309 research outputs found

    Large Scale SfM with the Distributed Camera Model

    Full text link
    We introduce the distributed camera model, a novel model for Structure-from-Motion (SfM). This model describes image observations in terms of light rays with ray origins and directions rather than pixels. As such, the proposed model is capable of describing a single camera or multiple cameras simultaneously as the collection of all light rays observed. We show how the distributed camera model is a generalization of the standard camera model and describe a general formulation and solution to the absolute camera pose problem that works for standard or distributed cameras. The proposed method computes a solution that is up to 8 times more efficient and robust to rotation singularities in comparison with gDLS. Finally, this method is used in an novel large-scale incremental SfM pipeline where distributed cameras are accurately and robustly merged together. This pipeline is a direct generalization of traditional incremental SfM; however, instead of incrementally adding one camera at a time to grow the reconstruction the reconstruction is grown by adding a distributed camera. Our pipeline produces highly accurate reconstructions efficiently by avoiding the need for many bundle adjustment iterations and is capable of computing a 3D model of Rome from over 15,000 images in just 22 minutes.Comment: Published at 2016 3DV Conferenc

    Loss it right: Euclidean and Riemannian Metrics in Learning-based Visual Odometry

    Full text link
    This paper overviews different pose representations and metric functions in visual odometry (VO) networks. The performance of VO networks heavily relies on how their architecture encodes the information. The choice of pose representation and loss function significantly impacts network convergence and generalization. We investigate these factors in the VO network DeepVO by implementing loss functions based on Euler, quaternion, and chordal distance and analyzing their influence on performance. The results of this study provide insights into how loss functions affect the designing of efficient and accurate VO networks for camera motion estimation. The experiments illustrate that a distance that complies with the mathematical requirements of a metric, such as the chordal distance, provides better generalization and faster convergence. The code for the experiments can be found at https://github.com/remaro-network/Loss_VO_righ

    Towards Visual Localization, Mapping and Moving Objects Tracking by a Mobile Robot: a Geometric and Probabilistic Approach

    Get PDF
    Dans cette thèse, nous résolvons le problème de reconstruire simultanément une représentation de la géométrie du monde, de la trajectoire de l'observateur, et de la trajectoire des objets mobiles, à l'aide de la vision. Nous divisons le problème en trois étapes : D'abord, nous donnons une solution au problème de la cartographie et localisation simultanées pour la vision monoculaire qui fonctionne dans les situations les moins bien conditionnées géométriquement. Ensuite, nous incorporons l'observabilité 3D instantanée en dupliquant le matériel de vision avec traitement monoculaire. Ceci élimine les inconvénients inhérents aux systèmes stéréo classiques. Nous ajoutons enfin la détection et suivi des objets mobiles proches en nous servant de cette observabilité 3D. Nous choisissons une représentation éparse et ponctuelle du monde et ses objets. La charge calculatoire des algorithmes de perception est allégée en focalisant activement l'attention aux régions de l'image avec plus d'intérêt. ABSTRACT : In this thesis we give new means for a machine to understand complex and dynamic visual scenes in real time. In particular, we solve the problem of simultaneously reconstructing a certain representation of the world's geometry, the observer's trajectory, and the moving objects' structures and trajectories, with the aid of vision exteroceptive sensors. We proceeded by dividing the problem into three main steps: First, we give a solution to the Simultaneous Localization And Mapping problem (SLAM) for monocular vision that is able to adequately perform in the most ill-conditioned situations: those where the observer approaches the scene in straight line. Second, we incorporate full 3D instantaneous observability by duplicating vision hardware with monocular algorithms. This permits us to avoid some of the inherent drawbacks of classic stereo systems, notably their limited range of 3D observability and the necessity of frequent mechanical calibration. Third, we add detection and tracking of moving objects by making use of this full 3D observability, whose necessity we judge almost inevitable. We choose a sparse, punctual representation of both the world and the moving objects in order to alleviate the computational payload of the image processing algorithms, which are required to extract the necessary geometrical information out of the images. This alleviation is additionally supported by active feature detection and search mechanisms which focus the attention to those image regions with the highest interest. This focusing is achieved by an extensive exploitation of the current knowledge available on the system (all the mapped information), something that we finally highlight to be the ultimate key to success

    Distributed Monocular SLAM for Indoor Map Building

    Get PDF
    Utilization and generation of indoor maps are critical elements in accurate indoor tracking. Simultaneous Localization and Mapping (SLAM) is one of the main techniques for such map generation. In SLAM an agent generates a map of an unknown environment while estimating its location in it. Ubiquitous cameras lead to monocular visual SLAM, where a camera is the only sensing device for the SLAM process. In modern applications, multiple mobile agents may be involved in the generation of such maps, thus requiring a distributed computational framework. Each agent can generate its own local map, which can then be combined into a map covering a larger area. By doing so, they can cover a given environment faster than a single agent. Furthermore, they can interact with each other in the same environment, making this framework more practical, especially for collaborative applications such as augmented reality. One of the main challenges of distributed SLAM is identifying overlapping maps, especially when relative starting positions of agents are unknown. In this paper, we are proposing a system having multiple monocular agents, with unknown relative starting positions, which generates a semidense global map of the environment

    Map-Based Localization for Unmanned Aerial Vehicle Navigation

    Get PDF
    Unmanned Aerial Vehicles (UAVs) require precise pose estimation when navigating in indoor and GNSS-denied / GNSS-degraded outdoor environments. The possibility of crashing in these environments is high, as spaces are confined, with many moving obstacles. There are many solutions for localization in GNSS-denied environments, and many different technologies are used. Common solutions involve setting up or using existing infrastructure, such as beacons, Wi-Fi, or surveyed targets. These solutions were avoided because the cost should be proportional to the number of users, not the coverage area. Heavy and expensive sensors, for example a high-end IMU, were also avoided. Given these requirements, a camera-based localization solution was selected for the sensor pose estimation. Several camera-based localization approaches were investigated. Map-based localization methods were shown to be the most efficient because they close loops using a pre-existing map, thus the amount of data and the amount of time spent collecting data are reduced as there is no need to re-observe the same areas multiple times. This dissertation proposes a solution to address the task of fully localizing a monocular camera onboard a UAV with respect to a known environment (i.e., it is assumed that a 3D model of the environment is available) for the purpose of navigation for UAVs in structured environments. Incremental map-based localization involves tracking a map through an image sequence. When the map is a 3D model, this task is referred to as model-based tracking. A by-product of the tracker is the relative 3D pose (position and orientation) between the camera and the object being tracked. State-of-the-art solutions advocate that tracking geometry is more robust than tracking image texture because edges are more invariant to changes in object appearance and lighting. However, model-based trackers have been limited to tracking small simple objects in small environments. An assessment was performed in tracking larger, more complex building models, in larger environments. A state-of-the art model-based tracker called ViSP (Visual Servoing Platform) was applied in tracking outdoor and indoor buildings using a UAVs low-cost camera. The assessment revealed weaknesses at large scales. Specifically, ViSP failed when tracking was lost, and needed to be manually re-initialized. Failure occurred when there was a lack of model features in the cameras field of view, and because of rapid camera motion. Experiments revealed that ViSP achieved positional accuracies similar to single point positioning solutions obtained from single-frequency (L1) GPS observations standard deviations around 10 metres. These errors were considered to be large, considering the geometric accuracy of the 3D model used in the experiments was 10 to 40 cm. The first contribution of this dissertation proposes to increase the performance of the localization system by combining ViSP with map-building incremental localization, also referred to as simultaneous localization and mapping (SLAM). Experimental results in both indoor and outdoor environments show sub-metre positional accuracies were achieved, while reducing the number of tracking losses throughout the image sequence. It is shown that by integrating model-based tracking with SLAM, not only does SLAM improve model tracking performance, but the model-based tracker alleviates the computational expense of SLAMs loop closing procedure to improve runtime performance. Experiments also revealed that ViSP was unable to handle occlusions when a complete 3D building model was used, resulting in large errors in its pose estimates. The second contribution of this dissertation is a novel map-based incremental localization algorithm that improves tracking performance, and increases pose estimation accuracies from ViSP. The novelty of this algorithm is the implementation of an efficient matching process that identifies corresponding linear features from the UAVs RGB image data and a large, complex, and untextured 3D model. The proposed model-based tracker improved positional accuracies from 10 m (obtained with ViSP) to 46 cm in outdoor environments, and improved from an unattainable result using VISP to 2 cm positional accuracies in large indoor environments. The main disadvantage of any incremental algorithm is that it requires the camera pose of the first frame. Initialization is often a manual process. The third contribution of this dissertation is a map-based absolute localization algorithm that automatically estimates the camera pose when no prior pose information is available. The method benefits from vertical line matching to accomplish a registration procedure of the reference model views with a set of initial input images via geometric hashing. Results demonstrate that sub-metre positional accuracies were achieved and a proposed enhancement of conventional geometric hashing produced more correct matches - 75% of the correct matches were identified, compared to 11%. Further the number of incorrect matches was reduced by 80%

    Robust and affordable localization and mapping for 3D reconstruction. Application to architecture and construction

    Get PDF
    La localización y mapeado simultáneo a partir de una sola cámara en movimiento se conoce como Monocular SLAM. En esta tesis se aborda este problema con cámaras de bajo coste cuyo principal reto consiste en ser robustos al ruido, blurring y otros artefactos que afectan a la imagen. La aproximación al problema es discreta, utilizando solo puntos de la imagen significativos para localizar la cámara y mapear el entorno. La principal contribución es una simplificación del grafo de poses que permite mejorar la precisión en las escenas más habituales, evaluada de forma exhaustiva en 4 datasets. Los resultados del mapeado permiten obtener una reconstrucción 3D de la escena que puede ser utilizada en arquitectura y construcción para Modelar la Información del Edificio (BIM). En la segunda parte de la tesis proponemos incorporar dicha información en un sistema de visualización avanzada usando WebGL que ayude a simplificar la implantación de la metodología BIM.Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)Doctorado en Informátic
    corecore