
Simulated Annealing Based Datapath Synthesis

John Paul Neil

A thesis submitted for the degree of

Doctor of Philosophy

to the Faculty of Science of the University of Edinburgh.

1994

Abstract

The behavioural synthesis procedure aims to produce optimised register-transfer level

datapath descriptions from an algorithmic problem definition, normally expressed in a

high-level programming language. The procedure can be partitioned into a number of

subtasks linked by a serial synthesis flow. Graph theoretic algorithms can be used to

provide solutions to these subtasks. Many of these techniques, however, belong to a

class of algorithm for which there is no exact solution computable in polynomial time.

To overcome this problem, heuristics are used to constrain the solution space. The

introduction of heuristics can cause the algorithm to terminate in a local cost

minimum.

This thesis supports a global formulation of the behavioural synthesis problem. An

algorithm which can avoid local minima, simulated annealing, forms the basis of the

synthesis system reported.

A modular software system is presented in support of this approach. A novel data

structure enables multiple degrees of optimisation freedom within the datapath

solution space. Synthesis primitives, tightly coupled to a solution costing mechanism

directed towards the prevalent datapath implementation technologies, form the core of

the system. The software is exercised over small and large-scale synthesis

benchmarks. The synthesis paradigm is extended by the provision of optimisation

routines capable of supporting the generation of functional pipelines.

11

Declaration of Originality

Except where noted in the text, the research recorded in this thesis is the original and

sole work of the author.

John Paul Neil

May 1994

Acknowledgements

I wish to thank Professor Peter Denyer for providing a stimulating environment in

which to work, and for his advice and direction during the course of the research

recorded in this thesis. The financial support for this work was provided by the

Science and Engineering Research Council and The University of Edinburgh; I am

indebted to both institutions.

I acknowledge the support of the engineers seconded to the Silicon Architectures

Research Initiative, notably Martin Ryder, David Mallon, Cohn Carruthers, Ross

Kennedy and Douglas Chisholm. My fellow research students, Douglas Grant and lain

Finlay have also been a source of great encouragement.

I would like to thank Dr. Edward McDonnell for proofreading this thesis.

Finally, my heartfelt thanks go to Janet for her love and support during the preparation

of this thesis.

iv

Contents
Abstract

Declaration of Originality

Acknowledgements 	 iv

Contents 	 v

1 Introduction 	 1

1.1 ASIC Design Domains 	 2

1.2 Synthesis Tool Evolution 	 3

1.3 Behavioural Synthesis Tools 	 4

1.4 Summary of Research 	 7

1.5 Thesis Structure 	 9

2 Behavioural and Structural Models for Synthesis 	 11

2.1 Two Alternative Behavioural Representations 12

2.1.1 Discussion 15

2.2 Data Flow Semantics 18

2.3 Data Flow Syntax 22

2.4 A Structural Notation 23

2.4.1 A Processor Model 24

2.4.2 A Memory Model 25

2.4.3 A Communications Model 26

2.4.4 Input and Output Ports 27

2.5 Interlude - A Naive Mapping 27

2.6 A Control Model 28

2.7 Summary 31

3 Datapath Synthesis Techniques 	 32

3.1 Scheduling Techniques 	 33

V

3.1.1 Iterative Scheduling Schemes 33

3.1.2 State Transformation Scheduling 42

3.1.3 Integer Linear Program Scheduling (ILP) 43

3.1.4 Discussion 44

3.2 Allocation Techniques 47

3.2.1 Graph Theoretic Algorithms for Allocation 48

3.2.2 The Left Edge Algorithm. 52

3.2.3 Bipartite Matching 53

3.2.4 Edge Colouring 54

3.2.5 Expert System/Greedy Allocation Schemes 55

3.2.6 Other Techniques 57

3.2.7 Discussion 57

4 Combinatorial Optimisation and Simulated Annealing 	 59

4.1 Nomenclature and Definitions 	 60

4.2 Searching The Solution Space 	 62

4.3 The Simulated Annealing Algorithm 	 64

4.3.1 Cooling Schedule Techniques 	 67

4.4 The Class NP and Behavioural Synthesis 	 72

4.5 Simulated Annealing and Behavioural Synthesis 	 73

4.6 Discussion 	 76

5 Simulated Annealing Based Synthesis Techniques 	 77

5.1 Data Structures 78

5.1.1 Resource-time Space 79

5.1.2 Memory-time Space 79

5.1.3 Port-connection Space 80

5.1.4 Implementation Details 81

5.2 Core Synthesis 84

Vi

5.2.1 Initial Control Parameter Value 85

5.2.2 State Generation 85

5.2.3 Attaining Thermal Equilibrium 86

5.2.4 Control Parameter Update 87

5.2.5 Stopping Criterion 87

5.3 Datapath State Generation Move Sets 88

5.3.1 Scheduling and Allocation 88

5.3.2 Memory Optimisation 92

5.3.3 Optimising P-c Space 92

5.4 Solution Quality Assessment 96

5.4.4 A Datapath Costing Model 99

5.4.5 A Novel Cost Multiplier System 100

5.5 The SAVAGE Toolset 101

5.5.1 SAVAGE Synthesis Flow 102

5.5.2 BUILDER 103

5.5.3 Datapath Verification and Validation 104

5.6 A Worked Example - Differential Equation Solver 104

5.6.1 A Maximum Speed Solution 105

5.6.2 A Minimum Area Solution 108

5.7 Summary 110

6 SAVAGE Case Studies 	 111

6.1 1-Dimensional 8 point Fast Discrete Cosine Transform 112

6.1.1 A Resource Constrained Datapath 115

6.1.2 A High Speed Solution 119

6.2 5th Order Wave Digital Filter 121

6.2.1 Resource Constrained Datapaths 122

6.2.2 A Maximum Speed Solution 129

6.3 Discussion and Conclusion 131

vii

7 Synthesis of Functional Pipelines 	 132

7.1 Pipelining Nomenclature and Definitions 	 132

7.1.1 Structural Pipelining 	 133

7.1.2 Functional Pipelining 	 135

7.2 A General-Purpose Functional Pipelining Algorithm 	 136

7.2.1 A SAVAGE Implementation 	 138

7.3 Examples 	 141

7.3.1 A Pipelined Fast Discrete Cosine Transform Datapath
	

142

7.3.2 A Pipelined Wave Digital Filter Datapath
	

145

7.4 Discussion 	 147

8 Summary and Conclusions 	 149

8.1 Further Work
	

151

8.1.1 A Route to Silicon 	 151

8.1.2 Synthesis using Structural Input 	 152

8.1.3 Design for Testability 	 153

8.1.4 An Architectural Script-based Design Paradigm 	 154

References

A Differential Equation Datapath

B SAVAGE Optimisation Move Sets

B.l R-t Optimisation Code

B.2 M-t Optimisation Code

B.3 P-c Optimisation Code

C Publications

156

169

173

173

177

179

182

vu'

To my mother and father, who have scaled the mountains with me.

Introduction

1 Introduction

The last decade has seen enormous leaps in the complexity of Integrated Circuits

(ICs). Correspondingly, the design process associated with these circuits has grown

lengthy and expensive.

Whereas the first ICs had typical complexities ranging from a few tens to a few

hundreds of discrete logic structures, current devices have complexities ranging from

many thousands to, in the case of dynamic Random Access Memory (RAM) designs,

millions of logic structures. This increased complexity has arisen through advances in

process technology and shrinking mask geometries. Moore's law [Moore79] states that

the number of discrete components that can be placed on a single substrate will double

every eighteen months. This affords engineers greater opportunities to increase the

levels of integration within their designs, towards the level of total system integration

on a single substrate.

1

Introduction

A good example of this effort is the evolution of a single-chip fingerprint recognition

system [Anderson9l] developed at the University of Edinburgh. In its original

conception, the system was composed of two Application Specific Integrated Circuits

(ASICs) executing the recognition algorithm, an imaging subsystem, and two printed

circuit boards containing interface and support logic. Subsequently, the recognition

algorithms together with the imaging array were successfully integrated onto a -single

substrate [Anderson93].

While advances in process technology will ultimately be limited by fundamental

physical constraints, the potential increase in functionality offered by shrinking mask

geometries will act as a significant incentive to systems engineers to realise their

designs in silicon for some time to come.

1.1 ASIC Design Domains
An ASIC may be specified in four separate domains:

Behavioural. Here the specification captures the functionality of the final

circuit at a high level, but contains no details of the circuit

implementation. The ideal behavioural specification is a number of

sentences describing function of the circuit, but most behavioural

specifications are captured using a high level programming language,

such as VHDL, Verilog, C, or ADA.

Macroarchitecture. This specification describes the circuit in terms of

the functional blocks required to implement the circuit behaviour

(communally known as a datapath), their interconnection, and the

sequencing of the target algorithm on the datapath. This specification

level is known as the Register-Transfer Level (RTL).

2

Introduction

Microarchitecture. The circuit microarchitecture models the diversity of

implementation of the macroarchitecture at a gate level. For example, an

adder block can be implemented in a number of different forms, e.g.

ripple, carry lookahead, carry propagate, Manchester chain, and so on.

Physical. The physical specification of the circuit takes place at the

transistor level. The gate level description of the design is translated to a

transistor level netlist containing sizing and connectivity information.

These domains suggest an ordering of the ASIC design process, with the functionality

of a device captured first, followed by datapath macro- and microarchitectural

development, prior to any physical implementation. Historically, however, successive

generations of Computer Aided Design (CAD) tools have operated first in the physical

domain, followed by the datapath microarchitectural level, and finally at the datapath

macroarchitectural level. Current research efforts are focused on the development of

CAD tools operating in the behavioural domain. Automatic translation between the

design domains is termed synthesis.

1.2 Synthesis Tool Evolution

The first synthesis tools were targeted at the physical domain. During the designcycle

of early ICs, each mask layer was specified separately, with engineers undertaking all

the layout effort.

The advent of regular layout technologies such as standard cell logic and gate array

structures, together with the development of physical design tools for block placement

and routing, have enabled circuit engineers to concentrate on the development of a

small number of primitive cells. These primitives can then be instanced many times to

form the logic structures required. In the case of cell-based designs, logic gates are

3

Introduction

defined in terms of fundamental building blocks (or standard cells). For gate array-

based designs, logic structures are defined as the metalisation layers required to

connect pre-instantiated gates.

Translation between the microarchitectural level and the physical domain exploits

these regular layout technologies and the software tools supporting them. Logic gates

can be specified in terms of Boolean equations [Brayton84] or entered in a schematic

form and optimised prior to compilation into layout.

Translation between the macroarchitectural level and the physical level yielded the

first software tools to be called Silicon Compilers [Johan78]. Typically, a functional

circuit description was mapped into a template datapath architecture. The FIRST

silicon compiler [Denyer82} was targeted towards bit-serial architectures. Similarly,

research efforts at IMEC and Leuven University yielded the CATHEDRAL series of

silicon compilers. The range of architectural templates included bit-serial

(CATHEDRAL-I [Clae86]), communicating multiprocessor (CATHEDRAL-il

[DeMan88]) and bit-sliced datapath (CATHEDRAL-rn [Note88]). The quality of

solution achieved in these systems is dependent on the mapping between the input

algorithm and the architectural template.

1.3 Behavioural Synthesis Tools

Current CAD research is directed towards achieving a successful translation between

the behavioural and macroarchitectural domains. Interest in high-level synthesis is

motivated by the advantages of such an approach:

(i) Specification of an ASIC at a high level allows rapid functional

verification. This should be contrasted with the gate-level verification

required when a design is captured at the ASIC microarchitecture level.

4

Introduction

A high-level approach allows engineers to rapidly evaluate design

alternatives at an early stage in the ASIC project cycle. Indeed Broderson

[Broder89] argues that the true gains of realising a system in silicon arise

through the selection of appropriate silicon architectures.

High-level tools are correct by construction. The use of behavioural and

logic synthesis to realise a design removes the possibility of errors

introduced during manual translation between the design domains

outlined above.

High-level synthesis tools represent an enabling technology. By

abstracting the design process away from the physical domain, the need

for detailed circuit implementation knowledge is removed. Thus, ASIC

technology becomes more accessible to system-level engineers.

The advantages offered by the use of behavioural synthesis tools address the problems

imposed by market pressures described previously.

McFarland [McFarl88] defines the behavioural synthesis procedure:

"The synthesis task is to take a specification of the behaviour required of a

system and a set of constraints and goals to be satisfied, and to find a

(datapath) structure that implements the behaviour while satisfying the goals

and constraints."

A typical behavioural specification is given in figure 1.1. A datapath optimised to offer

a minimum area solution is shown in figure 1.2.

5

Introduction

procedure DIFFEQ (X, U, Y : in out INTEGER; A : in INTEGER) is

Xl,Yl,Ul : INTEGER;
DX,C3 : CONSTANT;

begin

while (X < A) loop
Xl :=X+DX;
Ui := U - (3*x*U*Dx) - (3*Y*DX);
Yl := Y + (U*DX);
X := Xi; U := Ui; Y := Yl;

end loop;

end DIFFEQ;

Figure 1.1 Behavioural specification.

II

11~Key 	

Functional unit 	FR 07 Read Only Memory 	 Wire

Multiplexer 	 Register 	 Input/Output Port

Figure 1.2 Datapath synthesisedfrorn specification shown in figure 1.1.

The behavioural synthesis procedure may be partitioned into the following subtasks:

(i) Translation of the behavioural description into some suitable

6

Introduction

intermediate format. This data representation must retain all the

characteristics of the original description, whilst presenting the data in a

suitable and recognisable form. It is at this stage that compiler-like

optimisations take place, such as loop unrolling (partial or complete) and

dead code elimination [Aho86].

Operator scheduling. This corresponds to the assignment of a control step

value to each operation. A control step (c-step) corresponds to a single state

of a finite state machine.

Processor allocation. This step assigns individual operations to execute on

particular hardware resources. These resources may be specialised (e.g.

adders, multipliers and subtractors) or generic ALU-type structures.

Memory allocation. An appropriate set of memory components must be

synthesised to store intermediate results and input/output values.

Interconnect optimisation. A communications infrastructure is

synthesised which connects all modules allocated in steps (iii) and (iv), and

completes the datapath topology.

Controller synthesis. This final phase generates a controller capable of

sequencing all the operations and data transfers as defined in stages (ii) - (v).

The research presented in this thesis is concerned with datapath synthesis techniques

(i.e. tasks (ii) - (iv)).

1.4 Summary of Research

The partitioning of the behavioural synthesis procedure presented above, and the serial

synthesis flow it suggests, has allowed optimisation techniques drawn from

algorithmic graph theory [Gibbons87] to be used to solve the subtasks. In many cases,

however, the solution algorithm belongs to a class of algorithms for which there is no

7

Introduction

exact solution computable in polynomial time [Garey79]. The introduction of

heuristics overcomes this problem by constraining the solution search space. The use

of heuristics can, however, lead to the algorithm terminating in a local cost minimum,

thus degrading the quality of the solution.

A global formulation of the behavioural synthesis procedure which avoids local

minima is proposed in this thesis. A solution algorithm, simulated annealing, drawn

from the field of statistical physics is used to control the search through the datapath

solution space.

A suite of software tools is presented in support of this approach. Innovative features

include:

A multiple-plane data model which provides support for global optimisation

of tasks (ii) - (v) above.

A solution quality assessment procedure targeted towards the production of

datapaths amenable to implementation in standard cell and gate array

technologies.

• A cost multiplier mechanism which allows the engineer to influence the

overall datapath architecture without direct synthesis intervention.

The application of external system constraints is enabled through the use of

synthesis directives orpragmas1 .

Further, a general purpose algorithm for the generation of functional pipelines, which

is suited to a simulated annealing-based implementation is presented.

1. This term was first introduced in [C1ae86].

8

Introduction

1.5 Thesis Structure

Chapter 2 develops two related models, pre-requisite to any discussion of the

behavioural synthesis procedure or its subtasks. Following a comparison of two

differing models of behaviour, the semantics and syntax of a suitable representation

are described. Similarly, a structural notation for datapaths is also presented. A review

of controller and timing issues concludes the chapter.

The solution techniques for the synthesis subtasks described in section 1.3 above are

considered in chapter 3. The scheduling strategies reviewed are split into three

categories: iterative, state transformational and integer linear programming (ILP). The

merits and demerits of each are discussed. Allocation techniques for the solution of

subtasks (iii) - (v) in the synthesis flow above are then reviewed. Graph theoretic

algorithms form the core material presented in this section, which concludes with a

brief discussion of expert system-based approaches to allocation.

Chapter 4 proposes a global approach to the behavioural synthesis problem and

suggests a formulation of the synthesis task as a combinatorial optimisation problem.

Local and global search techniques are presented, and the termination of local search

algorithms in a non-optimum state is demonstrated. The simulated annealing

algorithm is introduced as a global technique capable of escaping from local minima.

The cooling schedule techniques associated with the simulated annealing algorithm

are then reviewed. A brief survey of NP-complete algorithms used as solution

techniques for the synthesis subtasks concludes this section. This is followed by a

review of a simulated annealing-based high-level synthesis system developed at the

University of California at Berkeley.

Chapter 5 introduces a set of software tools (the SAVAGE system) capable of

9

Introduction

transforming a behavioural description into an optimised RTL datapath structure.

Central to the method presented is a multi-dimensional data structure capable of

supporting simulated annealing-based optimisation in each plane. A review of the core

synthesis routines precedes the presentation of the optimisation primitives used to

generate the datapath solution states. A solution quality assessment procedure is

developed, and a novel system allowing the engineer to assign cost multipliers - to the

individual cost function components is presented. The synthesis tools are then

exercised on a small-scale benchmark.

Two large-scale comparative studies are presented in chapter 6. The first, a Fast

Discrete Cosine Transform kernel, permits a comparison between the synthesis

method reported in this thesis and an interactive synthesis tool developed at the

University of Edinburgh. The second benchmark, a Wave Digital Filter, allows

comparisons to be drawn between the simulated annealing-based approach and a

greater number of behavioural synthesis tools.

A general-purpose algorithm for the generation of functional pipelines, and its

integration into the synthesis system reported herein, forms the core of chapter 7.

Structural and functional pipelining techniques are reviewed and metrics for the

assessment of pipeline performance defined prior to the introduction of the pipelining

algorithm. Extensions to the SAVAGE system are described, and datapaths from the

large-scale benchmarks of chapter 7 are re-synthesised to demonstrate the approach.

Finally, chapter 8 summarises the work presented in this thesis, and suggests

extensions to the research.

10

Behavioural and Structural Models for Synthesis

2 Behavioural and Structural Models
for Synthesis

This Chapter describes two related models germane to the behavioural synthesis task.

In the first instance, a suitable behavioural representation must be developed. This

representation must accurately capture the functionality of the source text, while its

internal form should remain amenable to manipulation by the various synthesis

procedures.

A notation that describes datapath structure must also be developed. To remain

technology independent, the notation should not contain any physical attributes, but

should at the same time contain enough meaningful information to allow the synthesis

tools to optimise the datapath topology. This implies a level of abstraction between the

RTh notation and the compiled gate-level description of the datapath. For example,

rather than measure delay through an adder in terms of nanoseconds, the delay can be

abstracted into multiples of the system clock (or control steps). Similarly, area

11

Behavioural and Structural Models for Synthesis

measurement does not take place in square microns, rather in notional gate

equivalents. By building this level of abstraction into the structural model, it can be

ensured that the output RTL descriptions are technology independent.

Following a brief discussion on two alternative representations of behaviour, the data

flow semantics and syntax used throughout the work described in this thesis are

presented. Closely linked to that is the development of a structural notation which

supports the abstraction described above.

As a brief interlude, a naive mapping (or binding) between behavioural and structural

domains based on a rudimentary set of axioms is considered. This binding contains no

sequencing or control information. The synthesis of a suitable controller lies outside

the scope of the work described in this thesis, but a simple control and timing model is

developed and presented.

2.1 Two Alternative Behavioural Representations

Consider the addition of two integer variables, a and b. This addition can be

represented by the following equation:

x = a + b

where x is the integer variable containing the result of the addition. The lexical

convention observed here is known as infix notation. Here, the operands (a and b) are

separated by the operator (+), thus:

x <op> (a <op> b)

12

Behavioural and Structural Models for Synthesis

The equality symbol in the equation represents the assignment operator. (The brackets

noted above indicate the operator precedence).

Similarly, the addition of a and b could be represented in prefix notation. Here, the

operator precedes both operands (in the case of non-commutative operations, the

ordering of operands becomes important): Thus:

= x + a b

Both notations are valid and functionally equivalent. The difference between infix and

prefix notation hints at the alternative representations of behaviour.

Consider the following, more complex, expression' in infix notation.

ul = u - 3xudx - 3ydx

A graphical representation can be created by parsing through the expression left to

right, observing operator precedence and replacing operators with vertex tokens whose

input arcs correspond to the operands associated with the operator. The graphical

representation for the infix expression is shown in figure 2.1 below.

Consider the same expression in prefix notation:

= ul - u - 3xudr 3ydx

Here the graphical representation is derived by parsing left to right through the

1. This expression forms the basis of Paulin's seminal differential equation example
[Paulin89b], and is used as an illustration throughout this thesis.

13

Behavioural and Structural Models for Synthesis

expression creating a tree-like structure whose vertices are the operators, with the

operands represented by leaf nodes. This is shown in figure 2.2.

u 	dx 	3 	x 	3

X 	 x 	X

dx

X 	 x

U

ul

(3xxxuxdx) - (3xyxdx)

Figure 2.1 Infix-based graphical representation.

ul

dXAdX

= ul - u - 3xudx 3ydx

Figure 2.2 Prefix-based graphical representation.

14

Behavioural and Structural Models for Sypthesis

In both representations, the assignment operator has been removed, as assignment is

implicit.

These two representations are functionally equivalent. It is the axiom used to construct

each that differentiates between the two. The first axiom is the more intuitive (as a

result of infix notation predominating in mathematics teaching), while the second

forms the basis of expression evaluation within many programming language

compilers.

The first graphical representation is a data flow graph, with the second known as a

parse tree.

2.1.1 Discussion

At an intuitive level, a flow graph provides the most straightforward engineering

representation. Indeed, Broderson [Broder89] argues that most electronic engineers

begin the design process with a basic data flow representation. For an in-depth

discussion of the flow graph, readers are directed to [Orail86]. From an automated

standpoint, however, it can be argued that parse trees generated directly from the input

expressions are also a suitable representation of behaviour.

For many synthesis tool designers, the choice of behavioural representation is decided

by the availability of compilers for the input language. Bearing this in mind, language

issues are now discussed.

Language Issues

In selecting a high level language for behavioural input, a tool designer has to choose

between using a standard procedural language or a specialised language which uses a

more explicit data flow representation. Probably the single most important difference

15

Behavioural and Structural Models for Synthesis

between the two types is the use of multiple assignment of a single variable. Consider

the descriptions of the filter shown in figures 2.3 and 2.4.

function SINGLE—ASSIGNMENT—FILTER (COEFF : in INTEGER[1:8]) is
ACCUM[0:8] : integer;
COUNT : integer;

begin
ACCUM[O] := 0;
for (COUNT=1; COUNT<=8; COUNT++)

ACCUM[COUNT] := ACCUM[COUNT-1] + COEFF[COUNT];
return ACCUM[8];

end SINGLE—ASSIGNMENT—FILTER;

COEFF(1] 	COEFFF2I 	COEFF(31 	 COEFFL81

ACCUM[O] 	ACCUM[11 	ACCUM[2]eACCUM[31 	 ACCUM(81

Figure 2.3 Single variable assignment.

The description shown in figure 2.3 permits single assignment of variables only. That

is, each intermediate result is specified explicitly in the loop body (hence the

requirement for an array of result variables). This description is an accurate

representation of true data flow. Probably the best known of all data flow languages,

SILAGE [Hilfin84], has been tailored specifically for Digital Signal Processing (DSP)

applications. Bit delays, decimation and interpolation constructs are present in the

language syntax.

16

Behavioural and Structural Models for Synthesis

function MULTIPLE ASSIGNMENT FILTER (COEFF 	in INTEGER[1:8]) is
ACCUM : integer;
COUNT 	integer;

begin
ACCUM 	0;
for (COUNT=1;COUNT<=8;COUNT++)

ACCUM := ACCUM + COEFF [COUNT];
return ACCUM;

end MULTIPLE—ASSIGNMENT—FILTER;

COEFFLi]

UM

Figure 2.4 Multiple variable assignment.

Against the 'naturalness' of the signal flow description, procedural languages such as

PASCAL, C and ADA enjoy a well-established user base. Advances in compiler

technology, specifically loop unrolling, have enabled multiple assignment, as shown in

figure 2.4, to be detected and replaced with single assignment constructs, preserving

the natural data flow within the intermediate representation. The use of multiple vs.

single assignment then becomes a matter of designer preference when using a

procedural language. As a caveat, however, it should be noted that this detection and

replacement strategy is only valid for loop structures with finite limits.

17

Behavioural and Structural Models for Synthesis

The intuitive nature of the data flow description, together with the availability of a data

flow based compiler (SLANG [Sey89]) during the course of the work described in this

thesis ultimately prompted the adoption of a data flow model. The semantics and

syntax of the model are now formalised.

2.2 Data Flow Semantics

A data flow graph is defined as a tuple, D=(V,E), where V={Vj,V2,..,V,,J is a finite set

of vertices and E = {E11; if = 1,2,..,n] is a set of edges connecting elements of V E is a

set of directed arcs; data cannot be consumed before it is produced. Thus, E contains

both precedence constraints and connectivity information. The vertices within V can

be partitioned into two main types:

Transformational: This vertex type performs a transformation on the input data. It is

most readily associated with the arithmetic and logical operators found within the

instruction set of a typical microprocessor. Further, associated with each vertex is a

tuple, P=(I,O) where I = {I1 ,..JJ is a set of input ports and ={Oi'•'O,'J is a set of

output ports. These port sets provide a mechanism whereby the commutative law can

be exercised during optimisation.

Boundary: This class of vertex is a synchronisation mechanism allowing external

data to be input to and output from the data flow graph.

This partial definition allows the specification of straight line code segments, as shown

in figure 2.5.

18

Behavioural and Structural Models for Synthesis

u 	dx 	3 	x 	3 	y

X 	 x 	X

dx

X 	 x

U

ul

Data Flow Fragment

ul= u- (3xxxuxdx) - (3xyxdx)

Code Segment

Figure 2.5 Straight line code representation.

It can be seen, however, that if the high level behavioural constructs, including

conditions (If <cond> then <tbody> else <ebody>) and looping (while <cond> loop

<body>) are to be accommodated, then further refinement of this definition is

required.

Two further vertex types, fork n and join,1 are specified. They perform one-to-many and

many-to-one edge mappings respectively, according to the value of a control edge, Ec .

Loop and conditional statements may then be represented as shown in figure 2.6.

19

Behavioural and Structural Models for Synthesis

<cond>_1—i

E 	
join

fork 	

<body> 	<cond>
<tbody>'I [dy>I 	 I 	I

	EC

L fork

It <cond> then
<tbody>

else 	 while <cond>
<ebody> 	 loop

<body>

Figure 2.6 Representing conditional and loop structures.

The definition of these types leads to an important classification issue within data flow

representation.

If the fork and join nodes are associated with the vertex set, V, and the control edges,

Ec , are incorporated into the data edge set, E, then the resulting data/control flow

graph is said to be combined. The EASY system [Stok88] models both control and

data flow in a single graph. A similar representation is the 'value trace' concept

[Thomas87], developed for the CMU-DA system. Value trace groups combine control

and data flow nodes to form 'vtbodies'; a direct analogue of the software subroutine.

If, however, the new vertices and edges form a graph, C(V,E c), then the resulting

graph pair, G=(CD) represent separate control and data flow graphs. Camposano

[Campos89] uses such a representation to synthesise datapaths from behavioural

VHDL descriptions.

This graph-pair notation can be extended to permit the definition of a procedural

20

Behavioural and Structural Models for Synthesis

hierarchy within the behavioural specification. If, instead of a single data flow graph, a

multiplicity of data flow graphs is defined, one for each segment of straight line code,

then each data flow graph is said to represent a basic block. These basic blocks are

inserted as nodes within the control flow graph, much as the <body> instances are

shown in figure 2.6. Thus, a procedure call may be represented as a multiple instance

of a basic block corresponding to the procedure body within the control flow graph.

This representation is used in [Lis88]. The code fragment from figure 2.4 is shown in a

basic block structure illustrated in figure 2.7.

accum 0

Block A

condition a

accum coeff[count] count 	I

count < 8

condition b 	 Block B

count8

return (accum) 	Block C

function MULTIPLE—ASSIGNMENT—FILTER (COEFF : in INTEGER[1:8]) is
ACCUM : integer;
COUNT : integer;

begin
ACCUM := 0;
for (COUNT=l; COUNT<=8; COUNT++)

ACCUM := ACCUM + COEFF[COUNT];
return ACCUM;

end MULTIPLE—ASSIGNMENT—FILTER;

Figure 2.7 A basic block structure.

21

Behavioural and Structural Models for Synthesis

2.3 Data Flow Syntax

A textual representation2 for the data flow semantics described above is now

developed. A data flow graph is encapsulated as a network. A network contains all

data flow information associated with the compiled source code. This is restricted to a

single basic block in keeping with the definition above. Correspondingly, a network

contains no control information.

The textual representation for a network is given below:

network <identifier>
-- vertex and edge definitions
end <identifier>

Each vertex in the data flow graph is represented as an operation:

operation <identifier> <type> <A> <Z> end

The operation.type field indicates the type of transformation carried out by the data

flow vertex. Typically these are: add, subtract and multiply. Further types are

permissible provided that they constitute dyadic operations and that they are supported

in the library of hardware functions available to the synthesis tools. The operation.A

and operation.B fields correspond to the input data edges. For commutative

operations, the ordering of input data on the data edges is unimportant, but for non-

commutative operations, ordering is important if the operation is to remain

functionally correct. For non-commutative operations, the ordering is A <op> B (e.g.

A-B, A/B etc.). The operation.Z field is the output edge.

2. The syntax used here is a subset of the BABBLE language [Ryder89] used as input to the
SARI Architecture Generator (SAGE) [Denyer89].

22

Behavioural and Structural Models for Synthesis

Edges within the data flow graph are represented as signals:

signal <identifier> <type> end

The signal.type field is defined as one of input, output, constant or

local. Input and Output types correspond to signals whose source or sink is a

boundary vertex within the flow graph. The local type is used to classify signals

whose source and sink vertices are internal to the current network definition. Finally,

the constant type is used to represent signals having a single pre-computed value

which may be replicated throughout the network definition.

As an analogy, the signal types may be best thought of as parameters passed to a

software procedure, and local variables declared within that procedure.

Figure 2.8 shows a portion of the network description of Paulin's differential equation

example.

2.4 A Structural Notation

The most basic notion of structure in the context of the work described in this thesis is

that of the datapath. A datapath can contain four types of component, namely:

processors, memories, communication structures (hereafter referred to as nets) and I/O

ports.

The syntax specifying a single datapath is given below:

datapath <identifier> begin
-- processor, memory, net and I/O instances.

end datapath <identifier>;

23

dx 	c3 	x 	c3

mul_2

s2

muL4'

dx
ns4

Behavioural and Structural Models for Synthesis

(work DIFFEQ

signal u 	input 	end
signal x 	input 	end
signal ul 	output 	end 	 mul_i

signal dx 	constant end
signal c3 	constant end 	 si
signal sl 	local 	end
signal s2 	local 	end

(X)
signal s3 	local 	end 	 mul -3
signal s4 	local 	end
signal s5 	local 	end 	 U

signal s6 	local 	end

operation mull mul u dx sl end
sub-5

operation mul2 mul c5 x s2 end
operation mul3 mul sl s2 s3 end
operation mul4 mul c3 y s4 end
operation sub _5 sub u s3 s5 end 	 sub -7
operation mul6 mul dx s4 s6 end 	 -
operation sub-7 sub s5 s6 ul end

end DIFFEQ

muL6

s6

Ui

Figure 2.8 Differential equation flow graph and network description.

2.4.1 A Processor Model
The processors defined here are combinational units capable of performing simple

arithmetic and logical operations. They are restricted to two input ports and a single

output port (the Z port). In order to preserve non-commutivity, the input ports are

labelled A and B. The most commonly used non-commutative operation, subtraction,

is restricted to A-B.

The syntax for a processor is given below:

processor <identifier> begin
attributes <attribute_list>;
type <operation type list>;
commutative <boolean>;
ports 	A source <net>;

B source <net>;

24

Behavioural and Structural Models for Synthesis

Z sink <net>;
end processor <identifier>;

The processor.attribute field contains processor specific information, such as layout

area, processor latency and reuse time. The processor.type field contains a list of valid

operation types that may be executed on this processor. In most cases, this will be a

single type, but this type specification allows for the definition of generic ALU

structures. The processor.commutative field is a flag for the synthesis tools to

determine whether a port swap is a valid optimisation move.

2.4.2 A Memory Model

The structural description supports three types of memory, namely ROM (Read Only

Memory), single registers and multiple registers grouped together in a register file.

Associated with each register file there is decoding logic for register selection. The

extra complexity associated with register files is accounted for in the datapath quality

assessment (see Section 5.3).

The syntax for a memory component is given below:

memory <identifier> begin
attributes <attribute_list>;
type <ROM I register I file>;

case 3 type of
ROM I file => locations <integer>;

end case;
ports
case type of

register I file => A source <net>;
end case;

Z sink <net>;
case type of

3. In this notation, the case statement affords the opportunity to conditionally instance
component fields. For example, a ROM will have no A port connection, only a Z port
connection.

25

Behavioural and Structural Models for Synthesis

register I file => signals <signal_list>;
end case;

end memory <identifier>;

The memory.attributes field holds memory specific information such as layout area.

This is used during the synthesis procedure. The memory.locations field gives an

indication of the cardinality of the instanced component. This corresponds to the

number of registers contained in a single file or the number of values held in a ROM.

The data stored in the memory component is appended to the memory.signals field.

2.43 A Communications Model

The structural model fully supports point-to-point (wire), multiplexer and bus based

communications strategies. All of these components are classed as nets. Table 2.1

summarises the port connection options associated with each communications

component.

Component Source Sink

Wire Single Single

Mux Multiple Single

Bus Multiple Multiple

Table 2.1 Net source and sink options.

The syntax for a net is given below:

net <identifier> begin
type <wire I mux I bus>;
case type of

mux I bus => cardinality <integer>;
end case;
source <port_list>;
sink <port_list>;

end net <identifier>;

26

Behavioural and Structural Models for Synthesis

2.4.4 Input and Output Ports

The input and output ports provide a means of external communication with the

datapath. The syntax for an I/O port is given below:

I/O <identifier> begin
type <in I out I bid>;
case type of

in => A sink <port_list>;
out => 	Z source <port_list>;
bid => A sink <port_list>;

Z source <port list>;
end case;

end I/O <identifier>;

The case statement is used here to instance I/O connections relevant to the port type.

2.5 Interlude - A Naive Mapping

Having developed both behavioural and structural models, a naive mapping between

the two domains is offered, based on the following axioms:

Operations should be mapped onto processors capable of executing the

operation type.

Where a signal traverses a c-step boundary, a memory element will be

instanced to preserve the signal state between control steps.

(iii)Each signal should be mapped to a wire or bus connecting the source and

sink modules.

(iv)Instance I/O ports of the appropriate type where the signal.type field is

either input or output

(v) Instance a ROM where the signal.type field is constant.

27

Behavioural and Structural Models for Synthesis

Thus, the code fragment of figure 2.1 can now be mapped to a simple datapath

structure as shown in figure 2.9. (The datapath description is presented in Appendix

A).

U X y
- ROM ROM ROM

X x x

ROM

X x

U

Ui

Figure 2.9 Naive differential equation datapath.

This solution offers particularly poor resource utilisation (the RTL description of this

datapath produced using the structural notation is presented in Appendix A). The

axioms yield a low-quality datapath with replicated hardware components. Possibly

the only benefit of such a solution is that it entails zero control overhead, and produces

a solution after three cycles of the system clock. The synthesis techniques in the

following chapter, together with the tools presented in chapter 5, describe methods of

optimising the datapath topology.

2.6 A Control Model

Consider the execution of a typical data flow operation. The data is retrieved from

memory or the input ports of the datapath, operated on by the datapath element, then

placed back in memory or made available externally via the datapath output ports.

28

Behavioural and Structural Models for Synthesis

The combination of processor and memory elements is a synchronous sequential

machine corresponding to the Mealy model [Mealy54], as shown in figure 2.10.

Figure 2.10 Synchronous sequential machine (with potential race)

The composition of the memory elements holding the current state, M, is critical. In

order to avoid race hazards [Seitz80] latches and edge triggered flip-flops must be

avoided. The transparent mode of the latch prevents any state being retained, and the

model shown above becomes an unpredictable asynchronous system. Edge-triggered

flip-flops are also unsatisfactory because it can not be guaranteed that all elements of

M will latch their input data simultaneously. Some memory elements may latch

marginally early; changes on the outputs of M could then loop round through the

combinatorial datapath to the input and produce an unwanted race condition.

To avoid the race problem, M should be based upon a master-slave latch structure, as

shown in figure 2.11. When the master clock is high, the outputs of the combinatorial

datapath network are stored in the master latches. During this time, the slave latch

29

Behavioural and Structural Models for Synthesis

maintains consistent data at the inputs to the datapath network. When the slave clock is

high, data is transferred from the master to the slave latch, and thus the input data to

the datapath network is changed safely. To ensure correct operation, the master clock

(Ii) and the slave clock (2) are defined so as to be non-overlapping (an overlap

between and 2 would cause both latches to go into transparent mode, again

causing the critical race problem). 	 -

Inputs 	 Datapath 	outputs
Elements

Memo Elements

JHMasmr 	 I

T T
Figure 2.11 Synchronous sequential machine with master-slave memory structure.

Relating this timing model to the execution of the dataflow operation, the read phase

of a control step (i.e. the fetching of datapath input data from memory or the datapath

input ports) can be specified as the time interval between 42 and I, and the write

phase of a control step (i.e. the placing of datapath output data in memory or at the

datapath output ports) as the time interval between (D I and ct 2 . This is shown in figure

2.12.

30

Behavioural and Structural Models for Synthesis

Real 	Write

-1____ ____

4 I

Figure 2.12 Read and Write phase timing.

2.7 Summary

Following a review of behavioural representation, this Chapter has developed

behavioural and structural models suitable for high-level synthesis. Subsequently, a

naive binding between the behavioural and structural domains based on greedy

heuristics was produced. This binding yielded a particularly low quality solution. The

next Chapter considers techniques designed to optimise the binding quality.

31

Datapath Synthesis Techniques

3 Datapath Synthesis Techniques

The previous chapter introduced behavioural and structural models capable of

supporting the synthesis operations described in section 1.3. This chapter reviews the

algorithmic techniques currently used to produce an optimised register-transfer

description of a datapath from this intermediate representation.

Techniques for solving the scheduling subtask are considered separately from those

techniques applicable to the processor, register and interconnect allocation subtasks.

The complex inter-relationship between the various synthesis subtasks, and an

indication of the drawbacks of a serial synthesis flow is exemplified by considering

the essential dichotomy that exists between the scheduling and processor allocation

subtasks.

The Scheduling and Allocation Dichotomy

The scheduling subtask aims to assign execution times to all nodes in a data flow

graph. Without knowledge of the number of processors available during scheduling,

32

Datapath Synthesis Techniques

however, an optimal solution is impossible to derive.

Similarly, the number of processors needed to execute all data flow graph nodes is

dependent on the amount of parallelism within the graph at any particular control step.

This information is generated by the scheduler. Thus, there is a cyclic relationship.

From this basic observation, it may be deduced that any synthesis flow where the

scheduling and allocation operations are disjoint (regardless of the order in which the

subtasks are performed) may ultimately compromise the quality of the datapath

solution.

3.1 Scheduling Techniques

The three major classes of scheduling strategy are discussed in this section. The first,

and largest class of scheduling algorithm is known as iterative scheduling. This class

operates on a node-by-node basis, and is characterised by the order in which the nodes

are visited. An important subclass is the distribution-based scheduler, which is

examined in some detail. The second major class uses serialising and parallelising

transformations on unary and fully serial schedules. Finally, a small class of synthesis

systems formulate the scheduling as an integer programming problem.

3.1.1 Iterative Scheduling Schemes
The first class of iterative scheduling scheme constitutes the base scheduling

strategies, where no hardware bound is placed on the resource set available to the

scheduler. In effect, this class of scheduler operates independently of any allocation

system. The most common base schedules are: AS-SOON-AS-POSSIBLE (ASAP)

and AS-LATE-AS-POSSIBLE (ALAP). More unusual variations, such as AS-FAST-

AS-POSSIBLE (AFAP [Campos90]) do exist, but are not in common use.

33

Datapath Synthesis Techniques

In ASAP schedulers, nodes are scheduled to occur as soon as their input data are

available. Similarly, in ALAP schedules, nodes are scheduled to occur in the control

step preceding the earliest consumption of their output data. The effects of ASAP and

ALAP schedules are shown in figures 3.1 and 3.2.

C-Steps

X 	 x 	x 	x 	+
1

X 	 x 	+
2

3

4

Figure 3.1 As Soon As Possible (ASAP) Scheduling Strategy.

These strategies, while producing high speed solutions can be wasteful in terms of the

excess hardware required to realise the data flow graph. As can be seen from figure

3. 1, the ASAP schedule requires 4 multipliers executing concurrently, while the ALAP

schedule (figure 3.2) requires only 2, at no overall execution time penalty.

Consequently, these base schedules are not generally employed on their own within

synthesis systems.

While the base schedules simply correspond to an ordering of the input data flow

graph subject only to the data flow constraints themselves, constraining the number of

available processors a priori necessitates the maintenance of a 'ready list'. This list

34

Datapath Synthesis Techniques

contains details of all operations capable of being scheduled at a particular control

step.

C-Steps

2

Figure 3.2 As Late As Possible (ALAP) Scheduling Strategy.

The scheduler processes the data flow graph a control step at a time, removing

operations from the ready list and scheduling them according to a prioritising function.

This prioritising function resolves resource conflicts when the amount of operational

parallelism present in the flow graph exceeds the processor parallelism. The most

common form of prioritising function assigns a weight to each data flow graph node.

This weight is then used as a selection criterion which determines the node or nodes to

be scheduled next, or identifies suitable candidate nodes for deferment.

The simplest prioritising scheme schedules nodes on the critical path of the data flow

graph to execute first. In the scheme described above, this may be viewed as a binary

weighting. The ATOMICS [Goosse87] scheduler in the CATHEDRAL-il system is

35

Datapath Synthesis Techniques

based around this strategy. Parker [Parker86] refines this by determining the freedom

for all remaining operations once the operations present on the critical path have been

scheduled. The operation freedom is defined as the difference between the ASAP and

ALAP schedules for that operation, less the propagation delay of the processor

executing that operation. For operations executing on the critical path, the node

freedom is zero. This approach emphasises the interrelation of the scheduling and

allocation subtasks. The effects of critical path and operator freedom based scheduling

are illustrated in figures 3.3 and 3.4.

C-Steps

x 	x 	x 	x 	+
1

x 	 x 	+
2

3

Figure 3.3 Critical Path Analysis (Shown in gray).

Girczyc [Girczyc85] uses node urgency as a selection criterion. Node urgency

corresponds to the minimum number of control steps required to execute all operations

between the current operation and the nearest timing boundary (e.g. system output, or

basic block boundary.) Nodes with the greatest urgency function are given the highest

priority during scheduling. This is shown in figure 3.5.

36

Datapath Synthesis Techniques

C-Steps

X 	X 	X 	X2 	+2

X 0 	 X I 	+2 	<2
2

-0
3

4
	 -o

Figure 3.4 Operator Freedom Analysis

Splicer [Pangrle87, Pangrle88] uses node freedom (called node mobility) as a primary

selection mechanism. Where resource conflicts occur, and node mobility values do not

differentiate between schedulable operations, a secondary selection mechanism

operates. Here, the node to be scheduled is selected based upon the length of path

remaining to the nearest timing boundary. The node with the longest path is selected.

The SEHWA system [Park88] uses two urgency based schedulers. The first, which

orders the data flow graph without hardware constraints establishes the maximal

schedule. A second urgency scheduler is executed on a hardware constrained system

to produce the feasible schedule. If the maximal schedule is better than the feasible

schedule, then a third, exhaustive, scheduler is applied to produce a shorter feasible

schedule. If the converse is the case, then the original feasible schedule is used.

37

Datapath Synthesis Techniques

C-Steps

X4 	X4 	x3 	X2 	+2
1

X3 	 X2 	+1 	<1
2

-2
3

_j

1

Figure 3.5 Node Urgency Analysis

Balancing operator concurrency : force-directed scheduling

Paulin [Paulin89b] developed an important class of scheduler which aims to balance

the operational concurrency within a data flow graph on a control-step to control-step

basis. This class of scheduler is referred to as force-directed scheduling. The

algorithm is partitioned into three main stages:

Determination of Time Frames. During this step, ASAP and ALAP schedules

are generated for an individual node. This determines the feasible schedule range,

and is similar in form to the notion of operator freedom, as introduced by Parker

[Parker86].

Creation of Distribution Graphs. For each control step, a summation of the

probabilities that individual operations of a similar class will execute in that

38

Datapath Synthesis Techniques

control step is formed. The resulting distribution graph (DG) represents an

indication of the concurrency of similar classes of operation for a particular

control step, and is defined:

DG(i) = 	P(Op,i) 	 [3.1]

Op - class

where i is the current control step under consideration, and P(Op,i) is the

probability of the selected operation occurring during that control step.

Calculate Forces. Here, the force associated with assigning an operation to a

particular control step is determined, and is defined as the difference between the

Distribution Graph value associated with the trial assignment and the average DG

values over the time frame of the operations. Thus:

t2

r 	-1
F(j) = DG(j) - 	L

DG(i)
(t2-ti+1)i 	

[3.2]

= t I

where F(j) is the force associated with assigning the selected operation to control

step j, and the time frame of the operation runs from time t1 to time t2.

Further, indirect force is defined as the force associated with the implicit assignment of

control step values to nodes which have direct data dependencies on the initial trial

node, j. Once the calculation of direct and indirect forces is completed for an

operation, the control-step assignment is selected yielding the lowest total force. By

definition, this balances the concurrency most effectively for a particular operation.

This force-directed scheduling technique produces datapaths capable of satisfying

fixed timing constraints, but does not address the problem of scheduling under

resource constraints.

Datapath Synthesis Techniques

Figures 3.6-3.8 illustrate the use of the force-directed technique for the differential

equation example.

	

P(Op,i)=1 	P(Op,i)=0.5 P(Opi)=0.3 P(Op,i)=0.3

1
	

IH

3

4

Figure 3.6 Initial time frames for differential equation example (after [Paulin89b]).

.0
CO
.0
2
0

I1J
3

4
	

4

Figure 3.7 Initial distribution graphs for multiply (left) and add, subtract and compare.

40

Datapath Synthesis Techniques

P(Op,i)=1 	P(Op,i)=1 P(Op,i)=1 P(Op,i)=1

1 	H 	 +

2

3

4 	 - 	 +

Figure 3.8 Final time frames for differential equation example.

Control Step
	

Control Step

1 	2 	3
	

1 	2 	3 	4

al

3

4
	

4

Figure 3.9 Final distribution graphs for multiply (left) and add, subtract and compare.

Force-Directed List Scheduling

In common with other list scheduling approaches, the FDLS algorithm sorts the data-

flow graph nodes according to data and control dependency. Those operations put onto

41

Datapath Synthesis Techniques

the 'ready list' are capable of being assigned to the first control step. In the case when

operational parallelism exceeds the amount of parallel hardware available during a

particular control step, then one or more of the 'ready' operations must be deferred to

subsequent control steps. As detailed above, operations are selected according to a

prioritising function. The FDLS algorithm selects the operation from the ready list

which has the lowest total force value associated with it, i.e the operation - to control

step assignment producing the lowest global increase in concurrency.

3.1.2 State Transformation Scheduling

This class of scheduler operates under a resource-constrained regime. State

transformations on the initial schedule are governed by two factors: data dependency

and resource availability.

State Merging Transformations

In this case, a fully serial schedule is transformed by merging those operations in

adjacent control steps, subject to data dependency and resource availability. Pseudo

code for the algorithm is given in figure 3.10.

State Splitting Transformations

This algorithm begins with a unary schedule (i.e. a schedule where all operations

occur in a single control step, thereby violating data dependency constraints). Once

again, subject to data dependency and resource availability, extra control steps are

added, and operations assigned to them until no further constraints are violated. This

process is illustrated in figure 3.11. Both the Yorktown Silicon Compiler (YSC)

[Brayton88] and the Linkoping CAMAD [Peng86, Peng871 systems use this approach.

42

Dat apath Synthesis Techniques

function STATE- MERGE (g : graph);
begin
for (all nodes in g)

assign node to differing csteps;
repeat

select (cstep)
if (merge-possible) then

merge (adjacent csteps);
until no merges possible;

end STATE MERGE;

Figure 3.10 State Merging Transformations.

function STATE_SPLIT (g : graph);
begin
for (all nodes in g)

assign node to single cstep;
repeat

select (cstep);
if (split-possible) then

split (cstep)
until no splits needed;

end STATE—SPLIT;

Figure 3.11 State Splitting Transformations.

3.1.3 Integer Linear Program Scheduling (ILP)

Lee [Lee89] formulates the scheduling problem as an integer linear programming

problem. Consider a data flow graph containing n operations. Each operator, O, has

pre-computed ASAP and ALAP schedules, S i and L, respectively. If a resource

constraint is added stating that there are m types of processor of type t, each having a

cost C1 , then Mtj denotes the number of processors of type t, required. The decision

variables, xij are set to 1 if Oi is scheduled in control step j, and zero otherwise.

The scheduling problem is formulated thus:

43

Datapath Synthesis Techniques

M

min 	CM, 1 	 [3.3]

i=1

Equation 3.3 states that the object is the minimisation of the total processor cost. This

is subject to the following constraints:

n

l:!~ j:gn 	1:9k:!~ m 	 [3.4]

1=1

This ensures that the resulting schedule has no more than Mtk functional units of type t

in any one control step.

L.

 i:9n
	

[3.5]

j = Si

This constraint ensures that 0, is scheduled between the precomputed ASAP and

ALAP schedules. Finally, for the data flow dependencies to be satisfied, equation 3.6

must be applied.

L 	L k

Y. iX ii 	JXkJ:5-1 	 [3.6]

j = Si 	J=Sk

for all nodes 0, and °k constrained by data flow dependencies.

For the differential equation example, with a multiplier cost of 5 (Ctmuit = 5) and an

ALU cost of 1 (Ctu = 1) (values taken from Lee [Lee89]), the problem formulation

and resulting schedule are shown in figures 3.12 and 3.13.

3.1.4 Discussion

Most of the scheduling schemes described above operate on a flattened segment of the

data flow graph, consistent with the basic block representation described in Section

2.2. For datapath dominated designs (i.e. designs where the amount of data flow

44

Datapath Synthesis Techniques

contained in individual basic blocks is significant compared to the amount of control

flow), the deferral-based scheduling schemes are appropriate.

minimise (5 X Mmuit x M) subject to
X1 , 1 + X21 + X61 + X8.1 - Mmuu <= 0;
X3,2 + X6 ,2 + X7, 2 + X8,2 - Mmuit <= 0;

X7 ,3 + X8,3 - M mu ft <= 0;

X10,1 - Matu <= 0;

X92 + X102 + X112 - Maiu <= 0;

+ X9,3 + X103 + X113 - Ma iu <= 0;

X1,1 = 1; x2 , 1 = 1; x3 ,2 = 1;

X4.3 = 1; x5 , 4 = 1;

x6 , 1 + x6 ,2 = 1; x7,2 + x7 ,3 = 1;

X8,1 + x8 ,2 + x8 ,3 = 1; x9 , 2 + x9 ,3 + x9 ,4 = 1;
x10,1 + x102 + x 10,3 = 1;

x11 ,2+x11,3 +x11,4 = 1;

X6,1 + 2x6,2 - 2x7 ,2 - 3x7 ,3 < = - 1;
x5,1 + 2x8 , + 3x8 ,3 - 2x92 - 3x9 ,3 - 4x9 ,4 <= -1;
x10 , 1 + 2x 0, + 3x 10 ,3 - 2x11 , - 3x11 , 3 - 4x114 <= -1;

Figure 3.12 ILP formulation of differential equation example.

Conversely, for control dominated designs, those scheduling schemes may yield sub-

optimal results. Potkonjak [Pot89] describes a hierarchical scheduling scheme which

relates more closely to the behavioural synthesis paradigm (i.e. the ability to describe

an algorithm in a high level programming language). This hierarchical method does

require extensive traversal of the synthesis hierarchy and backtracking.

In terms of individual scheduling techniques, the iterative schemes are capable of

producing optimised results when operating in conjunction with an appropriate

allocation algorithm. Force-directed list scheduling produces marginally better quality

results than the other list based scheduling approaches at a negligible increase in

computational complexity.

45

1

3

4

Datapath Synthesis Techniques

C-Steps

Figure 3.13 JLP Scheduling solution.

The transformational schemes benefit from the fact that both algorithms are easily

implemented. In both cases, however, the order in which nodes are merged into control

steps, or split into new ones is arbitrary, and in many cases, this scheme produces low

quality solutions [Fin92].

ILP techniques have only successfully been applied on problem instances of no

practical significance [Lee89]. The solution of the decision matrix requires large

amounts of compute time, even for modestly sized problems, and the formulation of

the problem may prove unwieldy. Attempts have been made to partition the overall

ILP scheduling problem on a control-step by control-step basis. These are reported in

Huang [Huang9Oa]

In most cases, the scheduling techniques described can be modified to include

multicycing (i.e. operators requiring more than one control step to execute), operator

MI

Datapath Synthesis Techniques

chaining (i.e. combinatorial operators occurring within a single control step), and

functional pipelining, as illustrated in figure 3.14.

C-step 	 C-step

t-1

t

t

	

t+1

t+1

(a) Operator Chaining 	(b) Multicycling

Figure 3.14 Operator chaining and multi cycling.

3.2 Allocation Techniques

Data path allocation corresponds to stages (iii) - (v) in the behavioural synthesis

design flow outlined in Section 1.3. These subtasks are grouped together in this case to

emphasise the inter-relationship between the subtasks, and to establish an informal

taxonomy of algorithms suitable for their solution.

The discussion of the scheduling and allocation dichotomy revealed the relationship

between the operator schedule and processor allocation. To reiterate, for effective

processor allocation, the degree of parallelism within the data flow graph must be

known for every control step. Compounding this problem, the need to use generic alu

structures may cause allocation clashes in individual control steps.

Further, only once the schedule has been fixed can the register allocation subtask be

completed. Completing the operator scheduling specifies a set of tuples, L,

47

Datapath Synthesis Techniques

comprising of the signal value and its corresponding life time. A signal life time is

defined as the length of time between the production of a value, and its latest

consumption time. Resource clashes can also occur on registers where data is written

to a particular unit before the previous value has been read. Correspondingly, a further

component of the register allocation subtask is the grouping of registers.

Again, this grouping affects the final allocation subtask: interconnect allocation. The

ultimate aim is to provide a set of data transfer tuples, D, comprised of source and

destination modules (either registers or processors) and the value transferred. From

this tuple set, a suitable communications infrastructure can be synthesised.

Unlike the algorithms developed to solve the scheduling subtask, allocation algorithms

are of a more diverse nature. (In the survey of scheduling algorithms, it was shown

that most scheduling schemes are constructed from two elements: a base scheduling

strategy, and a conditional deferment, or prioritising, function.) Broadly, however,

algorithms solving the allocation subtask can be partitioned into two main types. The

first is based on algorithms designed to solve graph theoretic problems, and rely on the

formulation of the problem as a simple, undirected graph. The second type uses expert

system and greedy iterative techniques. The former category benefits from the fact that

all three subproblems, as outlined above, can be formulated in a similar way for

solution, while the latter allows incremental construction of a solution datapath.

3.2.1 Graph Theoretic Algorithms for Allocation
These algorithms formulate the allocation procedure as an undirected graph. Johnson

[Johns76] defines a clique as a "maximal, completely connected sub graph of a simple

undirected graph". This is illustrated in figure 3.15. Johnson develops a family of

programs capable of generating all the cliques of a graph. This family of programs is

used throughout the survey of clique based algorithms.

48

Datapath Synthesis Techniques

52

Cliques:
89

	

____________ 	 [1 2 3]

[1 9]

[4 6 8]
4 	

3 	[589]

[6 7 8 9]

6 	 7

\

Figure 3.15 Cliques of a graph (after [Johns761).

Clique Partitioning
Processor Allocation: A graph is defined G(Oi,Me), where the vertex set, O,

represents all the operations present in the schedule. The edge set, Me , contains all

those edges that represent mutually exclusive operations of the same type (i.e.

operations which do not execute concurrently therefore they can share the same

processor). Thus adjacent vertices can execute on the same processor. Introducing a

clique coverage maximally groups operations to processors. This operation is repeated

for all operation classes, and is shown in figure 3.16.

Register Allocation: A graph is defined G(VI ,Me) where the vertex set, V represents

all values that require storage. The edge set, Me , contains all those edges between

vertices that represent mutually exclusive values (i.e. the two values do not overlap in

the schedule therefore they can be stored in the same register). Thus, adjacent vertices

can be stored in the same register. By introducing a clique coverage, values can be

maximally grouped into registers. This process is shown in figure 3.17.

Interconnect Allocation: A graph is defined G(Dt,Me), where the vertex set, D,

represents all data transfers present throughout the schedule. The edge set, Me ,

49

Datapath Synthesis Techniques

contains all those edges that represent mutually exclusive transfers (i.e. the transfers

take place at different times in the schedule therefore the transfers can use the same

interconnect).

C-Step

i :::j: 	LSUB1SUB1

Reqnred Processors 	 G(OM) 	 Clique Cover

Figure 3.16 Processor allocation by clique coverage.

Thus adjacent vertices can use the same interconnect. Introducing a clique coverage

maximally groups data transfers to interconnect. This process is shown in figure 3.18.

C-Step

1

Tb 	
b 	 [acefl

Required Registers 	 G(VI Me) 	 Clique Cover

Figure 3.17 Register allocation by clique coverage.

Selecting Appropriate Clique Coverage

In many cases, there is no definitive clique cover. Rather, a group of cliques is

produced. Introducing a heuristic selection technique [Tseng86] can eliminate non-

50

Datapath Synthesis Techniques

optimal cliques. In the case of the register allocation, Tseng uses a heuristic which

selects the maximal clique, thus maximising the register utilisation.

C-Step

	

iT

t4 t7

I 	

It, t4çt6t6t

ti

S (t1t3t7t,J

 t 2 	 Ct 1 t4t5tat1 	

2Ct,6t7tg]
___________ 	 (t2 ; t8t,3

3

	-

Required Data Transfers 	 G(DM0) 	 Clique Cover

Figure 3.18 Interconnect allocation by clique coverage

A more common approach is to use weighted clique coverage. Tseng advocates this

approach during processor allocation an interconnect allocation in the FACET toolset.

In both instances, a hierarchical weighting scheme is adopted. For processor

allocation, a four level weight is introduced according to the degree of similarity in the

source and destination units for each vertex (a high weighting is assigned to inputs and

outputs with the same source and destination; correspondingly, a low weighting is

given to dissimilar sources and destinations). This scheme is also used in the

interconnect allocation for data transfer source and destinations. The HAL system

[Paulin89c] uses weighted clique partitioning to perform register allocation. Paulin

computes the weighting values as a function of the saved interconnect area after

register merging. This is shown in figure 3.19.

A general clique coverage technique has been examined which can be applied to all

datapath allocation stages. It is important to note, however, that in Tseng's original

treatise, the order in which the various allocation subtasks are completed is specified:

register allocation, processor allocation, and finally interconnect allocation. This

51

Datapath Synthesis Techniques

ordering allows the heuristic weighting scheme to operate as the weights are derived

directly from the register allocation.

S1 	 S2

1R1 I 	IR1 I 1R2 I 	JR1 	R2 	 Ri 	1R2

_ 	 II 	bb 1R2 	 ______

Si

Si

IRiI 	Ri
PP

O 	1R1 I fllWeight 4 	Weight 3 	 Weight 2 	 Weigh

Figure 3.19 Register merging, before (a), and after (b). (after [Paulin89c])

3.2.2 The Left Edge Algorithm.

Kurdabi and Parker [Kurdahi87] have shown that the register allocation problem can

be modelled as channel routing. In this representation, the goal is to assign values

(wires) to registers (tracks) using the minimum number of registers. This is a well

understood problem, and is documented in Hasimoto [Hasimoto7 1]. The left edge

algorithm will always produce the minimum number of registers required, but does not

guarantee optimal value grouping within those registers. Its operation is shown in

figure 3.20.

52

Datapath Synthesis Techniques

C-Step 	 C-Step

cTb
2 	 2:4ii'

Ro 	R I 	R2

Required Registers 	 Signals grouped into registers R0 . A 1 and A2

Figure 3.20 Left-Edge register allocation.

Values are allocated to register on a "first available basis" as shown. The lifetime

analysis which this graph provides has been incorporated in a further graph theoretic

algorithm for register allocation.

3.2.3 Bipartite Matching

A graph is defined G(1'R,Me) whose vertex sets V and R represent the values to be

stored and the available registers, respectively. R is determined via a lifetime analysis

derived from the left edge algorithm outlined above. Edges are added between values

and register if and only if there are no lifetime conflicts on that register, as shown in

figure 3.21. In effect, this matching enumerates all value-register combinations as

opposed to the first available matching given by the left edge algorithm.

Once again, however, heuristics must be employed to select the most appropriate

allocation. In Huang [Huang90b], the heuristics estimate the number of similar

interconnects for source and destination pairs.

53

Datapath Synthesis Techniques

C-Step

A0 	A1 	A2

Signals grouped into registers R 0, A1 and R2 	 G(V,R,M)

Figure 3.21 Bipartite register allocation.

3.2.4 Edge Colouring

Stok [Stok9Oa, Stok9l] defines a data path allocation scheme which deals explicitly

with the register grouping problem.

A graph is defined S(C,WR t), where the vertex set, C, represents all control steps

present in the schedule. The edge set, WR, contains edges which represent the read

and write times for storage values. Vizing's theorem [Vizing64] for general graph

colouring 1 problems states that for a graph of degree A (maximum number of edges

incident to a node) and multiplicity M, (maximum number of edges joining any two

vertices), then:

L!9'(G) :!~ +M
	

[3.7]

where 'I'e(G) is the number of colours required to colour the graph edges 2. Therefore,

in the register grouping problem, equation 3.7 states that the variables may be grouped

into, at most, A+ 1 register files. This is shown in figure 3.22.

The graph colouring problem is concerned with finding a partition of the set of vertices into
a minimum number of independant sets. Such a partition is called a colouring.
In this application of Vizing's theorem, there is no meaningful interpretation where M >1.

54

Datapath Synthesis Techniques

C-Step Tb 1

Required Registers 	 G(C5, wF), i=3, M=1

Figure 3.22 The edge-colouring algorithm for register grouping.

Introducing a two phase clocking scheme produces a bipartite graph, Vizing's theorem

can be reduced to:

= 	 [3.8]

This is shown in figure 3.23.

C-Step

	

Write 	Read

o 	 0
aTb

22

	

 .__ 	.

33

Required Registers 	 G(V,R,M0)

Figure 3.23 Bipartite edge colouring.

3.2.5 Expert System/Greedy Allocation Schemes

The expert system approach to the allocation problem applies rules generated by an

55

Datapath Synthesis Techniques

expert designer on an initial allocation of processors, register and interconnect. After

applying a decision criterion, the inference engine of the expert system will apply

further predicates aimed at minimising the overall objective function.

JACK-THE-MAPPER [Goosse88] is a three level expert system embedded within the

CATHEDRAL II system. The outer level is a standard expert system shell interface,

with the intermediate level containing predefined predicates capable of performing

specific algorithmic tasks, such as bus merging. The rule base itself contains over 100

transformation rules. These transformations allow the modelling of multiplication as

shift and add operations, and the generation of counters for loop structures, for

example.

As with all expert system approaches, significant user interaction is required, with the

design engineer producing the processor allocation manually. Registers and

interconnect are allocated initially, one per value and data transfer, respectively.

JACK-THE-MAPPER then performs the optimisation transformations. The designer

can influence these translation steps by writing architectural pragmas in the input

SILAGE description. The allocation is completed during the scheduling phase with the

Atomics tool.

Greedy allocation algorithms select operations from the data flow graph. Processors,

register and interconnect are all allocated when needed. In most cases, the algorithm

aims to locally optimise the cost of introducing operations into the existing datapath.

The node selection order and the local costing criteria characterise greedy allocation

schemes. Nodes may be selected at random, via some prioritising function (e.g. critical

path analysis), or in the order determined by the schedule. The MABAL system

[Kucukc89] selects operations using the latter technique. A more global analysis may

56

Datapath Synthesis Techniques

be adopted, with all data flow nodes considered, regardless of scheduled order. This

approach is typified by EMUCS [Thomas88], part of the System Architect's

Workbench. The EMUCS cost function selects the functional unit with the lowest

binding cost (i.e. the cost of adding operations) per operation. Similarly, the MABAL

system determines local cost via an analysis of the partial architecture already

generated. The MABAL system improves the accuracy of the cost function by

formulating the register and functional unit allocations problems together.

3.2.6 Other Techniques

Branch and bound allocation schemes have been developed and implemented

[Pangrle88, Marwed861. They search through datapath components already instanced

to provide an allocation solution. The search depth of branch and bound is generally

controlled by passing the scheduled data flow graph on a control step by control step

basis.

ILP techniques have been applied to the various allocation subtasks [Hafer83], but are

restricted to impractical problem instances.

3.2.7 Discussion

The graph theoretic algorithms presented provide the most elegant solution to the

allocation subtasks. Based on well established theory, a number of efficient algorithms

have been developed for their solution. In the case of clique coverage and bipartite

matching, however, the introduction of heuristics will degrade the performance of the

algorithms in a restricted subset of applications.

Viewing the allocation task as a series of separated problems produces solution

schemes where one component of the allocation task dominates. Indeed, interconnect

57

Datapath Synthesis Techniques

and memory based optimisation approaches have been developed [Stok9 1, Park89,

Grant 90a]. The EASY system [Stok88] uses correlated clique coverage to try and

account for the effects of the other allocation phases.

The rule based and greedy allocation approaches allow incremental datapath

construction. Expert system based allocation Is slow, and requires a large rule base.

Without efficient backtracking, this approach is more likely to produce solutions based

on local minima. The experience of JACK-THE-MAPPER, and Kowalski's DAA

[Kowal85] indicate that for a restricted application area, this approach is applicable.

Greedy allocation is strongly dependent on the order in which the optimisation takes

place, and yields poor quality results.

Finally, the branch and bound and ILP formulations have proved too computationally

expensive to implement for practical problem instances.

58

Combinatorial Optimisation and Simulated Annealing

4 Combinatorial Optimisation and
Simulated Annealing

The techniques surveyed in chapter 3 provide methods for optimising the binding

between behaviour and structure. The partitioning of the synthesis procedure into a

number of well understood tasks enables standard algorithmic techniques to be

brought to bear on these subproblems. The introduction of heuristics in the solution of

the subproblems, in particular in the selection of appropriate clique coverage tends,

however, to introduce local minima into the solution. (The definition of a local

minimum in the context of this thesis is presented in section 4.1).

This thesis advocates a global approach to the behavioural synthesis problem. This

chapter lays the foundations for the formulation of the behavioural synthesis

procedure as a combinatorial optimisation problem, and reviews local and global

solution techniques for this problem class. A candidate technique, known as simulated

annealing, is introduced and evaluated. A simulated annealing based behavioural

9611

Combinatorial Optimisation and Simulated Annealing

synthesis system, developed at the University of California at Berkeley is then

presented.

Some basic nomenclature is introduced as a precursor to the formulation of a

combinatorial representation of the behavioural synthesis procedure.

4.1 Nomenclature and Definitions

Two types of optimisation problems exist. The first type, whose solution is selected

from a set of real numbers or functions is known as a continuous optimisation

problem. The second may be thought of as a "one of many selection"; selection of an

object from a finite set of discrete candidate objects, and is known as a combinatorial

optimisation problem [Papadim82].

Definition 4.1 	The solution domain of a combinatorial optimisation problem,

P. is defined as a set of tuples (D,c) where D represents a set of

discrete solution instances, and c is the cost function, such that

c : D —*R"

where R'1 represents n dimensional real vector space.

From this definition of the solution space, a criterion may be stipulated which leads to

the global optimum:

Definition 4.2 	The solution selected from P satisfies .•

c(s) :!~.c(y) for all y€ D, 5€ D

s is called the globally optimal solution.

The solution space may be subdivided into manageable sections by introducing the

concept of a locality.

Definition 4.3 	A locality, L, within an optimisation problem, P, with tuples

(D,c) is defined as a mapping:

L : D—.2' for each D.

Combinatorial Optimisation and Simulated Annealing

The locality concept is used in discriminating between local and global optima. Global

optima satisfy definition 4.2, while local optima are defined:

Definition 4.4 	Within a locality, L, and given a tuple (D,c), a solution is called

locally optimal with respect to L if

c(d) :-~ c(g) for all g€ L(d)

Papadimitriou [Papadim82] provides a suitable example of global and local optima in

the context of a 1-dimensional Euclidean optimisation problem.

Example 4.1 	Let the problem tuple (D,c) be defined

D = [0,1] R' and c be defined as shown in figure 4.1

Figure 4.1 Local and Global Optima.

In this instance, let the locality be defined as a distance, s, from the test points, A, B

and C. Thus, if s is small, then A, B and C are local optima, with B the global

optimum.

61

Combinatorial Optimisation and Simulated Annealing

4.2 Searching The Solution Space

Two potential search strategies of the combinatorial solution space are now described.

For the sake of brevity, they are labelled local and global search. Both algorithms are

based upon a basic state generation mechanism which provides a random perturbation

to the current state, and is followed by an assessment of the cost, or goodness, of the

newly generated state. A decision criterion is then applied to determine whether the

new state is accepted. It is at this decision criterion where the two techniques become

divergent.

A simple example is presented to illustrate the difference. Figure 4.2 shows the state

graph representing all 1-change permutations of the set { a,b,c }, excluding the empty

set. The directed arcs point to the lower cost next states. The cost hierarchy in this

example is defined to be: c(1) < c(5) <c(3) < c(6) <c(2) < c(4).

If LOCAL—SEARCH is defined as shown in figure 4.3, with a cost assessment

criterion which accepts lower cost solutions only, then given an initial state of S(6), the

next acceptable state transformation will result in either S(1) or S (5). If S(5) is the state

selected, then there will be no acceptable lower cost state transformations available to

the algorithm, which will then terminate in a local minimum. Thus, it may be seen that

the success of this greedy heuristic search strategy is strongly dependent on the initial

solution state. Also, the upper bound on the computation time is unknown for many

problems. (The worst case time complexity of UN—LOCAL—SEARCH [Lin65]

remains uncomputed. This procedure a search strategy for the travelling salesman

problem (TSP [Dantzig54]).)

For a global search strategy to succeed where LOCAL—SEARCH terminates in a local

minimum, some acceptance of lower quality solutions (i.e. solutions with a higher cost

62

Combinatorial Optimisation and Simulated Annealing

function) must be attained.

1

Figure 4.2 1-change state graph for [a,b,cJ.

function LOCAL—STATE (i o : in STATE);

i, j : STATE;

begin

i := i 0 ;

repeat
GENERATE (i, j);
if cost (j) < cost(i) then i :=

until cost (j) >= cost (1) for all possible state GENERATIONS;

end LOCAL SEARCH;

Figure 4.3 LOCAL SEARCH functi on.

In the case of the example, if all potential higher cost moves are marked in (figure

4.4.), it may be seen that independent of the initial placement within the solution

63

Combinatorial Optimisation and Simulated Annealing

space, a global minimum can be attained. It is this hill climbing property of global

search algorithms which makes their use in combinatorial optimisation problems

attractive

1

Figure 4.4 1-change state graph for Ia,b,ç) with hill climbing moves.

4.3 The Simulated Annealing Algorithm

The simulated annealing algorithm belongs to the class of algorithms known as

probabilistic hill climbing algorithms, which display the desirable qualities described

in the previous section. The simulated annealing algorithm is based upon the

Metropolis Monte Carlo Method [Met53, Bin78], a technique which first found

prominence in the field of statistical mechanics.

The Monte Carlo method is a computational technique used to simulate the attainment

of thermal equilibrium in a cooling solid. For a given solid with state i, and internal

energy E,, the Monte Carlo method generates a candidate state, j, by introducing a

Combinatorial Optimisation and Simulated Annealing

random perturbation to the current state. This newly generated state has internal

energy E. If AE, where is less than or equal to zero, then the newly

generated state is accepted unconditionally. If i.\E is greater than zero, then the state

transition from i to j is accepted according to the following criterion, known as the

Metropolis Criterion:

(

SE

kT)
state (i) -* state (j) if e

B
 ,when AE >0. 	[4.1]

where T is the temperature of the current state, and kB is the Boltzmann constant.

If the temperature is lowered slowly enough, then thermal equilibrium can be attained

for each temperature. The Monte Carlo Method models this by generating a

sufficiently large number of random state transitions for each value of T.

Kirkpatrick, Gelatt and Vecclii [Kirk83] adapted the Monte Carlo Method for the

simulation of the physical annealing process, described above, as a solution technique

for general combinatorial optimisation problems. Returning to the nomenclature of

Section 4. 1, definition 4.1 states that the solution domain of a combinatorial

optimisation problem is defined as a set of tuples, (D,c), with D representing a set of

discrete solution instances, and c a domain cost function. A control parameter, k, is the

analogue of temperature. The underlying equivalence suggested here is that a physical

particle based system can be modelled as a combinatorial solution domain, and that the

associated cost function is an analogue of internal system energy.

The basic simulated annealing algorithm is given in pseudo-code format in figure 4.5.

The acceptance function, ACCEPTQ, generates a random number between 0 and 1

using a uniform distribution.

Combinatorial Optimisation and Simulated Annealing

(
AE)

If the number generated is less than the value of e 	, then the state transition is

accepted; if the random number is greater, then the state transition is rejected. The

pseudo-code for this function is given in figure 4.6.

procedure SIM ANNEAL (S0 	in STATE; K0 	in CONTROL) is

S 	: STATE; 	 -- The state variable
TEMP 	STATE; 	 -- The temporary generated state
K 	: CONTROL; 	-- Temperature analogy

begin

K := K 0 ;

-- While loop looks for global optimum

while (not (STOPPING _CRITERIA)) loop
for COUNT in 1 .. M loop

-- Generate a new state
TEMP := GENERATEQ;
-- Compute cost difference
COMPUTE-DELTA-E;
-- Lower cost state; always accept.

if (AK < 0) then S := TEMP;

-- Higher cost state; may generate a hill climbing move
else

if (accept) then S := TEMP; end if;
end if;

end loop;
-- Update control parameter
UPDATE (K);

end loop;
end SIM ANNEAL;

Figure 4.5 The Simulated Annealing Algorithm.

From these definitions, it may be seen that the rate of convergence of the algorithm is

dependent upon the selection of the following: M, the inner loop criterion (i.e. the

number of states generated to simulated the attainment of thermal equilibrium); the

function UPDATEQ, which decrements the value of k, the control parameter; k0 , the

initial value of k; and the selection of an appropriate stopping criterion for the

algorithm. Communally these items are known as a cooling schedule.

66

Combinatorial Optimisation and Simulated Annealing

function ACCEPT() return BOOLEAN is

R REAL;

begin
R = RANDQM(l);

if (R < e_/k) then
RETURN true;

else
RETURN false;

end if;

end ACCEPT;

Figure 4.6 Pseudo-code state acceptance function.

While this thesis is primarily concerned with the pragmatic application of the

simulated annealing algorithm to the behavioural synthesis problem, a brief review of

current cooling schedule techniques is presented.

4.3.1 Cooling Schedule Techniques

Reaching Thermal Equilibrium

Two major approaches are well-documented for the determination of M, the number of

states generated at each value of the control parameter necessary to simulate thermal

equilibrium.

The first uses fixed-length Markov chain modelling [Aar85] to determine when

equilibrium has been reached. That is, a fixed number of state generation trials are

attempted at each control parameter value. Aarts [Aar85] states that a quasi-

equilibrium is achieved if, for a Markov chain (k), of length Lk, and cost parameter ck:

a(lk,ck) — q(c) [4.2]

where a(Lk,ck) is the probability distribution of the solutions after Lk trials of the kth

Markov chain, and q(c) is the stationary distribution of the Markov chain at ck.

67

Combinatorial Optimisation and Simulated Annealing

The equilibrium condition determined by Huang [Huang86] is based on the following

observation: When equilibrium is established, the ratio of the number of new states

generated whose cost is within a range, ö, from the average cost (C) to the total

number of newly accepted state transformations will reach a stable value, X. For high

values of k, the cost distribution is observed to be close to a normal distribution. A

range of state generations whose cost lies within the range (—C-8,T+6), known as the

within count, is established. The ratio of this range, X, to the number of newly accepted

state transformations is given by:

(

= erf - ö [4.3]

where erf() is the error function [Fe170]. In this system, the development of the

equilibrium condition is based upon the selection of the within count, and the

application of a maximum count value. Equilibrium is attained if the within count is

reached before the maximum count is exceeded. If the maximum count is exceeded,

then both counters are reset, and the process repeats. The value of ö is set to be such

that the final state at any value of k is close to the average cost (ö < a).

Updating the Control Parameter

The simplest technique for the UPDATE() procedure which decrements the control

parameter is to implement an exponential function such as

kn = ka(k), with O<a(k) <1 	 [4.4]

where k is the new value of the control parameter, and k is the current value. This

technique is proposed in Kirkpatrick [Kirk83]. Sechen [Sechen88] reports that the

most effective cooling schedules are generated when a lies between 0.8 and 0.99. This

method is inefficient for high values of k, however, where the current state is generally

many transitions away from the final, minimum cost solution. An alternative is to use

68

Combinatorial Optimisation and Simulated Annealing

an adaptive technique.

Huang [Huang86] uses the relationship between average cost of the current system

configuration (C) against the logarithm of the value of the control parameter for that

configuration. Plotting this annealing curve allows the control parameter to be set such

that decreases in a uniform manner. The slope of that curve is given by:

dC 	dC

	

= k— 	 [45]
dln(k) 	dk

In his treatise on statistical and thermal physics, Reif [Reif65] states:

dC c 2

[4.6]

If a linear approximation to the curve, as shown in figure 4.7, is used, substitution of.

equation 4.6 into equation 4.5 yields:

AC 2 a
[4.7]

ln(k') — ln(k) - k

Rearrangement of equation 4.7 leads to:

k LAC) 	 [4.8]
 Cr

A key assumption used in the derivation of equation 4.5 is that equilibrium can be

maintained provided that AC < a. Substituting AC = —Xa, where X :9 1, into

equation 4.8 yields:

k = k
Xk\

exp [4.9]
(— a

This derivation represents one of the most commonly used decrement functions.

Wel

Combinatorial Optimisation and Simulated Annealing

Cost AL

C ------------ — --- ------- ---

 - —kk' 	 In

Figure 4.7 Linear approximation technique used in [Huang86].

Initial Control Parameter Selection
The initial value of the control parameter, k0, should be selected such that all state

transitions can be accepted. In the domain of physical annealing, this corresponds to

heating the solid up until rearrangement at the atomic level can take place freely.

When translated into the simulation domain, the criteria here must ensure that at the

initial value almost all possible state transitions should be accepted. Defining an

acceptance ratio (k) at the khhhz transition:

(k)
= number of accepted transitions at k 	

[4.10]
number of proposed transitions at k

hence:

[4.11]

The actual value of X 0, known as the initial acceptance ratio may vary from 0.95 -

0.98 [Aar89]. For a sequence of trial state generations at a value of the control

parameter, k, let Cl represent the number of trails that result in a decreased (or

70

Combinatorial Optimisation and Simulated Annealing

unchanged) cost function and C2 represent the number of trials that result in an

increase. Let A represent the average difference in cost for all trials in C2. The

acceptance ratio can be approximated [Aar85]:

- (C1+C2)e

(CI +C2)

Rearrangement of 4.12 leads to:

[4.12]

k=

ln 	
C2

C2—C1(1 X))

[4.13]

The control parameter, k, is set to zero initially. A sequence of trial state generations,

M then takes place. After each trial, equation 4.13 is used to calculate a new value of k,

with X = X 0 . Cl and C2 correspond to the total number of increasing and decreasing

cost state generations obtained. When M = C 1 + C2, then the value of k at that point

is taken as the initial value of the control parameter, k0. Published results [Aar89]

indicate that this method provides fast convergence to k0 .

Stopping Criterion

The stopping criterion can be implemented in a simple, but effective form. The cost

of equilibrium states (C) for a number (11) of successive control value parameters is

compared. The algorithm is terminated if:

C=C for all i,j€ fl
	

[4.14]

In practice, the value of IT can be particularly low, typically 3. Markov chain analysis

[Aar89] reinforces this observation.

71

Combinatorial Optimisation and Simulated Annealing

4.4 The Class NP and Behavioural Synthesis

The simulated annealing algorithm has been shown to be effective for a wide range of

combinatorial and NP (Non-Polynomial time) complete problems [Cook7l, Karp72].

While an in-depth survey of the theory of NP-completeness lies outside the scope of

this thesis, a brief discussion is presented.

NP complete problems may be defined as a class of computational problem for which

there is no exact solution capable of being produced by a polynomial algorithm. As a

corollary to the above statement, it should be noted that if there is a polynomial

algorithm for any NP-complete problem, then there is a polynomial solution for all

NP-complete problems. The theory of NP-completeness therefore provides a

convenient watershed between tractable and intractable computational problems. At

best, the amount of computational effort required to solve an NP-complete problem

will be exponential, and therefore impractical for all but trivial problem instances.

In assessing whether a problem is in the class NP, polynomial transforms are applied to

the problem to try to reduce it to a known NP-complete form. The mechanics of this

reduction lie outside the scope of this thesis, but it should be noted that in many cases

the transformation process can be as time consuming as producing an approximate (or

heuristic) solution to the problem. Gary [Gary79] provides a comprehensive and

readable introduction to, and survey of, NP-complete problems. A brief summary is

presented below of known NP-complete problems which form constituent parts of the

behavioural synthesis procedure.

The MAX—CLIQUE problem (section 3.2.1), is known to belong to the class NP

[Cook7 1]. This illustrates the need for heuristics to be applied in the selection of the

most appropriate clique coverage. Without the introduction of heuristics, for problems

72

Combinatorial Optimisation and Simulated Annealing

of practical size, the MAX—CLIQUE problem would remain intractable. Also related

to the allocation procedures, the GRAPH—COLOURING problem [Law76, Holyer8 1]

is NP-complete, along with a variant of the matching problem, 3-D_MATCH

[Karp75]. Further, the MULTIPROCESSOR —SCHEDULING [Ullman75] problem

belongs to NP. Even techniques used to reduce the complexity of the data flow

structures encountered in the behavioural synthesis procedure [Fin92], reduced to the

PARTITION problem have also been shown to be NP-complete [Karp75].

4.5 Simulated Annealing and Behavioural Synthesis

A simulated annealing based algorithm, originating at the University of California at

Berkeley [Dev89], formulates the datapath generation algorithm as a two dimensional

placement of microinstructions on a grid representing available hardware resources.

This representation is a common thread throughout all simulated annealing based

systems, and it represents an extension of the successful application of the simulated

annealing algorithm to the field of global placement and routing of blocks in a VLSI

layout environment [Sechen88].

The Berkeley core synthesis system takes a description of the input algorithm in terms

of explicit statements of sequential, parallel and disjoint blocks, as shown in figure

4.8a.

The specification of disjoint statements allows mutually exclusive code segments to

execute on the same hardware resource.

The function used to compute the cost of the intermediate datapaths is simply a

weighted sum of the areas of constituent datapath parts, namely generic ALUs (the

Berkeley system does not use dedicated hardware blocks), registers and buses or links,

73

Combinatorial Optimisation and Simulated Annealing

along with a weighting which incorporates the overall system execution time (figure

4.8b). From this definition, it may be seen that the Berkeley system represents an

optimisation over a restricted hardware architecture. In many cases, especially in

signal processing architectures, a bus based system can introduce a significant

overhead in terms of silicon area.

The ALU cost function is not simply a sum of all operation costs associated with the

particular ALU. Devedas and Newton [Dev89] observe that an ALU capable of

performing both addition and subtraction is only marginally bigger than an ALU

capable of performing addition alone. With this in mind, a cost table for all potential

ALU functions along with register and bussing costs was defined. A typical cost table

is shown in figure 4.9.

A similar rationale is applied when assigning costs to registers. The table sets a

threshold so that designs using large register files are penalised more heavily. This is

also used when assigning interconnect costs.

In the cost function defined in figure 4.9, p3 is a function of the number of registers

used in the design, while p4 is a complex function of both the number of registers and

ALUs in the data path. The values in the cost table are derived from an evaluation of

the change in layout area given incremental addition of registers, interconnect and

register numbers for a given layout style. The resultant function is piecewise linear,

and Devedas and Newton use a data set small enough to given an improvement in

accuracy of solution over a linear approximation.

74

Combinatorial Optimisation and Simulated Annealing

(serial
(parallel

(add xl yl zl)
(add x2 y2 z2)

(parallel
(mult zl y3 z3)
(minus z2 y4 z4)

(disjoint
(divide z3 x3 z5)
(divide z4 x4 z5)

Cost 	p1 * (#ALU) + p2 * (execution—time) + p3 * (#register)

+ p4 * (bus)

Figure 4.8 (a) Berkley input behavioural description (b) Berkely cost function

cost of different operations in an ALU
ALU
add 50
sub 50
fadd 100
mult 250
add minus 60

#register costs
REGISTER
#starting from register 1, each has a cost of 10 units
1 10
#starting from register 5, each has a cost of 15 units
5 15

#execution time
EXECUTION
1 50
50 50

#bus costs
1 100
3 150

Figure 4.9 Berkeley costing table.

75

Combinatorial Optimisation and Simulated Annealing

4.6 Discussion

Simulated annealing was introduced as an effective technique for generating high

quality optimised solutions for general purpose combinatorial optimisation problems.

By considering the potential solution space for a behavioural synthesis problem as an

enumeration of all possible state transitions, and hence all possible datapaths, the

behavioural synthesis problem can be represented as a combinatorial optimisation

problem.

Chapter 3 presented algorithmic techniques for the solution of subtasks within the

behavioural synthesis procedure. This partitioning is known to lead to the generation

of locally optimal solutions through the introduction of heuristics. The simulated

annealing algorithm avoids this by accepting the generation of inferior states, and

therefore can effectively 'climb out' of local minima.

The controlling algorithm itself is known to be simple and robust. The mechanics of

the annealing process are well understood, and can be analytically modelled. A wide

variety of general purpose cooling schedules exist, and have been proven to be

particularly effective in the field of VLSI layout.

Pioneering work on the use of the simulated annealing algorithm in the field of

behavioural synthesis has taken place, and the result is a working system capable of

taking an algorithmic description and producing a datapath optimised for area

performance based around a costing function using a weighted sum to compute

datapath costs for a restricted hardware architecture.

The remainder of this thesis develops this work into a system capable of producing

optimised solutions for both area and speed performance over a full range of datapath

components.

76

Simulated Annealing Based Synthesis Techniques

5 Simulated Annealing Based
Synthesis Techniques

This chapter develops a set of datapath synthesis techniques based upon the simulated

annealing algorithm introduced previously. These techniques are drawn together in the

SAVAGE (a Simulated Annealing based VLSI Architecture GEnerator) toolset, which

is a modular software package capable of synthesising an RTL description of a

datapath from a fragment of behavioural code.

The chapter is organised into a number of separate sections. The first introduces a

novel data structure, capable of sustaining an extended range of optimisation moves 1 ,

and which also permits a simple costing method. The application of the simulated

annealing algorithm to the behavioural synthesis task is then considered. As simulated

annealing is a general optimisation technique, little code modification is required.

1. The random perturbations of the current state of the system described in section 4.3 are
known as optimisation moves. Where different types of moves are available, they are
grouped into move sets.

77

Simulated Annealing Based Synthesis Techniques

The next two sections address the core of the synthesis method presented in this thesis.

In the first, a basic move set is developed; this set covers scheduling, processor

allocation and memory and interconnect optimisation. Linked to the datapath move set

is the mechanism by which the quality of the solution is assessed. The costing method

proposed by Devedas and Newton [Dev89] is extended, and a novel cost-multiplier

system introduced. -

The SAVAGE tools are described, and Paulin's differential equation example is

presented as a brief illustration of the method.

5.1 Data Structures

In common with the majority of simulated annealing based applications (solution of

the Travelling Salesman Problem [Aar89], VLSI block placement and global routing

[Sechen88]), the solution space is presented as a grid structure, or plane.

The Berkeley system [Dev89], described in section 4.5, represents the datapath

synthesis problem as a placement of microinstructions in a two-dimensional grid

whose axes correspond to the available hardware resource and control steps

respectively. Memory and communications optimisation takes place after the

optimisation move has been applied, 'downstream' in effect, from the scheduling and

allocation problem. Consequently, no optimisation moves are brought to bear directly

on those synthesis subtasks. Thus the Berkeley model retains a single degree of

freedom - that of placement of microinstructions in a Resource-time 2 space.

The model described here offers three degrees of freedom by providing separate

planes for the simulated annealing algorithm to operate on. These planes correspond to

2. This terminology first occurs in Denyer [Denyer89].

78

Simulated Annealing Based Synthesis Techniques

a Resource-time space, a Memory-time space, and a representation of the

communications infrastructure required to complete the datapath known as the Port-

connection space. While complete decoupling of the planes is impossible, the

annealing algorithm will be demonstrated to operate effectively within each.

5.1.1 Resource-time Space
Resource-time (R-t) space records the current schedule for each operation present in

the input data flow graph, and the processor that each operation is currently allocated

to. R-t space is a two-dimensional array indexed by processor resources available to

execute dataflow operations, and the control steps in which those operations are

executed.

An operation, 0, can exist at R-t location R-t[processor, c-step] if, and only if, the

following conditions are true:

All predecessor nodes (pred(0)) execute in the range [1 .. c-step-1], and

all successor nodes (succ(0)) execute at time, t, such that I > c-step.

The processor is capable of executing the operation type. (i.e. O.type €

processor. type3).

By adhering to these conditions, R-t space models data flow precedence and ensures

processor binding correctness. The data flow fragment of figure 2.1 can be (arbitrarily)

mapped4 into R-t space as shown in figure 5.1.

5.1.2 Memory-time Space

Memory-time (M-t) space records individual signal lifetimes over all control steps in

Refer to sections 2.3 and 2.4.1.
The initial mapping of the data flow graph into R-t space is a function of the BUILDER
module in the SAVAGE toolset, and is described in section 5.5.2.

79

Simulated Annealing Based Synthesis Techniques

the current schedule. M-t space is a two-dimensional array whose axes are indexed by

memory components and control steps respectively. The grid is bounded by the total

number of signals present in the data flow graph, and the latest execution time present

in the schedule

Processors
-

MULF_1 MULF_2 SUBF_1

1

2

3

c-steps
4

5

6

Figure 5.1 Data flow graph from figure 2.8 mapped into R-t space.

Each control step is partitioned into read and write phases. This adheres to the control

model developed in section 2.6. Memory components can therefore be reused on a

cycle to cycle basis while preserving data integrity. Similarly, signals may share a

memory component if, and only if, the lifetimes of both signals are mutually

exclusive. Thus the R-t space mapping of figure 5.1 produces an M-t space as shown in

figure 5.2.

5.1.3 Port-connection Space

Port-connection (P-c) space records all point to point connections within the

synthesised datapath. Further, P-c space records all bindings between signals and nets.

mul_1 mul_2

mul 3

muL4

mul_6 sub-5

sub-7

80

Simulated Annealing Based Synthesis Techniques

P-c space is a two-dimensional array whose axes correspond to all processor and

memory input and output ports respectively.

Memory Components

MEMF_1 MEMF_2 MEMF_3 MEMF_4 MEMF_5 MEMF_6

c steps 	
W 	

L_J LiI

Figure 5.2 M-t space derived from R-t space offigure 5.1

Each array location contains two items:

A Boolean flag. This is set if and only if there is a communications

function required between the two ports.

A pointer to a net instance. If the Boolean flag is set, then the pointer

indicates which net carries out the communications function.

The P-c space corresponding to the R-t and M-t mappings in figures 5.1 and 5.2 is

shown in figure 5.3. For clarity, the pointers to the net instances are not shown.

5.1.4 Implementation Details

Each of the optimisation planes is described above as a two dimensional array.

Because of their dynamic nature, however, it is impractical to implement them as

conventional static array structures.

81

Simulated Annealing Based Synthesis Techniques

Input Ports

— ci c' - ... 	°J C.)

U.
-j

LL '
-J

U 1
—J

U. 1
—J

U. 1
Co

U.' 	U. 	U. 1
Co

U.'

U.'

Cn
Ui 	Ui Ui Ui Ui Ui 	o En

MULF1.Z iiiE
- MULF_22

SUBF_1.Z

MEMF_1 .ZI
-

-

MEMF_2.ZI -

MEMF_3.Z I -

MEMF_4.Z

5.Z MEMF_-
Output Ports - -

--

-

MEMF_6.Z

IOF_U.Z - -

-

-

-

IOF_X.Z - -

-

IOF_Y.Z

ROMF_DX.Z
- - - -

-

- - - -

ROMF_G31
- I I -

Figure 5.3 P-c space derived from R-t and M-t spaces offigures 5.1 and 5.2.

In order to maintain the maximum flexibility in the selection of scheduling and

allocation moves, R-t space is implemented as a linked list structure. In this way,

processors can be added to and deleted from R-t space with a minimal computational

overhead. Each processor contains a pointer to another linked list corresponding to

those operations currently allocated to execute on that processor. Items on this list are

composed of pointers 5 to the input data flow graph, and record fields recording the

current execution time. This structure is shown in figure 5.4.

Similarly, M-t space is maintained as a linked list of memory components. Each

contains a pointer to a linked list corresponding to the signal(s) currently allocated for

5. It is important to note that these pointers are doubly-linked, i.e an operation allocation can
be determined by beginning the search from the data flow graph.

82

Simulated Annealing Based Synthesis Techniques

storage. Again, the list items point to the input data flow graph. This data structure is

shown in figure 5.5.

MULF_1 	MULF_2 	SUBF_1

R-t 	-''l 	I 	I 	I 	I -I•---I 	I 	I 	I

mul_1 	1 	mul_2 	1 	sub-5 	4

mul_3 	2 	muI4 	3 	sub-7 	6

mul_6 	4

Figure 5.4 Linked list implementation of R-t space shown in figure 5.1

Figure 5.5 Linked list implementation of M-t space shown in figure 5.2.

P-c space is maintained as a linked list of input port records. Each input port record

points to a list of output port records. Where a communications function between ports

is required, a pointer to the appropriate output port is appended to the output port list

of the corresponding input port. Each output port record contains another pointer to the

net instance implementing the communications function. These net instances are also

implemented as a linked list. Further, each output port record also contains a pointer to

83

Simulated Annealing Based Synthesis Techniques

the signal in the input data flow graph requiring the communications function. This

structure is shown in figure 5.6 (Again for clarity, the pointers to the net instance list

and to the data flow graph are not shown).

Figure 5.6 Linked list fragment of P-c space shown in figure 5.3

5.2 Core Synthesis

The core synthesis routines comprise the simulated annealing procedure and the

cooling schedule used. The simulated annealing algorithm shown in figure 4.5 may be

divided into two major phases:

Initialisation: The initial system state is generated along with a starting

value for the control parameter, k.

Iteration: The state generation and cost assessment loop continues until

all stopping criteria are satisfied.

The initial system state is a function of the BUILDER module, described in section

84

Simulated Annealing Based Synthesis Techniques

5.5.2. BUILDER seeds operations in R-t space, generates an M-t space based upon the

initial R-t mapping and finally computes P-c space. These three components form the

initial system state.

5.2.1 Initial Control Parameter Value
The initial value of the control parameter, k0 , is determined using the convergence

technique described in section 4.3.1. A sequence of 100 states is generated. The

control parameter, k, is set to zero initially. A trial state is generated, and the quality of

the newly generated state is assessed using the cost function. This value is compared

with the previous cost function. The Cl and C2 counts are incremented accordingly.

Equation 4.13 is then used to generate a new value for k. At the conclusion of the

sequence, the value of k is set as the initial control parameter value.

5.2.2 State Generation

The state generation procedure applies a random perturbation to the current system

state. This is a five stage process.

Optimisation plane selection: A random variable selects either R-t, M-t

or P-c based optimisation. Plane selection dictates the type of optimisation

move to be carried out; scheduling and allocation, memory optimisation or

interconnect optimisation.

Operand selection: If R-t space is chosen, then the operand is a node

selected at random from the input data flow graph. If M-t space is chosen,

then a signal is selected at random from the input data flow graph. Finally,

if P-c space is chosen, then a component input port is selected at random

from P-c space, or a net is selected from the net instance list.

(iii) Build move set: A valid move set for the selected operand is generated

85

Simulated Annealing Based Synthesis Techniques

This set describes all potential movement of the operand in the selected

optimisation plane.

Operator selection and execution: A move is selected at random from

the generated set. This move is then applied to the selected operand.

Change propagation: As a result of operator execution in R-t space, the

M-t and P-c spaces may require updating. Similarly if the selected

operation acts in M-t space, then P-c space may require updating. All

resultant changes are propagated by the VALIDATE procedure, described

in section 5.5.3.

5.23 Attaining Thermal Equilibrium

Attaining thermal equilibrium (i.e. establishing a steady-state probability distribution

for all state generations) is a two stage process:

Generate maximum count threshold and within count values.

Increment counters at each state generation.

Ideally, the maximum count threshold and within count values should be updated

dynamically to reflect changes in the cost distribution as the control parameter is

decreased. This is infeasible because of the large amount of compute time required to

monitor the steady-state condition for all state generations. These parameters are

therefore determined prior to the optimisation procedure.

Setting b = 0.5a (i.e. the range limit on acceptable generated costs) in equation 4.3

yields:

= erf(O.5) = 0.38
	

[5.1]

The within count is then set to be 0.38(3n), where n is the number of nodes (i.e.

86

Simulated Annealing Based Synthesis Techniques

datapath components and data flow operations/signals) in the problem. The maximum

count threshold is specified as 1 - within count(problern bound) = 0.62(3n).

At each state generation the state cost is computed. If the cost lies within the range (C-

ö, +ö), where C is the average cost, then the within count is incremented. The current

number of state generations is also incremented and compared to the maximum count

threshold. If the current number of state generations exceeds the maximum count

threshold, then both counters are reset to zero and the process continues. If the within

count value is attained prior to reaching the maximum count threshold, then thermal

equilibrium has been simulated and the state generation loop terminates.

5.2.4 Control Parameter Update

The control parameter is updated in accordance with equation 4.9:

 (?k
k ' =kexpi— —

Experimental results [0tt84, Lun84] suggest that a suitable value for X is X = 0.7.

Substitution in the above equation gives:

(O.7k"
k' = k'expj -----

 l
	 [5.2]

\. a)

After each state generation sequence, the standard deviation of the cost distributions

generated during the sequence is calculated. The resulting value is applied in equation

5.2, and the new value of k calculated.

5.2.5 Stopping Criterion

The stopping criterion used in the simulated annealing core is composed of two major

components. The first is the comparison of three successive cost values. At low values

87

Simulated Annealing Based Synthesis Techniques

of the control parameter, this criterion indicates a stable datapath structure. The second

is concerned with the validity of the datapath generated. The WIRED function

(described in section 5.5.3) ensures that there are no wired-OR connections present in

P-c space.

5.3 Datapath State Generation Move Sets

The state generator selects a move set from those described in the following sections.

The state generation moves have been grouped into scheduling and allocation,

memory optimisation and net optimisation moves according to the primary plane of

operation (i.e R-t, M-t or P-c space).

5.3.1 Scheduling and Allocation
The basic scheduling and allocation move within R-t space corresponds to a

translation of an operation over either or both axes. A node is selected at random from

the input data flow graph. A valid move set for that node is then generated. In this

context, a valid move does not violate data flow precedence. The valid move set is a

subset of the moves described in the following subsections.

Schedule on current processor (UNARY_STEP)

This optimisation move forces a unary increase or decrease in the operation execution

time; the processor allocation remains unchanged. For an operation, 0, executing on

processor, P. at c-step c, the validity of this move is subject to data flow dependencies

and on the availability of P at c-steps, c-i, c and c+i. If any of these execution times is

unavailable, the optimisation move proceeds using the others. If all are unavailable,

the move is invalidated. Where all c-steps are available, the direction of the move is

decided on the generation of a random variable (c.f. the state acceptance function,

ACCEPT, presented in section 4.3). This move is illustrated in figure 5.7.

88

Simulated Annealing Based Synthesis Techniques

Processors

MULF_1 MULF_2 	SUBF_1

1 mull mul_2

2 mul_3

muL4

c-steps
mul_6 sub-5

6 sub-7

Figure 5.7 Schedule on current processor.

Processors

MULF_1 MULF_2 	SUBF_1

1 mul—1 mul_2

2 mul_3

3 muL4

c-steps
4 mul_6 0 	 sub-5

5

6 sub-7

Figure 5.8 Schedule on valid processor.

89

Simulated Annealing Based Synthesis Techniques

Schedule on valid processor
This optimisation move may force a unary increase or decrease in the selected

operation execution time and a change in processor allocation. For an operation, 0,

executing on processor, P. at c-step, c, all processors capable of supporting the

operation.type and of sustaining operation execution at c-steps c-i, c and c+1 are

grouped in a subset. A processor is selected at random from this subset. The operation

is then allocated to the selected processor. A valid schedule for the operation is

determined using the UNARY—STEP function. This move is illustrated in figure 5.8

Create processor
This optimisation move creates a new processor for the selected operation and may

force a unary increase or decrease in the operation execution time. A new processor

capable of supporting the operation.type is created and added to the Resource axis of

R-t space. The selected operation is allocated to the newly created processor. A valid

schedule for the operation is determined using the UNARY—STEP function. The move

is illustrated in figure 5.9.

Function merge

This optimisation move creates a multi-function ALU structure from a dedicated

processor. The move may force a unary increase or decrease in the execution time of

the selected operation. A subset of processors not currently capable of supporting the

operation.type is formed. Each processor must be capable of sustaining operation

execution at c-steps c-i, c and c+1. A processor is selected at random from the subset,

and the operation.type is added to the processor.type list. The operation is then

allocated to the selected processor. A valid schedule for the operation is determined

using the UNARY—STEP function. This procedure is illustrated in figure 5.10.

90

Simulated Annealing Based Synthesis Techniques

Processors

MULF_1 	MULF_2 	MULF_3 	SUBF_1

I 	mul_1 	mul_2

2 	mul_3

3 	 mul_4

c-steps
4 	muI6 	 sub-5

5

6 	 sub-7

Figure 5.9 Create processor.

Processors

ALUF_1 MULF_2 	SUBF_1

1 mul_1 mul_2

2 muL3

3 muL4

c-steps
4 mul 6

-

sub_5

5

6 sub-7

Figure 5.10 Function merge.

91

Simulated Annealing Based Synthesis Techniques

5.3.2 Memory Optimisation

Memory optimisation is concerned with achieving the minimum number of memory

components required to store all signals declared in the data flow graph. The

optimisation move merges multiple signals into a single memory component. The

overall effect of this move is similar to that produced by the left-edge algorithm,

described in section 3.2.2.

Signal Merge

A signal is selected at random from the input data flow graph. M-t space is indexed,

and a subset of all memory components capable of storing the signal over its lifetime

is generated. A memory component is selected at random from the subset. The signal

is then allocated to the selected memory component. This process is illustrated in

figure 5.11.

Create Memory Component

A signal is selected at random from the input data flow graph. A memory component

of type register6 is added to M-t space, and the selected signal allocated to the newly

created register. This process is illustrated in figure 5.12.

5.3.3 Optimising P-c Space

Optimisation within P-c space takes one of three forms. The first is concerned with

exercising the commutative law, and may be thought of as a 'port swap' operation,

while the second mechanism is concerned with optimising the binding between the

communications functionality within the datapath (i.e. point-to-point connections) to

the net instances (i.e. wires, multiplexers and buses) required to implement that

functionality. Although it is not directly associated with P-c space, the last

optimisation move is a good example of the relationship between M-t and P-c space.

6. The Net Merge function is able to alter the mernory.type field.

92

Simulated Annealing Based Synthesis Techniques

The final technique merges individual registers into registerfile structures.

Memory Components

MEMF_1 MEMF_2 MEMF_3 MEMF_4 MEMF_5 MEMF_6

2 R
	J!j

csteps
4 _

5 	 S5 	S6

Figure 5.11 Signal merge.

Memory Components

fEW_l IEW_2 NEW _3 NEW_4 IEPF_5 IvEW_6 lEW7

2
RES

c-steps 	- - 	 s4

F7711
4

:E ---- •-

Figure 5.12 Create memory component.

93

Simulated Annealing Based Synthesis Techniques

Port Swap

A valid (i.e. commutative) operation is selected at random from the input data flow

graph. By indexing R-t space, the input ports to the processor currently allocated to

execute the operation can be determined. Once the processor input ports and the signal

source ports have been located in P-c space, the input port connections are transposed.

This is illustrated in figure 5.13.

- Input Pons

mn.
U •U •

w ulli....... . U..
U

-Selected signal j!l! Ui•.........
TH •.UU••UUUU•

MEM!2 U•UU•U••
9I2 .U.UUUUU•UU•

•iI Pons V •U •.......
U......

•Ji U......
•JiUU ..UU•U••U•
•i... ••uuuu

;L i i!JU • UUUUUUUUU
;.!!1U•

Figure 5.13 Port swap operation

Net Merge

This optimisation move replaces implicit wired-OR connection to an input port with a

multiplexer instance. The optimisation moves supported are illustrated in figure 5.14.

A column-wise search through P-c space is carried out. Input ports with references to

multiple output ports (implied wired-OR) are grouped in a subset (Input ports with a

single output port connection are implemented using the default net type - WIRE.). An

input port is selected at random from the subset. A pair of output ports are selected at

random from the output port list. If both ports point to the same multiplexer instance,

94

Simulated Annealing Based Synthesis Techniques

then the move is invalidated. In the case where both ports point to separate wire

instances then a new multiplexer instance is added to the net list and the pointers to the

wire instances are replaced with pointers to the multiplexer instance (figure 5.14(a)).

A 	B A 	B

A B C 	
ABC

_/7
+

A BC D 	
ABCD

A BC D 	
ABCD

ti 	• i .• I

Figure 5.14 Net merge (a) wire to multiplexer, (b) wire and multiplexer to multiplexer, (c) multiplexer
and multiplexer to multiplexer and (d) multiplexer and multiplexer to bus.

If either port points to a multiplexer instance, with the other pointing to a wire

instance, then the wire instance is replaced with a pointer to the multiplexer (figure

95

Simulated Annealing Based Synthesis Techniques

5.14(b)). The cardinality of the multiplexer is also updated. In the case where both

ports point to different multiplexer instances, then the two are merged into a single

instance whose cardinality matches the sum of the originals (figure 5.14(c)) If the

cardinality of the new multiplexer is greater than a pre-defined bus threshold value,

then the multiplexer instance may be replaced with a bus instance (figure 5.14(d)).

Register Merge

This optimisation move merges two register (or register file) instances with a wired-

OR connection to an input port into a single register file instance with a single wire

connection to the input port. This move is invalidated if the read and write times of the

signals intended for the register file are not mutually exclusive. The optimisation move

is illustrated in figure 5.15.

A valid input port is selected from P-c space. Here, valid refers to input ports with

more than one memory component on its output port connection list. Two memory

components are selected at random. Both have their type instance set to FILE, and

their cardinality index incremented accordingly.

5.4 Solution Quality Assessment

The costing function quantifies the quality of the newly generated state based upon

three major criteria:

Maximum operation execution time, extracted from the current schedule

This measures the quality of the temporal optimisation, i.e. the total

execution time of the behavioural description.

A quantitative assessment of the structure of the generated datapath.

An estimation of the control overhead incurred by the schedule and

datapath configuration.

96

Simulated Annealing Based Synthesis Techniques

I 	 I

_

 I

Figure 5.15 Valid register merges.

The maximum execution time is readily available as a function of the current schedule.

A quantitative assessment of the structure is normally generated by attaching a value

to each type of component present in the datapath and summing over all components

in the datapath. Devedas and Newton [Dev89] refine this method by recognising that

multiple component instances, such as register files (of cardinality n), will occupy less

silicon area than a single component instance n times. A linear 'sliding scale' of cost is

assigned to multiple component instances.

Many costing methods, however, overlook the routing overhead associated with a

given datapath configuration. While all costing methods account for the nets (e.g.

97

Simulated Annealing Based Synthesis Techniques

multiplexers) present in the datapath, very few consider the interconnect density (i.e.

the number of point-to-point connections in the datapath). Behavioural synthesis tools

generally produce an optimised datapath macroarchitecture which is then targeted to a

particular layout style by logic synthesis tools. For the standard cell and gate array

technologies, the routing overhead can be up to 60% of the total silicon area

[Sechen86]. Consequently, a measure of point-to-point connectivity is an essential

component of the assessment of the datapath structure.

Within the SAVAGE system, the maximum execution time can be extracted by

traversing R-t space searching for the maximum value of operation.execution_time.

A similar search method is used to determine the numbers and types of datapath

component. Finally, a measure of the interconnect density is obtained by summing the

number of connection flags set in P-c space (figures 5.3 and 5.6).

The control overhead for a given datapath configuration is based on the following

observations:

For a 2' input multiplexer, n control signals are required to select the

appropriate input signal.

If a multi-function processor is capable of executing 2m different operation

types, then ni control signals are required for function selection.

Where a register file of cardinality 2 k is instanced, k control signals are

required to select the appropriate register output, in addition to the

equivalent of a 2k input demultiplexer.

For a schedule comprising of 2t control steps, a state machine of t states is

required for sequencing purposes.

98

Simulated Annealing Based Synthesis Techniques

To provide meaningful comparison between SAVAGE and other reported synthesis

systems, however, only the figure obtained from (iii) is computed and used within the

SAVAGE system.

5.4.4 A Datapath Costing Model

The SAVAGE datapath cost function is a summation of the quality criteria outlined -

above:

COST (STATE) = MAX—EXECUTION + E COST(DATAPATH_COMPONENTS)

• INTERCONNECT—DENSITY(PC)

• E CONTROL—OVERHEADS (DATAPATH_COMPONENTS) 	[5.3]

A table lookup is used to obtain the datapath component costs. Table 5.1 indicates the

relative costs of the various datapath components. These costs represent the number of

fundamental building blocks required to implement the datapath component. For a

compiled logic technology, this may be thought of as cell units used, while for a gate

array technology it may be thought of as gate equivalents. The values quoted here

were obtained from the LSI l.Op. Cell-Based Products Databook [LSI91]. The figures

quoted are for cell units used for each compiled datapath component.

The ALU function cost recognises the ability to share logic within a multi-function

ALU. The multiplexer cost reflects the increase in multiplexer complexity as the

number of multiplexer inputs increases. The bus cost is interpreted as the cost of the

drive circuitry required for bus access. This cost increases linearly with the number of

bus inputs.

99

Simulated Annealing Based Synthesis Techniques

Datapath Component Cost

Adder 100

Subtractor 108

Multiplier 160

Comparator 140

ALU MAX(function cost) + 30%

Register 70

n-Register File 70 n - 10%

n-ROM 40n

n-Multiplexer 20.(10 log(n))

n-Bus 27n

Table 5.1 Datapath component costing table.

5.4.5 A Novel Cost Multiplier System

The SAVAGE datapath cost function provides a balanced assessment of the solution

quality after a state generation. A cost multiplier system is implemented to allow the

design engineer to penalise the generation of undesirable states. A cost multiplier is

introduced for each quality criterion detailed above. Applying these cost multipliers to

equation 5.3 gives:

COST (STATE) = C1.MAX_EXECUTION + C k .COST(DATAPATH COMPONENT k)

• C2.JNTERCONNECT_DENSITY(PC)

• Ck .CONTROL_OVERHEADS (DATAPATH COMPONENT k) 	[5.4]

where Ck is the cost multiplier associated with a datapath component of type k. This

novel system allows the design engineer to influence the overall architectural style of

the solution datapath without directly affecting the state generation mechanism. The

cost multipliers are input to the SAVAGE system, and may be changed over a sequence

of simulated annealing runs.

100

Simulated Annealing Based Synthesis Techniques

5.5 The SAVAGE Toolset

SAVAGE is a modular software system. This software development technique offers a

number of distinct advantages.

Functional partitioning: The datapath optimisation routines are maintained

separately from those routines which control the search through the datapath solution

space.

Software Interface: Within the SAVAGE program, interfaces between software

procedures are carefully defined. This can be effectively policed by using a strongly

typed programming language, such as ADA, as the implementation medium.

Algorithmic tasks can easily be subdivided into manageable programming blocks, so

that a significant software procedure (such as the simulated annealing core) can be

developed and debugged quickly. Controlling the degree of interaction between code

modules and the data structures enables changes in the solution datapath to be

accurately tracked, and the correctness of the solution to be monitored throughout the

optimisation procedure.

Code maintenance: By partitioning the datapath optimisation functions and search

control functions into well understood code fragments each of manageable

complexity, and by rigorously adhering to the interface standards, code maintenance

and upgrading is more straightforward.

Ease of library expansion: Expansion of the optimisation move sets is also made

straightforward by the adoption of a modular scheme.

The major components of the SAVAGE system are illustrated in figure 5.16, and are

described below.

101

Simulated Annealing Based Synthesis Techniques

Datapath 	 Cost Assessment
Cost Multipliers 	Functions

SLANG

SAVAGE
SYNTHESISER SY NTHESISER

Source 	 A 	A 	4 	 Datapath
Text 	 BUILDER 	 DUMPER Netlist

R-t 	M-t 	P-c
Moves Moves Moves

Figure 5.16 SAVAGE structure.

5.5.1 SAVAGE Synthesis Flow
The source text is processed by the SLANG (SARI LANGuage) compiler. SLANG is

a subset of ADA, and the compiler produces a data flow representation similar to that

described in section 2.3. The SLANG compiler was developed as part of the SAGE

program [Grant9Oa], and is fully described in [Sey89].

After compilation, the source text has been transformed into a data flow

representation. This graph is passed to the BUILDER module, which produces the

initial data structure (R-t, M-t and P-c space).

The SYNTHESISER module comprises the simulated annealing procedure and its

support functions. The state generation mechanism makes external calls to the

optimisation move sets that are required. The state generation move sets and the

associated costing functions are not integrated into the SYNTHESISER module. The

102

Simulated Annealing Based Synthesis Techniques

reason for this is primarily experimental; code maintenance and upgrades to the state

generation moves can take place independently of the optimisation core.

Once optimisation is complete, the DUMPER module traverses the SAVAGE data

structure extracting all datapath and connectivity information. A datapath netlist is

created which adheres to the syntax specified in section 2.4.

5.5.2 BUILDER

The function of the BUILDER module is to take a compiled data flow graph and

produce an initial solution space. This is a three stage operation.

Seed R-t space: BUILDER establishes data flow precedence by building

an ASAP schedule. Starting from the operations with the latest scheduled

execution time, operations are generated randomly generated execution

times bounded by the production and consumption times of the operation

input and output data. BUILDER then creates a set of processors capable

of executing the data flow operations. A random number of each type of

processor is generated, bounded by the number of operations of the type

executing concurrently and the maximum number of operations of that

type present within the data flow graph. Operations are then randomly

allocated among the processor set.

Build M-t space: The BUILDER creates a set of memory components (of

type REGISTER). This size of the set is determined by the number of

signals present in the data flow graph. Signals are then serially allocated to

the registers.

(iii) Complete P-c space: From the initial R-t and M-t spaces, the Port-

103

Simulated Annealing Based Synthesis Techniques

connection space can be completed. All net instances required default to

type WIRE.

5.5.3 Datapath Verification and Validation

The VALIDATE procedure propagates datapath changes following a state generation.

VALIDATE propagates changes in M-t and P-c space if the perturbation occurs in R-t

space, and propagates changes in P-c space if the perturbation occurs in M-t space.

If mutually exclusive signals allocated to the same memory component become

overlapped as a result of a scheduling operation, then VALIDATE reallocates one of

the signals to a free memory location and updates P-c space. Where a new port

connection is required, VALIDATE sets the P-c flag appropriately and instances a

WIRE net type. Subsequent state generations can optimise the new net instance.

Similarly, where a port connection is severed, VALIDATE removes the pointer to the

net instance, and where required, updates the cardinality of that instance.

The integrity of the datapath is policed by the WIRED procedure. The only illegal

datapath state that can be generated is where wired-OR connections occur on a

processor input port. This can be as a result of the VALIDATE or BUILDER

procedures. The WIRED function checks every input port for such datapath violations

as part of the cost assessment procedure after every state generation.

5.6 A Worked Example - Differential Equation Solver

The SAVAGE tools were exercised on the differential equation example first cited in

Paulin [Paulin86]. An iterative algorithm is used to solve the second order differential

equation below:

y" + 3xy' + 3y = 0 	 [5.5]

104

Simulated Annealing Based Synthesis Techniques

The source text which is input to the SLANG compiler is given in figure 5.17.

procedure DIFFEQ (X, U, Y : in out INTEGER; A : in INTEGER) is

Xl,Yl,Ul : INTEGER;
DX,C3 : CONSTANT;

begin

while (X < A) loop
Xl := X + DX;
Ul := U - (3*X*U*DX) - (3*y*DX);

Yl := Y + (U*DX);
X := Xl; U := Ul; Y 	Y].;

end loop;

end DIFFEQ;

Figure 5.17 Differential equation procedure.

After compilation, the DIFF_.EQ procedure is transformed into the data flow graph

shown in figure 5.18.

5.6.1 A Maximum Speed Solution
In order to generate a maximum speed solution, the cost multiplier associated with the

maximum data flow execution time is significantly increased. This discourages state

generations with a long schedule. Similarly, as datapath area is of secondary concern

in a high speed solution, the processor multipliers are relatively small. Further, a high

speed solution implies fewer overall control steps, so the cost multipliers associated

with those datapath components incurring control overhead, and multiplier associated

with the control overhead itself (outlined in section 5.4.3) remain relatively small.

ROMs are essential to the datapath function, so no cost multiplier is specified. All cost

multipliers for a maximum speed solution are specified in table 5.2.

105

Simulated Annealing Based Synthesis Techniques

U 	dx 	c3 	x 	c3 	y 	u 	dx 	x 	dxTh

mul_i X 	mul_2 X 	mul_4

dx
si 	s2 	 s4

mul_3 X 	muI6 X

U
s3 	 s6

sub-5 -

s5

sub-7 -

mul_5 X 	add-1

Y 	 a
s7 	s8

add _2 + cmp_1 >

yi 	 xi

ul

Figure 5.18 Compiled data flow graph

Adder 10 Register 30

Multiplier 10 Register File 30

Comparator 10 ROM 1

ALU 10 Maximum execution time 100

Multiplexer 30 Control Overhead 25

Tr-Buffer 45 Interconnect Density 25

Table 5.2 Cost multipliers for maximum speed solution.

Following the SAVAGE optimisation procedure, the datapath shown in figure 5.19 was

generated. The datapath statistics are compared with other solutions reported in the

106

Simulated Annealing Based Synthesis Techniques

literature (table 5.3). No datapath schematics are reported for this maximum speed

solution, so a full comparative analysis cannot be performed. It should be noted,

however, that the SAVAGE system performs well by comparison, requiring the

minimum number of registers and multiplexer inputs for a solution with a four control

step schedule.

System C-Steps Processors Registers Mux Inputs

SPLICER [Pangrle88] 4 2x,+,-,> 6 11

CLIQUE [Fin92] 4 2x,-i-,-,> 5 11

ASSIGN [F1n92] 4 2x,+,-,> 5 11

HAL [PauIin89b] 4 2x,+,-,> 5 10

SAVAGE 4 2x,+,-,> 5 10

Table 5.3 Datapath statistics for maximum speed solution.

Figure 5.19 Maximum speed differential equation datapath.

107

Simulated Annealing Based Synthesis Techniques

5.6.2 A Minimum Area Solution

In generating a minimum area solution the cost multipliers associated with individual

processors are large, while the multiplier associated with ALU structures is small,

reflecting the desirable nature of states generated which map different operation types

onto a single functional unit. A minimum area solution will execute in a greater

number of control steps than a maximum speed solution, and so the control overheads

incurred will be greater. This is reflected by the increase in the cost multipliers

associated with controlled components, and the inherent control overhead itself. For

the same reason, the number of point-to-point connections should be minimised; the

cost multiplier associated with interconnect density is higher than that for a maximum

speed solution. The full set of cost multipliers for a minimum area solution are

presented in table 5.4.

Adder 50 Register 30

Multiplier 50 Register File 20

Comparator 50 ROM 1

ALU 10 Maximum execution time 5

Multiplexer 30 Control Overhead 75

Tr-Buffer 45 Interconnect Density 75

Table 5.4 Cost multipliers for minimum area solution.

The datapath generated using these multipliers is illustrated in figure 5.20(a).

Comparative results for this minimum area solution are given in table 5.5. The

SAVAGE solution compares favourably with those from the published literature, but

the additional factors in the cost assessment function, namely the control overhead and

the interconnect density figures result in a solution datapath more amenable to the

prevalent compiled logic implementation technologies.

108

Simulated Annealing Based Synthesis Techniques

SAVAGE

ASSIGN

HAL

Figure 5.20 Minimum area datapaths.

109

Simulated Annealing Based Synthesis Techniques

System C-Steps Processors Registers

ASSIGN [Fin92] 8 x,[+,-,>] 5

HAL [Paulin89b] 8 x,[+,-,>] 5

SAVAGE 8 x,[+,-,>] 5

System
-

Mux Inputs .

Control Wires Point to Point
Connections

ASSIGN [Fin92] 8 (4)a 9 13

HAL [Paulin89b] 11 13 22

SAVAGE 10(+2) 8 19

a. Extra multiplexer inputs indicated as overhead for register file demultiplexing.

Table 5.5 Datapath statistics for minimum area solution.

5.7 Summary

This chapter has presented a set of synthesis tools based on the simulated annealing

algorithm. A data structure was developed which enabled the optimisation routines to

operate effectively in the scheduling and allocation, memory optimisation and

interconnect minimisation domains. A set of modular optimisation moves was

developed to describe all potential state generations from a given starting state.

Further, the costing model described in Devedas [Dev89] was extended to provide a

link between the datapath macroarchitecture and the physical implementation. The

SAVAGE system was applied to a small-scale example, and was able to demonstrate

the speed vs. area trade-off common to all synthesis problems. The generated

datapaths compare favourably to those in the published literature.

The next chapter exercises the SAVAGE system on two large-scale benchmarks, and

introduces mechanisms for resource constrained synthesis.

110

SAVAGE Case Studies

6 SAVAGE Case Studies

This chapter presents two substantial case studies. The first is a comparative study

between SAVAGE and the SARI tool, SAGE (SARI Architecture Generator

[Grant9Ob]). SAGE is primarily an interactive tool, and relies heavily on intervention

from the design engineer. The test vehicle for this study is the 1-dimensional 8 point

Fast Discrete Cosine Transform (FDCT). This is the most complex example currently

in use as a synthesis benchmark. Aside from the large number of operations present in

the data flow graph, the mixture of commutative and non-commutative operations

provides added complexity.

The second case study allows the performance of the SAVAGE system to be compared

with a wider selection of behavioural synthesis systems. The test vehicle here is a 5th

order Wave Digital Filter.

111

SAVAGE Case Studies

6.1 1-Dimensional 8 point Fast Discrete Cosine Transform

The large amount of information contained within a high definition digital image

poses significant problems, both in terms of memory requirement and transmission

latency in applications where real time, or near real time image transmission is

required. As a result, many data compression techniques have been proposed [Chen77,

Wintz72, Soame82]. The Discrete Cosine Transform (DCT) operates on a series of

blocks decomposed from the original image. These blocks are ranked according to

their a.c. energy (a.c. energy quantifies the amount of information within a particular

block). A bit assignment according to the average point variance within the block then

takes place. It is here that the data compression takes place; more bits are assigned to

visually important regions (i.e. regions of the image containing most information) than

those of lesser interest.

Interest in the DCT algorithm realised in silicon has been driven by applications such

as video conferencing and computer-based multimedia. Further, video coding and

compression standards, such as JPEG (Joint Photographic Experts Group, D1S10918

Digital Compression and Coding of Continuous-tone Still Images) use the DCT

process.

Most implementations of the DCT make use of the separability property of the 2D

transform. The 2D transform is composed of a 1D n-point row transform. Rows and

columns are then transposed, and the operation is completed by a 1D n-point column

transform. The value of n is typically 8 or 16. Table 6.1 summarises recent DCT

implementations.

112

SAVAGE Case Studies

Device
Transform Transistor Technology

Clock Notes
Size Count Rate

LSI CW702 8 x 8 N/A 0.8jxm CMOS 30 MHz JPEG Core
[LS193]

IMSA121 8x 8 not 1.0tm CMOS 20 MHz
[SGS90] available

STV3200 4x 44x 8 1.0p.m CMOS 15 MHz
[SGS90] 8x 48x 8 114.3k

8x 16 16x 8
16x 16

STV3208 8x 8 not 1.Op.m CMOS 27 MHz
[SGS90] available

[Yan89] 15 x 15a 70k 1 .25p.m CMOS 30 MHz Systolic Array

[Matt89] 8 x 8 56k 1 .6um CMOS 27 MHz Multiprocessor
Architecture

[Afgha86] 1 	16x 16 1 	42k I 	3.0p.m CMOS 1 25 MHz

a. This device uses the Winograd Transform, which is equivalent to a 16 x 16 DCT

Table 6.1 VLSI implementations of the DCT.

Each of the VLSI implementations in the table above is a highly optimised DSP

datapath, and in the case of the CW702, the implementation is of a complete JPEG

core.

The DCT, F(k) of a discrete function f(j), j=O,1. , N-i where N is the total number

of data points is:

N—i

F(k) =
2c (k) 	 k Tc

	 [6.1] 1
2 	 2N

j=o

where k=O,1,...,N-1, and c(k)= -- for k=O, and c(k)=1 for k1,2,...,N-1.

Previously, the DCT has been implemented using a double size Fast Fourier Transform

(FF1') employing complex arithmetic and operating on 2N coefficients. The Fast

Discrete Cosine Transform (FDCT) [Chen77] alleviates the implementation problems

113

SAVAGE Case Studies

associated with the DCT by using only real arithmetic and operating on N data points.

This results in a factor of six reduction in the algorithm complexity. The FDCT is most

readily expressed in terms of an extensible flow graph. The 1-dimensional 8 point Fast

Discrete Cosine Transfomi is shown in figure 6.1.

AO C2

+ x
FO + +

Al C3
F4

+ x

+

.42

+ C4
F6

CS
x

63

+ x
C4 Cs

F2 + CI

Cl
x

Cs

X
A4 + Fl

+

X

C9

C10
CO

x
F5 +

x

-
-

Cli

C12

X
AS - +

Cl X . - F3

X

C13

C14

X

+ Fl

cis

Figure 6.1 1 -dimensional 8 point Fast Discrete Cosine Transform.

114

SAVAGE Case Studies

In order to generate a comparative study, the processor allocation available to the

SAVAGE tools was constrained to be 2 adders, 2 multipliers and 2 subtractors. This

provided direct comparison with a set of results generated as part of the SARI

reporting procedure [SARI89]. The constraining mechanism used is the pragma

statement. Pragmas are SAVAGE directives included in the source text which directly

affect the synthesis tools. In this case, they provide a - boundary condition for -the

BUILDER procedure and suppress the generation of new processors in the R-t

optimisation move set. The statement:

pragrna #MULF MAX 2

indicates the upper bound on the number of multiplier units that may be synthesised.

The BUILDER will create an initial R-t space containing a maximum of two

multipliers, and the CREATE—PROCESSOR procedure will be suppressed when there

are two or more multipliers present in the current datapath. The SLANG code for this

example is given in figure .6.2.

6.1.1 A Resource Constrained Datapath
A resource constrained datapath compromises the trade-off between a high speed

solution and control overhead and interconnect density as demonstrated in the

differential equation datapaths presented in the previous chapter. Correspondingly, the

cost multipliers associated with these factors are relatively large compared to the cost

multipliers associated with the datapath components themselves in order to minimise

the impact of the constraint. The cost multipliers used to generate a constrained

solution are presented in table 6.2.

115

SAVAGE Case Studies

package body FDCT_EXANPLE is

pragma #MULF MAX 2
pragma #ADDF MAX 2
pragma #SUBF MAX 2

procedure FDCT1D (AO, Al, A2, A3, A4, A5, A6, A7 : in FLOAT
FO, Fl, F2, F3, F4, F5, F6, F7 : out FLOAT) is

COS 21 4 : CONSTANT;
COS 218 : CONSTANT;
SIN P1 8 : CONSTANT;
COS P1 16 	CONSTANT;
SIN P1 16 : CONSTANT;
C053 91 16 : CONSTANT;
SIN 32116 : CONSTANT;
COS 5PI16 	CONSTANT;
SIN 5 P1 16 : CONSTANT;
COS 72116 : CONSTANT;
COS 72116 : CONSTANT;
SIN-7—PI-16 : CONSTANT;

BO, Bl, 82, B3, 34, B5, 36, 37 	FLOAT;
CO, Cl, C2, C3, C4, C5, C6, C7 : FLOAT;
DO, Dl, D2, D3, D4, D5, D6, D7 : FLOAT;

COS P1 4 TIMES B5 : FLOAT; COS P1 4 TIMES B6 : FLOAT;
COS—PI-4—TIMES—DO : FLOAT; COS—PI-4—TIMES—Dl : FLOAT;

begin
-- first pass
BO 	A7 + AO; Bl := A6 + Al; B2 	A5 + A2; B3 	A4 + A3;
B4 := A3 - A4; B5 := A2 - A5; B6 	Al - A6; B7 := AO - A7;
-- put the expressions COS 21 4*B5 and COSPI4*B6 into
-- intermediate variables so as to avoid evaluating them twice
COS P1 4 TIMES B5 := COS P1 4*B5 ;
COS—PI 4 TIMES B6 := COSPI14*B6;
-- second pass
CO := 33 + 30; Cl := 32+31; C2 := Bl - 32; C3 := BO - 83; C4 := B4;
C5 := COS P1 4 TIMES B6 - COS P1 4 TIMES B5;
C6 := COS PI4TIMESTh6 + COS—PI-4—TIMES—B5;
C7 := B7;
-- third pass
DO 	CO; Dl := Cl; D2 := C2; D3 := C3; D4 := C4 + C5;
D5 := C4 -05; D6 := C7 - C6; D7 := C7 + C6;
-- put the expressions COS 21 4*DO and COSPI4*Dl into
-- intermediate variables so as to avoid evaluating them twice
COS P1 4 TIMES DO := COS 21 4*DO;
COS PI4 TIMES D1 : C0SP14*Dl ;
-- fourth pass
FO := COS P1 4 TIMES DO + COS 21 4 TIMES Dl;
F4 := COS PI4TIMES DO - COS PI4TIMESD1;
F2 := SIN P1 8*D4 + COSPI8*D3;
F6 := COS —3 21 16*D3 - SIN P1 8*D2 ;
Fl := SIN PI 1*D4 + COS P1 l*D7 ;
F5 := SIN 	P1 16*D5 + CS 	P1 16*D6;
F3 := COS 3PI 16*D6 - S1N3P116*D5;
F7 	COS 7PI16*D7 - SIN 7PI16*D4;

end FDCT1D;

end FDCT EXAMPLE;

Figure 6.2 SLANG description of FDCT

116

SAVAGE Case Studies

Adder 30 Register File 50

Multiplier 30 ROM 1

Multiplexer 50 Maximum execution time 75

Tr-Buffer 80 Control Overhead 75

Register 30 Interconnect Density 75

Table 6.2 Cost multipliers for processor constrained datapath.

The datapath resulting from the SAVAGE synthesis procedure is illustrated in figure

6.3(a). The SAGE generated datapath is shown in figure 6.3(b). The datapath statistics

are shown below in table 6.3.

System C-Steps Processors Registers

SAGE [SARI89] 12 2+ ,2X(P)a , 2 40

SAVAGE 12 2+, 2x(P), 2- 28

System Mux Inputs Control Wires
Point to Point
Connections

SAGE 10 (36)b 46 79

SAVAGE 51 (+28) 28 77

Indicates a pipelined multiplier.
Register file decoding.

Table 6.3 Datapath statistics for resource constrained example.

The two systems compare favourably in this restricted test case. The SAGE bus-based

architecture trades multiple register and bus driver instances against the lower overall

control overhead. By comparison, SAVAGE optimises register usage to significantly

reduce the signal storage requirement.

117

SAVAGE Case Studies

Figure 6.3 (a) SAVAGE-generated FDCT datapath (b) SAGE-generated FDCT datapath.

The major difference in the datapath architectures is the use of tn-state buses in the

SAGE datapath compared with a multiplexer based approach in the SAVAGE solution.

118

SAVAGE Case Studies

Design methodology studies performed at the compiled logic cell library level

[Sasena89], suggest that a multiplexer based approach is preferable on the basis of

fewer gate equivalents required for implementation, shorter switching delays, lower

overall power consumption and better circuit reliability. The studies also show that

while the apparent difference between approaches can be small for designs with a

regular structure, as the regularity of the design decreases, tn-state designs become

more difficult to route at the cell placement stage of the standard cell design process.

The studies are not exhaustive, but the results suggest that the relatively high cost

multiplier associated with the bus driver components can be justified.

6.1.2 A High Speed Solution

This example removes the pragma constraints introduced previously. Instead, a

higher speed datapath is sought. The cost multipliers for the datapath components

remain unchanged (table 6.2), but solutions with long execution times are penalised

more heavily. The cost multipliers for this example are presented in table 6.4.

Adder 30 Register File 50

Multiplier 30 ROM 1

Multiplexer 50 Maximum execution time 130

Tr-Buffer 80 Control Overhead 75

Register 30 Interconnect Density 75

Table 6.4 Cost multipliers for high speed datapath.

The datapath generated by the SAVAGE system is shown in figure 6.4. The datapath

statistics are presented in table 6.5.

The results indicate a 33% speed improvement over the resource constrained solution,

which should be set against the addition of a further multiplier. The datapath generated

119

SAVAGE Case Studies

reduces the number of registers required at the input to each multiplier as expected,

and it should be observed that the relatively even distribution of register files at the

inputs to each datapath component suggests that the solution overcomes any memory

bottleneck which may be present in the solution presented in section 6.1.1. It should

also be noted that this is achieved without significant increases in the control

complexity and interconnect density values for the datapath.

System C-Steps Processors Registers

SAVAGE 8 2+ , 3 X(p)a,2. 26

System Mux Inputs Control Wires
Point to Point
Connections

SAVAGE 50 (27)b 27 77

Indicates a pipelined multiplier.
Register file decoding.

Table 6.5 Datapath statistics for high speed solution.

Figure 6.4 High speed FDCT datapath.

120

SAVAGE Case Studies

6.2 5th Order Wave Digital Filter

The 5th Order Wave Digital Filter remains an enduring synthesis example primarily

because it is composed entirely of commutative operations. This allows greater

flexibility in the memory and interconnect optimisation. Correspondingly, the

literature is replete with datapath statistics for this design [Pangrle87, Paulin89b,

Stok90,Fin92].

The first VLSI implementation of a wave digital filter was suggested in [Law77]. It

was estimated that a 9th order unit element WDF could be fabricated using NMOS

technology using one multiplexed two-port adaptor. With a 4 MHz clock, sampling

frequencies of 13 kHz could be achieved.

The two-port adaptor provides a simple building block for the design of lattice and

unit element structures. More complex three-port adaptors for ladder filter structures

which use serial arithmetic are proposed in [Reek84, Petrie86].

High throughput filters for sonar and video signal processing applications have been

implemented using carry-save arithmetic [Kleine88], and more recently bit-level

systolic adaptors [Law90, Raj90]. Indeed, CAD research directed towards providing a

high-level synthesis environment for bit-level systolic arrays is reported in [Kung85].

Three datapath variations are generated. The first two examples demonstrate the effect

of processor latency on a resource constrained datapath. This effect is attributed to

processor pipelining at the microarchitectural level (section 1.1). The final variation is

a maximum speed solution, again using pipelined processor units. The SLANG

description of the 5th Order Wave Digital Filter is given below.

121

SAVAGE Case Studies

procedure WDF (IP : in FLOAT; OP : out FLOAT) is

T2, Tl3, T26,T33,T38,T39,T18 	FLOAT;
ol,o2,o3,o4,o5,o6,o7,o8, o9,ol0,oll,o12,ol3,ol4,ol5,o16,o17 	FLOAT;
o18,o19,o20,o2l,o22,o23, o24,o25,o26,o27: FLOAT;
CO 3 Cl,C2,C3,C4,C5,C6,C7,C8 : CONSTANT;

begin

-- Initialisation
T2 := 0.0; T13 	0.0;
T18 0.0; T26 0.0;
T33 := 0.0; T38 := 0.0;
T39 := 0.0;

-- Filter loop
while not (eof) loop

ol := IN + T2; o2 := T33 + T18; o3 	ol + T13; o4 	03 + T26;
o5 := o4 + o2; o6 := 05 * CO; o7 	o5 * Cl; o8 := o3 + o6;
o9 := o2 + o7; olO := o3 + o8; oll := o2 + o9; o12 := olO * C3;
o13 := o5 + o8; o14 := oll * C4; o15 := o9 + o13; o16 := ol + o12;
o17 	o14 + T18; o18 := oB + o16; o19 := o9 + o17; o20 	o]. + o16;
o2l := o19 + T38; o22 o20 * C5; o23 := o18 + T33; o24 := o2l * C6;
o25 := o17 + T18; o26 := IN + o22; o27 := o23 * C7; T28 := o24 + T38;
OP := o25 * C8; T2 o16 + o26; T39 := o19 + o28;
T33 := o27 + T33; T18 := o17 + o29; T13 := o18 + o32;

end loop;

end WDF;

Figure 6.5 SLANG description of 5th Order Wave Digital Filter.

The compiled flow graph is given in figure 6.6 (from [Dew85]).

6.2.1 Resource Constrained Datapaths
These test cases use the SAVAGE pragmas to constrain R-t space during synthesis as

described previously in section 6.1. A further pragma is used to specify the latency of

the multiply unit. The statement:

pragma MULF.ATT LATENCY 2

sets the processor.latency field in the processor attribute list to be 2 cycles.

This models a non-pipelined multiplier at the macroarchitecture level (i.e. the

behaviour of the multiplier is described without any specification of the multiplier

implementation). The BUILDER procedure and the M-t optimisation routines use the

data in this field to modify the signal production times for all operations executing on

that processor.

122

SAVAGE Case Studies

IN 	T2

T2 	 T13 	133 	 OUT 	T38T18133

Figure 6.6 5th Order Wave Digital Filter data flow graph.

With a non-pipelined multiplier, the execution times of individual operations become a

123

SAVAGE Case Studies

critical factor in the overall solution quality. Correspondingly, the maximum execution

time cost multiplier is set to a high value. Further, to generate comparative results, a

pragma is used to constrain the datapath to a single multiplier unit. With a non-

pipelined processor present in the datapath, overall signal lifetimes increase, and so a

higher cost multiplier value is associated with individual registers, with a lower value

assigned to register files reflecting the area savings gained through the use of these

structures. Again, as an attempt to recognise the target implementation technology, the

interconnect density value remains at a high setting. The full set of cost multipliers for

this non-pipelined datapath are given in table 6.6. The generated datapath is shown in

figure 6.7, with comparative datapath statistics in table 6.7.

Adder 25 Register File 35

Multiplier 25 ROM 1

Multiplexer 45 Maximum execution time 100

Tr-Buffer 55 Control Overhead 60

Register 50 Interconnect Density 80

Table 6.6 Cost multipliers for non-pipe/med datapath generation.

No reported results include either generated schematics or detailed analyses of the

synthesised datapaths. From the results presented, however, SAVAGE demonstrates a

30% best case improvement for the number of multiplexer inputs required within the

solution datapath and a 31% best case improvement in the number of registers

required to satisfy the signal storage criteria. For this non-pipelined solution, 18

control wires are necessary to implement the control function, and there are 25 point-

to-point connections present within the datapath.

By resetting the latency pragma, the SAVAGE system can evaluate the alternative

pipelined solution. The cost multipliers remain unchanged from the non-pipelined

generation. The generated datapath is shown in figure 6.8.

124

SAVAGE Case Studies

OUT

Figure 6.7 Non.pipelined resource constrained datapath.

System C-Steps Processors Registers Mux Inputs

SPLICER [Pangrle87] 21 2+, lx N/A 35

HAL [Paulin89b] 21 2+, lx 12 30

ESC [Stok90] 21 2+, lx 16 23

ASSIGN [Fin92] 21 2+, lx 13 13(+13)

SAVAGE 21 2+,lx 11 14(+11)

Table 6.7 Datapath statistics for non-pipelined datapath.

Comparative datapath results are available for this resource constrained schedule, and

are presented in table 6.8. For completeness, other statistics quoting the overall

schedule and the number of datapath components only are given in table 6.9. A

comparative set of datapath schematics is included in figure 6.9.

125

SAVAGE Case Studies

OUT

Figure 6.8 Pipelined resource constrained datapath.

System C-Steps Processors Registers

ASSIGN [Fin92] 19 2+, lx (P) 13

CLIQUE [Fin92] 19 2+, lx (P) 14

HAL [Paulin89b] 19 2+, lx(P) 12

SAVAGE 19 2+,1x(P) 13

System Mux Inputs Control Wires
Point to Point
Connections

ASSIGN [Fin92] 13(+12) 20 25

CLIQUE [F1n92] 16(+13) 22 27

HAL [Paulin89b] - 26 39

SAVAGE 13(+13) 19 24

Table 6.8 Comparative datapath statistics for pipelined resource constrained solution.

126

SAVAGE Case Studies

System C-Steps Processors Registers Mux Inputs

MABAL [Kucukc89] 19 2+, lx (P) 10 32

MC2 [Grant90a] 19 2+,1x(P) 16 16(+14)

ASYL[Mign9O] 19 2+,1x(P) 12 26

ESC[Stok9O] 19 2+, lx(P) 15 25

Table 6.9 Other comparative statistics.

The SAVAGE system achieves a comparable level of performance over all primary

optimisation criteria. The best case improvement over reported results for the total

number of register required is 18%. Only the HAL system outperforms SAVAGE, and

does so by lowering the utilisation of individual registers, hence increasing the number

required. This impacts on the communications infrastructure, and the HAL system

adopts a bus based approach. While this offers a simple control solution, the number of

point-to-point connections dramatically increases. This will adversely affect the

synthesis from macroarchitecture to compiled logic implementation.

The best solutions generated with respect to interconnect optimisation are the

ASSIGN system, reported in [Fin92], and the Eindhoven Silicon Compiler [Stok90],

which both report a 4% improvement over the SAVAGE algorithm. The ASSIGN

system uses a complex signal assignment and integrated multiplexer costing function

to achieve high performance, while the ESC approach uses a hybridised edge

colouring algorithm to optimise local interconnect (i.e interconnect associated with an

individual processor).

127

SAVAGE Case Studies

n1

OUT

OUT

Figure 6.9 Datapath solutions for 5th Order Wave Digital Filter (a) ASSIGN[Fin92] (b) CLIQUE
[Fin92] (c) HAL [Paulin89b].

128

SAVAGE Case Studies

6.2.2 A Maximum Speed Solution

To complete the set of Wave Digital Filter datapaths, a maximum speed solution was

generated. No constraints were placed on the number or choice of functional units. For

a maximum speed solution, states generated with a long overall schedule are penalised

with the maximum execution time cost multiplier. For fast datapaths, the control

overheads will diminish, so datapath states generated with a high control overhead are

penalised. The cost multiplier values used to generate the maximum speed solution are

presented in table 6.10.

Adder 25 Register File 35

Multiplier 25 ROM 1

Multiplexer 45 Maximum execution time 150

Tr-Buffer 55 Control Overhead 50

Register 50 Interconnect Density 40

Table 6.10 Cost multipliers for maximum speed solution.

Following synthesis, the datapath illustrated in figure 6.10 was produced. Again, no

comparative schematics are available, and so only a comparison between the overall

datapath statistics can be performed. The statistics for maximum speed solutions

generated by other behavioural synthesis systems are presented in table 6.11.

System C-Steps Processors Registers Mux Inputs

SAM [CIout90] 18 2-1-, 2x (P) 12 27

SAW [Thomas88] 18 2+, 2x (P) 12 34

ASSIGN [Fin92] 18 2+, 2x (P) 15 17(+13)

CLIQUE [Fin92] 18 2+, 2x (P) 14 17(+13)

SAVAGE 18 2+,2x(P) 13 15(+11)

Table 6.11 Comparative datapath statistics for maximum speed solution.

129

SAVAGE Case Studies

OUT

Figure 6.10 Maximum speed Wave Digital Filter Datapath.

Analysis of the results indicate that SAVAGE offers a 24% best case improvement in

the number of multiplexer inputs required in the datapath communications

infrastructure. Smaller relative improvements are also noted in the total number of

registers required for signal storage (14% best case). The performance of the SAM and

SAW systems, particularly in the register allocations attained, may be attributed to the

use of manual register allocation during the synthesis procedure [Thomas88, Clout9O].

Significantly, both systems use a force-based scheduler similar to that suggested by

Paulin [Paulin86, Paulin89a, Paulin89b, Paulin89c]. This scheduling and allocation

approach encourages the creation of single register instances as opposed to register

files. As a result, the number of multiplexers required to implement the

interconnection network increases dramatically (c.f. HAL datapath shown in figure

6.9(c)). This is reflected in the 41 point-to-point connections quoted in [Clout90]

compared to the SAVAGE interconnect density figure of 29 unique connections.

130

SAVAGE Case Studies

6.3 Discussion and Conclusion

The SAVAGE system was exercised on two large-scale synthesis benchmarks.

Resource constrained synthesis was achieved using directives present in the source

text. Synthesis performance comparable to published results using other techniques

was obtained in all test cases.

The performance of the SAVAGE system may be attributed to the global state

generation and costing model adopted. As noted in chapter 3, graph theoretic

algorithms for solution of the synthesis subtasks perform well, but can introduce local

minima into the datapath solution. The performance of the synthesis systems used in

comparison with the SAVAGE tools supports this contention. A global state generation

technique, as advocated in this thesis, overcomes these problems. Further, the costing

method developed for the SAVAGE system steers the state generation mechanism

towards datapath solutions amenable to implementation in the prevalent standard cell

or gate array technologies.

Finally, the SAVAGE cost multiplier system allows the design engineer to influence

the overall datapath architecture without direct intervention in the synthesis procedure.

131

Synthesis of Functional Pipelines

7 Synthesis of Functional Pipelines

Pipelining is a well known architectural technique for increasing the throughput of

digital systems [Hwang86, Top89]. This chapter presents a pipelining algorithm

amenable to simulated annealing-based synthesis. The SAVAGE tools, described in

chapter 5 are extended to accommodate the generation of pipeined datapaths. The

algorithm is then exercised on the large-scale synthesis benchmarks of the previous

chapter. Prior to a discussion of the techniques developed, however, pipelining

nomenclature and definitions are reviewed.

7.1 Pipelining Nomenclature and Definitions
A distinction is made between structural pipelining and functional pipelining.

Structural pipelining is used to exploit temporal parallelism at the datapath macro- and

microarchitectural levels. Functional pipelining, however, operates exclusively in the

behavioural domain, and is concerned with extracting temporal parallelism from an

algorithmic specification.

132

Synthesis of Functional Pipelines

7.1.1 Structural Pipelining

Definition 7.1 	Processor latency, L, is defined as the propagation delay

between data presentation at the processor inputs, and a valid

data transition on the processor output.

Consider the multiply-add-compare datapath, given in figure 7.1, which implements

the function:

x = gtr(c, (a+b)*b) 	 [7.1]

where the gtr() predicate returns the greater of the two input data.

a 	b

+

x
C

gtr

x

Figure 7.1 Multiply-add-compare datapath.

If the multiplier has a latency (in clock cycles) of Lm, the adder a latency of La, and the

compare processor a latency Of Lc , then the composite datapath latency, Ld, is given as:

L =L +L +L d 	m 	a 	c [7.2]

This represents an upper bound on the frequency of the input data. A new value must

be presented to the datapath inputs once every Ld cycles. Thus, the throughput of the

133

Synthesis of Functional Pipelines

datapath is given as - cycles. Structural pipelining overlaps the individual processor

operations by the introduction of a pipeline stage register between the component

processors in the datapath. This allows the datapath processors to be operate on their

input data independently. This basic structural pipeline is given in figure 7.2. The

frequency of the pipeline cycle clock, t, which drives the registers is the reciprocal of

the longest individual processor latency.

t a b

+

x

L
gtr

x

Figure 7.2 Basic structural pipeline.

Structural Pipeline Metrics

For a pipeline of length k, processing n data items, with a pipeline clock period, t, the

total pipeline latency, Tk, is defined:

Tk(n) = k.t + (n-i) t
	

[7.3]

where k.tc is the pipeline start-up time (i.e. the propagation delay of the first data item

through the pipeline). For a non-pipelined solution (i.e. k = i), equation 7.3 reduces to:

T1 (k) = n.tc 	 [7.4]

134

Synthesis of Functional Pipelines

The speed-up, S(k), attained through the use of pipelining is the ratio of the non-

pipelined latency to the pipelined latency. Thus:

S(k) =
nkt

C

kt+ (n— l)t

nk

- k+n-1
[7.5]

Similarly, the pipeline efficiency, E(k), may be defined as the ratio of the achieved

speed-up to the number of pipeline stages. This is given in equation 7.6:

E(k) =n
	

[7.6]
k+n — l

Thus, a structural pipeline operates at 50% efficiency when n = k - 1.

7.1.2 Functional Pipelining

The aim of functional pipelining is to extract temporal parallelism from an input

behaviour. In practise, this corresponds to achieving a degree of overlap between

sequentially executing data flow graphs.

Definition 7.2 	Pipeline latency, F1 , is specified for a given schedule as the

total number of control steps required to execute the behaviour

on the current resource set.

Definition 7.3 	Pipeline reuse time, F,, is specified as the number of control

steps between successive executions of the behaviour on the

current resource set.

Consider the data flow graph given in figure 7.3(a). An R-t mapping for that behaviour

is illustrated in figure 73(b). Successive executions of this behaviour are shown

shaded in the figure. The functional pipeline latency, F1, for this mapping is six control

steps. The functional pipeline reuse time, F,., is five control steps. For R-t mappings

with a greater number of data dependencies, and therefore a more irregular structure, a

functional pipelining solution becomes more difficult to obtain.

135

Synthesis of Functional Pipelines

Processors
+ 	ADD-1

ADDF_1 ADDF_2 MULF_1

C-Steps

+ 	ADD-2 + 	ADD-3

2

+ 	ADD-4 	+ ADD-5
3

4
+ 	ADD-6 X 	MUL_1

5

X MUL_2

a (b)

Figure 7.3 R-t mapping showing pipelined execution (a) data flow graph (b) R-t mapping.

Functional Pipeline Metrics

The effective speed-up achieved by functional pipeining is defined:

F (NP) —F (P)
Speedup

= r 	r 	
[77]

Fr (NP)

where Fr(P) is the reuse time of the pipelined solution, and Fr(NP) is the reuse time of

the non-pipelined solution.

7.2 A General-Purpose Functional Pipelining Algorithm

Consider the original R-t mapping of the example presented in figure 73(b). An R-t

hyperplane can be created by overlaying a time-delayed version of the original

(referred to as the base R-t map) as shown in figure 7.4. The value of the delay is equal

to the maximum execution time present in the base schedule.

ADD-1

ADD-2 ADD-3

ADD-4 ADD-5

ADD- 1 ADD-6 MUL_1

ADD _2 ADD 3 MUL_2

136

Synthesis of Functional Pipelines

Processors

ADDF_1 ADDF_2 MULF_1
C-Steps

6 	2

7 	3

8 	4 AD

9 	5

10 J MUL_2

/
time-delayed R-t map

Figure 7.4 R-t hyperplanes. Delayed version is shaded.

Overlapping the execution of data flow graphs may then be represented by the transfer

of operations from the base R-t map to the time-delayed version. As the operation is

transferred to the time-delayed R-t map, a phantom operation is placed in the

corresponding grid location in the base map. This phantom has no behavioural

significance, but prevents any move occurring in the base R-t map which would cause

a resource clash in subsequent executions of the behaviour. This process is illustrated

in figure 7.5.

ADD-1

AD 	ADD-2 ADD-3

AD 	ADD-4 ADD-5

ADD _6 MUL_1

MUL_2

137

Synthesis of Functional Pipelines

Processors

ADDF_1 ADDF_2 	MULF_1
C-Steps

6 2

7 3

8 4 AD

9 5 4 	Phantom operation

10 rJLii14___ Operation MUL_2 transferred

Figure 7.5 Transfer between R-t planes and the use of phantom operations.

The pipeline reuse time, Fr, corresponds to the best "fit" between base and time-

delayed mappings as illustrated by the examples in figure 7.6 (successive executions

of the R-t map are shown in gray). In many cases, however, this value will be equal to

the maximum execution time present in the base R-t map. Thus, minimisation of Fr

corresponds to a compaction of base operations within the R-t hyperplane. The

pipeline latency, F1 , is defined as the maximum execution time of base operations in

the time-delayed R-t space.

7.2.1 A SAVAGE Implementation
The SAVAGE toolset was extended to incorporate the optimisation algorithm

described above. The extensions to the software were partitioned into two

components:

Pipeline generation moves.

Pipeline cost assessment.

ADD-1

AD 	ADD-2 ADD-3

ADI 	ADD-4 ADD-5

ADD-6 	MUL_i

_ >(

138

Synthesis of Functional Pipelines

Processors Processors

ADDF_1 ADDF_2 	MULF_1 ADDF_1 ADDF_2 MULF_1
C-Steps C-Steps

ADD- 1 MUL_1 1

2 ADD-2 ADD-3 2

3 ADD-4 ADD-5 3

4 ADD- 1 ADD-6 	:,lULi 4

5 ADD-2 ADD 31 5

6 ADD-4 ADD- 5 6

Figure 7.6 Best-fit pipeline reuse examples.

The synthesis of pipelined datapaths is performed exclusively in the R-t domain.

Correspondingly, only optimisation moves associated with this plane are considered.

The state generation sequence proceeds as described in section 5.2.2, with the

following additions: if the scheduled execution time of the operation selected is equal

to the maximum execution time present in the base R-t mapping, then the operation is

a candidate for deferral to the following execution of the behaviour. This is in keeping

with the overall goal of seeking to minimise the maximum execution time present in

the base R-t map. Where candidate a operation for deferral is identified, the PIPE

package (described below) is added to the valid move set for that operation. Further, if

the boolean flag (operation.delayed) associated with the selected operation is already

set, then only the PIPE package supplies the valid moves.

Data Structure Addenda
A boolean flag is appended to each operation on the processor allocation lists in the

linked-list implementation of R-t space described in section 5.1.4. The flag indicates

ADD- 1 MUL_1

ADD-2 ADD-3

ADD-4 ADD-5

ADD-6 MUL_2

ADD- 1 MULl

ADD- 2 ADD -3

139

Synthesis of Functional Pipelines

that the associated operation is executing in the time-delayed version of R-t space. The

operation.execution_time field remains unaffected by the setting of the

operation.delayed flag. Thus, the need for a second R-t space, and the provision of

phantom operators is avoided. The execution time of an operation, and its processor

allocation, are modified by the pipeline procedures. In addition, the presence of the

operation in base R-t space prevents other (i.e. non-pipelined) optimisation moves

causing resource clashes. Signal lifetimes for delayed operations are computed by

adding the operation.execution_time field to the maximum execution time present in

the base R-t map.

Pipeline Generation Moves
The PIPE package contains the valid move set for base R-t operations mapped into

the delayed R-t space. The initial pipeline optimisation move for an operation in base

R-t space is to set the operation.delayed flag, and effectively delay the operation by

an entire schedule length. The other optimisation moves mimic the behaviour of the

move set described in section 5.3.1. Only the base scheduling procedure is different.

Whereas the UNARY—STEP function looks for a valid schedule as control steps c-i, c

and c+i the P IPE UNARYSTEP function looks for the first available execution

times on the current processor, as illustrated in figure 7.7. This allows effective R-t

compaction, and is permissible where the input data for the selected operation are

produced in the base R-t map. Where the producer nodes are also mapped into the

delayed R-t space, data flow precedence between the operations applies.

With this basic scheduling mechanism in place, variants of the non-pipelined R-t

optimisation moves can be added to the valid move set. The valid pipeline moves are

PIPE—UNARY—STEP, PIPE_VALID_PROCESSOR, PIPE—CREATE—PROCESSOR

and P IPE FUNCTION—ME RGE. A final scheduling move allows operations mapped

into the delayed R-t space to be rescheduled back into base R-t space.

140

Synthesis of Functional Pipelines

Processors

MULF_1 MULF_2 SUBF_1

2

3

c-steps
4

5

6

Figure 7.7 Basic pipeline scheduling move (PIPELINE — UNARY —STEP).

Pipeline Cost Assessment
The SAVAGE cost assessment function was extended to include terms for pipeline

costs. Pipeline latency, F1, replaces the MAXIMUM EXECUTION term, and the

pipeline reuse time, Fr, is added to the equation. The pipeline latency terms is

computed as:

F1 = MAX(Base R-t) + MAX(Delayed Operations) 	[7.8]

where the MAX() predicate returns the greatest value of operation.execution_time

present in the input set. The pipeline reuse time, Fr, may be computed using the "best

fit" method by using the algorithm given in figure 7.8.

7.3 Examples

Pipelined solution datapaths for the synthesis benchmarks introduced in the previous

chapter, the 1-dimensional 8 point Fast Discrete Cosine Transform and a 5th order

Wave Digital Filter, are presented.

mul_1 mul_2

muL3

mul_4

mul_6 sub-5

sub-7

141

Synthesis of Functional Pipelines

function BEST—FIT (RT 	in out RTSPACE) return INTEGER is

begin
-- Start the search at the maximum execution time in base R-t
FR := MAX(RT); INDEX := 1; FLAG 	true;
while FLAG loop;

-- Search over all processors
for each processor in RT do

if not((SLOTAVAILABLE(FR) and OP SCHEDULED AT(INDEX)) or
(SLOT _AVAILABLE (INDEX) and OP SCHEDULED AT (FR))) then
-- R-t space will fit
FLAG := false;

end if;
end for;
- If fit at this value, then decrement and start again
if FLAG then

FR := FR - 1; INDEX := INDEX + 1;
end if;

end loop;
-- Return Pipeline Reuse Time
return FR;

end BEST FIT;

Figure 7.8 Best-fit pipeline reuse algorithm.

7.3.1 A Pipelined Fast Discrete Cosine Transform Datapath
The resource-constrained description of the FDCT presented in figure 6.2 was re-

synthesised by the SAVAGE system. The PIPE procedure, described in section 7.2 was

included in the R-t optimisation move set.

The specification of separate cost multipliers for Fr and F1 allows an optimisation

trade-off between pipeline reuse time and overall pipeline latency. The goal of this re-

synthesis was the generation of a pipelined solution with a minimised pipeline reuse

time. Correspondingly, the Fr cost multiplier is assigned a higher value than that

associated with F1. By permitting potential increases in the schedule, the signal storage

requirements may also increase. The cost multipliers associated with memory

components are also therefore increase in order to minimise this effect. To maintain a

balanced datapath solution, however, the pipeline cost multipliers are not given great

precedence over the other datapath component cost multipliers. The full set of cost

142

Synthesis of Functional Pipelines

multipliers used to generate a pipelined solution is presented in table 7.1.

Adder 30 Register File 60

Multiplier 30 ROM 1

Multiplexer 50 Pipeline Latency 75

Tn-Buffer 80 Pipeline Reuse 95

Register 40 Control Overhead 75

Interconnect Density 75

Table 7.1 Cost multipliers for pipelined datapath generation.

Following synthesis, the datapath illustrated in figure 7.9 was generated. As the

pipelining algorithm operates solely in the R-t plane, the datapath schematic is

unrevealing with respect to the optimisation achieved. For comparative purposes, the

R-t space of the non-pipelined solution (presented in section 6.1) and the pipelined R-t

space are given in figure 7.10. Subsequent executions of the R-t mappings as

presented are indicated by the shaded areas.

Comparison of the datapath topologies, as presented in table 7.2 indicates an overall

gain of 4% in the number of multiplexers required to implement the pipelined solution.

This minor increase may be directly attributed to the flexibility of the SAVAGE

costing mechanism.

Applying equation 7.7, it can be observed that a 33% speed-up is gained through the

use of functional pipelining. This is set against a 25% increase in the total pipeline

latency

143

Synthesis of Functional Pipelines

Figure 7.9 Pipelined FDCT datapath.

Processors Processors

C-Steps C-Steps

ADDF IADDF 2MULF 1MULF 2SUBF ISUBF 2 ADDF 1ADDF 2MULF IMULF 2SUBF 1SUBF 2

I I

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

Il 11

12 12

13 13

14 14

is 15 15

(a) Non-pipelined (b) Pipelined

Figure 7.10 (a) Non-pipelined R-t space (b) Pipelined R-t space for FDCT example.

ADD-4 ADD-2 	 SUB-7 SUB-6

ADD-1 ADD-3 MUL_14 MUL_13 SUB-8 SUB-5

DD_1O ADD_22 	 SUB_21

ADD-27 ADD_30 	 SUB-29 SUB_28

ADD-9 	MUL_34 MUL_38 SUB-1 SUB_ i2

MUL_33 MUL_32

MUL_36 MUL_3l SUB-42

MUL_37 MUL_35 SUB_41

ADD-39 ADD-40 MUL_17 MUL_19

MUL_18 MUL_l6 	SUB 25

MUL_20 MUL15

ADD-26 ADD-23 	 SUB-24

AOD_4 ADD-2 	 SIJB_7 SUB-6

ADD_I ADD 	MUL_l4 MUL_1 	SUB_B SUB-5

DD_1OAQU_22 	 ' SUB 21

ADD-4 ADD-21 	 SUB-7 SUB_6

ADD-1 ADD-3 MUL_14MUL_13 SUB-8 SUB_5

ADD_ia AD D-22 	 SUB_21

ADD-27 ADD-30 	 SUB-29 SUB-28

ADD-9 	MUL_34MUL_38 SUB_li SUB-12

MUL_33 MUL_32

MUL_36 MUL_3l

MUL_37 MUL_35 SUB-41

ADO-4 ADD-2 MUL_i7 MUL_iS &JB_7 SUB_

ADDI AOD_3 MUL_1 MUL_1
	
SUB-8 SUB

ADID_1 ADD 2: MUL_18 MUL_1 	SUB_42 SUB-21

ADD_2 ADD.31 MUL 20 MUL15 SUB_2 SIJB_

ADDS ADD_39 MUL_3 MUL_ 	SUB_il SUB1

'ADD 40 ADD 26 MUL_3 MUL_a SUB_2 SL

DD_23 MUL_3 MUL_31

144

Synthesis of Functional Pipelines

System Reuse Latency Registers

Non-Pipelined 12 12 28

Pipelined 8 15 28

System Mux Inputs Control Wires
Point to Point
Connections

Non-Pipelined 51 (+28)a 28 77

Pipelined 52(+28) 28 75
t. 	 ritc 	i.uuiii

Table 7.2 Statistics for pipelined and non-pipelined datapaths.

7.3.2 A Pipelined Wave Digital Filter Datapath

The Wave Digital Filter example has an irregular data flow structure, and as such, is

not viewed as a good candidate algorithm for functional pipeining. The resource-

constrained example of two adders and a single pipelined multiplier, described in

section 6.2.1, was re-synthesised in order to illustrate the generality of the SAVAGE

algorithm. Again, the pipeline reuse time was specified as the primary optimisation

criterion. The cost multipliers associated with the pipeline re-synthesis are presented

in table 7.3.

Adder 25 Register File 45

Multiplier 25 ROM 1

Multiplexer 45 Pipeline Latency 75

Tr-Buffer 55 Pipeline Reuse 95

Register 60 Control Overhead 60

Interconnect Density 80

Table 7.3 Cost multipliers for pipe/med datapath generation.

Following synthesis, the datapath shown in figure 7.11 was generated. The optimised

145

Synthesis of Functional Pipelines

R-t spaces for the pipelined and non-pipelined solutions are shown in figure 7.12.

Comparative datapath statistics are presented in table 7.4.

OUT

Figure 7.11 Pipe/med WDF datapath.

System Reuse Latency Registers

Non-Pipelined 19 19 13

Pipelined 16 21 14

System Mux Inputs Control Wires Point to Point
Connections

Non-Pipelined 13(+13) 19 24

Pipelined 13(+14) 19 24

Table 7.4 Statistics for pipe/med and non-pipe/med datapaths.

The increased number of registers required is caused by the extension of the schedule

to incorporate functional pipelining. The data storage required for the delayed

execution of the ADD-32 operation causes a signal lifetime clash, and thus forces the

146

Synthesis of Functional Pipelines

addition of a further register. The associated control overhead is reflected in the

increased number of multiplexer inputs required for register file decoding.

Equation 7.7 indicates a 16% speed-up gained through the use of functional

pipelining. Again, this must be set against a 10.5% increase in the overall solution

latency. =

C-Steps

I

2

3

4

5

6

7

a

9

10

II

12

13

14

15

16

Il

IS

19

20

21

s

Processors

	

ADDF_1 	ADDF_2 	16ULF_1 	 C-Steps

I

2

3

4

5

6

7

a

9

10

II

12

IS

14

15

16

17

IS

19

20

21

(a) Non-pipelined

	

O_3 	

ADD_i 	ADD_2

Processors

ADDF_1 	ADDF_2 	MULF_1

(b) Pipelined

Figure 7.12 (a) Non-pipelined R-t space (b) PipelinedR-t space for WDF example

7.4 Discussion

A general functional pipeimng algorithm was presented which is amenable to a

simulated annealing-based implementation. The algorithm was shown to improve the

pipeline reuse time. This improvement must be offset against the increase in solution

latency. In the case of the irregular WDF example, the attained speed-up can only be

justified in applications with very high data rates.

ADD_i ADD_2

ADD_3

ADD-4

ADD_5

MUL_6

MUL_7

ADD_8

ADD_iO ADD_9

ADD_i3 ADD_il MUL_12

ADD_15 MUL_14

ADD_16

ADD_20 ADD_i 7

ADD_i8 ADD_25 MUL_22

ADD_23 ADD_i9 MUL_29

ADD_26 ADD_2i MUL_27

ADD_3D ADD_33 MUL_24

ADD_32

ADD_28 ADD-34

ADD_31

ADbl ADO-2

AD

ADD_3

ADD_4

ADD_5

MUL8

MUL7

ADD_S

ADD_b 	ADD_9

ADD_13 	ADD_il 	MUL_12

ADD_15 	 MUL_14

ADD_iS

ADD_20 	ADD_17

ADD-18 	ADD-25 	MUL_22

ADD-.R3 	ADD_iS 	MUL29

ADD_28 	ADD_21 	MUL27

ADO-30 	ADD-33 	MUL_24

ADD_i 	•=

ADD_S 	'DD_32

AD Q-4 	ADD.-34

ADD_28 	AL'

ADD_31 	 MUt_6

147

Synthesis of Functional Pipelines

A similar iterative grid compaction method for functional pipelining is reported in

[Mallon90]. For this iterative solution, however, a target reuse time must be specified

as a constraint to the system. The scheduling algorithm then exhaustively searches R-t

space to determine whether a solution satisfying the constraint exists. For practical

problem instances, this may pose an unacceptable computational overhead.

The SAVAGE system does not require such a constraint on its input. The specification

of separate pipeline reuse and latency cost multipliers allows designers to evaluate the

trade-off between minimising pipeline reuse time and overall pipeline latency. Further,

the implementation method reported here is fully integrated into the SAVAGE

synthesis system, and does not require a specialist pipeline scheduler per Se.

148

Summary and Conclusions

8 Summary and Conclusions

The behavioural synthesis task was defined as the mapping of an algorithmic

specification, captured in a high-level programming language, to an optimised

datapath topology capable of executing the specification at the register-transfer level.

The synthesis procedure can be partitioned into a number of subtasks. The relationship

between these subtasks is typified by a serial synthesis flow, with the scheduling and

allocation operations occurring prior to register allocation and interconnect

optimisation. These subtasks are commonly specified as a directed-graph problem.

Solution techniques for these directed-graph problems were reviewed. These are

drawn from the branch of mathematics known as algorithmic graph theory. In many

cases, however, the solution techniques belong to a class of computational problem for

which no exact solution may be generated in polynomial time. This limitation is

overcome by the introduction of heuristics to constrain the solution space. The use of

heuristics introduces the possibility that the solution may reside in a local cost

149

Summary and Conclusions

minimum, however, thus compromising the solution quality. This observation is borne

out by the appearance of local minima in the results quoted in this thesis.

A global formulation of the synthesis problem was proposed. A combinatorial

approach is adopted, and a candidate optimisation technique known as simulated

annealing, drawn from the field of statistical physics, was introduced. The simulated

annealing algorithm demonstrates the ability to escape from local minima by

accepting temporary solutions whose overall cost function is higher than that of the

current state.

A behavioural synthesis method based upon the simulated annealing algorithm was

developed. In common with other simulated annealing-based applications, the

problem was formulated as a two-dimensional grid or plane. A novel feature of the

data structure developed was the provision of three interconnected optimisation planes

capable of independently supporting the operation of the simulated annealing

algorithm. This overcomes the quasi-serial approach reported in other simulated

annealing solutions to the behavioural synthesis task. A full range of primitive state

generation moves was presented, ordered by optimisation plane. An extended costing

method was specified which was directed towards the prevalent ASIC implementation

technologies. A further innovation was the provision of a cost multiplier system,

which allowed design engineers to influence the final datapath architecture without

direct synthesis intervention. This intervention is supported, however, through the use

of synthesis pragmas.

The result of this research was the SAVAGE system, a suite of modular software tools.

Small and large scale synthesis benchmarks were used to exercise the tools over a

wide range of optimisation criteria. The results presented offer a favourable

comparison between the SAVAGE system and other behavioural synthesis tools.

150

Summary and Conclusions

SAVAGE offers reductions of up to 30% in the total number of multiplexer and

register instances. Further, SAVAGE consistently generated solutions with a low

interconnect density. This was identified as a key factor contributing to the overall

silicon area in the datapath implementation. This improvement may be directly

attributed to the global state generation and costing method adopted.

The synthesis paradigm presented in this thesis was extended by the incorporation of a

general purpose algorithm capable of generating functional pipelines into the

SAVAGE system. A set of modular synthesis primitives and pipeline cost assessment

criteria was developed and integrated into the state generation and costing

mechanisms. The algorithm produced pipelined solutions capable of operating up to

33% faster than a non-pipelined solution. The general nature of the approach was

demonstrated using the Wave Digital Filter benchmark. The irregular data flow

structure hinders effective functional pipelining. The SAVAGE approach yielded a

15% speed-up in spite of this. By keeping the costing factors associated with pipeline

latency and pipeline reuse separate, architectural trade-offs between pipeline reuse and

overall latency are possible.

8.1 Further Work

This section suggests a number of potential research areas which extend and augment

the work presented in this thesis.

8.1.1 A Route to Silicon
A link is proposed between the SAVAGE toolset and the logic synthesis, placement

and routing tools which implement the SAVAGE-generated datapath

macroarchitecture in the target technology. The most obvious advantage of this

integration is the increased accuracy of the SAVAGE cost assessment function.

Technology models for datapath component area and placement and routing overheads

151

Summary and Conclusions

would be made directly available to the SAVAGE costing function. While it is

impractical to suggest that physical data should be back-annotated at each state

generation, a more realistic goal would be to back-annotate at each control parameter

decrement.

The disadvantage of providing a link to the microarchitectural and physical synthesis

tools is that SAVAGE system would no longer be technology-independent.

8.1.2 Synthesis using Structural Input

A great deal of promising research has been performed which concentrates on the

provision of structural as well as behavioural input to the synthesis tools [Fin92]. In

summary, an engineer may specify a partial or complete datapath on which the input

behaviour should execute. This structural input can be used as the starting point for an

iterative synthesis based upon a desired macroarchitecture, or could perhaps provide a

mechanism for reusing synthesised datapaths.

The SAVAGE system could be updated to accept structural input. Modifications to the

BUILDER module would allow a constrained initial state based upon the structural

specification to replace the randomly generated R-t, M-t and P-c spaces. The reuse of

pre-defined datapaths would impose a hard structural constraint, and as such, the state

generation mechanism would suppress any optimisation moves which would

potentially alter the datapath structure from the valid move set. A soft constraint.

where the pre-defined datapath acts as a starting point for the synthesis procedure

would not require such a reduced move set. In both instances, however, the state

generation mechanism and the cost assessment criteria remain unchanged.

152

Summary and Conclusions

8.1.3 Design for Testability

Design for testability is of great concern in the large-scale integrated system designs

currently being undertaken in academia and industry. A modular extension, similar to

that presented in the previous chapter, is suggested. This extension is composed of

three major components.

The first provides a set of cost assessment criteria targeted specifically at datapath

testability. Quantifying circuit testability has been the focus of a great deal of research

[Ben8l, Ben84, La1a85], and a mature set of metrics are in general use. The most

widespread are the concepts of Nodal Controllability (CY), Nodal Observability (OY)

and Nodal Testability (TY), first suggested by Bennetts [Ben84].

These metrics could be used to build composite testability costs for datapath

components at the datapath macroarchitectural level. The SAVAGE costing function

could then be extended to incorporate a testability factor based on nodal TY values

within the datapath.

The second component of a design for test synthesis module is the datapath

microarchitecture component library. In order to assess CY, OY and TY values during

state generation, accurate testability models of the datapath microarchitecture need to

be generated.

Finally, datapath components incorporating design for test features such as

multiplexed registers with serial scan inputs or dedicated test multiplexers to provide

access to nodes with low iT values should be generated for use in the SAVAGE

resource set. A dedicated test state generation move set is required to successfully

integrate test features into SAVAGE system. It is anticipated that the development of

153

Summary and Conclusions

such a state generation move set could be modelled on the development of the

pipelining module presented in the previous chapter.

8.1.4 An Architectural Script-based Design Paradigm

De Man [DeMan90] suggests a synthesis environment based around the architectural

script concept. The architectural script specifies all revels of interaction with the

software tools prior to, and during the synthesis procedure. This specification takes

place at a number of levels:

System Level Constraints. The major optimisation goals for the

synthesis tools are detailed. These specify system boundaries, such as

maximum execution time and total datapath area.

Architectural Selection. The designer can influence the final

macroarchitecture of the datapath through selection of synthesis routines

from an architectural library. The synthesis routines in this library are

grouped according to their architectural template (e.g. bit-serial, regular

array, communicating multiprocessor). This level of interaction arises

directly from the CATHEDRAL experience [C1ae86, DeMan88, Note881.

Design Pragmas. Pragmas provide a mechanism for designer intervention

during the synthesis procedure. A good example of this level of interaction

is a pragma which binds a subset of data flow operations to execute on a

particular processor, as may be necessary with a speed critical loop

structure.

Structural Specification. At this lowest level, the design engineer can

specify a datapath macroarchitecture directly, and force the synthesis tools

to optimise the mapping between the specified behaviour and the pre-

defined structure.

154

Summary and Conclusions

Underlying the architectural script-based method is the need for a high quality

optimisation engine. This thesis has promoted simulated annealing as such a

procedure. The current SAVAGE toolset permits interaction at levels (i) and (iii)

defined above, and an extension is proposed (section 8.2.2) to include interaction at

level (iv). Further, the work presented in this thesis has demonstrated the ability of a

modular software system, such as SAVAGE, to support the inclusion of architecture- -

specific optimisation routines.

The work required to explore the addition of further architecture-specific synthesis

procedures within the general SAVAGE framework and to develop an extended system

based upon De Man's architectural script represents the most substantial extension to

the current research.

155

References

References

[Aar85] 	Aarts, E.H.L., and van Laarhoven, P.J.M., "Statistical Cooling A

General Approach to Combinatorial Optimization Problems,"

Philips J. Res., Vol. 40,1985, pp. 193-226.

[Aar89] 	Aarts, E.H.L., and Korst, J., Simulated Annealing and Boltzmann

Machines, John Wiley, 1989.

[Afgha86] 	Afghahi, M., Matsumura, S., Pencz, J., Sikstrom, B., Sjostrom, U.

and Wanhammer, L., "An array processor for 2-D discrete cosine

transforms," in Proc. EUSIPCO 86, September 1986, pp. 1283-

1286.

[Aho86] 	Aho, AX, Sethi, R. and Ullman, J.D., Compilers Principles,

Techniques and Tools, Addison Wesley Publishing Company, 1986.

[Anderson9l] 	Anderson, S., Bruce, WH., Denyer, P.B., Renshaw, D. and Wang,

G., "A Single Chip Sensor and Image Processor for Fingerprint

Verification," in Proc CICC'91, 1991.

156

References

[Anderson93] 	Anderson, S., A VLSI Smart Sensor-Processor for Fingerprint

Comparison, Ph.D. Thesis, Department of Electrical Engineering,

University of Edinburgh, 1993.

[Ben8l] 	Bennets, R.G., Maunder, C.M. and Robinson, G.D., "CAMELOT:

a computer-aided measure for logic testability," lEE Proceedings,

Vol. 128, Part E, No. 5, 1981, pp. 177-189:

[Ben84] 	Bennetts, R.G., Design of Testable Logic Circuits, Addison Wesley

Publishing Company, 1984

[Bin78] 	Binder, K., Monte Carlo Methods in Statistical Physics, Springer-

Verlag, New York, 1978.

[Brayton84] 	Brayton, R.K., Hachtel, G.D., McMullen, C.T. and Sangiovanni-

Vincentelli, A., ESPRESSO -IIC: Logic Minimization Algorithms

for VLSI Synthesis, Kluwer Academic Publishers, 1984.

[Brayton88] 	Brayton, R.K., Camposano, R.K., Dc Micheli, 0., Otten, R.H.J.M.,

and van Eindhoven, J., "The Yorktown Silicon Compiler System,"

in Silicon Compilation, Gajski (ed), Addison Wesley Publishing

Company, 1988, pp. 204-310.

[Broder89] 	Brodersen, R.W., Architectures for Digital Signal Processing,

Oxford/Berkeley Summer Engineering Programme, 12-14 July,

1989.

[Campos89] 	Camposano, R. and Tablet, R.M., "Design representation for the

Synthesis of Behavioural VHDL Models," in Proc. 9th mt. Conf.

Comp. Hardware Description Languages, May 1989.

[Campos90] 	Camposano, R. and Bergamaschi, R.A., "Synthesis using Path-

Based Scheduling : Algorithms and Exercises," in Proc. 27th

Design Automat. Conf, June 1990, pp. 450-455.

157

References

[Catthoor88] 	Catthoor, F., Rabaey, J., Goossens, G., Van Meerbergen, J., Jam, R.,

De Man, H. and Vanderwalle, J., "Architectural Strategies for an

ApplicationSpecific Synchronous Multiprocessor Environment",

IEEE Trans. Acoustics, Speech and Signal Processing, Vol. 36, No.

2, February 1988, pp. 265-284.

[Chen77] 	Chen, W. and Smith, C.H., "Adaptive Coding of Monochromatic

and Colour Images", IEEE Trans. Commun., Vol. 25, No. 11, pp.

1285-1292,1977.

[C1ae86] 	Claesen, L., Catthoor, F, De Man, H., Vandewalle, J., Note, S. and

Mertens, K., "A CAD Environment for the thorough Analysis,

Simulation and Characterisation of VLSI Implementable DSP

Systems," in Proc. ICCD, 1986, pp. 72-75.

[Clout9O] 	Cloutier, R.J. and Thomas, D.E., "The Combination of Scheduling,

Allocation and Mapping in a Single Algorithm," in Proc. 27th

Design Automat. Conf, June 1990, pp. 71-76.

[Cook7l] 	Cook, S.A., "The Complexity of Theorem Proving Procedures," in

Proc. 3rd ACM Symp. on the Theory of Computing, 1971, pp. 151-

158.

[Dantzig54] 	Dantzig, G.B., Fulkerson, D.R., and Johnson, S.M., "Solution of a

large-scale travelling salesman problem," Oper. Res. 2, pp. 393-

410, 1954.

[Decaluw89] 	Decaluwe, J., Rabaey, J., Van Meerbergen, J. and De Man, H.,

"Interprocessor Communication in Synchronous Multiprocessor

Digital Signal Processor Chips," IEEE Trans. Acoustics, Speech

and Sig. Proc., Vol 37, No. 12, December 1989, pp. 1816-1828.

[De Man881 	De Man, H., Rabaey, J., Vanhoof, J., Goossens, G., Six, P. and

158

References

Claesen, L., "CATHEDRAL II - a computer aided synthesis system

for digital signal processing VLSI systems", lEE Computer Aided

Engineering Journal, April 1988, pp. 55-66.

[DeMan90] 	De Man, H., "High Level Synthesis Tutorial," EDAC90, March

1990.

[Denyer82] 	Denyer, P.B., Renshaw, D. and Bergmann, N.W., "A Silicon

Compiler for VLSI Signal Processors," in Proc. ESSCICR82, 1982,

pp. 215-218.

[Denyer89] 	Denyer, RB., SAGE Design Methodology, SARI Internal Technical

Report SARI-035-D, March 1989.

[Dev87] 	Devedas, S. and Newton, A.R., "Algorithms for Hardware

Allocation in Data Path Synthesis," in Proc. ICCAD '87, 1987, pp.

526-53 1.

[Dev89] 	Devedas, S., and Newton, A.R., "Algorithms for Hardware

Allocation in Data Path Synthesis," IEEE Trans. CAD, Vol. CAD-8,

No.7, July 1989, pp. 768-781.

[Dew85] 	Dewilde, P., Deprettere, E., and Nouta, R., "Parallel and Pipelined

VLSI Implementations of Signal Processing Algorithms," in VLSI

and Modern Signal Processing, Kung, Whitehouse & Kailath (eds),

Prentice Hall, 1985, pp. 257-276.

[Fe170] 	Feller, W, An Introduction to Probability Theory and Applications,

J. Wiley, 1970.

[Fin92] 	Finlay, I.W, High Level Synthesis using Structural Input, Ph.D.

Thesis, Department of Electrical Engineering, University of

Edinburgh, 1992.

159

References

[Garey79] 	Garey, M.R., and Johnson, D.S., Computers and Intractibility . A

Guide to the Theory of NP-completeness, Freeman & Company,

1979.

[Gibbons87] 	Gibbons, A., Algorithmic Graph Theory, Cambridge University

Press, 1987.

[Girczyc85] 	Girczyc, E.H., Buhr, R.J. and Knight, J.P., "Applicability of a

subset of ADA for graph based hardware compilation," IEEE

Trans. CAD, Vol. CAD-4, No.2, April 1985, pp. 134-142.

[Grant9Oa] 	Grant, D.M., and Denyer, P.B., "Memory, Control and

Communications Synthesis for Scheduled Algorithms," in Proc.

27th Design Automat. Conf, June 1990, pp. 162-168.

[Grant90b] 	Grant, P.M., "The DTI-Industry Sponsored Silicon Architectures

Research Initiative", lEE Electronics & Communications

Engineering Journal, Vol. 2 No. 3, June 1990.

[Goosse87] 	Goossens, G., Rabaey, J., Van de Walle, J. and De Man, H., "An

Efficient Microcode Compiler for Custom DSP Processors," in

Proc. mt. Conf. on Comp. Aided Design, November 1987, pp. 24-

27.

[Hafer83] 	Hafer, L.J. and Parker, A.C., "A Formal Method for the

Specification, Analysis and Design of Register Transfer Level

Digital Logic," IEEE Trans. CAD, Vol. CAD-2, No.1, January

1983.

[Hashi7l] 	Hashimoto, A. and Stevens, J., "Wire Routing by Optimizing

Channel Assignment Within Large Apertures," in Proc. 8th. Design

Automat. Workshop, 1971, pp. 155-169.

[Hilfin84] 	Hilfinger, P.N., SILAGE . A Language for Signal Processing,

160

References

University of California Technical Report, Berkeley, 1984.

[Hilfin85] 	Hilfinger, P.N., "A High Level Language and Silicon Compiler for

Digital Signal Processing," in Proc. Custom Integrated Circuits

Conf, 1985, pp. 213-216.

[Hoiyer8l] 	Holyer, I., "The NP-completeness of edge-colouring," SIAM. J.

Comput., Vol. 5, No. 4, 1981.

[Huang86] 	Huang, M.D., Romero, F and Sangiovanni-Vmcentelli, "An

Efficient General Cooling Schedule for Simulated Annealing," in

Proc. mt. Conf. on Computer-Aided Design, 1986, pp. 381-384.

[Huang90a] 	Huang, C.T., Hsu, Y.C. and Lin, Y.L., "Optimum and Heuristic Data

Path Scheduling under Resource Constraints," in Proc. 27th

Design Automat. Conf, June 1990, pp. 65-70.

[Huang9Ob] 	Huang, C.Y., Chen, YS., Lin, Y.L. and Hsu, Y.C., "Data Path

Allocation Based on Bipartite Weighted Matching," in Proc. 27th

Design Automat. Conf, June 1990, pp. 499-504.

[Hwang86] 	Hwang, K. and Briggs, FA., Computer Architecture and Parallel

Processing, McGraw-Hill Book Company, 1986.

[Johan78] 	Johannsen, D.L., "Silicon Compilation," Ca/tech SSP Report,

California Institute of Technology, 1978.

[Johns76] 	Johnson, H.C., "Cliques of a Graph - Variations on the Bron -

Kerbosch Algorithm," in mt. Journal of Computer and Information

Sciences, Vol. 5, No. 3, 1976, pp. 209-238.

[Karp72] 	Karp, R.M., "Reducibility Among Combinatorial Problems," in

Complexity of Computer Computations, Miller & Thatcher (eds),

Plenum Press, 1972, pp. 85-103.

161

References

[Karp75] 	Karp, R.M., "On the Complexity of Combinatorial Problems,"

Networks, Vol. 5, 1975, pp. 45-68.

[Kirk83] 	Kirkpatrick, S., Gelatt, C. and Vecchi, M., "Optimisation by

Simulated Annealing," Science, 220/4598, 1983, pp. 671-680.

[Kleine88] 	Kleine, U. and Noll, T.G., "Wave Digital Filters Using Carry-Save

Arithmetic," in Proc. ISCAS 88, 1988, pp. 1757-1762.

[Kowal85] 	Kowalski, T.J., An Artificial Intelligence Approach to VLSI Design,

Kluwer Academic Publishers, 1985.

[Kucukc89] 	Kucukakov, K. and Parker, A.C., "Data Path Design Tradeoffs

using MABAL," in Proc. 4th Int. Workshop on High-Level

Synthesis, October 1989.

[Kung85] 	Kung, S.Y., "VLSI Signal Processing," in VLSI and Modern Signal

Processing, Kung, Whitehouse & Kailath (eds), Prentice Hall,

1985, pp. 127-153.

[Kurdahi87] 	Kurdahi, F.J. and Parker, A.C., "REAL: A Program for Register

Allocation," in Proc. 24th Design Automat. Conf, June 1987, pp.

210-215.

[La1a85] 	Lala, P.K., Fault Tolerant and Fault Testable Hardware Design,

Prentice Hall International, 1985.

[Law76] 	Lawley, E.L., "A note on the complexity of the chromatic number

problem," Information Processing Letters, No.5, 1976, pp. 66-67.

[Law77] 	Lawson, S.S., "Computer Simulation and Implementation of a

Wave Digital Filter," I.E.E. Colloq. on Electronic Filters, 1977.

[Law9O] 	Lawson, S.S. and Summerfield, S., "The Design of Wave Digital

Filters Using Fully Pipelined Bit-Level Systolic Arrays," Journal of

162

References

VLSI Signal Processing, Vol. 2, No. 1, September 1990, pp. 51-64.

[Lee89] 	Lee, J.H., Hsu, Y.C. and Lin, Y.L., " A New Integer Linear

Programming Formulation for the Scheduling Problem in Data Path

Synthesis," in Proc. mt. Conf. on Computer Aided Design,

November1989, pp. 20-23.

[Lis88] 	Lis, J.S. and Gajski, D.D., "Synthesis from VHDL," in Proc. IEEE

Conf. Comp. Design, 1988, pp. 378-381.

[LSI91] 	1 .Oum Cell-Based Products Databook, LSI Logic, February 1991.

[LS193] 	CW702 JPEG Core Technical Manual, LSI Logic, 1993.

[Lun84] 	Lundy, M. and Mees, A., "Convergence of the Annealing

Algorithm," in Proc. Simulated Annealing Workshop, Yorktown

Heights, 1984.

[Marwed86] 	Marwedel, P., "A New Synthesis Algorithm for the MIIvIOLA

Software System," in Proc. 23rd Design Automat. Conf, 1986, pp.

271-277.

[Matt89] 	Matteme, L., Chong, D., McSweeney, B., and Woudsma, R., "A

flexible high performance 2-D discrete cosine transform IC," in

Proc. Intl. Syinp. Circuits and Systems, 1989, pp. 618-621.

[Mealy54] 	Mealy, G.H., "A method for synthesising sequential circuits," Bell

Syst. Tech. J., Vol 34, 1955, pp. 1045-1079.

[Met53] 	Metropolis, N., Rosenbluth, A., Rosenbluth M., Teller, A. and

Teller, E., "Equation of State Calculations by Fast Computing

Machines," Journal Chem. Phys., 21/6, 1087, 1953.

[McFar186] 	McFarland, M.C., "BUD Bottom-up Design of Digital Systems,"

in Proc. 23rd Design Automat. Conf., July 1986, pp. 474-479.

163

References

[McFarl88] 	McFarland, S.J., Parker, A.C. and Camposano, R., "Tutorial on

High-Level Synthesis," in Proc. 25th Design Automat. Con f, July

1988, pp. 330-336.

[Mign9O] 	Mignotte, A. and Saucier, G., "Matching Method for Concurrent

Operator, Register and Multiplexer Allocation," Synthesis

Simulation Meeting and International Interchange, 1990, pp. 215-

222.

[Moore79] 	Moore, G.E., "Are We Really Ready for VLSI?," in Proc. Caltech

Conf. on Very Large Scale Integration, 1979.

[Note88] 	Note, S., Catthoor, F., De Man, H., and Van Meergergen, J.,

"Hardwired Datapath Synthesis for High Speed DSP Systems with

the CATHEDRAL-III Compilation Environment," in Proc. Int.

Workshop on Logic and Architecture Synthesis, May, 1988.

[Orail86] 	Orailoglu, A. and Gajski, D.D., "Flow Graph Representation," in

Proc. 23rd Design Automat. Conf., July 1986, pp. 503-509.

[0tt84] 	Otten, R.H.J.M and van Ginneken, L.P.P.P, Simulated Annealing:

The Algorithm, unpublished manuscript, 1984.

[Pangrte87] 	Pangrie, B.M. and Gajski, D.D., "SLICER: A State Synthesiser for

Intelligent Silicon Compilation," in Proc. IEEE Conf. Computer

Design, October 1987.

[Pangrle88] 	Pangrle, B.M., "Splicer: A Heuristic Approach to Connectivity

Binding," in Proc. 25th Design Automat. Conf, July 1988.

[Papadim82] 	Papadimitriou, C.H. and Steiglitz, K., Combinatorial Optimisation

Algorithms and Complexity, Prentice Hall, 1982.

[Park88] 	Park, N. and Parker, A.C., "SEHWA : A Software Package for the

164

References

Synthesis of Pipelines form Behavioural Descriptions", IEEE

Trans. CAD, Vol. CAD-7, No.3, March 1988, pp. 356-370.

[Park89] 	Park, H., and Kurdahi, F.J., "Module Assignment and Interconnect

Sharing in Register-Transfer Synthesis of Pipelined Data Paths," in

Proc. mt. Conf. on Computer Aided Design, November 1989, pp.

16-19. -

[Parker86] 	Parker, A.C., Pizarro, J.T. and Milnar, M.,"MAHA : A program for

datapath synthesis", in Proc. 23rd Design Automat. Conf,

July 1986, pp. 461-466.

[Paulin86] 	Paulin, P.G., Knight, J.P. and Girczyc, E.F., "HAL : A Multi-

Paradigm Approach to Automatic Data Path Synthesis," in Proc.

23rd Design Automat. Conf., July 1986, pp. 263-270.

[Paulin89a] 	Paulin, PG. and Knight, J.P., "Scheduling and Binding algorithms

for High-Level Synthesis," in Proc. 26th Design Automat. Conf.,

June 1989, pp. 1-6.

[Paulin89b] 	Paulin, PG. and Knight, J.P., "Force Directed Scheduling for the

Behavioral Synthesis of ASICs," IEEE Trans. CAD, Vol CAD-8,

No.6, June 1989, pp. 661-680.

[Paulin89c] 	Paulin, P.G. and Knight, J.P., "Algorithms for High Level

Synthesis," IEEE Design and Test of Computers, December 1989,

pp. 18-31.

[Peng86} 	Peng, Z., "Synthesis of VLSI systems with the CAMAD design

aid," in Proc. 23rd Design Automat. Conf, 1986, pp. 278-284.

[Peng87] 	Peng, Z., A Formal Methodology for Automated Synthesis of VLSI

Systems, Ph.D.Thesis, Department of Computer and Information

Science, Linkoping University, Sweden, 1987.

165

References

[Petrie86] 	Petrie, N., The Design and Implementation of Digital Wave Filter

Adaptors, Ph.D. Thesis, University of Edinburgh, 1986.

[Pot89] 	Potkonjak, M. and Rabaey, J., "Scheduling and Resource

Allocation Algorithms for Hierarchichal Signal Flow Graphs" in

Proc. 26th Design Automat. Conf, 1989, pp. 7-12.

[Rabaey88] 	Rabaey, J., De Man, H., Vanhoof, J., Goossens, G. and Catthoor, F.,

"CATHEDRAL II : A Synthesis System for Multiprocessor DSP

Systems," in Silicon Compilation, Gajski (ed), Addison Wesley

Publishing Company, 1988, pp. 311-360.

[Raj90] 	Rajinder, J.S., Woods, R.F. and McCanny, J.V., "High Performace

Systolic Two-Port Adaptor for Wave Digital Filtering

Applications," in Proc. ICASSP 90, 1990.

[Reek84] 	Reekie, M., "Design and Implementation of Digital Wave Filters

using Universal Adaptor Structures," in Proc I.E.E., Pt. F, Vol 131,

984, pp. 615-622.

[Reif65] 	Reif, F., Statistical and Thermal Physics, McGraw-Hill, 1965.

[Ryder89] 	Ryder, M., BABBLE Definition Version 1.2, SARI Internal

Technical Report SARI-034-B, February 1989.

[Saf9O] 	Safir, A., and Zavidovique, B., "Towards a Global Solution to High

Level Synthesis Problems," in Proc. EDAC90, March 1990, pp.

283-288.

[SARI89] 	First Milestone Demonstrator, SARI Internal Report, January 1989.

[Sasena89] 	Sasena, E.A., "Design Tradeoffs: Three State Drivers vs. Muxes,"

LSI Logic Application Note, LSI Logic Corporation, May 1989.

[Sechen86] 	Sechen, C. and Sangiovanni-Vmcentelli, A., "TimberwoJf3.2: a

References

new standard cell placement and global routing package," in Proc.

23rd Design Automat. Conf, pp. 432-439, 1986.

[Sechen88] 	Sechen,C., VLSI Placement and Global Routing Using Simulated

Annealing, Kluwer Academic Publishers, 1988.

[Seitz8O] 	Seitz, C., "System Timing," in Introduction to VLSI Systems, Mead

& Conway (eds), Addison Wesley, 1980, pp. 218-262.

[Sey89] 	Seymour, L.P.H.K., SLANG - The SARI Input Language, SARI

Internal Technical Report SARI-064-A, June 1989.

[SGS90] 	Image Processing Databook, SGS-Thomson, 1990.

[Soame82] 	Soame, T.A., "Bandwidth Compression of Images Using Transform

Techniques", GEC J. Sci. Tech., Vol. 48, No. 1, 1982, pp. 17-23.

[Stok88] 	Stok, L. and van den Born, R., "EASY : Multiprocessor

Architecture Optimisation," in Proc. mt. Workshop on Logic and

Architecture Synthesis for Silicon Compilers, McLellan (ed),

Grenoble, May 1988, pp. 313-328.

[Stok90] 	Stok, L., "Interconnect Optimisation during Data Path Allocation",

in Proc. EDAC90, March 1990, pp. 141-145.

[Stok9l] 	Stok, L., Synthesis and Optimisation of Architectures for Digital

Systems, Ph.D. Thesis, Eindhoven University of Technology, 1991.

[Thomas83] 	Thomas, D.E., Hitchcock, C.Y., Kowalski, T.J., Rajan, J.V. and

Walker, R.A., "Automatic data path synthesis," IEEE Computer,

December 1983, pp. 59-70.

[Thomas87] 	Thomas, D.E., Blackburn, R.L. and Rajan, J.V., "Linking the

Behavioral and Structural Domains of Representation for Digital

Systems Design," IEEE Trans. CAD, Vol. CAD-6, No.!, January

167

References

1987, pp. 103-110.

[Thomas88] 	Thomas, D.E., Dirkes, E. M., Walker, R. A., Rajan, J.V., Nestor,

J.A. and Blackburn, R.L. "The System Architect's Workbench," in

Proc. 25th Design Automat. Conf., 1988, pp. 337-343.

[Top89] 	Topham, N.P. and Ibbet, R.N., The Architecture of High

Performance Computers II, MacMillan Publishers Ltd., 1989.

[Tseng83] 	Tseng, C.J. and Siewiorek, D.P., "FACET: A procedure for

automated synthesis of digital systems," in Proc. 20th Design

Automat. Conf., 1983, pp. 490-496.

[Theng86] 	Tseng, C.J. and Siewiorek, D.P., "Automated Synthesis of Data

Paths in Digital Systems," IEEE Trans. CAD, Vol. CAD-5, No.3,

July 1986, pp. 379-395.

[Ullman75] 	Ullman, J.D., "NP-complete Scheduling Problems," JCSS, Vol 10,

1975, pp. 384-393.

[Vanhoof87] 	Vanhoof, J., Rabaey, J. and De Man, H., "A Knowledge-Based

CAD System for Synthesis of Multiprocessor Digital Signal

Processing Chips," in Proc. VLSI87, 1987.

[Vizing64] 	Vizing, MG., "On an estimate of the chromatic class of a p-graph,"

Diskret. Analiz., No.3, 1964, pp. 25-30.

[Wintz72] 	Wintz, P.A., "Transform Picture Coding", Proc. IEEE, Vol 60. No.

7, pp. 809-819, 1972.

[Yan89] 	Yan, M. and McCanny, J.V., "Architectures for computing the 2D-

DCT," in Systolic Array Processors, McCanny, McWhirter &

Swartzlander (eds), Prentice Hall, 1989, pp. 411-420.

168

Appendix A 	Differential Equation Datapath

This Appendix presents the datapath netlist for the naive mapping between behaviour

and structure presented in section 2.5. For reference, the datapath schematic is given

again below:

Ui

Figure A.] Datapath produced by naive snapping axioms.

169

datapath DIFF EQ begin

processor MULF 1 begin
attributes non-pipe, latency 1, area 50;
type mul;
commutative true;
ports A source U;

B source dx.l;
Z sink sl.in ;

end processor MULF1;

processor MULF_2 begin
attributes non-pipe, latency 1, area 50;
type mul;
commutative true;
ports A source c5;

B source x;
Z sink s2.in ;

end processor MULF2;

processor MULF4 begin
attributes non-pipe, 	latency 1, 	area 50;
type mul;
commutative true;
ports A source c3;

B source y;
Z 	sink 	s4.in ;

end processor MULF4;

processor MULF3 begin
attributes non-pipe, 	latency 1, 	area 50;
type mul;
commutative true;
ports A source sl.out;

B source s2.out;
Z 	sink 	s3.in ;

end processor MULF_3;

processor MULF_6 begin
attributes non-pipe, 	latency 1, 	area 50;
type mul;
commutative true;
ports A source s4.out;

B source dx.2;
Z 	sink 	s6.in ;

end processor MULF_6;

processor SUBF_5 begin
attributes area 30;
type sub;
commutative false;
ports A source U;

B source s3.out;
Z 	sink 	s5.in ;

end processor SUBF5;

processor SUBF7 begin
attributes area 30;
type sub;

170

commutative false; memory ROMF2 begin
ports A source s5.out; attributes area 30

B source s6.out; type ROM;
Z sink ul; locations 1;

end processor SUBF_7; ports 	Z sink c5;
end memory ROMF2;

memory REGF1 begin
attributes area 35 memory ROMF3 begin
type register; attributes area 30
ports 	A source sl.in ; type ROM;

Z sink sl.out; locations 1;
signals sl; - 	 ports 	Z- sink -c3;

end memory PEGF_l; end memory ROMF3;

memory REGF2 begin memory ROMF4 begin
attributes area 35 attributes area 30
type register; type ROM;
ports 	A source s2.in ; locations 1;

Z sink s2.out; ports 	Z sink dx.2;
signals s2; end memory ROMF1;

end memory REGF2;
net u.l begin

memory REGF_3 begin type wire;
attributes area 35 source 	IOFl.Z;
type register; sink MULF1.A;
ports 	A source s4.in ; end net u.l;

Z sink s4.out;
signals s4; net dx.l begin

end memory REGF3; type wire;
source ROMF1.Z;

memory REGF4 begin sink MtJLF1.A;
attributes area 35 end net dx.l;
type register;
ports 	A source s3.in ; net c5 begin

Z sink s3.out; type wire;
signals s3; source ROMF2.Z;

end memory REGF4; sink MULF2.A;
end net c5;

memory REGF5 begin
attributes area 35 net x begin
type register; type wire;
ports 	A source s6-in; source 	10F 2.Z;

Z sink s6.out; sink MULF2.B;
signals s6; end net x;

end memory REGF5;
net c3 begin

memory REGF6 begin type wire;
attributes area 35 source ROMF3.Z;
type register; sink MtJLF4.A;
ports 	A source s5-in; end net c3;

Z sink s5.out;
signals s5; net y begin

end memory REGF6; type wire;
source 10F3;

memory ROMP 1 begin sink MtJLF_4;
attributes area 30 end net y;
type ROM;
locations 1; net sl.in begin
ports 	Z sink dx.l; type wire;

end memory ROMF1;

171

source MULF1.Z; 	 source MULF6.Z;
sink REGF1.A; 	 sink REGF5.A;

end net sl.in ; 	 end net s6.in ;

net sl.in begin 	 net s6.out begin
type wire; 	 type wire;
source REGF1.Z; 	 source REGF5.Z;
sink MULF3.A; 	 sink SUBF7.A;

end net sl.out; 	 end net s6.out;

net s2.in begin 	 net s5.in begin
type wire; 	 type wire;
source Mt.JLF2.Z; 	 source SUBF5.Z;
sink REGF2.A; 	 sink REGF6.A;

end net s2.in ; 	 end net s5.in ;

net s2.out begin 	 net s5.out begin
type wire; 	 type wire;
source REGF2.Z; 	 source REGF6.Z;
sink MULF3.B; 	 sink SUBF7.B;

end net s2.out; 	 end net s5.out;

net dx.2 begin 	 net ul begin
type wire; 	 type wire;
source ROMF4.Z; 	 source SUBF7.Z;
sink MULF6.A; 	 sink 10F 5.A;

end net dx.2; 	 end net ul;

net s4.in begin I/O IOF1 begin
type wire; type in;
source MtJLF4.Z; ports Z sink u.1;
sink REGF3.A; end I/O IOF1;

end net 	s4.in ;
I/O 10F2 begin

net s4.out begin type in;
type wire; ports Z sink
source REGF3.Z; end I/O 	10F2;
sink MULF6.B;

end net s4.out; I/O 10F3 begin
type in;

net u.2 begin ports Z sink
type wire; end I/O 10F3;
source 10F4;
sink SUBF5.A; I/O 10F4 begin

end net u.l; type in;
ports Z sink u.2;

net s3.in begin end I/O 10F4;
type wire;
source MtJLF3.Z; I/O 10F4 begin
sink REGF4.A; type out;

end net 	s3.in ; ports A source StJBF7.Z;
end I/O 10F5;

net s3.out begin
type wire; end datapath DIFFEQ;
source REGF4.Z;
sink SUBF5.B;

end net s3.out;

net s6.in begin
type wire;

172

Appendix B 	SAVAGE Optimisation Move
Sets

This appendix contains the ADA code for the SAVAGE state generation move sets

presented in section 5.3.

B.1 R-t Optimisation Code

This section presents the ADA package containing the optimisation moves operating

in R-t space. The first function presented verifies the availability of execution times on

a selected processor.

package body RTOPTIMISE is

function SLOT—AVAILABLE—AT(CSTEP:INTEGER;
PROC:PROCESSORPTR) return BOOLEAN is

SEARCH LIST : ALLOCATION PTR;
ITEM : ALLOCATED ITEM;
FLAG BOOLEAN;

begin
SEARCH LIST := PROC.ALLOCATION; FLAG := TRUE;
-- Get the first item in the list
ITEM := HEAD(SEARCH LIST);
-- Execute this loop until we reach the end of the allocation list
while not (ITEM.NEXT = null) loop

if ITEM.EXECUTION TIME = C_STEP then
FLAG := FALSE;

end if;

173

-- Next item on the list
ITEM := ITEM.NEXT;

end loop;
return FLAG;

end SLOT—AVAILABLE—AT;

The UNARY—STEP function aims to schedule a selected operation on the processor

that it is currently allocated to. The procedure checks that execution times at control

steps c+i and c-i are available. A random variable selects the new schedule.

procedure UNARY STEP (OP:in out OPPTR; PROC:in PROCESSOR PTR) is

type STATE is (INC,DEC,BOTH,NEITHER);
TEMP1,TEMP2 : OPERATION;
FLAG : STATE;
R : INTEGER;

begin
TEMP1 	02; TEMP2 := OP; FLAG := NEITHER;
if SLOT AVAILABLE AT(OP.EXECUTION TIME+1,PROC) then

FLAG := DEC;
if ((SLOT AVAILABLE AT(OP.EXECUTION TIME-1,PROC) and (FLAG=DEC)) then

FLAG := BOTH;
else

FLAG := INC;
end if;
case FLAG is

when NEITHER => null;
when DEC => begin

R := PANDOM(l);
case R is

when 0 => OP.EXECUTION TIME :=
OP.EXECUTION TIME + 1;

when 1 => null;
end case;

end;
when INC => begin

R := RANDOM(l);
case R is
when 0 => OP.EXECUTION TIME :

OP.EXECUTION TIME - 1;
when 1 => null;

end case;
end;

when BOTH => begin
R := RANDOM(2);
case R is
when 0 => OP.EXECUTION TIME

OP.EXECUTION TIME + 1;
when 1 => OP.EXECUTION TIME :=

OP.EXECUTION TIME - 1;
when 2 => null;

end case;
end;

end case;
end UNARY STEP;

174

The following function aims to schedule the selected operation on a processor able to

support the operation.type and having execution times available at control steps c-i, c

and c+i. The UNARY—STEP function is used to perform the scheduling operation.

procedure VALID—PROCESSOR (OP:in out OPPTR; RT:in out RTPTR) is

PROCESSORS, VALID _PROCESSORS : RT_PTR;
ITEM : PROCESSOR PTR;
R,I : INTEGER;

begin
PROCESSORS := RT; VALID—PROCESSORS 	null;
ITEM := HEAD(PROCESSORS);
-- Search through all candidate processors
while not (ITEM.NEXT = null) loop

if ((SLOT AVAILABLE AT(OP.EXECUTION TIME+l, ITEM)) and
(ISMEMBER(OP.TYPE,ITEM.TYPELIST)))then

ADD(ITEM, VALID_PROCESSORS);
end if;
if ((SLOT AVAILABLE AT(OP.EXECUTION TIME, ITEM)) and

(IS MEMBER(OP TYPE, ITEM.TYPE LIST)))then
ADD (ITEM, VALID PROCESSORS

end if;
if ((SLOT AVAILABLE AT(OP.EXECtJTION TIME-i, ITEM)) and

(ISMEMBER(OP.TYPE,ITEM.TYPELIST)))then
ADD (ITEM, VALID PROCESSORS

end if;
ITEM := ITEM.NEXT;

end loop;
--Select a valid processor at random
R := RANDOM (LENGTH(VALID PROCESSORS));
ITEM := HEAD(VALID PROCESSORS);
for I in 1 .. R loop

ITEM := ITEM.NEXT;
end loop;
-- Add the operation to the new processor's allocation list
ADD(OP, ITEM.ALLOCATION);
-- Remove the operation from its currently allocated processor
-- Note : Processor allocation pointed to from data flow graph
REMOVE (OP,OP.ALLOCATEDTO);
-- Schedule the operation on the newly allocated processor
IJNARY STEP (OP, ITEM);

end VALID—PROCESSOR;

CREATE—PROCESSOR adds a processor supporting operations of type

operation.type to R-t space, and allocates the selected operation to the new processor.

Again, UNARY—STEP is used to schedule the operation.

procedure CREATE—PROCESSOR (OP:in out OPPTR; RT: in out RTPTR) is

ITEM : PROCESSOR PTR;

175

begin
-- Create a processor with the same type as that of the selected
-- operation
ITEM := new PROCESSOR;
ADD (OP .TYPE, ITEM.OPERATION TYPE LIST);
-- Add the operation to the new processor's allocation list
ADD(OP, ITEM.ALLOCATION);
-- Remove the operation from its currently allocated processor
-- Note : Processor allocation pointed to from data flow graph
REMOVE (OP,OP.ALLOCATEDTO);
-- Schedule the operation on the newly allocated processor
UNARYSTEP(OP,ITEM); 	-- 	 - 	 -

-- Add the newly created processor to R-t space
ADD (ITEM, RT) ;

end CREATE—PROCESSOR;

The following procedure, FUNCTION—MERGE, searches for candidate processors to

become ALU units. From the candidate processors, one is selected at random, and the

processor's operation—type—list is updated. The selected operation is allocated to the

processor, and the UNARY—STEP function schedules the operation.

procedure FUNCTION MERGE (OP:in out OPPTR; RT:in out RT_PTR) is

PROCESSORS, VALID—PROCESSORS : RTPTR;
ITEM : PROCESSOR PTR;
R,I : INTEGER;

begin
PROCESSORS := RT; VALID_PROCESSORS := null;
ITEM := HEAD(PROCESSORS);
-- Search through all candidate processors
while not (ITEM.NEXT = null) loop

if ((SLOT AVAILABLE AT(OP.EXECUTION TIME+l, ITEM)) and
(not (IS MEMBER(OP.TYPE, ITEM.TYPE LIST))))then

ADD(ITEM, VALID_PROCESSORS);
end if;
if ((SLOT AVAILABLE AT(OP .EXECUTION TIME, ITEM)) and

(not(ISMEMBER(OP.TYPE, ITEM.TYPELIST))))then
ADD (ITEM, VALID_PROCESSORS);

end if;
if ((SLOT AVAILABLE AT(OP.EXECUTION TIME-1,ITEM)) and

(not(ISMEMBER(OP.TYPE, ITEM.TYPE LIST))))then
ADD (ITEM,VALID PROCESSORS);

end if;
ITEM := ITEM.NEXT;

end loop;
---Select a valid processor at random
R := RANDOM (LENGTH(VALID PROCESSORS));
ITEM := HEAD(VALID PROCESSORS);
for I in 1 .. R loop

ITEM 	ITEM.NEXT;
end loop;
-- Add the operation type to the processor type list
ADD (OP .TYPE, ITEM.OPERATION TYPE LIST);

176

-- Add the operation to the processor's allocation list
ADD(OP, ITEM.ALLOCATION);
-- Remove the operation from its currently allocated processor
-- Note : Processor allocation pointed to from data flow graph
REMOVE (OP, OP ALLOCATED_TO);
-- Schedule the operation on the newly allocated processor
UNARY STEP (OP, ITEM);

end FUNCTION MERGE;

end RTOPTIMISE;

B.2 M-t Optimisation Code

The CAN—STORE function checks the signal lifetime over all signals lifetimes

allocated to the register by comparing the signal production and consumption times of

all allocated signals to the selected signal. The predicates PRODO and CONSO return

the production time and consumption time of the signal respectively. This signal

lifetime evaluation procedure is illustrated in figure B.1.

package body MT OPTIMISE is

function CAN STORE (S : SIGPTR; M : MPTR) return BOOLEAN is

SEARCH LIST : SIGNAL LIST PTR;
ITEM : SIGPTR;
FLAG : BOOLEAN;

begin

SEARCH LIST := M.SIGNAL LIST; FLAG := TRUE;
-- Search through signals allocated to the memory component
ITEM 	HEAD(SEARCH LIST);
-- Ensure that signal lifetimes do not overlap
while not (ITEM.NEXT = null) loop

-- Signal lifetime overlap case (i)
if ((PROD(S) <= PROD(ITEM)) and (CONS(S) >= PROD(ITEM))) then

FLAG := false;
end if;
-- Signal lifetime overlap case (ii)
if ((PROD(S) >= PROD(ITEM)) and (PROD(S) <= CONS(ITEM))) then

FLAG := false;
end if;
-- Signal lifetime overlap case (iii)
if ((PROD(S) >= PROD(ITEM)) and (CONS(S) <= CONS(ITEM))) then

FLAG := false;
end if;
-- Signal lifetime overlap case (iv)
if ((PROD(S) <= PROD(ITEM)) and (CONS(S) >= CONS(ITEM)) then

FLAG := false;
end if;

end loop;

177

return FLAG;
end CAN STORE;

Figure B.] Signal lifetime conflicts.

The following function traverses M-t space looking for registers capable of storing the

selected signal. One is selected at random from the generated subset, and the signal

reallocated. No error trapping is required, as there is always one register capable of

storing the signal, the allocated register on entry to the procedure.

procedure SIGNAL MERGE(SIG:in out SIGPTR; MT:in out MTPTR) is

begin
REMOVE (SIG, SIG.ALLOCATEDTO);
REGISTERS := HEAD(MT); ITEM := HEAD(REGISTERS); VALID—REGISTERS 	null;
-- Search through M-t space for eligible registers
while not(ITEM.NEXT=riull) loop

if CAN STORE (SIG, ITEM) then ADD(ITEM,VALID REGISTERS);
end loop;
-- Select one at random
R := RANDOM(LENGTH(VALID REGISTERS)):
ITEM := HEAD(VALID REGISTERS);
for 	in 1 .. Rloop

ITEM := ITEM.NEXT;
end loop;
-- Reallocate the signal
ADD(SIG, ITEM. SIGNAL_LIST);

end SIGNAL—MERGE;

CREATE—MEMORY adds a register to M-t space, and allocates the selected signal to
the new memory.

178

procedure CREATE MEMORY (SIG:in out SIGPTR; MT: in out RTPTR) is

ITEM : MEMORY PTR;

begin
-- Create a register
ITEM := new MEMORY;
ITEM.TYPE := REGISTER;
-- Add the signal to the register's allocation list
ADD (SIG, ITEM. SIGNAL_LIST);
ADD (OP .TYPE, ITEM.OPERATION TYPE LIST)
-- Add the newly created register to M-t space
ADD (ITEM, MT) ;

end CREATE—PROCESSOR;

end MT—OPTIMISE;

B.3 P-c Optimisation Code

The PORT—SWAP procedure locates the processor executing the selected operation.

By traversing P-c space, the procedure locates the processor input ports. Both output

port lists are searched for the signals bringing the operations input data. Once located,

the signals are transposed on the lists.

package body PC—OPTIMISE is

procedure PORT_SWAP (OP:in out OPPTR; PC:in out PC_PTR) is

THE—PROCESSOR : PROCESSOR PTR;
PORT _ LIST _A, PORT_LIST_B : PORT LIST PTR;
ITEM1,ITEM2 : PORT PTR;

begin
-- Use the link into R-t space to access the allocated processor
THE—PROCESSOR := OP .ALLOCATED TO;
-- Access P-c space to get the port lists
PORT_LIST_A : FIND (THE PROCESSOR.A, PC);
PORT _LIST_B := FIND (THE PROCESSOR.B, PC);
-- Find the output ports associated with the selected operation
ITEM1 := HEAD(PORT LIST A);
while not (ITEM1.NEXT = null) loop

exit when ((ITEM1.SIGNAL = OP.A) or (ITEM1.SIGNAL = OP.B));
ITEM1 := ITEM1.NEXT;

end loop;
ITEM2 := HEAD (PORT_LIST_B);
while not (ITEM2.NEXT = null) loop

exit when ((ITEM2.SIGNAL = OP.A) or (ITEM2.SIGNAL = OP.B));
ITEM2 := ITEM2.NEXT;

end loop;
-- Swap the input port references
ADD (ITEM1,PORT LIST B);
REMOVE (ITEM1, PORT LIST A)

179

ADD (ITEM2 , PORT LIST A)
REMOVE (ITEM2, PORT_LIST_B);

end PORT SWAP;

The following procedure selects a pair of output ports from an input port selected at

random from P-c space (procedure SELECT _OUTPUT_PORTS). The net types

implementing the communications function between the ports are then updated

according to the rules shown in figure 5.14. -

procedure NET MERGE (PC:in out PC_PTR; NETS:in out NET LIST PTR;
THRESH : in INTEGER) is

PORT1,PORT2 : PORT PTR;
ITEM,NET1,NET2 : NET PTR;

begin
SELECT OUTPUT PORTS (PC, PORT1, PORT2)
NET1 	PORT1.NET ; NET2 := PORT2.NET ;
-- Both ports connected with the same wire - register file
if ((NET1.TYPE=WIRE) and (NET1=NET2)) then

null
-- Different wires : merge into a multiplexer
elsif ((NET].TYPE=WIRE) and (NET2.TYPE=WIRE) and (NET1/=NET2))then

begin
ITEM := new NET;
ITEM.TYPE := MDX; ITEM.CARDINALITY := 2;
REMOVE(PORT1.NET ,NETS); REMOVE(PORT2.NET ,NETS);
PORT1.NET 	ITEM; PORT2.NET := ITEM;
ADD (ITEM, NETS)

end
-- One multiplexer, one wire merge wire into multiplexer
elsif ((NET1.TYPE=WIRE) and (NET2.TYPE=MUX)) then

begin
REMOVE (PORT1 .NET,NETS);
PORT1.NET := PORT2.NET ;

end
-- ditto
elsif ((NET1.TYPE=MtJX) and (NET2.TYPE=WIRE)) then

begin
REMOVE (PORT2 .NET,NETS);
PORT2.NET := PORT1.NET ;

end
-- Two separate multiplexers : merge into a single multiplexer or bus
elsif ((NET1.TYPE=MUX) and (NET2.TYPE=MUX) and (NET1/=NET2) and

((NET1.CARDINALITY + NET2.CARDINALITY) > THRESH))then
begin

R := PANDOM(l);
case R is

when 0 => begin
ITEM := new NET;
ITEM.TYPE := MDX;
ITEM.CARDINALITY 	NET1.CARDINALITY +

NET2 .CARDINALITY;
REMOVE (PORT1 .NET,NETS); REMOVE(PORT2 .NET,NETS);

180

PORT1.NET := ITEM; PORT2.NET := ITEM;
ADD (ITEM, NETS)

end;
when 1 => begin

ITEM := new NET;
ITEM.TYPE := Bus;
ITEM.CARDINALITY := NET1.CARDINALITY +

NET2 .CARDINALITY;
REMOVE(PORT1.NET ,NETS); REMOVE(PORT2.NET ,NETS);
PORT1.NET := ITEM; PORT2.NET := ITEM;
ADD(ITEM, NETS);

end; 	-
end case;

end
end if;

end NET MERGE;

Similarly, REGISTER—MERGE selects a pair of registers from an input port selected

at random from P-c space (procedure SELECT—VALID—MERGE—PORTS), and M-t

space is updated according to the merge functions shown in figure 5.15.

procedure REGISTER MERGE (PC:in out PCPTR; MT: in out MTPTR) is

PORT1,PORT2 : PORT PTR;
Ml, M2 : MEMPTR;

begin
-- Get memory components for merging
SELECT VALID MERGE PORTS (PC, PORT1, PORT2);
-- Access the M-t space

	

Ml := FIND(PORT1.Z,MT); M2 	FIND(PORT2.Z,MT);
Both memory components belong to the same register file

if ((M1.TYPE=FILE) and (M2.TYPE=FILE) and (M1.ID=M2.ID)) then
null;

One register, one file
elsif ((M1.TYPE=FILE) and (M2.TYPE=REGISTER)) then begin

M2.TYPE := FILE; M2.ID := M1.ID;
M1.CARDINALITY := M1.CARDINALITY + 1;

end;
Ditto

elsif ((Ml.TYPE=REGISTER) and (M2.TYPE=FILE)) then begin
M1.TYPE := FILE; M1.ID := M2.ID;
M2.CARDINALITY := M2.CARDINALITY + 1;

end;
Two separate register files

elsif ((M1.TYPE=FILE) and (M2.TYPE=FILE) and (Ml.ID/=M2.ID)) then
begin

M2.CARDINALITY := M2.CARDINALITY + M1.CARDINALITY;
M1.ID := M2.ID; M1.CARDINALITY 	M2.CARDINALITY;

end;
end if;

end REGISTER—MERGE;

end PC—OPTIMISE;

181

Published Papers

Appendix C 	Publications

The following papers were published during the course of the research described in this thesis,

and are included in this appendix.

Neil, J.P. and Denyer, P.B., "Synthesis By Simulated Annealing", lEE Colloquium

Digest 19891125, November 1989, pp.9!1 -9!4.

Neil, J.P. and Denyer, P.B., "SAVAGE : A Simulated-Annealing based VLSI

Architecture Generator", IEEE Workshop on Genetic Algorithms, Simulated Annealing

and Neural Networks applied to Signal and Image Processing, May 1990.

Neil, J.P. and Denyer, P.B., "Exploring Design Space using SAVAGE: A Simulated

Annealing based VLSI Architecture GEnerator", in Proc. 33rd Midwest Symposium on

Circuits and Systems, Calgary, 1990

Finlay, I.W., Neil, J.P. and Denyer, P.B., "Filter Synthesis using Behavioural Design

Tools", in Proc. 16th European Solid State Circuits Conference, Grenoble, September

1990.

Neil, J.P. and Denyer, P.B., "Simulated Annealing based synthesis of Fast Discrete

Cosine Transform Blocks", in Algorithmic and Knowledge-based CAD for VLSI, Russell

& Taylor (Ed.), Peter Perigrinus, 1991.

182

Synthesis by Simulated Annealing

J.P. Neil and P.B. Denyer

Introduction

This paper summarises work proceeding towards the development of a suite of algorithmic
optimisation tools intended to operate in a directed silicon compilation environment (SAGE
[1]). The tools are controlled by the stochastic computational technique known as simulated
annealing. The paper contains a description of the scheduling and allocation problem,
together with a description of the simulated annealing algorithm. There then follows a brief
discussion of results obtained thus far together with some indications of future work.

The Scheduling and Allocation Problem

Within a silicon compiler, the aim of the scheduling task is to minimise the amount of time
necessary to complete the program, subject to some limit on available hardware resources,
while the allocation task deals with the minimisation of the amount of hardware resource
needed.

Previous systems have addressed this problem in three general ways

The most straightforward technique is to set some (or no) limit on the
functional units available, and then to produce a schedule. [2,3,4]

Functional unit allocation can be done first, then a schedule can be derived.
The BUD system [5] partitions operations into clusters using a metric which
takes into account potential parallelism. Functional units are then assigned
to these clusters, and then scheduling takes place.

Scheduling and allocation can be performed simultaneously. The HAL
system [6,7,8,9] uses force-directed scheduling together with a feedback
loop to allow an iterative solution to be developed.

It is widely felt that neither of the first two techniques fully address the scheduling and
allocation problem. Only the more complex solution offered by interrelated allocation and
scheduling can offer a close to optimum solution without compromising either the schedule
or resource allocations.

An Introduction to Simulated Annealing

Simulated Annealing is a stochastic computational technique derived from statistical
mechanics for finding near globally minimum cost solutions to large optimisation problems.
Kirkpatrick, Gelatt and Vecchi [10] were the first to propose and demonstrate the application
of simulation techniques from statistical physics to problems of combinatorial optimisation,
specifically to the problems of wire routing and component placement in VLSI design.

The following function gives the general structure of the class of algorithms called probabilis-

The authors are with the Silicon Architectures Research Initiative, Department of Electrical Engineering, Univer-
sity of Edinburgh, The Kings Buildings, Edinburgh, EH9 3JL, Scotland, U.K..

tic hill-climbing algorithms, of which simulated annealing is a special case. This class
was proposed by Romeo and Sang iovanini-Vincentelli, where a number of different al-
gorithms with the same structure were introduced [11].

sim anneal (±, T 0)

T = T 0 ;

=
while (stopping criteria is not satisfied)(

while (inner loop criteria is not satisfied)
j 	generate (i);
if (accept (c (j) , c (i) , T){

i = j;

T = update(T);

where To is the initial temperature of the system, i 0 is the initial network configuration
and the function co returns an assessment of the cost of a particular network. The ac-
ceptance of a new state, j, is determined by acceptQ, whose structure is

accept (c(j),c(i),T)

= 	c(j) - 	c(i);
y = f(c, T);
r = random (O,1);
if 	(r < y

return (TRUE)
)else{
return (FALSE)

/** random number between 0 and 1

Kirkpatrick, Gelatt and Vecchi use the following formulation of the acceptance function

f(c,T) = mm 	{1.O, exp((-Ac)/T)}

In particular, the implementation off() uses a Boltzmann-like factor. Note that when Ac
is negative or zero, that is, when the cost of the new state is less than or equal to the
cost of the current state, then the new state is always accepted. On the other hand,
when Ac is positive, the acceptance probabilities are distributed according to the
Boltzmann factor.

Kirkpatrick, Gelatt and Vecchi use the following update function, update()

Tn = T.a(T), 0 < a(T) < 1

where T is the new value and I is the current value of the temperature parameter.

The inner loop criterion is implemented by specifying the number of new states
generated for each stage of the annealing process.

The stopping criterion is implemented by recording the value of the cost function at the
end of each stage of the annealing process. It is satisfied when the value of the cost
function has remained unchanged at the end of three consecutive stages.

3.1 	Simulated annealing and the scheduling and allocation problem

Devedas and Newton [12,13] report the development of a simulated annealing based
scheduler when applied to the problem of optimisation of microcode instruction
placement in data path synthesis. Their approach is heavily based on the success of
simulated annealing as an optimisation -technique for placement and routing
packages, and consequently suffers from having to include a stage in the optimisation
process where the problem is transformed into a suitable microinstruction format,
ready for 'placement'.

The approach reported here requires no intermediate algorithmic transformations and
operates on data flow information generated by the input compiler to the synthesis
system.

Results

The work reported in this paper is primarily concerned with the development of a
scheduler operating on a user-specified resource budget. The software structure is
such that incremental development will allow the development of an allocation tool
which will operate in concert with the scheduler in an iterative manner.

The scheduler has been tested on two significant examples, namely the 1-dimensional
8-point Fast Discrete Cosine Transform and a 5th Order Digital Elliptic Wave Filter.

Preliminary results indicate that the core of the scheduler, which resides in the
generate function of the simulated annealing function has an incomplete move set.
Because the annealing process is essentially random, nodes on the critical path of the
data flow graph cannot be guaranteed earliest execution. A solution to this is to
perform a critical path analysis, and optimise the resulting partitions separately.
Current work is concerned with this development.

Future Directions

Results obtained thus far indicate that simulated annealing offers considerable
potential as a controlling mechanism for any optimisation process, and it is intended
to develop a library of scheduling, allocation and analysis tools corresponding to a
wide range of system architectures. Selection of appropriate schedules and resource
allocations will allow the designer to map the initial problem into a number of distinct
target architectures very rapidly, and also experiment with non-intuitive combinations.

Selection of appropriate combinations of optimisation and analysis depends on 'meta-
information', that is, information about architectures that cannot be generated directly
from an algorithmic description of the problem. Consequently, it is intended to aid the
designer in his/her selection with an expert system, able to advise on appropriate
combinations.

Acknowledgements

This work was carried out as part of the Silicon Architectures Research Initiative. The
use of facilities and resources is gratefully acknowledged.

The work reported here is supported by the Science and Engineering Research
Council.

References

Denyer, P.B., "SAGE Design Methodology", SARI Internal Technical Report
SARI-035-D, March 1989.
Tseng, C. and Sewiorek, D.P., "Automated Synthesis of Data Paths in Digital
Systems," IEEE Trans. Computer-Aided Design, Vol. CAD-5, July1985, pp.
379-395.
Trickey, H., "Flamel : A High-Level Hardware Compiler," IEEE Trans.
Computer-Aided Design, Vol. CAD-6, March 1987, pp. 259-269.
Mallon, D., "SAGE Operation Power Tools," SARI Internal Technical Report
SARI-014-C, September 1988.
McFarland, M.C., "BUD : Bottom-up Design of Digital Systems," in Proc. 23rd
Design Automat. Conf., July 1986, pp. 474-479.
Paulin, P.G. and Knight, J.P., "Scheduling and Binding Algorithms for High-
Level Synthesis," in Proc. 26th Design Automat. Conf., June 1989.
Paulin, P.G., "Force-Directed Scheduling for the Behavioural Synthesis of
ASIC's," IEEE Trans. Computer-Aided Design, Vol. CAD-8, June 1989.
Paulin, P.G. and Knight, J.P., "High-Level Synthesis Benchmark Results using
a Global Scheduling Algorithm," presented at the International Workshop on
Logic and Architecture Synthesis for Silicon Compilers, 1988.
Paulin, P.G., Knight, J.P. and Girczyc, E.F., "HAL A Multi-Paradigm Approach
to Automatic Data Path Synthesis," in Proc. 23rd Design Automat. Conf., July
1986, pp. 263-270.
Kirkpatrick, S., Gelatt, C. and Vecchi, M., "Optimisation by Simulated
Annealing," Science, Vol. 220, No. 4598, May 1983, pp. 671-680.
Romeo, F. and Sang iovanni-VincentelIi, A., "Probabilistic Hill Climbing
Algorithms : Properties and Applications," in Proc. Chapel-Hill Conf. on VLSI,
1985.
Devedas, S. and Newton, A.R., "Algorithms for Hardware Allocation in Data
Path Synthesis," in Proc. ICCAD 87, 1987, pp526-531.
Devedas, S. and Newton, A.R., "Algorithms for Hardware Allocation in Data
Path Synthesis," IEEE Trans. Computer-Aided Design, Vol CAD-8, No.7, July
1989, pp. 768-781.

SAVAGE:

A Simulated-Annealing based VLSI Architecture GEnerator

J.P. Neil and P.B. Denyer

Silicon Architectures Research Initiative
University Of Edinburgh

Department of Electrical Engineering
The lings Buildings
West Mains Road

Edinburgh EH9 UL

We present the prototype version of a flexible
simulated-annealing based optimisation tool,
capable of performing transformations on a data-
flow graph within a directed silicon compilation
environment, and mapping the transformed data-
flow graph into a constrained hardware space.
The use of the tool is illustrated with reference to
the scheduling and allocation of the 1-
dimensional 8-point Fast Discrete Cosine
Transform.

1. Introduction
SAVAGE is an optimisation tool based upon the

stochastic computational technique known as
simulated annealing. SAVAGE is intended to form
part of an interactive behavioural synthesis system,
SAGE [1,2]. The aim of this work is to rapidly provide

the design engineer with a number of differing

architectural solutions for a given behavioural

specification. These may range from a maximally

parallel solution which has the shortest possible

execution time, but is expensive in terms of

hardware, to a serial architecture with a minimum

hardware overhead, but which has a significant
execution time in comparison.

We embrace De Mans architectural script-based
synthesis paradigm [3]. This script-based approach

has 3 levels, namely the design framework/common
data model, the synthesis toolbox, and the
architectural script. The work described in this paper

corresponds to the development of a suitable
synthesis toolbox.

This paper introduces the behavioural synthesis
task. After a brief review of related work in this area,
we present the software framework of the SAVAGE

tool which illustrates the architectural script based
method. Following a description of the scheduling
and allocation models used, a design example, the
1-dimensional 8-point Fast Discrete Cosine

Transform, is used to illustrate the tools capabilities.

We examine the shortcomings of the current

SAVAGE system, and draw some conclusions.

Finally, we describe ongoing work and future
directions.

2. The Behavioural Synthesis Task

Parker [4] states "the synthesis task is to take a
specification of the behaviour required of a system
and a set of constraints and goals to be satisfied, and

to find a structure that implements the behaviour

while satisfying the goals and constraints".

This task may be subdivided into a number of distinct

steps:

(I) Transforming a behavioural description

(usually written in a high level programming

language such as ADA or Pascal) into some
suitable internal representation. The most

common approach is to represent the
algorithm as two graphs; a data-flow graph

whose nodes represent individual operations,
and whose arcs represent communication

1

pathways between operations, together with a

control flow graph which embodies

conditional and looping constructs within the
specification. These graphs can be combined.

(II) Scheduling aims to minimise the number of

control steps need for the completion of the

high level description. A control step broadly
corresponds to a single state of a finite state

machine.

(Ill) The allocation subtask aims to minimise the

amount of hardware needed. 'Hardware' is

defined here as functional units, memory

elements and communication pathways.

(IV) The final major high level synthesis subtask is

the derivation of a controller able to sequence
operations on the datapath in a manner which
corresponds to the behavioural specification.

Once these synthesis steps have been completed,
logic and layout synthesis tools convert the resulting

netlist into actual hardware.

The key steps in the synthesis task are the

scheduling and allocation stages. It is important to

note that the two subtasks are intimately related, for

in order to determine a suitable degree of operational

parallelism (scheduling), one has to know what
functional units are available; conversely, in order to
ensure judicious functional unit selection (and

consequently utilisation), information from the
schedule is required. Thus, there is a cyclic

relationship.

2.1 Related Work
Paulin [5] classifies the following major scheduling/

allocation approaches:

Independent scheduling/allocation schemes.

Interdependent scheduling/allocation schemes.

Scheduling/allocation by stepwise refinement.

The simplest scheme is to schedule operations as

soon as possible (ASAP). Many systems such as the
Emerald/Facet System [6], the SARI tool, SAGE 2.0
[7] and the CATREE system [8] use this technique.

This ASAP technique may be refined by allowing

conditional postponement of operations as in the

MIMOLA [9] and FIamel [10] systems.

Another major type of independent scheduler/

allocator uses list scheduling, where some pre-
ordering of operations into lists via control

information extracted from the data-flow and

precedence graphs occurs. Scheduling then takes

place into control steps. The EMUCS [11], SLICER

[12] and the IMEC Cathedral-11 [13] systems use this

type of scheduler.

The MAHA [14] system is an example of the second

technique, where scheduling and allocation are

related. In this system, a critical path analysis is
performed, and functional units are allocated in a

first-come, first-served manner.

Scheduling and allocation by stepwise refinement is

typified by the BUD-DAA system [15], by the HAL

system [5,16,17,18] and the IBM Yorktown Silicon

Compiler (YSC) [19]. In these systems a preliminary

schedule is performed via a standard metric (for

example by scheduling for the minimum number of

control steps, as in the YSC). Functional units are

then allocated and the schedule adjusted

accordingly. This cycle is repeated until a set of cost
criteria are realised. The HAL system uses a force-

directed algorithm which enables specific physical
information to be fed back to the scheduler allowing

optimum scheduling and allocation to take place.

This technique takes into account operators other

than functional ones, such as memory and
communication operators when determining the

control step assignments. It also uses a built-in cost

mechanism to allow trade-offs in functional unit,

register and interconnect to be incorporated in the

synthesis task to allow optimum operator scheduling.

The simulated annealing algorithm has been applied

before in this field [20,21,22], but the algorithm as

reported by Devedas and Newton required some
explicit statement of serialism or parallelism to be

included in the intermediate format. The approach

reported here differs in that no explicit statement of
operation execution behaviour is required.

Further, the design environment in which SAVAGE

operates requires rapid evaluation of architectural

decisions. To achieve this, we have decided not to

use SAVAGE to completely optimise and synthesise

the datapath 1 but to apply a series of cost estimation

functions to predict the hardware overhead incurred

as a consequence of the scheduling and allocation

functions. This enables different memory and

communication strategies to be rapidly prototyped,

simply by altering the cost estimation function.

There exists a discrepancy in the dimensions of the
search space which the annealing function has to
traverse. The time dimension is significant for

complex examples, and individual nodes are allowed

a significant degree of freedom in possible moves

within that dimension (earliest possible schedule -

latest possible schedule), whereas the hardware

dimension is more restricted in terms of the moves

which a single (data-flow graph) operation can make

over functional units available from the library.

If the synthesis flow is viewed as a single stream

where memory and communications are strongly
dependant on the schedule and allocation selected
[1], then the need to search the hardware resource

space using simulated annealing diminishes.

Consequently, we have selected to traverse the

hardware resource space using deterministic

methods.

3. The SAVAGE Framework
It is our intention to create a set of flexible
optimisation tools. So far, we have developed a

simulated annealing based core, and complemented
this with a range of pre and post processing

modules. (See Section 4.3)

We are currently developing a simple library based
system of scheduling, allocate and cost functions,

which the design engineer can select according to

the problem. Such a library based approach will

allow the rapid exploration of the design space.

The software structure is shown in figure 1.

4. Optimisation Procedures

Kirkpatrick, Gelatt and Vecchi [23] were the first to

propose and demonstrate - the application of

simulation techniques from statistical physics to

problems of combinatorial optimisation, specifically

to the problems of wire routing and component

placement in VLSI design.

procedure sim anneal (k 0 , s 0 , inner-

loop)
begin
k = k 0 ;

S = s 0 ;

repeat
for i = 1 to inner loop loop
temp = generate(s);
if (accept(c(ternp),c(s), k) then

S := temp;
end if;

end loop;
update (k);

until stopping criterion;
end sin—anneal;

where Ic0 is a control parameter, 5 is the initial

system state and the function co returns an
assessment of the relative value of the current state
based on suitable cost criteria. The acceptance of a

new state is determined by acceptO

function accept (c(temp),c(s),k)
begin

= c(temp) - c(s);
if (random(0,1) < f(c,k)) then
return (TRUE)

else
return (FALSE)

end if;
end accept;

The pseudo code above contains a number of

system transformation functions worthy of note:

The state transformation function, generateO.

The acceptance function, f.

The control parameter update function,

3

Figure 1. SAVAGE Software Structure

updateO. 	 k, 1 	13k. , 	0<13<1
The inner loop criterion.

The stopping criterion.

The state transformation function, generate(), is

problem specific. The simpler systems use a
pairwise interchange technique to generate the new

configuration. This function, together with the cost
function, co, which tends to be based on the total
interconnect length for placement packages based
on simulated annealing, determines the final
(optimal) system state.

A form of the acceptance function (Kirkpatrick, Gelatt

and Vecchi) is:

f (Ac, k) = mm (1.0, exp((-Ac) 1k)

With negative or zero Ac, the next state generated is

always accepted. For positive Ac, the Boltzmann-

like factor determines the probability of a generated

state which has a higher cost than the current state

being accepted as a valid state transformation.

The function update() provides a method for
updating the control parameter, k. The most common
form of the update function is

The inner loop criterion is specified as the number of
states generated per control parameter value. It is

normally specified as some integer function of the
initial system configuration.

The stopping criterion is defined as Ac = 0 over 3

annealing iterations.

In this paper, we are primarily concerned with the
procedures which constitute the generate function.

4.1 A Scheduling Model

We select a node from the data-flow graph (or
partition thereof) at random. Because of the

observance of data-flow constraints, each node has
an earliest possible schedule time and a latest

possible schedule time. The actual execution time of

the individual node will lie between these bounds.

The scheduling subtask simply corresponds to a
random perturbation of the selected nodes execution
time to a point within its valid schedule range. This
process is shown in figure 2.

4.2 Allocation Strategy
After scheduling, a functional unit is selected based

4

earliest valid schedule

valid schedule
selected node

Time

	range

latest valid schedule

Figure 2. Scheduling Model

upon a simple load balancing criterion. This is
defined as the first-choice functional unit. If the time

slot is available on the first choice functional unit
which corresponds to the new scheduled time of the

selected operation, then a simple mapping between

data flow graph and functional unit takes place.

If the first choice functional unit is unavailable at the

scheduled time, then a search of the remaining

functional units of appropriate operation class is

initiated, and another unit selected. The mapping

procedure is then reinvoked on the functional unit.

Should no time slots be available on any appropriate
functional unit, then the operation is deferred to
execute within its valid schedule range on the first

choice functional unit. Should this procedure fail, a
second choice functional unit is selected, and the

deferment procedure repeated.

If all functional units are busy during the selected

operations valid schedule range, then the user is

flagged, and is prompted to either extend the valid
schedule range of the particular operation (which as

a side-effect, alters the schedule for all subsequent
nodes in the data-flow graph), or to consider

allocating an extra functional unit to the resource set.

This action results in a re-allocation of operations

over the new resource set.

4.3 Commentary
The scheduling and allocation procedures described

above, coupled with an appropriate costing function

which directs the optimisation to proceed towards an
as-soon-as-possible (ASAP) solution, can produce

optimised solutions for problems where a fixed

hardware budget is specified, or where a speed
constraint is desired.

An additional refinement is to perform some

partitioning of the input data-flow graph prior to

optimisation. The simplest technique to use here is a

critical path analysis. This ensures that high-priority

nodes (i.e. the critical path) are scheduled and

allocated first. This is a good example of the flexibility
of the SAVAGE system. Pre and post processing
modules can be added, according to the desired
architectural solution.

Further functionality is built into SAVAGE, allowing

the user to develop a pipelined execution plan, once

a schedule has been developed. The overall effect of

this is to decrease the pipeline reuse time (input-to-

input latency) with only a slight increase in cost to the

pipeline propagation delay (input-to-output latency).

This effect is easily achieved by selecting a suitable
reuse time value, and invalidating the schedule of all
nodes occurring after that time. The scheduling and

allocation process is then reapplied, and a pipelined
execution plan developed.

5. A Design Example
We present a typical design example used to test

SAVAGE, namely the 1-dimensional 8 point Fast
Discrete Cosine Transform [24].

The data flow graph generated in this example has

42 nodes, and 92 data-flow arcs. This represents a

significant test of the optimisation system. The data-

flow graph generated is shown in figure 3.

The SAVAGE tools was exercised on this example

with a number of speed and hardware constraints.
The results are presented in table 1. It is important to

note that only the functional units and execution time

5

AO 1
+

15

23

U ' 	2
+ 10 16 _>Q

24 ____

" 3
17 1

1 25 >p

+

_ 12
4

+ 	 L20

-

5
27 1

39

+ 	* 32

>(
6 p 21/

28 	*
-

3

34
40

*

p22
+ - 	29 	*

35 41

* 36

30
 N 37

42

8 /
/

 +
)q 	 '38 _

*

Figure 3. 1-Dimensional 8 Point Fast Discrete Cosine Transform

Cycles + 	x 	 - A FU Util Pipeline Reuse Prop Delay

20 1 	 1 	 1 70% 20 20

11 2 	2 	2 63% 11 11

8 1 2 	2 	2 87% 8 15

8 3 	3 	3 58% 8 8

61 3 	3 	3 77% 6 9

1 .Pipelined execution plan

Table 1. Results for 1-Dimensional 8 Point Fast Discrete Cosine Transform

6

are optimised. In this example, there is no direct
optimisation of the registers or communication

pathways used.

Table 1 shows how SAVAGE can present the

designer with a number of architectural strategies

ranging from a fully serial architecture to an

architecture which has a pipeline reuse time

corresponding to the As-Soon-As-Possible (ASAP)

schedule of the FDCT block.

A good metric for the selection of an appropriate

architecture is a measure of the average functional

unit utilisation. As the table shows, a pipelined
execution plan using 2 adders, 2 subtractors and 2

multipliers offers a considerable increase in

functional unit utilisation over the other architectural

strategies presented.

Limitations

In order to increase the versatility of the SAVAGE

tool, more complex costing functions are required,

which in turn require more detailed move sets for the

scheduling and allocation procedures. In the
prototype system, an ASAP regime suffices in order
to prove the validity of the optimisation technique.

The second generation SAVAGE tool will have an

enhanced set of cost functions covering scheduling

strategies (ASAP, ALAP, AFAP, FDLS, etc.), more

complex allocation strategies, and hardware costing

functions designed to provide an approximate value

of the hardware overhead in terms of registers and

multiplexer inputs as a consequence of both the

memory and communications architecture selected
the scheduling and allocation techniques used.

Conclusions
We have presented a prototype optimisation system
based around the stochiastic optimisation technique

known as simulated annealing.

The tool has been tested on a number of significant

examples, and its use has been illustrated here by

searching the solution space for the 1-dimensional 8

point Fast Discrete Cosine Transform.

A number of limitations are immediately apparent.

Firstly, the optimisation criteria used do not

encompass memory or communication resource.

Work is currently underway to correct this. Further,

the strategies for optimisation are limited. Presently,

only an As-Soon-As-Possible (ASAP) scheduling
strategy is available. - -

Because of the modular nature of the SAVAGE

system, however, future versions of the optimisation

system will include a wide range of scheduling and
allocation options. This work will complete the

development of a suitable synthesis toolbox capable

of supporting the architectural script based method

advocated by De Man.

It is intended that SAVAGE 2 will be a prototype

architectural script based system, where elements

from the toolbox will be selected by heuristics

determined by a number of high-level system goals,

combined with the current architecture script.'

Acknowledgements
This work was carried out as part of the Silicon

Architectures Research Initiative. The use of
facilities and resources is gratefully acknowledged.

The work reported here is supported by the Science

and Engineering Research Council.

References

Denyer, P.B., "SAGE Design Methodology,"
SARI Internal Technical Report SARI-035-D,
March 1989.

Mallon, D. and Denyer, P.B., "Behavioural
Synthesis : An Interactive Approach," lEE
Colloquium Digest 1989185, May 1989, pp.2/
1-2/8.

De Man, H., "Tutorial On High-Level
Synthesis" EDAC 90, March 1990.

McFarland, 	S.J., 	Parker, 	A.C. 	and
Camposano, R., "Tutorial on High-Level
Synthesis," in Proc. 25th Design Automat.

VA

Cont, July 1988, PP. 330-336.

Paulin, PG., "Force-Directed Scheduling for 	[17]

the Behavioural Synthesis of ASIC's," IEEE

Trans. Computer-Aided Design, Vol. CAD-8,
June 1989.

Tseng, C. and Sewiorek, D.P., "Automated
Synthesis of Data Paths in Digital Systems,"
IEEE Trans. Computer-Aided Design, Vol. 	[18]
CAD-5, July1985, pp. 379-395.

Mallon, D., "SAGE Operation Power Tools,"

SARI Internal Technical Report SARI-014-C,

September 1988.

Conf., June 1989.

Paulin, P.G. and Knight, J.P., "High-Level

Synthesis Benchmark Results using a Global
Scheduling Algorithm,' presented at the
International Workshop on Logic and
Architecture Synthesis for Silicon Compilers,
1988.

Paulin, P.G., Knight, J.P. and Girczyc, E.F.,

"HAL : A Multi-Paradigm Approach to
Automatic Data Path Synthesis," in Proc. 23rd
Design Automat. Conf., July 1986, pp. 263-
270.

Gebotys, C.H. and Elmasry, M.l., "A VLSI 	[19] Camposano, R., "Structural Synthesis in the

Methodology with Testability Constraints," in 	Yorktown Silicon Compiler," in VLSI '87(C.H.

Proc. 1987 Canadian Cont on VLSI, October 	Sequin, ed.), New York : Elsevier, 1988, pp.

1987. 	 61-72.

Marwedel, P., "A New Synthesis Algorithm for 	[20] Devedas, S. and Newton, A.R., "Algorithms

the MIMOLA Software System," in Proc. 23rd 	for Hardware Allocation in Data Path

Design Automat. Con!., July1986, pp. 271- 	Synthesis," in Proc. ICCAD '87, 1987, pp526-

277. 	 531.

Trickey, H., "FIameI : A High-Level Hardware 	[21] Devedas, S. and Newton, A.R., "Algorithms

Compiler," IEEE Trans. Computer-Aided 	for Hardware Allocation in Data Path

Design, Vol. CAD-6, March 1987, pp. 259- 	Synthesis," IEEE Trans. Computer-Aided

269. 	 Design, Vol. CAD-8, No. 7, July1989, pp. 768-
781.

Hitchcock, C.Y. and Thomas, D.E., "A Method
Of Automatic Data Path Synthesis," in Proc. 	[22] Safir, A. and Zavidovique, B.,"Towards a

20th Design Automat. Con!., July 1983, pp.
	Global Solution to High Level Synthesis

484-489.
	 Problems", in Proc. European Design

Pangrle, B.M. and Gajski, D.D., "SLICER A
	Automat. Conf., March 1990, pp283-288.

State Synthesiser for Intelligent Silicon 	[23] Kirkpatrick, S., Gelatt, C. and Vecchi, M.,

Compilation," in Proc. IEEE Conf. Computer
	"Optimisation by Simulated Annealing,"

Design, October 1987.
	 Science, Vol. 220, No. 4598, May 1983, pp.

671-680.
De Man, H., etal., "CATHEDRAL-11: A Silicon
Compiler For Digital Signal Processing," IEEE 	[24]

Design and Test Magazine, December 1986,
pp. 13-25.

Parker, A.C., et al., "MAHA : A Program for
Data Path Synthesis," in Proc. 23rd Design

Automat. Conf., July 1986, pp. 461-466.

McFarland, M.C., "BUD: Bottom-up Design of

Digital Systems," in Proc. 23rd Design
Automat. Con!., July 1986, pp. 474-479.

Paulin, P.G. and Knight, J.P., "Scheduling
and Binding Algorithms for High-Level
Synthesis," in Proc. 26th Design Automat.

Chen, W. and Fralick, S. "A Fast Computation
Algorithm for the Discrete Cosine Transform",
IEEE Trans. Communications, Vol. COM-25,
No.9 September 1977, pp. 1004-1009.

8

Exploring Design Space Using SAVAGE:

A Simulated Annealing based VLSI Architecture GEnerator

J.P. Neil and P.B. Denyer

Silicon Architectures Research Initiative

University Of Edinburgh

Department Of Electrical Engineering

West Mains Road

Edinburgh EH9 3JL

U.K.

We present the prototype version of a synthesis

system based around an architectural script

design method, and controlled by the

computational technique known as simulated

annealing. The system is exer'ised using a 5th

order wave digital filter design, one of the

benchmarks from the 1988 Workshop on High

Level Synthesis

1.0 Introduction

As the demand for fast turnaround ASIC designs in

industry increases, the complexity of the design

process increases correspondingly. In response to

these market demands, increasingly sophisticated

Computer-Aided Design tools have become available

which abstract much of the design process from the

engineer.

Latest in the CAD tool field is the behavioural synthesis

system, which takes a high-level algorithmic

description of the desired circuit function, and follows a

specific mapping process to produce a functional

circuit. The constraints placed on the mapping process

can often result in a simple template matching problem,

where a specific algorithm is fitted onto a fairly

predefined structure.

We present the prototype version of a CAD tool

capable of allowing the designer to effectively explore

the design space, and rapidly prototype a selection of

architectural solutions to a given algorithmic

specification.

SAVAGE [1,2,3] (a Simulated Annealing based VLSI

Architecture GEnerator) is a library based synthesis

system based around the stochastic computational

technique known as simulated annealing [4]. It forms

part of the Silicon Architectures Research Initiative

(SARI) hosted at the University Of Edinburgh.[5.6,7]

The SAVAGE tool is based upon the Architectural

Script design method as advocated by De Man [8]

where the synthesis framework is viewed as a 3 level

entity, with common data model elements at the core,

operated on at a low level by a synthesis toolbox of

base procedures, which are in turn controlled by an

architectural script specifying their modes of operation.

Simulated Annealing has been used previously in the

behavioural synthesis field, notably by Devedas and

Newton [9]. The approach reported here has a number

of significant differences. Firstly, SAVAGE needs no

explicit statement of serialism or parallelism to execute,

but more importantly SAVAGE offers the designer a

greater degree of freedom by allowing interaction, not

only by specifying the overall system goals, but by

allowing the designer to specify the design techniques

by which to achieve those goals.

The body of the paper is concerned with the

development of an appropriate synthesis framework

and base procedures capable of manipulating the data

model. We introduce the SAVAGE tool structure in

Section 2.0, and go on to develop models of

scheduling, allocation, memory and communications

synthesis procedures. We then present test results

generated by the initial SAVAGE tool. Finally, some

conclusions are offered, and directions for future work

indicated.

2.0 Tool Structure

SAVAGE is based upon the same linear design flow as

its parent project, SARI, where current synthesis

decisions can directly affect "downstream" synthesis

actions. This design flow is shown in Figure 1. The

design tools reported here deal with the scheduling/

CH2819-1i9O,V000-0104$01.00'1991 IEEE

allocation, memory and communication synthesis

procedures. Before moving on to discuss the various

design stages, we must define a method for assessing

the quality of the solutions SAVAGE produces.

Behavioural Description

Specification Compilation

I 	Scheduling and Allocation

I 	Memory Synthesis 	 I

I 	Communications Synthesis

Control Synthesis

I 	 Netlist Dump 	 I

To Layout Tools

Figure 1. SARI Design Row

2.1 Datapath Cost Assessment

Within SAVAGE, the cost" of a particular datapath

configuration is evaluated after each state generation.

That is, a complete datapath is synthesised, and a

weighted sum of the cost of each component,

operational, memory and communication, is computed

in terms of area, power consumption and total

execution time.

The decision-making capability of the simulated

annealing algorithm is controlled by the Metropolis

criterion [10], whereby datapath states generated with

a lesser cost than the previous datapath state are

always accepted, whereas states generated with a

greater cost are accepted with a probability function

described by

(.)

Accept = inin1.O,e T

 _', J
where Ac is the difference in cost between the two

states, and T is a control parameter, which simulates

the temperature of the melt in the physical annealing

process. This function allows hill climbing moves to be

made, and alleviates the problem of local minima,

which is a characteristic of greedy heuristic search

strategies.

2.2 Scheduling And Allocation Strategies

The aim of the scheduling function is to set each node

within the input data flow graph to execute at such a

time so that the data flow constraints are not violated.

The allocation function ensures that each data flow

graph operation executes on an appropriate hardware

unit. These two functions are strongly interrelated, for

in order to produce an efficient schedule, some

knowledge about the functional unit allocation is

required, whilst allocation cannot take place without an

indication of parallelism within the data flow graph,

which, in turn, comes from the schedule. Thus there is

a circular relationship.

The scheduling function within the SAVAGE core is

implemented by selecting a node at random from the

data flow graph, and perturbing its execution time,

subject to the data flow constraints. The perturbment

can be biased in such a way so as to produce a number

of different scheduling strategies (e.g. ASAP, ALAP,

FDLS, etc.). This pseudo-random perturbment forms

the basis of the hill climbing move set described above.

The allocation procedure operates on a simple load

balancing criterion, whereby parallelism is balanced on

a clock-cycle to clock-cycle basis.

These initial scheduling and allocation functions were

chosen to demonstrate the SAVAGE concept, and also

because of their relative ease of implementation.

2.3 Synthesis Procedures

The aims of the memory and communications

synthesis procedures of a behavioural synthesis

system may be stated as the provision of storage

resource for data transfers which have a duration

greater than the unit clock cycle, and the provision of

data transfer resource from the output port of one

function resource (operational/memory/external

interface) to the input port(s) of other functional

resources, respectively.

These definitions are made without any reference to

the actual form of the components synthesised, or their

communication topology; rather, they are a functional

definition of memory and communication synthesis

procedures in general. This is in keeping with the

105

architectural script synthesis paradigm where various

architectural techniques can be used to provide these

synthesis procedures.

The prototype version of SAVAGE reported here uses

a simple left-edge memory allocation strategy, and

performs a best-fit' grouping of signals to the resulting

register locations. These registers are then grouped

into common files according to the match between

source and destination ports.

A clique partitioning algorithm is used to generate the

minimum number of transfer pathways between

connected functional resources. This connectivity

information is generated in the preceding memory

allocation phase. Once these transfer pathways have

been defined, we impose a two-level multiplexing

regime which ensures a minimum transfer pathway

delay.

3.0 Test Data and Results

SAVAGE has been tested on a variety of problems

drawn from the signal processing domain. In this paper,

we present results obtained from trials carried out on

one of the benchmarks from the 1988 Workshop on

High-Level Synthesis, a 5th Order Elliptic Wave Digital

1-1gure 2. wave Digital Filter Flow Graph

Filter design (Figure 2), as popularised by Paulin (11].

This design represents a significant test for current

behavioural synthesis systems, and contains 34

operation nodes with 76 communication arcs.

The SAVAGE tool was exercised on the design with 3

predefined operational resource allocations, consisting

of 2 ADD units, and either a single MULT unit, a

MULTP (pipelined) unit, or 2 MULTP units. These

allocations were selected simply to facilitate an easy

comparison between synthesis systems. These

results, along with published results for other programs

are shown in Table 1.

3.1 Discussion

Table 1 indicates that SAVAGE is capable of

synthesising highly optimised solutions. This may be

directly attributed to the global cost assessment

mechanism associated with the simulated annealing

algorithm. These results, however, indicate the quality

of solution for a particular architectural style, namely a

single level of bussing, and a 2 level multiplexer

regime. The completed version of SAVAGE will allow

the designer to explore a wider range of architectural

options very rapidly.

System C_steps Mutt Registers Mux. Inputs Reg. tiles

Hal (Ill 19 IP 12 26 -

flat 21 1 12 30

Ital 19 2 12 28 -

Esc [12J 19 IP 15 25

FAC 21 1 16 23 S

Esc 19 21' IS 26 S

Splicer[131 21 1 12 35 -

SAW (141 19 21' 12 34

Sl'Alh)ttSl 19 II' 19 33 6

Sl'AID 21 I 19 31 5

SAVAGE 19 111 12 19(+7) 1 2

SAVAGE 21 1 12 2I(ili) 4

SAVAGE. lii 	1 21' 14 IS (+5)1 3

1. Figures in brackets indicate additional multiplexers required for

register tile decoding

Table 1. Results for Wave Digital Filter

4.0 Conclusions and Future Work

We have presented a prototype version of a powerful

synthesis system which utilises the architectural script

design method, and uses the simulated annealing

process as its control mechanism.

Tests carried out on established benchmarks indicate

that SAVAGE is capable of producing high quality

solutions to behavioural synthesis problems. The

106

flexibility of the SAVAGE system allows a designer to

rapidly evaluató the effects of high-level architectural

decisions on the quality of the final solution.

The current version of SAVAGE is limited by the

number of architecture synthesis modules and

scheduling/allocation move sets available. The current

SAVAGE was intended as a concept demonstrator. A

more serious limitation is the inability to operate on

hierarchical designs. This problem may be partially

solved by designating null or busy periods on all

resources to simulate some hierarchical resource
sharing. -

Future generations of the toot set will have a range of

synthesis modules available capable of synthesising a

number of recognised memory and communication

architectures, which will be coupled with an expanded

set of moves available to the scheduling and allocation

tool.

Once this synthesis toolbox is in place, an architectural

script interface will be implemented which will allow the

designer to specify a set of system goals to be

satisfied, along with an initial set of scheduling/

allocation and synthesis strategies. The final

component of the script will be a set of architectural

pragmas, which will allow the designer to apply rules-

of-thumb' gained through design experience to the

synthesis procedure. These measures will allow the

designer to have a direct influence on the final

architectural form, but will abstract the designer from

the implementation detail.

Acknowledgements
This work was carried out as part of the Silicon

Architectures Research Initiative. The use of facilities

and resources is gratefully acknowledged.

The work reported here is supported by the Science

and Engineering Research Council and the University

Of Edinburgh.

References
[1) 	Neil, J.P. and Denyer, P.8., "Synthesis By

Simulated Annealing", /EE Colloquium Digest
19891125, November 1989, pp.9/1 -9/4.

[2] 	Neil, J.P. and Denyer, P.8., "SAVAGE : A

Simulated-Annealing based VLSI Architecture

Generator", IEEE Workshop on Genetic

Algorithms, Simulated Annealing and Neural

• Networks applied to Signal and Image
Processing, May 1990.

Finlay, I.W., Neil, J.P. and Denyer, P.B., '-'Filter

Synthesis using Behavioural Design Tools" to

be published in Proc. 16th European Solid State

Circuits Conference, Grenoble, September
1990.

Kirkpatrick, S., Gelatt, C. and Vecchi, M.,

"Optimisation by Simulated Annealing,"

Science, Vol. 220, No. 4598, May 1983, pp. 671-
680.

Grant, P.M., "The DTI-Industry Sponsored

Silicon Architectures Research Initiative", lEE
Electronics & Communications Engineering
Journal, Vol. 2 No. 3, June 1990.

Mallon, D. and Denyer, P.8., "Behavioural

Synthesis : An Interactive Approach," lEE
Colloquium Digest 1989185, May 1989, pp.2/1 -
2/8.

Denyer, P.B., "SAGE Design Methodology,"
SARI Internal Technical Report SARI-035-D,

March 1989.

De Man, H., "Tutorial On High-Level Synthesis"

EDAC '90, March 1990.

Devedas, S. and Newton, A.R., "Algorithms for

Hardware Allocation in Data Path Synthesis,"

IEEE Trans. Computer-Aided Design, Vol. CAD-
8, No. 7, July 1989, pp. 768-781.

Metropolis, N., Rosenbluth, A., Rosenbluth,

M.,Teller, A. and Teller,E., "Equation of State

Calculations by Fast Computing Machines",

Journal Chem. Phys.,21/6(1953):1087.
Paulin, P.G. and Knight, J.P., 'Scheduling and

Binding Algorithms for High-Level Synthesis," in
Proc. 26th Design Automat. Con!., June 1989.
Stok, L., "Interconnect Optimisation During Data
Path Allocation," in Proc. EDAC '90, pp. 141-
146, March: 1990.

	

[13) 	Pangrle, B.M., "Splicer: A Heuristic Approach to

Connectivity Binding," in Proc. 25th Design
Automat. Con!., July 1988.

[14] Thomas, D.E. et al., "The System Architect's

Workbench," in Proc. 25th Design Automat.
Con!., July -1988.

	

[151 	Haroun, B.S. and Elmasry, M.l., "Architectural

Synthesis for DSP Silicon Compilers,"IEEE
Trans. Computer-Aided Design, Vol. CAD-B,
No. 4, April 1989.

107

Filter Synthesis using
Behavioural Design Tools

I.W. Finlay, J.R"Neil and RB Denyer

Silicon Architectures Research Initiative
University Of Edinburgh

Department of Electrical Engineering
The Kings Buildings
West Mains Road

Edinburgh EH9 3JL

We present a 5th-Order Wave Digital Filter datapath designed using
behavioural synthesis toots developed as part of the SARI, project at the
University Of Edinburgh. We use a simulated annealing based optimisation
system to develop the execution plan for the filter, with a datapath synthesised
using clique partitioning and a novel heuristically driven module selection
mechanism. These tools may be characterised by their ability to rapidly search
the solution space for a given behavioural specification.

1.0 Introduction
As the demand for Application Specific Integrated Circuits continues to rise in the computer manufacturing

industry and elsewhere, increasingly sophisticated design tools are required to enable non-expert silicon designers
to realise complete systems on a single chip. Newest in this design automation field is the behavioural synthesis
tool which takes an algorithmic description of the required system behaviour and subsequently synthesises a
logically correct datapath/controller system which corresponds to the required behaviour.

The work described in this paper is part of the Silicon Architectures Research Initiative [1,2] at the University of
Edinburgh. An interactive behavioural synthesis system is being developed (SAGE [3]) which allows the designer
to make high-level system decisions which will affect the ultimate silicon realisation, but which abstracts the
synthesis procedures from the designer.

We report on the development of part of the synthesis system (SAVAGE), and demonstrate its use by
synthesising a major design, namely a 5th-Order Wave Digital Filter.

We introduce the behavioural synthesis problem, and then move on to discuss the relevant subtasks. We present
the experimental results gathered thus far, and finally offer some conclusions on the efficiency of the toolset.

2.0 The Behavioural Synthesis Task
Parker [4) states "the synthesis (ask is to take a specification of the behaviour required of a system and a set of

constraints and goals to be satisfied, and to find a structure that implements the behaviour while satisfying the goals

and constraints".

This task may be subdivided into a number of distinct steps:

(I) Transforming a behavioural description (usually written in a high level programming language such as ADA
or Pascal) into some suitable internal representation. The most common approach is to represent the
algorithm as two graphs; a data-flow graph whose nodes represent individual operations, and whose arcs

205

206

represent communication pathways between operations, together with a control flow graph which embodies

conditional and looping constructs within the specification. These graphs can be combined.
(II) Scheduling aims to minimise the number of control steps need for the completion of the high level

description. A control step broadly corresponds to a single state of a finite state machine.
(Ill) The allocation subtask aims to minimise the amount of hardware needed. 'Hardware' is defined here as

functional units, memory elements and communication pathways.
(IV) The final major high level synthesis subtask is the derivation of a controller able to sequence operations on

the datapath in a manner which corresponds to the behavioural specification.

Once these synthesis steps have been completed, logic and layout synthesis tools convert the resulting netlist

into actual hardware.
The key steps in the synthesis task are the scheduling and allocation stages. It is important to note that the two

subtasks are intimately related, for in order to determine a suitable degree of operational parallelism (scheduling),

one has to know what functional units are available; conversely, in order to ensure judicious functional unit selection

(and consequently utilisation), information from the schedule is required. Thus, there is a cyclic relationship.

The simulated annealing algorithm has been applied before in this field [5,6,7], but the algorithm as reported by

Devedas and Newton required some explicit statement of serialism or parallelism to be included in the intermediate

format. The approach reported here differs in that no explicit statement of operation execution behaviour is

required.
Further, the design environment in which SAVAGE operates requires rapid evaluation of architectural decisions.

To achieve this, we have decided not to use SAVAGE to completely optimise and synthesise the datapath, but to

apply a series of cost estimation functions to predict the hardware overhead incurred as a consequence of the

scheduling and allocation functions. This enables different memory and communication strategies to be rapidly

prototyped, simply by altering the cost estimation function.

2.1 A Scheduling Model

From the design representation described above, a

scheduling model based upon the stochastic

computational technique known as simulated

annealing[8] can be developed. In this model, a node from

the data flow graph is selected at random and its

execution time randomly perturbed, subject to data-flow

graph constraints. This constraint is defined as the valid

schedule range of the node, and is shown in figure 1.

The simulated annealing model allows scheduling

moves which represent an overall increase in system cost

to be accepted, dependant on a control parameter, which,

in the simulated annealing system corresponds to the

temperature of the physical annealing system.

•0.:: :i:r' 	
earliest valid schedule

AL
- --

selected 	
valid schedule

q

i +
range

test valid schedule
- -

Figure 1. Scheduling Model

2.2 Allocation Strategy

After scheduling, a functional unit is selected based upon a simple load balancing criterion. This is defined as the

first-choice functional unit. If the time slot is available on the first choice functional unit which corresponds to the

new scheduled time of the selected operation, then a simple mapping between data flow graph and functional unit

takes place.
If the first choice functional unit is unavailable at the scheduled time, then a search of the remaining functional

units of appropriate operation class is initiated, and another unit selected. The mapping procedure is then reinvoked

on the functional unit.
If all functional units are busy during the selected operations valid schedule range, then the user is flagged, and

is prompted to either extend the valid schedule range of the particular operation (which as a side-effect, alters the

schedule for all subsequent nodes in the data-flow graph), or to consider allocating an extra functional unit to the

resource set. This action results in a re-allocation of operations over the new resource set.

207

2.3 Datapath Allocation

Datapath allocation is composed of two important synthesis tasks:
Binding signals to memory locations
Binding signal transfers to interconnections.

As McFarland stated 191, local interconnection comprising of multiplexing and bus inputs constitutes a substantial
part of the design cost in terms of both speed and area. In attempting to minimise data path allocation costs most
attention is paid to minimising memory requirements. Systems such as MAHA[10], SPLICER [11) and FACET [12]
adopt this approach and do not consider the effects on interconnection costs when minimising the number of
memory locations. Memory requirements are reduced by forcing signals which have disjoint lifetimes to share the
same memory location. The Left Edge' algorithm (10) guarantees an optimal solution to this problem. Other
approaches such as edge colouring and clique partitioning techniques are also used. HAL [13] incorporates
interconnection cost into the memory minimisation by weighting the signal compatibility graph. The technique uses
clique partitioning in a stepwise manner where signals with favourable weightings are partitioned and merged first.
This has the added advantage of reducing the complexity of the graphs to be partitioned.

The approach taken in this paper differs from existing techniques in that it considers memory and
interconnections costs jointly,and minimises them by merging wires rather than registers.

2.4 Architectural style

The interconnection style is restricted to two levels of multiplexing and a single level of bussing for each
processor-memory-processor transfer path and so it is not possible to synthesise memory-memory
communications. This style has two advantages. Firstly, it ensures minimum time delay through interconnect paths.
Splicer and SAW [1 4]permit up to four levels of multiplexing and, hence, have twice the worst case delay. Secondly,
as registers and register files are each connected to a single bus the interconnection topology is linear which has
benefits in layout area.(15]

2.5 Synthesis Algorithm

The aim of data path allocation is to provide interconnection paths and storage locations for signal transfers
between processors. Information from the scheduling : and allocation phase is used to generate the necessary
wiring between processors. Initially, each wire is associated with a single register. Signal transfers are assigned to
wires with the appropriate source and destination. Signals can only share the same wire it their lifetimes do not
overlap. If the memory location is not free for the lifetime of the signal then a new wire is created. The algorithm
minimises memory locations, multiplexers and interconnection by merging wires. Any two wires can be merged
provided that no signals carried by them need to be transferred at the same time. Clique partitioning is used to find
all maximal merges of wires. Merges are then made on the basis of memory and..multiplexer cost estimates. The
memory cost estimator is based on the reduction in required memory locations resulting from the merge and how
well the locations are used. The multiplexer cost estimator is based on the number of shared sources and

destinations in the merge, offset by the resultant
increase in the number of multiplexer and bus

inputs.

3.0 Results
The optimisation tools were tested on the

benchmark example for the 1988 Workshop on
High-Level Synthesis, a 5th Order Elliptical Wave
Digital Filter. The schedule and allocation tool was
exercised with a variation in minimum c-step
requirement, together with appropriate weightings
for register and multiplexer overheads in the cost
assessment function.

The results from the SAVAGE synthesis
procedures are shown in Table 1. The synthesis
procedures took a default allocation of 2 adders,with
a variable number of multipliers. ('P' indicates a
pipelined multiplier).The number of multiplexer
inputs generated by SAVAGE is calculated in the
same manner as the other systems, however, there

Systcm C_steps Mull Register Mux. Input. Reg. files

Hal 19 IP 12 26

Hal 21 I 12 30

Hal 19 2 12 28

Esc 1161 19 LP 15 25

Esc 211 16 23 8

Esc 19 2P IS 26 8

Splicer 21 1 12 35

SAW 19 2P 12 34

SPAID 191P 19 33 6

SPAID 21 1 19 31 5

SAVAGE 19 IP 12 19 2

SAVAGE 21 1 12 21 4

SAVAGE IS 21' 14 IS 3

Table 1. Synthesis results

208

is extra decoding required in using register files which is not necessary in HAL, Splicer or SAW.
It may be seen that SAVAGE performs favourably in comparison with the other quoted systems.

4.0 Conclusions
A suite of behavioural synthesis tools has been developed which is capable of rapidly exploring the solution

space of a given problem. The tools have been used to generate a number of solutions for the benchmark example
from the 1988 Workshop on High-Level Synthesis. These solutions compare favourably with-those solutions
generated by other behavioural synthesis systems.

The modular construction of SAVAGE allows a number of different scheduling and allocation strategies to be
tested before committing the selected solution for datapath synthesis and optimisation. The simulated annealing

algorithm may be viewed as a general purpose heuristic capable of generating near globally optimal solutions to
large problems. When this optimisation technique is coupled with powerful costing, scheduling and allocation
functions, the search space can be efficiently traversed, and optimal solutions generated.

A novel approach to datapath allocation has been presented. Minimising memory and multiplexing requirements
simultaneously by merging interconnections has been shown to generate datapath architectures with lower
communications overheads than existing systems.

Acknowledgements
This work was carried out as part of the Silicon Architectures Research Initiative. The use of facilities and resources

is gratefully acknowledged.

The work reported here is supported by the Science and Engineering Research Council and British Aerospace.

References
Grant, P.M., "The DTI-Industry Sponsored Silicon Architectures Research Initiative", lEE Electronics &
Communications Engineering Journal, Vol. 2 No. 3, June 1990.

Mallon, D. and Denyer. P.B., "Behavioural Synthesis : An Interactive Approach," lEE Colloquium Digest
1989185, May 1989, pp.2/1-2/8.

Denyer, P.S., "SAGE Design Methodology" SARI Internal Technical Report SARI-035-D, March 1989.

McFarland, S.J.. Parker, A.C. and Carnposano, R., "Tutorial on High-Level Synthesis," in Proc. 25th Design
Automat. Con!., July 1988, pp. 330-336.

[5) 	Devedas, S. and Newton, A.R., "Algorithms for Hardware Allocation in Data Path Synthesis," in Proc. ICCAD
'87, 1987, pp526-531.

Devedas, S. and Newton, A.R., "Algorithms for Hardware Allocation in Data Path Synthesis," IEEE Trans.
Computer-Aided Design, Vol. CAD-8, No. 7. July1989, pp. 768-781.

Safir, A. and Zavidovique, B.,"Towards a Global Solution to High Level Synthesis Problems", in Proc.
European Design Automat. Cont. March 1990, pp283-288 .

(8) 	Kirkpatrick, S., Gelatt, C. and Vecchi, M., "Optimisation by Simulated Annealing," Science, Vol. 220, No.
4598, May 1983, pp. 671-680.

[9) 	McFarland, M.C., "Re-evaluating the Design Space for Register Transfer Hardware Synthesis," in Proc.
ICCAD '87, 1987.

Kurdahi, F.J. and Parker, A.C., "REAL: A Program for REgister ALlocation," in Proc. 24th Design Automat.
Cont, July 1987.

Pangrle, B.M., "Splicer: A Heuristic Approach to Connectivity Binding," in Proc. 25th Design Automat. Con!.,
July 1988.

[12) Tseng, C. and Sewiorek, D.P., "Automated Synthesis of Data Paths in Digital Systems," IEEE Trans.
Computer-Aided Design, Vol. CAD-5, July 1985, pp. 379-395.

Paulin, P.G. and Knight, J.P., "Scheduling and Binding Algorithms for High-Level Synthesis," in Proc. 26th
Design Automat. Cont, June 1989.

Thomas, D.E. et al., "The System Architect's Workbench," in Proc. 25th Design Automat. Con!., July 1988.
Haroun, B.S. and Elmasry, M.L. "Architectural Synthesis for DSP Silicon Compilers,"/EEE Trans. Computer-
Aided Design, Vol. CAD-8, No. 4, April 1989.

(16) Stok, L., "Interconnect Optimisation During Data Path Allocation," in Proc. EDAC '90. pp. 141-146, March
1990.

Chapter 4

Simulated Annealing Based Synthesis of Fast
Discrete Cosine Transform Blocks.

J.P. Neil and P.B. Denyer

4.1 Introduction

This Chapter describes CAD techniques capable of synthesising Fast
Discrete .Cosine Transform (FDCT) Blocks from behavioural, or algo-
rithmic, specifications. We introduce SAVAGE (a Simulated Annealing
based VLSI Architecture GEnerator), a software tool developed under
the auspices of the Silicon Architectures Research Initiative (SARI(Grant,
1990)) hosted at the University of Edinburgh.

SAVAGE is capable of taking a data-flow description of an input
algorithm, and applying a number of synthesis steps, or transformations,
to produce a hardware netlist of a datapath. The netlist description is then
passed to logic synthesis and layout tools to complete the route to silicon.
These application specific synthesis steps are controlled by the computa-
tional technique known as simulated annealing.

This Chapter reviews the design process, from the initial high-level
description of the FDCT, through the various synthesis transformations,
and presents a set of test results illustrating the flexibility of the SAVAGE
software. Finally, some extensions to the prototype SAVAGE system are
described.

4.2 Problem Domain

The large amount of information, contained within a high definition
digital image poses significant problems, both in terms of memory
requirement and transmission latency in applications where real time, or
near real time, image transmission is required.

76 Simulated annealing based synthesis

As a result, many data compression techniques have been proposed
(Chen and Smith, 1977, Wintz, 1972 and Soame, 1982). The Discrete
Cosine Transform (DCT) operates on a series of blocks decomposed from
the original image. These blocks are ranked according to their a.c. energy
(a.c. energy quantifies the amount of information within a particular
block). A bit assignment according to the average point variance within
the block then takes place. It is here that the data compression takes place;
more bits are assigned to visually "important" regions (i.e. regions of the
image containing most information) than to those of lesser interest.

The Discrete Cosine Transform, F(k) of a discrete function f(j),j = 0, 1,
N-i where N is the set of data points is:

N—i
r(2f+ 1)k3ti

F(k)
2c(k) >L/V) cos[2N]

j=0

where k =0, 1, ... , N-i and c(k) = - for k = 0 and c(k) = 1 for k = 1,

2,...,N-1

Previously, the DCT has been implemented using a double size Fast
Fourier Transform (FF1) employing complex arithmetic and operating
on 2N coefficients. The Fast Discrete Cosine Transform (FDCT) (Chen
et a!, 1977) alleviates the implementation problems associated with the
DCT by using only real arithmetic and operating on N data points. This
results in a factor of six reduction in the algorithm complexity.

The FDCT is most readily expressed in terms of an extensible flow
graph. The 1-dimensional 8-point Fast Discrete Cosine Transform is
shown in Figure 1.

4.3 Synthesis and Simulated Annealing

This section describes the behavioural synthesis procedure. The simu-
lated annealing algorithm is introduced as a general purpose optimisation
technique which has been applied most notably in VLSI floorplanning

Simulated annealing based synthesis 77

)F()

A

A)F6

11 	

F2

-F1

A7

Figure 1 1-dimensional 8-point fast discrete cosine
transform

A

A

A

78 Simulated annealing based synthesis

problems. A formulation of the behavioural synthesis procedure is intro-
duced which is amenable to a simulated annealing based implementation,
and a relationship between the synthesis flow advocated by Denyer
(Denyer, 1989) and the simulated annealing algorithm is developed.

4.3.1 The behavioural synthesis procedure

The behavioural synthesis task may be defined, at a high level, as the
translation of a set of algorithmic descriptions of the required system
behaviour into some suitable circuit formulation. This task may be
subdivided as follows:

Compilation into a suitable intermediate data-structure. Current
research concentrates on a relatively small core of data models,
typically represented as either separated control and data flow
graphs (SARI), combined control and data flow graphs (EASY
(Stok and van de Born, 1988)) or tree structures (SILAGE
(Hilfinger, 1984), Mimola (Marwedel, 1985)). Typical compiler
optimization techniques can be applied at this stage.

Scheduling and Allocation. The scheduling subtask deals with
the assignment of a suitable control step to individual data-flow
graph operations, while the allocation subtask assigns particular
data-flow graph operations to functional units. These subtasks
are intimately related, for in order to determine an efficient
schedule, some knowledge about the functional unit allocation is
required, whilst allocation cannot take place without an indica-
tion of parallelism within the data flow graph, which, in turn,
comes from the schedule.

Structural Synthesis. Within this step, the necessary memory and
communications infrastructure required to complete the data-
path, subject to the behavioural specification is generated.

Simulated annealing based synthesis 79

4) Controller synthesis. This stage generates a suitable controller
capable of sequencing data-flow operations on the specified
datapath.

The version of SAVAGE reported here is a prototype system designed
to investigate the scheduling and allocation stages of the behavioural
synthesis procedure. Once a suitable schedule and allocation has been
determined, then other software tools are invoked to complete the struc-
tural synthesis.

4.3.2 The simulated annealing algorithm

Simulated Annealing is a stochastic computational technique derived
from statistical mechanics for finding near globally minimum cost solu-
tions to large optimisation problems. Kirkpatrick, Gelatt and Vecchi
(Kirkpatrick et a!, 1983) were the first to propose and demonstrate the
application of simulation techniques from statistical physics to problems
of combinatorial optimisation, specifically to the problems of wire routing
and component placement in VLSI design.

In general, finding the global minimum value of an objective function
with many degrees of freedom subject to conflicting constraints is an
NP-complete problem (Romeo and Sangiouanni-Vincentelli, 1985), since
the objective function will tend to have many local minima. A procedure
for solving hard optimisation problems should sample values of the
objective function in such a way as to have a high probability of finding
a near optimal solution and should also lend itself to efficient implemen-
tation. Recently, simulated annealing has emerged as a viable technique
which meets these criteria. Rutenbar (Rutenbar, 1989) provides an elegant
disposition on the subject.

The following pseudo-code function illustrates the structure of the
subclass of probabilistic hill climbing WHO algorithms known as simu-
lated annealing.

80 Simulated annealing based synthesis

function sim_anneal (initial—state, ko)

: STATE;
K 	:CONTROL _PARAM;.
COUNT :INTEGER;

begin
K=ko;
= initial _state;

while (not stopping criterion) loop
for count = 1 to #MOVES

generate a new state;
compute change in system energy, AE;
if (AE <O)

/* LOWER COST - ACCEPT 11*1
accept this move; update I;

else
/* HIGHER COST - ACCEPT IT MAYBE *1

accept with probability P =
update I if accepted;

end for;
update K;
end while;

end sim_anneal;

where I is a state variable (in this case the datapath state), and K is the
control parameter which models the temperature in the physical annealing
system.

AE represents the change in energy between the current state and the
state produced by the random perturbation of the data flow graph. The
assessment of energy or cost, is discussed in Section 4.2.3. The stopping
criterion is defined as EE = 0 over 3 control parameter decrements. This
ensures that the data flow graph has' assumed a minimum energy configu-
ration. The inner loop counter #MOVES determines the number of state
generations per control parameter value.

Simulated annealing based synthesis 81

In SAVAGE, the control parameter update function is defined:

K+i =K a(K)

where 0< a K < 1

4.3.2.1 Synthesis and simulated annealing

There exist a number of synthesis systems which use simulatedanneal-
ing to produce data paths. Most notable are those developed by Devedas
and Newton (Devedas and Newton, 1987 and Devedas and Newton,
1989), and Safir and Zavidovique (Safir and Zavidovique, 1990).

We can formulate the scheduling and allocation problem in terms of
individual data flow graph node placement within a Resource-time (Rt)
space. Rt space can be viewed, at the simplest level, as a bounded grid
whose axes represent the various hardware units available to execute data
flow operations and machine execution cycles, or c-steps, respectively.
The scheduling and allocation operations may then be defined as a node
displacement in Rt space, subject to individual data flow graph depend-
encies.

We can develop a simulated annealing based synthesis model through
the integration of the linear design flow (described in Section 4.1) into
the generate function of the simulated annealing algorithm. Selecting the
finest computational "grain" (i.e. operating on single data-flow graph
nodes), we can ensure that hill climbing moves can be attained at a
minimal global cost. Every state generation cycle selects a data-flow
graph node at random from the node set, assigns a c-step value to it, and
binds it to a particular hardware resource, as shown in Figure 2.

4.3.2.2 Scheduling and allocation move set development

The scheduling component of the node translation was partitioned into
3 main stages. For the selected node, the valid schedule range is computed
first. This operation is shown in Figure 3, and represents the computation
of the upper and lower bound on the temporal displacement. A sequence
of possible execution times is then randomly generated within the valid

82 Simulated annealing based synthesis

schedule range. The length of this sequence is proportional to the size of
the valid schedule range. Finally, an execution time is selected at random
from this sequence. This corresponds to the new execution time of the
node.

By using this technique, a number of refinements were added to the
basic scheduling operation. Selection of an execution time generated at
random over the total valid schedule range ensured that genuine hill
climbing moves were made available to the annealing procedure. The
adaptive nature of the length of the execution time sequence increases the
efficiency of the algorithm towards the end of the annealing run, where
lower cost moves are generally achieved during the allocation phase, as
most nodes have tended towards their optimum As-Soon-As-Possible
(ASAP) schedule. Finally, to increase the performance of the scheduling
algorithm during the early stages of the optimisation, where potential hill
climbing moves have little effect on the overall quality of the final
solution, the execution time sequence can be 'biased' to produce sequen-
ces of predominantly earlier execution times (ta' <ts) forcing a trend
towards rapid ASAP type schedules.

The allocation move set developed was, by necessity, more determin-
istic in nature than the scheduling move set. In the most general view of
synthesis, the module allocation procedure must ensure that a hardware
component capable of executing the operation class is available at the
scheduled time, t . A greedy heuristic allocation strategy will produce a
module allocation equivalent to the maximum degree of parallelism of a
particular operation class within a specific data flow graph. For practical
purposes, this scheme represents a very inefficient use of available silicon
area. Within SAVAGE, the allocation strategy is based on a 3 phase
scheme. First, all hardware modules not supporting the operation class of
the selected node are eliminated from the computation. From the remain-
ing modules, a target hardware unit is selected based around a simple load
balancing criteria. If the target module is free at t' , then a simple binding
between node and hardware module is established. If t' is unavailable
on the target module, then it is eliminated from the set of candidate
modules, and the allocation process reinvoked. Should the allocation
process fail (i.e. all candidate modules are flagged as busy during ti'),

Simulated annealing based synthesis 83

V
) 	earliest valid schedule

valid sched-
selected
	

ule range

lime 	 latest valid schedule

1

FH

function sim anneal (initial stAte, k0)

I : STATE;

U CONTROL PARAM;
NT : INTEGER;

b g in

A

i
initial state;
1e(not stopping cri'e ion) loop
r count = 1 to #MOV
enerate a new sta ;

compute change in system energy, E;
if (AE < 0)
/* LOWER COST - ACCEPT IT *7
accept this move; update I;

else
/* HIGHER COST - ACCEPT IT MAYBE *1

accept with probability P =
update I iff accepted;

end for;
update K;
end while;

end sim anneal;

Figure 2 Integrating the scheduling and allocation
into the annealing algorithm

c-step

—2

Is— 1•

valid
- 	schedule

range

Is

± 1

selec

84 Simulated annealing based synthesis

Figure 3 Computing the valid scheduling range

then in the earliest SAVAGE system, the user was prompted to either alter
the valid schedule range of the node (i.e. manually alter the schedule), or
allocate an extra hardware module of a corresponding class.

This manual intervention led to slow run times and a tendency towards
greedy module allocation. Subsequently, the allocation strategy was
revised to support operation deferment. The target module was still
selected according to a load balancing criteria, but if the module was
unavailable, then an extra c-step was inserted at the appropriate execution
time, and the binding process invoked.

Simulated annealing based synthesis 85

This allocation strategy allows a minimal hardware set to be used when
operating under a time constraint, and ensures a global balancing of
operation concurrency during the allocation phase.

SAVAGE supports a simple pipelining algorithm; similar to that
described by Mallon (Mallon and Denyer, 1990). Here, the pipeline reuse
time (initiation interval of successive pipeline tasks) may be specified as
the timing constraint, and the pipeline -latency (input to output latency of
a single pipeline task) is optimised.

This pipelining operation can be viewed as a "folding" of the Rt space
so that operations occurring after the computed pipeline reuse time are
retimed to occur in free cycles in the next pipeline task.

4.3.2.3 Datapath costing

In developing a costing method for SAVAGE, a number of factors
have to be considered. Firstly, as SAVAGE operates only on an incom-
plete part of the datapath solution space (namely the scheduling and
allocation phases of the synthesis procedures), the costing functions used
will not reflect the true cost of the datapath. The SAVAGE operational
scenario has the user constraining one axis of the Resource-time space
before the optimisation procedures are invoked. Correspondingly, the
primary element of the costing function has to assess whether the datapath
generated lies outwith the axis boundary specified by the user. Designs
violating these boundaries are penalised heavily.

Part of the design specification for the SAVAGE software was to
achieve a high utilisation of the functional units used within the solution
datapath. The costing functions reflect this by penalising those designs
which have functional units operating below a specific utilisation thre-
shold (also specified by the user).

Further, datapaths generated as a result of more global perturbations
to the solution - for example, where an extra control step is inserted into
the schedule, and subsequent operations are retimed - are also penalised.

86 Simulated annealing based synthesis

Thus the costing mechanism may viewed as a hierarchical structure,
where gross system objectives are assigned a high importance while
strategic goals, such as the attainment of a minimum functional unit
utilisation occur at a lower level in the cost assessment hierarchy. Finally,
library specific costing functions occur at the lowest level.

In this way, the annealing procedure is guided towards a solution which
satisfies the gross system requirements quickly.

4.3.2.4 Costing mechanics

In common with Devedas and Newton, we formulate the datapath cost
as a weighted sum of all hardware components within the datapath,
combined with a weighted cost accounting for the total number of c-steps
needed. (In the prototype SAVAGE system, structural synthesis takes
place after the scheduling and allocation operations had been completed,
and so the costings associated with these components were unavailable
to the simulated annealing procedure.)

We extend the Devedas and Newton costing in keeping with the
hierarchical costing model described above. Thus:

COSTDATAPATH = Wi .VIOLATIONSBOUNDARY

• W2.VIOLATIONSFU_UTILISATION

• W3.VIOLATIQNSRETIMING

• W41FUNCTIONAL_UNITS

• W5.#C-STEPS

The weightings can be varied to produce datapaths of varying archi-
tectural styles. For example, where the designer does nor explicitly wish
to constrain the hardware resources available, but would prefer a solution
with only a single multiplier, then the multiplier weight can be set
proportionally higher, so that single multiplier solutions will have a lower
global cost.

4.4 Test results

SAVAGE operates in a batch mode with the designer constraining
either the hardware set available or the overall execution time desired.

Simulated annealing based .synthesis 87

(As SAVAGE can support simple pipelining, then the pipeline reuse time
can be specified as a timing constraint)

The 1-dimensional 8-point FDCT was coded in SLANG (the SARI
input LANGuage) as shown in Figure 4. The resulting data flow graph
corresponds to Figure 1. The results shown in Table 1 were produced by
specifying a hardware set for SAVAGE apart from those indicated as a
pipelined solution, where a specific pipeline reuse time was specified.

Cycles + 	x 	- Av FU Util Pipeline
Reuse

Prop. Delay

20 1 	1 	1 70% 20 20
11 2 	2 	2 63% 11 11
8 1 2 	2 	2 87% 8 15
8 3 	3 	3 58% 8 8
6 3 	3 	3 77% 	1 6 9

1. Pipelined execution plan

Table 1 SAVAGE test results

A metric commonly used when assessing digital systems is the utili-
sation of each functional unit within the system. Here, it can be seen that
the pipelined solution with a reuse time of 8 cycles offers the best
time/hardware trade-off, and so this partially completed datapath was
selected as the target for the remaining structural synthesis.

4.4.1 The structural synthesis tools

The prototype SAVAGE system used a simple left-edge algorithm to
produce the memories required for the computed results and intermediate
signals within the data flow graph. This algorithm produces the optimal
memory allocation, but does not produce the optimal signal groupings.

88 Simulated annealing based synthesis

procedure FDCT1D 	(A0 , A1,A2,A3,A4,A4,A6,A7 : 	in FLOAT;
FOF1,F2,F3,F4,F5,F6,F7 out FLOAT) 	is

COS PI4 constant 0.70710678; -- 	cos(PI/4)
COS PI8 constant 	:= 0.92387953; -- cos(PI/8)
SIN P18 : 	constant 0.38268343; -- 	sin(PI/8)

COS 3PI16 :constant 	:= 0.83146961; -- 	cos(3*PI/16)
SIN 3P1 16 	:constant 	:= 0.55557023; -- 	s jn(3*PI/16)

COS - 5-PI - 1 6 :constant SIN 	3PII6; -- 	cos(5*P1/16)
SIN-5-PI - 16 :constant COS3PI16; -- 	sjn(5*PI/16)

COS 7PI16 :constant 	:= SIN P1 16; -- 	cos(7'PI/16)
SIN 7 P1 16 	:constant 	:= COS-PI-16; -- 	sin(7PI/16)

BO,B1,32,3334,35,B6,B7 : FLOAT;
CO3C1.c2,c3,c4,c5.c6,c7 : FLOAT;
D0.D1,D2,03,04,05,06,07 : FLOAT;

COS PI 	4 TIMES B5 	FLOAT;
COSPI4TIMESB6 FLOAT;

COS PI 	4 TIMES DO 	: 	FLOAT;
COS-.PI-- 4 -TIMES-.Dl FLOAT;

begin

BO A7 A0; 	31 	:= AG 	+ Al; -- first pass
32 	:= AS '- 	A2; 	33 	:= 	A4 	'- A3;
34 	:= A3 - A4; 	B5 	:= A2 	- AS;
B6 	:= Al - A6; 	B7 	:= A0 	- A7;

-- Put the expressions COSPI4*B5 and COSPI4*B6 into intermediate
-- variables so as to avoid evaluating them twice

COS PI4 TIMES B5 	COS PI4B5; 	 -- second pass
COS-PI- 4-TIMES-B6 	COSPI4*B6;

Co 	B3 	30; Cl :' B2 	Bi;
C2 := 31 - 32; C3 : 	BO - 33;
C4 := 34;
CS := COS P1 4 TIMES B6 - COS--PI-4-TIMES-B5;
C6 	CCSPI4IIMEsB6 	COSPI4TIMESB5;
C/ 	:'

DO 	CO; Dl 	Cl; 	 -- third pass
02 	C2; 03 	C3;
04 := C4 	CS; D5 : C4 - CS;
06 := C7 - C6; 07 := C7 	C6;

-- Put the expressions COSPI4*D0 and COS PI4*Dl into intermediate
-- variables so as to avoid evaluating them twice

COSPI4TIMESDO := COS?14*DO;
COS P1 4 TIMES Dl := COS P1 4*01;

FO COSPI4TIMESDO COS_P1_4 TIMES Dl; 	-- fourth pass
F4 	:= COSPI4TIMESDO - COS PI4TIMESD1;
F2 SIN 21 8*02 + COS _PI 8*D3 ;
F6 	:= COS 3PI16*03 - 	SIN P18*D2;
Fl 	:= SIN P1 16*04 COSPI16*07;
F5 SINS P116*05 COS 5PI16*06;
F3 	:= COS 3PI 16*D6 - SIN 3 	P116*D5;
F7 COS 7PI 16*D7 - SIN 7P1 	16*04;

end FDCT1D;

Figure 4 SLANG description of FDCT

Simulated annealing based synthesis 89

A greedy bus merger algorithm was used to synthesise the communi-
cations infrastructure required to complete the datapath. Here, replicated
links between functional units (including the newly synthesised
memories) are removed.

SAVAGE has been coupled with other datapath synthesis tools (Neil
and Denyer, 1990) to synthesise a 5th Order Wave Digital Filter. Later
iterations of the SAVAGE software include a complete route to datapath
synthesis where structural synthesis is examined more fully.

4.5 Conclusions

This Chapter has described SAVAGE, a software tool capable of
synthesising datapaths from behavioural descriptions. SAVAGE has been
used in the development of datapaths for the 1-dimensional 8-point Fast
Discrete Cosine Transform.

We have shown that given either a speed or hardware bound, SAVAGE
can produce optimised solutions for both pipelined and non-pipelined
designs which are comparable with those in published literature (Mallon
and Denyer, 1989). SAVAGE allows the designer to rapidly explore the
solution space for a given problem, and by varying the optimisation
criteria produce a number of comparable datapaths. The designers own
expertise is then used to select the most appropriate datapath solution.

SAVAGE has also been used to develop solutions to other synthesis
benchmarks, notably the 5th Order Elliptic Wave Digital Filter, popu-
larised by Paulin (Paulin and Knight, 1989 and Neil and Denyer, 1990).

4.5.1 Current developments

The software architecture for the SAVAGE toolset has been shown to
be robust and flexible during the design cycle. Further structural synthesis
move sets have been added to complete the SAVAGE route to datapath
generation. This has been complemented by a corresponding increase in

90 Simulated annealing based synthesis

complexity of the datapath costing function. Indeed, move sets have been
added which support a number of different architectural styles. This
expansion has led to the development of eXtended SAVAGE (XSAV-
AGE); this CAD tool supports the "Architectural Script" based synthesis
paradigm, first introduced by De Man (DeMan, 1990 and DeMan Oc-
tober, 1990). XSAVAGE is characterised by a 4 level hierarchy of user
interaction, namely:

System Level Interaction. This level of interaction enables us to
convey system level information, such as total chip area, maxi-
mum acceptable power consumption and timing specifications to
the optimisation system.

Strategic Interaction. At this level in the hierarchy, we can
specify the optiniisation techniques that will form the generate
function within the simulated annealing core. These comprise
scheduling, allocation and memory and communication syn-
thesis strategies. Also included here is the costing information.

Pragmatic Interaction. In many synthesis systems, application
specific designer knowledge cannot be included in the specifica-
tion.We provide a mechanism by which designers can affect the
synthesis procedures directly via architectural pragmas.

Structural Interaction. At the lowest level in the script hierarchy,
interaction takes place at the component level. Partial and com-
plete architectures can be specified through the SAVAGE Struc-
tural Description Language.

4.5.2 Concluding remarks

The previous section describes XSAVAGE, a software tool which has
evolved from the SAVAGE software which was initially intended to
synthesise Fast Discrete Cosine Transform blocks. XSAVAGE is a much

Simulated annealing based synthesis 91

more powerful system, capable of producing optimised solutions of
widely differing architectural styles for a given problem domain. XSAV-
AGE may be classified not as a problem -spec/ic synthesis system, but
rather as a general synthesisframework capable of supporting application
specific architectures.

4.6 Acknowledgements

This work was carried out as part of the Silicon Architectures Research
Initiative. The use of facilities and resources is gratefully acknowledged.
The work reported here is supported by the Science and Engineering
Research Council and the University Of Edinburgh.

4.7 References
CHEN W., SMITH C.H. AND FRALICK S.C., "A Fast Computational
Algorithm for the Discrete Cosine Transform", IEEE Trans. Commun.,
1977, com25, (9), pp. 1004-1009.

CHEN W. AND SMITH C.H., "Adaptive Coding of Monochromatic and
Colour Images ", IEEE Trans. Commum., 1977, com25, (11), pp. 1285-
1292.

DE MAN H., "Tutorial On High-Level Synthesis" EDAC '90, March
1990.
DE MAN H., "CAD For Real Time Information Processing Systems:
Challenges and Opportunities", in Proc. SASIMI '90, October 1990,
Kyoto, Japan, pp. 65-72

DENYER P.B., "SAGE Design Methodology", SARI Internal Technical
Report SARI-035-D, March 1989.

DEVEDAS S. AND NEWTON A.R., "Algorithms for Hardware Alloca-
tion in Data Path Synthesis," in Proc. ICCAD '87, 1987, pp. 526-531.

DEVEDAS S. AND NEWTON A.R., "Algorithms for Hardware Alloca-
tion in Data Path Synthesis," IEEE Trans. Computer-Aided Design, Vol.
CAD-8, No. 7, July1989, pp. 768-781.

GRANT P.M., "The DTI-Industry Sponsored Silicon Architectures Re-
search Initiative", lEE Electronics & Communications Engineering Jour -
nal, Vol. 2 No. 3, June 1990.

92 Simulated annealing based synthesis

HILFINGER P.N., "SILAGE: A Language for Signal Processing",
University of California, Berkley, 1984.

KIRKPATRICK S., GELATr C. AND VECCHI M., "Optimisation by
Simulated Annealing," Science: Vol. 220, No. 4598> May, 1983, pp671-
680.

MALLON D. AND DENYER P.B., "Behavioural Synthesis: An Inter-
active Approach," lEE Colloquium Digest 1989/85, May 1989, pp-2/1-
2/8

MALLON D., AND DENYER P.B., "A new Approach to Pipelining
Optimisation", in Proc. European Design Automat. Conf. , March 1990.

MARWEDEL P., "The MIMOLA Design System: A Design System
which spans several levels", in Methodologies of Computer System
Design, ed. Shriver, North Holland, 1985, pp. 223-237.

NEIL J.P. AND DENYER P.B., "Exploring Design Space using SAV-
AGE: A Simulated Annealing based VLSI Architecture GEnerator", in
Proc. 33rd Midwest Symposium on Circuits and Systems, Calgary, Au-
gust 1990.

PAULIN P.G. AND KNIGHTJ.P., "Scheduling and Binding Algorithms
for High-Level Synthesis," in Proc. 26th Design Automat. Conf., June
1989.

ROMEO F. AND SANGIOVANNI-VINCENTELLI A., "Probabilistic
Hill Climbing Algorithms: Properties and Applications," in Proc. Cha-
pel-Hill Conf. on VLSI, 1985.

RUTENBAR R.A., "Simulated Annealing Algorithms: An Overview,"
IEEE Circuits and Devices Magazine, January 1989, pp. 19-26.

SAFIR A. AND ZAVIDOVIQUE B. "Towards a Global Solution to High
Level Synthesis Problems", in Proc. European Design Automat. Conf.,
March 1990, pp. 283-288.

SOAME T.A., "Bandwidth Compression of Images Using Transform
Techniques", GEC J. Sci. Tech., 1982, 48, (1)9 pp. 17-23.

STOK L. AND VAN DER BORN R., "EASY: Multiprocessor Architec-
ture Optimisation", in Proc. mt. Workshop on Logic and Architecture
Synthesis for Silicon Compilers, Grenoble, May 1988, pp. 313-328.

Simulated annealing based synthesis 93

WINTZ P.A., "Transform Picture Coding", Proc. IEEE, 1972,60, (7), pp.
809-819.

