586 research outputs found

    Seamless connectivity:investigating implementation challenges of multibroker MQTT platform for smart environmental monitoring

    Get PDF
    Abstract. This thesis explores the performance and efficiency of MQTT-based infrastructure Internet of Things (IoT) sensor networks for smart environment. The study focuses on the impact of network latency and broker switching in distributed multi-broker MQTT platforms. The research involves three case studies: a cloud-based multi-broker deployment, a Local Area Network (LAN)-based multi-broker deployment, and a multi-layer LAN network-based multi-broker deployment. The research is guided by three objectives: quantifying and analyzing the latency of multi-broker MQTT platforms; investigating the benefits of distributed brokers for edge users; and assessing the impact of switching latency at applications. This thesis ultimately seeks to answer three key questions related to network and switching latency, the merits of distributed brokers, and the influence of switching latency on the reliability of end-user applications

    Even lower latency in IIoT: evaluation of QUIC in industrial IoT scenarios

    Get PDF
    In this paper we analyze the performance of QUIC as a transport alternative for Internet of Things (IoT) services based on the Message Queuing Telemetry Protocol (MQTT). QUIC is a novel protocol promoted by Google, and was originally conceived to tackle the limitations of the traditional Transmission Control Protocol (TCP), specifically aiming at the reduction of the latency caused by connection establishment. QUIC use in IoT environments is not widespread, and it is therefore interesting to characterize its performance when in over such scenarios. We used an emulation-based platform, where we integrated QUIC and MQTT (using GO-based implementations) and compared their combined performance with the that exhibited by the traditional TCP/TLS approach. We used Linux containers as end devices, and the ns-3 simulator to emulate different network technologies, such as WiFi, cellular, and satellite, and varying conditions. The results evince that QUIC is indeed an appropriate protocol to guarantee robust, secure, and low latency communications over IoT scenarios.The authors are grateful for the funding of the Industrial Doctorates Program from the University of Cantabria (Call 2020). This work has been partially supported by the Basque Government through the Elkartek program under the DIGITAL project (grant agreement number KK-2019/00095), and by the Spanish Government (Ministerio de EconomĂ­a y Competitividad, Fondo Europeo de Desarrollo Regional, FEDER) by means of the project FIERCE: Future Internet Enabled Resilient smart CitiEs (RTI2018-093475-AI00)

    Managing Event-Driven Applications in Heterogeneous Fog Infrastructures

    Get PDF
    The steady increase in digitalization propelled by the Internet of Things (IoT) has led to a deluge of generated data at unprecedented pace. Thereby, the promise to realize data-driven decision-making is a major innovation driver in a myriad of industries. Based on the widely used event processing paradigm, event-driven applications allow to analyze data in the form of event streams in order to extract relevant information in a timely manner. Most recently, graphical flow-based approaches in no-code event processing systems have been introduced to significantly lower technological entry barriers. This empowers non-technical citizen technologists to create event-driven applications comprised of multiple interconnected event-driven processing services. Still, today’s event-driven applications are focused on centralized cloud deployments that come with inevitable drawbacks, especially in the context of IoT scenarios that require fast results, are limited by the available bandwidth, or are bound by the regulations in terms of privacy and security. Despite recent advances in the area of fog computing which mitigate these shortcomings by extending the cloud and moving certain processing closer to the event source, these approaches are hardly established in existing systems. Inherent fog computing characteristics, especially the heterogeneity of resources alongside novel application management demands, particularly the aspects of geo-distribution and dynamic adaptation, pose challenges that are currently insufficiently addressed and hinder the transition to a next generation of no-code event processing systems. The contributions of this thesis enable citizen technologists to manage event-driven applications in heterogeneous fog infrastructures along the application life cycle. Therefore, an approach for a holistic application management is proposed which abstracts citizen technologists from underlying technicalities. This allows to evolve present event processing systems and advances the democratization of event-driven application management in fog computing. Individual contributions of this thesis are summarized as follows: 1. A model, manifested in a geo-distributed system architecture, to semantically describe characteristics specific to node resources, event-driven applications and their management to blend application-centric and infrastructure-centric realms. 2. Concepts for geo-distributed deployment and operation of event-driven applications alongside strategies for flexible event stream management. 3. A methodology to support the evolution of event-driven applications including methods to dynamically reconfigure, migrate and offload individual event-driven processing services at run-time. The contributions are introduced, applied and evaluated along two scenarios from the manufacturing and logistics domain

    Real-world Machine Learning Systems: A survey from a Data-Oriented Architecture Perspective

    Full text link
    Machine Learning models are being deployed as parts of real-world systems with the upsurge of interest in artificial intelligence. The design, implementation, and maintenance of such systems are challenged by real-world environments that produce larger amounts of heterogeneous data and users requiring increasingly faster responses with efficient resource consumption. These requirements push prevalent software architectures to the limit when deploying ML-based systems. Data-oriented Architecture (DOA) is an emerging concept that equips systems better for integrating ML models. DOA extends current architectures to create data-driven, loosely coupled, decentralised, open systems. Even though papers on deployed ML-based systems do not mention DOA, their authors made design decisions that implicitly follow DOA. The reasons why, how, and the extent to which DOA is adopted in these systems are unclear. Implicit design decisions limit the practitioners' knowledge of DOA to design ML-based systems in the real world. This paper answers these questions by surveying real-world deployments of ML-based systems. The survey shows the design decisions of the systems and the requirements these satisfy. Based on the survey findings, we also formulate practical advice to facilitate the deployment of ML-based systems. Finally, we outline open challenges to deploying DOA-based systems that integrate ML models.Comment: Under revie

    Advancements and Challenges in IoT Simulators: A Comprehensive Review

    Get PDF
    The Internet of Things (IoT) has emerged as an important concept, bridging the physical and digital worlds through interconnected devices. Although the idea of interconnected devices predates the term “Internet of Things”, which was coined in 1999 by Kevin Ashton, the vision of a seamlessly integrated world of devices has been accelerated by advancements in wireless technologies, cost-effective computing, and the ubiquity of mobile devices. This study aims to provide an in-depth review of existing and emerging IoT simulators focusing on their capabilities and real-world applications, and discuss the current challenges and future trends in the IoT simulation area. Despite substantial research in the IoT simulation domain, many studies have a narrow focus, leaving a gap in comprehensive reviews that consider broader IoT development metrics, such as device mobility, energy models, Software-Defined Networking (SDN), and scalability. Notably, there is a lack of literature examining IoT simulators’ capabilities in supporting renewable energy sources and their integration with Vehicular Ad-hoc Network (VANET) simulations. Our review seeks to address this gap, evaluating the ability of IoT simulators to simulate complex, large-scale IoT scenarios and meet specific developmental requirements, as well as examining the current challenges and future trends in the field of IoT simulation. Our systematic analysis has identified several significant gaps in the current literature. A primary concern is the lack of a generic simulator capable of effectively simulating various scenarios across different domains within the IoT environment. As a result, a comprehensive and versatile simulator is required to simulate the diverse scenarios occurring in IoT applications. Additionally, there is a notable gap in simulators that address specific security concerns, particularly battery depletion attacks, which are increasingly relevant in IoT systems. Furthermore, there is a need for further investigation and study regarding the integration of IoT simulators with traffic simulation for VANET environments. In addition, it is noteworthy that renewable energy sources are underrepresented in IoT simulations, despite an increasing global emphasis on environmental sustainability. As a result of these identified gaps, it is imperative to develop more advanced and adaptable IoT simulation tools that are designed to meet the multifaceted challenges and opportunities of the IoT domain

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio
    • …
    corecore