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Abstract 
 

 
 Over the years, there has been significant interest in defining a hardware abstraction layer 

to facilitate code reuse in software defined radio (SDR) applications.  Designers are looking for a 

way to enable application software to specify a waveform, configure the platform, and control 

digital signal processing (DSP) functions in a hardware platform in a way that insulates it from 

the details of realization. 

 

 This thesis presents a tool-based methodolgy for developing and optimizing a Direct 

Sequence Spread Spectrum (DSSS) transceiver deployed in custom hardware like Field 

Programmble Gate Arrays (FPGAs).  The system model consists of a tranmitter which employs a 

quadrature phase shift keying (QPSK) modulation scheme, an additive white Gaussian noise 

(AWGN) channel, and a receiver whose main parts consist of an analog-to-digital converter 

(ADC), digital down converter (DDC), image rejection low-pass filter (LPF), carrier phase locked 

loop (PLL), tracking locked loop, down-sampler, spread spectrum correlators, and rectangular-to-

polar converter.  

 

 The design methodology is based on a new programming model for FPGAs developed in 

the industry by Xilinx Inc. The Xilinx System Generator for DSP software tool provides design 

portability and streamlines system development by enabling engineers to create and validate a 

system model in Xilinx FPGAs. By providing hierarchical modeling and automatic HDL code 

generation for programmable devices, designs can be easily verified through hardware-in-the-

loop (HIL) simulations.   

 

 HIL provides a significant increase in simulation speed which allows optimization of the 

receiver design with respect to the datapath size for different functional parts of the receiver. The 

parameterized datapath points used in the simulation are ADC resolution, DDC datapath size, 

LPF datapath size, correlator height, correlator datapath size, and rectangular-to-polar datapath 

size.  These parameters are changed in the software enviornment and tested for bit error rate 

(BER) performance through real-time hardware simualtions.  The final result presents a system 

design with minimum harware area occupancy relative to an acceptable BER degradation. 
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Chapter 1  
Introduction 

 
 
1.1 The Context 
 

The commercial wireless industry is constantly evolving and therefore facing many 

challenges.  These problems arise due to the constant change of link-layer protocols and existence 

of incompatible wireless technologies in different parts of the world.  Software Defined Radio 

(SDR) technology provides solutions to these problems by implementing radio functionality such 

as modulation/demodulation, signal generation, coding and link-layer protocols in the form of 

software modules running on generic hardware platforms [1].  The software modules provide 

flexibility to the SDR system. By allowing the capability of over-the-air downloads of software 

modules, the issue of compatibility of different standards is eliminated.  To provide key features 

such as reconfigurability, flexibility, and inter-operability, the SDR architecture needs to be 

constructed such that applications can function in various environments.  Therefore, design 

verification is of utmost importance.  

  

1.2 The Problem 

 
Software simulation can provide designers insight into system behavior under various 

internal and external conditions.  However, for complex system, software simulation is unable to 

accurately model every characteristic of a system’s behavior.  Also, use of software-based true 

cycle simulators is impractical due to the large number of cycles needed to achieve accurate data 

statistics.  This is especially apparent in simulation of SDR applications that may involve millions 

of states.  Although many solutions have been proposed to increase simulation speed, the 

necessary computations needed to simulate a radio of low-level complexity exceed the 

capabilities of mainstream office and lab computers.  Therefore, hardware-in-loop (HIL) 

simulation is provided as an alternative solution due to its significant increase in simulation speed 

[2].  Many methods for HIL simulation of complex communication systems have been proposed 

which differ in structure due to emphasis on simulation speed, accuracy, or flexibility [3], [4], [5], 

and [6]. 
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Implementation of HIL simulations expands the possible applications of time domain 

simulators and provides hardware-specific results, which are not easily obtained by other 

techniques. HIL simulation supports development, verification, and integration of complex 

systems in a systematic process.  Integration of physical subsystems into the simulation can 

provide true system behavior in real-time for verification purposes.  Along with verification, the 

accuracy of the system can be refined by changing system parameters in software. 

 

1.3 Thesis Objective 
 

The objective of this thesis is to provide an optimized communication system design that 

is completely described in software and implemented on a hardware platform.  The 

communication system will model a parametric Direct Sequence Spread Spectrum transceiver.  

To speed up the simulation, the design is synthesized and downloaded to a hardware platform to 

obtain bit-error-rate (BER) performance statistics. Using HIL simulations, the receiver is 

optimized with respect to datapath size of significant functional blocks.  The BER degradation, 

obtained through real-time simulations, is used as the basis for creating a receiver with minimum 

hardware area occupancy.   

 

1.4 Thesis Structure 
 

The thesis is organized into seven chapters.  Chapter one, which corresponds to this 

introduction, gives the context, states the problem, and describes the thesis objective.   Chapter 

two provides the motivation for this thesis, and therefore, focuses on SDR.  Since hardware 

implementation is part of the thesis objective, chapter two also reviews the technology 

background on Field Programmable Gate Arrays (FPGAs).  Chapter three provides technical 

background on Spread Spectrum (SS) systems and describes each functional component of the 

transceiver used to model the communication system.  It also explains the methodology used for 

optimizing the system design. Chapter four provides extensive details on System Generator, the 

software package used to model the entire communication system.  Also, detailed analysis of 

digital signal processing (DSP) techniques is discussed in this chapter.  Chapter five lays the 

foundation of the hardware implementation, describing the FPGA architecture and other 

necessary implementation tools.  Chapter six presents the obtained results and explains their 

2 



significance.  Finally, Chapter seven summarizes the findings of this thesis and gives direction to 

future work.  A set of appendices is provided for details on some of the subjects discussed in this 

thesis.  Appendix A and B provide pin layouts of the I/O devices of the hardware platform.  

Appendix C is a published paper from the GSP2005 conference that is titled “Optimization of a 

DSSS receiver Using Hardware Co-Simulation.”   It provides results of a preliminary DSSS 

design used for optimization.  
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Chapter 2  
Integration of SDR and FPGAs 

 
 

 

Software Defined Radio (SDR) has become the focus of attention in the continuously 

changing wireless technology.  Due to its inherent flexibility and adaptability SDR provides a 

secure path for wireless transmission.  This chapter lays the foundation of SDR, explaining its 

definition, need, benefits, design architecture, and history.  But before presenting SDR, the 

traditional radio structure and its limitations will be discussed.  Since SDR was developed as a 

solution to these limitations, extensive details on the SDR architectural structure will be 

presented.  Efficient and effective SDR design requires a standard programmable hardware 

platform that helps designers navigate through tough system requirements. Since FPGAs have 

been the leading contender in this area, technical background on FPGAs is provided to ensure 

efficient hardware implementation.  Discussion of these topics will provide a glimpse ahead into 

the core technical contributions of this thesis.   

2.1 Traditional Radio Systems 
 

Traditional radios are based on the based on the super-heterodyne receiver circuit.  Other 

than demodulation, receivers must perform carrier-frequency tuning to select the desired signal, 

filtering to separate the desired signal from other received signals, and amplification to 

compensate for transmission and implementation loss.  As shown in Figure 2.1, a received 

message carrying an RF signal is down-converted (or mixed down) to baseband in multiple 

stages. The incoming signal, xc(t), is received by the antenna and amplified by a radio-frequency 

(RF) section tuned to the desired carrier frequency fc. The relatively large bandwidth, BRF, of the 

amplifier allows some adjacent channel signals to pass through.  Next, the RF frequency is 

brought down to an intermediate frequency (IF) by a frequency converter composed of a mixer 

and local oscillator (LO). The LO frequency tracks with the RF tuning such that IFcLO fff ±= .   

The signal is then filtered in an IF section to isolate the message-carrying IF carrier and reject the 

images at ( ), where n is an integer greater than zero.  Figure 2.2 clarifies this concept.  

Finally, the signal is sent to a demodulator for message recovery [7].   

IFc fnf ⋅±
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Figure 2.1: Superheterodyne Receiver 

 
 

 
Figure 2.2: Spectral Drawings 

 

This simplified scheme covers the functions carried out by simple devices like traditional 

AM/FM receivers. Modern transceivers such as base stations and cellular phones require added 

hardware components that perform more complicated functions such as equalization, frequency 

hopping and error detection. These modules require more time-consuming and more expensive 

development and production processes. 

 

The hardware-oriented approach of traditional radios imposes a set of limitations.  First, 

traditional radios have low flexibility to adapt to new services and standards. As shown in the 

previous paragraphs, each hardware element of the radio chain performs a radio function. These 

components are designed to operate in a particular frequency band (RF) and standard. When the 

frequency or any of the parameters of the standard changes, traditional radios cannot correctly 

extract the information. Before being able to operate under the new conditions, the system must 

be redesigned and hardware modules have to be replaced. Redesigning, manufacturing and 

replacing hardware components require high times and costs.  Due to the inherent difficulty and 
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limitations in design implementation of analog signal processing components, designers have 

migrated to developing a software-based approach to radios.   

 

2.2 A Software Based Approach  
 
 A software based approach for radio design, known as software radio, was developed to 

counteract the drawbacks of traditional technology.  By using this methodology, software 

modules are constructed instead of hardware components to extract information from signals.  

Figure 2.3 illustrates the architecture for a software-based radio.  The chain of hardware 

components of the traditional radio is replaced by analog-to-digital converters (ADCs), digital-to-

analog converters (DACs), and general purpose processors (GPPs) that run the software.  ADCs 

digitalize the analog IF or RF signals.  Software modules perform signal processing techniques to 

extract the information from the digitalized samples.  DACs are used to convert the message back 

into a more suitable form for the user.   The use of software enhances flexibility to conform to 

new features and standards [8].  

 

 The transition from traditional radio to software radio can be viewed as a gradual 

evolution.  Over the years designers have been trying to move the digitalization of the signal 

closer to the antenna.  Digitalization right before the RF filter would allow for the most flexibility 

since the signal would be handled entirely in software.  However, this type of digitalization is 

difficult to implement for high carrier frequencies.  Digitalization after the IF filter is the 

approach currently used in software defined radios.  This design requires an RF front end which 

brings the signal down from the RF frequency to an IF frequency [9]. 

 

 
Figure 2.3: Software Based Receiver Design 
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2.3 SDR Realm 

 

Every designer’s fantasy is to have a wireless system free of any air interface constraints 

and future modifications. This realm of SDR is described by Broadband Magazine as a wireless 

network where “new frequency allocations or new modulation schemes could be adopted at a 

keystroke. The network could acquire new spectrum as soon as it becomes available or even 

utilize spectrum from another network operator on a temporary basis. Frequencies could be 

reused with a high degree of aggressiveness within the same cell, where line-of-sight placement 

of subscriber terminals becomes essentially irrelevant, and antenna gain can be varied 

dynamically to adapt to changing network conditions. In such a network, new standards-based 

protocols governing framing, network restoration and bandwidth reservation could be 

downloaded network-wide over the air interface with no interruption in service and no manual 

reconfiguration required on the part of the operator or the subscriber [10].”  In such a network 

wireless transmission and reception would become just another computing function. Although 

SDR is not in full realizable form, it is emerging as the hottest new technology.   

 

2.3.1 SDR Concept 
 

SDR is a fast developing technology that has accumulated extensive recognition and 

interest in the telecommunication industry.  The concept of "software radio" has been around for 

some time, having initially been discussed in the field of military research. Now, however, with 

the increasing capabilities of DSP on one hand, and the requirements for fast time to market on 

the other, it is emerging as an important commercial technology.  Digital radio systems with 

programmable hardware modules are being used to build an open-architecture based radio system 

software.  Radio applications such as Bluetooth, WLAN, GPS, Radar, WCDMA, GPRS, etc. can 

be implemented using SDR technology [1]. 

.   

SDR provides an efficient and comparatively inexpensive solution to the problem of 

building multi-mode, multi-band, multi-functional wireless devices that can be enhanced using 

software upgrades.  It implements via software, functional modules of a radio system such as 

signal generation, modulation/demodulation, coding and link layer protocols.  SDR-enabled 
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devices and equipment can be dynamically programmed in software to reconfigure the 

characteristics of equipment. This allows manufacturers to concentrate development efforts on a 

common hardware platform. Similarly, it permits network operators to differentiate their service 

offerings without having to support a myriad of handhelds. Also, software modules that 

implement new features can be downloaded over the air onto the handsets.  Finally, SDR 

provides the user with a single piece of scalable hardware that is compatible at a global scale [11].  

 

2.3.2 Software Defined Radio Definition 

 

The term “software radio” (SR) has various definitions since no consensus has been 

reached about the level of reconfigurable architecture needed to qualify a radio as a software 

radio.  Joe Mitola, who coined the phrase software radio, would describe software radio as: 

“a radio whose channel modulation waveforms are defined in software. That is, 

waveforms are generated as sampled digital signals, converted from digital to analog via a 

wideband DAC and then possibly unconverted from IF to RF. The receiver, similarly, employs a 

wideband ADC that captures all of the channels of the software radio node. The receiver then 

extracts, downconverts, and demodulates the channel waveform using software on a general 

purpose processor [12]."   

 

The SDR Forum, a non-profit association of different software radio players, describes 

SDR technology as: 

  “radios that provide software control of a variety of modulation techniques, wide-band or 

narrow-band operation, communications security functions, and waveform requirements of 

current and evolving standards over a broad frequency range [12].” 

 

A well-established definition of software radio is 

 “a radio that is substantially defined in software and whose physical layer behavior can be 

significantly altered through changes to its software [13].”  

 

In the radio industry, the terms SR and SDR are used to refer to radios exhibiting the 

above characteristics.  The term SDR is commonly used in technical literature and therefore in 

this thesis. 
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2.3.3 Evolution of SDR  
 

Software Defined Radio is a promising technology and has gained worldwide interest and 

support from commercial industries and government agencies. SDR concept started in the late 

1970s with the introduction of multimode radios operating in very high frequency (VHF) band. 
One of the first software radios was a military project named SPEAKeasy. The primary goal of 

the SPEAKeasy project was to use programmable processing to emulate more than 10 existing 

military radios, operating in frequency bands between 2 and 200 MHz. Further, another design 

goal was to be able to easily incorporate new coding and modulation standards in the future, so 

that military communications can keep pace with advances in coding and modulation techniques 

[13]. 

 

The birth of SDR was a result of the Department of Defense’s (DoD’s) initiative Joint 

Tactical Radio System (JTRS).  Evolving from SPEAKeasy, JTRS is motivated by the same 

issues identified by the SPEAKeasy program.  DoD’s desire to obtain a more flexible approach to 

achieving diverse communication led to the development of JTRS with digital signal processors 

and general purpose processors [14].  Hence, the baseline structure for JTRS is software 

communication architecture (SCA), which has allowed it to shift away from a hardware 

dependent architecture.  

 

Other developments of SDR include Motorola’s Wireless Information Transfer System 

(WITS) radio, the SDR-3000 produced by Spectrum Signal Processing Inc., the SpectrumWare 

System, and the CHARIOT (Changeable Advanced Radio for Inter-Operable 

Telecommunications) software radio developed by Virginia Tech as part of DARPA’s GloMo 

programs.   The WITS radio was the first instantiation of the JTRS/SDR Forum architecture. The 

SDR-3000 was an example of a system fully compliant with the JTRS SCA. The SpectrumWare 

program justified the use of GPPs in a software radio design.  CHARIOT’s layered architecture 

structure created a structure for running reconfigurable hardware into a software radio [13].   

 

As shown in Figure 2.4, SDR and its architecture continue to evolve as new technologies 

become available. Initially developed as a solution to interoperability problems of the military, 

SDR has developed well beyond its early role.  SDR is now viewed as an enabling platform for a 

vast array of technologies.   
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Figure 2.4: Development of Software Radio 

 

2.3.4 Advantages and Benefits of SDR Technology 
 

The multitude of wireless network standards hinders seamless interoperability by 

requiring different physical devices to inter-operate with different networks. A new challenge to 

the mobile communication industry is the integration of multiple systems and applications on a 

single device. Although third generation wireless communication concepts address the goal of 

global standardization, a more realistic approach in the intermediate term is to develop 

transceivers that will work with several standards and in several frequency bands on a common 

hardware platform. Such a platform would allow flexible and programmable transceiver 

operations. This type of software radio is expected to be a key technology in several application 

scenarios of wireless communications.  The following factors illustrate motivation in advancing 

SDR technology in the telecommunication industry. 

• Multifunctionality: The existence of various technologies increases the incompatibility 

between devices, requiring users to purchase additional hardware that supports new 

standards.  The reconfigurable capability of SDR allows users to support various 

standards and services on a single system.   

• Global Mobility:  Network standards are continuously evolving and differ significantly in 

link-layer protocol standards causing widespread problems.  SDR allows compatibility 
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between all these standards so users do not face problems during migration of the 

network from one generation to the next.  

• Compactness and Power Efficiency:  Multifunction radios requiring separate silicon for 

each additional system can attribute bulkiness and inefficiency to the device.  SDR’s 

reconfigurable attribute can reduce the size and power of the device since the hardware 

can be reprogrammed to implement various systems.  

• Ease of Manufacture: The complexity of standardizing RF components delays the 

product introduction.  Digitalization of the signal can result in the reduction of hardware 

components and therefore reduce the time to market. 

• Ease of Upgrade:  The evolution of standards requires the enhancement of current 

devices. The flexible architecture of SDR allows systems to be upgraded easily and 

permits new devices to be integrated easily into existing infrastructures [13].          

 

 

2.3.5  Design Principles 
 

To ensure the benefits of SDR, such as flexibility, reconfiguribilty, and scalability are 

maintained, its development must allow for interaction between various subsystems of the radio 

design.  Therefore, the SDR architecture design is important.  The following steps illustrate the 

design principles in developing SDRs.   

• System Engineering:  Understanding communication link and network protocol 

constraints to ensure allocations of sufficient resources to establish service under system 

constraints. 

• RF Chain Planning:  Incorporation of flexibility in selecting power gain, bandwidth, 

center frequency, sensitivity, and dynamic range is necessary in designing SDRs.  

Achieving strict flexibility is impossible, and hence tradeoffs must be made. 

• Analog to Digital Conversion and Digital to Analog Conversion:  ADC and DAC are 

difficult to achieve and thus requires tradeoffs in power consumption, dynamic range, and 

bandwidth.  Due to the weakness of current conversion technology, post-digitalization 

techniques can be used to improve flexibility of the digitalization stage.   

• Software Architecture Selection:  Software architecture should allow for hardware 

independence through use of appropriate interfaces between software-oriented 

applications and the hardware layer. 
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• DSP Hardware Architecture Selection:  Since DSP hardware can be implemented through 

microprocessors, FPGAs, or Application Specific Integrated Circuits (ASICs), selection 

of hardware will depend on the algorithms and their computational and throughput 

requirements.   

• Radio Validation:  It is necessary to ensure that the communication system is operating 

correctly and that minor glitches do not cause system failure [13].   

 

2.3.6 Future of SDR 
 

SDR technology has many applications. The military wants smart radios that can flexibly 

work in whatever country they are deployed. Cell phone makers want to consolidate the four or 

more radios that are building into their handsets and provide bug fixes with downloaded software. 

And public safety professionals see SDR as a way to solve interagency communications problems 

during a crisis.  "Our history is hardwired technologies and standards, but our future is software-

defined systems and standards for reconfigurability," said Mark Cummings, chairman of the SDR 

Forum.  The next step is to work on a standard for fixed-access systems that use so-called 

cognitive radio techniques to flexibly tap unused swaths of spectrum. Cognitive radio is a 

paradigm for wireless communication in which either the network or wireless node itself changes 

particular transmission or reception parameter to fulfill specific tasks. This parameter alteration is 

based on observations of various factors from external and internal cognitive radio environment, 

like radio frequency spectrum, user behavior, network state, etc [14]. 

2.4 Hardware Platform 
 

A transition from traditional analog RF hardware to digital systems has occurred in the 

field of communications due to SDR development.  These systems perform digitization of 

baseband RF signals and signal processing through use of DSPs.  The increase of power available 

for DSPs in SDR applications has conditioned designers to digitize the RF signal closer to the 

antenna.  This technique has been connected with advancement in the re-programmability of SDR 

interfaces [15].    
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2.4.1 GPP, DSP, or FPGA 
 

SDR implementation requires efficient hardware and software architecture.  Typically, 

the architecture will be split across a GPP, DSP, and dedicated hardware (implemented in the 

FPGA) [17].   Figure 2.5 shows typical functions of SDR supported by each of these devices.   

 

The downfall of DSPs is their inability to handle an immense flow of data inherent in 

SDR applications.  Therefore, FPGAs seem to be the prominent choice since they can be used to 

offload the GPP or DSP with application-specific hardware acceleration units [18].  The 

advancement of FPGAs from being just flexible logic design platforms to rapid signal processing 

engines has had a hand in revolutionizing the SDR market.   

 

FPGAs are well suited for high-speed parallel multiply and accumulate (MAC) 

instructions.  The Cots journal states currently most “FPGAs can perform an 18 x 18 

multiplication operation at speeds in excess of 200 MHz”, which make FPGAs an ideal candidate 

“for operations such as Fast Fourier Transform (FFT), Finite Impulse Response (FIR) filters, 

Digital Down Converters (DDC), Digital Up Converters (DUC), correlators, pulse compression, 

etc.”  Although, FPGAs can implement many DSP functionalities they have difficulty 

implementing floating point operations due to excessive area required in the device [10].  

Therefore, such factors will allow for co-existence of FPGAs and DSPs for some time, but with 

FPGAs assuming increasing importance.       

 

 
Figure 2.5: Architecture Splitting SDR Functions across GPPs, DSPs, and FPGAs 

   Source: [10] 
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2.4.2 FPGAs 

 
Although ASICs and DSP processors are available for SDR implementation, many 

companies offer a far superior alternative.  This alternative choice is implemented through usage 

of larger FPGAs, efficient DSP algorithms, and automated design process tools [19]. The 

reprogrammable standard FPGAs offer high performance parallel processing, equivalent to any 

custom silicon devices.  Parallel processing techniques provide an effective way to achieve high 

sampling rates while increasing algorithmic complexity.  When compared to custom chip 

alternatives, these off-the-shelf devices are cost effective and easier to implement.  The FPGAs 

offer design tools that access high level DSP building blocks (IP cores) to reduce implementation 

complexity [19].  

 

Compared to DSP processors, the high performance FPGAs are more flexible. FPGAs 

offer parameterized building blocks to increase adaptability of design implementation for any real 

world application.  The ability to act as co-processors increases the performance of the FPGAs 

when complex calculations or high sample rate signals must be processed.  This allows the DSP 

processor to concentrate on executing the code portions of the algorithm [19]. 

 

Even though DSPs offer highly efficient MACs for digital signal processing, downfalls 

arise in high frequency applications as a result of being able to handle only few simultaneous 

calculations.  While parallel pipelining increases efficiency, it is not the best way to increase 

performance.  To increase performance of standard DSP processors after a performance limit has 

been reached, DSP clock speed or number of processors used must be increased.  Increase in 

clock speed is an inefficient solution due to the rise in DSP cost and power consumption [20].  

Adding processors is inefficient when comparing the performance gained with the increase in 

power consumption, board area, cost, development time, and design complexity.  The increase in 

MACs through usage of multiple processors comes at too high a cost.  Many companies offer a 

solution for this problem.  They allow millions of MACs to be executed in a single component 

through the usage of parallel processing.  In Figure 2.6, a comparison of Xilinx FPGAs with 

traditional DSP processors for MAC operations is shown [19].  It is apparent that FPGAs 

outperform traditional DSPs.  As a result, designers use FPGAs to provide widespread MAC 

functionality. 
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Figure 2.6: Comparison of Performance of Xilinx FPGAs to DSP Processors 

       Source: [19] 

 

Implementation of FPGAs for high-speed and complex signal processing requirements in  

SDR applications decrease complexity of high-speed operations such as down conversion, 

decimation, and interpolation [20].  Usage of Distributed Arithmetic (DA) algorithms matched 

with the distributed random access memory (RAM) structure allows for efficient placement on 

FPGAs.  Other complex calculation issues are resolved by using look-up tables (LUTs) and 

adders [19].   

 

The distributed RAM available on the board is useful in buffering data streams, such as in 

a finite impulse response (FIR) filter.  A filter requiring hundreds of taps would require a large 

number of flip-flops, more than the available amount on most FPGAs.  But the distributed RAM 

on FPGAs allows for development of large shift registers with intermediate taps [19].   

 

Another advantage of using FPGAs is lower power consumption, which is an important 

aspect of DSP applications.  The reduction of size of metal lines used to interconnect 

programmable logic blocks lowers the power dissipation.  Therefore, more MACs are performed 

before reaching the power limit.  Figure 2.7 shows the comparison of power consumption 

between Xilinx segmented routing architecture and non-segmented routing architecture.   

 

The segmented routing structure allows for the specification of the size and performance 

of cores before design implementation.  The segmented routing architecture also allows for  
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Figure 2.7: Power Consumption of Segmented and Non-Segmented Routing Architecture 

         Source: [19] 

 

consistency of performance as cores are added to a device.  Cores implemented in FPGAs without 

segmented routing suffer from unpredictable performance degradation as additional cores are 

added to the device. In addition, the long metal lines in non-segmented FPGAs must get even 

longer as the device size becomes larger and this results in a 30% reduction in performance 

between the smallest and the largest device [19]. 

 

An additional benefit of using FPGAs is that the CORE Generator and DSP LogiCORE 

products develop system level DSP functional blocks automatically.  The performance 

characterized cores are selected from a hierarchical library and parameterized to user 

specifications for usage with standard hardware design environments such as VHDL, Verilog, or 

schematic capture.  The output of CORE generator is a logic netlist and a behavioral model for 

schematic capture or instantiation code for VHDL or Verilog [19].   

 

FPGAs also come with system design tools that implement, simulate and test the design 

system.  These tools extract hardware description language (HDL) code and form a high-level, 

block-architectural design.  The integration of Xilinx system level tools provides rapid translation 
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from implementation phase to simulation phase to testing phase and back.  This increase in the 

development cycle can often save a designer 50% or more time for final implementation [17]. 

 

2.4.3 Advantages of Using HDLs to Design FPGAs 
 

Hardware Description Languages are used to describe the behavior and structure of system 

and circuit designs.  Usage of HDLs to design FPGAs provides the following advantages: 

• Top-Down Approach for Large Projects:  Large projects require many designers to work 

together.  The top-down approach to system design, supported by HDLs, allows 

designers to work independently on separate sections of the code. 

• Functional Simulation Early in the Design Flow:  By implementing HDL simulation, the 

functionality of the design can be verified earlier in the design flow.  By testing the 

design before RTL or gate level implementation of design allows necessary changes to be 

made early in the design process.  

• Synthesis of HDL Codes to Gates:  Hardware description can be synthesized to gate level 

implementation of design, eliminating the need to define each gate.  This reduces the 

overall design time and errors that can occur in translation of hardware description to 

schematic design.   Also, efficiency can be increased by applying the automation 

techniques used by the synthesis tool during the optimization phase of the design to 

original HDL code.   

• Early testing of Various Design Implementations:  Different implementations of the 

design can be tested early in the design process by using HDLs.  Since synthesis tools can 

be used to perform the logic synthesis into gates in a short amount of time, designers can 

experiment with different architectural possibilities at the Register Transfer Level (RTL). 

• Reuse of RTL Code:  RTL code can be retargeted to new FPGA architectures with 

minimum recoding [22]. 

 

FPGAs play an important role in implementing designs cost-effectively for real-world 

applications.  With introduction of 3G wireless technology, support for multiple air interfaces and 

modulation techniques will become a necessity for future communication devices.  With 

enhancement of FPGA technology and intellectual property (IP) cores, SDR is becoming the most 

optimal solution.  Also, SDR’s key features such as flexibility and adaptability have enabled it to 

be a leading contender in the race of providing secure path services as GPRS (General Packet 
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Radio Service), EDGE (Enhanced Data rates for GSM Evolution), and 3G standards become 

realities. Through SDSR, development of adaptable high-speed communication equipment can be 

enhanced.  Optimization of designs to meet performance, cost, and power requirements can be 

met if designers understand the analog signal interactions from the RF front-end to ADC and DSP 

processing subsystems implemented on FPGAs.      
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Chapter 3   
Theory and System Model 

 
 
 

The implementations of spread spectrum (SS) systems have become steadily more 

important due to their widespread adoption. This field covers the art of secure digital 

communications that is now being exploited for commercial and industrial purposes. Applications 

for commercial SS range from wireless LAN's to integrated bar code scanner, computer/radio, 

and modem devices for warehousing, to digital dispatch, to digital cellular telephone 

communications, to country-wide networks for passing faxes, computer data, email, or 

multimedia data.  

 

This chapter presents the theoretical background on the SS and the modulation technique 

used to create the digital communication system model in software.  Therefore, it will provide 

extensive details on Direct Sequence spread spectrum (DSSS) and Quadrature Phase Shift Keying 

(QPSK).  Due to the architectural complexity of the communication system, simulation is 

employed for design implementation and verification.  Furthermore, this chapter will explain all 

functional components used to model the transmitter, channel, and receiver.  Finally, the 

modifications made to the design to acquire an optimized design will be elaborated upon. 

   

3.1 Spread Spectrum 
 

The implementation of spread spectrum implies that bandwidth of the transmitted signal 

is several orders of magnitude greater than the minimum bandwidth, Bmin, required for 

transmission.  The reasoning behind the increase is to transform a signal with bandwidth B into a 

noise-like signal of much larger bandwidth BBss.  This type of system is inefficient for a single 

user, but is very bandwidth efficient in a multiple-user, multiple-access interference (MAI) 

environment because many users can use the same bandwidth simultaneously without interfering 

significantly with one another [23].  

 

Apart from occupying a large bandwidth, spread spectrum signals are pseudorandom and 

have noise-like properties.  Figure 3.1 shows the basic blocks in a spread spectrum system.  The  
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Figure 3.1: Spread Spectrum Model 

 

data is scattered (spread) across the available frequency band in a pseudo random pattern.  This 

spreading of the baseband signal m(t) is done by modulating the signal with a pseudo-noise (PN) 

code sequence p(t).  The code sequence p(t) is independent of the data sequence m(t).  At the 

receiver, de-spreading of the signal is done by cross-correlating the received signal r(t) by a 

locally generated version of the PN sequence p(t) [24].   

 

3.1.1 Advantages of SS 

 

There are many applications of SS due to its numerous benefits, which include 

antijamming capability, low probability of intercept, multiple access capability, multipath 

protection, low PSD, and interference limited operation [23]. 

 

• Antijamming Capability:  SS provides anti-jamming capability due to the unpredictable 

nature of the carrier signal.  Since narrowband interference affects only a small portion of 

the spectrum, jamming the entire spectrum is extremely difficult.  This anti-jamming 

capability made SS an appealing candidate for military applications.   
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• Multiple Access Capability:  SS systems are used for random and multiple access 

systems.  With SS, users can start their transmission at an arbitrary time without worrying 

about channel saturation. 

• Multipath Protection:  SS reduces the effects of multipath, and hence reduces the effects 

of fading.    The multipath resistance properties is due to the fact that delayed versions of 

the transmitted PN sequence will have poor correlation with the original PN sequence, 

and thus will appear as another uncorrelated receiver.  

• Low PSD:  Spreading over a large frequency band reduces power spectral density (PSD), 

while Gaussian noise level increases.  This may result in improved spectral efficiency in 

some cases.   

• Interference Limited Operation:  Unlike conventional systems, with SS performance is 

limited by interference rather than by noise.  Transmitter-receiver pairs using independent 

random carriers can operate in the same bandwidth with minimal co-channel interference.       

 
3.1.2 Types of SS 
 

The many variations of spread spectrum include direct sequence spread spectrum 

(DSSS), frequency hopping spread spectrum (FHSS), time hopping spread spectrum (THSS), 

multi-carrier spread spectrum (MCSS), and hybrid forms of spread spectrum.  In DSSS, a signal 

is modulated using a wideband spreading signal (PN sequence).  In FHSS, the carrier frequency 

(fc) is randomly switched from one band to another during radio transmission according to some 

specified algorithm.  FHSS can be further classified into fast frequency hopping and slow 

frequency hopping.  In THSS, the signal hops within a particular time frame, where only one time 

slot in a frame is modulated.  In MCSS, different carriers are used to transmit the signal.  Even 

though these techniques implement SS in various ways, all of them require signal spreading by 

means of a code, synchronization between pairs of users, power control to minimize near-far 

effect, and source and channel coding to optimize performance [23].  The most popular SS 

techniques are DSSS and FHSS.  This thesis will focus on only direct sequence implementation 

of spread spectrum since that it is the spreading technique employed in the system model. 
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3.1.3 DSSS 

 
Direct sequence spread spectrum systems are so called because they employ a high-speed 

code sequence, along with the basic information being sent, to modulate their RF carrier.  It can 

be assumed that the information signal in DSSS transmission is spread at baseband, and the 

spread signal is then modulated in a second stage. By using this approach the modulation is 

separate from the spreading and "stretching" operation and the baseband spreading and 

"stretching" can be discussed separately. At the receiver, the signal is first demodulated and then 

"stretched" back to recover original information.   

 

A simple example of spreading and "stretching" of DSSS signal is illustrated in Figure 

3.2.  The data waveform, m(t), is a time sequence of non-overlapping rectangular pulses, each 

with amplitude of ± 1.  Each data symbol represented by m(t) has a period of Ts.  Its Fourier 

transform is a sinc function with zero values at . Each pulse in the PN spreading sequence 

p(t) represents a chip with amplitude of  ± 1 and period T

sT/1

c.  The transitions of m(t) and p(t) are 

such that the ratio of  Ts and Tc is an integer.  The spreading due to p(t) makes the bandwidth Bss 

of sss(t) much larger that the bandwidth B of a conventionally modulated signal )2cos()( tftm cπ  

[12].  Figure 3.3 illustrates the frequency domain analysis of the DSSS signal described in Figure 

3.2. 

 

 
Figure 3.2: Effect of Spreading on Message Stream 
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Figure 3.3: Time/Frequency Analysis 

 

Figures 3.4 and 3.5 represent a typical DSSS transmitter and receiver design.   The 

transmitter is composed of a PN code generator, binary adder and balanced modulator. The binary 

output of the PN generator is added in modulo-2 fashion to the binary message, and the sum is 

used to modulate a carrier. The result of modulating an RF carrier with such a code sequence is to 

produce a signal centered at the carrier frequency, direct sequence modulated spread spectrum.  

Direct sequence spectra vary somewhat in spectral shape depending upon the actual carrier and 

data modulation used.  If a coherent phase shift keying modulation is used in the receiver, the 

received spread spectrum signal can be represented as  

  
s

s
c T

EPtntftptmPtr =++= ),()2cos()()(2)( θπ          (3.1) 

where m(t) is the data sequence, p(t) is the PN spreading sequence, fc is the carrier frequency and  

θ is the carrier phase angle at t = 0 [23].  SS signals are demodulated at the receiver through 

cross-correlation with a locally generated version of the pseudorandom carrier.  De-spreading of 

the signal is attained when the signal is cross-correlated with the correct PN sequence.  This also  
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Figure 3.4: Design of Transmitter 

 
 
 

 
Figure 3.5: Design of Receiver 
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restores the modulated signal into the same narrow band as the original data [23].  An SS 

correlator can be thought of as a very special matched filter (MF) that responds only to signals 

that are encoded with a pseudo noise code that matches its own code. Thus, an SS correlator can 

be "tuned" to different codes simply by changing its local code.  

 
After demodulation, the signal bandwidth is reduced to B, while the interfering energy is 

spread over an RF bandwidth exceeding Bss.  Thus, most of the original interference energy is 

eliminated by the spreading and minimally affects the desired receiver signal.  The measure of 

interference rejection capability is defined as the processing gain (PG) or spreading factor, given 

by 

B
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The greater the processor gain of the system, the greater will be its ability to suppress in-band 

interference.   

 
3.1.4 PN Generator 

 
Pseudonoise code generators are periodic since the produced sequence repeats itself after 

a certain period of time. A PN code generator, shown in the Figure 3.6, is generated using 

sequential logic circuits.  In this feedback circuit, binary sequences are shifted through the shift 

registers in response to clock pulses.  The output, which is dependent to the logical combination 

of the various stages, is fed back as the input to the first stage.  Ideally, the spreading code should 

be designed so that the chip amplitudes are statistically independent of one another. The entire 

period of PN sequence consists of N time chips. In case of maximal linear PN generator, the value 

on N is , where n is the number of stages in the code generator.  Another important reason 

for using PN generator to modulate a signal is the properties of the resulting signal's 

autocorrelation function. As illustrated in Figure 3.7, it has a maximal value of one repeating 

itself every period, and a constant value of 

12 −n

)/1( N− in between the peaks [24].   
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Figure 3.6: PN Generator Model 

 
 

 
Figure 3.7: Autocorrelation of PN Code 

 
Although PN sequences are deterministic, they have similar properties as random binary 

sequences, such as equal number of ones as zeros, low correlation between shifted versions of the 

PN sequence, low cross-correlation between any two sequences.  Different classes of periodic PN 

sequences exist. They include Maximal-Length Linear Shift register Sequences (m Sequences), 

Quadratic Residue Sequences (q-r Sequences), Hall Sequences, and Twin Primes. 

 

3.2 Quadrature Phase Shift Keying (QPSK) 
 

In an M-ary system, one of M possible signals may be transmitted during each T-second 

period, where 2≥M .  Each possible transmitted signal of an M-ary message sequence is referred 

as a symbol.  The rate at which M-ary symbols are transmitted through the channel is called the 

baud rate.  Therefore, 4=M  is termed as quadrature phase shift keying (QPSK). 

    
Quadrature phase-shift keying (QPSK) is one of the prevalent modulation scheme used in 

digital communication systems. QPSK is a method for transmitting digital information across an 

analog channel. Data bits are grouped into pairs, and each pair is represented by a particular 

waveform, called a symbol, to be sent across the channel after modulating the carrier. The QPSK 
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transmitter system uses both the sine and cosine at the carrier frequency to transmit two separate 

message signals, sI[n] and sQ[n], referred to as the in-phase and quadrature signals. 

 
As represented by Figure 3.8, the phase of the carrier will take on one of four values: 0, 

π/2, π, and 3π/2, where each phase value corresponds to a unique pair of message bits.  

Considering this set of symbol states, the QPSK signal can be defined as 

4,3,2,10]
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where Ts represents the symbol duration and has a value of twice the bit period.  Using 

trigonometric identities, the equivalent form of equation 3.3 is 
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For the QPSK signal set, if the basis vectors are defined over the interval 0 ≤ t ≤ Ts as    

     )2sin(2)(),2cos(2)( 21 tf
T

ttf
T

t c
s

c
s

πφπφ == ,                              (3.6) 

then the four signals in the set can be expressed in terms of basis signals as 

4,3,2,1)(]
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)1sin[()(]
2
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According to the constellation diagram of a QPSK signal (Figure 3.8), the minimum 

distance between adjacent points is sE2 .  Since each symbol corresponds to two bits, then     

 

 
Figure 3.8: QPSK Constellation Diagram 
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bs EE 2= .  Consequently, the distance between two neighboring points is bE2 .    Therefore, 

the probability of bit error in an additive white Gaussian noise (AWGN) channel is  

           ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

o

b
Qpske N

EQP 2
, .           (3.8) 

Since the bit error probability of QPSK is equivalent to the bit error probability of BPSK, twice as 

much data can be sent in the same bandwidth.  Hence compared to BPSK, QPSK provides twice 

the spectral efficiency with exactly the same energy efficiency [23]. 

 

3.3 System Model 

 
 The overall system design used to model the communication system is illustrated 

in Figure 3.9.  The system is comprised of the following blocks: transmitter, channel, receiver, bit 

counter, error counter, and start/stop simulation.  The transmitted signal is sent through a noisy 

channel before it is demodulated in the receiver.  The error counter compares the transmitted and 

received signal and accumulates errors.  The Bit Error Rate (BER) is evaluated according to the 

number of bits transmitted, which is controlled by the bit counter.  The start/stop simulation block 

is created for rerunning simulations to obtain a good average for BER results. The focus of this 

thesis is the hardware implementation of the DSSS transceiver modeled in software.  Therefore, 

the design is modeled with a software package called System Generator, which is explained in 

detail in Chapter 4.   

 

 
Figure 3.9: Overview of System Model 
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3.4 QPSK Transmitter 
  
  Figure 3.10 shows the block diagram of the QPSK transmitter employed in this system 

model.  The transmitter consists of a scheduler that constructs the data into a packet structure.  

The details of the packet structure are discussed shortly.  The random binary message stream 

embedded within a packet structure with bit rate Rb is split into two bit streams mI and mQ, each 

with bit rate .  The m2/bR I stream represents the in-phase component and is referred to as the 

“even” stream while the mQ stream represents the quadrature component and is called the “odd” 

stream. Next, the mI and mQ data streams are individually spread by a PN sequence to 

significantly increase the bandwidth of the transmitted signal.  The two bit streams are separately 

pulse shaped before being modulated with a carrier.  Finally, the two modulated signals, each of 

which can be considered to be a BPSK signal, are summed to form a QPSK signal.  The signal is 

scaled before being sent into a channel composed of additive white Gaussian noise (AWGN).  

  

3.4.1 Creating Packets 

 

In a packet-based communication system, data must be transmitted as a packet.  A packet 

is a self-contained parcel of bytes that is part of a larger block of data that travels as a sequence of 

bits from a transmitter to a receiver. Sending data in packets offers a mechanism of coordination 

between sender and receiver and provides a guarantee of fairness, which is very important in 

obtaining accurate BER results [25].  Usually, a packet consists of three parts: header, payload, 

and trailer.  The header contains instructions about the data carried by the packet, which may 

include length of packet, synchronization bits, packet number, destination address or originating 

address.  The payload, also referred to as data or body, is comprised of the actual data the packet 

is sending. If the data is a fixed-length, then the payload may be padded with blank information to 

obtain the correct size.  This is known as data stuffing. The trailer typically contains a few bits 

that inform the receiver that the packet has ended.    It also may include some type of error 

checking, such as Cyclic Redundancy Check (CRC) [25].  In this design, the packet is simplified 

to include a header comprised of preamble and Data Delimiter (DDW) bits followed by the actual 

data sequence.  As shown in Figure 3.11, the 512-bit packet contains 65 bits of preamble, 63 bits 

of DDW, and 384 bits of random data.  The preamble, consisting of all ones, is used to define the 
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Figure 3.10: QPSK Transmitter 

 

 
Figure 3.11: Packet Structure 

 

start of a transmit packet.  Also, it allows time for lock of the receiver phase lock loop, which is 

used to synchronize the receiver data clock to the transmitter data clock.  The DDW is used for 

packet synchronization purposes and defines the start of the actual data.  When the receiver starts 

receiving data, it may have an arbitrary phase for its lock clock.  During the course of the 

preamble it learns the correct phase, but may miss or gain a number of bits.  Therefore, a special 

pattern is constructed in the DDW to mark the start of the data.  As shown in Figure 3.12, a 

scheduler is constructed to create the packets as described in the paragraphs above.  The 

scheduler is comprised of a counter, relational blocks, logic blocks, and constant blocks.  In 

addition, the scheduler creates a select signal and enable signals for the DDW and data.   

  

The DDW is created by using a Linear Feedback Shift Register (LFSR) that contains a 

63-length PN code.  The LFSR block is enabled only for the duration of the DDW to ensure that 

each packet contains the same sequence to represent the DDW. The random data are created by a  

30 



 
Figure 3.12: Packet Scheduler 

 

combination of blocks: a counter, a parallel to serial, and slice blocks. The counter is designed to 

output eight bits.  The parallel-to-serial block takes these eight bits as input and outputs two bits 

at a time.  Finally, slice blocks are used to send one of the two bits into the I channel, and the 

other into the Q channel.  The mI and mQ data streams represent the in-phase and quadrature 

components needed for QPSK modulation as explained above.   

 

The select signal, generated by the scheduler, informs the multiplexers whether to send 

the preamble, DDW, or data bits.  As shown in Figure 3.13, when select signal equals zero or 

one, the preamble is transmitted.  When it equals two, the DDW are transmitted.  When it equals 

three, the data are transmitted.  As a result, both mI and mQ data streams packets will be 

equivalent for the duration of the preamble and the DDW, but will differ for the data portions. 

 

The mI and mQ data streams are processed at a specific sample rate, or clock period, as 

they flow through the dataflow system. Typically, each block detects the input sample rate and 

produces the correct sample rate on its output.  Rather than using the default sampling period, an 

explicit sample period of 63 is selected to create the packets.    This implies that each bit within 

the packet will have a period of 63 and therefore each packet will have duration of 32256 

( ).  The significance of this value will be explained shortly.  Figure 3.14 shows both the 

m

51263∗

I and mQ packets in simulation for duration of one packet length.  The simulation result validates 

that both the mI and mQ packets are equivalent until the random data start.  It also shows that both 

packets are sent consecutively and no delay is added between transmission of packets.   
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Figure 3.13: I and Q Packets 

 
 

    

 
Figure 3.14: I and Q Packets in Simulation 
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3.4.2 Signal Spreading 
 

To implement DSSS in the system, the incoming packets must be spread by a PN 

sequence.  Figure 3.15 illustrates that before spreading the signal with a PN code, both mI and mQ 

data streams must be up sampled by 63. The up sampling is needed to ensure that the local PN 

code runs at much higher rate than the data rate. The up sampling block is modified to over-

sample the input signal by placing every nth input sample at the output instead of presenting it 

once with (n-1) zeros inserted interspersed [6].  Sampling period and up sampling are explained 

in further detail in chapter 4. The value of 63 is chosen since the length of the spreading sequence 

generated by the Linear Feedback Shift Register (LFSR) is 63.   

 

Since the sampling period of the incoming packets is 63 at the output of the packet 

generator, the up sampling increases the sample rate of the packets from 63 to 1 ( 163/63 = ).  

This is done to match the sampling time of the incoming mI and mQ data streams to the sampling 

period of the LFSR used to create the PN sequence.  Other features of the LFSR block are 

discussed shortly.  The up sampling of the packets and matching of the sampling rates is of 

utmost importance in the system model.  Without the up sampling, the packets will not be spread 

by the PN code and without the matching of the sampling rates, the design will not simulate.  The 

addition in modulo–2 fashion of the data symbols to the chips is performed by the XOR block.  

Finally, the packets are sent to be pulse shaped individually after spreading is completed.   

 

 
Figure 3.15: Spreading Packets with PN Sequence 
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 To implement signal spreading, a PN sequence must be generated.  The PN generator 

polynomial governs all the characteristics of the generator. Therefore, to implement a particular 

PN code, correct initialization of the block parameters is essential.  For a given generator 

polynomial, there are two ways of implementing LFSR. Galois feedback generator uses only the 

output bit to add (in Galois field) several stages of the shift register and is desirable for high speed 

hardware implementation as well as software implementation. The other known as Fibonacci 

feedback generator can generate several delays of sequences without any additional logic [26].  
 

A PN generator produces a sequence of bits that appears random. The sequence will 

repeat with period , where 12 −B B is the width in bits of the shift register.  Therefore, only 6 bits 

are necessary to represent a 63-length PN code.  Figure 3.16 illustrates that to create a 63-length 

PN sequence, bits 4 and 5 of the shift-register are XORed together and the result is shifted into 

the highest bit of the register. The lowest bit, which is shifted out, is the output of the PN 

generator [26].  To create this sequence in a LFSR, the LFSR block parameters must be defined 

as shown is Figure 3.17.   

 
The initial contents of the memory stages and the feedback logic determine the 

successive memory contents.  If a linear shift register falls into zero state, it will always remain in 

that state, and the output would subsequently be all zeros. Therefore, the LFSR is set to be a 6-bit 

Fibonacci feedback generator with a hex value of ‘27’ for the feedback polynomial.  This value is 

computed by looking up the feedback polynomial for a 63 length PN sequence and converting it 

to a hex value according to the specifications of the LFSR block in System Generator.  In general 

the PN sequence has 
2

2N
binary ones and 1

2
2

−
N

binary zeros, where N is number of binary 

stages.  Thus, the resultant PN sequence is  

111111010111000110011101100000111100100101010011010000100010110.   

 

Since the sample period of the LFSR is 1, each bit of the packets will be spread by the 63 

length PN sequence by directly multiplying it with the baseband data pulses.  As a result, if a bit 

is zero it will have the shape of the PN code and if it is one, it will have the inverted shape.  

Figure 3.18 shows the I and Q packets in simulation after spreading for the duration of two bits.  

Each bit still has a Simulink period of 63 since it is spread by a 63-length PN sequence that has a 

sampling period of one.   
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Figure 3.16: 63-Length PN Generator 

 

 
 

 
Figure 3.17: Block Parameters for LFSR 
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Figure 3.18: Data after Spreading in Simulation (for 2 bits) 

 

3.4.3 Pulse Shaping 

 

In general, the MPSK (M'ary phase shift keying) spectrum consists of a main lobe 

representing the middle of the spectrum and various side lobes located on either side of the main 

lobe. Shaping the spectrum should satisfy two criteria: The main lobe should be as narrow as 

possible, and the maximum side lobe level should be as small as possible relative to the main lobe 

[27].  Therefore, pulse shaping is used to improve spectral efficiency. 

 

In a bandlimited channel, the rectangular pulses that represent the symbols will spread in 

time into the succeeding symbols causing intersymbol interference (ISI) and increasing the error 

probability of the receiver during symbol detection.  One way of combating ISI is to increase 

channel bandwidth.  Due to the difficulty of manipulating signals at RF frequencies, spectral 

shaping is implemented through baseband or IF processing [23].  A number of pulse shaping 

techniques can be used to reduce ISI such as Gaussian, Nyquist, and Raised Cosine. 
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Before the data streams are pulse shaped, they are both up sampled by ten to obtain ten 

samples per chip.  Up sampling is employed to minimize spectral re-growth. At this time the 

Simulink system period will be 1/10.  The spread data is shaped with an intermittent and jitter 

free (IJF) function, which is implemented through ROM blocks as shown in Figure 3.19.   The 

ROM blocks are addressed by the counter and defined to have a depth equivalent to the length of 

the IJF shaping function.  Correct addressing is necessary because if the depth of the ROM is 

longer than the vector length, the ROM’s trailing words are set to zero.  If the vector length is 

longer that the ROM depth, the vector’s trailing elements are discarded [22]. 

 

The IJF pulse shaping technique is chosen because it is highly bandwidth efficient and 

easy to implement in System Generator.  The IJF – QPSK scheme, also known as FQPSK-1, is 

based on defining odd and even functions, so(t) and se(t), over the symbol interval 

 and using their negatives as a 4-ary signal set for transmission [27].  If d2/2/ ss TtT <<− In 

denotes the I channel data symbols, then the transmitted waveform, xI(t), would be determined as 

follows: 

 

xI(t) = se(t - nTs) = s0(t - nTs) ,                 if dI,n-1  = 1,  dI,n = 1 

xI(t) = -se(t - nTs) = s1(t - nTs),                 if dI,n-1  = -1,  dI,n = -1                 

xI(t) = so(t - nTs) = s2(t - nTs) ,                 if dI,n-1  = -1,  dI,n = 1                                        (3.9) 

xI(t) = -so(t - nTs) = s3(t - nTs) ,                if dI,n-1  = 1,  dI,n = -1. 

 

 

The Q channel waveform, xQ(t), is generated using the Q channel data symbols, dQn, by the same 

mapping scheme as used in Equation 3.9 and then delaying the resulting waveform by a half-

symbol [3].  Thus, so and se are defined as  
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The above equations result in the pulse shape shown in Figure 3.20.  The simulation results of 

applying this shaping function to the rectangular pulses is demonstrated in Figure 3.21.    
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Figure 3.19: Pulse Shaping Model 

 

 

 

 

 
Figure 3.20: So and Se Pulse Shape 

 
 
 

38 



 
Figure 3.21: Signal  Pulse Shaping in Simulation 

 

3.4.4 Modulation 
 

Modulation is the process by which symbols are transformed into waveforms that are 

compatible with the characteristics of the channel. One of the three key characteristics of a signal 

is usually modulated: its phase, frequency, or amplitude.  Modulation can be used to minimize the 

effects of interference. Modulation can also be used to place a signal in a frequency band where 

design requirements, such as filtering and amplification, can be easily met. This is the case when 

radio-frequency (RF) signals are converted to an intermediate frequency (IF) in a receiver [23].  

 

A phase shift keying (PSK) modulation scheme is employed in this system.  When 

4=M  in an M-ary phase shift keying (MPSK) modulation scheme, it is defined as Quadrature 

phase shift keying (QPSK).  A phase-modulated waveform can be generated by using the digital 

data to change the phase of a signal while its frequency and amplitude stay constant. The term 

"quadrature" implies that there are four possible phases (4-PSK) which the carrier can have at a 

given time corresponding to one of {0, 90, 180, 270} degrees. In each time period, the phase can 

change once. Since there are four possible phases, there are 2 bits of information conveyed within 

each time slot [23]. Modulation of the information sequence implies analysis of the system in the 
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time and frequency domain.  The message mI(t) and mQ(t) is modulated with a carrier frequency, 

fc, and amplitude, Ac.  Adding the in-phase and quadrature components together formulates the 

QPSK signal, which is described as 

                              ttAmttAmtx oQoIc ωω sin)(cos)()( += .                                 (3.11) 

 

As Figure 3.22 illustrates, the Xilinx DDS Block implements a direct digital synthesizer 

(DDS), also commonly called a numerically controlled oscillator (NCO) to modulate the signal. 

The block employs a look-up table scheme to generate real or complex valued sinusoids. An 

internal look-up table stores samples representing one period of a sinusoid. A digital integrator 

(accumulator) is then used to generate a suitable phase argument that is mapped by the look-up 

table into the desired output waveform. Finally, combining or adding the upper (I) and lower (Q) 

parts will represent the QPSK modulated output [22]. 

 

The result of modulating an RF carrier with such a code sequence is to produce a signal 

centered at the carrier frequency. The main lobe of this spectrum has a bandwidth twice the clock 

rate of the modulating code, from null to null. The side lobes have a null to null bandwidth equal 

to the code's clock rate. 

 

 
Figure 3.22: Modulation 
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Since the hardware platform has a 65MHz clock and the overall Simulink System Period 

is 1/10 according to the model specifications, the block parameters of the DDS block are selected 

to have a constant phase increment of 1/5 cycles per sample and a sampling period of 1/10 to 

obtain the following: 

 

               

           

 

 

Since the symbol rate is 103.2 KHz, each bit will have a period of 9.69 microseconds  

  The 65 MHz clock value is obtained from the hardware specifications and will 

be explained in detail in chapter 5 along with the Simulink System Period.  The rate of change 

(baud) in this signal determines the signal bandwidth, but the throughput or bit rate for QPSK is 

twice the baud rate.  Figure 3.23 shows the signal after it has been modulated, added together, and 

).2.103/1( KHz

 

 
Figure 3.23: Signal after Modulation in Simulation 
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scaled down in amplitude for transmission.  Ideally the amplitude of a QPSK signal is constant.  

However, pulse shaping the QPSK signals causes them to lose their constant envelope property 

[23].  This fluctuation of the envelope is apparent in Figure 3.23. 

 

3.5  Channel  
 

Before arriving at the intended receiver, the signal must go through a channel that adds 

noise and creates distortion effects.  Even though the channel can be created in various ways, the 

ultimate result is that it degrades the signal transmitted to the receiver.  Noise is characterized into 

two forms: external and internal.  Internal noise results from components such as resistors and 

electron tubes.  External noise results from outdoor sources such as the atmosphere [28].  In this 

system model, the channel only adds additive white Gaussian noise (AWGN) to the system.  

Typical characteristics of white Gaussian noise are a statistically independence of any two noise 

samples, a constant power spectral density PN(f) and an autocorrelation function RN(τ) that 

consists of a weighted delta function , which are described as [29] 

                   
2
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R = .                         (3.13) 

 

The channel noise is characterized so that it ranges between a signal to noise ratio (SNR) 

of -7dB to 7dB.  SNR is a measure of signal strength relative to background noise.  Assuming that 

the input to the receiver is signal plus white Gaussian noise the channel output is 

        )(sin)(cos)()( tnttAmttAmty oQoI ++= ωω  .                  (3.14) 

  

3.5.1 Noise Generation 
 
Noise is generated through the Matlab awgn function, which adds Gaussian white noise 

to the signal relative to the SNR value defined by the user.  The Gaussian wideband noise is sent 

through a 101-tap bandpass filter to constrain it to the same bandwidth as occupied by the signal.  

The bandpass filter coefficients are generated by the FDA toolbox with the following constraints:   
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Fs  = 65 MHz   Apass  = 1 dB,     

Astop1 = 80 dB   Astop2 = 80 dB,    
 (3.15)

Fpass1 = 13 - 5    Fpass2 = 13 + 5, 

Fstop1 = 13 - 7   Fstop2 = 13 + 7. 

  
Figure 3.24 illustrates the significance of these parameters in the filter design.   

 
The resulting bandpass filter has a transfer function defined as  

otj
ooBP effHffHfH ω−++−= )]()([)( 11 ,       (3.16)           

where and B is the single sided bandwidth.  The magnitude and impulse 

response for this filter is given in Figures 3.25 and 3.26.  The corresponding impulse response for 

this filter is  

∏= )/()(1 BfHfH o

                                                   BHth oBP 2)( = sinc )cos()( oo ttttB −− .     (3.17) 

The MATLAB filter function filters the incoming noise with the filter described by coefficients 

generated by the FDA toolbox. Figure 3.27 and 3.28 show the noise before and after the filter, 

which represent the wideband and bandpass noise.    

 

 
Figure 3.24: Bandpass Filter Specifications 
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Figure 3.25: Magnitude Response of Bandpass Filter 
 

 

 

 
 

Figure 3.26: Impulse Response of Bandpass Filter 
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Figure 3.27: Spectrum of Wideband Noise 
 
 

 
 

Figure 3.28: Spectrum of Bandpass Noise 
 
 

The construction of the AWGN in the channel is illustrated in Figure 3.29.  The resultant 

bandpass noise is stored in a vector and placed in a Xilinx read only memory (ROM) block, which 

is addressed through a counter.  The depth of the ROM corresponds to the length of the input 

vector, the baseband noise.  For Virtex devices, the maximum timing performance is possible 

only if the depth of the ROM is less than 16,384 [22].  Therefore, the depth of the ROM and the 

length of the baseband noise vector are set to 16,000. The baseband noise vector is repeatedly 

added to the transmitted signal and then scaled down before it is sent to the receiver.  The 

spectrum of the signal before and after the noise is shown in Figures 3.30 and 3.31.  Scaling of 

the signal is necessary since the signal will be passed through a digital to analog converter (DAC) 

and analog to digital converter (ADC) before being sent to the receiver.  The signal must be 

scaled to an unsigned 14-bit signal due to the hardware specifications of the ADC and DAC.  

Further details regarding the hardware specifications of the ADCs and DACs are provided in 

chapter 5. 

45 



 
Figure 3.29: Design of Channel 

       
 
 

 
 

Figure 3.30: Spectrum of Signal before Noise is Added 
 

 

 
 

Figure 3.31: Spectrum of the Signal after Noise is Added 
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3.5.2 Calculating SNR 
 
The noise performance of various types of systems is examined by evaluating the signal-

to-noise power ratio at the receiver output.  Let the output of the transmitter be defined as the 

transmitted signal, S(t), and the output of the ROM block as the baseband noise signal, N(t).  

Then, the SNR values are obtained by squaring and summing the signal and noise values over the 

period K and then converting the value into dB scale, which are described as   

 
             (3.18) 
 
 
             (3.19) 
 
The value of K is selected such that the difference between K summations and 1+K summations 

is less than one percent.   

 
Eight different noise signals corresponding to SNR values of {-7, -5, -3, -1, 1, 3, 5, 7} dB 

are generated and stored in ROM blocks.  The eight different SNR values needed in the awgn 

function to obtain SNR values of {-7, -5, -3, -1, 1, 3, 5, 7} dB are found by performing several 

simulations and adjusting the values until desired results are obtained.   

 

3.5.3 Changing Noise Levels 
 
Instead of having the user change the noise value in software for each new simulation, the 

model is designed so that the noise value can be changed in hardware.  As a result, the user saves 

time by not needing to generate a bit file for the system model each time the noise value is 

changed.  As shown in Figure 3.32, a Xilinx gateway in block is used as a select input to a 

multiplexer that chooses various noise levels.  The ROM blocks are initialized to eight different 

noise levels to be selected by the user.  Since there are 8 different inputs to the mux, the gateway 

in block must be allocated to three pins on the Nallatech board.  Through these pins the user will 

be able to select the desired SNR.  The noise settings will be controlled by a user with a dipswitch 

that is wired to the corresponding pins on the hardware platform. Further explanation of pin 

allocation and hardware setup will be addressed in Section 5.2.5 of Chapter 5 and Section 4.5 of 

Chapter 4.     
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Figure 3.32: Design for Implementing Various Noise Levels 

 
 

3.6 QPSK Receiver  
 

The main function of the receiver is to extract the desired signal from the received signal 

at the channel output.  Figure 3.33 shows that the primary components of a QPSK receiver which 

include down conversion, baseband processor and packet processor.  The downcoversion block 

includes blocks to perform digital down conversion and low pass filtering.  The baseband 

processor is composed of the following blocks: carrier phase lock loop, I and Q correlators, 

tracking lock loop, peak detector, rectangular to polar converter, and phase decoder. In a receiver, 

the received signal is first coherently demodulated and low-pass filtered to recover the message 

signals (in-phase and quadrature channels).    The next step for the receiver is to sample the 

message signals at the symbol rate and decide which symbols were sent. Although the symbol 

rate is typically known to the receiver, the receiver does not know when to sample the signal for 

the best noise performance. The objective of the symbol-timing recovery loop is to find the best 

time to sample the received signal [28]. The presence of noise complicates this operation.  The 

signal is de-spread by correlation with the original PN spreading sequence and then sent to the 

packet processor. 
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Figure 3.33: QPSK Receiver 

3.6.1 Down Conversion 
 
The QPSK modulated 13 MHz IF signal is the input to the receiver.  As illustrated in 

Figure 3.34, the transmitted signal is first coherently demodulated with both a sine and cosine, 

and then filtered to remove the double-frequency terms, yielding the recovered in-phase and 

quadrature signals, sI[n] and sQ[n].  The DDS block is designed with a constant phase increment 

of 1/5 cycles per sample and a sampling period of 1/10 just as it was designed in the transmitter 

for modulation purposes. 

 

 Figure 3.35 represents the analysis on the signal in the frequency domain after down 

conversion.  Down conversion brings the signal from the RF frequency to baseband.  As 

illustrated by the figure, some type of filtering is necessary to eliminate the double frequency 

components occurring at -2fc and 2fc.   

 
The inclusion of a channel adds a delay between the transmitter and receiver.  Therefore 

there is a difference in the clock cycles of the transmitter and receiver.  This is evident in Figure 

3.36, which shows the resultant I and Q signals in simulation after down conversion.
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Figure 3.34: Digital Down Conversion Block 

 
 

 
Figure 3.35: Frequency Domain Analysis for Down Conversion 
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Figure 3.36: Signal after Down Conversion

 

3.6.2 Running Average Filter 

 
After down conversion, low pass filtering is necessary to get rid of the double frequency 

components.  Since designing a lowpass filter occupies a significant amount of hardware space, 

an alternative design known as running average filter is chosen.  In the case of a digital signal, a 

Finite Impulse Response (FIR) filter that would have as an output the average of the last N  values 

of an input signal can be easily created. Such a system is sometimes called a running average 

filter.  The running average filter can be imagined as a window of size N moving along the array, 

one element at a time [30].  The impulse response of this filter is  

             (3.20) ].1......1111[)(h =u 
Recall that the general difference equation of an FIR filter is 
 
 
             (3.21) 
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Equation 3.21 shows that in an LTI system the output y(k) is the resultant of the convolutional 

sum of the input x(u) and the channel response h(u), which is equivalent to  
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       ..      (3.22) 
 
The properties of convolution allow Equation 3.21 to be equivalent to  
 
             (3.23) 
 
 
Since                                  , y(k) can be simplified to 
 
              (3.24) 
 
Therefore, y(0) would just be the summation to the first N-1 values, given by  
 
             (3.25) 
 
As shown in Figure 3.37,  y(1) would be the summation of the next N-1 vectors shifted over one, 

which is described as 

 
      .       (3.26) 
 
This is equivalent to taking output of y(0) and adding element x(u-1) and subtracting element  

x(N-1).  Therefore, 

             (3.27) 
 
This next summation is computed by taking the previous summed value and adding the previous 

component and subtracting the last component.  Thus, the difference equation for the running 

average filter would be 

                        (3.28) 
 
 

 
Figure 3.37: Running Average Filter Example 
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Figure 3.38 shows the model of a running average filter (RAF).  The accumulator sums 

the x(n) from 0 to N-1 and stores the output in a register.  An addressable shift register is used for 

tracking the last component of x(n).  A delay block is used to index the next component of x(n) to 

be added.   

  
The running average filter has the effect of “smoothing out” fluctuations in a signal.  The 

effect of smoothing out the fluctuations is equivalent to a low pass filter; that is, a filter which 

removes higher frequency components in a signal while leaving behind lower frequency 

components.  Thus, a running average filter is equivalent to one form of a low pass filter.   

 

Changing the window range varies the position of the notch of the filter in the frequency 

response.  The best window range, N, was evaluated by determining which value would result in 

the notch eliminating the double frequency components.  Considering the magnitude response of 

the signal before filtering (Figure 3.39), it is obvious where the notches need to be placed.  

 

 
Figure 3.38: Running Average Filter Model 
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Figure 3 39: Magnitude Response after Down Conversion 

 
The window range is varied until the notch is placed at the center of the double frequency 

components.  Figure 3.40 shows the magnitude response of the RAF when N=5. The magnitude 

response of the signal after the first RAF is shown in Figure 3.41.  Figure 3.41 illustrates that 

having just one running average filter does not remove enough of the higher frequency 

components.  Therefore, another RAF is added in the system design.  Since the window range N 

can only be integers, it is strategically calculated to obtain the best result.  Figure 3.42 shows that 

N=3 provides the best result. The magnitude response of the signal after the second RAF is 

shown in Figure 3.43. This result reflects the effects of both filters.   

 

Since the filters occupy a significant amount of hardware space, scaling the output after 

the first RAF is necessary.   The accumulator increases the resolution of the output which is not 

needed.  Scaling the output also prevent overflow from occurring in the second RAF.   

 
The simulation results of the signal after RAF1 and RAF2 are shown in Figures 3.44 and 

3.45.  As indicated by the results, the second RAF improves the smoothness of the signal 

significantly.    
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Figure 3.40: Magnitude Response of Filter 1 

 
 

   
 

Figure 3.41: Magnitude Response of Signal after Filter 1 
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Figure 3.42: Magnitude Response of Filter 1 and 2     

 
 
 
 

 
 

 
Figure 3.43: Magnitude Response of Signal after Filter 2 
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Figure 3.44: Signal after Running Average Filter 1 

 
 
 

 
Figure 3.45: Signal after Running Average Filter 2 
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3.6.3 Baseband Processor 

  

After the signal has been downconverted from the IF frequency to the zero-IF complex 

base band signal by the DDC and filtered by the LPF, it is sent to the baseband processor.  As 

shown in Figure 3.46, the baseband processor consists of the following blocks: carrier phase lock 

look, tracking phase lock loop, I&Q correlators, CORDIC for rectangular to polar conversion, 

peak detector and phase decoder.  The carrier phase locked loop locks to the zero-IF baseband 

signal, while the tracking loop is performing symbol tracking.  Both the carrier phase lock loop 

and the tracking loop are feedback loops that must be accurately modeled. Two separate 

correlators constructed from FIR blocks serve as match filters for I and Q baseband signals.  A 

rectangular-to-polar block performing a CORDIC algorithm provides the magnitude and phase of 

the received signals.  The magnitude value is sent to the peak detector to provide early and late 

gate values to the tracking loop for synchronization purposes, while the phase value is sent to the 

phase decoder to evaluate the value of the received symbol.   

 
 

 
Figure 3.46: Baseband Processor 
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3.6.4 Carrier Phase Lock Loop 

 
In digital communications, to recover the transmitted signal, the output of the 

demodulator must be sampled once per symbol interval.  Since the receiver does not know the 

delay between the transmitter and receiver, symbol timing must be derived from the received 

signal for synchronous sampling of the output from the demodulator.  The delay in the 

transmitted signal also causes an offset to the carrier, which the receiver must estimate.   

 

Therefore, a carrier phase lock loop (CPLL) must be implemented to generate a version 

of the local oscillator that is matched in both frequency and phase to the oscillator employed in 

the transmitter. A Costas Loop, developed by Costas, is one method of implementing a phase-

locked loop (PLL).  Figure 3.47 represents the design of the Costas Loop. 

 
The PLL is a critical component in coherent communications receivers that is responsible 

for locking on to the carrier of a received modulated signal. The PLL consists of two basic 

functional blocks: a numerically controlled oscillator (NCO) and a loop filter (LF).  Ideally, the 

transmitted carrier frequency is known exactly and only the phase needs to known to demodulate 

correctly. However, due to imperfections at the transmitter, the actual carrier frequency may be 

slightly different from the expected frequency. This difference between the expected and actual 

carrier frequencies can be modeled as a time-varying phase.   Provided that the frequency  

 

 
Figure 3.47: Costas Loop 
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mismatch is small relative to the carrier frequency, the feedback control of an appropriately 

calibrated PLL can track this time-varying phase, thereby locking on to both the correct 

frequency and the correct phase [32].  

 
In an analog system this recovery is often implemented with a voltage-controlled 

oscillator (VCO) that allows for precise adjustment of the carrier frequency based on the output 

of a phase-detecting circuit.   In our digital application, this adjustment is performed with a 

numerically-controlled oscillator (NCO) as shown in Figure 3.48.   The NCO is basically a 

sinusoidal signal generator.   

 
The received signal s(t)  is multiplied by the outputs of the NCO, which are  

)ˆ2cos( φπ +tf c  and ,                         (3.29) )ˆ2sin( φπ +tf c

 where  represents the estimate of φ.  The product of these two implies that the phase error is 

equivalent to the difference between the two, given by 

φ̂

φφφ −=Δ ˆ          (3.30) 
 

The error signal is evaluated by finding the absolute magnitude difference between the 

incoming signals Is and Qs. This error signal is filtered by the loop filter, whose output is the 

control voltage that derives the NCO.  Figure 3.49 models the structure of the loop filter.  The 

constants KP and KI of the loop filter control the way the loop responds to its initial excitation, 

whether it is overdamped, underdamped, or critically damped. 

 

In the synchronized (called locked) state the phase error between the oscillator’s output 

signal and the reference signal is zero or very small. If a phase error builds up, a control 

mechanism acts on the oscillator in such a way that the phase error is again reduced to a 

minimum. In such a feedback control system the phase of the output signal is actually locked to 

the phase of the reference signal. This is why it is referred to as a phase-locked loop. The loop is 

set to reset at the end of each packet to prevent error buildup.  Figure 3.50 illustrates the error that 

arises due to the phase difference.   The constants of the loop filter KP and KI are adjusted to 

obtain the minimum error.  
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Figure 3.48: NCO 

 
 

 
Figure 3.49: Loop Filter 

 
 

 
Figure 3.50: Error of PLL 
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3.6.5 Parallel Correlator 

 
In spread-spectrum systems, the receiver must synchronize onto the transmitted PN code 

and de-spread the received signal into the original symbol by calculating the correlation of input 

data and the PN sequence.  The receiver adjusts the timing offset to search the maximum 

correlation value.  The completely parallel architecture provides the fastest synchronization and 

good accuracy, however in the full implementation requires a tap length equal to the spreading 

sequence length.  Figure 3.51 illustrates that the parallel correlators are implemented by two M-

tap finite impulse response (FIR) filter, defined by M filter coefficients, or taps, each represented 

as a Xilinx fixed-point number [22]. 

 

An FIR filter with M-length input x(n) and output y(n) is described by the following 

difference equation  
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where bk is the set of filter coefficients.  Alternatively, the output, y(n), can be expressed as the 

convolution of the unit impulse response h(n) of the system with the input signal, which is 

described as  
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Figure 3.51: Implementation of Parallel Correlators 
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Equation 3.31 and 3.32 are identical in form, and thus )(khbk = , where h(k) are the set of user-

defined coefficients which represent the PN sequence [23].  The filter block accepts a stream of 

Xilinx fixed-point data samples x(0), x(1), ..., and at time n computes the convolution sum 

defined by equation 3.32.  The conventional tapped delay line realization of this inner-product 

calculation is shown in Figure 3.52.  
 

The input samples are serially shifted into a shift register. The shift register’s taps drive 

the memory block’s address buses. At each clock cycle, the sum of memory blocks outputs gives 

an intermediate sum-of-multiplications result. The accumulator at the end of the adder tree gives 

the complete FIR filter result after n clock cycles (n is the resolution of the input sample).  Figure 

3.53 shows a correlator example. The correlator slides the code sequence to the right of the 

received samples and searches for one of the correlation points that has the maximum correlation 

value.  

 

Perfect correlation results in peaks as shown in Figure 3.54.   The correlation peaks occur 

at increments of  and represent a duration of one packet length.  As illustrated by the 

simulation results, the correlation peaks vary in amplitude until the PLL locks.  Variations in 

magnitudes of correlation peaks occur due to noise added by the channel. 

63=T

 

 
Figure 3.52: FIR Filter 
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Figure 3.53: Example of Correlator 

 

 

 
Figure 3.54: Output of Correlator in Simulation 
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3.6.6 CORDIC 

 

Coordinate Rotation Digital Computer (CORDIC), shown in Figure 3.55, is an iterative 

algorithm for calculating trigonometric functions including sine, cosine, magnitude and phase. It 

is particularly suited for hardware implementations because it does not require any multiplies.  

CORDIC revolves around the idea of rotating the phase of a complex number, by multiplying it 

by a succession of constant values. However, the multiplies can all be powers of 2, so in binary 

arithmetic they can be done using just shifts and adds (no actual multiplier is needed) [23].  Given 

a complex-input <x,y>, CORDIC computes a new vector <m,a>, where magnitude and angle are 

defined as  

22 yxm +=  ,       (3.33) 

)(tan 1

x
ya −= .        (3.34)   

  

The x and y inputs to the CORDIC block must have the same data width and binary point.  

These two constraints are defined in the block parameters of the CORDIC and will ensure that the 

output values (m and a) have the same precision [23].  Therefore, the x and y inputs must be 

scaled prior to the CORDIC to ensure enough bits to represent the phase values accurately.  The 

CORDIC block also adds latency, where latency = 3 + number of processing elements.  The 

number of processing elements is a user defined parameter that indicates the number of iterations 

performed for fine angle rotation [6].  This added latency must be taken into account when the 

signal is sent to the peak detector.   

 

 
Figure 3.55: CORDIC 
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3.6.7 Peak Detector 

 
The goal of the peak detector is to sample the waveform at the peak points in order to 

obtain the best performance in the presence of noise. The peak detector finds peaks without 

assistance from the user. When it begins running, it arbitrarily selects a sample, called the on-time 

sample, from the correlator output. The sample from the time-index one greater than that of the 

on-time sample is the late sample, and the sample from the time-index one less than that of the 

on-time sample is the early sample.  As shown in Figure 3.56, the peak detector outputs the on-

time, early and late sample.  The on-time sample is used as an enable signal to indicate when to 

extract the phase values outputted from the CORDIC.  The early and late sample values are sent 

to the tracking phase lock loop for fine synchronization.   Also, a Max-Latch value is evaluated 

and fed back into the CPLL.   

 

Figure 3.57 shows the system model for the peak detector.  It is comprised of mainly 

delay, register, and logic blocks.  The Max-Latch value takes into account the signal delay 

obtained from the CORDIC.  The Max Latch value acts as an enable signal for the register, 

informing it of the location of the maximum peak relative to the output from the correlators.  

These resultant I and Q values from the registers are fed into the CPLL, where their absolute 

value difference defines the error signal.  The integrated values from the correlator are delayed by 

one to represent the optimum sampling time and by two for the late sampling time relative to the 

early sampling time.  Delay blocks are used to create enable signals for register blocks for correct 

referencing. 

 

 
Figure 3.56: Peak Detector Outputs 
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Figure 3.57: Peak Detector Model 

 

3.6.8 Tracking Phase Lock Loop 

 
The fundamental goal of the tracking phase lock loop or early-late gate synchronizer is 

symbol tracking.  The early-late gate synchronizing technique exploits the symmetry of the 

signal.  The output from the correlator attains its maximum value at time .  Thus the output 

is the time autocorrelation function of the pulse s(t).  Therefore, the proper time to sample the 

output is at the peak of the correlation function.  Addition of noise from the channel increases 

difficulty of identifying the peak value of the signal.  Instead of sampling the signal at the peak, 

early and late samples are taken.  These samples occur at 

Tt =

δ−= Tt and δ+= Tt .  Figure 3.58 

clarifies this concept.  On average, the absolute value of these samples will be smaller than the 

peak value.  Since the autocorrelation function is symmetric, the absolute value of the early and 

late samples should be equivalent.  Thus, the proper sampling point is midway between 

δ−= Tt and δ+= Tt .  This condition forms the basis of the early-gate synchronizer or 

tracking phase lock loop (TPLL) [23].   
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Figure 3.58: Early, Late, and On-time Samples 

 

Figures 3.59 and 3.60 illustrate the block diagram of the TPLL.  The early and late peaks 

are sent to the TPLL for calculating the difference between the two, which is denoted as the error 

signal.  Therefore, the error signal is 

  )()( δδ −−+=Δ TT .                                                      (3.35) 

If the on-time sample occurs at the peak, the difference between early and late is zero.  But when 

the peaks shift and result in an incorrect on-time sample due to timing errors, the TPLL must 

adjust the timing of on-time samples to coincide with peaks in the waveform. 

 

The difference between the absolute values of the early and late gates formulates the error 

signal.  To smooth the noise corrupted signals, the error signal is passed through a loop filter.  

This loop filter works in the same manner as the one in the CPLL.  The constants KP and KI of the 

loop filter are adjusted to obtain the best results in simulation.   

 

Any timing offset relative to the optimum sample time will result in a nonzero output of 

the error signal at the output of the filter.  This smoothed error signal also derives the VCC 

output.  Depending on if earlythreshΔ>Δ , or latethreshΔ<Δ , the signal should be retarded or 

advanced [23].  Therefore, the pulse is either advanced or delayed depending on the error value 

and then fed back into the FIR filters for correlation [23].  Driving the error signal to zero by 

means of a feedback loop leads to maximum likelihood timing recovery.  As shown in Figures 

below, this closed-loop control resets at the end of each packet. 
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Figure 3.59: Tracking Phase Lock Loop Model 

 
 

 
Figure 3.60: Tracking Phase Lock Loop Model (2)  
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3.6.9 Phase Decoder 

 
The phase decoder retains the phase values from the CORDIC only at the maximum 

peak. As shown in Figure 3.61, the phase values for QPSK for bits 00, 10, 11, and 01 correspond 

to phase values of π/4, 3π/4, 5π/4, and 7π/4 in an ideal environment.  

 

The CORDIC algorithm converges only for angles between - π/2 and π/2.  Therefore, if 

x< zero, the input vector is reflected to the 1st or 3rd quadrant by making the x-coordinate non-

negative [22].  As a result, in simulation the phase values for a one in the I channel is ±π/4 and 

±3π/4  for a zero.  The phase values for a one in the Q channel is -π/4 or -3π/4 and +π/4 or +3π/4 

for a zero.  Therefore, the bits 00, 11, 10, and 01 correspond to phase value 3π/4, -π/4, π/4, and    

-3π/4.  Since the cosine of a positive and negative number is always positive, the sign of the 

phase value doesn’t factor when determining the bit value for the I channel.  Therefore, the phase 

boundary will be 0.  On the other hand, the sign value is significant when taking the sine of the 

phase value.  Therefore, the boundary will be π/2, halfway between π/4 and 3π/4, and compared 

to the absolute value of the phase when determining the bit value for the Q channel.  Figure 3.62 

illustrates the logic described above to determine the phase value.  

 

 
Figure 3.61: QPSK Phase Values 
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Figure 3.62: Phase Decoder Model 

 
3.6.10 Packet Processor 

 
To obtain accurate bit error rate results, the received and transmitted signal needs only to 

be compared for the actual random data and not during the preamble of DDW.  Therefore, an 

enable signal must be constructed to indicate where the actual random data starts.  This is the 

function of the packet processor.  Since both the I and Q data bits are equivalent for the duration 

of the DDW, only one of them is needed.   

 

In the DDW block shown in Figure 3.63, the incoming packet is first, up sampled by 63, 

just as it was done for the original spreading. The data stream is correlated with the original 63-

length PN sequence used to create the DDW in the transmitter.  The output is accumulated and 

stored in a register.  The result is down sampled by 63 to bring the sampling period back to the 

original value.   

 

Figure 3.64 represents the complete packet processor design.  Perfect correlation results 

in positive and negative peaks of values 0 or 63.  The correlation peaks value is compared to the 

values of 3 and 60 to provide a little leeway. Perfect synchronization provides an index for where 

the DDW has ended and random data is started.  When this occurs, the data enable signal is set 

high to indicate where the actual data starts within the packet.  This signal remains high for the 

duration of the data, 384 bits, and then goes low during the preamble and DDW.  The simulation 

results for the data enable signal from the packet processor are shown in Figure 3.65. 
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Figure 3.63: DDW Block within the Packet Processor 

 
 

 

 
Figure 3.64: Packet Processor 
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Figure 3.65: Data Enable Signal and Packeted Data 

 
3.7  Calculating BER 

 

BER calculations are performed for various SNR levels to see if they match theoretical 

calculations. The results conclude that errors occur uniformly across any data packet, independent 

of packet size, and that there are no correlations evident between the positions of errors within the 

frame. This implies that errors are highly localized within a frame and the error- inducing events 

occur over small (bit-time) time scales.  

   
3.7.1 Bit Counter 

  

In Figure 3.66, the bit counter is created to provide a reference point for the errors.  In 

this design the bit counter is adjusted for a one million bits simulation.  For BER results to be 

accurate, the simulation must be run for at least one million bits.  The bit counter is enabled only 

when Tx Data Enable signal is high and therefore only accumulates the data bits and not the 

preamble or DDW bits.  When the counter reaches a million, the Bit Reset signal is set to high to 

indicate the error counter to stop counting errors.  Also, a LED is blinked to notify the user that 

the simulation is complete and error result can be recorded.  
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Figure 3.66: Bit Counter 

 
The accumulator is reset by the Reset Count signal, which is controlled by the user 

through a pin on the board that is allocated in a gateway in block.  Further explanation of this user 

defined reset signal is in Chapter 5.   

 

3.7.2 Error Counter 

 

The error counter, illustrated in Figure 3.67, compares the transmitted and received data 

to see if any errors have occurred due to the noise added in the channel.  Since there is a delay 

between the transmitter and receiver, both the Tx Bit and Rx Bit signals must be adjusted before 

comparison.   First, both signals must be down sampled by two to bring the sampling period back 

to 63. Also, the Tx Bit and Tx Data Enable signals must be delayed so that they line up correctly 

with the received signal.  The matching of these three signals is essential for obtaining correct 

BER curves.  A slight offset of the Tx Data Enable signal can result in comparison of the wrong 

portions of the transmitted and received packets.   

 

Just as in the bit counter, the transmitted and received bits are compared only when the 

Tx Data Enable signal is high.  This implies that only the data portions of the packet are 

compared for errors.  After the bit counter reaches a million bits, the error counter holds its value.  

Since the error counter is specified to have ten output bits, a gateway out is assigned to ten pins.  

These pins are wired to LEDs that indicate the error value.  The error counter is reset when the bit 

counter is reset.  Details on the display board created to view BER results and reset the simulation 

are provided in Chapter 5. 
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Figure 3.67: Error Counter 

 
The performance evaluation of Quadature phase-shift-keying communication systems 

have been analyzed in a great variety of papers. Quaternary phase-shift-keying (QPSK or 4-PSK) 

systems have the greatest practical interest of all no binary (multiposition) systems of digital 

transmission of messages by phase-modulated signals.  

 

3.8  Optimization of System Model 
 

 Since the system model of this communication system is quite large, it will consume a 

significant area on the hardware.  The resource estimator block in System Generator gives an 

estimate of the area usage.  Further details of this block are provided in Section 4.3.14 of Chapter 

4.    

  

 The area usage can be decreased by optimizing the sections of the system model that take 

the most area.  This implies that the receiver section should be optimized with consideration to 

the ADC, DDC, filter, parallel correlator, and CORDIC blocks.  Therefore, 6 sections of the 

receiver are altered for optimization, as shown in Figure 3.68.  The signal is optimized before 

analog to digital conversion, after digital down conversion, after the two running average filters, 

after the carrier loop, after the parallel correlators, and after the CORDIC.   
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Figure 3.68: Location of Optimization Points in Receiver 

 

 Optimization of the system is dependent on the datapath size of the signal at various 

points in the receiver.  Minimizing the datapath size decreases the area the system model requires 

on hardware, but also increases the BER of the system.  Therefore, a relationship must be 

established between these two parameters to achieve an optimized design.  As a result, the BER 

of the system is recorded for varied word lengths of the input signal of the optimization block.  

To evaluate the significance of each section of the receiver, all other signals are kept at full 

precision in other areas of the receiver for each simulation.  

 

A multiplexer is used to select the various datapath sizes, varying from the input 

sequence having all ‘A’ bits to the input sequence being composed of just two bits.  In Figure 

3.69, the select signal to the multiplexer is controlled by the user through a gateway in block.  

This block is allocated to pins corresponding to the hardware platform.  This scheme is similar to 

the one used in the channel to create varying noise levels.  Further explanations of this block are 

provided in Chapter 4.  For the first iteration, all the bits of the input sequence with word length 

'A' are used to evaluate the BER.  For the next iteration, one bit of the input signal is sliced off 

and instead inserted with a zero.  The extra zeros are inserted to bring the signal back to its 

original length of ‘A’ bits.  This methodology is chosen because a multiplexer requires all input 

signals to be of same length.  For the next iteration, two bits are sliced off and two zeros are 

inserted at the end of the signal.  The user continues performing these iterations until just two bits 

are left in the input signal. 
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Figure 3.59: Optimization Block 

 

The results are recorded and the input signal to that section is brought back to the original 

precision.  The next area of the receiver is chosen for optimization and the same methodology is 

applied until all six sections of the receiver have been optimized individually.  By using these 

results, several minimum area solutions are constructed to find an optimum design whose 

performance maintains certain specifications. 

 

Since optimizing the system model is the ultimate goal of this thesis, accurately modeling 

the DSSS transceiver in System Generator is very important.   Therefore, each component of the 

transmitter, channel, and receiver is tested for functionality before obtaining any performance 

results.  The signal output is viewed in simulation after each significant block of the system 

model is incorporated in the design.  Each block is finely tuned to obtain desired results by 

changing its parameters in the software. These parameters are discussed in Chapter 4.  The signal 

outputs of the system model are tested in hardware to verify compliance to simulation results.  

Finally, block parameters are changed in the software environment to obtain an optimized DSSS 

transceiver design. 
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Chapter 4  
DSP Analysis and System Generator 

 

 

Over the years, the trend in the industry has migrated towards platform chips (FPGAs, 

DSP) to reduce costs.  Designers are leaning towards implementing system on chips for increased 

design flexibility.  As a result, challenges in modeling and implementing an entire platform arise.  

Therefore, DSP aspects of the system model of the transmitter, channel, and receiver used to 

describe the communication system are very important.  This chapter will explain the different 

types of design flows available for DSP and the steps required in implementing them.   

 

The overall approach to simulating a communication system is to create a system model 

consisting of functional blocks from a set library, which are interconnected to produce particular 

results.  The parameters of each block are specified before execution based on system 

specification. Since the system design, described in chapter 3, is modeled with a software 

package called System Generator, this chapter will provide background on its features and 

highlight key facets of the software structure.  Also, HDL co-simulation which supports legacy 

code will be discussed in view of the fact that having the ability to include legacy code is 

essential for many DSP system designers.  Finally, details on implementation of hardware-in-the-

loop (HIL) simulations will be provided since HIL is used for fast design verification. 

 

4.1 DSP Design Flow 

 
DSP design flow consists of the following steps: DSP Systems Modeling, System 

Generation, HDL Synthesis, Simulation/Verification, FPGA Implementation and In-System 

Debug.  Figure 4.1 illustrates the steps for DSP design flow.  Although, the Xilinx System 

Generator for DSP software platform is a critical component of DSP design flow, other tools are 

necessary to enable simulation, translation, and verification.  The additional software may be a 

combination of Xilinx XST, Synplify Pro from Synplicity, Leonardo Spectrum from Mentor 

Graphics, ModelSim from Mentor Graphics, Xilinx MXE, Xilinx ISE, and Xilinx ChipScope Pro. 

• DSP System Modeling:  By using familiar tools like MATLAB and Simulink, users can 

develop models of their DSP systems. System Generator includes a Xilinx blockset that  
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Figure 4.1:  Traditional Simulink FPGA Flow 

 

comprises basic level building blocks like FFTs, and advanced DSP algorithms like 

digital down converters.  Users can also bring in their own HDL Modules via HDL co-

simulation, or write MATLAB code for combinational control logic or state machine. 

• System Generation:  System Generation for DSP is invoked from Simulink through the 

System Generator for DSP token. This token generates VHDL and cores for all the Xilinx 

Blocks on the sheet containing the token, and on any sheets beneath it in the design 

hierarchy. FPGA designs are generated using Xilinx optimized LogiCOREs, ensuring 

that the most efficient implementation is being produced. 

• HDL Synthesis:  Once VHDL has been generated by System Generator for DSP, users 

may want to synthesize this for optimal FPGA implementations whether it is for high 

performance or optimal area. Users can choose from one of three popular synthesis 

engines including Xilinx's XST, Synplify Pro from Synplicity and FPGA Advantage 

from Mentor Graphics. 

• Simulation/Verification:  A VHDL testbench and data vectors can also be created by 

System Generator for DSP. These vectors represent the inputs and expected outputs seen 

in the Simulink simulation, and allow the designer to easily see any discrepancies 

between the Simulink and VHDL simulation results. FPGA Advantage can be used to 

conduct simulations of DSP systems prior to implementation. If doing HDL co-

simulation, ModelSim is required.  
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• FPGA Implementation:  Finally, designers can use ISE implementation tools to place 

route and verify the design in a FPGA.  ISE allows users to use VHDL and design 

schematic entry tools to perform behavioral and timing simulations.  

• In-System Debug:  Hardware Co-Simulation capability can be used to accelerate 

simulation and verify the design in hardware. Including ChipScope Pro to your design 

flow will allow real-time debugging at system speed [32]. 

 

4.1.1 Types of Design Flows 

 

The three types of design flows for DSP are VHDL-based designs, CORE Generator 

based designs, and System Generator based designs.  All three have various advantages and 

disadvantages.  VHDL-based designs offer portability, complete control of the design 

implementations and tradeoffs, and easy debugging.  However, they are time consuming and 

require users to have familiarity of the algorithm and how it is written.  CORE Generator based 

designs provide quick access to existing functions and optimized IP for the specified design.  

Nonetheless, they might not have the exact functionality.  System Generator based designs are 

very attractive for FPGA novices.  They offer high productivity and ability to simulate at a 

system level.  The hardware in the loop simulation feature improves productivity and accelerates 

verification.  The downfall of this type of design is that it doesn’t always provide the best results 

from an area usage point of view.  It is also not well suited for multiple clock designs.  Due to its 

numerous advantages, the communication model design for implementing SDR is based on 

System Generator flow [22].  

 

4.2 Simulink 
 

Simulink is a platform for multi-domain simulation and model-based design for dynamic 

systems. The Simulink environment provides an alternative to using programming languages for 

system design.  It is a software package that supports linear and nonlinear systems, modeled in 

continuous time, sampled time, or a hybrid of the two.  Simulink enables user to visualize the 

dynamic nature of the system by providing a graphical user interface (GUI) and a customizable 

set of block libraries.  The designs follow a system of hierarchy allowing designers to build 
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systems using both the top-down approach and the bottom-up approach.  Simulink illustrates the 

design in a realistic fashion with respect to the hardware design.  Most hardware designs start out 

with a block diagram description and specifications of the system, very similar to the Simulink 

design.   Unlike the sequential manner of software code, the Simulink model can be seen to be 

executing sections of a design at the same time [33].  This notion of parallelism is fundamental to 

implementing high-performance hardware implementations.  System Generator, a system level 

modeling toolbox running under the Simulink environment, allows user to move from the 

software environment to hardware implantation with ease by providing high level abstractions 

that are automatically compiled into an FPGA. 

 

4.3 System Generator 
 

System Generator for DSP is fast becoming the preferred framework for developing and 

debugging high-performance DSP systems using the industry’s most advanced FPGAs. It is a 

Xilinx software package that allows a designer to develop high performance DSP systems for 

Xilinx Virtex, Virtex-II, and Spartan-II FPGAs via MATLAB and Simulink.   System Generator 

allows a designer to generate a system-level abstraction of FBGA circuits.  These circuits are 

composed of common functions available in the Simulink library.  The Simulink model 

automatically generates VHDL code that can be used with HDL testbenches.  Figure 4.2 shows 

how System Generator interacts within the MATLAB environment.  Simulink provides a block 

library that contains block sets used to model systems.  System Generator provides an additional 

library that contains blocksets similar to those in the Simulink library.  The advantage of this 

library is that these blocks can be implemented in hardware through the System Generator token.  

This token allows the generation on VHDL code, cores, and test vectors when HDL code 

generation is selected.  FPGA implementation can be obtained by applying a synthesis tool, such 

as ISE, to the generated VHDL code.  After mapping and place and route, ISE produces a 

bitstream that can be downloaded to a FPGA device using the FUSE software [23].  

 

System Generator provides system-level designers with a portal into the FPGA, tapping 

into existing technologies to provide the foundations for system design for implementation.  The 

following reasons illustrate that System Generator is an excellent choice for DSP platform 

designs.  
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Figure 4.2: System Generator Flow Diagram 

    
• Huge productivity gains through high-level modeling 

• Ability to simulate the complete designs at system level 

• Very attractive for FPGA novices 

• Excellent capabilities for designing complex testbenches 

• HDL Testbench, test vector, and data written automatically 

• Hardware-in-the-Loop simulation improves productivity and provides quick verification 

of whether the system is functioning correctly. 

  

4.3.1 Xilinx Blockset Library 

 

The Xilinx Blockset is a Simulink library, accessible from the Simulink library browser. 

It consists of building blocks that can be instantiated within a Simulink model, and like other 

Simulink blocksets, elements can be combined to form subsystems and arbitrary hierarchies. The 

Xilinx Gateway blocks are used to interface between the Xilinx Blockset fixed-point data type 

and other Simulink blocks. Every Xilinx Blockset element can be configured via a 

parameterization GUI, with few exceptions even during simulation. Many blocks share common 

parameters, which are described later in this chapter. Most also have parameters specific to the 

function computed.  The System Generator has the ability to generate an FPGA implementation 
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consisting of RTF VHDL and Xilinx Smart-IP Cores from a Simulink subsystem built from the 

Xilinx Blockset [23]. The overall design, including test environment, may consist of arbitrary 

Simulink blocks. However the portion of a Simulink model to be implemented in an FPGA must 

be built exclusively of Xilinx Blockset elements, with the exception of subsystems denoted as 

black boxes. 

 

The following lists some of the most important blocks included in the Xilinx Blockset Library 

and where they can be found. 

• Basic Elements  • DSP    • Math 

- System Generator  - DDS    - Accumulator 

- Black Box   - FFT    - AddSub 

- Concat   - FIR    - CMult 

- Constant       - Inverter 

- Convert       - Logical 

- Counter   • Memory   - Mult 

- Delay    - Dual Port RAM  - Negate 

- Down Sample   - FIFO    - Relational 

- Get Valid Bit   - ROM    - Scale 

- Mux    - Single Port RAM  - Shift 

- Register       - SineCosine 

- Set Valid Bit       - Threshold 

- Slice    • MATLAB I/O 

- Sync    - Clear Quantization Error 

- Up Sample   - Display 

- Accumulator   - Enable Adapter 

- AddSub   - Gateway In 

- CMult    - Gateway Out 

- Inverter   - Quantization Error                           

- Logical   - Sample Time 

- Mult  

- Negate 

- Relational 

- Scale 
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- Shift 

- SineCosine 

 

4.3.2 Bit True and Cycle True Representation 

 

The Xilinx System Generator supports bit true and cycle true modeling of hardware. 

System Generator is bit true in the sense that signals in System Generator are represented as 

arbitrary precision fixed point data, which in VHDL corresponds to standard logic vectors. A 

fixed point value in a System Generator signal in Simulink consists of the same bits as its 

corresponding bits of the standard logic vector in VHDL.  In addition to the fixed point value, 

every System Generator signal is sampled, and has an associated sample period. This implies that 

transitions occur only at multiples of the sample period for the block that drives the signal. In the 

VHDL generated by System Generator, the corresponding standard logic vector is driven by a 

block that is clocked (or if combinational, has an “inherited” clock period from its inputs) at a 

particular clock rate. The corresponding sample period in Simulink is guaranteed to be a multiple 

of the hardware clock period. At the clock transitions, this correspond to sample period multiples 

the bits in the standard logic vector (VHDL) match the fixed point data in the Simulink signal 

(software). This is an example of how System Generator is cycle true [23]. 

 

4.3.3 Hierarchy and Subsystems 

 

All large designs will utilize hierarchy by implementing subsystems.  This is a useful 

feature for maintaining the readability and reducing complexity of the design.  Hierarchy in the 

VHDL code generated is determined by subsystems. When Simulink creates a subsystem, 

additional blocks known as in ports and out ports, are added as hierarchy connectors. Also, when 

analyzing a design in the Xilinx implementation tools, the name of a subsystem will be added to 

the component and signal names in that subsystem. 

 

Subsystems can be personalized through masking.  This allows the user to generate 

custom macro blocks with a custom icon, create a parameter dialog box for the block, shield 

complexity of the internal components of the block, and protect the contents of a block from 

being altered by unauthorized users. 
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4.3.4 Configuring Blocks 

 

Most Xilinx blocks have parameters that can be configured. The typical element has a 

parameterization GUI with several common parameters (common to most blocks in the blockset) 

and some specific parameters (specific to the particular block only).  Block parameters can be 

defined as equations which are calculated in the beginning of the simulation.  This is useful when 

simulations must be done for varying parameter values.  The configurable parameters of any 

block can be viewed or changed through block parameters.  It is important to keep in mind that 

although all parameters can be simulated, not all are realizable.  The following is a list of the 

configurable parameters [23]. 

• Arithmetic Type: Unsigned, Signed, Twos Complement, Boolean 

• Latency:  This parameter defines the number of input sample periods required for an 

input to affect a block output.  Since System Generator doesn’t perform extensive 

pipelining, additional latency is implemented as a shift register on the output of the block. 

• Overflow and Quantization: Saturate, Wrap, Truncate, Round 

• Precision: Full or User Defined with the number of bits and decimal point placement. 

• Sample Period: Inherited with ‘-1’ or User Defined with integer value to process data 

streams at a specific sample rate as they flow through the system. 

• Override with doubles (Simulation only): With this option, the fixed-point simulation is 

bypassed and instead is executed in doubles.  This is useful in examining the effects of 

quantization on the system design. 

• Implement: With Xilinx Smart-IP Core or Generate Core 

 

The simulation model of a functional block is a transformation of the form 

}...;];[],....1[],[{][],....1[],[{ ,2,1 qpppknjkxjkxjkxFmkykyky −−−−−=−− ,        (4.1) 

where x[k] represents input samples, y[k] represents output samples, p1, p2,…. pq  represents 

configurable parameters of the block, and k = m, 2m, 3m,…. is a time index.  In such a 

representation, n samples of the input are used to generate m samples of the output of the model 

according to the transformation F, which is defined in terms of the input samples, the parameters 

of the block, and the time index k. The model is considered time-invariant if the transformation 

does not depend on the time index k.  If m = 0 the block is evaluated on a sample-by sample basis.  
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If n = 0, the block is memoryless.  The construction and execution of each block must take all 

such parameters in consideration [30] 

 

4.3.5 Parametric Designs 

 

Parametric designs provide flexibility on the IP within the block.  Therefore, the same 

block can be used at different places in the design with different parameters.  Not having to 

recreate the same blocks, saves the user valuable time.  Also, it simplifies the comprehension of 

the design if parameters are used instead of numbers which other users may not understand.  

Parametric designs can be created by using functions such as get_param, set_param, find_system, 

add_block, delete_block, add_line, delete_line, etc [23].  Parameterization is useful in 

optimization of design which involves finding the optimum value of critical parameters such as 

number of quantization levels to be used in the receiver.  

 

4.3.6 Quantization and Overflow 

 

Most Xilinx blocks are polymorphic since they are able to deduce their output types 

based on their input types.  When the full precision option is chosen, the block ensures that the 

output has no loss in precision.  Therefore, sign extension and zero padding occur automatically 

when necessary.  In Simulink the numbers are represented in double-precision whereas in Xilinx 

Blockset, the numbers are represented in fixed-point.  Since resources are valuable and cost 

money in FPGAs, it is necessary to maximize the dynamic range of the design by using only the 

required number of bits.  A user specified precision allows the user to set the output type for a 

block and to specify quantization handling and overflow. Figure 4.3 illustrates an example of 

overflow and quantization. 

 

Quantization is a process of handling higher-precision number representation with a 

lower-precision number representation.    Truncate and rounding are the two options available to 

handle it.  An overflow occurs when a large number is represented in a smaller range 

representation.  Saturate, Wrap the value, and Flag an error are the three options available to 

handle overflow.  Efficient implementation of quantization and overflow is critical when datapath 

sizes are reduced for optimization purposes.   
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Figure 4.3:  Quantization and Overflow Example 

   
 

4.3.7 Bit Picking 

 

Bit picking is necessary when there is need to combine two data buses together to form a 

new bus, force a conversion of data type including the number of bits and binary bits, reinterpret 

unsigned data as signed, or extract certain bits of data, especially when there is bit growth.  The 

four Xilinx library blocks available for manipulation and re-interpretation of data are Concat, 

Convert, Reinterpret, and Slice.  Understanding overflow and quantization is necessary when 

using the Convert block.  Saturating the overflow may change the fractional number to get the 

saturated value, while rounding the quantization may affect the value to the left of the binary 

point [23]. 

 

4.3.8 Control Mechanism 

 

The two mechanisms available in System Generator to control the data flow are enable 

and reset ports and valid and invalid data ports.  An enable port, if available, ensures that the 

block holds its current state until it is asserted or the reset signal is asserted.  The reset port, if 

available, is connected to a signal that places the block in its initial state when asserted.    Both, 

enable and reset signals, must be of Boolean type and run at a multiple of the sample rate of the 

block.  Invalid data ports may be required for data burst applications, one-shot FFTs, and latency 

output from high-level cores.  Valid bit ports are used as control signals to the data input.  They 

may be accompanied by a valid out signal that signals whether the output data is valid.  Such 

ports may be necessary to ensure that a Xilinx block doesn’t produce indeterminate data [23]. 
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Several control blocks are provided to facilitate a high-level control mechanism and 

implement state machines.  The Mcode block executes the supplied MATLAB M code to 

calculate the values the block delivers to a Simulink simulation.  The expression block performs a 

bitwise logical expression.  The Mealy State Machine block implements a state machine whose 

output depends on both the current state and the input, while the Moore State Machine block 

implements a state machine whose output only depends on the current state. 

 

4.3.9 Sampling Period and Propagation Rules 

 

System Generator designs are discrete time systems. Therefore, the data streams are 

processed at a specific sample rate, or clock period, as they flow through a dataflow system. A 

block’s sample rate determines how often the block is updated.  Typically, each block detects the 

input sample rate and produces the correct sample rate on its output. This “explicitly inherited” 

sample period tells Simulink to inherit the first encountered sample time.  Feedback loops cause 

problems for Simulink’s propagation algorithms.  Therefore, the user must set at least one explicit 

sample time in every feedback loop.  By selecting Explicit Sample Period rather than the default, 

the user can set the sample period required for all the block outputs, which supplies a hint to the 

feedback loop.  The following blocks can change the sample period: Up Sample, Down Sample, 

Parallel to Serial and Serial to Parallel [23]. 

 

Increasing the sample rate (up sampling) by an integer factor I is called interpolation and 

decreasing the sample rate (down sampling) by an integer factor D is known as decimation.  The 

up sample block either replicates the same number M-1 times or inserts M-1 zeros to achieve the 

higher sampling rate.  The down sample block extracts M-1 samples to achieve the lower 

sampling rate.  Figure 4.4 shows the effects that up sampling and down sampling have on a signal 

[30]. 

 

When establishing a suitable sampling rate factors, such as aliasing error, frequency 

warping in filters, and bandwidth expansion due to nonlinearities, need to be taken into 

consideration.  Increasing the sample rate can subdue these effects, but will also increase the 

computational load.  As a result, there is a tradeoff between accuracy and simulation time. 
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Figure 4.4:  Up Sampling and Down Sampling Example 

  

4.3.10 Multi-rate Systems and Sample Rate Conversion 

 

 DSP involves up conversion and down conversion of frequency and this can be 

associated by different sample rates.  It is necessary to be able to convert between different 

sample rates in System Generator so that every subsystem is clocked only at a rate necessary to 

compute its input-output relation.  This leads to more efficient use of resources and 

implementations that require less power. Significant resource savings can be accomplished by 

time-division multiplexing a data path to service multiple data streams that operate at a lower 

frequency than the processor.  

 

In the digital domain, the change of the sample rate can be viewed as a linear filtering 

operation.  If Fx is considered as the sampling rate of an input x(n) and Fy is the sampling rate of 

the output y(n), then the ratio of the sampling rates Fy/Fx must be rational [30].  Therefore,  

     
D
I

F
F

x

y = ,          (4.2) 

where I and D are relatively prime numbers [1].  The sample rate conversion can be explained as 

digital re-sampling of the same analog signal.  If x(t) is the analog signal with sampled at a rate Fx 

to generate x(n) and y(m) is obtained from sampling x(n) at a sample rate Fy, then y(m) is a time-

shifted version of x(n).  Figure 4.5 depicts this view of sample rate conversion.  The time 

difference between the x(n) and y(m) sample is denoted as τi. 
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Figure 4.5:  Sample Rate Conversion Example 

 
4.3.11 Hardware Clock and Over-clocking 

 

System Generator infers the clock from the design sample times, and abstracts away the 

clock enables.  In multi-rate systems, further clock enables are inferred due to the more complex 

hardware elaboration scheme.  Every block receives the same system clock signal, the fastest 

clock, but is enabled at its relative rate which is defined in the Simulink environment.   

 

In hardware, the sample period acts as the number of clock pulses between clock 

executions.  System Generator examines every sample time in the entire system and computes the 

greatest common divisor (GCD).  The system clock corresponds to the GCD and each sample 

period is then normalized to a multiple of this value.  System Generator circuitry that periodically 

asserts a clock enable (CE) for every required multiple is generated in a .vhd file.  The entire 

system is referred to as a synchronous clock enable scheme. CE is modeled to reflect the 

hardware behavior, and therefore, the signal must come one clock cycle earlier.   This is a 

familiar behavior to hardware designers, but is unusual for system-level designers. Figure 4.6 

illustrates the behavior of CE.  The CE pulses are referred to as the “Normalized Sample Times.” 

Figure 4.6 shows that System Generator designs uses only one CLK and lower CLK speeds are 

derived from CE for different rate blocks.  The period constraint is based on the system sample 

period and the FPGA system clock period specified in the System Generator token [23].  This 

type of clocking scheme requires implementation tools to be informed of the clocking speed of 

each flip-flop.  Therefore, System Generator places timing constraints based on CE signals in a 

XCF file.  Further details on timing constraints will be discussed in Chapter 5. 
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Figure 4.6:  Clock Enable Behavior Example 

 
Some System Generator blocks, such as a multiplier, require over-clocking.  This implies 

that the block’s internal processing is run at a faster rate than its data rates.  In hardware, this 

signifies that more than one clock cycle is necessary for the block to process a data sample. 

Therefore, the internal processing of the over-clocked blocks need to be considered before 

specifying the Simulink sample period in the System Generator token.   

 

4.3.12 Gateway In and Gateway Out Blocks 

 

The Gateway In and Gateway Out blocks provide an interface between the Xilinx 

blocksets and the Simulink blocksets.  They also act as input and output ports for the FPGA.  The 

Gateway blocks also handle type conversions since MATLAB uses double precision floating-

point and Xilinx uses fixed-point precision.  This conversion from double to fixed point causes 

quantization effects.    

 

4.3.13 System Generator Token 

 

The System Generator token resides on the highest hierarchy level of the design.  All 

System Generator designs must include a System Generator token.  System Generator also offers 

the option of having numerous System Generator tokens in System Generator designs.  This 

provides the software the ability to test lower levels of the design.  For the simulation to work 

correctly, the Simulink System Period must be defined correctly.  This value defines the smallest 
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period at which the system can run.  All other sample periods are evaluated from this sample 

period.  In hardware, this value equates to the System CLK that drives the design.  As a result, the 

FPGA System CLK requires a value in nanoseconds to pass onto the timing constraints.  These 

two fields define the scaling factor between time in Simulink simulation and time in actual 

hardware implementation. Also, they are necessary to achieve the desired timing performance in 

the place and implement part of the design. VHDL code can be generated by selecting HDL 

Netlist in the System Generator token.   The target device is selected to correspond to the 

hardware board being used [23].  Figure 4.7 illustrates the parameters defined by the System 

Generator token.   

 

A System Generator block that lies in the scope of another system generator block is 

called a slave.  Otherwise it is called a master.  Most system parameters can only be set in the 

master block.  System generator will automatically synchronize slave blocks to the parameters 

specified in their master block.  System parameters specified in the System Generator block affect 

the Simulink behavior, the hardware realization or the relation between the two for every block in 

the Xilinx blockset.  Consequently, every element in the blockset must lie in the scope of a 

System Generator block.  Therefore, every Simulink model that contains any element from the 

blockset must contain at least one System Generator block. 

 

 
Figure 4.7:  System Generator Token Block 
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System Generator can compile the model into various low level representations 

depending on the System Generator settings.  The tool generates auxiliary files in addition to 

generating HDL files for hardware description.  Some generated files are necessary for assisting 

downstream tools, while others are needed for design verification.  The following describes a list 

of output files generated by System Generator. 

• Design files: VHD (VHDL files); EDN (core implementation files); XCF (Xilinx timing 

constraint file) 

• Project Files: NPL (Project Navigator project file); TCL (scripts for Synplify and 

Leonardo project creation 

• Simulation Files: DO (simulation scripts for MTI); DAT (data files containing test bench 

for System Generator; VHD (simulation testbench) 

 

4.3.14 Resource Estimator 

 
Xilinx resource estimator provides fast estimates of the FPGA resources required to 

implement a System Generator model.  The estimates are computed by invoking block-specific 

estimators for Xilinx blocks, and summing these values to obtain aggregated estimates of lookup 

tables (LUTs), flip flops (FFs), block memories (BRAM), 18 x 18 multipliers, three-state buffers, 

and I/Os.  The Resource Estimator block provides three types of estimation: Estimate Area, Quick 

Sum, and Post-Map Area.  The Estimate Area button invokes block estimation functions top-

down for each block and subsystem recursively.  The Quick Sum button causes the resource 

estimator block to sum all the FPGA Area fields on the block and subsystems at or below the 

current subsystem.  No underlying estimation functions are invoked.  The Post-Map Area button 

opens a file browser and lets the designer select the map report file.  The design needs to be 

generated and implemented through synthesis, translate, and mapping phases prior to selecting 

this option. 

 

4.4 HDL Co-Simulation 
 

HDL co-simulation provides users a means to incorporate legacy code in a Simulink 

based system DSP design.  Legacy code simulated in the Simulink tool can significantly reduce 

development time, resources, and cost because designers no longer need to write S-functions for 

Simulink.  It also allows compilation of HDL designs into FPGA hardware which can be co-
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simulated in the ModelSim environment.  HDL co-simulation is supported by the following 

System Generator blocks: Black Box, Simulation Multiplexer, and ModelSim.   

 

Figure 4.8 illustrates the required steps for HDL Co-simulation.  A Black block is used as 

a way to incorporate non-Xilinx blockset functions into a System Generator model.  This black 

box must be associated with a VHDL or Verilog file.  Before compiling the design for co-

simulation, a ModelSim block that represents the interface to the HDL co-simulator must be 

placed in the design.  Finally, a testbench can be created to verify the functionality of the system 

in ModelSim through simulation.   

 

HDL co-simulation of the design in FPGA hardware accelerates simulation speed since 

large HDL designs involve lengthy simulation times.   The ModelSim co-simulation option 

allows the netlist portion of the design to be co-simulated in hardware along with traditional HDL 

components.  A System Generator design can be compiled for ModelSim hardware co-simulation 

provided the resource requirements of the design do not exceed the available resources of the 

underlying hardware platform.  The time matching between Simulink and ModelSim makes it 

easier for the designer to compare times at which events occur in the two settings.  On a larger 

scale, it is useful since it allows System Generator to schedule events without running into issues 

related to timing characteristics of the HDL model.   

 

 
Figure 4.8:  Required Steps for HDL Co-simulation through ModelSim 
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4.5 HIL Simulations 
 

Hardware in the loop (HIL) is a Simulink hardware accelerator which enables design 

verification in hardware.  It is a Simulink-to-bitstream-to-Simulink push-button flow to simulate 

HDL and EDIF-based designs.  As a result, HIL simulations reduce design time and cost by 

allowing designers to verify designs in the hardware directly from the Simulink tool.  Also, HIL 

simplifies hardware verification since it mirrors traditional DSP processor design flows and 

allows designers to accelerate the simulation when required, without the need of expensive 

emulation hardware, or long simulation times. 

 

Hardware in the Loop simulations provides the following benefits when compared to 

emulated platform tests: 

• Timing:     Timing problems are not apparent in software simulations because they might 

not take into account the real time of code execution or data acquisition.  Since HIL tests 

are performed in real time, any timing errors that occur will be apparently noticeable to 

the user. 

• Concurrency:      True concurrency of code execution on hardware cannot be simulated in 

pure software simulations.  Therefore, problems such as hidden race conditions may go 

undetected and detailed event and state behaviors cannot be simulated.    

• Hardware-specific Code:     Since pure software simulations ignore hardware specific 

routines, any errors in the code can only be detected through actual hardware simulation. 

• Communication Details:   Communication protocols are simplified in simulators.  

Therefore, any errors in the code can only be detected through hardware simulation. 

• Hardware Upgrades/Modifications:     Simulators will not represent all aspects of the 

hardware.  As a result, HIL tests are necessary to get accurate results when any hardware 

modifications or upgrades have been made. 

• Performance Tuning:     As a result of the above problems, performance of any 

application will be different in pure simulation from HIL testing.  Therefore, the 

performance can only be adjusted when HIL testing is performed [22]. 
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HIL simulations can be induced provided that the model meets the requirements of the 

underlying hardware specified by the System Generator token.  This allows the Xilinx 

implementation tool flow to run in the background to create a BIT file and a library component.  

It also generates HDL and netlist files for the model and runs the downstream tools necessary for 

producing a FPGA configuration file.  The configuration bitstream, shown in Figure 4.9, contains 

the necessary hardware for the model and interfacing logic to allow communication between the 

PC and the hardware platform through a physical interface such as a universal serial bus (USB).   

During simulation, a hardware co-simulation block interacts with the underlying FPGA platform, 

automating tasks such as device configuration, data transfers, and clocking. 

 

The hardware generation produces a library block which must be dragged onto the design 

window and connected to all source and sink blocks before being simulated.    The block assumes 

the external interface of the model and matches its port names to the port names on the original 

design.  Therefore, the block produces the same type of signals as other System Generator blocks. 

The block can be driven by either Xilinx fixed-point signals or Simulink doubles.  If Simulink 

doubles option is selected, quantization in the input is handled by rounding and overflow is 

handled by saturation.  The data of the input ports is sent to its corresponding location in 

hardware when a value is written.  Similarly, the output port retrieves data from the hardware 

when there is an event.  The parameters of the block, such as hardware co-simulation clocking, 

need to be specified according to selected FPGA platform for implementation.   

 

As, shown in Figure 4.10, HIL simulations can also be performed by generating a HDL 

netlist in the System Generator token for the design.  The generated output files are used in an 

implementation tool such as ISE to create a BIT file for the design.  This bit file is downloaded on 

the board through the software FUSE.  For debugging and design verification, system design 

outputs can be viewed through HIL.  To view results on devices such as logic analyzer, 

oscilloscope, frequency spectrum, etc. netlist generation through System Generator token and BIT 

file generation through ISE is necessary. Further details on the hardware aspects of HIL 

simulations and clocking synchronization are provided in Chapter 5. 
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Figure 4.9:  HIL Emulation 

 

 

 
Figure 4.10: Steps for HIL and Hardware Co-Simulation 
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Xilinx System Generator tool ensures that the behavior of the design in hardware is 

guaranteed to be bit and cyclic true just as it is in the pure software environment.  Xilinx’s 

System Generator toolbox converts the system design into HDL code that can be placed on 

hardware.  In co-simulation implementation, System Generator automatically produces a custom 

co-simulation library block that interfaces with the hardware when a simulation is run.  System 

Generator also ensures that the appropriate FPGA configuration files are produced for the 

targeted hardware platform.  The incorporation of hardware allows for increase in simulation 

speed, provides incremental hardware verification capabilities, and removes the difficulty of 

learning to program a FPGA.   
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Chapter 5  
Hardware Implementation and Analysis 

 

 

Since FPGAs play a critical role in enabling software defined radio technology cost-

effectively in real-world applications, Xilinx, a worldwide expert in digital signal processing 

development solutions and leader in hardware-in-the-loop co-simulation, has developed a product 

to reduce time-to-market and development costs for designers of digital solutions.  As described 

in Chapter 4, this tool automatically translates DSP systems developed using MATLAB and 

Simulink from The MathWorks into highly optimized VHDL and IP cores for Xilinx FPGAs 

such as the Virtex-II series and Spartan-3. Therefore, this chapter will provide extensive 

information on the features of the Virtex-II device used for hardware implementation. Next, this 

chapter will highlight the steps of Project Navigator, the software used to generate bit-streams 

directly from Simulink for FPGAs. Project Navigator is the user interface that helps designers 

manage the entire design process including design entry, simulation, synthesis, implementation 

and finally download the configuration of the FPGA device. Also, details will be provided on a 

software package called FUSE.  It acts as a direct interface between the MATLAB/Simulink 

environment and a hardware platform, allowing users to directly view the data output from the IP 

cores in the MATLAB environment.   Finally, the hardware architecture of the BER board 

constructed to evaluate bit error rate of the system will be explained.  The functionality of this 

board is described in Chapter 4. 

 

5.1 Parallelism 
 

Conventional DSPs use a common architecture known as the Von Neumann architecture.  

This architecture’s serial structure limits its performance.  The MACs within conventional DSPs 

are typically shared resources.  The increased number of MAC operations provides for more 

accurate results.  FPGA implementation based on sequential MAC can be very efficient for low 

sample rates.  To achieve higher sample rates, Xilinx uses parallel processing [34].  Figure 5.1 

depicts the architecture difference in MACs between conventional DSPs and FPGAs.  
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Figure 5.1:  Architecture Difference in MACs between DSPs and FPGAs 

 
Within a fixed MAC unit, the maximum sample rate is related to the algorithmic 

complexity as  

                    
sampleperopertionsofNumber
rateclockprocessorFixedratesampleMax =  .               (5.1)   

According to this equation, the sample rate must decrease as the algorithm complexity increases 

and requires more clock cycles to process each sample.  Using multiple processor engines is the 

only way to increase the algorithm complexity and the sample rate.  Parallel processing 

maximizes data throughput and provides the optimal performance versus cost tradeoff [1].   

  

 The parallel architecture allows performance of FPGAs to reach up to 500-billion MACs 

per second in the largest Xilinx Virtex-II FPGA, which is significantly higher than the 

conventional DSPs.  Figure 5.2 illustrates in detail the increase in performance of Xilinx FPGAs 

as compared to conventional DSPs.   

 

Another advantage of FPGAs is that they provide flexibility in design for a wide 

spectrum of sample rates, from multi-cycle implementation to single cycle.  This is highly crucial 

when designing a communication system, as illustrated by the system model in Chapter 3.  
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Figure 5.2:  Performance Comparison of Xilinx FPGAs and Traditional DSPs 

      Source: [35] 

 
5.2 Xilinx Xtreme DSP 

 

A user programmable Virtex-II device and high performance ADCs and DACs made the 

Xtreme DSP Development Kit-II an ideal candidate for implementing signal processing 

applications such as Software Defined Radio.  The Xtreme DSP board contains a motherboard 

and a module, which are referred as “BenONE-Kit Motherboard” and “BenADDA DIME-II 

Module”.  DIME is a modular standard for FPGAs that allows the system to be re-programmable 

and allows alteration of design partitioning at any time. The BenONE-Kit Motherboard contains 

the Spartan-II FPGA for 3.3V/5V PCI or USB interface, JTAG configuration headers and user 

pitch pin headers [35].   

 

5.2.1 Physical Description 

 

This device contains over two million system gates, enough to handle the types of 

complicated algorithms used in leading-edge digital communications and imaging solutions 

today. The board also offers flexible, high-speed, high-resolution data conversion for both 

baseband and direct IF applications, including: 

• Two Analog Devices AD9772A digital-to-analog converters, operating at up to 160 

MSPS, directly controlled by the on-board FPGA, allowing maximum operating 

flexibility. 
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• Two Analog Devices AD6644(5) analog-to-digital converters which interface directly to 

the on-board FPGA. The AD6644(5) is a high-speed, high-performance, monolithic 14-

bit device operating at up to 65 MSPS. 

• A dedicated PCI and USB interface, used for interfacing between the PC system and the 

user application running on the Virtex-II FPGA. This is complemented with drivers, 

(Windows 95/98/NT/2000 and Linux) which offer a complete foundation for system 

development. 

• A dedicated clock management FPGA (Virtex-II), along with the on board oscillator and 

external clock input. This device provides source selection and routing of programmable 

system clocks for low jitter. 

 

The hardware of this kit is contained in a blue case which provides EMI shielding and 

protection for the board.  Figure 5.3 displays the front of the case and highlights the location of 

the following components: ADCs, DACs, LEDs, USB connection, power input, JTAG cable 

access, and fan vent. Configuration of large designs can significantly overheat the User FPGA 

running at full potential.  Therefore, a temperature sensor is provided on the kit to monitor heat 

levels.  Also, a fan is installed to provide cooling to the User FPGA. Figure 5.4 emphasize the key 

features of the motherboard: I/O headers, JTAG headers, DACs, ADCs, LEDs, ZBT memory, 

main user FPGA, interface FPGA, crystal oscillator, PCI connection, USB connection, and power 

connections.  The clock FPGA is not visible in this figure since it is located on the underside of 

this module [35]. 

 

 
Figure 5.3: Front Case of XtremeDSP Board 

        Source: [35] 
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Figure 5.4: Key Features of the Motherboard 

         Source: [35] 

 

5.2.2 Virtex-2 Architecture 

  

 The Virtex-II device is embedded with user-programmable gate arrays to optimize for 

high-density and high-performance logic designs.  Figure 5.5 illustrates that the Virtex-II device 

is comprised of input/output blocks (IOBs) and internal configurable logic blocks (CLBs).  

Interfacing between package pins and the internal configurable logic is provided by 

programmable I/O blocks.  The internal configurable logic consists of the following elements: 

• CLBs are responsible for supplying functional elements for combinatorial and 

synchronous logic. 

• Block Select RAM memory modules are equipped with large 18-Kbit storage elements of 

dual-port RAM. 

• Multiplier blocks are 18-bit x 18-bit dedicated multipliers. 

• Digital clock manager (DCM) blocks assign digital solution for clock distribution delay 

compensation, clock multiplication and division, and coarse and fine tuned clock phase 

shifting. 

 

The CBL resources contain four slices and two 3-state buffers, where each slice 

contains two function generators, two storage elements, arithmetic logic gates, large 

multiplexers, wide function capability, fast carry look-ahead chain and horizontal cascade 

chains [36].    
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Figure 5.5: Virtex-II Architecture Overview 

       Source: [36] 

 
5.2.3 XtremeDSP Kit Highlights 

 
 Creating high performance DSP designs requires a fast platform FPGA for design 

implementation, easily accessible software tools and IP, and a pre-engineered high-performance 

hardware platform for quick functionality verification.  The XtremeDSP kit provides a complete 

development solution, allowing users to develop powerful DSP algorithms. The following 

reasons validate that XtremeDSP kit is a reliable candidate for creating DSP designs with 

exceptionally high performance.  

• High Performance:  The dual-channel high-performance ADCs and DACs, as well as the 

user-programmable Virtex-II FPGA, are ideal for implementing high-performance signal 

processing applications such as Software Defined Radio, 3G Wireless, networking, 

HDTV or video imaging. 

• Scalability:   The modular system is based on Nallatech’s latest DIME-II technology and 

is an ideal stepping stone if one wants to scale-up later for more demanding application 

requirements. Nallatech offers unparalleled off-module I/O capabilities and flexible 

FPGA device support, coupled with extreme bandwidth capabilities for next generation 

systems design. 

• Flexibility:   Communication and control of the Xtreme DSP demo board is provided via 

a PCI interface for embedded environments, or via a USB interface for stand alone 
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applications. The board also includes multiple clock drivers including an external clock, 

an on board oscillator, and a programmable clock. 

• Ease of Use:  Provides simple and well-integrated design flow from algorithm concept to 

hardware verification. The Xilinx System Generator for DSP interfaces with 

MATLAB/Simulink and a large selection of intellectual property (IP) from Xilinx, 

allowing users to solve complex DSP design problems quickly. Also, Nallatech FUSE 

(Field Upgradeable Systems Environment) software is provided to control and configure 

the on-board FPGA, and allows the user to transfer data between the motherboard and a 

host PC. 

• Time to Market Advantages:  Increases speed in implementing a complete system for 

applications such as digital communications and image processing. Thus, the user can 

focus on the design without worrying about prototyping [3]. 

 

5.2.4 Clocking Configurations 

 

The Xtreme DSP Development Kit-II has an intricate, yet flexible clock management 

system.  The 65MHz oscillator provides a low jitter clock source for the analog devices.  The kit 

also contains two soft programmable clock sources, which can be set to various frequencies.  

Figure 5.6 displays the location on hardware of the devices and inputs related to the clock sources 

and Figure 5.7 presents an overview of the clock structure of the kit. 

 

 The BenADDA module can use three system clocks (CLKA, CLKB, and CLKC) fed 

from the motherboard to the user FPGA.  The DIME-II motherboard generates these signals and 

routes them to the modules for placement.  These clocks can be controlled by the user and are 

routed to Global Clock pins.  The Fuse software controls the programmable oscillators, which 

only operate at the following frequencies: 20 MHz; 25 MHz; 30 MHz; 33.33 MHz; 40 MHz; 45 

MHz; 50 MHz; 60 MHz; 66.66 MHz; 70 MHz; 75 MHz; 80 MHz; 90MHz; 100 MHz; 120 MHz.  

The firmware selects the numerically closest available frequency when the requesting frequency 

doesn’t match one of the above frequencies [35].   
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Figure 5.6: Inputs Related to Clock Sources on Hardware 

          Source: [35] 
 
 
 

 
Figure 5.7: Overview of Clock Structure 

            Source: [35] 
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5.2.5 ADCs and DACs 

 

The BenADDA module used in the XtremeDSP Development Kit-II has two analogue 

input channels, with each channel providing independent data and control signals to the FPGA. 

Two sets of 14-bit wide data are fed from two ADCs (AD6644) devices to two DACs (AD9772A 

devices), each of which has an isolated supply and ground plane. The14-bit ADC resolution is 

represented in 2’s complement format.  The ADCs can handle up to 65MSPS sampling data rate 

and are clocked differentially. The inputs to the ADC devices are connected via MCX connectors 

on the front of the module. The standard shipped configuration exhibits 50Ω single-ended inputs, 

each featuring a 3rd order anti-aliasing filter with a -3dB point at 34.5MHz. The ADC has a full 

range input specification of 2.2 V peak to peak (p-p).  The recommended maximum signal 

magnitude at the MCX input to attain best performance characteristics is 2 V p-p or +/- 1 V [35].   

 

The 14-bit DAC resolution in offset binary format can handle a maximum of 160 MSPS 

input data rate.  The BenADDA is configured to have single ended DC coupled outputs from the 

DACs.  Each DAC device is clocked directly by an independent differential, LVPECL signal. 

This LVPECL signal is driven from Virtex-II XC2V80 FPGA (Clock FPGA) which is solely 

dedicated to managing the various methods for clocking each ADC and DAC device. The way the 

DACs are clocked depends on the bitfile that is assigned to the dedicated Clock FPGA [35]. 

 

5.2.6 Digital I/O 

 

Digital I/O is provided on the board for interfacing with other hardware or for debugging 

purposes through use of hardware such as logic analyzers.  Digital IO is available on the board 

through the following: 

• A 14-pin PLINK Bus header on the motherboard.  This header contains 12 bi-directional 

pin connections to the main User FPGA, while the other two are used as GND 

connections. 

• A 34 pin Adjacent Bus header on the motherboard.  This header contains 28 bi-

directional pin connections to the main User FPGA, while the remaining are reserved for 

a 3.3V connection, a GND, and ‘no connects’(NC). 

• A 2 pin user I/O header on the module.  This header contains 2 bi-directional connections 

to the main User FPGA. 
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In system design, the digital I/O is configured according to the specific I/O of the FPGA.  

The datasheets of the I/O standards supported by pins on the Virtex-II device can be found in the 

Appendix.  Each pin on the header corresponds to a particular pin number on the User FPGA.  

These pin numbers are needed when the user wishes to view a particular software output on 

hardware.  These pin numbers are assigned in gateway out blocks as explained in Chapter 3 [35]. 

 

5.2.7 JTAG 

 

The BenADDA module contains a JTAG based Plug and Play (PnP) facility to 

automatically detect modules already present in the system.  The JTAG chain, which is used for 

test and configuration purposes, connects to the General JTAG header via the standard JTAG pins 

on the User FPGA.  The General JTAG header supports flying lead connections for Xilinx 

Parallel-III or Parallel-IV pods.  The Parallel-IV JTAG header is necessary when the Xilinx 

JTAG Co-simulation option is selected in Xilinx System Generator token [35]. 

 

5.3 ISE 
 

Xilinx Integrated Software Environment (ISE) provides the user with a powerful and well 

integrated environment toolbox for the following steps of design flow: design entry, synthesis, 

verification, implementation and configuration and board level integration.  Figure 5.8 depicts the 

FPGA design flow process.  

 

Project Navigator is the primary user interface for Xilinx ISE, which allows users to 

create, define and compile a FPGA or CPLD design using a suite of tools accessible.  Each step 

of the design process, from design entry to downloading the design to the device, is managed 

from Project Navigator as part of a project. The top-level source defines the inputs and outputs 

that will be mapped into the device, and references the logic descriptions contained in lower-level 

sources. A project must contain at least one source as the top-level source.  All source files and 

their accompanying icon are displayed in the Sources in Project window below the project file.  

Figure 5.9 displays the Project Navigator window and highlights the key features involved for all 

the steps from design entry to configuration. 
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Figure 5.8: System Generator Based Design Flow 

 Source: [36] 

 
 

 
Figure 5.9: Project Navigator Window 
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5.3.1 FPGA Flow in ISE 

 

ISE flow for FPGAs consists of three different types: push button flow, basic flow, and 

advanced flow.  ISE is designed to provide a rapid design path, or "push button flow," for 

integrated circuit designs. These designs are usually smaller having fewer design elements and 

fewer timing constraints. It is often necessary to set design constraints, process properties and 

reiterate some of the steps in the flow in order to meet the timing requirements for the design. 

When the designs are usually of moderate complexity having more design elements and more 

timing constraints, it is defined as basic flow.  ISE provides a suite of tools necessary to create 

very complex designs and ensure that the design will meet the design requirements. These 

designs are usually moderate to very complex and can have a very dense population of design 

elements and timing constraints.  The design can be in VHDL, Verilog, ABEL, Schematic, or in 

some cases, a mixture of an HDL language and schematic design [36].      

 
When the ISE process is run, the source files will be analyzed to determine if any files are 

out of date or have been modified. Only the necessary processes will run to update and process 

the design.  The design will be synthesized and implemented and a programming file will be 

created. All output files (.map, .ngd, .bit, etc) are put in the project directory.  The (.bit) file is 

used to configure the device for debugging purposes or for creating and downloading a PROM, 

ACE or JTAG file to the device. 

 

5.3.2 Design Entry  

 

Design entry, the first step of ISE design flow, allows users to create source files based 

on design objectives. A top-level design file can be created by using either a HDL, such as 

VHDL, Verilog, or ABEL, or a schematic.  The top level module type is specified by creating a 

project.  A project is a collection of all files necessary to create and download the design to a 

selected device. This process is applicable to FPGA and CPLD designs. The new project file, 

(project_name).NPL, will be put in the new project directory.  Project Navigator will manage the 

project based on the target device and design flow the user selected when the project was created.  

It organizes all the parts of the design, and keeps track of the processes necessary to move the 

design from the conceptual stage through implementation in the targeted Xilinx device [36].  
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5.3.2.1 Using Design Constraints 

 

Xilinx software enables the user to specify several types of constraints to help with the 

construction of the design. Constraints can be used in a design to control or modify the behavior 

of the timing within a design. Constraints will allow for specific placement of elements defined 

within a design. Also, the synthesis process can be controlled through the use of constraints in the 

synthesis constraints file.  In order for the project to use constraints in ISE, the user must first 

create an implementation constraints file (UCF) or add a constraints file from another project if 

one already exists. The user can create area constraints that apply to the placement of logic on the 

device. Area (or placement) constraints are a way of restricting where place and route (PAR) can 

place a particular piece of logic. By reducing PAR's search area for placing logic, PAR's 

performance may be improved.  Area constraints for each type of logic element, such as flip-

flops, ROMs and RAMs, FMAPs, F5MAPs, and HMAPs, CLBMAPs, BUFTs, CLBs, IOBs, 

I/Os, edge decoders, and global buffers can be created in FPGA designs [36].   

 

Finally, precise timing constraints for any nets or paths can be specified in the design or 

globally. One way of specifying path requirements is to first identify a set of paths by identifying 

a group of start and end points. The start and end points can be flip-flops, I/O pads, latches, or 

RAMs. One can then control the worst-case timing on the set of paths by specifying a single 

delay requirement for all paths in the set.  The primary method of specifying timing constraints is 

by entering them in the design (HDL and schematic). However, one can also specify timing 

constraints in constraints files (UCF, NCF, PCF, XCF).  Once the user defines timing 

specifications and maps the design, PAR places and routes the design based on these 

requirements.  The results of the timing specifications can be analyzed through the command line 

tool TRACE (TRCE) or the GUI tool Timing Analyzer [36]. 

 

5.3.3 Performing Synthesis  

 

Synthesis of the design can be performed after the design has been successfully analyzed. 

The synthesis process translates the design into gates and optimizes it for the target architecture.  

One can view the results of the synthesis process in the synthesis report. The synthesis report 

contains many sections that indicate how the design is optimized.  If the design is not optimized 

to the user’s specifications he/she can modify the synthesis properties. The synthesis report 
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contains the following sections: Synthesis Options Summary, HDL Compilation, HDL Analysis, 

HDL Synthesis, HDL Synthesis Report, Low Level Synthesis, Final Report, Device Utilization 

Summary, and Timing Report [36]. 

 

5.3.4 Verifying a Design 

 
The functionality of the design can be tested at various points of the design flow, which 

include behavioral simulation prior to synthesis, post-translate simulation, post-map simulation, 

and post-place and route simulation.  Functionality and timing verification of the design can be 

instigated through simulator software or by a portion of the design.  The simulator translates 

VHDL or Verilog into equivalent circuitry and reports the results based on HDL description [36].   

 

5.3.4.1 Performing a Behavioral Simulation 

 

Register Transfer Level (behavioral) simulation can be completed prior to synthesizing 

the design. This simulation is typically performed to verify code syntax and to confirm that the 

code is functioning as intended. Behavioral simulation can be performed on either VHDL or 

Verilog designs.  To do this, it is necessary to create a testbench and a testbench waveform file 

(.TBW file), which is passed to ModelSim for simulation. 

 

5.3.4.2 Performing a Post-Translate Simulation 

 

Post-Translate simulation model can be generated that will contain a mapping for CLBs 

and IOBs in the design. This creates a (module_translate).VHD or (module_translate).V 

simulation file. The simulation model generated by this process can be used as input to ModelSim 

Xilinx Edition (MXE), HDL Bencher, or the user’s own installed simulation program.  Post-

Translate (functional) simulation can be performed prior to mapping the design. This simulation 

process allows one to verify that the design has been synthesized correctly. 

 

5.3.4.3 Performing a Post-Map Simulation  

 
Post-Map simulation can be carried out prior to placing and routing the design. This 

simulation process allows one to see block delays for the design. Routing delays are not identified 
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in this type of simulation.  This simulation passes the (test_bench).TBW or (test_bench).VHD or 

VER file to ModelSim for simulation. 

 

5.3.4.4 Performing Post-Place & Route Simulation  

 

Post-Place and Route simulation can be executed after the design has been placed and 

routed. After the design has been through all of the Xilinx implementation tools, a timing 

simulation netlist can be created. This simulation process allows one to see how the design will 

behave in the circuit.  

 

5.3.5 Implementing a Design 

 

After a design source is created, the Implement Design process converts the logical 

design represented in that source (and all sources in the hierarchy from that source down) into a 

physical file format that can be implemented in the selected target device.  In Project Navigator, 

the implementation process can be run in one step or each step separately.  The default property 

values are used for the implementation process unless one modifies them. Properties for the 

Implement Design process can be set in the Process Properties dialog.  The Translate process 

merges all of the input netlists and design constraint information and outputs a Xilinx NGD 

(Native Generic Database) file. The output NGD file can then be mapped to the targeted device 

family [36].  

 

The MAP process first performs a logical DRC (Design Rule Check) on the design in the 

NGD file produced by the Translate process. MAP then maps the logic to the components (logic 

cells, I/O cells, and other components) in the target Xilinx FPGA. The output design is an NCD 

(Native Circuit Description) file physically representing the design mapped to the components in 

the Xilinx FPGA. The NCD file can then be placed and routed.  The Place and Route process 

(PAR) takes a mapped NCD file, places and routes the design, and produces an NCD file to be 

used by the programming file generator (BitGen).  The Create Programming File process will run 

BitGen and create a bitstream, (module_name).BIT and place it in the project directory [36].  
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5.3.5.1 Translating a Design 

 

Translate is the first step in the implementation process. The Translate process merges all 

of the input netlists and design constraint information and outputs a Xilinx NGD (Native Generic 

Database) file. The output NGD file can then be mapped to the targeted device family.  It uses the 

default property values for the translation process unless they are modified. All processes 

necessary to successfully complete the translate process will run automatically and if completed 

successfully will result in a green checkmark next to the Translate process.  The NGD file created 

by the translate process can be opened in the Xilinx Floorplanner (for FPGA) or ChipViewer (for 

CPLD) [36]. 

 

5.3.5.2 Floorplanning a Design  

 

Xilinx Floorplanner can be used to view and edit location constraints in the design. One 

can manually or automatically place logic into a floorplan of the selected FPGA. In the Xilinx 

modular design flow, one can use the Floorplanner to assign location constraints for each module 

in the design. The Floorplanner can be used at several points during the design process: Prior to 

Mapping, Prior to Place and Route, and After Place and Route. 

 

5.3.5.3 Viewing a Translating Report 

 

Translate Report can be observed after running the implementation process. The translate 

process runs automatically during implementation or it can be run independent of the 

implementation process. The translate report contains warning and error messages from the three 

translation processes: conversion of the EDIF or XNF style netlist to the Xilinx NGD netlist 

format, timing specification checks, and logical design rule checks. 

 

5.3.5.4 Mapping a Design 

 

The Map process can be run after the design has been translated. The Map process creates 

an NCD file. The NCD file will be used by the PAR process for further processing.   All 

processes necessary to successfully complete the Map process will run automatically.  After the 

process is successfully completed, the Map Report (module_name).MRP can be viewed. 
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5.3.5.5 Viewing a Post-Map Static Timing Report 

 

The output from the Post-Map Static Timing process inspected in the Post-Map Timing 

Report (module_name_preroute).TWX. The Post-Map Static Timing Report gives a calculated 

worst-case timing for all signal paths in the design. It optionally includes a complete listing of all 

delays on each individual path in the design. It does not include insertion of stimulus vectors. The 

FPGA design must be mapped and can be partially or completely placed, routed, or both. 

 

5.3.5.6 Analyzing Post-Map Static Timing 

 

One can analyze the timing results of the Post-Map process. Post-Map timing reports can 

be very useful in evaluating timing performance. Although route delays are not accounted for, the 

logic delays can provide valuable information about the design. If logic delays account for a 

significant portion (> 50%) of the total allowable delay of a path, the path may not be able to 

meet the timing requirements when routing delays are added. Routing delays typically account for 

45% to 65% of the total path delays. By identifying problem paths, one can mitigate potential 

problems before investing time in place and route.  

 

The user can redesign the logic paths to use fewer levels of logic, tag the paths for 

specialized routing resources, move to a faster device, or allocate more time for the path. If logic-

only-delays account for much less (<35%) than the total allowable delay for a path or timing 

constraint, then the place-and-route software can use very low placement effort levels. In these 

cases, reducing effort levels allows for the decrease in runtimes while still meeting performance 

requirements.  

 

5.3.5.7 Placing and Routing a Design  

 

The place and route (PAR) process can be executed after the design has been mapped. 

The Map process creates an NCD file which PAR accepts as input to place and route the design. 

One can view the results of the place and route process. The guide report is included in the PAR 

report file and as a separate report. The report describes the criteria used to select each component 

and signal used to guide the design. It may also enumerate the criteria used to reject some subset 
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of the components and signals that were eliminated as candidates. One can view the output from 

the post-place and route timing process in the Post-Place and Route Timing Report 

(module_name .twx). The Post-Place & Route Static Timing Report gives a calculated worst-case 

timing for all signal paths in the design. It optionally includes a complete listing of all delays on 

each individual path in the design.  One can analyze the timing results of the Post-Place and 

Route process.   Post-PAR timing reports incorporate all delays to provide a comprehensive 

timing summary.   If a placed and routed design has met all of the timing constraints, then one 

can proceed by creating configuration data and downloading a device. On the other hand, if the 

user identifies problems in the timing reports, he/she can try fixing the problems by increasing the 

placer effort level, using re-entrant routing, or using multi-pass place and route. One can also 

redesign the logic paths to use fewer levels of logic, tag the paths for specialized routing 

resources, move to a faster device, or allocate more time for the paths [36]. 

 

5.3.6 Generating a Programming File 

 

The user can run the Generate Programming File process after the design has been 

completely routed. The Generate Programming File process runs BitGen, the Xilinx bitstream 

generation program, to produce a bitstream (.BIT) or (.ISC) file for Xilinx device configuration. 

The (.BIT) or (.ISC) files can then be configured by the iMPACT program for debugging the 

design, or creating a PROM, ACE or JTAG file to download to the device. 

 

5.3.6.1 Configuring a Device 

 

Configuration involves download of the output from the Generate Programming File 

process, (.BIT) or (.ISC) file, from a host computer to a hardware platform to configure the 

device for debugging or downloading to the device. The (.BIT) and (.ISC) files contain all of the 

configuration information from the NCD file defining the internal logic and interconnections of 

the FPGA, plus device-specific information from other files associated with the target device. The 

binary data in the BIT or ISC file can then be downloaded into the FPGA’s memory cells, or it 

can be used to create a PROM, ACE or JTAG file.  
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5.4 FUSE 
 

FUSE (Field Upgradeable Software Environment) is Nallatech’s Reconfigurable 

Computing Operating System. FUSE facilitates flexible and scalable control and configuration of 

FPGA-based systems and allows data communication between the motherboard and Host PC, 

hence allowing data transfer to and from designs running in on-board Xilinx FPGAs. FUSE 

provides a number of interfaces, including the scripting language DIMEscript, the FUSE Probe 

GUI application and FUSE development APIs for C/C++ supplied as standard.  An overview of 

the FUSE operating software is provided by Figure 5.10 [37].    

 

DIMEScript has been developed by Nallatech as a simple method of accessing cards 

without the need to resort to programming. DIMEScript is an interpreted language, which means 

that the language is read in line-by-line and appropriate actions taken. This, in turn, means that 

any errors in the script are only found when the relevant line is executed. This is in contrast to a 

compiled language where the required action is checked in advance and made into a more 

machine friendly form. In the case of the compiled language, syntax and other features can be 

fully checked before running the code [6].  DIMEScript allows users to open a Nallatech card, 

read data from the card, write data to the card, and access various specific card functions [37]. 

 

 
Figure 5.10: Overview of FUSE 

       Source: [37] 
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Figure 5.11 displays the program window of FUSE.  As shown in the left side of the 

FUSE GUI, a set of user programmable buttons are provided for automating various functions 

such as loading system files, configuring all devices, toggling all resets, opening DIMEScript 

files, and running executable files.  

 

When the user interface is loaded there are no cards open. Before opening a Nallatech 

card, the board must be powered and connected to a host PC through a USB port.  The Card 

Control\Open card option must be selected from the menu in the FUSE Probe to open a card.  

After the card has been opened, two .BIT files must be assigned to the devices.  It is important 

that these files be compiled specifically for the targeted board in System Generator token (see 

Chapter 4). The clock file (osc_clock_2v80.bit) is assigned to the Virtex2 2v80, while the bit file 

created by ISE for the particular design is assigned to Virtex 2 2v3000.  This bitfile is used to 

configure the onboard FPGA on the card that was opened.  Assigning bit files to the devices is 

done exactly in the same way when hardware Co-simulation is performed.  Finally, probes must 

be connected to the digital I/O or the DACs on the hardware platform to be viewed on an 

oscilloscope or logic analyzer.  Figure 5.12 illustrates the overall hardware setup.   

 

 
Figure 5.11: FUSE Window 
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Figure 5.12: Overall Hardware Setup 

 
5.5 BER Board Design 
 

To view the bit error rate results of the design, a board was designed to interface with the 

XtremeDSP board via the pins on the digital I/O header J8.  As described previously in Chapter 3, 

some pins of the J8 header were assigned to display the error count in the gateway out block, 

while other pins were assigned to represent the user inputs through the gateway in block.  As 

described in Chapter 3, the selected user input defined the number of bits selected in the 

optimization block.  

 

In Figure 5.13, the BER board, constructed with LEDs, resistors, a push button switch, 

and a DIP switch, was wired to interface with the J8 header through a PCI connector cable.  

Figure 5.14 shows the schematic of the board.  The 10 red LEDs represent the 10-bit error count 

value.  The DIP switch is used to select the user input to the gateway in block to specify the 

number of bits to be used in the optimization block.  The green LED is used to notify the user 

when the simulation is complete.  The push button switch is used to reset the simulation to obtain 

new results.  Since the J8 header is connected to the board via the PCI cable, it is very important 

the each allocated pin of the J8 header be matched to the corresponding pin on the PCI connector 

to obtain correct results.  Since there is only one pin allocated for GND and +3.3V, all 

components requiring such connections are wired to those pins.    
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Figure 5.13: Top View of BER Board 

 
 
 

 
Figure 5.14: Circuit Diagram for BER Board 
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Xilinx Integrated Software Environment (ISE) provides the user with a powerful and well 

integrated environment toolbox for implementing design flow.   FUSE is provided to configure 

the FPGA with the BIT file generated in ISE.  These Xilinx design tools enable users to verify 

designs and accelerate the speed of simulations through hardware in the loop (HIL) simulations 

using PCI, USB, or JTAG interface.  The computed outputs are either displayed through the 

digital I/O available on the board or routed back to the software environment via PCI or USB 

cable. 
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Chapter 6  
Simulation Results and Analysis 

 
 
 

Simulation plays a critical role in the design of the communication system depicted in 

Chapter 3.  The simulation results are used for the detailed design of various system components 

and system level performance evaluation.    Simulation of communication systems involves 

driving the models with input waveforms to produce outputs that can be analyzed to optimize 

design parameters and evaluate performance measures such as bit error rates (BER).  Therefore, 

signal processing operations are performed by functional blocks of the communication model to 

generate required inputs and process them at sampled values. Some components of the system 

model are theoretically based and therefore quantitative in nature, while others involve 

approaches that are not quantifiable and are heuristic in nature.  The simulation results must be 

validated by comparison to analytical bounds or measured results. Therefore, this chapter 

provides the BER results for the DSSS transceiver modeled in System Generator.  Based on these 

results, the most optimum receiver design that maintains a specified BER performance is 

provided.     

 

Floating-point mathematics is used for DSP algorithm and communication system 

development because it offers extensive dynamic range and accuracy and it accommodates 

virtually limitless word-widths and precision. Converting floating-point C or C++ code to fixed-

point code is the mandatory first step in the creation of reusable algorithms since most 

implementations in hardware and software will limit the word-length and precision of operations.  

Typical effects of using fixed-point math include both overflow and quantization. A value to be 

stored could be too large to fit the fixed word-width (overflow). Or its precision could exceed that 

of the fixed-point specification or it could have too few precision bits (quantization). In order to 

ensure that the fixed-point algorithm behaves in an acceptable way, modeling and analyzing those 

effects correctly is very important.   

 

The optimization of the design requires reduction of datapath size and hence results in 

quantization of the signal value by truncation.  Quantization occurs whenever a value needs to be 
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stored with less precision than is required to represent the actual value.  Therefore, an error is 

induced which degrade system performance.  The system performance is measured by calculating 

BER for various datapath sizes. 
 

BER results have been computed from real-time simulations implemented on Xilinx 

FPGAs.  BER sensitivity of the receiver varies with the datapath size of the specific blocks shown 

in Figure 6.1.  As explained in Chapter 3, parameterized datapath sizes are controlled from the 

software environment in the following points: ADC resolution, DDC datapath size, LPF datapath 

size, correlator height, correlator datapath size and Rectangular-to-Polar datapath size. These 

optimization points in the receiver are chosen relative to functionality and hardware area 

occupancy.  To find the optimum design, each hardware simulation BER result is computed as a 

function of a single parameter while all other parameters are kept constant.  

 

In each hardware simulation, the BER result is evaluated from running 1,000,000 bits for 

every datapath setup.  Each simulation is repeated to obtain average data statistics for each 

parameter. The maximum datapath size at the optimization points is either 8, 14, or 16 bits, while 

the minimum datapath size is determined by the 1 dB BER degradation limit.  

 

6.1 Results for Each Optimization Block 
 

Figure 6.2 depicts BER versus ADC resolution.  Since the input to the ADC is an 

unsigned 14 bit signal (UFix_14_0), the datapath size is varied from 14 to 5 bits.  As illustrated in 

Figure 6.2, the BER value does not vary greatly until it reaches a precision of less than 6 bits. 

Therefore, the minimum number of bits is 5 with respect to 1dB degradation.  In a CDMA 

environment, this resolution would need to be higher to accommodate required number of 

simultaneous users [38].  
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Figure 6.1: Optimization Points in DSSS Receiver 

 
 
 

4 5 6 7 8 9 10 11 12 13 14
10-5

10-4

10-3

ADC Resolution

B
E

R

BER of Optimized ADC Block

    1 dB

    0 dB

 
 

Figure 6.2: BER versus ADC Resolution 
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Optimization of the DDC datapath size is necessary since it is the input to the low pass 

filter, which occupies a considerable area on hardware.  The variation of the datapath size 

determines a level of round off error in the block.  Figure 6.3 shows that 6 bits provide enough 

precision to stay within the 1 dB degradation limit. 

 

The low pass filter in Figure 6.1 is implemented as a second order running average to 

reduce hardware area occupancy.  Figure 6.4 shows that eight bits of resolution is sufficient to 

provide less than one dB of performance degradation. 

 

In Figure 6.5, BER is shown as a function of I and Q correlator input size.  The number 

of bits used for these inputs corresponds to the cell size required in implementation of a parallel 

correlator.  Since the correlators occupy a significant portion of the hardware area, it is necessary 

to minimize the size of their inputs.  By minimizing the input size, the computational complexity 

of the MAC operations is reduced.  The results show that as few as three bits are more than 

enough to maintain well below the 1 dB degradation limit. 
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Figure 6.3: BER versus DDC Datapath Size 
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Figure 6.4: BER versus LPF Datapath Size 
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Figure 6.5: BER versus Correlator Datapath Height 
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Another critical parameter for determining the size of the parallel correlator is the 

datapath size of the correlator’s adding tree.  The parallel architecture for the correlators is 

implemented through FIR filter blocks. At each clock cycle, the sum of memory blocks outputs 

gives an intermediate sum-of-multiplications result. The accumulator at the end of the adder tree 

gives the complete FIR filter result.  Therefore, minimizing the critical path of the accumulator is 

necessary to optimize the design. As Figure 6.6 shows, 7-bit addition arithmetic is needed to 

satisfy the 1 dB degradation limit.  

 

 Finally, the relationship between BER and datapath size of the rectangular-to-polar block 

is displayed in Figure 6.7.  This block is implemented using the CORDIC algorithm.  Refer to 

Chapter 3 for more details on CORDIC.  Given a complex input, this block outputs an equivalent 

vector in magnitude and angle format.  The datapath size of the CORDIC is important since the 

phase values used to decode the symbol is obtained from the CORDIC output.  Therefore, there is 

a direct relationship between precision needed to decode the symbol in presence of noise and the 

BER. Figure 6.6 illustrates that at least 6 bits are necessary in the datapath size to remain within 

the 1 dB degradation limit.  
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Figure 6.6: BER versus Correlator Datapath Size 
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Figure 6.7: BER versus Rectangular-to-Polar Datapath Size 

 

6.2 Minimum Area Solutions 
 

Using the hardware co-simulation results presented in Figure 6.3 through Figure 6.7, one 

can determine a set of minimum values for the datapath sizes so that the DSSS receiver 

implementation size is minimized for a given implementation loss.  Table 6.1 shows several 

possible minimum area solutions together with the full precision case.  The second column of the 

table represents the full precision case where BER is the smallest and the implementation area is 

the largest.    Four other minimum area cases are shown in consecutive columns.  The third 

column shows the smallest area case with the highest BER.  Other three cases can be considered 

sub-optimal with respect to the area and BER.   The results indicate that a 1-dB degradation can 

be maintained with an 8- bit ADC resolution, a DDC datapath size of 6 bits, a filter datapath size 

of 11 bits, a 3 bit correlator height, a 9 bit correlator datapath size, and a 8 bit rectangular-to-polar 

datapath size.  A design implemented with these parameters occupies 6894 FPGA slices.  This 

implies an area reduction of 38% when compared to the full precision case which occupies 10775 

FPGA slices. 
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Table 6.1: BER and Implementation Area versus Datapath Size 
 
ADC 

Resolution 

14 5 8 8 8 

DDC Datapath 16 6 6 6 6 

Filter Datapath 16 9 11 11 12 

Correlator 

Height 

8 3 3 3 3 

Correlator 

Datapath 

14 7 9 9 10 

Rec-to-pol 

Datapath 

14 6 8 9 8 

BER 1.75e-5 5.09e-4 1.74e-4 1.69e-4 1.37e-4 

FPGA Slices        10775          6888          6894          6895          6896 

 

 
6.3 Effects of Optimization 
 

The minimization of datapath size results in quantization error which can be modeled as 

noise.  The quantized value is the summation of the original value and the error induced by the 

quantization process. When fixed-point arithmetic is used, quantization is an inevitable side effect 

that typically exhibits itself as "noise." Similarly, the results generated by the vast numbers of 

multiply-and-accumulate operations used in digital signal processing and communications 

algorithms are frequently larger than the fixed word-width that has been specified by the design, 

causing overflow. Overflow can cause the signal to be distorted or can introduce unpredictable 

non-linear behavior. A general mechanism needs to be established to define specific overflow and 

quantization behavior. By default "TRUNCATED" quantization and "WRAPPED" overflow are 

used since this is the behavior of hardware designed to perform 2’s complement arithmetic [39]. 

 

6.4 Truncation 
 

The problem of quantizing arises when computations which are either fixed-point or 

floating-point arithmetic are performed.  Quantization via truncation results in a lower level of 

precision and introduces errors that depend on the number of bits in the original value relative to 
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number of bits after quantization [30].  In fixed-point representation, truncation error occurs from 

the quantization of bu bits representing a value x into b bits.  Thus the number 

  bu

          x = 0.1011…….11         (6.1) 

consisting of bu bits before quantization is represented as 

   b 

x = 0.101….1          (6.2) 

after quantization, where b<bu.  The truncation of the value x results in a truncation error defined 

as  

Et=Qt(x)-x.          (6.3) 

 

Considering sign-magnitude and two’s-complement representation, the positive numbers 

have identical representation in both forms.  Therefore, truncation results in a value that is smaller 

than the unquantized value for positive numbers.  As a result, the reduction of significant bits 

from bu to b results in truncation error of 

-(2-b – 2-bu) ≤ Et ≤ 0.         (6.4) 

According to this equation, the largest error would occur from discarding bu – b bits, all of which 

are ones. When considering negative fixed-point numbers based on sign-magnitude 

representation, the truncation error is positive since it just reduces the magnitude of the numbers.  

Therefore, the truncation error for negative numbers is  

0≤ Et ≤ -(2-b – 2-bu) .         (6.5) 

In the two’s complement representation of negative numbers, subtraction of the corresponding 

positive number from 2 results in the negative of a number.  Therefore, truncation results in an 

increase of the magnitude of the negative number.  Since x > Qt(x), the truncation error is 

      -(2-b – 2-bu) ≤ Et ≤ 0.         (6.6) 

Consequently, truncation error for sign-magnitude representation is symmetric about zero and 

falls in the range  

-(2-b – 2-bu) ≤ Et ≤ (2-b – 2-bu) .         (6.7) 

Alternatively, the truncation error for two’s complement representation is always negative and 

falls in the range  

-(2-b – 2-bu) ≤ Et ≤ 0.         (6.8) 

Figure 6.8 shows the quantization errors due to truncating for the two’s-complement 

representation and sign-magnitude representation. 
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Figure 6. 8: Effects of Quantization for (a) two's complement representaion and (b) sign-magnitude 

representation 
 
 
 

 Although, error calculations can be evaluated for quantization effects, it is 

difficult to construct an algorithm that computes the performance degradation due to the 

complexity of the design and the fact that the error accumulates over time.   

 

The results obtained in Table 6.1 define sub-optimum solutions with respect to BER and 

area.  To find the global optimum, one needs to assign weights to each datapath size 

corresponding to their contribution to the implementation area, and then implement a 

multivariable constrained optimization.  Similarly, one can optimize the receiver with respect to 

the power by weighting the datapath sizes according to their individual contributions to the total 

receiver power.    
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Chapter 7 
Summary and Future Work 

 
 
 In this thesis a DSSS transceiver is designed in a completely software environment with 

System Generator and implemented on a hardware platform via Xilinx implementation tools such 

as ISE.  Further, HIL simulations are performed to find an optimized system design with a 

specified performance level.  The DSSS transceiver consists of a transmitter that performs QPSK 

modulation, an AWGN channel and a receiver comprised of a digital down converter, low pass 

filter, carrier phase lock loop, I and Q correlators, tracking lock loop, peak detector, and 

rectangular-to-polar converter.  

 

7.1 Summary 

 
The concept of a software-defined-radio (SDR) has been of considerable academic and 

industrial interest for several years. Started in the military, SDR now serves many commercial 

purposes.  SDR provides features such as flexibility, scalability, and inter-operability that were 

not available in traditional radio based on a hardware approach.  SDR allows a radio to be 

described by its software; thus, a single radio can change its operation to suit the current needs of 

the system.  In software defined radios, FPGAs are being used increasingly as a general-purpose 

computational fabric to implement hardware acceleration units that boost performance while 

lowering cost and power requirements. Software defined radios require extensive processing 

power to realize the portability of waveforms and reconfigurability that has been promised. The 

use of FPGAs for hardware acceleration offers promising architectural options that are helping to 

make SDRs a reality.  Hardware implementation speeds up the design verification process. 

 

 Pure simulation is often used to understand the behavior of a system, or to predict an 

outcome under different internal and external influences. But if the simulation is being used as a 

basis for proving control feasibility, the risk of investment can be further reduced utilizing a HIL 

simulation approach. Good system engineering practice would begin with a pure simulation and 

as components become better defined (with the aid of simulation), they can be fabricated and 



133 

replaced in the control loop. Once physical components are added to the loop, un-modeled 

characteristics can be investigated, and controls can be further refined. The use of HILS 

eliminates expensive and lengthy iterations in machining and fabrication of parts, and speeds 

development towards a more efficient design. 

 

System Generator is a system level modeling tool that facilitates FPGA hardware design. 

System Generator extends Simulink in numerous ways in order to provide a powerful modeling 

environment that is well suited to hardware design. The tool provides high-level abstractions that 

are automatically compiled into an FPGA at the push of a button. The tool also provides access to 

underlying FPGA resources through lower level abstractions, allowing designers to implement 

highly efficient FPGA designs.  System Generator provides hardware co-simulation interfaces 

making it possible to incorporate a design running in an FPGA directly into a Simulink 

simulation. Hardware co-simulation compilation targets automatically create a bitstream, and 

associate it to a block. When the design is simulated in Simulink, results for the compiled portion 

are calculated in hardware. This allows the compiled portion to be tested in actual hardware, and 

can speed up simulation dramatically. 

 

ISE integrates everything a designer may need in a complete logic design environment 

for all leading Xilinx FPGA and CPLD products. Easy-to-use, built-in tools and wizards also 

make I/O assignment, power analysis, timing-driven design closure, and HDL simulation quick 

and intuitive.  FUSE software allows the design created in System Generator and implemented in 

HDL by ISE to be downloaded on a hardware platform. 

 

The infusion of System Generator and ISE enables HIL emulation for design verification 

and performance evaluation.  Bit error rate is used as a measure of performance.  BER sensitivity 

of the receiver is determined from varying ADC resolution, DDC datapath size, LPF datapath 

size, correlator height, correlator datapath size and rectangular-to-polar datapath size.  The 

simulation results are used to obtain a minimum area solution.  The results indicate that less than 

one dB degradation can be maintained with an 8 bit ADC resolution, 6 bit DDC datapath, 11 bit 

filter datapath, 3 bit correlator height, 9 bit correlator datapath, and 9 bit rectangular-to-polar 

datapath.  
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7.2 Future Work 

 
Although a minimum area solution has been found, it is not the optimum solution.  To 

obtain an optimum solution, an optimization code needs to be performed that takes all the 

obtained results and finds the global minimum in accordance to a specified BER performance.  

Therefore, it will generate all the possible combinations of datapath sizes for the functional 

blocks and evaluate hardware occupancy.  The optimum solution will be the one that gives the 

lowest number of FPGA slices used and still maintains less than one dB of BER degradation.   

  

 Also, the design process can be automated, eliminating the need of a designer to change 

parameters and record results.  Such automation would download the system parameters on the 

board, perform BER calculations, report the results back to the simulation environment, update 

the system parameters and repeat the process over again. 
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