform manner. The slope of that curve is given by: 

dC 	dC 

	

= k— 	 [45] 
dln(k) 	dk 

In his treatise on statistical and thermal physics, Reif [Reif65] states: 

dC c 2 

[4.6] 

If a linear approximation to the curve, as shown in figure 4.7, is used, substitution of. 

equation 4.6 into equation 4.5 yields: 

AC 2 a 
[4.7] 

ln(k') — ln(k) - k 

Rearrangement of equation 4.7 leads to: 

k LAC ) 	 [4.8] 
 Cr 

A key assumption used in the derivation of equation 4.5 is that equilibrium can be 

maintained provided that AC < a. Substituting AC = —Xa, where X :9 1, into 

equation 4.8 yields: 

k = k
Xk\ 

exp [4.9] 
(—  a 

This derivation represents one of the most commonly used decrement functions. 
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Figure 4.7 Linear approximation technique used in [Huang86]. 

Initial Control Parameter Selection 
The initial value of the control parameter, k0, should be selected such that all state 

transitions can be accepted. In the domain of physical annealing, this corresponds to 

heating the solid up until rearrangement at the atomic level can take place freely. 

When translated into the simulation domain, the criteria here must ensure that at the 

initial value almost all possible state transitions should be accepted. Defining an 

acceptance ratio (k) at the khhhz  transition: 

(k) 
= number of accepted transitions at k 	

[4.10] 
number of proposed transitions at k 

hence: 

[4.11] 

The actual value of X 0, known as the initial acceptance ratio may vary from 0.95 - 

0.98 [Aar89]. For a sequence of trial state generations at a value of the control 

parameter, k, let Cl represent the number of trails that result in a decreased (or 
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unchanged) cost function and C2 represent the number of trials that result in an 

increase. Let A represent the average difference in cost for all trials in C2. The 

acceptance ratio can be approximated [Aar85]: 

- (C1+C2)e 

(CI +C2) 

Rearrangement of 4.12 leads to: 

[4.12] 

k= 

ln 	
C2 

C2—C1(1 X)) 

[4.13] 

The control parameter, k, is set to zero initially. A sequence of trial state generations, 

M then takes place. After each trial, equation 4.13 is used to calculate a new value of k, 

with X = X 0 . Cl and C2 correspond to the total number of increasing and decreasing 

cost state generations obtained. When M = C 1 + C2, then the value of k at that point 

is taken as the initial value of the control parameter, k0. Published results [Aar89] 

indicate that this method provides fast convergence to k0 . 

Stopping Criterion 

The stopping criterion can be implemented in a simple, but effective form. The cost 

of equilibrium states (C) for a number (11) of successive control value parameters is 

compared. The algorithm is terminated if: 

C=C for all i,j€ fl 
	

[4.14] 

In practice, the value of IT can be particularly low, typically 3. Markov chain analysis 

[Aar89] reinforces this observation. 

71 



Combinatorial Optimisation and Simulated Annealing 

4.4 The Class NP and Behavioural Synthesis 

The simulated annealing algorithm has been shown to be effective for a wide range of 

combinatorial and NP (Non-Polynomial time) complete problems [Cook7l, Karp72]. 

While an in-depth survey of the theory of NP-completeness lies outside the scope of 

this thesis, a brief discussion is presented. 

NP complete problems may be defined as a class of computational problem for which 

there is no exact solution capable of being produced by a polynomial algorithm. As a 

corollary to the above statement, it should be noted that if there is a polynomial 

algorithm for any NP-complete problem, then there is a polynomial solution for all 

NP-complete problems. The theory of NP-completeness therefore provides a 

convenient watershed between tractable and intractable computational problems. At 

best, the amount of computational effort required to solve an NP-complete problem 

will be exponential, and therefore impractical for all but trivial problem instances. 

In assessing whether a problem is in the class NP, polynomial transforms are applied to 

the problem to try to reduce it to a known NP-complete form. The mechanics of this 

reduction lie outside the scope of this thesis, but it should be noted that in many cases 

the transformation process can be as time consuming as producing an approximate (or 

heuristic) solution to the problem. Gary [Gary79] provides a comprehensive and 

readable introduction to, and survey of, NP-complete problems. A brief summary is 

presented below of known NP-complete problems which form constituent parts of the 

behavioural synthesis procedure. 

The MAX—CLIQUE problem (section 3.2.1), is known to belong to the class NP 

[Cook7 1]. This illustrates the need for heuristics to be applied in the selection of the 

most appropriate clique coverage. Without the introduction of heuristics, for problems 
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of practical size, the MAX—CLIQUE problem would remain intractable. Also related 

to the allocation procedures, the GRAPH—COLOURING problem [Law76, Holyer8 1] 

is NP-complete, along with a variant of the matching problem, 3-D_MATCH 

[Karp75]. Further, the MULTIPROCESSOR —SCHEDULING [Ullman75] problem 

belongs to NP. Even techniques used to reduce the complexity of the data flow 

structures encountered in the behavioural synthesis procedure [Fin92], reduced to the 

PARTITION problem have also been shown to be NP-complete [Karp75]. 

4.5 Simulated Annealing and Behavioural Synthesis 

A simulated annealing based algorithm, originating at the University of California at 

Berkeley [Dev89], formulates the datapath generation algorithm as a two dimensional 

placement of microinstructions on a grid representing available hardware resources. 

This representation is a common thread throughout all simulated annealing based 

systems, and it represents an extension of the successful application of the simulated 

annealing algorithm to the field of global placement and routing of blocks in a VLSI 

layout environment [Sechen88]. 

The Berkeley core synthesis system takes a description of the input algorithm in terms 

of explicit statements of sequential, parallel and disjoint blocks, as shown in figure 

4.8a. 

The specification of disjoint statements allows mutually exclusive code segments to 

execute on the same hardware resource. 

The function used to compute the cost of the intermediate datapaths is simply a 

weighted sum of the areas of constituent datapath parts, namely generic ALUs (the 

Berkeley system does not use dedicated hardware blocks), registers and buses or links, 
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along with a weighting which incorporates the overall system execution time (figure 

4.8b). From this definition, it may be seen that the Berkeley system represents an 

optimisation over a restricted hardware architecture. In many cases, especially in 

signal processing architectures, a bus based system can introduce a significant 

overhead in terms of silicon area. 

The ALU cost function is not simply a sum of all operation costs associated with the 

particular ALU. Devedas and Newton [Dev89] observe that an ALU capable of 

performing both addition and subtraction is only marginally bigger than an ALU 

capable of performing addition alone. With this in mind, a cost table for all potential 

ALU functions along with register and bussing costs was defined. A typical cost table 

is shown in figure 4.9. 

A similar rationale is applied when assigning costs to registers. The table sets a 

threshold so that designs using large register files are penalised more heavily. This is 

also used when assigning interconnect costs. 

In the cost function defined in figure 4.9, p3  is a function of the number of registers 

used in the design, while p4 is a complex function of both the number of registers and 

ALUs in the data path. The values in the cost table are derived from an evaluation of 

the change in layout area given incremental addition of registers, interconnect and 

register numbers for a given layout style. The resultant function is piecewise linear, 

and Devedas and Newton use a data set small enough to given an improvement in 

accuracy of solution over a linear approximation. 
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(serial 
(parallel 

(add xl yl zl) 
(add x2 y2 z2) 

(parallel 
(mult zl y3 z3) 
(minus z2 y4 z4) 

(disjoint 
(divide z3 x3 z5) 
(divide z4 x4 z5) 

 

Cost 	p1 * (#ALU) + p2 * (execution—time) + p3 * (#register) 

+ p4 * (bus) 

 

Figure 4.8 (a) Berkley input behavioural description (b) Berkely cost function 

cost of different operations in an ALU 
ALU 
add 50 
sub 50 
fadd 100 
mult 250 
add minus 60 

#register costs 
REGISTER 
#starting from register 1, each has a cost of 10 units 
1 10 
#starting from register 5, each has a cost of 15 units 
5 15 

#execution time 
EXECUTION 
1 50 
50 50 

#bus costs 
1 100 
3 150 

Figure 4.9 Berkeley costing table. 
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4.6 Discussion 

Simulated annealing was introduced as an effective technique for generating high 

quality optimised solutions for general purpose combinatorial optimisation problems. 

By considering the potential solution space for a behavioural synthesis problem as an 

enumeration of all possible state transitions, and hence all possible datapaths, the 

behavioural synthesis problem can be represented as a combinatorial optimisation 

problem. 

Chapter 3 presented algorithmic techniques for the solution of subtasks within the 

behavioural synthesis procedure. This partitioning is known to lead to the generation 

of locally optimal solutions through the introduction of heuristics. The simulated 

annealing algorithm avoids this by accepting the generation of inferior states, and 

therefore can effectively 'climb out' of local minima. 

The controlling algorithm itself is known to be simple and robust. The mechanics of 

the annealing process are well understood, and can be analytically modelled. A wide 

variety of general purpose cooling schedules exist, and have been proven to be 

particularly effective in the field of VLSI layout. 

Pioneering work on the use of the simulated annealing algorithm in the field of 

behavioural synthesis has taken place, and the result is a working system capable of 

taking an algorithmic description and producing a datapath optimised for area 

performance based around a costing function using a weighted sum to compute 

datapath costs for a restricted hardware architecture. 

The remainder of this thesis develops this work into a system capable of producing 

optimised solutions for both area and speed performance over a full range of datapath 

components. 

76 



Simulated Annealing Based Synthesis Techniques 

5 Simulated Annealing Based 
Synthesis Techniques 

This chapter develops a set of datapath synthesis techniques based upon the simulated 

annealing algorithm introduced previously. These techniques are drawn together in the 

SAVAGE (a Simulated Annealing based VLSI Architecture GEnerator) toolset, which 

is a modular software package capable of synthesising an RTL description of a 

datapath from a fragment of behavioural code. 

The chapter is organised into a number of separate sections. The first introduces a 

novel data structure, capable of sustaining an extended range of optimisation moves 1 , 

and which also permits a simple costing method. The application of the simulated 

annealing algorithm to the behavioural synthesis task is then considered. As simulated 

annealing is a general optimisation technique, little code modification is required. 

1. The random perturbations of the current state of the system described in section 4.3 are 
known as optimisation moves. Where different types of moves are available, they are 
grouped into move sets. 
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The next two sections address the core of the synthesis method presented in this thesis. 

In the first, a basic move set is developed; this set covers scheduling, processor 

allocation and memory and interconnect optimisation. Linked to the datapath move set 

is the mechanism by which the quality of the solution is assessed. The costing method 

proposed by Devedas and Newton [Dev89] is extended, and a novel cost-multiplier 

system introduced. - 

The SAVAGE tools are described, and Paulin's differential equation example is 

presented as a brief illustration of the method. 

5.1 Data Structures 

In common with the majority of simulated annealing based applications (solution of 

the Travelling Salesman Problem [Aar89], VLSI block placement and global routing 

[Sechen88]), the solution space is presented as a grid structure, or plane. 

The Berkeley system [Dev89], described in section 4.5, represents the datapath 

synthesis problem as a placement of microinstructions in a two-dimensional grid 

whose axes correspond to the available hardware resource and control steps 

respectively. Memory and communications optimisation takes place after the 

optimisation move has been applied, 'downstream' in effect, from the scheduling and 

allocation problem. Consequently, no optimisation moves are brought to bear directly 

on those synthesis subtasks. Thus the Berkeley model retains a single degree of 

freedom - that of placement of microinstructions in a Resource-time 2  space. 

The model described here offers three degrees of freedom by providing separate 

planes for the simulated annealing algorithm to operate on. These planes correspond to 

2. This terminology first occurs in Denyer [Denyer89]. 
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a Resource-time space, a Memory-time space, and a representation of the 

communications infrastructure required to complete the datapath known as the Port-

connection space. While complete decoupling of the planes is impossible, the 

annealing algorithm will be demonstrated to operate effectively within each. 

5.1.1 Resource-time Space 
Resource-time (R-t) space records the current schedule for each operation present in 

the input data flow graph, and the processor that each operation is currently allocated 

to. R-t space is a two-dimensional array indexed by processor resources available to 

execute dataflow operations, and the control steps in which those operations are 

executed. 

An operation, 0, can exist at R-t location R-t[processor, c-step] if, and only if, the 

following conditions are true: 

All predecessor nodes (pred(0)) execute in the range [1 .. c-step-1], and 

all successor nodes (succ(0)) execute at time, t, such that I > c-step. 

The processor is capable of executing the operation type. (i.e. O.type € 

processor. type3). 

By adhering to these conditions, R-t space models data flow precedence and ensures 

processor binding correctness. The data flow fragment of figure 2.1 can be (arbitrarily) 

mapped4  into R-t space as shown in figure 5.1. 

5.1.2 Memory-time Space 

Memory-time (M-t) space records individual signal lifetimes over all control steps in 

Refer to sections 2.3 and 2.4.1. 
The initial mapping of the data flow graph into R-t space is a function of the BUILDER 
module in the SAVAGE toolset, and is described in section 5.5.2. 

79 



Simulated Annealing Based Synthesis Techniques 

the current schedule. M-t space is a two-dimensional array whose axes are indexed by 

memory components and control steps respectively. The grid is bounded by the total 

number of signals present in the data flow graph, and the latest execution time present 

in the schedule 

Processors 
- 

MULF_1 MULF_2 SUBF_1 

1 

2 

3 

c-steps 
4 

5 

6 

Figure 5.1 Data flow graph from figure 2.8 mapped into R-t space. 

Each control step is partitioned into read and write phases. This adheres to the control 

model developed in section 2.6. Memory components can therefore be reused on a 

cycle to cycle basis while preserving data integrity. Similarly, signals may share a 

memory component if, and only if, the lifetimes of both signals are mutually 

exclusive. Thus the R-t space mapping of figure 5.1 produces an M-t space as shown in 

figure 5.2. 

5.1.3 Port-connection Space 

Port-connection (P-c) space records all point to point connections within the 

synthesised datapath. Further, P-c space records all bindings between signals and nets. 

mul_1 mul_2 

mul 3 

muL4 

mul_6 sub-5 

sub-7 
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P-c space is a two-dimensional array whose axes correspond to all processor and 

memory input and output ports respectively. 

Memory Components 

MEMF_1 MEMF_2 MEMF_3 MEMF_4 MEMF_5 MEMF_6 

c steps 	
W 	

L_J LiI 

Figure 5.2 M-t space derived from R-t space offigure 5.1 

Each array location contains two items: 

A Boolean flag. This is set if and only if there is a communications 

function required between the two ports. 

A pointer to a net instance. If the Boolean flag is set, then the pointer 

indicates which net carries out the communications function. 

The P-c space corresponding to the R-t and M-t mappings in figures 5.1 and 5.2 is 

shown in figure 5.3. For clarity, the pointers to the net instances are not shown. 

5.1.4 Implementation Details 

Each of the optimisation planes is described above as a two dimensional array. 

Because of their dynamic nature, however, it is impractical to implement them as 

conventional static array structures. 
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Input Ports 
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- 

- 
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- 

IOF_Y.Z 
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- 

- - - - 

ROMF_G31 
- I I -  

Figure 5.3 P-c space derived from R-t and M-t spaces offigures 5.1 and 5.2. 

In order to maintain the maximum flexibility in the selection of scheduling and 

allocation moves, R-t space is implemented as a linked list structure. In this way, 

processors can be added to and deleted from R-t space with a minimal computational 

overhead. Each processor contains a pointer to another linked list corresponding to 

those operations currently allocated to execute on that processor. Items on this list are 

composed of pointers 5  to the input data flow graph, and record fields recording the 

current execution time. This structure is shown in figure 5.4. 

Similarly, M-t space is maintained as a linked list of memory components. Each 

contains a pointer to a linked list corresponding to the signal(s) currently allocated for 

5. It is important to note that these pointers are doubly-linked, i.e an operation allocation can 
be determined by beginning the search from the data flow graph. 
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storage. Again, the list items point to the input data flow graph. This data structure is 

shown in figure 5.5. 

MULF_1 	MULF_2 	SUBF_1 

R-t 	-''l 	I 	I 	I 	I -I•---I 	I 	I 	I 

mul_1 	1 	mul_2 	1 	sub-5 	4 

mul_3 	2 	muI4 	3 	sub-7 	6 

mul_6 	4 

Figure 5.4 Linked list implementation of R-t space shown in figure 5.1 

Figure 5.5 Linked list implementation of M-t space shown in figure 5.2. 

P-c space is maintained as a linked list of input port records. Each input port record 

points to a list of output port records. Where a communications function between ports 

is required, a pointer to the appropriate output port is appended to the output port list 

of the corresponding input port. Each output port record contains another pointer to the 

net instance implementing the communications function. These net instances are also 

implemented as a linked list. Further, each output port record also contains a pointer to 
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the signal in the input data flow graph requiring the communications function. This 

structure is shown in figure 5.6 (Again for clarity, the pointers to the net instance list 

and to the data flow graph are not shown). 

Figure 5.6 Linked list fragment of P-c space shown in figure 5.3 

5.2 Core Synthesis 

The core synthesis routines comprise the simulated annealing procedure and the 

cooling schedule used. The simulated annealing algorithm shown in figure 4.5 may be 

divided into two major phases: 

Initialisation: The initial system state is generated along with a starting 

value for the control parameter, k. 

Iteration: The state generation and cost assessment loop continues until 

all stopping criteria are satisfied. 

The initial system state is a function of the BUILDER module, described in section 
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5.5.2. BUILDER seeds operations in R-t space, generates an M-t space based upon the 

initial R-t mapping and finally computes P-c space. These three components form the 

initial system state. 

5.2.1 Initial Control Parameter Value 
The initial value of the control parameter, k0 , is determined using the convergence 

technique described in section 4.3.1. A sequence of 100 states is generated. The 

control parameter, k, is set to zero initially. A trial state is generated, and the quality of 

the newly generated state is assessed using the cost function. This value is compared 

with the previous cost function. The Cl and C2 counts are incremented accordingly. 

Equation 4.13 is then used to generate a new value for k. At the conclusion of the 

sequence, the value of k is set as the initial control parameter value. 

5.2.2 State Generation 

The state generation procedure applies a random perturbation to the current system 

state. This is a five stage process. 

Optimisation plane selection: A random variable selects either R-t, M-t 

or P-c based optimisation. Plane selection dictates the type of optimisation 

move to be carried out; scheduling and allocation, memory optimisation or 

interconnect optimisation. 

Operand selection: If R-t space is chosen, then the operand is a node 

selected at random from the input data flow graph. If M-t space is chosen, 

then a signal is selected at random from the input data flow graph. Finally, 

if P-c space is chosen, then a component input port is selected at random 

from P-c space, or a net is selected from the net instance list. 

(iii) Build move set: A valid move set for the selected operand is generated 
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This set describes all potential movement of the operand in the selected 

optimisation plane. 

Operator selection and execution: A move is selected at random from 

the generated set. This move is then applied to the selected operand. 

Change propagation: As a result of operator execution in R-t space, the 

M-t and P-c spaces may require updating. Similarly if the selected 

operation acts in M-t space, then P-c space may require updating. All 

resultant changes are propagated by the VALIDATE procedure, described 

in section 5.5.3. 

5.23 Attaining Thermal Equilibrium 

Attaining thermal equilibrium (i.e. establishing a steady-state probability distribution 

for all state generations) is a two stage process: 

Generate maximum count threshold and within count values. 

Increment counters at each state generation. 

Ideally, the maximum count threshold and within count values should be updated 

dynamically to reflect changes in the cost distribution as the control parameter is 

decreased. This is infeasible because of the large amount of compute time required to 

monitor the steady-state condition for all state generations. These parameters are 

therefore determined prior to the optimisation procedure. 

Setting b = 0.5a (i.e. the range limit on acceptable generated costs) in equation 4.3 

yields: 

= erf(O.5) = 0.38 
	

[5.1] 

The within count is then set to be 0.38(3n), where n is the number of nodes (i.e. 
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datapath components and data flow operations/signals) in the problem. The maximum 

count threshold is specified as 1 - within count(problern bound) = 0.62(3n). 

At each state generation the state cost is computed. If the cost lies within the range (C-

ö, +ö), where C is the average cost, then the within count is incremented. The current 

number of state generations is also incremented and compared to the maximum count 

threshold. If the current number of state generations exceeds the maximum count 

threshold, then both counters are reset to zero and the process continues. If the within 

count value is attained prior to reaching the maximum count threshold, then thermal 

equilibrium has been simulated and the state generation loop terminates. 

5.2.4 Control Parameter Update 

The control parameter is updated in accordance with equation 4.9: 

 (?k 
k '  =kexpi— — 

Experimental results [0tt84, Lun84] suggest that a suitable value for X is X = 0.7. 

Substitution in the above equation gives: 

( O.7k" 
k' = k'expj ----- 

 l 
	 [5.2] 

\. a) 

After each state generation sequence, the standard deviation of the cost distributions 

generated during the sequence is calculated. The resulting value is applied in equation 

5.2, and the new value of k calculated. 

5.2.5 Stopping Criterion 

The stopping criterion used in the simulated annealing core is composed of two major 

components. The first is the comparison of three successive cost values. At low values 
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of the control parameter, this criterion indicates a stable datapath structure. The second 

is concerned with the validity of the datapath generated. The WIRED function 

(described in section 5.5.3) ensures that there are no wired-OR connections present in 

P-c space. 

5.3 Datapath State Generation Move Sets 

The state generator selects a move set from those described in the following sections. 

The state generation moves have been grouped into scheduling and allocation, 

memory optimisation and net optimisation moves according to the primary plane of 

operation (i.e R-t, M-t or P-c space). 

5.3.1 Scheduling and Allocation 
The basic scheduling and allocation move within R-t space corresponds to a 

translation of an operation over either or both axes. A node is selected at random from 

the input data flow graph. A valid move set for that node is then generated. In this 

context, a valid move does not violate data flow precedence. The valid move set is a 

subset of the moves described in the following subsections. 

Schedule on current processor (UNARY_STEP) 

This optimisation move forces a unary increase or decrease in the operation execution 

time; the processor allocation remains unchanged. For an operation, 0, executing on 

processor, P. at c-step c, the validity of this move is subject to data flow dependencies 

and on the availability of P at c-steps, c-i, c and c+i. If any of these execution times is 

unavailable, the optimisation move proceeds using the others. If all are unavailable, 

the move is invalidated. Where all c-steps are available, the direction of the move is 

decided on the generation of a random variable (c.f. the state acceptance function, 

ACCEPT, presented in section 4.3). This move is illustrated in figure 5.7. 
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Processors 

MULF_1 MULF_2 	SUBF_1 

1 mull mul_2 

2 mul_3 

muL4 

c-steps 
mul_6 sub-5 

6 sub-7 

Figure 5.7 Schedule on current processor. 

Processors 
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Figure 5.8 Schedule on valid processor. 
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Schedule on valid processor 
This optimisation move may force a unary increase or decrease in the selected 

operation execution time and a change in processor allocation. For an operation, 0, 

executing on processor, P. at c-step, c, all processors capable of supporting the 

operation.type and of sustaining operation execution at c-steps c-i, c and c+1 are 

grouped in a subset. A processor is selected at random from this subset. The operation 

is then allocated to the selected processor. A valid schedule for the operation is 

determined using the UNARY—STEP function. This move is illustrated in figure 5.8 

Create processor 
This optimisation move creates a new processor for the selected operation and may 

force a unary increase or decrease in the operation execution time. A new processor 

capable of supporting the operation.type is created and added to the Resource axis of 

R-t space. The selected operation is allocated to the newly created processor. A valid 

schedule for the operation is determined using the UNARY—STEP function. The move 

is illustrated in figure 5.9. 

Function merge 

This optimisation move creates a multi-function ALU structure from a dedicated 

processor. The move may force a unary increase or decrease in the execution time of 

the selected operation. A subset of processors not currently capable of supporting the 

operation.type is formed. Each processor must be capable of sustaining operation 

execution at c-steps c-i, c and c+1. A processor is selected at random from the subset, 

and the operation.type is added to the processor.type list. The operation is then 

allocated to the selected processor. A valid schedule for the operation is determined 

using the UNARY—STEP function. This procedure is illustrated in figure 5.10. 

90 



Simulated Annealing Based Synthesis Techniques 

Processors 
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Figure 5.9 Create processor. 

Processors 

ALUF_1 MULF_2 	SUBF_1 

1 mul_1 mul_2 

2 muL3 

3 muL4 

c-steps 
4 mul 6 

- 

sub_5 

5 

6 sub-7 

Figure 5.10 Function merge. 
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5.3.2 Memory Optimisation 

Memory optimisation is concerned with achieving the minimum number of memory 

components required to store all signals declared in the data flow graph. The 

optimisation move merges multiple signals into a single memory component. The 

overall effect of this move is similar to that produced by the left-edge algorithm, 

described in section 3.2.2. 

Signal Merge 

A signal is selected at random from the input data flow graph. M-t space is indexed, 

and a subset of all memory components capable of storing the signal over its lifetime 

is generated. A memory component is selected at random from the subset. The signal 

is then allocated to the selected memory component. This process is illustrated in 

figure 5.11. 

Create Memory Component 

A signal is selected at random from the input data flow graph. A memory component 

of type register6  is added to M-t space, and the selected signal allocated to the newly 

created register. This process is illustrated in figure 5.12. 

5.3.3 Optimising P-c Space 

Optimisation within P-c space takes one of three forms. The first is concerned with 

exercising the commutative law, and may be thought of as a 'port swap' operation, 

while the second mechanism is concerned with optimising the binding between the 

communications functionality within the datapath (i.e. point-to-point connections) to 

the net instances (i.e. wires, multiplexers and buses) required to implement that 

functionality. Although it is not directly associated with P-c space, the last 

optimisation move is a good example of the relationship between M-t and P-c space. 

6. The Net Merge function is able to alter the mernory.type field. 
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The final technique merges individual registers into registerfile structures. 

Memory Components 

MEMF_1 MEMF_2 MEMF_3 MEMF_4 MEMF_5 MEMF_6 

2 R 
	J!j 

csteps 
4 _ 

5 	 S5 	S6 

Figure 5.11 Signal merge. 
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Figure 5.12 Create memory component. 
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Port Swap 

A valid (i.e. commutative) operation is selected at random from the input data flow 

graph. By indexing R-t space, the input ports to the processor currently allocated to 

execute the operation can be determined. Once the processor input ports and the signal 

source ports have been located in P-c space, the input port connections are transposed. 

This is illustrated in figure 5.13. 
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;.!!1U• 

Figure 5.13 Port swap operation 

Net Merge 

This optimisation move replaces implicit wired-OR connection to an input port with a 

multiplexer instance. The optimisation moves supported are illustrated in figure 5.14. 

A column-wise search through P-c space is carried out. Input ports with references to 

multiple output ports (implied wired-OR) are grouped in a subset (Input ports with a 

single output port connection are implemented using the default net type - WIRE.). An 

input port is selected at random from the subset. A pair of output ports are selected at 

random from the output port list. If both ports point to the same multiplexer instance, 
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then the move is invalidated. In the case where both ports point to separate wire 

instances then a new multiplexer instance is added to the net list and the pointers to the 

wire instances are replaced with pointers to the multiplexer instance (figure 5.14(a)). 

A 	B A 	B 

 

A B C 	
ABC 

\\_/7 
+ 

 

A BC D 	
ABCD 

 

A BC D 	
ABCD 

ti 	• i .• I 

 

Figure 5.14 Net merge (a) wire to multiplexer, (b) wire and multiplexer to multiplexer, (c) multiplexer 
and multiplexer to multiplexer and (d) multiplexer and multiplexer to bus. 

If either port points to a multiplexer instance, with the other pointing to a wire 

instance, then the wire instance is replaced with a pointer to the multiplexer (figure 
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5.14(b)). The cardinality of the multiplexer is also updated. In the case where both 

ports point to different multiplexer instances, then the two are merged into a single 

instance whose cardinality matches the sum of the originals (figure 5.14(c)) If the 

cardinality of the new multiplexer is greater than a pre-defined bus threshold value, 

then the multiplexer instance may be replaced with a bus instance (figure 5.14(d)). 

Register Merge 

This optimisation move merges two register (or register file) instances with a wired-

OR connection to an input port into a single register file instance with a single wire 

connection to the input port. This move is invalidated if the read and write times of the 

signals intended for the register file are not mutually exclusive. The optimisation move 

is illustrated in figure 5.15. 

A valid input port is selected from P-c space. Here, valid refers to input ports with 

more than one memory component on its output port connection list. Two memory 

components are selected at random. Both have their type instance set to FILE, and 

their cardinality index incremented accordingly. 

5.4 Solution Quality Assessment 

The costing function quantifies the quality of the newly generated state based upon 

three major criteria: 

Maximum operation execution time, extracted from the current schedule 

This measures the quality of the temporal optimisation, i.e. the total 

execution time of the behavioural description. 

A quantitative assessment of the structure of the generated datapath. 

An estimation of the control overhead incurred by the schedule and 

datapath configuration. 
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Figure 5.15 Valid register merges. 

The maximum execution time is readily available as a function of the current schedule. 

A quantitative assessment of the structure is normally generated by attaching a value 

to each type of component present in the datapath and summing over all components 

in the datapath. Devedas and Newton [Dev89] refine this method by recognising that 

multiple component instances, such as register files (of cardinality n), will occupy less 

silicon area than a single component instance n times. A linear 'sliding scale' of cost is 

assigned to multiple component instances. 

Many costing methods, however, overlook the routing overhead associated with a 

given datapath configuration. While all costing methods account for the nets (e.g. 
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multiplexers) present in the datapath, very few consider the interconnect density (i.e. 

the number of point-to-point connections in the datapath). Behavioural synthesis tools 

generally produce an optimised datapath macroarchitecture which is then targeted to a 

particular layout style by logic synthesis tools. For the standard cell and gate array 

technologies, the routing overhead can be up to 60% of the total silicon area 

[Sechen86]. Consequently, a measure of point-to-point connectivity is an essential 

component of the assessment of the datapath structure. 

Within the SAVAGE system, the maximum execution time can be extracted by 

traversing R-t space searching for the maximum value of operation.execution_time. 

A similar search method is used to determine the numbers and types of datapath 

component. Finally, a measure of the interconnect density is obtained by summing the 

number of connection flags set in P-c space (figures 5.3 and 5.6). 

The control overhead for a given datapath configuration is based on the following 

observations: 

For a 2' input multiplexer, n control signals are required to select the 

appropriate input signal. 

If a multi-function processor is capable of executing 2m  different operation 

types, then ni control signals are required for function selection. 

Where a register file of cardinality 2 k  is instanced, k control signals are 

required to select the appropriate register output, in addition to the 

equivalent of a 2k  input demultiplexer. 

For a schedule comprising of 2t  control steps, a state machine of t states is 

required for sequencing purposes. 
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To provide meaningful comparison between SAVAGE and other reported synthesis 

systems, however, only the figure obtained from (iii) is computed and used within the 

SAVAGE system. 

5.4.4 A Datapath Costing Model 

The SAVAGE datapath cost function is a summation of the quality criteria outlined - 

above: 

COST (STATE) = MAX—EXECUTION + E COST(DATAPATH_COMPONENTS) 

• INTERCONNECT—DENSITY(PC) 

• E CONTROL—OVERHEADS (DATAPATH_COMPONENTS) 	[5.3] 

A table lookup is used to obtain the datapath component costs. Table 5.1 indicates the 

relative costs of the various datapath components. These costs represent the number of 

fundamental building blocks required to implement the datapath component. For a 

compiled logic technology, this may be thought of as cell units used, while for a gate 

array technology it may be thought of as gate equivalents. The values quoted here 

were obtained from the LSI l.Op. Cell-Based Products Databook [LSI91]. The figures 

quoted are for cell units used for each compiled datapath component. 

The ALU function cost recognises the ability to share logic within a multi-function 

ALU. The multiplexer cost reflects the increase in multiplexer complexity as the 

number of multiplexer inputs increases. The bus cost is interpreted as the cost of the 

drive circuitry required for bus access. This cost increases linearly with the number of 

bus inputs. 
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Datapath Component Cost 

Adder 100 

Subtractor 108 

Multiplier 160 

Comparator 140 

ALU MAX(function cost) + 30% 

Register 70 

n-Register File 70 n -  10% 

n-ROM 40n 

n-Multiplexer 20.(10 log(n)) 

n-Bus 27n 

Table 5.1 Datapath component costing table. 

5.4.5 A Novel Cost Multiplier System 

The SAVAGE datapath cost function provides a balanced assessment of the solution 

quality after a state generation. A cost multiplier system is implemented to allow the 

design engineer to penalise the generation of undesirable states. A cost multiplier is 

introduced for each quality criterion detailed above. Applying these cost multipliers to 

equation 5.3 gives: 

COST (STATE) = C1.MAX_EXECUTION + C k .COST(DATAPATH COMPONENT k) 

• C2.JNTERCONNECT_DENSITY(PC) 

• Ck .CONTROL_OVERHEADS (DATAPATH COMPONENT k) 	[5.4] 

where Ck  is the cost multiplier associated with a datapath component of type k. This 

novel system allows the design engineer to influence the overall architectural style of 

the solution datapath without directly affecting the state generation mechanism. The 

cost multipliers are input to the SAVAGE system, and may be changed over a sequence 

of simulated annealing runs. 
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5.5 The SAVAGE Toolset 

SAVAGE is a modular software system. This software development technique offers a 

number of distinct advantages. 

Functional partitioning: The datapath optimisation routines are maintained 

separately from those routines which control the search through the datapath solution 

space. 

Software Interface: Within the SAVAGE program, interfaces between software 

procedures are carefully defined. This can be effectively policed by using a strongly 

typed programming language, such as ADA, as the implementation medium. 

Algorithmic tasks can easily be subdivided into manageable programming blocks, so 

that a significant software procedure (such as the simulated annealing core) can be 

developed and debugged quickly. Controlling the degree of interaction between code 

modules and the data structures enables changes in the solution datapath to be 

accurately tracked, and the correctness of the solution to be monitored throughout the 

optimisation procedure. 

Code maintenance: By partitioning the datapath optimisation functions and search 

control functions into well understood code fragments each of manageable 

complexity, and by rigorously adhering to the interface standards, code maintenance 

and upgrading is more straightforward. 

Ease of library expansion: Expansion of the optimisation move sets is also made 

straightforward by the adoption of a modular scheme. 

The major components of the SAVAGE system are illustrated in figure 5.16, and are 

described below. 
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Datapath 	 Cost Assessment 
Cost Multipliers 	Functions 

SLANG 

SAVAGE 
SYNTHESISER SY NTHESISER 

Source 	 A 	A 	4 	 Datapath 
Text 	 BUILDER 	 DUMPER Netlist 

R-t 	M-t 	P-c 
Moves Moves Moves 

Figure 5.16 SAVAGE structure. 

5.5.1 SAVAGE Synthesis Flow 
The source text is processed by the SLANG (SARI LANGuage) compiler. SLANG is 

a subset of ADA, and the compiler produces a data flow representation similar to that 

described in section 2.3. The SLANG compiler was developed as part of the SAGE 

program [Grant9Oa], and is fully described in [Sey89]. 

After compilation, the source text has been transformed into a data flow 

representation. This graph is passed to the BUILDER module, which produces the 

initial data structure (R-t, M-t and P-c space). 

The SYNTHESISER module comprises the simulated annealing procedure and its 

support functions. The state generation mechanism makes external calls to the 

optimisation move sets that are required. The state generation move sets and the 

associated costing functions are not integrated into the SYNTHESISER module. The 
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reason for this is primarily experimental; code maintenance and upgrades to the state 

generation moves can take place independently of the optimisation core. 

Once optimisation is complete, the DUMPER module traverses the SAVAGE data 

structure extracting all datapath and connectivity information. A datapath netlist is 

created which adheres to the syntax specified in section 2.4. 

5.5.2 BUILDER 

The function of the BUILDER module is to take a compiled data flow graph and 

produce an initial solution space. This is a three stage operation. 

Seed R-t space: BUILDER establishes data flow precedence by building 

an ASAP schedule. Starting from the operations with the latest scheduled 

execution time, operations are generated randomly generated execution 

times bounded by the production and consumption times of the operation 

input and output data. BUILDER then creates a set of processors capable 

of executing the data flow operations. A random number of each type of 

processor is generated, bounded by the number of operations of the type 

executing concurrently and the maximum number of operations of that 

type present within the data flow graph. Operations are then randomly 

allocated among the processor set. 

Build M-t space: The BUILDER creates a set of memory components (of 

type REGISTER). This size of the set is determined by the number of 

signals present in the data flow graph. Signals are then serially allocated to 

the registers. 

(iii) Complete P-c space: From the initial R-t and M-t spaces, the Port- 
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connection space can be completed. All net instances required default to 

type WIRE. 

5.5.3 Datapath Verification and Validation 

The VALIDATE procedure propagates datapath changes following a state generation. 

VALIDATE propagates changes in M-t and P-c space if the perturbation occurs in R-t 

space, and propagates changes in P-c space if the perturbation occurs in M-t space. 

If mutually exclusive signals allocated to the same memory component become 

overlapped as a result of a scheduling operation, then VALIDATE reallocates one of 

the signals to a free memory location and updates P-c space. Where a new port 

connection is required, VALIDATE sets the P-c flag appropriately and instances a 

WIRE net type. Subsequent state generations can optimise the new net instance. 

Similarly, where a port connection is severed, VALIDATE removes the pointer to the 

net instance, and where required, updates the cardinality of that instance. 

The integrity of the datapath is policed by the WIRED procedure. The only illegal 

datapath state that can be generated is where wired-OR connections occur on a 

processor input port. This can be as a result of the VALIDATE or BUILDER 

procedures. The WIRED function checks every input port for such datapath violations 

as part of the cost assessment procedure after every state generation. 

5.6 A Worked Example - Differential Equation Solver 

The SAVAGE tools were exercised on the differential equation example first cited in 

Paulin [Paulin86]. An iterative algorithm is used to solve the second order differential 

equation below: 

y" + 3xy' + 3y = 0 	 [5.5] 

104 



Simulated Annealing Based Synthesis Techniques 

The source text which is input to the SLANG compiler is given in figure 5.17. 

procedure DIFFEQ (X, U, Y : in out INTEGER; A : in INTEGER) is 

Xl,Yl,Ul : INTEGER; 
DX,C3 : CONSTANT; 

begin 

while (X < A) loop 
Xl := X + DX; 
Ul := U - (3*X*U*DX) - (3*y*DX); 

Yl := Y + (U*DX); 
X := Xl; U := Ul; Y 	Y].; 

end loop; 

end DIFFEQ; 

Figure 5.17 Differential equation procedure. 

After compilation, the DIFF_.EQ procedure is transformed into the data flow graph 

shown in figure 5.18. 

5.6.1 A Maximum Speed Solution 
In order to generate a maximum speed solution, the cost multiplier associated with the 

maximum data flow execution time is significantly increased. This discourages state 

generations with a long schedule. Similarly, as datapath area is of secondary concern 

in a high speed solution, the processor multipliers are relatively small. Further, a high 

speed solution implies fewer overall control steps, so the cost multipliers associated 

with those datapath components incurring control overhead, and multiplier associated 

with the control overhead itself (outlined in section 5.4.3) remain relatively small. 

ROMs are essential to the datapath function, so no cost multiplier is specified. All cost 

multipliers for a maximum speed solution are specified in table 5.2. 
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Figure 5.18 Compiled data flow graph 

Adder 10 Register 30 

Multiplier 10 Register File 30 

Comparator 10 ROM 1 

ALU 10 Maximum execution time 100 

Multiplexer 30 Control Overhead 25 

Tr-Buffer 45 Interconnect Density 25 

Table 5.2 Cost multipliers for maximum speed solution. 

Following the SAVAGE optimisation procedure, the datapath shown in figure 5.19 was 

generated. The datapath statistics are compared with other solutions reported in the 
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literature (table 5.3). No datapath schematics are reported for this maximum speed 

solution, so a full comparative analysis cannot be performed. It should be noted, 

however, that the SAVAGE system performs well by comparison, requiring the 

minimum number of registers and multiplexer inputs for a solution with a four control 

step schedule. 

System C-Steps Processors Registers Mux Inputs 

SPLICER [Pangrle88] 4 2x,+,-,> 6 11 

CLIQUE [Fin92] 4 2x,-i-,-,> 5 11 

ASSIGN [F1n92] 4 2x,+,-,> 5 11 

HAL [PauIin89b] 4 2x,+,-,> 5 10 

SAVAGE 4 2x,+,-,> 5 10 

Table 5.3 Datapath statistics for maximum speed solution. 

Figure 5.19 Maximum speed differential equation datapath. 

107 



Simulated Annealing Based Synthesis Techniques 

5.6.2 A Minimum Area Solution 

In generating a minimum area solution the cost multipliers associated with individual 

processors are large, while the multiplier associated with ALU structures is small, 

reflecting the desirable nature of states generated which map different operation types 

onto a single functional unit. A minimum area solution will execute in a greater 

number of control steps than a maximum speed solution, and so the control overheads 

incurred will be greater. This is reflected by the increase in the cost multipliers 

associated with controlled components, and the inherent control overhead itself. For 

the same reason, the number of point-to-point connections should be minimised; the 

cost multiplier associated with interconnect density is higher than that for a maximum 

speed solution. The full set of cost multipliers for a minimum area solution are 

presented in table 5.4. 

Adder 50 Register 30 

Multiplier 50 Register File 20 

Comparator 50 ROM 1 

ALU 10 Maximum execution time 5 

Multiplexer 30 Control Overhead 75 

Tr-Buffer 45 Interconnect Density 75 

Table 5.4 Cost multipliers for minimum area solution. 

The datapath generated using these multipliers is illustrated in figure 5.20(a). 

Comparative results for this minimum area solution are given in table 5.5. The 

SAVAGE solution compares favourably with those from the published literature, but 

the additional factors in the cost assessment function, namely the control overhead and 

the interconnect density figures result in a solution datapath more amenable to the 

prevalent compiled logic implementation technologies. 
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SAVAGE 

ASSIGN 

HAL 

Figure 5.20 Minimum area datapaths. 
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System C-Steps Processors Registers 

ASSIGN [Fin92] 8 x,[+,-,>] 5 

HAL [Paulin89b] 8 x,[+,-,>] 5 

SAVAGE 8 x,[+,-,>] 5 

System 
- 

Mux Inputs . 

Control Wires Point to Point 
Connections 

ASSIGN [Fin92] 8 (4)a 9 13 

HAL [Paulin89b] 11 13 22 

SAVAGE 10(+2) 8 19 

a. Extra multiplexer inputs indicated as overhead for register file demultiplexing. 

Table 5.5 Datapath statistics for minimum area solution. 

5.7 Summary 

This chapter has presented a set of synthesis tools based on the simulated annealing 

algorithm. A data structure was developed which enabled the optimisation routines to 

operate effectively in the scheduling and allocation, memory optimisation and 

interconnect minimisation domains. A set of modular optimisation moves was 

developed to describe all potential state generations from a given starting state. 

Further, the costing model described in Devedas [Dev89] was extended to provide a 

link between the datapath macroarchitecture and the physical implementation. The 

SAVAGE system was applied to a small-scale example, and was able to demonstrate 

the speed vs. area trade-off common to all synthesis problems. The generated 

datapaths compare favourably to those in the published literature. 

The next chapter exercises the SAVAGE system on two large-scale benchmarks, and 

introduces mechanisms for resource constrained synthesis. 

110 



SAVAGE Case Studies 

6 SAVAGE Case Studies 

This chapter presents two substantial case studies. The first is a comparative study 

between SAVAGE and the SARI tool, SAGE (SARI Architecture Generator 

[Grant9Ob]). SAGE is primarily an interactive tool, and relies heavily on intervention 

from the design engineer. The test vehicle for this study is the 1-dimensional 8 point 

Fast Discrete Cosine Transform (FDCT). This is the most complex example currently 

in use as a synthesis benchmark. Aside from the large number of operations present in 

the data flow graph, the mixture of commutative and non-commutative operations 

provides added complexity. 

The second case study allows the performance of the SAVAGE system to be compared 

with a wider selection of behavioural synthesis systems. The test vehicle here is a 5th 

order Wave Digital Filter. 
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6.1 1-Dimensional 8 point Fast Discrete Cosine Transform 

The large amount of information contained within a high definition digital image 

poses significant problems, both in terms of memory requirement and transmission 

latency in applications where real time, or near real time image transmission is 

required. As a result, many data compression techniques have been proposed [Chen77, 

Wintz72, Soame82]. The Discrete Cosine Transform (DCT) operates on a series of 

blocks decomposed from the original image. These blocks are ranked according to 

their a.c. energy (a.c. energy quantifies the amount of information within a particular 

block). A bit assignment according to the average point variance within the block then 

takes place. It is here that the data compression takes place; more bits are assigned to 

visually important regions (i.e. regions of the image containing most information) than 

those of lesser interest. 

Interest in the DCT algorithm realised in silicon has been driven by applications such 

as video conferencing and computer-based multimedia. Further, video coding and 

compression standards, such as JPEG (Joint Photographic Experts Group, D1S10918 

Digital Compression and Coding of Continuous-tone Still Images) use the DCT 

process. 

Most implementations of the DCT make use of the separability property of the 2D 

transform. The 2D transform is composed of a 1D n-point row transform. Rows and 

columns are then transposed, and the operation is completed by a 1D n-point column 

transform. The value of n is typically 8 or 16. Table 6.1 summarises recent DCT 

implementations. 
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Device 
Transform Transistor Technology 

Clock Notes 
Size Count Rate 

LSI CW702 8 x 8 N/A 0.8jxm CMOS 30 MHz JPEG Core 
[LS193]  

IMSA121 8x 8 not 1.0tm CMOS 20 MHz 
[SGS90] available 

STV3200 4x 44x 8 1.0p.m CMOS 15 MHz 
[SGS90] 8x 48x 8 114.3k 

8x 16 16x 8 
16x 16 

STV3208 8x 8 not 1.Op.m CMOS 27 MHz 
[SGS90] available 

[Yan89] 15 x 15a  70k 1 .25p.m CMOS 30 MHz Systolic Array 

[Matt89] 8 x 8 56k 1 .6um CMOS 27 MHz Multiprocessor 
Architecture 

[Afgha86] 1 	16x 16 1 	42k I 	3.0p.m CMOS 1  25 MHz 

a. This device uses the Winograd Transform, which is equivalent to a 16 x 16 DCT 

Table 6.1 VLSI implementations of the DCT. 

Each of the VLSI implementations in the table above is a highly optimised DSP 

datapath, and in the case of the CW702, the implementation is of a complete JPEG 

core. 

The DCT, F(k) of a discrete function f(j), j=O,1. .... , N-i where N is the total number 

of data points is: 

N—i 

F(k) = 
2c (k) 	 k Tc 

	 [6.1] 1  
2 	 2N  

j=o 

where k=O,1,...,N-1, and c(k)= -- for k=O, and c(k)=1 for k1,2,...,N-1. 

Previously, the DCT has been implemented using a double size Fast Fourier Transform 

(FF1') employing complex arithmetic and operating on 2N coefficients. The Fast 

Discrete Cosine Transform (FDCT) [Chen77] alleviates the implementation problems 
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associated with the DCT by using only real arithmetic and operating on N data points. 

This results in a factor of six reduction in the algorithm complexity. The FDCT is most 

readily expressed in terms of an extensible flow graph. The 1-dimensional 8 point Fast 

Discrete Cosine Transfomi is shown in figure 6.1. 
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Figure 6.1 1 -dimensional 8 point Fast Discrete Cosine Transform. 

114 



SAVAGE Case Studies 

In order to generate a comparative study, the processor allocation available to the 

SAVAGE tools was constrained to be 2 adders, 2 multipliers and 2 subtractors. This 

provided direct comparison with a set of results generated as part of the SARI 

reporting procedure [SARI89]. The constraining mechanism used is the pragma 

statement. Pragmas are SAVAGE directives included in the source text which directly 

affect the synthesis tools. In this case, they provide a -  boundary condition for -the 

BUILDER procedure and suppress the generation of new processors in the R-t 

optimisation move set. The statement: 

pragrna #MULF MAX 2 

indicates the upper bound on the number of multiplier units that may be synthesised. 

The BUILDER will create an initial R-t space containing a maximum of two 

multipliers, and the CREATE—PROCESSOR procedure will be suppressed when there 

are two or more multipliers present in the current datapath. The SLANG code for this 

example is given in figure .6.2. 

6.1.1 A Resource Constrained Datapath 
A resource constrained datapath compromises the trade-off between a high speed 

solution and control overhead and interconnect density as demonstrated in the 

differential equation datapaths presented in the previous chapter. Correspondingly, the 

cost multipliers associated with these factors are relatively large compared to the cost 

multipliers associated with the datapath components themselves in order to minimise 

the impact of the constraint. The cost multipliers used to generate a constrained 

solution are presented in table 6.2. 
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package body FDCT_EXANPLE is 

pragma #MULF MAX 2 
pragma #ADDF MAX 2 
pragma #SUBF MAX 2 

procedure FDCT1D ( AO, Al, A2, A3, A4, A5, A6, A7 : in FLOAT 
FO, Fl, F2, F3, F4, F5, F6, F7 : out FLOAT) is 

COS 21 4 : CONSTANT; 
COS 218 : CONSTANT; 
SIN P1 8 : CONSTANT; 
COS P1 16 	CONSTANT; 
SIN P1 16 : CONSTANT; 
C053 91 16 : CONSTANT; 
SIN 32116 : CONSTANT; 
COS 5PI16 	CONSTANT; 
SIN 5 P1 16 : CONSTANT; 
COS 72116 : CONSTANT; 
COS 72116 : CONSTANT; 
SIN-7—PI-16 : CONSTANT; 

BO, Bl, 82, B3, 34, B5, 36, 37 	FLOAT; 
CO, Cl, C2, C3, C4, C5, C6, C7 : FLOAT; 
DO, Dl, D2, D3, D4, D5, D6, D7 : FLOAT; 

COS P1 4 TIMES B5 : FLOAT; COS P1 4 TIMES B6 : FLOAT; 
COS—PI-4—TIMES—DO : FLOAT; COS—PI-4—TIMES—Dl : FLOAT; 

begin 
-- first pass 
BO 	A7 + AO; Bl := A6 + Al; B2 	A5 + A2; B3 	A4 + A3; 
B4 := A3 - A4; B5 := A2 - A5; B6 	Al - A6; B7 := AO - A7; 
-- put the expressions COS  21 4*B5 and COSPI4*B6  into 
-- intermediate variables so as to avoid evaluating them twice 
COS P1 4 TIMES B5 := COS P1 4*B5 ;  
COS—PI 4 TIMES B6 := COSPI14*B6; 
-- second pass 
CO := 33 + 30; Cl := 32+31; C2 := Bl - 32; C3 := BO - 83; C4 := B4; 
C5 := COS P1 4 TIMES B6 - COS P1 4 TIMES B5; 
C6 := COS PI4TIMESTh6 + COS—PI-4—TIMES—B5; 
C7 := B7; 
-- third pass 
DO 	CO; Dl := Cl; D2 := C2; D3 := C3; D4 := C4 + C5; 
D5 := C4 -05; D6 := C7 - C6; D7 := C7 + C6; 
-- put the expressions COS  21  4*DO  and  COSPI4*Dl  into 
-- intermediate variables so as to avoid evaluating them twice 
COS P1 4 TIMES DO := COS 21 4*DO; 
COS PI4 TIMES D1 : C0SP14*Dl ;  
-- fourth pass 
FO := COS P1 4 TIMES DO + COS 21 4 TIMES Dl; 
F4 := COS PI4TIMES DO - COS PI4TIMESD1; 
F2 := SIN P1 8*D4 + COSPI8*D3; 
F6 := COS —3 21 16*D3 - SIN P1 8*D2 ;  
Fl := SIN PI 1*D4 + COS P1 l*D7 ;  
F5 := SIN 	P1 16*D5 + CS 	P1 16*D6; 
F3 := COS 3PI 16*D6 - S1N3P116*D5; 
F7 	COS 7PI16*D7 - SIN 7PI16*D4; 

end FDCT1D; 

end FDCT EXAMPLE; 

Figure 6.2 SLANG description of FDCT 
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Adder 30 Register File 50 

Multiplier 30 ROM 1 

Multiplexer 50 Maximum execution time 75 

Tr-Buffer 80 Control Overhead 75 

Register 30 Interconnect Density 75 

Table 6.2 Cost multipliers for processor constrained datapath. 

The datapath resulting from the SAVAGE synthesis procedure is illustrated in figure 

6.3(a). The SAGE generated datapath is shown in figure 6.3(b). The datapath statistics 

are shown below in table 6.3. 

System C-Steps Processors Registers 

SAGE [SARI89] 12 2+ ,2X(P)a , 2 40 

SAVAGE 12 2+, 2x(P), 2- 28 

System Mux Inputs Control Wires 
Point to Point
Connections 

SAGE 10 (36)b 46 79 

SAVAGE 51 (+28) 28 77 

Indicates a pipelined multiplier. 
Register file decoding. 

Table 6.3 Datapath statistics for resource constrained example. 

The two systems compare favourably in this restricted test case. The SAGE bus-based 

architecture trades multiple register and bus driver instances against the lower overall 

control overhead. By comparison, SAVAGE optimises register usage to significantly 

reduce the signal storage requirement. 
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Figure 6.3 (a) SAVAGE-generated FDCT datapath (b) SAGE-generated FDCT datapath. 

The major difference in the datapath architectures is the use of tn-state buses in the 

SAGE datapath compared with a multiplexer based approach in the SAVAGE solution. 
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Design methodology studies performed at the compiled logic cell library level 

[Sasena89], suggest that a multiplexer based approach is preferable on the basis of 

fewer gate equivalents required for implementation, shorter switching delays, lower 

overall power consumption and better circuit reliability. The studies also show that 

while the apparent difference between approaches can be small for designs with a 

regular structure, as the regularity of the design decreases, tn-state designs become 

more difficult to route at the cell placement stage of the standard cell design process. 

The studies are not exhaustive, but the results suggest that the relatively high cost 

multiplier associated with the bus driver components can be justified. 

6.1.2 A High Speed Solution 

This example removes the pragma constraints introduced previously. Instead, a 

higher speed datapath is sought. The cost multipliers for the datapath components 

remain unchanged (table 6.2), but solutions with long execution times are penalised 

more heavily. The cost multipliers for this example are presented in table 6.4. 

Adder 30 Register File 50 

Multiplier 30 ROM 1 

Multiplexer 50 Maximum execution time 130 

Tr-Buffer 80 Control Overhead 75 

Register 30 Interconnect Density 75 

Table 6.4 Cost multipliers for high speed datapath. 

The datapath generated by the SAVAGE system is shown in figure 6.4. The datapath 

statistics are presented in table 6.5. 

The results indicate a 33% speed improvement over the resource constrained solution, 

which should be set against the addition of a further multiplier. The datapath generated 
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reduces the number of registers required at the input to each multiplier as expected, 

and it should be observed that the relatively even distribution of register files at the 

inputs to each datapath component suggests that the solution overcomes any memory 

bottleneck which may be present in the solution presented in section 6.1.1. It should 

also be noted that this is achieved without significant increases in the control 

complexity and interconnect density values for the datapath. 

System C-Steps Processors Registers 

SAVAGE 8 2+ , 3 X(p)a,2. 26 

System Mux Inputs Control Wires 
Point to Point
Connections 

SAVAGE 50 (27)b 27 77 

Indicates a pipelined multiplier. 
Register file decoding. 

Table 6.5 Datapath statistics for high speed solution. 

Figure 6.4 High speed FDCT datapath. 
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6.2 5th Order Wave Digital Filter 

The 5th Order Wave Digital Filter remains an enduring synthesis example primarily 

because it is composed entirely of commutative operations. This allows greater 

flexibility in the memory and interconnect optimisation. Correspondingly, the 

literature is replete with datapath statistics for this design [Pangrle87, Paulin89b, 

Stok90,Fin92]. 

The first VLSI implementation of a wave digital filter was suggested in [Law77]. It 

was estimated that a 9th order unit element WDF could be fabricated using NMOS 

technology using one multiplexed two-port adaptor. With a 4 MHz clock, sampling 

frequencies of 13 kHz could be achieved. 

The two-port adaptor provides a simple building block for the design of lattice and 

unit element structures. More complex three-port adaptors for ladder filter structures 

which use serial arithmetic are proposed in [Reek84, Petrie86]. 

High throughput filters for sonar and video signal processing applications have been 

implemented using carry-save arithmetic [Kleine88], and more recently bit-level 

systolic adaptors [Law90, Raj90]. Indeed, CAD research directed towards providing a 

high-level synthesis environment for bit-level systolic arrays is reported in [Kung85]. 

Three datapath variations are generated. The first two examples demonstrate the effect 

of processor latency on a resource constrained datapath. This effect is attributed to 

processor pipelining at the microarchitectural level (section 1.1). The final variation is 

a maximum speed solution, again using pipelined processor units. The SLANG 

description of the 5th Order Wave Digital Filter is given below. 
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procedure WDF (IP : in FLOAT; OP : out FLOAT) is 

T2, Tl3, T26,T33,T38,T39,T18 	FLOAT; 
ol,o2,o3,o4,o5,o6,o7,o8, o9,ol0,oll,o12,ol3,ol4,ol5,o16,o17 	FLOAT; 
o18,o19,o20,o2l,o22,o23, o24,o25,o26,o27: FLOAT; 
CO 3 Cl,C2,C3,C4,C5,C6,C7,C8 : CONSTANT; 

begin 

-- Initialisation 
T2 := 0.0; T13 	0.0; 
T18 0.0; T26 0.0; 
T33 := 0.0; T38 := 0.0; 
T39 := 0.0; 

-- Filter loop 
while not (eof) loop 

ol := IN + T2; o2 := T33 + T18; o3 	ol + T13; o4 	03 + T26; 
o5 := o4 + o2; o6 := 05 * CO; o7 	o5 * Cl; o8 := o3 + o6; 
o9 := o2 + o7; olO := o3 + o8; oll := o2 + o9; o12 := olO * C3; 
o13 := o5 + o8; o14 := oll * C4; o15 := o9 + o13; o16 := ol + o12; 
o17 	o14 + T18; o18 := oB + o16; o19 := o9 + o17; o20 	o]. + o16; 
o2l := o19 + T38; o22 o20 * C5; o23 := o18 + T33; o24 := o2l * C6; 
o25 := o17 + T18; o26 := IN + o22; o27 := o23 * C7; T28 := o24 + T38; 
OP := o25 * C8; T2 o16 + o26; T39 := o19 + o28; 
T33 := o27 + T33; T18 := o17 + o29; T13 := o18 + o32; 

end loop; 

end WDF; 

Figure 6.5 SLANG description of 5th Order Wave Digital Filter. 

The compiled flow graph is given in figure 6.6 (from [Dew85]). 

6.2.1 Resource Constrained Datapaths 
These test cases use the SAVAGE pragmas to constrain R-t space during synthesis as 

described previously in section 6.1. A further pragma is used to specify the latency of 

the multiply unit. The statement: 

pragma MULF.ATT LATENCY 2 

sets the processor.latency field in the processor attribute list to be 2 cycles. 

This models a non-pipelined multiplier at the macroarchitecture level (i.e. the 

behaviour of the multiplier is described without any specification of the multiplier 

implementation). The BUILDER procedure and the M-t optimisation routines use the 

data in this field to modify the signal production times for all operations executing on 

that processor. 
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IN 	T2 

T2 	 T13 	133 	 OUT 	T38T18133 

Figure 6.6 5th Order Wave Digital Filter data flow graph. 

With a non-pipelined multiplier, the execution times of individual operations become a 
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critical factor in the overall solution quality. Correspondingly, the maximum execution 

time cost multiplier is set to a high value. Further, to generate comparative results, a 

pragma is used to constrain the datapath to a single multiplier unit. With a non-

pipelined processor present in the datapath, overall signal lifetimes increase, and so a 

higher cost multiplier value is associated with individual registers, with a lower value 

assigned to register files reflecting the area savings gained through the use of these 

structures. Again, as an attempt to recognise the target implementation technology, the 

interconnect density value remains at a high setting. The full set of cost multipliers for 

this non-pipelined datapath are given in table 6.6. The generated datapath is shown in 

figure 6.7, with comparative datapath statistics in table 6.7. 

Adder 25 Register File 35 

Multiplier 25 ROM 1 

Multiplexer 45 Maximum execution time 100 

Tr-Buffer 55 Control Overhead 60 

Register 50 Interconnect Density 80 

Table 6.6 Cost multipliers for non-pipe/med datapath generation. 

No reported results include either generated schematics or detailed analyses of the 

synthesised datapaths. From the results presented, however, SAVAGE demonstrates a 

30% best case improvement for the number of multiplexer inputs required within the 

solution datapath and a 31% best case improvement in the number of registers 

required to satisfy the signal storage criteria. For this non-pipelined solution, 18 

control wires are necessary to implement the control function, and there are 25 point-

to-point connections present within the datapath. 

By resetting the latency pragma, the SAVAGE system can evaluate the alternative 

pipelined solution. The cost multipliers remain unchanged from the non-pipelined 

generation. The generated datapath is shown in figure 6.8. 
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OUT 

Figure 6.7 Non.pipelined resource constrained datapath. 

System C-Steps Processors Registers Mux Inputs 

SPLICER [Pangrle87] 21 2+, lx N/A 35 

HAL [Paulin89b] 21 2+, lx 12 30 

ESC [Stok90] 21 2+, lx 16 23 

ASSIGN [Fin92] 21 2+, lx 13 13(+13) 

SAVAGE 21 2+,lx 11 14(+11) 

Table 6.7 Datapath statistics for non-pipelined datapath. 

Comparative datapath results are available for this resource constrained schedule, and 

are presented in table 6.8. For completeness, other statistics quoting the overall 

schedule and the number of datapath components only are given in table 6.9. A 

comparative set of datapath schematics is included in figure 6.9. 
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OUT 

Figure 6.8 Pipelined resource constrained datapath. 

System C-Steps Processors Registers 

ASSIGN [Fin92] 19 2+, lx (P) 13 

CLIQUE [Fin92] 19 2+, lx (P) 14 

HAL [Paulin89b] 19 2+, lx(P) 12 

SAVAGE 19 2+,1x(P) 13 

System Mux Inputs Control Wires 
Point to Point
Connections 

ASSIGN [Fin92] 13(+12) 20 25 

CLIQUE [F1n92] 16(+13) 22 27 

HAL [Paulin89b] - 26 39 

SAVAGE 13(+13) 19 24 

Table 6.8 Comparative datapath statistics for pipelined resource constrained solution. 
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System C-Steps Processors Registers Mux Inputs 

MABAL [Kucukc89] 19 2+, lx (P) 10 32 

MC2 [Grant90a] 19 2+,1x(P) 16 16(+14) 

ASYL[Mign9O] 19 2+,1x(P) 12 26 

ESC[Stok9O] 19 2+, lx(P) 15 25 

Table 6.9 Other comparative statistics. 

The SAVAGE system achieves a comparable level of performance over all primary 

optimisation criteria. The best case improvement over reported results for the total 

number of register required is 18%. Only the HAL system outperforms SAVAGE, and 

does so by lowering the utilisation of individual registers, hence increasing the number 

required. This impacts on the communications infrastructure, and the HAL system 

adopts a bus based approach. While this offers a simple control solution, the number of 

point-to-point connections dramatically increases. This will adversely affect the 

synthesis from macroarchitecture to compiled logic implementation. 

The best solutions generated with respect to interconnect optimisation are the 

ASSIGN system, reported in [Fin92], and the Eindhoven Silicon Compiler [Stok90], 

which both report a 4% improvement over the SAVAGE algorithm. The ASSIGN 

system uses a complex signal assignment and integrated multiplexer costing function 

to achieve high performance, while the ESC approach uses a hybridised edge 

colouring algorithm to optimise local interconnect (i.e interconnect associated with an 

individual processor). 
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n1 

OUT 

 

OUT 

 

 

Figure 6.9 Datapath solutions for 5th Order Wave Digital Filter (a) ASSIGN[Fin92] (b) CLIQUE 
[Fin92] (c) HAL [Paulin89b]. 
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6.2.2 A Maximum Speed Solution 

To complete the set of Wave Digital Filter datapaths, a maximum speed solution was 

generated. No constraints were placed on the number or choice of functional units. For 

a maximum speed solution, states generated with a long overall schedule are penalised 

with the maximum execution time cost multiplier. For fast datapaths, the control 

overheads will diminish, so datapath states generated with a high control overhead are 

penalised. The cost multiplier values used to generate the maximum speed solution are 

presented in table 6.10. 

Adder 25 Register File 35 

Multiplier 25 ROM 1 

Multiplexer 45 Maximum execution time 150 

Tr-Buffer 55 Control Overhead 50 

Register 50 Interconnect Density 40 

Table 6.10 Cost multipliers for maximum speed solution. 

Following synthesis, the datapath illustrated in figure 6.10 was produced. Again, no 

comparative schematics are available, and so only a comparison between the overall 

datapath statistics can be performed. The statistics for maximum speed solutions 

generated by other behavioural synthesis systems are presented in table 6.11. 

System C-Steps Processors Registers Mux Inputs 

SAM [CIout90] 18 2-1-, 2x (P) 12 27 

SAW [Thomas88] 18 2+, 2x (P) 12 34 

ASSIGN [Fin92] 18 2+, 2x (P) 15 17(+13) 

CLIQUE [Fin92] 18 2+, 2x (P) 14 17(+13) 

SAVAGE 18 2+,2x(P) 13 15(+11) 

Table 6.11 Comparative datapath statistics for maximum speed solution. 
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OUT 

Figure 6.10 Maximum speed Wave Digital Filter Datapath. 

Analysis of the results indicate that SAVAGE offers a 24% best case improvement in 

the number of multiplexer inputs required in the datapath communications 

infrastructure. Smaller relative improvements are also noted in the total number of 

registers required for signal storage (14% best case). The performance of the SAM and 

SAW systems, particularly in the register allocations attained, may be attributed to the 

use of manual register allocation during the synthesis procedure [Thomas88, Clout9O]. 

Significantly, both systems use a force-based scheduler similar to that suggested by 

Paulin [Paulin86, Paulin89a, Paulin89b, Paulin89c]. This scheduling and allocation 

approach encourages the creation of single register instances as opposed to register 

files. As a result, the number of multiplexers required to implement the 

interconnection network increases dramatically (c.f. HAL datapath shown in figure 

6.9(c)). This is reflected in the 41 point-to-point connections quoted in [Clout90] 

compared to the SAVAGE interconnect density figure of 29 unique connections. 
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6.3 Discussion and Conclusion 

The SAVAGE system was exercised on two large-scale synthesis benchmarks. 

Resource constrained synthesis was achieved using directives present in the source 

text. Synthesis performance comparable to published results using other techniques 

was obtained in all test cases. 

The performance of the SAVAGE system may be attributed to the global state 

generation and costing model adopted. As noted in chapter 3, graph theoretic 

algorithms for solution of the synthesis subtasks perform well, but can introduce local 

minima into the datapath solution. The performance of the synthesis systems used in 

comparison with the SAVAGE tools supports this contention. A global state generation 

technique, as advocated in this thesis, overcomes these problems. Further, the costing 

method developed for the SAVAGE system steers the state generation mechanism 

towards datapath solutions amenable to implementation in the prevalent standard cell 

or gate array technologies. 

Finally, the SAVAGE cost multiplier system allows the design engineer to influence 

the overall datapath architecture without direct intervention in the synthesis procedure. 
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7 Synthesis of Functional Pipelines 

Pipelining is a well known architectural technique for increasing the throughput of 

digital systems [Hwang86, Top89]. This chapter presents a pipelining algorithm 

amenable to simulated annealing-based synthesis. The SAVAGE tools, described in 

chapter 5 are extended to accommodate the generation of pipeined datapaths. The 

algorithm is then exercised on the large-scale synthesis benchmarks of the previous 

chapter. Prior to a discussion of the techniques developed, however, pipelining 

nomenclature and definitions are reviewed. 

7.1 Pipelining Nomenclature and Definitions 
A distinction is made between structural pipelining and functional pipelining. 

Structural pipelining is used to exploit temporal parallelism at the datapath macro- and 

microarchitectural levels. Functional pipelining, however, operates exclusively in the 

behavioural domain, and is concerned with extracting temporal parallelism from an 

algorithmic specification. 
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7.1.1 Structural Pipelining 

Definition 7.1 	Processor latency, L, is defined as the propagation delay 

between data presentation at the processor inputs, and a valid 

data transition on the processor output. 

Consider the multiply-add-compare datapath, given in figure 7.1, which implements 

the function: 

x = gtr(c, (a+b)*b) 	 [7.1] 

where the gtr() predicate returns the greater of the two input data. 

a 	b 

+ 

x 
C 

gtr 

x 

Figure 7.1 Multiply-add-compare datapath. 

If the multiplier has a latency (in clock cycles) of Lm,  the adder a latency of La,  and the 

compare processor a latency Of Lc , then the composite datapath latency, Ld, is given as: 

L =L +L +L d 	m 	a 	c [7.2] 

This represents an upper bound on the frequency of the input data. A new value must 

be presented to the datapath inputs once every Ld  cycles. Thus, the throughput of the 
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datapath is given as - cycles. Structural pipelining overlaps the individual processor 

operations by the introduction of a pipeline stage register between the component 

processors in the datapath. This allows the datapath processors to be operate on their 

input data independently. This basic structural pipeline is given in figure 7.2. The 

frequency of the pipeline cycle clock, t, which drives the registers is the reciprocal of 

the longest individual processor latency. 

t a b 

+ 

x 

L 
gtr 

x 

Figure 7.2 Basic structural pipeline. 

Structural Pipeline Metrics 

For a pipeline of length k, processing n data items, with a pipeline clock period, t, the 

total pipeline latency, Tk,  is defined: 

Tk(n) = k.t + (n-i) t 
	

[7.3] 

where k.tc  is the pipeline start-up time (i.e. the propagation delay of the first data item 

through the pipeline). For a non-pipelined solution (i.e. k = i), equation 7.3 reduces to: 

T1 (k) = n.tc 	 [7.4] 
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The speed-up, S(k), attained through the use of pipelining is the ratio of the non-

pipelined latency to the pipelined latency. Thus: 

S(k) = 
nkt 

C 

kt+ (n—  l)t 

nk 

- k+n-1 
[7.5] 

Similarly, the pipeline efficiency, E(k), may be defined as the ratio of the achieved 

speed-up to the number of pipeline stages. This is given in equation 7.6: 

E(k) =n 
	

[7.6] 
k+n — l 

Thus, a structural pipeline operates at 50% efficiency when n = k - 1. 

7.1.2 Functional Pipelining 

The aim of functional pipelining is to extract temporal parallelism from an input 

behaviour. In practise, this corresponds to achieving a degree of overlap between 

sequentially executing data flow graphs. 

Definition 7.2 	Pipeline latency, F1 , is specified for a given schedule as the 

total number of control steps required to execute the behaviour 

on the current resource set. 

Definition 7.3 	Pipeline reuse time, F,, is specified as the number of control 

steps between successive executions of the behaviour on the 

current resource set. 

Consider the data flow graph given in figure 7.3(a). An R-t mapping for that behaviour 

is illustrated in figure 73(b). Successive executions of this behaviour are shown 

shaded in the figure. The functional pipeline latency, F1, for this mapping is six control 

steps. The functional pipeline reuse time, F,., is five control steps. For R-t mappings 

with a greater number of data dependencies, and therefore a more irregular structure, a 

functional pipelining solution becomes more difficult to obtain. 
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Processors 
+ 	ADD-1 

ADDF_1 ADDF_2 MULF_1 

C-Steps  

+ 	ADD-2  + 	ADD-3 

2 

+ 	ADD-4 	+ ADD-5 
3 

4 
+ 	ADD-6 X 	MUL_1  

5 

X MUL_2 

a (b) 

Figure 7.3 R-t mapping showing pipelined execution (a) data flow graph (b) R-t mapping. 

Functional Pipeline Metrics 

The effective speed-up achieved by functional pipeining is defined: 

F (NP) —F (P) 
Speedup 

= r 	r 	
[77] 

Fr  (NP) 

where Fr(P)  is the reuse time of the pipelined solution, and Fr(NP)  is the reuse time of 

the non-pipelined solution. 

7.2 A General-Purpose Functional Pipelining Algorithm 

Consider the original R-t mapping of the example presented in figure 73(b). An R-t 

hyperplane can be created by overlaying a time-delayed version of the original 

(referred to as the base R-t map) as shown in figure 7.4. The value of the delay is equal 

to the maximum execution time present in the base schedule. 

ADD-1 

ADD-2 ADD-3 

ADD-4 ADD-5 

ADD- 1 ADD-6 MUL_1 

ADD _2 ADD 3 MUL_2 
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Processors 

ADDF_1 ADDF_2 MULF_1 
C-Steps 

6 	2 

7 	3 

8 	4 AD 

9 	5 

10 J MUL_2 

/ 
time-delayed R-t map 

Figure 7.4 R-t hyperplanes. Delayed version is shaded. 

Overlapping the execution of data flow graphs may then be represented by the transfer 

of operations from the base R-t map to the time-delayed version. As the operation is 

transferred to the time-delayed R-t map, a phantom operation is placed in the 

corresponding grid location in the base map. This phantom has no behavioural 

significance, but prevents any move occurring in the base R-t map which would cause 

a resource clash in subsequent executions of the behaviour. This process is illustrated 

in figure 7.5. 

ADD-1 

AD 	ADD-2 ADD-3 

AD 	ADD-4 ADD-5 

ADD _6 MUL_1 

MUL_2 
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Processors 

ADDF_1 ADDF_2 	MULF_1 
C-Steps  

6 2 

7 3 

8 4 AD 

9 5 4 	Phantom operation 

10 rJLii14___ Operation MUL_2 transferred 

Figure 7.5 Transfer between R-t planes and the use of phantom operations. 

The pipeline reuse time, Fr,  corresponds to the best "fit" between base and time-

delayed mappings as illustrated by the examples in figure 7.6 (successive executions 

of the R-t map are shown in gray). In many cases, however, this value will be equal to 

the maximum execution time present in the base R-t map. Thus, minimisation of Fr  

corresponds to a compaction of base operations within the R-t hyperplane. The 

pipeline latency, F1 , is defined as the maximum execution time of base operations in 

the time-delayed R-t space. 

7.2.1 A SAVAGE Implementation 
The SAVAGE toolset was extended to incorporate the optimisation algorithm 

described above. The extensions to the software were partitioned into two 

components: 

Pipeline generation moves. 

Pipeline cost assessment. 

ADD-1 

AD 	ADD-2 ADD-3 

ADI 	ADD-4 ADD-5 

ADD-6 	MUL_i 

_ >( 
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Processors Processors 

ADDF_1 ADDF_2 	MULF_1 ADDF_1 ADDF_2 MULF_1 
C-Steps  C-Steps  

ADD- 1 MUL_1 1 

2 ADD-2 ADD-3 2 

3 ADD-4 ADD-5 3 

4 ADD- 1 ADD-6 	:,lULi 4 

5 ADD-2 ADD 31 5 

6 ADD-4 ADD- 5 6 

Figure 7.6 Best-fit pipeline reuse examples. 

The synthesis of pipelined datapaths is performed exclusively in the R-t domain. 

Correspondingly, only optimisation moves associated with this plane are considered. 

The state generation sequence proceeds as described in section 5.2.2, with the 

following additions: if the scheduled execution time of the operation selected is equal 

to the maximum execution time present in the base R-t mapping, then the operation is 

a candidate for deferral to the following execution of the behaviour. This is in keeping 

with the overall goal of seeking to minimise the maximum execution time present in 

the base R-t map. Where candidate a operation for deferral is identified, the PIPE 

package (described below) is added to the valid move set for that operation. Further, if 

the boolean flag (operation.delayed) associated with the selected operation is already 

set, then only the PIPE package supplies the valid moves. 

Data Structure Addenda 
A boolean flag is appended to each operation on the processor allocation lists in the 

linked-list implementation of R-t space described in section 5.1.4. The flag indicates 

ADD- 1 MUL_1 

ADD-2 ADD-3 

ADD-4 ADD-5 

ADD-6 MUL_2 

ADD- 1 MULl 

ADD- 2 ADD -3 
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that the associated operation is executing in the time-delayed version of R-t space. The 

operation.execution_time field remains unaffected by the setting of the 

operation.delayed flag. Thus, the need for a second R-t space, and the provision of 

phantom operators is avoided. The execution time of an operation, and its processor 

allocation, are modified by the pipeline procedures. In addition, the presence of the 

operation in base R-t space prevents other (i.e. non-pipelined) optimisation moves 

causing resource clashes. Signal lifetimes for delayed operations are computed by 

adding the operation.execution_time field to the maximum execution time present in 

the base R-t map. 

Pipeline Generation Moves 
The PIPE package contains the valid move set for base R-t operations mapped into 

the delayed R-t space. The initial pipeline optimisation move for an operation in base 

R-t space is to set the operation.delayed flag, and effectively delay the operation by 

an entire schedule length. The other optimisation moves mimic the behaviour of the 

move set described in section 5.3.1. Only the base scheduling procedure is different. 

Whereas the UNARY—STEP function looks for a valid schedule as control steps c-i, c 

and c+i the P IPE UNARYSTEP function looks for the first available execution 

times on the current processor, as illustrated in figure 7.7. This allows effective R-t 

compaction, and is permissible where the input data for the selected operation are 

produced in the base R-t map. Where the producer nodes are also mapped into the 

delayed R-t space, data flow precedence between the operations applies. 

With this basic scheduling mechanism in place, variants of the non-pipelined R-t 

optimisation moves can be added to the valid move set. The valid pipeline moves are 

PIPE—UNARY—STEP,  PIPE_VALID_PROCESSOR, PIPE—CREATE—PROCESSOR 

and P IPE FUNCTION—ME RGE. A final scheduling move allows operations mapped 

into the delayed R-t space to be rescheduled back into base R-t space. 
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Processors 
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Figure 7.7 Basic pipeline scheduling move (PIPELINE — UNARY —STEP). 

Pipeline Cost Assessment 
The SAVAGE cost assessment function was extended to include terms for pipeline 

costs. Pipeline latency, F1, replaces the MAXIMUM EXECUTION term, and the 

pipeline reuse time, Fr,  is added to the equation. The pipeline latency terms is 

computed as: 

F1  = MAX(Base R-t) + MAX(Delayed Operations) 	[7.8] 

where the MAX() predicate returns the greatest value of operation.execution_time 

present in the input set. The pipeline reuse time, Fr,  may be computed using the "best 

fit" method by using the algorithm given in figure 7.8. 

7.3 Examples 

Pipelined solution datapaths for the synthesis benchmarks introduced in the previous 

chapter, the 1-dimensional 8 point Fast Discrete Cosine Transform and a 5th order 

Wave Digital Filter, are presented. 

mul_1 mul_2 

muL3 

mul_4 

mul_6 sub-5 

sub-7 
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function BEST—FIT (RT 	in out RTSPACE) return INTEGER is 

begin 
-- Start the search at the maximum execution time in base R-t 
FR := MAX(RT); INDEX := 1; FLAG 	true; 
while FLAG loop; 

-- Search over all processors 
for each processor in RT do 

if not((SLOTAVAILABLE(FR) and OP SCHEDULED AT(INDEX)) or 
(SLOT _AVAILABLE (INDEX) and OP SCHEDULED AT (FR))) then 
-- R-t space will fit 
FLAG := false; 

end if; 
end for; 
- If fit at this value, then decrement and start again 
if FLAG then 

FR := FR - 1; INDEX := INDEX + 1; 
end if; 

end loop; 
-- Return Pipeline Reuse Time 
return FR; 

end BEST FIT; 

Figure 7.8 Best-fit pipeline reuse algorithm. 

7.3.1 A Pipelined Fast Discrete Cosine Transform Datapath 
The resource-constrained description of the FDCT presented in figure 6.2 was re-

synthesised by the SAVAGE system. The PIPE procedure, described in section 7.2 was 

included in the R-t optimisation move set. 

The specification of separate cost multipliers for Fr  and F1  allows an optimisation 

trade-off between pipeline reuse time and overall pipeline latency. The goal of this re-

synthesis was the generation of a pipelined solution with a minimised pipeline reuse 

time. Correspondingly, the Fr  cost multiplier is assigned a higher value than that 

associated with F1. By permitting potential increases in the schedule, the signal storage 

requirements may also increase. The cost multipliers associated with memory 

components are also therefore increase in order to minimise this effect. To maintain a 

balanced datapath solution, however, the pipeline cost multipliers are not given great 

precedence over the other datapath component cost multipliers. The full set of cost 
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multipliers used to generate a pipelined solution is presented in table 7.1. 

Adder 30 Register File 60 

Multiplier 30 ROM 1 

Multiplexer 50 Pipeline Latency 75 

Tn-Buffer 80 Pipeline Reuse 95 

Register 40 Control Overhead 75 

Interconnect Density 75 

Table 7.1 Cost multipliers for pipelined datapath generation. 

Following synthesis, the datapath illustrated in figure 7.9 was generated. As the 

pipelining algorithm operates solely in the R-t plane, the datapath schematic is 

unrevealing with respect to the optimisation achieved. For comparative purposes, the 

R-t space of the non-pipelined solution (presented in section 6.1) and the pipelined R-t 

space are given in figure 7.10. Subsequent executions of the R-t mappings as 

presented are indicated by the shaded areas. 

Comparison of the datapath topologies, as presented in table 7.2 indicates an overall 

gain of 4% in the number of multiplexers required to implement the pipelined solution. 

This minor increase may be directly attributed to the flexibility of the SAVAGE 

costing mechanism. 

Applying equation 7.7, it can be observed that a 33% speed-up is gained through the 

use of functional pipelining. This is set against a 25% increase in the total pipeline 

latency 
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Figure 7.9 Pipelined FDCT datapath. 
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Figure 7.10 (a) Non-pipelined R-t space (b) Pipelined R-t space for FDCT example. 
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System Reuse Latency Registers 

Non-Pipelined 12 12 28 

Pipelined 8 15 28 

System Mux Inputs Control Wires 
Point to Point
Connections 

Non-Pipelined 51 (+28)a 28 77 

Pipelined 52(+28) 28 75 
t. 	 ritc 	i.uuiii 

Table 7.2 Statistics for pipelined and non-pipelined datapaths. 

7.3.2 A Pipelined Wave Digital Filter Datapath 

The Wave Digital Filter example has an irregular data flow structure, and as such, is 

not viewed as a good candidate algorithm for functional pipeining. The resource-

constrained example of two adders and a single pipelined multiplier, described in 

section 6.2.1, was re-synthesised in order to illustrate the generality of the SAVAGE 

algorithm. Again, the pipeline reuse time was specified as the primary optimisation 

criterion. The cost multipliers associated with the pipeline re-synthesis are presented 

in table 7.3. 

Adder 25 Register File 45 

Multiplier 25 ROM 1 

Multiplexer 45 Pipeline Latency 75 

Tr-Buffer 55 Pipeline Reuse 95 

Register 60 Control Overhead 60 

Interconnect Density 80 

Table 7.3 Cost multipliers for pipe/med datapath generation. 

Following synthesis, the datapath shown in figure 7.11 was generated. The optimised 
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R-t spaces for the pipelined and non-pipelined solutions are shown in figure 7.12. 

Comparative datapath statistics are presented in table 7.4. 

OUT 

Figure 7.11 Pipe/med WDF datapath. 

System Reuse Latency Registers 

Non-Pipelined 19 19 13 

Pipelined 16 21 14 

System Mux Inputs Control Wires Point to Point
Connections 

Non-Pipelined 13(+13) 19 24 

Pipelined 13(+14) 19 24 

Table 7.4 Statistics for pipe/med and non-pipe/med datapaths. 

The increased number of registers required is caused by the extension of the schedule 

to incorporate functional pipelining. The data storage required for the delayed 

execution of the ADD-32 operation causes a signal lifetime clash, and thus forces the 
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addition of a further register. The associated control overhead is reflected in the 

increased number of multiplexer inputs required for register file decoding. 

Equation 7.7 indicates a 16% speed-up gained through the use of functional 

pipelining. Again, this must be set against a 10.5% increase in the overall solution 

latency. = 
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Figure 7.12 (a) Non-pipelined R-t space (b) PipelinedR-t space for WDF example 

7.4 Discussion 

A general functional pipeimng algorithm was presented which is amenable to a 

simulated annealing-based implementation. The algorithm was shown to improve the 

pipeline reuse time. This improvement must be offset against the increase in solution 

latency. In the case of the irregular WDF example, the attained speed-up can only be 

justified in applications with very high data rates. 
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A similar iterative grid compaction method for functional pipelining is reported in 

[Mallon90]. For this iterative solution, however, a target reuse time must be specified 

as a constraint to the system. The scheduling algorithm then exhaustively searches R-t 

space to determine whether a solution satisfying the constraint exists. For practical 

problem instances, this may pose an unacceptable computational overhead. 

The SAVAGE system does not require such a constraint on its input. The specification 

of separate pipeline reuse and latency cost multipliers allows designers to evaluate the 

trade-off between minimising pipeline reuse time and overall pipeline latency. Further, 

the implementation method reported here is fully integrated into the SAVAGE 

synthesis system, and does not require a specialist pipeline scheduler per Se. 
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8 Summary and Conclusions 

The behavioural synthesis task was defined as the mapping of an algorithmic 

specification, captured in a high-level programming language, to an optimised 

datapath topology capable of executing the specification at the register-transfer level. 

The synthesis procedure can be partitioned into a number of subtasks. The relationship 

between these subtasks is typified by a serial synthesis flow, with the scheduling and 

allocation operations occurring prior to register allocation and interconnect 

optimisation. These subtasks are commonly specified as a directed-graph problem. 

Solution techniques for these directed-graph problems were reviewed. These are 

drawn from the branch of mathematics known as algorithmic graph theory. In many 

cases, however, the solution techniques belong to a class of computational problem for 

which no exact solution may be generated in polynomial time. This limitation is 

overcome by the introduction of heuristics to constrain the solution space. The use of 

heuristics introduces the possibility that the solution may reside in a local cost 
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minimum, however, thus compromising the solution quality. This observation is borne 

out by the appearance of local minima in the results quoted in this thesis. 

A global formulation of the synthesis problem was proposed. A combinatorial 

approach is adopted, and a candidate optimisation technique known as simulated 

annealing, drawn from the field of statistical physics, was introduced. The simulated 

annealing algorithm demonstrates the ability to escape from local minima by 

accepting temporary solutions whose overall cost function is higher than that of the 

current state. 

A behavioural synthesis method based upon the simulated annealing algorithm was 

developed. In common with other simulated annealing-based applications, the 

problem was formulated as a two-dimensional grid or plane. A novel feature of the 

data structure developed was the provision of three interconnected optimisation planes 

capable of independently supporting the operation of the simulated annealing 

algorithm. This overcomes the quasi-serial approach reported in other simulated 

annealing solutions to the behavioural synthesis task. A full range of primitive state 

generation moves was presented, ordered by optimisation plane. An extended costing 

method was specified which was directed towards the prevalent ASIC implementation 

technologies. A further innovation was the provision of a cost multiplier system, 

which allowed design engineers to influence the final datapath architecture without 

direct synthesis intervention. This intervention is supported, however, through the use 

of synthesis pragmas. 

The result of this research was the SAVAGE system, a suite of modular software tools. 

Small and large scale synthesis benchmarks were used to exercise the tools over a 

wide range of optimisation criteria. The results presented offer a favourable 

comparison between the SAVAGE system and other behavioural synthesis tools. 
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SAVAGE offers reductions of up to 30% in the total number of multiplexer and 

register instances. Further, SAVAGE consistently generated solutions with a low 

interconnect density. This was identified as a key factor contributing to the overall 

silicon area in the datapath implementation. This improvement may be directly 

attributed to the global state generation and costing method adopted. 

The synthesis paradigm presented in this thesis was extended by the incorporation of a 

general purpose algorithm capable of generating functional pipelines into the 

SAVAGE system. A set of modular synthesis primitives and pipeline cost assessment 

criteria was developed and integrated into the state generation and costing 

mechanisms. The algorithm produced pipelined solutions capable of operating up to 

33% faster than a non-pipelined solution. The general nature of the approach was 

demonstrated using the Wave Digital Filter benchmark. The irregular data flow 

structure hinders effective functional pipelining. The SAVAGE approach yielded a 

15% speed-up in spite of this. By keeping the costing factors associated with pipeline 

latency and pipeline reuse separate, architectural trade-offs between pipeline reuse and 

overall latency are possible. 

8.1 Further Work 

This section suggests a number of potential research areas which extend and augment 

the work presented in this thesis. 

8.1.1 A Route to Silicon 
A link is proposed between the SAVAGE toolset and the logic synthesis, placement 

and routing tools which implement the SAVAGE-generated datapath 

macroarchitecture in the target technology. The most obvious advantage of this 

integration is the increased accuracy of the SAVAGE cost assessment function. 

Technology models for datapath component area and placement and routing overheads 
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would be made directly available to the SAVAGE costing function. While it is 

impractical to suggest that physical data should be back-annotated at each state 

generation, a more realistic goal would be to back-annotate at each control parameter 

decrement. 

The disadvantage of providing a link to the microarchitectural and physical synthesis 

tools is that SAVAGE system would no longer be technology-independent. 

8.1.2 Synthesis using Structural Input 

A great deal of promising research has been performed which concentrates on the 

provision of structural as well as behavioural input to the synthesis tools [Fin92]. In 

summary, an engineer may specify a partial or complete datapath on which the input 

behaviour should execute. This structural input can be used as the starting point for an 

iterative synthesis based upon a desired macroarchitecture, or could perhaps provide a 

mechanism for reusing synthesised datapaths. 

The SAVAGE system could be updated to accept structural input. Modifications to the 

BUILDER module would allow a constrained initial state based upon the structural 

specification to replace the randomly generated R-t, M-t and P-c spaces. The reuse of 

pre-defined datapaths would impose a hard structural constraint, and as such, the state 

generation mechanism would suppress any optimisation moves which would 

potentially alter the datapath structure from the valid move set. A soft constraint. 

where the pre-defined datapath acts as a starting point for the synthesis procedure 

would not require such a reduced move set. In both instances, however, the state 

generation mechanism and the cost assessment criteria remain unchanged. 
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8.1.3 Design for Testability 

Design for testability is of great concern in the large-scale integrated system designs 

currently being undertaken in academia and industry. A modular extension, similar to 

that presented in the previous chapter, is suggested. This extension is composed of 

three major components. 

The first provides a set of cost assessment criteria targeted specifically at datapath 

testability. Quantifying circuit testability has been the focus of a great deal of research 

[Ben8l, Ben84, La1a85], and a mature set of metrics are in general use. The most 

widespread are the concepts of Nodal Controllability (CY), Nodal Observability (OY) 

and Nodal Testability (TY), first suggested by Bennetts [Ben84]. 

These metrics could be used to build composite testability costs for datapath 

components at the datapath macroarchitectural level. The SAVAGE costing function 

could then be extended to incorporate a testability factor based on nodal TY values 

within the datapath. 

The second component of a design for test synthesis module is the datapath 

microarchitecture component library. In order to assess CY, OY and TY values during 

state generation, accurate testability models of the datapath microarchitecture need to 

be generated. 

Finally, datapath components incorporating design for test features such as 

multiplexed registers with serial scan inputs or dedicated test multiplexers to provide 

access to nodes with low iT values should be generated for use in the SAVAGE 

resource set. A dedicated test state generation move set is required to successfully 

integrate test features into SAVAGE system. It is anticipated that the development of 
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such a state generation move set could be modelled on the development of the 

pipelining module presented in the previous chapter. 

8.1.4 An Architectural Script-based Design Paradigm 

De Man [DeMan90] suggests a synthesis environment based around the architectural 

script concept. The architectural script specifies all revels of interaction with the 

software tools prior to, and during the synthesis procedure. This specification takes 

place at a number of levels: 

System Level Constraints. The major optimisation goals for the 

synthesis tools are detailed. These specify system boundaries, such as 

maximum execution time and total datapath area. 

Architectural Selection. The designer can influence the final 

macroarchitecture of the datapath through selection of synthesis routines 

from an architectural library. The synthesis routines in this library are 

grouped according to their architectural template (e.g. bit-serial, regular 

array, communicating multiprocessor). This level of interaction arises 

directly from the CATHEDRAL experience [C1ae86, DeMan88, Note881. 

Design Pragmas. Pragmas provide a mechanism for designer intervention 

during the synthesis procedure. A good example of this level of interaction 

is a pragma which binds a subset of data flow operations to execute on a 

particular processor, as may be necessary with a speed critical loop 

structure. 

Structural Specification. At this lowest level, the design engineer can 

specify a datapath macroarchitecture directly, and force the synthesis tools 

to optimise the mapping between the specified behaviour and the pre-

defined structure. 
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Underlying the architectural script-based method is the need for a high quality 

optimisation engine. This thesis has promoted simulated annealing as such a 

procedure. The current SAVAGE toolset permits interaction at levels (i) and (iii) 

defined above, and an extension is proposed (section 8.2.2) to include interaction at 

level (iv). Further, the work presented in this thesis has demonstrated the ability of a 

modular software system, such as SAVAGE, to support the inclusion of architecture- - 

specific optimisation routines. 

The work required to explore the addition of further architecture-specific synthesis 

procedures within the general SAVAGE framework and to develop an extended system 

based upon De Man's architectural script represents the most substantial extension to 

the current research. 
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Appendix A 	Differential Equation Datapath 

This Appendix presents the datapath netlist for the naive mapping between behaviour 

and structure presented in section 2.5. For reference, the datapath schematic is given 

again below: 

Ui 

Figure A.] Datapath produced by naive snapping axioms. 
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datapath DIFF EQ begin 

processor MULF 1 begin 
attributes non-pipe, latency 1, area 50; 
type mul; 
commutative true; 
ports A source U; 

B source dx.l; 
Z sink sl.in ; 

end processor MULF1; 

processor MULF_2 begin 
attributes non-pipe, latency 1, area 50; 
type mul; 
commutative true; 
ports A source c5; 

B source x; 
Z sink s2.in ; 

end processor MULF2; 

processor MULF4 begin 
attributes non-pipe, 	latency 1, 	area 50; 
type mul; 
commutative true; 
ports A source c3; 

B source y; 
Z 	sink 	s4.in ; 

end processor MULF4; 

processor MULF3 begin 
attributes non-pipe, 	latency 1, 	area 50; 
type mul; 
commutative true; 
ports A source sl.out; 

B source s2.out; 
Z 	sink 	s3.in ; 

end processor MULF_3; 

processor MULF_6 begin 
attributes non-pipe, 	latency 1, 	area 50; 
type mul; 
commutative true; 
ports A source s4.out; 

B source dx.2; 
Z 	sink 	s6.in ; 

end processor MULF_6; 

processor SUBF_5 begin 
attributes area 30; 
type sub; 
commutative false; 
ports A source U; 

B source s3.out; 
Z 	sink 	s5.in ; 

end processor SUBF5; 

processor SUBF7 begin 
attributes area 30; 
type sub; 
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commutative false; memory ROMF2 begin 
ports A source s5.out; attributes area 30 

B source s6.out; type ROM; 
Z sink ul; locations 1; 

end processor SUBF_7; ports 	Z sink c5; 
end memory ROMF2; 

memory REGF1 begin 
attributes area 35 memory ROMF3 begin 
type register; attributes area 30 
ports 	A source sl.in ; type ROM; 

Z sink sl.out; locations 1; 
signals sl; - 	 ports 	Z-  sink -c3; 

end memory PEGF_l; end memory ROMF3; 

memory REGF2 begin memory ROMF4 begin 
attributes area 35 attributes area 30 
type register; type ROM; 
ports 	A source s2.in ; locations 1; 

Z sink s2.out; ports 	Z sink dx.2; 
signals s2; end memory ROMF1; 

end memory REGF2; 
net u.l begin 

memory REGF_3 begin type wire; 
attributes area 35 source 	IOFl.Z; 
type register; sink MULF1.A; 
ports 	A source s4.in ; end net u.l; 

Z sink s4.out; 
signals s4; net dx.l begin 

end memory REGF3; type wire; 
source ROMF1.Z; 

memory REGF4 begin sink MtJLF1.A; 
attributes area 35 end net dx.l; 
type register; 
ports 	A source s3.in ; net c5 begin 

Z sink s3.out; type wire; 
signals s3; source ROMF2.Z; 

end memory REGF4; sink MULF2.A; 
end net c5; 

memory REGF5 begin 
attributes area 35 net x begin 
type register; type wire; 
ports 	A source s6-in; source 	10F 2.Z; 

Z sink s6.out; sink MULF2.B; 
signals s6; end net x; 

end memory REGF5; 
net c3 begin 

memory REGF6 begin type wire; 
attributes area 35 source ROMF3.Z; 
type register; sink MtJLF4.A; 
ports 	A source s5-in; end net c3; 

Z sink s5.out; 
signals s5; net y begin 

end memory REGF6; type wire; 
source 10F3; 

memory ROMP 1 begin sink MtJLF_4; 
attributes area 30 end net y; 
type ROM; 
locations 1; net sl.in  begin 
ports 	Z sink dx.l; type wire; 

end memory ROMF1; 
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source MULF1.Z; 	 source MULF6.Z; 
sink REGF1.A; 	 sink REGF5.A; 

end net sl.in ; 	 end net s6.in ; 

net sl.in  begin 	 net s6.out begin 
type wire; 	 type wire; 
source REGF1.Z; 	 source REGF5.Z; 
sink MULF3.A; 	 sink SUBF7.A; 

end net sl.out; 	 end net s6.out; 

net s2.in  begin 	 net s5.in  begin 
type wire; 	 type wire; 
source Mt.JLF2.Z; 	 source SUBF5.Z; 
sink REGF2.A; 	 sink REGF6.A; 

end net s2.in ; 	 end net s5.in ; 

net s2.out begin 	 net s5.out begin 
type wire; 	 type wire; 
source REGF2.Z; 	 source REGF6.Z; 
sink MULF3.B; 	 sink SUBF7.B; 

end net s2.out; 	 end net s5.out; 

net dx.2 begin 	 net ul begin 
type wire; 	 type wire; 
source ROMF4.Z; 	 source SUBF7.Z; 
sink MULF6.A; 	 sink 10F 5.A; 

end net dx.2; 	 end net ul; 

net s4.in  begin I/O IOF1 begin 
type wire; type in; 
source MtJLF4.Z; ports Z sink u.1; 
sink REGF3.A; end I/O IOF1; 

end net 	s4.in ; 
I/O 10F2 begin 

net s4.out begin type in; 
type wire; ports Z sink  
source REGF3.Z; end I/O 	10F2; 
sink MULF6.B; 

end net s4.out; I/O 10F3 begin 
type in; 

net u.2 begin ports Z sink  
type wire; end I/O 10F3; 
source 10F4; 
sink SUBF5.A; I/O 10F4 begin 

end net u.l; type in; 
ports Z sink u.2; 

net s3.in  begin end I/O 10F4; 
type wire; 
source MtJLF3.Z; I/O 10F4 begin 
sink REGF4.A; type out; 

end net 	s3.in ; ports A source StJBF7.Z; 
end I/O 10F5; 

net s3.out begin 
type wire; end datapath DIFFEQ; 
source REGF4.Z; 
sink SUBF5.B; 

end net s3.out; 

net s6.in  begin 
type wire; 

172 



Appendix B 	SAVAGE Optimisation Move 
Sets 

This appendix contains the ADA code for the SAVAGE state generation move sets 

presented in section 5.3. 

B.1 R-t Optimisation Code 

This section presents the ADA package containing the optimisation moves operating 

in R-t space. The first function presented verifies the availability of execution times on 

a selected processor. 

package body RTOPTIMISE is 

function SLOT—AVAILABLE—AT( CSTEP:INTEGER; 
PROC:PROCESSORPTR) return BOOLEAN is 

SEARCH LIST : ALLOCATION PTR; 
ITEM : ALLOCATED ITEM; 
FLAG BOOLEAN; 

begin 
SEARCH LIST := PROC.ALLOCATION; FLAG := TRUE; 
-- Get the first item in the list 
ITEM := HEAD(SEARCH LIST); 
-- Execute this loop until we reach the end of the allocation list 
while not (ITEM.NEXT = null) loop 

if ITEM.EXECUTION TIME = C_STEP then 
FLAG := FALSE; 

end if; 
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-- Next item on the list 
ITEM := ITEM.NEXT; 

end loop; 
return FLAG; 

end SLOT—AVAILABLE—AT; 

The UNARY—STEP function aims to schedule a selected operation on the processor 

that it is currently allocated to. The procedure checks that execution times at control 

steps c+i and c-i are available. A random variable selects the new schedule. 

procedure UNARY STEP (OP:in out OPPTR; PROC:in PROCESSOR PTR) is 

type STATE is (INC,DEC,BOTH,NEITHER); 
TEMP1,TEMP2 : OPERATION; 
FLAG : STATE; 
R : INTEGER; 

begin 
TEMP1 	02; TEMP2 := OP; FLAG := NEITHER; 
if SLOT AVAILABLE AT(OP.EXECUTION TIME+1,PROC) then 

FLAG := DEC; 
if ((SLOT AVAILABLE AT(OP.EXECUTION TIME-1,PROC) and (FLAG=DEC)) then 

FLAG := BOTH; 
else 

FLAG := INC; 
end if; 
case FLAG is 

when NEITHER => null; 
when DEC => begin 

R := PANDOM(l); 
case R is 

when 0 => OP.EXECUTION TIME := 
OP.EXECUTION TIME + 1; 

when 1 => null; 
end case; 

end; 
when INC => begin 

R := RANDOM(l); 
case R is 
when 0 => OP.EXECUTION TIME : 

OP.EXECUTION TIME - 1; 
when 1 => null; 

end case; 
end; 

when BOTH => begin 
R := RANDOM(2); 
case R is 
when 0 => OP.EXECUTION TIME 

OP.EXECUTION TIME + 1; 
when 1 => OP.EXECUTION TIME := 

OP.EXECUTION TIME - 1; 
when 2 => null; 

end case; 
end; 

end case; 
end UNARY STEP; 
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The following function aims to schedule the selected operation on a processor able to 

support the operation.type and having execution times available at control steps c-i, c 

and c+i. The UNARY—STEP function is used to perform the scheduling operation. 

procedure VALID—PROCESSOR (OP:in out OPPTR; RT:in out RTPTR) is 

PROCESSORS, VALID _PROCESSORS : RT_PTR; 
ITEM : PROCESSOR PTR; 
R,I : INTEGER; 

begin 
PROCESSORS := RT; VALID—PROCESSORS 	null; 
ITEM := HEAD(PROCESSORS); 
-- Search through all candidate processors 
while not (ITEM.NEXT = null) loop 

if ((SLOT AVAILABLE AT(OP.EXECUTION TIME+l, ITEM)) and 
(ISMEMBER(OP.TYPE,ITEM.TYPELIST)))then 

ADD(ITEM, VALID_PROCESSORS); 
end if; 
if ((SLOT AVAILABLE AT(OP.EXECUTION TIME, ITEM)) and 

(IS MEMBER(OP TYPE, ITEM.TYPE LIST)) )then 
ADD ( ITEM, VALID PROCESSORS 

end if; 
if ((SLOT AVAILABLE AT(OP.EXECtJTION TIME-i, ITEM)) and 

(ISMEMBER(OP.TYPE,ITEM.TYPELIST)))then 
ADD ( ITEM, VALID PROCESSORS 

end if; 
ITEM := ITEM.NEXT; 

end loop; 
--Select a valid processor at random 
R := RANDOM (LENGTH(VALID PROCESSORS)); 
ITEM := HEAD(VALID PROCESSORS); 
for I in 1 .. R loop 

ITEM := ITEM.NEXT; 
end loop; 
-- Add the operation to the new processor's allocation list 
ADD(OP, ITEM.ALLOCATION); 
-- Remove the operation from its currently allocated processor 
-- Note : Processor allocation pointed to from data flow graph 
REMOVE (OP,OP.ALLOCATEDTO); 
-- Schedule the operation on the newly allocated processor 
IJNARY STEP (OP, ITEM); 

end VALID—PROCESSOR; 

CREATE—PROCESSOR adds a processor supporting operations of type 

operation.type to R-t space, and allocates the selected operation to the new processor. 

Again, UNARY—STEP is used to schedule the operation. 

procedure CREATE—PROCESSOR (OP:in out OPPTR; RT: in out RTPTR) is 

ITEM : PROCESSOR PTR; 
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begin 
-- Create a processor with the same type as that of the selected 
-- operation 
ITEM := new PROCESSOR; 
ADD (OP .TYPE, ITEM.OPERATION TYPE LIST); 
-- Add the operation to the new processor's allocation list 
ADD(OP, ITEM.ALLOCATION); 
-- Remove the operation from its currently allocated processor 
-- Note : Processor allocation pointed to from data flow graph 
REMOVE (OP,OP.ALLOCATEDTO); 
-- Schedule the operation on the newly allocated processor 
UNARYSTEP(OP,ITEM); 	-- 	 - 	 - 

-- Add the newly created processor to R-t space 
ADD (ITEM, RT) ; 

end CREATE—PROCESSOR; 

The following procedure, FUNCTION—MERGE, searches for candidate processors to 

become ALU units. From the candidate processors, one is selected at random, and the 

processor's operation—type—list is updated. The selected operation is allocated to the 

processor, and the UNARY—STEP function schedules the operation. 

procedure FUNCTION MERGE (OP:in out OPPTR; RT:in out RT_PTR) is 

PROCESSORS, VALID—PROCESSORS : RTPTR; 
ITEM : PROCESSOR PTR; 
R,I : INTEGER; 

begin 
PROCESSORS := RT; VALID_PROCESSORS := null; 
ITEM := HEAD(PROCESSORS); 
-- Search through all candidate processors 
while not (ITEM.NEXT = null) loop 

if ((SLOT AVAILABLE AT(OP.EXECUTION TIME+l, ITEM)) and 
(not (IS MEMBER(OP.TYPE, ITEM.TYPE LIST))) )then 

ADD(ITEM, VALID_PROCESSORS); 
end if; 
if ((SLOT AVAILABLE AT(OP .EXECUTION TIME, ITEM)) and 

(not(ISMEMBER(OP.TYPE, ITEM.TYPELIST))))then 
ADD (ITEM, VALID_PROCESSORS); 

end if; 
if ((SLOT AVAILABLE AT(OP.EXECUTION TIME-1,ITEM)) and 

(not(ISMEMBER(OP.TYPE, ITEM.TYPE LIST))) )then 
ADD (ITEM,VALID PROCESSORS); 

end if; 
ITEM := ITEM.NEXT; 

end loop; 
---Select a valid processor at random 
R := RANDOM (LENGTH(VALID PROCESSORS)); 
ITEM := HEAD(VALID PROCESSORS); 
for I in 1 .. R loop 

ITEM 	ITEM.NEXT; 
end loop; 
-- Add the operation type to the processor type list 
ADD (OP .TYPE, ITEM.OPERATION TYPE LIST); 
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-- Add the operation to the processor's allocation list 
ADD(OP, ITEM.ALLOCATION); 
-- Remove the operation from its currently allocated processor 
-- Note : Processor allocation pointed to from data flow graph 
REMOVE (OP, OP ALLOCATED_TO); 
-- Schedule the operation on the newly allocated processor 
UNARY STEP (OP, ITEM); 

end FUNCTION MERGE; 

end RTOPTIMISE; 

B.2 M-t Optimisation Code 

The CAN—STORE function checks the signal lifetime over all signals lifetimes 

allocated to the register by comparing the signal production and consumption times of 

all allocated signals to the selected signal. The predicates PRODO and CONSO return 

the production time and consumption time of the signal respectively. This signal 

lifetime evaluation procedure is illustrated in figure B.1. 

package body MT OPTIMISE is 

function CAN STORE (S : SIGPTR; M : MPTR) return BOOLEAN is 

SEARCH LIST : SIGNAL LIST PTR; 
ITEM : SIGPTR; 
FLAG : BOOLEAN; 

begin 

SEARCH LIST := M.SIGNAL LIST; FLAG := TRUE; 
-- Search through signals allocated to the memory component 
ITEM 	HEAD(SEARCH LIST); 
-- Ensure that signal lifetimes do not overlap 
while not (ITEM.NEXT = null) loop 

-- Signal lifetime overlap case (i) 
if ((PROD(S) <= PROD(ITEM)) and (CONS(S) >= PROD(ITEM))) then 

FLAG := false; 
end if; 
-- Signal lifetime overlap case (ii) 
if ((PROD(S) >= PROD(ITEM)) and (PROD(S) <= CONS(ITEM))) then 

FLAG := false; 
end if; 
-- Signal lifetime overlap case (iii) 
if ((PROD(S) >= PROD(ITEM)) and (CONS(S) <= CONS(ITEM))) then 

FLAG := false; 
end if; 
-- Signal lifetime overlap case (iv) 
if ((PROD(S) <= PROD(ITEM)) and (CONS(S) >= CONS(ITEM)) then 

FLAG := false; 
end if; 

end loop; 
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return FLAG; 
end CAN STORE; 

Figure B.] Signal lifetime conflicts. 

The following function traverses M-t space looking for registers capable of storing the 

selected signal. One is selected at random from the generated subset, and the signal 

reallocated. No error trapping is required, as there is always one register capable of 

storing the signal, the allocated register on entry to the procedure. 

procedure SIGNAL MERGE(SIG:in out SIGPTR; MT:in out MTPTR) is 

begin 
REMOVE (SIG, SIG.ALLOCATEDTO); 
REGISTERS := HEAD(MT); ITEM := HEAD(REGISTERS); VALID—REGISTERS 	null; 
-- Search through M-t space for eligible registers 
while not(ITEM.NEXT=riull) loop 

if CAN STORE (SIG, ITEM) then ADD(ITEM,VALID REGISTERS); 
end loop; 
-- Select one at random 
R := RANDOM(LENGTH(VALID REGISTERS)): 
ITEM := HEAD(VALID REGISTERS); 
for 	in 1 .. Rloop 

ITEM := ITEM.NEXT; 
end loop; 
-- Reallocate the signal 
ADD(SIG, ITEM. SIGNAL_LIST); 

end SIGNAL—MERGE; 

CREATE—MEMORY adds a register to M-t space, and allocates the selected signal to 
the new memory. 
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procedure CREATE MEMORY (SIG:in out SIGPTR; MT: in out RTPTR) is 

ITEM : MEMORY PTR; 

begin 
-- Create a register 
ITEM := new MEMORY; 
ITEM.TYPE := REGISTER; 
-- Add the signal to the register's allocation list 
ADD (SIG, ITEM. SIGNAL_LIST); 
ADD (OP .TYPE, ITEM.OPERATION TYPE LIST) 
-- Add the newly created register to M-t space 
ADD (ITEM, MT) ; 

end CREATE—PROCESSOR; 

end MT—OPTIMISE; 

B.3 P-c Optimisation Code 

The PORT—SWAP procedure locates the processor executing the selected operation. 

By traversing P-c space, the procedure locates the processor input ports. Both output 

port lists are searched for the signals bringing the operations input data. Once located, 

the signals are transposed on the lists. 

package body PC—OPTIMISE is 

procedure PORT_SWAP (OP:in out OPPTR; PC:in out PC_PTR) is 

THE—PROCESSOR : PROCESSOR PTR; 
PORT _ LIST _A, PORT_LIST_B : PORT LIST PTR; 
ITEM1,ITEM2 : PORT PTR; 

begin 
-- Use the link into R-t space to access the allocated processor 
THE—PROCESSOR := OP .ALLOCATED TO; 
-- Access P-c space to get the port lists 
PORT_LIST_A : FIND (THE PROCESSOR.A, PC); 
PORT _LIST_B := FIND (THE PROCESSOR.B, PC); 
-- Find the output ports associated with the selected operation 
ITEM1 := HEAD(PORT LIST A); 
while not (ITEM1.NEXT = null) loop 

exit when ((ITEM1.SIGNAL = OP.A) or (ITEM1.SIGNAL = OP.B)); 
ITEM1 := ITEM1.NEXT; 

end loop; 
ITEM2 := HEAD (PORT_LIST_B); 
while not (ITEM2.NEXT = null) loop 

exit when ((ITEM2.SIGNAL = OP.A) or (ITEM2.SIGNAL = OP.B)); 
ITEM2 := ITEM2.NEXT; 

end loop; 
-- Swap the input port references 
ADD (ITEM1,PORT LIST B); 
REMOVE ( ITEM1, PORT LIST A) 
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ADD ( ITEM2 , PORT LIST A) 
REMOVE (ITEM2, PORT_LIST_B); 

end PORT SWAP; 

The following procedure selects a pair of output ports from an input port selected at 

random from P-c space (procedure SELECT _OUTPUT_PORTS). The net types 

implementing the communications function between the ports are then updated 

according to the rules shown in figure 5.14. - 

procedure NET MERGE (PC:in out PC_PTR; NETS:in out NET LIST PTR; 
THRESH : in INTEGER) is 

PORT1,PORT2 : PORT PTR; 
ITEM,NET1,NET2 : NET PTR; 

begin 
SELECT OUTPUT PORTS (PC, PORT1, PORT2 ) 
NET1 	PORT1.NET ; NET2 := PORT2.NET ; 
-- Both ports connected with the same wire - register file 
if ((NET1.TYPE=WIRE) and (NET1=NET2)) then 

null 
-- Different wires : merge into a multiplexer 
elsif ((NET].TYPE=WIRE) and (NET2.TYPE=WIRE) and (NET1/=NET2))then 

begin 
ITEM := new NET; 
ITEM.TYPE := MDX; ITEM.CARDINALITY := 2; 
REMOVE(PORT1.NET ,NETS); REMOVE(PORT2.NET ,NETS); 
PORT1.NET 	ITEM; PORT2.NET  := ITEM; 
ADD (ITEM, NETS) 

end 
-- One multiplexer, one wire merge wire into multiplexer 
elsif ((NET1.TYPE=WIRE) and (NET2.TYPE=MUX)) then 

begin 
REMOVE (PORT1 .NET,NETS); 
PORT1.NET  := PORT2.NET ; 

end 
-- ditto 
elsif ((NET1.TYPE=MtJX) and (NET2.TYPE=WIRE)) then 

begin 
REMOVE (PORT2 .NET,NETS); 
PORT2.NET  := PORT1.NET ; 

end 
-- Two separate multiplexers : merge into a single multiplexer or bus 
elsif ((NET1.TYPE=MUX) and (NET2.TYPE=MUX) and (NET1/=NET2) and 

((NET1.CARDINALITY + NET2.CARDINALITY) > THRESH))then 
begin 

R := PANDOM(l); 
case R is 

when 0 => begin 
ITEM := new NET; 
ITEM.TYPE := MDX; 
ITEM.CARDINALITY 	NET1.CARDINALITY + 

NET2 .CARDINALITY; 
REMOVE (PORT1 .NET,NETS); REMOVE(PORT2 .NET,NETS); 
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PORT1.NET  := ITEM; PORT2.NET  := ITEM; 
ADD ( ITEM, NETS) 

end; 
when 1 => begin 

ITEM := new NET; 
ITEM.TYPE := Bus; 
ITEM.CARDINALITY := NET1.CARDINALITY + 

NET2 .CARDINALITY; 
REMOVE(PORT1.NET ,NETS); REMOVE(PORT2.NET ,NETS); 
PORT1.NET  := ITEM; PORT2.NET  := ITEM; 
ADD(ITEM, NETS); 

end; 	- 
end case; 

end 
end if; 

end NET MERGE; 

Similarly, REGISTER—MERGE selects a pair of registers from an input port selected 

at random from P-c space (procedure SELECT—VALID—MERGE—PORTS), and M-t 

space is updated according to the merge functions shown in figure 5.15. 

procedure REGISTER MERGE (PC:in out PCPTR; MT: in out MTPTR) is 

PORT1,PORT2 : PORT PTR; 
Ml, M2 : MEMPTR; 

begin 
-- Get memory components for merging 
SELECT VALID MERGE PORTS (PC, PORT1, PORT2); 
-- Access the M-t space 

	

Ml := FIND(PORT1.Z,MT); M2 	FIND(PORT2.Z,MT); 
Both memory components belong to the same register file 

if ((M1.TYPE=FILE) and (M2.TYPE=FILE) and (M1.ID=M2.ID)) then 
null; 

One register, one file 
elsif ((M1.TYPE=FILE) and (M2.TYPE=REGISTER)) then begin 

M2.TYPE := FILE; M2.ID := M1.ID; 
M1.CARDINALITY := M1.CARDINALITY + 1; 

end; 
Ditto 

elsif ((Ml.TYPE=REGISTER) and (M2.TYPE=FILE)) then begin 
M1.TYPE := FILE; M1.ID := M2.ID; 
M2.CARDINALITY := M2.CARDINALITY + 1; 

end; 
Two separate register files 

elsif ((M1.TYPE=FILE) and (M2.TYPE=FILE) and (Ml.ID/=M2.ID)) then 
begin 

M2.CARDINALITY := M2.CARDINALITY + M1.CARDINALITY; 
M1.ID := M2.ID; M1.CARDINALITY 	M2.CARDINALITY; 

end; 
end if; 

end REGISTER—MERGE; 

end PC—OPTIMISE; 
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Synthesis by Simulated Annealing 

J.P. Neil and P.B. Denyer 

Introduction 

This paper summarises work proceeding towards the development of a suite of algorithmic 
optimisation tools intended to operate in a directed silicon compilation environment (SAGE 
[1]). The tools are controlled by the stochastic computational technique known as simulated 
annealing. The paper contains a description of the scheduling and allocation problem, 
together with a description of the simulated annealing algorithm. There then follows a brief 
discussion of results obtained thus far together with some indications of future work. 

The Scheduling and Allocation Problem 

Within a silicon compiler, the aim of the scheduling task is to minimise the amount of time 
necessary to complete the program, subject to some limit on available hardware resources, 
while the allocation task deals with the minimisation of the amount of hardware resource 
needed. 

Previous systems have addressed this problem in three general ways 

The most straightforward technique is to set some (or no) limit on the 
functional units available, and then to produce a schedule. [2,3,4] 

Functional unit allocation can be done first, then a schedule can be derived. 
The BUD system [5] partitions operations into clusters using a metric which 
takes into account potential parallelism. Functional units are then assigned 
to these clusters, and then scheduling takes place. 

Scheduling and allocation can be performed simultaneously. The HAL 
system [6,7,8,9] uses force-directed scheduling together with a feedback 
loop to allow an iterative solution to be developed. 

It is widely felt that neither of the first two techniques fully address the scheduling and 
allocation problem. Only the more complex solution offered by interrelated allocation and 
scheduling can offer a close to optimum solution without compromising either the schedule 
or resource allocations. 

An Introduction to Simulated Annealing 

Simulated Annealing is a stochastic computational technique derived from statistical 
mechanics for finding near globally minimum cost solutions to large optimisation problems. 
Kirkpatrick, Gelatt and Vecchi [10] were the first to propose and demonstrate the application 
of simulation techniques from statistical physics to problems of combinatorial optimisation, 
specifically to the problems of wire routing and component placement in VLSI design. 

The following function gives the general structure of the class of algorithms called probabilis- 
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tic hill-climbing algorithms, of which simulated annealing is a special case. This class 
was proposed by Romeo and Sang iovanini-Vincentelli, where a number of different al-
gorithms with the same structure were introduced [11]. 

sim anneal (±, T 0 ) 

T = T 0 ; 

= 
while (stopping criteria is not satisfied)(  

while (inner loop criteria is not satisfied) 
j 	generate (i); 
if (accept (c (j) , c (i) , T){ 

i = j; 

T = update(T); 

where To  is the initial temperature of the system, i 0  is the initial network configuration 
and the function co returns an assessment of the cost of a particular network. The ac-
ceptance of a new state, j, is determined by acceptQ, whose structure is 

accept (c(j),c(i),T) 

= 	c(j) - 	c(i); 
y = f(c, T); 
r = random (O,1); 
if 	( r < y 

return (TRUE) 
)else{ 
return (FALSE) 

/** random number between 0 and 1 

Kirkpatrick, Gelatt and Vecchi use the following formulation of the acceptance function 

f(c,T) = mm 	{1.O, exp((-Ac)/T)} 

In particular, the implementation off() uses a Boltzmann-like factor. Note that when Ac 
is negative or zero, that is, when the cost of the new state is less than or equal to the 
cost of the current state, then the new state is always accepted. On the other hand, 
when Ac is positive, the acceptance probabilities are distributed according to the 
Boltzmann factor. 

Kirkpatrick, Gelatt and Vecchi use the following update function, update() 

Tn  = T.a(T), 0 < a(T) < 1 

where T is the new value and I is the current value of the temperature parameter. 

The inner loop criterion is implemented by specifying the number of new states 
generated for each stage of the annealing process. 



The stopping criterion is implemented by recording the value of the cost function at the 
end of each stage of the annealing process. It is satisfied when the value of the cost 
function has remained unchanged at the end of three consecutive stages. 

3.1 	Simulated annealing and the scheduling and allocation problem 

Devedas and Newton [12,13] report the development of a simulated annealing based 
scheduler when applied to the problem of optimisation of microcode instruction 
placement in data path synthesis. Their approach is heavily based on the success of 
simulated annealing as an optimisation -technique for placement and routing 
packages, and consequently suffers from having to include a stage in the optimisation 
process where the problem is transformed into a suitable microinstruction format, 
ready for 'placement'. 

The approach reported here requires no intermediate algorithmic transformations and 
operates on data flow information generated by the input compiler to the synthesis 
system. 

Results 

The work reported in this paper is primarily concerned with the development of a 
scheduler operating on a user-specified resource budget. The software structure is 
such that incremental development will allow the development of an allocation tool 
which will operate in concert with the scheduler in an iterative manner. 

The scheduler has been tested on two significant examples, namely the 1-dimensional 
8-point Fast Discrete Cosine Transform and a 5th Order Digital Elliptic Wave Filter. 

Preliminary results indicate that the core of the scheduler, which resides in the 
generate function of the simulated annealing function has an incomplete move set. 
Because the annealing process is essentially random, nodes on the critical path of the 
data flow graph cannot be guaranteed earliest execution. A solution to this is to 
perform a critical path analysis, and optimise the resulting partitions separately. 
Current work is concerned with this development. 

Future Directions 

Results obtained thus far indicate that simulated annealing offers considerable 
potential as a controlling mechanism for any optimisation process, and it is intended 
to develop a library of scheduling, allocation and analysis tools corresponding to a 
wide range of system architectures. Selection of appropriate schedules and resource 
allocations will allow the designer to map the initial problem into a number of distinct 
target architectures very rapidly, and also experiment with non-intuitive combinations. 

Selection of appropriate combinations of optimisation and analysis depends on 'meta-
information', that is, information about architectures that cannot be generated directly 
from an algorithmic description of the problem. Consequently, it is intended to aid the 
designer in his/her selection with an expert system, able to advise on appropriate 
combinations. 
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We present the prototype version of a flexible 
simulated-annealing based optimisation tool, 
capable of performing transformations on a data-
flow graph within a directed silicon compilation 
environment, and mapping the transformed data-
flow graph into a constrained hardware space. 
The use of the tool is illustrated with reference to 
the scheduling and allocation of the 1-
dimensional 8-point Fast Discrete Cosine 
Transform. 

1. Introduction 
SAVAGE is an optimisation tool based upon the 

stochastic computational technique known as 
simulated annealing. SAVAGE is intended to form 
part of an interactive behavioural synthesis system, 
SAGE [1,2]. The aim of this work is to rapidly provide 

the design engineer with a number of differing 

architectural solutions for a given behavioural 

specification. These may range from a maximally 

parallel solution which has the shortest possible 

execution time, but is expensive in terms of 

hardware, to a serial architecture with a minimum 

hardware overhead, but which has a significant 
execution time in comparison. 

We embrace De Mans architectural script-based 
synthesis paradigm [3]. This script-based approach 

has 3 levels, namely the design framework/common 
data model, the synthesis toolbox, and the 
architectural script. The work described in this paper 

corresponds to the development of a suitable 
synthesis toolbox. 

This paper introduces the behavioural synthesis 
task. After a brief review of related work in this area, 
we present the software framework of the SAVAGE 

tool which illustrates the architectural script based 
method. Following a description of the scheduling 
and allocation models used, a design example, the 
1-dimensional 8-point Fast Discrete Cosine 

Transform, is used to illustrate the tools capabilities. 

We examine the shortcomings of the current 

SAVAGE system, and draw some conclusions. 

Finally, we describe ongoing work and future 
directions. 

2. The Behavioural Synthesis Task 

Parker [4] states "the synthesis task is to take a 
specification of the behaviour required of a system 
and a set of constraints and goals to be satisfied, and 

to find a structure that implements the behaviour 

while satisfying the goals and constraints". 

This task may be subdivided into a number of distinct 

steps: 

(I) Transforming a behavioural description 

(usually written in a high level programming 

language such as ADA or Pascal) into some 
suitable internal representation. The most 

common approach is to represent the 
algorithm as two graphs; a data-flow graph 

whose nodes represent individual operations, 
and whose arcs represent communication 
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pathways between operations, together with a 

control flow graph which embodies 

conditional and looping constructs within the 
specification. These graphs can be combined. 

(II) Scheduling aims to minimise the number of 

control steps need for the completion of the 

high level description. A control step broadly 
corresponds to a single state of a finite state 

machine. 

(Ill) The allocation subtask aims to minimise the 

amount of hardware needed. 'Hardware' is 

defined here as functional units, memory 

elements and communication pathways. 

(IV) The final major high level synthesis subtask is 

the derivation of a controller able to sequence 
operations on the datapath in a manner which 
corresponds to the behavioural specification. 

Once these synthesis steps have been completed, 
logic and layout synthesis tools convert the resulting 

netlist into actual hardware. 

The key steps in the synthesis task are the 

scheduling and allocation stages. It is important to 

note that the two subtasks are intimately related, for 

in order to determine a suitable degree of operational 

parallelism (scheduling), one has to know what 
functional units are available; conversely, in order to 
ensure judicious functional unit selection (and 

consequently utilisation), information from the 
schedule is required. Thus, there is a cyclic 

relationship. 

2.1 Related Work 
Paulin [5] classifies the following major scheduling/ 

allocation approaches: 

Independent scheduling/allocation schemes. 

Interdependent scheduling/allocation schemes. 

Scheduling/allocation by stepwise refinement. 

The simplest scheme is to schedule operations as 

soon as possible (ASAP). Many systems such as the 
Emerald/Facet System [6], the SARI tool, SAGE 2.0 
[7] and the CATREE system [8] use this technique. 

This ASAP technique may be refined by allowing 

conditional postponement of operations as in the 

MIMOLA [9] and FIamel [10] systems. 

Another major type of independent scheduler/ 

allocator uses list scheduling, where some pre-
ordering of operations into lists via control 

information extracted from the data-flow and 

precedence graphs occurs. Scheduling then takes 

place into control steps. The EMUCS [11], SLICER 

[12] and the IMEC Cathedral-11 [13] systems use this 

type of scheduler. 

The MAHA [14] system is an example of the second 

technique, where scheduling and allocation are 

related. In this system, a critical path analysis is 
performed, and functional units are allocated in a 

first-come, first-served manner. 

Scheduling and allocation by stepwise refinement is 

typified by the BUD-DAA system [15], by the HAL 

system [5,16,17,18] and the IBM Yorktown Silicon 

Compiler (YSC) [19]. In these systems a preliminary 

schedule is performed via a standard metric (for 

example by scheduling for the minimum number of 

control steps, as in the YSC). Functional units are 

then allocated and the schedule adjusted 

accordingly. This cycle is repeated until a set of cost 
criteria are realised. The HAL system uses a force-

directed algorithm which enables specific physical 
information to be fed back to the scheduler allowing 

optimum scheduling and allocation to take place. 

This technique takes into account operators other 

than functional ones, such as memory and 
communication operators when determining the 

control step assignments. It also uses a built-in cost 

mechanism to allow trade-offs in functional unit, 

register and interconnect to be incorporated in the 

synthesis task to allow optimum operator scheduling. 

The simulated annealing algorithm has been applied 

before in this field [20,21,22], but the algorithm as 

reported by Devedas and Newton required some 
explicit statement of serialism or parallelism to be 

included in the intermediate format. The approach 



reported here differs in that no explicit statement of 
operation execution behaviour is required. 

Further, the design environment in which SAVAGE 

operates requires rapid evaluation of architectural 

decisions. To achieve this, we have decided not to 

use SAVAGE to completely optimise and synthesise 

the datapath 1  but to apply a series of cost estimation 

functions to predict the hardware overhead incurred 

as a consequence of the scheduling and allocation 

functions. This enables different memory and 

communication strategies to be rapidly prototyped, 

simply by altering the cost estimation function. 

There exists a discrepancy in the dimensions of the 
search space which the annealing function has to 
traverse. The time dimension is significant for 

complex examples, and individual nodes are allowed 

a significant degree of freedom in possible moves 

within that dimension (earliest possible schedule - 

latest possible schedule), whereas the hardware 

dimension is more restricted in terms of the moves 

which a single (data-flow graph) operation can make 

over functional units available from the library. 

If the synthesis flow is viewed as a single stream 

where memory and communications are strongly 
dependant on the schedule and allocation selected 
[1], then the need to search the hardware resource 

space using simulated annealing diminishes. 

Consequently, we have selected to traverse the 

hardware resource space using deterministic 

methods. 

3. The SAVAGE Framework 
It is our intention to create a set of flexible 
optimisation tools. So far, we have developed a 

simulated annealing based core, and complemented 
this with a range of pre and post processing 

modules. (See Section 4.3) 

We are currently developing a simple library based 
system of scheduling, allocate and cost functions, 

which the design engineer can select according to 

the problem. Such a library based approach will 

allow the rapid exploration of the design space. 

The software structure is shown in figure 1. 

4. Optimisation Procedures 

Kirkpatrick, Gelatt and Vecchi [23] were the first to 

propose and demonstrate - the application of 

simulation techniques from statistical physics to 

problems of combinatorial optimisation, specifically 

to the problems of wire routing and component 

placement in VLSI design. 

procedure sim anneal (k 0 , s 0 , inner- 

loop) 
begin 
k = k 0 ; 

S = s 0 ; 

repeat 
for i = 1 to inner loop loop 
temp = generate(s); 
if (accept(c(ternp),c(s), k) then 

S := temp; 
end if; 

end loop; 
update (k); 

until stopping criterion; 
end sin—anneal; 

where Ic0  is a control parameter, 5 is the initial 

system state and the function co returns an 
assessment of the relative value of the current state 
based on suitable cost criteria. The acceptance of a 

new state is determined by acceptO 

function accept (c(temp),c(s),k) 
begin 

= c(temp) - c(s); 
if ( random(0,1) < f(c,k)) then 
return (TRUE) 

else 
return (FALSE) 

end if; 
end accept; 

The pseudo code above contains a number of 

system transformation functions worthy of note: 

The state transformation function, generateO. 

The acceptance function, f. 

The control parameter update function, 
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Figure 1. SAVAGE Software Structure 

updateO. 	 k, 1 	13k. , 	0<13<1 
The inner loop criterion. 

The stopping criterion. 

The state transformation function, generate(), is 

problem specific. The simpler systems use a 
pairwise interchange technique to generate the new 

configuration. This function, together with the cost 
function, co, which tends to be based on the total 
interconnect length for placement packages based 
on simulated annealing, determines the final 
(optimal) system state. 

A form of the acceptance function (Kirkpatrick, Gelatt 

and Vecchi) is: 

f (Ac, k) = mm (1.0, exp( (-Ac) 1k) 

With negative or zero Ac, the next state generated is 

always accepted. For positive Ac, the Boltzmann-

like factor determines the probability of a generated 

state which has a higher cost than the current state 

being accepted as a valid state transformation. 

The function update() provides a method for 
updating the control parameter, k. The most common 
form of the update function is 

The inner loop criterion is specified as the number of 
states generated per control parameter value. It is 

normally specified as some integer function of the 
initial system configuration. 

The stopping criterion is defined as Ac = 0 over 3 

annealing iterations. 

In this paper, we are primarily concerned with the 
procedures which constitute the generate function. 

4.1 A Scheduling Model 

We select a node from the data-flow graph (or 
partition thereof) at random. Because of the 

observance of data-flow constraints, each node has 
an earliest possible schedule time and a latest 

possible schedule time. The actual execution time of 

the individual node will lie between these bounds. 

The scheduling subtask simply corresponds to a 
random perturbation of the selected nodes execution 
time to a point within its valid schedule range. This 
process is shown in figure 2. 

4.2 Allocation Strategy 
After scheduling, a functional unit is selected based 
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Figure 2. Scheduling Model 

upon a simple load balancing criterion. This is 
defined as the first-choice functional unit. If the time 

slot is available on the first choice functional unit 
which corresponds to the new scheduled time of the 

selected operation, then a simple mapping between 

data flow graph and functional unit takes place. 

If the first choice functional unit is unavailable at the 

scheduled time, then a search of the remaining 

functional units of appropriate operation class is 

initiated, and another unit selected. The mapping 

procedure is then reinvoked on the functional unit. 

Should no time slots be available on any appropriate 
functional unit, then the operation is deferred to 
execute within its valid schedule range on the first 

choice functional unit. Should this procedure fail, a 
second choice functional unit is selected, and the 

deferment procedure repeated. 

If all functional units are busy during the selected 

operations valid schedule range, then the user is 

flagged, and is prompted to either extend the valid 
schedule range of the particular operation (which as 

a side-effect, alters the schedule for all subsequent 
nodes in the data-flow graph), or to consider 

allocating an extra functional unit to the resource set. 

This action results in a re-allocation of operations 

over the new resource set. 

4.3 Commentary 
The scheduling and allocation procedures described 

above, coupled with an appropriate costing function 

which directs the optimisation to proceed towards an 
as-soon-as-possible (ASAP) solution, can produce 

optimised solutions for problems where a fixed 

hardware budget is specified, or where a speed 
constraint is desired. 

An additional refinement is to perform some 

partitioning of the input data-flow graph prior to 

optimisation. The simplest technique to use here is a 

critical path analysis. This ensures that high-priority 

nodes (i.e. the critical path) are scheduled and 

allocated first. This is a good example of the flexibility 
of the SAVAGE system. Pre and post processing 
modules can be added, according to the desired 
architectural solution. 

Further functionality is built into SAVAGE, allowing 

the user to develop a pipelined execution plan, once 

a schedule has been developed. The overall effect of 

this is to decrease the pipeline reuse time (input-to-

input latency) with only a slight increase in cost to the 

pipeline propagation delay (input-to-output latency). 

This effect is easily achieved by selecting a suitable 
reuse time value, and invalidating the schedule of all 
nodes occurring after that time. The scheduling and 

allocation process is then reapplied, and a pipelined 
execution plan developed. 

5. A Design Example 
We present a typical design example used to test 

SAVAGE, namely the 1-dimensional 8 point Fast 
Discrete Cosine Transform [24]. 

The data flow graph generated in this example has 

42 nodes, and 92 data-flow arcs. This represents a 

significant test of the optimisation system. The data-

flow graph generated is shown in figure 3. 

The SAVAGE tools was exercised on this example 

with a number of speed and hardware constraints. 
The results are presented in table 1. It is important to 

note that only the functional units and execution time 
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Figure 3. 1-Dimensional 8 Point Fast Discrete Cosine Transform 

Cycles + 	x 	 - A  FU Util Pipeline Reuse Prop Delay 

20 1 	 1 	 1 70% 20 20 

11 2 	2 	2 63% 11 11 

8 1  2 	2 	2 87% 8 15 

8 3 	3 	3 58% 8 8 

61 3 	3 	3 77% 6 9 

1 .Pipelined execution plan 

Table 1. Results for 1-Dimensional 8 Point Fast Discrete Cosine Transform 
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are optimised. In this example, there is no direct 
optimisation of the registers or communication 

pathways used. 

Table 1 shows how SAVAGE can present the 

designer with a number of architectural strategies 

ranging from a fully serial architecture to an 

architecture which has a pipeline reuse time 

corresponding to the As-Soon-As-Possible (ASAP) 

schedule of the FDCT block. 

A good metric for the selection of an appropriate 

architecture is a measure of the average functional 

unit utilisation. As the table shows, a pipelined 
execution plan using 2 adders, 2 subtractors and 2 

multipliers offers a considerable increase in 

functional unit utilisation over the other architectural 

strategies presented. 

Limitations 

In order to increase the versatility of the SAVAGE 

tool, more complex costing functions are required, 

which in turn require more detailed move sets for the 

scheduling and allocation procedures. In the 
prototype system, an ASAP regime suffices in order 
to prove the validity of the optimisation technique. 

The second generation SAVAGE tool will have an 

enhanced set of cost functions covering scheduling 

strategies (ASAP, ALAP, AFAP, FDLS, etc.), more 

complex allocation strategies, and hardware costing 

functions designed to provide an approximate value 

of the hardware overhead in terms of registers and 

multiplexer inputs as a consequence of both the 

memory and communications architecture selected 
the scheduling and allocation techniques used. 

Conclusions 
We have presented a prototype optimisation system 
based around the stochiastic optimisation technique 

known as simulated annealing. 

The tool has been tested on a number of significant 

examples, and its use has been illustrated here by 

searching the solution space for the 1-dimensional 8 

point Fast Discrete Cosine Transform. 

A number of limitations are immediately apparent. 

Firstly, the optimisation criteria used do not 

encompass memory or communication resource. 

Work is currently underway to correct this. Further, 

the strategies for optimisation are limited. Presently, 

only an As-Soon-As-Possible (ASAP) scheduling 
strategy is available. - - 

Because of the modular nature of the SAVAGE 

system, however, future versions of the optimisation 

system will include a wide range of scheduling and 
allocation options. This work will complete the 

development of a suitable synthesis toolbox capable 

of supporting the architectural script based method 

advocated by De Man. 

It is intended that SAVAGE 2 will be a prototype 

architectural script based system, where elements 

from the toolbox will be selected by heuristics 

determined by a number of high-level system goals, 

combined with the current architecture script.' 
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Exploring Design Space Using SAVAGE: 

A Simulated Annealing based VLSI Architecture GEnerator 
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We present the prototype version of a synthesis 

system based around an architectural script 

design method, and controlled by the 

computational technique known as simulated 

annealing. The system is exer'ised using a 5th 

order wave digital filter design, one of the 

benchmarks from the 1988 Workshop on High 

Level Synthesis 

1.0 Introduction 

As the demand for fast turnaround ASIC designs in 

industry increases, the complexity of the design 

process increases correspondingly. In response to 

these market demands, increasingly sophisticated 

Computer-Aided Design tools have become available 

which abstract much of the design process from the 

engineer. 

Latest in the CAD tool field is the behavioural synthesis 

system, which takes a high-level algorithmic 

description of the desired circuit function, and follows a 

specific mapping process to produce a functional 

circuit. The constraints placed on the mapping process 

can often result in a simple template matching problem, 

where a specific algorithm is fitted onto a fairly 

predefined structure. 

We present the prototype version of a CAD tool 

capable of allowing the designer to effectively explore 

the design space, and rapidly prototype a selection of 

architectural solutions to a given algorithmic 

specification. 

SAVAGE [1,2,3] (a Simulated Annealing based VLSI 

Architecture GEnerator) is a library based synthesis 

system based around the stochastic computational 

technique known as simulated annealing [4]. It forms 

part of the Silicon Architectures Research Initiative 

(SARI) hosted at the University Of Edinburgh.[5.6,7] 

The SAVAGE tool is based upon the Architectural 

Script design method as advocated by De Man [8] 

where the synthesis framework is viewed as a 3 level 

entity, with common data model elements at the core, 

operated on at a low level by a synthesis toolbox of 

base procedures, which are in turn controlled by an 

architectural script specifying their modes of operation. 

Simulated Annealing has been used previously in the 

behavioural synthesis field, notably by Devedas and 

Newton [9]. The approach reported here has a number 

of significant differences. Firstly, SAVAGE needs no 

explicit statement of serialism or parallelism to execute, 

but more importantly SAVAGE offers the designer a 

greater degree of freedom by allowing interaction, not 

only by specifying the overall system goals, but by 

allowing the designer to specify the design techniques 

by which to achieve those goals. 

The body of the paper is concerned with the 

development of an appropriate synthesis framework 

and base procedures capable of manipulating the data 

model. We introduce the SAVAGE tool structure in 

Section 2.0, and go on to develop models of 

scheduling, allocation, memory and communications 

synthesis procedures. We then present test results 

generated by the initial SAVAGE tool. Finally, some 

conclusions are offered, and directions for future work 

indicated. 

2.0 Tool Structure 

SAVAGE is based upon the same linear design flow as 

its parent project, SARI, where current synthesis 

decisions can directly affect "downstream" synthesis 

actions. This design flow is shown in Figure 1. The 

design tools reported here deal with the scheduling/ 
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allocation, memory and communication synthesis 

procedures. Before moving on to discuss the various 

design stages, we must define a method for assessing 

the quality of the solutions SAVAGE produces. 

Behavioural Description 

Specification Compilation 

I 	Scheduling and Allocation 

I 	Memory Synthesis 	 I 

I 	Communications Synthesis 

Control Synthesis 

I 	 Netlist Dump 	 I 

To Layout Tools 

Figure 1. SARI Design Row 

2.1 Datapath Cost Assessment 

Within SAVAGE, the cost" of a particular datapath 

configuration is evaluated after each state generation. 

That is, a complete datapath is synthesised, and a 

weighted sum of the cost of each component, 

operational, memory and communication, is computed 

in terms of area, power consumption and total 

execution time. 

The decision-making capability of the simulated 

annealing algorithm is controlled by the Metropolis 

criterion [10], whereby datapath states generated with 

a lesser cost than the previous datapath state are 

always accepted, whereas states generated with a 

greater cost are accepted with a probability function 

described by 

(.) 

Accept = inin1.O,e T 

 _', J 
where Ac is the difference in cost between the two 

states, and T is a control parameter, which simulates 

the temperature of the melt in the physical annealing 

process. This function allows hill climbing moves to be 

made, and alleviates the problem of local minima, 

which is a characteristic of greedy heuristic search 

strategies. 

2.2 Scheduling And Allocation Strategies 

The aim of the scheduling function is to set each node 

within the input data flow graph to execute at such a 

time so that the data flow constraints are not violated. 

The allocation function ensures that each data flow 

graph operation executes on an appropriate hardware 

unit. These two functions are strongly interrelated, for 

in order to produce an efficient schedule, some 

knowledge about the functional unit allocation is 

required, whilst allocation cannot take place without an 

indication of parallelism within the data flow graph, 

which, in turn, comes from the schedule. Thus there is 

a circular relationship. 

The scheduling function within the SAVAGE core is 

implemented by selecting a node at random from the 

data flow graph, and perturbing its execution time, 

subject to the data flow constraints. The perturbment 

can be biased in such a way so as to produce a number 

of different scheduling strategies (e.g. ASAP, ALAP, 

FDLS, etc.). This pseudo-random perturbment forms 

the basis of the hill climbing move set described above. 

The allocation procedure operates on a simple load 

balancing criterion, whereby parallelism is balanced on 

a clock-cycle to clock-cycle basis. 

These initial scheduling and allocation functions were 

chosen to demonstrate the SAVAGE concept, and also 

because of their relative ease of implementation. 

2.3 Synthesis Procedures 

The aims of the memory and communications 

synthesis procedures of a behavioural synthesis 

system may be stated as the provision of storage 

resource for data transfers which have a duration 

greater than the unit clock cycle, and the provision of 

data transfer resource from the output port of one 

function resource (operational/memory/external 

interface) to the input port(s) of other functional 

resources, respectively. 

These definitions are made without any reference to 

the actual form of the components synthesised, or their 

communication topology; rather, they are a functional 

definition of memory and communication synthesis 

procedures in general. This is in keeping with the 
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architectural script synthesis paradigm where various 

architectural techniques can be used to provide these 

synthesis procedures. 

The prototype version of SAVAGE reported here uses 

a simple left-edge memory allocation strategy, and 

performs a best-fit' grouping of signals to the resulting 

register locations. These registers are then grouped 

into common files according to the match between 

source and destination ports. 

A clique partitioning algorithm is used to generate the 

minimum number of transfer pathways between 

connected functional resources. This connectivity 

information is generated in the preceding memory 

allocation phase. Once these transfer pathways have 

been defined, we impose a two-level multiplexing 

regime which ensures a minimum transfer pathway 

delay. 

3.0 Test Data and Results 

SAVAGE has been tested on a variety of problems 

drawn from the signal processing domain. In this paper, 

we present results obtained from trials carried out on 

one of the benchmarks from the 1988 Workshop on 

High-Level Synthesis, a 5th Order Elliptic Wave Digital 

1-1gure 2. wave Digital Filter Flow Graph 

Filter design (Figure 2), as popularised by Paulin (11]. 

This design represents a significant test for current 

behavioural synthesis systems, and contains 34 

operation nodes with 76 communication arcs. 

The SAVAGE tool was exercised on the design with 3 

predefined operational resource allocations, consisting 

of 2 ADD units, and either a single MULT unit, a 

MULTP (pipelined) unit, or 2 MULTP units. These 

allocations were selected simply to facilitate an easy 

comparison between synthesis systems. These 

results, along with published results for other programs 

are shown in Table 1. 

3.1 Discussion 

Table 1 indicates that SAVAGE is capable of 

synthesising highly optimised solutions. This may be 

directly attributed to the global cost assessment 

mechanism associated with the simulated annealing 

algorithm. These results, however, indicate the quality 

of solution for a particular architectural style, namely a 

single level of bussing, and a 2 level multiplexer 

regime. The completed version of SAVAGE will allow 

the designer to explore a wider range of architectural 

options very rapidly. 

System C_steps Mutt Registers Mux. Inputs Reg. tiles 

Hal (Ill 19 IP 12 26 - 

flat 21 1 12 30 

Ital 19 2 12 28 - 

Esc [12J 19 IP 15 25 

FAC 21 1 16 23 S 

Esc 19 21' IS 26 S 

Splicer[ 131 21 1 12 35 - 

SAW (141 19 21' 12 34 

Sl'Alh)ttSl 19 II' 19 33 6 

Sl'AID 21 I 19 31 5 

SAVAGE 19 111  12 19(+7) 1  2 

SAVAGE 21 1 12 2I( 	ili) 4 

SAVAGE. lii 	1 21' 14 IS (+5)1 3 

1. Figures in brackets indicate additional multiplexers required for 

register tile decoding 

Table 1. Results for Wave Digital Filter 

4.0 Conclusions and Future Work 

We have presented a prototype version of a powerful 

synthesis system which utilises the architectural script 

design method, and uses the simulated annealing 

process as its control mechanism. 

Tests carried out on established benchmarks indicate 

that SAVAGE is capable of producing high quality 

solutions to behavioural synthesis problems. The 
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flexibility of the SAVAGE system allows a designer to 

rapidly evaluató the effects of high-level architectural 

decisions on the quality of the final solution. 

The current version of SAVAGE is limited by the 

number of architecture synthesis modules and 

scheduling/allocation move sets available. The current 

SAVAGE was intended as a concept demonstrator. A 

more serious limitation is the inability to operate on 

hierarchical designs. This problem may be partially 

solved by designating null or busy periods on all 

resources to simulate some hierarchical resource 
sharing. - 

Future generations of the toot set will have a range of 

synthesis modules available capable of synthesising a 

number of recognised memory and communication 

architectures, which will be coupled with an expanded 

set of moves available to the scheduling and allocation 

tool. 

Once this synthesis toolbox is in place, an architectural 

script interface will be implemented which will allow the 

designer to specify a set of system goals to be 

satisfied, along with an initial set of scheduling/ 

allocation and synthesis strategies. The final 

component of the script will be a set of architectural 

pragmas, which will allow the designer to apply rules-

of-thumb' gained through design experience to the 

synthesis procedure. These measures will allow the 

designer to have a direct influence on the final 

architectural form, but will abstract the designer from 

the implementation detail. 

Acknowledgements 
This work was carried out as part of the Silicon 

Architectures Research Initiative. The use of facilities 

and resources is gratefully acknowledged. 

The work reported here is supported by the Science 

and Engineering Research Council and the University 

Of Edinburgh. 

References 
[1) 	Neil, J.P. and Denyer, P.8., "Synthesis By 

Simulated Annealing", /EE Colloquium Digest 
19891125, November 1989, pp.9/1 -9/4. 

[2] 	Neil, J.P. and Denyer, P.8., "SAVAGE : A 

Simulated-Annealing based VLSI Architecture 

Generator", IEEE Workshop on Genetic 

Algorithms, Simulated Annealing and Neural 

• Networks applied to Signal and Image 
Processing, May 1990. 

Finlay, I.W., Neil, J.P. and Denyer, P.B., '-'Filter 

Synthesis using Behavioural Design Tools" to 

be published in Proc. 16th European Solid State 

Circuits Conference, Grenoble, September 
1990. 

Kirkpatrick, S., Gelatt, C. and Vecchi, M., 

"Optimisation by Simulated Annealing," 

Science, Vol. 220, No. 4598, May 1983,   pp. 671-
680. 

Grant, P.M., "The DTI-Industry Sponsored 

Silicon Architectures Research Initiative", lEE 
Electronics & Communications Engineering 
Journal, Vol. 2 No. 3, June 1990. 

Mallon, D. and Denyer, P.8., "Behavioural 

Synthesis : An Interactive Approach," lEE 
Colloquium Digest 1989185, May 1989, pp.2/1 - 
2/8. 

Denyer, P.B., "SAGE Design Methodology," 
SARI Internal Technical Report SARI-035-D, 

March 1989. 

De Man, H., "Tutorial  On High-Level Synthesis" 

EDAC '90, March 1990. 

Devedas, S. and Newton, A.R., "Algorithms for 

Hardware Allocation in Data Path Synthesis," 

IEEE Trans. Computer-Aided Design, Vol. CAD-
8, No. 7, July 1989, pp.  768-781. 

Metropolis, N., Rosenbluth, A., Rosenbluth, 

M.,Teller, A. and Teller,E., "Equation of State 

Calculations by Fast Computing Machines", 

Journal Chem. Phys.,21/6(1953):1087. 
Paulin, P.G. and Knight, J.P., 'Scheduling and 

Binding Algorithms for High-Level Synthesis," in 
Proc. 26th Design Automat. Con!., June 1989. 
Stok, L., "Interconnect Optimisation During Data 
Path Allocation," in Proc. EDAC '90, pp.  141-
146, March: 1990. 

	

[13) 	Pangrle, B.M., "Splicer: A Heuristic Approach to 

Connectivity Binding," in Proc. 25th Design 
Automat. Con!., July 1988. 

[14] Thomas, D.E. et al., "The System Architect's 

Workbench," in Proc. 25th Design Automat. 
Con!., July -1988. 

	

[151 	Haroun, B.S. and Elmasry, M.l., "Architectural 

Synthesis for DSP Silicon Compilers,"IEEE 
Trans. Computer-Aided Design, Vol. CAD-B, 
No. 4, April 1989. 

107 



Filter Synthesis using 
Behavioural Design Tools 

I.W. Finlay, J.R"Neil and RB Denyer 

Silicon Architectures Research Initiative 
University Of Edinburgh 

Department of Electrical Engineering 
The Kings Buildings 
West Mains Road 

Edinburgh EH9 3JL 

We present a 5th-Order Wave Digital Filter datapath designed using 
behavioural synthesis toots developed as part of the SARI, project at the 
University Of Edinburgh. We use a simulated annealing based optimisation 
system to develop the execution plan for the filter, with a datapath synthesised 
using clique partitioning and a novel heuristically driven module selection 
mechanism. These tools may be characterised by their ability to rapidly search 
the solution space for a given behavioural specification. 

1.0 Introduction 
As the demand for Application Specific Integrated Circuits continues to rise in the computer manufacturing 

industry and elsewhere, increasingly sophisticated design tools are required to enable non-expert silicon designers 
to realise complete systems on a single chip. Newest in this design automation field is the behavioural synthesis 
tool which takes an algorithmic description of the required system behaviour and subsequently synthesises a 
logically correct datapath/controller system which corresponds to the required behaviour. 

The work described in this paper is part of the Silicon Architectures Research Initiative [1,2] at the University of 
Edinburgh. An interactive behavioural synthesis system is being developed (SAGE [3]) which allows the designer 
to make high-level system decisions which will affect the ultimate silicon realisation, but which abstracts the 
synthesis procedures from the designer. 

We report on the development of part of the synthesis system (SAVAGE), and demonstrate its use by 
synthesising a major design, namely a 5th-Order Wave Digital Filter. 

We introduce the behavioural synthesis problem, and then move on to discuss the relevant subtasks. We present 
the experimental results gathered thus far, and finally offer some conclusions on the efficiency of the toolset. 

2.0 The Behavioural Synthesis Task 
Parker [4) states "the synthesis (ask is to take a specification of the behaviour required of a system and a set of 

constraints and goals to be satisfied, and to find a structure that implements the behaviour while satisfying the goals 

and constraints". 

This task may be subdivided into a number of distinct steps: 

(I) Transforming a behavioural description (usually written in a high level programming language such as ADA 
or Pascal) into some suitable internal representation. The most common approach is to represent the 
algorithm as two graphs; a data-flow graph whose nodes represent individual operations, and whose arcs 

205 



206 

represent communication pathways between operations, together with a control flow graph which embodies 

conditional and looping constructs within the specification. These graphs can be combined. 
(II) Scheduling aims to minimise the number of control steps need for the completion of the high level 

description. A control step broadly corresponds to a single state of a finite state machine. 
(Ill) The allocation subtask aims to minimise the amount of hardware needed. 'Hardware' is defined here as 

functional units, memory elements and communication pathways. 
(IV) The final major high level synthesis subtask is the derivation of a controller able to sequence operations on 

the datapath in a manner which corresponds to the behavioural specification. 

Once these synthesis steps have been completed, logic and layout synthesis tools convert the resulting netlist 

into actual hardware. 
The key steps in the synthesis task are the scheduling and allocation stages. It is important to note that the two 

subtasks are intimately related, for in order to determine a suitable degree of operational parallelism (scheduling), 

one has to know what functional units are available; conversely, in order to ensure judicious functional unit selection 

(and consequently utilisation), information from the schedule is required. Thus, there is a cyclic relationship. 

The simulated annealing algorithm has been applied before in this field [5,6,7], but the algorithm as reported by 

Devedas and Newton required some explicit statement of serialism or parallelism to be included in the intermediate 

format. The approach reported here differs in that no explicit statement of operation execution behaviour is 

required. 
Further, the design environment in which SAVAGE operates requires rapid evaluation of architectural decisions. 

To achieve this, we have decided not to use SAVAGE to completely optimise and synthesise the datapath, but to 

apply a series of cost estimation functions to predict the hardware overhead incurred as a consequence of the 

scheduling and allocation functions. This enables different memory and communication strategies to be rapidly 

prototyped, simply by altering the cost estimation function. 

2.1 A Scheduling Model 

From the design representation described above, a 

scheduling model based upon the stochastic 

computational technique known as simulated 

annealing[8] can be developed. In this model, a node from 

the data flow graph is selected at random and its 

execution time randomly perturbed, subject to data-flow 

graph constraints. This constraint is defined as the valid 

schedule range of the node, and is shown in figure 1. 

The simulated annealing model allows scheduling 

moves which represent an overall increase in system cost 

to be accepted, dependant on a control parameter, which, 

in the simulated annealing system corresponds to the 

temperature of the physical annealing system. 

•0.:: :i:r' 	
earliest valid schedule 

AL
- -- 

selected 	
valid schedule 

q 

i + 
range 

test valid schedule 
- - 

Figure 1. Scheduling Model 

2.2 Allocation Strategy 

After scheduling, a functional unit is selected based upon a simple load balancing criterion. This is defined as the 

first-choice functional unit. If the time slot is available on the first choice functional unit which corresponds to the 

new scheduled time of the selected operation, then a simple mapping between data flow graph and functional unit 

takes place. 
If the first choice functional unit is unavailable at the scheduled time, then a search of the remaining functional 

units of appropriate operation class is initiated, and another unit selected. The mapping procedure is then reinvoked 

on the functional unit. 
If all functional units are busy during the selected operations valid schedule range, then the user is flagged, and 

is prompted to either extend the valid schedule range of the particular operation (which as a side-effect, alters the 

schedule for all subsequent nodes in the data-flow graph), or to consider allocating an extra functional unit to the 

resource set. This action results in a re-allocation of operations over the new resource set. 
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2.3 Datapath Allocation 

Datapath allocation is composed of two important synthesis tasks: 
Binding signals to memory locations 
Binding signal transfers to interconnections. 

As McFarland stated 191, local interconnection comprising of multiplexing and bus inputs constitutes a substantial 
part of the design cost in terms of both speed and area. In attempting to minimise data path allocation costs most 
attention is paid to minimising memory requirements. Systems such as MAHA[10], SPLICER [11) and FACET [12] 
adopt this approach and do not consider the effects on interconnection costs when minimising the number of 
memory locations. Memory requirements are reduced by forcing signals which have disjoint lifetimes to share the 
same memory location. The Left Edge' algorithm (10) guarantees an optimal solution to this problem. Other 
approaches such as edge colouring and clique partitioning techniques are also used. HAL [13] incorporates 
interconnection cost into the memory minimisation by weighting the signal compatibility graph. The technique uses 
clique partitioning in a stepwise manner where signals with favourable weightings are partitioned and merged first. 
This has the added advantage of reducing the complexity of the graphs to be partitioned. 

The approach taken in this paper differs from existing techniques in that it considers memory and 
interconnections costs jointly,and minimises them by merging wires rather than registers. 

2.4 Architectural style 

The interconnection style is restricted to two levels of multiplexing and a single level of bussing for each 
processor-memory-processor transfer path and so it is not possible to synthesise memory-memory 
communications. This style has two advantages. Firstly, it ensures minimum time delay through interconnect paths. 
Splicer and SAW [1 4]permit up to four levels of multiplexing and, hence, have twice the worst case delay. Secondly, 
as registers and register files are each connected to a single bus the interconnection topology is linear which has 
benefits in layout area.(15] 

2.5 Synthesis Algorithm 

The aim of data path allocation is to provide interconnection paths and storage locations for signal transfers 
between processors. Information from the scheduling : and allocation phase is used to generate the necessary 
wiring between processors. Initially, each wire is associated with a single register. Signal transfers are assigned to 
wires with the appropriate source and destination. Signals can only share the same wire it their lifetimes do not 
overlap. If the memory location is not free for the lifetime of the signal then a new wire is created. The algorithm 
minimises memory locations, multiplexers and interconnection by merging wires. Any two wires can be merged 
provided that no signals carried by them need to be transferred at the same time. Clique partitioning is used to find 
all maximal merges of wires. Merges are then made on the basis of memory and..multiplexer cost estimates. The 
memory cost estimator is based on the reduction in required memory locations resulting from the merge and how 
well the locations are used. The multiplexer cost estimator is based on the number of shared sources and 

destinations in the merge, offset by the resultant 
increase in the number of multiplexer and bus 

inputs. 

3.0 Results 
The optimisation tools were tested on the 

benchmark example for the 1988 Workshop on 
High-Level Synthesis, a 5th Order Elliptical Wave 
Digital Filter. The schedule and allocation tool was 
exercised with a variation in minimum c-step 
requirement, together with appropriate weightings 
for register and multiplexer overheads in the cost 
assessment function. 

The results from the SAVAGE synthesis 
procedures are shown in Table 1. The synthesis 
procedures took a default allocation of 2 adders,with 
a variable number of multipliers. ('P' indicates a 
pipelined multiplier).The number of multiplexer 
inputs generated by SAVAGE is calculated in the 
same manner as the other systems, however, there 

Systcm C_steps Mull Register Mux. Input. Reg. files 

Hal 19 IP 12 26 

Hal 21 I 12 30 

Hal 19 2 12 28 

Esc 1161 19 LP 15 25 

Esc 211 16 23 8 

Esc 19 2P IS 26 8 

Splicer 21 1 12 35 

SAW 19 2P 12 34 

SPAID 191P 19 33 6 

SPAID 21 1 19 31 5 

SAVAGE 19 IP 12 19 2 

SAVAGE 21 1 12 21 4 

SAVAGE IS 21' 14 IS 3 

Table 1. Synthesis results 
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is extra decoding required in using register files which is not necessary in HAL, Splicer or SAW. 
It may be seen that SAVAGE performs favourably in comparison with the other quoted systems. 

4.0 Conclusions 
A suite of behavioural synthesis tools has been developed which is capable of rapidly exploring the solution 

space of a given problem. The tools have been used to generate a number of solutions for the benchmark example 
from the 1988 Workshop on High-Level Synthesis. These solutions compare favourably with-those solutions 
generated by other behavioural synthesis systems. 

The modular construction of SAVAGE allows a number of different scheduling and allocation strategies to be 
tested before committing the selected solution for datapath synthesis and optimisation. The simulated annealing 

algorithm may be viewed as a general purpose heuristic capable of generating near globally optimal solutions to 
large problems. When this optimisation technique is coupled with powerful costing, scheduling and allocation 
functions, the search space can be efficiently traversed, and optimal solutions generated. 

A novel approach to datapath allocation has been presented. Minimising memory and multiplexing requirements 
simultaneously by merging interconnections has been shown to generate datapath architectures with lower 
communications overheads than existing systems. 
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Chapter 4 

Simulated Annealing Based Synthesis of Fast 
Discrete Cosine Transform Blocks. 

J.P. Neil and P.B. Denyer 

4.1 Introduction 

This Chapter describes CAD techniques capable of synthesising Fast 
Discrete .Cosine Transform (FDCT) Blocks from behavioural, or algo-
rithmic, specifications. We introduce SAVAGE (a Simulated Annealing 
based VLSI Architecture GEnerator), a software tool developed under 
the auspices of the Silicon Architectures Research Initiative (SARI(Grant, 
1990)) hosted at the University of Edinburgh. 

SAVAGE is capable of taking a data-flow description of an input 
algorithm, and applying a number of synthesis steps, or transformations, 
to produce a hardware netlist of a datapath. The netlist description is then 
passed to logic synthesis and layout tools to complete the route to silicon. 
These application specific synthesis steps are controlled by the computa-
tional technique known as simulated annealing. 

This Chapter reviews the design process, from the initial high-level 
description of the FDCT, through the various synthesis transformations, 
and presents a set of test results illustrating the flexibility of the SAVAGE 
software. Finally, some extensions to the prototype SAVAGE system are 
described. 

4.2 Problem Domain 

The large amount of information, contained within a high definition 
digital image poses significant problems, both in terms of memory 
requirement and transmission latency in applications where real time, or 
near real time, image transmission is required. 
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As a result, many data compression techniques have been proposed 
(Chen and Smith, 1977, Wintz, 1972 and Soame, 1982). The Discrete 
Cosine Transform (DCT) operates on a series of blocks decomposed from 
the original image. These blocks are ranked according to their a.c. energy 
(a.c. energy quantifies the amount of information within a particular 
block). A bit assignment according to the average point variance within 
the block then takes place. It is here that the data compression takes place; 
more bits are assigned to visually "important" regions (i.e. regions of the 
image containing most information) than to those of lesser interest. 

The Discrete Cosine Transform, F(k) of a discrete function f(j),j = 0, 1, 
N-i where N is the set of data points is: 

N—i 
r(2f+ 1)k3ti 

F(k) 
2c(k) >L/V) cos[ 2N ] 

j=0 

where k =0, 1, ... , N-i and c(k) = - for k = 0 and c(k) = 1 for k = 1, 

2,...,N-1 

Previously, the DCT has been implemented using a double size Fast 
Fourier Transform (FF1) employing complex arithmetic and operating 
on 2N coefficients. The Fast Discrete Cosine Transform (FDCT) (Chen 
et a!, 1977) alleviates the implementation problems associated with the 
DCT by using only real arithmetic and operating on N data points. This 
results in a factor of six reduction in the algorithm complexity. 

The FDCT is most readily expressed in terms of an extensible flow 
graph. The 1-dimensional 8-point Fast Discrete Cosine Transform is 
shown in Figure 1. 

4.3 Synthesis and Simulated Annealing 

This section describes the behavioural synthesis procedure. The simu-
lated annealing algorithm is introduced as a general purpose optimisation 
technique which has been applied most notably in VLSI floorplanning 
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problems. A formulation of the behavioural synthesis procedure is intro-
duced which is amenable to a simulated annealing based implementation, 
and a relationship between the synthesis flow advocated by Denyer 
(Denyer, 1989) and the simulated annealing algorithm is developed. 

4.3.1 The behavioural synthesis procedure 

The behavioural synthesis task may be defined, at a high level, as the 
translation of a set of algorithmic descriptions of the required system 
behaviour into some suitable circuit formulation. This task may be 
subdivided as follows: 

Compilation into a suitable intermediate data-structure. Current 
research concentrates on a relatively small core of data models, 
typically represented as either separated control and data flow 
graphs (SARI), combined control and data flow graphs (EASY 
(Stok and van de Born, 1988)) or tree structures (SILAGE 
(Hilfinger, 1984), Mimola (Marwedel, 1985)). Typical compiler 
optimization techniques can be applied at this stage. 

Scheduling and Allocation. The scheduling subtask deals with 
the assignment of a suitable control step to individual data-flow 
graph operations, while the allocation subtask assigns particular 
data-flow graph operations to functional units. These subtasks 
are intimately related, for in order to determine an efficient 
schedule, some knowledge about the functional unit allocation is 
required, whilst allocation cannot take place without an indica-
tion of parallelism within the data flow graph, which, in turn, 
comes from the schedule. 

Structural Synthesis. Within this step, the necessary memory and 
communications infrastructure required to complete the data-
path, subject to the behavioural specification is generated. 
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4) Controller synthesis. This stage generates a suitable controller 
capable of sequencing data-flow operations on the specified 
datapath. 

The version of SAVAGE reported here is a prototype system designed 
to investigate the scheduling and allocation stages of the behavioural 
synthesis procedure. Once a suitable schedule and allocation has been 
determined, then other software tools are invoked to complete the struc-
tural synthesis. 

4.3.2 The simulated annealing algorithm 

Simulated Annealing is a stochastic computational technique derived 
from statistical mechanics for finding near globally minimum cost solu-
tions to large optimisation problems. Kirkpatrick, Gelatt and Vecchi 
(Kirkpatrick et a!, 1983) were the first to propose and demonstrate the 
application of simulation techniques from statistical physics to problems 
of combinatorial optimisation, specifically to the problems of wire routing 
and component placement in VLSI design. 

In general, finding the global minimum value of an objective function 
with many degrees of freedom subject to conflicting constraints is an 
NP-complete problem (Romeo and Sangiouanni-Vincentelli, 1985), since 
the objective function will tend to have many local minima. A procedure 
for solving hard optimisation problems should sample values of the 
objective function in such a way as to have a high probability of finding 
a near optimal solution and should also lend itself to efficient implemen-
tation. Recently, simulated annealing has emerged as a viable technique 
which meets these criteria. Rutenbar (Rutenbar, 1989) provides an elegant 
disposition on the subject. 

The following pseudo-code function illustrates the structure of the 
subclass of probabilistic hill climbing WHO algorithms known as simu-
lated annealing. 



80 Simulated annealing based synthesis 

function sim_anneal (initial—state, ko) 

: STATE; 
K 	:CONTROL _PARAM;. 
COUNT :INTEGER; 

begin 
K=ko; 
= initial _state; 

while (not stopping criterion) loop 
for count = 1 to #MOVES 

generate a new state; 
compute change in system energy, AE; 
if (AE <O) 

/* LOWER COST - ACCEPT 11*1 
accept this move; update I; 

else 
/* HIGHER COST - ACCEPT IT MAYBE *1 

accept with probability P = 
update I if accepted; 

end for; 
update K; 
end while; 

end sim_anneal; 

where I is a state variable (in this case the datapath state), and K is the 
control parameter which models the temperature in the physical annealing 
system. 

AE represents the change in energy between the current state and the 
state produced by the random perturbation of the data flow graph. The 
assessment of energy or cost, is discussed in Section 4.2.3. The stopping 
criterion is defined as EE = 0 over 3 control parameter decrements. This 
ensures that the data flow graph has' assumed a minimum energy configu-
ration. The inner loop counter #MOVES determines the number of state 
generations per control parameter value. 
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In SAVAGE, the control parameter update function is defined: 

K+i =K a(K) 

where 0< a K < 1 

4.3.2.1 Synthesis and simulated annealing 

There exist a number of synthesis systems which use simulatedanneal-
ing to produce data paths. Most notable are those developed by Devedas 
and Newton (Devedas and Newton, 1987 and Devedas and Newton, 
1989), and Safir and Zavidovique (Safir and Zavidovique, 1990). 

We can formulate the scheduling and allocation problem in terms of 
individual data flow graph node placement within a Resource-time (Rt) 
space. Rt space can be viewed, at the simplest level, as a bounded grid 
whose axes represent the various hardware units available to execute data 
flow operations and machine execution cycles, or c-steps, respectively. 
The scheduling and allocation operations may then be defined as a node 
displacement in Rt space, subject to individual data flow graph depend-
encies. 

We can develop a simulated annealing based synthesis model through 
the integration of the linear design flow (described in Section 4.1) into 
the generate function of the simulated annealing algorithm. Selecting the 
finest computational "grain" (i.e. operating on single data-flow graph 
nodes), we can ensure that hill climbing moves can be attained at a 
minimal global cost. Every state generation cycle selects a data-flow 
graph node at random from the node set, assigns a c-step value to it, and 
binds it to a particular hardware resource, as shown in Figure 2. 

4.3.2.2 Scheduling and allocation move set development 

The scheduling component of the node translation was partitioned into 
3 main stages. For the selected node, the valid schedule range is computed 
first. This operation is shown in Figure 3, and represents the computation 
of the upper and lower bound on the temporal displacement. A sequence 
of possible execution times is then randomly generated within the valid 
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schedule range. The length of this sequence is proportional to the size of 
the valid schedule range. Finally, an execution time is selected at random 
from this sequence. This corresponds to the new execution time of the 
node. 

By using this technique, a number of refinements were added to the 
basic scheduling operation. Selection of an execution time generated at 
random over the total valid schedule range ensured that genuine hill 
climbing moves were made available to the annealing procedure. The 
adaptive nature of the length of the execution time sequence increases the 
efficiency of the algorithm towards the end of the annealing run, where 
lower cost moves are generally achieved during the allocation phase, as 
most nodes have tended towards their optimum As-Soon-As-Possible 
(ASAP) schedule. Finally, to increase the performance of the scheduling 
algorithm during the early stages of the optimisation, where potential hill 
climbing moves have little effect on the overall quality of the final 
solution, the execution time sequence can be 'biased' to produce sequen-
ces of predominantly earlier execution times (ta' <ts) forcing a trend 
towards rapid ASAP type schedules. 

The allocation move set developed was, by necessity, more determin-
istic in nature than the scheduling move set. In the most general view of 
synthesis, the module allocation procedure must ensure that a hardware 
component capable of executing the operation class is available at the 
scheduled time, t . A greedy heuristic allocation strategy will produce a 
module allocation equivalent to the maximum degree of parallelism of a 
particular operation class within a specific data flow graph. For practical 
purposes, this scheme represents a very inefficient use of available silicon 
area. Within SAVAGE, the allocation strategy is based on a 3 phase 
scheme. First, all hardware modules not supporting the operation class of 
the selected node are eliminated from the computation. From the remain-
ing modules, a target hardware unit is selected based around a simple load 
balancing criteria. If the target module is free at t' , then a simple binding 
between node and hardware module is established. If t' is unavailable 
on the target module, then it is eliminated from the set of candidate 
modules, and the allocation process reinvoked. Should the allocation 
process fail (i.e. all candidate modules are flagged as busy during ti'), 
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else 
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accept with probability P = 
update I iff accepted; 

end for; 
update K; 
end while; 

end sim anneal; 

Figure 2 Integrating the scheduling and allocation 
into the annealing algorithm 
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Figure 3 Computing the valid scheduling range 

then in the earliest SAVAGE system, the user was prompted to either alter 
the valid schedule range of the node (i.e. manually alter the schedule), or 
allocate an extra hardware module of a corresponding class. 

This manual intervention led to slow run times and a tendency towards 
greedy module allocation. Subsequently, the allocation strategy was 
revised to support operation deferment. The target module was still 
selected according to a load balancing criteria, but if the module was 
unavailable, then an extra c-step was inserted at the appropriate execution 
time, and the binding process invoked. 
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This allocation strategy allows a minimal hardware set to be used when 
operating under a time constraint, and ensures a global balancing of 
operation concurrency during the allocation phase. 

SAVAGE supports a simple pipelining algorithm; similar to that 
described by Mallon (Mallon and Denyer, 1990). Here, the pipeline reuse 
time (initiation interval of successive pipeline tasks) may be specified as 
the timing constraint, and the pipeline -latency (input to output latency of 
a single pipeline task) is optimised. 

This pipelining operation can be viewed as a "folding" of the Rt space 
so that operations occurring after the computed pipeline reuse time are 
retimed to occur in free cycles in the next pipeline task. 

4.3.2.3 Datapath costing 

In developing a costing method for SAVAGE, a number of factors 
have to be considered. Firstly, as SAVAGE operates only on an incom-
plete part of the datapath solution space (namely the scheduling and 
allocation phases of the synthesis procedures), the costing functions used 
will not reflect the true cost of the datapath. The SAVAGE operational 
scenario has the user constraining one axis of the Resource-time space 
before the optimisation procedures are invoked. Correspondingly, the 
primary element of the costing function has to assess whether the datapath 
generated lies outwith the axis boundary specified by the user. Designs 
violating these boundaries are penalised heavily. 

Part of the design specification for the SAVAGE software was to 
achieve a high utilisation of the functional units used within the solution 
datapath. The costing functions reflect this by penalising those designs 
which have functional units operating below a specific utilisation thre-
shold (also specified by the user). 

Further, datapaths generated as a result of more global perturbations 
to the solution - for example, where an extra control step is inserted into 
the schedule, and subsequent operations are retimed - are also penalised. 
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Thus the costing mechanism may viewed as a hierarchical structure, 
where gross system objectives are assigned a high importance while 
strategic goals, such as the attainment of a minimum functional unit 
utilisation occur at a lower level in the cost assessment hierarchy. Finally, 
library specific costing functions occur at the lowest level. 

In this way, the annealing procedure is guided towards a solution which 
satisfies the gross system requirements quickly. 

4.3.2.4 Costing mechanics 

In common with Devedas and Newton, we formulate the datapath cost 
as a weighted sum of all hardware components within the datapath, 
combined with a weighted cost accounting for the total number of c-steps 
needed. (In the prototype SAVAGE system, structural synthesis takes 
place after the scheduling and allocation operations had been completed, 
and so the costings associated with these components were unavailable 
to the simulated annealing procedure.) 

We extend the Devedas and Newton costing in keeping with the 
hierarchical costing model described above. Thus: 

COSTDATAPATH = Wi .VIOLATIONSBOUNDARY 

• W2.VIOLATIONSFU_UTILISATION 

• W3.VIOLATIQNSRETIMING 

• W41FUNCTIONAL_UNITS 

• W5.#C-STEPS 

The weightings can be varied to produce datapaths of varying archi-
tectural styles. For example, where the designer does nor explicitly wish 
to constrain the hardware resources available, but would prefer a solution 
with only a single multiplier, then the multiplier weight can be set 
proportionally higher, so that single multiplier solutions will have a lower 
global cost. 

4.4 Test results 

SAVAGE operates in a batch mode with the designer constraining 
either the hardware set available or the overall execution time desired. 
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(As SAVAGE can support simple pipelining, then the pipeline reuse time 
can be specified as a timing constraint) 

The 1-dimensional 8-point FDCT was coded in SLANG (the SARI 
input LANGuage) as shown in Figure 4. The resulting data flow graph 
corresponds to Figure 1. The results shown in Table 1 were produced by 
specifying a hardware set for SAVAGE apart from those indicated as a 
pipelined solution, where a specific pipeline reuse time was specified. 

Cycles + 	x 	- Av FU Util Pipeline 
Reuse 

Prop. Delay 

20 1 	1 	1 70% 20 20 
11 2 	2 	2 63% 11 11 
8 1  2 	2 	2 87% 8 15 
8 3 	3 	3 58% 8 8 
6 3 	3 	3 77% 	1  6 9 

1. Pipelined execution plan 

Table 1 SAVAGE test results 

A metric commonly used when assessing digital systems is the utili-
sation of each functional unit within the system. Here, it can be seen that 
the pipelined solution with a reuse time of 8 cycles offers the best 
time/hardware trade-off, and so this partially completed datapath was 
selected as the target for the remaining structural synthesis. 

4.4.1 The structural synthesis tools 

The prototype SAVAGE system used a simple left-edge algorithm to 
produce the memories required for the computed results and intermediate 
signals within the data flow graph. This algorithm produces the optimal 
memory allocation, but does not produce the optimal signal groupings. 
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procedure FDCT1D 	( 	A0 , A1,A2,A3,A4,A4,A6,A7 : 	in FLOAT; 
FOF1,F2,F3,F4,F5,F6,F7 out FLOAT) 	is 

COS PI4 constant 0.70710678; -- 	cos(PI/4) 
COS PI8 constant 	:= 0.92387953; -- cos(PI/8) 
SIN P18 : 	constant 0.38268343; -- 	sin(PI/8) 

COS 3PI16 :constant 	:= 0.83146961; -- 	cos(3*PI/16) 
SIN 3P1 16 	:constant 	:= 0.55557023; -- 	s jn(3*PI/16) 

COS - 5-PI - 1 6 :constant SIN 	3PII6; -- 	cos(5*P1/16) 
SIN-5-PI - 16 :constant COS3PI16; -- 	sjn(5*PI/16) 

COS 7PI16 :constant 	:= SIN P1 16; -- 	cos(7'PI/16) 
SIN 7 P1 16 	:constant 	:= COS-PI-16; -- 	sin(7PI/16) 

BO,B1,32,3334,35,B6,B7 : FLOAT; 
CO3C1.c2,c3,c4,c5.c6,c7 : FLOAT; 
D0.D1,D2,03,04,05,06,07 : FLOAT; 

COS PI 	4 TIMES B5 	FLOAT; 
COSPI4TIMESB6 FLOAT; 

COS PI 	4 TIMES DO 	: 	FLOAT; 
COS-.PI-- 4 -TIMES-.Dl FLOAT; 

begin 

BO A7 A0; 	31 	:= AG 	+ Al; -- first pass 
32 	:= AS '- 	A2; 	33 	:= 	A4 	'- A3; 
34 	:= A3 - A4; 	B5 	:= A2 	- AS; 
B6 	:= Al - A6; 	B7 	:= A0 	- A7; 

-- Put the expressions COSPI4*B5 and COSPI4*B6 into intermediate 
-- variables so as to avoid evaluating them twice 

COS PI4 TIMES B5 	COS PI4B5; 	 -- second pass 
COS-PI- 4-TIMES-B6 	COSPI4*B6; 

Co 	B3 	30; Cl :' B2 	Bi; 
C2 := 31 - 32; C3 : 	BO - 33; 
C4 := 34; 
CS := COS P1 4 TIMES B6 - COS--PI-4-TIMES-B5; 
C6 	CCSPI4IIMEsB6 	COSPI4TIMESB5; 
C/ 	:' 

DO 	CO; Dl 	Cl; 	 -- third pass 
02 	C2; 03 	C3; 
04 := C4 	CS; D5 : C4 - CS; 
06 := C7 - C6; 07 := C7 	C6; 

-- Put the expressions COSPI4*D0 and COS PI4*Dl into intermediate 
-- variables so as to avoid evaluating them twice 

COSPI4TIMESDO := COS?14*DO; 
COS P1 4 TIMES Dl := COS P1 4*01; 

FO COSPI4TIMESDO COS_P1_4 TIMES Dl; 	-- fourth pass 
F4 	:= COSPI4TIMESDO - COS PI4TIMESD1; 
F2 SIN 21 8*02 + COS _PI 8*D3 ;  
F6 	:= COS 3PI16*03 - 	SIN P18*D2; 
Fl 	:= SIN P1 16*04 COSPI16*07; 
F5 SINS P116*05 COS 5PI16*06; 
F3 	:= COS 3PI 16*D6 - SIN 3 	P116*D5; 
F7 COS 7PI 16*D7 - SIN 7P1 	16*04; 

end FDCT1D; 

Figure 4 SLANG description of FDCT 



Simulated annealing based synthesis 89 

A greedy bus merger algorithm was used to synthesise the communi-
cations infrastructure required to complete the datapath. Here, replicated 
links between functional units (including the newly synthesised 
memories) are removed. 

SAVAGE has been coupled with other datapath synthesis tools (Neil 
and Denyer, 1990) to synthesise a 5th Order Wave Digital Filter. Later 
iterations of the SAVAGE software include a complete route to datapath 
synthesis where structural synthesis is examined more fully. 

4.5 Conclusions 

This Chapter has described SAVAGE, a software tool capable of 
synthesising datapaths from behavioural descriptions. SAVAGE has been 
used in the development of datapaths for the 1-dimensional 8-point Fast 
Discrete Cosine Transform. 

We have shown that given either a speed or hardware bound, SAVAGE 
can produce optimised solutions for both pipelined and non-pipelined 
designs which are comparable with those in published literature (Mallon 
and Denyer, 1989). SAVAGE allows the designer to rapidly explore the 
solution space for a given problem, and by varying the optimisation 
criteria produce a number of comparable datapaths. The designers own 
expertise is then used to select the most appropriate datapath solution. 

SAVAGE has also been used to develop solutions to other synthesis 
benchmarks, notably the 5th Order Elliptic Wave Digital Filter, popu-
larised by Paulin (Paulin and Knight, 1989 and Neil and Denyer, 1990). 

4.5.1 Current developments 

The software architecture for the SAVAGE toolset has been shown to 
be robust and flexible during the design cycle. Further structural synthesis 
move sets have been added to complete the SAVAGE route to datapath 
generation. This has been complemented by a corresponding increase in 
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complexity of the datapath costing function. Indeed, move sets have been 
added which support a number of different architectural styles. This 
expansion has led to the development of eXtended SAVAGE (XSAV-
AGE); this CAD tool supports the "Architectural Script" based synthesis 
paradigm, first introduced by De Man (DeMan, 1990 and DeMan Oc-
tober, 1990). XSAVAGE is characterised by a 4 level hierarchy of user 
interaction, namely: 

System Level Interaction. This level of interaction enables us to 
convey system level information, such as total chip area, maxi-
mum acceptable power consumption and timing specifications to 
the optimisation system. 

Strategic Interaction. At this level in the hierarchy, we can 
specify the optiniisation techniques that will form the generate 
function within the simulated annealing core. These comprise 
scheduling, allocation and memory and communication syn-
thesis strategies. Also included here is the costing information. 

Pragmatic Interaction. In many synthesis systems, application 
specific designer knowledge cannot be included in the specifica-
tion.We provide a mechanism by which designers can affect the 
synthesis procedures directly via architectural pragmas. 

Structural Interaction. At the lowest level in the script hierarchy, 
interaction takes place at the component level. Partial and com-
plete architectures can be specified through the SAVAGE Struc-
tural Description Language. 

4.5.2 Concluding remarks 

The previous section describes XSAVAGE, a software tool which has 
evolved from the SAVAGE software which was initially intended to 
synthesise Fast Discrete Cosine Transform blocks. XSAVAGE is a much 
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more powerful system, capable of producing optimised solutions of 
widely differing architectural styles for a given problem domain. XSAV-
AGE may be classified not as a problem -spec/ic synthesis system, but 
rather as a general synthesisframework capable of supporting application 
specific architectures. 
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