38 research outputs found

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Specifying and Detecting Topological Changes to an Areal Object

    Get PDF

    Towards Spatial Queries over Phenomena in Sensor Networks

    Get PDF
    Today, technology developments enable inexpensive production and deployment of tiny sensing and computing nodes. Networked through wireless radio, such senor nodes form a new platform, wireless sensor networks, which provide novel ability to monitor spatiotemporally continuous phenomena. By treating a wireless sensor network as a database system, users can pose SQL-based queries over phenomena without needing to program detailed sensor node operations. DBMS-internally, intelligent and energyefficient data collection and processing algorithms have to be implemented to support spatial query processing over sensor networks. This dissertation proposes spatial query support for two views of continuous phenomena: field-based and object-based. A field-based view of continuous phenomena depicts them as a value distribution over a geographical area. However, due to the discrete and comparatively sparse distribution of sensor nodes, estimation methods are necessary to generate a field-based query result, and it has to be computed collaboratively ‘in-the-network’ due to energy constraints. This dissertation proposes SWOP, an in-network algorithm using Gaussian Kernel estimation. The key contribution is the use of a small number of Hermite coefficients to approximate the Gaussian Kernel function for sub-clustered sensor nodes, and processes the estimation result efficiently. An object-based view of continuous phenomena is interested in aspects such as the boundary of an ‘interesting region’ (e.g. toxic plume). This dissertation presents NED, which provides object boundary detection in sensor networks. NED encodes partial event estimation results based on confidence levels into optimized, variable length messages exchanged locally among neighboring sensor nodes to save communication cost. Therefore, sensor nodes detect objects and boundaries based on moving averages to eliminate noise effects and enhance detection quality. Furthermore, the dissertation proposes the SNAKE-based approach, which uses deformable curves to track the spatiotemporal changes of such objects incrementally in sensor networks. In the proposed algorithm, only neighboring nodes exchange messages to maintain the curve structures. Based on in-network tracking of deformable curves, other types of spatial and spatiotemporal properties of objects, such as area, can be provided by the sensor network. The experimental results proved that our approaches are resource friendly within the constrained sensor networks, while providing high quality query results

    Swarm Intelligence

    Get PDF
    Swarm Intelligence has emerged as one of the most studied artificial intelligence branches during the last decade, constituting the fastest growing stream in the bio-inspired computation community. A clear trend can be deduced analyzing some of the most renowned scientific databases available, showing that the interest aroused by this branch has increased at a notable pace in the last years. This book describes the prominent theories and recent developments of Swarm Intelligence methods, and their application in all fields covered by engineering. This book unleashes a great opportunity for researchers, lecturers, and practitioners interested in Swarm Intelligence, optimization problems, and artificial intelligence

    Spatiotemporal Wireless Sensor Network Field Approximation with Multilayer Perceptron Artificial Neural Network Models

    Get PDF
    As sensors become increasingly compact and dependable in natural environments, spatially-distributed heterogeneous sensor network systems steadily become more pervasive. However, any environmental monitoring system must account for potential data loss due to a variety of natural and technological causes. Modeling a natural spatial region can be problematic due to spatial nonstationarities in environmental variables, and as particular regions may be subject to specific influences at different spatial scales. Relationships between processes within these regions are often ephemeral, so models designed to represent them cannot remain static. Integrating temporal factors into this model engenders further complexity. This dissertation evaluates the use of multilayer perceptron neural network models in the context of sensor networks as a possible solution to many of these problems given their data-driven nature, their representational flexibility and straightforward fitting process. The relative importance of parameters is determined via an adaptive backpropagation training process, which converges to a best-fit model for sensing platforms to validate collected data or approximate missing readings. As conditions evolve over time such that the model can no longer adapt to changes, new models are trained to replace the old. We demonstrate accuracy results for the MLP generally on par with those of spatial kriging, but able to integrate additional physical and temporal parameters, enabling its application to any region with a collection of available data streams. Potential uses of this model might be not only to approximate missing data in the sensor field, but also to flag potentially incorrect, unusual or atypical data returned by the sensor network. Given the potential for spatial heterogeneity in a monitored phenomenon, this dissertation further explores the benefits of partitioning a space and applying individual MLP models to these partitions. A system of neural models using both spatial and temporal parameters can be envisioned such that a spatiotemporal space partitioned by k-means is modeled by k neural models with internal weightings varying individually according to the dominant processes within the assigned region of each. Evaluated on simulated and real data on surface currents of theGulf ofMaine, partitioned models show significant improved results over single global models

    Collective sensing: integrating geospatial technologies to understand urban systems : an overview

    Get PDF
    Cities are complex systems composed of numerous interacting components that evolve over multiple spatio-temporal scales. Consequently, no single data source is sufficient to satisfy the information needs required to map, monitor, model, and ultimately understand and manage our interaction within such urban systems. Remote sensing technology provides a key data source for mapping such environments, but is not sufficient for fully understanding them. In this article we provide a condensed urban perspective of critical geospatial technologies and techniques: (i) Remote Sensing; (ii) Geographic Information Systems; (iii) object-based image analysis; and (iv) sensor webs, and recommend a holistic integration of these technologies within the language of open geospatial consortium (OGC) standards in-order to more fully understand urban systems. We then discuss the potential of this integration and conclude that this extends the monitoring and mapping options beyond “hard infrastructure” by addressing “humans as sensors”, mobility and human-environment interactions, and future improvements to quality of life and of social infrastructures.(VLID)218440

    New directions in the analysis of movement patterns in space and time

    Get PDF
    corecore