1,469 research outputs found

    Kovalevski exponents and integrability properties in class A homogeneous cosmological models

    Get PDF
    Qualitative approach to homogeneous anisotropic Bianchi class A models in terms of dynamical systems reveals a hierarchy of invariant manifolds. By calculating the Kovalevski Exponents according to Adler - van Moerbecke method we discuss how algebraic integrability property is distributed in this class of models. In particular we find that algebraic nonintegrability of vacuum Bianchi VII_0 model is inherited by more general Bianchi VIII and Bianchi IX vacuum types. Matter terms (cosmological constant, dust and radiation) in the Einstein equations typically generate irrational or complex Kovalevski exponents in class A homogeneous models thus introducing an element of nonintegrability even though the respective vacuum models are integrable.Comment: arxiv version is already officia

    On the Lagrangian Dynamics of Atmospheric Zonal Jets and the Permeability of the Stratospheric Polar Vortex

    Get PDF
    The Lagrangian dynamics of zonal jets in the atmosphere are considered, with particular attention paid to explaining why, under commonly encountered conditions, zonal jets serve as barriers to meridional transport. The velocity field is assumed to be two-dimensional and incompressible, and composed of a steady zonal flow with an isolated maximum (a zonal jet) on which two or more travelling Rossby waves are superimposed. The associated Lagrangian motion is studied with the aid of KAM (Kolmogorov--Arnold--Moser) theory, including nontrivial extensions of well-known results. These extensions include applicability of the theory when the usual statements of nondegeneracy are violated, and applicability of the theory to multiply periodic systems, including the absence of Arnold diffusion in such systems. These results, together with numerical simulations based on a model system, provide an explanation of the mechanism by which zonal jets serve as barriers to meridional transport of passive tracers under commonly encountered conditions. Causes for the breakdown of such a barrier are discussed. It is argued that a barrier of this type accounts for the sharp boundary of the Antarctic ozone hole at the perimeter of the stratospheric polar vortex in the austral spring.Comment: Submitted to Journal of the Atmospheric Science

    Topological fluid mechanics of point vortex motions

    Full text link
    Topological techniques are used to study the motions of systems of point vortices in the infinite plane, in singly-periodic arrays, and in doubly-periodic lattices. The reduction of each system using its symmetries is described in detail. Restricting to three vortices with zero net circulation, each reduced system is described by a one degree of freedom Hamiltonian. The phase portrait of this reduced system is subdivided into regimes using the separatrix motions, and a braid representing the topology of all vortex motions in each regime is computed. This braid also describes the isotopy class of the advection homeomorphism induced by the vortex motion. The Thurston-Nielsen theory is then used to analyse these isotopy classes, and in certain cases strong conclusions about the dynamics of the advection can be made

    The Geometry of Integrable and Superintegrable Systems

    Full text link
    The group of automorphisms of the geometry of an integrable system is considered. The geometrical structure used to obtain it is provided by a normal form representation of integrable systems that do not depend on any additional geometrical structure like symplectic, Poisson, etc. Such geometrical structure provides a generalized toroidal bundle on the carrier space of the system. Non--canonical diffeomorphisms of such structure generate alternative Hamiltonian structures for complete integrable Hamiltonian systems. The energy-period theorem provides the first non--trivial obstruction for the equivalence of integrable systems

    Dynamical derivation of Bode's law

    Get PDF
    In a planetary or satellite system, idealized as n small bodies in initially coplanar, concentric orbits around a large central body, obeying Newtonian point-particle mechanics, resonant perturbations will cause dynamical evolution of the orbital radii except under highly specific mutual relationships, here derived analytically apparently for the first time. In particular, the most stable situation is achieved (in this idealized model) only when each planetary orbit is roughly twice as far from the Sun as the preceding one, as observed empirically already by Titius (1766) and Bode (1778) and used in both the discoveries of Uranus (1781) and the Asteroid Belt (1801). ETC.Comment: 27 page

    Thirty Years of Turnstiles and Transport

    Get PDF
    To characterize transport in a deterministic dynamical system is to compute exit time distributions from regions or transition time distributions between regions in phase space. This paper surveys the considerable progress on this problem over the past thirty years. Primary measures of transport for volume-preserving maps include the exiting and incoming fluxes to a region. For area-preserving maps, transport is impeded by curves formed from invariant manifolds that form partial barriers, e.g., stable and unstable manifolds bounding a resonance zone or cantori, the remnants of destroyed invariant tori. When the map is exact volume preserving, a Lagrangian differential form can be used to reduce the computation of fluxes to finding a difference between the action of certain key orbits, such as homoclinic orbits to a saddle or to a cantorus. Given a partition of phase space into regions bounded by partial barriers, a Markov tree model of transport explains key observations, such as the algebraic decay of exit and recurrence distributions.Comment: Updated and corrected versio
    • …
    corecore