
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Deep Learning Approaches Assessment
for Underwater Scene Understanding

and Egomotion Estimation

Bernardo Teixeira

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Prof. Doutor Eduardo Silva

Co-Supervisor: Prof. Doutor Anibal Matos

September 13, 2019

c© Bernardo Teixeira, 2019

Resumo

A progressiva utilização de soluções baseadas em visão computacional no âmbito do desenvolvi-
mento de veículos autónomos submarinos (VAS) vem sendo impulsionada pelo baixo preço das
câmaras visiveis em comparação com outros tipos de sensorização, tendo em conta a quantidade
de informação que pode ser retirada apartir da análise da informação visual. No contexto de ambi-
entes subaquáticos, em que soluções como o GPS não são viáveis e outros tipos de sensorização já
mostraram vulnerabilidades no passado, a utilização de câmaras e novos algoritmos que utilizam
a informação obtida por estas, tem sido alvo de imensa pesquisa e desenvolvimento.

No entanto, e não obstante a maturidade e os iterativos ganhos em performance dos algoritmos
de aplicação de visão computacional, a sua dependência de formulações geométricas elaboradas,
combinada com alguma incapacidade de manter elevados níveis de performance em cenários de
aplicação mais complexos, comprometem a sua aplicação em soluções robóticas em meio opera-
cional. O elevado volume de dados de sensorização produzido pelas soluções robóticas atuais,
aliado ao maior poder de processamento, realça a possibilidade de implementação de métodos
computacionais baseados em aprendizagem em soluções de estimação de movimento e navegação
robótica.

Nos últimos anos, abordagens baseadas em arquitecturas Deep Learning tem aparecido como
métodos capazes de solucionar problemas de visão computacional. A performance dessas aborda-
gens rapidamente ultrapassaram os resultados obtidos pelos métodos clássicos em alguns tipos de
tarefas no âmbito da visão computacional, nomeadamente na detecção e classificação de objectos.
No entanto, o seu potencial de aplicação não se cinge a estas tarefas, existindo trabalho anterior
também em aplicações de navegação robótica.

Nesta dissertação, o foco é colocado na avaliação da performance dos métodos de Deep Learning
em tarefas de relocalização e estimação de movimento, em particular transportando os métodos do
estado da arte da literatura para o contexto subaquático, testando e avaliando a sua performance
num dataset visual subaquático desenvolvido no decorrer deste trabalho, que contém cenários de
aplicação reais de uma solução robótica em missão operacional.

Baseado nos resultados obtidos, foram desenvolvidos duas novas arquitecturas de fusão sensorial
para optimização do posicionamento global do robô com o propósito de corrigir o drift acumulado
pelos métodos de estimação de movimento; uma rede de fusão de informação visual e inercial
baseada num esquema de aprendizagem supervisionado e uma rede neuronal recorrente que realiza
a fusão de estimativas do posicionamento provenientes de múltiplas cameras que não possuem
overlap dos seus respectivos campos de visão.

i

ii

Abstract

The widespread use of Computer Vision approaches on Autonomous Underwater Vehicles (AUV)
applications, rises from the fact that vision sensors are low cost and can provide lots of information
for a variety of tasks the AUV has to perform. In the underwater context a lot of research has been
devoted to the development of algorithms that leverage visual camera information.

However, and despite the technical maturity and accurate performance of visual based algorithms,
classical visual approaches rely on intricate geometric formulations that may struggle to capture
more complex environments. In addition, robotic solutions of today provide huge amounts of
sensor data, begging the question of whether more data-centric approaches could be beneficial for
improving accuracy and performance of visual-based tasks.

Deep learning approaches for Computer Vision applications have been surfacing in the last couple
years, posing as a viable alternative to classical methods for a wide range of computer vision tasks,
even severely outperforming classical algorithms for some visual tasks. Despite of its prevalence
in computer vision tasks such as object detection and scene classification, the realm of potential
applications can still be further extended. End-to-end visual-based navigation applications, tai-
lored for several different tasks ranging from scene localization to egomotion estimation, could
result in interesting alternative approaches to the robot navigation problem.

State-of-the-art algorithms have shown the tremendous potential deep learning architectures can
have for visual navigation implementations, though they are still mostly outperformed by classical
feature-based techniques.

In this work, we apply the advancements in deep learning methods for visual-based robot naviga-
tion to the more challenging underwater environment, providing both an underwater visual dataset
acquired in real operational mission scenarios and an assessment of state-of-the-art algorithms on
the underwater context.

Furthermore, we propose two novel pose optimization architectures for the purpose of correct-
ing visual odometry estimate drift: a Visual-Inertial fusion network aiming to correct monocular
estimates through an inertial supervision learning scheme and a camera sensor fusion within a
Recurrent Neural network aimed at optimizing unsupervised monocular trajectory estimates in
systems with the presence of multiple cameras with non-overlapping fields-of-view (FOV).

iii

iv

Agradecimentos

Em primeiro lugar, queria agradecer ao meu orientador, Prof. Eduardo Silva pela excelente opor-
tunidade que me proporcionou e pelas palavras de motivação ao longo desta etapa. Espero ter
correspondido e continuar a corresponder às expectativas que depositou em mim. Agradeço tam-
bém ao Prof. Aníbal Matos, pela disponibilidade que sempre mostrou para me receber e responder
às minhas dúvidas.

Não posso deixar de mencionar os meus colegas investigadores do CRAS, nomeadamente a Sara,
o Eduardo, o Tiago, o Ricardo, o Denis, o Caio, o Pedrosa, o Amaral e o Miranda. Obrigado pelo
forma como me receberam e pelo excelente ambiente que se vive aqui dentro.

As minhas próximas palavras são para quem me trouxe até aqui, os meus pais Jorge e Fátima.
As palavras não chegam para descrever a gratidão que sinto pela educação que me deram, pelo
carinho, pela força e pelas condições que me proporcionaram.

À minha madrinha Celeste, por tudo o que fizeste por mim. Ao Hugo, por seres um exemplo para
mim, me mostrares o caminho e incentivares a cada passo do caminho.

Aos meus avós, tios, primos e todo o resto da minha família, cada um à sua maneira importante
nesta caminhada. Uma palavra especial para quem já não cá está, mas nunca partiu do meu
coração.

À rapaziada do DMESM, foi um prazer partilhar esta caminhada convosco. 5 anos de pura partilha
nesta montanha russa de emoções, não podia pedir mehor companhia nesta etapa.

Aos meus amigos Salvador, Kiko, Hugo, Filipe, Diana e Isabel, já sabem que são a família que eu
escolhi, e se largos dias tem 100 anos, largas noites tem histórias que ficam para a vida. Obrigado
especialmente por terem sido o garante da minha sanidade ao longo deste percurso.

E por último, quero agradecer à pessoa única e especial que é a minha namorada Ana. Entrámos
já juntos nesta caminhada, e sem ti nada teria sido igual. Obrigado por seres a minha rocha e por
sempre me motivares para ser a melhor versão de mim.

A todos o meu muito obrigado,

Bernardo Teixeira

v

vi

“Our intelligence is what makes us human, and AI is an extension of that quality”

Yann LeCun

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 3
1.3 Objectives . 4
1.4 Contributions . 5
1.5 Document Structure . 6

2 Related Work 7
2.1 Introduction . 7
2.2 Retrieving Image Information . 8

2.2.1 Stereo Vision . 8
2.2.2 Monocular Cameras . 9
2.2.3 Feature-based Methods . 10
2.2.4 Direct/Dense Methods . 11

2.3 Egomotion estimation . 12
2.4 Deep Learning for Computer Vision . 14

2.4.1 Depth Estimation . 14
2.4.2 Global Pose Estimation . 15
2.4.3 Egomotion Estimation . 16

2.5 Benchmark Datasets . 17
2.6 Summary . 18

3 Fundamentals 19
3.1 Introduction . 19
3.2 Formulation of the VO problem . 19
3.3 Perspective Camera Model . 21
3.4 Epipolar Geometry . 22
3.5 Egomotion Estimation . 23

3.5.1 2D-to-2D: Motion from Image Feature Correspondence 24
3.5.2 3D-to-3D: Motion from Structure Correspondence 24
3.5.3 3D-to-2D: Motion from 3D Structure and Feature Correspondence 25

3.6 Pose Parametrizations . 26
3.6.1 Rotation Matrix . 26
3.6.2 Euler Angles . 27
3.6.3 Quaternions . 27

3.7 Deep Learning . 28
3.7.1 Motivation . 28
3.7.2 Supervised vs Unsupervised schemes 29

ix

x CONTENTS

3.7.3 Concepts and Techniques . 29
3.7.4 Convolutional Neural Networks (CNN) 30
3.7.5 Recurrent Neural Networks (RNN) . 32
3.7.6 Long Short-Term Memory Units (LSTM) 32

3.8 Evaluation Metrics . 33

4 Deep Learning Approaches for Visual-based Robot Navigation 37
4.1 Introduction . 37
4.2 Underwater Visual Dataset . 38

4.2.1 The Robotic Solution . 39
4.2.2 Scenarios . 43
4.2.3 Environment constraints . 44

4.3 Relocalization and Global Pose Estimation . 45
4.3.1 Results on Deep Visual Relocalization 45
4.3.2 Generalization . 46

4.4 Egomotion Estimation . 48
4.4.1 SfMLearner . 48
4.4.2 GeoNet . 50
4.4.3 Results . 52

4.5 Summary . 58

5 Global Trajectory Optimization 61
5.1 Introduction . 61
5.2 Visual Inertial Fusion Network . 62

5.2.1 Training Procedure and Hyperparameter grid-search 63
5.2.2 Results . 64

5.3 Monocular Camera Pose Estimate Fusion Network 67
5.3.1 Results . 68

5.4 Summary . 69

6 Conclusions and Future Work 71
6.1 Conclusions . 71
6.2 Future Work . 73

References 75

List of Figures

1.1 Example CRAS robots . 4

2.1 Stereo vision . 9
2.2 Brightness shift of an 2D image pixel representation 11
2.3 Typical Visual Odometry pipeline . 12
2.4 VO applications . 13
2.5 Proposed Deep Learning for Visual Odometry end-to-end methods pipeline . . . 16

3.1 Pinhole Camera Model . 21
3.2 Epipolar geometry . 23
3.3 R,t parameter extraction . 26
3.4 Euler Angles representation . 27
3.5 Quaternion Unit Sphere . 28
3.6 Neural network . 28
3.7 Convolutional Neural Network: Dimensionality reduction example for binary clas-

sification problem . 31
3.8 Recurrent Neural Network diagram . 32
3.9 LSTM unit . 33
3.10 The process of quantitative trajectory evaluation 33
3.11 Illustration of absolute trajectory error and relative pose error 34

4.1 Dataset image examples . 38
4.2 UNEXMIN UX-1 CAD design . 39
4.3 UNEXMIN UX-1 description . 39
4.4 UNEXMIN UX-1 photo . 40
4.5 Environmental constraints in underwater VO . 44
4.6 CRAS pool relocalization performance . 47
4.7 CRAS pool 5-sequence length snippet . 48
4.8 Representation of the SfMlearner PoseNet, the framework component responsible

for regressing 6-DoF pose estimates . 49
4.9 Representation of the GeoNet pose estimation network, the framework component

responsible for regressing 6-DoF pose estimates 51
4.10 Results for KITTI sequence 09 . 53
4.11 Translation Error with respect to distance traveled from SfMlearner pose estimates

in KITTI sequence 09 . 53
4.12 Translation Error with respect to distance traveled from GeoNet pose estimates in

KITTI sequence 09 . 53
4.13 Results for KITTI sequence 10 . 54

xi

xii LIST OF FIGURES

4.14 Translation Error with respect to distance traveled from SfMlearner pose estimates
in KITTI sequence 10 . 54

4.15 Translation Error with respect to distance traveled from GeoNet pose estimates in
KITTI sequence 10 . 54

4.16 Results for CRAS pool sequence . 55
4.17 Translation Error with respect to distance traveled from SfMlearner pose estimates

in our CRAS pool sequence . 55
4.18 Translation Error with respect to distance traveled from GeoNet pose estimates in

our CRAS pool sequence . 56
4.19 Results for Urgeiriça mine sequence . 57
4.20 Translation Error with respect to distance traveled from SfMlearner pose estimates

in our Urgeiriça mine test sequence . 57
4.21 Translation Error with respect to distance traveled from GeoNet pose estimates in

our Urgeiriça mine test sequence . 57

5.1 Results for the CRAS pool sequence . 64
5.2 Translation Error with respect to distance traveled from our network pose esti-

mates in our CRAS pool test sequence . 64
5.3 Results for Urgeiriça mine sequence . 65
5.4 Translation Error with respect to distance traveled from our network pose esti-

mates in our Urgeiriça mine test sequence . 65
5.5 Computed trajectory estimates against groundtruth data, in the Urgeiriça mine se-

quence. 68

List of Tables

4.1 Average Error Results of Deep Visual Relocalization algorithms 46
4.2 Average Error Assessment of generalization ability of Deep Visual Relocalization

algorithms . 47
4.3 Absolute Trajectory Error (ATE) method evaluation 52
4.4 Absolute Pose Error (APE) w.r.t translation: Compilation of best obtained results

on full concatenated trajectory in the global reference frame, comprising both al-
gorithms and all training procedures. 55

4.5 Relative Pose Error (RPE): Evaluation of relative pose error provides insight about
the local accuracy, i.e. the visual odometry drift of pose estimates 56

5.1 Hyperparameter grid-search setup . 63
5.2 Theoretical best fit for hyperparameter tuning 63
5.3 Result compilation for absolute pose error with respect to translation, comprising

both studied egomotion estimation algorithms and our visual-inertial fusion network 66
5.4 Results of our novel multi-camera fusion network for absolute position error. . . 68

xiii

xiv LIST OF TABLES

Abbreviations and Symbols

AI Artificial Intelligence
ANN Artificial Neural Network
AUV Autonomous Underwater Vehicle
BA Bundle Adjustment
CNN Convolutional Neural Network
CPU Central Processing Unit
CRAS Centre for Robotics and Autonomous Systems
DVL Doppler Velocity Log
GPU Graphical Processing Unit
IMU Inertial Measurement Unit
INESC TEC Instituto de Engenharia de Sistemas e Computadores - Tecnologia e Ciência
JPEG Joint Photographic Experts Group
LSTM Long Short-Term Memory
ML Machine Learning
PNG Portable Network Graphics
ReLu Rectified Linear Unit
RNN Recurrent Neural Network
ROS Robot Operating System
SBL Short Baseline Acoustic Positioning Systems
SfM Structure from Motion
SLAM Simultaneous Localization and Mapping
USBL Ultra-Short Baseline Acoustic Systems
VO Visual Odometry
6-DoF Six Degrees of Freedom

xv

Chapter 1

Introduction

“Aside from its importance to many branches of science, a knowledge of the oceans

has a practical value for mankind. The intelligent development of our fishing indus-

tries, the laying of oceanic cables, the proper construction of harbor-works, oceanic

commerce and navigation, as well as long-range weather forecasting, are all depen-

dent on an understanding of the ocean.”

In The Last Cruise of the Carnegie (1932) by J. H. Paul.

1.1 Context

The ongoing evolution of underwater robotic vehicles, whether autonomous or remotely operated,

is closely tied to its reliable application in potential risk carrying tasks or challenging environ-

ments for human operators. Such applications range from oceanographic monitoring or demining

operations to bathymetric or topological mapping of ocean floors. Gathering and analyzing data

from marine resource filled ocean floors has helped improve further research in marine biology, as

well as fuel the recent growth in marine blue economy all over the world.

Autonomous Underwater Vehicle (AUV) technology development started in the 1970’s and pro-

gressive improvements in computational efficiency, hardware size reduction and navigation accu-

racy have contributed to its increasingly importance for marine exploration, deep sea applications

and mapping of ocean floors. To perform this tasks, robot navigation in complex unstructured

environments is a crucial aspect of robotic solutions development.

There has been a substantial increase in the use of underwater robotic solutions, that are typically

equipped with a plethora of heterogeneous sensors such as: acoustic sensors, laser rangefind-

ers, Doppler Velocity Loggers (DVL), Inertial Measurement Units (IMU) or Global Positioning

System (GPS). The combination of these sensors aims to provide precise and reliable robot local-

ization and navigation. However, its application is limited when it becomes necessary for the robot

1

2 Introduction

to remain submerse for long periods of time relying solely on perceiving sensorial information,

since it acccumulates drift in navigation estimates.

Typical robotic application scenarios are prone to IMU/GPS failures, thus making it necessary to

use alternative or complementary sensors. In the underwater context, since GPS is not available

as a navigation solution due to electromagnetic waves being severely attenuated underwater, the

use of Doppler Velocity Loggers (DVL) and Acoustic Localization methods (SBL/USBL) is com-

monplace. Doppler Velocity Logs work by obtaining the frequency distortion between emitted

and received signals, denoted as Doppler Effect, while Acoustic Localization functioning princi-

ple is computing the propagation time of acoustic signals in water, and triangulating at least three

emitters data to recover absolute localization. However, classical dead reckoning methods tend to

drift substantially, thus making it necessary to fuse information from different sensors in order to

achieve persistent autonomous navigation.

To tackle the issue of precision and reliability, scientists and researchers started exploring the

possibility of including camera setups in underwater robotic solutions, so as to further expand

upon robot autonomy capabilities.

One example of a task that can be performed through the use of visual camera setups is motion esti-

mation based on visual information, denoted as Visual Odometry (VO). VO is an advantageous ap-

proach for computing navigation data, often outperforming classical dead reckoning methods(e.g.

wheel encoder sensors in case of slippery terrain). With increasing levels of performance and ac-

curacy, visual-based robotic navigation is gaining wider acceptance in the Robotics community,

posing as a viable alternative to classical solutions.

Egomotion estimation, or self-motion estimation, commonly denoted as Visual Odometry (VO)

in the Robotics community, is defined as the measurement of environmental displacement of the

observer, usually referring to a camera system. The goal is to extract the 2D/3D movement of

said moving camera from a sequence of images. This task is almost a prerequisite for many

computer vision applications in mobile robots such as obstacle detection, autonomous driving or

Simultaneous Localization and Mapping (SLAM). All these applications require a measure of the

relative motion of the current camera frame with respect to the previous camera frame, in order to

estimate the camera pose (position and attitude).

Though Visual Odometry algorithms have already undergone several years of research and devel-

opment, with increasing levels of performance and accuracy, there are still many open challenges

for visual-based robotic navigation applications. With this in mind, novel data-centric approaches

have been surfacing, posing as a viable alternative approach to VO based geometric solutions.

1.2 Motivation 3

1.2 Motivation

Given that robot navigation is a crucial aspect in the field of underwater robotics, an extensive

research has been continuously devoted to solve the robot navigation problem and help achieve

persistent autonomy for vision-based mobile robots, especially in unknown environments. Under-

water mobile robotics application scenarios present uniquely challenging conditions for vision-

based egomotion estimation due to several environmental factors, namely: the lack of appropriate

lighting conditions, water turbidity, backscattering, lack of image texture and vignetting effect.

In addition to this frequent problems, the amount of sensorial information provided by visual

system applications usually leads to a situation of information overload, by which not all the

gathered data is adequately processed. The above referenced issues, along with the development

and proliferation of cheaper Graphical Processing Units (GPU) alternatives, have prompted the

research into data-driven methods such as deep learning for egomotion estimation. The field of

deep learning applications for computer vision problems has had a tremendous surge in the last

decade, posing as a viable and robust alternative to classical approaches.

State-of-the-art approaches , heavily reliant on geometric models, have shown to perform robustly

on robotic applications. Yet, the advent of deep learning methods brings forward the expectation of

improving upon visual task performance through the use of data-centric approaches. Experiment-

ing, testing and evaluating the performance of such approaches in real operational data is therefore

key to understand the degree to which they can provide accurate and robust performance in com-

plex mission scenarios, as well as pose as alternative solutions for possible future implementations

in robotic applications.

INESC TEC Centre for Robotics and Autonomous Systems (CRAS) has been conducting several

projects in the domain of underwater robotics, often coming across the very same problems. The

motivation for the proposal of this Msc Thesis is to understand the extent to which end-to-end

data-driven methods can help tackle robotic visual navigation issues, in particular its robustness

when being deployed in large-scale harsh operational environments, or under extreme lighting

conditions.

The application and development of novel deep learning approaches will contribute to further ad-

vance the robotic solutions of ongoing projects like the UNEXMIN, TURTLE or VAMOS robots,

currently being developed at CRAS [1] [2].

4 Introduction

(a) EVA hybrid ROV (b) Turtle Lander

(c) UNEXTMIN UX-1 AUV

Figure 1.1: Example CRAS robots

1.3 Objectives

This thesis main objective is to be able to robustly estimate robot 6-DoF pose and/or its egomotion

in the underwater context using deep learning approaches. To do so, we can decompose this

objective into the following secondary objectives:

• Acquisition of novel datasets for motion estimation using visual based methods of an AUV/ROV

in underwater environment. This is to be achieved through extracting visual and inertial

information from a CRAS robot, in particular the UX-1 robot. The goal is to build a com-

prehensive dataset that encompasses different texture environments and adresses all typical

problems in the underwater context. Two different scenarios are to be taken into account:

fully known CRAS pool environment and real operational UX1 mission scenario.

• Performance assessment of state-of-the-art data-driven end-to-end methods based on deep-

learning approaches for Visual Odometry estimates. Performance shall be evaluated against

its respective ground truth for two different tasks: Absolute Relocatization and Egomotion

Estimation.

• Develop and test the fusion of visual information data with inertial data. Assess performance

gains with Deep Learning architecture for sensor fusion, when compared with solely visual-

based visual approaches.

1.4 Contributions 5

• Evaluate all the implemented approaches via real robot data, taken in challenging underwa-

ter conditions.

• Contribute to the long-term enhancement of CRAS robots perception capability, particularly

with respect to visual-based robot navigation solutions.

1.4 Contributions

During the course of this work, a bottom-top approach was followed, in order to guide and support

the development of the thesis scientific work. This approach lead to the following contributions,

namely:

• Perform a comprehensive review of state-of-the-art Deep Learning approaches for Visual

Odometry applications, to assess the main advantages and/or disadvantages of the proposed

methods in order to identify the main method bottlenecks and degenerate failure condi-

tions. It is important to mention that most of deep learning VO state-of-the-art approaches,

were mainly tested in Urban operational scenarios (car datasets), which poses a completely

different challenge to these algorithms when comparing to the underwater VO estimation

scenario.

• Use and test different underwater robot visual data, using the UX-1 robot [2], for the devel-

opment and creation of novel image datasets, that allow the test and development of SOA

and novel deep learning based Visual Odometry solutions, and access their feasibility for

application in real robot underwater navigation scenarios i.e. CRAS pool and Urgeiriça

mines.

• Evaluation of the performance of the most renown state-of-art deep learning VO estima-

tion, using supervised and non-supervised VO estimation approaches in the UX-1 dataset

sequences.

• Perform context fine tuning of the state-of-the-art methods, in order to improve results for

VO estimation in underwater environment. Compare VO estimation results against ground-

truth information, obtained by fusing Inertial and DVL sensors information.

• Development of a novel supervised deep learning approach by fusing visual and inertial sen-

sor information within an artificial neural network. Comparison against previous obtained

results.

• Preliminary development of an exploratory approach, consisted of a multi-camera pose esti-

mate fusion Recurrent Neural Network for non-overlapping field-of-view monocular setups.

6 Introduction

This work lead to the following scientific publication:

• Bernardo Teixeira, Hugo Silva, Anibal Matos and Eduardo Silva, "Deep Learning Ap-

proaches Assessment for Underwater Scene Understanding and Egomotion Estimation",

OCEANS 2019 Seattle (Accepted for publication and inclusion in the Student Poster Com-

petition)

1.5 Document Structure

This section serves the purpose of detailing the structure of this document.

In chapter 1 we introduced the research topic, describing the context and scope of application of

this Msc thesis. We explained the motivation behind novel data-driven approaches to egomotion

estimation problems and further described the objectives we hoped to accomplish in this thesis.

In chapter 2 we review related work on Computer Vision, mainly focusing on Visual Odometry

applications. We review both monocular and stereo approaches, further separating feature-based

and dense methods. Finally, we turn our attention to Deep Learning and the novel data-driven

visual-based robot navigation approaches that have been flourishing amongst the Robotics com-

munity.

Chapter 3 introduces key fundamental concepts and governing principles aiming to contextualiz-

ing the reader to the research topic. We start by formulating the Visual Odometry problem, and

proceed to cover different relevant topics ranging from the pinhole camera model to deep learning

key concepts and techniques.

Chatpter 4 provides a review and assessment of existing algorithms that perform relocalization

and egomotion estimation task using deep learning techniques. The novelty is the application of

such methods to the underwater context, which to the best of our knowledge, has not yet been

attempted.

In chapter 5, we present two novel deep learning architectures for improving upon global trajec-

tory estimates obtained through concatenation of deep learning framework generated egomotion

estimates. We propose to leverage the sequential nature of the data to enforce global pose opti-

mization and discuss the results of both networks.

Chapter 6 discusses the overall performance of deep learning methods for visual-based robot nav-

igation tasks, offering insight about potential applications on board of real robotic solutions. Fur-

ther, it ponders upon future work to be done in the deep learning domain for computer vision

applications.

Chapter 2

Related Work

2.1 Introduction

This chapter focuses on the thesis related work. It underlines the areas where Deep Learning

research has provided significant results or promising potential. A brief overview of state-of-the-

art research conducted over the past 30 years on the topic of Visual Odometry is provided, as well

as an explanation of the technological motivations prompting the surge of data-driven methods

such as deep learning for performing the task of egomotion estimation.

To do so, it starts by addressing the problem of recovering relative camera pose and obtaining

motion information from a set of camera images, exploring geometrical approaches to the problem.

Secondly, it details the functioning principles of methods that perform egomotion estimation using

computer vision applications in the context of robotic solutions, such as Structure from Motion

or SLAM systems. Finally, it focuses on novel data-centric approaches using Deep Learning, that

aim to help tackle robotic visual navigation issues in situation where classical methods tend to fail

or flat out struggle to perform. Common benchmark datasets used in the context of evaluating

algorithm performance are also discussed in the last part of this section.

7

8 Related Work

2.2 Retrieving Image Information

As a prerequisite for many robotic applications, it becomes necessary to accurately estimate self-

motion of a robot’s camera system. Given that input data are visual images, the motion estimation

task is performed by identifying and measuring the relative displacement between consecutive

images in a temporal sequence.

Recovering motion information has presented itself as a somewhat challenging task. Both the

Computer Vision and the Robotics Communities have been conducting extensive research and

presenting novel approaches and methods almost on a yearly basis.

In recent decades, many different motion estimation algorithms and approaches have been devel-

oped, matured and perfected. The taxonomy may be divided into two main categories based on

camera setups: approaches using a monocular camera (e.g. Yamaguchi et al [3]) and approaches

using a stereo camera (Nister et al [4]). These approaches can be further separated into meth-

ods that either use feature-based methods (e.g. Howard et al [5]) or dense (e.g., Engel et al [6])

methods. In this section, we review relevant prior work in all aforementioned categories.

2.2.1 Stereo Vision

The term stereo camera vision accounts for the fact that information is extracted from multiple

cameras and the relative position of detected features can be directly measured by triangulation

and used to derive motion. Given that information on the third dimension (i.e. depth) can be

extracted from a single frame, the image scale can be immediately and instantaneously retrieved

because the size of the stereo baseline (distance between the two camera lenses) is fixed and

known, thereby resulting in an efficient and accurate triangulation process.

In order to facilitate correspondence in stereo camera setups, it is usual to employ a transformation

process called stereo rectification [7]. The motivation behind this procedure is to determine a

transformation of the left and right camera image planes so that epipolar lines become collinear and

parallel to one of the image axes, hence simplifying the stereo correspondence problem through

reducing it to a 1D horizontal search along the epipolar line in the new rectified image.

2.2 Retrieving Image Information 9

Figure 2.1: Stereo vision

The early work of Moravec [8] provided a description of the first motion estimation pipeline

(whose main definitions remain basically intact today) as well of his renowned corner detector.

This work formed a basis for further research in motion estimation using stereo vision systems, ex-

tended by means of correcting absolute orientation [9] and careful selection of key points through

analyzing the curvature of auto-correlation function around feature peaks. Coupled with a robust

least-squares motion estimation step around an outlier rejection scheme denoted as RANSAC [10],

Cheng et al [11] developed the definitive VO implementation on board the Mars Rover (fig 2.4).

The downside of stereo vision applications is the need for an adequate and precise camera calibra-

tion, as it strongly impacts motion estimation accuracy. Also, stereo vision systems degrade to the

monocular case when the stereo baseline is much smaller than the distances to the scene from the

camera. Stereo vision becomes ineffective in this case, and monocular methods are recommended

as per Scaramuzza and Fraundorfer findings [12] [13].

2.2.2 Monocular Cameras

The alternative to stereo vision is to use a single camera. In monocular VO systems, both the

relative motion and 3D structure must be computed from two-dimensional data, hence the absolute

scale is unknown. However, there are methods that allow for absolute scale recovery, though

sometimes with limitations. Scale can be determined from direct measurements (e.g. the size of

an element in the scene across images) or extracted from complementary sensors, such as IMU’s or

wheel odometry. For every new image, the relative scale and camera pose are computed between

current and previous frames.

There are two publications worth mentioning: the seminal publication of Nister et al [4], with

his 5-point algorithm, proposed the first real-time large scale VO system using monocular cam-

era, using RANSAC for outlier rejection and computing upcoming camera poses through 3D-2D

camera pose estimation. Corke [14] provided a different, biologically inspired approach, using an

omnidirectional camera and capturing optical flow (the pattern of apparent motion of objects in a

scene caused by the relative motion between an observer and a scene).

10 Related Work

Independently of the camera setup, the ultimate goal is to extract and process information from

visual image inputs. In the next sections, we will further discuss image information retrieval,

expanding on the difference between feature-based and dense methods, as well as detailing the

guiding principles of novel application for each group.

2.2.3 Feature-based Methods

Feature-based methods for visual motion estimation are based on salient and repeatable features

that are tracked across multiple frames. The process starts with the detection and matching of such

features and the camera pose is computed based on a set of feature observations.

A feature is defined as an image pattern that is significantly different from its immediate neighbor-

ing pixels, either in term of intensity, color or texture. In Visual Odometry applications, the most

common traits to search for are usually edges, corners or blobs. An edge is defined as a place of

rapid change in the image intensity function and the intersection of two or more edges is denoted

as a corner. Blob is the computer vision term that represents a group of connected pixels that have

similar intensity values within the blob but have different values from the ones surrounding it.

Features possess interesting characteristics that help explain why it is so appealing to design geo-

metric models around them, namely:

• Quantity: There can be hundreds or thousands of features in a single image.

• Repeatability: features can be redetected in the next images, allowing for feature matching.

• Locality : Features are local, and theoretically more robust to occlusions or visual clutter.

• Distinctiveness : Through combination or correlation of features, it is possible to differenti-

ate between a large database of objects.

• Efficiency: Feature-based methods are proven to achieve real time performance.

• Robustness: Features are robust to noise, blur or the presence of artifacts in the image.

In addition to these properties, a good feature detector should focus on detecting features that are

invariant to both photometric changes (i.e. changes in illumination, brightness, exposure, etc) and

geometric changes like rotations, scale or distortions.

In egomotion estimation, consecutive images will show changes due to differences in rotation,

scale and illumination and possibly image noises. Being based on salient key points, these methods

are theoretically more robust to these effects. Novel scale invariant methods such as Scale Invariant

Feature Transform (SIFT) [15], Speeded Up Robust Feature (SURF)[16] address this very same

issues and create invariant descriptors, even in cases of abrupt rotational or scale changes or even

under non-homogeneous lighting conditions. Real time computation of high resolution imagery

prompted the use of faster computational descriptors like ORB [17] or BRIEF [18].

2.2 Retrieving Image Information 11

The feature transformation step greatly reduces the computational time needed to process infor-

mation and allow for smoother real-time implementations. For this reason, feature-based methods

dominate the realm of solutions to the pose estimation problem.

However, feature-based methods process only the information contained in the detected features,

effectively discarding a great amount of visual clues about the scene that could otherwise be help-

ful in some applications. Furthermore, typical approaches require huge amounts of computation

concerning scale and rotational invariant descriptors and are thus prone to show weaknesses in

operational environments.

2.2.4 Direct/Dense Methods

Algorithms for aligning images and estimating motion in video sequences are widely used in

computer vision since the early days of digital cameras and primitive image stabilization features.

Dense methods are methods by which the intensity information of all image pixels or subregions

of it is computed in order to perceive motion in sequential images.

Figure 2.2: Brightness shift of an 2D image pixel representation. The image pattern at position
(x,y, t) is the same of position (x+uσt,y+uσt, t +σt). Image courtesy of [19]

The most general approach, denoted as optical flow, involves minimizing the brightness or color

difference between corresponding pixels over a time frame.

Optical flow methods are often divided in three main categories [20] [21]:

• Differential methods: The motion is computed from spatio-temporal derivatives or filtered

versions of the image [22] [23]. [24]

• Frequency methods: These methods work by applying spatio-temporal filters in the fre-

quency domain [25] [26].

• Correlation methods: Correlation based methods attempt to find matching image regions

by maximizing some similarity measure between them, all under the assumption that the

image has not been overly distorted over a local region for a short period of time [27] [28]

[29].

12 Related Work

Dense methods are more suitable to tackle small scale motion displacement estimation problems

but often pale in comparison to feature-based counterpart methods when analyzing large scale

robotic applications self-motion.

2.3 Egomotion estimation

The problem of estimating a vehicle self-motion based on visual input alone first saw light in

the early 1980’s. The goal was to develop a robust visual navigation system for the NASA Mars

Rover, capable of providing the planetary rover the capability to measure 6-Degrees-of-Freedom

(6-DoF) motion , essentially reducing the risks of classic odometry failure due to wheel slippage

and uneven terrain.

In the landmark paper by Nister et al [4], the term Visual Odometry (VO) was first introduced and

a Visual Odometry pipeline was presented (Fig. 2.3) .

Figure 2.3: Typical Visual Odometry pipeline: Usual blocks present in Visual Odometry applica-
tions

Visual Odometry is defined by the process of estimating self-motion of a robotic application using

only image measurements from a single or multiple cameras. The principle of operation of VO

is estimating robot pose through examining changes in sequential images sets, induced by mo-

tion. It has demonstrated to be more advantageous with respect to wheel odometry under some

circumstances and is a useful supplement to other common navigation systems such as Inertial

Measument Units (IMU) and Global Positioning Systems (GPS). Typical robotic application sce-

narios are prone to IMU/GPS failures, thus VO has the utmost importance and extensive research

has been conducted in the topic [30] [19].

Recent work on stereo VO has shifted away from planetary rover applications, broadening the

spectrum of Visual Odometry applications to the development of novel autonomous vehicles and

also more commercial applications in the automotive industry. This apparent proliferation of

2.3 Egomotion estimation 13

(a) Mars Rover (b) Car applications

Figure 2.4: VO applications: early research and first applications were closely tied to space explo-
ration. In recent years, an ever-growing number of commercial applications have surfaced all over
the world, especially in the automotive industry

vision-based systems in commercial applications is, in part, due to recent advances by Scara-

muzza et al [31] that allow a much faster motion estimation by applying physical constraints to

help reduce model complexity.

In the last couple years it has been suggested that vehicle motion could benefit from relying less on

geometry-based approaches and carefully calibrated camera motions, instead adopting a learning

scheme for capturing vehicle dynamics and camera motion. Machine learning techniques [32]

have been gaining favor, in particular thanks to the advent of more precise and robust approaches

such as Deep Learning, which have proven capable of being a reliable alternative to conventional

methods. In the next section, we present novel approaches to the motion estimation problem which

use Deep Learning architectures to perform such tasks.

14 Related Work

2.4 Deep Learning for Computer Vision

Both feature-based and dense methods for Visual Odometry estimation have made great success

in the past decade, demonstrating ever-growing performance on both relocalization and motion

estimation. However, they still face many challenging issues, in particular when being deployed

in large scale robotic applications and facing complex environment application scenarios.

Usually, the previously discussed model based methods represent manually designed features and

search for the best pose which matches the detected features between consecutive image frames.

On the contrary, Deep Learning methods can effectively learn good representations of input im-

ages from massive amounts of data, not requiring manual extraction of features nor extensive or

complex geometric formulations for modeling the environment. In recent years, Deep learning

methods have shown good capability for cognitive and perceptual tasks in Computer Vision appli-

cations whether by analyzing unknown features, image depth or even egomotion between image

frames. For more information on Deep Learning and a brief overview of key concepts we refer

both to chapter 3 of this thesis and Ian Goodfellow et al book on Deep Learning [32].

In this section, we will review state-of the art Visual Odometry implementations running on top

of Deep Learning architectures, analyzing key contributions for the research topic and nuances

between emerging approaches to the problem.

2.4.1 Depth Estimation

Depth estimation methods take advantage of camera displacement or difference in the apparent

position of an object viewed along two different lines of sight to estimate depth.

Early work by Eigen et al [33] proposed a supervised method for depth estimation with a ground-

truth depth map and a scale-invariant error as a cost function for training. The work was further

extended by further integrating convolutional neural networks improving accuracy and efficiency

on both segmentation tasks and depth estimation. CNN-SLAM [34] is a proposed monocular

SLAM system that relies on convolutional neural networks solely to estimate depth, recovering

pose and graph optimization from conventional feature-based SLAM. This approach demonstrated

that Deep Learning architectures can also work hand-in-hand with vision-based systems, improv-

ing upon overall robustness and accuracy of said algorithms.

Unsupervised schemes have recently emerged, also posing as viable alternatives. Garg’s idea [35]

was to use CNN’s to predict the depth map for the left input image, reconstructing the left image

from the right image and using the photometric reconstruction error (2.1) between the original left

image I and the new synthetized left image I’ in the training phase of the algorithm.

E = ∑
∥∥I− I′

∥∥2 (2.1)

2.4 Deep Learning for Computer Vision 15

SfMLearner [36] is a solution that established an influential framework for Deep Learning for

Visual Odometry research. It uses a monocular image sequence in order to estimate depth and pose

simultaneously in an end-to-end unsupervised manner, through enforcing geometric constraints

between image pairs in the view synthesis process. Based on this framework, there were several

novel architectures developed. SfMlearner++ [37] improved upon the results in both depth and

pose estimation by using the Essential matrix, obtained using Nister’s Five Point Algorithm [38],

to enforce epipolar constraints on the loss function, effectively discounting ambiguous pixels.

GeoNet [39] is a similar approach, a jointly unsupervised learning framework for monocular depth,

optical flow and egomotion estimation that decouples rigid scene reconstruction and dynamic ob-

ject motion, making use of this knowledge to further tailor the geometric constraints to the model

Vijayanarasimhan et al.[40] presented SfM-Net, innovating through adding motion masks to pho-

tometric losses to jointly estimate optimal flow, depth maps and egomotion.

2.4.2 Global Pose Estimation

Localization is a crucial component for autonomous systems development, that enables a robot

to determine where it is on an environment, which serves as a precursor to any type of action

execution or planning.

The main purpose of data-driven pose estimation is to estimate pose without explicitly model-

ing the camera motion. PoseNet [41] was the first instance of CNN usage for pose estimation,

starting from a supervised scheme with a 6-DoF pose ground-truth. Making use of geometry to

design meaningful constraints to the loss function [42] proved to yield significant improvements

to method performance and accuracy. This method showed very robust performances in relocal-

ization tasks and was further extended to support both color and depth inputs, improving upon its

accuracy in challenging environments, such as night-time.

RCNN architectures have been gaining favor in the past years, exploring either temporal dynamics

or spatial analysis of image sequences, thereby reducing the uncertainty of pose estimation and

generally improving upon method performance. The introduction of LSTM units to neural net-

work design as showcased in [43] proved to improve results in localization tasks making use of

structured correlation in feature space using LSTM units.

The application of deep RCNN’s to Visual Odometry bypass the need for almost all blocks in the

conventional VO pipeline (see Fig.2.3), allowing for end-to-end pose inference as can be seen in

Fig.2.5.

16 Related Work

Figure 2.5: Proposed Deep Learning for Visual Odometry end-to-end methods pipeline. Deep
RCNN takes a sequence of RGB images as input, automatically learning features by CNN, cap-
turing temporal dynamics in its RNN component and outputting pose estimations

2.4.3 Egomotion Estimation

Building upon the success of absolute pose estimation, the egomotion between consecutive image

frames can also be estimated with the use of deep neural architectures inspired by geometric mod-

els. The key principle is that for the egomotion estimation task we are interested in capturing the

motion underwent by the camera system between consecutive images rather than just determining

the position and attitude of the observer. FlowNet [44] and its successive iterations garnered im-

mense attention as a reliable deep learning framework for learning optical flow and paved the way

for early egomotion estimators. Wang et al. proposed a monocular visual odometry system called

DeepVO [45], which trains a RCNN to estimate camera motion in an end-to-end fashion, infer-

ring pose directly from a sequence of raw RGB images in a video clip while bypassing all usual

modules in the conventional VO pipeline. The advantage of such approach is to simultaneously

factor in both feature extraction and sequential modelling through combining CNN’s and RNN’s.

As labeling data in large scale significantly hinders the application of supervised learning methods

to robotic applications, Li et al proposed UnDeepVO [46], a monocular system that uses stereo

image pairs in the training phase for scale recovery. After training with unlabeled stereo images,

UnDeepVO can simultaneously perform visual odometry and depth estimation with monocular

images.

Valada et al [47] proposed a novel architecture that encompasses both global pose localization

and a relative pose estimation, jointly regressing global pose and odometry and learning inter-

task correlations and shared features through parameter sharing. This method is denoted as Deep

2.5 Benchmark Datasets 17

Auxiliary Learning.

Visual Odometry methods are particularly sensitive to rotation errors, as small early drifts can

have a large influence on final trajectory pose estimates. Peretroukhin [48] proposed HydraNet, a

deep learning structure aimed at improving attitude estimates, able to be fused with classical visual

methods. Through regressing unit quaternions, modeling rotation uncertainty and producing 3D

covariances, HydraNet manages to improve visual algorithms at predicting 6-DoF pose estimates

(position and attitude).

Another application where Deep learning architectures are currently being tested on is sensor

fusion. VINet [49] is a proposed framework that fuses pose estimates from DeepVO [45] with

inertial data, showing comparable performance to traditional fusion systems. The same method

was also adopted to fuse other kinds of information such as magnetic sensors, GPS, INS or wheel

odometry. [50] [51]. Sensor fusion can be easily incorporated in deep learning architectures and

jointly trained end-to-end with pose regression, thus making a potentially interesting solution for

Visual Odometry applications as it can be used for a wide variety of purposes (e.g. recovering

absolute scale on monocular camera systems).

2.5 Benchmark Datasets

Deep learning methods usually require massive amounts of data in order to properly train its neural

architectures. This is particularly true in robotic applications, since autonomous systems typically

operate in completely unknown environments or under extreme lighting condition. As so, the

availability of large scale datasets is crucial for further development of deep learning methods. In

this part, we review existing datasets usually adopted for evaluating deep learning related visual

tasks.

The KITTI dataset [52] is usually regarded as a complete and comprehensive dataset for visual

applications. It consists of outdoor environment images of a driving car, with multiple sensor data,

best suited for egomotion estimation tasks. Similarly, the EuRoc MAV [53] also presents the same

characteristics and also outdoor imagery but gathered by a flying robot.

When it comes to indoor imagery, the TUM dataset [54] is highly regarded as a comprehensive

benchmark for depth estimation. It was collected through the use of an hand-held RGB-D cam-

era in an indoor environment. Together, these datasets form a comprehensive basis for method

evaluation, whether for depth or egomotion estimation.

For relocalization tasks, 7-scenes [55] dataset or Cambridge Landmarks [41] are best suited for

evaluating method performance.

However, the focus of the thesis is in the underwater context. In the scope of underwater robotics

there are no universally recognized datasets that fulfill either depth or egomotion estimation task

evaluation requirements. Furthermore, the objective of this thesis is to evaluate the viability of

18 Related Work

data-driven methods for motion estimation in the context of CRAS ongoing robotic applications.

With this in mind, we developed a novel dataset comprised of underwater imagery acquired with

the CRAS robot UNEXMIN UX1 robot, in both a fully known controlled environment and oper-

ational mission scenarios. For more information on our novel dataset, see chapter 4.

2.6 Summary

In this chapter, a study of visual-based navigation methods was performed, denoting the motivation

behind the path from classical feature-based or direct/dense visual methods to learning-based data-

centric approaches.

The scenarios where classical visual-based methods tend to fail, or at least do not provide the

consistency and robustness required for persistent and accurate robot navigation prompted the

development of data-centric approaches as an attempt to overcome such difficulties. For our use

case, since we are focusing on the broader underwater context and particularly in this work on

underwater flooded mines, deep learning method evaluation and assessment becomes especially

relevant, as it could become a really interesting application for such scenarios

It is important to note that, at the moment, classical visual methods still dominate the realm of

applications for robotic navigation solutions, especially due to its higher technological maturity,

accuracy and robustness. However, novel deep learning powered architectures have show compa-

rable performance in some situations, and it is reasonable to assume that deep learning methods

will be able to compete with visual methods in the future, benefiting from more technological

establishment and hardware enhancement allowing for better real-time performance on board the

robot.

In order to bring some closure to this Related Work chapter, the main thought worth withholding

is that deep learning based methods are becoming more and more reliable as years go by, posing

as a viable alternative to classical Computer Vision methods for a wide range of different tasks.

So, it becomes then necessary to evaluate whether specific robotic solutions can benefit from such

approaches, possibly enhancing the perception capabilities of some robotic applications.

Chapter 3

Fundamentals

3.1 Introduction

This chapter begins by formulating the Visual Odometry problem and describing some of the key

concepts and governing principles required to the thesis research topic. It aims to cover funda-

mental aspects of both Computer Vision and Deep Learning, focusing on some essential building

blocks upon which different Egomotion Estimation techniques and methods are based. For each

topic covered in this chapter, further references are provided, and the understanding of the basic

concepts presented in this chapter will be important to the explanation of this thesis implementa-

tion and results.

3.2 Formulation of the VO problem

An agent is moving through an environment and taking images at discrete time intervals k. For

monocular camera setups, the camera coordinate frame can be assumed as the agent’s coordinate

frame and is usually denoted as I0:n = I0, ..., In. In stereo vision systems, there is a left and a

right image at every time instant, denoted as Il,0:n = Il,0, ..., Il,n and Ir,0:n = Ir,0, ..., Ir,n. The left

camera is usually used as the origin, without any loss of generality.

Two camera positions at consecutive time instants are related to one another by rigid transforma-

tions Tk,k−1 defined as followed:

Tk,k−1 =

[
Rk,k−1 tk,k−1

0 1

]
(3.1)

Rk,k−1 represents the rotation from frame k-1 to frame k and tk,k−1 is the translation vector.

Additionally, a set of camera poses C0:n can be computed to contain information about camera

transformations with respect to the initial frame k=0. Current pose Cn can be computed from the

19

20 Fundamentals

previous pose and the rigid transformation between camera frames:

Cn =Cn−1Tn (3.2)

The main task in Visual Odometry applications is to calculate image transformations Tk,k−1 and

then concatenating the transformations to recover the full trajectory C0:n of the camera. This means

VO systems recover the path incrementally, pose after pose.

As stated in chapter 2, there are two main approaches to compute the relative motion Tk,k−1 : dense

methods, which use the intensity information of all the pixels in the two input images, and feature-

based methods, which only use salient and repeatable features extracted (or tracked) across the

images.

In the VO pipeline, previously mentioned in Fig. 2.3, for every new image or stereo image pair

Ik, a set of features fk is extracted. The next step is to find correspondences between feature sets

on time instances k and k− 1. This can be accomplished either by finding features in one image

and tracking them across the following images through prediction and correlation local search

techniques or by independently detecting features in each image and find correspondence on the

basis of similarity metrics (use of descriptors like SIFT, SURF or ORB) [15] [16] [17].

Motion estimates can be computed from transformations Tk between consecutive frames and cor-

responding feature sets fk−1 and fk. Motion estimation correspondence models are further detailed

in section 3.5.

The final step in VO systems is usually a local optimization block, consisting of iterative refine-

ments over the last n poses. This step, commonly denoted as bundle adjustment [56] [57], aims to

provide a more accurate motion estimation of local trajectories by minimizing re-projection errors

between camera poses.

3.3 Perspective Camera Model 21

3.3 Perspective Camera Model

Camera models map 3D world point spaces into 2D image representations. The most common

camera models for image interpretation and analysis are perspective camera models and are fo-

cusing our attention on the pinhole projective model.

Figure 3.1: Pinhole Camera Model

In this model, a point in Cartesian space with coordinates X = (X ,Y,Z)T is mapped on the point

on the image plane where a line joining the point X to the centre of projection meets the image

plane (Fig. 3.1).

Usually in computer vision notation, parameter f corresponds to the focal distance and parameters

(cx,cy) represent the principal point (p) coordinates, which is the place where the principal axis

intersects the image plane in pinhole camera model. The camera parameters like the focal distance

f , principal point p, and skew s which is the angle between the x and y sensor axes, need to be

known for the model to be applied. Together, these points form matrix K, which is the camera

calibration matrix and defines the camera intrinsic parameters :

K =

 f s cx

0 f cy

0 0 1

 (3.3)

In Visual Odometry applications, there is sometimes a necessity to apply transformations between

camera frame and world frame. Euclidean transformations are represented by a rotation matrix R

in the 3D space and a translation vector t. Thus, camera projection matrix becomes:

P = K[R |t] (3.4)

For further information on this topic, the reader is invited to [58][59][60].

22 Fundamentals

3.4 Epipolar Geometry

Epipolar geometry is essentially the relation between images of a single point (P) captured from

two different viewpoints (see Fig. 3.2). This concept can both be applied to the stereo case (two

cameras simultaneously viewing the same scene) as well as to a single camera taking pictures

standing from different viewpoints (monocular camera setups). There are a few concepts worth

explaining:

• Epipole: The point of intersection of the line joining the camera centers (stereo baseline for

the stereo case) with the image plane.

• Epipolar plane: The epipolar plane is formed by the world point P and the two camera

centers, therefore containing the baseline.

• Epipolar lines: The intersection of an epipolar plane with the image plane. All epipolar

lines intersect at the epipole.

Exploring these epipolar geometry concepts, we come across a very useful definition: the epipolar

constraint is a key geometric concept that limits the correspondence of a given point in image Il

to lie along a line in the other image Ir [60]. This correspondence is key to establishing point

correspondence between images since it reduces potential correspondence points from the image

plane to just the points in an epipolar line.

The Fundamental matrix (F) is a function of the camera intrinsic parameters (K), and also encodes

the relative camera poses between the different viewpoints and can be given by:

F = K−1R[t]xK (3.5)

Another way of encompassing information of the epipolar constraint is the Essential matrix [61].

The Essential matrix (E) is a specific application of the fundamental matrix to the case of calibrated

cameras (i.e. intrinsic parameters known). The Essential matrix has 5 degrees of freedom and is

defined by three rotational and two translation parameters

In summary, the Fundamental matrix (F) and a point in one image define an epipolar line in the

other image on which its correspondent point must lie. The Essential matrix (E) encodes the rela-

tive pose between the two camera frames, and their pose can be extracted with some uncertainty

only in translation displacement, which is scaled by an unknown factor. The geometric relations

provide valuable information about scenes to the visual egomotion estimation problem, and are a

basis for numerous Visual Odometry applications, both for stereo and monocular setups.

3.5 Egomotion Estimation 23

Figure 3.2: The world point P and the two cameras centers form the epipolar plane. The inter-
section of the epipolar plane with the image plane forms the epipolar lines. Image courtesy of
[19]

3.5 Egomotion Estimation

Motion estimation is one of the core blocks in Visual Odometry systems. In order to perceive

camera self-motion, VO systems make use of aforementioned spatial transformations between

images Ik and Ik−1.

Using features sets fk and fk−1 from consecutive images Ik and Ik−1, there are three methods for

computing the transformation Tk,k−1 :

• 2D-to-2D: Feature sets fk and fk−1 are specified in 2D image coordinates.

• 3D-to-3D: Feature sets fk and fk−1 are specified in 3D. This technique is available in stereo

vision, and consists on determining the aligning of the two 3D feature sets in stereo image

pairs.

• 3D-to-2D: In this case, fk−1 is a 3D feature set and fk is the correspondent 2D re-projection

onto the Ik image. In monocular VO systems, 3D structure need to be reconstructed from at

least two adjacent camera views Ik−2 and Ik−1 and matched to Ik image features.

24 Fundamentals

3.5.1 2D-to-2D: Motion from Image Feature Correspondence

The Essential matrix E, which encompasses rotational and translational information , can robustly

be computed from 2D-to-2D feature correspondences through the epipolar constraint, as per Nis-

ter’s proposed five-point algorithm [38].

From the Essential matrix, we can extract the rotational and translational parts, through computing

the Singular Value Decomposition (SVD):

E =USV T (3.6)

This equation returns four possible solutions for the R, t pair, but the correct representation can be

easily identified by means of triangulation of a single point (i.e. only in one of the four possible

solutions the point is front of both cameras).

As the absolute scale of the translational component cannot be computed in the essential matrix,

relative scales must be computed from measured distances between point pairs in consecutive

images in order to recover the trajectory of an image sequence.

The algorithm for egomotion estimation from 2D-to-2D correspondence works as follows:

Algorithm 1 Motion estimation from from 2D-to-2D feature correspondence
• Acquire new image Ik
• Extract and match features between Ik and Ik−1
• Compute essential matrix (E)
• Extract R,t from the essential matrix and form Euclidean transformation Tk,k−1
• Compute relative scale
• Concatenate camera pose transformation by performing Ck =Ck−1Tk,k−1

3.5.2 3D-to-3D: Motion from Structure Correspondence

In the case of 3D-to-3D motion estimation, the task is to find the transformation Tk,k−1 that min-

imizes the L2 norm distance between features (i) with their respective 3D coordinates between

consecutive frames (X̂ i
k and ˆX i

k−1)

argmin
Tk,k−1 ∑

∥∥∥X̂ i
k−TkX̂ i

k−1

∥∥∥ (3.7)

As in the previous case, there is more than one solution to this problem and the correct solution

must be recovered through triangulation. In this case, we decouple translation from rotation,

computing translation through SVD and rotation as the difference from centroids of 3D features.

The algorithm for egomotion estimation from 3D-to-3D structure correspondence works as fol-

lows:

3.5 Egomotion Estimation 25

Algorithm 2 Motion estimation from 3D-to-3D structure correspondence
• Acquire new image stereo pair Il,k and Ir,k
• Extract and match features between Il,k and Il,k−1
• Triangulate the previous features for every stereo pair
• Concatenate camera pose transformation by performing Ck =Ck−1Tk,k−1

3.5.3 3D-to-2D: Motion from 3D Structure and Feature Correspondence

Nister [4] has shown 3D-to-2D to be more accurate than 3D-to-3D. This is because instead of

minimizing the distance between features on consecutive images, we focus on minimizing the

reprojection error.

Motion can be estimated both from stereo images and from the monocular case, by triangulating

three view points. In a stereo system, the 2D point can be obtained by aligning the left and right

images whereas in the monocular case, the algorithm processes the triangulation between feature

matches in Ik−2 and Ik−1 and subsequently matches to the new captured frame Ik

P3P [62] is a commonly used robust method for 3D-to-2D motion estimation, even in the presence

of outliers, that computes camera pose and orientation in the world reference frame from three

3D-2D point .

The algorithm for 3D-to-2D egomotion estimation can be synthesized as followed:

Algorithm 3 Motion estimation from from 3D-to-2D feature correspondence
Initialization:
• Capture two frames Ik−2 and Ik−1
• Extract and match features
• Triangulate features between them

For every iteration:
• Capture new frame Ik
• Extract features and match features with previous frame Ik−1
• Compute camera pose and orientation from 3D-to-2D matches
• Triangulate feature matches between Ik and Ik−1

26 Fundamentals

3.6 Pose Parametrizations

The goal of every Visual Odometry system is to adequately process visual information in order

to compute the camera transformation in relation to the previous image frame. As formulated

in section 3.2, we are interested in obtaining a set of camera poses containing the information

of relative transformations in camera position and attitude. These can then be concatenated to

represent the full trajectory in an image sequence.

Figure 3.3: R,t parameter extraction

The literature presents different pose estimate parameterizations for 6-DoF pose (position and at-

titude). While the position of an object is naturally represented by a 3-dimensional vector without

much debate, such consensus does not exist regarding its orientation representation. In this section

we review key attitude representations that serve as a starting point for the work of this thesis.

3.6.1 Rotation Matrix

The rotation matrix, also called the special orthogonal group SO(3), is the most generic form for

representing a linear transformation on an Euclidean space used to rotate point coordinates from

one reference frame to another.

Considering two frames A and B and p as position of an object relative to frame A. Then the

position of the object with respect to frame B is given by:

pB = RA
B pA (3.8)

where RA
B represents the rotation undertaken by point p from one frame to another. This means

nine scalars are used to represent rotations in 3D space (i.e. 3x3 matrix).

Coupled with a translation vector in 3D space (∈ R3), we can represent the Special Euclidean

group SE(3), an all encompassing space for rigid transformations.

3.6 Pose Parametrizations 27

3.6.2 Euler Angles

However, it is possible to parametrize the very same rotation using much less parameters. Euler

Angles Representation is defined by the angles that each axis of frame B needs to rotate, in a

sequential order, to coincide with a reference frame A.

Figure 3.4: Euler Angles representation

This representation can be more intuitive and easy to interpret physically. However, it suffer from

singularities in mathematical formulations (e.g. such as gimbal-lock in Roll-Pitch-Yaw). Notation

can also be problematic, as there exist twelve possible sequences of rotation axes, giving rise to

potential confusion due to notation ambiguity that can be detrimental for cross-implementation

integration.

3.6.3 Quaternions

Quaternions are R4 unit vectors that can also be used to represent rotations very efficiently. It can

also provide a more restricted parameterization of the output space when compared to the entirety

of the transformation matrix set. A quaternion can be defined as:

q = (w+ xi+ yj+ zk) (3.9)

Quaternions [63] are sometimes an advantageous representation in light of its computational ef-

ficiency (simple number operations are computationally less costly than sines and cosines) and

because unlike Euler Angles it does not have any discontinuity . Interpolating between rotations

and especially chaining multiple transformations is therefore a way smoother process using quater-

nions.

28 Fundamentals

Figure 3.5: Quaternion Unit Sphere

3.7 Deep Learning

3.7.1 Motivation

Machine learning is defined as the scientific study of algorithms and applied statistical models that

allow computer systems to estimate otherwise complicated functions, progressively improving

upon its performance on a specific task.

Figure 3.6: Neural network

Deep learning is a specific kind of machine learning. Its onset stems from the failure of tradi-

tional machine learning algorithms to generalize well on some artificial intelligence tasks and

deep learning methods are, by design, more fit to overcome these and other obstacles.

One of such tasks is Computer Vision. Computer vision has traditionally been one of the most

active research areas for deep learning, due to it being intrinsically challenging to implement

simultaneously robust and efficient computer algorithms. The ongoing rise in large scale dataset

3.7 Deep Learning 29

availability, as well as the proliferation of more capable GPU’s is fueling the evolution of deep

learning-based methods for computer vision, improving upon their performance and accuracy.

In this sub-section we explore some key concepts of deep learning as to contextualize the reader

to some deep learning techniques that will be explored as the focus of the implementation of this

thesis. For further detail on deep learning techniques and overall machine learning concepts, the

reader is invited to Ian Goodfellow [32].

3.7.2 Supervised vs Unsupervised schemes

Within the field of machine learning, there are two main classifications for algorithm architecture:

supervised and unsupervised.

Supervised learning schemes are implemented by using a ground truth, i.e. we have prior knowl-

edge of what the output values for our training samples should be. Therefore, the goal of su-

pervised learning is to learn a function that, given a sample of data and desired outputs, best

approximates the relationship between input and output observable in the data.

Unsupervised learning schemes are built with the intent of learning the inherent structure of our

data without the use of explicit labels. Here the task consists in grouping unsorted information

according to similarities, patterns and differences without any prior training. In situations where it

is either impossible or impractical for a human to propose trends in the data, unsupervised learning

can provide initial insights that can then be used to test individual hypotheses.

3.7.3 Concepts and Techniques

There are a few key principles and techniques worth mentioning about Deep Learning in the scope

of this thesis:

• Tensor: A tensor is an array of numbers arranged on a regular grid with a variable number

of axes.

• Activation Function: This block defines the output of a neuron, deciding whether it should

fire or not. It maps the resulting values of neuron computations to a preset desired range

(depending upon the choice of activation function). Functions like sigmoid and ReLU are

commonly used in neural networks to help build working models, but proper choice of

activation functions is application specific.

• Feature Map A feature map is the output of one filter applied to the previous layer. A given

filter is drawn across the entire previous layer, moved one pixel at a time. A produced vector

passes through an activation function, forming a tensor that is then used as an input for the

next layer.

30 Fundamentals

• Loss function: A loss function is a measure of how good a prediction model does in terms

of being able to predict the expected outcome. Optimization of weights and other parameters

are closely tied to the choice of an adequate loss function. There is not a single loss function

that works for all kind of data. It depends on a number of factors including the presence

of outliers, choice of algorithm, time efficiency of gradient descent, ease of finding the

derivatives and confidence of predictions. Mean Square Error (MSE) is the most commonly

used regression loss function. MSE is the sum of squared distances between our target

variable and predicted values.

MSE =
1
n

n

∑
i=1

(yi− ye
i)

2 (3.10)

• Dropout: Dropout is a machine learning technique designed to help prevent model overfit-

ting. Simply put, dropout refers to not considering a random batch of neuron units during

the training phase .

3.7.4 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are one of the most popular deep learning architectures.

Its design is biologically inspired, drawing inspiration from neurocientific research on mammalian

vision systems, as per Medicine Nobel laureates Hubel and Wiesel findings [64]. Therefore, it is

safe to assume that CNNs could present as an adequate technique to process image data, as claimed

by recent research on the topic detailed in the previous chapter.

However, it is worth noting that neuroscience has told us relatively little about the process of

training and tuning hyperparameters in a Convolutional Neural Network. The detachment from

biologically inspired designs and constraints, and progressive integration of more mathematical

and statistical focused approaches further improved upon the early concepts and matured into

a specialized neural network architecture that works pretty well with data that has a clear grid-

structured topology (e.g. image data, as a 2D pixel grid) and is able scale such models to very

large quantities of information.

3.7 Deep Learning 31

Figure 3.7: Convolutional Neural Network: Dimensionality reduction example for binary classifi-
cation problem

Convolutional Neural Networks take advantage of the input being images and conform its archi-

tecture to arrange image data in 3 dimensions: width, height and depth. Generally the output

consists in a reduction of the full image to a single vector of class scores, achieved by applying

several different layers of transformation through differentiable functions.

It is important to discuss some typical types of layers usually comprised within a CNN:

• Convolutional Layer: Computes the convolution operation by performing a dot product

between neuron weights connected to local regions of the input image, exploiting spatially

local correlation. The parameters consist of a set of learnable filters with small receptive

fields that extend through the full depth of the input image

• ReLU Layer: The Rectified Linear Unit Layer (ReLU) applies a non-linear elementwise

activation function f (x) = max(0,x) effectively removing negative values (i.e. situations

where a neuron should not fire) by setting them to zero. ReLU is often preferred, in the

context of machine learning aplications, to other common activation functions such as hy-

perbolic tangent or sigmoid functions because it trains the neural network several times

faster than its counterparts without a significant penalty to generalization accuracy.

• Pooling Layer: Performs a downsizing operation along the spatial dimensions of input

images (width, height), effectively reducing its volume. The role of a Pooling Layer is

to reduce the resolution of the feature map while retaining features of the map required

for classification through translational and rotational invariants. This property is especially

important in Vision-based Robotic applications

Dropout and Normalization layers are also frequently incorporated in Convolutional Neural Net-

works to reduce overfitting and prevent internal covariance shifts within activation layers, respec-

tively.

32 Fundamentals

3.7.5 Recurrent Neural Networks (RNN)

Recurrent neural networks are a class of neural networks whereby connections between nodes

form a computational graph along a time sequence, allowing it to capture temporal dynamics of

video clips. Unlike previously explained Convolutional Networks, RNNs can store and use their

internal states for capturing the information in the sequence of inputs itself, rather than the infor-

mation in individual input images. The main principle behind RNNs is maintaining the memory

of hidden states over time via feedback loops and modeling the dependencies between current and

previous states.

Figure 3.8: Recurrent Neural Network diagram

3.7.6 Long Short-Term Memory Units (LSTM)

The most relevant state-of-art RNN architecture worth mentioning in the scope of this thesis are

Long Short-Term Memory Units (LSTM), a type of neural network first introduced by Hochreiter

in 2007 [65]. A typical LSTM unit is comprised of a cell, an input gate, an output gate and a forget

gate. The cell remembers values and keeps track of dependencies over random time intervals

(there can be lags of unknown duration between important events in a temporal sequence); the

input gate controls the flow of information into the cell; the forget gate controls the extent to

which information is stored within the cell and the output gate determines when the values in the

cell will be used to compute output activation of the LSTM unit.

3.8 Evaluation Metrics 33

Figure 3.9: LSTM unit

3.8 Evaluation Metrics

In order to evaluate the results of the method implementations, it becomes necessary to compare

between our pose estimates defined as a sequence P1,..,Pn ∈ SE(3) and groundtruth data defined

as G1,..,Gn ∈ SE(3). It is worth noting that the evaluation procedure works under the assumption

that both pose sequence sets are time-synchronized and equally sampled, are both referenced to

the same global frame and have the same length n.

Figure 3.10: The process of quantitative trajectory evaluation. The trajectory estimate undergos a
preprocessing alignment step before computing the estimation error. Image credits to [66]

The accuracy of Visual Odometry methods is quantified through evaluating the estimated tra-

jectory with respect to the groundtruth, which is a necessary definition for understanding and

benchmarking different algorithms

34 Fundamentals

In the remainder of this section, we present the evaluation metrics we used to assess method

performance and accuracy. In particular, we report Absolute Trajectory Error (ATE) [54] as a test

metric as well as RMSE of the global positions since Deep Learning methods usually take into

account full sequence information. Here, a brief description of each metric is provided:

Relative Translation/Rotation RMSE: This metric takes the output of the model, reparameter-

izes it to position+quaternion format, and then takes the RMSE with the ground-truth relative-

frame position+quaternion. Therefore this metric is the error in the estimated relative veloc-

ity/angular velocity between each image pair in the sequence. Since this metric only looks at

relative transformations, it does not account for accumulating drift errors.

Global Translation/Rotation RMSE: This metric takes the output of the model, reparameterizes

in position + quaternion format, but further integrates the relative transformations over time to

produce the estimated global transformations of each pose. The RMSE between the estimated

global SE(3) pose (position and attitude) and the groundtruth global-frame pose is then taken to

produce the global translation or rotation error metric.

Absolute Trajectory Error (ATE): In our work, the ATE metric is the most useful metric for

correctly evaluating method accuracy and performance. This is similar to the global RMSE metric,

but it includes a preprocessing step described in [54]. This “aligning” preprocessing step seeks to

align the estimated sequence with the ground-truth sequence by producing a scale, rotation and

translation transformation that will be applied to every pose in the sequence. After aligning, the

RMSE is taken between the aligned estimated global position and the groundtruth global frame

position.

(a) ATE (b) RPE

Figure 3.11: Illustration of absolute trajectory error and relative pose error, credits to [66]

3.8 Evaluation Metrics 35

In addition, we are abiding by the Evo [67] software package nomenclature, as it provides a com-

prehensive toolkit for result evaluation. As so, it becomes relevant to further expand on the nomen-

clature:

Absolute pose error (APE) is a computation of the absolute trajectory error along the full tra-

jectory sequence. Corresponding 3D translational vectors are directly compared between estimate

and reference given a pose relation (i.e. temporal timestamps). This metric is useful to test the

global consistency of the estimated trajectory and can be defined as

Ei = G−1
i SPi (3.11)

where S corresponds to a rigid body transformation that is computed according to one of the

preprocessing strategies that will be detailed later on in this section. The mean average error and

standard deviation can then be computed along the entire sequence of data, as well as the RMSE.

Relative Pose Error (RPE) on the other hand, instead of directly comparing absolute poses,

computes relative pose error in motions (i.e. "pose deltas"). This metric gives insights about the

local accuracy of the method, and it corresponds to odometry estimates on Robotic applications.

We are interested in evaluating 6-Dof pose estimates, but also separately look to isolated position

and attitude errors.

Ei = (G−1
i Gi+∆)

−1(P−1
i Pi+∆) (3.12)

Then we can calculate the RSME in the entire sequence of data as

RMSE =

√
∑

N
i=1(Ei)2

N
(3.13)

Furthermore, we are going to utilize 3 different pre-processing evaluation condition scenarios:

• "Raw" comparison with no pre-processing

• Scale correction of pose estimates to match groundtruth data

• SE(3) Umeyama aligment [68]. This pre-processing step aligns the pose estimates with

the groundtruth using a least-squares estimation of transformation parameters translation,

rotation and scale (matrix S in equation 3.11)

36 Fundamentals

Chapter 4

Deep Learning Approaches for
Visual-based Robot Navigation

4.1 Introduction

This chapter denotes the scientific and applicational work performed during the course of the the-

sis. Namely, we will provide detailed explanations about the implementation of some of the most

renown deep learning approaches for motion estimation, as well as evaluate and benchmark their

performance in challenging underwater operational scenarios, when comparing with groundtruth

information.

For this purpose, we first introduce a underwater visual dataset, that will be used to compare the

methods results, explaining how it was constructed, as well as the image acquisition methodology,

its reasoning and underlying assumptions.

Secondly, we tackle the robot relocalization task, evaluating two different state-of-the-art algo-

rithms that allow for visual-based robotic localization, Posenet [41] and PoseLSTM [43]. The

main purpose is to investigate whether these algorithms are able to perform robustly in more com-

plex underwater scenarios.

Lastly, we turn our attention to the egomotion estimation task. Two landmark frameworks, SfM-

Learner [36] and GeoNet [39] were implemented, so as to evaluate their performance on real

robotic application mission scenario.

37

38 Deep Learning Approaches for Visual-based Robot Navigation

4.2 Underwater Visual Dataset

Deep learning methods usually require vast amounts of data in order to properly train its neural

architectures. This is particularly true in robotic applications, since autonomous systems can oper-

ate in very complex environments, often under extreme conditions. As so, the availability of large

scale datasets is crucial for further development of deep learning algorithms and its respective

generalization ability, therefore improving upon its robustness when being deployed in full-scale

large complex environments.

In the underwater context, there are not many publicly available large datasets and there is none

widely regarded as a comprehensive benchmark for method evaluation. In the scope of this work,

we also wanted to assess method performance using one of CRAS robotic solutions, namely the

UNEXMIN UX-1 robot. With this in mind, we developed a Deep Visual Underwater dataset, an

underwater focused dataset collected with the UX-1, tailored for visual odometry method imple-

mentation and evaluation, with which we pretend to assess performance of state-of-the-art Deep

Learning architectures for VO estimation in different underwater scenarios (see Fig. 4.2.2). In

Fig. 4.1, we can observe example images of our dataset sequences, that showcase the different

environments included in our dataset.

In this section, we are discussing in detail the data acquisition process, specifically describing

the UNEXMIN UX-1 robot and all the technology contained within it, while providing related

remarks about the image acquisition methodology, specifically the camera setup,the reasoning and

assumptions of the process.

Figure 4.1: Dataset image examples

4.2 Underwater Visual Dataset 39

4.2.1 The Robotic Solution

In this work, though any of previously mentioned CRAS robots (Fig. 1.1) could be used, the focus

of our analysis is the UX-1 robot (see Fig.4.2), one of three robots developed in the context of the

UNEXMIN project [2].

The UNEXMIN project goal is to develop a fully autonomous multi-platform robotic exploration

solution for the purpose of exploring and 3D mine mapping of flooded decommissioned mines that

are otherwise inaccessible. It consists of three similar spherical shaped robots that carry different

scientific instrumentation while sharing most of the software design specifications.

Figure 4.2: UNEXMIN UX-1 CAD design

The three UX-1 robots are equipped with full stack software for positioning, navigation, control

and 3D mapping system. To fuel the algorithms performing all these tasks the robots are equipped

with: an industrial grade Inertial Measurement Unit (IMU); a Doppler Velocity Logger (DVL); a

Structured Light Systems (SLS) consisted of four LED’s and laser projectors; one multispectral

camera; a multibeam sonar; a Scanning sonar and five visible cameras (see Fig.4.3).

Figure 4.3: UNEXMIN UX-1 robot description

40 Deep Learning Approaches for Visual-based Robot Navigation

The information obtained by all these sensors is processed by the perception subsystems and the

combination of this sensorial information feeds the navigation module where accurate and reliable

vehicle navigation estimates are produced. This architecture allows the robot to accomplish the

dual purpose of exploring and mapping the mine walls while accurately navigating autonomously.

Figure 4.4: UNEXMIN UX-1 robot photograph

4.2.1.1 Robot Operating System

The UX-1 runs on ROS (Robot Operating System) [69], with a distributed architecture bounded by

a common clock synchronization and timestamping. This means we can assure time synchronized

data from multiple cameras and groundtruth robot global pose.

ROS is a distributed computing environment which may comprise multiple machines running mul-

tiple nodes; this is the case for the UX-1 which has multiple CPU’s running multiple subsystems.

Further expanding upon the nomenclature, ROS is based on a graph architecture with a central-

ized topology, where processing takes place in nodes that may receive, post sensorial information,

exercise control, access state information, execute planning tasks or actuate in the environment.

The key concepts of the computational graph in a ROS architecture are:

• ROS Master: The ROS Master provides a broker for exchange of information between all

processes of the computational graph elements. It stores topics and service information for

ROS nodes.

• Nodes: Nodes are processes that perform computation of subsystems in robotic applica-

tions. A ROS system usually comprises many different nodes that control every aspect of

the robotic system from sensorial information processing to actuation in the environment

• Messages: Messages define a data structure, comprising typed fields that are used as a

way to communicate between nodes. Standardized message fields ease the burden of cross

implementations, as interfaces can be easily interpreted and understood.

4.2 Underwater Visual Dataset 41

• Topics: Topics identify the content of the message. Topics work essentially as informa-

tion channels with publish/subscribe semantics. Different nodes communicate by sending

messages by publishing them on a given topic.

• ROS Bags: Bags are a format for saving and playing back ROS message data (topics). Bags

store all the information flowing in a ROS system at the time of the recording.

The ability to record all data published in a ROS system for later processing was crucial for our

work, as we make use of this record function to acquire our data, saving it to ROS bags that we

can process to build our annotated visual dataset.

4.2.1.2 Data acquisition methodology

As previously mentioned, the dataset was constructed with data acquired with the UX-1 robot.

This robotic solution is equipped with a plethora of different sensors, including 5 cameras. In this

work, and especially since the UX-1 does not have a great overlay of camera fields-of-view, we are

focusing on monocular visual methods, and as so, we choose to analyze the left and right camera

systems, with the goal of estimating robot pose in the central reference frame (i.e. pose estimates

from both camera systems have to be later transformed to the robot body reference frame).

Groundtruth data is generated by the navigation module of the UX-1 software, a filtered calibration

of sensor fusion from the multiple sensor sources presented above, progressively refined through

multiple operation missions in complex settings and extremely challenging operational conditions.

In the scope of this work, we are working with the underlying assumption that this navigation data

corresponds exactly to the real robot pose, which is not easily verifiable in operational mission

scenarios. However, it can be asserted, with relative confidence, that this data represents a close

approximation of the real robot position and can, therefore, be used as groundtruth for our use case.

The groundtruth data file consists of a .txt file where each line contains 8 scalars, representing a

timestamp and 6-DoF poses with a 3D translation vector and an orientation quaternion.

42 Deep Learning Approaches for Visual-based Robot Navigation

4.2.1.3 Data preprocessing

In order to process the raw data contained in the above mentioned ROS bags, we developed a

ROS package with the purpose of automating time-synchronized data extraction. Since visual

information is naturally published at a lower sample rate than navigation information, a timestamp

matching based on a basic interpolation process was implemented, where the goal was to obtain

reliable data with precise synchronization between the images and the groundtruth pose data.

Algorithm 4 Time-synchronization of visual data and groundtruth pose
After ROS subscriber and callback implementation,
• Subscribe to camera topics and navigation pose data.
• Save higher frequency navigation data to queue buffer, with associated timestamp tnav

For every image callback,
• Extract image timestamp ti
• Find correspondences within a confidence interval ‖tnav− ti‖< threshold

If correspondence is found :
1. Extract images and corresponding pose data to dataset directory
2. Append timestamp and camera intrinsic calibration files to directory

Else :
1. Drop image and proceed to next image callback

This processing step becomes necessary because whilst recording the ROS bag, the camera topic

is sometimes delayed in relation to the navigation data, due to the mismatch in size of the image

data being written to disk when compared to a simple pose message.

In addition, our preprocessing package appends to the dataset directory 2 additional files: one

containing synthetic timestamps generated starting the clock at the beginning of the simulation

and a file containing the respective camera intrinsic calibration parameters.

Later in this work, the algorithm presented above was further extended so as to account for the

possibility of extracting synchronized images from multiple cameras, making it also suitable for

the stereo use case.

4.2 Underwater Visual Dataset 43

4.2.2 Scenarios

For the purpose of constructing a complete and thorough dataset, we utilize three different appli-

cation scenarios, which all pose different types of problems to visual-based methods:

• The CRAS pool sequence depicts a fully

known environment, ideal for calibrating

some aspects of visual-based navigation,

since all navigation information is fully

verifiable.

• The Urgeiriça uranium mine is a de-

commissioned flooded mine in Viseu,

Portugal. It is mostly composed of vertical

shafts that lead to 15-30m wide galleries.

It is a real operational mission scenario

for the UX-1, which was tasked with

exploring and mapping the mine.

• The Ecton copper mine is also a flooded

mine, situated in the United Kingdom,

with particular interest for visual odom-

etry estimation, due to the high quality

of imagery it can provide. Water clarity

and reliable illumination conditions make

this image sequence a really interesting

operational mission scenario.

44 Deep Learning Approaches for Visual-based Robot Navigation

4.2.3 Environment constraints

(a) Artificial lighting effects (b) Water turbidity

Figure 4.5: Environmental constraints in underwater VO: In the left image it is possible to observe
artificial lighting effects on image quality. In the right image, it is visible the water turbidity and
the effect of suspended particles may cause on underwater imagery. Both images were acquired in
operational scenarios by the EVA robot [1]

.

Acquiring underwater imagery is a very challenging task. Setting aside mechanical constraints

such as camera waterproofing, the necessity arises for the application of artificial lighting in pre-

dominantly dark scenes. This hinders the quality of the acquired images and may introduced

undesired shadows in the image acquisition process. To summarize, typical underwater computer

vision systems face the following issues:

• Lack of appropriate lighting conditions: Water absorbs light in pretty much all wave-

lengths, generally attenuating less green and blue wavelengths. A possible solution for this

problem, as mentioned previously, is the use of artificial lighting. This solution generally

produces brighter and higher contrast images, but usually struggles to capture information

around the direct light incision region and introduce problems such as low contrast and

non-uniform illumination.

• Backscattering: Diffuse reflection of light rays that causes image blur. Light coming from

ambient illumination sources is scattered towards the camera through suspended particles.

• Lack of image texture: Textures significantly help in the identification of given features

of the image. Often, underwater imagery present no distinguishable textures from which

observer relative displacement can be calculated or scene depth can accurately be calculated.

• Vignetting Effect: Reduction of an image’s brightness or saturation toward the periphery

compared to the image center.

Underwater computer vision applications usually involve image restoration and enhancement steps

and further color correction in order to produce high quality imagery for post-processing.

4.3 Relocalization and Global Pose Estimation 45

4.3 Relocalization and Global Pose Estimation

Posenet [41] was the first instance of a deep convolutional network used for regressing 6-DoF

camera pose from visual input. The algorithm can be described in 3 steps:

Architecture: This supervised learning method was designed based on GoogLeNet [70], a state of

the art deep neural network architecture tailored for classification tasks. The network was altered

through replacing softmax classifiers with pose regressors within the final fully-connected layers.

6-DoF pose is represented with a 7 dimensional vector representing 3D position and an orientation

quaternion.

Transfer Learning: The feature extraction process is pre-trained on large scale image classifi-

cation datasets in order for pose regression to work off of comparatively small amounts of data,

leveraging powerful representations learned on large scale image datasets. In our work, we used

pre-trained weights on Places [71] as a starting point for feature extraction, later context finetuning

the network to the underwater environment by further training with our dataset training sequences.

Loss Function The chosen loss function represents a weighted Euclidean distance loss between

pose estimates and groundtruth pose labels:

loss = ‖x̂− x‖2 +β

∥∥∥∥q̂− q
‖q‖

∥∥∥∥
2

(4.1)

where x represents the position vector, q represents rotations on the unit sphere in quaternion space

and β is a tunable parameter used for penalizing equally errors in position and orientation. β was

empirically tuned to the 100 to 500 range, which is in agreement with the author’s findings for

confined environments, where position errors tend to be small .

We also decided to evaluate PoseLSTM [43], a similar framework whereby accuracy was reported

to improve through the added use of LSTM units for dimensionality reduction and structured

feature correlation.

4.3.1 Results on Deep Visual Relocalization

We tested both methods on one of the author’s proposed image sequence and afterwards on our

own dataset, in order to to assess relocalization performance on the underwater context.

The experiments were conducted using Pytorch [72] implementations of both algorithms, as well

as a custom developed Keras [73] Posenet implementation. Reported results comprise the best

results we were able to obtain, empirically tuning the hyper-parameter β and otherwise adopting

the paper’s learning scheme.

46 Deep Learning Approaches for Visual-based Robot Navigation

Table 4.1: Average Error Results of Deep Visual Relocalization algorithms

Method Scenario Beta Avg. Error

PoseNet

King’s College
100 1.02m 4.76o

200 1.13m 4.60o

500 1.11m 4.46o

CRAS pool
100 0.14m 1.68o

200 0.15m 1.62o

500 0.16m 1.50o

Urgeiriça Mine
100 0.33m 5.84o

200 0.33m 3.94o

500 0.30m 2.31o

PoseLSTM

King’s College
100 0.92m 5.85o

200 0.90m 4.84o

500 0.93m 4.71o

CRAS pool
100 0.10m 2.04o

200 0.11m 1.59o

500 0.10m 2.38o

Urgeiriça Mine
100 0.32m 3.69o

200 0.33m 2.59o

500 0.34m 3.27o

4.3.2 Generalization

It is worth noting that, similarly to the author’s approach, these results pertain to relocalization

performance within a chosen dataset sequence, thus lacking generalization robustness assessment.

Intuitively, it is easy to understand that the usefulness of relocalization algorithms is closely tied

to its ability to perform under a wide variety of complex situations, thus method generalization

performance is key.

So as to evaluate the inference process generalization ability, different sets of full partitions of

data were fed to the network, with a shared global reference frame yet comprising different sets of

lighting conditions and variations in robot trajectory and velocity.

4.3 Relocalization and Global Pose Estimation 47

Table 4.2: Average Error Assessment of generalization ability of Deep Visual Relocalization al-
gorithms

β CRAS Pool Urgeiriça Mine

PoseNet
100 2.12m 13.76o 28.77m 77.49o

200 2.13m 14.34o 28.08m 88.60o

500 2.16m 15.04o 28.78m 88.70o

PoseLSTM
100 2.09m 14.69o 28.05m 77.10o

200 2.07m 13.12o 28.10m 76.80o

500 1.95m 14.29o 28.12m 76.68o

As it can be observed in Table 4.2, the generalization ability and general robustness of both meth-

ods to changes in the environment had somewhat mixed results.

In the small scale CRAS pool setting, the average errors in trajectory are still within a reasonable

range however, orientation perception performance falls off significantly. Despite of the shortcom-

ings, the results on localization still provide a fairly good picture of the robot trajectory (see Fig.

4.6), notwithstanding the very noticeable presence of outlier values.

Figure 4.6: CRAS pool relocalization performance: In red, we can observe the robot groundtruth
trajectory and in blue the predicted 2D coordinates. Note that position estimates are estimated as
3D translation vectors, but the z-dimension was omitted in this use case for the sake of represen-
tation (i.e. movement was only 2-dimensional)

48 Deep Learning Approaches for Visual-based Robot Navigation

Results on operational mission scenarios, on the other hand, present a somewhat lackluster perfor-

mance in generalization ability, with the model not being able to successfully relocalize. However,

the unfavorable conditions of the data must be taken into account: the homogeneity and overall

textureless of the mine walls, coupled with uneven illumination conditions, present a uniquely

challenging and complex scenario for visual based methods.

4.4 Egomotion Estimation

In the scope of underwater robotics research and development, and specifically in the context of

our work, the most interesting application we are interested in exploring are unsupervised Deep

Learning frameworks for egomotion estimation.

For the purpose of estimating motion dynamics, we are turning our attention to two similar state-

of-the-art deep convolutional visual frameworks: SfmLearner [36] and GeoNet [39]. Though both

frameworks also estimate monocular depth (and optical flow in the case of GeoNet), we are only

focusing on camera motion estimation CNN’s.

4.4.1 SfMLearner

SfMLearner is of an unsupervised learning pipeline for depth and egomotion estimation. The

unsupervised objective is fulfilled based on the following intuition: given knowledge of camera

self-motion within a sequence of images and the depth of every pixel in those images, we can gain

an unsupervised target by performing view synthesis.

Figure 4.7: CRAS pool 5-sequence length snippet:

As mentioned above, we are interested in evaluating Zhou’s PoseNet, the SfMLearner framework

component responsible for regressing 6-DoF pose estimates. The PoseNet architecture is essen-

tially a temporal convolutional network which processes a sequence of of n images by predicting

relative transformation from the center image of the sequence (the image at the central position of

the snippet, as shown in Fig. 4.7) to the other images in the sequence, outputting a n-1 transfor-

mation vector composed of a 3D translation vector and a Euler angle orientation vector for each

transformation.

4.4 Egomotion Estimation 49

The network itself is a convolutional regressor model with seven convolutional layers with stride-2

followed by ReLU activations, leading to a final linear convolution that outputs the aforementioned

6 x (n-1)- dimensional channels. On top on this network, an "explainability" mask is used to

downweight the loss on image patches undergoing motion external to the camera’s motion (e.g. a

car or pedestrian moving in the frame).

Figure 4.8: Representation of the SfMlearner PoseNet, the framework component responsible
for regressing 6-DoF pose estimates. It consists of 7 blocks of convolutional layers followed by
ReLU activations, outputting a 6-dimensional vector that comprises a 3D translation vector and
euler angles orientation representation.

4.4.1.1 Procedure and Hyperparameter Details

We began by writing a custom dataset loader that fed the visual and groudtruth data to the frame-

work in the same way the author does for the KITTI dataset, opting as well for a 5-snippet se-

quence length. Calibrated camera intrinsics and timestamp files were also introduced, construct-

ing an input directory consisting of 416x128 sequences of 5 stacked consecutive images, intrinsic

calibration parameters and groundtruth pose for training data.

We train all models using the Adam [74] optimizer, using a small hyper-parameter search over

learning rates [0.0005,0.001,0.005] to determine a suitable learning rate that best fit the data. We

found early that rotation errors were introducing large global trajectory errors due to unaligning

the pose sequence with the groundtruth thus accumulating significant drift, and so we decided to

penalize heavier errors in rotation.

50 Deep Learning Approaches for Visual-based Robot Navigation

Training took on average 250K epochs on our dataset to converge, with tensorflow[75] running on

a CUDA enabled Nvidia GTX 1080.

In addition, a post processing step was implemented in order to recover the full trajectory from the

5-snippet predicts, so as to plot the results and analyze the concatenated global trajectory errors.

As the network was trained with the camera reference frame, the results also underwent through

the reference frame transformation mentioned in section 4.2.1, from camera to body reference

frame.

4.4.2 GeoNet

GeoNet [39] is a jointly trained end-to-end unsupervised learning framework for monocular depth,

optical flow and egomotion estimation. Specifically, this framework focuses on extracting geo-

metric relationships in the input data by separately considering static and dynamic elements in

the scene. Significant performance gains have been reported, mostly due to increased robustness

towards texture ambiguity and occlusions in the scene.

The framework is composed of two stages: the Rigid Structure Reconstructor and the Non-rigid

Motion Localizer. The first stage is tasked with understanding the scene layout and structure and

it consists of two sub-networks, i.e. the DepthNet and the PoseNet. The second stage concerns

itself with dynamic objects in the scene and it utilised for the purpose of refining imperfect results

from the first stage due to motion external to the camera motion, as well as help deal with high

pixel saturation and extreme lighting conditions.

Similarly to SfMlearner, view synthesis at different stages works as a synthetic supervision for

the unsupervised learning architecture, with image appearance similarity enforcing geometric and

photometric consistency within the loss function.

The most relevant part of the framework in the scope of our work is the Pose Net, which consists

of 7 convolutional layers followed by batch normalization and Relu activation (see Fig. 4.9). The

prediction layers outputs the 6-DoF camera poses, i.e. translational vectors and orientation Euler

angles.

4.4 Egomotion Estimation 51

Figure 4.9: Representation of the GeoNet PoseNet, the framework component responsible for
regressing 6-DoF pose estimates. It consists of 7 blocks of convolutional layers followed by
ReLU activations and additional batch normalization layers, outputting a 6-dimensional vector
that comprises a 3D translation vector and euler angles orientation representation.

4.4.2.1 Procedure and Hyperparameter Details

GeoNet’s input data shares the same preprocessing steps mentioned in the scope of the SfMlearner

experiment. A similar sequence lenght of 5 image snippets in conjunction with camera intrinsics

was fed to the network, training only the Rigid Structure Reconstructor half of the framework.

The chosen optimizer was Adam, and a learning rate sweep was performed around the intervals

[0.0001,0.0002,0.0005,0.001] where β1 = 0.9 and β2 = 0.999. Due to high number of trainable

parameters in the network, a reduced mini-batch size was utilized and training converged on aver-

age after 200K iterations on the training data.

The training setup was also the same, running the architecture on top of tensorflow, with an Nvidia

GTX 1080.

Global trajectory was recovered from 5-frame snippets odometry predicts and transformed to the

robot body central reference frame, in an analogous way to how we did with SfMLearner.

52 Deep Learning Approaches for Visual-based Robot Navigation

4.4.3 Results

Results on our dataset are presented in two different forms. First, we evaluate in a similar fashion to

how both authors presented them, by computing estimate errors within the previously mentioned

5-frame sequences, with scale correction optimization and alignment with groundtruth data, so

as to resolve scale ambiguity. In addition, we decided to evaluate full sequence pose estimates,

through concatenating camera position inferences to a global trajectory and computing both abso-

lute position errors and relative pose deltas. The same scale correction and groundtruth alignment

process that both authors use on their publications was also utilized.

In order to contextualize the reader about state-of-the-art method performance on a common

benchmark dataset, we begin by presenting the results of motion estimation on the KITTI dataset,

that were able to be accurately reproduced. Additional information, not present on the papers,

about the full concatenated trajectory is introduced and presented before we proceed to access the

performance of the same algorithms on the underwater context.

Table 4.3: Absolute Trajectory Error (ATE) method evaluation: The presented results comprise
the best results we were able to obtain for each architecture in each dataset sequence, following
the author’s evaluation procedure within 5-frame snippets

KITTI seq 09 KITTI seq 10 CRAS Pool Urgeiriça Mine

SfMLearner 0.016±0.009 0.013±0.009 0.016±0.006 0.028±0.086
GeoNet 0.012±0.007 0.012±0.009 0.012±0.006 0.026±0.081

In table 4.3, we report the results of ATE method evaluation, following the same evaluation proce-

dure conducted by the respective authors, whereby relative motion is evaluated only locally within

the 5-frame sequence length snippets. ATE is computed on 5-frame snippets and averaged over

the full sequence. Right away it is possible to observe that we were only able to reproduce same

magnitude performance in the CRAS pool sequence, with comparatively poorer accuracy in the

more complex Urgeiriça mine sequence.

In the remaining of this chapter, we will present and discuss the results considering the full con-

catenated trajectory, thereby escaping the snippet representation and recomputing errors with re-

spect to translation for all sequence trajectories under analysis.

4.4 Egomotion Estimation 53

Figure 4.10: Results for KITTI sequence 09: on the left image we can see the computed trajectory
estimates against groundtruth data and on the right hand side the error decoupled by translation
axis

170.0 340.0 510.0 681.0 851.0

Distance traveled [m]

0

25

50

75

100

T
ra

ns
la

ti
on

er
ro

r
[m

]

Figure 4.11: Translation Error with respect to distance traveled from SfMlearner pose estimates in
KITTI sequence 09

170.0 340.0 510.0 681.0 851.0

Distance traveled [m]

0

100

200

300

400

T
ra

ns
la

ti
on

er
ro

r
[m

]

Figure 4.12: Translation Error with respect to distance traveled from GeoNet pose estimates in
KITTI sequence 09

54 Deep Learning Approaches for Visual-based Robot Navigation

Figure 4.13: Results for KITTI sequence 10: on the left image we can see the computed trajectory
estimates against groundtruth data and on the right hand side the error decoupled by translation
axis

91.0 183.0 275.0 367.0 459.0

Distance traveled [m]

0

20

40

60

80

100

T
ra

ns
la

ti
on

er
ro

r
[m

]

Figure 4.14: Translation Error with respect to distance traveled from SfMlearner pose estimates in
KITTI sequence 10

91.0 183.0 275.0 367.0 459.0

Distance traveled [m]

0

50

100

150

200

250

T
ra

ns
la

ti
on

er
ro

r
[m

]

Figure 4.15: Translation Error with respect to distance traveled from GeoNet pose estimates in
KITTI sequence 10

4.4 Egomotion Estimation 55

Table 4.4: Absolute Pose Error (APE) w.r.t translation: Compilation of best obtained results on full
concatenated trajectory in the global reference frame, comprising both algorithms and all training
procedures.

Absolute Pose Error (APE)
"raw" comparison scale-corrected SIM(3) Umeyama aligment

Avg.Error RMSE (m) Avg.Error RMSE (m) Avg.Error RMSE (m)

CRAS POOL 3.301±2.049 3.996 2.755±1.573 3.049 0.731±0.440 0.905

Urgeiriça Mine 52.709±1.199 52.461 20.354±3.366 19.129 0.721±0.584 1.077

Figure 4.16: Results for CRAS pool sequence: on the left image we can see the computed trajec-
tory estimates against groundtruth data and on the right hand side the error decoupled by transla-
tion axis

1.0 3.0 4.0 6.0 7.0

Distance traveled [m]

0

1

2

3

4

5

T
ra

ns
la

ti
on

er
ro

r
[m

]

Figure 4.17: Translation Error with respect to distance traveled from SfMlearner pose estimates in
our CRAS pool sequence

56 Deep Learning Approaches for Visual-based Robot Navigation

1.0 3.0 4.0 6.0 7.0

Distance traveled [m]

1

2

3

4

T
ra

ns
la

ti
on

er
ro

r
[m

]

Figure 4.18: Translation Error with respect to distance traveled from GeoNet pose estimates in our
CRAS pool sequence

Table 4.5: Relative Pose Error (RPE): Evaluation of relative pose error provides insight about the
local accuracy, i.e. the visual odometry drift of pose estimates

Relative Pose Error (RPE)
6-Dof Pose Position Attitude

Avg.Error RMSE Avg.Error RMSE Avg.Error RMSE

SfMLearner
CRAS Pool 0.034±0.027 0.048 0.022±0.017 0.031 0.022±0.024 0.037

Urgeiriça Mine 0.028±0.254 0.265 0.014±0.06 0.142 0.020±0.216 0.224

GeoNet
CRAS Pool 0.027±0.094 0.157 0.017±0.092 0.154 0.013±0.020 0.030

Urgeiriça Mine 0.023±0.218 0.261 0.010±0.048 0.139 0.019±0.214 0.221

4.4 Egomotion Estimation 57

Figure 4.19: Results for Urgeiriça mine sequence: on the left image we can see the computed
trajectory estimates against groundtruth data and on the right hand side the error decoupled by
translation axis

2.0 5.0 8.0 11.0 14.0

Distance traveled [m]

5

10

15

20

T
ra

ns
la

ti
on

er
ro

r
[m

]

Figure 4.20: Translation Error with respect to distance traveled from SfMlearner pose estimates in
our Urgeiriça mine test sequence

2.0 5.0 8.0 11.0 14.0

Distance traveled [m]

2

4

6

8

T
ra

ns
la

ti
on

er
ro

r
[m

]

Figure 4.21: Translation Error with respect to distance traveled from GeoNet pose estimates in our
Urgeiriça mine test sequence

58 Deep Learning Approaches for Visual-based Robot Navigation

4.5 Summary

This chapter analyzed the performance of Deep Learning methods on robotic relocalization and

egomotion estimation tasks, with particular emphasis on the underwater context. Localization is

one of the most fundamental competencies required by an autonomous robot as the knowledge

of a robot position in the environment can be a prerequisite for SLAM systems or an adequate

strategy for solving the robot "kidnap" problem, serving essentially as a precursor to the decision

making process about future actions.

Underwater visual-based navigation poses different challenges compared to the common bench-

mark urban scenarios, thus further highlighting the necessity to assess the performance of such

methods in the underwater context. The underwater visual dataset developed in this work encom-

passes both a controlled structured environment and operational mission scenario data, therefore

allowing for an in depth study of deep learning method performance and accuracy

The study of deep visual relocalization architectures yielded two fundamental conclusions: deep

learning methods can achieve satisfactory accuracy and performance in complex scenarios but the

generalization ability of the methods remains somewhat lackluster, not showing great robustness to

variations in lighting conditions and variations in robot trajectory and velocity. However, it can be

assumed that deep visual relocalization algorithms have the potential to be applied in real robotic

solutions equipped with suitable GPU hardware, though real time testing of the architectures is

still required.

The performance of state-of-the-art deep learning methods for egomotion estimation can be ana-

lyzed through different perspectives, leading to the following conclusions:

• First of all, as it can be observed in table 4.3, we were able to produce similar results

to those presented in the literature only for our CRAS pool sequence. It is still a good

indication that it was possible to achieve such results in the underwater context, however, it

is important to note that it was only true for our fully known structured environment. Real

mission operational scenarios like the Urgeiriça mine sequence pose greater challenges to

visual-based motion estimation algorithms and that is reflected on higher magnitude error

rates.

• Secondly, it is possible to observe that both networks performs fairly better at regressing

translational displacement than rotational movement. Rotation, and in particular pure rota-

tions, are not handled well in any of the studied methods.

• In accordance to the expectations, and in agreement with both authors result presentation,

pose estimates only present persuasive results with a post-processing step. The need for

scale correction is a consequence of the use of monocular camera setups, but some type of

groundtruth alignment algorithm is also required.

4.5 Summary 59

• Though relative motion estimates seem at first glance to show potential due to small average

error rates, their concatenation onto the full trajectory reveals that the drift accumulation re-

sults in poor trajectory shape mimicking. In conclusion, there is still room for improvement

when it concerns to global pose estimation derived from unsupervised egomotion estimation

frameworks.

• Inference time may present a bottleneck for real-time implementation, since egomotion es-

timation frameworks are somewhat computationally heavy. However, it is reasonable to

assume that the trained models could be used in conjunction with inference optimization

software like TensorRT, allowing for the lower latency and higher throughput required by

real-time applications.

60 Deep Learning Approaches for Visual-based Robot Navigation

Chapter 5

Global Trajectory Optimization

5.1 Introduction

In the previous chapter, results of state-of-the-art deep learning methods for egomotion estimation

on our dataset were presented. As discussed in the previous chapter summary, the performance

and accuracy of such methods in underwater deep mine environment was not at all satisfactory

since there was significant accumulated drift in the global trajectory. This would severely hinder

the prospects of deploying such architectures in real applications, as robot localization would not

be reliable a short time after initialization.

With this in mind, two possible novel solutions for improving upon global 6-DoF global pose

estimates generated by egomotion estimation methods were conceived and implemented. In this

chapter, we will discuss and present the results of both architectures and access their impact on

correcting global trajectory estimates. Note that the purpose of this methods is not to work in-

dependently of the previously studied algorithms, rather working subsequently to the egomotion

estimation frameworks, effectively correcting the introduced drift on the trajectory estimates. The

ultimate goal would be to incorporate this developed subsystems in an end-to-end fashion with the

state-of-the-art solutions, helping to improve upon accuracy and performance of such methods.

61

62 Global Trajectory Optimization

5.2 Visual Inertial Fusion Network

Regardless of the algorithm, traditional monocular VO solutions are unable to observe the scale of

the scene and are subject to scale drift and scale ambiguity. This is not different for Deep Neural

architectures, as reported in the previously studied frameworks. The most common approach for

pose optimization in the literature is to fuse visual and inertial data as a way to enforce global scale

consistency with respect to the groundtruth data and therefore it would make sense to investigate

analogous deep learning approaches to perform this task.

In this work, we propose a Recurrent Neural Network architecture anchored in a supervised learn-

ing scheme whereby we use filtered IMU readings as a supervision for 6-DoF pose estimate opt-

mization.

The input space of this network are the concatenated egomotion predictions of both SfmLearner

and GeoNet, i.e. global trajectory estimates in the robot central body frame. For this purpose, and

due to deep learning architectures requiring large amounts of data to converge to a robust model,

we had to run multiple predictions from both frameworks so as to synthetize a dataframe dataset.

The network itself consists of stacked LSTM units working with progressively smaller time step

lags leading to a multilayer perceptron that regresses the optimized trajectory estimate. The goal

is to process the data as a sequence-to-sequence problem, optimizing the input trajectory estimates

to a more globally consistent trajectory.

The fundamental assumption driving this architecture is that the output space of the optimized

trajectory estimate lie in a manifold much smaller than 6-DoF space. Implicitly constraining the

output prediction space to a minimization of the mean square error between visual and inertial

data helps to avoid the curse of dimensionality.

For loss function design , the intuition was that we needed to make use of the quaternion parametriza-

tion to penalize rotation errors in a meaningful way. In this light, we decoupled the translation and

rotation components and formulated a loss function that takes the mean squared error for transla-

tion and the quaternion distance between estimate and groundtruth in the SO(3) group.

loss =
√

∑(E2
x +E2

y +E2
z)+∑ |qe−q| (5.1)

where Ex...z represents the computation of distance between estimate and groundtruth position.

Quaternion distance is computed as the norm of the difference between estimate and groundtruth

quaternions. In addition, we constrained the equation to take into account the fact that q and -q

encode the same rotation, only considering the smaller of the two possible distances in the loss

function calculation.

5.2 Visual Inertial Fusion Network 63

5.2.1 Training Procedure and Hyperparameter grid-search

In order to successfully train the network and obtain a robust representation of the input data fea-

ture space, and given that there was no prior knowledge about how to tune a pose optimization

network, we adopted a grid-search learning scheme to sweep multiple combinations of hyperpa-

rameters and return the one that converges to smaller loss values. This is only feasible in a short

timeframe because we are working with low dimensional data (i.e. dataframes instead of high

resolution imagery) but for this application, it is perfectly suited for finding an optimal solution

for hyperparameter tuning.

Table 5.1: Hyperparameter grid-search setup

Hyperparameter range

batch size [4,16,32]

LSTM hidden size [16,32,64,128]

dropout [0, 0.3, 0.5]

loss function ’our_custom_loss’

learning rate [0.0001, 0.0005, 0.001, 0.003, 0.005]

optimizer [’SGD’ , ’RMSprop’ , ’Adagrad’ , ’Adam’ , ’Adamax’ , ’Nadam’]

The grid search procedure was set up in Keras using python package Talos, on the same Nvidia

GTX 1080 used previously. Note that "patience" was defined as 150 epochs, which means that

there is no hard coded number of training epochs but if the loss is not decreasing for 150 epochs the

model is considered trained and training is stopped. Running this grid-search procedure yielded

the theoretical perfect combination of hyperparameters consisting of:

Table 5.2: Theoretical best fit for hyperparameter tuning

Hyperparameter Grid-Searched Tuning

batch size 32

LSTM hidden size 32

dropout 0.5

learning rate 0.001

optimizer ’Adam’

64 Global Trajectory Optimization

5.2.2 Results

Figure 5.1: Results for the CRAS pool sequence: on the left image we can see the computed
trajectory estimates against groundtruth data and on the right hand side the error decoupled by
translation axis

1.0 3.0 4.0 6.0 7.0

Distance traveled [m]

2

4

6

8

T
ra

ns
la

ti
on

er
ro

r
[m

]

Figure 5.2: Translation Error with respect to distance traveled from our network pose estimates in
our CRAS pool test sequence

5.2 Visual Inertial Fusion Network 65

Figure 5.3: Results for Urgeiriça mine sequence: on the top image we can see the computed
trajectory estimates against groundtruth data and on the bottom image the error decoupled by
translation axis

2.0 5.0 8.0 11.0 14.0

Distance traveled [m]

2

4

6

T
ra

ns
la

ti
on

er
ro

r
[m

]

Figure 5.4: Translation Error with respect to distance traveled from our network pose estimates in
our Urgeiriça mine test sequence

66 Global Trajectory Optimization

Table 5.3: Result compilation for absolute position error comprising both studied egomotion esti-
mation algorithms and our visual-inertial fusion network

Absolute Position Error (APE)
"raw" comparison scale-corrected SIM(3) Umeyama aligment

Avg.Error RMSE (m) Avg.Error RMSE (m) Avg.Error RMSE (m)

CRAS POOL

SfMlearner 3.301±2.049 3.996 2.755±1.573 3.049 0.731±0.440 0.905

GeoNet 28.739±14.613 29.912 20.846±6.687 20.087 5.345±1.112 5.475

ours 2.329±1.781 2.877 1.380±1.259 1.380 0.570±1.005 0.637

Urgeiriça Mine

SfMlearner 52.709±1.199 52.461 20.354±3.366 19.129 0.7208±0.584 1.158

GeoNet 55.392±2.728 56.096 22.043±1.041 22.475 0.839±0.543 1.077

ours 46.269±2.928 47.973 4.177±0.219 4.227 0.168±0.106 0.212

As it can be observed, our Visual-Inertial Fusion Network was able to synthesize the best results

for global trajectory estimation with or without any type of preprocessing step. It performs on

average around 40% better for the CRAS pool sequence while showing an average improvement of

around 55% in the Urgeiriça mine sequence. It is important to note, however, that both SfMlearner

and GeoNet are unsupervised frameworks, and the divised solution leverages a supervised learning

scheme.

5.3 Monocular Camera Pose Estimate Fusion Network 67

5.3 Monocular Camera Pose Estimate Fusion Network

The second pose optimization approach dwelt on this thesis works in a very similar manner despite

of its conceptual difference. Here, the proposed solution consists of fusing pose estimates from

multiple camera systems so as to refine the robot global trajectory estimate. The motivation behind

the development of this approach was to try to emulate stereo vision capabilities thought the use

of a Recurrent Neural Network without actually modelling the stereo vision system.

This approach would be extremely interesting for the UX-1, especially because it is equipped with

5 different camera systems with non-overlapping Fields-of-View (FOV), which complicates the

implementation of classical stereo vision algorithms.

It would be especially interesting if the pose optimization objective could be achieved within an

unsupervised learning scheme, as that would mean we could maintain end-to-end unsupervised

training and inference. This research direction was the first approach to the problem, however we

did not manage, in this short timeframe, to achieve a converging model using such unsupervised

learning architecture.

Despite of that, the idea of multiple camera system fusion still seemed a worthwhile concept to

explore further. As such, we applied it in a Recurrent Neural Network with pose groundtruth

supervision, in a similar sequence-to-sequence approach to how we did with our Visual-Inertial

Fusion Network.

The goal was to understand the extent to which the integration of multiple camera pose estimates

generated by deep learning architectures would influence the accuracy and performance of the

predicted trajectory.

The network architecture is a Recurrent Neural Network that takes both trajectory estimates and

fuses the information with groundtruth supervision. Theoretically, it would be possible to cor-

rect accumulated drift and possible inherent bias introduced by the aforementioned deep learning

methods since we are estimating the same robot motion from multiple different views, therefore

extracting feature information from different pool or mine walls.

The training procedure was highly influenced by the knowledge acquired in the design of the

previous architecture. A more confined hyperparameter sweep was performed to tune the network

for this task and otherwise the training scheme was roughly identical.

The conclusion reached was that we were not able to improve upon the standalone results from the

egomotion estimation frameworks using this approach, at least with the current form of network

architecture developed in this thesis frame. Nonetheless, it is worth reinforcing the merit of the

concept, as if it to be successfully implemented, has the potential to effectively introduce a stereo

perspective to a set of non-overlapping camera fields-of-view.

68 Global Trajectory Optimization

5.3.1 Results

Figure 5.5: Computed trajectory estimates against groundtruth data, in the Urgeiriça mine se-
quence.

Table 5.4: Results of our novel multi-camera fusion network for absolute position error.

Absolute Position Error (APE)
"raw" comparison scale-corrected SIM(3) Umeyama aligment

Avg.Error RMSE (m) Avg.Error RMSE (m) Avg.Error RMSE (m)

Urgeiriça Mine 49.675±2.908 51.50 7.697±0.188 7.675 0.138±0.121 0.201

Though it can be reported that trajectory error decreased substantially, a more thorough analysis of

the trajectory leads to the conclusion that the lower error with respect to translation comes to the

detriment of rotation performance, with the algorithm becoming less responsive to perturbations

in directions other than the most significant motion direction. Due to the nature of the data, and

since error minimization is the loss minimization criterium, it can be argued that the lower error

rate in the translation part of the trajectory does not represent an objectively better performance of

the algorithm.

Furthermore, there is also a possibility of existence of overfitting to the training data, since the

Urgeiriça mine sequence training data has a couple instances of shaft descent motions.

5.4 Summary 69

5.4 Summary

In this chapter we described the work done in the scope of this thesis, with respect to global pose

optimization of trajectory estimates generated from the previously studied egomotion estimation

frameworks.

We introduced a visual-inertial fusion network, anchored on a recurrent neural network architec-

ture with an inertial supervision learning scheme. It was shown to improve results an average of

50% for trajectory estimates, also producing more visually consistent trajectory estimates for both

our application scenarios. This approach can later be integrated with egomotion estimation frame-

works in an end-to-end fashion, leading to more accurate and reliable robot trajectory estimates.

Additionally, we described another possible solution that was dwelt on during this thesis. The

implementation of a multiple camera sensor network fusion was the focus of our development in

the later stages of the thesis, not ending up improving upon the previously obtained results in a

meaningful way within this thesis development timeframe.

70 Global Trajectory Optimization

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, the focus was placed on Deep Learning approaches for visual-based robot navigation,

with particular interest on evaluating the potential for learning-based visual method application on

complex underwater operational mission scenarios.

Firstly, a comprehensive review of state-of-the-art Deep Learning approaches for Visual Odome-

try applications was conducted, detailing the progress in performance and accuracy deep learning

methods have managed to achieve in recent years, as well as its shortcomings. It was concluded

that there was close to no information about the performance of deep learning methods in un-

derwater context scenarios, and would therefore be particularly interesting and relevant to assess

the performance of some of the most renown state-of-the-art algorithms in operational mission

underwater scenarios.

The next step was to construct a comprehensive dataset encompassing different texture environ-

ments and providing different types of challenges to visual-based pose and/or motion estimation.

As reported in chapter 4, this was achieved through the use of data acquired with the UX-1 robot,

presenting three novel image sequences that all pose different challenges to visual-based VO esti-

mation.

In order to access the performance of learning-based visual methods on our dataset image se-

quence, we focused on two different tasks: absolute relocalization and egomotion estimation. We

came to the conclusion that relocalization algorithms have an overall good performance across

different scenarios, but lack generalization ability when exposed to more than one different map-

ping during training. It is reasonable to assume that we could achieve good performance from the

application of this methods in real robotic solutions, though real time testing was not performed

and thus validation is still required.

71

72 Conclusions and Future Work

As for egomotion estimation, the results were not as accurate and reliable as expected. Relative

motion estimates of state-of-the-art algorithms show small errors in translation yet rotations still

pose some challenges these methods are not able to overcome. Analyzing concatenated trajec-

tories, we can easily observe that pure rotations and accumulated drifts lead to failures in pose

estimation, thus making the algorithm unable to provide consistent and reliable estimates, as re-

quired by real robotic systems. In conclusion, the studied deep learning approaches for egomotion

estimation do not yet meet the requirements for stable real robot implementation.

In chapter 5, we again address the issue of the aforementioned poor performance of egomotion

estimation methods, presenting two possible solutions for obtaining the global pose optimization

objective. The first conceived and developed solution was a Visual-Inertial Fusion Network, aimed

at improving global pose estimates through an inertial supervision learning scheme. This super-

vised architecture proved to significantly improve results on global pose estimation, with around

50% better error rates. Lastly, we conceived a solution where multiple camera pose estimates are

fused, as a way to go around the UX-1 design constraints, where visual stereo implementations are

hard to design, due to non-overlapping camera fields-of-view. However, in the timeframe of this

thesis, we were unable to obtain a converging model with consistent results for this architecture.

Nonetheless, it still remains as an interesting research direction for future implementations.

In this thesis, real-time implementation of deep learning algorithms was not addressed, mainly

because the UX-1 does not possess any type of GPU hardware, therefore rendering any conclusion

from on board implementations non-viable. It is however safe to assume that an extra real-time

optimization step would need to be performed on the inference process to obtain a reasonable

frame rate.

6.2 Future Work 73

6.2 Future Work

The following future work in this thesis research scope is suggested:

• Integration of visual-inertial fusion within end-to-end deep learning for robot navigation

pipelines. Further study of inertial integration without losing the unsupervised learning

objective.

• Assessment and testing of visual stereo implementations on top of Deep Learning archi-

tectures. This work focused on monocular camera setups mostly due to the UX-1 design

constraints, yet it would be interesting to investigate the performance of deep learning ar-

chitectures for the stereo use case.

• Real-time implementation and testing of deep learning architectures for both relocalization

and egomotion tasks. The low budget recommended option would be using a Nvidia Jetson

Nano and TensorRT for fast inference implementation.

• Expansion of the formulation of a multiple camera pose estimate fusion scheme, that is

able to regress consistent and reliable pose estimates through combining visual odometry

estimates from non-overlapping camera fields-of-view

74 Conclusions and Future Work

References

[1] Viable Alternative Mine Operating System - INESC TEC. URL: https://www.
inesctec.pt/en/projects/vamos#intro.

[2] Autonomous Underwater Explorer for Flooded Mines - INESC TEC. URL: https://www.
inesctec.pt/en/projects/unexmin.

[3] Koichiro Yamaguchi, Takeo Kato, and Yoshiki Ninomiya. Vehicle ego-motion estimation
and moving object detection using a monocular camera. In Pattern Recognition, 2006. ICPR
2006. 18th International Conference on, volume 4, pages 610–613. IEEE, 2006.

[4] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. Proceedings of the
2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2004. URL: https://www.engineeringvillage.com/share/document.url?
mid=inspec_480457fff4e3c658M603419255120119&database=ins.

[5] Andrew Howard. Real-time stereo visual odometry for autonomous ground vehicles. In
Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on,
pages 3946–3952. IEEE, 2008.

[6] Jakob Engel, Jurgen Sturm, and Daniel Cremers. Semi-dense visual odometry for a monoc-
ular camera. In Proceedings of the IEEE international conference on computer vision, pages
1449–1456, 2013.

[7] Peter Corke. Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer
Publishing Company, Incorporated, 1st edition, 2013.

[8] Hans Peter Moravec. Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover. PhD thesis, Stanford, CA, USA, 1980.

[9] Clark F Olson, Larry H Matthies, Marcel Schoppers, and Mark W Maimone. Robust stereo
ego-motion for long distance navigation. In cvpr, page 2453. IEEE, 2000.

[10] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications of
the ACM, 24(6):381–395, 1981.

[11] Yang Cheng, M. Maimone, and L. Matthies. Visual Odometry on the Mars Explo-
ration Rovers. 2005 IEEE International Conference on Systems, Man and Cybernet-
ics, 1:903–910. URL: http://ieeexplore.ieee.org/document/1571261/, doi:
10.1109/ICSMC.2005.1571261.

[12] Davide Scaramuzza and Friedrich Fraundorfer. Tutorial: Visual odometry. IEEE Robotics
and Automation Magazine, 18(4):80–92, 2011. doi:10.1109/MRA.2011.943233.

75

https://www.inesctec.pt/en/projects/vamos#intro
https://www.inesctec.pt/en/projects/vamos#intro
https://www.inesctec.pt/en/projects/unexmin
https://www.inesctec.pt/en/projects/unexmin
https://www.engineeringvillage.com/share/document.url?mid=inspec_480457fff4e3c658M603419255120119&database=ins
https://www.engineeringvillage.com/share/document.url?mid=inspec_480457fff4e3c658M603419255120119&database=ins
http://ieeexplore.ieee.org/document/1571261/
http://dx.doi.org/10.1109/ICSMC.2005.1571261
http://dx.doi.org/10.1109/ICSMC.2005.1571261
http://dx.doi.org/10.1109/MRA.2011.943233

76 REFERENCES

[13] Davide Scaramuzza and Friedrich Fraundorfer. Visual Odometry: Part II - Match-
ing, Robustness, and Applications. IEEE Robotics & Automation Magazine, 18(4):80–
92, 2011. URL: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=6096039, doi:10.1109/MRA.2011.943233.

[14] Peter Corke, Dennis Strelow, and Sanjiv Singh. Omnidirectional visual odometry for a
planetary rover. In Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004
IEEE/RSJ International Conference on, volume 4, pages 4007–4012. IEEE, 2004.

[15] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[16] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In
European conference on computer vision, pages 404–417. Springer, 2006.

[17] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB: An efficient alter-
native to SIFT or SURF. In Computer Vision (ICCV), 2011 IEEE international conference
on, pages 2564–2571. IEEE, 2011.

[18] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary robust
independent elementary features. In European conference on computer vision, pages 778–
792. Springer, 2010.

[19] Hugo Miguel. INSTITUTO SUPERIOR TÉCNICO A Probabilistic Approach for Stereo
Visual Egomotion.

[20] John L Barron, David J Fleet, and Steven S Beauchemin. Performance of optical flow tech-
niques. International journal of computer vision, 12(1):43–77, 1994.

[21] John Jin Keat Lim and others. Egomotion estimation with large field-of-view vision. 2010.

[22] Simon Baker and Iain Matthews. Lucas-kanade 20 years on: A unifying framework. Inter-
national journal of computer vision, 56(3):221–255, 2004.

[23] Joseph Weber and Jitendra Malik. Robust computation of optical flow in a multi-scale dif-
ferential framework. International Journal of Computer Vision, 14(1):67–81, 1995.

[24] Berthold K P Horn and Brian G Schunck. Determining optical flow. Artificial intelligence,
17(1-3):185–203, 1981.

[25] David J Heeger. Optical flow using spatiotemporal filters. International journal of computer
vision, 1(4):279–302, 1988.

[26] David J Fleet and Allan D Jepson. Computation of component image velocity from local
phase information. International journal of computer vision, 5(1):77–104, 1990.

[27] Masami Ogata and Takao Sato. Motion-detection model with two stages: Spatiotemporal
filtering and feature matching. JOSA A, 9(3):377–387, 1992.

[28] Arthur Goshtasby, Stuart H Gage, and Jon F Bartholic. A two-stage cross correlation ap-
proach to template matching. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, (3):374–378, 1984.

[29] Theodore A Camus. Method for real time correlation of stereo images, 2003.

[30] Hugo Silva, Alexandre Bernardino, and Eduardo Silva. A voting method for stereo egomo-
tion estimation. (June):1–16, 2017. doi:10.1177/1729881417710795.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6096039
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6096039
http://dx.doi.org/10.1109/MRA.2011.943233
http://dx.doi.org/10.1177/1729881417710795

REFERENCES 77

[31] Davide Scaramuzza, Friedrich Fraundorfer, and Roland Siegwart. Real-time monocular vi-
sual odometry for on-road vehicles with 1-point ransac. In Robotics and Automation, 2009.
ICRA’09. IEEE International Conference on, pages 4293–4299. Ieee, 2009.

[32] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT Press,
2016.

[33] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map prediction from a single image
using a multi-scale deep network. In Advances in neural information processing systems,
pages 2366–2374, 2014.

[34] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. CNN-SLAM: Real-time
dense monocular SLAM with learned depth prediction. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), volume 2, 2017.

[35] Ravi Garg, Vijay Kumar BG, Gustavo Carneiro, and Ian Reid. Unsupervised cnn for sin-
gle view depth estimation: Geometry to the rescue. In European Conference on Computer
Vision, pages 740–756. Springer, 2016.

[36] Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Unsupervised learning
of depth and ego-motion from video. In CVPR, volume 2, page 7, 2017.

[37] Vignesh Prasad and Brojeshwar Bhowmick. SfMLearner++: Learning Monocular Depth &
Ego-Motion using Meaningful Geometric Constraints. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 2087–2096. IEEE, 2019.

[38] David Nistér. An efficient solution to the five-point relative pose problem. IEEE transactions
on pattern analysis and machine intelligence, 26(6):756–770, 2004.

[39] Zhichao Yin and Jianping Shi. Geonet: Unsupervised learning of dense depth, optical flow
and camera pose. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1983–1992, 2018.

[40] Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia Schmid, Rahul Sukthankar, and Ka-
terina Fragkiadaki. Sfm-net: Learning of structure and motion from video. arXiv preprint
arXiv:1704.07804, 2017.

[41] Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network for
real-time 6-dof camera relocalization. In Proceedings of the IEEE international conference
on computer vision, pages 2938–2946, 2015.

[42] Alex Kendall and Roberto Cipolla. Geometric loss functions for camera pose regression
with deep learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5974–5983, 2017.

[43] Florian Walch, Caner Hazirbas, Laura Leal-Taixé, Torsten Sattler, Sebastian Hilsen-
beck, and Daniel Cremers. Image-based localization using LSTMs for structured fea-
ture correlation. In ICCV, 2017. URL: https://github.com/NavVisResearch/
NavVis-Indoor-Dataset.

[44] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir
Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning op-
tical flow with convolutional networks. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2758–2766, 2015.

https://github.com/NavVisResearch/NavVis-Indoor-Dataset
https://github.com/NavVisResearch/NavVis-Indoor-Dataset

78 REFERENCES

[45] Sen Wang, Ronald Clark, Hongkai Wen, and Niki Trigoni. DeepVO : Towards End-to-End
Visual Odometry with Deep Recurrent Convolutional Neural Networks. pages 2043–2050,
2017.

[46] Ruihao Li, Sen Wang, Zhiqiang Long, and Dongbing Gu. UnDeepVO: Monocular Visual
Odometry through Unsupervised Deep Learning. 2017. URL: http://arxiv.org/abs/
1709.06841, doi:10.1109/ICRA.2018.8461251.

[47] Abhinav Valada, Noha Radwan, and Wolfram Burgard. Deep auxiliary learning for visual
localization and odometry. In 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 6939–6946. IEEE, 2018.

[48] Valentin Peretroukhin, Brandon Wagstaff, Matthew Giamou, and Jonathan Kelly. Probabilis-
tic Regression of Rotations using Quaternion Averaging and a Deep Multi-Headed Network.
arXiv preprint arXiv:1904.03182, 2019.

[49] Ronald Clark, Sen Wang, Hongkai Wen, Andrew Markham, and Niki Trigoni. VINet:
Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem. 2017. doi:
10.1109/ISMAR.2016.19.

[50] Sudeep Pillai and John J Leonard. Towards visual ego-motion learning in robots. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5533–
5540. IEEE, 2017.

[51] Mehmet Turan, Jahanzaib Shabbir, Helder Araujo, Ender Konukoglu, and Metin Sitti. A deep
learning based fusion of RGB camera information and magnetic localization information for
endoscopic capsule robots. International journal of intelligent robotics and applications,
1(4):442–450, 2017.

[52] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics:
The KITTI dataset. The International Journal of Robotics Research, 32(11):1231–1237,
2013.

[53] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder, Sammy
Omari, Markus W Achtelik, and Roland Siegwart. The EuRoC micro aerial vehicle datasets.
The International Journal of Robotics Research, 35(10):1157–1163, 2016.

[54] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers. A
benchmark for the evaluation of RGB-D SLAM systems. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pages 573–580. IEEE, 2012.

[55] Ben Glocker, Shahram Izadi, Jamie Shotton, and Antonio Criminisi. Real-time RGB-D
camera relocalization. In 2013 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR), pages 173–179. IEEE, 2013.

[56] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon. Bundle
adjustment—a modern synthesis. In International workshop on vision algorithms, pages
298–372. Springer, 1999.

[57] Chris Engels, Henrik Stewénius, and David Nistér. Bundle adjustment rules. Photogram-
metric computer vision, 2(2006), 2006.

[58] Simon J D Prince. Computer Vision: Models, Learning, and Inference. Cambridge Univer-
sity Press, New York, NY, USA, 1st edition, 2012.

http://arxiv.org/abs/1709.06841
http://arxiv.org/abs/1709.06841
http://dx.doi.org/10.1109/ICRA.2018.8461251
http://dx.doi.org/10.1109/ISMAR.2016.19
http://dx.doi.org/10.1109/ISMAR.2016.19

REFERENCES 79

[59] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer-Verlag, Berlin,
Heidelberg, 1st edition, 2010.

[60] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, New York, NY, USA, 2 edition, 2003.

[61] H Christopher Longuet-Higgins. A computer algorithm for reconstructing a scene from two
projections. Nature, 293(5828):133, 1981.

[62] Laurent Kneip, Davide Scaramuzza, and Roland Siegwart. A novel parametrization of the
perspective-three-point problem for a direct computation of absolute camera position and
orientation. 2011.

[63] William Rowan Hamilton. Elements of Quaternions. Cambridge Library Collection - Math-
ematics. Cambridge University Press. doi:10.1017/CBO9780511707162.

[64] Robert H Wurtz. Recounting the impact of Hubel and Wiesel. The Journal of physiology,
587(12):2817–2823, 2009.

[65] Sepp Hochreiter and Jürgen Schmidhuber. LSTM can solve hard long time lag problems. In
Advances in neural information processing systems, pages 473–479, 1997.

[66] Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative trajectory evaluation for
visual (-inertial) odometry. In 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 7244–7251. IEEE, 2018.

[67] Michael Grupp. evo: Python package for the evaluation of odometry and SLAM.
\url{https://github.com/MichaelGrupp/evo}, 2017.

[68] Shinji Umeyama. Least-squares estimation of transformation parameters between two point
patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence, (4):376–380, 1991.

[69] Morgan Quigley, Ken Conley, Brian P Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. ROS: an open-source Robot Operating System. In ICRA
Workshop on Open Source Software, 2009.

[70] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1–9, 2015.

[71] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude Oliva. Learning
deep features for scene recognition using places database. In Advances in neural information
processing systems, pages 487–495, 2014.

[72] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary De-
Vito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentia-
tion in PyTorch. 2017.

[73] François Chollet. keras. \url{https://github.com/fchollet/keras}, 2015.

[74] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

http://dx.doi.org/10.1017/CBO9780511707162

80 REFERENCES

[75] Mart\’\in˜Abadi, Ashish˜Agarwal, Paul˜Barham, Eugene˜Brevdo, Zhifeng˜Chen,
Craig˜Citro, Greg˜S.˜Corrado, Andy˜Davis, Jeffrey˜Dean, Matthieu˜Devin, San-
jay˜Ghemawat, Ian˜Goodfellow, Andrew˜Harp, Geoffrey˜Irving, Michael˜Isard, Yangqing
Jia, Rafal˜Jozefowicz, Lukasz˜Kaiser, Manjunath˜Kudlur, Josh˜Levenberg, Dande-
lion˜Mané, Rajat˜Monga, Sherry˜Moore, Derek˜Murray, Chris˜Olah, Mike˜Schuster,
Jonathon˜Shlens, Benoit˜Steiner, Ilya˜Sutskever, Kunal˜Talwar, Paul˜Tucker, Vin-
cent˜Vanhoucke, Vijay˜Vasudevan, Fernanda˜Viégas, Oriol˜Vinyals, Pete˜Warden,
Martin˜Wattenberg, Martin˜Wicke, Yuan˜Yu, and Xiaoqiang˜Zheng. {Tensor-
Flow}: Large-Scale Machine Learning on Heterogeneous Systems, 2015. URL:
https://www.tensorflow.org/.

https://www.tensorflow.org/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation
	1.3 Objectives
	1.4 Contributions
	1.5 Document Structure

	2 Related Work
	2.1 Introduction
	2.2 Retrieving Image Information
	2.2.1 Stereo Vision
	2.2.2 Monocular Cameras
	2.2.3 Feature-based Methods
	2.2.4 Direct/Dense Methods

	2.3 Egomotion estimation
	2.4 Deep Learning for Computer Vision
	2.4.1 Depth Estimation
	2.4.2 Global Pose Estimation
	2.4.3 Egomotion Estimation

	2.5 Benchmark Datasets
	2.6 Summary

	3 Fundamentals
	3.1 Introduction
	3.2 Formulation of the VO problem
	3.3 Perspective Camera Model
	3.4 Epipolar Geometry
	3.5 Egomotion Estimation
	3.5.1 2D-to-2D: Motion from Image Feature Correspondence
	3.5.2 3D-to-3D: Motion from Structure Correspondence
	3.5.3 3D-to-2D: Motion from 3D Structure and Feature Correspondence

	3.6 Pose Parametrizations
	3.6.1 Rotation Matrix
	3.6.2 Euler Angles
	3.6.3 Quaternions

	3.7 Deep Learning
	3.7.1 Motivation
	3.7.2 Supervised vs Unsupervised schemes
	3.7.3 Concepts and Techniques
	3.7.4 Convolutional Neural Networks (CNN)
	3.7.5 Recurrent Neural Networks (RNN)
	3.7.6 Long Short-Term Memory Units (LSTM)

	3.8 Evaluation Metrics

	4 Deep Learning Approaches for Visual-based Robot Navigation
	4.1 Introduction
	4.2 Underwater Visual Dataset
	4.2.1 The Robotic Solution
	4.2.2 Scenarios
	4.2.3 Environment constraints

	4.3 Relocalization and Global Pose Estimation
	4.3.1 Results on Deep Visual Relocalization
	4.3.2 Generalization

	4.4 Egomotion Estimation
	4.4.1 SfMLearner
	4.4.2 GeoNet
	4.4.3 Results

	4.5 Summary

	5 Global Trajectory Optimization
	5.1 Introduction
	5.2 Visual Inertial Fusion Network
	5.2.1 Training Procedure and Hyperparameter grid-search
	5.2.2 Results

	5.3 Monocular Camera Pose Estimate Fusion Network
	5.3.1 Results

	5.4 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References

