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interest aroused by this branch has increased at a notable pace in the last years. 
Undoubtedly, the main influences behind the conception of this stream are the 
classical Ant Colony Optimization and Particle Swarm Optimization. These 
algorithms started the interest in this field, being the origin and main inspiration 
for subsequent research. Today, a myriad of novel methods has been proposed, 
considering many different inspirational sources, such as the behavioral patterns 
of animals such as bats, fireflies, bees, or cuckoos; social and political behaviors 
such as the imperialism or hierarchical societies; or physical processes such as optics 
systems, electromagnetic theory, or gravitational dynamics. This book focuses on 
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Chapter 1

Introductory Chapter: Swarm
Intelligence - Recent Advances,
New Perspectives, and
Applications
Eneko Osaba, Esther Villar and Javier Del Ser

1. Introduction

Swarm intelligence has emerged as one of the most studied artificial intelligence
branches during the last decade, constituting today the most high-growing stream
on bioinspired computation community [1]. A clear trend can be deduced by ana-
lyzing some of the most renowned scientific databases available, showing that the
interest aroused by this branch has been in crescendo at a notable pace in the last
years [2]. Undoubtedly, the main influences behind the conception of this stream
are the extraordinarily famous particle swarm optimization (PSO, [3]) and ant
colony optimization (ACO, [4]) algorithms. These meta-heuristic lighted the fuse
of the success of this knowledge area, being the origin and principal inspiration of
their subsequent research. Such remarkable success has led to the proposal of a
myriad of novel methods, each one based on a different inspirational source such as
the behavioral patterns of animals, social and political behaviors, or physical pro-
cesses. The constant proposal of new methods showcases the capability and adapt-
ability of this sort of solvers to reach a near-optimal performance over a wide range
of high-demanding academic and real-world problems, being this fact one of the
main advantages of swarm intelligence-based meta-heuristics.

2. Brief history of swarm intelligence

The consolidation of swarm intelligence paradigm came after years of hard and
successful scientific work and as a result of the proposal of several groundbreaking
and incremental studies, as well as the establishment of some cornerstone concepts
in the community.

In this regard, two decisive milestones can be highlighted in swarm intelligence
history. First of these breakthrough landmarks can be contextualized on horseback
between the 1960s and 1970s. Back then, influential researchers such as Schwefel,
Fogel, and Rechenberg revealed their first theoretical and practical works related to
evolving strategies (ES) and evolutionary programming (EP) [5–7]. An additional
innovative notion came to the fore some years later from John H. Holland’s hand.
This concept is the genetic algorithm (GA, [8]), which was born in 1975 sowing the
seed of the knowledge field today known as bioinspired computation. All the three
outlined streams (i.e., ES, EP, and GA) coexisted in a separated fashion until the
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1990s, when they all erected as linchpin elements of the unified concept evolution-
ary computation.

The second milestone that definitely contributed to the birth of what currently is
conceived as swarm intelligence is the conception of two highly influential and
powerful methods. These concrete algorithms are the ACO, envisaged by Marco
Dorigo in 1992 [9], and the PSO [10], proposed by Russell Eberhart and James
Kennedy in 1995. Being more specific, the PSO was the method that definitely lit the
fuse of the overwhelming success of swarm intelligence, being the main inspiration
of a plethora of upcoming influential solvers. Therefore, since the proposal of PSO,
algorithms inheriting its core concepts gained a great popularity in the related
research society, lasting this acclaim until the present day [11–13]. For the modeling
and design of these novel approaches, many inspirational sources have been con-
sidered, commonly categorized by (able to collect these sources in three recurring
groups):

• Patterns found in nature: we can spotlight two different branches that tie (fall)
together within this category. The first one is related to biological processes,
such as the natural flow of the water (water cycle algorithm, [14]),
chemotactic movement of bacteria (bacterial foraging optimization algorithm,
[15]), pollination process of flowers (flower pollination algorithm, [16]), or
geographical distribution of biological organisms (biogeography-based
optimization, [17]). The second inspirational stimulus is the behavioral
patterns of animals. This specific trend is quite outstanding in recent years,
yielding a design based on creatures such as bats (bat algorithm, [18]), cuckoos
(cuckoo search, [19]), bees (artificial bee colony, [20]), or fireflies (firefly
algorithm, [21]).

• Political and social behaviors: several human conducts or political philosophies
have also inspired the proposal of successful techniques. Regarding the former,
we can find promising adaptations of political concepts such as anarchy
(anarchic society optimization, [22]) or imperialism (imperialist competitive
algorithm, [23]). With respect to the latter, social attitudes have been also
served as inspiration for several methods such as the one coined as society and
civilization [24], which emulates the mutual interactions of human and insect
societies, or the hierarchical social meta-heuristic [25], which mimics the
hierarchical social behavior observed in a great diversity of human
organizations and structures.

• Physical processes: physical phenomena have also stimulated the design of new
swarm intelligence algorithmic schemes, covering a broad spectrum of
processes such as gravitational dynamics and kinematics (gravitational search
algorithm, [26]), optic systems (ray optimization, [27]), or the electromagnetic
theory (electromagnetism-like optimization, [28]). A recent survey published
by Salcedo-Sanz [29] revolves around in this specific sort of methods.

In addition to the above-defined categories, many other fresh branches spring
under a wide range of inspirations such as business tools (brainstorming optimiza-
tion, [30]) or objects (grenade explosion method, [31]).

It is also worth mentioning that besides these monolithic approaches aforemen-
tioned, there is an additional trend which prevails at the core of the research
activity: hybridization of algorithms. Since the dawn of evolutionary computation,
many efforts have been devoted to the combination of diverse solvers and func-
tionalities aiming at enhancing some capabilities or overcoming the disadvantages
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of well-established meta-heuristic schemes. Obviously, memetic algorithms (MAs),
conceived by Moscato and Norman in the 1980s in [32, 33], beat this competition.
Despite MAs were initially defined as hybridization of GAs and local search mech-
anisms, MAs rapidly evolved to a broader meaning. Related to SI, today is straight-
forward to find hybridization of SI meta-heuristic schemes with separated local
improvement and individual learning mechanisms in the literature. Some examples
of this research trend can be found in [34–38].

Finally, up to now, SI methods have been applied to a wide variety of interesting
topics along the years. Being impossible to gather in this introductory chapter all the
applications already addressed by SI paradigms, we refer the reader to some
remarkable and highly valuable survey works specially devoted to outline the
application of SI algorithms in specific domains. In [39] a survey dedicated to
geophysical data inversion was published. In [11] the latest findings of portfolio
optimization are studied. An additional interesting work can be found in [12]
focused on summarizing the intensive work done related to the feature selection
problem. Intelligent transportation systems are the crossroads of the works gath-
ered in [40], while in [41] authors conducted a comprehensive review of SI meta-
heuristics for dynamic optimization problems. We acknowledge that the literature
focused on all these aspects is immense, which leads us to refer the interested
readers to the following significant and in-depth surveys [42–44].

3. Motivation behind the book edition

With reference to the scientific production, SI represents the most high-growing
stream in today’s related community, with more than 15,000 works published since
the beginning of the twenty-first century. Analyzing the renowned Scopus® data-
base, a clear upward trend can be deduced. Specifically, scientific production
related to SI grows at a remarkable rate from nearly 400 papers in 2007 to more
than 2000 in 2018. In fact, the interest in SI has been in crescendo at such a pace
that the number of published scientific material regarding this field is greater than
other classical streams such as evolutionary computation every year since 2012.

Thus, and taking advantage of the interest that this topic arises in the commu-
nity, the edited book that this chapter is introducing gravitates on the prominent
theories and recent developments of swarm intelligence methods and their applica-
tion in all the fields covered by engineering. This material unleashes a great oppor-
tunity for researchers, lecturers, and practitioners interested in swarm intelligence,
optimization problems, and artificial intelligence as a whole.
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Chapter 2

Use of Particle Multi-Swarm
Optimization for Handling
Tracking Problems
Hiroshi Sho

Abstract

As prior work, several multiple particle swarm optimizers with sensors, that is,
MPSOS, MPSOIWS, MCPSOS, and HPSOS, were proposed for handling tracking
problems. Due to more efficient handling of these problems, in this chapter we
innovate the strategy of information sharing (IS) to these existing methods and
propose four new search methods that are multiple particle swarm optimizers with
sensors and information sharing (MPSOSIS), multiple particle swarm optimizers
with inertia weight with sensors and information sharing (MPSOIWSIS), multiple
canonical particle swarm optimizers with sensors and information sharing
(MCPSOSIS), and hybrid particle swarm optimizers with sensors and information
sharing (HPSOSIS). Based on the added strategy of information sharing, the search
ability and performance of these methods are improved, and it is possible to track
a moving target promptly. Therefore, the search framework of particle multi-
swarm optimization (PMSO) is established. For investigating search ability and
characteristics of the proposed methods, several computer experiments are carried
out to handle the tracking problems of constant speed I type, variable speed II type,
and variable speed III type, which are a set of benchmark tracking problems.
Owing to analyze experimental results, we reveal the outstanding search
performance and tracking ability of the proposed search methods.

Keywords: swarm intelligence, particle multi-swarm optimization,
information sharing, sensor, tracking performance

1. Introduction

Generally, the task of tracking a moving target is an important subject as a
real-world problem, for example, traffic management, mobile robot, safety guid-
ance, image object recognition, industrial controls, etc. which are frequently taken
up in various application fields [1–5]. In order to deal with dynamic optimization
problems, many search methods are applied, and the approach of particle swarm
optimization (PSO) in the area of swarm intelligence is one of them [6–11].

The technique of PSO is very easy to implement and extend. Based on its basic
search mechanism, main advantages have three built-in features: (i) information
exchange, (ii) intrinsic memory, and (iii) directional search, compared to other
existing heuristic and evolutionary techniques such as genetic algorithms (GA),
evolutionary programming (EP), evolution strategy (ES), and so on [12–15]. This is
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a reason why the technique of PSO is attracting attention and used in different
fields such as science, engineering, technology, design, automation, communica-
tion, etc.

As is well-known, the search tasks handled by the technique of PSO are a mass of
static optimization problems. The cause is simple for that the best information, that
is, the best solution of swarm search and the best solution of each particle itself, is
only recorded and renewed. Due to environmental change, the retained best infor-
mation is not modified to normally search. Thus, its mechanism cannot adapt
environment change or a moving target for dealing with tracking problems. Because
of overcoming the disadvantage of the technique of PSO, and extending the range
of its applications for dealing with dynamic optimization problems (including
tracking problem), it is necessary to improve its search functions by adding some
strategies into the mechanism of PSO [16, 17].

As prior work on handling the tracking problems by PSO, under a certain
dynamic environment, we have proposed not only three single particle swarm
optimizer with sensors, which are PSOS, PSOIWS, and CPSOS [18], but also four
multiple particle multi-swarm optimizers with sensors which are MPSOS,
MPSOIWS, MCPSOS, and HPSOS1 [19]. And for confirming the search effective-
ness of these proposed methods, several computer experiments were carried out to
handle the tracking problems of constant speed I type, variable speed II type, and
variable speed III type that belong to a set of benchmark problems.

In general, the search ability and performance of multiple particle swarms are
better than single particle swarm for handling same tracking problem. The com-
parative experiments on the finding were verified in literature [20]. According to
the obtained experimental results of the four multiple particle swarm optimizers
with sensors, MPSOIWS and HPSOS are better in search ability. MCPSOS is better
in convergence. MPSOS is better in the robustness with respect to variation in
sensor setting parameters. And many know-hows on the useful knowledge such as
their experimental findings are obtained [19]. As the search characters of particle
multi-swarm optimization (PMSO2), however, the search information (i.e., best
solution) obtained from each particle swarm is not shared to explore. For dealing
with this issue, we proposed a special strategy called information sharing and
introduced it to effectively solve static optimization problems [21].

In order to acquire further the search ability and performance of PMSO in
dealing with dynamic optimization problems, we innovate the strategy of informa-
tion sharing into the previous four multiple particle multi-swarm optimizers with
sensors and firstly propose the four new search methods, that is, multiple particle
swarm optimizers with sensors and information sharing (MPSOSIS), multiple par-
ticle swarm optimizers with inertia weight with sensors and information sharing
(MPSOIWSIS), multiple canonical particle swarm optimizers with sensors and
information sharing (MCPSOSIS), and hybrid particle swarm optimizers with
sensors and information sharing (HPSOSIS3).

This is a novel approach for the technology development and evolution of
PMSO itself. The crucial idea is to add the special confidence term into the updating
rule of the particle’s velocity by the best solution found out by particle multi-swarm
search to enhance the intelligent level of whole particle multi-swarm and build a

1HPSOS has the search characteristics of PSOS, PSOIWS, and CPSOS, which is a mixed search method.
2PMSO, generally, is just a variant of PSO based on the use of multiple particle swarms (including sub-

swarms) instead of a single particle swarm during a search process.
3HPSOSIS has the search characteristics of PSOSIS, PSOIWSIS, and CPSOSIS, which is a proposed

method in PMSO.
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new framework of PMSO [22]. Based on the improvement of the confidence
terms, it is expected to acquire the maximization of potential search ability and
performance of the four basic search methods of PMSO under the context of any
adjunctive computation resource.

Due to the revelation of the outstanding search ability and performance of the
proposed MPSOSIS, MPSOIWSIS, MCPSOSIS, and HPSOSIS, we take more detailed
data from the computer experiments. Based on these obtained data, furthermore,
we clarify the characteristics and search ability of the proposed methods by analysis
and comparison. This is the major goal of this research.

The rest of this chapter is organized as follows: Section 2 briefly introduces three
basic search methods of PSO and these methods with sensors. Section 3 describes
the proposed four search methods of PMSO in detail. Section 4 implements several
computer experiments and analyzes the obtained results for investigating the search
ability and performance of these new search methods. Finally, the concluding
remarks and future research appear in Section 5.

2. Basic search methods of PSO

In spite of the fact that there are a lot of search methods derived from the
technique of PSO, they have evolved and developed from three basic search
methods of PSO [23]. These search methods, that is, the particle swarm optimizer
(the PSO) [24, 25], particle swarm optimizer with inertia weight (PSOIW) [26, 27],
and canonical particle swarm optimizer (CPSO) [28, 29], are common ground for
technology development of PSO and PMSO.

For the sake of convenience to the following specific description, let the search
space be N-dimensional, Ω∈RℜN, the number of particles in a swarm be Z, the

position of the ith particle be xi
!
¼ xi1; x

i
2;⋯; xiN

� �T, and its velocity be

vi
!
¼ vi1; v

i
2;⋯; viN

� �T, respectively.

2.1 Method of the PSO

The original particle swarm optimizer is firstly created by Kennedy and Eberhart
in 1995. The method of a population-based stochastic optimization search is
referred to as the PSO.

In beginning of the PSO search, the position and velocity of the ith particle are
generated at random; then they are updated by the following formulation:

x!
i
kþ1 ¼ x!

i
k þ v!

i
kþ1 (1)

v!
i
kþ1 ¼ w0 v

!i
k þ w1r1

! ⊗ p!
i
k � x!

i
k

� �
þ w2r2

! ⊗ qk
! �x!

i
k

� �
(2)

wherew0 is an inertia weight, w1 is a coefficient for individual confidence, and w2

is a coefficient for swarm confidence. r1
! and r2

! ∈ ℜN are two random vectors in which
each element is uniformly distributed over the range 0; 1½ �, and the symbol⊗ is an

element-wise operator for vector multiplication. p!
i
k ¼ arg maxj¼1,⋯, k g x!

i
j

� �n o
,

�

where g �ð Þ is the criterion value of the ith particle at time-step k is the local best

position of the ith particle until now, and qk
! ¼ arg maxi¼1, 2,⋯
�

g p!
i

k

� �n o
Þ is the

global best position among the whole swarm.
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solution) obtained from each particle swarm is not shared to explore. For dealing
with this issue, we proposed a special strategy called information sharing and
introduced it to effectively solve static optimization problems [21].

In order to acquire further the search ability and performance of PMSO in
dealing with dynamic optimization problems, we innovate the strategy of informa-
tion sharing into the previous four multiple particle multi-swarm optimizers with
sensors and firstly propose the four new search methods, that is, multiple particle
swarm optimizers with sensors and information sharing (MPSOSIS), multiple par-
ticle swarm optimizers with inertia weight with sensors and information sharing
(MPSOIWSIS), multiple canonical particle swarm optimizers with sensors and
information sharing (MCPSOSIS), and hybrid particle swarm optimizers with
sensors and information sharing (HPSOSIS3).

This is a novel approach for the technology development and evolution of
PMSO itself. The crucial idea is to add the special confidence term into the updating
rule of the particle’s velocity by the best solution found out by particle multi-swarm
search to enhance the intelligent level of whole particle multi-swarm and build a

1HPSOS has the search characteristics of PSOS, PSOIWS, and CPSOS, which is a mixed search method.
2PMSO, generally, is just a variant of PSO based on the use of multiple particle swarms (including sub-

swarms) instead of a single particle swarm during a search process.
3HPSOSIS has the search characteristics of PSOSIS, PSOIWSIS, and CPSOSIS, which is a proposed

method in PMSO.
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new framework of PMSO [22]. Based on the improvement of the confidence
terms, it is expected to acquire the maximization of potential search ability and
performance of the four basic search methods of PMSO under the context of any
adjunctive computation resource.

Due to the revelation of the outstanding search ability and performance of the
proposed MPSOSIS, MPSOIWSIS, MCPSOSIS, and HPSOSIS, we take more detailed
data from the computer experiments. Based on these obtained data, furthermore,
we clarify the characteristics and search ability of the proposed methods by analysis
and comparison. This is the major goal of this research.

The rest of this chapter is organized as follows: Section 2 briefly introduces three
basic search methods of PSO and these methods with sensors. Section 3 describes
the proposed four search methods of PMSO in detail. Section 4 implements several
computer experiments and analyzes the obtained results for investigating the search
ability and performance of these new search methods. Finally, the concluding
remarks and future research appear in Section 5.

2. Basic search methods of PSO

In spite of the fact that there are a lot of search methods derived from the
technique of PSO, they have evolved and developed from three basic search
methods of PSO [23]. These search methods, that is, the particle swarm optimizer
(the PSO) [24, 25], particle swarm optimizer with inertia weight (PSOIW) [26, 27],
and canonical particle swarm optimizer (CPSO) [28, 29], are common ground for
technology development of PSO and PMSO.

For the sake of convenience to the following specific description, let the search
space be N-dimensional, Ω∈RℜN, the number of particles in a swarm be Z, the

position of the ith particle be xi
!
¼ xi1; x

i
2;⋯; xiN

� �T, and its velocity be

vi
!
¼ vi1; v

i
2;⋯; viN

� �T, respectively.

2.1 Method of the PSO

The original particle swarm optimizer is firstly created by Kennedy and Eberhart
in 1995. The method of a population-based stochastic optimization search is
referred to as the PSO.

In beginning of the PSO search, the position and velocity of the ith particle are
generated at random; then they are updated by the following formulation:
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k þ v!

i
kþ1 (1)
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wherew0 is an inertia weight, w1 is a coefficient for individual confidence, and w2

is a coefficient for swarm confidence. r1
! and r2

! ∈ ℜN are two random vectors in which
each element is uniformly distributed over the range 0; 1½ �, and the symbol⊗ is an

element-wise operator for vector multiplication. p!
i
k ¼ arg maxj¼1,⋯, k g x!

i
j

� �n o
,

�

where g �ð Þ is the criterion value of the ith particle at time-step k is the local best

position of the ith particle until now, and qk
! ¼ arg maxi¼1, 2,⋯
�

g p!
i

k

� �n o
Þ is the

global best position among the whole swarm.
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In the PSO, w0 ¼ 1:0 and w1 ¼ w2 ¼ 2:0 are used. Since w0 ¼ 1:0, so the con-
vergence of the PSO is not good in whole search process [30]. It has the character-
istics of global search.

2.2 Method of PSOIW

For improving the convergence and search ability of the PSO, Shi and Eberhart
modified the updating rule of the particle’s velocity shown in Eq. (2) by constant
reduction of the inertia weight over time-step as follows:

v!
i
kþ1 ¼ w kð Þv!i

k þ w1r1
! ⊗ p!

i
k � x!

i
k

� �
þ w2r2

! ⊗ qk
! �x!

i
k

� �
(3)

where w kð Þ is a variable inertia weight which is linearly reduced from a starting
value, ws, to a terminal value, we, with the increment of time-step k given by

w kð Þ ¼ ws þ we �ws

K
k (4)

where K is the maximum number of time-step for PSOIW searching. In the
original PSOIW, the boundary values are adopted to ws ¼ 0:9 and we ¼ 0:4,
respectively, and w1 ¼ w2 ¼ 2:0 are still used as the PSO.

Since the linear change of inertia weight from 0.9 to 0.4 in a search process,
PSOIW has the characteristics of asymptotical/local search, and its convergence is
so good in whole search process.

2.3 Method of CPSO

For the same purpose as the above described, Clerc and Kennedy modified the
updating rule for the particle’s velocity in Eq. (2) by a constant inertia weight over
time-step as follows:

v!
i
kþ1 ¼ Φ v!

i
k þw1r1

! ⊗ p!
i
k � x!

i
k

� �
þw2r2

! ⊗ qk
! �x!

i
k

� �
Þ

�
(5)

where Φ is an inertia weight corresponding to w0. In the original CPSO,
Φ ¼ w0 ¼ 0:729 and w1 ¼ w2 ¼ 2:05 are used.

It is clear that since the value of inertia weight, Φ, of CPSO is smaller than 1.0,
the convergence of its search is guaranteed by compared with the PSO search
[30, 31]. It has the characteristics of local search.

2.4 Basic search methods with sensors

We introduce the correspond to these foregoing search methods which are
particle swarm optimizers with sensors to handle dynamic optimization problems.
With adding sensors into the search methods of every particle swarm optimizer
described in Sections 2.1–2.3, it is possible to sense environmental change and a
moving target for improving the search ability and performance.

As an example, Figure 1 shows the positional relationship between the best
solution and sensors.

In a search process, the best solution of entire particle swarm is always set as the
origin of the sensor setting. Based on the sensing information (i.e., the measuring
position and its fitness value) of each sensor, we can observe the change of the
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surrounding environment and the moving target. In particular, updating the best
solution by Eq. (6) is an important search information:

qk
!¼ y!

b
k, if gt y!

b
k

� �
¼ max

j¼1, 2,⋯
gt y!

j
k

� �n o
> gt q!k

� �
; qk
! , otherwise

�
(6)

where y!
j
k is the jth sensor’s position (i.e., solution) at time k, y!

b
k is the best

solution for sensor detection, and gt �ð Þ is the criterion for evaluation at time t.
On the other hand, regarding whether there are environmental change and a

moving target or not, it is implemented by using the following judgment criterion:

Δk ¼ gt q!k�1

� �
� gt�1 q!k�1

� �
<0 (7)

where Δk is the difference in the fitness values between different functions at
the best solution q!k�1.

If the judgment result of Eq. (7) is satisfied in a search process, the moving
target has occurred. The particle swarm is initialized at the time and then continu-
ous to begin particle swarm search. However, such initialization is not considered
on the continuity of environmental change; it is implemented around the coordi-
nate origin of the search range. As a new problem in the situation, if the distance
before and after movement becomes smaller, the time loss to search is greater for
finding out the new best solution.

By changing the coordinate origin of the initialization to the position of the best
solution, the above difficulty can be dissolved. Therefore, the best solution of whole
particle swarm is intermittently updated by sensing information.

And adding the judgment operation of Eqs. (6) and (7) into each method
described in Sections 2.1–2.3, the constructions of the search methods, that is,
particle swarm optimizer with sensors (PSOS), particle swarm optimizer with iner-
tia weight with sensors (PSOIWS), and canonical particle swarm optimizer with
sensors (CPSOS), can be conflated and completed to deal with the given tracking
problems.

3. Basic search methods of PMSO

Formally, there are a lot of the methods about PMSO [32]. For understanding
the formation and methodology of these proposed methods, let us assume that the
multi-swarm consists of multiple single swarms. The corresponding three kinds of
particle swarm optimizers described in Sections 2.1–2.3 can be generated by
construction and parallel computation [33]. Therefore, these constructed particle
multi-swarm optimizers, i.e. multiple particle swarm optimizers (MPSO), are

Figure 1.
Configuration of sensors.
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In the PSO, w0 ¼ 1:0 and w1 ¼ w2 ¼ 2:0 are used. Since w0 ¼ 1:0, so the con-
vergence of the PSO is not good in whole search process [30]. It has the character-
istics of global search.

2.2 Method of PSOIW

For improving the convergence and search ability of the PSO, Shi and Eberhart
modified the updating rule of the particle’s velocity shown in Eq. (2) by constant
reduction of the inertia weight over time-step as follows:
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where w kð Þ is a variable inertia weight which is linearly reduced from a starting
value, ws, to a terminal value, we, with the increment of time-step k given by

w kð Þ ¼ ws þ we �ws

K
k (4)

where K is the maximum number of time-step for PSOIW searching. In the
original PSOIW, the boundary values are adopted to ws ¼ 0:9 and we ¼ 0:4,
respectively, and w1 ¼ w2 ¼ 2:0 are still used as the PSO.

Since the linear change of inertia weight from 0.9 to 0.4 in a search process,
PSOIW has the characteristics of asymptotical/local search, and its convergence is
so good in whole search process.

2.3 Method of CPSO

For the same purpose as the above described, Clerc and Kennedy modified the
updating rule for the particle’s velocity in Eq. (2) by a constant inertia weight over
time-step as follows:
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where Φ is an inertia weight corresponding to w0. In the original CPSO,
Φ ¼ w0 ¼ 0:729 and w1 ¼ w2 ¼ 2:05 are used.

It is clear that since the value of inertia weight, Φ, of CPSO is smaller than 1.0,
the convergence of its search is guaranteed by compared with the PSO search
[30, 31]. It has the characteristics of local search.

2.4 Basic search methods with sensors

We introduce the correspond to these foregoing search methods which are
particle swarm optimizers with sensors to handle dynamic optimization problems.
With adding sensors into the search methods of every particle swarm optimizer
described in Sections 2.1–2.3, it is possible to sense environmental change and a
moving target for improving the search ability and performance.

As an example, Figure 1 shows the positional relationship between the best
solution and sensors.

In a search process, the best solution of entire particle swarm is always set as the
origin of the sensor setting. Based on the sensing information (i.e., the measuring
position and its fitness value) of each sensor, we can observe the change of the
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surrounding environment and the moving target. In particular, updating the best
solution by Eq. (6) is an important search information:
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! , otherwise
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where y!
j
k is the jth sensor’s position (i.e., solution) at time k, y!

b
k is the best

solution for sensor detection, and gt �ð Þ is the criterion for evaluation at time t.
On the other hand, regarding whether there are environmental change and a

moving target or not, it is implemented by using the following judgment criterion:

Δk ¼ gt q!k�1

� �
� gt�1 q!k�1

� �
<0 (7)

where Δk is the difference in the fitness values between different functions at
the best solution q!k�1.

If the judgment result of Eq. (7) is satisfied in a search process, the moving
target has occurred. The particle swarm is initialized at the time and then continu-
ous to begin particle swarm search. However, such initialization is not considered
on the continuity of environmental change; it is implemented around the coordi-
nate origin of the search range. As a new problem in the situation, if the distance
before and after movement becomes smaller, the time loss to search is greater for
finding out the new best solution.

By changing the coordinate origin of the initialization to the position of the best
solution, the above difficulty can be dissolved. Therefore, the best solution of whole
particle swarm is intermittently updated by sensing information.

And adding the judgment operation of Eqs. (6) and (7) into each method
described in Sections 2.1–2.3, the constructions of the search methods, that is,
particle swarm optimizer with sensors (PSOS), particle swarm optimizer with iner-
tia weight with sensors (PSOIWS), and canonical particle swarm optimizer with
sensors (CPSOS), can be conflated and completed to deal with the given tracking
problems.

3. Basic search methods of PMSO

Formally, there are a lot of the methods about PMSO [32]. For understanding
the formation and methodology of these proposed methods, let us assume that the
multi-swarm consists of multiple single swarms. The corresponding three kinds of
particle swarm optimizers described in Sections 2.1–2.3 can be generated by
construction and parallel computation [33]. Therefore, these constructed particle
multi-swarm optimizers, i.e. multiple particle swarm optimizers (MPSO), are

Figure 1.
Configuration of sensors.
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multiple particle swarm optimizers with inertia weight (MPSOIW), multiple
canonical particle swarm optimizers (MCPSO), and hybrid particle swarm opti-
mizers (HPSO), respectively.

Based on the development of the search methods in Section 2.4, similarly,
multiple particle swarm optimizers with sensors (MPSOS), multiple particle swarm
optimizers with inertia weight with sensors (MPSOIWS), multiple canonical
particle swarm optimizers with sensors (MCPSOS), and hybrid particle swarm
optimizers with sensors (HPSOS) were acquired by programming [19].

However, all of their updating rules have two confidence terms in the Eqs. (2),
(3), and (5) to be only used for calculating the particle’s velocity. Because of the use
of the mechanism to search, they are called as the elementary basic methods with
sensors of PMSO which have the same updating rule of the particle’s velocity
[20, 34].

For improving the search ability and performance of the previous described
elementary multiple particle swarm optimizers, furthermore, we add the special
confidence term into the updating rule of the particle’s velocity by the best solution
found out by the multi-swarm search, respectively. According to this extended
procedure, the four basic search methods of PMSO, that is, MPSOSIS, MPSOIWSIS,
MCPSOSIS, and HPSOSIS, can be constructed [18]. Consequently, these basic
search methods of PMSO augmented with the strategy of multi-swarm information
sharing are proposed [22].

It is clear that the added confidence term perfectly is in accordance with the
fundamental construction principle of PSO. And the effectiveness of the methods
has been verified by our experimental results [21].

3.1 Method of MPSOSIS

On basis of the above description of PMSO, as the mechanism of the proposed
MPSOSIS, the updating rule of each particle’s velocity is defined as follows:

v!
i
kþ1 ¼ w0 v

!i
k þw1r1

! ⊗ p!
i
k � x!

i
k

� �
þw2r2

! ⊗ qk
! �x!

i
k

� �
þw3r3

! ⊗ sk
! �x!

i
k

� �
(8)

where sk
! ð¼ arg maxj¼1,⋯, S g qk

!� �
j

� �
. S is the number of the used swarms and is

the best solution chosen from the best solution of each swarm, w3 is a new confi-
dence coefficient for the multi-swarm, and r3

! is a random vector in which each
element is uniformly distributed over the range 0; 1½ �.

Since w0 ¼ 1:0 is used in each particle swarm search, the convergence of
MPSOSIS is not better than the PSO.

3.2 Method of MPSOIWSIS

In same way as the mechanism of MPSOSIS, the updating rule of each particle’s
velocity of the proposed MPSOIWSIS is defined as follows:

v!
i
kþ1 ¼ w kð Þv!i

k þ w1r1
! ⊗ p!

i
k � x!

i
k

� �
þ w2r2

! ⊗ qk
! �x!

i
k

� �
þ w3r3

! ⊗ sk
! �x!

i
k

� �
(9)

Since Eqs. (3) and (6) are alike in formulation, the description of the symbols in
Eq. (9) is omitted. Similarly, the convergence of MPSOIWSIS is as same as that of
PSOIW.
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3.3 Method of MCPSOSIS

Similar to the mechanism of MPSOSIS, the updating rule of each particle’s
velocity of the proposed MCPSOSIS is defined as follows:

v!
i
kþ1 ¼ Φ v!

i
k þ w1r1

! ⊗ p!
i
k � x!

i
k

� �
þ w2r2

! ⊗ qk
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i
k

� �
þw3r3

! ⊗ sk
! �x!

i
k

� ���

(10)

Likewise, the description of the symbols in Eq. (10) is omitted. Since
Φ ¼ w0 ¼ 0:729, the convergence of MCPSOSIS is as same as that of CPSO.

3.4 Method of HPSOSIS

Based on the three search methods described in Sections 3.1–3.3, there are the
three updating rules of each particle’s velocity in the proposed HPSOSIS. The
mechanism of HPSOSIS is determined by Eqs. (8)–(10).

Due to the mixed effect and performance in whole search process, global search
and asymptotical/local search are implemented simultaneously for dealing with a
given optimization problem. It is obvious that HPSOSIS has all search characteris-
tics of the three basic methods, that is, PSO, PSOIW, and CPSO. Similarly, the
convergence of HPSOSIS is as same as that of HPSOS.

Based on the development of these methods in Section 2.4, here, we propose the
four basic methods with sensors of PMSO and describe the search methods with
sensors, that is, MPSOSIS, MPSOIWSIS, MCPSOSIS, and HPSOSIS, respectively, by
constructing the particle swarm optimizers with sensors described in Sections 3.1–3.3.

For indicating the image relation of the above describedmethodswith sensors,
Figure 2 simply shows the constitutional concept of the proposed four basic search
methodswith sensors of PMSO. It is clear that HPSOSIS is amixedmethodwhich is
composed of PSOSIS, PSOIWSIS, andCPSOSIS. Thus, HPSOSIS has different character-
istics of the abovemethods as a special basic searchmethodwith sensors of PMSO [18].

Regarding the convergence of the above proposed methods, it can be said that
the MPSOSIS has the characteristics of global search, MPSOIWSIS has the charac-
teristics of asymptotical/local search, and MCPSOSIS has the characteristics of local
search. With different search features, HPSOSIS has the characteristics of the above
three search methods. In a search process, it is expected to improve the potential
search ability and performance of PMSO without additional calculation resource.

4. Computer experiments and result analysis

Due to the track of a moving target, the setting parameters of each proposed
method described in Section 2.1 are used in every search case. The main parameters
are shown in Table 1 for the following computer experiments.

Figure 2.
The constitutional concept of the proposed four basic search methods with sensors of PMSO.
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multiple particle swarm optimizers with inertia weight (MPSOIW), multiple
canonical particle swarm optimizers (MCPSO), and hybrid particle swarm opti-
mizers (HPSO), respectively.

Based on the development of the search methods in Section 2.4, similarly,
multiple particle swarm optimizers with sensors (MPSOS), multiple particle swarm
optimizers with inertia weight with sensors (MPSOIWS), multiple canonical
particle swarm optimizers with sensors (MCPSOS), and hybrid particle swarm
optimizers with sensors (HPSOS) were acquired by programming [19].

However, all of their updating rules have two confidence terms in the Eqs. (2),
(3), and (5) to be only used for calculating the particle’s velocity. Because of the use
of the mechanism to search, they are called as the elementary basic methods with
sensors of PMSO which have the same updating rule of the particle’s velocity
[20, 34].

For improving the search ability and performance of the previous described
elementary multiple particle swarm optimizers, furthermore, we add the special
confidence term into the updating rule of the particle’s velocity by the best solution
found out by the multi-swarm search, respectively. According to this extended
procedure, the four basic search methods of PMSO, that is, MPSOSIS, MPSOIWSIS,
MCPSOSIS, and HPSOSIS, can be constructed [18]. Consequently, these basic
search methods of PMSO augmented with the strategy of multi-swarm information
sharing are proposed [22].

It is clear that the added confidence term perfectly is in accordance with the
fundamental construction principle of PSO. And the effectiveness of the methods
has been verified by our experimental results [21].

3.1 Method of MPSOSIS

On basis of the above description of PMSO, as the mechanism of the proposed
MPSOSIS, the updating rule of each particle’s velocity is defined as follows:
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where sk
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. S is the number of the used swarms and is

the best solution chosen from the best solution of each swarm, w3 is a new confi-
dence coefficient for the multi-swarm, and r3

! is a random vector in which each
element is uniformly distributed over the range 0; 1½ �.

Since w0 ¼ 1:0 is used in each particle swarm search, the convergence of
MPSOSIS is not better than the PSO.

3.2 Method of MPSOIWSIS

In same way as the mechanism of MPSOSIS, the updating rule of each particle’s
velocity of the proposed MPSOIWSIS is defined as follows:
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Since Eqs. (3) and (6) are alike in formulation, the description of the symbols in
Eq. (9) is omitted. Similarly, the convergence of MPSOIWSIS is as same as that of
PSOIW.
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3.3 Method of MCPSOSIS

Similar to the mechanism of MPSOSIS, the updating rule of each particle’s
velocity of the proposed MCPSOSIS is defined as follows:
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Likewise, the description of the symbols in Eq. (10) is omitted. Since
Φ ¼ w0 ¼ 0:729, the convergence of MCPSOSIS is as same as that of CPSO.

3.4 Method of HPSOSIS

Based on the three search methods described in Sections 3.1–3.3, there are the
three updating rules of each particle’s velocity in the proposed HPSOSIS. The
mechanism of HPSOSIS is determined by Eqs. (8)–(10).

Due to the mixed effect and performance in whole search process, global search
and asymptotical/local search are implemented simultaneously for dealing with a
given optimization problem. It is obvious that HPSOSIS has all search characteris-
tics of the three basic methods, that is, PSO, PSOIW, and CPSO. Similarly, the
convergence of HPSOSIS is as same as that of HPSOS.

Based on the development of these methods in Section 2.4, here, we propose the
four basic methods with sensors of PMSO and describe the search methods with
sensors, that is, MPSOSIS, MPSOIWSIS, MCPSOSIS, and HPSOSIS, respectively, by
constructing the particle swarm optimizers with sensors described in Sections 3.1–3.3.

For indicating the image relation of the above describedmethodswith sensors,
Figure 2 simply shows the constitutional concept of the proposed four basic search
methodswith sensors of PMSO. It is clear that HPSOSIS is amixedmethodwhich is
composed of PSOSIS, PSOIWSIS, andCPSOSIS. Thus, HPSOSIS has different character-
istics of the abovemethods as a special basic searchmethodwith sensors of PMSO [18].

Regarding the convergence of the above proposed methods, it can be said that
the MPSOSIS has the characteristics of global search, MPSOIWSIS has the charac-
teristics of asymptotical/local search, and MCPSOSIS has the characteristics of local
search. With different search features, HPSOSIS has the characteristics of the above
three search methods. In a search process, it is expected to improve the potential
search ability and performance of PMSO without additional calculation resource.

4. Computer experiments and result analysis

Due to the track of a moving target, the setting parameters of each proposed
method described in Section 2.1 are used in every search case. The main parameters
are shown in Table 1 for the following computer experiments.
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The constitutional concept of the proposed four basic search methods with sensors of PMSO.
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The computing environment and software tool are given as follows:

• DELL: OPTIPLEX 3020, Intel(R) core (TM) i5-4590

• CPU: 3.30GHz; RAM: 8.0GB

• Mathematica: ver. 11.3

The tracking problems of constant speed I type, variable speed II type, and
variable speed III type are used in the following computer experiments. A target
object and its moving trajectories are shown in Figure 3. The search range of all
cases is limited to Ω∈ �5:12; 5:12ð Þ2.

The criterion of the moving target is expressed as follows:

gt x!k

� �
¼ 1

1þ x1k � xa tð Þ� �2 þ x2k � xb tð Þ� �2
�����
t∈T

(11)

Parameter Value

Number of the used swarms, S 3

Number of particles in a swarm, Z 10

Total number of particle search, K 800

Radius of moving target, R 2.0

Number of sensors, m 5, 8, 11, 14

Sensing distance, r 0.0, 0.1, ⋯, 1.0

Table 1.
Major parameters for handling the given tracking problems in computer experiments.

Figure 3.
Trajectories of the moving target. (a) Target object, (b) moving trajectory of constant speed I type, (c) moving
trajectory of variable speed II type, and (d) moving trajectory of variable speed III type.
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where (xa tð Þ, xb tð Þ) is the center coordination (position) of the moving target at
t time. T is a set of time series.

Specifically, for the moving trajectory of constant speed I type, (xa tð Þ, xb tð Þ) is
given as follows:

xa tð Þ
xb tð Þ

� �
¼ R�

cos
2π
K

� t
� �

sin
2π
K

� t
� �

0
BBB@

1
CCCA, t∈T ¼ 0; 20;40;⋯;Kf g (12)

where K is the total number of searching on the whole circle of the particle
swarm search. The target object goes 40 steps with a regular interval for the
tracking problem of constant speed I type, the radius R of its trajectory is 2.0, and
the fitness value of center (vertex) position of the moving target is 1.0.

The moving trajectories of variable speed II type and variable speed III type and
their passing points, (xa tð Þ, xb tð Þ), are determined by adjusting the coefficient of the
time t up to two and three times for calculating xb tð Þ, respectively.

The difficulty index (DI) for handling these tracking problems shown in
Figure 3(b)–(d) is defined as follows:

DI ¼ Dmax

Dmin
(13)

where Dmax and Dmin 6¼ 0ð Þ are the distance between maximum and minimum of
the moving target object used, respectively.

By concreting calculation, the DIs of the tracking problems of constant speed I
type, variable speed II type, and variable speed III type are 1.0, 3.06, and 5.39,
respectively.

4.1 Characteristics of tracking target

In this section, we implement the proposed methods, that is, MPSOSIS,
MPSOIWSIS, MCPSOSIS, and HPSOSIS, respectively, for handling the three
tracking problems shown in Figure 3 and investigating their search ability and
performance in detail.

First, MPSOSIS, MPSOIWSIS, MCPSOSIS, and HPSOSIS were performed4 to
handle the tracking problem of constant speed I type which has a low-level of
difficulty, respectively. As an example, the obtained change patterns of the fitness
value of the best solution and the moving trajectory are shown in Figure 4.

We can see that the obtained variation of the best solution in whole search
process from the left parts of Figure 4 and the search trajectories are beautifully
drawn from the right parts of Figure 4(a)–(d), except for Figure 4(a). And
comparing to the left parts of Figure 4(a)–(d), a big difference of the search state is
clear with the origin of searching range as the center of initialization and the best
solution as the center of initialization. The moving trajectories of the latter are
relatively flat.

Moreover, when the target object moves, the fitness value of the best solution of
the particle multi-swarm suddenly drops, then it rapidly rises with the subsequent
search, and it is found that the peak of the target object is attained again. On the
other hand, depending on the variation in the fitness value in the time space of

4The search time is about 1.3 s for handling the tracking problem of constant speed I type.
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Figure 4, the obtained results show that MPSOIWSIS, MCPSOSIS, and HPSOSIS
have good search ability and tracking performance depending on the variation
patterns of the fitness values on the search space.

Next, for handling the tracking problem of variable speed II type which has a
middle level of difficulty, MPSOSIS, MPSOIWSIS, MCPSOSIS, and HPSOSIS were
performed, respectively. The obtained experimental results are shown in Figure 5.

We can see that the variation of the obtained best solution in whole search
process from the left parts of Figure 5(a)–(d), and the moving trajectories of

Figure 5.
The moving trajectory of the best solution for handling the tracking problem of variable speed II type. Left part,
time space; right part, search space. (a) MPSOSIS case, (b) MPSOIWSIS case, (c) MCPSOSIS case, and
(d) HPSOSIS case.

Figure 4.
The moving trajectory of the best solution for handling the tracking problem of constant speed I type. Left part,
time space; right part, search space. (a) MPSOSIS case, (b) MPSOIWSIS case, (c) MCPSOSIS case, and
(d) HPSOSIS case.
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variable speed II type are drawn almost smoothly from the right parts of Figure 5
except for Figure 5(a). Then, compared to the variation in the fitness value in the
time space of Figure 5, it is found that the falling range of the fitness value of the
best solution is slightly bigger due to the increase in difficulty of the given search
problem.

Subsequently, for handling the tracking problem of variable speed III type which
has a high level of difficulty, MPSOSIS, MPSOIWSIS, MCPSOSIS, and HPSOSIS
were performed, respectively. Figure 6 shows the obtained experimental results.

Similarly, we can see that the variation of search patterns in the time space of
Figure 6(a)–(d) for handling the given tracking problem. Except for the search
result of Figure 6(a), the search trajectories of Figure 6(b)–(d) are roughly drawn.
Then, compared with the variation in the fitness value in the time space of Figure 6,
it is found that the falling variation of the fitness value of the best solution is bigger
due to the increase in the difficulty of the given tracking problem.

The moving trajectories of MPSOIWSIS, MCPSOSIS, and HPSOSIS are roughly
drawn. Corresponding to this situation, it is clear that the smoothness of the moving
trajectory gradually deteriorated as the difficulty level of the tracking problem
increased. In addition, we can see that MPSOIWSIS, MCPSOSIS, and HPSOSIS are
more susceptible to target variation compared with MPSOSIS.

4.2 Effect of the number and sensing distance of sensors

For objectively and quantitatively evaluating the tracking ability and perfor-
mance of the proposed methods, we use an indicator such as cumulative fitness
(CF) for estimating the moving trajectory of the best solution. The CF is defined as
the following equation:

CF ¼ 1
K

∑
K

t∈T, k¼1
gt sk

!� �
(14)

Figure 6.
The moving trajectory of the best solution for handling the tracking problem of variable speed III type. Left part,
time space; right part, search space. (a) MPSOSIS case, (b) MPSOIWSIS case, (c) MCPSOSIS case, and
(d) HPSOSIS case.
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Consequently, by changing the number m of the used sensors and changing the
sensing distance r, we implemented MPSOSIS, MPSOIWSIS, MCPSOSIS, and
HPSOSIS to investigate their search ability and performance, respectively.

Hereinafter, we change the numberm of the used sensors and the sensing distance
r and implement the proposed methods for handling the given tracking problems.

First, computer experiments were carried out to handle the tracking problem of
constant tracking I type. In this case, the obtained search results (average value of
running ten times) are shown in Figure 7.

Comparing the search results of MPSOSIS, MPSOIWSIS, MCPSOSIS, and
HPSOSIS shown in Figure 7, it is found that the difference in tracking performance
regarding the existence of sensors is very large with regard to the search ability.
That is, when r ¼ 0, they become the search results of the existing methods, that is,
MPSOIS, MPSOIWIS, MCPSOIS, and HPSOIS, and the significance of the proposed
methods is suggested as compared with these search methods.

On the other hand, when the sensing distance r exceeds 0.5 or more, it can be
confirmed that the tracking performance of MPSOIWSIS, MCPSOSIS, and
HPSOSIS becomes low and unstable. The tracking performance is relatively high
within a certain range of the sensing distance r of the sensor. And when the number
m of sensors exceeds 8, there is not much difference in the search ability of these
methods themselves.

Second, computer experiments were carried out to handle the tracking problems
of variable speed II type and variable speed III type. The obtained search results are
shown in Figures 8 and 9, respectively.

By comparing the search results shown in Figures 7–9, it is clear that each
proposed search method has high tracking ability in each case. As the main search
characteristics, we can see that as the sensing distance r of the sensor increases and

Figure 7.
Effect of handling the tracking problem of constant speed I type with adjustment of the number m and sensing
distance r of sensors. (a) MPSOSIS case, (b) MPSOIWSIS case, (c) MCPSOSIS case, and (d) HPSOSIS case.
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Figure 9.
Effect of handling the tracking problem of variable speed III type with adjustment of the number m
and sensing distance r of sensors. (a) MPSOSIS case, (b) MPSOIWSIS case, (c) MCPSOSIS case, and
(d) HPSOSIS case.

Figure 8.
Effect of handling the tracking problem of variable speed II type with adjustment of the number m
and sensing distance r of sensors. (a) MPSOSIS case, (b) MPSOIWSIS case, (c) MCPSOSIS case, and
(d) HPSOSIS case.
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Figure 9.
Effect of handling the tracking problem of variable speed III type with adjustment of the number m
and sensing distance r of sensors. (a) MPSOSIS case, (b) MPSOIWSIS case, (c) MCPSOSIS case, and
(d) HPSOSIS case.

Figure 8.
Effect of handling the tracking problem of variable speed II type with adjustment of the number m
and sensing distance r of sensors. (a) MPSOSIS case, (b) MPSOIWSIS case, (c) MCPSOSIS case, and
(d) HPSOSIS case.
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Figure 10.
Search ability of each proposed method for handling the tracking problem of constant speed I type. (a) m = 5
case, (b) m = 8 case, (c) m = 11 case, and (d) m = 14 case.

Figure 11.
Search ability of each proposed method for handling the tracking problem of variable speed type. (a) m = 5 case,
(b) m = 8 case, (c) m = 11 case, and (d) m = 14 case.
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Figure 12.
Search ability of each proposed method for handling the tracking problem of variable speed III type. (a) m = 5
case, (b) m = 8 case, (c) m = 11 case, and (d) m = 14 case.

Figure 13.
The best and average solutions for handling the tracking problem of constant speed I type. (a) MPSOSIS and
MPSOS case, (b) MPSOIWSIS and MPSOIWS case, (c) MCPSOSIS and MCPSOS case, and (d) HPSOSIS
and HPSOS case.
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Figure 14.
The best and average solutions for handling the tracking problem of variable speed II type. (a) MPSOSIS and
MPSOS case, (b) MPSOIWSIS and MPSOIWS case, (c) MCPSOSIS and MCPSOS case, and (d) HPSOSIS
and HPSOS case.

Figure 15.
The best and average solutions for handling the tracking problem of variable speed III type. (a) MPSOSIS and
MPSOS case, (b) MPSOIWSIS and MPSOIWS case, (c) MCPSOSIS and MCPSOS case, and (d) HPSOSIS
and HPSOS case.
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the fitness value of the best solution gradually increases and gradually decays after
passing through a certain peak value of the CF.

4.3 Performance comparison of the proposed methods

In this section, we compare the search performance of the four proposed
methods, that is, MPSOSIS, MPSOIWSIS, MCPSOSIS, and HPSOSIS, by handling
the same tracking problem. Figure 10 shows the search results obtained by handling
the tracking problem of constant speed I type.

We can see clearly that the search performance of MPSOSIS is the lowest
regardless of the number of sensors used. For the remaining three proposed
methods, that is, MPSOIWSIS, MCPSOSIS, and HPSOSIS, it is obvious that the
search performance of MCPSOSIS is good within a certain range of the sensing
distance r. Overall, it is clear that the search performance of MPSOIWSIS and
HPSOSIS is relatively better in search ability. As the sensing distance r increases, all
of their cumulative fitness values gradually decrease.

Similarly, Figures 11 and 12 show the search results obtained by handling the
tracking problems of variable speed II type and variable speed III type, respectively.
Observing the obtained search results of both, it is almost the same as the finding
obtained from the data analysis of the search result in Figure 10. In particular, it is
found that the search performance of each proposed method is very lower when
sensors are not used. In this case, the proposed methods (i.e., MPSOSIS,
MPSOIWSIS, MCPSOSIS, and HPSOSIS) correspond to the existing methods (i.e.,
MPSOIS, MPSOIWIS, MCPSOIS, and HPSOIS). Thus, the important role of the
used sensors is clearly shown.

4.4 Performance comparison without the strategy of information sharing

In order to investigate the effectiveness of the proposed methods under the situa-
tion of multiple particle swarm search, computer experiments on the existing search
methods, that is, MPSOS, MPSOIWS, MCPSOS, and HPSOS, were implemented.

For intuitive comparison of both, the obtained results are shown in Figures 13
and 15, respectively. When there is no sensor, it is understood that the difference
between them is the largest. It is also found that the attenuation of the cumulative
fitness of the latter becomes relatively fast as the sensing distance r increases.

Except for the results in Figures 13(a), 14(a), and 15(a), we discovered that the
search results of the proposed methods, that is, MPSOIWSIS, MCPSOSIS, and
HPSOSIS, are better than the existing methods, that is, MPSOIWS, MCPSOS, and
HPSOS, except for the MPSOSIS case. Therefore, the effectiveness of the informa-
tion sharing strategy is confirmed even in the case of multiple particle swarm
search. The obtained results in Figures 14 and 15 show that the attenuation of the
existing methods becomes faster as r increases. However, with respect to handling
the three kinds of tracking problems, further investigation and confirmation are
required as to why the former’s search results are generally lower in the maximum
value of the cumulative fitness by the latter.

5. Conclusions and future research

In this chapter, we proposed the four new search methods, that is, MPSOSIS,
MPSOIWSIS, MCPSOSIS, and HPSOSIS, to deal with dynamic optimization prob-
lems. For investigating and comparing their tracking ability and performance, we
modified the number of sensors and adjusted the sensing distance to implement
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Figure 14.
The best and average solutions for handling the tracking problem of variable speed II type. (a) MPSOSIS and
MPSOS case, (b) MPSOIWSIS and MPSOIWS case, (c) MCPSOSIS and MCPSOS case, and (d) HPSOSIS
and HPSOS case.

Figure 15.
The best and average solutions for handling the tracking problem of variable speed III type. (a) MPSOSIS and
MPSOS case, (b) MPSOIWSIS and MPSOIWS case, (c) MCPSOSIS and MCPSOS case, and (d) HPSOSIS
and HPSOS case.
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For intuitive comparison of both, the obtained results are shown in Figures 13
and 15, respectively. When there is no sensor, it is understood that the difference
between them is the largest. It is also found that the attenuation of the cumulative
fitness of the latter becomes relatively fast as the sensing distance r increases.

Except for the results in Figures 13(a), 14(a), and 15(a), we discovered that the
search results of the proposed methods, that is, MPSOIWSIS, MCPSOSIS, and
HPSOSIS, are better than the existing methods, that is, MPSOIWS, MCPSOS, and
HPSOS, except for the MPSOSIS case. Therefore, the effectiveness of the informa-
tion sharing strategy is confirmed even in the case of multiple particle swarm
search. The obtained results in Figures 14 and 15 show that the attenuation of the
existing methods becomes faster as r increases. However, with respect to handling
the three kinds of tracking problems, further investigation and confirmation are
required as to why the former’s search results are generally lower in the maximum
value of the cumulative fitness by the latter.

5. Conclusions and future research

In this chapter, we proposed the four new search methods, that is, MPSOSIS,
MPSOIWSIS, MCPSOSIS, and HPSOSIS, to deal with dynamic optimization prob-
lems. For investigating and comparing their tracking ability and performance, we
modified the number of sensors and adjusted the sensing distance to implement
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computer experiments. As the given tracking problems, we used a set of benchmark
problems of constant speed I type, variable speed II type, and variable speed III
type.

Computer experiments were carried out to handle each given tracking problem.
Based on various experimental results obtained, the prominent search ability and
performance of each proposed search method is confirmed.

Specifically, regarding search performance of the proposed methods, it is found
that the obtained search results of MPSOIWSIS, MCPSOSIS, and HPSOSIS are
better than the existing methods, that is, MPSOIWS, MCPSOS, HPSOS,
MPSOIWIS, MCPSOIS, and HPSOIS. Also, in addition to enhancing the processing
capacity for dealing with the given tracking problems, the efficiency of the search
itself is also improved. However, in order to obtain good tracking ability and
performance, it is necessary to select an appropriate value for the sensing distance
of the sensor.

As future research subjects, based on the sensing information obtained from the
sensors, we will advance the development of PMSO [22], that is, introducing the
strategy of sharing information during the search and raising the intellectual level in
particle multi-swarm search. Alternatively, the proposal methods utilizing the
excellent tracking ability of MPSOIWSIS and HPSOSIS are applied extensively to
dynamic search problems such as identification of control systems and recurrent
network learning.
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Chapter 3

Particle Swarm Optimization:
A Powerful Technique for Solving
Engineering Problems
Bruno Seixas Gomes de Almeida and Victor Coppo Leite

Abstract

This chapter will introduce the particle swarm optimization (PSO) algorithm
giving an overview of it. In order to formally present the mathematical formulation
of PSO algorithm, the classical version will be used, that is, the inertial version;
meanwhile, PSO variants will be summarized. Besides that, hybrid methods
representing a combination of heuristic and deterministic optimization methods are
going to be presented as well. Before the presentation of these algorithms, the
reader will be introduced to the main challenges when approaching PSO algorithm.
Two study cases of diverse nature, one regarding the PSO in its classical version and
another one regarding the hybrid version, are provided in this chapter showing how
handful and versatile it is to work with PSO. The former case is the optimization of a
mechanical structure in the nuclear fuel bundle and the last case is the optimization
of the cost function of a cogeneration system using PSO in a hybrid optimization.
Finally, a conclusion is presented.

Keywords: PSO algorithm, hybrid methods, nuclear fuel, cogeneration system

1. Introduction

Maximizing earns or minimizing losses has always been a concern in engineering
problems. For diverse fields of knowledge, the complexity of optimization problems
increases as science and technology develop. Often, examples of engineering prob-
lems that might require an optimization approach are in energy conversion and
distribution, in mechanical design, in logistics, and in the reload of nuclear reactors.

To maximize or minimize a function in order to find the optimum, there are
several approaches that one could perform. In spite of a wide range of optimization
algorithms that could be used, there is not a main one that is considered to be the
best for any case. One optimization method that is suitable for a problem might not
be so for another one; it depends on several features, for example, whether the
function is differentiable and its concavity (convex or concave). In order to solve a
problem, one must understand different optimization methods so this person is able
to select the algorithm that best fits on the features’ problem.

The particle swarm optimization (PSO) algorithm, proposed by Kennedy and
Eberhart [1], is a metaheuristic algorithm based on the concept of swarm intelli-
gence capable of solving complex mathematics problems existing in engineering
[2]. It is of great importance noting that dealing with PSO has some advantages
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when compared with other optimization algorithms, once it has fewer parameters
to adjust, and the ones that must be set are widely discussed in the literature [3].

2. Particle swarm optimization: an overview

In the early of 1990s, several studies regarding the social behavior of animal
groups were developed. These studies showed that some animals belonging to a
certain group, that is, birds and fishes, are able to share information among their
group , and such capability confers these animals a great survival advantage [4].
Inspired by these works, Kennedy and Eberhart proposed in 1995 the PSO algorithm
[1], a metaheuristic algorithm that is appropriate to optimize nonlinear continuous
functions. The author derived the algorithm inspired by the concept of swarm
intelligence, often seen in animal groups, such as flocks and shoals.

In order to explain how the PSO had inspired the formulation of an optimization
algorithm to solve complex mathematical problems, a discussion on the behavior of
a flock is presented. A swarm of birds flying over a place must find a point to land
and, in this case, the definition of which point the whole swarm should land is a
complex problem, since it depends on several issues, that is, maximizing the avail-
ability of food and minimizing the risk of existence of predators. In this context, one
can understand the movement of the birds as a choreography; the birds synchron-
ically move for a period until the best place to land is defined and all the flock lands
at once.

In the given example, the movement of the flock only happens as described once
all the swarm members are able to share information among themselves; otherwise,
each animal would most likely land at a different point and at a different time. The
studies regarding the social behavior of animals from the early 1990s stated before
in this text pointed out that all birds of a swarm searching for a good point to land
are able to know the best point until it is found by one of the swarm’s members. By
means of that, each member of the swarm balances its individual and its swarm
knowledge experience, known as social knowledge. One may notice that the criteria
to assess whether a point is good or not in this case is the survival conditions found
at a possible landing point, such as those mentioned earlier in this text.

The problem to find the best point to land described features an optimization
problem. The flock must identify the best point, for example, the latitude and the
longitude, in order to maximize the survival conditions of its members. To do so,
each bird flies searching and assessing different points using several surviving
criteria at the same time. Each one of those has the advantage to know where the
best location point is found until known by the whole swarm.

Kennedy and Eberhart inspired by the social behavior of birds, which grants
them great surviving advantages when solving the problem of finding a safe point
to land, proposed an algorithm called PSO that could mimic this behavior. The
inertial version, also known as classical version, of the algorithm was proposed in
1995 [1]. Since then, other versions have been proposed as variations of the classical
formulation, that is, the linear-decreasing inertia weight [5], the constriction factor
weight [6], the dynamic inertia and maximum velocity reduction, also in Ref. [6],
besides hybrid models [7] or even quantum inspired approach optimization tech-
niques that can be applied to PSO [8]. This chapter will only present the inertial
model of PSO, as it is the state-of-the-art algorithm, and to understand better the
derivations of PSO, one should firstly understand its classical version.

The goal of an optimization problem is to determine a variable represented by a
vector X ¼ x1x2x3 … xn½ � that minimizes or maximizes depending on the proposed
optimization formulation of the function f Xð Þ. The variable vector X is known as
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position vector; this vector represents a variable model and it is n dimensions
vector, where n represents the number of variables that may be determined in a
problem, that is, the latitude and the longitude in the problem of determining a
point to land by a flock. On the other hand, the function f Xð Þ is called fitness
function or objective function, which is a function that may assess how good or bad
a position X is, that is, how good a certain landing point a bird thinks it is after this
animal finds it, and such evaluation in this case is performed through several
survival criteria.

Considering a swarm with P particles, there is a position vector Xt
i ¼

xi1xi2xi3 … xinð ÞT and a velocity vector Vt
i ¼ vi1vi2vi3 … vinð ÞT at a t iteration for each

one of the i particle that composes it. These vectors are updated through the
dimension j according to the following equations:

Vtþ1
ij ¼ wVt

ij þ c1rt1 pbestij � Xt
ij

� �
þ c2rt2 gbest j � Xt

ij

� �
(1)

and

Xtþ1
ij ¼ Xt

ij þ Vtþ1
ij (2)

where i = 1,2,… ,P and j = 1,2,… ,n.
Eq. (1) denotes that there are three different contributions to a particle’s move-

ment in an iteration, so there are three terms in it that are going to be further
discussed. Meanwhile, Eq. (2) updates the particle’s positions. The parameter w is
the inertia weight constant, and for the classical PSO version, it is a positive con-
stant value. This parameter is important for balancing the global search, also known
as exploration (when higher values are set), and local search, known as exploitation
(when lower values are set). In terms of this parameter, one may notice that it is one
of the main differences between classical version of PSO and other versions derived
from it.

Velocity update equation’s first term is a product between parameter w and
particle’s previous velocity, which is the reason it denotes a particles’ previous
motion into the current one. Hence, for example, if w ¼ 1, the particle’s motion is
fully influenced by its previous motion, so the particle may keep going in the same
direction. On the other hand, if 0≤w< 1, such influence is reduced, which means
that a particle rather goes to other regions in the search domain. Therefore, as the
inertia weight parameter is reduced, the swarm may explore more areas in the
searching domain, which means that the chances of finding a global optimum may
increase. However, there is a price when using lower w values, which is the simu-
lations turn out to be more time consuming [1].

The individual cognition term, which is the second term of Eq. (1), is calculated
by means of the difference between the particle’s own best position, for example,
pbestij, and its current position Xt

ij. One may notice that the idea behind this term is
that as the particle gets more distant from the pbestij position, the difference

pbestij � Xt
ij

� �
must increase; therefore, this term increases, attracting the particle

to its best own position. The parameter c1 existing as a product in this term is a
positive constant and it is an individual-cognition parameter, and it weighs the
importance of particle’s own previous experiences. The other parameter that com-
poses the product of second term is r1, and this is a random value parameter with
0, 1½ � range. This random parameter plays an important role, as it avoids premature
convergences, increasing the most likely global optima [1].
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when compared with other optimization algorithms, once it has fewer parameters
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Finally, the third term is the social learning one. Because of it, all particles
in the swarm are able to share the information of the best point achieved
regardless of which particle had found it, for example, gbest j. Its format is just
like the second term, the one regarding the individual learning. Thus, the dif-

ference gbest j � Xt
ij

� �
acts as an attraction for the particles to the best point until

found at some t iteration. Similarly, c2 is a social learning parameter, and it
weighs the importance of the global learning of the swarm. And r2 plays exactly
the same role as r1.

Lastly, Figure 1 shows the PSO algorithm flowchart, and one may notice that the
optimization logic in it searches for minimums and all position vectors are assessed
by the function f Xð Þ, known as fitness function. Besides that, Figures 2 and 3
present the update in a particle’s velocity and in its position at a t iteration,
regarding a bi-dimensional problem with variables x1 and x2.

Figure 1.
The PSO algorithm.

Figure 2.
The velocity vector at a t iteration as being composed by two components regarding a bi-dimensional problem.
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3. Hybrid methods: coupling PSO with deterministic methods

In general, optimizationmethods are divided into deterministic and heuristic.
Deterministicmethods aim to establish an iterative process involving a gradient,which,
after a certain number of iterations, will converge to theminimum of the objective
function. The iterative procedure of this type ofmethod can bewritten as follows:

xkþ1 ¼ xk þ αkdk (3)

where x is the variable vector, α is the step size, d is the descent direction, and k
is the iteration number. The best that can be expected from any deterministic
gradient method is its convergence to a stationary point, usually a local minimum.

Heuristic methods, in contrast to deterministic methods, do not use the objective
function gradient as a downward direction. Its goal is to mimic nature in order to
find the minimum or maximum of the objective function by selecting, in an elegant
and organized manner, the points where such a function will be calculated [9].

Hybrid methods represent a combination of deterministic and heuristic methods
in order to take advantage of both approaches. Hybrid methods typically use a
heuristic method to locate the most likely region where the global minimum is. Once
this region is determined, the hybrid formulation algorithm switches to a determin-
istic method to get closer and faster to the minimum point. Usually, the most
common approach used for this formulation is using the heuristic method to gener-
ate good candidates for an optimal solution and then using the best point found as a
start point for the deterministic methods in order to converge to local minimums.

Numerous papers have been published over the last fewyears showing the efficiency
and effectiveness of hybrid formulations [10–12]. There are also a growing number of
publications over the last decade regarding hybrid formulations for optimization [13].

In this context, PSO algorithm can be combined with deterministic methods,
increasing the chance of finding the function’s most likely global optimal. This
chapter presents the three deterministic methods in which the PSO was coupled:
conjugate gradient method, Newton’s method, and quasi-Newton method (BFGS).
The formulation of each one of those is briefly presented in the following sections.

3.1 Conjugate gradient

The conjugate gradient method improves the convergence rate of the steepest
descent method by choosing descending directions that are a linear combination of

Figure 3.
The position vector being updated at a t iteration as being composed by two components regarding
a bi-dimensional problem.
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the gradient direction with the descending directions of previous iterations. There-
fore, their equations are:

xkþ1 ¼ xk þ αkdk (4)

dk ¼ �∇ xk
� �þ γkdk�1 (5)

where γ is the conjugation coefficient that acts by adjusting the size of the
vectors. In the Fletcher-Reeves version, the conjugation coefficient is given by:

γk ¼ �∇ xk
� ����� 2

�∇ xk�1ð Þkk 2 (6)

3.2 Newton’s method

While the steepest descent and conjugate gradient methods use first derivative
information, Newton’s method also uses second derivative information to accelerate
the convergence of the iterative process. The algorithm used in this method is
presented below:

xkþ1 ¼ xk þ αkdk (7)

dk ¼ � H xð Þ½ ��1∇U xk
� �

(8)

where H xð Þ is the Hessian of the function. In general, this method requires few
iterations to converge; however, it requires a matrix that grows with the size of the
problem. If the estimate is far from the minimum, the Hessian matrix may be
poorly conditioned. In addition, it involves inverting a matrix, which makes the
method even more computationally expensive.

3.3 Quasi-Newton (BFGS)

BFGS is a type of quasi-Newton method. It seeks to approximate the inverse of
the Hessian using the function’s gradient information. This approximation is such
that it does not involve second derivatives. Thus, this method has a slower conver-
gence rate than Newton’s methods, although it is computationally faster. The
algorithm is presented below:

xkþ1 ¼ xk þ αkdk (9)

dk ¼ �Hk∇U xk
� �

(10)

Hk ¼ Hk�1 þMk�1 þNk�1 (11)

Mk�1 ¼ 1þ Yk�1� �T
:Hk�1:Yk�1

Yk�1� �T
:dk�1

" #
dk�1: dk�1

� �T

dk�1
� �T

:Yk�1
(12)

Nk�1 ¼ �
dk�1: Yk�1� �T

:Hk�1 þHk�1:Yk�1 dk�1
� �T

dk�1
� �T

2
64

3
75 (13)

Yk�1 ¼ ∇U xk
� �� ∇U xk�1� �

(14)
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4. Recent applications and challenges

PSO can be applied to many types of problems in the most diverse areas of
science. As an example, PSO has been used in healthcare in diagnosing problems of
a type of leukemia through microscopic imaging [14]. In the economic sciences,
PSO has been used to test restricted and unrestricted risk investment portfolios to
achieve optimal risk portfolios [15].

In the engineering field, the applications are as diverse as possible. Optimization
problems involving PSO can be found in the literature in order to increase the heat
transfer of systems [16] or even in algorithms to predict the heat transfer coefficient
[17]. In the field of thermodynamics, one can find papers involving the optimiza-
tion of thermal systems such as diesel engine–organic Rankine cycle [18], hybrid
diesel-ORC/photovoltaic system [19], and integrated solar combined cycle power
plants (ISCCs) [20].

PSO has also been used for geometric optimization problems in order to find the
best system configurations that best fit the design constraints. In this context, we
can mention studies involving optical-geometric optimization of solar concentrators
[21] and geometric optimization of radiative enclosures that satisfy temperature
distribution and heat flow [22].

After having numerous versions of PSO algorithm such as those mentioned in
the first section, PSO is able to deal with a broad range of problems, from problems
with a few numbers of goals and continuum variables to others with challenging
multipurpose problems with many discreet and/or continuum variables. Besides its
potential, the user must be aware that the PSO will only achieve appreciated results
if one implements an objective function capable of reflecting all goals at once. To
derive such a function may be a challenging task that should require a good under-
standing of the physical problem to be solved and the ability to abstract ideas into a
mathematical equation as well. The problems presented in the fourth section of this
work provide examples of objective functions capable of playing this role.

Another challenge for one using PSO is how to handle the bounds of the search
domain whenever a particle moves beyond it. Many popular strategies that had
already been proposed are reviewed and compared for PSO classical version in [23].
Those strategies may be reviewed and understood by PSO users so this person can
pick up the one that best fits the optimization problem features.

5. Engineering problems

In this chapter, two engineering problems will be described, one involving the
fuel element of a nuclear power plant and the other involving a thermal cogenera-
tion system. In the first problem, the traditional PSO formulation is used to find the
optimal fuel element spacing. In the second problem, hybrid optimization algo-
rithms are used to find the operating condition that minimizes total cost of opera-
tion of a cogeneration system.

5.1 Springs and dimples of a nuclear fuel bundle spacer grid

In [24], the authors perform the optimization of dimples and spring geometries
existing in the nuclear fuel bundle (FB) spacer grid (SG). An FB is a structured
group of fuel rods (FRs), and it is also known as fuel assembly, and on the other
hand, an FR is a long, slender, zirconium metal tube containing pellets of fissionable
material, which provide fuel for nuclear reactors [25]. An SG is a part of the nuclear
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tion system. In the first problem, the traditional PSO formulation is used to find the
optimal fuel element spacing. In the second problem, hybrid optimization algo-
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fuel bundle and, Figure 4 shows a schematic view of a nuclear FB; it is possible to
see in this illustration how the FRs and the SGs are assembled together. In addition,
Figure 5 gives more details on how an SG’s springs and dimples grip an FR, and
Figure 6 shows exactly what parts in the SG are the springs and the dimples that
may be in contact with an FR. For this work, the PSO algorithm had been developed
in MATLAB® (MathWorks Inc.); meanwhile, the mechanical calculations were
performed with finite element analysis (FEA), using ANSYS 15.0 software.

The springs and the dimples act as supports required having special features
once an FR releases a great amount of energy, caused by the nuclear reactions
occurring within it. Hence, the material of an FR must face a broad range of
temperatures when in operation; for example, around a variation of 300°C, this fact
is an important matter for the springs and the dimples as those must not impose an

Figure 4.
A schematic view of a nuclear fuel bundle.

Figure 5.
The top view of a spacer grid gripping an FR through its dimples and springs.

38

Swarm Intelligence - Recent Advances, New Perspectives and Applications

excessive gripping force on the rod, allowing it some axial thermal expansion. On
the other hand, the upward water flow cooling the great amount of heat released by
fission occurring within the rod creates a flow-induced vibration, so the springs and
dimples must also limit the lateral displacement of the fuel rods. Besides that, the
SG may also support the FRs through its dimples and springs at many loading
conditions, that is, earthquakes and shipping and handling. To support safely the
fuel in a nuclear reactor is an important matter during operation, and consequences
such as the release of fission products from a fuel rod and a reactor safety shutdown
could happen because of a poor design.

Finally, one can understand that as the springs and the dimples of an FB must
have a geometry able to comply with conflicting requirements so the FRs remain
laterally restrained, avoiding it from bowing and vibrating [26], using an optimiza-
tion algorithm could be useful.

Jourdan et al. [13] had performed the optimization of the dimples and springs of
an FB’s SG using PSO classical version algorithm. The authors chose some geometry
variables that should be important to features such as the gripping stiffness and the
stress distribution in the spacer grid, which are the optimization goals in their work.
Thus, the position vector is written as Xt

i ¼ di1, di2, di3, di4, di5, di6ð ÞT, and these
lengths are those in Figure 7, while Table 1 shows the range of such variables, that
is, the search domain of the problem.

Figure 6.
A part of an SG strip with one spring and two dimples.
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see in this illustration how the FRs and the SGs are assembled together. In addition,
Figure 5 gives more details on how an SG’s springs and dimples grip an FR, and
Figure 6 shows exactly what parts in the SG are the springs and the dimples that
may be in contact with an FR. For this work, the PSO algorithm had been developed
in MATLAB® (MathWorks Inc.); meanwhile, the mechanical calculations were
performed with finite element analysis (FEA), using ANSYS 15.0 software.

The springs and the dimples act as supports required having special features
once an FR releases a great amount of energy, caused by the nuclear reactions
occurring within it. Hence, the material of an FR must face a broad range of
temperatures when in operation; for example, around a variation of 300°C, this fact
is an important matter for the springs and the dimples as those must not impose an

Figure 4.
A schematic view of a nuclear fuel bundle.

Figure 5.
The top view of a spacer grid gripping an FR through its dimples and springs.
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excessive gripping force on the rod, allowing it some axial thermal expansion. On
the other hand, the upward water flow cooling the great amount of heat released by
fission occurring within the rod creates a flow-induced vibration, so the springs and
dimples must also limit the lateral displacement of the fuel rods. Besides that, the
SG may also support the FRs through its dimples and springs at many loading
conditions, that is, earthquakes and shipping and handling. To support safely the
fuel in a nuclear reactor is an important matter during operation, and consequences
such as the release of fission products from a fuel rod and a reactor safety shutdown
could happen because of a poor design.

Finally, one can understand that as the springs and the dimples of an FB must
have a geometry able to comply with conflicting requirements so the FRs remain
laterally restrained, avoiding it from bowing and vibrating [26], using an optimiza-
tion algorithm could be useful.

Jourdan et al. [13] had performed the optimization of the dimples and springs of
an FB’s SG using PSO classical version algorithm. The authors chose some geometry
variables that should be important to features such as the gripping stiffness and the
stress distribution in the spacer grid, which are the optimization goals in their work.
Thus, the position vector is written as Xt

i ¼ di1, di2, di3, di4, di5, di6ð ÞT, and these
lengths are those in Figure 7, while Table 1 shows the range of such variables, that
is, the search domain of the problem.
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In PSO simulations from Ref. [24], for each position vector Xt
i, there is an FEA

model with the geometry variable values of its related vector. In such FEA model,
there are boundary conditions of an elastic static analysis. The boundary conditions
considered in these simulations regard one spring and two dimples gripping two
FRs, one in contact with the spring and the other one in contact with two dimples.
Contacts were not modeled actually in order to simplify the model, and those were
replaced by displacements similar to the condition of an FR with the diameter of
9.7 mm being gripped in the available space considering the Xt

i geometry. Other
boundary conditions are also the restriction of translations and rotations on the
welding nodes. Figure 8 presents these boundary conditions regarding any position
vector. All simulations were built using SHELL181 finite element [27], considering
the material to be the Inconel 718.

Figure 7.
Variable lengths that should feature the goals of the optimization.

Variable Lower bound (mm) Upper bound (mm)

d1 50 70

d2 10 15

d3 5 30

d4 5 10

d5 1 5

d6 1 5

Table 1.
Variable boundaries for the SG optimization.
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The goals of the optimization performed in [24] are three: first, to minimize the
stress intensity (SI) within the structure; second, to create an SG geometry featur-
ing a gripping stiffness value as close as possible to some Kreference; and finally, to find
a geometry that allows some axial thermal expiation by the FR. These three features
are the main mechanical design requirements for an SG [26].

A simulation considering a population of P ¼ 100 particles in a swarm and an
inertial weight of w ¼ 0:3 was performed in [26]. In order to obtain good results
from PSO simulations, in other words, to determine the variable values that might
fit on actual desired features, one must derive a fitness function able to properly
grade all the optimization goals at once, without privileging none of the goals
comparing to all others.

It should be noted that the grades assessed by the fitness function could be in an
increasing scale or in a decreasing one, depending on the conception of the PSO
algorithm. In [26], the authors chose to perform the search at a decreasing scale,
and then the fitness function, Eq. (15), was designed to be minimized.

f Xð Þ ¼ σþ ck kcalculated � kreference
� �

if displacement≥0:4mm
f Xð Þ ¼ 1, 000, 000 otherwiseð Þ (15)

The fitness function implemented assesses three different terms through two
conditions. The two conditions regard the fact that the SG must allow some axial
thermal expansion by the FR. To do so, a parameter displacement is created, and it
measures the space that an FR with 9.7 mm diameter will use when gripped by an
SG with some position vector geometry. Thus, a geometry producing a displacement

Figure 8.
Model’s boundary condition considering any position vector.
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over 0.4 mm will receive a high grade, meaning that this is an undesired feature, as
the algorithm performs its optimization at a decreasing scale. The value of 0.4 mm
is considered to be a good value for the design of an SG [28–31].

The σ parameter represents the SI, and then it is easy to understand that as the SI
gets lower this term also does, which is desirable. Finally, the term
ck kcalculated � kreference
� �

plays the role of finding a geometry that its stiffness, that is,
kcalculated, gets as close as possible to a reference stiffness kreference, where this last
parameter is set to be 27.2 N/mm [31]. Meanwhile, the parameter ck is a coefficient
that must be set in order to fit the order of magnitude between the fitness function’s
terms, so none of them gets greater importance. In [24], ck parameter had been
calibrated by performing several PSO simulations, and then, this value was set to be
60. One should notice that the fitness function does not require a unit consistency,
as its value is only a mathematical abstraction.

Figure 9 shows the fitness improvement performed to optimize the geometry of
an SG’s dimples and spring. This simulation resulted in an optimized geometry with
an SI of 196 MPa and a gripping stiffness of 27.2 N/mm.

In [31], the authors performed an FEA and a real experiment to measure the SI
and the gripping stiffness of the Chashma Nuclear Power Plant Unit 1’s
(CHASNUPP-1’s) SG spring under the same conditions as considered in [24]. The
results from [31] regarding a real SG that is in operation at CHASNUPP-1, which
might not have been optimized, are 27.2 N/mm for the gripping stiffness and
816 MPa for the SI; meanwhile, the optimized result found in [24] has the same
gripping stiffness although with an SI over 75% lower than CHASNUPP-1’s SG.
Thus, when comparing the results of the most likely optimal found using the PSO
algorithm with those from a real SG [31], one can conclude that PSO had played its
role well to design the component under study.

5.2 Cost of a cogeneration system

The second problem involves minimizing the function that represents the total
cost of operation of a cogeneration system called CGAM. It is named after its
creators (C. Frangopoulos, G. Tsatsaronis, A. Valero, and M. von Spakovsky) who

Figure 9.
Fitness improvements from simulation performed in [24].
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decided to use the same system to compare the solution of the optimization problem
with different methodologies [13]. Figure 10 indicates the system.

The CGAM system is a cogeneration system consisting of an air compressor
(AC), a combustion chamber (CC), a gas turbine (GT), an air preheater (APH), and
a heat recovery steam generator (HRSG), which consists of an economizer for
preheating water and an evaporator. The purpose of the cycle is the generation of
30 MW of electricity and 14 kg/s of saturated steam at a pressure of 20 bar.

The economic description of the system used in the present work is the same as
the one adopted in the original work and considers the annual fuel cost and the
annual cost associated with the acquisition and operation of each equipment. More
details can be found in [32]. The equations for each component are presented below:

Air compressor:

ZAC ¼ C11 _ma

C12 � ηAC

� �
P2

P1

� �
ln

P2

P1

� �
(16)

Combustion chamber:

Zcc ¼ C21 _ma

C22 � P
P3

 !
1þ exp C23T4 � C24ð Þ½ � (17)

Turbine:

ZGT ¼ C31 _mg

C32 � ηGT

� �
ln

P4

P5

� �
1þ exp C33T4 � C34ð Þ½ � (18)

Preheater:

ZAPH ¼ C41
_mg h5 � h6ð Þ
Uð Þ ΔTLMð Þ

� �0:6

(19)

Figure 10.
CGAM system.
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decided to use the same system to compare the solution of the optimization problem
with different methodologies [13]. Figure 10 indicates the system.

The CGAM system is a cogeneration system consisting of an air compressor
(AC), a combustion chamber (CC), a gas turbine (GT), an air preheater (APH), and
a heat recovery steam generator (HRSG), which consists of an economizer for
preheating water and an evaporator. The purpose of the cycle is the generation of
30 MW of electricity and 14 kg/s of saturated steam at a pressure of 20 bar.

The economic description of the system used in the present work is the same as
the one adopted in the original work and considers the annual fuel cost and the
annual cost associated with the acquisition and operation of each equipment. More
details can be found in [32]. The equations for each component are presented below:

Air compressor:

ZAC ¼ C11 _ma

C12 � ηAC

� �
P2
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(16)

Combustion chamber:

Zcc ¼ C21 _ma
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Turbine:

ZGT ¼ C31 _mg
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Heat recovery steam generator:

ZHRSG ¼ C51
QPH

ΔTLMð ÞPH

� �0:8

þ QPH

ΔTLMð ÞPH

� �0:8
 !

þ C52 _mst þ C53 _mg
1:2 (20)

The general expression for the investment-related cost rate ($/s) of each com-
ponent is given by the following equation:

_Zi,invest ¼ ZiφCRF
N:3600

(21)

CRF is the capital recovery factor (18.2%), N is the number of annual plant-
operating hours (8000 h), and φ is a maintenance factor (1.06). In addition, c f is
the fuel cost per unit of energy (0.004 $/MJ). Table 2 indicates the cost constants
adopted for each component. The following equation represents the total cost of
operation rate:

F ¼ c f _mfPCI þ _ZAC þ _ZAPH þ _ZCC þ _ZGT þ _ZHRSG (22)

In order to perform the optimization of Eq. (22), the five decision variables
adopted in the definition of the original problem are considered: the compression
ratio (P2=P1), the isentropic efficiency of the compressor (ηCA), the isentropic
efficiency of the turbine (ηGT), the air temperature at the preheater outlet (T3), and
the fuel gas temperature at the turbine inlet (T4). To optimize the objective func-
tion, three optimization routines coupling PSO with different deterministic
methods were used as indicated in Table 3.

Air compressor C11 ¼ 39:5 $= kg
s

� �
C12 ¼ 0:9

Combustion chamber C21 ¼ 25:6 $= kg
s

� �
C22 ¼ 0:995

C23 ¼ 0:018 K�1� �
C24 ¼ 26:4

Gas turbine C31 ¼ 266:3 $= kg
s

� �
C32 ¼ 0:92

C33 ¼ 0:036 K�1� �
C34 ¼ 54:4

Preheater C41 ¼ 39:5 $= m1,2ð Þ U ¼ 0:018kW= m2Kð Þ
HRSG C51 ¼ 3650 $= kW

K

� �0,8C52 ¼ 11, 820 $= kg
s

� �

C53 ¼ 658 $= kg
s

� �1,2

Table 2.
Cost constants.

Heuristic Deterministic

Hybrid 1 Particle swarm Conjugate gradient

Hybrid 2 Particle swarm Quasi-Newton

Hybrid 3 Particle swarm Newton

Table 3.
Hybrid methods.

44

Swarm Intelligence - Recent Advances, New Perspectives and Applications

To solve the thermodynamic equations of the problem, the professional pro-
cess simulator IPSEpro® version 6.0 was adopted. IPSEpro® is a process simula-
tor used to model and simulate different thermal systems through their
thermodynamic equations. This program was developed by SimTech and has a
user-friendly interface, as well as a library with a wide variety of components,
allowing the user to model and simulate conventional plants, cogeneration sys-
tems, cooling cycles, combined cycles, and more. The optimization method rou-
tines were written in MATLAB® (MathWorks Inc.), and the algorithm was
integrated with IPSEpro® in order to solve the thermodynamic problem and
perform the optimization.

To perform the optimization, the limits for the problem variables were
established, as indicated in Table 4 [33].

Table 5 presents the results found for the variables in each method and the value
of the objective function. Figures 11–13 present the graphs of the evolution of the
cost function in relation to the function call for the performed optimizations.

In order to evaluate the algorithm’s efficiency, a comparison was made
between the results obtained in the present work and those obtained by [32, 33]. It
is worth mentioning that the thermodynamic formulation used by [32] is slightly
different from that constructed in the simulator; therefore, some differences in
the final value of the objective function were already expected. In [33], the CGAM
system was also built in IPSEpro® and the optimization was performed in
MATLAB® using the following optimization methods: differential evolution
(DE), particle swarm (PSO), simulated annealing (SA), genetic algorithm (GA),
and direct pattern search (DPS). A comparison between the results is presented in
Figure 14.

It is possible to verify that the hybrid methods used in this work have excellent
performance, and the values found are compatible with the other references. This
result consolidated the use of hybrid formulations used to optimize the objective
function of the problem.

Limits

7 ≤ P2=P1 ≤ 27

0.7 ≤ ηCA ≤ 0.9

0.7 ≤ ηGT ≤ 0.9

700 K ≤ T3 ≤ 1100 K

1100 K ≤ T4 ≤ 1500 K

Table 4.
Variable limits.

Hybrid 1 Hybrid 2 Hybrid 3

P2/P1 9.46 9.04 8.29

ηCA 0.83 0.83 0.85

T3 600.43 612.53 606.47

ηGT 0.88 0.88 0.88

T4 1210.95 1212.67 1214.65

Cost function ($/s) 0.33948 0.33953 0.33949

Table 5.
Optimization results.
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Figure 12.
Hybrid 2 optimization.

Figure 13.
Hybrid 3 optimization.

Figure 11.
Hybrid 1 optimization.
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6. Conclusions

In the present work, it was possible to present the basic fundamentals involving
the PSO method. The advantages and disadvantages of the method were discussed,
as well as interpretations were provided to its algorithm. It was also possible to
discuss about hybrid methods that combine deterministic and heuristic methods in
order to extract the advantages of each one.

As discussed earlier, it is impracticable to say that the result obtained by an
optimization method such as PSO is the global maximum or minimum, so some
authors call the results as the most likely optimal global. Thus, some strategies can
be employed in order to verify the validity of the optimal results obtained. One of
the strategies is to compare with the results obtained by other optimization algo-
rithms, as used in the present work. In the absence of optimal data available, due to
either computational limitations or even lack of results of the subject, it is possible
to use as strategy the comparison of information from real physical models, that is,
that were not obtained through optimization algorithms, but instead good engi-
neering practice and judgment gained through technical experience.

In addition, it was possible to apply the PSO algorithm to different engineering
problems. The first involves the spacer grid of the fuel element and the second
involves the optimization of the cost function of a cogeneration system. In both
problems, satisfactory results were obtained demonstrating the efficiency of the
PSO method.

Figure 14.
Comparison between the results obtained and bibliographic references.
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Chapter 4

Feature Selection for Classification
with Artificial Bee Colony
Programming
Sibel Arslan and Celal Ozturk

Abstract

Feature selection and classification are the most applied machine learning pro-
cesses. In the feature selection, it is aimed to find useful properties containing class
information by eliminating noisy and unnecessary features in the data sets and
facilitating the classifiers. Classification is used to distribute data among the various
classes defined on the resulting feature set. In this chapter, artificial bee colony
programming (ABCP) is proposed and applied to feature selection for classification
problems on four different data sets. The best models are obtained by using the
sensitivity fitness function defined according to the total number of classes in the
data sets and are compared with the models obtained by genetic programming
(GP). The results of the experiments show that the proposed technique is accurate
and efficient when compared with GP in terms of critical features selection and
classification accuracy on well-known benchmark problems.

Keywords: feature selection, classification algorithms, evolutionary computation,
genetic programming, artificial bee colony programming

1. Introduction

In recent years, data learning and feature selection has become increasingly
popular in machine learning researches. Feature selection is used to eliminate noisy
and unnecessary features in collected data that can be expressed more reliably and
high success rates are obtained in classification problems. There are several works
which related to solve genetic programming (GP) in feature selected classification
problem [1–4]. Since artificial bee colony programming (ABCP) is a recently pro-
posed method, there is no work related to this field. In this chapter, we evaluated
the success of classification by selecting the features of GP and ABCP automatic
programming methods using different data sets.

1.1 Goals

The goal of this chapter is classify models are obtained with comparable
accuracy to alternative automatic programming methods. The overall goals of
chapter are set out below.
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1.Evaluation of the performance of models with parameters such as
classification accuracy, complexity.

2.Whether ABCP method actually can select related/linked features.

3.Evaluating training performance of automatic programming methods to
determine if there is overfitting.

The organization of the chapter is as follows: background is described in
Section 2, detailed description of GP and ABCP is introduced in Section 3. Then,
experiments and results are presented and discussed in Section 4. The chapter is
concluded in Section 5 with summarizing the observations and remarking the
future work.

2. Background

2.1 Feature selection

Feature selection makes it possible to obtain more accurate results by removing
irrelevant and disconnected features in model prediction. The model prediction
provides the functional relationship between the output parameter y and the input
parameters x of the data set. Removing irrelevant features reduces the dimension of
the model, thus it reduces space complexity and computation time [5, 6].

Feature selection methods are examined in three main categories as filter
methods, embedded methods and wrapper methods [7, 8]. Filtering methods eval-
uate features with the selection criterion based on correlations between features
(feature relevance) and redundancy and associate of features with class label vec-
tors. Wrapper methods take into account the success of classification accuracy and
decide whether or not an object will be included in the model. In order to obtain the
successful model, it is not preferred in time constrained problems because the data
set is trained and tested many times [9]. Embedded methods perform feature
selection as part of model construction is based on identifying the best divisor.

In recent years, increasing interest in discovering potentially useful information
has led to feature selection researches [10–15]. In [10], a spam detection method of
binary PSO with mutation operator (MBPSO) was proposed to reduce the spam
labeling error rate of non-spam email. The method performed more successful than
many other heuristic methods such as genetic algorithm (GA), particle swarm
optimization (PSO), binary particle swarm optimization (BPSO), and ant colony
optimization (ACO). Sikora and Piramuthu suggested GA for feature selection
problem using Hausdorff distance measure [11]. GA was quite successful the accu-
racy of prediction accuracy and computational efficiency in real data mining prob-
lems. In [12], a wrapper framework was proposed to find out the number of clusters
in conjunction in the selection of features for uncontrolled learning and normalize
the tendencies of feature selection criteria according size. Feature subset selection
using expectation maximization clustering (FSSEM) was used as the performance
criterion for the maximum likelihood. Schiezaro and Pedrini proposed a feature
selection method based on artificial bee colony (ABC) [13]. The method presented
better results for the majority of the data sets compared to ACO, PSO, and GA. Yu
et al. showed that selecting the discriminative genes of GP and expressing the
relationships between the genes as mathematical equations were proof that GP has
been applied feature selector and cancer classifier [2]. Landry et al. compared
k-nearest neighbor (k-NN) with decision trees generated by GP in several
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benchmark datasets [14]. GP was more reliable performance for feature selection
and classification problems. Our chapter is the first to work with the ABCP’s ability
to select the necessary features in datasets.

2.2 Classification

Classification provides a number of benefits to make it easier to learn about data
and to monitor the data. Several researches have been applied to solve the classifi-
cation problems [15–17]. Fidelis et al. classified each chromosome based on GA that
represented classification rules [15]. The algorithm was evaluated in different data
sets and achieved successful results. A new algorithm was proposed to learn the
distance measure for the closest neighbor classifier for k-nearest multi class classi-
fication in [16]. Venkatesan et al. proposed progressive technique for multi class
classification can learn new classes dynamically during the run [17].

Much work has been devoted to classification using GP and ABC [18–25]. GP
based feature selection age layered population structure as a new algorithm for
feature selection with classification was compared with other GP versions in [18].
Lin et al. proposed the feature layered genetic programming method for feature
selection and feature extraction [19]. The method, had a multilayered architecture,
was built using multi population genetic programming. The experimental results
show that the method achieved high success in both feature selection and feature
extraction as well as classification accuracy. Ahmed et al. aimed at automatic feature
selection and classification of mass spectrometry data with very high specificity and
small sample representation using GP [20]. GP achieved higher success as a classi-
fication method by selecting fewer features than other conventional methods. Liu
et al. designed a new GP based ensemble system to classify different cancer types
where the system was used to increase the diversity of each ensemble system [21].
ABC was used data clustering on benchmark problems and was compared conven-
tional classification techniques in [22]. Karaboga et al. applied ABC on training feed
forward neural networks and classified different datasets [23]. ABC was used to
improve the performance of classification in several domains avoiding the issues
related to band correlation in [24]. Chung et al. proposed ABC as a new tool for data
mining particularly in classification and compared evolutionary techniques, stan-
dard algorithms such as naive Bayes, classification tree and nearest neighbor
(k-NN) [25]. Works showed that GP and ABC are successful in classification area.
In this chapter is the first work to compare GP and recently proposed ABCP method
in feature selected classification.

3. GP and ABCP

This section explicitly details GP and ABCP automatic programming methods.

3.1 GP

GP, most well-known method, was developed by Koza [26]. GP has been applied
to solve numerous interesting problems [27–29]. The basic steps for the GP algo-
rithm are similar to the steps of genetic algorithm (GA) and use the same analogy as
GA. The most important difference GP and GA is representation of individuals.
While GA express individuals as fixed code sequences, GP express them as parse
trees. Flow chart of GP is given in Figure 1 [30].

The first step in the flow chart is the creation of the initial population. Each
individual in the population is represented by a tree where each component is called
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relationships between the genes as mathematical equations were proof that GP has
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benchmark datasets [14]. GP was more reliable performance for feature selection
and classification problems. Our chapter is the first to work with the ABCP’s ability
to select the necessary features in datasets.

2.2 Classification

Classification provides a number of benefits to make it easier to learn about data
and to monitor the data. Several researches have been applied to solve the classifi-
cation problems [15–17]. Fidelis et al. classified each chromosome based on GA that
represented classification rules [15]. The algorithm was evaluated in different data
sets and achieved successful results. A new algorithm was proposed to learn the
distance measure for the closest neighbor classifier for k-nearest multi class classi-
fication in [16]. Venkatesan et al. proposed progressive technique for multi class
classification can learn new classes dynamically during the run [17].

Much work has been devoted to classification using GP and ABC [18–25]. GP
based feature selection age layered population structure as a new algorithm for
feature selection with classification was compared with other GP versions in [18].
Lin et al. proposed the feature layered genetic programming method for feature
selection and feature extraction [19]. The method, had a multilayered architecture,
was built using multi population genetic programming. The experimental results
show that the method achieved high success in both feature selection and feature
extraction as well as classification accuracy. Ahmed et al. aimed at automatic feature
selection and classification of mass spectrometry data with very high specificity and
small sample representation using GP [20]. GP achieved higher success as a classi-
fication method by selecting fewer features than other conventional methods. Liu
et al. designed a new GP based ensemble system to classify different cancer types
where the system was used to increase the diversity of each ensemble system [21].
ABC was used data clustering on benchmark problems and was compared conven-
tional classification techniques in [22]. Karaboga et al. applied ABC on training feed
forward neural networks and classified different datasets [23]. ABC was used to
improve the performance of classification in several domains avoiding the issues
related to band correlation in [24]. Chung et al. proposed ABC as a new tool for data
mining particularly in classification and compared evolutionary techniques, stan-
dard algorithms such as naive Bayes, classification tree and nearest neighbor
(k-NN) [25]. Works showed that GP and ABC are successful in classification area.
In this chapter is the first work to compare GP and recently proposed ABCP method
in feature selected classification.

3. GP and ABCP

This section explicitly details GP and ABCP automatic programming methods.

3.1 GP

GP, most well-known method, was developed by Koza [26]. GP has been applied
to solve numerous interesting problems [27–29]. The basic steps for the GP algo-
rithm are similar to the steps of genetic algorithm (GA) and use the same analogy as
GA. The most important difference GP and GA is representation of individuals.
While GA express individuals as fixed code sequences, GP express them as parse
trees. Flow chart of GP is given in Figure 1 [30].

The first step in the flow chart is the creation of the initial population. Each
individual in the population is represented by a tree where each component is called
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node. The production of tree nodes is provided by terminals (constants or variables
such as x, y, 5) and functions (arithmetic operators such as +, �/, sin, cos). Indi-
viduals are produced by the full method, the grow method, or the ramped half and
half method [31]. Individuals are evaluated predetermined objective function. GP
aims to increase the number of individuals with high quality survival and to
decrease the number of low quality individuals. Individuals with high quality are
more likely to pass on to the next generation. Individuals are developed them with
exchange operators such as reproduction, crossover and mutation. Choosing the
best individuals according to fitness are applied with methods like tournament,
roulette wheel [32]. The crossover operator allows hybrid of two selected individ-
uals to produce a new individual. Generally, sub-trees taken from two crossing
points selected from parent trees are crossed to obtain new hybrid trees. The
mutation operator provides unprecedented and unexplored individual elements
[33]. Substitution of randomly selected tree instead of randomly selected node in
the tree is called subtree mutation. Another method of mutation is a single point
mutation. In this method, if the terminal is selected randomly from the tree, it is
changed with the value selected from the terminal set. If the function is selected
randomly from the tree, the value is selected from the function set. The best
individuals of the previous generation are transferred to the current generation with
elitism operator. The program is terminated when it is reached according to
predefined stopping criteria such as the specific fitness value of the individuals, the
number of generations.

3.2 ABCP

ABC algorithm was developed by Karaboga, modeling the food source search the
intelligent foraging behavior of a honey bee swarm [34]. ABCP that was inspired
ABC was introduced first time as a new method on symbolic regression [35]. In
ABC, the positions of the food sources, i.e., solutions, are carried out with fixed size
arrays and displays the values found by the algorithm for the predetermined vari-
ables as in GA. In the ABCP method, the positions of food sources are expressed in
tree structure that is composed of different combinations of terminals and functions

Figure 1.
The flow chart of GP.
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that are specifically defined for problems. The mathematical relationship of the
solution model in ABCP can be represented the individuals in Figure 2 is described
Eq. (1). In these notations, x is used to represent the independent, and f(x) is
dependent variable.

f xð Þ ¼ 3:75πx� log 5� sin 2yð Þð Þ (1)

In the ABCP model, the position of a food source is defined as a possible
solution and nectar of the food source is defined for the quality of the solution.
There are three different types of bees, as in the ABC: employed bee, onlooker
bee and scout bee in the ABCP algorithm. Employed bees are responsible for
bringing the hive of nectar from specific sources that have been previously
discovered and they share information about the quality of the source with the
onlooker bees. Every food source is visited by one employed bee who then takes
nectar to hive. The onlooker bees monitor the employed bees in hives and turn
to a new source using the information shared by the employed bees. After
employed and onlooker bees complete the search processes, source are checked
whether source nectars are exhausted. If a source is abandoned, the employed bee
using the source becomes the scout bee and randomly searches for new sources. The
main steps of ABCP algorithm is given in the flow chart of ABCP algorithm in
Figure 3.

In ABCP, the production of solutions and the determination of the quality of
solutions are carried out in a similar way to GP. In the initialization of the algorithm,
solutions are produced by the full method, the growmethod, or the ramped half and
half method [26]. The quality of solutions is found by analyzing each tree according
to fitness measurement procedure.

In employed bee phase, candidate solution is created using information sharing
mechanism which is the most fundamental difference between ABC and ABCP
[36]. In this mechanism, when a candidate solution (vi) is generated, the neighbor
node solution xk, taken from the tree, is randomly selected considering the
predetermined probability pip. The node selected from the neighbor solution xk
determines what information will be shared with the current solution and how
much it will be shared. Then node xi, which represents the current solution in the
tree that determines how to use the neighboring node, is randomly selected in the
probability distribution of pip. The candidate solution vi is produced by replacing

Figure 2.
GP and ABCP solutions are represented by tree structure.
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solutions are carried out in a similar way to GP. In the initialization of the algorithm,
solutions are produced by the full method, the growmethod, or the ramped half and
half method [26]. The quality of solutions is found by analyzing each tree according
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mechanism which is the most fundamental difference between ABC and ABCP
[36]. In this mechanism, when a candidate solution (vi) is generated, the neighbor
node solution xk, taken from the tree, is randomly selected considering the
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the nodes of the current solution node xi and the neighbor solution node xk. This
sharing mechanism is shown in Figure 4. Figure 4a and b are: node xi representing
the current solution and neighbor node xk taken from the tree respectively,
Figure 4c neighboring information and the generated candidate solution are given
in Figure 4d. After the candidate solution is generated, a greedy selection process is
applied between the node xi expressing the current solution and the candidate
solution vi. Candidate solution is evaluated and greedy selection is used for each
employed bee.

In onlooker bee phase, employed bees come into hive and share their nectar with
the onlooker bees after they complete the research process. The source selection is
based on the selection probability of the solution that is based on the nectar quali-
ties, pi is calculated Eq. (2):

pi ¼
0:9 ∗ fiti
fitbest

þ 0:1 (2)

Figure 3.
The flow chart of ABCP.
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where fiti quality of the solution i, fitbest quality of the best solution current
solutions [35]. When the solutions are selected, the onlooker bees begin to look for
new sources by acting like employed bees. The quality of the newly found solution
is checked. If a new solution is more qualified, the solution is taken into memory
and the current source is deleted from the memory.

After the employed bees and onlooker bees complete the search in each cycle,
the penalty points of the respective sources are incremented by one if they cannot
find more qualify sources. When a better source is found, the penalty point of that
source is reset. If the penalty point exceeds the ‘limit’ parameter, the employed bee
of that source becomes a scout bee and randomly determines new source instead of
an abandoned source.

4. Experimental design

This section demonstrate feature selected classification ability of GP and ABCP,
set of experiments conducted.

Figure 4.
Example of information sharing mechanism in ABCP.
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4.1 Datasets

In this chapter, the experiments are conducted on four real world datasets. All
datasets are taken from UCI [37]. The first of data set is Wisconsin diagnostic breast
cancer (WDBC). The dataset classifies a tumor as either benign or malignant is the
diagnosis of breast cancer. It consists of 30 input parameters that determine
whether the tumor of 569 patients is benign or malignant. When the data set is
examined, it is observed that �60% of the benign and remainder of the tumors is
malignant. The malignant tumor in the data set is defined as 1 and benign tumor
is 0. The entry set contains 10 parameters for the suspected community. These
input parameters are given as radius, texture, circumference, area, fluency, density,
concavity, concavity points, symmetry and fractal. Dataset has an average, standard
error, and worst error value for each record. Thus, there are totally 30 input
parameters.

It has been used in much recent work on cancer classification of machine learn-
ing algorithms [38–40]. Bagui et al. tried to classify two large breast cancer data sets
with many machine learning methods such as linear, quadratic, k-NN [39]. In the
paper, 9 variable WBC (Wisconsin breast cancer) and 30 variable WDBC (Wis-
consin diagnostics breast cancer) data sets were reduced to 6 and 7 variables,
respectively. WDBC is classified J48 decision trees, multi-layer perception (MLP),
naive Bayes (NB), sequential minimal optimization (SMO), distance based K
nearest neighbor (IBK, instance based for K-nearest neighbor) in [40]. Kathija et al.
used support vector machines (SVM) and Naive Bayes to classify WDBC in the
paper [40].

The second dataset is the dermatology data set, contains 34 features, 33 of which
are linear values and one of which is nominal. The differential diagnosis of
erythematosquamous disease is a real problem in dermatology. Diagnosis usually
requires a biopsy, but unfortunately, these diseases share many histopathological
features. Patients were initially evaluated clinically in the data set. Then, skin
samples were taken for evaluation of 22 histopathological features. The values of the
histopathological features were determined by analysis of the samples under a
microscope. There are multiple researches to diagnose dermatological diseases
[41–46]. Rambhajani et al. used the Bayesian technique as a feature selection in the
paper [42]. When several measures such as accuracy, sensitivity, and specificity
are evaluated high successful results obtained in the model classification of 15
features for the dermatology data set with 34 features. Pappa et al. proposed a
multi object GA called C4.5 that performed on six different data sets including the
dermatology dataset for feature selection [46].

The other dataset is Wine which is the results of chemical analyzes of wines
from three different varieties of the same region of Italy. The analysis is based on
the amounts of 13 features present in each of the three wine varieties. Zhong et al.
proposed a modified approach to the nonsmooth Newton method and compared
with support vector algorithm called standard v-KSVCR method in wine dataset
[47]. A proposed block based affine matrix for spectral clustering methods was
compared with 10 different datasets including wine dataset standard classification
methods in [48].

The last dataset Horse colic which reveals the presence or absence of colic
disease depending on various pathological values of horse colic. Nock et al. used the
symmetric nearest neighbor (SRN), which calculates the scores of the closest
neighbor’s relations in [49].

This chapter aims to be able to diagnose that the tumor is benign or malignant in
WDBC, to identify six different dermatologic diseases in Dermatology, to recognize
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three varieties of wines in Wine and to presence of colic disease was investigated in
Horse Colic.

4.2 Training sets and test sets

In this chapter, each dataset is split into a training set and test set to investigate
feature selected classification performance of the evolved models. The number of
features, training instances and test instances of the four datasets are shown in
Table 1. All datasets are almost split with 70% of instances randomly selected from
the datasets for training and the other 30% instances forms test set. In each run, the
training and test instances are reconstructed by selecting from random instances of
datasets.

4.3 Settings

Similar parameter values and functions are used for comparison with GP and
ABCP. Since the real input features of the data sets were used, the results obtained
from the solutions are theoretically in the range of [�∞,∞]. Result values to be able
to define discrete class values (such as class 0, class 1), it is necessary to be first
drawn to a range defined earlier and be contained the total number of classes. The
fitness function is defined in Eq. (3).

Nc � 1ð Þ ∗ 1
1þ exp �g0

� �� �
 !

(3)

where Nc is the number of output classes, go is the result of the current solution.
For example, for a problem of class 4, the output of Eq. (3) is in the range [0–3].
The real features found are rounded to the nearest integer value and the solution
class features are predicted as ‘0’, ‘1’, ‘2’, ‘3’ in this case.

In this chapter, the fitness function is the weighted sum of the ratios of the total
class numbers in the data set of correctly predicted class numbers. For example, in
the binary classification, the fitness function is obtained by summing up ratio of
correct predicted 0 to total number of 0 in the data set with ratio of correct
predicted 1 to total number of 1 in the data set.

For binary classification problems, this function is defined as SFF (sensitivity
fitness function) given in Eq. (4) [50].

SFF ¼ w
nc i;0ð Þ
na i;0ð Þ þ 1� wð Þ nc i; 1ð Þ

na i; 1ð Þ (4)

Dataset Features Total instances Training instances Test instances Output classes

WDBC 30 569 427 142 2

Dermatology 34 366 274 92 6

Wine 13 178 133 45 3

Horse colic 26 364 273 91 3

Table 1.
Characteristics of the datasets considered in the experiments.
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three varieties of wines in Wine and to presence of colic disease was investigated in
Horse Colic.

4.2 Training sets and test sets

In this chapter, each dataset is split into a training set and test set to investigate
feature selected classification performance of the evolved models. The number of
features, training instances and test instances of the four datasets are shown in
Table 1. All datasets are almost split with 70% of instances randomly selected from
the datasets for training and the other 30% instances forms test set. In each run, the
training and test instances are reconstructed by selecting from random instances of
datasets.

4.3 Settings

Similar parameter values and functions are used for comparison with GP and
ABCP. Since the real input features of the data sets were used, the results obtained
from the solutions are theoretically in the range of [�∞,∞]. Result values to be able
to define discrete class values (such as class 0, class 1), it is necessary to be first
drawn to a range defined earlier and be contained the total number of classes. The
fitness function is defined in Eq. (3).
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� �� �
 !

(3)

where Nc is the number of output classes, go is the result of the current solution.
For example, for a problem of class 4, the output of Eq. (3) is in the range [0–3].
The real features found are rounded to the nearest integer value and the solution
class features are predicted as ‘0’, ‘1’, ‘2’, ‘3’ in this case.

In this chapter, the fitness function is the weighted sum of the ratios of the total
class numbers in the data set of correctly predicted class numbers. For example, in
the binary classification, the fitness function is obtained by summing up ratio of
correct predicted 0 to total number of 0 in the data set with ratio of correct
predicted 1 to total number of 1 in the data set.

For binary classification problems, this function is defined as SFF (sensitivity
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where nc(i,k) is the number of correctly predicted states when compared to the k
class in data set from the class k for the ith solution, na(i,k) the number of all
records in class k in the data set is the number of inputs defined in the range [0, 1]
refers to a real number. The generalized version of Eq. (4) is given in Eq. (5) for
multiple class problems investigated.

SFFn ¼
Xn�1

j¼0

w
nc i; jð Þ
na i; jð Þ (5)

In general, the weight value (w) is used equally. In this case, the proportion of
the ratio distribution for each class is adjusted equally. In some cases, a penalty
parameter can be added to avoid misclassification in unbalanced data sets. The
parameter is added to the fitness function that defined in Eq. (5) as expressed in
Eq. (6). It evaluates the models obtained from the solutions. Where p is the penalty
factor and N is the total number of nodes in the solution.

SFFn ¼
Xn�1

j¼0

w
nc i; jð Þ
na i; jð Þ � pN (6)

The data sets are evaluated according to the SFF function defined in Eq. (6). The
complexity of the obtained solution is calculated as in Eq. (7) in proportion to the
depth of the tree and the number of nodes.

C ¼
Xd

k¼1

n ∗ k (7)

where C is tree complexity, d is the depth of the solution tree, and n is the
number of nodes at depth.

The control parameters used by the automatic programming methods are given
in Table 2. The population size and the iteration size are set by the number of
features and the number of classes of the data set. Dermatology has more features
and classes than other datasets, therefore population size and iteration number are

WDBC Dermatology Wine Horse colic

Control parameters GP ABCP GP ABCP GP ABCP GP ABCP

Population/colony size 200 200 300 300 300 300 300 300

Iteration size 150 150 250 250 150 150 250 250

Maximum tree depth 12 12 12 12 12 12 12 12

Tournament size 6 — 6 — 6 — 6 —

Mutation ratio 0.1 — 0.1 — 0.1 — 0.1 —

Crossover ratio 0.8 — 0.8 — 0.8 — 0.8 —

Direct reproduction ratio 0.1 — 0.1 — 0.1 — 0.1 —

w 1/2 1/6 1/3 1/3

p 0.001 0.001 0.001 0.001

Functions +, �, *, tan, sin, cos, square, maxx, minx, exp., ifbte, iflte

Table 2.
Control parameters of GP and ABCP in the experiments.
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chosen as the highest for this dataset. As seen from Table 2, the weight value is
defined in proportion to the number of classes in the output of each data set. Each
class is equal importance. The penalty point given in Eq. (6) was set equal to 0.001
for all data sets. The maxx function specifies the maximum value of vector, the
minx function specifies the minimum value of vector. The ifbte checks the value of
left operand, if it is greater than or equal to the value of right operand, then
condition becomes true. The iflte checks the value of left operand, if it is less than or
equal to the value of right operand, then condition becomes true. How the functions
operate condition expressions are defined in Eqs. (8) and (9).

X ¼ ifbte A;B;C;Dð Þ
if A≥Bð Þ then X ¼ C else X ¼ d

(8)

X ¼ iflte A;B;C;Dð Þ
if A<Bð Þ then X ¼ C else X ¼ d

(9)

4.4 Simulation results

For each data set, GP and ABCP are run 30 times according to configuration in
Table 2. The classification success of GP and ABCP methods are given in Table 3 in
terms of mean, best and worst values for each dataset. SFF and success percentage
(SP) results are given in Table 3 for both training and test cases. As the SFF
increased, the success rate of classification increased. The highest mean classifica-
tion in training (93.43%) was obtained ABCP in Wine. Both methods showed lower
SFF and classification success compared to other data sets in Horse colic. The best

GP ABCP

Dataset Metrics Train Test Train Test

SFF SP SFF SP SFF SP SFF SP

WDBC Mean 0.91 92.33 0.9 91.01 0.92 93.27 0.9 91.48

Standard deviation 0.02 2.56 0.03 3.8 0.02 2.01 0.03 3.07

Best 0.94 95.32 0.94 95.77 0.95 96.25 0.96 97.89

Worst 0.86 86.42 0.81 77.46 0.87 87.82 0.84 84.51

Dermatology Mean 0.81 81.96 0.77 78.66 0.89 92.27 0.85 89.17

Standard deviation 0.1 15 0.11 13.96 0.02 1.93 0.05 4.4

Best 0.92 95.26 0.94 96.74 0.93 97.08 0.97 98.91

Worst 0.6 48.54 0.48 46.74 0.84 89.42 0.77 80.43

Wine Mean 0.88 88.7 0.85 84.9 0.92 93.43 0.88 88.22

Standard deviation 0.06 5.94 0.07 7.59 0.02 2.59 0.05 6.83

Best 0.95 98.5 0.98 100 0.97 98.5 0.98 100

Worst 0.76 76.69 0.71 73.33 0.88 88.72 0.78 73.33

Horse colic Mean 0.62 58.81 0.49 50.4 0.67 62.52 0.54 54.76

Standard deviation 0.06 5.42 0.09 8.35 0.03 3.53 0.07 4.92

Best 0.71 67.4 0.65 71.43 0.73 69.96 0.65 61.54

Worst 0.51 47.99 0.3 38.46 0.62 56.78 0.36 45.05

Table 3.
Classification results for each data set.
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where nc(i,k) is the number of correctly predicted states when compared to the k
class in data set from the class k for the ith solution, na(i,k) the number of all
records in class k in the data set is the number of inputs defined in the range [0, 1]
refers to a real number. The generalized version of Eq. (4) is given in Eq. (5) for
multiple class problems investigated.

SFFn ¼
Xn�1

j¼0

w
nc i; jð Þ
na i; jð Þ (5)

In general, the weight value (w) is used equally. In this case, the proportion of
the ratio distribution for each class is adjusted equally. In some cases, a penalty
parameter can be added to avoid misclassification in unbalanced data sets. The
parameter is added to the fitness function that defined in Eq. (5) as expressed in
Eq. (6). It evaluates the models obtained from the solutions. Where p is the penalty
factor and N is the total number of nodes in the solution.

SFFn ¼
Xn�1

j¼0

w
nc i; jð Þ
na i; jð Þ � pN (6)

The data sets are evaluated according to the SFF function defined in Eq. (6). The
complexity of the obtained solution is calculated as in Eq. (7) in proportion to the
depth of the tree and the number of nodes.

C ¼
Xd

k¼1

n ∗ k (7)

where C is tree complexity, d is the depth of the solution tree, and n is the
number of nodes at depth.

The control parameters used by the automatic programming methods are given
in Table 2. The population size and the iteration size are set by the number of
features and the number of classes of the data set. Dermatology has more features
and classes than other datasets, therefore population size and iteration number are

WDBC Dermatology Wine Horse colic

Control parameters GP ABCP GP ABCP GP ABCP GP ABCP

Population/colony size 200 200 300 300 300 300 300 300

Iteration size 150 150 250 250 150 150 250 250

Maximum tree depth 12 12 12 12 12 12 12 12

Tournament size 6 — 6 — 6 — 6 —

Mutation ratio 0.1 — 0.1 — 0.1 — 0.1 —

Crossover ratio 0.8 — 0.8 — 0.8 — 0.8 —

Direct reproduction ratio 0.1 — 0.1 — 0.1 — 0.1 —

w 1/2 1/6 1/3 1/3

p 0.001 0.001 0.001 0.001

Functions +, �, *, tan, sin, cos, square, maxx, minx, exp., ifbte, iflte

Table 2.
Control parameters of GP and ABCP in the experiments.
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chosen as the highest for this dataset. As seen from Table 2, the weight value is
defined in proportion to the number of classes in the output of each data set. Each
class is equal importance. The penalty point given in Eq. (6) was set equal to 0.001
for all data sets. The maxx function specifies the maximum value of vector, the
minx function specifies the minimum value of vector. The ifbte checks the value of
left operand, if it is greater than or equal to the value of right operand, then
condition becomes true. The iflte checks the value of left operand, if it is less than or
equal to the value of right operand, then condition becomes true. How the functions
operate condition expressions are defined in Eqs. (8) and (9).

X ¼ ifbte A;B;C;Dð Þ
if A≥Bð Þ then X ¼ C else X ¼ d

(8)

X ¼ iflte A;B;C;Dð Þ
if A<Bð Þ then X ¼ C else X ¼ d

(9)

4.4 Simulation results

For each data set, GP and ABCP are run 30 times according to configuration in
Table 2. The classification success of GP and ABCP methods are given in Table 3 in
terms of mean, best and worst values for each dataset. SFF and success percentage
(SP) results are given in Table 3 for both training and test cases. As the SFF
increased, the success rate of classification increased. The highest mean classifica-
tion in training (93.43%) was obtained ABCP in Wine. Both methods showed lower
SFF and classification success compared to other data sets in Horse colic. The best

GP ABCP

Dataset Metrics Train Test Train Test

SFF SP SFF SP SFF SP SFF SP

WDBC Mean 0.91 92.33 0.9 91.01 0.92 93.27 0.9 91.48

Standard deviation 0.02 2.56 0.03 3.8 0.02 2.01 0.03 3.07

Best 0.94 95.32 0.94 95.77 0.95 96.25 0.96 97.89

Worst 0.86 86.42 0.81 77.46 0.87 87.82 0.84 84.51

Dermatology Mean 0.81 81.96 0.77 78.66 0.89 92.27 0.85 89.17

Standard deviation 0.1 15 0.11 13.96 0.02 1.93 0.05 4.4

Best 0.92 95.26 0.94 96.74 0.93 97.08 0.97 98.91

Worst 0.6 48.54 0.48 46.74 0.84 89.42 0.77 80.43

Wine Mean 0.88 88.7 0.85 84.9 0.92 93.43 0.88 88.22

Standard deviation 0.06 5.94 0.07 7.59 0.02 2.59 0.05 6.83

Best 0.95 98.5 0.98 100 0.97 98.5 0.98 100

Worst 0.76 76.69 0.71 73.33 0.88 88.72 0.78 73.33

Horse colic Mean 0.62 58.81 0.49 50.4 0.67 62.52 0.54 54.76

Standard deviation 0.06 5.42 0.09 8.35 0.03 3.53 0.07 4.92

Best 0.71 67.4 0.65 71.43 0.73 69.96 0.65 61.54

Worst 0.51 47.99 0.3 38.46 0.62 56.78 0.36 45.05

Table 3.
Classification results for each data set.
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models of GP and ABCP have 100% test classification success in Wine. For the case
study investigated, compact classification models are obtained with comparable
accuracy to GP.

Problem GP ABCP

Total
number
of nodes

Depth of the
best solution

tree

Best solution
tree

complexity

Total
number
of nodes

Depth of the
best solution

tree

Best solution
tree

complexity

WDBC 16 7 67 11 5 36

Dermatology 25 8 107 37 12 249

Wine 32 9 177 21 7 81

Horse colic 34 9 197 33 9 163

Table 5.
Best solution tree information for each data set.

Program Metrics Mean Standard
deviation

Most common
features

Features in both
GP and ABCP

Number
most

common
features

Number
features
both GP

and
ABCP

WDBC ABCP 4.13 1.33 x28(15), x7(12),
x8(11), x5(7)

x28(15), x7(12),
x8(11)

4 3

GP 3.13 1.36 x8(12), x7(12),
x27(11), x28(8)

x8(12), x7(12),
x28(8)

4 3

Dermatology ABCP 7.20 1.90 x31(30), x15(29),
x22(25), x14(23),
x33(15), x7(12),
x27(10), x6(9)

x31(30), x15(29),
x22(25), x14(23),
x33(15), x7(12),

x27(10)

8 7

GP 6.23 1.74 x31(23), x22(15),
x14(15), x7(13),
x5(10), x20(10),
x27(9), x15(9),
x30(8), x33(8)

x31(23), x22(15),
x14(15), x7(13),
x27(9), x15(9),

x33(8)

10 7

Wine ABCP 4.07 1.18 x7(30), x11(26),
x10(19), x12(17)

x7(30), x11(26),
x10(19), x12(17)

4 4

GP 3.17 1.58 x7(29), x10(14),
x12(12), x11(12)

x7(29), x10(14),
x12(12), x11(12)

4 4

Horse colic ABCP 6.93 1.41 x23(27), x19(25),
x22(23), x1(21),
x21(13), x26(13),
x8(13), x15(7),

x10(7)

x23(27), x19(25),
x22(23), x1(21),
x21(13), x26(13),
x8(13), x10(7)

9 8

GP 5.97 2.36 x23(15), x1(15),
x21(14), x26(14),
x19(14), x8(13),
x22(12), x7(11),
x14(9), x10(9),

x2(7)

x23(15), x1(15),
x21(14), x26(14),
x19(14), x8(13),
x22(12), x10(9)

11 8

Table 6.
Number of features selected by the methods.
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models of GP and ABCP have 100% test classification success in Wine. For the case
study investigated, compact classification models are obtained with comparable
accuracy to GP.

Problem GP ABCP

Total
number
of nodes

Depth of the
best solution

tree

Best solution
tree

complexity

Total
number
of nodes

Depth of the
best solution

tree

Best solution
tree

complexity

WDBC 16 7 67 11 5 36

Dermatology 25 8 107 37 12 249

Wine 32 9 177 21 7 81

Horse colic 34 9 197 33 9 163

Table 5.
Best solution tree information for each data set.

Program Metrics Mean Standard
deviation

Most common
features

Features in both
GP and ABCP

Number
most

common
features

Number
features
both GP

and
ABCP

WDBC ABCP 4.13 1.33 x28(15), x7(12),
x8(11), x5(7)

x28(15), x7(12),
x8(11)

4 3

GP 3.13 1.36 x8(12), x7(12),
x27(11), x28(8)

x8(12), x7(12),
x28(8)

4 3

Dermatology ABCP 7.20 1.90 x31(30), x15(29),
x22(25), x14(23),
x33(15), x7(12),
x27(10), x6(9)

x31(30), x15(29),
x22(25), x14(23),
x33(15), x7(12),

x27(10)

8 7

GP 6.23 1.74 x31(23), x22(15),
x14(15), x7(13),
x5(10), x20(10),
x27(9), x15(9),
x30(8), x33(8)

x31(23), x22(15),
x14(15), x7(13),
x27(9), x15(9),

x33(8)

10 7

Wine ABCP 4.07 1.18 x7(30), x11(26),
x10(19), x12(17)

x7(30), x11(26),
x10(19), x12(17)

4 4

GP 3.17 1.58 x7(29), x10(14),
x12(12), x11(12)

x7(29), x10(14),
x12(12), x11(12)

4 4

Horse colic ABCP 6.93 1.41 x23(27), x19(25),
x22(23), x1(21),
x21(13), x26(13),
x8(13), x15(7),

x10(7)

x23(27), x19(25),
x22(23), x1(21),
x21(13), x26(13),
x8(13), x10(7)

9 8

GP 5.97 2.36 x23(15), x1(15),
x21(14), x26(14),
x19(14), x8(13),
x22(12), x7(11),
x14(9), x10(9),

x2(7)

x23(15), x1(15),
x21(14), x26(14),
x19(14), x8(13),
x22(12), x10(9)

11 8

Table 6.
Number of features selected by the methods.
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4.5 Analysis of evolved models

The evolved models of best classifier solutions in ABCP are shown in Table 4. It
can be observed that both methods extracted successful models with few features.
The methods extracted models regardless of the total number of features of the data
sets. In general, ABCP has achieved higher success rate of classification than GP
using less features.

Table 5 shows general information about the best solution tree. Less complex
models are shown in the table with bold typing. When the trees of the best models
are analyzed structurally, ABCP, except for the dermatology, shows the best models
with less complexity. The detailed information about the inputs of mathematical
models of the best solutions in each run are presented in Table 6. Features are
ordered most common in equations on the table. Equations which are most com-
mon, three features (x7, x8, x28) are same in WDBC; seven features (x7, x14, x15, x22,
x27, x31, x33) are same in dermatology; four features (x7, x10, x11, x12) are same in
wine; eight features (x1, x8, x10, x19, x21, x22, x23, x26) are same in horse colic in both
methods. In the best models of the 30 runs, the frequently available features in both
of the methods were evaluated as inputs for success of classification. For example,
in total 30 runs for WDBC x28 15 times; for dermatology x31 were seen.

5. Conclusion

In this chapter, selecting features in classification problems are investigated
using GP and ABCP and the literature study related to this field is included. In the
performance analysis of the methods, four classification problems are used. As
results of 30 runs, the features of the best models were examined. Both methods
were found to extract successful models with the same features. According to the
experimental results, ABCP is able to extract successful models in training set and it
has comparable accuracy to GP. This chapter shows that ABCP can be used in high
level automatic programming for machine learning. Several interesting automatic
programming methods such as Multi-Gen GP and Multi-Hive ABCP can be further
researched in the near future.
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4.5 Analysis of evolved models

The evolved models of best classifier solutions in ABCP are shown in Table 4. It
can be observed that both methods extracted successful models with few features.
The methods extracted models regardless of the total number of features of the data
sets. In general, ABCP has achieved higher success rate of classification than GP
using less features.

Table 5 shows general information about the best solution tree. Less complex
models are shown in the table with bold typing. When the trees of the best models
are analyzed structurally, ABCP, except for the dermatology, shows the best models
with less complexity. The detailed information about the inputs of mathematical
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in total 30 runs for WDBC x28 15 times; for dermatology x31 were seen.
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In this chapter, selecting features in classification problems are investigated
using GP and ABCP and the literature study related to this field is included. In the
performance analysis of the methods, four classification problems are used. As
results of 30 runs, the features of the best models were examined. Both methods
were found to extract successful models with the same features. According to the
experimental results, ABCP is able to extract successful models in training set and it
has comparable accuracy to GP. This chapter shows that ABCP can be used in high
level automatic programming for machine learning. Several interesting automatic
programming methods such as Multi-Gen GP and Multi-Hive ABCP can be further
researched in the near future.
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Chapter 5

Sensor-Driven, Spatially Explicit 
Agent-Based Models
Francis Oloo

Abstract

Conventionally, agent-based models (ABMs) are specified from well-established 
theory about the systems under investigation. For such models, data is only intro-
duced to ensure the validity of the specified models. In cases where the underlying 
mechanisms of the system of interest are unknown, rich datasets about the system 
can reveal patterns and processes of the systems. Sensors have become ubiquitous 
allowing researchers to capture precise characteristics of entities in both time and 
space. The combination of data from in situ sensors to geospatial outputs provides a 
rich resource for characterising geospatial environments and entities on earth. More 
importantly, the sensor data can capture behaviours and interactions of entities 
allowing us to visualise emerging patterns from the interactions. However, there is a 
paucity of standardised methods for the integration of dynamic sensor data streams 
into ABMs. Further, only few models have attempted to incorporate spatial and 
temporal data dynamically from sensors for model specification, calibration and 
validation. This chapter documents the state of the art of methods for bridging the 
gap between sensor data observations and specification of accurate spatially explicit 
agent-based models. In addition, this work proposes a conceptual framework for 
dynamic validation of sensor-driven spatial ABMs to address the risk of model 
overfitting.

Keywords: data-driven models, sensor-driven models, dynamic spatial models, 
spatial simulation models

1. Introduction

Agent-based models (ABMs) are mathematical models that attempt to reveal 
system-level properties by representing local-level behaviour and interaction 
of entities that make up the system [1]. Agents include people, animals, robots, 
vehicles, plants and smart devices that may be linked in a network, etc. ABMs 
have been applied to investigate systems in ecology [2, 3], human behaviour [4], 
epidemiology [5–7], public transport [8, 9], diffusion of technology [10], land  
use change [11], industrial processes, economics and psychology, among  
other areas.

An important characteristic of agent-based models is their ability to reveal the 
emergence of system-level patterns from the local-level behaviours and interac-
tions of system components [12]. However, one traditional weakness of ABMs 
is their over-reliance on existing theories about the system of phenomena of 
interest [13]. Over-reliance on domain knowledge limits the application of ABMs 
in situations where knowledge about the system of interest is incomplete. In such 
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cases, parameter values and behavioural rulesets have to be assumed, thus reduc-
ing the plausibility of the models [14]. In addition, in knowledge-driven models, 
face validation [15] is preferred to statistical validation. Specifically, modelled 
system behaviours are compared against the qualitative patterns as described in 
the theories or in the implicit expert knowledge. Moreover, validation is usu-
ally implemented as the final step of model specification, hence hindering the 
dynamic verification of the models during the simulation runs. In very dynamic 
systems, the model is thus likely to deviate from the real-world scenario unless 
data about the dynamics of the real world is incorporated into the model during 
the simulation process.

Due to the limited computational resources and lack of fine-scaled spatial data, 
ABMs were historically nonspatial, implying that geographic characteristics of the 
systems of interest were not explicitly specified in the model [16]. As an example, 
to understand market dynamics, service area of the market of interest may be 
specified as a Cartesian grid with random cells representing business entities, 
while consumers are specified as points that move randomly across the modelling 
surface. Even though such a model can answer generic questions on the consumer 
behaviour, it may not be able to provide specific insights of the influence of spatial 
context on the market dynamics.

Advances in sensor technology have made it possible to collect accurate geo-
referenced data about entities and systems of interest [17]. Fine-scaled sensor 
data from remote locations are now available for analysis and visualisation. For 
instance, spatial entities such as humans, vehicles, buildings, animals and plants can 
be monitored via sensor data streams, revealing interesting spatial and temporal 
characteristics of these agents. This rich data can provide behavioural information 
[18, 19] for specifying accurate data-driven models to study the dynamics of the 
agents of interest.

The emergence of sensor data has not only heightened the interest in spatial 
ABMs [20] but has also motivated the specification of data-driven models [21] for 
accurate environmental monitoring and simulation [22]. At the same time, the 
dynamic nature of sensor data streams has motivated research to bridge the gap 
between sensor observations and modelling frameworks as a way of facilitating 
bidirectional communication between sensor observation networks and environ-
mental monitoring systems.

Unfortunately, the progress in sensor-driven spatial simulation models has been 
ad hoc, with no standardised methods for incorporating data into spatially explicit 
models. The existing implementations have aimed to address the needs of various 
disciplines. For instance, in the sensor community, research in sensor web networks 
[23] is geared towards improving communication, computation and sensor resource 
management. On the other hand, in computer science, sensor-based research is 
geared towards developing methods of pervasive computing [24, 25], artificial 
intelligence and related areas. Due to the multidisciplinary nature of spatial simula-
tion research, documenting the body of knowledge of sensor-driven simulation 
modelling is critical for the research community.

Spatial systems are special [26] due to the inherent spatial relationships and tem-
poral characteristics of geographic entities. It is therefore necessary to consider the 
spatio-temporal context [27, 28] and relationships when modelling and simulating 
spatial processes. Attempts to introduce data into spatial simulation models must be 
cognizant of the unique characteristics of the spatial systems. This work synthesises 
the existing methods for dynamic assimilation of sensor data into spatially explicit 
ABMs and proposes a potential method to address model overfitting that is common 
to most data-driven modelling methods.
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2. Traditional knowledge-driven models

2.1 Essential building blocks of spatial agent-based models

Patterns are the holy grail of spatial agent-based models [29, 30], implying that 
reproducing spatial patterns is an important characteristic of spatial agent-based 
simulation. The three important aspects of spatial systems include agents, spatial 
context or environment and interactions between agents and their environment.

2.1.1 Spatial agents

Spatial agents include autonomous entities that can be characterised by their geo-
graphic attributes. Geographic attributes are critical in linking the agent to a unique 
spatial location and context of its environment. Distinctive attributes of spatial agents 
include spatial intelligence and spatial interactions. Spatial intelligence entails aware-
ness of the geographic differences of the environment, hence being able to make 
autonomous decisions over a geographic space [31]. Moreover, spatial intelligence 
allows agents to interact with other spatial entities and adapt to spatial realities [32].

In defining the character and behaviour of agents in spatial simulation models, 
traditional models have ignored empirical data and instead used documented 
knowledge about the agents or random initialisation of agent characteristics [33]. 
This raises the question on whether such models are immune to the challenge of 
path dependence [34] that bedevils most ABMs.

2.1.2 Spatial environment

Initially, the variations in the environment of ABMs were commonly specified 
as an artificial lattice with random variables [35, 36]. With the improvements in 
computation, and availability of spatial data in both vector and raster data models, 
spatial data has been introduced to introduce geographic variability and context 
the in the environment [37]. In particular, the use of remote sensing products has 
improved the specification of geographic modelling environments [38].

2.1.3 Spatial interactions

Spatial interaction entails the ability to sense, communicate and respond stimuli 
from other entities based on their geographic proximity or connections. Interaction is 
the distinctive attribute of spatial ABMs, differentiating such models from other micro-
simulation models. Whereas initially there has been little empirical data to reveal the 
interaction between agents, in situ sensors are now capable of capturing detailed aspects 
of agent interactions including proximity, avoidance, competition and spatial linkages. 
For instance, trajectories of birds in navigation have been used to describe the social 
interactions and leadership strategies that are adopted by birds [39]. Also, physiologi-
cal sensors have been used to detect emotional reactions of road users in urban traffic 
[40, 41]. Similarly, there are portable sensors that can be used to monitor the health 
of human agents remotely [42]. Data from such sensor deployments can improve the 
specification of agent interactions and contribute to the accuracy of agent-based models.

2.2 Conventional modelling cycle

Traditionally, the modelling cycle [43] begins by building a conceptual model 
about the real-world system of interest. The conceptual model is created from 
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2. Traditional knowledge-driven models

2.1 Essential building blocks of spatial agent-based models

Patterns are the holy grail of spatial agent-based models [29, 30], implying that 
reproducing spatial patterns is an important characteristic of spatial agent-based 
simulation. The three important aspects of spatial systems include agents, spatial 
context or environment and interactions between agents and their environment.

2.1.1 Spatial agents

Spatial agents include autonomous entities that can be characterised by their geo-
graphic attributes. Geographic attributes are critical in linking the agent to a unique 
spatial location and context of its environment. Distinctive attributes of spatial agents 
include spatial intelligence and spatial interactions. Spatial intelligence entails aware-
ness of the geographic differences of the environment, hence being able to make 
autonomous decisions over a geographic space [31]. Moreover, spatial intelligence 
allows agents to interact with other spatial entities and adapt to spatial realities [32].

In defining the character and behaviour of agents in spatial simulation models, 
traditional models have ignored empirical data and instead used documented 
knowledge about the agents or random initialisation of agent characteristics [33]. 
This raises the question on whether such models are immune to the challenge of 
path dependence [34] that bedevils most ABMs.

2.1.2 Spatial environment

Initially, the variations in the environment of ABMs were commonly specified 
as an artificial lattice with random variables [35, 36]. With the improvements in 
computation, and availability of spatial data in both vector and raster data models, 
spatial data has been introduced to introduce geographic variability and context 
the in the environment [37]. In particular, the use of remote sensing products has 
improved the specification of geographic modelling environments [38].

2.1.3 Spatial interactions

Spatial interaction entails the ability to sense, communicate and respond stimuli 
from other entities based on their geographic proximity or connections. Interaction is 
the distinctive attribute of spatial ABMs, differentiating such models from other micro-
simulation models. Whereas initially there has been little empirical data to reveal the 
interaction between agents, in situ sensors are now capable of capturing detailed aspects 
of agent interactions including proximity, avoidance, competition and spatial linkages. 
For instance, trajectories of birds in navigation have been used to describe the social 
interactions and leadership strategies that are adopted by birds [39]. Also, physiologi-
cal sensors have been used to detect emotional reactions of road users in urban traffic 
[40, 41]. Similarly, there are portable sensors that can be used to monitor the health 
of human agents remotely [42]. Data from such sensor deployments can improve the 
specification of agent interactions and contribute to the accuracy of agent-based models.

2.2 Conventional modelling cycle

Traditionally, the modelling cycle [43] begins by building a conceptual model 
about the real-world system of interest. The conceptual model is created from 
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repeated observations of the mechanisms of the real-world system or by relying 
on documented knowledge about the system. From observations and the domain 
knowledge, important entities, interactions and patterns are identified. A hypoth-
esis of how the individual level interactions of the agents lead to the emergence of 
system-level patterns is then formulated. At this level, the use of empirical data is 
limited to identifying essential entities, interactions and characteristic patterns of 
the system of focus (Figure 1).

Based on the conceptual model, a formal model specification could be under-
taken to test a specific hypothesis. Model specification requires the definition of 
parameters to guide the operation of the model. The choice of the parameters and 
essential behaviour models depends on the expertise of the modeller and prevail-
ing knowledge of the system under investigation [44]. This in essence means that 
different modellers can specify different ABMs to test the same hypothesis. It may 
so happen that different models can confirm the hypothesis, raising the question on 
true model for addressing the hypothesis in question.

Empirical data is rarely used during model specification; this is both epistemic 
and strategic. Epistemic in the sense that rather than starting with the data, a 
plausible model that is founded on sound knowledge should produce data, which is 
comparable to empirical data from the real world [45]. In addition, agents interact 
based on their knowledge of their environment and goals and not so much based on 
their rigorous analysis of data. The limited use of data in ABMs is also strategic to 
prevent the contamination of model with empirical data, which may ultimately lead 
to model overfitting.

Upon a successful model specification, the process of verification confirms the 
logical consistency between the specified behaviour and the known behaviour of 
the system. The verified model then becomes a candidate for calibration.

Figure 1. 
Application of data and domain knowledge in the conventional modelling life cycle. The cycles represent the 
important steps in the specification of ABMs. The real world hosts the systems of interest. Observations, expert 
knowledge and data about the systems in the real world provide the foundational concepts for building the 
conceptual model. Foundational knowledge and patterns from the real world are used for model specification, 
calibration and validation. A properly validated model can then be used to test hypothesis and to represent the 
dynamics of a system in the real world.
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The calibration step entails comparing a specified model against empirical data 
to determine the parameter space for accurate simulation of patterns and dynamics 
in the real system. A popular method for calibration is the use of pattern-oriented 
modelling (POM) approach [46]. In POM approach, model calibration involves 
evaluating parameters based on their ability to replicate multiple patterns that are 
evident in the real world. In traditional modelling frameworks, historical data may be 
used in calibration and in other components of the agent-based modelling life cycle.

Validation process is usually the last step in the modelling cycle and involves 
assessing the degree to which a model is an accurate representation of the real-world 
system for which it is meant to simulate [47]. For validation, qualitative approaches 
may be adopted to compare the results from the models against patterns that are 
observable in the real world. In particular the use of face validation which may 
include animation or graphical representation is usually the first step in traditional 
ABM validation [48]. Once again, according to POM framework, an accurate model 
should be able to produce patterns that are inherent in the real world but which are 
not explicitly defined in the model.

Apart from qualitative methods, statistical methods [49] may also be adopted to 
validate the models by comparing the statistical variance between the results of the 
model against empirical. Statistical comparison is suitable for models that produce 
detailed quantitative state variables that can be compared to related observations 
from the real world. A properly specified, rigorously calibrated and accurately vali-
dated model can then be deployed for simulation to represent the system of interest 
and to explore the internal operations of systems of interest.

In summary, the rationale for incorporation of data into traditional agent-based 
models is to ensure quality and credibility throughout all the modelling stages [50, 51].

2.3 Standards for the specification of ABMs

Because of the straightforward manner of specifying knowledge-driven models, 
such models are simpler to specify and easy to communicate. The publication of 
standards to guide ABM specification [52] and protocols like transparent and com-
prehensive ecological modelling (TRACE) documentation [53], pattern-oriented 
modelling [46] and Overview, Design Concepts and Details (ODD) protocol  
[54, 55] have greatly contributed to streamlining the process of model specifica-
tion. In addition, depending on domain knowledge ensures that models are only 
acceptable when their results confirm the documented knowledge hence helping to 
weed out models that result in spurious outcome. The multidisciplinary nature of 
geographic information science avails knowledge from related disciplines including 
ecology, computer science, geography, environmental science, economics and psy-
chology, which can support the specification of spatially explicit agent-based models. 
In the reverse direction, properly specified spatial simulation models can support 
hypothesis testing and representation of dynamics of systems in other disciplines.

2.4 Critiques of knowledge-driven ABMs

In spite of the benefits of knowledge-driven ABMs, there have been critiques of 
aspects that limit their broad adoption and application. In particular, the process 
of model specification depends on the knowledge and expertise of the modeller; 
as such, discovery of patterns and the specification of behavioural rulesets in the 
model may be arduous task in situations where the system of interest is not well 
understood [56]. In addition, the ad hoc manner of model specification may result 
in multiple models for the same system without bringing clarity on the internal 
workings of the system. Further, lack of modules to actualise rigorous data mining 
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modelling (POM) approach [46]. In POM approach, model calibration involves 
evaluating parameters based on their ability to replicate multiple patterns that are 
evident in the real world. In traditional modelling frameworks, historical data may be 
used in calibration and in other components of the agent-based modelling life cycle.

Validation process is usually the last step in the modelling cycle and involves 
assessing the degree to which a model is an accurate representation of the real-world 
system for which it is meant to simulate [47]. For validation, qualitative approaches 
may be adopted to compare the results from the models against patterns that are 
observable in the real world. In particular the use of face validation which may 
include animation or graphical representation is usually the first step in traditional 
ABM validation [48]. Once again, according to POM framework, an accurate model 
should be able to produce patterns that are inherent in the real world but which are 
not explicitly defined in the model.

Apart from qualitative methods, statistical methods [49] may also be adopted to 
validate the models by comparing the statistical variance between the results of the 
model against empirical. Statistical comparison is suitable for models that produce 
detailed quantitative state variables that can be compared to related observations 
from the real world. A properly specified, rigorously calibrated and accurately vali-
dated model can then be deployed for simulation to represent the system of interest 
and to explore the internal operations of systems of interest.

In summary, the rationale for incorporation of data into traditional agent-based 
models is to ensure quality and credibility throughout all the modelling stages [50, 51].

2.3 Standards for the specification of ABMs

Because of the straightforward manner of specifying knowledge-driven models, 
such models are simpler to specify and easy to communicate. The publication of 
standards to guide ABM specification [52] and protocols like transparent and com-
prehensive ecological modelling (TRACE) documentation [53], pattern-oriented 
modelling [46] and Overview, Design Concepts and Details (ODD) protocol  
[54, 55] have greatly contributed to streamlining the process of model specifica-
tion. In addition, depending on domain knowledge ensures that models are only 
acceptable when their results confirm the documented knowledge hence helping to 
weed out models that result in spurious outcome. The multidisciplinary nature of 
geographic information science avails knowledge from related disciplines including 
ecology, computer science, geography, environmental science, economics and psy-
chology, which can support the specification of spatially explicit agent-based models. 
In the reverse direction, properly specified spatial simulation models can support 
hypothesis testing and representation of dynamics of systems in other disciplines.

2.4 Critiques of knowledge-driven ABMs

In spite of the benefits of knowledge-driven ABMs, there have been critiques of 
aspects that limit their broad adoption and application. In particular, the process 
of model specification depends on the knowledge and expertise of the modeller; 
as such, discovery of patterns and the specification of behavioural rulesets in the 
model may be arduous task in situations where the system of interest is not well 
understood [56]. In addition, the ad hoc manner of model specification may result 
in multiple models for the same system without bringing clarity on the internal 
workings of the system. Further, lack of modules to actualise rigorous data mining 



Swarm Intelligence - Recent Advances, New Perspectives and Applications

76

within the simulation suites has hindered the development of agent-based model 
that can take advantage of the growing big geospatial data. Moreover, the depen-
dence on domain knowledge and the expertise of individual modellers worsen the 
gap between modelled examples and the ever-growing data volumes. Individual 
modellers cannot keep pace with the growth of data, hence necessitating the devel-
opment of automated methods for model discovery and analysis.

Last but not the least, whereas knowledge-driven models can support the 
specification of simple models, such models are usually weak in predicting future 
behaviours of the system [57]. This is more so when the potential effect of various 
inputs on future states of a system is unknown. As an example, initially, it was 
possible to model the generic annual behaviour of migratory birds particularly in 
the wintering months. However, with the reality of human-induced changes to 
the environment, some birds avoid the long winter journeys and instead find food 
and warm nesting places around garbage disposal sites in the northern hemisphere 
[58]. Such specific adaptive behaviours were only detectable through analysis of the 
empirical trajectories of the birds.

Bridging the gap between the advances in big geospatial sensor data and spa-
tially explicit ABMs requires robust methods for automated pattern detection and 
model discovery.

2.5 Multi-agent systems and swarm intelligence

Multi-agent systems (MAS) are an extension of single-agent systems and com-
prise of multiple software agents interacting with each other and their environment 
to achieve certain goals. Important characteristics of multi-agent systems include 
communication, collaboration and interaction. In MAS, the agents can either be 
intelligent or reactive [59]. Intelligent agents are those that are able to logically 
use knowledge and information at their disposal to make rational decisions. On 
the other hand, reactive agents respond to the realities of their environment. In 
multi-agent systems with reactive agents, system-level robustness and complexity 
emerges from local-level interactions of the constituent agents. Collective intel-
ligence that emerges from MAS is similar to those of swarm intelligence (SI), hence 
promoting the adoption of MAS in SI [60].

Swarm intelligence has its foundation in the behaviour of natural bio-systems 
[61]. Specifically, social organisms like bee and ant colonies, flocks of birds and 
schools of fish have been known to exhibit impressive collective behaviours that 
may not be directly linked to the capabilities of individual organisms. Swarm 
intelligence is therefore an attempt to adopt ideas and knowledge from the 
natural bio-systems to build robust algorithms with application in a number of 
fields. In particular, in swarm intelligence, software agents are specified to mimic 
the behaviour of natural systems with the aim of achieving specific goal through 
the emergence of coherent and functional patterns from the collective behaviour 
of interacting entities. The particular characteristics of software agents in swarm 
intelligence include autonomy, interaction, distributed functioning and self-
organisation, ensuring that the software agents solve problems at hand without 
a central control. Swarm intelligence has been employed to build solutions for 
optimisation, computer network-based search, wireless sensor networks and 
traffic control, among other areas. Epistemologically, there are two motivations 
for swarm intelligence [62], the first being to learn about natural system and to 
understand the emergence of system-level patterns from collective interactions 
of individual entities of a system. The second motivation is to discover novel 
algorithms that can be used to solve various engineering, social and computer 
science problems.
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A number of signature algorithms have been developed to actualise swarm 
intelligence in various applications. The most common of these algorithms include 
ant colony optimization (ACO), bee colony optimization (BCO) [63] and particle 
swarm optimization (PSO) [64]. ACO is motivated by the foraging behaviour of 
ant colonies. Specifically, as individual ants forage for food, they release a chemi-
cal known as pheromone when they succeed at finding food. Other members of 
the colony can detect the pheromone and move to the spot where food has been 
found. The pheromone evaporates with time. This type of communication between 
members of a colony ensures an efficient search for food. This model has been 
applied to simulate swarm intelligence in public transport services [65]. Bee colony 
optimization algorithms mimic the foraging behaviours of bee colonies where 
individual bees make characteristic “dances” to alert the members of the colony 
on the locations of food availability. Other members of the colony can choose to 
go to this spot by a certain probability. Particle swarm optimization are stochastic 
optimisation techniques that are inspired by the goal-oriented behaviour of flocking 
birds [66] that improve the efficiency of their navigation and foraging behaviours 
through collaboration, cooperation and independent local-level decisions. Particles 
in a swarm are considered to have limited intelligence and autonomy and exercise 
simple local-level rules to optimise their flow. PSO has been applied to optimise 
network-based communication.

Apart from the main algorithms for swarm intelligence, other algorithms which 
are motivated by natural systems have been tested in multi-agent systems and later 
adapted for swarm intelligence; these include genetic algorithms, neural networks, 
re-enforced learning and simulated annealing. Apart from serving as a test bed for 
nature inspired algorithm, MAS also provide a platform for specifying, modelling 
and simulating natural systems, thus contributing to the knowledge that is then 
ultimately adapted in swarm intelligence. The emergence of sophisticated sensors 
has made it possible to embed sensor in systems of interest. The sensor data can 
then be used to specify multi-agent models of the system allowing biologists and 
computer scientists to learn the behaviours of these systems, hence making it pos-
sible to simulate these to improve the algorithms for swarm intelligence [67].

3. Foundations of data-driven agent-based models

3.1 Influence of data in the character of agent-based models

There are three broad motivations for specifying agent-based models including 
testing hypothesis about a particular system, representing the dynamics of a system 
and predicting the potential future states of a system. Empirical data has tradition-
ally been used in ABMs to characterise agents in the model, for model initialisation 
and for validation [68]. Injecting data into agent-based models can influence the 
purpose of the models. Consequently, three general types of agent-based models 
with distinct roles depending on the degree to which data is used to aide their speci-
fication emerge. The three categories include generator models, mediator models 
and predictive models (Figure 2).

3.1.1 Generator models

Generator models are the most common types of agent-based models and have 
their foundations in generative social sciences [69]. These models rely heavily on 
the domain knowledge and the expertise of the modellers to specify behaviour 
rules and model structures. Consequently, such models are predominantly used for 
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may not be directly linked to the capabilities of individual organisms. Swarm 
intelligence is therefore an attempt to adopt ideas and knowledge from the 
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A number of signature algorithms have been developed to actualise swarm 
intelligence in various applications. The most common of these algorithms include 
ant colony optimization (ACO), bee colony optimization (BCO) [63] and particle 
swarm optimization (PSO) [64]. ACO is motivated by the foraging behaviour of 
ant colonies. Specifically, as individual ants forage for food, they release a chemi-
cal known as pheromone when they succeed at finding food. Other members of 
the colony can detect the pheromone and move to the spot where food has been 
found. The pheromone evaporates with time. This type of communication between 
members of a colony ensures an efficient search for food. This model has been 
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on the locations of food availability. Other members of the colony can choose to 
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in a swarm are considered to have limited intelligence and autonomy and exercise 
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Apart from the main algorithms for swarm intelligence, other algorithms which 
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nature inspired algorithm, MAS also provide a platform for specifying, modelling 
and simulating natural systems, thus contributing to the knowledge that is then 
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has made it possible to embed sensor in systems of interest. The sensor data can 
then be used to specify multi-agent models of the system allowing biologists and 
computer scientists to learn the behaviours of these systems, hence making it pos-
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purpose of the models. Consequently, three general types of agent-based models 
with distinct roles depending on the degree to which data is used to aide their speci-
fication emerge. The three categories include generator models, mediator models 
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Generator models are the most common types of agent-based models and have 
their foundations in generative social sciences [69]. These models rely heavily on 
the domain knowledge and the expertise of the modellers to specify behaviour 
rules and model structures. Consequently, such models are predominantly used for 
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generating and testing different hypotheses [70]. Generator models aim to demon-
strate or “generate” a scenario based on the foundational theories of the dynamic of 
a system of interest. The models may require minimal data to support initialisation, 
calibration and validation. By relying on domain knowledge and ingesting marginal 
data, such models are generic and can replicate related systems. However, the 
models cannot be relied on to reveal very detailed dynamics of the systems.

3.1.2 Mediator models

The second category of models are the mediator models that move beyond 
hypothesis testing and attempt to create a better understanding of the system of 
interest, hence attempting to explain the dynamics of a system. In these models, 
empirical data provide additional interesting patterns and parameters for model 
specification. Validation step then confirms whether the models can replicate the 
patterns that are apparent in the empirical data. Such models can be used to evalu-
ate the implications of empirical research on formal theories [71]. A distinction 
between mediator models and the generator models is that the modellers do not 
require complete knowledge about the systems of interest. Specification of accu-
rate models can be achieved by combining partial knowledge of the systems with 
important characteristics of the system as captured in data. As an example, crowd 
behaviour in an enclosed building can be studied from video data [72] and used to 
improve models that represent the behaviour of crowd agents.

3.1.3 Predictor models

Whereas knowledge-driven models can be generic and be applicable to test 
broad system characteristics, they have not been particularly strong in predicting 
very specific and detailed aspects in the future system characteristics. In contrast, 

Figure 2. 
Categories of agent-based models depending on the degree of data used in the models. Generator models rely 
heavily on the domain knowledge and are suited for “generating” system scenarios based on variations of input 
parameters. Mediator model combine both domain knowledge and patterns extracted from data to improve the 
understanding of a system. Data-driven models are heavily reliant on data and perform better as prediction 
models.
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models that are fuelled by rich datasets are likely to perform better as predictive 
models [7, 73]. The rich data supports the understanding of the respective system 
by revealing useful inputs and systemic behaviours that can be used in specifying 
the model structure [74]. For instance, a fire model that is trained with accurate 
spatial data on the vegetation characteristics, climatic variables and other contex-
tual information regarding fire dynamics in a particular locality is likely to predict 
future fire scenarios better than a model that is based on the general understanding 
of fire dynamics [75].

Domain knowledge provides a good starting point for specifying realistic models 
for hypothesis testing and for representing behaviours of systems. However, the 
lack of solid foundational knowledge should not be a handicap for the specification 
of accurate agent-based models. In an emerging field like geographic informa-
tion science, the process of knowledge discovery should continue in tandem with 
the advances in methods that can facilitate infusion of rich data into agent-based 
models. This can create a mutually beneficial feedback between knowledge-driven 
models and data-driven model. Importantly, there are concepts in spatial science 
that are yet to be defined in a crisp manner. The development of data-rich and 
spatially explicit simulation models can therefore contribute towards building the 
understanding of some concepts in spatial science, particularly those that concern 
spatial behaviours [76].

Models that entirely depend on historical knowledge and static datasets may be 
limited by their failure to appreciate the dynamic conditions of spatio-temporal 
systems [77] that can only be revealed by capturing the data in near real time. In 
addition, spatial simulation models which rely primarily on conventional spatial 
data models may be limited in capturing all the necessary spatial processes [38]. It 
is therefore important to augment the spatial data models with sensor data streams 
or other ambient positioning methods that can capture the multiple dimensions of 
spatial phenomena and processes. Moreover, an understanding of dynamic spatial 
processes requires the specification of data-driven models that can combine both 
spatial data models and spatial process models. Sensor data streams can capture 
dynamic spatial events [78] and associated processes, hence supporting a tighter 
link between dynamic data and dynamic spatially explicit agent-based models.

3.2 Dynamic data-driven simulation models

In the last two decades, there have been attempts to achieve dynamic data-driven 
simulation models (DDDABM). This is more so in systems that are characterised 
by dynamic spatial and temporal behaviours [79]. Advances in sensor capabilities 
are a major driver of the attempts to actualise dynamic data-driven application 
systems (DDDAS). In particular, miniaturisation of the sensors, improvement in 
computational power and developments in telecommunication have led to the growth 
of robust sensor web networks that can be adopted to address questions in various 
spatial domains. Importantly, the growth of geosensor networks has made it possible 
for sensors to capture not only the geographic locations of entities but also the behav-
ioural characteristics of such entities [80, 81]. For example, there are sensors that can 
capture both the location and multidimensional acceleration of animals, hence reveal-
ing their energy use during different activities [82]. The sensor measurements can be 
related to animal behaviours in different settings, hence allowing for the behaviour 
of animals to be documented remotely. Another example includes the possibility of 
capturing location, mobility characteristics and fuel consumption in vehicles, hence 
linking the mobility patterns to energy use efficiency and safety [83].

Within the wireless sensor networks (WSN), a common approach for actualis-
ing dynamic data driven simulation has been to specify sensors as software agents 
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generating and testing different hypotheses [70]. Generator models aim to demon-
strate or “generate” a scenario based on the foundational theories of the dynamic of 
a system of interest. The models may require minimal data to support initialisation, 
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patterns that are apparent in the empirical data. Such models can be used to evalu-
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Figure 2. 
Categories of agent-based models depending on the degree of data used in the models. Generator models rely 
heavily on the domain knowledge and are suited for “generating” system scenarios based on variations of input 
parameters. Mediator model combine both domain knowledge and patterns extracted from data to improve the 
understanding of a system. Data-driven models are heavily reliant on data and perform better as prediction 
models.
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of robust sensor web networks that can be adopted to address questions in various 
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related to animal behaviours in different settings, hence allowing for the behaviour 
of animals to be documented remotely. Another example includes the possibility of 
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Within the wireless sensor networks (WSN), a common approach for actualis-
ing dynamic data driven simulation has been to specify sensors as software agents 
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within the model [84]. Such an architecture allows the sensor data to influence the 
specification of the agent-based model, while the output from the simulation influ-
ences the sensor measurement strategies and network configuration. Moreover, 
agent-based specification of sensor nodes allows for optimisation of the network 
resources and promotes energy efficiency within the WSN [85]. The bidirectional 
feedback between wireless sensor networks and the software agents is mutually 
beneficial both for the efficiency of sensor data collection and for the accuracy of 
the simulation models. There are three general approaches for actualising data-
driven agent-based simulation. These include decoupled data integration, dynamic 
unidirectional data integration and dynamic bidirectional data assimilation.

3.2.1 Decoupled data integration

In this first approach, data is decoupled from the simulation and is only intro-
duced sparingly to influence various steps in the modelling workflow. For instance, 
data may be used in specifying the initial conditions of agents, defining the initial 
model parameters, supporting calibration and validation of spatial agent-based 
models [56]. For this kind of approach, archival data in the form of surveys [13] or 
historical movement trajectories of agents may be adopted. The data provides the 
main characteristics of the agents and possibly also the transition probabilities from 
one state to the next. However, since such models are delinked from the real world 
and only make little use of historical data, they may fail to reflect dynamic charac-
teristics of the real world [86]. In addition, apart from using the data for validation, 
the data may not influence the structure of the model [87].

3.2.2 Dynamic unidirectional data integration

The second approach entails a unidirectional flow of data from measuring 
systems to the simulation model. The data may capture the characteristics of the 
agents and be used to influence the dynamic behaviour of agents. For instance, taxi 
probe data may be gathered and be used to learn about agent characteristics and to 
implement a traffic-related simulation model [88]. However, the results from the 
simulation are not transferred to the measuring system to influence the data col-
lection strategies. In addition, it is not necessary for the data to be recorded in real 
time. Data provides a means of extracting patterns that can then be used in ABM 
specification [72]. As an example, trajectories of animals, with precise spatial and 
temporal attributes can be used to infer patterns that may not be apparent in the 
domain knowledge [89]. The patterns from data can then be used to specify agent 
characteristics and to improve the model structure. An advantage of dynamic sen-
sor data of this type lies in the repeated measurements of such data, which reveal 
the evolution of agent behaviour in space and time [90]. However, the simulation 
results are not compared to the real-time dynamics of the systems of interest; hence 
the model may still deviate from the reality.

3.2.3 Dynamic bidirectional data assimilation

In dynamic bidirectional data-driven models, real-time or near real-time sensor 
observations provide the empirical input that influence the simulation in real-time 
[21]. In the simplest form, data from the real world may only influence the charac-
terisation of the modelling environment. For instance, real-time temperature and 
wind characteristics may be used to influence the environment of a model on fire 
dynamics [91, 92].
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At the advanced level of dynamic data-driven simulation, output from the 
model can used to influence the sensor measurement strategies. For example, 
when modelling the influence of a hurricane, sensors in areas which are charac-
terised by minimal intensity and impact of the hurricane both in the real world 
and in the model can be shut down or slowed down, while the frequency of data 
collection of sensors in high priority areas can be increased [93]. The bidirectional 
feedback improves both the data collection strategy and the accuracy of the 
models [94].

To facilitate the bidirectional communication between sensors and simulation 
models, dynamic data-driven systems adopt a three-step process consisting of 
sensing, prediction and adapting [95]. During sensing, sensors measure or record 
the entities of interest; simulation models then predict the probable change in the 
state of the entity. Finally, the sensing system is adapted to capture and validate 
the simulated state of the entities. This generic approach provides the foundational 
concepts for specification of dynamic data-driven agent-based model.

3.3 Dynamic data-driven agent-based models

Dynamic data-driven agent-based models remain one of the exemplary speci-
fications of sensor data-driven ABMs. In this implementation, dynamic sensor 
data streams improve the specification of multi-agent systems, allowing models 
to benefit from the real-time behaviour and interactions between agents in a 
real-world setting. The main components of this framework include (i) the sensor 
measuring, which observe entities in the real world, providing a mirror of the 
happenings in the system of interest; (ii) data management system; (iii) model-
ling or simulation platform; and (iv) visualisation and dynamic communication 
suite. In some instances, the modelling platform may also serve as the visualisa-
tion interfaces.

Whereas the initial DDDABM implementations were ad hoc and relied on 
standards developed within the project or on widely recognised standards within 
computer science and engineering, the latter adaptations have utilised well-
established standards by the Open Geospatial Consortium (OGC) to promote 
standardised discovery of sensor resources, documentation of sensor observations 
and uncertainties and transfer of outputs from modelling workflows [96]. Data 
management strategy can either be loosely coupled, distributed or centralised or 
adopt a complex negotiation between a distributed and centralised data manage-
ment strategy.

3.4 Types of dynamic sensor data-driven applications for simulation

In an attempt to bridge the gap between models and real-world systems, differ-
ent approaches have been proposed or adopted to incorporate dynamic sensor data 
into spatially explicit ABMs. The purpose of data integration influences the meth-
ods for the integration and the extent to which data is use used in the models. Some 
of the generic implementations include the following: (i) data-driven calibration of 
agent-based models, (ii) adaptive optimisation of model parameters, (iii) service-
oriented architecture in geosimulation, (iv) agent parallelisation and dynamic 
visualisation, (v) dynamic data-driven multi-agent systems (DDDMAS) and  
(vi) adaptive discovery of models from sensor data streams.

While these categories may not be conclusive, they cover the main attributes of 
sensor data-driven spatial simulation models as will be specified in the following 
sections.
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duced sparingly to influence various steps in the modelling workflow. For instance, 
data may be used in specifying the initial conditions of agents, defining the initial 
model parameters, supporting calibration and validation of spatial agent-based 
models [56]. For this kind of approach, archival data in the form of surveys [13] or 
historical movement trajectories of agents may be adopted. The data provides the 
main characteristics of the agents and possibly also the transition probabilities from 
one state to the next. However, since such models are delinked from the real world 
and only make little use of historical data, they may fail to reflect dynamic charac-
teristics of the real world [86]. In addition, apart from using the data for validation, 
the data may not influence the structure of the model [87].

3.2.2 Dynamic unidirectional data integration

The second approach entails a unidirectional flow of data from measuring 
systems to the simulation model. The data may capture the characteristics of the 
agents and be used to influence the dynamic behaviour of agents. For instance, taxi 
probe data may be gathered and be used to learn about agent characteristics and to 
implement a traffic-related simulation model [88]. However, the results from the 
simulation are not transferred to the measuring system to influence the data col-
lection strategies. In addition, it is not necessary for the data to be recorded in real 
time. Data provides a means of extracting patterns that can then be used in ABM 
specification [72]. As an example, trajectories of animals, with precise spatial and 
temporal attributes can be used to infer patterns that may not be apparent in the 
domain knowledge [89]. The patterns from data can then be used to specify agent 
characteristics and to improve the model structure. An advantage of dynamic sen-
sor data of this type lies in the repeated measurements of such data, which reveal 
the evolution of agent behaviour in space and time [90]. However, the simulation 
results are not compared to the real-time dynamics of the systems of interest; hence 
the model may still deviate from the reality.

3.2.3 Dynamic bidirectional data assimilation

In dynamic bidirectional data-driven models, real-time or near real-time sensor 
observations provide the empirical input that influence the simulation in real-time 
[21]. In the simplest form, data from the real world may only influence the charac-
terisation of the modelling environment. For instance, real-time temperature and 
wind characteristics may be used to influence the environment of a model on fire 
dynamics [91, 92].
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At the advanced level of dynamic data-driven simulation, output from the 
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terised by minimal intensity and impact of the hurricane both in the real world 
and in the model can be shut down or slowed down, while the frequency of data 
collection of sensors in high priority areas can be increased [93]. The bidirectional 
feedback improves both the data collection strategy and the accuracy of the 
models [94].

To facilitate the bidirectional communication between sensors and simulation 
models, dynamic data-driven systems adopt a three-step process consisting of 
sensing, prediction and adapting [95]. During sensing, sensors measure or record 
the entities of interest; simulation models then predict the probable change in the 
state of the entity. Finally, the sensing system is adapted to capture and validate 
the simulated state of the entities. This generic approach provides the foundational 
concepts for specification of dynamic data-driven agent-based model.

3.3 Dynamic data-driven agent-based models

Dynamic data-driven agent-based models remain one of the exemplary speci-
fications of sensor data-driven ABMs. In this implementation, dynamic sensor 
data streams improve the specification of multi-agent systems, allowing models 
to benefit from the real-time behaviour and interactions between agents in a 
real-world setting. The main components of this framework include (i) the sensor 
measuring, which observe entities in the real world, providing a mirror of the 
happenings in the system of interest; (ii) data management system; (iii) model-
ling or simulation platform; and (iv) visualisation and dynamic communication 
suite. In some instances, the modelling platform may also serve as the visualisa-
tion interfaces.

Whereas the initial DDDABM implementations were ad hoc and relied on 
standards developed within the project or on widely recognised standards within 
computer science and engineering, the latter adaptations have utilised well-
established standards by the Open Geospatial Consortium (OGC) to promote 
standardised discovery of sensor resources, documentation of sensor observations 
and uncertainties and transfer of outputs from modelling workflows [96]. Data 
management strategy can either be loosely coupled, distributed or centralised or 
adopt a complex negotiation between a distributed and centralised data manage-
ment strategy.

3.4 Types of dynamic sensor data-driven applications for simulation

In an attempt to bridge the gap between models and real-world systems, differ-
ent approaches have been proposed or adopted to incorporate dynamic sensor data 
into spatially explicit ABMs. The purpose of data integration influences the meth-
ods for the integration and the extent to which data is use used in the models. Some 
of the generic implementations include the following: (i) data-driven calibration of 
agent-based models, (ii) adaptive optimisation of model parameters, (iii) service-
oriented architecture in geosimulation, (iv) agent parallelisation and dynamic 
visualisation, (v) dynamic data-driven multi-agent systems (DDDMAS) and  
(vi) adaptive discovery of models from sensor data streams.

While these categories may not be conclusive, they cover the main attributes of 
sensor data-driven spatial simulation models as will be specified in the following 
sections.
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3.4.1 Data-driven calibration of spatial agent-based models

Conventionally, calibration of agent-based models aims to achieve two purposes. 
The first purpose is to find a robust and comprehensive list of parameters that can 
simulate the intended behaviours of a model. The second aim is to find optimal 
parameter ranges that can replicate the intended behaviours. Calibration is therefore 
an important step in model specification as it provides an idea of the essential param-
eters that affect agent behaviour while also providing the sensitivity ranges of these 
parameters. A properly calibrated model captures the essential dynamics of a system 
and can contribute towards achieving an accurate representation of the real world.

Traditionally, calibration of ABMs relies on historical data. However, in time-
dependent and contextually sensitive systems like most of the spatial systems, 
historical data may not capture all the dynamics of a variant system. Consequently, 
calibration of models with historical data may cause the models to deviate from 
real-world realities. This is more so when the agents in the model face dynamics and 
situations that were absent in the historical data. Incorporating data from the real 
world during the model run can therefore provide a means of fine-tuning the model 
parameters to be reflective of the realities in the real-world scenarios [97]. For 
instance, when simulating road traffic, historical data may not have captured traffic 
jams that result from emergencies on the road, incorporating real-time data of such 
incidences when they occur can provide the necessary input to fine-tune the model 
parameters and to ensure the currency of model results.

To achieve dynamic calibration, it is important to have a systematic means of 
comparing model states against the real-world states. A proper scheduling scheme 
and tightly coupled link between the real-world schedule and the model schedule 
can help in deciding the calibration points. For instance, the schedule of sensor 
data collection and collation should be synchronised with the model time to allow 
for comparison between sensor observations and simulation results. It is therefore 
important to have an observation model from the sensor observation system that is 
comparable to the simulated results.

Dynamic calibration is achieved through methods of data assimilation which 
combine the state of the system as observed in the real world with the results from 
a simulation model in order to produce an improved prediction [98]. In particular, 
particle filter (PF) methods [99], for instance, Kalman filter (KF), have been used 
to assimilate data from pedestrian counts into a pedestrian simulation model [100]. 
In another example, Sequential Monte Carlo (SMC) method was used to assimilate 
sensor into building occupancy simulation [101].

For data assimilation, a proper sampling scheme allows for a randomised 
selection of data from the real world, and assimilating these with a sample of the 
simulation results to provide an updated state of model dynamics. Data assimila-
tion improves the accuracy of the model as model parameters are updated to be 
in harmony with the patterns in the real world. However, models that are heavily 
reliant on data assimilation for the calibration of model parameters may run the risk 
of overfitting the model parameters to the data and therefore reduce the replicabil-
ity of the models in data-deficient scenarios. Consequently, other methods which 
promote cross-validation [102] have been proposed as they go beyond dynamic 
calibration.

3.4.2 Adaptive optimisation and validation of model parameters

Discovery of representative parameters remains an outstanding challenge in the 
specification of data-driven spatial simulation models. This is more so when the 
velocity and volume of data collection outstrip the knowledge domain of the system 
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of interest. When rich-annotated sensor data is available, multiple parameters 
may be inferred from the data. However, not all the parameters may be useful or 
adequately robust for representing the system of interest. Identifying robust and 
representative set of parameters for capturing the behaviour of the system of inter-
est becomes a challenge. In addition, finding optimal parameter space for simulating 
the real-world system accurately can be challenging. Consequently, discovery and 
optimisation of parameters has been another aspect of dynamic data-driven simula-
tion. Statistical methods including Markov chain [103] and its variants have been 
employed to discover initial parameters that may influence the dynamics of a model.

Evolutionary methods are suitable for dynamic optimisation of model parame-
ters. In particular, genetic algorithms that borrow from biology have been employed 
to optimise parameters in data-driven ABMs [104, 105]. This has particularly been 
possible because of the adaptive nature of genetic algorithms which allows them to 
learn from data and to improve the specification of model parameters.

It is possible to implement dynamic calibration and optimisation of model 
parameters from a centralised data management system. However, the dynamic 
nature of sensor resources requires a service-oriented architecture to facilitate 
dynamic discovery, analysis and communication of sensor res using open and 
standardised protocols. Consequently, the development of various sensor resource 
management standards within OGC has promoted development of service-oriented 
architectures including Sensor Observation Service (SOS), Sensor Web Enablement 
(SWE) and other Geosensor Network Services that facilitate the discovery, access 
and computation on sensor resources in a standardised way. As a result, there have 
also been advances in sensor-oriented geosimulation frameworks.

3.4.3 Service-oriented geosimulation framework

In service-oriented geosimulation frameworks, sensor resources are specified as 
services that can be accessed and used in the model to achieve specific goals [106]. 
The adoption of sensor-oriented architecture in a dynamic data-driven ABM begins 
by considering Agents-as-a-Service (AaaS) [107]. In the approach, different aspects 
of the sensor data collection, management and computation system can be viewed 
in terms of their functionality [108]. The functionality defines the agency of these 
sensor network resources. For instance, sensor nodes whose role is to measure 
environmental characteristics exemplify measuring service hence can be specified 
as measuring agents.

Specification of sensor resources as services allows the elements of sensor 
network to be represented in the models as software agents. The behaviour and 
operations of sensor software agents can be simulated in parallel to other agents of 
interest in the system under analysis. For instance, in a hydrological network whose 
aim is to observe and analyse nutrient and sediment load in a catchment. Different 
sensors, for measuring environmental and hydrological characteristics, can be 
specified as agents in the model. Entities of interest, which may include water 
particles and sediment, can also be specified as autonomous agents. Specification 
of various sensor components as service agents in the model also allow for agent 
characteristics like autonomy, intelligence, interaction and adaptability to be 
included. Such agent characteristics can enhance the efficiency in the use of the sen-
sor network resources and the versatility of the sensors in the model.

The service agents can provide the link between the real world and the simula-
tion environment [109]. Specifically, the service agents capture information from 
the real world and execute the initial network level computations before relaying 
the processed information to fine-tune the specification of the model world while 
also providing information for dynamic calibration of the models. At the same time, 
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and tightly coupled link between the real-world schedule and the model schedule 
can help in deciding the calibration points. For instance, the schedule of sensor 
data collection and collation should be synchronised with the model time to allow 
for comparison between sensor observations and simulation results. It is therefore 
important to have an observation model from the sensor observation system that is 
comparable to the simulated results.
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combine the state of the system as observed in the real world with the results from 
a simulation model in order to produce an improved prediction [98]. In particular, 
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selection of data from the real world, and assimilating these with a sample of the 
simulation results to provide an updated state of model dynamics. Data assimila-
tion improves the accuracy of the model as model parameters are updated to be 
in harmony with the patterns in the real world. However, models that are heavily 
reliant on data assimilation for the calibration of model parameters may run the risk 
of overfitting the model parameters to the data and therefore reduce the replicabil-
ity of the models in data-deficient scenarios. Consequently, other methods which 
promote cross-validation [102] have been proposed as they go beyond dynamic 
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3.4.2 Adaptive optimisation and validation of model parameters

Discovery of representative parameters remains an outstanding challenge in the 
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of interest. When rich-annotated sensor data is available, multiple parameters 
may be inferred from the data. However, not all the parameters may be useful or 
adequately robust for representing the system of interest. Identifying robust and 
representative set of parameters for capturing the behaviour of the system of inter-
est becomes a challenge. In addition, finding optimal parameter space for simulating 
the real-world system accurately can be challenging. Consequently, discovery and 
optimisation of parameters has been another aspect of dynamic data-driven simula-
tion. Statistical methods including Markov chain [103] and its variants have been 
employed to discover initial parameters that may influence the dynamics of a model.

Evolutionary methods are suitable for dynamic optimisation of model parame-
ters. In particular, genetic algorithms that borrow from biology have been employed 
to optimise parameters in data-driven ABMs [104, 105]. This has particularly been 
possible because of the adaptive nature of genetic algorithms which allows them to 
learn from data and to improve the specification of model parameters.

It is possible to implement dynamic calibration and optimisation of model 
parameters from a centralised data management system. However, the dynamic 
nature of sensor resources requires a service-oriented architecture to facilitate 
dynamic discovery, analysis and communication of sensor res using open and 
standardised protocols. Consequently, the development of various sensor resource 
management standards within OGC has promoted development of service-oriented 
architectures including Sensor Observation Service (SOS), Sensor Web Enablement 
(SWE) and other Geosensor Network Services that facilitate the discovery, access 
and computation on sensor resources in a standardised way. As a result, there have 
also been advances in sensor-oriented geosimulation frameworks.

3.4.3 Service-oriented geosimulation framework

In service-oriented geosimulation frameworks, sensor resources are specified as 
services that can be accessed and used in the model to achieve specific goals [106]. 
The adoption of sensor-oriented architecture in a dynamic data-driven ABM begins 
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sensor network resources. For instance, sensor nodes whose role is to measure 
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sor network resources and the versatility of the sensors in the model.

The service agents can provide the link between the real world and the simula-
tion environment [109]. Specifically, the service agents capture information from 
the real world and execute the initial network level computations before relaying 
the processed information to fine-tune the specification of the model world while 
also providing information for dynamic calibration of the models. At the same time, 
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specifying sensors as service agents in the model also makes it possible to influence 
the behaviour of such sensor agents, hence promoting a bidirectional communica-
tion between the model and the sensing system. This characteristic makes it pos-
sible to manipulate the sensor behaviour from the model.

In spite of the positive attributes of adopting a service-oriented geosimula-
tion, challenges emerge in communication, computation, visualisation and data 
management, necessitating the refinement of the service-oriented approach 
and the development of other paradigms like agent parallelisation and dynamic 
visualisation.

3.4.4 Agent parallelisation and dynamic visualisation

Parallelisation improves efficiency in spatial explicit ABMs with thousands of 
agents and multiple interconnected tasks [110]. As an example, incorporation of 
sensor data into geosimulation models may require distributed data management, 
exploratory data analysis, pattern extraction, dynamic calibration, analysis of the 
model results and complex communication between different model components. 
The multiple tasks, particularly when the velocity of the data streams is high 
and the volume of the data is big, can limit the efficiency of the intended model. 
Consequently, parallelisation can improve the efficiency of modelling operations. 
Within sensor-driven agent-based systems, two common types of parallelisation in 
spatial ABM include agent parallelisation and environment parallelisation [111]. For 
models with multiple sub-models, a third type of parallelisation is known as task 
parallelisation.

3.4.4.1 Agent parallelisation

Agent parallelisation entails separating, distributing and simulating the behav-
iour of various agents in different cores. Individual cores keep track of agent prop-
erties and spatial locations. In ecology, agent parallelisation has been implemented 
to simulate predator–prey models [112].

3.4.4.2 Environment parallelisation

Environment parallelisation involves breaking an expansive modelling world 
into multiple smaller spatial units or tiles and distributing the small units to differ-
ent cores. Simulation can then proceed in each core. One challenge in this kind of 
setup is in simulating mobile agents that move extensively across the area of study.

3.4.4.3 Task parallelisation

Task parallelisation involves breaking down modelling tasks into different 
modular operations that can be performed in parallel in different cores [113]. For 
instance, an agent-based model can be broken down into sub-models that can 
run concurrently on parallelised cores. This kind of setup can also help in solving 
scheduling questions and can improve efficiency of simulation.

Important components of an effective parallelisation include distributed data 
management system, high-performance geosimulation environment which includes 
modules for specification of agency and a dynamic geo-visualisation platform [114]. 
The performance of the parallelisation scheme can be leveraged on open standards 
that facilitate distributed database management system, efficient communication 
[115], high-performance geosimulation and cyberGIS [116].
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3.4.5 Dynamic data-driven multi-agent systems (DDDMAS)

Dynamic data-driven multi-agent systems are a modification of dynamic data-
driven applications systems [21]. The initial motivation of DDDAS was to support 
the implementation of dynamic environmental monitoring systems incorporating 
different application systems with real-time data from the system of interest. An 
important attribute of the DDDAS is the possibility of bidirectional communication 
between sensors and models, which allows sensors to provide data from the real 
world for assimilation into models, hence improving the reliability of the models. 
On the other hand, simulation results influence the sensor measurement strategies.

In DDDMAS, the concepts from DDDAS are adopted in a multi-agent system to 
improve the specification and accuracy of multi-agent models [117]. In particular, 
sensors capture individual agent characteristics, hence facilitating the specification 
of agents. In addition, other sensors can capture environmental characteristics, 
hence ensuring that the environment in which the agents interact is dynamic and 
representative of the reality. On the other hand, the model outcomes influence sen-
sor measurement strategies by promoting priority sensor deployment depending on 
the scenarios in the model. In spatial models, sensor network components and other 
entities in the model can be represented as autonomous, which can be identified by 
their unique geographic characteristics [118].

Apart from placing the sensors on the environment, on-body sensors [119] can 
provide both the contextual and physiological characteristics of agents that may 
be important in understanding ambient behaviours of the simulated agents. To get 
the best out of the sensor agents, sensors should not only be measuring devices but 
must also be cognitive [120]. Cognitive sensor agents can have a mental state which 
may include intelligence, computational ability and decision-making components 
[20]. Other attributes that such cognitive agents may have include self-organisation, 
learning and adaptability. These attributes allow the sensors to gather information 
(both from the environment and from the models), analyse such information and 
make autonomous decisions that improve the data collection strategies and facilitate 
the specification of accurate models.

3.4.6 Dynamic discovery of models from sensor data

The most advanced level of dynamic data-driven simulation entails the dis-
covery of rulesets and algorithms that make up accurate simulation models. The 
process of model specification can be arduous especially when there is vague 
knowledge about the system of interest. Automated discovery of robust algorithms, 
which are capable of representing the dynamics of a system of interest, is therefore 
a giant leap in the epistemology of agent-based simulations [121].

The essential building blocks of agent-based models are the entities, interactions 
and contextual information that influence entity decisions and interactions. Data 
containing detailed characteristics of the entities, their interactions and the contex-
tual information in the environment where they operate may provide an avenue for 
discovering behavioural models of the agents, hence facilitating automated model 
specification.

Capturing the cognitive characteristics of humans and animals remains a 
challenge both technically and due to ethical reasons. However, recent advances 
in biosensor technology have made it possible to capture nonintrusive physiologi-
cal characteristics which can then be related to the emotional and mental state of 
humans [122] and animals. Data on such cognitive characteristics of agents can 
facilitate in understanding and specifying the motivation of agents. In robotics and 
unmanned aerial vehicles (UAV), sensors can also be used to capture information 
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instance, an agent-based model can be broken down into sub-models that can 
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scheduling questions and can improve efficiency of simulation.
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The performance of the parallelisation scheme can be leveraged on open standards 
that facilitate distributed database management system, efficient communication 
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covery of rulesets and algorithms that make up accurate simulation models. The 
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knowledge about the system of interest. Automated discovery of robust algorithms, 
which are capable of representing the dynamics of a system of interest, is therefore 
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The essential building blocks of agent-based models are the entities, interactions 
and contextual information that influence entity decisions and interactions. Data 
containing detailed characteristics of the entities, their interactions and the contex-
tual information in the environment where they operate may provide an avenue for 
discovering behavioural models of the agents, hence facilitating automated model 
specification.

Capturing the cognitive characteristics of humans and animals remains a 
challenge both technically and due to ethical reasons. However, recent advances 
in biosensor technology have made it possible to capture nonintrusive physiologi-
cal characteristics which can then be related to the emotional and mental state of 
humans [122] and animals. Data on such cognitive characteristics of agents can 
facilitate in understanding and specifying the motivation of agents. In robotics and 
unmanned aerial vehicles (UAV), sensors can also be used to capture information 
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for building the intelligence of the robotics and of the UAVs [123]. Such agents 
therefore need an additional capability of learning, hence building their knowledge 
beyond the hard-wired artificial intelligence. The learned knowledge can improve 
swarm intelligence in UAVs, safety in self-driving cars and efficiency in adaptive 
industrial processes.

Because of the dynamic nature of data and complexities of the spatial environ-
ments, understanding of the agent decisions and the emergence of system-level 
characteristics requires an automated model discovery. One suggestion for generat-
ing spatial rulesets for multi-agent systems is the global-to-local programming 
approach [124]. The approach attempts to decompose a programming task into 
individual simple spatial dimensions and then generate candidate rulesets for each 
dimension. The dimensions may include configuration, local rules, timing, patterns 
and robustness. Genetic algorithm can then be used to combine and evolve the can-
didate sub-models resulting in a robust rulesets that can simulate the multi-agent 
system of interest [121].

Other implementations involve implementing methods from machine learning 
to discover an initial population of algorithms from a solution space [125]. The 
initial population of algorithms can then be optimised using genetic algorithms to 
produce the most efficient combination of algorithms that can simulate the system 
of interest. The result is an adaptive ruleset, which is not handicapped by the 
domain knowledge but that emerges based on the richness of solution space. The 
richness of the solution space depends on the diversity of data from various sensor 
data streams. Automated discovery of models can reduce the time spent in model 
specification and result in behaviours that can be described mathematically, hence 
improving the conceptualisation of agent behaviours. Consequently, such model-
ling workflows can contribute to automated knowledge discovery.

As has been outlined in this section, tremendous progress has been made to 
facilitate dynamic data integration into agent-based models. The progress is bound 
to shorten modelling cycle and to improve accuracy of ABMs by ensuring the fidel-
ity of the models to the dynamic sensor observations in the real world. However, 
dependence on data may come with the challenge of model overfitting. Similarly, 
unless proper flexibility is allowed in the parameter estimation and model discov-
ery, data-driven models can end up as “black box” models, which, even though 
may lead to accurate results, do not allow users to understand how the optimised 
parameters and adaptive algorithms emerge. In order to contribute to addressing the 
challenge of model overfitting, we see potential solutions in leveraging the speci-
fication of sensor-driven spatially explicit models on well-established guidelines 
like pattern-oriented modelling, service-oriented architecture, parallelisation and 
optimisation of various model components through evolutionary algorithms. In 
the following section, a conceptual framework for sensor-driven spatially explicit 
model is provided.

4.  Framework for dynamic sensor-driven spatially explicit agent-based 
models

An accurate, spatially explicit, agent-based model should aim at replicating all the 
essential patterns of the system by simulating the local behaviour of agents. Pattern 
or behaviour detection is therefore an important component of data-driven simula-
tion models [126]. Consequently, in order to specify accurate models, the modelling 
workflow requires a module to facilitate pattern extraction in order to discover 
multi-scale patterns from the sensor data streams. The patterns can drive dynamic 
calibration and validation of the model. Because of the velocity and dynamic nature 
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of sensor observations, bridging the gap between sensor observations and model 
specification necessitates the processes of calibration and validation to be closer 
and tied tightly to the simulation processes. This is in contrast to the conventional 
methods where specification, calibration and validation are sequential steps that are 
implemented at separate times. The challenge thus is to decide on a suitable pattern-
oriented modelling strategy in which the patterns from sensor data streams are 
separated into specification, calibration and validation patterns. Figure 3 provides 
the conceptual framework for sensor-driven spatial simulation model.

In the conceptual model, there are three important layers in the dynamic simula-
tion life cycle. The three are the observation layer, exploratory analysis layer and the 
simulation layer.

4.1 Observation layer

The observation layer specifies the data collection and management strategy. 
In particular, the layer specifies the sensor-driven observation experiment and the 
associated sensor and network infrastructure that facilitate accurate, complete and 
efficient data collection and preprocessing. The preprocessing step may include spa-
tial and temporal sampling of the sensor observations to capture only the important 
attributes of the agents of interest. In order to address the spatial questions that are 
the focus of spatial simulation modelling, observations should include both the spa-
tial characteristics such as the location and time and other agents and environment-
specific data. Consequently, standards from OGC Geosensor Network Services can 

Figure 3. 
Proposed conceptual model for dynamic data-driven spatially explicit ABM. Geosensors capture data on the 
dynamics of the agents including their behaviour characteristics, space use and interactions. Preliminary on-site 
computation can be executed within the sensor networks before the data is parsed onto a data management and 
processing unit. Apart from storing the data in an efficient manner, the processing unit provides applications 
that can facilitate communication between the simulation model and the sensor network. The second process 
in the workflow involves exploratory data analysis and pattern extraction which results in an exhaustive 
list of system-level patterns and potential parameters that can be used to create a population of solutions for 
specifying the ABM. In addition, exploratory analysis reveals the tentative temporal steps at which it may be 
possible to identify micro level patterns of the system of interest. The patterns are separated into calibration 
and validation categories. The calibration patterns are hard-wired into the model through evolutionary 
optimisation of the candidate parameters. A specified model is calibrated dynamically and iteratively during 
the model. Once an adequate number of calibration steps have been executed, dynamic validation is initiated 
and is based on the reserve patterns that were not initially hard-wired into the model. The simulation outcome 
resulting from the validation stage is transferred to the data processing unit for assimilation with “fresh” data 
from the sensor observations. The process is cyclic and continues until the model accurately reproduces all the 
patterns in the data.
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model is provided.
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tion models [126]. Consequently, in order to specify accurate models, the modelling 
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oriented modelling strategy in which the patterns from sensor data streams are 
separated into specification, calibration and validation patterns. Figure 3 provides 
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tial and temporal sampling of the sensor observations to capture only the important 
attributes of the agents of interest. In order to address the spatial questions that are 
the focus of spatial simulation modelling, observations should include both the spa-
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Proposed conceptual model for dynamic data-driven spatially explicit ABM. Geosensors capture data on the 
dynamics of the agents including their behaviour characteristics, space use and interactions. Preliminary on-site 
computation can be executed within the sensor networks before the data is parsed onto a data management and 
processing unit. Apart from storing the data in an efficient manner, the processing unit provides applications 
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and validation categories. The calibration patterns are hard-wired into the model through evolutionary 
optimisation of the candidate parameters. A specified model is calibrated dynamically and iteratively during 
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be adopted to guide the sensor selection and data collection processes. In addition, 
open standards that promote interoperability and transfer of sensor data and 
other resources should be encouraged. In particular, the use of Observation and 
Measurement (O&M) specification can facilitate both the documentation of data 
and uncertainties associated with the data. This is important for communicating the 
provenance of uncertainty throughout the modelling cycle.

For the data management, a distributed spatio-temporal database [114] is pref-
erable when the study area is expansive and when there may be a need to carry out 
on-site quality assessment of the data from various sensor networks. Otherwise, a 
centralised Sensor Web Enablement (SWE) platform allowing for seamless discov-
ery and manipulation and transfer of data and resources through standardised OGC 
compliant specifications is the most reliable. Examples of agent-oriented middle-
ware for decentralised dynamic data collection include Sensomax [127], SenseWare 
[128] and MAPS [129]. Standardised data management systems facilitate charac-
terisation of agent behaviours, multi-tasking and bidirectional communication 
between different components of the simulation workflow and the sensor nodes.

Apart from the geosensor data, additional spatial data from standard GIS data 
models and remote sensing products can be incorporated into the data management 
system to boost the characterisation of the environment in which the agents oper-
ate. For instance, when simulating dynamics of environmental changes, spatial data 
including human population and settlement, land use characteristics, topography, 
accessibility, vegetation indices, land surface temperature (LST), fire occurrence, 
night-time light, aerosols etc. can be combined with the in situ sensor data to 
provide a rich characterisation of the modelling world.

4.2 Exploratory analysis layer

The strength of data-driven models lies in the robust discovery of distinctive 
spatial and temporal patterns in the sensor data streams. Such patterns may be 
indicative of the essential processes and dynamics of the system of interest. The 
exploratory analysis is therefore a critical stage where statistical and machine-
learning methods are applied to extract multi-scale patterns and other important 
characteristic parameters which may facilitate an accurate specification and 
simulation of the system behaviours. In situations where some knowledge has been 
documented concerning the system under study, then such information can guide 
and improve the pattern extraction process.

Statistical methods including multi-scale clustering and classification have 
been employed to reveal clusters in the data. For instance, in animal movement, 
Expectation–Maximization Binary Clustering (EMBC) [130] method has been 
applied to detect specific spatial and temporal navigation behaviours of birds. In 
human mobility trajectory analysis, DBSCAN clustering method has been applied 
to find traffic patterns [131]. Similarly, in flocking and swarm behaviour models, 
Spatial Clustering Algorithm Through Swarm Intelligence (SPARROW) clustering 
method has been used [132]. In addition, spatio-temporal data analysis methods 
including Bayesian spatio-temporal partitioning and clustering methods can be 
implemented to reveal the variation in behaviour of agents and the dynamics of the 
system in both space and time. Apart from statistical methods, machine-learning 
methods including convolutional neural networks (CNN), artificial neural network 
(ANN) and deep learning have been applied to reveal patterns. The use of math-
ematical and computational methods has the advantage that resulting patterns can 
be explicitly defined, hence building a mathematical or computational conceptuali-
sation of such patterns [125]. The patterns can also provide a hint of agent processes 
that are inherent in the systems of interest.
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In addition to the patterns, exploratory analysis process identifies essential 
parameters behind the patterns and processes of the system, allowing for specifica-
tion of model parameters and identification of potential behaviour characteristics. 
Parameters are independent variables that influence the local-level behaviour of 
the agents. Related to the parameters, the exploratory analysis should also identify 
appropriate simulation schedules to facilitate the replication of all the necessary 
multi-scale patterns. An appropriate scheduling scheme also ensures the efficiency 
of the computation by informing a realistic temporal scale for the model and limit-
ing unnecessary iteration of model runs.

Further, the exploratory analysis should also identify potential variables to be 
specified as the state variables of the agents. State variables are the agent-specific 
characteristics that vary dynamically in the model. State variables are essential as 
they provide a way of comparing the simulated agents against real-world agents 
while also providing a means of understanding how the local agent variables 
contribute to the multi-scale patterns. As an output from the exploratory process, a 
modeller should have an extensive list of potential model parameters and patterns 
that are essential for understanding the dynamics of the system. It is at this point 
that patterns should clearly be separated into the calibration and the validation 
patterns in preparation for their use in the dynamic simulation process.

4.3 Simulation layer

The simulation layer entails dynamic model specification, calibration and vali-
dation steps. As opposed to the conventional static ABMs, the specification, calibra-
tion and validation steps of a dynamic sensor-driven model can be implemented 
dynamically and iteratively during a single runtime and may run concurrently in a 
parallelised system.

In the model specification stage, the first step is to decide on a mechanism of 
combining or reducing the population of parameters into a robust set that can drive 
the essential behaviour of the agents. Evolutionary computation methods have been 
effective particularly in optimising ABM parameters [133]. One common example 
of evolutionary method for data-driven simulation is genetic algorithms [134]. In 
genetic algorithm, a random combination of the parameters can be created for each 
agent to provide the initial solution space [135]. The solution space evolves chromo-
somal crossover and mutation, which are critical operators of a genetic algorithm.

Further, to generate robust parameters, a proper fitness function should be 
derived to provide a basis of comparing the performance of the simulated agents 
against their real-world counterparts. A simple approach involves deriving fitness 
function a function of the variance between state variables and empirical agent 
characteristics. However, such a fitness function may increase the risk of model 
overfitting as the simulated agents are forced to replicate specific stepwise processes 
that are captured in the data. Consequently, deriving a fitness as a function from 
patterns may relax the focus from the state variables to the flexible multi-scale pat-
terns. In addition, the combination of multiple patterns in defining fitness function 
can lead to generic and robust fitness functions. This is because patterns are generic 
spatial and temporal footprint that can be observed and described in the data.

Adopting a pattern-oriented modelling approach ensures that the process of 
model specification, calibration and validation is driven by the patterns that are 
inherent in the dynamic data. Consequently, this reduces the risk of tying the model 
parameters to the data, hence limiting the chance of model overfitting. In addition, 
since validation patterns are not explicitly hard-coded into the model, rigorously 
validated data-driven models can help in explaining the agent dynamics that lead to 
multi-scale patterns. The results of a properly calibrated and dynamically validated 
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be adopted to guide the sensor selection and data collection processes. In addition, 
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model can be parsed to the central data management and processing unit for data 
assimilation and to influence the behaviour of the observation and measurement 
layer in cases where this is necessary. The cyclic communication between sensor 
observations and assimilation of simulation results bridges the gap between sensor 
data measurements and model specification and facilitates a mutually beneficial 
feedback between sensing unit and simulation model.

5.  Outlook and potential applications of sensor data-driven spatially 
explicit ABMs

Advances in sensor technology, particularly the miniaturisation and ubiquity of 
sensors have led to an exponential growth in the diversity of the fine-scaled data, 
which can facilitate model specifications. In geographic information science, in situ 
sensor data provide accurate measurements of spatial entities and augment other 
data from earth observation workflows in characterising the environment in which 
agents interact. Sensor data therefore plays an important role in capturing the 
dynamics that cause spatial and temporal patterns. Accurate sensor data contributes 
towards understanding local-level interactions of humans, animals, firms, smart 
appliances and traffic, and the role of such interactions in global environmental 
changes. Similarly, the application of sensors has been a major driver in pervasive 
geographic information systems [136, 137] including in indoor environments and 
in the internet of things (IoT), technologies that are relevant for smart building and 
facility management.

However, advances in tools and software to support dynamic spatially explicit 
ABM specification have not been in tandem to the progress in sensor observation 
systems. Common ABM software including NetLogo, SWARM, MASON and Repast 
can handle only desktop-based geospatial data models. GAMA [138], which has the 
most extensive suite of tools for geospatial data handling and manipulation, does 
not have an equally extensive suite of APIs that can support dynamic data injection 
from sensor data streams, while FRAME and Repast HPC, which even though can 
support specification and simulation of distributed ABM, are not open and widely 
accessible. Moreover, most implementations of dynamic sensor-driven ABMs have 
been implemented to meet the objectives of specific projects and mainly in the 
computer science community and in the sensor (or geosensor) community. It is 
therefore important that modellers and practitioners in spatial simulation should 
develop reliable tools that can allow ABMs to be fed with rich sensor data streams 
from the systems of interest.

Potential areas of application of dynamic sensor-driven spatially explicit include 
animal ecology, human mobility studies and particularly in understanding mobility 
patterns and use of urban environment, energy use, indoor positioning systems, 
fire behaviour modelling, tourism research military applications, smart agriculture, 
environmental monitoring and in automation of industrial processes.

Epistemologically, the emergence of methods for data-driven ABMs raises ques-
tions on the place of conventional ABMs. In particular, do the data-driven models 
radically change the epistemological underpinnings of traditional ABM modelling 
framework? In other words, can accurate models be specified without relying on 
the domain knowledge and expertise of the modellers? To this question, a cautious 
approach should be encouraged. Whereas data-driven models are promising par-
ticularly in specifying models for theory-poor systems, a hybrid approach that starts 
from the domain knowledge and augments such knowledge with well-structured 
data-driven methods can improve reliability of agent-based simulation. Domain 
knowledge can provide the foundational understanding of a system of interest, 
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while rich and dynamic data can provide a means of discovering detailed local-level 
patterns and parameters of the system. In addition, results from data-driven models 
can augment domain knowledge. In a nutshell, data should help in defining the crisp 
concepts and in discovering hidden characteristics of the systems when these are 
not apparent in the domain knowledge. Consequently, as the data continues to grow 
in scale, accuracy and volume, while methods for big data analysis become more 
robust, data-driven models can be expected to grow and augment knowledge discov-
ery in theory-poor domains. Sensor-driven spatially explicit ABMs therefore have an 
important role to play in understanding and representing dynamic spatial processes.

6. Conclusion

The aim of this paper was to trace and document the progress in the methods 
for specifying data-driven ABMs for spatial systems. In particular, the focus here 
has been on models that are fed with data from dynamic sensor data streams. It is 
clear from the documentation that advances in sensor and wireless communication 
technology have contributed immensely to the growth of data-driven ABMs. Data 
has been used in initialising, calibrating and validating models. However, tradition-
ally, historical data has been fed into the models only sparingly without considering 
the dynamic changes in the real world. Though the conventional ABMs have been 
effective in generating hypothesis and representing dynamics of knowledge-rich 
systems, they have not been very applicable in addressing questions in complex and 
adaptive spatial systems whose internal dynamics are yet to be well understood. 
Moreover, the weakness of ABMs in predicting future states of systems persists. 
Designing accurate models for such systems can therefore be leveraged on the rich 
sensor data streams.

In this work, we proposed a framework for pattern-oriented, sensor-driven 
and spatially explicit ABM. In the framework, the steps of model specification, 
calibration and validation are implemented dynamically during the model run and 
are facilitated by patterns that can be derived dynamically from sensor data. This 
approach could contribute towards addressing the challenges of model overfit-
ting that face most data-driven models. By validating models based on validation 
patterns that are not explicitly hard-coded into the model, the framework ensures 
that model parameters are not tied merely to the data but that the parameters and 
behaviours of the model can replicate patterns that are evident in the data. Most 
importantly, to promote efficient communication and management of sensor 
resources, we propose a service-oriented framework where sensor and network 
components are represented in the model as software agents in parallel to agents 
representing other real-world entities. This kind of arrangement allows well-known 
standards like the OGC standards of sensor specification to be applied in the model-
ling process, hence promoting discoverability and interoperability of sensor and 
model resources.

The main limitation of this review was in the fact that we did not include a 
prototype to demonstrate the practical application of the framework. However, 
examples can be seen in 4D-SAS [114] and DDDMAS application. Future research 
should include developing open and efficient tools that can promote distributed 
processing, simulation and visualisation of sensor-driven ABMs. Moreover, as 
behaviour specification has been one of the daunting tasks in typical ABM speci-
fication, automate discovery of algorithms from dynamic sensor data streams 
remains an exciting area of research that requires additional research. Robust 
methods for automated model discovery will improve the efficiency of data-driven 
spatial simulation models.



Swarm Intelligence - Recent Advances, New Perspectives and Applications

90

model can be parsed to the central data management and processing unit for data 
assimilation and to influence the behaviour of the observation and measurement 
layer in cases where this is necessary. The cyclic communication between sensor 
observations and assimilation of simulation results bridges the gap between sensor 
data measurements and model specification and facilitates a mutually beneficial 
feedback between sensing unit and simulation model.

5.  Outlook and potential applications of sensor data-driven spatially 
explicit ABMs

Advances in sensor technology, particularly the miniaturisation and ubiquity of 
sensors have led to an exponential growth in the diversity of the fine-scaled data, 
which can facilitate model specifications. In geographic information science, in situ 
sensor data provide accurate measurements of spatial entities and augment other 
data from earth observation workflows in characterising the environment in which 
agents interact. Sensor data therefore plays an important role in capturing the 
dynamics that cause spatial and temporal patterns. Accurate sensor data contributes 
towards understanding local-level interactions of humans, animals, firms, smart 
appliances and traffic, and the role of such interactions in global environmental 
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However, advances in tools and software to support dynamic spatially explicit 
ABM specification have not been in tandem to the progress in sensor observation 
systems. Common ABM software including NetLogo, SWARM, MASON and Repast 
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accessible. Moreover, most implementations of dynamic sensor-driven ABMs have 
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framework? In other words, can accurate models be specified without relying on 
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from the domain knowledge and augments such knowledge with well-structured 
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while rich and dynamic data can provide a means of discovering detailed local-level 
patterns and parameters of the system. In addition, results from data-driven models 
can augment domain knowledge. In a nutshell, data should help in defining the crisp 
concepts and in discovering hidden characteristics of the systems when these are 
not apparent in the domain knowledge. Consequently, as the data continues to grow 
in scale, accuracy and volume, while methods for big data analysis become more 
robust, data-driven models can be expected to grow and augment knowledge discov-
ery in theory-poor domains. Sensor-driven spatially explicit ABMs therefore have an 
important role to play in understanding and representing dynamic spatial processes.

6. Conclusion

The aim of this paper was to trace and document the progress in the methods 
for specifying data-driven ABMs for spatial systems. In particular, the focus here 
has been on models that are fed with data from dynamic sensor data streams. It is 
clear from the documentation that advances in sensor and wireless communication 
technology have contributed immensely to the growth of data-driven ABMs. Data 
has been used in initialising, calibrating and validating models. However, tradition-
ally, historical data has been fed into the models only sparingly without considering 
the dynamic changes in the real world. Though the conventional ABMs have been 
effective in generating hypothesis and representing dynamics of knowledge-rich 
systems, they have not been very applicable in addressing questions in complex and 
adaptive spatial systems whose internal dynamics are yet to be well understood. 
Moreover, the weakness of ABMs in predicting future states of systems persists. 
Designing accurate models for such systems can therefore be leveraged on the rich 
sensor data streams.

In this work, we proposed a framework for pattern-oriented, sensor-driven 
and spatially explicit ABM. In the framework, the steps of model specification, 
calibration and validation are implemented dynamically during the model run and 
are facilitated by patterns that can be derived dynamically from sensor data. This 
approach could contribute towards addressing the challenges of model overfit-
ting that face most data-driven models. By validating models based on validation 
patterns that are not explicitly hard-coded into the model, the framework ensures 
that model parameters are not tied merely to the data but that the parameters and 
behaviours of the model can replicate patterns that are evident in the data. Most 
importantly, to promote efficient communication and management of sensor 
resources, we propose a service-oriented framework where sensor and network 
components are represented in the model as software agents in parallel to agents 
representing other real-world entities. This kind of arrangement allows well-known 
standards like the OGC standards of sensor specification to be applied in the model-
ling process, hence promoting discoverability and interoperability of sensor and 
model resources.

The main limitation of this review was in the fact that we did not include a 
prototype to demonstrate the practical application of the framework. However, 
examples can be seen in 4D-SAS [114] and DDDMAS application. Future research 
should include developing open and efficient tools that can promote distributed 
processing, simulation and visualisation of sensor-driven ABMs. Moreover, as 
behaviour specification has been one of the daunting tasks in typical ABM speci-
fication, automate discovery of algorithms from dynamic sensor data streams 
remains an exciting area of research that requires additional research. Robust 
methods for automated model discovery will improve the efficiency of data-driven 
spatial simulation models.
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Epistemologically, sensor data-driven models raise important questions on the role 
of data in the specification of spatial simulation models. As geographic information 
science is an emerging field. It is our view that data-driven spatial simulation models 
will not only rely on the domain knowledge but will also contribute to methods of 
knowledge discovery in the field. As such, specification of ABMs can no longer merely 
rely on the domain knowledge but must be leveraged on the big data resources that are 
emerging from various advances in technology and computation. However, caution 
should be taken to allow a systematic development of data-driven methods in spatial 
simulation. Presently, we recommend a hybrid approaches that combine both domain 
knowledge and data-driven methods. Such models could be improved by relying on 
patterns that are extracted dynamically from sensor data streams.
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Chapter 6

Design of the Second-Order
Controller by Time-Domain
Objective Functions Using Cuckoo
Search
Huey-Yang Horng

Abstract

The proportional-integral-derivative (PID) controllers are widely used in many
industrial control applications. However, the lead-lag controllers are more practical.
Traditionally, time-domain or frequency-domain methods have been used to design
a lead-lag controller in order to meet the design specifications. This chapter will
focus on the design of controller by optimizing the time-domain objective function.
The proposed objective function includes the first peak time, maximum peak time,
rise time, maximum overshoot, maximum undershoot, setting time, and steady-
state error. In the study, cuckoo search algorithm is adopted to search the optimal
controller parameters. Cuckoo search is a recently developed meta-heuristic opti-
mization method, which is a population-based algorithm inspired by the behavior
of some cuckoo species in combination with the Lévy flight behavior. A numerical
example is simulated to illustrate the use of the proposed method.

Keywords: PID controller, lead-lag controller, controller design, cuckoo search

1. Introduction

In many industrial control applications, proportional-integral-derivative (PID)
controllers are probably the most commonly used controllers. Several methods were
proposed in the past for tuning the PID controller parameters [1–5]. It is noted the
lead-lag controllers provide a more practical alternative. Tan used the Kharitonov
and the Hermite-Biehler theorems to compute the parameters of lead-lag controller
in [6]. Kuo et al. designed the lead-lag compensator based on vector margin and
steady-state error of the step response [7]. Horng used cuckoo search to design lead-
lag controllers [8]. It is easy to see that the lead-lag controller is just a special case of
the general second-order controllers. Therefore, this paper extends the lead-lag
controllers to general second-order controllers. The goal of this paper is to propose a
simple second-order controller design procedure using the cuckoo search.

The control design specifications may usually be divided into time-domain and
frequency-domain specifications. Time-domain specifications (TDS) include the
lower and/or upper bounds of the quantities of the time response such as the first
peak time, maximum peak time, rise time, maximum overshoot, maximum under-
shoot, setting time, and steady-state error. Frequency-domain specifications are
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The proportional-integral-derivative (PID) controllers are widely used in many
industrial control applications. However, the lead-lag controllers are more practical.
Traditionally, time-domain or frequency-domain methods have been used to design
a lead-lag controller in order to meet the design specifications. This chapter will
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1. Introduction

In many industrial control applications, proportional-integral-derivative (PID)
controllers are probably the most commonly used controllers. Several methods were
proposed in the past for tuning the PID controller parameters [1–5]. It is noted the
lead-lag controllers provide a more practical alternative. Tan used the Kharitonov
and the Hermite-Biehler theorems to compute the parameters of lead-lag controller
in [6]. Kuo et al. designed the lead-lag compensator based on vector margin and
steady-state error of the step response [7]. Horng used cuckoo search to design lead-
lag controllers [8]. It is easy to see that the lead-lag controller is just a special case of
the general second-order controllers. Therefore, this paper extends the lead-lag
controllers to general second-order controllers. The goal of this paper is to propose a
simple second-order controller design procedure using the cuckoo search.

The control design specifications may usually be divided into time-domain and
frequency-domain specifications. Time-domain specifications (TDS) include the
lower and/or upper bounds of the quantities of the time response such as the first
peak time, maximum peak time, rise time, maximum overshoot, maximum under-
shoot, setting time, and steady-state error. Frequency-domain specifications are
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usually given in terms of the resonant peak, phase margin, resonant frequency, and
bandwidth. In this study, we only consider the time-domain specifications.

The main contribution of this study is that we provide a simple controller design
procedure for simple second-order controllers. For the problem formulation, some
of the time-domain specifications (e.g., desired peak time and maximum over-
shoot) can be used to fully define a desired simple second-order reference model.
With this reference model, we may reasonably specify lower and/or upper bounds
for other time-domain specifications. Finally, we define the deviation ratios (i.e.,
percentage errors) and total deviation ratio. The total deviation ratio, which is the
weighted sum of the deviation ratios, will be used as the objective function for the
problem. Zero objective value means that all specifications are satisfied. However,
there is no guarantee of the zero objective value in the most general cases. Some
specifications might actually be violated. The design goal is to choose the best
controller parameters so that the objective value is as close to zero as possible.

To search for optimal controller parameters, some optimizer must be employed
to solve the aforementioned optimization problem. Since there is usually no analytic
formula for the objective function, evolutionary computation algorithms are well
suited in this situation to solve this optimization problem. In this study, the meta-
heuristic cuckoo search algorithm is adopted to search the optimal controller
parameters.

Cuckoo search algorithm is one of the latest meta-heuristic techniques, developed
by Yang and Deb [9, 10]. Nowadays, implementations of cuckoo search has proved to
be effective in engineering optimization problems [11–13], for example, optimal
power system stabilizers [14], load frequency controller design [15], optimal power
system [16], synthesis of analog controller [17], etc. Cuckoo search achieved better
results than available methods in most cases which appeared in the literature.

The novelty of this study is that the whole controller design problem can be
formulated as an optimization problem by considering most important time-
domain performance indices as a whole. Moreover, the meta-heuristic cuckoo
search algorithm (or any other powerful evolutionary computation algorithms like
genetic algorithm or particle swarm optimization) can be adopted to search for the
best controller parameters. A numerical example will be provided to illustrate the
design process. To show the wide applicability of the proposed method, four dif-
ferent plants and three different time-domain specifications will be used in the
illustrative example.

2. Time-domain analysis of control systems

The time response of a control system is typically divided into two parts: the
transient response and the steady-state response. The steady-state response is just
the part of the total response which remains after the transient has died out. Hence,
the steady-state response can still vary in a fixed pattern, such as a ramp function or
a parabola function that increases with time.

The underdamped second-order system is a familiar model for physical prob-
lems. The detailed understanding of the underdamped response is necessary for
both analysis and design. Let us begin by describing the step response for the
second-order system. The transfer function of an underdamped second-order sys-
tem is given by

C sð Þ ¼ ω2
n

s2 þ 2ξωnsþ ω2
n
, 0< ξ< 1: (1)
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A typical unit-step response is shown in Figure 1. In this figure, yss, yM, and ym
denote the steady-state value, maximum response value, and the response value
where the maximum undershoot occurs, respectively. Moreover, Tr, Tp, and Ts are
the rise time, peak time, and settling time, respectively.

We now describe seven time-domain specifications (TDS) used in objective
function in more detail:

1.Rise time Tr. It is the time required for the step response to rise from 10 to 90%
of its final value.

2.First peak time T f . It is the time to reach the first peak.

3.Maximum peak time Tp. It is the time to reach the maximum peak.

4.Maximum overshoot MOS. This is defined as

MOS ¼
yM � yss

yss
, if yM > yss,

0, if yM ≤ yss:

8<
: (2)

5.Maximum undershoot MUS. It is defined as

ym ¼ min y tð Þð Þ, t≥T f ,

MUS ¼
yss � ym

yss
, if ym < yss,

0, if ym ≥ yss:

8><
>:

(3)

6.Settling time Ts. This is the time required for the step response to decrease and
stay within a specified �2% of the final value.

7.Steady-state error Ess. It is the difference between the desired and actual
responses.
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Unit-step response for underdamped second-order systems.
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C sð Þ ¼ ω2
n

s2 þ 2ξωnsþ ω2
n
, 0< ξ< 1: (1)
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A typical unit-step response is shown in Figure 1. In this figure, yss, yM, and ym
denote the steady-state value, maximum response value, and the response value
where the maximum undershoot occurs, respectively. Moreover, Tr, Tp, and Ts are
the rise time, peak time, and settling time, respectively.
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responses.
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Unit-step response for underdamped second-order systems.
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Notice that for second-order systems, the first peak time is always the maximum
peak time. However, for underdamped higher-order systems, they may not be the
same, as illustrated in Figure 2. In general, the response of an underdamped high-
order system is similar to that of an underdamped second-order system.

Notice also that the following relationships hold for second-order systems,
which will be used in the illustrative example:

ξ ¼ ln MOSð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln2 MOSð Þ

q (4)

ωn ¼ π

Tp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ξ2

p (5)

In the design process, a second-order system with satisfactory performances is
designated as the reference standard. All the desired specifications with lower and
upper bounds are tabulated. Note that the lower bounds of maximum overshot,
maximum undershot, setting time, and steady error are set to zero.

3. Proposed controller

The transfer function of general second-order controller is written as

Gc sð Þ ¼ K
cs2 þ dsþ 1
as2 þ bsþ 1

� �
, (6)

where K >0, a, b, c, d∈ℜ: It is easy to see that the phase lead-lag controller is
just a special case of general second-order controller. The overall control system in
this study is shown in Figure 3, where Gp sð Þ is the transfer function of the plant.
Besides, r tð Þ, y tð Þ, and e tð Þ denote the reference input, output, and error signal.

For the feedback control system shown in Figure 3, the overall response is
determined by the parameters of the controller. To establish the proposed time-
domain objective function, we first define a function called the deviation ratio
(DR), where TDS stands for the time-domain specifications described in Section 2:

Figure 2.
Unit-step response for some underdamped higher-order systems.
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DR TDS K, a, b, c, dð Þð Þ

¼

TDS K, a, b, c, dð Þ � TDS_ub
TDS_ub

, if TDS K, a, b, c, dð Þ>TDS_ub,

TDS_lb� TDS K, a, b, c, dð Þ
TDS_lb

, if TDS K, a, b, c, dð Þ<TDS_lb,

0, otherwise,

8>>>>><
>>>>>:

(7)

where TDS K, a, b, c, dð Þ is any one of the time-domain specifications defined in
the last section. In practical designs, some tolerances in time-domain specifications
are allowed. Therefore, each of the time-domain specifications has a corresponding
lower limit (TDS_lb) and an upper bound (TDS_ub). DR TDS K, a, b, c, dð Þð Þ is a
measure of how the actual quantity is close to the desired interval specified by lower
limit and upper limit. For example, if the value ofDR Tr K, a, b, c, dð Þð Þ is zero, where
the relevant quantity is the rise time, then this means that the rise time lies in the
desired interval. That is, the specification is fully satisfied.

Next, we define the objective function TDR K, a, b, c, dð Þ, called the total devia-
tion ratio (TDR), used in this study as follows:

TDR K, a, b, c, dð Þ ¼ ½w1 � DR Tr K, a, b, c, dð Þð Þð Þ2 þ w2 � DR T f K, a, b, c, dð Þ� �� �2

þw3 � DR Tp K, a, b, c, dð Þ� �� �2

þw4 � DR MOS K, a, b, c, dð Þð Þð Þ2 þ w5 � DR MUS K, a, b, c, dð Þð Þð Þ2

þw6 � DR Ts K, a, b, c, dð Þð Þð Þ2 þw7 � DR Ess K, a, b, c, dð Þð Þð Þ2�=
X7
i¼1

wi

(8)

In Eq. (8), ωi, i ¼ 1, 2,⋯, 7 represents weights that reflect the relative
importance of the corresponding terms.

Eqs. (6)–(8) are improved versions of those in Ref. [8]. Once we defined the
deviation ratio and total deviation ratio, the problem of the design controller
becomes the minimization of TDR K, a, b, c, dð Þ for all possible parameters. Now, we
can use various optimization methods to implement the controller design. In the
paper, the cuckoo search algorithm is used to minimize the objective function.
Further, if the TDR K, a, b, c, dð Þ is zero, all specifications are within the range of the
design specifications.

4. Cuckoo search algorithm

In this section, the cuckoo search algorithm is briefly introduced. This algorithm
was proposed by Yang and Deb in [9, 10]. Cuckoo search represents an optimized

Figure 3.
Unity feedback system with second-order controller.
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this study is shown in Figure 3, where Gp sð Þ is the transfer function of the plant.
Besides, r tð Þ, y tð Þ, and e tð Þ denote the reference input, output, and error signal.

For the feedback control system shown in Figure 3, the overall response is
determined by the parameters of the controller. To establish the proposed time-
domain objective function, we first define a function called the deviation ratio
(DR), where TDS stands for the time-domain specifications described in Section 2:
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can use various optimization methods to implement the controller design. In the
paper, the cuckoo search algorithm is used to minimize the objective function.
Further, if the TDR K, a, b, c, dð Þ is zero, all specifications are within the range of the
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meta-heuristic algorithm that is biologically inspired by the way cuckoo looks for a
nest where they could lay eggs in combination with the Lévy flight behavior of some
birds and fruit flies.

Now we briefly describe some breeding behaviors of cuckoos. As pointed out in
[9], some cuckoo species often lay the eggs in the nests of other host birds, espe-
cially those that just spawned eggs. Some host birds can engage direct conflict with
the intruding cuckoos. If a host bird discovers the eggs are not their own, they may
either throw these alien eggs away or simply abandon its nest and build a new nest
elsewhere [9]. Some cuckoo species are often very specialized in the mimicry in
color and pattern of the eggs of a few chosen host species, which reduces the
probability of their eggs being abandoned and thus increases their reproductively.

In the optimization algorithm, each nest represents a potential solution. The
process of cuckoo search algorithm is simplified by three rules [10]:

1.Each cuckoo lays an egg in a randomly selected nest.

2.The best nests will carry over to the next generation.

3.The number of available host nest is fixed, and there is a positive probability
that the egg laid by a cuckoo is discovered by the host bird.

There are many variants of the cuckoo search algorithms. In the following, we
describe a commonly used version. This algorithm uses a combination of a local
random walk and the global random walk, controlled by a switching parameter pa.
This allows for proper balance between exploration and exploitation of the solution
space. The local and global random walks for generating the new solution of for
cuckoo i can be written as, respectively,

xtþ1
i ¼ xti þ αs⊗H pa � ε

� �
⊗ xtj � xtk
� �

(9)

xtþ1
i ¼ xti þ αL s, λð Þ (10)

L s, λð Þ ¼ λΓ λð Þsin πλ=2ð Þ
π

� 1
s1þλ

, s≥ s0 ≥0 (11)

In Eqs. (9)–(11), the notations are explained as follows:
xtþ1
i next position of cuckoo i

xti current position of cuckoo i
α step size scaling factor
s step size
⊗ entry-wise multiplication of two vectors
H Heaviside function
pa switching parameter used to switch local and global walks
ε a random number drawn from a uniform distribution
xtj, x

t
k current positions of cuckoos j and k selected by random permutation

L s, λð Þ Lévy distribution used to define the step size of random walk

5. Design procedure

In the design procedure, a second-order system with satisfactory performances
is designated as the reference standard. All of the seven desired specifications with
lower bounds and upper bounds are tabulated. After that, we set solution vector as
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K, a, b, c, dð Þ and use cuckoo search algorithm to find the minimum value of
TDR K, a, b, c, dð Þ in Eq. (8). To save computation time, the initial populations of 25
host nests are selected using Routh-Hurwitz criterion (for linear time-invariant
plants) so that the closed-loop systems are stable.

In the following design procedure, we set maximum generation to be 1000 and
pa ¼ 0:25. The optimization process is hierarchical. First, run cuckoo search 25
times to get minimum values. Then the 25 minimum values become elite group.
Next, run cuckoo search one more time, and use the group as initial host nests. The
final result is the parameters for the second-order controller.

6. Illustrative example

In the section, a numerical example is provided to illustrate the design proce-
dure. In the following simulations, four different plants are used for comparison,
which are described in Table 1.

As an instance, the step response of the uncompensated system of Plant 1 is
shown in Figure 4. The peak time is estimated to be 2.4 s, the maximum overshoot
is 26.5398%, and the steady-state error Ess is 0.5. Assume we are not satisfied with
these time-domain performance indices. Consequently, compensation must be
designed for better performances.

Experiment 1. Keep in mind that our reference model is a simple second-order
system defined in Eq. (1). Assume that the desired peak time Tp is set to be 1 s and
the maximum tolerable overshoot is 0.03. Now we can use Eqs. (4) and (5) to
calculate the corresponding damping ratio ξ and natural frequency ωn, respectively.
This determines the desired reference model in Eq. (1). Based on the resulting
reference model, we can calculate its seven performance indices depicted in Section
2 in order to establish reasonable bounds for these performance indices. We may
put 2% tolerance on rise time Tr, first peak time T f , and maximum peak time Tp.
Only upper bounds are specified for the remaining four performance indices. The
full specifications for Experiment 1 are listed in the second column of Table 2.

We set all the weights to be 1, i.e., ωi ¼ 1, i ¼ 1, 2, … , 7. Suppose the maxi-
mum steady-state error is limited to [0.001, 0.022], and then we can set the range
of K to [7.4091, 166.5000]; the ranges of a, b, c, and d are all set to �100, 100½ �. The
specified ranges of controller parameters are listed in Table 3.

The resulting control parameters are shown in Table 4.
The time-domain performances of the resulting closed-loop systems are shown

in Table 5. Notice that the final objective values for four plants shown in the final
row of Table 5 are all zeros, which means that all seven design specifications are all
met using our controller design methods.

The time responses due to unit-step input of the resulting four closed-loop
systems are shown in Figure 5. These responses look quite nice.

Transfer function System type Closed-loop stability

Plant 1 Gp sð Þ ¼ 120
s2þ12sþ20

0 Stable

Plant 2 Gp sð Þ ¼ 100sþ1
s 10sþ1ð Þ sþ1ð Þ 1 Stable

Plant 3 Gp sð Þ ¼ 100
sþ1ð Þ sþ2ð Þ sþ4ð Þ 0 Unstable

Plant 4 Gp sð Þ ¼ 1
s sþ1ð Þ 1 Stable

Table 1.
Description of the four plants.

107

Design of the Second-Order Controller by Time-Domain Objective Functions Using Cuckoo Search
DOI: http://dx.doi.org/10.5772/intechopen.89832



meta-heuristic algorithm that is biologically inspired by the way cuckoo looks for a
nest where they could lay eggs in combination with the Lévy flight behavior of some
birds and fruit flies.

Now we briefly describe some breeding behaviors of cuckoos. As pointed out in
[9], some cuckoo species often lay the eggs in the nests of other host birds, espe-
cially those that just spawned eggs. Some host birds can engage direct conflict with
the intruding cuckoos. If a host bird discovers the eggs are not their own, they may
either throw these alien eggs away or simply abandon its nest and build a new nest
elsewhere [9]. Some cuckoo species are often very specialized in the mimicry in
color and pattern of the eggs of a few chosen host species, which reduces the
probability of their eggs being abandoned and thus increases their reproductively.
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3.The number of available host nest is fixed, and there is a positive probability
that the egg laid by a cuckoo is discovered by the host bird.
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lower bounds and upper bounds are tabulated. After that, we set solution vector as
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TDR K, a, b, c, dð Þ in Eq. (8). To save computation time, the initial populations of 25
host nests are selected using Routh-Hurwitz criterion (for linear time-invariant
plants) so that the closed-loop systems are stable.

In the following design procedure, we set maximum generation to be 1000 and
pa ¼ 0:25. The optimization process is hierarchical. First, run cuckoo search 25
times to get minimum values. Then the 25 minimum values become elite group.
Next, run cuckoo search one more time, and use the group as initial host nests. The
final result is the parameters for the second-order controller.

6. Illustrative example

In the section, a numerical example is provided to illustrate the design proce-
dure. In the following simulations, four different plants are used for comparison,
which are described in Table 1.

As an instance, the step response of the uncompensated system of Plant 1 is
shown in Figure 4. The peak time is estimated to be 2.4 s, the maximum overshoot
is 26.5398%, and the steady-state error Ess is 0.5. Assume we are not satisfied with
these time-domain performance indices. Consequently, compensation must be
designed for better performances.

Experiment 1. Keep in mind that our reference model is a simple second-order
system defined in Eq. (1). Assume that the desired peak time Tp is set to be 1 s and
the maximum tolerable overshoot is 0.03. Now we can use Eqs. (4) and (5) to
calculate the corresponding damping ratio ξ and natural frequency ωn, respectively.
This determines the desired reference model in Eq. (1). Based on the resulting
reference model, we can calculate its seven performance indices depicted in Section
2 in order to establish reasonable bounds for these performance indices. We may
put 2% tolerance on rise time Tr, first peak time T f , and maximum peak time Tp.
Only upper bounds are specified for the remaining four performance indices. The
full specifications for Experiment 1 are listed in the second column of Table 2.

We set all the weights to be 1, i.e., ωi ¼ 1, i ¼ 1, 2, … , 7. Suppose the maxi-
mum steady-state error is limited to [0.001, 0.022], and then we can set the range
of K to [7.4091, 166.5000]; the ranges of a, b, c, and d are all set to �100, 100½ �. The
specified ranges of controller parameters are listed in Table 3.

The resulting control parameters are shown in Table 4.
The time-domain performances of the resulting closed-loop systems are shown

in Table 5. Notice that the final objective values for four plants shown in the final
row of Table 5 are all zeros, which means that all seven design specifications are all
met using our controller design methods.

The time responses due to unit-step input of the resulting four closed-loop
systems are shown in Figure 5. These responses look quite nice.
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Experiment 2. In this experiment, assume that the first peak time and the
maximum peak time are both set to 1.5 s. Following the procedure in Experiment 1,
the full design specifications for Experiment 2 are also listed in Table 2. The
specified ranges of controller parameters are listed in Table 3. The resulting control
parameters are shown in Table 6.

Figure 4.
Step response of the Plant 1 without controller.

Experiment 1 Experiment 2 Experiment 3

Tr [0.4730, 0.4923] [0.7095, 0.7385] [0.9461, 0.9847]

T f [0.9788, 1.0188] [1.4682, 1.5281] [1.9576, 2.0375]

Tp [0.9788, 1.0188] [1.4682, 1.5281] [1.9576, 2.0375]

MOS ≤0:03 ≤0:03 ≤0:03

MUS ≤0:02 ≤0:02 ≤0:02

Ts ≤ 1:0724 ≤ 1:6086 ≤ 2:1448

Ess ≤0:02 ≤0:02 ≤0:02

Table 2.
Design specifications.

Plant 1 Plant 2 Plant 3 Plant 4

K [7.4091,166.5000] [45.4545, 1000] [7.4091, 166.5000] [45.4545, 1000]

a [�100,100] [�100,100] [�100,100] [�100,100]

b [�100,100] [�100,100] [�100,100] [�100,100]

c [�100,100] [�100,100] [�100,100] [�100,100]

d [�100,100] [�100,100] [�100,100] [�100,100]

Table 3.
Search ranges of controller parameters.
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The time-domain performances of the resulting closed-loop systems are shown
in Table 7. Notice again that the final objective values for four plants are all zeros,
which means that all seven design specifications are all met using our controller
design methods.

The time responses due to unit-step input of the resulting four closed-loop
systems are shown in Figure 6.

Experiment 3. In this experiment, assume that the first peak time and the
maximum peak time are both set to 2.0 s. Following the procedure in Experiment 1,
the full design specifications for Experiment 3 are also shown in Table 2. The
specified ranges of controller parameters are listed in Table 3. The resulting control
parameters are shown in Table 8.

The time-domain performances of the resulting closed-loop systems are shown
in Table 9. Notice that the final objective values for four plants are zeros, which
means that all seven design specifications are met using our controller design
methods.

The time responses due to unit-step input of the resulting four closed-loop
systems are shown in Figure 7.

In the illustrative example above, four different plants and three different time-
domain specifications were used. As illustrated in the preceding example, before
searching the best controller parameters, we first use some of the time-domain
specifications (e.g., desired peak time and maximum overshoot) to fully specify the
desired simple second-order reference model. Then we may use this reference
model to define reasonable bounds for other time-domain specifications. Finally,
we define the deviation ratios (i.e., percentage errors) and total deviation ratio as
the objective function. If the final value of the objective function is zero, then all
seven specifications are satisfied. But, in the most general cases, there is no

Plant 1 Plant 2 Plant 3 Plant 4

K 8.4963 995.7351 14.6760 934.2808

a 100.0000 1.6668 1.7609 �0.1364

b 30.4229 8.8714 60.2882 �0.8138

c 3.1336 98.4428 0.6624 �86.8253

d 7.3230 48.7921 1.2683 �85.5579

Table 4.
Resulting controller parameters in Experiment 1.

Plant 1 Plant 2 Plant 3 Plant 4

Tr 0.4804 0.4734 0.4923 0.4735

T f 1.0131 1.0131 0.9804 1.0131

Tp 1.0131 1.0131 0.9804 1.0131

MOS 0.0000 0.0294 0.0297 0.0281

MUS 0.0179 0.0004 0.0093 0.0004

Ts 0.7717 1.0295 0.9968 1.0295

Ess 0.0192 0.0010 0.0054 0.0011

TDR 0 0 0 0

Table 5.
Time-domain performance indices of the resulting systems in Experiment 1.
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Experiment 2. In this experiment, assume that the first peak time and the
maximum peak time are both set to 1.5 s. Following the procedure in Experiment 1,
the full design specifications for Experiment 2 are also listed in Table 2. The
specified ranges of controller parameters are listed in Table 3. The resulting control
parameters are shown in Table 6.

Figure 4.
Step response of the Plant 1 without controller.

Experiment 1 Experiment 2 Experiment 3
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MOS ≤0:03 ≤0:03 ≤0:03

MUS ≤0:02 ≤0:02 ≤0:02

Ts ≤ 1:0724 ≤ 1:6086 ≤ 2:1448

Ess ≤0:02 ≤0:02 ≤0:02

Table 2.
Design specifications.

Plant 1 Plant 2 Plant 3 Plant 4
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a [�100,100] [�100,100] [�100,100] [�100,100]

b [�100,100] [�100,100] [�100,100] [�100,100]

c [�100,100] [�100,100] [�100,100] [�100,100]

d [�100,100] [�100,100] [�100,100] [�100,100]

Table 3.
Search ranges of controller parameters.
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The time-domain performances of the resulting closed-loop systems are shown
in Table 7. Notice again that the final objective values for four plants are all zeros,
which means that all seven design specifications are all met using our controller
design methods.

The time responses due to unit-step input of the resulting four closed-loop
systems are shown in Figure 6.
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specified ranges of controller parameters are listed in Table 3. The resulting control
parameters are shown in Table 8.

The time-domain performances of the resulting closed-loop systems are shown
in Table 9. Notice that the final objective values for four plants are zeros, which
means that all seven design specifications are met using our controller design
methods.

The time responses due to unit-step input of the resulting four closed-loop
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desired simple second-order reference model. Then we may use this reference
model to define reasonable bounds for other time-domain specifications. Finally,
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Figure 5.
Step responses of four resulting systems in Experiment 1.

Plant 1 Plant 2 Plant 3 Plant 4

K 8.4963 995.7351 14.6760 934.2808

a 100.0000 1.6668 1.7609 �0.1364

b 30.4229 8.8714 60.2882 �0.8138

c 3.1336 98.4428 0.6624 �86.8253

d 7.3230 48.7921 1.2683 �85.5579

Table 6.
Resulting controller parameters in Experiment 2.

Plant 1 Plant 2 Plant 3 Plant 4

Tr 0.7133 0.7105 0.7384 0.7102

T f 1.5197 1.5197 1.4952 1.5197

Tp 1.5197 1.5197 1.4952 1.5197

MOS 0.0103 0.0282 0.0299 0.0281

MUS 0.0128 0.0004 0.0139 0.0004

Ts 1.0929 1.5442 1.5197 1.5442

Ess 0.0198 0.0010 0.0129 0.0010

TDR 0 0 0 0

Table 7.
Time-domain performance indices of the resulting systems in Experiment 2.
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guarantee that the final value of the objective function will always be zero. In that
case, some specifications might be violated. The design goal is to choose the best
controller parameters so that the objective value is as close to zero as possible. In the

Figure 6.
Step responses of four resulting systems in Experiment 2.

Plant 1 Plant 2 Plant 3 Plant 4

K 8.4963 995.7351 14.6760 934.2808

a 100.0000 1.6668 1.7609 �0.1364

b 30.4229 8.8714 60.2882 �0.8138

c 3.1336 98.4428 0.6624 �86.8253

d 7.3230 48.7921 1.2683 �85.5579

Table 8.
Resulting controller parameters in Experiment 3.

Plant 1 Plant 2 Plant 3 Plant 4

Tr 0.9656 0.9468 0.9794 0.9467

T f 1.9935 2.0262 1.9609 2.0262

Tp 1.9935 2.0262 1.9609 2.0262

MOS 0.0024 0.0292 0.0220 0.0284

MUS 0.0154 0.0004 0.0138 0.0004

Ts 1.4927 2.0589 1.9935 2.0589

Ess 0.0198 0.0010 0.0199 0.0011

TDR 0 0 0 0

Table 9.
Time-domain performance indices of the resulting systems in Experiment 3.
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simulations above, it is fortunate that the final objective values of all simulations are
zeros and all seven time-domain specifications are met. This also shows that the
cuckoo search is an excellent optimizer for searching best controller parameters.

7. Conclusion

In this study, a design procedure of second-order controller for various plants
has been proposed. The final controller was obtained by minimizing a time-domain
cost function which is weighted sum of important time-domain performance indi-
ces including the rise time, first peak time, maximum peak time, maximum over-
shoot, maximum undershoot, setting time, and steady-state error. In our approach,
the desired design specifications were built via a good second-order reference
model. Cuckoo search algorithm was adopted to search the optimal controller
parameters. Detailed simulations with different design specifications for four plants
were provided to illustrate the use of the proposed design method. From the simu-
lation results, the resulting performances of the closed-loop systems are quite good
by using the proposed method, which justifies the usefulness of our method. We
wish to point out that the methodology proposed in this study can easily be modi-
fied to handle the time delay or nonlinear plants. This constitutes an interesting
future research topic.

Figure 7.
Step responses of four resulting systems in Experiment 3.
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