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As sensors become increasingly compact and dependable in natural environments, 

spatially-distributed heterogeneous sensor network systems steadily become more 

pervasive. However, any environmental monitoring system must account for potential 

data loss due to a variety of natural and technological causes.   Modeling a natural spatial 

region can be problematic due to spatial nonstationarities in environmental variables, and 

as particular regions may be subject to specific influences at different spatial scales.  

Relationships between processes within these regions are often ephemeral, so models 

designed to represent them cannot remain static.   Integrating temporal factors into this 

model engenders further complexity.  

This dissertation evaluates the use of multilayer perceptron neural network 

models in the context of sensor networks as a possible solution to many of these 

problems given their data-driven nature, their representational flexibility and 

straightforward fitting process.  The relative importance of parameters is determined via 

an adaptive backpropagation training process, which converges to a best-fit model for 



 

  

 

 

sensing platforms to validate collected data or approximate missing readings.  As 

conditions evolve over time such that the model can no longer adapt to changes, new 

models are trained to replace the old.  

We demonstrate accuracy results for the MLP generally on par with those of 

spatial kriging, but able to integrate additional physical and temporal parameters, 

enabling its application to any region with a collection of available data streams. Potential 

uses of this model might be not only to approximate missing data in the sensor field, but 

also to flag potentially incorrect, unusual or atypical data returned by the sensor network. 

Given the potential for spatial heterogeneity in a monitored phenomenon, this dissertation 

further explores the benefits of partitioning a space and applying individual MLP models 

to these partitions. A system of neural models using both spatial and temporal parameters 

can be envisioned such that a spatiotemporal space partitioned by k-means is modeled by 

k neural models with internal weightings varying individually according to the dominant 

processes within the assigned region of each. Evaluated on simulated and real data on 

surface currents of the Gulf of Maine, partitioned models show significant improved 

results over single global models. 
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1. --- 

CHAPTER 1 

SPATIOTEMPORAL FIELD INTERPOLATION 

1.1 Introduction 

 One of the most well-known and long-standing dichotomies in the discipline of 

spatial science is one of model representation: whether geographic phenomena are best 

interpreted as objects or fields (Couclelis 1992; Goodchild 1992; Camara et al. 1994).  

The choice between these two alternative approaches comes down to balancing the 

various needs of conceptualization and perspective with context and scale.  A mountain 

range may be conceptualized in a computer model as an object whose height at any point 

along its length creates a rain-shadow upon adjacent space. The same mountain range 

may also be rendered as a field of elevation values within a digital elevation model.  As 

most if not all geographic phenomena can be expressed through either conceptual 

perspective (Peuquet et al. 1999), the context for which the representation is needed will 

generally determine which approach is employed.  Scale of the phenomena may also play 

a role in the modeler’s choice of computer implementation.  The concepts of cognitive 

typology (Zubin 1989) relate scale and perspective interactions to define the human 

experience of cognitive geography.  Entities which are perceived to occupy spaces 

smaller than the human body inhabit A-space; while B-space entities appear to human 

cognition to be scaled-up versions of A-spaces.  Entities in C-space can only be 

apprehended partially, as from a vantage point; and an entity in D-space (e.g., the solar 

system) is likely outside direct human experience, and only deduced from a collection of 
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clues, readings, and other pieces of knowledge we are able to collate.  This categorization 

of spaces defines a continuum which seemingly links the two extremes of human 

conceptual perspective: entities in A- and B-space appear to be more amenable to a 

discrete object-modeling approach, while C- and D-space entities tend towards a more 

field-like representation. 

 

1.1.1 Properties of Spatial Fields 

 A spatial field is often defined as a functional mapping for a given instant in time 

from a collection of locations in space to a domain of attribute values (Worboys and 

Duckham 2004).  For example a gridded topographic map is a discretized representation 

of a continuous theoretical field of elevation values for a given terrain.  The field is 

represented by a continuous function relating each pair of grid coordinates (x,y) to some 

elevation attribute z at that location.  Fields may similarly be defined for any other 

attribute that can be measured over the monitored space.   Examples of fields include air 

temperature, land cover type, change in yearly average rainfall, or wind magnitude and 

direction.  From these examples we can observe that fields will take on the characteristics 

of their component measurements.  They may be composed of single-valued readings 

(temperature), or vector-valued (wind direction, magnitude); they may be continuous 

(elevation) or discrete (cover type).  They may exist at any of the Stevens scales of 

measure: categorical, ordinal, interval, and ratio (Stevens 1946).   

 From the examples above, it is clear that the measurements composing the fields 

can vary at different temporal scales.  A field of elevation values, for example, might be 

considered for most practical purposes to be time-invariant; we would not expect any 
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substantive change in the field in shorter than geologic timescales (with the possible 

exception of active volcanic regions).  Whereas measurements of temperature or wind-

speed are in constant flux, and can be expected to change significantly over short time 

periods.  Spatiotemporal fields must incorporate temporal changes as well as spatial 

location into their functional mapping. 

 Finally, although fields of measurements taken of continuous phenomena are in 

theory unlimited, they must of necessity frequently be bounded in practice.  For example, 

the field of elevation values on a topographic map is limited by the edges of the printed 

sheet.  Similarly, a field of values collected by a remote sensor array or an in-situ network 

of sensor nodes will be limited by the placement and effective range of the individual 

contributing sensing stations.  The continuous representation of a field is realized by a 

function encompassing all of its discretely-sampled readings.  Since such a function 

cannot be appropriately constrained outside the effective range of its sensing source(s), 

the natural spatial bound of the field might thus be set to the convex hull, or perimeter of 

the range of the contributing sensor nodes. 

 

1.1.2 Sensor System Data as Spatial Fields 

 As systems of sensors are increasingly utilized for the task of regular, long-term 

geographic observation, geographic entities and physical processes are increasingly being 

interpreted from the sensor’s point of view in discrete bits and pieces. From this 

discretized view of entities and processes, there is frequently the need to generate a more 

complete representation of the underlying spatiotemporal field, for example, the 
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representation of the 15-minute temperature, precipitation, or wind field from a set of 

widely spaced weather stations measuring these variables on the hour.   

 Remote-sensing systems typically create spatial fields of readings in the course of 

capturing their data.  Systems such as satellite, radar, and wireless sensor networks are 

the source of a growing collection of spatiotemporal data sets. A data set generally only 

represents discrete readings, however.  As a sensor system’s resolution is finite, the 

continuous structure of a phenomenon is necessarily discretized as it is sampled, 

geolocated, time-stamped, and finally stored.  The density of the observations, as well as 

their spatial and temporal regularity, has implications regarding the accuracy of the 

function which is finally determined to define the field.  A sparsely-sampled field of 

values creates greater uncertainty between sampled locations, especially in highly-

variable regions of the field.  Missing data in the field has much the same effect, as the 

local density of readings is reduced.  The occurrence of regionalized clusters of missing 

data exacerbates this effect, as the lack of nearby readings to constrain the field’s 

associated function at a location will cause higher degrees of uncertainty. 

Gaps in the data record are problematic for accurate scientific data analysis and 

can take on additional importance in the face of accidents or other serious events having a 

potential to lead to economic or ecological destruction.  In the event of an oil spill or a 

hazardous red tide algal bloom at sea, accurate readings of surface currents must be 

known to track the progress of contaminated waters in order to protect public and/or 

environmental health.  

 Frequently the results of disparate readings can be combined in order to indirectly 

arrive at a result that cannot be sensed directly.  A coastal weather radar system may not 
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be primarily designed to detect fishing vessels, for instance, but may be able nonetheless 

to deduce their locations and track them over time from the perturbations the vessels 

create in the generated radar field.  Fields of discrete readings are central to the manner in 

which our electronic sensing tools experience and communicate back to us their 

perception of the world, thus the matter of missing readings can become significant.  For 

example, a contributing factor to the 2004 Indian Ocean tsunami death toll is attributed to 

the lack of effectively functioning tsunami early-warning system sensors along a 

vulnerable and densely populated coastline.  This was the motivation for the subsequent 

development of the Indian Ocean Tsunami Warning System (UNDG 2009).  

 Natural environments are replete with phenomena that interfere with the gathering 

of sensor readings: clouds regularly obscure satellite photogrammetry, ionospheric 

interference in the earth’s atmosphere disturbs radio and radar signals; and the growth of 

plant matter over time or other gradual environmental change may come to obscure or 

block a sensor’s view of a desired phenomenon.  Beyond the list of potential natural 

causes of data loss, a host of potential technical failures must also be considered.  Natural 

environments are notoriously corrosive to the electronic components on which most 

sensors are based, requiring environmental hardening of a sensor node without 

compromising its ability to gather high-quality readings.  Sensors embedded in the 

natural environment have limited access to power. They often draw power from batteries, 

which may incur a high cost in the form of regular maintenance, and impose limitations 

on sensor operation in terms of frequency of readings taken, extent of spatial coverage, 

deployment length, and costs of communicating collected readings back to the data store.  

An array of sensors is not likely to have access to either a directly-connected 
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communication network or a reliable, unlimited on-demand power source. These 

challenges create the need for an efficient, tractable and lightweight means of field 

representation on the sensing platform itself.  For if the field and its dynamics could be 

simply encoded to the sensor node collecting the readings, then approximations of 

missing readings might be reconstituted as they occur.  Implementing field 

approximations presumes some storage and computational capacity on the part of the 

sensor node; but given the continual upgrades to computational capacity and performance 

of electronic sensor platforms, the assumption is justified (Akyildiz, Melodia et al. 2007) 

(Akyildiz, Su et al. 2007).   

 This dissertation will endeavor to describe a framework within the wireless sensor 

network context that will allow the individual network node to provide approximations 

for missing readings in the field under observation as they occur.  As it suggests the use 

of one or more artificial neural network models to do so, and categorized by a clustering 

method, its proposed name is CatSTANN, for Categorized Spatial/Temporal Artificial 

Neural Network. 

 

1.2 Formal Definitions 

 

Clarification of some of the basic concepts underlying this thesis with some formal 

definitions follows.  Throughout this thesis when reference is made to space and time, 

these should respectively be taken unless otherwise noted as geographic space, and 

experiential time as measured in instants or standard intervals such as seconds or minutes.   
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A sensor-monitored region M is a subregion of geographic space S.  Although 

geographic space is three-dimensional, we shall assume throughout that only one sensor 

reading of a given attribute will ever be taken at any (globally-available) time t for a 

given location   Myx , , and shall thus constrict both M and S to two-dimensional 

Euclidean space, or more formally: 

    2RSM        (1.1) 

Given a geographic space S (consisting of all individual geolocations s), and a class of 

scalar values V, a spatial field is a function f whose domain is S and codomain is V 

(Worboys and Duckham, 2006).   

Definition 1  A spatial field is defined as follows: 

    f : R2 → V        (1.2) 

 

A spatiotemporal field incorporates the concept of time to separate subsequent states of f 

along the temporal domain T. 

Definition 2  A spatiotemporal field F is defined as follows: 

    F : M × T → V     (1.3) 

 

In general, references to fields will refer specifically to spatiotemporal fields.  Although 

as mentioned earlier both f or F can be either continuous or discrete and exist within any 

of the Stevens scale of measurement categories, we restrict F in this thesis to 

spatiotemporally continuous functions, yielding either interval or ratio values.  

Depending on the attribute field described, these values may be scalar or vector.  For 

simplicity, for each value sensed at a space-time point (s, t) in M we will define the field 
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F’s value as F(s, t).  For generic reference to a sensor node location s in S from which a 

reading may be taken, reference shall be made to F(s). 

 One focus of this thesis will involve the partitioning of F into n partitions Pi.  

Each partition Pi. is thus a subregion of F, and F is wholly represented by the collection 

of its subcomponent regions Pi.  Formally: 

   FPi         (1.4) 

and 

   FP
n

i

i 



1

       (1.5) 

Individual models representing fields over a single region Pi will generally be referred to 

as local models, while a single model representing F as a whole will be termed global.  

The composite of local models representing F will be termed the partitioned model. 

 A sensor node, or simply node, will refer to any stationary sensor platform 

containing sensors capable of taking reading(s) at a location s of one or more field 

attributes.  We assume no more than one reading per attribute will be generated per 

location s at any time t.  The collection of nodes as a whole will comprise a sensor 

network, which will be presumed a wireless sensor network (WSN) unless stated 

otherwise. 

 

1.3 Problem Definition: Sensor Platform-based Interpolation in Time and Space 

 As sensor networks and/or arrays are increasingly deployed in internal or external, 

natural or constructed environments, the vision of an instrumented world draws ever 

closer to reality (Estrin, 2002; Akyildiz, 2007; Nittel, 2009). However, natural 
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environments especially are often corrosive and generally inhospitable to the electronic 

components of sensor monitoring systems. When combined with potential technical 

issues pertinent to monitoring systems, environmental conditions will often lead to 

intermittent data loss. Although such data are often visualized as is, gaps in the data 

record make analysis difficult, thus an interpolation technique must be chosen to 

complete the record with synthetic values. 

 Viewing an environment through the sensor’s point of view is much like 

navigating D-space (Zubin, 1989).  A spatial field can be decomposed into two parts: a 

mean function representing large scale spatial variation – or first order effects – and small 

scale spatial variation representing autocorrelation in deviations from the mean – or 

second order effects. Discretized readings reveal hints of confounded first- and second-

order effects in spatial phenomena occurring within the sensor’s immediate 

neighborhood, but with little other indication of the global (or first-order) picture.  

Attributes or features in an observed field F may not be detectable by a single sensor 

type, but may instead require the combination of readings from several different sensors  

(Abadi, 2005).  Detecting the occurrence of the live birth of mice in a research laboratory 

breeding cage might, for example, require both temperature and humidity sensor readings 

at a minimum in order to isolate the birth event.  Should naturally-occurring 

environmental interference or some other intermittent technical issue materialize that 

prevents data readings from being taken, uncertainty levels in that region of the field may 

increase, possibly affecting spatially adjacent or temporally subsequent readings if data 

are shared within the sensor node or between adjacent network nodes.   
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 When interpolating for missing values in a spatiotemporal field, time must be 

taken into account in conjunction with whatever local spatial predictors are available.  

However, the inclusion of time into the spatial interpolation problem can introduce 

several complexities in the construction of spatiotemporal models.  First among these is 

that standard units of time are not directly comparable with standard units of space.  For 

problems where field variability is mostly concentrated on the spatial, rather than 

temporal domain (such as for digital elevation models), accurate approximations for 

missing values can be made at any point in time using a strictly-spatial interpolation 

method such as kriging, or inverse-distance weighting.  However any field phenomena 

that derives a significant portion of its variability from the time domain will require some 

customization or extension to traditional spatial models (Kyriakidis and Journel 1999; 

Gao and Revesz 2006).  As spatiotemporal phenomena occur on varying spatial and 

temporal scales, such customizations may result in models that are difficult to compare.  

Some extensions require the generation of multiple covariance matrices to capture 

interactions between different locations in space and time (Kyriakidis and Journel 2001), 

while other approaches incorporate such relations with shape functions (Li and Revesz 

2004).  However, interactions and dependencies within field phenomena may evolve over 

time, requiring all matrices and shape functions to be periodically reanalyzed and 

recalibrated.  The difficulties of spatiotemporal field interpolation are exacerbated when 

implemented on a distributed network of sensors.  The periodic reanalysis process 

described above may require wide-ranging data access involving significant 

communication costs, extensive computation, and intensive draw on a strictly-limited 
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local power source, all primary limiting factors in independent in situ sensor node 

deployments. (Duckham et al. 2005) (De La Piedra et al. 2013). 

 

Simplifying Assumptions 

 The task of spatiotemporal interpolation can be visualized in several ways, 

depending on the temporal point of reference.  For this thesis, the following simplifying 

assumptions apply: 

- spatiotemporal interpolation takes place at the most recently logged time-

instant ti, before any values f(ti+1, p) are known.  Thus all available data for the 

interpolation of f(t, p)have taken place at or prior to t. 

- we assume the interval Δt between readings to be regular and constant. 

- although in practical real-world situations, sensor readings logged as taken at 

a time t are actually taken within the range t ± Δtt (Δtt << Δt), we shall 

consider all such readings to be taken at the closest integer-value t. 

- we restrict our focus solely to spatial field-based models to the exclusion of 

the alternate spatial object-based modeling approach. 

 

1.4 Proposed Model for the Spatiotemporal Interpolation Task 

 Given our continuous function-based modeling approach to fields, we require a 

method to approximate smooth, continuous functions that take into consideration inputs 

from previous points in time as well as nearby locations in space.  Previous approaches to 

this problem are more fully described in Chapter 2. They include techniques such as the 

generation of covariance matrices at each measurement location in S (Kyriakidis and 
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Journel 2001), and the combination of distinct random functions for each relevant 

variable to create an effective spatiotemporal kriging variogram function (Kyriakidis and 

Journel 1999).  These approaches for effective spatiotemporal interpolation can become 

cumbersome as more locations are added, or as more relevant variables become available.  

Further, methods requiring kriging are generally not well-suited to implementation in a 

wireless sensor network context (Jin 2009).  With regard to convenience of 

implementation, one might imagine an optimal approach to have the following properties: 

- capable of representing smooth, continuous functions 

- capable of accepting both temporal and spatial input parameters 

- capable of computing scalar or vector-valued output parameters 

- capable of reproducing functional surfaces of any of the Stevens scales of 

measure 

- adaptive and self-modifying, to account for incremental change over time 

- representable as a finite collection of scalar parameters, for easy transmission 

from node to node in a sensor network 

- implementable by a finite number of addition and multiplication operations 

 

Our chosen model that suits this list of requirements is the Multilayer Perceptron (MLP), 

a dynamic nonlinear regression technique from the family of artificial neural network 

(ANN) models.  Chapter 2 provides some background information on MLP model 

structure and operation.  Chapters 3 and 5 describe an application of MLP field 

interpolation in a conceptual network of stationary (moored) sensors deployed in the Gulf 

of Maine.  The results are not limited to a particular testbed, but could be realized in 
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nearly any distributed, sensor-monitored environment.  The core original contribution of 

this thesis is the methodology for localized spatial and spatiotemporal field interpolations 

within the context of distributed sensored computational platforms, such as those used to 

make up wireless sensor network systems. 

 

1.4.1 Proposed Approach 

 When a sensor platform requires the combination of the local sensor reading(s) 

with those taken by nearby sensor nodes, it can be handicapped when necessary readings 

become unavailable.  One approach is to estimate missing data by querying the value of 

the variable from other geolocated sources, and use of a kernel function to spatially 

interpolate the needed estimate (Jin 2009).  Although this technique has the advantage of 

simplicity, even a customized kernel function can do little more than provide a weighted-

average estimate.  Although a weighted-average estimate may be sufficient in situations 

of isotropic data variation, such behavior is seldom the case for many stochastic natural 

phenomena at work in regions monitored by sensor networks.  For these situations 

therefore, a compact spatiotemporal model that captures the temporal dynamics of the 

monitored field (e.g., some representative function FPi), may yield more accurate results 

than a simple spatial weighted average. 

 A node in a wireless sensor network has access to more information than just the 

outputs of its own sensors, or even the information directly addressed to it from its 

neighbors.  Wireless communication travels outward from the source in all directions, 

and is accessible to all neighboring nodes within range just as it is to the particular node 

to which the communication is officially addressed.  A node’s “listening in” on 
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broadcasts within its range but not addressed to it is called peeking (Stemick et al. 2008). 

Through peeking, a node can maintain a short history of the last n readings reported by 

any of its neighboring nodes.  These historical readings can be used by an autoregressive 

function to make a temporal prediction of a particular neighbor’s next likely reported 

reading.  Combining these temporal inputs with local spatial guiding parameters (for 

example the spatial trend of readings currently reported by neighboring nodes) could 

further enhance a node’s interpolation accuracy were it required to estimate a non-

responsive neighbor’s expected sensor reading – or even to provide an approximation to 

its own currently-nonresponsive sensor. 

 Given a collection of recent readings, the system dynamics underlying the 

phenomenon producing these readings can be induced into a finite set of weights 

comprising a MLP model.   The induction process, called training, is computationally 

intensive, however, and is not likely to take place on any nodes within the sensor 

network, but rather on a server connected to the network, with more reliable access to 

power and computational resources.  We assume therefore that all necessary data 

collected by the network of nodes is transmitted to the server so that this training may 

occur. Once the MLP model is appropriately trained, its component weights may be 

transmitted to the network nodes that require them for in-system estimations.  This 

transmission may impose a temporary communications-induced drain on the network, but 

such updates should be infrequent under normal circumstances.  It is assumed that any 

long-term wireless sensor network deployment would be equipped with some power 

recharging capacity, and that MLP updates would not occur so often as to deplete power 

stores in the interim.  Offloading the intensive computation to an out of network server 
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and updating network nodes with new MLP models only when necessary allows the 

network of sensor platforms to benefit from increased estimation accuracy while 

mitigating some of the limiting factors of the sensor network platform. 

 

1.4.2 Discussion 

 Through their training process, MLP models converge to a maximum-likelihood 

estimation function of the process they are meant to approximate, given the input 

parameters presented.  A sensor node on its own or in combination with its neighbors 

may only be able to perceive a local view of the process, in which first-order effects (i.e., 

general trend) and second-order effects (i.e., smaller-scale autocorrelation in deviations 

from the mean) are confounded.  Modeling this process as a collection of weights allows 

us to provide a first-order picture of its dynamics relatively inexpensively for a sensor 

node with only a local view of it.  Nodes containing a copy of the MLP model (i.e., a 

finite collection of weights representing the trained neural network) can use it to point-

estimate missing readings either from neighboring nodes, or at other nearby locations of 

interest. A regular series of local point-estimates may then be combined to approximate 

the underlying surface of observed phenomena, in response to network spatial window 

queries (Jin and Nittel, 2008), for example.  While such estimates might also occasionally 

be able to be implemented via a spatial Gaussian kernel function, the MLP is capable of 

integrating additional supports (such as temporal trend, or readings generated by other, 

nearby sensors) in order to potentially shape a more accurate view of the underlying field 

surface.   
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Figure 1.1: A conceptual partitioning of the Gulf of Maine testbed including local datasources 

 

 A frequent enhancement applied to spatial studies is to partition the study space to  

avoid issues of data nonstationarity, and reveal improvements that may be gained 

(Brunsdon et al. 1998).  Such studies allow the consideration of variables with impacts 

limited only to local subregions of M, whose significance could be lost in the global 

model.  This approach appears particularly fitting to a partitioned MLP-based model of a 

region, given the model’s architectural flexibility.  Different partitions Pi of the 

monitored region M would be assigned MLP models with potentially differing structures 

and input sets, depending on the local influences and data sources available to each 

partition (Figure 1.1).  Furthermore, communication strain on the entire network can be 

avoided if only a subset of nodes requires an update of an onboard model. 

 Finally, MLP models are adaptive and have therefore some capability to respond 

to gradual change.  Although MLP models emerge from training with a marked bias 
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toward the dynamics of the data on which they were trained, subsequent data readings 

can be used to continue to incrementally modify the set of trained weights they were 

initially provided.  If the dynamics of the observed process remain similar to those of the 

training data, or change only slowly, the MLP model can remain accurate and functional 

longer than static, non-adaptive models.  Should the process dynamics change too rapidly 

for the adaptation process to keep up, the adaptive capacity still out-performs static 

models.  This could be a useful property when a model no longer meets performance 

standards, but cannot be immediately replaced.  This might occur due to temporary loss 

of connectivity to the rest of the network, or in cases when transmission of a new model 

might place too great a strain on a portion of the network.  If an expected model update is 

delayed, readings should not be too far from reality as network operation continues in the 

interim.  

 

1.4.3 Qualifying Assumptions 

 The potential application of MLP models to the domain of wireless sensor 

networks will obviously suffer the same list of standard limiting factors as any WSN-

based application:   

 limited energy sources  

 constrained communication 

 limited processing, storage and memory capacity 

 volatile nature of individual nodes. 

In many ways an MLP model seems well-suited to such an environment.  It can 

potentially represent complex system dynamics in a relatively compact form, meeting 
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memory space requirements.  It can be processed efficiently as a sequence of 

multiplications and additions, interspersed with occasional simple functional transforms, 

in line with limited processing requirements.  It allows nodes to make up for the 

temporary disappearance of neighbors from whom a reading is required.  Clearly the 

major logistical hurdle to this implementation in WSNs is the communication cost of 

distributing a new MLP representation to all the nodes requiring it.  The choice to use an 

MLP model instead of one with a more compact representation (but also presumably less 

representative power) is one of the many tradeoffs that is balanced in the design of a 

monitoring network.  If a kernel method cannot provide the required accuracy, the more 

expensive MLP (both in terms of computation and transmission-cost) may be the next 

best choice.  As broadcast data transmissions are the greatest power draw for individual 

WSN nodes, one would like to avoid unduly draining the system’s power reserves when 

an update is distributed.   

Data compression can help somewhat in this regard.  Network partitioning may help 

further, as the whole network need not bear the cost of distributing a model to a limited 

region.  Some assumptions can be made of a system that would require an MLP modeling 

system. The main underlying assumption is that it is a long-term, rather than temporary, 

environmental deployment.  Short-term deployments may not require the same level of 

adaptability over time as would platforms spending several seasons in the field, for 

example.  A long-term network of sensing platforms might feature some capacity for 

power source regeneration, for example via solar panels.  Although several prototype 

WSN systems exist (Johnson et al. 2009), such as the Crossbow Mica family of motes 

that power themselves either from a direct power source or standard AA cell batteries, the 
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constant maintenance these battery-changes would require generally make such systems 

unworkable for long-term environmental deployments, where direct access to a constant 

power source is rare. Other assumptions are that: 

 models will be trained/fitted outside the network, and communicated to the 

individual sensing platforms comprising the network.  These platforms will 

also regularly transmit their data-record of readings to the training platform, 

to enable subsequent refittings. 

 platform memory capacity is sufficient for model storage (that is, to store the 

finite collection of floating-point coefficients necessary to transmit or 

represent the model). 

  platform computational capability is sufficient for smooth logistic (or other 

nonlinear) function transforms. 

 the refractory period between model transmissions is sufficient for partially-

depleted nodes within the network to recover energy stores.  

 Many of these capabilities are already adequately covered by most existing sensor 

systems. If we expect that these requirements will continue to increase, we can also 

expect Kurzweil’s Law of Accelerating Returns – an extension of Moore’s Law of Circuit 

Capacity to technology as a whole – to continue to hold as well: that is, as current 

technologies approach a new technical barrier to their function, new technologies are 

invented to allow us to cross that barrier.  Given the increasing importance and scientific 

value placed on the development of effective environmental monitoring systems, it is 

unlikely that MLP solutions will prove too expensive for use in WSN systems for long, 

assuming they are currently out of reach at all. 
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1.5 Hypothesis 

 A Multilayer Perceptron model is a universal approximator, adept at shaping itself 

to generally conform to presented data in order to approximate its underlying structure.  

Thus the MLP is a likely candidate for spatiotemporal field representation, especially 

when interpolation of missing field data is required.  Spatiotemporal fields can exhibit 

complex behaviors, however, and might, for example, display temporal as well as spatial 

nonstationarity.  We expect therefore that if a single MLP model is not capable of 

satisfactorily rendering a spatiotemporal field on its own, field representation may be 

more accurately accomplished through some means of partitioning the field and 

representing each partition with a separately designed and trained MLP model.  Since a 

spatiotemporal field may change over time, we anticipate that its change can be 

represented by a state-model, which will signal change events requiring, for example, an 

increase or reduction in the number of component MLPs required to adequately maintain 

the changing field’s representation.  Therefore the hypothesis for this thesis is: a 

partitioned system of MLP models will show performance gains and improved 

interpolation results over that of a non-partitioned, or single-model system in the 

presence of detectable spatial and temporal non-stationarities. 
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1.6 Key Research Questions 

 The research questions this work addresses are the following: 

 

Is the MLP a reasonable model to apply to spatiotemporal applications?  MLP models 

are flexible and powerful, but their capabilities come at a price.  Expanding the set of a 

model’s input parameters makes the model very flexible, but it also expands the 

dimensions of the search space within which a solution must be found, with 

accompanying explosive growth in the number of local minima (i.e., suboptimal 

solutions) in that space.  Chapter 3 evaluates this question. 

 

Can the partitioning of space be a benefit?  Regionalization of the MLP model may 

serve to counteract the “curse of dimensionality” (Bellman 1957), as input parameters 

may be constrained to only the most relevant local readings.  Local conditions may also 

suggest particular partitioning schemes that are more effective than others.  Chapter 4 

addresses the question of partitioning benefits on synthetic datasets, while Chapter 5 

explores this question on a real data set. 

 

When and how should partitioning schemes be reevaluated?  As conditions change with 

the passage of time, the number of partitions needed to represent the system may change 

as well.  Chapter 6 investigates this question. 
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1.7 Scope of Thesis 

The focus of this thesis is on modeling system dynamics of monitored environmental 

phenomena using available local datastreams to approximate missing spatiotemporal field 

readings as they occur (or as they are needed).  As natural dynamics are not typically 

stationary in space or time, spatiotemporal partitions are investigated to improve model 

specification to regional dynamic influences driving observed phenomena.  Since natural 

processes are not stationary in time, models may be periodically refreshed to keep up 

with evolution in the dominating influences within a region as well. 

1.8 Research Approach 

This dissertation intends to develop an effective and generally applicable adaptive 

modeling system to deal with spatiotemporal nonstationarity as it emerges in individual 

phenomena evolving over space and time.  It may be seen as an application-outgrowth of 

current work in the spatial computing and reasoning community, with theoretical roots 

spanning (Dube & Egenhofer, 2014; Worboys & Duckham 2006; Egenhofer & Al-Taha, 

1992). 

1.9 Expected Outcomes 

A first expected outcome of this work is the confirmation of the utility of MLP 

models for application in the spatiotemporal domain, especially as applied to 

spatiotemporal field interpolation in the context of WSN deployments.  It is further 

expected that in the presence of non-stationarities, partitioning the global domain into 

regions for which MLPs may be specialized will lead to significant improvements over a 

single global MLP implementation.   
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1.10  Intended Audience 

 The audience for this work includes scientists and practitioners of spatial 

information and computer science, geography, sensor science, artificial intelligence, and 

the geographic and scientific database communities.  This dissertation provides 

approaches for the effective interpolation of spatiotemporal information in a volatile and 

lossy WSN context – that is, a setting in which readings may occasionally be lost due to 

equipment glitches, adverse environmental conditions or transmission error.  This 

dissertation may be useful to designers of next-generation WSN platforms who plan to 

implement the capacities required for robust real-time observations of the physical world 

in an uncertain and continuously changing environment. 

1.11  Thesis Organization 

 Chapter 2 of this dissertation provides some background and an overview of the state of 

the art in spatiotemporal interpolation and prediction models.  Chapter 3 presents basic 

global MLP model experiments and performance measures.  Similar experiments and 

performance measures are presented in Chapter 4 for partitioned synthetic datasets 

processed by groups of specialized MLPs.  Chapter 5 applies the techniques developed in 

chapter 4 to a nonstationary natural dataset collected from the Gulf of Maine.  Chapter 6 

explores spatial and temporal dimensions for indications of second-order effects to 

determine the potential utility of using further models to process the residuals of the 

initial model.  It also explores a comparison of error distributions of trained models over 

time to determine an appropriate time to initiate a model-refitting process.  Finally 

conclusions and proposed future work are discussed in Chapter 7. 
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2. --- 

 CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Sensors that provide the discrete readings comprising spatial data fields are 

typically electro-mechanical, and embedded into the natural environments that they 

monitor.  Natural environments, however, are notoriously corrosive to electronic sensor 

components.  As such, any number of natural sources of interference and/or technical 

issues can combine to create gaps in the readings gathered to define spatial and 

spatiotemporal data fields.  Given that spatiotemporal fields cannot be sampled in their 

entirety, and that data may periodically be lost, spatiotemporal interpolation methods are 

needed to fill gaps in a sensed field, as well as to make finer-grained representations of an 

existing field. 

Various numerical techniques have been developed to interpolate missing 

readings in fields of values, such as linear, Fourier or polynomial modeling for data 

series, and kernel methods or kriging for spatial or spatiotemporal data sets.  But most 

such techniques assume stationarity in data values; and in the case of kriging, might 

require access to the entire field of values to generate accurate models of spatial data 

variability (Webster and Oliver 1993).  Values gathered from natural environments often 

display stochastic, nonmonotonic and nonstationary behavior.  Global access to all 

known data is often impractical or impossible in wireless sensor networks, where local 
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calculations may nonetheless be required to be made relatively accurately, and in near 

real time.  A first major focus of this work is to investigate whether a data-driven 

Multilayer Perceptron (MLP) model using primarily local information will be sufficiently 

resistant to temporal and spatial non-stationarity in a natural spatiotemporal dataset to 

give accurate interpolation performance for simulated gaps in the dataset. 

   

 

2.2 Traditional Approaches to the Spatial Interpolation Problem  

 

Traditional statistical interpolation schemes tend to follow one of two general 

approaches: exploiting either temporal or spatial autocorrelation of the data to achieve 

their goal.  Univariate linear or polynomial regression models attempt to take advantage 

of the temporal autocorrelation in a time series.  Cyclical processes are commonly 

modeled with sinusoidal basis functions through Fourier, or “harmonic,” analysis.  

Multivariate versions of these approaches combine the mathematical transfer functions 

associated with each parameter to relate the multiple predictors to observed results on the 

spatial plane.   Some assumptions underlying these approaches can make them unfit 

solutions as a practical matter, however. Linear models are clearly unfit for problems that 

display significant nonlinearity, or non-monotonicity, for example.  Multivariate models  

generally suffer from the “curse of dimensionality” (Bellman 1957), wherein the 

problem-space expands exponentially with each additional predictor integrated into the 

model.   
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Spatial kriging is a traditional cornerstone technique of geostatistics that exploits 

the spatial autocorrelation between a collection of  spatial readings of some attribute z to 

generate an interpolated surface providing values at unobserved locations (Matheron 

1963; Journel and Huijbregts 1978).  Knowledge of the entire spatial field of values is 

required to estimate the covariance between values of z at different spatial lags.  If 

covariance is not known or difficult to quantify, the average semivariance between data 

pairs can be estimated instead.  Semivariance, covariance and correlation are intrinsically 

related, so if one is known, the other can be derived (Bailey and Gatrell 1995).  A 

continuous model is fit to these average semivariances.  The semivariogram model 

constructed can then provide semivariance values at any given spatial lag to drive the 

kriging interpolation process. 

These models do not typically take time into account, however, and integrating 

additional parameters into the kriging model is cumbersome.  Further, some level of data 

stationarity is assumed, as for nearly all standard statistical models, yet natural spatial 

surfaces and natural spatiotemporal data sets frequently do not conform to this 

requirement. 

Although hybrid approaches do exist that take both spatial and temporal data into 

account, they tend to be fewer in number, more complex and/or computationally 

expensive (Gething et al. 2007), and somewhat less generalizable to situations beyond the 

particular one they were designed to solve (Kyriakidis and Journel 1999). A possible 

reason for the generalization problem may be due to the different scales of space and time 

implicit in most spatiotemporal datasets.  Besides being impossible to compare in a 

physical sense, different processes operate on different scales (Lam and Quattrochi 
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1992), thus it is expected that customizations made to a model in order to isolate the 

dynamics of a particular phenomena may be incompatible for datasets incorporating 

phenomena operating at different space-time scales.  One simple hybrid spatial 

interpolation approach, known as spatial time series  (Bennett 1979; Kyriakidis and 

Journel 1999), extrapolates forward from past values of a spatial field surface to 

approximate missing values in the current one.  Spatiotemporal kriging models also exist, 

but come with a variety of additional requirements, as described in the next section. 

 

2.2.1 Brief Overview of Spatiotemporal Extensions to the Kriging Model 

Dimitrakopoulos and Luo (1996) proposed several spatiotemporal trend models 

for kriging systems that require linearly independent component functions to arrive at a 

unique solution.  The component trend functions must ensure tensorial invariance of the 

spatiotemporal kriging system, so that the kriging estimator and variance are invariant 

under changes of the origin and/or units of the coordinate system. Three types were 

proposed: traditional polynomial functions, Fourier expressions, and hybrid combinations 

of the two – all of which are linearly independent. These hybrid trend models do not 

necessarily maintain tensorial invariance, however, and must be checked (Kyriakidis and 

Journel 1999).  Polynomial trend forms of order K in space and L in time meet tensorial 

invariance only if all polynomial orders up to K-1 and L-1 are present; similarly, Fourier 

models of order K must have all terms up to K as well to satisfy tensorial invariance 

(Dimitrakopoulos and Luo 1996) 

 In the general case of a nonstationary spatiotemporal problem, a stationary mean 

is assumed; however, obtaining the necessary residual covariance values is problematic 
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and they are therefore estimated. The results of this residual estimator vary depending on 

the algorithm used to estimate the spatiotemporal stationary mean, thus bias can be 

introduced  

 Other proposed models have similar difficulties and complexities.  Rouhani and 

Hall (1989), and Christakos (2013) adapted the intrinsic random functions of order K 

(IRF-K) model (developed by Matheron (1973) for a purely spatial context) to a 

spatiotemporal context (IRF-KL) for application in the earth sciences.  But this method 

had difficulties in non-gridded contexts, and the generalized covariance model it 

generated was not guaranteed to be unique.  The family of generalized covariance models 

is limited; iterative trial-and-error selection and fit of generalized covariance components 

tends to yield models with large nugget effect because of the sensitivity of the fitting 

algorithm to outlier data (Journel, 1989).  Although some of these problems can be 

avoided by basing inference of residual covariance on values not affected by the 

spatiotemporal trend, such values can be difficult to determine in a context of complex 

space-time interactions.   

 Journel and Rossi (1989) proposed to get around the issue of data nonstationarity 

over large regions by restricting the kriging to sufficiently small neighborhoods around 

the point to be approximated.  They concluded that the method worked as well as a 

method incorporating an explicit, nonstationary trend model, such as models proposed by 

Eynon and Switzer (1983), Haas (1995) and Gething et al (2007).  However, due to the 

stochasticity inherent in spatiotemporal phenomena, this property does not necessarily 

hold for forward extrapolation of values in time.  
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 When a single spatiotemporal random function (RF) model Z(s, t) is considered, 

spatiotemporal continuity is modeled by a joint space–time covariance function, whereas 

under the multiple RF models approach, spatiotemporal continuity is modeled via the 

Linear Model of Coregionalization (LMC) (Journel and Huijbregts, 1978). A joint space–

time covariance function allows estimation (through kriging in a space–time context) at 

any location s in space and any instant t in time.  The LMC model however can only 

approximate values at predefined points s in space and t in time; while the single random 

function model’s joint space–time covariance function allows approximations at any 

points s and t.  Determination of a joint space–time covariance function requires high 

data density at the same space location/time instant however, whereas this is not a 

limitation for LMC.  LMC implementation becomes progressively more difficult as 

measurements in the spatiotemporal domain become more abundant, as t(t + 1)/2 (for 

time-instants) or n(n + 1)/2 (for spatial locations) auto- and cross-covariance matrices 

have to be computed.  Thus the number of random functions the LMC model implements 

is generally kept small. 

 Kyriakidis (2001) proposed a relatively straightforward extension to the spatial 

time series model that spread time series vectors out to the spatial domain by 

regionalizing temporal trend parameters in space.  This approach avoided the need to 

generate n(n + 1)/2 direct and cross-variograms/covariances for each geolocated time 

series (Kyriakidis and Journel 2001). 
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2.2.2 Summary of Advantages and Disadvantages of Explicit Spatiotemporal 

Trend Modeling 

 

 Conclusions we may glean from the approaches described above are the 

following.  Explicit modeling of spatiotemporal data may allow for the incorporation of 

local information specific to the dataset (Gething et al. 2007), though often at the cost of 

making the resulting solution too problem-specific to generalize to different data sets.  

Integration of additional parameters or monitored spatial locations si tends to expand 

either computation time or the problem solution-space exponentially in explicit models 

such as LMC, however, and no interpolation between predefined locations si may be 

done. Random function-based models (i.e., non-explicit) may extrapolate for any location 

si so long as sufficient data density exists, and the approach generalizes readily to 

alternate applications.  Additional parameters are not as easily incorporated into this 

model.   

 The multilayer perceptron model marries some of the advantages of these two 

alternate approaches, while avoiding some of their respective limitations.  It can 

incorporate additional parameters while implicitly moderating the dimensional growth of 

the solution space.  Its solution generates a random surface that is not limited to a 

predefined set of locations si, and its approach generalizes well to alternate 

spatiotemporal domains. 
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2.3 The Multilayer Perceptron Approach 

 Multilayer Perceptron (MLP) network models are a subset of a group of artificial 

intelligence techniques called Artificial Neural Network (ANN) models.   The term 

“Artificial Neural Network” encompasses a wide variety of mathematical models 

designed for automated information processing and/or machine learning tasks effected 

through various means. Models falling under this umbrella term have names such as: 

perceptron, self-organizing map, Hopfield net, bidirectional associative memory, and 

many others. The tasks they are designed to effect can fall under the general headings of 

either classification (e.g., clustering, or identification), or function approximation (e.g., 

prediction, regression, or interpolation).  Although the MLP can be used for classification 

tasks, it is discussed here solely in its typical regression context.   

 This type of mathematical regression model consists of a weighted collection of 

simple processing nodes designed to associate a set of input parameters (predictors) to a 

set of desired output values.  Like traditional regression techniques, such as linear or 

polynomial regression, it combines a set of basis functions to converge to an optimal 

solution surface.  The basis functions most commonly used by MLP are nonlinear, 

monotonic sigmoidal functions.  Nonlinear basis functions allow the MLP to model 

highly nonlinear surfaces, but its method of converging to that final predictive surface is 

wholly different.  It is a data-centered approach, meaning that there is no intrinsic bias at 

the outset toward what form the final solution will take.  Instead, the data encountered 

cause the appropriate solution-surface to gradually take shape.  Originally conceived in 

the late 1950s as a simple model called the Perceptron (Rosenblatt 1958), the MLP came 

into its own with the development of a technique called backpropagation (Rumelhart et 

al. 1986; Werbos 1994), a distributed regression technique which allowed the model to 
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reliably converge to an appropriate solution by evolving a set of parameters (via ordinary 

least squares estimates) that minimize an objective function of model error, typically 

mean square error (MSE).   

2.3.1 Model Structure 

 
 The general template for the original Perceptron model consists of two connected layers of nodes: 

input and output.  The input layer consists of i input nodes, that simply capture the i-element data signal.  

Data processing occurs in the output nodes.  Each input element is propagated forward along weighted 

connections to each node in the output  

 layer, where all weighted incoming signals are summed, and this sum is transformed by the basis function 

– called an activation function in the literature. 

 
Figure 2.1: Perceptron model, with illustration of processing sequence in output nodes 

 

 The MLP model enhances the basic Perceptron model with the insertion of one or 

more layers of hidden nodes.  Like the Perceptron output nodes, hidden nodes also sum 

all incoming signals and transform the sum via their activation function, and propagate 

their results onward to the output layer via weighted connections.  The activation 

functions incorporated into hidden and output nodes can be seen as analogous to the 

random functions used by both spatial and spatiotemporal kriging models described 

earlier. 
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2.3.2 Backpropagation Training 

 As the backpropagation algorithm simultaneously modifies all component weights 

of the MLP model, it performs a distributed implementation of gradient descent that 

encourages the network as a whole to converge to a state of minimal error. Given a set of 

target values t for the model to replicate, inputs are propagated through an untrained, 

randomly-initialized model to generate a matching set of output results r. Errors are 

determined at the o output nodes (to-ro) and propagated back to the h hidden layer nodes 

proportionately to the activation function results (act) which contributed to them. Then 

modifications to each connection-weight (wc) are made, often moderated by some 

learning rate 0 < α < 1 (see Table 2.1). 

Table 2.1: General Backpropagation algorithm 

1. Calculate Error-term (δ) for each node (in reverse order)

δo = -( t o -r o ) * fo'(act o)                ( output node(s) )

δh = fh'(act h) * ∑whoδo                            ( hidden nodes )

2. Compute weight-change for each connection c :

Δwc = – α δdact s

(where d = destination_node; s = source_node)

3. Modify connection weights:

wc = wc + Δwc  

Further details on backpropagation and MLP models can be found in Haykin (2008).  

 

2.3.3 MLP Model Benefits 

 

MLP models display several properties that make them interesting, particularly to 

modelers of natural processes.  MLP models can often outperform standard polynomial 
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regression models at their task of settling to a minimum-error surface as measured by the 

least-square metric.  Part of this ability resides in their use of monotonic sigmoidal basis 

functions to interpolate between observed values.  The combination of these functions 

results in an Occam’s razor effect, encouraging a smoother surface and thus avoiding the 

artificial high-frequency variation between observations that can easily occur in overfit 

polynomial regression solutions.  Due to the use of these same nonlinear basis functions, 

MLPs are thought to be superior to standard time-series prediction models when the 

underlying data is highly nonlinear, or dominated by complicated functions (Weigend 

1996). 

The dimensional growth in the solution space an MLP must search is restrained in 

comparison to that of polynomial regression.  A polynomial regression with p parameters, 

for instance, causes exponential growth in the number of coefficients to be estimated, due 

to the interaction terms between parameters.  Such growth requires an exponentially 

increasing sample size to determine values for each coefficient to an acceptable degree of 

confidence.  The addition of parameters to an MLP model causes only linear growth in 

the dimensionality of the search-space, thus significantly reducing Bellman’s curse of 

dimensionality for MLP models (Marzban 2009). 

MLP models are also often found to be more resistant than standard statistical 

approaches in the face of incomplete, noisy and non-stationary data (Zealand et al. 1999).  

This can be ascribed in part to their data-driven nature, which requires a period of 

training or calibration on a set of representative data.  Any set of training data will 

display a certain amount of variation in its values, but the Central Limit Theorem ensures 

that any sufficiently large set will approximate a normal distribution in the trained 
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model’s output relative to presented input parameter values.  Exposure to this data 

induces into the MLP a functional surface shaped by maximum probability distribution 

responses to the training examples provided.  In this way a tendency towards mean-

moderated responses to inputs is formed, regardless of whether the mean is constant or 

varying.  Thus the influence of noisy data and the outliers it contains is moderated, while 

at the same time the internal segmentation of its solution-space enables the model to deal 

more gracefully with non-stationary data sets.  Nonetheless, MLP performance can be 

significantly improved by preprocessing its data to remove trends and render it more 

stationary.  Reducing the dimensionality of the parameter space through such means as 

principal component analysis is also helpful, as any dimensional reduction in search-

space vastly reduces the number of potential local minima to which its gradient-descent-

based error-minimization backpropagation procedure might otherwise fall victim 

(Masters 1995).  

Being a data-driven model, no pre-analysis or critical assumptions about the 

nature of the data, spatial or otherwise, are necessary.  This does not mean that the MLP 

model is wholly assumption-free, however. Reliance on the minimization of overall 

model error (MSE) in the training phase implies one assumption at least: that errors in the 

measured data are normally distributed (Marzban 2009).  The backpropagation regression 

procedure ensures that relevant features of the data set will be learned in the course of 

training (Openshaw and Openshaw 1997).  Naturally, this presumes representative data 

sets in which the desired features are present.  One consequence, however, is that even if 

some specific domain knowledge is known regarding a particular phenomenon or data 

set, this information cannot be explicitly emphasized or modeled, other than providing it 
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as an additional input parameter (if possible) to the MLP.  Although there is no guarantee 

that any given parameter will ultimately be utilized, any parameter that provides non-

redundant information capable of guiding model outputs to consistently low-error 

performance is likely to be integrated into the solution process. 

The proof that MLP models are universal function approximators – that they are 

capable in principle of approximating any continuous function – has been made in several 

studies (Cybenko 1989; Funahashi 1989; Hornik et al. 1989; Castro et al. 2000).  

Universal approximation itself is not an unusual property in modeling systems, as it only 

requires that component basis functions maintain linear independence. Polynomial 

regression and Fourier (or harmonic) decomposition techniques are thus also known to be 

universal approximators. That MLP models are also found to be so confirms that they 

have the power to competitively model interesting and significant continuous surfaces, 

including those formed by the covariance structure interactions relating parameters in the 

model’s input vector to each other.  However, none of these proofs are constructive; that 

is, they indicate only the existence of a set of weights yielding the appropriate 

combination of basis functions for the sought-after result, but give no indication as to 

how that set of weights may be achieved.  Nor do they address the number of basis 

functions (represented architecturally in the model as the number of hidden nodes) 

needed.  For example, a sinusoidal wave can provably be represented by a MLP 

composed of sigmoidal basis functions, but only so long as the number of hidden nodes 

approaches infinity (Castro et al. 2000).  Although this is an extreme case, and most 

problems will not in fact require near-infinite numbers of nodes, it illustrates a need for 
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some pre-analysis to determine an appropriate number of basis functions for the problem 

at hand. 

 

2.3.4 MLP Weaknesses 

 

As has been suggested above, some properties of the technique do not always 

necessarily work to its advantage.  The architectural flexibility of the model is such that 

the naïve modeler may be tempted to use all available data streams as predictor 

parameters, but the greatest difficulty can be in selecting appropriate model inputs.  

Determining the most relevant inputs is necessary in order to mitigate structural 

complexity of the model, as well as to limit the dimensions of the solution-space to 

search. Limiting  the MLP to only the most relevant parameters has the additional related 

effects of decreasing the training time of the model, and increasing the generalization 

ability of the resulting solution (Zealand et al. 1999).  Nor is the MLP ever completely 

free of the curse of dimensionality, as any solution space it must search will feature a 

plethora of local minima.  As noted in the preceding section, choosing an appropriate 

number of hidden nodes for a model is neither easy nor obvious.  The general approach to 

this issue has traditionally been to implement a battery of bootstrap tests to determine the 

smallest number of hidden nodes for which model error shows significant decrease 

(Marzban 2009).  Another popular method to determine optimal model structure is to use 

a genetic algorithm evolutionary approach (Ferentinos 2005).  Although this latter 

approach can be more flexible than the former, it can also be much more expensive in 

terms of time and computational resources.  While the solution arrived at by either 
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approach will typically deliver above average performance, in neither case is the 

determination of an optimal model structure guaranteed. 

Openshaw (1997) lists various critiques leveled at the MLP technique: that the 

defining processes and patterns of the phenomenon that the model attempts to represent 

are poorly represented, or hard to extract; and that it is essentially a black box model. 

Marzban (2009) suggests that the black box reputation is not entirely deserved, however, 

as the appearance of complexity is not all necessarily due to the model, but can emerge 

from the problem itself.  The apparent necessity in spatiotemporal models for growing 

numbers of multiple cross-covariance matrices as locations si increase would seem to 

suggest that most spatiotemporal problems too belong in this number.  Indeed, any 

complex, highly nonlinear phenomenon with a high level of interaction between 

parameters will make for a complicated representation, and will be extremely difficult to 

concisely and meaningfully describe (Marzban 2009).  Nonetheless, it is often 

worthwhile to provide a sensitivity analysis on the final trained model to determine the 

spectrum of contributions of each input parameter.  Olden (2002) proposes one potential 

technique, and provides a short review of alternate approaches in (Olden and Jackson 

2002).  

Finally, it is known that the process of finding the existence of an optimum 

collection of weights for even relatively simple MLP models, such as those comprising a 

3-node hidden layer of linear computational nodes, is an NP-complete problem (Blum 

and Rivest 1992).  Given the infinite combination of initial weight allocations such a 

network may be assigned upon initialization, each one defining a different challenging 

landscape of local minima to navigate, there is little reason to believe that a universally 
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optimal training algorithm exists to consistently mold the collection of weights to an 

optimal configuration.  As there is a certain level of uncertainty associated with any 

physical readings taken by in-situ sensors in a natural environment, the optimal weight-

set may be impossible to achieve even with a perfect training algorithm.  In most cases, it 

may be sufficient simply to locate the deepest local minima possible. Thus we can expect 

no single trained MLP to learn the problem-space perfectly (Hansen and Salamon 1990).   

Different models trained from different initial weight distributions will inevitably 

make generalization errors on different subsets of the problem space (Hansen and 

Salamon 1990).  This has led to some active research into ensemble MLP systems, 

wherein multiple MLP models are trained for the same problem, and the final system 

output is determined by majority support (in the case of classification systems), or by 

average response for function approximation (Cannon and Whitfield 2002; Baker and 

Ellison 2008; Watts and Worner 2008).  These studies generally support the finding that a 

collective decision by ensemble is likely to contain less error then the conclusion arrived 

at by any single member of the ensemble.  Ensemble results can therefore be much more 

trustworthy than reliance on a single model.  However, the process of molding a trained 

model’s final weights from the starting-point of a randomly initialized weight distribution 

is a global optimization problem, for which no optimum approach is known.  Any global 

optimization algorithm will thus experience varying levels of success according to the 

particulars of the problem set before it (Hansen and Salamon 1990). 

Nonetheless, MLP models have experienced a moderate level of adoption by 

researchers in the natural sciences to model various natural processes.  Dawson and 

Wilby (2001) presented a comprehensive review of MLP methods in the field of 
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hydrology, showing the applicability of the technique to phenomena with temporally-

lagged effects.  MLP use has been shown to be simpler and more efficient in 

environmental modeling scenarios where otherwise mass-consistent or hydrostatic flow 

models – necessitating the solving of systems of fluid dynamics governing equations – 

would be used.  Models employed for tidal or coastal water-level point forecasts have 

been seen to offer substantial improvements over harmonic analysis while requiring 

significantly less data than the more traditional time series prediction methods for that 

level of performance (Tissot, Michaud et al. 2003; Lee 2004). 

  

2.3.5 MLP Models Used for Spatial Interpolation 

Relatively few studies can be found employing MLP models for spatial interpolation.  

Those that do exist are primarily of two types: 

1) studies that approximate aggregated (e.g., maximum, average) physical 

measurements for a discrete set of geolocated points, inside a network of data 

stations used as predictor variables (Snell et al. 2000; Londhe and Panchang 

2007). 

2) studies interpolating an entire surface of aggregate values, based on a subset of 

nearby geolocated data sources  (Rigol et al. 2001; Bryan and Adams 2002; Rigol 

2005). 

The first group of papers above implant MLP models that use readings from a fixed 

collection of stations A to predict cotemporaneous values at a non-overlapping set of 

static locations B.  This approach can certainly serve to arrive at solutions by exploiting 

the covariance relations between the various locations in A with those in B.  These 
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models can say nothing, however, about the regions around and between the distinct 

points  BA .  The second group of papers uses MLP models that employ readings 

from a selection of nearby stations, in addition to the physical parameters at the current 

location, to interpolate an entire field of values. 

Being universal approximators, MLP models should be capable of integrating time 

series as temporally-correlated lagged predictor variables into a prediction surface (and 

some studies do employ the time-series technique for point forecasts: (Dawson and Wilby 

2001; Tissot et al. 2003)).  Such an approach is similar in concept to the spatial time 

series approach for spatial interpolation, but given the MLP advantage in easy 

extensibility, with the added possibility of incorporating further arbitrary data features 

available in the region.   Rigol (2001) compares the performance of a model interpolating 

a surface with terrain variables specific to the location in question, for example, against a 

model also incorporating near-neighbor effects.  That the best performing model in 

Rigol’s study incorporated local guiding effects as well as a subset of available terrain 

variables is further confirmation of the necessity of choosing one’s predictors well, but 

also how crucial the incorporation of local constraints is to a model’s ultimate 

performance level (Bollivier et al. 1997). 

 

 

2.4 Addressing Nonstationarity 

 A perceptible shift is ongoing in recent approaches taken to spatial problems.  

Models that have traditionally been designed as global simulations of a process are 

increasingly being developed as a system of regionalized or partitioned sub-models.  One 

of the more well-known examples of this trend is Brunsdon’s concept of geographically-
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weighted regression (Brunsdon et al. 1998).  Certainly the idea is not new: the concept of 

divide and conquer has long been a mainstay in computer science and mathematics, as 

indeed in every discipline requiring systematic problem-solving methods.  Nonetheless 

partitioning is a very useful technique in spatial applications, where techniques require 

stationarity for optimal results, yet the data is rarely if ever stationary.   As mentioned 

earlier, restricting kriging to sufficiently small areas can be sufficient to dispense with the 

problem of data non-stationarity (Journel and Rossi 1989), but can also potentially open 

the door to greater variance and increased uncertainty in the model’s results. 

 Another potential advantage of partitioning is that different variables may become 

more relevant as the focus is restricted to smaller regions.  Different processes operate at 

different scales (Lam and Quattrochi 1992).  Processes and interrelationships between 

input parameters that may have been invisible to a global model may be better 

distinguishable to a model trained on just one part of the whole.  In other words, a system 

of smaller-scale models may allow us to mitigate the Ecological Fallacy (Robinson 1950) 

that a single global model might be induced to make: that phenomenological behavior in 

all regions reverts to the mean, global behavior.  Given a model such as the MLP which 

is capable of easily integrating new variables into its approximative function, the spatial 

partitioning technique may have some potential to impart accuracy improvements over 

the whole system that a single global system lacks the flexibility to deliver. 

2.4.1 Partitioning Techniques 

Most partitioning strategies utilize some form of clustering method. Clustering 

algorithms can be generally classified under two basic approaches: hierarchical 

agglomerative models that can be represented as dendrograms, such as hierarchical tree 
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models (Murtagh, 1985); and squared-error based methods (also known as Vector 

Quantization), such as k-means (Xu & Wunsch, 2005).  Many techniques in the latter 

group can be shown, under specific circumstances, to be identical to the k-means 

technique, suggesting that this base approach underlies many of the more specialized 

algorithms targeted to apparently-disparate problems.  Furthermore, k-means is a 

computationally efficient technique at an approximate computational complexity of O(n) 

(as compared to O(n2) complexity or more for agglomerative approaches, for example) 

(Cormen et al. 2009).  

K-means clustering has general application in any non-spatial context.  Openshaw 

(1977) provides a description of the fundamental spatial partitioning problem referred to 

as the automatic zoning problem (AZP), as a partitioning of n basic spatial units (bsu) of 

measure into distinct collections by the following. 

 

 Let x1, x2, …, xN be N vectors of dimension n representing the bsu data:  

X = [x1
T, x2

T, …, xN
T]T. 

The N vectors of X partition the study area into K zones, denoted 1, 2, …, K; 

such that 1  K  N-1.  A classification array W is defined as:  

W = [w1, w2, …, wN]T. 

Finally, it is assumed that there is a model to be used on zone data with m 

independent variables; p1, p2, …, pm;   

P = [p1, p2, …, pm]T. 

 

An objective function provides a measure of partition performance in terms of 

the model and a predefined target value, so that by optimizing this function an 
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optimum partition-performance is obtained.  The function F(W, X, P) is a scalar 

function of the independent variables W and the constant variables X and P.  It 

maps the performance of any partition onto the set of real numbers. 

 

The unconstrained optimal-zone design problem either minimizes or maximizes the 

function F for the partitioned data, depending on the desired optimal goal.  The 

framework of Fuentes (2005) is quite similar to the AZP problem described by 

Openshaw, with N data items in X partitioned into K collections in W.    In the context of 

this thesis the primary technique used to accomplish partitioning is the well-known k-

means algorithm. 

2.4.1.1 The k-means Algorithm 

Given a set of d-dimensional observations (x1, x2, …, xn), k-means clustering aims 

to partition the n observations into k sets  S = {S1, S2, …, Sk} (where k ≤ n) so as to 

minimize the within-cluster sum of squares (WCSS): 
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where µi is the mean of the xj in Si. 

 

Main Algorithm 

Beginning with an initial set of k means m1
(0), … , mk

(0), the algorithm proceeds to 

alternate between two steps: instance-assignment, and mean-updates. 
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a. Instance assignment 

Each d-dimensional instance x is assigned to the cluster whose mean happens to be the 

smallest distance from x.  Since the arithmetic mean is a least-squares estimator, this 

meets the objective of minimizing the WCSS   (Note: this process can also be described 

mathematically as partitioning the observations according to the Voronoi diagram 

(Voronoi, 1908) generated by the means). Each xp is assigned to one and only one set Si, 

even if it could be assigned to two or more 
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b. Mean-updates 

Once all instances have been assigned to cluster-sets, a new mean for each set is 

calculated 
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When the µi no longer change in the mean-updates step, the algorithm has converged 

onto a local minima set of µi.  As both steps optimize the WCSS and the number of 

partitions is finite, the algorithm must converge to a local minimum.  However there is no 

guarantee that its solution is a global minimum.  In practice, this entire algorithm is 

repeated N times in order to avoid suboptimal solutions and instead isolate a “best” one 

to a desired level of significance. 
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Drawbacks 

There are two significant drawbacks to using the k-means method: model 

assumptions and choice of k.  In general, k-means assumes a spherical cluster model 

where clusters are of similar size and density that may not be met in all natural situations.  

However, a generalization of k-means called the expectation maximization (EM) 

algorithm provides incremental performance improvement by taking both variance and 

covariance of cluster-member data instances into account (Dempster et al. 1977).  The 

algorithmic simplicity and relative performance efficiency of the basic k-means algorithm 

however, has advantages for a power-limited WSN context.  The most appropriate value 

of k for the current time period is determined by a Monte Carlo simulation, described 

later in the Monte Carlo BestK-approximation section. 

In the context of wireless sensor networks there have been several attempts to 

implement distributed clustering schemes, since the power-limited quality of such 

networks is one of the greatest obstacles the network must overcome in its delivery of 

valid results.  Distributed EM schemes are popular, with variants proposed by (Nowak 

2003), (Kowalczyk and Vlassis, 2004), (Gu, 2008), (Wolfe et al. 2008) and (Forero et al. 

2008).  K-means and hybrid distributed methods are proposed in (Chen et al. 2004), 

(Younis and Fahmy, 2004), (Forero et al. 2008) and (Oliva and Setola, 2014).  

Unfortunately, these works are limited by requirements which may not be supported in 

WSN, including: particular network topologies and configurations; storage and 

computing power needed for nodes to solve clustering problems comparable to the 

overall centralized one; or need to meet assumptions that cannot be easily guaranteed in a 
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dynamic natural environment.  In an effort to maintain generality therefore, we limit 

ourselves in this work to the basic k-means algorithm to explore the effectiveness of this 

technique as a first step. 

Energy savings is often a prime concern when working with Wireless Sensor 

Networks (WSN) (Apiletti et al. 2011).  The basic k-means algorithm may not finally be 

strictly optimal for all large-scale spatial and temporal data applications (including those 

exhibiting high data dimensionality) for which separate, related techniques have been 

developed (e.g., BIRCH, CLARA, DBSCAN, EM etc.) (Jain et al. 1999) (Tan et al. 

2006) (Witten et al. 2011).  However, techniques have been developed to efficiently 

apply k-means to large geospatial datastreams (Nittel and Leung, 2004), and we have 

found it a reasonable, effective and simple clustering technique that is well suited for 

power-limited processing such as takes place on self-contained wireless sensor nodes 

embedded within natural environments. 

2.4.1.2 Monte Carlo BestK-Approximation (MCBestK) 

Choosing the most-appropriate k for use in a k-means process is considered a difficult 

algorithmic problem, made even harder in multidimensional data, even when clusters are 

well-separated (Hamerly and Elkan, 2004).  Consequently, multiple studies and heuristics 

exist to determine a dataset’s most appropriate choice of k in order to generate reasonable 

clusters (Bischof et al. 1999) (Pelleg &and Moore, 2000) (Jain et al. 1999).  This 

technique is used to determine when a dataset would benefit from partitioning, and also 

delivers an approximate, discrete best-K value to use when partitioning using a k-means 

approach.  The general algorithm is the following: 
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Collect dataset 

 

for i = 1 to N: 

for k = 1 to maxK: 

Generate sum of within-cluster squared-distances (WCSS) for k into matrix 

mm(i, k) 

 

Determine average solution-series s(k) from N series in mm(i,k) 

 

for i= 1 to statN: 

  Generate new version of dataset with randomly-permuted column-values 

for k = 1 to maxK: 

  Generate WCSS for each i,k into permuted matrix pm(i, k) 

 

 

if all series pm(i,_) > s(_): 

  normalize x-, y- axes 

for i = 2 to maxK-1: 

  determine slope m for K=i 

  if m(i)>=-1 and m(i-1)<-1: bestK = i 

 

This heuristic is discussed in greater depth in Chapters 4 and 5, where it is applied to 

datasets in order to find the most appropriate number of partitions to use.  

2.4.2 Assessing Model Inputs 

Random initialization can be a very powerful design concept in specific situations 

– for example, it makes a major contribution to security in the creation of a robust 

encryption scheme – and in this current work to create and fit a model for purposes of 

dataset exploration, interpretation and missing datum approximation. For example, both 

MLP and k-means models are randomly initialized, allowing models to investigate and 

compare different approaches through the multidimensional problem space in order to 

find an effective solution.  Multiple randomly-initialized models are generally created in 

order to determine a single reasonably well-fit solution, as well as to control for the 
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tendency of candidate solutions to settle in local minima. Due perhaps in part to the 

randomness of their origins, a downside of using MLP models (and, for that matter, the k-

means model) is that although the best-performing models resulting from these 

techniques deliver perfectly reasonable results, they are essentially black-box processes 

(Marzban 2009).  That is, it is often difficult to determine how their final results were 

achieved, or even why they work as solutions to the problems they are employed to solve.  

Often these models are developed, discarded and recreated frequently enough that it is 

not considered worthwhile to analyze their workings, as the next well-performing iterate 

may well exhibit a completely different structure or approach in delivering its results.   

Due to this difficulty in articulating how or why the model delivers the results that 

it does, we propose to use another randomly-initialized statistical model , a random forest 

(Breiman 2001) – also known as an ensemble of regression trees (Breiman et al. 1984) – 

to pry open the black boxes of both our k-means and MLP models in order to gain some 

insight into the perceived importance of their respective problem inputs.  We do this by 

performing a repeated bootstrap-aggregation process known as Tree-Bagging on a subset 

of our regression-tree models, and thereby focus on the inputs that the MLP’s training 

process found particularly significant in generating its results.   

 

 

2.4.3 Classification and Regression Trees 

Parametric models specify the form of a relationship between predictors and a 

response.  In many cases, the form of the relationship is unknown, and a parametric 

model requires assumptions and simplifications.  Classification and Regression Trees 
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(CART) provide a nonparametric alternative (Breiman et al. 1984).  Binary tree 

classifiers are constructed by repeated splits of subsets of the set of data instances X into 

two disjoint, descendant subsets, beginning with X itself.  A regression tree is one where 

all instances of a given class c are processed via a regression function fc. In this thesis 

regression trees are used to “crack open” the black boxes of other nonparametric models 

in order to measure the relative significance assigned to parameters by the model.   

Small populations of multiple regression-tree models (called ensembles or 

random forests) consisting of subsets of the entire available parameter set are generated 

through Tree Bagging to efficiently derive quantitative weightings of model parameters 

for the model in question (Breiman, 2001).  Random forests have a number of 

characteristics that make them well suited to work in tandem with black-box function-

approximation applications such as Artificial Neural Networks.  They run efficiently on 

large data sets, can easily be parallelized, and are relatively robust to outliers and noise.  

Further, they do not require specification of an underlying data model, can capture non-

linear association patterns between predictors and response, and are able to deal with 

highly correlated predictor variables.  Most importantly, they generate an internal 

unbiased estimate of the generalization error (called OOB, or out-of-bag, error), which 

allows them to determine which variables are important within the regression model. 

The concept of random forests combines many binary decision trees built using 

multiple bootstrap samples of a dataset and randomly choosing at each node a subset of 

explanatory variables sv (Genuer et al. 2010). Kühnlein et al. (2014) provide the 

following explanation for the general random forests algorithm (Kuhnlein et al. 2014): 
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i. s bootstrap samples are randomly selected from the data set with replacement.  

For each bootstrap, a different subset of the data set is used to develop a 

binary decision tree model. A certain number (e.g., 33%) of instances are left 

out of the sample.  This OOB set is used to generate unbiased estimates of the 

regression error as well as to estimate the importance of predictor variables 

used to construct the tree. 

ii. A regression tree for each of the bootstrap samples is generated (resulting in s 

trees), with one important modification: a subset sv of the predictor variables 

is randomly selected to create the binary rule.  In other words, sv specifies the 

number of randomly chosen predictor variables upon which the decision for 

the best split at each node is made. The variable selected for the split is based 

upon the lowest residual sum of squares error generated for each of the sv 

variables.  sv is held constant for each tree in the forest ensemble model. 

iii. Each of the s tree models is grown out as far as possible; there is no pruning 

iv. Approximations are calculated by passing each data instance (whether sample 

set or OOB) through each tree model and averaging results to produce the 

final estimate. 

 

Further necessary definitions and heuristics are rendered in detail within (Breiman 1984) 

and (Breiman, 2001), with various applications in satellite reading enhancement 

(Kühnlein et al. 2014), bioinformatics (Boulesteix et al. 2012), and generalized 

parameter-selection (Genuer et al. 2010). 
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2.5 Uncertainty Estimates for Spatiotemporal Models 

Significance differences between the results of single- and multiple-model MLP 

systems are determined by a 2-sample t-test, where the variance of each population is 

assumed to be similar, and normality of error-distribution is also assumed (via Central 

Limit theorem due to large populations of result-instances).  The standard equations used 

are: 
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 Root mean square error is a common performance metric used to evaluate the 

fitness of trained MLP models to their task.  While this may be sufficient for models of a 

process at some discrete location, such as tide levels at a particular station along a coast, 

it is a less satisfactory solution in a spatial or spatiotemporal context as performance will 

typically vary over space as well as time.  In a spatial context a more common approach 

is contouring; that is to evaluate the accuracy of a model as a contoured surface of the 

performance metric, as in (Bailey and Gatrell 1995).  This suggests that the performance 

metric of a spatiotemporal field would be a spatiotemporal field itself, with a formal 

definition similar to Definition (1.3): 

    E : T → M → VERR 

A visualization of some model’s error function E at a given point in time might look like 

the following: 
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Figure 2.2: Notional contour map of an error function over a spatial region 

 

Visualisations such as this aggregated over time can be useful in determining potential 

partitionings of the space to better focus on regions of consistently poor performance.  

These partitioned regions might, for example, have a unique model dedicated to them in 

order to better deal with influences particular to that region. This is the subject treated in 

the following chapter, where the chosen model is an MLP. 
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3. --- 

CHAPTER 3 

MULTILAYER PERCEPTRON FIELD INTERPOLATION OF 

SPATIOTEMPORAL DATA 

 

 The goal of this chapter is to evaluate the performance of a global multilayer 

perceptron (MLP) model at the task of spatiotemporal field interpolation using the local 

spatial and temporal information available to it.  Its performance is gauged in relation to 

two other common data interpolation techniques: ordinary kriging (OK), and a simple 

temporal persistence model (TPM).  OK is a well-known spatial approximation approach 

that employs a global view of the available spatial data field to yield high-quality 

estimations of missing values.  TPM simply returns the previous known value at a given 

location, providing a minimum level of performance the MLP can be expected to 

improve upon.  The OK and TPM interpolation test methods provide for comparison 

against a more strictly spatial and more strictly temporal performance assessment 

respectively for the MLP model. 

 

3.1 Introduction 

 Many techniques exist to approximate missing values in time series as well as 

spatial datasets.  Linear, polynomial and Fourier interpolation are often applied to time 

series, and spatial kriging is a popular interpolation method for spatial data.  Most of 

these interpolation methods concentrate solely upon either the temporal or the spatial 
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dimension of the data. Techniques exist that integrate both space and time (Kyriakidis 

and Journel 1999), but their combination often requires a series of subjective assumptions 

specific to the dataset (Knotters et al. 1995), and could result in an overly complex model 

with poorer performance than a single-dimension version (Skøien and Bloschl 2007). 

Further, nearly all these methods have difficulty representing complex nonstationary 

relationships within their datasets. 

 Artificial Neural Network models, and specifically the basic MLP model, have 

not been widely applied in the GIS domain, although the technique has gained some 

wider acceptance  (Bollivier et al. 1997) despite the model’s perceived shortcomings (i.e., 

its black-box nature). MLP have been applied to the spatial interpolation of daily 

temperature variables, and have outperformed traditional benchmarks (spatial averaging, 

near neighbor and inverse distance methods) (Snell et al. 2000). Rigol et al. compared the 

results of MLP models using various combinations of globally invariant data – such as 

day of year, latitude and longitude – and additional locally-relevant information such as 

local terrain aspect and near neighbor readings, to implement the interpolation process 

(Rigol et al. 2001).  

 One reason MLP models may be suited for spatial applications is that the 

sigmoidal basis functions commonly used in their construction enable better performance 

than that delivered by the more standard linear and log-linear models (Openshaw and 

Turner 2001). Pariente reported better geographical interpolation performance with 

stacked Hopfield neural nets (a related artificial neural network model) than standard 

methods such as kriging (Pariente et al. 1994).  
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 This chapter explores the effectiveness of a trained MLP model to accurately 

model the spatiotemporal dynamics of surface ocean currents in the Gulf of Maine. Given 

the harsh climatic conditions that sensors embedded in and around the Gulf of Maine 

experience, a reliable approximation method for the monitoring system’s missing data is 

necessary. Having a full and accurate picture of conditions in the Gulf is important for 

sea-based industries, for mitigating effects of accidents (oil spills, for example), and for 

tracking potentially harmful periodic events such as harmful algal blooms (Townsend et 

al. 2001).  The data for this experiment was obtained from a Coastal Ocean Dynamics 

Application Radar (CODAR) surface current monitoring system based on the coast of 

Maine.  While not a sensor network in the context of wireless sensor networks (WSN), 

we view the grid of geolocated surface ocean current readings provided by the CODAR 

system as though provided by an array of independent sensors, whose communications 

with the data store are intermittently interrupted due to either natural conditions and/or 

technical limitations. Our objective is twofold: (1) to test how well MLP models perform 

as a field interpolator in the spatial domain in comparison to standard geostatistical 

techniques (such as ordinary kriging); and (2) to demonstrate that situations exist where 

the use of a MLP modeling system may be preferable to the standard geostatistical 

solution (primarily due to its performance as a less computationally-intensive spatial-

temporal field interpolator than space-time kriging (Guan et al., 2011; Zhong et al., 

2015)).  

 The remainder of this chapter is organized as follows: Sections 3.1 – 3.3 provide 

relevant information on the source of the data, its composition, preparation and 

evaluation. Section 3.4 describes the MLP, kriging and TPM baseline models whose 
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performances are compared in this study. Section 3.5 contains the experimental results, 

and we conclude with section 3.6. 

 

 

3.2 Model Data – Ocean Surface Current Measurements 

 The experimental data used for the spatiotemporal field in this study are 2-D 

surface ocean current vectors observed over the Gulf of Maine.  These data were drawn 

from the University of Maine Ocean Observing System (UMOOS) that is part of the 

Northeastern Regional Association of Coastal Ocean Observing Systems (NERACOOS). 

The data collection system consists of an array of buoy-mounted sensors, as well as 

CODAR coastal radar stations located to provide maximal coverage of the sea-surface of 

the Gulf of Maine. Data were collected in June 2005 from the CODAR system of 4.3-5.4 

MHz SeaSonde HF radar stations deployed along the perimeter of the Gulf. Each station 

periodically transmits radar signals in a radial pattern, directed out towards the surface of 

the ocean. A physical phenomenon known as Bragg scattering ensures that all signals 

striking waves traveling directly toward or away from the transmitting station will be 

reflected back to the station for capture. Reflected signals undergo a Doppler frequency-

shift, from which one radial component of the surface current velocity vector may be 

determined.  Combining the radial surface readings of all CODAR stations from a 

single point in time enables the synthesis of a field of 2-D surface current velocity 

vectors, each assigned a location in a rectangular square grid with cells measuring 

roughly 15 x 15 km (Figure 3.1). We refer to the two components of these velocity 

vectors as u and v. Fields of surface currents are thus determined once per hour. The three 
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CODAR stations primarily active during this time-period are Wood Island to the 

southwest, Greens Island midway up the Maine coast, and Cape St Mary located in Nova 

Scotia to the east. Further information regarding CODAR array operation can be found in 

(Pettigrew et al. 2008).  

 

Figure 3.1: Map of Gulf of Maine CODAR testbed region with active sites labeled.  The monitored region 

M is indicated by a dashed rectangular outline 

 

3.3 Methodology 

3.3.1 Radial Component Approximation 

 Although CODAR stations will generally attempt to project outgoing radar 

signals over their entire range of coverage, some surface conditions within that range may 
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reflect signals back poorly; further, atmospheric or other interference may also contribute 

to an incomplete field of radial readings being reflected back to source. Since at least two 

separate radials are required from the radar stations to synthesize a velocity vector in one 

location, this has the practical effect of causing data drop-outs in the resulting vector field 

where only one CODAR radial exists (i.e., only one radar station received a reflected 

signal). The partial information contained in the datum represented by the single radial 

may hint at surface current behavior in a given location when a history of past values of 

that single radial (and the total vectors resulting from them) is consulted.  

For example, imagine a location l exists where the total surface current always 

flows due east (that is, it never flows west, nor is there ever any north or south 

component).  Assume that a radar station always receives radial signals for l, and when 

these are greatest the magnitude of the surface current at l has the value maxl, and when 

these are smallest, the magnitude at l is minl.  Given this serendipitous linear relationship 

between the radial signal and the surface current vector at l, knowing the value of the 

radial signal will provide a very good idea of the surface current magnitude at l , 

potentially making radial-value an effective input for the MLP tasked with 

approximating surface currents in the region containing l. This is just the type of 

opportunistic data-mining that MLP models can facilitate.  On the other hand, should we 

resolve to use a single-radial attribute as an input parameter to our MLP model, we must 

ensure that a single-radial value exists wherever (and whenever) the MLP is to be used.  

Otherwise our model cannot be used anywhere radial-value is not available 

To ensure that a radial value exists at each location and time-step within our 

testbed, a synthetic field of radials is generated to fill all empty potential grid locations 
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with inverse distance-weighted average values from nearby radial readings. In this 

particular context, the MLP model uses as radials from the Greens Island (GRI) station as 

one of its input parameters as this station is most centrally-located in the Gulf of Maine, 

and is therefore most likely to have a value to provide to all monitored locations within 

the Gulf. 

 

3.3.2 Delineating the Spatial Interpolation Space by Convex Hull 

 For each time step, a convex hull is generated from the known data in the field of 

surface velocity vectors, bounding the perimeter of the area within which model 

approximations will be made. This procedure ensures that any approximated value will 

have the spatial support necessary to make at minimum a linear approximation of its 

actual value from two independent readings.  No approximations are effected outside this 

bound as the values for large swathes of estimated currents may be based upon the same 

few actual readings, and are thus insufficiently independent. 

 

3.3.3 Velocity Vector Approximation 

 The spatial time series approach employed by the MLP model requires an 

uninterrupted time series of prior surface-current readings (in addition to the specified 

radial-value input described above) to aid in making its approximation. Yet due to the 

same climatic and technical conditions that affect radial vector collection, there may be 

gaps in the surface current record. Therefore the historical data record is completed by 

filling in for any missing values with the results of a spatial kriging model surface for the 
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requisite time steps. The MLP model results will be compared to Ordinary Kriging (OK) 

results, thus it is important to note that the MLP model’s results never employ the OK 

model’s results at the timepoint for which a value is approximated, although prior OK 

results may be present in the MLP input set as part of the historical record. MLP model 

results from previous time steps are never employed as inputs, even as historical values in 

the MLP input set, to prevent the natural bias present in a trained MLP model’s results 

from accumulating in subsequent approximations.  All three of these preprocessing steps 

are illustrated in Figure 3.2 below. 

 

 

3.3.4 Quantitative Measures 

 Two general quantitative error measures were employed to compare performance 

of various models: simple mean error (SME) and root mean square error (RMSE). The 

simple mean provides an estimate of model bias in each component of the resulting 

vector. No bias is expected in the kriging model employed to fill in missing values in the 

historical data record as required, as it is an unbiased predictor. RMSE gauges overall 

performance accuracy of the model over its assigned region. These measures are 

determined by computing model-approximations for missing and known values. 

Performance measures were determined on the basis of approximation error for all known 

locations with measured values, and were assumed to be roughly the same for the 

remaining locations with missing values inside the convex hull. Since the kriging model 

is an exact interpolator, its approximation errors are obtained from the “leave one out” 

cross-validation process, where kriging is run once for each known data value in the field 
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but leaving out the value under consideration. As each data value is comprised of the two 

components u and v, overall best performance is achieved by minimization of the 

magnitude of the resulting error vector. 

 

3.4 Model Configuration 

3.4.1 The Multilayer Perceptron Model 

 In the multilayer perceptron model, inputs propagate forward through the 

weighted network of simple processing elements comprising the MLP. From the input 

nodes, through the layer of hidden nodes, to the output nodes, the input values are 

combined and transformed through a series of relatively simple operations into output 

values. At each hidden- and output-layer processing unit, weighted incoming values are 

summed and then transformed via some activation function. Such a model requires 

training to produce correct outputs, which is managed through a process called 

backpropagation. In this process output errors are propagated backwards through the 

model, modifying all weighted connections in order that outputs at the end of subsequent 

feed-forward cycles converge towards the desired results. This illustrates a main 

advantage of using an MLP for modeling a spatial-temporal process – training the model 

on recent data will automatically integrate spatial and temporal inputs in appropriate 

proportion for current conditions. Using backpropagation to induce an observed 

phenomenon’s dynamics into a finite collection of coefficients in this way results in a 

relatively compact, transportable and disposable representation usable by devices of 

limited computational capability, such as independent WSN nodes in a network. 
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3.4.2 MLP Model Specification 

 All MLP models in this paper were implemented with the MATLAB Neural 

Network Toolbox (v5.1), and have a 32 – 3 – 2 architecture (i.e., 32 input nodes, 3 hidden 

nodes and 2 output nodes). Two output values were required because the interpolated 

surface ocean current readings are 2-D vectors.  Two eight-hour time series of 2-D 

vectors comprise the input vector presented to the model’s 32 input nodes.  Given a tidal 

period T of 12.5 hours, an eight-hour series ensures that appropriate signal harmonics 

(e.g., T/2, T/4) are included in the input set. The number of hidden nodes was determined 

by an evaluation of normalized RMSE values (Lee 2004)   

      22
ˆˆ

k

k

kk yyynormRMSE     (3.1) 

on models with one to six hidden nodes, where three hidden nodes provided the smallest 

normRMSE.  Many variations on gradient descent exist, but our models employ the 

Levenberg-Marquardt variant for its adaptive learning rate α, and property of guaranteed 

convergence. 

 Because model inputs consisted of two 2-D time series, the spatial interpolation 

was accomplished primarily by the spatial time series approach, extrapolating missing 

values from a weighted sum of the series of prior known values for that location (Bennett 

1979). The first time series (TS1) recorded the prior eight hours of surface velocity 

vectors for the location (not including the current time’s vector reading, which was 

considered missing), while the second time series (TS2) recorded the prior seven hours of 

GRI radial values for the location, in addition to the radial value at the time of 

approximation. While the first time series communicated a purely temporal aspect to the 

data, the second incorporated some neighboring spatial influences as well due to the 
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weighted-mean radial processing described in Section 3.3.1.  This spatial time series 

approach of essentially using twin arrays of temporal readings is reflective of the current 

direction of research in large-scale spatiotemporal data processing, where array databases 

are seen as the best support for such applications (Camara, Egenhofer et al., 2015).  An 

advantage of taking this approach with an MLP is that more than a single time-series (2 

in this case) may be used as the model’s input vector, as well as an arbitrary number of 

other related inputs that may be available to the model. This capability will be explored 

further in subsequent chapters. 

Although the spatial component to the MLP model described here is relatively 

subtle, it will become much more significant in subsequent chapters 4 and 5.  The 

described MLP model could contain a more explicit spatial component by integrating 

inputs of a more overtly spatial nature, such as “the reading from the node(s) to my 

immediate west/east/north/south.”  This would of course limit the model’s use to only 

those locations with a neighbor in the appropriate cardinal direction. Since the MLP 

implements the spatial time series approach by providing results for every location within 

its monitored region M, these more explicit (but more limiting) spatial inputs were left off 

in favor of a more straightforward comparison of results with competing models. 

Further pre-processing specific to this model included the short-term removal of 

temporal trend from the surface-velocity vector time series (though not the radial series). 

The dominant forcing mechanism for tidal currents in the Gulf of Maine is the 12.42-hour 

M2 semidiurnal tide (Ku et al. 1985), so a 12.5 hour simple moving average signal was 

subtracted from all surface current vector values in the MLP model’s input vector.  This 

had the effect of imposing some temporal stationarity to the time series, while providing 
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only the residuals to the model for processing (note that while claims are made that ANN 

models adapt better to nonstationary data better than standard linear-based modeling 

approaches, they can still realize a performance benefit from using preprocessed data to 

mitigate or remove nonstationarity (Virili and Freisleben, 2000). Once the model 

produced its output, the temporal trend was reincorporated into the result as the model’s 

final prediction. 

 

 

Figure 3.2: Data preprocessing steps involved in this MLP interpolation 

  

 

 A single randomly-initialized MLP model was trained using two random subsets 

(each approximately 16%) of the dataset, one for training, one for validation. The training 

set was employed to modify the MLP’s internal connection-weights as described in Table 

2.1 where each exposure to the complete contents of the training set is termed an epoch. 

Between epochs, the model’s performance was gauged against the validation set to 

ensure that model results were sufficiently generalized, and that overfitting (i.e., 
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memorization of the training set) was not taking place. Training continued until a 

satisfactory performance threshold was reached, or until it was determined that further 

exposures to the training set led to overfitting. After a large number of models were 

trained, the one with the best RMSE performance was selected as best-fit for the 

problem-space. 

 

3.4.3 The Ordinary Kriging Model 

The baseline spatial interpolation model for assessing MLP performance is an 

Ordinary Kriging (OK) model.  OK interpolation is a well-known technique used to map 

physical properties of a region for the analysis and interpretation of spatial variation, 

based on variogram analysis. Standard variogram models include: spherical, exponential, 

gaussian and linear. Variogram modeling is used to identify the spatial autocorrelation 

structure in geostatistical analyses. A variogram model γz(h) is obtained for data readings 

z(xi) following the intrinsic stationarity (Goovaerts, 1997) as given by equation 3.2. 

 

  



)(

1

2)]()([
)(2

1
)(

hN

i

iiz hxzxz
hN

h    (3.2) 

 

where N(h) is the number of pairs separated by a lag distance h. The spatial structure of 

the variogram is the main factor affecting the accuracy of the geostatistical estimation 

(Kravchenko, 2003). The ordinary kriging model is expressed as a linear weighted 

average of observations in the neighborhood of an unsampled location xo: 
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where λi is the weight obtained from the ordinary kriging system based on a selected 

variogram model (Journel and Huijbregts, 1978; Goovaerts, 1997).  

 For this study the the Matlab DACE Kriging Toolbox (Lophaven et al. 2002) was 

used, which implements semivariance via equivalent correlogram modeling rather than 

variograms directly. Minimum variance was the metric used to select the best fitted 

correlogram model, which in nearly every case was determined to be the exponential 

model. 

 

 

 

3.4.4 The Temporal Persistence Model 

 The baseline temporal model for this study is termed the Temporal Persistence 

Model (TPM), expressed simply by the following equation: 

 

 ),,()1,,(ˆ tyxgtyxg    

 

In other words, the predicted reading for any given location is simply the reading 

recorded at that location in the previous time-step. This model has the advantage of being 

simple while still providing results with high correlation and relatively low error rates as 
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compared to the actual data it predicts, making the effort to surpass its performance not-

inconsequential.  

 

 

3.5 Results and Discussion 

 Comparison of model results revealed that both MLP and OK model solutions 

exceeded the threshold performance of the TPM (Table 3.1).   

 

Table 3.1: Overall performance comparison against the TPM model for a 36-hour test period in June 2005 

 

The OK model clearly performed the better of the two competing models in comparing 

overall magnitude of the error vector to that of the TPM.  This is to be expected as the 

OK model can access the entire data field to generate its variance model, while at best the 

MLP has access to a much smaller neighborhood of spatial readings (i.e., those explicitly 

provided within its static set of inputs) as communication costs alone within a WSN 

would preclude the use of a MLP that required every reading acquired at each time-step 

in order to provide its own approximation.   
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Figure 3.3a shows the root mean square error levels, aggregated over the entire 

gulf for each timestamp, resulting from the three models over a particular 36-hour time 

period. The dynamics of the ocean current system are seen to be reflected in all three 

series similarly, as RMSE trends tend to rise and fall in tandem for all three.   Of 

particular interest are those occasions where the three series do not all react in tandem.  

At 18h00 (*1) we see that the RMSE time series for the OK model, which takes a purely 

spatial view, moves counter to the MLP and TPM RMSE series, which draw primarily 

from the temporal aspect of the spatiotemporal field.  In this case the temporal structure 

of data in the spatiotemporal field appears to be more helpful than the spatial structure of 

the data for that particular time slice as MLP temporarily outperforms OK gulf-wide.  

Earlier at about 08h00 (*2) however, the temporal structure instead caused the temporal 

model’s RMSE to suddenly increase while its spatial structure (readings in many 

locations indicating an incoming tide) enabled the OK RMSE results to remain relatively 

stable. 
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Figure 3.3: a) Gulf-wide Root Mean Square Error of TPM, MLP and OK models compared to b) Gulf-wide 

surface current variance magnitude (and component variances)  

 

 

 It may be informative to look at the Gulf-wide variance magnitude in surface 

current readings of the Gulf of Maine for this time period (Figure 3.3b).  We notice that 

at point (*1) on this chart, a temporally-based model might be aware that variance had 

been increasing over the past two time intervals, and might thus make more informed 

predictions for the current time point than a model without that information.  Whereas at 

point (*2), one can understand why a temporal model could have been caught off guard, 

as overall variance magnitude actually increased after all prior readings indicated that 

variance had already peaked and should soon begin to decrease.  It is interesting to note 

that many increases in the OK RMSE series tend to occur during periods of low overall 
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variance.  Sudden increases in RMSE can also be observed in the temporal models when 

changing from upward trends to downward trends (or vice-versa), followed by a steady 

RMSE decrease while the current trend continues.  From these observations one might be 

tempted to hypothesize that a temporal model might display better performance than a 

spatial one after a reasonably long trend of decreasing variance.  If so, point (*3) at 03h00 

in the variance chart might suggest itself as a likely spot to test that theory.  Referring 

back to Figure 3.3a, the theory appears to bear out as both MLP and TPM RMSE series 

continue to decrease while OK RMSE has started increasing.  So although the spatial 

structure of the field appears sufficient for OK to generally outperform these basic 

temporal models for now, there appear to be situations when guidance from the temporal 

aspect of the data might be more helpful than a strictly spatial perspective.  It is likely 

that with the incorporation of additional relevant spatial variables into the MLP model, its 

performance would become more competitive with OK’s. 

 Generally comparable results between the OK and MLP models suggest a 

possible application of the MLP model where OK is less applicable, such as in the 

domain of wireless sensor networks. Kriging models are much less attractive in a WSN 

context because of the communication costs involved in assembling all values of the field 

in a single location to be processed (Jin 2009). Let us assume that each gridded location 

in the Gulf of Maine contained a fixed wireless sensor node with a trained MLP model 

onboard. By listening in on neighboring transmissions such a node could keep a temporal 

record of the last n values reported from neighboring locations (analogous to TS1), as 

well as a time series of spatial trend surface (TS2 analog) synthesized from all captured 

neighboring transmissions in the past n time periods. Should one of these neighbors 
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subsequently drop out of communication temporarily, one could imagine any of their 

neighboring nodes being able to fill in with a reasonable approximation based on some 

local information and the temporal trend in overheard values, at a level of performance 

not too far from OK, and without the data transmission costs that OK would require.  

 Analysis of the data variance over the monitored region during this period (Figure 

3.4) shows distinct regionalization of data variance, suggesting the possibility of 

improvement if the space were partitioned and individual MLP models specialized to 

smaller regions, with access to more relevant local variables.  Such regionalization might 

also allow the partitioned system’s performance to approach OK’s level of performance 

more consistently than that of the current global MLP model. 

 

 

Figure 3.4: Apparent regionalization in variance maps of u (left) and v (right) component velocity data of 

monitored region M 
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3.6 Conclusions 

 This study compared the performance of three interpolation approaches designed 

to replace missing values in a field of physical readings, using data extracted from a Gulf 

of Maine CODAR sensor array.  Both the OK and MLP models exceeded the minimum 

performance threshold provided by TPM, the baseline model. Although OK would 

appear to be the most accurate interpolation method to use in many situations, cases do 

exist where MLP would be preferable to it, such as for local field interpolation in wireless 

sensor networks.  More attention to spatial structure, in particular spatial nonstationarity 

in the application of MLP models may lead to improved overall interpolation accuracy. 

One approach to address spatial nonstationarity is to explicitly identify self-similar spatial 

clusters in a field of readings and accommodate these with specialized regional MLPs in 

order to realize a performance benefit. 
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4. --- 

CHAPTER 4 

EVALUATING MLP MODELS ON PARTITIONED SYNTHETIC DATA 

4.1 Introduction 

Having demonstrated the fitness of the basic, feed-forward Multilayer Perceptron 

(MLP) artificial neural network model for use in geospatial applications, this Chapter 

focuses on the investigation of partitioning strategies (both spatially and temporally) for a 

collection of wireless sensor nodes or platforms to achieve  more effective processing and 

analysis.   

A concern in geospatial studies of natural phenomena that evolve over time is that 

natural processes are frequently inherently nonstationary (although this depends on time 

and spatial scales chosen – this will be directly addressed in this chapter).  In the presence 

of non-stationarity, we expect some deterioration in the performance of a global MLP 

model. Previous research in modeling natural spatio-temporal processes has investigated 

using separable processes (i.e., processing spatial and temporal covariance trend models 

separately) (Kyriakidis and Journel, 1999), however this desirable property of 

separability is often an unrealistic assumption in large spatial-temporal domains (Fuentes 

et al. 2003).  Fuentes (2005) addressed this problem using spatial clustering to isolate 

subregions of relative stationarity, as well as temporal segmentation (i.e., temporal 

“clustering”) to maintain a relative constancy in temporal covariance.  This concept of 

temporal segmentation can be presumed valid assuming a relatively-slow rate of change – 
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for example a process whose period is on the order of days or weeks, rather than minutes 

or hours.  This chapter examines spatial-temporal segmentation, or regionalization 

(Fuentes et al. 2005), approaches in the context of identifying partitions for separable 

MLP models. 

The central research questions this chapter seeks to address are: does the process of 

approximating missing readings in a WSN-monitored region benefit from partitioning 

into subregions; and if so, into how many subregions should it be partitioned? To 

evaluate these questions, this chapter investigates partition-performance on simulated 

data. K-means is employed as the partitioning technique and partition performance is 

evaluated by an objective function which is the sum of the root mean squared error 

(RMSE) of each partition’s MLP-model results. 

The remainder of this chapter is organized as follows.  In Section 4.2 (Methodology) 

we lay out a context for the problem, and provide specifications for the methods and 

techniques used to solve it.  These approaches are tested on two synthetic benchmark 

datasets – an orthogonal partition that is described in Sections 4.3-4.5, and a more 

naturalistic partition in Sections 4.6-4.7.  Section 4.8 describes the overall conclusions of 

this experimentation in preparation for its application to a natural dataset consisting of 

several months of surface-current readings in the Gulf of Maine in the following chapter. 

 

4.2 Methodology 

4.2.1 Application Context 

The context for partitioning MLP models includes spatial sensing applications 

using self-powered sensor-nodes embedded within natural environments, and are not 
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therefore generally connected to a reliable power-supply.   Being unable to replenish 

energy-stores at will, computation as well as any intra-node communication is kept to the 

minimum necessary. 

Given a wireless sensor network (WSN) of spatially fixed (not to be confused 

with statistical stationarity) wireless sensor nodes (wsno) or platforms embedded within a 

natural geospatial region M such as described in Borgman (2007) or Worboys (2004), 

self-powered wsno, even with renewable-power capacity (e.g., solar panels), will still 

spend the majority of their time in a minimal-power sleep-mode, waking for particular 

periods (for instance, during a particular 5-minute slice of each hour).  

 

Figure 4.1: Proposed process-chart for proposed CatSTANN framework for partitioned-region MLP model 

applications 

 

During these wakeful periods they use power as efficiently as possible to: (1) take 

readings, (2) send and receive communications with neighboring wsno, and (3) listen for 
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communications/updates from some hierarchically superior master-node – possibly 

another local wsno within range, or some global master node or station, wsnM. A wsnM is 

assumed to be hard-wired to a power-source for essentially unlimited power- and 

computational-capacity (e.g., the transmitter pictured in Figure 4.1), with sufficient 

transmission-power to reach all its assigned wsno during their wakeful periods. 

The first step in the process is to determine whether the monitored region M 

would (still) benefit from being partitioned into its current number of subregions or if a 

new partitioning scheme is required. This decision is determined by a Monte Carlo 

method on the testbed’s most recent collected data (e.g., the process described in 

(Peeples, 2011)).  It is presumed that this processing, as with all demanding processing 

and analysis, is done on the wsnM as it is not as power-limited as the wsno.   

Should K multiple partitions be suggested by the Monte Carlo method, K MLP 

models are created and fit to the data-vectors in the subset S comprising one of the K 

detected clusters in the new partitioning scheme.  Generally high temporal cross-

correlation is assumed, so models trained on near-past data should prove at least adequate 

to process near-future data vectors as they arrive.  The packet of parameters defining each 

model may then be broadcast to all wsno requiring updates as they wake up.  Importantly, 

the K cluster centers determined by k-means are also broadcast to the wsno along with the 

models.  Incoming instances of data vectors may then be compared to each of the K 

centers in order to select which of the K MLP models should process the instance. 

Trained MLP models are completely disposable: after a period of time their 

combined performance degrades. As new surveys of natural clusters in new data take 

place, new models are generated and distributed to the wsno as the system resets to the 
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new normal (Figure 4.1).  This evaluation of obsolescence of the current ensemble of 

MLP models can be effected either at the level of the individual wsno themselves – as 

they can compare the readings from their sensors against the results of the models meant 

to simulate them, and thus detect increasing mean error over time at their individual 

location – or at the level of the wsnM should the combined performance of the network be 

found to have dropped beneath a minimum domain-specific threshold (or conversely, 

should one determine that the system’s baseline level of error has become unacceptably 

high). 

Regional signal-surfaces frequently exhibit drop-out zones due to environmental 

interference with embedded sensor stations (e.g., atmospheric interference, temporary 

equipment failure).  Models are frequently made to approximate such missing readings.  

Such models are likely to become increasingly inaccurate as time goes by, or as their 

results are applied further from the center of the region for which they were implemented.  

These regions may benefit from partitioning, to allow for the application of multiple 

models – either by mapping a single, distinct model to each spatial, or spatial-temporal, 

subregion; or possibly even one of several potential models applied during a particular 

period in a subregion. 

 

 

4.2.2 The K-Problem: How Many Partitions?   

We have elected to use k-means as our partitioning technique, but there is no 

authoritative way to choose which value of k to use. Consequently a wide variety of 

heuristics exist to do so in just as many particular situations.   
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To begin, we can imagine a series of k-means partitioning schemes applied to the 

same multidimensional dataset D containing N instance-vectors, where k varies from 1 to 

K.  Standard k-means clustering produces data subsets D1…DK.  Approximative MLP 

models A1…AK are generated for each partition to process the data subsets, producing K 

root-mean-squared-error (RMSE) performance measurements E1,K…Ek,K, one for each of 

these partitioning-schemes on dataset D, for each particular value K.  Total system error 

SEK is an aggregation of the individual partition-errors Ei,K – essentially a population-

weighted average of each partition’s Ei,K.  This generated SE series delineates a function 

f(K) (K  Z+) which we may assume to be generally non-increasing; that is, as more 

partitions (and more models) are integrated, a somewhat smaller RMSE (i.e., better 

performance) of the approximation-system emerges.  Certainly in theory as K approaches 

N, system error performance as a whole would approach 0 for the data instances used.  

However such a system is not feasible, nor is it even desirable as the ensuing gross over-

fitting would generate unacceptably large errors as new data-instances were presented to 

the system.  For most practical applications, we anticipate that K would be limited to 

some relatively small number (e.g., K < 20). 

Several potential models for f may be rejected as unrealistic. The constant 

function f(x)=Const, for example, since observing no performance-improvement as K 

increases would imply no need for partitioning.  We may also reject any negative-slope 

linear functions of the form f(x)=-mx+b, as this would imply that performance could 

reach 0 and even become negative, both unrealistic situations in the physical, real-world 
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monitored situations we envision.  The best basic model for f may be the multiplicative 

inverse, or reciprocal function,  

f(x) = c * 1/x + ɛ, 

where ɛ represents the irreducible error-term associated with the dataset D (also known as 

the nugget in geostatistics).  For example, this can include measurement error due to data 

harvesting methods (e.g., sample rate, measurement error), random noise, various 

hardware effects, or any other error-source in D that cannot be controlled for.  Generally, 

to explain all variance in natural data is not feasible. 

The limit of f as x approaches infinity is therefore ɛ, implying that in the extreme 

case of K = N (i.e., one model per instance-vector in D) our very best performance could 

be achieved.  We may also observe that f is monotonically decreasing, and exhibits the 

properties of what economists describe as diminishing returns (Samuelson and Nordhaus, 

2001).  Naturally generating a plethora of models is clearly inefficient and would result in 

overfitting, thus not be reflective of the actual processes that we wish to capture.  

Assuming that partitioning M could render any discernible benefit, a smaller k than N 

must be found in order to implement a manageable, efficient solution for a wireless 

sensor network embedded within M.   

Assuming that training an MLP model Ai consumes C resources (i.e., CPU cycles, 

processor-time, clock-time, etc.), we can arrive at an efficiency ratio eff(x) such that for a 

system of x MLP models, the average error per unit C is: 

2
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(Note: here the function’s c1 and ɛ parameters are ignored as they would become 

irrelevant as either C or x approach infinity). 
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As it happens, the actual value of C is largely moot as the shape of eff(x) will 

always remain the same (i.e., while the range of values generated will vary, their 

distribution remains identical) – a monotonically-decreasing function much like f, also 

displaying the property of diminishing returns.  As x is a stand-in for K in these functions,  

K will tend to be relatively small depending on the actual value of C, as values of K 

yielding the best efficiency with respect to invested effort will occur before the elbow in 

the graph – that is, where Δy > Δx.  Again, the Monte Carlo BestK technique described in 

Section 2.4.1.2 should help determine the optimal value of K. 

 

4.3 Synthetic Datasets 

In order to develop and test a partitioning approach we first apply it in a context in which 

the number of partitions is known and can be controlled. An artificial dataset containing 

different phenomenological regimes (hereafter simply referred to as regimes) was 

synthesized to investigate the potential and benefits of partitioning a monitored space M 

for improved estimation performance by a system of MLP models, each trained (or, 

“fitted”) to each particular subregion defined by those regimes.   

 For both practical and ease of comparison purposes, the MLP models used in all 

simulations in this chapter and the next employ an identical structural design.  Though 

MLP are capable of integrating a far greater variety of inputs than those shown, and 

different sets of inputs for different spatial and temporal regions would certainly make 

sense, such models would be much more challenging to meaningfully compare on an 

even footing. Accordingly, each model consists of eight input units, eight “hidden” 

processing units, and two output units. In keeping with the spatial time series approach, 
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the input data (i.e., features) provided to the model are u- and v-components of generic 

vector readings (presumably surface currents) for the given location at different temporal 

lags.  The input features themselves are: u1, v1, u2, v2, u3, v3, u6, v6, where letter 

represents component and number represents temporal lag.  The two outputs provided by 

the model are u and v, the components of the model-approximated reading for that 

location.   

4.3.1 Synthetic Orthogonal Testbed 

4.3.1.1 Design of Phenomenological Regimes 

Consider a 21x21 unit region M embedded with a network of evenly-spaced 

wireless sensor nodes.   

- The northeast quadrant (i.e., quadrant I of the Cartesian plane) is composed of 

an orthogonal collection of 2-dimensional vector values generated by a sinusoidal 

function with parameters that define a particular regime: vectors begin a 72 time-

step period with a general heading of 0°, they rotate counter-clockwise, and they 

have an average magnitude of 10 units. 

- The northwest quadrant (and quadrants 3 and 4) are similarly defined, except 

where the following phenomenological properties differ:  the 72-step period starts 

at a general heading of 120°, rotates clockwise, and have an average magnitude of 

20 units. 

- The Southwest quadrant: the 72-step period starts with a general heading of 

220°, rotates clockwise, and has an average magnitude of 10 units. 

- Southeast quadrant: 72-step period; beginning general heading of 315°; CCW 

rotation; average magnitude of 20 units. 
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These regimes are illustrated in Figure 4.2 

 

Figure 4.2: Illustration of phenomenological regimes induced into synthetic datasets 

 

 

4.3.1.2 Stochastic Signal Perturbation 

The data generated by the four regime-functions described above are not quite as 

regular as the descriptions might suggest, however.  Random noise of ±5 units is added to 

each component of the 2-dimensional vector as it is generated.  Furthermore, although 

each vector-heading progresses by an average of 5° in its direction of rotation, there is a 

10% chance during each individual progression that a vector actually remains one time-

step behind; there is also a 10% chance that the vector produced is actually one time-step 

ahead of its theoretic schedule.  In this way the data produced should contain reasonable 

individual variability while still maintaining predictable aggregate properties. 

The simulation is run for 1533 time-steps.  Assuming 72 time-steps represents one 

day of real time (i.e., readings taken three times per hour), this represents approximately 

3 weeks of operational data and generates just over 676,000 data instances upon which to 

fit and test our models.  Given this known regime structure we next apply k-means to 
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evaluate the ability to detect these regimes. The data features chosen to implement 

clustering were: location (x, y), 2-D components from two consecutive readings (u, v) and 

(u2, v2), and the angular change that occurred between the two readings (angchg).  The 

u1, v1, u2, v2 features were chosen to their presumed importance as readings immediately 

preceding the model’s approximated output reading; while angchg is a parameter derived 

from these four latter features which was found to be helpful in yielding empirically 

effective partitions. 

To choose the most-appropriate k we apply a variation of the Monte Carlo 

approach described by (Peeples 2011) which has the advantage of providing an intuitive 

statistical basis for its results (Tan et al. 2006). 

 

 

Figure 4.3: Illustration of intracluster sum of squared error vs. K as generated by (Peeples 2011) 
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Figure 4.4: Intracluster sum of squared error vs. K as generated by (Peeples 2011) on a logarithmic scale 

 

Figure 4.3 and Figure 4.4 illustrate the within-cluster sum of square (WCSS) error 

(called “Within Group SSE” in the figures) generated by Monte Carlo simulation for a 

potentially partition-ready dataset for the various discrete values of k where k  [1…10].  

Figure 4.3 displays the raw results whereas Figure 4.4 shows the same information on a 

logarithmic scale.  These function-curves are of the same form as those of timings of 

parallelized algorithms as additional computational cores are contributed to the process 

(e.g., (Guan et al., 2011)). 

The presumed “best” K (i.e., apparent number of “natural” clusters) by this Monte 

Carlo bootstrapping procedure occurs at the location in the above graphs where a distinct 

change in slope (referred to as an “elbow”, or “knee”) appears in the clustered data’s SSE 

time-series; or stated another way, where the change in the graph’s x-axis becomes 

greater than the change in its y-axis, rather than the other way around.  Equivalently, the 

appropriate K is that discrete value at which the slope of the line tangent to the 
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normalized graph passes from a slope of less than negative one, to greater than negative 

one from one discrete value of K to the next.  In this example, the appropriate value is 4.  

The vast difference in scale between the x and y axes in Figure 4.3 obscures the 

appropriate solution, and though much closer in scale in Figure 4.4, when comparatively 

scaled, the -1 slope near K=4 is much more apparent. 

 

A visualization of a k-means clustering of values in the first five time-steps of this 

dataset yields the partitioning-scheme shown in Figure 4.5, which matches our 

expectations based on the description given above on how the “orthogonal” synthetic data 

was generated. 

 

Figure 4.5: Result of a short-term k-means partitioning of the dataset with K=4 
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In operational terms, however, we would probably not be clustering over such a 

small timescale; we might instead determine a clustering-scheme for the entirety of a 

training-period’s worth of data (let us say over the preceding three-week period, in order 

to apply the resulting scheme for the following three week period).  Then, as new 

readings come in, they are assigned to the appropriate model according to this 

predetermined clustering scheme.   A few snapshots of a K=4 clustering scheme, 

partitioning a three-week span of data, are illustrated in the sequence in Figure 4.6. 

 

Figure 4.6: Synthetic Orthogonal dataset clustering at time-steps 1, 21, 41, 61 

 

Like a snake swallowing its tail, the two largest-population cluster IDs (1 and 3, 

respectively) appear in Figure 4.6 to pursue each other in a counterclockwise fashion as 

time goes on.  Indeed, the partitioning that is taking place here will be seen to be due 
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largely to a particular location/measurement’s state – particularly current-bearing – 

within the context of its local regime’s periodic variation. 

But what happened to the other two cluster IDs? 
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Figure 4.7: Time-series of cluster populations over time 

 

The other two clusters can be seen to appear only periodically (i.e., interstitial 

clusters), usually in transitionary periods when the two major clusters change state, as can 

be observed in the waxing and waning cluster-population series presented in Figure 4.7.  

One might be tempted to do away with these relatively-tiny interstitial clusters as the 

mass of data instances are classified within clusters 1 and 3.  However if we did so, our 

resulting value of K would be situated prior to the natural elbow in the Monte Carlo 

BestK graph (as illustrated in Figure 4.4), and thus be suboptimal. 

 

Our intuition resulting from the initial short-timescale clustering in Figure 4.5 was 

that physical location would dominate in making the cluster assignment.  However, 
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determining partitions over such a limited time-scale in effect removes the influence that 

time brings to the situation. The results in Figure 4.6 show k-means converging onto an 

admittedly less-intuitive scheme, but which incorporates time’s effects on the 

partitioning-scheme: by minimizing member-instance distances while maximizing inter-

cluster distances in 7D space.  

Unfortunately, though each data instance is classified as one of the k classes, and 

the k cluster-centers are returned by the kmeans process, no intuitive explanation is 

provided for why a particular instance received the classification it did. This is where the 

random forests and treebagging techniques enter the picture, as they develop a (linear) 

regression-fit between the set of instances and the resulting class-IDs. From this fit, the 

apparent weight of each instance’s parameters may be determined in what is described as 

out-of-bag (OOB) influence factors.  The relative influence of the chosen parameters (i.e., 

features) to the k-means model’s results (as determined by this TreeBagging factor-

analysis) appear in Figure 4.8. 
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Figure 4.8: TreeBagging results of dominant terms in orthogonal dataset’s K=4 clustering solution 

 

 

4.4 Synthetic Orthogonal Results 

Having generated over 676,000 data instances as described above, a time series of 

readings is extracted from the database that include records containing u- and v-

components of the 2-dimensional synthetic readings at location (x,y) and for times steps 

occurring 1, 2, 3 and 6 time-steps previously  

These records are then divided into three groups for artificial neural network 

model training, testing and simulation, as is traditionally done for these models.  In short, 

the training dataset is used to train randomly-initialized MLP models; the test set consists 

of data from the same distribution as the training set, and is fed through the models-in-

training to verify that they are not overfitting to the training data.  Once the models are 

found to no longer be generalizing to the underlying processes represented by the data 

instances, and instead beginning to overfit to the training data (i.e., the observation that 
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mean model error for the test set is significantly greater than mean model error for the 

training set, for example), training stops.   

In this particular case, records prior to time=100 were randomly allocated either 

into the training set or the testing set, leaving the rest – some 631,000 records – for the 

simulation set.  This simulation set was run through a single MLP model trained on the 

entire data set (“Single Model”) to generate a root mean square error result, shown in the 

second row of Table 4.1.   

The results of the K=4 kmeans process described by Figure 4.8 are then used to 

partition all three of the aforementioned MLP datasets into four subsets, corresponding to 

clusters 1, 2, 3, and 4.  Having trained the four models using the partitioned training and 

test datasets, the RMSE results found in the third row (“Partitioned Model”) are 

generated by the evaluation of the similarly-partitioned simulation sets, for the overall 

aggregate RMSE found in the last column.  The final row in the table contains the 

populations of the simulation set’s four partitions, and is shown simply for informational 

purposes. 

 

Table 4.1: Results of Single model error vs. Partitioned model error on Orthogonal Dataset 

  Clust I Clust II Clust III Clust IV Overall 

Single Model 
error 

        2.951 

Partitioned 
Model error 

2.851 1.907 2.770 2.013 2.790 

Population 306,599 6,965 309,839 8,109 631,512 

 

The results in Table 4.1 indicate an average RMSE difference of 0.161 units of 

error between the Single MLP Model’s performance in processing the entirety of the 

dataset on its own, and the joint result of four MLP models each trained for one particular 
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partition of that same dataset.  Though the difference is small, a two-tailed 2-sample t-test 

pairing each result from the Single Model with the corresponding result provided by the 

4-part Partitioned Model system rejects the same-mean null hypothesis (i.e., µPartitioned –

 µSingle = 0) at a 99% significance level for N = 631,512 instances (indeed, the p-value for 

this null hypothesis is less than 10-4 for this paired test).  As this difference is negative, 

the partitioned model is shown to generate somewhat smaller error overall than the single 

model.  

 

Table 4.2: Sample readout of Hypothesis test results 
Overall Paritioned-model improvement: -0.161 

 

***Non-normal Distribution!*** 

 sng vs. part: 2-sample nonParam KolmogorovSmirnov test(.99): 

 

Null Hypo (that Global and Part datasets come from the same distributions) 

rejected at .99 certainty! (no normal distr assumed; p-score: 0.0000) 

 

 Mean Per-Location Difference: -0.16 

 

Standard Paired t-test: 

Null Hypo (of: Part-Global mean = 0) rejected at .99 certainty! 

 

2-sample Null Hypo (that SNGerr and PARTerr come from same distributions, same 

means) rejected at .99 certainty! (normal distr assumed; p-score: 0.0000) 

 

Results of the hypothesis tests displayed in Table 4.2 demonstrate that both non-

parametric (i.e., Kolmogorov-Smirnov) and the more traditional Student t-tests confirm 

that the difference is too great between the means of the Single vs. the Partitioned model 
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approaches to be considered essentially the same at a statistical significance-level of 

=.01.  Although given the size of the populations involved, the Central Limit Theorem 

of statistics would find the Student’s t-test sufficient, the obvious regionality and non-

normality of the results displayed in Figure 4.9 – Figure 4.11illustrate why the 

confirmation of a non-parametric Kolmogorov-Smirnov hypothesis test was desired in 

addition to the Student results. 

 

Figure 4.9: Spatial distribution of mean error-reduction resulting from use of partitioned model 

 

 

Figure 4.10: Non-normal histogram of partitioned-model’s mean, per-location error reduction 
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Figure 4.11: Non-normal distribution of partitioned-model’s mean, per-location error-reduction 

 

As the error-distribution was non-normal, results of the standard Student’s t-test 

may technically not be applicable.  However as all mean errors are negative, it is clear 

that use of the partitioned model was a significant improvement over the single global 

model. 

These results, although satisfactory, beg two questions: are these the best results 

that could have been achieved? And perhaps more pertinently, are these the best results 

achievable for the effort expended?   After all, generating more clusters nearly always 

improves overall WCSS, but the amount of incremental improvement tends to be very 

small when partitioning into more than the number of natural clusters.  In other words, 

had this artificial dataset not come with the foreknowledge that only four ‘natural’ 

clusters existed, leading one to commission a K=4 partitioning scheme, would K=3 not 

have worked just as well?  Might not K=5 possibly have done better?  Having no prior 

knowledge of this dataset, why should we have chosen K=4? Support for the decision to 

set K=4 is delivered by the MCBestK analysis, an intuitive heuristic for finding an 

appropriate K for use in k-means (Peeples, 2011) (Tan et al. 2006). 
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Figure 4.12: Spatial-temporal WCSS vs. Number of Clusters 

 

Figure 4.12 illustrates how the within-cluster sum of squared (WCSS) errors drops as K 

increases (i.e., more partitions/clusters are created out of the dataset of readings).  It is 

generated by successively subdividing the dataset of readings into K clusters, where K 

ranges from 1 to some maximum value presumably larger than the “natural” number of 

underlying processes, and looking for the “bend” in the graph (also occasionally 

referenced in the literature as the “elbow” or the “knee”).  It should be apparent that if 

this same graph existed within a normalized unit-space (i.e., both axes range over: 

[0…1]), that bend would occur approximately where the slope of the tangent line (i.e., 

first derivative) is equal to –1. The location where that slope occurs is thus the critical 

point which will properly determine our “best” value of K: BestK. Normalizing the axes 

allows for an accurate localization of this critical point.  A simple scaling example for 

Figure 4.12 follows.  
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Table 4.3: Normalizing the axes to approximate BestK in Figure 4.12 

Normalize x (i.e., K) and y. 
 x y  nx  ny  m 
 

1 2.436E+09 0  1  

2 1.380E+09 0.111111111 0.536360566 -3.852812457 

3 4.871E+08 0.222222222 0.143819454 -2.032823527 

4 3.523E+08 0.333333333 0.084622004 -0.441317058 

5 2.639E+08 0.444444444 0.045748997  

6 2.246E+08 0.555555556 0.028480578  

7 2.045E+08 0.666666667 0.019658532  

8 1.854E+08 0.777777778 0.011287627  

9 1.705E+08 0.888888889 0.00471989  

10 1.597E+08 1  0  

 

min 1 1.597E+08     
max 10 2.436E+09 

 
Formulae:  normx  (nx) = (x-minx) / (maxx - minx) 
  normy  (ny) = (y-miny) / (maxy-miny) 
  mx   = (ny(x-1) - ny(x+1)) / (nx(x-1) - nx(x+1)) 

 

The presumed “best” K for this case is between 3 and 4, since we traverse m = -1 

between those two values.  Forced to choose, we should select 4 in this case.  Again, 

although a visual inspection of the graph shown in Figure 4.12 might tend to suggest that 

BestK is 3, the approximate m in Table 4.3 suggests that at K = 3 the goal of m = -1 may 

not quite have been achieved. 

Although the choice of K = 4 may have appeared obvious in the table due to f'(4) 

being closer to -1 than f'(3), in many cases we might be tempted to select the smaller of 

the two discrete x-values due to its f'(x) being closer to the critical slope value of -1.  

This might be a correct impulse were the graph linear.  But careful analysis shows that 

the model-function’s nonlinearity causes far more error when using this otherwise 

intuitive-seeming latter method, than the sum of over- and under-estimates of K produced 

by simply choosing the larger of the two every time.  It can be shown relatively easily 

that for a graph of the form f(x) = C * 1/x, due to Δy decreasing monotonically (and 

nonlinearly) as x increases, the correct choice of K will be the larger of the two discrete 

values over 50% of the time, and thus is most often the better choice. 
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To prove this, we shall first demonstrate that the slope (i.e., ∆y/∆x) of functions of 

the type f(x) = 1/x changes more quickly in the first half of the unit interval (i.e., bounded 

by [d…d+1], where d is a positive integer) than in the second; therefore, more than half 

of the interval yields slope-values that are closer to f'(d+1) than f'(d).  Then as a 

corollary, since more than half of the unit interval is claimed by d+1 we propose that, of 

the two endpoints, d+1 should most often be selected as BestK. 

 

Lemma 4.1   For any unit interval between two integers d and d+1, xcv < d+0.5 where 

f'(xcv)=(f'(d)+f'(d+1))/2 for functions of the form: f(x) = c * 1/x + ɛ. 

 

As a first example, consider a function f where f(x) = c * 1/x, and an unit interval 

[d…d+1] where d  Z+.  To keep matters relatively simple for now, let both c and d = 1, 

and ɛ = 0. 

Now f'(x) = -1/x2, resulting in slopes at either end of the interval of -1 and -1/4 

respectively.  As these two slopes are separated by a distance of 3/4, the midpoint 

between these is: -1 + 3/8 = -5/8.  If f'(x) were linear over the interval, d + 0.5 would have 

a slope of -5/8.  However according to f', that critical value occurs where f'(x) = 
5

8

1 , or 

where xcv = 1.60.5 ≈ 1.265 , which is less than 1.5 .  Because the midpoint of f'(x) over the 

interval occurs earlier than the midpoint of d and d+1, we know that ∆y/∆x is greater 

toward the beginning of the interval than toward the end.  Since the slope changes more 

quickly at the beginning of the interval than towards the end, we cannot simply choose 

the endpoint x with the smaller distance to our desired critical-value xcv and always be 
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correct that it is the “closer” of the two endpoints.  Most of the interval [1, 2] (~73.5% in 

this case) maps to f'(x)-values that are actually closer to f'(2). 

 

Now consider the general interval [d…d+1].   

Slopes at either end of this interval are:  22 )1(
11 ...


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occurs in Figure 4.12 beyond x=1 (where it would have occurred for f(x) = 1/x), we know 

that c will be both positive, and less than one. 

This property of f(x) may be represented as the expression: 5.02
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The final inequality is obviously true for all d ≥ 1.   An inequality plot (Figure 4.13) 

shows the situation graphically, suggesting an effective range of -0.211325 < x.   

 

 

Figure 4.13: Inequality plot of: f(x) < (d + 0.5) 

 

 

Corollary 4.2   Where K falls between two integers d and d+1, correct discrete values of 

K are more likely the larger discrete endpoint of the unit interval than the smaller for 

functions of the form: f(x) = c * 1/x + ɛ. 

As K  d  Z+, Lemma 4.1 shows that d+1 is always the more probable choice of the two 

interval endpoints for K, as more of f'(x) over the unit interval is closer to f'(d+1) than to 

f’(d) for all positive K. 
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The main takeaway of this corollary is simply that within the normal operating 

parameters of one’s monitoring system, should one be disinclined to fit the empirical 

function derived via the MCFindBestK process, one should choose to preferentially 

round K upwards rather than downwards, as it is shown that more than 50% of the unit 

space between any two discrete x-values is closer to f'(d+1) than f'(d).  Let us assume that 

the average parameters for an operational system consistently work out to a BestK 

confined within the unit-space between the values d and d+1 of the function f where 55% 

of the unit’s f'-values were closer to f'(d+1) rather than f'(d); that is, rounding K upwards 

to d+1would be correct only 55% of the time.  What would be the effect for the 

remaining 45% of the time, were we to round K to d+1 when the “true” value of K is 

actually closer to d?   According to the empirical function modeled by 1/x, the result of 

using a higher K than required would generally be somewhat lower system-wide error, in 

exchange for having created one more partition and trained one more MLP model than 

strictly required.  So as long as the time and processing used for the additional 

partitioning/training process is not somehow a critical factor, the effect of simply 

rounding K upwards 100% of the time should not be detrimental to system performance 

as it should still generally improve, albeit at the cost of some additional time and 

processing, although probably not to any degree that the resulting likely increase in 

performance would be deemed significant. 

 

As a final piece of evidence that the presumed f(x) = 1/x error model is appropriate – as 

well as that the MCBestK process has resulted in an appropriate value with K=4 (see 

Table 4.3) – we may observe in Figure 4.14 that, although the increase in number of 
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partitions does reduce overall error, the error-reducing effectiveness of each new partition 

(i.e., the effort-ratio) – or in other words, the effectiveness of training each new MLP-

model participating in the system – is almost entirely dissipated after K=4, the determined 

BestK.  Indeed, it is nearly flat beyond K=5.  Although additional partitions/models will 

tend to reduce overall RMSE further, the effort involved to do so may not be worth the 

rapidly-diminishing marginal returns. 

 

Figure 4.14: Root Mean Square Error and Effort-ratio as K increases 

 

Figure 4.16 a shows a time-series of instantaneous BestK results over 300 timesteps.  

Here the best K is selected only for the subsets of readings generated at each time t.  The 

disadvantage of this approach is that the influence of time is taken out of consideration, 

and so the best K found is a spatial bestK, which may be different from the 

spatial-temporal bestK. One advantage to this approach, however, is that one can detect a 

point in time when the most appropriate value of K may have switched from one value to 
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another.  For example, in the situation represented in Figure 4.15, between timesteps 200 

and 300 the process generating the values for quadrant III of the orthogonal synthetic  

 

Figure 4.15: Example of change in K 

 

dataset is gradually extending its spatial range into quadrant IV.  By t=300 process III has 

wholly subsumed process IV, and is generating all synthetic readings for both quadrants 

III and IV.  Whereas the instantaneous approximations of bestK vary between 3, 4 and 5 

over the first 200 steps, 5 has disappeared as a possibility by time t=300; and whereas 4 

was the most-frequent result returned over the first 200 steps, the mode of any n 

consecutive values of the time-series after t=250 is much more likely to (correctly) return 

3.  Such a sustained change in the central tendency is a clear indication in this situation 

that if the running model-system is still 4-part, it may be worthwhile to check if it should 
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be reconfigured as a 3-part model-system.  Usually, it will not be worthwhile, as graphs 

such as Figure 4.12 consistently suggest that more partitions yield lower error (although 

if the “natural” K is d, d+1 partitions will not be expected to yield a significantly lower 

error performance). 

 

Figure 4.16: a) Time-series of instantaneous Best-K determinations, and b) the Mode20-smoothed series 

 

 

As may be expected of any large collection of readings generated with occasionally-

imperfect sensors (or in this case, a synthetic dataset with some added stochasticity), 

contradictory signals within the dataset leads to a noisy output in Figure 4.16a.  Having 

generated the data, we know that (before process III’s generated readings start 

encroaching into quadrant IV from t=200 onwards) there should be only four distinct 

natural clusters detected before t=200.  Of course, it is possible that our synthetic 

processes are not as distinct as we thought and so perhaps three could be a reasonable 

result (note: this is why a confirmatory run of the Monte Carlo process using the entirety 

of the dataset at once, rather than a series generated by using only those data occurring at 

each value of t, as seen in this figure, may be necessary).  A measurement of the central 
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tendency of the resulting time-series, such as the mean or mode over a moving window of 

ten or twenty consecutive results at a time, can be useful in processing the results of our 

generated instantaneous-BestK series (Figure 4.16b). 

 

 

Figure 4.17: Mean- and Mode-Smoothed Best-K error-rates 

 

Figure 4.17 displays the RMSE improvement over instantaneous results (“Unsmoothed”) 

resulting from smoothing the time-series in Figure 4.16a using either mean or mode, over 

either the prior ten or twenty readings. A distinction is made here between continuous 

and discrete values of K (as a continuous fuzzy-logic approach might evaluate, when 

process III has overtaken half of IV’s territory, that K = 3.5). What we can take from this 

figure is that while both mean- and mode-smoothed results reduce error on average as 

compared to the unsmoothed result, the mode may perform slightly better in the 

continuous case. 
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4.5 Orthogonal Dataset Conclusions 

Through use of the synthetic orthogonal dataset, the prior sections demonstrate that 

partitioning a region does lead to a significant – if small – reduction in the average error 

produced by a system of models over that of a single model assigned to the entire area. 

The temporal extent of the analyzed dataset has a potentially significant influence 

on the result of a spatio-temporal k-means clustering. Where the effect of time is 

minimized (i.e., clustering over short time-periods, as in Figure 4.16, the best K may not 

necessarily be the same as when a clustering is executed for a body of readings taken 

over the entire time-period  (In our orthogonal test example, however, BestK was still 

determined to be 4 in either case).   

The next section investigates experiments on a more naturalistic 4-process 

synthetic dataset.  Similar analysis as above of instantaneous Monte Carlo clustering 

results suggest K=4 at each discrete time t, but a partitioning over the entirety of the data 

(i.e., all timesteps and thus including the effect of time) yields, instead, a BestK result of 

five. 
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4.6 Synthetic “Natural” Dataset 

4.6.1   Creating the Synthetic “Natural” Testbed 

 

For this more naturalistic synthetic data set, the same four distinct behavioral 

regimes from the Synthetic Orthogonal dataset were applied within more naturalistic 

spatial boundaries.  The initial color-coded situation (at time t=0) may be described as: 

two oval-shaped spatial regimes sharing  the same 21x21 unit region M with a third 

regime limited to the region behind a linear boundary; and a fourth regime filling in the 

spaces between the first three.  This situation is illustrated in Figure 4.18. 

 

Figure 4.18: Snapshot of regimes in region M at time t=0 
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The four behavioral regimes in this dataset are identical to those in the first 

synthetic (“orthogonal”) dataset (except that they are no longer confined to quadrants of 

the Cartesian plane – Figure 4.2).  That is: 

- a 72-step period 2-dimensional vector signal that starts at heading 0° and rotates 

counterclockwise, with average magnitude of 10 units 

- a 72-step period signal that begins at heading 120°, rotates clockwise, and with 

average magnitude of 20 units 

- a 72-step period signal that starts at heading 220°, rotates clockwise, and has an 

average magnitude of 10 units 

- and a 72-step period signal beginning at heading 315°, with counterclockwise 

rotation, and average magnitude of 20 units. 

Stochastic perturbations again ensure that magnitude and bearing of all members of the 

same region exhibit the identical magnitude and bearing at all times, yet are generally 

similar enough to be classified within the same cluster.   A sample of the code generating 

these readings can be found in Appendix A.   

 

Over the course of the simulation, the oval regime (denoted in the figure by green 

circle markers) beginning in the northeast corner of monitored region M migrates 

gradually southwards, changing in shape and topology as it descends.  It can be seen to 

transition through a toroidal (doughnut-like) shape, temporarily enclosing a portion of 

regime 4 within it, before coalescing back into an closed, oval region and remaining static 

throughout the remainder of the simulated timespan (this topological progression too is 

determined by the code in Appendix A).  Again the simulated timespan is meant to 
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approximate a 21-day period with readings taken three times per hour.  In total, some 

676,000 synthetic instances are generated for subsequent clustering and analysis.  

Snapshots of the aforementioned progression are shown in Figure 4.19. 

 

 

Figure 4.19: Snapshots of the progression of the green-circle partition over time 

 

Figure 4.19 displays, at four particular points in time, which regime is responsible for 

populating a particular location with a synthetic datum.  As there are only four regimes 

then a perfect analysis of the spatial signal-set over time would result in an optimal K of 

4, with each partition mapping to exactly one of the color-groups in this figure.  Without 

access to perfect information, however, this will not be the case. 
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As was done with the orthogonal dataset earlier, the optimal number of partitions 

(K) for this new “Natural Partition” (NP) dataset is determined via the Monte Carlo 

simulation method, clustering all available data instances on the same basis of location (x, 

y), two prior pairs of consecutive surface-current velocity components in that location (u, 

v, u2, v2), and the resulting angular delta-change of the velocity vector in that ∆t (angchg, 

or angle∆). Again as in the preceding section, TreeBagging is used to approximate the 

weight of each parameter (or feature) in each instance in determining its assigned class-

id. These relative weights are shown in Figure 4.20. 

 

Figure 4.20: Feature-weights of the K=5 clustering solution as determined by random-forest tree-bagging 

 

Interestingly, as with the orthogonal dataset in the prior section, the x-y location of the 

data instance is greatly de-emphasized by the results in Figure 4.20 in relation to the 

importance of temporally-changing magnitudes of the velocity-vector’s components, and 

resulting angular rotation.  This would seem to indicate a partitioned model whose 
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components specialize on vectors of a particular bearing – regardless of location – as 

time evolves.  This conclusion is supported by biplots of primary component analyses 

(PCA) of the data set with its resulting cluster centers (Figure 4.21).  Note that PCA 

analysis almost mirrors the TreeBagging technique’s findings of relative importance of 

velocity vectors and angchg with respect to location (observe that x and y are near the 

origin, contributing almost nothing to the instance’s classification). We can observe that 

in PCA’s estimation, the angchg feature’s contribution happens to be of greater 

magnitude than raw velocity component values, contrary to TreeBagging’s conclusion.  

Different conclusions resulting from linear (PCA) and nonlinear (Random Forest) 

analyses is fairly common, simply due to base assumptions of each approach.  But this 

change in relative valuation between angchg and the vector components is of little 

practical concern, as the former is derived from the latter in any case. 

 

Figure 4.21: 2D (left) and 3D (right) representations of kmean cluster centers, and feature-contributions to 

instance classification.  Note the 90° CCW horizontal rotation effected between left and right views to aid 

visualisation, with the z-axis now expressed along the main vertical axis in the 3D view. 
 

Figure 4.21 also shows the K=5 cluster-centers within the same unit-space. As 

predicted, the four largest clusters are largely bearing-influenced – visualized as the four 
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points orbiting the negative x-axis – as well as a tiny cluster of instances (part2) located 

along the positive x-axis, mainly determined by the angchg feature. We theorize that this 

partition was created due to the stochastic nature of the generated data, wherein any 

particular vector had a 10% chance of being either early or late, causing glitches in an 

otherwise regular progression of angular delta-changes.   

 

As may be seen in the figures above, the seven parameters chosen for the k-means 

clustering process are spatial (x, y), temporal (u, v, u2, v2), as well as one derived from 

the temporal readings (for the reader’s convenience, the derived parameter – denoting the 

angular change between the readings (u, v) and (u2, v2) – is determined in Matlab by the 

following formula: angle∆ = (atan2(v, u) - atan2(v2, u2)) * 180/pi).   

For K=5, the cluster-centers in Table 4.4 were returned: 

 

Table 4.4: Cluster centers resulting from kmeans processing of second synthetic dataset for K=5 

cluster x y u v u2 v2 angle∆ 

c1 0.125 0.017 -10.153 11.633 -10.549 11.287 -1.661 

c2 -0.598 -0.734 -16.718 1.793 -16.682 -1.829 346.862 

c3 0.118 0.013 -11.358 -10.588 -10.965 -10.821 -14.490 

c4 -0.082 0.049 10.179 -11.352 10.544 -10.998 -1.563 

c5 -0.123 -0.037 11.378 10.090 11.022 10.479 -1.697 

 

A qualitative analysis of the values in Table 4.4 suggests that spatial inputs (x, y) 

appear to have less weight in cluster-assignments, as original values ranged from -10…10 

(on a similar order of magnitude to u and v parameters) yet they are rendered at two 

levels of magnitude below the temporal parameters in the results.  The temporal 
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parameters themselves appear to segregate readings largely on the basis of the four 

quadrants of the Cartesian plane (c1: quadrant II;  c2, c3: quad III;  c4: quadIV;  

c5: quadI ), as almost all of the temporal parameter values fall squarely in the center of 

one of these quadrants.  The relative weightings suggested by these centers serve to 

confirm the relative weightings shown in Figure 4.20, where temporal parameters appear 

to be of primary importance, angle∆ is secondary, and spatial properties are of tertiary 

import, if any. Cluster2 distinguishes itself by its angle∆ value, but appears to be 

otherwise largely similar to cluster3 in terms of its other parameters.  This may be an 

artifact of how the synthetic data was generated, for example the trigonometric functions 

used to do so. Given the constantly-changing nature of natural data signals, it often does 

not pay to descend too deeply into the details or possible meanings of cluster-centers that 

were found, after all, by simply determining the minimal distances to k-centers for a 

given subset of data. The main takeaway we might draw from the kmeans analysis of this 

synthetic dataset, therefore, is that kmeans found general vector bearing to be the most 

effective partitioning property for overall classification. 

Figure 4.22 demonstrates how the output from four generative processes over 

time is not clustered as intuitively as we might have thought (i.e., as four clusters).  Three 

main partition classes (1, 2 and 5) alternate regularly over time, with two interstitial 

classes occurring primarily during the transition periods between the three main classes.   
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Figure 4.22: View of 5-part membership before and after critical point t=400.  Note the regularity of all 

cluster population series on left as compared to the right, occurring as a distinct regime (green-circle from 

Figure 4.19) traverses the region M. 

 

Although Figure 4.19 displays the region M as classified by the four actual 

processes generating the data, the Monte Carlo simulation technique found that the 

optimal number of clusters required to model this region over time to be five, rather than 

four (see Figure 4.23). 

Again, K=4 might seem to be the more intuitive visual choice as the sought-after 

“elbow”, but as the automated process finds the slope of the line between K=3 and K=5, 

the approximated slope for K=4 does not quite reach the desired threshold.  It is worth 

remembering that even if K=5 is an overestimation, it only costs a little extra processing-

time up front (to train the extra model) and storage-space on the sensing platforms, and 

according to the discussion surrounding Lemma 4.1 and Corollary 4.2, will still tend to 

marginally improve model-accuracy if anything. 

The possibility remains that such an overestimation error may be due in part to the 

fact that this data is synthetic, not natural.  Indeed, the sharp angle that can be seen in the 

graphs displayed in both Figure 4.12 and Figure 4.23 appears suspicious to experienced 
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eyes, especially in comparison to that generated by truly natural data in the following 

chapter. 

 

 

Normalize x (i.e., K) and y (WCSS). 
K WCSS  nx ny  m   
 

1 2.396E+09 0 1  0 

2 1.810E+09 0.1111 0.7386 -2.6358 

3 1.082E+09 0.2222 0.4143 -2.8855 

4 3.717E+08 0.3333 0.0974 -1.6370 

5 2.665E+08 0.4444 0.0505 -0.3058 

6 2.193E+08 0.5555 0.0295  

7 1.955E+08 0.6667 0.0189  

8 1.774E+08 0.7778 0.0108  

9 1.640E+08 0.8889 0.0048  

10 1.532E+08 1 0  

 

min 1 1.532E+08  
max 10 2.396E+09 

 
Formulae:   
normx  (nx) = (x-minx) / (maxx - minx) 
normy  (ny) = (y-miny) / (maxy-miny) 
mx   = (ny(x-1) - ny(x+1)) / (nx(x-1) - nx(x+1)) 
 

Figure 4.23: Result of MCBestK heuristic (left), with normalized mean slope-approximation techniques 

(right) 

 

A smoother graph would not introduce quite the potential for unintuitive choices 

of K as the current graphs do.  A simple column-wise statistical Z-scoring of each 

instance in the dataset, for instance, enables the kmeans process to work on normalized 

values, allowing each field or parameter in the instance to have equal weight in 

determining the resulting classification regardless of its range relative to those of the 

instance’s other fields.  This process results in a smoother graph (although a somewhat 

longer k-means rendering-time as well).  For this dataset, this generates the curve 

displayed in Figure 4.24.  Whereas the choice for K is no longer as obvious, the BestK 

selected in this case would be four (as we compare results for both Z-scored and non-

Zscored datasets, we shall use K=5 for both – again, overshooting the presumed 

“optimal” value for K, should it happen, is of no great import). 
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Whatever the clustering-scheme used, it is unlikely to exactly replicate the actual 

shapes of the data-generating regimes shown in Figure 4.19. We can observe in Figure 

4.25 that the color-coded clusters can generally outline the regimes, but the subset of data 

provided on which to base cluster determinations does not allow kmeans to map regimes 

to unique cluster IDs over time. However, this turns out not to be strictly necessary if the 

goal is simply to improve the accuracy of approximations of a spatial-temporal field via 

partitioning.  Should the partitioning parameters not confer complete information or total 

separability of underlying processes, they can still provide enough additional information 

to significantly improve approximation-accuracy of a partitioned field over a non-

partitioned one – and the extent of that improvement will be in relative proportion to the 

relevance of the data provided to kmeans.  The same partitions shown in Figure 4.19 may 

be generally distinguished in Figure 4.25, even if borders separating distinct regimes may 

occasionally disappear (and though the colors used may seem questionable, it should be 

noted that this color scheme was kept in order to match partitions with their appropriate 

series color in Figure 4.22). 
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Figure 4.24: WCSS solutions for Z-scored data for varying number of clusters K 

 

 

Figure 4.25: Actual cluster self-identifications over a selected time-period of the NP simulation (see Figure 

4.22) 
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The results of these clustering schemes may be found in Table 4.5. The mean 

difference between individual results of the single model and the partitioned 

(unprocessed) model is -0.22, which is found to be a significant difference at the 99% 

level for a paired t-test of over 600,000 instances, with a resulting p-score of less than 

10-4 (MATLAB’s default level of accuracy).   

In some cases, normalizing attribute-values to z-scores before the k-means 

process can result in clusters that ultimately yield better model performance.  The 

thinking behind this is that some processes exert their effects over a very small range of 

readings (e.g., ranging only over a few units, such as barometric pressure readings); these 

readings will tend to be discounted when included together with inputs that vary over 

wider ranges by one or more orders of magnitude (e.g., wind-velocity readings).  

Normalizing such datasets to corresponding z-scores allow data values to be compared on 

relatively equal footing.  A similar approach is taken with inputs provided to MLP 

models, and for similar reasons (Reed and Marks, 1998).  

Table 4.5 shows results of partitioned models trained for use with clusters 

generated from both non-processed and z-scored datasets.  The model using z-scored 

clusters can be seen to exhibit a small, yet significant, increase in performance over the 

non-processed cluster model. 

The Student paired t-test was used to test the significance of all model-result 

comparisons.  It was considered a valid measure in these instances since the histogram of 

differences between paired errors (Figure 4.27) in result-sets of such magnitude (i.e., over 

700,000 records) is still generally normal, as predicted by the Central Limit Theorem.  As 

a precautionary measure however, the 2-sample Kolmogorov-Smirnov hypothesis test 
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(one which does not assume normal distribution of results) was used in all cases to 

confirm the Student test results, which it did in every case.  As such, since the z-scored 

version of the same test data set shows a greater improvement overall, it may be 

considered a significant improvement over the Global model, in addition to being a 

statistically-significant improvement over the non-processed partitioned model as well. 

Table 4.5: Results of Single model vs. Partitioned model 

  Clust I Clust II Clust III Clust IV Clust V Overall 

Global Model          3.1074 

Partitioned Model 

(non-processed) 2.7966 2.6371 2.6831 2.5349 2.4993 2.6874 

Partition Pop. 209028 205671 202951 8654 5649  

       

Partitioned Model 

(Z-scored) 2.5790 2.5246 2.7254 2.6239 2.7052 2.6324 

Partition 

Population 154701 8653 152111 157734 158754 631953 
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Figure 4.26: Histogram of differences between results of Single model, and Partitioned (K=5) model 

 

 

Figure 4.27: Normality plot for paired-differences histogram in Figure 4.26 
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Figure 4.28: A typical boxplot of Z-scored Partitioned model comparison for naturalistic synthetic dataset 

 

4.7 MLP Design and Feature Relevance 

As mentioned earlier in section 4.3, all MLP models used in this study accept the 

same eight input features: u1, v1, u2, v2, u3, v3, u6, v6.  In the course of the training 

process, MLP models determine for themselves the importance of the provided input 

features.  In the case of partitioned models, all k MLPs base their individual 

determinations of the value of their input features as a result of the data instances 

populating their assigned partition. 

 Just as we used TreeBagging to determine how the k-means process valued the 

features provided to it, we can use the same technique to qualitatively determine the 

value of the input features provided to our MLP models. In essence, we match data 

features provided to the model with its provided result and determine a correlation-type 



 

 

121 

 

 

 

weighting of each feature to the generated resultset. The TreeBagging results for the two 

synthetic data sets follow. 

 

Figure 4.29: Relative feature-weight valuations of Orthogonal synthetic dataset for a) Global model, and b) 

Partitioned model  

 

It is interesting to note that the ranks of features valued by the single Global model in 

Figure 4.29a (i.e., readings at 6-lag, 3-lag and 1-lag) are largely the same as those valued 

by the four MLP comprising the partitioned model in Figure 4.29b (i.e., readings at 6-lag, 

2-lag and 1-lag).  Note that as each component at a particular lag contains roughly the 

same information content as the other, it is useful to consider both components as a block 

– perhaps by comparing the mean of both bars at a given lag to the corresponding means 

at other lags. 
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Figure 4.30: Relative feature-weight valuations of “Natural” synthetic dataset for a) Global model, and b) 

Partitioned model 

 

Similarly, the five MLP of the partitioned model of the “natural” synthetic dataset (Figure 

4.30b) made roughly the same evaluation of the value of the provided input features as 

the global model (Figure 4.30a) did. Such a posteriori analyses can be helpful in fine-

tuning our MLP models in order to determine which data features are of low value and 

could potentially be left out, as fewer parameters might potentially make for a simpler, 

more efficient model. 

4.8 Conclusions 

This chapter explored the application of the basic k-means clustering technique to a 

spatial-temporal domain of synthetic readings, presumably gathered over a period of time 

from a monitored region M.  Synthetic data was generated such that there would be four 

spatial regimes present, and that some of these regions would have dynamically changing 

boundaries over time.  A Monte-Carlo heuristic was used to determine an appropriate 

value of K for the k-means partitioning process.  A small collection of raw and derived 

signals comprised of both spatial and temporal (i.e., ∆t-differenced) readings were found 

to return K spatio-temporal groupings that were capable of delivering statistically-
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significant reductions in overall approximation errors between the global model’s results 

and those of the partitioned model applied to a dynamically changing field of values over 

time.  Though generating k-means clusters using z-scores of input data provided some 

increased performance with these synthetic datasets, the difference in accuracy may well 

be deemed not to be worth the extra processing effort, especially as the benefits of the 

heuristic of z-scoring k-means inputs is often found to be problem-specific.  An example 

of this can be seen in the following chapter, where these same methods are applied to 

natural surface-current velocity readings harvested from the Gulf of Maine, as opposed to 

synthetically generated ones, and with similar success. 
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5. --- 

CHAPTER 5 

MLP PERFORMANCE ON NATURAL DATA SET FROM THE GULF OF 

MAINE 

5.1 Introduction 

From the introduction in chapter 3 of the concept of using standard feed-forward 

Multilayer Perceptrons (MLP) to approximate time series, we proceeded in chapter 4 to 

apply those MLP to spatial regions as they evolve over time.  These spatial-temporal (ST) 

clusters were determined by a standard k-means approach, using spatial as well as 1-hr 

difference readings as temporal components.  The relative importance of these 

components was determined by a statistical tree-bagging technique, and the number of 

clusters K for k-means was determined by a Monte Carlo simulation which approximated 

a break-even point between the concepts of “more clusters than necessary”, and “not 

quite enough.”  The conjunction of these techniques have allowed us to build a 

systematic approach to determining whether and how to subdivide a sensor-monitored 

spatial region M into multiple spatiotemporal partitions, each serviced by an MLP model 

trained to the characteristics of that particular ST partition, in order to extract additional 

accuracy from the modeling system for the entire monitored region. 

This chapter documents the application of these techniques to testbed data located 

in the Gulf of Maine (GoM).  Establishing a fine-grained model of local ocean currents is 

important since currents carry nutrients and organisms which affect ecosystems in coastal 

regions. For example, researchers are interested in establishing current models for the 
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Gulf of Maine since they can distribute a specific type of algae to shellfish off the coast 

of Maine during the warm summer months; the shellfish consuming the algae turn toxic 

for humans (i.e., “red tide” phenomenon) (Pettigrew et al. 2005).  In addition, shipping 

traffic in sea lanes continues to increase due to a variety of economic factors, including 

the regular delivery of everyday commodities such as heating oil, gasoline and natural 

gas to near-coastal communities otherwise without ready, inexpensive access to them. 

There is thus a growing need to have a system in place to track drift-based phenomena 

such as oil spills, search-and-rescue operations, and other lost cargo events, given the 

increasing likelihood that these events might occur. 

Today, major ocean currents are established using coastal radar; however, the 

information can be spatially and temporally too coarse. We conceive of a system 

comprising a wireless sensor network of power-limited computational platforms (or 

nodes) deployed within the marine environment, capable of delivering accurate, fine-

grained local current approximations based largely if not solely on local computation and 

at-need communication with similar, nearby nodes.  Although hypothetical systems 

incorporating mobile sensing stations are being explored (Nittel et al. 2007), we assume 

fixed nodes moored to a static location.  As these WSN nodes are power-constrained, any 

RF intra-node communications are infrequent if necessary at all, and any needed internal 

computations should likewise be finite and kept to a minimum. 
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5.2 Experimental Setup 

5.2.1 Gulf of Maine Dataset 

The ocean surface current data was provided by the University of Maine’s 

Physical Oceanography Group, covering five consecutive months (December through 

April) of 2013-2014. It was measured by a 4.3-5.4 MHz SeaSonde HF radar system, 

which is deployed to observe sea surface currents in the Gulf of Maine. In our 

simulations, we use current direction and current speed data measured hourly at the 

center of cells in a 36x24 grid. The size of each grid cell is approximately 16km x 16km. 

 

5.2.2 Proposed WSN Operation 

Although no embedded WSN currently exists within this region as such, we 

consider that the surface current readings returned by the SeaSonde radar system were 

actually produced by a WSN physically embedded within the region.  Then, as proposed 

in chapter four, we simulate the generation of ST clusters (along with their cluster-

centers) and develop their respective MLP models at a non-power-constrained coastal 

site.  ST cluster and MLP model parameters are then transmitted to nodes in the Gulf.  In 

the normal course of operation, a node should wake up at its assigned time, collect and 

store a reading from its onboard sensor, then return to a sleep state until its next wakeful 

period.  Should the sensor not be functional to take the required reading, the node would 

compare its most recently stored readings to its saved set of cluster centers, determine 

from these the least-distance (and thus most appropriate) dynamic regime, and use the 

stored MLP model associated to that regime to generate an approximation of the desired 
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sensor reading.  The node would continue in this approximation mode until the sensor 

returned to normal operation. 

 

5.2.3 Determining K 

 

 

Figure 5.1: Monte Carlo results of raw Codar data compared to 100 randomly permuted versions of dataset 

 

The Monte Carlo approach adapted from (Peeples, 2011) delivers the graph in Figure 5.1 

when a series of averaged k-means results of the GoM data for values of K ranging from 

1 to 10 is compared to 100 individual k-means runs on column-permuted variations of the 

original dataset.  Given that none of the permuted series results (red lines) approaches or 
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crosses the original dataset’s result series (blue line), we may assume that the latter is not 

a result of chance at a 99% confidence-level. 

It now remains to find where a tangent line to this series changes state, passing the 

threshold from slope values less than -1, to slope values between -1 and 0. 

 

x y  norm_x  norm_y  m 

1 1084342 0  1  

2 895035.2783 0.111111111 0.707615544 -2.23961755 

3 762106.7091 0.222222222 0.502307211 -1.58042576 

4 667644.2426 0.333333333 0.35640982 -1.119112706 

5 601089.2137 0.444444444 0.253615499 -0.810120452 

6 551084.431 0.555555556 0.176383052  

7 514000.186 0.666666667 0.119106392  

8 482554.3038 0.777777778 0.07053819  

9 455439.2979 0.888888889 0.028659031  

10 436883.7725 1  0  

 

As was set out in the preceding chapter, since the slope of -1 occurs between x-

values of 4 and 5, we choose K = 5 for our k-means clustering scheme, as no significant 

additional performance benefit would be expected from a larger number of subpartitions 

of M, whereas four clusters may still be too low to capture the number of natural clusters 

present within M in the period of time considered.   

Over a one month span of time in the CODAR data record beginning in December 

2013, approximately sixty-three thousand data vectors were extracted consisting of the 

following attributes: latitude, longitude, u0, v0, u1, v1, and ∆angle.  The first two 

attributes provide the spatial components of this spatiotemporal clustering; two 2-
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dimensional current vectors (u measuring east-west flow, and v measuring north-south) 

follow, expressed in cm/sec and separated by one hour providing a time-differentiated 

measure of both magnitude and direction; and ∆angle is a derived measure representing 

the change in heading in decimal degrees, computed by equation 5.1.  As Z-scoring the 

inputs before clustering may potentially improve results (as seen in the previous chapter), 

two clustering schemes were generated: one Z-scored, one not. 

 

∆angle = (arctan(u1, v1) – arctan(u2, v2)) * 180/π   (5.1) 

 

The tree-bagging analysis of the resulting schemes is shown in Figure 5.2.  The effect of 

z-scoring the raw data values is immediately obvious in the comparison between the two 

graphs, in that the non-Zscored scheme shows one attribute, ∆angle, dominating most of 

its accompanying attributes, whereas the Z-scored version shows a less differentiated 

distribution of parameter relevance.  Interestingly, the non-Zscored scheme appears to 

largely reverse the effects seen in the Z-scored version: spatial coordinates (lat, long) and 

east-west flow (u) seem more influential in the latter, whereas ∆angle and north-south 

flow (v1) appear most relevant to the partitioning scheme in the former.  Which of the 

two schemes is most appropriate within the composite-MLP model under current 

conditions will be determined empirically by the results of the MLP model trained on the 

cluster groups generated here. 
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Figure 5.2: Parameter relevance results of two clustering schemes of one month of CODAR data; one using 

raw values (left) and the other using z-scored values (right) 

 

 

As an additional check to verify the benefits of the k-means partitions, a third clustering 

scheme was generated upon this data set: a completely random partitioning of the data 

set, assigning each instance-vector to one of the five clusters with equal probability, 

irrespective of timestamp or location.  Though a parameter-relevance chart would make 

little sense for this scheme, three consecutive snapshots of the resulting partitions are 

shown in Figure 5.3, revealing cluster assignments as random as one might expect. 

 

 

Figure 5.3: Random partitioning of data instance vectors in the Gulf of Maine taken over three consecutive 

hours (3/06/14  17h00 – 19h00 UTC) 
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In comparison, both the Z-scored and the non-Zscored partitioning schemes show 

distinct, persistent, generally self-connected regions over time (though the Z-scored 

version, with its heightened emphasis on the spatial location of the instance vector, would 

appear to have more spatial coherence than the latter).   

Figures showing a three-hour series of snapshots of both Z-scored (Figure 5.5) and non-

Z-scored (Figure 5.7) versions of the partitioning scheme are actually quite similar.  Both 

portray a general partitioning of the Gulf of Maine into two major parts east and west, 

with a short-lived eruption of a third cluster within the middle of the gulf.  The two 

remaining, so-called “interstitial,” clusters appear around the edges of the main three.  

Peaks corresponding to these main three clusters can be located in the respective charts of 

cluster populations (Figure 5.5 and Figure 5.7) at approximately 19h00 on 3/06/14.  As 

surface current readings in the center of the Gulf basin tend to be of low magnitude 

compared to the edges, this eruption could signal the changing direction of tidal flow, 

from inbound to outbound, for example.   
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Figure 5.4: Total vectors remotely sensed in GoM on 03/06/2014 at 17h00 (top) and 21h00 UTC (PhOG, 

2014) (bottom) 
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Change in tidal flow does indeed appear to be the cause here, as relatively strong inbound 

flow appears to be occurring at 17h00 in Figure 5.4 (top), especially through the eastern 

half of the gulf.  Successive snapshots freely available at the University of Maine’s 

GoMOOS website show these inbound currents gradually lessening and eventually 

reversing direction over the next several hours until 21h00 as seen in Figure 5.4 (bottom).  

The reader may find it easier to connect this 17h00 surface-current snapshot to the first 

cluster figure in Figure 5.5, rather than the corresponding first one in Figure 5.7, as the 

spatial structures of the data seem more readily represented in the former.  These are not 

simple spatial clustering schemes, however, but spatiotemporal ones.  Clusters should not 

be evaluated by a simple look at the assignments and relationships within a single 

snapshot, but with corresponding assignments in previous and succeeding snapshots as 

well.  As will be seen, the latter (i.e., non-Z-scored) partitioning scheme will actually be 

determined as the more effective – its predilection for ∆angle and v-component values 

apparently conferring some advantage over the scheme based more heavily on spatial 

location and u-component values. 

 

Figure 5.5: Z-scored partitioning scheme over three consecutive hours (3/06/14  17h00 – 19h00 UTC) 
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Figure 5.6: Population of Z-scored clusters over five days’ time 

 

 

 

These cluster population charts demonstrate the difficulty of data collection in a natural 

environment, as natural atmospheric interference would occasionally hinder the radar’s 

remote sensing of data between approximately 12h00 and 24h00 GMT, and readings can 

be seen to decline in quantity outside that sensitive period. 

They also highlight the relatively large parts four of the five clusters play over time.  The 

general regimes identified by clusters one, two three and four each seem to succeed each 

other over roughly comparable portions of the gulf as time progresses. 
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Figure 5.7: Non-Z-scored partitioning scheme over same three consecutive hours (3/06/14  17h00 – 19h00) 

[Note: no direct relationship should be assumed between these cluster symbols and those of Figure 5.5] 

 

 

 

Figure 5.8: Cluster populations of non-Z-scored clusters over five days’ time 

 

What, then, are we to make of the appearance of cluster5 symbols in the middle of 

the Gulf in both (non-random) versions of the partitioning scheme?  A small but recurring 

event, its appearances tend to be short-lived, but it seems to represent the same general 

physical process in both schema.  We propose that this cluster is a representation of the 
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still surface waters – captured here poised between the incoming tidal flow (visible in 

Figure 5.4’s 17h00 UTC snapshot) and the outflowing tide (at 21h00 UTC).  The 

snapshot of gulf readings represented by the third image in both Figure 5.5 and Figure 5.7 

is perhaps less telling without the surrounding context, but is shown in Figure 5.9.  The 

outline of the onset of cluster5 symbols may be traced by the low-magnitude vectors in 

the center of the gulf, signaling nearly non-existent current flow as the tide begins to 

reverse.  This is a powerful illustration of what we have chosen to call the “interstitial 

clusters”: collections of instances of low population that might otherwise have been 

written off as insignificant, if their temporal (and spatial) manifestations did not so aptly 

capture significant events within their spatial-temporal context – significant events 

benefitting so well from MLP modeling that overall system error rates are reduced 

thereby.  
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Figure 5.9: Snapshot of reversing tide in Gulf of Maine at 19h00 UTC (PhOG, 2014) 

 

 

Table 5.1 displays the cluster centers generated by the k-means process.  We may 

note that represented within these centers are vector-templates from all four quadrants of 

the Cartesian plane, as well as instances of both clockwise and counter-clockwise 

rotation.  The most interesting of these may be the fifth row, representing cluster five – 

the emergent cluster of crosses in the cluster-figures above. Interestingly, the mean u and 

v magnitudes of this cluster’s members are quite small, supporting the conjecture that this 

cluster emerges preferentially at times of tidal/surface current flow-reversal. 
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Table 5.1: Cluster centers resulting from non-Z-scored k-means processing 

longitude latitude u0 v0 u1 v1 ∆angle 

-67.76 43.49 3.17 -4.81 4.70 1.91 -77.85 

-67.76 43.65 -16.09 10.53 -12.82 -11.28 274.79 

-67.63 43.62 -4.07 -29.67 -4.65 -29.48 2.02 

-67.48 43.62 -0.46 28.53 0.77 27.86 3.60 

-67.56 43.56 -0.13 -1.44 -1.05 -0.07 95.42 

 

 

Figure 5.10 : Cluster-centers and attribute influence displayed in 2D (left) and 3D (right) digraphs 

 

Figure 5.10 visualizes the cluster centers of the non-Zscored partitioning scheme, as well 

as the vector contributions of each of the attributes used to generate them, as 2D and 3D 

digraphs in the same PCA component space.  Again, the 2D graph may be recognized in 

the 3D version as the horizontal axes.  This figure illustrates the importance of ∆angle to 

the scheme, as it contributes to approximately 95% of the first PCA component.  Note 

also how the 3D version shows a truer representation of the contribution of the u-

components to the partitioning scheme. 
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5.2.4 Partitioned MLP Simulation Results 

Training separate MLP models to each of the populations identified by these 

cluster-centers, we generate a combined resultset of approximations to subsequent 

members of each partition.  MLP models are trained on approximately one month of data 

instance-vectors (approximately 139,000).  Each instance was comprised of: lon, lat, u6, 

v6, u3, v3, u2, v2, u1, v1; the models are trained to return approximations for u0, v0 

(where the integers x in ux, vx represent number of hours previous to the approximated 

readings). Trained MLP models are then tested on three subsequent months of data 

readings (approx. 240,000) unseen in the training process. 

Comparison of the partitioned-model approximations to the actual sensed (u, v) 

values (Table 5.2) shows reductions to estimation-error as compared to single-model 

MLP results.  Level of improvement, however, depended on whether partition-generation 

was based on the raw or Z-scored data.  In this case, instances categorized based on non-

processed (i.e., non-Zscored) inputs resulted in less overall error. 
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Table 5.2: Non-Zscored Partitioning Scheme Simulation Results 

 Clust I Clust II Clust III Clust IV Clust V Total 

Naïve (single-lag) 

error (cm/s) 

     18.970 

Single model error 

(cm/s) 

     14.383 

Random model 

error (cm/s) 

14.410 14.562 14.393 14.484 14.554 14.480 

Population 45678 45699 45837 45586 46001  

       

Partitioned model 

(non-Zscored) 

error (cm/s) 

13.863 13.559 12.450 11.948 12.874 12.512 

Population 27975 20502 68383 103214 8727  

       

Partitioned model  

(Z-scored) error 

(cm/s) 

13.130 13.185 13.798 13.857 13.430 13.436 

Population 56526 42172 16344 53075 60684  
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Figure 5.11: Boxplot of (non-Zscored) Partitioned model error comparison for CODAR testbed data 

 

 

Figure 5.12: Histogram of paired differences of results from the Single and 5-Partitioned (non-Zscored) 

model (left), and the normality plot of said histogram (right) 
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Effecting a paired t-test on over 200,000 results each of the 5-Partitioned (non-Z-

scored) model compared to the Single global MLP model provokes the rejection of the 

null hypothesis (of Part5_mean – Single_mean >= 0) to the .99 level of significance with 

a p-score below the 10-4 threshold (i.e., effectively zero).  Though we may observe from 

Figure 5.12 that the distribution is skewed and thus not technically normal, the direction 

of its skew supports the paired t-test conclusion, as the vast majority of model differences 

are negative.  This conclusion is reinforced as well by a non-parametric (i.e., normal 

distribution not assumed) paired Kolmogorov-Smirnov hypothesis test that also rejects 

the null hypothesis, again with a p-score below 10-4. 

 

5.2.5 Gulf of Maine Dataset Feature Relevance 

Breiman’s TreeBagging technique again provides us with estimates of the relative 

valuation of input features to the Global and Partitioned models, respectively, for the 

Gulf of Maine dataset in Figure 5.13.  Comparing the two models we may observe that 

again both approaches had a roughly similar assessment of the importance of their input 

set, both preferring readings at lags 1 and 3 of the four available. 
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Figure 5.13: Relative feature-weight valuations of 2013-2014 Gulf of Maine dataset for a) Global model, 

and b) Partitioned model 

 

It may strike some as passing strange that in an ostensible spatial model, no 

explicitly spatial input features, for example latitude or longitude, are provided to it. Up 

to this point this decision has been justified by the decision to use the MLP to implement 

the spatial time series spatiotemporal modeling approach. However as we know, the 

MLP model is vastly overpowered for such a straightforward approach.  A signal benefit 

to using it is in its capability to automatically integrate additional data features – be they 

temporal, spatial or other – in order to enhance overall model accuracy. 

In Section 4.7 we mentioned the utility of the TreeBagging technique to determine 

which features were less valued by the model and might potentially be precluded with 

little degradation to its predictive ability. By the same token, the technique can be just as 

useful for evaluating prospective datastreams for potential inclusion into the input feature 

set.  For example, the latitude and longitude features may be evaluated against the 

training set of data; a high coefficient of correlation, especially as compared to other 

input features, would indicate their fitness for inclusion. 
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In this case, however, it is even more enlightening to compare the latitude and 

longitude attributes to the trained model results.  These TreeBagging valuations are 

shown in Figure 5.14. 

 

 

Figure 5.14: Relative feature-weight valuations of 2013-2014 Gulf of Maine dataset for a) Global model, 

and b) Partitioned model, including spatial attributes latitude and longitude 

 

We observe from the figure that even with the spatial features in play, temporal 

features at lags 1 and 3 still rank in their same positions relative to the remaining 

temporal features in their importance to trained model results. Interestingly we also 

observe that the spatial features rank roughly on par with the main temporal ones – 

without ever explicitly having been a part of generating said results. This is an example 

of how relationships between spatial objects are often implicit (Shekhar et al. 2003).  The 

combination of temporal features provided to both models in this case seem to have 

served as a proxy for the spatial features, and may be providing spatial information to the 

system in a more relevant fashion in the case of surface current maps. An analogy might 

be that of an expert wine-taster who may be able to determine the year and terroir from 

the qualities (i.e., taste, texture, acidity, etc.) of a sip of wine if not the precise location of 
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its provenance.  Inclusion of these features in our models is thus found to be largely 

unnecessary. Later experimentation (not shown) suggests that including them does 

enhance result accuracy somewhat, but not to any impressive degree as their influence 

was already being felt by way of the other inputs provided. 

5.3 Conclusion and Subsequent Work 

5.3.1 Conclusions 

 This chapter has applied the multiple-MLP model developed in previous chapters 

to a natural dataset of surface ocean currents collected by CODAR radar stations installed 

around the Gulf of Maine.  This dataset is used as a stand-in for a notional network of 

wireless sensor nodes that we imagine to have one node embedded at each location in the 

Gulf to which a surface current reading is attached.   

The same techniques introduced in the previous chapter (Chapter 4 – Evaluating 

MLP Models on Partitioned Synthetic Data) are used for this dataset.  That is, an 

appropriate number of partitions (K) is determined by a Monte Carlo analysis of a 

training dataset.  K-means is enlisted to generate a spatiotemporal partitioning scheme 

using a combination of spatial attributes (i.e., lat, long), and temporal attributes (i.e., u1, 

v1, u2, v2, Δangle).  K MLP models are generated to best accommodate the population of 

data instances that comprise each of the K partitions of the data.  This partitioned system 

is tested upon new, unseen data partitioned by the same predetermined partitioning 

scheme and compared to the results of a single MLP model (i.e., the “global” model).  A 

random partitioning of the same data into K groups will yield results that are no better 

than the global model’s results at nearly any level of significance. In comparison, the 

results returned from the partitioned model consistently displayed significantly lower 
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error at the 99% confidence level.  Whereas in the previous chapter it was found that z-

scoring each attribute of the data instances before generating the partitioning scheme 

would result in further improvement with the synthetic data’s approximation results, this 

was not found to be true for the natural data set.  The usefulness of the z-scored k-means 

partitioning heuristic is thus found to be application-dependent, as it will not consistently 

deliver improved results. 

5.3.2 Subsequent Work 

 Any model fitted to a particular set of data will contain a certain amount of bias 

towards data instances similar to those it was fitted upon.  That is, data instances 

dissimilar to the training set will often produce larger error levels when evaluated with 

this model.  A partitioned model composed of individually biased models will thus 

display a bias resulting from the additive aggregation of the individual biases of its 

components.  What kind of second-order effects may we expect to see as a result of our 

present composite, spatiotemporally-partitioned model? 

Also, any model fitted to a finite set of recent historical data can be expected to 

degrade in performance over time, given any relatively dynamic system; and its 

performance with nonstationary dynamic systems can be expected to degrade even more 

rapidly.  How long, therefore, can we expect our partitioned model’s results to remain 

valid, and how can we tell when that tipping point has been reached?   

We investigate these last two questions in the following chapter. 
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6. --- 

CHAPTER 6 

EVALUATION OF AUTOCORRELATED RESIDUALS, AND REFRESHING 

THE SYSTEM 

6.1 Introduction 

 The previous chapters of this work evaluated the appropriateness of the 

Multilayer Perceptron (MLP) artificial neural network model for use in approximating 

two-dimensional readings in a field of the same, using a combination of both spatial and 

temporal readings as inputs.  Chapter 4 expanded on the single MLP model application 

by fitting a system of MLP models to a partitioned spatial extent over an arbitrary period 

of time.  The partitioned model allowed us to control to some degree for the 

nonstationarity that is typical to natural datasets with significant extents in both space and 

time (Fuentes et al., 2003; Fuentes et al. 2005).  A Monte Carlo based kmeans approach 

was used to partition the dataset into subsets upon which to train and test the individual 

MLP models in the partitioned system.  Partitioned MLP systems were found to have 

improved performance over a single global MLP fitted to the entire dataset when 

significant clusters or partitions were detected.   

 Both global and partitioned models leave spatial fields of residuals at every 

timestep at which they have computed approximations of missing (or imminent) readings. 

Like any model fitted to a finite set of training data, both global and partitioned MLP 

models display some bias in their results, based on the similarity (or dissimilarity) of the 

new data instances to which they are exposed vis à vis the data on which they were fitted.  
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The purpose of this chapter is to examine the change in those residual fields between the 

global and partitioned models, in order to determine whether the bias in residuals grows 

as the representative power of the model increases (e.g., does a partitioned model yield 

more spatially autocorrelated error than a global one).  This is important because a model 

can be judged not only on its operational accuracy but also its level of operational bias.   

For instance, a model whose performance increases at the cost of increasing its 

operational bias could induce higher levels of artificial structure in the residual fields, 

possibly obscuring other important naturally-occurring second-order effects, thereby 

somewhat offsetting the value of the “improved” model. We employ a well-known 

spatial statistics measure called the Moran’s I to test for any such increases to 

autocorrelated error in residual fields between the two MLP model results. 

 As these models are fitted at one point in time to be used for an indeterminate 

length of time using new incoming data that will likely prove to be increasingly 

dissimilar to the original training dataset, we propose a method to determine when the 

incoming data is no longer similar enough to the training set, and thus the models must be 

refitted.  This functions as another control for the nonstationarity of natural systems over 

time, and provides a reasonable basis for a decision to be made to refresh the system of 

models in order to maintain their operational effectiveness under the constant incremental 

change of monitored conditions. 
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6.2 Spatial Autocorrelation of the Residual Fields 

 We apply a local Moran’s I autocorrelation statistic to residual field values. The 

weights matrix, w, used in this chapter is a 3x3 matrix, where all elements but the center 

are set to ⅛, and the center element is 0. 

 

Figure 6.1: Three views of averaged V-component fields on March 20, 2014 – residual V-component 

values (left), significantly correlated V-component Z-scores (right), and I-field of V-comp autocorrelations 

(bottom) 

 

The three snapshots presented in Figure 6.1 illustrate a typical process in the 

generation of a field of Moran’s I statistics for each location containing a CODAR 

reading on March 20, 2014 in the Gulf of Maine.  The first snapshot (left) presents the 

field of v-components to the residual vectors produced by the global MLP model. The 

second (right) takes the Moran’s I field and converts it to z-scores to highlight the 

significant instances of autocorrelation (hereafter referred to as the Z-field).  Note that the 
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minimal z-score in the range is 1.96; therefore only values significant at the 95th 

percentile and beyond distinguish themselves from the background.  Note also the 

boundary of the convex hull, denoting the extreme limits of the field of readings. Finally 

the third snapshot (bottom) displays the full range of computed Moran’s I values in the 

context of the coastline of the Gulf of Maine, including the locations of the three main 

CODAR stations responsible for the original field of readings.   

The context of the convex hull of original readings is particularly important 

because, in order to generate a rectangular snapshot, all values outside the convex hull are 

extrapolated from the values within, and should thus be discounted  A kriging process 

was used to implement the extrapolation, using a Gaussian correlation model for 

smoothing.   

 

6.2.1 Rationale for Excluding Edges of the I-Field 

 The majority of z-scored significance values in the top-right snapshot of Figure 

6.1 are located on or outside the boundary of the convex hull.  The fact that these peaks 

often occur at these locations can be attributed to two factors: extremities of CODAR 

range, and Gaussian extrapolation.  As noted in the prior chapter, the real-world dataset 

that notionally represents an embedded wireless sensor network in the Gulf of Maine is 

actually generated by several coastal radar installations, currently ranging from Maine to 

Nova Scotia, Canada. The extent of the radar signals projected by these stations may vary 

from one hour to the next due to atmospheric conditions, and so the greatest uncertainty 

occurs in those readings that are gathered at the extreme leading edge of one radar station 

or another.  Since these readings are nearly always found at the current edge of the spatial 
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field, it is easy to understand that the corresponding field of error magnitudes also slopes 

upwards toward the edges of the field.  The choice to use a Gaussian correlation model in 

the kriging model rendering a continuous surface for display of the field of Moran’s I 

values (referred to hereafter as the I-field) means that an upward slope at the edge of the 

actual field would create a spurious peak just outside the convex hull of the actual field of 

readings.  This being the case, we treat significant peaks located upon the convex hull 

boundary with skepticism (due to the high uncertainty associated with the signals 

comprised within those readings), and ignore values outside the convex hull completely.  

Later in this chapter, when comparing populations of significant I-field values between 

models, we only consider readings a minimum distance within the boundaries to avoid as 

much as possible the most-compromised instances. 

 

6.2.2 Comparison of Moran’s I in the U/V fields between Global and Partitioned 

Models 

 To display results of a model’s autocorrelated errors over a given length of time, 

the squared residuals of all the model’s results for the time period were queried from the 

database, and averaged by location.  As individual residuals may be either positive or 

negative, squaring their values prevents any cancellation from occurring prior to 

averaging.  The I-field was then generated by passing the chosen weight matrix (i.e., 3x3 

averaging filter described above) over the field of values, extrapolated to fit an mxn 

region fit for display. 
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A second copy of the mxn region was z-scored by subtracting the matrix’s mean 

from each value and dividing by the matrix standard deviation, according to the following 

standard formula: 

  )(XstdevXXZ      (6.1) 

This Z-field allows for the determination of significant instances of error 

autocorrelation in the variable of interest X.  

Examples of Z-fields and I-fields of the U and V components of the residuals for both the 

Global and Partitioned models are shown in Figure 6.2 and Figure 6.3. 

 

Figure 6.2: Comparison of the U-component’s Z-fields (left) and I-fields (right) resulting from the averaged 

results of the Global model (top) and Partitioned model (bottom) on March 20, 2014 
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 The U-component results show relatively little significant autocorrelation within 

the convex hull delimiting the field of approximated values (and nearly none at all in the 

south-central region of the Gulf, interestingly). Most of the significant instances of 

autocorrelation are found along the bounds of the convex hull for both residual 

components. Intriguingly, the partitioned model’s residuals display generally shallower 

peaks than the single Global model’s residual field for the U-component. The structure of 

the I-field in both models’ results appears otherwise generally the same. 

 

Figure 6.3: Comparison of the V-component’s Z-fields (left) and I-fields (right) resulting from the averaged 

results of the Global model (top) and Partitioned model (bottom) on March 20, 2014 
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 The surface of the V-component’s I-field presents as significantly choppier than 

that of the U-component.  This may be because much of the natural system’s energy is 

often found in the V-component in this particular testbed (as suggested by the importance 

ascribed to the V-component in the selected clustering scheme in the previous chapter). 

Though it might be argued that the choppiness in the residual field is a result of the use of 

the clustering scheme to build the partitioned model, it should be noted that the Global 

model’s I-field also shows similar structure without the model having used the clustering 

scheme.  If significant system energy was indeed generally concentrated into the 

testbed’s V-component, however, we may expect that both MLP model systems would 

have naturally adapted in that direction as they sought to model the axes of greatest 

variation within the system.   

 Like the U-component results, most significant residual component 

autocorrelation results are found along the convex hull, where the largest and most 

consistent errors are expected by default due to physical signal attenuation.  Relatively 

more significant instances of autocorrelation are found inside the hull for the V-

component however, and the Partitioned model’s peaks appear to be generally higher 

than those of the Global model. 

 

6.2.3 Determining the Change in Mean Autocorrelation Between Models 

 But however illuminating, results for a single day are not representative of a 

model’s performance over its lifetime.  To capture the difference in autocorrelated error 

between the two models, we employ once again the paired-value t-test technique, pairing 

for each unique data instance each of the Moran’s I values returned by the Global and 
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Partitioned models.  Histograms of residual-differences were generated separately for the 

U-component, V-component and Total Magnitude of each model’s residual set, and 

paired t-test hypothesis tests were run, with the null hypothesis H0:  μPART - μGLB  = 0  

(i.e., the means of each model’s Moran’s I distribution are not significantly different). 

 

 

Figure 6.4: Histograms for the differences of paired Moran’s I values (PART – GLOBAL) produced by U-

component (left), V-component (right) and total residual magnitude (bottom) for the month of April 2014 

 

 Two approaches were taken for each of the paired t-tests: a month’s worth of data 

could be aggregated to location-averages for the month, yielding approximately 512 pairs 

of values; or daily averaged values for each location could be retrieved, yielding 

approximately 12,000 pairs.  These population sizes are large enough that Student’s t-
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tests should be applicable, by the Central Limit theorem.  Ultimately either method 

returned roughly similar histograms, so the daily-averaged histograms are not duplicated 

here.  The t-test results are shown in the following table 

 

Table 6.1: Paired t-test results for April 2014 Moran’s I fields as produced by Global and Partitioned 

models, aggregated both monthly and daily by location 

  Mean Difference H0 Rejected 

U-component monthly-averaged +0.03 TRUE 

 daily-averaged -0.0023 FALSE 

V-component monthly-averaged -0.04 TRUE 

 daily-averaged -0.04 TRUE 

Total Magnitude monthly-averaged 0.00 FALSE 

 daily-averaged -0.01 TRUE 

 

 Executing separate paired t-tests by component-fields had mixed results, 

especially when aggregating in either monthly or daily terms.  The monthly-averaged U-

component test indicated a significant increase in the Partitioned model’s (u-component) 

error autocorrelation, while the daily-averaged Moran’s I values failed to reject the null 

hypothesis.  Both V-component tests indicated significant decrease in the Partitioned 

model’s v-component residual autocorrelation.  Whereas for the autocorrelation of the 

total magnitudes of the residuals, tests indicated either no significant change (monthly-

averaged) or a very small reduction in the Partitioned model (daily-averaged).  This latter 

test’s results do not much surprise since, as the u- and v-components are combined to 

obtain the magnitude, the overall effect would favor a slight reduction in the Partitioned 

model’s results.  As the majority of tests reject the null hypothesis to indicate a 
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statistically significant reduction in error autocorrelation in favor of the Partitioned 

model, the weight of the evidence perhaps should be taken to support that conclusion. 

 A well-known downside of the t-test technique, however, is that given a large 

enough number of data instances, a signal is virtually certain to be detected within the set 

sufficient for rejection of the null hypothesis.   The magnitude of the significant 

differences in this case (i.e., on the order of 10-2 – two orders of magnitude below that of 

the data itself) does not quite sit comfortably with us.  Although the Partitioned model 

may be said to have significantly less autocorrelated error in the statistical sense as a 

result of these tests, the amount of autocorrelated error produced by either model may in 

a practical sense be considered to be virtually identical. 

 We may nonetheless represent these I-value differences spatially in a set of 

bubble-charts, one for each component-field, located over the Gulf of Maine.  In the 

following bubble charts, size of the blue bubbles represent better relative performance on 

the Moran’s I scale (i.e., less autocorrelated error – that is, Moran’s I is closer to zero) by 

the Partitioned model, and size of white bubbles represent better relative performance in 

favor of the Global model.  
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Figure 6.5: Relative differences in I-values of U-component residuals between Global and Partitioned 

models (Better performance by the Partitioned model is represented by blue bubbles, and by white for the 

Global, while bubble-area represents magnitude of relative improvement) 

 

 Figure 6.5 shows a relative dominance by the Partitioned model in the center of 

the field for U-component approximation, while the Global model appears to do better at 

the edges.  Spatial distribution of each model’s bubbles is not random, indicating a 

difference in the bias of each model, possibly leading to model-driven second-order 

effects in their residual fields in those areas where each model’s bubbles are clustered.  

However the energy in the U-component is not as significant as that found in the V-

component, so Figure 6.6 should be consulted before any final determination on the 

matter. 
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Figure 6.6: Relative differences in I-values of V-component residuals between Global and Partitioned 

models (Better performance by the Partitioned model is represented by blue bubble, and by white for the 

Global, while bubble-area represents magnitude of relative improvement) 

 

Figure 6.6 shows a decided advantage for the Global model when the two models 

are compared.  White bubbles dominate nearly everywhere, with the exception of two 

sections located approximately along the straight-line stretches between the coastal radar 

installations, where the Partitioned model’s results appear to dominate.  Note of course 

that this should not be taken to mean that the latter model’s I-values are necessarily low 

in those regions, only that they are lower on average than the Global model’s. 

 Finally, as the u- and v-components are combined to obtain the error vector’s 

magnitude, a Moran’s I field is generated for correlated error magnitudes yielding Figure 

6.7, which appears to be a blend of the two preceding figures.  The bubbles of each model 

appear to be slightly more interspersed than in the U-component’s Figure 6.5, and the 

Partitioned model does not appear nearly as dominant overall as in Figure 6.6.  
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 These figures reinforce our feeling first prompted by the paired t-test results: that 

no practical difference exists between the error correlation in the results returned by 

either model, even though the Partitioned model in the V-component may technically 

hold a slight advantage in that regard. 

 

Figure 6.7: Relative differences in I-values of Total Magnitude residuals between Global and Partitioned 

models (Better performance by the Partitioned model is represented by blue bubbles, and by white for the 

Global, while bubble-area represents magnitude of relative improvement) 

 

Given that the amount and magnitude of correlated error appears roughly equal 

between the two models, it appears safe to conclude that the partitioned approach used by 

the Partitioned model does not lead to additional spatially-correlated error in its results.  
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6.2.4 Excluding the Possibility of a ST-Leviathan Volume in Residual Fields 

 Series of two-dimensional spatial graphs are often likened to the pages of a book.  

Proceeding forwards through the series, like flipping forward through the pages of a 

picture-book, allows one to witness located values in space as they progress over time.  

One limitation of the Moran’s I statistic as defined is that it does not take into 

consideration adjacent values in time as well as space, a limitation most recently 

addressed by (Dubé and LeGros 2013a) and (Dubé and LeGros 2013b).  It is possible that 

a model may leave correlated values along the time axis as well – either as artifacts of the 

model’s bias, or due to the presence of second order processes unexplained by the model.  

This leaves open the possibility that along the temporal axis a possible 3-D region of 

significant correlated error values may lurk; a leviathan whose volume we may not detect 

because we only glimpse it in innocuous cross-sections as we look at the surface maps on 

each individual page of the book of Time.  

Extending the picture-book analogy, we might imagine that some pages within the 

book are subject to a dry-mold agent causing a particular region of a given page to 

crumble away to dust over time.  This agent might then make contact with neighboring 

pages as well, causing correlated regions of adjacent pages to also molder away. These 

correlated voids over a series of pages would create a hollow within the closed book, 

invisible to anyone viewing it upon the shelf.  Taking an X-ray image through the front 

cover of the closed book, however, would detect this hollow. We have implemented this 

x-ray analogy computationally as the Maximum Significant-I Persistence (MSIP) 

technique, to detect the maximum volume of potential correlated errors left by the model 

along the time axis. 
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6.2.5 Maximum Significant I Persistence 

 The purpose of the MSIP technique is to get a sense for how large a volume of 

persistent significant Moran’s I values may potentially exist along the time axis. The 

MSIP algorithm consists of the following steps: 

For each time-step: 

1) Initialize two mxn matrices PS and MX to all zero values 

2) Generate a mxn matrix MI of z-scored Moran’s I correlation 

statistics for the given time-step 

3) For each value above the chosen significance-value and within the 

current time-step’s convex hull, convert value to a 1; convert 

all other values to 0 

4) Accumulate this matrix into the Persistent-Sum matrix PS such 

that: 

a.  any zero-value cells in MI cause corresponding cells in PS 

to reset to 0 

b. any non-zero cells cause corresponding cells in PS to 

increment by one 

5) Finally, for each cell i whose value in PS is greater than the 

corresponding value in MX, let MX[i] = PS[i] 

 

The resulting matrix MX will indicate the maximum length of consecutive significant 

instances of correlated error for the variable in question (though with no guarantee that 

any maximal series of values is cotemporaneous with any others).  Examples of resulting 

MX images follow. 
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Figure 6.8: Global model MSIP images of the U-component (left) and V-component (right) at 0.01 level of 

significance for April 2014; aka “beard” and “toupee” signatures 

 

Figure 6.8 illustrates the two signature patterns of significant error occurrence in the MLP 

model results of the Gulf of Maine dataset.  As seen earlier, U-component correlated 

error tends to occur along the southern edge of the monitored region, while V-component 

correlated error tends to occur along the main coastal (northwestern) boundary.  These 

tendencies lead to a “beard” and “toupée” nomenclature for the resulting signature 

patterns.  Given that both patterns occur along the edges of the field, both can be 

explained away. The toupée effect for example may largely be due to coastal interference 

to the radar signals, such as coastal outcroppings or marine traffic, in addition to the 

uncertainty created by signal attenuation at the edges of the field.  The beard effect can be 

largely ascribed to signal attenuation at the edges of the convex hull, especially as the 

southwestern boundary can be seen to be in a near-constant flux of advance and retreat as 

radar signal range varies with atmospheric conditions.  It is not surprising therefore that 

the U-component’s MSIP values do not reach the same maximal values as those along the 

more-constant coastal boundary.  It should also be noted that only those values found to 

be significant at the 0.01 level or better were noted. 
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 If a hidden leviathan is to be found in this resultset, the threshold of significance 

may need to be lowered.  In order to maximize the size of a potential hidden volume, the 

significance threshold was lowered to 1.645 (i.e., the 0.1 significance level) for the 

partitioned model’s results.   

 

 

Figure 6.9: MSIP values for U-component error (left), V-component error (right), and residual magnitude 

(bottom) from Partitioned model results for April 2014 

 

Figure 6.9 shows the signature regions to be significantly enhanced by the lowered 

significance threshold.  Of particular note is that few regions of significantly correlated 

error can be found inside convex hull boundaries in any component at the 0.1 

significance level.  The bottom snapshot of error vector magnitude autocorrelation 
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appears to be a combination of the preceding individual component results, which one 

might well expect.  The only structure of some note would appear to the values arcing to 

the southeast boundary from approximately (-69, 44), as this region is often within the 

field’s convex hull.  As was mentioned before, none of these max-length series is 

guaranteed to be cotemporaneous with any of its neighbors.  But assuming that all of 

them in this suspicious structure are, the volume of the resulting structure would still 

struggle to reach even 1% of the total number of cells within the field’s convex hull over 

the course of the month of April 2014 (e.g., an approximate average of 200 cells per day 

over 30 days).  As such, even if this structure does represent a potential second-order 

effect, and is not conflated with artifacts of the shifting boundary, it does not rise to a 

great level of significance. 

Alternately, this could just as easily be explained as being the high-water mark of the 

advancing and retreating southwestern bound of the convex hull.  Other than this faint 

possibility, no second order effects of note would appear to be concealed along the 

temporal axis of this spatiotemporal model’s residuals. 
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6.3 Determining Refresh-Timing 

 

Figure 6.10: Seasonality in error is exhibited by an MLP model fitted to data collected by GoMOOS buoy I 

in the Gulf of Maine over first half of 2004, 2005 

 

 Having developed a viable system for generating a composite reading-

approximation model comprised of N MLP models, some final questions remain.  Any 

model trained to mimic a dynamic system can be expected, after some length of time, to 

see its results diverge from the system it is meant to approximate. This happens because 

fitted models are trained on data entries from a specific period in time, and the further 

removed in time from that training period the model becomes, the less valid to the current 

situation are its base assumptions that were induced in the training process, and therefore 

the less accurate will its approximations become.  How long can this hybrid model be 

expected to function appropriately before needing to be refreshed?  And how can we tell 

that the refresh-time has arrived? 
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 Focusing on a single sensor-platform (GoMOOS buoy I) in the current Gulf of 

Maine testbed (Figure 6.10), we can observe that significant seasonality is exhibited in 

the readings collected at that single location by a simple MLP model trained over the first  

half of 2004.  It might therefore make sense to refresh the compound model at least every 

three months, in order to readjust its outputs to current seasonal conditions.  One might 

also observe in the figure however that even within a three-month period, extended 

periods of higher, well-correlated error still occur, suggesting that performance could be 

optimized further by an automatic refreshing regime that could detect when the current 

conditions have significantly departed from those to which the partitioned model was 

originally fitted. To accomplish this as simply as possible, we might conceive of a paired 

t-test of two populations of collected readings. 

 

6.4 Comparing Populations of Readings for Automated Refresh-Timing 

 The Gulf of Maine testbed monitoring system collects readings on an hourly 

basis.  Depending on atmospheric conditions over the monitored region, it may 

sometimes harvest 30 readings, sometimes 500, sometimes zero.  Since we cannot count 

upon gathering a reading from any given location from one hour to the next, we collect 

instead the entire population of readings gathered over the previous seven day period.  

This gives us a base set of readings that can be compared to subsequent seven-day 

periods to determine if the new population’s mean has significantly changed.  This 

suggests a moving-window approach where a window seven days long is moved along 

the timeline one hour at a time, until the significance level of the paired t-test comparing 
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the current population to the original indicates that they are sufficiently different that a 

refresh of the current models may be initiated. 

 Figure 6.11 shows a time-series of p-test values generated by a moving window 

seven days in length comparing its population of readings to the original seven day 

population when the operational system of models was put in place.  The null hypothesis 

is H0: μ_orig - μ_current = 0.  The significance threshold is set at 0.005.  When this H0 is 

rejected at that significance level, we have convincing evidence that the populations have 

diverged sufficiently that a new set of models should be trained and put in place. 

According to the figure, that point is reached after approximately 40 days.   

 A potential complication to this straightforward approach may be glimpsed in the 

figure in the sudden outcropping between days 55 and 60.  If we had chosen to retrain the 

system on day 55, only to see conditions revert to a state of “not significantly different,” 

might we not regret our decision?  What about when another outcropping occurs at day 

100?  Or 139?  Or 150?   Using a moving window might generate uncertainty regarding 

when a signal truly indicates significant divergence, or if a temporary “false” signal is 

being generated by a short-lived condition in the monitored region, such as a storm 

system passing through the Gulf of Maine.  One might wish for a system more resistant 

to such temporary anomalies to avoid model thrashing, that is refreshing the monitored 

system’s models too early or unnecessarily – especially if the refresh process is expensive 

in terms of time or stored-power in the WSN expended. 

 



 

 

169 

 

 

 

 
Figure 6.11: Series of p-values resulting from paired-t-tests over 7-day populations of collected readings 

(red line indicates significance threshold of 0.01) 

 

 

A potential solution to this concern is illustrated in Figure 6.12.  Rather than a 

moving window of constant size, the window-size is expanding instead, comparing an 

ever-growing population of new readings to the original seven-day population. As new 

data instances are added to the window’s population no comparable number of instances 

is leaving it, so the overall population’s center is much harder to shift by a sudden influx 

of anomalous newcomers.  The resulting silhouette may give the user more confidence in 

which choice to make as the decision is rendered much more binary. Given the constantly 

accumulating effect of the expanding window, it may take the signal somewhat longer to 

collect the weight of evidence needed to cause a drop beneath the threshold under this 
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approach, but once it does, it will generally have cause to stay below.  Should the signal 

manage to climb back above the threshold, it will generally not have sufficient support to 

remain above it for long.  The overall effect is to instill confidence in the user that once 

the threshold is breached, it is legitimately time for a system-refresh. Moreover, 

comparing the two figures we can see the same events of the former represented in the 

latter; for example, the peaks occurring at 40, 60 and 100 can be found in both. As time 

goes on, it becomes increasingly difficult for the signal to remain above the threshold, 

which is as it should be to encourage an appropriate refresh-rate of regional models, 

without unduly squandering resources by doing so too often. 

 

Figure 6.12: Series of p-values resulting from paired t-tests over mean-aggregated populations of collected 

readings (red line indicates significance threshold of 0.01) 
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7. --- 

CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

7.1.1 Model of Choice: MLP 

In this work we have endeavored to shed some light and gain additional 

understanding on some aspects of spatiotemporal fields, as determined by networks of 

sensor nodes embedded in natural environments. In order to do so, we have proposed the 

use of the feed-forward multilayer perceptron (MLP) artificial neural network model, as 

it meets the criteria desired for a model used within a network of independent wireless 

sensor network nodes. That is, they are capable of approximating nearly any continuous 

function; they may accept, process and output parameters of varying measures and types, 

spatial or temporal; they are adaptive and self-modifying; they may be represented as a 

finite collection of scalar values for transmission, and may be implemented by a finite 

number of relatively uncomplicated mathematics, such as multiplication, addition and the 

logistic function. These properties suggest the MLP as an appropriate model for 

applications in environments where computation platforms have access to a finite store of 

energy, communication between sensing platforms is constrained, and processing and 

storage capacity on these nodes is necessarily limited. As MLPs have been shown to be 

universal approximators, it makes them appropriate candidates for the approximation of 

spatiotemporal fields. 
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7.1.2 Research Questions 

This dissertation set out to address several research questions.  The first of these 

was, are MLP models reasonable candidates to apply to spatiotemporal applications. 

Though most indications listed above would suggest them to be so, we have achieved 

some confirmation of this through experimentation in Chapter 0, where the MLP’s ability 

to incorporate temporal as well as spatial inputs into its computations demonstrated 

comparable performance to Ordinary Kriging, a model whose spatial approximation 

performance is considered a standard of quality, but whose data-access advantages and 

computation-intensive approach is not generally feasible for a storage- and power-limited 

wireless network context. 

 The second question to be addressed was, can the partitioning of space be a 

benefit.  Several studies (Bellman 1957; Brunsdon et al. 1998; Fuentes et al. 2005) would 

suggest this to be so due to its potential to reduce Bellman’s curse of dimensionality, as 

well as to mitigate the nonstationarity inherent in complex realtime natural systems.  

Through experimentation in chapters 4 and 5, the performance of a single global MLP 

model was compared to that of a partitioned system of MLP models, yielding significant 

improvement in the resulting signal approximations of the partitioned systems within 

both a synthetic dataset, and one drawn from the Gulf of Maine ocean observing system 

maintained by the University of Maine Physical Oceanography Group.  

 Given the non-stationarity of the monitored systems, and despite the MLP’s 

native ability to adapt to changing conditions, we need to consider the possibility of 

having to reevaluate, retrain and eventually replace working models embedded in the 
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field with models better fitted to recent data and current dominant conditions in the 

monitored region.  We have explored such a potential process in chapter 6, by monitoring 

model error-distributions over time and comparing them to error-distributions of the 

freshly-trained model, we can determine a reasonable threshold after which the initiation 

of a model-refresh process may justifiably be initiated.   

 Finally, the thesis explored whether any benefits could be realized by the stacking 

of models; that is, does the system of partitioned MLP models leave a coherent field of 

second-order effects that, separated from the first-order effects, could be easily processed 

by a second model-type?  Though such a possibility might certainly exist, the use of 

expressive MLP models with sufficient degrees of freedom and representational power 

should render this unnecessary.  We found this indeed to be the case with the Gulf of 

Maine dataset, as the residual field left by the model did not contain regions of significant 

error correlation throughout the main portion of the monitored region, but only at its 

edges, where the sensing power of the instruments is limited. 

 

7.2 Future Work 

 As the field of study comprising wireless sensor networks is still in many ways in 

its infancy, standards are still being developed to appropriately evaluate network 

performance, model choice and evaluation, and system maintenance.  Certainly, the MLP 

is not the sole model capable of representing spatiotemporal fields; differential 

spatiotemporal functions have been proposed (Hofer and Frank, 2009; Weiser and Frank, 

2012), as well as fitted Fourier functional formulations (Guan et al., 2011), and either of 

these may well represent attractive alternative approaches moving forward .  In some 
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ways, a differential equation model could be preferable over neural networks; for 

example the former is not a black-box process and so its structure can more easily be 

decomposed and understood.  It remains to be seen, however, if these models can exhibit 

the same representative power, malleability and ease of use for heterogeneous input sets 

as equivalent neural network models. 

 Use of the basic k-means technique worked well, but has some limitations. In the 

absence of much similar work, however, it should provide a useful baseline performance 

that future constructions may be measured against.  The k-means approach comes with a 

set of base assumptions that will not all be met in every spatiotemporal dataset, nor were 

they all met in the one presented here.  Further, as it readily accepts a multitude of input 

parameters, problems associated with its dataset violating those base assumptions are 

likely to worsen due to Bellman’s curse of dimensionality.  In the end, for best 

performance any particular clustering mechanism will need to either (1) be particularly 

chosen for use with a dataset based on a fitness measure corresponding to the fewest 

number of important base assumptions violated; or (2) transform the dataset in order to 

bring it within closer compliance to the desired clustering technique.  Pathological cases 

can be constructed for any clustering method, illustrating that all such methods have 

weaknesses and cases for which they find themselves embarrassingly ill-suited. The “no 

free lunch” theorems of (Wolpert and Macready, 1997), stating the basic (paraphrased) 

idea that “When averaged across all possible situations, every algorithm performs equally 

well,” means that for any particular dataset, better optimization options than k-means are 

quite likely to exist, even if when compared over all datasets, k-means fares no worse 

than any of them. 
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 Even in the field of artificial neural networks, however, this study does little more 

than scratch the surface.  Due to the relative paucity of prior work in this niche, particular 

effort was made to explore a general, baseline approach which could subsequently be 

elaborated upon; with a greater variety of inputs to the model for instance, or more 

attributes taken in consideration during the k-means partitioning process.  For instance, 

although MLP are by their nature capable of continuous learning in the course of their 

operation, for simplicity’s sake none of the models in this work were allowed that 

capability; primarily because the period of time a model would require to be operational 

in the environment and receive enough new data instances to significantly modify its 

initial configuration would generally be far longer than a reasonable refresh period.   

 Other avenues of interest to be explored within the field of neural network models 

involve allowing operational models to structurally self-modify, in order to better respond 

to changes in the monitored dynamic environment (Karimi et al. 2014).  Although again 

the time period required for self-modification may be prohibitive in the natural Gulf of 

Maine testbed described in this work, either or both dynamic restructuring and 

continuous learning might be viable options in more dynamic monitored systems, or in 

systems where readings are taken with much greater frequency.  

 Much of his work was posited on the operation of a simulated wireless sensor 

network (WSN) embedded in a natural environment.  As growing numbers of actual 

WSN are embedded in such environments, work on spatial databases and data stream 

engines that process spatial-temporal readings of continuous phenomena (Whittier et al. 

2013) and discrete events (Beard et al. 2008) seem to represent an increasingly relevant 

step forward in this discipline.  As the monitoring via WSN of previously difficult or 
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otherwise impossible-to-monitor regions becomes more viable both technically and 

fiscally, investigation of novel stream query approaches and strategies to achieve real-

time spatial interpolation of space-time processes such as (Nittel et al. 2012) should 

prove extremely valuable to researchers in the wider geographic information science 

community. 

 Our experience with the standard implementation of the MLP model shows that 

spatial-temporal partitioning techniques are effective and relatively efficient to 

implement, leading to significantly improved results over single global models 

monitoring the same region over time. When many potential inputs are available to 

embedded models, careful determinations will need to be made to ensure the best return 

given available computational resources and the power expended in an energy-

constrained environment.  This work demonstrated that even with a limited range of 

potential inputs both temporal and spatial in nature, significant improvement should be 

obtainable given relatively modest power and computational expenditures suitable for a 

wireless sensing network independently embedded within a monitored natural 

environment. 
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9. --- 

APPENDIX A: MONTE CARLO BESTK MATLAB CODE 

(as adapted from (Peeples 2011)) 
  
clear; 

  
conn = database('dbName', '', ''); 
setdbprefs('DataReturnFormat','numeric') 
dbmeta = dmd(conn); 

  
BEGIT = 350; 
SERLEN = 200;    
    stopnum = 7; 
    AVGCNT = 10; 
    KLUSTMAX = 10; 
kser = zeros(BEGIT+SERLEN,1); 
for it=BEGIT:(BEGIT+SERLEN)   

    sql = ['SELECT b.x, b.y, b.u, b.v, a.u, a.v ' ... 
      'FROM orthDat a INNER JOIN orthDat b ON a.x=b.x and a.y=b.y AND 

a.impno=(b.impno-1)' ... 
      'WHERE b.impno=' num2str(it)]; 
    dd = fetch(conn, sql); 

     
% Determine delta-change in angles in dd 
    d2 = (atan2(dd(:,4), dd(:,3)) - atan2(dd(:,6), dd(:,5))) * 180/pi; 

   
    numA = [dd d2]; 
    dvec = zeros(AVGCNT,KLUSTMAX); 

  
    d = numA(:, 1:end); 

     
    %% Scale data to Z-scores 
    blnScale = true; 
    if blnScale 
        mn = mean(d,1); 
        for j=1:size(d,2) 
          d(:,j) = (d(:,j) - mn(j)) ./ std(d(:,j)); 
        end; % for j 
    end; % if blnScale 

  
    %% Generate ActualData series (dvec) 
    for i = 1:AVGCNT 
        for KCLUST = 1:KLUSTMAX 
          [cidx,cmeans3,sumd3] = kmeans(d,KCLUST, 

'dist','sqEuclidean','replicates',5); 

  
          dvec(i, KCLUST) = sum(sumd3); 
        end  % for KCLUST 
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    end  % for i 
    avgvec = mean(dvec); 

  
    %% Use averaged data-vec 
    vec = avgvec; 

  
    %% Generate MCITS series of permuted-column data sets 
    MCITS = 5;  % 50 
    pvec = zeros(MCITS,KLUSTMAX); 
    dperm = zeros(size(d)); 
for i = 1:MCITS 
 for j = 1:size(d,2)           % For each col... 
   ix = randperm(size(d,1));   % randomly permute the order of its 

contents 
   dperm(:,j) = d(ix, j);      %  so each col still has same: mean, 

stdev 
 end;  % for j 

  
      for KCLUST = 1:KLUSTMAX 
        blndone = false; 
        REPS = 2; 
        while (not (blndone)) 
            try 
              [cidx,cmeans3,sumd3] = kmeans(dperm,KCLUST, 

'dist','sqEuclidean','replicates',REPS); 
              blndone = true; 
            catch excptn 
              REPS = REPS + 10; 
              blndone = false; 
            end;  % try 
        end; % while 
        pvec(i, KCLUST) = sum(sumd3); 
      end  % for KCLUST 
    end  % for i 

  
    blnFigs = false; 
    if it == stopnum 
        it=it; 
        blnFigs = true; 
    end; 
 

    %% Determine "best" K by normalizing values, seeking a slope of -1 
    bestK = 0; 
    minx = 1; maxx = KLUSTMAX; 
    miny = min(vec);  maxy = max(vec); 
    nx = ([1:KLUSTMAX] - minx)/(maxx-minx); 
    ny = (vec - miny)/(maxy-miny); 
    m = zeros(size(ny)); 
    for i = 2:KLUSTMAX-1 
      m(i) = (ny(i-1) - ny(i+1)) / (nx(i-1) - nx(i+1));  
      if (m(i)>=-1  &&  m(i-1)<-1) 
          bestK = i; 
          break; 
      end; 
    end; 
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    kser(it) = bestK; 

     
end;  % for it 

  
close(conn); 

  
fig3 = figure(3); 
plot(BEGIT:(BEGIT+SERLEN), kser); 
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10. --- 

APPENDIX B: SYNTHETIC DATA GENERATIVE CODE 

  Set wb = ThisWorkbook 

  Set ws1 = wb.Worksheets("NatData") ' more “naturalistic” data 

   

  myfil = FreeFile 

  Open "natdata.csv" For Output As myfil 

   

  Const BEGIT = 400 

   

  For da = 1 To 21 

      For t = 0 To 72 

     

    '' READ what's on the worksheet 

    i = i + 1 

    For ro = -10 To 10 

      myrow = -ro 

      For col = -10 To 10 

        c = ws1.Range("O13").Cells(myrow, col) 

        m(ro, col) = c 

        Select Case c 

          Case 1: 

            v = Vec1(i, col, ro) 

            cat = 1 

          Case 2: 

            v = Vec2(i, col, ro) 

            cat = 2 

          Case 3: 

            v = Vec3(i, col, ro) 

            cat = 3 

          Case 4: 

            v = Vec4(i, col, ro) 

            cat = 4 

        End Select 

         

        Print #myfil, CStr(i) & "," & col & "," & myrow & "," & 

CStr(v.u) & "," & CStr(-v.v) & "," & CStr(cat) 

      Next 'col 

    Next 'ro 

         

    '' CHANGE what's on the worksheet 

    Dim n(4) As Long 

    For ro = -10 To 10 

      myrow = -ro 

      For col = -10 To 10 

       

'''        If ro = -1 And col = 5 Then Stop 

       

        n(1) = CountNeigh(m, ro, col, 1): If n(1) = 9 Then GoTo Skip 

        n(2) = CountNeigh(m, ro, col, 2): If n(2) = 9 Then GoTo Skip 

        n(3) = CountNeigh(m, ro, col, 3): If n(3) = 9 Then GoTo Skip 
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        n(4) = CountNeigh(m, ro, col, 4): If n(4) = 9 Then GoTo Skip 

         

      Dim git As Long 

      If i >= BEGIT And i < BEGIT + 150 Then 

        centerX = Round(10 + ((i - BEGIT) * -0.01)): centerY = Round(10 

+ ((i - BEGIT) * -0.2)) 

      ElseIf i < BEGIT Then 

        centerX = 10: centerY = 10 

      Else 

        centerX = 30: centerY = -30 

      End If 

       

 

      If Sqr((myrow - centerY) ^ 2 + (col - centerX) ^ 2) < 10 Then  ' 

(center: (10, 10) ) 

        Range("O13").Cells(ro, col).Value = 2 

      ElseIf Sqr((myrow + 11) ^ 2 + (col + 11) ^ 2) < 10 Then   ' 

(center: (-11, -11) ) 

        Range("O13").Cells(ro, col).Value = 1 

      ElseIf col - myrow + 10 > 0 Then 

        Range("O13").Cells(ro, col).Value = 3 

      Else 

        Range("O13").Cells(ro, col).Value = 4 

      End If 

 

Skip: 

      Next 'col 

    Next 'ro 

     

     

      Next 't 

  Next 'da 

   

Close #myfil 

 

 

Function Vec1(ByVal t, x, y, Optional MAG As Double = 10) As Vec 

'' Returns a Regime1-vector 

  Dim delt As Double 

  Dim DIR As Long, PER As Long, step As Long 

  Dim ans As Vec 

   

  rand = Fix(Rnd * 10 + 1) 

  If rand = 1 Then 

    t = t - 1 

  ElseIf rand = 10 Then 

    t = t + 1 

  End If 

  noiseu = Rnd * 5 - 2.5   ' noise signal from -2.5 ... +2.5 

  noisev = Rnd * 5 - 2.5   ' noise signal from -2.5 ... +2.5 

   

  startat = 0   

  PER = 72 

  DIR = -1 

   

  step = t Mod PER 
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  delt = 360 / PER 

  rad = (startat + (step * DIR) * delt) * WorksheetFunction.Pi / 180 

 

  ans.u = Cos(rad) * MAG + noiseu '' values perturbed by +- 5/2 

  ans.v = Sin(rad) * MAG + noisev 

  Vec1 = ans 

End Function 
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