923 research outputs found

    Deep Learning Perspectives on Efficient Image Matching in Natural Image Databases

    Get PDF
    With the proliferation of digital content, efficient image matching in natural image databases has become paramount. Traditional image matching techniques, while effective to a certain extent, face challenges in dealing with the high variability inherent in natural images. This research delves into the application of deep learning models, particularly Convolutional Neural Networks (CNNs), Siamese Networks, and Triplet Networks, to address these challenges. We introduce various techniques to enhance efficiency, such as data augmentation, transfer learning, dimensionality reduction, efficient sampling, and the amalgamation of traditional computer vision strategies with deep learning. Our experimental results, garnered from specific dataset, demonstrate significant improvements in image matching efficiency, as quantified by metrics like precision, recall, F1-Score, and matching time. The findings underscore the potential of deep learning as a transformative tool for natural image database matching, setting the stage for further research and optimization in this domain

    A Survey on Important Aspects of Information Retrieval

    Get PDF
    Information retrieval has become an important field of study and research under computer science due to the explosive growth of information available in the form of full text, hypertext, administrative text, directory, numeric or bibliographic text. The research work is going on various aspects of information retrieval systems so as to improve its efficiency and reliability. This paper presents a comprehensive survey discussing not only the emergence and evolution of information retrieval but also include different information retrieval models and some important aspects such as document representation, similarity measure and query expansion

    TEXTUAL DATA MINING FOR NEXT GENERATION INTELLIGENT DECISION MAKING IN INDUSTRIAL ENVIRONMENT: A SURVEY

    Get PDF
    This paper proposes textual data mining as a next generation intelligent decision making technology for sustainable knowledge management solutions in any industrial environment. A detailed survey of applications of Data Mining techniques for exploiting information from different data formats and transforming this information into knowledge is presented in the literature survey. The focus of the survey is to show the power of different data mining techniques for exploiting information from data. The literature surveyed in this paper shows that intelligent decision making is of great importance in many contexts within manufacturing, construction and business generally. Business intelligence tools, which can be interpreted as decision support tools, are of increasing importance to companies for their success within competitive global markets. However, these tools are dependent on the relevancy, accuracy and overall quality of the knowledge on which they are based and which they use. Thus the research work presented in the paper uncover the importance and power of different data mining techniques supported by text mining methods used to exploit information from semi-structured or un-structured data formats. A great source of information is available in these formats and when exploited by combined efforts of data and text mining tools help the decision maker to take effective decision for the enhancement of business of industry and discovery of useful knowledge is made for next generation of intelligent decision making. Thus the survey shows the power of textual data mining as the next generation technology for intelligent decision making in the industrial environment

    큰 그래프 상에서의 개인화된 페이지 랭크에 대한 빠른 계산 기법

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2020. 8. 이상구.Computation of Personalized PageRank (PPR) in graphs is an important function that is widely utilized in myriad application domains such as search, recommendation, and knowledge discovery. Because the computation of PPR is an expensive process, a good number of innovative and efficient algorithms for computing PPR have been developed. However, efficient computation of PPR within very large graphs with over millions of nodes is still an open problem. Moreover, previously proposed algorithms cannot handle updates efficiently, thus, severely limiting their capability of handling dynamic graphs. In this paper, we present a fast converging algorithm that guarantees high and controlled precision. We improve the convergence rate of traditional Power Iteration method by adopting successive over-relaxation, and initial guess revision, a vector reuse strategy. The proposed method vastly improves on the traditional Power Iteration in terms of convergence rate and computation time, while retaining its simplicity and strictness. Since it can reuse the previously computed vectors for refreshing PPR vectors, its update performance is also greatly enhanced. Also, since the algorithm halts as soon as it reaches a given error threshold, we can flexibly control the trade-off between accuracy and time, a feature lacking in both sampling-based approximation methods and fully exact methods. Experiments show that the proposed algorithm is at least 20 times faster than the Power Iteration and outperforms other state-of-the-art algorithms.그래프 내에서 개인화된 페이지랭크 (P ersonalized P age R ank, PPR 를 계산하는 것은 검색 , 추천 , 지식발견 등 여러 분야에서 광범위하게 활용되는 중요한 작업 이다 . 개인화된 페이지랭크를 계산하는 것은 고비용의 과정이 필요하므로 , 개인화된 페이지랭크를 계산하는 효율적이고 혁신적인 방법들이 다수 개발되어왔다 . 그러나 수백만 이상의 노드를 가진 대용량 그래프에 대한 효율적인 계산은 여전히 해결되지 않은 문제이다 . 그에 더하여 , 기존 제시된 알고리듬들은 그래프 갱신을 효율적으로 다루지 못하여 동적으로 변화하는 그래프를 다루는 데에 한계점이 크다 . 본 연구에서는 높은 정밀도를 보장하고 정밀도를 통제 가능한 , 빠르게 수렴하는 개인화된 페이지랭크 계산 알고리듬을 제시한다 . 전통적인 거듭제곱법 (Power 에 축차가속완화법 (Successive Over Relaxation) 과 초기 추측 값 보정법 (Initial Guess 을 활용한 벡터 재사용 전략을 적용하여 수렴 속도를 개선하였다 . 제시된 방법은 기존 거듭제곱법의 장점인 단순성과 엄밀성을 유지 하면서 도 수렴율과 계산속도를 크게 개선 한다 . 또한 개인화된 페이지랭크 벡터의 갱신을 위하여 이전에 계산 되어 저장된 벡터를 재사용하 여 , 갱신 에 드는 시간이 크게 단축된다 . 본 방법은 주어진 오차 한계에 도달하는 즉시 결과값을 산출하므로 정확도와 계산시간을 유연하게 조절할 수 있으며 이는 표본 기반 추정방법이나 정확한 값을 산출하는 역행렬 기반 방법 이 가지지 못한 특성이다 . 실험 결과 , 본 방법은 거듭제곱법에 비하여 20 배 이상 빠르게 수렴한다는 것이 확인되었으며 , 기 제시된 최고 성능 의 알고리 듬 보다 우수한 성능을 보이는 것 또한 확인되었다1 Introduction 1 2 Preliminaries: Personalized PageRank 4 2.1 Random Walk, PageRank, and Personalized PageRank. 5 2.1.1 Basics on Random Walk 5 2.1.2 PageRank. 6 2.1.3 Personalized PageRank 8 2.2 Characteristics of Personalized PageRank. 9 2.3 Applications of Personalized PageRank. 12 2.4 Previous Work on Personalized PageRank Computation. 17 2.4.1 Basic Algorithms 17 2.4.2 Enhanced Power Iteration 18 2.4.3 Bookmark Coloring Algorithm. 20 2.4.4 Dynamic Programming 21 2.4.5 Monte-Carlo Sampling. 22 2.4.6 Enhanced Direct Solving 24 2.5 Summary 26 3 Personalized PageRank Computation with Initial Guess Revision 30 3.1 Initial Guess Revision and Relaxation 30 3.2 Finding Optimal Weight of Successive Over Relaxation for PPR. 34 3.3 Initial Guess Construction Algorithm for Personalized PageRank. 36 4 Fully Personalized PageRank Algorithm with Initial Guess Revision 42 4.1 FPPR with IGR. 42 4.2 Optimization. 49 4.3 Experiments. 52 5 Personalized PageRank Query Processing with Initial Guess Revision 56 5.1 PPR Query Processing with IGR 56 5.2 Optimization. 64 5.3 Experiments. 67 6 Conclusion 74 Bibliography 77 Appendix 88 Abstract (In Korean) 90Docto

    Semantic multimedia modelling & interpretation for search & retrieval

    Get PDF
    With the axiomatic revolutionary in the multimedia equip devices, culminated in the proverbial proliferation of the image and video data. Owing to this omnipresence and progression, these data become the part of our daily life. This devastating data production rate accompanies with a predicament of surpassing our potentials for acquiring this data. Perhaps one of the utmost prevailing problems of this digital era is an information plethora. Until now, progressions in image and video retrieval research reached restrained success owed to its interpretation of an image and video in terms of primitive features. Humans generally access multimedia assets in terms of semantic concepts. The retrieval of digital images and videos is impeded by the semantic gap. The semantic gap is the discrepancy between a user’s high-level interpretation of an image and the information that can be extracted from an image’s physical properties. Content- based image and video retrieval systems are explicitly assailable to the semantic gap due to their dependence on low-level visual features for describing image and content. The semantic gap can be narrowed by including high-level features. High-level descriptions of images and videos are more proficient of apprehending the semantic meaning of image and video content. It is generally understood that the problem of image and video retrieval is still far from being solved. This thesis proposes an approach for intelligent multimedia semantic extraction for search and retrieval. This thesis intends to bridge the gap between the visual features and semantics. This thesis proposes a Semantic query Interpreter for the images and the videos. The proposed Semantic Query Interpreter will select the pertinent terms from the user query and analyse it lexically and semantically. The proposed SQI reduces the semantic as well as the vocabulary gap between the users and the machine. This thesis also explored a novel ranking strategy for image search and retrieval. SemRank is the novel system that will incorporate the Semantic Intensity (SI) in exploring the semantic relevancy between the user query and the available data. The novel Semantic Intensity captures the concept dominancy factor of an image. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other. The SemRank will rank the retrieved images on the basis of Semantic Intensity. The investigations are made on the LabelMe image and LabelMe video dataset. Experiments show that the proposed approach is successful in bridging the semantic gap. The experiments reveal that our proposed system outperforms the traditional image retrieval systems

    Local selection of features and its applications to image search and annotation

    Get PDF
    In multimedia applications, direct representations of data objects typically involve hundreds or thousands of features. Given a query object, the similarity between the query object and a database object can be computed as the distance between their feature vectors. The neighborhood of the query object consists of those database objects that are close to the query object. The semantic quality of the neighborhood, which can be measured as the proportion of neighboring objects that share the same class label as the query object, is crucial for many applications, such as content-based image retrieval and automated image annotation. However, due to the existence of noisy or irrelevant features, errors introduced into similarity measurements are detrimental to the neighborhood quality of data objects. One way to alleviate the negative impact of noisy features is to use feature selection techniques in data preprocessing. From the original vector space, feature selection techniques select a subset of features, which can be used subsequently in supervised or unsupervised learning algorithms for better performance. However, their performance on improving the quality of data neighborhoods is rarely evaluated in the literature. In addition, most traditional feature selection techniques are global, in the sense that they compute a single set of features across the entire database. As a consequence, the possibility that the feature importance may vary across different data objects or classes of objects is neglected. To compute a better neighborhood structure for objects in high-dimensional feature spaces, this dissertation proposes several techniques for selecting features that are important to the local neighborhood of individual objects. These techniques are then applied to image applications such as content-based image retrieval and image label propagation. Firstly, an iterative K-NN graph construction method for image databases is proposed. A local variant of the Laplacian Score is designed for the selection of features for individual images. Noisy features are detected and sparsified iteratively from the original standardized feature vectors. This technique is incorporated into an approximate K-NN graph construction method so as to improve the semantic quality of the graph. Secondly, in a content-based image retrieval system, a generalized version of the Laplacian Score is used to compute different feature subspaces for images in the database. For online search, a query image is ranked in the feature spaces of database images. Those database images for which the query image is ranked highly are selected as the query results. Finally, a supervised method for the local selection of image features is proposed, for refining the similarity graph used in an image label propagation framework. By using only the selected features to compute the edges leading from labeled image nodes to unlabeled image nodes, better annotation accuracy can be achieved. Experimental results on several datasets are provided in this dissertation, to demonstrate the effectiveness of the proposed techniques for the local selection of features, and for the image applications under consideration

    Recuperação multimodal e interativa de informação orientada por diversidade

    Get PDF
    Orientador: Ricardo da Silva TorresTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Os métodos de Recuperação da Informação, especialmente considerando-se dados multimídia, evoluíram para a integração de múltiplas fontes de evidência na análise de relevância de itens em uma tarefa de busca. Neste contexto, para atenuar a distância semântica entre as propriedades de baixo nível extraídas do conteúdo dos objetos digitais e os conceitos semânticos de alto nível (objetos, categorias, etc.) e tornar estes sistemas adaptativos às diferentes necessidades dos usuários, modelos interativos que consideram o usuário mais próximo do processo de recuperação têm sido propostos, permitindo a sua interação com o sistema, principalmente por meio da realimentação de relevância implícita ou explícita. Analogamente, a promoção de diversidade surgiu como uma alternativa para lidar com consultas ambíguas ou incompletas. Adicionalmente, muitos trabalhos têm tratado a ideia de minimização do esforço requerido do usuário em fornecer julgamentos de relevância, à medida que mantém níveis aceitáveis de eficácia. Esta tese aborda, propõe e analisa experimentalmente métodos de recuperação da informação interativos e multimodais orientados por diversidade. Este trabalho aborda de forma abrangente a literatura acerca da recuperação interativa da informação e discute sobre os avanços recentes, os grandes desafios de pesquisa e oportunidades promissoras de trabalho. Nós propusemos e avaliamos dois métodos de aprimoramento do balanço entre relevância e diversidade, os quais integram múltiplas informações de imagens, tais como: propriedades visuais, metadados textuais, informação geográfica e descritores de credibilidade dos usuários. Por sua vez, como integração de técnicas de recuperação interativa e de promoção de diversidade, visando maximizar a cobertura de múltiplas interpretações/aspectos de busca e acelerar a transferência de informação entre o usuário e o sistema, nós propusemos e avaliamos um método multimodal de aprendizado para ranqueamento utilizando realimentação de relevância sobre resultados diversificados. Nossa análise experimental mostra que o uso conjunto de múltiplas fontes de informação teve impacto positivo nos algoritmos de balanceamento entre relevância e diversidade. Estes resultados sugerem que a integração de filtragem e re-ranqueamento multimodais é eficaz para o aumento da relevância dos resultados e também como mecanismo de potencialização dos métodos de diversificação. Além disso, com uma análise experimental minuciosa, nós investigamos várias questões de pesquisa relacionadas à possibilidade de aumento da diversidade dos resultados e a manutenção ou até mesmo melhoria da sua relevância em sessões interativas. Adicionalmente, nós analisamos como o esforço em diversificar afeta os resultados gerais de uma sessão de busca e como diferentes abordagens de diversificação se comportam para diferentes modalidades de dados. Analisando a eficácia geral e também em cada iteração de realimentação de relevância, nós mostramos que introduzir diversidade nos resultados pode prejudicar resultados iniciais, enquanto que aumenta significativamente a eficácia geral em uma sessão de busca, considerando-se não apenas a relevância e diversidade geral, mas também o quão cedo o usuário é exposto ao mesmo montante de itens relevantes e nível de diversidadeAbstract: Information retrieval methods, especially considering multimedia data, have evolved towards the integration of multiple sources of evidence in the analysis of the relevance of items considering a given user search task. In this context, for attenuating the semantic gap between low-level features extracted from the content of the digital objects and high-level semantic concepts (objects, categories, etc.) and making the systems adaptive to different user needs, interactive models have brought the user closer to the retrieval loop allowing user-system interaction mainly through implicit or explicit relevance feedback. Analogously, diversity promotion has emerged as an alternative for tackling ambiguous or underspecified queries. Additionally, several works have addressed the issue of minimizing the required user effort on providing relevance assessments while keeping an acceptable overall effectiveness. This thesis discusses, proposes, and experimentally analyzes multimodal and interactive diversity-oriented information retrieval methods. This work, comprehensively covers the interactive information retrieval literature and also discusses about recent advances, the great research challenges, and promising research opportunities. We have proposed and evaluated two relevance-diversity trade-off enhancement work-flows, which integrate multiple information from images, such as: visual features, textual metadata, geographic information, and user credibility descriptors. In turn, as an integration of interactive retrieval and diversity promotion techniques, for maximizing the coverage of multiple query interpretations/aspects and speeding up the information transfer between the user and the system, we have proposed and evaluated a multimodal learning-to-rank method trained with relevance feedback over diversified results. Our experimental analysis shows that the joint usage of multiple information sources positively impacted the relevance-diversity balancing algorithms. Our results also suggest that the integration of multimodal-relevance-based filtering and reranking was effective on improving result relevance and also boosted diversity promotion methods. Beyond it, with a thorough experimental analysis we have investigated several research questions related to the possibility of improving result diversity and keeping or even improving relevance in interactive search sessions. Moreover, we analyze how much the diversification effort affects overall search session results and how different diversification approaches behave for the different data modalities. By analyzing the overall and per feedback iteration effectiveness, we show that introducing diversity may harm initial results whereas it significantly enhances the overall session effectiveness not only considering the relevance and diversity, but also how early the user is exposed to the same amount of relevant items and diversityDoutoradoCiência da ComputaçãoDoutor em Ciência da ComputaçãoP-4388/2010140977/2012-0CAPESCNP

    Motion capture data processing, retrieval and recognition.

    Get PDF
    Character animation plays an essential role in the area of featured film and computer games. Manually creating character animation by animators is both tedious and inefficient, where motion capture techniques (MoCap) have been developed and become the most popular method for creating realistic character animation products. Commercial MoCap systems are expensive and the capturing process itself usually requires an indoor studio environment. Procedural animation creation is often lacking extensive user control during the generation progress. Therefore, efficiently and effectively reusing MoCap data can brings significant benefits, which has motivated wider research in terms of machine learning based MoCap data processing. A typical work flow of MoCap data reusing can be divided into 3 stages: data capture, data management and data reusing. There are still many challenges at each stage. For instance, the data capture and management often suffer from data quality problems. The efficient and effective retrieval method is also demanding due to the large amount of data being used. In addition, classification and understanding of actions are the fundamental basis of data reusing. This thesis proposes to use machine learning on MoCap data for reusing purposes, where a frame work of motion capture data processing is designed. The modular design of this framework enables motion data refinement, retrieval and recognition. The first part of this thesis introduces various methods used in existing motion capture processing approaches in literature and a brief introduction of relevant machine learning methods used in this framework. In general, the frameworks related to refinement, retrieval, recognition are discussed. A motion refinement algorithm based on dictionary learning will then be presented, where kinematical structural and temporal information are exploited. The designed optimization method and data preprocessing technique can ensure a smooth property for the recovered result. After that, a motion refinement algorithm based on matrix completion is presented, where the low-rank property and spatio-temporal information is exploited. Such model does not require preparing data for training. The designed optimization method outperforms existing approaches in regard to both effectiveness and efficiency. A motion retrieval method based on multi-view feature selection is also proposed, where the intrinsic relations between visual words in each motion feature subspace are discovered as a means of improving the retrieval performance. A provisional trace-ratio objective function and an iterative optimization method are also included. A non-negative matrix factorization based motion data clustering method is proposed for recognition purposes, which aims to deal with large scale unsupervised/semi-supervised problems. In addition, deep learning models are used for motion data recognition, e.g. 2D gait recognition and 3D MoCap recognition. To sum up, the research on motion data refinement, retrieval and recognition are presented in this thesis with an aim to tackle the major challenges in motion reusing. The proposed motion refinement methods aim to provide high quality clean motion data for downstream applications. The designed multi-view feature selection algorithm aims to improve the motion retrieval performance. The proposed motion recognition methods are equally essential for motion understanding. A collection of publications by the author of this thesis are noted in publications section

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research
    corecore