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Today, technology developments enable inexpensive production and deployment of tiny 

sensing and computing nodes. Networked through wireless radio, such senor nodes form 

a new platform, wireless sensor networks, which provide novel ability to monitor 

spatiotemporally continuous phenomena.  By treating a wireless sensor network as a 

database system, users can pose SQL-based queries over phenomena without needing to 

program detailed sensor node operations. DBMS-internally, intelligent and energy-

efficient data collection and processing algorithms have to be implemented to support 

spatial query processing over sensor networks. This dissertation proposes spatial query 

support for two views of continuous phenomena: field-based and object-based.  

A field-based view of continuous phenomena depicts them as a value distribution 

over a geographical area. However, due to the discrete and comparatively sparse 

distribution of sensor nodes, estimation methods are necessary to generate a field-based 

query result, and it has to be computed collaboratively ‘in-the-network’ due to energy 

constraints. This dissertation proposes SWOP, an in-network algorithm using Gaussian 



Kernel estimation. The key contribution is the use of a small number of Hermite 

coefficients to approximate the Gaussian Kernel function for sub-clustered sensor nodes, 

and processes the estimation result efficiently.  

An object-based view of continuous phenomena is interested in aspects such as the 

boundary of an ‘interesting region’ (e.g. toxic plume). This dissertation presents NED, 

which provides object boundary detection in sensor networks. NED encodes partial event 

estimation results based on confidence levels into optimized, variable length messages 

exchanged locally among neighboring sensor nodes to save communication cost. 

Therefore, sensor nodes detect objects and boundaries based on moving averages to 

eliminate noise effects and enhance detection quality. Furthermore, the dissertation 

proposes the SNAKE-based approach, which uses deformable curves to track the 

spatiotemporal changes of such objects incrementally in sensor networks. In the proposed 

algorithm, only neighboring nodes exchange messages to maintain the curve structures. 

Based on in-network tracking of deformable curves, other types of spatial and 

spatiotemporal properties of objects, such as area, can be provided by the sensor network. 

The experimental results proved that our approaches are resource friendly within the 

constrained sensor networks, while providing high quality query results. 
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Chapter 1

INTRODUCTION

The advancements of device manufacture have extended our abilities to measure and record

phenomena occurring in the world, in parallel with the development of information process-

ing techniques assisting us to understand the phenomena. The continuing miniaturization

of microchips has enabled micro devices to be integrated with micro sensors, computing

units, local storage and wireless radios.

With integrated sensing, computing and communicating, these tiny devices can be in-

terconnected to form a new platform, Wireless Sensor Network (WSN). A WSN can be

distributed over a geographic area. Environmental activities can be observed, estimated

and understood at high spatial and temporal resolutions. We are particularly interested in

efficient approaches to collect and process spatial information in WSNs, such as monitoring

a continuous phenomenon within a geographic region.

First, a brief introduction to the enabling technology of WSN is necessary.
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1.1 Wireless Sensor Network

This section describes the technology aspects and gives an overview of current WSN ap-

plications.

1.1.1 Sensor, Sensor Node and Networked Sensor Nodes

Recent developments in micro-scale sensor technologies have dramatically decreased the

size of sensors. The miniaturization of sensors brings several advantages such as increased

portability, low-power operation, and improved selectivity. At the University of Maine,

research programs are underway to develop novel sensors in the Laboratory for Surface

Science and Technology (LASST). In LASST, new sensing materials, engineering and fab-

rication technologies are being explored to develop advanced tiny sensors. For example, the

project led by C. Wheeler integrates micro-scale hotplates with thinfilm sensors to improve

the selectivity and sensitivity of sensors to toxic gases [WTW+01].

Tiny devices consisting of micro-scale sensors, wireless communication and computing

units are known as sensor nodes. Among today’s available general sensor node platforms,

the MICA series and Telos series are both designed by the University of California at

Berkeley. Figure 1.1 shows two sensor node models of the MICA series, MICA2 and MI-

CADOT manufactured by Crossbow. Both platforms originated in the Smart Dust project
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Figure 1.1. MICA2 and MICADOT

[WLLP01], which introduced the first prototype, the “COTS mote” [Hol00]. Later com-

mercially available sensor node platforms have brought more advanced features. For ex-

ample, the Telos motes provide the hardware write protection to fight against the malicious

code infringement in the wirelessly programmable environment [PSC05]. The Sun Small

Programmable Object Technology (SPOT), provided by SUN, supports the Java 2 Micro

Edition Virtual Machine (J2ME VM).

The architecture of general sensor nodes mainly comprises three parts, the computing

and storage unit, the sensor unit and the wireless communication unit. Via the attached sen-

sors, sensor nodes collect readings about the local phenomena such as the environmental

temperature or the concentration of a toxic chemical [JMGRP09]. The on-board comput-

ing and storage unit enables sensor nodes to run customized program codes and process the

sensor data. Through the integrated radio devices, sensor nodes are able to communicate
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and collaborate with each other to monitor complex environmental activities. The novel

features allow a WSN to run with little human maintenance. Compared to traditional sens-

ing platforms, WSNs provide a higher resolution, more precise, faster and more economical

solution to observe the physical world at a novel scale in real time.

1.1.2 WSN Applications

In this dissertation, we focus on geo-sensor networks (i.e., WSNs that are generally used to

automatically monitor environmental activities). Traditionally, investigators have used ex-

pensive, large-sized sensors connected through cables for power and communication, such

as ocean buoys or windmills. The sample rate (over the temporal space) and density (over

the geo-graphical space) usually is low due to technical and economical difficulties (e.g.,

network deployment and connectivity). For some applications, the traditional infrastruc-

ture is sufficient. For example, weather stations are spread out miles away from each other;

and weather data are often collected hourly. WSNs, however, enable novel applications,

which need highly detailed and real-time measurements from the physical world.

Seabirds are an interesting research topic to marine ornithologists. Seabird colonies,

however, are sensitive to human disturbances. Even a 15-minute visit to a cormorant colony

can cause 15% mortality in eggs and chicks in a breeding year [And95]. The human distur-

bance is more serious for a small island environment, since some seabirds cannot emigrate

to other lands. WSNs provide ornithologists a less disruptive way to observe the seabird

4



habitat. In 2002, an interdisciplinary group consisting of computer scientists, computer

engineers and ornithologists conducted a survey on the Great Duck Island, a 237 acre is-

land located south of Mount Desert Island in Maine [MCP+02]. A set of specific sensors,

including pressure sensors, infrared sensors, and highly sensitive humidity sensors, were

attached to MICA nodes. Without significantly changing the hardware design of MICA

nodes, the survey provided high quality data and produced a new habitat monitoring kit for

ornithologists.

Novel WSNs are best used to monitor phenomena, which cannot be observed by using

traditional sensing platforms. For example, WSN make it possible to observe the micro-

climate of the plants in an orchard, vineyard or other precision agriculture areas, which

cannot be observed by remote satellites. Redwood trees are known to be the largest and

oldest trees in the world. Some trees are more than 360 feet in height. As one can image,

the microclimate varies significantly over the height of a redwood tree and has substan-

tial spatiotemporal variations. Humidity fronts also move along the giant trees as the trees

move water from the earth into the air. Before the availability of WSN, botanists had to

climb a giant redwood tree to attach a winch at the top, and vertically haul an instrument

set connected through a long cable to a battery powered data logger. In such a way, it is

almost impossible to collect detailed information about the variations of the microclimate

along and around the tree. In 2004, a test application used MICA2 and MICA2DOT nodes

to record the 44-day life of a 70-meter tall redwood tree [TPS+05]. The sensor data were
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collected at a remarkably high sampling rate at every 5 minutes and a high density of 2

meters in space, which successfully illustrated a high-resolution view of the microclimate

over the tree. Although WSNs can provide higher resolution than traditional sensing plat-

forms, the sensed samples are still discrete points, and need intelligent data collection and

processing mechanisms to compile a smooth view of the microclimate around the tree or

in specific, interesting areas of the microclimate.

Monitoring and controlling systems play one of the most important roles in agricul-

ture and industry. WSNs can run over vineyards and provide real-time monitoring results

of temperature, soil humidity, sunlight and fertilizer [BBB04]. Combined with actuator

nodes, an automatically monitored vineyard can use local heaters, defoggers, or watering

to optimize the growing conditions for grapes. WSNs enable novel levels of precision

agriculture today.

Sensor nodes can be used to observe the contamination in wide-area environments

[JMGRP09]. In this type of application, users are mostly interested in the contaminated

regions that pose a health hazard to humans, for example, the chemical contamination in

a battlefield with regard to chemical warfare agents. In most cases, the boundary of con-

taminated regions is sufficient to describe the regions. However, the information about

contamination has to be computed and available in real-time to notify humans located in

the area. We can use a WSN to monitor such an environment, and detect the boundary of
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contaminated regions. A WSN is able to provide real-time reports about the spatiotempo-

ral changes of the contaminated regions, which can hardly be done by traditional sensing

platforms.

WSNs are used to collect real-time sensor readings from the physical world. The real-

time sensor readings provide a new perspective to model and understand environmental ac-

tivities. If the Moore theorem remains true, sensor nodes will continue to become smaller,

more powerful, and more economical. The WSN solution will be more economical and

more efficient in the near future.

1.2 Modeling WSN

Before presenting our research questions, we present a conceptual model with regard to

WSNs, their deployment, the underlying phenomena to be monitored and the collected

sensor readings.

1.2.1 Phenomenon

A phenomenon is “a particular (kind of) fact, occurrence, or change as perceived through

the senses or known intellectually” as defined by the online Oxford English Dictionary

[Oxf08]. In environmental monitoring, phenomena are the subject of observation. A phe-

nomenon is a material thing occurring in the physical world. Examples of phenomenon are

temperature, wind-speed, or the concentration of a gas pollutant in the air. As illustrated by
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Figure 1.2. A model of wireless sensor networks
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Figure 1.2, a WSN measures one or more underlying phenomena through the distributed

sensors. A conceptual model is needed to interpret sensor readings. Different models,

however, may interpret the same phenomenon in different ways.

1.2.2 Monitored Region

A monitored region, M, is a subregion of the geographical space. Within the boundary

of M, a WSN is installed to observe the phenomena inside by attached sensors. In this

dissertation, we assume thatM is a single contiguous 2D Euclidian space defined by,

M ⊂ R2. (1.1)

1.2.3 Sensor Reading

Sensors return local readings through physical or chemical interactions with the underly-

ing phenomena. A sensor node can measure local phenomenon properties directly through

attached sensors. For example, temperature sensors can measure the environmental tem-

perature. Through the readings from on-board sensors, a sensor node can also process

indirect information. For example, the battery voltage readings can provide indirect tem-

perature estimation results, since the battery voltage and the environmental temperature are

highly correlated [DGM+05]. Some sensors can detect phenomena far away from where

the sensors are located. For example, a camera can return 2D photographic readings about
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a faraway place through a telephoto lens. Most tiny sensors, however, only produce read-

ings about the local phenomenon properties. In this dissertation, we use si to identify

an individual sensor node and its spatial location. In current WSNs, sensor readings are

geo-referenced and time-stamped to indicate where and when the readings are collected.

1.3 Field-based and Object-based Models

We now need to clarify several basic concepts. In this dissertation, we use the term “space”

to refer to “geographic space”. Spatial data represent the structure and properties of phe-

nomena over locations at the Earth’s surface [WD04]. Since sensor nodes are embedded in

the physical world and collect geo-referenced sensor readings, WSNs provide spatial and

spatiotemporal data directly.

A fundamental question of this dissertation is how we model and represent the spatial

information of an underlying phenomenon. There are two general and distinct types of

models, field-based and object-based models [WD04].

1.3.1 Field

A field-based model views an underlying phenomenon as a set of locations with properties.

Typically, a field has no boundary. For example, one can imagine the temperature field over

all geographic locations in the State of Maine, or the University of Maine Campus. In a

field-based model, a phenomenon is formalized as a function from a spatial framework to
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an attribute domain [WD04]. The attribute domain can consist of simple labels or ordered

labels (i.e., nominal attribute and ordinal attribute). In this dissertation, we focus on the

attribute domain consisting of quantities on an interval attribute or ratio attribute scale.

Consequently, in this dissertation, the attribute domain is represented by real numbers.

Formally, given a geographical space S and a class of scalar values V , a field is a

function Y whose domain is S and codomain is V [DNW05]. Although the geographical

space is a 3D space, we restrict S as a 2D space here.

Definition 1 A field is defined as follows.

Y : R2 → R. (1.2)

The function Y() can be continuous or discontinuous. In this dissertation, we are only

interested in spatiotemporally continuous phenomena. For many practical reasons, we need

the phenomena to be smooth. More specifically, our approaches target phenomena that can

be represented by fields with first derivatives existing everywhere.

In this dissertation, for each point p inM, we define the field Y()’s value as Y(p). Y(p)

is a 1D scalar value in V . Y(si) is the field value at the node si’s location, and also indicates

the accurate and noise-free raw sensor reading at si.

1.3.2 Object

In an object-based model, the underlying phenomena are viewed as collections of objects

with properties. Different from fields, an object usually covers a discrete region in space,
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and has a closed boundary. An object must be identifiable, relevant (be of interest) and

describable (have properties) [WD04]. The object boundary provides important geomet-

ric information to describe the object. Non-spatial properties (such as name, identifier or

owner) can be “virtually” attached to an object. In a field-based model, the spatial frame-

work is a fixed reference. A field measures the distribution in attribute values with respect

to the reference. In an object-based model, the spatial framework is not a distinguished

reference. The geo-reference is provided by objects themselves (e.g., via the object bound-

aries) [WD04].

There are many areas in spatial information science, in which fields and objects are

used as different representations for the same phenomenon. For example, a field represen-

tation is used as a basis to extract “features” (i.e., objects). Feature extraction and change

detection are established research domains to automatically extract objects, especially from

remote sensing images. Similarly, we can use WSNs to observe and monitor a continuous

phenomenon,(e.g., the NO2 distribution over the coastal region of Downeast Maine), but

be interested in the regions of dangerous levels, (e.g., a toxic NO2 cloud). These regions

and their boundaries can be extracted, and represented as objects. Thus, a second type

of query for continuous phenomena is established in extracting and tracking boundaries

representing as objects.

12



2D Object

We model spatial objects as 2D objects in this dissertation, since the monitored region nor-

mally is 2D. We assume that a 2D object can be identified based on user defined threshold

values, such as a threshold value = toxic level for human.

Definition 2 For a given point, p, we define a 2D object,O(), as a local object status given

by a user-defined threshold, T .

O(p) =





1, if Y(p) > T

0, else

(1.3)

Equation 1.3 provides a simple but useful model to derive objects based on quantitative

sensor readings. If Y() represents temperature, we can use O() based on T = 200◦C to

define a fire. Equation 1.3 can be extended to derive complex objects. For example, a cozy

place, Cozy(), indicates where the temperature is between 20◦C and 25◦C. Cozy() can be

defined as, Cozy(p) = AND(O1(p), NOT (O2(p))). Here O1 is defined by the threshold,

T1 = 20◦C; O2 is defined by T2 = 25◦C.

Equation 1.3 provides the definition of local object status at individual spatial points. To

understand the spatial properties of 2D objects, we need to find the 2D regions covered by

the spatial objects. The boundary of a 2D object separates the object region from the non-

object region. The object boundary provides important geometric information about the

object, such as its shape, size and location. For example, based on the field representation
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Figure 1.3. A phenomenon and the boundary of a 2D object
(a) the field representation of the phenomenon, and (b) the boundary based on T = 0.5
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shown in Figure 1.3(a), the region covered by the 2D object based on T = 0.5 is inside

the boundary as shown by Figure 1.3(b). Since the underlying phenomenon is spatially

continuous, the threshold, T , provides a natural choice to define the object boundary.

Definition 3 For a given point, p, the boundary status, B(), of an objectO() defined by the

threshold T , is,

B(p) =





1, if Y(p) = T

0, else

(1.4)

Both Equation 1.3 and Equation 1.4 describe 2D objects in a field-based way [Gal01].

Based on Equation 1.3 and Equation 1.4, distributed sensor nodes can generate point reports

about the 2D objects and object boundaries. Tracking 2D objects temporally provides the

foundation to extract spatiotemporal properties of 2D objects.

Spatiotemporal Qualitative Changes

Abstract spatiotemporal properties of 2D objects are useful to describe 2D objects’ change

in time and space. Several properties are especially useful in qualitative approaches.

A qualitative approach models 2D objects as two types of entities, continuants and

occurrents. Continuant entities endure over time. In this dissertation, continuants are 2D

spatial objects, such as boundaries, holes, and regions. Occurrent entities “comprise what

are variously called events, processes, happenings” [Sim87], such as splitting and merging

events.
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By combining continuants with occurrents, we can present the qualitative changes of

2D objects within the spatiotemporal space. According to A. Galton, spatiotemporal quali-

tative changes can be classified into eight different classes, namely Changes in dimension,

Changes in connectivity, Changes in location, Changes in orientation, Changes in area

(size), Changes in shape, Changes in posture, and Changes in non-geometric spatial at-

tributes [Gal00]. Changes in dimension and connectivity are purely topological changes.

Changes in location, orientation and area changes are metrical changes. In general, lo-

cation changes describe motion in spatiotemporal spaces. Changes in orientation involve

turning or rotation. Changes in shape describe the temporal shape change of a spatial ob-

ject. Changes in posture are complex changes involving all of the above changes. Changes

in non-geometric spatial attributes describe the spatiotemporal changes that are not only

based on the geometric representation. For example, the “front” and “back” notions about

some objects, such as machines, need more information than only geometric information.

Let’s take the wildfires that occurred in Southern California in October 2007 as an

example of qualitative spatiotemporal changes. We consider the individual wildfires as

objects and observe their qualitative changes. The Witch Fire, the largest wild fire, started in

Witch Creek Canyon near Santa Ysabel and spread quickly to Ramona, Rancho Bernardo,

Poway and Escondido. The Poomacha Fire began on the La Jolla Indian Reservation,

and established itself on the Palomar Mountain. On October 24, the Witch Fire and the

Poomacha Fire merged and entered the Agua Tibia Wilderness. On October 31, the Witch
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Fire was declared fully contained. The above description of wildfires only reports the

qualitative spatiotemporal properties, such as the area, location, and topology information,

about the 2D objects.

Sensor nodes have been deployed to detect the toxic contamination in wide-area en-

vironments [JMGRP09]. Similarly to the wildfire example, we can use WSNs to identify

toxic clouds as objects from the contaminated region, and track the spatiotemporal move-

ments of the clouds. By tracking 2D objects, a WSN is able to monitor abstract spatiotem-

poral changes of 2D objects. An abstract spatiotemporal change, such as “a toxic cloud

is splitting at location X”, can usually be transmitted in a more compact form rather than

the temperature values of all nodes. Furthermore, the spatial and spatiotemporal qualitative

information is more helpful for people to understand environmental activities than some

quantitative spatial data.

1.4 Intelligent Data Collection using WSN

With integrated wireless communication, tiny sensor nodes provide attractive features, such

as the high portability and autonomy. These advantages, however, also bring new chal-

lenges. Our objective is to design resource-efficient and robust intelligent data collection

strategies using WSN. Therefore, we need to assess the constraints of WSN first and how

to design our approaches efficiently.
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1.4.1 Constraints of WSN

WSNs are a constrained environment with the following characteristics [CES04, ASSC02].

Limited energy sources Today’s sensor nodes are powered by batteries. A WSN needs

to run with little human maintenance and interference. It is often inconvenient and

uneconomical to replace or recharge a sensor node’s battery in practice. Thus, min-

imizing the energy consumption of sensor nodes is a main consideration in current

research.

Limited processing capability and memory space Microprocessors, or Micro Process-

ing Units (MPU), on sensor nodes are designed to run energy-efficiently. A typical

MPU on sensor nodes needs around one milliwatt while running at about 10 MHz

today. An MPU can switch into the sleep mode to preserve more energy, but at the

expense of decreased computational power. The memory space of microprocessors is

also limited. Typically, only a few Kbytes RAM and a few Mbytes ROM are avail-

able on a sensor node. Due to the power and size limitation, both processing and

memory capabilities of sensor nodes are fairly limited. Software programs running

on sensor nodes have to run within the constraints of the MPU and limited memory

space.

Constrained wireless communication Compared with current wired Ethernets, the wire-

less communication of WSN is deliberately simple and has a compact protocol stack
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to reduce the overhead. For example, the bandwidth over the data link layer of

MICA2 nodes is around 56 Kbps under the best condition. The communication range

of wireless radios on sensor nodes is also limited, typically to tens of meters. Fur-

thermore, the energy consumption of wireless radios increases rapidly with respect to

the target distance and transmitted message size [Ett98]. For example, broadcasting

one bit of data on a Berkeley MICA2 node consumes the same amount of energy as

computing 800 or more instructions on-board. To cover a large area, a WSN has to

relay messages by different sensor nodes. The wireless communication consumption

significantly influences the WSN performance. Sensor data need to be collected in-

telligently. The in-network data processing helps to understand the collected data as

well as to minimize the overall communication in the entire network. The wireless

communication also faces more difficulties, such as the higher packet loss rate, com-

pared with wired communication connections. Due to the unavoidable hop-by-hop

communication, the wireless communication contention is also a challenge to WSN.

Failure prone nature WSNs are volatile in many ways. The first volatility is the im-

precise and inaccurate sensor readings. Information processing techniques must be

able to handle faulty and noisy sensor readings in a WSN. Due to the limited bat-

tery life, uneven communication load and unpredictable environmental factors, some

sensor nodes may stop functioning while other nodes are still alive. To avoid a crash

of the whole system, WSNs need to automatically recover from node failures and
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adapt their processing, which brings challenges to message routing and information

processing algorithms. The wireless communication is not as reliable as the cur-

rent wired communication due to the nature of wireless channels. For example, the

MICA2 nodes are using the 900 MHz band that conflicts with some cordless phones.

Handling the package loss and increasing the information processing quality is an

important issue for WSNs.

1.4.2 Sensor Network Database Management System

Although programming languages [GLB+03], operating systems [LLWC03, HKS+05] and

high-level programming modules [WM04] for WSNs are available, application program-

ming for WSNs is highly tedious, and needs computer science expertise, due to the con-

straints and highly parallel nature of WSN. Early WSN applications simply collected raw

sensor readings to a central base station as a proof of concept [MCP+02]. This simple

centralized approach is not feasible since the expensive communication drains the battery

energy fast, and shortens a WSN’s lifetime to a small fraction of the potential lifetime. A

WSN can be viewed as a special DataBase Management System (DBMS). We name this

special DBMS as Sensor network Database Management System (SDMS). From the per-

spective of SDMS, a WSN is a virtually single, but in reality a distributed database system.

Each sensor node acts as a mini database system, which participates in the distributed query

execution. The programming complexity of WSN applications is greatly reduced for the
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user by SDMSs. Users can use the standard declarative query language, which is the Struc-

tured Query Language (SQL), to interact with SDMSs without knowing how to operate

sensor nodes, route query results or optimize the query execution.

Today several SDMSs prototypes are already available, such as TinyDB [MFHH05,

HHMS03, MFHH02] and Cougar [BGS01, DGR+03, BGS00]. As said, the important idea

of using SDBMs for intelligent data collection is the simple user interface in the form of

declarative SQL queries. For example, a user can pose a query

“SELECT light, temp FROM sensors WHERE light > 400 AND node.id = 43 SAM-

PLE PERIOD = 1024ms LIFETIME = 30days”

in TinyDB [MFHH05]. This SQL statement requests the light and temperature readings of

the No.43 sensor node only when the light reading is above 400. The predicate, “SAMPLE

PERIOD”, defines the sampling rate, while “LIFETIME” indicates how long the query is

active in the SDMS. TinyDB has been applied in the redwood tree project [TPS+05].

Albeit providing a simplified user interface, SDMSs are still responsible to generate and

optimize the code to actually execute the data collection and processing in WSNs. Users,

on the other hand, are shielded from the programming details. A paradigm to generate

the query execution and optimize the resource consumption of WSN is the in-network

aggregation query processing. The Tiny AGgregation service (TAG) is a widely applied

framework for processing aggregation queries in SDMSs [MFHH02]. Based on a tree-

structured routing protocol [AWSBL99, WTC03], all sensor nodes are connected to the
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Figure 1.4. Processing a MAX query in TAG

root node in TAG. In this network topology, the root node is usually connected to the base

station and works as a gateway to the network. The time is divided in to epochs, and

parent-children nodes are synchronized through epochs. Each node is allowed to send a

single message during an epoch. For example, in Figure 1.4, the circles indicate the sensor

nodes, and the numbers inside circles are local sensor readings. A node aggregates the

partial results from its children, computes a new partial result by comparing the locally

sensed information with the partial results from the children nodes, and transmits the new

partial result to its parent in the next epoch. For example, to process a query that reports

the maximum value collected in the WSN, a node computes the local maximal value based

on its local sensor readings and the partial results from its children, and sends the local

partial maximal result to its parent node, as illustrated by Figure 1.4. In TAG, all nodes

participate in the aggregation processing. The message size can be kept constant during
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the processing. It is provable that the wireless consumption is minimal in this distributed

aggregation processing.

By using SDMSs, users interact with WSNs through standard declarative query lan-

guages. Sensor nodes participate in the query execution in SDMSs through efficient query

processing algorithms to reduce the wireless consumption.

1.5 Research Challenges

Today’s SDMSs are still in their infancy. In this dissertation, we focus on the SDMS

support of spatial queries for continuous phenomena in environmental applications. To un-

derstand the phenomenon monitored by a WSN, we need to process readings from different

sensor nodes and find the relationships among the nodal sensor readings to represent the

underlying phenomenon. Collecting raw sensor readings and analyzing them at a central

base station can be implemented. However, collecting raw sensor readings from a large

number of nodes at a high rate depletes the network resources quickly, especially in the

multi-hop communication topology. The challenge is to process spatial queries and collect

information within a WSN as much as possible, and find distributed algorithms to support

our approaches.

Although field-based and object-based models are represented differently, both types

of models are necessary and have their own application areas. “The field-based and object-

based views of the world are not separate monolithic systems but intimately related by an
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intricate network of interconnections [Gal03]”. An SDMS should support field-based as

well as object-based models, and act differently in different models.

1.5.1 Querying Phenomena as Fields

Due to the fact of discrete node distribution in WSNs and the fact of sensing noise, an

SDMS can only estimate an observed field, and provide an estimated function, Ŷ (), to

users. The first challenge is that only nodal sensor readings are available in WSNs, but

we are interested in the field over continuous subregions. Thus, additional estimation tech-

niques are necessary to analyze further spatial information and relationships from sensor

readings.

In this dissertation, we name this type of query “quantitative spatial window queries”.

A quantitative spatial window query returns a fine-grained, but estimated value distribution

of a phenomenon within a user-specified geo-referenced rectangular query region. Among

different ways to represent a phenomenon’s value distribution, the image-based represen-

tation is the most general and intuitive, and can be used to represent such query results.

We distinguish two types of spatial queries that use estimation: spatial point queries

and spatial window queries. A spatial point query requests the estimated value of any

geographic point within the monitored region. In a simple case, this point location can

overlap with a sensor node location, and the SDMS returns the sensor readings collected by

the node. In most cases, the requested point value does not coincide with any sensor node
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location; the SDMS has to estimate the value based on readings from several sensor nodes

surrounding the requested point. In the case of spatial window queries, an estimation of

all points located within a user specified rectangular region is requested. Thus, the SDMS

needs to return a rectangle-shaped image of the underlying phenomenon distribution within

the query region at a user-specified resolution. By plotting the image results over time, the

SDMS can provide a video-like representation about the spatiotemporal distribution of the

underlying phenomenon.

Traditional spatial DBMSs process spatial window queries on stored data. In WSNs,

however, the sensor data are acquired on demand from the sensors; the estimation results

should be computed in real time. Due to the discrete node distribution in WSNs, sensor

readings are point samples with regard to the underlying phenomenon. We need to exe-

cute additional estimation techniques to interpolate phenomenon values in-between sensor

nodes. The challenge is to provide an energy-efficient, collaborative algorithm for the field

estimation. The algorithm needs to run in the collaboration between sensor nodes, by ex-

ploiting the fact that the co-located values are spatially related.
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1.5.2 Querying Phenomena as Objects

The second perspective focuses on continuous phenomena from an object perspective.

Here, we are interested in the spatial properties of objects, such as the boundary of a sub-

region of the continuous phenomena with similar characteristics (e.g., a wildfire region).

Efficient algorithms are needed to detect and track the objects.

Objects in an object-based model must be identifiable and describable [WD04]. To ap-

ply an object-based model, an SDMS needs to identify objects from raw sensor readings.

Since objects are often derived entities, they can be identified in different ways. For exam-

ple in an SDMS, an object can be found using the combined results from different types

of sensor readings [AML05]. An abstract object, fire, can be identified if the temperature

reading is over 100◦C and the humidity reading is below 10%. Similarly, the fire could be

identified based on the temperature reading alone, however, using different thresholds.

To understand the evolution of a complex object such as wildfires, we need to extract the

boundary first, and provide further processing based on the boundary, such as the boundary

tracking. A quantitative result from a field-based model, however, can hardly provide such

abstract and complex spatial information. Furthermore, focusing on the object boundary

can provide the opportunity to save energy resources.

The challenge here is that a WSN can only provide geo-referenced scalar values of un-

derlying phenomenon. We need to provide efficient approaches to identify 2D objects and

object boundaries in WSNs based on local sensor readings. Furthermore, a WSN needs to
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efficiently track 2D objects over time, based on which an SDMS can extract spatiotemporal

properties about the objects.

Foremost, users are interested in global spatial information, whereas constrained WSNs

favor localized information processing. An efficient approach needs to return high-quality

results about the underlying phenomena while still processing the information locally within

a WSN. Thus, we seek for distributed approaches to process spatial information and queries

in SDMSs. We also need collaborative algorithms of estimation techniques and informa-

tion extraction techniques to generate spatial information and query results from raw sensor

readings within a WSN. Our approaches must meet the resource requirements of the con-

strained environment. In general, our approaches need to keep a graceful balance between

the WSN resource consumption and the result quality.

1.6 Contributions

This dissertation presents several approaches to process spatial queries and information

over underlying phenomena in WSNs. We developed efficient approaches for both the

field-based and object-based models.

1.6.1 SWOP

In a field-based model, an SDMS needs to return quantitative values to represent the es-

timated field function. We provide an efficient approach, SWOP, to support quantitative
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spatial window queries. The SWOP approach returns the estimated spatial distribution of

an underlying phenomenon within a continuous spatial window region at a user-specified

resolution by using the Gaussian Kernel estimation. Here the window region is a user-

defined rectangle. The SWOP approach first groups sensor nodes into sub-clusters accord-

ing to node locations. Next, the SWOP approach transforms Gaussian weighted readings

into the Hermite series for each cluster representing the detailed information about local

sensor nodes. In this way, a large set of readings are represented by a small number of

Hermite coefficients. The SWOP approach reduces the communication cost for node IDs

and individual sensor readings. The total amount of data transmitted inside the network is

reduced by logarithmic order, while the computation cost on individual nodes is kept con-

stant. A microserver deployed in the network with more powerful resources evaluates the

transformed data set to generate the final spatial window query result. Because of the fast

convergence speed of the Hermite expansion, the estimation difference between SWOP and

the traditional Gaussian Kernel estimation is small. As shown by our experimental results,

the mean squared errors between the results of SWOP and the centralized approaches are as

small as 10−4. We have run SWOP over multiple data sets (real and synthetic data sets), and

the experimental results demonstrate that SWOP reduces the communication cost by up to

90% compared with transmitting raw sensor readings to a central base station performing

the “out of the network” estimation.
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1.6.2 NED

In an object-based model, the object boundary provides useful spatial information to iden-

tify and track objects from underlying phenomena. The object boundary usually covers

a small subregion of the monitored region. A WSN needs less resources by reporting an

object boundary than by reporting an overall image-like result about the monitored region.

To detect the local object boundary, a sensor node needs to encode local estimation results

into digital messages and exchange messages among neighboring nodes. We propose NED,

a distributed approach to detect object and object boundary in WSN. The NED approach

uses a variable length encoding mechanism for the object and object boundaries detection

results to reduce the communication cost. If a node detects a significant local object (or

non-object) reading, the node uses a 2-bit message to encode the local estimation result. If

a node is nearby the object boundary, the node tends to detect insignificant object readings

and make erroneous estimation results. The NED approach allows the node with low con-

fidence about the local estimation results to encode the local results as 33-bit messages. In

this way, the nodes nearby an object boundary make high quality estimation results about

the local object status. Based on the statistical models, the NED approach returns high-

quality object detection results while reducing the wireless communication consumption.

The NED approach provides the constrained WSN a flexible, efficient and high-quality ap-

proach for the in-network object and object-boundary detection. Our experimental results

illustrate that NED’s communication cost varies relatively to different sensing noise levels.
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Our experiments show that the NED approach can provide the same quality of object and

object boundary detection as achieved by moving-mean-based approaches. Also, the NED

approach only uses the similar communication cost as required by majority-voting-based

approaches.

1.6.3 Tracking Deformable Curves in WSN

To understand the spatiotemporal properties of a 2D object, we need to use a closed 2D

curve to represent the object. In the proposed approach, we assume that an initial bound-

ary is given to define the object, and we observe the deformation of that closed curve to

represent and track the underlying 2D object. Sensor nodes only track individual vertices

on the closed curve without knowing the global detailed geometric information about the

objects. Messages are exchanged locally to deform the tracking curves. By tracking de-

formable curves, a WSN is able to produce spatiotemporal properties about a 2D object

by the aggregated information. In this way, an SDMS does not need to return the detailed

geometric representation of a 2D object, and saves energy. For example, we can use the

aggregated information to represent the area and area change of a 2D object. In our ap-

proach, the deformable curves are breakable. Hence, the representative curves adapt their

shapes to track multiple objects, and the topological changes involved. Compared to trans-

mitting boundary points or boundary geometry from a WSN, our approach requires about

25% communication cost to maintain the tracking curve. Our simulation results prove that
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our approach further reduces the communication consumption by providing abstract spa-

tiotemporal properties about 2D objects. Reporting the spatiotemporal properties through

the in-network aggregation needs even less communication cost than the tracking curve

maintenance requires.

Our approaches are in-network distributed approaches in which sensor nodes process

information locally and exchange information in a neighboring region. Our approaches

require much smaller amount of wireless communication cost than transmitting raw sensor

readings from a WSN. The difference between traditional centralized approaches and our

approaches, on the other hand, is small. Therefore, our approaches can provide high quality

query results.

1.7 Intended Audience

This dissertation is intended for researchers and developers interested in the design of WSN

to model underlying phenomena and use SDMSs to process spatial and spatiotemporal in-

formation. The intended audience comprises designers and practitioners from the fields of

computer science, DBMS, WSN and GIS. This dissertation provides approaches to extract

and represent spatial and spatiotemporal information from WSN. This dissertation should

be particularly interesting to the designers of next-generation spatial software who plan to

develop models and approaches to support real-time observations of the physical world.
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1.8 Organization of Remaining Chapters

The following parts of this dissertation start with a background review in Chapter 2, which

gives an overview on the state of art about the research related to spatial query processing

in SDMSs. In Chapter 3, we present our approach to support spatial window queries in

SDMSs. An efficient approach to extract object boundaries is explained and discussed

in Chapter 4. Our approach on tracking deformable 2D objects is described in Chapter

5. Chapter 6 presents and analyzes our experiment results. We make the conclusion and

propose future plans in Chapter 7.
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Chapter 2

BACKGROUND AND RELATED WORK

Since the wireless communication is the most significant energy drain in WSNs, the main

research objectives in SDMSs focus on minimizing the communication. The network in-

frastructure of WSN is an important component to support the distributed query and infor-

mation processing in SDMSs. Similar to the Internet, today’s WSN is based on a simplified

OSI reference model [Zim88]. IEEE 802.15.4 and ZigBee provide the standard protocols

for the hardware-dependent layers [IEE06, GNC+01, Zig06, Kin04].The network, transport

and application layers are often collapsed into one layer in current WSNs to optimize in-

network processing as well as communication. A simplified layer model can help WSNs to

avoid excessive headers added through different layers. Combining routing protocols with

the application-level query processing in SDMSs can help to avoid unnecessary communi-

cation cost and achieve high efficiency. Thus, communication strategies and information
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processing strategies need to be co-optimized. Many routing protocols are designed for

particular applications and network topologies [ASSC02, YF04, KK05].

Designing novel communication protocols is beyond the scope of this dissertation. Al-

though we need to select a matching communication protocol to reduce the wireless com-

munication consumption, our focus is on designing an efficient data collection and process-

ing technique in SDMSs to provide high quality results to users. In the remaining parts of

this chapter, we will explore various intelligent spatial data collection and information pro-

cessing approaches. We will analyze the energy cost and result quality of these approaches.

2.1 Processing Quantitative Spatial Window Queries

In the remainder of this dissertation, the term “quantitative spatial window queries over

underlying phenomena” is shortened to the term spatial window queries. As mentioned

before, quantitative queries with regard to continuous phenomena have the objective to

estimate the value distribution of the spatial field in the region specified by the query pred-

icate, usually a window or a point. The following estimation methods have so far been

applied to answer quantitative spatial queries in SDMSs. We will analyze the underlying

estimation methods, the estimation quality of query results and the execution cost, espe-

cially the communication cost, of the distributed implementations.
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Figure 2.1. An example of a Voronoi diagram

2.1.1 Using Voronoi Diagrams and TIN

Among various estimation techniques, Voronoi-diagram-based techniques are one of the

simplest estimation models, and provide a rather coarse estimation result. Nevertheless, this

method takes the spatial distribution of available sensor nodes into account when estimating

a spatial point or window query. A Voronoi diagram partitions the monitored region into

a set of “Voronoi cells” based on the location of sensor nodes, as shown by Figure 2.1.

The phenomenon values in a cell are represented by the sensor reading at the cell center.

For example, a spatial average query result can be represented as a weighted sum of sensor

readings according to the size of Voronoi cells [GHS03, SS04].
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By using this estimation technique to answer a spatial window query, an SDMS needs

to build the Voronoi diagram and find the Voronoi cells that intersect with the spatial win-

dow region. Traditionally, a Voronoi diagram is found through the sweeping algorithm

based on the centralized availability of a set of point locations [BKOS00]. This approach

works well when sensor nodes are static and no sensor readings are lost. Sharifzadeh et

al. proposed a distributed algorithm to build the Voronoi diagram [SS04]. The basic idea

of this distributed algorithm is to let a sensor node begin the Voronoi diagram construction

with a partial Voronoi diagram based on the location of neighboring nodes. By exchanging

the locations of newly found nearby nodes, the sensor node can polish the partial diagram

to integrate the new point locations. Through iterations of message exchanging, distributed

sensor nodes can find the final Voronoi diagram in a WSN. Each sensor node can find the

shape of its local Voronoi cell. Harrington et al. improved this distributed Voronoi dia-

gram construction algorithm by enhancing the message exchange procedure [HH05]. A

distributed Voronoi-diagram construction algorithm is useful for mobile WSNs, but needs

additional communication cost.

Suppose n (n > 3) sensor nodes are located within the window region. The upper

bound of the number of edges to represent the Voronoi diagram is 3n − 6, and the lower

bound is n − 1 [AK00]. To estimate a spatial window query result using the Voronoi dia-

gram, an SDMS needs a linear amount of communication cost with respect to the number

of sensor nodes involved. Apparently, without further optimization, the cost of processing
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Figure 2.2. Processing Voronoi-diagram-based spatial window queries in TAG

Voronoi-diagram-based spatial window queries would be equivalent to the cost of collect-

ing raw sensor readings to a central base station.

Based on the TAG framework, an SDMS can aggregate different Voronoi cells with

sensor readings into a complete Voronoi-diagram-based representation about the underly-

ing phenomenon in a WSN, as shown by Figure 2.2. To reduce the communication cost,

Hellerstein et al. proposed to simplify the shape of Voronoi cells [HHMS03]. First, in

[HHMS03], the space is partitioned into a set of regular cells. Due to the spatiotemporal

continuity of underlying phenomenon, nearby grid cells may contain similar sensor read-

ings. These cells are named as isobars in [HHMS03]. During the in-network aggregation,
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a node can merge neighboring isobars into a larger continuous isobar. To save communi-

cation cost, the number of edges to represent the isobar shape can be reduced during the

in-network aggregation. The shape simplification usually causes lossy results, and may

neglect some readings from the WSN.

In [SS04], Sharifzadeh et al. also used a Triangulated Irregular Network (TIN) based on

the Voronoi diagram to represent the underlying phenomenon distribution as a 3D terrain.

To calculate and represent a TIN, however, a WSN still needs to consume at least the same

amount of resources as required by the Voronoi-diagram-based approach. Harrington et

al. presented an in-network surface simplification for TIN-based approaches. Similar to

the approach in [HHMS03], the approach in [HH05] chooses to simplify the 3D terrain

surface. In [HH05], sensor nodes can calculate the error introduced by removing the local

readings from the final TIN surface. Based on locally calculated error values, sensor nodes

use a randomized procedure to determine whether the local readings are integrated into the

global TIN terrain.

Overall, Voronoi-diagram-based approaches need an expensive algorithm to find and

represent the Voronoi cells, especially with respect to the in-network communication con-

sumption. However, as long as the sensor nodes are stationary, the cells need to be defined

only once. Over the application lifetime of a WSN, nodes and communication links may

fail, and the Voronoi diagram must be recalculated. The second portion of the cost is de-

fined by finding the intersection between the query predicate and the appropriate Voronoi
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cells. Since Voronoi-diagram-based models are one of the simplest estimation models, the

results based on the Voronoi diagram are rather coarse. To reduce the communication cost,

the shape of Voronoi cells needs to be simplified by merging neighboring cells containing

similar readings. The in-network shape simplification approaches, however, cause lossy

query results and degrade the quality of query results.

2.1.2 Using Spatial Regression Methods

Spatial regression models the underlying phenomenon as a function. The solution of re-

gression can be represented as,

Ŷ (q) =
k∑

i=1

[wi · fi(q)], (2.1)

where the estimated value for any point in the monitored region is a weighted sum of pre-

defined basis functions, f()s. In a 2D polynomial regression, similar to the 1D polynomial

temporal regression [DKR04], f()s are polynomial functions of x and y coordinates. For

instance, an underlying phenomenon can be represented by a quadratic polynomial func-

tion, Ŷ (q) = w0 +w1 ·xq +w2 ·yq +w3 ·x2
q +w4 ·y2

q +w5 ·xqyq, where xq and yq represent

the x and y coordinates of point q. Another form of spatial regression is known as the

Kernel regression, where the basis functions are a set of kernel functions, k()s [GBT+04].

Each kernel function has a unique kernel center in space. A kernel function is typically a

predefined non-increasing function of the Euclidian distance between the kernel center and

the input point. Given k basis functions f()s and n sensor readings, to minimize the Mean
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Squared Error (MSE), the weights for basis functions are computed by,

W =

(
n∑

i=1

(F (si)
T F (si))

)−1 n∑
i=1

(F (si)
T Y (si)), (2.2)

where W and F () are the vector format of w and f() (i.e., W = [w1, w2, · · · , wk]
T , and

F (si) = [f1(si), f2(si), · · · , fk(si)]).

If the basis functions are given, the estimated weights, W , are sufficient for an SDMS to

represent the underlying phenomenon. Compared with transmitting raw readings, sending

the estimated weights consumes much less communication and consequently less energy

from a WSN. To compute the weight values, however, the WSN requires additional com-

munication and computation cost.

Guestrin et al. applied a distributed implementation of the Gaussian elimination to

solve the linear equations in [GBT+04]. The Gaussian elimination needs to convert the

full matrix,
n∑

i=1

(F (si)
T F (si)), into a triangular matrix by subtracting equality constraints

from each other appropriately. In the distributed implementation, sensor nodes maintain

two local partial matrixes based on
n∑

i=1

(F (si)
T F (si)) and

n∑
i=1

(F (si)
T Y (si)). Sensor nodes

begin the Gaussian elimination with an initial guess about the value of W . Sensor nodes

then exchange local results and apply the neighbors’ results to get a more accurate value

of W . Typically, the computation and message exchange need to run several iterations to

achieve a satisfactory error tolerance. Delouille et al. presented the Embedded Polygons

Algorithm (EPA) to solve the general matrix inversion for WSNs [DNB04]. EPA can be

used to compute the value of the weight matrix W . In EPA, sensor nodes are connected into
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a number of sub node sets. The node sets are also represented geographically as polygons in

[DNB04]. Different from the approach in [GBT+04], where each node exchanges messages

with neighbors over individual matrix elements, polygon node sets exchanges messages

iteratively over matrix blocks in EPA. A small amount of communication cost is required to

represent the value of W . Computing the value of W in a WSN, however, is still expensive

with regard to the communication cost [GBT+04].

Another way to find the estimated W is to aggregate the two matrices,
n∑

i=1

(F (si)
T F (si)),

and
n∑

i=1

(F T Y (si)) within a WSN. The base station then computes the value of W outside

the network. For a more complex spatial phenomenon distribution, more basis functions

are required to increase the estimation quality. The communication cost increases expo-

nentially for more basis functions, since each node needs (k2 + k) ∗ ki data to aggregate

for k basis functions. Here, ki represents the data length for one element in the matrix.

Several types of kernels, such as the Block kernel or Cone kernel chosen by [GBT+04], in

the Kernel regression can relax the communication cost for individual nodes to represent

the partial matrix. The quality of estimation result, however, is deteriorated due to the dis-

continuity of these kernel functions. The choice of kernel centers is another relevant issue,

since different kernel centers affect the estimation quality.
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Although a WSN needs a small amount of communication cost to represent the weights,

W , the communication cost to find the solution of W is still expensive in a spatial-regression-

based approach. If a WSN is monitoring a dynamic phenomenon at a high temporal rate, a

spatial-regression-based approach faces more difficulties.

2.1.3 Kriging

The Kriging model is named after D.G. Krige, a South African mining geologist, who

developed the preliminary version [BG96]. The Kriging model is built based on the var-

iogram model, γ(), a function measuring the covariance between two points in space. If

the underlying variogram model is accurate, the results of Kriging are supposed to be the

“best” estimation results with regard to the estimation errors. Another advantage of Kriging

is that the estimation results comprise two parts: the estimated value of the unknown point

p, Ŷ (p), and the estimated standard error, Sz.

The underlying phenomena are usually assumed stationary and isotropic here. In other

words, the covariance between any two points only depends on the distance between them,

not on the direction in which they are separated nor the location where they are located.

There are several Kriging variations based on different assumptions about the underlying

phenomena. The ordinary Kriging requires an unknown constant mean existing over the

whole region. The estimated value for the query point p by the ordinary Kriging is the
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weighted sum of available samples,

Ŷ (q) =
n∑

i=1

wiY (si). (2.3)

The estimated standard error Sz is given by

Sz =

√√√√2
n∑

i=1

wiγ(|si − q|)−
n∑

i=1

n∑
j=1

wiwjγ(|si − sj|). (2.4)

with the constraint equation
n∑

i=1

wi = 1 (2.5)

to maintain the unbiased estimation result. To minimize the estimation error, the ordinary

Kriging applies the Lagrange multiplier to get n + 1 linear equations to get the root of

weights,

V+W+ = v+(q) (2.6)

where

V+ =




γ(|s1 − s1|) · · · γ(|s1 − sn|) 1

γ(|s2 − s1|) · · · γ(|s2 − sn|) 1
. . .

γ(|sn − s1|) · · · γ(|sn − sn|) 1

1 · · · 1 0




, W+ =




w1

w2

...

wn

λ




and v+(q) =




γ(|s1 − q|)
γ(|s2 − q|)

...

γ(|sn − q|)
1




.

Here, the λ is the Lagrange parameter. It can be easily found that the standard error of the

estimation can also be defined as,

Sz =

√√√√
n∑

i=1

wiγ(|si − q|) + λ.
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Theoretically, the estimation error is assumed to be zero-mean Gaussian values, N(0, Sz).

Thus, a typical estimation result of Kriging is Ŷ (q) ± 2Sz, with 95% confidence that the

real phenomenon value falls inside the interval.

In [UKT08], Umer et al. presented a quad-tree-based approach, Quad Suppress (QS),

to find the appropriate variogram model. In QS, a quad tree is found based on a predeter-

mined grid resolution. In each quad cell, a node is chosen as the cell head. The covariance

value among the neighboring sensor readings can be computed using the in-network aggre-

gation over the quad tree. By collecting the covariance values, the base station can find the

experimental variogram model. Based on the experimental variogram model, a distributed

matrix inversion algorithm is used to solve the linear Kriging equation, Equation 2.6, for

any individual point in the monitored region [UKT08].

The computation and communication cost of Kriging is expensive even for a single

point evaluation. To perform an evaluation over a spatial window, the cost of Kriging is

much more expensive. The estimation of the variogram model also requires an additional

cost. Although the Kriging results are fine grained and high quality, the evaluation cost of

Kriging limits the application of Kriging in the constrained WSN.

2.1.4 Discussion

Besides the estimation techniques discussed above, there are many other established esti-

mation methods, which can be applied to estimate the phenomenon distribution based on
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the point sensor readings. Due to the computation and communication complexity, many

methods cannot be applied for spatial window queries in SDMSs directly, but have to be

adapted and tied to an energy-efficient in-network, collaborative execution strategy. The

domain of processing spatial window queries is still limited today, and at an early stage.

Only simple approaches have been proposed so far. The approaches discussed above have

the same objective that the estimation results should be good quality while the in-network

resource consumption needs to be reduced.

We propose SWOP for spatial window queries in SDMSs. SWOP is based on the

Gaussian Kernel estimation, which is generally used to generate smooth estimation results

based on point samples. SWOP does not require expensive communication cost to either

return raw sensor readings or compute the estimation results in a WSN. Instead, SWOP

transforms raw sensor readings and the geo-reference information into a small number of

Hermite coefficients. In this way, SWOP keeps a graceful balance between the estimation

quality and the resource consumption (especially the communication cost).

2.2 Processing 2D Object-based Queries

Object-based models are interested in the object detection and tracking. In most cases, the

object boundary needs to be detected to represent and track objects. Some SDMS research

has been done with regard to the in-network object and object boundary detection. Due to

the discrete node distribution, the result of object boundary detection is a point set around
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the object boundary. Several approaches have also been proposed to link the boundary

points into closed curves and to track the change of the geometric shape over time.

2.2.1 Object and Object Boundary Detection

We define an object based on user-specified thresholds, as shown by Equation 1.3. There-

fore, the threshold value is used to derive the object boundary. In a naive approach, a sensor

node can compare its local sensor readings with the threshold value to estimate the local

boundary status, as illustrated by Equation 1.4. If merely based on Equation 1.4, however,

sensor nodes may fail to report the boundary location, since sensor nodes are discretely

distributed. Sensor nodes may not be located on the exact object boundary. Therefore, a

node must compare its local sensor reading with neighbors’ readings for better boundary

estimation results.

Figure 2.3. Detecting object boundary based on quad tree
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Nowak et al. proposed a quad-tree-based approach to find the object boundary [NM03].

A quad tree represents a spatial region as a tree where each internal node has zero or four

children, as illustrated by Figure 2.3. The variance value of local boundary estimation

results, based on Equation 1.4, within a quad tree cell can be used to control the quad tree

structure. If the variance value in a quad tree cell is large, the cell needs to be divided into

four smaller cells. In this way, the size of quad tree cells around the object boundary is

smaller than other cells. In Figure 2.3, the small cells are connected by the thick lines to

represent the boundary. A WSN needs several iterations to collect sensor readings, compute

the variance and perform the splitting or merging operations on the quad tree. The small-

sized cells can be used to represent the object boundary, whereas additional communication

cost is required to maintain the quad-tree structure.

Figure 2.4. Detecting object boundary based on neighboring readings
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Several approaches use statistical models to detect the object and object boundary based

on local and neighboring sensor readings. For example, in Figure 2.4, the red node can

collect its neighbors’ readings within the communication range and do the computation

locally.

Krishnamachari et al. applied a Bayesian model to estimate the local object status

[KI04]. In this approach, sensor nodes encode the local object status estimation by 1-

bit boolean value (e.g., 1 for object interior and 0 for object exterior). By considering

the possible faulty readings, a sensor node uses the local majority voting result based on

neighbors’ object reports to determine its local object status.

Based on another statistical model, Ding et al. proposed an approach to detect the ob-

ject boundary in WSNs [DCXC05]. In this approach, sensor nodes exchange local sensor

readings. After receiving neighboring sensor readings, a node uses the median value to

represent the local phenomenon value. Based on the hypothesis that the underlying phe-

nomenon values at an object interior are similar to a user-defined value, sensor nodes can

use the estimated phenomenon values to determine the local object status. The bound-

ary detection is built on another hypothesis that the underlying phenomenon values on an

object boundary should be at the middle of object phenomenon readings and non-object

phenomenon readings. By using the statistical models, significant object and object bound-

ary estimation results can be found.
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In addition to the statistical models, Chintalapudi et al. presented two additional tech-

niques, an image processing approach and a classifier-based model, for object boundary

detection in WSNs [CG03]. The image processing approach uses the Prewitt (difference)

filter to compute the gradients of object status along x and y directions. Similar to the

local variance values in the quad-tree-based approach, the gradient values nearby an ob-

ject boundary are usually larger than the gradients at other regions. In this way, the sensor

nodes detecting large gradient values can report the local object boundary. The classifier-

based approach is based on the assumption that the sensor readings inside object interior

are significantly different from the readings from the object exterior. Sensor nodes around

the object boundary can therefore partition the neighboring readings into two groups (i.e.,

object and non-object estimation results). Consequently, the nodes that can find the two

groups report the object boundary.

Duckham et al. proposed a conceptual framework to monitor underlying phenomena

based on the qualitative properties of 2D objects [DNW05]. In this work, quantitative sen-

sor readings (e.g., real numbers) are converted into qualitative values (e.g., object and non-

object status; integer numbers). Sensor nodes are partitioned into two groups (i.e., active

and inactive sensor nodes). Active nodes are connected by a triangulation, and exchange

messages among each other. A node can activate itself either by detecting a significant

local reading change, or receiving a request from a neighboring node. After exchanging

messages, active nodes can deactivate themselves or wake up inactive nodes. In such a way,
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more nodes are active around the object boundary than the nodes in other regions. Nodes

located on the object boundary can consequently report the boundary detection results.

Inactive nodes are in the sleep mode to save energy.

In many applications, a single type of sensor may not well represent the underlying

object status. For these cases, combining results among multiple types of sensor readings

is useful to detect the object and object boundary. For example, a fire object can be defined

by the combination of hot temperature readings and low humidity readings. Abadi et al.

proposed the Robust, Efficient Filtering and Event Detection (REED) to process the object

detection based on different types of sensor readings [AML05]. In REED, one type of

sensor reading is contained by one sensor table. REED proposes efficient algorithms to

optimize the join operations among different sensor tables. The core idea in REED is to

minimize the partial join results by reordering the join operations along the hierarchical

in-network processing.

Compared to the quad-tree-based approach, sensor nodes can perform the boundary

detection only based on neighboring readings by using these approaches, as shown by

Figure 2.4. Sensor nodes around the object boundary can prepare the detection results

locally. Due to the discrete distribution of sensor nodes, however, the boundary reports can

only be points around the 2D object boundary.
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Figure 2.5. Detecting object and object boundary by WSN

2.2.2 Boundary Geometry Formation

From the in-network boundary detection, a set of points can be found around the object

boundary. A point set, however, may represent different spatial regions [GD06]. To well

represent a 2D object, linking the points along an object boundary is necessary.

In the first type of approach, a WSN reports the boundary points to a central base

station. Based on the collected boundary points, the base station can run traditional cen-

tralized approaches to find the appropriate geometry for the object boundary. Figure 2.5

illustrates the underlying object and the boundary points found in WSNs. Apparently, the

point boundary reports can be simplified as the inner boundary reports (e.g., the black dots
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Figure 2.6. A CN-Array representation

in Figure 2.5) or the outer boundary reports (e.g., the red dots in Figure 2.5), which is the

basic idea presented by [SO05]. In this way, about half of the nodes, which detect the object

boundary, can hold their boundary reports from transmitting back to the base station.

Meng et al. used the spatial and temporal suppression to reduce the boundary point

results [MLNL04]. The spatial suppression is similar to the example shown above, in

which only either inner or outer boundary reports are transmitted back to the base station.

By using the temporal regression, a node can suppress a local boundary report if the node

has reported a boundary result a small interval ago. Since the underlying phenomena are

usually spatiotemporally continuous, the suppression approaches can reduce the wireless

communication cost.
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Zhong et al. presented the Contour Neighbor Array (CN-Array), which is an efficient

way to encode the boundary point results [ZW08]. The CN-Array approach assumes that

the WSN is static; a central base station knows the location of sensor nodes and the neigh-

borhood topology. As shown by Figure 2.6, each bit in a CN-Array represents a neighbor

and the bit value indicates the neighbor’s local object detection result. Except for represent-

ing a boundary point result, a CN-Array can reveal the direction of how the object boundary

goes through the neighborhood. By using CN-Array, more than half of nodes, which detect

the object boundary, can suppress their boundary reports. After receiving CN-Arrays from

the WSN, a base station can better generate the final object boundary.

(a) (b) (c)

(d) (e) (f)

Figure 2.7. Linking boundary points based on Voronoi diagram
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As shown by the CN-Array example, the boundary gradient information can be used to

link the points. Liu et al. proposed an in-network approach based on the Voronoi diagram

[LL07]. By comparing the neighboring nodes’ local object and object boundary estimation

results, a sensor node can find the direction of how the object boundary goes across the

local Voronoi cell, as illustrated by Figure 2.7. In this way, a local boundary point can be

extended to a directed partial line. By connecting the partial boundary lines, a WSN can

find closed curves to represent 2D objects, as shown by Figure 2.7.

Figure 2.8. Detecting object boundary by using skeleton

Alternatively, Zhu et al. chose to use the Skeleton to link the boundary points [ZSGM08].

In the field of computer vision, the skeleton of a region is a set of connected lines to rep-

resent the topological information of the region. To find a skeleton to represent the object

boundary, the approach in [ZSGM08] first finds a band region covered by the points along
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an object boundary. Afterward, the skeleton of the boundary band region can be extracted

to represent the object boundary, as shown by Figure 2.8.

To save communication, the shape of the object boundary can also be simplified in

WSNs. Given a curve composed of line segments, the curve simplification algorithms

need to find a similar curve that contains fewer points. Zhong applied the Douglas-Peucker

algorithm to simplify the object boundary in WSNs [Zho08]. The original Douglas-Peucker

algorithm is a recursive algorithm [DP73]. The algorithm connects the first line segment

by connecting the start and end points of the original curve. For each line segment, the

Douglas-Peucker algorithm first scans the points on the original curve that are located in-

between the line segment. If the distance between all points and the line segment is smaller

than the error threshold, ε, the line segment is kept. Otherwise, the furthest point away

from the line segment in the point set is chosen to break the line segment into two line

segments, as shown by Figure 2.9. In [Zho08], a binary tree is built to process the pair-

wise comparison over the line segments. The original object boundary shape, therefore, can

be simplified through the in-network pair-wise comparison. Gandhi et al. used a similar

approach, named stick-fitting, to simplify the boundary shape [GHS07]. Additionally, the

topology consistency between the original curve and the simplified curve is maintained by

the untangling in [GHS07].
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2.2.3 Boundary Change Detection and Tracking

After identifying the initial geometry to represent object boundary, we need to provide an

efficient algorithm to track 2D objects over time. There are different options. First, we

can track the changes of the geometric representation of an object boundary over time.

Secondly, we can also derive more abstract and complex spatiotemporal properties using

the geometric representation. For example, mentioning the example from Chapter 1 again,

users might be interested in the qualitative properties of whether a wildfire is enlarging in

area or the fire is moving towards the north.

Overall, we are looking for the most energy-efficient option to report those changes

over time. One alternative is to continuously compute a new, updated boundary in each

time step, and report the boundary geometry to the base station. The approaches discussed

in Section 2.2.2 are classified into this category. The second alternative is to find an efficient

algorithm to compute either the incremental changes of the geometric shape of the object

instead of computing the entire boundary from scratch in each or to identify the abstract

spatiotemporal properties (like splitting, merging, etc) and report these properties.

Jiang et al. presented an in-network approach to detect topological changes involved

among multiple 2D objects [JW08]. When 2D objects change their shapes and locations

over time, local sensor nodes can detect the change of local object status. The region

in which the local object status changes between two consecutive time slots is called a

transition region in [JW08]. The approach presented by [JW08] is based on detecting the
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C-components, which are adjacent to the transition region. Sensor nodes are clustered

into groups in this approach. After collecting different types of C-components detected by

neighboring nodes, a cluster-head node computes the topological changes by comparing

the C-component relationships, and reports the topological changes to a base station

Xue et al. proposed an efficient approach to detect different types of shapes [XLCL06].

In this approach, the monitored region is partitioned into regular grid cells. Sensor nodes

merge neighboring cells by comparing the sensor readings in cells. By comparing the

relation between different rectangle cells, the in-network aggregation can also return the

shape-matching results. Based on a simple rectangle boundary representation, an emerging

object can be identified through the shape matching. For example, the pyramid shape is

used to identify the emergence of a gas leak. This approach can also be extended to detect

shape changes over time.

In this dissertation, we propose an approach based on the incremental tracking of the

geometric shape of object boundary based on the deformable curve model. The deformable

curve model, also known as the SNAKE model, is used to identify objects and object

boundaries in digital images [KWT88]. For example, the deformable curves can identify

reconstructed roads from remote sensing images [ASG01]. In SNAKE, a closed curve is

used to represent the object boundary. Based on the representative curves, our approach

supports the in-network derivation of spatiotemporal properties of 2D objects.
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2.2.4 Discussion

An SDMS requires running several steps to support object-based models. The first step is

the 2D object and object boundary detection. The second step is the geometry generation

based on the boundary point reports. The third step is the 2D object tracking. The next

step is the abstract property extraction. All of these steps need to meet the requirements of

constrained WSN.

The object and object boundary detection algorithms provide us the foundation to derive

2D objects from underlying phenomena. Connecting the points around an object boundary

provides us a geometric representation about the 2D objects. Except for the object-based

models, the object boundary is also useful for other issues in WSN. For example, the bound-

ary location can help sensor nodes to suppress their reading reports, since sensor readings

around an object boundary are often similar to each other [SBY06].

The proposed NED approach is designed based on statistical models for the efficient

in-network object and object boundary detection. In NED, we focus on reducing the neigh-

boring message exchange for the object boundary detection. In practice, sensor readings

are often affected by noise. Nodes located around an object boundary tend to make faulty

object detection results. In NED, the nodes around object boundary exchange more mes-

sages to increase estimation quality while other nodes communicate less to save energy.
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Although the SNAKE model is widely used in the field of computer vision, no literature

has applied it in WSNs. We found that the SNAKE model is an appropriate model for in-

cremental boundary tracking in the energy and resource constrained WSN. A closed curve

is defined by a set of vertices connected with edges in the SNAKE model. Sensor nodes are

able to track individual vertices and therefore adjust the curve, without knowing the global

shape of the curve. Tracking the geometric changes of object boundary over time allows us

to compute abstract and complex spatiotemporal properties about 2D objects.

2.3 Chapter Summary

This chapter presents related approaches for spatial query processing in SDMSs. For field-

based models, current approaches have applied simple estimation methods to generate the

estimated field results based on raw sensor readings. Most approaches, however, have ei-

ther limited estimation quality or expensive in-network resource consumption. The SWOP

approach is proposed to overcome these drawbacks. We demonstrate that the SWOP ap-

proach provides better estimation results and requires less communication cost. For object-

based models, most related approaches focus on efficient object and object boundary de-

tection. The NED approach is also proposed for this purpose. Few literatures, however,

are available for geometry-based tracking and property extraction of 2D objects in WSNs.

We propose an in-network approach to track 2D objects based on the SNAKE model. In

addition, efficient property extraction algorithms are also presented by this dissertation.
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Starting from the next chapter, we present our approaches to process spatial informa-

tion and queries in SDMSs. The remaining parts of this dissertation present the detailed

algorithms of our approaches, and how our approaches benefit the constrained WSN.
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Chapter 3

A QUANTITATIVE WAY TO PROCESS SPATIAL

WINDOW QUERIES

In this chapter, we present Spatial Window Query Over Phenomena (SWOP), a quantitative

approach to process spatial window queries in WSNs. SWOP focuses on estimating the

spatial distribution of an underlying phenomenon within the user-defined spatial window,

as shown by Figure 3.1. SWOP is based on the Gaussian Kernel estimation to interpolate

the sensor readings within the region of interest.

3.1 Kernel Estimation

Different from Kernel regression, Kernel estimation is a nonparametric estimation and can

be stated as “total amount of observed values per unit area [BG96]”. Kernel estimation is

also a spatial moving-average method. The estimation result is robust against the sensing

noise. For a point, q, in the monitored region,M, Kernel estimation treats the phenomenon
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Figure 3.1. Spatial window queries

value at that point as,

Ŷ (q) =
1

τ 2

n∑
i=1

Y(si)K

( |si − q|
τ

)
, where s, q ∈M. (3.1)

In Equation 3.1, Y(si) represents the reading of sensor node si;Ŷ (q) is the estimation result

for the point q; |si − q| indicates the Euclidian distance between the point q and the sensor

node si; τ is the band-width (also called the smoothing parameter).

A possible approach to evaluate Kernel estimation in a WSN can apply a simple dis-

tributed algorithm, in which every sensor node evaluates its nearby region in M [Rac02,

HHMS03]. In a routing tree based protocol, each node aggregates its local result with the

partial results from its children [HHMS03, XLCL06]. In such an approach, the size of total

data extracted from a WSN is linearly scaled by the number of points to represent the Ker-

nel estimation result. To answer a high resolution result, we need more estimation points

than the number of involved sensor nodes. A simple distributed approach often makes no
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significant improvement over the approach based on centrally collected raw sensor read-

ings, especially if the raw readings are compressed in WSNs.

3.2 Gaussian Kernel and Fast Transforms

The main difficulty of applying Kernel estimation in WSNs is the entangled links between

estimation points and sensor readings. Neither directly evaluating sensor readings out-

side the network nor directly evaluating estimation points within the network is resource-

efficient. SWOP chooses another way to process the Kernel estimation based on the Gaus-

sian kernel. The Gaussian Kernel estimation has a wide range of applications, such as fi-

nancial analysis [BY03] and image processing [YDGD03], and estimates the phenomenon

value at the point q as,

Ŷ (q) =
1

τ 2

n∑
i=1

Y(si)e
−|si−q|2/τ2

, where s, q ∈M. (3.2)

To break the entangled links between estimation points and sensor nodes, SWOP needs

to transform the Gaussian kernel. Two fast transforms are available, the Fast Gaussian

Transform (FGT) [GS91] and the Improved Fast Gaussian Transform (IFGT) [YDGD03].

Both fast transforms use an infinite series to approximate the Gaussian kernel and truncate

insignificant series terms to accelerate the evaluation speed. The truncated series can be

encoded by a small amount of data to represent detailed information about all raw readings

including the geo-reference information.
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Let’s first explain two transforms in the 1D space. The FGT utilizes the Hermite ex-

pansion to represent the exponential function as,

e−|si−q|2/τ2

=
∞∑

j=0

1

j!

(
∆si

τ

)j

hj

(
∆q

τ

)
, (3.3)

where ∆si = si − s∗, ∆q = q − s∗ and the Hermite functions hj(x) are defined by

hj(x) = (−1)j dj

dxj

(
e−x2

)
.

The FGT needs to group sensor nodes into sub-clusters. Here, s∗ is the cluster center which

satisfies |si − s∗|/τ < 1, so the Hermite coefficients converge to zero and the Gaussian

kernel can be safely approximated by the first p terms,

Ŷ(q) ≈ 1

τ 2

p∑
j=0

Aj(s)hj

(
∆q

τ

)
, (3.4)

where the Hermite coefficients Aj(s) are defined as

Aj(s) =
1

j!

n∑
i=1

Y (si)

(
∆si

τ

)j

. (3.5)

The IFGT(Improved Fast Gaussian transform) [YDGD03] factorizes the Gaussian ker-

nel as

e−|si−q|2/τ2

= e−
∆si

2

τ2 e−
∆q2

τ2 e−
2∆si∆q

τ2 (3.6)

and uses the Taylor expansion to approximate,

e−2∆si∆q/τ2

=
∞∑

j=0

2j

j!

(
∆si

τ

)j (
∆q

τ

)j

.
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In the IFGT, Equation 3.2 is approximated as

Ŷ(q) ≈ 1

τ 2

p∑
j=0

Cj(s)e
−∆q2/τ2

(
∆q

τ

)j

, (3.7)

where the Taylor coefficients Cj(s) are defined as

Cj(s) =
2j

j!

n∑
i=1

Y (si)e
−∆si

2/τ2

(
∆si

τ

)j

. (3.8)

Here, the cluster center satisfies 2|∆si||∆q|/τ 2 < 1, so the Taylor coefficients converge to

zero and terms after the first p terms can be safely truncated.

To safely truncate the series, both the FGT and IFGT group the sensor nodes into sub-

clusters with a radius smaller than the required bandwidth. For each cluster, the Hermite

coefficients, Equation 3.5, and the Taylor coefficients, Equation 3.8, can represent the de-

tailed sensor node locations and sensor readings. We need to choose one transform that

requires a smaller number of expansion terms for the same quality criteria, and apply it to

SWOP. Assume ρs = |si − s ∗ |/τ is the normalized cluster radius, and ρq = |q − s∗|/τ is

the normalized distance between query points and cluster centers. The Hermite expansion

requires ρs < 1, while the Taylor expansion requires 2ρsρq < 1. The Taylor expansion

also requires ρq > 1, or the estimation result ignores some important readings outside the

range [YDGD03]. Thus, the Taylor expansion requires smaller cluster radii than does the

Hermite expansion. The IFGT also introduces an exponential term, 2j , to the expansion,

which decreases the convergence speed of the expansion. In other words, for the same

cluster size, the terms in Hermite expansion converge faster to zero than the terms in the
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Taylor expansion do, which can also be proven by the error bound of FGT [BR02] and

IFGT [YDGD03]. Thus, we choose the Hermite expansion in SWOP.

3.3 SWOP

3.3.1 Normalized Kernel

Although the Kernel estimation model in Equation 3.1 is useful in many cases, the normal-

ized Kernel estimation model usually performs better, especially when nodes are unevenly

distributed. The normalized model estimates the phenomenon value at the point, q, as the

estimation value by Equation 3.1 divided by total kernel weights,

Ŷ(q) =

n∑
i=1

Y (si)e
−|si−q|2/τ2

n∑
i=1

e−|si−q|2/τ2

, where s, q ∈ R. (3.9)

In Equation 3.9, τ−2 in the denominator and the numerator is canceled. Based on the

normalized model, the Kernel estimation result is robust against the uneven spatial distri-

bution of sensor readings. For example, sensor readings may get lost during the wireless

transmission.

3.3.2 Data Reduction in High Dimensional Space

Differentiating different dimensions is important when a phenomenon is directionally dif-

ferent. The Kernel estimation can use different bandwidths for different dimensions for
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Figure 3.2. Coefficient polynomial order

anisotropic phenomena. In a high dimensional space, the FGT treats Equation 3.3 as a prod-

uct of p-terms Hermite expansion along each dimension, and requires pd terms in total for

a d-dimensional space [GS91]. In the IFGT, the total number of terms in a d-dimensional

space is
(

p+1
d

)
by treating the vector product as a scalar dot-product in Equation 3.6 [GS91].

Therefore, the IFGT outperforms the FGT in high dimensional space [YDGD03].

Sensor node locations are at least 2D in real applications. In other words, if we choose

to transform the Gaussian function as the original FGT does, the data requirement grows

exponentially for more Hermite coefficient terms along each dimension. The communica-

tion channel of a constrained WSN can be easily overwhelmed to achieve smaller errors

for the fast transform. Let’s reconsider both transforms as indicated by Equation 3.4 and

Equation 3.7. Both transforms benefit from the elimination of insignificant series terms
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with values close enough to 0. According to the inequality for Hermite functions [Sza51],

1

n!
|hn(x)| 6 2n/2

√
n!

e−x2/2, where n > 0 and x ∈ R,

2n/2

√
n!

< 1, where n > 4,

and ρs < 1, we can conclude that in Equation 3.4, the expansion terms converge to zero.

The Hermite function, hn(), targets the query point. The cluster radius, ρs, determines the

convergence speed. The significance of the Hermite expansion terms is determined by the

polynomial order of the coefficients. In the 1D scenario, taking the first p terms means

taking the expansion terms with polynomial order lower than p− 1 in both fast transforms.

In a high dimensional space, the traditional coefficient terms ordering strategy chosen by

the FGT requires an exponential increase on the resource consumption to achieve smaller

errors. SWOP, on the other hand, reorders the series terms based on their significance (i.e.,

in the polynomial order). For example, in a 2D space, the original Hermite coefficients from

the network can be represented as a 2D array as shown by Figure 3.2, where each element is

a product of Hermite coefficients in x− and y− dimension. To get the Hermite coefficients

less than the quartic order, SWOP only requires the upper-left triangular matrix, since the

lower-right triangular elements are much closer to 0 than the upper-left elements. In this

way, SWOP relaxes the data requirement of Hermite expansion from pd to
(

p+1
d

)
based on

the (p−1) polynomial order in a d-dimensional space. By ordering Hermite coefficients in

this way, SWOP requires the same cost as the IFGT does in the 2D space [YDGD03]. Our

experimental results confirm our expectation. By truncating Hermite coefficients based
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on the polynomial order, SWOP outperforms the traditional FGT. For the same amount

of communication, SWOP returns better estimation results than the original FGT does as

compared with the result from traditional centralized approaches.

3.3.3 Clustering in Dynamic Networks

SWOP groups sensor nodes into non-overlapping sub-clusters according to the node loca-

tions and transforms raw readings into the Hermite coefficients. For each sensor cluster,

SWOP is a special aggregation query. For different types of networks, SWOP uses different

processing strategies.

The main difference of processing SWOP in mobile and static networks is the clustering

algorithm. The FGT does it by dividing the space into regular grid cells, named “Boxes”

[GS91]. This clustering algorithm is simple and may introduce empty boxes due to the

uneven distribution of sensor nodes, especially when nodes are mobile. The optimal clus-

tering, however, is known to be NP hard [BE97]. Several sub-optimal clustering algorithms,

such as K-means, G-means and hierarchical clustering [HK01], are useful for static WSNs.

Distributed clustering algorithms, such as HEED [YF04] and LEACH [HCB02], provide

efficient clustering approaches for mobile WSNs. In distributed clustering algorithms, each

sensor node can be a cluster head or belong to a cluster. A sensor node with more remaining

energy and more potential communication links with others more likely announces itself to

be a cluster head. Other nodes can join an appropriate cluster by detecting and analyzing
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the cluster-head announcements. HEED has several advantages over LEACH, such as sup-

porting multi-hop clustering and different clustering preferences. Thus, we choose HEED

as the basic clustering method in SWOP for mobile networks. In SWOP, the cluster radius

should be smaller than the Kernel bandwidth, τ , to satisfy the convergence condition, while

bigger clusters are favorable to achieve a higher compression rate. Thus, we set the clus-

ter radius to 0.9τ in SWOP. An issue of applying distributed clustering algorithms is that

the required cluster size might be larger than the possible communication range of sensor

nodes. In this case, SWOP allows small clusters to merge until the clusters grow to the

required cluster radius. A similar algorithm can also be found in [JN05].

After the clustering procedure, each sensor cluster in SWOP is identified by its clus-

ter center, s∗, which may not coincide with the location of the cluster head node. The

detailed information about individual sensor readings and sensor locations can be trans-

formed into a small number of Hermite coefficients. Because of the fast convergence speed

of the Hermite expansion, we expect the difference between the results of SWOP and cen-

tralized Kernel estimation to be small. For each cluster in a mobile network, the Hermite

coefficients are special aggregation data, and are routed to the central base [YF04].

3.3.4 Description of SWOP Algorithm

Table 3.1 outlines the clustering algorithm that we have developed in [JN05] for SWOP.

When the network starts up, all sensor nodes are cluster heads. Each cluster head uses
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to announce(), a HEED like algorithm, to make cluster head announcements. After re-

ceiving the cluster head announcements, a cluster head can decide to merge its cluster to

another cluster. All non-head member nodes can detect the changes by the notification

from their cluster head nodes. Small clusters merge into larger clusters until merging any

two neighboring cluster will cause the cluster radius to be larger than the required cluster

size. A distributed clustering algorithm is necessary for a mobile WSN in SWOP. In a static

WSN, we can apply a centralized, better and more expensive clustering algorithm.

Table 3.1. Algorithm of distributed clustering

Require: A required cluster size for an appropriate Gaussian kernel bandwidth. The radius
of the cluster should be smaller than the bandwidth to satisfy the converge condition of
Hermite expansion.

Ensure: This algorithm merges small clusters into larger clusters until no merge can be
done.

1: new member ⇐ receive new join()
2: update my cluster(new member)
3: if to announce() then
4: broadcast announcement()
5: else if candidate ⇐ receive announcement() then
6: if satisfy required cluster size(my cluster, candidate) then
7: join to(candidate)
8: resgin cluster head()
9: notify memeber nodes()

10: end if
11: end if

After identifying the cluster center and the number of nodes in the cluster, distributed

sensor nodes can aggregate the Hermite coefficients as indicated by Equation 3.5. The

number of nodes in every cluster determines whether the raw readings are converted into
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Table 3.2. Algorithm of preparing Hermite coefficients

Require: The Hermite coefficient polynomial order, n
Ensure: Aggregation of Hermite coefficients from the network

msg ⇐ receive msg()
if from same cluster(msg) then

if my cluster.number of members() > tolerance then
denominator coefficients
⇐ aggregate Hermite coefficient(msg, my location, 1, n)
numerator coeffcients
⇐ aggregate Hermite coefficient(msg, my location,my reading, n)
my msg ⇐ pack message(numerator coeffcients,
denominator coefficients, cluster center)

else
my msg ⇐ pack message(msg, my reading,my location, cluster center)
route to central base(my msg)

end if
else

route to central base(my msg, msg)
end if

Hermite coefficients. Table 3.2 illustrates the algorithm of preparing the Hermite coeffi-

cients. For a mobile sensor network, the Hermite coefficients for both denominator and

numerator in Equation 3.9 should be prepared, if the number of nodes in a cluster is large

enough. The function aggregate Hermite coefficient() takes the local sensor’s location

and reading to prepare the Hermite coefficients for required polynomial order according to

Equation 3.5. If a cluster contains a small number of nodes, the raw data including sensor

readings and locations are returned to the central computer as shown by Table 3.2. The

numerator coefficients represent both nodes’ locations and sensor readings, while the de-

nominator coefficients represent only nodes’ location information. In a static network, we
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only need the numerator coefficients since the location of sensor nodes can be cached by

the central base.

Table 3.3. Algorithm of preparing final spatial window results at the central base

Require: Specifications for required query window, Kernel bandwidth, cluster radius and
polynomial order of Hermite coefficient.

Ensure: Sending query specifications into the network, and generating the spatial window
query results

1: init msg ⇐ get query(specifications)
2: send to sensors(init msg)
3: (Hermite coefficients, cluster centers) ⇐ receive from network()
4: for point ∈ query window do
5: generate estimation result(point,Hermite coefficients, cluster centers)
6: end for
7: return(estimation result)

After receiving a spatial window query from users, a central base first invokes the nec-

essary sensor nodes and disseminates initial messages into the network as shown by Table

3.3. After receiving all Hermite coefficients and uncompressed data from all clusters, the

central computer needs to reconstruct the weighted readings based on Equation 3.3 from

the partial expansion terms and aggregate them with uncompressed readings. After the

central base estimates all points within the spatial window region based on a user-defined

resolution, a visual image is returned.
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3.3.5 Analysis of SWOP

Computation Cost

The computation cost of the central computer is related to the number of points m for a

user-defined resolution, the number of clusters k and the chosen polynomial order p − 1.

The computation complexity can be formulated as O(m∗k∗(p+1
2

)
). The chosen polynomial

order p−1 and the number of clusters k are much smaller than the number of invoked sensor

nodes n for an acceptable error tolerance. The computation cost for a central computer can

be relaxed as O(m), which is linearly relative to the user-defined resolution for a spatial

window query result. Further computation acceleration can be achieved by differentiating

the Hermite series around the estimation points as shown by [GS91]. In this dissertation,

we don’t consider it because the computation is done by a central base or a microserver,

and the computation cost has no effect on the network.

The computation cost on the distributed sensor nodes is dominated by the clustering

procedure, since aggregating Hermite coefficients requires a constant cost as shown by

Equation 3.5 and Table 3.2. In a mobile WSN, SWOP chooses a distributed clustering

algorithm, which consumes extra resources from the network. If the required cluster radius

is smaller than the communication range, SWOP requires a constant amount of resource

from the network, which has been proven by [YF04]. If the cluster radius is larger than

the communication range, small clusters need to be merged into larger clusters. In the
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worst case where all nodes need to be merged into a single cluster, the complexity of the

merging operations is O(log(n)) for n nodes. Thus, the total computation complexity on a

sensor node is O(log(n)) in the worst case and O(1) in general cases for a mobile network.

For a static WSN, the clustering pattern can be predetermined by the central base. The

computation complexity can be further relaxed.

Communication Cost

In SWOP, the size of total data extracted from the network is determined by the number of

clusters, c, and the chosen polynomial order, p− 1. For each cluster, kp + 2
(

p+1
2

)
ki bits are

needed for the Hermite coefficients, where kp is the required bit-length to represent a point

for the cluster center s∗ and ki is the required bit-length to represent a term of the Hermite

series. Whereas, l(kp + ki) bits are needed for the raw data if l sensor nodes are in the

cluster.

The total communication cost within the network depends on particular communica-

tion protocols and the network topology. For a mobile environment, clustering protocols

are preferable. Typically, the non-head nodes and their cluster-heads have a direct commu-

nication link. In the worst topology, where all cluster-head nodes form a linear structure,

receive and relay messages one by one, SWOP requires 0.5(1+ c)c(kp +2
(

p+1
2

)
ki) data for

the total communication between cluster head nodes within the network. If h represents

the number of cluster heads before a particular cluster head on the path to the central base,
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the cluster head receives (c − h − 1)(kp + 2
(

p+1
2

)
ki) and sends (c − h)(kp + 2

(
p+1
2

)
ki) to

the next hop. In the best case, in which every cluster head can directly send its messages to

the central base, the total communication cost within the network is c(kp + 2
(

p+1
2

)
ki).

For a static environment using routing tree based protocols, SWOP is a set of multiple

aggregation queries over non-overlapped spatial clusters. The in-network query process-

ing can be optimized by the algorithm provided by [TYD+05a, TYD+05b]. SWOP can

be categorized as a min query in [TYD+05a]. Further cost evaluation on the wireless

communication can be found in [TYD+05a, TYD+05b].

3.4 Chapter Summary

This chapter presents an efficient approach, SWOP, to process spatial window queries in a

WSN. The SWOP approach utilizes the spatial properties of the sensor nodes. The com-

munication reduction of SWOP results from the spatial clustering. In a large cluster with

more than [kp + 2
(

p+1
2

)
ki]/(kp + ki) sensor nodes, the raw readings can be reduced to

the first p − 1 order Hermite coefficients in a 2D space. Since the SWOP approach fo-

cuses on the spatial properties of the sensor nodes, the available compression techniques

can also be applied on SWOP’s transformed data among different clusters in the multi-hop

transmission. Due to normalized Kernel estimation’s robustness against noisy and lossy

samples, SWOP performs well in the noisy and lossy environment of WSN. Furthermore,

we do not limit SWOP to static WSNs. The denominator in Equation 3.9 only represents
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the spatial properties of invoked sensor nodes. In a static WSN, the spatial properties of

sensor nodes are typically cached by the central base station. More than half the amount of

the communication can be saved by excluding the denominator in the normalized Kernel

estimation from the in-network communication, in a static WSN. A centralized clustering

algorithm can also find better clustering patterns and help SWOP to accomplish a higher

data compression rate.

The results from SWOP are snapshots about the underlying phenomenon’s spatial dis-

tribution. Plotting the snapshots over time can provide a video-like representation about

the phenomenon. Compression techniques on the temporal data, such as approaches in

[DKR04, JCW04], are applicable to the transformed SWOP’s aggregated Hermite terms.

Overall, SWOP is an efficient approach to process spatial window queries for both static

and mobile WSNs.
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Chapter 4

NOISE-TOLERANT OBJECT AND

OBJECT BOUNDARY DETECTION

In this chapter, we describe our approach to answer object boundary detection queries in

WSNs. The approach is named Noise-tolerant & Energy-efficient object and object bound-

ary Detection (NED). The algorithm is an energy-efficient and noise-tolerant approach to

detect object and object boundary for subregions in continuous phenomena. NED uses

an optimized, variable length encoding strategy to encode local object estimation results,

through which the wireless communication cost is reduced. Based on established statistical

models, NED can reduce the sensing noise effect, while still providing high-quality object

and object boundary detection results.
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4.1 Foundation of NED

As indicated by Equation 1.2, a sensor provides the local phenomenon values at the sensor

node’s location. Sensor readings, however, are usually affected by sensing noise in real

world applications. In this chapter, we use Ŷ (si) to indicate a noisy reading of sensor node

si,

Ŷ (si) = Y(si) + ε (4.1)

The error term, ε, in Equation 4.1 indicates the noise effect on the local sensor reading.

We define the immediate neighboring nodes of sensor node, si, as a node set,

N(si) : {sj|sj AND si can directly communicate}, (4.2)

and si ∈ N(si).

Assumption 1 Compared to the traditional powerful wireless radio, the area covered by

the direct radio communication range of sensor nodes is small. In today’s WSNs, the

number of sensor nodes in N(si) is limited. For example, in TinyOS, the maximal value of

N(si) is 16. The underlying phenomena, therefore, are assumed stationary and isotropic

locally in the direct radio communication region.

Assumption 1 simplifies our definitions for local object and object boundary detection

results.

Assumption 2 In this chapter, we assume the nodes in N(si) are evenly distributed.
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Assumption 3 In this dissertation, the sensing noise, ε is assumed to be independent

among different sensor nodes. We use a general model of ε, which defines the noise as

a white normal random variable with 0 mean and a given variance, σ2. In other words,

sensor readings are unbiased about the underlying phenomenon. In most cases, the sensor

specification manual provides the σ value.

Based on above assumptions, we can present our approach to detect local object and

object boundary results based on local and nearby sensor readings.

4.2 Encoding Local Object Detection Results

In a WSN, the wireless communication is the most energy consuming part. To deal with

noisy sensor readings and detect objects, sensor nodes have to encode local sensor readings

into digital values and exchange messages through the wireless radio. A local sensor read-

ing is usually represented as a real number (32 bits or more) [DCXC05], while a binary

variable (1 bit) can represent a local object detection result [KI04]. Exchanging the binary

object detection results is resource-efficient to the constrained environment. The noisy sen-

sor readings, however, may cause faulty binary results, and degrade the quality of object

and object boundary detection results. Estimation results based on float values are more

robust against the sensing noise, but at the expense of increased communication burden.

NED needs to keep a graceful balance between the communication consumption and the

detection quality.
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σ 2σ 3σ−σ−2σ−3σ µ

Figure 4.1. Normal probability density distribution

As shown by Figure 4.1, the probability density of a normal random variable concen-

trates around the mean value. For example, given the mean µ and the variance σ2, a normal

variable has 95% to be within the range [µ − 1.96σ, µ + 1.96σ]. Different sensor readings

provide different confidence levels on local object estimation results. If a sensor reading is

much larger than the threshold T (e.g., the distance to the threshold is larger than 1.96σ),

the object estimation should be a significant result (at the confidence level greater than

95%). Similarly, a sensor node may detect significant non-object (e.g., T − Ŷ (si) > 1.96σ)

and insignificant object readings (e.g., |T − Ŷ (si)| 6 1.96σ).

(a) (b)

Figure 4.2. Message formats of local object detection
(a) the message format for significant object detection, and (b) the message format for

insignificant object detection
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To balance the communication cost and the detection quality, NED uses a variable

length encoding mechanism to represent local estimation results of individual sensor nodes

as shown by Figure 4.2. First, we use ∆1 to indicate a distance from the threshold, T . ∆1

also indicates a belief level of local object estimation. For example, ∆1 = 1.96σ means the

distance is away from the threshold T with the 95% confidence. A sensor node can detect a

significant object or non-object reading based on the confidence level of ∆1, and use a 2-bit

message to represent its reading. As explained by Figure 4.2(a), the first bit in a message is

a flag to indicate if the following bits represent significant or insignificant sensor readings.

The flag is 0 to indicate local significant object or non-object readings. If the first bit is

0, the second bit is 1 for a significant object reading or 0 for a non-object reading. If a

sensor node observes an insignificant object (i.e., the local sensor reading falls within the

[T −∆1, T + ∆1] range), the node changes the flag to 1 and requires additional 32 bits to

represent the original sensor reading, as shown by Figure 4.2.

After receiving messages from its neighbors, a sensor node needs to recover the binary

results into regular real numbers to do further analysis. A significant object reading is

represented by T + ∆1; a significant non-object reading is T −∆1.
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4.3 Theoretical Analysis

Based on the n object detection messages from its neighbors, a sensor node needs to find the

estimated underlying phenomenon value. Since sensor readings are encoded and transmit-

ted in a digital format, the n neighboring readings form a new distribution. If we assume

r is the random number representing the recovered encoded message reading, y0 is the

underlying phenomenon value, φ() is the pdf and Φ() is the cdf of the standard normal

distribution function, the pdf of r can be formulated as,

p(r) =





Φ
(

T−∆1−y0

σ

)
, r ≤ T −∆1;

φ
(

r−y0

σ

)
, r ∈ (T −∆1, T + ∆1) ;

1− Φ
(

T+∆1−y0

σ

)
, r ≥ T −∆1.

Therefore, the expected mean of r is M defined as,

M =

∫ +∞

−∞
xp(x)dx

= (T −∆1)

∫ T−∆1

−∞
φ

(
x− y0

σ

)
dx +

∫ T+∆1

T−∆1

xφ

(
x− y0

σ

)
dz

+ (T + ∆1)

∫ +∞

T+∆1

φ

(
x− y0

σ

)
dx,
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in which the middle term can be reformulated as,
∫ T+∆1

T−∆1

xφ

(
x− y0

σ

)
dx =

∫ T

T−∆1

xφ

(
x− y0

σ

)
dx +

∫ T+∆1

T

xφ

(
x− y0

σ

)
dx

= lim
c→∞

c∑
i=1

∆1

c

(
T − i

∆1

c

)
φ

(
T − y0

σ
− i

∆1

cσ

)

+ lim
c→∞

c∑
i=1

∆1

c

(
T + i

∆1

c

)
φ

(
T − y0

σ
+ i

∆1

cσ

)

=T lim
c→∞

2c∑
i=1

∆1

c
φ

(
T −∆1 − y0

σ
+ i

∆1

cσ

)

+ lim
c→∞

c∑
i=0

i

(
∆1

c

)2 (
e−

(T+i(∆1/c)−y)2

2σ2 − e−
(T−i(∆1/c)−y)2

2σ2

)

=T

∫ T+∆1

T−∆1

φ

(
x− y0

σ

)
dx

+ lim
c→∞

c∑
i=0

i

(
∆1

c

)2 [
φ

(
T − y0

σ
+ i

∆1

cσ

)
− φ

(
T − y0

σ
− i

∆1

cσ

)]
.

So M can be stated as,

M =T + ∆1

[∫ +∞

T+∆1

φ(
x− y0

σ
)dx−

∫ T−∆1

−∞
φ(

x− y0

σ
)dx

]

+ lim
c→∞

c∑
i=0

i

(
∆1

c

)2 [
φ

(
T − y0

σ
+ i

∆1

cσ

)
− φ

(
T − y0

σ
− i

∆1

cσ

)]
.

We now can state and prove one important property of the encoding schema of NED.

Property 1 The object estimation result based on the arithmetic average of recovered

neighboring sensor readings is unbiased.

Proof: This property can be proven under three different conditions.

1. y0 = T :

When y0 = T ,
∫ +∞

T+∆1
φ

(
x−T

σ

)
dx =

∫ T−∆1

−∞ φ
(

x−T
σ

)
dx and φ

(
i∆1

cσ

)
= φ

(
i∆1

cσ

)
, since

φ() is symmetric around zero. Therefore, M = T in this case.
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2. y0 > T :

If y0 > T , then
∫ +∞

T+∆1
φ

(
x−T

σ

)
dx >

∫ T−∆1

−∞ φ
(

x−T
σ

)
dx and φ

(
T−y0

σ
+ i∆1

cσ

)
>

φ
(

T−y0

σ
− i∆1

cσ

)
. So M > T when y0 > T .

3. y0 < T :

Similarly we can find that when y0 < T , M < T .

To make further statistical tests on object boundary, we need to know the variance, V 2,

of r, when y0 = T .

V 2 =

∫ +∞

−∞
(x−M)2 p(x)dx

=(∆1)
2

∫ T−∆1

−∞
φ

(
x− T

σ

)
dx +

∫ T+∆1

T−∆1

(x− T )2 φ

(
x− y0

σ

)
dx

+ (∆1)
2

∫ +∞

T+∆1

φ

(
x− T

σ

)
dx

=2(∆1)
2

∫ T−∆1

−∞
φ

(
x− T

σ

)
dx +

∫ T+∆1

T−∆1

(x− T )2 φ

(
x− T

σ

)
dx

=2(∆1)
2Φ

(−∆1

σ

)
+

[
Φ

(
x− T

σ

)
σ2 + φ

(
x− T

σ

)
(T − x) σ2

]∣∣∣∣
T+∆1

T−∆1

=
(
2(∆1)

2 − σ2
)
Φ

(−∆1

σ

)
+ σ2Φ

(
∆1

σ

)
− 2∆1φ

(
∆1

σ

)
σ2

(4.3)

4.4 Object and Object Boundary Detection

After receiving messages from neighboring nodes, a sensor node needs to recover signif-

icant object and non-object readings first. Then the node can use the arithmetic average,

m̄, based on recovered readings and insignificant object readings, to estimate the local phe-

nomenon value. Based on the property 1, NED estimates the local object status, Ô(si),
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as,

Ô(si) =





1, if m̄ > T ;

0, else.
(4.4)

Besides the arithmetic average, statisticians often use several different averages to esti-

mate the mean value. For example, the median value can be used [DCXC05]. The median

value has several advantages, such as being more robust against outliers. However, it is

hard to use a variable length encoding schema to exchange the median value. We use the

arithmetic average because the probability of finding an outlier reading among a few neigh-

boring nodes is small. The encoding confidence level ∆1 also works as a filter to remove

outlier readings outsides [T − ∆1, T + ∆1]. Those outlier readings can be recovered as

T − ∆1 or T + ∆1 before the further analysis. Our simulation results also show that the

arithmetic average value performs better than the median value.

The variance of recovered neighboring readings is based on Equation 4.3 for the given

sensor device variance, σ2, the object threshold, T and the encoding significant level ∆1.

According to the central limit theorem, the arithmetic average based on Equation 4.4 is an

estimation of local mean with the estimated variance defined by,

σ̂2 =
V 2

n
, (4.5)

where n is the number of nodes in N(si).

We cannot directly apply Equation 1.4 based on the estimated local phenomenon values,

Ŷ (si). One important reason is that sensor nodes are discretely distributed in space. There

may be no node located on the object boundary. The sensing noise can also affect the local
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boundary estimation results. NED uses Equation 4.6 to estimate the boundary, B̂(), for

another given confidence level, ∆2.

B̂(si) =





1, if T ∈ [m̄−∆2, m̄ + ∆2];

0, else.
(4.6)

Equation 4.6 is equivalent to the statistical model in [CG03]. B̂(si) in Equation 4.6 in-

dicates whether the sensor node, si, has the Φ(∆2

σ̂
) − Φ(−∆2

σ̂
) confidence that the node

is located on the boundary Y (si) = T . NED’s encoding mechanism symmetrically trims

the sensor readings around the object threshold, T . Since the underlying phenomenon is

isotropic, and the sensor nodes are evenly distributed, the arithmetic average of recovered

messages, m̄, around an object boundary should be close enough to T . Thus, in NED, the

nodes around an object boundary can report the boundary detection.

4.5 Algorithms of NED

A sensor specification manual usually gives the variance of sensing noise. As shown by Ta-

ble 4.1, sensor nodes can calculate the value ∆1 based on the user-defined confidence level,

Level1. Based on the value of ∆1, a sensor node can encode the local sensor readings

accordingly. The time space is divided into rounds. In each round, each sensor node broad-

casts its local encoded object readings. After receiving neighbors’ local encoded object

readings, a sensor node restores significant object and non-object readings (binary values)
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into real numbers. The node then computes the arithmetic average to reduce the noise ef-

fect, and to estimate a better local object and object boundary status based on Equation

4.4 and Equation 4.6. Based on the value of ∆2, sensor nodes can report significant object

boundary detection results as illustrated by Table 4.1.

Table 4.1. Algorithm of NED

Require: Sensor nodes know the sensing noise level of σ, and the two confidence levels
Level1 and Level2.

Ensure: Sensor nodes make local object and boundary estimation.

1: ∆1 ⇐ computeSignificantLevel(Level1)
2: ∆2 ⇐ computeSignificantLevel(Level2)
3: r ⇐ getMySensorReading()
4: msg ⇐ encodeObject(r, T, ∆1)
5: broadcast(msg)
6: msgList ⇐ receiveFromNeighbors()
7: readingList ⇐ restore(msgList, T, ∆1)
8: avg ⇐ estAvg(readingList)
9: sqrtV ar ⇐ estSqrtV ar(readingList)

10: if avg > T then
11: estObject ⇐ TRUE
12: else
13: estObject ⇐ FALSE
14: end if
15: if T > (avg −∆2) AND T 6 (avg + ∆2) then
16: estBoundary ⇐ true
17: else
18: estBoundary ⇐FALSE
19: end if

NED does not consider the detailed locations of neighboring nodes. If the spatial vari-

ation of a phenomenon is large, and sensor nodes are not evenly distributed, we can apply

different weights on neighboring readings. For example, a weight based on the Euclidean
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distances between node locations has been used in Chapter 3. This type of approach can

produce better estimation results but also requires more wireless communication.

4.6 Chapter Summary

In this chapter, we present an efficient approach, NED, to detect 2D object and object

boundary in WSNs. The NED approach allows users to specify different confidence levels

for encoding local estimation results and estimating object boundary based on neighboring

messages. If the noise level is small, a small ∆1 value can be used to save more com-

munication cost. For more noisy readings, a large ∆1 value is preferable to achieve better

estimation results. When the phenomenon change is more influential than the sensing noise

among neighboring nodes, the variance among neighboring readings may be larger than we

expected as shown by Equation 4.3. In such a case, users can set a larger confidence level

for ∆2 to get better boundary estimation results. A phenomenon may not be spatially con-

tinuous. For example, a phenomenon can be a step function over space, as assumed by

[DCXC05], in which phenomenon values are y1 in object regions and y2 in non-object re-

gions. For such discontinuous phenomena, the boundary threshold T can be any values in

(y1, y2) to separate object and non-object regions. The NED approach can use the bound-

ary threshold T = y1+y2

2
to keep the symmetry of sensor readings around the threshold, T ,

and to detect the object boundary for this type of phenomenon. For spatially continuous

phenomena, the NED approach allows nodes far from the object boundary to communicate
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by only 2-bit messages. Those nodes close to the object boundary use 33-bit messages to

achieve high quality estimation results. As shown by our experimental results, the NED

approach is resource efficient in the constrained environment.
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Chapter 5

TRACKING DEFORMABLE 2D OBJECTS IN WSN

Based on efficient boundary detection algorithms, such as NED, distributed nodes report

boundary points. Related approaches also help SDMSs to find the geometric representation

of the object boundary. The next logical step, which is also the focus of this chapter, is using

a WSN to track 2D objects based on their geometric representations.

This chapter presents a SNAKE-based algorithm to track 2D objects in WSNs. The

proposed approach uses a deformable curve to represent a 2D object. The representative

curve virtually deforms and optimizes its shape and location to track the 2D object. Differ-

ent from detecting boundary points (or connecting them into closed geometric curves), the

proposed approach focuses on tracking the movement of the representative curve by using

WSNs.

We use sensor nodes to detect object boundary changes in their neighboring regions.

Thus, distributed nodes adapt the representative curve locally to track the overall object. In
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the proposed approach, a node does not need to know the global shape of boundary geom-

etry and saves communication cost. Furthermore, the proposed approach locally adapts the

representative curve to the topology changes caused by the interactions among multiple 2D

objects (i.e., splitting and merging). In this way, the proposed approach tracks 2D objects

efficiently in WSNs.

Based on the deformable curve representation, an SDMS derives abstract spatiotem-

poral properties of underlying 2D objects via the in-network aggregation operations. By

detecting the object boundary change and adapting the representative curve, distributed sen-

sor nodes are able to extrapolate the object’s location and shape in the near future. In such a

way, different types of abstract information and queries are processed fully in network. The

communication cost to report the geometric information to a base station, consequently, is

further reduced.

First, we explain several preliminary concepts related to the in-network 2D object track-

ing.

5.1 SNAKE Model

We use {V t, Et} to indicate a closed curve representing the object boundary at time t.

V t =
{
vt

1, v
t
2, · · · , vt

n

}
, (5.1a)

Et =
{−−→

vt
1v

t
2,
−−→
vt

2v
t
3, · · · ,

−−−−→
vt

n−1v
t
n,
−−→
vt

nv
t
1

}
. (5.1b)
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A closed curve consists of n vertices and n edges. The vertices are 2D points (i.e., vt
i =

(xt
i, y

t
i)). The curve is a closed curve, as indicated by Equation 5.1b. {V t, Et} is assumed to

represent a simple curve (i.e., the curve does not cross itself). The edges in Et are directed,

as illustrated by Equation 5.1b. We also assume that a WSN can correctly detect the object

boundary. In short, compared to the resolution of spatial distribution of sensor nodes,

we assume a 2D object needs to be large enough. Due to the monitoring granularity, the

boundary of a small 2D object may not be detected. Since the vertices in V t are sufficient

to describe the edges in Et, as shown by Equation 5.1b and Equation 5.1a, we will use V t

to represent the closed curve in the following parts of this dissertation. Therefore, we use

V 0 to indicate the initial boundary geometry.
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Figure 5.1. Example of deformable 2D object tracking

leftV ertex(vt
i) =





vt
n, if i = 1;

vt
i−1, else.

(5.2)
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Figure 5.2. Topological relationship based on local angle

rightV ertex(vt
i) =





vt
1, if i = n;

vt
i+1, else.

(5.3)

For a vertex vt
i , we name vt

i+1 as the immediate right neighboring vertex of vt
i ; vt

i−1

is the immediate left neighbor, by facing the interior region at vt
i . As shown by Equation

5.2 and 5.3, the only exception is that vt
1 is the immediate right vertex of vt

n; vt
n is the

immediate left vertex of vt
1. The directed edge connecting vt

i and rightV ertex(vt
i) is the

right edge of vt
i , while the directed edge from leftV ertex(vt

i) to vt
i is the left edge of vt

i .

vt
i and its immediate left and right neighboring vertices form the local angle centered at

vt
i . For ∠rightV ertex(vt

i)v
t
i leftV ertex(vt

i), we define a point p is inside this angle, if p is

located on the right of both the right and left edges of vt
i , as illustrated by Figure 5.2.

In the field of computer vision, the deformable curve model is known as the SNAKE

(or Active Contour) model [KWT88]. Here, a deformable curve is used to approximate

an object boundary (e.g., coast lines in remotely sensed images) by using sparse points

and computing a coarse curve first. Then an energy model is used to adjust the location

and number of vertices. In a way, the deformable curve V t can be treated as a rubber band
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around a “solid” object. We can use the rubber band to represent the object’s boundary. The

adjustment of the representative curve is based on basic physical rules. When the rubber

band is stabilized under different physical forces, the overall elastic energy is minimal. As

shown by Figure 5.1, the vertices should be able to “move” over time under the influence

of different “forces”, and therefore deform the shape of the closed curve. At time t, the

placement of V t needs to minimize the “elastic” energy, E, as,

E = αEten + βEcur + γEext. (5.4)

Equation 5.4 describes the requirements for a curve to represent an object boundary. Eten

in the first term of Equation 5.4 is the first order continuity constraint. This term can be

viewed as the tension along the rubber band. If the rubber band is stabilized, the tension

should be equal along the band. In other words, the vertices need to be evenly distributed

along the boundary, which is controlled by Eten. Ecur in Equation 5.4 is the second order

continuity constraint, and indicates V t’s curvature. Ecur controls the smoothness of V t.

Eten and Ecur are also called internal forces, which model the geometric information about

V t. Given only Eten and Ecur, a deformable curve cannot represent a concave shape well.

Eext, which is known as the external force or edge strength, provides another force to

attach a deformable curve well to a 2D object of arbitrary shape. α, β and γ are relative

weights of each force model, and describe the importance of different forces to the final

shape and location of V t. By applying the SNAKE model and using deformable curves

to represent 2D objects, distributed sensor nodes adjust nearby vertices without knowing
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the global detailed shape of V t. Since the vertex movement is only influenced by different

forces, we need to find appropriate force models, which can be efficiently implemented in

the constrained WSN.

5.2 In-network Deformable Curve Tracking

Under the constraints of WSN, sensor nodes should minimize the communication con-

sumption to maintain the deformable curve structure. In this section, we demonstrate that

our revised SNAKE model achieves this design goal.

5.2.1 Efficient Force Models

To use the deformable curve model in WSNs, we constrain that a vertex, vt
i , can only move

to the location of sensor nodes. We call a sensor node, si, a vertex node at time t, if a

vertex vt
j is at the location of si (i.e., vt

j = si). To implement the tracking algorithm,

appropriate force models must be resource friendly. In our proposed approach, a node

locally detects three states, whether the node is located within the object (sensed value

above a user threshold), outside an object (value below the user-defined threshold), or on

the boundary based on the values of its neighboring nodes.

First, we need to find neighboring boundary nodes, NB(), defined as,

NB(si, t) : {sj| sj can communicate with si directly AND

sj detects the object boundary at t}.
(5.5)

97



As indicated by Equation 5.5, NB(si, t) is the set of si’s neighboring nodes that detect

the object boundary at time t. For simplicity, NB(si, t) may contain si, if si detects the

boundary. Based on the discussion in Chapter 4, sensor nodes are able to prepare local

object status and local object boundary status. Sensor nodes only exchange local boundary

detection results among immediate neighbors to generate NB().

External force models for image processing are an active research area. For example,

based on Fuzzy Set theory, Eext can be represented as a local certainty value about the

boundary [ASG01]. Additionally to the local boundary certainty, gradient vectors provide

directions towards the 2D object’s boundary [XP98]. Generating the gradient vectors, how-

ever, would require several iterations of messages exchanged among sensor nodes (not just

among vertex nodes), which is expensive.

In our revised SNAKE-based approach, Eext uses the local boundary detection results

provided by NB(). Based merely on NB(), however, an external force may not work well

when a vertex node cannot find the boundary report among its immediate neighbors. In the

balloon model [Coh91], the proposed Eext contains an outward pressure. By applying the

outward pressure, a deformable curve behaves like an inflating balloon to expand itself to

represent the object boundary. The balloon model works fine only if the deformable curve

is contained within the real object boundary. We need the deformable curve to be able to

also “deflate”. To better track the object boundary and save the communication cost, we
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Figure 5.3. External forces when NB() = ∅

define our external force model as follows.

Eext(si, t) =





NB(si, t), if NB(si, t) 6= ∅;

{sj|sj ∈ N(si) AND if NB(si, t) = ∅
sj is inside the curve}, AND O(si, t) = 1;

{sj|sj ∈ N(si) AND sj if NB(si, t) = ∅
is not inside the curve}, AND O(si, t) = 0.

(5.6)

As shown by Equation 5.6, the proposed external force, Eext, only requires message ex-

change among neighboring nodes. If some neighboring nodes detect the object boundary,

Eext allows the vertex to move onto anyone among them. Note here, a vertex may not need

to move, if the vertex node at t− 1 detects the boundary at t.

In some situations, a vertex node may lose track of the object boundary (e.g., when a

2D object moves fast), and none of its immediate neighbors detect the object boundary. Its

local object detection result and the curve’s topology information, however, provide useful

information to adapt the curve shape correctly. If a vertex node detects that it is not located
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within the object and cannot find the object boundary in the neighboring region, the node

must be located in the exterior region of the object. In this case, the deformable curve

needs to “deflate” locally, as shown by Figure 5.3(a). The neighboring nodes located in the

interior region of the closed curve are the candidate locations for the vertex. As illustrated

by Figure 5.3(b), if a vertex node detects that it is located inside of the object and finds

no boundary in its nearby region, the deformable curve “inflates” locally. The neighboring

nodes located in the exterior region of the closed curve are the candidate locations for

the vertex. Vertices can eventually find the object boundary by using the proposed Eext.

Although our Eext is light-weighted, our model flexibly adapts the deformable curve to

track the underlying 2D object.

Equation 5.6 provides several candidate locations for a vertex node to move to. A

vertex can only move to one location among the candidate locations. To calculate the

energy weight among the candidate locations, we revise Equation 5.4 as,

E = αEten + βEcur. (5.4′)

Based on Equation 5.4′, a vertex moves to the location with the minimal energy weight

among the candidate locations given by Equation 5.6.

The internal forces need to be resource efficient as well. A general model for Eten is

defined by,

dt−1 − ∣∣vt
i − vt

i+1

∣∣ ,
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where dt−1 indicates the average length of edges,

dt−1 =
1

n

∑
i=1

n
∣∣vt−1

i − vt−1
i+1

∣∣.

This model requires updating the average edge length, dt−1, among all vertex nodes if V t

changes. Perrin et al. proposed a new Eten model for detecting object boundaries in digital

images [PS01]. Perrin et al. showed that their Eten model constrains the vertices to be

evenly dispersed along the curve. So their Eten model is ideal for our tracking quality

requirements. We slightly modify their Eten model. Our Eten model is resource-efficient

and only requires message exchange among consecutive vertex nodes, as defined by,

Eten = V ar
(∣∣vt+1

i − vt
i−1

∣∣ ,
∣∣vt+1

i − vt
i+1

∣∣) . (5.7)

For a candidate location, vt+1
i , of vt

i , V ar() measures the variance of the lengths of two

consecutive edges,
∣∣vt+1

i − vt
i−1

∣∣ and
∣∣vt+1

i − vt
i+1

∣∣. When the two edges are equal length,

Eten is zero. To minimize Eten, the vertices need to be located at equal intervals along the

curve.

When the 2D object expands and shrinks, the deformable curve, like the rubber band,

should expand and shrink simultaneously. The parameter Dsplit controls the number of

vertices when the curve deforms.



∣∣vt
i+1 − vt

i

∣∣ 6 Dsplit, No change;

∣∣vt
i+1 − vt

i

∣∣ > Dsplit, Add a vertex between vt
i and vt

i+1.

(5.8)

When the distance between vt
i and vt

i+1 is larger than Dsplit, a new vertex is added between

vt
i and vt

i+1. As illustrated by Figure 5.4(a), to ensure the even vertex spacing, the new
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Figure 5.4. Examples of dynamic adding and folding
(a) adding a new vertex, and (b) folding vertices

vertex is placed at
(

xt
i + xt

i+1

2
,
yt

i + yt
i+1

2

)
. (5.9)

Dsplit ensures the largest disparity in the vertex spacing, and influences the tracking quality

of the deformable curve. When the deformable curve shrinks, multiple vertices may move

to a single sensor node. Some vertices moving onto a single node are consecutive neigh-

bors, and can be folded into a single vertex, as shown by Figure 5.4(b). A more complex

case will be explained in Section 5.2.2.

Ecur controls the curve’s smoothness. We use the value of the inner angle to represent

Ecur. The second order curvature can be used to represent the smoothness, which mini-

mizes the angle variation of three consecutive angles [PS01]. In short, the second order

curvature model requires that the three consecutive angles are similar. To find the curvature

value of the next location, p, for v1
3 in Figure 5.5(b), the second order curvature model needs
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Figure 5.5. Curvature models
(a) the 1st order curvature model, and (b) the 2nd order curvature model

to know the value of three internal angles, ∠pv1
2v

1
1 , ∠v1

4pv
1
2 and ∠v1

5v
1
4p. The second order

curvature needs a vertex location to be updated among five consecutive vertices, which is

expensive in communication. In Figure 5.5(b), the updated location of v1
3 should be sent

to v1
1 , v1

2 , v1
4 and v1

5 . To save the energy and communication cost, we choose the first order

curvature defined as,

Ecur = V ar
(
π, ∠vt

i+1v
t+1
i vt

i−1

)
. (5.10)

As indicated by Equation 5.10 and illustrated by Figure 5.5(a), the first order curvature

model is biased towards straight lines. The first order curvature requires a vertex update to

be exchanged only among three consecutive vertex nodes. For example, in Figure 5.5(a),

the updated location of v1
3 should only be sent to v1

2 and v1
4 . Our experiments showed that

the first and second order curvature models have almost the same tracking quality. One

possible explanation is that Ecur dominates the final curve shape only when Dsplit is large.

Similarly along a rubber band, a local bend only affects a nearby area.
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The revised Eext, Eten and Ecur models are light-weighted, and need message exchange

among neighboring nodes only. Based on the revised Eext, Eten and Ecur models, a WSN

efficiently “moves” vertices and therefore tracks the underlying 2D objects. We also need to

consider the topology changes when multiple 2D objects interact, which will be explained

by the next section.

5.2.2 Tracking Multiple Objects

When multiple 2D objects change their shapes and locations in space, basically two types of

topological changes (i.e., splitting and merging) are involved [JW09]. Deformable curves

representing 2D objects consequently should adapt their shapes to the topological changes.

The original SNAKE model is too rigid to do so, since the connected edges are unbreakable.

A flexible model is necessary for deformable curves to adapt to the topological changes.

Note here, we do not consider the dimensional changes in this dissertation. We assume that

the remaining objects after the splitting or merging changes need to be large enough for a

WSN to correctly detect the boundary and treat them as 2D objects.

(a) (b)

Figure 5.6. Ambiguity caused by different triangulation patterns
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Today, several revised SNAKE models have been proposed to use breakable curves to

track 2D objects [MT00, LV04]. Most models are based on a centralized infrastructure,

which is not suitable for the constrained WSN. In the T-Snake approach [MT00], the space

is partitioned into non-overlapping triangles. In a triangle cell, nonconsecutive edges need

to be removed and replaced by a single edge. The T-Snake approach, however, faces the

ambiguity caused by different triangulation patterns. In Figure 5.6, the solid lines indicate

the edge of deformable curves; the dotted lines represent the triangulation partition. The

edges in Figure 5.6(a) are identical to the edges in Figure 5.6(b). Due to the different trian-

gulation patterns, the edges in Figure 5.6(a) need to be removed, whereas the same edges

in Figure 5.6(a) can be kept. A global uniform triangulation pattern is necessary for the T-

Snake approach. Finding the global triangulation pattern in the constrained WSN, however,

has to consume additional resources, especially if sensor nodes are unevenly distributed or

nodes are mobile [SS04, HH05].

Interior 
Region

Edge of 
blue object

Edge of 
red object

merging two objects or splitting one object ?

Figure 5.7. Ambiguity when two 2D objects touches at a single point
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One observation is that any 2D object can be represented by a set of simple closed

curves. A 2D object can contain holes. A hole can also be represented by a simple closed

curve. Nonconsecutive edges in a simple closed curve cannot intersect, overlap or touch

with each other. Purely based on the geometric shape of deformable curves, our model

focuses on converting non-simple curves into simple curves.

Two 2D objects can touch at a single point. If we try to reconnect the edges linked to the

same point, we shall face an ambiguity. The reconnected edges simultaneously can indicate

a 2D object is splitting, as illustrated by Figure 5.7. To better adapt the deformable curves

to the topological changes, our model is based on detecting and removing overlapping and

intersected edges.

Interior 
Region

Removed 
edge

Remaining 
edge

Figure 5.8. Removing and reconnecting overlapping edges

The original SNAKE model is based on physical laws. It is intuitive to explain our

model by the example of soap bubbles. When two soap bubbles are merging, some parts of
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Figure 5.9. Example of splitting and merging
(a) splitting, and (b) merging
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the bubble walls from two bubbles overlap first. Then the overlapping bubble wall breaks

and two bubbles become a single bubble. Figure 5.8 shows a zoom-in picture of Figure

5.9(b). Let us consider one end-point of the overlapping edges in Figure 5.8. The end-

point is actually covered by two different vertices that were previously located at different

points but moved onto the same point. By removing the overlapping edges, we get two open

curves. One of the vertices on the same point then has the right edge removed; another one

has the left edge removed. The two vertices are locally reconnected and merge into a single

vertex. The merged vertex now has the left and right edges from remaining edges of the

previous two vertices. In this way, two open curves are reconnected into a single closed

curve.

When a bubble is splitting, a part of the bubble wall overlaps another part from the same

bubble, as illustrated by Figure 5.9(a). This can also be represented by Figure 5.8. The only

difference is that the edge direction is reversed, and the interior and exterior regions are

reversed. An interesting observation from Figure 5.8 is that detecting overlapping edges

can be done locally on distributed nodes.

Due to the discrete distribution of sensor nodes, the vertex movement cannot be contin-

uous. In some cases (e.g., uneven node distribution), edges may intersect with each other.

Since the closed curves are simple, the intersected edges need to be removed. We get open

curves after removing the intersected edges. As explained by Figure 5.10, those vertices

located on the non-boundary region should be removed, when the edge intersection occurs.
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Figure 5.10. Removing and reconnecting intersected edges

For a pair of removed intersected edges, two vertices (one without left neighbor, another

one without right neighbor) may remain. A new edge, therefore, should be added here to

reconnect the open curves, as shown by Figure 5.10. The two vertices on the open curves

consequently are consecutive vertex neighbors. As explained above, Dsplit is the longest

edge length. Suppose Rcomm indicates the communication range of wireless radio. Due to

the broadcasting nature of wireless channel, if Dsplit 6
√

2Rcomm, no additional communi-

cation is required to detect the intersected edges based on our in-network deformable curve

tracking.
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5.3 Algorithms

In the proposed approach, vertex location information is exchanged among neighboring

vertex nodes. When a vertex vt
i is located at a particular sensor node, the sensor node needs

to know the locations of vt
i−1 and vt

i+1. By assuming that the vertices are facing the exterior

region, we use the “LEFT” and “RIGHT” relations to identify the neighboring vertices. For

the vertex node of vt
i , we use two local variables, leftV ertex and rightV ertex, to store its

left and right neighboring vertices vt
i−1 and vt

i+1. A timer is used in our implementation to

control the sensors and the vertex movement. When time elapses from t to t + 1, sensors

collect new local readings. Afterwards, sensor nodes exchange local object and boundary

detection results. We use GPSR [KK00] as the communication protocol, and assume a

position service running on the background [LJD+00, DF03]. Sensor nodes therefore com-

municate with each other based on their locations. We also assume that the background

services handle node failures and communication failures.

5.3.1 Pseudo-codes and Description

Based on the neighboring boundary detection at time t + 1, a vertex node uses the location

of previous neighboring vertices at time t to calculate the vertex’s next location, as shown

by Table 5.1.

After exchanging local boundary detection results, a vertex node finds nearby nodes,

which detect the object boundary. If a neighboring node in the neighboring area detects
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Table 5.1. Algorithm of finding the next location of vt
i

Require: Sensor nodes exchange local object detection, objectDetected, and boundary
detection results among immediate neighboring nodes, NSensors. The neighboring
boundary reports is stored into a point array NBReports.

Ensure: vt
i moves to a node at location vt+1

i with minimal energy.

1: if NBReports.length 6= 0 then
2: CandLocs ⇐ NBReports
3: else
4: for all s ∈ NSensors do
5: if objectDetected =FALSE then
6: if s INSIDE ∠vt

i+1v
t
iv

t
i−1 then

7: CandLocs.add(s)
8: end if
9: else

10: if s OUTSIDE ∠vt
i+1v

t
iv

t
i−1 then

11: CandLocs.add(s)
12: end if
13: end if
14: end for
15: end if
16: MinE ⇐ +∞
17: r ⇐ vt

i+1

18: l ⇐ vt
i−1

19: for all s ∈ CandLocs do
20: Eten ⇐ V ar(|s− l|, |s− r|)
21: Ecur ⇐ V ar(π, ∠rsl)
22: E ⇐ αEten + βEten

23: if E < MinE then
24: MinE ⇐ E
25: nextLoc ⇐ s
26: end if
27: end for
28: return nextLoc
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the boundary, the node is a candidate for the vertex’s next location as shown by Table 5.1.

If the vertex node cannot detect the boundary in the nearby area, the node uses the local

angle’s topology information and its local object detection result to find the next candidate

location. If a vertex node detects neither the object nor the object boundary in the nearby

area, the candidate locations are within the interior region defined by the local angle. If a

vertex node detects the object but does not find the object boundary in the nearby area, the

candidate locations are within the exterior region, as illustrated by Table 5.1. Among the

candidate locations, the location with the minimal tension and curvature energy is the next

location for the vertex. A designation message is sent to the sensor node located at the next

location. When a sensor node receives a vertex movement message, the sensor node caches

the vertex movement into a cached vertex movement array, CV M . An element in CV M

contains the vertex’s previous location, and the vertex’s previous left and right neighboring

vertices. Since multiple vertices may move onto a single node at the same time, Table 5.2

is used to fold multiple vertices.

Multiple vertices may move onto the same sensor node. After receiving a vertex move-

ment message, a sensor node caches the vertex movement into a vertex movement array,

V M . An element in V M contains the vertex’s previous location, and the vertex’s previous

left and right neighboring vertices. Some vertices can be folded into a single vertices (e.g.,

consecutive left and right neighboring vertices), as illustrated by Table 5.2. By comparing

the LEFT and RIGHT relationships among vertices, Table 5.2 folds consecutive vertices
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Table 5.2. Algorithm of folding consecutive vertices

Require: A sensor node receives multiple vertex movement messages and caches the mes-
sages into cached vertex movement array V M .

Ensure: Folding vertices on the local sensor nodes and prepare the vertices list V L.

1: V L ⇐ V L.init()
2: repeat
3: mostLeft ⇐ V M.getF irst()
4: V M ⇐ V M.remove(mostLeft)
5: repeat
6: toRepeat ⇐FALSE
7: for all m ∈ V M do
8: if mostLeft.preLeft = m.preLocation then
9: V M ⇐ V M.insert(mostLeft)

10: mostLeft ⇐ m
11: V M ⇐ V M.remove(m)
12: toRepeat = TRUE
13: end if
14: end for
15: until toRepeat =FALSE
16: mostRight ⇐ mostLeft
17: repeat
18: toRepeat ⇐FALSE
19: for all m ∈ V M do
20: if mostRight.preRight = m.preLocation then
21: mostRight ⇐ m
22: V M ⇐ V M.remove(m)
23: toRepeat =TRUE
24: end if
25: end for
26: until toRepeat =FALSE
27: v ⇐ newV ertex()
28: v.preRight ⇐ mostRight.preRight
29: v.currentRight ⇐ null
30: v.preLeft ⇐ mostLeft.preLeft
31: v.currentLeft ⇐ null
32: V L ⇐ V L.insert(v)
33: until V M.length = 0
34: return V L
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Table 5.3. Algorithm of adding a vertex

Require: Vertex nodes update their current location to the left and right neighbors.
Ensure: Adding a new vertex operation if the distance between a vertex and its right vertex

is larger than Dsplit.

1: if |myLocation− rightV ertex| > Dsplit then
2: v.x ⇐ myLocation.x+rightV ertex.x

2

3: v.y ⇐ myLocation.y+rightV ertex.y
2

4: newV ertex ⇐ PositionService.F indNearestNode(v)
5: notifyNewV ertexTo(rightV ertex)
6: designateNewV ertex(newV ertex)
7: rightV ertex ⇐ newV ertex
8: end if

into a single vertex and inserts the vertex into the vertex list, V L. If vertices are not con-

secutive (e.g., the vertices are from two 2D objects), V L may contain multiple vertices.

Until now, a vertex movement is finished. The new vertex node then notifies the vertex’s

current location to its previous left and right vertex nodes. The current left and right vertex

nodes may get the message through the previous left and right vertex nodes. The updated

location messages are exchanged only among neighboring vertices through necessary re-

lays. After receiving the updated location of its neighboring vertices, a vertex node knows

the locations about its current right and left vertices. After the vertex updates are done, a

vertex node checks the distance to its right vertex. If the distance is larger than Dsplit, a

new vertex is added in between, as illustrated by Table 5.3.

The new vertex is the middle point of the local vertex and its right neighboring vertex.

Since sensor nodes are discretely distributed, the nearest sensor node to the middle point is
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found through the background position service [DF03]. As shown by Table 5.3, if a new

vertex is inserted, the nearby vertex links are updated, and the new vertex node is notified.

After receiving the updates from neighboring vertices, a sensor node needs to update

the corresponding vertex entry in the vertex list, V L. An element in V L, therefore, con-

tains the locations of the vertex’s current right and left neighboring vertices. Based on the

content of V L, a sensor node detects the overlapping edges locally. After removing over-

lapping edges, the open curves need to be reconnected. Some vertices may also be removed

accordingly as illustrated by Table 5.4. If no vertex remains (e.g., a vertex has its current

right and left neighboring vertices overlapping), the sensor node becomes a non-vertex

node. The edge between the local sensor node and brokenNeighbor indicates the removed

overlapping edges. The location of brokenNeighbor is useful to determine whether the

topological change is splitting or merging. After removing overlapping edges and recon-

necting open curves, the remaining vertex moves based on the force models afterwards.

In the in-network deformable curve tracking, vertex nodes need to update the current

vertex locations to neighbors. Vertex nodes can detect the intersected edges based on the

broadcasted vertex location updates. No additional communication is required over the

deformable curve tracking, if Dsplit 6
√

2Rcomm. After the pair of intersected edges are

detected, IE, the four vertex nodes need to be notified. Some vertices may need to be

removed if the vertices are not located on the object boundary, as illustrated by Table 5.5.

Intersected edges need to be removed. We need to close the open curves by reconnecting
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Table 5.4. Algorithm of removing overlapping edges and reconnecting open curves

Require: A sensor node folds multiple vertices and has the current neighboring vertices’
locations updated into the vertices list V L.

Ensure: Removing overlapping edges and corresponding vertices; reconnecting open
curves; reporting the removed edge.

1: for all v ∈ V L do
2: for all o ∈ V L do
3: if v.currentLeft = o.currentRight then
4: brokenNeighbor ⇐ v.currentLeft
5: v.currentLeft ⇐ null
6: o.currentRight ⇐ null
7: end if
8: end for
9: end for

10: for all v ∈ V L do
11: if v.currentLeft = null AND v.currentRight = null then
12: V L.remove(v)
13: end if
14: end for
15: for all v ∈ V L do
16: for all o ∈ V L do
17: if v.currentLeft = null AND o.currentRight = null then
18: v.currentLeft ⇐ o.currentLeft
19: V L.remove(o)
20: end if
21: end for
22: end for
23: return brokenNeighbor
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Table 5.5. Algorithm of removing intersected edges and reconnecting open curves

Require: The intersected edges have been detected; an IE structure contains the four
vertices of the intersected edges; consequently, four vertices have been notified about
the intersection and run this algorithm.

Ensure: Removing intersected edges and corresponding vertices; reconnecting open
curves; reporting the removed edges and vertices.

1: if localBoundaryStatus = false then
2: resignV ertex(mySelf)
3: return reportRemovedV ertex(myLocation)
4: end if
5: for i = 0 to 1 do
6: if i = 0 then
7: j ⇐ 1
8: else
9: j ⇐ 0

10: end if
11: if myLocation = e[i].leftV ertex then
12: rightV ertex ⇐ e[j].rightV ertex
13: return reportRemovedEdge(e[i])
14: else if myLocation = e[i].rightV ertex then
15: leftV ertex ⇐ e[j].leftV ertex
16: return reportRemovedEdge(e[i])
17: end if
18: end for
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remaining vertices, as explained by Table 5.5. Similar to the brokenNeighbor in Table

5.4, the location of intersected edges in Table 5.5 also helps to determine the type of this

topological change.

5.3.2 Discussion

We assume the initial curve V 0 is given. The initial curve V 0 can be found by distributed

algorithms [SO05, GHS07, LL07], or from the distributed detection result based on the

different models [XLCL06]. For example, the emergence of a 2D object matching a user-

defined shape can provide the initial boundary V 0. Due to the constrained environment,

the V 0 shape given by a distributed object detection is usually coarse, such as a simple

rectangle [XLCL06]. Our tracking algorithm changes and optimizes the shape and location

of V 0 based on the revised SNAKE model to effectively attach to the 2D object. Similar

results can be found in the related studies on SNAKE [Coh91].

The proposed tracking algorithm for deformable curves maintains the curves by local-

ized message exchange. When a vertex moves, the vertex node sends a designation message

to one of its immediate neighbors, and resigns. The new vertex node reports the updated

vertex location to the previous left and right vertex nodes. The previous left and right ver-

tex nodes may need to relay the update messages to the vertices’ current locations. Dsplit

roughly bounds the geographical range for a vertex update message to be transmitted. If the

curve keeps a constant number of vertices, the maintenance cost of the tracking algorithm
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is constant. If the curve expands and requires more vertices, the maintenance cost increases

linearly to the number of vertices.

Dsplit also controls the number of vertices along a closed curve. If Dsplit is large, fewer

vertices are added when a curve deforms. Dsplit is useful to control the quality of the

deformable curve to represent the underlying 2D object. Similar techniques have also been

applied to simplify the curve shape [GHS07]. Compared with reporting points along the

object boundary, the network requires less communication to send linked vertices, if Dsplit

is large. The difference is approximately scaled by Dsplit, since only the two end vertices

of a line with length = Dsplit represents the whole set of points along the line.

The location of brokenNeighbor is useful to locally judge the type of the topologi-

cal change, as explained by Algorithm 5.4. After removing overlapping edges, a sensor

node forms a new angle, which has the remaining left and right edges as the new angle’s

left and right edges. By comparing Figure 5.9(b) and Figure 5.9(a), we shall see that if

brokenNeighbor is within the new angle, then the topological change is a merging event.

If brokenNeighbor is outside the angle, a splitting event occurs. In some cases, a 2D object

may partially merge itself. For example, a band is bent into a ring. Similarly, a ring can be

broken into a band. To better solve this issue on how to efficiently and locally determine the

type of the topological change, we may need to assign unique identifications to 2D objects

[FZWN08]. For example, a sensor node can combine the object ID of the removed edge

with the topological test result based on the location of brokenNeighbor to determine if a
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ring is newly formed. We do not address this issue in detail, since it is beyond the scope of

this dissertation.

As illustrated by Figure 5.8, Algorithm 5.4 requires no additional communication cost

over the in-network deformable curve tracking. Detecting intersected edges may need ad-

ditional communication cost. If Dsplit is small enough, vertex nodes are able to detect

intersected edges through the broadcasting vertex location updates. After intersected edges

are found, the four vertex nodes need to be notified. Algorithm 5.5 removes the intersected

edges and reconnects the representative curves, as shown by Figure 5.10.

Based on the algorithms described in this section, a WSN is able to track 2D objects

separately and their interactions in-network. A WSN can update the deformable curves

to users and allow users to get the spatiotemporal properties from the geometric informa-

tion. The deformable curve tracking algorithm provides more than just the snapshot results

about representative curves. Based on the deformable curves, a WSN is able to directly ex-

tract abstract spatiotemporal properties of 2D objects without returning users the detailed

geometric information about the representative curves.

5.4 Abstract Information

As explained by A. Galton, several abstract spatiotemporal properties are useful for cog-

nition, linguistics and reasoning [Gal00]. In daily life, people can describe and exchange

information about 2D objects by abstract spatial and spatiotemporal information without
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any graphical aid. For example, a radio broadcast can report news about wild fires with-

out giving any images or videos. In Section 5.2.2, we have explained how to adapt the

representative curves to the topological changes involved by the interaction between mul-

tiple objects. In this section, we show how to efficiently compute other abstract spatial and

spatiotemporal properties based on the in-network deformable curve tracking.

5.4.1 Aggregated Information

We use the aggregated information of deformable curves to extract the overall spatial and

spatiotemporal properties about 2D objects.

MBRt =
(
MIN(X t),MIN(Y t),MAX(X t),MAX(Y t)

)
, (5.11)

where

X t =
{
xt

1, x
t
2, · · ·xt

n

}
,

Y t =
{
yt

1, y
t
2, · · · yt

n

}
.

The Minimal Bounding Rectangle (MBR) of a 2D object is a simple geometry to ap-

proximate the 2D object. As shown by Equation 5.11, we use the aggregation operation to

find the MBRs of 2D objects.

P t =
n∑

i=1

∣∣vt
i − vt

i+1

∣∣ . (5.12)
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As illustrated by Equation 5.12, the perimeter value of a closed curve is found by ag-

gregated information.

P t+1 − P t =
n∑

i=1

(∣∣vt+1
i − vt+1

i+1

∣∣−
∣∣vt

i − vt
i+1

∣∣) . (5.13)

The perimeter change is illustrated by Equation 5.13. If a pair of neighboring vertex nodes

remain relatively unchanged, Equation 5.13 is useful to suppress unnecessary local reports

about the perimeter calculation.

At =
1

2

n∑
i=1

(
xt

iy
t
i+1 − xt

i+1y
t
i

)
. (5.14)

As indicated by Equation 5.14, the area value of a closed curve is expressed by an aggre-

gated result. A vertex node prepares its local partial results based on its location and its

right neighboring vertex. The area about the region covered by current curve, therefore, is

aggregated through the partial results.

At+1 − At =
n∑

i=1

(
DA1t+1

i + DA2t+1
i

)
, (5.15)

where

DA1t+1
i =

1

2

∣∣vt+1
i − vt

i

∣∣ ∣∣vt
i+1 − vt

i

∣∣ sin ∠vt+1
i vt

iv
t
i+1, (5.16a)

DA2t+1
i =

1

2

∣∣vt+1
i+1 − vt

i+1

∣∣ ∣∣vt+1
i+1 − vt+1

i

∣∣ sin ∠vt
i+1v

t+1
i+1v

t+1
i . (5.16b)
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Figure 5.11. Examples of area changes

A variation of Equation 5.14 is the area change as indicated by Equation 5.15. As shown

by Figure 5.11, a local vertex node prepares the local area change based on the nearby

vertices’ locations. The local area change values, DA1t+1
i and DA2t+1

i , are signed scalars,

as indicated by Equation 5.16a and 5.16b. For example, Figure 5.11(a) shows that there is a

local enlarging defined by the two triangles4v1
1v

2
1v

1
2 with area = DA12

1 and4v1
2v

2
2v

2
1 with

area = DA22
1. The local area change may also be negative values. For example, in Figure

5.11(a), the area of 4v1
4v

2
4v

2
3 , DA22

3 < 0, indicates a local shrinking. The area change

operation, as indicated by Equation 5.15, can be used to suppress local partial aggregation

reports. For example, if the local area change is zero, a vertex node can suppress the local

report to its parent node.
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Ct = (xt
C , yt

C), (5.17a)

xt
C =

1

6At

n∑
i=1

[
(xt

i + xt
i+1)(x

t
iy

t
i+1 − xt

i+1y
t
i)

]
, (5.17b)

yt
C =

1

6At

n∑
i=1

[
(yt

i + yt
i+1)(x

t
iy

t
i+1 − xt

i+1y
t
i)

]
. (5.17c)

The centroid of a 2D object is also called the center of mass or the center of gravity. We

treat the centroid of a 2D object as a 2D point, as indicated by Equation 5.17a. Since the

area of a 2D object is represented by aggregated information, the location of centroid is

aggregated as indicated by Equation 5.17b and 5.17c.

At+1xt+1
C − Atxt

C =
1

3

n∑
i=1

[
DA1t+1

i

(
xt

i + xt+1
i + xt

i+1

)

+DA2t+1
i

(
xt

i + xt
i+1 + xt+1

i+1

)]
, (5.18a)

At+1yt+1
C − Atyt

C =
1

3

n∑
i=1

[
DA1t+1

i

(
yt

i + yt+1
i + yt

i+1

)

+DA2t+1
i

(
yt

i + yt
i+1 + yt+1

i+1

)]
. (5.18b)

The centroid change is represented as a weighted sum, as indicated by Equation 5.18a

and Equation 5.18b. A vertex node prepares the local partial result based on the nearby

vertices’ location changes and the area change. Similar to the area change, Equation 5.18a

and Equation 5.18b can also be used to suppress the local partial aggregated results.

−−−−→
CtCt+1. (5.19)
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Based on the updates about the centroid’s location, users can understand an object’s overall

location changes in the spatiotemporal space. Equation 5.19 describes the trajectory of the

2D object between time t and t + 1. Based on Equation 5.19, we support spatiotemporal

queries about the object’s movement and moving direction. For example, “how fast is the

2D object moving?” and “is the 2D object moving north?”

∠CtpCt+1. (5.20)

We also use the centroid to define the rotation information. The rotation information is

defined by the centroid’s change relative to a given point, p. Based on Equation 5.20, we

can answer spatiotemporal queries about the object’s rotation for the given point p, such as

“is the 2D object moving anticlockwise for the point p?”

n∑
i=1

∠vt
ipv

t
i+1 =





2π, inside; (5.21a)

0, outside. (5.21b)

Many point-set topological relationships are based on the test of the INSIDE relation.

Users are also interested in queries like “is the 2D object covering a point p?” As indicated

by Equation 5.21a and 5.21b, we do the INSIDE test through an aggregated angle sum.

A vertex node computes the local angle value defined by its location, its right vertex and

the given point p. If a point p is not located inside the closed curve, the angle sum is zero,
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Figure 5.12. Examples of INSIDE relation test
(a) not inside, and (b) inside
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as shown by Figure 5.12(a). If a point p is located inside the closed curve, the aggregated

angle sum is 2π, as illustrated by Figure 5.12(b).

5.4.2 Predictive Information
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Figure 5.13. Examples of edge projection

xt+∆
i = xt

i + ∆
(
xt

i − xt−1
i

)
, (5.22a)

yt+∆
i = yt

i + ∆
(
yt

i − yt−1
i

)
. (5.22b)

The tracking of deformable curves also supports extrapolating the curves’ future loca-

tion and shape. This type of estimation is done based on the edge projection over time.

We estimate a vertex’s location in the near future based on Equation 5.22a and Equation

5.22b. A vertex node projects its right edge to find the region that may be affected by the
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object in the near future. For example, in Figure 5.13(a), the sensor node at v2
1 is able to

extrapolate the location of v1 at time 2 + ∆ based on the vertex movement from v1
1 to v2

1 .

Similarly, the sensor node is able to compute v2+∆
2 . The locations of v2

1 , v2+∆
1 , v2

2 and v2+∆
2

define a quadrangle. We use the localized edge projection, and test if a point p is inside this

quadrangle to support spatiotemporal queries for the future. For example, “is the 2D object

going to cover (or uncover) the point p in the next ∆ time?” We use this localized operation

to set real-time alerts for the near future. The quadrangle may be non-simple, as illustrated

by Figure 5.13(b). A vertex sensor node may be folded from multiple vertices. In this case,

the previous location is defined as the centroid of the multiple previous locations.

5.4.3 Discussion

Based on the in-network tracking of deformable curves, many types of spatial and spa-

tiotemporal properties of 2D objects can be extracted by the aggregation operations. Com-

pared with reporting boundary points or linked vertices, processing the aggregated infor-

mation greatly reduces the communication consumption. The abstract spatial and spa-

tiotemporal properties are useful for people to describe and exchange information about

the underlying phenomena. By processing the aggregated information, an SDMS provides

real-time reports about the spatial and spatiotemporal properties of 2D objects. For ex-

ample, “how is the wildfire changing its area?”, or “how is the wildfire moving?” In this

way, an SDMS is able to provide useful spatial and spatiotemporal properties of 2D objects
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for users and high-level reasoning mechanisms, while saving expensive communication to

report the detailed geometric information about the objects.

Although an individual sensor node does not know the global and detailed geometric

information about the 2D objects, the node is still able to detect local representative curve

changes and extrapolate the local object boundary in the near future. Through the local-

ized edge projection, distributed sensor nodes are able to provide real-time alerts for many

applications, such as an emergency evacuation.

5.5 Chapter Summary

This chapter presents an efficient approach to track 2D objects by using WSNs. Our ap-

proach uses a deformable curve to represent and track a 2D object. The representative

curve is also breakable. Therefore, the shape of deformable curves are adjusted accord-

ing to the interactions between multiple 2D objects. In our approach, sensor nodes track

individual vertices on the representative curve without knowing the global detailed geo-

metric information about the curve. Sensor nodes only need to exchange messages among

neighbors to maintain deformable curves. Consequently, our approach is resource-efficient

to the constrained environment. Furthermore, based on the tracking algorithm, an SDMS

is able to provide many abstract spatiotemporal properties of 2D objects through the in-

network aggregation operations and localized edge projection. In this way, an SDMS can
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directly answer qualitative spatiotemporal queries while the communication cost to return

the detailed geometric representations to a base station is saved.
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Chapter 6

EXPERIMENTAL EVALUATION

This chapter presents the experimental results of our approaches.

6.1 Analysis of SWOP

We assume that SWOP is implemented in a challenging environment (i.e., mobile WSNs).

Here, we used (128bits) x-y coordinates to identify sensor nodes, chose the HEED-based

clustering procedure, and assumed the node communication range is larger than the re-

quired cluster radius (i.e., a direct communication link between a non-head member and its

cluster head). We implemented SWOP in Java and ran it over different data sets. In our

simulations, the behavior of WSN was simulated by treating each sensor node as a thread

running independently and communicating with each other by exchanging messages. The

data sets consist of two real data sets from the CalCOFI survey off the coast of Southern

California [BWS+02] and from an experiment in the Intel Lab [Int04], and two synthetic
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data sets. Without losing any generalization, we normalized the sensor readings to [0, 1].

Finding an optimal bandwidth has been researched well for Kernel estimation [LS97], and

the fast optimization algorithm [RD06] for the Gaussian Kernel bandwidth is also available.

Therefore, we only tested SWOP under pre-chosen bandwidths. The fixed bandwidth is

also useful to test two synthetic data sets, since we compared the SWOP estimation results

with alternative estimation techniques, including spatial regression and Voronoi-diagram,

with regard to their processing costs based on the estimation quality. Most related solutions

only compare their results with the results from the centralized solution [GBT+04, SS04].

It is difficult to cross-evaluate different approaches since the code of other solution is not

available or not compatible. In our experiments, we compared the estimation results of

SWOP on “real” underlying phenomena (i.e., two synthetic data sets) to test the estimation

quality. Our experiments demonstrate the high estimation quality of SWOP.

6.1.1 Coefficient Ordering Strategy and Error Evaluation

SWOP returns the distribution of an underlying phenomenon for a given region. An effi-

cient in-network query processing should target to minimize the difference between results

of the traditional centralized techniques and itself. The following tests are based on the

average MSE from multiple runs. We first compared the MSEs between the results of

SWOP and centralized Kernel estimation as shown by Table 6.1 based on different trun-

cation strategies. Table 6.1 confirms that by ordering the polynomial order of Hermite
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coefficients, SWOP achieves high quality results while relaxing the data requirement com-

pared with taking the p2 terms by the original FGT. Aggregating more Hermite coefficients

with higher polynomial-order decreases the difference between results of SWOP and the

centralized Kernel estimation. Since the largest MSE values between results of SWOP

based on zero polynomial order Hermite coefficients and the centralized Kernel estimation

results are around 10−3, we performed other quality tests based on the zero-order Hermite

coefficients.

The first two real data sets only provide us with point samples of a realistic underlying

phenomenon. There is no reading available between the point samples. From the two

synthetic data sets, we pick a part of the readings as input point samples, and use other

readings as the “real” phenomenon values. The two synthetic data sets allow us to compare

the estimated results with “real” values as shown by Table 6.2. Based on our parameter

choice for the first synthetic data set, the mean squared errors between the SWOP result and

the “real” phenomenon are around 10−3. The SWOP result of #1 set is reliable for many

practical purposes. We fixed the bandwidth for the second synthetic data to test SWOP

against alternative approaches, although the MSE on the second synthetic data indicates an

over-smoothed result. In practice, the method introduced by [RD06] can help users to find

the optimal bandwidth according to different phenomenon distributions.
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Table 6.2. Mean squared errors relative to “real” values
Data set Kernel SWOP

Synthetic #1 4.6E-03 7.16E-03
Synthetic #2 3.23E-02 4.40E-02

6.1.2 Estimation Results

To demonstrate the estimation result using SWOP, we ran SWOP a multitude of times for

each data set. The estimation results with the highest compression rates were chosen for

display.

The first data set has 372 measurements of salinity density off the coast of Southern

California in the CalCOFI survey [BWS+02], based on which a 30×30 unit estimation map

with τ = 0.2 is generated. Figure 6.1(b) shows the estimation result based on the traditional

centralized Kernel estimation while the result using SWOP with 0 order coefficients and the

result based on Voronoi-diagram are shown in Figure 6.1(c) and Figure 6.1(a) respectively.

In this example, the x-coordinate is the distance from the coast, y indicates the depth of

the sample from the mean sea surface. Negative values in x indicate in-land river water

readings. A lighter point in Figure 6.1 indicates the saltier water.

Figure 6.2 illustrates the second test based on a smaller data set from the Intel Lab.

In this data set, 48 point temperature samples of sensor nodes distributed over the ceiling

of a Intel lab were taken from a snapshot during an experiment in the Intel Lab [Int04].

A 30 × 30 unit map is estimated. The results based on Voronoi-diagram, the centralized
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(a)

(b)

(c)

Figure 6.1. Query results on the salinity data
(a) the result based on Voronoi diagram, (b) the result of centralized Kernel, and (c) the

result of SWOP
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(a)

(b)

(c)

Figure 6.2. Query results on the Intel lab data
(a) the result based on Voronoi diagram, (b) the result of centralized Kernel, and (c) the

result of SWOP
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Kernel estimation with τ = 11 and SWOP with 0-order coefficients are shown by Figure

6.2(a), Figure 6.2(b) and Figure 6.2(c) respectively, where a darker point indicates the

colder temperature.

Both measured data sets (i.e., salinity and Intel-Lab data sets) only provide point sam-

ples, but the validation of the estimation quality compared to the real underlying phe-

nomenon values is not possible. However, we can compare SWOP’s estimation quality

with regard to other estimation methods, performed in a central setting. Furthermore, we

use two synthetic data sets to test the effectiveness of SWOP. Two 401× 401 unit continu-

ous gray scale pictures were synthetically generated as shown in Figure 6.3(a) and Figure

6.4(a). These two data sets can be interpreted as two different distributions of a “real phe-

nomenon”. For example, we can assume two gas leaks in the upper-left and lower-right

corner of Figure 6.3(a). We set τ = 80 to test the performance of SWOP based on 21× 21

point samples taken from the underlying “phenomenon” at the interval of 20 pixels. Figure

6.3(b) and Figure 6.4(b) illustrate the results of centralized Kernel estimation. Figure 6.3(c)

and Figure 6.4(c) show the SWOP estimation results with 0-order coefficients for the two

synthetic data sets. For the fixed bandwidth, both the centralized Kernel estimation and

SWOP return a truthful estimation result on the synthetic data #1. For the second data set,

the two small “gas leaks” are obscured, which indicates an over-smoothed result. The re-

sult of SWOP based on the 0-order Hermite coefficients is a little distorted compared with
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(a)

(b)

(c)

Figure 6.3. Query results on the synthetic Data #1
(a) the original data, (b) the result of centralized Kernel, and (c) the result of SWOP
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(a)

(b)

(c)

Figure 6.4. Query results on the synthetic Data #2
(a) the original data, (b) the result of centralized Kernel, and (c) the result of SWOP
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the centralized Kernel estimation result. Here, we set the bandwidth fixed on purpose to

compare the quality of SWOP estimation results with other alternative estimation results.

The estimation results based on Voronoi-diagram depict the layout and readings of sen-

sor nodes directly, but the results are coarse compared to the results based on Kernel esti-

mation. Furthermore, the cost of processing a Voronoi-diagram-based approach limits its

application in the constrained WSNs. Whereas, even compared with the “real” phenomena,

the results of SWOP still directly illustrate the phenomenon’s distributions.

6.1.3 Cost Evaluation

In our tests, we use one double value (64bits) to represent a sensor reading and two double

values (128bits) to represent a sensor node identity (i.e., its location). We recorded the

average number of clusters and the average size of raw data and SWOP data for each

cluster based on 0-order Hermite coefficients from multiple independent tests on each data

set, as shown by Table 6.3. The clustering algorithm plays an important role in SWOP

for the compression gain. After being clustered, a non-head node requires 192 bits to

send its reading and ID to the cluster head. The message size for each cluster head to

represent its cluster members depends on the chosen order of Hermite coefficient. For the

zero polynomial order, each cluster head needs 256 bits to represent its member nodes

for both the numerator and denominator in Equation 3.9. Since small clusters just send

their raw readings, the average message size is a little smaller than 256 bits as shown by
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Table 6.3. Compared with transmitting raw data for each cluster, SWOP saves 94% in

the communication cost. The total communication cost of a network depends on different

communication protocols and network layouts. It is difficult to simulate SWOP for all

cases, and thus, we only consider the size of data collected from cluster heads.

Table 6.3. Required data size for each cluster(in bit)
Data set # of clusters Raw data SWOP
Salinity 21 3475.39 253.85
Intel-lab 8.8 1093.12 249.7

Synthetic #1 23.1 3572.66 251.4
Synthetic #2 22.7 3730.04 252.3

6.1.4 Comparison with Alternative Approaches

Wavelet and Delta Compression

A compression technique can be applied in clustering protocols to compress raw sensor

readings for each cluster. We implemented the Haar wavelets and let cluster heads trans-

form raw readings and node IDs into wavelets. Table 6.4 illustrates the experiment re-

sults on the two real data sets for different wavelet coefficient settings. An advantage of

wavelets is that they can represent data in different scales and compress data losslessly

based on which we can apply any analytical models. As shown in Table 6.4, the Haar

wavelets can compress lossless data in about 60% size of the raw data for each cluster.

In our experiments, we only compared the centralized Kernel estimation results based on

the wavelet data with the Kernel estimation results on original data. By eliminating small
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wavelet coefficients, we can achieve higher compression rates, but degrade the estimated

results. However, to achieve a similar quality of SWOP, wavelet-based methods require a

larger data size than SWOP does. More tests on the synthetic data sets and the Delta com-

pression show similar results to wavelets, therefore we exclude the detailed comparison

about them. By evaluating the Haar wavelets, the Delta-compression and SWOP, we con-

clude that SWOP requires less communication cost but still returns high quality estimation

results.

Table 6.4. Evaluation on wavelets
Coefficient threshold Data size MSE
readings node ID
Intel-Lab data

0 0 698.98 0
0.2 0 449.71 9.53E-04
0.4 0 391.79 1.71E-02
0 6 661.98 1.23E-03
0 10 649.04 2.63E-03

0.3 6 310.82 8.53E-03
0.4 6 317.28 2.49E-02
0.3 8 323.61 8.6E-03
0.4 8 329.81 2.92E-02

Salinity data
0 0 2896.26 0

0.2 0 1967.57 9.63E-04
0.4 0 1919.22 1.11E-02
0 0.10 1529.13 1.93E-03
0 0.2 1534.45 7.43E-03

0.2 0.1 651.84 1.97E-03
0.3 0.1 687.52 7.43E-03
0.2 0.15 619.79 6.43E-03
0.3 0.15 594.22 1.33E-02
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Spatial Regression

Since we fixed the bandwidth for both synthetic data sets, we compare SWOP with differ-

ent 2D spatial regression methods on the synthetic data sets based on different estimation

qualities. We did our tests to evaluate the estimation results against the “real” phenomenon

values and the cost of processing alternative approaches in the network.

Table 6.5. Evaluation on 2D polynomial regression
Polynomial Order MSE # of f()s
Synthetic data #1

1 7.5E-02 3
2 1.2E-02 6
3 4.8E-03 10
4 1.5E-03 15

Synthetic data #2
1 6.2E-02 3
2 6.0E-02 6
3 4.9E-02 10
4 2.6E-02 15

We ran different 2D spatial regression methods in a traditional centralized setting on

raw data. Table 6.5 shows the results based on different orders of polynomial regressions.

With higher orders of polynomial equations, the estimation results reach higher quality.

To achieve a similar estimation quality of SWOP with the current bandwidth setting, a 2D

spatial polynomial regression requires 10 or more basis functions for both synthetic data

sets. For Kernel regression, we tested different numbers of kernels based on different kernel

functions separated at fixed intervals with different bandwidths. Table 6.6 illustrates the
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minimal MSE based on different numbers of kernels and different kernel functions. Table

6.6 also shows the chosen bandwidth and kernel-center interval for the different kernel

functions to return the best estimation results based on different numbers of kernels. To

achieve a similar quality of SWOP, the Kernel regression requires 9 or more kernels. Figure

6.5 and Figure 6.6 show the estimation results based on the cubic polynomial, and the best

estimation results based on 9 cone kernels and 9 Gaussian kernels for synthetic data #1 and

#2 respectively.

Generally, both regression estimation methods require 9 or more basis functions to

achieve a similar or better quality of SWOP. To return the final estimation results, we need

at least (81 + 9) · ki data from the network. Applying several types of kernel functions

decreases the size of data exchanged among neighboring nodes, but the estimation results

are not smooth due to the discontinuity of the kernel functions (e.g., the estimation results

based on cone kernels Figure 6.5(b)). On average, for both synthetic data sets, SWOP

returns around 23 clusters, and requires a similar size of data, about 23 · 4 · ki, from the

network for a similar quality compared to the 2D spatial regression methods. However,

almost all nodes involved in regression methods need to receive and send the same large

size of data. In SWOP, only the cluster heads near to the central base or a micro-server need

to communicate with the large-sized messages. The nodes within a cluster and the nodes at

the bottom on a routing tree in SWOP reduces their communication costs. Furthermore, for

the current cluster radius setting 0.9(80) = 72 and the current spatial window size 401 ×
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401 unit, a compact clustering pattern should contain less than 9 clusters. The distributed

clustering algorithm does not return a good clustering pattern. SWOP can achieve a higher

compression gain by applying more sophisticated clustering methods.

Regression estimation methods focus on minimizing global errors, while SWOP and

non-parametric estimation methods focus on revealing local variations. If we compare the

estimation results of SWOP and regression estimation methods with the “real” underlying

phenomenon values, the local change is better preserved by SWOP than by regression

estimation methods for the similar global quality, MSE. For example, in Figure 6.6(a), one

of the small peaks totally disappeared.

6.2 Analysis of NED

We simulated NED using MatLab. To test the performance of NED, we used a graphic tool

to generate several gray-level pictures in which the gray-level values represent the under-

lying phenomena. The gray-level value is represented as from 0 (pure white) to 1 (pure

black) without loss of generality. The unit distance is 1 pixel distance in our experiments.

A 101× 101 picture, as shown by Figure 6.7, is used by most of our experiments on NED.

The phenomenon illustrated by Figure 6.7(a) continuously changes over the space. The

cross section at Y = 50 clearly indicates the continuity of the phenomenon as shown by

Figure 6.7(b). Sensor nodes were assumed to be located distributed over the graphic area

and took the local pixel gray values as the sensor readings. We applied normal white noise
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(a)

(b)

(c) Gaussian Kernel

Figure 6.5. Alternative estimations on the synthetic data #1
(a) the result of Polynomial regression, (b) the result of Cone Kernel regression, and (c)

the result of Gaussian Kernel regression
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(a)

(b)

(c)

Figure 6.6. Alternative estimations on the synthetic data #2
(a) the result of Polynomial regression, (b) the result of Cone Kernel regression, and (c)

the result of Gaussian Kernel regression
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to each sensor reading. We also assume that sensor nodes can communicate with each

other within the distance 5, and run different estimation methods 500 times for different

parameter settings. In the following tests, ∆1 and ∆2 are set to the 95% confidence level if

there is no more specification.

6.2.1 Object and Boundary Detection

For the first experimental test set, the sensor nodes were located in a grid layout. The

distance between two neighboring nodes is 3 pixel distance. Figure 6.8 shows an object

detection result based on T = 0.5 with different noise levels. In Figure 6.8, the object

is located inside the solid line. The dots indicate the sensor nodes that detect the object,

whereas the circles indicate the nodes detecting the non-object. Figure 6.8(a)-6.8(d) illus-

trate the results with noise variance settings σ = 0.1 to σ = 0.4 respectively. As we can

see, NED effectively estimates the object distribution with the noise setting, N(0, 0.12).

For more noisy readings, the estimation result of NED is degraded, but is still acceptable.

Figure 6.9 shows the boundary detection results of NED, in which the solid line indi-

cates the exact boundary and the circles are the sensor nodes reporting the boundary. Figure

6.9(a)-6.9(d) show the boundary detection results with noise variance settings σ = 0.1 to

σ = 0.4 respectively. The boundary detection result based on N(0, 0.12) is still the best

detection quality. The estimation quality decreases as the noise variance increases. The

result based on σ = 0.4 is not as clear as the result based on smaller σ values. But the
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Figure 6.7. A synthetic phenomenon
(a) the field distribution, and (b) the cross section at y = 50
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Figure 6.8. Object detection results with T = 0.5 under different noise levels
(a) σ = 0.1, (b) σ = 0.2, (c) σ = 0.3, and (d) σ = 0.4
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(d) σ = 0.4

Figure 6.9. Boundary detection results with T = 0.5 under different noise levels
(a) σ = 0.1, (b) σ = 0.2, (c) σ = 0.3, and (d) σ = 0.4
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result based on σ = 0.4 delivers still discernable results, although the noise level, σ = 0.4

is large compared with the boundary setting T = 0.5.

NED supports arbitrary settings on the object boundary thresholds. Figure 6.10 shows

the boundary detection results based on different threshold settings with the noise setting

σ = 0.1. For the moderate noise level setting, NED returns precise boundary detection

results. The sensor nodes around the object boundaries successfully report the boundary

locations. Figure 6.10 indicates that the size of object Y (p) > 0.8 is smaller than the size

of object Y (p) > 0.6, as we can observe from Figure 6.7.

We conducted other tests to simulate mobile sensor nodes. As illustrated by Figure

6.11, we randomly selected 1500 pixels from the simulated phenomenon to provide the

locations and readings of sensor nodes. A white normal noise with variance σ = 0.1 was

also applied to each reading. As shown by Figure 6.11(a), NED returns a clear object

boundary detection result based on the threshold T = 0.5. Figure 6.11(b) illustrates the

nodes almost perfectly report the object status.

We used a binary phenomenon as shown by Figure 6.12(a) to test the performance of

NED on discontinuous phenomena. The cross section at y = 30, in Figure 6.12(b), shows

that the phenomenon is a step function across the space. We set the boundary threshold

T = 0.5 and the noise variance as σ = 0.1 to test the performance of NED. Since the

phenomenon is not spatially continuous around the object boundary, we set the significance

level of ∆2 to 99% to increase the boundary estimation quality. Figure 6.12(c) shows the
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Figure 6.10. Detection on arbitrary thresholds
(a) the boundary detection on T = 0.6, (b) the object detection on T = 0.6, (c) the

boundary detection on T = 0.8, and (d) the object detection on T = 0.8
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Figure 6.11. Detection results based on random layouts
(a) the boundary detection, and (b) the object detection

sensor nodes successfully report the object boundary. The nodes almost perfectly detect the

object as illustrated by Figure 6.12(d). Overall, Figure 6.12 exemplifies the effectiveness

of NED on discontinuous phenomena.

6.2.2 Estimation Quality of NED

We ran NED and alternative approaches a multitude of times to test the object and ob-

ject boundary estimation quality. Here, we use triple values in the format of (minV alue,

meanV alue, maxV alue) to indicate the object detection quality. The minV alue (maxV alue)

indicates the lower (upper) bound of the number nodes which successfully report the local

object status in a test from 500 tests. The meanV alue indicates the average number of
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Figure 6.12. NED results on a binary phenomenon
(a) the field distribution of the phenomenon, (b) the cross section at y = 30, (c) the NED

boundary detection result, and (d) the NED object detection result
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nodes which successfully reports from the multiple tests. Table 6.7 illustrates the quality

of estimation results for T = 0.5 with different noise variance settings based on the grid-

like network layout from 500 tests. We used different methods to estimate the local phe-

nomenon value. The nodes in large spatial distance from the object boundary rarely make

erroneous estimation results. All tested methods achieved a detection success rate over

90%. We set the corresponding significance level to 95% for ∆1 in NED, and tested the

performance of the uncompressed moving arithmetic average and median methods with-

out transforming significant float readings into binary values. While the variance of noise

increases, the estimation quality of different methods decreases. As shown by Table 6.7,

the estimation quality of NED and uncompressed arithmetic average method are almost the

same and the best among these methods. The moving median and majority voting meth-

ods report more erroneous results than NED does. One possible explanation is the limited

number of neighboring nodes, which restricts the performance of methods based on moving

median and majority voting.

6.2.3 Effectiveness of ∆1

NED allows users to choose different ∆1 settings to encode corresponding local significant

object estimation results into binary messages. Different ∆1 settings can affect both the

estimation quality and the communication cost.
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Table 6.7. Estimation quality
σ # of successful estimations(min,mean,max)

NED Moving Arithmetic Average Moving Median Majority Voting
0.1 (1132,1146.5,1154) (1135,1146.8,1153) (1130,1142.7,1150) (1130,1142.7,1150)
0.2 (1115,1135.9,1147) (1118,1136.2,1146) (1105,1130.1,1145) (1105,1130.1,1145)
0.3 (1101,1124.4,1140) (1101,1124.8,1138) (1083,1115.8,1134) (1083,1115.8,1134)
0.4 (1071,1113.3,1133) (1071,1113.6,1132) (1056,1101.5,1127) (1056,1101.8,1128)
0.5 (1056,1097.3,1124) (1056,1097.7,1122) (1028,1079.5,1118) (1029,1080.6,1120)
0.6 (1036,1080.6,1111) (1044,1081.4,1113) (989,1054.5,1097) (990,1056.9,1099)
0.7 (1007,1060.9,1098) (1010,1061.7,1098) (958,1027.7,1078) (963,1031.8,1080)
0.8 (992,1037.8,1082) (991,1038.9,1083) (919,999.92,1057) (925,1005.8,1063)
0.9 (944,1013.1,1062) (943,1014.4,1062) (885,970.62,1033) (892,977.68,1045)
1.0 (914,989.49,1052) (914,990.78,1057) (865,945.36,1011) (871,953.48,1019)

Table 6.8. Estimation quality for different ∆1 significant levels
σ Significant Level of ∆1(min,mean,max)

90% 80% 70% 60%
0.1 (1133,1146,1151) (1133,1145.7,1152) (1130,1144.9,1151) (1131,1143.7,1149)
0.2 (1116,1135.2,1147) (1118,1134.8,1144) (1111,1134.2,1145) (1114,1132.5,1148)
0.3 (1087,1123.6,1140) (1085,1123.1,1138) (1099,1122.2,1137) (1080,1120.6,1138)
0.4 (1084,1111.9,1129) (1074,1110.8,1134) (1076,1110,1135) (1079,1106.5,1129)
0.5 (1059,1099.2,1125) (1057,1097.5,1124) (1059,1095.1,1124) (1047,1090.9,1121)
0.6 (1035,1081.3,1115) (1035,1079.9,1115) (1023,1076.2,1107) (1025,1071.1,1106)
0.7 (990,1060.6,1106) (1014,1058.7,1109) (998,1053.9,1097) (988,1047.8,1101)
0.8 (983,1038.6,1082) (978,1036.3,1088) (957,1031.2,1072) (951,1023.9,1070)
0.9 (938,1014.5,1077) (945,1012.8,1065) (929,1007.5,1067) (920,999.08,1054)
1.0 (893,993.85,1063) (883,991.55,1048) (921,985.16,1060) (900,976.24,1037)

Table 6.8 depicts the estimation quality of different ∆1 settings under different noise

variances from 500 tests. As the ∆1 value decreases, the estimation quality of NED de-

grades and becomes closer to the majority voting. For a small noise effect, the difference

between different ∆1 settings is small as illustrated by Table 6.8.
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(a)

(b)

Figure 6.13. Data requirement of NED
(a) the average size of sent data, and (b) the average size of received data
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Wireless radio communication is one of the most resource consuming components of

processing in WSNs. Figure 6.13 shows the average data requirement for the object detec-

tion results based on T = 0.5 with different noise levels from the grid network layout. As

explained by Figure 6.13(a), the majority voting method only needs 1 bit to encode local

object estimation whereas the uncompressed moving arithmetic average or median meth-

ods require 32 bits to encode a sensor reading. The average size of received data, however,

depends not only on particular algorithms, but also on the wireless radio communication

range. Nodes can hear from each other within the distance of 5. A node receives more

data than it sends, as shown by Figure Figure 6.13(b). Overall, Figure 6.13(a) and Figure

6.13(b) show similar results. The communication requirement of NED is between the two

methods. The ∆1 setting also affects the communication cost. A small ∆1 can reduce the

communication cost of NED. When the noise effect is small, users can set a small ∆1 to

achieve a low-cost communication and still maintain a good estimation quality.

6.2.4 Effectiveness of ∆2

NED uses ∆2 to control the object boundary estimation. ∆2 represents the confidence

level of local boundary estimation results. Based on ∆2, distributed sensor nodes are able

to report significant boundary estimation results. Figure 6.14 shows boundary estimation

results for different ∆2 settings. As the ∆2 value increases, the width of the estimated
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boundary gets “thinner” as illustrated by Figure 6.14(a) to Figure 6.14(d). Some nodes

around the boundary may fail to report the boundary if ∆2 is too small.

6.3 Evaluation on Tracking Deformable Curves

We implemented and tested the proposed distributed deformable curve tracking algorithm

in TinyOS [LLWC03], and used CLDP [KGKS05], which is an enhanced TinyOS im-

plementation of GPSR as the communication protocol. We run our codes in TOSSIM

[LLWC03], and set the simulated environment as follows: the network was set to a grid

layout and in the network, 169 sensor nodes were distributed evenly in a 100 × 100 unit

2D space at the interval of 8 unit. The root node was located at (2, 2), and connected to

a base station. The wireless radio range was set to 10 units, which allowed a sensor node

to directly communicate with up to four neighbors within the range. The weights α and

β were equal to 1. Sensor nodes collected sensor readings based on video clips to simu-

late a dynamic continuous phenomenon. Each sensor node collected sensor readings from

the corresponding pixel values in the video clips based on the node’s location. Table 6.9

summarizes the parameter settings in our experiments.

Table 6.9. Parameter settings
Parameter Value Parameter Value

Network Layout Grid Network size 169
Node Interval 8 unit Rcomm 10 unit

α 1 β 1
Root location (2, 2)
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Figure 6.14. Boundary detection results of different ∆2 significance levels
(a) 60%, (b) 70%, (c) 80%, and (d) 99%
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6.3.1 Tracking Cost

In the first test sets, we focused on tracking a single 2D object. To control the curve

tracking quality, Dsplit was set to 18. Two video clips containing two different objects

were used. The initial shapes of both objects were a solid circle with radius = 25. The

initial curves were both an inscribed regular octagon of the circle. The object 1 started

with center = (35, 35), and moved (x + 4, y + 4) in each frame while keeping the size

constant. The object 2 started with center = (50, 50), and enlarged radius + 4 in each

frame while the center was unchanged. A video frame was updated to TOSSIM in every

700 seconds. Sensor nodes were awakened in every 350 seconds to collect updated sensor

readings, detect objects and boundaries, and deform the tracking curves. A sensor node

obtained a sensor reading as the corresponding pixel value in the concurrent video frame

based on the node’s location.
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Figure 6.15. Maintenance cost

164



We implemented the first order and second order curvature models in our experiments.

The two curvature models preformed almost the same in the tracking quality, since we

set Dsplit to a small value. The first order curvature model prefers the local angle to be

π, while the second order curvature model constrains local three consecutive angles to

be similar. The first order curvature model requires the location update of a vertex to be

exchanged among three neighboring vertex nodes. The second order model needs to ex-

change a vertex location update message among five consecutive vertex nodes to update the

three angles’ values. The second order model also needs more communication resources

to send the folding vertices and adding vertex notifications. Figure 6.15 shows the average

maintenance costs of the first and second curvature models from our tests. The first order

curvature model consumes around 36% maintenance communication cost as required by

the second order curvature model. Since the first order curvature model requires less main-

tenance cost and shows no difference in the tracking quality, we did the following tests

based only on the first order curvature model.

We compared the communication cost of tracking deformable curves with the cost of

reporting inner boundary points. We did not implement any 2D image or video extraction,

since reporting inner boundary points usually consumes less than the approaches based on

centralized 2D image or video results require [CG03, KI04, DCXC05, JN06]. Figure 6.16

illustrates the average communication costs from our tests. To track both objects, report-

ing the inner boundary points requires the most expensive communication cost. Reporting
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Figure 6.16. Communication cost

linked vertices required less WSN resources than reporting the inner boundary point did.

As we expected, the difference between the two types of communication costs was approx-

imately scaled by Dsplit. The ratios of reporting linked vertices against inner boundary

points to track the two objects were both around 0.6. If we consider the communication

to maintain the deformable curves, the total communication cost of tracking deformable

curves was still a slightly less expensive than the cost of reporting inner boundary points.

Tracking deformable curves supports extracting complex spatiotemporal properties about

objects. We did the tests based on the aggregation and localized computation. As shown in

Figure 6.16, processing the aggregated information consumed much less communication

resources than reporting inner boundary points or linked vertices did.

Another interesting performance test is the comparison of communication rates over

time. Figure 6.17 shows the results from two tests. The object 1 moved and kept its area
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Figure 6.17. Communication rates
(a) the rate of maintenance cost of the 1st order curvature model), and (b) the rate of

reporting boundary point
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constant in size while the object 2 increased its area and kept the center stationary. As

illustrated by Figure 6.17(a), to track the object 1, the maintenance cost rate remained

constant. The communication cost rate to maintain the deformable curve for the object 2

increased since more vertices were added to track the enlarged region, as shown by Figure

6.17(a). Figure 6.17(b) explains that more communication resources are required to report

inner boundary points of both objects while time elapsed. The object 1 required the same

number of points to represent the boundary. While the object 1 moved further away from

the root node’s location, the inner boundary points required more hops to be relayed back

to the root node. The object 2 needed more points to represent the boundary while the

area was enlarged. More communication resources are needed to report the increasing

number of points along the boundary of object 2. Other types of communication messages

for linked vertices and the aggregated information showed similar results as presented in

Figure 6.17(b).

6.3.2 Extracting Abstract Spatiotemporal Property

Without loss of generality, we only present our experimental results with regard to the area

and centroid of 2D objects here. Figure 6.18 draws the centroid’s moving paths based on

the aggregated information from the two tests. In the experimental data set, the object 1

moved from the southwest to the northeast, while the object 2 kept its centroid at the center

of the 100 × 100 unit space. Based on the aggregated information, people can understand
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the moving patterns of two objects. The object 1 moved while the object 2 roughly kept

still as explained by Figure 6.18(a) and Figure 6.18(b). The paths in Figure 6.18 are not

smooth because of the relatively low monitoring resolution.
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Figure 6.18. Centroid moving paths
(a) the path of object, and (b) the path of object 2

Figure 6.19 shows the area changes based on the aggregated information from the two

tests. Users can draw the conclusion that the area of object 1 remained constant while the

area of object 2 kept enlarging. Due to the relatively low monitoring resolution, the area

changes were not smooth, as shown in Figure 6.19. By combining Figure 6.18 and Figure

6.19, we can see that the object 1 moved with a constant area, and the object 2 did not move

but increased its area.
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Figure 6.19. Area change

We implemented the area change and centroid change operations to apply lossless sup-

pression. In short, if the local partial aggregated area change or centroid change is zero, a

sensor node suppresses the local partial result to be further transmitted to its parent node.

Figure 6.20 shows the comparison of the processing costs of unsuppressed and suppressed

aggregation. The suppressed aggregation consumed around 40% of communication cost as

required by the unsuppressed one. This result proves the effectiveness of suppression tech-

niques, and shows the future direction to combine other suppression technologies [SBY06]

with our approaches.

Table 6.10. Quality of predictive information
Predict Range(in 350s) 5 4 3 2 1
Time Difference(in 350s) 8 8 4 4 2

We tested the predictive information for real-time alerts. To generate the alerts, a vertex

only needs to know the previous locations of the local consecutive vertices. A vertex can
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Figure 6.20. Suppressed aggregation

compute the alert based on the local information. Table 6.10 shows the test results on the

object 1. In this test, the point for forecast is (82, 82). The prediction range was chosen

from different discrete ranges (in n × 350 seconds). The equivalent query is “Will the

object 1 move onto the point (82, 82) in next n× 350 seconds?” Table 6.10 also illustrates

the time difference between the time when the first alert was given and the time when the

object 1 really affected the point (82, 82). The results shown by Table 6.10 are useful,

although the prediction quality is not perfect. The main reason is that the movement of

object 1 in our tests is not continuous. The edge projection introduced by Section 5.4.2 can

be extended to improve the prediction quality. For example, instead of only based on the

vertex locations at two consecutive time slots, the velocity of vertex and edge movement

can be better estimated based on more historical vertex locations. The quality of predictive

information can be improved through methods that are more sophisticated.
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6.3.3 Tracking Multiple 2D Objects

In the second set of tests, we used additional video clips as the simulated dynamic con-

tinuous phenomenon to test the interactions among multiple objects. These video clips

contained multiple 2D objects. Each frame was a snapshot of these objects. A video frame

was updated to TOSSIM every 600 seconds. Sensor nodes were awakened up in every

200 seconds to collect updated sensor readings, detect objects and boundaries, deform the

tracking curves, and adapt curves to the topological changes. Dsplit was set to 15 for these

tests.

The first video contained a single 2D object located at the network center initially. Af-

terwards, the 2D object split into two objects. The two 2D objects started moving towards

two opposite corners of the 100×100 unit space. Later on, the two 2D objects moved back

to the center and merged into a single object. Figure 6.21 illustrates a series of snapshots

of the tracking curves and underlying 2D objects. In Figure 6.21, the gray region indicates

the region covered by underlying 2D objects. The small blue circles represent the location

of sensor nodes. The red circles indicate the sensor nodes that detected the inner object

boundary. The small squares represent the vertices on deformable tracking curves. The

black lines indicate the edges of deformable curves at the current time slot, while the gray

lines are the edges of deformable curves at the previous time slot. The dotted gray lines

represent the vertex movement. Figure 6.21(a), 6.21(b) and 6.21(c) show the sequence of
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Figure 6.21. Test results on splitting and merging

the splitting event. As shown in Figure 6.21(b), the sensor nodes can detect the overlap-

ping edges. By removing the overlapping edges and reconnecting the open curves, sensor

nodes can locally adapt the deformable curves into two closed curves as illustrated by Fig-

ure 6.21(c). Figure 6.21(d), 6.21(e) and 6.21(f) explain the sequence of the merging event.

Similar to Figure 6.21(b), when the two 2D objects were merging, some edges in the two

closed curves overlapped together as shown by Figure 6.21(e). Removing the overlapping

edges can allow sensor nodes to locally adapt the deformable curves into a single closed

curve, as explained by Figure 6.21(f).
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Figure 6.22. Test results on a hole development

We used the second video to illustrate the development of a hole. The video used for the

second test began with a single 2D object located at a corner in the network. Afterwards,

the 2D object grew two “arms” both horizontally and vertically. The two arms merged at

the opposite corner, which resulted in a hole inside the 2D object. Figure 6.22(a), 6.22(b)

and 6.22(c) show the sequence of how the two arms merged. Similar to Figure 6.21(e),

the edges of two arms overlapped partially as illustrated by 6.22(b). By removing the

overlapping edges and reconnecting open curves, sensor nodes can adapt the deformable

curves locally to represent the ring shape of the 2D object as shown by Figure 6.22(c).
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After the establishment of the inner hole, the ring started breaking at one corner. The

breaking sequence is illustrated by Figure 6.22(d), 6.22(e) and 6.22(f). Again, sensor nodes

can locally detect the overlapping edges as shown by Figure 6.22(e). Through removing

the overlapping edges, the deformable curve can adapt its shape locally to the shape of

underlying 2D object as illustrated by Figure 6.22(f).

6.4 Chapter Summary

In this chapter, we present the experimental results of our approaches. The experimental

results show the effectiveness of our approaches. Compared to alternative approaches, the

experimental results prove that our approaches are resource efficient with respect to the

constrained WSNs.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

In this dissertation, we have presented energy-efficient in-network algorithms to collect and

process sensor readings to detect and monitor continuous phenomena by using WSNs. The

approaches support both field-based and object-based representations of continuous phe-

nomena. This chapter summarizes our findings and contributions, and discusses potential

future research topics.

7.1 Major Results

As the first major result, we have introduced an in-network estimation technique, SWOP,

which returns the estimated fine-grained value distribution of a continuous phenomenon

based on the Gaussian Kernel estimation. The SWOP approach breaks the entangled links

between estimation points and sensor nodes by utilizing the Hermite expansion. The SWOP

approach clusters sensor nodes based on their locations into non-overlapped groups. In
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each cluster, a small number of Hermite coefficients represent the information about the

sensor nodes inside including their locations and readings. In such a way, the wireless

communication consumption is reduced. After receiving the Hermite coefficients from the

network, a base station or a micro server with more computation power generates the final

estimated spatial window result at a user specified resolution. Our simulation results have

shown that SWOP reduces the communication cost by 90% compared with transmitting

raw sensor readings. The computation complexity is constant with regard to the distributed

sensor nodes. Since SWOP utilizes a dynamic node clustering algorithm, SWOP is in-

dependent on the node distribution. SWOP can be extended to support arbitrary shapes

of query region, by revising the final query result generation part based on Hermite co-

efficients. The main drawback of SWOP is lacking a ?exible choice with regard to the

estimation bandwidth. The current version of SWOP uses the same bandwidth for the en-

tire estimation window region. An improvement of SWOP could use different bandwidths

for different locations based on the local phenomenon properties. For example, if a phe-

nomenon is homogeneous in a region, a large bandwidth for this region can be chosen.

Consequently, the clustering algorithm in SWOP would need to be revised, if a flexible

bandwidth is used.

Secondly, we have proposed the NED approach, an object-based approach of contin-

uous phenomena, to identify objects and object boundaries within a WSN. In NED, the
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object and object boundary is identified by user-specified thresholds with regard to sen-

sor readings. The NED approach uses a variable length encoding mechanism for nodes

to exchange their local object detection results. If a node detects either a significant ob-

ject or non-object result by comparing its local sensor reading with the threshold value,

the node has more confidence about its local object detection status. In NED, a node with

more confidence about its local object detection result uses a 2-bit message to encode and

broadcast the result. If a node is nearby the object boundary, the node tends to make faulty

object detection results and has less confidence. The nodes with less confidence about

their local detection results use 33-bit messages to broadcast their local detection results.

In this way, the nodes nearby the object boundary communicate more for better boundary

detection results, whereas the nodes in other regions communicate less to save energy. Al-

though the NED approach was mainly designed for spatially continuous phenomena, our

experimental results have illustrated the effectiveness of NED for discontinuous phenom-

ena. The efficiency of NED mainly depends on the choice of two user parameters, ∆1

and ∆2, for different detection confidence levels and different sensing noise levels. NED

can achieve similar detection quality as moving-average-based approaches, while only us-

ing the inexpensive communication cost as exhibited by majority-voting-based approaches.

∆2 is globally defined by users to control the object boundary detection results in NED. A

real phenomenon, however, may have different spatial variations at different locations. By
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using a global fixed ∆2 value, NED may fail to report the object boundary in some subre-

gions. To improve NED, we could take the local phenomenon variation into account. An

improvement of NED could choose different ∆2 values at different locations based on the

local phenomenon variation with respect to the boundary threshold setting. In this way,

only the object boundary detection would be revised, while other parts in NED can be kept.

Thirdly, we have presented an approach for in-network tracking of 2D objects. Our ap-

proach is built on the SNAKE model. We have proposed a revision of the original SNAKE

model, and have implemented resource-efficient force models for the SNAKE model. In

our approach, sensor nodes track individual vertices on the deformable SNAKE curve in-

crementally without knowing the detailed global curve shape. To update the shape of the

representative curve, sensor nodes only need to exchange messages among neighbors. In

this way, the maintenance cost of our approach is resource efficient in the constrained

WSNs. The original SNAKE model is a rigid model, which cannot be used to track mul-

tiple 2D objects. Our approach allows the representative curves to be breakable to track

multiple 2D objects. It adapts the representative curves locally to the topological changes

caused by the interactions between multiple objects. Based on the in-network tracking of

deformable curves, we have shown that different types of abstract spatiotemporal proper-

ties can be extracted via the proposed in-network aggregation operations. By tracking the

object boundary change and adapting the representative curve, our approach provides the
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real-time prediction about the near-future shape of underlying 2D objects. Our experimen-

tal results have proven that our approach tracks 2D objects in a WSN and provides abstract

properties about the objects more efficiently than, transmitting boundary points or bound-

ary geometry to a central base station and computing spatiotemporal changes “outside” of

the WSN. In this dissertation, we have not considered dealing with inside hole detection

of 2D objects. The inside hole detection can be solved by running additional boundary

detection and geometry formation algorithms on the outer boundary of the hole, without

significantly changing our algorithms. In the current implementation of the SNAKE-based

tracking, we have not considered node and communication failures. However, the node and

communication failures are common in real WSN deployments. To apply our algorithms

in the real world, we would need to improve the robustness of our algorithms against the

failure-prone nature of WSN. An improvement of the SNAKE-based tracking can use the

redundancy to overcome the node and communication failures. For example, vertex nodes

can broadcast their local and neighboring vertices information to their neighbors. If a ver-

tex node fails, its neighbors can take over the vertex node’s processing and recover the

in-network tracking.

Using traditional sensing platforms such as remote sensing instruments, large scale sen-

sor platforms or airborne instruments, interpolation is generally used to compile the sample

points for a very large region due to the low spatial resolution of those instruments (with

regard to the large area, which can encompass entire states or countries). In current WSNs,
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the spatial resolution is usually only a few meters, and thus, WSNs are best used to monitor

phenomena, which cannot be observed by using traditional sensing platforms. For exam-

ple, the microclimate of the plants in orchards, vineyards or other precision agriculture

areas cannot be observed by remote satellites, and does need the novel platform and res-

olution of WSN. For example, the redwood tree project has shown that the microclimate

can be visualized using interpolated discrete sensor readings as a smooth spatially contin-

uous phenomenon [TPS+05]. Although WSNs can provide higher resolution than tradi-

tional sensing platforms, the sensed samples are still discrete points. Due to the discrete

node distribution, the interpolation is necessary to understand the phenomenon properties

in-between sensor nodes. Our approaches have application to a wide range of problems

such as precision agriculture [BBB04]. Our approaches can help to understand the spatial

properties of microclimates in vineyards or tomato greenhouses, and help users to make ap-

propriate responses. Our approaches for object-based queries can be applied to detect the

boundary of 2D objects and track these regions in environmental observations. For exam-

ple, sensor nodes have been used to detect contaminated regions in wide-area environments

[JMGRP09]. We can treat the contaminated regions as objects and use our approaches to

generate real-time reports about the spatial and spatiotemporal properties about the objects.
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7.2 Future Work

So far, this dissertation has shown several approaches for SDMSs to support spatial and spa-

tiotemporal queries for continuous phenomena. Our approaches have proven that WSNs are

more than simple data collectors with regard to such phenomena detection and monitoring.

By using intelligent in-network data aggregation, estimation and processing techniques,

distributed sensor nodes process queries and information collaboratively, while saving sig-

nificant amounts of valuable energy and extending the lifetime of WSN applications. WSNs

can be distributed information processors and respond to user queries in real time.

Undoubtedly, sensor nodes will be smaller, more powerful and more economical in the

future. Future WSNs will be able to observe the physical world in a remarkable detail.

A general bottleneck in current SDMSs, which will remain in the near future, is that a

centralized data analysis (in most cases, a human expert) is required to interpret the quan-

titative real-time query results. Our approaches have shown that WSNs are able to track

2D objects in real time. More importantly, abstract spatial and spatiotemporal properties

about underlying phenomena can be extracted in real time. These abstract properties are

useful in the human linguistic communication and reasoning. Currently, we only focus on

the efficient extraction of spatiotemporal properties. Our future work will answer how to

use the real-time updated spatiotemporal properties of 2D objects. In such a way, more

complex spatiotemporal queries can be defined and executed efficiently in future SDMSs.

182



Our future work will bring more spatial intelligence to WSNs and enhance the automation

level of SDMSs.

Tracking multiple point objects is an interesting research direction for us. In this topic,

usually a hardware ID is attached to an individual point object. A WSN is deployed to mon-

itor the movement of multiple point objects. Users are interested in the common movement

patterns, such as the movement of a flock of birds. Although the proposed approaches in

this dissertation focus on spatially continuous phenomena, these approaches can still be ap-

plied on the flock tracking by appropriate revisions. We can convert the point locations into

a density function. In this way, the discrete phenomenon can be converted into a continu-

ous field representation. For example, the approach presented in Chapter 5 can be easily

applied over the object density function to track the spatiotemporal changes of flocks, and

to provide the abstract spatiotemporal properties of flocks.

Most today’s WSNs are static. With the development of robots, sensor nodes will be

more mobile in the future. A node will be able to collect sensor readings at any spatial point

at any time, controlled by user specified programs. If a node is able to move fast enough

with respect to the temporal variation of underlying phenomena, a mobile node can provide

the same sensor readings as provided by current static WSNs. The monitoring resolution

can be greatly enhanced by using the mobile WSNs. The proposed approaches in this

dissertation, however, are mostly based on static WSNs. For example, the discrete vertex

movement assumption in Chapter 5 must be revised for the mobile WSNs. Our future work
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needs to efficiently extend the proposed approaches to process spatial information in such

a mobile environment.

All the future directions will bring new challenges as well as new discoveries to us.

Future WSNs will be more powerful and bring us what we cannot see today.
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