
Imperial College London

Department of Department of Electrical and Electronic Engineering

VARIATION-AWARE HIGH-LEVEL

DSP CIRCUIT DESIGN

OPTIMISATION FRAMEWORK

FOR FPGAs

Rui Policarpo Duarte

July 31, 2014

Supervised by Dr. Christos-Savvas Bouganis

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Department of Electrical and Electronic Engineering of

Imperial College London

1



Declaration of Originality

I herewith certify that all material in this dissertation which is not my own work

has been properly acknowledged.

Rui Policarpo Duarte

2



Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Cre-

ative Commons Attribution Non-Commercial No Derivatives licence. Researchers

are free to copy, distribute or transmit the thesis on the condition that they at-

tribute it, that they do not use it for commercial purposes and that they do not

alter, transform or build upon it. For any reuse or redistribution, researchers must

make clear to others the licence terms of this work.

3



VARIATION-AWARE HIGH-LEVEL DSP CIRCUIT DESIGN

OPTIMISATION FRAMEWORK FOR FPGAs

or: How I Learned to Stop Worrying and Love the Uncertainty

4



Abstract

The constant technology shrinking and the increasing demand for systems that oper-

ate under different power profiles with the maximum performance, have motivated

the work in this thesis. Modern design tools that target FPGA devices take a

conservative approach in the estimation of the maximum performance that can be

achieved by a design when it is placed on a device, accounting for any variability

in the fabrication process of the device. The work presented here takes a new view

on the performance improvement of DSP designs by pushing them into the error-

prone regime, as defined by the synthesis tools, and by investigating methodologies

that reduce the impact of timing errors at the output of the system. In this work

two novel error reduction techniques are proposed to address this problem. One

is based on reduced-precision redundancy and the other on an error optimisation

framework that uses information from a prior characterisation of the device. The

first one is a generic architecture that is appended to existing arithmetic operators.

The second defines the high-level parameters of the algorithm without using ex-

tra resources. Both of these methods allow to achieve graceful degradation whilst

variation increases. A comparison of the new methods is laid against the existing

methodologies, and conclusions drawn on the tradeoffs between their cost, in terms

of resources and errors, and their benefits in terms of throughput. In some cases it is

possible to double the performance of the design while still producing valid results.

5



Acknowledgements

The work in this thesis was carried out under the supervision of Dr. Christos-Savvas

Bouganis. I hereby acknowledge his valuable advices and guidance throughout my

presence at Imperial College London, and his help through the critical moments of

my PhD.

This research was supported by Fundação para a Ciência e Tecnologia (Foundation

for Science and Technology in Portugal) through PhD grant SFRH/BD/69587.

6



To my parents.

7



Contents

Contents 8

List of Figures 13

List of Tables 22

List of Algorithms 25

List of Abbreviations 26

1. Introduction 29

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2. Background and Related Work 37

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2. Synthesis of Arithmetic Circuits for FPGAs . . . . . . . . . . . . . . 38

2.2.1. Embedded Arithmetic Blocks . . . . . . . . . . . . . . . . . . 38

2.2.2. Dot-Product Operator . . . . . . . . . . . . . . . . . . . . . . 41

2.2.3. Linear Projection Algorithm . . . . . . . . . . . . . . . . . . 43

8



CONTENTS 9

2.3. Sources of Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4. Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5. Variation-Aware Methods for Throughput Increase in FPGAs . . . . 50

2.5.1. Variation-Aware Placement and Routing . . . . . . . . . . . . 50

2.5.2. Path-Delay Reduction . . . . . . . . . . . . . . . . . . . . . . 52

2.6. Error Recovery Methods . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.6.1. Razor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.6.2. Reduced-Precision Redundancy . . . . . . . . . . . . . . . . . 54

2.7. Probabilistic Computing . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.8. Resource Optimisation Through Bayesian Inference . . . . . . . . . . 58

2.8.1. Bayesian Factor Analysis Model . . . . . . . . . . . . . . . . 60

2.9. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3. Performance of Arithmetic Units Under Variation 65

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2. Characterisation Framework . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2. Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.3. Characterisation Process . . . . . . . . . . . . . . . . . . . . . 69

3.2.4. Software Support . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3. Performance of Arithmetic Units Under Variation . . . . . . . . . . . 73

3.3.1. Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.2. Constant Coefficient Multiplier . . . . . . . . . . . . . . . . . 79

3.3.3. LUT-Based Generic Multiplier . . . . . . . . . . . . . . . . . 82

3.3.4. DSP-Based Multiplier . . . . . . . . . . . . . . . . . . . . . . 84

3.3.5. Voltage and Temperature Variation . . . . . . . . . . . . . . 84

3.3.6. Intra-die Process Variation . . . . . . . . . . . . . . . . . . . 86



CONTENTS 10

3.3.7. Inter-die Process Variation . . . . . . . . . . . . . . . . . . . 88

3.3.8. Process Size Variation . . . . . . . . . . . . . . . . . . . . . . 89

3.4. Impact of Variation in Linear Projection Designs . . . . . . . . . . . 102

3.5. Run-Time Investigation . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4. Redundancy in Arithmetic Units 108

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.2. Reduced-Precision Redundancy Framework . . . . . . . . . . . . . . 110

4.2.1. Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.2. Approximation Functions . . . . . . . . . . . . . . . . . . . . 116

4.2.3. Error Function Minimisation . . . . . . . . . . . . . . . . . . 124

4.3. ROM-XOR RPR Arithmetic Operators . . . . . . . . . . . . . . . . 125

4.3.1. Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.3.2. Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.3.3. Multiplier-Accumulator . . . . . . . . . . . . . . . . . . . . . 135

4.4. Reduced-Precision Redundancy Evaluation . . . . . . . . . . . . . . 137

4.4.1. Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . 138

4.4.2. Adder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.4.3. Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.4.4. Multiplier-Accumulator . . . . . . . . . . . . . . . . . . . . . 147

4.4.5. Linear Projection Designs . . . . . . . . . . . . . . . . . . . . 147

4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5. Optimisation Framework for Acceleration of Linear Projection De-

signs 151

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2. Bayesian Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 155



CONTENTS 11

5.3. Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.4. Sampling From a Posterior Distribution . . . . . . . . . . . . . . . . 158

5.4.1. Prior Distribution . . . . . . . . . . . . . . . . . . . . . . . . 158

5.4.2. Error Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.4.3. Area Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.5. Design Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.6. DSP Block Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.7. Optimisation Strategies for Linear Projections . . . . . . . . . . . . . 166

5.7.1. Linear Projection Targeting a Maximum Reconstruction MSE 167

5.8. Optimisation Framework Evaluation . . . . . . . . . . . . . . . . . . 167

5.8.1. Characterisation and Training Samples . . . . . . . . . . . . . 169

5.8.2. Circuit Architecture . . . . . . . . . . . . . . . . . . . . . . . 174

5.8.3. Area and Error Models Evaluation . . . . . . . . . . . . . . . 177

5.8.4. Optimisation of Linear Projections for Throughput, Area and

Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.8.5. Optimisation of Linear Projections for Throughput and Errors 183

5.8.6. Scalability & Run-Time Investigation . . . . . . . . . . . . . 190

5.9. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6. Conclusions and Future Work 195

6.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.2.1. Short-Term Goals . . . . . . . . . . . . . . . . . . . . . . . . 197

6.2.2. Long-Term Goals . . . . . . . . . . . . . . . . . . . . . . . . . 199

A. Appendix 202

A.1. Hardware Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.2. FPGA Core Voltage and Temperature Control . . . . . . . . . . . . 203



CONTENTS 12

A.3. Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Bibliography 207



List of Figures

1.1. Examples of linear projection on 5 images (A-E) with 2000 dimensions

(50× 40 pixels) performed on a Cyclone III FPGA. The top row shows

the result of a back-projection, from their projection on the FPGA

to a smaller space with 40 dimensions without timing errors. The

middle and bottom rows show the same result for an over-clocked

implementation, and an implementation with projection coefficients

quantised with 3 bits, respectively. . . . . . . . . . . . . . . . . . . . 31

1.2. Percentage of erroneous results at the output of an arithmetic unit

vs its clock frequency. The error-free (∆f1) and error-prone (∆f2)

regimes are depicted as well as the conservative operational limit im-

posed by the synthesis tool (fA). . . . . . . . . . . . . . . . . . . . . 32

2.1. Details of DSP Blocks available on Cyclone III and IV FPGAs from

Altera (from [1, 2]). . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2. Details of DSP Blocks available on Cyclone V FPGA from Altera

(from [3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.3. Block diagram of the circuit to do the unrolled implementation of

dot-product between two vectors. . . . . . . . . . . . . . . . . . . . . 42

13



LIST OF FIGURES 14

2.4. Block diagram of the circuit to do the rolled implementation of dot-

product between two vectors. . . . . . . . . . . . . . . . . . . . . . . 43

2.5. High-level block diagram of the circuit to implement a Z6 to Z3 linear

projection algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6. Original data set with 6 images of the same subject under different

illumination conditions. . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7. Example of the linear projection algorithm applied to one of the im-

ages from the data set using different word lengths (x axis) for the

projection coefficients and different numbers of projection vectors (y

axis). The images shown are the back-projections in the original space. 46

2.8. Classes of variation maps with different delay patterns, created from

the characterisation of 129 FPGAs (from [4]). . . . . . . . . . . . . . 51

2.9. Razor architecture (from [5]). . . . . . . . . . . . . . . . . . . . . . . 54

2.10. Typical RPR architecture applied to a system under VoS. . . . . . . 55

2.11. Error-detection boundaries of a RPR system. . . . . . . . . . . . . . 56

2.12. High-level block diagram of the Bayesian framework (from [6]). . . . 59

3.1. Architecture of the circuit for the characterisation of arithmetic units. 69

3.2. Floor plan of the characterisation circuit for 3 multipliers on a Cyclone

III 3C16 device from Altera. . . . . . . . . . . . . . . . . . . . . . . . 70

3.3. High-level flow of the characterisation framework. . . . . . . . . . . . 71

3.4. Flow chart of the actions executed by the TCL script to control the

characterisation circuit on the FPGA. . . . . . . . . . . . . . . . . . 72

3.5. Memory organisation for the BRAM, in the characterisation circuit,

holding the input stream data. . . . . . . . . . . . . . . . . . . . . . 74



LIST OF FIGURES 15

3.6. Error variance and mean error for a 16-bit unsigned adder on a Cy-

clone III FPGA operated at 1200mV, 20◦C tested over a range of

clock frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7. Histogram of the magnitude of errors, in log2 scale at the output of

a 16-bit unsigned adder at 700MHz. . . . . . . . . . . . . . . . . . . 76

3.8. Error variance on a 16-bit unsigned adder, on a Cyclone III FPGA,

at different clock frequencies (blue), and the total number of critical-

paths with the corresponding critical clock frequency (green). . . . . 78

3.9. Number of critical-paths per output bit of a 16-bit unsigned adder,

in blue. The top 120 are presented in red. . . . . . . . . . . . . . . . 79

3.10. Statistics for errors of CCMs sorted by different metrics: CCM value

(1st row), area (2nd row), error variance (3rd row), mean error (4th

row) and Hamming distance (5th row). . . . . . . . . . . . . . . . . . 81

3.11. Variance of constant coefficients for CCMs tested twice on a Cyclone

III FPGA under different clock frequencies. . . . . . . . . . . . . . . 81

3.12. Variance of constant coefficients for a LUT-based generic multiplier

under different clock frequencies. . . . . . . . . . . . . . . . . . . . . 82

3.13. The first 100 error values from a 8-bit LUT-based unsigned multiplier

(left) and the distribution of all errors (right), for constant multipli-

cand 222 in 2 locations of a Cyclone III FPGA at 320MHz. . . . . . 83

3.14. Error variance results for DSP-based multipliers targeting low-power

(1000mV, 35 ◦C) and high-performance designs (1400mV, 5 ◦C). . . 85

3.15. Results for DSP-based multipliers with voltage variation. . . . . . . 85

3.16. Results for DSP-based multipliers with temperature variation. . . . . 86

3.17. Error variance from the characterisation of DSP-based multipliers on

3 different locations in DE0 board #1. . . . . . . . . . . . . . . . . . 87



LIST OF FIGURES 16

3.18. Error variance from the characterisation of DSP-based multipliers on

3 different locations in DE0 board #2. . . . . . . . . . . . . . . . . . 89

3.19. Error variance from the characterisation of DSP-based multipliers on

3 different locations in DE0 board #3. . . . . . . . . . . . . . . . . . 90

3.20. Error variance from the characterisation of DSP-based multipliers on

3 different locations in DE0 board #4. . . . . . . . . . . . . . . . . . 90

3.21. Error variance from the characterisation of DSP-based multipliers on

3 different locations in DE0 board #5. . . . . . . . . . . . . . . . . . 91

3.22. Distribution of errors for 3 DSP-based multipliers on 3 different loca-

tions in DE0 board #4. . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.23. Error variance for DSP-based multipliers on 3 different locations in

DE0 board #4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.24. Mean error for DSP-based multipliers on 3 different locations in DE0

board #4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.25. Error variance for DSP-based multipliers on 3 different locations in

board #5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.26. Mean error for DSP-based multipliers on 3 different locations in DE0

board #5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.27. Error variance for DSP-based multipliers on 3 different locations on

a Cyclone IV FPGA, DE0 Nano board #2, tests 1 and 2. . . . . . . 97

3.28. Results for DSP-based Multipliers on a Cyclone IV using different

designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.29. Error variance of 3 DSP-based multipliers on a Cyclone IV FPGA

(DE0 Nano board #1). . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.30. Mean error of 3 DSP-based multipliers on a Cyclone IV FPGA (DE0

Nano board #1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



LIST OF FIGURES 17

3.31. Error variance of 3 over-clocked DSP-based multipliers on a Cyclone

IV FPGA (DE0 Nano board #2). . . . . . . . . . . . . . . . . . . . . 100

3.32. Mean error of 3 over-clocked DSP-based multipliers on a Cyclone IV

FPGA (DE0 Nano board #2). . . . . . . . . . . . . . . . . . . . . . 101

3.33. Error variance of over-clocked DSP-based multipliers on Cyclone III,

IV and V FPGAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.34. Faces obtained from the reconstruction of the linear projection imple-

mented with LUT-based multipliers operating at 230, 250, 270 and

300MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.35. Faces obtained from the reconstruction of the linear projection imple-

mented with DSP-based multipliers operating at 510, 530, 550, 570

and 590MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.1. Typical RPR architecture applied to a system under VoS. . . . . . . 110

4.2. New RPR architecture applied to a generic combinatorial operator. . 111

4.3. Illustration of the maximum clock frequencies, and delays, for stan-

dard and RPR units and their operating regimes: error-free/expected

result (green), error-prone/approximated result (orange) and incor-

rect result (red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4. Values of the 2 MSBits for the expected result and approximation

functions 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5. Values of the 2 MSBits for the expected result and approximation

function 1 and 3 MSBits for approximation function 2. . . . . . . . . 121

4.6. Diagram of the circuit attached to the arithmetic operators to produce

the approximations and signaling of which result to use. . . . . . . . 126

4.7. Diagram of an adder circuit with the proposed RPR scheme. . . . . 127



LIST OF FIGURES 18

4.8. Example of an approximation produced for a 8:9/5:2/5:2 ROM-XOR

RPR adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.9. Difference in the MSBits between the detection approximation and

the expected result for an 8-bit adder. . . . . . . . . . . . . . . . . . 130

4.10. Results produced by a ROM-XOR 8:9/5:2/5:2 RPR adder. . . . . . 131

4.11. Diagram of a multiplier circuit with the proposed RPR scheme. . . . 132

4.12. Example of an approximation produced for a ROM-XOR 8:16/5:2/5:2

RPR multiplier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.13. Difference between the detection approximation and the expected MS-

Bits at the output of the multiplier. . . . . . . . . . . . . . . . . . . 134

4.14. Results produced by a ROM-XOR 8:9/5:2/5:2 RPR multiplier. . . . 135

4.15. Diagram of a rolled multiply-accumulate circuit with the proposed

RPR scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.16. Diagram of a rolled multiply-accumulate circuit using basic arithmetic

units with the proposed RPR scheme. . . . . . . . . . . . . . . . . . 136

4.17. Block diagram of the test circuit for RPR units under variation. . . 138

4.18. Floor plan of the test circuit (red) for an RPR multiplier (yellow). . 139

4.19. Errors in the supporting blocks of the test circuit for different clock

frequencies on a DE0 board. . . . . . . . . . . . . . . . . . . . . . . . 140

4.20. Error variance and mean error of an 16-bit adder without RPR . . . 142

4.21. Variance and mean error at the output of an 8x8 bit unsigned LUT-

based multipliers at different clock frequencies. . . . . . . . . . . . . 143

4.22. Errors in results (top) and error histogram (bottom) at the output of

a NO RPR 8-bit multiplier at 300 MHz. . . . . . . . . . . . . . . . . 144

4.23. Errors in results (top) and error histogram (bottom) at the output of

a LUT-SUB RPR 8-bit multiplier at 300MHz. . . . . . . . . . . . . 145



LIST OF FIGURES 19

4.24. Errors in results (top) and error histogram (bottom) at the output of

a ROM-XOR RPR 8-bit multiplier at 300MHz. . . . . . . . . . . . . 145

4.25. Histogram of the bits present in the values with errors at the output

of the three LUT-based 8-bit multipliers tested at 300MHz. . . . . . 146

4.26. Architecture of a circuit to implement the dot-product operator of a

projection vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.27. Reconstructed faces (A-E) in the original space without variation er-

rors (expected), and computed from the projections collected from im-

plementations of different multipliers architectures (NO RPR, LUT-

SUB RPR, ROM-XOR RPR) at 270 MHz. . . . . . . . . . . . . . . . 150

5.1. Design flow using the proposed optimisation framework. . . . . . . . 153

5.2. Block diagram of the circuit to do the rolled implementation of dot-

product between two vectors. . . . . . . . . . . . . . . . . . . . . . . 154

5.3. Error variance of an unsigned 8-bit LUT-based generic multiplier. . . 160

5.4. Prior distribution for α = 0 and β = [0.1, 1.0, 4.0] for an 8-bit unsigned

multiplier at 340MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.5. Illustration of the generation of linear projection designs with 3 pro-

jected dimensions and Q = 3. . . . . . . . . . . . . . . . . . . . . . . 164

5.6. Histogram showing the distribution of the test samples generated for

the linear projection test case according to their value. . . . . . . . . 170

5.7. Reconstruction MSE and Confidence Intervals for different training

set sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

5.8. Histogram of 1.9k characterisation samples used in the characterisa-

tion of the arithmetic units for the Z6 to Z3 linear projection. . . . . 174

5.9. Histogram of 100 samples used in the training of the Optimisation

Framework for the Z6 to Z3 linear projection. . . . . . . . . . . . . . 175



LIST OF FIGURES 20

5.10. Block diagram of the circuit to test the dot-product implementation,

used in linear projection case study. . . . . . . . . . . . . . . . . . . 176

5.11. Evaluation of the area model against the actual circuit area for linear

projection designs using LUT-based multipliers. . . . . . . . . . . . . 178

5.12. Predicted, simulated and actual performance reconstruction MSE vs.

area of the linear projection designs produced by the proposed opti-

misation framework using LUT-based multipliers. The target clock

frequency is 310MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . 179

5.13. Estimated circuit area vs model reconstruction PSNR at 510MHz. . 181

5.14. Actual circuit area vs implementation reconstruction PSNR at 510MHz.182

5.15. Maximum clock frequencies vs word length for a Z6 to Z3 linear

projection circuit designed by the KLT transform. . . . . . . . . . . 183

5.16. MSE for the reconstruction of the projected data in the original space.

The design points of the KLT correspond to 3-9 bit coefficient word

length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.17. Comparison of the performance of the KLT and OF designs for the

particular case of 1400mV and 5 ◦C. . . . . . . . . . . . . . . . . . . 185

5.18. Performance of the KLT linear projection application under different

core voltages (900mV,1000mV,1100mV,1200mV). . . . . . . . . . . 186

5.19. Performance comparison between the KLT and OF designs for the

particular case of 900mV. . . . . . . . . . . . . . . . . . . . . . . . . 187

5.20. Performance of the KLT optimised designs for low-power, tested on

a different Cyclone III FPGA. . . . . . . . . . . . . . . . . . . . . . . 188

5.21. Performance of the KLT linear projection application depending on

the temperature of the device. . . . . . . . . . . . . . . . . . . . . . . 189

5.22. Performance comparison between the KLT and OF designs at 20 ◦C

(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190



LIST OF FIGURES 21

5.23. Performance of the KLT and OF designs at 35 ◦C . . . . . . . . . . . 191

5.24. Performance of the KLT and OF designs at 50 ◦C. . . . . . . . . . . 192

5.25. Performance of the KLT and OF designs for a Z10 to Z4 linear pro-

jection at 1200mV/20 ◦C. . . . . . . . . . . . . . . . . . . . . . . . . 193

5.26. Diagram with the relation between the different research areas around

the proposed optimisation framework. . . . . . . . . . . . . . . . . . 194

A.1. System to control core voltage and temperature of the FPGA. . . . . 204

A.2. Photo of the DE0 and DE0 Nano boards equipped with a thermoelec-

tric cooler and a water-cooled heat-sink to control the temperature

on the surface of the FPGAs. . . . . . . . . . . . . . . . . . . . . . . 205



List of Tables

2.1. Technology sizes of FPGAs from different Cyclone families and their

maximum clock frequencies, for the different configurations of their

DSP blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2. Summary of the different types of variation, their origin and their

contribution for the delay increase in circuit paths. . . . . . . . . . . 47

2.3. Summary of the existing techniques for acceleration of computations,

in order to mitigate timing errors, and their limitations. . . . . . . . 64

3.1. Top 15 most critical-paths from the slow model at 1200mV 85◦C for

a 16-bit adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.2. Operating conditions for characterisation of the DSP-based multipliers. 84

3.3. Locations of the DSP-based multipliers for the characterisation tests

of a Cyclone III FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4. Locations of the DSP-based multipliers for the characterisation tests

of a Cyclone IV FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5. Impact of the different sources of variation in the performance of

arithmetic units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1. Results of 2x2-bit multiplications using the original and truncated

operands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

22



LIST OF TABLES 23

4.2. Denominations of the labels in the nomenclature adopted for the pro-

posed RPR scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3. Results of 2x2-bit multiplications using the original and truncated

operands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4. Results produced by two different approximations for 2x2-bit multi-

plications using truncated operands. . . . . . . . . . . . . . . . . . . 119

4.5. Number of BRAMs (M9K/M10K) per input and output word lengths

required to implement the approximation ROM in different Cyclone

FPGAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.6. Objective functions for errors at the output of the RPR unit. . . . . 124

4.7. Resources and approximation results for different implementations of

a single approximation function for a ROM-XOR 8:9/iWL:oWL/iWL:oWL

RPR adder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.8. Correctness of the MSBits for different coefficients of the approxima-

tion function for ROM-XOR 8:9/iWL:oWL/iWL:oWL RPR addition,

using different linear approximations. . . . . . . . . . . . . . . . . . 130

4.9. Correctness of the MSBits for different approximation coefficients for

ROM-XOR 8:16/iWL:oWL/iWL:oWL RPR multiplication. . . . . . 133

4.10. Correctness of the MSBits for different approximation coefficients in

an ROM-XOR 8:16/iWL:oWL/iWL:oWL RPR multiplication. . . . 134

4.11. Maximum clock frequency reported by the synthesis tool of 16-bit

adders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.12. Resources, in LEs, taken by the different adder implementations. . . 141

4.13. Maximum clock frequency, in MHz, for operation without errors. . . 143

4.14. Resources taken by the different multiplier implementations. . . . . . 143

4.15. Resources, in LEs, taken by the different multiplier implementations. 144



LIST OF TABLES 24

4.16. Power consumed by the different multiplier implementations, and re-

spective test circuits, at 1200mV, 20◦C, 100MHz and 600MHz. . . . 144

4.17. Maximum clock frequency for different arithmetic unit given by the

synthesis tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.1. Results for the Jackknife resampling method within a 95% confidence

interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.2. Results for the Bootstrap resampling method for different sets with

sampled variances within the 95% confidence interval. . . . . . . . . 172

5.3. Mean and Variance of the different data sets . . . . . . . . . . . . . . 174

A.1. Hardware platforms used in this work, and their main features. . . . 202

A.2. FPGAs used in this work, and their main features. . . . . . . . . . . 203



List of Algorithms

1. Algorithm to search the approximation coefficients for the ⋆ RPR op-

erator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

2. Algorithm to sampleQ linear projection designs from a prior distribution.165

25



List of Abbreviations

ALM Adaptive Logic Module

ASIC Application-Specific Integrated Circuit

BRAM Block RAM

CCM Constant Coefficient Multiplier

CF Characterisation Framework

CMOS Complementary Metal-Oxide-Semiconductor

CSD Canonical Signed Digit

CPU Central Processing Unit

DVS Dynamic Voltage Scaling

DSP Digital Signal Processing

DUT Design Under Test

EEG Electroencephalogram

EMG Electromyography

FIR Finite Impulse Response

FPGA Field-Programmable Gate Array

FSM Finite State Machine

IIR Infinite Impulse Response

JTAG Joint Test Action Group

26



LIST OF ABBREVIATIONS 27

KLT Karhunen-Loeve Transformation

LE Logic Element

LFSR Linear Feedback Shift Register

LSBit Least Significant Bit

LSB Least Significant Byte

LUT Look-Up Table

MAC Multiply-Accumulate

MSE Mean-Square Error

MSBit Most Significant Bit

MSB Most Significant Byte

OF Optimisation Framework

PBL Probabilistic Boolean Logic

PCA Principal Component Analysis

PID Proportional Integral and Derivative

PLL Phase-Locked Loop

PSNR Peak Signal-to-Noise Ratio

PSOC Probabilistic System-on-a-Chip

PVT Process-Voltage-Temperature

RAM Random-Access Memory

ROM Read-Only Memory

RPR Reduced-Precision Redundancy

RTL Register-Transfer Level

SAR Synthetic Aperture Radar

SEU Single Event Upset



LIST OF ABBREVIATIONS 28

TCL Tool Command Language

TCP Transmission Control Protocol

TEC Thermoelectric Cooler

TMR Triple-Modular Redundancy

USB Universal Serial Bus

VHDL Very High-Speed Hardware Description Language

VLSI Very Large Scale Integration

VoS Voltage Over-Scaling



1
Introduction

1.1. Motivation

T
he constant scaling of the fabrication process has led to devices with increased

performance characteristics by supporting higher clock frequencies with less

power consumption, but also to an increased variation in intra-die and inter-die

performance characteristics. This process variation affects the characteristics of

transistors on a device, changing physical dimensions, altering the timing threshold

and finally affecting their overall performance. Besides variations introduced by the

physical constraints, transistors are also affected by other parameters such as voltage

and temperature. This leads to devices that exhibit uneven performance across its

29



1.1 Motivation 30

area and, as the technology continues to scale down, the fabricated devices will be

even more susceptible to such variations [7]. As such, modern devices are no longer

limited by their process technology performance, but by the performance of their

worst performing transistor. Considering that more than one device is manufactured

with the same fabrication process, we face many devices with different performance

limits. Nowadays, setting operating limits not only concerns the worst performing

transistor on a device, it is the performance of the worst transistor made for all

manufactured devices of a given family.

To ensure that the implemented designs operate without errors once placed on an

Field-Programmable Gate Array (FPGA) device, the synthesis tools use conservative

models to determine the maximum error-free clock frequency of circuits for a family

of devices. As a consequence, there is a significant gap between the clock frequency

that can be achieved, as dictated by the models used within the synthesis tools, and

what actually can be achieved by the actual device where the circuit will be placed

on.

Designs that demand real-time performance, e.g. face recognition [8], can benefit

from the aforementioned gap, via over-clocking, but at the chance of incurring in

violation of the timing of the paths in its circuit, thus producing erroneous results [9].

Figure 1.1 illustrates the linear projection application on 5 subjects, with errors in

computations from over-clocking and quantisation, and its back-projection in the

original space. The top row corresponds to the result from the FPGA without errors,

below the maximum clock frequency reported by the synthesis tool (160MHz). The

middle row shows the result obtained from the device operating with errors in the

datapath when over-clocked at 270MHz. The bottom row shows the results for

the implementation of the linear projection using coefficients quantised with the

maximum word length that produces designs that can operate at 270MHz without

errors, 3 bits in this case. In real-life scenarios, in implementations where throughput



1.1 Motivation 31

Figure 1.1.: Examples of linear projection on 5 images (A-E) with 2000 dimensions
(50 × 40 pixels) performed on a Cyclone III FPGA. The top row shows
the result of a back-projection, from their projection on the FPGA to a
smaller space with 40 dimensions without timing errors. The middle and
bottom rows show the same result for an over-clocked implementation,
and an implementation with projection coefficients quantised with 3
bits, respectively.

is a hard constraint, the choice is often made between allowing errors to occur under

variation of the operating conditions, regardless of the impact; or reduce the quality

of the computations in order to operate without timing errors.

The focus of this thesis is to investigate mechanisms to increase the throughput

of arithmetic units in Digital Signal Processing (DSP) designs on FPGAs under

Process-Voltage-Temperature (PVT) variation without changing the algorithm be-

ing implemented, while investigating the tradeoff in throughput, circuit area and

timing errors. Figure 1.2 illustrates the proposed concept when an arithmetic unit

is operated under different clock frequencies. The maximum performance of the

operator as reported by the synthesis tools (fA) is illustrated along with the oper-



1.1 Motivation 32

Figure 1.2.: Percentage of erroneous results at the output of an arithmetic unit vs its
clock frequency. The error-free (∆f1) and error-prone (∆f2) regimes
are depicted as well as the conservative operational limit imposed by
the synthesis tool (fA).

ational regions where the module can operate in a specific device under error-free

(∆f1) and under error-prone regimes (∆f2). fB and fC represent the clock frequen-

cies up to which the design operates on the FPGA without errors and with errors,

respectively. Above fC the arithmetic unit doesn’t produce useful results.

Doing a characterisation of the arithmetic units prior to implementation, admits

the possibility to determine the maximum clock frequency under specific operating

conditions, thus avoiding timing errors. The drawback is the assurance of the same

operating conditions throughout its lifetime, and accounting for aging.

On the other hand, applications that can tolerate some errors in their calculations

can use it to maximise their operating clock frequency. Moreover, if the data in

the problem being considered doesn’t exercise the critical-paths in the design, or if

it exercises them rarely, it grants the opportunity to increase the clock frequency

beyond worst-case values.

When the throughput requirements of a design, that can’t be further pipelined,

require it to operate in an error-prone regime, redundancy is a candidate mitigation

method because it offers an approximate result as an alternative to a wrong result.

Moreover, being generic, it can be added to almost any DSP system [10, 11]. How-

ever, it requires extra resources and latency to be implemented. This extra latency



1.1 Motivation 33

may not fit the implementation of algorithms that require all data to do be com-

puted every clock cycle. Therefore, there is an opportunity in terms of research for

methods and architectures to address redundancy within one clock cycle that needs

to be investigated.

On the other hand, the extra resources may not be always available, therefore

it is of interest to investigate the possibility to specify optimal parameters in an

algorithm implementation to minimise timing errors. The idea is borrowed from

a previous research work [6] where the high-level specification of the algorithm is

created by a Bayesian framework considering the problem data and implementation

resources simultaneously. Hence, an investigation of an extension of this concept to

consider not only resources but also errors is envisioned.

As aforementioned, this research work considers DSP applications that can toler-

ate some errors in their calculations. In this direction, applications that retrieve data

from sensors, or produce fuzzy results, can benefit from the methods discussed later

in this thesis. Examples of candidate applications to operate under different oper-

ating conditions (i.e. high-performance and low-power) are: face recognition [12]

and Synthetic Aperture Radar (SAR) [13] for real-time, or high-performance; and

Electroencephalogram (EEG) [14] and Electromyography (EMG) [15] for low-power.

Often these applications are implemented on FPGAs because of the advantages

they offer as low-power, high-performance and highly specialised embedded blocks.

Moreover, FPGAs are well positioned to tackle the aforementioned research problems

because of their reconfigurability capabilities which is essential for the characterisa-

tion process that no other competitive technologies offer.



1.2 Overview 34

1.2. Overview

Chapter 2 of this thesis starts with an overview on the specialised arithmetic units

embedded in modern FPGA devices, and how they can be used to implement DSP

applications. It also addresses the implementation of the linear projection algorithm,

as an example of a candidate DSP application to be accelerated. Afterwards it gives

a review on the sources of variation that can change the correct functioning of

FPGAs when operating beyond the maximum limits, along with the state-of-the-art

strategies to mitigate the uncertainty in the DSP design.

A framework for the characterisation of arithmetic units on FPGAs under varia-

tion is presented in Chapter 3. It then investigates the impact of different sources

of variation on the most common arithmetic operators existing in the DSP designs

implemented on FPGAs. Moreover, the impact of variation on the device is also

assessed by comparing the output of a linear projection application against the ex-

pected results.

Chapter 4 details a novel Reduced-Precision Redundancy (RPR) framework for

high-throughput without extra latency impact. This new RPR scheme is proposed

as a mechanism to add resilience to arithmetic operators, in DSP designs that don’t

tolerate insertion of extra latency in their implementations. An evaluation on how

basic arithmetic operators can use the proposed RPR framework is presented, along

with the comparison between typical implementations. In addition, a linear projec-

tion application using the new RPR scheme is also evaluated.

Chapter 5 proposes an alternative method to add resilience to linear projection

designs without adding extra resources to the arithmetic units, neither changing the

implementation of the algorithm. Being the linear projection a DSP algorithm that

tolerates some errors in its calculations, the proposed optimisation framework takes

advantage of that fact to produce designs with deviations in their implementations



1.3 Contributions 35

but that will perform, under variation, better than typical implementations. The

optimisation framework proposed uses a prior characterisation of the arithmetic

units on the FPGA under variation to create the linear projection designs. The

effectiveness of the proposed optimisation framework is tested along with the typical

implementation of the linear projection algorithm.

Chapter 6 concludes this thesis with comments and discussions on the benefits

and tradeoffs resulting from the conducted research.

1.3. Contributions

The research work investigated in this thesis has produced results that originated

several publications, accepted in peer-reviewed conditions, which are listed below:

• [16] R. P. Duarte and C.-S. Bouganis, “High-level linear projection circuit

design optimization framework for FPGAs under over-clocking,” in Field Pro-

grammable Logic and Applications (FPL), 2012 22nd International Conference

on, pp. 723–726, Aug 2012.

• [17] R. P. Duarte and C.-S. Bouganis, “A unified framework for over-clocking

linear projections on FPGAs under PVT variation,” in Applied Reconfigurable

Computing (ARC), 2014 10th International Symposium on, pp. 49–60, 2014.

• [18] R. P. Duarte and C.-S. Bouganis, “Pushing the performance boundary

of linear projection designs through device specific optimisations (abstract),”

in Proceedings of the 2014 ACM/SIGDA International Symposium on Field-

programmable Gate Arrays, FPGA ’14, (New York, NY, USA), pp. 245–245,

ACM, 2014.

• [19] R. P. Duarte and C.-S. Bouganis, “Over-clocking of linear projection de-

signs through device specific optimisations,” in 21st Reconfigurable Architec-



1.3 Contributions 36

tures Workshop (RAW 2014), 2014.



2
Background and Related Work

2.1. Introduction

D
esign of DSP designs on FPGAs generally takes advantage of various features

offered by this technology: customised circuit architecture and datapath,

high-performance, low-power and small footprint, reconfigurability and specialised

embedded blocks. These features have attracted designers to take advantage of them

to optimise resources, performance and precision of the computations required for

a given DSP application. However, FPGAs are silicon-based devices, hence they

are subjected to physical limitations, namely degradation, process variation and

variations in voltage and temperature.

37



2.2 Synthesis of Arithmetic Circuits for FPGAs 38

This chapter revises the main aspects of synthesis of DSP designs on different

FPGA families, and the linear projection algorithm as an the example of a DSP

application to be implemented on FPGAs. It then proceeds to describe the inves-

tigation on the main sources of variability in silicon devices, as well as some of the

design techniques proposed to exploit, or mitigate, the impact of variation in silicon

devices while pursuing the maximisation of the performance of the system.

2.2. Synthesis of Arithmetic Circuits for FPGAs

A lot of research has been devoted to design and optimisation of arithmetic circuits

for FPGAs. This section revises specific aspects of it, in terms of available technology

and related work, that matter to the present research problem.

2.2.1. Embedded Arithmetic Blocks

FPGAs offer highly specialised embedded blocks that favour the implementation of

DSP designs. These blocks implement frequently used basic arithmetic operators

that would require many Logic Elements (LEs) in their implementation. Thus, they

offer an increase in maximum clock frequency and savings in LEs. For this reason

the complexity of the embedded blocks has increased, offering more functionality,

with the new generations of FPGAs.

In the particular case of the devices considered for this research work, namely

Cyclone III, IV and V [1, 2, 3], they all have embedded multipliers available. Cyclone

V [3] offers DSP blocks with more functionality besides the multiplication. Details

for the embedded multipliers available in Cyclone III and Cyclone IV are depicted

in figure 2.1. It is organised in blocks of 9x9 multipliers that can be configured

to produce 18x18 multiplications. The DSP blocks in Cyclone V are depicted in

figure 2.2. Cyclone V offers extra resources to support 27x27 multiplication, 18x18



2.2 Synthesis of Arithmetic Circuits for FPGAs 39

Figure 2.1.: Details of DSP Blocks available on Cyclone III and IV FPGAs from
Altera (from [1, 2]).

Device Size [nm] Core [V] Mult 9x9 [MHz] Mult 18x18 [MHz]

Cyclone III 65 1.2 340 287
Cyclone IV 60 1.2 340 287
Cyclone V 28 1.1 340 287

Table 2.1.: Technology sizes of FPGAs from different Cyclone families and their
maximum clock frequencies, for the different configurations of their DSP
blocks.

multiply-accumulate and 18x19 complex multiplications (needs 2 DSP blocks). Its

architecture is illustrated in figure 2.2. Even though these architectures are different,

the underlying multiplier core is the same. When the DSP blocks are configured

as 9x9 or 18x18 multipliers, only one multiplier is active, while the adders and the

other multiplier remain inactive. The comparison for the multipliers for the different

families is summarised in table 2.1. Despite of all devices have a different fabrication

process, the manufacturer reports the same top clock frequency for all. For the sake

of simplicity, in this work, for all device families the embedded multipliers will be

referred to as DSP blocks.



2.2 Synthesis of Arithmetic Circuits for FPGAs 40

Figure 2.2.: Details of DSP Blocks available on Cyclone V FPGA from Altera (from
[3]).



2.2 Synthesis of Arithmetic Circuits for FPGAs 41

2.2.2. Dot-Product Operator

The dot-product, or inner-product, operator is one of the most widely used in DSP

designs and one of the most frequently implemented on FPGAs. The dot-product

of two vectors, A and B with n elements each, is represented as A ·B and is defined

as:

A ·B =

n
∑

i=1

AiBi = A1B1 +A2B2 + · · ·+AnBn (2.1)

This operation can be described as a sum of partial multiplications. Hence when

it is implemented on a system capable of computing many operations in parallel,

its scheduling can be defined according to the implementation constraints. From all

the scheduling algorithms often used in digital systems [20], for the implementation

of the dot-product, the unconstrained minimum-latency scheduling algorithm, also

known as as soon as possible, and loop folding optimisation techniques were chosen.

For clarity, they’re referred to as unrolled and rolled designs, respectively.

Unrolled Design

The unrolled design is usually used for its increased performance, through paral-

lelisation of its computations, without any regards for area consumption. In the

case of the dot-product, the implementation performs all multiplications in paral-

lel, in the first cycle, and then adds all partial results, in subsequent cycles. The

unrolled implementation of the dot-product algorithm increases with the size, and

word length, of the vectors to be processed. Hence, the maximum vector size sup-

ported depends on the size of the device. The circuit for the unrolled design is

showed on figure 2.5. The squares with Z−1 identify the registers, and λ1..λN the

different coefficients of the vector that multiply the values from the input vector X.

For optimisation of area and performance the multiplications are usually assigned

to Constant Coefficient Multipliers (CCMs) instead of generic multipliers.



2.2 Synthesis of Arithmetic Circuits for FPGAs 42

Figure 2.3.: Block diagram of the circuit to do the unrolled implementation of dot-
product between two vectors.

Rolled Design

Rolled design is often chosen when hard area constraints are present, or when un-

rolling of the design is not possible due to the size of the vectors. In this design, the

arithmetic units are reused to compute the partial results in each iteration. Thus,

multiplications can no longer be implemented with CCMs. In addition, generic mul-

tipliers have the drawback of being slower than the CCMs, but the area required to

implement doesn’t scale with the problem size.

The circuit to implement a rolled design computes the algorithm iteratively, thus

it has all of its operations assigned to the same operator in hardware, also known as

Multiply-Accumulate. For this reason, the implementation resources of the rolled

dot-product algorithm is constant for any vector size. Moreover, the size of the

maximum vector supported in this implementation depends on the word length of

the accumulator. The circuit for one vector of the rolled dot-product is showed on

figure 2.4. In this case the same multiplier is used to produce multiplications for

all Λ1..ΛN values with the input vector X. The adder accumulates the N results

from the multiplications. This circuit can have the multiplications assigned to Look-

Up Table (LUT)-based generic multipliers or more advanced DSP-Blocks which, for

some device families, can implement the complete operator.



2.2 Synthesis of Arithmetic Circuits for FPGAs 43

Figure 2.4.: Block diagram of the circuit to do the rolled implementation of dot-
product between two vectors.

2.2.3. Linear Projection Algorithm

The linear projection, also known as Karhunen-Loeve Transformation (KLT), or

Principal Component Analysis (PCA) [21], often applied in DSP applications such as

image processing [22], and is formulated as follows. Given a set of N data xi ∈ RP ,

where i ∈ [1, N ], an orthogonal basis described by a matrix Λ with dimensions

P × K can be estimated that projects these data to a lower dimensional space of

K dimensions. The projected data points are related to the original data through

the formula in (2.2), written in matrix notation, where X = [x1, x2, ..., xN ] and F =

[f1, f2, ..., fN ], where f i ∈ RK denote the factor coefficients, E the approximation

error and Λ the orthogonal basis for the new space with dimensions P ×K.

F = ΛTX + E (2.2)

The original data can be recovered from the lower dimensional space via equation

2.3:

X̂ = ΛF (2.3)

The objective of the transform is to find the Λ matrix such as the Mean-Square



2.2 Synthesis of Arithmetic Circuits for FPGAs 44

Figure 2.5.: High-level block diagram of the circuit to implement a Z6 to Z3 linear
projection algorithm.

Error (MSE) of the approximation of the data, defined in 2.4, is minimised, as in

equation 2.4:

MSE = ||X − X̂|| (2.4)

A standard technique is to evaluate the matrix Λ iteratively as described in equa-

tions 2.5 and 2.6, where λj denotes the jth column of the Λ matrix.

λj = argmax
‖λj‖=1

E{(λT
j Xj−1)

2} (2.5)

Xj = X −

j−1
∑

k=1

λkλ
T
kX (2.6)

where X = [x1x2...xN ], X0 = X, ‖λj‖ = 1 and E{.} refers to mean operator. This

process is repeated for all columns of the Λ matrix. An in depth explanation of the

algorithm, along with other dimension reduction techniques can be found in [23].

Equation 2.2 can be computed using the previously introduced dot-product, hence

it can be implemented on an FPGA using any of the precedent multiply-accumulator

architectures. Figure 2.5 shows the block diagram of a circuit to implement a Z6

to Z3 linear projection (P = 6,K = 3). The original data, in the higher space, is

identified with Input stream and the factors as Output stream. The Linear Projection

block is replicated K times and consists of an implementation of the dot-product

operator, presented in section 2.2.2 of this thesis, with a vector of size P .

Figure 2.6 demonstrates the linear projection algorithm, using an image from a



2.3 Sources of Variation 45

Figure 2.6.: Original data set with 6 images of the same subject under different
illumination conditions.

set of 6 images of a ball under different illumination conditions. The original image

is in Z2500 space and it is projected into Z64, Z16 and Z2 spaces, using projection

coefficients with word lengths ranging from 6 to 9 bits. Figure 2.7 shows the result

of the reconstruction of the projection in the original space. The top row shows

the reconstruction results for linear projection of a ball image from 2500 to 64

dimensions. The middle and bottom row show the results for 16 and 2 projection

dimensions, respectively. The columns show the results for different word lengths

of the projection coefficients from 6 bits (on the left column) to 9 bits (on the right

column). It is observable, in this example, that for the same word length the images

show similar results, even in cases with reduced number of projection dimensions, i.e.

2. It is also noticeable that reduction in the word length of the projection coefficients

degrades the quality of the results for any number of projected dimensions.

2.3. Sources of Variation

Variation in the sizes of the physical structures of transistors affects their elec-

trical characteristics across the device, namely threshold voltage, carrier mobility,

impedances and current leakages. This type of variation, also known as process



2.3 Sources of Variation 46

2.5k:64, 6 2.5k:64, 7 2.5k:64, 8 2.5k:64, 9

2.5k:16, 6 2.5k:16, 7 2.5k:16, 8 2.5k:16, 9

2.5k:2, 6 2.5k:2, 7 2.5k:2, 8 2.5k:2, 9

Figure 2.7.: Example of the linear projection algorithm applied to one of the images
from the data set using different word lengths (x axis) for the projection
coefficients and different numbers of projection vectors (y axis). The
images shown are the back-projections in the original space.



2.4 Error Analysis 47

Type of Variation Origin Path-Delay Increases

Process variation Fabrication Process Size reduction
Voltage Low-power circuits Power decrease
Temperature Environment Temperature increase1

Jitter Fabrication Placement and routing
Degradation Aging Time

Table 2.2.: Summary of the different types of variation, their origin and their con-
tribution for the delay increase in circuit paths.

variation, can be observed on FPGAs through a characterisation of the device by

measuring the delay for each basic element on the device. Contributions from [24, 25]

show the measurements made for many devices from the same family and how the

aging affects their characteristics. Moreover, silicon devices are sensitive to changes

in supply voltage, temperature, signal cross talk and jitter [26]. Furthermore, de-

signs targeting implementation on FPGAs endure extra variation from placement

and routing.

The preceding variation sources affect the delay of paths in a circuit, thus leading

to degradation of the maximum clock frequency for error-free operation. Table 2.2

summarises the most noticeable types of variation and how they influence the delay

of the paths in the circuit. From the types of variation shown, process variation and

voltage are the ones that have more impact on the performance of devices. The main

difference is that process variation is uncontrollable while voltage can be controlled.

Further information on the timing models available for Altera FPGAs is described

in [27].

2.4. Error Analysis

Throughout this work, error is related to the uncertainty of the outputs of a DSP

circuit, derived from erroneous, or non-deterministic, operation of the circuit which

1In fabrication processes below 65 nm the opposite effect can be observed as a consequence of

temperature inversion. Source: http://tech.tdzire.com/what-is-temperature-inversion/



2.4 Error Analysis 48

provides results different than the expected ones.

Given the nature of DSP systems, errors derived from violation of a circuit’s

timing constraints tend to be random due to variations in placement & routing,

thermal, voltage and clock. Random errors are measured as the absolute difference

between the actual and the expected results, and are characterised through different

statistical metrics such as: mean absolute error, variance, standard deviation, root

mean square error, and maximum error. All of which are derived from the absolute

error observed since the focus in this work is methods to increase the resilience of

generic arithmetic blocks.

Given a set of N data points Xi ∈ RP , where i ∈ [1..N ], expected at the output

of a DSP system, X̂i is the actual data retrieved from the FPGA. The uncertainty

can be described using different error metrics, which are defined as follows:

Absolute Error

E(X̂) = X̂ −X (2.7)

Relative Error

RE(X̂) =
X̂ −X

X
(2.8)

Mean Absolute Error

MAE(X̂) = E[X̂ −X] (2.9)

=
1

N

N
∑

i=1

X̂i −Xi (2.10)



2.4 Error Analysis 49

Mean Squared Error

MSE(X̂) = E[(X̂ −X)2] (2.11)

=
1

N

N
∑

i=1

(X̂i −Xi)
2 (2.12)

Error Variance

V ar(X̂ −X) = E[(X̂ −X)2]− (E[(X̂ −X)])2 (2.13)

=
1

N

N
∑

i=1

(X̂i − µ(X̂ −X))2 (2.14)

Error Standard Deviation

SD(X̂ −X) =

√

E[(X̂ −X)2]− (E[(X̂ −X)])2 (2.15)

=

√

√

√

√

1

N

N
∑

i=1

((X̂i −Xi)− µ(X̂ −X))2 (2.16)

Another common measurement for DSP applications is the Peak Signal-to-Noise

Ratio (PSNR) [28], and, given the MSE and the word length (WL), it is computed

as follows:

power = 1−
1

2WL
(2.17)

PSNR = 10 log10

(

power2

MSE

)

(2.18)



2.5 Variation-Aware Methods for Throughput Increase in FPGAs 50

2.5. Variation-Aware Methods for Throughput Increase

in FPGAs

Several methods have been proposed to minimise, or recover from, timing errors

caused by the aforesaid sources of variation. The different methods operate on

different levels of the design, namely placement and routing, Register-Transfer Level

(RTL) and algorithm level. This section is dedicated to the different methods usually

used, stating their basic functioning, the main benefits and drawbacks.

2.5.1. Variation-Aware Placement and Routing

Variation-aware placement and routing [4, 29] makes use of a model created from a

characterisation of the fabric where the design is going to be deployed. The main

benefit of this method is to instruct the placement and routing tool [30] to assign

the critical-paths to the fastest elements on the device, thus reducing the delay of

the most critical-paths, increasing the overall clock frequency of the design. The

drawback is the necessity to characterise the design before deploying the design,

which is currently only available on FPGAs [31, 32]. Figure 2.8, from [4], illustrates

the classification of the variation maps obtained from 129 FPGAs into 16 classes.

For all classes, the slowest regions are in red and the fastest ones in blue. It is

possible to observe that each class has regions with different delay patterns.

A contribution towards achieving graceful degradation in Finite Impulse Response

(FIR) filter designs has been proposed in [33], thus extending the work from [34].

Here, a FIR filter design is optimised by reduction of the common subexpressions in

canonical-sign-digit representation. Moreover, it takes advantage of process variation

by assigning the least significant filter coefficients to locations exhibiting greater

delay. Being slack directly related to the maximum clock frequency, [35] proposes

a method to redistribute it taking into account the variability of a device in order



2.5 Variation-Aware Methods for Throughput Increase in FPGAs 51

Figure 2.8.: Classes of variation maps with different delay patterns, created from the
characterisation of 129 FPGAs (from [4]).

to achieve graceful degradation while targeting low-power designs. [36] addresses

the problem of adjusting the timing models taking into account process variation

for high-level specification. On a lower-level specification, [29] proposes a method to

optimise placement on FPGAs as way to increase performance by 19.3% via chipwise

placement to increase the performance of the critical-paths.

Upon identification of errors, [37] uses a “brute force” approach by replacing the

faulty unit, by reconfiguring the circuit to use a different one. On a similar note, [38]

proposes wear-levelling as a methodology to improve the performance, and thus the

reliability, of FPGAs through periodic reconfiguration of the design. The technique

places the circuit on different parts of the device to avoid operating in regions that

have been subjected to stress due to long time operation. This methodology was

able to reduce by 40% the increase in delay due to degradation.

Given that the DSP engineer often oversees low-level details, it may be useful to



2.6 Error Recovery Methods 52

pass information about device variation to an higher level in the design. Towards

this direction, [39] presents a survey on techniques to mitigate process variation for

statistical high-level synthesis specification.

2.5.2. Path-Delay Reduction

In order to increase the clock frequency of a datapath, on the RTL level, typically the

DSP designer either reduces its word length or introduces additional pipeline levels.

Word length optimisation while offering reductions in area and delay, it also reduces

the precision of the results produced. Extensive work has been published on the

aforementioned topics, offering techniques to implement and optimise DSP designs

[40, 41, 42, 43, 44, 45, 46, 47]. An example of such techniques is one [48] that achieves

better results than rounding the word length of filter coefficient using integer linear

programming. On a different direction [49] proposes a method to find the most

appropriate method for dynamic range estimation of linear time invariant systems

as an alternative to interval arithmetic [50] and affine arithmetic [51]. Towards a

more automated approach, [52] addresses the impact of word length optimisation

in the noise analysis, from a high-level perspective. Nonetheless, pipelining, while

preserving the word length and the quality of the results, adds extra latency to

the datapath, which can make the implementation require a different algorithm,

consuming more resources, or even make it unfeasible by not being able to meet the

algorithm’s specification [53, 42].

2.6. Error Recovery Methods

Since the early days of computing, engineers have been concerned with faults and

errors from different natures [54, 55, 56]. Most of the mechanisms and methodologies

proposed to mitigate them rely on extra circuitry and processing time. Usually a



2.6 Error Recovery Methods 53

compromise is achieved in terms of the minimum requirements by the application to

work, amount of resources and the time to produce results. [57] proposed adaptive

computing as a mode of operation where useful computations would be carried out

even in the presence of errors by trading off throughput or accuracy. Through time

this idea has been developed and recently [58] has proposed a method to adapt the

circuit’s voltage according to the level of errors, thus trading off power for accuracy.

However, some circuits don’t admit errors of any kind in their computations. Hence,

circuits that require a deterministic output in their calculations have to rely on other

methodologies to recover from errors [59], such as Razor [5], which is presented below.

Other alternatives for fault tolerance techniques, their benefits and their limitations

have been presented in [59] and [60].

2.6.1. Razor

Razor [5] has been proposed as an architecture to recover from timing errors in a

datapath. The architecture is presented in figure 2.9. This circuit uses a shadow

register to compare the output of the system with a value with a register after a

small delay. Whenever the value in the shadow register differs from the value at the

output of the main flip-flop, an error flag is activated, to indicate the controlling

entity that an error has occurred. In this case, the input multiplexer switches from

the output of the previous logic stage to the value stored in the shadow register,

thus inserting the correct value in the datapath. The penalty for errors is a stall in

the datapath, signaled to the control unit via the output error. It should be noted

that all the produced results are error-free as long as the timing constraints for the

shadow register and the multiplexer are met. This work was extended in [61] to

detect and recover from errors due to PVT variation and reduce the soft error rate.



2.6 Error Recovery Methods 54

Figure 2.9.: Razor architecture (from [5]).

2.6.2. Reduced-Precision Redundancy

RPR was originally proposed in [11] as a mechanism to contain errors in designs

under voltage over-scaling, for low-power, based on the assumption that DSP design

can tolerate some errors in their calculations, trading off precision for power [62, 63].

It relies on a smaller version of the original system being computed in parallel

using truncated operands. It compares both outputs and verifies if the magnitude

of the difference is below a user defined limit (T). The method selects the original

output if this result is below the specified threshold, and the approximated result

otherwise.

RPR has also been proposed has a method to accelerate DSP circuits [64]. Other

works [65, 66, 67] have applied RPR, and small variants, has error mitigation

schemes, and have compared them to other error recovering schemes, such as Triple-

Modular Redundancy (TMR) [68, 69], in terms of the tradeoff between errors and

resources.



2.6 Error Recovery Methods 55

Figure 2.10.: Typical RPR architecture applied to a system under VoS.

Architecture

Figure 2.10 shows the RPR architecture proposed in [11]. It comprises the system

under Voltage Over-Scaling (VoS) and a reduced version of that system. The mag-

nitude of the difference between the outputs of both blocks is compared against a

pre-defined threshold. In case it is smaller than the threshold value, the multiplexer

selects the output from the original system, otherwise it selects the output from the

reduced version of the system.

The range of clock frequencies supported by RPR is limited by the delay in the

reduced datapath. To reduce the penalty in performance, [70] proposed a com-

binatorial circuit connected to the Most Significant Bits (MSBits) to replace the

threshold comparator. Moreover, another limitation of RPR is the fact that it gen-

erates approximate results until the critical path of the approximation, from redun-

dancy, is violated. Beyond the timing constraints imposed by the approximation,

the unit isn’t able to compute a correct approximation. Thus, in order to increase

the throughput, smaller approximations have to be considered even though it means

that less accurate approximations are to be passed to the output in case of an error.



2.6 Error Recovery Methods 56

Figure 2.11.: Error-detection boundaries of a RPR system.

Error Analysis

Figure 2.11 shows the error detection boundaries of the reduced system. In this fig-

ure A is the approximate results from the reduced precision block; E is the expected

(correct) result from the full precision block and T is the modulo of the maximum

admissible error. Due to the reduced precision of the operands, the approximation

will exhibit a negative bias when compared to the expected result. This is reflected

in the detection of errors. To compensate for the negative bias, [11] proposed incor-

porating an extra circuit, known as Least Significant Bit (LSBit) estimator, inside

the reduced block. This blocks assigns a set of LSBits with a value that is closer to

the expected value.

As a consequence, in this RPR scheme four possible outputs can happen:

1. No error. The output of the system is the expected result: Y = E;

2. False Positive (FP). The output is within the admissible error but has been

detected as an error: Y ∈]A+ T,E + T ];

3. False Negative (FN). The output is beyond the admissible error but has not

been corrected: Y ∈ [A− T,E − T [;

4. Output within the admissible error: Y ∈ [E − T,A+ T ].

Thus, this can generate 3 types of results:



2.7 Probabilistic Computing 57

1. expected value;

2. deviated value;

3. approximate value;

From these results, only the second requires attention when estimating the oper-

ation of the system when generating deviated values. In all other cases, the result

is either the correct result or the approximation.

2.7. Probabilistic Computing

For a long time there has been an interest in producing certain results from uncertain

entities [56]. Later a Probabilistic Automata [71] has been formulated has a general

case of the deterministic automata. More recently that concern has been restated,

establishing a comparison between routing channels in circuits as communication

channels prone to errors from the environment noise [72].

When addressing the probability of an arithmetic unit producing always a correct

result, there are three main categories of applications:

• don’t tolerate errors - e.g. aircrafts, finance;

• tolerate some errors - e.g. multimedia [73], sensors;

• benefit from errors - e.g. quantum physics [74], inference [75, 76].

[77, 78, 79] propose systems that perform speculative computations, based on

Complementary Metal-Oxide-Semiconductor (CMOS) devices with probabilistic be-

haviour, while producing approximate results and benefiting from power-savings or

acceleration of computations. Another contribution from [80, 81] proposes a system

based on a reliable core and many error-prone cores to accelerate computations. The

main limitation in the aforementioned works is the limited scope of applications that



2.8 Resource Optimisation Through Bayesian Inference 58

can support probabilistic behaviour in its implementations, as well as control on the

level of probability in their operation.

2.8. Resource Optimisation Through Bayesian Inference

In the implementation of DSP designs truncating word length of its operators can

often lead to suboptimal results. In this sense, [82] proposed a method to address

word length optimisation from a high-level specification of the design. This method,

through simulation, iteratively modifies the word length of a signal to find an optimal

tradeoff between errors and area.

A method to optimise linear projection implementations through inference was

first introduced in [83] and later extended in [84, 6]. Here, the problem is to find a

basis matrix that produces the best approximation of the original data, minimising

resources and reconstruction MSE of the projected data in the original space. One

of the improvements, compared to other works is the avoidance of exhaustive search

for solutions.

Being the factors F from a linear projection of data X and the basis matrix

Λ, in equation 2.2 unknowns, searching for a possible solution for Λ and F is an

ill-conditioned problem, for which solutions from heuristic methods are suboptimal.

The framework [6] uses a Bayesian formulation of the factor analysis model instead of

the KLT algorithm to find the elements of the Λ matrix that minimise the area cost,

rather than a constant area cost consideration in the KLT algorithm. A high-level

block diagram of the proposed framework is shown in figure 2.12. The framework

receives the problem data, the area models and its parameters and iteratively com-

putes the basis for all projection vectors. As a result it returns the basis matrix and

the assignment for the embedded elements.



2.8 Resource Optimisation Through Bayesian Inference 59

Figure 2.12.: High-level block diagram of the Bayesian framework (from [6]).



2.8 Resource Optimisation Through Bayesian Inference 60

2.8.1. Bayesian Factor Analysis Model

Similarly to the KLT algorithm, the factor analysis model states that the original

data in higher dimensional space is a linear combination of the factors, in a smaller

sub-space plus an error term:

xi = Λf i + ǫi (2.19)

where x corresponds to N instances of vectors P dimensions, and f to N instances

of vectors with K dimensions. i belongs to [1..N ]. Λ is the unobserved basis, or

factor loading, matrix with size P ×K. This formulation assumes that the original

data is centralised, therefore the mean is not considered.

The factor analysis models assume that the error terms ǫi are independent and

multivariate normally distributed with zero mean and covariance matrix Ψ written

as:

ǫi ∼ N (0,Ψ) (2.20)

It also assumes that the probability distribution of x for each observed case i has

a multivariate normal density:

p(xi|f i,Λ,Ψ) = N (xi|Λf i,Ψ)

= (2π)−P/2|Ψ|−1/2 × exp

(

−
1

2
ǫi

T

Ψ−1ǫi
)

(2.21)

where ǫi is the error in the approximation data: ǫi = xi − Λf i. It can be written

in matrix notation as:



2.8 Resource Optimisation Through Bayesian Inference 61

p(X|F,Λ,Ψ) = N (X|ΛF,Ψ)

= (2π)−P/2|Ψ|−1/2 × exp

(

−
1

2
tr
[

ETΨ−1E
]

)

(2.22)

where E = X − ΛF .

The factors, as a result of a linear projection, are assumed to be normally dis-

tributed with zero mean and covariance matrix ΣF :

f i ∼ N (ΣF ) (2.23)

The posterior probability of the factors is given by equation 2.24.

p(f i|xi,Λ,Ψ) ∝ p(f i)p(xi|f i,Λ,Ψ) = N (f i|m∗
F ,Σ

∗
F ) (2.24)

in which the posterior mean and variance are:

Σ∗
F = (ΣF + ΛTΨ−1Λ)−1

m∗
F = Σ∗

FΛ
TΨ−1Λxi (2.25)

The complete density is achieved by integrating F from (2.22) producing:

p(X|Λ,Ψ) = N (X|ΛΣFΛ
T +Ψ)

= (2π)−N/2|ΛΣFΛ
T +Ψ|−1/2

× exp

(

−
1

2
tr
[

XT (ΛΣFΛ
T +Ψ)−1X

]

)

(2.26)

The complete density of the data is given by a normal distribution with covariance

ΛΣFΛ
T +Ψ.



2.9 Summary 62

The probability distribution for the Λ matrix is shown in equation 2.27, under the

assumption that all λpk values are independent.

p(Λ) =

P
∏

p=1

K
∏

k=1

p(λpk) (2.27)

The prior probability distribution is related to the inverse of the area required to

implement each value of λpk (2.28). Hence coefficients which require less resources

are more likely to be sampled.

p(λpk) ∝ (A(λpk))
−1 (2.28)

Therefore the posterior for each λpk is:

p(λpk|X,F,Ψ) ∝ p(X|F, λpk,Ψ)

P
∏

p=1

K
∏

k=1

p(λpk) (2.29)

Gibbs sampling algorithm [85] is then employed to draw samples from the posterior

distribution.

2.9. Summary

This chapter revisits some of the most important concepts present in the design of

DSP designs for FPGAs focused on performance optimisation, and also methods to

mitigate timing errors, or to achieve graceful degradation.

Highly efficient arithmetic blocks, i.e. DSP, present in modern FPGAs offer the

possibility to implement DSP designs with greater performance while still benefiting

from flexibility. Still, in some smaller devices they are a scarce resource, thus being

required to implement part of the circuit with LEs. In this sense depending on the

implementation strategy (i.e. throughput, area, power), designs may have different



2.9 Summary 63

requirements, thus different implementations, as it has been demonstrated for the

dot-product operator, one of the most frequently used in DSP designs.

A method to increase the throughput of circuits in silicon devices, while assum-

ing zero-latency penalty, is to over-clock them beyond the limits specified by the

synthesis tools, at the expense of operating in error-prone regimes dominated by

variation of the operating conditions. The main sources of variation include process,

temperature, voltage and aging of the device.

Alternative methods to increase performance are variation-aware methods. They

offer a limited increase in performance by exploiting the physical variations in the

device. Further increases in performance are likely to produce timing errors, that

are often manifested in the MSBits, therefore mitigation techniques are proposed to

recover from, or minimise, errors, usually at the expense of time and resources.

Probabilistic computing has been proposed as an alternative to mitigation meth-

ods, without using extra resources, where the applications can tolerate errors and

still produce approximate results, while benefiting from power savings, or perfor-

mance increase.

A previous optimisation framework to efficiently map linear projections on het-

erogenous FPGAs suggested that a similar approach could reduce timing errors, by

using different sources of information, such as errors from variation of the operating

conditions, in the optimisation process.

Table 2.3 summarises the different techniques that can be applied to minimise, or

minimise, timing errors from Table 2.2. For each technique it shows how it actuates

and its limitations.

The research conducted in this thesis considers the problem of accelerating DSP

designs under variation that are sensitive to deep pipelining and word length opti-

misation, which are the typical solutions. In order to have DSP designs, without

changes in their algorithms, operating with higher throughput under variation, an



2.9 Summary 64

Technique Effect Limitations

Deep pipelin-
ing

Break the critical-
path by inserting
registers

Unsuitable for some streaming algo-
rithms, or algorithms using recursion

Word length
optimisation

Reduce the critical
path by processing
less bits from trun-
cated operands

Penalty in the quality of results

Razor [5] Check if the output
matches the shadow
register

Temporal redundancy is unsuitable for
streaming applications

Reduced-
Precision Re-
dundancy [11]

Check if the error is
within a threshold

Requires extra latency. Unsuitable for
algorithms using recursion

Table 2.3.: Summary of the existing techniques for acceleration of computations, in
order to mitigate timing errors, and their limitations.

adaptation of a methodology for area optimisation is investigated. Moreover, from

all error mitigation techniques considered, RPR was the one that had the poten-

tial to be adapted to the aforementioned requirements. Hence, this thesis proposes

modifications in its architecture to eliminate extra latency imposed by the exist-

ing implementations. In a nutshell, this research work investigates alternatives to

reduce, or mitigate, timing errors in applications that tolerate some errors in its

calculations, and proposes methods to close an existing gap in this research area.



3
Performance of Arithmetic Units

Under Variation

3.1. Introduction

E
valuation and analysis of the maximum performance of a DSP system, and

comparison against the limits set by the synthesis tools, has always been a

subject under continuous investigation in order to maximise the throughput of such

systems. Usually device manufacturers limit the top performance of the designs in

their devices to account for degradation due to aging. Moreover, the increased vari-

ation in the performance of transistors, and consequent uneven performance across

65



3.1 Introduction 66

a device offers venues to reap extra performance from it. Therefore, performance

characterisation is an important process in the design and optimisation of digital

systems, as it assesses their maximum operating conditions, and their behaviour

when operating beyond those limits.

The operation of designs is also impacted by the operating conditions, external to

the device, such as voltage and temperature. This is particularly critical when dif-

ferent design strategies are targeted, such as low-power or high-performance, which

change the design’s operating limits. Moreover, when operating in the error-prone

regime, arithmetic units exhibit correct operation depending on the characteristics

of the data they’re processing. The present chapter addresses this subject by propos-

ing an architecture to characterise arithmetic units, and elaborates a study on the

performance of the most common arithmetic units present in DSP systems under

variation of the operating conditions of the device.

Examples of platforms to test the critical-paths of circuits on FPGAs can be found

using: ring-oscillators [31], slack measurement [86] and transition probability [32].

Most of these works are focused on exercising the critical-paths, instead of assessing

the impact of timing errors in the application results. In addition, an arithmetic

unit could be optimised to operate with data sets with specific properties (i.e. dis-

tribution, mean and variance) with less, or no, errors at a higher clock frequency

than the worst-case would determine.

Since there’s no contribution available which fulfills this requirement, this work

proposes a new characterisation framework, based on prototypes from [16, 17, 19], for

the characterisation of arithmetic units on FPGAs. FPGAs were chosen given their

ability to be reconfigured, which concedes the possibility to characterise arithmetic

units on the device and later reconfigure the device to implement a complete design

using information from that characterisation stage.

This chapter is devoted to the characterisation of arithmetic units operating un-



3.2 Characterisation Framework 67

der different operating conditions, producing statistics, and analysing how errors

appear with the change of the same operating conditions. This chapter also covers

the technical details of the characterisation framework and it shows results for the

characterisation of some of the most used arithmetic units in DSP. Unless otherwise

stated, throughout this research work the default operating conditions for any given

device are 1200mV supply voltage and 20◦C on its surface. Details on the control

of the operating conditions (i.e. voltage and temperature) can be found in appendix

A.2 of this thesis.

3.2. Characterisation Framework

3.2.1. Introduction

The aim of the proposed characterisation framework is to capture the errors at

the output of an arithmetic unit when placed on various locations on an FPGA,

clock frequencies, placement and routing configurations, temperatures and voltages.

Therefore, a characterisation of the design under test can be achieved and the col-

lected information can be utilised by other design frameworks. Such an approach

is possible only due to the reconfigurability that is offered by FPGA devices. As it

was mentioned previously in earlier contributions [16, 17, 19], prototypes of frame-

works for the characterisation of CCMs and generic multipliers were introduced.

The present framework extends all previous contributions as it supports a wider

range of designs under test and enhances its functionality.

A key element of the presented work is the performance characterisation circuit of

an arithmetic unit under various word length supports, locations, clock frequencies,

placement and routing configurations, and devices. The supporting modules are

independent of the design under test, and thus the proposed framework can be

utilised for any arithmetic components.



3.2 Characterisation Framework 68

The characterisation framework incorporates hardware and software blocks. The

hardware block is connected to the arithmetic unit under test and is responsible

for the low-level control of the process. Moreover, it provides a constant stream of

data to the unit, and collects the generated data from it. The software block offers

an interface between the host computer and the characterisation circuit, and it is

responsible for the configuration of the device, downloading of the input stimulus

to the characterisation circuit, collection of the data from the circuit, setting of the

clock frequency and initiation of the test.

3.2.2. Circuit Architecture

A schematic of the architecture of the characterisation circuit is shown in Figure

3.1. It is composed by the following modules: Input stream Block RAMs (BRAMs),

the unit under test, the Output stream BRAMs, a Phase-Locked Loop (PLL) to set

the clock frequency and the Finite State Machine (FSM) to control the circuit.

As the objective is to capture the performance of an arithmetic unit under various

operating conditions beyond the limit reported by the synthesis tools for error-free

operation (i.e. over-clocking), when it is actually placed on the FPGA device, two

clock domains are supported. The PLL generates the necessary clock signals as

follows: the datapath clk clock is used for the unit under test (i.e. generic multiplier),

where the FSM clk drives the FSM, BRAMs, and other supporting modules.

The fact that BRAMs are used to store the input streams, rather than implement-

ing a pseudo-random generator, such as an Linear Feedback Shift Register (LFSR),

offers the possibility to test the circuit with specific input vectors. The down side is

that data transfers to the device are time consuming.

This circuit implemented on a Cyclone III FPGA requires 1034LEs and 13BRAMs

with 32 bits word length and 2048 addresses, and its FSM can be clocked up to

910MHz while operating without errors, to characterise an 8-bit arithmetic unit.



3.2 Characterisation Framework 69

Figure 3.1.: Architecture of the circuit for the characterisation of arithmetic units.

The user is responsible to run the test below this limit. The characterisation circuit

operates at high clock frequencies, therefore it required careful placement of the com-

ponents in order to guarantee that the unit under test holds the critical-paths. The

floor plan for a characterisation circuit, including the LUT-based generic multipliers

under test is shown in figure 3.2. In this example the framework does the charac-

terisation of 3 multipliers simultaneously. Their regions are identified as “mult0..2”.

The other regions are designated for the supporting blocks and are identified with

PLL and FSM. It should be noted that the characterisation framework has built-in

checks on the correct functioning of the test circuit, namely assurance that the PLL

is in locked state during the test execution, and also checks the data retrieved from

the device for error conditions.

3.2.3. Characterisation Process

The whole characterisation process has been automated and the transfer of the

data from and to the FPGA device takes place through the Joint Test Action

Group (JTAG) interface. In essence, the configuration of the FPGA, the loading

of the characterisation stimulus and characterisation results are transferred via a

JTAG interface between the host and the FPGA. After the characterisation circuit

bitstream is loaded into the FPGA, the host computer loads the characterisation



3.2 Characterisation Framework 70

Figure 3.2.: Floor plan of the characterisation circuit for 3 multipliers on a Cyclone
III 3C16 device from Altera.



3.2 Characterisation Framework 71

Figure 3.3.: High-level flow of the characterisation framework.

stimulus in the Input stream BRAMs. The FSM transfers the data from the input

BRAMs into the registers at the input of the unit being characterised, performs

the characterisation, and finally copies the data from the output registers of the

multiplier into the Output stream BRAMs. The FSM stops after it reaches the end

of the Input stream. Once the characterisation process completes, the results are

retrieved by the host computer. This sequence of actions is repeated for a specified

range of clock frequencies, supply voltages, locations and temperatures. Figure 3.3

shows the inputs and outputs of the characterisation framework. The inputs are

the stimulus data, operating conditions and the RTL of the unit under test. The

output of this framework is the actual output of the unit under test for the given

operating conditions. Moreover, the framework can produce any statistics on the

data observed.

It’s important to state that special care has been given to the design of BRAMs

interface and to the rest of the supportive modules to ensure that the critical path

is always within the design under test. Thus, the frequency limit of the supportive

modules is well within the region where the design under test generates erroneous

results, for the framework to be able to capture the performance characteristics



3.2 Characterisation Framework 72

Figure 3.4.: Flow chart of the actions executed by the TCL script to control the
characterisation circuit on the FPGA.

under these cases too.

3.2.4. Software Support

The interactions between the test circuit and the host computer are supported by

a Tool Command Language (TCL) interpreter from the device vendor. For this

particular application a script was written to handle the characterisation process.

The flowchart in figure 3.4 illustrates the actions executed by the TCL script to

interact with the characterisation circuit on the FPGA.

The characterisation process starts with the download of the bitstream with the

characterisation circuit with the unit under test in place. In case the unit under



3.3 Performance of Arithmetic Units Under Variation 73

test requires extra configuration it is downloaded to the FPGA. After that the PLL

is configured to produce the clock signals for the FSM and the datapath. Once

the clock frequency is settled, the application sends the test stimulus to the FPGA,

then it sends the trigger signal to initiate the test, and finally uploads the results.

This process is repeated for all blocks of data, supply voltages, device temperatures,

locations on the device and clock frequencies.

Actions involving data transfers, namely PLL reconfiguration, data stimulus and

results, use Intel Hex files [87]. The contents of these files follow the organisation

of the memories where they’re used. In the case of the stimulus data, in order to

sustain the high-throughput required by the unit under test, two values for each

operand are retrieved from each memory address, and then pipelined into the input

stream. Figure 3.5 depicts the data organisation for the input stream BRAM. The

Output stream uses a similar organisation, instead it holds results with word lengths

up to twice the word length of the Input stream, which is sufficient to cover the word

length of the arithmetic operators considered. On the host computer side, these files

are processed by Matlab scripts, created to make the translation between them and

the workspace variables.

3.3. Performance of Arithmetic Units Under Variation

In this work, Cyclone III, IV and V devices from Altera were used. The devel-

oped framework is very lean regarding its requirements and can be executed to any

available board/device with some small changes. The purpose is to push the per-

formance limits, for a linear projection design, through over-clocking. The tests

conducted targeted adders and multipliers as they often are the computational bot-

tleneck in DSP designs. All units considered in the characterisation use fixed-point

unsigned representation. In the characterisation of the multipliers one of the inputs



3.3 Performance of Arithmetic Units Under Variation 74

0781516232431

A0 A1 B0 B1 00h

A2 A3 B2 B3 01h

...
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤
❤

❤
❤
❤

❤
❤
❤
❤

❤
❤
❤❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
❤❤

A510 A511 B510 B511 FFh

Figure 3.5.: Memory organisation for the BRAM, in the characterisation circuit,
holding the input stream data.

was enumerated through all possible values, (i.e. all possible values for a given word

length), where the other input was stimulated by a pseudo-random stream of input

data following a uniform distribution. The results at the output of the multipliers

were compared against the expected results. The temperature of the device was con-

trolled through the use of a cooling element on top of the FPGA. The multipliers

were synthesised multiple times at multiple locations in the device, with different

placements and routings, to marginalise the performance of the generic multiplier

over many locations on the device. The characterisation process was repeated for

many boards from the same device family and different process sizes in order to

evaluate the impact of inter and intra-die process variation. On this account the

DSP-based multipliers were used as their placement and routing is constant for all

locations in all devices, regardless of the synthesis options.

3.3.1. Adder

Adders are the arithmetic building blocks of any computational system, therefore

they’re in the interest of the performance characterisation work. The motivation



3.3 Performance of Arithmetic Units Under Variation 75

500 550 600 650 700 750 800 850 900
10

0

10
5

10
10

Error Variance: 16−bit LUT−Based Adder

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

500 550 600 650 700 750 800 850 900
−2000

0

2000

4000

6000
Mean Error: 16−bit LUT−Based Adder

Clock Frequency [MHz]

M
e
a
n
 E

rr
o
r

Figure 3.6.: Error variance and mean error for a 16-bit unsigned adder on a Cy-
clone III FPGA operated at 1200mV, 20◦C tested over a range of clock
frequencies.

for this characterisation is to envisage a model of the performance of the unit when

operating above the limits specified by the synthesis tool. In this study, the 16-bit

unsigned adder was chosen to be tested with 20k pseudo-random uniform samples.

Figure 3.6 depicts the error variance and mean error for the aforementioned 16-

bit adder at clock frequencies way above the limit specified by the synthesis tool,

411.18MHz. It shows that up to 560MHz, approximately 150MHz above the limit

from the synthesis tool, the adder provides correct results.

Figure 3.7 shows the histogram of the errors observed on the adder at 700MHz.

The magnitude of the errors observed is represented in log2 scale as it is more suitable

to identify which bits contributed to the errors.

An investigation on the list of the 15 most critical-paths of the adder reveals,



3.3 Performance of Arithmetic Units Under Variation 76

0 2 4 6 8 10 12 14 16
0

1

2

3

4

5

6
Distribution of errors @ 700 Mhz

log2(error)

N
u
m

b
e
r 

o
f 

o
c
c
u
rr

e
n
c
e
s

Figure 3.7.: Histogram of the magnitude of errors, in log2 scale at the output of a
16-bit unsigned adder at 700MHz.



3.3 Performance of Arithmetic Units Under Variation 77

Slack From To Relationship Clock Skew Data Delay

0.069 inB[0] out[15] 2.5 -0.064 2.362
0.100 inA[0] out[15] 2.5 -0.064 2.331
0.112 inA[1] out[14] 2.5 -0.064 2.319
0.114 inB[1] out[14] 2.5 -0.064 2.317
0.118 inA[1] out[15] 2.5 -0.064 2.313
0.120 inB[1] out[15] 2.5 -0.064 2.311
0.173 inB[0] out[14] 2.5 -0.064 2.258
0.185 inB[0] out[13] 2.5 -0.064 2.246
0.185 inA[2] out[15] 2.5 -0.064 2.246
0.192 inA[0] out[14] 2.5 -0.064 2.239
0.206 inA[3] out[14] 2.5 -0.064 2.225
0.207 inB[3] out[14] 2.5 -0.064 2.224
0.212 inA[3] out[15] 2.5 -0.064 2.219
0.213 inB[3] out[15] 2.5 -0.064 2.218
0.216 inA[0] out[13] 2.5 -0.064 2.215

Table 3.1.: Top 15 most critical-paths from the slow model at 1200mV 85◦C for a
16-bit adder.

as expected, the MSBit occupy the top of the list, with the exception of the carry

bit (bit 16). It is also observable that these paths have very similar delay, 0.147 ns,

meaning that they have a similar critical operating clock frequency. In this example,

the gap in maximum clock frequency for the top 15 critical-paths is less than 30MHz.

Assuming that the timing models from the synthesis tool are shifted in clock

frequency, it is possible to relate the test results and the path delays inside the adder.

Figure 3.8 illustrates the aforementioned by representing in blue the error variance

of the 16-bit adder for different clock frequencies, and in green, the total number of

critical-paths with the corresponding delay. The initial value is set to the first clock

frequency, 550MHz, with error variance greater than zero. In more details, the tool

specifies a maximum clock frequency of 411MHz, while the characterisation test

has shown that the maximum clock frequency to operate without errors is 560MHz,

thus there’s a gap of 149MHz in clock frequency.

In the particular case of a test at 700MHz, it corresponds to a clock frequency of



3.3 Performance of Arithmetic Units Under Variation 78

500 550 600 650 700 750 800 850 900
10

0

10
10

E
rr

o
r 

v
a
ri
a
n
c
e

500 550 600 650 700 750 800 850 900
0

500

N
u
m

b
e
r 

o
f 

c
ri
ti
c
a
l−

p
a
th

s

Clock Frequency

Error variance and critical paths of 16−bit LUT−Based Adder

Figure 3.8.: Error variance on a 16-bit unsigned adder, on a Cyclone III FPGA, at
different clock frequencies (blue), and the total number of critical-paths
with the corresponding critical clock frequency (green).

551MHz in the timing model. For this clock frequency, the model holds 153 paths

with delay greater than the clock period. Figure 3.9 shows the number of critical-

paths per output bit of a 16-bit unsigned adder, in blue. This figure also shows, in

red, the top 150 critical-paths. It should be noted that a large increase in the error

variance is observed within a small number of critical-paths, after which it evolves

at a slower rate.

Taking the above into account, it’s not possible to establish a relation between the

operating conditions, the errors and the architecture of the 16-bit adder. Moreover,

as soon as this arithmetic unit leaves the error-free regime, it produces errors with

error variance nearly half of the maximum observed in the highest clock frequency

considered. Hence, it can be concluded that the architecture of this unit isn’t suit-

able to achieve graceful degradation. Future work in this matter could prove to be

beneficial, such as studying and characterising other adder architectures.



3.3 Performance of Arithmetic Units Under Variation 79

0 2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

Adder output bits

N
u
m

b
e
r 

o
f 

p
a
th

s

Number of paths per output bit

All paths

Top 120 critical−paths

Figure 3.9.: Number of critical-paths per output bit of a 16-bit unsigned adder, in
blue. The top 120 are presented in red.

3.3.2. Constant Coefficient Multiplier

CCMs are often used in DSP designs as they offer reduced area and high-throughput

in operations were the constant multiplicands are defined in the specification stage of

the circuit, and don’t need to change over time. In this section the characterisation

of the CCMs was performed for all constant coefficients for 8-bit unsigned CCMs

on the FPGA. In this characterisation test the temperature of the device was left

uncontrolled and the supply voltage was set to 1300mV. Each constant coefficient

was tested with a pseudo-random sequence of 6k 8-bit unsigned samples with a

uniform distribution. The motivation to use such vector length and word length is

to make the evaluation similar to many DSP applications [88]. The motivation to

use unsigned representation is to prevent penalisation of the negative values under

two’s complement representation.

Figure 3.10 shows the result for the characterisation of all possible 8-bit unsigned



3.3 Performance of Arithmetic Units Under Variation 80

CCMs at 510MHz. Each column presents a different metric, namely: constant

coefficient value, circuit area, error variance, mean error and the absolute error

Hamming distance. In the top row, the values in all columns are sorted by the value

of the constant coefficient. In the following rows the metrics sorted by: area, error

variance, mean error and Hamming distance.

Taking all into account it’s not possible to conclude that there’s a direct relation

between the error metrics and any other metric. Nevertheless, it’s observed that

constant coefficients with smaller area, and error Hamming distance, present smaller

error variances, and almost all constant coefficients with greater area presented

greater error variances. This assertion is upheld by the plots on the 2nd and 5th

rows, values sorted by area and Hamming distance, where the values with small

area exhibit no error variance, neither mean error. On the other hand, in the 3rd

row, where values are sorted by the error variance, the values with the greater error

variance also show the largest area.

Figure 3.11 shows the magnitude of error variance for the different CCMs tested

twice on the same Cyclone III FPGA. The colour in each cell is related to the

magnitude of the error variance. It is observable that the coefficients with the

smallest Hamming distance only show error variance at the top clock frequencies.

It is also observable that some constant coefficients exhibit different levels of error

variance for the same clock frequencies, even though there are no changes in the

multiplier circuit, i.e. around coefficient 100 and 120 at 540MHz. This observation

can be justified as a manifestation of variation in temperature, jitter, cross-talk, self-

heating, noise, or a combination of any of these. The scale in the figure is normalised

to the maximum error variance observed.



3.3 Performance of Arithmetic Units Under Variation 81

50 100 150 200 250
0

20

40

Area

50 100 150 200 250
0

5

Variance

50 100 150 200 250
0

1

2

Mean Error

50 100 150 200 250
0

5

Hamming distance

50 100 150 200 250
0

20

40

Area

50 100 150 200 250
0

5

Variance

50 100 150 200 250
0

1

2

Mean Error

50 100 150 200 250
0

5

Hamming distance

50 100 150 200 250
0

20

40

Area

50 100 150 200 250
0

5

Variance

50 100 150 200 250
0

1

2

Mean Error

50 100 150 200 250
0

5

Hamming distance

50 100 150 200 250
0

20

40

Area

50 100 150 200 250
0

5

Variance

50 100 150 200 250
0

1

2

Mean Error

50 100 150 200 250
0

5

Hamming distance

50 100 150 200 250
0

100

200

Const Coeff Value

50 100 150 200 250
0

5

Variance

50 100 150 200 250
0

1

2

Mean Error

50 100 150 200 250
0

5

Hamming distance

Figure 3.10.: Statistics for errors of CCMs sorted by different metrics: CCM value
(1st row), area (2nd row), error variance (3rd row), mean error (4th
row) and Hamming distance (5th row).

50 100 150 200 250
450

500

550
Error Variance for CCMs: Loc 1/Run1

Constant Coefficient

C
lo

c
k
 F

re
q
u
e
n
c
y
 [

M
H

z
]

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250
450

500

550
Error Variance for CCMs: Loc 1/Run2

Constant Coefficient

C
lo

c
k
 F

re
q
u
e
n
c
y
 [

M
H

z
]

0

0.2

0.4

0.6

0.8

1

Figure 3.11.: Variance of constant coefficients for CCMs tested twice on a Cyclone
III FPGA under different clock frequencies.



3.3 Performance of Arithmetic Units Under Variation 82

50 100 150 200 250
300

310

320

330

340

350

360

const coeff

Variance: Mult Cst vs Freq 

fr
e
q
u
e
n
c
y
 [

M
H

z
]

0

1

2

3

4

5

6

7

8

Figure 3.12.: Variance of constant coefficients for a LUT-based generic multiplier
under different clock frequencies.

3.3.3. LUT-Based Generic Multiplier

The characterisation of LUT-based generic multipliers was performed under con-

trolled operating conditions (i.e. temperature and voltage). Figure 3.12 shows the

results for the characterisation of an 8-bit unsigned multiplier at different clock fre-

quencies, in one location on the FPGA, for all possible constant coefficients, with

29.4k uniform pseudo-random samples. The number of samples is approximately

half of all possible combinations for the input data. The data is represented in log10

scale of the error variance.

When compared to the CCM, the generic multiplier presents lower maximum

clock frequency to operate without errors, a consequence of an increased number

of paths. Moreover, small increases in the clock frequency makes more coefficients

to present error variance, whereas the CCMs allow a greater increase in the clock

frequency (apx. 60MHz vs 100MHz).

Figure 3.13 shows details for the error at the output of the multiplier, for the first

100 samples, when placed in two different locations on the device, identified with loc

1 and loc 2. The target clock frequency is set at 320MHz and one of the operands

of the generic multipliers is fixed to a value of 222. The absolute error histograms,

on the right, for the two locations are depicted in the same figure for the complete

test. It can be concluded that the same multiplier placed in two different locations



3.3 Performance of Arithmetic Units Under Variation 83

20 40 60 80 100

−6

−4

−2

0

2

4

6

x 10
4

Sample number

E
rr

o
r 

v
a
lu

e

8x8 Mult, loc 1 @ 320 MHz

−1 −0.5 0 0.5 1

x 10
5

0

0.5

1

1.5

2
x 10

4

Error value

N
u
m

b
e
r 

o
f 

o
c
u
rr

e
n
c
e
s

8x8 Mult, loc 1 @ 320 MHz

20 40 60 80 100
−6

−4

−2

0

2

4

6
x 10

4

Sample number

E
rr

o
r 

v
a
lu

e

8x8 Mult, loc 2 @ 320 MHz

−1 −0.5 0 0.5 1

x 10
5

0

0.5

1

1.5

2
x 10

4

Error value

N
u
m

b
e
r 

o
f 

o
c
u
rr

e
n
c
e
s

8x8 Mult, loc 2 @ 320 MHz

Figure 3.13.: The first 100 error values from a 8-bit LUT-based unsigned multiplier
(left) and the distribution of all errors (right), for constant multiplicand
222 in 2 locations of a Cyclone III FPGA at 320MHz.

produces different error patterns. It is observed that the multiplier on the bottom

row had more errors in the MSBits (around ±0.6×105) than the one on the top row.

This can be justified by variations in placement & routing and process variation since

the operating conditions are the same, and constant, for both multipliers during the

test.



3.3 Performance of Arithmetic Units Under Variation 84

Scenario Voltage Temperature

Low-power 1000mV 35 ◦C
High-performance 1400mV 5 ◦C
Voltage sweep 1000-1400mV 20 ◦C
Temperature sweep 1200mV 5-50 ◦C
Process variation 1200mV 20 ◦C

Table 3.2.: Operating conditions for characterisation of the DSP-based multipliers.

3.3.4. DSP-Based Multiplier

The embedded, or DSP-based, multipliers were tested on different sets of operating

conditions, or scenarios, as summarised in table 3.2. These scenarios try to resemble

some of the most common implementation objectives in DSP circuit design, e.g.

low-power and high-performance.

Figure 3.14 presents the results for the error variance of low-power and high-

performance scenarios, respectively. From the figure it is observable that the max-

imum clock frequency varies between 330 and 680MHz thus exposing a gap of

350MHz in their throughput.

3.3.5. Voltage and Temperature Variation

Voltage and temperature are the external sources of variation that can change more

abruptly and may be difficult to control, e.g. battery powered and outdoor applica-

tions. Therefore, it’s of great interest to evaluate the performance of arithmetic units

under such variations. DSP blocks were used to minimise variations from placement

& routing.

Figures 3.15 and 3.16 show the evolution of timing errors with voltage and tem-

perature increase, respectively. It is distinguishable that voltage impacts the most in

terms of maximum throughput of the DSP-based multipliers, approximately 80MHz

per 100mV, whereas temperature variation, between 5 and 50◦C, impacted the max-

imum throughput by no more than 10MHz.



3.3 Performance of Arithmetic Units Under Variation 85

300 400 500 600 700 800
10

0

10
2

10
4

10
6

10
8

10
10

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

Cyclone III DSP mult8x8

1000mV, 35
°
C

1400mV, 5
°
C

Figure 3.14.: Error variance results for DSP-based multipliers targeting low-power
(1000mV, 35 ◦C) and high-performance designs (1400mV, 5 ◦C).

300 400 500 600 700 800 900
10

0

10
2

10
4

10
6

10
8

10
10

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

DSP mult8x8 1000−1400mV 20
°
C

1000mV

1100mV

1200mV

1300mV

1400mV

Figure 3.15.: Results for DSP-based multipliers with voltage variation.



3.3 Performance of Arithmetic Units Under Variation 86

450 500 550 600 650 700
10

0

10
2

10
4

10
6

10
8

10
10

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

DSP mult8x8 1200mV 5−50
°
C

5
°
C

20
°
C

35
°
C

50
°
C

Figure 3.16.: Results for DSP-based multipliers with temperature variation.

3.3.6. Intra-die Process Variation

It’s an established fact that devices are uneven, therefore this evaluation tries to

model, in terms of mean error and variance, their impact. Unlike the LUT-based

generic multipliers, the DSP-based multipliers have a fixed structure, embedded on

the device, along with the other reconfigurable blocks, therefore it’s the most suitable

element to use in the assessment of the influence of process variation in the results.

The investigation on the impact of process variation is shown in figure 3.17. For

three locations tested, it is observed up to 10MHz penalty in maximum performance

to operate without timing errors. In this test all multipliers were tested simultane-

ously using the same data. Table 3.3 indicates the coordinates of the multipliers on

the device.



3.3 Performance of Arithmetic Units Under Variation 87

X Y

Loc 1 18 10
Loc 2 18 17
Loc 3 18 24

Table 3.3.: Locations of the DSP-based multipliers for the characterisation tests of
a Cyclone III FPGA.

450 500 550 600 650 700
10

0

10
2

10
4

10
6

10
8

10
10

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

DSP mult8x8 1200mV 20C

Loc 1

Loc 2

Loc 3

Figure 3.17.: Error variance from the characterisation of DSP-based multipliers on
3 different locations in DE0 board #1.



3.3 Performance of Arithmetic Units Under Variation 88

3.3.7. Inter-die Process Variation

To assess the impact of process variation across different devices from the same

family, the same test was repeated with the same synthesised circuit on other devices,

from the same family, subjected to the same operating conditions.

An expected trend, in the absolute error statistics, is to have constant coefficients

with values corresponding to power of 2 performing with less errors than the other

constant coefficients. It is also expected to identify differences when the test is

performed on different boards, due to process variations.

Figures 3.18-3.21 show the results for the same test repeated for different DE0

boards. Even though all graphs follow the same trend, it is observable that DE0

board #2 has different maximum clock frequencies to have the multipliers operating

without errors. Figure 3.22 has the error distributions for the 3 locations, where the

multipliers are implemented on the DE0 board #3, for different clock frequencies.

It is obvious that all 3 multipliers exhibit different error patterns for the same test

performed simultaneously using the same data on the same device. Hence, it is

possible to conclude that this is related to the variations in the fabrication process.

Figures 3.23 and 3.24 show the error variance, and mean error, for different clock

frequencies on a Cyclone III FPGA. Compared to the LUT-based generic multiplier,

the DSP-based multiplier exhibits a smaller frequency band in the region between

no coefficients with error and all coefficients with error. This is justified by the

fact that delay due to routing increases the delay between paths with similar delay,

whereas in the DSP-based all paths have a very small delay, thus making them with

very similar delay. On the other hand, variation between DSP-based multipliers is

smaller than between LUT-based multipliers. Consequently, small increases in clock

frequency makes more paths to have their timing constraints violated. Compared to

the results from another board, in figures 3.25 and 3.26, it is verified that some of

the different coefficients have different errors at different frequencies and locations



3.3 Performance of Arithmetic Units Under Variation 89

450 500 550 600 650 700
10

0

10
2

10
4

10
6

10
8

10
10

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

DSP mult8x8 1200mV 20
°
C

Loc 1

Loc 2

Loc 3

Figure 3.18.: Error variance from the characterisation of DSP-based multipliers on
3 different locations in DE0 board #2.

on the device, even though it uses the same test circuit.

3.3.8. Process Size Variation

Regarding the results obtained from the characterisation of the devices, there’s a

question on whether such error modelling scales with the fabrication process. This

section presents result for the same characterisation tests for two new device families,

Cyclone IV and Cyclone V from Altera.

Figure 3.27 shows the characterisation test for two sets of locations, targeting a

Cyclone IV device on a DE0 Nano board. It should be noted that location 2 remains

constant for both tests, whereas the other locations change. Table 3.4 holds all the

coordinates for both tests. From these plots it is possible to draw conclusions on

the effects of the process technology (60 nm vs 65 nm) for the same architecture,

as reported by the device manufacturer, and on the relation between the Hamming



3.3 Performance of Arithmetic Units Under Variation 90

450 500 550 600 650 700
10

0

10
2

10
4

10
6

10
8

10
10

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

DSP mult8x8 1200mV 20
°
C

Loc 1

Loc 2

Loc 3

Figure 3.19.: Error variance from the characterisation of DSP-based multipliers on
3 different locations in DE0 board #3.

450 500 550 600 650 700
10

0

10
2

10
4

10
6

10
8

10
10

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

DSP mult8x8 1200mV 20
°
C

Loc 1

Loc 2

Loc 3

Figure 3.20.: Error variance from the characterisation of DSP-based multipliers on
3 different locations in DE0 board #4.



3.3 Performance of Arithmetic Units Under Variation 91

450 500 550 600 650 700
10

0

10
2

10
4

10
6

10
8

10
10

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

DSP mult8x8 1200mV 20
°
C

Loc 1

Loc 2

Loc 3

Figure 3.21.: Error variance from the characterisation of DSP-based multipliers on
3 different locations in DE0 board #5.

distance and the results when operating under variation. The maximum clock fre-

quency, in the newer process, is increased by approximately 70MHz, corresponding

to a reduction in process size by 5 nm. In figure 3.28 there are the histograms for

the errors on both tests on the same location. It is possible to conclude that there

was no observed effect in the errors in one location of the device due to having other

adjacent blocks operating.

Figures 3.29 and 3.30 show the error variance for different clock frequencies, in

(X,Y) Test 1 Test 2

Loc 1 (42,16)
Loc 2 (42,17) (42,17)
Loc 3 (42,18)
Loc 4 (42,14)
Loc 5 (42,20)

Table 3.4.: Locations of the DSP-based multipliers for the characterisation tests of
a Cyclone IV FPGA.



3.3 Performance of Arithmetic Units Under Variation 92

−10 −5 0 5

x 10
4

0

2

4
Errors @ 510MHz / Loc 1

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 510MHz / Loc 2

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 510MHz / Loc 3

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 520MHz / Loc 1

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 520MHz / Loc 2

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 520MHz / Loc 3

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)
−10 −5 0 5

x 10
4

0

2

4
Errors @ 530MHz / Loc 1

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 530MHz / Loc 2

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 530MHz / Loc 3

Error value
L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 540MHz / Loc 1

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 540MHz / Loc 2

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 540MHz / Loc 3

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 550MHz / Loc 1

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 550MHz / Loc 2

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −5 0 5

x 10
4

0

2

4
Errors @ 550MHz / Loc 3

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

Figure 3.22.: Distribution of errors for 3 DSP-based multipliers on 3 different loca-
tions in DE0 board #4.



3.3 Performance of Arithmetic Units Under Variation 93

50 100 150 200 250

500

550

600

650

Error Variance: Mult Cst vs Freq @ Loc 1

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

4

5

6

7

8

50 100 150 200 250

500

550

600

650

Error Variance: Mult Cst vs Freq @ Loc 2

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

3

4

5

6

7

8

50 100 150 200 250

500

550

600

650

Error Variance: Mult Cst vs Freq @ Loc 3

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

2

3

4

5

6

7

8

Figure 3.23.: Error variance for DSP-based multipliers on 3 different locations in
DE0 board #4.



3.3 Performance of Arithmetic Units Under Variation 94

50 100 150 200 250

500

550

600

650

Mean Error: Mult Cst vs Freq @ Loc 1

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

0

1

2

3

4

50 100 150 200 250

500

550

600

650

Mean Error: Mult Cst vs Freq @ Loc 2

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

0

1

2

3

4

50 100 150 200 250

500

550

600

650

Mean Error: Mult Cst vs Freq @ Loc 3

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

1

2

3

4

Figure 3.24.: Mean error for DSP-based multipliers on 3 different locations in DE0
board #4.



3.3 Performance of Arithmetic Units Under Variation 95

50 100 150 200 250

500

550

600

650

Error Variance: Mult Cst vs Freq @ Loc 1

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

2

3

4

5

6

7

8

50 100 150 200 250

500

550

600

650

Error Variance: Mult Cst vs Freq @ Loc 2

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

3

4

5

6

7

8

50 100 150 200 250

500

550

600

650

Error Variance: Mult Cst vs Freq @ Loc 3

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

2

4

6

8

Figure 3.25.: Error variance for DSP-based multipliers on 3 different locations in
board #5.



3.3 Performance of Arithmetic Units Under Variation 96

50 100 150 200 250

500

550

600

650

Mean Error: Mult Cst vs Freq @ Loc 1

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

1

2

3

4

50 100 150 200 250

500

550

600

650

Mean Error: Mult Cst vs Freq @ Loc 2

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

0

1

2

3

4

50 100 150 200 250

500

550

600

650

Mean Error: Mult Cst vs Freq @ Loc 3

Const coeff

F
re

q
u
e
n
c
y
 [

M
H

z
]

0

1

2

3

4

Figure 3.26.: Mean error for DSP-based multipliers on 3 different locations in DE0
board #5.



3.3 Performance of Arithmetic Units Under Variation 97

500 550 600 650 700
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

DSP mult8x8 1200mV 20C

500 550 600 650 700
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

DSP mult8x8 1200mV 20C

Loc 4

Loc 2

Loc 5

Loc 1

Loc 2

Loc 3

Figure 3.27.: Error variance for DSP-based multipliers on 3 different locations on a
Cyclone IV FPGA, DE0 Nano board #2, tests 1 and 2.



3.3 Performance of Arithmetic Units Under Variation 98

−10 −8 −6 −4 −2 0 2 4 6

x 10
4

0

1

2

3

4
Errors @ 580MHz / Loc 2

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −8 −6 −4 −2 0 2 4 6

x 10
4

0

1

2

3

4
Errors @ 600MHz / Loc 2

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −8 −6 −4 −2 0 2 4 6

x 10
4

0

1

2

3

4
Errors @ 620MHz / Loc 2

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −8 −6 −4 −2 0 2 4 6

x 10
4

0

1

2

3

4
Errors @ 640MHz / Loc 2

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −8 −6 −4 −2 0 2 4 6

x 10
4

0

1

2

3

4
Errors @ 660MHz / Loc 2

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

−10 −8 −6 −4 −2 0 2 4 6

x 10
4

0

1

2

3

4
Errors @ 680MHz / Loc 2

Error value

L
o
g

1
0
(#

 O
c
c
u
r.

)

Test 1

Test 2

Test 1

Test 2

Test 1

Test 2

Test 1

Test 2

Test 1

Test 2

Test 1

Test 2

Figure 3.28.: Results for DSP-based Multipliers on a Cyclone IV using different
designs.



3.3 Performance of Arithmetic Units Under Variation 99

50 100 150 200 250

600

620

640

660

680

700
Error Variance: Mult Cst vs Freq @ Loc 1

const coeff

fr
e
q
u
e
n
c
y
 [

M
H

z
]

4

5

6

7

8

50 100 150 200 250

600

620

640

660

680

700
Error Variance: Mult Cst vs Freq @ Loc 2

const coeff

fr
e
q
u
e
n
c
y
 [

M
H

z
]

3

4

5

6

7

8

50 100 150 200 250

600

620

640

660

680

700
Error Variance: Mult Cst vs Freq @ Loc 3

const coeff

fr
e
q
u
e
n
c
y
 [

M
H

z
]

4

5

6

7

8

Figure 3.29.: Error variance of 3 DSP-based multipliers on a Cyclone IV FPGA (DE0
Nano board #1).

two different tests on the same board, using different locations for multipliers 1 and

3, while location 2 remains constant. While the error variance patterns change for

locations 1 and 3, it remains constant for the 2nd, as illustrated previously with the

error histograms. Figure 3.31 holds the same error variance but for a different board,

and 3.32 the observed mean error. From all characterisations for the different mul-

tipliers, on different families of FPGAs, it is evident that the constant coefficients

have different error variances. Thus, choosing their values carefully can create de-

signs with small deviations from the standard implementation of an algorithm, but

with great benefits in terms of error minimisation when compared to over-clocking

typical design methodologies.

Recently a smaller fabrication process was introduced and a new family of FPGAs

was introduced, Cyclone V [3]. This FPGA uses a 29 nm process size. This FPGA

has some architectural differences from the previous Cyclone families, namely the



3.3 Performance of Arithmetic Units Under Variation 100

50 100 150 200 250

600

620

640

660

680

700
Error Variance: Mult Cst vs Freq @ Loc 1

const coeff

fr
e
q
u
e
n
c
y
 [

M
H

z
]

3

4

5

6

7

8

50 100 150 200 250

600

620

640

660

680

700
Error Variance: Mult Cst vs Freq @ Loc 2

const coeff

fr
e
q
u
e
n
c
y
 [

M
H

z
]

3

4

5

6

7

8

50 100 150 200 250

600

620

640

660

680

700
Error Variance: Mult Cst vs Freq @ Loc 3

const coeff

fr
e
q
u
e
n
c
y
 [

M
H

z
]

4

5

6

7

8

Figure 3.30.: Mean error of 3 DSP-based multipliers on a Cyclone IV FPGA (DE0
Nano board #1).

50 100 150 200 250

600

620

640

660

680

700
Error Variance: Mult Cst vs Freq @ Loc 1

const coeff

fr
e
q
u
e
n
c
y
 [

M
H

z
]

3

4

5

6

7

8

50 100 150 200 250

600

620

640

660

680

700
Error Variance: Mult Cst vs Freq @ Loc 2

const coeff

fr
e
q
u
e
n
c
y
 [

M
H

z
]

3

4

5

6

7

8

50 100 150 200 250

600

620

640

660

680

700
Error Variance: Mult Cst vs Freq @ Loc 3

const coeff

fr
e
q
u
e
n
c
y
 [

M
H

z
]

3

4

5

6

7

8

Figure 3.31.: Error variance of 3 over-clocked DSP-based multipliers on a Cyclone
IV FPGA (DE0 Nano board #2).



3.3 Performance of Arithmetic Units Under Variation 101

50 100 150 200 250

600

620

640

660

680

700
Mean Error: Mult Cst vs Freq @ Loc 1

Const. Coeff.

F
re

q
u
e
n
c
y
 [

M
H

z
]

0

1

2

3

50 100 150 200 250

600

620

640

660

680

700
Mean Error: Mult Cst vs Freq @ Loc 2

Const. Coeff.

F
re

q
u
e
n
c
y
 [

M
H

z
]

0

1

2

3

50 100 150 200 250

600

620

640

660

680

700
Mean Error: Mult Cst vs Freq @ Loc 3

Const. Coeff.

F
re

q
u
e
n
c
y
 [

M
H

z
]

0

1

2

3

Figure 3.32.: Mean error of 3 over-clocked DSP-based multipliers on a Cyclone IV
FPGA (DE0 Nano board #2).

use of Adaptive Logic Modules (ALMs) instead of LEs, and complex DSP blocks

instead of embedded multipliers.

Figure 3.33 shows the results, in terms of error variance, for the same characterisa-

tion test, on a DSP Block of a Cyclone V FPGA fitted on a BeMicro CV board from

Arrow, along with results for Cyclone III and IV for comparison. In this test, Cy-

clone V voltage was set to 1100mV and temperature was kept at 23◦C. Temperature

was monitored using a DVM345DI multimeter from Velleman. In comparison with

previous results, the evolution of error variance with the clock frequency increase

resembles the results for high-performance from Figure 3.14, with a fast increase in

error. As a result, there’s a gap of 30MHz from no errors to maximum errors in the

DSP block.

In this case, the maximum clock frequency for error-free operation of the Cyclone

V FPGA is 550MHz, which is 20MHz below the maximum found for the Cyclone IV



3.4 Impact of Variation in Linear Projection Designs 102

450 500 550 600 650 700
10

0

10
2

10
4

10
6

10
8

10
10

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

DSP mult on Cyclone III, IV and V

Cyclone V

Cyclone IV

Cyclone III

Figure 3.33.: Error variance of over-clocked DSP-based multipliers on Cyclone III,
IV and V FPGAs.

FPGA. Even though the expectation is to obtain increased performance in smaller

devices, changes in architecture of the DSP blocks, supply voltage and speed grade

can contribute to a loss in performance.

3.4. Impact of Variation in Linear Projection Designs

Succeeding the characterisation test for individual arithmetic units, a DSP applica-

tion was tested to demonstrate the impact of variation of the operating conditions

in the final results. The application chosen is the linear projection. This algorithm

has been presented in the background section of this thesis, and it is well known

that it can tolerate some errors in its calculations.

The present test considers a face-recognition application performing projection

of images with 2k dimensions (50x40 pixels) to a smaller space with 40 dimen-

sions, on a DE0 board from Terasic [89], fitted with a Cyclone III 3C16 device from



3.5 Run-Time Investigation 103

Altera [1]. The test was carried out using generic multipliers implemented with

LUTs and DSP blocks. During the test the FPGA was supplied with 1200mV and

kept at 20 ◦Celsius, through the usage of an external control system which is de-

scribed in the appendix of this thesis. Given the number of dimensions involved in

this example, the implementation follows the folded architecture implementation of

the dot-product operator. Figures 3.34 and 3.35 show the back-projections, in the

original space, for the projection of 5 images on an FPGA using LUT-based and

DSP-based multipliers, respectively, at different clock frequencies. In this particular

example the quality of the results is presented as back-projection of the projected

data, in the circuit, into the original space and measured in dB, which is obtained

from the PSNR introduced in equation 2.18. The first row shows the expected re-

sults without any errors. In the rows below, it is observable that with the increase

in the over-clocking frequencies the faces produced by the circuit are similar to the

original ones, even though some distortions are perceptible. It is observable that

the DSP-based multiplier have its results degrading more gracefully than the LUT-

based ones. For the same level of noise introduced, the DSPs-based multipliers have

a gap in performance of 60MHz whereas the LUT-based multipliers have less than

40MHz. This is may be due to the fact that, up to a certain clock frequency, not

all paths have their timing constraints being infringed. When most of the paths are

experiencing timing errors, from extreme over-clocking, the magnitude of the errors

renders the system unusable as the faces are no longer recognisable.

3.5. Run-Time Investigation

The main contribution to the run-time of the characterisation framework is the

data transfers via JTAG. The execution times, in seconds, have been observed and

been approximated to the following equation as a way to estimate the framework’s



3.5 Run-Time Investigation 104

A B C D E

2
3
0
 M

H
z

−22.46 dB −24.96 dB −21.5 dB −17.42 dB −20.86 dB

2
5
0
 M

H
z

−43.74 dB −44.44 dB −42.15 dB −39.77 dB −41.46 dB

2
7
0
 M

H
z

−52.36 dB −53.02 dB −52.29 dB −51.67 dB −48.88 dB

3
0
0
 M

H
z

Figure 3.34.: Faces obtained from the reconstruction of the linear projection imple-
mented with LUT-based multipliers operating at 230, 250, 270 and
300MHz.



3.5 Run-Time Investigation 105

A B C D E

5
3
0
 M

H
z

−1.845 dB −0.1022 dB −0.08273 dB − −1.862 dB

5
5
0
 M

H
z

−15.53 dB −15.96 dB −19.19 dB −17.96 dB −14.33 dB

5
7
0
 M

H
z

−28.45 dB −26.53 dB −29.81 dB −27.74 dB −24.51 dB

5
9
0
 M

H
z

−33.63 dB −33.14 dB −35.61 dB −33.74 dB −31.4 dB
6
1
0
 M

H
z

Figure 3.35.: Faces obtained from the reconstruction of the linear projection imple-
mented with DSP-based multipliers operating at 510, 530, 550, 570
and 590MHz.



3.6 Summary 106

run-time for tests on three arithmetic units simultaneously:

T = 1.7143n (3.1)

The run-time (T ) is measured in seconds, and depends on the number of 2k

samples vectors tested (n) on the arithmetic unit. 2k samples is the capacity of the

memories in the design.

3.6. Summary

In this chapter a framework has been proposed to characterise the performance of

arithmetic units. In this case LUT and DSP-based generic multipliers were tested

under various settings (i.e. clock frequency, location on the device, supply volt-

ages and device temperatures). The characterisation framework was used to do the

characterisation of common arithmetic units in DSP designs. Results show how the

arithmetic units performed when subjected to variation of their operating condi-

tions (voltage, temperature, location, placement & routing). Since arithmetic units

often are the performance limiting elements in a DSP design, characterising them

under certain operating conditions allows to maximise the operating clock frequency

without incurring in timing errors. Moreover, since they don’t exhibit all the same

results, this can be used to further increase the performance by using the ones that

exhibit less errors.

In addition, this framework also produces statistics on the results for the char-

acterisation of the units under test, using different operating conditions. Table 3.5

summarises the impact of the different sources of variation in the most common

arithmetic operators in a DSP design. Besides characterising the arithmetic units,

the framework was adapted to assess the impact of variation in the results of a linear

projection. This framework can be extended to other arithmetic units and devices,



3.6 Summary 107

Variation Source Impact in performance

Process Small
Voltage Large
Temperature Small
Placement & Routing Medium

Table 3.5.: Impact of the different sources of variation in the performance of arith-
metic units.

being the main limiting factor the placement & routing of the auxiliary blocks for

the test circuit, as it needs to have its critical paths as short as possible in order to

operate at higher clock frequencies than the unit under test.

The obtained results, for different operating conditions, demonstrate that as the

clock frequency increases, more erroneous data appear at the output of the multipli-

ers, demonstrating that the presence of errors is cumulative as the clock frequency

increases, which is as expected. One interesting finding was the fact that the scal-

ing down in the fabrication process has led to designs that degrade faster with the

increase in clock frequency.

Notwithstanding, it was observed that placement of the arithmetic units under

characterisation in various locations of the device, produced different error patterns

in their outputs. However, this effect is not only attributed to the performance

difference derived from the fabrication process of the FPGA device, but also from

the variations in routing created by the synthesis tool.



4
Redundancy in Arithmetic Units

4.1. Introduction

R
edundancy has been proposed as a method to incorporate resilience into arith-

metic units, or sub-systems, on a datapath sensitive to errors. The objective

is to provide the arithmetic units with resilience from variation errors, due to in-

fringement of timing constraints on their critical-paths, when the design is under

variation of its operating conditions.

RPR is based on the result, of a truncated version of the unit considered, computed

in parallel with the original one. When the absolute difference, between the outputs

of the original and the reduced units, is above a threshold specified by the user, then

108



4.1 Introduction 109

the output of the reduced unit is placed at the output of the RPR unit instead of the

value from the original unit. Since there’s always a result present at the output of

the RPR unit, it is advantageous to use it in architectures that don’t tolerate stalls

in their datapath. The background section of this thesis provides an explanation on

how RPR works and offers an overview on the most significant contributions.

Even though this methodology allows to keep the throughput constant, as it has

been proposed, it requires the insertion of, at least, an extra clock cycle in the

datapath, a consequence of the register placed between the output of the original

and approximation units and the correction circuit. This can be problematic, or even

prohibitive, in circumstances where the algorithm doesn’t allow further pipelining

due to the cost in extra resources, or penalty in the quality of the results [90].

Despite of the attention it has received, there haven’t been proposals to adapt

the RPR methodology to arithmetic units which produce results without requiring

extra clock cycles. The research presented in this chapter aims to close this gap

by proposing a novel framework that allows to add resilience to arithmetic units by

limiting the magnitude of the errors at their output.

An investigation of existing RPR schemes [11, 70, 67] shows that the majority

adopts the architecture depicted in figure 4.1. This architecture could be modified

to produce the result within a single clock cycle, if the registers at the output of

the original and reduced units were to be removed. Although this modification

would allow to use RPR within one clock cycle, the delay of the critical-paths in the

new RPR unit would be longer than the delay of the critical-paths in the original

arithmetic unit. In other words, the delay of the critical-paths in the new RPR unit

would be the delay of the original arithmetic unit plus the delays of the subtracter,

comparator and multiplexer, which come after the output of the original arithmetic

unit considered.

Fundamentally, the delay of the redundant circuitry limits the maximum clock



4.2 Reduced-Precision Redundancy Framework 110

Figure 4.1.: Typical RPR architecture applied to a system under VoS.

frequency to produce correct results. In such scenario, even in case the circuit is

clocked at clock frequencies below the maximum clock frequency of the original

arithmetic unit, the value at the output of the RPR block could be different from

expected as a consequence of violation of the new critical-paths. Moreover, the

maximum clock frequency in the RPR unit is set by the delay of the most critical-

paths between the input of the reduced unit and the output of the multiplexer.

The proposed framework intends to lift up this limitation by addressing the role

of the components contributing to the delay of the new critical-paths, hence reduc-

ing them to a minimum. In order to achieve this, a new architecture was imagined

and the design choices automated through the framework. The remaining of this

chapter is devoted to explain the proposed RPR framework, how is the new archi-

tecture applied to different arithmetic operators and presenting the comparison in

performance evaluation when compared to the typical RPR adapted to single clock

cycle operation.

4.2. Reduced-Precision Redundancy Framework

The proposed RPR framework operates similarly to existing RPR schemes, as it cre-

ates a circuit that encapsulates the original unit, without modifying it, and replaces

it in the original circuit. But it distances itself from previous works as it enjoys fea-



4.2 Reduced-Precision Redundancy Framework 111

Figure 4.2.: New RPR architecture applied to a generic combinatorial operator.

tures that are specific for throughput and latency critical applications, and relies on

a new RPR architecture for zero latency penalty. Also, it benefits from specialised

blocks embedded in modern FPGAs as well as their reconfigurable capabilities.

In terms of operation, the user specifies the design budget, in terms of FPGA re-

sources, and the RPR framework provides the solutions for possible implementations

of RPR units.

4.2.1. Architecture

In contemplation of the aforementioned constraints a new architecture has been

devised. The new architecture borrows the idea of replacing the MSBits at the

output of the arithmetic unit with an approximation but it proposes new methods

to detect variation errors and to produce approximations. Usually, RPR schemes

target the MSBits of arithmetic operators, i.e. adders and multipliers in binary or

two’s complement representations, as they usually hold the paths with the longest

delay [70].

Figure 4.2 shows the proposed architecture applied to a generic combinatorial unit



4.2 Reduced-Precision Redundancy Framework 112

op (original). A, B and R are the inputs and output of the RPR unit, respectively.

Identifier a refers to the input arguments and b to the result of the original operator.

The remaining identifiers refer to the paths added by the RPR. Besides the original

unit (op), the architecture includes a block to provide approximations used in error

detection (DET APX ) and another for correction (REP APX ). The inputs of the

approximation blocks are the truncated inputs A and B. Both inputs for the approx-

imation blocks and original operator derive from the output of the previous block

in the system. It also includes a combinatorial block, responsible for the indication

of a mismatch in the MSBits, named XOR→OR, and a multiplexer to select which

value pass to the output.

The output of the detection approximation (DET APX ) is identified with e. This

signal holds the MSBits to be used in the comparison with the MSBits at output

of the original unit (signal f ). The output of the replacement approximation (REP

APX ) is identified with h. This signal holds the MSBits to be used in the replace-

ment, or correction, of the MSBits at output of the multiplexer (signal i).

The MSBits were chosen to be compared, and replaced, because usually they are

the signals with the critical path in the original unit. The LSBits of the original

result (signal c) aren’t affected, hence they are the same as at the output of the

original unit. MSBits are compared via a bit-wise XOR followed by an OR of all

resulting bits (signal g). Whenever the MSBits match, the output of this block

is zero, and one if at least one bit differs. In the first case, at the output of the

multiplexer (i) will be the MSBits from the original unit (signal d). Otherwise,

the multiplexer’s output will be passed to the output of the replacement detection

table (signal h). Moreover, this new architecture is focused on minimising variation

errors due to encroachment of the timing constraints on the most critical-paths of a

datapath. Thus, it shows the approximation result at the output of the multiplexer

while the MSBits at the output of the original unit don’t match the MSBits from



4.2 Reduced-Precision Redundancy Framework 113

the detection approximation.

One of the main novelties in this architecture is the use of look-up tables, to

produce the approximations. They are identified as Read-Only Memory (ROM),

and they are used to hold the results for the approximation functions, instead of

the truncated implementation of the operator. Another novelty is a bit-wise com-

parison (XOR→OR) instead of a subtraction followed by a comparator to detect

the presence of variation errors. This leads to significant savings in delay between

the input ports and the output ports of the unit. Forasmuch, as the gap in delay

between the output of the approximation (signal e) and the original result (signal

b) increases, it allows to push the clock frequency even further, as illustrated in

figure 4.3. This figure shows the maximum clock frequencies for the standard unit

and the proposed RPR unit and their operating regimes: error-free/expected result

(green), error-prone/approximated result (orange) and incorrect result (red). It also

shows the delays that contribute to the maximum clock frequencies of RPR units.

Standard units can operate without errors at higher clock frequencies than the RPR

unit but once they reach their limit, results at their output will be incorrect and

unpredictable. On the other hand, the clock frequency of the RPR unit will be

impaired due to the redundant circuitry. Hence, the top frequency the RPR unit

can operate, producing approximate results, is given by the delay of the elements in

the approximation’s critical-path.

The new architecture uses two approximations in parallel. The approximation

for detection (DET APX ) of errors is treated separately from the approximation to

replace (REP APX ) results detected as a mismatch. This is derived from the fact

that information is missing from an approximation computed from truncated input

arguments. So, a bit-wise comparison between the expected result, from the original

unit, and approximation unit will identify mismatches. This is not desirable as it

will mark expected results a mismatch and have the MSBits replaced with the values



4.2 Reduced-Precision Redundancy Framework 114

Figure 4.3.: Illustration of the maximum clock frequencies, and delays, for standard
and RPR units and their operating regimes: error-free/expected result
(green), error-prone/approximated result (orange) and incorrect result
(red).

A B Result MSB

1001 1111 10000111 1
1000 1100 01100000 0

Table 4.1.: Results of 2x2-bit multiplications using the original and truncated
operands.

from the approximation. As illustrated in table 4.1 for a multiplication of 9 and 15.

The MSBit from 2 MSBits of each operand differs from the expected MSBit.

On this account, in detection it is desirable to use as many bits as possible to

obtain the least number of false positive mismatches. On the other hand, if the

original unit is producing incorrect MSBits it is likely that some of the LSBits will

also be incorrect. Hence, it is advantageous to replace more MSBits than the ones

considered in the detection block. Nevertheless, if the MSBits are to be replaced by

an approximation, then the impact of the lack of information will correspond to the

approximation error at the output of the RPR unit, similarly to the existing RPR

schemes.

Given the aforementioned, the proposed RPR framework not only allows to specify

different word lengths for the inputs and outputs of the approximation ROMs, but it

also allows to use different approximation functions for detection and replacement.

The approximation functions in the ROMs depend on the arithmetic operator used,



4.2 Reduced-Precision Redundancy Framework 115

Field Description (word length of)

Ori iWL input in the original unit
Ori oWL output in the original unit
Det iWL input in the detection ROM
Det oWL output in the detection ROM
Rep iWL input in the replacement ROM
Rep oWL output in the replacement ROM

Table 4.2.: Denominations of the labels in the nomenclature adopted for the pro-
posed RPR scheme.

and they are automatically created by the proposed RPR framework to minimise

the impact of false positives and approximation errors.

On the ground of possible implementations using the new RPR architecture a

nomenclature is proposed to help identifying the word lengths of key elements: orig-

inal unit, detection ROM and replacement ROM. The syntax is as follows, with the

description for each field in table 4.2:

Ori iWL : Ori oWL / Det iWL : Det oWL / Rep iWL : Rep oWL

Furthermore, to distinguish the different RPR schemes from each other, the fol-

lowing prefix is added to the above nomenclature, which is adopted throughout this

work:

• LUT-SUB - existing RPR; approximation computed from a truncated arith-

metic unit implemented using LUTs/LEs; an error is detected from the differ-

ence between the output of the original unit and the approximation;

• ROM-XOR - proposed RPR; detection approximation is retrieved from a

ROM, and an error is detected from bitwise comparison with the MSBits

from the original unit, and then replaced with an approximation, using the

replacement, approximation from another ROM, in case of mismatch.

As an example of this notation, an RPR 8-bit multiplier, with a detection ROM

with 5 input bits and 2 output bits, replacement ROM with 4 input bits and 3



4.2 Reduced-Precision Redundancy Framework 116

output bits is represented as: ROM-XOR 8:16/5:2/4:3 multiplier. Additionally, it

is possible to consider other combinations for the RPR architecture, if the design

constraints impose them, i.e. ROM-SUB or LUT-XOR, but they aren’t covered in

this work as their critical-paths will exhibit more delay than the ROM-XOR, thus

expecting less benefits from its adoption. Moreover, this architecture scales to other

arithmetic operations, or a set of operations, to be applied to RPR while being

computed within a clock cycle. For such cases the nomenclature can be extended

by separating the word lengths, for the input and output ports, with comas, e.g.

ROM-XOR 9,8:17/6,5:2/5,4:3 multiplier.

4.2.2. Approximation Functions

At the heart of the proposed RPR framework is the computation of the approxima-

tion functions that are stored in the ROMs. These approximation functions try to

accurately represent the MSBits of the original unit to minimise the approximation

errors, and are distinct from other approximations used to optimise synthesis of

arithmetic functions such as Taylor and MacLaurin series. Previous contributions

on RPR, had the approximate, or redundant, result computed from a truncated ver-

sion of the arithmetic unit in parallel. Here, the new approximation functions are

evaluated by the RPR framework offline. As a result, the proposed RPR framework

is able to support different types of functions from the truncated operators:

• truncated approximation;

• linear approximation;

• other approximations derived from different objective functions, e.g. mode

values of the MSBits from the expected results and values that minimise error

variance.



4.2 Reduced-Precision Redundancy Framework 117

The linear approximation of a generic binary arithmetic operator (⋆), with trun-

cated operands, can have one or more unknown coefficients (i.e. kA, kB, l, mA and

mB with kA, kB, l,mA,mB ∈ Z).

A =

N−1
∑

i=N−iWL

ai.2
i, B =

N−1
∑

i=N−iWL

bi.2
i (4.1)

X = (A · kA +mA) ⋆ (B · kB +mB) + l (4.2)

In this direction, the framework exhaustively searches the function’s domain for

the coefficients in the linear approximation function which results in the minimisa-

tion of the objective function, between the expected and the approximation MSBits.

The truncated approximation is a particular case of the linear approximation with

its coefficients being the neutral element of the operations involved. Algorithm 1

illustrates this while considering kA = kB and mA = mB. The minimum and max-

imum values for k, l and m are arbitrarily chosen by the user. The complexity of

this algorithm depends on the number of approximation coefficient values (C) and

is defined as O(C.N2), where C = (kmax− kmin)(lmax− lmin)(mmax−mmin) and O

the order of complexity.

The usage of a ROM to store the approximations concedes the opportunity to

implement any function while the cost, in terms of hardware resources, is constant

regardless of the function being implemented. An example of an approximation

function evaluated in this scenario resembles the mode of the expected MSBits, hence

minimising the number of errors between expected and approximation values. More

details about the approximations considered for the different arithmetic operations

are presented below.

Given that the approximations don’t hold all the information required to de-

tect all expected MSBits correctly, some false positive error detections will occur.



4.2 Reduced-Precision Redundancy Framework 118

Algorithm 1: Algorithm to search the approximation coefficients for the ⋆
RPR operator.

N, iWL, oWL, kmin, kmax, lmin, lmax,mmin,mmax ← input
Amin ← 0, Amax ← 2N−1

Bmin ← 0, Bmax ← 2N−1

num msb errors← 0, max num errors← 22N

for m = mmin to mmax do

for l = lmin to lmax do

for k = kmin to kmax do

for A = Amin to Amax do

for B = Bmin to Bmax do

Atrunc ← get msb(A, iWL)
Btrunc ← get msb(B, iWL)
E(A,B)← A ⋆ B {Compute the expected result out of the original
unit}
X(A,B)← (Atrunc · k +m) ⋆ (Btrunc · k +m) + l {Compute the
approximate result from the truncated operands}
Emsb(A,B)← get msb(E(A,B), oWL)
Xmsb(A,B)← get msb(X(A,B), oWL)
msb error(A,B)← Emsb(A,B)−Xmsb(A,B) {Example of the
objective function to obtain the best match in the approximation
MSbs}
if msb error(A,B) 6= 0 then

num msb errors← num msb errors+ 1
end if

end for

end for

if num msb errors < max num errors then

max num errors← num msb errors
best k ← k
best l← l
best m← m

end if

end for

end for

end for

return best k, best l, best m, max num errors



4.2 Reduced-Precision Redundancy Framework 119

A B Result MSB

1001 1111 10000111 1
1000 1100 01100000 0

Table 4.3.: Results of 2x2-bit multiplications using the original and truncated
operands.

l m Apx Result Apx MSBs

l = 0 m = 0 01100000 0
l = 15 m = 1 10000100 1

Table 4.4.: Results produced by two different approximations for 2x2-bit multiplica-
tions using truncated operands.

Consequently, certain correct values are likely to be replaced with values for other

approximations. To minimise this undesirable artifact, it is considered using another

approximation function, to be stored in the replacement ROM, different from the

one in the detection ROM. The incentive for this is the fact that it is possible to

produce approximations with an absolute error smaller than the error from the de-

tection approximation, either by using a different approximation function, different

word lengths, or both.

This is exemplified by computing the Most Significant Bytes (MSBs) for two

different approximations using truncated operators and comparing them against the

expected result. The example considers a ROM with 2-bit input operands, and one

MSB at the output. Table 4.3 presents the results of 2x2-bit multiplications using

the original and truncated operands, and its MSBs. Table 4.4 presents the results

and the MSBs for two approximations, using different approximation coefficients in

equation 4.2. This example shows that the MSB from a truncated approximation

is deviated from the expected result. By allowing a wrong approximation to be

replaced with a value from another approximation would produce the expected, and

correct, result.



4.2 Reduced-Precision Redundancy Framework 120

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

Y value

f(
Y

) 
=

 2
5
5
.Y

Plot of the 2 most significant bits for different functions

Expected

Apx #1

Apx #2

Figure 4.4.: Values of the 2 MSBits for the expected result and approximation func-
tions 1 and 2.

Figure 4.4 illustrates the case for a multiplication of a constant 8-bit unsigned

value with a vector (255×Y ), where Y is a vector with a sequence of 8-bit unsigned

values. The blue line is the expected, and correct, result for the 2 MSBits. The green

line is the approximation function 1 (APX #1) and the red line the approximation

2 (APX #2). It is observable that, in many cases, when the APX #1 (red) is

different than the expected (blue), if those points in APX #1 were to be replaced

with the APX #2 points, that would make the MSBits correct. Notwithstanding,

other values would be replaced with values different from the expected because of

the approximations errors in the replacement ROM.

A process to minimise the value of the objective function, in the case of using the

linear approximation, is to tradeoff accuracy for resolution. For this reason, for the

same ROM size, it is preferable to have many input bits with few output bits to

detect as many correct MSBits as possible, and a few input bits with many output



4.2 Reduced-Precision Redundancy Framework 121

50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4

Y value

f(
Y

) 
=

 2
5
5
.Y

Plot of the 2 most significant bits for different functions

Expected

Apx #1

Apx #2

Figure 4.5.: Values of the 2 MSBits for the expected result and approximation func-
tion 1 and 3 MSBits for approximation function 2.

bits to replace with the smallest error possible. As a result, the approximations

will produce more errors but with smaller magnitude. Figure 4.5 exemplifies this

by using two approximation functions targeting the two MSBits in a ROM-XOR

8:16/6:2/5:3 RPR multiplier. It is discernible that there are more mismatches, but

the discrepancy between the expected and the approximation is smaller than in the

previous example.

Even though there are results incorrectly detected as wrong, at the output of the

ROM-XOR RPR units, it is anticipated that they are ineligible when compared to

the timing errors, in the MSBits, of the original units.

Ideally, it would be enticing to have all possible values in the ROM, instead of

truncating the operand’s word length, but the resources needed would cause such

implementation unfeasible.



4.2 Reduced-Precision Redundancy Framework 122

The resources needed to store an approximation function in ROM depend exclu-

sively on the word length of the inputs and the output considered for the approxima-

tion, regardless of the function being used. Conversely, the framework determines

which word lengths are possible to use given a limited resource budget.

The number of BRAMs required to implement the ROM used in the approximation

for different numbers of input and output bits is given by the following equation 4.3:

NUM BRAMs =

⌈

2(iWLA+iWLB)oWL

BRAM SIZE

⌉

(4.3)

In this expression iWLA, iWLB and oWL are the word lengths of the inputs and

output of the BRAM while BRAM SIZE refers to the number of bits available per

BRAM on the target FPGA.

Table 4.5 shows the number of BRAMs for different word lengths for various Cy-

clone devices. This table was constructed considering the BRAM sizes available

across the different Cyclone families, disregarding memory configuration limitations

and assuming complete occupation of the BRAMs. It is important to state that

different device families have different BRAM sizes: Cyclone III and IV have 9k bits

and Cyclone V has 10k bits. It’s pertinent to mention that the proposed RPR frame-

work supports different word lengths for each input of the approximation function

(asymmetric operators).

Moreover, in the particular case of using only one ROM, to hold both detection

and replacement approximations, the result would be the same as using always the

LSBits from the original unit and replace the MSBits with the approximation. This

would simplify the design by eliminating the multiplexer, and a ROM, in the design,

thus increasing the maximum clock frequency of the unit. Nevertheless, such scheme

is not presented in this work even though the proposed framework could easily be

adapted to generate the approximations and evaluate the error/area tradeoff.



4.2 Reduced-Precision Redundancy Framework 123

Cyclone
III, IV V

Input WL Output WL ROM bits M9K M10K

8, 8 1 65536 8 7
8, 8 2 131072 15 14
8, 8 3 196608 22 20
8, 8 4 262144 30 27

7, 7 1 16384 2 2
7, 7 2 32768 4 4
7, 7 3 49152 6 5
7, 7 4 65536 8 7

6, 6 1 4096 1 1
6, 6 2 8192 1 1
6, 6 3 12288 2 2
6, 6 4 16384 2 2

5, 5 1 1024 1 1
5, 5 2 2048 1 1
5, 5 3 3072 1 1
5, 5 4 4096 1 1

5, 5 7 7168 1 1
4, 4 16 4096 1 1
5, 7 2 8192 1 1
4, 8 1 4096 1 1

Table 4.5.: Number of BRAMs (M9K/M10K) per input and output word lengths
required to implement the approximation ROM in different Cyclone
FPGAs.



4.2 Reduced-Precision Redundancy Framework 124

Scope Objective Function

Best MSBit match max{i} : ∀i ∈ oWL, ori(i) = apx(i)

Min. error variance min

{

var

(

∑

i=oWL

ori(i).2i −
∑

i=oWL

apx(i).2i

)}

Min. mean error min

{

1

N

∑

N

(

∑

i=oWL

ori(i).2i −
∑

i=oWL

apx(i).2i

)}

iWL: word length of the input from the original unit and the approximation
oWL: word length of the output from the original unit and the approximation
ori: result from the original unit
apx: result from the approximation function
N: number of values tested

Table 4.6.: Objective functions for errors at the output of the RPR unit.

4.2.3. Error Function Minimisation

Up until now, as the RPR has been presented, it only concerns the minimisation of

the errors by producing approximations that faithfully resemble the MSBits from

the original arithmetic units. However, in some cases where resource constraints or

complexity of the arithmetic units doesn’t allow to compute all the expected results,

it may be desirable to specify different objective functions for the generation of the

approximations by the framework.

At present, the framework supports the following objective functions, derived from

different error metrics between the expected and the approximation results. Table

4.6 summarises some of these functions for 3 application scopes.

The first case can be achieved either by exhaustively trying different values for the

approximation coefficients, of the input bits and linear approximation coefficients, or

from the mode of the expected MSBits, whereas the others are achieved only by ex-

haustive search. In all cases, the framework investigates sets of linear approximation

coefficients that minimise each objective function through exhaustive search.

As a result of using approximations different conditions can occur at the output

of the multiplier:



4.3 ROM-XOR RPR Arithmetic Operators 125

1. No error: the value at the output of the multiplier is the expected result and

it’s passed to the output of the multiplexer;

2. False Positive: the value at the output of the multiplier is the expected result

but it’s detected as wrong and the approximation is passed to the output of

the multiplexer;

3. False Negative: the bits at the output of the multiplier that are compared

with the ones from the approximation are the same, but the rest of the result

is wrong. In this case the error is smaller than the MSBits protected, except

if this methodology is instead applied to Most-Prone-to-Error bits 1.

4. Error: the value at output of the multiplier isn’t the expected result and it’s

detected as wrong and the correct approximation is passed to the output of

the multiplexer.

Nevertheless, it should be remembered that these approximations are considered

in the error-free regime. Whenever they’re applied to the error-prone regime they’ll

have different importance. Hence, it’s not guaranteed that the best error-free ap-

proximation will produce the best results. Producing function approximations with

specific behaviour on error-prone regimes implies additional research on the simula-

tion and test of the RPR units, which is left for future work.

4.3. ROM-XOR RPR Arithmetic Operators

The proposed RPR framework has been introduced for generic arithmetic units,

and it doesn’t depend on the actual problem. The specifics on how different basic

arithmetic units are supported by the proposed RPR framework are explained in this

1Most-Prone-to-Error bits are defined as the bits that are more likely to fail, and they may not be

the MSBits. They are determined from characterisation of the arithmetic unit with a specific

data set. Arithmetic units with different architecture, and input data with different distributions,

are likely to exhibit different levels of error across their output bits.



4.3 ROM-XOR RPR Arithmetic Operators 126

Figure 4.6.: Diagram of the circuit attached to the arithmetic operators to produce
the approximations and signaling of which result to use.

section. The proposed framework is demonstrated for the application of redundancy

on arithmetic units usually used in DSP designs, namely adders, multipliers and

multiplier-accumulators. Furthermore, the demonstration is conducted adopting

the objective function that minimises the mismatches in the MSBits between the

expected and the actual results.

Although there are many possible synthesis implementation variants for each unit,

this framework is transparent to them and assumes the default synthesis implemen-

tation from the vendor tool. Moreover, the proposed framework can be extended

to different arithmetic operators and scaled to problems of different sizes. Figure

4.6 shows the details of the block that is attached to the arithmetic operators to

provide the approximation, and the indication to use either the result from the orig-

inal arithmetic unit or the approximate result. The inputs of the block are the

MSBits!s (MSBits!s) from the truncated operands, and the output of the original

arithmetic unit. The outputs are the bit, that goes to the multiplexer in figure 4.2,

and the approximate result.



4.3 ROM-XOR RPR Arithmetic Operators 127

Figure 4.7.: Diagram of an adder circuit with the proposed RPR scheme.

4.3.1. Adder

The adder is one of the building blocks of arithmetic circuits. Even though it’s a

simple block, for large word lengths, carry propagation becomes the bottleneck in

terms of throughput.

The diagram showed in figure 4.7 applies the proposed RPR on the adder operator.

The block identified with RPR is a simplification of the detection and replacement

ROMs, plus the XOR and OR circuitry. For this operator the linear approximation

function considered is as follows:

apx(a, b, k) = a+ b+ k (4.4)

where a and b are the truncated input arguments and k is a bias to compensate

for the truncation of the input operands. The proposed RPR framework searches

for the value of k which minimises the objective function (table 4.6) between the

expected and the approximation MSBits.

The search for the k is presented as a particular case of the algorithm 1 and is as

follows. A value is assigned to k, from an arbitrary set, and all possible values for

the operands in the original adder, and in the approximation function, are tested to

evaluate the error from the approximation function. The process is then repeated

for all possible values of k. The selected value for k for the implementation is the

one that minimises the objective function.



4.3 ROM-XOR RPR Arithmetic Operators 128

To illustrate the application of the RPR framework, an 8-bit unsigned adder is

considered. The result of an approximation, following (4.4), for a 5-bit inputs is

presented in figure 4.8. In this figure it is noticeable a staircase-like shape, typical of

quantisation introduced due to truncated operands. The k values that minimise the

objective function for the approximation errors are summarised in table 4.7. The

table shows the word length of the inputs (iWL) and output (oWL), total number

of bits to be saved in ROM, the k values that minimise the objective function, the

number of approximation errors, and the percentage of sets of correct MSBits in the

approximate results. It’s possible to verify that the results are as expected: more

input bits generate more correct results, as well as less output bits. Moreover, even

for larger ROMs there’s no approximation that generates all output bits as expected.

Figure 4.9 shows the discrepancy in the values of the MSBits for a particular case

of a ROM-XOR 8:9/5:2/5:2 RPR adder.

To improve upon these results, a second approximation function is used as a

generator of the bits replaced in the RPR adder, while the other approximation

is used to detect errors, as explained previously. In addition to searching for an

approximation constant k, the proposed framework optimises two approximation

functions, with two approximation coefficients kdet and krep, simultaneously.

Table 4.8 shows the linear approximation coefficients to produce the same MSBits

as the original unit for different ROM sizes. Comparing with the single approxima-

tion, it is evident that there’s an increase in the ROM size, however the output of

the RPR 8-bit adder is the same as the 8-bit original adder, when operating in the

error-free regime. Figure 4.10 shows the output of a ROM-XOR 8:9/5:2/5:2 adder

without any approximation errors.



4.3 ROM-XOR RPR Arithmetic Operators 129

iWL oWL ROM bits k Apx. Errors % Correct

5,5 1 1024 0:7 896 98.63
5,5 2 2048 0:7 1792 97.26
5,5 3 3072 0:7 3584 94.53

6,6 1 4096 0:3 384 99.41
6,6 2 8192 0:3 768 98.82
6,6 3 12288 0:3 1536 97.65

7,7 1 16384 0:1 128 99.80
7,7 2 32768 0:1 256 99.60
7,7 3 49152 0:1 512 99.21

Table 4.7.: Resources and approximation results for different implementations of a
single approximation function for a ROM-XOR 8:9/iWL:oWL/iWL:oWL
RPR adder.

Figure 4.8.: Example of an approximation produced for a 8:9/5:2/5:2 ROM-XOR
RPR adder.



4.3 ROM-XOR RPR Arithmetic Operators 130

Figure 4.9.: Difference in the MSBits between the detection approximation and the
expected result for an 8-bit adder.

iWL oWL ROM bits kdet krep Apx. Errors % Correct

5,5 1 2048 8 0 0 100
5,5 2 4096 8 0 0 100
5,5 3 6144 8 0 0 100

6,6 1 8192 4 0 0 100
6,6 2 16384 4 0 0 100
6,6 3 24576 4 0 0 100

7,7 1 32768 2 0 0 100
7,7 2 65536 2 0 0 100
7,7 3 98304 2 0 0 100

Table 4.8.: Correctness of the MSBits for different coefficients of the approximation
function for ROM-XOR 8:9/iWL:oWL/iWL:oWL RPR addition, using
different linear approximations.



4.3 ROM-XOR RPR Arithmetic Operators 131

Figure 4.10.: Results produced by a ROM-XOR 8:9/5:2/5:2 RPR adder.

4.3.2. Multiplier

Like addition, multiplication is widely used and present nearly in all DSP systems.

Synthesis of the circuit to implement this unit has more, and longer, paths than the

adder, and often holds the critical-paths of DSP designs. The only difference in the

architecture, when compared to the RPR adder, is the original arithmetic unit. For

this arithmetic operation, a new approximation function is studied to minimise the

error function.

The implementation of multiplication using the proposed RPR follows the ar-

chitecture presented earlier and is illustrated in figure 4.11. The proposed RPR

architecture doesn’t make a distinction between different multiplier architectures,

therefore it can be implemented in technologies alternative to FPGAs.

Equation 4.5 is the function chosen to approximate the multiplication.

apx(a, b) = (a+m) (b+m) + l (4.5)



4.3 ROM-XOR RPR Arithmetic Operators 132

Figure 4.11.: Diagram of a multiplier circuit with the proposed RPR scheme.

In this case a and b are the truncated inputs, and m and l are the approximation

function coefficients. These coefficients exist to overcome the distortions imposed

by the approximation computed from truncated input values, such as negative bias.

Table 4.9 summarises the values of l and m to use in the detection approximation

function for the different resource utilisations. Figure 4.12 shows the values of the

approximation function for all possible 5-bit input values. Like in the RPR adder,

the approximation exhibits a staircase like shape, typical of quantisation introduced

due to truncated operands. Figure 4.13 shows the discrepancy in the values of

the MSBits for a particular case of a ROM-XOR 8:16/5:2/5:2 RPR multiplier. As

expected, it is observable from table 4.9 that the greater the number of input bits,

and the least number of output bits, used in the approximation the greater is the

number of correct approximations.

Using two distinct approximations, for detection and correction, allows to set the

correct MSBits whenever the detection detects them as wrong. Table 4.10 shows

the linear approximation coefficients to produce the same MSBits as the original

unit for different resource budgets. Figure 4.14 shows the output of a ROM-XOR

8:16/5:2/5:2 RPR multiplier without approximation errors, when compared to the

expected result from the original multiplier.



4.3 ROM-XOR RPR Arithmetic Operators 133

iWL oWL mdet ldet Apx. Errors % Correct

5,5 1 0 1216 338 99.48
5,5 2 3 103 1080 98.35
5,5 3 3 103 2613 96.01

6,6 1 0 512 182 99.72
6,6 2 1 151 528 99.19
6,6 3 1 151 1279 98.04

7,7 1 0 128 74 99.88
7,7 2 0 128 240 99.63
7,7 3 1 -151 591 99.09

Table 4.9.: Correctness of the MSBits for different approximation coefficients for
ROM-XOR 8:16/iWL:oWL/iWL:oWL RPR multiplication.

Figure 4.12.: Example of an approximation produced for a ROM-XOR 8:16/5:2/5:2
RPR multiplier.



4.3 ROM-XOR RPR Arithmetic Operators 134

Figure 4.13.: Difference between the detection approximation and the expected MS-
Bits at the output of the multiplier.

iWL oWL mdet ldet mrep lrep Apx. Errors % Correct

5,5 1 1 2015 0 0 0 100
5,5 2 3 1767 0 0 0 100
5,5 3 5 887 0 0 0 100

6,6 1 1 723 0 0 0 100
6,6 2 1 887 0 0 0 100
6,6 3 1 887 0 0 0 100

7,7 1 0 356 0 0 0 100
7,7 2 0 444 0 0 0 100
7,7 3 0 448 0 0 0 100

Table 4.10.: Correctness of the MSBits for different approximation coefficients in an
ROM-XOR 8:16/iWL:oWL/iWL:oWL RPR multiplication.



4.3 ROM-XOR RPR Arithmetic Operators 135

Figure 4.14.: Results produced by a ROM-XOR 8:9/5:2/5:2 RPR multiplier.

4.3.3. Multiplier-Accumulator

Implementing a multiplier-accumulator using the proposed RPR scheme involves

adding the RPR circuitry to the operator without changing its functionality, that is

to compute new values in each clock cycle. As this operator exhibits extra complex-

ity, when compared to the previous operators, the approximation functions have to

hold a new intermediate result in regard for the preservation of the circuit’s func-

tionality. Figure 4.15 shows the block diagram of a folded multiply-accumulate unit

with RPR. The RPR block is attached to the datapath in a similar pattern as the

previous units, but uses a new approximation function, shown in equation 4.6:

apx(a, b,m, l) = (a+m)(b+m) + r + l (4.6)

In this approximation function, a, b, and r are the truncated input operands, and

m and l the approximation coefficients which are determined by the RPR framework



4.3 ROM-XOR RPR Arithmetic Operators 136

Figure 4.15.: Diagram of a rolled multiply-accumulate circuit with the proposed
RPR scheme.

Figure 4.16.: Diagram of a rolled multiply-accumulate circuit using basic arithmetic
units with the proposed RPR scheme.

to minimise the error function.

Alternatively, the multiply-accumulate unit with RPR can be constructed at the

expense of the previous arithmetic RPR units, as shown in figure 4.16. In this

case, each operator has their own RPR block attached. Moreover, when there’s a

significant gap in the delay of the critical-paths in the adder and in the multiplier,

or when it’s foreseen that one of these units will never experience timing violations

in their paths, it may be preferable to apply the RPR block to the most prone

to error unit, hence saving circuit resources. This way the functionality of the

circuit is preserved while re-utilising existing units, thus avoiding to compute new

approximations, on the assumption that the input data follows the same distribution.



4.4 Reduced-Precision Redundancy Evaluation 137

4.4. Reduced-Precision Redundancy Evaluation

To evaluate the proposed RPR framework its performance is compared against ex-

isting implementations of stand-alone arithmetic units, and on a DSP application,

with and without RPR. Other design techniques for arithmetic circuits such as

carry look-ahead adders and Karatsuba multipliers offer reduced/fast carry chains.

Circuits with fast carry chains achieve less propagation delay than the standard

ripple-carry chain, which benefits from dedicated carry lines inside the LEs on the

FPGA. It is foreseen that the savings in delay aren’t sufficient to run these arith-

metic units with the same clock rates as the other arithmetic units considered in

this evaluation, without producing timing errors (their MSBits are still the most

critical-paths in the circuit). Given the aforementioned, or because they require

extra latency, they haven’t been considered.

The targeted application is the linear projection, which has been introduced in

the background chapter of this thesis. The stimulus used by the evaluation is a

pseudo-random vector with 20k samples, for the stand-alone arithmetic units, and

a set of 50x40 pixels grayscale images. In the implementation, data is represented

using 9-bit sign-magnitude representation.

The aforementioned performance for each circuit is compared in terms of clock

frequency, circuit resources, errors and power consumption. It is expected to observe

that the arithmetic units using RPR can perform with less error (absolute error,

mean and variance) than the other units when operating beyond the error-free region.

For precise measurements the operating conditions of the device were kept con-

stant, at 20 degrees Celsius, through the usage of a cooling element on top of the

FPGA device and an external power supply. All tests were carried on a Cyclone III

FPGA from Altera [1], on a DE0 board from Terasic [89]. More details about the

experimental setup can be found in appendix A.2 of this thesis.



4.4 Reduced-Precision Redundancy Evaluation 138

Figure 4.17.: Block diagram of the test circuit for RPR units under variation.

4.4.1. Circuit Architecture

To facilitate the implementation, and minimise the influence of external circuitry in

the evaluation of the design, all designs were placed inside a test circuit. In addition,

this test circuit promotes the reduction of placement and routing variation in the

auxiliary blocks of the design. Hence, it guarantees that the delays of the most

critical-paths reside inside the units under test.

The test circuit is presented in figure 4.17. It controls the test execution (FSM),

and provides the unit under test with a constant stream of data. The datapath of

the circuit, which holds the unit under test (UUT), is highlighted in red. This part

of the circuit is clocked at twice the clock frequency of the FSM. Furthermore, this

test circuit can support the characterisation of many units in parallel.

Example of the floor plan for the test circuit of an RPR multiplier implemented on

a Cyclone III FPGA is presented in figure 4.18. The different blocks are highlighted,

being the unit under test identified with red mult0. The maximum clock frequency

for the supporting blocks of this circuit, according to the synthesis tool is 700MHz,

notwithstanding, actual tests reveal that it supports clock frequencies up to 930MHz,

as illustrated in figure 4.19.



4.4 Reduced-Precision Redundancy Evaluation 139

Figure 4.18.: Floor plan of the test circuit (red) for an RPR multiplier (yellow).



4.4 Reduced-Precision Redundancy Evaluation 140

500 550 600 650 700 750 800 850 900 950 1000
0

0.2

0.4

0.6

0.8

1

Errors in the FSM of the test circuit

Clock Frequency [MHz]

E
rr

o
rs

Figure 4.19.: Errors in the supporting blocks of the test circuit for different clock
frequencies on a DE0 board.

16-bit Adder Synthesis Tool

NO RPR 411 MHz

ROM-XOR RPR 248 MHz

Table 4.11.: Maximum clock frequency reported by the synthesis tool of 16-bit
adders.

4.4.2. Adder

Implementation of adders on FPGAs is facilitated by their architecture which offers

dedicated carry propagation lines, thus avoiding routing through the LEs. Because

of its simplicity and reduced number of LEs it is the fastest arithmetic operator

possible to implement on an FPGA.

Implementing an adder with the proposed ROM-XOR RPR adds extra complexity

to the circuit impacting its maximum clock frequency. Hence, unviable to compete

against a typical adder in terms of maximum clock frequency. The maximum clock

frequency results for each implementation of a 16-bit adder are in table 4.11.

The limitation in the maximum clock frequency of the ROM-XOR RPR 16-bit

adder is due to the inclusion of BRAMs in the datapath. The total delay of the

critical-path in the RPR design is 4 ns, which is greater than the delay of a 16-bit

adder, that is 2.5 ns. Another limitation is the number of extra resources required



4.4 Reduced-Precision Redundancy Evaluation 141

Adder NO RPR ROM-XOR RPR Extra LEs

16-bit 18 175 89.71 %
24-bit 26 207 87.43 %
32-bit 33 235 85.95 %
36-bit 37 252 85.31 %
48-bit 51 299 82.94 %
64-bit 68 363 81.26 %

Table 4.12.: Resources, in LEs, taken by the different adder implementations.

to implement RPR. Table 4.12 summarises the resources required by the NO RPR

and ROM-XOR RPR adders using different word lengths. On average, introducing

redundancy requires extra 85% in LEs, besides the BRAMs. Figure 4.20 shows the

results on the errors for the RPR adder of the typical adder without RPR.

4.4.3. Multiplier

LUT-Based Multiplier

Three types of 8-bit unsigned multipliers were implemented for performance com-

parison: NO RPR, LUT-SUB RPR and ROM-XOR RPR. Figure 4.21 shows the

variance and mean of the error between the expected value and the value read

from the board for each multiplier implementation. As anticipated, the maximum

throughput of the ROM-XOR RPR scheme is close to the multiplier without any re-

dundancy, and it performs better than any other design under extreme over-clocking,

e.g. 300MHz. Only above 340MHz the ROM-XOR RPR multiplier achieves the

same level of error variance as the other multipliers. Notwithstanding, the mean

error of the RPR multiplier remains close to zero. Tables 4.13, 4.14 and 4.16 show

the maximum clock frequencies, the resources occupied and the power consumed by

the different 8x8 LUT-based multiplier implementations. In more detail, 4.15 shows

the resources, apart from the extra BRAMs, required for NO RPR and ROM-XOR

RPR multiplier implementations, and its relative increase. To add ROM-XOR RPR



4.4 Reduced-Precision Redundancy Evaluation 142

500 550 600 650 700 750 800 850 900
10

0

10
5

10
10

TEST_LUT_ADD16_NO−RPR_RND20k : Error Variance

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

500 550 600 650 700 750 800 850 900
−2000

0

2000

4000

6000
TEST_LUT_ADD16_NO−RPR_RND20k : Mean Error

Clock Frequency [MHz]

M
e
a
n
 E

rr
o
r

Figure 4.20.: Error variance and mean error of an 16-bit adder without RPR

to a multiplier requires extra 111 LEs on average. For small multipliers this extra

LEs can be prohibitive to implement, but as the word length increases, the resilience

in the multiplier requires relatively few extra resources. Although not presented, the

same tend is expected for extra power consumption.

Figures 4.21, 4.22, 4.23 and 4.24 show the errors, and their distribution, for the

same test vector and clock frequency on the three multipliers. For the same clock

frequency it is observable, in figure 4.25, that the multiplier without redundancy

produces less errors but most of them have a large magnitude. The LUT-SUB RPR

multiplier, because of the long delay on its critical-paths, it produces many large

errors. On the other hand, the ROM-XOR RPR produces more errors than the

first one but they are smaller in value. This can be advantageous for applications

that can tolerate small errors in computations masked as sensor noise allowing the

application to produce valid, but slightly deviated, results.



4.4 Reduced-Precision Redundancy Evaluation 143

100 200 300 400 500 600 700
0

2

4

6
x 10

8 8x8 Mult Error Variance

Clock Frequency [MHz]

E
rr

o
r 

V
a
ri
a
n
c
e

NO RPR

LUT−SUB RPR

ROM−XOR RPR

100 200 300 400 500 600 700
−5000

0

5000

10000
8x8 Mult Mean Error

Clock Frequency [MHz]

M
e
a
n
 E

rr
o
r

Figure 4.21.: Variance and mean error at the output of an 8x8 bit unsigned LUT-
based multipliers at different clock frequencies.

8-bit Multiplier Synth. Tool [MHz] FPGA Test [MHz]

NO RPR 175 230
LUT-SUB RPR 133 170
ROM-XOR RPR 149 210

Table 4.13.: Maximum clock frequency, in MHz, for operation without errors.

8-bit Multiplier LEs BRAMs

NO RPR 101 0
LUT-SUB RPR 158 0
ROM-XOR RPR 206 2

Table 4.14.: Resources taken by the different multiplier implementations.



4.4 Reduced-Precision Redundancy Evaluation 144

Multiplier NO RPR ROM-XOR RPR Extra LEs

8-bit 101 206 103.96 %
16-bit 345 452 31.01 %
24-bit 721 836 15.95 %
32-bit 1213 1321 8.90 %
36-bit 1513 1627 7.53 %
48-bit 2605 2722 4.49 %

Table 4.15.: Resources, in LEs, taken by the different multiplier implementations.

8-bit Multiplier System [mW] Multiplier [mW]

Test Circuit 46.56 / 83.6 -
NO RPR 52.44 / 97.2 5.88 / 13.6
ROM-XOR RPR 57.48 / 105.7 10.92 / 22.1

Table 4.16.: Power consumed by the different multiplier implementations, and re-
spective test circuits, at 1200mV, 20◦C, 100MHz and 600MHz.

0 500 1000 1500 2000
−1

−0.5

0

0.5

1
x 10

5 Errors of LUT MULT8x8 NO RPR @ 300 MHz

Sample number

E
rr

o
r 

v
a
lu

e

−8 −6 −4 −2 0 2 4 6 8

x 10
4

0

100

200

300
Error histogram of LUT MULT8x8 NO RPR @ 300 MHz

Sample number

E
rr

o
r 

v
a
lu

e

Figure 4.22.: Errors in results (top) and error histogram (bottom) at the output of
a NO RPR 8-bit multiplier at 300 MHz.



4.4 Reduced-Precision Redundancy Evaluation 145

0 500 1000 1500 2000
−1

−0.5

0

0.5

1
x 10

5 Errors of LUT MULT8x8 LUT−SUB RPR @ 300 MHz

Sample number

E
rr

o
r 

v
a
lu

e

−8 −6 −4 −2 0 2 4 6 8

x 10
4

0

100

200

300
Error histogram of LUT MULT8x8 LUT−SUB RPR @ 300 MHz

Sample number

E
rr

o
r 

v
a
lu

e

Figure 4.23.: Errors in results (top) and error histogram (bottom) at the output of
a LUT-SUB RPR 8-bit multiplier at 300MHz.

0 500 1000 1500 2000
−1

−0.5

0

0.5

1
x 10

5 Errors of LUT MULT8x8 ROM−XOR RPR @ 300 MHz

Sample number

E
rr

o
r 

v
a
lu

e

−8 −6 −4 −2 0 2 4 6 8

x 10
4

0

100

200

300
Error histogram of LUT MULT8x8 ROM−XOR RPR @ 300 MHz

Sample number

E
rr

o
r 

v
a
lu

e

Figure 4.24.: Errors in results (top) and error histogram (bottom) at the output of
a ROM-XOR RPR 8-bit multiplier at 300MHz.



4.4 Reduced-Precision Redundancy Evaluation 146

2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

400

450

Bit number

N
u
m

b
e
r 

o
f 

o
c
c
u
rr

e
n
c
e
s

Bits in the values with errors for 3 lut−based mult8x8 @ 300 MHz

NO RPR

LUT−SUB RPR

ROM−XOR RPR

Figure 4.25.: Histogram of the bits present in the values with errors at the output
of the three LUT-based 8-bit multipliers tested at 300MHz.

DSP-Based Multiplier

DSP blocks, or embedded multipliers, are present in all modern FPGAs; therefore

it’s essential to investigate if the proposed methodology can be applied to them and

how. The framework is transparent to the type of multipliers used. It is important

though, that the arithmetic units can operate faster than the critical-path in the

redundant circuitry.

Forasmuch as the new architecture for the ROM-XOR RPR has been proposed,

there’s a limitation in using the output registers in the DSP block, as the new

architecture firstly makes a decision in which value to use and then registers it.

This represents an increase in the delay of the critical path, through the DSP block,

from 2.72 ns (i.e. using its internal registers) to 4.4 ns (i.e. using external registers).

Nevertheless, one must not forget that a condition that enables the adoption of the

RPR within one clock cycle is the fact that the delay of the critical-path in the



4.4 Reduced-Precision Redundancy Evaluation 147

Arithmetic Unit Synth. Tool [MHz]

NO RPR 16-bit Adder 411
ROM-XOR RPR 16-bit Adder 248
ROM-XOR RPR 8-bit Mult 149

Table 4.17.: Maximum clock frequency for different arithmetic unit given by the
synthesis tools.

arithmetic unit must be greater than the critical-path of the redundant circuit. It

just so happens that the delay of the critical path of the redundant circuitry requires

at least 4 ns, thus enabling the adoption of the ROM-XOR RPR if the limitation, of

not using the output registers, is to be permitted.

4.4.4. Multiplier-Accumulator

The synthesis of a Multiply-Accumulate (MAC) unit reveals that the delay of the

critical-path of the 16-bit adder is smaller, by less than half the delay of the critical-

path of the 8x8-bit LUT-based RPR multiplier, as summarised in table 4.17. This

gap in maximum clock frequency between the two RPR units, suggests that the

version of the MAC unit using discrete adder and multiplier can be achieved with

redundancy added only to the multiplier. This imposes that the maximum increase

in frequency this MAC implementation supports can’t exceed the maximum clock

frequency of the adder for error-free operation. Consequently, the previous RPR

multiplier can be reutilised to implement the MAC unit with RPR.

4.4.5. Linear Projection Designs

Linear projection is an algorithm widely used in many DSP applications with near

real-time requirements, and often implemented in portable systems to compress data

or extract features from sensors, e.g. image compression, SAR. For this reason, the

new RPR is implemented and compared with other implementations. The applica-

tion does image compression from a Z2000 to Z40 space. It uses images of faces from



4.4 Reduced-Precision Redundancy Evaluation 148

the CODID CVAP Object Detection Image Database [91]. The results below present

a comparison between the ROM-XOR 8:16/5:3/5:3 RPR, the LUT-SUB RPR with

an approximation computed from the 5MSBit and a threshold equivalent to the

2MSBit, and the implementation of the linear projection without any redundancy.

These configurations were arbitrarily chosen having in mind the computation of the

approximations in similar conditions.

The core of the linear projection is the MAC operation, which has been intro-

duced previously. Figure 4.26 shows the architecture of the circuit to compute the

dot-product of a projection vector, which is a folded MAC. The circuit in the figure

is replicated for all projected dimensions considered. From all possible implementa-

tions possible, this was chosen because it is the one which allows to reduce the area

footprint and support larger problems sizes without area constraints. In the circuit

implementation, all inputs are encoded using 9-bit sign-magnitude representation.

The output of the multiplier is 16 bits unsigned. The word length of the output

depends on the number of accumulation stages (multiplier output word length plus

log2(num stages)).

Figure shows the results for the 3 implementations at 270MHz. The top row

shows the expected result, without variation errors. The following row correspond

to the results for: NO RPR, LUT-SUB RPR and ROM-XOR RPR. On top of

each image there’s the PSNR from the reconstruction of the projected data, on the

FPGA, into the original space in software. It’s evident that the ROM-XOR RPR

creates the linear projections which better recreate the original images and produce

the least reconstruction PSNR for all images.



4.5 Summary 149

Figure 4.26.: Architecture of a circuit to implement the dot-product operator of a
projection vector.

4.5. Summary

This contribution proposes a framework for a novel RPR architecture which is able

to perform in systems with high-throughput and low-latency. Results show that

units smaller word lengths don’t benefit from it, being the method more suitable

for longer word lengths as the cost in extra resources becomes relatively small.

Notwithstanding, the benefits in recovering from errors overshadow the implemen-

tation cost, since there’s no comparable methodology available. From these results,

from the multiplier performance perspective, it’s conclusive that a little penalty in

the maximum performance for the error-free regime is later retributed when oper-

ating in the error-prone regime. The main drawback is the usage of extra LEs and

2 BRAMs besides the standard multiplier implementation.



4.5 Summary 150

A

−43.74 dB

−54.07 dB

−28.27 dB

B

−44.44 dB

−55 dB

−27.81 dB

C

−42.15 dB

−55.06 dB

−27.11 dB

D

−39.77 dB

−54.5 dB

−27.86 dB

E

E
X

P
E

C
T

E
D

−41.46 dB

N
O

 R
P

R

−52.64 dB

L
U

T
−

S
U

B

−27.42 dB

R
O

M
−

X
O

R

Figure 4.27.: Reconstructed faces (A-E) in the original space without variation errors
(expected), and computed from the projections collected from imple-
mentations of different multipliers architectures (NO RPR, LUT-SUB
RPR, ROM-XOR RPR) at 270 MHz.



5
Optimisation Framework for

Acceleration of Linear Projection

Designs

5.1. Introduction

I
n digital systems, when they infringe the timing constraints of their most critical-

paths, they incur timing errors. To avoid, or reduce, these errors many methods

and techniques have been proposed [5, 11, 67]. Unfortunately, most of the resilience

schemes proposed penalise the performance and increase resources of the design.

151



5.1 Introduction 152

Depending on the application considered, they may not even show any real benefit

when compared to not applying any error mitigation methodology, as demonstrated

by the results obtained from the characterisation framework earlier introduced in

this thesis. The proposed Optimisation Framework (OF) encompasses the afore-

mentioned methodology as it produces high-level specifications of linear projection

designs without introducing supplementary RTL for the purpose of reducing errors

and increasing resilience.

Variation errors depend on many sources, some of them uncontrollable, namely

temperature, hence depicting the probabilistic behaviour of the circuit. The pro-

posed OF optimises and mitigates this probabilistic behaviour, by trying to expose

the impact of variability of the fabric into high-level algorithmic specifications. The

work presented here aims to address this variation, establishing a per device opti-

misation concept, allowing the design to exploit extra performance capabilities in

the arithmetic operators on a specific FPGA device. The aforesaid gains can’t be

attained by existing design methodologies.

The key enabler to the success of the OF is the device characterisation step,

performed by the Characterisation Framework (CF), described in chapter 3 of this

thesis, resulting in the collection of information that is utilised in the high-level spec-

ification of the design in the targeted system, leading to a final performance closer

to what is achievable by the targeted FPGA device rather than what is reported by

the conservative models of the synthesis tools.

Figure 5.1 depicts the design flow of the proposed OF. The first step is to char-

acterise the arithmetic units and create the models for errors when these units are

operated under certain conditions (i.e. clock frequency, core voltage, temperature

and location on the device). The obtained performance information (i.e. errors that

were observed at the output of the arithmetic units) as well as information regarding

their area are injected into a Bayesian formulation of the problem in order to obtain



5.1 Introduction 153

Figure 5.1.: Design flow using the proposed optimisation framework.

a high-level specification of the design to implement. This formulation is capable

of producing designs that avoid, or minimise, variation errors hence outperforming

standard implementations in terms of tradeoff between performance and errors. In

the final step, the designs are synthesised and implemented on an FPGA, to evaluate

the actual results.

Moreover, motivated by the fact that many DSP algorithms, including the linear

projection, aren’t critical to errors in many parts of their designs, the work presented

here allows to operate arithmetic operators beyond their error-free limits, and con-

siders also the region of operation where errors appear in the datapath. This allows

the exploitation of the tradeoff between performance and error-prone calculations,

thus pushing even further the achieved performance of the system.

The proposed OF for linear projection is explained in detail in this chapter. Earlier

prototypes of the OF have been published in [16, 17, 19]. The linear projection al-

gorithm has been introduced in section 2.2.3 of this thesis, and is here recapitulated.

The projected data points are related to the original data through the formula in



5.1 Introduction 154

Figure 5.2.: Block diagram of the circuit to do the rolled implementation of dot-
product between two vectors.

(5.1), written in matrix notation, where X = [x1, x2, ..., xN ] and F = [f1, f2, ..., fN ],

where f i ∈ RK denote the factor coefficients, E the approximation error and Λ the

orthogonal basis for the new space with dimensions P ×K.

F = ΛTX + E (5.1)

A rolled architecture of the dot-product algorithm is used to implement the linear

projection in hardware, as presented in figure 5.2.

In the process of optimisation of linear projections, high-level design decisions

happen in the coefficients of the projection matrix, and for most of the possible

implementations of the algorithm, multipliers hold the most critical paths of the

datapath. Therefore, in this case the OF is devoted to the optimisation of multipli-

cations implemented in LUT-based and DSP block multipliers.

Furthermore, the objective is to select the word length of these multipliers used

for the implementation of each dot-product in (2.2) along with values of the coeffi-

cients of the Λ matrix that define the lower dimension space. The key characteristic

of this work is that the obtained circuit will be over-clocked to frequencies beyond

those reported by the synthesis tool in order to push further its overall performance.



5.2 Bayesian Formulation 155

Expected good results for the obtained circuits is an achieved PSNR, of the recon-

struction, greater than the one for the reference implementation, under the same

operating conditions. On the other hand, designs that present a PSNR smaller than

the reference implementation are considered bad results. The proposed OF sup-

ports different problem size and can be adapted to other algorithms and extended

to support other arithmetic operators.

5.2. Bayesian Formulation

The Bayesian formulation considers the subspace estimation and hardware imple-

mentation simultaneously, allowing the OF to efficiently explore the possibilities of

custom design offered by FPGAs, generating DSP designs targeting maximisation

of performance and minimisation of errors. It borrows the idea from a Bayesian

Factor Analysis Model for optimisation of resource allocation in heterogeneous de-

vices which is introduced in section 2.8 of this thesis and is described in detail in

[83, 84, 6]. The proposed OF not only optimises the resource utilisation: it is also

extended to account for the stochastic behaviour of multipliers under variation.

For the linear projection application, the OF samples the values for the Λ matrix

factors and their word length, and estimates the basis matrix Λ, the noise covari-

ance Ψ, and the F factors using Gibbs sampling algorithm [85] from the posterior

distribution of the variables.

X̂ = ΛF (5.2)

Since neither Λ and F are known, solving (5.2), to minimise the reconstruction

MSE in the original space, given by

MSE =

∑∑

(ΛF −X)2

PN
(5.3)



5.3 Objective Function 156

is an ill-conditioning problem, without trivial or direct solution. The main ad-

vantage of the OF is the ability to obtain F , Λ and Ψ according to their prior and

posterior probabilities, without having to adopt an heuristic method to explore the

solution space. P and N are the size of the projection space and the number of

cases, respectively.

The OF treats the Λ matrix as a random matrix and generates a probability

density function for it, which is used to sample its values from. The OF allows to

insert prior information in the sampling of the Λ matrix, changing the posterior

distribution to accommodate the impact of uncertainty on it. The prior distribution

of the Λ matrix, p (Λ, f, l, v, T ), is the product of the probabilities of the individual

elements at a clock frequency f , location on the FPGA l, core voltage v, and the

temperature of the device T ,

p (Λ, f, l, v, T ) =

P
∏

q=1

K
∏

k=1

[p (λpk, f, l, v, T )] . (5.4)

This prior distribution expresses the uncertainty of each Λ matrix and has to meet

the following properties:

p (λpk, f, l, v, T ) ≥ 0, ∀λpk, (5.5)

∑

λpk

p (λpk, f, l, v, T ) = 1. (5.6)

Any given coefficient λpk has a probability of being sampled greater or equal than

zero, and the cumulative probability of all possible λpk values is 1.

5.3. Objective Function

Even though the OF samples projections according to a prior distribution it creates

candidate designs that are suboptimal. Given that, it orders the generated designs



5.3 Objective Function 157

in terms of resources and errors and then extracts the designs which present the

optimal points on a Pareto curve.

The purpose of the objective function is to map both reconstruction errors and

variation errors into a single quantity to be minimised by the OF. Let’s denote with

X̂ the result of the reconstruction of the projected data in matrix format. Then,

the objective function U is defined as in (5.7), where both reconstruction errors and

variation errors are captured. The matrix formulation is defined as:

U =Tr

(

E

[

(

X − X̂
)T (

X − X̂
)

])

(5.7)

E denotes the expectation and Tr the trace operator. It expresses the recon-

structed data as a function of the Λ matrix, and the variation error with ε such as

X̂ = Λ(F + ε). By imposing ε to have zero mean, which is achieved by subtracting

a constant in the circuit, and using the fact that the Λ matrix is orthogonal and

orthonormal, the objective function is expressed as:

U =Tr
(

E
[

(X − ΛF )T (X − ΛF )
])

+Tr
(

E
[

εT ε
])

(5.8)

=Tr
(

E
[

(X − ΛF )T (X − ΛF )
])

+
∑

j

var(εj) (5.9)

Here j denotes the columns of the Λ matrix. By assuming that the errors at the

output of the multipliers are uncorrelated, then the first term in the final expression

relates to the approximation of the original data from the linear projection, without

any variation errors, where the second term relates to the error variance from the

characterisation of the arithmetic units under PVT variation. Thus, the errors due

to dimensionality reduction and variation are captured by one objective function

without any need to formulate a problem using a multi-objective function.



5.4 Sampling From a Posterior Distribution 158

5.4. Sampling From a Posterior Distribution

The proposed OF utilises information, from the CF, regarding the performance of

the multipliers for a given device and their respective resource utilisation, by suitably

constructing a prior distribution function for the coefficients of the Λ matrix.

5.4.1. Prior Distribution

As previously stated, the OF samples values for the coefficients of the Λ matrix.

Therefore, the prior distribution is used to model the distribution of the values

acquired from the sampling process by penalising Λ matrix instances with large

area and variation errors by assigning low probabilities to them, favouring matrices

without variation errors and consuming the least area. The prior distribution is

expressed as a function of the error variance at the output of multipliers on the

FPGA when under variation and is given by equation 5.10.

p (λpk, f, l, v, T ) =g (A (λpk) , E (λpk, f, l, v, T )) (5.10)

g (A (λpk) , E (λpk, f, l, v, T )) =c
[

A (λpk)
−1 (E (λpk, f, l, v, T ) + 1)−1

]

(5.11)

c and is a constant used to ensure that

∑

λpk,f,l,v,T

g(A(λpk), E(λpk, f, l, v, T )) = 1. (5.12)

A(λpk) is the area to implement the multiplier and E(λpk, f, l, v, T ) on the error

variance observed in the multiplier characterisation for a given λpk value tested at

f clock frequency, location l, core voltage v and temperature T .



5.4 Sampling From a Posterior Distribution 159

5.4.2. Error Model

The performance characterisation, to create the error model, of the arithmetic op-

erators is performed on the ones that exhibit paths with the longest delay in the

datapath of the DSP design considered. In case of the linear projection, that corre-

sponds to the multipliers.

The error model uses the information about the uncertainty of multipliers, with

specific word lengths, at specific clock frequencies, placement coordinates, core volt-

ages and temperatures.

The method used to collect error information relied on the CF which stimulates

the test circuit with a specific test vector and then compares the output of the

arithmetic units against the expected result. This was repeated for all operating

conditions (clock frequency f, location l, voltage v and temperature T ) on the target

device. This error model uses the variance of the variation errors observed, as it is a

statistical metric that measures how distant the outputs of the circuit are from the

expected values. In addition, a metric such as the mean isn’t suitable as variation

errors can cancel out, thus producing a mean close to zero, even though there are

errors in all observations.

E(λpk, f, l, v, T ) = var(λpk, f, l, v, T ) (5.13)

At present only CCM, generic and DSP-based multipliers are characterised as

usually they are the arithmetic units, in DSP circuits, where the critical-paths re-

side. Nonetheless, this work can be extended to support other arithmetic operators

required by other applications being optimised.

Figure 5.3 illustrates the error variance for all multiplicands of an 8-bit LUT-based

generic multiplier at different clock frequencies stimulated with a pseudo-random

test vector. The x axis represents the constant multiplicands and the y axis the



5.4 Sampling From a Posterior Distribution 160

50 100 150 200 250
300

310

320

330

340

350

360

const coeff

Variance: Mult Cst vs Freq 

fr
e
q
u
e
n
c
y
 [

M
H

z
]

0

1

2

3

4

5

6

7

8

Figure 5.3.: Error variance of an unsigned 8-bit LUT-based generic multiplier.

clock frequencies. For each coordinate the colour of the cell represents the error

variance observed during the test. Examining the results shows that although a

multiplier produces errors for some constant multiplicands, others don’t produce

errors. Moreover, the presence of errors is cumulative with the frequency increase,

meaning that multiplicands with errors at lower over-clocking frequencies also have

errors at higher frequencies.

5.4.3. Area Model

The OF uses an area model to estimate the area of the generated designs without

having to synthesise them. The design area comprises the area of the dot-product

(multipliers and adders) employed in each design. Since the multipliers have been

synthesised for the characterisation step, their actual value is derived from the syn-

thesis reports.

In the case of using CCMs, the area depends on the value of the multiplicands

considered, whereas the area of a generic multiplier depends on the word length of

the multiplicands, regardless their value. In case of using DSP block multipliers the

area of the design is constant regardless the word length of λpk. For all multipliers

only the word length of λpk changes, and the word length of the input data remains

constant.

The linear projection circuit, which corresponds to equation 2.2, is often imple-



5.5 Design Optimisation 161

mented using CCMs, followed by an adder tree, or by MAC units using generic

multipliers. Therefore, the area of the adders is also accounted in the circuit area

model.

Hyper-Parameters

To change the influence of area and errors in the prior distribution, Hyper-Parameters

were introduced. These Hyper-Parameters have impact on the performance of the

designs generated given that λpk values requiring more resources and prone to error

may be excluded by assigning them a very low prior probability. Equation 5.11 is

now modified to hold the Hyper-Parameters α and β:

g (A (λpk) , E (λpk, f, p, v, T )) = c
[

A (λpk)
−α (E (λpk, f, p, v, T ) + 1)−β

]

(5.14)

The current implementation of the OF uses empirical values for theHyper-Parameters

and doesn’t perform any informed selection on them.

In figure 5.4 there’s an example of prior distributions for α = 0 and 3 different

values of β using the same multiplier characterisation. It illustrates the impact of

the Hyper-Parameter in the prior distribution, giving more or less emphasis on the

errors due to variation. The figure shows that for β = 0.1 all λpk values have almost

the same probability of being sampled, whereas for β = 4.0, λpk values with high

variation errors have a very low probability of being selected.

5.5. Design Optimisation

The OF generates a number of designs that minimise the selected objective function

U for a given FPGA area due to its sampling process. The resulting designs are

the ones that fall on a Pareto curve of area vs MSE of the reconstruction of the

projected data in the original space, for a given clock frequency, FPGA location,



5.5 Design Optimisation 162

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

x 10
−3

λ value

p
(λ

)

Prior distribution: β = 0.1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

x 10
−3

λ value

p
(λ

)

Prior distribution: β = 1.0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1

2

3

x 10
−3

λ value

p
(λ

)

Prior distribution: β = 4.0

Figure 5.4.: Prior distribution for α = 0 and β = [0.1, 1.0, 4.0] for an 8-bit unsigned
multiplier at 340MHz.



5.5 Design Optimisation 163

core voltage and temperature. The OF estimates each dimension (i.e. column) of

the Λ matrix in a sequential manner. The user supplies the targeted dimensions K,

the targeted operating conditions (clock frequency f , location coordinates l, core

voltage v and temperature T ), α and β Hyper-Parameters.

The OF iteratively samples candidate projections using different word lengths, for

each projection vector. This means that accounting for all possible combinations,

the OF would have to generate wlK designs, being wl the number of word lengths

considered and K the number of projection vectors. As a result of the time required

to account for all possible combinations, an internal optimisation parameter has

been added to the OF. It is the number of designs to be passed from one iteration,

or projection vector, and is known as Q. At the end of each iteration, the candidate

designs are sorted by their expected MSE, given by the objective function, and

placed in Q bins. The designs which exhibit the least MSE are extracted and

passed to the next iteration or used to implement the linear projection design.

Algorithm 2 shows the pseudo-code to select Q designs. This algorithm doesn’t

guarantee the best Q designs possible out of the OF, but it is effective in reducing

the number of candidates through an automated selection. To obtain Q designs the

OF processes the first projection for the input data using different word lengths.

The reconstruction MSE for the projections is calculated and organised in Q equally

spaced bins, which are bounded by the minimum and maximum values prevenient

from these projections. The optimal projections are the ones with minimum error for

the same area. From each bin, the projection with the least MSE is selected. This

results in Q projections which are used in following projected dimension. In the

following iteration, for the new projection dimension, the process aforementioned

is repeated considering the error from the previous projection as the data to be

projected. Figure 5.5 illustrates the iterations for the generation of linear projection

designs. The dashed horizontal lines represent the boundaries between bins, and the



5.6 DSP Block Support 164

Figure 5.5.: Illustration of the generation of linear projection designs with 3 pro-
jected dimensions and Q = 3.

dashed vertical lines the iterations for each projected dimension.

5.6. DSP Block Support

When DSP blocks are used, which are embedded in the FPGA’s architecture, they

occupy an entire block regardless of the word length and the values of the projection

coefficients. Thus, they are assigned constant resources. This is similar to assign

Hyper-Parameter α the value zero in the prior distribution, as no change in resources

to implement the multiplier is observed. In this case the prior distribution accounts

only for the contribution of variation errors.

To sum up, the proposed OF doesn’t make a distinction between different mul-

tiplier architectures. If different types of multipliers are to be considered in the



5.6 DSP Block Support 165

Algorithm 2: Algorithm to sample Q linear projection designs from a prior
distribution.
Require: Q ≥ 1 ∧K ≥ 1 ∧ β > 0 ∧ f, v, T > 0
Ensure: Q linear projection designs

X ← input {original data N cases}
for d = 1 to K do

Create new empty Candidate Projs list
for wl = wlmin to wlmax do

prior ← generate prior(wl, β, f, p, v, T )
λd,wl ← sample projection(X, prior, wl)
areaλd,wl ← estimate area(λd, wl)
uncertainty(λd, f, p, v, T )← characterisation var(λd, f, p, v, T )
F ← (λT

d λd)
−1λT

dX

error ← X −
∑d

j=1 λj,wlF

MSEd,wl ←
(
∑∑

error2/PN
)

+ uncertainty(λd, f, p, v, T )
Proj ← (λd,wl, aread,wl,MSEd,wl)
Add Proj to Candidate Projs list

end for

CurArea = 0, CurMSE = Max(MSE(Candidate Projs))
while Candidate Projs list not empty do

Sort Candidate Projs by Area
Extract Candidate Projs at head of the list
if Area(Candidate Projs) > CurArea then

if MSE(Candidate Projs) > CurMSE then

Add Candidate Projs to ParetoP oints list
CurArea = Area(Candidate Projs)
CurMSE = MSE(Candidate Projs)

end if

end if

end while

Create Q bins = [MSEmin : (MSEmax −MSEmin)/Q : MSEmax]
for q = 1 to Q do

Extract the 1st Pareto Point :
MSE <= MSEmin + (q − 1)(MSEmax −MSEmin)/Q

end for

end for

Create Q designs from the extracted Q projections
return Q designs



5.7 Optimisation Strategies for Linear Projections 166

optimisation of the design then the OF offers the flexibility to support different im-

plementation requirements at the same time, stretching the methodology proposed

in [83] to consider errors due to variation.

Since the routing inside DSP-Blocks doesn’t change, the errors due to variation

across different units on the same device, or on different devices, will reflect the

impact of process variation and jitter, thus eliminating variation due to placement

and routing inside the arithmetic unit.

5.7. Optimisation Strategies for Linear Projections

Linear projection designs are frequently implemented with tight requirements in

terms of throughput, maximum circuit area, and minimum acceptable reconstructed

quality, which can lead to the adoption of different design strategies. To account

for them, the OF is able produce design using two different strategies to originate

designs that:

• achieve a reconstruction error below a maximum value tolerated error in their

reconstruction,

• produce the least reconstruction error for a specific number of projected di-

mensions.

So far the methodology described imposes the number of projected dimensions, or

the amount of data generated at the output of the linear projection system. To

account for the alternative strategy minor changes were introduced in the OF and

are discussed below.



5.8 Optimisation Framework Evaluation 167

5.7.1. Linear Projection Targeting a Maximum Reconstruction

MSE

When an linear projection has to be implemented with specific quality requirements,

and resources are not a constraint, the OF creates a linear projection design that

meets that. Even though it may suggest that a linear projection can scale uncon-

trollably, is has been showed that the Bayesian Framework, in some cases, is able

to create optimal linear projection designs that achieve the target reconstruction

MSE with less projections than with the application of the reference methodology

(PCA) [6].

In this scenario, the design generation algorithm used will add projection vectors

to the design until the required reconstruction MSE is achieved. In more details,

this design generation algorithm, for all possible word lengths, samples projection

vectors and adds the one with the least reconstruction MSE to the design. By

adding projection dimensions, the algorithm iteratively adds more information to

the projection, thus reducing the reconstruction error. It stops when the generated

design achieves a reconstruction MSE lower than the target MSE.

To support this functionality, the design optimisation algorithm differs in the loop

which iterates through all the K projection dimensions (d) to become a loop which

returns whenever the maximum reconstruction MSE is met.

In case the target reconstruction MSE is set below the optimal achievable by the

OF, or if the errors due to variation are too high, the number of projection vectors

required is likely to increase.

5.8. Optimisation Framework Evaluation

A case study is conducted to evaluate the performance of the proposed optimisation

framework, targeting different strategies for linear projection designs with high-



5.8 Optimisation Framework Evaluation 168

performance and low-latency. Since there are applications that are constrained by

their sources to process new data at every clock cycle, and deep pipelining isn’t

possible, it is of great importance to examine how the proposed OF copes with

those requirements.

The case study presented concerns of a small problem to demonstrate the applica-

bility of the proposed methodology. The incentive to present a small problem relies

on the fact that the regularity of the architecture to implement a linear projection

design makes its performance independent of the dimensions of the problem. More-

over, given the novelty of the methodology proposed, it is intentional to keep the

problem as simple as possible to assess the impact of the proposed methodology.

To evaluate the performance of the proposed optimisation framework in the gen-

eration of circuit designs for dimensionality reduction problems based on linear pro-

jection, a reference design is implemented that relies on the KLT transformation,

considering different word lengths, modeling the existing approach to the above prob-

lem. The generated designs are evaluated in terms of reconstruction MSE/PSNR

and required hardware resources for different operating conditions (clock frequency,

core voltage, temperature and location on the FPGA).

The performance evaluation of the proposed work happens in three domains,

namely the predicted, simulated and actual. The predicted performance is the perfor-

mance expected by the designs generated by the proposed optimisation framework

using the described error model. The actual is the performance observed on the

optimised design when it is implemented on an FPGA device.

The simulated performance is the performance of a design using the same data

sets as the ones that are utilised for the actual performance evaluation of the design

in the device, but employing the information from the characterisation. This inter-

mediate result is not fundamental, but it provides an insight of the quality of the

error model due to operation under variation. Deviations between this performance



5.8 Optimisation Framework Evaluation 169

characterisation and the actual performance of the designs on the device still exist

due to placement and routing variation and jitter.

It is worth mentioning that aiming to abide with the impact of placement and

routing variability, designs generated by the proposed optimisation framework were

synthesised using different pseudo-random seeds in the synthesis tool. Moreover, to

abide with the impact of variability due to jitter, synthesised circuits were tested

many times. All designs were implemented on Cyclone III EP3C16 FPGAs from

Altera [1], attached to DE0 boards from Terasic [89].

5.8.1. Characterisation and Training Samples

To test the application of the OF in linear projection various sets of samples were

generated to characterise the arithmetic units, in order to create the candidate

designs and test the designs on an FPGA, but all of them were obeying the same

model.

Test Samples

This set contains examples of synthetic data being passed to the design in the

interest of producing linear projection results. Usually the number of samples used

is determined by the application. Since there are no constraints imposed by the

example chosen, 29.4k samples were used to test the designs since it is approximately

half of the total number of combinations for input data. The data was generated

using the Matlab source code generate data.m in the Appendix A.3. Figure 5.6

shows the distribution of the samples generated for a linear projection application.

Characterisation Samples

The characterisation process tests arithmetic units on a device under variation and

produces statistics, such as variance of error, which is incorporated in the error



5.8 Optimisation Framework Evaluation 170

−8 −6 −4 −2 0 2 4 6 8
0

500

1000

1500

2000

2500

3000

3500

4000

4500
Distribution of the test samples

Figure 5.6.: Histogram showing the distribution of the test samples generated for
the linear projection test case according to their value.

model used by the OF during the optimisation process. Moreover, the characterisa-

tion process needs to reflect the impact of the problem data, while using a smaller

data set to reduce the characterisation time. Hence, it is important to create a char-

acterisation data set with the similar variance and probability distribution using the

minimum number of samples in order to achieve this.

The determination of the minimum number of samples is achieved through re-

sampling methods, namely Jackknife [92, 93] and Bootstrap [94]. These methods

estimate the variance of data subsets, which are used to compare contra the variance

of the complete data set.

In effect, the complete data set corresponds to 29.4k samples, with the same mean

and variance as the test data set, to be used in the characterisation.

The characterisation evaluates this data set assuming one of the multiplicands as

a constant coefficient on a 8-bit unsigned generic multiplier under variation. The

resampling methods were applied to all constant coefficients individually. From



5.8 Optimisation Framework Evaluation 171

R S Num Samples % Coefs. in CI

5 1425 7125 100
5 1900 9500 100
5 2280 11400 100
5 3675 18375 100
5 4900 24500 100
5 5880 29400 100
6 1425 8550 97.26
6 1900 11400 97.64
6 3675 22050 97.26
6 4900 29400 97.64
8 1425 11400 81.96
8 3675 29400 81.96

Table 5.1.: Results for the Jackknife resampling method within a 95% confidence
interval.

the complete data set, R subsets with different sizes S were created to be tested

for validity under a 95% confidence interval. It is envisioned that the greater the

number of samples, the greater is the number of coefficients exhibiting a variance

within the 95% confidence interval. Moreover, greater number of subsets requires

more samples to meet the variance of the characterisation data set.

Jackknife The Jackknife method was initially proposed in [92], and later extended

in [93]. It determines statistical measurements, i.e. mean and variance, for subsets

of a sampled set without considering one sample at a time, and then produces as a

result their average. The subsets were created from a set derived from the complete

data set obtained from the characterisation of the device. Each subset is extracted

from the complete data set without repetition.

The results for the tests performed are summarised in table 5.1. The greater the

number of samples for the subsets, the greater the number of coefficients having

their variance within the confidence interval. Therefore, these results are in line

with the predicted results.



5.8 Optimisation Framework Evaluation 172

R S Num Samples % Coefs. in CI

5 1425 7125 100
6 1425 8550 97.26
8 1425 11400 81.96
5 1900 9500 100
6 1900 11400 97.64
5 2280 11400 100

Table 5.2.: Results for the Bootstrap resampling method for different sets with sam-
pled variances within the 95% confidence interval.

Bootstrap Similar to Jackknife, the Bootstrap differs on how the subsets are

created. This method samples, with replacement, from the set and then creates a

subset and produces the variance for it. This process is repeated many times (usually

> 1k) to estimate the shape of distribution of the variance. Table 5.2 summarises

the results for different tests.

Training Samples

As aforementioned, the OF samples many possible designs in order to be able to

extract the optimal ones. In large application this can lead to long execution times

(> 100h). To accelerate this process the linear projection designs are sampled using

a training set, which is smaller than the data set in the problem. The requirement

is that the training set has to keep the same statistical properties as the problem

set in order to produce Λ matrices representative of the problem set.

The work presented in [95] examines the two arguments and show results for

a known data set. This study suggests that the best results happen when large

numbers of samples and high ratios, between test and training samples, are present.

In this case study, in order to define the number of samples, a linear projection

matrix (Λ) was created to describe the linear projection of 5k samples, using the

KLT algorithm. The MSE for different sizes of samples was then computed using

random input samples. In order to be able to model the expected variation of the



5.8 Optimisation Framework Evaluation 173

0 50 100 150 200 250 300 350 400 450 500
0.1

0.12

0.14

0.16

0.18

0.2

0.22

X: 100
Y: 0.1716

Number of training samples

R
e
c
o
n
s
tr

u
c
ti
o
n
 M

S
E

Reconstruction MSE and Confidence Intervals for different training set sizes

X: 1
Y: 0.1665

X: 500
Y: 0.1677

MSE(n)

Mean

95% CI

Figure 5.7.: Reconstruction MSE and Confidence Intervals for different training set
sizes.

reconstruction MSE for each sample size, a 95% confidence interval was computed.

Figure 5.7 shows the reconstruction MSE and the 95% confidence interval for the

different training set sizes. Also, three values of the confidence interval have been

identified: average value, achievable with infinite number of samples, and the values

for 100 and 500 samples. When compared the limits of the confidence interval for

100 samples, with the limits of the confidence interval for 500 samples it shows an

increase of 2.32% whereas it represents an increase of 3.06% when compared to the

mean value (5k samples).

Figures 5.8 and 5.9 show the distribution of 1.9k and 100 samples respectively,

generated for a Z6 to Z3 linear projection application. Table 5.3 summarises the

mean value and variance of each data set. It is observable from this data that the



5.8 Optimisation Framework Evaluation 174

−6 −4 −2 0 2 4 6 8
0

200

400

600

800

1000

1200

1400

1600
Distribution of the characterisation samples

Figure 5.8.: Histogram of 1.9k characterisation samples used in the characterisation
of the arithmetic units for the Z6 to Z3 linear projection.

Data Set Mean Variance

5k 2.246× 10−3 1.665
1.9k −4.246× 10−4 1.653
100 2.708× 10−2 1.778

Table 5.3.: Mean and Variance of the different data sets

distribution, and its mean value and variance is close for all data sets.

5.8.2. Circuit Architecture

The linear projection application considered in the case study relies on the imple-

mentation of a dot-product. The block diagram of the dot-product circuit implemen-

tation.was presented in figure 5.2. Figure 5.10 shows the block diagram of the test

circuit implementation. This circuit was designed for maximisation of throughput

and allowed relaxation in terms of area requirements. The datapath of the Design

Under Test (DUT) is replaced with a dot-product implementation: 2.5 or 2.4.



5.8 Optimisation Framework Evaluation 175

−4 −3 −2 −1 0 1 2 3 4 5
0

10

20

30

40

50

60

70
Distribution of the training samples

Figure 5.9.: Histogram of 100 samples used in the training of the Optimisation
Framework for the Z6 to Z3 linear projection.

q

The circuit is composed of the following blocks:

1. Input and output memory blocks to emulate the input and output streams in

the circuit;

2. datapath being tested under variation, e.g. dot-product;

3. FSM to control the datapath;

4. Clock generator for datapath and FSM.

Similarly to the circuit in the characterisation framework, presented in chapter 3

of this thesis, only the datapath is sensitive to variation as it runs at twice the clock

rate of the rest of the circuit. Data is written/read to/from memories via JTAG

interface. The same interface is also used to trigger the execution of the test. FSM

(ext ctrl).



5.8 Optimisation Framework Evaluation 176

Figure 5.10.: Block diagram of the circuit to test the dot-product implementation,
used in linear projection case study.



5.8 Optimisation Framework Evaluation 177

5.8.3. Area and Error Models Evaluation

Area Model

The area model is created to give a quick, but accurate, estimate on the resources

taken by a candidate design without having to actually synthesise it. Area is mea-

sured in terms of number of LEs required to implement the circuit. This estimate

is based on the resources reported by the synthesis tool for the multipliers in the

characterisation circuit, however small deviations are expected due to further opti-

misations performed by the synthesis tool. The area estimate (ÂLinProj) for each

dot-product follows a linear approximation of the form

ÂLinProj = r.AMult(wl, coeff) + s (5.15)

Where AMult is the area required to implement a multiplier of a given word length,

and with a specific value, r and s are the approximation parameters and they change

for different types of multipliers, such as CCM and generic multipliers.

Figure 5.11 shows an example of the relation between the predicted and the actual

resources occupied by LUT-based multipliers on the FPGA. The figure also shows

that most of the data points fall inside the 95% confidence interval for the area

estimation.

Error Model

Figure 5.12 depicts design points under predicted, simulated and actual perfor-

mances. It should be noted that all area results refer to the actual area utilised

by the design.

The obtained results show that the errors in the model (or predicted) is pessimistic

in regards for the actual results. This is due to the fact that the characterisation of

the device used a longer data sequence, which produced more timing errors, whereas



5.8 Optimisation Framework Evaluation 178

500 550 600 650 700 750 800 850 900
500

550

600

650

700

750

800

850

900

950

1000
Area Model

Model Area

Im
p
le

m
e
n
ta

ti
o
n
 A

re
a

Model vs Implementation Area

Area Model

95 % Confidence Interval

Figure 5.11.: Evaluation of the area model against the actual circuit area for linear
projection designs using LUT-based multipliers.

the actual test didn’t generate (so many) errors.

The simulated results are closer to the actual results as they result from the

characterisation of the multipliers using the actual test data instead of the pseudo-

random.

It would be ideal to have predicted, simulated and actual data points overlapping,

but the nature of the problem (i.e. size of the application, distribution of the data,

placement and routing variation, along with other sources of variation) doesn’t allow

to achieve that.

5.8.4. Optimisation of Linear Projections for Throughput, Area

and Errors

This test case considers the cases where the linear projection design is implemented

using LUTs. In terms of design options it covers the use of different implementations

for the dot-product algorithm, using CCMs or generic multipliers. Both cases are



5.8 Optimisation Framework Evaluation 179

600 620 640 660 680 700 720 740
10

−8

10
−7

10
−6

10
−5

Area [LE]

O
ri
g
in

a
l 
S

p
a
c
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 M

S
E

Original Space Reconstruction MSE @ 310 MHz

Predicted

Simulation

Actual

Figure 5.12.: Predicted, simulated and actual performance reconstruction MSE vs.
area of the linear projection designs produced by the proposed opti-
misation framework using LUT-based multipliers. The target clock
frequency is 310MHz.



5.8 Optimisation Framework Evaluation 180

sensitive to the amount of resources required, therefore the optimisation tries to

maximise throughput while minimising area and errors. The clock frequencies were

chosen so that arithmetic units produce some errors in order to evaluate the proposed

optimisation framework.

Constant Coefficient Multipliers

CCMs enjoy minimal resource usage, and they have few critical paths becoming

the multiplier choice for DSP applications that demand high- performance. The

tradeoff, when compared to the generic multiplier, is that absence of generality.

In this case the performance of the proposed optimisation framework, considering

area and errors, (OFae) is compared against the standard KLT implementation

(KLT ) and optimisation for area only (OFa). Figures 5.13 and 5.14 show the results

for the model and the implementation, respectively. The results are presented as

Pareto curves and they show the optimal sets of designs, in terms of area and

reconstruction PSNR at 510MHz, which is 2.32 times faster than the maximum

specified by the synthesis tool.

The model results show the estimated hardware resources vs the estimated recon-

struction PSNR in the original space. The optimisation framework considers the

information about the CCMs operating at 510MHz, but it assumes the arithmetic

units don’t have errors in their calculations. The results are good as they show

that OFae designs are always better than the KLT designs. Compared to designs

optimised only for area (OFa), the designs optimised for area and errors (OFae)

perform better, or at least the same.

The implementation results show the actual hardware resources required vs the

results from the board when operated under over-clocking at 510MHz. For a PSNR

above 31 dB the KLT design requires 39% more hardware resources than the OFae

design. Below the limit of 2000LEs, the OFae design increased the PSNR by 4.35 dB



5.8 Optimisation Framework Evaluation 181

500 1000 1500 2000 2500 3000 3500
25

30

35

40

45

50

55

60

65

Estimated Area [LE]

In
p
u
t 

D
a
ta

 R
e
c
o
n
s
tr

u
c
ti
o
n
 P

S
N

R
(d

B
)

Model: Input Data Reconstruction PSNR @ 510 MHz

KLT

OFa

OFae

Figure 5.13.: Estimated circuit area vs model reconstruction PSNR at 510MHz.

and more 8.79 dB PSNR than OFa and KLT designs, respectively. The deviations

between the predicted and the actual happen because the adder tree wasn’t modelled,

and their errors haven’t been considered in the optimisation process. Nevertheless,

OFae provides the design with the best reconstruction PSNR in both cases.

The above study demonstrates that is possible to optimise a linear projection

design for area, reconstruction data PSNR and resilience to operation under over-

clocking simultaneously, by inserting information regarding the area and perfor-

mance of the arithmetic units. It is also demonstrated, that for a target PSNR it is

possible to reduce resource usage and increase the clock frequency by 290 MHz.

Generic Multipliers

Performance Limits The performance limitations of the generated linear projec-

tions designs following the existing methodology of applying the KLT transform and

then mapping the design on an FPGA are depicted in Figure 5.15. The design space



5.8 Optimisation Framework Evaluation 182

500 1000 1500 2000 2500 3000 3500
25

30

35

40

45

50

55

60

65

Actual Area [LE]

In
p
u
t 

D
a
ta

 R
e
c
o
n
s
tr

u
c
ti
o
n
 P

S
N

R
(d

B
)

Actual: Input Data Reconstruction PSNR @ 510 MHz

KLT

OFa

OFae

Figure 5.14.: Actual circuit area vs implementation reconstruction PSNR at
510MHz.

exploration is performed along the word length employed by the generic multipliers,

which corresponds to the quantisation step of the design process. The figure shows

the maximum clock frequency reported by the synthesis tool (Tool Fmax - green),

the datapath maximum frequency when the design is placed to the targeted FPGA

without observing any errors in the calculations in the datapath (datapath Fmax -

yellow), and the range of the frequencies where the design starts generating errors

due to over-clocking (FSM Fmax - red).

Targeting a Minimum MSE for Given Number of Dimensions In this case

study, the target clock frequency is set to 310 MHz, which is 1.85 times higher than

the possible frequency reported by the synthesis tool for a KLT design employing

9 bits coefficient word length. At this clock frequency some KLT-based designs

(i.e. the ones with large area footprint) will operate with errors in their datapath

(Figure 5.15).



5.8 Optimisation Framework Evaluation 183

0 50 100 150 200 250 300 350 400 450 500

3

4

5

6

7

8

9

Frequency [MHz]

M
u
lt
ip

lie
r 

W
o
rd

−
le

n
g
th

 [
b
it
s
]

Maximum Operating Frequency vs Word−length

FSM Fmax

Data−path Fmax

Tool Fmax

Figure 5.15.: Maximum clock frequencies vs word length for a Z6 to Z3 linear pro-
jection circuit designed by the KLT transform.

Figure 5.16 shows the actual performance of the designs produced by the pro-

posed optimisation framework and the KLT approach, along with their predicted

performances. The predicted performance for the KLT-based designs is based on the

extension of the existing methodology and the adoption of the objective function,

equation 5.7. However, no optimisation with respect to over-clocking characterisa-

tion has been performed in the KLT-based designs. The results show that the pro-

posed optimisation framework produces designs that behave close to the predicted

results under over-clocking, as well as they produce around an order of magnitude

on average lower reconstruction error for the same area when compared to the KLT.

All in all, the results are in line with the expected increased performance of the

optimised designs of the KLT-based ones, and in most cases the optimised designs

perform close to the predicted by the model.

5.8.5. Optimisation of Linear Projections for Throughput and

Errors

To better demonstrate the impact of variation for each design strategy only one

setting has been changed, even though the framework supports variation of many

operating conditions simultaneously. The results for the reference implementation



5.8 Optimisation Framework Evaluation 184

600 650 700 750 800 850 900 950
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

Area [LE]

O
ri
g
in

a
l 
S

p
a
c
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 M

S
E

Original Space Reconstruction MSE @ 310 MHz

Predicted KLT

Predicted OF

Actual KLT

Actual OF

Figure 5.16.: MSE for the reconstruction of the projected data in the original space.
The design points of the KLT correspond to 3-9 bit coefficient word
length.

without information about the characterisation of the device are identified with KLT,

whereas the results for the proposed framework are identified with NEW. They are

compared in terms of PSNR of the reconstructed data in the original space.

Regarding the test circuit it was verified that after synthesis, the tool reported a

resource usage of 126 logic cells and 3 9× 9 embedded multipliers, and a maximum

clock frequency of 342MHz. Examining the timing report revealed that the critical

paths belong to the embedded multiplier and the delay for the remaining components

in the datapath, i.e. accumulator, and the FSM, are out of reach for the selected

over-clocking frequencies.

Targeting Maximum Performance Optimising a linear projection design aim-

ing for the maximum performance implies an increased FPGA core voltage and

active cooling of the device. During the characterisation of the multipliers and test



5.8 Optimisation Framework Evaluation 185

660 680 700 720 740

10

20

30

40

50

60

Clock Frequency [MHz]

O
ri
g
in

a
l 
S

p
a
c
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 P

S
N

R

Original Space Reconstruction PSNR @ 1400 mV, 5ºC

KLT

NEW

Figure 5.17.: Comparison of the performance of the KLT and OF designs for the
particular case of 1400mV and 5 ◦C.

of the designs generated, the device was kept at 5 ◦C and supplied with 1400mV,

instead of the 1200mV specified by the manufacturer.

With a clock frequency twice as much as the maximum specified by the synthe-

sis tool for the normal working conditions, the designs generated by the proposed

framework exhibited a reconstruction PSNR up to 15 dB better than the KLT de-

signs for the same working conditions, as can be observed in Figure 5.17. On the

other hand, if a target PSNR of 30 dB is to be met, then the designs generated by

the framework can operate up to 20MHz higher than the KLT designs.

Targeting Low Voltage Linear projection circuits operating under limited power

budgets, or battery operated, tend to operate using the least core voltage possible

and be without any active cooling components. Figure 5.18 shows the results for

the KLT designs when operating at 35 ◦C with different FPGA core voltages. This

design strategy considered 900mV as the minimum core voltage for the FPGA.



5.8 Optimisation Framework Evaluation 186

200 300 400 500 600
0

10

20

30

40

50

60

Clock Frequency [MHz]

O
ri
g
in

a
l 
S

p
a
c
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 P

S
N

R

Original Space Reconstruction PSNR @ 35ºC

KLT 0.9V

KLT 1.0V

KLT 1.1V

KLT 1.2V

Figure 5.18.: Performance of the KLT linear projection application under different
core voltages (900mV,1000mV,1100mV,1200mV).

Figure 5.19 shows that the designs created by the framework achieve a better PSNR

up to 10 dB for the same clock frequency, or for similar PSNR, a clock frequency up

to 10MHz higher than the reference designs.

Targeting Process Variation Previously it was shown, through characterisa-

tion, that different embedded multipliers perform differently as a consequence of

process variation. To demonstrate that the optimisation performed addresses the

impact of variability of the device, in the design process, a previously optimised,

and synthesised, design was placed on a different DE0 board and tested. Figure

5.20 demonstrates the aforementioned as NEW (design optimised using the charac-

terisation from a different DE0 board) performs similar to the KLT implementation,

which has no information about the targeted device. Notwithstanding, all of these

designs (KLT and NEW) perform with increased reconstruction PSNR in the new

board (figure 5.20) than the DE0 board originally used in the optimisation (figure



5.8 Optimisation Framework Evaluation 187

240 250 260 270 280
0

10

20

30

40

50

Clock Frequency [MHz]

O
ri
g
in

a
l 
S

p
a
c
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 P

S
N

R

Original Space Reconstruction PSNR @ 35ºC, 900mV

KLT 0.9V

NEW 0.9V

Figure 5.19.: Performance comparison between the KLT and OF designs for the
particular case of 900mV.

5.19). This is due to fact that the new board, on average, has embedded multipliers

with smaller delays, a consequence of inter-die variation.

Targeting Device Temperature Tolerance It is well established that tem-

perature affects the performance of silicon devices. Implementing linear projection

designs without any active cooling components, and operating them in environments

prone to large temperature variation can compromise their correct functioning. Usu-

ally, if an implementation of a linear projection has to consider a wide range of

temperatures, then it will have to cope with the worst performance of them.

To go beyond with the optimisation methodology, it was considered a scenario

where a single design could offer better performance than the reference designs for

a range of temperatures, instead of a design for the worst-case temperature. Seeing

that the errors increase with the temperature, optimising a design for the worst-case

temperature can restrict the coefficients available to implement the linear projection



5.8 Optimisation Framework Evaluation 188

240 250 260 270 280
0

10

20

30

40

50

60

Clock Frequency [MHz]

O
ri
g
in

a
l 
S

p
a
c
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 P

S
N

R

Original Space Reconstruction PSNR @ 35ºC, 900mV

KLT 0.9V

NEW 0.9V

Figure 5.20.: Performance of the KLT optimised designs for low-power, tested on a
different Cyclone III FPGA.

design, hence placing a ceiling on the best reconstruction MSE that a particular

design could achieve, even without errors in its datapath.

The new idea is focused on sampling linear projection designs using the informa-

tion from the characterisation of the device at specific temperatures along with its

probability to operate under those temperatures. To accomplish this, it was inves-

tigated the weighted average of the characterisation errors for a range of operating

temperatures in the generation of linear projection designs. As follows, the prior

distribution from equation (5.16) is now:

g (E (λpk, f, p, v, T )) =
∑

i

γic [1 + E (λpk, f, p, v, Ti)]
−β (5.16)

Here i iterates over all contributing temperatures, and
∑

i γi = 1. The different

weights represent the probability of the design to operate at those conditions. This

particular test case used temperatures 20, 35 and 50 ◦C and γ20 = 0.3, γ35 = 0.5



5.8 Optimisation Framework Evaluation 189

480 500 520 540 560 580 600
0

10

20

30

40

50

60

Clock Frequency [MHz]

O
ri
g
in

a
l 
S

p
a
c
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 P

S
N

R

Original Space Reconstruction PSNR @ 1200mV

KLT 20ºC

KLT 35ºC

KLT 50ºC

Figure 5.21.: Performance of the KLT linear projection application depending on
the temperature of the device.

and γ50 = 0.2. In practice, the proposed framework generates circuit designs per

clock frequency, covering all the temperatures within the expected range. They are

identified with OF WAVG in the results. Designs optimised for a single temperature

are identified with NEW 20/35/50◦C.

Figure 5.21 shows how the performance of the reference linear projection circuit

varies with the temperature of the device, with a supply voltage of 1200mV. Figure

5.22 shows in detail the comparison between the reference and the optimised designs

for a set of temperatures. Figures 5.23 and 5.24 hold the results for 35 and 50 ◦C,

respectively.

The figures show that the designs generated by the framework always outperform

the KLT designs for all temperatures. Furthermore, at 530MHz the PSNR is more

than 10 dB better than the KLT design, and at 530MHz the performance of the

NEW designs at 35 ◦C is better than the KLT design at 20 ◦C. The NEW designs



5.8 Optimisation Framework Evaluation 190

510 520 530 540 550
25

30

35

40

45

50

55

Clock Frequency [MHz]

O
ri
g
in

a
l 
S

p
a
c
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 P

S
N

R

Original Space Reconstruction PSNR @ 20ºC

KLT

NEW 20ºC

NEW WAVG

Figure 5.22.: Performance comparison between the KLT and OF designs at 20 ◦C
(right).

perform significantly better than the NEW WAVG ones since they are optimised

for a particular temperature whereas the NEW WAVG cover a range of operating

conditions. Nonetheless, at 530MHz, the NEW WAVG designs performed slightly

better than the NEW 35◦C since 50% of the information for the NEW WAVG is the

same as in the NEW 35◦C design.

5.8.6. Scalability & Run-Time Investigation

The proposed optimisation framework can support other linear projection problems

with different spaces and input data characteristics. Figure 5.25 shows the optimi-

sation scaled to a Z10 to Z4 linear projection. In this figure, it’s observable that the

optimised designs perform better than the reference ones. This optimisation process

involved 100 samples in the generation of the designs, and they were tested with 500

samples.



5.8 Optimisation Framework Evaluation 191

510 520 530 540 550
25

30

35

40

45

50

55

Clock Frequency [MHz]

O
ri
g
in

a
l 
S

p
a
c
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 P

S
N

R

Original Space Reconstruction PSNR @ 35ºC

KLT

NEW 35ºC

NEW WAVG

Figure 5.23.: Performance of the KLT and OF designs at 35 ◦C .

The run-time requirements of the proposed optimisation framework has also been

investigated, when the proposed framework is executed in a Intel Core-i7 processor.

A model was derived from the approximation of various observed run-times. It

provides an estimate (i.e. in seconds) for the optimisation process under difference

settings.

T ime = (1 +Q(K − 1))

#HP
∑

1

#Freqs
∑

1

#wl
∑

1

R(wl) (5.17)

R(wl) = 0.4266× exp(0.6427×wl) (5.18)

Equation (5.18) models the time to sample one projection vector of a given word

length, where (5.17) models the required time to sample a complete set of designs

for a given number of clock frequencies (#Freqs), projected dimensions (K), main-

tained designs (Q), values of Hyper-Parameter β (#HP ), and word lengths (wl).

The results for both equations are in seconds. As an example, the execution of the



5.9 Summary 192

510 520 530 540 550
20

25

30

35

40

45

50

55

Clock Frequency [MHz]

O
ri
g
in

a
l 
S

p
a
c
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 P

S
N

R

Original Space Reconstruction PSNR @ 50ºC

KLT

NEW 50ºC

NEW WAVG

Figure 5.24.: Performance of the KLT and OF designs at 50 ◦C.

proposed optimisation framework using (#Freqs = 1, K = 3, Q = 5, #HP = 2,

wl = [3..9]), the processing time is 1 hour and 44 minutes, which is considered

acceptable for design an optimisation of digital circuits.

5.9. Summary

This work proposes a novel approach for acceleration of Linear Projections by intro-

ducing the idea of device specific performance characterisation to address the impact

of variation. As such, it makes use of a framework to characterise the performance

of multipliers on a specific FPGA device under variation of the operating conditions.

Moreover, a novel approach is introduced for the utilisation of such information for

the design and optimisation of a Linear Projection circuit design for performance and

resilience simultaneously. The work shows that high-performance improvements can

be achieved when considering such device oriented optimisations, specific to FPGA



5.9 Summary 193

470 475 480 485 490
27.8

27.9

28

28.1

28.2

28.3

28.4

28.5

28.6

28.7

28.8

Clock Frequency [MHz]

O
ri
g
in

a
l 
S

p
a
c
e
 R

e
c
o
n
s
tr

u
c
ti
o
n
 P

S
N

R

Original Space Reconstruction PSNR @ 1200 mV, 20ºC

KLT

NEW

Figure 5.25.: Performance of the KLT and OF designs for a Z10 to Z4 linear projec-
tion at 1200mV/20 ◦C.

devices due to their reconfigurability properties, that are not possible through the

available synthesis tools. On the other hand, the main limitations of this optimi-

sation framework are the run-time, accuracy in the predicted performance, and the

requirement of an error model per device.

To extend this work to different applications it requires the problem to be specified

through an objective function, which is to be minimised given the problem data and

characterisation of the device.

Figure 5.26 shows how other research areas can relate with the proposed opti-

misation framework, namely probabilistic and adaptive computing, fault tolerance,

and design optimisation techniques.



5.9 Summary 194

Figure 5.26.: Diagram with the relation between the different research areas around
the proposed optimisation framework.



6
Conclusions and Future Work

6.1. Conclusions

T
he constant scaling in the fabrication process has led to devices exhibiting

an increase in their process variation. As a consequence, synthesis tools are

becoming more conservative, thus lowering the maximum clock frequency that a

design could achieve. Hence, when the maximum throughput offered by traditional

design techniques isn’t enough, over-clocking the design is a method to increase it.

However, this makes the design susceptible to produce errors as a consequence of

variation in the operating conditions of the device. This thesis investigated methods

to assess the impact of errors on arithmetic units and applications, on devices under

195



6.1 Conclusions 196

variation, as well as methods to mitigate those errors.

The proposed characterisation framework tried to model arithmetic units, and the

linear projection circuit, on FPGA devices under variation. Initially it was thought

as a method to characterise the same units under extreme over-clocking. It has

demonstrated to be an important alternative to existing characterisation methods,

as it creates statistics on the actual error values, rather than the bits. This way it is

possible to understand the values applications are going to process under those op-

erating conditions. The framework also has shown that some units can be employed

to accelerate designs with no, or little, errors, achieving graceful degradation.

Reduced-Precision Redundancy is a generic method to mitigate errors in the dat-

apaths where the arithmetic units always generate errors and there’s no mechanism

to mitigate, or recover, from those errors. In this sense, the new RPR scheme fulfills

the need for a generic method that can provide resilience to a datapath without

introducing extra latency, neither having to change the implementation of the al-

gorithm. The (non-trivial) solution imagined proved to work by accelerating the

units in the datapath while controlling the errors. Despite the fact that the novel

architecture requires twice the LEs and 2 ROMs, tests have showed that the quality

of the results obtained at the output of the RPR unit can’t be achieved by other

mitigation methods for the same operating conditions. Moreover, even though only

timing errors were considered in this work, it can be utilised to mitigate permanent

faults.

However, there are scenarios where resources are scarce and hence it’s not fea-

sible to add extra resources to mitigate errors. On this account the optimisation

framework uses information from the previous characterisation to create an error

model. From that model it generates linear projection designs, through an inference

method, that can produce results with less errors, when compared to traditional

implementations operating under the same conditions. This method is suitable to



6.2 Future Work 197

be adopted in FPGAs, due to its reconfigurability properties, as it allows to have a

prior characterisation and a later implementation on the same device. It was also

identified that when accounting for timing errors, throughput, errors and area, the

designs generated by the OF using DSP-based multipliers were the ones offering the

best tradeoff.

6.2. Future Work

Following the work presented in this thesis, there are several short-term research

directions that could be used to enhance, or extend, it. Other questions, related to

the utility of this research work in the future, and other research avenues that can

arise from this work, are discussed in the long-term goals.

6.2.1. Short-Term Goals

Characterisation Framework

As it is demonstrated in the work presented in this thesis, characterisation of the

arithmetic units is an essential step towards the optimisation of DSPs designs. The

main limitation of the current implementation is the run-time, hence it would be ben-

eficial to accelerate this process. In more detail, the duration of the characterisation

process is unobservable when compared to the time devoted to the communication

between the FPGA board and the host computer, therefore replacing the control

interface would allow a faster characterisation. In terms of data used in the char-

acterisation, it would be interesting to investigate the impact of different data sets

in the results in order to create generic models for different classes of DSP applica-

tions (e.g. faces, motion sensors, radar). Data from different sources has different

properties, as consequence the same arithmetic units exhibit different responses for

the same operating conditions. This is something that doesn’t favour the adoption



6.2 Future Work 198

of a unified error model. Regarding the data produced from the characterisation, in

applications where often the timing errors reside in bits other than the MSBits, de-

termining the Most-Prone-To-Error-Bits can open new research avenues to protect

the bits that impact the application the most, in devices with limited resources.

Optimisation Framework

Results demonstrated that the OF offers the best tradeoff in terms of throughput,

timing errors and area is achieved by the OF using DSP blocks. Since this is a

limited resource for some applications, future work would be applying the OF to

assign the most prone to error coefficients to the DSP blocks while assigning the

other to LEs and BRAMs. Hence, optimisation for heterogeneous resources and

errors would be achieved at the same time.

On the other hand, having showed the benefit of the framework, it is of great

interest to extend the framework to support other problems such as digital filters.

[96] and [97] have proposed Bayesian formulations for FIR filters which can be

adapted to the optimisation framework proposed.

In terms of execution bottleneck, Gibbs sampling algorithm consumes most of the

time in the optimisation process. Since it’s an iterative method it could be worth

looking at alternative methods to produce samples, e.g. Tabu search [98], or to

enhance the optimisation framework using Bayesian Programming [99].

Reduced-Precision Redundancy

This thesis proposes a novel adaptation of the RPR using a different architecture

and methods to generate approximations to correct errors. Regarding this work, the

approximation function generation is an issue that deserves further attention, along

with modeling of the output of an RPR unit under variation.

In more detail, investigation of an optimisation for the selection of the parameters



6.2 Future Work 199

within a given resource budget is expected to reduce the number of design decisions

made by the user, thus automating the process. So far only the error-free regime

has guaranteed correctness at the output. Hence, there’s opportunity to investigate

a model for the output of the RPR unit when operated under variation.

Moreover, there are opportunities for more detailed studies on:

• support of other, more complex, arithmetic operators;

• optimisation of the process to searching for the function approximation coef-

ficients to minimise the error functions, e.g. optimise the search of all useful

combinations [100], and using genetic algorithms [49];

• add information about characterisation of the arithmetic units to protect the

most-prone-to-error-bits instead of the MSBits.

In this direction, [101] has proposed a methodology to generate approximate cir-

cuits from a “golden RTL” and a quality constraint that defines the amount of

error introduced. Small approximate circuits can be an alternative to ROMs when

BRAMs aren’t available on implement RPR on the device.

Since both RPR and the optimisation framework achieve better results than any

other methods, it would be interesting to make a comparison between them consid-

ering designs from the optimisation framework using RPR units, and compare them

with the other implementations.

6.2.2. Long-Term Goals

Reliability of digital systems has enjoyed from many contributions, but it’s still

far from complete, therefore it’s foreseen that this is a research topic which still

needs to be paid attention to in the future. On the specific topic of optimisation

of designs to operate under PVT variation, the current trend indicates that pro-

cess variability will increase, thus increasing the impact of contributions to mitigate



6.2 Future Work 200

it. On this account, the increase of intra and inter-die variation, will push further

the adoption of a per device optimisation. Characterisation offers opportunity for

implementations with personalised circuits which can be advantageous for achiev-

ing the maximum performance offered by a fabrication process. Additionally, an

interesting by-product is the promotion of security in circuit designs by turning the

replication of the circuit unfeasible (i.e. Physical Unclonable Functions). Being the

time of the characterisation process, and the cross-platform support for, a limitation

in terms of its mass adoption. It could be surpassed if the device vendors were to

acquire this information during the fabrication process (binning) and register it on

user-accessible storage on the device.

The other existing limitation concerns the prediction of errors. This can be

achieved in two different classes of approaches: characterise-model-optimise, harden-

ing of circuits and create different architectures, designed for specific error patterns.

The first class is related to the work presented in this thesis, where arithmetic units

were characterised and selected according to their performance under variation. The

second class promotes the hardening of the basic elements, or building-blocks, at the

expense of many resources, and time, to guarantee its correct operation. To best

of the authors knowledge, there’s no contribution that resembles the third class,

being the best approximation to it redundant, or online, arithmetic, which naturally

protects the MSBits but at the expense of large area requirements, lower operating

clock frequencies and extra latency.

As it was observed in this work, one of the difficulties is to model the errors as

they depend on the data of the problem being considered, the process variation,

the placement and routing and the operating conditions. It’s anticipated a demand

for more accurate simulation models to make the bridge between architectures for

arithmetic units and unreliable silicon devices. Regarding this matter, in terms

of implementation platform, FPGAs enjoy from combined properties that other



6.2 Future Work 201

technologies can’t compete against: reconfigurability and custom design.



A
Appendix

A.1. Hardware Platforms

T
his work was carried out on various hardware platforms using various FPGAs

from Altera. Tables A.1 and A.2 compile the information for each board used,

and its respective FPGA.

Board FPGA Family FPGA Device Vendor

DE0 Cyclone III 3C16 Terasic
DE0 Nano Cyclone IV 4CE22 Terasic
BeMicro CV Cyclone V 5CEA2 Arrow

Table A.1.: Hardware platforms used in this work, and their main features.

202



A.2 FPGA Core Voltage and Temperature Control 203

Device Process LEs 18x18 Mult. BRAMs

3C16 65 nm 15.4k 56 56
4CE22 60 nm 22.3k 66 66
5CEFA2 28 nm 25.0k 50 176

Table A.2.: FPGAs used in this work, and their main features.

A.2. FPGA Core Voltage and Temperature Control

To control and keep the operating conditions of the FPGA constant during the

experiments, the core voltage and the temperature on the top of the FPGA were set

externally to the design under test on the FPGA.

On the FPGA, the core voltage is set by a digitally controlled power supply (PSU)

from TTI [102]. The temperature is controlled by an Proportional Integral and

Derivative (PID) controller, running on an Arduino [103], using a Thermoelectric

Cooler (TEC) as the active cooling/heating element. The temperature was cali-

brated with a commercial thermometer from Lascar Electronics [104]. Both power

supply and temperature controller are controlled via independent serial ports on the

host computer.

The operating conditions are set by a client, by sending commands to a Python

server that runs on the host computer. This computer establishes the connection

between the serial ports and the test script running in Matlab, via Transmission

Control Protocol (TCP) sockets.

Figure A.1 depicts the elements of this system and its interfaces with the host

computer. A Universal Serial Bus (USB) port is used to control the power supply

(PSU) connected to the power pins on the target FPGA board. The other USB

port is connected to the Arduino used to control the temperature via a TEC. The

temperature sensors for the temperature controller are placed between the top of the

FPGA and the TEC. On the other side of the TEC there’s a water-cooled heat-sink

to dissipate the excess thermal energy. The FPGA board is placed inside a sealed



A.3 Source code 204

Figure A.1.: System to control core voltage and temperature of the FPGA.

container along with a dehumidifier in order to avoid formation of condensation,

which could damage the circuit. A relative humidity (RH) sensor is connected to

the Arduino, and it is used to monitor the humidity inside a plastic container. In

case the relative humidity increases above a threshold, set below the dew point for a

pair of device and ambient temperatures, the software automatically stops the test

to avoid formation of condensation on the FPGA board. The photographs of the

DE0 and DE0 Nano boards equipped with the temperature control setup is depicted

in figure A.2.

A.3. Source code

generate data.m

1 function [Cs, C, W, Psi, Y, X, E] = generate_data(D, N)

2 %function [Cs, C, W, Psi, Y, X, E] = generate_data(D, N)

3 % The function generates data according to a specific model for test



A.3 Source code 205

Figure A.2.: Photo of the DE0 and DE0 Nano boards equipped with a thermoelectric
cooler and a water-cooled heat-sink to control the temperature on the
surface of the FPGAs.

4 % purposes. The model under investigation is:

5 % y = W*x + e

6 % where W is the projection matrix and e is the error that follows

7 % a normal distribution with zero mean.

8 % The input D(1) is the number of dimensions of the origina space y

9 % and the input D(2) is the number of dimensions in the smaller space

10 % The function returns:

11 % Cs - the sample covariance matrix of the data

12 % C - the theoretical covariance matrix

13 % W - the projection matrix

14 % Psi - the covariance matrix of the noise (theoretical)

15 % Y - High Dim data

16 % X - Reduced Dim data

17 % E - error data

18 %

19 % Assumptions

20 % 1. The covariance matrix for the noise is simple. It is diagonal with the

21 % same variance.

22 % e.g generate_data([OriDim RedDim], NumCases)

23



A.3 Source code 206

24 settings

25

26 % Check the input

27 if D(1)<=D(2)

28 error(’The first entry of the D matrix should be larger than the second entry.’);

29 end

30

31 % Generate the W matrix

32 W = randn(D);

33

34 % Generate the Psi matrix for the noise. Scale the variance by a number

35 % noise_scale = 1E-3;

36 Psi = diag(ones(D(1),1) * rand(1) * sets.NOISE_SCALE);

37

38 % Final optimum covariance matrix is given by:

39 C = W*W’ + Psi;

40

41 % Generate samples and the sample covariance matrix

42 % I need this step in order to assess the quality of the reconstruction

43 X = zeros(D(2),N);

44 E = zeros(D(1),N);

45 MU = zeros(D(1),1);

46 for i=1:N

47 X(:,i) = (mvnrnd(zeros(D(2),1), eye(D(2))))’;

48 E(:,i) = (mvnrnd(MU, Psi))’;

49 end

50 M = mean(X,2);

51 X = X-repmat(M,1,N); % descentra os dados = remove bias

52 Y = W*X + E ;

53 Cs = (1/N) * Y*Y’; % sample covariance matrix

54

55 %eof



Bibliography

[1] Altera, “Cyclone III device handbook.” Online. http://www.altera.co.uk/
literature/hb/cyc3/cyclone3_handbook.pdf.

[2] Altera, “Cyclone IV device handbook.” Online. http://www.altera.com/

literature/hb/cyclone-iv/cyclone4-handbook.pdf.

[3] Altera, “Cyclone V device handbook.” Online. http://www.altera.com/

literature/hb/cyclone-v/cyclone5_handbook.pdf.

[4] Z. Guan, J. Wong, S. Chaudhuri, G. Constantinides, and P. Cheung, “A two-
stage variation-aware placement method for fpgas exploiting variation maps
classification,” in Field Programmable Logic and Applications (FPL), 2012
22nd International Conference on, pp. 519–522, Aug 2012.

[5] C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: A
low-power pipeline based on circuit-level timing speculation,” 2003.

[6] C.-S. Bouganis, I. Pournara, and P. Cheung, “Exploration of heterogeneous
FPGAs for mapping linear projection designs,” vol. 18, no. 3, pp. 436–449,
2010.

[7] P. Sedcole and P. Y. K. Cheung, “Parametric yield modeling and simulations
of FPGA circuits considering within-die delay variations,” ACM Trans. Re-
configurable Technol. Syst., vol. 1, pp. 10:1–10:28, June 2008.

[8] J. M. Gilbert and W. Yang, “A real-time face recognition system using custom
vlsi hardware,” 1993.

[9] M. de Kruijf and K. Sankaralingam, “Exploring the synergy of emerging work-
loads and silicon reliability trends,” in SELSE, 2009.

[10] N. Shanbhag, K. Soumyanath, and S. Martin, “Reliable low-power design in
the presence of deep submicron noise,” in Low Power Electronics and De-
sign, 2000. ISLPED ’00. Proceedings of the 2000 International Symposium
on, pp. 295 – 302, 2000.

[11] B. Shim and N. Shanbhag, “Reduced precision redundancy for low-power dig-
ital filtering,” in Signals, Systems and Computers, 2001. Conference Record of
the Thirty-Fifth Asilomar Conference on, vol. 1, pp. 148–152 vol.1, 2001.

207



BIBLIOGRAPHY 208

[12] H. Ngo, R. Gottumukkal, and V. Asari, “A flexible and efficient hardware
architecture for real-time face recognition based on eigenface,” in VLSI, 2005.
Proceedings. IEEE Computer Society Annual Symposium on, pp. 280–281, May
2005.

[13] J. Nascimento and J. Bioucas Dias, “Vertex component analysis: a fast algo-
rithm to unmix hyperspectral data,” Geoscience and Remote Sensing, IEEE
Transactions on, vol. 43, pp. 898–910, April 2005.

[14] L. Ke and R. Li, “Classification of eeg signals by multi-scale filtering and
pca,” in Intelligent Computing and Intelligent Systems, 2009. ICIS 2009. IEEE
International Conference on, vol. 1, pp. 362–366, Nov 2009.

[15] J.-U. Chu, I. Moon, and M. seong Mun, “A real-time EMG pattern recogni-
tion system based on linear-nonlinear feature projection for a multifunction
myoelectric hand,” Biomedical Engineering, IEEE Transactions on, vol. 53,
no. 11, pp. 2232–2239, 2006.

[16] R. Duarte and C. Bouganis, “High-level linear projection circuit design
optimization framework for FPGAs under over-clocking,” in Field Pro-
grammable Logic and Applications (FPL), 2012 22nd International Conference
on, pp. 723–726, Aug 2012.

[17] R. P. Duarte and C.-S. Bouganis, “A unified framework for over-clocking lin-
ear projections on FPGAs under PVT variation,” in Applied Reconfigurable
Computing (ARC), 2014 10th International Symposium on, pp. 49–60, 2014.

[18] R. P. Duarte and C.-S. Bouganis, “Pushing the performance boundary of lin-
ear projection designs through device specific optimisations (abstract only),”
in Proceedings of the 2014 ACM/SIGDA International Symposium on Field-
programmable Gate Arrays, FPGA ’14, (New York, NY, USA), pp. 245–245,
ACM, 2014.

[19] R. P. Duarte and C.-S. Bouganis, “Over-clocking of linear projection designs
through device specific optimisations,” in 21st Reconfigurable Architectures
Workshop (RAW 2014), pp. 9–60, 2014.

[20] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill
Higher Education, 1st ed., 1994.

[21] K. Pearson, “The problem of the random walk,” Nature, vol. 72, p. 342, aug
1905.

[22] J. Taur and C. W. Tao, “Medical image compression using principal compo-
nent analysis,” in Image Processing, 1996. Proceedings., International Confer-
ence on, vol. 1, pp. 903–906 vol.2, 1996.

[23] I. Fodor, “A survey of dimension reduction techniques,” tech. rep., 2002.



BIBLIOGRAPHY 209

[24] E. A. Stott, J. S. Wong, N. P. Sedcole, and P. Y. K. Cheung, “Degradation in
FPGAs: measurement and modelling,” in FPGA, pp. 229–238, 2010.

[25] J. S. J. Wong, P. Sedcole, and P. Y. K. Cheung, “Self-measurement of combi-
natorial circuit delays in FPGAs,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 2, pp. 10:1–10:22, June 2009.

[26] P. Sedcole, J. S. Wong, and P. Y. K. Cheung, “Characterisation of FPGA clock
variability,” in Proc. IEEE Computer Society Annual Symp. VLSI ISVLSI ’08,
pp. 322–328, 2008.

[27] Altera, “System design with advance FPGA timing mod-
els.” Online, February 2014. www.altera.com/literature/wp/

wp-01213-advance-fpga-timing-models.pdf.

[28] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in Pattern
Recognition (ICPR), 2010 20th International Conference on, pp. 2366–2369,
Aug 2010.

[29] L. Cheng, J. Xiong, L. He, and M. Hutton, “FPGA performance optimization
via chipwise placement considering process variations,” in Proc. Int. Conf.
Field Programmable Logic and Applications FPL ’06, pp. 1–6, 2006.

[30] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool for
FPGA research,” in Field-Programmable Logic and Applications, pp. 213–222,
1997.

[31] H. Yu, Q. Xu, and P.-W. Leong, “Fine-grained characterization of process
variation in FPGAs,” in Field-Programmable Technology (FPT), 2010 Inter-
national Conference on, pp. 138–145, Dec 2010.

[32] J. S. J. Wong and P. Y. K. Cheung, “Timing measurement platform for arbi-
trary black-box circuits based on transition probability,” 2013.

[33] N. Banerjee, J. H. Choi, and K. Roy, “A process variation aware low power
synthesis methodology for fixed-point FIR filters,” in Proceedings of the 2007
international symposium on Low power electronics and design, ISLPED ’07,
(New York, NY, USA), pp. 147–152, ACM, 2007.

[34] I.-C. Park and H.-J. Kang, “Digital filter synthesis based on minimal signed
digit representation,” in Proceedings of the 38th annual Design Automation
Conference, DAC ’01, (New York, NY, USA), pp. 468–473, ACM, 2001.

[35] A. B. Kahng, S. Kang, R. Kumar, and J. Sartori, “Slack redistribution for
graceful degradation under voltage overscaling,” in Asia and South Pacific
Design Automation Conference, pp. 825–831, 2010.



BIBLIOGRAPHY 210

[36] J. Jung and T. Kim, “Timing variation-aware high-level synthesis,” in
Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM International Con-
ference on, pp. 424–428, Nov 2007.

[37] V. Lakamraju and R. Tessier, “Tolerating operational faults in cluster-based
FPGAs,” in 8th international ACM/Sigda symposium on field programmable
gatearrays, pp. 187–194, 2000.

[38] E. Stott and P. Y. K. Cheung, “Improving FPGA reliability with wear-
levelling,” in Field Programmable Logic and Applications (FPL), 2011 Inter-
national Conference on, pp. 323–328, Sept 2011.

[39] Y. Xie and Y. Chen, “Statistical high-level synthesis under process variability,”
IEEE Design & Test of Computers, vol. 26, no. 4, pp. 78–87, 2009.

[40] A. G. Dempster and M. D. Macleod, “Use of minimum-adder multiplier blocks
in FIR digital filters,” vol. 42, no. 9, pp. 569–577, 1995.

[41] L. Ciminiera and P. Montuschi, “Carry-save multiplication schemes without
final addition,” Computers, IEEE Transactions on, vol. 45, pp. 1050 –1055,
sep 1996.

[42] K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementa-
tion. Wiley, 1999.

[43] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, “Wordlength optimiza-
tion for linear digital signal processing,” vol. 22, no. 10, pp. 1432–1442, 2003.

[44] G. A. Constantinides, P. Y. K. Cheung, and W. Luk, Synthesis and optimiza-
tion of DSP algorithms. Norwell, MA, USA: Kluwer Academic Publishers,
2004.

[45] N. Herve, D. Menard, and O. Sentieys, “Data wordlength optimization for
FPGA synthesis,” in Proc. IEEE Workshop Signal Processing Systems Design
and Implementation, pp. 623–628, 2005.

[46] J. Deschamps, G. Bioul, and G. Sutter, Synthesis of arithmetic circuits:
FPGA, ASIC, and embedded systems. John Wiley, 2006.

[47] G. Caffarena, G. A. Constantinides, P. Y. K. Cheung, C. Carreras, and
O. Nieto-Taladriz, “Optimal combined word-length allocation and architec-
tural synthesis of digital signal processing circuits,” vol. 53, no. 5, pp. 339–343,
2006.

[48] D. Kodek, “Design of optimal finite wordlength FIR digital filters using inte-
ger programming techniques,” Acoustics, Speech and Signal Processing, IEEE
Transactions on, vol. 28, pp. 304 – 308, jun 1980.



BIBLIOGRAPHY 211

[49] E. Darulova, V. Kuncak, R. Majumdar, and I. Saha, “Synthesis of fixed-point
programs,” in EMSOFT, pp. 1–10, 2013.

[50] R. E. Moore, “Automatic error analysis in digital computation,” Technical
Report Space Div. Report LMSD84821, Lockheed Missiles and Space Co.,
Sunnyvale, CA, USA, 1959.

[51] J. Cong, K. Gururaj, B. Liu, C. Liu, Z. Zhang, S. Zhou, and Y. Zou, “Eval-
uation of static analysis techniques for fixed-point precision optimization,”
in Field Programmable Custom Computing Machines, 2009. FCCM ’09. 17th
IEEE Symposium on, pp. 231–234, April 2009.

[52] A. Ahmadi and M. Zwolinski, “A symbolic noise analysis approach to word-
length optimization in DSP hardware,” in Proc. Int. Symp. Integrated Circuits
ISIC ’07, pp. 457–460, 2007.

[53] S. E. McQuillan and J. V. McCanny, “A systematic methodology for the design
of high performance recursive digital filters,” vol. 44, no. 8, pp. 971–982, 1995.

[54] C. E. Shannon, “A mathematical theory of communication,” vol. 27, pp. 379–
423, July 1948.

[55] R. W. Hamming, “Error detecting and error correcting codes,” Bell System
Technical Journal, vol. 26, no. 2, pp. 147–160, 1950.

[56] J. Neumann, “Probabilistic logics and the synthesis of reliable organisms from
unreliable components,” 1956.

[57] M. A. Breuer, “Adaptive computers,” Information and Control, vol. 11, no. 4,
pp. 402–422, 1967.

[58] P. K. Krause and I. Polian, “Adaptive voltage over-scaling for resilient appli-
cations,” in Proc. Design, Automation & Test in Europe Conf. & Exhibition
(DATE), pp. 1–6, 2011.

[59] D. Roberts, T. Austin, D. Blauww, T. Mudge, and K. Flautner, “Error analysis
for the support of robust voltage scaling,” in Proc. Sixth Int. Symp. Quality
of Electronic Design ISQED 2005, pp. 65–70, 2005.

[60] U. Sharma, “Fault tolerant techniques for reconfigurable platforms,” in Pro-
ceedings of the 1st Amrita ACM-W Celebration on Women in Computing in
India, A2CWiC ’10, (New York, NY, USA), pp. 60:1–60:4, ACM, 2010.

[61] S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D. M. Bull,
and D. T. Blaauw, “RazorII: In situ error detection and correction for PVT
and SER tolerance,” vol. 44, no. 1, pp. 32–48, 2009.



BIBLIOGRAPHY 212

[62] R. Hegde and N. R. Shanbhag, “Energy-efficient signal processing via algo-
rithmic noise-tolerance,” in Proceedings of the 1999 International Symposium
on Low Power Electronics and Design, ISLPED ’99, (New York, NY, USA),
pp. 30–35, ACM, 1999.

[63] J. Huang, J. Lach, and G. Robins, “A methodology for energy-quality tradeoff
using imprecise hardware,” DAC, 2012.

[64] Y.-K. Cheng and Y.-H. Huang, “Frequency-overscaling dsp circuit design with
reduced-precision redundancy and subword detection processing,” in Commu-
nications, Circuits and Systems, 2009. ICCCAS 2009. International Confer-
ence on, pp. 431–434, July 2009.

[65] K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin, “A com-
parison of TMR with alternative fault-tolerant design techniques for FPGAs,”
vol. 54, no. 6, pp. 2065–2072, 2007.

[66] M. Sullivan, H. Loomis, and A. Ross, “Employment of reduced precision redun-
dancy for fault tolerant FPGA applications,” in Field Programmable Custom
Computing Machines, 2009. FCCM ’09. 17th IEEE Symposium on, pp. 283–
286, 2009.

[67] B. Pratt, M. Fuller, and M. Wirthlin, “Reduced-precision redundancy on
FPGAs,” Int. J. Reconfig. Comput., vol. 2011, pp. 3:3–3:3, Jan. 2011.

[68] C. Carmichel, “Triple module redundancy design techniques for Virtex
FPGAs.” Xilinx website, July 2006.

[69] R. Hentschke, F. Marques, F. Lima, L. Carro, A. Susin, and R. Reis, “An-
alyzing area and performance penalty of protecting different digital modules
with Hamming code and triple modular redundancy,” in Proceedings of the
15th symposium on Integrated circuits and systems design, (Washington, DC,
USA), pp. 95–, IEEE Computer Society, 2002.

[70] B. Shim, S. Sridhara, and N. Shanbhag, “Reliable low-power digital signal
processing via reduced precision redundancy,” Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, vol. 12, pp. 497 –510, may 2004.

[71] M. O. Rabin, “Probabilistic automata,” Information and Control 6, 1963.

[72] G. De Micheli, “Robust system design with uncertain information,” in For-
mal Methods and Models for Co-Design, 2003. MEMOCODE ’03. Proceedings.
First ACM and IEEE International Conference on, p. 283, june 2003.

[73] M. Breuer, “Multi-media applications and imprecise computation,” in Digital
System Design, 2005. Proceedings. 8th Euromicro Conference on, pp. 2–7,
2005.



BIBLIOGRAPHY 213

[74] C. S. Calude, “Algorithmic randomness, quantum physics, and incomplete-
ness,” in Proceedings of the Conference “Machines, Computations and Univer-
sality” (MCU2004), Lectures Notes in Comput. Sci. 3354, pp. 1–17, Springer,
2004.

[75] V. Wong and M. Horowitz, “Soft error resilience of probabilistic inference
applications,” in IN PROCEEDINGS OF THE WORKSHOP ON SYSTEM
EFFECTS OF LOGIC SOFT ERRORS, 2006.

[76] E. M. M. V. K. Tenenbaum, Joshua B.; Jonas, “Stochastic digital circuits
for probabilistic inference,” tech. rep., Massachusetts Institute of Technology,
November 2008.

[77] J. Margarida, C. He, G. de Veciana, and S. Bijansky, “Defect tolerant prob-
abilistic design paradigm for nanotechnologies,” in Proceedings of the 41st
annual Design Automation Conference, DAC ’04, (New York, NY, USA),
pp. 596–601, ACM, 2004.

[78] L. N. B. Chakrapani and K. V. Palem, “A probabilistic Boolean logic and its
meaning,” tech. rep., Rice University, Department of Computer Science, June
2008.

[79] L. N. Chakrapani, P. Korkmaz, B. E. S. Akgul, and K. V. Palem, “Probabilistic
system-on-a-chip architectures,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 12, pp. 29:1–29:28, May 2008.

[80] J. Bau, R. Hankins, Q. Jacobson, S. Mitra, B. Saha, and A. A. Tabatabai,
“Error resilient system architecture (ERSA) for probabilistic applications,” In
The 3rd Workshop on System Effects of Logic Soft Errors (SELSE), 2007.

[81] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “Ersa: Error resilient
system architecture for probabilistic applications,” in Design, Automation,
and Test in Europe, pp. 1560–1565, 2010.

[82] K.-I. Kum and W. Sung, “Combined word-length optimization and high-level
synthesis of digital signal processing systems,” vol. 20, no. 8, pp. 921–930,
2001.

[83] C. S. Bouganis, I. Pournara, and P. Y. K. Cheung, “Efficient mapping of di-
mensionality reduction designs onto heterogeneous FPGAs,” in Proc. 15th An-
nual IEEE Symp. Field-Programmable Custom Computing Machines FCCM
2007, pp. 141–150, 2007.

[84] C.-S. Bouganis, S.-B. Park, G. A. Constantinides, and P. Y. K. Cheung, “Syn-
thesis and optimization of 2D filter designs for heterogeneous FPGAs,” ACM
Trans. Reconfigurable Technol. Syst., vol. 1, pp. 24:1–24:28, January 2009.



BIBLIOGRAPHY 214

[85] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. PAMI-6, pp. 721 –741, nov. 1984.

[86] J. Levine, E. Stott, G. Constantinides, and P. Cheung, “Smi: Slack measure-
ment insertion for online timing monitoring in fpgas,” in Field Programmable
Logic and Applications (FPL), 2013 23rd International Conference on, pp. 1–
4, Sept 2013.

[87] Intel, “Hexadecimal object file format specification.” Online, January 1988.
http://microsym.com/editor/assets/intelhex.pdf.

[88] B. Fisher, “Cvonline: Image databases.” online, 2014.

[89] Terasic Technologies, “Terasic DE0 board user manual v. 1.3,” 2009.

[90] K. K. Parhi and D. G. Messerschmitt, “Pipeline interleaving and parallelism
in recursive digital filters. I. Pipelining using scattered look-ahead and decom-
position,” vol. 37, no. 7, pp. 1099–1117, 1989.

[91] S. Ekvall and D. Kragic, “Receptive field cooccurrence histograms for object
detection,” in In Proc. IEEE/RSJ International Conference Intelligent Robots
and Systems, IROS’05, pp. 84–89, 2005.

[92] M. H. Quenouille, “Approximate tests of correlation in time-series,” Journal of
the Royal Statistical Society. Series B (Methodological), vol. 11, no. 1, pp. pp.
68–84, 1949.

[93] J. W. Tukey, “Bias and confidence in not quite large samples (abstract),” The
Annals of Mathematical Statistics, vol. 29, pp. 614–623, 06 1958.

[94] B. Efron, “Bootstrap methods: Another look at the jackknife,” The Annals of
Statistics, vol. 7, pp. 1–26, 01 1979.

[95] J. W. Osborne and A. B. Costello, “Sample size and subject to item ratio
in principal components analysis.” Online, 2004. http://PAREonline.net/

getvn.asp?v=9&n=11.

[96] C.-Y. Chan and P. M. Goggans, “Using Bayesian inference for linear phase log
FIR filter design,” AIP Conference Proceedings, vol. 1193, no. 1, pp. 329–335,
2009.

[97] C.-Y. Chan and P. M. Goggans, “Using bayesian inference for the design of
{FIR} filters with signed power-of-two coefficients,” Signal Processing, vol. 92,
no. 12, pp. 2866 – 2873, 2012.

[98] F. Glover, “Tabu search: A tutorial.” Interfaces, 20(4), 74-94., 1990.



BIBLIOGRAPHY 215

[99] P. Bessiere, E. Mazer, J. M. Ahuactzin, and K. Mekhnacha, Bayesian Pro-
gramming. Chapman & Hall/CRC, 1st ed., 2013.

[100] D. E. Knuth, The Art of Computer Programming, Seminumerical Algorithms,
vol. 2. Addison-Wesley, 1981.

[101] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghunathan,
“SALSA: Systematic logic synthesis of approximate circuits,” in Proceedings
of the 49th Annual Design Automation Conference, DAC ’12, (New York, NY,
USA), pp. 796–801, ACM, 2012.

[102] Aim & Thurlby Thandar Instruments, “The new pl-p series - advanced bus
programmable dc power supplies.” http://www.tti-test.com/products-tti/pdf-
brochure/psu-npl-series-8p.pdf.

[103] “Arduino.” Online. http://arduino.cc/.

[104] Lascar Electronics, “EL-USB-TC K, J, and T-type thermocouple temper-
ature USB data logger.” Online. http://www.lascarelectronics.com/

temperaturedatalogger.php?datalogger=364.


