
Hugo Hernández Pibernat

Thesis Director: Christian Blum

Swarm Intelligence Techniques for
Optimization and Management Tasks in
Sensor Networks

Universitat Politècnica de Catalunya
Departament de Llenguatges i Sistemes Informàtics
April · 2012





Acknowledgements

This thesis is the result of my research activities at the ALBCOM research group of the LSI
department at UPC. Their institutional support, as well as the help and advice of some of
their members has resulted inestimable for my work and personal growth. In particular, two
people have been specially near during all this time.

First, Christian Blum, who has been my tutor since we started to work on my Master
Thesis. There are not enough words to explain how deeply I appreciate his confidence and
help during this period. Therefore I will not even try. For those who do not know him I just
want to say that he is someone you are proud to say that you have worked with. I have been
his first PhD Student of many to come and I am glad to see that he has mostly enjoyed working
with me. I have many things to be thankful for, but I specially appreciate his sincerity. Smart,
intelligent and, most of the time, brilliant and friendly, that is Christian in a few words.

Second, Maria Jose Serna, who has helped me from the very first day in the department,
even before I met Christian. She offered me the opportunity to collaborate with her, offered
advice on both academic and scientific topics, helped me find my path when I was lost and,
overall, always talked to me with a big smile on her face. Again, all words would not be enough
to describe her, however there is something particular about her that impresses me one day
and another. She always has the right question. It doesn’t matter if you talk to her informally
or on a seminar, for five minutes or an hour, her questions always put you on track for many
hours of work and, hopefully, a new achievement at the end. I have been more than lucky of
having her at my side every time I have needed her. In particular, the trip we made together
to Braunschweig, which included many conversations in planes, trains and restaurants, was
one of the main reasons that have allowed me to complete this work with success.

Many more people have contributed to this work. In the following I mention these people
and summarize some of their contributions, which have helped me advance on my research and
increase the quality and completeness of this thesis. Although not mentioned in the following
paragraphs, many more people have contributed to this work. Each of them knows how much
I appreciate their help and advice.

I would like to thank Martin Middendorf, Alexander Scheidler, and Kai Ramsch for their
contribution to an earlier paper about ant based duty-cycling (see [97]). Moreover, I also thank
Martin Middendorf for introducing me to the papers on the calling behavior of Japanese tree
frogs and for hosting me for two weeks at the University of Leipzig.

Tobias Baumgartner was essential in the implementation of the Antcycle protocol for
Shawn and his contribution to the paper [96]. I also thank Tobias for accepting my invitation
to visit our research group and later inviting me to visit the University of Braunschweig, and
translate with me the Antcycle into a real implementation. To see the algorithm working
in live mode was one of the peaks of success of this work.

I



II

The help from Enrico Malaguti, who kindly provided experimental results of the centralized
algorithm for graph coloring from [137] for a huge set of problem instances, was essential for
finishing one of the parts of this thesis in time.

Finally, I would like to thank photographers Jordi Pérez i Grimal (Figure 3.2), John Walker
(Figure 3.3), Lee Langstaf (Figure 3.4) and Masaki Ikeda (Figure 5.2) for providing me with
rights to reproduce their photographs in the scope of this work. It must be remarked that all
originals have been modified to improve printed quality in grayscale.

In addition to the many persons that must be acknowledged for this work, it is neces-
sary to remark the huge institutional support received in order to successfully finish this
thesis. I was provided with funds for my living expenses, traveling, computer and other
needs. More in detail, I acknowledge support from the following projects and institutions:
the ALBCOM research group, the Departament de Llenguatges i Sistemes Informàtics at
Universitat Politècnica de Catalunya, the Comissionat per a Universitats i Recerca del De-
partament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, the European
Social Fund, the EU project FRONTS (FP7-ICT-2007-1) funded by the European Commis-
sion, the EU FET Proactive Initiative on Pervasive Adaptation, and the Spanish government
project FORMALISM (TIN2007-66523).

I also want to thank for the help, love and affection provided by my close family and
friends. Specially to my mother, Eva, and my great friend, Carles, who always take care of
me. In addition, I would like to dedicate a deep thought to the memory of Maria Abad Utesà
(1931-2010), who always welcomed me warmly and happily.

About Georgina, to whom I dedicate this work, there is not much I can write down in a
few sentences. Even if I was a proficient writer, I would probably not have enough words of
gratitude, nor enough words of admiration. It is not even a beginning, but thanks for being
at my side. I hope to have enough time to show you my gratitude during the years to come.
It is difficult to precisely say how much of this thesis is yours, but probably more than what
you imagine.

Other family, friends and colleagues who have collaborated in the development of this
thesis are:

David Ameller Patricia Antón Iván Balaña
Borja de Balle Judit Cardona Jordi Coll
Oriol Collell Daniel Colomer Iván Couto
Jordi Delgado Josep Diaz Rita García
Margarita Garrido Marquina Hellin Ana Hernández
Carlos Hernández Helena Hernández Nuria Hernández
Rafael Hernández Ana Ibañez Rogelio Jiménez
Mercè Juan Joan Martín Maria José Merelo
Glòria Mosquera José Mosquera Klaus Langohr
Marc Oriol Jordi Petit Montserrat Renalías
María Rodríguez Salvador Roura Núria Sánchez
Francesc Tuca Oriol Tuca Margarita Vancells



Contents

I Preliminaries 1

1 Introduction 3

1.1 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Self-Synchronized Duty-Cycling in Sensor Networks . . . . . . . . . . . . 8
1.2.2 Distributed Graph Coloring . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Minimum Energy Broadcast with Realistic Antennas . . . . . . . . . . . 11

2 Wireless Sensor Networks 13
2.1 Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Communication and routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Application Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4 Common Design Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Swarm Intelligence 29
3.1 Collective Behaviour of Social Animals . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Popular Swarm Intelligence Techniques . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Other relevant examples of SI systems . . . . . . . . . . . . . . . . . . . 46

II Management techniques for WSN 49

4 Self-Synchronized Duty-Cycling 51

4.1 Simulating Ants’ Self-Synchronization Behavior . . . . . . . . . . . . . . . . . . 54
4.1.1 Fluid Neural Network Model . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.3 Study Concerning Gain Parameter g . . . . . . . . . . . . . . . . . . . . 57
4.1.4 Study Concerning the Probability of Spontaneous Activation (pa) . . . . 58
4.1.5 Study Concerning Neighborhoods of Different Sizes . . . . . . . . . . . . 62

4.2 Adaptation to Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.1 System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Comparison to the FNN Model . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Adaptation to Changing Energy Availabilities . . . . . . . . . . . . . . . . . . . 73
4.3.1 Initial Experiments with ANTCYCLE . . . . . . . . . . . . . . . . . . . 74

4.4 Further experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

III



IV CONTENTS

4.4.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.2 Application Scenario: Environmental Monitoring . . . . . . . . . . . . . 80
4.4.3 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.4 The Case of Static Networks . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.5 A more Flexible Model for the Light Source . . . . . . . . . . . . . . . . 84
4.4.6 Comparison with the Mechanism by Vigorito . . . . . . . . . . . . . . . 84

4.5 Moving to Real Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.1 A Duty-Cycling Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.5.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.3 Additional Realistic Experiments with the Shawn Simulator . . . . . . . 97

4.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Distributed Graph Coloring 107

5.1 Modeling the Calling Behavior of Japanese Tree Frogs . . . . . . . . . . . . . . 113
5.2 Implementation in Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Model Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.2 Experiments on the desynchronization of sensor networks . . . . . . . . 119

5.3 FrogSim: An Algorithm for Distributed Graph Coloring . . . . . . . . . . . . 126
5.3.1 Phase I of FrogSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3.2 Phase II of FrogSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.3 Use of the Overlay Tree Structure . . . . . . . . . . . . . . . . . . . . . 130

5.3.3.1 Identifying and Storing the Best Coloring . . . . . . . . . . . . 130
5.3.3.2 Detection of Convergence in Phase I . . . . . . . . . . . . . . . 131

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4.1 Resource Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.2 Results for Random Geometric Graphs . . . . . . . . . . . . . . . . . . . 133
5.4.3 Results for DIMACS Graphs . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.4 Results for Grid Topologies . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.4.5 Results for Small Instances from [124] . . . . . . . . . . . . . . . . . . . 141
5.4.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 MEBRA 147

6.1 Minimum Energy Broadcasting With Realistic Antennas . . . . . . . . . . . . . 149
6.2 BIP-Algorithm for the MEBRA Problem . . . . . . . . . . . . . . . . . . . . . . 152
6.3 The Ant Colony Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . 153
6.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
6.5 A distributed ACO for the MEBRA . . . . . . . . . . . . . . . . . . . . . . . . 169

6.5.1 Modification of BIP’s Greedy Function . . . . . . . . . . . . . . . . . . . 169
6.5.2 The Distributed Ant Colony Optimization Algorithm . . . . . . . . . . . 170

6.5.2.1 Construction of Broadcast Trees . . . . . . . . . . . . . . . . . 173
6.5.2.2 Updating the Pheromone Values . . . . . . . . . . . . . . . . . 177
6.5.2.3 Complexity Issues . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192



CONTENTS V

III Conclusions 195

7 Conclusions and further work 197

Bibliography 201



VI CONTENTS



List of Algorithms

1 ACO metaheuristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2 PSO algorithm for minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3 Fluid Neural Network proposed in [51]. . . . . . . . . . . . . . . . . . . . . . . . 55
4 Event of sensor node i at time t . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5 Event of sensor node i with energy harvesting capabilities at time t . . . . . . . 75
6 Duty-cycling event of a sensor node i . . . . . . . . . . . . . . . . . . . . . . . 95
7 Sensor event of node i in the desynchronization algorithm . . . . . . . . . . . . 116
8 Sensor event of node i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9 The BIP algorithm for the MEBRA problem . . . . . . . . . . . . . . . . . . . 153
10 ACO for the MEBRA problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11 Variable neighborhood descent (VND) . . . . . . . . . . . . . . . . . . . . . . . 155
12 Task of master node s in DistACO for the MEBRA problem . . . . . . . . . . . 172
13 Protocol for distributed solution construction . . . . . . . . . . . . . . . . . . . 174
14 Protocol for distributed pheromone update . . . . . . . . . . . . . . . . . . . . . 179

VII



VIII LIST OF ALGORITHMS



List of Tables

2.1 Internet layered model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Commonly sensed measures in WSNs. . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Sensor node manufacturers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 A selection of pheromone update systems . . . . . . . . . . . . . . . . . . . . . 41

4.1 Reference parameter setting for the Fnn model. . . . . . . . . . . . . . . . . . . 56
4.2 System behaviour as a function of g (in numerical form). . . . . . . . . . . . . . 59
4.3 System behaviour as a function of pa (in numerical form). . . . . . . . . . . . . 60
4.4 System behaviour as a function of the neighborhood size |Ni| (in numerical form). 65
4.5 Initial parameter settings for Antcycle. . . . . . . . . . . . . . . . . . . . . . 76
4.6 Behaviour of Antcycle with the parameter settings from Table 4.7 as a func-

tion of rmin (in numerical form). . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.7 Parameter settings of Antcycle for environmental monitoring. . . . . . . . . . 81
4.8 Behaviour of Antcycle with the parameter settings from Table 4.7 as a func-

tion of pamin (in numerical form). . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.9 Parameter values for networks of different sizes. . . . . . . . . . . . . . . . . . . 83
4.10 Comparison of different duty-cycling mechanisms . . . . . . . . . . . . . . . . . 86
4.11 Energy parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.12 Distribution of the energy consumption in the duty-cycling protocol . . . . . . 97

5.1 Success rates (in terms of the number of successful applications out of 100)
calculated on the basis of an error margin of 5%. . . . . . . . . . . . . . . . . . 122

5.2 Success rates (in terms of the number of successful applications out of 100)
calculated on the basis of an error margin of 15%. . . . . . . . . . . . . . . . . . 123

5.3 Average distance to the optimal distribution of the theta values . . . . . . . . . 124
5.4 Average number of communication rounds executed before reaching the stop-

ping condition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.5 Results for random geometric graphs. . . . . . . . . . . . . . . . . . . . . . . . . 135
5.6 Results for the first set of instances from the DIMACS challenge. . . . . . . . . 137
5.7 Results for the second set of instances from the DIMACS challenge. . . . . . . . 138
5.8 Results for grid (respectively, torus) topologies. . . . . . . . . . . . . . . . . . . 140
5.9 Results for the instances introduced in [124]. . . . . . . . . . . . . . . . . . . . . 142

6.1 The schedule used for values κib, κrb and κbs depending on cf (the convergence
factor) and the Boolean control variable bs_update. . . . . . . . . . . . . . . . . 156

6.2 Summary of the ACO parameters. . . . . . . . . . . . . . . . . . . . . . . . . . 156

IX



X LIST OF TABLES

6.3 Results for the 30 instances with 50 nodes when using antennas with seven
transmission power levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.4 Results for the 30 instances with 50 nodes when using antennas with 201 trans-
mission power levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.5 Results for the 30 instances with 100 nodes when using antennas with seven
transmission power levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.6 Results for the 30 instances with 100 nodes when using antennas with 201
transmission power levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.7 Summary of the messages handled by a sensor node id for the construction of
a solution with identifier sol_id. . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.8 The schedule used for values κib, κrb and κbs depending on conv_factmreq (the
convergence factor) and the Boolean control variable bs_update. . . . . . . . . 181

6.9 Summary of the messages handled by a sensor node id for the pheromone update.183
6.10 Results for the 30 instances with 50 nodes and antennas with seven transmission

power levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.11 Results for the 30 instances with 50 nodes and antennas with 201 transmission

power levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.12 Results for the 30 instances with 100 nodes and antennas with seven transmis-

sion power levels.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.13 Results for the 30 instances with 100 nodes and antennas with 201 transmission

power levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190



List of Figures

1.1 Side-by-side image of three mobile devices. A Sun Microsystems SunSpot sensor
node, a modern Nokia cell phone and an Apple iPod Touch. . . . . . . . . . . . 4

1.2 Coalesenses iSense sensor node. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Photos of the Canopee project endorsed by Sun Microsystems, India. . . . . . . 14
2.2 The OSI network model divides network communications in seven different

levels (layers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 High level architecture of a sensor node. . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Basic working of a transducer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Ethernet message frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 Working of the basic network handshaking protocol. . . . . . . . . . . . . . . . 22
2.7 A network of ten nodes connected as a (a) flat architecture and (b) a hierarchical

architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Evolution of the number of components of microprocessors over time. This
figure is published under licensed Creative Commons Attribution Share-Alike
3.0. Both the original file and the data used for the image are available from [198]. 30

3.2 School of barracudas (Sphyraenidae Sphyraena). Photograph by Jordi Pérez i
Grimal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Migrating ducks flying in a V-shaped formation. Photograph by John Walker. . 33
3.4 Bees taking care of larvae and eggs in their honeycomb. Photograph by Lee

Langstaff. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Experimental setting that shows the shortest path finding capability of ant

colonies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Example of the solution construction for a TSP problem consisting of 4 cities.

Figure reproduced from [18]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 Example of a PSO particle position update. . . . . . . . . . . . . . . . . . . . . 43

4.1 The Moore neighborhood of size 1 that is used in the Fnn model. . . . . . . . . 55
4.2 Evolution of the mean system activity (A(t)) of the Fnn over time. . . . . . . . 56
4.3 System behavior for selected values of g . . . . . . . . . . . . . . . . . . . . . . 61
4.4 System behavior as a function of g . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 System behavior for selected values of pa . . . . . . . . . . . . . . . . . . . . . . 63
4.6 System behavior as a function of pa . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Average system activities displayed by means of gray levels for different combi-

nations of values for g and pa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

XI



XII LIST OF FIGURES

4.8 Considered set of neighborhoods. Graphics (a) to (f) show neighborhoods N1

to N6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.9 System behavior for selected values of |Ni| . . . . . . . . . . . . . . . . . . . . . 68
4.10 System behavior as a function of |Ni|. . . . . . . . . . . . . . . . . . . . . . . . 69
4.11 Example of the neighbourhood N(i, t) of a sensor i. . . . . . . . . . . . . . . . . 71
4.12 Evolution of the mean system activity (A(t)) of a sensor network with 120

sensors for the fourth day of simulation. . . . . . . . . . . . . . . . . . . . . . . 72
4.13 Evolution of the mean system activity of Antcycle with the parameters from

Table 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.14 Antcycle behavior for selected values of rmin. . . . . . . . . . . . . . . . . . . 78
4.15 Antcycle behavior as a function of rmin. . . . . . . . . . . . . . . . . . . . . . 79
4.16 Graphics that show the robustness of Antcycle. . . . . . . . . . . . . . . . . . 87
4.17 Evolution of the mean system activity of Antcycle with the parameters from

Table 4.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.18 Antcycle behavior for selected values of pamin. . . . . . . . . . . . . . . . . . . 89
4.19 Antcycle behavior as a function of pamin. . . . . . . . . . . . . . . . . . . . . . 90
4.20 Evolution of the mean system activity of Antcycle when different network

sizes are concerned. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.21 Behavior of Antcycle for static networks. . . . . . . . . . . . . . . . . . . . . 91
4.22 Three examples for the distribution of the sun light intensities. . . . . . . . . . 92
4.23 Evolution of the mean system activity of Antcycle when using the stochastic

function for the sun light intensities from Equation 4.16. . . . . . . . . . . . . . 92
4.24 Comparison of duty-cycling algorithms . . . . . . . . . . . . . . . . . . . . . . . 93
4.25 Time management between the duty-cycling mechanism and possible user ap-

plications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.26 Different communication topologies in a network with 120 randomly located

nodes when different transmission power levels are considered. . . . . . . . . . . 100
4.27 Evolution of the mean system activity of Antcycle when run on iSense sensor

nodes simulated by the Shawn sensor network simulator . . . . . . . . . . . . . 101
4.28 Antcycle behavior for selected values of ploss. . . . . . . . . . . . . . . . . . . 102
4.29 Behavior of the duty-cycling mechanism under varying conditions . . . . . . . . 103
4.30 Behavior of the duty-cycling mechanism for monitoring applications . . . . . . 104
4.31 Behavior of Antcycle when mobile networks are concerned. . . . . . . . . . . 104

5.1 Optimal and suboptimal colorings of a simple graph topology composed of three
inner triangles and one outer triangle. . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Photograph of a Japanese tree frog (Hyla japonica). This photograph was
released into the public domain by Masaki Ikeda. No licenses apply. The image
is also available from [198]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3 Graphical illustration of the working of a system of two coupled oscillators. . . 113
5.4 Two examples of graph topologies that may cause problems for the desynchro-

nization as performed by the model proposed in [3]. . . . . . . . . . . . . . . . . 115
5.5 Sensor network topologies used in this work. . . . . . . . . . . . . . . . . . . . . 119
5.6 Experimental results concerning topology spare.gph. . . . . . . . . . . . . . . . 121
5.7 Example of the working of phase II of FrogSim. . . . . . . . . . . . . . . . . . 129



LIST OF FIGURES XIII

5.8 Example of the evolution over time of the quality of the colorings generated
by FrogSimfor graphs DSJC1000.9.col and flat300_26_0.col of the DIMACS
challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.9 Optimal coloring of a grid topology . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.10 Example of the distributed incremental process of coloring a grid of 4× 4 nodes.139
5.11 Summary of results for the different groups of graph topologies. . . . . . . . . . 143

6.1 Energy benefits by the usage of relay nodes. (a) shows a configuration one-to-
all, and (b) shows an energy-aware configuration using intermediate nodes. . . . 148

6.2 Wireless Multicast Advantage of omnidirectional antennas. . . . . . . . . . . . . 151
6.3 An example for the MEBRA problem and different solutions. . . . . . . . . . . 152
6.4 Graphical presentation of the computation times of the BIP+VND algorithm

for values of rmax ∈ [1,|V|-2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
6.5 Graphical presentation of the results. . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6 Summarized algorithm behaviour for different problem versions. . . . . . . . . . 161
6.7 Improvement of the ACO algorithm solutions over the basic BIP algorithm

when considering different number of transmission levels. . . . . . . . . . . . . . 162
6.8 Solutions for problem instance p50.25 using seven transmission power levels. . . 163
6.9 Solutions for problem instance p50.25 using 201 transmission power levels. . . . 164
6.10 An example for the working of BIP in the case of a simple sensor network with

seven nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.11 An example for the working of BIP+ in the case of a simple sensor network with

seven nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
6.12 Graphical illustration of the pheromone values related to the transmission power

levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.13 Solutions provided by BIP, BIP+, DistACO and the centralized ACO algorithm

for instance p50.26. The scenario in which nodes are equipped with antennas
of 7 different transmission power levels is considered. . . . . . . . . . . . . . . . 191



XIV LIST OF FIGURES



Part I

Preliminaries

1





Chapter 1

Introduction

Technological advances of modern society have focused many private and public funds on
the development of tiny mobile communication devices as, for example, cell phones or tablet
computers. These devices allow their users to communicate from anywhere without requiring
much additional infrastructure. The number of services and applications that can be used
continuously increases. In fact, most modern devices are small embedded computers whose
only limitation is the user interface as, for example, the screen which is restricted by the
dimensions of the device. Moreover, smartphones and tablets enable users to create ad-hoc
networks for sharing information or running distributed applications.

The advances in mobile technology during the last decade have increased the interest
of the research community in the capabilities of wireless networks. This rising interest has
encouraged the creation of specific devices for research projects and institutions. While society
asks for better graphics, improved interfaces, larger screens, less weight and similar features,
researchers dream about technology with a very low energy consumption, radios which are able
to communicate to farther distances, higher memory capacity or better methods for energy
harvesting from the environment, allowing to obtain power from the sun light or the ocean
tides. Figure 1.1 shows a Sun Microsystems SunSpot, side-by-side with a modern Nokia cell
phone and an Apple iPod Touch. Notice how these devices have similar sizes although being
characterized by quite different uses. For example, the interface provided by the SunSpot is
limited to some LEDs while the iPod has a sensitive screen covering the whole device.

The huge efforts aimed at obtaining small devices which suit the requirements of the
research community have resulted in a new industrial notation for this technology. In general,
any network of tiny artifacts with communication capabilities can be seen as a so-called wireless
sensor network (WSN). However, sensor networks are usually composed of nodes with limited
computation capabilities, due to both the processor and the available memory. Also energy
may be a scarce resource. Often nodes are equipped with batteries to allow their usage in
regions where no power infrastructure is available, such as deserts, seas or forests. To cope with
this constraint, in addition to new energy-aware algorithms and communication protocols,
many sensor nodes are prepared to be attached to energy harvesting devices such as solar
panels. Moreover, due to the huge amount of information that may possibly be collected in
a WSN, they are generally managed by a remote computer. Consequently, sensor nodes have
a rougher appearance than devices aimed for the general public and prescind from a screen
to reduce costs and save energy consumption. Figure 1.2 shows a Coalesenses iSense sensor
node.

3



4 CHAPTER 1. INTRODUCTION

Figure 1.1: Side-by-side image of three mobile devices. A Sun Microsystems SunSpot sensor
node, a modern Nokia cell phone and an Apple iPod Touch.

Nowadays, with the price reduction of sensor nodes, networks are becoming every time
larger and management techniques based on global control may become inapplicable. The
roots of the problem seem to be in the nature of the classical engineering approach to problem
solving. In general, engineering methods model complex systems by means of many variables.
Next, engineers decide the behavior over time of all these variables. Therefore, management
techniques aim at controlling all system parameters and elements such that the desired system
behavior arises. Unfortunately, this top-down procedure requires developers to control even
the smallest of the system entities. As a result, system exceptions and even minor program-
ming errors may result in undesired system behavior. Moreover, the continuous increases in
the size and complexity of systems is pushing this traditional engineering paradigm to its lim-
its. Although the size of tractable problems has been commonly extended by the introduction
of new and faster hardware, this solution does not evolve at the same speed as developers ex-
pectations do. Moreover, the exponential number of exceptions that may arise can no longer
be tackled individually to guarantee the expected system behavior. Modern and fresh develop-
ment techniques are necessary in order to allow an increase of one or more orders of magnitude
of the considered systems. The new goals require distributed programming paradigms, easily
parallelizable algorithms and other techniques that simplify system management [188].

Swarm intelligence (SI) is a modern artificial intelligence discipline concerned with the
design of multi-agent systems. SI is inspired by the collective behavior of social insects such
as wasps, bees or ants. As later explained, swarm intelligence techniques have already been
successfully applied to different research fields such as optimization and robotics. Although
individual insects are small and quite limited, they are able to achieve huge and/or complex
tasks by means of cooperation. SI systems are characterized by their robustness and scalability,
which usually appear as a result of the distributed conception of the algorithm and the self-
organization principle that governs the whole system.

The global behavior of self-organizing systems is not explicitly defined. Instead, the be-
havior of entities and their responses to local events are detailed and global behavior arises as
a result of the combination of these local interactions. Individuals composing a self-organized
system are generally not aware of any global information. Moreover, the amount of possible
states of the individual is usually limited. Therefore, even a group of simple individuals can
achieve complex tasks by means of self-organized cooperation.

Examples of self-organization in biology include the synchronized flashing of fireflies, the
mound construction of termites, and the synchronized resting phases or the shortest-path find-



1.1. DOCUMENT ORGANIZATION 5

Figure 1.2: Coalesenses iSense sensor node.

ing behavior of ant colonies. The number of research fields discovering self-organizing processes
as valuable alternatives for the management and control of complex or large-scale systems is
continuously growing. A prominent example is research on wireless ad-hoc networks. Sensor
networks are usually composed of a relatively large number of possibly heterogenous nodes
that may be aimed at monitoring large areas for extended periods of time. The broad spec-
trum of suppliers and manufacturers, as well as the lack of a globally accepted standard, result
in management being an arduous task. Furthermore, quite a few sensor network applications
require deployment in remote areas such as forests, deserts or, for example, high ceilings of
city buildings, which complicates a detailed and global management of all sensor nodes even
further. In recent years, many researchers have pointed out that the answer to these prob-
lems may be in implementing automated control techniques such as self-organized algorithms.
Self-organizing systems are usually more robust, scalable and flexible to subtle changes than
those based on detailed algorithmic control.

In this thesis, we explore the development of swarm intelligence methods for the manage-
ment of sensor networks. We hope that the use of the distributed nature of insect and animal
societies can result in an easier management of each individual network node. Furthermore,
our goal is to model, obtain and understand the desired behavior of the whole network as a
consequence of the interactions of neighboring nodes.

In the rest of this chapter we focus on outlining the document organization and reviewing
the publications related to each topic tackled in this thesis.

1.1 Document Organization

As mentioned before, this thesis focuses on the development of mechanisms for optimization
and management tasks in sensor networks. All the contributions are inspired by the natural
behavior of different species. In addition, they possess the main characteristics of SI systems.
The thesis is divided in three parts: Preliminaries, Management techniques for WSNs, and
Conclusions.

The first part comprises three chapters. Chapter 1 constitutes this introduction. In Chap-
ter 2 we present a thorough explanation of the main characteristics of wireless sensor nodes



6 CHAPTER 1. INTRODUCTION

and networks and an introduction to the current trends in WSN research. We also include
a categorization of the most important applications and a list of issues which concern WSN
development. Chapter 3 covers an overview of the swarm intelligence field. We review the
origins of swarm intelligence and successful applications for networked sensing.

The second part of the thesis covers the main contributions. We introduce novel solutions
and algorithms for three different WSN-related problems. Although each one responds to
one of the many open issues in WSN development and contributes in different ways to the
development of WSNs, the three solutions share the primary goal of extending network lifetime
by means of including energy-aware protocols in the working of a WSN. All the novel solutions
share a distributed conception of management. Nodes are programmed individually and reduce
their working to communications and tasks in their own local neighborhood. These self-
organized solutions avoid the need of a controlling agent that communicates with all nodes
for defining their behavior. In the following we briefly describe the problems tackled and the
results achieved in the three chapters of part two.

Self-synchronized Adaptive Duty-cycling

Sensor networks are commonly proposed for open-air regions like forests or seas where a
reliable energy source may not be available. Consequently, energy is a scarce resource in
the context of most applications. As sensor nodes are usually unsophisticated devices with
simple and cheap hardware, applications that are conscious of their energy consumption may
dramatically increase network lifetime. Duty-cycling is a general technique that schedules
the activity of nodes over time. Consider, for instance, a WSN developed in the distribution
facilities of a shipping company. There are probably time frames with a lot of activity, and
others with hardly any activity. The scope of adaptive duty-cycling is to adjust the network
activity to different situations as, for example, the work routine of a factory or the amount of
users of a system.

In Chapter 4 we consider the case of WSNs relying exclusively on their batteries due to
their location in remote or unaccessible locations. Nodes may be attached to energy harvesting
devices such as solar cells. For this scenario, we propose a self-synchronized duty-cycling
mechanism which is able to regulate activity depending on the amount of energy remaining
in the batteries. Our solution is inspired by the resting phases of ants, which amount to
as much as 65% of the time for some species. More interestingly, ants’ working and resting
phases are synchronized among the members of the colony. The energy generated by solar cells
allows nodes to dynamically increase their percentage of activity. Moreover, this method is a
self-synchronized mechanism, which means that the presence of a global control agent is not
required for the working of the system. More in detail, the proposed algorithm is individually
and independently used by each node using solely local information.

We experimentally show that the usage of the resulting mechanism, referred to as Antcy-

cle, results in an extended network lifetime when used in different scenarios and in the context
of different applications. Experiments give evidence of the ability of the system to cope with
changing energy conditions, static nodes, and other scenarios.

Although Antcycle was initially designed and tested from a swarm intelligence perspec-
tive that neglected some of the constraints of real networks, the system was later included in
a general purpose library for heterogenous sensor networks, called WISELIB [13], and tested
with the sensor network simulator Shawn [68].



1.1. DOCUMENT ORGANIZATION 7

Distributed Graph Coloring

Graph coloring is a classical problem of mathematics with more than hundred years of history.
It consists in assigning labels (colors in the original problem statement) to the vertices of a
graph, without adjacent nodes being allowed to share the same label. Several questions have
been studied with respect to graph coloring [107]. Particularly relevant due to its relation
to several tasks in communication networks is the graph coloring problem (GCP). The GCP,
formulated as an optimization problem, consists in finding the minimum number of colors
necessary to color a graph satisfying the above-mentioned rule concerning adjacent nodes.

Graph coloring has been extensively studied during the last decades [139, 138, 133] using
centralized techniques. However, approaches addressing the problem distributedly still offer
room for significant improvements even for relatively small or simple graphs. When being
used in real applications, distributed techniques may offer better scalability and lower memory
consumption. However, the lack of a centralized control usually prevents mechanisms from
globally grasping the underlying graph topology.

In Chapter 5 we discuss the relation of graph coloring with problems arising in the design
and management of WSNs. Moreover, we provide a novel mechanism for distributed graph
coloring, FrogSim, inspired by the behavior of Japanese tree frogs [3, 2]. Briefly explained,
researchers showed that groups of male Japanese tree frogs desynchronize their calls to facili-
tate females to find them. FrogSim is a distributed mechanism for graph coloring in WSNs
which aims at minimizing the number of colors used. Information exchange is exclusively
restricted to local neighborhoods.

The results obtained with our algorithm improve upon the results of other recent algo-
rithms. In addition to standard graph coloring benchmark instances, we study the behavior
of FrogSim when applied to instances of other types of topologies, such as grids or random
geometric graphs, and show that FrogSim has advantages over previous algorithms.

Minimum Energy Broadcasting with Realistic Antennas

It is well known that communication processes are several orders of magnitude more energy-
demanding than computing. In WSNs, signal transmission can be identified as the main
consumer of energy resources. The minimum energy broadcast problem (MEB) [81, 195] deals
with the way in which information is transmitted between nodes in a network. Although the
algorithms used for the previous problems only considered local exchange of information, it is
quite common that nodes need to broadcast a message to nodes which are not their neighbors.
In these cases, control on the routes taken by communication messages is a key issue for
properly managing energy consumption.

The MEB problem consists in finding communication trees in a network that minimize
the total energy consumed in a broadcast transmission. In previous work [90], we provided a
heuristic algorithm that efficiently solved a general formulation of the MEB problem. Unfor-
tunately, the antennas used by real WSN nodes are usually omnidirectional and come with
a prefixed set of transmission power levels that may be used for communication purposes.
Therefore, we introduce a more adequate problem formulation, the minimum energy broadcast
problem with realistic antennas (MEBRA).

In Chapter 6 we describe an ant colony optimization (ACO) algorithm for solving the
MEBRA problem. ACO is a swarm intelligence technique for the solution of combinatorial
optimization problems introduced in the early 1990s by Dorigo [59]. ACO is inspired by the



8 CHAPTER 1. INTRODUCTION

foraging behavior of ants.

For comparison purposes we adapt a classical heuristic algorithm (the BIP algorithm [195])
from the literature for the MEB problem to work with realistic antennas. Furthermore, we
are able to show that the proposed ACO algorithm clearly outperforms the BIP algorithm for
the MEBRA problem.

Additionally, we show that the proposed ACO algorithm can be adapted to a distributed
environment. Although results obtained with the distributed algorithm are worse than those
achieved by the centralized algorithm, the system still finds reasonably good solutions which
mostly improve upon those from the centralized BIP algorithm for the MEBRA problem.

1.2 Scientific Contributions

As already mentioned, this thesis deals with three topics related to wireless sensor networks:
self-synchronized duty-cycling in networks with energy harvesting capabilities, distributed
graph coloring and minimum energy broadcast with realistic antennas. In the following, we
provide a summary of our publications related to each of the topics as well as an overview of the
research conducted in each case. All publications were supported by the EU-funded FRONTS
project [66]. Other personal, traveling or material grants are listed in the Acknowledgements
at the beginning of this document.

1.2.1 Self-Synchronized Duty-Cycling in Sensor Networks

Together with Prof. M. Middendorf and his colleagues from the University of Leipzig, we
proposed a self-synchronized duty-cycling mechanism for sensor networks. Recall that the
main goal of duty-cycling methods is to efficiently choose between different states. In the case
at hand, we considered two different states: the asleep state, where communications are not
possible and energy consumption is low; and the active state, where communications result in
a higher energy consumption.

In order to test the model, we performed synchronous simulations on networks. For this
purpose, we made use of mobile sensor nodes equipped with energy harvesting capabilities.
The results were presented in the 2009 IEEE Swarm Intelligence Symposium and later pub-
lished in the corresponding proceedings:

• Hugo Hernández, Christian Blum, Martin Middendorf, Kai Ramsch and Alexander
Scheidler. Self-Synchronized Duty-Cycling for Mobile Sensor Networks with Energy
Harvesting Capabilities: A Swarm Intelligence Study. In Y. Shi editor, SIS 2009 –
Proceedings of IEEE Swarm Intelligence Symposium (SIS). Pages 153-159. IEEE Press,
2009.

In order to deepen our understanding of the working of the system we tested the algorithm
on a wider variety of scenarios. In this line, we decided to assess the behavior of the mech-
anism also in the context of static sensor networks. We considered two different topologies:



1.2. SCIENTIFIC CONTRIBUTIONS 9

random geometric graphs and grids. Moreover, we gave an insight into the performance vari-
ations caused by changes in the network size. We obtained successful and promising results
in all these experiments. In detail, static nodes result in a rather different activity scheme
than mobile nodes, which shows slightly lower levels of synchronicity. Despite higher levels
of energy consumption, the system is still able to adapt to changing energy conditions of the
environment.

This work was presented at the 11th Annual Conference on Genetic and Evolutionary
Computation, and further published in the corresponding proceedings:

• Hugo Hernández and Christian Blum. Self-Synchronized Duty-Cycling in Sensor Net-
works with Energy Harvesting Capabilities: the Static Network case. In GECCO 2009 –
Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation.
Pages 33-40. ACM Press, New York, 2009.

The simulations that were conducted for the two above-mentioned works were character-
ized by a synchronous simulation environment. In synchronous scenarios, all nodes are able
to perform their tasks at the same time and a global clock is used. However, real sensor
networks are asynchronous by nature. Several techniques are available to achieve a certain
level of synchronicity among network nodes.

In an attempt of making our simulations more realistic, we changed to asynchronous
simulations. More specifically, we used a discrete event simulator that is able to handle events
assuming a continuous evolution of time rather than considering a discrete time model. Note
that the asynchronous model, in contrast to synchronous simulations, requires sensor nodes to
perform idle listening in order to store incoming data packets. The experimental evaluation
of the asynchronous simulation of our mechanism was presented at the 2009 Workshop on
Bio-Inspired Algorithms for Distributed Systems and further published in the corresponding
proceedings:

• Hugo Hernández and Christian Blum. Asynchronous Simulation of a Self-Synchronized
Duty-Cycling Mechanism for Mobile Sensor Networks. In Proceedings of BADS 2009 –
Proceedings of the Workshop on Bio-Inspired Algorithms for Distributed Systems. Pages
61-68. ACM Press, New York, 2009.

Finally we extended the work by assuming a broader point of view and a comprehensive
study of the parameters. The results are described in the article:

• Hugo Hernández and Christian Blum. Foundations of ANTCYCLE: Self-Synchronized
Duty-Cycling in Mobile Sensor Networks. The Computer Journal, 54(9):1427-1448,
2011.

The extended work presented in this article has two aims. First, the mechanism described
in previous work suffered from sophisticated formulae. Therefore, we tried to simplify, as much
as possible, the proposed mechanism, while maintaining its properties. Second, in previous
work we did not provide a profound study of the interaction of different system parameters.
However, in order to control the system, these interactions must be sufficiently understood.
The resulting system is simpler and additionally improves upon the performance of previous



10 CHAPTER 1. INTRODUCTION

algorithms.

Thanks to a collaboration with the Technical University of Braunschweig (partner site of
two European projects, FRONTS [66] and WISEBED [67]), we were able to test our algorithm
in the real sensor network simulator SHAWN [68]. This work was supported by the EU-funded
PerAda initiative.

The fact that most sensor nodes do not provide a state for idle listening forces a minor
redesign of the duty-cycling mechanism. In the resulting adaptation, a very small fraction of
time is scheduled at the beginning of the cycle of each node. This time can be exclusively
used for exchanging messages related to the duty-cycling mechanism and all nodes are active
in this period. During this period, nodes are able to decide whether they should be active
or inactive (asleep) for the rest of the cycle. Active nodes perform the tasks associated with
the user application that is being executed. Sleeping nodes do nothing until the next cycle,
when they may reconsider their choice between activity and inactivity. The corresponding
experiments were presented at the 6th International Conference on Mobile Ad-hoc and Sensor
Networks and published in the corresponding proceedings:

• Hugo Hernández, Christian Blum, Maria Blesa, Tobias Baumgartner, Sandor Fekete,
Alexander Kröller. Self-Synchronized Duty-Cycling For Sensor Networks With Energy
Harvesting Capabilities: Implementation in Wiselib. In MSN 2010, Proceedings of the
6th International Conference on Mobile Ad-hoc and Sensor Networks. Pages 134-139,
IEEE Press, 2010.

1.2.2 Distributed Graph Coloring

The second part of this thesis is devoted to the desynchronization of wireless sensor nodes
and its application to the distributed graph coloring problem. In particular, our research
was inspired by the calling behavior of Japanese tree frogs, where males use their calls to
attract females. Interestingly, as female frogs are only able to correctly localize the male frogs
when their calls are not too close in time, groups of males that are located nearby each other
desynchronize their calls. A theoretical model for this behavior has been proposed in the
literature. However, its use in technical applications is, so far, quite limited.

Based on the original model, we proposed a novel algorithm with applications to the field
of sensor networks. More in detail, we analyzed the ability of the algorithm to desynchronize
neighboring nodes as much as possible. Furthermore, we considered extensions of the original
model, which improved its desynchronization capabilities as supported by experimental simu-
lations. A discussion on this work was presented in the Workshop on Bio-Inspired Solutions for
Wireless Sensor Networks (part of GECCO 2011) and further published in the corresponding
proceedings:

• Hugo Hernández and Christian Blum. Implementing a Model of Japanese Tree Frogs’
Calling Behavior in Sensor Networks: a Study of Possible Improvements. In GECCO
BIS-WSN 2011 – Proceedings of the Workshop on Bio-Inspired Solutions for Wireless
Sensor Networks. Pages 615–622. ACM Press, New York, 2011.

To illustrate the potential benefits of desynchronized networks, we then focused on dis-
tributed graph coloring. Graph coloring, also known as vertex coloring, considers the problem



1.2. SCIENTIFIC CONTRIBUTIONS 11

of assigning colors to the nodes of a graph such that adjacent nodes do not share the same
color. The optimization version of the problem concerns the minimization of the number of
used colors. We dealt with the problem of finding valid colorings of graphs in a distributed
way, that is, by means of an algorithm that only uses local information for deciding the color
of the nodes. Such algorithms prescind from any central control.

Due to the fact that quite a few practical applications require to find colorings in a dis-
tributed way, the interest in distributed algorithms for graph coloring boosted during the last
decade. As an example consider wireless ad-hoc and sensor networks, where tasks such as
the assignment of frequencies or the assignment of TDMA slots are strongly related to graph
coloring. For this purpose, we proposed an extended algorithm that used desynchronization to
achieve better colorings. We experimentally showed that our algorithm was very competitive
with the current state of the art by comparison with one of the most competitive algorithms
from the literature. These results were presented at the IFIP/IEEE Wireless and Mobile Net-
working Conference and published in the corresponding proceedings. In addition to invaluable
comments and suggestions, the Program Committee of the conference awarded our work with
the Best Paper Award.

• Hugo Hernández and Christian Blum. Distributed Graph Coloring in Wireless Ad Hoc
Networks: A Light-weight Algorithm Based on Japanese Tree Frogs’ Calling Behaviour.
In WMNC 2011 – Proceedings of IFIP/IEEE Wireless and Mobile Networking Confer-
ence. Pages 1–7. IEEE Press, 2011. Best Paper Award.

A more detailed description of the desynchronization-based graph coloring algorithm and
the transition from the mathematical model to this algorithm, as well as a broader comparison
of the proposed and existing methods, have been accepted for publication:

• Hugo Hernández, Christian Blum. Distributed Graph Coloring: An Approach Based on
the Calling Behavior of Japanese Tree Frogs. Swarm Intelligence, 2012. In press.

• Hugo Hernández, Christian Blum. FrogSim: Distributed Graph Coloring in Wireless Ad
Hoc Networks – An Algorithm Inspired by the Calling Behavior of Japanese Tree Frogs.
Telecommunication Systems, 2012. In press.

1.2.3 Minimum Energy Broadcast with Realistic Antennas

The classical minimum energy broadcast (MEB) problem in wireless adhoc networks, which is
well-studied in the scientific literature, considers an antenna model that allows the adjustment
of the transmission power to any desired real value from zero up to the maximum transmis-
sion level. However, when specifically considering sensor networks, a look at the currently
available hardware shows that this antenna model is not very realistic. In this work we re-
formulate the MEB problem for an antenna model that is realistic for sensor networks. In
this antenna model transmission power levels are chosen from a finite set of possible ones. A
further contribution concerns the adaptation of ant colony optimization –a current state-of-
the-art algorithm for the classical MEB problem– to the more realistic problem version, the
so-called minimum energy broadcast problem with realistic antennas (MEBRA). The obtained
results show that the advantage of ant colony optimization over classical heuristics even grows
when the number of possible transmission power levels decreases. Results, together with a
formulation of the MEBRA problem, were presented at the 4th International Conference on



12 CHAPTER 1. INTRODUCTION

Bio-Inspired Optimization Methods and their Applications (BIOMA 2010) and published in
the corresponding proceedings:

• Hugo Hernández and Christian Blum. Ant Colony Optimization for Broadcasting in
Sensor Networks under a Realistic Antenna Model. In Bogdan Filipic and Jurij Silc
editors, BIOMA 2010 – Proceedings of 4th International Conference on Bio-Inspired
Optimization Methods and their Applications. Pages 153-162. Published by Jozef Stefan
Institute, Ljubljana, Slovenia, 2010. ISBN 978-961-264-017-0.

A more complete and extended paper, including a more extensive experimentation with
larger networks and different antenna models, was published in:

• Hugo Hernández and Christian Blum. Minimum Energy Broadcasting in Wireless Sen-
sor Networks: An Ant Colony Optimization Approach For a Realistic Antenna Model.
Applied Soft Computing, 11(8):5684-5694, 2011.

As previously mentioned, WSNs are generally working in an asynchronous fashion. As a
consequence, we decided to develop a distributed version of the ACO algorithm on the basis of
the centralized algorithm version. Although the results achieved are worse than those obtained
with the centralized version of the algorithm, the distributed algorithm still compares quite
favourably against the algorithms from the literature. An article describing the distributed
system in detail together with the obtained results has been accepted for publication.

• Hugo Hernández and Christian Blum. Distributed Ant Colony Optimization for Mini-
mum Energy Broadcasting in Sensor Networks with Realistic Antennas. Computers &
Mathematics with Applications, 2012. In press.



Chapter 2

Wireless Sensor Networks

Wireless sensor networks (WSNs) offer a valuable testbed for distributed algorithms and ap-
plications. Therefore, they attract the interest of many computer science research groups. As
a result, the work done by computer scientists has produced rich libraries and environments
for developing applications based on sensor networks. These advances have encouraged sci-
entists from other fields to start using sensor networks for their experiments. For example,
thanks to the sensing devices attached to sensor nodes biologists can monitor the environment
(humidity, light, etc.) for extended periods of time.

The conventional approach for sensing considers a reduced set of complex (sometimes
semi-manual) devices which are used to obtain the desired measures. WSNs, instead, aim at
sensing by means of a large set of unsophisticated tiny devices with networking capabilities.
WSNs compensate the lack of more advanced features, such as high resolution or precision,
employing aggregated data from a larger set of information feeds. Networked sensing provides
several advantages such as, for example, greater coverage, accuracy and reliability while re-
ducing development costs [35, 65]. WSNs are designed to support an enormous number of
tasks [5]. Typical examples, by way of illustration, include the monitoring and the control
of factories, sensors used for weather forecasting, or medical applications and smart home
automation systems. The multiscope nature of WSNs strongly raises the level of complexity
of designing, manufacturing and networking sensor nodes. Not surprisingly, a considerable
amount of related research activity has been linked to WSNs during the last decade.

Research activity in WSNs can be described as being organized at three levels: the com-
ponent level, the system level and the application level. Researchers focused on improving
the available hardware for WSNs represent the component level. Typical improvements at
this level are better sensing capabilities, the efficient use of batteries in communications, and
increased computation capabilities. The system level covers innovations in the networking
and coordination of the different sensor devices. Usual targets for these improvements are
power efficiency and scalability. The application level is related to the goal of the sensor net-
work. The tasks and messages sent by each node depend, mainly, on the application objective.
Possible applications include the periodical reporting of the temperature at the sensor node
locations or the localization of a tracked object. Figure 2.1 shows photos of a project (Canopee
Project) which consisted in installing Sun Microsystems SunSpot sensors in the canopees of
trees in the rainforest of India.

A remarkable fact, which probably is not obvious, is that the foundations on which WSNs

13



14 CHAPTER 2. WIRELESS SENSOR NETWORKS

Figure 2.1: Photos of the Canopee project endorsed by Sun Microsystems, India. The first
photo shows a box in which one SunSpot is installed. The second photo shows a ground view
of a tree on which a sensor is located. Although difficult to appreciate, the red line indicates
the presence of one of these container boxes with a sensor inside.

were created are structurally different from those which support traditional networking sys-
tems. Home or business networks, as well as the Internet itself, are developed to support
different actors actively using the network with independent and selfish goals. The diversity
of objectives forces a modular design that has been historically tackled with a layered system.
The OSI model described in Figure 2.2 was proposed to divide the working of a network in
seven different levels. Another example of a layered network design is the Internet network
model. It is a simpler model than the one represented by OSI, dividing network applications
in 4 layers. A summary of some of the most used protocols for each layer is provided in
Table 2.1. In both models, developers can run any new high-level application on top of the
existing network avoiding to enter in physical or routing details managed by lower layers.
However, dealing with the multipurpose design of traditional networks may interfere with the
goals of WSNs, for example, causing an unnecessary usage of power and computation resources
due to an excessive amount of components for a relatively simple network basically supporting
broadcasting.

Some core characteristics of WSNs are generally associated to this need for a different net-
work design: a relatively high density of nodes, which has forced the development of simple
and cheap devices; application diversity, which causes the need for different applications to
use different devices; low memory and power availabilities, which call for highly optimized
and lightweight protocols; and, most importantly, in WSNs all nodes generally cooperate for
a single and common goal. In some cases multiple goals may concurrently exist. Even if that
happens, a single user is still able to configure the sensor node and, therefore, distribute the
amount of resources invested in each task.

The basic component of a sensor network is the sensor node. There are many different



15

Physical Physical

Sender Receiver

Application

Presentation

Session

Transport

Network

Link

Application

Presentation

Session

Transport

Network

Link

Figure 2.2: The OSI network model divides network communications in seven different levels
(layers). Lower levels are closer to physical details of communications. On the contrary, higher
levels cope with communications from a logical point of view.

Table 2.1: Internet layered model
Layer Protocols

Application
BGP DHCP DNS FTP HTTP IMAP
IRC LDAP MGCP NNTP NTP POP

RIP RPC RTP SIP SMTP SNMP SOCKS
SSH Telnet TLS/SSL XMPP

Transport TCP UDP DCCP SCTP RSVP ECN

Internet IPv4 IPv6 ICMP ICMPv6 IGMP IPsec

Link
ARP/InARP NDP OSPF L2TP PPP
MAC (Ethernet, DSL, ISDN, FDDI)

kinds of sensor nodes. Fortunately, the high level description of most of them is quite similar.
Figure 2.3 shows the structure of the components of a sensor node. A sensor node is basically
composed of one or more sensors connected by means of an analog-digital converter (ADC)
to a microcontroller. The microcontroller is able to perform calculus with these data, to send
and to receive messages from other nodes in the network through the transceiver and to store
data for later use in a persistent storage system. In addition, sensor nodes need a power unit
that may be either composed of batteries or a continuous power supply.

In the rest of this chapter we will review more in detail the state-of-the-art of WSNs
concerning the three levels previously mentioned: the component level, the system level and
the application level. In Section 2.1 we deal with recent trends in sensor development and the



16 CHAPTER 2. WIRELESS SENSOR NETWORKS

Power unit

Microcontroller

StorageSensor 1

Sensor 2

Sensor 3

ADC Transceiver Network

Figure 2.3: High level architecture of a sensor node.

transducer
measure to be sensed electric signal

Figure 2.4: Basic working of a transducer. An input measure is used by the transducer to
generate another measure or signal. Transducers act as bridges between two measures. In
WSNs, transducers generate electric signals that can be processed by a microcontroller.

physical properties of materials that enable the construction of sensors for different measures.
In Section 2.2 the networking properties of sensor nodes are reviewed. The discussion includes
the differences to other kinds of networks. Next, Section 2.3 shows a categorization of the
applications that a WSN can perform. Finally, Section 2.4 reviews some of the most significant
challenges, problems and issues of WSN development. These topics are the focus of most of
the research in the field.

2.1 Sensing

As previously explained, several physical sensors may be attached to wireless sensor nodes.
Nevertheless, the core of sensor nodes are small electronic devices which are only able to
measure and process electronic signals. Therefore it is quite common to design sensors using
(or directly as) transducers. A transducer is a device which is able to transform energy from
a specific domain to a different one (see Figure 2.4). More specifically, useful transducers in
WSNs are those whose output come in the form of voltages or currents.

Several physical principles can be used for transduction in sensors. Moreover, sensors of
the family of Microelectromechanical Systems (MEMS) are currently available for most sensing
requirements or applications. In the following we describe some of the most used techniques



2.1. SENSING 17

for WSNs. They are grouped by the energy that acts as input of the transducer as in the
classification by Lewis [127].

The first group of sensors is composed of those where direct physical contact is necessary.
This category of sensors is called mechanical sensors.

• The piezoresistive effect transforms a pressure applied to a surface into a resistance that
can be detected using electronic circuitry. Metals and semiconductors exhibit piezore-
sistivity. Rather than a recent discovery, the effect was stated by Lord Kelvin in 1856.
The relation between the pressure applied and the resistance created was established as:

∆R

R
= S · ε (2.1)

where R is the resistance, ε the strain applied1, and S the gauge factor which depends
on the properties of the material. A usual technique to increase the effect on silicon
circuits considers doping using boron.

• The piezoelectric effect (Curie, 1880) transforms material stress into potential difference.
The voltage difference V depends linearly on the force F applied:

∆V = k ·∆F (2.2)

Hereby, k is a constant that depends on the material charge sensitivity, the material
relative permittivity, the crystal thickness and the crystal area. One of the interesting
features of the piezoelectric effect is its reversibility (the transformation of a potential
difference into physical stress). Current research is exploring the design and usage of
dual devices which act both as sensors and actuators.

• The tunneling technique is able to measure with high precision nano-metric movements.
Tunneling measures the relation between a current I and the surface separation z:

I = I0 · e
−kz (2.3)

The main drawback while using tunneling is its highly nonlinear nature that results in
a necessary use of feedback techniques.

• Capacitive sensors are composed of two plates, one fixed and one movable. A displace-
ment distance ∆d of the plate results in a change of the capacitance C:

∆C =
ε ·A

∆d
(2.4)

where ε is the dielectric constant. Many different circuits can detect changes in capaci-
tance and convert them to changes in voltage or current. Another useful family of senors
considers the conversion of displacement into an inductance variation. These sensors are
generally known as inductance sensors.

1Depending on the material used, ε may become a quadratic term.



18 CHAPTER 2. WIRELESS SENSOR NETWORKS

In those cases where physical contact is not possible or must be prevented, manufacturers
can use magnetic and electromagnetic sensors. This family of sensors is primarily used for
detecting proximity issues [118].

• Magnetoresistive sensors are related to the Hall effect (discovered by Edwin Hall in
1879). The Hall effect explains the creation of an induced voltage (Hall voltage) in a
plate of thickness T equal to:

VHall =
R · Ix ·Bz

T
(2.5)

where R is the Hall coefficient (usually around 5 times larger in semiconductors than in
metals), Ix is the current flow on the x-axis and Bz the magnetic flux in the z-axis.

• Magnetic field sensors are efficiently used to detect the presence of metallic objects.
A more specific type of sensors are Eddy-Current sensors, which use magnetic coils to
detect problems in defective metallic structures.

A whole family of sensors, thermal sensors, has been developed for monitoring temperature
or detecting heat fluxes.

• Thermo-mechanical transduction is based on the dilation of materials due to temperature
increases (and the reverse effect when temperature decreases). The relation between the
temperature change ∆T and the expansion produced on the materials length ∆ · L is
linear:

∆ · L = α ·∆T (2.6)

with α being the coefficient for linear expansion which is a property of materials.
Thermo-mechanical sensors are common in home and vehicle automation.

• Thermoresistive sensors measure temperature by observing the changes in the resistance
of a given material. It is difficult to formulate the relation between temperature and
resistance for some materials such as silicon. Nevertheless, the relation has been correctly
approximated and silicon is commonly used for measuring temperature. The effect of
temperature changes ∆T in the resistance R of most metals is easier to explain:

∆R

R
= αR ·∆T (2.7)

where αR is the temperature coefficient of resistance, a constant that depends on the
material.

• Thermocouples consist of two different materials joint together by both ends. If in these
circumstances one of the joints is hotter than the other a current flows in the circuit
(Seebeck effect). If T1, T2, are the temperature at the first, respectively second, joint,
the Seebeck voltage is approximated by:

V ≈ α(T1 − T2) + γ(T 2
1 − T 2

2 ) (2.8)

Thermocouples are quite popular due to their low cost and high reliability. In particular,
semiconductor thermocouples are generally more sensitive than metal thermocouples.



2.1. SENSING 19

• Resonant temperature sensors rely on the changing resonant frequency of single-cristal
SiO2 related to temperature changes. The frequency nature of the effect results in higher
accuracy than amplitude-change effects even for small temperature changes.

Optical transducers are able to transform light into different effects (a current to flow, the
resistance of a material to change, heat generation, etc). Solar cells are also optical transducers
which are able to transform light into voltage. Moreover, optical transducers can be adjusted
to respond to different light frequencies as in the construction of, for example, infrared or
ultraviolet detectors. Optical fiber technology is also commonly used for the construction of
accelerometers and other devices.

Chemical and biological sensors are able to detect the presence of specific molecules in the
air or other materials. There exist several kinds of transducers which can interact with solids,
liquids and gases. Among the possible applications, we could mention environmental or food
monitoring, density of NOx or COx particles in the air (pollution), presence of pesticides,
anthrax, etc.

• Chemiresistors are composed of two interdigitated finger electrodes. They are coated
with special chemical products whose resistance changes when exposed to certain chem-
ical agents. The combination of adequate coatings and digital signal processing tech-
niques –as neural network classification– allow to correctly identify different chemical
agents.

• Metal-oxide gas sensors measure the presence of gases in the environment based on
the fact that the resistivity of some semiconductors suffers severe changes due to the
absorption of gases as CO2, CO, NH3, and ozone (O3). A sample reaction is the
following one:

O2 + 2e− −→ 2O− (2.9)

As a consequence of the O atoms trapping the electrons, the amount of mobile carriers
in the surface is reduced and the material resistance increased.

• Electrochemical sensors are very simple and popular sensors. They rely on the effects of
reduction of a chemical molecule (oxidation) at the surface of an electrode. A current is
caused by the following reaction:

O + ze− ←→ R (2.10)

with R being the molecule that disappears due to oxidation and z being the charge on
the ion involved in the reaction.

• Biosensors are a wide family of sensors which rely on specific biomolecular reactions.
The main drawback of biosensors is that many of the reactions that occur are not
reversible. As a consequence, biosensors are not always reusable. Biosensors include a
biochemically active substance located on a surface that converts property changes –as
mass or resistance variations– into electric signals or light.

Electromagnetic sensors are used for remote sensing in different scenarios. Remote sensors
usually work on a specific wavelength which depends on the application. The wavelength



20 CHAPTER 2. WIRELESS SENSOR NETWORKS

Property family Measure Transduction Principle

Physical

Pressure Piezoresistive, capacitive
Temperature Thermistor, thermo-mechanical, thermocouple
Humidity Resistive, capacitive
Flow Pressure change, thermistor

Motion

Position E-mag, GPS, contact sensor
Velocity Doppler, Hall effect, optoelectronic
Angular Velocity Optical encoder
Accelaration Piezoresistive, piezoelectric, optical fiber

Contact

Strain Piezoresistive
Force Piezoelectric, piezoresistive
Torque Piezoresistive, optoelectronic
Slip Dual torque
Vibration Piezoresistive, piezoelectric, optical fiber, sound, ultrasound

Presence

Tactile/contact Contact switch, capacitive
Proximity Hall effect, capacitive, magnetic, seismic, acoustic, RF
Distance/range E-mag (sonar, radar, lidar), magnetic, tunneling
Motion E-mag, IR, acoustic, seismic (vibration)

Biochemical Biochemical agents Biochemical transduction

Identification
Personal features Vision
Personal ID Fingerprints, retinal scan, voice, heat plume

Table 2.2: List of commonly sensed measures in WSNs. Each measure is accompanied by the
transduction principle which is typically used in the design of the corresponding sensor. This
table is an extension of that shown in [127]

determines the propagation distance, resolution, the ability to trespass solid objects or un-
clear mediums and the cost of the signal processing. Therefore, the selection of a wavelength
depends on both the application and the environment where the sensor will be used. For
example, millimetric waves have been used for monitoring satellites or infrared motion de-
tectors are quite popular for night and heat vision. Another application of electromagnetic
waves considers the usage of time-to-flight information for establishing the distance to a re-
mote object. More in detail, radar systems use radio frequency (RF) waves and lidar2 systems
use light (laser). Other well known mechanisms relying on electromagnetic transmissions are
GPS systems which use RF waves. More recent advances consider the use of visible light
imaging for several different applications such as face recognition or motion analysis. How-
ever, these systems are still relatively primitive, algorithmically complex and very expensive
in computational terms.

Acoustic sensors are similar to electromagnetic sensors but use sound for measuring in-
stead of electromagnetic waves. Applications of acoustic sensors include velocity measurement
relying on the Doppler effect, distance measuring relying on sonar techniques and, in the field
of mechanical machinery, ultrasounds for the analysis of vibrations, fluid leakage or other sys-
tem failures. When considering the usage of sound for sensing applications special attention
has to be put on the medium, as the propagation speed depends on the environment. Also
echoes and other noises must be carefully treated as they may downgrade the signal quality.

Finally, in Table 2.2 we reproduce the table from [127] which summarizes the common
measures sensed in WSNs. Each measure is related to the usual transduction methods used
for the construction of their corresponding sensors.

2Lidar is a detection system that works on the principle of radar, but uses light from a laser.



2.2. COMMUNICATION AND ROUTING 21

Link

Internet

Transport

Application App Data

TCP Data
TCP 

Header

IP DataIP Header

IP Header
Frame 
header

Frame 
footer

Figure 2.5: Ethernet message frame.

2.2 Communication and routing

Depending on the scope and goals of a network, different protocols and routing techniques
may be used. Although the topics and protocols related to networking are quite complex, the
high order working of a network can be easily described. In fact, being part of a network
enables nodes to perform only one additional task: it allows a node to send a message to
another node. Moreover, networks allow all nodes within the network to send messages while
energy resources last. Besides, each message may have a different destination. In this section
we will first introduce some of the topics and protocols used in networking. Because WSNs
are essentially different from general purpose computer networks, later we will also introduce
the specific features and mechanisms used in the WSN architecture.

The working of a network usually requires nodes to add some metadata to their messages.
The various metadata fields may vary depending on the network protocols used, but are
generally used to guarantee the adequate routing of messages. Currently, most networks
use ethernet for linking the different nodes. The header of an ethernet message is shown in
Figure 2.5. In those networks where encoding is possible, headers may also include some parity
bits.

The main performance measure of a network is quality of service (QoS). Several advances
are incorporated into sensor networks in order to improve QoS. For example, packet routing
networks divide all messages in packets of fixed length. Nodes transmit packets separately
and only once all packets have reached their destination they are reassembled into the original
message. Although the transmission of a higher number of packets increases the amount of
resources used for metadata, the usage of smaller data units reduces the costs of transmission
failures.

In some cases, especially before sending large amounts of data, nodes may request other
nodes for their availability in order to prevent them to consider other communications for a
while. Handshaking protocols are used in those cases. Handshaking improves the QoS and
enables active detection of lost packets. In Figure 2.6 we show the working and the different
phases of a handshaking protocol.

Network traffic may also include other kinds of messages used to report and identify fault
conditions. One example are messages used to discover shortest paths or failed links.

In those cases where nodes need to transmit a message using multiple hops, routes are used.
The message routes depend on the protocols chosen. However, the behavior of the intermediate
nodes is similar in most cases. The most common technique for processing routed messages is
store-and-forward switching. Whenever a packet is received, it is completely buffered in local
memory and retransmitted as a whole. Other switching techniques are, for example, wormhole,
which divides messages in smaller units known as flow control units or flits; or virtual-cut-



22 CHAPTER 2. WIRELESS SENSOR NETWORKS

Figure 2.6: The working of the basic network handshaking protocol is fairly easy to describe.
It consists of four steps: (1) a network node makes an availability request to a second node;
(2) the secondary node answers the request with an acknowledgement message which also
includes a request for confirmation of reception; (3) the first node confirms the reception of
the acknowledgment; (4) both nodes exchange as many messages as needed. Notice that the
first three messages are overhead as they only contain protocol information. From the fourth
message on, messages are exclusively determined by the application needs.

through, which forces a header to be routed instantly after reception without waiting for the
rest of the packet.

An important aspect, which has gained even more relevance with the appearance of wireless
technologies, is that multiple nodes might try to communicate simultaneously. However, nodes
can only receive one packet at a time. A general solution for managing multiple access control
(MAC) was proposed for wired communications and dates back to 1970. In the case of the
ALOHA protocol [1, 169], nodes wait for reception acknowledgements of all the messages sent.
If after some time no response has been received, the node waits for a random amount of time
and sends the packet again. Obviously, although all packets will probably be received by the
destination node, the ALOHA scheme involves a huge degree of inefficiency.

Another approach designed exclusively for MAC in wireless communications is Frequency
Division Multiple Access [122] (FDMA), which assigns different communication frequencies to
different nodes. FDMA results in lower bandwidth available at each node. The Time Division
Multiplexing Access [122, 9] (TDMA) is a more popular approach in sensor networks. Time is
divided in discrete time steps which, in turn, are divided in time slots. Each node is assigned
a time slot that it may use for communication purposes. During the other time slots, the node
is not allowed to communicate. The main drawback of TDMA is that nodes usually need to
be time-synchronized in order to share the schedule of time steps and slots.

As previously mentioned, network design is a very complex task. Moreover, the previous
paragraphs just mention some of the most important points to consider when working with
networks of any kind. Other topics such as routing, management of deadlocks and livelocks
or flow control are as much important as the previous ones. In [127] the authors provide a
broader introduction to communication in WSN.



2.2. COMMUNICATION AND ROUTING 23

Architecture of Wireless Sensor Networks

At the time when the network protocols used in our homes, offices and on the Internet were
developed, none of the WSN constraints were taken into account. The OSI3 [211] network
model was developed as a layered system that enables users to develop network applications
without dealing with cumbersome physical details about how information is transmitted from
one computer to the other. Moreover, the use of physical wires allowed to create different net-
work topologies easily. However, WSNs are essentially different. First, and most importantly,
the nature of a wireless sensor network is usually quite specific. WSNs are proposed for at-
tending the needs of a single user. The application designer expects the network to exclusively
execute his/her application. Consequently, the layered system design, which indeed results
in additional computation and communication overheads, may not be an adequate choice.
Although in most cases WSN manufacturers provide interface libraries which enable working
from a logical point of view, the network architecture avoids the usage of many intermediate
layers in concordance with the much lower energy and computing resources available to sensor
nodes.

In general, WSNs are only used as a secondary system for data collection which depends
on a mainframe which is responsible for processing data and taking decisions. In most WSNs,
communication with the primary system is achieved by means of a gateway node. Other usual
denominations of the gateway node are sink or master. The network gateway is commonly
a special node which may have additional or more advanced features than the other network
nodes. Moreover, gateway nodes may be attached to a continuous power supply, or at least
energy can be treated as an unlimited resource from the application perspective.

Applications in WSNs are mostly gateway-centric. Communication with the gateway is
equally intensive and continuous along the application execution. Even though in some WSN
applications nodes only have to interact with their local neighborhood without reporting data
or decisions to the sink, most applications include, at least, some kind of data exchange with
the sink. As an example for a network where no interaction with the sink is necessary consider
a network in charge of turning on a light in a production line if temperature passes a certain
threshold.

Moreover, WSNs are, as their name indicates, communicating wirelessly. Wireless commu-
nications dramatically reduce the infrastructure cost of networks. However, this comes at the
cost of other drawbacks such as, for example, lower security, higher energy consumption, and
a higher rate of potential packet collisions. Wireless communications offer the opportunity of
creating ad-hoc networks spontaneously and, also, to allow changes in the network topology
over time. Topology control is, in fact, one of the fields that has received a lot of attention
from the research community [163, 164].

The basic unbreakable premise in the topology of a WSN is that all nodes must be able
to communicate with the gateway node (via a direct link or using multi-hop transmissions).
Nodes which are not able to reach the network sink become disconnected. Disconnected nodes
are basically lost for sensing purposes and, therefore, become useless.

A simple classification of WSN architectures is proposed in [147]. In those networks where

3The Open Systems Interconnection (OSI) is a project started in 1977 by the International Organization

for Standardization (ISO) in order to normalize the networking field. It was the first attempt to standardize
networking and communications between electronic devices that was not driven by governments or vendors.
Among the diverse benefits of the model, the simpler and more understandable conception of the different
components resulted in major advances in teaching of network concepts.



24 CHAPTER 2. WIRELESS SENSOR NETWORKS

s

(a) Flat architecture

s

(b) Hyerarchical architecture

Figure 2.7: A network of ten nodes connected as a (a) flat architecture and (b) a hierarchical
architecture.

all nodes are allowed to communicate directly with the gateway, we say that a plain or flat
architecture is being used. Figure 2.7(a) shows an example of a network composed of ten
nodes using a flat architecture. This structure is particularly efficient in rather small networks
where most nodes are able to physically communicate with the gateway. Nevertheless, in large
networks –especially in those where many nodes require multi-hop transmissions to reach the
network gateway– the computing and transmission overheads that message routing implies
may result in an unweighted consumption of energy resources.

Hierarchical or clustered architectures avoid the previously mentioned problems by intro-
ducing a set of cluster-heads (see Figure 2.7(b)), which are nodes with a higher degree than
the rest . A subset of the network nodes are designated as cluster-heads. Moreover, cluster-
heads are the only nodes allowed to directly communicate with the gateway. Other nodes
must make use of these nodes in order to reach the gateway. In fact, cluster-heads become
virtual gateways, each one routing the transmissions from a certain set of nodes. Due to these
additional tasks that cluster-heads have to accomplish, and in order to prevent early battery
deployment, two solutions are generally conceived. One solution consists in using special nodes
which are equipped with larger batteries. The other solution, used when all network nodes
are equal, makes use of a protocol for dynamically exchanging the nodes playing the role of
cluster-heads.

2.3 Application Categories

According to Iyer and colleagues [103], WSN applications may be classified in four major
groups depending on their objectives, traffic characteristics and data delivery requirements.
In the following classification, each sensor network has usually a set of one or more distin-
guished nodes which are called sink. It is important to understand the role of these nodes
whose main target is to link the network with a computer, panel or other electronic system
located outside the network in order to export the information or data collected by the network.



2.3. APPLICATION CATEGORIES 25

Event Detection and Reporting

The main goal of applications in this category is to report information, generally about de-
tected events to the sink. Examples of applications in this class are detection of failures in a
manufacturing process, detection of forest fires, and intruder detection. As expected events
usually occur only sporadically –when not rarely– nodes in the network are expected to be
inactive most of the time. Only when one of these events is detected the network bursts into
activity. Inactivity includes also the communication channels, which remain unused most of
the time and are being forced to handle a huge amount of messages when the observed events
happen. Usually events are not reported instantly. Instead, the systems waits to obtain a
certain consensus between different nodes in order to avoid false positives.

Data Gathering and Periodic Reporting

A common characteristic of systems aimed at periodic data collection is their need to keep the
network alive for extended periods of time. In many cases, if energy harvesting is possible,
it might be even necessary to reach zero-consumption situations where the amount of energy
consumed equals the amount of energy generated at the harvesting units. The most signif-
icant examples of this kind of applications are those for monitoring temperature, humidity,
light and other physical variables (both indoors and outdoors). In some cases monitoring can
be combined with actuation in order to control, for example, the amount of water dispensed
by an irrigation system depending on the current humidity, or the allowance of vehicles into
a car park depending on the availability of parking places. Actuator modules continuously
expect to receive information from the monitoring nodes to adapt the behavior of the system
to the current conditions of the environment. Moreover, it is not uncommon that actuators
are interested in the information of many nodes located within a bounded region, requiring a
distributed computation of some function based on multiple sensor readings.

Sink-initiated Querying

Several applications may require the sink to be able to trigger actions or query information
from the network. The usage of sink-initiated querying allows the system to focus on partic-
ular regions or to extract information at different resolutions and granularities. For instance,
in the case of a malfunction, this mechanism can be used by the sink to collect information
about the problem and report or repair as necessary. Additionally, sink initiated querying
avoids the need of nodes continuously reporting their state to the sink reducing dramatically
energy and bandwidth consumption.

Tracking-based Applications

A frequent scenario considers WSNs for detecting the presence of entities external to the net-
work in the region of deployment. This is the case of applications aiming at controlling the
movements of packages in shipping facilities or discovering the areas of influence of certain
species. By tracking the movement of animals biologists are also able to understand their
habits and patterns. Usual mechanisms in WSNs for tracking include notification of object



26 CHAPTER 2. WIRELESS SENSOR NETWORKS

Hardware Firmware/OS CPU Language Dynamic Memory ROM Size RAM Size Bits

iSense iSense-FW Jennic C++ Physical 128kB 92kB 32
SCW MSB SCW-FW MSP430 C None 48kB 10kB 16
SCW ESB SCW-FW MSP430 C None 60kB 2kB 16
Tmote Sky Contiki MSP430 C Physical 48kB 10kB 16
MicaZ Contiki ATMega128L C Physical 128kB 4kB 8
TNOde TinyOS ATMega128L nesC Physical 128kB 4kB 8
iMote2 TinyOS Intel XScale nesC Physical 32MB 32MB 32
GumStix Emb. Linux Intel XScale C Virtual 16MB 64MB 32
Sun Spot Squawk ARM920T Java Physical 4MB 512kB 32

Table 2.3: Sensor node manufacturers

detection to the sink and management of sink queries requiring nodes near the object to be
ready for prompt detection and reporting.

2.4 Common Design Problems

Until now, researchers have come up with various applications for sensor networks. However,
just a few of them have evolved to real developments. Most works are experimental studies
about the possibilities of sensor networks. Moreover, sensor nodes are named after the sensing
devices that they equip and that enable nodes to measure or detect light intensity, humidity,
pressure, acceleration, heat and other physical measures of the environment. The benefits
of the proposed sensor networks over other alternatives for solving real world problems are,
usually, their ease of development, lower infrastructure costs and improved performance. De-
pending on the problem tackled developers have the choice between a wide range of sensor
devices each one equipped with different sensors. Some of these nodes allow the user to choose
which sensors to attach while others come already bundled and do not allow extensions.

Diversity of sensor node manufacturers and the lack of standards are the key factors
to understand the heterogeneity that prevails in the field of WSN devices. Heterogeneity is,
currently, one of the main problems in WSNs. The consequences can be noticed in the following
two aspects: firstly, it is not easy to establish and abstract models for sensor networks that can
be used by researchers only interested in the logical side of WSN working and communications.
Some works, such as [8, 7], tackle this issue and, in fact, the EU-funded WISEBED [67] project
is focused on the interconnection of heterogeneous devices. Second, interconnection between
different devices is typically difficult as not all devices use the same communication protocols.
Even when upgrading a WSN this could be problematic as adding new nodes to an existing
network may not be easy if manufacturers no longer supply the original WSN devices used.

In addition to being equipped with different sensors, sensor nodes are characterized by
different memory sizes, operating systems and communication protocols. Table 2.3 shows some
well-known sensor nodes together with their operating systems, CPUs and other specifications.
Due to the lack of standardization in the WSN field, certain design problems appear in most
sensor networks and application families. We shortly describe them in the following.

Communication versus Computation

When using wireless channels, communication becomes very expensive in terms of energy-
consumption. For example, computing is several orders of magnitude cheaper [5] than com-



2.4. COMMON DESIGN PROBLEMS 27

munication. Fortunately, methods exist for reducing the amount of intra-network communi-
cations.

For instance, in a many-to-one scenario, intermediate nodes may be used to aggregate
the data from other nodes on its way to the sink. Advantages achieved by in-network data
aggregation may be dramatic when combined with the proper clustering or topology control
techniques. In fact, it is quite important to check the amount of information and the type of
aggregation performed. Although averaging a set of values is fast, other operations such as
signal processing may require more time. Moreover, the information flow in WSNs is usually
under certain spatio-temporal constraints which can not be neglected. Otherwise, information
requests may expire or significant delays to further events might be caused.

Many-to-one Routing

The many-to-one paradigm is used in most WSN applications. For example, for collecting
data from the network, often a single gateway node is used. However, before any information
can be retrieved, nodes must provide the gateway node with all the data.

The communication flows required in this scenario are absolutely non-uniform. Nodes
strategically located may be forced to consume much more energy than nodes in the network
boundaries. Therefore, the usage of routing algorithms which consider this non-uniformity
and try to find alternative routes to mitigate the effect of demanding network flows in certain
nodes is quite recommended.

From a more general perspective, routing algorithms should combine both techniques for
finding energy-efficient routes and for distributing energy-consumption.

Power-saving Algorithms for the Radio

As mentioned before, wireless devices allow the construction of ad-hoc networks without the
additional infrastructure costs caused by wires and routers. Unfortunately, there are two
main drawbacks. In first place, wireless communications are susceptible to security breaches,
as information is transmitted through the air and can be captured by any device within
communication range. However, cryptographic algorithms and applications habilitate secure
communication scenarios by means of cryptographic keys. In second place, wireless commu-
nication can be energetically expensive. Moreover, wireless nodes are usually equipped with
batteries to allow their usage in locations where no power supplies are available. This makes
energy an essential but scarce resource. Unfortunately, battery capacity has increased only
slowly throughout the years giving an important role to energy aware protocols and algorithms.
The Minimum Energy Broadcast/Minimum Energy Multicast problem [90], which consists in
finding energetically-optimal transmission trees in a network, is a good example of these kind
of efforts.

Sensor networks are composed of a relatively large number of nodes which usually oscillates
between a few dozens and a few hundreds. Nodes are usually equipped with omnidirectional
antennas and most applications make intensive use of communication between nodes in order
to efficiently achieve the application goals.

Another important way for energy-saving is labelled as duty-cycling, or sleep schedul-
ing [168]. Nodes are usually inactive, a state in which energy consumption is almost negligible,
sensing is disabled and no incoming/outcoming transmissions can be processed. Nodes are
scheduled to become active periodically to execute a certain task and become inactive again.



28 CHAPTER 2. WIRELESS SENSOR NETWORKS

Tasks may include sensing, processing incoming messages, general computation and message
transmission. Obviously, active nodes consume much more energy than inactive nodes. There-
fore, developers try to minimize the amount of time nodes stay active. This is, however, not
always possible. A generally recognized case is the one in which nodes must wait for incom-
ing transmissions. In this situation, generally known as idle listening, nodes do not perform
any task. However, they are required to stay active anyway. As pointed out in [173], the
battery overheads produced by idle listening can be a major cause of battery deployment.
Several solutions have been proposed to avoid this situation. For example, if some kind of
synchronization is available on the network, communication can be performed at particular
time intervals.

Localization and Synchronization

The goal of most sensor nodes is to report measurements to the sink. Data is usually routed
using other nodes. Data may arrive with time delays and from a node different to the mea-
surement source. Therefore, many applications require information to be localized and time-
stamped to allow the sink to reconstruct a global image of a whole deployment region at a
certain time or to analyze a restricted zone over time.

Although GPS may look as a fairly good solution for self-localization of nodes, the nature
of WSNs discourages its usage. WSNs may be deployed indoors or in regions where a GPS
signal is difficult to be obtained. Moreover, sensor nodes are small and energy-constrained
devices, GPS localization requires a particular antenna, and the process of satellite localization
is quite intensive in terms of power consumption.

Therefore, localization is usually achieved from information exchange between nodes. Con-
sider also that consistent time-stamped data requires time-synchronization between nodes.
Communication overheads produced from localization and time-synchronization depend on
the precision of these methods [166, 76, 185].

Connectivity and Coverage in Unfriendly Terrain

The working of sensor networks is primarily based on the cooperation between nodes. The
numerous problems caused by connectivity failures range from incomplete data to structural
routing problems and the system being temporarily not operative. Depending on the WSN
application at hand, the placement of nodes might be under the control of the user. This is
the case, for example, when sensors are attached to vehicles, robots or other mobile entities.
Consequently, nodes may sometimes find themselves in positions affected by shadowing. These
wireless-unfriendly positions, which may be due to surface topology, vegetation or geographical
properties, cause the wireless communication performance to be dramatically downgraded.

Also static networks precisely located by the development team may suffer connectivity
problems. For example, abrupt changes in humidity or heat may reduce the coverage area of
nodes. Therefore, good knowledge of the terrain and climatic conditions may help in properly
dimensioning the number of nodes and the transmission ranges. In [14], the authors explore
the effect of shadowing on the network connectivity in the case of randomly located nodes.
Other works, such as [82, 171], study the connectivity but also the sensing performance of
large sensor networks under possible node failures.



Chapter 3

Swarm Intelligence

Modern computers appeared in the middle 80s. Since the early days, computer development
has been focused on increasing processor frequency, available memory, cache hierarchy, and
many other performance related properties. For years, Moore’s law1 was the roadguide that
manufacturers used to decide in which direction research should be focused. In Figure 3.1
we show the evolution over time of the amount of transistors of many well-known processors
from the history of computing. However, the complexity of chips is no longer being pushed
that fast. The technology used in processor construction is so precise (up to a nanometric
scale) that improvements are every time more difficult to be achieved, to be tested, and to be
introduced into industrial processes.

On the other side, software developers, with respect to the recent history of computing,
expect the hardware capabilities to increase on a regular basis. Therefore, many engineering
projects are developed on the edge of the current possibilities. This means that applications
are developed to work perfectly on computers which actually are not available (or at least
not for massive production). Under these circumstances engineers start wondering if there
may be ways for obtaining a higher benefit from the current technology. It is true that
hardware advances have entered in a phase of slow development, but many other technologies
have historically suffered similar problems without forcing a dramatic change of the whole
paradigm.

For instance, consider the case of batteries. First laptop computers used batteries which
lasted for no more than one hour, being equipped with rather small monochrome screens and
powered by slow processors. Current batteries keep quad-core computers running for several
hours while being connected to WiFi routers and using large displays with millions of colors
and hundreds of pixels per inch. Surely, lithium batteries (and other technologies) were a
step forward in technological terms. However, by themselves they would have only led to a
rather small percentual increase of device lifetime. The significant difference is that batteries
used on computers and smartphones are now much more efficiently controlled. Hibernating
techniques, reduced display backlighting in sunny conditions, processors which self-adapt to
the power source reducing their performance and many other mechanisms have been developed
for improving system performance without requiring essential hardware changes. As a result,
software developers and hardware manufacturers are now working in the same team with the

1Intel co-founder Gordon E. Moore pointed out in 1965 that for seven straight years the number of transistors
ensambled in integrated circuits had doubled. Moore also claimed that this trend would hold for at least another
decade. As for today, the exponential rise in the number of components of microprocessors still holds year
after year.

29



30 CHAPTER 3. SWARM INTELLIGENCE

Figure 3.1: Evolution of the number of components of microprocessors over time. The x-axis
shows the year of introduction of the chips. The y-axis shows the amount of components of each
chip. Note that the y-axis is logarithmically scaled. The solid line is the lineal regression of
the whole set of points. This figure is published under licensed Creative Commons Attribution
Share-Alike 3.0. Both the original file and the data used for the image are available from [198].

same goals. The outcome of this joint work are the significant advances in battery lifetime
that we have seen in the last decade.

Back to the case of information systems, the question is why cannot software become the
source of improvement in computers performance during the years to come? Even before the
first personal computers were build, the knowledge about algorithms’ complexity was already
quite advanced. Currently, software advances are generally obtained thanks to a more de-
tailed algorithmic control. However, each new variable or subsystem results in a combinatoric
explosion of possible failures and exceptions. Specially in huge systems with user interaction
by means of activators or sensors, the large amount of situations that may arise can only be
sustained by a similar exponential increase in the capacity of computers. And as previously
reasoned, this may no longer be possible.

Some researchers have already raised these points. In [188], Malsburg justifies the need
for a transformation in information technology to become more intelligent and conscious. The



31

key role of algorithmic computing in performance is not part of his discussion. Instead it is
focused on the broader field of data organization. Malsburg suggests that processor advances
are now achieved with multicore technology and, consequently, large-scale massively-parallel
systems composed of hundreds or thousands of processors should become much more common
in the years to come. However, the current computing paradigm is not able to take profit of
such systems. Real benefits of disposing of multiple cores are currently restricted to problems
of explicit data-parallel or processing-parallel nature.

Deterministic control techniques are no longer able to deal with such complex systems. So,
why not trying to incorporate probabilistic and distributed processes into the control mecha-
nisms of systems? Classically, the success of applications is strongly tied to the programmers
knowledge about all their aspects and characteristics. Maybe, if it was possible to avoid this
need for such an insight, the barrier to new programming paradigms could be broken.

Nowadays, software projects often set themselves goals which are too complex to be han-
dled. When complex software projects fail, responsibilities are usually assigned to developers.
However, the real problem may often be found in the inadequacy of the chosen computing
paradigm. Several applications in the long-term plans of governments and research institutions
around the world may require for their realization an increase in the complexity of software
by an order of magnitude. Is is unimaginable that the existing workforce in the system devel-
opment sector will be able to handle this complexity with present methods (even considering
the pace at which these evolve).

The classical programming paradigm is based on detailed algorithmic control. It is based
on a division of labour between human and machine. The machine is deterministic and fast
while the programmer has the creativity in the form of goals, methods, interpretation, world
knowledge and diagnostic ability. Since their appearance, computers are programmed using
the bottom-up approach: first, the individual parts of a system are designed and programmed,
and later the resulting global behavior of the system is tested. Unfortunately, this process
is error-prone and it often takes many iterations of debugging before the desired behavior is
achieved. At first it may sound utopian, but maybe this process should be inverted, limiting
ourselves to specifying the global behavior of the system and letting the system figure out how
to achieve it.

In other words, we should be heading for information technological applications that re-
quire no less than intelligence in the machine. Systems are simply becoming too complex
to be programmed in detail any longer. The principles with which programmers formulate
programs inside their head have to be installed on the computer, allowing it to decide how to
perform tasks while conforming to abstract, human-defined tasks. Although most of us still
put in doubt the possible realization of machines able to operate under such a paradigm this
is not a dream. Living systems, cells, organisms, brains, ecosystems and society are showing
us the way. Living cells are not digital, are not deterministic, are not algorithmically con-
trolled, however they are flexible, robust, adaptable, able to learn, situation-aware, evolvable
and self-reproducing.

But, how can an application perform a task without its precise behavior previously being
defined? Even artificial intelligence systems used in games are a set of reactions to a huge
number of situations. One possible way may be that humans may learn something from cer-
tain animal societies. Think for example of a school of fish (see Figure 3.2). It is reasonable
to think that fish are not continuously communicating. However, this does not prevent them



32 CHAPTER 3. SWARM INTELLIGENCE

Figure 3.2: School of barracudas (Sphyraenidae Sphyraena). Photograph by Jordi Pérez i
Grimal.

from moving as a cohesive group. The interested observer may easily note subtle changes in
the trajectory of fish schools, and how these happen without breaking the group structure.
Moreover, no fish seems to play a distinguished role; there is not a leader, nor a controller or
a boss who is organizing the maneuvers.

Many more examples of intelligent behaviors can be found in social insects and other
animal societies. Something usual, for example, is the sight of an ant colony with thousands,
probably millions of ants, each one working towards its own objective, each one determined
to finish with its current task. Ant colonies are an astonishing example of organization.
Biologists discovered that there are different roles in ant colonies. Depending on the current
needs of the colony each single ant adopts one of these roles. However, when foraging for
food or constructing a new anthill, each ant has its own agenda. Individual ants schedule
their own tasks and organize their time. Even though ant colonies may be populated by ants
sharing common goals, each ant represents an autonomous worker. Nevertheless, ants rely on
cooperation to be able to achieve complex tasks they face in their daily job routine.

Another example of an intelligent behavior can be observed in migratory ducks or geese.
When flying large distances, energy consumption is the most limiting factor. Ducks are prob-
ably not aware of the most recent advances in aerodynamics, and neither are they able to
perform complex calculus on how to optimize their flight routine. Nevertheless, many migra-
tory birds (not only ducks) create a V-shape while flying in group formation (see Figure 3.3),
which has been proved to be quite efficient from the aerodynamics perspective [45, 192].

Although nature has been traditionally used as an inspiring source in many artistic fields
such as painting or dancing, and even in pure sciences such as mathematics or physics, engi-
neers have traditionally disconsidered it. However, over the years nature has been able to come
up with very clever solutions to incredibly complex problems. And these are not immediate
ideas, these are ideas shaped over millions of years and genetically written in the DNA thanks
to evolution.

More recently, and with a much more applied perspective, several researchers started in
the mid 1990s to adapt nature’s problem solving abilities to engineering problems. Quite soon



33

Figure 3.3: Migrating ducks flying in a V-shaped formation. Photograph by John Walker.

these techniques showed their ability to outperform or simplify existing solutions and the in-
terest by the research community grew rapidly. Not much later the name swarm intelligence
was introduced.

Swarm intelligence [112, 22, 20] is a branch of artificial intelligence [162] primarily focused
on systems inspired by the collective behavior of social insects such as ants, termites, bees,
and wasps, as well as by the behavior of other animal societies such as flocks of birds and
fish schools. Swarm intelligence approaches share some common properties. Particularly
important is the lack of a sophisticated controller which governs the system behavior. Such
a controller is typically present in traditional engineering approaches. In contrast to bottom-
up approaches, in swarm intelligence approaches global behavior emerges rather than being
explicitly defined. Swarm intelligence systems are usually composed of a numerous set of
simple and unsophisticated entities which are able to locally cooperate in order to achieve a
common goal.

For example, ants, termites and wasps are able to build sophisticated nests in cooperation,
without any of the individuals having a global master plan about how to proceed. Another
example is the foraging behavior that ants exhibit when searching for food. Ants employ an
indirect communication strategy via chemical pheromone trails in order to find shortest paths
between their nest and food sources. Also bee colonies are able to exploit efficiently the richest
food sources based on scouts that communicate information about new food sources by means
of a so-called waggle dance [194]. But note that these are just some examples of many that
can be found in nature.

In fact, the existence of dynamic contexts and changing environments is enough to motivate
engineering applications of swarm intelligence. Swarm intelligence techniques generally show
the scalability, robustness and flexibility that such scenarios demand. However, in the previous
paragraphs we wanted to provide a more detailed view of the utility of swarm intelligence,
and other nature-inspired techniques, for the beginning of a new era in software engineering
and computing.



34 CHAPTER 3. SWARM INTELLIGENCE

Figure 3.4: Bees taking care of larvae and eggs in their honeycomb. Photograph by Lee
Langstaff.

In the rest of this chapter we will first review the basic concepts of collective behavior
and self-organization in social animals’ societies (Section 3.1). Afterwards we will introduce
some of the most successful mechanisms and algorithms proposed under the swarm intelligence
design principles (Section 3.2).

3.1 Collective Behaviour of Social Animals

The self-organized nature of social animals is based on a set of mechanisms and interactions be-
tween individuals at a local level. As a result, tasks involving the whole colony are successfully
completed from a global perspective. In other words, the global behavior of a self-synchronized
system emerges as a consequence of the individual acts of lower-level entities. In general, the
absence of a regulating agent with a global vision of the system is the distinguishing feature
of self-organized systems with respect to others where some sort of global controller is used to
achieve synchronization.

In [22], the self-organization phenomenon is discussed. The authors identify four necessary
properties of such systems which are summarized in the following paragraphs.

The first ingredient of self-organizing societies is the usage of positive feedback (or ampli-
fication) techniques. These are constituted by simple behavioral rules that foster the creation
of structures. Honeycombs, as the one shown in Figure 3.4, are created cooperatively and
distributedly by swarms of bees. Nevertheless, honeycombs are quite regular, made up of
thousands of hexagonal storage spaces which increase the resistance of the hive. Among oth-
ers, recruitment and reinforcement are well-known examples of positive feedback in nature.
When foraging for food some ant species lay chemical pheromone trails on the surface of their
paths which lead to a food source. These trails can later be followed by other ants when decid-
ing which way to explore for finding food. Also bees looking for nectar use positive feedback
for alerting other bess of the presence of an interesting source. However, bees use dancing
(specific flying patterns) to indicate the presence of a profitable nectar source.

When the conditions that suggested to provide positive feedback change or disappear,



3.2. POPULAR SWARM INTELLIGENCE TECHNIQUES 35

some methods are necessary to recover a neutral state on the collective behavior. Negative
feedback is used to counterbalance positive feedback and is achieved by means of saturation,
exhaustion or competition. Many reasons may cause individuals to start providing negative
feedback. For instance, in the case of foraging ants, satiation, food source exhaustion or the
appearance of an alternative food source are situations in which negative feedback appears.

Although it might sound quite surprising, error and imperfection are very important for
understanding the quality of some structures and solutions achieved in a self-organized man-
ner. Fluctuations as random walks or spontaneous switching between the tasks performed by
certain entities enable the discovery of better solutions. Again considering the case of forag-
ing ants, the level of error that can appear in the deposited trails may result in some ants
getting lost. The initial inefficiency of this phenomenon changes when one of the lost ants
finds a richer or, at least, an alternative food source. The previously mentioned positive and
negative feedback techniques allow ants aware of these recently discovered sources to recruit
other workers for their exploitation.

The fourth necessary feature for achieving self-organization is the existence of a tolerant
subset of individuals. Although it is true that even single ants would be able to find the
shortest path to a food source if enough time is provided, self-organized systems usually rely
on the contribution of many entities to a common goal. This means that ants must be able
to recognize and be willing to follow trails left by other ants. However, the role of tolerance
in groups must not imply an underestimation of the usefulness for a single individual of being
able to distinguish its own signals or trails or the advantages that memory can provide.

In addition, as stated by [22], the most important characteristics common to most self-
organized phenomenons are:

1. The alteration of an initially homogenous medium with the construction of temporary or
long-term structures. Some examples of such structures are nests, trails or honeycombs.

2. More than a single stable state can appear (multistability). Remember that positive
feedback may be applied depending on arbitrary decisions or fluctuations. As a result,
systems may converge to a specific state neglecting the existence of the others.

3. The emerging behavior depends on the system, environment or population parameters
(bifurcations). Moreover, dramatic differences may exist between the possible behaviors
at each bifurcation.

3.2 Popular Swarm Intelligence Techniques

In the final section of this introduction some of the most popular existing swarm intelligence
techniques will be reviewed. First, we shortly present two techniques for optimization, ant
colony optimization and particle swarm optimization. Afterwards we briefly mention other
relevant swarm intelligence techniques.

3.2.1 Ant Colony Optimization

For the following description of the ACO metaheuristic we closely follow the description as
given in [18]. Marco Dorigo and colleagues introduced the first Ant Colony Optimization
(ACO) algorithms in the early 1990s [55, 57, 58]. The design of these algorithms was inspired
by the work conducted by other researchers concerning the observation of ant colonies. Ants



36 CHAPTER 3. SWARM INTELLIGENCE

Nest Food Source

Long path

Short path

(a) Initial state with no pheromones in the en-
vironment. We consider two paths between the
nest and the food source, one clearly longer
than the other. Pheromone trails will be shown
as pencil-like lines whose thickness indicates
the pheromone concentration.

Nest Food Source

(b) When ants start foraging, the probabil-
ity of chances to choose both paths are equal.
Ants that take, for example, the short path are
shown by star symbols.

Nest Food Source

(c) Ants taking the short path are able to reach
the food source first.

Nest Food Source

(d) When the ants that followed the short path
start their way back, the pheromone concentra-
tion in the short path is higher and the prob-
ability to take again the short path increases.

Nest Food Source

(e) The pheromone trail on the long path
has almost disappeared due to evaporation,
whereas the pheromone trail on the short path
prevails.

Nest Food Source

(f) Every round the probability for ants to
choose the short path will significantly in-
crease.

Figure 3.5: Experimental setting that shows the shortest path finding capability of ant colonies.

are social insects. They live in colonies and their behavior is governed by the goal of colony
survival rather than being focused on the survival of individuals. ACO was inspired by ants’
foraging behavior and, in particular, by the ants ability to find shortest paths between food
sources and their nest. Ants initially explore randomly the area surrounding their nest. While
moving, ants leave a chemical pheromone trail on the ground which can be smelled by other
ants. When choosing a path to follow, they tend to choose, in probability, paths marked by
strong pheromone concentrations. Moreover, ants have a technique to indirectly communicate
the quality of the food source. As soon as an ant finds a food source, it evaluates the quantity
and the quality of the food and carries some of it back to the nest. During the return trip,
the quantity of pheromone that an ant leaves on the ground may depend on the evaluation
of the food source. The pheromone trails will guide ants leaving the nest to the best food
sources. In [53] it was shown that the indirect communication via pheromone trails (known as
stigmergy [78]) enables ants to find shortest paths between their nest and the food sources [53].
In Figure 3.5 a sketch of this behavior is shown.

ACO belongs to the algorithmic family of metaheuristics. Metaheuristics [21] are algo-



3.2. POPULAR SWARM INTELLIGENCE TECHNIQUES 37

rithms sharing a common skeleton. The idea of metaheuristics is to create abstract algorithms
which only require to be defined in the behavior of certain functions which are dependent on
the particular problem at hand, for example, a neighborhood space navigator or a solution
evaluator. Sharing this common structure enables a faster and easier conception of new heuris-
tics. The field of metaheuristics for solving combinatorial optimization problems has received
a lot of attention in the last years [21]. The number of their applications has grown signif-
icantly, until becoming a huge and independent area of research. A popular example is the
Simulated Annealing metaheuristic [116, 34].

The ACO metaheuristic is based on the cooperation between ants:

1. Population: The existence of a rather large set of simple, not selfish, entities.

2. Distributedness: No global control of each entity or the tasks performed.

3. Self-organization: Some communication channels must exist between entities.

These three properties enable the ants to accomplish cooperatively complex tasks, without
the need of any control agent.

The instinctive foraging behavior of real ants is exploited in ACO in order to solve, for ex-
ample, discrete optimization problems. In the ACO metaheuristic ants decide on the quantity
of pheromone deposited, which may depend on an evaluation of the quality of the solutions
found. With this additional evaluation and regulation skills, pheromone trails will guide other
ants to good solutions, following, in some way, a collective criteria of all the ants working in
the colony.

A useful property of the ACO metaheuristic relates to parallel computing. As the algorithm
emulates the behavior of a set of ants performing the same task, this metaheuristic can be
parallelized, at least, in a naive way, which consists in letting each processor emulate a different
ant at the same time [177].

The rest of this section is organized as follows. Firstly, we will analyze the working of the
ACO metaheuristic, and secondly we will review some of the applications of ACO algorithms.

Working of ACO

Our model of the foraging behavior of real ants in Figure 3.5 can not be directly applied
to combinatorial optimization problems (CO) because it only associates pheromone trails to
complete solutions of the problem. This way of modeling implies that the solutions to the
considered problem are already known. In contrast, in CO the target is to find an unknown
optimal (or good-enough) solution. Thus, when CO problems are considered, solutions are
generally split up into several solution components and each one will have its own pheromone
value associated. Each ant will choose one solution component at each step, until a full solution
to the problem is assembled. Generally, the set of solution components is expected to be finite
and of moderate size. T denotes the set of all pheromone values, more formally, T = {τi |
ci is a solution component}. The complete ACO metaheuristic is shown in Algorithm 1.

The working of the ACO metaheuristic can be explained with a higher level description.
At each iteration, one solution is constructed by each of the na ants. The process of con-
structing a solution is probabilistic. However, there exists some bias in the selection of new



38 CHAPTER 3. SWARM INTELLIGENCE

Algorithm 1 ACO metaheuristic
1: input: An instance I of a combinatorial problem P
2: InitializePheromoneValues(T )
3: while termination conditions not met do
4: Siter ← ∅
5: for j = 1, . . . , na do
6: s ← ConstructSolution(T )
7: s ← LocalSearch(s) [OPTIONAL]
8: Siter = Siter ∪ {s}
9: end for

10: ApplyPheromoneUpdate(T )
11: end while
12: output: The best solution found

solution components. The construction of a solution is generally made by considering a base
solution (usually empty) and adding iteratively solution components until a complete solution
is reached. The bias on the selection of new components depends on the current pheromone
values in T . Initially all pheromone values are equal (although in some cases they can be
initialized to stimulate a certain solution or set of components). Each time the pheromone
update system is executed, the probability distribution for choosing among new solution com-
ponents is updated. Generally, the components occurring in the best solutions found obtain
an increase in their pheromone values. Once the pheromone distribution converges, the prob-
ability distribution used for the construction of new solutions becomes constant. As a result,
further new solutions will be difficultly found and the algorithm should finish or reset its
pheromone values.

As a summary, let us remark that the ACO metaheuristic uses the pheromone system
to specify how the search space should be explored. Therefore, the mechanism used for
updating the pheromone system plays a key role in the working of each ACO algorithm.
Several pheromone update systems have been suggested in the related literature. In the
following sections we review a sample ACO application as described in [18] and later introduce
some well-known pheromone update systems.

Example: ACO for the TSP

The first algorithm based on the ACO metaheuristic was one for solving the well known
Traveling Salesman Problem (see Definition 1). In the following we use an example of this
algorithm developed in [18] to explain the main steps of an ACO algorithm.

Definition 1 In the TSP a completely connected, undirected graph G = (V,E) with edge-
weights is given. The nodes V of this graph represent the cities, and the edge weights represent
the distances between the cities. The goal is to find a closed path in G that contains each node
exactly once (henceforth called a tour) and whose length is minimal. Thus, the search space S
consists of all tours in G. The objective function value f(s) of a tour s ∈ S is defined as the
sum of the edge-weights of the edges that are in s. The TSP can be modeled in many different
ways as a discrete optimization problem. The most common model consists of a binary decision
variable Xe for each edge in G. If in a solution Xe = 1, then edge e is part of the tour that is
defined by the solution.



3.2. POPULAR SWARM INTELLIGENCE TECHNIQUES 39

While the original behavior of ant colonies was observed for the problem of finding shortest
paths, in the algorithm at hand the task of each ant will consist in constructing a feasible TSP
solution. Each feasible solution is made up of several solution components. Therefore, it is
mandatory to define which elements will be used as solution components. In this example,
each edge of the graph becomes a solution component. With TSP solutions being, in essence,
feasible tours, this definition of the space of solution components guarantees that ants will be
able to build all feasible solutions. As a result, a pheromone value τi,j is introduced in T for
each edge ei,j in the graph provided by the TSP problem instance.

As the TSP problem is no longer related with finding shortest paths, the previous notion
of nest and food source also change. The nest becomes an initial and incomplete solution,
while each different feasible solution is understood as a different food source. Moreover, the
shortest path is now the tour s ∈ S such that f(s) is minimum.

Regarding the solution construction procedure of each ant, first, a single node is chosen at
random and used as the starting node of the tour. Next, the ant must create a full tour in the
TSP graph by iteratively visiting one unvisited node at each step. Each time a new node is
visited, the traversed edge from the last visited node to the new one is added to the tour under
construction. Finally, when no nodes remain unvisited, the ant closes the tour using the edge
from the current node to the one used as starting node. More in detail, each construction step
of the solution is performed as follows. Assuming the ant to be in node vi and T be the set of
previously visited nodes in the current tour construction, the next construction step consists
in visiting a node vj, such that vj 6∈ T and adding the edge ei,j to the tour currently under
construction. This is a probabilistic step. The probability of traversing a certain edge is:

p(ei,j) =
τi,j

∑

{k∈{1,...,|V |}|vk /∈T}

τi,k
,∀ j ∈ {1, . . . , |V |}, vj /∈ T . (3.1)

For an example of such a solution construction see Figure 3.6.

The next step in the algorithm execution is pheromone evaporation. Once all ants of the
colony have completed the construction of their solution, the following rule is applied:

τi,j ← (1− ρ) · τi,j ,∀ τi,j ∈ T (3.2)

As previously explained, ants leave pheromone trails in their return trips to the nest. Hereby,
an ant that has constructed a solution s leaves the following pheromone trails in each ei,j ∈ s:

τi,j ← τi,j +
C

f(s)
, (3.3)

where C is a positive constant and f(s) is the objective function value of the solution s. As
it can be seen in the ACO metaheuristic description (Algorithm 1), na ants per iteration will
perform these tasks until a stopping condition (e.g., a time limit) is satisfied.

ACO variants

One of the crucial decisions in the development of an ACO-based heuristic concerns the choice
of an appropriate pheromone model and pheromone update method. The method used in the
previous example is known as Ant System (AS). AS was the first pheromone update in ACO.
The Ant System is composed of two rules:



40 CHAPTER 3. SWARM INTELLIGENCE

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ2,3τ1,4

p(e1,j) =
τ1,j

τ1,2 + τ1,3 + τ1,4

(a) First step of the solu-
tion construction.

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ2,3τ1,4

p(e2,j) =
τ2,j

τ2,3 + τ2,4

(b) Second step of the so-
lution construction.

3 4

1 2
τ1,2

τ3,4

τ1,3 τ2,4
τ2,3τ1,4

(c) The complete solution
after the final construction
step.

Figure 3.6: Example of the solution construction for a TSP problem consisting of 4 cities
(modeled by a graph with 4 nodes; see Definition 1). Node 1 is the randomly-chosen starting
node. Figures (a) and (b) show the choices of the first and the second construction step,
respectively. The city where the ant is currently located is shown in dark gray, previously
visited cities appear in light gray and unvisited cities are shown in white. In each case,
the possible choices of the ant (i.e., the edges it may traverse) are marked by dashed lines.
Underneath each graphic the probabilities (Equation 3.1) for the different choices are given.
Note that after the first two choices, just one city (node 3) remains unvisited. Therefore, the
ant is forced to move into node 3 and then back to node 1 to close the tour. Thick lines in
figures (b) and (c) show the edges included in the partial, respectively complete, tour. Figure
reproduced from [18].

• Pheromone update: τi ← (1− ρ) · τi

• Reinforcement: τi ← τi + ρ ·
∑

{s∈Siter |ci∈s}
F (s)

where ρ ∈ [0, 1] is the evaporation rate, Siter is the set of solutions generated in the cur-
rent iteration (being each solution a set of solution components) and F is the quality function
F : S → R

+. Typically, when minimizing, F (·) = 1
f(·) .

Even though the AS algorithm proved that the ants foraging behavior could be transferred
into an algorithm for discrete optimization, it was generally found to be inferior to state-of-the-
art algorithms. Fortunately, over the years, several extensions and improvements of the original
AS algorithm have been introduced (see Table 3.1) The choice among them may depend as
well on the problem characteristics. Besides, note that the pheromone model is highly related
to each different problem. In the following, we give a more extended explanation of the ACO
variants in Table 3.1.

• Elitist AS (EAS): The EAS [55, 58] keeps track of the best solution found so far
by any ant in any iteration. Together with the pheromone update performed by basic
AS algorithms, EAS increases the pheromone values of the solution components which
compose the best-so-far solution.



3.2. POPULAR SWARM INTELLIGENCE TECHNIQUES 41

Table 3.1: A selection of pheromone update systems

ACO variant Authors Main reference

Elitist AS (EAS) Dorigo [55]
Dorigo, Maniezzo, and Colorni [58]

Rank-based AS (RAS) Bullnheimer, Hartl, and Strauss [29]
MAX–MIN Ant System (MMAS) Stützle and Hoos [178]
Ant Colony System (ACS) Dorigo and Gambardella [56]
Hyper-Cube Framework (HCF) Blum and Dorigo [19]

• Rank-based AS (RAS): RAS [29] is an extension of AS that creates a ranking of
all the solutions found in each iteration. This method is used to regulate the amount
of pheromone that each solution may contribute to the pheromone values of its com-
ponents. Solution components of the best ranked solutions receive a higher increase in
their pheromone values than those occurring in poor solutions. In RAS the amount
of pheromone added to each pheromone value is independent of the interval of values
provided by the objective function, as it depends only on the quality of solutions with
respect to other solutions.

• MAX–MIN Ant System (MMAS): The first notable difference of MMAS algo-
rithms [178] is that pheromone values are restricted to the interval [τmin, τmax], with
0 < τmin < τmax. The τmin value guarantees that the possibility of constructing a so-
lution never completely disappears. Moreover, the τmax value allows the algorithm to
detect that due to the high pheromone values of certain solution components, the search
is mostly confined to a small region of the search space. MMAS algorithms may use
this event to perform a resetting consisting in the reinitialization of all the pheromone
values. Finally, updates to the pheromone system are performed using, exclusively, the
iteration-best solution, the restart-best solution (i.e., the best solution found since the
last restart of the pheromone values), or the best-so-far solution.

• Ant Colony System (ACS): Based upon the original Ant System, Dorigo and Gam-
bardella [56] proposed this ACO variant which aimed at improving the performance of
the original system. It introduces three major differences with respect to AS. First,
both pheromone update and evaporation are only applied to those solution components
which appear in the best solution found so far. Second, each time a solution component
is added to a solution its pheromone value is decreased. And third, in the procedure for
constructing a solution, some of the steps are not performed in a randomized way. In-
stead, the new solution component is chosen by means of a pseudo-random-proportional
method, which is deterministic.

• Hyper-Cube Framework (HCF): The Hyper-Cube Framework developed by Blum
and Dorigo [19] is an extension for ACO algorithms that can be used in combination with
other pheromone update systems such as the Ant System, the Ant Colony System or the
MAX–MIN Ant System. When pheromone updates are performed in the HCF the
amount of pheromones added to promising solution components are normalized rather
than depending solely on the objective function under consideration. Apart from the
better performance of the system, HCF allowed the authors to make some theoretical
claims about the algorithm behavior and convergence [17].



42 CHAPTER 3. SWARM INTELLIGENCE

Finally, notice that ACO algorithms have been regularly used in the optimization of some
WSN-related problems. Consider, for instance, routing [151], steiner tree construction [175],
data aggregation in wireless sensor networks [131] or energy-efficient routes in networks [90].

3.2.2 Particle Swarm Optimization

Particle swarm optimization (PSO) is an optimization technique inspired by the collective
behavior of flocks of birds and fish schools. In 1995, James Kennedy and Russell Eberhart
introduced the original PSO model [113] as a novel method for training neural networks.
Although the authors initially tried to model the movement of groups of animals, after adapting
the model to deal with optimization their graphical interpretation of the system resembled
the one of mosquitoes. This fact gave birth to the term that the same authors coined, particle
swarm.

In the initial experiments presented by the authors, which are concerned with the clas-
sification of the Fisher Iris Data Set [70], PSO proved to be as efficient as the traditional
backpropagation method used in the neural network field. In further experiments on a data
set representing electroencephalogram spike waveforms and false positives [62], the use of PSO
improved the overall results. PSO was also compared against some elementary genetic algo-
rithms (Chapter 2 of [48]) for finding the optima of the nonlinear Schaffer f6 function, which
is a difficult function due to its many local optima. In this case, PSO was reported to find the
global optimum in each simulation in times comparable to those used by genetic algorithms.

The popularity of PSO among computer scientists has been growing rapidly since its
introduction. In the meanwhile, the method has also become popular in more applied fields
due to its simplicity, robustness and efficiency for solving hard optimization problems. The
working of PSO is based on a relatively large population of entities whose individual behavior
stochastically depends on their current state and the current state of neighboring nodes.
Individual particles represent feasible solutions. Particles move around the problem search
space seeking for efficient solutions. Each particle decides its position in accordance with its
velocity and the current distance to the best position found by its neighbors and the best
position found by itself. When the system is iterated particles increasingly focus on the areas
of the search space which contain high-quality solutions.

PSO is founded on previous works in related disciplines which already pointed out that
complex, organized group dynamics might arise as a result of local interactions. Some examples
are the flocking model Boids created by Reynolds [159] or the study on the rules that govern
the large synchronized flocks of birds by Heppner [86].

In the rest of this section we will first describe the working of the original PSO algorithm.
Then we will mention some noteworthy extensions and improvements to the basic model, as
well as the current issues under research. And finally, we will review some of the important
applications of PSO with special attention to those related to WSNs.

Working of PSO

The region explored by a particle in PSO depends on its best solution found –remember that
solutions are tightly linked to positions– and the best solution found by its neighborhood. More
in detail, a PSO system is composed of n particles and a target function f to be minimized
or maximized. Each particle has a velocity parameter that depends on its position and on
those of its neighbors. The ith particle is defined by the position xi, the velocity vi, and the



3.2. POPULAR SWARM INTELLIGENCE TECHNIQUES 43

xi

xi+1

pi

pg

vi+1

vi

φ2 ⊗ (pg − xi)

φ1 ⊗ (pi − xi)

Figure 3.7: Example of a PSO particle position update. For ease of illustration a two-
dimensional space is used.

personal, respectively neighborhood, best position pi, pg. Notice that the search space is the
domain of function f . Therefore, many algorithm variables are vectors as they must cope with
the possible multidimensional nature of function f . The rules for synchronously updating the
velocity and the position of all particles at each iteration are:

vi+1 ← vi + φ1 ⊗ (pi − xi) + φ2 ⊗ (pg − xi), (3.4)

xi+1 ← xi + vi+1, (3.5)

where ⊗ denotes the point-wise product2 and φ1, φ2 are defined as follows:

φ1 = c1 ·R1, (3.6)

φ2 = c2 ·R2, (3.7)

with c1, c2 acceleration coefficients. Additionally, R1 and R2 are two different functions
that return vectors of random values in [0, 1] following a uniform distribution.

Figure 3.7 shows the different components used for the calculus of the new position of
particle i.

As analyzed in [20], from Equation 3.5 it is clear that the new position of a particle
strictly depends on its velocity. The velocity of a particle has three different components
(Equation 3.4). The momentum avoids subtle changes in the traveling direction of a particle
while the cognitive, respectively social, component, deviates particles to the best position
visited by each particle, respectively by the neighbours of each particle. The summarized
description of the PSO algorithm for finding minima is given in Algorithm 2.

The interested reader might have noticed that the neighborhood topology is an important
parameter of the PSO algorithm. Some common neighborhood topologies are ring, star, and

2The point-wise product of two vectors v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) in the same space is
defined as v ⊗ w = (v1 · w1, v2 · w2, . . . , vn · wn).



44 CHAPTER 3. SWARM INTELLIGENCE

Algorithm 2 PSO algorithm for minimization
1: input: A function f to be optimized
2: Assign random positions to each particle
3: while termination conditions not met do
4: for each particle i do
5: if f(xi) < f(pi) then
6: pi ← xi
7: end if
8: pg = max(pneighbours)
9: Update velocity (Eq. 3.4)

10: Update position (Eq. 3.5)
11: end for
12: end while
13: output: The best solution found

von Neumann. These lower information propagation schemes are usually recommended for
complex problems whereas larger neighborhoods generally achieve better results when simpler
problems are concerned [142].

Extended PSO Models

Several modifications for improving the performance of PSO have been proposed. In the
following we review those summarized in [20]. Some of them solve natural problems from the
initial proposal while others aim at providing significant improvements to the mechanism:

• Maximum velocity: In some cases, specially when a particle i is far from the best
solutions pi and pg, the velocity of particle i may become quite large. Large velocities
may involve divergence between the different particles and thus prevent joint movement
of the whole swarm. This issue can be tackled by setting a maximum value Vmax for the
velocity in each dimension.

• Inertia weight: In the selection of the new velocity, the influence of the best solutions
found depends both on a set of random parameters and on their distance to the current
position. However, from Equation 3.4, it is clear that the updated velocity is tightly
related to the old one. In order to compensate this imbalance, a so-called inertia weight
can be added to the velocity component on the right hand side of the update rule in
Equation 3.4:

vi ← ω · vi + φ1 ⊗ (pi − xi) + φ2 ⊗ (pg − xi) . (3.8)

Apart from the quality of the final solution, the inertia weight allows to state some
conditions which favor convergence [39]. Values of ω > 1 may cause particles to diverge
over the boundaries of the search space due to the increase of velocities over time. If,
instead, values of ω < 0 are used, the reduction of velocity over time causes a convergence
tendency in the system. The use of a dynamic inertia weight was proposed in [63]. The
proposal considers to gradually reduce the inertia weight from 0.9 to 0.4.



3.2. POPULAR SWARM INTELLIGENCE TECHNIQUES 45

• Fully Informed Swarms: Mendes et al. [142] proposed a generalization of the original
PSO model influenced by the best positions found by all nodes –instead of considering
just the personal best and the neighborhood best. This influence can be captured in a
new velocity update rule:

vi ← vi + φ⊗ (p − xi) , (3.9)

where

p =

∑

k∈N r[0, cmax

|N | ]⊗ pk
∑

k∈N φk
, (3.10)

N is the set of particles in the neighborhood, and pk is the best position found by the
kth particle so far.

• PSO for combinatorial optimization: Kennedy and Eberhart suggested the use
of a threshold in the original PSO algorithm [114]. Depending on the position of the
velocity value with respect to this threshold, xi may be either 0 or 1. Other variants
of the algorithm deal with discrete or mixed (continuous and discrete) problems [209,
38]. Direct variable discretization can also be used to adapt PSO to discrete domains.
This technique was successfully applied to well-known combinatorial problems such as
the knapsack problem, the traveling salesman problem and the quadratic assignment
problem [38].

• Tribes [38]: This PSO variant is able to dynamically create and destroy particles.
Groups of dependent particles are called tribes. The ability to dynamically change the
network size seeks a reduction of the computational cost maintaing performance.

• Bare-bones PSO: This version of the original PSO algorithm proposed by Kennedy [111]
replaces the velocity term with randomly selected values for each dimension. Rather than
using a uniform distribution, values are selected from a Gaussian distribution centered
around the average of the two attractor points (pi and pg) and with standard deviation
between both points. Formally, Equation 3.4 is removed and Equation 3.5 is substituted
by3:

xi ← N

(

pi + pg
2

, ‖pi − pg‖

)

(3.11)

Further studies considered the usage of different distributions [38, 160].

• PSO systems with increased diversity: A popular criticism against PSO is its fast
convergence. Although convergence is, generally, a good property, convergence must
happen once the algorithm has sufficiently explored the search space. In some systems,
fast convergence may imply that the search space has not been adequately analyzed.
With this purpose several authors proposed versions of the canonical PSO algorithm
where convergence is reduced for the sake of a more exhaustive exploration of the search
space. Some of these systems are: ARPSO [161] (attractive and repulsive PSO), which

3N
(

µ, σ2
)

is the Normal (or Gaussian) distribution with mean µ ∈ R and variance σ2 > 0.



46 CHAPTER 3. SWARM INTELLIGENCE

switches between attraction and repulsion phases; the dissipative PSO model from [208],
which focuses on increasing the algorithm randomness; or FDR-PSO [186], a PSO vari-
ant relying on the fitness-distance-ratio to dynamically adapt the particle neighborhoods
and which achieves better performance than the original PSO. Other works explore the
results of constraining the neighborhood topology. For example, in [142] the von Neu-
mann neighborhood has been tested on different problems. The H-PSO [106] (Hier-
archical PSO), instead, hierarchically structures the whole particle set. The resulting
neighborhoods of a particle contain only their parent in the tree and the particle itself.

• PSO for multimodal optimization: PSO has also been applied for finding simulta-
neously multiple equiparable optima. Some examples are NichePSO [25] and SPSO [25,
129, 15], a niching-based, respectively speciation-based, PSO algorithm.

Applications of PSO Algorithms

There are many applications of PSO algorithms for solving tasks in sensor networks. Some of
the most successful ones are the energy-aware clustering methods from [180, 206], the coverage
optimization algorithm from [207], the method for optimal dynamic development introduced
in [191], the algorithm for finding optimal power scheduling for decentralized detection of a
deterministic signal in a wireless sensor network with correlated observations [200], and the
method for both clustering in static networks and dynamic reallocation in mobile networks
introduced in [205] (obtaining improvements in coverage and energy consumption).

3.2.3 Other relevant examples of SI systems

Although ACO and PSO are the most popular SI techniques, there are others that have
been successfully applied to different fields of engineering and computing. In the following we
summarize two of them: firefly synchronization and division of labour.

Firefly Synchronization

Fireflies provide one of the most notable examples of synchronization in nature [176, 27, 26, 85].
At night, in certain regions of southeast Asia, thousands of male fireflies congregate in trees
and flash synchronously. Mutual synchronization occurs in many other natural phenomena.
Note, for instance, the pacemaker of cells of the heart [99, 104, 181, 155], networks of neurons
in the circadian pacemaker [64, 153] and hippocampus [182], and many more. For futher
information we refer to [201, 203, 202].

Mirollo and Strogatz [146] extended the seminal work by Winfree [201], focusing on the
mathematical analysis of mutual synchronization. They modeled the behavior of these nat-
ural phenomena using pulse-coupled oscillators. The model of coupled oscillators of fireflies’
synchronized flashing has layed the foundations for several algorithms for activity synchroniza-
tion in sensor networks (see, for example, [101, 100]). More recently, Lucarelli and Wang [134]
showed that this behavior also appears when nodes are located in multihop topologies. Other
works, such as [101], showed that these mechanisms work not only in simulations but also in
real networks.



3.2. POPULAR SWARM INTELLIGENCE TECHNIQUES 47

Division of Labour

Another important category of algorithms is related to division of labour in ant and wasp
colonies. The daily routine of colonies includes several different tasks. Although we know that
ants perform most tasks cooperatively, the concept of a specialized worker is clearly present
in ant colonies. In the eighties, Wilson studied colonies of the Pheidole ant and observed
that division of labour allows the colony to adapt to their changing needs [199]. The working
force of ant colonies is divided in two groups of individuals: minors, in charge of routinary
tasks, and majors, who work on more on-demand tasks such as nest defense or food storing.
The studies by Wilson concluded that externally decreasing the amount of minors, resulted
in some major workers switching to become minors.

In the late nineties, Theraulaz [179] and Bonabeau [23] developed the response threshold
model for simulating division of labour in insect colonies. Roughly, the model uses thresholds
to specify the level of specialization of tasks and workers. Moreover, each individual task emits
a certain stimulus that depends on its relevance. After evaluating thresholds and stimulus,
ants are able to accept or reject different available tasks.

Many applications of the division of labour principle have been proposed. We mention, for
example, the work by Campos et al. [31] on dynamic task allocation considering trucks and
facilities. Other noteworthy works are the management algorithm for peer-to-peer networks by
Sasabe et al. [165] or the task allocation algorithm for computing systems with reconfigurable
components by Merkle et al. [143]. Furthermore, division of labour has also been used in WSN-
targeted applications such as the topology control algorithm from [105] and the architectural
paradigm for sensor/actuator networks proposed in [123].



48 CHAPTER 3. SWARM INTELLIGENCE



Part II

Management techniques for WSN

49





Chapter 4

Self-Synchronized Duty-Cycling

Ants are generally believed to follow an intensive work routine. Numerous tales and fables
refer to ants as conscientious workers. Nevertheless, in the mid 1980’s scientists discovered
that ants do not work untiringly all day long. On the contrary, they stop and rest for extended
periods of time (see [87, 73, 41]). For example, nest workers of the species L. acervorum rest
about 72% of their time. Moreover, ant species studied in [73, 74, 145] show synchronized
activity phases, that is, the ants of a colony work, respectively rest, more or less at the same
time. Interestingly, no external signals have been found as a cause for this colony-level synchro-
nization. This suggests that synchronization is achieved by self-organizing processes [43, 42].
Inspired by these works, Delgado and Solé [51] introduced a fluid neural network model that
simulates the synchronization behavior of ants. The model shows that synchronized activity
phases may help to increase the efficiency of the colony in certain situations, for example, for
information dissemination. The self-synchronized duty-cycling mechanism for sensor networks
that we propose in this work is strongly based on the model proposed by Delgado and Solé.

Self-organization is a process in which pattern at the global level of a system emerge solely
from interactions among the lower-level components of the system. Moreover, the behavior of
the lower-level components is exclusively governed by local information, without any knowl-
edge about the global state of the system. Apart from the self-synchronized resting of ant
colonies, examples of self-organization in biology include the shortest-path finding behavior of
ant colonies, the synchronization of fireflies, and the mound construction of termites. We refer
the interested reader to [22, 20] for additional information. More and more research fields
discover self-organizing processes to be valuable alternatives for the management and control
of large-scale systems. A prominent example is research on wireless ad-hoc networks such as,
for example, sensor networks. Several authors have recently pointed out the benefits of self-
organization for management tasks in sensor networks (see, for example, [44, 61, 144, 4]). Sen-
sor networks generally consist of a large number of small computing elements being equipped
with one or more sensors for different physical measures such as light intensity, humidity, and
temperature. Mostly they are aimed at monitoring large areas for extended periods of time.
Due to several reasons, conventional engineering paradigms may not be very well suited for
the control and management of sensor networks. One of the problems is the current lack
of standards. Available hardware is very heterogeneous, with a broad spectrum of suppliers
and products that are characterized by different processors, memory capabilities, the use of
different network protocols, etc. This diversity obstructs research because most of these de-

51



52 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

vices have problems to interact with devices from other suppliers. Furthermore, quite a few
sensor network applications require deployment in remote areas such as forests, deserts or, for
example, high ceilings of city buildings [141]. Therefore, self-organization has been discovered
as one of the possible ways to control and manage sensor networks.

In many application scenarios sensor nodes can not be easily supplied with energy. More-
over, sensor nodes may be mobile. Therefore, most sensor nodes are equipped with batter-
ies [183]. This makes energy a scarce resource which is a restricting factor for the network
lifetime. The problem of extending the network lifetime has been dealt by means of different
approaches. Hardware advances, for example, try to increase the capacity and the efficiency
of batteries. However, the increase in battery capacity has been much slower than the in-
crease in energy requirements [156]. Therefore, some approaches extend network protocols
with energy-aware techniques and algorithms [149, 190, 170]. Other interesting solutions are
those based on the use of so-called duty-cycles. Unfortunately, sensor nodes consume a large
amount of energy when being active and even more when transmitting information. However,
measurements have usually to be taken at regular time intervals in which two consecutive mea-
surements are not too close in time. This means that sensor nodes that are active between two
measurements consume most of their energy being idle. Therefore, the idea of duty-cycling
is to devise a mechanism in which, between two measurements, sensor nodes can switch into
a state in which they consume little energy [168]. A more recent approach for energy-saving
considers the inclusion of energy harvesting capabilities in sensor nodes, allowing the system
to recharge the batteries if possible [158, 157].

Duty-cycling and energy harvesting can also be combined. In the related literature, sev-
eral authors have studied efficient duty-cycling mechanisms for sensor networks with energy
harvesting capabilities [109, 102]. The better performing approaches have to be fed with data
about the environment. They allow more energy consumption in those periods of time in which
a larger amount of energy is expected to be available from the environment. Unfortunately,
two problems are related to these systems. First, data about typical environmental conditions
must be obtained before the network is deployed; second, there are regions with consider-
able changes in environmental conditions and, thus, deciding the actual conditions based on
previous data may be inadequate. A recent attempt to solve this problem is presented by
Vigorito [187]. This work introduces a technique that uses adaptive control techniques to
prescind from the environmental profile. Results show a better network performance and a
longer network lifetime. However this approach considers nodes separately, and the lack of
synchronicity may cause a considerable downgrade in performance for several types of appli-
cations.

Our Contribution

The work presented in this chapter describes a duty-cycling mechanism for sensor networks
with energy harvesting capabilities. This mechanism is inspired by the self-synchronization
behavior of ant colonies described above. In contrast to related work from the literature, our
mechanism does not need any prior information about the environment. The first contribution
of this chapter is a study focused on laying the foundations of a self-synchronized duty-cycling
mechanism rather than developing a protocol that can directly be employed on available



53

hardware. Hence, neglecting most physical and network constraints.
The second part of this chapter covers the adaptation of the previous mechanism to a real

environment where several network variables –such as a MAC layer, routing queues, or packet
collisions– are considered. As shown in [96] the reformulated mechanism can be run on the
real sensor network simulator Shawn [68, 172].

Most of the contributions of this chapter have been extensively discussed in the scien-
tific community before writing this thesis. With this aim, contributions have been presented
in international conferences and journals. The reports provided by the referees have been
read carefully. Each and every one of the concerns and comments of the referees has been
handled and solved in order to give a broader and more complete explanation of our work.
The following list contains all our publications related to novel techniques introduced in this
chapter. Remember that a more extended description of the publications is available in Sec-
tion 1.2. Also note that this chapter is based on the article Foundations of ANTCYCLE:
Self-Synchronized Duty-Cycling in Mobile Sensor Networks [91] which was published in The
Computer Journal :

• Hugo Hernández, Christian Blum, Martin Middendorf, Kai Ramsch and Alexander
Scheidler. Self-Synchronized Duty-Cycling for Mobile Sensor Networks with Energy
Harvesting Capabilities: A Swarm Intelligence Study. In Y. Shi editor, SIS 2009 –
Proceedings of IEEE Swarm Intelligence Symposium (SIS). Pages 153-159. IEEE Press,
2009.

• Hugo Hernández and Christian Blum. Self-Synchronized Duty-Cycling in Sensor Net-
works with Energy Harvesting Capabilities: the Static Network case. In GECCO 2009 –
Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation.
Pages 33-40. ACM Press, New York, 2009.

• Hugo Hernández and Christian Blum. Asynchronous Simulation of a Self-Synchronized
Duty-Cycling Mechanism for Mobile Sensor Networks. In Proceedings of BADS 2009 –
Proceedings of the Workshop on Bio-Inspired Algorithms for Distributed Systems. Pages
61-68. ACM Press, New York, 2009.

• Hugo Hernández and Christian Blum. Foundations of ANTCYCLE: Self-Synchronized
Duty-Cycling in Mobile Sensor Networks. The Computer Journal, 54(9):1427-1448,
2011.

• Hugo Hernández, Christian Blum, Maria Blesa, Tobias Baumgartner, Sandor Fekete,
Alexander Kröller. Self-Synchronized Duty-Cycling For Sensor Networks With Energy
Harvesting Capabilities: Implementation in Wiselib. In MSN 2010, Proceedings of the
6th International Conference on Mobile Ad-hoc and Sensor Networks. Pages 134-139,
IEEE Press, 2010.

Chapter Organization

The outline of this work is as follows. In Section 4.1 we shortly outline the model of ants’
self-synchronization behavior as introduced by Delgado and Solé in [51, 50] and analyze the
interaction between its most significant parameters. In Section 4.2 we present the adaptation
of this model to duty-cycling in sensor networks. Furthermore, in Section 4.3 the proposed



54 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

system is extended for dealing with energy harvesting capabilities. Section 4.4 offers an ex-
tensive experimentation and the presentation of results. Finally, in Section 4.5 we discuss
the adaptation of the proposed system to real sensor networks, and in Section 4.6 we present
conclusions and an outlook to future work.

4.1 Simulating Ants’ Self-Synchronization Behavior

In this section we present an extensive study of the fluid neural network (FNN) model that
was proposed by Delgado and Solé in [51] for explaining the self-synchronization capability of
ant colonies. First, the model is described. Then, after an outline of the experimental setup,
a study of the influence of different parameters is presented.

4.1.1 Fluid Neural Network Model

In the Fnn model, k automata are located in a two-dimensional L × L grid with periodic
boundary conditions. The automata evolve over time. Each automaton is described by a
continuous state variable Si and a binary variable ai. The values of these variables at time
step t ∈ N are denoted by Si(t) ∈ R and ai(t) ∈ {0, 1}. In case ai(t) = 1 automaton i is
called active at time step t, inactive otherwise. The value of ai at time step t is determined
as follows:

ai(t) := Φ(Si(t)− θact) , (4.1)

where θact is the activation threshold, and Φ(x) is defined as follows:

Φ(x) =

{

1 if x ≥ 0
0 otherwise

(4.2)

At each time step t ∈ N, the value of the continuous state variables Si is updated as follows:

Si(t) := tanh[g · hi(t)] , (4.3)

where g is a gain parameter and hi(t) is the amount of stimulus received by automaton i at
time t. The amount of stimulus is defined as follows:

hi(t) := Si(t− 1) +
∑

j∈N(i,t),j 6=i

Sj(t− 1) , (4.4)

where N(i, t) is composed of the automata that are located on grid positions that are part of
the Moore neighborhood of size 1 of the grid position on which automaton i is located. See
Figure 4.1 for a graphical illustration of the Moore neighborhood.

There are two ways for an inactive automaton i to become active: (1) either due to local
interactions (see Eq. (4.3)) or (2) by spontaneous activation. More specifically, if i is inactive
at time step t, it may be awakened with probability pa. If this is the case, the value of its
continuous state variable Si is set to an initial activity level Sa > 0, that is, Si(t) := Sa. In
addition, at each time step t, active automata either stay at their current location, or they
decide to move to one of grid positions in the Moore neighborhood of size 1 of their current
location. This decision is done probabilistically without preference. In Algorithm 3 is shown
how all the elements described above are coordinated.



4.1. SIMULATING ANTS’ SELF-SYNCHRONIZATION BEHAVIOR 55

rsrs
rs
rs
rs
rsrs
rsrs

Figure 4.1: The Moore neighborhood of size 1 that is used in the Fnn model. Automata
located on light-gray shaded grid positions are neighbors of the automaton located on the
dark-gray grid position.

Algorithm 3 Fluid Neural Network proposed in [51].
1: Input: A number of simulation steps m
2: Initialize states: Si(0) := Sa, i = 1, . . . , k
3: for t = 1, . . . ,m do
4: for all automata i = 1, . . . , k do
5: Calculate ai(t) (see Eq. 4.1)
6: if ai(t) = 0 then
7: Draw a random number p ∈ [0, 1]
8: if p ≤ pa then
9: Si(t) := Sa

10: ai(t) := 1
11: end if
12: end if
13: end for
14: for all automata i = 1, . . . , k do
15: if ai(t) = 1 then
16: Decide randomly to stay at the current location or to move to a neighbour site
17: Transmit Si(t− 1) to all automata in N(i, t)
18: Calculate Si(t) (see Eqs. 4.3 and 4.4)
19: end if
20: end for
21: end for

Finally, the behavior of the system is mainly characterized by the evolution of the mean
system activity over time, which is for each time step t ∈ N defined as follows:

A(t) :=
1

k

k
∑

i=1

ai(t) ∈ [0, 1] (4.5)

Note that the more automata are active at time t the greater is A(t).

4.1.2 Experimental Setup

We now describe the experimental setup that will be used for all experiments conducted in
this section, as well as in later sections (except when otherwise indicated). Assuming that any
two time steps are separated by one minute, one day of simulation will consist of 1440 time



56 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

Table 4.1: Reference parameter setting for the Fnn model.

K L Sa θact g pa

120 25 0.01 10−16 0.1 0.001

steps. For each experiment we applied the Fnn for 10080 time steps, which represents seven
days of simulation. The first day is only used for stabilization, that is, no data is registered
during the first 1440 time steps.

In [51], Delgado and Solé were able to reproduce the behavior of ants of the species L. acer-
vorum with the parameter settings as given in Table 4.1. We reproduced this experiment and
present the results in Figure 4.2 in terms of the evolution of the mean system activity (A(t))
over time. Note that the oscillating value of A(t) over time indicates the (self-)synchronization
of the automata (respectively, the modelled ant colony). In addition, the average system ac-
tivity for the six days of simulation matches the one observed in real ant colonies (see [74]),
in both cases being around 30%.

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

Figure 4.2: Evolution of the mean system activity (A(t)) of the Fnn over time. Parameter
settings are given in Table 4.1.

As mentioned before, our aim is to devise a mechanism for self-synchronized duty-cycling
in sensor networks based on this Fnn model. Moreover, we aim at a system that automatically
adapts to changing energy availabilities. In the following we will therefore present a profound
study of the influence of different parameters on the behavior of the Fnn model. Moreover,
we will show how changes in parameter settings induce changes in the behavior of the model.
This study will help us, first, in understanding this complex system, and second, it will help
us in devising different duty-cycling schemes that are tailored for different sensor network
applications. Our study concerns an exploration of the following parameters:

• The gain parameter g (see Eq. 4.3): this parameter might have an influence on the speed
at which values of state variables decrease.

• The probability of spontaneous activation pa: together with the initial activity level



4.1. SIMULATING ANTS’ SELF-SYNCHRONIZATION BEHAVIOR 57

after spontaneous activation (Sa) and the activity threshold θact, parameter pa should
have an important influence on the number of activity peaks that can be observed in
the evolution of the mean system activity. As all three parameters are highly related,
we decided to keep Sa and θact fixed, whereas pa is variable.

• The size of the considered neighborhood: in order to study the influence of different
neighborhood sizes on the system’s behavior, we experimented with different neighbor-
hood definitions.

For each of the above-mentioned parameters we will present a study of its influence on the
system behavior. Results will be shown in terms of various measures:

• The evolution of the mean system activity (A(t)) over time.

• The average fraction of time (over the whole simulation) that an automaton has been
active. Note that this can be computed by averaging A(t) over all time steps of the
simulation. Henceforth we refer to this measure as the activity of the system.

• As shown, for example, in Figure 4.2, the evolution of the mean system activity over
time is characterized by peaks and valleys. With this in mind it is possible to measure
the average height of activity peaks and the average depth of the valleys between two
peaks. Both measures refer to an average over all the time steps of a simulation.

• Finally, we also measure the average number of peaks and the average width of peaks,
again refering to the average over all time steps per simulation. Hereby, the width of a
peak is defined as the number of time steps between the preceeding and the succeding
valley. Occasionally we will refer to this measure also as the length of an activity phase.

The above mentioned measures are always shown in graphical form, and additionally also in
numerical form. Finally, let us mention that, apart from graphics that show the evolution
of the mean system activity over time, all other graphics were produced on the basis of 50
independent runs of the system.

4.1.3 Study Concerning Gain Parameter g

Given Eq. 4.3, it is reasonable to assume that the gain parameter g regulates the speed (in
terms of the number of iterations) in which automata will turn inactive after activation. In
order to confirm this we conducted a series of experiments with varying values of g. More
specifically, we used g ∈ {0.0, 0.02, 0.04, . . . , 0.4}. The experimental setup is the same as
described in Section 4.1.2, and the remaining parameter settings, apart from g, are given in
Table 4.1. In Figures 4.3(c) and 4.3(e) we show the behavior of the system for g = 0.05,
respectively g = 0.2. Remember that the reference value for g was 0.1. Indeed, the graphics
confirm our initial assumption. With g = 0.05, the length of the active phases decreases.
Moreover, activity peaks are lower than in the case of g = 0.1. This is due to the fact that
distant nodes are not able to wait for each other to wake up. On the other hand, when g = 0.2
the length of the active phases increases and, moreover, the height of the activity peaks also
increases (see Figure 4.3(e)).

It is important to note that the increase in width and height of the activity peaks also
results in an overall higher activity of the system. Figure 4.4(a) shows the activity of the system
as a function of g. In addition, the average height of activity peaks and the average depth of



58 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

valleys are also shown as a function of g in the same graphic. In Figure 4.4(b), respectively
Figure 4.4(c), is shown the average number of peaks, respectively the average width of peaks,
as a function of g. Note that in these three figures the value g = 0.3 represents a phase
transition between two different system behaviors. For values g ≥ 0.3, once active, automata
do not easily return to the inactive state because they receive too much stimulus from other
automata and, hence, activity peaks are higher and longer. Note that in the extreme case just
one long peak covers the whole simulation time. In particular, the measurements obtained
with g = 0.3 are characterized by very large standard deviations. Notice in Table 4.2 that
the number of peaks is much smaller than in the case of g = 0.28 and at the same time much
higher than in the case of g = 0.32. In this situation almost all nodes are active during the
whole simulation time, but in a few occasions some nodes switch to the inactive state for a
few time steps (the average system activity is 0.997745 and the average depth of valleys is
0.955654). Table 4.2 shows the results in numerical form.

4.1.4 Study Concerning the Probability of Spontaneous Activation (pa)

While parameter g is responsible for the shape of the activity peaks, it is reasonable to assume
that parameter pa can be used for controlling the density of the peaks in time. This is because
with fewer spontaneous activations of automata, the probability for activity peaks to arise
drops. In fact, this assumption is correct, as shown in Figure 4.5(b) for a case with a lower
value of pa than the one in the reference settings (pa = 0.00025) and in Figure 4.5(f) for a
case with a higher value (pa = 0.004). Clearly, the peak density in Figure 4.5(b) is lower than
the peak density in Figure 4.5(f).

We applied the Fnn for all values of pa from {0, 0.0005, . . . , 0.009, 0.0095}. Figure 4.6
shows the results for all these runs in the same way as in the case of the study concerning
parameter g presented in the previous section. Note that the probability of spontaneous
activation (pa) is related in a logarithmic manner to the average system activity, the average
number of peaks, height of peaks and depth of the valleys. In other words, in case of a linearly
increasing value of pa, the effect on the system behavior is each time decreasing. In any case,
an increasing value of pa leads to an increase in average system activity. As in the case of
parameter g, these results are also given in numerical form in Table 4.3.

In order to study the correlation between parameters g and pa, we applied the Fnn for all
different combinations of parameter values, that is, for all (g, pa) from {0, 0.02, . . . , 0.36, 0.38}×
{0, 0.0005, . . . , 0.009, 0.0095}. Figure 4.7 shows the mean activities obtained in the correspond-
ing experiments in a graphical way. Hereby, each mean activity is mapped to a gray level in
the following way. An activity of zero is mapped to gray level 0.0. Moreover, all activities
in (i − 0.1, i] are mapped to i, for all i = 0.1, 0.2, . . . , 1.0. Therefore, regions with the same
colour are produced by couples of parameter values which lead to comparable average system
activities. Remember that for the behavior of the Fnn as displayed in Figure 4.2 parameter
values pa = 0.001 and g = 0.1 have been used. As expected, this couple of values is located in
a region with an average system activity in [0.3, 0.4) (see Figure 4.7). Generally, similar pa-
rameter settings result in comparable system behaviors for what concerns the average system
activity, but—at the same time—these changes may slightly increase or decrease the average
system activity. Summarizing, this experiment may help in identifying appropriate changes
in the parameter values for obtaining different average system activities without changing the
shape of the activity peaks.

Notice that the graphic of Figure 4.7 also shows that some regions of the parameter domain



4.1. SIMULATING ANTS’ SELF-SYNCHRONIZATION BEHAVIOR 59

T
ab

le
4.

2:
Sy

st
em

be
ha

vi
ou

r
as

a
fu

nc
ti
on

of
g

(i
n

nu
m

er
ic

al
fo

rm
).

g
sy

st
e
m

a
c
ti
v
it
y

n
u
m

.
p
e
a
k
s

p
e
a
k

w
id

th
p
e
a
k

h
e
ig

h
t

v
a
ll
e
y

d
e
p
th

a
v
e
ra

g
e

st
d

a
v
e
ra

g
e

st
d

a
v
e
ra

g
e

st
d

0.
0

0.
00

10
00

86
6.

75
9.

95
76

58
6.

08
18

39
0.

00
89

05
0.

00
10

67
0.

00
00

00
0.

00
00

00
0.

02
0.

10
38

06
70

0.
10

12
.3

52
73

0
5.

13
16

67
0.

27
18

04
0.

10
00

39
0.

06
55

74
0.

07
30

27
0.

04
0.

17
15

83
64

8.
85

13
.3

09
46

5
5.

52
41

04
0.

39
81

66
0.

12
80

90
0.

11
60

72
0.

11
90

22
0.

06
0.

24
10

30
60

7.
30

14
.2

26
82

5
6.

30
50

07
0.

51
45

58
0.

14
82

25
0.

18
48

39
0.

17
59

62
0.

08
0.

31
35

78
60

3.
65

14
.3

24
73

5
7.

03
66

90
0.

61
62

73
0.

15
67

27
0.

26
74

90
0.

23
12

05
0.

1
0.

38
48

35
59

6.
50

14
.4

75
03

0
7.

65
01

89
0.

71
38

12
0.

15
74

14
0.

35
85

71
0.

28
89

75
0.

12
0.

45
66

00
62

4.
75

13
.8

27
64

0
8.

16
44

15
0.

79
12

72
0.

14
90

47
0.

46
84

42
0.

32
64

93
0.

14
0.

52
76

44
65

5.
20

13
.1

70
83

5
8.

24
37

57
0.

83
93

56
0.

14
84

27
0.

54
91

72
0.

34
15

91
0.

16
0.

58
27

46
69

2.
50

12
.4

62
02

0
8.

32
87

60
0.

86
57

05
0.

14
72

16
0.

62
18

56
0.

33
92

32
0.

18
0.

64
18

50
77

0.
65

11
.2

13
62

0
7.

78
88

33
0.

86
61

07
0.

16
02

89
0.

67
35

95
0.

31
76

32
0.

2
0.

70
52

07
81

2.
00

10
.6

42
11

6
7.

55
55

36
0.

86
26

62
0.

16
65

31
0.

70
96

84
0.

28
69

74
0.

22
0.

77
00

05
86

9.
00

9.
94

20
79

7.
43

19
16

0.
86

08
02

0.
16

52
65

0.
74

48
99

0.
25

26
91

0.
24

0.
83

22
53

93
5.

95
9.

21
81

47
6.

98
60

33
0.

87
19

47
0.

14
68

08
0.

78
84

68
0.

20
69

64
0.

26
0.

89
28

82
91

7.
80

9.
40

85
87

7.
49

70
63

0.
89

00
35

0.
12

92
93

0.
83

02
77

0.
17

00
12

0.
28

0.
94

97
24

75
7.

25
11

.3
71

25
5

10
.3

46
84

2
0.

92
89

94
0.

08
88

81
0.

88
74

99
0.

11
68

59
0.

30
0.

99
93

01
63

.9
5

42
4.

47
39

55
55

3.
51

19
40

0.
99

11
88

0.
01

11
19

0.
92

87
96

0.
09

54
34

0.
32

1.
00

00
00

1.
10

91
61

.7
00

00
0

0.
00

00
00

1.
00

00
00

0.
00

00
00

0.
04

95
83

0.
04

95
83

0.
34

1.
00

00
00

1.
00

10
07

9.
00

00
00

0.
00

00
00

1.
00

00
00

0.
00

00
00

0.
00

00
00

0.
00

00
00

0.
36

1.
00

00
00

1.
00

10
07

9.
00

00
00

0.
00

00
00

1.
00

00
00

0.
00

00
00

0.
00

00
00

0.
00

00
00

0.
38

1.
00

00
00

1.
00

10
07

9.
00

00
00

0.
00

00
00

1.
00

00
00

0.
00

00
00

0.
00

00
00

0.
00

00
00



60 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

T
able

4.3:
System

behaviour
as

a
function

of
p
a

(in
num

erical
form

).

p
a

sy
ste

m
a
c
tiv

ity
n
u
m

.
p
e
a
k
s

p
e
a
k

w
id

th
p
e
a
k

h
e
ig

h
t

v
a
lle

y
d
e
p
th

a
v
e
ra

g
e

std
a
v
e
ra

g
e

std
a
v
e
ra

g
e

std
0.0e+

00
0.002596

0.00
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
5.0e-04

0.253731
410.70

21.043815
11.229830

0.661769
0.164758

0.266439
0.270162

1.0e-03
0.385056

603.80
14.308400

7.578235
0.709743

0.155103
0.358297

0.285288
1.5e-03

0.466959
730.45

11.829770
6.510177

0.742673
0.149786

0.430713
0.281512

2.0e-03
0.518951

789.40
10.942415

5.930112
0.768910

0.145675
0.471673

0.281624
2.5e-03

0.560432
829.70

10.418825
5.571964

0.790301
0.142297

0.507839
0.278614

3.0e-03
0.594247

868.25
9.953564

5.332098
0.805478

0.137431
0.535372

0.273640
3.5e-03

0.622923
899.85

9.604948
5.255778

0.820504
0.133013

0.561153
0.270228

4.0e-03
0.642381

916.15
9.432239

4.992922
0.829570

0.130621
0.577958

0.265658
4.5e-03

0.657663
939.45

9.206944
4.962918

0.839562
0.125103

0.597668
0.260923

5.0e-03
0.672819

951.10
9.082183

4.884656
0.847097

0.121990
0.608578

0.259201
5.5e-03

0.688698
951.05

9.094509
4.902898

0.856861
0.118268

0.621955
0.254377

6.0e-03
0.701389

976.90
8.846738

4.772004
0.859158

0.117021
0.633023

0.249062
6.5e-03

0.710483
974.05

8.875148
4.730330

0.867832
0.115722

0.641728
0.253082

7.0e-03
0.720589

965.05
8.960046

4.769763
0.872024

0.114185
0.646461

0.250785
7.5e-03

0.729345
969.15

8.916217
4.811541

0.882102
0.106784

0.659718
0.249752

8.0e-03
0.738944

980.90
8.810171

4.787113
0.883308

0.107846
0.666492

0.246917
8.5e-03

0.742559
969.20

8.920053
4.815140

0.890834
0.102814

0.670474
0.250320

9.0e-03
0.749659

984.85
8.772679

4.782357
0.887795

0.105400
0.675316

0.243724
9.5e-03

0.756470
976.81

8.841410
4.786449

0.893926
0.102695

0.679667
0.244062



4.1. SIMULATING ANTS’ SELF-SYNCHRONIZATION BEHAVIOR 61

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(a) Behavior of the Fnn model with g = 0.0125

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(b) Behavior of the Fnn model with g = 0.025

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(c) Behavior of the Fnn model with g = 0.05

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(d) Behavior of the Fnn model with g = 0.1

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(e) Behavior of the Fnn model with g = 0.2

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(f) Behavior of the Fnn model with g = 0.4

Figure 4.3: System behavior for selected values of g

are unstable in the sense that small changes in the parameters may lead to rather considerable
changes in the average system activity. As an example observe the region defined by 0.15 ≤
g ≤ 0.3 and 0 ≤ pa ≤ 0.0005. On the contrary, if only the average system activity matters
(in contrast to the shape of the activity peaks), considering values of pa ∈ [0.003 ≤ pa ≤
0.004) results in systems that are not so sensitive to small changes in the values of pa and
g. Considering values in such regions could be helpful when trying to obtain and maintain a



62 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

g

activity
height
depth

(a) Average system activity, peak height and valley
depth

0.0 0.1 0.2 0.3 0.4

0
20

0
60

0
10

00

g

nu
m

be
r 

of
 p

ea
ks

(b) Average number of peaks

0.0 0.1 0.2 0.3 0.4

0
5

10
15

20
25

30

g

w
id

th
 o

f p
ea

ks

(c) Average width of peaks

Figure 4.4: System behavior as a function of g

rather fixed amount of average system activity.

4.1.5 Study Concerning Neighborhoods of Different Sizes

In addition to a change in the value of parameters g and pa we also studied the effect of
neighborhoods of different sizes on the behavior of the Fnn. The reason is the assumption
that the neighbourhood size is directly related to the height of the activity peaks. This
is because the neighbourhood size clearly defines the degree of relation between different
automata. In order to confirm that, a series of experiments has been performed with the six
different neighborhoods as shown in Figure 4.8. In this context remember that N(i, t) was
used in Section 4.1.1 to refer to the set of automata that—at time t—are located at grid
postitions of the Moore neighborhood of size 1 of the grid position on which automaton i
is located. Note that neighborhood N3 as shown in Figure 4.8(c) corresponds to the Moore
neighborhood of size 1. Also note that |N1| < |N2| < . . . < |N6|, where |Ni| refers to the
size of the respective neighborhoods in terms of the covered grid positions. In other words,
the sizes of the considered neighborhoods are strictly increasing from N1 to N6: |N1| = 1,
|N2| = 5, |N3| = 9, |N4| = 13, |N5| = 21, and |N6| = 25.



4.1. SIMULATING ANTS’ SELF-SYNCHRONIZATION BEHAVIOR 63

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(a) Behavior of the Fnn model with pa =
0.000125

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(b) Behavior of the Fnn model with pa =
0.00025

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(c) Behavior of the Fnn model with pa = 0.0005

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(d) Behavior of the Fnn model with pa = 0.001

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(e) Behavior of the Fnn model with pa = 0.002

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(f) Behavior of the Fnn model with pa = 0.004

Figure 4.5: System behavior for selected values of pa

The results are shown in Figure 4.10 in the same way as in Figures 4.4 and 4.6. In Fig-
ures 4.9(b), respectively Figure 4.9(d), the behavior of the Fnn is shown when a smaller,
respectively a larger, neighborhood is chosen with respect to neighborhood N3, which was
used in the initial experiments. The results show indeed that the neighborhood size strongly
influences the height of the activity peaks. When using neighborhood N2 (as in Figure 4.9(b))
the activity peaks are lower than when using neighborhood N3 (see Figure 4.2). And con-



64 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

0.000 0.002 0.004 0.006 0.008 0.010

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pa

activity
height
depth

(a) Average system activity, peak height and valley
depth

0.000 0.002 0.004 0.006 0.008 0.010

0
20

0
60

0
10

00

pa

nu
m

be
r 

of
 p

ea
ks

(b) Average number of peaks

0.000 0.002 0.004 0.006 0.008 0.010

0
5

10
15

20
25

30

pa

w
id

th
 o

f p
ea

ks

(c) Average width of peaks

Figure 4.6: System behavior as a function of pa

versely, when using neighborhood N4 (as in Figure 4.9(d)) the activity peaks are higher than
when using neighborhood N3. The results show that—in general—the larger the neighborhood
the higher the stimulus received by the automata on average.

The remaining three graphics in Figure 4.10 show the relation between the neighborhood
size and the average system activity as well as other variables of the system’s behavior. In
general, the larger the neighborhood size the higher the average system activity. The same
results are shown in numerical form in Table 4.4.



4.1. SIMULATING ANTS’ SELF-SYNCHRONIZATION BEHAVIOR 65

T
ab

le
4.

4:
Sy

st
em

be
ha

vi
ou

r
as

a
fu

nc
ti
on

of
th

e
ne

ig
hb

or
ho

od
si

ze
|N

i|
(i
n

nu
m

er
ic

al
fo

rm
).

|N
i|

sy
st

e
m

a
c
ti
v
it
y

n
u
m

.
p
e
a
k
s

p
e
a
k

w
id

th
p
e
a
k

h
e
ig

h
t

v
a
ll
e
y

d
e
p
th

w
id

th
st

d
h
e
ig

h
t

st
d

d
e
p
th

st
d

1
0.

04
12

48
69

0.
35

12
.5

20
96

0
5.

82
68

13
0.

08
17

22
0.

03
55

09
0.

02
89

29
0.

02
47

08
5

0.
19

08
60

61
3.

05
14

.0
91

95
5

6.
44

78
43

0.
38

65
24

0.
13

29
95

0.
14

50
75

0.
12

97
27

9
0.

38
39

97
59

3.
15

14
.5

70
69

5
7.

70
07

92
0.

71
19

60
0.

15
73

83
0.

35
55

84
0.

28
69

01
13

0.
53

71
13

57
3.

30
15

.0
88

73
0

8.
40

23
42

0.
91

09
96

0.
10

15
97

0.
53

71
32

0.
39

97
29

21
0.

75
42

39
49

1.
35

17
.5

97
06

0
12

.7
94

70
0

0.
92

49
87

0.
11

03
44

0.
64

33
98

0.
36

37
36

25
0.

82
73

20
44

8.
38

19
.3

01
38

6
16

.9
89

05
2

0.
92

67
82

0.
10

49
14

0.
70

38
45

0.
31

73
31



66 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

0.0 0.1 0.2 0.3

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

g

pa

Figure 4.7: Average system activities displayed by means of gray levels (an explanation is given
in the text) for different combinations of values for g and pa. The cross marks the parameter
setting that was used for Figure 4.2.



4.1. SIMULATING ANTS’ SELF-SYNCHRONIZATION BEHAVIOR 67

rs

(a)

rs
rs

rs
rsrs

(b)

rs
rs
rs

rs

rs

rs
rs
rs

rs

(c)

rs rs

rs

rs

rs
rs
rs

rs

rs

rs
rs
rs

rs

(d)

rs
rs
rs

rs
rs
rs

rs rs rs

rs rs rs

rs
rs
rs

rs

rs

rs
rs
rs

rs

(e)

rs
rs
rs
rs
rs

rs
rs
rs
rs
rs

rs rs rs

rs rs rs

rs
rs
rs

rs

rs

rs
rs
rs

rs

(f)

Figure 4.8: Considered set of neighborhoods. Graphics (a) to (f) show neighborhoods N1 to
N6.



68 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(a) Behavior of the Fnn model with N1

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(b) Behavior of the Fnn model with N2

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(c) Behavior of the Fnn model with N3

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(d) Behavior of the Fnn model with N4

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(e) Behavior of the Fnn model with N5

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

(f) Behavior of the Fnn model with N6

Figure 4.9: System behavior for selected values of |Ni|



4.1. SIMULATING ANTS’ SELF-SYNCHRONIZATION BEHAVIOR 69

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| N_i |

activity
height
depth

(a) Average system activity, peak height and valley
depth

0 5 10 15 20 25

0
20

0
60

0
10

00

| N_i |

nu
m

be
r 

of
 p

ea
ks

(b) Average number of peaks

0 5 10 15 20 25

0
5

10
15

20
25

30

| N_i |

w
id

th
 o

f p
ea

ks

(c) Average width of peaks

Figure 4.10: System behavior as a function of |Ni|.



70 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

4.2 Adaptation to Sensor Networks

Based on the Fnn model described in the previous section we developed a system intended
for the management of duty-cycling in mobile sensor networks. In this context the interested
reader should note that the following system is implemented in C++ as a discrete event simu-
lation. We decided against the use of sensor network simulators such as Omnet++/Castalia,
NS-2, or Shawn, just to name a few. The reason for this decision was our aim of first studying
and understanding the intrinsic properties of the system before adapting it to specific net-
work simulators, MAC protocols, and sensor network devices. In our opinion, this first step
is strictly necessary due to the complex nature of the system that we propose. Therefore,
the study presented in the following is based on discrete event simulation, neglecting physical
obstacles such as, for example, packet loss. Nevertheless, in the last section of this work we
present a discussion on the adaptation of the presented system to sensor network simulators.
Moreover, we show first results that indicate that the proposed system is very permissive for
what concerns packet loss.

As mentioned already in the introduction, sensor networks are composed of numerous
small devices which are deployed in some area. In order to account for the fact that the
system clocks of the different sensor nodes may not be perfectly synchronized, the discrete
event simulation that we present in the following allows a different clock cycle for each sensor
node. In the following we assume that the system has an absolute step frequency of ∆g time.
These time steps are used for logging information. Moreover, each individual sensor node i
has its own step frequency of ∆i time. For all sensors i, ∆i was chosen to be a slight variation
of ∆g. More specifically, ∆i was chosen randomly with mean ∆g and a standard deviation of
∆g/20 for each sensor i at the start of each simulation experiment.

4.2.1 System Components

A sensor network consists of k mobile sensor nodes with time-dependent positions in the
[0, 1] × [0, 1] square. Sensor nodes behave similarly to automata in the Fnn model. More
in detail, each sensor is an independent entity which has a state variable Si(t) and a binary
variable ai(t) that specifies if the sensor node is either active or inactive depending on the
value of Si(t). This is determined in the same way as in the case of the Fnn; see Eqs. (4.1)
and (4.2).

For updating their state variables sensor nodes use Eq. (4.3) from the description of the
Fnn model. However, the definition of function hi(·) is now redefined due to the fact that
mobile sensor nodes move in continuous space (in contrast to a grid structure) and are equipped
with omni-directional radio antennas for communication. Note that a sensor i at time t
can receive the transmission of a sensor j, if and only if d(pi(t), pj(t)) ≤ rj(t), where pi(t),
respectively pj(t), denotes the position of sensor i, respectively sensor j, at time t, d(·, ·) is the
Euclidean distance, and rj(t) is the transmission radius of sensor j at time t. Accordingly, the
neighborhood N(i, t) of sensor i at a certain time t is defined as the set of all sensors whose
transmissions i is (potentially) able to receive at time t; see Figure 4.11 for a graphical example.
In this context, given two sensors i and j, the fact that i ∈ N(j, t) does not necessarily imply
that j ∈ N(i, t), and vice versa.

Formally, function hi(·) is re-defined as follows:

hi(t) := Si(t) + S , (4.6)



4.2. ADAPTATION TO SENSOR NETWORKS 71

bcj

bck

bc
l

bc
r

bc
i

rs

rs

rs

rs

rs

Figure 4.11: Example of the neighbourhood N(i, t) of a sensor i. N(i, t) = {j, r, l}, because
i is located within the transmission radius of sensors j, r and l. However, i is not located
within the transmission radius of sensor k. Note that circles represent active sensors, whereas
squares represent inactive ones.

where S is the sum of the values Sj(z) of the state variables of other sensors j whose transmis-
sions sensor i has received at any time z ∈ (t−∆i, t], that is, at any time since the last periodic
update of its own state variable. Concerning the movement of sensor nodes, a variation of
the random direction movement (RDM) model [164] was considered. In the RDM model, each
sensor has a velocity v and a direction of movement that is chosen randomly at the beginning
of the simulation. All sensors move at their own speed (v space units per ∆i time) and in
their own direction. In case they reach the border of the area of deployment, they choose a
new random direction. Our variation of this model is as follows. For the sake of achieving a
movement pattern more similar to the one of automata in the Fnn model, a new direction
is chosen by each sensor at each time step. In case a sensor tries to reach a position outside
the area of deployment it will be forced to stay at the border until the next step (when a new
direction will be chosen). For simplicity reasons we have assigned the same speed to all sensor
nodes, v = 0.001. Notice that mobility is not necessarily an active property. Passive mobility
can, for example, be observed when sensors are attached to moving objects such as animals
or cars, or when sensors are moved by air or water currents.

The system components outlined above are summarized as a so-called sensor event in
Algorithm 4. As previously mentioned, the system outlined above is simulated using discrete
event simulation. At the start of each simulation, the global system clock, as well as the
individual sensor clocks, are initialized to 0. Moreover, sensors’ state variables are initialized
to an activity level of Sa, that is, Si(0) := Sa, i = 1, . . . , k. Events of the system are either
global system events or sensor events. Global system events are scheduled at times t = z∆g,
where z = 0, . . . , 10080. Assuming that ∆g corresponds to one minute, the simulations that
are performed span 7 days each. For each sensor i, a sensor event is scheduled at times
t = z∆i for all z > 0 such that t ≤ 10080∆g . In other words, sensor events are scheduled until
the simulation stops. As in the case of the Fnn, results from the first day of simulation are
discarded to let the system stabilize.



72 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

Algorithm 4 Event of sensor node i at time t

1: Calculate value Si(t) for state variable Si (see Eqs. (4.3) and (4.6))
2: Calculate ai(t) (see Eq. (4.1))
3: if ai(t) = 0 then
4: Draw a random number p ∈ [0, 1]
5: if p ≤ pa then Si(t) := Sa and ai(t) := 1 endif
6: end if
7: Make a transmission of Si(t) with radius ri(t)
8: Move according to the mobility model

4.2.2 Comparison to the FNN Model

In an initial experiment we wanted to verify that the behavior of a sensor network as out-
lined above is comparable to the behavior of the automata in the Fnn model. Therefore,
for parameters Sa, θact, g and pa we used the parameter settings as provided in Table 4.1.
Moreover, we used a number of k = 120 sensors and the transmission radius for each sensor
was determined as follows. Remember that to obtain the behavior of the Fnn as outlined in
Figure 4.2 the Moore neighborhood of size one was used. This means that each automaton
received input from automata that resided on the 9 closest grid positions out of 25× 25 = 625
grid positions. In order to achieve neighborhoods of approximately the same size (in terms
of the area), the transmission radius ri(t) was fixed for all sensors i and all time steps t to

r = 0.07, due to the fact that
√

9
625·π ≈ 0.07. The resulting evolution of the mean system

activity (A(t)) over time is shown in Figure 4.12, exemplary of the fourth day of simulation.
Indeed, comparing Figure 4.12 with Figure 4.2 indicates that the behavior of the Fnn model
and the sensor network system that we developed are comparable.

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

m
ea

n 
ac

tiv
ity

Figure 4.12: Evolution of the mean system activity (A(t)) of a sensor network with 120 sensors
for the fourth day of simulation.



4.3. ADAPTATION TO CHANGING ENERGY AVAILABILITIES 73

4.3 Adaptation to Changing Energy Availabilities

Sensor networks are sometimes deployed in remote areas (like the backcountry or oceans) where
power supply is not easily available. For this reason sensor nodes are generally equipped with
batteries, and energy turns into a scarce resource. Remember that duty-cycling is one possible
solution for extending network lifetime. However, in order to achieve a really independent and
long-living sensor network, sensor nodes must—in addition—be able to harvest energy from
the environment. In this section we introduce an extension of the system described in the
previous section in order to obtain an energy-aware duty-cycling mechanism that adapts to
changing energy availabilities. This extended system will henceforth be labelled Antcycle.
For achieving such a system we will profit from the understanding of the Fnn model that
was gained in Section 4.1. In particular, a variable transmission radius will be used to control
the height of the activity peaks, and a variable probability of spontaneous activation (pa) to
control the frequency of the activity peaks. As as example we assume that sensor nodes are
equipped with solar cells, which are able to transform sun light into electrical power. However,
we want to clarify at this point that the proposed mechanism is in fact independent of the
specific form of energy harvesting.

Antcycle can be described as follows. Each sensor i has a battery. The battery level
of sensor i at time t is denoted by bi(t) ∈ [0, 1]. Hereby, bi(t) = 1 corresponds to a full
battery. The proposed system extension consists in the fact that the transmission radius ri(t)
at time t and the probability of spontaneous activation pai(t) at time t are now defined with
respect to the battery level bi(t) at time t. More specifically, the variable transmission radius
is determined in the following way:

ri(t) := rmin · (1− bi(t)) + rmax · bi(t) , (4.7)

where rmin, respectively rmax, is the lower bound, respectively the upper bound, for the variable
transmission radius. Note that when the battery of a sensor i is fully charged its transmission
radius is set to rmax. Moreover, a static transmission radius can be achieved—if desired—by
setting rmin = rmax. The variable probability of spontaneous activiation (pa) is also made
dependent on the current battery level:

pai(t) := pamin · (1− bi(t)) + pamax · bi(t) , (4.8)

where pamin, respectively pamax, is the lower bound, respectively the upper bound, for the vari-
able probability of spontaneous activation. In the same way as in the case of ri(t), when the
battery of a sensor i is fully charged its variable probability of activation is set to pamax. In
addition, a static transmission radius can be achieved—if desired—by setting pamin = pamax.
The interested reader may note that in contrast to our earlier proposal from [97] the trans-
mission radius and the probability of spontaneous activation depend now in a linear way on
the battery level. This reduces the unpredictability of the system.

In the following we describe the energy model that we used for the simulations performed
in this work. Again, note that this energy model should be seen as an example, and can be
replaced by the real energy model of any of the available physical sensors and solar panels.
We assume that at each time interval (t − ∆i, t] a sensor i consumes a certain amount of
energy that depends on its state. Hereby, esleep and eawake are constants that determine the



74 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

energy consumption of sensors in the inactive and active states, respectively. More specifically,
sensors that are inactive consume the following amount of energy:

ei(t) :=

∫ t

t−∆i

esleep · dt (4.9)

Being inactive represents a state in which a sensor does nothing except for listening to incoming
transmissions. In contrast, a sensor i that is active in (t−∆i, t] consumes an amount of energy
that depends on its current transmission radius:

ei(t) :=

∫ t

t−∆i

eawake · (1 + ri(t−∆i)) · dt (4.10)

Values esleep and eawake strongly depend on the technical properties of the physical sensors
used and on the tasks sensors must execute.

Finally, sensors are able to harvest a certain amount of energy at each interval of time
(t −∆i, t]. Henceforth, the intensity of the light source at time z is denoted by s(z) ∈ [0, 1].
Hereby, s(z) = 0 corresponds to absolute darkness. As in previous work we use the following
model for the evolution of the sun light intensity—that is, for the evolution of s(z)—over time.
In this context remember that in this work a global time step, that is, ∆g, corresponds to one
minute. Therefore, one day consists of 1440 global time steps. More in detail, the following
function is used for modeling the light intensity:

s(t) =











0 , if 0 ≤ ṫ < 420
1−cos( ṫ−420

1140−420
·2π)

2 , if 420 ≤ ṫ < 1140
0 , if 1140 ≤ ṫ < 1440

(4.11)

where ṫ := t mod 1440. Note that this function can be seen as a model of the sun light
intensities of a day (0:00 a.m–24:00 p.m.). However, notice that our system should be able to
adapt to any light intensity function. The one that we used is easily replaceable and should
only be seen as an example. In accordance to real solar panels we assume that only a fraction
f of the available light intensity can be turned into energy:

eharv
i ((t−∆i, t]) := f ·

∫ t

t−∆i

s(z) · dz (4.12)

Simulations of Antcycle start with batteries that are fully charged, that is, bi(0) = 1
∀i ∈ {1, . . . , k}. Algorithm 5 presents a sensor event in Antcycle in the form of pseudo-
code. Concerning the values for parameters rmin, rmax, pamin and pamax after initial experiments
we decided on the following restriction. In case a variable transmission radius is desired,
the relation between rmax and rmin is always fixed as follows: rmax = 2 · rmin. Otherwise,
rmin = rmax. Similarly, in case of a variable probability of spontaneous activation we require
that pamax = 100 · pamin, and pamin = pamax otherwise. In this way, only suitable parameters
for rmin and pamin have to be found. Moreover, initial experiments have shown that these
restrictions still allow for a sufficient degree of freedom.

4.3.1 Initial Experiments with ANTCYCLE

The aim of the initial experiments presented in this section is to study the behavior of the
system when the transmission radius is variable and the probability of spontaneous activation



4.3. ADAPTATION TO CHANGING ENERGY AVAILABILITIES 75

Algorithm 5 Event of sensor node i with energy harvesting capabilities at time t

1: bi(t) := bi(t) + eharv([t−∆i, t])
2: if ai(t) = 1 then
3: bi(t) := bi(t)− ei(t) (see Eq. (4.10))
4: else
5: bi(t) := bi(t)− esleep

6: end if
7: Calculate value Si(t) for state variable Si (see Eq. (4.4))
8: Calculate ai(t) (see Eq. 4.1)
9: pai(t) := pamin · (1− bi(t)) + pamax · bi(t)

10: if ai(t) = 0 then
11: Draw a random number p ∈ [0, 1]
12: if p ≤ pa then Si(t) := Sa and ai(t) := 1 endif
13: end if
14: ri(t) := rmin · (1− bi(t)) + rmax · bi(t)
15: Make a transmission of Si(t) with radius ri(t)
16: Move according to the mobility model

is fixed. Remember that the experiments with the Fnn model in Section 4.1 suggested that
when changing the neighborhood size (which corresponds to changing the transmission radius
of sensors) the height of the activity peaks changes. Therefore, we would assume that with a
variable transmission radius Antcycle will be able to react to changing energy availabilities
by adjusting the height of the activity peaks.

For comparability reasons we decided to apply Antcycle with the same parameter set-
tings as for the experiments with the Fnn model, that is, for parameters Sa, θact, g and pamin

the parameter settings as provided in Table 4.1 were used. Note that the Antcycle pa-
rameter pamin corresponds to parameter pa from the Fnn model. For the purpose of studying
the systems’ behavior with a fixed probability of spontaneous activation we set pamax := pamin.
Moreover, as in Section 4.2, we used a number of k = 120 sensors and a setting of rmin = 0.07.
These parameter settings are summarized in Table 4.5. Note that this table also specifies
the settings for the constants eawake and esleep from the energy model. Remember that these
settings should be seen as an example.

The obtained behavior of Antcycle is shown in Figure 4.13, which shows the evolution
of the mean system activity over time (continuous line), the evolution of the average battery
level of the sensors over time (dashed line) and the evolution of the sun intensity (dotted line).
The graphic shows that in addition to exhibiting a self-synchronizing behavior the system is
now also nicely adapting to changing energy availabilities. Note that when the average battery
level drops, the system reacts by decreasing the height of the activity peaks. On the other
side, when the battery level increases the height of the activity peaks reaches the maximum
of 1.0, which means that all sensors are awake at the same time. Moreover, the width of the
activity peaks increases.

Next, we aimed at studying the effect of changing the setting of rmin. The behavior of
Antcycle for 20 different values of rmin ∈ [0, 0.19] is shown in graphical form in Figure 4.15,
and in numerical form in Table 4.6. In comparison to the reference value of rmin = 0.07, the
behavior of Antcycle for a much smaller value (rmin = 0.325) is shown in Figure 4.14(b).



76 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

Table 4.5: Initial parameter settings for Antcycle.

rmin rmax g pamin pamax f eawake esleep

0.07 0.14 0.1 0.001 0.001 0.0027 0.001 0.0002

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

Figure 4.13: Evolution of the mean system activity of Antcycle with the parameters from
Table 4.5. Additionally, the dashed line shows the average battery level of the sensors, and
the dotted line indicates the evolution of the sun intensity.

Clearly, with this setting the system is not able to adapt to changing energy conditions.
This is because the transmission ranges are generally not large enough for the propagation
of activation through the network. In contrast, the behavior of Antcycle for rmin = 0.1
(which is larger than the reference value rmin = 0.07) is shown in Figure 4.14(e). Note that
with this setting the system is able to adapt to changing energy conditions. However, the
energy consumption is too high. At times of little energy harvesting (during night time) the
sensors use up all the available energy, which means that no activity peaks are generated.
These experiments indicate that a well-working value for rmin strongly depends on the energy
harvesting capabilities of the system.

The average system activity over the whole simulation time is shown as a function of rmin in
Figure 4.15(a). As in the case of the Fnn model, this average system activity strongly depends
on the transmission radius. The average system activity increases with increasing transmission
radius until the sensor nodes start to consume too much energy. At this point the batteries
deploy and the average system activity decreases. Finally, Figures 4.15(b) and 4.15(c) show
that with increasing value of rmin the average number of peaks decreases and the average
width of the activity peaks increases. Note, for example, that for rmin ≤ 0.1 the number of
activity peaks is greater than 500, while for bigger values of rmin the number of activity peaks
decreases dramatically. As mentioned above, this is because activity peaks are much wider
for larger values of rmin.



4.3. ADAPTATION TO CHANGING ENERGY AVAILABILITIES 77

T
ab

le
4.

6:
B

eh
av

io
ur

of
A

n
t
c
y
c
l
e

w
it
h

th
e

pa
ra

m
et

er
se

tt
in

gs
fr

om
T
ab

le
4.

7
as

a
fu

nc
ti
on

of
r m

in
(i
n

nu
m

er
ic

al
fo

rm
).

r m
in

sy
st

e
m

a
c
ti
v
it
y

n
u
m

.
p
e
a
k
s

p
e
a
k

w
id

th
p
e
a
k

h
e
ig

h
t

v
a
ll
e
y

d
e
p
th

w
id

th
st

d
h
e
ig

h
t

st
d

d
e
p
th

st
d

0
0.

01
40

61
45

4.
60

18
.9

96
22

5
8.

05
84

30
0.

02
55

82
0.

00
80

05
0.

00
84

84
0.

00
70

20
0.

01
0.

02
69

09
61

9.
35

13
.9

57
44

0
6.

41
72

50
0.

05
46

34
0.

02
30

39
0.

01
92

56
0.

01
62

29
0.

02
0.

07
09

94
66

6.
45

12
.9

70
20

5
5.

84
53

24
0.

14
68

93
0.

06
05

32
0.

05
04

97
0.

04
53

52
0.

03
0.

13
90

84
64

7.
95

13
.3

50
86

0
6.

12
80

64
0.

27
26

47
0.

10
15

04
0.

10
52

12
0.

09
24

28
0.

04
0.

24
58

81
65

3.
90

13
.2

24
05

0
6.

76
62

02
0.

44
02

83
0.

15
37

70
0.

20
49

28
0.

16
88

08
0.

05
0.

37
86

38
68

2.
25

12
.6

71
64

0
6.

88
79

18
0.

62
56

93
0.

19
41

27
0.

35
16

71
0.

26
03

44
0.

06
0.

48
74

24
73

5.
05

11
.7

59
88

0
6.

69
13

77
0.

73
57

35
0.

19
84

28
0.

47
65

36
0.

30
67

84
0.

07
0.

51
53

16
74

6.
35

11
.5

92
59

0
6.

68
25

55
0.

75
45

79
0.

19
65

89
0.

50
55

41
0.

31
24

08
0.

08
0.

52
56

43
76

6.
05

11
.2

91
90

5
6.

68
40

32
0.

74
60

29
0.

22
03

36
0.

52
04

58
0.

32
81

18
0.

09
0.

53
85

10
71

7.
75

12
.0

47
69

0
7.

99
42

58
0.

74
74

66
0.

25
01

08
0.

55
90

79
0.

34
36

96
0.

1
0.

55
40

01
56

4.
70

15
.3

27
83

5
12

.7
85

25
0

0.
77

19
61

0.
25

20
40

0.
60

23
31

0.
34

88
09

0.
11

0.
56

51
43

38
6.

40
22

.5
11

20
0

24
.7

35
78

0
0.

77
27

93
0.

25
49

45
0.

61
07

10
0.

34
53

82
0.

12
0.

56
96

45
26

5.
95

32
.4

84
55

0
42

.3
37

45
5

0.
77

23
24

0.
26

02
46

0.
61

82
63

0.
34

51
11

0.
13

0.
57

08
18

17
1.

40
47

.8
41

76
5

71
.4

77
24

5
0.

77
66

12
0.

24
49

35
0.

62
05

00
0.

33
60

90
0.

14
0.

56
87

90
11

8.
70

64
.6

16
47

5
10

4.
67

26
05

0.
76

27
30

0.
24

59
14

0.
57

41
79

0.
33

57
70

0.
15

0.
56

45
01

90
.1

5
84

.5
97

87
0

14
5.

11
52

85
0.

69
84

18
0.

25
44

93
0.

44
39

57
0.

30
35

74
0.

16
0.

55
91

69
83

.8
5

89
.8

50
27

5
15

4.
75

60
00

0.
70

67
41

0.
25

11
55

0.
42

98
11

0.
29

66
64

0.
17

0.
55

39
26

83
.5

5
89

.2
53

16
5

15
4.

92
88

50
0.

69
81

58
0.

24
93

64
0.

40
32

25
0.

28
37

39
0.

18
0.

54
91

95
94

.7
0

78
.4

44
09

0
13

6.
77

01
00

0.
71

97
08

0.
23

70
79

0.
42

93
83

0.
27

82
25

0.
19

0.
54

39
20

92
.0

0
81

.6
64

25
2

14
2.

01
95

24
0.

71
46

29
0.

24
29

63
0.

41
05

16
0.

27
01

41



78 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(a) Behavior of Antcycle with rmin = 0.01625

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(b) Behavior of Antcycle with rmin = 0.0325

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(c) Behavior of Antcycle with rmin = 0.065

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(d) Behavior of Antcycle with rmin = 0.081

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(e) Behavior of Antcycle with rmin = 0.1

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(f) Behavior of Antcycle with rmin = 0.11

Figure 4.14: Antcycle behavior for selected values of rmin.



4.3. ADAPTATION TO CHANGING ENERGY AVAILABILITIES 79

0.00 0.05 0.10 0.15 0.20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rmin

activity
height
depth

(a) Average system activity, peak height and valley
depth

0.00 0.05 0.10 0.15 0.20

0
20

0
60

0
10

00

rmin

nu
m

be
r 

of
 p

ea
ks

(b) Average number of peaks

0.00 0.05 0.10 0.15 0.20

0
20

40
60

80
10

0

rmin

w
id

th
 o

f p
ea

ks

(c) Average width of peaks

Figure 4.15: Antcycle behavior as a function of rmin.



80 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

4.4 Further experiments

The experiments concerning Antcycle that were presented in the previous section were
aimed at giving a first indication of the way in which the proposed system works. In contrast,
in this section we present a deeper experimental study which is concerned with robustness,
scaling, and the search for suitable parameter settings in order to serve different application
scenarios.

4.4.1 Robustness

For practical applications it is very important that a system is robust, that is, that its behavior
with the same parameter settings is always the same, or at least comparable. In order to test
the robustness of Antcycle we applied the system 10 times with the parameter settings as
given in Table 4.5. The results are presented in the form of box plots in Figure 4.16. Hereby,
for each application of Antcycle the corresponding box consists of exactly one value for
each of the 120 sensors. Three different measures are presented. In Figure 4.16(a) a box
consists of the average activity of each sensor over the whole simulation time, that is, the
fraction of time steps in which a sensor has been active. Furthermore, in Figures 4.16(b)
and 4.16(c) a box consists of the minimum, respectively maximum, battery level of each
sensor. The information that is given by these three graphics can be summarized as follows.
The low height of the boxes indicates that—within each application of Antcycle—the 120
sensors behavior similarly. Moreover, the similarity of the 10 boxes per graphic indicates that
Antcycle behaves comparably over different applications with the same parameter settings.

4.4.2 Application Scenario: Environmental Monitoring

In Section 4.3.1 we have shown that with a variable transmission radius and a fixed probability
of spontaneous activation Antcycle adapts to changing energy conditions by varying the
height of the activity peaks. Note that an activity peak of a height less than 1.0 means that
not all sensors have been activated. This behavior may be suitable for tracking applications
where sensors do not necessarily have to be active all at the same time. In tracking it is rather
important that the object to be tracked does not escape unnoticed. In order to reach this
goal, the whole area of deployment should be equally observed without neglecting any region.
However, for that purpose it is not necessary that all sensors are active at the same time.

Nevertheless, when considering, for example, an application such as the monitoring of some
environmental measure such as the temperature, it is desirable that all sensors are active at
the same time, such that measurements can be taken at similar times. In other words, for an
application such as environmental monitoring it would be desirable for the system to adapt to
changing energy conditions by adjusting the frequency of peaks, while the height of the activity
peaks is always maximal. In this context, remember that from the experiments performed in
Section 4.1 we have learned the following:

• By increasing the probability of spontaneous activation pa of the Fnn model, the fre-
quency of the activity peaks and the average system activity can be increased.

• Increasing the neighborhood size increases the height of the activity peaks as well as the
average system activity.



4.4. FURTHER EXPERIMENTS 81

Table 4.7: Parameter settings of Antcycle for environmental monitoring.

rmin rmax g pamin pamax

0.16 0.16 0.05 0.00001 0.001

• The lower the value of parameter g, the faster the value of the variables Si (the stimulus)
will decay and the lower the average system activity.

Combining these insights, a new set of parameter values has been designed which is character-
ized by the fact that the probability of spontaneous activation is now variable and depending
on the battery level, whereas the transmission radius is constant and the value of g is de-
creased in comparison to experiments presented earlier in this work. These parameter settings
are outlined in Table 4.7. In Figure 4.17 the corresponding behavior of Antcycle is shown.
Indeed, with the new parameter settings the system adapts to changing energy conditions by
adjusting the frequency of the peaks, while their height is always maximal.

In order to study the change of system behavior when changing the value of pamin, we
applied Antcycle with the same parameter settings and for all values of pamin from {0, 5 ·
10−6, 10−5, . . . , 9.5 · 10−5}. The results are shown in graphical form in Figure 4.19 as well as
in numerical form in Table 4.8. As expected, an increasing value of pamin causes a logarithmic
increase in average system activity, average peak height, average valley depth, and in the
average number of peaks. On the other side, after an initial increase, the average peak width
decreases.

4.4.3 Scaling

So far we have only studied sensor networks of size 120, that is, networks with 120 sensor
nodes. However, when changing the size of the network it is intuitively clear that at least
some parameter values must be adjusted in order to maintain a functional system. Note
that when changing the network size, the node density changes. Hence, it is reasonable to
assume that for maintaining the shape of the activity peaks, the transmission radius and
the probability of spontaneous activation should be adapted to the new network size. In the
following we present a solution to this problem. With knew, pa

new
and rnew we refer to the

number of nodes, the probability of spontaneous activation and the transmission radius of the
new, differently sized, network. Hereby, pa

new
and rnew correspond, respectively, to pa and r

as calculated depending on the current battery level in Equations 4.8 and 4.7. First, in order
to obtain the same wake-up rates as in the case of a 120-node network, the following rule can
be applied:

pa
new

:= pa ·
k

knew

, (4.13)

where pa and k are the parameters from the original network. Note that this rule increases the
probability of spontaneous activation of the nodes when the network population is decreased,
and vice-versa when the number of nodes increases. Moreover, the average number of nodes’
spontaneous activations per time unit are maintained. Next, we introduce a rule for adapting
the transmission range. The basic idea is to have a constant average number of sensors being
reached by a transmission. Due to the fact that the sensor nodes form a random topology at



82 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

T
able

4.8:
B

ehaviour
of

A
n
t
c
y
c
l
e

w
ith

the
param

eter
settings

from
T
able

4.7
as

a
function

of
p
am
in

(in
num

erical
form

).

p
am
in

sy
ste

m
a
c
tiv

ity
n
u
m

.
p
e
a
k
s

p
e
a
k

w
id

th
p
e
a
k

h
e
ig

h
t

v
a
lle

y
d
e
p
th

w
id

th
std

h
e
ig

h
t

std
d
e
p
th

std
0.0e+

00
0.000000

0.00
0.000000

0.000000
0.000000

0.000000
0.000000

0.000000
5.0e-06

0.117945
395.30

21.850320
12.213620

0.342251
0.119491

0.112838
0.125643

1.0e-05
0.197409

600.75
14.385550

7.268109
0.389165

0.131972
0.166201

0.145841
1.5e-05

0.250540
705.40

12.262695
6.193192

0.425596
0.139259

0.202669
0.154091

2.0e-05
0.296487

789.70
10.938980

5.528283
0.459466

0.143116
0.241002

0.161658
2.5e-05

0.332310
843.95

10.239175
5.156073

0.484357
0.146197

0.267836
0.164146

3.0e-05
0.361325

879.80
9.825499

4.903315
0.507919

0.146260
0.292590

0.166376
3.5e-05

0.386210
918.10

9.413495
4.760447

0.525886
0.147043

0.315164
0.168549

4.0e-05
0.408836

939.75
9.199885

4.647774
0.545326

0.147101
0.334959

0.169967
4.5e-05

0.425612
954.95

9.050974
4.540828

0.560289
0.147739

0.350548
0.172643

5.0e-05
0.440583

955.80
9.042987

4.471361
0.575304

0.148743
0.361146

0.174580
5.5e-05

0.454010
978.55

8.836479
4.432002

0.585238
0.147050

0.376220
0.174372

6.0e-05
0.469220

990.80
8.722034

4.339729
0.595932

0.147597
0.388996

0.173354
6.5e-05

0.478835
1000.05

8.645221
4.348797

0.604707
0.146845

0.398143
0.174319

7.0e-05
0.487128

999.45
8.649687

4.341639
0.612593

0.148669
0.404365

0.176467
7.5e-05

0.493984
1011.40

8.545203
4.263876

0.618465
0.146561

0.413119
0.174825

8.0e-05
0.500090

1004.30
8.605253

4.264081
0.624530

0.147147
0.417560

0.176420
8.5e-05

0.504807
1019.05

8.483200
4.275953

0.626718
0.147916

0.421923
0.174769

9.0e-05
0.509313

1019.95
8.474150

4.229272
0.631324

0.145016
0.427155

0.174370
9.5e-05

0.513250
1031.33

8.385169
4.187420

0.635327
0.143905

0.433020
0.174910



4.4. FURTHER EXPERIMENTS 83

Table 4.9: Parameter values for networks of different sizes.

Application k rmin rmax g pamin pamax

Tracking
60 0.099 0.198 0.1 0.002 0.002
120 0.07 0.14 0.1 0.001 0.001
180 0.047 0.094 0.1 0.00067 0.00067

Monitoring
60 0.227 0.227 0.05 0.00002 0.002
120 0.16 0.16 0.05 0.00001 0.001
180 0.13 0.13 0.05 0.0000067 0.00067

any moment in time, the following reasoning was used. In general, the number of nodes that
can be reached by the transmission of a sensor can be estimated as follows:

π · r2 ·
k

A
, (4.14)

where k is the total number of sensors and A is the space in which the sensors reside. In our
case it holds that A = 12 = 1. Therefore, Eq. (4.14) reduces to π · r2 ·k. As r is known for the
case of 120-node networks, an adjusted transmission radius can be calculated for networks of
different sizes as follows:

rnew =

√

r2 · k

knew

, (4.15)

where knew is the size of the new network, and rnew is the transmission radius for the new
network. Using these two transformations, the parameter values obtained for both the tracking
and the monitoring applications when considering networks with k ∈ {60, 120, 180} nodes
are summarized in Table 4.9. Moreover, the corresponding evolution of the average system
activity of Antcycle is shown in Figure 4.20. Comparing the graphics in Figures 4.20(a)
and 4.20(b) with the graphic in Figure 4.13 we can state that the proposed parameter value
transformations indeed preserve the behavior of Antcycle in terms of the shape of the
activity peaks. The difference is to be found, of course, in the amount of energy spent. Note
that with decreasing network size the amount of energy spent increases. This is because for
maintaining the shape of the activity peaks, the transmission radius and the probability of
spontaneous activation must be increased when decreasing the network size. The same holds
for the "Monitoring" application. The interested reader may verify this by comparing the
graphics from Figures 4.20(c) and 4.20(d) with the one from Figure 4.17.

4.4.4 The Case of Static Networks

Currently, sensor network applications in practice are still mostly concerned with static net-
works. Therefore, studying the behavior of Antcycle in static networks may be quite inter-
esting for practical applications. However, note that in a static scenario, sensors may become
more easily isolated in the sense that they are not reached by any transmissions of other sensor
nodes. These problems may be solved with an intelligent (non-random) distribution of the
nodes combined with an appropriate transmission radius. Consider, for example, the use of
grid topologies.



84 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

The graphics in Figures 4.21(a) and 4.21(b) are obtained with the same parameter settings
as used for obtaining the Antcycle displayed in Figures 4.13 and 4.17, except for the fact
that sensor nodes are now static. The similarity in system behavior lets us conclude that
Antcycle even works for static networks. However, note that in periods with fewer energy
available the system has now more problems to synchronize. For example, in Figure 4.21(b)
the activity peaks do not reach the maximum of 1.0 when the battery level drops. This is
caused by the variable radius of transmission: when this radius is too low, some sensors may
become isolated, and hence they are not able to stimulate or be stimulated by other sensors.
However, this problem may have a simple solution. When individual nodes realize that they
can not overhear any transmissions of other nodes for an extended period of time, they may
individually and adaptively increase their value of rmin.

4.4.5 A more Flexible Model for the Light Source

In all experiments that were presented so far, a periodically stable light source was considered.
In other words, the evolution of the energy provided by the light source was the same for each
day and for each sensor node. However, when harvesting energy from the environment sensor
nodes have to deal with the uncertainty inherent to natural phenomena. For example, the
amount of energy that can be harvested from sun light strongly depends on the weather.
Other common natural sources for energy harvesting, such as the wind and tides, generally
also show a high variability along extended periods of time. In order to show that the system
proposed in this paper does not depend on a stable energy source, we consider in the following
a stochastic function s′(t) for the sun light intensity at time t, rather than the deterministic
function s(t) from Equation 4.11. This stochastic function is defined as follows:

s′(t) = min {0,max {X(t), 1}} (4.16)

where X(t) is a normally distributed stochastic variable with mean s(t) and standard
deviation σ2. As an example we used σ = 12. The corresponding distribution is shown for
three exemplary values—that is, three different values of s(t)—in Figure 4.22. Note that with
this stochastic function for the sun light intensity, sensor nodes may perceive different light
intensities even if their sensor events are located close in time.

Replacing function s(t) with function s′(t) we repeated the experiment that provided the
results shown in Figure 4.13. The results with function s′(t) are shown in Figure 4.23. When
comparing the graphics in these two figures, it is obvious that the properties of the system are
not altered. This was to be expected, because the average amount of energy that each sensor
node is able to harvest is the same for both light intensity functions. Moreover, the system
does not make a direct use of the amount of harvested energy. Instead, all actions are based
on the cumulative energy that remains in the batteries. Therefore, reasonable variations of
the distribution of energy over time do not directly affect the system’s behavior.

4.4.6 Comparison with the Mechanism by Vigorito

Although at the beginning of this chapter we have outlined the features which make our
duty-cycling mechanism different from others in the literature, we want to demonstrate how
these differences affect the performance of the network. As in the rest of the chapter, we
will primarily analyze the activity phases of the network to understand what are the major
differences between the considered duty-cycling algorithms.



4.4. FURTHER EXPERIMENTS 85

For the purpose of this comparison, we consider three algorithms. All of them are dis-
tributed and do not require any environmental data to be collected before running the algo-
rithm. The first one, labelled random, forces each node to randomly choose at each cycle
if the node should be active or inactive. This choice is made neglecting the current battery
level and the decisions made by all other nodes. The algorithm accepts one parameter, the
expected average activity, which in our experiment is set to 0.35. This means that a node will
become active on average in 35% of all steps and inactive in the remaining 65%. Therefore,
when random is used (see Figure 4.24(a)) an average amount of 35% of the nodes are active
at each time step.

The second algorithm included in this comparison is the adaptive duty-cycling algorithm
by Vigorito [187]. In terms of the task approached, this algorithm is one of the most similar
that can be found in the literature. More in detail, it became specially attractive thanks to
its ability to adapt to the changing energy conditions of the environment without requiring an
environmental profile of the region of deployment of the network. The algorithm is also able to
handle the fact that some regions of a network may be less adequate for energy harvesting than
others, and allows each node to independently establish its average activity. For the purpose of
comparison we consider the algorithm Vigorito which is a reimplementation of the original
algorithm from [187] adapted to work in our simulation framework1. The parameters used
for the simulation of the algorithm are those suggested by the authors with the exception of
the target battery level which is set to 0.65. The target battery level denotes the average
battery level that we expect to find in the nodes at any moment in time. In Figure 4.24(b),
we show the activity phases obtained when the network executes Vigorito. The resulting
activity phases oscillate around a line which is parallel to the average battery level line. This
relation between the average battery level and the fraction of active nodes in the network is
quite reasonable considering the algorithm target. Vigorito successfully adapts the network
activity to the available energy resources. However, it lacks any notion of synchronicity and
all nodes behave independently of other nodes. Unfortunately, when synchronicity is omitted,
the performance of applications which require communication between nodes may decrease
drastically.

The third algorithm used in the comparison is Antcycle with two different sets of pa-
rameters. In Figure 4.24(c) we show the behavior of the algorithm using the parameter setting
for tracking applications but reducing the radius of transmission to rmin = 0.05, whereas in
Figure 4.24(d) the transmission radius is set to rmin = 0.07. Apart from the fact that we
already analyzed that choosing a higher transmission radius may result in higher energy con-
sumption, both algorithm versions are able to correctly manage the energy resources which
prevent early battery depletion. The interesting fact, which is easy to appreciate graphically,
is that Antcycle is not only able to adapt to the changing energy resources. It is able to
do so while synchronizing the activity phases of all the nodes in the network. Moreover, this
is not the only advantage of our novel algorithm. The possibility to fine-tune the parameters
to obtain different activity schemes, such as for example the one proposed for monitoring
applications, is a feature not available in other duty-cycling algorithms.

Finally, we want to emphasize that the comparison between the algorithms is fair. For this
purpose, we analyze the state of the network nodes over the simulation time. All algorithms
consider the same energy profile. Moreover, in all cases, the sun is simulated with the flexible

1The results obtained with our reimplementation of the algorithm are reasonable and in accordance with
those presented in the original paper by Vigorito [187].



86 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

Table 4.10: Comparison of different duty-cycling mechanisms

measures random vigorito
antcycle

rmin = 0.05 rmin = 0.07
activity (avg.) 0.350 0.381 0.391 0.526
battery (avg.) 0.802 0.807 0.772 0.486

dead nodes (%) 0.000 0.000 0.000 0.000
full batteries (%) 0.132 0.151 0.108 0.000

model proposed in Section 4.4.5. Table 4.10 shows aggregate results for ten days of simula-
tion. For each algorithm we provide the average activity level, the average battery level, the
percentage of steps in which a node was dead –the node’s battery level is 0 or not enough to
become active– and the percentage of steps in which the batteries of a node where full and
not able to keep all the energy generated by the harvesting device. Notice that the trade-off
between energy consumption and activity is comparable in all four cases. This is a reasonable
result considering that the four algorithms are given the same energy model and the same
amount of sun power (on average). Moreover, note that no algorithm presents significant
levels of battery depletion. In addition, when the average activity is comparable –all cases
except Antcycle with rmin = 0.07– Antcycle presents lower levels of energy wastage than
random and Vigorito. This fact is related to the better adaptation to the available energy
resources.



4.4. FURTHER EXPERIMENTS 87

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

system applications

1 2 3 4 5 6 7 8 9 10

(a) Average battery levels

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

system applications

1 2 3 4 5 6 7 8 9 10

(b) Minimum battery levels

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

system applications

1 2 3 4 5 6 7 8 9 10

(c) Maximum battery levels

Figure 4.16: Graphics that show the robustness of Antcycle. The x-axis ranges over 10 re-
peated applications of the system. The boxes show for each of the 120 sensors a corresponding
value: (a) the average activity over the simulation time, (b) the minimum battery level over
all simulation steps, and (c) the maximum battery level over all simulation steps. Remember
that the first day of simulation—when sensors start with full batteries—is not used for logging
data.



88 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

Figure 4.17: Evolution of the mean system activity of Antcycle with the parameters from
Table 4.7.



4.4. FURTHER EXPERIMENTS 89

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(a) Behavior of Antcycle with pa =
0.00000025

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(b) Behavior of Antcycle with pa = 0.0000005

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(c) Behavior of Antcycle with pa = 0.000001

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(d) Behavior of Antcycle with pa = 0.0000025

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(e) Behavior of Antcycle with pa = 0.000005

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(f) Behavior of Antcycle with pa = 0.00001

Figure 4.18: Antcycle behavior for selected values of pamin.



90 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

0e+00 2e−05 4e−05 6e−05 8e−05 1e−04

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

pa
min

activity
height
depth

(a) Average system activity, peak height and valley
depth

0e+00 2e−05 4e−05 6e−05 8e−05 1e−04

0
20

0
60

0
10

00

pa
min

nu
m

be
r 

of
 p

ea
ks

(b) Average number of peaks

0e+00 2e−05 4e−05 6e−05 8e−05 1e−04

0
5

10
15

20
25

30

pa
min

w
id

th
 o

f p
ea

ks

(c) Average width of peaks

Figure 4.19: Antcycle behavior as a function of pamin.



4.4. FURTHER EXPERIMENTS 91

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(a) Tracking, k = 60

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(b) Tracking, k = 180

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(c) Monitoring, k = 60

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(d) Monitoring, k = 180

Figure 4.20: Evolution of the mean system activity of Antcycle when different network sizes
are concerned. Graphics (a) and (b) concern the "Tracking" setting of the parameters, while
graphics (c) and (d) concern the "Monitoring" setting.

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(a) Static Tracking, k = 120

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(b) Static Monitoring, k = 120

Figure 4.21: Behavior of Antcycle for static networks. Graphic (a) concerns the "tracking"
application, whereas graphic (b) concerns the "monitoring" setting of the parameter values.



92 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

s(t)

de
ns

ity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4.22: Three examples for the distribution of the sun light intensities: with mean
s(t) = 0.5 (solid line), s(t) = 0.1 (slashed line), and s(t) = 0.9 (dotted line).

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

Figure 4.23: Evolution of the mean system activity of Antcycle when using the stochastic
function for the sun light intensities from Equation 4.16.



4.4. FURTHER EXPERIMENTS 93

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(a) Behavior of random with mean activity
0.35.

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(b) Behavior of Vigorito with target battery
level 0.65.

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(c) Behavior of Antcycle with rmin = 0.05 and
rmax = 0.1.

3000 3200 3400 3600 3800 4000 4200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(d) Behavior of Antcycle with rmin = 0.07 and
rmax = 0.14.

Figure 4.24: Comparison of duty-cycling algorithms



94 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

4.5 Moving to Real Sensor Networks

The step of adapting Antcycle for its use in real sensor networks is a rather small one. Using
Antcycle in real sensor networks (respectively, in sensor network simulators) requires two
steps. First, a protocol must be designed that handles the duty-cycling mechanism. Second,
the protocols for the remaining tasks such as routing, tracking, and monitoring, must be
integrated with the duty-cycling protocol. In the following we briefly outline a possible design
for the duty-cycling protocol followed by results. Note that the current version of the duty-
cycling protocol assumes that there is a time synchronization algorithm executed by a lower
layer of the network.

4.5.1 A Duty-Cycling Protocol

The protocol is organized in periods. Each period has a length of ∆ time units (for exam-
ple, seconds). Moreover, each period is divided in two phases: the first phase is concerned
with actions for the management of duty-cycling, whereas the second phase is dedicated to
application-specific tasks of sensor nodes. A schematic view of this organization is shown in
Figure 4.25. The first phase of each period is generally very short. In this phase all nodes
may receive transmissions from neighboring nodes. Moreover, each sensor node executes one
duty-cycling event. The outcome of the first phase decides if a sensor node will be active or
inactive for the second phase of the corresponding period. In case of being active, a sensor
node is available for user-defined applications such as environmental monitoring and tracking.
However, if a sensor node is inactive, the radio will be turned off and the sensor node will
sleep until the start of the subsequent period.

0 ∆ 2∆ 3∆

DC User application DC User application DC User application

Figure 4.25: Time management between the duty-cycling mechanism and possible user appli-
cations. The protocol is organized in a sequence of time periods of length ∆. The first phase
of each period is dedicated to duty-cycling (DC), whereas the second phase is concerned with
user applications.

In the first phase of each period, each sensor node executes exactly one duty-cycling event.
The exact time for the execution of this event is randomly chosen by each sensor node in
each period. In addition to the state variable Si (see Section 4.2.1), a sensor node i maintains
a queue Qi for incoming duty-cycling messages from neighboring sensor nodes. Messages
m ∈ Qi contain a single field mactivity. Let us assume that m was sent by sensor node j. In
this case, field mactivity contains the value of the state variable Sj of sensor node j at the time
the message was sent. During the execution of sensor node i’s duty-cycling event, the value
of state variable Si is updated depending on the messages in Qi. Subsequently, sensor node
i sends a duty-cycling message, with the new value of Si, using a certain transmission power
level which depends on the battery level. More specifically, the value of state variable Si of a
sensor node i is computed as follows:

Si := tanh



g · (Si +
∑

m∈Qi

mactivity)



 , (4.17)



4.5. MOVING TO REAL SENSOR NETWORKS 95

where g is again the gain parameter whose value determines how fast the value of variable Si

diminishes. After this update, all messages are deleted from Qi, that is Qi := ∅.
For the working of the duty-cycling mechanism, the choice of the power level for the

transmission of the duty-cycling messages plays a crucial role. We assume a standard an-
tenna model which allows sensor nodes—for each transmission—to choose from a finite set
P = {P 1, . . . , Pn} of different transmission power levels2. For the sake of simplicity we iden-
tify transmission power levels with the transmission radii to which they translate. In other
words, Pi (for i = 1, . . . , n) henceforth refers to the transmission radius of the corresponding
transmission power level. The choice of a transmission radius for sensor node i depends on
its battery level bi ∈ [0, 1]. In this context, note that the transmission radius ri as defined
in Equation 4.7 represents somehow an ideal transmission radius, which must be translated
into a corresponding real transmission radius denoted by Ti. This may be done as follows:
Ti := P k ∈ P such that

ri ∈
(

(P k−1 + P k)/2, (P k + P k+1)/2
]

(4.18)

At this point it is important to realize that the transmission radius Ti is only used for sending
the duty-cycling message. For other messages that are sent in the second phase of each
period, the user application is responsible for choosing transmission radii. The duty-cycling
event described above is summarized in Algorithm 6.

Algorithm 6 Duty-cycling event of a sensor node i

1: Compute new value for state variable Si (see Eq. 4.17)
2: Calculate ai (see Eq. 4.1)
3: if ai = 0 then
4: Draw a random number p ∈ [0, 1]
5: if p ≤ pa then Si := Sa and ai := 1 endif
6: end if
7: Determine transmission power level Ti (see Eq. 4.18)
8: Send duty cycling message m with mactivity := Si with transmission power level Ti

As mentioned above, the battery level of the sensor nodes is responsible for their choice of
a transmission power level for sending the duty-cycling message. Therefore, the battery level
of course affects the communication topology in the context of the duty-cycling mechanism.
As an example, consider a network of 120 nodes randomly located with static positions in
a region of one square kilometer. Suppose that the minimum transmission power level P1

reaches a distance of 100 m and the maximum transmission power level reaches a distance
of 200 m. In Figure 4.26(c) we show the communication topologies that result from fully
charged batteries. Over time nodes will consume energy and, especially during night, battery
levels will start to decrease. This decrease in the amount of available energy causes changes
in the communication topology due to the effect of Equation 4.7. The topology obtained with
the same node locations as in the previous example but with batteries filled just to half of
their maximum capacity is shown in Figure 4.26(b). Finally, Figure 4.26(a) shows the induced
topology when batteries are nearly empty.

2Current sensor hardware such as iSense nodes or SunSPOTs are equipped with such antennas.



96 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

Table 4.11: Energy parameters.

Tx/Rx (4 bytes) 7.43µC
Radio On 12.8mA
Radio Off 0.025mA

Battery capacity 2600µC
Energy harvesting (f) 1.6W

Max. Tx Power 500m

4.5.2 Experimental Evaluation

For the experimental evaluation we used the sensor network simulator Shawn [68], which is
a discrete event simulator with a very high level of parameterization. The user can easily
run experiments simulating the behavior of different sensor nodes and also add own sensor
node specifications. A peculiarity of Shawn is the fact that packet collisions are not explicitly
considered. Instead, Shawn simulates these collisions and the consequent packet loss under dif-
ferent constraints and in different scenarios. Thus, any packet-loss model can be implemented.
Moreover, we did not implement directly the algorithm in Shawn, but decided to contribute
with this algorithm to the Wiselib [13] (a general purpose cross-platform library for WSNs).
Algorithms implemented in Wiselib can be used in Shawn and also executed in different kinds
of sensor networks with independence of many technical specifications, manufacturers or the
operating systems used in each node.

We decided to experiment with iSense sensor node hardware from Coalesenses GmbH [40].
For this purpose, the specification of iSense nodes was added to Shawn. Note that this
hardware is currently used by two of the largest European projects on sensor networks:
WISEBED [67] and FRONTS [66]. These sensor nodes use a Jennic JN5139 chip, a solu-
tion that combines the controller and the wireless communication transceiver in a single chip.
The controller has a 32-bit RISC architecture and runs at 16Mhz. It is equipped with 96kb
of RAM and 128kb of serial flash. The maximum transmission power level of iSense nodes
reaches a distance of about 500m in all directions in open air conditions. In our simulations,
iSense nodes were equipped with solar panels. According to their documentation, iSense
nodes require 0.025mA to work without using any additional peripheral such as the radio or
the sensing devices. The state in which the radio is also turned on requires a power supply of
12.8mA. Additionally, to receive or send a message with 4 bytes of information, as required
by duty-cycling messages, implies a consumption of 7.43µC. The batteries have a maximum
capacity of 2600µC. Energy harvesting by solar panels can reach a maximum nominal value
of 1.6W. This information is summarized in Table 4.11. Finally, let us mention that iSense
nodes offer 6 possible transmission power levels, in addition to the state in which the radio is
turned off. As an example, the corresponding five transmission radii other than the maximum
one are obtained by reducing the maximum transmission radius by 1

6 ,
2
6 ,

3
6 ,

4
6 , and 5

6 .
As no specific user application is considered for the second phase of each period, the

energy consumption of phase two of the proposed protocol has to be simulated. This is done
by removing an amount eawake of energy from the battery for each execution of phase two.
In order to compare the results of the system presented in Section 4.3 with the duty-cycling
protocol executed by Shawn, we repeated the simulations for static networks of 120 nodes (see



4.5. MOVING TO REAL SENSOR NETWORKS 97

Table 4.12: Distribution of the energy consumption in the duty-cycling protocol

Task Energy (%)

Duty-cycling

Tx 0.757
Rx 18.591
Idle 0.001
Active 0.035

User application 80.616

Section 4.4.4) with iSense sensor nodes simulated by Shawn. The chosen parameter values
are the same as the ones presented in Table 4.5. It is important to note that the information
which refers to the power profile of the iSense nodes is obtained by properly rescaling the
values from Table 4.11 to the [0, 1] range. Apart from that, the length of a period was set to
60 seconds, and the length of the first phase was set to 0.05 seconds.

In Figure 4.27 we show the behavior of Antcyle obtained when simulating the duty-
cycling protocol with Shawn. For this initial experiment no packet loss was considered. Note
that the system behavior is very similar to the one of Antcycle when executed by a discrete
event simulator (see Figure 4.21(a)). This result can be seen as a proof of concept for the
adaptation of Antcycle to real sensor networks.

With the next experiment we aim at studying the robustness of the system with respect
to communication failures. The experiment consists in simulating the duty-cycling protocol
under different packet loss rates. A packet loss rate of ploss ∈ [0, 1] means that the probability
of correctly receiving a message is 1−ploss. We repeated the experiment as outlined above for
all packet loss rates between 0 and 1, in steps of 0.01. The results are shown in terms of the
obtained mean system activity for each considered packet loss rate in Figure 4.29(a). It can
be observed that the behavior of the system does not visibly change until a packet loss rate
of about 0.3. This means that the proposed system is quite robust against packet loss. Only
for packet loss rates greater than about 0.3 the system behavior degrades.

4.5.3 Additional Realistic Experiments with the Shawn Simulator

In the following, we present a study of how the energy of the sensor network is spent. Table 4.12
presents the energy consumed by the user application against the energy consumed by the
duty-cycling mechanism over a whole simulation of 43200 periods (that is, 30 days). The
energy spent by duty-cycling is hereby split into the idle and active states as well as the energy
spent for transmitting the duty-cycling messages (Tx) and receiving duty-cycling messages
(Rx). Concerning duty-cycling, note that message reception is the task which consumes most
of the energy. In total, the duty-cycling mechanism consumes approximately 20% of the total
amount of spent energy. This may seem quite high at first. However, consider that this
percentage is strongly dependent on the value of eapp, which we have set to a very moderate
value of 0.001. Increasing this value will obviously cause a decrease in the percentage of energy
spent by duty-cycling.

After these initial studies we will now test the duty-cycling mechanism in two adversarial
scenarios. In first place, it is shown how the system responds to situations with communication
failures. In second place, the behavior of the system is studied in scenarios where energy
harvesting is limited, for example, due to cloudy weather. Finally, we present a mechanism



98 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

for the automatic parameter adaptation of the system for what concerns different network
sizes. This is an important aspect for an algorithm included in a generic algorithm library
such as Wiselib.

Effect of Packet Loss

With the next experiment we aim at studying the robustness of the system with respect
to communication failures. The experiment consists in simulating the duty-cycling protocol
under different packet loss rates. A packet loss rate of ploss ∈ [0, 1] means that the probability
of correctly transmitting any message is 1 − ploss. We repeated the initial experiment as
outlined above for all packet loss rates between 0 and 1, in steps of 0.01. The results are
shown in terms of the obtained mean system activity for each considered packet loss rate in
Figure 4.29(a). It can be observed that the behavior of the system does not visibly change
until a packet loss rate of about 0.3 is considered. This means that the proposed system is
surprisingly robust against packet loss. Only for packet loss rates greater than about 0.3 the
system behavior degrades.

Limited Energy Harvesting

Another interesting question concerns the possible change in system behavior when cloud
densities greater than zero are considered; in other words: when energy harvesting is limited
by bad weather. Therefore, we repeated the initial experiment with a range of different cloud
densities between 0 and 1. Figure 4.29(b) shows the evolution of the obtained mean system
activity when moving from low to high cloud densities. As expected, with increasing cloud
density the mean system activity decreases. Interestingly, the relation between cloud density
and the mean system activity is linear.

Adapting to Different Network Sizes

In Figure 4.29(c) we show the average activity for networks with a number of nodes k ∈ [1..300].
The average activity increases with the number of nodes until the network has between 90
and 100 nodes. In this region the system reaches a 60% of average activity that is preserved
when the number of nodes is further increased. Although the scaling mechanism is used, it
is difficult to obtain the same average activity when the size of the network is reduced. In
the present case, this results in the average activity decreasing linearly when the number of
nodes decreases. This behavior could be expected, less nodes means that to obtain the same
amount of stimulus you need to receive many more messages per cycle. Our scaling algorithm
does not consider any changes in the rate of messages sent. However, the scaling mechanism
still allows the system to self-synchronize. When the number of nodes is increased, scaling the
parameters is enough to reduce the activity in the network and, as a consequence, the number
of messages sent. Therefore is not strange that the system is able to reach the average activity
of the initial case with 120 nodes.

Monitoring Applications

In this section, we have only experienced with the set of parameters used for tracking appli-
cations. However, the parameters for monitoring applications may, of course, also be used by
the simulator. Figure 4.30 shows the activity scheme generated by Antcycle for monitoring



4.5. MOVING TO REAL SENSOR NETWORKS 99

applications. The behavior observed is quite similar to that obtained in previous simulations
(see Figure 4.17) that considered monitoring schemes.

Adding Mobility

Shawn is mainly aimed at working with static WSNs. This is a reasonable assumption for
most WSNs as mobility is generally difficult to achieve. However, in some scenarios such as
nodes deployed on vehicles or buoys, mobility must be taken into account. Previously, in
Section 4.4, we showed that Antcycle was able to work both with mobile and static nodes.
The following experiments are performed using the same version of the RDM mobility model as
explained in Section 4.2.1. Note that RDM and some of its variants are included in the Shawn
simulator. In Figure 4.31(a), respectively Figure 4.31(b), we show the behavior of Antcycle

in Shawn when mobile nodes are used for tracking, respectively monitoring, applications. The
results obtained show that the algorithm is still able to adapt its performance to the energy
available in the system by dynamically adapting the radius of transmission of the antennas or
the probability of spontaneous awakening depending on the parameters set.



100 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

(a) Edges in gray show the com-
munication topology when the
transmission power levels are
such that distances of up to
100 m are reached.

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

(b) Edges in black are the edges
that were shown in gray in (a).
Edges in gray show the new com-
munication links obtained when
the transmission power level is
increased such that distances of
up to 150 m are reached.

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc
bc bc

bc

bc

bc

bc

bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bcbc

bc

bc

bc

bc

bc

bc

bc

bc bc

bc

bc

(c) Edges in black are all edges
from (b). Edges in gray show
the new communication links
obtained when the transmission
power level is increased such
that distances of up to 200 m are
reached.

Figure 4.26: Different communication topologies in a network with 120 randomly located
nodes when different transmission power levels are considered.



4.5. MOVING TO REAL SENSOR NETWORKS 101

13000 13200 13400 13600 13800 14000 14200 14400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

Figure 4.27: Evolution of the mean system activity of Antcycle when run on iSense sensor
nodes simulated by the Shawn sensor network simulator



102 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

13000 13200 13400 13600 13800 14000 14200 14400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(a) Evolution of the mean system activity of
Antcycle with ploss = 0.15

13000 13200 13400 13600 13800 14000 14200 14400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(b) Evolution of the mean system activity of
Antcycle with ploss = 0.30

13000 13200 13400 13600 13800 14000 14200 14400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(c) Evolution of the mean system activity of
Antcycle with ploss = 0.45

13000 13200 13400 13600 13800 14000 14200 14400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(d) Evolution of the mean system activity of
Antcycle with ploss = 0.60

13000 13200 13400 13600 13800 14000 14200 14400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(e) Evolution of the mean system activity of
Antcycle with ploss = 0.75

13000 13200 13400 13600 13800 14000 14200 14400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(f) Evolution of the mean system activity of
Antcycle with ploss = 0.90

Figure 4.28: Antcycle behavior for selected values of ploss.



4.5. MOVING TO REAL SENSOR NETWORKS 103

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

packet loss rate (in %)

m
ea

n 
ac

tiv
ity

(a) Results for different packet loss rates.

fraction of sun power

m
ea

n 
ac

tiv
ity

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

(b) Results for different cloud densities.

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

network size

m
ea

n 
ac

tiv
ity

(c) Results for different network sizes.

Figure 4.29: Behavior of the duty-cycling mechanism under varying conditions



104 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING

13000 13200 13400 13600 13800 14000 14200 14400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

Figure 4.30: Behavior of the duty-cycling mechanism for monitoring applications

13000 13200 13400 13600 13800 14000 14200 14400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(a) Behavior of Antcycle for tracking applications
using mobile nodes.

13000 13200 13400 13600 13800 14000 14200 14400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

activity
battery
sun

(b) Behavior of Antcycle for monitoring applica-
tions using mobile nodes.

Figure 4.31: Behavior of Antcycle when mobile networks are concerned.



4.6. CONCLUSIONS AND FUTURE WORK 105

4.6 Conclusions and Future Work

In this chapter we have presented an in-depth study of the properties of a self-synchronized
duty-cycling mechanism, called Antcycle, that is aimed for the use in sensor networks with
energy-harvesting capabilities. For this purpose, we first studied the properties of the fluid
neural network model on which Antcycle is based. The study of this model allowed us
to design different parameter settings for potentially different applications such as tracking
and monitoring. We also studied Antcyle with respect to robustness and scaling, as well
as its behavior when applied to static networks. Finally, we showed an implementation of
Antcycle for real sensor networks and presented results that have shown that Antcycle

is very robust with respect to packet loss.
The key aspects of Antcycle are as follows. It is a fully de-centralized algorithm that can

adapt the way in which duty-cycling is performed to changing energy availabilities. That is,
when little energy is available in the batteries of the individual nodes, duty-cycling is adapted
such that either the frequency or the length of the awake-phases are reduced. On the opposite,
when a lot of energy is available, the system automatically increases either the frequency or
the length of the awake-phases. Moreover, no prior knowledge about the conditions for energy
harvesting are needed. The system is able to adapt to changing conditions on the fly.

In the last section of this chapter we have used Shawn, a sensor network simulator, which
is prepared to access the Wiselib to test our algorithm against different scenarios in a more
realistic and trustable way. The results show that our algorithm is robust and, even when the
scenario where the sensor network is deployed presents adversarial conditions, the algorithm
is still able to obtain a good performance.

Further studies may focus on analyzing the performance improvements from applications
perspective depending on whether Antcycle is in use or not. Remember that duty-cycling
algorithms do not aim at performing network or user tasks. The goal of duty-cycling is
improving the performance of applications thanks to a better management of energy resources.
In the years to come, when sensor networks become even more popular, many new applications
will be developed for sensor networks. The aim of this work is to enable such applications to
be run on networks whose nodes perform duty-cycled state changes to extend network lifetime.
Although we have offered enough facts that sustain the benefits of using Antcycle in such
cases, the importance of duty-cycling algorithms in WSNs will not be recognized until this and
similar algorithms start enhancing the performance of real applications. Moreover, we expect
that the effort of including this algorithm in the Wiselib encourages developers to explore the
benefits of including Antcycle in their applications.



106 CHAPTER 4. SELF-SYNCHRONIZED DUTY-CYCLING



Chapter 5

Distributed Graph Coloring

Given an undirected graph G = (V,E), where V is the node set and E is the edge set, and a
number k > 0 of colors, a valid k-coloring of the graph is the assignment of exactly one color
to each node such that adjacent nodes (that is, nodes that are connected by an edge) do not
share the same color. Formally, we say that a k-coloring of an undirected graph G = (V,E) is
a function c : V → {1, 2, . . . , k} such that c(u) 6= c(v) for each edge (u, v) ∈ E. The optimiza-
tion version of the graph coloring problem (GCP), which is NP-hard [110], consists in finding
the minimum number k∗ of colors such that a valid k∗-coloring can be found. This number is
called the chromatic number of graph G and is denoted by χ(G). The GCP is quite generic.
Practical applications originate especially from problems that can be modeled by networks
and graphs; for example, communication networks. Several tasks in modern wireless ad-hoc
networks, such as sensor networks, are related to graph coloring. Examples include TDMA
slot assignment [88], detection of mobile objects and reduction of signaling actuators [210],
distributed MAC layer management [79], energy-efficient coverage [32], delay efficient sleep
scheduling [132] or wakeup scheduling [115]. Due to the distributed nature of these networks,
algorithms for solving problems related to graph coloring are generally also required to be
distributed [136]. Such algorithms make an exclusive use of local information for deciding
the color of the nodes, that is, they are characterized by the absence of any central control
mechanism. The goal of this chapter is to devise an algorithm for generating valid colorings
in a distributed manner.

The distributed conception of an algorithm is generally beneficial for its scalability. More-
over, in comparison to centralized approaches; it is generally much easier to adapt a distributed
algorithm to dynamic changes during execution. Unfortunately, the exclusive use of local in-
formation is often not sufficient to completely capture the internal structure of certain graphs
or networks. The following example helps to illustrate the tradeoff between generating color-
ings from a local and a global perspective. Figure 5.1 shows a graph that has been constructed
using four different triangles, that is, complete graphs of three nodes. Here, we distinguish
between three inner triangles (the three groups of nodes that are close together) and one
outer triangle. The three inner triangles are connected to the outer triangle such that each
node of a specific inner triangle is connected to a different node of the outer triangle. Even
in a distributed manner it is fairly easy to obtain optimal colorings for each of the inner
triangles. Depending on the specific color assignment concerning the three inner triangles,
the outer triangle may be colored with the same three colors (as in Figure 5.1(a)) or with

107



108 CHAPTER 5. DISTRIBUTED GRAPH COLORING

three additional colors (as in Figure 5.1(b)). Unfortunately, when coloring the three inner
triangles independently of each other, the probability for the latter case to happen is quite
high, especially when the complexity of the graph is increased by adding more inner triangles.
As mentioned already above, one of the key difficulties when coloring graphs in a distributed
manner is that each node is only provided with local information and, therefore, it is unable
to detect situations such as the one from Figure 5.1(b).

1 2

3

1 2

3

1 2

3

2 3

1

(a) 3-colored composition of tri-
angles

1 2

3

2 3

1

3 1

2

4 5

6

(b) 6-colored composition of tri-
angles

Figure 5.1: Simple graph topology (composed of three inner triangles and one outer trian-
gle). (a) shows an optimal 3-coloring, while (b) shows a sub-optimal 6-coloring. Distributed
algorithms provide most often a 6-colored solution, because global knowledge is necessary to
capture the graph structure.

Our Contribution

In this chapter we propose a distributed algorithm for graph coloring based on the calling
behavior exhibited by male Japanese tree frogs (see Figure 5.2) for the attraction of females.
Several researchers have observed that male Japanese tree frogs decouple their calls [193]. This
property has evolved because females can only localize the males when their calling is not too
close in time. In [3] Aihara et al. proposed a theoretical model for simulating the behavior
of these frogs. The authors describe an oscillator system, where each oscillator has a phase
θ ∈ [0, 2π] that changes over time with frequency ω (where 2π is the time interval between
two calls of the same frog). When the phase reaches 2π, the oscillator fires and returns to
the baseline phase (θ = 0). The proposed system works such that oscillators try to maximize
the distance between their phases. This model works nicely for the desynchronization of
two oscillators. However, when more than two oscillators are involved, the model does not
accurately reflect the real behavior of the frogs. A subsequent work [2] mentions some potential
applications of this model in artificial life and robotics. In both works the author(s) mention
the limitations of the systems when operating with groups of more than two coupled oscillators.
In fact, already with three oscillators the final solution (and its stability) strongly depends on
the initial variable settings.

The desynchronization of the frogs’ calls is achieved in a self-organized way. Therefore,
the proposed algorithm, which is inspired by this self-desynchronization mechanism, can be



109

Figure 5.2: Photograph of a Japanese tree frog (Hyla japonica). This photograph was released
into the public domain by Masaki Ikeda. No licenses apply. The image is also available
from [198].

regarded as a swarm intelligence approach [22, 20]. Swarm intelligence (see also Section 3 of
this thesis) is a field of computer science which is inspired by the collective behavior of social
animals and other self-organizing processes from nature. Successful examples from the litera-
ture include particle swarm optimization (PSO) [113], which is an algorithm for optimization
inspired by bird flocking and fish schooling, and ant colony optimization (ACO) [59], which
is inspired by the foraging behavior of ant colonies. One of the distinguishing properties of
a swarm intelligence approach is the fact that the problem at hand is solved from a local
perspective. Moreover, problem solving is based on the cooperation of rather simple entities.
Instead of each entity trying to solve the problem by itself, they perform simple tasks from a
local perspective. The global problem is solved as a result of cooperation. Therefore, swarm
intelligence principles are well suited for their use in distributed algorithms.

Apart from some minor modifications, it makes use of a model of frogs’ desynchronization
introduced by Aihara et al. in [3]. Moreover, for the purpose of detecting convergence and to
store the best solution found, the proposed algorithm makes use of an overlay tree structure
rooted in a so-called master node. Such a mechanism is common, for example, in the context
of distributed local search algorithms [212]. The algorithm can be easily implemented, for
example, in sensor networks. In addition to competitive results it comes with several advan-
tages, such as, for example, low energy consumption or the potential to adapt to changing
network topology. However, as mentioned before, the main goal of the algorithm is to obtain
valid colorings that use as few colors as possible, while attempting to minimize the number of
iterations needed to achieve these results. An extensive experimental evaluation shows that



110 CHAPTER 5. DISTRIBUTED GRAPH COLORING

the results of the algorithm are comparable or better than state-of-the-art algorithms in terms
of the number of colors used. In particular, the good performance of our algorithm for grid
graphs of any size is remarkable. On the downside, the results also show that our algorithm
may sometimes require a slightly higher number of communication rounds than the baseline
algorithm chosen for comparison.

Before writing this chapter, all the contributions have been made public to other scientists
both in international conferences and journals. The resulting techniques have been improved
with the advice of referees and colleagues in order to obtain a more refined work. The following
list summarizes the publications related to the novel algorithms appearing in this chapter.
Remember that a more extended explanation of the publications is available in Section 1.2.
Also note that this chapter is based on the articles Distributed Graph Coloring: An Approach
Based on the Calling Behavior of Japanese Tree Frogs [94] and FrogSim: Distributed Graph
Coloring in Wireless Ad Hoc Networks – An Algorithm Inspired by the Calling Behavior of
Japanese Tree Frogs [95]:

• Hugo Hernández and Christian Blum. Implementing a Model of Japanese Tree Frogs’
Calling Behavior in Sensor Networks: a Study of Possible Improvements. In GECCO
BIS-WSN 2011 – Proceedings of the Workshop on Bio-Inspired Solutions for Wireless
Sensor Networks. Pages 615–622. ACM Press, New York, 2011.

• Hugo Hernández and Christian Blum. Distributed Graph Coloring in Wireless Ad Hoc
Networks: A Light-weight Algorithm Based on Japanese Tree Frogs’ Calling Behaviour.
In WMNC 2011 – Proceedings of IFIP/IEEE Wireless and Mobile Networking Confer-
ence. Pages 1–7. Best Paper Award. IEEE Press, 2011.

• Hugo Hernández, Christian Blum. Distributed Graph Coloring: An Approach Based on
the Calling Behavior of Japanese Tree Frogs. Swarm Intelligence, 2012. In press.

• Hugo Hernández, Christian Blum. FrogSim: Distributed Graph Coloring in Wireless Ad
Hoc Networks – An Algorithm Inspired by the Calling Behavior of Japanese Tree Frogs.
Telecommunication Systems, 2012. In press.

Prior Work on Graph Coloring

When reviewing previous work, a distinction must be made between centralized and dis-
tributed algorithms. Concerning centralized algorithms, the literature offers both exact ap-
proaches that guarantee to find an optimal solution in bounded time and approximate algo-
rithms. A recent survey can be found in [139]. An example of an exact algorithm is [138],
although—due to the intractable nature of the GCP—larger problem instances can only be
tackled efficiently by heuristic approaches. Especially effective are the tabu search algorithm
from [16], the evolutionary algorithm from [137], the hybrid approach combining tabu search
and evolutionary algorithms from [133], and the variable space search technique from [98].
These algorithms are currently the best centralized metaheuristics for solving the GCP. Ear-
lier remarkable works are the hybrid evolutionary algorithm from [75], the genetic local search
algorithm from [60] and the variable neighborhood search in [10].

When considering distributed algorithms, it is very difficult (if not impossible) to narrow
the state of the art down to a small set of algorithms. This is because distributed algorithms
may be designed with very different goals. These goals may concern, for example, the per-
formance for particular topologies, the minimization of execution time (or communication



111

rounds), the generation of the best colorings possible, or the performance for dynamically
changing topologies. In addition, a general problem is that most proposals are not evaluated
on publicly available sets of benchmark instances. Moreover, results are generally not shown
per instance, making it difficult to compare to the proposed algorithms. In the following,
we focus on algorithms that generate valid solutions and compare their simplicity, solution
quality and time complexity.1 It must also be noted that many of the proposed distributed
algorithms were developed for applications in networks of devices with scarce resources. For
this reason authors often study the message load the algorithm implies and try to minimize
the amount of calculation required by the algorithm. Typically, these algorithms are meant
to work on a lower layer of the network in parallel with the applications or information flows
that the user may require to send. In [72], Fraigniaud et al. study the effect of the amount of
information shared between the nodes on the quality of the obtained colorings.

One of the most general works was presented by Finocchi et al. in [69]. The authors
introduced three versions of a distributed algorithm and studied its behavior under various
conditions. The authors considered both the problem of obtaining O(∆ + 1)-colorings in as
few communication rounds as possible, as well as the problem of generating the best possible
colorings without any limit on the number of communication rounds. Here, ∆ refers to the
maximum degree of a graph. The authors provide extensive experimental results for both cases.
Most of their experimentation is based on random graphs, which are not publicly available.
However, they also present results on a well-known set of publicly available instances from the
DIMACS challenge [71]. As the algorithm proposed in [69] was shown to outperform the state
of the art, we chose this algorithm for comparison. Another remarkable work from the field
of distributed algorithms for graph coloring is the distributed largest-first (DLF) algorithm
introduced in [120]. DLF is an improvement over an algorithm from the literature consisting
in randomly ordering the nodes and using this order to allow nodes to choose colors with the
only rule that colors which are already assigned to neighbors cannot be used. DLF differs
from the original algorithm version in the order of the nodes. In DLF, the higher the degree
of a node the earlier the node will be able to choose a color. The random order is only used
to break ties between nodes which have the same degree. DLF achieves better results than
the original algorithm on random graphs.

Concerning distributed algorithms based on swarm intelligence principles, the literature
offers, for example, a method inspired by the synchronous flashing of fireflies (see [124]). This
algorithm, which allows a simple implementation, reaches valid colorings fast, in a constant
number of communication rounds, regardless of the size of the network. However, this work
does not focus on minimizing the number of colors. The first intent to use the calling behavior
of frogs for graph coloring was based on a system of coupled oscillators and presented in [126].
Valid colorings are obtained by assigning a color to each phase used by the nodes (that is, the
oscillators). Therefore, if two nodes are synchronized to exactly the same phase, they will be
sharing a common color (the authors consider a function f : [0, 2π] → (R,G,B), where 2π is
the time frame between two callings of the same frog). The main drawback of this approach is
that nodes with very near phases will be colored with different colors. As such small deviations
usually occur when the number of nodes in the system increases, the algorithm does not obtain
competitive results. This work was further extended by adding a parameter for setting the
number of allowed phases a priori [125]. Experimentation shows that the system is able to

1In the scope of this paper the time complexity is, as usual, measured in terms of communication rounds.
A communication round is the unit of time in which each node is allowed to send at most one message.



112 CHAPTER 5. DISTRIBUTED GRAPH COLORING

find optimal solutions for small topologies, given that the optimal number of colors is known.
Note that in contrast to these works, the algorithm that we propose aims to minimize the
number of colors used without any prior knowledge about the optimal solution.

The graph coloring problem has also been studied in the context of belief propagation
methods [154] from the field of artificial intelligence. These methods, which belong to the
family of message passing algorithms, define ways to adequately propagate and fuse informa-
tion flows in networks. The goal of belief propagation is that each node—once a stable state
is reached—should be able to provide a measure of belief about the satisfaction of a certain
predicate. However, belief propagation techniques are generally applied to infere properties of
large problem instances (for example, about the distribution of solutions in the search space)
rather than to find actual solutions to specific problem instances. Some works about graph
coloring from this perspective are those that study the decisional version of the ∆-coloring
problem. In [24], the authors provide a survey propagation [140] method—one of the categories
of belief propagation methods—for finding valid colorings and in [119] belief propagation is
used for counting solution clusters in the search space.

The literature also offers many works that consider distributed graph coloring from a
theoretical point of view. Most provide upper bounds for the coloring quality as well as the
time complexity under different constraints. Hansen et al. [83] studied the DLF algorithm,
which runs in O(∆2log n) communication rounds for arbitrary graphs and that was proven to
provide good upper bounds for specific topologies. This algorithm was based on the largest-first
approach which consists in giving priority for choosing a color to the nodes with the highest
degree (∆). This work was further extended by Kosowski and Kuszner [117], who reduced the
time complexity to O(∆log n log ∆). These authors also proved that some other approaches,
like smallest-last or dynamic-saturation, are not suitable for distributed environments. Later,
in [148] Moscibroda and Wattenhöfer introduced an algorithm for obtaining O(∆)-colorings
in O(∆log n) time when considering random geometric graphs and other well-known models
for wireless multi-hop networks (no results are given for other topologies). Other theoretical
works of interest for the development of new algorithms are: the game theoretic approach
for efficient graph coloring from Panagopoulou and Spirakis [152]; the work by Kuhn and
Wattenhöfer [121], which introduces a new lower bound on the number of colors used by
algorithms that are restricted to one single communication round and a new lower bound on
the time complexity of obtaining a O(∆)-coloring of a graph; the article by Barenboim and
Elkin [11], which introduces the first polylogarithmic time algorithm able to color a graph
with less than O(∆2) colors; and the work by Gavoille et al. [77], proposing and studying the
complexity of two new problems strongly related to the distributed GCP.

Chapter Organization

The rest of this chapter is organized as follows. Section 5.1 describes the behavior of frogs
in nature, which has inspired our algorithm. Moreover, existing models are outlined. In
Section 5.2 an algorithm for desynchronization of nodes in sensor networks is explained. Ad-
ditionally, several extensions are discussed and experimentally compared. In Section 5.3 the
algorithm for graph coloring is introduced. An extensive experimental evaluation of the pro-
posed algorithm is presented in Section 5.4. Finally, Section 5.5 is dedicated to conclusions
and the outline of future work.



5.1. MODELING THE CALLING BEHAVIOR OF JAPANESE TREE FROGS 113

1 2

(a) Fictitious initial
situation with two
frogs calling close in
time.

1

2

(b) The system
after some itera-
tions. The system
has managed to in-
crease the distance
between the calls of
the two frogs.

1

2

(c) Final situation.
The two frogs call in
perfect anti-phase.

Figure 5.3: Graphical illustration of the working of a system of two coupled oscillators. The
circle in all three drawings represents the time frame between two calls of the same frog (2π),
the calling period. The nodes marked by integer numbers 1 and 2 indicate the phase of the
corresponding frogs, that is, the moment of time in which they call. (a) shows a fictitious
initial situation. (b) shows the situation after some iterations. Clearly the system tries to
put some distance between the calling of frogs 1 and 2. (c) shows an optimal final situation
in which the frogs (or oscillators) are in perfect anti-phase, that is, their respective calls have
reached the maximum distance in time (half a circle).

5.1 Modeling the Calling Behavior of Japanese Tree Frogs

Different studies (see, for example, [193]) have shown that male Japanese tree frogs use their
call to attract females. Apparently, females of this family of frogs can recognize the source of
the call to determine the current location of the corresponding male. A problem arises when
two males are too close in space and communicate at the same time. In this case, females are
not able to detect where the calls came from, unless the males desynchronize their sounds in
time. The way males manage to desynchronize is an example of self-organization in nature.

More recently, Aihara et al. [3] introduced a formal model based on a set of coupled oscilla-
tors, each one simulating the phase change in the calling period of a single frog. As oscillators
are associated to frogs, we will use both terms in the following with the same meaning. The
basic operation of this model is illustrated graphically in Figure 5.3. The circle represents—in
all three drawings—the time frame between two calls of the same frog (2π), the calling period.
The nodes marked by numbers 1 and 2 indicate the phase of the corresponding frogs, that is,
the moment in time in which they call. Note that the oscillators are not able to reach perfect
anti-phase in a single step. In general, an indefinite number of steps is needed before reaching
the stable situation corresponding to perfect anti-phase. Moreover, the difficulty of reaching
the optimal configuration tends to increase with an increasing number of frogs and also with
an increasing degree of interaction between them (note that two frogs that can not hear each
other do not influence each other).

The system introduced by Aihara et al. [3] works as follows. Each oscillator i has a



114 CHAPTER 5. DISTRIBUTED GRAPH COLORING

phase θi ∈ [0, 2π] that changes over time with frequency ωi (where 2π is the time interval
between two calls of the same frog, the calling period). When the phase reaches 2π, the
oscillator fires and returns to the baseline. In addition, oscillators may be coupled with other
oscillators. In case an oscillator j is coupled to an oscillator i, when oscillator i fires oscillator
j receives a boost and changes the frequency of firing in the next round depending on the gap
∆ji ∈ [0, 2π] (see below) between both oscillators. These changes do not happen instantly
upon receiving the stimulus. The corresponding oscillator rather waits until it fires. The model
can be summarized in the following equations. First, the behavior of an isolated oscillator i
is modelled as follows:

dθi
dt

= ωi. (5.1)

Assuming that oscillators j and i are coupled, the gap between their (current) phases is defined
as:

∆ji = θj − θi. (5.2)

Now, the change in the behavior of oscillator j as influenced by oscillator i can be described
as follows:

dθj
dt

= ωj + g(∆ji), (5.3)

where g(·) is the phase shift function which is responsible for changing the phase of the frogs
that are influenced by other frogs. In [3], the authors suggest the use of the following phase
shift function:

g(x) = −α sin(x). (5.4)

When only two oscillators are concerned, the oscillator system is said to be in a stable situation
when the following two conditions are satisfied:

∆12 = ∆21, (5.5)

g(∆12) = 0. (5.6)

In fact, the system presented in [3] is always able to reach this stable situation in the case of
only two coupled oscillators, independently of the initial settings of θ1 and θ2. Unfortunately,
it is rather hard to characterize a stable situation for sytems with more than two oscillators.
This is because the optimization goal of the system is not explicitly stated.

In the following, we model a coupled oscillator system by means of an undirected graph
G = (V,E). Each node of G corresponds to exactly one oscillator. Therefore, the terms
node and oscillator will henceforth be used synonymously. Two oscillators are coupled if and
only if their corresponding nodes are connected by an edge. In our experience, the implicit
optimization goal of the system presented in [3] can be stated as follows:

max







∑

{(i,j)∈E}

min{|∆ij |, 2π − |∆ij|}







. (5.7)

In other words, the system tries to maximize the sum of the differences between the θ-values
of coupled oscillators. Figure 5.4 shows two examples of problems that may arise when more
than two coupled oscillators are considered. Depending on the initial phases of the oscilla-
tors, for both topologies shown in Figures 5.4(a) and 5.4(d) it is possible to reach suboptimal
desynchronizations with respect to the implicit optimization goal as stated in Eq. 5.7. These



5.1. MODELING THE CALLING BEHAVIOR OF JAPANESE TREE FROGS 115

1 2

34

(a) Topology 1

1

23

4

(b) Suboptimal
desynchronization
of Topology 1 (with
4 different phases)

1, 3

2, 4

(c) Optimal desyn-
chronization of
Topology 1 (with 2
different phases)

1 2

34

5

(d) Topology 2

1

2, 43

5

(e) Suboptimal
desynchronization
of Topology 2 (with
4 different phases)

1, 32, 4

5

(f) Optimal desyn-
chronization of
Topology 2 (with
three different
phases)

Figure 5.4: Two examples of graph topologies (graphics (a) and (d)) that may cause problems
for the desynchronization as performed by the model proposed in [3]. Graphics (b) and (e)
show suboptimal desynchronizations (corresponding to stable attractors of the system) for
both topologies. In contrast, graphics (c) and (f) show optimal desynchronizations.

configurations are shown in Figures 5.4(b) and 5.4(e). The corresponding optimal desynchro-
nizations are shown in Figures 5.4(c) and 5.4(f). In [3] the authors provide analytical results
for using three oscillators and show that there is high sensitivity to the initial phases (only a
small subset of the possible initial settings leads to an optimal solution).

The initial model by Aihara et al. [3] was later extended by Mutazono et al. [150]. They
used an extended model of anti-phase synchronization for the purpose of collision-free trans-
mission scheduling in sensor networks. To make the system applicable to larger topologies
(sensor networks may consist of hundreds of nodes), they introduced weights that regulate
the coupling between each pair of oscillators. The resulting phase shift function as introduced
in [150] can be described as follows:

δ(x) = min{x, 2π − x}, (5.8)

g(x) = α · sin(x) · e−δ(x). (5.9)



116 CHAPTER 5. DISTRIBUTED GRAPH COLORING

Algorithm 7 Sensor event of node i in the desynchronization algorithm
1: θi :=recalculateTheta()
2: sendMessage()
3: clearMessageQueue()

Due to these weights, the system reaches stable solutions more easily, especially when small
values of α are used. The authors experimented with topologies of up to 20 nodes and although
the system still exhibited some difficulties in reaching stable solutions, the sensitivity to initial
conditions was decreased significantly.

Mutazono et al. [150] compared the results of their system to another mechanism for
coupled oscillator desynchronization proposed in [49]. Note that the mechanism from [49] is
not based on the calling behavior of Japanese tree frogs. The main difference to frog-inspired
systems is the fact that the phase change of a node is made on the basis of only two other nodes.
The phase values allow to order all the nodes sequentially from small to large phase values.
The nodes whose phase values are used to change the phase value of a node are determined as
the predecessor and the successor in this (cyclic) sequence. As shown in [150], both systems
achieve similar results although no extensive experimentation is made on a broad-enough set
of network topologies: mostly random geometric graphs and hand-made instances with at
most eight nodes were used.

Another extension of the system by Aihara et al. [3] was introduced in [126]. The changes
concern the use of different weights for the phase shift function and the introduction of a
so-called frustration parameter which reduces the coupling between each pair of nodes. The
authors show that their system is able to obtain better solutions than the original model for
many different topologies as, for example, k-partite graphs, grids or platonic solids. Moreover,
the authors observe that the difficulty of desynchronizing a given number of oscillators is
mostly determined by the topology which is obtained by their positions and their connections.
In comparison, the number of oscillators does not seem to have a high impact on the difficulty.

5.2 Implementation of the original and the extended model in

Sensor Networks

First, we provide the implementation of the original model by Aihara et al. in sensor networks.
In this implementation, communication rounds are the basic units of time. A communication
round corresponds to the calling period (2π) as known from the models presented in the
previous section. The only difference is that the length of a communication round is considered
to be one time unit. Therefore, the numerical length of a communication round is denoted by
1, instead of 2π. Each sensor node executes exactly one sensor event in each communication
round. The moment in time when a sensor node i ∈ V executes its sensor event is denoted by
θi ∈ [0, 1). Note that θi corresponds to the phase of an oscillator from the model(s) presented
in the previous section. Moreover, a sensor event includes the sending of exactly one message.
Therefore, each sensor node i maintains a message queue Mi for sensor event messages received
from other sensor nodes since the last execution of its own sensor event. The pseudo-code of
a sensor event is shown in Algorithm 7. In the following we give a rough description of the
algorithm. A detailed technical explanation of the functions of Algorithm 7 will be provided
later on.



5.2. IMPLEMENTATION IN SENSOR NETWORKS 117

The working of the algorithm requires an a priori organization of the sensor network in
form of a rooted tree. The root node of this tree (henceforth also called master node) will
have some additional functionalities in comparison to the rest of the nodes. Once the tree
is available, the master node runs a protocol to calculate the height of the tree, that is, the
distance in hops (communication rounds) from the master node to the farthest node in the
network. In order to produce a tree with a low height, the distributed method for generating
spanning trees with minimum diameter as presented in [28] may be used. Next, the master
node triggers the start of the main algorithm by means of a broadcast message. In this
message, the height of the tree is communicated to the rest of the nodes as well. Later on it
will be described how this overlay tree structure is used to calculate the state of convergence
which will be used to stop the algorithm.

As mentioned above, in each communication round, a node i executes its sensor event
at time θi. First, node i will examine its message queue Mi. If Mi contains more than one
message from the same sender node, all these messages apart from the last one are deleted.
In general, a sensor event message m ∈Mi contains only one real number:

m =< thetam > , (5.10)

where thetam ∈ [0.1) contains the θ-value of the emitter. Based on the messages in Mi,
function recalculateTheta() recalculates a new value for θi:

θi := θi − αi

∑

m∈Mi

sin(2π · (θm − θi))

2π
, (5.11)

where αi ∈ [0, 1] is a parameter used to control the convergence of the system. In general,
the lower the value of αi the smaller the change applied to θi. Note that the multiplication of
(θm − θi) by 2π and the division of the result of the sinus function by 2π is necessary for the
transformation of the length of a calling period from [0, 2π] to [0, 1]. Finally, node i sends the
following message m (see function sendMessage()):

m =< thetam := θi > (5.12)

To conclude a sensor event, node i deletes all messages from its queue Mi (see function
clearMessageQueue()), that is, Mi = ∅.

It remains to provide a description of the algorithms’ stopping mechanism. In this context,
recall the rooted tree that is generated before the execution of the main algorithm. The
key characteristic of this tree is its height, henceforth referred to by h. It determines the
maximum number of communication rounds necessary for the master node to broadcast a
message to all other nodes. In turn, it also determines the maximum number of communication
rounds necessary to pass information from all the nodes to the master node. The main
goal of the tree is to efficiently alert the nodes about when and how to stop executing the
sensor events for desynchronization. In the following we assume that the master node knows
the size of the network. At each communication round, each node i must communicate the
following information to its parent node in the tree: (1) a real number corresponding to
the sum of the distances between the old theta values and the new ones concerning all nodes
included in the subtree rooted at node i, (2) an integer number that indicates the corresponding
communication round. In fact, these values can easily be added to the body of the sensor event
messages used by our algorithm. In other words, no additional messages are required.



118 CHAPTER 5. DISTRIBUTED GRAPH COLORING

Note that, for example, in the first communication round only the leaves of the tree will
report the differences between their old and new theta values to their parents. This is because
the leaves are the only nodes without children. In the second communication round, the
parents of the leaves will be able to add these values to their own distances between the old
and new theta values from the first communication round and report the aggregated data to
their respective parents. Given the height h of the tree, it takes h communication rounds
until all the information regarding a specific communication round has reached the master
node. This means that the sensor nodes must store the differences between their old and new
theta values during h communication rounds. Once all the necessary information reaches the
master node, it divides the value by the size of the network and obtains in this way the average
change of the theta values in the corresponding communication round. In case this average
change is below a certain threshold value (in our case we always used 0.001), the master node
broadcasts a stopping message to all nodes, which terminates the algorithm.

5.2.1 Model Extensions

As in the original model, in each communication round a node i executes its sensor event at
time θi. However, a message m ∈Mi has now the following format:

m =< thetam, relevancem > , (5.13)

where, as before, thetam ∈ [0.1) contains the θ-value of the emitter and relevancem is a
parameter that depends on the number of messages received by the emitter during the last
communication round. This parameter controls the weight that is given by node i to the
corresponding message m. In particular, less weight is given to messages that were emitted by
nodes that are influenced by many other nodes. The intuition for this definition of the weights
is that the θ-values of nodes that are little influenced by other nodes should converge first.
This may facilitate the convergence of the θ-values of highly-influenced nodes, which in turn
may facilitate that the system reaches a stable situation, a term which refers to a situation in
which the θ-values do not change anymore.

Based on the messages in Mi, function recalculateTheta() recalculates a new value for θi:

θi := θi + αi

∑

m∈Mi

relevancem ∗ inc[θm − θi] , (5.14)

where αi ∈ [0, 1] is, again, a parameter used to control the convergence of the system. More-
over, inc[·] is a new function that replaces the phase shift function of Equation 5.4. This new
function is defined as follows:

inc[x] =

{

x− 0.5 if x ≥ 0
x+ 0.5 if x < 0

(5.15)

The hope is to achieve a similar, or even better, convergence behavior with this much simpler
function. Finally, node i sends the following message m (see function sendMessage()):

m =< thetam := θi, relevancem :=
1

|Mi|
> (5.16)

Note that when Mi = ∅, then relevancem is, of course, set to 1. As described before, to
conclude a sensor event, node i deletes all messages from its queue Mi (see function clearMes-
sageQueue()), that is, Mi = ∅.



5.2. IMPLEMENTATION IN SENSOR NETWORKS 119

0.33 0.66

0.99

0.33 0.66

0.99

0.33 0.66

0.99

0.66 0.99

0.33

(a) houseoftriangles-3.gph

1

1

11

1

1

1

11

1

(b) petersen.gph

1

1 1

1

1

1

1

1

1

(c) rectriangle-9.gph

1 1

11

(d) spare.gph

1

1

1

1

1

1

1

1

1

(e) wheel-8.gph

1

1

1

1

1

1

1

1

1

(f) star-8.gph

Figure 5.5: Sensor network topologies used in this work.

5.2.2 Experiments on the desynchronization of sensor networks

We applied four versions of the presented algorithm to 12 small sensor network topologies.
The four algorithm versions are defined as follows: (1) The original model, (2) the original



120 CHAPTER 5. DISTRIBUTED GRAPH COLORING

model with the relevance term, (3) the new model (that is, using the simplified phase shift
function) without the relevance term, and (4) the new model with the relevance term. Each of
these four algorithm versions was applied 100 times to each of the following 12 sensor network
topologies:

• line-n.gph: n connected nodes (for n ∈ {2, 3, 10})

• cycle-n.gph: n cyclicly connected nodes (for n ∈ {3, 4, 10})

• houseoftriangles-3.gph: see Figure 5.5(a)

• petersen.gph: see Figure 5.5(b)

• rectriangle-9.gph: see Figure 5.5(c)

• spare.gph: see Figure 5.5(d)

• wheel-8.gph: see Figure 5.5(e)

• star-8.gph: see Figure 5.5(f)

The last six of these topologies are shown in Figure 5.5. Note that all these topologies must
be interpreted as follows. For each two nodes that are connected by a link we assume that
the corresponding nodes receive the transmissions of each other. The optimal distribution of
the theta values can be determined easily in each of the above described topologies. In this
context, the theta values are considered to be optimally distributed if they are maximally
separated from each other. For example, in the case of line-2.gph this value is 0.5. Another
example concerns spare.gph where this value is 0.3.

Results are shown in Tables 5.1 and 5.2. For each of the four algorithm versions we indicate,
for each of the 12 sensor network topologies, the number of times (out of 100 applications)
in which an optimal distribution of the theta values was reached. Hereby, Table 5.1 provides
these numbers concerning an error margin of 5%, whereas the numbers given in Table 5.2 are
calculated on the basis of an error margin of 15%. For each algorithm version there are four
columns of numbers. Each of these columns corresponds to a different value of α.

The results can be interpreted as follows. First, the relevance term seems, unfortunately,
rather not useful. Both the behavior of the original model and the one of the model with the
alternative phase shift function deteriorate when using the relevance term. Second, the results
of the model with the new phase shift function are—apart from only few exceptions—better
than the results obtained with the original model. This applies in particular to more difficult
cases such as spare.gph, wheel-8.gph, and houseoftriangles-3.gph. Moreover, the results indicate
that a rather high setting of α, that is α ∈ {0.75, 1.0} seems to be best for both model versions.
The results of Table 5.2, however, indicate that consistent results are rather achieved with
smaller values for α, that is, α ∈ {0.5, 0.75}. Finally, for the sake of completeness, Table 5.3
shows the average distances from the optimal distribution of the theta values.

Lastly, it is also interesting to study the average number of communication rounds needed
by the different algorithm versions before reaching the stopping condition. This information is
given in Table 5.4. Note that the model using the new phase shift function needs significantly
less communication rounds than the system using the original phase shift function. The
faster convergence caused by the new phase shift function can also be observed graphically



5.2. IMPLEMENTATION IN SENSOR NETWORKS 121

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

round

av
er

ag
e 

th
et

a 
se

pa
ra

tio
n

(a) Original model by Aihara et al.

0 5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

round

av
er

ag
e 

th
et

a 
se

pa
ra

tio
n

(b) Model using the new phase shift func-
tion

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

node 1
node 2
node 3
node 4

(c) Original model by Aihara et al.

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

node 1
node 2
node 3
node 4

(d) Model using the new phase shift func-
tion

Figure 5.6: Experimental results concerning topology spare.gph. (a) and (b) show the evolution
of the average distance between the theta values of connected nodes. While (a) refers to the
original model, (b) concerns the model using the new phase shift function. (c) and (d) show—
for a representative run of the system—the evolution of the four theta values. The graphic in
(c) represents the behavior of the original model, while (d) shows the behavior of the model
using the new phase shift function.

in Figure 5.6. More specifically, Figures 5.6(a) and 5.6(b) show the evolution of the average
distance between the theta values of nodes connected by a link for graph spare.gph. Hereby,
subfigure (a) presents the behavior of the original model, whereas subfigure (b) concerns the
behavior of the model using the new phase shift function. Finally, Figures 5.6(c) and 5.6(d)
show the evolution of the four theta values for a representative run. While subfigure (c)
presents this evolution for the original model, sugfigure (d) concerns the evolution of the theta
values as obtained from the model using the new phase shift function. Observe that the
separation between the theta values is clearly better in subfigure (d).

On the basis of the results obtained in this section, we next devised a distributed algorithm
for graph coloring which is outlined in the following section.



122 CHAPTER 5. DISTRIBUTED GRAPH COLORING

T
able

5.1:
Success

rates
(in

term
s

of
the

num
ber

of
successfulapplications

out
of100)

calculated
on

the
basis

of
an

error
m

argin
of

5%
.

Instance
M

odel
using

the
new

phase
shift

function
O

riginal
m

odel
by

A
ihara

et
al.

N
o

relevance
R

elevance
N

o
relevance

R
elevance

0.25
0.5

0.75
1.0

0.25
0.5

0.75
1.0

0.25
0.5

0.75
1.0

0.25
0.5

0.75
1.0

cycle-10.gph
7

65
70

66
0

8
54

68
4

79
72

77
0

3
70

78
cycle-3.gph

100
100

100
100

100
100

100
100

100
100

100
100

100
100

100
100

cycle-4.gph
89

94
98

100
46

81
90

96
100

100
100

100
48

99
98

100
houseoftriangles-3.gph

18
13

9
10

22
30

15
16

0
0

0
0

27
8

1
0

line-10.gph
8

52
100

100
0

6
27

41
14

45
100

100
0

4
25

29
line-2.gph

100
100

100
100

100
100

100
100

100
100

100
100

99
100

100
100

line-3.gph
99

100
100

100
62

100
100

98
100

99
100

98
41

99
100

97
petersen.gph

8
2

1
0

1
1

5
6

0
0

0
0

2
0

0
0

rectriangle-9.gph
100

100
100

100
76

100
100

100
100

100
100

100
69

95
100

99
spare.gph

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

star-8.gph
99

100
99

100
0

0
0

93
98

97
99

100
0

0
0

84
w

heel-8.gph
60

70
66

67
32

23
15

26
16

12
11

7
29

12
10

10
averages

57.333
66.333

7
0
.2

5
0

7
0
.2

5
0

36.583
45.750

50.500
62.000

52.667
61.000

6
5
.1

6
7

6
5
.1

6
7

34.583
43.333

50.333
58.083



5.2. IMPLEMENTATION IN SENSOR NETWORKS 123

T
ab

le
5.

2:
Su

cc
es

s
ra

te
s

(i
n

te
rm

s
of

th
e

nu
m

be
r

of
su

cc
es

sf
ul

ap
pl

ic
at

io
ns

ou
t

of
10

0)
ca

lc
ul

at
ed

on
th

e
ba

si
s

of
an

er
ro

r
m

ar
gi

n
of

15
%

.

In
st

an
ce

M
od

el
us

in
g

th
e

ne
w

ph
as

e
sh

ift
fu

nc
ti
on

O
ri
gi

na
l
m

od
el

by
A

ih
ar

a
et

al
.

N
o

re
le

va
nc

e
R

el
ev

an
ce

N
o

re
le

va
nc

e
R

el
ev

an
ce

0.
25

0.
5

0.
75

1.
0

0.
25

0.
5

0.
75

1.
0

0.
25

0.
5

0.
75

1.
0

0.
25

0.
5

0.
75

1.
0

cy
cl

e-
10

.g
ph

55
65

70
66

20
58

54
68

67
79

72
77

29
67

70
78

cy
cl

e-
3.

gp
h

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

cy
cl

e-
4.

gp
h

89
94

98
10

0
65

81
90

96
10

0
10

0
10

0
10

0
89

99
98

10
0

ho
us

eo
ft

ri
an

gl
es

-3
.g

ph
50

37
31

24
68

68
54

56
0

0
0

0
73

32
11

1
lin

e-
10

.g
ph

75
10

0
10

0
10

0
20

52
91

10
0

76
10

0
10

0
10

0
35

66
97

10
0

lin
e-

2.
gp

h
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
99

10
0

10
0

10
0

lin
e-

3.
gp

h
99

10
0

10
0

10
0

99
10

0
10

0
98

10
0

10
0

10
0

98
99

10
0

10
0

99
pe

te
rs

en
.g

ph
10

2
1

0
22

10
8

6
0

0
0

0
14

0
0

0
re

ct
ri
an

gl
e-

9.
gp

h
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
10

0
93

10
0

10
0

10
0

sp
ar

e.
gp

h
80

88
90

93
23

2
0

0
0

0
0

0
0

0
0

0
st

ar
-8

.g
ph

99
10

0
10

0
10

0
0

10
0

99
94

98
98

99
10

0
0

79
97

98
w

he
el

-8
.g

ph
95

98
98

10
0

80
87

82
87

93
99

10
0

10
0

85
49

28
19

av
er

ag
es

79
.3

33
82

.0
00

8
2
.3

3
3

81
.9

17
58

.0
83

71
.5

00
73

.1
67

75
.4

17
69

.5
00

7
3
.0

0
0

72
.5

83
72

.9
17

59
.6

67
66

.0
00

66
.7

50
66

.2
50



124 CHAPTER 5. DISTRIBUTED GRAPH COLORING

T
able

5.3:
A
verage

distance
to

the
optim

al
distribution

of
the

theta
values

Instance
M

odel
using

the
new

phase
shift

function
O

riginal
m

odel
by

A
ihara

et
al.

N
o

relevance
R

elevance
N

o
relevance

R
elevance

0.25
0.5

0.75
1.0

0.25
0.5

0.75
1.0

0.25
0.5

0.75
1.0

0.25
0.5

0.75
1.0

cycle-10.gph
0.055

0.039
0.032

0.035
0.073

0.052
0.051

0.036
0.045

0.026
0.030

0.024
0.063

0.045
0.037

0.027
cycle-3.gph

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

cycle-4.gph
0.032

0.016
0.005

0.000
0.095

0.051
0.027

0.011
0.005

0.001
0.000

0.000
0.039

0.007
0.007

0.001
houseoftriangles-3.gph

0.028
0.032

0.036
0.042

0.022
0.021

0.025
0.024

0.064
0.070

0.070
0.071

0.019
0.032

0.044
0.050

line-10.gph
0.028

0.012
0.006

0.004
0.062

0.035
0.022

0.014
0.028

0.013
0.007

0.004
0.048

0.032
0.021

0.015
line-2.gph

0.002
0.000

0.000
0.000

0.002
0.000

0.000
0.000

0.002
0.000

0.000
0.000

0.007
0.000

0.000
0.000

line-3.gph
0.006

0.001
0.000

0.000
0.013

0.004
0.002

0.002
0.004

0.002
0.000

0.005
0.015

0.005
0.002

0.002
petersen.gph

0.039
0.044

0.045
0.046

0.035
0.039

0.040
0.041

0.047
0.050

0.050
0.050

0.034
0.046

0.047
0.048

rectriangle-9.gph
0.000

0.000
0.000

0.000
0.004

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.007

0.001
0.000

0.000
spare.gph

0.020
0.019

0.018
0.018

0.029
0.029

0.028
0.027

0.036
0.042

0.045
0.048

0.043
0.053

0.057
0.060

star-8.gph
0.004

0.001
0.001

0.000
0.061

0.025
0.016

0.019
0.006

0.003
0.001

0.000
0.093

0.036
0.019

0.014
w

heel-8.gph
0.010

0.009
0.009

0.009
0.016

0.016
0.017

0.016
0.019

0.020
0.020

0.020
0.016

0.022
0.027

0.030
averages

0.019
0.014

0
.0

1
3

0.013
0.034

0.023
0.019

0.016
0.021

0.019
0.019

0
.0

1
9

0.032
0.023

0.022
0.021



5.2. IMPLEMENTATION IN SENSOR NETWORKS 125

T
ab

le
5.

4:
A
ve

ra
ge

nu
m

be
r

of
co

m
m

un
ic

at
io

n
ro

un
ds

ex
ec

ut
ed

be
fo

re
re

ac
hi

ng
th

e
st

op
pi

ng
co

nd
it
io

n.

In
st

an
ce

M
od

el
us

in
g

th
e

ne
w

ph
as

e
sh

ift
fu

nc
ti
on

O
ri
gi

na
l
m

od
el

by
A

ih
ar

a
et

al
.

N
o

re
le

va
nc

e
R

el
ev

an
ce

N
o

re
le

va
nc

e
R

el
ev

an
ce

0.
25

0.
5

0.
75

1.
0

0.
25

0.
5

0.
75

1.
0

0.
25

0.
5

0.
75

1.
0

0.
25

0.
5

0.
75

1.
0

cy
cl

e-
10

.g
ph

37
.2

30
24

.1
70

15
.9

10
11

.4
70

46
.9

90
35

.9
40

29
.4

90
22

.9
90

45
.5

80
28

.2
60

19
.9

50
15

.0
50

52
.6

40
45

.0
90

34
.5

50
28

.9
40

cy
cl

e-
3.

gp
h

10
.7

40
6.

30
0

4.
68

0
4.

85
0

17
.4

90
10

.8
60

8.
10

0
6.

34
0

23
.0

20
14

.1
70

10
.0

40
8.

67
0

31
.3

00
20

.9
40

16
.4

60
14

.4
70

cy
cl

e-
4.

gp
h

13
.7

40
8.

06
0

5.
35

0
2.

26
0

20
.1

90
13

.7
50

10
.1

20
8.

00
0

21
.0

30
11

.7
70

7.
74

0
5.

65
0

31
.0

50
19

.4
20

13
.8

30
11

.1
40

ho
us

eo
ft

ri
an

gl
es

-3
.g

ph
22

.5
00

13
.8

30
10

.2
90

7.
88

0
34

.5
40

30
.3

40
27

.4
50

23
.1

30
55

.2
10

36
.5

20
23

.3
70

19
.0

60
46

.9
50

51
.0

70
51

.3
80

49
.0

60
lin

e-
10

.g
ph

49
.4

60
38

.0
40

30
.7

50
24

.3
30

51
.5

00
53

.2
60

49
.5

50
37

.5
40

51
.0

00
44

.0
50

33
.1

90
27

.7
00

49
.5

80
51

.1
90

47
.2

60
44

.3
60

lin
e-

2.
gp

h
8.

75
0

5.
35

0
3.

74
0

2.
00

0
8.

52
0

5.
17

0
3.

61
0

2.
00

0
10

.2
00

6.
03

0
4.

40
0

3.
33

0
9.

98
0

6.
05

0
4.

45
0

3.
33

0
lin

e-
3.

gp
h

12
.8

40
7.

60
0

5.
13

0
2.

49
0

19
.9

60
13

.1
60

9.
36

0
7.

19
0

16
.3

20
9.

60
0

6.
92

0
4.

74
0

24
.8

10
14

.5
50

11
.4

90
8.

85
0

pe
te

rs
en

.g
ph

18
.4

30
10

.9
10

7.
86

0
6.

69
0

34
.2

30
23

.6
90

18
.5

50
15

.0
40

33
.2

90
24

.4
30

19
.8

20
19

.4
80

48
.5

20
38

.3
20

33
.0

30
29

.5
30

re
ct

ri
an

gl
e-

9.
gp

h
30

.1
80

18
.4

40
14

.2
80

9.
91

0
32

.3
40

35
.3

50
36

.0
10

32
.9

30
41

.2
10

37
.3

10
27

.5
60

25
.2

70
32

.1
90

25
.9

50
27

.9
00

29
.5

00
sp

ar
e.

gp
h

12
.1

50
7.

54
0

5.
48

0
5.

09
0

23
.4

10
15

.2
90

11
.8

40
10

.0
90

26
.7

80
19

.1
20

16
.9

10
14

.6
40

43
.7

80
33

.3
90

26
.9

80
23

.2
30

st
ar

-8
.g

ph
16

.2
40

9.
06

0
5.

92
0

3.
09

0
55

.2
30

41
.2

50
32

.0
30

25
.3

40
22

.3
60

12
.9

90
9.

17
0

7.
11

0
63

.4
30

57
.2

20
43

.2
60

36
.4

30
w

he
el

-8
.g

ph
18

.0
40

10
.7

30
8.

11
0

6.
92

0
37

.7
40

30
.2

00
26

.2
00

21
.3

30
51

.9
10

37
.7

10
29

.1
30

20
.2

50
48

.7
80

50
.0

20
43

.9
90

39
.8

50
av

er
ag

es
20

.8
58

13
.3

36
9.

79
2

7
.2

4
8

31
.8

45
25

.6
88

21
.8

59
17

.6
60

33
.1

59
23

.4
97

17
.3

50
1
4
.2

4
6

40
.2

51
34

.4
34

29
.5

48
26

.5
58



126 CHAPTER 5. DISTRIBUTED GRAPH COLORING

5.3 FrogSim: An Algorithm for Distributed Graph Coloring

Although the FrogSim algorithm will be described in the context of its application in static
sensor networks, it can be applied with very few modifications to any other communication
network. The operation of the algorithm requires an a priori organization of the sensor network
in form of a rooted tree. The root node of this tree (henceforth also called the master node)
will have some additional functionality in comparison to the rest of the sensor nodes. Once
the tree is available, the master node runs a protocol to calculate the height of the tree, that
is, the distance in hops (communication rounds) from the master node to the farthest node
in the network. In order to produce a tree with a low height, the distributed method for
generating spanning trees with minimum diameter as presented in [28] may be used. Next,
the master node triggers the start of the main algorithm (see below) by means of a broadcast
message. In this message, the height of the tree is communicated to the rest of the sensor
nodes as well. This overlay tree will serve two purposes: first, it will be used to communicate
and store the best coloring found by the algorithm. Second, it will be used to communicate
the state of the algorithm’s convergence to the master node.

For the main algorithm, which works iteratively using communication rounds, we assume
the sensor nodes to be time-synchronized. A communication round corresponds to the calling
period (2π) as known from the models presented in the previous section. The only difference
is that the length of a communication round is considered to be one time unit. Therefore,
the numerical length of a communication round is denoted by 1, instead of 2π. Each sensor
node executes exactly one sensor event in each communication round. Assuming that the
current communication round has started at time t, the moment in time when a sensor node
i ∈ V executes its sensor event is determined by t + θi ∈ [0, 1). Note that θi corresponds to
the phase of an oscillator in the models presented in the previous sections. Apart from θi, a
sensor node i also stores its current color, denoted by ci ∈ N. For simplicity and without loss
of generality, we assume that each color is uniquely identified by a natural number. Therefore,
in the following we will use natural numbers greater than zero to refer to colors. Moreover,
a sensor event includes the sending of exactly one message. Therefore, each sensor node i
maintains a message queue Mi for sensor event messages received from other sensor nodes
since the last execution of its own sensor event. The pseudo-code of a sensor event is shown
in Algorithm 8. In the following we give a rough description of the algorithm. A detailed
technical description of the functions of Algorithm 8 will be provided later on.

The simulation of the FrogSim algorithm is composed of two distinct phases. The first
phase (called phase I; see lines 2–4 of Algorithm 8) makes use of the model for the desyn-
chronization of frog calling as introduced by Aihara et al. [3], with only a few modifications.
The main difference to other distributed graph coloring algorithms inspired by this model is
as follows. The θi-values are used for determining the order in which the nodes are allowed to
choose colors, whereas in previous algorithms these values were directly associated to specific
colors. The second phase (called phase II, see lines 6–14 of Algorithm 8), which is initiated
after phase I has finished, serves to improve the current coloring by means of a refinement
technique, similar to distributed local search.

Phases I and II of FrogSim will be described in detail in Sections 5.3.1 and 5.3.2. More-
over, the way in which the initially computed tree structure will be used to communicate
and store the best coloring found by the algorithm and to detect convergence in phase I is
presented in Section 5.3.3.



5.3. FROGSIM: AN ALGORITHM FOR DISTRIBUTED GRAPH COLORING 127

Algorithm 8 Sensor event of node i

1: if not yet notified by the master node about the end of phase I then
2: θi := recalculateTheta()
3: ci := minimumColorNotUsed()
4: sendColoringMessage()
5: else
6: if first communication round of Phase II then
7: if (ci = 1) then pi := randomPositiveInteger()
8: else pi := 0 end if
9: end if

10: if ∃m ∈Mi | (powerm ≥ pi) then
11: ci := minimumColorNotUsedByNeighborsWithHigherPower()
12: pi := adoptPowerFromStrongestNode()
13: end if
14: sendRefinementMessage()
15: end if
16: clearMessageQueue()

5.3.1 Phase I of FrogSim

Sensor nodes will execute phase I of the sensor event until they are notified by the master
node to change to phase II. During phase I, when executing its sensor event, a node i executes
lines 2–4 of Algorithm 8. First, node i will examine its message queue Mi. If Mi contains
more than one message from the same sender node, all these messages apart from the latest
one are deleted. In general, a message m ∈Mi sent in this phase has the following format:

m =< thetam, colorm >, (5.17)

where thetam ∈ [0.1) contains the θ-value of the emitter, colorm is the color currently used by
the emitter. Note that the sub-indices of thetam and colorm denote that they are data fields
belonging to message m.

Based on the messages in Mi, function recalculateTheta() recalculates a new value for θi:

θi := θi + αi

∑

m∈Mi

inc[thetam − θi], (5.18)

where αi is a parameter used to control the convergence of the system which usually takes
values in [0, 1]. In general, the lower the value of αi the smaller the change applied to θi.
Due to the experience gathered in previous work (see [92]), this parameter was set to 1 for
all experiments. Moreover, the value of θi must be kept within [0, 1). Therefore, if—after
executing Eq. 5.18—the value of θi is negative, 1 is iteratively added to θi until θi ∈ [0, 1).
Finally, inc[·] is the function defined in Eq. 5.15.

Next, node i decides for a possibly new color in function minimumColorNotUsed(). Formally,
the possible color change by node i can be described as follows:

ci := min{c ∈ N |6 ∃m ∈Mi with colorm = c}. (5.19)

In words, node i chooses among the colors that do not appear in any of the received messages
m ∈Mi, the one with the lowest identifier. Finally, node i sends the following message m (see



128 CHAPTER 5. DISTRIBUTED GRAPH COLORING

function sendColoringMessage()):

m =< thetam := θi, colorm := ci > . (5.20)

To conclude a sensor event, node i deletes all messages from its queue Mi (see function
clearMessageQueue()), that is, Mi = ∅.

5.3.2 Phase II of FrogSim

Phase II of FrogSim (which is initiated after phase I has been stopped) consists of the
execution of lines 6–14 of Algorithm 8. As mentioned before, this phase is used for the
distributed refinement of the current coloring, similar to a distributed local search. Note
that in this phase the θ-values of the nodes are not changed anymore. Within the scope of
phase II, each node i additionally maintains a so-called power parameter pi. This parameter
is initialized in the first communication round of phase II with a positive random integer for
the nodes i with ci = 1, and 0 for the rest of the nodes. The values of these power parameters
are used to resolve conflicts that may arise during the color changes executed in phase II.
In particular, in case two neighboring nodes—that is, two nodes that can communicate—
have chosen the same color, the one with the higher power value is allowed to keep it. Our
distributed local search starts—at the same communcation round—in all nodes with a power
value which is higher than the one of their neighbors. In addition to (potentially) requiring
neighbors to change color, nodes also pass their power value to their neighbors. This leads to
the fact that, eventually, the node which initially had the highest power value imposes itself
over all the other nodes of the network. The θ-values are again used to determine the moment
in time at which a sensor node executes its sensor event. At the end of this section, a graphic
example illustrates the working of phase II.

A message m sent by function sendRefinementMessage() (see line 14 of Algorithm 8) has
the following format:

m =< colorm,powerm > . (5.21)

In case the current communication round is not the first communication round of phase II,
node i first examines again its message queue Mi. If Mi contains more than one message
from the same sender node, all these messages apart from the latest one are deleted. Then,
the remaining messages are examined, and a color change only occurs if there is a message
m ∈ Mi such that colorm = ci and powerm ≥ pi. In words, node i only changes its color if
there is an adjacent node with the same color and a higher (or equal) power value. The new
color chosen by node i is the first free color that is not already in use by a node influencing
node i and that has a power equal to or greater than the power value of node i. Formally, the
new color ci is chosen by the function minimumColorNotUsedByNeighborsWithHigherPower() as
follows:

ci := min{c ∈ N |6 ∃m ∈Mi with colorm = c ∧ powerm ≥ pi}. (5.22)

In addition, node i updates its power value using function adoptPowerFromStrongestNode() in
the following way:

pi := argmaxm∈Mi
{powerm}. (5.23)

This is the highest power among the powers of the nodes that have forced node i to choose
its current color. As a result, in following communication rounds node i will not be forced to
change its color, because with the new power it has priority over all nodes with a lower power.



5.3. FROGSIM: AN ALGORITHM FOR DISTRIBUTED GRAPH COLORING 129

12

θ4 = 0.8

30

θ3 = 0.3

20

θ2 = 0.8

15

θ1 = 0.3

(a) Possible situa-
tion after phase I.

12 22

2515

(b) Conflict between
nodes 2 and 3.

12 15

2515

(c) Conflict between
nodes 3 and 4.

25 15

2515

(d) After phase II
all conflicts are re-
solved.

Figure 5.7: Example of the working of phase II of FrogSim. Nodes are labeled with their
respective color. The nodes’ powers are shown as sub-indices of their colors. Graphic (a)
shows a possible situation after phase I. Three colors are used in the current feasible coloring.
The possible θ-values, which correspond to a perfect desynchronization, are as indicated aside
the nodes. Note that in phase II they will not change anymore. Initially, the nodes with
color 1 receive a random power greater than 0 (in this case, 2, respectively 5), while the
remaining nodes receive a power of 0. In (b), the nodes with the highest power values in their
neighborhood force their neighbors to adopt their power value (a color change only happens
if necessary). As a result, node 2 updates its power to 5 while node 3 updates both its color
and power to 2. Next, as shown in (c), a color conflict between nodes 2 and 3 arises. The
higher power of node 2 forces node 3 to change its color. This generates a new color conflict
between nodes 3 and 4. Contrary to what happened in the first round, node 1 is forced to
change its color and to update its power. Note that the final situation shown in (d) uses one
color less than the starting configuration in (a).

Finally, node i sends a refinement message m in function sendRefinementMessage(), where m
is defined as follows:

m =< colorm := ci,powerm := pi > . (5.24)

The last action of the sensor event consists again in deleting all messages from the message
queue Mi, that is, Mi = ∅. Figure 5.7 shows a small example of the kind of conflicts that
phase II is supposed to resolve.



130 CHAPTER 5. DISTRIBUTED GRAPH COLORING

5.3.3 Use of the Overlay Tree Structure

As mentioned before, the overlay tree structure which is produced before the start of the main
algorithm serves two different purposes. First, for the identification of the best coloring found
by the algorithm, and second, to detect the convergence of the θ-values in phase I of the
algorithm.

5.3.3.1 Identifying and Storing the Best Coloring

Recall that each node chooses—at each communication round—a color such that no conflicts
between neighboring nodes arise. This means that FrogSim produces a valid coloring already
in the first communication round. Even though the algorithm tends to improve this coloring
over time, due to the self-organized desynchronization of the θ-values, the current coloring
frequently becomes worse from one communication round to the next one. In other words,
the color assignment of the last communication round might not correspond to the best color
assignment found during the course of the algorithm. The graphic of Figure 5.8 shows the
evolution of the quality of the current solution over 80 communication rounds (concerning
graphs DSJC1000.9.col and flat300_26_0.col from the DIMACS challenge [71]). Even though
the quality of the coloring, as expected, improves over time, it also frequently worsens.

Therefore, we found it convenient to provide the system with a mechanism—originally
proposed by Zivan in [212]—to identify and store the best coloring that was found. The key
characteristic of the initially produced overlay tree is its height, henceforth referred to by h.
It determines the maximum number of communication rounds necessary for the root node to
broadcast a message to all other nodes. The mechanism for storing the best coloring requires
each node to store the color it uses in the best-found coloring in an additional variable. The
main goal of the system is to efficiently alert the nodes about when and how to update this
variable. The algorithm also requires each node to store the history of colors from the last
2h communication rounds. At each communication round, each node must communicate the
maximum color used in a certain communication round by itself and its children (with respect
to the tree) to its parent in the tree. Messages for this type of information passing only contain
two integers: one for the maximum color used and another one to identify the corresponding
communication round. In fact, these values can easily be added to the body of the coloring
event messages used by FrogSim. In other words, no additional messages are required.

Note that, for example, in the first communication round only the leaves of the tree will
report their colors to their parents. This is because the leaves are the only nodes without
children. In the second communication round, the parents of the leaves will be able to use
this information in addition to their own color information stored for the previous commu-
nication round and report the aggregated data to their respective parents. Given the height
h of the tree, it takes h communication rounds until all the information regarding a specific
communication round has reached the root node. Moreover, the number of colors used in a
particular communication round is the maximum color identifier that reaches the root node
via one of its children. In case this maximum color is lower than the number of colors used in
the currently best-found coloring, the root node broadcasts a message with the corresponding
communication round identifier in which this coloring was obtained. In order for this infor-
mation to reach all the nodes of the network, another h communication rounds are necessary.
This is why all nodes must store their colors from the last 2h communication rounds.



5.3. FROGSIM: AN ALGORITHM FOR DISTRIBUTED GRAPH COLORING 131

0 20 40 60 80

29
0

30
0

31
0

32
0

33
0

34
0

Communication rounds

N
um

be
r 

of
 c

ol
or

s

(a) Instance DSJC1000.9.col

0 20 40 60 80

40
45

50
55

60

Nommunication rounds

N
um

be
r 

of
 c

ol
or

s

(b) Instance flat300_26_0.col

Figure 5.8: Example of the evolution over time of the quality of the colorings generated by
FrogSim. The network topologies are obtained from graphs (a) DSJC1000.9.col and (b)
flat300_26_0.col of the DIMACS challenge.

5.3.3.2 Detection of Convergence in Phase I

In most distributed algorithms there is a tradeoff between the quality of the results and the
consumed resources. An example of a study of this tradeoff for a similar problem in wireless
radio networks can be found in [12]. The most important resource in the case of FrogSim

is the number of consumed communication rounds. In principle it is possible to assign a
fixed number of communication rounds to each of the two algorithm phases. In this way
it would be possible to study the tradeoff between solution quality and computation time
for different communication round limits. However, in the case of phase I we decided on
a different option. Even though a theoretical proof does not exist, in practice the θ-values
converge over time. Moreover, after having reached convergence, it does not make sense to
continue with phase I, because the current coloring will not change anymore. This provides us
with a natural, adaptive, stopping criterion for phase I. According to our experience, in those
cases in which graph topologies are concerned that are easily colorable with local information,
the θ-values converge after very few communication rounds. On the other side, in the case
of graph topologies that are difficult to color in a distributed setting, more communication
rounds are spent before convergence is reached. The exact criterion that was used is the



132 CHAPTER 5. DISTRIBUTED GRAPH COLORING

following one:
∑

i∈V min(|θi − θold

i |, 1− |θi − θold

i |)

|V |
< thstop, (5.25)

where V is the set of all sensor nodes, θold

i is the θ-value of node i before the update, θi is
the θ-value of node i after the update, and thstop is a threshold which we have set to 0.001
for all experiments. The convergence value as shown in Equation 5.25 is computed in the
master node of the overlay tree. The remaining sensor nodes send the information that is
needed for this purpose to the master node, in the same way in which the information about
the current coloring is sent to the master node. This means that no additional messages are
necessary. Once the master node detects convergence, it broadcasts a message to all other
nodes, instructing them to start with phase II. As in the case of the identification and storing
of the best coloring found, this procedure takes 2h communication rounds.

Concerning phase II, after tuning by hand we decided on a communication round limit of
20 for all experiments.

5.4 Experimental Results

We coded our algorithm by means of discrete event simulation, implemented from scratch
in C++. For the experimental evaluation we chose a large set of different graph topologies:
random geometric graphs of different densities, grid graphs of different sizes, and most of the
graphs used for the DIMACS challenge [71]. All graphs that we used for the experimental
evaluation can be found for download at http://www.lsi.upc.edu/~hhernandez/graphcoloring.
Note that an edge connecting two nodes indicates that both nodes are able to communicate
directly with each other via their radio antennas.

For the purpose of comparison we re-implemented one of the currently best algorithms
from the literature. This algorithm was presented by Finocchi et al. in [69]. For simplicity,
this algorithm will henceforth be referred to by Finocchi. Unfortunately, the description of
this algorithm in the original article contains some ambiguities, which required us to make
some decisions regarding certain aspects in the context of the re-implementation. Fortunately,
our own implementation of the Finocchi algorithm provides generally better results than the
ones reported in [69]. This can be verified by comparing the results of the original implemen-
tation with the results of our re-implementation for the graph topologies that are used both
in [69] and in the present work.

In the following we present the results of three distributed algorithms: (1) Finocchi [69],
(2) FrogSim

�, which is the FrogSim algorithm without phase II, and (3) FrogSim, which
is the complete FrogSim algorithm. In our opinion, the study of the results of FrogSim

�

is worthwhile, because it reflects the power of the frog-based model without any additional
improvements of the refinement phase. We applied each of these three stochastic algorithms
100 times to each graph topology and report the best coloring found in all 100 runs, as well as
the average quality of the best colorings found per run and the number of rounds necessary to
reach these solutions. However, it is important to note that algorithms such as Finocchi and
FrogSim—when used in sensor networks—are generally applied continuously in a lower-level
layer of the network. Therefore, the number of communication rounds necessary to reach the
best solution is not overly significant. Instead our algorithm creates a valid coloring in the
very first communication round and continuously tries to improve the current solution.



5.4. EXPERIMENTAL RESULTS 133

As mentioned above, for each of the three studied algorithms we provide—for each problem
instance—the average number of communication rounds used by the respective algorithm.
This is standard in the context of distributed algorithms. In contrast, we do not provide
the average computation times. However, the interested reader may note that the maximum
computation time needed by our algorithm for any of the considered problem instances is
2.08 seconds (on a computer equipped with an AMD64X2 4400 processor and 4 Gigabyte of
memory). Moreover, for most of the tackled problem instances the computation time required
by FrogSim is only a fraction of a second.

5.4.1 Resource Consumption

The time complexity of the FrogSim algorithm depends on the number of messages received
at each node. Extremely large message queues can be avoided by a reasonable deployment
of the network. This is usually done by topology control techniques [163, 164]. Concerning
single nodes, the sensor event of each node i requires O(|Mi|) time.

The FrogSim algorithm uses rather small messages of constant size. They are all com-
posed of five data fields with a total size of O(log |V |), which is the number of bits necessary
to represent the largest integer identifier of the |V | nodes in the network. Two of these data
fields are needed by the main FrogSim algorithm. Two more are required for storing the
best solution, and one final data field is needed to detect convergence in phase I. Nodes also
store additional information such as the color used in the best coloring found so far, the
node’s father and its children concerning the overlay tree structure, etc. Finally, the method
for transmitting aggregate data to the master through the overlay tree is the primary mem-
ory consumer within the sensor nodes. The amount of memory required by this mechanism
depends on the height of the overlay tree. More precisely, nodes must remember the color
chosen during the last 2h rounds to be able to restore the color chosen at any given round
after receiving a notification of the master (see Section 5.3.3). More formally, the mechanism
requires O(h) space.

5.4.2 Results for Random Geometric Graphs

Random geometric graphs are popular models for sensor networks. Therefore, they are fre-
quently used for the evaluation of algorithms developed for such networks. They are generated
by randomly distributing a set of n nodes in the unit square, [0, 1]2. Two vertices u and v
are connected by an edge, if and only if d(u, v) ≤ r, where d(·, ·) is the Euclidean distance
and r > 0 is a threshold.2 More specifically, the three algorithms were applied to 40 random
geometric graphs with n ∈ {20, 50, 100, 200} and r = 0.05.

Table 5.5 presents the results obtained for this set of instances. In particular, the first col-
umn shows the instance numbers (or names) and the four columns grouped under Properties
provide the number of nodes |V |, the maximum degree ∆, the chromatic number χ of the cor-
responding graph, and the quality of the coloring (cent.) obtained for the corresponding graph
with the centralized algorithm by Malaguti et al. [137]. In the cases in which the chromatic
numbers are not known, a lower bound is provided (in the form ≥X). The following three

2Note that random geometric graphs are a generalization of unit disk graphs, because unit disk graphs are
restricted to r = 1. Moreover, note that all random geometric graphs considered in this work are connected
graphs. In the case of disconnected graphs, the proposed algorithm would simply color each component
independently of the other ones.



134 CHAPTER 5. DISTRIBUTED GRAPH COLORING

groups of columns provide the results obtained by the three algorithms. For each algorithm
we first give the number of colors from the best coloring found over 100 independent runs. In
the second column, we show the average number of colors used by the 100 colorings obtained
in 100 runs. The third column shows the average number of communication rounds necessary
to reach the best solution found over the 100 rounds. In addition, for algorithms FrogSim

�

and FrogSim a fourth column is added. This additional column shows the average number
of communication rounds that the whole simulation lasts. In the case of the FrogSim

� al-
gorithm, the number of consumed communication rounds is equal to the number of rounds
used before reaching convergence plus the communication rounds required by the algorithm to
determine convergence. In the case of FrogSim the 20 rounds used for phase II (distributed
local search) are additionally counted. For ease of comparison the best performing algorithm
for each instance is indicated in bold face. Hereby, the best performing algorithm is defined
as the algorithm that finds the best coloring. Ties are broken (if possible) by the average
values. The four bottom rows of the table provide a summary of the results. The first one
of these rows gives averages for each column. In addition, the last three rows summarize how
each algorithm has performed in comparison to the others. The first of these rows (labelled #
times best) indicates for each algorithm the number of instances for which the corresponding
algorithm was the sole winner, that is, better than the other two algorithms. The second row
(labelled # times all equal) indicates for how many instances the results of the three algo-
rithms were equal, whereas the last table row (labelled # times worst) indicates for each
algorithm the number of instances for which the corresponding algorithm was the sole loser.

As expected, the results show that the smaller the size of the graph, the easier it is to find
good colorings. The algorithms obtain equivalent results for 15 out of 40 instances. Although
the best coloring found by Finocchi is worse than the best colorings found by the FrogSim

algorithms just in one single case, it performs worse in terms of average solution quality in 25
cases. In addition, note that FrogSim

� does not obtain the worst result for any instance.
FrogSim improves the results of Finocchi and FrogSim

� especially for what concerns the
larger instances. It turns out to be the sole winner for 21 instances. It is interesting to
note that in those cases where FrogSim is better than FrogSim

� this is due to the average
solution quality. In this sense it can be said that in the context of random geometric graphs
the use of phase II makes the FrogSim algorithm more robust. It is also important to note
that the best colorings obtained are—for almost all instances—better than ∆+ 1 colors.

5.4.3 Results for DIMACS Graphs

One of the most popular sets of instances in the context of graph coloring is the one intro-
duced for the second DIMACS challenge [71]. This challenge had among its objectives to
establish the state-of-the-art techniques for centralized graph coloring. These graphs are gen-
erally larger and more complex than, for example, random geometric graphs. The instances
originate from very different contexts, ranging from industrial problems to hand-crafted cases
that were created to show the ineffectiveness of certain algorithms. This set of instances is
often used as a benchmark to study the quality of new algorithms, also in the context of
distributed graph coloring (see, for example, [69, 124, 139, 133]).

The results are presented in Tables 5.6 and 5.7, in the same way as in the case of random
geometric graphs. Concerning the chromatic numbers, in many cases they are known. In the
cases in which they are not known, we provide the lower bound obtained by [138]. Remember



5.4. EXPERIMENTAL RESULTS 135

Table 5.5: Results for random geometric graphs. The first column indicates the instance
number. The group of columns labelled "Properties" provides for each problem instance the
number of nodes |V |, the maximum degree ∆, the chromatic number χ, and the quality of the
coloring (column "cent.") obtained with the centralized algorithm by Malaguti et al. [137].
For each of the three algorithms Finocchi, FrogSim

� and FrogSim three measures are
provided: (1) the value of the best solution found (column "colors"), (2) the average solution
quality (column "avg."), and (3) the average number of communication rounds that were
used (column "rounds"). In the case of FrogSim

� and FrogSim, the average number of
communication rounds at which the algorithms converged is additionally provided (column
"conv."). The best algorithm for each instance is indicated in bold face. The best algorithm
is hereby defined as the one that generates the best solution. Ties are broken by the average
performance.

Instance number
Properties Finocchi FrogSim

�
FrogSim

|V | ∆ χ cent. colors avg. rounds colors avg. rounds conv. colors avg. rounds conv.
1 20 2 3 3 3 3.000 3.000 3 3.000 5.000 8.570 3 3.000 5.000 32.570
2 20 2 3 3 3 3.000 3.000 3 3.000 5.000 8.490 3 3.000 5.000 32.490
3 20 2 2 2 2 2.250 2.250 2 2.010 5.670 7.710 2 2.000 5.770 31.710
4 20 3 3 3 3 3.000 3.000 3 3.000 5.000 9.010 3 3.000 5.000 33.010
5 20 3 3 3 3 3.000 3.000 3 3.000 7.000 13.740 3 3.000 7.000 39.740
6 20 1 2 2 2 2.000 2.000 2 2.000 5.000 6.300 2 2.000 5.000 30.300
7 20 2 3 3 3 3.000 3.000 3 3.000 5.000 8.900 3 3.000 5.000 32.900
8 20 2 3 3 3 3.000 3.000 3 3.000 5.000 8.570 3 3.000 5.000 32.570
9 20 2 2 2 2 2.000 2.000 2 2.000 5.000 6.300 2 2.000 5.000 30.300
10 20 1 2 2 2 2.000 2.000 2 2.000 5.000 6.000 2 2.000 5.000 30.000
11 50 6 ≥ 4 6 6 6.000 6.000 6 6.000 5.000 10.240 6 6.000 5.000 34.240
12 50 3 3 3 3 3.130 3.130 3 3.000 7.410 13.190 3 3.000 7.410 39.190
13 50 4 4 4 4 4.000 4.000 4 4.000 7.000 12.150 4 4.000 7.000 38.150
14 50 4 3 3 3 3.430 3.430 3 3.120 5.880 11.290 3 3.030 6.890 35.290
15 50 4 3 3 3 3.460 3.460 3 3.090 5.690 10.180 3 3.040 6.280 34.180
16 50 4 ≥ 3 4 4 4.000 4.000 4 4.000 5.000 10.260 4 4.000 5.000 34.260
17 50 6 4 4 4 4.630 4.630 4 4.280 7.950 13.870 4 4.020 11.990 39.870
18 50 4 3 3 3 3.367 3.367 3 3.070 5.890 9.610 3 3.000 6.670 33.610
19 50 3 3 3 3 3.000 3.000 3 3.000 5.000 9.010 3 3.000 5.000 33.010
20 50 6 5 5 5 5.140 5.140 5 5.050 5.310 14.060 5 5.020 5.750 38.060
21 100 8 ≥ 4 5 5 5.740 5.740 5 5.470 10.010 26.390 5 5.280 15.270 54.390
22 100 7 4 4 4 4.740 4.740 4 4.520 10.410 29.150 4 4.290 17.210 57.150
23 100 7 ≥ 5 6 6 6.000 6.000 6 6.000 13.000 27.950 6 6.000 13.000 59.950
24 100 9 ≥ 4 5 5 5.730 5.730 5 5.590 26.060 56.260 5 5.370 38.610 100.260
25 100 7 4 4 4 4.920 4.920 4 4.730 6.290 24.090 4 4.330 17.080 48.090
26 100 6 ≥ 5 6 6 6.000 6.000 6 6.000 35.000 62.900 6 6.000 35.000 116.900
27 100 6 4 4 4 4.810 4.810 4 4.530 12.150 30.660 4 4.100 26.510 60.660
28 100 6 4 4 4 4.640 4.640 4 4.170 10.460 22.780 4 4.000 14.690 50.780
29 100 7 6 6 6 6.120 6.120 6 6.000 21.190 44.140 6 6.000 21.190 84.140
30 100 8 5 5 5 5.750 5.750 5 5.500 5.870 24.420 5 5.380 9.250 48.420
31 200 13 8 8 8 8.750 7.790 8 8.620 35.490 63.740 8 8.560 39.640 115.740
32 200 12 ≥ 6 8 8 8.270 7.300 8 8.010 21.980 55.110 8 8.010 21.980 95.110
33 200 12 ≥ 6 7 7 8.030 7.303 7 7.690 35.950 74.300 7 7.520 47.890 126.300
34 200 12 ≥ 7 8 8 8.590 7.750 8 8.220 32.640 64.590 8 8.100 40.840 114.590
35 200 17 ≥ 7 8 9 9.550 8.550 8 9.120 32.840 65.270 8 8.940 43.630 115.270
36 200 12 ≥ 7 8 8 8.210 7.330 8 8.000 31.610 72.990 8 8.000 31.610 122.990
37 200 12 6 6 6 7.250 6.670 6 7.040 33.060 71.960 6 6.950 40.400 121.960
38 200 11 7 7 7 7.910 7.130 7 7.810 32.590 67.050 7 7.700 41.400 117.050
39 200 11 7 7 7 7.810 7.320 7 7.380 29.150 66.150 7 7.210 41.000 112.150
40 200 13 ≥ 6 8 8 8.250 7.440 8 8.020 32.160 67.890 8 8.010 32.920 117.890

average 4.725 5.087 4.886 4.700 4.926 14.518 30.381 4.700 4.846 17.722 63.131
# times better 0 0 21

# times all equal 15 15 15
# times worse 25 0 0



136 CHAPTER 5. DISTRIBUTED GRAPH COLORING

that the quality of the solution provided by a centralized algorithm is also provided (in column
cent.) and can be used as an upper bound. As a general remark before analyzing the results
in depth, we would like to mention that for distributed algorithms it is very difficult, if not
impossible, to capture the global structure of the DIMACS graphs in many cases. Therefore,
it is not surprising that the results obtained by distributed algorithms are often far away from
the chromatic numbers.

First it should be emphasized that both versions of FrogSim achieve the best results for all
instances except for instance queen8-12.col (see Table 5.7), where Finocchi finds a solution
with one color less than the solution found by both versions of FrogSim. However, note
that the average solution quality obtained by Finocchi is nevertheless worse than the one
obtained by the FrogSim algorithms. Moreover, only in two further cases, Finocchi is able
to match the results of the FrogSim algorithms. On the other side, for some instances the
FrogSim algorithms improve remarkably upon Finocchi. Consider, for example, instance
DSJC1000.9.col (see Table 5.7) where the best colorings found by the FrogSim algorithms
need 300 colors, while the best coloring found by Finocchi makes use of 314 colors. Other
examples of remarkable improvements over Finocchi are the six flat∗ instances from Table 5.7.
Concerning the comparison between FrogSim

� and FrogSim, we can state that the power
of the algorithm can clearly be attributed to the first (frog-inspired) phase. As in the case
of random geometric graphs, phase II of FrogSim basically helps to make the algorithm
more robust. It should also be emphasized that, in all cases, the FrogSim colorings require
a number of colors that is smaller than ∆ + 1. Finally, for most of the instances of type
mulsol.X, myciel.X and zeroin.X, FrogSim generates optimal colorings in each run.

5.4.4 Results for Grid Topologies

Grid topologies are frequently used in various application areas of sensor networks. In theory,
the coloring of grids is very simple. They all can be painted as a chessboard, requiring only
two colors. For an example see Figure 5.9.

rs rs
rs rs
rs rs

rs

rs rs rs
rsrs
rsrs

rs
rs rs
rs rs rs

rs
rsrs rsrs

Figure 5.9: Optimal coloring of a grid topology

The way in which an optimal coloring can easily be achieved is to start the coloring process
in a single node with the first color, and then proceed incrementally. The next step consists
in coloring all neighbors of the starting node in the second color. All neighbors of these nodes
have to be painted in the first color again, and so on. However, when considering distributed
computing, nodes only have local information, where information about the position in the
grid is missing. Moreover, the incremental process described above is difficult to achieve
without a global control. Therefore, when coloring grids in a distributed way, the coloring
process is generally initiated in several different nodes at the same time. If the coloring of
these nodes does not follow the chessboard distribution of colors, eventually borders will form



5.4. EXPERIMENTAL RESULTS 137

Table 5.6: Results for the first set of instances from the DIMACS challenge. The first column
indicates the instance name. The group of columns labelled "Properties" provides for each
problem instance the number of nodes |V |, the maximum degree ∆, the chromatic number χ,
and the quality of the coloring (column "cent.") obtained with the centralized algorithm by
Malaguti et al. [137]. For each of the three algorithms Finocchi, FrogSim

� and FrogSim

three measures are provided: (1) the value of the best solution found (column "colors"), (2)
the average solution quality (column "avg."), and (3) the average number of communication
rounds that were used (column "rounds"). In the case of FrogSim

� and FrogSim, the
average number of communication rounds at which the algorithms converged is additionally
provided (column "conv."). The best algorithm for each instance is indicated in bold face.
The best algorithm is hereby defined as the one that generates the best solution. Ties are
broken by the average performance.

Instance
Properties Finocchi FrogSim

�
FrogSim

|V | ∆ χ cent. colors avg. rounds colors avg. rounds conv. colors avg. rounds conv.
DSJC1000.1.col 1000 127 ≥ 5 20 30 31.790 20.040 29 29.930 20.180 40.150 29 29.820 23.360 64.150
DSJC1000.5.col 1000 551 ≥ 13 83 125 128.550 75.220 118 120.520 45.750 69.740 118 120.500 46.160 93.740
DSJC1000.9.col 1000 924 ≥ 51 224 314 322.590 231.520 300 308.280 42.660 56.160 300 308.270 43.120 80.160
DSJC125.1.col 125 23 5 5 7 8.120 6.800 7 7.770 8.020 17.330 7 7.640 10.140 43.330
DSJC125.5.col 125 75 17 17 24 25.600 18.790 22 24.060 12.000 25.910 22 23.880 15.660 49.910
DSJC125.9.col 125 120 44 44 53 56.110 45.020 51 53.880 12.630 23.570 51 53.670 15.640 47.570
DSJC250.1.col 250 38 ≥ 6 8 12 12.990 9.990 12 12.310 10.850 23.200 11 12.130 14.560 49.200
DSJC250.5.col 250 147 ≥ 20 28 41 42.850 29.270 37 40.290 19.680 37.630 37 40.130 23.460 61.630
DSJC250.9.col 250 234 ≥ 71 72 93 98.060 75.560 89 93.600 21.660 34.430 89 93.470 23.120 58.430
DSJC500.1.col 500 68 ≥ 5 12 18 19.860 13.870 18 18.650 14.870 30.960 18 18.460 19.960 56.960
DSJC500.5.col 500 286 ≥ 16 48 70 73.520 46.750 67 69.270 30.060 52.170 67 69.180 32.480 76.170
DSJC500.9.col 500 471 ≥ 123 126 173 178.280 132.640 165 169.730 31.110 47.740 165 169.680 32.030 71.740
DSJR500.1.col 500 25 12 12 13 14.550 12.550 13 14.190 34.980 50.590 13 14.090 40.430 102.590
DSJR500.1c.col 500 497 85 85 106 114.050 65.320 99 104.400 19.960 30.940 99 104.260 21.270 54.940
DSJR500.5.col 500 388 122 122 145 149.420 112.320 141 146.370 5.000 89.330 141 146.350 6.630 113.330

flat1000-50-0.col 1000 520 50 50 123 125.870 75.360 116 118.470 47.380 68.350 116 118.470 47.380 92.350
flat1000-60-0.col 1000 524 60 60 123 126.130 75.070 116 118.750 47.050 68.930 116 118.750 47.050 92.930
flat1000-76-0.col 1000 532 76 82 123 126.860 75.120 117 119.260 47.680 67.810 117 119.260 47.680 91.810
flat300-20-0.col 300 160 20 20 45 46.700 31.640 42 43.880 22.200 40.140 42 43.790 24.090 64.140
flat300-26-0.col 300 158 26 26 45 47.480 32.500 42 44.730 23.790 40.190 42 44.610 26.640 64.190
flat300-28-0.col 300 162 28 28 45 47.260 32.110 43 44.550 22.370 39.640 43 44.500 23.590 63.640
fpsol2.i.1.col 496 252 65 65 65 65.720 42.500 65 65.000 5.000 19.770 65 65.000 5.000 43.770
fpsol2.i.2.col 451 346 30 30 35 38.300 7.160 30 30.310 6.680 17.590 30 30.160 9.270 41.590
fpsol2.i.3.col 425 346 30 30 34 38.180 7.100 30 30.290 6.060 17.560 30 30.080 9.690 41.560
inithx.i.1.col 864 502 54 54 54 60.000 16.450 54 54.000 5.120 22.800 54 54.000 5.120 46.800
inithx.i.2.col 645 541 31 31 38 50.240 5.510 31 31.020 5.850 18.330 31 31.010 5.990 42.330
inithx.i.3.col 621 542 31 31 39 50.250 5.500 31 31.000 5.340 18.890 31 31.000 5.340 42.890
le450-15a.col 450 99 15 15 20 21.980 13.960 20 21.520 8.460 22.090 20 20.850 20.360 48.090
le450-15b.col 450 94 15 15 21 21.910 14.330 20 21.360 8.220 22.230 19 20.780 17.900 48.230
le450-15c.col 450 139 15 15 29 31.520 19.340 28 30.000 10.190 29.450 28 29.370 23.390 53.450
le450-15d.col 450 138 15 15 30 31.520 19.470 29 30.180 9.990 28.690 28 29.580 21.630 52.690
le450-25a.col 450 128 25 25 27 28.570 18.370 27 28.100 7.510 20.500 26 27.440 18.140 46.500
le450-25b.col 450 111 25 25 26 28.040 18.570 26 27.820 7.720 20.540 26 27.070 18.620 46.540
le450-25c.col 450 179 25 25 35 37.070 22.190 34 35.810 6.790 25.870 34 35.000 21.340 49.870
le450-25d.col 450 157 25 25 35 37.110 23.110 34 35.920 6.820 26.000 33 34.840 24.360 50.000
le450-5a.col 450 42 5 5 12 13.260 9.790 11 12.460 12.800 24.050 11 12.310 16.270 50.050
le450-5b.col 450 42 5 5 12 13.290 9.730 12 12.420 11.560 23.780 12 12.260 15.430 49.780
le450-5c.col 450 66 5 5 15 16.880 11.160 9 12.130 26.850 42.780 9 11.080 40.330 68.780
le450-5d.col 450 68 5 5 15 16.820 11.340 9 11.860 29.760 45.290 8 10.860 41.820 71.290

average 58.205 61.469 38.283 54.974 57.028 18.477 35.926 54.821 56.759 23.191 61.208
# times better 0 0 33

# times all equal 0 0 0
# times worse 39 0 0



138 CHAPTER 5. DISTRIBUTED GRAPH COLORING

Table 5.7: Results for the second set of instances from the DIMACS challenge. The first
column indicates the instance name. The group of columns labelled "Properties" provides
for each problem instance the number of nodes |V |, the maximum degree ∆, the chromatic
number χ, and the quality of the coloring (column "cent.") obtained with the centralized
algorithm by Malaguti et al. [137]. For each of the three algorithms Finocchi, FrogSim

�

and FrogSim three measures are provided: (1) the value of the best solution found (column
"colors"), (2) the average solution quality (column "avg."), and (3) the average number of
communication rounds that were used (column "rounds"). In the case of FrogSim

� and
FrogSim, the average number of communication rounds at which the algorithms converged
is additionally provided (column "conv."). The best algorithm for each instance is indicated
in bold face. The best algorithm is hereby defined as the one that generates the best solution.
Ties are broken by the average performance.

Instance
Properties Finocchi FrogSim

�
FrogSim

|V | ∆ χ cent. colors avg. rounds colors avg. rounds conv. colors avg. rounds conv.
anna.col 138 71 11 11 11 11.470 6.400 11 11.120 9.350 32.820 11 11.010 11.720 60.820
david.col 87 82 11 11 11 12.250 6.840 11 11.570 9.620 35.910 11 11.180 23.080 59.910

games120.col 120 13 9 9 9 9.030 8.030 9 9.000 11.240 24.420 9 9.000 11.240 54.420
homer.col 561 99 13 ? 13 14.510 7.640 13 13.820 12.470 39.050 13 13.210 31.830 69.050
huck.col 74 53 11 11 11 11.000 7.720 11 11.000 5.000 31.530 11 11.000 5.000 55.530
jean.col 80 36 10 10 10 10.450 8.360 10 10.110 7.550 27.180 10 10.030 9.360 53.180

miles1000.col 128 86 42 42 43 45.060 37.420 43 44.570 9.440 25.330 42 44.090 17.840 51.330
miles1500.col 128 106 73 73 73 74.760 64.800 73 73.970 6.280 23.520 73 73.640 12.450 47.520
miles250.col 128 16 8 8 8 9.440 8.440 8 8.940 24.460 46.120 8 8.740 34.460 88.120
miles500.col 128 38 20 20 21 22.330 19.340 20 21.770 16.340 30.360 20 21.390 25.770 64.360
miles750.col 128 64 31 31 32 34.050 28.630 32 33.540 11.830 27.100 31 33.160 20.410 57.100
mulsol.i.1.col 197 121 49 49 49 49.480 38.790 49 49.000 5.000 27.570 49 49.000 5.000 51.570
mulsol.i.2.col 188 156 31 31 31 32.450 19.190 31 31.010 6.270 22.360 31 31.000 6.490 46.360
mulsol.i.3.col 184 157 31 31 31 32.520 19.240 31 31.000 5.910 21.750 31 31.000 5.910 45.750
mulsol.i.4.col 185 158 31 31 31 32.610 19.290 31 31.000 5.900 20.530 31 31.000 5.900 44.530
mulsol.i.5.col 186 159 31 31 31 32.380 19.210 31 31.000 5.050 22.040 31 31.000 5.050 46.040
myciel2.col 5 2 3 3 3 3.000 3.000 3 3.000 5.000 9.480 3 3.000 5.000 33.480
myciel3.col 11 5 4 4 4 4.030 4.030 4 4.000 5.040 10.220 4 4.000 5.040 34.220
myciel4.col 23 11 5 5 5 5.090 4.320 5 5.000 5.130 12.180 5 5.000 5.130 36.180
myciel5.col 47 23 6 6 6 6.280 4.710 6 6.000 5.300 13.670 6 6.000 5.300 37.670
myciel6.col 95 47 7 7 7 8.010 4.480 7 7.050 5.700 17.420 7 7.010 6.410 41.420
myciel7.col 191 95 8 8 10 11.600 4.080 8 8.080 7.200 22.540 8 8.010 8.660 46.540

queen10-10.col 100 35 11 11 14 15.360 12.360 14 14.790 7.140 16.910 14 14.640 9.670 40.910
queen11-11.col 121 40 11 12 15 16.730 13.610 15 16.080 8.820 17.160 15 16.000 9.970 41.160
queen12-12.col 144 43 12 13 17 18.090 14.120 16 17.430 8.400 17.290 16 17.280 11.030 41.290
queen13-13.col 169 48 13 14 18 19.430 15.430 18 18.780 8.510 17.650 18 18.700 9.720 41.650
queen14-14.col 196 51 14 15 20 20.830 16.270 19 20.080 8.730 18.120 19 19.940 10.830 42.120
queen15-15.col 225 56 15 16 21 21.960 16.960 20 21.450 8.480 18.530 20 21.230 12.300 42.530
queen16-16.col 256 59 16 17 22 23.330 18.330 21 22.720 8.770 18.820 21 22.570 11.510 42.820
queen5-5.col 25 16 5 5 6 7.690 6.690 5 6.820 6.650 12.540 5 6.620 8.370 36.540
queen6-6.col 36 19 7 7 8 9.490 8.490 8 8.950 7.270 13.640 8 8.860 8.600 37.640
queen7-7.col 49 24 7 7 10 11.100 9.100 9 10.400 7.370 14.700 9 10.180 10.210 38.700
queen8-12.col 96 32 12 12 13 15.120 12.120 14 14.740 7.540 16.600 14 14.610 9.770 40.600
queen8-8.col 64 27 9 9 11 12.490 10.490 11 11.920 7.510 15.730 11 11.870 8.380 39.730
queen9-9.col 81 32 10 10 13 13.880 10.930 12 13.410 7.500 15.980 12 13.230 10.180 39.980
school1.col 385 282 14 14 41 45.200 19.570 36 38.930 23.150 44.100 36 38.660 28.790 70.100

school1-nsh.col 352 232 14 14 37 40.190 20.190 33 36.160 18.940 37.380 33 35.900 24.560 63.380
zeroin.i.1.col 211 111 49 49 49 49.980 39.850 49 49.020 5.720 23.100 49 49.010 5.910 47.100
zeroin.i.2.col 211 140 30 30 30 31.620 18.440 30 30.160 6.110 16.270 30 30.030 8.410 40.270
zeroin.i.3.col 206 140 30 30 30 31.560 18.530 30 30.130 6.410 17.690 30 30.030 8.170 41.690

average 20.625 21.896 15.636 20.175 20.938 8.703 22.383 20.125 20.796 11.836 47.833
# times better 1 0 29

# times all equal 2 2 2
# times worse 37 0 0



5.4. EXPERIMENTAL RESULTS 139

where additional colors are needed in order to obtain valid colorings. An example is shown
in Figure 5.10. In this context, remember that numbers correspond to colors. The process of
an incremental coloring is shown starting at the top left grid and ending at the bottom right
grid. The first row shows several nodes where the coloring is initiated with color 1. These
wrong initial decisions lead to borders (see the gray-colored nodes in the bottom row) where
additional colors are needed.

1 1 1 1 1

1

1 1

1
1

1 1

1
1 2

1 1

1
1 2

1
1 1

1
1 2

1 2
1 1

1
1 2

1 22

1 1

1
1 2

1 22

2

1 1

1
1 2

1 22

2

2 1 1

1
1 2

1 22

2

2
1

1 1

1
1 2

1 22

2

2
1

1

rs 1 1

1
1 2

1 22

2

2
1

1
3 rs rs

1 1

1
1 2

1 22

2

2
1

1
3

3

rs rsrs
1 1

1
1 2

1 22

2

2
1

1
3

3
4 rs rsrs

1 1

1
1 2

1 22

2

2
1

1
3

3
4

2

Figure 5.10: Example of the distributed incremental process of coloring a grid of 4× 4 nodes.
Nodes choose colors in the order as determined by their θ-values, one node at a time. For the
example of this figure we have chosen a fictious node order. The process starts with the top
left drawing in which the first node (from row 2 and column 2 of the grid) chooses a color.
It proceeds with the second drawing from the top in which the node from row 2 and column
4 chooses a color. The process stops with the drawing at the bottom right. Due to early
decisions (see the top row), the last row shows the formation of borders (see the gray-colored
nodes) where additional colors are needed for achieving valid colorings.

Computational results are shown in Table 5.8. Note that in this case all chromatic num-
bers are known as they can be established theoretically. While small grids can basically be
colored correctly by all three algorithms, both Finocchi and FrogSim

� have—as expected—



140 CHAPTER 5. DISTRIBUTED GRAPH COLORING

Table 5.8: Results for grid (respectively, torus) topologies. The first column indicates the
instance name. The group of columns labelled "Properties" provides for each problem instance
the number of nodes |V |, the maximum degree ∆, the chromatic number χ, and the quality of
the coloring (column "cent.") obtained with the centralized algorithm by Malaguti et al. [137].
For each of the three algorithms Finocchi, FrogSim

� and FrogSim three measures are
provided: (1) the value of the best solution found (column "colors"), (2) the average solution
quality (column "avg."), and (3) the average number of communication rounds that were
used (column "rounds"). In the case of FrogSim

� and FrogSim, the average number of
communication rounds at which the algorithms converged is additionally provided (column
"conv."). The best algorithm for each instance is indicated in bold face. The best algorithm
is hereby defined as the one that generates the best solution. Ties are broken by the average
performance.

Instance
Properties Finocchi FrogSim

�
FrogSim

|V | ∆ χ cent. colors avg. rounds colors avg. rounds conv. colors avg. rounds conv.
grid2x1 2 1 2 2 2 2.000 2.000 2 2.000 5.000 6.000 2 2.000 5.000 30.000
grid2x2 4 2 2 2 2 2.000 2.000 2 2.000 5.000 6.380 2 2.000 5.000 30.380
grid3x1 3 2 2 2 2 2.000 2.000 2 2.000 5.000 6.350 2 2.000 5.000 30.350
grid3x2 6 3 2 2 2 2.300 2.300 2 2.060 5.480 8.660 2 2.000 6.160 32.660
grid3x3 9 4 2 2 2 2.510 2.510 2 2.090 5.770 10.010 2 2.000 6.810 34.010
grid4x1 4 2 2 2 2 2.270 2.270 2 2.000 5.680 8.240 2 2.000 5.680 32.240
grid4x2 8 3 2 2 2 2.570 2.570 2 2.100 7.880 13.220 2 2.000 9.210 39.220
grid4x3 12 4 2 2 2 2.870 2.870 2 2.220 8.620 15.160 2 2.000 11.470 41.160
grid4x4 16 4 2 2 2 3.020 3.020 2 2.490 10.620 18.110 2 2.000 17.410 46.110
grid5x1 5 2 2 2 2 2.310 2.310 2 2.030 8.190 12.970 2 2.000 8.600 38.970
grid5x2 10 3 2 2 2 2.720 2.720 2 2.090 11.000 18.840 2 2.000 12.770 46.840
grid5x3 15 4 2 2 2 3.000 3.000 2 2.290 10.860 19.280 2 2.000 15.750 47.280
grid5x4 20 4 2 2 2 3.360 3.360 2 2.600 12.980 22.290 2 2.000 23.470 52.290
grid5x5 25 4 2 2 2 3.540 3.540 2 2.900 14.840 26.340 2 2.000 32.820 58.340
grid6x1 6 2 2 2 2 2.424 2.424 2 2.010 10.690 18.220 2 2.000 10.870 46.220
grid6x2 12 3 2 2 2 2.980 2.980 2 2.190 13.470 24.300 2 2.000 18.450 54.300
grid6x3 18 4 2 2 2 3.160 3.160 2 2.430 13.590 24.370 2 2.000 21.810 54.370
grid6x4 24 4 2 2 2 3.440 3.440 2 2.680 15.940 27.460 2 2.000 29.480 59.460
grid6x5 30 4 2 2 2 3.640 3.640 2 3.020 17.380 30.010 2 2.000 37.170 64.010
grid6x6 36 4 2 2 2 3.770 3.770 2 3.190 19.680 33.510 2 2.000 45.190 69.510
grid7x1 7 2 2 2 2 2.550 2.550 2 2.030 13.430 22.780 2 2.000 14.180 52.780
grid7x2 14 3 2 2 2 3.050 3.050 2 2.280 16.380 28.550 2 2.000 23.900 60.550
grid7x3 21 4 2 2 2 3.200 3.200 2 2.520 16.020 29.120 2 2.000 27.620 61.120
grid7x4 28 4 2 2 2 3.720 3.720 2 2.950 17.500 31.580 2 2.000 37.180 65.580
grid7x5 35 4 2 2 2 3.670 3.670 2 3.100 20.050 34.150 2 2.000 45.590 70.150
grid7x6 42 4 2 2 2 3.760 3.760 2 3.290 21.910 37.380 2 2.000 53.190 75.380
grid7x7 49 4 2 2 3 3.940 3.940 2 3.480 23.290 40.530 2 2.000 59.700 80.530
grid8x1 8 2 2 2 2 2.600 2.600 2 2.010 18.560 28.690 2 2.000 18.900 60.690
grid8x2 16 3 2 2 2 3.140 3.140 2 2.260 18.310 33.710 2 2.000 26.490 67.710
grid8x3 24 4 2 2 2 3.490 3.490 2 2.590 18.390 34.610 2 2.000 34.810 68.610
grid8x4 32 4 2 2 2 3.810 3.810 2 2.970 20.440 36.570 2 2.000 45.520 72.570
grid8x5 40 4 2 2 2 3.840 3.840 2 3.210 21.890 39.730 2 2.000 54.220 77.730
grid8x6 48 4 2 2 3 3.940 3.940 2 3.340 23.980 43.010 2 2.000 59.950 83.010
grid8x7 56 4 2 2 3 3.920 3.920 2 3.510 24.650 43.710 2 2.000 64.470 85.710
grid8x8 64 4 2 2 3 4.040 4.040 2 3.650 27.150 47.460 2 2.000 72.080 91.460
grid9x1 9 2 2 2 2 2.710 2.710 2 2.010 19.980 32.720 2 2.000 20.300 66.720
grid9x2 18 3 2 2 2 3.310 3.310 2 2.350 21.250 38.810 2 2.000 34.050 74.810
grid9x3 27 4 2 2 2 3.600 3.600 2 2.650 21.470 39.420 2 2.000 41.740 75.420
grid9x4 36 4 2 2 3 3.840 3.840 2 3.090 22.960 41.580 2 2.000 54.240 79.580
grid9x5 45 4 2 2 3 3.900 3.900 2 3.260 24.250 52.380 2 2.000 68.050 92.380
grid9x6 54 4 2 2 3 3.990 3.990 2 3.540 24.780 46.300 2 2.000 68.070 88.300
grid9x7 63 4 2 2 3 4.000 4.000 2 3.730 26.740 47.350 2 2.000 73.150 91.350
grid9x8 72 4 2 2 3 4.000 4.000 2 3.710 29.240 51.530 2 2.000 80.430 97.530
grid9x9 81 4 2 2 4 4.100 4.100 2 3.860 29.770 54.830 2 2.000 86.260 102.830

Ising32x8.col 256 4 2 2 4 4.200 4.200 4 4.010 45.790 85.720 2 2.000 140.340 149.720
ising32x8-torus.col 256 4 2 2 4 4.370 4.370 4 4.010 43.370 76.800 2 2.000 124.080 136.800

average 2.326 3.273 3.273 2.087 2.735 17.809 31.494 2.000 2.000 38.188 66.016
# times better 0 0 42

# times all equal 3 3 3
# times worse 43 0 0



5.4. EXPERIMENTAL RESULTS 141

increasing difficulties when the grid size grows. Although this is the case, FrogSim
� has clear

advantages over Finocchi. This is indicated by the average numbers given in the first of the
four summarizing rows at the end of the table, and also by the fact that Finocchi is the sole
loser in 43 cases, whereas FrogSim

� is never the sole loser. In contrast to the deteriorat-
ing performance of Finocchi and FrogSim

� when the grid size grows, FrogSim achieves
perfect colorings in all 100 applications for all instances, which is a remarkable achievement.
Even the large grids with or without periodic boundary conditions (see graphs Ising32x8.col
and Ising32x8-torus.col used in [124]) do not pose any difficulty to FrogSim. In contrast,
both Finocchi and FrogSim

� make use of four or more colors instead of the optimal two
colors. Summarizing we can state that phase II of FrogSim is very useful when applied to
grid topologies, helping the algorithm to achieve an excellent performance.

5.4.5 Results for Small Instances from [124]

Finally, we present results obtained by the three algorithms for rather small instances used by
S. Lee in [124] for the evaluation of a firefly-inspired distributed graph coloring algorithm. We
do not directly compare with the results presented in [124], because the algorithm proposed
in [124] assumes that the number of colors required for the coloring is known a priori, that is,
the algorithm must be run for a pre-determined number of colors. When graphs are large and
chromatic numbers are unknown, such an algorithm is not practical. Anyway, FrogSim and
the algorithm from [124] behave very similarly for most instances, with some exceptions: for
hexagon-based instances, FrogSim is not quite able to match the average results obtained by
the algorithm from [124]. Moreover, concerning icosahedron.col, the best solution by FrogSim

uses one color more than the best one by Lee’s algorithm. On the other side, concerning
4-partite-4-diff-sizes.col and dodecahedron.col, FrogSim improves upon the average results
obtained by Lee’s algorithm.

As shown in Table 5.9, the three algorithms achieve equal results in 3 out of 14 cases. In
the remaining cases both FrogSim

� and FrogSim obtain better results than Finocchi. The
difference between FrogSim

� and FrogSim is again to be found in the fact that FrogSim

is more robust, which is indicated by a better average solution quality.

5.4.6 Summary of Results

Finally, the results from Tables 5.5–5.9 are visually presented in a summarized form in Fig-
ure 5.11. For the instances of each of the five tables (x-axis) the average improvement of
FrogSim

� and FrogSim over Finocchi in terms of the best coloring (see Figure 5.11(a))
and the average solution quality (see Figure 5.11(b)) is presented. The 5 groups of instances
are ordered from left to right as they appear in the text. These graphics show nicely that both
versions of FrogSim gain an advantage over Finocchi in all cases. Although the best results
are similar for both the FrogSim

� and FrogSim algorithms, FrogSim shows to be more
consistent over multiple runs. Figure 5.11 shows that, as previously mentioned, FrogSim

works especially well for grid topologies.
Concerning all problem instances tackled in this work, algorithm FrogSim

� needs, on
average, 13.16 communication rounds to find its best solution. Algorithm Finocchi uses,
on average, a comparable number of communication rounds (13.14). The average number of
communication rounds that FrogSim spends on phase I before converging and switching to
phase II is 19.65. Counting both phases, FrogSim requires, on average, 26.41 communication



142 CHAPTER 5. DISTRIBUTED GRAPH COLORING

Table 5.9: Results for the instances introduced in [124]. The first column indicates the instance
name. The group of columns labelled "Properties" provides for each problem instance the
number of nodes |V |, the maximum degree ∆, the chromatic number χ, and the quality of the
coloring (column "cent.") obtained with the centralized algorithm by Malaguti et al. [137].
For each of the three algorithms Finocchi, FrogSim

� and FrogSim three measures are
provided: (1) the value of the best solution found (column "colors"), (2) the average solution
quality (column "avg."), and (3) the average number of communication rounds that were
used (column "rounds"). In the case of FrogSim

� and FrogSim, the average number of
communication rounds at which the algorithms converged is additionally provided (column
"conv."). The best algorithm for each instance is indicated in bold face. The best algorithm
is hereby defined as the one that generates the best solution. Ties are broken by the average
performance.

Instance
Properties Finocchi FrogSim

�
FrogSim

|V | ∆ χ cent. colors avg. rounds colors avg. rounds conv. colors avg. rounds conv.
1hexagon-tess.col 7 6 3 3 3 3.330 3.330 3 3.070 5.430 10.040 3 3.050 5.640 34.040
2-partite-size6.col 12 6 2 2 2 2.000 2.000 2 2.000 5.000 6.500 2 2.000 5.000 30.500
2hexagon-tess.col 10 6 3 3 3 3.930 3.930 3 3.580 5.680 11.420 3 3.350 8.270 35.420

3-partite-3-diff-sizes.col 6 5 3 3 3 3.000 3.000 3 3.000 5.000 9.170 3 3.000 5.000 33.170
3-partite-size-6.col 18 12 3 3 3 3.310 2.310 3 3.000 5.000 11.040 3 3.000 5.000 35.040
3hexagon-tess.col 12 6 3 3 3 4.180 4.180 3 3.860 6.040 12.430 3 3.480 10.150 36.430

3partite6.col 18 12 3 3 3 3.300 2.300 3 3.000 5.000 11.170 3 3.000 5.000 35.170
4-partite-4-diff-sizes.col 10 9 4 4 4 4.000 4.000 4 4.000 5.000 10.380 4 4.000 5.000 34.380

4triangles 12 3 3 3 3 3.260 3.260 3 3.060 7.460 13.760 3 3.000 8.330 39.760
6hexagon-tess.col 19 6 3 3 3 4.640 4.640 3 4.250 8.290 16.290 3 3.950 12.820 42.290

7partite2.col 14 12 7 7 7 7.060 6.060 7 7.000 5.000 10.620 7 7.000 5.000 34.620
dodecahedron.col 20 3 3 3 3 3.640 3.640 3 3.460 12.000 19.580 3 3.430 12.660 49.580
icosahedron.col 12 5 4 4 4 4.770 4.770 4 4.480 7.880 12.990 4 4.400 9.010 38.990

peterson.col 10 3 3 3 3 3.150 3.150 3 3.020 5.340 10.620 3 3.020 5.340 34.620
average 3.357 3.826 3.612 3.357 3.627 6.294 11.858 3.357 3.549 7.301 36.715

# times better 0 0 7
# times all equal 3 3 3
# times worse 11 0 0



5.4. EXPERIMENTAL RESULTS 143

random−graphs dimacs1 dimacs2 grid other

Instances

Im
pr

ov
em

en
t (

in
 p

er
ce

nt
)

0
10

20
30

40
50

(a) Improvement upon Finocchi (in percent) concerning the best
solutions found

random−graphs dimacs1 dimacs2 grid other

Instances

Im
pr

ov
em

en
t (

in
 p

er
ce

nt
)

0
10

20
30

40
50

(b) Improvement upon Finocchi (in percent) concerning the aver-
age algorithm performance

Figure 5.11: Summary of results for the different groups of graph topologies. Both graphics
show the performance improvement of FrogSim

� (light gray bars) and FrogSim (dark gray
bars) upon Finocchi (in percent). The graphic in (a) concerns the best colorings found,
whereas the graphic in (b) concerns the average algorithm performance. The five groups
correspond with those in Tables 5.5–5.9.

rounds to find its best solution. It should be noted that, in the case of FrogSim these
numbers do not depend so much on the size of the network, but rather on the networks’ edge
density.

Additionally, we use an ANCOVA model to study the statistical significance of the results.
In this context, the quality of the results can be explained as a combination of the algorithm
used, the number of nodes of the graph, and the degree of the graph. This will make it possible
to compare Finocchi and FrogSim. The results tell us that over all instances, FrogSim

uses on average 1.675 fewer colors than Finocchi. Moreover, with a confidence of 95%, we
can estimate that this advantage will be in the interval [1.331, 2.020]. However, an important
remark must be made regarding the validity of these results. First of all, ANCOVA methods
generally require samples to be normally distributed. Although this assumption does probably



144 CHAPTER 5. DISTRIBUTED GRAPH COLORING

not hold for our data set, Diehr and Lumley [54] justify that the results remain valid for
large data sets. Besides, the authors mention that heterocedasticity can reduce the precision
of the confidence intervals found. In our case, this heterocedasticity exists, and therefore, a
small increase of the above-mentioned confidence interval of the advantages of using FrogSim

over Finocchi must be assumed. Probably, performing this analysis separately for different
families of graphs, homocedasticity could easily be determined and we would be able to achieve
more precise intervals of confidence for each of these families of graphs. Nevertheless, the
goal of showing that, with statistical significance, FrogSim is better than Finocchi has been
achieved.

The same ANCOVA model can be used to check a claim which is generally assumed in the
graph coloring community, namely that the amount of nodes is not decisive for determining
the number of colors needed for coloring a graph. Instead, the degree of the graph (∆) is the
primary factor to determine the number of colors required. Our ANCOVA model suggests
that, on average, an increase of one node in the size of a graph is translated in 0.01 colors
less needed for coloring the graph. In other words, the size of the graph is almost negligible.
On the contrary, for each unit that increases the degree of the graph, the amount of colors
needed for coloring increases, on average, 0.24 colors. This is approximately one color for
every increase of four units of the degree.

5.5 Conclusions and Future Work

Graph coloring is a classical problem of modern mathematics with more than 150 years of
history. The problem has been extensively studied in theory and practice. Recently, its
connection to problems that have arisen with the proliferation of wireless networks has caused
a special interest in resolving the problem in a distributed manner. Due to the lack of global
knowledge, in distributed algorithms the nodes have to base their color choices exclusively on
information they receive from their neighbors.

The algorithm we have presented in this paper is inspired by the behavior of a family of
frogs native to Japan, namely the calling behavior of Japanese tree frogs. First, we have re-
viewed a model for the calling behavior of Japanese tree frogs from the literature and we have
used it for the desynchronization of nodes in sensor networks. Moreover, we have proposed
possible extensions of this model concerning the weight that is given to different sensor nodes
(relevance) and also concerning the phase shift function that is responsible for the desynchro-
nization of the sensor nodes over time. The presented results have shown that especially the
new phase shift function helps in improving the desynchronization capabilities of the system,
both in quality and speed.

Second, we have presented an algorithm for graph coloring in sensor networks. The results
achieved by the proposed algorithm compare very favorably with current state-of-the-art al-
gorithms. In particular, an improved performance has been measured for about 90% of the
studied instances. The benchmark set that we chose for comparison includes random geomet-
ric graphs, most of the graphs of the DIMACS challenge, and grid graphs. Apart from the
favorable results, the proposed algorithm uses messages of constant size, which means that
it is scalable up to very large networks. Moreover, the number of communication rounds re-
quired is comparable to that required by other algorithms that provide high quality solutions.
Finally, our algorithm provides a valid coloring already in the very first communication round.

With regard to future work, we consider the use of the proposed algorithm for time division



5.5. CONCLUSIONS AND FUTURE WORK 145

multiplexing (TDM), a mechanism for collision-free communication in wireless networks that
is strongly related to graph coloring. Finally, due to its adaptive nature, our algorithm might
also be interesting for mobile networks, or any dynamically changing network.



146 CHAPTER 5. DISTRIBUTED GRAPH COLORING



Chapter 6

Minimum Energy Broadcasting with

Realistic Antenna Model

As already mentioned in the introduction of this thesis, sensor networks are wireless ad hoc net-
works that are being used in practical scenarios such as the monitoring of certain events [167].
Sensor nodes are generally equipped with omni-directional antennas for sending and receiving
information. They have a packet-forwarding capability in order to communicate via shared
and limited radio channels. In order to transmit information, a sender node must adjust its
transmission power in order to reach the desired receiver node. As network lifetime is limited
by batteries, energy saving is critical. A fundamental problem in sensor networks arises when
one node is required to transmit data to all other nodes of the network. This scenario is
known as broadcasting. Obviously, for broadcasting to be energy-efficient, the transmission
powers of the sensor nodes should be adjusted such that the sum of the energy spent by all
nodes is minimized. This problem is known as the minimum energy broadcast (MEB) in the
literature [195].

Consider, for example, the two different patterns for a broadcast transmission of node 1
shown in Figure 6.1. Although both communication schemes reach the same nodes, the second
one makes a more efficient use of energy. The MEB problem aims at obtaining energy savings
by choosing appropriate communication patterns for each situation. Note that the light gray
node is the source node.

To our knowledge, most—if not all—works from the literature use an antenna model
where transmission powers can be adjusted to any real value between zero and the maxi-
mum transmission power level. However, available hardware such as SunSPOTs (see http:

//www.sunspotworld.com/) or iSense sensor nodes (see http://www.coalesenses.com/) are
equipped with antennas that offer a limited set of different transmission powers; 201 in the case
of SunSPOTs and seven in the case of the iSense hardware. Note that SunSPOTs are among
the most widely used sensor hardware, while iSense nodes are used by two of the currently
largest European projects on sensor networks, FRONTS [66] and WISEBED [67].

Related Work

The classical minimum energy broadcast (MEB) problem, assuming omni-directional antennas
whose transmission power can be adjusted to any desired real value between zero and the
maximum transmission power, has mainly been tackled with centralized heuristics. Only very

147



148 CHAPTER 6. MEBRA

1

2

3

(a) Basic transmission scheme

1

2

3

(b) Energy-aware transmission scheme

Figure 6.1: Energy benefits by the usage of relay nodes. (a) shows a configuration one-to-all,
and (b) shows an energy-aware configuration using intermediate nodes.

few distributed approaches can be found in the literature (see [196, 36]). Due to the fact that
the ACO approach initially proposed in this chapter is centralized, we focus in the following
on other centralized proposals.

Centralized heuristics include the ones presented in [195, 189, 130]. The most popular
constructive technique is the broadcast incremental power (BIP) algorithm proposed in [195].
Moreover, local search methods including tree-based methods such as [128, 80] and power-
based methods such as [47] have been developed. More recently, the MEB problem was also
tackled by metaheuristics [46, 108, 6, 204]. The latest approaches are an ant colony optimiza-
tion (ACO) approach proposed in [90] and the hybrid genetic algorithm presented in [174].
Even though no direct comparison is available between ACO and the hybrid genetic algorithm,
a rough comparison can be made based on the results obtained for a set of benchmark in-
stances from the literature. In particular, for benchmark instances with 50 nodes, ACO finds
on average for each instance an optimal solution in 29.7 out of 30 trials. On the contrary, the
hybrid genetic algorithm on average only finds in 22.9 trials an optimal solution for the same
problem instances. Moreover, the results of ACO are achieved in less computational time.
Therefore, the ACO algorithm from [90] can currently be regarded to be a state-of-the-art
approach among the centralized techniques.

A comprehensive survey of existing work for the MEB problem and other related problems
can be found in [81].

Our Contribution

This work offers three contributions. The first one concerns a re-formulation of the classical
MEB problem for an antenna model that is frequently encountered, for example, in antennas
of sensor nodes such as SunSPOTs and iSense nodes. While the classical MEB problem
is formulated for antennas where the transmission power can be adjusted to any desired
real-value between 0 and the maximum transmission power, our re-formulation considers an
antenna model where transmission powers must be chosen from a finite set of discrete values,
as it is the case for the antennas found in SunSPOTs and iSense sensor nodes.

The second contribution of this article concerns the adaptation of the current state-of-
the-art algorithm for the classical MEB problem to the re-formulated problem. The obtained



6.1. MINIMUM ENERGY BROADCASTING WITH REALISTIC ANTENNAS 149

results show that the advantage of this algorithm over classical heuristics even grows when
the number of possible transmission power levels decreases.

The third contribution of this work is the adaptation of the ACO algorithm for the MEBRA
to work in sensor networks and other distributed scenarios. Although important changes are
necessary to run the algorithm in a distributed environment, we show that using a new type
of local heuristic information the algorithm obtains competitive results.

The contributions of this chapter have been previously shared with the research community.
The advice given by the referees has been used to improve the algorithms introduced in this
chapter. The following list contains all our publications related to novel techniques introduced
in this chapter. Remember that a more extended description of the publications is available
in Section 1.2:

• Hugo Hernández and Christian Blum. Ant Colony Optimization for Broadcasting in
Sensor Networks under a Realistic Antenna Model. In Bogdan Filipic and Jurij Silc
editors, BIOMA 2010 – Proceedings of 4th International Conference on Bio-Inspired
Optimization Methods and their Applications. Pages 153-162. Published by Jozef Stefan
Institute, Ljubljana, Slovenia, 2010. ISBN 978-961-264-017-0.

• Hugo Hernández and Christian Blum. Minimum Energy Broadcasting in Wireless Sen-
sor Networks: An Ant Colony Optimization Approach For a Realistic Antenna Model.
Applied Soft Computing, 11(8):5684-5694, 2011.

• Hugo Hernández and Christian Blum. Distributed Ant Colony Optimization for Mini-
mum Energy Broadcasting in Sensor Networks with Realistic Antennas. Computers &
Mathematics with Applications, 2012. In press.

Chapter Organization

Section 6.1 is devoted to the description of the minimum energy broadcast problem with
realistic antennas. Then, Sections 6.2 and 6.3 describe the adapted BIP algorithm, respectively
the adapted ant colony optimization algorithm. In Section 6.4 we provide an experimental
evaluation of the presented algorithms. Finally, Section 6.5 introduces a distributed version of
the ACO algorithm for the MEBRA, whereas Section 6.6 will offer conclusions and an outlook
to future work.

6.1 Minimum Energy Broadcasting With Realistic Antennas

Broadcasting is a usual communication pattern in wireless ad hoc networks (WANETs) and,
in particular, in sensor networks. However, in contrast to traditional wired networks, the role
played by energy in the quality of the communication is much more important. As explained
before, energy is a scarce resource in wireless ad hoc networks. In many algorithms it arises
as a critical constraint. Moreover, batteries may be difficult to recharge or replace in spe-
cific scenarios. When batteries begin to deplete, the network consistency will be threatened,
dramatically decreasing network performance and partitioning the network into smaller in-
dependent networks. In contrast with the slow increase of the capacity of batteries over the
last years, the popularity of energy saving procedures capable of extending wireless ad hoc
networks’ lifetime, consistency and performance has increased notably.



150 CHAPTER 6. MEBRA

The main energy consumer in WSNs and WANETs is communication. Therefore, the se-
lection of relay nodes, radio frequency (RF) transmission power and correct beam width and
beam direction are some of the major considerations for the design of broadcast and multicast
routing algorithms.

For the following explanation, we consider the nodes equipped with omnidirectional an-
tennas. However, the ideas are easily extensible to the case of directional antenna networks.
When a source node starts a broadcast communication it must decide its transmission power.
The transmission power will be directly related to the area covered by the signal. Receivers of
the transmission must act as relay nodes in order for the message to reach all its destination
nodes. Each relay node must also choose a proper communication power before transmit-
ting. In other words, in order to establish a broadcast tree, each node must be assigned a
transmission power. With the antenna model used, if u, v are nodes, pv is the transmission
power of node v and d(v, u) is the Euclidean distance from v to u, the signal emitted by v
reaches u if pv ≥ d(v, u)α. When the above inequality holds for an emitting node v and any
other node u, we say that v is connected to u through a direct link. The only alternative
way of establishing a communication path is by means of intermediate nodes that will act as
relay nodes. In this scheme, a chain of pairs of nodes directly linked (i.e. fulfilling the above
inequality) must exist in order to guarantee the existence of a communication path from v to u.

Note that in case v and u are located such that pv ≥ d(v, u)α then for all nodes w with
d(v,w) ≤ d(v, u), pv ≥ d(v,w)α also holds. In words, this means that creating a direct link
from v to u will also assure that v will establish a direct link to all nodes which are not farther
from v than u. In wireless scenarios, communication must no longer be understood as a set
of links but as an area of coverage that surrounds each node. The recipients of node v, are
those located inside its area of coverage. This also means that communication trees in wireless
scenarios might not be symmetric, a property which is quite common for wired links. Hence,
a node v can transmit a message to nodes u1, u2, . . . , uk, in only one transmission using the
maximum of the powers that would be required for reaching each node separately (puv is the
power required for a transmission from node u to v):

pwireless
v = max{pvui

| 1 ≤ i ≤ k} (6.1)

In contrast, wired networks require v to make a different transmission to each node, and
hence, the powers required for transmitting from node v to nodes u1, u2, . . . , uk will be the
sum of the transmission powers required for the connection of v to each host:

pwired
v = Σk

i=1pvui
(6.2)

Figure 6.2 shows the different communication schemes and infrastructure needed for two
networks with the same topology, one using wireless networking (Figure 6.2(a)) and the other
wired networking (Figure 6.2(b)).

The related literature generally uses the term Wireless Multicast Advantage [195] (or
WMA) for referring to the ability of wireless networks of broadcasting to local neighbor-
hoods with a single transmission. The WMA is inherent to the wireless network model. This
means that it cannot be disabled. Using the air as a communication channel, any node in
the area of influence of a transmission can receive and process the signal. Therefore, any



6.1. MINIMUM ENERGY BROADCASTING WITH REALISTIC ANTENNAS 151

one-to-one communication in wireless networks must be implemented logically with the use
of an additional protocol or algorithm. On the contrary, the nature of wired networks is to
consider one-to-one connections and to use switches to produce multicast transmissions. Al-
though transmitting over the air is more expensive than using a solid channel, an adequate use
of WMA reduces the energy consumed by wireless networks. As a result, it is quite important
to find optimal transmission trees in wireless networks. In fact, the MEB problem has been
classified as NP-hard [30, 130], while a similar problem in wired networks can be easily solved
by creating a minimum spanning tree (MST), which is a polynomially solvable problem. The
goal of MEB is no other than to take profit from the benefits of the WMA.

1

2

3

4

5

6
7

8
9

(a) Wireless Network

1

2

3

4

5

6
7

8
9

(b) Wired network

Figure 6.2: Wireless Multicast Advantage of omnidirectional antennas.

Formulation of the MEBRA

Given a set of sensor nodes V , we assume that each node i ∈ V can choose a transmission
power level pi such that pi ∈ P = {tp1, . . . , tpm}, where P is a finite set of m different
transmission powers such that tp1 = 0 and tpl < tpl+1 for all l = 1, . . . ,m− 1. Moreover, we
assume that signal power diminishes at a rate proportional to r−α, where r is the distance to
the signal source, and α is a parameter that, depending on the environment, takes typically
values between 2 and 4. In our work we choose α = 2, as in most other works (see, for
example, [195]). A sender node i is able to successfully transmit a signal to a receiver node j if
pi ≥ k · d(i, j)α, where d(i, j) is the Euclidean distance between i and j, and k is the receiving
node’s power threshold for signal detection which is usually normalized to 1.

The minimum energy broadcast problem with realistic antennas (MEBRA), as introduced
in the following, is NP-hard. This easily follows from being a generalization of the standard
MEB problem as defined in the literature [30]. It can be stated as follows. V is a given set of
nodes with fixed positions in a 2-dimensional area. Introducing a directed link (i, j) between
all (ordered) pairs i 6= j of nodes such that d(i, j)α ≤ tpm, where d(i, j) is the Euclidean
distance between i and j, induces a directed network G = (V,E). Given a source node s ∈ V ,
one must find transmission powers for all nodes such that a broadcast from s to all other nodes
is possible, and such that the sum of all transmission powers is minimal. This corresponds to



152 CHAPTER 6. MEBRA

tp2 tp3 tp4

(a) Antenna with four
transmission power
levels (remember
that tp1 = 0)

s 1 2

(b) Solution T1

with edge set
{(s, 1), (s, 2)}. Trans-
lates to ps = tp4,
p1 = 0, and p2 = 0

s 1 2

(c) Solution T2

with edge set
{(s, 1), (1, 2)}.
Translates to
ps = p1 = tp2, and
p2 = 0

Figure 6.3: An example for the MEBRA problem and different solutions. We assume that
each sensor node has an antenna as shown in (a), that is, with four transmission power levels.
The first one, tp1, is always zero. The three other transmission power levels—tp2, tp3, and
tp4—are shown as concentric circles of the area they cover. In this example let us assume that
2 · tp2 < tp4. (b) and (c) each show a solution for a problem instance with three sensor nodes:
the source node s and nodes 1 and 2. Note that because 2 · tp2 < tp4, the solution in (c) is
better than the one from (b). In fact, (c) is the optimal solution for this small example.

finding a directed spanning tree T = (V,ET ) with root node s in G such that function f(·),
whose definition is given in the following, is minimized:

f(T ) :=
∑

i∈V

max
(i,j)∈ET

pij (6.3)

where pij is the minimum transmission power level with which node j can receive the signal
sent by node i. Technically, pij can be defined as follows:

pij := min {tpl ∈ P | l ∈ {2, . . . ,m}, tpl ≥ d(i, j)α, tpl−1 < d(i, j)α} (6.4)

Note that a solution T is easily converted to a transmission power level pi for each node i ∈ V
as follows. For all leaf nodes of T we choose pi = 0, and for all other nodes pi := max(i,j)∈ET

pij.
An example of the MEBRA problem is given in Figure 6.3.

6.2 BIP-Algorithm for the MEBRA Problem

As previously explained, the classical heuristic for the original MEB problem is the broadcast
incremental power (BIP) algorithm proposed in [195]. In the following we outline the adapta-
tion of this algorithm for the MEBRA problem, for two reasons. First, the way of constructing
solutions that is employed by the BIP algorithm is also used by the ACO algorithm that will
be outlined in Section 6.3. Second, the adapted BIP algorithm will be used as a benchmark
method for comparison in Section 6.4.

The BIP algorithm starts from a partial solution T = (VT , ET ), where VT := {s} and
ET := ∅, which is iteratively increased until all nodes in the network are included in the



6.3. THE ANT COLONY OPTIMIZATION ALGORITHM 153

Algorithm 9 The BIP algorithm for the MEBRA problem
1: input: a network G = (V,E) and a source node s ∈ V
2: T := ({s}, ∅)
3: while VT 6= V do
4: e = (i, j) := argmine′∈NT

{η(e′)}
5: T := T ⊕ (i, j)
6: end while
7: output: T

solution. In other words, T initially includes only the source node s. Henceforth we denote
by VT the set of sensor nodes which are not included in the current partial solution, that is,
VT := V \ VT . At each construction step, one edge is added to the current partial solution.
The set NT of potential links that can be added to T is defined as follows:

NT := {(i, j) ∈ E | i ∈ VT , j ∈ VT } , (6.5)

where E is the edge set of the directed network G as defined in Section 6.2. More specifically,
NT consists of those links whose source node is in T , whereas the goal node is not in T . The
choice of a link from NT is done by means of a greedy function η(·) that assigns a value to
each e ∈ NT . The BIP algorithm uses the following greedy function1:

η(e) := f(T ⋆)− f(T ) , e ∈ NT . (6.6)

Hereby, T ⋆ is defined as follows:

T ⋆ := T � {e}� {(u, v) | u ∈ VT ∧ v ∈ VT ∧ f(T � e � {u, v}) = f(T � e)} (6.7)

The operation � adds an edge e to a tree T . In addition it adds to T the endnode of e which is
not yet part of T . Concerning Equation 6.7, T ⋆ is obtained by extending T with edge e = (i, j)
and additionally with all the other edges from NT (if any) that can be added to T without
any further increase of the global transmission power. This concerns all links e′ = (i, k) ∈ NT

with d(i, k) ≤ pij.
In other words, the greedy function η(·) used by BIP accounts for the increase of trans-

mission power caused by adding a link e. At each step of the BIP algorithm, the link e ∈ NT

with minimal greedy value is chosen. Finally, note that the solution construction stops when
VT = ∅. The pseudo-code of BIP is provided in Algorithm 9.

6.3 The Ant Colony Optimization Algorithm

In the following we present the adaptation of the ACO algorithm proposed for the classical
MEB problem [90] to the MEBRA problem. This algorithm is a so-called MAX–MIN Ant
System (MMAS) in the Hyper-Cube Framework [19], which is an iterative algorithm that
works roughly as follows. First, at each iteration na solutions to the problem are constructed
in a probabilistic way based on pheromone information and heuristic information. Remember
that solutions in this context are spanning trees rooted in source node s. Second, improve-
ment procedures are applied to each of these trees. The pheromone model T used by our

1Remember that f(·) denotes the objective function of the MEBRA problem as defined in Equation 6.3.



154 CHAPTER 6. MEBRA

Algorithm 10 ACO for the MEBRA problem
1: input: the network G = (V,E) and a source node s ∈ V
2: T bs := null, T rb := null, cf := 0, bs_update := false

3: forall e ∈ E do τe := 0.5 end forall
4: while termination conditions not satisfied do
5: for j = 1 to na do
6: T j := ConstructBroadcastTree(G,s)
7: T j := LocalSearch(T j)
8: end for
9: T ib := argmin{f(T 1), . . . , f(T na)}

10: Update(T ib,T rb,T bs)
11: ApplyPheromoneValueUpdate(cf ,bs_update,T ,T ib,T rb,T bs)
12: cf := ComputeConvergenceFactor(T , T rb, T bs)
13: if cf ≥ 0.99 then
14: if bs_update = true then
15: forall e ∈ E do τe := 0.5 end forall
16: T rb := null, bs_update := false

17: else
18: bs_update := true

19: end if
20: end if
21: end while
22: output: T bs

ACO algorithm consists of a pheromone value τe for each link e ∈ E. After the initialization
of the variables T bs (i.e., the best-so-far solution), T rb (i.e., the restart-best solution), and cf
(i.e., the convergence factor), all the pheromone values are set to 0.5. At each iteration, after
the generation of the na solutions, some of them are used for updating the pheromone values.
The details of the algorithmic framework shown in Algorithm 10 are explained in the following.

ConstructBroadcastTree(G,s): The construction of a solution in ACO is basically done in the
same way as explained in the context of the BIP algorithm in Section 6.2. However, there
are two exceptions. First, note that NT may contain a lot of bad-quality links, especially at
the beginning of the solution construction process. Therefore, we considered the following
restriction of NT :

N r
T := {(∗, l) ∈ NT } , (6.8)

where l is the best node in VT , which is defined as follows. A node l is called the best node
in VT if and only if exists a link e = (k, l) ∈ NT such that η(e) < η(e′) for all e′ ∈ NT .
Hereby, η(·) is the greedy function as defined in Equation 6.6. After this reduction, set N r

T

may still contain quite a lot of links. Therefore, we additionally applied a so-called candidate
list strategy, that is, N r

T is restricted to c elements with the greatest heuristic information
values. After tuning by hand we decided on a setting of c = 8 for all experiments.

The second aspect of the solution construction that is different to the BIP algorithm is the
fact that a link from N r

T is chosen in a probabilistic way, rather than deterministically. More



6.3. THE ANT COLONY OPTIMIZATION ALGORITHM 155

Algorithm 11 Variable neighborhood descent (VND)
1: input: the network G = (V,E), a source node s ∈ V , a solution T = (V,ET ), a parameter

rmax

2: r := 1
3: while r ≤ rmax do
4: T ′ := r-shrink(T )
5: if f(T ′) < f(T ) then T := T ′ and r := 1 else r := r + 1
6: end while
7: output: a (possibly) improved solution T

in detail, a link from N r
T is chosen according to the following probabilities:

p(e) :=
τe · η(e)

−1

∑

e′∈N r
T
τe′ · η(e′)−1

, e ∈ N r
T (6.9)

LocalSearch(T j): Note that solutions constructed by the ants may contain nodes whose trans-
mission power level can be reduced without destroying the broadcast property of the solution.
Therefore, we first apply the so-called SWEEP procedure (see [195]) in order to detect and
fix these cases. Afterwards the variable neighborhood descent (VND) algorithm [84] outlined
in Algorithm 11 is applied to further improve the given solution. VND is based on the local
search procedure r-shrink, which was developed by Das et al. in [47] for the original MEB
problem. The only difference between our implementation and the one by Das et al. is the
re-definition of the transmission power pij necessary to reach node j from node i. While for
the original MEB problem, pij is defined as d(i, j)α, in the context of the MEBRA problem
this transmission power is defined as in Section 6.1. In Section 6.4 we justify the setting of
parameter rmax from Algorithm 11 to |V | − 2 in all our experiments.

Update(T ib,T rb,T bs): In this procedure T rb and T bs are set to T ib (i.e., the iteration-best so-
lution), if f(T ib) < f(T rb) and f(T ib) < f(T bs).

ApplyPheromoneUpdate(cf ,bs_update,T ,T ib,T rb,T bs): As it is the case for all MAX–MIN
Ant Systems implemented in the Hyper-Cube Framework, the proposed ACO algorithm may
use three different solutions for updating the pheromone values: (i) the iteration-best solution
T ib, (ii) the restart-best solution T rb, and (iii) the best-so-far solution T bs. The influence of
each of these three solutions depends on the so-called convergence factor cf , which provides
an estimate on the state of convergence of the algorithm. The pheromone update is then
performed as follows. First, an update value ξe for each link e ∈ E is computed:

ξe := κib · δ(T
ib, e) + κrb · δ(T

rb, e) + κbs · δ(T
bs, e) , (6.10)

where κib is the weight of solution T ib, κrb is the weight of T rb, and κbs is the weight of T bs.
Hereby, the three parameters must be chosen such that κib + κrb + κbs = 1.0. Moreover, in
Equation 6.10 the δ-function is the characteristic function of the set of links in a tree T , that
is, δ(T, e) = 1 if e ∈ ET , and δ(T, e) = 0 otherwise. Given the ξe values for all e ∈ E, the
following update rule is applied to all pheromone values τe:

τe := min {max{τmin, τe + ρ · (ξe − τe)}, τmax} , (6.11)



156 CHAPTER 6. MEBRA

Table 6.1: The schedule used for values κib, κrb and κbs depending on cf (the convergence
factor) and the Boolean control variable bs_update.

bs_update = false bs_update = true

cf < 0.7 cf ∈ [0.7, 0.9) cf ≥ 0.9

κib 2/3 1/3 0 0
κrb 1/3 2/3 1 0
κbs 0 0 0 1

where ρ ∈ (0, 1] is the learning rate, which we have set to 0.1. The upper and lower bounds
τmax = 0.99 and τmin = 0.01 keep the pheromone values always in the range (τmin, τmax), thus
preventing the algorithm from converging to a solution. After tuning, the values for κib, κrb
and κbs are chosen as shown in Table 6.1.

ComputeConvergenceFactor(T , T rb, T bs): This function computes, at each iteration, the con-
vergence factor as

cf :=

∑

e∈E(T rb) τe

(|E(T rb)| − 1) · τmax
, respectively cf :=

∑

e∈E(T bs) τe

(|E(T bs)| − 1) · τmax
, (6.12)

if bs_update = false, respectively if bs_update = true. Here, τmax is the upper limit for
the pheromone values. The convergence factor cf can therefore only assume values between 0
and 1. The closer cf is to 1, the higher is the probability to produce the solution T rb (or T bs

analogously).

Table 6.2: Summary of the ACO parameters.

Parameter Value Description
na 10 Number of ants per iteration
c 8 Number of elements on the candidate list
ρ 0.1 Learning or evaporation rate

τmin 0.01 Minimum pheromone saturation
τmax 0.99 Maximum pheromone saturation
rmax |V | − 2 Highest r-shrink applied

6.4 Experimental Evaluation

The adapted BIP algorithm from Section 6.2 and the proposed ACO algorithm from Section 6.3
were implemented in ANSI C++. Moreover, GCC 3.2.2 was used for compiling the software.
All experiments were executed on a PC with an AMD64X2 4400 processor and 4 GB of
memory. Two sets of problem instances were used for the experimental evaluation. The first
set, consisting of 30 problem instances with 50 nodes each was introduced in [6, 204] for the
original MEB problem. The second set, which was introduced in [90], contains 30 problem
instances with 100 nodes each.



6.4. EXPERIMENTAL EVALUATION 157

As an example, we decided to work with antennas whose maximum transmission power
level reaches a distance of 500 space units. Moreover, we assume that antennas offer x trans-
mission power levels that are equidistantly distributed in [0, 500]. For example, when x = 3 the
distances reached with the three different transmission power levels are {0, 250, 500}. With
the motivation of testing two antennas that are used in practice, we performed tests with
x = 7 (corresponding to the antennas of iSense nodes), and x = 201 (corresponding to the
antennas of SunSPOTs)2.

Three algorithms were applied to all problem instances: (1) the adapted BIP algorithm, (2)
BIP+VND, which is the BIP algorithm with the subsequent application of VND as outlined
in Section 6.3, and (3) the ACO algorithm. All algorithms were applied considering antennas
with seven transmission power levels, and also considering antennas with 201 transmission
power levels. As BIP and BIP+VND are deterministic algorithms they were applied to each
problem instance exactly once (per antenna version). On the other side, ACO was applied
30 times to each problem instance (per antenna version). Hereby, the following computation
time limits were used. Concerning the instances with 50 nodes, a computation time limit of
20 seconds per run was used, whereas 100 seconds were used as a computation time limit for
the larger instances with 100 nodes.

To analyze the cost of the rmax parameter of the VND algorithm, we have conducted
some experimentation (see Figure 6.4). More specifically, we show the execution times for
the BIP+VND algorithm for values of rmax ∈ {1, . . . ,|V|-2}. Each box plot is built with the
results obtained over the 30 different instances available for each network size. In Figure 6.4(a),
respectively Figure 6.4(b), we show the execution times for the networks with 50 nodes and
7 transmission power levels, respectively 201 levels, whereas in Figure 6.4(c), respectively
Figure 6.4(d), we show the results for networks of 100 nodes and 7 transmission power levels,
respectively 201 transmission power levels. In all cases we can observe that time consumption
linearly increases in relation with the rmax value. However, the highest consumption time
observed is still relatively low (around 0.4 seconds) and affordable. Therefore, we have decided
to use rmax = |V | − 2 in all our experimentation.

Detailed numerical results are shown in Tables 6.3 to 6.6. The structure of these tables is
as follows. The first column of each table provides the instance name. Afterwards, the results
of the three algorithms are provided. Concerning BIP, which is a deterministic constructive
heuristic, the result and the computation time are provided. Note that a computation time of
0.00 means that the algorithm was faster than 0.01 seconds. The same holds for BIP+VND.
In addition, the percentage improvement (labelled deviation) over the results of BIP are pro-
vided. Note that negative percentages indicate an improvement over BIP. Finally, the results
of ACO are given in four columns. More specifically, the provided information consists of
the best result obtained within 30 runs (see column best), the average result over 30 runs
(see column average), and the average computation time for reaching the best solution of
each run (see column time (s)). As in the case of BIP+VND, the percentage improvement
of ACO over BIP is also shown (see column deviation). Note that the calculation of this
deviation was based on the average results of ACO, rather than on the best result. Finally,
the last row of each table provides averages of all measures over all instances considered in the

2Note that x = 7 means that the antennas of iSense nodes (http://www.coalesenses.com/) have six
transmission power levels greater than zero. The same for SunSPOTs (http://www.sunspotworld.com/):
x = 201 means that SunSPOT antennas have 200 transmission power levels greater than zero.



158 CHAPTER 6. MEBRA

1 4 7 10 14 18 22 26 30 34 38 42 46

0.
00

0.
04

0.
08

rmin

av
er

ag
e 

tim
e

(a) |V | = 50, x = 7

1 4 7 10 14 18 22 26 30 34 38 42 46

0.
00

0.
03

0.
06

rmin

av
er

ag
e 

tim
e

(b) |V | = 50, x = 7

1 6 12 19 26 33 40 47 54 61 68 75 82 89 96

0.
0

0.
2

0.
4

rmin

av
er

ag
e 

tim
e

(c) |V | = 50, x = 7

1 6 12 19 26 33 40 47 54 61 68 75 82 89 96

0.
1

0.
3

rmin

av
er

ag
e 

tim
e

(d) |V | = 50, x = 7

Figure 6.4: Graphical presentation of the computation times of the BIP+VND algorithm for
values of rmax ∈ [1,|V|-2]



6.4. EXPERIMENTAL EVALUATION 159

respective table. In order to improve the readability of the results, the percentage deviations
of BIP+VND and ACO over BIP are presented in graphical form in Figure 6.5. Hereby, each
of the four subfigures of Figure 6.5 corresponds to one of the four tables.

The results show, first, that both BIP+VND and ACO are—for each single instance and
antenna version—better than BIP. Moreover, except for one single case where both algorithms
achieve the same result, ACO always improves quite substantially upon BIP+VND. The aver-
age percentages of improvement, which are to be found in the last table rows, are summarized
in Tables 6.6(a) and 6.6(b). In addition to the results of BIP+VND and ACO for the antenna
versions with seven, respectively 201, transmission power levels, these tables also provide the
results of BIP+VND and ACO for the original MEB problem (as taken from [90]). There are
several interesting observations that we want to point out. First, the results of BIP+VND and
ACO are very similar for the original MEB problem and the MEBRA problem with antennas
of 201 transmission power levels. This can easily be explained by the fact that the MEBRA
problem becomes more similar to the original MEB problem when the number of transmission
power levels grows. Second, the advantage of BIP+VND and ACO over BIP seems to grow
when the number of transmission power levels decreases. This is indicated by the average
percentages of deviation over BIP as summarized in Tables 6.6(a) and 6.6(b). The advantage
of BIP+VND over BIP increases from around −10.50% (concerning the original MEB problem
and the MEBRA problem with antennas of 201 transmission power levels) to an advantage
of around −15.00%, both for instances of 50 nodes and instances of 100 nodes. In the case
of ACO, this improvement over BIP is even more pronounced. The advantage increases from
around -20.00% to more than −30.00%.

From a statistical point of view, we provide the confidence intervals of the advantage
(in percent) of ACO over BIP for similar instances. For the networks with 50 nodes with
7 transmission power levels, the interval is [−34.12,−29.70] with a confidence level of 95%.
When the number of transmission power levels is increased to 201, the confidence interval
is [−22.82,−19.43]. For the larger instances with 100 nodes, the confidence intervals are
[−38.65,−35.08] and [−20.97, 18.96], respectively when 7 or 201 levels of transmission powers
are considered. Moreover, all differences are statistically significant. These intervals are
obtained using Student’s t-tests with R. The normality of the samples used is obtained from
the Central Limit Theorem, which can be applied in this case thanks to the use of a large
enough set of samples per instance (30).

In order to study the reasons for the increasing advantage of ACO over BIP when the
number of transmission power levels decreases, we exemplary provide the solutions of BIP and
ACO for problem instances p50.25 (one of the problem instances with 50 nodes) in graphical
form; see Figure 6.8 for seven transmission power levels, and Figure 6.9 for 201 transmission
power levels. In the following we first focus on the solutions for antennas with 201 transmission
power levels. In this case, the disadvantage of BIP seems to be based on the fact that many
nodes use an intermediate transmission power level (neither small nor large), whereas in the
solution of ACO only one node uses a large transmission power level and very few additional
nodes use rather small transmission power levels. With this in mind let us have a look now
at the solutions of BIP and ACO for antennas with only seven transmission power levels (see
Figure 6.8). The solution of BIP seems to suffer from the same disadvantage as in the case
of 201 transmission power levels. However, we can also observe an additional disadvantage.
The rings painted in light-gray indicate wasted transmission power, which occurs when the
furthest neighbor that is reached by the chosen transmission power level of a node is quite far



160 CHAPTER 6. MEBRA

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28

Instance number

D
ev

ia
tio

n 
(in

 p
er

ce
nt

)

−
50

−
30

−
10

0

BIP+VND
ACO

(a) 50 node instances, seven transmission power levels

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28

Instance number

D
ev

ia
tio

n 
(in

 p
er

ce
nt

)

−
50

−
30

−
10

0

BIP+VND
ACO

(b) 50 node instances, 201 transmission power levels

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28

Instance number

D
ev

ia
tio

n 
(in

 p
er

ce
nt

)

−
50

−
30

−
10

0

BIP+VND
ACO

(c) 100 node instances, seven transmission power levels

00 02 04 06 08 10 12 14 16 18 20 22 24 26 28

Instance number

D
ev

ia
tio

n 
(in

 p
er

ce
nt

)

−
50

−
30

−
10

0

BIP+VND
ACO

(d) 100 node instances, 201 transmission power levels

Figure 6.5: Graphical presentation of the results. The x-axes range over the problem instances,
whereas the y-axes show the percent deviation from BIP.



6.4. EXPERIMENTAL EVALUATION 161

Problem version BIP + VND ACO� ACO

MEBRA (7 levels) -14.61 % -31.71 % -31.88 %
MEBRA (201 levels) -10.67 % -20.57 % -21.17 %
Original MEB -10.61 % -21.24 % -21.47 %

(a) 50 node instances, advantage over BIP

Problem version BIP + VND ACO� ACO

MEBRA (7 levels) -15.07 % -35.37 % -36.95 %
MEBRA (201 levels) -10.56 % -17.55 % -20.13 %
Original MEB -10.31 % -18.40 % -19.69 %

(b) 100 node instances, advantage over BIP

Problem version BIP + VND ACO� ACO

MEBRA (7 levels) 0.06 sec 4.07 sec 0.76 sec
MEBRA (201 levels) 0.05 sec 7.57 sec 0.92 sec
Original MEB 0.07 sec 8.42 sec 1.51 sec

(c) 50 node instances, computation time

Problem version BIP + VND ACO� ACO

MEBRA (7 levels) 0.45 sec 41.42 sec 26.74 sec
MEBRA (201 levels) 0.40 sec 61.02 sec 29.11 sec
Original MEB 0.47 sec 63.83 sec 28.70 sec

(d) 100 node instances, computation time

Figure 6.6: Summarized algorithm behaviour for different problem versions.

away from the transmission power range of this level. The BIP solution seems to suffer quite a
lot from this phenomenon, which may explain the growing advantage of ACO over BIP when
the number of transmission power levels decreases (see Figure 6.7).

Concerning computation time we observe that the type of problem (MEB versus MEBRA
with different transmission power levels) does not seem to play an important role for the com-
putation times, that is, they stay in the same order of magnitude. The average computation
times of BIP+VND and ACO are given in Table 6.6(c) (for instances with 50 nodes) and Ta-
ble 6.6(d) (for instances with 100 nodes). In this context note that both the algorithms for the
original MEB problem from [90] and the adapted algorithms from this chapter have been run
with the same computation time limits on the same processors. Therefore, the computation
times can be directly compared.



162 CHAPTER 6. MEBRA

Number of levels

Im
pr

ov
em

en
t (

in
 p

er
ce

nt
)

7 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

−
40

−
35

−
30

−
25

−
20

−
15

(a) 50 nodes instances

Number of levels

Im
pr

ov
em

en
t (

in
 p

er
ce

nt
)

7 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

−
40

−
35

−
30

−
25

−
20

−
15

(b) 100 nodes instances

Figure 6.7: Improvement of the ACO algorithm solutions over the basic BIP algorithm when
considering different number of transmission levels.



6.4. EXPERIMENTAL EVALUATION 163

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

(a) Solution of BIP. Objective function value:
791666.67

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

(b) Best solution of ACO. Objection function value:
472222.22

Figure 6.8: Solutions for problem instance p50.25 using seven transmission power levels.
Source node is node 46. The circles show the transmission power levels of the individual
sensor nodes. Gray shaded rings show the wasted energy that is due to transmitting with
more power than necessary in order reach the furthest neighbor node.



164 CHAPTER 6. MEBRA

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

(a) Solution of BIP. Objective function value:
533143.75

0

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

(b) Best solution of ACO. Objective function value:
391675.00

Figure 6.9: Solutions for problem instance p50.25 using 201 transmission power levels. Source
node is node 46. The circles show the transmission power levels of the individual sensor nodes.
Gray shaded rings (hardly visible, because they are very thin) show the wasted energy that
is due to transmitting with more power than necessary in order reach the furthest neighbor
node.



6.4. EXPERIMENTAL EVALUATION 165

T
ab

le
6.

3:
R

es
ul

ts
fo

r
th

e
30

in
st

an
ce

s
w

it
h

50
no

de
s

w
he

n
us

in
g

an
te

nn
as

w
it
h

se
ve

n
tr

an
sm

is
si

on
po

w
er

le
ve

ls
.

In
st

a
n
c
e

B
IP

B
IP

+
V

N
D

A
C

O
o
b
j.

fu
n

ti
m

e
(s

)
d
e
v
ia

ti
o
n

o
b
j.

fu
n

ti
m

e
(s

)
b
e
st

d
e
v
ia

ti
o
n

a
v
e
ra

g
e

ti
m

e
(s

)
p5

0.
00

73
61

11
.1

1
0.

00
-1

6.
98

%
61

11
11

.1
1

0.
06

50
69

44
.4

4
-3

1.
13

%
50

69
44

.4
4

0.
14

p5
0.

01
61

11
11

.1
1

0.
00

-2
5.

00
%

45
83

33
.3

3
0.

06
45

83
33

.3
3

-2
5.

00
%

45
83

33
.3

3
0.

18
p5

0.
02

80
55

55
.5

6
0.

00
-1

2.
07

%
70

83
33

.3
3

0.
06

52
08

33
.3

3
-3

5.
34

%
52

08
33

.3
3

0.
62

p5
0.

03
59

02
77

.7
8

0.
00

-9
.4

1%
53

47
22

.2
2

0.
05

42
36

11
.1

1
-2

8.
24

%
42

36
11

.1
1

0.
68

p5
0.

04
70

13
88

.8
9

0.
00

-1
7.

82
%

57
63

88
.8

9
0.

06
43

05
55

.5
6

-3
8.

61
%

43
05

55
.5

6
0.

18
p5

0.
05

61
11

11
.1

1
0.

00
-5

.6
8%

57
63

88
.8

9
0.

06
48

61
11

.1
1

-2
0.

45
%

48
61

11
.1

1
0.

44
p5

0.
06

72
91

66
.6

7
0.

00
-2

0.
95

%
57

63
88

.8
9

0.
06

47
91

66
.6

7
-3

4.
29

%
47

91
66

.6
7

0.
15

p5
0.

07
72

22
22

.2
2

0.
00

-1
4.

42
%

61
80

55
.5

6
0.

05
52

77
77

.7
8

-2
6.

92
%

52
77

77
.7

8
0.

44
p5

0.
08

72
22

22
.2

2
0.

00
-7

.6
9%

66
66

66
.6

7
0.

05
40

27
77

.7
8

-4
4.

23
%

40
27

77
.7

8
0.

43
p5

0.
09

68
05

55
.5

6
0.

00
-1

0.
20

%
61

11
11

.1
1

0.
06

49
30

55
.5

6
-2

7.
55

%
49

30
55

.5
6

1.
79

p5
0.

10
74

30
55

.5
6

0.
00

-1
3.

08
%

64
58

33
.3

3
0.

05
53

47
22

.2
2

-2
8.

04
%

53
47

22
.2

2
0.

33
p5

0.
11

70
83

33
.3

3
0.

00
-1

0.
78

%
63

19
44

.4
4

0.
06

44
44

44
.4

4
-3

7.
25

%
44

44
44

.4
4

0.
08

p5
0.

12
65

97
22

.2
2

0.
00

-7
.3

7%
61

11
11

.1
1

0.
06

49
30

55
.5

6
-2

5.
26

%
49

30
55

.5
6

1.
55

p5
0.

13
75

00
00

.0
0

0.
00

-1
2.

04
%

65
97

22
.2

2
0.

05
52

08
33

.3
3

-3
0.

56
%

52
08

33
.3

3
0.

66
p5

0.
14

81
25

00
.0

0
0.

00
-2

4.
79

%
61

11
11

.1
1

0.
08

51
38

88
.8

9
-3

6.
75

%
51

38
88

.8
9

0.
25

p5
0.

15
69

44
44

.4
4

0.
00

-1
1.

00
%

61
80

55
.5

6
0.

06
49

30
55

.5
6

-2
9.

00
%

49
30

55
.5

6
1.

99
p5

0.
16

72
91

66
.6

7
0.

00
-1

5.
24

%
61

80
55

.5
6

0.
06

54
16

66
.6

7
-2

5.
71

%
54

16
66

.6
7

1.
22

p5
0.

17
63

19
44

.4
4

0.
00

-1
8.

68
%

51
38

88
.8

9
0.

05
50

00
00

.0
0

-2
0.

88
%

50
00

00
.0

0
0.

17
p5

0.
18

76
38

88
.8

9
0.

00
-1

6.
36

%
63

88
88

.8
9

0.
05

47
91

66
.6

7
-3

7.
27

%
47

91
66

.6
7

0.
21

p5
0.

19
68

05
55

.5
6

0.
00

-2
7.

55
%

49
30

55
.5

6
0.

06
43

05
55

.5
6

-3
6.

16
%

43
44

90
.7

4
3.

11
p5

0.
20

77
77

77
.7

8
0.

00
-2

1.
43

%
61

11
11

.1
1

0.
06

49
30

55
.5

6
-3

6.
61

%
49

30
55

.5
6

0.
11

p5
0.

21
73

61
11

.1
1

0.
00

-4
.7

2%
70

13
88

.8
9

0.
05

47
22

22
.2

2
-3

5.
85

%
47

22
22

.2
2

0.
43

p5
0.

22
64

58
33

.3
3

0.
00

-1
0.

75
%

57
63

88
.8

9
0.

06
43

75
00

.0
0

-3
2.

26
%

43
75

00
.0

0
0.

09
p5

0.
23

72
91

66
.6

7
0.

00
-8

.5
7%

66
66

66
.6

7
0.

05
52

77
77

.7
8

-2
7.

62
%

52
77

77
.7

8
0.

60
p5

0.
24

73
61

11
.1

1
0.

00
-1

0.
38

%
65

97
22

.2
2

0.
06

50
00

00
.0

0
-3

2.
08

%
50

00
00

.0
0

0.
50

p5
0.

25
79

16
66

.6
7

0.
00

-1
7.

54
%

65
27

77
.7

8
0.

05
47

22
22

.2
2

-4
0.

35
%

47
22

22
.2

2
0.

28
p5

0.
26

76
38

88
.8

9
0.

00
-1

1.
82

%
67

36
11

.1
1

0.
06

52
77

77
.7

8
-3

0.
82

%
52

84
72

.2
2

0.
62

p5
0.

27
80

55
55

.5
6

0.
00

-1
0.

34
%

72
22

22
.2

2
0.

06
55

55
55

.5
6

-3
1.

03
%

55
55

55
.5

6
0.

82
p5

0.
28

82
63

88
.8

9
0.

00
-2

7.
73

%
59

72
22

.2
2

0.
08

54
86

11
.1

1
-3

3.
53

%
54

93
05

.5
6

4.
05

p5
0.

29
73

61
11

.1
1

0.
00

-1
7.

92
%

60
41

66
.6

7
0.

05
45

83
33

.3
3

-3
7.

74
%

45
83

33
.3

3
0.

59
72

10
64

.8
2

0.
00

-1
4.

61
%

61
48

14
.8

2
0.

06
48

91
20

.3
7

-3
1.

88
%

48
92

97
.8

4
0.

76



166 CHAPTER 6. MEBRA

T
able

6.4:
R

esults
for

the
30

instances
w

ith
50

nodes
w

hen
using

antennas
w

ith
201

transm
ission

pow
er

levels.

In
sta

n
c
e

B
IP

B
IP

+
V

N
D

A
C

O
o
b
j.

fu
n

tim
e

(s)
d
e
v
ia

tio
n

o
b
j.

fu
n

tim
e

(s)
b
e
st

d
e
v
ia

tio
n

a
v
e
ra

g
e

tim
e

(s)
p50.00

523075.00
0.00

-16.82%
435093.75

0.08
405175.00

-22.52%
405272.08

0.66
p50.01

526025.00
0.00

-11.67%
464662.50

0.06
378718.75

-28.00%
378718.75

2.10
p50.02

544862.50
0.00

-11.52%
482112.50

0.05
398787.50

-26.81%
398787.50

1.01
p50.03

412675.00
0.00

-7.40%
382137.50

0.06
321968.75

-21.98%
321968.75

0.41
p50.04

429493.75
0.00

-9.73%
387712.50

0.05
331293.75

-22.86%
331293.75

1.60
p50.05

471518.75
0.00

-11.06%
419375.00

0.06
392512.50

-16.76%
392512.50

0.36
p50.06

507443.75
0.00

-10.50%
454175.00

0.05
392218.75

-22.71%
392218.75

0.30
p50.07

502312.50
0.00

-9.90%
452568.75

0.06
408406.25

-18.69%
408406.25

0.48
p50.08

433562.50
0.00

-12.53%
379250.00

0.05
347325.00

-19.89%
347325.00

0.96
p50.09

452750.00
0.00

-10.12%
406925.00

0.05
353212.50

-21.99%
353212.50

1.11
p50.10

499337.50
0.00

-3.42%
482281.25

0.06
423068.75

-15.27%
423068.75

0.49
p50.11

442775.00
0.00

-6.84%
412481.25

0.05
374225.00

-15.48%
374225.00

3.42
p50.12

465137.50
0.00

-8.30%
426518.75

0.06
398731.25

-14.28%
398731.25

0.29
p50.13

516387.50
0.00

-4.27%
494343.75

0.04
406487.50

-21.28%
406487.50

0.71
p50.14

566643.75
0.00

-5.95%
532931.25

0.04
420356.25

-25.82%
420356.25

0.39
p50.15

438243.75
0.00

-4.60%
418093.75

0.05
374937.50

-14.45%
374937.50

0.74
p50.16

520862.50
0.00

-13.37%
451212.50

0.06
420850.00

-19.20%
420850.00

0.33
p50.17

425031.25
0.00

-10.36%
381000.00

0.06
361987.50

-14.83%
361987.50

0.47
p50.18

458956.25
0.00

-9.98%
413137.50

0.05
383562.50

-16.43%
383562.50

0.29
p50.19

497393.75
0.00

-7.75%
458837.50

0.04
340006.25

-31.64%
340006.25

0.41
p50.20

538018.75
0.00

-13.95%
462962.50

0.06
419450.00

-22.04%
419450.00

0.47
p50.21

463031.25
0.00

-10.22%
415712.50

0.05
367487.50

-20.63%
367487.50

0.23
p50.22

477400.00
0.00

-11.69%
421600.00

0.05
351343.75

-26.40%
351343.75

3.49
p50.23

492225.00
0.00

-17.92%
404031.25

0.06
389487.50

-20.87%
389487.50

0.52
p50.24

534443.75
0.00

-15.62%
450975.00

0.06
409250.00

-23.43%
409250.00

0.59
p50.25

533143.75
0.00

-13.80%
459568.75

0.06
391675.00

-26.53%
391675.00

3.19
p50.26

528281.25
0.00

-12.02%
464756.25

0.05
411450.00

-22.12%
411450.00

0.80
p50.27

557493.75
0.00

-10.20%
500656.25

0.06
458293.75

-17.79%
458293.75

1.06
p50.28

529150.00
0.00

-13.11%
459762.50

0.04
422187.50

-20.21%
422187.50

0.44
p50.29

525537.50
0.00

-15.55%
443825.00

0.05
398131.25

-24.24%
398131.25

0.14
493773.75

0.00
-10.67%

440623.33
0.05

388419.58
-21.17%

388422.82
0.92



6.4. EXPERIMENTAL EVALUATION 167

T
ab

le
6.

5:
R

es
ul

ts
fo

r
th

e
30

in
st

an
ce

s
w

it
h

10
0

no
de

s
w

he
n

us
in

g
an

te
nn

as
w

it
h

se
ve

n
tr

an
sm

is
si

on
po

w
er

le
ve

ls
.

In
st

a
n
c
e

B
IP

B
IP

+
V

N
D

A
C

O
o
b
j.

fu
n

ti
m

e
(s

)
d
e
v
ia

ti
o
n

o
b
j.

fu
n

ti
m

e
(s

)
b
e
st

d
e
v
ia

ti
o
n

a
v
e
ra

g
e

ti
m

e
(s

)
p1

00
.0

0
72

22
22

.2
2

0.
00

-1
5.

38
%

61
11

11
.1

1
0.

44
43

75
00

.0
0

-3
9.

42
%

43
75

00
.0

0
13

.3
2

p1
00

.0
1

72
91

66
.6

7
0.

00
-7

.6
2%

67
36

11
.1

1
0.

42
46

52
77

.7
8

-3
5.

81
%

46
80

55
.5

6
32

.5
5

p1
00

.0
2

80
55

55
.5

6
0.

00
-2

2.
41

%
62

50
00

.0
0

0.
48

48
61

11
.1

1
-3

9.
66

%
48

61
11

.1
1

21
.0

1
p1

00
.0

3
69

44
44

.4
4

0.
00

-1
2.

00
%

61
11

11
.1

1
0.

42
47

22
22

.2
2

-3
1.

67
%

47
45

37
.0

4
35

.2
6

p1
00

.0
4

76
38

88
.8

9
0.

00
-1

3.
64

%
65

97
22

.2
2

0.
44

50
00

00
.0

0
-3

3.
82

%
50

55
55

.5
6

41
.8

6
p1

00
.0

5
84

02
77

.7
8

0.
00

-1
1.

57
%

74
30

55
.5

6
0.

42
54

16
66

.6
7

-3
4.

05
%

55
41

66
.6

7
37

.9
1

p1
00

.0
6

84
72

22
.2

2
0.

00
-1

9.
67

%
68

05
55

.5
6

0.
46

49
30

55
.5

6
-4

1.
80

%
49

30
55

.5
6

23
.6

8
p1

00
.0

7
77

08
33

.3
3

0.
00

-1
6.

22
%

64
58

33
.3

3
0.

46
47

22
22

.2
2

-3
7.

96
%

47
82

40
.7

4
12

.1
0

p1
00

.0
8

76
38

88
.8

9
0.

00
-1

6.
36

%
63

88
88

.8
9

0.
52

50
69

44
.4

4
-3

2.
85

%
51

29
62

.9
6

36
.6

0
p1

00
.0

9
72

91
66

.6
7

0.
00

-6
.6

7%
68

05
55

.5
6

0.
42

50
69

44
.4

4
-2

9.
97

%
51

06
48

.1
5

31
.6

1
p1

00
.1

0
68

75
00

.0
0

0.
00

-1
5.

15
%

58
33

33
.3

3
0.

43
40

97
22

.2
2

-3
8.

75
%

42
10

64
.8

1
35

.0
2

p1
00

.1
1

70
83

33
.3

3
0.

00
-9

.8
0%

63
88

88
.8

9
0.

46
47

22
22

.2
2

-3
3.

33
%

47
22

22
.2

2
25

.2
6

p1
00

.1
2

82
63

88
.8

9
0.

00
-2

1.
85

%
64

58
33

.3
3

0.
44

50
00

00
.0

0
-3

9.
19

%
50

25
46

.3
0

25
.6

0
p1

00
.1

3
83

33
33

.3
3

0.
00

-2
0.

83
%

65
97

22
.2

2
0.

51
44

44
44

.4
4

-4
6.

67
%

44
44

44
.4

4
7.

44
p1

00
.1

4
69

44
44

.4
4

0.
00

-1
0.

00
%

62
50

00
.0

0
0.

42
46

52
77

.7
8

-3
2.

10
%

47
15

27
.7

8
30

.6
0

p1
00

.1
5

68
05

55
.5

6
0.

00
-1

2.
24

%
59

72
22

.2
2

0.
44

45
13

88
.8

9
-3

3.
61

%
45

18
51

.8
5

17
.5

6
p1

00
.1

6
79

86
11

.1
1

0.
00

-1
8.

26
%

65
27

77
.7

8
0.

46
43

75
00

.0
0

-4
4.

32
%

44
46

75
.9

3
35

.9
6

p1
00

.1
7

76
38

88
.8

9
0.

00
-1

5.
45

%
64

58
33

.3
3

0.
43

47
22

22
.2

2
-3

8.
15

%
47

24
53

.7
0

27
.1

6
p1

00
.1

8
64

58
33

.3
3

0.
00

-1
0.

75
%

57
63

88
.8

9
0.

44
45

83
33

.3
3

-2
8.

03
%

46
48

14
.8

1
34

.3
6

p1
00

.1
9

83
33

33
.3

3
0.

00
-2

0.
83

%
65

97
22

.2
2

0.
43

46
52

77
.7

8
-4

3.
92

%
46

73
61

.1
1

19
.2

8
p1

00
.2

0
71

52
77

.7
8

0.
00

-1
6.

50
%

59
72

22
.2

2
0.

42
45

83
33

.3
3

-3
5.

83
%

45
90

27
.7

8
28

.5
4

p1
00

.2
1

84
72

22
.2

2
0.

00
-1

9.
67

%
68

05
55

.5
6

0.
46

46
52

77
.7

8
-4

4.
95

%
46

64
35

.1
9

34
.0

1
p1

00
.2

2
78

47
22

.2
2

0.
00

-1
5.

93
%

65
97

22
.2

2
0.

49
50

69
44

.4
4

-3
4.

54
%

51
36

57
.4

1
35

.2
7

p1
00

.2
3

82
63

88
.8

9
0.

00
-1

8.
49

%
67

36
11

.1
1

0.
41

52
77

77
.7

8
-3

6.
13

%
52

77
77

.7
8

18
.5

9
p1

00
.2

4
71

52
77

.7
8

0.
00

-1
7.

48
%

59
02

77
.7

8
0.

41
47

91
66

.6
7

-3
2.

78
%

48
07

87
.0

4
31

.2
5

p1
00

.2
5

70
83

33
.3

3
0.

00
-1

3.
73

%
61

11
11

.1
1

0.
47

47
22

22
.2

2
-3

3.
33

%
47

22
22

.2
2

9.
55

p1
00

.2
6

77
08

33
.3

3
0.

00
-1

8.
92

%
62

50
00

.0
0

0.
44

44
44

44
.4

4
-4

2.
13

%
44

60
64

.8
1

28
.2

6
p1

00
.2

7
80

55
55

.5
6

0.
00

-1
5.

52
%

68
05

55
.5

6
0.

45
48

61
11

.1
1

-3
9.

14
%

49
02

77
.7

8
27

.1
2

p1
00

.2
8

75
00

00
.0

0
0.

00
-1

2.
96

%
65

27
77

.7
8

0.
47

46
52

77
.7

8
-3

7.
96

%
46

52
77

.7
8

12
.5

8
p1

00
.2

9
77

08
33

.3
3

0.
00

-6
.3

1%
72

22
22

.2
2

0.
42

48
61

11
.1

1
-3

6.
70

%
48

79
62

.9
6

32
.9

2
76

11
11

.1
1

0.
00

-1
5.

07
%

64
49

07
.4

1
0.

45
47

50
00

.0
0

-3
6.

95
%

47
81

09
.5

7
26

.7
4



168 CHAPTER 6. MEBRA

T
able

6.6:
R

esults
for

the
30

instances
w

ith
100

nodes
w

hen
using

antennas
w

ith
201

transm
ission

pow
er

levels.

In
sta

n
c
e

B
IP

B
IP

+
V

N
D

A
C

O
o
b
j.

fu
n

tim
e

(s)
d
e
v
ia

tio
n

o
b
j.

fu
n

tim
e

(s)
b
e
st

d
e
v
ia

tio
n

a
v
e
ra

g
e

tim
e

(s)
p100.00

459212.50
0.00

-12.04%
403943.75

0.40
345231.25

-24.82%
345231.25

11.33
p100.01

441043.75
0.00

-10.29%
395675.00

0.37
361331.25

-18.01%
361623.75

40.57
p100.02

474512.50
0.00

-9.01%
431768.75

0.36
385406.25

-18.78%
385411.67

9.36
p100.03

458281.25
0.00

-15.01%
389487.50

0.42
365556.25

-20.12%
366090.62

23.86
p100.04

479650.00
0.00

-9.08%
436093.75

0.40
393343.75

-17.89%
393829.58

15.68
p100.05

531850.00
0.00

-11.72%
469525.00

0.48
424700.00

-20.15%
424700.00

18.91
p100.06

491356.25
0.00

-14.97%
417781.25

0.36
385681.25

-20.89%
388715.83

39.89
p100.07

463506.25
0.00

-10.25%
415993.75

0.36
350681.25

-24.24%
351135.42

14.84
p100.08

472868.75
0.00

-9.71%
426931.25

0.38
380725.00

-19.41%
381064.58

43.65
p100.09

480850.00
0.00

-7.26%
445956.25

0.38
374731.25

-22.07%
374731.25

4.91
p100.10

424231.25
0.00

-11.23%
376575.00

0.38
342006.25

-19.38%
342006.25

3.86
p100.11

471656.25
0.00

-11.29%
418425.00

0.41
362737.50

-23.09%
362737.50

9.21
p100.12

500500.00
0.00

-10.30%
448943.75

0.38
401350.00

-19.70%
401879.17

43.62
p100.13

451593.75
0.00

-11.31%
400525.00

0.45
338781.25

-24.98%
338783.96

39.31
p100.14

429406.25
0.00

-11.30%
380875.00

0.41
351075.00

-18.17%
351387.92

42.73
p100.15

432450.00
0.00

-9.02%
393431.25

0.38
358181.25

-17.17%
358181.25

26.72
p100.16

424568.75
0.00

-11.37%
376300.00

0.36
344987.50

-18.56%
345751.67

32.89
p100.17

458856.25
0.00

-8.91%
417956.25

0.38
378987.50

-15.69%
386868.33

50.71
p100.18

408706.25
0.00

-9.82%
368581.25

0.38
338337.50

-16.09%
342941.04

25.93
p100.19

479712.50
0.00

-8.98%
436618.75

0.44
370693.75

-22.73%
370693.75

10.19
p100.20

454231.25
0.00

-9.47%
411225.00

0.40
360156.25

-20.42%
361480.62

49.89
p100.21

450000.00
0.00

-9.33%
408031.25

0.41
369750.00

-17.71%
370295.62

22.70
p100.22

454412.50
0.00

-6.26%
425981.25

0.32
373293.75

-17.84%
373324.58

24.32
p100.23

537300.00
0.00

-12.88%
468118.75

0.40
417356.25

-22.25%
417749.38

48.98
p100.24

442118.75
0.00

-9.51%
400068.75

0.43
364725.00

-17.41%
365165.00

47.77
p100.25

445268.75
0.00

-11.48%
394168.75

0.46
365462.50

-17.82%
365938.96

44.36
p100.26

465362.50
0.00

-10.09%
418418.75

0.42
357131.25

-23.26%
357131.25

17.85
p100.27

459843.75
0.00

-8.68%
419950.00

0.37
377900.00

-17.55%
379123.96

32.73
p100.28

473806.25
0.00

-16.98%
393337.50

0.45
356293.75

-24.74%
356566.46

49.76
p100.29

470712.50
0.00

-9.19%
427462.50

0.37
363006.25

-22.88%
363006.25

26.78
462928.96

0.00
-10.56%

413938.33
0.40

368653.33
-20.13%

369451.56
29.11



6.5. A DISTRIBUTED ACO FOR THE MEBRA 169

6.5 A distributed ACO for the MEBRA

In contrast to centralized approaches, work concerning distributed approaches for tackling the
MEB problem is quite rare. The best one among these approaches is a distributed version of
the BIP algorithm (known as DBIP) which was introduced by Wieselthier et al in [196]. A
more recent work by Chen et al. [37] also considers broadcasting. However, the authors focus
on a slightly different problem which concerns the reduction of the broadcast time. Although
the authors of [37] also give importance to the efficient use of power resources, they show that
their algorithm consumes much more energy than DBIP.

In this section we introduce a distributed ant colony optimization algorithm for solving the
MEBRA problem. The working of this algorithm is based on the classical BIP heuristic (see
Section 6.2). However, in order to be able to use the mechanism of BIP, we introduce a new
localized criterion for extending partial solutions during solution construction. The obtained
results show that the distributed ant colony optimization algorithm even outperforms the
classical (centralized) BIP heuristic. This is in contrast to the distributed version of BIP
(labelled DBIP), which performs significantly worse than BIP.

6.5.1 Modification of BIP’s Greedy Function

Due to its global character, the original greedy function of BIP can hardly be used within
a distributed algorithm in which each sensor node has to choose a transmission power level
without any knowledge about the shape of the current partial solution. With this in mind, we
subsequently propose a modification of the original greedy function of BIP. This is done with
two aims:

1. The modified greedy function should also be applicable in a distributed environment

2. Ideally, the modified greedy function should also be beneficial for the centralized BIP
algorithm.

The central idea for a modified greedy function is quite simple. Instead of only taking into
account the global increase in transmission power, the modified greedy function should also
consider the number of new nodes which will be added to the current solution at each step. In
other words, the increase in transmission power should be weighted by the number of added
nodes. This idea gave rise to the following modified greedy function:

η+(e) :=
f(T ⋆)− f(T )

|VT ⋆ | − |VT |
, (6.13)

here f(·), T and T ⋆ are defined as in the BIP algorithm for the MEBRA (see Section 6.2).
In the following we will refer to the version of BIP using this new greedy function as BIP+.
Obviously, this greedy function still has a global character. However, it may be used in a
distributed setting by replacing the numerator of the definition of η+(·) by the transmission
power that is necessary to include the goal-node of the edge under consideration.

Although the change in the greedy function is rather small, the structure of the solutions
generated by BIP and BIP+ is quite different. An example is shown in Figures 6.10 and 6.11
for a small network of seven sensor nodes with node 1 being the source node. The concentric
circles around node 1 indicate the six different transmission power levels (remember that
tp1 = 0). Moreover, we assume that all sensor nodes are equipped with equivalent antennas.



170 CHAPTER 6. MEBRA

Figures 6.10(a) and 6.11(a) show the initial situation of BIP and BIP+, respectively. The gray-
shaded area indicates the transmission power level for node 1 chosen by the two algorithms in
the first step. While BIP chooses the smallest transmission power level such that at least one
new sensor node is covered, BIP+ makes use of the greedy function η+ and chooses tp5. The
final solutions of BIP and BIP+ are shown in Figures 6.10(b) and 6.11(b). Due to the solution
construction mechanism of BIP it might be that—at the end of a solution construction—some
sensor nodes may choose a lower transmission power level without destroying the broadcast
property of the solution. For example, in the final solution of BIP (see Figure 6.10(b)) sensor
node 2 could even be switched off, because sensor node 4 is also covered by the transmission of
the source node 1. In fact, the literature offers a procedure, called SWEEP [197], which takes
care of this. The result after applying SWEEP is shown in Figure 6.10(c). Unfortunately,
SWEEP cannot be easily applied in a distributed setting. Moreover, in our example, the
solution of BIP+ is still better than the one of BIP after the application of SWEEP. This
example can, of course, not be seen as a proof that BIP+ consistently outperforms BIP.
However, it shows that BIP+ might have advantages over BIP under certain conditions. An
experimental evaluation of BIP versus BIP+ is presented in Section 6.5.3 of this work.

6.5.2 The Distributed Ant Colony Optimization Algorithm

In the following we outline the distributed ACO algorithm that we developed on the basis
of the centralized state-of-the-art ACO algorithm introduced in Section 6.3. The original
centralized ACO algorithm is a so-called MAX–MIN Ant System (MMAS) implemented
in the Hyper-Cube Framework (HCF) [19], which is an iterative algorithm working roughly as
follows. First, at each iteration na solutions to the problem are constructed in a probabilistic
way based on pheromone information and heuristic information. Remember that solutions in
this context are spanning trees rooted in the source node s. Second, improvement procedures
based on local search are applied to each of these trees. The pheromone model T consists
of a pheromone value τe for each link e ∈ E (for the definition of E see Section 6.1). After
the initialization of the variables T bs (i.e., the best-so-far solution), T rb (i.e., the restart-best
solution), and cf (i.e., the convergence factor), all the pheromone values are set to 0.5. At
each iteration, after the generation of na solutions, some of them are used for updating the
pheromone values.

DistACO uses the same algorithmic framework. Nevertheless, major design and implemen-
tation issues—as outlined in the following—arise. DistACO is devised to be executed directly
on the sensor network whose transmissions power levels are to be optimized. The algorithm
is controlled by a master node that governs the algorithmic flow described above. This role
is played by the source node s. The tasks of master node s consist in triggering actions of
other nodes of the network and collect their results. A high-level description of the work flow
of master node s is given in Algorithm 12. The actions to be triggered—that is, the con-
struction of a solution and the pheromone update—are described in detail in Sections 6.5.2.1
and 6.5.2.2. Note that, in addition to triggering these actions, the master node itself has to
execute the operations described in these sections.

An important remark must be made with regards to other parallel or distributed im-
plementations of ACO algorithms. A considerable amount of work has been made for the
parallelization of ACO. The goal of those works was mainly to reduce computation time by
means of enabling ants to construct solutions and update the pheromone matrix in parallel.
Some examples are the parallel implementation of ACO with OpenMP from [52], the paral-



6.5. A DISTRIBUTED ACO FOR THE MEBRA 171

1

2
3

4

5

6

7

(a) BIP initial state (VT =
{1})

1

2
3

4

5

6

7

(b) BIP final solution

1

2
3

4

5

6

7

(c) BIP+ SWEEP final so-
lution

Figure 6.10: An example for the working of BIP in the case of a simple sensor network with
seven nodes. Node 1 is the source node. All sensor nodes are equipped with the same antennas
providing six different transmission power levels (shown as concentric circles around source
node 1). (a) shows the initial situation, (b) shows the final solution of BIP, and (c) shows the
final solution of BIP after the application of SWEEP.

1

2
3

4

5

6

7

(a) BIP
+ initial state

(VT = {1})

1

2
3

4

5

6

7

(b) BIP
+ final solution

(VT = V )

Figure 6.11: An example for the working of BIP+ in the case of a simple sensor network with
seven nodes. Node 1 is the source node. All sensor nodes are equipped with the same antennas
providing six different transmission power levels (shown as concentric circles around source
node 1). (a) shows the initial situation, and (b) shows the final solution of BIP+.



172 CHAPTER 6. MEBRA

Algorithm 12 Task of master node s in DistACO for the MEBRA problem
1: input: the number of solutions to be constructed at each iteration (na), and an iteration

limit (iterlimit)
2: it = 0
3: while it < iterlimit do
4: for j = 1 to na do
5: T j := TriggerSolutionConstruction()
6: end for
7: T ib := argmin{f(T 1), . . . , f(T na)}
8: TriggerPheromoneUpdate()
9: it = it+ 1

10: end while
11: output: T bs

lelization strategies for running ACO in GPUs from [33], and the approach based on sharing a
unique pheromone matrix from [135]. In [184], a survey of parallelized multi-colony algorithms
is introduced. However, our work differs from these in a very significant point. Our scenario
is distributed, and we do not aim at running our centralized algorithm faster, but at being
able to run the algorithm directly in the network where broadcasting is required. With this
purpose, we cannot consider the amount of CPUs a variable, although this is generally done
when analyzing distributed or parallel algorithms. Instead, our number of CPUs in DistACO
is exactly the same as the number of nodes in the network. Some important constraints of this
approach are that the size and number of transmitted messages must be kept under control.
This being especially important in WSNs where energy might be a scarce resource. Besides,
differences also appear in the distribution of work among nodes. Generally, parallel algorithms
are based on tasks that can be performed, for some time, independently.

Therefore, in the case of ACO this is generally translated to solutions constructed in
different CPUs. In our algorithm, all nodes are necessary for constructing a solution. All
nodes must be involved in the construction of each solution. Or, in other words, each ant
must visit all the nodes before finding a valid solution. As a last remark, notice that the
problem that we tackle is quite particular, in the sense that the scenario where the problem
arises can also be used to solve the problem itself.

One of the most notable differences with respect to the centralized ACO algorithm con-
cerns the solution components and the pheromone values. For constructing a solution, the
centralized algorithm globally maintains a partial solution in form of a directed tree. This
partial solution is iteratively extended until the solution is complete. Moreover, solution com-
ponents are the edges of E, and a pheromone value τe is assigned to each solution component
(edge) e ∈ E. Just like partial solutions, these pheromone values are maintained globally by
the algorithm. In contrast, in DistACO each node is responsible for a set of solution compo-
nents. More specifically, the m different transmission power levels of a node are now labelled
as solution components. Moreover, each node locally maintains a pheromone value τtpl for
each transmission power level tpl ∈ P . In DistACO, the task of a node during a solution
construction consists in choosing one of the available transmission power levels. This means
that nodes do not have any knowledge about the global structure of a solution.

In the following we roughly describe the network behavior while the algorithm is being



6.5. A DISTRIBUTED ACO FOR THE MEBRA 173

executed. Later in this section we provide more technical details. DistACO is an iterative
algorithm. From a global point of view each iteration consists in first constructing a predefined
number of solutions. Second, the quality of these solutions is used to modify the search space
for the next iteration. In this context we must mention that DistACO uses a slightly modified
objective function. Due to the distributed solution construction mechanism, it may happen
that solutions do not span the whole network. In order to penalize these (non-valid) solutions,
it is assumed that network nodes which are not included in a solution make use of the maximal
transmission power level.

Each node in the network has two roles: in first place, a sensor node is responsible for
choosing a transmission power level for its antenna, and, in second place, it is responsible for
transmitting information to its neighbors guaranteeing the correct working of the algorithm.
Both actions are triggered by messages received from neighboring sensor nodes. Sensor nodes
use a unique identifier (labelled id) in order to be distinguishable from other sensor nodes.
Note that all messages sent include the identifier of the sender and the target nodes. Although
the only communication scheme that we use is broadcasting to the local neighborhood, receiver
nodes only process those messages whose target identifier matches their own id. The wildcard
identifier ∗ is used in case a message is supposed to be processed by all possible receiver nodes.

In order to allow a parallel construction of the na solutions per iteration, the master node s
associates a sol_id to each solution whose construction it triggers. All messages related to the
construction of a particular solution include this sol_id. This enables sensor nodes to recognize
the particular solution which is related to each message or request. With this mechanism, the
master node can trigger the construction of the na solutions per iteration one after the other
without having to wait for the end of a triggered solution construction. Once the master
node detects that na solutions have been constructed, it triggers the update of the pheromone
values. This pheromone update is performed locally at each sensor node. The information
which is necessary to perform this update is either stored in the sensor nodes themselves or
transmitted by the request messages. The respective acknowledgement messages are used to
aggregate information about the state of convergence of the algorithm in the master node.
Finally, after performing iterlimit iterations, the master node stops the algorithm and notifies
all sensor nodes about the fact that from now on the best-so-far solution should be used for
broadcast transmissions having originated from source node s.

6.5.2.1 Construction of Broadcast Trees

In this section we describe the way in which nodes cooperate for the construction of a
solution. The program executed by each node for this purpose is shown in Algorithm 13,
which is described in detail in the following. All messages related to the construction of a
certain solution are identified by a unique key called sol_id. As mentioned before, solution
identification allows the network to manage the construction of more than one solution in
parallel. During solution construction, the action of a sensor node always depends on its state
with respect to this solution construction. The state of construction concerning a solution
with key sol_id is stored in state[sol_id], where state[] is an array stored within the sensor
nodes. Variables state[sol_id] are initially set to null for all sol_id ∈ {1, . . . , na}.

A solution construction—from the point of view of an individual sensor node—starts with
the arrival of a solution construction request (see lines 3–11 of Algorithm 13). The message
mreq requesting the construction of a broadcast tree has the following format:



174 CHAPTER 6. MEBRA

Algorithm 13 Protocol of a sensor node id handling messages concerning solution construc-
tion
1: ∀ i ∈ {1, . . . , na} do stateini[i] := state[i]
2: for all m ∈M do
3: if typem = SCREQ and state[sol_idm] = null then
4: father[sol_idm] = originm
5: macc :=< id, father[sol_idm], SCACC, sol_idm >
6: broadcastMessage(macc, pmax)
7: power[sol_idm] = chooseTransmissionPowerLevel()
8: mreq2 :=< id, ∗, SCREQ, sol_idm >
9: broadcastMessage(mreq2 , p[sol_idm])

10: accepted[sol_idm] := 0
11: state[sol_idm] := COUNTING_CHILDREN

12: else if typem = SCACC and state[sol_idm] = COUNTING_CHILDREN then
13: accepted[sol_idm] := accepted[sol_idm] + 1
14: else if typem = SCFIN and state[sol_idm] = WAITING_FINMSGS then
15: power_subtree[sol_idm] := power_subtree[sol_idm] + power_subtreem
16: size_subtree[sol_idm] := size_subtree[sol_idm] + size_subtreem
17: accepted[sol_idm] := accepted[sol_idm]− 1
18: if accepted[sol_idm] = 0 then
19: mfin :=< id, father[sol_idm], SCFIN, sol_idm, power_subtree[sol_idm],

size_subtree[sol_idm] >
20: broadcastMessage(mfin, pmax)
21: state[sol_idm] := FINISHED

22: end if
23: end if
24: Remove m from message queue
25: end for
26: if stateini[sol_idm] = COUNTING_CHILDREN then
27: if accepted[sol_idm] = 0 then
28: power[sol_idm] := 0
29: power_subtree[sol_idm] := 0
30: size_subtree[sol_idm] := 1
31: mfin :=< id, father[sol_idm], SCFIN, sol_idm, power[sol_idm], 1 >
32: broadcastMessage(mfin, pmax)
33: state[sol_idm] := FINISHED

34: else
35: power_subtree[sol_idm] := power[sol_idm]
36: size_subtree[sol_idm] := 1
37: state[sol_idm] := WAITING_FINMSGS

38: end if
39: end if



6.5. A DISTRIBUTED ACO FOR THE MEBRA 175

mreq =< originmreq ,

targetmreq = ∗,

typemreq = SCREQ,

sol_idmreq > ,

where typemreq is set to SCREQ (a unique constant used to identify the message type) and
sol_idmreq ∈ {1, . . . , na} is the key of the solution that is constructed.

After receiving such a request message, sensor nodes check their state variable concerning
solution sol_idmreq . Only in case state[sol_idmreq ] = null the sensor node responds to the
sender node originmreq by means of a message macc (see below). Moreover, the sensor node
becomes the child of node originmreq for what concerns the construction of solution sol_idmreq ,
and it stores the sender node originmreq as its father in array father[]: father[sol_idmreq ] :=
originmreq . Message macc has the following format:

macc =< originmacc := id,

targetmacc := father[sol_idmreq ],

typemacc := SCACC,

sol_idmacc := sol_idmreq >

After sending this message the sensor node has to choose a transmission power level in
order to contribute to the construction of solution sol_idmreq . This is done probabilistically,
based on the local pheromone values and heuristic information. The heuristic information
is, in essence, derived from the idea of the greedy function of BIP+ (see Section 6.5.1). In
this context we consider that each sensor node is aware of the number of neighboring nodes
it can reach with each of its transmission power levels. This information can be derived—
before the execution of DistACO is started—from a simple two-step protocol consisting in
sending a discovery message with each of the available transmission power levels and counting
the number of replies. In the following let ntpl be the number of neighboring sensor nodes
reachable with transmission power level tpl. Then, a transmission power level from P is chosen
according to the following probabilities:

p(tpl) :=
τtpl ·

ntpl

tpl
∑

tp′
l
∈P τtpl′ ·

ntpl
′

tp′
l

, tpl ∈ P (6.14)

That is, preference is given to transmission power levels with a high pheromone value,
weighted by the number of neighboring sensor nodes that may be reached with the corre-
sponding transmission power level. The chosen transmission power level is stored in array
power[]: power[sol_idmreq ]. Moreover, the chosen transmission power level is used to send
message mreq2 , which has the following format:

mreq2 =< originmreq2 := id,

targetmreq := ∗,

typemreq2 := SCREQ,

sol_idmreq2 := sol_idmreq >



176 CHAPTER 6. MEBRA

Then, variable accepted[sol_idmreq ] of array accepted[] is initialized to 0. This variable
is used to count the number of acknowledgement messages received in response to message
mreq2 . Note that the sensor nodes which respond to this message adopt the sender node as
father for the construction of solution sol_idmreq . Finally, after sending the mreq2 message, the
sensor node changes its state to COUNTING_CHILDREN and discards the initial mreq message.

When the state of a sensor node id concerning solution sol_id is COUNTING_CHILDREN,
the node processes messages of type SCACC with sol_idmacc = sol_id from its message queue
(see lines 12–13 of Algorithm 13). For each of these messages accepted[sol_id] is incremented
by one unit. After handling all SCACC-messages with sol_idmacc = sol_id, the value of
accepted[sol_id] is checked. In case accepted[sol_id] = 0, no neighboring sensor node has
accepted to be the child of sensor node id. Therefore, sensor node id may savely be switched
off, that is, its transmission power level for sol_id is set to 0. Moreover, it directly notfies
father[sol_id] by means of a SCFIN message (see lines 27–33 of Algorithm 13):

mfin :=< originmfin := id,

targetmfin := father[sol_id],

typemfin := SCFIN,

sol_idmfin := sol_id,

power_subtreemfin := power[sol_id],

size_subtreemfin := 1 >

Hereby, power_subtreemfin stands for the sum of the transmission power levels of all the
nodes in the subtree rooted in sensor node id, which is sending the SCFIN message. Moreover,
size_subtreemfin contains the size (in terms of the number of sensor nodes) of this subtree.

In case accepted[sol_id] > 0, the sensor node updates the following variables (see lines
34–37 of Algorithm 13):

(i) power_subtree[sol_id] := power[sol_id] (6.15)

(ii) size_subtree[sol_id] := 1 (6.16)

Hereby, power_subtree[] and size_subtree[] are arrays which are used by the sensor node to
compute the sum of the transmission power levels, respectively the size, of the subtree for
which it acts as root. Moreover, the sensor node changes its state to WAITING_FINMSGS.
As a result, only those neighboring sensor nodes who successfully notify sensor node id during
the same communication round will be counted as children.

Being in state WAITING_FINMSGS concerning a solution with identifier sol_id, a sensor
node id handles messages of type SCFIN in which sol_idmfin = sol_id (see lines 14–22 of
Algorithm 13). These messages contain aggregated information about the quality of the
solution corresponding to sol_id. These SCFIN messages have the following format:



6.5. A DISTRIBUTED ACO FOR THE MEBRA 177

mfin =< originmfin ,

targetmreq = id,

typemfin = SCFIN,

sol_idmfin = sol_id,

power_subtreemfin ,

size_subtreemfin >

where power_subtreemfin and size_subtreemfin contain the sum of the transmission power
levels, respectively the size, of the subtree for which the sender node originmfin of the SCFIN-
message acts as root. Each of these messages received by sensor node id is handled as follows:

(i) power_subtree[sol_id] := power_subtree[sol_id] + power_subtreemfin (6.17)

(ii) size_subtree[sol_id] := size_subtree[sol_id] + size_subtreemfin (6.18)

(iii) accepted[sol_id] := accepted[sol_id]− 1 (6.19)

Once accepted[sol_id] = 0, no further SCFIN-messages are expected concerning sol_id.
Therefore, sensor node id notifies its own parent father[sol_id] about the end of the construction
process by sending itself a SCFIN-message in which the content variables are set as follows:

mfin :=< originmfin := id,

targetmfin := father[sol_id],

typemfin := SCFIN,

sol_idmfin := sol_id,

power_subtreemfin := power_subtree[sol_id],

size_subtreemfin := size_subtree[sol_id] >

In general, sensor nodes delete messages from their message queue directly after processing
them, regardless of being in a state in which they are considered or not. Therefore, at the
end of each communication round, the message queue of a sensor node is always empty. In
Table 6.7 we summarize the message flow of a sensor node for the construction of a single
solution.

6.5.2.2 Updating the Pheromone Values

After receiving the aggregated information for all initialized solution constructions, the master
node s identifies the best one of these solutions and triggers the pheromone update by means
of a pheromone update request message (see below). In the following we outline the proto-
col which is followed by all sensor nodes when receiving messages related to the pheromone
update. In this context, sensor nodes keep variables powerrb and obj_funct_valrb to store the
transmission power level they use in the restart-best solution and the objective function value
of the restart-best solution, as well as variables powergb and obj_funct_valgb for storing the
transmission power level they use in the best-so-far solution and the objective function value



178 CHAPTER 6. MEBRA

Table 6.7: Summary of the messages handled by a sensor node id for the construction of a
solution with identifier sol_id.

Order Type Sent/Received Amount Origin Target
1 SCREQ Received 1 father[sol_id] ∗
2 SCACC Sent 1 id father[sol_id]

3 SCREQ Sent 1 id ∗
4 SCACC Received accepted[sol_id] children id

5 SCFIN Received accepted[sol_id] children id

6 SCFIN Sent 1 id father[sol_id]

of the best-so-far solution. Note that obj_funct_valrb and obj_funct_valgb are set to |V | ·pmax

at the start of DistACO. Moreover, the pheromone update state variable stateph is initially set
to null. The protocol of each sensor node is summarized in Algorithm 14. In the following
we provide a technical description of all aspects of this protocol.

Sensor nodes engage in the pheromone update upon receiving a request message mreq of
the following type (see lines 3–19 of Algorithm 14):

mreq =< originmreq ,

targetmreq = ∗,

typemreq = PHREQ,

best_sol_idmreq ,

obj_funct_valmreq ,

conv_factmreq > ,

where PHREQ is a constant that identifies the pheromone update request, best_sol_idmreq

and obj_funct_valmreq are the identifier and the objective function value of the best solution
among the na solutions constructed previously. This solution is henceforth referred to as the
iteration-best solution. Moreover, conv_factmreq is the value of the convergence factor which
was calculated (as explained below) in the previous pheromone update. The sensor node id

receiving message mreq stores the sender originmreq of this message as its father in variable
fatherph, that is, fatherph := originmreq . Moreover, sensor node id responds with the following
message:

macc =< originmacc := id,

targetmacc := fatherph,

typemacc := PHACC > ,

where PHACC is a unique identifier for a message, which has the purpose of accepting a
pheromone update request.

The next step consists in the local pheromone update within sensor node id. First, variables
powerrb, obj_funct_valrb, powergb and obj_funct_valgb are updated in case obj_funct_valmreq <



6.5. A DISTRIBUTED ACO FOR THE MEBRA 179

Algorithm 14 Protocol of a sensor node id handling messages concerning the pheromone
update
1: stateph

ini := stateph
2: for all m ∈M do
3: if typem = PHREQ and stateph = null then
4: fatherph = originm
5: macc :=< id, fatherph, PHACC >
6: broadcastMessage(macc, pmax)
7: updateBestSolutions()
8: applyPheromoneUpdate(T )
9: if conv_factm ≥ 0.98 then

10: if bs_update = true then
11: forall tpl ∈ P do τtpl := 0.5 end forall
12: obj_funct_valrb := 0, bs_update := false

13: else
14: bs_update := true

15: end if
16: end if
17: mreq2 :=< id, ∗, PHREQ, best_sol_idm, obj_funct_valm, conv_factm >
18: broadcastMessage(mreq2 , pmax)
19: acceptedph := 0, stateph := COUNTING_CHILDREN

20: else if typem = PHACC then
21: if stateph = COUNTING_CHILDREN then acceptedph := acceptedph + 1 end if
22: else if typem = PHFIN and stateph = WAITING_FINMSGS then
23: conv_factlocal := conv_factlocal + conv_factm
24: size_subtreeph := size_subtreeph + size_subtreem
25: acceptedph := acceptedph − 1
26: if acceptedph = 0 then
27: mfin :=< id, fatherph, PHFIN, conv_factlocal, size_subtreeph >
28: broadcastMessage(mfin, pmax)
29: stateph := FINISHED

30: end if
31: end if
32: Remove message m from message queue
33: end for
34: if stateph

ini = COUNTING_CHILDREN then
35: if acceptedph = 0 then
36: mfin :=< id, fatherph, PHFIN, conv_factlocal, 1 >
37: broadcastMessage(mfin, pmax)
38: stateph := FINISHED

39: else
40: Calculate conv_factlocal, size_subtreeph := 1,

stateph := WAITING_FINMSGS

41: end if
42: end if



180 CHAPTER 6. MEBRA

bτtp0τtp1τtp2τtp3τtp4τtp5

Figure 6.12: Graphical illustration of the pheromone values related to the transmission power
levels. The antenna in this example has six different transmission power levels.

obj_funct_valrb, respectively obj_funct_valmreq < obj_funct_valgb. This is done in function
updateBestSolutions() of Algorithm 14. Then, the standard pheromone update of a MAX–
MIN Ant System implemented in the Hyper-Cube Framework is performed. This update
is based on the objective function values of the iteration-best, restart-best and best-so-far
solutions. The influence of each of these three solutions depends on the so-called convergence
factor, which provides an estimation of the state of convergence of the algorithm, and on
variable bs_update, which is a Boolean control variable. In this context, remember that the
current value of the convergence factor is provided by the initial pheromone update request
message (conv_factmreq), while bs_update is maintained by the sensor nodes as a local variable.
Concerning the pheromone values, remember that each sensor node maintains a pheromone
value τtpl ∈ T for each transmission power level tpl ∈ P (see Figure 6.12 for a graphical illus-
tration). The pheromone update is then performed as follows. First, sensor node id calculates
an update term ξtpl for each transmission power level tpl ∈ P :

ξtpl := κib · 1power[best_sol_id]=tpl
+ κrb · 1powerrb=tpl + κbs · 1powergb=tpl , (6.20)

The indicator function 1X is defined as 1 if the predicate X is true and 0 otherwise.
Moreover, κib is the weight of the iteration-best solution, κrb is the weight of the restart-best
solution, and κbs is the weight of the best-so-far solution. Hereby, the three parameters must
be chosen such that κib + κrb + κbs = 1.0. Moreover, in Equation 6.20, the indicator function
guarantees that only those solutions in which the transmission power level tpl is used in sensor
node id, contribute to value ξtpl . Given the ξtpl-values for all tpl ∈ P , the following update
rule is applied to all pheromone values τtpl ∈ T :

τtpl := min
{

max{τmin, τtpl + ρ ·
(

ξtpl − τtpl
)

}, τmax

}

, (6.21)

where ρ ∈ (0, 1] is the learning rate, which we have set—as it is standard in ACO
algorithms—to 0.1. The upper and lower bounds τmax = 0.99 and τmin = 0.01 keep the
pheromone values always in the range (τmin, τmax), thus preventing the algorithm from con-
verging to a solution. As in the centralized version of the ACO algorithm presented in [93],
the values for κib, κrb and κbs are chosen depending on the current value of the convergence
factor (conv_factmreq) and the Boolean control variable bs_update as shown in Table 6.8.

The next step consists in checking if a rescheduling of the κ∗ values or a restart is necessary.
This depends on the value of conv_factmreq as provided by the request message. Finally, sensor
node id sends a pheromone update request message mreq2 , which has the following format:



6.5. A DISTRIBUTED ACO FOR THE MEBRA 181

Table 6.8: The schedule used for values κib, κrb and κbs depending on conv_factmreq (the
convergence factor) and the Boolean control variable bs_update.

bs_update = false bs_update =
conv_factmreq < 0.7 conv_factmreq ∈ [0.7, 0.9) conv_factmreq ≥ 0.9 true

κib 2/3 1/3 0 0
κrb 1/3 2/3 1 0
κbs 0 0 0 1

mreq2 =< originmreq2 := id,

targetmreq2 := ∗,

typemreq2 := PHREQ,

best_sol_idmreq2 := best_sol_idmreq ,

obj_funct_valmreq2 := obj_funct_valmreq

conv_factmreq2 := conv_factmreq >

The handling of the initially received request message mreq finishes by setting acceptedph
to 0. This variable is used to count the number of acknowledgement messages received in
response to message mreq2 . Note that the sensor nodes which respond to this message adopt
sender node id as father for the pheromone update. Finally, after sending the mreq2 message,
sensor node id changes its state to COUNTING_CHILDREN and discards the initial mreq mes-
sage.

Sensor nodes in the COUNTING_CHILDREN state wait for messages of type PHACC with
target = id (see lines 20–21 of Algorithm 14). For each of these messages acceptedph is
incremented by one unit. Moreover, sensor node id’s contribution to the calculation of the
new convergence factor in the master node (conv_factlocal) is computed, and the size of the
subtree rooted in id (for the aggregation of the information for the pheromone update) is
initialized:

(i) conv_factlocal :=

{ τrb
τmax

if bs_update = true
τgb
τmax

if bs_update = false
(6.22)

(ii) size_subtreeph := 1 (6.23)

After handling all PHACC-messages with target = id, the value of acceptedph is checked.
In case acceptedph = 0, no neighboring node has accepted to be a child of sensor node id.
Moreover, it directly notfies sensor node fatherph by means of a PHFIN message (see lines
35–38 of Algorithm 14):



182 CHAPTER 6. MEBRA

mfin =< originmfin := id,

targetmfin := fatherph,

typemfin := PHFIN,

conv_factmfin := conv_factlocal,

size_subtreemfin := 1 >

Then, sensor node id changes to the FINISHED state. If acceptedph > 0, sensor node id

changes to the WAITING_FINMSGS state. Only in the WAITING_FINMSGS state, PHFIN-
messages are processed (see lines 22–30 of Algorithm 14). These messages have the the fol-
lowing format:

mfin =< originmfin ,

targetmfin = id,

typemfin = PHFIN,

conv_factmfin ,

size_subtreemfin >

where conv_factmfin and size_subtreemfin contain the sum of the local convergence factor con-
tributions, respectively the size, of the subtree for which the sender node originmfin of the
mfin-message acts as root. Processing a message of type PHFIN consists in the following three
operations:

(i) conv_factlocal := conv_factlocal + conv_factmfin (6.24)

(ii) size_subtreeph := size_subtreeph + size_subtreemfin (6.25)

(iii) acceptedph := acceptedph − 1 (6.26)

Once acceptedph = 0, no further PHFIN-messages are expected. Therefore, sensor node id

notifies its own fatherph about the end of the pheromone value update in its subtree by sending
a PHFIN-message in which the content variables are set as follows:

mfin =< originmfin := id,

targetmfin := fatherph,

typemfin := PHFIN,

conv_factmfin := conv_factlocal,

size_subtreemfin := size_subtreeph >

Finally, sensor node id changes to the FINISHED state. No further messages are processed
until the stateph is set again to null. In Table 6.9 we summarize the message flow of a sensor
node for the pheromone update.



6.5. A DISTRIBUTED ACO FOR THE MEBRA 183

Table 6.9: Summary of the messages handled by a sensor node id for the pheromone update.

Order Type Sent/Received Amount Origin Target
1 PHREQ Received 1 fatherph ∗
2 PHACC Sent 1 id fatherph
3 PHREQ Sent 1 id ∗
4 PHACC Received acceptedph children id

5 PHFIN Received acceptedph children id

6 PHFIN Sent 1 id fatherph

6.5.2.3 Complexity Issues

The data aggregation mechanism used by DistACO for the solution construction and the
pheromone update allows to keep the size of the messages quite low. For example, the trans-
mission of a complete solution through the network would require messages of an excessive
size of O(n), where n is the number of nodes in the network. In contrast, our mechanism
of distributedly storing and updating solution components and pheromone values results in
messages of size O(log n), and avoids the transmission of complete solutions. The amount
of information stored at each node is O(n + na · log |P |). This is the space required to store
the set of sensor nodes reached with each transmission power level, and the space required to
store the index of the transmission power level used at each of the na tree constructions per
iteration.

In the process of constructing a single solution, each node sends three messages. Moreover,
the pheromone update mechanism also requires three messages per node and iteration. The
only exception is the master node, which sends only one message for both solution construction
and pheromone update. Therefore, the total amount of messages required for a single iteration
of the algorithm is (3n − 2) ∗ (na + 1), where na is the number of solutions constructed per
iteration. Finally, the amount of messages processed by each node strongly depends on the
network topology.

6.5.3 Experimental Results

We implemented all algorithms considered in this work—namely, BIP, BIP+ and DistACO—in
C++ and compiled them with GNU GCC version 4. Hereby, the DistACO algorithm was
simulated by means of discrete event simulation. The only external libraries used were those
of the STL (standard template library). All the simulations were performed on a cluster with
6 quadcore Intel Xeon X3230 at 2667 MHz (64 bits). Each machine is equipped with 8GB of
RAM memory.

Concerning the benchmark instances, we tested the algorithms on a set of 30 publicly
available instances introduced in [6, 204] for the case of networks with 50 nodes, and on
further 30 instances provided in [90] for networks with 100 nodes. All these networks were
randomly generated.

Due to the fact that BIP and BIP+ are both deterministic algorithms, we applied each of
them exactly once to each of the 30 instances with 50 nodes and the 30 instances with 100
nodes. These results are used to study the benefits of using the modified greedy function of



184 CHAPTER 6. MEBRA

BIP+, in comparison to the original greedy function of BIP. Moreover, these results are also
used as reference results for evaluating the quality of DistACO. As already mentioned in the
introduction, there exists a distributed version of BIP. However, as will be shown below, the
results of DistACO compare favorably over those obtained by the centralized BIP algorithm,
which—in turn—is significantly better than the distributed version of the BIP algorithm.

Following the characteristics of two industry standard sensor network nodes—namely,
iSense sensor nodes and SunSpots—we test all implemented algorithms in two different sce-
narios: (1) considering antennas equipped with 7 different transmission power levels, and (2)
considering antennnas provided with 201 transmission power levels. The first scenario corre-
sponds to iSense sensor nodes, while the second one is inspired by SunSpots. We fixed the
maximum radius of transmission to 500 space units. Moreover, the radius of transmission
of the transmission power levels increases proportionally from one level to the next, while
the energy consumed increases quadratically. More in detail, considering an antenna with l
transmission power levels, the transmission powers are determined as follows:

P =

{

0,

(

1 ·
500

l − 1

)2

,

(

2 ·
500

l − 1

)2

, . . . ,

(

(l − 2)
500

l − 1

)2

, 5002

}

(6.27)

Experimental Setup of DistACO

Concerning the simulation of DistACO, 10 solutions are constructed at each iteration, that
is, na = 10. Moreover, the iteration limit was fixed to 10000 for the 50-node instances and
to 50000 for the larger 100-node instances. In the scenario with antennas that offer 201
transmission power levels, a candidate list strategy (as in Section 6.3.) with 8 candidates is
used. This means that when a sensor node chooses a transmission power level during the
construction of a solution (see Equation 6.14), instead of considering all possibibilities, the set
of candidates is reduced to the best 8 candidates as determined by the heuristic information.
In the case of antennas with 7 transmission power levels this technique is not used, because the
set of candidates is already small enough. As DistACO is a distributed algorithm, we provide
the average number of iterations that it used to find its best solution of a run.

Results

Results are presented in tables and reported for each instance separately. Apart from the
first column which indicates the instance name, each table consists of four sets of columns,
presenting the results of BIP, BIP+, DistACO and the centralized version of ACO, respectively.
First is shown the objective function value generated by BIP. The second group of columns
presents the results of BIP+. The first one of these columns indicates the deviation (in %) of
the results of BIP+ from the results of BIP. Note that a negative deviation indicates that the
result of BIP+ is better than the corresponding result of BIP. The second column provides the
absolute objective function values generated by BIP+. The third group of columns presents
the results obtained by DistACO. The columns contain the best solutions found over 30 inde-
pendent trials, the average deviation from the results of BIP, the average objective function
values obtained in 30 independent runs, and the average number of iterations needed to find
the best solution in each run. Finally, the fourth group of columns presents information about
the results of the centralized ACO approach (see Section 6.3). In the order of appearance, the



6.5. A DISTRIBUTED ACO FOR THE MEBRA 185

columns contain the objective function value of the best solutions found (over 30 independent
runs), the average deviation from the results of BIP, and the average quality of the best so-
lutions found in 30 independent trials. Additionally, the last row of each table contains the
results averaged over the whole table.

Table 6.10 presents the results for instances composed of 50 nodes considering the scenario
with 7 different transmission power levels. First of all, note that only in the case of three
instances BIP performs better than BIP+. Moreover, the solutions provided by BIP+ never
require more than an additional 1.05% of the transmission power consumed by the solution
of BIP. However, in those cases in which BIP+performs better than BIP, energy savings are
typically greater than 15% and even reach 36.36% in the case of instance p50.18. On average,
the results obtained by BIP+ are 18.08% better than those of BIP. DistACO performs generally
better than both BIP and BIP+. In fact, only in the case of two instances the results of BIP+

improve over the results obtained by DistACO. On average, the solutions obtained by DistACO
consume 25.16% less energy than the ones generated by BIP. Surprisingly, the quality of the
solutions produced by DistACO is quite close to the quality of the solutions obtained by the
centralized version of ACO. While the results of DistACO are, on average, 25.16% better than
the ones of BIP, the results of the centralized ACO version are, on average, 31.88% better
than the ones of BIP. This is despite the fact that the centralized ACO version uses global
information for constructing solutions and makes use of sophisticated local search procedures.

When the second scenario is considered—that is, antennas with 201 transmission power
levels—the differences between BIP, BIP+ and DistACO are much more subtle. Table 6.11
shows the results obtained for instances consisting of 50 nodes equipped with antennas of
201 different transmission power levels. However, even in this scenario, DistACO performs, on
average, slightly better than BIP and BIP+. It is important to realize that in this scenario
the performance of these three algorithms seems to depend strongly on the instance structure.
Finally, the centralized ACO algorithm from Section 6.3 performs much better than the other
three algorithms. On average, its results are 21.17% better than those of BIP, while the results
of DistACO are, on average, only 1.39% better than those of BIP. This might partially be due
to the fact that 201 transmission power levels generate a much bigger search space than only
7 transmission power levels.

Considering the larger instances of 100 nodes, in combination with the scenario of 7 trans-
mission power levels (see Table 6.12), the results of BIP+ and DistACO are again much better
than those of BIP. In fact, the difference between BIP+ and BIP, respectively between DistACO
and BIP, is now even bigger than in the case of the 50-node instances. Although the relative
increase in performance of DistACO is not as significant as in the case of the BIP+ algorithm,
it still performs better than both BIP and BIP+. On average, BIP+ obtains transmission
power reductions of 26.11% when compared to the results of BIP. In the case of DistACO, the
deviation is even of 27.39%. As expected, the centralized ACO algorithm (characterized by a
36.95% deviation from BIP) again outperforms the other algorithms.

In the scenario in which the nodes of the larger instances composed of 100 nodes are
equipped with antennas of 201 different transmission power levels (see Table 6.13), the perfor-
mance of BIP+ and DistACO downgrades similar to the case of the 50-node instances. More-
over, BIP+ and DistACO perform, on average, slightly worse than BIP. This clearly indicates
that the number of nodes and number of transmission power levels has strong implications
for the complexity of the problem instances. When the number of nodes and the number of
transmission power levels grow, the importance of global information seems to grow as well.



186 CHAPTER 6. MEBRA

Moreover, remember that DistACO is the only one of the four algorithms which is designed to
be executed on the network itself and, therefore, the only one capable of generating solutions
even in the case of dynamically changing networks.

From a statistical point of view, we provide the confidence intervals of the advantage of
ACO over BIP. For instances with 50 nodes with 7 transmission power levels, the interval
is [−27.89,−22.51] with a confidence level of 95%. When the number of transmission power
levels is increased to 201, the confidence interval is [−4.61, 1.95]. For the larger instances with
100 nodes, the confidence intervals are [−29.75,−24.87] and [5.94, 11.95], respectively when 7
or 201 levels of transmission powers are considered. Moreover, all differences are statistically
significant. These intervals are obtained using Student’s t-tests with R. As in the centralized
case, normality can be assumed using the Central Limit Theorem and the fact that we have
30 independent runs per instance.

Finally, in Figure 6.13 we show sample solutions generated by BIP, BIP+, DistACO and
the centralized ACO algorithm for instance p50.26 in the case of the scenario with antennas
equipped with 7 transmission power levels. Note that depending on the algorithm used,
the structure of the solution may change significantly. More in detail, we observe that the
solution provided by BIP seems to waste more energy (as indicated by the gray-shaded areas).
Moreover, the structure of the solutions provided by BIP+ and DistACO is quite similar, which
may be due to the use of the same heuristic information for the construction of solutions.



6.5. A DISTRIBUTED ACO FOR THE MEBRA 187

T
ab

le
6.

10
:

R
es

ul
ts

fo
r

th
e

30
in

st
an

ce
s

w
it
h

50
no

de
s

an
d

an
te

nn
as

w
it
h

se
ve

n
tr

an
sm

is
si

on
po

w
er

le
ve

ls
.

In
st

a
n
c
e

B
IP

B
IP

+
D

is
tA

C
O

A
C

O
(c

e
n
tr

a
li
z
e
d
)

o
b
j.

fu
n

d
e
v
ia

ti
o
n

o
b
j.

fu
n

b
e
st

d
e
v
ia

ti
o
n

a
v
e
ra

g
e

it
e
rs

.
b
e
st

d
e
v
ia

ti
o
n

a
v
e
ra

g
e

p5
0.

00
73

61
11

.1
1

-1
8.

87
%

59
72

22
.2

2
52

08
33

.3
3

-2
4.

15
%

55
83

33
.3

3
35

04
.4

7
50

69
44

.4
4

-3
1.

13
%

50
69

44
.4

4
p5

0.
01

61
11

11
.1

1
0.

00
%

61
11

11
.1

1
46

52
77

.7
8

-1
6.

33
%

51
13

42
.5

9
42

27
.6

3
45

83
33

.3
3

-2
5.

00
%

45
83

33
.3

3
p5

0.
02

80
55

55
.5

6
-1

8.
97

%
65

27
77

.7
8

52
77

77
.7

8
-3

2.
13

%
54

67
59

.2
6

29
58

.5
0

52
08

33
.3

3
-3

5.
34

%
52

08
33

.3
3

p5
0.

03
59

02
77

.7
8

-1
0.

59
%

52
77

77
.7

8
43

05
55

.5
6

-2
3.

84
%

44
95

37
.0

4
46

21
.5

0
42

36
11

.1
1

-2
8.

24
%

42
36

11
.1

1
p5

0.
04

70
13

88
.8

9
-2

6.
73

%
51

38
88

.8
9

43
05

55
.5

6
-3

4.
52

%
45

92
59

.2
6

23
04

.5
3

43
05

55
.5

6
-3

8.
61

%
43

05
55

.5
6

p5
0.

05
61

11
11

.1
1

-9
.0

9%
55

55
55

.5
6

50
69

44
.4

4
-1

4.
55

%
52

22
22

.2
2

33
19

.8
0

48
61

11
.1

1
-2

0.
45

%
48

61
11

.1
1

p5
0.

06
72

91
66

.6
7

-1
8.

10
%

59
72

22
.2

2
47

91
66

.6
7

-2
5.

87
%

54
05

09
.2

6
41

49
.2

7
47

91
66

.6
7

-3
4.

29
%

47
91

66
.6

7
p5

0.
07

72
22

22
.2

2
-1

7.
31

%
59

72
22

.2
2

56
25

00
.0

0
-1

9.
13

%
58

40
27

.7
8

38
72

.9
0

52
77

77
.7

8
-2

6.
92

%
52

77
77

.7
8

p5
0.

08
72

22
22

.2
2

-3
5.

58
%

46
52

77
.7

8
40

27
77

.7
8

-3
5.

29
%

46
73

61
.1

1
32

61
.2

7
40

27
77

.7
8

-4
4.

23
%

40
27

77
.7

8
p5

0.
09

68
05

55
.5

6
-1

7.
35

%
56

25
00

.0
0

50
00

00
.0

0
-2

0.
07

%
54

39
81

.4
8

31
46

.6
7

49
30

55
.5

6
-2

7.
55

%
49

30
55

.5
6

p5
0.

10
74

30
55

.5
6

-1
4.

95
%

63
19

44
.4

4
55

55
55

.5
6

-2
1.

46
%

58
35

64
.8

1
37

84
.8

7
53

47
22

.2
2

-2
8.

04
%

53
47

22
.2

2
p5

0.
11

70
83

33
.3

3
-2

7.
45

%
51

38
88

.8
9

45
83

33
.3

3
-3

1.
83

%
48

28
70

.3
7

21
41

.9
7

44
44

44
.4

4
-3

7.
25

%
44

44
44

.4
4

p5
0.

12
65

97
22

.2
2

1.
05

%
66

66
66

.6
7

50
69

44
.4

4
-1

5.
82

%
55

53
24

.0
7

33
85

.9
3

49
30

55
.5

6
-2

5.
26

%
49

30
55

.5
6

p5
0.

13
75

00
00

.0
0

-1
7.

59
%

61
80

55
.5

6
53

47
22

.2
2

-2
3.

40
%

57
45

37
.0

4
51

19
.5

7
52

08
33

.3
3

-3
0.

56
%

52
08

33
.3

3
p5

0.
14

81
25

00
.0

0
-2

6.
50

%
59

72
22

.2
2

52
08

33
.3

3
-3

4.
13

%
53

51
85

.1
9

32
85

.2
7

51
38

88
.8

9
-3

6.
75

%
51

38
88

.8
9

p5
0.

15
69

44
44

.4
4

1.
00

%
70

13
88

.8
9

54
86

11
.1

1
-1

6.
60

%
57

91
66

.6
7

36
23

.1
0

49
30

55
.5

6
-2

9.
00

%
49

30
55

.5
6

p5
0.

16
72

91
66

.6
7

0.
95

%
73

61
11

.1
1

56
94

44
.4

4
-1

7.
43

%
60

20
83

.3
3

46
39

.9
3

54
16

66
.6

7
-2

5.
71

%
54

16
66

.6
7

p5
0.

17
63

19
44

.4
4

-5
.4

9%
59

72
22

.2
2

50
00

00
.0

0
-1

5.
53

%
53

37
96

.3
0

31
08

.4
3

50
00

00
.0

0
-2

0.
88

%
50

00
00

.0
0

p5
0.

18
76

38
88

.8
9

-3
6.

36
%

48
61

11
.1

1
50

69
44

.4
4

-2
7.

33
%

55
50

92
.5

9
53

21
.8

3
47

91
66

.6
7

-3
7.

27
%

47
91

66
.6

7
p5

0.
19

68
05

55
.5

6
-2

9.
59

%
47

91
66

.6
7

44
44

44
.4

4
-3

1.
87

%
46

36
57

.4
1

32
52

.7
0

43
05

55
.5

6
-3

6.
16

%
43

44
90

.7
4

p5
0.

20
77

77
77

.7
8

-2
5.

00
%

58
33

33
.3

3
54

86
11

.1
1

-2
6.

07
%

57
50

00
.0

0
28

51
.0

0
49

30
55

.5
6

-3
6.

61
%

49
30

55
.5

6
p5

0.
21

73
61

11
.1

1
-2

6.
42

%
54

16
66

.6
7

47
22

22
.2

2
-2

6.
45

%
54

14
35

.1
9

48
71

.5
7

47
22

22
.2

2
-3

5.
85

%
47

22
22

.2
2

p5
0.

22
64

58
33

.3
3

-2
1.

51
%

50
69

44
.4

4
43

75
00

.0
0

-2
9.

10
%

45
78

70
.3

7
33

10
.1

3
43

75
00

.0
0

-3
2.

26
%

43
75

00
.0

0
p5

0.
23

72
91

66
.6

7
-5

.7
1%

68
75

00
.0

0
54

16
66

.6
7

-1
8.

16
%

59
67

59
.2

6
38

39
.3

0
52

77
77

.7
8

-2
7.

62
%

52
77

77
.7

8
p5

0.
24

73
61

11
.1

1
-2

0.
75

%
58

33
33

.3
3

51
38

88
.8

9
-2

4.
50

%
55

57
87

.0
4

22
04

.3
0

50
00

00
.0

0
-3

2.
08

%
50

00
00

.0
0

p5
0.

25
79

16
66

.6
7

-3
5.

09
%

51
38

88
.8

9
47

22
22

.2
2

-3
8.

07
%

49
02

77
.7

8
28

60
.3

3
47

22
22

.2
2

-4
0.

35
%

47
22

22
.2

2
p5

0.
26

76
38

88
.8

9
-1

4.
55

%
65

27
77

.7
8

57
63

88
.8

9
-2

2.
18

%
59

44
44

.4
4

26
68

.0
7

52
77

77
.7

8
-3

0.
82

%
52

84
72

.2
2

p5
0.

27
80

55
55

.5
6

-1
8.

10
%

65
97

22
.2

2
55

55
55

.5
6

-2
4.

86
%

60
53

24
.0

7
33

17
.2

3
55

55
55

.5
6

-3
1.

03
%

55
55

55
.5

6
p5

0.
28

82
63

88
.8

9
-1

7.
65

%
68

05
55

.5
6

56
25

00
.0

0
-2

6.
64

%
60

62
50

.0
0

45
22

.5
7

54
86

11
.1

1
-3

3.
53

%
54

93
05

.5
6

p5
0.

29
73

61
11

.1
1

-3
0.

19
%

51
38

88
.8

9
45

83
33

.3
3

-3
7.

61
%

45
92

59
.2

6
12

04
.8

7
45

83
33

.3
3

-3
7.

74
%

45
83

33
.3

3
72

10
64

.8
2

-1
8.

08
%

58
77

31
.4

8
50

37
03

.7
0

-2
5.

16
%

53
77

00
.6

2
34

89
.3

2
48

91
20

.3
7

-3
1.

88
%

48
92

97
.8

4



188 CHAPTER 6. MEBRA

T
able

6.11:
R

esults
for

the
30

instances
w

ith
50

nodes
and

antennas
w

ith
201

transm
ission

pow
er

levels.

In
sta

n
c
e

B
IP

B
IP

+
D

istA
C
O

A
C

O
(c

e
n
tra

liz
e
d
)

o
b
j.

fu
n

d
e
v
ia

tio
n

o
b
j.

fu
n

b
e
st

d
e
v
ia

tio
n

a
v
e
ra

g
e

ite
rs.

b
e
st

d
e
v
ia

tio
n

a
v
e
ra

g
e

p50.00
523075.00

7.34%
561468.75

461612.50
-3.12%

506745.00
4203.60

405175.00
-22.52%

405272.08
p50.01

526025.00
-3.06%

509950.00
444581.25

-11.09%
467673.33

6524.00
378718.75

-28.00%
378718.75

p50.02
544862.50

-13.47%
471462.50

450568.75
-5.24%

516297.50
4266.43

398787.50
-26.81%

398787.50
p50.03

412675.00
-8.77%

376493.75
376718.75

-5.81%
388711.46

3459.93
321968.75

-21.98%
321968.75

p50.04
429493.75

-16.14%
360162.50

380162.50
-8.95%

391071.67
5116.93

331293.75
-22.86%

331293.75
p50.05

471518.75
8.58%

511987.50
433156.25

-6.87%
439120.21

5162.03
392512.50

-16.76%
392512.50

p50.06
507443.75

-3.03%
492075.00

440987.50
-2.21%

496245.62
6160.03

392218.75
-22.71%

392218.75
p50.07

502312.50
-0.89%

497843.75
469506.25

6.04%
532659.58

6169.77
408406.25

-18.69%
408406.25

p50.08
433562.50

-12.17%
380818.75

403987.50
1.73%

441066.67
4904.20

347325.00
-19.89%

347325.00
p50.09

452750.00
-2.63%

440856.25
446681.25

5.47%
477537.29

4779.83
353212.50

-21.99%
353212.50

p50.10
499337.50

3.39%
516256.25

519050.00
7.67%

537661.46
5929.30

423068.75
-15.27%

423068.75
p50.11

442775.00
-6.36%

414606.25
432756.25

4.72%
463659.17

5321.23
374225.00

-15.48%
374225.00

p50.12
465137.50

12.45%
523068.75

449443.75
8.94%

506708.12
5359.87

398731.25
-14.28%

398731.25
p50.13

516387.50
9.58%

565843.75
519650.00

4.75%
540938.12

5024.97
406487.50

-21.28%
406487.50

p50.14
566643.75

3.15%
584506.25

519993.75
0.24%

568008.75
5797.97

420356.25
-25.82%

420356.25
p50.15

438243.75
9.41%

479500.00
396762.50

8.05%
473526.25

6090.67
374937.50

-14.45%
374937.50

p50.16
520862.50

1.39%
528112.50

488506.25
-1.04%

515459.79
5685.50

420850.00
-19.20%

420850.00
p50.17

425031.25
11.52%

473987.50
387250.00

3.42%
439565.83

4342.03
361987.50

-14.83%
361987.50

p50.18
458956.25

-6.25%
430281.25

432131.25
2.06%

468417.08
6498.70

383562.50
-16.43%

383562.50
p50.19

497393.75
-16.61%

414793.75
371037.50

-16.66%
414506.46

5483.80
340006.25

-31.64%
340006.25

p50.20
538018.75

-7.81%
496006.25

609862.50
22.51%

659105.00
3301.20

419450.00
-22.04%

419450.00
p50.21

463031.25
-0.91%

458825.00
393668.75

-6.29%
433892.50

6080.93
367487.50

-20.63%
367487.50

p50.22
477400.00

-20.38%
380125.00

396625.00
-14.73%

407063.54
2847.80

351343.75
-26.40%

351343.75
p50.23

492225.00
8.47%

533900.00
477493.75

5.92%
521357.29

6466.40
389487.50

-20.87%
389487.50

p50.24
534443.75

31.56%
703125.00

480856.25
-4.36%

511135.21
4576.17

409250.00
-23.43%

409250.00
p50.25

533143.75
-23.05%

410237.50
450618.75

-10.53%
476979.79

6184.70
391675.00

-26.53%
391675.00

p50.26
528281.25

-11.93%
465275.00

452525.00
-6.10%

496031.25
3937.40

411450.00
-22.12%

411450.00
p50.27

557493.75
4.08%

580250.00
481868.75

-10.18%
500721.88

4504.63
458293.75

-17.79%
458293.75

p50.28
529150.00

19.83%
634081.25

483787.50
1.64%

537813.96
5213.77

422187.50
-20.21%

422187.50
p50.29

525537.50
-11.52%

465006.25
439312.50

-11.68%
464155.62

6233.00
398131.25

-24.24%
398131.25

493773.75
-1.14%

488696.88
449705.42

-1.39%
486461.18

5187.56
388419.58

-21.17%
388422.82



6.5. A DISTRIBUTED ACO FOR THE MEBRA 189

T
ab

le
6.

12
:

R
es

ul
ts

fo
r

th
e

30
in

st
an

ce
s

w
it
h

10
0

no
de

s
an

d
an

te
nn

as
w

it
h

se
ve

n
tr

an
sm

is
si

on
po

w
er

le
ve

ls
..

In
st

a
n
c
e

B
IP

B
IP

+
D

is
tA

C
O

A
C

O
(c

e
n
tr

a
li
z
e
d
)

o
b
j.

fu
n

d
e
v
ia

ti
o
n

o
b
j.

fu
n

b
e
st

d
e
v
ia

ti
o
n

a
v
e
ra

g
e

it
e
rs

.
b
e
st

d
e
v
ia

ti
o
n

a
v
e
ra

g
e

p1
00

.0
0

72
22

22
.2

2
-1

6.
35

%
60

41
66

.6
7

47
22

22
.2

2
-2

9.
71

%
50

76
38

.8
9

13
44

1.
30

43
75

00
.0

0
-3

9.
42

%
43

75
00

.0
0

p1
00

.0
1

72
91

66
.6

7
-2

0.
00

%
58

33
33

.3
3

47
91

66
.6

7
-2

2.
83

%
56

27
31

.4
8

21
51

7.
90

46
52

77
.7

8
-3

5.
81

%
46

80
55

.5
6

p1
00

.0
2

80
55

55
.5

6
-2

2.
41

%
62

50
00

.0
0

50
69

44
.4

4
-3

3.
85

%
53

28
70

.3
7

10
48

6.
23

48
61

11
.1

1
-3

9.
66

%
48

61
11

.1
1

p1
00

.0
3

69
44

44
.4

4
-2

6.
00

%
51

38
88

.8
9

50
00

00
.0

0
-2

1.
67

%
54

39
81

.4
8

20
94

5.
73

47
22

22
.2

2
-3

1.
67

%
47

45
37

.0
4

p1
00

.0
4

76
38

88
.8

9
-2

3.
64

%
58

33
33

.3
3

52
77

77
.7

8
-2

0.
09

%
61

04
16

.6
7

17
04

6.
27

50
00

00
.0

0
-3

3.
82

%
50

55
55

.5
6

p1
00

.0
5

84
02

77
.7

8
-2

4.
79

%
63

19
44

.4
4

54
16

66
.6

7
-2

7.
99

%
60

50
92

.5
9

13
38

5.
63

54
16

66
.6

7
-3

4.
05

%
55

41
66

.6
7

p1
00

.0
6

84
72

22
.2

2
-3

1.
97

%
57

63
88

.8
9

51
38

88
.8

9
-3

4.
54

%
55

46
29

.6
3

16
60

1.
50

49
30

55
.5

6
-4

1.
80

%
49

30
55

.5
6

p1
00

.0
7

77
08

33
.3

3
-3

2.
43

%
52

08
33

.3
3

52
77

77
.7

8
-2

7.
63

%
55

78
70

.3
7

21
78

8.
63

47
22

22
.2

2
-3

7.
96

%
47

82
40

.7
4

p1
00

.0
8

76
38

88
.8

9
-1

7.
27

%
63

19
44

.4
4

53
47

22
.2

2
-2

6.
85

%
55

87
96

.3
0

21
35

1.
50

50
69

44
.4

4
-3

2.
85

%
51

29
62

.9
6

p1
00

.0
9

72
91

66
.6

7
-2

0.
00

%
58

33
33

.3
3

52
77

77
.7

8
-1

9.
05

%
59

02
77

.7
8

18
67

5.
20

50
69

44
.4

4
-2

9.
97

%
51

06
48

.1
5

p1
00

.1
0

68
75

00
.0

0
-2

6.
26

%
50

69
44

.4
4

44
44

44
.4

4
-2

7.
61

%
49

76
85

.1
9

16
89

2.
20

40
97

22
.2

2
-3

8.
75

%
42

10
64

.8
1

p1
00

.1
1

70
83

33
.3

3
-1

9.
61

%
56

94
44

.4
4

49
30

55
.5

6
-2

6.
96

%
51

73
61

.1
1

11
67

8.
90

47
22

22
.2

2
-3

3.
33

%
47

22
22

.2
2

p1
00

.1
2

82
63

88
.8

9
-2

1.
01

%
65

27
77

.7
8

58
33

33
.3

3
-2

2.
66

%
63

91
20

.3
7

21
44

3.
60

50
00

00
.0

0
-3

9.
19

%
50

25
46

.3
0

p1
00

.1
3

83
33

33
.3

3
-3

7.
50

%
52

08
33

.3
3

45
13

88
.8

9
-3

7.
61

%
51

99
07

.4
1

17
12

1.
43

44
44

44
.4

4
-4

6.
67

%
44

44
44

.4
4

p1
00

.1
4

69
44

44
.4

4
-2

8.
00

%
50

00
00

.0
0

50
00

00
.0

0
-2

4.
17

%
52

66
20

.3
7

81
71

.5
7

46
52

77
.7

8
-3

2.
10

%
47

15
27

.7
8

p1
00

.1
5

68
05

55
.5

6
-2

9.
59

%
47

91
66

.6
7

46
52

77
.7

8
-2

6.
46

%
50

04
62

.9
6

13
65

0.
63

45
13

88
.8

9
-3

3.
61

%
45

18
51

.8
5

p1
00

.1
6

79
86

11
.1

1
-3

5.
65

%
51

38
88

.8
9

47
91

66
.6

7
-3

7.
39

%
50

00
00

.0
0

11
62

5.
37

43
75

00
.0

0
-4

4.
32

%
44

46
75

.9
3

p1
00

.1
7

76
38

88
.8

9
-2

0.
91

%
60

41
66

.6
7

51
38

88
.8

9
-2

2.
39

%
59

28
24

.0
7

23
59

9.
27

47
22

22
.2

2
-3

8.
15

%
47

24
53

.7
0

p1
00

.1
8

64
58

33
.3

3
-1

3.
98

%
55

55
55

.5
6

49
30

55
.5

6
-1

8.
39

%
52

70
83

.3
3

19
34

1.
67

45
83

33
.3

3
-2

8.
03

%
46

48
14

.8
1

p1
00

.1
9

83
33

33
.3

3
-2

9.
17

%
59

02
77

.7
8

50
00

00
.0

0
-3

9.
39

%
50

50
92

.5
9

65
21

.8
7

46
52

77
.7

8
-4

3.
92

%
46

73
61

.1
1

p1
00

.2
0

71
52

77
.7

8
-1

8.
45

%
58

33
33

.3
3

52
77

77
.7

8
-1

9.
35

%
57

68
51

.8
5

25
87

9.
30

45
83

33
.3

3
-3

5.
83

%
45

90
27

.7
8

p1
00

.2
1

84
72

22
.2

2
-4

4.
26

%
47

22
22

.2
2

50
00

00
.0

0
-3

6.
34

%
53

93
51

.8
5

24
67

0.
20

46
52

77
.7

8
-4

4.
95

%
46

64
35

.1
9

p1
00

.2
2

78
47

22
.2

2
-2

2.
12

%
61

11
11

.1
1

54
86

11
.1

1
-2

1.
36

%
61

71
29

.6
3

19
45

8.
07

50
69

44
.4

4
-3

4.
54

%
51

36
57

.4
1

p1
00

.2
3

82
63

88
.8

9
-2

7.
73

%
59

72
22

.2
2

56
94

44
.4

4
-2

3.
84

%
62

93
98

.1
5

19
84

2.
73

52
77

77
.7

8
-3

6.
13

%
52

77
77

.7
8

p1
00

.2
4

71
52

77
.7

8
-2

4.
27

%
54

16
66

.6
7

48
61

11
.1

1
-2

2.
46

%
55

46
29

.6
3

19
58

2.
57

47
91

66
.6

7
-3

2.
78

%
48

07
87

.0
4

p1
00

.2
5

70
83

33
.3

3
-2

7.
45

%
51

38
88

.8
9

47
22

22
.2

2
-2

1.
37

%
55

69
44

.4
4

17
76

6.
83

47
22

22
.2

2
-3

3.
33

%
47

22
22

.2
2

p1
00

.2
6

77
08

33
.3

3
-2

6.
13

%
56

94
44

.4
4

44
44

44
.4

4
-3

7.
66

%
48

05
55

.5
6

14
78

2.
57

44
44

44
.4

4
-4

2.
13

%
44

60
64

.8
1

p1
00

.2
7

80
55

55
.5

6
-3

5.
34

%
52

08
33

.3
3

50
69

44
.4

4
-3

2.
07

%
54

72
22

.2
2

13
91

2.
53

48
61

11
.1

1
-3

9.
14

%
49

02
77

.7
8

p1
00

.2
8

75
00

00
.0

0
-2

8.
70

%
53

47
22

.2
2

48
61

11
.1

1
-2

9.
01

%
53

24
07

.4
1

18
54

9.
63

46
52

77
.7

8
-3

7.
96

%
46

52
77

.7
8

p1
00

.2
9

77
08

33
.3

3
-3

2.
43

%
52

08
33

.3
3

50
00

00
.0

0
-3

1.
02

%
53

17
12

.9
6

10
82

2.
00

48
61

11
.1

1
-3

6.
70

%
48

79
62

.9
6

76
11

11
.1

1
-2

6.
11

%
56

04
16

.6
7

50
32

40
.7

4
-2

7.
39

%
55

05
55

.5
6

17
01

8.
43

47
50

00
.0

0
-3

6.
95

%
47

81
09

.5
7



190 CHAPTER 6. MEBRA

T
able

6.13:
R

esults
for

the
30

instances
w

ith
100

nodes
and

antennas
w

ith
201

transm
ission

pow
er

levels.

In
sta

n
c
e

B
IP

B
IP

+
D

istA
C
O

A
C

O
(c

e
n
tra

liz
e
d
)

o
b
j.

fu
n

d
e
v
ia

tio
n

o
b
j.

fu
n

b
e
st

d
e
v
ia

tio
n

a
v
e
ra

g
e

ite
rs.

b
e
st

d
e
v
ia

tio
n

a
v
e
ra

g
e

p100.00
459212.50

20.51%
553418.75

427987.50
9.46%

502632.50
31104.17

345231.25
-24.82%

345231.25
p100.01

441043.75
-1.83%

432962.50
446475.00

8.28%
477561.46

35948.73
361331.25

-18.01%
361623.75

p100.02
474512.50

-0.05%
474287.50

458506.25
12.08%

531841.46
34998.23

385406.25
-18.78%

385411.67
p100.03

458281.25
-4.52%

437575.00
421975.00

7.59%
493063.75

30045.07
365556.25

-20.12%
366090.62

p100.04
479650.00

0.46%
481837.50

501156.25
18.76%

569651.25
34910.47

393343.75
-17.89%

393829.58
p100.05

531850.00
5.87%

563062.50
539875.00

9.40%
581866.67

35639.13
424700.00

-20.15%
424700.00

p100.06
491356.25

-2.57%
478706.25

456325.00
0.47%

493685.42
30643.30

385681.25
-20.89%

388715.83
p100.07

463506.25
-0.33%

461993.75
449725.00

10.39%
511657.50

35996.93
350681.25

-24.24%
351135.42

p100.08
472868.75

12.46%
531787.50

497393.75
12.98%

534237.08
35687.17

380725.00
-19.41%

381064.58
p100.09

480850.00
-3.88%

462181.25
449750.00

3.97%
499927.71

32664.03
374731.25

-22.07%
374731.25

p100.10
424231.25

-3.75%
408331.25

465037.50
18.08%

500937.08
35938.43

342006.25
-19.38%

342006.25
p100.11

471656.25
-6.57%

440656.25
419650.00

-7.40%
436731.04

23662.83
362737.50

-23.09%
362737.50

p100.12
500500.00

12.84%
564768.75

474075.00
6.46%

532809.38
37494.23

401350.00
-19.70%

401879.17
p100.13

451593.75
-6.84%

420718.75
396512.50

16.50%
526127.50

33125.40
338781.25

-24.98%
338783.96

p100.14
429406.25

-0.32%
428050.00

417456.25
12.98%

485138.54
33157.83

351075.00
-18.17%

351387.92
p100.15

432450.00
5.73%

457218.75
393050.00

0.11%
432940.00

24793.07
358181.25

-17.17%
358181.25

p100.16
424568.75

-9.08%
386031.25

403012.50
7.56%

456667.50
35510.87

344987.50
-18.56%

345751.67
p100.17

458856.25
-2.59%

446987.50
482043.75

17.15%
537536.46

35722.37
378987.50

-15.69%
386868.33

p100.18
408706.25

3.97%
424943.75

432081.25
13.16%

462508.96
35715.07

338337.50
-16.09%

342941.04
p100.19

479712.50
6.89%

512781.25
441818.75

7.24%
514463.75

34162.07
370693.75

-22.73%
370693.75

p100.20
454231.25

17.73%
534787.50

470781.25
13.48%

515482.50
38139.67

360156.25
-20.42%

361480.62
p100.21

450000.00
-2.29%

439712.50
440475.00

7.37%
483158.54

30296.20
369750.00

-17.71%
370295.62

p100.22
454412.50

10.19%
500731.25

499243.75
20.61%

548047.71
31138.57

373293.75
-17.84%

373324.58
p100.23

537300.00
-7.86%

495075.00
488875.00

1.44%
545028.54

36687.47
417356.25

-22.25%
417749.38

p100.24
442118.75

12.06%
495418.75

465737.50
15.44%

510383.96
34717.83

364725.00
-17.41%

365165.00
p100.25

445268.75
6.92%

476093.75
423037.50

4.29%
464386.04

26163.67
365462.50

-17.82%
365938.96

p100.26
465362.50

-12.19%
408625.00

391437.50
-14.08%

399827.08
35453.83

357131.25
-23.26%

357131.25
p100.27

459843.75
7.19%

492912.50
463725.00

13.78%
523203.33

33381.10
377900.00

-17.55%
379123.96

p100.28
473806.25

-10.25%
425225.00

455043.75
4.19%

493639.79
31688.00

356293.75
-24.74%

356566.46
p100.29

470712.50
-8.67%

429918.75
487862.50

17.11%
551254.58

28794.63
363006.25

-22.88%
363006.25

462928.96
1.31%

468893.33
452004.17

8.96%
503879.90

33112.68
368653.33

-20.13%
369451.56



6.5. A DISTRIBUTED ACO FOR THE MEBRA 191

✵

✶

✷

✸

✹
✺

✻

✼

✽

✾

✶✵

✶✶

✶✷

✶✸

✶✹

✶✺

✶✻

✶✼

✶✽

✶✾

✷✵

✷✶

✷✷

✷✸

✷✹

✷✺

✷✻

✷✼

✷✽

✷✾

✸✵

✸✶

✸✷

✸✸

✸✹

✸✺✸✻

✸✼

✸✽

✸✾

✹✵

✹✶

✹✷

✹✸

✹✹

✹✺

✹✻

✹✼

✹✽

✹✾

(a) BIP. Obj. func. value:
763888.89

✵

✶

✷

✸

✹
✺

✻

✼

✽

✾

✶✵

✶✶

✶✷

✶✸

✶✹

✶✺

✶✻

✶✼

✶✽

✶✾

✷✵

✷✶

✷✷

✷✸

✷✹

✷✺

✷✻

✷✼

✷✽

✷✾

✸✵

✸✶

✸✷

✸✸

✸✹

✸✺✸✻

✸✼

✸✽

✸✾

✹✵

✹✶

✹✷

✹✸

✹✹

✹✺

✹✻

✹✼

✹✽

✹✾

(b) BIP
+. Obj. func. value:

652777.78

✵

✶

✷

✸

✹
✺

✻

✼

✽

✾

✶✵

✶✶

✶✷

✶✸

✶✹

✶✺

✶✻

✶✼

✶✽

✶✾

✷✵

✷✶

✷✷

✷✸

✷✹

✷✺

✷✻

✷✼

✷✽

✷✾

✸✵

✸✶

✸✷

✸✸

✸✹

✸✺✸✻

✸✼

✸✽

✸✾

✹✵

✹✶

✹✷

✹✸

✹✹

✹✺

✹✻

✹✼

✹✽

✹✾

(c) DistACO. Obj. func. value:
611111.11

✵

✶

✷

✸

✹
✺

✻

✼

✽

✾

✶✵

✶✶

✶✷

✶✸

✶✹

✶✺

✶✻

✶✼

✶✽

✶✾

✷✵

✷✶

✷✷

✷✸

✷✹

✷✺

✷✻

✷✼

✷✽

✷✾

✸✵

✸✶

✸✷

✸✸

✸✹

✸✺✸✻

✸✼

✸✽

✸✾

✹✵

✹✶

✹✷

✹✸

✹✹

✹✺

✹✻

✹✼

✹✽

✹✾

(d) Centralized ACO.
Obj. func. value: 527777.78

Figure 6.13: Solutions provided by BIP, BIP+, DistACO and the centralized ACO algorithm
for instance p50.26. The scenario in which nodes are equipped with antennas of 7 different
transmission power levels is considered. The gray shaded parts of the transmissions indicate
the waste of energy.



192 CHAPTER 6. MEBRA

6.6 Conclusions

In this chapter we have first introduced a generalization of the classical minimum energy
broadcast problem in wireless ad hoc networks such as sensor networks. The introduced
generalization concerns the fact that in many radio antennas used in real sensor network
hardware, the choice of a transmission power level is limited to a discrete set of values, rather
than being unlimited. As a second contribution we adapted ant colony optimization, a current
state-of-the-art algorithm for the classical minimum energy broadcast problem, to the problem
generalization. The experimental results have shown that the advantage of this algorithm
over classical heuristics even grows when the number of available transmission power levels
decreases.

Our third contribution has been to develop a distributed version of the ant colony opti-
mization algorithm for minimum energy broadcasting with realistic antennas. Note that the
use of a distributed algorithm is always necessary when the structure of the deployed network
is unknown, which might be the case in rather many applications of sensor networks. Due
to the fact that the heuristic information used in the centralized algorithm is not available in
a distributed environment, one of the main challenges for the development of a distributed
algorithm was to define a suitable heuristic information. The experimental evaluation of the
proposed algorithm shows that it generally improves over the centralized version of the clas-
sical BIP heuristic. Moreover, depending on the exact antenna model used, the results of the
distributed ant colony optimization algorithm are very close to the results of the centralized
algorithm version.

In this chapter we have first introduced a generalization of the classical minimum energy
broadcast problem in wireless ad hoc networks such as sensor networks. The introduced gen-
eralization, minimum energy broadcast problem in sensor networks with realistic antennas
(MEBRA), concerns the fact that in many radio antennas used in real sensor network hard-
ware, the choice of a transmission power level is limited to a discrete set of values, rather than
being unlimited. As a second contribution we adapted ant colony optimization, a current
state-of-the-art algorithm for the classical minimum energy broadcast problem, to the prob-
lem generalization. The experimental results have shown that the advantage of this algorithm
over classical heuristics even grows when the number of available transmission power levels
decreases.

The third contribution of this chapter consists in a modified greedy function for the clas-
sical broadcast incremental power (BIP) heuristic. The fourth contribution is a distributed
version of an ant colony optimization (ACO) algorithm proposed in the literature for the
MEBRA problem. The proposed distributed ACO algorithm makes use of localized greedy
information for constructing solutions. Moreover, the source node of the broadcast trans-
mission is the pacemaker of the algorithm. Information about constructed solutions and the
pheromone update is aggregated in the source node, which, in turn, triggers actions such as
the construction of solutions and the update of the pheromone values.

Concerning the results, we were able to observe that the distributed ACO algorithm gen-
erally outperforms the centralized classical BIP heuristic. This is a remarkable achievement,
because the distributed version of BIP is significantly worse than the centralized version of
BIP. When sensor nodes with few transmission power levels are considered, the results of
the distributed ACO algorithm are even close to the results of the centralized ACO version.
This changes when the number of available transmission power levels grows. In this case, the
performance of the centralized ACO algorithm is significantly better than the one of the dis-



6.6. CONCLUSIONS 193

tributed ACO version. It is also worth to point out that our distributed ACO algorithm uses
a relatively low number of messages at each iteration, while keeping a rather low message size.
Finally, the main advantage of the proposed distributed ACO algorithm over the centralized
ACO version is the fact that it can be applied even when the structure of the network is
unknown. This may be the case, for example, in outdoor applications concerning inhospitable
environments.



194 CHAPTER 6. MEBRA



Part III

Conclusions

195





Chapter 7

Conclusions and further work

In the last decade, wireless sensor networks have attracted the attention of many researchers
mainly due to their low infrastructure cost and ease of use. WSNs are a particular kind of
wireless ad hoc networks which aim at monitoring large areas of terrain for extended periods
of time by means of small devices with limited capabilities. Sensing is performed thanks to
different sensors which are generally rather small and cheap. However, WSNs are still not very
common in real applications and appear, mostly, as feasibility studies in the context of certain
problems. The main barrier for generalizing the use of sensor networks is the lack of standards
for their development and the high dependency on the manufacturers. This situation results
in a high heterogeneity that may render the integration of different nodes in a single network
and the communication between neighboring networks difficult. As a consequence, many of
the studies and works that are presented every year face some of the issues that prevent the
popularization of sensor networks.

In addition to these problems, research in the field of WSNs is focused mainly on two
topics. First, the improvement of the quality, size and capability of the hardware. Second,
the development of new algorithms that make a more efficient use of the limited resources of
sensor nodes, such as, for instance, the CPU, batteries or communication channels. In particu-
lar, WSNs are generally envisaged for remote regions where an unlimited energy source might
not be available. The combination of energy being a scarce resource and the low increase
of battery capacity during the last years forces devices, algorithms and protocols to control
adequately their energetic cost as the overall performance of the network will depend on how
energy is managed.

The main contributions of this thesis are to be located in the domain of energy-aware
algorithms and protocols. More in detail, we have tackled general problems and tasks that
occur in most WSNs applications. When developers implement a new solution for a WSN,
they wish to approach the problem from a logical perspective. That is, they want to work
from the logical perspective of considering devices as logical units which are able to perform
certain tasks by default. Thanks to the tools and libraries provided by some manufacturers
and cross-platform projects such as Wiselib [13] this dream comes closer to reality each day.
With such tools, developers of new applications can simply obviate the energetic footmark of
those tasks, as they are not developing them in detail. However, while some of these algo-
rithms are energy-aware, many others are only focused on speed. In addition to energy-aware

197



198 CHAPTER 7. CONCLUSIONS AND FURTHER WORK

algorithms for general tasks, libraries such as Wiselib may also contain algorithms which only
aim at improving the management of energetic resources from an application perspective, i.e.,
minimizing the effect of energy constraints on the performance of the network application.
This is the case of the first problem considered in this thesis, duty-cycling.

The first contribution of this work is Antcycle, a self-synchronized duty-cycling mecha-
nism for WSNs which aims at improving the performance of networks with energy-harvesting
capabilities (Chapter 4). In addition to a detailed study of the behavior of the algorithm, we
provided a robust implementation of Antcycle for real sensor networks. The key aspects
of Antcycle are as follows. It is a fully de-centralized algorithm that can adapt the way in
which duty-cycling is performed to changing energy availabilities. That is, when little energy
is available in the batteries of the individual nodes, duty-cycling is adapted such that either
the frequency or the length of the awake-phases are reduced. On the contrary, when a lot of
energy is available, the system automatically increases either the frequency or the length of
the awake-phases. Moreover, no prior knowledge about the conditions for energy harvesting
are needed. The system is able to adapt to changing conditions on the fly.

The second problem studied is graph coloring (Chapter 5), a classical problem of modern
mathematics with more than 150 years of history. The problem has been extensively studied
in theory and practice. However, its relation to problems that arose with the proliferation
of wireless networks has sparked a special interest in resolving the problem in a distributed
manner. In distributed algorithms—due to the lack of global knowledge—the nodes have to
base their color choices exclusively on information they receive from their direct neighborhood.
Common tasks in WSNs related to distributed graph coloring are TDMA slot assignment or
the optimization of resources for covering certain regions. The novel algorithm introduced
in this work, named FrogSim, makes use of a desynchronization mechanism for solving the
coloring problem. Results show that the resulting lightweight algorithm compares favorably
to state-of-the-art techniques.

The last one of the problems considered (Chapter 6) is a generalization of the classical
minimum energy broadcast problem in wireless ad hoc networks. The introduced generaliza-
tion concerns the fact that in many radio antennas used in real sensor network hardware, the
choice of a transmission power level is limited to a discrete set of values, rather than being un-
limited. We show that an extension of a successful metaheuristic used for the original problem
version can be used in centralized scenarios. In fact, the experimental results show that the
advantage of this algorithm over classical heuristics even grows when the number of available
transmission power levels decreases. Moreover, due to the fact that the use of centralized
algorithms in WSN applications is highly restricted, we show that a competitive distributed
version of the algorithm is also possible.

All above-mentioned problems have been tackled from the common perspective of swarm
intelligence. Swarm intelligence algorithms and mechanisms are inspired by the behavior of so-
cial animals and insects which are able to solve complex problems thanks to cooperation. The
collective behavior that can be observed in animal societies is the inspiring idea for applying
such techniques to a distributed scenario such as WSNs. Moreover, the instinctive behaviors
observed in nature can be generally translated to lightweight solutions which are computation-
ally not very intensive and, therefore, favor energy savings. More in detail, the duty-cycling



199

algorithm from Chapter 4 is inspired by the resting phases of ant colonies, the distributed
graph coloring algorithm from Chapter 5 is based on the anti-phase synchronization behavior
of the calling of Japanese tree frogs, and the foraging behavior of ant colonies inspired the ant
colony optimization metaheuristic used to solve the minimum energy broadcast problem with
realistic antennas (both from a centralized and a distributed perspective) in Chapter 6.

All contributions of this thesis have been presented to the scientific community before
writing this thesis. More specifically, contributions have been presented in international con-
ferences and journals. The reports provided by the referees have been read carefully. The
concerns and comments of the referees have been handled and resolved in order to improve
the quality of this work. Moreover, our ideas have evolved thanks to the advice and concerns
of many colleagues from the scientific community. At every conference and workshop that we
attended, we have received invaluable comments which have caused our novel algorithms to
mature. A thorough and detailed description of the techniques developed for each problem
has been published in internationally recognized journals.

Future work has been proposed at the end of each of the chapters. However, future work
can mostly be summarized in two words: real applications. First of all, this work demonstrates
the feasibility of the introduced algorithms from a swarm intelligence perspective. However, in
our aim to prove the ability of all solutions to work in real scenarios, we provided implementa-
tions for real simulators and published our results also in conferences and journals specialized
on WSNs and general wireless networking. In this sense, the work provides evidence about the
maturity of the introduced algorithms. We believe that it will be possible to deploy them in
real scenarios, independently of whether they are real or simulated. From the very beginning,
our goal has been to provide real solutions for developers working on real problems, with real
networks and sensors.

The natural continuation of this work is to implement our novel algorithms in real net-
works. In this line, the duty-cycling algorithm has been included in the Wiselib and thus is
publicly available for the users of this general purpose algorithmic library for WSNs. In fact,
in a preliminary and promising work by Hernández and Baumgartner [89], the authors used
the Wiselib implementation of the duty-cycling algorithm from Chapter 4 in a real sensor
network composed of iSense nodes which is installed in a corridor of the Technical University
of Braunschweig. This network lacks of energy harvesting capabilities. However, the authors
used the duty-cycling algorithm to adapt the activity of the nodes to the amount of people
crossing the corridor.

The ideas proposed in this work can be used to reduce the energy consumption in sensor
networks. In particular, we have shown that there is still room for more efficient energy-
aware algorithms. In this sense, some advances may come from carefully reviewing traditional
approaches. However, as demonstrated in this thesis, innovative computational paradigms
such as swarm intelligence should not be disregard. This is because the distributed and
autonomous organization of WSNs strongly resembles the one of swarm intelligence systems.
As previously mentioned, swarm intelligence is based on the collective behavior of social
insects and animals. While working on this thesis, we have observed over and over again, with
astonishment and satisfaction, how complex global results have emerged from simple local
behaviors, just like the way in which ants and frogs function in real life.



200 CHAPTER 7. CONCLUSIONS AND FURTHER WORK



Bibliography

[1] N. Abramson. The ALOHA System: Another alternative for computer communications.
In Proceedings of the ACM Fall Joint Computer Conference, pages 281–285. ACM, 1970.

[2] I. Aihara. Modeling synchronized calling behavior of Japanese tree frogs. Physical
Review E, 80(1):11–18, 2009.

[3] I. Aihara, H. Kitahata, K. Yoshikawa, and K. Aihara. Mathematical modeling of
frogsćalling behavior and its possible application to artificial life and robotics. Arti-
ficial Life and Robotics, 12(1):29–32, 2008.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks. IEEE Communications Magazine, 40(8):102–114, 2002.

[5] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:
a survey. Computer Networks, 38(4):393–422, 2002.

[6] S. Al-Shihabi, P. Merz, and S. Wolf. Nested partitioning for the minimum energy broad-
cast. In V. Maniezzo, R. Battiti, and J.P. Watson, editors, LION 2007 – Proceedings of
the Workshop on Learning and Intelligent Optimization, volume 5313 of Lecture Notes
in Computer Science, pages 1–11. Springer Verlag, Berlin, Germany, 2007.

[7] C. Álvarez, I. Chatzigiannakis, A. Duch, J. Gabarro, O. Michail, M. Serna, and P. G.
Spirakis. Computational models for networks of tiny artifacts: A survey. Computer
Science Review, 5(1):7 – 25, 2011.

[8] C. Álvarez, A. Duch, J. Gabarro, and M. Serna. Sensor field: A computational model.
In Shlomi Dolev, editor, ALGOSENSORS 2009 – Proceedings of the 5th International
Workshop in Algorithmic Aspects of Wireless Sensor Networks, volume 5804 of Lecture
Notes in Computer Science, pages 3–14. Springer Berlin / Heidelberg, 2009.

[9] K. Arisha, M. Youssef, and M. Younis. System-Level Power Optimization for Wire-
less Multimedia Communication, chapter Energy-aware TDMA-based MAC for sensor
networks, pages 21–40. Springer, 2002.

[10] C. Avanthay, A. Hertz, and N. Zufferey. A variable neighborhood search for graph
coloring. European Journal of Operational Research, 151(2):379 – 388, 2003.

[11] L. Barenboim and M. Elkin. Deterministic distributed vertex coloring in polylogarith-
mic time. In ACM SIGACT-SIGOPS 2010 – Proceedings of the 29th Symposium on
Principles of Distributed Computing, pages 410–419. ACM, New York, NY, USA, 2010.

201



202 BIBLIOGRAPHY

[12] R. Battiti, A. A. Bertossi, and M. A. Brunato. Distributed Saturation Degree Methods
for Code Assignment in Multihop Radio Networks. In WSDAAL 00 – Proceedings of
the 5th Workshop Su Sistemi Distribuiti: Algoritmi, Architetture e Linguaggi, 2000.

[13] T. Baumgartner, I. Chatzigiannakis, S. Fekete, C. Koninis, A. Kröller, and A. Pyrgelis.
Wiselib: A generic algorithm library for heterogeneous sensor networks. In J. Silva,
B. Krishnamachari, and F. Boavida, editors, Wireless Sensor Networks, volume 5970 of
Lecture Notes in Computer Science, pages 162–177. Springer Berlin / Heidelberg, 2010.

[14] C. Bettstetter and C. Hartmann. Connectivity of wireless multihop networks in a shadow
fading environment. Wireless Networks, 11(5):571–579, 2005.

[15] S. Bird and X. Li. Adaptively choosing niching parameters in a pso. In GECCO 2006
– Proceedings of the 8th Annual Conference in Genetic and Evolutionary Computation,
LNCS, pages 3–10. Springer, July 8–12, 2006.

[16] I. Blöchliger and N. Zufferey. A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Computers & Operations Research, 35(3):960–975, 2008.

[17] C. Blum. Theoretical and practical aspects of ant colony optimization, volume 282. IOS
Press, 2004.

[18] C. Blum. Ant colony optimization: Introduction and recent trends. Physics of Life
reviews, 2(4):353–373, 2005.

[19] C. Blum and M. Dorigo. The hyper-cube framework for ant colony optimization. IEEE
Transactions on Systems, Man anc Cybernetics – Part B, 34(2):1161–1172, 2004.

[20] C. Blum and D. Merkle, editors. Swarm Intelligence: Introduction and Applications.
Natural Computing. Springer Verlag, Berlin, Germany, 2008.

[21] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

[22] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York, NY, 1999.

[23] E. Bonabeau, G. Theraulaz, and J.-L. Deneubourg. Fixed response thresholds and the
regulation of division of labor in insect societies. Bulletin of Mathematical Biology,
60(4):753–807, 1998.

[24] A. Braunstein, R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina. Polynomial iterative
algorithms for coloring and analyzing random graphs. Physical Review E, 68(3), 2003.

[25] R. Brits, A. P. Engelbrecht, and F. Van den Bergh. A niching particle swarm optimizer.
In SEAL 2002 – Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution
and Learning, pages 692–696, 2002.

[26] J. Buck. Synchronous rhythmic flashing of fireflies. II. Quarterly Review of Biology,
63(3):265–289, 1988.

[27] J. Buck and E. Buck. Synchronous fireflies. Scientific American, 234(5):74–85, 1976.



BIBLIOGRAPHY 203

[28] M. Bui, F. Butelle, and C. Lavault. A distributed algorithm for constructing a minimum
diameter spanning tree. Journal of Parallel and Distributed Computing, 64(5):571–577,
2004.

[29] B. Bullnheimer, R. F. Hartl, and C. Strauss. A new rank-based version of the ant
system: a computational study. Central European Journal for Operations Research and
Economics, 7(1):25–38, 1999.

[30] M. Cagalj, J. P. Hubaux, and C. Enz. Minimum-energy broadcast in all-wireless net-
works: NP-completeness and distribution issues. In ACM MobiCom 2002 – Proccedings
of The Annual International Conference on Mobile Computing and Networking, pages
172–182. ACM press, 2002.

[31] M. Campos, E. Bonabeau, G. Theraulaz, and J. L. Deneubourg. Dynamic scheduling
and division of labor in social insects. Adaptive Behavior, 8(2):83–95, 2000.

[32] M. Cardei, D. MacCallum, and X. Cheng. Wireless sensor networks with energy efficient
organization. Journal of Interconnection Networks, 3(4):213–229, 2002.

[33] J.M. Cecilia, J.M. Garcia, M. Ujaldon, A. Nisbet, and M. Amos. Parallelization strate-
gies for ant colony optimization on gpus. In IPDPSW 2011 – Proceedings of IEEE
International Symposium on Parallel and Distributed Processing Workshops, pages 339–
346, 2011.

[34] V. Černỳ. Thermodynamical approach to the traveling salesman problem: An efficient
simulation algorithm. Journal of Optimization Theory and Applications, 45(1):41–51,
1985.

[35] A. Chandrakasan, R. Amirtharajah, S. H. Cho, J. Goodman, G. Konduri, J. Kulik,
W. Rabiner, and A. Wang. Design considerations for distributed microsensor systems.
In Proceedings of CICC 1999 – IEEE Custom Integrated Circuits Conference, pages
279–286. IEEE Press, 1999.

[36] L. S. Chen, J. H. Chen, and H. C. Wang. An optimum branching-based efficient dis-
tributed broadcast scheme for wireless ad hoc networks. In AH-ICI 2009 – Proceedings
of the 1st Asian Himalayas International Conference on Internet, pages 1–6. IEEE press,
2009.

[37] Li-Sheng Chen, Jung-Hsien Chen, and Hwang-Cheng Wang. An optimum branching-
based efficient distributed broadcast scheme for wireless ad hoc networks. In AH-ICI
2009 – Proceedings of First Asian Himalayas International Conference on Internet.,
pages 1–6. IEEE Press, 2009.

[38] M. Clerc. Particle swarm optimization. ISTE Ltd, UK, 2006.

[39] M. Clerc and J. Kennedy. The particle swarm–explosion, stability, and convergence in
a multidimensional complex space. IEEE Transactions on Evolutionary Computation,
6(1):58–73, 2002.

[40] Coalsesenses GmbH. http://www.coaelesenses.com.



204 BIBLIOGRAPHY

[41] B. J. Cole. The social behavior of Leptothorax allardycei (Hymenoptera, Formicidae):
time budgets and the evolution of worker reproduction. Behavioral Ecology and Socio-
biology, 18(3):165–173, 1986.

[42] B. J. Cole. Is animal behaviour chaotic? Evidence from the activity of ants. In Proceed-
ings of the Royal Society, volume 244, pages 253–259. The Royal Society, 1991.

[43] B. J. Cole. Short-Term Activity Cycles in Ants: Generation of Periodicity by Worker
Interaction. American Naturalist, 137(2):244, 1991.

[44] T. C. Collier and C. Taylor. Self-organization in sensor networks. Journal of Parallel
and Distributed Computing, 64(7):866–873, 2004.

[45] C. Cutts and J. Speakman. Energy savings in formation flight of pink-footed geese.
Journal of experimental biology, 189(1):251–261, 1994.

[46] A. K. Das, R. J. Marks, M. El-Sharkawi, P. Arabshahi, and A. Gray. The minimum
power broadcast problem in wireless networks: an ant colony system approach. In IEEE
CAS 2002 – Proceedings of the Workshop on Wireless Communications and Networking,
pages 1001–1010. IEEE Press, 2002.

[47] A. K. Das, R. J. Marks, M. El-Sharkawi, P. Arabshahi, and A. Gray. r-shrink: A
heuristic for improving minimum power broadcast trees in wireless networks. In IEEE
GLOBECOM 2003 – Proceedings of the Global Communications Conference, pages 523–
527. IEEE press, 2003.

[48] L. Davis. Handbook of genetic algorithms. Van Nostrand Reinhold, New York, NY, USA,
1991.

[49] J. Degesys and R. Nagpal. Towards desynchronization of multi-hop topologies. In Sven
Brueckner, Paul Robertson, and Umesh Bellur, editors, IEEE SASO 2008 – Proceedings
of the 2nd International Conference Self-Adaptive and Self-Organizing Systems, pages
129–138. IEEE Press, 2008.

[50] J. Delgado and R. V. Solé. Mean-field theory of fluid neural networks. Phys. Rev. E,
57:2204–2211, 1998.

[51] J. Delgado and R. V. Solé. Self-synchronization and Task Fulfilment in Ant Colonies.
Journal of Theoretical Biology, 205(3):433–441, 2000.

[52] P. Delisle, M. Krajecki, M. Gravel, and C. Gagné. Parallel implementation of an ant
colony optimization metaheuristic with OpenMP. In EWOMP 2001 – Proceedings of
the 3rd European Workshop on OpenMP, pages 8–12, 2001.

[53] J. L. Deneubourg, S. Aron, S. Goss, and J. M. Pasteels. The self-organizing exploratory
pattern of the argentine ant. Journal of Insect Behavior, 3(2):159–168, 1990.

[54] P. Diehr and T. Lumley. The importance of the normality assumption in large public
health data sets. Annu Rev Public Health, 23:151–169, 2002.

[55] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Dipartimento
di Elettronica, Politecnico di Milano, Italy, 1992.



BIBLIOGRAPHY 205

[56] M. Dorigo and L. M. Gambardella. Ant colony system: a cooperative learning approach
to the travelingsalesman problem. IEEE Transactions on Evolutionary Computation,
1(1):53–66, 1997.

[57] M. Dorigo, V. Maniezzo, and A. Colorni. Positive feedback as a search strategy. Tech-
nical report, Dipartimento di Elettronica e Informatica, Politecnico di Milano, 1991.

[58] M. Dorigo, V. Maniezzo, and A. Colorni. Ant system: optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B,
26(1):29–41, 1996.

[59] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, Cambridge, MA, 2004.

[60] R. Dorne and J. K. Hao. A new genetic local search algorithm for graph coloring.
In Agoston Eiben, Thomas Bäck, Marc Schoenauer, and Hans-Paul Schwefel, editors,
PPSN ’98 – Proceedings of the 5th International Conference on Parallel Problem Solv-
ing from Nature, volume 1498 of Lecture Notes in Computer Science, pages 745–755.
Springer Berlin / Heidelberg, 1998.

[61] F. Dressler. Organic Computing, chapter Bio-Inspired Networking—Self-Organizing Net-
worked Embedded Systems, pages 261–284. Understanding Complex Systems. Springer
Verlag, Berlin, Germany, 2008.

[62] R. C. Eberhart and R. W. Dobbins, editors. Neural Network PC Tools: a Practical
Guide. Academic Press Professional, Inc., San Diego, CA, USA, 1990.

[63] R. C. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in par-
ticle swarm optimization. In IEEE CEC 2000 – Proceedings of the IEEE Congress on
Evolutionary Computation, volume 1, pages 84–88. IEEE Press, 2000.

[64] J. T. Enright. Temporal precision in circadian systems: a reliable neuronal clock from
unreliable components? Science, 209(4464):1542, 1980.

[65] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the world with wireless
sensor networks. In Proceedings of ICASSP 2001 – IEEE International Conference on
Acoustics, Speech, and Signal Processing, volume 4, pages 2033–2036. IEEE Press, 2001.

[66] EU. FRONTS Project Website. http://www.fronts.eu.

[67] EU. WISEBED Project Website. http://www.wisebed.eu.

[68] S. Fekete, A. Kröller, S. Fischer, and D. Pfisterer. Shawn: The fast, highly customiz-
able sensor network simulator. In INSS 2007 – Proceedings of the 4th International
Conference on Networked Sensing Systems, page page 299. IEEE Press, Piscataway, NJ,
2007.

[69] I. Finocchi, A. Panconesi, and R. Silvestri. An experimental analysis of simple, dis-
tributed vertex coloring algorithms. Algorithmica, 41(1):1–23, 2005.

[70] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
Human Genetics, 7(2):179–188, 1936.



206 BIBLIOGRAPHY

[71] Center for Discrete Mathematics and Theoretical Computer Science. Dimacs implemen-
tation challenges, 2006. http://dimacs.rutgers.edu/Challenges/.

[72] P. Fraigniaud, C. Gavoille, D. Ilcinkas, and A. Pelc. Distributed computing with advice:
Information sensitivity of graph coloring. Distributed Computing, 21(6):395–403, 2009.

[73] N. R. Franks and S. Bryant. Rhythmical patterns of activity within the nest of ants.
Chemistry and Biology of Social Insects, 7(2):122–123, 1987.

[74] N. R. Franks, S. Bryant, R. Griffiths, and L. Hemerik. Synchronization of the behaviour
within nests of the ant Leptothorax acervorum (fabricius)-I. Discovering the phenomenon
and its relation to the level of starvation. Bulletin of Mathematical Biology, 52(5):597–
612, 1990.

[75] P. Galinier and J.-K. Hao. Hybrid evolutionary algorithms for graph coloring. Journal
of Combinatorial Optimization, 3:379–397, 1999.

[76] S. Ganeriwal, R. Kumar, and M. B. Srivastava. Timing-sync protocol for sensor net-
works. In Proceedings of SenSys 2003 – 1st ACM Conference on Embedded Networked
Sensor Systems, pages 138–149. ACM Press, 2003.

[77] C. Gavoille, R. Klasing, A. Kosowski, L. Kuszner, and A. Navarra. On the complexity
of distributed graph coloring with local minimality constraints. Networks, 54(1):12–19,
2009.

[78] P. P. Grassé. La reconstruction du nid et les coordinations interindividuelles chez
les Bellicositermes Natalenis et Cubitermes sp. La théorie de la stigmergie: Essai
d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6(1):41–
80, 1959.

[79] C. Guo, L. C. Zhong, and J. M. Rabaey. Low power distributed mac for ad hoc sensor
radio networks. In IEEE GLOBECOM 2001 – Proceedings of the Global Telecommuni-
cations Conference, volume 5, pages 2944 –2948, 2001.

[80] S. Guo and O. Yang. A dynamic multicast tree reconstruction algorithm for minimum-
energy multicasting in wireless ad hoc networks. In IEEE IPCCC 2004 – Proceedings
of the International Performance Computing and Communications Conference, pages
637–642. IEEE press, 2004.

[81] S. Guo and O. Yang. Energy-aware multicasting in wireless ad hoc networks: A survey
and discussion. Computer Communications, 30:2129–2148, 2007.

[82] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE Transactions on
Information Theory, 46(2):388–404, 2000.

[83] J. Hansen, M. Kubale, Ł. Kuszner, and A. Nadolski. Distributed largest-first algorithm
for graph coloring. In Marco Danelutto, Marco Vanneschi, and Domenico Laforenza,
editors, Euro-Par 2004 Parallel Processing – Proceedings of the 10th International Euro-
Par Conference, pages 804–811. Springer Berlin / Heidelberg, 2004.

[84] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applica-
tions. European Journal of Operational Research, 130:449–467, 2001.



BIBLIOGRAPHY 207

[85] F. E. Hanson. Comparative studies of firefly pacemakers. Federation Proceedings,
37(8):2158–2164, 1978.

[86] F. Heppner and U. Grenander. A stochastic nonlinear model for coordinated bird flocks.
The Ubiquity of Chaos, page 233, 1990.

[87] J. M. Herhers. Social organisation in Leptothorax ants: within-and between-species
patterns. Psyche: A Journal of Entomology, 90(4):361–386, 1983.

[88] T. Herman and S. Tixeuil. A distributed TDMA slot assignment algorithm for wireless
sensor networks. In Sotiris Nikoletseas and José D. P. Rolim, editors, ALGOSENSORS
2004 – Proceedings of 1st International Workshop on Algorithmic Aspects of Wireless
Sensor Networks, pages 45–58. Springer, 2004.

[89] H. Hernández and T. Baumgartner. Perada research exchange: Real experimentation
with a self-synchronized duty-cycling mechanism. Technical report, Available as a Per-
Ada exchange report in http://www.perada.eu/documents/2010/exchange-reports/

hugo-hernandez.pdf, 2010.

[90] H. Hernández and C. Blum. Ant colony optimization for multicasting in static wireless
ad-hoc networks. Swarm Intelligence, 3(2):125–148, 2009.

[91] H. Hernández and C. Blum. Foundations of antcycle: Self-synchronized duty-cycling in
mobile sensor networks. The Computer Journal, 54(9):1427–1448, 2011.

[92] H. Hernández and C. Blum. Implementing a model of Japanese tree frogs’ calling
behavior in sensor networks: A study of possible improvements. In BIS-WSN 2009
– Proceedings of the 1st International Workshop on Bio-Inspired Solutions for Wireless
Sensor Networks. ACM press, New York, NY, 2011. In press.

[93] H. Hernández and C. Blum. Minimum energy broadcasting in wireless sensor networks:
An ant colony optimization approach for a realistic antenna model. Applied Soft Com-
puting, 11(8):5684–5694, 2011.

[94] H. Hernández and C. Blum. Distributed graph coloring: an approach based on the
calling behavior of japanese tree frogs. Swarm Intelligence, 2012. In press.

[95] H. Hernández and C. Blum. Frogsim: Distributed graph coloring in wireless ad hoc
networks – an algorithm inspired by the calling behavior of japanese tree frogs. Telecom-
munication Systems, 2012. In press.

[96] H. Hernández, C. Blum, M. Blesa, T. Baumgartner, S. Fekete, and A. Kröller. Self-
synchronized duty-cycling for sensor networks with energy harvesting capabilities: Im-
plementation in wiselib. In MSN 2010 – Proceedings of the 6th International Conference
on Mobile Ad-hoc and Sensor Networks, pages 134–139. IEEE Press, 2010.

[97] H. Hernández, C. Blum, M. Middendorf, K. Ramsch, and A. Scheidler. Self-synchronized
duty-cycling for mobile sensor networks with energy harvesting capabilities: A swarm
intelligence study. In Y. Shi, editor, IEEE SIS 2009 – Proceedings of the Swarm Intel-
ligence Symposium, pages 153–159. IEEE press, Piscataway, NJ, 2009.



208 BIBLIOGRAPHY

[98] A. Hertz, M. Plumettaz, and N. Zufferey. Variable space search for graph coloring.
Discrete Applied Mathematics, 156(13):2551–2560, 2008.

[99] J. Honerkamp. The heart as a system of coupled nonlinear oscillators. Journal of
Mathematical Biology, 18(1):69–88, 1983.

[100] Y. W. Hong, L. F. Cheow, and A. Scaglione. A simple method to reach detection
consensus in massively distributed sensor networks. In Proceedings of ISIT 2004 – IEEE
International Symposium on Information Theory, page 251. IEEE Press, 2004.

[101] Y. W. Hong and A. Scaglione. Time synchronization and reach-back communications
with pulse-coupled oscillators for UWB wireless ad hoc networks. In Proceedings of
UWBST 2003 – IEEE Conference on Ultra Wideband Systems and Technologies, pages
190–194. IEEE Press, 2003.

[102] J. Hsu, S. Zahedi, A. Kansal, M. Srivastava, and V. Raghunathan. Adaptive duty cycling
for energy harvesting systems. In ISLPED 2006 – Proceedings of the International Sym-
posium on Low Power Electronics and Design, pages 180–185. IEEE Press, Piscataway,
NJ, 2006.

[103] A. Iyer, S. S. Kulkarni, V. Mhatre, and C. P. Rosenberg. Wireless Sensor Networks
and Applications, chapter A Taxonomy-based Approach to Design of Large-scale Sensor
Networks, pages 3–33. Springer, 2008.

[104] J. Jalife. Mutual entrainment and electrical coupling as mechanisms for synchronous
firing of rabbit sino-atrial pace-maker cells. The Journal of Physiology, 356(1):221–243,
1984.

[105] P. Janacik, T. Heimfarth, and F. Rammig. Emergent Topology Control Based on Di-
vision of Labour in Ants. In AINA 2006 – Proceedings of the International Conference
on Advanced Information Networking and Applications, pages 733–740. IEEE Computer
Society, Los Alamitos, CA, USA, 2006.

[106] S. Janson and M. Middendorf. A hierarchical particle swarm optimizer and its adaptive
variant. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 35(6):1272–
1282, 2005.

[107] T. R. Jensen. Graph coloring problems. John Wiley & Sons, 1994.

[108] I. Kang and R. Poovendran. Iterated local optimization for minimum energy broadcast.
In WiOpt 2005 – Proceedings of the 3rd International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks, pages 332–341. IEEE press,
2005.

[109] A. Kansal, J. Hsu, S. Zahedi, and M. B. Srivastava. Power management in energy
harvesting sensor networks. Transactions on Embedded Computing Systems, 6(4):Article
32, 38 pp, 2007.

[110] R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Communications – Proceedings of a Symposium on the Complexity of Computer Com-
putations, page 85, 1972.



BIBLIOGRAPHY 209

[111] J. Kennedy. Bare bones particle swarms. In IEEE SIS’03 – Proceedings of the 2003
Swarm Intelligence Symposium, pages 80–87. IEEE Press, 2003.

[112] J. Kennedy. Handbook of Nature-Inspired and Innovative Computing, chapter Swarm
intelligence, pages 187–219. Springer, 2006.

[113] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proceedings of ICNN
1995 – IEEE International Conference on Neural Networks, volume 4, pages 1942–1948.
IEEE Press, 1995.

[114] J. Kennedy, R. C. Eberhart, and Y. Shi. Swarm Intelligence. The Morgan Kaufmann
Series in Networking. Morgan Kaufmann Publishers, San Francisco, CA, USA, 2004.

[115] A. Keshavarzian, H. Lee, and L. Venkatraman. Wakeup scheduling in wireless sensor
networks. In ACM MobiHoc 06 – Proceedings of the 7th International Symposium on
Mobile Ad-Hoc Networking and Computing, pages 322–333. ACM, New York, NY, USA,
2006.

[116] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing.
Science, 220(4598):671–680, 1983.

[117] A. Kosowski and Ł. Kuszner. On greedy graph coloring in the distributed model. In
Wolfgang Nagel, Wolfgang Walter, and Wolfgang Lehner, editors, Euro-Par 2006 –
Proceedings of the 12th International Euro-Par Conference, pages 592–601. Springer
Berlin / Heidelberg, 2006.

[118] G. T. Kovacs. Micromachined Transducers Sourcebook. McGraw-Hill Science, 1998.

[119] L. Kroc, A. Sabharwal, and B. Selman. Counting solution clusters in graph coloring
problems using belief propagation. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bot-
tou, editors, NIPS 2008 – Proceedings of 22nd Annual Conference on Neural Information
Processing Systems, pages 873–880. MIT Press, Cambridge, MA, 2009.

[120] M. Kubale and L. Kuszner. A better practical algorithm for distributed graph coloring.
In PARELEC 02 – Proceedings of the International Conference on Parallel Computing
in Electrical Engineering, pages 72–75. IEEE Computer Society, Washington, DC, USA,
2002.

[121] F. Kuhn and R. Wattenhofer. On the complexity of distributed graph coloring. In ACM
PODC 2006 – Proceedings of the 25th Annual Symposium on Principles of Distributed
Computing, page 15. ACM, 2006.

[122] S. Kumar, V. S. Raghavan, and J. Deng. Medium access control protocols for ad hoc
wireless networks: A survey. Ad Hoc Networks, 4(3):326–358, 2006.

[123] T. Labella and F. Dressler. A bio-inspired architecture for division of labour in sanets.
In F. Dressler and I. Carreras, editors, Advances in Biologically Inspired Information
Systems, volume 69 of Studies in Computational Intelligence, pages 211–230. Springer
Berlin / Heidelberg, 2007.



210 BIBLIOGRAPHY

[124] S. A. Lee. Firefly Inspired Distributed Graph Coloring Algorithms. In Hamid R. Arabnia
and Youngsong Mun, editors, Proceedings of PDPTA 2008 – International Conference on
Parallel and Distributed Processing Techniques and Applications, pages 211–217. CSREA
Press, 2008.

[125] S. A. Lee. k-Phase Oscillator Synchronization for Graph Coloring. Mathematics in
Computer Science, 3(1):61–72, 2010.

[126] S. A. Lee and R. Lister. Experiments in the dynamics of phase coupled oscillators
when applied to graph coloring. In ACSC 2008 – Proceedings of the 31st Australasian
Conference on Computer Science, pages 83–89. Australian Computer Society, Inc., 2008.

[127] F. L. Lewis. Wireless Sensor Networks, pages 11–46. John Wiley & Sons, Inc., 2005.

[128] F. Li and I. Nikolaidis. On minimum-energy broadcasting in all-wireless networks. In
IEEE LCN 2001 – Proceedings of the Conference on Local Computer Networks, pages
14–16. IEEE press, 2001.

[129] X. Li. Adaptively choosing neighbourhood bests using species in a particle swarm op-
timizer for multimodal function optimization. In K. Deb, editor, GECCO 2004 – Pro-
ceedings of the 6th Annual Conference in Genetic and Evolutionary Computation, LNCS
3102, pages 105–116. Springer, 2004.

[130] W. Liang. Constructing minimum-energy broadcast trees in wireless ad hoc networks.
In ACM MobiHoc 2002 – Proceedings of the 3rd International Symposium on Mobile Ad
hoc Networking & Computing, pages 112–122. ACM Press New York, NY, USA, 2002.

[131] W. H. Liao, Y. Kao, and C. M. Fan. Data aggregation in wireless sensor networks using
ant colony algorithm. Journal of Network and Computer Applications, 31(4):387–401,
2008.

[132] G. Lu, N. Sadagopan, B. Krishnamachari, and A. Goel. Delay efficient sleep scheduling
in wireless sensor networks. In K. Makki and E. Knightly, editors, IEEE INFOCOM
2005 – Proceedings of the 24th International Conference on Computer Communications,
pages 2470–2481. IEEE, 2005.

[133] Z. Lü and J. K. Hao. A memetic algorithm for graph coloring. European Journal of
Operational Research, 203(1):241–250, 2010.

[134] D. Lucarelli and I. Wang. Decentralized synchronization protocols with nearest neighbor
communication. In Proceedings of SenSys 2004 – 2nd ACM Conference on Embedded
Networked Sensor Systems, pages 62–68. ACM, 2004.

[135] Q. Lv, X. Xia, and P. Qian. A parallel aco approach based on one pheromone matrix. In
Marco Dorigo, Luca Gambardella, Mauro Birattari, Alcherio Martinoli, Riccardo Poli,
and Thomas Stützle, editors, Ant Colony Optimization and Swarm Intelligence, volume
4150 of Lecture Notes in Computer Science, pages 332–339. Springer Berlin / Heidelberg,
2006.

[136] N. A. Lynch. Distributed Algorithms. Elsevier, 2009.



BIBLIOGRAPHY 211

[137] E. Malaguti, M. Monaci, and P. Toth. A metaheuristic approach for the vertex coloring
problem. Journal on Computing, 20(2):302–316, 2008.

[138] E. Malaguti, M. Monaci, and P. Toth. An exact approach for the Vertex Coloring
Problem. Discrete Optimization, 8(2):174 – 190, 2010.

[139] E. Malaguti and P. Toth. A survey on vertex coloring problems. International Trans-
actions in Operational Research, 17(1):1–34, 2010.

[140] E. Maneva, E. Mossel, and M. J. Wainwright. A new look at survey propagation and its
generalizations. Journal of the Association for Computing Machinery, 54(4):1089–1098,
2007.

[141] K. Martinez, J. K. Hart, and R. Ong. Environmental sensor networks. Computer,
37(8):50–56, 2004.

[142] R. Mendes, J. Kennedy, and J. Neves. The fully informed particle swarm: Simpler,
maybe better. IEEE Transactions on Evolutionary Computation, 8(3):204 – 210, 2004.

[143] D. Merkle, M. Middendorf, and A. Scheidler. Self-organized task allocation for comput-
ing systems with reconfigurable components. In IPDPS 2006 – Proceedings of the 20th
IEEE International Parallel and Distributed Processing Symposium. IEEE Press, 2006.

[144] K. L. Mills. A brief survey of self-organization in wireless sensor networks. Wireless
Communications and Mobile Computing, 7(7):823–834, 2009.

[145] O. Miramontes. Complexity and Behaviour in Leptothorax Ants. CopIt ArXives, Wash-
ington, DC, 2007.

[146] R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled biological oscillators.
SIAM Journal on Applied Mathematics, 50(6):1645–1662, 1990.

[147] G. Molina. Optimization Techniques for Wireless Sensor Networks. PhD thesis, Univer-
sidad de Málaga, 2010.

[148] T. Moscibroda and R. Wattenhofer. Coloring unstructured radio networks. Distributed
Computing, 21(4):271–284, 2008.

[149] S. D. Muruganathan, D. C. Ma, R. I. Bhasin, and A. O. Fapojuwo. A centralized energy-
efficient routing protocol for wireless sensor networks. IEEE Communications Magazine,
43(3):S8–13, 2005.

[150] A. Mutazono, M. Sugano, and M. Murata. Frog Call-Inspired Self-Organizing Anti-
Phase Synchronization for Wireless Sensor Networks. In INDS 09 – Proceedings of the
2nd International Workshop on Nonlinear Dynamics and Synchronization, pages 81 –
88. IEEE Press, 2009.

[151] S. Okdem and D. Karaboga. Routing in wireless sensor networks using ant colony
optimization. In Proceedings of AHS 2006 – 1st NASA/ESA Conference on Adaptive
Hardware and Systems, pages 401–404. IEEE Press, 2006.



212 BIBLIOGRAPHY

[152] P. Panagopoulou and P. Spirakis. A game theoretic approach for efficient graph coloring.
In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro Fukunaga, editors, ISAAC 2008 –
Proceedings of the 19th International Symposium on Algorithms and Computation, pages
183–195. Springer Berlin / Heidelberg, 2008.

[153] T. Pavlidis. Biological oscillators: their mathematical analysis. Academic Press, New
York, 1973.

[154] J. Pearl. Fusion, propagation, and structuring in belief networks. Artificial Intelligence,
29(3):241–288, 1986.

[155] C. S. Peskin. Mathematical aspects of heart physiology. Courant Institute of Mathemat-
ical Sciences, New York University, 1975.

[156] R. A. Powers. Batteries for low power electronics. Proceedings of the IEEE, 83(4):687–
693, 1995.

[157] V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Srivastava. Design con-
siderations for solar energy harvesting wireless embedded systems. In IPSN 2005 –
Proceedings of the 4th International Symposium on Information Processing in Sensor
Networks, pages 457–462. ACM Press, New York, NY, 2005.

[158] M. Rahimi, H. Shah, G. S. Sukhatme, J. Heideman, and D. Estrin. Studying the
Feasibility of Energy Harvesting in a Mobile Sensor Network. In IEEE ICRA 2003
– Proceedings of the International Conference on Robotics and Automation, volume 1,
pages 19–24. IEEE press, Piscataway, NJ, 2003.

[159] C. W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In SIG-
GRAPH ’87 – Proceedings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques, pages 25–34, New York, NY, USA, 1987. ACM Press.

[160] T. J. Richer and T. Blackwell. The Lévy particle swarm. In IEEE CEC 2006 – Proceed-
ings of the 2006 Congress on Evolutionary Computation, pages 808–815. IEEE Press,
2006.

[161] J. Riget and J. S. Vesterstrøm. A diversity-guided particle swarm optimizer – the
ARPSO. Technical Report 2002-02, 2002.

[162] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards. Artificial
intelligence: a modern approach, volume 74. Prentice Hall Englewood Cliffs, NJ, 1995.

[163] P. Santi. Topology control in wireless ad hoc and sensor networks. ACM Computer
Surveys, 37:164–194, 2005.

[164] P. Santi. Topology control in wireless ad hoc and sensor networks. John Wiley & Sons,
San Francisco, CA, 2005.

[165] M. Sasabe, N. Wakamiya, M. Murata, and H. Miyahara. Effective methods for scalable
and continuous media streaming on peer-to-peer networks. European Transactions on
Telecommunications, 15(6):549–558, 2004.



BIBLIOGRAPHY 213

[166] C. Savarese, J. M. Rabaey, and J. Beutel. Location in distributed ad-hoc wireless
sensor networks. In Proceedings of ICASSP 2001 – IEEE International Conference on
Acoustics, Speech, and Signal Processing, volume 4, pages 2037–2040, 2001.

[167] F. Schulz. Modeling sensor and ad hoc networks. In D. Wagner and R. Wattenhofer,
editors, Advanced Lectures – Algorithms for Sensor and Ad Hoc Networks, volume 4621
of Lecture Notes in Computer Science, pages 21–36. Springer Verlag, Berlin, Germany,
2007.

[168] C. Schurgers. Wireless Sensor Networks and Applications, chapter Wakeup strategies
in Wireless Sensor Networks, pages 195–217. Signals and Communication Technology.
Springer Verlag, Berlin, Germany, 2008.

[169] M. Schwartz and N. Abramson. The AlohaNet-Surfing for Wireless Data. Communica-
tions Magazine, 47(12):21–25, 2009.

[170] R. C. Shah and J. M. Rabaey. Energy aware routing for low energy ad hoc sensor
networks. In IEEE WCNC 2002 – Proceedings of the Wireless Communications and
Networking Conference, volume 1, pages 350–355. IEEE Press, Piscataway, NJ, 2002.

[171] S. Shakkottai, R. Srikant, and N. B. Shroff. Unreliable sensor grids: Coverage, connec-
tivity and diameter. Ad Hoc Networks, 3(6):702–716, 2005.

[172] http://shawn.sf.net.

[173] E. Shih, S. H. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan. Physical
layer driven protocol and algorithm design for energy-efficient wireless sensor networks.
In Proceedings of SIGMOBILE 2001 – 7th Annual International Conference on Mobile
Computing and Networking, pages 272–287. ACM, 2001.

[174] A. Singh and W. N. Bhukya. A hybrid genetic algorithm for the minimum energy
broadcast problem in wireless ad hoc networks. Applied Soft Computing, 11(1):667 –
674, 2011.

[175] G. Singh, S. Das, S. Gosavi, and S. Pujar. Ant colony algorithms for Steiner trees: an
application to routing in sensor networks. Recent Developments in Biologically Inspired
Computing, pages 181–206, 2004.

[176] H.M. Smith. Synchronous flashing of fireflies. Science, 82(2120):151, 1935.

[177] T. Stützle. Parallelization strategies for ant colony optimization. In PPSN V – Pro-
ceedings of the 5th International Conference on Parallel Problem Solving from Nature,
LNCS 1498, pages 722–731. Springer, 1998.

[178] T. Stützle and H. H. Hoos. MAX-MIN Ant system. Future Generation Computer
Systems, 16(9):889–914, 2000.

[179] G. Theraulaz, E. Bonabeau, and J. N. Denuebourg. Response threshold reinforcements
and division of labour in insect societies. Proceedings: Biological Sciences, 265(1393):327,
1998.



214 BIBLIOGRAPHY

[180] J. Tillett, R. Rao, and F. Sahin. Cluster-head identification in ad hoc sensor networks
using particle swarm optimization. In Proceedings of ICPWC 2002 – IEEE International
Conference on Personal Wireless Communications, pages 201–205. IEEE Press, 2002.

[181] V. Torre. A theory of synchronization of heart pace-maker cells. Journal of Theoretical
Biology, 61(1):55–71, 1976.

[182] R. D. Traub, R. Miles, and R. K. Wong. Model of the origin of rhythmic population
oscillations in the hippocampal slice. Science, 243(4896):1319, 1989.

[183] M. Tubaishat and S. Madria. Sensor networks: an overview. IEEE Potentials, 22(2):20–
23, 2003.

[184] C. Twomey, T. Stützle, M. Dorigo, M. Manfrin, and M. Birattari. An analysis of com-
munication policies for homogeneous multi-colony aco algorithms. Information Sciences,
180(12):2390 – 2404, 2010.

[185] J. Van Greunen and J. Rabaey. Lightweight time synchronization for sensor networks.
In Proceedings of WSNA 2003 – 2nd ACM International Conference on Wireless Sensor
Networks and Applications, pages 11–19. ACM Press, 2003.

[186] K. Veeramachaneni, T. Peram, C. Mohan, and L. Osadciw. Optimization using particle
swarms with near neighbor interactions. In GECCO 2003 – Proceedings of the 5th
Annual Conference in Genetic and Evolutionary Computation, LNCS 2723, pages 110–
121. Springer, 2003.

[187] C. M. Vigorito, D. Ganesan, and A. G. Barto. Adaptive control of duty cycling in
energy-harvesting wireless sensor networks. In IEEE SECON 2007 – Proceedings of the
4th Annual Communications Society Conference on Sensor, Mesh and Ad Hoc Commu-
nications and Networks, pages 21–30. IEEE Press, Piscataway, NJ, 2007.

[188] C. von der Malsburg. Organic Computing, chapter The Organic Future of Information
Technology. Understanding Complex Systems. Springer Berlin, 2008.

[189] P. J. Wan, G. Calinescu, X. Y. Li, and O. Frieder. Minimum-energy broadcasting in
static ad hoc wireless networks. Wireless Networks, 8(6):607–617, 2002.

[190] L. Wang and Y. Xiao. A survey of energy-efficient scheduling mechanisms in sensor
networks. Mobile Networks and Applications, 11(5):723–740, 2006.

[191] X. Wang, S. Wang, and J. J. Ma. An improved co-evolutionary particle swarm opti-
mization for wireless sensor networks with dynamic deployment. Sensors, 7(3):354–370,
2007.

[192] H. Weimerskirch, J. Martin, Y. Clerquin, P. Alexandre, and S. Jiraskova. Energy saving
in flight formation. Nature, 413(6857):697–698, 2001.

[193] K. D. Wells. The social behaviour of anuran amphibians. Animal Behaviour, 25:666–693,
1977.

[194] A. M. Wenner. Sound production during the waggle dance of the honey bee. Animal
Behaviour, 10(1-2):79 – 95, 1962.



BIBLIOGRAPHY 215

[195] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. On the construction of energy-
efficient broadcast and multicast trees in wireless networks. Proceedings of INFOCOM
2000 – 19th Annual Joint Conference of the IEEE Computer and Communications So-
cieties, 2:585–594, 2000.

[196] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. The energy efficiency of distributed
algorithms for broadcasting in ad hoc networks. In G. L. Stüber et al., editor, WPMC
2002 – Proceedings of the 5th International Symposium on Wireless Personal Multimedia
Communications, volume 2, pages 499–503. IEEE press, 2002.

[197] J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. Energy-Efficient Broadcast and
Multicast Trees in Wireless Networks. Mobile Networks and Applications, 7(6):481–492,
2002.

[198] Transistor count. Wikipedia. http://en.wikipedia.org/wiki/Transistor_count.

[199] E. O. Wilson. The relation between caste ratios and division of labor in the ant genus
pheidole (hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 16:89–98,
1984.

[200] T. Wimalajeewa and S.K. Jayaweera. PSO for constrained optimization: optimal power
scheduling for correlated data fusion in wireless sensor networks. In Proceedings of
PIMRC 2007 – IEEE 18th International Symposium on Personal, Indoor and Mobile
Radio Communications., pages 1–5. IEEE Press, 2007.

[201] A. T. Winfree. Biological rhythms and the behavior of populations of coupled oscillators.
Journal of Theoretical Biology, 16(1):15–42, 1967.

[202] A. T. Winfree. The timing of biological clocks. Scientific American Books New York,
1987.

[203] A. T. Winfree. The geometry of biological time. Springer Verlag, 2001.

[204] S. Wolf and P. Merz. Evolutionary local search for the minimum energy broadcast
problem. In C. Cotta and J. van Hemert, editors, VOCOP 2008 – Proceedings of the
8th European Conference on Evolutionary Computation in Combinatorial Optimization,
volume 4972 of Lecture Notes in Computer Science, pages 61–72. Springer Verlag, Berlin,
2008.

[205] X. Wu, J. Cho, B. J. d’Auriol, and S. Lee. Mobility-assisted relocation for self-
deployment in wireless sensor networks. IEICE Transactions on Communications,
90(8):2056–2069, 2007.

[206] X. Wu, Y. Niu, L. Shu, J. Cho, Y. Lee, and S. Lee. Relay shift based self-deployment
for mobility limited sensor networks. In Proceedings of UIC 2006 – 3rd International
Conference on Ubiquitous Intelligence and Computing, pages 556–564. Springer Berlin,
2006.

[207] W. Xiaoling, S. Lei, Y. Jie, X. Hui, J. Cho, and S. Lee. Swarm based sensor deployment
optimization in ad hoc sensor networks. In Proceedings of ICESS 2005 – 2nd Interna-
tional Conference on Embedded Software and Systems, pages 533–541. Springer Berlin,
2005.



216 BIBLIOGRAPHY

[208] X.F. Xie, W.J. Zhang, and Z.L. Yang. Dissipative particle swarm optimization. In CEC
2002 – Proceedings of the 2002 Congress on Evolutionary Computation, volume 2, pages
1456–1461. IEEE Press, 2002.

[209] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi. A particle
swarm optimization for reactive power and voltage control considering voltage security
assessment. IEEE Transactions on Power Systems, 15(4):1232–1239, 2000.

[210] W. Zhang, G. Wang, Z. Xing, and L. Wittenburg. Distributed stochastic search and
distributed breakout: properties, comparison and applications to constraint optimization
problems in sensor networks. Artificial Intelligence, 161(1-2):55–87, 2005.

[211] H. Zimmermann. Osi reference model–the iso model of architecture for open systems
interconnection. IEEE Transactions on Communications, 28(4):425–432, 1980.

[212] R. Zivan. Anytime local search for distributed constraint optimization. In AAMAS 08 –
Proceedings of the 7th International Joint Conference on Autonomous Agents and Mul-
tiagent Systems, volume 3, pages 1449–1452. International Foundation for Autonomous
Agents and Multiagent Systems, Richland, SC, 2008.


