16 research outputs found

    Ant Algorithms for Routing in Wireless Multi-Hop Networks

    Get PDF
    Wireless Multi-Hop Networks (such as Mobile Ad hoc Networks, Wireless Sensor Networks, and Wireless Mesh Networks) promise improved flexibility, reliability, and performance compared to conventional Wireless Local Area Networks (WLAN) or sensor installations. They can be deployed quickly to provide network connectivity in areas without existing backbone/back-haul infrastructure, such as disaster areas, impassable terrain, or underserved communities. Due to their distributed nature, routing algorithms for these types of networks have to be self-organized. Ant routing is a bio-inspired self-organized method for routing, which is a promising approach for routing in such Wireless Multi-Hop Networks. This chapter provides an introduction to Wireless Multi-Hop Networks, their specific challenges, and an overview of the ant algorithms available for routing in such networks

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance

    Machine Learning for Unmanned Aerial System (UAS) Networking

    Get PDF
    Fueled by the advancement of 5G new radio (5G NR), rapid development has occurred in many fields. Compared with the conventional approaches, beamforming and network slicing enable 5G NR to have ten times decrease in latency, connection density, and experienced throughput than 4G long term evolution (4G LTE). These advantages pave the way for the evolution of Cyber-physical Systems (CPS) on a large scale. The reduction of consumption, the advancement of control engineering, and the simplification of Unmanned Aircraft System (UAS) enable the UAS networking deployment on a large scale to become feasible. The UAS networking can finish multiple complex missions simultaneously. However, the limitations of the conventional approaches are still a big challenge to make a trade-off between the massive management and efficient networking on a large scale. With 5G NR and machine learning, in this dissertation, my contributions can be summarized as the following: I proposed a novel Optimized Ad-hoc On-demand Distance Vector (OAODV) routing protocol to improve the throughput of Intra UAS networking. The novel routing protocol can reduce the system overhead and be efficient. To improve the security, I proposed a blockchain scheme to mitigate the malicious basestations for cellular connected UAS networking and a proof-of-traffic (PoT) to improve the efficiency of blockchain for UAS networking on a large scale. Inspired by the biological cell paradigm, I proposed the cell wall routing protocols for heterogeneous UAS networking. With 5G NR, the inter connections between UAS networking can strengthen the throughput and elasticity of UAS networking. With machine learning, the routing schedulings for intra- and inter- UAS networking can enhance the throughput of UAS networking on a large scale. The inter UAS networking can achieve the max-min throughput globally edge coloring. I leveraged the upper and lower bound to accelerate the optimization of edge coloring. This dissertation paves a way regarding UAS networking in the integration of CPS and machine learning. The UAS networking can achieve outstanding performance in a decentralized architecture. Concurrently, this dissertation gives insights into UAS networking on a large scale. These are fundamental to integrating UAS and National Aerial System (NAS), critical to aviation in the operated and unmanned fields. The dissertation provides novel approaches for the promotion of UAS networking on a large scale. The proposed approaches extend the state-of-the-art of UAS networking in a decentralized architecture. All the alterations can contribute to the establishment of UAS networking with CPS

    Hierarchical routing in MANETs using simple clustering

    Full text link
    This thesis presents both a review of current MANET routing protocols and a new MANET routing algorithm. The routing protocols reviewed include representative samples from the three primary forms of routing found in MANETS: proactive routing, reactive routing and hybrid routing. Secure algorithms are given special treatment in the review. In addition several protocol enhancements are discussed. The proposed routing protocol is designed to support networks of a medium size, containing over 200 nodes but less than 3,000 nodes. The design is intentionally simple to allow ease of implementation in comparison with other MANET protocols that provide similar functionality

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    VANET-enabled eco-friendly road characteristics-aware routing for vehicular traffic

    Get PDF
    There is growing awareness of the dangers of climate change caused by greenhouse gases. In the coming decades this could result in numerous disasters such as heat-waves, flooding and crop failures. A major contributor to the total amount of greenhouse gas emissions is the transport sector, particularly private vehicles. Traffic congestion involving private vehicles also causes a lot of wasted time and stress to commuters. At the same time new wireless technologies such as Vehicular Ad-Hoc Networks (VANETs) are being developed which could allow vehicles to communicate with each other. These could enable a number of innovative schemes to reduce traffic congestion and greenhouse gas emissions. 1) EcoTrec is a VANET-based system which allows vehicles to exchange messages regarding traffic congestion and road conditions, such as roughness and gradient. Each vehicle uses the messages it has received to build a model of nearby roads and the traffic on them. The EcoTrec Algorithm then recommends the most fuel efficient route for the vehicles to follow. 2) Time-Ants is a swarm based algorithm that considers not only the amount of cars in the spatial domain but also the amoumt in the time domain. This allows the system to build a model of the traffic congestion throughout the day. As traffic patterns are broadly similar for weekdays this gives us a good idea of what traffic will be like allowing us to route the vehicles more efficiently using the Time-Ants Algorithm. 3) Electric Vehicle enhanced Dedicated Bus Lanes (E-DBL) proposes allowing electric vehicles onto the bus lanes. Such an approach could allow a reduction in traffic congestion on the regular lanes without greatly impeding the buses. It would also encourage uptake of electric vehicles. 4) A comprehensive survey of issues associated with communication centred traffic management systems was carried out

    Swarm intelligence techniques for optimization and management tasks insensor networks

    Get PDF
    The main contributions of this thesis are located in the domain of wireless sensor netorks. More in detail, we introduce energyaware algorithms and protocols in the context of the following topics: self-synchronized duty-cycling in networks with energy harvesting capabilities, distributed graph coloring and minimum energy broadcasting with realistic antennas. In the following, we review the research conducted in each case. We propose a self-synchronized duty-cycling mechanism for sensor networks. This mechanism is based on the working and resting phases of natural ant colonies, which show self-synchronized activity phases. The main goal of duty-cycling methods is to save energy by efficiently alternating between different states. In the case at hand, we considered two different states: the sleep state, where communications are not possible and energy consumption is low; and the active state, where communication result in a higher energy consumption. In order to test the model, we conducted an extensive experimentation with synchronous simulations on mobile networks and static networks, and also considering asynchronous networks. Later, we extended this work by assuming a broader point of view and including a comprehensive study of the parameters. In addition, thanks to a collaboration with the Technical University of Braunschweig, we were able to test our algorithm in the real sensor network simulator Shawn (http://shawn.sf.net). The second part of this thesis is devoted to the desynchronization of wireless sensor nodes and its application to the distributed graph coloring problem. In particular, our research is inspired by the calling behavior of Japanese tree frogs, whose males use their calls to attract females. Interestingly, as female frogs are only able to correctly localize the male frogs when their calls are not too close in time, groups of males that are located nearby each other desynchronize their calls. Based on a model of this behavior from the literature, we propose a novel algorithm with applications to the field of sensor networks. More in detail, we analyzed the ability of the algorithm to desynchronize neighboring nodes. Furthermore, we considered extensions of the original model, hereby improving its desynchronization capabilities.To illustrate the potential benefits of desynchronized networks, we then focused on distributed graph coloring. Later, we analyzed the algorithm more extensively and show its performance on a larger set of benchmark instances. The classical minimum energy broadcast (MEB) problem in wireless ad hoc networks, which is well-studied in the scientific literature, considers an antenna model that allows the adjustment of the transmission power to any desired real value from zero up to the maximum transmission power level. However, when specifically considering sensor networks, a look at the currently available hardware shows that this antenna model is not very realistic. In this work we re-formulate the MEB problem for an antenna model that is realistic for sensor networks. In this antenna model transmission power levels are chosen from a finite set of possible ones. A further contribution concerns the adaptation of an ant colony optimization algorithm --currently being the state of the art for the classical MEB problem-- to the more realistic problem version, the so-called minimum energy broadcast problem with realistic antennas (MEBRA). The obtained results show that the advantage of ant colony optimization over classical heuristics even grows when the number of possible transmission power levels decreases. Finally we build a distributed version of the algorithm, which also compares quite favorably against centralized heuristics from the literature.Las principles contribuciones de esta tesis se encuentran en el domino de las redes de sensores inalámbricas. Más en detalle, introducimos algoritmos y protocolos que intentan minimizar el consumo energético para los siguientes problemas: gestión autosincronizada de encendido y apagado de sensores con capacidad para obtener energía del ambiente, coloreado de grafos distribuido y broadcasting de consumo mínimo en entornos con antenas reales. En primer lugar, proponemos un sistema capaz de autosincronizar los ciclos de encendido y apagado de los nodos de una red de sensores. El mecanismo está basado en las fases de trabajo y reposo de las colonias de hormigas tal y como estas pueden observarse en la naturaleza, es decir, con fases de actividad autosincronizadas. El principal objectivo de este tipo de técnicas es ahorrar energía gracias a alternar estados de forma eficiente. En este caso en concreto, consideramos dos estados diferentes: el estado dormido, en el que los nodos no pueden comunicarse y el consumo energético es bajo; y el estado activo, en el que las comunicaciones propician un consumo energético elevado. Con el objetivo de probar el modelo, se ha llevado a cabo una extensa experimentación que incluye tanto simulaciones síncronas en redes móviles y estáticas, como simulaciones en redes asíncronas. Además, este trabajo se extendió asumiendo un punto de vista más amplio e incluyendo un detallado estudio de los parámetros del algoritmo. Finalmente, gracias a la colaboración con la Technical University of Braunschweig, tuvimos la oportunidad de probar el mecanismo en el simulador realista de redes de sensores, Shawn (http://shawn.sf.net). La segunda parte de esta tesis está dedicada a la desincronización de nodos en redes de sensores y a su aplicación al problema del coloreado de grafos de forma distribuida. En particular, nuestra investigación está inspirada por el canto de las ranas de árbol japonesas, cuyos machos utilizan su canto para atraer a las hembras. Resulta interesante que debido a que las hembras solo son capaces de localizar las ranas macho cuando sus cantos no están demasiado cerca en el tiempo, los grupos de machos que se hallan en una misma región desincronizan sus cantos. Basado en un modelo de este comportamiento que se encuentra en la literatura, proponemos un nuevo algoritmo con aplicaciones al campo de las redes de sensores. Más en detalle, analizamos la habilidad del algoritmo para desincronizar nodos vecinos. Además, consideramos extensiones del modelo original, mejorando su capacidad de desincronización. Para ilustrar los potenciales beneficios de las redes desincronizadas, nos centramos en el problema del coloreado de grafos distribuido que tiene relación con diferentes tareas habituales en redes de sensores. El clásico problema del broadcasting de consumo mínimo en redes ad hoc ha sido bien estudiado en la literatura. El problema considera un modelo de antena que permite transmitir a cualquier potencia elegida (hasta un máximo establecido por el dispositivo). Sin embargo, cuando se trabaja de forma específica con redes de sensores, un vistazo al hardware actualmente disponible muestra que este modelo de antena no es demasiado realista. En este trabajo reformulamos el problema para el modelo de antena más habitual en redes de sensores. En este modelo, los niveles de potencia de transmisión se eligen de un conjunto finito de posibilidades. La siguiente contribución consiste en en la adaptación de un algoritmo de optimización por colonias de hormigas a la versión más realista del problema, también conocida como broadcasting de consumo mínimo con antenas realistas. Los resultados obtenidos muestran que la ventaja de este método sobre heurísticas clásicas incluso crece cuando el número de posibles potencias de transmisión decrece. Además, se ha presentado una versión distribuida del algoritmo, que también se compara de forma bastante favorable contra las heurísticas centralizadas conocidas

    Decentralized task allocation for dynamic, time-sensitive tasks

    Get PDF
    Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (pages 103-110).In time-sensitive and dynamic missions, autonomous vehicles must respond quickly to new information and objectives. In the case of dynamic task allocation, a team of agents are presented with a new, unknown task that must be allocated with their original allocations. This is exacerbated further in decentralized settings where agents are limited to utilizing local information during the allocation process. This thesis presents a fully decentralized, dynamic task allocation algorithm that extends the Consensus-Based Bundle Algorithm (CBBA) to allow for allocating new tasks. Whereas static CBBA requires a full resetting of previous allocations, CBBA with Partial Replanning (CBBA-PR) enables the agents to only partially reset their allocations to efficiently and quickly allocate a new task. By varying the number of existing tasks that are reset during replan, the team can trade-off convergence speed with amount of coordination. By specifically choosing the lowest bid tasks for resetting, CBBA-PR is shown to converge linearly with the number of tasks reset and the network diameter of the team. In addition, limited replanning methods are presented for scenarios without sufficient replanning time. These include a single reset bidding procedure for agents at capacity, a no-replanning heuristic that can identify scenarios that does not require replanning, and a subteam formation algorithm for reducing the network diameter. Finally, this thesis describes hardware and simulation experiments used to explore the effects of ad-hoc, decentralized communication on consensus algorithms and to validate the performance of CBBA-PR.by Noam Buckman.S.M

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains
    corecore