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Abstract

In time-sensitive and dynamic missions, autonomous vehicles must respond quickly
to new information and objectives. In the case of dynamic task allocation, a team
of agents are presented with a new, unknown task that must be allocated with their
original allocations. This is exacerbated further in decentralized settings where agents
are limited to utilizing local information during the allocation process.

This thesis presents a fully decentralized, dynamic task allocation algorithm that
extends the Consensus-Based Bundle Algorithm (CBBA) to allow for allocating new
tasks. Whereas static CBBA requires a full resetting of previous allocations, CBBA
with Partial Replanning (CBBA-PR) enables the agents to only partially reset their
allocations to efficiently and quickly allocate a new task. By varying the number
of existing tasks that are reset during replan, the team can trade-off convergence
speed with amount of coordination. By specifically choosing the lowest bid tasks for
resetting, CBBA-PR is shown to converge linearly with the number of tasks reset and
the network diameter of the team.

In addition, limited replanning methods are presented for scenarios without suf-
ficient replanning time. These include a single reset bidding procedure for agents at
capacity, a no-replanning heuristic that can identify scenarios that does not require
replanning, and a subteam formation algorithm for reducing the network diameter.
Finally, this thesis describes hardware and simulation experiments used to explore
the effects of ad-hoc, decentralized communication on consensus algorithms and to
validate the performance of CBBA-PR.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

The availability of affordable, high-powered computing as well as the mature de-

velopment of control systems has led to a proliferation of autonomous systems in

commercial, defense, and recreational worlds. Large demonstrations of flying quad-

copter teams can be spotted in Superbowl Halftime shows and self-driving cars can

be seen driving down the streets of Cambridge, MA. The appeal of these autonomous

systems is two-fold. First, autonomous systems remove the need for humans to be

involved in accomplishing various tasks. From replacing human farmers with au-

tonomous tractors [5] to reducing vehicular deaths by removing human drivers [6]

to increasing warfighter safety by removing pilots from the cockpit [7] , autonomous

systems has the potential to reduce cost and increase safety in various applications.

The second is leveraging the computational power of autonomous systems to solve

(a) US Army Urban Operations (2025) [1] (b) Persistent Aquatic Living Sensors [2]

Figure 1-1: Defense applications of decentralized task allocation include networks of sensors that
work together to fuse various sensor modalities and respond quickly to threats

11



(a) Toyota Ridesharing Concept [3] (b) Amazon Robotics [4]

Figure 1-2: Commercial applications of distributed task allocation such as Amazon and Toyota
use large teams of networked robots to distribute tasks across multiple agents

increasingly complex problems in decreasing amount of time, surpassing the abilities

of human predecessors. With improved deep learning architectures, computers have

begun to surpass even human abilities to identify objects [8]. The famous Deep Blue

system defeated the world champion in chess and recently AlphaGo defeated the

world champion in Go [9]. In these cases, computers are able to outperform humans

due to their increased speed of computation and vast amount of memory.

This thesis focuses on the second advantage of autonomous system, namely the

ability of computers to quickly solve increasingly complex problems in time-sensitive

scenarios with increased performance compared to humans. One way to surpass

human performance is to increase the number of agents. Instead of four humans

searching for a missing hiker, search and rescue teams can send 100 drones to survey

the area. In disaster environments, teams of ground vehicles and aerial vehicles

can work together to find survivors in extreme circumstances. However, with an

increase in agents leads to an increase in the complexity of the problem. How do the

agents coordinate together? How do robots work together to out perform any single

robot? The ability to coordinate is crucial for improved performance of robots. And

while humans have refined language and communication over the past thousands of

years, teamwork is still an evolving field. How do humans negotiate on teams? The

challenges of coordination are exacerbated as engineers must code these interactions

in a large scale system and require systems to solve increasingly complex problems.

Applications of distributed autonomous systems is quickly emerging in present

12



industries and near-future application. In autonomous mobility-on-demand technolo-

gies, companies such as Ford and Uber are creating large systems of autonomous

cars that are tasked with routing to numerous riders and safely taking them to their

end destination. From the local perspective, vehicles must fuse sensor measurements

to detect oncoming traffic and pedestrians, provide control signals to the motors

and wheel to safely steer the vehicle, and interface with the human rider. From a

more global perspective, the cars must coordinate such that each customer is serviced

within an acceptable Quality of Service (QoS), usually requiring that no two vehicles

are visiting the same customer.

In defense applications, robots must be able to endure the most extreme envi-

ronments with limited and unreliable communication and complex mission settings.

Up until recently, UAVs have been largely used for passively collecting information,

hovering at high altitude with various sensors. However, future systems envision fully

autonomous planes replacing the role of classically trained pilots[7]. They will oper-

ate in hostile environments, making critical decisions based on the new information.

Simply put, autonomous vehicles will need to make decisions.

For example, where as previously, autonomous aerial vehicles were tasks with

surveying opposing military forces or gathering intelligence on weapons depots, now

quad-copters are tasked with intercepting incoming adversaries or actively pursuing

unknown targets. Agents must now first sense their environments, reason about their

situational awareness, and make time-critical decisions. If a team of robots must

intercept an incoming target, agents may collectively sense the target, fusing the

measurements from each agent to reach a consistent map of the environment and the

placement of the incoming target. The team may also delegate one or more agents

to pursue and capture the incoming target. The team will need to decide which

agent is the ideal one to accomplish task and ensure that the team is in agreement.

Finally, the team may wish to assess the status of the incoming target and resume

any previous operation of the team.

The ability for the team to allocate certain tasks to individual agents within a

team is known as the task allocation problem. In the task allocation problem, a set

13



of tasks such as visiting a location, picking up a customer, or taking a measurement

must be divided among agents. Generally, the agents will have different abilities or

preferences towards accomplishing the task. In the case of a heterogeneous team of

robots, each robot may have different innate abilities, in which case, the team should

try to match agents with the tasks they can best perform. In other cases, the robots

themselves may be homogeneous, however they can better execute the mission if they

do an effective job in dividing up the tasks among the agents. Finally, there are

situations where there is a mixture of robot heterogeneity and incentive to effectively

divide tasks, in which case effective coordination greatly increases the performance of

the team.

If individual tasks are assigned to each agent then the agents are solving the task

assignment problem. Because only one task is assigned to each agent, agents do

not need to consider the exponential number of combinations of tasks that could be

assigned to each agent. This not only greatly reduces the complexity of the problem

for a generic problem, it also enables the team to assign a new task independently of

the existing tasks in the system. In contrast, in a task allocation setting, where the

new task may negatively impact the original allocations, simply assigning the new

task to an agent is not a viable strategy.

The focus of this research will be on allocating tasks that arrive online during

the allocation of tasks. In static versions of the task allocation problem, the team is

provided with a set of tasks a priori that must be allocated as quickly as possible,

providing high quality allocations. In the dynamic task allocation setting, a new

task may arrive during or even after the entire task allocation process. The primary

question in this thesis is how to create the algorithms that will both effectively allocate

the new task among the team while maintaining a quick response time. As such, this

thesis is primarily interested in tasks that are time-sensitive where the actual time it

takes for the team to allocate the tasks directly impact the team’s performance. For

example, if the team was allowed infinite time to allocate a new task, the team could

simply stop and re-solve the original problem. Rather in this work, the team must

sacrifice some solution quality to ensure that the team returns with a new allocation
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quickly. For example, if a high-speed incoming adversarial agent must be captured,

the team can not wait a long time re-calculating a new solution. If it waits too long,

the current situational awareness may no longer be accurate, in the worst-case, the

adversarial is no longer within reach. Likewise, if a team of autonomous cars must

pause and replan their entire routes for every new customer that would like a ride,

even though the routes are highly efficient, the customers will not accept the long

wait times for replanning.

1.1 Problem Statement

1.1.1 Static Task Allocation Problem

The goal of the task allocation problem is to allocate a set of 𝑛𝑡 tasks to 𝑛𝑟 agents

where each tasks must be assigned to only one agent. In the decentralized task

allocation problem, each agent must solve this optimization and the team should

arrive at a conflict-free assignments, meaning that the team must agree on a single

solution. The agents can assign to themselves up to 𝐿𝑡 tasks, constrained by either

a physical limitation or a planning horizon for the agent. The decentralized task

assignment problem can then be formed as an integer program:

max
𝑛𝑟

∑
𝑖=1
(

𝑛𝑡

∑
𝑗=1

𝑐𝑖𝑗(𝑥𝑖,𝑝𝑖)𝑥𝑖𝑗)

subject to:
𝑛𝑡

∑
𝑗=1

𝑥𝑖𝑗 ≤ 𝐿𝑡 ∀𝑖 ∈ ℐ

𝑛𝑟

∑
𝑖=1

𝑥𝑖𝑗 ≤ 1 ∀𝑗 ∈ 𝒥

𝑛𝑟

∑
𝑖=1

𝑛𝑡

∑
𝑗=1

𝑥𝑖𝑗 = min{𝑛𝑟𝐿𝑡, 𝑛𝑡}

𝑥𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ ℐ × 𝒥

where ℐ is the set of all robots, 𝒥 is the set of all tasks, 𝑥𝑖𝑗 ∈ {0,1} is a decision

variable for task 𝑗 being assigned to agent 𝑖, 𝑝𝑖 is the allocation of tasks for each

robot 𝑖, and 𝑐𝑖𝑗 is the reward for servicing task 𝑖 given allocation 𝑝𝑖.
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1.1.2 Description of Dynamic Task Allocation

This work focuses on a the dynamic task allocation problem, where a team of agents

must allocated a new task 𝑇 ∗ during or after having allocated 𝑛𝑡 tasks. In this case,

the agents begin with an initial assignment of tasks (obtained from solving the static

task allocation problem) and must now allocate the new task 𝑇 ∗ among the agents

to obtain new allocations 𝑝′𝑖. A new task set is defined 𝒥 ′ = 𝒥 ⊕𝑇 ∗, and a new task

allocation problem is formulated as

max
𝑛𝑟

∑
𝑖=1
(
𝑛𝑡+1
∑
𝑗=1

𝑐′𝑖𝑗(𝑥
′
𝑖,𝑝

′
𝑖)𝑥

′
𝑖𝑗)

subject to:
𝑛𝑡+1
∑
𝑗=1

𝑥′𝑖𝑗 ≤ 𝐿𝑡 ∀𝑖 ∈ ℐ

𝑛𝑟

∑
𝑖=1

𝑥′𝑖𝑗 ≤ 1 ∀𝑗 ∈ 𝒥 ′

𝑛𝑟

∑
𝑖=1

𝑛𝑡

∑
𝑗=1

𝑥′𝑖𝑗 = min{𝑛𝑟𝐿𝑡, 𝑛𝑡 + 1}

𝑥′𝑖𝑗 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ ℐ × 𝒥 ′

1.2 Research Challenges

There are three main characteristics to the decentralized dynamic task allocation

problem that are critical for any algorithm to effectively be used in real-world systems:

tractable computational complexity, decentralized implementation, and the ability to

handle dynamic tasks and environments.

1.2.1 Computational Complexity

The task allocation problem can be viewed as a general version of the Traveling Sales-

person Problem (TSP) or similarly a Vehicle Routing Problem (VRP), both of which

have been shown to be NP-hard when trying to find an optimal solution [10, 11].

Likewise, one can see that the problem will be NP-hard by the fact that the opti-

mization is an integer program which is another example of an NP-hard problem. The

complexity of this problem means that the only way to obtain the optimal allocation
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of tasks is by iterating all permutations of task allocations, which is exponential in

the number of tasks and agents in the problem. Unlike NP-complete problems, it is

not even possible to validate a feasible solution as optimal if the team was given one.

Thus, any tractable algorithm , i.e., one that can be solved in polynomial time, will

not be able to guarantee an optimal solution. Instead, a tractable solution should ar-

rive at a feasible solution, meeting the constraints of the problem such as conflict-free

allocations, and should make an attempt at arriving at solutions that are close to op-

timal. One approach is to derive approximation algorithms [12] which can guarantee

solutions that are within a constant factor of the optimal solution. Another approach

is to use heuristics to direct the search towards solutions that have a high likelihood

of success, speeding up the algorithm to not require an exhaustive search of solutions.

It is important, however, to distinguish between task allocation which considers

the groups of tasks assigned to each agents with task assignment, where individual

tasks are assigned to an agent without effects subsequent tasks assigned to the agent.

If this is the case, the assignment problem can be represented as a bipartite graph

where the edges are the robot costs for servicing a given task. In this case, the

problem can be solved in polynomial time by utilizing known algorithms such as the

Hungarian method which has been shown to be strongly polynomial with a runtime

of 𝑂(𝑛3
𝑡 ) [13]. This distinction is important as many state-of-the-art decentralized or

dynamic algorithms solve a task assignment problem, or some variation of simplifying

the optimization problem. In this thesis, the team value function will depend on

the entire task allocation resulting in an NP-hard optimization problem. As such,

an algorithm is that sought that will provide an approximate solution to the task

allocation problem that is both decentralized and dynamic.

1.2.2 Decentralization

The use of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs)

in large teams has become increasingly desired and viable as robot hardware has

decreased in size and cost. Likewise, there is increasing interest in solving large, more

complex missions that require multi-agent teams to accomplish a varied number of
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tasks. Decentralized algorithms have allowed planners to scale with larger team sizes,

amortizing computation and communication across the robot teams. In addition,

decentralized algorithms, which only rely only peer-to-peer communication, can be

used in environments without a communication infrastructure or in environment with

constrained centralized communication. For example, a team of UAVs operating in

a foreign terrain, may not have access to classic communication infrastructure that

one may be accustomed to in local settings, especially for missions utilizing airspace

or underwater environments. Likewise, in an adversarial setting, where opponents

may look to target a central planner, decentralized algorithms provide robustness to

single-point failures caused by a central planner or communication infrastructure.

In contrast to distributed algorithms, which allows some centralized computation

in the form of dividing tasks or computation, decentralized algorithms rely on only

peer to peer communication, where all other computation and decision is made locally.

For example, in a distributed setting, the agents may be requested to perform some

local computation and then return to a central planner with their results for final

coordination. In a decentralized algorithm, no central planner is allowed. As such,

many distributed algorithm stem from the computer architecture community which

may have a central kernel or process manager that can coordinate multiple threads

of computation using some shared memory. In contrast, decentralized algorithms

are useful in robotic applications where multiple computers are working in physically

distinct areas without a central coordinator.

One difficulty with decentralized algorithms is that the agents may have disparate

global information, either having limited, local information or disagreement on the

overall team strategy [14]. If the agents all has the same information, each agent could

run the equivalent planner and arrive at the same solution, not requiring any form

of consensus or communication. However, if there is local information that is only

accessible to individual agents, a common occurrence with limited range sensing, or

some information is deemed private, such as robot location or task preference, team-

wide communication will be need to arrive at a conflict-free solution. This incurs

a large cost on the system, namely that the team must not only solve an NP-hard
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combinatorial problem, they must do so while also ensuring consistency either on

their local information or agreement on the allocations themselves. This fundamental

challenge has led to much research on analyzing consensus algorithms where agents

must agree on global information.

As such, many decentralized algorithms utilize implicit coordination where the

agents first agree on their state information and then can implicitly coordinate since

they have agreement on state. The main drawback from these strategies is that

sharing state information and reaching agreement is a high-bandwidth activity. Not

to mention, it is not clear how to necessarily fuse the information from each agent

into one cohesive picture. While attempts have been done in Cooperative SLAM

[15] they still require large amounts of bandwidth to share their local measurements.

Instead, the agents can share the allocation itself, without full agreement on their

own measurements and state, to arrive at a coordinated decision known known as

plan consensus [14]. While there is a trade-off in performance for scenarios with

highly disparate information, this thesis assumes that agents generally have global

consistency on the tasks information, i.e., they agree on the existence and location

of the tasks. However, the local state information (e.g., position) and local reward

function are not known by other agents (either for privacy or bandwidth reasons),

requiring a decentralized algorithm to coordinate the allocation.

1.2.3 Dynamics

Lastly, this research differs from other approaches to task allocation and vehicle rout-

ing in that it is concerned with algorithms that can adapt to dynamic environments

and tasks. In most decentralized task allocation problems, algorithms solve a static

version of the problem. In the static decentralized task allocation problem, all tasks

are known at the beginning of the algorithm and the environment does not change

during the running of the algorithm. In reality, however, the environment is constantly

changing with new information appearing and new tasks arriving. For example, in the

vehicle routing problem, new customers may appear while the vehicles are traveling

to their destinations or during the execution of the solver. In the Dial-A-Ride prob-
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(a) Uber rideshare request [16] (b) DARPA Mobile Force Protection. making [17]

Figure 1-3: Examples of dynamic tasks that arrive online while a network of agents. In ridesharing,
a new customer appears that must be serviced. In defense applications, mobile units must detect
and neutralize incoming attackers

lem, customer requests appear online and must be serviced by the vehicles in a similar

fashion as many of the present ride sharing companies. If the problem is small enough

(i.e., few tasks and agents) most modern solvers can be run periodically, returning

answers at a faster time scale than the dynamics of the environment, incurring only

minor delays in travel time. However, as the tasks and agents scale to larger numbers,

repeating the expensive computation of obtaining routes or allocations no-longer be-

comes a burden on the system, and it can no longer return solutions on the time-scale

of the dynamics. Thus in order to return faster solutions, especially in time-sensitive

mission settings, teams must sacrifice some solution quality for speed so that the team

can adequately respond to new tasks. Furthermore, dynamic algorithms should be

able to reuse previous solutions when new information requires the team to replan

rather than fully resolving the static task allocation problem. To address the real-

ities of dynamic environments and tasks, this thesis will focus on the decentralized

dynamic task allocation problem, specifically the problem of new tasks arriving into

the system during and after the original solving of a static task allocation problem.

1.3 Contributions

This thesis extends the previous work on Consensus-Based Bundle Algorithm [18–23]

to allow for allocating new tasks without a full re-solving of the decentralized task
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allocation problem. Specifically, the main contributions of this thesis are:

1. (Chapter 2) An overview of related works in decentralized dynamic task allo-

cation, with specific attention to the dynamic vehicle routing problem and de-

centralized optimization methods such as Consensus-Based Bundle Algorithm

(CBBA)

2. (Chapter 3) A replanning algorithm called Consensus-Based Bundle Algorithm

with Partial Replanning (CBBA-PR) that allows for provable convergence while

increased coordination that can be tuned by a team for various response times

3. (Chapter 4) Methods for effectively allocating a new task with only a limited

resetting. This includes a bidding strategy for single task resets, a heuristic

for evaluating no reset performance, and a subteam formation algorithm for

decreasing network diameter

4. (Chapter 5) Experimental study on effects of real ad-hoc communication on a

team’s ability to reach consensus using Raspberry Pi’s

5. (Chapter 6) Description of hardware and simulation platform for testing decen-

tralized planning and communication algorithms
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Chapter 2

Preliminaries

This chapter includes an introduction to consensus theory which is fundamental to any

multi-agent planning algorithm that requires agreement on global information. Then

an overview of related works in centralized dynamic vehicle routing algorithms to

provide an overview of state-of-the-art approaches to solving the NP-hard problem.

This chapter also presents an overview of fully decentralized algorithms including

decentralized task assignment, optimization, and auction algorithms. Finally, the

Consensus-Based Bundle Algorithm is described which is the basis for the algorithms

presented in the subsequent chapters of this thesis.

2.1 Centralized Dynamic Vehicle Routing Methods

One of the earliest instances of dynamic task allocation is the Dynamic Vehicle Rout-

ing Problem (DVRP), an NP-hard problem. in which new customers dynamically

appear and must be visited by the vehicles along a route of customer pickup. Refs.

[24] and [25] provide excellent literature reviews on centralized algorithms that handle

dynamic customers, with most methods having been in the operations research com-

munity for distribution optimization. As the optimal solution can only be found by

enumerating all possible routes or allocations, most methods for solving the vehicle

routing program utilize heuristics to direct the search of solutions. Shared memory

solutions [26] are commonly used where shared pools of feasible solutions or customer
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information are used by multiple agents to iteratively improve solutions. In the Ant

Colony System [27], agents create and share an a priori heuristic 𝜂𝑖,𝑗 and a posteriori

pheromone 𝜏𝑖,𝑗 that are used to guide agents in adding new customers to their existing

routes. In this case, the pheromones are updated when the servicing of customer 𝑗

after customer 𝑖 yields a good solution. This is then shared by the agents and can be

reused when a new customer arrives. In such a case, the problem is re-solved after

updating the shared pheromone matrix

𝜏 ′𝑖𝑗 = (1 − 𝛾𝑟)𝜏𝑖𝑗 + 𝛾𝑟𝜏0 (2.1)

where 𝛾𝑟 is a parameter that regulates the pheromone matrix and 𝜏0 are the initial

pheromones from the beginning of the static problem for each customer pair.

Another shared memory approach is Tabu Search [28], where an initial depth first

search is performed to obtain a feasible solution assigning vehicles to customers (or

robots to task), and then a set of swaps are allowed to iteratively improve the solution.

Since Tabu Search iteratively improves its solution it can be extended to dynamically

arriving customers by allowing swaps that include the new tasks [29, 30].

Finally, in Genetic Algorithms [31], a pool of solutions are initially maintained and

then an offspring solution is created from randomly chosen parents. The fitness of the

offspring is related to the quality of the child solution such that better solutions are

more likely to survive and create subsequent solutions. In the dynamic version of the

Genetic Algorithm, the optimization is re-solved and can be sped up by anticipating

future customers and preemptively solving for future customers [32].

While the methods above can be distributed across agents [30, 33–35], they still

require a centralized event planner and global information so that each agent can

independently solve the vehicle routing problem. In the fully decentralized problem,

no single agent can coordinate the planning process and generally only a limited local

information will be known to each agent. In addition, no runtime convergence is

provided for these algorithms, rather they are assumed to find a feasible solution

quickly and iteratively improve plans for a predetermined planning time. In time-
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sensitive and decentralized algorithms, simply agreeing on a solution across the team

is difficult, in addition to finding one of sufficient quality.

2.2 Consensus Theory

In many multi-agent missions, agents must reach team-wide agreement on global

information state, this could be classifying measurement across a sensor network [36],

a collective action such as flocking [37], or a combination of estimation and control [38].

In all these problems, agents have limited communication with a neighborhood 𝒩𝑖

of agents, generally limited by physical distance between robots. Agents can usually

reliably communicate with their neighboring agents in a bidirectional manner, though

random links have been considered [39–42].

The communication topology of the team can be represented by a directed graph

𝐺 = (𝑉,𝐸) with a set of nodes 𝑉 = {1,2, . . . 𝑛𝑟} representing every agent 𝑖 ∈ ℐ and set

of edges 𝐸 = {(𝑖, 𝑗) ∈ 𝑉 × 𝑉 } representing the communication connections between

agents. The neighbors of agents with whom agent 𝑖 can communicate is denoted as

𝒩𝑖 = {𝑗 ∈ 𝑉 ∶ (𝑖, 𝑗) ∈ 𝐸}. It is convenient to represent the topology of 𝐺 using an

adjacency matrix 𝐴 = (︀𝑎𝑖𝑗⌋︀ where 𝑎𝑖𝑗 = 1 if 𝑖, 𝑗 are neighbors in the graph 𝐺.

The foundational consensus protocol and convergence analysis known as the average-

consensus is described in [43, 44]

𝑥̇𝑖(𝑡) = ∑
𝑗∈𝒩𝑖

𝑎𝑖𝑗(𝑥𝑗(𝑡) − 𝑥𝑖(𝑡)) (2.2)

Specifically, the linear system above converges to the average initial state of the

system:

𝑥(∞) =
1

𝑛
∑
𝑖

𝑥𝑖(0) (2.3)

A major contribution of [43] was its analysis of the general class of 𝒳 -consensus

algorithms which includes the average consensus ( 1
𝑛 ∑𝑖 𝑥𝑖), max-consensus (max𝑖 𝑥𝑖),

and min-consensus (min𝑖 𝑥𝑖) in terms of the topology of the network, specifically the

Laplacian of 𝐺. They show that the dynamics of the linear system in Eqn. 2.2 can
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be rewritten in the compact form:

𝑥̇ = −𝐿𝑥 (2.4)

where 𝐿 is the graph Laplacian of 𝐺 defined as

𝐿 =𝐷 −𝐴 (2.5)

where 𝐷 is the degree matrix of 𝐺 and 𝑑𝑖 = ∑
𝑖≠𝑗

𝑎𝑖𝑗 and zero off diagonal elements. For

the directed network, the second smallest eigenvalue of the Laplacian 𝜆2, also known

as the algebraic connectivity of a graph, provides a measure of the speed of consensus

algorithms. Specifically, Ref. [43] shows that the disagreement vector 𝛿 exponentially

vanishes with a speed of at least 𝜆2.

2.3 Decentralized Subgradient Methods

A fully decentralized algorithms is provided by Ref. [45] for minimizing the sum

of costs for a team of agents where each agent has a local cost function 𝑓𝑖(𝑥) where

𝑓𝑖 ∶ 𝑅𝑛 → 𝑅, and 𝑓𝑖(𝑥) is only known agent 𝑖. Then the optimization can be formulated

as
min ∑

𝑖∈ℛ
𝑓𝑖(𝑥)

subject to: 𝑥 ∈ 𝑅𝑛

(2.6)

where 𝑥 ∈ 𝑅𝑛 is a global decision vector that the team must agree upon.

The main contribution of the subgradient method is that it allows each agent to

locally compute a gradient using its own local cost function while sharing information

with its teammates to reach both agreement on the global decision vector and obtain

a globally optimal solution. Rather than computing a global gradient, as would be

the case in a single-agent optimization, a subgradient is computed by agent, where
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the subgradient of the value function 𝑠𝐹 (𝑥̄) defined as

𝐹 (𝑥̄) + 𝑠𝐹 (𝑥̄)
′(𝑥 − 𝑥̄) ≤ 𝐹 (𝑥) ∀𝑥 ∈ Domain(𝐹 ) . (2.7)

The subgradient can be viewed as the partial derivative respect to the vector 𝑥̄ which

can then be used in a local descent towards new decision vector that lowest the local

cost function.

In addition, to ensure that the agents jointly optimize their team value function

and reach an agreed solution, each agent shares their subgradients with their neigh-

bors, learning from the neighbors the team-wide gradient. They propose the following

local update rule to optimize the team-wide function

𝑥𝑖(𝑘 + 1) =
𝑛𝑟

∑
𝑗=1

𝑎𝑖𝑗(𝑘)𝑥
𝑗(𝑘) − 𝛼𝑖(𝑘)𝑑𝑖(𝑘) (2.8)

where 𝑎𝑖(𝑘) = (𝑎𝑖1(𝑘), . . . , 𝑎
𝑖
𝑚(𝑘))

′ is a vector of weights, 𝛼𝑖(𝑘) > 0 is a scalar step-size

used by agent 𝑖, and the vector 𝑑𝑖(𝑘) is a subgradients of agent 𝑖’s value function

𝑓𝑖(𝑥) at 𝑥 = 𝑥𝑖(𝑘). Notice that the update rule 2.8 is similar to a consensus rule,

where the agents are simply reaching consensus on some decision vector 𝑥𝑗(𝑥). The

first term acts as a consensus term which allows the agents to reach agreement on a

decision vector and the second term relates to the gradient descent towards an optimal

solution. The authors also provide a proof of the optimality for the solution provided

by the distributed subgradient algorithm, showing that the cost is a constant factor

from the optimal solution. In addition, they analyze the convergence rate based on

the step-size 𝛼 used in the gradient descent.

Improvements to the original decentralized subgradient method include agents

with capacity limits [46] and agent dynamics [47]. Two main assumptions are used in

the subgradient methods that do not enable its use in dynamic task allocation. First,

the value function itself is convex and second, the decision vector has continuous

values, allowing for the computation of subgradients. In task allocation, the decision

vector corresponding to the allocations are binary 𝑥̄ ∈ {0,1} where 1 denotes that a
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task is assigned to agent 𝑖. In addition, the value function for task allocation is not

always guaranteed to be convex and thus gradient approaches may not converge to a

solution.

2.4 Decentralized Simplex Methods

For a subset of task assignment problems, those that can be represented as a linear

program, simplex methods such as the Hungarian method [13] can be used to provide

solutions. In the task assignment problem, where each agent is assigned a single task,

the optimization can be formulated as the following integer linear program:

max ∑
𝑖,𝑗

𝑐𝑖𝑗𝑥𝑖𝑗

subject to: ∑
𝑖=1

𝑥𝑖𝑗 = 1 ∀𝑗

∑
𝑗=1

𝑥𝑖𝑗 = 1 ∀𝑖

𝑥𝑖𝑗 ≥ 0

(2.9)

where 𝑥𝑖𝑗 is a binary assignment variable {0,1} and the cost function is a matrix of

costs that is indexed by robot 𝑖 and task 𝑗. Note that unlike the cost function in

the task allocation optimization 1.1.2, the cost 𝑐𝑖𝑗 is only a function of 𝑖 and 𝑗, not

the entire allocation 𝑥𝑖,𝑝𝑖. As a result, the cost function is coded as a static matrix

𝑐𝑖𝑗 that is common in linear program, leading to what as known as the linear sum

assignment problem (LSAP). This program can be solving using its dual program

max ∑
𝑗

𝛽𝑗 −∑
𝑖

𝛼𝑖

subject to: 𝛽𝑗 − 𝛼𝑖 ≤ 𝑐𝑖𝑗 ∀𝑖,∀𝑗

(2.10)

The dual problem can be thought of an equivalent optimization where 𝛼𝑖 is the

price that each robot 𝑖 will pay to do task 𝑗 and 𝛽𝑗 is the reward for servicing task 𝑗. In

the dual problem, the constraint is that the price that robot 𝑖 is willing to pay for the
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task can not exceed the reward of the task. According to duality in linear program,

the optimum of the dual problem will be equal to the optimum of the primal, i.e.,

the cost total of that robot 𝑖 would do will be exactly the cost for doing the task. A

popular approach to solving this dual-primal problem is the Hungarian method which

iteratively creates a feasible dual solution and then iteratively improves by construct-

ing a bipartite graph. Refs. [48] and [49] provide decentralized methods for sharing

the edges that are chosen between iterations, successfully distributing the Hungar-

ian method. Both methods provide a convergence guarantee of 𝑂(𝑛3
𝑡 ) time until the

team converges to the same optimal solution. While the task assignment problem can

be extended to multi-task problems, where multiple tasks must be assigned to the

agents, a matrix 𝑐𝑖𝑗 is still needed to formulate the ILP, requiring that the cost of any

given task-agent pair is independent of 𝑥𝑖𝑗. Simply put, the task assignment assumes

that each task can be assigned independently to each agent without affecting the

specific costs of the other tasks. In task allocation problems where the value function

is dependent on the entire allocation, such as in vehicle routing problems, an ILP can

not be formulated and the decentralized Hungarian method can not be used.

2.5 Auction Algorithms

Auction algorithms were one of the first distributed algorithms proposed for convex

optimization based on the economic parallels of optimization and price auctioning [50–

53]. First formalized in Ref. [50], the auction algorithm consists of agents bidding

for each task based on the agent’s personal score function and the maximum bidding

being assigned to the new task by a central auctioneer. Specifically, if an agent 𝑖 can

increase its score by servicing a new task 𝑗∗ the agent will bid the marginal increase

or profit margin for the task

𝑏𝑖𝑗∗ = 𝑎𝑖𝑗∗ −𝑤𝑖𝑗∗ + 𝜖 , (2.11)

where 𝑤𝑖𝑗∗ = max
𝑗≠𝑗∗

𝑎𝑖𝑗 − 𝑝𝑗.
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Then, during the assignment phase, the task is given to the agent with the highest

bid

𝑝𝑗 = max
𝑖

𝑏𝑖𝑗 . (2.12)

More importantly, at the end of this auction process, the team converges to as-

signment which is within 𝑛𝜖 of the optimal solution. Note that the 𝜖 is needed if

ties to remove cycles due to ties, however, if a strict tie-breaking rule is always used

(such as higher ID wins) then 𝜖 can be made arbitrarily small and reach the optimal

solution. A limitation of this original process is that it is not completely decentral-

ized, as a central auctioneer is still used to mark a winner for the team. In addition,

this considers each task independently and not the combinatorial nature of a task

allocation problem, and thus the conventional auction algorithm can not be used in

the dynamic task allocation problem.

One of the strengths of the auction algorithm is that once an adequate utility func-

tion is found for a given problem, many other problems can be solved in a distributed

fashion. For example, the auction algorithm can be applied to coverage control, where

a team of agents are tasked with covering a specific area [54–56]. In one of the first

robot applications of the free-market auction algorithm, Ref. [56] presents an auction

algorithm for controlling a group of robots that must visit various cities in a traveling

salesperson problem, where the reward function is related to the distance of each

robot to the city. Auction based methods have also been expanded to the patrolling

problem, where robots must continuously monitor various locations [57] and applied

to distributed imaging in agricultural settings [58] where UAVs bid on areas to visit

in order to maximize the amount of field imaged. In addition, others have derived

decentralized methods for auctioning tasks using consensus across a team [52, 59–62].

In addition, auction algorithms can address bandwidth concerns for real commu-

nication networks as it effectively encodes agent preferences into lower bandwidth

auction bids. In addition, recent work has analyzed the robustness of various auction

algorithms in harsh communication environments [63], enabling these algorithms to

be utilized in real-world robot communication settings.
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2.6 Consensus-Based Bundle Algorithm (CBBA)

The main contributions of this thesis are based on the Consensus-Based Bundle Algo-

rithm, the first fully decentralized algorithm for solving the task allocation problem

for a team of robots. In the following section, the CBBA algorithm is described in de-

tail and an explanation for the mechanisms leading to its convergence and optimality

guarantees.

Consensus-Based Bundle Algorithm [19] is a decentralized auction based algorithm

designed to solve the static task allocation problem, where all the task are known

at the beginning. The algorithm alternates between two main phases: the bundle

building phase and the consensus phase of the algorithm (Figure 2-1). In the bundle

building phase, the agents iteratively generate a list of tasks to service by bidding

on the marginal increase for each task. In the consensus phase, the agents resolve

differences in their understanding of the winners of each task. Before proceeding, the

following five lists used in CBBA will be defined:

1. A path, 𝑝𝑖 ≜ {𝑝𝑖1, . . . 𝑝𝑖⋃︀𝑝𝑖⋃︀} is a list of tasks allocated to agent 𝑖. The path is in

the order by which agent 𝑖 will service the tasks.

2. A corresponding bundle, 𝑏𝑖 ≜ {𝑏𝑖1, . . . 𝑏𝑖⋃︀𝑏𝑖⋃︀} is the list of tasks allocated to agent

𝑖 in the order by which agent 𝑖 bid on each task, i.e., task 𝑏𝑖𝑚 is added before

𝑏𝑖𝑛 if 𝑚 < 𝑛 . The size of 𝑏𝑖, denoted ⋃︀𝑏𝑖⋃︀ cannot exceed the size of 𝑝𝑖 and an

empty bundle is denoted 𝑏𝑖 = ∅.

3. A list of winning agents 𝑧𝑖 ≜ {𝑧𝑖1 . . . 𝑧𝑖𝑛𝑡}, where each element 𝑧𝑖𝑗 ∈ ℐ indicates

who agent 𝑖 believes is the winner of task 𝑗 for all tasks in 𝒥 . If agent 𝑖 believes

that no one is the winner of task 𝑗, then 𝑧𝑖𝑗 = −1.

4. A corresponding list of winning bids 𝑦𝑖 ≜ {𝑦𝑖1 . . . 𝑦𝑖𝑛𝑡} where 𝑦𝑖𝑗 is agent 𝑖’s belief

of the highest bid on task 𝑗 by winner 𝑧𝑖𝑗 for all 𝑗 in 𝒥 . If agent 𝑖 believes that

no one is the winner of task 𝑗, then 𝑦𝑖𝑗 = −∞.

5. A list of timestamps 𝑠𝑖 ≜ {𝑠𝑖1, . . . 𝑠𝑖𝑛𝑟} where each element 𝑠𝑖𝑘 represents the

31



Algorithm 1 CBBA Phase 1: Bundle Build
1: 𝑦𝑖(𝑡) = 𝑦𝑖(𝑡 − 1)
2: 𝑧𝑖(𝑡) = 𝑧𝑖(𝑡 − 1)
3: 𝑏𝑖(𝑡) = 𝑏𝑖(𝑡 − 1)
4: 𝑝𝑖(𝑡) = 𝑝𝑖(𝑡 − 1)
5: while ⋃︀𝑏𝑖(𝑡)⋃︀ < 𝐿𝑡 do
6: 𝑐𝑖𝑗 = max𝑛≤⋃︀𝑝𝑖(𝑡)⋃︀+1 𝑆

𝑝𝑖(𝑡)⊕𝑛𝑗
𝑖 − 𝑆

𝑝𝑖(𝑡)
𝑖 ,∀𝑗 ∈ 𝒥 ∖ 𝑏𝑖(𝑡)

7: ℎ𝑖𝑗 = 𝐼(𝑐𝑖𝑗 ≥ 𝑦𝑖𝑗),∀𝑗 ∈ 𝒥
8: 𝐽𝑖 = arg max𝑗 𝑐𝑖𝑗 ⋅ ℎ𝑖𝑗

9: 𝑛𝑖,𝐽𝑖 = arg max𝑛 𝑆
𝑝𝑖(𝑡)⊕𝑛𝐽𝑖
𝑖

10: 𝑏𝑖(𝑡) = 𝑏𝑖(𝑡) ⊕𝑒𝑛𝑑 𝐽𝑖
11: 𝑝𝑖(𝑡) = 𝑝𝑖(𝑡) ⊕𝑛𝑖,𝐽𝑖 𝐽𝑖
12: 𝑦𝑖,𝐽𝑖(𝑡) = 𝑐𝑖,𝐽𝑖
13: 𝑧𝑖,𝐽𝑖(𝑡) = 𝑖
14: end while

timestamp of the last information that agent 𝑖 received about a neighboring

agent 𝑘, either directly or indirectly.

2.6.1 Phase 1: Bundle Building

Unlike other algorithm which enumerate every possible allocation of tasks for agent 𝑖,

in CBBA the agents greedily bid on a bundle of tasks. In the bundle building phase

(Algorithm 1), an agent 𝑖 determines the task 𝐽𝑖 that will yield the maximum increase

in marginal score when inserted into its previous path. If this score is larger than

the current team winner, agent 𝑖 will add the task 𝐽𝑖 to its bundle. This process is

repeated until it can no longer add tasks to its path, concluding by updating its list

of winners and bids, 𝑧𝑖 and 𝑦𝑖.

2.6.2 Phase 2: Consensus

In the second phase of CBBA, each agent 𝑖 communicates their updated lists, 𝑧𝑖,𝑦𝑖

and 𝑠𝑖 to their neighboring agents and resolve any conflicts in their belief of winners.

If two neighbors disagree on a specific task 𝑗̄ located at location 𝑛̄𝑖 in their bundles,

the two agents are required to reset not only task 𝑗̄ but also any tasks located in the
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Algorithm 2 Centralized Sequential Greedy Algorithm (SGA)
1: Given ℐ,𝒥
2: for 𝑛 = 1 . . . 𝑛𝑡 do
3: (𝑖⋆𝑛, 𝑗⋆𝑛) = arg max𝑖,𝑗∈ℐ×𝒥 𝑐𝑖,𝑗
4: 𝒥 → 𝒥 ∖ {𝑗⋆𝑛}
5: 𝑏𝑖(𝑡) = 𝑏𝑖(𝑡) ⊕𝑒𝑛𝑑 𝐽𝑖
6: 𝑝𝑖(𝑡) = 𝑝𝑖(𝑡) ⊕𝑛𝑖,𝐽𝑖 𝐽𝑖
7: end for
8: 𝑐𝑖𝑗 = max𝑛≤⋃︀𝑝𝑖(𝑡)⋃︀+1 𝑆

𝑝𝑖(𝑡)⊕𝑛𝑗
𝑖 − 𝑆

𝑝𝑖(𝑡)
𝑖 ,∀𝑗 ∈ 𝒥 ∖ 𝑏𝑖(𝑡)

9: ℎ𝑖𝑗 = 𝐼(𝑐𝑖𝑗 ≥ 𝑦𝑖𝑗),∀𝑗 ∈ 𝒥
10: 𝐽𝑖 = arg max𝑗 𝑐𝑖𝑗 ⋅ ℎ𝑖𝑗

11: 𝑛𝑖,𝐽𝑖 = arg max𝑛 𝑆
𝑝𝑖(𝑡)⊕𝑛𝐽𝑖
𝑖

12: 𝑦𝑖,𝐽𝑖(𝑡) = 𝑐𝑖,𝐽𝑖
13: 𝑧𝑖,𝐽𝑖(𝑡) = 𝑖

bundle after 𝑛̄𝑖

𝑦𝑖,𝑏𝑖𝑛 = −∞, 𝑧𝑖,𝑏𝑖𝑛 = −1 ∀𝑛 > 𝑛̄𝑖

𝑏𝑖𝑛 = ∅, 𝑛 ≥ 𝑛̄𝑖

(2.13)

where 𝑏𝑖𝑛 denotes the 𝑛th entry of bundle 𝑏𝑖 and 𝑛̄𝑖 = min{𝑛 ∶ 𝑧𝑖,𝑏𝑖𝑛 ≠ 𝑖}. The resetting

of subsequent tasks is necessary for the proper convergence of CBBA, as the bids for

those subsequent tasks (𝑦𝑖,𝑏𝑖𝑛) were made assuming a bundle consisting of the reset

task 𝑗̄.

2.6.3 Convergence of CBBA

Along with providing a procedure for decentralized allocation, Ref. [19] was able to

show that CBBA is able to converge in 𝑂(𝑛𝑡𝐷) rounds of communication, where 𝐷

is the network diameter, and that CBBA converges to an approximate solution, with

guaranteed 50% optimality for certain value functions. Specifically, they show that

CBBA converges to the same solution as the centralized sequential greedy algorithm

(SGA). SGA is a centralized algorithm (Algorithm 2) with a polynomial runtime of

𝑂(𝑛𝑡), during which a central planner assigns tasks iteratively to each agent. Once

a task is assigned to an agent, it is removed from the pool of possible task to be

assigned, allowing for a runtime that is linear with the number of tasks. In addition,

the tasks are assigned greedily, sequentially choosing the task-agent pair which will
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(a) Each agent initially calculates their bid for a task and then communicates the bid to its neighboring agents

(b) Once the agents receive neighboring bids, a winner is determined and each agent updates their belief on the
winning agent and bid

Figure 2-1: The bundle building and consensus steps of Consensus-Based Bundle Algorithm in a
vehicle routing scenario
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lead to the largest team improvement. The convergence result is essential to CBBA

as it provides the user with a convergence guarantee that is tractable and can be used

for large team with many tasks. Practically, this means that users can guarantee that

a conflict-free solution will be returned within a prescribed amount of time which

may be of critical importance to a time-sensitive mission setting.

Since the mechanism by which CBBA converges to the SGA solution is utilized in

subsequent proofs in this thesis, an overview of the important lemmas and proof from

CBBA will presented here. To prove convergence and optimality of the algorithm,

CBBA requires that the score function has diminishing marginal gains (DMG) where

value functions are considered DMG if the following is true

𝑐𝑖𝑗(︀𝑏𝑖⌋︀ ≥ 𝑐𝑖𝑗(︀𝑏𝑖 ⊕𝑒𝑛𝑑 𝑏⌋︀ (2.14)

for all 𝑏𝑖, 𝑏, 𝑗. The DMG property roughly means that the score of any specific task

will not increase if an additional set of tasks are added to the bundle. One result of

DMG value functions is that the scores within an agent’s own bundle will always be

decreasing (𝑦𝑏𝑖𝑛,𝑗 ≥ 𝑦𝑏𝑖𝑚,𝑗 ∀𝑛 > 𝑚), a characteristic of the bidding that also leads to

CBBA’s convergence.

In addition, the proof relies on the following two lemmas, Lemmas 1 and 2 [19],

to prove that during the running of CBBA the team sequentially agree on the SGA

solution. Specifically, after 𝑂(𝑛𝐷) rounds of communication, the team will agree on

the first 𝑛 tasks allocated using a sequential greedy allocation (𝑗∗1 , 𝑗∗2 , . . . 𝑗∗𝑛). Also,

the bids for the task will be optimal, 𝑦𝑖,𝑗∗𝑛 = 𝑐∗𝑖𝑗∗𝑛 ∀𝑖 ∈ ℐ, and the agents will remain in

agreement on those scores for the duration of the task allocation.

Lemma 1. [19] Consider the CBBA process with synchronous conflict resolution over

a static network with diameter 𝐷 for the case that every agent’s scoring scheme is

DMG. Suppose that after completing phase 2 of some iteration 𝑡

𝑧𝑖,𝑗∗
𝑘
(𝑡) = 𝑖∗𝑘, 𝑦𝑖,𝑗∗𝑘(𝑡) = 𝑐

(𝑘)
𝑖∗
𝑘
,𝑗∗
𝑘

∀𝑖 ∈ ℐ ∀𝑘 ≤ 𝑛 (2.15)
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where (𝑖∗𝑘, 𝑗
∗
𝑘)’s are assignment pairs from the SGA procedure and 𝑐

(𝑘)
𝑖∗
𝑘
,𝑗∗
𝑘
’s are the

corresponding score values. Then, the following holds.

1. The first 𝐿(𝑛)𝑖 ≜ ⋃︀𝑏
(𝑛)
𝑖 ⋃︀ entries of agent 𝑖’s current bundle coincide with those of

the bundle at the 𝑛th SGA step 𝑏
(𝑛)
𝑖

𝑏
1∶𝐿(𝑛)𝑖

𝑖 = 𝑏
(𝑛)
𝑖 (2.16)

2. The bid that agent 𝑖∗𝑛+1 places on task 𝑗∗𝑛+1 is

𝑦𝑖∗𝑛+1,𝑗∗𝑛+1 = 𝑐
(𝑛+1)
𝑖∗𝑛+1,𝑗

∗
𝑛+1

(2.17)

and this value satisfies

𝑦𝑖∗𝑛+1,𝑗∗𝑛+1 ≥ 𝑦𝑖𝑗(𝑡)∀(𝑖, 𝑗) ∈ ℐ𝑛+1 × ℐ𝑛+1 (2.18)

3. Entries in (22) do not change over time, or

𝑧𝑖∗,𝑗∗
𝑘
(𝑠) = 𝑧𝑖,𝑗∗

𝑘
(𝑡), 𝑦𝑖∗,𝑗∗

𝑘
(𝑠) = 𝑦𝑖,𝑗∗

𝑘
(𝑡) (2.19)

for all 𝑠 ≥ 𝑡 and for all 𝑘 ≤ 𝑛.

4. The value of the bid that agent 𝑖∗𝑛+1 places on task 𝑗∗𝑛+1 will remain the same

throughout the later iterations, and no agents will bid higher than this value on

task 𝑖∗𝑛+1 in the later iterations:

𝑦𝑖∗𝑛+1,𝑗∗𝑛+1(𝑠) = 𝑦𝑖∗𝑛+1,𝑗∗𝑛+1(𝑡) ≥ 𝑦𝑖,𝑗∗𝑛+1(𝑠) (2.20)

∀𝑠 ≥ 𝑡 and ∀𝑖 ∈ ℐ

5. After D iterations, every agent will have agreed on the assignment (𝑖∗𝑛+1, 𝑗∗𝑛+1);
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in other words

𝑦𝑖,𝑗∗𝑛+1(𝑡 +𝐷) = 𝑦𝑖,𝑗∗𝑛+1(𝑡), 𝑧𝑖,𝑗∗𝑛+1(𝑡 +𝐷) = 𝑖∗𝑛+1, (2.21)

for all 𝑖 ∈ ℐ

Lemma 2. [19] Consider a CBBA process with synchronized conflict resolution over

a static network of diameter 𝐷, where every agent’s scoring scheme is DMG. Then,

every agent agrees on the first 𝑛 SGA assignments by iteration 𝑛𝐷. In other words,

𝑧𝑖,𝑗∗
𝑘
(𝑛𝐷) = 𝑖∗𝑘 ∀𝑖 ∈ ℐ ∀𝑘 ≤ 𝑛 (2.22)

𝑧𝑖,𝑗∗
𝑘
(𝑛𝐷) = 𝑐

(𝑘)
𝑖∗
𝑘
,𝑗∗
𝑘

∀𝑖 ∈ ℐ ∀𝑘 ≤ 𝑛 (2.23)

Combining Lemma 1 and Lemma 2, they are able to show that the bundles of each

agent are sequentially built to include the same allocation as the SGA solution. As

time goes on during the CBBA process, the agents begin agreeing on the first 𝑛 tasks

allocated by the centralized planner. In addition, the bids on those first 𝑛 tasks are

the SGA values, 𝑐(𝑘)
𝑖∗
𝑘
,𝑗∗
𝑘

for all agents. Finally, the agents remain in agreement on the

first 𝑛 tasks throughout the CBBA process, "locking-in" on those allocations. This

intuition of sequentially building agreement on the centralized SGA solution will be

the basis of the replanning method presented in the next chapter, and by which the

linear convergence is proven.

2.7 Summary

This chapter presented an overview of centralized and decentralized algorithms for

various versions of the task allocation problem. In addition, an overview of consensus

and auction algorithms were presented, which are the basis for most decentralized

optimization and allocation algorithms, Finally, this chapter described the a decen-

tralized allocation algorithm, CBBA, which included the proof of its convergence

which will be utilized later in this thesis. While these methods provide solutions to
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various types of task allocation problems, none are able to tractably allocate new tasks

for the combinatorial, decentralized task allocation problem. In the next chapter, the

dynamic task allocation is specifically discussed and a novel approach to partially

re-solving the task allocation problem is presented.
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Chapter 3

Decentralized Dynamic Task

Allocation by Partial Replanning

3.1 Replanning for a New Task

This chapter investigates the decentralized dynamic task allocation problem where a

team of robots must respond to a new task that appears during or after the original

allocating of tasks, with the goal of assigning the new task to an agent while consider-

ing their existing allocations. This is in contrast to the static task allocation problem

which assumes that all the tasks are known before the team executes the task alloca-

tion solver. The Dynamic Vehicle Routing Problem (DVRP), or similar Dial-A-Ride

Problem [64] where online requests occur during the operation of the vehicles, will be

used as a running example to demonstrate an application of autonomous agents (cars)

allocating tasks (riders). In addition, this chapter specifically seeks a decentralized

algorithm that relies only on peer-to-peer communication to ensure robustness and

scalability.

In the previous chapter, a literature review of decentralized static optimization

algorithms were presented, concluding with a description of CBBA which provides

an 𝑂(𝑛𝑡𝐷) runtime algorithm with an optimality guarantee of 50%. As for dynamic

algorithms, Ref. [65] presents an online solver by enforcing strict task swapping, but

solves the task assignment problem in which task scores are independent of each
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other. Ref. [66] uses queuing theory to analyze the stability of a dynamic system given

stochastic task arrivals and [24, 67–69] utilize partitioning algorithms for dividing

up areas to service. In partitioning algorithms, the space is first divided (by a central

planner) and assigned to the agents, such that each agent services any incoming tasks

that arrive in the assigned regions. Ref. [70] proposed a learning method based on

Markov games applying a Distributed Stochastic Algorithm to obtain policies that are

learned offline and applied as tasks arrive. While Ref. [70] performs better than other

search methods, they can only prove Nash equilibrium and thus may get stuck in local

minima. Similarly, [71, 72] use a simplified utility function to quickly allocate tasks

to agents, however, task-specific value functions (based on time of service, specific

agent) were not considered.

Recent improvements to CBBA include adaptations for dynamic network connec-

tivity [22, 73] and servicing mission-critical tasks [74]. In Ref. [75], each agent must

also reaches consensus on the Performance Impact (PI) which calculates the change in

score if a task is added or removed from their bundle. The added information allows

for iteratively improving the assignments at the expense of requiring additional con-

sensus for each agent-task pair. Ref. [23] extends the PI framework to the dynamic

case by initially allocating the new task to an available agent and then using the PI

architecture to iteratively improve the allocation.

In [20], the authors more directly adapt CBBA to allow for new tasks by trig-

gering a full replan, resetting any previous allocations, and restarting CBBA with

all existing and new tasks. In this case, the team must wait in the worst-case 𝑛𝑡𝐷

rounds of bidding before a conflict-free solution is obtained. In general, resetting

the previous allocations (or bundles in CBBA) allows for increased coordination and

better servicing of the new task. Figure 3-1 shows a ridesharing routing example

where agents are not allowed to replan before adding a new task (customer) to their

allocation, and thus are only able to consider inserting the new customer somewhere

along its original allocation (route). While in Figure 3-2, agents allow teammates to

service tasks previously allocated to them in order to better service the new task,

improving the final solution quality of the team. In general, there will be a trade-off
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Figure 3-1: Agents allocation new task without allowing resetting of previous allocations. New
task is then inserted into the agent’s previous path.

Figure 3-2: The agent may consider resetting a portion of its previous path to allow a neighboring
agent to service an existing task (green) and enabling a better allocation of the new customer

between algorithms with increased coordination (resetting previous allocations) and

those with quick convergence (keeping previous allocations). The following section

further describes the benefits and costs of replanning via resetting in decentralized

task allocation algorithms such as CBBA.

3.2 Effects of Replanning in Auction Algorithms

3.2.1 Benefits of Resetting Previous Allocations

Even in scenarios where a new task does not greatly impact the previous allocations,

greedy auction algorithms such as CBBA may benefit from resetting their previous

41



allocations and considering the new task. Since sequential greedy algorithms lock-in

their previous allocations and only consider inserting a new task into their existing

allocation, they are highly impacted and constrained by any previous allocations they

made. For example, consider the scenario where a few of the agents are at capacity

⋃︀𝑝𝑖⋃︀ = 𝐿𝑡 at the time when a new task arrives. In a car sharing application, this can

occur if a subset of agents are previously assigned a full car of passengers. When

a new task arrives, the agents begin building bundles starting from their previous

allocation, considering the optimal location to insert the new task. The subsequent

bid for the new task is the marginal improvement to the overall bundle

𝑦𝑖𝑇 ∗ = 𝑆(𝑝′𝑖) − 𝑆(𝑝𝑖) = max
𝑛

𝑆(𝑝𝑖 ⊕𝑛 𝑇
∗) − 𝑆(𝑝𝑖), (3.1)

where 𝑆(𝑝𝑖 ⊕𝑛 𝑇 ∗) denotes that 𝑇 ∗ is inserted into the path 𝑝𝑖 at location 𝑛.

If agents are at capacity ⋃︀𝑝𝑖⋃︀ = 𝐿𝑡 they can not bid on the new task since they

can no longer add the new task to their bundle. In effect, their previous allocation

is preventing them from bidding on the new task. This can result in pathologically

poor allocations if the task is high value and only few agents can properly service the

task. In this scenario, it is clear that it may be beneficial to reset their allocations

before bundle building to allow agents to bid on the new task.

A more subtle benefit of replanning in CBBA that will be discussed below is that

it elevates the bias of greedy auction algorithms to place the new task at the end of its

existing path, as to not adversely affect the previously allocated tasks. For without

any resetting, the marginal gain of placing a new task in the beginning of a path is

diminished because the new tasks delays the execution of previously allocated tasks,

reducing the score of those tasks. As an example, a common score function that can

capture the time cost of delaying servicing is the time-discounted reward function

𝑆(𝑝𝑖) = ∑
𝑗∈𝑝𝑖

𝜆
𝜏
𝑝𝑖
𝑗

𝑗 𝑅𝑗 (3.2)

where 𝜏𝑝𝑖

𝑗 is the time to arrive at task 𝑗 along path 𝑝𝑖, 𝑅𝑗 is the intrinsic value of the
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(a) New task placed at beginning of path

(b) New task placed at end of path

Figure 3-3: Placing new task early in the path delays subsequent tasks reducing the marginal bid
of the new task. Greedy bidding of CBBA causes a bias towards placing the new task at the end of
its existing path to minimize task delays.

task, and 0 < 𝜆𝑗 ≤ 1 is the time-discount of the task. With a time-discounted reward,

adding a new task will delay the arrival time of later tasks. As a result, an agent’s

bid on the new task will be discounted by any preallocated tasks located later in its

path. Specifically, if a task 𝑇 ∗ is placed at location 𝑛∗ in an agent’s bundle, the new

marginal score will be

𝑦𝑖𝑇 ∗ = ∑
𝑗∈𝑝′𝑖

𝜆
𝜏
𝑝′𝑖
𝑗

𝑗 𝑅𝑗 − ∑
𝑗∈𝑝𝑖

𝜆
𝜏
𝑝𝑖
𝑗

𝑗 𝑅𝑗 . (3.3)

Note that 𝑝′𝑖 = 𝑝0∶𝑛∗
𝑖 ⊕ 𝑇 ∗ ⊕ 𝑝

𝑛∗∶⋃︀𝑝𝑖⋃︀
𝑖 so substituting this for 𝑝′𝑖 in (3.3) yields

𝑦𝑖𝑗 = (𝑅𝑇 ∗𝜆
𝜏
𝑝′𝑖
𝑇∗
𝑗 + ∑

𝑗∈𝑝𝑖

𝜆
𝜏
𝑝′𝑖
𝑗

𝑗 𝑅𝑗) − ∑
𝑗∈𝑝𝑖

𝜆
𝜏
𝑝𝑖
𝑗

𝑗 𝑅𝑗 (3.4)

= 𝑅𝑇 ∗𝜆
𝜏
𝑝′𝑖
𝑇∗
𝑇 ∗ + ∑

𝑗∈𝑝𝑖

𝜆
𝜏
𝑝′𝑖
𝑗

𝑗 𝑅𝑗 − 𝜆
𝜏
𝑝𝑖
𝑗

𝑗 𝑅𝑗 (3.5)

For simplicity, the first term will be denoted 𝑆𝑝′𝑖(𝑇
∗) as it represents the time-

discounted reward of servicing 𝑇 ∗ along the new path 𝑝′𝑖. The second term is the

difference in value for tasks that were in the original path 𝑝𝑖. This term can be sim-

plified by noting that the time-discounted value for a task located in the path before

43



𝑇 ∗ will be unaffected by the addition of 𝑇 ∗. Thus the second term can be simplified

to

𝑦𝑖𝑗 = 𝑆𝑝′𝑖(𝑇
∗) + ∑

𝑗∈𝑝𝑛∶⋃︀𝑝𝑖 ⋃︀
𝑖

𝜆
𝜏
𝑝′𝑖
𝑗

𝑗 𝑅𝑗 − 𝜆
𝜏
𝑝𝑖
𝑗

𝑗 𝑅𝑗 (3.6)

= 𝑆𝑝′𝑖(𝑇
∗) − ∑

𝑗∈𝑝𝑛∶⋃︀𝑝𝑖 ⋃︀
𝑖

(𝜆
𝜏
𝑝𝑖
𝑗

𝑗 − 𝜆
𝜏
𝑝′𝑖
𝑗

𝑗 )𝑅𝑗 (3.7)

= 𝑆𝑝′𝑖(𝑇
∗) − ∑

𝑗∈𝑝𝑛∶⋃︀𝑝𝑖 ⋃︀
𝑖

𝜆
𝜏
𝑝𝑖
𝑗

𝑗 (1 − 𝜆𝛿
𝑗)𝑅𝑗 (3.8)

where 𝛿 is the time delay due to servicing 𝑇 ∗ which in this case will be a fixed delay

for all tasks serviced after 𝑇 ∗. If the time-discount is constant across tasks, then the

marginal gain can be written as

𝑦𝑖𝑇 ∗ = 𝑆𝑝′𝑖(𝑇
∗) − (1 − 𝜆𝛿)𝑆𝑝′𝑖(𝑝

𝑛∗∶⋃︀𝑝𝑖⋃︀
𝑖 ). (3.9)

This bid contains two terms, the first is the time-discounted reward for servicing

𝑇 ∗, which will be highest when 𝑇 ∗ is serviced early in the path. The second term is

the discount that results from delaying the tasks located later in the path due to the

insertion of 𝑇 ∗. This means that the optimal placement of 𝑇 ∗ must trade-off placing

𝑇 ∗ early in its bundle to allow for quick servicing of 𝑇 ∗ with increased delaying of

later tasks that are serviced after 𝑇 ∗.

While this trade-off is intrinsic to the dynamic task allocation problem, the greedy

auction scheme used by CBBA exacerbates the issue in the case of dynamic new tasks

as they must discount all the tasks allocated during the initial running of CBBA. If,

however, the task was known at the beginning of CBBA, 𝑇 ∗ would only be discounted

by tasks previously allocated at that point in CBBA which will generally be few if 𝑇 ∗

itself is a high-value task. In the extreme case, if the preexisting paths consists of many

tasks, the placement of 𝑇 ∗ will be biased towards the end of the path to minimize

extrinsic discount (Figure 3-3) even if 𝑇 ∗ is of relatively high value. However, had 𝑇 ∗

be known at the beginning of CBBA, it could be placed earlier in the bundle without

needing to consider later tasks. Thus running a full replan of CBBA can allow for a
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properly greedy allocation of 𝑇 ∗ without being biased by previous allocations.

3.2.2 Costs of Resetting Previous Allocations

While full replanning allows for the highest level of coordination, it also is quite

disruptive to the planning process, requiring substantial time to fully replan the

allocations. First, there will be an explicit cost due to the delays of replanning.

For example, if the agents must pause their execution of their plans to reach a new

consensus then they will lose team-value due to the delayed execution of the tasks.

If the team is allocating tasks that are not time-sensitive then the cost of replanning

delays will be minimal. However, if tasks are time-sensitive and the environment is

rapidly changing, the frequent delays due to replanning may cost more than the gains

of better solutions that come from higher coordination.

A second cost of replanning is that it may inadvertently cause an instability to the

system known as churning [76], where agents are constantly in a state of replanning

and disagreement on the task allocations. For example, if tasks are sequentially

arriving at a frequency that is faster than the time it takes to fully re-solve the

problem, then the team will never actually execute their plans. Additionally, if the

agents relax their requirement for consensus and begin executing their tasks without

reaching full agreement with their teammates, agents may arrive at tasks that were

previously serviced by a teammate, making their allocations less and less relevant.

3.3 Bundle Resetting in CBBA

For a quick response, one could consider absolutely no replanning, without allowing

any resetting of an agent’s previous allocation, 𝑝𝑖(𝑡−1), 𝑏𝑖(𝑡−1). This approach, which

this thesis will call CBBA with No Bundle Reset, can be found in the original version

of CBBA [19], having the Bundle Build process begin each round with 𝑝𝑖(𝑡) = 𝑝𝑖(𝑡−1)

and 𝑏𝑖(𝑡) = 𝑏𝑖(𝑡 − 1). The advantage of CBBA with No Bundle Reset is that the

convergence of the algorithm is virtually unaffected by the new task. For example, in

the case where the team has already reached convergence on the original 𝑛𝑡 tasks and
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(a) Initial CBBA Paths (b) Reset Paths (c) Rerun CBBA

Figure 3-4: CBBA full reset strategy for allocation a new task

arrived at some allocations 𝑝1, . . . ,𝑝𝑖, the agents will never consider reallocating their

existing tasks and simply bid on inserting the new task into their existing bundles

𝑝′𝑖 = 𝑝𝑖 ⊕𝑛 𝑇 ∗ where 𝑛 is the location for which inserting 𝑇 ∗ maximizes the marginal

gain of the agent. By effectively only bidding on 𝑇 ∗ and not allowing any bidding on

other tasks in its paths, the team is able to reach agreement very quickly in 𝑂(𝐷)

time by simply communicating their single bid on 𝑇 ∗. While it is beyond the scope

of this thesis to provide quality guarantees for the no reset solution, intuitively it

is clear that a no reset solution provides very little flexibility to the robot team in

allocating 𝑇 ∗. For example, in a highly constrained systems where many robots are

at capacity ⋃︀𝑝𝑖(𝑡 − 1)⋃︀ = 𝐿𝑡 or there are only a few robots that can service specific

tasks, then only those robots under capacity and with the ability to service 𝑇 ∗ will be

considered for 𝑇 ∗. In these constrained scenarios, robot teams will need reset their

previous allocations to consider the new task.

A later addition to CBBA was to begin the Bundle Build process by fully resetting

the previous allocations, 𝑏𝑖(𝑡) → ∅ and 𝑝𝑖(𝑡) → ∅ [21]. This approach, CBBA with

Full Bundle Reset (Figure 3-4), gives the agents maximum flexibility in allocating the

new task, in that they are not bound by their previous allocations. While this full

bundle reset increases the team coordination, one possible shortcoming of any bundle

resetting approach is that it will no longer guarantee convergence for the original task

allocation problem, as the algorithm is introducing additional resetting at each round

of Bundle Build.
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Claim 1. If all tasks are known at the beginning of CBBA, both CBBA with Full

Bundle Reset and CBBA with No Bundle Reset arrive at the SGA solution in 𝑂(𝑛𝑡𝐷)

Proof. CBBA’s convergence to the centralized sequential greedy algorithm’s (SGA)

solution relies on the fact that at some time 𝑡 the team will agree on the first 𝑛 tasks

in the SGA solution and then subsequently agree on this solution for the rest of time

(Lemma 1 [19]). The authors use induction to show that the team will first agree on

the highest valued task (the first task allocated in the greedy solution) and after 𝑛𝐷

rounds of communication, will agree on the first 𝑛 tasks in the SGA solution (Lemma

2 [19]). In the case of a full reset at the beginning of Bundle Build, ones needs to

show that the reset will not break Lemma 1, i.e., that if the team agrees on the first 𝑛

SGA tasks, they will continue to agree on those tasks for 𝑠 > 𝑡. First, denote the list

of agreed SGA tasks at time 𝑡, as 𝒥 ∗
𝑛 = 𝑗∗1 . . . 𝑗∗𝑛 and the SGA winners of those tasks

as 𝑖∗1 . . . 𝑖∗𝑛. Note that according to Lemma 1, at time 𝑡, all agents are in agreement

on the bids for the first 𝑛-SGA tasks:

𝑦𝑖𝑗 = 𝑐∗𝑖𝑗 ∀𝑗 ∈ 𝒥∗ ∀𝑖 ∈ ℐ (3.10)

As such, at some time 𝑡, agent 𝑖 will have a bundle 𝑏𝑖 that consists of agreed-on SGA

tasks 𝑏
0∶𝑛∗𝑖
𝑖 (𝑡), where 𝑛∗𝑖 is the number of tasks in 𝒥 ∗

(𝑛) that are assigned to agent

𝑖 by the SGA solution. The rest of the bundle will consist of other tasks from 𝒥

that may or may not be in consensus with the rest of the team, 𝑏𝑛
∗
𝑖 ∶⋃︀𝑝𝑖⋃︀

𝑖 (𝑡). At time

𝑡+ 1, when the agent resets its bundle at the beginning of Bundle Build, it will begin

greedily choosing tasks from 𝒥 to add to its now empty bundle. However, when agent

𝑖 calculates its own bid on a task 𝑗∗𝑘 in 𝒥 ∗
𝑛 where 𝑖∗𝑘 ≠ 𝑖 (i.e., for tasks whose SGA

winner is not 𝑖), agent 𝑖 will always be outbid the current team winner since their

bids are greedily optimal. Instead, agent 𝑖 will first re-assign itself any of the tasks

in 𝒥 ∗
𝑛 that have 𝑖 as the SGA winner, since those tasks will have the highest bids

for agent 𝑖 by definition, since they are the centralized sequential greedy bids. As

a result, after the full bundle reset the agent 𝑖 rebuilds its first 𝑛∗𝑖 in its previous

bundle, 𝑏𝑖(𝑡+ 1)0∶𝑛∗𝑖 = 𝑏𝑖(𝑡)0∶𝑛
∗
𝑖 . This means that even in a full bundle reset, Lemma 1
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and Lemma 2 hold, and thus convergence to the SGA is guaranteed in 𝑂(𝑛𝑡𝐷).

While both approaches, CBBA with Full Bundle Reset and CBBA with No Bundle

Reset, converge to the same solution in 𝑂(𝑛𝑡𝐷), when a new task is introduced

during the execution of CBBA, these two approaches diverge in terms of solutions

and convergence guarantees. First, in the proof above, the full reset converged to

the sequential greedy solution because the Bundle Build process rebuilds the first

part its previous bundle 𝑏𝑖(𝑡)0∶𝑛
∗
𝑖 , even after fully resetting its allocation. However,

if a new task is now considered in the building process, agent 𝑖 is not guaranteed to

rebuild 𝑏𝑖(𝑡)0∶𝑛
∗
𝑖 . In fact, it may be the case that the sequential greedy solution for

𝑛𝑡+1 tasks, 𝒥 ′∗, will be completely different to the solution for original static 𝑛𝑡 task

allocation problem. Thus if the team arrives at a solution to the initial 𝑛𝑡 tasks and

new task arrives, the agents may need an additional 𝑂(𝑛𝑡𝐷) rounds of communication

to allocate 𝑇 ∗. In summary, CBBA’s existing approaches to allocating a new tasks is

either to to allow a full rerunning of CBBA (full reset), requiring 𝑂(𝑛𝑡𝐷) rounds of

communication, or a quick consensus on a winner for the new task, without allowing

any reallocation of the existing tasks (no reset).

3.4 CBBA with Partial Replanning (CBBA-PR)

3.4.1 Partial Resetting of Local Bundles

(a) Initial bundles b1 . . .b𝑖

and new task 𝑇 ∗
(b) Each agent resets lowest
𝑛𝑖,𝑟𝑒𝑠𝑒𝑡 tasks in bundle

(c) Converges to modified al-
locations with 𝑇 ∗

Figure 3-5: Dynamic task allocation using CBBA-PR by partially resetting the last task in each
agent’s bundle at the beginning of Bundle Build. The tasks are chosen to be the last tasks auctioned
in the bundle (not the order of physical path) to ensure convergence of CBBA-PR

48



Algorithm 3 CBBA-PR with Partial Local Replan (Fixed Bundle Size)
1: 𝒥𝑖,𝑟𝑒𝑠𝑒𝑡 = {𝑏𝑖𝑚(𝑡 − 1) ∀𝑚 ≥ 𝑛𝑟𝑒𝑠𝑒𝑡}

2: for all 𝑗 ∈ 𝒥𝑖,𝑟𝑒𝑠𝑒𝑡 do
3: 𝑏𝑖(𝑡) = 𝑏𝑖(𝑡 − 1) ⊖ 𝑗
4: 𝑝𝑖(𝑡) = 𝑝𝑖(𝑡 − 1) ⊖ 𝑗
5: 𝑧𝑖,𝑗(𝑡) = −1
6: 𝑦𝑖,𝑗(𝑡) = ∞
7: end for
8: Phase 1: Bundle Build(𝑝𝑖(𝑡),𝑏𝑖(𝑡),𝑦𝑖(𝑡),𝑧𝑖(𝑡))
9: Phase 2: Consensus

To better trade-off coordination with the speed of convergence, the CBBA with

Partial Replan (CBBA-PR) is proposed, which enables each agent to reallocate a

portion of their existing allocation at each round of CBBA. In CBBA-PR, each agent

resets part of their bundle at the beginning of Bundle Build, releasing their 𝑛𝑖,𝑟𝑒𝑠𝑒𝑡

lowest bid tasks from their previous bundles (and keeping the remaining tasks). The

𝑛𝑖,𝑟𝑒𝑠𝑒𝑡 can be chosen by the team depending on the amount of replanning or response

speed that is necessary for the team. For example, in the case where new tasks are

frequently appearing and the team wants to converge before another new task arrives,

they may choose 𝑛𝑖,𝑟𝑒𝑠𝑒𝑡 to be very small. On the other hand, if the new tasks are

particularly high-valued, the team can allow for more coordination by selecting a

larger number of tasks to reset. Furthermore, the amount of resetting may change

during the duration of CBBA. If the new task arrives early on in the team’s allocation

of the original 𝑛𝑡 tasks, they may allow for more resetting. While if the team has

already converged on all 𝑛𝑡 original tasks, they may limit the amount of resetting, to

not waste the computation for the original tasks.

An important requirement for the tasks chosen for resetting is they must be the

lowest tasks in each agent’s respective bundles. This is to ensure the convergence of

CBBA, for if tasks are reset in any other order (randomly chosen or maximum bids),

CBBA will not have diminishing valued bids, and the team will not converge to a

conflict-free solution. Instead, if the agents reset only the lowest 𝑛𝑟𝑒𝑠𝑒𝑡 tasks in each

bundle to reset, Lemmas 1 and 2 can be re-used to prove that the team sequentially

agree on a conflict-free solution.

49



Algorithm 4 CBBA with Partial Team Replan
1: Given: ℐ𝑟𝑒𝑠𝑒𝑡, 𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒
2: 𝑑 =𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟(ℐ𝑟𝑒𝑠𝑒𝑡)
3: 𝑛𝑟𝑒𝑠𝑒𝑡 =

𝑡𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝑑×Δ𝑐𝑜𝑚𝑚

4: 𝑦𝑠
𝑖 = 𝑆𝑜𝑟𝑡(𝑦𝑖)

5: 𝒥𝑟𝑒𝑠𝑒𝑡 = 𝑦𝑠
𝑖 (︀𝑛𝑟𝑒𝑠𝑒𝑡 ∶ 𝑛𝑡⌋︀

6: for all 𝑗 ∈ 𝒥𝑟𝑒𝑠𝑒𝑡 do
7: 𝑝𝑖(𝑡) = 𝑝𝑖(𝑡 − 1) ⊖ 𝑗
8: 𝑏𝑖(𝑡) = 𝑏𝑖(𝑡 − 1) ⊖ 𝑗
9: 𝑦𝑖𝑗(𝑡) = −∞

10: 𝑧𝑖𝑗(𝑡) = −1
11: end for
12: Phase 1: Bundle Build(𝑝𝑖(𝑡),𝑏𝑖(𝑡),𝑦𝑖(𝑡),𝑧𝑖(𝑡))
13: Phase 2: Consensus

3.4.2 Partial Resetting with Team-Wide Reset

One limitation of the local partial reset strategy is that while average convergence

will generally be better than a full reset, one can not guarantee that worst-case

performance will improve. For example, if an agent only has one task to reset, and

that task happens to be the first task in the centralized SGA solution, a full replan may

occur. However, if the team has converged on the first 𝑛𝑡 tasks before 𝑇 ∗ arrives, then

a worst-case performance can be guaranteed of 𝑂(𝑛𝑟𝑒𝑠𝑒𝑡𝐷) where 𝑛𝑟𝑒𝑠𝑒𝑡 = 𝑛𝑟×𝑛𝑖,𝑟𝑒𝑠𝑒𝑡 is

the total number of tasks reset by the team. In this scenario, the team can choose the

𝑛𝑟𝑒𝑠𝑒𝑡 lowest bid tasks from across the entire team. Since the team has already reach

consensus on the original centralized greedy solution, those 𝑛𝑟𝑒𝑠𝑒𝑡 lowest solutions will

in fact be the last 𝑛𝑟𝑒𝑠𝑒𝑡 tasks allocated by the SGA. Since the higher bid tasks will

remain allocated after the partial reset, the team is guaranteed to converge within

𝑂(𝑛𝑟𝑒𝑠𝑒𝑡𝐷) rounds of communication.

In this procedure, CBBA with Partial Team Replan (Algorithm 4), when a new

task appears, each agent sorts the final bid array 𝑦𝑖, enabling the agents to identify

the 𝑛𝑟𝑒𝑠𝑒𝑡-lowest SGA tasks, 𝒥𝑟𝑒𝑠𝑒𝑡 (Line 4). Any agent with a task from 𝒥𝑟𝑒𝑠𝑒𝑡 in their

previous bundle, will reset the task by removing it from 𝑏𝑖 and 𝑝𝑖 and resetting the

values in 𝑦𝑖 and 𝑧𝑖. By doing so, the team is able to get increased coordination from

reallocating existing tasks while still guaranteeing convergence that is 𝑂(𝑛𝑟𝑒𝑠𝑒𝑡𝐷),
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where 𝑛𝑟𝑒𝑠𝑒𝑡 can be chosen to fit the team’s desired response time. In addition, if

only a subset of the team ℐ𝑟𝑒𝑠𝑒𝑡 is chosen to participate in the replanning, the team

can reuse the known assignments in 𝑧𝑖 to specifically reset 𝑛𝑟𝑒𝑠𝑒𝑡 tasks that were

assigned to agents in ℐ𝑟𝑒𝑠𝑒𝑡, ensuring that none of the reset tasks are “wasted" on

agents that are not participating in the replan. Conversely, the team can choose a

combination of 𝑛𝑟𝑒𝑠𝑒𝑡 tasks and desired subteam of diameter 𝑑, reusing 𝑦𝑖 and 𝑧𝑖 to

achieve replanning within a desired convergence. With this subteam and subtask

selection, the team can choose between selecting a large subteam with few tasks per

robot to reallocate or a small subteam with robots fully resetting previous allocations.

In general, this ideal mix of 𝑑 and 𝑛𝑟𝑒𝑠𝑒𝑡 for a given scenario will be dependent on the

mission characteristics.

3.5 Convergence

To prove the convergence of the two partial replan algorithms, first, the convergence

of a local reset is proven for the static task allocation problem, yielding the same

convergence and solution as a full reset or no reset strategy. Then, the convergence is

shown when a new task must be allocated using a partial replan, which is shown to be

related to the relative SGA ordering of those tasks reset during the replan. Finally,

the convergence of CBBA-PR is derived for the case when specifically the lowest 𝑛𝑟

tasks from the original running of CBBA are reset before 𝑇 ∗ is allocated, and then

the more general case of a local bundle reset.

3.5.1 Partial Resetting During Static Task Allocation

Claim 2. Suppose that at time 𝑡 − 1 the team agrees on the first 𝑛 SGA tasks, and

thus have bundles that correspond to the 𝑛th round of SGA 𝑏𝑖(𝑡 − 1)1∶𝐿
(𝑛)
𝑖 = 𝑏

(𝑛)
𝑖 .

If agent 𝑖 resets its bundle to 𝑏−𝑖 = 𝑏𝑖(𝑡 − 1)1∶𝑛𝑟 then it will immediately rebuild

𝑏𝑖(𝑡) = 𝑏
(𝑛)
𝑖 during Bundle Build.

Proof. Let’s denote the SGA tasks that are released during the reset process 𝑏𝑖(𝑡 −

1)𝑛𝑟 ∶𝐿(𝑛)𝑖 ≜ {𝑗∗𝑘𝑖1 , 𝑗
∗
𝑘𝑖2
, . . . 𝑗∗𝑘𝑖𝑟}, where 𝑘𝑖1 . . . 𝑘𝑖𝑟 equals the SGA round for which task

51



𝑗∗𝑘𝑟 is assigned in the central SGA. Note that 𝑏𝑖 may have more tasks in the bundle,

but for convergence analysis only the tasks that coincide with the SGA bundle 𝑏
(𝑛)
𝑖

matter.

Because bundles are built incrementally, the SGA rounds corresponding to each

reset task will be in increasing order: 𝑘𝑖1 < 𝑘𝑖2 < . . . < 𝑘𝑖𝑟 < 𝑛 (i.e., tasks that are

earlier in the bundle correspond to tasks allocated earlier in SGA). Likewise, because

the scores are monotonically decreasing in subsequent rounds 𝑛 of SGA,

𝑐𝑖∗,𝑗∗
𝑘1
> 𝑐𝑖∗,𝑗∗

𝑘2
> . . . > 𝑐𝑖∗𝑗∗

𝑘𝑟
(3.11)

.

In addition to shortening its bundle 𝑏𝑖, agent 𝑖 will also update its information

arrays for the tasks it reset: 𝑦𝑖𝑗 = −∞ ∀𝑗 ∈ 𝑏
𝑛𝑟 ∶𝐿(𝑛)𝑖
𝑖 . Importantly, 𝑖 does not change

winning bids on any tasks allocated to other agents so, 𝑧𝑖̃𝑗(𝑡) = 𝑧𝑖̃𝑗(𝑡 − 1) for 𝑖̃ ≠ 𝑖.

Additionally, because all the agents agreed to the first 𝑛 SGA tasks at the time of

reset, 𝑧𝑖,𝑗∗
𝑘
= 𝑖∗𝑘 and 𝑦𝑖,𝑗∗ = 𝑐

(𝑘)
𝑖∗𝑗∗

𝑘
for 𝑖∗𝑘 ≠ 𝑖 and 𝑘 ≤ 𝑛. This means that every agent is in

global agreement on the bids for tasks allocated at rounds 𝑘 ≤ 𝑛.

At the beginning of Bundle Build, each agent 𝑖 will choose the task 𝐽𝑖 ∈ 𝒥 ∖ 𝑏1∶𝑛𝑟
𝑖

with the highest rewards that also outbids any teammates:

𝐽𝑖 = arg max
𝑗

𝑐𝑖𝑗 ⋅ 1(𝑐𝑖𝑗 > 𝑦𝑖𝑗) (3.12)

where the second term ensures that agents only add tasks if they outbid teammates

and the first term selects the task with the maximum score.

If any agent 𝑖 considers adding an "earlier" SGA task, i.e., bidding 𝑐𝑖𝑗∗
𝑘

on task

𝑗∗𝑘 where 𝑘 < 𝑘𝑖1, then 𝑖 will be outbid by 𝑖∗𝑘 (the true SGA winner for 𝑗∗𝑘 ) since

𝑦𝑖,𝑗∗
𝑘
= 𝑐
(𝑘)
𝑖∗𝑗∗

𝑘
and 𝑐𝑖𝑗∗

𝑘
< 𝑐
(𝑘)
𝑖∗𝑗∗

𝑘
. So, agent 𝑖 will not consider adding any task that has an

earlier SGA round than 𝑘𝑖1.

As such, 𝑖’s first non-zero bid will be for 𝑗∗𝑘𝑖1 which will also be the maximum score

as it is the next earliest SGA task (and thus scores for subsequent tasks 𝑗∗𝑘 ∶ 𝑘 > 𝑘𝑖1

are monotonically decreasing). As a result, 𝐽𝑖 = 𝑗∗𝑘1 and will be added to 𝑏𝑖 after a

52



single iteration of Bundle Build.

Bundle Build will repeat with an updated bundle that includes 𝑗∗𝑘1 , 𝑏𝑖 → 𝑏1∶𝑛𝑟
𝑖 ⊕𝑒𝑛𝑑

𝑗∗𝑘1 . At this point, by the same logic, 𝑗∗𝑘𝑖2 . . . 𝑗
∗
𝑘𝑖𝑟

will each incrementally be added to

𝑖’s bundle, resulting in a complete rebuilding 𝑏𝑖(𝑡) = 𝑏
(𝑛)
𝑖 .

Theorem 3.5.1. If all tasks are known initially (static task allocation), CBBA with

partial replanning will converge in 𝑂(𝑛𝑡𝐷) to the same solution as CBBA with Full

Reset

Proof. Claim 2 showed that at the time of reset, each agent immediately rebuilds their

SGA bundle. As such, all parts of Lemma 1 still hold true and so too Lemma 2, thus

CBBA with partial replanning will also converge in 𝑂(𝑛𝑡𝐷) to the SGA solution.

3.5.2 Partial Resetting During Dynamic Task Allocation

Now the effect of adding a new task 𝑇 ∗ after the team has already converged on a

conflict-free solution for the initial 𝑛𝑡 tasks is considered. Note that in the worst case,

the team can do a full reset and converge in (𝑛𝑡 + 1)𝐷 rounds of communication.

Claim 3. Assume CBBA has converged and a new task 𝑇 ∗ appears, if the team resets

the last 𝑛𝑟 tasks allocated in SGA: 𝑗∗𝑛𝑡
, 𝑗∗𝑛𝑡−1 . . . 𝑗

∗
𝑛𝑡−𝑛𝑟+1 at the beginning of Bundle

Build, then CBBA converges in (𝑛𝑟 + 1)𝐷 rounds of CBBA bidding.

Proof. At the point of reset (𝑡𝑟𝑒𝑠𝑒𝑡), each agent 𝑖 ∈ ℐ has bundles that correspond

to 𝑏𝑖 = 𝑏
(𝑛)
𝑖 where 𝑛 = 𝑛𝑡 − 𝑛𝑟. First, it will be shown that 𝑏𝑖(𝑡)1∶𝐿

(𝑛)
= 𝑏

(𝑛)
𝑖 for all

subsequent rounds of CBBA 𝑡 > 𝑡𝑟𝑒𝑠𝑒𝑡, i.e., the first 𝑛 SGA task remain allocated to

their respective SGA winners.

A task 𝑗∗𝑘 ∈ 𝑏
(𝑛)
𝑖 will remain in 𝑖’s bundle indefinitely if no other agent 𝑖̃ outbids 𝑖.

Formally, for all 𝑗∗𝑘 ∈ 𝑏
(𝑛)
𝑖 the following will be shown to be true

𝑐𝑖̃𝑗∗
𝑘
(︀𝑏𝑖̃(𝑡)⌋︀ < 𝑦𝑖𝑗∗

𝑘
∀𝑖̃ ∈ ℐ ∖ 𝑖 ∀𝑡 > 𝑡𝑟𝑒𝑠𝑒𝑡 (3.13)

where 𝑦𝑖𝑗∗
𝑘

is agent 𝑖’s bid on 𝑗∗ at the time of reset.
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First, note that because 𝑖 is the agent assigned to 𝑗∗𝑘 by SGA, (i.e., 𝑖 = 𝑖∗𝑘) then

𝑦𝑖𝑗∗ = 𝑐𝑖∗
𝑘
𝑗∗
𝑘

and also all the agents in the team are in agreement on this, so their bids

will also reflect the SGA score:

𝑦𝑖̃𝑗∗
𝑘
= 𝑐𝑖∗

𝑘
𝑗∗
𝑘
, 𝑧𝑖𝑗∗

𝑘
= 𝑖∗𝑘 ∀𝑖̃ ∈ ℐ,∀𝑘 ≤ 𝑛 (3.14)

Now consider how an arbitrary agent 𝑖̃ ≠ 𝑖 bids at the point of reset. Bundle Build

begins with 𝑖̃ considering its scores for 𝑇 ∗ and all remaining tasks that are not in its

bundle (𝒥 ∖ 𝑏𝑖̃(𝑡𝑟𝑒𝑠𝑒𝑡)):

𝐽𝑖 = argmax 𝑐𝑖̃𝑗(︀𝑏𝑖̃(𝑡𝑟𝑒𝑠𝑒𝑡)⌋︀⋅1(𝑐𝑖̃𝑗(︀𝑏𝑖̃(𝑡𝑟𝑒𝑠𝑒𝑡)⌋︀ < 𝑦𝑖̃𝑗) ∀𝑗 ∈ {𝒥 ∖𝑏𝑖̃(𝑡𝑟𝑒𝑠𝑒𝑡)}∪{𝑇
∗} (3.15)

During this first round of Bundle Build, agent 𝑖̃ will not be able to bid on any task

𝑗∗𝑘 ∶ 𝑘 ≤ 𝑛 because 𝑦𝑖̃𝑗∗
𝑘
= 𝑐𝑖∗

𝑘
𝑗∗
𝑘

by (3.14) and 𝑐𝑖̃,𝑗∗
𝑘
(︀𝑏𝑖̃(𝑡𝑟𝑒𝑠𝑒𝑡)⌋︀ < 𝑐𝑖∗

𝑘
𝑗∗
𝑘

since by definition,

the SGA solution will have the highest reward.

As such, 𝑖̃ can append to its bundle either one of the reset tasks 𝑗∗𝑘 ∶ 𝑘 > 𝑛 or 𝑇 ∗,

yielding an unknown bundle 𝑏𝑖̃ = 𝑏𝑖̃ ⊕𝑒𝑛𝑑 𝐽𝑖̃. Being that the value function is DMG,

bids on 𝑗∗𝑘 ∶ 𝑘 ≤ 𝑛 will only be decreased as a result of the new added task:

𝑐𝑖̃𝑗∗
𝑘
(︀𝑏𝑖̃,𝑟𝑒𝑠𝑒𝑡 ⊕𝑒𝑛𝑑 𝐽𝑖̃⌋︀ < 𝑐𝑖̃𝑗∗

𝑘
(︀𝑏𝑖̃,𝑟𝑒𝑠𝑒𝑡⌋︀ < 𝑦𝑖̃𝑗∗

𝑘
∀𝑘 ≤ 𝑛 (3.16)

Thus, for any subsequent round of Bundle Build after the partial reset, agent 𝑖̃

will only consider adding the reset tasks or 𝑇 ∗, meaning any non-reset tasks 𝑗∗𝑘 ∶ 𝑘 ≤ 𝑛

will remain assigned to 𝑖∗𝑘 for the remainder of the replan.

For the remaining bidding in CBBA, the team will thus only allocate the remaining

𝑛𝑟+1 tasks (the reset tasks and 𝑇 ∗) which will take in the worst-case 𝐷(𝑛𝑟+1) rounds

of CBBA.

Theorem 3.5.2. The convergence of CBBA with Partial Reset is 𝑂((𝑛𝑡 − 𝑘𝑚𝑖𝑛)𝐷)

where 𝑘𝑚𝑖𝑛 = min
𝑗∈𝒥𝑟𝑒𝑠𝑒𝑡

𝑗∗𝑘

Proof. 𝑘𝑚𝑖𝑛 represents the "earliest" task reset in the centralized SGA solution during

the greedy auction. If the first 𝑘𝑚𝑖𝑛 − 1 tasks are not reset, then they will remain
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allocated to their respective winners since they are assigned to the SGA winners, i.e.,

𝑧𝑖,𝑗(𝑡) = 𝑖∗. At that point, the remaining 𝑛𝑡 − 𝑘𝑚𝑖𝑛 must be allocated which will take

𝑂((𝑛𝑡 − 𝑘𝑚𝑖𝑛)𝐷) rounds of communication.

This means that the convergence of CBBA with Partial Reset is not specifically

dependent on 𝑛𝑖,𝑟𝑒𝑠𝑒𝑡 but rather which specific tasks are reset with respect to the

original SGA solution. If however, the team knows the SGA solution, then it can

specifically choose 𝒥𝑟𝑒𝑠𝑒𝑡 such that only the lowest 𝑘𝑚𝑖𝑛 tasks are reset, thus ensuring

the convergence of the partial replan. This can be done if the initial CBBA has run

to completion and agreement has been reached on the first 𝑛𝑡 solution. If that is

the case, then 𝑦𝑖,𝑗 = 𝑐∗𝑖∗,𝑗∗ for all the agents involved in CBBA. Likewise, in CBBA

with Team Replan, each agent can identify the lowest 𝑛𝑟𝑒𝑠𝑒𝑡 tasks from the SGA

solution by simply choosing the lowest 𝑛𝑟𝑒𝑠𝑒𝑡 bid tasks in 𝑦𝑖, ensuring that 𝑘𝑚𝑖𝑛 =

𝑛𝑡 − 𝑛𝑟𝑒𝑠𝑒𝑡, ensuring a convergence of 𝑂(𝑛𝑟𝑒𝑠𝑒𝑡𝐷). An alternative way of viewing of

the convergence of CBBA with Partial Reset is that the team is effectively resetting

CBBA to some round 𝑘𝑚𝑖𝑛, locking in all allocation before that, and then allowing

bidding on 𝑇 ∗ and resuming with the centralized greedy auction. The later the new

is task is allowed to be placed in the auction (i.e., the higher 𝑘𝑚𝑖𝑛, smaller 𝑛𝑟𝑒𝑠𝑒𝑡) the

shorter the convergence as the auction is nearly over. The earlier the placement of

𝑇 ∗, the longer the convergence as more of the centralized auction must be redone.

3.6 Results

3.6.1 Simulation

A UAV task allocation simulator was created to validate the convergence and quality

of solutions for various replanning strategies. The simulator is implemented in Python

and allows for varying communication conditions, dynamic robot movements, and

newly appearing tasks. CBBA with Partial Replan is run locally on multiple instances

of the Robot class and the Simulator only facilitates message passing between agents

and the revealing of new tasks the team. A vehicle routing scenario is used with a
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(a) t=0s (b) t=0.05s (c) t=0.10s

(d) t=0.15s (e) t=0.20s (f) t=0.25s

Figure 3-6: Simulation of eight robots allocation 𝑛𝑡 = 80 tasks, allocated tasks 𝑝𝑖 are colored
corresponding to the assigned robot. A new task 𝑇 ∗ (green star) appears sequentially and tasks are
released (black, filled circles) until all are allocated.

time-discounted reward function (3.2), with 𝑛𝑟 = 8 agents that must visit 𝑛𝑡 = 80 task

locations. 100 Monte Carlo simulations are run where the initial tasks are placed in

randomly located location, initialized with 𝑅𝑖𝑗 = 1 and 𝜆𝑖𝑗 = 0.95 and time-discounted

function (3.2). Once the team converges on an initial solution p1 . . .p𝑖, a new task

𝑇 ∗ arrives that must be allocated by the team. This process is repeated 8 times for a

total arrival of 8 new tasks. For each simulation scenario, the setting is saved so that

multiple strategies can be run and compared. Figure 3-6 shows an example simulation,

where initially a new task appears (top left), then tasks are reset, and a final allocation

is reached (bottom right). Note that significant changes and disagreement during the

replanning phase since the team is resetting a subset of previous tasks while allocating

the new task.
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Figure 3-7: A timeline of the team’s consensus on a conflict-free solution as new tasks arrive into
the system (dotted line). No-reset replanning leads to a constant, quick response to the new tasks
(red), while the full reset leads to periods without consensus (𝑡 = 4 − 7 seconds). Partial resetting
(blue) provides intermediate response time that varies depending on the new task.

3.6.2 Comparing Convergence

First, simulations are run for multiple new tasks to show the effect of the various

replanning strategies. Figure 3-7 shows the timeline of the team’s convergence for a

single simulation instance. As there were 8 new tasks, the team should reach consensus

8 times as the mission progresses. When a full reset strategy is used, convergence

can not be guaranteed to occur before the next new task arrives. As such, there is

a segment of time when the team is not in agreement, leading to multiple periods of

new tasks before consensus. In contrast, both the partial reset and no-reset are able

to provide a fast enough response to ensure convergence, and is thus not in a constant

state of replanning.

Figures 3-8 and Figure 3-9 compare the number of rounds of CBBA bids required

to reach consensus in the static and dynamic cases, respectively. For each simulation,

the team of agents compare the four strategies outlined above: no bundle resetting,

partial local bundle reset, partial team reset, and a full bundle reset. In both cases

of partial resetting, the team initially resets a total of 𝑛𝑟𝑒𝑠𝑒𝑡 = 24 tasks, where in the

partial local bundle reset each of the 8 agents resets 3 tasks and in the partial team

reset, the team resets the 24 lowest valued tasks (with each individual agent resetting

a variable number of task).
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Figure 3-8: Convergence time for the initial static allocation before the new task 𝑇 ∗ arrives. In all
four replan strategies, the convergence time is the same, as expected by the theoretical convergence.
In all cases, the runtime is 𝑂(𝑛𝑡𝐷) regardless of the full resetting or no resetting of bundles at each
round of CBBA.

Figure 3-9: When a new tasks arrives, the number of rounds on average and worst-case is highest
for a full reset replan and shortest for the no reset strategy. Choosing the lowest-𝑛 tasks to reset
for a global replan converges faster than a fixed number of tasks reset in each bundle and provides
intermediate performance as a whole.

58



Figure 3-8 shows the number of rounds until convergence for the static case, before

any new task arrive. As expected, all four strategies perform with equal convergence

times. Figure 3-9 compares the convergence after a new task is introduced and must

be allocated by the team. In this case, all four strategies require increased rounds of

CBBA, with the no reset requiring only a minimal amount to ensure consensus on

one bid and a full reset requiring the most rounds of bidding since in some cases, all

tasks must be fully rebid. Between the two partial resetting strategies, local bundle

reset and team reset, the local reset overall performs worse than the local bundle

reset, with some simulations requiring the same amount of bidding as in the full reset

case. This is expected, as only the worst case can be guaranteed to be less than a

full-reset if the lowest team wide tasks are chosen for resetting. However, on average,

the local bundle reset does perform faster than a full reset, suggesting that there is

still a speed-up from a partial local bundle reset.

3.6.3 Comparing Solution Quality

To understand the performance gains of partial replanning, the solution quality of

the resulting replan strategies are compared to the full reset strategy. While the full

reset is not an optimal solution, it can serve is a baseline for "best" performance since

it does have the 50% approximation of CBBA and intuitively has the highest level

of coordination. The performance of each algorithm is measured by the increase on

team score 𝛿 = ∑𝑖∈𝒥 𝑆𝑖(𝑝′𝑖)−∑𝑖∈𝒥 𝑆𝑖(𝑝′𝑖) caused by servicing the new task, where 𝑝′𝑖 is

the solution after all the new tasks are allocated. Figure 3-10 shows the performance

of both no reset (Fig. 3-10a) and partial reset (Fig. 3-10b) in an unconstrained

setting, i.e., 𝐿𝑡𝑛𝑟 > 𝑛𝑡. As expected, the no reset and partial reset perform worst

than the baseline full reset, however, the faster partial reset algorithm outperforms

no resetting and generally performs more similar to a full reset. Note that the high

variance in solution quality is due to the full reset still being suboptimal due to its

greedy nature. However, in more constrained setting where the number of feasible

solutions is fewer, partial and full reset will more consistently outperform no reset

approaches.
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(a) No-reset

(b) Partial reset

Figure 3-10: Performance of partial replanning compared to no replanning. (a) Shows the perfor-
mance of a no-reset strategy and (b) shows the performance of a partial reset, in allocating 8 new
tasks. Partial replan improves the score quality, nearing the performance of full replan baseline.

60



3.7 Summary

In this chapter, the CBBA with Partial Replanning algorithm was presented which

is able to allocate the new task while allowing for tunable amounts of reallocation

of the initial paths. CBBA-PR is shown to have a convergence that follows that of

CBBA, with a convergence that is linear with the relative location of the tasks in

the original CBBA allocation. In addition, if CBBA is run on the initial tasks, the

final bid array can be reused to reset specific tasks to meet response time require-

ments of the system. Finally, simulations validated the convergence improvements of

CBBA-PR compared to the full reset strategy and the solution quality improvements

of CBBA-PR compared to no resetting, showing that CBBA-PR can be thought of as

an effective middle-of-the-road approach compared to existing replanning algorithms.

In the next chapter, the no-reset strategy will be re-considered by specifically propos-

ing enhancements that can allow for better performance in situations when partial

replanning is not a viable option.
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Chapter 4

Dynamic Allocation with Limited

Resetting

The previous chapter investigated a partial replan approach that considered reallo-

cating a subset of tasks from the original 𝑛𝑡 tasks that were originally allocated using

CBBA. One limitation of replanning with CBBA is that it is still fundamentally a

greedy algorithm, producing solutions that are suboptimal. Due to this suboptimality

and the inherent limitations of greedy algorithms, there will be instances where very

little replanning can provide adequate solutions for the system. As such, the approach

presented in this chapter is to limit new allocations to those for which the new task

is only inserted into the original paths of each agent, thus not enabling reassignment

of any existing tasks. The bid on the new task for each agent is still the marginal

gain of the new task

𝑦𝑖,𝑇 ∗ = max
𝑛≤⋃︀𝑝𝑖⋃︀

𝑆(𝑝𝑖 ⊕𝑛 𝑇
∗) − 𝑆(𝑝𝑖) (4.1)

and once the team reaches consensus on the maximum bid, the new task is allocated

and the algorithm is terminated. While this approach is limiting in that it will

not allow high levels of coordination, in some circumstances teams may choose to

proceed with very limited replanning. In this chapter, three approaches are presented

to improve the no-reset approach 1) allowing single reset for agents at capacity, 2)

utilizing heuristics for triggering no task resetting, and 3) reducing network diameter
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Figure 4-1: Example scenario where agents at capacity (red and blue) can not bid on the new
task, leading to a pathologically poor solution, where the green agent is the only one that can be
assigned the new task.

with subteam formation.

4.1 Bidding at Full Capacity

The first challenge with a no-reset strategy is that in highly constrained environment,

for example when agents are at bundle capacity, ⋃︀𝑝𝑖⋃︀ = 𝐿𝑡, the agents can not bid on

𝑇 ∗, resulting in bids

𝑦𝑖𝑇 ∗ = 0 ∀𝑖 ∈ ℐ 𝑠.𝑡. ⋃︀𝑝𝑖⋃︀ = 𝐿𝑡. (4.2)

In cases where 𝐿𝑡𝑛𝑟 ≫ 𝑛𝑡, agents will not be at capacity when a new task arrives

and thus can effectively bid on the new task. However, when 𝐿𝑡𝑛𝑟 ≈ 𝑛𝑡, agents will

frequently fill their paths to capacity during the initial running of CBBA. In Figure 4-

1, the red and blue agents are at capacity (𝐿𝑡 = 4), so when a new customer (black

figure) requests a ride, the greedy algorithm prevents the red and blue agents from

bidding on the new customer. In this scenario, the only remaining bidder is the green

agent, resulting in a final allocation where the green agent services the new customer.

If, for example, the customer is a high-value task or highly time-sensitive the final

allocation will be much worse than the optimal solution (where the red or blue agent

services the customer), resulting in a highly pathological result for this problem.
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Figure 4-2: A histogram of no-reset/insertion strategy performance. compared to the full replan
strategy, with single resets (green) and without any resetting (red). The single reset moves the
performance closer to a performance ratio of 1, where insertion can perform as well as full replan.

4.1.1 Single Resetting at Full Capacity

The solution proposed in this thesis is to allow the agents to consider releasing a

single task, 𝑗𝑖,𝑟𝑒𝑠𝑒𝑡 before bidding on 𝑇 ∗. In the Single Reset Auction (Alg. 5), the

agents create temporary paths 𝑝𝑖 by removing a single task from its path and then

inserting 𝑇 ∗. The bid on 𝑇 ∗, which is equal to th marginal gain of adding 𝑇 ∗, must

be discounted by the removal of the reset task 𝑗𝑖,𝑟𝑒𝑠𝑒𝑡

𝑦𝑖,𝑇 ∗ = max
𝑛≤⋃︀𝑝𝑖⋃︀

𝑆(𝑝𝑖 ⊕𝑛 𝑇
∗) − 𝑆(𝑝𝑖) − 𝑦𝑖,𝑗𝑖,𝑟𝑒𝑠𝑒𝑡 . (4.3)

By allowing a single-reset, the agents can better consider the gained reward by

adding 𝑇 ∗ into their own bundle. The highest bidder is then allocated 𝑇 ∗ and their

path is updated to include the new task, at which point the old task 𝑗𝑖,𝑟𝑒𝑠𝑡 is replanned

by the rest of the team. The release of 𝑗𝑖,𝑟𝑒𝑠𝑒𝑡 may spark further single resetting by the

team and in the worst-case, possibly result in a full replan requiring 𝑂(𝑛𝑡𝐷) rounds

of communication. However, as shown in the previous section, the convergence of the
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Algorithm 5 Single Reset CBBA for New Task
1: procedure SingleResetAuction(p𝑖, 𝑇 ∗)
2: if ⋃︀𝑝𝑖⋃︀ = 𝐿𝑡 then
3: 𝑗𝑖,𝑟𝑒𝑠𝑒𝑡 = arg min𝑗∈𝑝𝑖

𝑦𝑖𝑗
4: 𝑝𝑖 = 𝑝𝑖 ⊖ 𝑗𝑖,𝑟𝑒𝑠𝑒𝑡
5: 𝑦𝑖,𝑇 ∗ = max𝑛≤⋃︀𝑝𝑖⋃︀ 𝑆(𝑝𝑖 ⊕𝑛 𝑇 ∗) − 𝑆(𝑝𝑖) − 𝑦𝑖,𝑗𝑖,𝑟𝑒𝑠𝑒𝑡
6: else
7: 𝑗𝑖,𝑟𝑒𝑠𝑒𝑡 = ∅
8: 𝑝𝑖 = 𝑝𝑖

9: 𝑦𝑖,𝑇 ∗ = max𝑛≤⋃︀𝑝𝑖⋃︀ 𝑆(𝑝𝑖 ⊕𝑛 𝑇 ∗) − 𝑆(𝑝𝑖)

10: end if
11: for 𝑘 = 1 . . .𝐷 do
12: 𝑧𝑖,𝑇 ∗(𝑡) = arg max

𝑚∈𝒩𝑖

𝑦𝑚,𝑇 ∗

13: 𝑦𝑖,𝑇 ∗(𝑡) = max
𝑚∈𝒩𝑖

𝑦𝑚,𝑇 ∗

14: end for
15: if 𝑧𝑖,𝐽𝑖(𝑡) = 𝑖 then
16: 𝑦𝑖𝑗 = 𝑦𝑖,𝑇 ∗
17: 𝑝𝑖 = 𝑝𝑖

18: if 𝑗𝑖,𝑟𝑒𝑠𝑒𝑡 ≠ ∅ then
19: SingleResetAuction(𝑝𝑖,𝑗𝑖,𝑟𝑒𝑠𝑒𝑡)
20: end if
21: end if
22: end procedure

algorithm will be directly related to the SGA round corresponding to the released

task, thus choosing the lowest bid task in a bundle will minimize the subsequent

rounds of replanning

𝑗𝑖,𝑟𝑒𝑠𝑒𝑡 = arg min
𝑗∈𝑝𝑖

𝑦𝑖𝑗. (4.4)

In addition, to further prevent further replanning after a task is reset, teams can

either use a bid-warped bidding strategy [21] or explicitly limit the single resets to

bidding on 𝑇 ∗ and not allowing it for subsequent reset tasks (𝑗𝑖,𝑟𝑒𝑠𝑒𝑡).

Figure 4-2 shows a histogram for the no-reset strategy without any resetting al-

lowed (pink) and the performance when a single reset is allowed. The single reset

strategy moves the performance distribution of the team to the right, closer to the

baseline performance of a full-reset algorithm. Note that in this scenario, the no reset

strategy with resets is able to provide solutions that are comparable to the full reset
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strategy. In these instances, it is especially important to allow for single resets so

that agents can effectively bid on the new task.

4.2 Full Reset Performance Heuristic

In some situations, the delays from replanning may outweigh the gains from replan-

ning, especially in time-sensitive mission settings. If the team can predict the perfor-

mance of replanning before triggering a full or partial reset, then the team can tailor

the amount of replanning. This is especially relevant for CBBA as it relies on a greedy

solution which is inherently suboptimal, so an alternative (even naive) solution such

as no bundle reset algorithm may fair well. For example, in the previous results for a

no reset strategy (Figure 3-10a), the team was able to arrive at solutions that had the

same or even better quality as the baseline full reset algorithm. While the majority of

simulations showed improvements with increased coordination from a full reset, there

are some cases where no replanning is necessary. If these scenarios can be identified

by predicting the score of a full replan compared to no reset, then the team could

preemptively decide to forgo the full replan. More specifically, a method is sought for

calculating a performance ratio

𝐻 =
𝛿no reset

𝛿full reset
(4.5)

which can trigger no resetting if 𝐻 > 𝐻∗ where 𝐻∗ is some desired performance

required by the system.

The main challenge in calculating this performance ratio is that 𝛿full reset can not be

calculated deterministically since the problem is NP-Hard, and thus the only method

for calculating the value gain of a full reset is by performing the full reset. Instead,

this chapter proposes an estimate for calculating 𝛿full reset and a decentralized method

for using this estimate to compute a performance heuristic 𝐻∗ for triggering a simple,

no reset strategy.
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4.2.1 T-Only Heuristic for Estimating Full Reset

The following heuristic is proposed to estimate the solution quality of the full reset

𝛿𝑓𝑢𝑙𝑙𝑟𝑒𝑠𝑒𝑡(𝑇
∗) = max

𝑖
𝑆𝑖(𝑇

∗) (4.6)

which calculates a best-case scenario in which agents are able to release all their

preallocated tasks and assume that each released task is successfully serviced by a

teammate. Specifically, each agent considers the following sequence of events:

1. Agent 𝑖 releases all previously assigned tasks in p𝑖: 𝑝𝑖 → ∅

2. Remaining teammates allocate the released tasks that were previously in 𝑝𝑖

3. Agent 𝑖 only services 𝑇 ∗: 𝑝′𝑖 = {𝑇
∗} with a new path value 𝑆𝑖(𝑇 ∗)

The final step, where agent 𝑖 only considers servicing 𝑇 ∗ and computes the new value

becomes an estimate for that agents idealistic full replan score, estimating 𝛿𝑖,full reset

In reality, either (1) neighboring agents will not service the tasks as well or (2)

the original agent will need to retain and delay preallocated tasks, so 𝐻̂(𝑇 ∗) will be

an over-estimate on the performance of any individual agent. However, it will still

provide a heuristic for the current team’s performance and in scenarios with highly-

capable neighboring agents, the T-only heuristic will provide a good estimate for the

full replan performance. In addition, if the heuristic is consistently too optimistic,

the performance ratio can be chosen to try to compensate for over estimating the full

replan solution.

This heuristic can then be used by the entire team to calculate an estimated

performance heuristic

𝐻̂ ≜
max𝑖 𝛿𝑖,no reset

max𝑖 𝑆𝑖(𝑇 ∗)
(4.7)

which will trigger either a full reset of the existing allocations or simply assigning the

new task to the highest bidder.
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(a) 𝑇 ∗-only for red agent (b) 𝑇 ∗-only for blue agent

Figure 4-3: Each agent calculates 𝑇 -only heuristic for the gains of a full reset by "dropping" all
their tasks and only bidding on the new task

(a) 𝛿𝑖,no reset (b) 𝑆𝑖(𝑇 ∗) (c) Max-Consensus

Figure 4-4: Decentralize procedure for estimating the performance of a full replan
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(a) 𝐻̂ > 𝐻∗: No-reset (b) 𝐻̂ < 𝐻∗: Full-reset

Figure 4-5: Team either proceeds without full resetting if 𝐻̂ >𝐻∗ and allocates the new task to the
highest no-reset bidder (a) or proceeds with further replanning (b) by conducting a full or partial
reset of their existing paths (b)

4.2.2 Decentralized Procedure

For this algorithm to succeed in a wide-range of application and be relevant to de-

centralized solvers such as CBBA, the T-Only heuristic must also be decentrally

computed the agents. This is possible by first running one round of max-consensus to

reach consensus on the maximum scores for the no-reset approach and the optimistic

heuristic. The full decentralized procedure is then

1. Locally compute no-reset: 𝛿𝑖,no reset

2. Locally compute 𝑇 ∗-only score: 𝛿𝑖,full reset = 𝑆𝑖(𝑇 ∗)

3. Max-Consensus: max 𝛿𝑖,no reset, max𝑆𝑖(𝑇 ∗)

4. Performance Ratio: 𝐻̂ =
max 𝛿𝑖,no reset
max𝑆𝑖(𝑇 ∗)

5. Locally trigger no-reset strategy if 𝐻̂ >𝐻∗

Notice that all agents locally compute relevant score predictions and then only requires

one round of consensus to achieve agreement on the level of replanning needed.

4.2.3 Results

Figure 4-6 shows a histogram of 3,000 simulations of the dynamic task allocation

problem with a single new task 𝑇 ∗ that must be allocated by the team. The blue
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Figure 4-6: Solution quality of no reset strategy compared to full reset strategy for random place-
ment of tasks and robots. Simulations with heuristic triggered for no-reset (orange, 𝐻̂ ≥ 0.75) are
centered about 0.95 performance with narrower distribution of solution quality. Simulations trig-
gered for full-reset (blue) are skewed to the left, meaning most were simulations where no-reset
would have performed poorly.

histogram reports the solution quality of the no-reset solution compared to the full re-

plan. Note that there is a wide distribution of performance for the no-reset algorithm

ranging from poor results due to limited replanning (50% solution quality compared

to full replan) to performing 50% better than a full replan. The latter occurs in sce-

narios where greedy algorithms perform poorly, such as when the new task is very far

from the original tasks, incurring a large penalty for greedily allocating the new task.

The orange histogram reports the simulations classified by the heuristic, during which

the team would decide not to execute a full replan. Note that in these results are

centered at approximately 95% in solution quality compared to a full reset and results

in a much smaller variance in performance for those triggered by the heuristic. The

blue areas denote simulations that triggered a full reset by the heuristic. Note that

this region is asymmetric, with the majority of cases triggered for replan being those

were no-reset perform very poorly. This suggests that the decentralized heuristic

mostly triggers replanning in scenarios where no-reset performs poorly. In addition,
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the overall variance in solution quality in situations where no-reset was triggered is

reduced. This suggests that the heuristic leads to higher confidence in identifying set-

tings where replanning is unnecessary, leading to faster and more efficient replanning

decisions.

4.3 Task Discovery and Subteam Formation

As robot teams increase in membership size, so too its ability to operate in larger

environments and service a larger number of tasks. However, with an increase in

robots and coverage size comes an increase in network diameter. Any algorithm, such

as CBBA, that relies on global consistency of information thus is linearly affected

by an increase in agents within a team. In addition, as team size increases, the

communication throughput must decrease to compensate for the limited bandwidth

of communication for the team. As such, care must be taken to limit the effective

size of the team for consensus, reducing the effective network diameter for running

CBBA.

This section proposes a subteam formation algorithm to reduce the network di-

ameter of the team, which consists of three primary phases: (1) discovery, (2) bidding

and consensus, and (3) execution and replan. In phase 1, a discovery agent 𝑖𝑑 dis-

covers the new task 𝑇 ⋆ and must communicate both the existence of the task and

important algorithm specific information to its teammates. In addition, it provides

an initial bid that reflects its own ability to accomplish the task, as a benchmark

that the rest of the team must beat, else the discovery agent will default to servicing

the task. These important parameters (subteam size and consensus deadline) are

calculated by the discovery agent and communicated to the rest of the team. The

second phase, bidding and consensus phase, consists of a period of time during which

teammates performs CBBA-like bidding and consensus to agree on an optimal agent

to service the time-sensitive task, and finally, the winning agent begins executing the

new task, while the rest of the team can replan the remaining tasks to optimize the

allocation given the new 𝑇 ⋆ assignment.
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4.3.1 Task Discovery

Figure 4-7: A discovery agent is the first agent to observe the new task and must decide which
agents can participate in CBBA by choosing an effective network diameter

Unlike previous formulations, this section assumes that the new task is not known

to the team, allowing for discretion by the discovery agent to choose which agents are

allowed to bid on the new task (Figure 4-7). Specifically, missions where the team

can take longer to replan, the discovery agent may decide to allow the entire team to

participate in CBBA. If the new task is highly time-sensitive and mission critical, it

may instead decide to only allow few agents to participate, to more quickly allocate

the new task.

In the first phase, the discovery phase, the discovery agent (Figure 4-8) discovers

the new task 𝑇 ⋆ which has a time-deadline 𝑡⋆. The discovery agent’s goal in this

stage is to calculate an effective subteam size that will be communicated to the team

and guide a subteam formation. It does this by first calculating the minimum time

it would need to service the task which represents the default behavior of 𝑖𝑑 servicing

𝑇 ⋆. Any excess time, the difference between the deadline and the service time, will be

utilized to coordinate with its teammates and will be denoted 𝑡𝑐, or consensus time.

Now with a total time allocated for consensus, the agent calculates the size of the

subteam that will ensure consensus within 𝑡𝑐. Given ∆𝑐𝑜𝑚𝑚, the time-delay at each

hop of communication (i.e., pairwise delay), and 𝑟𝑖𝑑, the communication radius of our
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Figure 4-8: Discovery agent calculates a radius of consensus within which replanning is required
for 𝑇 ∗

subteam, the team will need a total of 𝑡 = 3𝑟𝑖𝑑∆𝑐𝑜𝑚𝑚 time to achieve consensus. Using

this constraint, the discovery agent can calculate the maximum team radius centered

from 𝑖𝑑. Those teammates within the radius will then participate in the subsequent

phases of the algorithm. These important parameters (subteam size and consensus

deadline) are calculated by the discovery agent and communicated to the rest of the

team.

4.3.2 Self-Censoring

In the subsequent two stages, the agents that are within the subteam radius 𝑟𝑖𝑑

participate in the bidding and consensus process, while agents beyond the radius

will self-censor and not participate in the bidding. This (1) ensures that there is

consensus across the sub-team, thus a conflict-free allocation; and (2) speeds up the

communication exchange because less agents are contending for the medium. Once

the bidding and consensus ends, the winning agent will “lock-in” the tasks in its bundle

and begin executing its bundle which now includes 𝑇 ⋆. Now that the time sensitive

task has been allocated, the remaining teammates and tasks can be allocated in the

more optimal and slower process of CBBA. This is done by resetting the allocations

of the remaining agents and doing a complete restart of CBBA.
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Figure 4-9: Convergence of full replan and fast CBBA after initial allocation

4.3.3 Results

To validate the algorithm, a network of 10 agents are placed in a ring formation such

that the network diameter is 5 hops. Initially, the robots are presented with a large

set of tasks and utilize CBBA to allocate the tasks across the team (Figure 4-9, left

of the vertical dashed line). After all the tasks are allocated, a new time-sensitive

task 𝑇 ⋆ is introduced into the system(right of dashed line). The red-line plots the

number of tasks allocated (and agreed) by the team as a function of time using the

static CBBA and the green line plot the response of the new, time-sensitive CBBA

algorithm. With the original CBBA, there is a longer delay until convergence to a

conflict-free allocation because it is doing a full reset, while the subteam formation

allows for a much faster response, fulfilling the time requirement of 𝑇 ∗.

4.4 Summary

In some scenarios, multi-agent teams may decide that quick assignment of a new task

to an existing agent is the preferred method of dynamic allocation. This chapter

presented three methods for improving such a strategy. First, a single reset bidding

approach was presented that can prevent pathological solutions in the case of highly

constrained scenarios. Second, a decentralized heuristic was shown to provide more
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reliable performance when used to trigger the no reset strategy. Finally, a subteam

formation strategy was used for scenarios when a discovery agent must execute a new

task before a specified deadline. While the subteam formation strategy helps to reduce

the network diameter, and thus reduce the hops of communication, it may have very

little effect on the reliability and speed of the channel itself. In the following chapter,

the reliability and speed of the channel are explored in the context of multi-agent

planning and the multi-agent effects on real communication hardware.
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Chapter 5

Effects of Broadcasting Over Ad-hoc

Networks on Team Consensus

Communication plays a key role in multi-agent planning and estimation, serving as

a critical component of the robot system. Many multi-robot coordination schemes

require some sort of consensus across the team such as in task allocation [19, 48, 77],

consensus filtering [38, 78, 79], and coverage control [80]. In all of these planning algo-

rithms, robots are able to estimate and plan in a distributed fashion with distributed

communication. Communication is especially important in highly dynamic environ-

ments, when information can be changing very quickly and unpredictably, and thus

team-wide communication is necessary to maintain a consistent team wide belief. In

these dynamic scenarios it is imperative to have fast and reliable communication that

still maintains the decentralized nature of most of these algorithms.

In order to implement distributed consensus algorithms on real robots, researchers

utilize a few main modes of communication. A popular choice for hardware experi-

ments is to utilize the 802.15.4 ZigBee protocol using the popular Digi XBee modules

[22, 81, 82]. ZigBee provides mesh management and thus commonly used in multi-

agent research, however, its limitations include small packet sizes and the necessity

for central coordinators – and as such – is not fully decentralized. In addition, Time

Division Medium Access (TDMA) is commonly used to coordinate communication

and avoid contention [80]. However, TDMA has its own limitations including initial
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synchronization and inefficiency for dynamic teams where robots may enter or exit.

Thus for static networks and low-bandwidth message passing such as small sensor

values, ZigBee may be appropriate, however for higher bandwidth requirements, such

as sending over full maps of the environment or entire belief spaces, other technologies

are needed.

A common protocol for high-bandwidth communication is 802.11 or WiFi due to

the commercial accessibility of the technology. While 802.11 provides a fully decen-

tralized protocol that can be used in decentralized robotic applications, frequently

the centralized, infrastructure mode of 802.11 is used in hardware implementations,

with a multi-hop network imposed on top of the hardware. By doing so, researchers

are able to simulate the network topology effects of decentralized communication on

real hardware [19, 44]. However, the main limitation of this approach is that ad-hoc

802.11 performance is known to perform poorly compared to its centralized counter-

part, especially for large multi-robot applications [83, 84].

The goal of this chapter is to explore the real-world reliability of decentralized

communication, using 802.11’s ad-hoc mode, as well test methods for increased com-

munication reliability.

5.1 Contention and Effects on Delay

An additional motivation for studying ad-hoc communications is that many algo-

rithms such as CBBA-PR and explicit subteam formation rely on a known network

communication delay, ∆𝑐𝑜𝑚𝑚. However, the delay through a network is rarely only

dependent on the communication hardware itself. Rather, it will depend on external

noises (such as multipath and path-fading) as well as the communication congestion

created by the team itself, as they are contending a shared communication medium.

This form of communication degradation, known as contention (Figure 5-1), is espe-

cially interesting from a multi-agent perspective because the agents themselves are

causing the degradation of communication and the delays in the system. For exam-

ple, if agents decide to communicate more often, it will degrade the network because
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Figure 5-1: High rates of communication increases collisions in messages

there is a higher probability the messages with “collide” as agents attempt to receive

messages.

While many of the external factors that lead to unreliable communication have

been studied in length in both the communication and robotics community [41, 85–

87], the effect of lossy communication due to contention on multi-agent planning has

not been as throughly studied. While real experimentation on ad-hoc WiFi has been

done on a few nodes as in [83], a larger network-wide analysis is lacking to understand

the effect on the team as a whole.

5.2 802.11 Distributed Coordination Function

The 802.11 protocol [88] specifies two layers of the communication architecture: the

physical layer (PHY) which designates the frequency and speed requirements of de-

vices, and the medium access layer (MAC) which describes the policies for multiple

devices communicating on a single channel. The MAC layer both describes the dis-

tributed coordination function (DCF) called Carrier Sense Medium Access which

allows some coordination between users for sharing the medium and an optional

personal coordination function (PCF) for centralized/infrastructure operation, where

central access points receive the messages from each agents, coordinating the team

communication for higher reliability and throughput.
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Figure 5-2: Hidden node that is unknown to sender may collide at receiving end

Figure 5-3: Node known to sender may delay or slow message sent even if exposed node has no
effect on the receiving node

In Carrier Sense Medium Access (CSMA), a radio must first sense the medium

for any existing communication traffic by measuring the electromagnetic power in the

environment. If the channel is free, the radio is free to transmit its message. If the

radio must wait (due to an existing broadcast), once the channel is free the radio waits

an addition (random) amount of time to mitigate the possibility of multiple agents

broadcasting at the simultaneously once the channel is available. An exponential

back-off is used to increase the random wait time depending on the number of radios

are utilizing the channel.

Because there is no explicit coordination of each radio, a single radio could flood

the network with messages and prevent teammates from communicating. Even with-

out adversarial flooding, if agents communicate at a fixed rate, as the team grows to

larger numbers of agents, the delays due to the backoff function will increase delays.

Conversely, the team as a whole could flood the network at broadcast rates below

the physical rate limitations of the radio due to the number of agents attempting

to communicate at the same time. Furthermore, CSMA does not mitigate all pos-

sible collisions in a multi-agent team. In what is commonly known as the hidden

node problem (Figure 5-2), the sending node may not sense all the neighbors of the

receiving node, and as a result, collisions may occur on the receiving end due to a

hidden node’s transmission. While hand-shaking protocols can be implemented, in-

cluding the RTS/CTS handshaking option in 802.11’s DCF, in a settings with highly

dynamic topologies, RTS/CTS handshaking can prove to more burdensome than the

hidden node problem itself. A complementary problem is the exposed node problem
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Figure 5-4: Raspberry Pi Placement in 6th Floor Building 32 at MIT

(Figure 5-3), where a neighbor of the sending node blocks the channel even though

the receiving node is free to receive messages, adding delays to the communication

network that are unnecessary.

5.3 Decentralized Broadcast Experiments

5.3.1 Measuring Link Level Performance

To investigate the real world effects of team wide communication on consensus algo-

rithms, a leader election algorithm is tested on a network of Raspberry Pi nodes in

the 6th floor of MIT’s Stata building. Using Raspberry Pi 3’s with state-of-the-art

WiFi, a network of 6 agents was built that spanned the 6th floor of LIDS, featuring

a wide multi-hop footprint, external disturbances (from random users) and physical

obstacles such as walls and cabinets. Figure 5-4 shows the layout of the six Raspberry

Pi 3’s achieving a network diameter of three hops (𝐷 = 3) and each node has no more

than 4 neighbors. Each Raspberry Pi is equipped with an onboard 802.11n Broadcom
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chip that is used to monitor the experiments while an external Canakit 802.11n WiFi

adapter is used for the ad-hoc mesh communication.

First, the packet success rate (PSR) is measured for each node in the network to

obtain a graph of the network, where PSR is defined as

𝑝𝑖𝑗 =
𝑛𝑖,𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑛𝑗,𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑒𝑑

(5.1)

where 𝑛𝑖,𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 are the total number of messages received and 𝑛𝑗,𝑏𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑒𝑑 are the

total number of messages sent by its neighbor 𝑗. The PSR is effectively the per

message success rate for each link in the network. Each experiment begins by first by

testing each individual link between the nodes to ensure that the links can obtain some

baseline performance which is effectively 𝑝𝑖,𝑗 ≈ 1.0. This ensures that any reduction

in link quality is not due to the physical ability for the radios to communicate due to

distance but rather a degradation due to congestion or the hidden node problem. A

central computer collects a record of received messages from each node and computes

the PSR for each node. The graphs of the network for two different broadcast rates

are shown in Figure 5-5, where real-world conditions shows that links are asymmetric

and varies by broadcast rate. One reason for the asymmetry in link PSR is that

the in-degree will effect the ability for a node to hear from its neighbors. Thus two

neighbors with varying in-degrees will lead to an asymmetric data link between the

two nodes.

To further identify the effects of congestion, the PSR measurements are repeated

for a simulated ad-hoc network, where the agents are physically within range but the

network topology is enforced in software, and a coordinated experiment where the

nodes coordinate which agent communicates. Figure 5-6 shows the median degrada-

tion over various broadcast speeds for the three types of network. The degradation of

each link is calculated by comparing the PSR for each link to the baseline PSR of a

centralized network at 1Hz communication rate. Note that the coordinated networks

perform the best as they have no congestion or hidden node issues. The simulated

network provides comparable performance to the real network, suggesting that most
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Figure 5-5: Network Topology for 1 Hz and 10 Hz broadcast rates. Edges show probability of
message’s successful reception (PSR).

of the network degradation is due to congestion effects and not the hidden node effect,

since there are no hidden nodes in the simulated networks (as the node are all within

close proximity of one another).

5.3.2 Rebroadcasting Messages for Increased Reliability

In a consensus problem, the team as a whole is not concerned with any individual

link performance (PSR) but rather the speed and reliability of the network across the

diameter. As such, the following experiments explore the network’s ability to pass

information across the entire diameter of the network. In this case, a source node
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Figure 5-6: Average degradation of links as ratio of link transmission probability on baseline
transmission probability (at 1 Hz broadcast rate)

(Node 1) passes information across the network to a sink node (Node 6). Since this

is a purely distributed network, agents are not a priori aware of the source and sink

nodes, and must run identical communication schemes.

Specifically, the reliability of the network is defined as the probability that the

sink node (Node 6) receives the belief or information from the source (Node 1)

𝑃 =
𝑁6,𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑁1,𝑠𝑒𝑛𝑡

, (5.2)

where now the team is no longer tracking the packets sent but rather the information

itself, where 𝑁6,𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 is the total number of different beliefs that Node 6 receives

and 𝑁1,𝑠𝑒𝑛𝑡 is the total number of beliefs that are sent by Node 1. This distinction is

important since one method for increasing reliability and throughput may be to send

repeat beliefs in case there are links with a low PSR. At any given external informa-

tion rate, team-wide communication strategies may have the freedom to rebroadcast

information to ensure higher probability of reception from its neighbors. At lower

information rates (e.g ≤ 1 Hz), agents may be able to resend messages 10-100 times

84



Figure 5-7: At higher rates, messages are re-sent more frequently, and thus delays decrease (500
ms). However, as network degrades, multiple retransmissions are needed until belief is received,
increasing the overall delay for a belief to arrive across the network.

without reaching physical limitations of data transmission on the WiFi chip. The sys-

tem designer must decide the trade-off however between increased reliability due to

rebroadcasting and network degradation due to flooding. In addition, with unknown

and dynamic networks, it will not be clear a priori the effect of rebroadcasts on the

actual network. If, for example, the pair-wise communication quality is fixed across

the links with PSR 𝑝 then the probability of success of a belief repeated 𝑛 times will

be

𝑃 = 1 − (1 − 𝑝)𝑛 (5.3)

However, in reality 𝑝 will be a function of the rate at which each agent is communi-

cating, or in the case of a fixed rate at which beliefs are sent, then the PSR will be

directly a function of 𝑛.

Figures 5-7 and 5-8 explore the teams ability to transmit information across the

team. In this case, Agent 1 is attempting to communicate across the network (to

Agent 6) external information that is changing at some update rate 𝑟𝑢. If Agent

1 is broadcasting at a rate higher than the information’s update rate, Agent 1 can

rebroadcast the information in subsequent transmissions by some rebroadcasting rate
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Figure 5-8: Probability that Node 6 receives belief increases as Pis rebroadcasts information,
achieving near 100% success rate at n=10. At n>10, network degrades too much and overall belief
success rate decreases to a low of 20%

𝑛. These rebroadcasts could be advantageous in increasing the probability that any

one of the messages is received by Agent 6. However, the increase in broadcasts may

also destroy the network, adversarial affecting the teams ability to communicate,

especially when every agent maintains that same broadcast speed. Figure 5-8 shows

the team initially improving its reliability by rebroadcasting messages, however at

𝑛 = 10, the network links degrade and outweigh any gains from rebroadcasting, leading

to large losses in reliability. In Figure 5-7, the delays across the initially decrease as

the communicate rate increases (as rebroadcasting requires higher communication

rates), however at higher communication rates, the delays increase drastically due to

the network degradation.

5.4 Summary

While team-wide communication is a necessary component to effective multi-agent

coordination and planning, unrealistic modeling of the network itself may prove detri-

mental to algorithm design. In experiments, the ad-hoc network proves to be unreli-
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able at high broadcast speeds due to contention. Increased rebroadcasting of messages

provide extra reliability that important information is received the entire teams, how-

ever, network performance is not independent of broadcast speeds and must be con-

sidered when designing real distributed robot systems and task allocation algorithms

such as CBBA.
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Chapter 6

Hardware and Simulation

Experiments

To validate the algorithms presented in this thesis, both communication and planning

algorithms were implemented on a combination of Python simulations and Raspberry

Pi WiFi experiments. The Python simulations allowed multiple simulated scenarios

consisting of large number of agents and tasks while allowing for motion and ran-

domness in task values. In addition, simulations allow for a controlled environment

for testing decentralized replanning algorithms by allowing synchronous and ideal

communication considerations. The Raspberry Pi experiments provided the Python

simulations with more realistic computation and communication conditions such as

realistic communication delays and congestion-induced packet loss. In addition, the

Raspberry Pi network was used to examine the effects of communication rates on

the network reliability when using ad-hoc communication networks. For both the

simulator and hardware experiments, code was written to enable execution on both a

single central computer for simulations as well as separate robots with real hardware.

To do so, wrappers were written in ROS to allow for easy execution on Raspberry

Pi’s running ROS nodes. Likewise, the simulator reuses classes used in the hardware

for the task allocation planner, to allow for one code base for both simulations and

hardware. The rest of this chapter describes the simulator and hardware architecture

used in both of these experiment platforms.
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6.1 Dynamic Task Simulator

The simulator (Figure 6-1) provides three main modes of simulation: (1) multiple

access communication, (2) task allocation, and (3) the tasks and robots themselves.

By implementing these three main class, each one can be independently tested and

each class can have increased functionality and levels of complexity.

6.1.1 Multiple Access Communication

In most robot settings, the inter-robot communication is modeled as an erasure chan-

nel with probability 𝑝 and a disk model, where messages can only be received within

a range 𝑟. While these can accurately model physical layers limitations of com-

munications, it does not effectively model the contention effects of multiple agents

communicating on the same communication medium. Likewise, it can not model the

losses due to the hidden node problem or delays due to exposed node problem. In ad-

dition, specific intricacies caused by 802.11 distributed coordination function (DCF)

a.k.a WiFi, a communication medium that is accessible to most roboticists, is missing

in a simple disk-model simulation.

To accurately simulate real-world communicate effects, each agent communicates

via a simulated WiFi (802.11) communication module which implements the Dis-

tributed Coordination Function’s: Carrier Sense Medium Access (CSMA). Before a

robot attempts to communicate, it first senses the medium to determine if other

agents are communicating, and if so, uses the back-off procedure of 802.11. To best

match real-world conditions, the timing and back-off parameters are set to match

normal operating conditions for WiFi hardware [83]. In addition, if two neighbors of

a common receiving agent communicate at the same time, that receiving agents will

not received either sent messages. Both the carrier sensing and collision erasure is

managed by the WiFi Simulator which monitors the shared medium. At each iter-

ation of the simulation, the Simulator checks each outgoing queue of messages from

the agents to check for collisions. If there is an overlap in messaging, those messages

are not sent to the receiving agent. However, if no collision occurs, the Simulator

90



Figure 6-1: A new task (large star) appears to the agents after each agent has already allocated
the initial tasks. When the agents converge on a solution, the new task is added to their allocation.
Agents must lock-in the next task before starting to travel to the next task
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Figure 6-2: The communication status plot for the WiFi modules for six agents. Each bar repre-
sents the send and receive threads of the WiFi module. In the ideal communications shown above,
messages are all received by the neighboring agents in a ring formation.

Figure 6-3: In a simulated environment with contention monitored, messages are commonly
dropped by neighboring agents due to the hidden node problem or duplex issues, when agents
can not receive messages while broadcasting.
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passes the outgoing message to the intended recipient. Because the robot classes only

have Send() and Receive() methods, the simulated communication handling can be

easily replaced with real 802.11 hardware interfaces, allowing the planning code to be

used in simulation and hardware experiments.

Figures 6-2 and 6-3 shows the status of each simulated WiFi module for a ring

of six agents in ideal communication conditions, without contention and hidden-node

issues, and in simulated real condition where contention is considered. In the ideal

simulations, there is a high success rate of messages being sent and received as col-

lisions are allowed. However, once the Simulator begins monitoring collisions and

agents are restricted to only sending or receiving (half duplex communication), colli-

sions begin to regularly occur.

The time scales of communication and planning are quite different and thus the

time resolution of the overall simulation needs to change depending on the events

occurring in the system. Initially, the simulator ran using a small time increment,

however, simulations took hours to finish task allocation. A useful observation for

implementing the simulator was that while communication conflict-resolution required

short time scales to track message passing, the actual duration of the communication

event was very short. An adaptive time resolution was implemented that would be

triggered by the WiFi simulator to provide higher resolution time increment when a

message was sent or received, but for any planning occurring between messages sent,

the time scale could be lengthened to speed up the simulation time.

6.1.2 Task Allocation

Each Robot class contains a CBBAManager object which implements the original

CBBA algorithms as well as the partial replan, subteam formation, and no reset al-

gorithms. All information arrays are stored locally and after each round of consensus

are sent to WiFi for inter-agent communication. The CBBAManager was imple-

mented locally to ensure that no central information was being used in allocating the

tasks. In addition, the code could easily be used on the Raspberry Pi’s without any

major modifications of cold.
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When a new task arrives, the agents call a TaskDiscovery() subroutine to update

its own information arrays and global list of tasks (setting 𝒥 → 𝒥 ′), and set initial

replanning parameters such as number of tasks to reset or number of agents included

in the replanning for CBBA-PR and subteam formation algorithms. In general, a

replan parameter must be set before the onset of the planning that determines the

amount of replanning required. For example, in a fixed bundle reset strategy, the

team instantiates a 𝑛𝐵𝑢𝑛𝑑𝑙𝑒𝑅𝑒𝑠𝑒𝑡 parameter to determine the number of tasks that

are removed (or kept) after each round of Bundle Build. In addition, in the team-

wide replan, a 𝜏𝑟𝑒𝑝𝑙𝑎𝑛 is set to determine the allowable amount of replanning to meet

a response time requirement.

At each round of task allocation the sequence of calculations are: the agent checks

for any incoming messages from neighbors, executes the conflict resolution procedure

for each message, runs Bundle Build to arrive at a new allocation, and then broadcasts

the allocation to the rest of the team. Since the algorithms presented in this paper are

variations of the synchronous CBBA, each agent waits a fixed listening time to make

sure that all agents have sent and received their allocations. This built in waiting is

a cost of synchronous task allocation as each agent must ensure that the information

has successfully been transmitted and received. For many of the task allocation

simulations, perfect communication is assumed (no contention or edge loss), however,

Chapter 5 explores the effects of imperfect communication due to congestion and

multi-hop communication. To determine team-wide consensus, the agents wait for

2𝐷 rounds of unchanging allocations to terminate the algorithm. This 2𝐷 wait is to

ensure that there is no delay of any disagreeing agents. However, if the agents all

agree after 2𝐷 rounds of communication, the they will remain in agreement (unless

a new task arrives) and the team can conclude that there is global agreement on a

conflict-free allocation.

6.1.3 Dynamic Tasks and Robots

The reward function being optimized by the team is a time-sensitive reward function

where each task has an intrinsic reward value 𝑅𝑗 and time-discounted reward 𝜆𝑗. Task
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reward and time-sensitivity values can be randomly generated to explore variety in

relative value of new tasks. For most experiments, new tasks are designed to have

value that is relatively large, such that 𝑆(𝑇 ∗) ≈ 𝑆(𝑝𝑖). Agents are required to visit

each task in their path for the task to be completed and receive the value of the

reward, moving with constant velocity.

An issue with dynamic agents is that agents may service tasks while the bidding

process is in progress. To deal with this, agents communicate already serviced tasks

by bidding 𝑦𝑖𝑗 = ∞ and updating its information arrays to reflect the new value.

In addition, the bundle of the agent must be updated, so that the task is at the

beginning of the bundle by setting 𝑏𝑖(𝑡) = 𝑗 ⊕ 𝑏𝑖 . In this way, the bundle’s bids are

still monotonically decreasing and the rest of the team will not bid on the serviced

task.

Another issue that may occur with robots moving while bidding is churning and

dead-lock, with multiple agents servicing a task before CBBA has converged to a

conflict-free solution. To deal with this issue, agents are required to lock-in any task

(by bidding 𝑦𝑖𝑗 = ∞) before beginning its trajectory to the new task. If the team has

not converged yet, the agent must wait until consensus is reached, before locking-in

the next task. In practice, highly dynamic agents can cause for bids to be outdated

and thus the speed of the agents are chosen to be slow compared to the rate of

convergence of CBBA and that of new tasks.

6.2 Raspberry Pi Experiments

Raspberry Pi 3’s (Figure 6-5 and 6-4) were used to experiment with 802.11 communi-

cation for consensus missions, testing high rate communication, and then implemented

CBBA using the Raspberry Pi’s to test dynamic task allocation on real hardware. In

implementing synchronous algorithms, such as CBBA, and algorithms that depend

on communication delays, such as the subteam formation algorithm, an understand-

ing if required as to the realistic rates of communication for multi-agent teams. The

challenge with determining these rates is that the measurement of interest is the rate
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Figure 6-4: Raspberry Pis placed in Building 32 for consensus experiments

Figure 6-5: Raspberry Pis in Building 31 for CBBA experiment tests
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at which information is reliably received by teammates. For example, if a radio can

send out pulses at 1 Gbps but only 1% of those messages are received it is hard to

judge whether that is a “faster” radio than one that communicates at 10Mbps with

100% reliability. Since consensus algorithms rely on information being received accu-

rately by all agents, the quantity of interest for these algorithms is the rate at which

agents can reliably receive information. Another difficulty is that the rates adver-

tised on most commercial radios, such as WiFi radios, only advertise their physical

communication rate, i.e., the rate at which they can communicate to another radio in

ideal conditions. However, when radios are separated to further distances, obstacles

placed in its way, and multiple agents sharing the channel, the actual rate of reliable

communication greatly degrade. In addition, many of the rates advertised are rated

for infrastructure mode, where a central router is assumed to collect the messages

from each radio and then route the messages to the target recipient. However, ad-hoc

operating conditions are rarely rated and usually use much slower rates. The goal

of the Raspberry Pi experiments were to accurately measure the actual reliability of

ad-hoc networks using WiFi and then the effects on consensus algorithms such as

leader election/max-consensus and then subsequently task allocation algorithms that

rely on consensus, such as CBBA.

6.2.1 Consensus Experiments

In the consensus experiments, eight Raspberry Pi nodes were placed along MIT Build-

ing 32’s 6th floor in a formation such multiple hops of communication would be re-

quired to pass a message from one end of the team to the other. In these experiments,

a leader election algorithm was used to track a dynamic state of a leader node. In

this case, the leader state would increase its agent ID at a rate 𝑟 such that:

𝑑𝑥𝐿

𝑑𝑡
= 𝑟 (6.1)
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the goal of the rest of the team was to track the ID of the leader by a simple max-

consensus where:

𝑥𝑖(𝑡) = max
𝑗∈𝑁𝑖

𝑥𝑗(𝑡) (6.2)

The speed of communication propagation through the network is measured by its

ability to effectively track the changing state of the leader node.

Each Raspberry Pi runs a LeaderElection node which sends messages, receives in-

coming messages, and updates its own state. This is implemented using three threads

to ensure that no process is slowing the other. The send and receive threads inter-

face with the WiFi dongle using the Socket module, messaging using User Datagram

Protocol (UDP). UDP was chosen for these algorithms because it does not require

acknowledgment from the receiver, something that is impossible if attempting to

broadcast a message without knowledge of the desired recipient, as is this case in

many distributed robotics application. Instead, requiring agents to send and receive

acknowledgment from each recipient increases the message delays and increases the

overall message traffic. In addition, for teams with dynamic number of agents (agents

entering or exiting the system), there is an advantage to having a communication

system that is teammate agnostic, simply broadcasting state information without

requiring knowledge of the actual teammates participating in consensus.

6.2.2 CBBA Experiments

CBBA with Partial Replan is implemented on the network of 4 Raspberry Pi’s to

confirm that CBBA-PR converges to a conflict free solution with a convergence speed

related to the number of tasks reset. Since the simulator code is written to be reused

on the Raspberry Pi’s, little modification needed to be made to run on the Raspberry

Pi’s. One main consideration was that the agents must be synchronized, thus a

waiting period is included to ensure that bids are received by each agent and conflict

resolution is completed. In addition, the agents keep track of their previous allocation

to count the number of rounds of CBBA that have passed without any changes. CBBA

only terminates when 𝐷+1 rounds of CBBA occur without any changes. The number

98



Figure 6-6: Box-and-whisker plot of various runs of CBBA-PR for a varying number of global
tasks reset during the replan phase. The number of rounds bidding until the team converges on a
new conflict-free allocation increased as the number of team tasks are reset.

of tasks were limited due to computation limitations for the agents, namely that the

amount of time to compute all possible task allocations at a given Bundle Build lead

to long auction rounds, and a lengthy CBBA convergence. In reality, faster computers

can be used onboard to speed the computation of possible allocations. In addition,

if tasks are known a priori, cost tables can be computed for all possible allocations,

however the space requirement to store the cost matrix is exponential in number of

tasks. Figure 6-6 shows the replan times for CBBA-PR in 100 task configurations.

In each task configuration, CBBA-PR is run multiple times, each time the number

of tasks reset at the time of task discovery is varied at each run of CBBA. As the

number of tasks reset increases, so too the number of rounds required by the team to

reach consensus. The results in these experiments both validate that CBBA-PR can

converge to a conflict-free solution, and the that convergence is proportional to the

number of tasks reset.
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6.3 Summary

In this chapter, the software and hardware used throughout this thesis were described,

including key implementation details such as time-resolution, medium access control,

and dynamic agents for the simulator and details of the consensus module for the

Raspberry Pi’s. As both the Raspberry Pis and Python simulator were used inter-

changeably in testing the planning algorithms, it was very beneficial to have core set

of code that could be tested easily in both simulation and hardware. The simulations

allowed for rapid testing and large scaling of tasks and agents. While the hardware

experiments, grounded the simulations in reality by providing realistic delays and

constraints to the simulator. Future integration of these planning algorithms with a

robot’s perception, control, and motion modules will provide an even more complete

testing environment for the efficacy of these replanning algorithms.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis extended the decentralized CBBA algorithm [19] to allow a team of agents

to allocate new tasks that arrive after having initially allocated a set of time-sensitive

tasks. Recent work has focused either on centralized dynamic routing algorithms or

decentralized dynamic assignment problems where agents can independently assign

tasks. This thesis specifically explored algorithms that can be applied to score func-

tions that are combinatorial in nature. The main approach of CBBA with Partial

Replan is to (1) allow variable amounts of resetting depending on the mission settings

and (2) reusing the solution and bids from the original allocation problem solved by

the agents. A proof of convergence was provided for the bundle resetting algorithm

which then motivated a strategy of resetting the team-wide lowest bid tasks. This

thesis also explored alternative strategies for allocating new tasks and investigated

the impact that communication has on the team’s ability to run consensus.

This work also demonstrated the algorithms and theory presented in simulation

and hardware experiments to further validate the contributions of the work. Specif-

ically, dynamic task allocation simulations were used to test replanning algorithms

on a wide variety of task settings, while enabling simulations with a large number

of agents and tasks. Raspberry Pi experiments confirmed the real-world usability

of CBBA-PR and provided real-world communication data that reflected congestion
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and multi-hop conditions.

7.2 Future Work

While this work provided algorithms for dynamic tasks, additional levels of dynamics

must be addressed by decentralized task allocation. For example, new agents may

enter the team, allowing for drastically different allocations and team capabilities.

Likewise, in hostile environments, it is common for agents to exit the mission or lose

connectivity with the team. Dynamic task allocation algorithms should be able to

handle these agent membership dynamics. Further dynamics that could be considered

in decentralized task allocation include time-dependent task value functions, dynamic

agent capabilities (such as time-varying heterogeneity), and the agent’s own dynamics

as it services tasks during the planning.

In addition, while communication connectivity was addressed in [73], the conges-

tion issue and bandwidth-capacity is not explicitly considered in CBBA. Likewise,

many decentralized algorithms assume that the main limitation of communication is

the multi-hop connectivity, requiring a factor of 𝐷 communications to allow informa-

tion to propagate across the network. However, the degradation of networks due to

congestion poses an additional constraint the reliability of consensus algorithms such

as CBBA. As such, a future direction of this research includes a co-design of plan-

ning and communication algorithms, such that decentralized planning algorithms can

explicitly consider the bandwidth of the channel, limiting bids and agent communi-

cation to best utilize the shared channel, and likewise, communication protocols can

consider the functional use case of that channel by the team to optimize transmission

of information.
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