UNIVERSITY
OF OULU

FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Ramisha Munir Awan

SEAMLESS CONNECTIVITY: INVESTIGATING IMPLEMENTATION
CHALLENGES OF MULTIBROKER MQTT PLATFORM FOR SMART
ENVIRONMENTAL MONITORING

Master’s Thesis

Degree Programme in Computer Science and Engineering
June 2023

Awan R. (2023) Seamless Connectivity: Investigating Implementation Challenges of
Multibroker MQTT Platform for Smart Environmental Monitoring. University of Oulu,
Degree Programme in Computer Science and Engineering, 58 p.

ABSTRACT

This thesis explores the performance and efficiency of MQTT-based
infrastructure Internet of Things (IoT) sensor networks for smart environment.
The study focuses on the impact of network latency and broker switching
in distributed multi-broker MQTT platforms. The research involves three
case studies: a cloud-based multi-broker deployment, a Local Area Network
(LAN)-based multi-broker deployment, and a multi-layer LAN network-based
multi-broker deployment. The research is guided by three objectives: quantifying
and analyzing the latency of multi-broker MQTT platforms; investigating the
benefits of distributed brokers for edge users; and assessing the impact of
switching latency at applications. This thesis ultimately seeks to answer three
key questions related to network and switching latency, the merits of distributed
brokers, and the influence of switching latency on the reliability of end-user
applications.

TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION......uttiiiiiiiieiiiiiiiiee et 7
L1, Background............iviiiiiiiiiiiiieee e 7
1.2. Problem Statement............coooiiuiiiiiiiiiiiiiiiiiiiieece e 8
1.2 1. HyPOtheSiS: .euuuuueeeeiiiiiiiiiieeeeeeeeiiiee ettt e e e e e e eeeaaes 8
1.2.2. Objectives and Research Questions:...........cccevuveeiiiiineeiiiineeennnn. 8
1.3. Scope and Limitations:cccoeeeeereriieieeeeeiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeees 9
1.4. Organization of the ThesiS......cccoeeveiiiiiiiis 10
2. LITERATURE REVIEW ...t 11
2.1. Internet of Things (IoT) and Sensor Networksccceeeeiiiiiinnn. 11
2.1.1. Challenges of Achieving HRLL in Multibroker MQTT Platforms 11
2.1.2. 10T and Its Potential Impactccceeeiiiiiiiiiiiiiiiiiiiieeeeeeee, 12
2.1.3. Intelligent Routing in IoT-Based Wireless Sensor Networks....... 13
2.2. Publish-Subscribe SYStEMSuveeeiiiiiiiiiieeeeeiiiiiie et 15
2.3. Advances in [0T System OptimizZationuveeeeeeeeiiiiiineeeeeeenennnnnn. 17
2.4, Fog-Based 0Tooiiiiiiiiii e 18
2.5. Optimizing Latency in Healthcare IoT: Leveraging MQTT Protocol....... 19
2.6. Performance Analysis of IoT SyStems.......ccccoeveiiiiiiiii.. 20
2.6.1. Latency Estimation in IoTccccccciiis 20
2.6.2. Energy Consumption in IoTccoeviiiiiiiiiiiiiniiiiiiiiieie e, 21
2.6.3. Message Loss in IoT and Its Relevance to Seamless Connectivity 22
2.7, MQTT ProtoCOlcuuiveiieiiei e 23
2.8. Broker-Based Communication SyStemS.........cc.uuuuieeeeieiiiiiiiineeeeeenennnnnn. 24
2.9. Prior Research on Broker Switching, Latency Calculation, and
MESSAZE LLOSS .ottt 25
3. SYSTEM MODEL AND METHODOLOGYccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiinenenes 27
3.1, MeEthOAOLIOZY ..uneeiiiieeeiii e e e e e e 27
3.1.1. Case Study 1: Cloud-Based Multi-Broker Deployment.............. 27
3.1.2. Case Study 2: Local Area Network(LAN)-Based Multi-Broker
Deploymentcoeeeeiiiiiiiiiieeeeiiiii e e 27
3.1.3. Case Study 3:Multi-Layer LAN Network Based Multi-Broker
DS 0] (0) 211157 1 | AR ORI 28
3.1.4. Fundamental Latency in Each Scenario..................occeviiinnne 28
3.1.5. Assumptions and COnSIraintscceeeeeeeeeerereeereeeeeeeeeeeeeeeenenenn. 30
3.1.6. Metrics for Performance Evaluationcccnn. 31
3.1.7. Implementation APProach...........ccouuuuiiereeriiiiiiiiiineeeeeiiiiiieeeenne 32
3.1.8. Optimized Methodology to Calculate Latency Calculation......... 32
4. SIMULATION AND EXPERIMENTAL SETUP.......cccccovviiiiiiiiiiiiiniiiinee 34
4.1. System DeSCIIPONuuuiiiiieiieee ettt 34

4.1.1. Hardware ArChIteCtUIE:........ouuiiniiniiiitie it ee e 34

4.2, SOftWAre ATCHITECTULEvvnenieeeeeee ettt e enaens 35

4.3. Hardware-Software INtegrationccoevvvviiiireeeeiiiiiiiiieee e 39
. RESULTS AND ANALYSIS .o 41
5.1, Test Case ANALYSIS ..vvveerriuireeiiiiiiiiiiie e e e e e e e e e e e e e e eeeeeee 41
5.1.1. Test Case: Cloud-Based Multi-Broker Deployment 41
5.1.2. Test Case: LAN-Based Multi-Broker Deployment™ 41

5.1.3. Test Case: Multi-Layer LAN Network Based Multi-Broker
DS 0] 10211153 1 | AP 43
5.2. Examining the Analytics from the Above TestsS..........cccevvuiiiirieeiienennnnn. 44
5.2.1. New Hypothesis Validation: Direct Client-To-Edge Connection. 46
. CONCLUSION AND FUTURE WORK ...t 48
6.1, CONCIUSION «..coeiiiiiiiiiiiiiiiiiii e e e e e 48
6.2. Final Remarksoooiiiiiiiiii e 49
6.3. Future Research DIr€Ctions...........ccouuuuiiiiieiiiiiiiiiiiiee e, 49
. REFERENCESooiiiiee et 50
. APPENDICESoiiiiii ettt 56
0.1. Migration of Microservices - Broker Container State Preservation 57
0.1.1. INErOAUCHION ..ttt 57
0.1.2. MethodOlOZY......coeeiiiiiiiiiiiee e 57
0.1.30 ReSUILS..ciiiiiiii e 57

0.1.4. CONCIUSION....uinintinee ettt e et e it e enas 58

FOREWORD

I express my gratitude to my supervisors, Susanna Pirttikangas and Lauri Loven, for
their unwavering support and the numerous hours they invested in supervising me.
Their advice and suggestions were invaluable in refining all aspects of my final work,
making the entire process smooth and enjoyable.

I am also deeply grateful to Timo Ojala, UBICOMP’S Interactive Edge research
group, and the University of Oulu for providing me with a valuable study opportunity
and an unforgettable life experience in Finland.

Furthermore, I extend my heartfelt thanks to my family and friends, whose

meticulous care and warm companionship made my two-year journey living abroad
truly special.

Oulu, June 16th, 2023

Ramisha Munir Awan

LIST OF ABBREVIATIONS AND SYMBOLS

MQTT Message Queuing Telemetry Transport
Pub-sub Publish and Subscribe

Cl Client

NL Newtrok Latency

SL Switching Latency

IoT Internet of things

LAN Local area network

WAN Wide area Network

HRLL High-reliability, low-latency

WSNss Wireless sensor Nertwork

QoS Quality of Service

CBR Cluster-based routing

VM Virtual Machines

SN Sensor Nodes

VR Virtual Reality

AR Augmented Reality

UA User application

CN Constraint network

PCB Printed Circuit Board

AQ Air Quality Detector Sensor

SD Sound Detection Module

TH Temperature and Humidity Sensor Module
KY light sensor module

L, Network Latency

L Switching Latency

L, Publisher network latency

L, Internet latency to the main server

L. Central server latency

Ly Transmission latency back to the client
L, Client network latency

L. Central server latency - Multi-layer

Ly Transmission latency back to the client- Multi-layer
L, Client network latency- Multi-layer

TL Total Latency

ToMR Time of Message Receipt (Client)

ToMS Time of Message Sending (Synced with Client’s Time)

1. INTRODUCTION

1.1. Background

The Internet of Things (IoT) has experienced significant growth in various domains,
including healthcare, smart cities, and transportation [1]. IoT relies on a vast network
of interconnected devices, commonly referred to as sensors, which generate and
transmit data. One of the primary challenges in IoT systems is the efficient and
reliable distribution of data from sensors to subscribers. This is typically achieved
using a broker-based communication model, wherein sensors publish data to brokers,
which then distribute the data to the subscribers [2].

Mobile users play an essential role in the IoT ecosystem, consuming data from
sensors and interacting with 10T devices. As these users move within the coverage
areas of different brokers, it is crucial to ensure that they maintain connectivity to the
nearest broker to minimize latency and message loss. This process of disconnecting
from one broker and connecting to another is known as broker switching. However,
during the broker switching process, there may be a delay in receiving data, which can
significantly affect the overall performance and user experience.

Previous studies have investigated various aspects of IoT communication, such
as data dissemination, network topology, and quality of service (QoS) [3]. However,
there is limited research focusing on the specific problem of broker switching and its
impact on latency and message loss in dynamic IoT environments. Therefore, this
thesis aims to evaluate the latency during the broker switching process and propose
potential improvements and solutions.

While broker-based communication models have been extensively studied, the
rapid evolution of IoT technology and the increasing number of mobile users
necessitate continuous research and development to address new challenges. Many
studies have explored edge and fog computing to improve IoT systems’ scalability,
efficiency, and reliability [4]. Edge computing brings data processing closer to the
source, minimizing latency and improving the overall user experience [5]. Fog
computing extends the concept of edge computing by incorporating hierarchical
processing and storage capabilities [6].

In 2019, a survey described edge computing and multi-access edge computing
(MEC) to reduce latency and improve the user experience [7]. Similarly, another
study investigated the use of machine learning algorithms to predict mobile user
movements [8]. To address the aforementioned research gaps, there is a need for
studying seamless handover between brokers and dynamic broker allocation based on
the user’s location and mobility patterns and proactively initiating broker switching
processes, minimizing latency and ensuring continuous connectivity.

These recent studies highlight the ongoing efforts to address the challenges
associated with broker switching in dynamic [oT environments. However, further

research is necessary to develop more efficient, secure, and scalable solutions that can
adapt to the ever-evolving IoT landscape.

1.2. Problem Statement

The current state of the art in smart environmental monitoring relies on a multi-broker
MQTT platform. However, this platform has several implementation challenges,
including high switching latency and scalability. This research will investigate these
challenges and analyze their impact on the performance and scalability of multi-broker
MQTT platforms for smart environmental monitoring.

1.2.1. Hypothesis:

The main hypothesis of this thesis is that multi-MQTT broker platforms will have
similar switching delays behavior as with traditional network delays at both the cloud
and edge levels. After validation of this hypothesis, the performance implications of
distributed multi-edge MQTT brokers and the potential considerations for deploying
end-user applications will be evaluated.

1.2.2. Objectives and Research Questions:

The primary objectives of this research are:

1. Measurement and Analysis of Latency (Network and Switching): The first
objective of this study is to measure and analyze the latency of multi-broker
MQTT platforms. This objective will be achieved through the following tasks:

* Conducting experiments to quantify the latency in different scenarios.

* Comparing and evaluating the latency performance of various multi-broker
MQTT platforms. The findings of this objective will provide insights into
the actual latency experienced in multi-broker MQTT platforms.

2. Assessment of Hypothesis in terms of Latency and System Performance:

The second objective focuses on assessing the impact of switching latency on
the performance of multi-broker MQTT platforms. The following tasks will be
undertaken to achieve this objective:

* Evaluating the performance metrics, using the message travel time of multi-
broker MQTT platforms under device performance.

* Investigating the relationship between switching latency and the overall
performance and responsiveness of the system. Through this objective, the
research will provide an understanding of how switching latency influences
the performance of multi-broker MQTT platforms and the feasibility of
end-user application.

From these objectives, the following research questions will be explored.

(a) What is the network and switching latency of multi-broker MQTT
platforms?

(b) How does switching latency impact the reliability of end-user applications
on multi-broker MQTT platforms?

By accomplishing these objectives, this research study aims to contribute to
the knowledge and understanding of switching latency in multi-broker MQTT
platforms, explore the benefits of distributed brokers for end users, and evaluate
the impact of switching latency on the overall performance of multi-broker
MQTT platforms.

1.3. Scope and Limitations:

This research aims to thoroughly examine the challenges related to switching latency
and scalability in multi-broker MQTT platforms employed for smart environmental
monitoring. The scope of the study is confined to the following aspects:

* Latency Analysis: The study will focus primarily on the latency aspects of
multi-broker MQTT platforms. This includes both network and switching
latency. Various multi-broker MQTT platforms will be explored and their
latencies will be measured, compared, and evaluated under different scenarios.

* Distributed Brokers: The benefits offered by distributed brokers for the end
users will be carried out within the context of multi-broker MQTT platforms.
The impact of these distributed brokers on the reliability, responsiveness, and
scalability of the platform will also be explored. However, the study will not
venture into the specific implementation details of these distributed systems.

* Switching Latency Impact: The research will investigate the impact of
switching latency on the overall system performance and reliability. The
relation between switching latency and overall system responsiveness will be
studied, along with the implications for end-user applications. Specific device
performance scenarios will be taken into account for these investigations.

* End-User Applications: Although the study will evaluate the potential
implications of the distributed multi-edge MQTT brokers on end-user
applications, the development or implementation of these applications is not
within the scope of the research.

The limitations of this study include: While this study aims to provide valuable
insights into the challenges and performance aspects of multi-broker MQTT platforms
in smart environmental monitoring, it is essential to acknowledge the following
limitations:

1. The study will not evaluate the impact of other factors that could affect system
performance, such as hardware limitations.

10

2. The study will not address issues related to security or privacy in [oT systems.

3. The study will be limited by the available resources and time frame for
conducting the research.

Despite these limitations, this study provides valuable insights into switching
latency, benefits of distributed brokers, and the impact of switching latency on
performance on edge applications deployed on multi-broker MQTT platforms.

1.4. Organization of the Thesis

Chapter 2 provides an extensive review of the relevant literature, discussing the current
state of IoT and sensor networks, the role of brokers in communication systems,
handover mechanisms in mobile networks, and previous research addressing broker
switching.

Chapter 3 details the system model and methodology used in the research. It
includes three case studies: a cloud-based multi-broker deployment, a LAN-based
multi-broker deployment, and a multi-layer LAN network-based multi-broker
deployment. The methodology involves implementing the system model, collecting
data, analyzing the data, and using an optimized approach to calculate latency. The
assumptions and constraints section discusses the factors that may affect the system’s
behavior. Metrics for evaluation, such as are defined, and the research methodology
outlines the approach taken to address the research questions.

Chapter 4 describes the simulation and experimental setup used to evaluate the
latency during broker switching. This includes the simulation environment, broker
and sensor configuration, and test scenarios.

Chapter 5 presents the results and analysis of the research. The latency analysis
examines the time taken for a user to disconnect from one broker and connect to a new
broker. Factors affecting performance are discussed, and the findings are compared
with existing approaches in the literature.

Chapter 6 concludes the thesis by summarizing the main findings and discussing the
implications of the research. The latency broker switching are evaluated, and potential
improvements and solutions are proposed. Possible future research directions include
investigating more advanced broker selection algorithms, exploring other handover
techniques, and conducting experiments with larger-scale 10T systems and different
scenarios.

11

2. LITERATURE REVIEW
2.1. Internet of Things (IoT) and Sensor Networks

The Internet of Things (IoT) represents a paradigm shift in technology, enabling
countless devices and sensors to communicate and exchange data over the internet [9].
The primary aim of IoT is to streamline data sharing, analysis, and automation across
various applications such as environmental monitoring, healthcare, smart homes,

security, and industrial automation [10].

The Significance of Sensor Networks in IoT: Sensor networks play an important
role within the Internet of Things (IoT) context, consisting of spatially distributed
sensors cooperatively monitoring physical or environmental conditions [11]. The data
they collect is transmitted via [oT platforms, commonly employing a broker-based
communication model [12].

MQTT Protocol in Dynamic IoT Environments: The MQTT (Message Queuing
Telemetry Transport) protocol is one of the most prevalent protocols in this model
due to its efficiency and reliability [13]. In dynamic IoT environments with mobile
users, maintaining seamless connectivity to the nearest broker is crucial, typically
achieved through broker switching. However, broker switching can introduce latency
and message loss, adversely affecting the user experience and overall system efficiency.
Therefore, the impact of network latency and the switching process when changing
brokers in dynamic [oT environments requires thorough investigation and research.

Impact of Network Latency and Broker Switching: The integration of mobile
users into [oT environments adds complexity, introducing variables such as fluctuating
connection quality and changes in proximity to different brokers [14]. Thus, effective
handover mechanisms in mobile networks [15] are essential to maintain seamless
connectivity and optimal system performance. Despite the potential benefits of
IoT and sensor networks across various fields, they face implementation challenges,
particularly in maintaining seamless connectivity in dynamic environments [16]. This
research aims to address these challenges by focusing on broker switching and its
impact on latency and message loss. It is worth noting that other factors, such as
network congestion and hardware limitations, could also impact system performance
[16]. Additionally, this research does not address security or privacy issues in IoT
systems, which are significant areas of concern [17].

2.1.1. Challenges of Achieving HRLL in Multibroker MQTT Platforms

This section will discuss the performance constraints and high-reliability, low-latency
(HRLL) requirements of wireless IoT networks. In the domain of IoT communication,
an exhaustive review conducted by the authors [18] focused on wireless 10T network
communication and performance constraints related to reliability and latency. Their
comprehensive analysis explored strategies to achieve high-reliability and low-latency
(HRLL) in wireless IoT networks across the physical, MAC, and network layers. By
conducting a meticulous review of over 150 articles, the authors aimed to uncover
the fundamental performance limitations and potential strategies to address these
limitations, thereby achieving HRLL in wireless IoT networks. The review examined

12

various techniques employed in practical scenarios such as industrial automation, V2X
communication, and smart grids. It also delved into the standardization efforts for
HRLL IoT communication. Additionally, the authors evaluated information-theoretic
limits for HRLL communications at the physical layer, and optimization strategies
such as power resource management and spectrum optimization for the MAC layer.
At the network layer, they considered optimized network structure, efficient traffic
allocation, and coding schemes to reduce latency and improve reliability. The authors
concluded that an ideal scenario for HRLL IoT communication should include factors
such as low latency, high reliability, increased throughput, fading robust capability,
and support for mobilization. This holistic and in-depth review offers valuable insights
for our study, providing a robust understanding of the performance limitations and
potential solutions, which will be integral to our investigation on broker-switching in
multi-broker MQTT platforms within dynamic IoT environments.

2.1.2. IoT and Its Potential Impact

A collaborative paper by Silverio-Fernandez et al. [19] offers an expansive overview
of IoT and its potential impact on various life domains. The authors portray the
IoT as a complex network of interconnected "things," including machines, objects,
environments, and infrastructures. They emphasize the role of embedded processing,
which provides intelligence to these smart machines, enabling them to generate vast
amounts of data. This data is then processed to yield valuable insights, enable useful
actions, and enhance control over various aspects of our lives. The overarching
objective is to facilitate an easier, safer, and more environmentally friendly way of
living. This comprehensive perspective on IoT is highly relevant to our study as
we delve into exploring the impact of IoT on environmental monitoring using sensor
networks and MQTT platforms.

Clear Definition of Smart Devices in IoT: The authors of paper [20] address the
issue of inconsistent terminology frequently encountered in literature when describing
devices in the IoT domain. They propose the term "smart device" as a starting point
to establish a clear definition for devices in IoT. Through a systematic review of
the existing literature, they explore the concept and key features of smart devices,
highlighting their role in IoT. The authors identify smart devices as the primary
interconnected objects in [0T, playing a pivotal role in the operation of this paradigm.
The definition of a smart device is defined by three key features: context-awareness,
autonomy, and device connectivity. Additionally, they mention other features like
mobility and user interaction, which were less prominent in the literature and thus
not considered essential due to the nature of IoT as a network primarily focused on
device-to-device connectivity. This understanding and categorization of smart devices
is important for our research, which relies on smart sensors and their communication
within an [oT paradigm.

Implications and Challenges of IoT Applications Rahmani et al. [21] present
a refined view of the IoT, focusing on its implications and challenges. They
discuss the potential benefits, open issues, threats, and limitations associated with
IoT applications. The authors place a strong emphasis on factors such as cost, real-
time responsiveness, and security when evaluating and developing 10T applications.

13

Through a comprehensive assessment of existing literature, which involved reviewing
numerous articles and addressing six analytical questions, they found that the most
influential factor for evaluating IoT applications is cost, mentioned in 79% of the
reviewed articles. Real-time responsiveness was emphasized in 64% of the articles,
while security and error issues were discussed in 57% of the reviewed articles. Their
approach to analyzing and categorizing the existing literature offers a useful framework
for evaluating the design and implementation of our proposed multi-broker MQTT
platform, particularly in terms of cost, responsiveness, and error handling.

Security and Privacy Challenges in IoT Security and privacy challenges in the IoT
domain are addressed in-depth by the researchers [22]. The authors emphasize that
despite the growing prevalence of IoT and its profound impact on various aspects of
human life, safeguarding user security and privacy continues to pose a significant
research challenge. They argue that conventional security solutions developed for
centralized and distributed systems are not directly suitable for IoT systems due to
their distinctive characteristics, such as intermittent connectivity, extensive scalability,
dynamic changes, and limited resources. In their study, the researchers provide an in-
depth overview of security and privacy within the context of IoT systems, identifying
four key characteristics that introduce unprecedented threats and challenges to existing
security solutions. These characteristics encompass scalability, connectivity, limited
resources, and dynamic changes. This exploration of security and privacy issues
is important for our study as it raises important considerations for the design and
implementation of our multi-broker MQTT platform in a dynamic IoT environment.

2.1.3. Intelligent Routing in IoT-Based Wireless Sensor Networks

The research work presented in paper [23] focuses on Wireless Sensor Networks
(WSN5s) in the context of IoT. WSNs are used for sensing environmental variables,
collecting data, and transmitting it to a base station for analysis. In IoT-based
WSNs, intelligent routing plays a crucial role in enhancing the Quality of Service
(QoS) in the network. The researchers propose a Neuro-Fuzzy Rule-Based Cluster
Formation and Routing Protocol specifically designed for efficient routing in IoT-based
WSNs. Experimental results demonstrate that proposed routing algorithm outperforms
existing approaches in terms of energy utilization, packet delivery ratio, delay, and
network lifetime. The findings from this research offer potential techniques for
improving the efficiency of sensor data routing in our study, which could help minimize
latency and message loss during broker switching.

The study presented in paper [24] introduces a novel three-factor authentication
scheme that generates session keys for WSNs. The security properties of the proposed
scheme are formally verified using Proverif, demonstrating its ability to maintain
security requirements. the informal analysis indicates that proposed scheme is practical
and fulfills general security needs. the proposed scheme excels in terms of security and
is well-suited for real-world applications. the performance is evaluated by conducting
simulations using NS-3 in an IoT environment. This focus on security in WSNs is
highly relevant to our research as it raises important considerations for maintaining
secure communications when implementing our multi-broker MQTT platform in a
dynamic IoT environment.

14

CBR-ICWSN: Cluster-Based Routing Protocol for ICWSN The paper by authors
[25] introduces a cluster-based routing (CBR) protocol called CBR-ICWSN for
information-centric wireless sensor networks (ICWSN) in IoT. The proposed protocol
utilizes a black widow optimization (BWO) based clustering technique to effectively
select optimal cluster heads (CHs). By leveraging Information-Centric Networking
(ICN) architecture and incorporating optimization techniques, the CBR-ICWSN
protocol enhances data access mechanisms, reliability during mobility events, and
reduces maximum delay in multthop communication. This paper provides useful
insights on optimization techniques that could be used in our research to reduce latency
and message loss during broker switching.

Efficient Routing for Wireless Sensor Network-Based IoT Applications The
research presented in paper [26] addresses the challenges faced by wireless sensor
network-based IoT applications, including end-to-end delay, packet loss, and reduced
node lifetime due to energy depletion. An efficient routing protocol is proposed to
tackle these challenges and enhance the Quality of Service (QoS) in the network.
The proposed routing protocol takes into account three factors: lifetime, reliability,
and traffic intensity at the next-hop node. These considerations are highly relevant
in our study as we explore the effects of broker switching on latency and network
latency. Moreover,[27] focuses on data dissemination in WSNs within an IoT system.
The proposed Optimized Energy Management Model for Data Dissemination (OEM-
DD) framework offers a novel approach to optimizing energy consumed during data
transmission among all nodes in an IoT system’s sensor network. This approach to
energy optimization is highly relevant to our study, which seeks to maintain efficient
and reliable communication in a dynamic IoT environment with mobile sensors,
especially during MQTT broker-switching events.

Lightweight Synchronization Algorithm for WSNs Paper [28] presents a
lightweight synchronization algorithm specifically designed for WSNs, demonstrating
its effectiveness in synchronizing data measurements on a per-hop basis without
causing significant overhead. Instead of synchronizing the clocks of the nodes
themselves, the algorithm focuses on the synchronization of measurements as they
are transmitted in data packets towards the sink node.

The proposed algorithm takes into account factors such as residual time (the
time period a data packet remains within a node), distance (number of hops to the
sink node), and average skew deviation. This methodology provides an innovative
perspective on ensuring synchronized data transmission within a WSN, thereby
contributing to the overall efficiency and reliability of the [oT system. In the context
of dynamic [oT environments where broker-switching events may introduce additional
complexity, such a lightweight synchronization approach may prove beneficial. The
focus on energy efficiency and robustness is particularly applicable to our study, as
these are key considerations in the optimization of MQTT broker-switching processes.
The in-depth exploration of 10T and sensor networks in this section provides a strong
foundation for our investigation into MQTT and broker-switching challenges in multi-
broker systems. It equips us with a comprehensive understanding of the existing
systems, their performance limitations, and potential solutions, enabling us to more
effectively address the specific issue of broker-switching latency and network latency
in dynamic loT environments. Additionally, it provides a broader context within which

15

we can position our research findings and solutions, emphasizing their significance and
potential impact in the realm of IoT communication.

To summarize, the collective body of work on IoT and sensor networks presents a
comprehensive overview of the existing methodologies, applications, challenges, and
future directions in the domain. It highlights the complexity of IoT ecosystems, the
integral role of smart devices within these systems, the significant factors influencing
the evaluation of IoT applications, and the crucial importance of security and privacy
in the IoT realm. Additionally, it underlines the significance of efficient routing and
secure communications in IoT-based WSNs, emphasizing the need for innovative
protocols and strategies to enhance data access mechanisms, reliability, and energy
efficiency in the face of mobility events and dynamic environmental conditions.
These insights serve as the foundation for the subsequent sections of this study,
which delve into the refinement of MQTT, a publish-subscribe protocol central to
IoT communication, and broker-switching in multi-broker MQTT platforms within
dynamic IoT environments. Understanding the performance limitations and potential
solutions across the three core network layers (physical, MAC, and network layers), as
well as the unique characteristics and challenges posed by IoT systems and loT-based
WSNs, will enable us to develop a comprehensive and effective framework for broker-
switching that addresses the key issues of latency, message loss, and overall system
reliability. Moreover, the broad overview of IoT presented in this section will allow
us to contextualize our research findings and solutions within the wider IoT landscape,
and effectively communicate the significance and potential impact of our work.

2.2. Publish-Subscribe Systems

This section reviews relevant literature that explores various aspects of publish-
subscribe systems and their applicability to the research topic of investigating
implementation challenges of a multibroker MQTT platform for smart environmental
monitoring.

A critical survey and taxonomy of publish-subscribe systems are provided in [29].
This study focuses on various design features and technologies employed in publish-
subscribe systems, including message queues, clusters, databases, message delivery
policies, federations of brokers, security services, communication protocols, and
streaming APIs. The concepts of message queuing and publish-subscribe systems are
discussed along with publish-subscribe protocols for cloud and IoT. The evaluation
focuses on seven state-of-the-art open-source systems: Apache Kafka, Orion-LD,
RabbitMQ, Pushpin, Stellio, Scorpio, and Faye. Understanding the design features
and technologies of publish-subscribe systems can help in identifying the most suitable
components and protocols to minimize latency.

In the study presented in [30], a security framework for topic-based
publish/subscribe systems in the IoT is introduced. Although the primary focus
is on security and privacy at the broker level, the framework’s loose coupling and
attribute-based encryption (ABE) can be leveraged to ensure secure and authorized
data transmission during the broker switching process. By incorporating ABE, fine-
grained access control can be achieved based on users’ attributes and data, allowing
only authorized users with specific attributes to access the data. This attribute-

16

based approach can be utilized to enhance the security and privacy aspects of broker
switching in the multibroker MQTT platform.

Another study [31] proposes a hierarchical architecture for publish/subscribe
systems, consisting of a back-end big data cluster and a distributed broker network.
This architecture can be adapted to manage user subscriptions and facilitate the
delivery process in a multibroker MQTT platform. The optimization problem
presented in the paper aims to minimize the maximum load on brokers, which is
vital for efficient broker switching. By leveraging the concepts of initial placement
of brokers, dynamic subscriber migration, and occasional shuffles, the proposed
optimization approach can help provide basis for building MQTT platform.

In [32], the challenges of authentication and confidentiality in content-based
publish/subscribe systems are addressed. Although the study primarily focuses on
content-based routing, the proposed approach for ensuring authentication of publishers
and subscribers and maintaining event confidentiality can be adapted to enhance the
security and privacy aspects of the broker switching process.

Dynamic entity summarization in publish/subscribe systems is discussed in [33],
which presents an abstractive publish/subscribe summarization system for dynamic
IoT environments. While abstraction may introduce some latency, it significantly
reduces the number of notifications. Incorporating the proposed abstractive
summarization system can help minimize the message volume.

The study described in [34] introduces a peer-to-peer type of topic-based
publish/subscribe model. Although the focus is on decentralized information
exchange, the prevention of unauthorized information flow and illegal object delivery
can be relevant to the security aspects. The TOBS ((topics-of-objects—based
synchronization)) protocol proposed in the paper can ensure that only authorized
objects are delivered to target peers, aligning with the objective of maintaining secure
and reliable connections.

Information-Centric Networking (ICN) is explored in the context of IoT in [35].
The paper discusses the advantages of request-driven nature and unsolicited link-
local signaling in restricting attack surface while enhancing responsiveness. The
HoP-and-Pull (HoPP) publish-subscribe scheme, designed for IoT scenarios with low-
power and lossy wireless networks, can provide insights into efficient and reliable
data transmission. The evaluation of HoPP in different scenarios can inform the
development of efficient multibroker MQTT platform.

Structured peer-to-peer networks, specifically distributed hash tables (DHTs),
are investigated for decentralized and scalable publish/subscribe systems in [36].
The authors proposed OpenPubSub is an innovative peer-to-peer content-based
publish/subscribe system that operates on an approximate semantic framework. It
employs a hybrid event routing model that merges rendezvous routing and gossiping
within a structured peer-to-peer network. Distinct from conventional logical key
spaces, the network is constructed using a high-dimensional semantic vector space.
The experimental results demonstrate the effectiveness of proposed approach. By
employing rendezvous-based routing, the system achieves recall rates of up to 54% and
simultaneously reduces messaging overhead by 44%. Furthermore, the hybrid routing
approach maintains recall rates of up to 43.8%, with a messaging overhead reduction
of 59%. These results can be valuable in optimizing the efficiency and reliability in
multibroker MQTT platform.

17

In [37], the limitations of centralized architectures in publish-subscribe messaging
models are addressed by proposing Trinity, a distributed publish-subscribe broker
with Byzantine fault tolerance and blockchain-based immutability. Trinity ensures
fault tolerance and data integrity by distributing data published by publishers to all
brokers using blockchain technology. Leveraging consensus protocols and distributed
ledger technology, Trinity enhances the security and reliability aspects of the publish-
subscribe messaging model. The concepts presented in this study can be applied to
ensure secure and reliable data transmission.

The PoSSUM system, introduced in [38], aims to provide user-friendly entity
summaries in publish/subscribe systems. By incorporating data integration, diverse
entity summarization, reasoning rules, and a Triple2Rank scoring mechanism,
PoSSUM achieves significant message reduction. The evaluation results demonstrate
the effectiveness of PoOSSUM in providing high-quality entity summaries. Adopting
the entity-centric approach and diverse summarization techniques can be helpful in
building multibroker MQTT platform.

Overall, the reviewed literature on publish-subscribe systems provides insights into
various aspects of secure data transmission, latency reduction, message loss mitigation,
and decentralized architectures. By incorporating relevant concepts and techniques
from these studies, the implementation challenges of a multibroker MQTT platform
for smart environmental monitoring can be better addressed, enhancing the seamless
connectivity and overall system performance.

2.3. Advances in IoT System Optimization

BMDD: Enhancing IoT Performance through Broker-less and Microservice
Architecture: A notable study [39] introduced BMDD (Broker-less and Micro service
architecture, Decentralized identity, and Dynamic transmission messages), an 10T
Platform specifically designed to tackle the challenges faced in IoT systems. BMDD
integrates broker-less and micro service architectural models, decentralized identity,
and dynamic message transmission to optimize system performance. The platform
addresses issues such as single failure points by decentralizing authentication and
implementing Role-Based Access Control (RBAC). Furthermore, BMDD leverages
the gRPC protocol and Kafka to enhance transmission rates while reducing power
consumption compared to traditional MQTT protocols. The development of a dynamic
message transmission mechanism enables seamless communication among devices.
Secure Device-to-Device Communications:The rapid deployment of IoT has led
to need for secure device-to-device (D2D) communications [40]. In this paper,
the authors propose secure versions of MQTT and MQTT-SN protocols, namely
SMQTT and SMQTT-SN, respectively, to address the security concern. The proposed
protocols enhance existing MQTT protocol by incorporating security features based
on Key/Ciphertext Policy-Attribute Based Encryption (KP/CP-ABE) using lightweight
Elliptic Curve Cryptography. To validate the feasibility of SMQTT and SMQTT-
SN for various IoT requirements, authors conduct simulations and evaluate their
performance. The simulations provide insights into security and efficiency of the
protocols in different [oT scenarios.

18

Edge-based MQTT Broker Cluster:This paper [41] focuses on implementation
of an edge-based MQTT broker cluster using lightweight container orchestration
and single board computers. The objective is to create a cost-effective, scalable,
and lightweight messaging solution for IoT devices in remote areas with limited
computational resources and network connectivity. To support distributed MQTT
brokers, an intermediate layer of cluster servers is developed to facilitate collective
processing. The paper also presents evaluations of the MQTT broker cluster, including
message throughput, end-to-end latency, and runtime performance. The results show
that broker cluster maintains an average latency of less than 10 milliseconds and a
worst-case latency of 52 milliseconds.

Brokerless Pub/Sub Architecture:This paper [42] focuses on a real-time water
quality monitoring system that utilizes a brokerless publisher-subscriber (pub/sub)
architecture framework. The system employs sensors to measure various water metrics
such as temperature, pH, and dissolved oxygen level. The collected data is stored in a
database and processed stochastically for further analysis of water quality. The authors
performed an experiment that compares proposed pub/sub architecture with MQTT.
The experiment demonstrates superior performance of proposed architecture in terms
of network latency and throughput, particularly for diverse message payload sizes.
SDN-Based Publish/Subscribe Brokers:This paper [43] focuses on efficient
dissemination of events in smart city applications using publish/subscribe brokers.
These brokers handle data from devices and distribute it to subscribers through named
logical channels called topics. The use of SDN allow load balancing between brokers
by switching topics. The paper proposed an algorithm for SDN controller that
minimizes load difference between brokers while adhering to a reconfiguration limit,
specifically for data and decision fusion applications. The problem of minimizing
load difference within a reconfiguration budget, with the constraint of indivisible
topics, is formulated as an Integer Linear Programming (ILP) problem. The proposed
heuristic is evaluated using realistic simulation traffic traces and compared against a
threshold-based baseline heuristic that relies on instantaneous statistics of topics. The
results show that proposed heuristic achieves significantly better load distribution, up
to 2000% improvement compared to baseline heuristic and reduces topic switching by
at least 27%.

2.4. Fog-Based IoT

The researchers [44] addresses challenge of delivering real-time and predictable
latency for IoT applications by integrating Cloud and Fog computing paradigms.
The goal is to minimize overall service request latency by scheduling IoT service
requests effectively. The researchers introduced a customized adaptation of the
genetic algorithm (GA) as an optimized approach to effectively schedule IoT service
requests. By considering the dynamic nature of the IoT environment, their simulation-
based evaluation demonstrated significant improvements in overall latency, ranging
from 21.9% to 46.6%, compared to other scheduling techniques. Additionally, the
proposed approach shows a substantial enhancement in meeting request deadlines,
with improvements of up to 31%.

19

Furthermore, Cui et al. [45] have examined the trade-off between latency and
energy consumption in mobile edge computing (MEC), which is relevant to broker
implementation challenges. They proposed a solution using the non-dominated
sorting genetic algorithm (NSGA-II) to optimize these objectives. Their experiments,
conducted on a simulator within the MATLAB platform, showcased the effectiveness
of their approach in achieving better latency-energy trade-offs and improving system
performance.

By considering the relevant research on fog-based IoT, latency estimation, and
energy consumption, this study aims to contribute to the existing literature by providing
insights into the specific challenges of broker implementation.

2.5. Optimizing Latency in Healthcare IoT: Leveraging MQTT Protocol

In the context of seamless connectivity for smart environmental monitoring, the
concept of publish-subscribe systems and knowing where they are critical in terms
of end applications (such as security and healthcare fields) is highly relevant. In
healthcare IoT applications, where real-time data is crucial, minimizing different types
of latency, including computation, network, and communication latency, becomes
essential. To address this, fog computing has been proposed as a solution to reduce
high latency. One approach [46] incorporates an analytical model and a hybrid
reinforcement machine learning algorithm, specifically support vector machines,
within a fog computing environment. This solution combines a fuzzy inference system
with reinforcement learning and neural network evaluation strategies for data packet
allocation and selection. The effectiveness of this approach was demonstrated using
iFogSim and Spyder simulators, resulting in a latency reduction of 97% compared to
state-of-the-art techniques.

Additionally, Alshammari et al. [47] propose a real-time remote patient monitoring
system based on IoT to meet the increasing need for high-quality healthcare in
overpopulated nations. The system leverages technological advancements to monitor
vital signs remotely, ensuring accuracy and reliability. In order to reduce latency in
transmitting real-time signals, the study adopts the MQTT protocol to transmit vital
signals from the proposed method to a website. By incorporating MQTT, the system
aims to optimize latency and facilitate timely data transmission for efficient remote
patient monitoring in healthcare 10T applications.

These healthcare-focused examples illustrate the importance of addressing latency
issues in IoT systems, including the use of protocols like MQTT to enable efficient
data transmission. By investigating the specific challenges of broker switching and its
impact on latency in IoT environments, this research aims to contribute to the existing
body of knowledge on IoT system performance and inform future research in this field.

20

2.6. Performance Analysis of IoT Systems
2.6.1. Latency Estimation in loT

In the context of our research on seamless connectivity and broker switching in IoT
environments, it is essential to understand the estimation and management of latency.
Latency refers to the time delay experienced in transmitting data between nodes in a
network, and it plays a crucial role in maintaining optimal system performance and
user experience. In this section, we review relevant literature on latency estimation in
IoT and explore approaches and techniques that can be applied to our specific problem.

One study by the author [48] focused on network delay components and developed a
framework for latency estimation in fog-based IoT using a network coordinate system
(NCS). This framework accurately predicts the delay between end-to-end nodes and
can be highly relevant to our research. The author conducted a case study involving 20
routers in different houses, observing an average round-trip time (RTT) of 500ms. Each
router in the house was considered a fog node, and the mean latency between nodes was
measured as 10ms, providing inter-fog latency data for experimentation. The author
implemented the Fog-based IoT latency estimation (FILE) algorithm, achieving 90%
accuracy with 13 or more landmarks. In comparison, the Global Network Positioning
(GNP) algorithm required 16 landmarks for similar accuracy. These findings highlight
the potential of latency estimation techniques in fog-based IoT scenarios and their
relevance to our investigation of broker switching and its impact on latency.

In another survey by the authors [49], the focus was on discussing approaches to
reduce latency in transmitting time-sensitive data in real-time for both cloud and IoT
devices. While this survey did not specifically address broker switching or dynamic
IoT environments, it provided valuable insights into techniques and technologies that
can be employed to reduce latencies in IoT and cloud applications. The systematic
review classified 23 approaches and 32 technologies associated with latency in the
cloud and IoT domains, shedding light on the current state of research in latency
reduction. By examining 112 papers on latency reduction, the survey identified
existing research gaps and works in latency reduction for IoT, further emphasizing
the importance of addressing latency issues in our research.

Addressing the high latency experienced by mobile devices (MDs) due to limited
computing power and reliance on remote clouds, a paper by the authors [50] proposed
the deployment of cloudlets (miniature clouds) at the network edge as a solution for
reducing service latency. This approach aligns with our investigation and its impact
on latency, as it aims to optimize latency performance in an IoT network. The
paper presented a novel binary-based differential evolution cuckoo search (BDECS)
algorithm for the selection of optimal permanent cloudlet deployment locations from a
multitude of access points (APs) in the network. Extensive simulations demonstrated
the superiority of the proposed algorithm in terms of minimizing cost and latency,
showcasing its potential relevance to our research objectives.

Furthermore, the design and implementation of a service placement architecture for
IoT, with a focus on the Service Orchestrator module, was discussed by Velasquez et al.
[51]. This architecture addresses the requirement for low latency in new services and
applications enabled by IoT and Smart Cities paradigms. The proposed smart service
placement system efficiently locates services in optimal positions based on specific

21

needs. While the study’s primary emphasis is not on broker switching or dynamic
IoT environments, the concept of optimizing service placement to achieve low latency
aligns with our research goals. The insights and implementation details provided in this
paper can contribute to our understanding of latency-related challenges and potential
solutions in the context of IoT and Smart Cities.

By exploring the literature on latency estimation in IoT and related domains, we
gain valuable insights into techniques, algorithms, and frameworks that can be adapted
and applied to our research on seamless connectivity, broker switching, and their
impact on latency in dynamic [oT environments. The studies reviewed highlight
the significance of addressing latency issues and provide a foundation for proposing
potential improvements and solutions in our investigation.

2.6.2. Energy Consumption in IoT

Energy consumption is a critical aspect to consider in the context of seamless
connectivity and the implementation of a multibroker MQTT platform for smart
environmental monitoring. In dynamic IoT environments with mobile users, where
broker switching is essential, energy efficiency plays a significant role in maintaining
optimal system performance. This section explores relevant research on energy
consumption in [oT and its implications for the proposed research topic.

One area of focus is the Clout of Things (CoT), which combines cloud computing
with IoT to provide ease of management, ubiquitous access, service creation,
discovery, and resource provisioning [52]. CoT offers potential benefits for energy
management in 10T systems, as efficient resource management frameworks can be
developed for IoT devices in the Fog. These frameworks can address resource
prediction, customer-based estimation and reservation, advance reservation, and
pricing based on customer characteristics. By optimizing resource utilization, energy
consumption can be effectively managed, contributing to more sustainable and efficient
energy usage in the [oT ecosystem.

Moreover, 10T technology has been applied to energy management systems to
monitor and optimize energy consumption [53]. These systems typically incorporate
microcontrollers, sensors, communication protocols, and cloud-based systems. By
leveraging 1oT technology, energy management practices can be enhanced, leading
to more efficient and sustainable energy usage. Within the context of seamless
connectivity, it is crucial to evaluate the energy consumption associated with broker
switching and determine methods to minimize it without compromising system
performance.

Energy consumption also comes into play when considering machine learning
(ML) algorithms for tasks such as intrusion detection in smart home systems [54].
Traditional cloud-based ML approaches may introduce privacy and latency concerns,
which can impact energy efficiency. Evaluating different ML approaches, including
cloud computing-based ML, edge computing-based ML, and IoT device-based ML,
becomes relevant for optimizing energy consumption during training and inference
phases. By selecting energy-efficient algorithms and deploying them on appropriate
devices, the overall energy consumption of the IoT system can be reduced.

22

To address the challenges of IoT sustainability and energy consumption, integrating
edge computing into IoT platforms has been proposed [55]. Edge computing moves
some of the computation closer to the edge devices, potentially reducing energy
consumption. By implementing edge computing paradigms, IoT devices can benefit
from localized processing and efficient resource utilization, leading to improved energy
efficiency in the system.

Furthermore, in the healthcare domain, addressing energy consumption issues in
wireless body sensor networks (WBSNs) is crucial for maintaining the longevity
of battery-powered devices [56]. The use of cognitive cooperative communication
schemes and cognitive master nodes can help mitigate energy wastage caused by
collisions and retransmission processes. By optimizing network architecture, reducing
collisions, and minimizing retransmission, energy consumption in WBSNs can be
significantly reduced, prolonging the battery life of the devices.

Considering the insights from studies on energy optimization in different IoT
applications, it is important to develop an energy-aware approach that minimizes
energy consumption during the broker switching process. This can involve leveraging
edge computing, optimizing resource utilization, and implementing energy-efficient
algorithms and protocols.

In summary, energy consumption in IoT is a critical factor to consider when
investigating the implementation challenges of a multibroker MQTT platform for
smart environmental monitoring. By drawing insights from the literature on energy
optimization in various IoT domains, it is possible to develop strategies that minimize
energy consumption during broker switching, contributing to the overall efficiency and
sustainability of the IoT system.

2.6.3. Message Loss in IoT and Its Relevance to Seamless Connectivity

In the context of seamless connectivity and broker switching in dynamic IoT
environments, the issue of message loss holds significant relevance. The reliable
and uninterrupted delivery of messages is crucial for maintaining an optimal user
experience and system efficiency. This section explores existing research on message
loss in [oT and its connection to the implementation challenges of a multibroker MQTT
platform for smart environmental monitoring.

One approach to address message loss is through the utilization of osmotic
computing principles, as highlighted in [57]. By creating a distributed network
of brokers that dynamically diffuse to edge resources when needed, proximity
is prioritized. This architecture optimizes responsiveness and reduces latency by
deploying new brokers closer to devices. Such an approach aligns with the objective of
maintaining continuous and reliable connections to the nearest broker in dynamic IoT
environments with mobile users. Wireless Sensor Networks (WSNs) face challenges
such as packet loss and end-to-end delays, as discussed in [58]. The proposed gateway-
to-gateway load balancing solution aims to reduce end-to-end delay and improve
packet delivery rate in a static-defined WSN cluster network. Although the study
focuses on static networks, the concept of load balancing can be relevant to broker
switching scenarios. By dynamically selecting the appropriate broker based on device

23

proximity and network conditions, it may be possible to minimize message loss and
improve overall performance.

Another research study by Khare et al. [59] specifically addresses message loss in
IoT environments caused by a high number of devices connected to a server. The
proposed solution integrates an Identity (ID) technique into the Message Queuing
Telemetry Transport Protocol (MQTT) push message service. By combining a
hexadecimal number with the actual message, data retrieval in edge devices becomes
possible in case of message loss. This approach demonstrates efficient transfer of the
first message and satisfactory latency, aligning with the goal of minimizing message
loss during broker switching.

Enhancing the robustness of MQTT protocol in mobile IoT networks is the focus
of [60]. The proposed architecture integrates a Disruption Tolerant Network (DTN)
approach to address the limitations of MQTT in handling device mobility and
disruptions in connections. Real device experiments validate the feasibility of this
architecture, showcasing low round-trip time and message loss percentages in different
network scenarios. This research provides insights into addressing message loss in
mobile IoT environments, which is crucial when users switch brokers while on the
move.

Furthermore, [61] explores connectivity strategies for container tracking near
coastlines, but the concepts discussed can be extended to broker switching scenarios.
The relay-aided schemes using vessels or unmanned aerial vehicles (UAVs) as
intermediate nodes aim to mitigate message loss and improve system performance by
distributing transmission requests and reducing contention. This indicates the potential
benefits of using relays or intermediate nodes to minimize message loss during broker
switching in dynamic IoT environments.

By analyzing the existing literature on message loss in IoT and its connection to
broker switching, it becomes evident that addressing message loss is a critical aspect
of ensuring seamless connectivity in dynamic [oT environments. The identified studies
provide insights into load balancing techniques, ID integration, DTN approaches, and
relay-aided schemes, which can be considered when investigating the implementation
challenges of a multibroker MQTT platform for smart environmental monitoring.

2.7. MQTT Protocol

In the context of seamless connectivity and investigating the implementation
challenges of a multibroker MQTT platform for smart environmental monitoring, the
MQTT protocol plays a critical role in facilitating efficient and reliable communication
between sensors and brokers. This section explores relevant research studies that
examine various aspects of the MQTT protocol, shedding light on its performance
and suitability for dynamic IoT environments.

One approach presented by the author [62] focuses on addressing the interconnection
challenges of embedded systems in networks using multi-agent systems. This
approach dynamically models and creates links between MQTT brokers, aiming to
enhance the efficiency and effectiveness of dynamic interaction management in IoT
networks. The results demonstrate that the proposed approach outperforms the initial
model, achieving 20% higher efficiency and significant advancements in dynamic

24

interaction management. However, further evaluation and adjustment of certain
parameters (« and (3) are required to fully meet the constraints of high connectivity,
which aligns with the objectives of this research.

In a comparative study conducted by Koziolek et al. [63], three distributed MQTT
brokers (EMQX, HiveMQ, and VerneMQ) are evaluated in an enterprise 1oT scenario
on an edge gateway cluster. The evaluation covers performance, resilience, scalability,
security, and usability. EMQX demonstrates the highest performance with 28K
messages per second, while HiveMQ achieves no message loss in the test scenario.
VerneMQ, an open-source solution, offers similar features to commercial brokers. The
evaluation employs a systematic approach using the Goal/Question/Metric scheme and
deploys the brokers on redundant edge gateway servers with the StarlingX platform.
This research provides valuable insights into the performance and characteristics of
different MQTT brokers, which can inform the selection and configuration of brokers
in the multibroker MQTT platform under investigation.

Luzuriaga et al. [64] focus on evaluating the performance of the MQTT protocol,
along with the AMQP protocol, under mobile or unstable wireless network conditions.
The study assesses whether these protocols can provide satisfactory service based
on the load requirements of applications, considering factors such as message size
and communication rates. They utilize a synthetic load generator called amgperf
to send messages with sequence numbers and detect losses or messages delivered
in different orders. The evaluation also includes measuring the impact of a mobile
producer/publisher switching between Wi-Fi access points in the same IP network.
The findings reveal the performance characteristics of the protocols during network
transitions, with mean jitter values oscillating between 3 and 6 seconds, and peaks
of up to 7 seconds observed for high transmission rates of 100 messages per second.
These insights highlight the importance of investigating the impact of broker switching
on latency and message loss in dynamic IoT environments, aligning with the objectives
of this research.

By incorporating these relevant studies, this section establishes a foundation for
understanding the MQTT protocol’s role in seamless connectivity within a multibroker
MQTT platform for smart environmental monitoring. The insights gained from these
studies will contribute to identifying potential improvements and solutions to minimize
latency and message loss during broker switching, as well as inform the evaluation of
the proposed improvements and solutions in subsequent sections of this research.

2.8. Broker-Based Communication Systems

Broker-based communication systems are a type of distributed system [65] where a
software broker facilitates communication between various application components. In
this system, the broker acts as a middleman, handling the communication complexities
of a distributed system such as message routing, request-reply correlation, encoding
and decoding, and ensuring reliable and secure transmission of messages. This
communication architecture aims to abstract the underlying complexities of inter-
process communication in a distributed environment, thus enabling application
developers to focus more on their application logic instead of communication details.

25

There are multiple advantages to broker-based communication systems. It promotes
decoupling of services, as they only need to know about the broker, not each other,
enhancing modularity and scalability. The broker can provide additional services such
as data transformation, transaction management, load balancing, and fault tolerance.
However, broker-based systems have certain drawbacks as well. The broker has
the potential to become both a single point of failure and a performance bottleneck,
and also introduce latency due to the extra layer of communication. In addition,
deploying and managing the broker infrastructure could be complex and cost-intensive.

Despite these challenges, broker-based communication is widely adopted in
various types of systems, such as event-driven systems, message-oriented middleware,
and service-oriented architecture (SOA). For instance, Apache Kaftka, RabbitMQ,
and Google Pub/Sub are all examples of broker-based systems, each with their own
characteristics and optimizations to handle the challenges. Thus, broker-based systems
are an important design pattern in distributed systems and continue to be relevant with
the proliferation of cloud computing and microservices architecture.

2.9. Prior Research on Broker Switching, Latency Calculation, and Message
Loss

Connecting diverse devices, sensors, and real-time applications is the main problem
of IoT automation. Recent developments for a wide range of IoT ecosystem solutions
and devices have been shown through research. However, each compatible technology
has its own exclusive communication infrastructure and method, which causes an
IoT interoperability problem. To solve this study, the development of a bridge
configuration for IoT interoperability utilizing the MQTT and CoAP protocols is
covered in the article. In order to provide smooth communication between MQTT
and CoAP, the authors suggest using the Ponte message broker as a bridge. They go
through the Ponte message broker’s architecture, configuration procedures, and parts.
Comparing delay and message delivery rates in experimental findings shows how well
it supports interoperability. In IoT contexts, the Ponte bridge configuration offers easy
communication between MQTT and CoAP devices. The article addresses prospective
applications and emphasizes the need for interoperability in IoT systems. Overall,
it offers insights into a workable strategy for facilitating communication across IoT
devices that use various protocols[66].

In this study, application layer protocols for edge-centric real-time IoVT applications
are evaluated quantitatively. The study, which was conducted during the UEMCON
conference, emphasizes the need to choose appropriate protocols for effective and
trustworthy communication. Throughput, dependability, and other performance
parameters are measured and examined using the evaluation technique. Based on
their experimental findings, protocols are contrasted, highlighting their advantages
and disadvantages. V2V and V2I communications are included in the evaluated
scenarios. The article offers insights into protocol features, benefits, and use cases
to help readers choose the best protocol for their particular IoVT application needs.
Overall, it provides useful knowledge for industry professionals and scholars [67].

26

The MQTT-ST protocol is described in the article as a means of scalable and
dependable communication between dispersed MQTT brokers. The protocol makes
use of a spanning tree topology for effective broker coordination and message routing.
The architecture, message format, and algorithms of the protocol are explained in
great detail. Results from simulations show that MQTT-ST is superior to competing
protocols in terms of latency, network utilization, and load balancing. The authors
talk about its application in many situations, highlighting its potential to improve
performance and dependability in IoT and smart city installations. Overall, the MQTT-
ST protocol addresses the demand for increased scalability and reliability in distributed
MQTT broker networks by providing useful insights and advantages to researchers and
practitioners [68]. For the drone nodes that are actively functioning as edge computing
components, a message transmission method has been presented in this study. A
drone node known as "EdgeDrone" has been given the new designation. Standard
message transmission protocols like MQTT and MQTT-SN do not provide the greatest
efficiency due to the node’s dynamism. The “’spray and focus” opportunistic routing
method is a combination with our upgraded MQTT and MQTT-SN protocol solutions.
It continues to monitor transitivity and encounter history over time. Further testing of
the new technique on a real-world test bed revealed much better performance in terms
of latency, publisher bandwidth, and operating time. The findings also showed that the
upgraded MQTT-SN mechanism performs well in terms of memory use and energy
dissipation. Additionally, the standard and improved mechanisms have been compared
in the simulation platform, and it has been shown that the enhanced MQTT receives
fewer acknowledgments when nodes are sporadically connected. And the same is true
for MQTT-SN. Given that the number of acknowledgments is inversely correlated with
the number of messages lost, it is clear why the improved approach performs better in
the problematic situation[69].

27

3. SYSTEM MODEL AND METHODOLOGY
3.1. Methodology

This section describes the methodology used to evaluate network latency and switching
latency in dynamic IoT environments. The assumptions and constraints considered
during the research process are outlined in Section 3.1.5. The metrics used to evaluate
the performance of the system are defined in Section 3.1.6. The research methodology
adopted for this study is given below:

3.1.1. Case Study 1: Cloud-Based Multi-Broker Deployment

* Brokers are deployed on virtual machines (VMs) in a central cloud provider.
 Sensors publish data to the brokers using the wide area network (WAN).

* Clients receive data from the brokers using the WAN as well.

This case study represents a traditional cloud computing environment. As shown in
figure 1, the brokers are located in a central location, and the sensors and clients are
connected to the brokers over the WAN. This architecture has several advantages,
including: Scalability: The brokers can be scaled up or down to meet the needs of
the application. Reliability: The brokers are located in a central location, which makes
them more reliable than edge devices. Security: The brokers are protected by the cloud
provider’s security measures. However, this architecture also has some disadvantages,
including: Latency: The data must travel over the WAN to reach the brokers, which
can introduce latency. Cost: The cloud provider charges for the resources used by the
brokers.

3.1.2. Case Study 2: Local Area Network(LAN)-Based Multi-Broker Deployment

* Brokers are deployed on edge.
» Sensors publish data using the local area network (LAN).

¢ Clients receive data within the same LAN environment.

This case study represents a local area network (LAN)-based edge computing
environment. As shown in figure 2, the brokers are located on the edge, which are
connected to the sensors and clients over the LAN. This architecture has several
advantages, including: Low latency: The data does not have to travel over the
WAN, which reduces latency. Cost-effectiveness: The edge devices are generally less
expensive than cloud-based brokers. Flexibility: The brokers can be moved easily,
which makes them well-suited for mobile applications. However, this architecture also
has some disadvantages, including: Security: The brokers may not be much secured
as cloud.

28

Sensor Nodes Client

Figure 1. Cloud-Based Multi-Broker Deployment

3.1.3. Case Study 3:Multi-Layer LAN Network Based Multi-Broker Deployment

* Brokers are deployed on edge devices.

* Publishers are connected to layer 2, and subscribers are connected to layer 1
within a same network (LAN) as shown in fig: 3.

This scenario simulates an edge computing environment. This case study represents
a multi-layer network-based edge computing environment. As shown in figure 3,
the brokers are located on the edge, which are connected to the sensors and clients
over a multi-layer separation in network. This architecture has several advantages,
including: Compliance: The data can be kept within the organization’s control, which
can help to meet compliance requirements. Cost-effectiveness: The edge devices can
be less expensive than cloud-based brokers. However, this architecture also has some
disadvantages, including: Complexity: This multi-layered network must be set up and
managed, which can be complex in administrative perspective.

3.1.4. Fundamental Latency in Each Scenario

In a wide area network (WAN), the overall system latency is the delay in the
propagation of a message from the publisher network to the client. This delay includes
the following mentioned latencies, as shown in figure 4:

* Publisher network latency (La): This is the delay in the publisher network, which
is the network that the publisher is connected to. This delay can be caused by
factors such as the distance between the publisher and the broker, the bandwidth
of the network, and the number of devices on the network.

29

=0 =
:
- =
=

Client

Figure 2. Local Area Network(LLAN)-Based Multi-Broker Deployment

* Internet latency to the main server (Lb): This is the delay in the internet, which is
the network that the broker is connected to. This delay can be caused by factors
such as the distance between the broker and the main server, the bandwidth of
the internet, and the number of devices on the internet.

* Central server latency (Lc): This is the delay in the central server, which is the
server that receives messages from the broker and sends them to the clients. This
delay can be caused by factors such as the distance between the broker and the
central server, the bandwidth of the network, and the number of devices on the
network.

* Transmission latency back to the client (Ld): This is the delay in the transmission
of the message back to the client. This delay can be caused by factors such as the
distance between the central server and the client, the bandwidth of the network,
and the number of devices on the network.

* Client network latency (Le): This is the delay in the client network, which is the
network that the client is connected to. This delay can be caused by factors such
as the distance between the client and the broker, the bandwidth of the network,
and the number of devices on the network.

In case 1, the total latency of the cloud network 1 as mentioned in section 3.1.1 is
calculated as follows.
L=La+Lb+ Lec+ Ld+ Le

In case 2 as mentioned in section: 3.1.2 and shown in figure 2, the WAN latency is
eliminated. In this case, the total latency (L) is calculated as follows:
L=La+ Lc+ Ld+ Le

30

LAN Network
=| (=]
Client
Network Layer 1
Sensor Nodes Network Layer 2

Figure 3. Multi-Layer LAN Network Based Multi-Broker Deployment

In case 3 as mentioned in section: 3.1.3, the total latency of the network depends on
the number of layers introduced between the publisher, broker, and client. For the test
scenario as shown in 3, the total latency is:

L=1Id+Ilc+1ld+le

Where 1a’ represents the total latency of all layers introduced between the publisher
and broker.

As shown in the figure below, Lc¢’ and L.d” and Le’ represents the total complexity
in terms of latency for the testing scenarios as

Based on the above test cases, the methodology to eliminate the dynamic variables of
latency is optimized. It is assumed some constant factors are mentioned in the section
"Assumptions and Constraints" 3.1.5 section and developed performance evaluation
metrics.

3.1.5. Assumptions and Constraints

The following assumptions and constraints are made in this thesis to finalize the
metrics of performance evolution given in next section “Metrics of Evaluations 3.1.6”:
The sensors are always connected to the network: This means that the sensors must
have a reliable internet connection. If the sensors are not connected to the network,
they will not be able to publish data. The brokers are always available: This means
that the brokers must be up and running and able to receive messages from the sensors.

31

Sensor Nodes Client

Figure 4. Fundamental Latency

If the brokers are not available, the sensors will not be able to publish data. The clients
are always available: the clients must be up and running and able to receive messages
from the brokers. If the clients are not available, the brokers will not be able to send
messages to the clients. The network bandwidth is sufficient to support the data
traffic the network must be able to handle the amount of data that is being published
and consumed. If the network bandwidth is not sufficient, the data will not be able to
be published or consumed in a timely manner. The latency of the network is constant
the time it takes for a message to travel from the sensor to the broker and then to the
client is always the same. If the network latency is not constant, the time it takes for
a message to travel will vary, which can affect the performance of the system. Time
drift in clock synchronization between two consecutive messages at publisher or
client is negligible because time drift is synchronized at client side using gradient time
synchronization method [70]

3.1.6. Metrics for Performance Evaluation

The following metrics are used to evaluate the performance of the system in each
scenario:

Network latency: The time it takes for a message to travel from a sensor to a client.
This metric is important because it measures how quickly the system can respond to
events.

Switching latency: The time it takes for a client to switch from one broker to another.
This metric is important because it measures how quickly the system can adapt to
changes in the network topology. In general, lower latency is better. However, the
specific requirements for each scenario will vary. For example, a system that is used

32

for real-time applications will need to have lower latency than a system that is used
for batch processing. Here are some additional details about each metric:

Network latency is affected by a number of factors, including the distance between the
sensor and the client, the bandwidth of the network, and the type of network.

Switching latency is affected by a number of factors, including the number of
brokers in the system, the bandwidth of the network between the brokers, and the type
of switches. By measuring these metrics, you can identify areas where the system can
be improved. For example, if the network latency is high, you may want to consider
using a different network or increasing the bandwidth. If the switching latency is high,
you may want to consider using a different type of switch or reducing the number of
brokers in the system.

3.1.7. Implementation Approach
The research methodology adopted for this study consists of the following steps:

System Implementation: The system model is implemented in a simulation
environment that represents the different deployment scenarios. This includes
deploying brokers on virtual machines (VMs) in a central cloud provider for case
study 1 (section: 3.1.1), on edge devices for case study 2 (section: 3.1.2), on the
multi-layer network on edge devices for case study 3 (section: 3.1.3)

Data Collection: The simulation is run with various parameters to collect data
for evaluation. This includes gathering data on network latency and switching latency
in each scenario.

Data Analysis: The collected data is analyzed to understand the variations and
trends in network latency and switching latency. The analysis aims to answer research
questions related mentioned in section: 1.2.2 (2a2b)

3.1.8. Optimized Methodology to Calculate Latency Calculation

This study’s approach is aimed at identifying and addressing the key elements
contributing to network latency, which are elaborated on in the "Fundamental Latency
in Each Scenario" section. For precise latency measurement, the procedure includes
coordinating the client’s clock with the clocks of the nodes. This coordination process
aids in mitigating any effects of clock drift on latency measurements. To ensure
accuracy over longer periods, clock synchronization is carried out regularly.

TL=ToMR—ToMS (1)

33

where

TL = Total Latency

ToMR = Time of Message Receipt (Client)

ToMS = Time of Message Sending (Synced with Client’s Time)

Once the clocks are aligned and the message sending time is coordinated with
the client’s clock, the client determines the latency by calculating the difference
between the time of receipt and the time of sending. This approach depends on the
sender including a timestamp from the device in every message, enabling the client to
precisely determine the network latency. Switching latency, in contrast, emphasizes
the time duration from data receipt after the connection is transferred to the next
broker, making sure no messages are misplaced in the shift. These formulas yield a
numerical representation of the latency experienced within the system, which aids in
the assessment of the performance and efficiency of the MQTT-based infrastructure
concerning latency.

34

4. SIMULATION AND EXPERIMENTAL SETUP
4.1. System Description

The system model used for evaluating network latency and switching latency consists
of multiple brokers deployed in different scenarios, sensors for data publication, and
clients for data reception. The brokers are responsible for receiving data from the
sensors and forwarding it to the clients. The sensors are responsible for collecting data
from the environment and publishing it to the brokers. The clients are responsible for
receiving data from the brokers and displaying it to the user.

4.1.1. Hardware Architecture:

A variety of sensors were selected based on the data type. Some sensors require more
bandwidth than others, such as sound sensors. Others may need priority at the time of
an event, such as fire or temperature sensors. Toxic gases may also require additional
priority due to their odorless nature and the need for urgent action. Our designed
hardware enables us to test in-depth scenarios based on requirements. The sensors that
were used in the study were:

* MQ135 Air Quality Detector Sensor
* KY-038 LM393 Sound Detection Module
e DHT11 Temperature and Humidity Sensor Module

* KY-018 LDR light sensor module

The sensors were connected to a custom-designed PCB (Printed Circuit Board) that
allowed them to be connected to the network and publish their data to the brokers.
The PCBs were manufactured using LPKF CircuitPro PM software and fabricated
in a Fablab using a machine name Ipkf protomat s62 (machine). Soldering was
performed on the boards to connect a sensor on the board. Three such PCBs were
placed at different locations to collect sensor data. the PCB Schematics was designed
using Altium Designer software. The software allows users to create a schematic
of the circuit and then generate a PCB layout. The schematic is a diagram of the
circuit, showing the components and their connections. The PCB layout is a physical
representation of the circuit, showing the components and their connections on the
PCB. The following steps were used to design the PCB: The sensors were identified
and their specifications were gathered.

1. The components that would be needed to connect the sensors to the network
were identified.

2. The schematic of the circuit was created as shown in figure. 5. This PCB is
responsible for gathering data from sensors and transmitting it to the broker using
the MQTT protocol.

3. The PCB layout was generated as shown in figure. 6

35

A vee @ A
M1 100n M2
4
Q vecl— ESP-WROOM-32
O GND 5 GND 25 2!
Q oo w5 = GPIO19 /VSPT MISO GPIO1 UARTO_TXD [=28¢
O no 5 GPIO34 /ADCI_6 /RTC 104 GPIO3 /UARTO RXD 2%
R3
KY-018 1K 1
vee 2
M3 GPI022 /SCL Jﬁg
. 2000 GND GPI021 /SDA. f=2
QO vcc >
QO GND GND
Q o= = = 2ed GPIOIS VSPI CLK GPIO36 /ADCI 0 /RTC 100 /SENSORVP |23
B O no o 34 GPIO35 /ADCI 7 /RTC 105 GPIO39 /ADC! 3 /RTC 103 /SENSORVN o35 B
RS
MQ135 1K
ee i:on VCE GPIO17 [UART2_TXD J:%ié
Ma T_“_L) GPIOI6 /JUART2 RXD 2
1 GND
Q 6&ND GND R6
Q vee VCC 1K 2 GPIO2 /ADC2_2 /RTC_I012 /TOUCH2 ni;éé
O oaa é 4 GPIOS /VSPI_CS0 GPIO4 /ADC2_0 /RTC_I010 /TOUCHO =4
DHT11
vee e GPI033 /ADCI_S /RTC_108 /TOUCHS /XTAL 32 N b
o0 GPIO25 /ADC2_8 /RTC 106 DAC 1 g
—L| GPIO26 /ADC2 9 /RTC 107/DAC 2 e
C M5 GND GPIO27 /ADC2_7 /RTC_1017 /TOUCH7 f== G
O oyt 30,1 GP1023 VSPT MOST
e
1 R7 " 1K 2 6 . 7 g 1
O no W GPIO32 /ADCI_4/RTC 109 /KGRIGHD/ATAL GRTC 1016 TOUCHS HCPI CLK |t
RS GPIOI2/ADC2 5 /RTC 1015 TOUCHS /HCPI MISO fct
KY-038 1K GPIOI3 /ADC2 4 /RTC 1014 /TOUCH#4 HCPI MOSI foot
— " GPIOI5 /ADC2 3 /RTC 1013 /TOUCH3 /HCPI €S0 o —
EN
GND ;E W3
@ Nl
° 100n GND »
GND

Figure 5. Hardware Schematics

4. The PCB was fabricated in a Fablab using an LPKF protomat 62 machine.

5. Soldering was performed on the boards to establish the necessary connections.
The figure. 7 shows the actual appearance of working PCB.

The system model is divided into three scenarios as described in section methodology
3.1

4.2. Software Architecture

Problem Statement: As already discussed, the goal of this research thesis, titled
"Seamless Connectivity: Investigating Implementation Challenges of Multibroker
MQTT Platform for Smart Environmental Monitoring," is to explore the challenges
associated with building a reliable and scalable MQTT-based infrastructure for smart
environmental monitoring systems. One of the key challenges this study focuses on is
maintaining seamless connectivity and message reliability across multi-brokers.

Solution Overview: In response to the challenges identified, this study presents
a proposed solution that involves the configuration of multi-MQTT brokers and
the utilization of bridging mechanisms. The solution aims to facilitate seamless
message publishing and reception across brokers, ensuring reliable and low-latency
communication. Moreover, the implementation of a distributed broker allows for
studying its implementation and achieving the associated benefits. By distributing
the data, it is broadcasted to all brokers, ensuring its availability everywhere. This

36

o]
o
o
o
o
o
o
o
o
o
o
o
o
o
o

Figure 6. PCB layout

approach ensures that the data is accessible and present on each broker, enhancing the
overall availability and reliability of the system. Additionally, the system incorporates
essential features such as message tracking and latency calculation to effectively
monitor and evaluate its performance.

Solution Components:

1. Docker Compose Configuration: ‘docker-compose.yml® file contains the
configuration for setting up three MQTT brokers, namely broker1, broker2, and
broker3. Each broker is configured with persistence and session storage for
maintaining message state and connection information.

2. Broker Configurations: The configurations for each broker are defined in the
mosquitto.conf files located within the respective directories of config/brokerl,
config/broker2, and config/broker3. These configurations define the bridge
connections between brokers and other essential settings.

37

Figure 7. PCB

Algorithm 1 Mosquitto Docker Configuration Pseudo-code

1:

10:

11:

Set persistence as true
Set persistence_location as ’/mosquitto/session_storage/’
Initialize listener at port 1883
Allow anonymous connection as true
Set pid_file as */mosquitto/session_storage/mosquitto.pid’
Set log destination as a file ’/mosquitto/session_storage/mosquitto.log’
Set log timestamp format as ’%Y-%m-%dT%H: %M: %S’
Start connection “bridge-2’
Set address as "broker2:1883’
Register to topics with QoS and set publish and subscribe permissions
Set try_private as true
End connection
Start connection "bridge-3’
Set address as "broker3:1883’
Register to topics with QoS and set publish and subscribe permissions
End connection

3. Publisher Script: The ‘publisher.ino‘ script deployed on ESP32 publishes
messages to the MQTT network. It generates message payloads in JSON format,
including a unique tracking ID for each message. The script publishes messages
regularly.

38

Algorithm 2 Publisher Script Pseudo-code

1: procedure BEGIN
Initialize WiFi with given SSID and password
Initialize DHT sensor
Set MQTT server for each client
Connect each client to its respective MQTT broker
2: end procedure

3: procedure LOOP

if [current time - last message time > [second] then
Read values from all sensors

Generate a random UUID for each message

for each sensor reading do
Construct a JSON payload including the sensor value,
generation time, and tracking ID
Publish the payload to its respective topic on each MQTT broker
end
end
4: end procedure

4. Receiver Script: The ‘receiver.py‘ script subscribes to the MQTT network
and receives messages published by the ‘publisher.ino® script. It ensures that
messages are processed only once by maintaining a tracking mechanism using a
file to store received message IDs. The script calculates the message reception
time, latency, and skips duplicate messages.

39

Algorithm 3 Pseudocode for receiver:

AR AN

10:

11:

Import necessary libraries
Do initializations: Set Broker Host, Port, and Topics
Create an MQTT client
Set the on_connect and on_message functions as the client’s callback functions
Connect to the broker
Start the MQTT client loop
Create a database connection and return it
procedure ON_CONNECT
If connection is successful, print a success message and subscribe to topics
If connection fails, print an error message
end procedure
procedure ON_MESSAGE
Decode the message payload
Try to parse the JSON payload
If successful, extract the sensor value, generation time, and tracking ID
If first iteration, sync the published device time with receiving device time

If the tracking ID is not in the tracking IDs file, add it and write the updated

tracking IDs to the file
If the message, generation time, and tracking ID are valid:
Calculate the latency and execution time
Insert the data into the database

end procedure

How the Solution Works:

1. The MQTT brokers are configured to bridge connections between each other

using the provided ‘mosquitto.conf* files. This enables message propagation
across brokers.

. The ‘publisher.ino‘ script publishes sensors measurements with unique tracking

IDs and publishes them to the MQTT network. It ensures that messages expire
after a certain duration (2 minutes) to maintain message freshness.

. The ‘receiver.py script subscribes to the MQTT network and receives published

messages. It maintains a tracking mechanism to identify and skip duplicate
messages based on the received tracking IDs. The script calculates message
reception time, and latency, and prints the relevant information.

4.3. Hardware-Software Integration

The deployment of a broker on the edge for hypothesis validation requires careful
consideration of several factors, including clock synchronization, queuing delay,
packet loss and re-transmission, and jitters. One of the most important factors is clock
synchronization. In a distributed system, accurate latency measurements depend on
synchronized clocks. Therefore, a reliable clock synchronization protocol must be

40

and has been implemented across the edge devices and the broker. This will ensure
that the clocks of all devices are closely aligned, minimizing discrepancies that could
introduce errors in latency calculations. As a result, consistent and accurate latency
measurements can be obtained, which is essential for accurate hypothesis testing.

Considering these factors involved in deploying a broker on the edge and implementing
corresponding optimizations, hypothesis testing is conducted with improved accuracy
and credibility. This approach creates a controlled and reliable environment that
minimizes potential sources of error, ensuring trustworthy results for the hypothesis
being tested on edge devices.

41

5. RESULTS AND ANALYSIS
5.1. Test Case Analysis

As discussed earlier (see equation 1), to calculate the overall latency, the round
trip time is measured. This involves capturing the time it takes for the message to
travel from the device node (publisher) to the broker and then forward it to the client
(subscriber). By considering the complete round trip, the total latency experienced by
the packet is accurately assessed.

Furthermore, to ensure reliability, these experiments involve generating a series
of messages and recording the time it takes for each message to complete its round
trip. By averaging these measurements, a representative value for the overall latency
is obtained.

The results of all three use cases are presented separately below, along with a
summary of their core relevance at the end of this section.

5.1.1. Test Case: Cloud-Based Multi-Broker Deployment

As discussed earlier, for a cloud-based scenario (see section 3.1.1), the latency of the
entire packet’s journey is calculated first. This latency measurement is a reference
point for determining the optimal placement of the broker, which in this case is
determined to be at the cloud. The analysis of results are described below.

Figure 8 shows that the average latency over the cloud network is approximately
91 milliseconds, with significant jitters. These jitters are primarily attributed to the
overall Quality of Service (QoS) of the Internet. Here Quality of Service refers to the
capability of a network to provide different levels of performance and reliability for
different types of traffic or network services.

In this case, the observed jitters are disrupting the latency, indicating that the
Quality of Service on the cloud network may not be consistent or reliable. This
observation reinforces the need to deploy an MQTT broker on the edge, which can
help mitigate the effects of network jitters and ensure a more stable and reliable
communication environment.

Moreover, the highest observed peak jitter on the cloud network is 495.1 milliseconds.
And the average switching latency on the cloud is recorded to be 47.6 milliseconds. A
comparison of these values is provided later in Analytics section 5.2

5.1.2. Test Case: LAN-Based Multi-Broker Deployment”

The second test case evaluates the performance of an MQTT broker deployment in
a local area network (LAN) (See section 3.1.2. This configuration aims to minimize
network congestion, which is typically associated with cloud-based deployments.

42

Cloud-Based Broker Deployment: (Average: 0.09156)

0.55

0.50

0.45
0.4377[04558 0.4463

0.4038

04136
0.40

0.3966 0.3911

0.3794)
03593 0.3656

035
0.3342 03272
03233
0.3007 030431 5070
02919
02§69 ik o78e
02746 ozbes
0.2668 0.2654 0.2759

0.2305 0.2469

0.30

0.25 0.2567

Avg. LatencyPerPacket %
<

0.2071 || p.2298 0.2220
0.1981

020 01046 0202
01932, b 2040 o17atforsr

0.1543 D 1843

.. 01470 0.1463
015 01367 1330

0.1169%

01215
0.10 001587 0.0885 0.1044
00696 00735

005

0.00

Figure 8. Cloud-Based Multi-Broker Deployment

In Figure 9, a notable decrease in jitters is observed on the edge network over
LAN, resulting in an overall reduction of latency by up to 10.85ms. The maximum
jitter observed on the LAN network is approximately 183.4 ms, which is significantly
lower than the peak latency observed on the cloud network. This reduction in jitter
effectively contributes to a lower overall latency in the network. Similar improvements
are also observed in the switching latency, with a recorded switching latency of 6.8ms
on the edge network.

By connecting the client and the broker closely within the LAN, the communication
distance is reduced. This proximity enables faster transmission and reception of
messages, leading to lower latency. As the data does not need to traverse external
networks, such as the internet or cloud infrastructure, potential bottlenecks, and
congestion are minimized.

However, it is important to consider that the overall latency of the system can
still be influenced by the data load present on the local network. Heavy data traffic or
congestion within the local network can introduce delays and increase latency.

Additionally, in this test case, the measurement of switching latency (definition:
3.1.6 remains relevant. Switching latency includes activities such as connection
establishment, disconnection from the previous broker, and protocol handshakes.
Measuring switching latency provides insights into the efficiency of the broker
switching process and its impact on overall system performance within the LAN
environment.

LAN-Based Multi-Broker Deployment (Average: 0.01085)

0.08

Avg. LatencyPerPacket

0.08

0.0010

0.0034 (4 p14

0.0538

0.1834
0.1069
0.0734]
0.0503
0.0372

0.0016

0.0027

0.1542

0.0461

0.0041" 10.0060 g gp450.0056 0.0054 0.0059

0.1163

0.0034

0.00

0.0415 0.0423

72 0.0088

Figure 9. LAN-Based Multi-Broker Deployment

0.0079 0.0052

43

0.1407
0.0993
0.0894
0885
0.0738
0.0540
0.0465

0.0082 0.0080

5.1.3. Test Case: Multi-Layer LAN Network Based Multi-Broker Deployment”

In some cases, it may not be possible to establish a direct connection between the
client and broker at the edge due to factors such as traffic congestion, resource
limitations, or network complexity. In these situations, it is necessary to introduce
multiple layers of network within the local area network (LAN) (described in section
3.1.3. This intermediate placement of the broker and client within the network is an
important test case to explore.

Multi-Layer LAN Network Based Multi-Broker Deployment (Average: 0.01549)

0.2426

0.14 {0.1405
0.1325

Avg. LatencyPerPacket

0.08 0.0751
0.0693

|
0.02 loibHs

0.00
0.0002

0.1558

0.1399

0.0743

0.0568

0.0146
I

0.0795

0.0619

0.0781
0.079

0.0821

0.0757 0.0790
0.0654 0.0656

0.0788

0.0584
0.0p33

0.0357

0.1453

0.0578

0.0359

0.1023

0.0974

0.0649
0.0604

0.05304 0.0f181
0.0400

0.0p42 | 0.0242]

0.0735

0.0484

0.0350(
00193

0.0652

01225

0.0879)

0.0824

0.0559

0.0501
0.0408

0.023!

0.1200
01144

0.1046

00690 | 0.0674

0.0516
0.0499

Figure 10. Multi-Layer LAN Network Based Multi-Broker Deployment

In figure 10, the introduction of an intermediate layer for testing a multi-layer

44

network results in an increase in the overall network latency to 15.4ms. However, the
switching latency remains nearly the same at 6.7ms. Additionally, the peak latency of
the network is 242.6 ms.

5.2. Examining the Analytics from the Above Tests

network_type / latency_type latency_type
Cloud Edge-LAN Edge-N-layered LAN B Network
M Switching
91.56 ms

90

80

70
w60
=
=
a
@
L
E 50 47.69 ms
g
=
z
" 40

30

20

1549 ms
10.85ms
10 6.86 ms 6.70ms
8] - -
Network Switching Network Switching Network Switching

Figure 11. Switching/Network Latency

From the carried-out test, as shown in figure 11, we noted that the mean network
latency in the cloud reached 91.5 milliseconds, while the edge latency averaged only
10 milliseconds. Furthermore, the mean latency in the multi-tier network structure was
recorded to be 15.5 milliseconds. That means, the data shows a significant reduction
in network latency at the edge, which is approximately nine times lower compared
to the network latency observed in the cloud. In the specific multi-tier edge network
configuration used in this test, network latency is about six times lower than the cloud,
with the actual reduction depending on the number of layers involved.

We also analyzed the switching latency, which denotes the time taken for a

45

client to transition between different brokers. The average switching latency in the
cloud is around 47 milliseconds, while it is only 6.86 milliseconds at the edge. For the
multi-tier network, the average switching latency is about 6.7 milliseconds.

These results confirm the initial hypothesis and support the existing understanding
of network latency. It is evident that switching latency follows the same pattern as
network latency observed in traditional networks.

Multi-Layer LAN Network Based Multi-Broker Deployment (Average: 0.01549)

0.2426

0.1598

0.1453

014 {0.1405 {01398
0.1325
» 01225 41509

012 0.1144

0.1023 0.1046

Avg. LatencyPerPacket

- 00795 oo7gy oo7es 0083
0.08 0.0751 0.0743 0.0757 00790
0.0§79

0.0693 0.0654 0.0656 0.0649
0.0619 0.0604

0.0584 0.0578
00568 00543y 0 ohat

n 0.0484
0.033 0.0400

0.0357 0.0359 0.0350:
| 0.0p42 | 0.0242

0.0193]

[
0.02 Wveldge |lo.0146
{ |
l - .
0.00 0.0002 Average latency at Average Latency at
No Additional Load Additional Load

Figure 12. Multi-Layer LAN Network Based Multi-Broker Deployment - Load

Moreover, in Figure 12, it can be observed that the latency at the edge system is
influenced by the current processing workload. As more tasks were performed on the
edge system, the average latency increased accordingly, as indicated by the red arrows
on the chart.

Interestingly, the fluctuation in latency, or jitter, experienced at the edge is significantly
lower compared to that in the cloud, resulting in improved network quality of service
at the edge. From the average results, it was observed that if the end-user establishes a
direct connection to the MQTT broker at the edge, it further reduces network latency
at the edge. This indicates the importance of finding a balance between the processing
load and the client’s connectivity to the edge. To explore this further, we made
adjustments to the test setup and conducted preliminary validations of the hypothesis
concerning direct client-to-edge MQTT broker connections using appropriate tools.
These findings present opportunities for future investigations, as discussed in the
Future Work section 6.3. This validation is done in next section.

46

5.2.1. New Hypothesis Validation: Direct Client-To-Edge Connection

To validate this hypothesis, a modification is introduced in the second test case,
wherein the client is connected to the edge-placed broker on the same machine 14.
This configuration established a direct and efficient connection between the client and
the broker, resulting in reduced latency. However, the latency between the sensor
nodes and the broker remained unchanged compared to the previous test cases. This
particular setup holds promise for future implementations across diverse applications.
However, this statement has undergone limited validation and is currently depicted in
the figure. 13. Theoretical analysis suggests that this scenario can potentially halve
the latency observed in the first, second, and third cases. The initial hypothesis was
supported through system latency analysis conducted using command line interface
tools such as ping or traceroute. As shown in figure 13, the result of the traceroute is
less than 1 ms.

C:\Users\Ramisha>ping 172.24.16.1

Pinging 172.24.16.1 with 32 bytes of data:

Reply from 172.24.16.1: bytes=32 time<lms TTL=128
Reply from 172.24.16.1: bytes=32 time<lms TTL=128
Reply from 172.24.16.1: bytes=32 time<lms TTL=128
Reply from 172.24.16.1: bytes=32 time<lms TTL=128

C:\Users\Ramisha>tracert 172.24.16.1

Tracing route to DESKTOP-H38EU80.mshome.net [172.24.16.1]
over a maximum of 30 hops:

1 <1 ms <1l ms <1 ms DESKTOP-H38EU80.mshome.net [172.24.16.1]

Trace complete.

Figure 13. Validation of new hypothesis

Interpretation of Direct Client-to-Edge Connection Hypothesis

By the above-mentioned results, we can deduce that a potential reduction in network
latency can be achieved by hosting both the broker and client on the same machine
at the edge. However, it is crucial to acknowledge that the validity of this hypothesis
relies on several system constraints, including hardware resources, processing power,
operating system limitations, and data processing and storage capabilities. In order
to validate this hypothesis more comprehensively, future research can be directed
toward investigating service deployment on the edge, with a specific emphasis on
the applications mentioned earlier. This would require thorough verification and and
thoughtful consideration of the system constraints mentioned earlier.

47

LAN Network
Network Layer O

Broker

 —
%

— =
- —
—=

Sensor Nodes

Figure 14. Emerging perspective

48

6. CONCLUSION AND FUTURE WORK
6.1. Conclusion

Based on the analysis of experimental results (Section 5.2), the study provides insights
into research question (a) (described in section: 2a). It concludes that network latency
is higher in cloud-based systems compared to edge systems like Fog and LAN,
supporting the existing belief (hypothesis: 1.2.1). Additionally, the implementation
of multi-brokers on edge systems significantly reduces switching latency, resulting in
approximately five times lower latency compared to the cloud. This highlights the
performance improvement and enhanced connectivity achieved by leveraging multiple
brokers on the edge.

Based on these findings, research question (b) (in section: 1.2.2 part 2b) can be
answered. It can be concluded that even with low network latency on the edge,
the volume of data processing has a substantial impact on end-user applications,
particularly in the domains of Virtual Reality/Augmented Reality for home or
commercial users, as well as autonomous systems in industries. Additionally, there
are several highly relevant applications where the distributed edge deployments of
the MQTT broker, with their seamless connectivity and low latency, offer significant
performance and user experience benefits. These applications include telemedicine,
smart transportation, industrial automation, and environmental monitoring, as well as
virtual reality (VR) and augmented reality (AR) technologies.

Moreover, VR and AR technologies heavily rely on real-time data processing
and seamless connectivity to deliver immersive and interactive experiences. By
leveraging the capabilities of the MQTT broker on the edge, large volumes of data,
such as 3D models, sensor inputs, and real-time user interactions, can be efficiently
transmitted, processed, and synchronized between VR/AR devices and edge servers.
This enables enhanced user experiences with minimal latency, ensuring smooth and
immersive interactions in VR gaming, training simulations, architectural visualization,
and remote collaboration scenarios.

Furthermore, the low-latency and reliable connectivity offered by distributed
edge deployments of the MQTT broker play a critical role in addressing the challenges
faced by VR/AR applications, including real-time rendering, accurate positional
tracking, and synchronized multi-user experiences. By offloading data processing
and communication tasks to the edge, VR/AR applications can provide seamless and
responsive experiences, improving overall performance and user satisfaction.

Distributed edge deployments of the MQTT broker possess significant potential
to revolutionize VR and AR applications. By enabling efficient data transmission,
processing, and synchronization, they enhance immersion, interactivity, and the
real-time nature of these experiences, opening doors to innovative applications in
gaming, training, design, and collaborative environments.

49

6.2. Final Remarks

The experiment demonstrated that the implementation of a distributed multi-
broker system on the edge effectively mitigates congestion and reduces latency
in managing large-scale data networks, surpassing the performance of a single-
edge broker. The distributed multi-broker architecture enables closer and parallel
connections with clients, facilitating faster processing of substantial data quantities.
Consequently, network latency is significantly reduced, leading to improved overall
system performance.

6.3. Future Research Directions

The findings of this experiment draw attention to the importance of considering
efficient hardware resources on the edge when deploying edge systems, especially
given the growing demand for edge computing. Future research can delve deeper
into this aspect by exploring hardware resource optimization on the edge. This
exploration may involve investigating methods to maximize computational power,
storage capacity, and network bandwidth to further enhance the performance and
capabilities of edge systems. By fully leveraging hardware resources, researchers can
unlock new possibilities for deploying sophisticated applications and services on the
edge.

Another promising direction for future work is the development of mechanisms
for efficient data distribution on the edge. This entails exploring strategies for the
parallel processing of large data volumes using the MQTT protocol with multi-
brokers. By distributing the processing load across multiple brokers on the edge,
better scalability and improved performance can be achieved. Additionally, future
research could explore dynamic client migration techniques(specifically to ensure the
state preservation of MQTT. This aspect was partially explored as a testcase during the
experiment in this thesis, with further details provided in Appendix (0.1), intelligently
routing clients to the most suitable and computationally optimized brokers based
on their application requirements. This approach would enable efficient resource
utilization and enhance the overall responsiveness and reliability of edge systems.

(1]

(2]

(3]

(4]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

50

7. REFERENCES

Mahmood S. (2021) Review of internet of things in different sectors: Recent
advances, technologies, and challenges. Journal on Internet of Things .

Chaudet C., Demeure I.M. & Ktari S. (2012) A model to evaluate brokers
overlays for publish/subscribe in wireless sensor networks. 2012 9th Annual
Conference on Wireless On-Demand Network Systems and Services (WONS)
, pp- 71-74.

Bhaddurgatte R.C. & Bp V.K. (2016) A review: Qos architecture and
implementations in iot environment. Research & Reviews: Journal of
Engineering and Technology 2016, pp. 6-12.

Atlam H.F., Walters R.J. & Wills G.B. (2018) Fog computing and the internet of
things: A review. Big Data Cogn. Comput. 2, p. 10.

Satyanarayanan M. (2017) Edge computing. Computer 50, pp. 36-38.

Dolui K. & Datta S.K. (2017) Comparison of edge computing implementations:
Fog computing, cloudlet and mobile edge computing. 2017 Global Internet of
Things Summit (GIoTS) , pp. 1-6.

Mehrabi M., You D., Latzko V., Salah H., Reisslein M. & Fitzek F.H.P. (2019)
Device-enhanced mec: Multi-access edge computing (mec) aided by end device
computation and caching: A survey. IEEE Access 7, pp. 166079-166108.

Liu G.Y. & Maguire G.Q. (1995) A predictive mobility management algorithm
for wireless mobile computing and communications. Proceedings of ICUPC *95
- 4th IEEE International Conference on Universal Personal Communications , pp.
268-272.

Rose K., Eldridge S. & Chapin L. (2015) The internet of things: An overview.
The internet society (ISOC) 80, pp. 1-50.

Ramson S.J., Vishnu S. & Shanmugam M. (2020) Applications of internet of

things (iot)-an overview. In: 2020 5th international conference on devices,
circuits and systems (ICDCS), IEEE, pp. 92-95.

Khan M.N.R., Haque H., Labeeb K., Aktar M., Datta R.K. & Abedin
M.Z. (2021) Internet of things and wireless sensor network solution in smart
environmental monitoring. 2021 6th International Conference on Communication
and Electronics Systems (ICCES) , pp. 1-5.

Guner A., Kurtel K. & Celikkan U. (2017) A message broker based architecture
for context aware iot application development. 2017 International Conference on
Computer Science and Engineering (UBMK) , pp. 233-238.

Gormez Y., Arslan H. & Kelek O.F. (2020) Efficient and scalable broker
design for the internet of things environments. 2020 28th Signal Processing and
Communications Applications Conference (SIU) , pp. 1-4.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

51

Goth G. (1999) Mobile devices present integration challenges. I'T Professional 1,
pp. 11-15.

Chuang M.C., Ke S.A. & Chen C. (2020) Network controlled handover
mechanisms in mobile edge computing. 2020 International Conference on

Information and Communication Technology Convergence (ICTC) , pp. 756—
761.

Zhang Y., Groves T.L., Cook B., Wright N.J. & Coskun A.K. (2020) Quantifying
the impact of network congestion on application performance and network
metrics. 2020 IEEE International Conference on Cluster Computing (CLUSTER)
, pp- 162-168.

Yang Y., Wu L., Yin G, Li L. & Zhao H. (2017) A survey on security and privacy
issues in internet-of-things. IEEE Internet of Things Journal 4, pp. 1250-1258.

MaZ., Xiao M., Xiao Y., Pang Z., Poor H.V. & Vucetic B. (2019) High-reliability
and low-latency wireless communication for internet of things: Challenges,

fundamentals, and enabling technologies. IEEE Internet of Things Journal 6, pp.
7946-7970.

Silverio-Ferndndez M., Renukappa S. & Suresh S. (2018) What is a smart
device?-a conceptualisation within the paradigm of the internet of things.
Visualization in Engineering 6, pp. 1-10.

Ryan P.J. & Watson R.B. (2017) Research challenges for the internet of things:
what role can or play? Systems 5, p. 24.

Rahmani A.M., Bayramov S. & Kiani Kalejahi B. (2022) Internet of things
applications: opportunities and threats. Wireless Personal Communications 122,
pp- 451-476.

Badr Y., Zhu X. & Alraja M.N. (2021) Security and privacy in the internet of
things: threats and challenges. Service Oriented Computing and Applications 15,
pp- 257-271.

Thangaramya K., Kulothungan K., Logambigai R., Selvi M., Ganapathy S. &
Kannan A. (2019) Energy aware cluster and neuro-fuzzy based routing algorithm
for wireless sensor networks in iot. Computer Networks 151, pp. 211-223.

Wu F, Li X., Xu L., Vijayakumar P. & Kumar N. (2020) A novel three-
factor authentication protocol for wireless sensor networks with iot notion. IEEE
Systems Journal 15, pp. 1120-1129.

Vaiyapuri T., Parvathy V.S., Manikandan V., Krishnaraj N., Gupta D. &
Shankar K. (2021) A novel hybrid optimization for cluster-based routing protocol
in information-centric wireless sensor networks for iot based mobile edge
computing. Wireless Personal Communications , pp. 1-24.

Jaiswal K. & Anand V. (2020) Eomr: An energy-efficient optimal multi-path
routing protocol to improve qos in wireless sensor network for iot applications.
Wireless Personal Communications 111, pp. 2493-2515.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

52

Kuthadi V.M., Selvaraj R., Baskar S., Shakeel PM. & Ranjan A. (2022)
Optimized energy management model on data distributing framework of wireless

sensor network in iot system. Wireless Personal Communications 127, pp. 1377-
1403.

Skiadopoulos K., Tsipis A., Giannakis K., Koufoudakis G., Christopoulou E.,
Oikonomou K., Kormentzas G. & Stavrakakis I. (2019) Synchronization of data
measurements in wireless sensor networks for iot applications. Ad Hoc Networks

89, pp. 47-57.

Lazidis A., Tsakos K. & Petrakis E.G. (2022) Publish—subscribe approaches for
the iot and the cloud: Functional and performance evaluation of open-source
systems. Internet of Things 19, p. 100538.

Blazy O., Conchon E., Klingler M. & Sauveron D. (2021) An iot attribute-based
security framework for topic-based publish/subscribe systems. IEEE Access 9,
pp- 19066-19077.

Nguyen H., Uddin M.Y.S. & Venkatasubramanian N. (2019) Multistage adaptive
load balancing for big active data publish subscribe systems. In: Proceedings of
the 13th ACM International Conference on Distributed and Event-based Systems,
pp. 43-54.

Tarig M.A., Koldehofe B. & Rothermel K. (2013) Securing broker-less
publish/subscribe systems using identity-based encryption. IEEE transactions on
parallel and distributed systems 25, pp. 518-528.

Pavlopoulou N. & Curry E. (2021) Iotsax: A dynamic abstractive entity
summarization approach with approximation and embedding-based reasoning
rules in publish/subscribe systems. IEEE Internet of Things Journal 9, pp. 1830—
1847.

Javed A., Larijani H. & Wixted A. (2018) Improving energy consumption of a
commercial building with iot and machine learning. IT Professional 20, pp. 30—
38.

Giindogan C., Kietzmann P., Schmidt T.C. & Wihlisch M. (2022) A mobility-
compliant publish—subscribe system for an information-centric internet of things.
Computer Networks 203, p. 108656.

Zaarour T., Bhattacharya A. & Curry E. (2022) Openpubsub: supporting large
semantic content spaces in peer-to-peer publish/subscribe systems for the internet
of multimedia things. IEEE Internet of Things Journal 9, pp. 17640-17659.

Ramachandran G.S., Wright K.L., Zheng L., Navaney P., Naveed M.,
Krishnamachari B. & Dhaliwal J. (2019) Trinity: A byzantine fault-
tolerant distributed publish-subscribe system with immutable blockchain-based
persistence. In: 2019 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), IEEE, pp. 227-235.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

53

Pavlopoulou N. & Curry E. (2022) Possum: An entity-centric publish/subscribe
system for diverse summarization in internet of things. ACM Transactions on
Internet Technology (TOIT) 22, pp. 1-30.

Nguyen L.T.T., Ha S.X., Le T.H., Luong H.H., Vo K.H., Nguyen K.H.T., Dao
T.A., Nguyen H.VK. et al. (2022) Bmdd: a novel approach for iot platform
(broker-less and microservice architecture, decentralized identity, and dynamic
transmission messages). Peer] Computer Science 8, p. €950.

Singh M., Rajan M., Shivraj V. & Balamuralidhar P. (2015) Secure mqtt for
internet of things (iot). In: 2015 fifth international conference on communication
systems and network technologies, IEEE, pp. 746-751.

Thean Z.Y., Yap V.V. & Teh P.C. (2019) Container-based mqtt broker cluster
for edge computing. In: 2019 4th International Conference and Workshops on
Recent Advances and Innovations in Engineering (ICRAIE), IEEE, pp. 1-6.

Pranata A.A., Lee JM. & Kim D.S. (2017) Towards an iot-based water
quality monitoring system with brokerless pub/sub architecture. In: 2017
IEEE International Symposium on Local and Metropolitan Area Networks
(LANMAN), IEEE, pp. 1-6.

Tabatabai S., Mohammed I., Al-Fugaha A. & Salahuddin M.A. (2017) Managing
a cluster of iot brokers in support of smart city applications. In: 2017 IEEE
28th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), IEEE, pp. 1-6.

Aburukba R.O., AliKarrar M., Landolsi T. & El-Fakih K. (2020) Scheduling
internet of things requests to minimize latency in hybrid fog—cloud computing.
Future Generation Computer Systems 111, pp. 539-551.

Cui L., Xu C., Yang S., Huang J.Z., Li J., Wang X., Ming Z. & Lu N. (2018)
Joint optimization of energy consumption and latency in mobile edge computing
for internet of things. IEEE Internet of Things Journal 6, pp. 4791-4803.

Shukla S., Hassan ML.F., Khan M.K., Jung L.T. & Awang A. (2019) An analytical
model to minimize the latency in healthcare internet-of-things in fog computing
environment. PloS one 14, p. €0224934.

Alshammari H.H. (2023) The internet of things healthcare monitoring system
based on mqtt protocol. Alexandria Engineering Journal 69, pp. 275-287.

Li J., Zhang T., Jin J., Yang Y., Yuan D. & Gao L. (2017) Latency estimation
for fog-based internet of things. In: 2017 27th International Telecommunication
Networks and Applications Conference (ITNAC), IEEE, pp. 1-6.

Shukla S., Hassan ML.F.,, Tran D.C., Akbar R., Paputungan I.V. & Khan M.K.
(2021) Improving latency in internet-of-things and cloud computing for real-time
data transmission: a systematic literature review (slr). Cluster Computing , pp.
1-24.

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

54

Wang Z., Gao F. & Jin X. (2020) Optimal deployment of cloudlets based on cost
and latency in internet of things networks. Wireless Networks 26, pp. 6077-6093.

Velasquez K., Abreu D.P., Curado M. & Monteiro E. (2017) Service placement
for latency reduction in the internet of things. Annals of Telecommunications 72,
pp. 105-115.

Aazam M. & Huh E.N. (2015) Fog computing micro datacenter based dynamic
resource estimation and pricing model for iot. In: 2015 ieee 29th international
conference on advanced information networking and applications, IEEE, pp.
687-694.

Purwania [.B.G., Kumara [.N.S. & Sudarma M. (2020) Application of iot-based
system for monitoring energy consumption. International Journal of Engineering
and Emerging Technology 5, pp. 81-93.

Tekin N., Acar A., Aris A., Uluagac A.S. & Gungor V.C. (2023) Energy
consumption of on-device machine learning models for iot intrusion detection.
Internet of Things 21, p. 100670.

Mocnej J., Miskuf M., Papcun P. & Zolotova I. (2018) Impact of edge computing
paradigm on energy consumption in iot. IFAC-PapersOnLine 51, pp. 162-167.

Alkhayyat A., Thabit A.A., Al-Mayali FA. & Abbasi Q.H. (2019) Wbsn 1n iot
health-based application: toward delay and energy consumption minimization.
Journal of Sensors 2019.

Rausch T., Dustdar S. & Ranjan R. (2018) Osmotic message-oriented middleware
for the internet of things. IEEE Cloud Computing 5, pp. 17-25.

Roy D.G., Mahato B., De D. & Buyya R. (2018) Application-aware end-to-end
delay and message loss estimation in internet of things (iot)—mgqtt-sn protocols.
Future Generation Computer Systems 89, pp. 300-316.

Khare A., Sharma R. & Ahuja N.J. (2020) Experimental investigation of
integrated id method to mitigate message loss in 1ot control devices. Journal of
Engineering Science and Technology (JESTEC) 15, pp. 32-45.

Luzuriaga J.E., Zennaro M., Cano J.C., Calafate C. & Manzoni P. (2017) A
disruption tolerant architecture based on mqtt for iot applications. In: 2017 14th

IEEE Annual Consumer Communications & Networking Conference (CCNC),
IEEE, pp. 71-76.

Kavuri S., Moltchanov D., Ometov A., Andreev S. & Koucheryavy Y. (2020)
Performance analysis of onshore nb-iot for container tracking during near-the-
shore vessel navigation. IEEE Internet of Things Journal 7, pp. 2928-2943.

Schmitt A., Carlier F. & Renault V. (2018) Dynamic bridge generation for iot
data exchange via the mqtt protocol. Procedia computer science 130, pp. 90-97.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

55

Koziolek H., Griiner S. & Riickert J. (2020) A comparison of mqtt brokers
for distributed iot edge computing. In: Software Architecture: 14th European
Conference, ECSA 2020, L’ Aquila, Italy, September 14—18, 2020, Proceedings
14, Springer, pp. 352-368.

Luzuriaga J.E., Perez M., Boronat P.,, Cano J.C., Calafate C. & Manzoni P.
(2015) A comparative evaluation of amqp and mgqtt protocols over unstable and
mobile networks. In: 2015 12th Annual IEEE Consumer Communications and
Networking Conference (CCNC), IEEE, pp. 931-936.

Kawaguchi R. & Bandai M. (2019) A distributed mqtt broker system for location-
based iot applications. 2019 IEEE International Conference on Consumer
Electronics (ICCE) , pp. 1-4.

Mishra B., Mishra B. & Kertesz A. (2021) Stress-testing mqtt brokers: A
comparative analysis of performance measurements. Energies 14, p. 5817.

Pourreza M. & Narasimhan P. (2022) Quantitative evaluation of application
layer protocols for edge-centric real-time iovt applications. In: 2022 IEEE
13th Annual Ubiquitous Computing, Electronics & Mobile Communication
Conference (UEMCON), IEEE, pp. 0067-0075.

Longo E., Redondi A.E., Cesana M., Arcia-Moret A. & Manzoni P. (2020) Mqtt-
st: a spanning tree protocol for distributed mqtt brokers. In: ICC 2020-2020 IEEE
International Conference on Communications (ICC), IEEE, pp. 1-6.

Mukherjee A., Dey N. & De D. (2020) Edgedrone: Qos aware mqtt middleware
for mobile edge computing in opportunistic internet of drone things. Computer
Communications 152, pp. 93-108.

Sommer P. & Wattenhofer R. (2009) Gradient clock synchronization in wireless
sensor networks. In: Proceedings of the 2009 International Conference on
Information Processing in Sensor Networks, IPSN *09, IEEE Computer Society,
USA, p. 37-48.

Appendix 1

56

8. APPENDICES

Migration of Micro-services: Broker Container State Preservation

Appendix 1. Migration of Micro-services: Broker Container State Preservation 57

0.1. Migration of Microservices - Broker Container State Preservation
0.1.1. Introduction

In this appendix, we provide additional details on the research conducted to achieve
the state preservation of a broker container with MQTT configuration during migration.
The objective of this research was to develop a method that allows seamless transfer
of the container’s state to other systems, ensuring a smooth resumption of operations
from where it left off.

0.1.2. Methodology

To achieve the state preservation of the broker container, the following steps were
undertaken:

Container Configuration

The broker container was initially configured with the necessary MQTT settings,
including topic subscriptions, access controls, and persistent storage configurations.
This ensured that the container operated with the required MQTT parameters and
retained its state throughout the migration process.

Exportability

To make the container exportable to other systems, a comprehensive export mechanism
was devised. This mechanism packaged the container, along with its MQTT
configuration and associated state data, into a portable format. This allowed for easy
transfer and deployment onto target systems while maintaining the container’s integrity
and state.

0.1.3. Results

The research yielded successful outcomes, as demonstrated by the following key
results:

State Preservation

The broker container, after being exported from the source system, was seamlessly
deployed onto a new system. It retained its MQTT configuration and state, including
active connections, retained messages, and session data. This ensured a smooth
resumption of operations without any loss of critical information or disruption in
service.

Appendix 1. Migration of Micro-services: Broker Container State Preservation 58

Compatibility

The exported container was successfully deployed onto various target systems
with different underlying infrastructures, such as cloud platforms or on-premises
environments. The compatibility of the container’s state preservation mechanism
across these diverse systems highlights its versatility and adaptability.

0.1.4. Conclusion

In conclusion, the research on the migration of microservices, specifically focusing
on the preservation of a broker container’s state with MQTT configuration, has
demonstrated the feasibility and effectiveness of the proposed method. By ensuring
the seamless transfer and resumption of the container’s state, this approach will offer
significant benefits.

Keywords: Micro-services, edge-cloud, edge services, migration, state-
maintained docker, QoS.

	Introduction
	Background
	Problem Statement
	Hypothesis:
	Objectives and Research Questions:

	Scope and Limitations:
	Organization of the Thesis

	Literature Review
	Internet of Things (IoT) and Sensor Networks
	 Challenges of Achieving HRLL in Multibroker MQTT Platforms
	 IoT and Its Potential Impact
	 Intelligent Routing in IoT-based Wireless Sensor Networks

	Publish-Subscribe Systems
	Advances in IoT System Optimization
	Fog-Based IoT
	Optimizing Latency in Healthcare IoT: Leveraging MQTT Protocol
	Performance Analysis of IoT Systems
	Latency Estimation in IoT
	Energy Consumption in IoT
	Message Loss in IoT and its Relevance to Seamless Connectivity

	MQTT Protocol
	Broker-Based Communication Systems
	Prior Research on Broker Switching, latency calculation, and Message Loss

	System Model and Methodology
	Methodology
	Case Study 1: Cloud-Based Multi-Broker Deployment
	Case Study 2: Local Area Network(LAN)-Based Multi-Broker Deployment
	Case Study 3:Multi-Layer LAN Network Based Multi-Broker Deployment
	Fundamental Latency in Each Scenario
	Assumptions and Constraints
	Metrics for Performance Evaluation
	Implementation Approach
	Optimized Methodology to Calculate Latency Calculation

	Simulation and Experimental Setup
	System Description
	Hardware Architecture:

	software architecture
	Hardware-Software Integration

	Results and Analysis
	Test Case Analysis
	Test Case: “Cloud-Based Multi-Broker Deployment
	Test Case: “LAN-Based Multi-Broker Deployment”
	Test Case: “Multi-Layer LAN Network Based Multi-Broker Deployment”

	Examining the Analytics from the Above Tests
	New Hypothesis Validation: Direct Client-to-Edge Connection

	Conclusion and Future Work
	Conclusion
	Final Remarks
	Future Research Directions

	REFERENCES
	Appendices
	Migration of Microservices - Broker Container State Preservation
	Introduction
	Methodology
	Results
	Conclusion

