Topological techniques are used to study the motions of systems of point
vortices in the infinite plane, in singly-periodic arrays, and in
doubly-periodic lattices. The reduction of each system using its symmetries is
described in detail. Restricting to three vortices with zero net circulation,
each reduced system is described by a one degree of freedom Hamiltonian. The
phase portrait of this reduced system is subdivided into regimes using the
separatrix motions, and a braid representing the topology of all vortex motions
in each regime is computed. This braid also describes the isotopy class of the
advection homeomorphism induced by the vortex motion. The Thurston-Nielsen
theory is then used to analyse these isotopy classes, and in certain cases
strong conclusions about the dynamics of the advection can be made