
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

12-2005

Optimization of DSSS Receivers Using Hardware-
in-the-Loop Simulations
Balbir Kaur Dhillon
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Dhillon, Balbir Kaur, "Optimization of DSSS Receivers Using Hardware-in-the-Loop Simulations. " Master's Thesis, University of
Tennessee, 2005.
https://trace.tennessee.edu/utk_gradthes/1861

https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Balbir Kaur Dhillon entitled "Optimization of DSSS
Receivers Using Hardware-in-the-Loop Simulations." I have examined the final electronic copy of this
thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements
for the degree of Master of Science, with a major in Electrical Engineering.

Mostofa K. Howlader, Major Professor

We have read this thesis and recommend its acceptance:

Michael J. Roberts, Donald Bouldin, Miljko Bobrek

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Balbir Kaur Dhillon entitled “Optimization of DSSS

Receivers Using Hardware-in-the-Loop Simulations.” I have examined the final electronic copy

of this thesis for form and content and recommend that it be accepted in partial fulfillment of the

requirements for the degree of Master of Science, with a major in Electrical Engineering.

 Mostofa K. Howlader
 Major Professor

We have read this thesis
and recommend its acceptance:

Michael J. Roberts

Donald Bouldin

Miljko Bobrek

 Accepted for the Council:

 Anne Mayhew
 Vice Chancellor and

 Dean of Graduate Studies

(Original signatures are on file with official student records.)

Optimization of

DSSS Receivers Using

Hardware-in-the-Loop Simulations

A Thesis Presented for the

Master of Science Degree

The University of Tennessee, Knoxville

Balbir Kaur Dhillon
December 2005

Copyright © 2005 by Balbir Kaur Dhillon
All rights reserved.

ii

Dedication

This thesis is dedicated first and foremost to my parents, Sukhdev and Parminder, for
always encouraging me to pursue my dream. Also, I would like to contribute this thesis to my
loving family, my professors who have inspired me over the years, my friends who have enriched
my college experiences and my fellow engineering students for providing an entertaining
atmosphere.

iii

Acknowledgements

I would like to thank everyone who has helped me attain a Masters of Science degree in

Electrical Engineering. I would especially like to thank Dr. Howlader for giving me the

opportunity to work as a research assistant and for encouraging me to strive for the best. I would

like to thank Dr. Bobrek for helping me better understand how to apply my communications

knowledge in real world applications. I could not have completed my research without his help.

I would also like to acknowledge my committee members, Dr. Roberts and Dr. Bouldin. I am

grateful for taking Dr. Bouldin’s classes since they have helped me in the hardware

implementation aspect of my thesis. I am grateful to Dr. Roberts for providing me with excellent

advice when I was an undergraduate. Also, I would like to thank fellow students in the Wireless

Communication Research Group for all their help.

This research work has been performed in the Wireless Communications Research Group

(WCRG) at University of Tennessee, Knoxville, sponsored by the RF & Microwave System

Group (RFMSG) of the Oak Ridge National Laboratory (ORNL) under the contract UT-B

4000025441 and UT research account number R011344113. I am also especially indebted to Paul

Ewing, leader of the RFMSG, who has provided me with this great opportunity.

iv

Abstract

 Over the years, there has been significant interest in defining a hardware abstraction layer

to facilitate code reuse in software defined radio (SDR) applications. Designers are looking for a

way to enable application software to specify a waveform, configure the platform, and control

digital signal processing (DSP) functions in a hardware platform in a way that insulates it from

the details of realization.

 This thesis presents a tool-based methodolgy for developing and optimizing a Direct

Sequence Spread Spectrum (DSSS) transceiver deployed in custom hardware like Field

Programmble Gate Arrays (FPGAs). The system model consists of a tranmitter which employs a

quadrature phase shift keying (QPSK) modulation scheme, an additive white Gaussian noise

(AWGN) channel, and a receiver whose main parts consist of an analog-to-digital converter

(ADC), digital down converter (DDC), image rejection low-pass filter (LPF), carrier phase locked

loop (PLL), tracking locked loop, down-sampler, spread spectrum correlators, and rectangular-to-

polar converter.

 The design methodology is based on a new programming model for FPGAs developed in

the industry by Xilinx Inc. The Xilinx System Generator for DSP software tool provides design

portability and streamlines system development by enabling engineers to create and validate a

system model in Xilinx FPGAs. By providing hierarchical modeling and automatic HDL code

generation for programmable devices, designs can be easily verified through hardware-in-the-

loop (HIL) simulations.

 HIL provides a significant increase in simulation speed which allows optimization of the

receiver design with respect to the datapath size for different functional parts of the receiver. The

parameterized datapath points used in the simulation are ADC resolution, DDC datapath size,

LPF datapath size, correlator height, correlator datapath size, and rectangular-to-polar datapath

size. These parameters are changed in the software enviornment and tested for bit error rate

(BER) performance through real-time hardware simualtions. The final result presents a system

design with minimum harware area occupancy relative to an acceptable BER degradation.

v

Table of Contents

Chapter 1 Introduction.. 1

1.1 The Context .. 1

1.2 The Problem ... 1

1.3 Thesis Objective ... 2

1.4 Thesis Structure .. 2

Chapter 2 Integration of SDR and FPGAs.. 4

2.1 Traditional Radio Systems ... 4

2.2 A Software Based Approach .. 6

2.3 SDR Realm... 7

2.3.1 SDR Concept ... 7

2.3.2 Software Defined Radio Definition ... 8

2.3.3 Evolution of SDR... 9

2.3.4 Advantages and Benefits of SDR Technology .. 10

2.3.5 Design Principles ... 11

2.3.6 Future of SDR.. 12

2.4 Hardware Platform ... 12

2.4.1 GPP, DSP, or FPGA .. 13

2.4.2 FPGAs.. 14

2.4.3 Advantages of Using HDLs to Design FPGAs.. 17

Chapter 3 Theory and System Model ... 19

3.1 Spread Spectrum... 19

3.1.1 Advantages of SS... 20

3.1.2 Types of SS.. 21

3.1.3 DSSS.. 22

3.1.4 PN Generator ... 25

3.2 Quadrature Phase Shift Keying (QPSK) .. 26

3.3 System Model... 28

3.4 QPSK Transmitter .. 29

3.4.1 Creating Packets .. 29

3.4.2 Signal Spreading .. 33

vi

3.4.3 Pulse Shaping... 36

3.4.4 Modulation... 39

3.5 Channel... 42

3.5.1 Noise Generation ... 42

3.5.2 Calculating SNR .. 47

3.5.3 Changing Noise Levels .. 47

3.6 QPSK Receiver... 48

3.6.1 Down Conversion .. 49

3.6.2 Running Average Filter ... 51

3.6.3 Baseband Processor ... 58

3.6.4 Carrier Phase Lock Loop ... 59

3.6.5 Parallel Correlator.. 62

3.6.6 CORDIC .. 65

3.6.7 Peak Detector... 66

3.6.8 Tracking Phase Lock Loop .. 67

3.6.9 Phase Decoder.. 70

3.6.10 Packet Processor .. 71

3.7 Calculating BER.. 73

3.7.1 Bit Counter... 73

3.7.2 Error Counter ... 74

3.8 Optimization of System Model.. 75

Chapter 4 DSP Analysis and System Generator ... 78

4.1 DSP Design Flow ... 78

4.1.1 Types of Design Flows .. 80

4.2 Simulink ... 80

4.3 System Generator ... 81

4.3.1 Xilinx Blockset Library ... 82

4.3.2 Bit True and Cycle True Representation ... 84

4.3.3 Hierarchy and Subsystems... 84

4.3.4 Configuring Blocks.. 85

4.3.5 Parametric Designs .. 86

4.3.6 Quantization and Overflow.. 86

4.3.7 Bit Picking ... 87

vii

4.3.8 Control Mechanism.. 87

4.3.9 Sampling Period and Propagation Rules.. 88

4.3.10 Multi-rate Systems and Sample Rate Conversion ... 89

4.3.11 Hardware Clock and Over-clocking .. 90

4.3.12 Gateway In and Gateway Out Blocks.. 91

4.3.13 System Generator Token ... 91

4.3.14 Resource Estimator .. 93

4.4 HDL Co-Simulation ... 93

4.5 HIL Simulations ... 95

Chapter 5 Hardware Implementation and Analysis.. 99

5.1 Parallelism .. 99

5.2 Xilinx Xtreme DSP... 101

5.2.1 Physical Description .. 101

5.2.2 Virtex-2 Architecture... 103

5.2.3 XtremeDSP Kit Highlights .. 104

5.2.4 Clocking Configurations.. 105

5.2.5 ADCs and DACs.. 107

5.2.6 Digital I/O.. 107

5.2.7 JTAG.. 108

5.3 ISE .. 108

5.3.1 FPGA Flow in ISE... 110

5.3.2 Design Entry .. 110

5.3.2.1 Using Design Constraints.. 111

5.3.3 Performing Synthesis... 111

5.3.4 Verifying a Design... 112

5.3.4.1 Performing a Behavioral Simulation... 112

5.3.4.2 Performing a Post-Translate Simulation ... 112

5.3.4.3 Performing a Post-Map Simulation... 112

5.3.4.4 Performing Post-Place & Route Simulation.. 113

5.3.5 Implementing a Design.. 113

5.3.5.1 Translating a Design ... 114

5.3.5.2 Floorplanning a Design ... 114

5.3.5.3 Viewing a Translating Report ... 114

viii

5.3.5.4 Mapping a Design ... 114

5.3.5.5 Viewing a Post-Map Static Timing Report ... 115

5.3.5.6 Analyzing Post-Map Static Timing... 115

5.3.5.7 Placing and Routing a Design ... 115

5.3.6 Generating a Programming File... 116

5.3.6.1 Configuring a Device .. 116

5.4 FUSE .. 117

5.5 BER Board Design ... 119

Chapter 6 Simulation Results and Analysis.. 122

6.1 Results for Each Optimization Block ... 123

6.2 Minimum Area Solutions ... 128

6.3 Effects of Optimization .. 129

6.4 Truncation... 129

Chapter 7 Summary and Future Work.. 132

7.1 Summary .. 132

7.2 Future Work.. 134

List of References .. 135

Appendix………………………………………………………………………………………...139

Appendix A………………….. 140

Appendix B…………….. 141

Appendix C……….. 142

Vita………………... 146

ix

List of Figures

Figure 2.1: Superheterodyne Receiver... 5

Figure 2.2: Spectal Drawings... 5

Figure 2.3: Software Based Receiver Design .. 6

Figure 2.4: Development of Software Radio ... 10

Figure 2.5:Architecture Splitting SDR Functions across GPPs, DSPs, and FPGAs...................... 13

Figure 2.6: Comparison of Performance of Xilinx FPGAs to DSP Processors 15

Figure 2.7: Power Consumption of Segmented and Non-Segmented Routing Architecture......... 16

Figure 3.1: Spread Spectrum Model……………………………………………………………...20

Figure 3.2: Effect of Spreading on Message Stream ... 22

Figure 3.3: Time/Frequency Analysis.. 23

Figure 3.4: Design of Transmitter.. 24

Figure 3.5: Design of Receiver .. 24

Figure 3.6: PN Generator Model ... 26

Figure 3.7: Autocorrelation of PN Code.. 26

Figure 3.8: QPSK Constellation Diagram.. 27

Figure 3.9: Overview of System Model... 28

Figure 3.10: QPSK Transmitter ... 30

Figure 3.11: Packet Structure... 30

Figure 3.12: Packet Scheduler ... 31

Figure 3.13: I and Q Packets.. 32

Figure 3.14: I and Q Packets in Simulation ... 32

Figure 3.15: Spreading Packets with PN Sequence ... 33

Figure 3.16: 63-Length PN Generator ... 35

Figure 3.17: Block Parameters for LFSR... 35

Figure 3.18: Data after Spreading in Simulation ... 36

Figure 3.19: Pulse Shaping Model... 38

Figure 3.20: So and Se Pulse Shape .. 38

Figure 3.21: Signal after Pulse Shaping in Simulation .. 39

Figure 3.22: Modulation .. 40

x

Figure 3.23: Signal after Modulation in Simulation .. 41

Figure 3.24: Bandpass Filter Specifications .. 43

Figure 3.25: Magnitude Response of Bandpass Filter ... 44

Figure 3.26: Impulse Response of Bandpass Filter.. 44

Figure 3.27: Spectrum of Wideband Noise.. 45

Figure 3.28: Spectrum of Bandpass Noise... 45

Figure 3.29: Design of Channel ... 46

Figure 3.30: Spectrum of Signal before Noise is Added ... 46

Figure 3.31: Spectrum of the Signal after Noise is Added .. 46

Figure 3.32: Design for Implementing Various Noise Levels ... 48

Figure 3.33: QPSK Receiver.. 49

Figure 3.34: Digital Down Conversion Block ... 50

Figure 3.35: Frequency Domain Analysis for Down Conversion.. 50

Figure 3.36: Signal after Down Conversion .. 51

Figure 3.37: Running Average Filter Example.. 52

Figure 3.38: Running Average Filter Model.. 53

Figure 3 39: Magnitude Response after Down Conversion ... 54

Figure 3.40: Magnitude Response of Filter 1 .. 55

Figure 3.41: Magnitude Response of Signal after Filter 1 ... 55

Figure 3.42: Magnitude Response of Filter 1 and 2 ... 56

Figure 3.43: Magnitude Response of Signal after Filter 2 ... 56

Figure 3.44: Signal after Running Average Filter 1... 57

Figure 3.45: Signal after Running Average Filter 2... 57

Figure 3.46: Baseband Processor ... 58

Figure 3.47: Costas Loop... 59

Figure 3.48: NCO .. 61

Figure 3.49: Loop Filter... 61

Figure 3.50: Error of PLL .. 61

Figure 3.51: Implementation of Parallel Correlators ... 62

Figure 3.52: FIR Filter ... 63

Figure 3.53: Example of Correlator ... 64

Figure 3.54: Output of Correlator in Simulation.. 64

Figure 3.55: CORDIC.. 65

xi

Figure 3.56: Peak Detector Outputs... 66

Figure 3.57: Peak Detector Model ... 67

Figure 3.58: Early, Late, and On-time Samples... 68

Figure 3.59: Tracking Phase Lock Loop Model .. 69

Figure 3.60: Tracking Phase Lock Loop Model (2)... 69

Figure 3.61: QPSK Phase Values .. 70

Figure 3.62: Phase Decoder Model.. 71

Figure 3.63: DDW Block within the Packet Processor.. 72

Figure 3.64: Packet Processor.. 72

Figure 3.65: Data Enable Signal and Packeted Data ... 73

Figure 3.66: Bit Counter .. 74

Figure 3.67: Error Counter... 75

Figure 3.68: Location of Optimization Points in Receiver .. 76

Figure 3.69: Optimization Block ... 77

Figure 4.1: Traditional Simulink FPGA Flow .. 79

Figure 4.2: System Generator Flow Diagram ... 82

Figure 4.3: Quantization and Overflow Example ... 87

Figure 4.4: Up Sampling and Down Sampling Example.. 89

Figure 4.5: Sample Rate Conversion Example ... 90

Figure 4.6: Clock Enable Behavior Example.. 91

Figure 4.7: System Generator Token Block.. 92

Figure 4.8: Required Steps for HDL Co-simulation through ModelSim...................................... 94

Figure 4.9: HIL Emulation.. 97

Figure 4.10: Steps for HIL and Hardware Co-Simulation………………………………………..97

Figure 5.1: Architecture Difference in MACs between DSPs and FPGAs................................. 100

Figure 5.2: Performance Comparison of Xilinx FPGAs and Traditional DSPs.......................... 101

Figure 5.3: Front Case of XtremeDSP Board ... 102

Figure 5.4: Key Features of the Motherboard... 103

Figure 5.5: Virtex-II Architecture Overview .. 104

Figure 5.6: Inputs Related to Clock Sources on Hardware... 106

Figure 5.7: Overview of Clock Structure.. 106

Figure 5.8: System Generator Based Design Flow... 109

Figure 5.9: Project Navigator Window... 109

xii

Figure 5.10: Overview of FUSE .. 117

Figure 5.11: FUSE Window .. 118

Figure 5.12: Overall Hardware Setup .. 119

Figure 5.13: Top View of BER Board ... 120

Figure 5.14: Circuit Diagram for BER Board.. 120

Figure 6.1: Optimization Points in DSSS Receiver ... 124

Figure 6.2: BER versus ADC Resolution .. 124

Figure 6.3: BER versus DDC Datapath Size ... 125

Figure 6.4: BER versus LPF Datapath Size... 126

Figure 6.5: BER versus Correlator Datapath Height ... 126

Figure 6.6: BER versus Correlator Datapath Size ... 127

Figure 6.7: BER versus Rectangular-to-Polar Datapath Size .. 128

Figure 6. 8: Effects of Quantization for (a) two's complement representaion and (b) sign-

magnitude representation ... 131

xiii

List of Abbreviations

ADC Analog to Digital Converter

API Application Programming Interface

ASIC Application Specific Integrated Circuit

BER Bit Error Rate

BPF Bandpass Filter

CE Clock Enable

CHARIOT Changeable Advanced Radio for Inter-Operable Telecommunications

CORDIC Coordinate Rotational Digital Computer

CPLD Complex Programmable Logic Device

DA Distributed Arithmetic

DAC Digital to Analog Converter

DCM Device Clock Manager

DDC Digital Down Conversion

DDS Digital Down Synthesizer

DIME DSP and Image processing Modules for Enhanced FPGAs

DoD Department of Defense

DRC Design Rule Check

DSP Digital Signal Processing

DSSS Direct Sequence Spread Spectrum

DUC Digital Up Conversion

ECS Engineering Capture System

FF Flip Flops

FFT Fast Fourier Transform

FHSS Frequency Hopping Spread Spectrum

FIFO First In First Out

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FUSE Field Upgradeable Software Environment

GCD Greatest Common Divisor

xiv

GPP General Purpose Processors

GUI Graphic User Interface

HIL Hardware-in-the-Loop

I In-phase Component

IF Intermediate Frequency

IP Intellectual Property

ISE Integrated Software Environment

ISI Inter-symbol Interference

JTAG Joint Test Access Group

JTRS Joint Tactical Radio System

LED Light Emitting Diode

LFSR Linear Feedback Shift Register

LNA Linear Noise Amplifier

LO Local Oscillator

LPF Lowpass Filter

LUT Lookup Table

MAC Multiplier and Accumulate

MCSS Multi Carrier Spread Spectrum

MXE ModelSim Xilinx Edition

NCO Numerically Controlled Oscillator

NGD Native Generic Database

PAR Place and Route

PCI Peripheral Controller Interface

PLL Phase Lock Loop

PN Pseudo noise

Q Quadrature Component

QPSK Quadrature Phase Shift Keying

RAF Running Average Filter

RAM Read Access Memory

RF Radio Frequency

ROM Read Only Memory

RTL Register Transfer Language

SCA Software Communication Architecture

xv

SDR Software Defined Radio

SS Spread Spectrum

THSS Time Hopping Spread Spectrum

UCF User Constraint File

USB Universal Serial Bus

VCO Voltage Controlled Oscillator

VHDL Verilog Hardware Description Language

VHF Very High Frequency

WITS Wireless Information Transfer System

XCF Xilinx Timing Constraint File

XCO CORE generator log file

XST Xilinx Synthesis Technology

ZTB Zirconium T-Butoxide (memory)

xvi

Chapter 1
Introduction

1.1 The Context

The commercial wireless industry is constantly evolving and therefore facing many

challenges. These problems arise due to the constant change of link-layer protocols and existence

of incompatible wireless technologies in different parts of the world. Software Defined Radio

(SDR) technology provides solutions to these problems by implementing radio functionality such

as modulation/demodulation, signal generation, coding and link-layer protocols in the form of

software modules running on generic hardware platforms [1]. The software modules provide

flexibility to the SDR system. By allowing the capability of over-the-air downloads of software

modules, the issue of compatibility of different standards is eliminated. To provide key features

such as reconfigurability, flexibility, and inter-operability, the SDR architecture needs to be

constructed such that applications can function in various environments. Therefore, design

verification is of utmost importance.

1.2 The Problem

Software simulation can provide designers insight into system behavior under various

internal and external conditions. However, for complex system, software simulation is unable to

accurately model every characteristic of a system’s behavior. Also, use of software-based true

cycle simulators is impractical due to the large number of cycles needed to achieve accurate data

statistics. This is especially apparent in simulation of SDR applications that may involve millions

of states. Although many solutions have been proposed to increase simulation speed, the

necessary computations needed to simulate a radio of low-level complexity exceed the

capabilities of mainstream office and lab computers. Therefore, hardware-in-loop (HIL)

simulation is provided as an alternative solution due to its significant increase in simulation speed

[2]. Many methods for HIL simulation of complex communication systems have been proposed

which differ in structure due to emphasis on simulation speed, accuracy, or flexibility [3], [4], [5],

and [6].

1

Implementation of HIL simulations expands the possible applications of time domain

simulators and provides hardware-specific results, which are not easily obtained by other

techniques. HIL simulation supports development, verification, and integration of complex

systems in a systematic process. Integration of physical subsystems into the simulation can

provide true system behavior in real-time for verification purposes. Along with verification, the

accuracy of the system can be refined by changing system parameters in software.

1.3 Thesis Objective

The objective of this thesis is to provide an optimized communication system design that

is completely described in software and implemented on a hardware platform. The

communication system will model a parametric Direct Sequence Spread Spectrum transceiver.

To speed up the simulation, the design is synthesized and downloaded to a hardware platform to

obtain bit-error-rate (BER) performance statistics. Using HIL simulations, the receiver is

optimized with respect to datapath size of significant functional blocks. The BER degradation,

obtained through real-time simulations, is used as the basis for creating a receiver with minimum

hardware area occupancy.

1.4 Thesis Structure

The thesis is organized into seven chapters. Chapter one, which corresponds to this

introduction, gives the context, states the problem, and describes the thesis objective. Chapter

two provides the motivation for this thesis, and therefore, focuses on SDR. Since hardware

implementation is part of the thesis objective, chapter two also reviews the technology

background on Field Programmable Gate Arrays (FPGAs). Chapter three provides technical

background on Spread Spectrum (SS) systems and describes each functional component of the

transceiver used to model the communication system. It also explains the methodology used for

optimizing the system design. Chapter four provides extensive details on System Generator, the

software package used to model the entire communication system. Also, detailed analysis of

digital signal processing (DSP) techniques is discussed in this chapter. Chapter five lays the

foundation of the hardware implementation, describing the FPGA architecture and other

necessary implementation tools. Chapter six presents the obtained results and explains their

2

significance. Finally, Chapter seven summarizes the findings of this thesis and gives direction to

future work. A set of appendices is provided for details on some of the subjects discussed in this

thesis. Appendix A and B provide pin layouts of the I/O devices of the hardware platform.

Appendix C is a published paper from the GSP2005 conference that is titled “Optimization of a

DSSS receiver Using Hardware Co-Simulation.” It provides results of a preliminary DSSS

design used for optimization.

3

Chapter 2
Integration of SDR and FPGAs

Software Defined Radio (SDR) has become the focus of attention in the continuously

changing wireless technology. Due to its inherent flexibility and adaptability SDR provides a

secure path for wireless transmission. This chapter lays the foundation of SDR, explaining its

definition, need, benefits, design architecture, and history. But before presenting SDR, the

traditional radio structure and its limitations will be discussed. Since SDR was developed as a

solution to these limitations, extensive details on the SDR architectural structure will be

presented. Efficient and effective SDR design requires a standard programmable hardware

platform that helps designers navigate through tough system requirements. Since FPGAs have

been the leading contender in this area, technical background on FPGAs is provided to ensure

efficient hardware implementation. Discussion of these topics will provide a glimpse ahead into

the core technical contributions of this thesis.

2.1 Traditional Radio Systems

Traditional radios are based on the based on the super-heterodyne receiver circuit. Other

than demodulation, receivers must perform carrier-frequency tuning to select the desired signal,

filtering to separate the desired signal from other received signals, and amplification to

compensate for transmission and implementation loss. As shown in Figure 2.1, a received

message carrying an RF signal is down-converted (or mixed down) to baseband in multiple

stages. The incoming signal, xc(t), is received by the antenna and amplified by a radio-frequency

(RF) section tuned to the desired carrier frequency fc. The relatively large bandwidth, BRF, of the

amplifier allows some adjacent channel signals to pass through. Next, the RF frequency is

brought down to an intermediate frequency (IF) by a frequency converter composed of a mixer

and local oscillator (LO). The LO frequency tracks with the RF tuning such that IFcLO fff ±= .

The signal is then filtered in an IF section to isolate the message-carrying IF carrier and reject the

images at (), where n is an integer greater than zero. Figure 2.2 clarifies this concept.

Finally, the signal is sent to a demodulator for message recovery [7].

IFc fnf ⋅±

4

Figure 2.1: Superheterodyne Receiver

Figure 2.2: Spectral Drawings

This simplified scheme covers the functions carried out by simple devices like traditional

AM/FM receivers. Modern transceivers such as base stations and cellular phones require added

hardware components that perform more complicated functions such as equalization, frequency

hopping and error detection. These modules require more time-consuming and more expensive

development and production processes.

The hardware-oriented approach of traditional radios imposes a set of limitations. First,

traditional radios have low flexibility to adapt to new services and standards. As shown in the

previous paragraphs, each hardware element of the radio chain performs a radio function. These

components are designed to operate in a particular frequency band (RF) and standard. When the

frequency or any of the parameters of the standard changes, traditional radios cannot correctly

extract the information. Before being able to operate under the new conditions, the system must

be redesigned and hardware modules have to be replaced. Redesigning, manufacturing and

replacing hardware components require high times and costs. Due to the inherent difficulty and

5

limitations in design implementation of analog signal processing components, designers have

migrated to developing a software-based approach to radios.

2.2 A Software Based Approach

 A software based approach for radio design, known as software radio, was developed to

counteract the drawbacks of traditional technology. By using this methodology, software

modules are constructed instead of hardware components to extract information from signals.

Figure 2.3 illustrates the architecture for a software-based radio. The chain of hardware

components of the traditional radio is replaced by analog-to-digital converters (ADCs), digital-to-

analog converters (DACs), and general purpose processors (GPPs) that run the software. ADCs

digitalize the analog IF or RF signals. Software modules perform signal processing techniques to

extract the information from the digitalized samples. DACs are used to convert the message back

into a more suitable form for the user. The use of software enhances flexibility to conform to

new features and standards [8].

 The transition from traditional radio to software radio can be viewed as a gradual

evolution. Over the years designers have been trying to move the digitalization of the signal

closer to the antenna. Digitalization right before the RF filter would allow for the most flexibility

since the signal would be handled entirely in software. However, this type of digitalization is

difficult to implement for high carrier frequencies. Digitalization after the IF filter is the

approach currently used in software defined radios. This design requires an RF front end which

brings the signal down from the RF frequency to an IF frequency [9].

Figure 2.3: Software Based Receiver Design

6

2.3 SDR Realm

Every designer’s fantasy is to have a wireless system free of any air interface constraints

and future modifications. This realm of SDR is described by Broadband Magazine as a wireless

network where “new frequency allocations or new modulation schemes could be adopted at a

keystroke. The network could acquire new spectrum as soon as it becomes available or even

utilize spectrum from another network operator on a temporary basis. Frequencies could be

reused with a high degree of aggressiveness within the same cell, where line-of-sight placement

of subscriber terminals becomes essentially irrelevant, and antenna gain can be varied

dynamically to adapt to changing network conditions. In such a network, new standards-based

protocols governing framing, network restoration and bandwidth reservation could be

downloaded network-wide over the air interface with no interruption in service and no manual

reconfiguration required on the part of the operator or the subscriber [10].” In such a network

wireless transmission and reception would become just another computing function. Although

SDR is not in full realizable form, it is emerging as the hottest new technology.

2.3.1 SDR Concept

SDR is a fast developing technology that has accumulated extensive recognition and

interest in the telecommunication industry. The concept of "software radio" has been around for

some time, having initially been discussed in the field of military research. Now, however, with

the increasing capabilities of DSP on one hand, and the requirements for fast time to market on

the other, it is emerging as an important commercial technology. Digital radio systems with

programmable hardware modules are being used to build an open-architecture based radio system

software. Radio applications such as Bluetooth, WLAN, GPS, Radar, WCDMA, GPRS, etc. can

be implemented using SDR technology [1].

.

SDR provides an efficient and comparatively inexpensive solution to the problem of

building multi-mode, multi-band, multi-functional wireless devices that can be enhanced using

software upgrades. It implements via software, functional modules of a radio system such as

signal generation, modulation/demodulation, coding and link layer protocols. SDR-enabled

7

devices and equipment can be dynamically programmed in software to reconfigure the

characteristics of equipment. This allows manufacturers to concentrate development efforts on a

common hardware platform. Similarly, it permits network operators to differentiate their service

offerings without having to support a myriad of handhelds. Also, software modules that

implement new features can be downloaded over the air onto the handsets. Finally, SDR

provides the user with a single piece of scalable hardware that is compatible at a global scale [11].

2.3.2 Software Defined Radio Definition

The term “software radio” (SR) has various definitions since no consensus has been

reached about the level of reconfigurable architecture needed to qualify a radio as a software

radio. Joe Mitola, who coined the phrase software radio, would describe software radio as:

“a radio whose channel modulation waveforms are defined in software. That is,

waveforms are generated as sampled digital signals, converted from digital to analog via a

wideband DAC and then possibly unconverted from IF to RF. The receiver, similarly, employs a

wideband ADC that captures all of the channels of the software radio node. The receiver then

extracts, downconverts, and demodulates the channel waveform using software on a general

purpose processor [12]."

The SDR Forum, a non-profit association of different software radio players, describes

SDR technology as:

 “radios that provide software control of a variety of modulation techniques, wide-band or

narrow-band operation, communications security functions, and waveform requirements of

current and evolving standards over a broad frequency range [12].”

A well-established definition of software radio is

 “a radio that is substantially defined in software and whose physical layer behavior can be

significantly altered through changes to its software [13].”

In the radio industry, the terms SR and SDR are used to refer to radios exhibiting the

above characteristics. The term SDR is commonly used in technical literature and therefore in

this thesis.

8

2.3.3 Evolution of SDR

Software Defined Radio is a promising technology and has gained worldwide interest and

support from commercial industries and government agencies. SDR concept started in the late

1970s with the introduction of multimode radios operating in very high frequency (VHF) band.
One of the first software radios was a military project named SPEAKeasy. The primary goal of

the SPEAKeasy project was to use programmable processing to emulate more than 10 existing

military radios, operating in frequency bands between 2 and 200 MHz. Further, another design

goal was to be able to easily incorporate new coding and modulation standards in the future, so

that military communications can keep pace with advances in coding and modulation techniques

[13].

The birth of SDR was a result of the Department of Defense’s (DoD’s) initiative Joint

Tactical Radio System (JTRS). Evolving from SPEAKeasy, JTRS is motivated by the same

issues identified by the SPEAKeasy program. DoD’s desire to obtain a more flexible approach to

achieving diverse communication led to the development of JTRS with digital signal processors

and general purpose processors [14]. Hence, the baseline structure for JTRS is software

communication architecture (SCA), which has allowed it to shift away from a hardware

dependent architecture.

Other developments of SDR include Motorola’s Wireless Information Transfer System

(WITS) radio, the SDR-3000 produced by Spectrum Signal Processing Inc., the SpectrumWare

System, and the CHARIOT (Changeable Advanced Radio for Inter-Operable

Telecommunications) software radio developed by Virginia Tech as part of DARPA’s GloMo

programs. The WITS radio was the first instantiation of the JTRS/SDR Forum architecture. The

SDR-3000 was an example of a system fully compliant with the JTRS SCA. The SpectrumWare

program justified the use of GPPs in a software radio design. CHARIOT’s layered architecture

structure created a structure for running reconfigurable hardware into a software radio [13].

As shown in Figure 2.4, SDR and its architecture continue to evolve as new technologies

become available. Initially developed as a solution to interoperability problems of the military,

SDR has developed well beyond its early role. SDR is now viewed as an enabling platform for a

vast array of technologies.

9

Figure 2.4: Development of Software Radio

2.3.4 Advantages and Benefits of SDR Technology

The multitude of wireless network standards hinders seamless interoperability by

requiring different physical devices to inter-operate with different networks. A new challenge to

the mobile communication industry is the integration of multiple systems and applications on a

single device. Although third generation wireless communication concepts address the goal of

global standardization, a more realistic approach in the intermediate term is to develop

transceivers that will work with several standards and in several frequency bands on a common

hardware platform. Such a platform would allow flexible and programmable transceiver

operations. This type of software radio is expected to be a key technology in several application

scenarios of wireless communications. The following factors illustrate motivation in advancing

SDR technology in the telecommunication industry.

• Multifunctionality: The existence of various technologies increases the incompatibility

between devices, requiring users to purchase additional hardware that supports new

standards. The reconfigurable capability of SDR allows users to support various

standards and services on a single system.

• Global Mobility: Network standards are continuously evolving and differ significantly in

link-layer protocol standards causing widespread problems. SDR allows compatibility

10

between all these standards so users do not face problems during migration of the

network from one generation to the next.

• Compactness and Power Efficiency: Multifunction radios requiring separate silicon for

each additional system can attribute bulkiness and inefficiency to the device. SDR’s

reconfigurable attribute can reduce the size and power of the device since the hardware

can be reprogrammed to implement various systems.

• Ease of Manufacture: The complexity of standardizing RF components delays the

product introduction. Digitalization of the signal can result in the reduction of hardware

components and therefore reduce the time to market.

• Ease of Upgrade: The evolution of standards requires the enhancement of current

devices. The flexible architecture of SDR allows systems to be upgraded easily and

permits new devices to be integrated easily into existing infrastructures [13].

2.3.5 Design Principles

To ensure the benefits of SDR, such as flexibility, reconfiguribilty, and scalability are

maintained, its development must allow for interaction between various subsystems of the radio

design. Therefore, the SDR architecture design is important. The following steps illustrate the

design principles in developing SDRs.

• System Engineering: Understanding communication link and network protocol

constraints to ensure allocations of sufficient resources to establish service under system

constraints.

• RF Chain Planning: Incorporation of flexibility in selecting power gain, bandwidth,

center frequency, sensitivity, and dynamic range is necessary in designing SDRs.

Achieving strict flexibility is impossible, and hence tradeoffs must be made.

• Analog to Digital Conversion and Digital to Analog Conversion: ADC and DAC are

difficult to achieve and thus requires tradeoffs in power consumption, dynamic range, and

bandwidth. Due to the weakness of current conversion technology, post-digitalization

techniques can be used to improve flexibility of the digitalization stage.

• Software Architecture Selection: Software architecture should allow for hardware

independence through use of appropriate interfaces between software-oriented

applications and the hardware layer.

11

• DSP Hardware Architecture Selection: Since DSP hardware can be implemented through

microprocessors, FPGAs, or Application Specific Integrated Circuits (ASICs), selection

of hardware will depend on the algorithms and their computational and throughput

requirements.

• Radio Validation: It is necessary to ensure that the communication system is operating

correctly and that minor glitches do not cause system failure [13].

2.3.6 Future of SDR

SDR technology has many applications. The military wants smart radios that can flexibly

work in whatever country they are deployed. Cell phone makers want to consolidate the four or

more radios that are building into their handsets and provide bug fixes with downloaded software.

And public safety professionals see SDR as a way to solve interagency communications problems

during a crisis. "Our history is hardwired technologies and standards, but our future is software-

defined systems and standards for reconfigurability," said Mark Cummings, chairman of the SDR

Forum. The next step is to work on a standard for fixed-access systems that use so-called

cognitive radio techniques to flexibly tap unused swaths of spectrum. Cognitive radio is a

paradigm for wireless communication in which either the network or wireless node itself changes

particular transmission or reception parameter to fulfill specific tasks. This parameter alteration is

based on observations of various factors from external and internal cognitive radio environment,

like radio frequency spectrum, user behavior, network state, etc [14].

2.4 Hardware Platform

A transition from traditional analog RF hardware to digital systems has occurred in the

field of communications due to SDR development. These systems perform digitization of

baseband RF signals and signal processing through use of DSPs. The increase of power available

for DSPs in SDR applications has conditioned designers to digitize the RF signal closer to the

antenna. This technique has been connected with advancement in the re-programmability of SDR

interfaces [15].

12

2.4.1 GPP, DSP, or FPGA

SDR implementation requires efficient hardware and software architecture. Typically,

the architecture will be split across a GPP, DSP, and dedicated hardware (implemented in the

FPGA) [17]. Figure 2.5 shows typical functions of SDR supported by each of these devices.

The downfall of DSPs is their inability to handle an immense flow of data inherent in

SDR applications. Therefore, FPGAs seem to be the prominent choice since they can be used to

offload the GPP or DSP with application-specific hardware acceleration units [18]. The

advancement of FPGAs from being just flexible logic design platforms to rapid signal processing

engines has had a hand in revolutionizing the SDR market.

FPGAs are well suited for high-speed parallel multiply and accumulate (MAC)

instructions. The Cots journal states currently most “FPGAs can perform an 18 x 18

multiplication operation at speeds in excess of 200 MHz”, which make FPGAs an ideal candidate

“for operations such as Fast Fourier Transform (FFT), Finite Impulse Response (FIR) filters,

Digital Down Converters (DDC), Digital Up Converters (DUC), correlators, pulse compression,

etc.” Although, FPGAs can implement many DSP functionalities they have difficulty

implementing floating point operations due to excessive area required in the device [10].

Therefore, such factors will allow for co-existence of FPGAs and DSPs for some time, but with

FPGAs assuming increasing importance.

Figure 2.5: Architecture Splitting SDR Functions across GPPs, DSPs, and FPGAs

 Source: [10]

13

2.4.2 FPGAs

Although ASICs and DSP processors are available for SDR implementation, many

companies offer a far superior alternative. This alternative choice is implemented through usage

of larger FPGAs, efficient DSP algorithms, and automated design process tools [19]. The

reprogrammable standard FPGAs offer high performance parallel processing, equivalent to any

custom silicon devices. Parallel processing techniques provide an effective way to achieve high

sampling rates while increasing algorithmic complexity. When compared to custom chip

alternatives, these off-the-shelf devices are cost effective and easier to implement. The FPGAs

offer design tools that access high level DSP building blocks (IP cores) to reduce implementation

complexity [19].

Compared to DSP processors, the high performance FPGAs are more flexible. FPGAs

offer parameterized building blocks to increase adaptability of design implementation for any real

world application. The ability to act as co-processors increases the performance of the FPGAs

when complex calculations or high sample rate signals must be processed. This allows the DSP

processor to concentrate on executing the code portions of the algorithm [19].

Even though DSPs offer highly efficient MACs for digital signal processing, downfalls

arise in high frequency applications as a result of being able to handle only few simultaneous

calculations. While parallel pipelining increases efficiency, it is not the best way to increase

performance. To increase performance of standard DSP processors after a performance limit has

been reached, DSP clock speed or number of processors used must be increased. Increase in

clock speed is an inefficient solution due to the rise in DSP cost and power consumption [20].

Adding processors is inefficient when comparing the performance gained with the increase in

power consumption, board area, cost, development time, and design complexity. The increase in

MACs through usage of multiple processors comes at too high a cost. Many companies offer a

solution for this problem. They allow millions of MACs to be executed in a single component

through the usage of parallel processing. In Figure 2.6, a comparison of Xilinx FPGAs with

traditional DSP processors for MAC operations is shown [19]. It is apparent that FPGAs

outperform traditional DSPs. As a result, designers use FPGAs to provide widespread MAC

functionality.

14

Figure 2.6: Comparison of Performance of Xilinx FPGAs to DSP Processors

 Source: [19]

Implementation of FPGAs for high-speed and complex signal processing requirements in

SDR applications decrease complexity of high-speed operations such as down conversion,

decimation, and interpolation [20]. Usage of Distributed Arithmetic (DA) algorithms matched

with the distributed random access memory (RAM) structure allows for efficient placement on

FPGAs. Other complex calculation issues are resolved by using look-up tables (LUTs) and

adders [19].

The distributed RAM available on the board is useful in buffering data streams, such as in

a finite impulse response (FIR) filter. A filter requiring hundreds of taps would require a large

number of flip-flops, more than the available amount on most FPGAs. But the distributed RAM

on FPGAs allows for development of large shift registers with intermediate taps [19].

Another advantage of using FPGAs is lower power consumption, which is an important

aspect of DSP applications. The reduction of size of metal lines used to interconnect

programmable logic blocks lowers the power dissipation. Therefore, more MACs are performed

before reaching the power limit. Figure 2.7 shows the comparison of power consumption

between Xilinx segmented routing architecture and non-segmented routing architecture.

The segmented routing structure allows for the specification of the size and performance

of cores before design implementation. The segmented routing architecture also allows for

15

Figure 2.7: Power Consumption of Segmented and Non-Segmented Routing Architecture

 Source: [19]

consistency of performance as cores are added to a device. Cores implemented in FPGAs without

segmented routing suffer from unpredictable performance degradation as additional cores are

added to the device. In addition, the long metal lines in non-segmented FPGAs must get even

longer as the device size becomes larger and this results in a 30% reduction in performance

between the smallest and the largest device [19].

An additional benefit of using FPGAs is that the CORE Generator and DSP LogiCORE

products develop system level DSP functional blocks automatically. The performance

characterized cores are selected from a hierarchical library and parameterized to user

specifications for usage with standard hardware design environments such as VHDL, Verilog, or

schematic capture. The output of CORE generator is a logic netlist and a behavioral model for

schematic capture or instantiation code for VHDL or Verilog [19].

FPGAs also come with system design tools that implement, simulate and test the design

system. These tools extract hardware description language (HDL) code and form a high-level,

block-architectural design. The integration of Xilinx system level tools provides rapid translation

16

from implementation phase to simulation phase to testing phase and back. This increase in the

development cycle can often save a designer 50% or more time for final implementation [17].

2.4.3 Advantages of Using HDLs to Design FPGAs

Hardware Description Languages are used to describe the behavior and structure of system

and circuit designs. Usage of HDLs to design FPGAs provides the following advantages:

• Top-Down Approach for Large Projects: Large projects require many designers to work

together. The top-down approach to system design, supported by HDLs, allows

designers to work independently on separate sections of the code.

• Functional Simulation Early in the Design Flow: By implementing HDL simulation, the

functionality of the design can be verified earlier in the design flow. By testing the

design before RTL or gate level implementation of design allows necessary changes to be

made early in the design process.

• Synthesis of HDL Codes to Gates: Hardware description can be synthesized to gate level

implementation of design, eliminating the need to define each gate. This reduces the

overall design time and errors that can occur in translation of hardware description to

schematic design. Also, efficiency can be increased by applying the automation

techniques used by the synthesis tool during the optimization phase of the design to

original HDL code.

• Early testing of Various Design Implementations: Different implementations of the

design can be tested early in the design process by using HDLs. Since synthesis tools can

be used to perform the logic synthesis into gates in a short amount of time, designers can

experiment with different architectural possibilities at the Register Transfer Level (RTL).

• Reuse of RTL Code: RTL code can be retargeted to new FPGA architectures with

minimum recoding [22].

FPGAs play an important role in implementing designs cost-effectively for real-world

applications. With introduction of 3G wireless technology, support for multiple air interfaces and

modulation techniques will become a necessity for future communication devices. With

enhancement of FPGA technology and intellectual property (IP) cores, SDR is becoming the most

optimal solution. Also, SDR’s key features such as flexibility and adaptability have enabled it to

be a leading contender in the race of providing secure path services as GPRS (General Packet

17

Radio Service), EDGE (Enhanced Data rates for GSM Evolution), and 3G standards become

realities. Through SDSR, development of adaptable high-speed communication equipment can be

enhanced. Optimization of designs to meet performance, cost, and power requirements can be

met if designers understand the analog signal interactions from the RF front-end to ADC and DSP

processing subsystems implemented on FPGAs.

18

Chapter 3
Theory and System Model

The implementations of spread spectrum (SS) systems have become steadily more

important due to their widespread adoption. This field covers the art of secure digital

communications that is now being exploited for commercial and industrial purposes. Applications

for commercial SS range from wireless LAN's to integrated bar code scanner, computer/radio,

and modem devices for warehousing, to digital dispatch, to digital cellular telephone

communications, to country-wide networks for passing faxes, computer data, email, or

multimedia data.

This chapter presents the theoretical background on the SS and the modulation technique

used to create the digital communication system model in software. Therefore, it will provide

extensive details on Direct Sequence spread spectrum (DSSS) and Quadrature Phase Shift Keying

(QPSK). Due to the architectural complexity of the communication system, simulation is

employed for design implementation and verification. Furthermore, this chapter will explain all

functional components used to model the transmitter, channel, and receiver. Finally, the

modifications made to the design to acquire an optimized design will be elaborated upon.

3.1 Spread Spectrum

The implementation of spread spectrum implies that bandwidth of the transmitted signal

is several orders of magnitude greater than the minimum bandwidth, Bmin, required for

transmission. The reasoning behind the increase is to transform a signal with bandwidth B into a

noise-like signal of much larger bandwidth BBss. This type of system is inefficient for a single

user, but is very bandwidth efficient in a multiple-user, multiple-access interference (MAI)

environment because many users can use the same bandwidth simultaneously without interfering

significantly with one another [23].

Apart from occupying a large bandwidth, spread spectrum signals are pseudorandom and

have noise-like properties. Figure 3.1 shows the basic blocks in a spread spectrum system. The

19

Figure 3.1: Spread Spectrum Model

data is scattered (spread) across the available frequency band in a pseudo random pattern. This

spreading of the baseband signal m(t) is done by modulating the signal with a pseudo-noise (PN)

code sequence p(t). The code sequence p(t) is independent of the data sequence m(t). At the

receiver, de-spreading of the signal is done by cross-correlating the received signal r(t) by a

locally generated version of the PN sequence p(t) [24].

3.1.1 Advantages of SS

There are many applications of SS due to its numerous benefits, which include

antijamming capability, low probability of intercept, multiple access capability, multipath

protection, low PSD, and interference limited operation [23].

• Antijamming Capability: SS provides anti-jamming capability due to the unpredictable

nature of the carrier signal. Since narrowband interference affects only a small portion of

the spectrum, jamming the entire spectrum is extremely difficult. This anti-jamming

capability made SS an appealing candidate for military applications.

20

• Multiple Access Capability: SS systems are used for random and multiple access

systems. With SS, users can start their transmission at an arbitrary time without worrying

about channel saturation.

• Multipath Protection: SS reduces the effects of multipath, and hence reduces the effects

of fading. The multipath resistance properties is due to the fact that delayed versions of

the transmitted PN sequence will have poor correlation with the original PN sequence,

and thus will appear as another uncorrelated receiver.

• Low PSD: Spreading over a large frequency band reduces power spectral density (PSD),

while Gaussian noise level increases. This may result in improved spectral efficiency in

some cases.

• Interference Limited Operation: Unlike conventional systems, with SS performance is

limited by interference rather than by noise. Transmitter-receiver pairs using independent

random carriers can operate in the same bandwidth with minimal co-channel interference.

3.1.2 Types of SS

The many variations of spread spectrum include direct sequence spread spectrum

(DSSS), frequency hopping spread spectrum (FHSS), time hopping spread spectrum (THSS),

multi-carrier spread spectrum (MCSS), and hybrid forms of spread spectrum. In DSSS, a signal

is modulated using a wideband spreading signal (PN sequence). In FHSS, the carrier frequency

(fc) is randomly switched from one band to another during radio transmission according to some

specified algorithm. FHSS can be further classified into fast frequency hopping and slow

frequency hopping. In THSS, the signal hops within a particular time frame, where only one time

slot in a frame is modulated. In MCSS, different carriers are used to transmit the signal. Even

though these techniques implement SS in various ways, all of them require signal spreading by

means of a code, synchronization between pairs of users, power control to minimize near-far

effect, and source and channel coding to optimize performance [23]. The most popular SS

techniques are DSSS and FHSS. This thesis will focus on only direct sequence implementation

of spread spectrum since that it is the spreading technique employed in the system model.

21

3.1.3 DSSS

Direct sequence spread spectrum systems are so called because they employ a high-speed

code sequence, along with the basic information being sent, to modulate their RF carrier. It can

be assumed that the information signal in DSSS transmission is spread at baseband, and the

spread signal is then modulated in a second stage. By using this approach the modulation is

separate from the spreading and "stretching" operation and the baseband spreading and

"stretching" can be discussed separately. At the receiver, the signal is first demodulated and then

"stretched" back to recover original information.

A simple example of spreading and "stretching" of DSSS signal is illustrated in Figure

3.2. The data waveform, m(t), is a time sequence of non-overlapping rectangular pulses, each

with amplitude of ± 1. Each data symbol represented by m(t) has a period of Ts. Its Fourier

transform is a sinc function with zero values at . Each pulse in the PN spreading sequence

p(t) represents a chip with amplitude of ± 1 and period T

sT/1

c. The transitions of m(t) and p(t) are

such that the ratio of Ts and Tc is an integer. The spreading due to p(t) makes the bandwidth Bss

of sss(t) much larger that the bandwidth B of a conventionally modulated signal)2cos()(tftm cπ

[12]. Figure 3.3 illustrates the frequency domain analysis of the DSSS signal described in Figure

3.2.

Figure 3.2: Effect of Spreading on Message Stream

22

Figure 3.3: Time/Frequency Analysis

Figures 3.4 and 3.5 represent a typical DSSS transmitter and receiver design. The

transmitter is composed of a PN code generator, binary adder and balanced modulator. The binary

output of the PN generator is added in modulo-2 fashion to the binary message, and the sum is

used to modulate a carrier. The result of modulating an RF carrier with such a code sequence is to

produce a signal centered at the carrier frequency, direct sequence modulated spread spectrum.

Direct sequence spectra vary somewhat in spectral shape depending upon the actual carrier and

data modulation used. If a coherent phase shift keying modulation is used in the receiver, the

received spread spectrum signal can be represented as

s

s
c T

EPtntftptmPtr =++=),()2cos()()(2)(θπ (3.1)

where m(t) is the data sequence, p(t) is the PN spreading sequence, fc is the carrier frequency and

θ is the carrier phase angle at t = 0 [23]. SS signals are demodulated at the receiver through

cross-correlation with a locally generated version of the pseudorandom carrier. De-spreading of

the signal is attained when the signal is cross-correlated with the correct PN sequence. This also

23

Figure 3.4: Design of Transmitter

Figure 3.5: Design of Receiver

24

restores the modulated signal into the same narrow band as the original data [23]. An SS

correlator can be thought of as a very special matched filter (MF) that responds only to signals

that are encoded with a pseudo noise code that matches its own code. Thus, an SS correlator can

be "tuned" to different codes simply by changing its local code.

After demodulation, the signal bandwidth is reduced to B, while the interfering energy is

spread over an RF bandwidth exceeding Bss. Thus, most of the original interference energy is

eliminated by the spreading and minimally affects the desired receiver signal. The measure of

interference rejection capability is defined as the processing gain (PG) or spreading factor, given

by

B
B

BandwidthnInformatio
BandwidthSpreadPG ss== , (3.2)

which is equivalent to

.
2 s

ss

s

c

c

s

R
B

R
R

T
T

== (3. 3)

The greater the processor gain of the system, the greater will be its ability to suppress in-band

interference.

3.1.4 PN Generator

Pseudonoise code generators are periodic since the produced sequence repeats itself after

a certain period of time. A PN code generator, shown in the Figure 3.6, is generated using

sequential logic circuits. In this feedback circuit, binary sequences are shifted through the shift

registers in response to clock pulses. The output, which is dependent to the logical combination

of the various stages, is fed back as the input to the first stage. Ideally, the spreading code should

be designed so that the chip amplitudes are statistically independent of one another. The entire

period of PN sequence consists of N time chips. In case of maximal linear PN generator, the value

on N is , where n is the number of stages in the code generator. Another important reason

for using PN generator to modulate a signal is the properties of the resulting signal's

autocorrelation function. As illustrated in Figure 3.7, it has a maximal value of one repeating

itself every period, and a constant value of

12 −n

)/1(N− in between the peaks [24].

25

Figure 3.6: PN Generator Model

Figure 3.7: Autocorrelation of PN Code

Although PN sequences are deterministic, they have similar properties as random binary

sequences, such as equal number of ones as zeros, low correlation between shifted versions of the

PN sequence, low cross-correlation between any two sequences. Different classes of periodic PN

sequences exist. They include Maximal-Length Linear Shift register Sequences (m Sequences),

Quadratic Residue Sequences (q-r Sequences), Hall Sequences, and Twin Primes.

3.2 Quadrature Phase Shift Keying (QPSK)

In an M-ary system, one of M possible signals may be transmitted during each T-second

period, where 2≥M . Each possible transmitted signal of an M-ary message sequence is referred

as a symbol. The rate at which M-ary symbols are transmitted through the channel is called the

baud rate. Therefore, 4=M is termed as quadrature phase shift keying (QPSK).

Quadrature phase-shift keying (QPSK) is one of the prevalent modulation scheme used in

digital communication systems. QPSK is a method for transmitting digital information across an

analog channel. Data bits are grouped into pairs, and each pair is represented by a particular

waveform, called a symbol, to be sent across the channel after modulating the carrier. The QPSK

26

transmitter system uses both the sine and cosine at the carrier frequency to transmit two separate

message signals, sI[n] and sQ[n], referred to as the in-phase and quadrature signals.

As represented by Figure 3.8, the phase of the carrier will take on one of four values: 0,

π/2, π, and 3π/2, where each phase value corresponds to a unique pair of message bits.

Considering this set of symbol states, the QPSK signal can be defined as

4,3,2,10]
2

)1(2cos[
2

)(, =≤≤−+= iTtitf
T
E

ts sc
s

s
QPSK

ππ , (3.4)

where Ts represents the symbol duration and has a value of twice the bit period. Using

trigonometric identities, the equivalent form of equation 3.3 is

)2sin(]
2

)1sin[(
2

)2cos(]
2

)1cos[(
2

)(tfi
T
E

tfi
T
E

ts c
s

s
c

s

s
QPSK ππππ

−−−= . (3.5)

For the QPSK signal set, if the basis vectors are defined over the interval 0 ≤ t ≤ Ts as

)2sin(2)(),2cos(2)(21 tf
T

ttf
T

t c
s

c
s

πφπφ == , (3.6)

then the four signals in the set can be expressed in terms of basis signals as

4,3,2,1)(]
2

)1sin[()(]
2

)1cos[()(21 =−−−= itiEtiEts ssQPSK φπφπ
. (3.7)

According to the constellation diagram of a QPSK signal (Figure 3.8), the minimum

distance between adjacent points is sE2 . Since each symbol corresponds to two bits, then

Figure 3.8: QPSK Constellation Diagram

27

bs EE 2= . Consequently, the distance between two neighboring points is bE2 . Therefore,

the probability of bit error in an additive white Gaussian noise (AWGN) channel is

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

o

b
Qpske N

EQP 2
, . (3.8)

Since the bit error probability of QPSK is equivalent to the bit error probability of BPSK, twice as

much data can be sent in the same bandwidth. Hence compared to BPSK, QPSK provides twice

the spectral efficiency with exactly the same energy efficiency [23].

3.3 System Model

 The overall system design used to model the communication system is illustrated

in Figure 3.9. The system is comprised of the following blocks: transmitter, channel, receiver, bit

counter, error counter, and start/stop simulation. The transmitted signal is sent through a noisy

channel before it is demodulated in the receiver. The error counter compares the transmitted and

received signal and accumulates errors. The Bit Error Rate (BER) is evaluated according to the

number of bits transmitted, which is controlled by the bit counter. The start/stop simulation block

is created for rerunning simulations to obtain a good average for BER results. The focus of this

thesis is the hardware implementation of the DSSS transceiver modeled in software. Therefore,

the design is modeled with a software package called System Generator, which is explained in

detail in Chapter 4.

Figure 3.9: Overview of System Model

28

3.4 QPSK Transmitter

 Figure 3.10 shows the block diagram of the QPSK transmitter employed in this system

model. The transmitter consists of a scheduler that constructs the data into a packet structure.

The details of the packet structure are discussed shortly. The random binary message stream

embedded within a packet structure with bit rate Rb is split into two bit streams mI and mQ, each

with bit rate . The m2/bR I stream represents the in-phase component and is referred to as the

“even” stream while the mQ stream represents the quadrature component and is called the “odd”

stream. Next, the mI and mQ data streams are individually spread by a PN sequence to

significantly increase the bandwidth of the transmitted signal. The two bit streams are separately

pulse shaped before being modulated with a carrier. Finally, the two modulated signals, each of

which can be considered to be a BPSK signal, are summed to form a QPSK signal. The signal is

scaled before being sent into a channel composed of additive white Gaussian noise (AWGN).

3.4.1 Creating Packets

In a packet-based communication system, data must be transmitted as a packet. A packet

is a self-contained parcel of bytes that is part of a larger block of data that travels as a sequence of

bits from a transmitter to a receiver. Sending data in packets offers a mechanism of coordination

between sender and receiver and provides a guarantee of fairness, which is very important in

obtaining accurate BER results [25]. Usually, a packet consists of three parts: header, payload,

and trailer. The header contains instructions about the data carried by the packet, which may

include length of packet, synchronization bits, packet number, destination address or originating

address. The payload, also referred to as data or body, is comprised of the actual data the packet

is sending. If the data is a fixed-length, then the payload may be padded with blank information to

obtain the correct size. This is known as data stuffing. The trailer typically contains a few bits

that inform the receiver that the packet has ended. It also may include some type of error

checking, such as Cyclic Redundancy Check (CRC) [25]. In this design, the packet is simplified

to include a header comprised of preamble and Data Delimiter (DDW) bits followed by the actual

data sequence. As shown in Figure 3.11, the 512-bit packet contains 65 bits of preamble, 63 bits

of DDW, and 384 bits of random data. The preamble, consisting of all ones, is used to define the

29

Figure 3.10: QPSK Transmitter

Figure 3.11: Packet Structure

start of a transmit packet. Also, it allows time for lock of the receiver phase lock loop, which is

used to synchronize the receiver data clock to the transmitter data clock. The DDW is used for

packet synchronization purposes and defines the start of the actual data. When the receiver starts

receiving data, it may have an arbitrary phase for its lock clock. During the course of the

preamble it learns the correct phase, but may miss or gain a number of bits. Therefore, a special

pattern is constructed in the DDW to mark the start of the data. As shown in Figure 3.12, a

scheduler is constructed to create the packets as described in the paragraphs above. The

scheduler is comprised of a counter, relational blocks, logic blocks, and constant blocks. In

addition, the scheduler creates a select signal and enable signals for the DDW and data.

The DDW is created by using a Linear Feedback Shift Register (LFSR) that contains a

63-length PN code. The LFSR block is enabled only for the duration of the DDW to ensure that

each packet contains the same sequence to represent the DDW. The random data are created by a

30

Figure 3.12: Packet Scheduler

combination of blocks: a counter, a parallel to serial, and slice blocks. The counter is designed to

output eight bits. The parallel-to-serial block takes these eight bits as input and outputs two bits

at a time. Finally, slice blocks are used to send one of the two bits into the I channel, and the

other into the Q channel. The mI and mQ data streams represent the in-phase and quadrature

components needed for QPSK modulation as explained above.

The select signal, generated by the scheduler, informs the multiplexers whether to send

the preamble, DDW, or data bits. As shown in Figure 3.13, when select signal equals zero or

one, the preamble is transmitted. When it equals two, the DDW are transmitted. When it equals

three, the data are transmitted. As a result, both mI and mQ data streams packets will be

equivalent for the duration of the preamble and the DDW, but will differ for the data portions.

The mI and mQ data streams are processed at a specific sample rate, or clock period, as

they flow through the dataflow system. Typically, each block detects the input sample rate and

produces the correct sample rate on its output. Rather than using the default sampling period, an

explicit sample period of 63 is selected to create the packets. This implies that each bit within

the packet will have a period of 63 and therefore each packet will have duration of 32256

(). The significance of this value will be explained shortly. Figure 3.14 shows both the

m

51263∗

I and mQ packets in simulation for duration of one packet length. The simulation result validates

that both the mI and mQ packets are equivalent until the random data start. It also shows that both

packets are sent consecutively and no delay is added between transmission of packets.

31

Figure 3.13: I and Q Packets

Figure 3.14: I and Q Packets in Simulation

32

3.4.2 Signal Spreading

To implement DSSS in the system, the incoming packets must be spread by a PN

sequence. Figure 3.15 illustrates that before spreading the signal with a PN code, both mI and mQ

data streams must be up sampled by 63. The up sampling is needed to ensure that the local PN

code runs at much higher rate than the data rate. The up sampling block is modified to over-

sample the input signal by placing every nth input sample at the output instead of presenting it

once with (n-1) zeros inserted interspersed [6]. Sampling period and up sampling are explained

in further detail in chapter 4. The value of 63 is chosen since the length of the spreading sequence

generated by the Linear Feedback Shift Register (LFSR) is 63.

Since the sampling period of the incoming packets is 63 at the output of the packet

generator, the up sampling increases the sample rate of the packets from 63 to 1 (163/63 =).

This is done to match the sampling time of the incoming mI and mQ data streams to the sampling

period of the LFSR used to create the PN sequence. Other features of the LFSR block are

discussed shortly. The up sampling of the packets and matching of the sampling rates is of

utmost importance in the system model. Without the up sampling, the packets will not be spread

by the PN code and without the matching of the sampling rates, the design will not simulate. The

addition in modulo–2 fashion of the data symbols to the chips is performed by the XOR block.

Finally, the packets are sent to be pulse shaped individually after spreading is completed.

Figure 3.15: Spreading Packets with PN Sequence

33

 To implement signal spreading, a PN sequence must be generated. The PN generator

polynomial governs all the characteristics of the generator. Therefore, to implement a particular

PN code, correct initialization of the block parameters is essential. For a given generator

polynomial, there are two ways of implementing LFSR. Galois feedback generator uses only the

output bit to add (in Galois field) several stages of the shift register and is desirable for high speed

hardware implementation as well as software implementation. The other known as Fibonacci

feedback generator can generate several delays of sequences without any additional logic [26].

A PN generator produces a sequence of bits that appears random. The sequence will

repeat with period , where 12 −B B is the width in bits of the shift register. Therefore, only 6 bits

are necessary to represent a 63-length PN code. Figure 3.16 illustrates that to create a 63-length

PN sequence, bits 4 and 5 of the shift-register are XORed together and the result is shifted into

the highest bit of the register. The lowest bit, which is shifted out, is the output of the PN

generator [26]. To create this sequence in a LFSR, the LFSR block parameters must be defined

as shown is Figure 3.17.

The initial contents of the memory stages and the feedback logic determine the

successive memory contents. If a linear shift register falls into zero state, it will always remain in

that state, and the output would subsequently be all zeros. Therefore, the LFSR is set to be a 6-bit

Fibonacci feedback generator with a hex value of ‘27’ for the feedback polynomial. This value is

computed by looking up the feedback polynomial for a 63 length PN sequence and converting it

to a hex value according to the specifications of the LFSR block in System Generator. In general

the PN sequence has
2

2N
binary ones and 1

2
2

−
N

binary zeros, where N is number of binary

stages. Thus, the resultant PN sequence is

111111010111000110011101100000111100100101010011010000100010110.

Since the sample period of the LFSR is 1, each bit of the packets will be spread by the 63

length PN sequence by directly multiplying it with the baseband data pulses. As a result, if a bit

is zero it will have the shape of the PN code and if it is one, it will have the inverted shape.

Figure 3.18 shows the I and Q packets in simulation after spreading for the duration of two bits.

Each bit still has a Simulink period of 63 since it is spread by a 63-length PN sequence that has a

sampling period of one.

34

Figure 3.16: 63-Length PN Generator

Figure 3.17: Block Parameters for LFSR

35

Figure 3.18: Data after Spreading in Simulation (for 2 bits)

3.4.3 Pulse Shaping

In general, the MPSK (M'ary phase shift keying) spectrum consists of a main lobe

representing the middle of the spectrum and various side lobes located on either side of the main

lobe. Shaping the spectrum should satisfy two criteria: The main lobe should be as narrow as

possible, and the maximum side lobe level should be as small as possible relative to the main lobe

[27]. Therefore, pulse shaping is used to improve spectral efficiency.

In a bandlimited channel, the rectangular pulses that represent the symbols will spread in

time into the succeeding symbols causing intersymbol interference (ISI) and increasing the error

probability of the receiver during symbol detection. One way of combating ISI is to increase

channel bandwidth. Due to the difficulty of manipulating signals at RF frequencies, spectral

shaping is implemented through baseband or IF processing [23]. A number of pulse shaping

techniques can be used to reduce ISI such as Gaussian, Nyquist, and Raised Cosine.

36

Before the data streams are pulse shaped, they are both up sampled by ten to obtain ten

samples per chip. Up sampling is employed to minimize spectral re-growth. At this time the

Simulink system period will be 1/10. The spread data is shaped with an intermittent and jitter

free (IJF) function, which is implemented through ROM blocks as shown in Figure 3.19. The

ROM blocks are addressed by the counter and defined to have a depth equivalent to the length of

the IJF shaping function. Correct addressing is necessary because if the depth of the ROM is

longer than the vector length, the ROM’s trailing words are set to zero. If the vector length is

longer that the ROM depth, the vector’s trailing elements are discarded [22].

The IJF pulse shaping technique is chosen because it is highly bandwidth efficient and

easy to implement in System Generator. The IJF – QPSK scheme, also known as FQPSK-1, is

based on defining odd and even functions, so(t) and se(t), over the symbol interval

 and using their negatives as a 4-ary signal set for transmission [27]. If d2/2/ ss TtT <<− In

denotes the I channel data symbols, then the transmitted waveform, xI(t), would be determined as

follows:

xI(t) = se(t - nTs) = s0(t - nTs) , if dI,n-1 = 1, dI,n = 1

xI(t) = -se(t - nTs) = s1(t - nTs), if dI,n-1 = -1, dI,n = -1

xI(t) = so(t - nTs) = s2(t - nTs) , if dI,n-1 = -1, dI,n = 1 (3.9)

xI(t) = -so(t - nTs) = s3(t - nTs) , if dI,n-1 = 1, dI,n = -1.

The Q channel waveform, xQ(t), is generated using the Q channel data symbols, dQn, by the same

mapping scheme as used in Equation 3.9 and then delaying the resulting waveform by a half-

symbol [3]. Thus, so and se are defined as

22

,)sin(ss

s
o

T
t

T
T

ts ≤≤
−∗

=
π

 ,1=es
22

ss TtT
≤≤

−
 . (3.10)

The above equations result in the pulse shape shown in Figure 3.20. The simulation results of

applying this shaping function to the rectangular pulses is demonstrated in Figure 3.21.

37

Figure 3.19: Pulse Shaping Model

Figure 3.20: So and Se Pulse Shape

38

Figure 3.21: Signal Pulse Shaping in Simulation

3.4.4 Modulation

Modulation is the process by which symbols are transformed into waveforms that are

compatible with the characteristics of the channel. One of the three key characteristics of a signal

is usually modulated: its phase, frequency, or amplitude. Modulation can be used to minimize the

effects of interference. Modulation can also be used to place a signal in a frequency band where

design requirements, such as filtering and amplification, can be easily met. This is the case when

radio-frequency (RF) signals are converted to an intermediate frequency (IF) in a receiver [23].

A phase shift keying (PSK) modulation scheme is employed in this system. When

4=M in an M-ary phase shift keying (MPSK) modulation scheme, it is defined as Quadrature

phase shift keying (QPSK). A phase-modulated waveform can be generated by using the digital

data to change the phase of a signal while its frequency and amplitude stay constant. The term

"quadrature" implies that there are four possible phases (4-PSK) which the carrier can have at a

given time corresponding to one of {0, 90, 180, 270} degrees. In each time period, the phase can

change once. Since there are four possible phases, there are 2 bits of information conveyed within

each time slot [23]. Modulation of the information sequence implies analysis of the system in the

39

time and frequency domain. The message mI(t) and mQ(t) is modulated with a carrier frequency,

fc, and amplitude, Ac. Adding the in-phase and quadrature components together formulates the

QPSK signal, which is described as

 ttAmttAmtx oQoIc ωω sin)(cos)()(+= . (3.11)

As Figure 3.22 illustrates, the Xilinx DDS Block implements a direct digital synthesizer

(DDS), also commonly called a numerically controlled oscillator (NCO) to modulate the signal.

The block employs a look-up table scheme to generate real or complex valued sinusoids. An

internal look-up table stores samples representing one period of a sinusoid. A digital integrator

(accumulator) is then used to generate a suitable phase argument that is mapped by the look-up

table into the desired output waveform. Finally, combining or adding the upper (I) and lower (Q)

parts will represent the QPSK modulated output [22].

The result of modulating an RF carrier with such a code sequence is to produce a signal

centered at the carrier frequency. The main lobe of this spectrum has a bandwidth twice the clock

rate of the modulating code, from null to null. The side lobes have a null to null bandwidth equal

to the code's clock rate.

Figure 3.22: Modulation

40

Since the hardware platform has a 65MHz clock and the overall Simulink System Period

is 1/10 according to the model specifications, the block parameters of the DDS block are selected

to have a constant phase increment of 1/5 cycles per sample and a sampling period of 1/10 to

obtain the following:

Since the symbol rate is 103.2 KHz, each bit will have a period of 9.69 microseconds

 The 65 MHz clock value is obtained from the hardware specifications and will

be explained in detail in chapter 5 along with the Simulink System Period. The rate of change

(baud) in this signal determines the signal bandwidth, but the throughput or bit rate for QPSK is

twice the baud rate. Figure 3.23 shows the signal after it has been modulated, added together, and

).2.103/1(KHz

Figure 3.23: Signal after Modulation in Simulation

. 2.103
63

5.6 Rate Symbol

, 13
5

65Frequency Carrier

cycle,per samples 51DDS =
/1Block

, 6510 MHz 6.5 Rate SampleTx
MHz, 6.5 Rate Chip

KHzMHz

MHzMHz

samplecycle

MHz

==

==

=

=∗=
=

(3.12) 5

41

scaled down in amplitude for transmission. Ideally the amplitude of a QPSK signal is constant.

However, pulse shaping the QPSK signals causes them to lose their constant envelope property

[23]. This fluctuation of the envelope is apparent in Figure 3.23.

3.5 Channel

Before arriving at the intended receiver, the signal must go through a channel that adds

noise and creates distortion effects. Even though the channel can be created in various ways, the

ultimate result is that it degrades the signal transmitted to the receiver. Noise is characterized into

two forms: external and internal. Internal noise results from components such as resistors and

electron tubes. External noise results from outdoor sources such as the atmosphere [28]. In this

system model, the channel only adds additive white Gaussian noise (AWGN) to the system.

Typical characteristics of white Gaussian noise are a statistically independence of any two noise

samples, a constant power spectral density PN(f) and an autocorrelation function RN(τ) that

consists of a weighted delta function , which are described as [29]

2

)(o
N

N
fP = ,)(

2
)(τδτ o

N
N

R = . (3.13)

The channel noise is characterized so that it ranges between a signal to noise ratio (SNR)

of -7dB to 7dB. SNR is a measure of signal strength relative to background noise. Assuming that

the input to the receiver is signal plus white Gaussian noise the channel output is

)(sin)(cos)()(tnttAmttAmty oQoI ++= ωω . (3.14)

3.5.1 Noise Generation

Noise is generated through the Matlab awgn function, which adds Gaussian white noise

to the signal relative to the SNR value defined by the user. The Gaussian wideband noise is sent

through a 101-tap bandpass filter to constrain it to the same bandwidth as occupied by the signal.

The bandpass filter coefficients are generated by the FDA toolbox with the following constraints:

42

Fs = 65 MHz Apass = 1 dB,

Astop1 = 80 dB Astop2 = 80 dB,
 (3.15)

Fpass1 = 13 - 5 Fpass2 = 13 + 5,

Fstop1 = 13 - 7 Fstop2 = 13 + 7.

Figure 3.24 illustrates the significance of these parameters in the filter design.

The resulting bandpass filter has a transfer function defined as

otj
ooBP effHffHfH ω−++−=)]()([)(11 , (3.16)

where and B is the single sided bandwidth. The magnitude and impulse

response for this filter is given in Figures 3.25 and 3.26. The corresponding impulse response for

this filter is

∏=)/()(1 BfHfH o

 BHth oBP 2)(= sinc)cos()(oo ttttB −− . (3.17)

The MATLAB filter function filters the incoming noise with the filter described by coefficients

generated by the FDA toolbox. Figure 3.27 and 3.28 show the noise before and after the filter,

which represent the wideband and bandpass noise.

Figure 3.24: Bandpass Filter Specifications

43

Figure 3.25: Magnitude Response of Bandpass Filter

Figure 3.26: Impulse Response of Bandpass Filter

44

Figure 3.27: Spectrum of Wideband Noise

Figure 3.28: Spectrum of Bandpass Noise

The construction of the AWGN in the channel is illustrated in Figure 3.29. The resultant

bandpass noise is stored in a vector and placed in a Xilinx read only memory (ROM) block, which

is addressed through a counter. The depth of the ROM corresponds to the length of the input

vector, the baseband noise. For Virtex devices, the maximum timing performance is possible

only if the depth of the ROM is less than 16,384 [22]. Therefore, the depth of the ROM and the

length of the baseband noise vector are set to 16,000. The baseband noise vector is repeatedly

added to the transmitted signal and then scaled down before it is sent to the receiver. The

spectrum of the signal before and after the noise is shown in Figures 3.30 and 3.31. Scaling of

the signal is necessary since the signal will be passed through a digital to analog converter (DAC)

and analog to digital converter (ADC) before being sent to the receiver. The signal must be

scaled to an unsigned 14-bit signal due to the hardware specifications of the ADC and DAC.

Further details regarding the hardware specifications of the ADCs and DACs are provided in

chapter 5.

45

Figure 3.29: Design of Channel

Figure 3.30: Spectrum of Signal before Noise is Added

Figure 3.31: Spectrum of the Signal after Noise is Added

46

3.5.2 Calculating SNR

The noise performance of various types of systems is examined by evaluating the signal-

to-noise power ratio at the receiver output. Let the output of the transmitter be defined as the

transmitted signal, S(t), and the output of the ROM block as the baseband noise signal, N(t).

Then, the SNR values are obtained by squaring and summing the signal and noise values over the

period K and then converting the value into dB scale, which are described as

 (3.18)

 (3.19)

The value of K is selected such that the difference between K summations and 1+K summations

is less than one percent.

Eight different noise signals corresponding to SNR values of {-7, -5, -3, -1, 1, 3, 5, 7} dB

are generated and stored in ROM blocks. The eight different SNR values needed in the awgn

function to obtain SNR values of {-7, -5, -3, -1, 1, 3, 5, 7} dB are found by performing several

simulations and adjusting the values until desired results are obtained.

3.5.3 Changing Noise Levels

Instead of having the user change the noise value in software for each new simulation, the

model is designed so that the noise value can be changed in hardware. As a result, the user saves

time by not needing to generate a bit file for the system model each time the noise value is

changed. As shown in Figure 3.32, a Xilinx gateway in block is used as a select input to a

multiplexer that chooses various noise levels. The ROM blocks are initialized to eight different

noise levels to be selected by the user. Since there are 8 different inputs to the mux, the gateway

in block must be allocated to three pins on the Nallatech board. Through these pins the user will

be able to select the desired SNR. The noise settings will be controlled by a user with a dipswitch

that is wired to the corresponding pins on the hardware platform. Further explanation of pin

allocation and hardware setup will be addressed in Section 5.2.5 of Chapter 5 and Section 4.5 of

Chapter 4.

∑= SSNR
=

K

t tN
t

0
2

2

)(
)(

log10 SNRdB

,

(10SNR =).

47

Figure 3.32: Design for Implementing Various Noise Levels

3.6 QPSK Receiver

The main function of the receiver is to extract the desired signal from the received signal

at the channel output. Figure 3.33 shows that the primary components of a QPSK receiver which

include down conversion, baseband processor and packet processor. The downcoversion block

includes blocks to perform digital down conversion and low pass filtering. The baseband

processor is composed of the following blocks: carrier phase lock loop, I and Q correlators,

tracking lock loop, peak detector, rectangular to polar converter, and phase decoder. In a receiver,

the received signal is first coherently demodulated and low-pass filtered to recover the message

signals (in-phase and quadrature channels). The next step for the receiver is to sample the

message signals at the symbol rate and decide which symbols were sent. Although the symbol

rate is typically known to the receiver, the receiver does not know when to sample the signal for

the best noise performance. The objective of the symbol-timing recovery loop is to find the best

time to sample the received signal [28]. The presence of noise complicates this operation. The

signal is de-spread by correlation with the original PN spreading sequence and then sent to the

packet processor.

48

Figure 3.33: QPSK Receiver

3.6.1 Down Conversion

The QPSK modulated 13 MHz IF signal is the input to the receiver. As illustrated in

Figure 3.34, the transmitted signal is first coherently demodulated with both a sine and cosine,

and then filtered to remove the double-frequency terms, yielding the recovered in-phase and

quadrature signals, sI[n] and sQ[n]. The DDS block is designed with a constant phase increment

of 1/5 cycles per sample and a sampling period of 1/10 just as it was designed in the transmitter

for modulation purposes.

 Figure 3.35 represents the analysis on the signal in the frequency domain after down

conversion. Down conversion brings the signal from the RF frequency to baseband. As

illustrated by the figure, some type of filtering is necessary to eliminate the double frequency

components occurring at -2fc and 2fc.

The inclusion of a channel adds a delay between the transmitter and receiver. Therefore

there is a difference in the clock cycles of the transmitter and receiver. This is evident in Figure

3.36, which shows the resultant I and Q signals in simulation after down conversion.

49

Figure 3.34: Digital Down Conversion Block

Figure 3.35: Frequency Domain Analysis for Down Conversion

50

Figure 3.36: Signal after Down Conversion

3.6.2 Running Average Filter

After down conversion, low pass filtering is necessary to get rid of the double frequency

components. Since designing a lowpass filter occupies a significant amount of hardware space,

an alternative design known as running average filter is chosen. In the case of a digital signal, a

Finite Impulse Response (FIR) filter that would have as an output the average of the last N values

of an input signal can be easily created. Such a system is sometimes called a running average

filter. The running average filter can be imagined as a window of size N moving along the array,

one element at a time [30]. The impulse response of this filter is

 (3.20)].1......1111[)(h =u
Recall that the general difference equation of an FIR filter is

 (3.21)

.)(*)(
0
∑
∞

=

−=
k

k knxbny

Equation 3.21 shows that in an LTI system the output y(k) is the resultant of the convolutional

sum of the input x(u) and the channel response h(u), which is equivalent to

51

 .. (3.22)

The properties of convolution allow Equation 3.21 to be equivalent to

 (3.23)

Since , y(k) can be simplified to

 (3.24)

Therefore, y(0) would just be the summation to the first N-1 values, given by

 (3.25)

As shown in Figure 3.37, y(1) would be the summation of the next N-1 vectors shifted over one,

which is described as

 . (3.26)

This is equivalent to taking output of y(0) and adding element x(u-1) and subtracting element

x(N-1). Therefore,

 (3.27)

This next summation is computed by taking the previous summed value and adding the previous

component and subtracting the last component. Thus, the difference equation for the running

average filter would be

 (3.28)

Figure 3.37: Running Average Filter Example

∑ −=
u

xy
−

=

1

0
)1()1(

N

u

).1()1()0()1(−−−+= Nu

nyny

xxyy

).()()()1(nNxnux −+−+=+

.)()0(
1

0
∑=
N

xy
−

=u
u

1

0
)(*)()(

N

u
kuk

)()(
1

0

−

=

N

u
uhkk

−

=

N

u
kk

)(u

∑ −= uhxy
−

=

*∑ −= uxy .)(

]1......1111[=h

.1*)()(
1

0
∑ −= uxy

52

Figure 3.38 shows the model of a running average filter (RAF). The accumulator sums

the x(n) from 0 to N-1 and stores the output in a register. An addressable shift register is used for

tracking the last component of x(n). A delay block is used to index the next component of x(n) to

be added.

The running average filter has the effect of “smoothing out” fluctuations in a signal. The

effect of smoothing out the fluctuations is equivalent to a low pass filter; that is, a filter which

removes higher frequency components in a signal while leaving behind lower frequency

components. Thus, a running average filter is equivalent to one form of a low pass filter.

Changing the window range varies the position of the notch of the filter in the frequency

response. The best window range, N, was evaluated by determining which value would result in

the notch eliminating the double frequency components. Considering the magnitude response of

the signal before filtering (Figure 3.39), it is obvious where the notches need to be placed.

Figure 3.38: Running Average Filter Model

53

Figure 3 39: Magnitude Response after Down Conversion

The window range is varied until the notch is placed at the center of the double frequency

components. Figure 3.40 shows the magnitude response of the RAF when N=5. The magnitude

response of the signal after the first RAF is shown in Figure 3.41. Figure 3.41 illustrates that

having just one running average filter does not remove enough of the higher frequency

components. Therefore, another RAF is added in the system design. Since the window range N

can only be integers, it is strategically calculated to obtain the best result. Figure 3.42 shows that

N=3 provides the best result. The magnitude response of the signal after the second RAF is

shown in Figure 3.43. This result reflects the effects of both filters.

Since the filters occupy a significant amount of hardware space, scaling the output after

the first RAF is necessary. The accumulator increases the resolution of the output which is not

needed. Scaling the output also prevent overflow from occurring in the second RAF.

The simulation results of the signal after RAF1 and RAF2 are shown in Figures 3.44 and

3.45. As indicated by the results, the second RAF improves the smoothness of the signal

significantly.

54

Figure 3.40: Magnitude Response of Filter 1

Figure 3.41: Magnitude Response of Signal after Filter 1

55

Figure 3.42: Magnitude Response of Filter 1 and 2

Figure 3.43: Magnitude Response of Signal after Filter 2

56

Figure 3.44: Signal after Running Average Filter 1

Figure 3.45: Signal after Running Average Filter 2

57

3.6.3 Baseband Processor

After the signal has been downconverted from the IF frequency to the zero-IF complex

base band signal by the DDC and filtered by the LPF, it is sent to the baseband processor. As

shown in Figure 3.46, the baseband processor consists of the following blocks: carrier phase lock

look, tracking phase lock loop, I&Q correlators, CORDIC for rectangular to polar conversion,

peak detector and phase decoder. The carrier phase locked loop locks to the zero-IF baseband

signal, while the tracking loop is performing symbol tracking. Both the carrier phase lock loop

and the tracking loop are feedback loops that must be accurately modeled. Two separate

correlators constructed from FIR blocks serve as match filters for I and Q baseband signals. A

rectangular-to-polar block performing a CORDIC algorithm provides the magnitude and phase of

the received signals. The magnitude value is sent to the peak detector to provide early and late

gate values to the tracking loop for synchronization purposes, while the phase value is sent to the

phase decoder to evaluate the value of the received symbol.

Figure 3.46: Baseband Processor

58

3.6.4 Carrier Phase Lock Loop

In digital communications, to recover the transmitted signal, the output of the

demodulator must be sampled once per symbol interval. Since the receiver does not know the

delay between the transmitter and receiver, symbol timing must be derived from the received

signal for synchronous sampling of the output from the demodulator. The delay in the

transmitted signal also causes an offset to the carrier, which the receiver must estimate.

Therefore, a carrier phase lock loop (CPLL) must be implemented to generate a version

of the local oscillator that is matched in both frequency and phase to the oscillator employed in

the transmitter. A Costas Loop, developed by Costas, is one method of implementing a phase-

locked loop (PLL). Figure 3.47 represents the design of the Costas Loop.

The PLL is a critical component in coherent communications receivers that is responsible

for locking on to the carrier of a received modulated signal. The PLL consists of two basic

functional blocks: a numerically controlled oscillator (NCO) and a loop filter (LF). Ideally, the

transmitted carrier frequency is known exactly and only the phase needs to known to demodulate

correctly. However, due to imperfections at the transmitter, the actual carrier frequency may be

slightly different from the expected frequency. This difference between the expected and actual

carrier frequencies can be modeled as a time-varying phase. Provided that the frequency

Figure 3.47: Costas Loop

59

mismatch is small relative to the carrier frequency, the feedback control of an appropriately

calibrated PLL can track this time-varying phase, thereby locking on to both the correct

frequency and the correct phase [32].

In an analog system this recovery is often implemented with a voltage-controlled

oscillator (VCO) that allows for precise adjustment of the carrier frequency based on the output

of a phase-detecting circuit. In our digital application, this adjustment is performed with a

numerically-controlled oscillator (NCO) as shown in Figure 3.48. The NCO is basically a

sinusoidal signal generator.

The received signal s(t) is multiplied by the outputs of the NCO, which are

)ˆ2cos(φπ +tf c and , (3.29))ˆ2sin(φπ +tf c

 where represents the estimate of φ. The product of these two implies that the phase error is

equivalent to the difference between the two, given by

φ̂

φφφ −=Δ ˆ (3.30)

The error signal is evaluated by finding the absolute magnitude difference between the

incoming signals Is and Qs. This error signal is filtered by the loop filter, whose output is the

control voltage that derives the NCO. Figure 3.49 models the structure of the loop filter. The

constants KP and KI of the loop filter control the way the loop responds to its initial excitation,

whether it is overdamped, underdamped, or critically damped.

In the synchronized (called locked) state the phase error between the oscillator’s output

signal and the reference signal is zero or very small. If a phase error builds up, a control

mechanism acts on the oscillator in such a way that the phase error is again reduced to a

minimum. In such a feedback control system the phase of the output signal is actually locked to

the phase of the reference signal. This is why it is referred to as a phase-locked loop. The loop is

set to reset at the end of each packet to prevent error buildup. Figure 3.50 illustrates the error that

arises due to the phase difference. The constants of the loop filter KP and KI are adjusted to

obtain the minimum error.

60

Figure 3.48: NCO

Figure 3.49: Loop Filter

Figure 3.50: Error of PLL

61

3.6.5 Parallel Correlator

In spread-spectrum systems, the receiver must synchronize onto the transmitted PN code

and de-spread the received signal into the original symbol by calculating the correlation of input

data and the PN sequence. The receiver adjusts the timing offset to search the maximum

correlation value. The completely parallel architecture provides the fastest synchronization and

good accuracy, however in the full implementation requires a tap length equal to the spreading

sequence length. Figure 3.51 illustrates that the parallel correlators are implemented by two M-

tap finite impulse response (FIR) filter, defined by M filter coefficients, or taps, each represented

as a Xilinx fixed-point number [22].

An FIR filter with M-length input x(n) and output y(n) is described by the following

difference equation

,)(

)1()1()()(
1

0

11

∑
−

=

−

−=

+−++−+=
M

k
k

Mo

knxb

mnxbnxbnxbny K

 (3.31)

where bk is the set of filter coefficients. Alternatively, the output, y(n), can be expressed as the

convolution of the unit impulse response h(n) of the system with the input signal, which is

described as

 (3.32) *∑ −= hkxy .)()()(
1

0

−

=

M

k
knn

Figure 3.51: Implementation of Parallel Correlators

62

Equation 3.31 and 3.32 are identical in form, and thus)(khbk = , where h(k) are the set of user-

defined coefficients which represent the PN sequence [23]. The filter block accepts a stream of

Xilinx fixed-point data samples x(0), x(1), ..., and at time n computes the convolution sum

defined by equation 3.32. The conventional tapped delay line realization of this inner-product

calculation is shown in Figure 3.52.

The input samples are serially shifted into a shift register. The shift register’s taps drive

the memory block’s address buses. At each clock cycle, the sum of memory blocks outputs gives

an intermediate sum-of-multiplications result. The accumulator at the end of the adder tree gives

the complete FIR filter result after n clock cycles (n is the resolution of the input sample). Figure

3.53 shows a correlator example. The correlator slides the code sequence to the right of the

received samples and searches for one of the correlation points that has the maximum correlation

value.

Perfect correlation results in peaks as shown in Figure 3.54. The correlation peaks occur

at increments of and represent a duration of one packet length. As illustrated by the

simulation results, the correlation peaks vary in amplitude until the PLL locks. Variations in

magnitudes of correlation peaks occur due to noise added by the channel.

63=T

Figure 3.52: FIR Filter

63

Figure 3.53: Example of Correlator

Figure 3.54: Output of Correlator in Simulation

64

3.6.6 CORDIC

Coordinate Rotation Digital Computer (CORDIC), shown in Figure 3.55, is an iterative

algorithm for calculating trigonometric functions including sine, cosine, magnitude and phase. It

is particularly suited for hardware implementations because it does not require any multiplies.

CORDIC revolves around the idea of rotating the phase of a complex number, by multiplying it

by a succession of constant values. However, the multiplies can all be powers of 2, so in binary

arithmetic they can be done using just shifts and adds (no actual multiplier is needed) [23]. Given

a complex-input <x,y>, CORDIC computes a new vector <m,a>, where magnitude and angle are

defined as

22 yxm += , (3.33)

)(tan 1

x
ya −= . (3.34)

The x and y inputs to the CORDIC block must have the same data width and binary point.

These two constraints are defined in the block parameters of the CORDIC and will ensure that the

output values (m and a) have the same precision [23]. Therefore, the x and y inputs must be

scaled prior to the CORDIC to ensure enough bits to represent the phase values accurately. The

CORDIC block also adds latency, where latency = 3 + number of processing elements. The

number of processing elements is a user defined parameter that indicates the number of iterations

performed for fine angle rotation [6]. This added latency must be taken into account when the

signal is sent to the peak detector.

Figure 3.55: CORDIC

65

3.6.7 Peak Detector

The goal of the peak detector is to sample the waveform at the peak points in order to

obtain the best performance in the presence of noise. The peak detector finds peaks without

assistance from the user. When it begins running, it arbitrarily selects a sample, called the on-time

sample, from the correlator output. The sample from the time-index one greater than that of the

on-time sample is the late sample, and the sample from the time-index one less than that of the

on-time sample is the early sample. As shown in Figure 3.56, the peak detector outputs the on-

time, early and late sample. The on-time sample is used as an enable signal to indicate when to

extract the phase values outputted from the CORDIC. The early and late sample values are sent

to the tracking phase lock loop for fine synchronization. Also, a Max-Latch value is evaluated

and fed back into the CPLL.

Figure 3.57 shows the system model for the peak detector. It is comprised of mainly

delay, register, and logic blocks. The Max-Latch value takes into account the signal delay

obtained from the CORDIC. The Max Latch value acts as an enable signal for the register,

informing it of the location of the maximum peak relative to the output from the correlators.

These resultant I and Q values from the registers are fed into the CPLL, where their absolute

value difference defines the error signal. The integrated values from the correlator are delayed by

one to represent the optimum sampling time and by two for the late sampling time relative to the

early sampling time. Delay blocks are used to create enable signals for register blocks for correct

referencing.

Figure 3.56: Peak Detector Outputs

66

Figure 3.57: Peak Detector Model

3.6.8 Tracking Phase Lock Loop

The fundamental goal of the tracking phase lock loop or early-late gate synchronizer is

symbol tracking. The early-late gate synchronizing technique exploits the symmetry of the

signal. The output from the correlator attains its maximum value at time . Thus the output

is the time autocorrelation function of the pulse s(t). Therefore, the proper time to sample the

output is at the peak of the correlation function. Addition of noise from the channel increases

difficulty of identifying the peak value of the signal. Instead of sampling the signal at the peak,

early and late samples are taken. These samples occur at

Tt =

δ−= Tt and δ+= Tt . Figure 3.58

clarifies this concept. On average, the absolute value of these samples will be smaller than the

peak value. Since the autocorrelation function is symmetric, the absolute value of the early and

late samples should be equivalent. Thus, the proper sampling point is midway between

δ−= Tt and δ+= Tt . This condition forms the basis of the early-gate synchronizer or

tracking phase lock loop (TPLL) [23].

67

Figure 3.58: Early, Late, and On-time Samples

Figures 3.59 and 3.60 illustrate the block diagram of the TPLL. The early and late peaks

are sent to the TPLL for calculating the difference between the two, which is denoted as the error

signal. Therefore, the error signal is

)()(δδ −−+=Δ TT . (3.35)

If the on-time sample occurs at the peak, the difference between early and late is zero. But when

the peaks shift and result in an incorrect on-time sample due to timing errors, the TPLL must

adjust the timing of on-time samples to coincide with peaks in the waveform.

The difference between the absolute values of the early and late gates formulates the error

signal. To smooth the noise corrupted signals, the error signal is passed through a loop filter.

This loop filter works in the same manner as the one in the CPLL. The constants KP and KI of the

loop filter are adjusted to obtain the best results in simulation.

Any timing offset relative to the optimum sample time will result in a nonzero output of

the error signal at the output of the filter. This smoothed error signal also derives the VCC

output. Depending on if earlythreshΔ>Δ , or latethreshΔ<Δ , the signal should be retarded or

advanced [23]. Therefore, the pulse is either advanced or delayed depending on the error value

and then fed back into the FIR filters for correlation [23]. Driving the error signal to zero by

means of a feedback loop leads to maximum likelihood timing recovery. As shown in Figures

below, this closed-loop control resets at the end of each packet.

68

Figure 3.59: Tracking Phase Lock Loop Model

Figure 3.60: Tracking Phase Lock Loop Model (2)

69

3.6.9 Phase Decoder

The phase decoder retains the phase values from the CORDIC only at the maximum

peak. As shown in Figure 3.61, the phase values for QPSK for bits 00, 10, 11, and 01 correspond

to phase values of π/4, 3π/4, 5π/4, and 7π/4 in an ideal environment.

The CORDIC algorithm converges only for angles between - π/2 and π/2. Therefore, if

x< zero, the input vector is reflected to the 1st or 3rd quadrant by making the x-coordinate non-

negative [22]. As a result, in simulation the phase values for a one in the I channel is ±π/4 and

±3π/4 for a zero. The phase values for a one in the Q channel is -π/4 or -3π/4 and +π/4 or +3π/4

for a zero. Therefore, the bits 00, 11, 10, and 01 correspond to phase value 3π/4, -π/4, π/4, and

-3π/4. Since the cosine of a positive and negative number is always positive, the sign of the

phase value doesn’t factor when determining the bit value for the I channel. Therefore, the phase

boundary will be 0. On the other hand, the sign value is significant when taking the sine of the

phase value. Therefore, the boundary will be π/2, halfway between π/4 and 3π/4, and compared

to the absolute value of the phase when determining the bit value for the Q channel. Figure 3.62

illustrates the logic described above to determine the phase value.

Figure 3.61: QPSK Phase Values

70

Figure 3.62: Phase Decoder Model

3.6.10 Packet Processor

To obtain accurate bit error rate results, the received and transmitted signal needs only to

be compared for the actual random data and not during the preamble of DDW. Therefore, an

enable signal must be constructed to indicate where the actual random data starts. This is the

function of the packet processor. Since both the I and Q data bits are equivalent for the duration

of the DDW, only one of them is needed.

In the DDW block shown in Figure 3.63, the incoming packet is first, up sampled by 63,

just as it was done for the original spreading. The data stream is correlated with the original 63-

length PN sequence used to create the DDW in the transmitter. The output is accumulated and

stored in a register. The result is down sampled by 63 to bring the sampling period back to the

original value.

Figure 3.64 represents the complete packet processor design. Perfect correlation results

in positive and negative peaks of values 0 or 63. The correlation peaks value is compared to the

values of 3 and 60 to provide a little leeway. Perfect synchronization provides an index for where

the DDW has ended and random data is started. When this occurs, the data enable signal is set

high to indicate where the actual data starts within the packet. This signal remains high for the

duration of the data, 384 bits, and then goes low during the preamble and DDW. The simulation

results for the data enable signal from the packet processor are shown in Figure 3.65.

71

Figure 3.63: DDW Block within the Packet Processor

Figure 3.64: Packet Processor

72

Figure 3.65: Data Enable Signal and Packeted Data

3.7 Calculating BER

BER calculations are performed for various SNR levels to see if they match theoretical

calculations. The results conclude that errors occur uniformly across any data packet, independent

of packet size, and that there are no correlations evident between the positions of errors within the

frame. This implies that errors are highly localized within a frame and the error- inducing events

occur over small (bit-time) time scales.

3.7.1 Bit Counter

In Figure 3.66, the bit counter is created to provide a reference point for the errors. In

this design the bit counter is adjusted for a one million bits simulation. For BER results to be

accurate, the simulation must be run for at least one million bits. The bit counter is enabled only

when Tx Data Enable signal is high and therefore only accumulates the data bits and not the

preamble or DDW bits. When the counter reaches a million, the Bit Reset signal is set to high to

indicate the error counter to stop counting errors. Also, a LED is blinked to notify the user that

the simulation is complete and error result can be recorded.

73

Figure 3.66: Bit Counter

The accumulator is reset by the Reset Count signal, which is controlled by the user

through a pin on the board that is allocated in a gateway in block. Further explanation of this user

defined reset signal is in Chapter 5.

3.7.2 Error Counter

The error counter, illustrated in Figure 3.67, compares the transmitted and received data

to see if any errors have occurred due to the noise added in the channel. Since there is a delay

between the transmitter and receiver, both the Tx Bit and Rx Bit signals must be adjusted before

comparison. First, both signals must be down sampled by two to bring the sampling period back

to 63. Also, the Tx Bit and Tx Data Enable signals must be delayed so that they line up correctly

with the received signal. The matching of these three signals is essential for obtaining correct

BER curves. A slight offset of the Tx Data Enable signal can result in comparison of the wrong

portions of the transmitted and received packets.

Just as in the bit counter, the transmitted and received bits are compared only when the

Tx Data Enable signal is high. This implies that only the data portions of the packet are

compared for errors. After the bit counter reaches a million bits, the error counter holds its value.

Since the error counter is specified to have ten output bits, a gateway out is assigned to ten pins.

These pins are wired to LEDs that indicate the error value. The error counter is reset when the bit

counter is reset. Details on the display board created to view BER results and reset the simulation

are provided in Chapter 5.

74

Figure 3.67: Error Counter

The performance evaluation of Quadature phase-shift-keying communication systems

have been analyzed in a great variety of papers. Quaternary phase-shift-keying (QPSK or 4-PSK)

systems have the greatest practical interest of all no binary (multiposition) systems of digital

transmission of messages by phase-modulated signals.

3.8 Optimization of System Model

 Since the system model of this communication system is quite large, it will consume a

significant area on the hardware. The resource estimator block in System Generator gives an

estimate of the area usage. Further details of this block are provided in Section 4.3.14 of Chapter

4.

 The area usage can be decreased by optimizing the sections of the system model that take

the most area. This implies that the receiver section should be optimized with consideration to

the ADC, DDC, filter, parallel correlator, and CORDIC blocks. Therefore, 6 sections of the

receiver are altered for optimization, as shown in Figure 3.68. The signal is optimized before

analog to digital conversion, after digital down conversion, after the two running average filters,

after the carrier loop, after the parallel correlators, and after the CORDIC.

75

Figure 3.68: Location of Optimization Points in Receiver

 Optimization of the system is dependent on the datapath size of the signal at various

points in the receiver. Minimizing the datapath size decreases the area the system model requires

on hardware, but also increases the BER of the system. Therefore, a relationship must be

established between these two parameters to achieve an optimized design. As a result, the BER

of the system is recorded for varied word lengths of the input signal of the optimization block.

To evaluate the significance of each section of the receiver, all other signals are kept at full

precision in other areas of the receiver for each simulation.

A multiplexer is used to select the various datapath sizes, varying from the input

sequence having all ‘A’ bits to the input sequence being composed of just two bits. In Figure

3.69, the select signal to the multiplexer is controlled by the user through a gateway in block.

This block is allocated to pins corresponding to the hardware platform. This scheme is similar to

the one used in the channel to create varying noise levels. Further explanations of this block are

provided in Chapter 4. For the first iteration, all the bits of the input sequence with word length

'A' are used to evaluate the BER. For the next iteration, one bit of the input signal is sliced off

and instead inserted with a zero. The extra zeros are inserted to bring the signal back to its

original length of ‘A’ bits. This methodology is chosen because a multiplexer requires all input

signals to be of same length. For the next iteration, two bits are sliced off and two zeros are

inserted at the end of the signal. The user continues performing these iterations until just two bits

are left in the input signal.

76

Figure 3.59: Optimization Block

The results are recorded and the input signal to that section is brought back to the original

precision. The next area of the receiver is chosen for optimization and the same methodology is

applied until all six sections of the receiver have been optimized individually. By using these

results, several minimum area solutions are constructed to find an optimum design whose

performance maintains certain specifications.

Since optimizing the system model is the ultimate goal of this thesis, accurately modeling

the DSSS transceiver in System Generator is very important. Therefore, each component of the

transmitter, channel, and receiver is tested for functionality before obtaining any performance

results. The signal output is viewed in simulation after each significant block of the system

model is incorporated in the design. Each block is finely tuned to obtain desired results by

changing its parameters in the software. These parameters are discussed in Chapter 4. The signal

outputs of the system model are tested in hardware to verify compliance to simulation results.

Finally, block parameters are changed in the software environment to obtain an optimized DSSS

transceiver design.

77

Chapter 4
DSP Analysis and System Generator

Over the years, the trend in the industry has migrated towards platform chips (FPGAs,

DSP) to reduce costs. Designers are leaning towards implementing system on chips for increased

design flexibility. As a result, challenges in modeling and implementing an entire platform arise.

Therefore, DSP aspects of the system model of the transmitter, channel, and receiver used to

describe the communication system are very important. This chapter will explain the different

types of design flows available for DSP and the steps required in implementing them.

The overall approach to simulating a communication system is to create a system model

consisting of functional blocks from a set library, which are interconnected to produce particular

results. The parameters of each block are specified before execution based on system

specification. Since the system design, described in chapter 3, is modeled with a software

package called System Generator, this chapter will provide background on its features and

highlight key facets of the software structure. Also, HDL co-simulation which supports legacy

code will be discussed in view of the fact that having the ability to include legacy code is

essential for many DSP system designers. Finally, details on implementation of hardware-in-the-

loop (HIL) simulations will be provided since HIL is used for fast design verification.

4.1 DSP Design Flow

DSP design flow consists of the following steps: DSP Systems Modeling, System

Generation, HDL Synthesis, Simulation/Verification, FPGA Implementation and In-System

Debug. Figure 4.1 illustrates the steps for DSP design flow. Although, the Xilinx System

Generator for DSP software platform is a critical component of DSP design flow, other tools are

necessary to enable simulation, translation, and verification. The additional software may be a

combination of Xilinx XST, Synplify Pro from Synplicity, Leonardo Spectrum from Mentor

Graphics, ModelSim from Mentor Graphics, Xilinx MXE, Xilinx ISE, and Xilinx ChipScope Pro.

• DSP System Modeling: By using familiar tools like MATLAB and Simulink, users can

develop models of their DSP systems. System Generator includes a Xilinx blockset that

78

http://www.xilinx.com/ise/verification/chipscope_pro.htm

Figure 4.1: Traditional Simulink FPGA Flow

comprises basic level building blocks like FFTs, and advanced DSP algorithms like

digital down converters. Users can also bring in their own HDL Modules via HDL co-

simulation, or write MATLAB code for combinational control logic or state machine.

• System Generation: System Generation for DSP is invoked from Simulink through the

System Generator for DSP token. This token generates VHDL and cores for all the Xilinx

Blocks on the sheet containing the token, and on any sheets beneath it in the design

hierarchy. FPGA designs are generated using Xilinx optimized LogiCOREs, ensuring

that the most efficient implementation is being produced.

• HDL Synthesis: Once VHDL has been generated by System Generator for DSP, users

may want to synthesize this for optimal FPGA implementations whether it is for high

performance or optimal area. Users can choose from one of three popular synthesis

engines including Xilinx's XST, Synplify Pro from Synplicity and FPGA Advantage

from Mentor Graphics.

• Simulation/Verification: A VHDL testbench and data vectors can also be created by

System Generator for DSP. These vectors represent the inputs and expected outputs seen

in the Simulink simulation, and allow the designer to easily see any discrepancies

between the Simulink and VHDL simulation results. FPGA Advantage can be used to

conduct simulations of DSP systems prior to implementation. If doing HDL co-

simulation, ModelSim is required.

79

http://www.xilinx.com/products/software/sysgen/hdl_cosim.htm
http://www.xilinx.com/products/software/sysgen/hdl_cosim.htm
http://www.xilinx.com/products/software/sysgen/control_data_path.htm

• FPGA Implementation: Finally, designers can use ISE implementation tools to place

route and verify the design in a FPGA. ISE allows users to use VHDL and design

schematic entry tools to perform behavioral and timing simulations.

• In-System Debug: Hardware Co-Simulation capability can be used to accelerate

simulation and verify the design in hardware. Including ChipScope Pro to your design

flow will allow real-time debugging at system speed [32].

4.1.1 Types of Design Flows

The three types of design flows for DSP are VHDL-based designs, CORE Generator

based designs, and System Generator based designs. All three have various advantages and

disadvantages. VHDL-based designs offer portability, complete control of the design

implementations and tradeoffs, and easy debugging. However, they are time consuming and

require users to have familiarity of the algorithm and how it is written. CORE Generator based

designs provide quick access to existing functions and optimized IP for the specified design.

Nonetheless, they might not have the exact functionality. System Generator based designs are

very attractive for FPGA novices. They offer high productivity and ability to simulate at a

system level. The hardware in the loop simulation feature improves productivity and accelerates

verification. The downfall of this type of design is that it doesn’t always provide the best results

from an area usage point of view. It is also not well suited for multiple clock designs. Due to its

numerous advantages, the communication model design for implementing SDR is based on

System Generator flow [22].

4.2 Simulink

Simulink is a platform for multi-domain simulation and model-based design for dynamic

systems. The Simulink environment provides an alternative to using programming languages for

system design. It is a software package that supports linear and nonlinear systems, modeled in

continuous time, sampled time, or a hybrid of the two. Simulink enables user to visualize the

dynamic nature of the system by providing a graphical user interface (GUI) and a customizable

set of block libraries. The designs follow a system of hierarchy allowing designers to build

80

systems using both the top-down approach and the bottom-up approach. Simulink illustrates the

design in a realistic fashion with respect to the hardware design. Most hardware designs start out

with a block diagram description and specifications of the system, very similar to the Simulink

design. Unlike the sequential manner of software code, the Simulink model can be seen to be

executing sections of a design at the same time [33]. This notion of parallelism is fundamental to

implementing high-performance hardware implementations. System Generator, a system level

modeling toolbox running under the Simulink environment, allows user to move from the

software environment to hardware implantation with ease by providing high level abstractions

that are automatically compiled into an FPGA.

4.3 System Generator

System Generator for DSP is fast becoming the preferred framework for developing and

debugging high-performance DSP systems using the industry’s most advanced FPGAs. It is a

Xilinx software package that allows a designer to develop high performance DSP systems for

Xilinx Virtex, Virtex-II, and Spartan-II FPGAs via MATLAB and Simulink. System Generator

allows a designer to generate a system-level abstraction of FBGA circuits. These circuits are

composed of common functions available in the Simulink library. The Simulink model

automatically generates VHDL code that can be used with HDL testbenches. Figure 4.2 shows

how System Generator interacts within the MATLAB environment. Simulink provides a block

library that contains block sets used to model systems. System Generator provides an additional

library that contains blocksets similar to those in the Simulink library. The advantage of this

library is that these blocks can be implemented in hardware through the System Generator token.

This token allows the generation on VHDL code, cores, and test vectors when HDL code

generation is selected. FPGA implementation can be obtained by applying a synthesis tool, such

as ISE, to the generated VHDL code. After mapping and place and route, ISE produces a

bitstream that can be downloaded to a FPGA device using the FUSE software [23].

System Generator provides system-level designers with a portal into the FPGA, tapping

into existing technologies to provide the foundations for system design for implementation. The

following reasons illustrate that System Generator is an excellent choice for DSP platform

designs.

81

Figure 4.2: System Generator Flow Diagram

• Huge productivity gains through high-level modeling

• Ability to simulate the complete designs at system level

• Very attractive for FPGA novices

• Excellent capabilities for designing complex testbenches

• HDL Testbench, test vector, and data written automatically

• Hardware-in-the-Loop simulation improves productivity and provides quick verification

of whether the system is functioning correctly.

4.3.1 Xilinx Blockset Library

The Xilinx Blockset is a Simulink library, accessible from the Simulink library browser.

It consists of building blocks that can be instantiated within a Simulink model, and like other

Simulink blocksets, elements can be combined to form subsystems and arbitrary hierarchies. The

Xilinx Gateway blocks are used to interface between the Xilinx Blockset fixed-point data type

and other Simulink blocks. Every Xilinx Blockset element can be configured via a

parameterization GUI, with few exceptions even during simulation. Many blocks share common

parameters, which are described later in this chapter. Most also have parameters specific to the

function computed. The System Generator has the ability to generate an FPGA implementation

82

consisting of RTF VHDL and Xilinx Smart-IP Cores from a Simulink subsystem built from the

Xilinx Blockset [23]. The overall design, including test environment, may consist of arbitrary

Simulink blocks. However the portion of a Simulink model to be implemented in an FPGA must

be built exclusively of Xilinx Blockset elements, with the exception of subsystems denoted as

black boxes.

The following lists some of the most important blocks included in the Xilinx Blockset Library

and where they can be found.

• Basic Elements • DSP • Math

- System Generator - DDS - Accumulator

- Black Box - FFT - AddSub

- Concat - FIR - CMult

- Constant - Inverter

- Convert - Logical

- Counter • Memory - Mult

- Delay - Dual Port RAM - Negate

- Down Sample - FIFO - Relational

- Get Valid Bit - ROM - Scale

- Mux - Single Port RAM - Shift

- Register - SineCosine

- Set Valid Bit - Threshold

- Slice • MATLAB I/O

- Sync - Clear Quantization Error

- Up Sample - Display

- Accumulator - Enable Adapter

- AddSub - Gateway In

- CMult - Gateway Out

- Inverter - Quantization Error

- Logical - Sample Time

- Mult

- Negate

- Relational

- Scale

83

- Shift

- SineCosine

4.3.2 Bit True and Cycle True Representation

The Xilinx System Generator supports bit true and cycle true modeling of hardware.

System Generator is bit true in the sense that signals in System Generator are represented as

arbitrary precision fixed point data, which in VHDL corresponds to standard logic vectors. A

fixed point value in a System Generator signal in Simulink consists of the same bits as its

corresponding bits of the standard logic vector in VHDL. In addition to the fixed point value,

every System Generator signal is sampled, and has an associated sample period. This implies that

transitions occur only at multiples of the sample period for the block that drives the signal. In the

VHDL generated by System Generator, the corresponding standard logic vector is driven by a

block that is clocked (or if combinational, has an “inherited” clock period from its inputs) at a

particular clock rate. The corresponding sample period in Simulink is guaranteed to be a multiple

of the hardware clock period. At the clock transitions, this correspond to sample period multiples

the bits in the standard logic vector (VHDL) match the fixed point data in the Simulink signal

(software). This is an example of how System Generator is cycle true [23].

4.3.3 Hierarchy and Subsystems

All large designs will utilize hierarchy by implementing subsystems. This is a useful

feature for maintaining the readability and reducing complexity of the design. Hierarchy in the

VHDL code generated is determined by subsystems. When Simulink creates a subsystem,

additional blocks known as in ports and out ports, are added as hierarchy connectors. Also, when

analyzing a design in the Xilinx implementation tools, the name of a subsystem will be added to

the component and signal names in that subsystem.

Subsystems can be personalized through masking. This allows the user to generate

custom macro blocks with a custom icon, create a parameter dialog box for the block, shield

complexity of the internal components of the block, and protect the contents of a block from

being altered by unauthorized users.

84

4.3.4 Configuring Blocks

Most Xilinx blocks have parameters that can be configured. The typical element has a

parameterization GUI with several common parameters (common to most blocks in the blockset)

and some specific parameters (specific to the particular block only). Block parameters can be

defined as equations which are calculated in the beginning of the simulation. This is useful when

simulations must be done for varying parameter values. The configurable parameters of any

block can be viewed or changed through block parameters. It is important to keep in mind that

although all parameters can be simulated, not all are realizable. The following is a list of the

configurable parameters [23].

• Arithmetic Type: Unsigned, Signed, Twos Complement, Boolean

• Latency: This parameter defines the number of input sample periods required for an

input to affect a block output. Since System Generator doesn’t perform extensive

pipelining, additional latency is implemented as a shift register on the output of the block.

• Overflow and Quantization: Saturate, Wrap, Truncate, Round

• Precision: Full or User Defined with the number of bits and decimal point placement.

• Sample Period: Inherited with ‘-1’ or User Defined with integer value to process data

streams at a specific sample rate as they flow through the system.

• Override with doubles (Simulation only): With this option, the fixed-point simulation is

bypassed and instead is executed in doubles. This is useful in examining the effects of

quantization on the system design.

• Implement: With Xilinx Smart-IP Core or Generate Core

The simulation model of a functional block is a transformation of the form

}...;];[],....1[],[{][],....1[],[{ ,2,1 qpppknjkxjkxjkxFmkykyky −−−−−=−− , (4.1)

where x[k] represents input samples, y[k] represents output samples, p1, p2,…. pq represents

configurable parameters of the block, and k = m, 2m, 3m,…. is a time index. In such a

representation, n samples of the input are used to generate m samples of the output of the model

according to the transformation F, which is defined in terms of the input samples, the parameters

of the block, and the time index k. The model is considered time-invariant if the transformation

does not depend on the time index k. If m = 0 the block is evaluated on a sample-by sample basis.

85

If n = 0, the block is memoryless. The construction and execution of each block must take all

such parameters in consideration [30]

4.3.5 Parametric Designs

Parametric designs provide flexibility on the IP within the block. Therefore, the same

block can be used at different places in the design with different parameters. Not having to

recreate the same blocks, saves the user valuable time. Also, it simplifies the comprehension of

the design if parameters are used instead of numbers which other users may not understand.

Parametric designs can be created by using functions such as get_param, set_param, find_system,

add_block, delete_block, add_line, delete_line, etc [23]. Parameterization is useful in

optimization of design which involves finding the optimum value of critical parameters such as

number of quantization levels to be used in the receiver.

4.3.6 Quantization and Overflow

Most Xilinx blocks are polymorphic since they are able to deduce their output types

based on their input types. When the full precision option is chosen, the block ensures that the

output has no loss in precision. Therefore, sign extension and zero padding occur automatically

when necessary. In Simulink the numbers are represented in double-precision whereas in Xilinx

Blockset, the numbers are represented in fixed-point. Since resources are valuable and cost

money in FPGAs, it is necessary to maximize the dynamic range of the design by using only the

required number of bits. A user specified precision allows the user to set the output type for a

block and to specify quantization handling and overflow. Figure 4.3 illustrates an example of

overflow and quantization.

Quantization is a process of handling higher-precision number representation with a

lower-precision number representation. Truncate and rounding are the two options available to

handle it. An overflow occurs when a large number is represented in a smaller range

representation. Saturate, Wrap the value, and Flag an error are the three options available to

handle overflow. Efficient implementation of quantization and overflow is critical when datapath

sizes are reduced for optimization purposes.

86

Figure 4.3: Quantization and Overflow Example

4.3.7 Bit Picking

Bit picking is necessary when there is need to combine two data buses together to form a

new bus, force a conversion of data type including the number of bits and binary bits, reinterpret

unsigned data as signed, or extract certain bits of data, especially when there is bit growth. The

four Xilinx library blocks available for manipulation and re-interpretation of data are Concat,

Convert, Reinterpret, and Slice. Understanding overflow and quantization is necessary when

using the Convert block. Saturating the overflow may change the fractional number to get the

saturated value, while rounding the quantization may affect the value to the left of the binary

point [23].

4.3.8 Control Mechanism

The two mechanisms available in System Generator to control the data flow are enable

and reset ports and valid and invalid data ports. An enable port, if available, ensures that the

block holds its current state until it is asserted or the reset signal is asserted. The reset port, if

available, is connected to a signal that places the block in its initial state when asserted. Both,

enable and reset signals, must be of Boolean type and run at a multiple of the sample rate of the

block. Invalid data ports may be required for data burst applications, one-shot FFTs, and latency

output from high-level cores. Valid bit ports are used as control signals to the data input. They

may be accompanied by a valid out signal that signals whether the output data is valid. Such

ports may be necessary to ensure that a Xilinx block doesn’t produce indeterminate data [23].

87

Several control blocks are provided to facilitate a high-level control mechanism and

implement state machines. The Mcode block executes the supplied MATLAB M code to

calculate the values the block delivers to a Simulink simulation. The expression block performs a

bitwise logical expression. The Mealy State Machine block implements a state machine whose

output depends on both the current state and the input, while the Moore State Machine block

implements a state machine whose output only depends on the current state.

4.3.9 Sampling Period and Propagation Rules

System Generator designs are discrete time systems. Therefore, the data streams are

processed at a specific sample rate, or clock period, as they flow through a dataflow system. A

block’s sample rate determines how often the block is updated. Typically, each block detects the

input sample rate and produces the correct sample rate on its output. This “explicitly inherited”

sample period tells Simulink to inherit the first encountered sample time. Feedback loops cause

problems for Simulink’s propagation algorithms. Therefore, the user must set at least one explicit

sample time in every feedback loop. By selecting Explicit Sample Period rather than the default,

the user can set the sample period required for all the block outputs, which supplies a hint to the

feedback loop. The following blocks can change the sample period: Up Sample, Down Sample,

Parallel to Serial and Serial to Parallel [23].

Increasing the sample rate (up sampling) by an integer factor I is called interpolation and

decreasing the sample rate (down sampling) by an integer factor D is known as decimation. The

up sample block either replicates the same number M-1 times or inserts M-1 zeros to achieve the

higher sampling rate. The down sample block extracts M-1 samples to achieve the lower

sampling rate. Figure 4.4 shows the effects that up sampling and down sampling have on a signal

[30].

When establishing a suitable sampling rate factors, such as aliasing error, frequency

warping in filters, and bandwidth expansion due to nonlinearities, need to be taken into

consideration. Increasing the sample rate can subdue these effects, but will also increase the

computational load. As a result, there is a tradeoff between accuracy and simulation time.

88

Figure 4.4: Up Sampling and Down Sampling Example

4.3.10 Multi-rate Systems and Sample Rate Conversion

 DSP involves up conversion and down conversion of frequency and this can be

associated by different sample rates. It is necessary to be able to convert between different

sample rates in System Generator so that every subsystem is clocked only at a rate necessary to

compute its input-output relation. This leads to more efficient use of resources and

implementations that require less power. Significant resource savings can be accomplished by

time-division multiplexing a data path to service multiple data streams that operate at a lower

frequency than the processor.

In the digital domain, the change of the sample rate can be viewed as a linear filtering

operation. If Fx is considered as the sampling rate of an input x(n) and Fy is the sampling rate of

the output y(n), then the ratio of the sampling rates Fy/Fx must be rational [30]. Therefore,

D
I

F
F

x

y = , (4.2)

where I and D are relatively prime numbers [1]. The sample rate conversion can be explained as

digital re-sampling of the same analog signal. If x(t) is the analog signal with sampled at a rate Fx

to generate x(n) and y(m) is obtained from sampling x(n) at a sample rate Fy, then y(m) is a time-

shifted version of x(n). Figure 4.5 depicts this view of sample rate conversion. The time

difference between the x(n) and y(m) sample is denoted as τi.

89

Figure 4.5: Sample Rate Conversion Example

4.3.11 Hardware Clock and Over-clocking

System Generator infers the clock from the design sample times, and abstracts away the

clock enables. In multi-rate systems, further clock enables are inferred due to the more complex

hardware elaboration scheme. Every block receives the same system clock signal, the fastest

clock, but is enabled at its relative rate which is defined in the Simulink environment.

In hardware, the sample period acts as the number of clock pulses between clock

executions. System Generator examines every sample time in the entire system and computes the

greatest common divisor (GCD). The system clock corresponds to the GCD and each sample

period is then normalized to a multiple of this value. System Generator circuitry that periodically

asserts a clock enable (CE) for every required multiple is generated in a .vhd file. The entire

system is referred to as a synchronous clock enable scheme. CE is modeled to reflect the

hardware behavior, and therefore, the signal must come one clock cycle earlier. This is a

familiar behavior to hardware designers, but is unusual for system-level designers. Figure 4.6

illustrates the behavior of CE. The CE pulses are referred to as the “Normalized Sample Times.”

Figure 4.6 shows that System Generator designs uses only one CLK and lower CLK speeds are

derived from CE for different rate blocks. The period constraint is based on the system sample

period and the FPGA system clock period specified in the System Generator token [23]. This

type of clocking scheme requires implementation tools to be informed of the clocking speed of

each flip-flop. Therefore, System Generator places timing constraints based on CE signals in a

XCF file. Further details on timing constraints will be discussed in Chapter 5.

90

Figure 4.6: Clock Enable Behavior Example

Some System Generator blocks, such as a multiplier, require over-clocking. This implies

that the block’s internal processing is run at a faster rate than its data rates. In hardware, this

signifies that more than one clock cycle is necessary for the block to process a data sample.

Therefore, the internal processing of the over-clocked blocks need to be considered before

specifying the Simulink sample period in the System Generator token.

4.3.12 Gateway In and Gateway Out Blocks

The Gateway In and Gateway Out blocks provide an interface between the Xilinx

blocksets and the Simulink blocksets. They also act as input and output ports for the FPGA. The

Gateway blocks also handle type conversions since MATLAB uses double precision floating-

point and Xilinx uses fixed-point precision. This conversion from double to fixed point causes

quantization effects.

4.3.13 System Generator Token

The System Generator token resides on the highest hierarchy level of the design. All

System Generator designs must include a System Generator token. System Generator also offers

the option of having numerous System Generator tokens in System Generator designs. This

provides the software the ability to test lower levels of the design. For the simulation to work

correctly, the Simulink System Period must be defined correctly. This value defines the smallest

91

period at which the system can run. All other sample periods are evaluated from this sample

period. In hardware, this value equates to the System CLK that drives the design. As a result, the

FPGA System CLK requires a value in nanoseconds to pass onto the timing constraints. These

two fields define the scaling factor between time in Simulink simulation and time in actual

hardware implementation. Also, they are necessary to achieve the desired timing performance in

the place and implement part of the design. VHDL code can be generated by selecting HDL

Netlist in the System Generator token. The target device is selected to correspond to the

hardware board being used [23]. Figure 4.7 illustrates the parameters defined by the System

Generator token.

A System Generator block that lies in the scope of another system generator block is

called a slave. Otherwise it is called a master. Most system parameters can only be set in the

master block. System generator will automatically synchronize slave blocks to the parameters

specified in their master block. System parameters specified in the System Generator block affect

the Simulink behavior, the hardware realization or the relation between the two for every block in

the Xilinx blockset. Consequently, every element in the blockset must lie in the scope of a

System Generator block. Therefore, every Simulink model that contains any element from the

blockset must contain at least one System Generator block.

Figure 4.7: System Generator Token Block

92

System Generator can compile the model into various low level representations

depending on the System Generator settings. The tool generates auxiliary files in addition to

generating HDL files for hardware description. Some generated files are necessary for assisting

downstream tools, while others are needed for design verification. The following describes a list

of output files generated by System Generator.

• Design files: VHD (VHDL files); EDN (core implementation files); XCF (Xilinx timing

constraint file)

• Project Files: NPL (Project Navigator project file); TCL (scripts for Synplify and

Leonardo project creation

• Simulation Files: DO (simulation scripts for MTI); DAT (data files containing test bench

for System Generator; VHD (simulation testbench)

4.3.14 Resource Estimator

Xilinx resource estimator provides fast estimates of the FPGA resources required to

implement a System Generator model. The estimates are computed by invoking block-specific

estimators for Xilinx blocks, and summing these values to obtain aggregated estimates of lookup

tables (LUTs), flip flops (FFs), block memories (BRAM), 18 x 18 multipliers, three-state buffers,

and I/Os. The Resource Estimator block provides three types of estimation: Estimate Area, Quick

Sum, and Post-Map Area. The Estimate Area button invokes block estimation functions top-

down for each block and subsystem recursively. The Quick Sum button causes the resource

estimator block to sum all the FPGA Area fields on the block and subsystems at or below the

current subsystem. No underlying estimation functions are invoked. The Post-Map Area button

opens a file browser and lets the designer select the map report file. The design needs to be

generated and implemented through synthesis, translate, and mapping phases prior to selecting

this option.

4.4 HDL Co-Simulation

HDL co-simulation provides users a means to incorporate legacy code in a Simulink

based system DSP design. Legacy code simulated in the Simulink tool can significantly reduce

development time, resources, and cost because designers no longer need to write S-functions for

Simulink. It also allows compilation of HDL designs into FPGA hardware which can be co-

93

simulated in the ModelSim environment. HDL co-simulation is supported by the following

System Generator blocks: Black Box, Simulation Multiplexer, and ModelSim.

Figure 4.8 illustrates the required steps for HDL Co-simulation. A Black block is used as

a way to incorporate non-Xilinx blockset functions into a System Generator model. This black

box must be associated with a VHDL or Verilog file. Before compiling the design for co-

simulation, a ModelSim block that represents the interface to the HDL co-simulator must be

placed in the design. Finally, a testbench can be created to verify the functionality of the system

in ModelSim through simulation.

HDL co-simulation of the design in FPGA hardware accelerates simulation speed since

large HDL designs involve lengthy simulation times. The ModelSim co-simulation option

allows the netlist portion of the design to be co-simulated in hardware along with traditional HDL

components. A System Generator design can be compiled for ModelSim hardware co-simulation

provided the resource requirements of the design do not exceed the available resources of the

underlying hardware platform. The time matching between Simulink and ModelSim makes it

easier for the designer to compare times at which events occur in the two settings. On a larger

scale, it is useful since it allows System Generator to schedule events without running into issues

related to timing characteristics of the HDL model.

Figure 4.8: Required Steps for HDL Co-simulation through ModelSim

94

4.5 HIL Simulations

Hardware in the loop (HIL) is a Simulink hardware accelerator which enables design

verification in hardware. It is a Simulink-to-bitstream-to-Simulink push-button flow to simulate

HDL and EDIF-based designs. As a result, HIL simulations reduce design time and cost by

allowing designers to verify designs in the hardware directly from the Simulink tool. Also, HIL

simplifies hardware verification since it mirrors traditional DSP processor design flows and

allows designers to accelerate the simulation when required, without the need of expensive

emulation hardware, or long simulation times.

Hardware in the Loop simulations provides the following benefits when compared to

emulated platform tests:

• Timing: Timing problems are not apparent in software simulations because they might

not take into account the real time of code execution or data acquisition. Since HIL tests

are performed in real time, any timing errors that occur will be apparently noticeable to

the user.

• Concurrency: True concurrency of code execution on hardware cannot be simulated in

pure software simulations. Therefore, problems such as hidden race conditions may go

undetected and detailed event and state behaviors cannot be simulated.

• Hardware-specific Code: Since pure software simulations ignore hardware specific

routines, any errors in the code can only be detected through actual hardware simulation.

• Communication Details: Communication protocols are simplified in simulators.

Therefore, any errors in the code can only be detected through hardware simulation.

• Hardware Upgrades/Modifications: Simulators will not represent all aspects of the

hardware. As a result, HIL tests are necessary to get accurate results when any hardware

modifications or upgrades have been made.

• Performance Tuning: As a result of the above problems, performance of any

application will be different in pure simulation from HIL testing. Therefore, the

performance can only be adjusted when HIL testing is performed [22].

95

HIL simulations can be induced provided that the model meets the requirements of the

underlying hardware specified by the System Generator token. This allows the Xilinx

implementation tool flow to run in the background to create a BIT file and a library component.

It also generates HDL and netlist files for the model and runs the downstream tools necessary for

producing a FPGA configuration file. The configuration bitstream, shown in Figure 4.9, contains

the necessary hardware for the model and interfacing logic to allow communication between the

PC and the hardware platform through a physical interface such as a universal serial bus (USB).

During simulation, a hardware co-simulation block interacts with the underlying FPGA platform,

automating tasks such as device configuration, data transfers, and clocking.

The hardware generation produces a library block which must be dragged onto the design

window and connected to all source and sink blocks before being simulated. The block assumes

the external interface of the model and matches its port names to the port names on the original

design. Therefore, the block produces the same type of signals as other System Generator blocks.

The block can be driven by either Xilinx fixed-point signals or Simulink doubles. If Simulink

doubles option is selected, quantization in the input is handled by rounding and overflow is

handled by saturation. The data of the input ports is sent to its corresponding location in

hardware when a value is written. Similarly, the output port retrieves data from the hardware

when there is an event. The parameters of the block, such as hardware co-simulation clocking,

need to be specified according to selected FPGA platform for implementation.

As, shown in Figure 4.10, HIL simulations can also be performed by generating a HDL

netlist in the System Generator token for the design. The generated output files are used in an

implementation tool such as ISE to create a BIT file for the design. This bit file is downloaded on

the board through the software FUSE. For debugging and design verification, system design

outputs can be viewed through HIL. To view results on devices such as logic analyzer,

oscilloscope, frequency spectrum, etc. netlist generation through System Generator token and BIT

file generation through ISE is necessary. Further details on the hardware aspects of HIL

simulations and clocking synchronization are provided in Chapter 5.

96

Figure 4.9: HIL Emulation

Figure 4.10: Steps for HIL and Hardware Co-Simulation

97

Xilinx System Generator tool ensures that the behavior of the design in hardware is

guaranteed to be bit and cyclic true just as it is in the pure software environment. Xilinx’s

System Generator toolbox converts the system design into HDL code that can be placed on

hardware. In co-simulation implementation, System Generator automatically produces a custom

co-simulation library block that interfaces with the hardware when a simulation is run. System

Generator also ensures that the appropriate FPGA configuration files are produced for the

targeted hardware platform. The incorporation of hardware allows for increase in simulation

speed, provides incremental hardware verification capabilities, and removes the difficulty of

learning to program a FPGA.

98

Chapter 5
Hardware Implementation and Analysis

Since FPGAs play a critical role in enabling software defined radio technology cost-

effectively in real-world applications, Xilinx, a worldwide expert in digital signal processing

development solutions and leader in hardware-in-the-loop co-simulation, has developed a product

to reduce time-to-market and development costs for designers of digital solutions. As described

in Chapter 4, this tool automatically translates DSP systems developed using MATLAB and

Simulink from The MathWorks into highly optimized VHDL and IP cores for Xilinx FPGAs

such as the Virtex-II series and Spartan-3. Therefore, this chapter will provide extensive

information on the features of the Virtex-II device used for hardware implementation. Next, this

chapter will highlight the steps of Project Navigator, the software used to generate bit-streams

directly from Simulink for FPGAs. Project Navigator is the user interface that helps designers

manage the entire design process including design entry, simulation, synthesis, implementation

and finally download the configuration of the FPGA device. Also, details will be provided on a

software package called FUSE. It acts as a direct interface between the MATLAB/Simulink

environment and a hardware platform, allowing users to directly view the data output from the IP

cores in the MATLAB environment. Finally, the hardware architecture of the BER board

constructed to evaluate bit error rate of the system will be explained. The functionality of this

board is described in Chapter 4.

5.1 Parallelism

Conventional DSPs use a common architecture known as the Von Neumann architecture.

This architecture’s serial structure limits its performance. The MACs within conventional DSPs

are typically shared resources. The increased number of MAC operations provides for more

accurate results. FPGA implementation based on sequential MAC can be very efficient for low

sample rates. To achieve higher sample rates, Xilinx uses parallel processing [34]. Figure 5.1

depicts the architecture difference in MACs between conventional DSPs and FPGAs.

99

Figure 5.1: Architecture Difference in MACs between DSPs and FPGAs

Within a fixed MAC unit, the maximum sample rate is related to the algorithmic

complexity as

sampleperopertionsofNumber
rateclockprocessorFixedratesampleMax = . (5.1)

According to this equation, the sample rate must decrease as the algorithm complexity increases

and requires more clock cycles to process each sample. Using multiple processor engines is the

only way to increase the algorithm complexity and the sample rate. Parallel processing

maximizes data throughput and provides the optimal performance versus cost tradeoff [1].

 The parallel architecture allows performance of FPGAs to reach up to 500-billion MACs

per second in the largest Xilinx Virtex-II FPGA, which is significantly higher than the

conventional DSPs. Figure 5.2 illustrates in detail the increase in performance of Xilinx FPGAs

as compared to conventional DSPs.

Another advantage of FPGAs is that they provide flexibility in design for a wide

spectrum of sample rates, from multi-cycle implementation to single cycle. This is highly crucial

when designing a communication system, as illustrated by the system model in Chapter 3.

100

Figure 5.2: Performance Comparison of Xilinx FPGAs and Traditional DSPs

 Source: [35]

5.2 Xilinx Xtreme DSP

A user programmable Virtex-II device and high performance ADCs and DACs made the

Xtreme DSP Development Kit-II an ideal candidate for implementing signal processing

applications such as Software Defined Radio. The Xtreme DSP board contains a motherboard

and a module, which are referred as “BenONE-Kit Motherboard” and “BenADDA DIME-II

Module”. DIME is a modular standard for FPGAs that allows the system to be re-programmable

and allows alteration of design partitioning at any time. The BenONE-Kit Motherboard contains

the Spartan-II FPGA for 3.3V/5V PCI or USB interface, JTAG configuration headers and user

pitch pin headers [35].

5.2.1 Physical Description

This device contains over two million system gates, enough to handle the types of

complicated algorithms used in leading-edge digital communications and imaging solutions

today. The board also offers flexible, high-speed, high-resolution data conversion for both

baseband and direct IF applications, including:

• Two Analog Devices AD9772A digital-to-analog converters, operating at up to 160

MSPS, directly controlled by the on-board FPGA, allowing maximum operating

flexibility.

101

• Two Analog Devices AD6644(5) analog-to-digital converters which interface directly to

the on-board FPGA. The AD6644(5) is a high-speed, high-performance, monolithic 14-

bit device operating at up to 65 MSPS.

• A dedicated PCI and USB interface, used for interfacing between the PC system and the

user application running on the Virtex-II FPGA. This is complemented with drivers,

(Windows 95/98/NT/2000 and Linux) which offer a complete foundation for system

development.

• A dedicated clock management FPGA (Virtex-II), along with the on board oscillator and

external clock input. This device provides source selection and routing of programmable

system clocks for low jitter.

The hardware of this kit is contained in a blue case which provides EMI shielding and

protection for the board. Figure 5.3 displays the front of the case and highlights the location of

the following components: ADCs, DACs, LEDs, USB connection, power input, JTAG cable

access, and fan vent. Configuration of large designs can significantly overheat the User FPGA

running at full potential. Therefore, a temperature sensor is provided on the kit to monitor heat

levels. Also, a fan is installed to provide cooling to the User FPGA. Figure 5.4 emphasize the key

features of the motherboard: I/O headers, JTAG headers, DACs, ADCs, LEDs, ZBT memory,

main user FPGA, interface FPGA, crystal oscillator, PCI connection, USB connection, and power

connections. The clock FPGA is not visible in this figure since it is located on the underside of

this module [35].

Figure 5.3: Front Case of XtremeDSP Board

 Source: [35]

102

Figure 5.4: Key Features of the Motherboard

 Source: [35]

5.2.2 Virtex-2 Architecture

 The Virtex-II device is embedded with user-programmable gate arrays to optimize for

high-density and high-performance logic designs. Figure 5.5 illustrates that the Virtex-II device

is comprised of input/output blocks (IOBs) and internal configurable logic blocks (CLBs).

Interfacing between package pins and the internal configurable logic is provided by

programmable I/O blocks. The internal configurable logic consists of the following elements:

• CLBs are responsible for supplying functional elements for combinatorial and

synchronous logic.

• Block Select RAM memory modules are equipped with large 18-Kbit storage elements of

dual-port RAM.

• Multiplier blocks are 18-bit x 18-bit dedicated multipliers.

• Digital clock manager (DCM) blocks assign digital solution for clock distribution delay

compensation, clock multiplication and division, and coarse and fine tuned clock phase

shifting.

The CBL resources contain four slices and two 3-state buffers, where each slice

contains two function generators, two storage elements, arithmetic logic gates, large

multiplexers, wide function capability, fast carry look-ahead chain and horizontal cascade

chains [36].

103

Figure 5.5: Virtex-II Architecture Overview

 Source: [36]

5.2.3 XtremeDSP Kit Highlights

 Creating high performance DSP designs requires a fast platform FPGA for design

implementation, easily accessible software tools and IP, and a pre-engineered high-performance

hardware platform for quick functionality verification. The XtremeDSP kit provides a complete

development solution, allowing users to develop powerful DSP algorithms. The following

reasons validate that XtremeDSP kit is a reliable candidate for creating DSP designs with

exceptionally high performance.

• High Performance: The dual-channel high-performance ADCs and DACs, as well as the

user-programmable Virtex-II FPGA, are ideal for implementing high-performance signal

processing applications such as Software Defined Radio, 3G Wireless, networking,

HDTV or video imaging.

• Scalability: The modular system is based on Nallatech’s latest DIME-II technology and

is an ideal stepping stone if one wants to scale-up later for more demanding application

requirements. Nallatech offers unparalleled off-module I/O capabilities and flexible

FPGA device support, coupled with extreme bandwidth capabilities for next generation

systems design.

• Flexibility: Communication and control of the Xtreme DSP demo board is provided via

a PCI interface for embedded environments, or via a USB interface for stand alone

104

applications. The board also includes multiple clock drivers including an external clock,

an on board oscillator, and a programmable clock.

• Ease of Use: Provides simple and well-integrated design flow from algorithm concept to

hardware verification. The Xilinx System Generator for DSP interfaces with

MATLAB/Simulink and a large selection of intellectual property (IP) from Xilinx,

allowing users to solve complex DSP design problems quickly. Also, Nallatech FUSE

(Field Upgradeable Systems Environment) software is provided to control and configure

the on-board FPGA, and allows the user to transfer data between the motherboard and a

host PC.

• Time to Market Advantages: Increases speed in implementing a complete system for

applications such as digital communications and image processing. Thus, the user can

focus on the design without worrying about prototyping [3].

5.2.4 Clocking Configurations

The Xtreme DSP Development Kit-II has an intricate, yet flexible clock management

system. The 65MHz oscillator provides a low jitter clock source for the analog devices. The kit

also contains two soft programmable clock sources, which can be set to various frequencies.

Figure 5.6 displays the location on hardware of the devices and inputs related to the clock sources

and Figure 5.7 presents an overview of the clock structure of the kit.

 The BenADDA module can use three system clocks (CLKA, CLKB, and CLKC) fed

from the motherboard to the user FPGA. The DIME-II motherboard generates these signals and

routes them to the modules for placement. These clocks can be controlled by the user and are

routed to Global Clock pins. The Fuse software controls the programmable oscillators, which

only operate at the following frequencies: 20 MHz; 25 MHz; 30 MHz; 33.33 MHz; 40 MHz; 45

MHz; 50 MHz; 60 MHz; 66.66 MHz; 70 MHz; 75 MHz; 80 MHz; 90MHz; 100 MHz; 120 MHz.

The firmware selects the numerically closest available frequency when the requesting frequency

doesn’t match one of the above frequencies [35].

105

Figure 5.6: Inputs Related to Clock Sources on Hardware

 Source: [35]

Figure 5.7: Overview of Clock Structure

 Source: [35]

106

5.2.5 ADCs and DACs

The BenADDA module used in the XtremeDSP Development Kit-II has two analogue

input channels, with each channel providing independent data and control signals to the FPGA.

Two sets of 14-bit wide data are fed from two ADCs (AD6644) devices to two DACs (AD9772A

devices), each of which has an isolated supply and ground plane. The14-bit ADC resolution is

represented in 2’s complement format. The ADCs can handle up to 65MSPS sampling data rate

and are clocked differentially. The inputs to the ADC devices are connected via MCX connectors

on the front of the module. The standard shipped configuration exhibits 50Ω single-ended inputs,

each featuring a 3rd order anti-aliasing filter with a -3dB point at 34.5MHz. The ADC has a full

range input specification of 2.2 V peak to peak (p-p). The recommended maximum signal

magnitude at the MCX input to attain best performance characteristics is 2 V p-p or +/- 1 V [35].

The 14-bit DAC resolution in offset binary format can handle a maximum of 160 MSPS

input data rate. The BenADDA is configured to have single ended DC coupled outputs from the

DACs. Each DAC device is clocked directly by an independent differential, LVPECL signal.

This LVPECL signal is driven from Virtex-II XC2V80 FPGA (Clock FPGA) which is solely

dedicated to managing the various methods for clocking each ADC and DAC device. The way the

DACs are clocked depends on the bitfile that is assigned to the dedicated Clock FPGA [35].

5.2.6 Digital I/O

Digital I/O is provided on the board for interfacing with other hardware or for debugging

purposes through use of hardware such as logic analyzers. Digital IO is available on the board

through the following:

• A 14-pin PLINK Bus header on the motherboard. This header contains 12 bi-directional

pin connections to the main User FPGA, while the other two are used as GND

connections.

• A 34 pin Adjacent Bus header on the motherboard. This header contains 28 bi-

directional pin connections to the main User FPGA, while the remaining are reserved for

a 3.3V connection, a GND, and ‘no connects’(NC).

• A 2 pin user I/O header on the module. This header contains 2 bi-directional connections

to the main User FPGA.

107

In system design, the digital I/O is configured according to the specific I/O of the FPGA.

The datasheets of the I/O standards supported by pins on the Virtex-II device can be found in the

Appendix. Each pin on the header corresponds to a particular pin number on the User FPGA.

These pin numbers are needed when the user wishes to view a particular software output on

hardware. These pin numbers are assigned in gateway out blocks as explained in Chapter 3 [35].

5.2.7 JTAG

The BenADDA module contains a JTAG based Plug and Play (PnP) facility to

automatically detect modules already present in the system. The JTAG chain, which is used for

test and configuration purposes, connects to the General JTAG header via the standard JTAG pins

on the User FPGA. The General JTAG header supports flying lead connections for Xilinx

Parallel-III or Parallel-IV pods. The Parallel-IV JTAG header is necessary when the Xilinx

JTAG Co-simulation option is selected in Xilinx System Generator token [35].

5.3 ISE

Xilinx Integrated Software Environment (ISE) provides the user with a powerful and well

integrated environment toolbox for the following steps of design flow: design entry, synthesis,

verification, implementation and configuration and board level integration. Figure 5.8 depicts the

FPGA design flow process.

Project Navigator is the primary user interface for Xilinx ISE, which allows users to

create, define and compile a FPGA or CPLD design using a suite of tools accessible. Each step

of the design process, from design entry to downloading the design to the device, is managed

from Project Navigator as part of a project. The top-level source defines the inputs and outputs

that will be mapped into the device, and references the logic descriptions contained in lower-level

sources. A project must contain at least one source as the top-level source. All source files and

their accompanying icon are displayed in the Sources in Project window below the project file.

Figure 5.9 displays the Project Navigator window and highlights the key features involved for all

the steps from design entry to configuration.

108

Figure 5.8: System Generator Based Design Flow

 Source: [36]

Figure 5.9: Project Navigator Window

109

5.3.1 FPGA Flow in ISE

ISE flow for FPGAs consists of three different types: push button flow, basic flow, and

advanced flow. ISE is designed to provide a rapid design path, or "push button flow," for

integrated circuit designs. These designs are usually smaller having fewer design elements and

fewer timing constraints. It is often necessary to set design constraints, process properties and

reiterate some of the steps in the flow in order to meet the timing requirements for the design.

When the designs are usually of moderate complexity having more design elements and more

timing constraints, it is defined as basic flow. ISE provides a suite of tools necessary to create

very complex designs and ensure that the design will meet the design requirements. These

designs are usually moderate to very complex and can have a very dense population of design

elements and timing constraints. The design can be in VHDL, Verilog, ABEL, Schematic, or in

some cases, a mixture of an HDL language and schematic design [36].

When the ISE process is run, the source files will be analyzed to determine if any files are

out of date or have been modified. Only the necessary processes will run to update and process

the design. The design will be synthesized and implemented and a programming file will be

created. All output files (.map, .ngd, .bit, etc) are put in the project directory. The (.bit) file is

used to configure the device for debugging purposes or for creating and downloading a PROM,

ACE or JTAG file to the device.

5.3.2 Design Entry

Design entry, the first step of ISE design flow, allows users to create source files based

on design objectives. A top-level design file can be created by using either a HDL, such as

VHDL, Verilog, or ABEL, or a schematic. The top level module type is specified by creating a

project. A project is a collection of all files necessary to create and download the design to a

selected device. This process is applicable to FPGA and CPLD designs. The new project file,

(project_name).NPL, will be put in the new project directory. Project Navigator will manage the

project based on the target device and design flow the user selected when the project was created.

It organizes all the parts of the design, and keeps track of the processes necessary to move the

design from the conceptual stage through implementation in the targeted Xilinx device [36].

110

5.3.2.1 Using Design Constraints

Xilinx software enables the user to specify several types of constraints to help with the

construction of the design. Constraints can be used in a design to control or modify the behavior

of the timing within a design. Constraints will allow for specific placement of elements defined

within a design. Also, the synthesis process can be controlled through the use of constraints in the

synthesis constraints file. In order for the project to use constraints in ISE, the user must first

create an implementation constraints file (UCF) or add a constraints file from another project if

one already exists. The user can create area constraints that apply to the placement of logic on the

device. Area (or placement) constraints are a way of restricting where place and route (PAR) can

place a particular piece of logic. By reducing PAR's search area for placing logic, PAR's

performance may be improved. Area constraints for each type of logic element, such as flip-

flops, ROMs and RAMs, FMAPs, F5MAPs, and HMAPs, CLBMAPs, BUFTs, CLBs, IOBs,

I/Os, edge decoders, and global buffers can be created in FPGA designs [36].

Finally, precise timing constraints for any nets or paths can be specified in the design or

globally. One way of specifying path requirements is to first identify a set of paths by identifying

a group of start and end points. The start and end points can be flip-flops, I/O pads, latches, or

RAMs. One can then control the worst-case timing on the set of paths by specifying a single

delay requirement for all paths in the set. The primary method of specifying timing constraints is

by entering them in the design (HDL and schematic). However, one can also specify timing

constraints in constraints files (UCF, NCF, PCF, XCF). Once the user defines timing

specifications and maps the design, PAR places and routes the design based on these

requirements. The results of the timing specifications can be analyzed through the command line

tool TRACE (TRCE) or the GUI tool Timing Analyzer [36].

5.3.3 Performing Synthesis

Synthesis of the design can be performed after the design has been successfully analyzed.

The synthesis process translates the design into gates and optimizes it for the target architecture.

One can view the results of the synthesis process in the synthesis report. The synthesis report

contains many sections that indicate how the design is optimized. If the design is not optimized

to the user’s specifications he/she can modify the synthesis properties. The synthesis report

111

contains the following sections: Synthesis Options Summary, HDL Compilation, HDL Analysis,

HDL Synthesis, HDL Synthesis Report, Low Level Synthesis, Final Report, Device Utilization

Summary, and Timing Report [36].

5.3.4 Verifying a Design

The functionality of the design can be tested at various points of the design flow, which

include behavioral simulation prior to synthesis, post-translate simulation, post-map simulation,

and post-place and route simulation. Functionality and timing verification of the design can be

instigated through simulator software or by a portion of the design. The simulator translates

VHDL or Verilog into equivalent circuitry and reports the results based on HDL description [36].

5.3.4.1 Performing a Behavioral Simulation

Register Transfer Level (behavioral) simulation can be completed prior to synthesizing

the design. This simulation is typically performed to verify code syntax and to confirm that the

code is functioning as intended. Behavioral simulation can be performed on either VHDL or

Verilog designs. To do this, it is necessary to create a testbench and a testbench waveform file

(.TBW file), which is passed to ModelSim for simulation.

5.3.4.2 Performing a Post-Translate Simulation

Post-Translate simulation model can be generated that will contain a mapping for CLBs

and IOBs in the design. This creates a (module_translate).VHD or (module_translate).V

simulation file. The simulation model generated by this process can be used as input to ModelSim

Xilinx Edition (MXE), HDL Bencher, or the user’s own installed simulation program. Post-

Translate (functional) simulation can be performed prior to mapping the design. This simulation

process allows one to verify that the design has been synthesized correctly.

5.3.4.3 Performing a Post-Map Simulation

Post-Map simulation can be carried out prior to placing and routing the design. This

simulation process allows one to see block delays for the design. Routing delays are not identified

112

in this type of simulation. This simulation passes the (test_bench).TBW or (test_bench).VHD or

VER file to ModelSim for simulation.

5.3.4.4 Performing Post-Place & Route Simulation

Post-Place and Route simulation can be executed after the design has been placed and

routed. After the design has been through all of the Xilinx implementation tools, a timing

simulation netlist can be created. This simulation process allows one to see how the design will

behave in the circuit.

5.3.5 Implementing a Design

After a design source is created, the Implement Design process converts the logical

design represented in that source (and all sources in the hierarchy from that source down) into a

physical file format that can be implemented in the selected target device. In Project Navigator,

the implementation process can be run in one step or each step separately. The default property

values are used for the implementation process unless one modifies them. Properties for the

Implement Design process can be set in the Process Properties dialog. The Translate process

merges all of the input netlists and design constraint information and outputs a Xilinx NGD

(Native Generic Database) file. The output NGD file can then be mapped to the targeted device

family [36].

The MAP process first performs a logical DRC (Design Rule Check) on the design in the

NGD file produced by the Translate process. MAP then maps the logic to the components (logic

cells, I/O cells, and other components) in the target Xilinx FPGA. The output design is an NCD

(Native Circuit Description) file physically representing the design mapped to the components in

the Xilinx FPGA. The NCD file can then be placed and routed. The Place and Route process

(PAR) takes a mapped NCD file, places and routes the design, and produces an NCD file to be

used by the programming file generator (BitGen). The Create Programming File process will run

BitGen and create a bitstream, (module_name).BIT and place it in the project directory [36].

113

5.3.5.1 Translating a Design

Translate is the first step in the implementation process. The Translate process merges all

of the input netlists and design constraint information and outputs a Xilinx NGD (Native Generic

Database) file. The output NGD file can then be mapped to the targeted device family. It uses the

default property values for the translation process unless they are modified. All processes

necessary to successfully complete the translate process will run automatically and if completed

successfully will result in a green checkmark next to the Translate process. The NGD file created

by the translate process can be opened in the Xilinx Floorplanner (for FPGA) or ChipViewer (for

CPLD) [36].

5.3.5.2 Floorplanning a Design

Xilinx Floorplanner can be used to view and edit location constraints in the design. One

can manually or automatically place logic into a floorplan of the selected FPGA. In the Xilinx

modular design flow, one can use the Floorplanner to assign location constraints for each module

in the design. The Floorplanner can be used at several points during the design process: Prior to

Mapping, Prior to Place and Route, and After Place and Route.

5.3.5.3 Viewing a Translating Report

Translate Report can be observed after running the implementation process. The translate

process runs automatically during implementation or it can be run independent of the

implementation process. The translate report contains warning and error messages from the three

translation processes: conversion of the EDIF or XNF style netlist to the Xilinx NGD netlist

format, timing specification checks, and logical design rule checks.

5.3.5.4 Mapping a Design

The Map process can be run after the design has been translated. The Map process creates

an NCD file. The NCD file will be used by the PAR process for further processing. All

processes necessary to successfully complete the Map process will run automatically. After the

process is successfully completed, the Map Report (module_name).MRP can be viewed.

114

5.3.5.5 Viewing a Post-Map Static Timing Report

The output from the Post-Map Static Timing process inspected in the Post-Map Timing

Report (module_name_preroute).TWX. The Post-Map Static Timing Report gives a calculated

worst-case timing for all signal paths in the design. It optionally includes a complete listing of all

delays on each individual path in the design. It does not include insertion of stimulus vectors. The

FPGA design must be mapped and can be partially or completely placed, routed, or both.

5.3.5.6 Analyzing Post-Map Static Timing

One can analyze the timing results of the Post-Map process. Post-Map timing reports can

be very useful in evaluating timing performance. Although route delays are not accounted for, the

logic delays can provide valuable information about the design. If logic delays account for a

significant portion (> 50%) of the total allowable delay of a path, the path may not be able to

meet the timing requirements when routing delays are added. Routing delays typically account for

45% to 65% of the total path delays. By identifying problem paths, one can mitigate potential

problems before investing time in place and route.

The user can redesign the logic paths to use fewer levels of logic, tag the paths for

specialized routing resources, move to a faster device, or allocate more time for the path. If logic-

only-delays account for much less (<35%) than the total allowable delay for a path or timing

constraint, then the place-and-route software can use very low placement effort levels. In these

cases, reducing effort levels allows for the decrease in runtimes while still meeting performance

requirements.

5.3.5.7 Placing and Routing a Design

The place and route (PAR) process can be executed after the design has been mapped.

The Map process creates an NCD file which PAR accepts as input to place and route the design.

One can view the results of the place and route process. The guide report is included in the PAR

report file and as a separate report. The report describes the criteria used to select each component

and signal used to guide the design. It may also enumerate the criteria used to reject some subset

115

of the components and signals that were eliminated as candidates. One can view the output from

the post-place and route timing process in the Post-Place and Route Timing Report

(module_name .twx). The Post-Place & Route Static Timing Report gives a calculated worst-case

timing for all signal paths in the design. It optionally includes a complete listing of all delays on

each individual path in the design. One can analyze the timing results of the Post-Place and

Route process. Post-PAR timing reports incorporate all delays to provide a comprehensive

timing summary. If a placed and routed design has met all of the timing constraints, then one

can proceed by creating configuration data and downloading a device. On the other hand, if the

user identifies problems in the timing reports, he/she can try fixing the problems by increasing the

placer effort level, using re-entrant routing, or using multi-pass place and route. One can also

redesign the logic paths to use fewer levels of logic, tag the paths for specialized routing

resources, move to a faster device, or allocate more time for the paths [36].

5.3.6 Generating a Programming File

The user can run the Generate Programming File process after the design has been

completely routed. The Generate Programming File process runs BitGen, the Xilinx bitstream

generation program, to produce a bitstream (.BIT) or (.ISC) file for Xilinx device configuration.

The (.BIT) or (.ISC) files can then be configured by the iMPACT program for debugging the

design, or creating a PROM, ACE or JTAG file to download to the device.

5.3.6.1 Configuring a Device

Configuration involves download of the output from the Generate Programming File

process, (.BIT) or (.ISC) file, from a host computer to a hardware platform to configure the

device for debugging or downloading to the device. The (.BIT) and (.ISC) files contain all of the

configuration information from the NCD file defining the internal logic and interconnections of

the FPGA, plus device-specific information from other files associated with the target device. The

binary data in the BIT or ISC file can then be downloaded into the FPGA’s memory cells, or it

can be used to create a PROM, ACE or JTAG file.

116

http://toolbox.xilinx.com/docsan/xilinx5/help/iseguide/html/isc_file.htm

5.4 FUSE

FUSE (Field Upgradeable Software Environment) is Nallatech’s Reconfigurable

Computing Operating System. FUSE facilitates flexible and scalable control and configuration of

FPGA-based systems and allows data communication between the motherboard and Host PC,

hence allowing data transfer to and from designs running in on-board Xilinx FPGAs. FUSE

provides a number of interfaces, including the scripting language DIMEscript, the FUSE Probe

GUI application and FUSE development APIs for C/C++ supplied as standard. An overview of

the FUSE operating software is provided by Figure 5.10 [37].

DIMEScript has been developed by Nallatech as a simple method of accessing cards

without the need to resort to programming. DIMEScript is an interpreted language, which means

that the language is read in line-by-line and appropriate actions taken. This, in turn, means that

any errors in the script are only found when the relevant line is executed. This is in contrast to a

compiled language where the required action is checked in advance and made into a more

machine friendly form. In the case of the compiled language, syntax and other features can be

fully checked before running the code [6]. DIMEScript allows users to open a Nallatech card,

read data from the card, write data to the card, and access various specific card functions [37].

Figure 5.10: Overview of FUSE

 Source: [37]

117

Figure 5.11 displays the program window of FUSE. As shown in the left side of the

FUSE GUI, a set of user programmable buttons are provided for automating various functions

such as loading system files, configuring all devices, toggling all resets, opening DIMEScript

files, and running executable files.

When the user interface is loaded there are no cards open. Before opening a Nallatech

card, the board must be powered and connected to a host PC through a USB port. The Card

Control\Open card option must be selected from the menu in the FUSE Probe to open a card.

After the card has been opened, two .BIT files must be assigned to the devices. It is important

that these files be compiled specifically for the targeted board in System Generator token (see

Chapter 4). The clock file (osc_clock_2v80.bit) is assigned to the Virtex2 2v80, while the bit file

created by ISE for the particular design is assigned to Virtex 2 2v3000. This bitfile is used to

configure the onboard FPGA on the card that was opened. Assigning bit files to the devices is

done exactly in the same way when hardware Co-simulation is performed. Finally, probes must

be connected to the digital I/O or the DACs on the hardware platform to be viewed on an

oscilloscope or logic analyzer. Figure 5.12 illustrates the overall hardware setup.

Figure 5.11: FUSE Window

118

Figure 5.12: Overall Hardware Setup

5.5 BER Board Design

To view the bit error rate results of the design, a board was designed to interface with the

XtremeDSP board via the pins on the digital I/O header J8. As described previously in Chapter 3,

some pins of the J8 header were assigned to display the error count in the gateway out block,

while other pins were assigned to represent the user inputs through the gateway in block. As

described in Chapter 3, the selected user input defined the number of bits selected in the

optimization block.

In Figure 5.13, the BER board, constructed with LEDs, resistors, a push button switch,

and a DIP switch, was wired to interface with the J8 header through a PCI connector cable.

Figure 5.14 shows the schematic of the board. The 10 red LEDs represent the 10-bit error count

value. The DIP switch is used to select the user input to the gateway in block to specify the

number of bits to be used in the optimization block. The green LED is used to notify the user

when the simulation is complete. The push button switch is used to reset the simulation to obtain

new results. Since the J8 header is connected to the board via the PCI cable, it is very important

the each allocated pin of the J8 header be matched to the corresponding pin on the PCI connector

to obtain correct results. Since there is only one pin allocated for GND and +3.3V, all

components requiring such connections are wired to those pins.

119

Figure 5.13: Top View of BER Board

Figure 5.14: Circuit Diagram for BER Board

120

Xilinx Integrated Software Environment (ISE) provides the user with a powerful and well

integrated environment toolbox for implementing design flow. FUSE is provided to configure

the FPGA with the BIT file generated in ISE. These Xilinx design tools enable users to verify

designs and accelerate the speed of simulations through hardware in the loop (HIL) simulations

using PCI, USB, or JTAG interface. The computed outputs are either displayed through the

digital I/O available on the board or routed back to the software environment via PCI or USB

cable.

121

Chapter 6
Simulation Results and Analysis

Simulation plays a critical role in the design of the communication system depicted in

Chapter 3. The simulation results are used for the detailed design of various system components

and system level performance evaluation. Simulation of communication systems involves

driving the models with input waveforms to produce outputs that can be analyzed to optimize

design parameters and evaluate performance measures such as bit error rates (BER). Therefore,

signal processing operations are performed by functional blocks of the communication model to

generate required inputs and process them at sampled values. Some components of the system

model are theoretically based and therefore quantitative in nature, while others involve

approaches that are not quantifiable and are heuristic in nature. The simulation results must be

validated by comparison to analytical bounds or measured results. Therefore, this chapter

provides the BER results for the DSSS transceiver modeled in System Generator. Based on these

results, the most optimum receiver design that maintains a specified BER performance is

provided.

Floating-point mathematics is used for DSP algorithm and communication system

development because it offers extensive dynamic range and accuracy and it accommodates

virtually limitless word-widths and precision. Converting floating-point C or C++ code to fixed-

point code is the mandatory first step in the creation of reusable algorithms since most

implementations in hardware and software will limit the word-length and precision of operations.

Typical effects of using fixed-point math include both overflow and quantization. A value to be

stored could be too large to fit the fixed word-width (overflow). Or its precision could exceed that

of the fixed-point specification or it could have too few precision bits (quantization). In order to

ensure that the fixed-point algorithm behaves in an acceptable way, modeling and analyzing those

effects correctly is very important.

The optimization of the design requires reduction of datapath size and hence results in

quantization of the signal value by truncation. Quantization occurs whenever a value needs to be

122

stored with less precision than is required to represent the actual value. Therefore, an error is

induced which degrade system performance. The system performance is measured by calculating

BER for various datapath sizes.

BER results have been computed from real-time simulations implemented on Xilinx

FPGAs. BER sensitivity of the receiver varies with the datapath size of the specific blocks shown

in Figure 6.1. As explained in Chapter 3, parameterized datapath sizes are controlled from the

software environment in the following points: ADC resolution, DDC datapath size, LPF datapath

size, correlator height, correlator datapath size and Rectangular-to-Polar datapath size. These

optimization points in the receiver are chosen relative to functionality and hardware area

occupancy. To find the optimum design, each hardware simulation BER result is computed as a

function of a single parameter while all other parameters are kept constant.

In each hardware simulation, the BER result is evaluated from running 1,000,000 bits for

every datapath setup. Each simulation is repeated to obtain average data statistics for each

parameter. The maximum datapath size at the optimization points is either 8, 14, or 16 bits, while

the minimum datapath size is determined by the 1 dB BER degradation limit.

6.1 Results for Each Optimization Block

Figure 6.2 depicts BER versus ADC resolution. Since the input to the ADC is an

unsigned 14 bit signal (UFix_14_0), the datapath size is varied from 14 to 5 bits. As illustrated in

Figure 6.2, the BER value does not vary greatly until it reaches a precision of less than 6 bits.

Therefore, the minimum number of bits is 5 with respect to 1dB degradation. In a CDMA

environment, this resolution would need to be higher to accommodate required number of

simultaneous users [38].

123

Figure 6.1: Optimization Points in DSSS Receiver

4 5 6 7 8 9 10 11 12 13 14
10-5

10-4

10-3

ADC Resolution

B
E

R

BER of Optimized ADC Block

 1 dB

 0 dB

Figure 6.2: BER versus ADC Resolution

124

Optimization of the DDC datapath size is necessary since it is the input to the low pass

filter, which occupies a considerable area on hardware. The variation of the datapath size

determines a level of round off error in the block. Figure 6.3 shows that 6 bits provide enough

precision to stay within the 1 dB degradation limit.

The low pass filter in Figure 6.1 is implemented as a second order running average to

reduce hardware area occupancy. Figure 6.4 shows that eight bits of resolution is sufficient to

provide less than one dB of performance degradation.

In Figure 6.5, BER is shown as a function of I and Q correlator input size. The number

of bits used for these inputs corresponds to the cell size required in implementation of a parallel

correlator. Since the correlators occupy a significant portion of the hardware area, it is necessary

to minimize the size of their inputs. By minimizing the input size, the computational complexity

of the MAC operations is reduced. The results show that as few as three bits are more than

enough to maintain well below the 1 dB degradation limit.

5 6 7 8 9 10 11 12 13 14 15 16

10-4

10-3

10-2

DDC Datapath Size

B
E

R

BER of Optimized DDC Block

 1 dB

 0 dB

Figure 6.3: BER versus DDC Datapath Size

125

8 9 10 11 12 13 14 15 16
10

-5

10-4

10-3

LPF Datapath Size

B
E

R

BER of Optimized LPF Block

 1 dB

 0 dB

Figure 6.4: BER versus LPF Datapath Size

2 3 4 5 6 7 8
10-5

10-4

10-3

Correlator Height

B
E

R

BER of Optimized Block Before Correlator

 1 dB

 0 dB

Figure 6.5: BER versus Correlator Datapath Height

126

Another critical parameter for determining the size of the parallel correlator is the

datapath size of the correlator’s adding tree. The parallel architecture for the correlators is

implemented through FIR filter blocks. At each clock cycle, the sum of memory blocks outputs

gives an intermediate sum-of-multiplications result. The accumulator at the end of the adder tree

gives the complete FIR filter result. Therefore, minimizing the critical path of the accumulator is

necessary to optimize the design. As Figure 6.6 shows, 7-bit addition arithmetic is needed to

satisfy the 1 dB degradation limit.

 Finally, the relationship between BER and datapath size of the rectangular-to-polar block

is displayed in Figure 6.7. This block is implemented using the CORDIC algorithm. Refer to

Chapter 3 for more details on CORDIC. Given a complex input, this block outputs an equivalent

vector in magnitude and angle format. The datapath size of the CORDIC is important since the

phase values used to decode the symbol is obtained from the CORDIC output. Therefore, there is

a direct relationship between precision needed to decode the symbol in presence of noise and the

BER. Figure 6.6 illustrates that at least 6 bits are necessary in the datapath size to remain within

the 1 dB degradation limit.

6 7 8 9 10 11 12 13 14
10-5

10-4

10-3

Correlator Datapath Size

B
E

R

BER of Optimized Block After Correlator

 1 dB

 0 dB

Figure 6.6: BER versus Correlator Datapath Size

127

5 6 7 8 9 10 11 12 13 14
10-5

10-4

10-3

Rectangular-to-Polar Datapath Size

B
E

R

BER of Optimized Rectangular-to-Polar Block

 1 dB

 0 dB

Figure 6.7: BER versus Rectangular-to-Polar Datapath Size

6.2 Minimum Area Solutions

Using the hardware co-simulation results presented in Figure 6.3 through Figure 6.7, one

can determine a set of minimum values for the datapath sizes so that the DSSS receiver

implementation size is minimized for a given implementation loss. Table 6.1 shows several

possible minimum area solutions together with the full precision case. The second column of the

table represents the full precision case where BER is the smallest and the implementation area is

the largest. Four other minimum area cases are shown in consecutive columns. The third

column shows the smallest area case with the highest BER. Other three cases can be considered

sub-optimal with respect to the area and BER. The results indicate that a 1-dB degradation can

be maintained with an 8- bit ADC resolution, a DDC datapath size of 6 bits, a filter datapath size

of 11 bits, a 3 bit correlator height, a 9 bit correlator datapath size, and a 8 bit rectangular-to-polar

datapath size. A design implemented with these parameters occupies 6894 FPGA slices. This

implies an area reduction of 38% when compared to the full precision case which occupies 10775

FPGA slices.

128

Table 6.1: BER and Implementation Area versus Datapath Size

ADC

Resolution

14 5 8 8 8

DDC Datapath 16 6 6 6 6

Filter Datapath 16 9 11 11 12

Correlator

Height

8 3 3 3 3

Correlator

Datapath

14 7 9 9 10

Rec-to-pol

Datapath

14 6 8 9 8

BER 1.75e-5 5.09e-4 1.74e-4 1.69e-4 1.37e-4

FPGA Slices 10775 6888 6894 6895 6896

6.3 Effects of Optimization

The minimization of datapath size results in quantization error which can be modeled as

noise. The quantized value is the summation of the original value and the error induced by the

quantization process. When fixed-point arithmetic is used, quantization is an inevitable side effect

that typically exhibits itself as "noise." Similarly, the results generated by the vast numbers of

multiply-and-accumulate operations used in digital signal processing and communications

algorithms are frequently larger than the fixed word-width that has been specified by the design,

causing overflow. Overflow can cause the signal to be distorted or can introduce unpredictable

non-linear behavior. A general mechanism needs to be established to define specific overflow and

quantization behavior. By default "TRUNCATED" quantization and "WRAPPED" overflow are

used since this is the behavior of hardware designed to perform 2’s complement arithmetic [39].

6.4 Truncation

The problem of quantizing arises when computations which are either fixed-point or

floating-point arithmetic are performed. Quantization via truncation results in a lower level of

precision and introduces errors that depend on the number of bits in the original value relative to

129

number of bits after quantization [30]. In fixed-point representation, truncation error occurs from

the quantization of bu bits representing a value x into b bits. Thus the number

 bu

 x = 0.1011…….11 (6.1)

consisting of bu bits before quantization is represented as

 b

x = 0.101….1 (6.2)

after quantization, where b<bu. The truncation of the value x results in a truncation error defined

as

Et=Qt(x)-x. (6.3)

Considering sign-magnitude and two’s-complement representation, the positive numbers

have identical representation in both forms. Therefore, truncation results in a value that is smaller

than the unquantized value for positive numbers. As a result, the reduction of significant bits

from bu to b results in truncation error of

-(2-b – 2-bu) ≤ Et ≤ 0. (6.4)

According to this equation, the largest error would occur from discarding bu – b bits, all of which

are ones. When considering negative fixed-point numbers based on sign-magnitude

representation, the truncation error is positive since it just reduces the magnitude of the numbers.

Therefore, the truncation error for negative numbers is

0≤ Et ≤ -(2-b – 2-bu) . (6.5)

In the two’s complement representation of negative numbers, subtraction of the corresponding

positive number from 2 results in the negative of a number. Therefore, truncation results in an

increase of the magnitude of the negative number. Since x > Qt(x), the truncation error is

 -(2-b – 2-bu) ≤ Et ≤ 0. (6.6)

Consequently, truncation error for sign-magnitude representation is symmetric about zero and

falls in the range

-(2-b – 2-bu) ≤ Et ≤ (2-b – 2-bu) . (6.7)

Alternatively, the truncation error for two’s complement representation is always negative and

falls in the range

-(2-b – 2-bu) ≤ Et ≤ 0. (6.8)

Figure 6.8 shows the quantization errors due to truncating for the two’s-complement

representation and sign-magnitude representation.

130

Figure 6. 8: Effects of Quantization for (a) two's complement representaion and (b) sign-magnitude

representation

 Although, error calculations can be evaluated for quantization effects, it is

difficult to construct an algorithm that computes the performance degradation due to the

complexity of the design and the fact that the error accumulates over time.

The results obtained in Table 6.1 define sub-optimum solutions with respect to BER and

area. To find the global optimum, one needs to assign weights to each datapath size

corresponding to their contribution to the implementation area, and then implement a

multivariable constrained optimization. Similarly, one can optimize the receiver with respect to

the power by weighting the datapath sizes according to their individual contributions to the total

receiver power.

131

132

Chapter 7
Summary and Future Work

 In this thesis a DSSS transceiver is designed in a completely software environment with

System Generator and implemented on a hardware platform via Xilinx implementation tools such

as ISE. Further, HIL simulations are performed to find an optimized system design with a

specified performance level. The DSSS transceiver consists of a transmitter that performs QPSK

modulation, an AWGN channel and a receiver comprised of a digital down converter, low pass

filter, carrier phase lock loop, I and Q correlators, tracking lock loop, peak detector, and

rectangular-to-polar converter.

7.1 Summary

The concept of a software-defined-radio (SDR) has been of considerable academic and

industrial interest for several years. Started in the military, SDR now serves many commercial

purposes. SDR provides features such as flexibility, scalability, and inter-operability that were

not available in traditional radio based on a hardware approach. SDR allows a radio to be

described by its software; thus, a single radio can change its operation to suit the current needs of

the system. In software defined radios, FPGAs are being used increasingly as a general-purpose

computational fabric to implement hardware acceleration units that boost performance while

lowering cost and power requirements. Software defined radios require extensive processing

power to realize the portability of waveforms and reconfigurability that has been promised. The

use of FPGAs for hardware acceleration offers promising architectural options that are helping to

make SDRs a reality. Hardware implementation speeds up the design verification process.

 Pure simulation is often used to understand the behavior of a system, or to predict an

outcome under different internal and external influences. But if the simulation is being used as a

basis for proving control feasibility, the risk of investment can be further reduced utilizing a HIL

simulation approach. Good system engineering practice would begin with a pure simulation and

as components become better defined (with the aid of simulation), they can be fabricated and

133

replaced in the control loop. Once physical components are added to the loop, un-modeled

characteristics can be investigated, and controls can be further refined. The use of HILS

eliminates expensive and lengthy iterations in machining and fabrication of parts, and speeds

development towards a more efficient design.

System Generator is a system level modeling tool that facilitates FPGA hardware design.

System Generator extends Simulink in numerous ways in order to provide a powerful modeling

environment that is well suited to hardware design. The tool provides high-level abstractions that

are automatically compiled into an FPGA at the push of a button. The tool also provides access to

underlying FPGA resources through lower level abstractions, allowing designers to implement

highly efficient FPGA designs. System Generator provides hardware co-simulation interfaces

making it possible to incorporate a design running in an FPGA directly into a Simulink

simulation. Hardware co-simulation compilation targets automatically create a bitstream, and

associate it to a block. When the design is simulated in Simulink, results for the compiled portion

are calculated in hardware. This allows the compiled portion to be tested in actual hardware, and

can speed up simulation dramatically.

ISE integrates everything a designer may need in a complete logic design environment

for all leading Xilinx FPGA and CPLD products. Easy-to-use, built-in tools and wizards also

make I/O assignment, power analysis, timing-driven design closure, and HDL simulation quick

and intuitive. FUSE software allows the design created in System Generator and implemented in

HDL by ISE to be downloaded on a hardware platform.

The infusion of System Generator and ISE enables HIL emulation for design verification

and performance evaluation. Bit error rate is used as a measure of performance. BER sensitivity

of the receiver is determined from varying ADC resolution, DDC datapath size, LPF datapath

size, correlator height, correlator datapath size and rectangular-to-polar datapath size. The

simulation results are used to obtain a minimum area solution. The results indicate that less than

one dB degradation can be maintained with an 8 bit ADC resolution, 6 bit DDC datapath, 11 bit

filter datapath, 3 bit correlator height, 9 bit correlator datapath, and 9 bit rectangular-to-polar

datapath.

134

7.2 Future Work

Although a minimum area solution has been found, it is not the optimum solution. To

obtain an optimum solution, an optimization code needs to be performed that takes all the

obtained results and finds the global minimum in accordance to a specified BER performance.

Therefore, it will generate all the possible combinations of datapath sizes for the functional

blocks and evaluate hardware occupancy. The optimum solution will be the one that gives the

lowest number of FPGA slices used and still maintains less than one dB of BER degradation.

 Also, the design process can be automated, eliminating the need of a designer to change

parameters and record results. Such automation would download the system parameters on the

board, perform BER calculations, report the results back to the simulation environment, update

the system parameters and repeat the process over again.

135

List of References

136

[1] Wipro Technologies, “Software Defined Radio,” White Paper, August 2002.

 http://www.wipro.com
[2] M. Bobrek, M. Howlader, and J. Suh, “Hardware Optimization of a DSSS Receiver

Using Simulink Model,” Proceedings of the GSPx Conference, Santa Clara, CA, 2004.

[3] P. Shaumont and I. Verbauwhede, “Interactive Cosimulation with Partial Evaluation,”

Proceedings of the Conference on Design, Automation and Test, Paris, France, 2004.

[4] C. Kreiner, C. Steger, and R.Weiss, “A Hardware/Software Cosimulation Environment

for DSP Applications,” Proceedings of EUROMICRO5 Conference, 1999.

[5] S. Yoo and K. Choi, “Optimistic Distributed Timed Cosimulation based on Thread

Simulation Model” Proceedings of the 6th International Workshop on

Hardware/Software Codesign, Seattle, WA, 1998.

[6] W. Sung and S. Ha, “Optimized Timed Hardware Software Cosimulation without Roll-

back,” Proceedings of the Conference on Design, Automation and Test, Paris, France,

1998.

[7] P. Crilly, J. Rutledge, and B. Carlson, Communication Systems. New York: McGraw

Hill, 2002.

[8] K. Sienski and C. Field, “Digital Transceiver Software Defined Radio Applications”

[9] McCarthy, Darren, “Software Defined Radio: Integration for innovation,” RF Design,

September 2005.

[10] D. Sweeny, “Software Defined Radio: A Revolution in the Making,” Broadband

Wireless Magazine, Vol 4, No.1, Jan/Feb. 2003.

[11] A. Rudra, “The Rising Importance of FPGA Technology in Software Defined Radio,”

COTS Journal, January 2005.

[12] SD-Radio: A Software Defined Radio

www.qsl.net/padan/sdradio

[13] J. Reed, Software Radio: A Modern Approach to radio Engineering. New Delhi:

Pearson Education, 2002.

[14] R. Sathapan, and C. Flemming, “SDR and JTRC Ride the DSP.FPGA Wave.” COTS

Journal, September 2005.

[15] P. Mackenzie, L. Doyle, D. O’ Mahony, and K. Nolan, “Software Radio on General

Purpose Processors,” Tinity College, Dublin.

http://www.qsl.net/padan/sdradio

137

[16] B. Wong, “Filling the Generation Gap with Software-Defined Broadband Radio,” CTI,

Volume 4 Number 9.

[17] D. Boppana, and J. Seely, “FPGAs Help Software-Defined Radios Adapt,” Wireless

System Design, 2005.

[18] J. Seely, “Using Hardware Acceleration Units in Software Defined Radio Modem

Functions,” COTS Journal, January 2005.

[19] Xilinx Inc., “Xilinx High Performance Signal Processing” January 1998.

http://www.nalanda.nitc.ac.in/industry/appnotes/xilinx/documents/products/logicore/docs

[20] N. Cravotta, “Managing High Speed Analog Signals for SDR Applications Using

FPGAs,” Avnet Electronic Marketing.

[21] Xilinx Products and Services

http://www.reconfigurable.com/products/software/sysgen/hw_loop.htm

[22] System Generator User Guide

 www.xilinx.com

[23] T. Rappaport, Wireless Communications: Principles and Practice. New Delhi: Pearson

Education, 2002.

[24] R. Roberts, “The ABCs of Spread Spectrum,”

 http://www.sss-mag.com/ss.html

[25] HowStuffWorks Website

http://www.howstuffworks.com/question525.htm

[26] CDMA Interactive Website

http://www.cdmaonline.com/interactive/workshops/terms1/1008.htm

[27] M. K. Simon, “Bandwidth-Efficient Digital modulation with Application to Deep Space

Communications,” Hoboken, NJ: John Wiley & Sons, 2003.

[28] Ziemer/Tranter, Principles of Communications: Systems, Modulation, and Noise,

2nd Ed. Dallas: Houghton Mifflin Company, 1985.

[29] L. Couch, Digital and Analog Communication Systems. Upper Saddle River: Prentince

Hall, 2001.

[30] J. Proakis and D. Manolakis, Digital Signal Processing: Principles, Algorithms, and

Applications. New Delhi: Prentince Hall, 2003.

[31] W. Tranter, K. Shanmugan, T. Rappaport, and K. Kosbar, Communication Systems

Simulation with Wireless Applications. Upper Saddle River: Prentince Hall, 2004.

http://www.reconfigurable.com/products/software/sysgen/hw_loop.htm
http://www.howstuffworks.com/question525.htm
http://www.cdmaonline.com/interactive/workshops/terms1/1008.htm

138

[32] Xilinx Products and Services

 http://www.xilinx.com

[33] Matlab Help Guide

[34] Xilinx Software Manual

[35] Xtreme DSP Development Kit-II User Guide

 www.nallatech.com

[36] Xilinx ISE 6 Software Manuals

 http://www.xilinx.com

[37] FUSE System Software User Guide

 http://www.nallatech.com

[38] M. Bobrek, M. Howlader, and B. Dhillon, “Optimization of a DSSS Receiver Using

Hardware Co-Simulation,,” Proceedings of the GSPx Conference, Santa Clara, CA, 2005.

[39] D. Johnson, “Development of Reusable Algorithms Based on C and C++,”

http://archive.chipcenter.com/asic/tn003.html

139

Appendix

Appendix A

140

Appendix B

141

Appendix C

142

143

144

145

146

Vita

Balbir Dhillon was born in Amritsar, India and lived there until she was eight years old.

She moved to the states with her family to purse better education opportunities. She finished her

elementary schooling at Lincoln Elementary School and Winston Park Junior High in Palatine,

IL. She attended two years at Palatine High School and then moved to Memphis to finish the rest

of her schooling. She obtained her Bachelors of Science Degree in Computer Engineering in

spring of 2004 from University of Tennessee, Knoxville (UTK). She began graduate school in

fall of 2004 at UTK where her major concentration was Digital Communications. She acquired a

research position and worked at Oak Ridge National Lab for the duration of graduate school. She

obtained her Masters of Science in Electrical engineering in fall of 2005.

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2005

	Optimization of DSSS Receivers Using Hardware-in-the-Loop Simulations
	Balbir Kaur Dhillon
	Recommended Citation

	Michael J. Roberts
	
	Donald Bouldin
	
	Miljko Bobrek
	

	
	Table of Contents

	
	Chapter 1
	Introduction
	1.1 The Context
	1.2 The Problem
	1.3 Thesis Objective
	1.4 Thesis Structure

	
	
	
	
	
	
	
	
	
	
	
	
	
	Chapter 2
	Integration of SDR and FPGAs
	2.1 Traditional Radio Systems
	2.2 A Software Based Approach
	2.3 SDR Realm
	2.3.1 SDR Concept
	2.3.2 Software Defined Radio Definition
	2.3.3 Evolution of SDR
	2.3.4 Advantages and Benefits of SDR Technology
	2.3.5 Design Principles
	2.3.6 Future of SDR

	2.4 Hardware Platform
	2.4.1 GPP, DSP, or FPGA
	2.4.2 FPGAs
	2.4.3 Advantages of Using HDLs to Design FPGAs

	
	
	Chapter 3
	Theory and System Model
	3.1 Spread Spectrum
	
	3.1.1 Advantages of SS
	3.1.2 Types of SS
	
	3.1.3 DSSS
	3.1.4 PN Generator

	3.2 Quadrature Phase Shift Keying (QPSK)
	3.3 System Model
	3.4 QPSK Transmitter
	3.4.1 Creating Packets
	3.4.2 Signal Spreading
	
	3.4.3 Pulse Shaping
	3.4.4 Modulation

	3.5 Channel
	3.5.1 Noise Generation
	3.5.2 Calculating SNR
	3.5.3 Changing Noise Levels

	3.6 QPSK Receiver
	3.6.1 Down Conversion
	3.6.2 Running Average Filter
	
	3.6.3 Baseband Processor
	3.6.4 Carrier Phase Lock Loop
	3.6.5 Parallel Correlator
	3.6.6 CORDIC
	3.6.7 Peak Detector
	
	3.6.8 Tracking Phase Lock Loop
	3.6.9 Phase Decoder
	3.6.10 Packet Processor

	3.7 Calculating BER
	3.7.1 Bit Counter
	3.7.2 Error Counter

	3.8 Optimization of System Model

	Chapter 4
	DSP Analysis and System Generator
	
	4.1 DSP Design Flow
	4.1.1 Types of Design Flows
	

	4.2 Simulink
	4.3 System Generator
	4.3.1 Xilinx Blockset Library
	4.3.2 Bit True and Cycle True Representation
	
	4.3.3 Hierarchy and Subsystems
	
	4.3.4 Configuring Blocks
	4.3.5 Parametric Designs
	
	4.3.6 Quantization and Overflow
	
	4.3.7 Bit Picking
	4.3.8 Control Mechanism
	4.3.9 Sampling Period and Propagation Rules
	4.3.10 Multi-rate Systems and Sample Rate Conversion
	4.3.11 Hardware Clock and Over-clocking
	4.3.12 Gateway In and Gateway Out Blocks
	4.3.13 System Generator Token
	4.3.14 Resource Estimator

	4.4 HDL Co-Simulation
	4.5 HIL Simulations

	
	Chapter 5
	Hardware Implementation and Analysis
	5.1 Parallelism
	5.2 Xilinx Xtreme DSP
	5.2.1 Physical Description
	
	5.2.2 Virtex-2 Architecture
	 Source: [36]
	5.2.3 XtremeDSP Kit Highlights
	5.2.4 Clocking Configurations
	5.2.5 ADCs and DACs
	5.2.6 Digital I/O
	5.2.7 JTAG

	5.3 ISE
	5.3.1 FPGA Flow in ISE
	5.3.2 Design Entry
	5.3.2.1 Using Design Constraints

	5.3.3 Performing Synthesis
	5.3.4 Verifying a Design
	
	5.3.4.1 Performing a Behavioral Simulation
	5.3.4.2 Performing a Post-Translate Simulation
	5.3.4.3 Performing a Post-Map Simulation
	5.3.4.4 Performing Post-Place & Route Simulation

	5.3.5 Implementing a Design
	
	
	5.3.5.1 Translating a Design
	5.3.5.2 Floorplanning a Design
	5.3.5.3 Viewing a Translating Report
	5.3.5.4 Mapping a Design
	5.3.5.5 Viewing a Post-Map Static Timing Report
	
	5.3.5.6 Analyzing Post-Map Static Timing
	5.3.5.7 Placing and Routing a Design

	5.3.6 Generating a Programming File
	5.3.6.1 Configuring a Device

	
	5.4 FUSE
	5.5 BER Board Design
	

	Chapter 6
	Simulation Results and Analysis
	6.1 Results for Each Optimization Block
	6.2 Minimum Area Solutions
	
	6.3 Effects of Optimization
	6.4 Truncation

	Chapter 7
	Summary and Future Work
	
	7.1 Summary
	7.2 Future Work

	List of References
	
	
	
	
	
	Appendix
	Appendix A
	Appendix B
	Appendix C
	Vita

